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Preface

The use of mathematical modeling techniques in biomedical research
is playing an increasingly important role as one seeks to understand the
physiopathology of disease processes. This includes not only understand-
ing mechanisms of physiological processes, but diagnosis and treatment.
In addition, its introduction in the study of genomics and proteomics
is key in understanding the functional characteristics of gene expression
and protein assembly and secretion. Finally, with the increasing com-
plexity and associated cost of drug development, modeling techniques
are being used to streamline the process.

We have worked in close collaboration with colleagues in biomedical
and pharmaceutical research for a number of years applying and refining
mathematical modeling techniques to a variety of problems. In addition,
we have worked in collaboration with colleagues in applied mathematics
and statistics to develop new algorithms to solve new sets of problems
as they emerge in our research efforts. Finally, we have worked with
colleagues in computer science to develop new software tools that bring
the power of mathematical modeling to a broad research community.
This books brings together much of what we have learned over the years,
and presents the material in a format that should be accessible both to
the novice reader and those desiring more detailed information about
specific techniques.

We are indebted to many of our colleagues who were extremely patient
and helpful during the preparation of the book for publication. We
are encouraged by the support we have received from our respective
institutions and also review panels for several of the research grants we
have obtained during the work on the book.

There are many research programs that have led directly to material
presented in the text. Special mention must be given to the Biomedical
Technology Program in the National Center for Research Resources at
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the National Institutes of Health (USA) whose resource facility grant
Resource Facility for Kinetic Analysis (RFKA) supported all authors
during the development of the SAAM II software system. There is a
tight link between the material developed in this text and SAAM II;
SAAM II was used to develop all examples in the text.

The preparation of the book would not have been possible without
regular travel between Seattle and Padova. Funding for the travel was
provided by RFKA and the Ministero della Università e Ricerca Scien-
tifica e Tecnologica of Italy. We are most grateful for this support.

Finally, we would like to thank Agnes Sieger and Mike Macaulay for
the final preparation of the text.

CLAUDIO CODELLI, PADOVA, ITALY

DAVID FOSTER, SEATTLE, WASHINGTON, USA
GlANNA TOFFOLO, PADOVA, ITALY
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Chapter 1

INTRODUCTION

1.1 WHY MODELING?
The use of tracers to study metabolic systems is becoming increas-

ingly important in biomedical research. The fundamental reason is that
while the tools of molecular biology have provided much new informa-
tion about the structure of different components of metabolic systems,
information is also needed about the function of these components. This
information can come from a knowledge of the systems kinetics, that is,
the temporal and spatial distribution of the components comprising the
system. Tracers are used as a tool to obtain the kinetic information.
One reason why tracer kinetics is enjoying a resurgence is that signif-
icant improvements have been made in both the quality and quantity
of data that are available from a tracer experiment. This is due both
to new instruments to measure data previously not available and new
instruments, especially for stable isotopes, to measure kinetic informa-
tion in increasingly small samples. For example, PET and NMR studies
using radioactive and stable isotopes are revealing details of metabolic
events heretofore unavailable.

In general, tracer kinetic studies are undertaken to understand the
physiology and pathophysiology of the metabolism of substances that
already exist in the body. Such substances include glucose, insulin, vita-
mins, minerals, amino acids and proteins, or aggregates of material such
as the plasma lipoproteins. While studies are most commonly conducted
at the “whole body” level, new techniques are permitting studies at the
organ, cellular and subcellular levels.

In order to interpret kinetic data from an experiment, one requires a
mathematical model of the system under study. A model is a construct

1



2 TRACER KINETICS IN BIOMEDICAL RESEARCH

invented by a researcher to summarize what is known and hypothesized
about a system under study. It breaks the system down to a level of
detail required into component parts indicating the relationship among
these parts. A mathematical model is simply a model that can be de-
scribed by a set of mathematical equations.

Why is mathematical modeling necessary? It is necessary because
researchers desire quantitative information on the system under study.
Models provide a means by which to calculate parameters characterizing
these nonaccessible parts of the system from information available only
from those parts of the system that are accessible for measurement. The
situation can be schematized in Figure 1.1.1.

Thus to estimate these kinetic parameters, one has to link the infor-
mation available from the accessible pool measurements with the events
occurring in both in the accessible and nonaccessible portions of the
system. This requires making some assumptions about how the system
functions. In short, one has to postulate a model of the system based
upon known physiology and biochemistry, and assumptions about how
the system is interconnected. Once this is done, the model must be
described mathematically. The situation is illustrated in Figure 1.1.2.
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1.2 HOW MODELING?
How are these models constructed? As indicated in Figure 1.2.1, there

are basically two steps involved: structural modeling and parameter es-
timation. As mentioned previously, structural modeling is the process
by which ones knowledge and assumptions about the system are for-
malized first as a schematic and then mathematically. As will be seen
in this text, the model will always contain hypotheses and simplifica-
tions for a variety of reasons: parts of the system are unknown, or only
some features are relevant for the study. However, the model must be
parsimonious and usable. Parameter estimation is the process by which
the parameters characterizing the model are adjusted so as to obtain a
best fit of the available data. For any hypothesized structural model,
parameter estimation provides information to assess the adequacy of the
model. Criteria based upon goodness-of-fit, precision of the parameter
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estimates, parsimony, and plausibility permit an investigator to judge
the quality of the model.

The best one can hope for is a model to be compatible with the data
and be physiologically plausible. While never the truly “correct” model
of the system, it can be used for predictive purposes, e.g. estimating
the system parameters and simulating future experiments. However,
one must have confidence in the results and predictions of the model.
This confidence can be obtained through the process of validating the
model. Validation criteria and strategies are available which take into
account the models complexity and available data. The model is also
dynamic in the following sense. The hypotheses that are incorporated
in the models structure can be tested through new experiments. The
model will either correctly predict the results of these experiments or
not. If it does not, then the model structure will have to be changed,
and the process of compatibility with previous data and physiological
plausibility reexamined.

There are many types of mathematical models that can be used to
interpret tracer kinetic data. All have assumptions associated with them
that need to be understood in order to apply them correctly. In addition,
what type of model is chosen for a particular situation can depend upon
the information that is needed. Thus while a particular set of data could
be very rich in information content, a simple method of analysis could
be used to estimate a limited set of parameters.
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1.3 AIM OF THE BOOK
The aim of this book is to explain how mathematical models can be

used as a powerful research tool in the design and analysis of experiments
in which tracer kinetic data are generated. Starting with a description
of radioactive and stable isotopes, it will give a detailed description of
the steps involved in developing and using mathematical models.

The focus will be on systems that are studied in the steady state, since
most of the metabolic systems are non-linear, and this makes them diffi-
cult to study since the mathematical equations describing them are also
non-linear, and the nature of the non-linearities is difficult to describe
mathematically. To overcome this problem, many tracer kinetic stud-
ies are conducted in the steady state, i.e. under conditions where the
masses and fluxes of material in the system are maintained in near con-
stant conditions. This assumption results in mathematical models that
are linear and, with the numerical techniques now available in many
software programs, easy to solve.

Two common types of linear models will be presented: noncompart-
mental and (linear) compartmental models. The underlying assump-
tions of each will be explained in detail. The underlying mathematics
and statistics will also be explained, but at a level that is transparent
to the novice reader. They will be explained in terms that are easy to
understand. This is especially true in the areas of parameter estimation
and model identifiability, two areas that are critical in the process but
a poorly understood because most material in these areas is given in
full generality with little intuition as to the “what”, “how” and “why”.
Here the concepts will be explained in understandable terms; the con-
cepts will be carefully illustrated using several examples. The goal is that
the reader, upon completing the book, will be able to use mathematical
models and software programs necessary to solve them and use them as
powerful research tools. Since the modeling machinery is transparent,
it is also useful in other contexts. For example, it should be noted that
much of the material in the book is relevant to study pharmacokinetic/
pharmacodynamic systems, nonsteady state systems and physiological
control system.

1.4 WHO SHOULD READ THE BOOK?
Mathematical modeling has received considerable attention both in

the past and present kinetic studies. Many books and papers have been
written on the subject. The most frequently cited text include Anderson
[1983], Atkins [1969], Atkinson [1999], Carson et al. [1983], Gibaldi and
Perrier [1982], Godfrey [1983], Gurpide [1975], Jacquez [1996], Lassen
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and Perl [1979], Norwich [1977], Rescigno and Segre [1966], Riggs [1975],
Rowland and Tozer [1995], Shipley and Clark [1972], and Wolfe [1992].
In addition, there are several seminal articles including Carson and Jones
[1979], Cobelli and Caumo [1998], DiStefano and Landaw [1984], and
Landaw and DiStefano [1984].

Many of the texts listed above focus only on limited aspects of the
modeling process. Others go into mathematical and/or statistical depth
that is beyond the ability of the beginning modeler. In this book, empha-
sis is placed on aspects of analyzing tracer kinetic data obtained from in-
creasingly complex systems using increasingly sophisticated experimen-
tal designs. The mathematics involved will illustrate the key points,
especially in parameter estimation and model identifiability. However,
intuitive arguments will be given in many places so the reader will un-
derstand the assumptions and limitations of the various methodologies
discussed. When more detail is required, the reader will be pointed to
specific texts or the appendices.

With this in mind, who should read this book? The book is intended
for those individuals who are using or planning to use tracer kinetic
techniques to probe different metabolic systems. In addition, it can be
used as an introductory text in tracer kinetic analysis and mathematical
modeling of biological systems. Finally, it can be used by researchers
in pharmacokinetics who are interested in information in a more global
setting than that normally found in many pharmacokinetic text books.

Fortunately there are a number of software systems that are available
to aid the research in the model development and data analysis process.
Some users take advantage of mathematically oriented scientific software
packages; these require the user to write the models equations directly
and often require, in addition, programming skills. This level of usage is
beyond the scope of the present text so these packages will not be listed.

1.5 ORGANIZATION OF THE BOOK
This book provides a description of the processes involved in designing

and analyzing tracer kinetic studies starting from the steps involved in
choosing an isotope, or isotopes, for a tracer, or tracers, through formu-
lating models to analyze the kinetic data resulting from an experiment.
It begins with a description of the fundamentals of tracer kinetics fo-
cusing on the measurement variables, discusses two broadly used mod-
eling techniques including the underlying mathematics and statistics,
and discusses how to assess how “good” a model is. It also points out
how models can be used to test hypotheses both after an experiment is
completed, and before during which time experimental protocols can be
simulated before actually performing an experiment. Taken together,
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the goal is to obtain information rich data and then to apply modeling
techniques to extract the information.

When needed, specific references to more detailed information will be
given at the end of each chapter. These bibliographies are not meant to
be exhaustive nor historic. They are meant to provide specific supple-
mental information for those readers wanting more details about specific
material presented in the chapter.

Several examples are provided to illustrate key points. Two Case
Studies are discussed which permit a comparison of the different method-
ologies that are provided. A floppy disk with the data files used in the
examples and Case Studies is provided so that the reader can recre-
ate them. In this book the SAAM II software was used to generate all
examples and Case Studies.

Chapter 2 discusses the fundamentals of tracer kinetics first in gen-
eral terms, and then specifically related to radioactive and stable isotopic
tracers. Careful attention is paid to the measurement variables. Impor-
tant comparisons between the measurement variables for the two kinds of
tracers are made. In addition, a rigorous discussion concerning the var-
ious measurement variables for stable isotopic tracers is given. For the
readers convenience, a table is included that can help convert the usual
measurement variables for stable isotopic tracers into the measurement
variable that is needed for data analysis.

Chapters 3 and 4 describe the basics of the noncompartmental and
compartmental models of multipool systems. The former, often referred
to as the integral equation approach and claimed to be model indepen-
dent, is shown to be based upon many assumptions that are actually
shared, in part, by certain types of multicompartmental models. For
noncompartmental models, the standard formulas for the parameters are
derived for the different protocols using radioactive and stable isotopic
tracers. For compartmental systems, the basic definitions are given. In
both cases, it is assumed that the experiment is conducted in the steady
state. This will be seen to have a dramatic impact on multicompart-
mental models since the underlying differential equations have special
properties.

Chapter 5 focuses on the a priori identifiability of multicompartmental
models. This addresses the following question: given a specific model
structure and input-output protocol, will the data (in the ideal sense,
i.e. assuming the model structure is correct and the data are error free)
permit the estimation of the model parameters? Several examples will
be given to show how this crucial step fits into the modeling process. It
will be shown that new technologies are being developed which can help
to answer this question in the general case.
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Chapter 6 will show how to recover kinetic parameters from multi-
compartmental models, and in Chapter 7a comparison between these
parameters and those generated from noncompartmental models will be
given. The reader will see when the two agree, and under which cir-
cumstances they do not agree. It will be easy to understand how the
imposition of a structure in a multicompartmental model increases the
models predictive capability.

Chapter 8 discusses parameter estimation. This crucial chapter dis-
cusses unweighted and weighted linear and nonlinear regression. It will
be seen that while linear regression is exact, nonlinear regression is an
approximation. It describes in detail the error structure in the data, and
why it is essential that one appreciate this error in the modeling process.
It then goes on to discuss regression, and show why the error structure is
necessary if one desires statistical information about the fitting process.
The notions of standard and fractional standard deviations, variance-
covariance and correlations are also introduced. Chapter 8 ends with
a discussion of tests for goodness-of-fit and model order. To provide
insights into the regression process, simple examples are given.

Chapter 9 shows how to use sums of exponentials to estimate the pa-
rameters of the noncompartmental model. Several examples are given.
An appendix is provided which shows the reader how to obtain initial
estimates for the coefficients and exponentials in the exponential func-
tion.

Chapter 10 does the same for multicompartmental models. Again, an
appendix is provided to illustrate how to obtain initial parameter esti-
mates. This will again illustrate the critical link between the coefficients
and exponentials in the exponential function, and the rate constants of
a multicompartmental model. In both chapters, case studies will serve
as examples.

Chapter 11 describes a special application often found in tracer kinetic
analysis, precursor-product relationships. Here the equations are derived
with the assumptions specifically given allowing the reader to understand
fully the results from this type of analysis.
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Chapter 2

FUNDAMENTALS OF TRACER KINETICS

2.1 INTRODUCTION
As defined in Chapter 1, the kinetics of a substance in a biologi-

cal system are its spatial and temporal distribution in that system. The
kinetics are the result of several complex events including circulatory dy-
namics, transport into cells, and utilization. Utilization usually requires
biochemical transformations which are characteristics of the substance.
The substance can be an element such as calcium or zinc, or a compound
such as amino acids, proteins or sugars. All exist normally in the body,
and can be of endogenous or exogenous sources, or both. The primary
goal of the kinetic events characterizing the metabolism of a substance
is to maintain specific levels of the substance in the various components
of its systems. The maintenance of these levels is achieved by internal
control mechanisms, and involves input into the system to balance the
loss which occurs through utilization and excretion.

One wishes to understand the kinetics of a substance under normal
circumstances in order to better understand pathophysiological condi-
tions since these may be a result of abnormal kinetics. A fundamental
problem in biology and medicine, therefore, is to describe quantitatively
the kinetics of substances existing in the body. Among the tools that
are available, tracers have been extensively used. Tracers are substances
introduced externally into the system to provide data from which quan-
titative estimates of events characterizing the kinetics of the substance
can be made. Tracers can be substances such as dyes or, as described in
more detail below, substances labeled with radioactive or stable isotopes.

In this text, the focus will be on characterizing the kinetics of sub-
stances already present in the body by using isotopic tracers as probes.

11
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A naturally occurring substance is called a tracee. The tracers will
be assumed to be ideal where an ideal tracer is a substance with the
following characteristics:

a. it is detectable by an observer,

b. its introduction into a system does not perturb the system being
studied, and

c. it is indistinguishable with respect to the properties of the tracee
system being studied.

The first requirement, that of detectability, means that there must
be some method by which the amount of tracer in a sample can be
quantified. The second requirement means that the introduction of a
tracer into the system has no effect on the ongoing metabolic processes
which characterize the system under study. This requirement is usually
met by introducing an extremely small amount of tracer compared with
the amount of tracee already existing, and arguing this small pertur-
bation does not disturb the system. The third requirement means that
the system being studied is not able to distinguish between the tracer
and tracee, i.e. both follow the same processes with equal probabili-
ties. These requirements are usually met, but the investigator should be
aware that problems associated with them can arise.

By definition, the tracer has its own kinetics. The goal of a tracer
kinetic study is to infer from the tracer kinetics information on the tracee
kinetics. If the three requirements are met, this goal can be attained.

2.2 THE TRACER-TRACEE SYSTEM
2.2.1 Concepts and Definitions

A convenient scheme to illustrate the kinetics of a substance is shown
in Figure 2.2.1. In this figure, the circles represent the masses of two
interacting substances in specific forms at specific locations, and the
arrows represent the transport or flux of material and/or biochemical
transformations. This figure shows two specific substances, A and B, to
make the point that kinetics includes both transport between different
locations, and biochemical transformation. The goal of the tracer study
is to determine the masses and fluxes, i.e. transport and biochemical
transformation, in this system.

A fundamental assumption in using tracers is that there is at least
one component in the system under study which is accessible for tracer
administration, and tracer and tracee sampling. This special component
is called the accessible pool. Examples of accessible pools are a sub-
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stance in physiological spaces such as plasma or a tissue, or a substance
in expired air.

Suppose in the system shown in Figure 2.2.1, the plasma component
for A is accessible. This means measurements of A can be obtained from
plasma. One can redraw this system to emphasize the accessibility of
this component for tracee measurement; this is shown in Figure 2.2.2.
Notice that while B also exists in plasma, it may not be possible to
sample and measure it. Thus plasma B is not accessible, even though
it is in plasma. If B could be measured, then this system would have
two accessible pools, one for A and one for B. This simple observation
will have profound consequences when multiple input-multiple output
experimental designs are discussed later.

Suppose the kinetics of the tracee substance described in Figure 2.2.2
is to be studied. The characterization of the system by identifying the
components and interconnections, and the availability of at least one
accessible pool, set the stage for using a tracer to characterize these
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kinetics. By appealing to the definition of an ideal tracer, one can assume
that the system described in Figure 2.2.2 for the tracee is the same as
that for the tracer. Therefore, superimposing the tracer system on that
shown in Figure 2.2.2, one has the system shown in Figure 2.2.3.

These two figures emphasize that the two systems for the tracee and
tracer are structurally identical, and demonstrate the need for an acces-
sible pool into which tracer can be introduced and from which measure-
ments of tracer and tracee can be made. The main difference between
the two is in the inputs. In the tracee system shown in Figure 2.2.2, the
input is endogenous into a nonaccessible component of the system. In
the tracer system shown above, the input is exogenous, and is into the
accessible pool.

Using these figures as representative of tracee and tracer systems, the
following will be discussed: (i) the tracee system, (ii) the tracer exper-
iment and the tracer system, (iii) the relationship between the tracee
and tracer systems, and (iv) the quantitation of the tracee system from
the tracer data. Following a general discussion, the notions will then
be applied to radioactive and stable isotopic tracers where, to pass from
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theory to practice, the measurement of the tracer will be discussed in
detail. This strategy will serve to emphasize similarities and differences
between using radioactive and stable isotopic tracers, and will form the
basis for the analysis of the tracer data with the concomitant inferences
about the metabolism of the tracee.

In this Chapter, only the single pool steady-state system will be dis-
cussed as a vehicle to introduce the necessary terminology. The precise
analyses and the extension to multipool systems will be discussed in
subsequent chapters.

2.2.2 The Tracee System
The tracee system to be discussed in this section is given in Fig-

ure 2.2.4. The system described in Figure 2.2.4 is a single pool system
which is accessible for measurement and in which it is further assumed
that the tracee is uniformly distributed. The accessible pool and the
system coincide in this particular situation.
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The notation introduced in Figure 2.2.4 which will be used for the
tracee system is given in Table 2.2.1. U is sometimes called de novo
synthesis, and F utilization, elimination or excretion. Concentration C
is defined below in (2.2.3).

Assume the tracee system is in the steady-state case. A steady state
is an experimental situation where de novo production U and disposal
F are equal and constant. This means that the tracee mass M remains
constant. To formalize this assumption in mathematical terms, one ap-
plies the mass balance principal to the tracee system, i.e. at any point in
time the rate at which the tracee mass changes is the difference between
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de novo production and disposal. Remembering that U and F are equal,
the desired formalism can be expressed in the following equation:

where t denotes time. In other words, as a result of U = F, the rate of
change of the tracee mass as a function of time, , is equal to zero.
This means M(t) does not change with time, hence

For the tracee, the measured value is usually concentration C where

In the steady state, C, as a result of the balance between U and F, is
a constant. However, from a knowledge of C alone, it is not possible to
estimate the fluxes U and F; to do this, a tracer must be used.

2.2.3 The Tracer System
The tracer system to be discussed in this section is given in Fig-

ure 2.2.5. As in the previous case, this is single pool system which
is accessible for measurement and in which the tracer is assumed to
distribute uniformly. Because of tracer-tracee indistinguishability, the
volume V is equal to the volume of distribution of the tracee. The no-
tation used in this figure is summarized in Table 2.2.2 below. Note in
this table, unlike Table 2.2.1, the dependence of some variables such as
mass on time t is explicitly noted, i.e. m(t).

The analogue for (2.2.1) for the tracer can be written by again ap-
pealing to the mass balance principal, i.e. the rate of change of tracer
mass is the difference between the rate of tracer input u(t) and tracer
disposal f(t):
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In (2.2.4), means that when the experiment starts at
there is no tracer mass in the system. (In mathematical terms, m(0) is
called the initial condition). In this situation, unlike the previous case
where M is constant, m(t) changes with time and hence is no
longer equal to zero.

While (2.2.4) is written in terms of tracer mass m(t), the manner
in which the amount of tracer is actually quantified depends upon the
tracer chosen. As discussed in the radioactive tracer is usually
quantified in terms of tracer concentration c(t), i.e. tracer mass per unit
volume:

In contrast, the most convenient way to express stable isotope measure-
ments as discussed in is the tracer mass per unit tracee mass:
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Since the volume V is the same for both the tracee and tracer, z(t) also
represents the ratio between tracer and tracee concentrations:

2.2.4 The Tracer-Tracee System
The link between the tracer and tracee system comes from the tracer-

tracee indistinguishability assumption. This assumption implies that
the probability that the tracer leaves the pool is equal to the probability
that a particle in the pool is a tracer. This can be written as

This equation can be reorganized:

from which one obtains

which, when this expression for f ( t ) is substituted into (2.2.4), gives

where This equation is a linear, constant coefficient differential
equation which provides the link between the tracer and tracee systems
since the tracer parameter k reflects tracee events,

2.2.5 System Parameters from Tracer and Tracee
Measurements

In the single pool system under consideration, the unknown parame-
ters of interest are F and M. It is the purpose of the tracer experiment
to generate the tracer and tracee data from which these parameters can
be estimated. One possible method is based on the solution of the tracer
model given by (2.2.11). Here m(t) is expressed as a function of the un-
known tracer parameter, k, (and thus of the tracee parameters since

and the known tracer input u(t). For instance, if the tracer
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experiment consists of injecting the tracer as a bolus of dose d at time
zero, then the solution of (2.2.11) is

Hence the tracer measurement can be related to the model parameters.
In particular, if a radioactive tracer is used and its concentration c(t) is
measured, then

where the unknown parameters are the volume V and the exponential
k. Both parameters can be estimated from the tracer data: the ratio
equals the tracer concentration at time zero whence

while k can be estimated from the rate of decay of the tracer. From
the estimates of k and V, and knowing the tracee concentration C, the
system tracee mass and fluxes can be quantified since, from the definition
of C and k,

The same procedure applies if a stable isotope is used. In this case, the
tracer measurement is the tracer to tracee ratio z(t). The counterpart
of (2.2.13) become

Here M plays the role that V played in (2.2.13). The parameters k and
M can be estimated from the tracer data as before, whence

The rationale applied above serves as the basis for the compartmental
modeling analysis which will be expanded in Chapters 4–6. Alterna-
tively, the flux F can be quantified from the tracer and tracee data by
using the noncompartmental analysis approach discussed in Chapter 3.
Briefly, the conservation of mass principal applied to the tracer (i.e., the
amount of tracer introduced into the system equals the amount leaving
the system), can be written
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since d, the total amount of tracer introduced into the system, is equal
to Substituting the expression for f ( t ) given in (2.2.10) into
this equation, one obtains

which, when solved for F, gives

From (2.2.19), F can be expressed as a function of tracer and tracee
measurements. If the tracer is quantitated in terms of the tracer to
tracee ratio z(t), it follows immediately from the definition that

If the tracer measurement is concentration c(t), then the expression for

F as a function of c(t) can be derived from the equality
hence

2.3 THE TRACER-TRACEE SYSTEM WITH
ISOTOPIC TRACERS

2.3.1 Concepts and Definitions
The preceding section describes the underlying theory for a generic

tracer in a steady-state tracee system. In this section, the notation
given in Table 2.2.1 and Table 2.2.2 will be expanded to accommodate
the theory underlying the use of radioactive and stable isotopic tracers.

While it is assumed that the reader is familiar with the general con-
cepts of isotopes [Sorenson and Phelps, 1987; Watson, 1987; Wolfe,
1992], it is useful to summarize the basics required for the present dis-
cussion. Each element is characterized by the number of protons in its
nucleus; this determines its atomic number. The nucleus also contains
a number of neutrons. This number can vary within limits for each el-
ement. The sum of the number of neutrons and protons is the mass
number. Atoms of the same clement which have the same number of
protons but a different number of neutrons are called isotopes. They
have the same atomic number, and thus similar chemical properties, but
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a different mass number. Isotopes can either be stable (called stable
isotopes) or unstable. In the latter case, they spontaneously undergo
nuclear transition with the emission of energy, and are called radioac-
tive isotopes.

For example, the hydrogen element (symbol H) has one proton and
thus its atomic number is equal to 1. In nature, there exist three hy-
drogen isotopes with the number of neutrons equal to 0, 1 or 2. These
isotopes have different mass numbers of 1, 2 or 3, and are denoted

or where the superscript is equal to the mass number of the
isotope. Two of the isotopes are stable, and while the third,
is an unstable emitter.

Carbon (symbol C), on the other hand, is characterized by 6 protons.
Since the number of neutrons for carbon can range from 4 to 10, seven
carbon isotopes exist in nature. Only two, and having 6 and
7 neutrons respectively are stable. Among the unstable isotopes,
and are often employed in tracer studies in biology and medicine.
The isotope is a isotope and is often used to create a
radioactive tracer while a isotope, is used in positron
emission tomography (PET) studies.

For any given element, the natural abundance of its stable isotopes
is remarkably constant, and in a number of cases, one stable isotope
is much more abundant than others; this is called the most abundant
isotope. For example for hydrogen, the relative abundance of the stable
isotopes and is respectively 99.985% and 0.015%. For carbon, the
relative abundance of and is respectively 98.89% and 1.11%.

By comparison, zinc (symbol Zn) has five stable isotopes existing in
nature: , and . The natural abundance of
each is respectively 48.89%, 27.81%, 4.11%, 18.57% and 0.62%.

For radioactive isotopes that are used in biology and medicine, their
mass in nature is negligible compared with the stable isotopes. For
instance in nature, the order of magnitude is one atom of to
atoms of

Radioactive and stable isotope tracers are used as isotopic tracers of
an element. For instance, the artificially produced radioactive isotope

of zinc can be used to study zinc kinetics. As an alternative, a
stable isotope of zinc can also be used by producing an elevation of the
abundance of, for example, , from 0.62% up to 95%.

Isotopes are more commonly used to create tracers for complex mol-
ecules. Glucose, for example, consists of carbon, hydrogen and oxygen
atoms. Considering the carbon atoms of natural glucose, a typical glu-
cose molecule will essentially contain and isotopes since the rela-
tive proportion of unstable isotopes is negligible. To produce an isotopic
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glucose tracer, the amount of or is artificially elevated at one
or more specific carbon atom positions in the glucose molecule. Hence
the isotopic species of the molecule being studied can be defined with
reference to one specific element in one or more specific positions. The
enriched isotope is frequently called a label while the molecule is said to
be labeled by this atom. For example, the carbon isotope can be
used to label glucose in the number one position; the labeled species is
written . Similarly, the carbon isotope  can be used to
label glucose in two positions producing, for example,
The corresponding unlabeled species are and

respectively. As will be seen in this Chapter, the problem is how
to quantitate the amount of tracer and tracee in a sample.

The following table, which gives a more precise formulation than Ta-
ble 2.2.2, summarizes the notation to be used for the tracer variables.
In addition to the most abundant one less abundant
and species are considered.

Paralleling the above notation for the tracer, the notation to be used
for the tracee is summarized in Table 2.3.2.

Figure 2.3.1 summarizes the above definitions and notation. It will
help to elucidate the basic ideas discussed in and related to the
measurement of radioactive and stable isotope tracers.
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2.3.2 Relationships Among Isotopic Variables

Having split the tracer and tracee masses into a number of compo-
nents related to the different isotopic species in the compound, one must
now extend the relationships given in the previous section to each iso-
tope. Considering the tracee first, one can write the indistinguishability
principal for the three isotopic species as

This is the counterpart to (2.2.10). From the steady-state mass balance
equations for the tracee, one has the counterpart of the general equation

written as follows for the three isotopic species
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from which

follows.
This equation states that, for the tracee under steady state conditions,

the ratio between the input rate and mass is the same for all isotopic
species, and is equal to the ratio between total input U and total mass M.
It should be noted that a similar relationship also holds when the above
tracee fluxes and masses are time varying, provided that the isotopic
composition of the input doesn’t change with time:

and for the tracer species provided that the isotope composition of the
input is constant:

A formal proof of the above relationships can be found in Appendix A.

2.4 THE RADIOACTIVE TRACER
VARIABLES

2.4.1 Measurements

To apply the general theory of isotopic tracers to the particular case
where radioactive isotopic tracers are used, it is important to discuss in
more detail how the input d and the tracer mass m(t) are quantitated.

Usually the measured variable is the tracer concentration
but its quantitation is in terms of radioactivity in order to take advan-
tage of the fact that radioactive isotopic tracers, being unstable, emit
energy as they undergo nuclear change. The measurement of the tracer
input u(t) is related to this energy emission as well. Some background
information on units and measurement techniques is necessary in order
to describe the quantitation of a radioactive isotopic tracer sample.

The recommended standard SI unit of radioactivity is disintegration
per second (dps) or bequerel. The practical units of activity used in
biomedical research are disintegrations per minute, dpm, or the curie
which equals disintegrations per second. One usually deals
with microcuries, which is equal to 1/1,000,000 of a curie. One
equals: disintegrations per second, or disintegrations
per minute (dpm).



26 TRACER KINETICS IN BIOMEDICAL RESEARCH

One cannot, however, measure radioactivity directly in terms of dpm.
For instance, when an investigator uses a beta or gamma counter, a mea-
sure of the radioactivity in the sample of interest in terms of counts per
minute, cpm, instead of dpm, is obtained. The cpm data are a function
of the counter and the isotope being analyzed, and include background
activity from, for example, electronic noise, detection of cosmic rays,
natural radioactivity. For each counter and isotope, there are rules the
investigator must follow to convert from cpm to dpm. It will be assumed
in this text that the investigator is familiar with these concepts, and if
using a radioactive isotopic tracer, can correctly calculate the dpm for
each sample.

How does the emission of energy by a radioactive isotope help in the
quantification of the tracer concentration c(t)? For each radioactive
isotope of an element, there is a proportional relationship between the
mass of the isotope and the dpm emitted by that mass. This can be
written

where v is the proportionality constant. If c(t) denotes the measurement
of tracer concentration, in terms of dpm per unit volume, one obtains

This provides a measure of the tracer mass since when the tracer is
carrier free, i.e. whence so that

However, as shown in the next section, even if the tracer is introduced
with a carrier which is the most common situation in practice, i.e.

and the tracer quantified in terms of dpm can
still be used.

Note that the mass introduced with the tracer is negligible
since a negligible amount of tracer produces a detectable signal which
can be quantitated in terms of dpm. Mass introduced with a carrier,

is also negligible since it is usually of the order of mag-
nitude of This is why in Figure 2.3.1 only the radioactive bar
is shown for the tracer (in contrast the most abundant and the stable
bar are absent). A mass perturbation is thus normally not an issue with
radioactive tracers.
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Another measure of radioactivity that is frequently used is the ra-
dioactivity per unit mass. This is the quotient of
This quotient is called specific activity, denoted sa. It is defined

The units are dpm/mass. One usually calculates the specific activity as
the quotient of the tracer and tracee concentrations since

where z(t) was defined in (2.2.6).

2.4.2 Kinetic Variables
While the variables for the general isotopic tracer are given in units of

mass, the measurements of radioactive tracers are not in terms of mass,
but energy. In order to rewrite the equations for F given in using
variables in these units, one must use v to convert d and m(t) from units
of mass to units of energy. Consider first the simplest situation where the
tracer is carrier free so that provides an indirect measurement of
the mass m(t); similarly for u. One can rewrite the mass balance equa-
tion (2.2.11) by multiplying both sides by the proportionality constant
v to obtain

Therefore the same equation holds for the tracer whether the units are
mass as in (2.2.11) or in dpm as in (2.4.6). Paralleling the discussion in

if one regards (2.2.11) or (2.4.6) as the compartmental model equa-
tion, the system is completely specified by coupling the state equation
(2.4.6) to the measurement equation (2.4.3). Similarly for the noncom-
partmental expression given in for F, since the tracer is carrier free

, and (2.2.11) can be written in terms of the measured dpms, by
multiplying the numerator and denominator of this expression by the
proportionality constant v,

In summary for the carrier free case, all of the formulas given in
are valid whether the radioactive tracer is quantified in terms of mass
or dpm. The reason is that the mass and dpm are proportional:
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The crucial observation is that these relations arc still valid even if
the tracer is not carrier free. Since the relative composition of species r

in the tracer input, written and described in detail in
Appendix A, is constant, one has

From (2.3.6)

The measurements of and in terms of dpm are still propor-
tional to their corresponding masses:

These proportionalities guarantee the equivalence of the formalism whether
the radioactive tracer introduced on a carrier is quantified in terms of
mass or dpm, as it can easily be shown by following the same logic as
that used in the carrier free case with replacing v,

In this section, care has been taken to separate the notions of the
tracer quantified in terms of mass and dpm. As seen, all formulas listed
in and are valid whether the radioactive tracer is quantified
in terms of mass or dpm. For the reason, in the remainder of the text
the notation given in for the general tracer will be adopted for the
radioactive tracer case. This also points out the similarity with other
tracers whose mass can be quantified by a measurement proportional to
the mass.

2.5 THE STABLE ISOTOPE TRACER
VARIABLES

2.5.1 Measurements

As shown in Figure 2.3.1, the situation with stable isotope tracers
is different from the radioactive case since (i) the stable isotope tracer
introduced into a system usually has nonnegligible mass unlike the ra-
dioactive case where the mass can be assumed to be negligible; (ii) there
is always some labelled species existing at a natural level in the tracee,
(iii) there is some of the naturally most abundant species in the tracer
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input; and (iv) the measurement of the stable isotope tracer can be
expressed in a variety of ways related to ratios of isotopic species.

The fact that the tracer may have nonnegligible mass is necessary
in order to have enough tracer mass in a sample to be quantitated.
Therefore, the assumption that the endogenous constant steady-state is
not perturbed by the administration of the stable isotope tracer needs to
be explicitly taken into account. Usually the tracer perturbation is often
confined within a few percent, and hence this assumption is likely to be
satisfied. Therefore in the following, the stable isotope measurement and
kinetic variables will be discussed assuming that the endogenous steady
state is not perturbed by the input of tracer. Later the non-perturbation
assumption will be examined, and a method will be outlined to test it.

To apply the general theory of isotopic tracers to the particular case
where stable isotopic tracers are used, one must be able to quantitate the
tracer input d and mass in a sample. The notation given in Table 2.3.1
and Table 2.3.2 will be used.

The quantification in a sample of the amount of stable isotopes of an
element, i.e. the most and least abundant species relies on the ability of
the mass spectrometer instrument to distinguish among isotopic species
based on differences in their mass number. The output is given in terms
of peaks associated with each species along a mass scale; the intensities of
the peaks are proportional to the abundances of the isotope combinations
in the molecule having a given mass number. In order to derive from
the peak intensities the measurements in terms of relative composition
in the sample of labelled and unlabelled species, transformations have
to be made between the peak intensities and masses. It is assumed that
the investigator is familiar with these techniques.

The final measurements can be expressed in a variety of ways [Cobelli
et al., 1992]. One is the quotient of the amount of species s and a in the
sample; this is called the isotope ratio, r(t), defined by

For convenience, the naturally occurring isotope ratio is denoted

and the isotope ratio of the tracer (before administered into the system)
by :
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As an example of r(t), consider as a tracer glucose molecules enriched
by 13C in position 3. In this case, in each sample ma(t) and ms(t) will
represent the amount of 12C and 13C at position 3 contributed by the
tracer while . and is the amount of and at position 3
naturally present in the system. The expression for is then

The isotope abundance, a(t), is defined as the quotient of the mass
of the labeled species and the total mass (the sum of the labeled plus
unlabeled species):

Isotope abundance a(t) can be expressed in terms of the isotope ratio

It is convenient to define the natural isotope abundance and the abun-
dance for the tracer (prior to administrating it into the system) by:

and

respectively
The enrichment, e(t), is defined as the abundance of the labeled

species above its natural level. Unlike and a(t) which have specific
expressions, there are two commonly used ways of expressing e(t) in
terms of . These are given below:
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The enrichment e(t) is the most commonly used way of expressing stable
isotope data. When multiplied by 100, it is expressed as a percent called
atom percent excess. As in the previous cases, it is convenient to define
enrichment for the tracer (prior to administering it into the system):

Finally, the measurement can also be expressed as tracer to tracee
ratio directly:

Two other variables which can be measured are the pre-test tracee
concentration and the total concentration during the experiment, re-
spectively

2.5.2 Kinetic Variables
It follows from the definitions in the previous sections that the tracer

to tracee ratio z(t) is the only measurement variable which is related
directly to the tracer mass. If the stable isotope data are expressed in
terms of z(t), the output equation for the data is

which is similar to the output equation (2.4.2) for the radioactive tracer;
the difference is that the volume V in (2.4.2) is replaced by tracee mass
M .

As anticipated in , the compartmental model parameters k and M
can be estimated from the data, and the system fluxes can be evaluated.
Similarly an expression for F using the noncompartmental approach can
be given in terms of z(t) using (2.2.20).
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Neither the compartmental parameters k and M nor the noncompart-
mental expression for the system fluxes can be written in terms of stable
isotope measurements such as r(t), a(t), e(t) or e2(t) defined above
since none of them are directly related to the tracer mass. The tracer to
tracee ratio z(t) is thus the most convenient way to express stable iso-
tope data since it also permits a formalism similar to that of radioactive
tracer data. Comparing (2.5.14) to (2.4.5), the analogy between z(t)
and specific activity is clear.

Often in the literature, enrichment is used as the analogue of specific
activity. Why? The reason probably is because the definition of enrich-
ment is very similar to that of specific activity, i.e. it is a measure of
the relative amount of the labeled species above the natural level. As
a consequence, it has been used instead of the correct variable z(t) in
kinetic formulas to estimate, for example, production rates or fractional
synthetic rates (FSR). Appendix B is devoted to clarifying the relation-
ship between z(t) and e(t), and to showing that e(t) can be used to
estimate the system fluxes from steady state tracer data only in special
cases which require modifications to the usual formulas. In addition, it
is shown that these formulas cannot be extended to the case where the
tracer is time varying with one exception where a very specific assump-
tion on the tracee system is satisfied.

In the general case, it is best to deal with the data in terms of z(t).
Thus one must be able to express z(t) in terms of the other commonly
used measurement variables. An expression for z(t) in terms of r(t)
will be derived; the expression for z(t) in terms of the other measured
variables follows from (2.5.6) and (2.5.9).

To begin, one can rewrite the expression for z(t) given in (2.5.11)

Using the results in Appendix A, one obtains

Using (2.5.16) and remembering is defined as in (2.5.2), the
variable z(t) can now be written

Similarly, using (2.5.2) and (2.5.16), r(t) can be expressed in terms of

the ratio by
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Solving (2.5.18) for one obtains

Substituting this into (2.5.17),

The expression of z(t) in terms of the variables given in is sum-
marized in Table 2.5.1. Using these formulas, it is possible to derive z(t)
in terms of the stable isotope measurement variables a(t), or
The variable z(t) will be used in describing both noncompartmental and
compartmental models applied to stable isotope data.

The various measurement variables for stable isotopes can in fact have
different shapes. Figure 2.5.1 provides an example of these differences.

2.5.3 The Multiple Species Case

Up to this point, only the case where there are two stable isotopic
species has been considered. However, it may happen that more than
two isotopic species need to be accounted for, either because the el-
ement has more than two stable isotopes (e.g. zinc), or because the
tracer molecule is labelled in more than one position. For instance, for
the -glucose tracer case where two hydrogen atoms in posi-
tion 6 of a glucose molecule are labelled with deuterium, three species
arise: the unlabelled species having two hydrogen atoms in position six,
the labelled species having two deuterium isotopes in position 6, and a
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partially labelled species having only one hydrogen atom in position 6
replaced with deuterium.

The measurement variables such as the isotope ratio, enrichment or
abundance refers only to labelled and unlabelled species. However, the
tracer and tracee masses appear in the equation for z(t), and by defini-
tion, comprise all isotopic species. The link between the isotope ratio r
and the tracer to tracee ratio z must be modified:

where and indicate as before the ratios between the labelled
and unlabelled species, while and refer to all the
remaining species, and indicate the ratio between each of them and the
unlabelled species, in the infusate (subscript I) and the natural material
(subscript N) respectively.
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2.5.4 A Test of the Endogenous Constant Steady-State
Assumption

The assumption that the endogenous constant steady-state is not per-
turbed by the administration of the stable isotope tracer is not critical;
it is only necessary that the tracee fluxes U and F, and thus the tracee
mass M are constant and equal to the pre-test level during the study.
This condition is met during the tracer perturbation if U is constant
and equal to the pre-test level, and the system kinetics are linear in the
range of values during the experiment.

In order to prove this, consider the general case where the tracee is
perturbed by the experiment. In this case, the tracee mass and fluxes are
time varying functions denoted M (t), F(t) and U(t). The mass balance
equation for the tracee becomes

The tracer-tracee indistinguishability principle still holds, and the coun-
terpart of (2.2.8) for a time varying tracee becomes

or equivalently

Define for the tracee mass perturbation from the steady state
level:

From (2.5.22) and (2.5.24), one can write

If the system is intrinsically linear, i.e.
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and the endogenous production is not perturbed:

then (2.5.26) becomes

The solution of (2.5.29) is indicating there is no perturbation
of the endogenous steady state.

In most cases, the tracer perturbation is confined within a few percent;
this range is usually small and the above conditions are likely to be
satisfied. However, it is possible to test the steady-state assumption in
each experimental situation by a method which relies on measurements
only, i.e. no assumptions about the system structure are required.

Briefly, the test that M equals a constant is based on the following.
If the tracee constant steady-state has been perturbed, then M becomes
a function of time M(t). The measured concentration of the substance
of interest in the accessible pool, is thus

where V is the volume. One can rewrite (2.5.30):

The tracee concentration is thus

Since and are known, (2.5.32) can be used to obtain a plot
of C(t). Assuming V is constant during the study, any change in C(t)
would reflect a change in M(t). Thus a measure as to how much the
tracee concentration C(t) is perturbed from its pro-test constant steady-
state value C can be obtained. The test may be a confirmatory one.
Alternatively, it may suggest how to improve either the experimental
design (e.g. a reduction of tracer dose, a more gentle input format) or
the model (e.g. a structural description of feedback mechanisms or of
nonlinear kinetics).
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2.6 MULTIPLE TRACER EXPERIMENTS

In previous sections of this Chapter, only the case where a single tracer
experiment is performed has been considered. That is, each element or
compound is labeled with only one stable or radioactive isotopic species
to create a tracer. However, more informative experiments can be per-
formed when different tracer inputs are used. For instance, to character-
ize the absorption of an element, one isotopic species can be injected into
plasma and a second given orally. Such a study will result in two tracer
curves. Another common example is the study of two interacting sub-
strates. Here each substrate can be labeled, the tracer injected, and four
output curves generated: the disappearance of each label for the tracer
and the appearance of that label in the other substrate. In all cases it
is important that the various tracer inputs are administered simultane-
ously to assure that the system is in the same condition for each. This
implies that all tracers are simultaneously present in the samples taken
during the experiment, and that the measurement procedures must be
able to quantitate them separately.

When dealing with multiple tracers, several possibilities exist. If ra-
dioactive isotopes are to be used, it is possible to distinguish the con-
tributions of different tracers in a sample only if different radioactive
isotopes are used as labels. The reason is that the measurement instru-
ments can detect the different levels of energy emitted by the different
isotopes. However, since the energy windows of the various isotopes usu-
ally overlap, care must be taken in quantitating the contribution of each
isotope. It is assumed that the reader using multiple radioactive isotopic
tracers is familiar with these problems, and how to deal with them.

If on the other hand stable isotopes are used, several possibilities exist.
First, paralleling the above situation, different isotopes can be used. As
noted previously, zinc has 5 stable isotopes having masses 64, 65, 66,
67, 68 and 70; is the most abundant species. Any two of the less
abundant species can be chosen for intravenous and oral administration
if absorption is being studied.

Second, the same stable isotope can be used in a different number
of positions because the mass spectrometer permits one to quantitate
them separately. As example, consider an experiment to characterize the
kinetics between acetoacetate (AcAc) and
in which is the isotopic species used to label the substrates. AcAc
can be labeled in two positions to create and the latter
in four positions to create . These two tracers can
be coinjected, and the mass spectrometer can differentiate in a sample
between coming from the first tracer and
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derived from the conversion of to AcAc.
Similarly for

Finally, in multiple tracer studies, because of the ethical concern over
the total amount of radioactivity that can be administered, many re-
searchers are turning to stable isotopes as described above, or a combi-
nation of stable and radioactive isotopes. For instance, glucose turnover
during a meal can be studied by administering simultaneously

and intravenously and orally respectively.
The ideas discussed in and for the single tracer case in terms

of the kinetic variables can be extended to the multiple tracer case.
In particular, the kinetic variables for radioactive tracers are individ-
ual tracer concentrations, or specific activities, while for stable isotopes
they are the tracer to tracee ratios. Paralleling the single isotope case,
expressions for the tracer to tracee ratios in terms of isotope ratio mea-
surements for a dual stable isotope study are derived in Appendix C. The
whole data base consisting of individual tracer and tracee measurements
in the accessible pools is analyzed simultaneously to estimate tracee
masses and fluxes in the system. The compartmental analysis approach
will be discussed in Chapters 4-6 for a generic input-output configura-
tion while the noncompartmental analysis approach will be discussed in
Chapter 3 for the two input-four output configuration.
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Chapter 3

THE NONCOMPARTMENTAL MODEL
OF MULTIPOOL SYSTEMS:
ACCESSIBLE POOL AND
SYSTEM PARAMETERS

3.1 FROM SINGLE TO MULTIPOOL
SYSTEMS

In Chapter 2, it was seen that in the single pool system, assuming
indistinguishability of tracer and tracee and conservation of mass, an es-
timate of the tracee kinetic parameters de novo production and disposal
could be obtained. The purpose of Chapters 3 and 4 is to develop the
theory for more complex systems in which the accessible pool is part of
a larger system containing non-accessible pools.

There are two classes of models frequently used to study such mul-
tipool systems: noncompartmental and compartmental models. This
chapter deals with noncompartmental models while Chapter 4 will deal
with compartmental models. In particular, in this chapter, parameters
characterizing the multipool system using the noncompartmental model
will be defined, and formulas to estimate them from a tracer study given.

The transition from the single to multipool system can be described
using Figure 3.1.1. In panel (A), the single pool system described in
Chapter 2 is given. From the tracer experiment on this system together
with tracee measurements, de novo production and disposal together
with the mass M and volume V could be calculated. When this pool is
embedded in a system consisting of transport among the accessible and
nonaccessible pools and biochemical interactions with other substances,
the situation becomes more complex. An example which highlights both
the accessible pool and the fact this pool is embedded as a component of
a larger system is provided in panel (B). As will be seen in this Chapter,
while the accessible pool’s mass M and volume V can still be measured,

39
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de novo production and disposal can take place anywhere in the system
making its quantitation difficult.

For a more specific example, consider the system illustrated in Fig-
ure 3.1.2 which consists of an accessible and a non-accessible pool. The
problem is to define and quantitate kinetic parameters which describe the
“accessible pool” on the one hand and the “system” (accessible plus non-
accessible pools) on the other. In particular, one would like to quantitate
the masses and volumes of the pools, estimate production and disposal,
and measure the transformation/exchanges processes. One sees in this
example immediately a problem: some tracee can enter and leave the
system from the non-accessible pool without even passing through the
accessible pool. How can this affect parameter definitions and attempts
to quantitate them?

The noncompartmental model of multipool systems formalized by
Rescigno and Gurpide [1973] is schematized in Figure 3.1.3. The accessi-
ble pool is available for measurement. The complexity of the system, i.e.
transport among system components and biochemical transformations,
are “lumped” into the tracee recirculation/exchange arrow.

The important point to note in this figure is that the input and output
are no longer called de novo production and disposal, but tracee rate of
appearance into and disappearance from the accessible pool. This dis-
tinction foreshadows some of the limitations of this method of analysis.
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Consider again the system described by the two-pool model illustrated
in Figure 3.1.2. Here one sees that de novo production and disposal
occur from the non-accessible pool. In addition, there are exchanges
between the accessible and non-accessible pool; this exchange is what
permits newly synthesized tracee to enter and leave the accessible pool.
As noted previously, some tracee material entering the system in the
non-accessible pool can be irreversibly lost without even entering the
accessible pool. Measurements made in the accessible pool will reflect
the kinetics only of that fraction of the tracee which passes through
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this pool before being irreversible lost from the system; the accessible
pool will “see” only a portion of the total tracee mass. Hence, because
some tracee can be irreversibly lost without ever passing through the
accessible pool, only a fraction of de novo production, called the tracee
rate of appearance and denoted by can be estimated. With this
example in mind, the question becomes: what kinetic parameters can
be estimated at the “accessible pool” level, and what can one estimate
at the “system” level?

For the noncompartmental model, the accessible pool parameters quan-
titate characteristics unique to the accessible pool such as mass, volume
and residence time. The system parameters characterize “events” in the
system occurring outside of the accessible pool but “seen” by that pool.
This anticipates the fact that some of the parameters will be correct
while others are estimates that are correct only under special circum-
stances.

In §3.2, the general definitions of the kinetic parameters for the acces-
sible pool in a multipool system will be given, and formulas to estimate
them from kinetic data listed. In §3.3, the general definition of the
“system” kinetic parameters for the multipool system will be given to-
gether with formulas to estimate them from kinetic data. Each section
will present the formulas for the bolus, constant infusion, primed infu-
sion, and a generic input of the tracer. All formulas will be derived in
Appendix D.

From the formulas given in §3.2 and §3.3, it will be seen that in order
to estimate the kinetic parameters, a functional description of the data
is required. That is, a mathematical function which “describes” the
data must be postulated. This function not only describes the data
over the time interval of the experiment, but extrapolates or “predicts”
the data for times outside the data collection period. The reason this
extrapolation is necessary is that tracer studies have a first and last
sample time, but the formulas require a functional expression which can
be integrated from time zero to infinity. It is the mathematical function
describing the data that is used to evaluate the formulas. The problem
of finding a mathematical description of the data is not simple; it is the
subject of Chapter 8. Examples are provided in Chapter 9.

The Chapter will close in §3.4 with an extension of single accessible
pool model to the situation where there are two accessible pools em-
bedded in a larger, multipool system. This can address a number of
situations including: (i) two substances in one “physiological space”,
(ii) one substance in two “physiological spaces”, and (iii) two substances
in two “physiological spaces”.
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3.2 KINETIC PARAMETERS OF THE
ACCESSIBLE POOL

3.2.1 Definitions
In this section, the kinetic parameters characterizing the accessible

pool will be defined and the formulas used to calculate them given.
These are the parameters that quantitate characteristics unique to this
pool.

The kinetic parameters for the accessible pool in the multipool system
can be introduced using Figure 3.1.3. The notation to be used in this
text for the kinetic parameters for the accessible pool are summarized
in Table 3.2.1.

The definition of these parameters is given below.
Mass M (units: mass): This is the mass of material in the accessible

pool, i.e. the pool in which the tracer is introduced and from which
samples measuring its amount will be taken.

Volume of distribution V (units: volume): This is the volume
of the accessible pool. It is a volume in which the tracee is uniformly
distributed and in which the tracer, once introduced into the system,
intermixes uniformly and instantaneously.

Clearance rate CR (units: vol time–1): This is the rate at which
the accessible pool is irreversibly cleared of material per unit time.

Fractional clearance rate FCR (units: time–1): This is the frac-
tion of material that is irreversibly lost from the accessible pool per unit
time. (The FCR is sometimes called the fractional catabolic rate.)

Mean residence time (units: time): This is the average time
a particle spends in the accessible pool during all passages through it
before leaving it for the last time.
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Rate of appearance Ra (units: mass t ime– 1): This is the rate at
which the material enters the accessible pool for the first time.

Rate of disappearance Rd (units: mass time–1): This is the rate
at which the material is irreversibly lost from the accessible pool.

The relationship among these parameters is summarized in Table 3.2.2
below where C indicates the measured value of the tracee concentration
in the accessible pool.

3.2.2 Formulas

The two experimental situations, i.e. stable and radioactive isotopic
tracer, for which the kinetic parameters will be given are shown in Fig-
ures 3.2.1 and 3.2.2.
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As indicated in these figures, for stable isotopes, the measurements
involve masses of the isotopic species, and z(t) must be measured or
derived from other measures. For radioactive tracer experiments, the
measurements arc usually c(t) and C separately; as described in Chap-
ter 2, the specific activity is the quotient of these two variables, and can
be regarded as a measure of z(t) for the radioactive tracer.

The following two tables give the formulas to estimate the accessible
pool parameters. Table 3.2.3 gives the formulas for the generic tracer
case when the data are quantified in terms of the measured tracer to
tracee ratio z(t). Following the logic given in Chapter 2, these formulas
apply to the stable isotope experiment, and to the radioactive isotope
experiment when the data are expressed as specific activity. Similarly,
Table 3.2.4 gives the formulas for the radioactive isotope case when the
data are quantified in terms of the tracer concentration c(t). The nota-
tion used here is the same as that used in Tables 2.2.1 and 2.2.2.

In these tables, the four different formats for tracer inputs are explic-
itly considered: the bolus injection, the constant infusion, the primed
constant infusion, and finally the case where a finite dose of tracer is
administered with a generic input profile u(t). In Table 3.2.3, z rep-
resents the plateau value for the constant or primed, constant infusion
experiment, and is the derivative of z(t) evaluated at t = 0 (i.e.

In Table 3.2.4, c represents the plateau value for the constant
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or primed, constant infusion experiment, and is the derivative of
c(t) evaluated at t = 0

When the measurement is z(t), the physiological reference is mass;
thus M appears as the first parameter estimated in Table 3.2.3. When
the measurement is tracer concentration c(t), the physiological reference
is volume; thus V appears as the first parameter estimated in Table 3.2.4.
These “physiological references” dictate the order in which the formulas
are presented. Again, it reflects that in the radioactive isotope exper-
iment, the natural starting point is volume since the measurement is
usually concentration while in the stable isotope experiment as well as
the radioactive isotope experiment where specific activity is adopted,
the natural starting point is mass.

The formulas given in Tables 3.2.3 and 3.2.4 are derived in Appendix D.
Some comments will be made below on these formulas.
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The bolus injection

A typical decay curve following a bolus injection of a tracer into an
accessible pool is given in Figure 3.2.3.

In the case where the data are expressed as z(t) ratio, the mass M
is calculated as the quotient of the dose d and 2(0). Since data are
usually never available when t = 0, it is necessary to extrapolate from
the data an estimate of z(0). Similarly for the radioactive tracer, when
the data are expressed as concentration c(t), it is the volume V which
is calculated as the quotient of the dose d and c(0); hence a value must
be estimated for c(0).

In both cases, it is also necessary to evaluate an integral from t = 0
to When the data are expressed in terms of z(t), the parameter
estimated from the integral is the rate of appearance Ra; when expressed
in terms of concentration c(t), it is the clearance rate CR.

This extrapolation to t = 0 to and the evaluation of the
integral is usually accomplished by providing a functional description of
the data. Frequently sums of exponentials are used. This is discussed in
Chapters 8 and 9.
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The constant infusion of tracer

Many experiments are designed where the tracer is infused for a given,
finite period of time with serial samples taken from the accessible pool
for quantitation of tracer. The “goal” of these experiments is to infuse
the tracer for a period of time sufficient to reach a plateau. If, from
previous experiments, the time at which a plateau is achieved is known,
the first sample may start at this time. When this design is adopted,
how the tracer arrives at the plateau is not known. As will be seen, this
can create problems in estimating the noncompartmental parameters.
An example of tracer data when a constant infusion of tracer is given is
illustrated in Figure 3.2.4.

In the case where the data are expressed as z(t) ratio, the mass M
is calculated as the quotient of the dose d and . That is, one must
estimate the derivative of z(t) evaluated at time zero. This requires an
extrapolation of the data to so that the derivative, the initial
slope of the data, can be evaluated. In addition, a true plateau must be
reached so that the Ra can be estimated.

Similarly for the radioactive tracer, when the data are expressed as
concentration c(t). Here it is in the formula for V that an estimated
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value for is required. Also, the data must reach a plateau so that
CR can be calculated.

In terms of what extrapolations are required, the difference between
the bolus and constant infusion experiment is that in the former inte-
grals need to be evaluated while; in the latter derivatives at time zero
are needed. The rising portion of the curve in the constant infusion
experiment is usually that most prone to error, and often a sufficient
number of samples are not taken. Knowing this information can help in
designing constant infusion experiments which will ensure that the early
portion of the rise can be characterized.

The previous point needs to be emphasized. While it is clear that
the same kinetic information is, in theory, available from the bolus and
constant infusion experiment, the constant infusion protocol is frequently
designed in such a way that not all kinetic parameters can be estimated.
Without data describing the rising portion of the tracer curve one can
only estimate the Ra and CR as Ra = u/z and CR = Ra /C, or CR =
u/c and Ra = CR · C respectively for the cases when the data are
expressed in terms of z(t) or f:(t). This protocol is very common in stable
isotope tracer studies where the most widely used formula to quantify
Ra is expressed as a function of enrichment:

where is the plateau enrichment value and e/ is the enrichment of the
tracer. The equivalence of this formula with the expression for in
terms of z which, from Tables 3.2.3 and 3.3.3 can be written

has been derived in Appendix B.

The primed, constant infusion of tracer

Experiments can be done in which the tracer is injected as a bolus
followed by a constant infusion for a finite period of time. This is the
so-called primed, constant infusion method. The reason this protocol
is often used is that if properly designed, the priming dose will speed
the achievement of a plateau for the tracer concentration. An example
of tracer data when a primed, constant infusion of tracer is given is
illustrated in Figure 3.2.5.

Estimating the kinetic parameters when this protocol is adopted re-
quires a combination of the formulas given in the tables. The applica-
tion of the formulas can best be understood by following their derivation
given in Appendix D.
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The generic tracer input

Kinetic parameters can be calculated from tracer data even if the
tracer input is not a bolus, a continuous infusion, or a primed constant
infusion, i.e. the input is a generic input. An example of such a situation
is given in Figure 3.2.6.
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The situation here is complicated by the fact that the input function
u(t) must be known precisely. Whether the data are collected in terms
of z(t) or c(t), an extrapolation to time zero and the evaluation of an
integral from is required. One must also know
the total dose administered.

3.3 KINETIC PARAMETERS OF THE
SYSTEM

3.3.1 Definitions
The noncompartmental system parameters characterize events occur-

ring inside and outside the accessible pool. The notation used for these
parameters in this text are given below in Table 3.3.1 for the system
diagrammed in Figure 3.1.2.

The definition of these parameters are:
Total mass (units: mass): This is the total mass of material

contained in the system as “seen” by the accessible pool.
Total volume of distribution (units: volume): This is the

total volume of the system seen from the accessible pool, i.e. it is the
volume in which the total mass would be distributed assuming the con-
centration of material throughout the system is uniform and equal to
the concentration of the accessible pool.

Mean residence time MRTNC (units: time): This is the average
time a particle introduced into the accessible pool spends in the system
before leaving the accessible pool for the last time.

Mean residence time outside the accessible pool (units:
time): This is the average time a particle introduced into the accessible
pool spends outside the accessible pool before leaving the accessible pool
for the last time.
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The relationships among the parameters are given in Table 3.3.2.

The parameter is also called exchangeable mass. The parame-
ter is sometimes called recirculation, exchangeable or steady state
volume. It is important to note that the physical interpretation of
requires care. In fact, it is an operational volume the knowledge of which
permits one to compute a whole body mass by multiplying it by
the measured tracee concentration C .

Note that the system kinetic parameters do not include any measure
of de novo tracee production in the system. In fact, only the rate Ra

at which newly synthesized material enters the accessible pool can be
estimated in the noncompartmental model. Some comments on the re-
lationship between Ra and de novo tracee production will be given in
§3.3.3.

3.3.2 Formulas
Paralleling the development in §3.2, the formulas the kinetic param-

eters of the system following a bolus injection of tracer, the constant
infusion of tracer, the primed infusion of tracer and the generic tracer
input are given in Tables 3.3.3 and 3.3.4 as functions of z(t) and c(t)
respectively. The formulas are derived in Appendix D. In Table 3.3.3, z
represents the plateau value for the constant or primed, constant infu-
sion experiment, and for the washout experiment, T is the time at which
the washout phase starts. In Table 3.3.4, c represents the plateau value
for the constant or primed, constant infusion experiment, and for the
washout experiment, T is the time at which the washout phase starts.

The same comments made in the previous section related to the above
formulas also hold. However, for each mode of introducing the tracer,
some additional information is possible. This is discussed below.
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The bolus injection of tracer

In addition to the parameters listed in Tables 3.3.3 and 3.3.4 for the
bolus injection experiment, it is possible to quantitate the “recirculation-
exchange” arrow shown in Figure 3.2.1. Specifically, the recirculation of
the tracee, RW (units: mass per unit time), can be described for z(t) or
c(t) using

or

where and denote the derivatives of z(t) and c(t) evaluated at
time zero respectively.

The first term on the right hand side of (3.3.4) or (3.3.5) is the total
output from the accessible pool derived by writing the mass balance
equation for z(t) or c(t) at time zero. Considering that the total rate
of exit from the accessible pool is made up of the rate of disappearance
and the rate of recycling, (3.3.4) and (3.3.5) follow.

The constant infusion of tracer

For the constant infusion experiment, the parameter RW can be esti-
mated from data collected during the rising portion of the tracer curve.
However, it requires the evaluation of the first and second derivatives of
the tracer measurements at time zero:

where denote the first and second derivatives of

z(t) and c(t) evaluated at time zero respectively
If the experiment permits only the estimation of the plateau value, no

system parameters can be estimated.

The primed, constant infusion of tracer

In this situation, the system mean residence time requires the eval-
uation of a double integral which in turn requires a knowledge of a
functional description of the data.
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The generic input of tracer

The system mean residence time requires the evaluation of several
integrals which require a knowledge of both the functional description
of the data and the input. There is a special case, however. Consider
the situation where the tracer is administered at a constant rate u up to
time T and then stopped. The system mean residence time MRTNC is
given by

The washout experiment

This situation refers to the experimental design when data are col-
lected after the infusion of tracer has stopped in the constant, primed,
constant infusion, or generic input experiment. One assumes that a
plateau has been reached before the infusion stops. The system mean
residence time MRTNC can be estimated by measurements taken only
from the plateau and the washout phase as

where z and c are the plateau values, and T represents the beginning of
the washout period.

3.3.3 Limitations of Noncompartmental Models

In the general case, the noncompartmental modeling analysis does not
permit one to estimate de novo tracee production in the system since Ra

only measures the rate at which endogenous particles enter the accessible
pool. It provides a measure of de novo production in the system only if
all newly synthesized particles enter the accessible pool, i.e. either they
enter directly into the accessible pool or there is no loss in the pathways
between the pool into which synthesis takes place and the accessible
pool. When this condition is not satisfied, Ra underestimates the true
production.

In addition, MRTNC, and Vtot given by the above formulas pro-
vide estimates of the “true” system kinetic parameters, MRT, Mtot and
Vtot only if disposal and de novo production of tracee particles take place
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in the accessible pool. If these constraints are not satisfied,
will underestimate the true system parameters [DiSte-

fano, 1982; DiStefano and Landaw, 1984]. While a formal proof of these
properties will be given in Chapter 7, the tracee system schematizations
shown in Figure 3.3.1 illustrate the main points: Ra recovers U in sit-
uation (c) and (d) where production takes place in the accessible pool
but also in situation (b) since production in a nonaccessible compart-
ment but all tracee particles reach the accessible pool. The parameters

are correct measures for these parameters for
situation (c) only since in the other cases either de novo production or
disposal, or both, take place from the nonaccessible pool.



58 TRACER KINETICS IN BIOMEDICAL RESEARCH

3.3.4 Parameters From Total Body Tracer
Measurements

Some limitations of the noncompartmental model can be overcome by
a different formulation of the system kinetic parameters which requires
that time dependent measurements of the total tracer mass in the system
are available. In practice, the application of this method is difficult.
However, it has been used in some tracer studies such as the glucose
turnover studies of Katz [1989] where the tracer was tritiated glucose.
The total tracer mass was measured indirectly by sampling the labelled
catabolic end product pool, tritiated body water. The amount of tracer
in this pool was quantified and subtracted from the administered tracer
dose to evaluate the total tracer mass in the system at specific sampling
times.

Denote by mtot(t) the time course of the total amount of tracer in
the system. For a bolus injection of a tracer dose d, the mean residence
time in the system of tracer particles from total body (TB) measurement
equals [Bergner, 1964]

As will be shown in Chapter 7, MRTTB is the residence time in the
system of particles which enter the system in the accessible pool but
leaves the system by any route. Thus it provides the correct estimate
of the “true” residence time in the system of endogenous particles if de
novo production takes place in the accessible pool.

By multiplying MRTTB by Ra , an estimate of the total tracee mass
in the system can be derived:

Since Ra correctly measures de novo production when it takes place in
the accessible pool, correctly measures the total mass in the system
only if this condition holds. In the general case, it underestimates the
true total mass in the system:

In summary, this method correctly estimates the mean residence time
in the system of tracer material. It provides a correct estimate of the
mean residence time of the tracee if tracee production is only into the
accessible pool. Under these circumstances, the total tracee mass can
also be correctly quantified. It should be remembered that its application
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is restricted to very specific circumstances since the measurement of total
system tracer mass is feasible only in a few cases.

3.4 THE TWO ACCESSIBLE POOL
NONCOMPARTMENTAL MODEL:
ACCESSIBLE POOL AND SYSTEM
KINETIC PARAMETERS

3.4.1 Introduction

In the §3.2 and §3.3, only the case where one tracer and one acces-
sible pool are available to probe the system has been considered. As
already discussed in §2.6, a more informative experimental protocol is
often needed. This includes the situation where two or more pools are
accessible for test inputs and measurements.

A multipool system and its two accessible pool noncompartmental
model are shown in Figures 3.4.1 and 3.4.2 respectively.

As a step towards understanding how the two accessible pool noncom-
partmental model yields much more information than the one accessible
pool noncompartmental model, the reader should compare the above
figures with Figures 3.2.1 and 3.2.2. In the former figures, only one
“recirculation-exchange” arrow was defined; in the latter, two such ar-
rows were defined together with two “transport-chemical transformation
arrows” to take into account the interconversion of material between the
two accessible pools. These model parameters are in general different
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from those one could obtain by applying the one accessible pool noncom-
partmental analysis to the two pools separately. In this latter case, the
recirculation-exchange arrow of each accessible pool model would include
both transport-chemical transformation arrows and the recirculation-
exchange arrows of the other accessible pool. A second point must be
emphasized. Both the recirculation-exchange and transport-chemical
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transformation arrows represent sequences of metabolic events and not
necessarily a “direct”, one event pathway. This point is made for those
readers familiar with compartmental models; the arrows here have a
different meaning from the arrows linking compartments in a compart-
mental model.

The most typical situation that can be discussed in this context is the
study of the kinetics of two interacting substrates such as acetoacetate
and 3-hydroxybutyrate, leucine and -ketoisocaproate, or hormones such
as T3 and T4 from measurements in one physical space such as plasma. A
protocol would be to label two substances with different isotopes, inject
them as, for example, a bolus, and take serial samples. Each sample
could then have the amounts of each isotope quantitated in the two
substances. This protocol will produce 4 tracer curves (see, for example,
Figure 3.4.5). Each of the two tracers will produce a disappearance
curve, and, in the other substance, a curve detailing the appearance of
label.

A specific example would be an experiment in which leucine labeled
with 3H and ketoisocaproate labeled with 14C were coinjected into
plasma and the amount of 3H and 14C are measured in both substances
to produce the four tracer curves. In this example, the reader should
not confuse the physical space of plasma with an accessible pool. The
two accessible pools are plasma leucine and plasma ketoisocaproate.

It is possible to have situation where the two accessible pools are
actually different physiological spaces. In this case, it is the location
and not the chemical state which identifies the two accessible pools. A
specific example can be taken from zinc metabolism where, if 69m Zn
free from any carrier and 65Zn labeled red blood cells are coinjected
into plasma and serial plasma and red blood cell samples are taken, the
amount of both labels in plasma and red blood cells can be followed.
Here the two accessible pools are plasma zinc and red blood cell zinc.

In this section, it will be seen that to determine completely the two ac-
cessible pool noncompartmerital model, a protocol calling for four tracer
curves is necessary, i.e. it is not sufficient to introduce tracer into only
one pool even if that tracer can be quantified in the other pool. More
specifically, if one obtains only two tracer curves from the injection of
only one tracer, one will not be able to apply all of the formulas in-
troduced below. Thus the possible information about the system under
study when there are two accessible pools will not be complete. Some
kinds of information that are available in the precursor-product setting
will be discussed in Chapter 10.

Only the experiment in which the tracer is introduced as a bolus or
a constant infusion will be discussed. In this way, it can clearly be seen
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how the two accessible pool model is an extension of the one accessible
pool model. As with the one accessible pool situation, both pool and sys-
tem parameters will be described. While the noncompartmental model
correctly estimates the accessible pool parameters, the equivalent sink
and source constraint discussed in §3.3.5 for the one accessible pool non-
compartmental model must apply in order for the system parameters to
be correctly estimated. That is, the system parameters are correct only
if disposal and de novo production take place in the accessible pools.

3.4.2 The Two Input - Four Output Experiment for
Radioactive and Stable Isotope Tracers

The experimental configuration for the two input - four output stable
or radioactive isotope tracer experiment is shown in Figure 3.4.3 and
Figure 3.4.4 respectively.
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As was the case for the single accessible pool noncompartmental model,
tracer measurements can be expressed either as tracer to tracee ratios
or as tracer concentrations. For the radioactive isotope experiment, as
discussed in Chapter 2, measurements are usually the four tracer con-
centrations and the two tracee concentrations C1 and C2 . The tracer
to tracee ratios, or equivalently the specific activities, can be calculated
from

As discussed in Chapter 2, for the stable isotope experiment, the
tracer to tracee ratio can be either measured directly or derived from
other mass spectrometry variables such as isotope ratio or enrichment.
In particular, and then can be derived by ap-
plying (C.15) and in Appendix C. In both cases as defined in
Appendix C, and equal the isotope ratios of tracer input and
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and are the isotope ratios for tracer input u2. In the next section,
formulas for the kinetic parameters will be given as a function either of

or

3.4.3 Accessible Pool Parameters: Definitions and
Formulas

The notation used for the two accessible pool noncompartmental model
is summarized in Table 3.4.1.The relationships among the parameters are
given in Table 3.4.2.

The accessible pool masses and volumes are the same as those of the
one accessible pool model, applied separately to the two substances. All
of the remaining parameters listed above are unique to the two acces-
sible pool noncompartmental model. R21 and R22 are kinetic parame-
ters describing transport and/or chemical exchange processes as mate-
rial passes between accessible pools through an indeterminate number
of pools. Similarly, R01 and R02 are introduced. As will be discussed in
§3.4.5, these are different from the rates of disappearance of substances
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1 and 2 as defined in §3.3. Consider, for example, substance 1. R01

differs from the rate of disappearance of substance 1, Rd . The reason is
that the rate of disappearance of substance 1 includes that leaving the
system via R01 plus that which leaves the system as substance 2 after
being converted to substance 2. Thus R01 is less than or equal to the
rate of disappearance of substance 1.

Similar considerations apply to R10 and R20 as compared to the rates
of appearance of substance 1 or 2 defined in §3.3. R10 is lower than the
rate of appearance of substance 1 into the system since it doesn’t include
material coming from de novo synthesis which first enters pool 2 before
being converted to pool 1.

Remember that this model permits the existence of intermediate pools
between accessible pools 1 and 2; for instance, the arrows between pools
1 and 2 include all intermediate steps in the interconversion between
substances 1 and 2 so that R21 represents the rate of transfer from pool 1
to pool 2 by all pathways in the system. The relationships among the two
accessible pool parameters are summarzied in Table 3.4.2, where C1,C2

indicate the measured values of tracee concentration in the accessible
pools.

As given in Appendix D, the relationships (3.4.5) and (3.4.6) can be
derived by balancing the fluxes in the accessible pools; the sum of the
input and output fluxes must be equal.

The formulas for these parameters listed in Table 3.4.1 for the bolus
injection and continuous infusion experiments are given in Tables 3.4.3
and 3.4.4 for the cases where the tracer measurements are z(t) and c(t)
respectively. They parallel Tables 3.2.3 and 3.2.4 for the one accessible
pool case.



66 TRACER KINETICS IN BIOMEDICAL RESEARCH

A typical set of data for a simultaneous bolus injection into two acces-
sible pools is given in Figure 3.4.5. For the bolus injection experiment,
all of the kinetic parameters of the accessible pool can be expressed as
functions of four areas under the four tracer curves (such as those given
in Figure 3.4.5):

or

In addition to these, the rates of recycling around pool 1, Rw1 and
pool 2, Rw2, without passing through the other accessible pool are:
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where (0) and (0) are the derivatives of (t) and (t) respectively
evaluated at t = 0.

For the constant infusion experiment, the plateau value of substance
i in pool j, or is required. The substitutions used in passing from
the bolus to the constant infusion experiment in the formulas given in
Tables 3.4.3 and 3.4.4 are

In Table 3.4.3, in the case of the bolus
injection; is the derivative of at
t = 0 in the case of the constant infusion. The parameters R10 and
R20 are calculated using (3.4.5) and (3.4.6) respectively. In Table 3.4.4,

in the case of the bolus injection;
is the derivative of at t = 0 in the case of

the constant infusion. The parameters R10 and R20 are calculated using
(3.4.5) and (3.4.6) respectively.
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While the above tables and formulas apply only to the bolus injection
and continuous infusion experiment, formulas can be derived for the
primed, constant infusion in a manner similar to that indicated in §3.2.

3.4.4 System Parameters: Definitions and Formulas

The kinetic parameters of a multipool system which can be estimated
from a two-input four-output experimental protocol using the two ac-
cessible pool noncompartmental model are given in Table 3.4.5.

These parameters are essentially the same as those defined for the one
accessible pool model, and their definitions are similar.

Total mass (units: mass): This is the total mass of material
contained in the system as “seen” by the accessible pools.

Total volume of distribution (units: volume): This is the
total volume of the system seen from the accessible pools, i.e. it is either
the volume in which the total mass would be distributed assuming that
the concentration throughout the system is uniform and equal to the sum
of the concentrations of the accessible pools, or the sum of the volumes
where substances 1 and 2 distribute throughout the system assuming
the same concentrations as in the accessible pools.

Mean residence time (units: time), i = 1,2: These are
the average times a particle introduced into the system in accessible
pool i spends in the system before leaving the accessible pools for the
last time. Notice that formulas (3.4.14) and (3.4.15) give two values for

described in Table 3.4.6.
In order to express and as a function of the mea-

surement variables, it is necessary first to define 4 mean total residence
times these represent the expected time particle in-
troduced into pool j spends in the system before leaving accessible pool
i for the last time. Their expressions as a function of   or as
measured for the bolus injection experiment respectively are
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where and are defined in (3.4.7) and (3.4.8).
The mean residence time can be expressed by weighting

according to the probability that a particle having
been introduced into pool 1 irreversibly leaves the system from pool 1
and 2 respectively; similarly with :

where and are the disappearance rates from pool 1 and 2 as
evaluated from the one accessible pool model applied to pool 1 and pool
2 separately.

Equations (3.4.18) and (3.4.19) apply to situations where data are
expressed as the tracer to tracee ratios, and the physiological references
are masses. When the measurements are tracer concentrations and the
physiological references are volumes, the equations can be conveniently
expressed as
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where and are the clearance rates from pool 1 and 2 as eval-
uated from the one accessible pool model applied to pool 1 and pool 2
separately.

The relationships given in Table 3.4.6 permit one to calculate
and , Different definitions for are given depending upon the
situation. For instance, if the two accessible pools represent two interact-
ing substances in plasma, the use of as a reference concentration
(eg. in (3.4.14)) is appropriate. On the contrary, if the two accessible
pools represent two different locations of a substance, can be eval-
uated by summing up the volumes where substance 1 and 2 distribute,
using respectively as the reference (3.4.15).

3.4.5 Relationship Between One and Two Accessible Pool
Noncompartmental Models

The definitions of the two accessible pool noncompartmental model
parameters given in this section delineate the interactions between the
two pools, and require data from a two input-four output experiment.
In addition to this analysis, one could apply the one accessible pool
noncompartmental model separately to each of the two experimental
curves describing the disappearance of the two tracers.

To derive the relationships between the two sets of parameters, con-
sider a double bolus injection experiment where the measurements are
expressed in terms of the tracer to tracee ratios z(t). By adopting the
notation of the multiple tracer experiment for the formulas given in Ta-
ble 3.3.2, the rates of appearance and disappearance into accessible pools
1 and 2, now indicated as are:

These fluxes are related to the two accessible pool model fluxes
and from their expressions given in Table 3.4.3, it is easy to verify the
following equalities:

It is evident from these relationships that the two accessible pool
schematization is able to isolate de novo appearance and disappearance
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fluxes per se from the contribution of the interconversion from the other
pool. Consider as an example the first equality. can be subdivided
into de novo appearance into pool 1, , plus the fraction of de novo
appearance into pool 2, which appears in pool 1 after interconver-
sion. Similarly, is the sum of irreversible removal of material from
pool 1 per se, , plus the flux of material which leaves the system after
being converted to pool 2.

The same considerations also apply to parameters as compared to
the clearance rates from accessible pools 1 and 2:

These equations suggest an interpretation of and as clearance
rates per se which can be compared to and , parameters which
measure the clearance in toto from the accessible pools including the
effect of interconversion.

3.4.6 Limitations of Two Accessible Pool
Noncompartmental Models

To interpret correctly the two accessible pool noncompartmental pa-
rameters, one must expand to these models the concepts introduced in
§3.3.3 [Cobelli and Toffolo, 1984]. Formal proofs of what follows will be
given in Chapter 7. Consider first the conditions on the model structure
which permits one to interpret as the true de novo production
rate in the system. Since and are the rates at which endogenous
particles enter the accessible pools, their sum correctly measures the to-
tal production in the system only if all newly synthesized particles enter
the accessible pool, i.e. there is no loss of material via the pathways
between the pools into which synthesis occurs and the accessible pools.
When this condition is not satisfied, will underestimate the
true production.

Concerning the mean residence time, neither nor
will in general measure the mean residence time in the system for en-
dogenous particles. An estimate for this parameter can be obtained by
weighting and according to the probability that an
endogenous particle enters the system from accessible pool 1 and 2:

It will be shown in Chapter 7 that correctly recovers the mean
residence time in the system of endogenous particles if productions as
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well as irreversible losses take place in the accessible pools only. The
same conditions must be satisfied in order for to be a correct
measure of the total mass in the system.

As already discussed in §3.3.3, the validity of these conditions must
be verified in order to interpret correctly the noncompartmental param-
eters. For instance, with reference to the tracee system schematizations
shown in Figure 3.4.6, recovers U in situations (b);
recovers in situations (c) and (d) while recovers the
mean residence time of endogenous particles only in situation (c). This
is the only case where correctly measures the total mass in the
system.
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Note that in no case does the one accessible pool analysis applied to
either pool 1 and 2 give a correct estimate for de novo production and
then for since of the noncompartmental model are
both different from zero and thus
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Chapter 4

THE COMPARTMENTAL MODEL

4.1 INTRODUCTION

In the previous chapter, specific kinetic parameters of the system
were defined and their estimation using the noncompartmental model
discussed. It was seen, however, that a model of the nonaccessible por-
tion of the system was necessary. The model is shown in Figure 4.1.1 A
where the nonaccessible portion of the system is described by the recir-
culation/exchange arrow.

An alternative to this model is to “compartmentalize” the system,
i.e. to postulate a structure for the nonaccessible portion of the sys-
tem consisting of distinct “compartments” which are interconnected by
pathways representing fluxes of material and/or biochemical conversions.
An example is illustrated in Figure 4.1.1B where the compartments are
represented by circles and the interconnections by arrows. Note that
the substances can also enter some of the nonaccessible compartments
de novo (arrows entering a compartment not origination from another
compartment) and irreversibly leave others (arrows leaving compart-
ments and nor ending at another compartment). This approach gives
rise to a compartmental structure that is unique for each system studied
since it incorporates known and hypothesized physiology and biochem-
istry; this is in direct contrast to the noncompartmental approach where
the schema is the same for all systems. In the compartmentalization
of Figure 4.1.1A given in Figure 4.1.1B, the circles representing com-
partments and the arrows representing transfers have special meanings
which will be defined precisely in this Chapter.

In the noncompartmental approach, one can estimate specific kinetic
parameters but obtain no insight into the detailed structure of the sys-
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tern outside of the accessible pool. For this technique, the domain of
validity and the limits of the approach are known. The compartmental
method relaxes the limits imposed by the noncompartmental model. It
will provide the investigator with insights into the system structure, per-
mitting predictions about components of the system not accessible for
measurement. However, it is only as good as the assumptions that are
incorporated in this structure. This step forward in complexity will re-
ward the investigator with a much richer interpretation of tracer kinetic
data.

Both the noncompartmental and compartmental models, however, re-
quire the existence of at least one accessible pool into which test sub-
stances can be administered and from which measurements can be made.
Thus the philosophic difference between them lies in the way the nonac-
cessible portion of the system is modeled. In the former, the investigator
chooses an equivalent type of structure, the recirculation/exchange ar-
row, with the assumption of no sources or sinks along the arrow since the
noncompartmental parameters describing tracee rate of appearance and
disappearance  and  refer to the accessible pool only. In the lat-
ter, the investigator postulates a definite structure for the system where
de novo production (as illustrated by the arrows into the nonaccessible
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pools from “outside” the system shown in Figure 4.1.1B) and disposal
can occur from accessible and nonaccessible compartments (as indicated
in the same figure by the arrows towards the “outside” of the system,
both from the accessible and two of the nonaccessible pools).

4.2 CONCEPTS AND DEFINITIONS
The compartmental system diagrammed in Figure 4.1.1B consists of

an accessible compartment and a structure representing the nonaccessi-
ble portion of the system consisting of 6 interconnected compartments.
The implication is that the nonaccessible portion of the system contains
six discrete entities. However, most biological systems are far more com-
plicated than this simple representation.

In fact, it is not possible to track the behavior of every molecule in a
biological system at every point in time. Hence it is useful to consider
collections of specific molecules at specific sites or in specific forms, i.e.
collections of molecules having similar characteristics but existing in
the system at different locations, or collections that exist at a given
site or location in the system but have different characteristics. As an
example of the former, zinc exists in the body in, among other locations,
plasma, red cells, muscle and bone. As an example of the latter, consider
glucose. Once glucose is transported from plasma to muscle cells, it
can be phosphorylated to glucose-6-phosphate. Thus muscle cells are a
location in the glucose system where glucose molecules are present in
two different forms, glucose and glucose-6-phosphate. One can see that
thinking of the system in these terms, i.e. collecting molecules at specific
sites or in specific forms, permits a “lumping” of the system into discrete
groups, and that arrows can be used to represent the movement from
one site or one form to another.

Examples of lumping into a discrete group could be calcium in plasma,
zinc in bone, or tri-iodothyrouine in thyroid cells. In some experi-
ments, however, the lumping can exist in the same physical space such
as plasma. For example, one could follow the kinetics of glucose, lactate
and alanine in plasma; the lumping here is glucose, lactate and alanine
as separate group of molecules in the physical space of plasma.

The basis of a compartment in a system is one of lumping material
with similar characteristics into discrete collections that are homoge-
neous and behave identically. The notions of “homogeneous” and “be-
have identically”, however, require precise definitions for it is through
the definitions that the link to mathematics is made. The basis of the
compartmental system, or model, are the arrows which are used to in-
dicate the interconnections among the various compartments. As will
be seen, the interconnections represent a flux of material (mass )
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which, physiologically, represents transport or a chemical transforma-
tion, or both.

The formal definitions or a compartment and compartmental model
are:

1. a compartment is an amount of material that acts as though it is
well-mixed and kinetically homogeneous; and

2. a compartmental model is a model consisting of a finite number
of compartments with specified interconnections among them.

What exactly is well-mixed and kinetic homogeneity? These notions
are illustrated in the Figure 4.2.1 below.

Well-mixed can be described in the context of Figure 4.2.1. In Fig-
ure 4.2.1 A and B, consider the system as a single compartment. What
well-mixed means is that any two samples taken from the compartment
at the same time would have the same concentration of the substance be-
ing studied and therefore be equally representative. This is not the case
in Figure 4.2.1 A while it is the case in Figure 4.2.1B. Thus the concept
of well-mixed relates to uniformity of information contained in a single
compartment. It is worth noting that a single compartment may also
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represent amounts of material at two different locations. This lumping
of material at two different locations can occur because its actual mix-
ing between these two locations cannot be described within the time
frame of a particular experiment. For instance, plasma and red blood
cell glucose equilibrate rapidly in humans so the two distinct anatomical
locations can be considered a single compartment.

Kinetic homogeneity means the following: every particle in a com-
partment has the same probability of taking the pathways leaving the
compartment. This is illustrated in the following figure. There are sev-
eral pathways by which material can leave. Each pathway may and
probably will have a different probability; the sum of all of the proba-
bilities is, of course, equal to 1. This will be explained in detail below
in Figure 4.2.2.

Every compartment is characterized both by an amount of material
and what can happen to that material. Basically, material flows into and
out from the compartment, and the balance between the two determines
the amount of material in the compartment at any point in time. For
example, referring to Figure 4.2.1B, if the accessible compartment is
plasma, then as material is carried in the circulation, it can exchange
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with the various tissues in the body. Depending upon the substance
being considered, material will leave the plasma and enter the tissues
with different rates. Thus when material leaves a compartment, it does
so because of metabolic event related to transport and utilization. For
a given compartment, there may be several such events possible. It is
the totality of such events that characterize the behavior of material in
a compartment. Kinetic homogeneity means that each particle of the
material in the compartment have the same probability of leaving due
to one of these events.

A compartment, therefore, is a discrete amount of material that be-
haves identically. The discrete nature of a compartment is what allows
one to reduce a complex biological system into a finite number of dis-
crete compartments and pathways. The subject of this and subsequent
chapters is how to use tracer kinetic studies to characterize these path-
ways in the context of a compartmental model. As will be seen, the
number of compartments required largely depends both on the system
being studied and the specific experimental design chosen to probe it.

In addition, one must distinguish between compartments that are ac-
cessible and nonaccessible for measurement. The accessible compart-
ments will play the same role as the accessible pools in noncompart-
mental models. The accessible compartment has the same problems as
the accessible pool in terms of identifying a physical space. Researchers
often try to assign physical spaces to the nonaccessible compartments.
This is a very difficult problem which is best addressed once one realizes
that the definition of a compartment is actually a theoretical construct
which may in fact lump material from several different physical spaces
in a system; to equate a compartment with a physical space depends
upon the system under study and assumptions about the model.

4.3 THE COMPARTMENTAL MODEL OF A
TRACER-TRACEE SYSTEM

4.3.1 Introduction
The notation for the tracee and tracer systems to be used in this text

are summarized below in Table 4.3.1 and Table 4.3.2. All tracee variables
are constant since the tracee system is assumed to be in a steady state.
Conversely, all tracer variables, except the compartment volumes, vary
in time to indicate that the tracer system is studied dynamically.

The link between the tracee and tracer system comes from the indis-
tinguishability principle of tracer and tracee discussed in Chapter 2:
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Note is constant since and are constant. One then can write
for the tracer and tracee the following:

The constants defined in (4.3.1) are called rate constants or
fractional transfer coefficients. They have units , and rep-
resent the fractional transfer of material between compartments or the
fractional losses from compartments. As will be seen below, it is these
constants that are estimated from tracer kinetic data. To do so, one must
link the equations describing the model with the measurement variables
of the tracer experiment.
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4.3.2 The One Compartment Model

Suppose one is investigating the kinetics of a substance in the steady
state, and knows that this substance is uniformly distributed in a single
compartment into which de novo production and from which disposal
occur. This is the one compartment model, and is identical to the situ-
ation described in Chapter 2. Is is diagrammed below in Figure 4.3.1 A;
note these figures are identical to Figures 2.2.4 and 2.2.5.

As written in (2.2.1), the mass balance equation for the tracee system
is

whence From the tracee measurements, normally the tracee
concentration, one cannot estimate or without more information.
A tracer experiment, as diagrammed in Figure 4.3.1B, is designed for
these purposes. As written in (2.2.4), the mass balance equation for the
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tracer is

Again, as indicated before, the link between the tracee and tracer system
comes from tracer-tracee indistinguishability leading to the definition of
the rate constant

In terms of the rate constant , (4.3.4) and (4.3.5) can be rewritten:

While these equations describe the mass balance of tracee and tracer,
no link has been made to the measurement variable for either. This
link comes either via the concentration of tracer or
the tracer to tracee ratio . Hence from the tracer
data, besides estimating the rate constant , one will also have to
estimate . Knowing the rate constant and or
and hence can be estimated either from since
the tracee concentration is normally measured, or from
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4.3.3 The Two Compartment Model

Suppose one is investigating the kinetics of a substance in the steady
state, and postulates the system can be described by a two compart-
ment model. The most general two compartment model is shown in
Figure 4.3.2.

Extending the ideas of the previous section, the mass balance equa-
tions for the tracee system are

while those for the tracer are
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These equations have been written purposely in terms of both the
tracee and tracer fluxes and the rate constants to remind the reader
of the relationship between the two, and to emphasize the following
point: it is the masses and the fluxes that are of interest in the tracee
system, while in the tracer system it is the rate constants. In fact, one
goal of the tracer experiment is to estimate the rate constants which can
then be used to calculate the masses and fluxes in the tracee system.
Thus in the remainder of this text, figures and diagrams of the tracee
system will be written in terms of these fluxes, and while those
for the tracer will be written in terms of the      .

To further illustrate the link between rate constants and tracee fluxes,
and to foreshadow the material to be presented in subsequent chapters,
consider the special case of the two compartment model shown in Fig-
ure 4.3.3.

The equations for the tracee and tracer are identical to the general
equations given in (4.3.8) and (4.3.9) with In this
example, the tracer is introduced into compartment 1. The tracer con-
centration is measured in this compartment at specified
times during the experiment; the tracee concentration is
also measured in this compartment. From the resulting data, one wishes
to estimate the individual and the tracee fluxes and The first
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question that arises is the following: can one estimate a unique set of
rate constants from the data? The implication of this question is that
some compartmental structures may be too complicated in terms of the
information content in the data, i.e. a unique set of the characteriz-
ing them cannot be estimated. On the other hand, it may be possible
that more than one set of can be estimated meaning there is not a
unique set. These questions relate to the a priori identifiability of the
tracer model addressed in Chapter 5.

4.3.4 The N-Compartment Model
As one might anticipate, the description of a general the n-compartment

system is more complex. The mass balance equations, however, are ob-
vious extensions of those given for the two compartment system. Given
in terms of the rate constants they are respectively for the tracee
and tracer:

and

Note only when there is de novo entry of material into compart-
ment i, and (t) can be nonzero only for accessible pools.

For a large model, it is common to represent this set of differential
equations using matrix notation. It is convenient first to define

which is the sum of all outgoing rate constants from a given compart-
ment, i.e. all rate constants from this to other compartments plus that
to the outside environment.

In the general case, let
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be the matrix of rate constants The matrix K is called the com-
partmental matrix. For the tracee system, let M be the column vector
of steady state masses in compartments

and U be the column vector of inputs into compartments i = 1, • • • , n

Remember that some of the may be zero. Then the system of equa-
tions describing the tracee system can be written

For the tracer system, let m(t) be the column vector of tracer masses
in compartments 1, . . . , n

u(t) the column vector of tracer inputs into compartments 1, . . . , n

and the column vector
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Then the system of n differential equations describing the n compart-
ment model can be written

For the measurement equations, suppose there are compartments
which are accessible for measurement. Let y(t) be the column vector of
the measurements in terms of tracer concentration or tracer to tracee
ratio in the accessible compartments, and let C be the column vector
of tracee concentration in these compartments. Both y(t) and C are
l-dimensional vectors.

are the volumes of the accessible compartments where
define the lxn matrix V;

All elements in the first row of this matrix are 0 except for the column
where is entered. Similarly for the second row; all entries are zero

except for the column. The measurement equations for the tracee is

A similar equations holds for the tracer, where the measurements are
expressed in tracer concentration:

For the case when the tracer-tracee ratios are the measurement vari-
ables, the tracer measurement equation becomes

where the entries of the D-matrix are the reciprocals of the masses
of the accessible compartments.
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For example, if tracee and tracer concentrations are measured in the
accessible compartments 2, 4 and 5 of a 6 compartment system, the
matrix V is the matrix

For the tracee, the vector C can thus be written

Similarly for the tracee, the vector y(t) can be written

Example

As an example of the matrix formalism for compartmental model
equations, consider the two compartment model shown in Figure 4.3.3.
The equations equations describing the tracee system in matrix notation
can be derived by first writing the counterparts of (4.3.13), (4.3.14), and
(4.3.15):
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Then from (4.3.16):

The equivalence of the notation defined in (4.3.8) and (4.3.30) is seen by
comparing (4.3.8) with the last column vector on (4.3.30).

For the tracer system, one has for the above example

and

Then (4.3.20) in this case becomes

Since compartment 1 is the only accessible compartment, the measure-
ment equations for the tracee and tracer concentrations are

The equivalence of the notation defined in (4.3.9) and (4.3.34) is seen in
a fashion analogous to that of the tracee system.

In this text, most theory will be illustrated by writing the individ-
ual equations for the two compartment model in the notation of (4.3.8)
and (4.3.9) while for compartmental systems of more than two compart-
ments, the matrix notation will be used.
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4.4 STRUCTURAL PROPERTIES

4.4.1 Introduction
In the differential equations describing the mass balance of a

tracer in a general n-compartmental model were given. Mathematically,
since the are constant, this is known as a system of linear, first or-
der, constant coefficient differential equations. A number of results are
available from which the structural properties of compartmental models
can be obtained [Anderson, 1982; Covell et al., 1984; Eisenfeld, 1979;
Eisenfeld, 1981; Hearon, 1963; Matis et al., 1983]. Here structural prop-
erties refer only to the structure of the system, i.e. they do not depend
upon the nature of the tracer input.

In this section, the properties of the compartmental matrix K which
appears in the differential equations of a general n-compartment model
(see (4.3.20)) will be discussed first. From K, the mean residence time
matrix will be defined, and its properties discussed. Next,

it will be seen that the solution of the differential equations given by
(4.3.30) are sums of exponentials. Lastly, the properties of this solution
and the properties of the K matrix will be reviewed.

4.4.2 The Compartmental Matrix

The matrix K of rate constants defined in (4.3.13) relates the tracer
and tracee masses of an n-compartment model to the tracer input rate as
defined in (4.3.20) and de novo tracee input as defined in (4.3.16) respec-
tively. It is usually called the compartmental matrix since it completely
specifies the structure of the model.

The matrix has the following properties.

1. The off diagonal elements are non-negative

2. The diagonal elements are non-positive

3. The absolute value of each diagonal element is not less than the
sum of the other elements in its column:
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These properties follow directly from the definition and physical meaning
of the rate constants. In particular, property (3) follows because

There are two properties that the K matrix often has. One is that it
is invertible, i.e. det The other is that it is reducible, i.e. there
exists a permutation of the indices ij so that the matrix can be written

where          and are  themselves  square matrices of  dimension less
than n. The matrix written in the above form is called block triangular.

The matrix K is invertible if two conditions hold.

1. The system is open. That is, there is at least one compartment with
loss to the external environment.

2. The system contains no closed subsystems, or traps. That is, there is
no subsystem of compartments which can only receive material from
other compartments with no losses either to the external environment
or to other compartments outside of the subsystem.

Thus K is invertible if all particles entering the system from any com-
partment will eventually leave the system.

The matrix K is reducible if the compartmental model contains a
subsystem of compartments which cannot transfer material to any of the
remaining compartments, but particles in this subsystem will eventually
leave the system. The matrix K is not reducible, or irreducible, if the
compartmental model is strongly connected, that is, a particle in one
compartment can reach any other compartment in the model.

Example

Consider the general two compartment model shown in Figure 4.3.3.
The K matrix for this model is

Clearly since the rate constants are all non-negative, the diagonal el-
ements are non-positive, and the off-diagonal elements are non-negative.
Thus
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Assuming and one or both of and arc non-zero, the K
matrix is invertible, or  equivalently its determinant is non-zero, since
the system is open and it does not  contain any closed subsystems. That
is,

The matrix K is also irreducible since the model is strongly connected.
The matrix K becomes non-invertible in the two situations depicted

in Figure 4.4.1.  In case A, the system is closed since and are
nonzero, but From (4.4.7),

In case B, the system is open since but it has a closed subsystem,
namely compartment 2 since and From (4.4.7)

In addition, in this case, the matrix K is reducible since the model is no
longer strongly connected, i.e. material cannot move from compartment
2 to compartment 1. The matrix in block triangular form is
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4.4.3 The Mean Residence Time Matrix
The concept mean residence time in the accessible pool has already

been introduced in the context of noncompartmental analysis in Chap-
ter 4 as the average time a single particle spends in the accessible pool
during all passages through it before irreversibly leaving the system.  The
definition can be extended to any compartment, accessible or not, of an
n-compartment system.

From the stochastic interpretation of compartmental models, the n x
n matrix defined

where K is the compartmental matrix has significant meaning since the
generic element represents the average time a particle
entering the system in compartment j spends in compartment i before
irreversibly leaving the system. For this reason, is referred to as the
mean residence time matrix. This matrix also has  an important
interpretation in probabilistic terms since the ratio  equals the
probability that a particle in compartment j will reach compartment i,
that is

Clearly to calculate the mean residence time matrix, the compart-
mental matrix K must be invertible; this is why the issue of invertibility
was raised in the previous section. As already discussed, this  assumes
that a particle in a given compartment, no matter how it arrived in that
compartment, will eventually leave the system. This means all residence
times are finite.

The mean residence time matrix has the following properties.

1. The elements of the main diagonal of are strictly positive:

since they represent the nonzero mean residence time in compartment
i for particles entering the system the same compartment.

2. The off-diagonal elements are non-negative.
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In particular, if and only if the probability of reaching com-
partment i from compartment j is zero, i.e. there is no pathway
connecting compartment j to compartment i [Anderson, 1982].

3. For each column, the main diagonal element is greater than or equal
to all other elements in the column.

This result follows from (4.4.9), and indicates that the time spent
in compartment i is maximum if the particle enters the system in
i rather than in some other compartment. One can see that

if and only if all particles from compartment j will reach
compartment i, or equivalently if there is no loss in the pathways
connecting j to i.

4. For a compartmental system with a single irreversible loss, say from
compartment i, since all particles must pass through i before they
can exit the system, one has

indicating that all elements of the row of have the same value.
In addition, it can be shown that the mean residence time is the
reciprocal of the rate at which they leave the system. That is,

and thus from (4.4.13),

Example

As an example of the mean residence time matrix calculation consider
the general two compartment model below; this was originally discussed
in Figure 4.3.3.

The compartmental matrix K is written

and thus
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Note that, as expected, all the elements of      are strictly positive
since compartments 1 and 2 are interconnected, and that and

Next, consider the same model shown in Figure 4.4.2, but now assume
is zero, i.e. a two compartment model where the only loss is from

compartment 1. The matrix is now

showing that, as expected, all the element of the first row are equal, and
equal to

It is clear that the above ideas can be extended to the n compartment
model, i.e. explicit formulas relating the with the can be formu-
lated. However, they become very complicated as soon as n exceeds 3,
and one normally uses numerical techniques to invert the compartmental
matrix K to obtain the mean residence time matrix.
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4.4.4 Sums of Exponentials and the Compartmental Model

From the theory of linear differential equations, the solution of the
Compartmental model equations when the are all constant (which
is the situation discussed in this text) and the input into the system
is a single bolus injection into an arbitrary compartment is a sum of
exponentials.

For a one compartment system such as that diagrammed in Fig-
ure 4.3.1 in which a bolus of tracer is injected, this can easily be seen by
writing (4.3.7)

In this case, since a bolus has been injected, can be written in
terms of where d is the dose of tracer. The solution of this
equation is the decaying monoexponential function

In a similar fashion, one can show for a constant infusion or a primed,
constant infusion that the solution still depends upon the exponential
term For the constant infusion, the solution is

and for the primed, constant infusion, the solution is

In general, for an n-compartment model, the solution of the system
of differential equations when the input is a single bolus into a specific
compartment is given by a sum of n decaying exponentials. For example,
the solution of (4.3.20) for such a bolus input is m ( t ) defined in (4.3.17)
where the individual components of the vector are of the form

Thus the tracer mass in each compartment is a linear combination of
the n decaying exponential functions these exponential functions
are called the modes of the system. Remember the notation adopted in
this text is that the are positive whence are negative. The
depend upon the Compartmental matrix K since they are the solution
of the equation
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where I is the n x n identity matrix.
Finally, the solution for a n-compartmental model for a generic in-

put u(t) is still a function of the modes since, as already discussed in
Appendix D, the response of a linear system to a generic input can be
derived by combining, via the convolution operator, u ( t ) with the sum
of exponential solutions to a bolus input. The following example will
illustrate this situation.

Example

For the two compartment example given in Figure 4.3.2, if compart-
ment 1 is accessible, is a unit bolus injection at time zero, and

then

with
The and are the solution of the algebraic equation

or equivalently

Equation (4.4.24) can be used to describe the response of the system
to any tracer input into compartment 1. Now let and
denote the response of the system to a generic input The relation-
ship between these and the exponential expressions given in (4.4.24), i.e.
the response of the system to the unit input, are

The above equations are known as the convolution of and the
response of the system to the unit input.
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Some properties of the model solution for a generic tracer input can
be derived from the properties of the compartmental K matrix. These
will be discussed in the next section.

As a final remark, it is worth noting that some results given in this
section can serve to partially link compartmental and noncompartmental
models from a practical point of view. In particular, two points can be
made. First, since the parameters for the noncompartmental model are
given for systems in a constant steady state, and since such systems can
be described by linear, constant coefficient differential equations, sums
of exponentials can be used to provide the functional description of a
set of tracer data from which the noncompartmental parameters can be
estimated. Second, if one first fits a sum of exponentials to a set of tracer
data from a single input-single output experiment, and finds that n is the
number of exponentials which will provide the best fit, then in general
a compartmental model containing of at least n compartments will be
required. However, the structure of the n-compartment model needs
to be specified. This is simple when since only the location of
the irreversible losses must be specified. It is much more complex when

since the number of possible models becomes very large. For
example, when the number of possible 3 compartment models is
126.

4.4.5 Non-negativity and Stability Properties of
Compartmental Model Equations

In this section, some of the more relevant structural properties of the
differential equations represented by multicompartmental models will be
discussed.

Non-negativity of the compartmental model solution

From an intuitive sense, it is obvious that the model solution for the
tracer masses in the compartments of a compartmental model must be
non-negative. After all, the models must obey conservation of mass. But
this fact can also be shown mathematically. That is, it can be proven
that

(4.4.28)

for an arbitrary, n-compartment model where the input into the sys-
tem is a unit bolus injection into an arbitrary compartment. Using
the idea illustrated by (4.4.27), it can be shown that for an arbitrary
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n-compartment model, (4.4.28) holds for an arbitrary, non-negative tracer
input. Obviously one cannot have a negative input.

Stability properties

The term stability refers to the property that the response an ar-
bitrary n-compartment model to an experimental tracer input, which
is finite or bounded as opposed to an infinite amount, does not grow
indefinitely with time. That is, for an arbitrary compartment i in the n-
compartmental model, where M is finite for
This property is related to the properties of the system modes
defined in the previous section.

More precisely, suppose that the K matrix is irreducible and invert-
ible,  i.e.  the compartmental model is strongly connected with at least
one irreducible loss to the environment. Under these circumstances, the
exponentials  are either real and positive (corresponding to
the of (4.4.22)), or complex conjugates with positive real parts. The
latter situation, which will be illustrated below, arises when the system
has damped oscillations; the complex conjugate means that a pair of ex-
ponentials, say and can be written and
where and

The model solution to a bolus input into any compartment is a com-
bination of decaying exponentials and damped oscillations, and decays
to zero as t increases:

This condition assures that the response of the system to any bounded
input also decays to zero with time. In system theory, this property is
referred to as bounded input-bounded output stability.

The following two examples will illustrate the stability properties.

Example 1

Consider the two compartment model show in Figure 4.4.2. The ex-
ponentials and are the solutions of the quadratic equation (4.4.26):

They are real numbers since
and
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Thus the model is stable.
Of course stability could have been observed directly from the fact

that the model is strongly connected and has irreversible losses.

As with the previous example, it is clear that the system is stable
since it is strongly connected and has irreversible losses. In this example,
however, not all are real. Write the K matrix:

For the sake of simplicity, assume the are selected so that
and Then (4.4.23) becomes

This equation has two real, positive solution and and two complex
conjugate solutions and where a and b are positive
real numbers. The model response to a bolus input can be written
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The terms and are two exponentially decaying modes.
The other two terms are damped, in terms of oscillations (in terms
of cos(bt) and sin(bt)). As in the previous example, all decay
towards zero as time t increases.

In the discussion and examples so far, it has been assumed that the
K matrix is irreducible and invertible. What happens for a general
n-compartmental model if the K matrix is either reducible or singular
(noninvertible). Then it can be shown that among the real exponentials

one or more may assume a value equal to zero. This results in a
constant mode since meaning there is a constant component
to the system’s response to a bolus input. This means that the model’s
stability can no longer be proven, and that the response to some bounded
input may increase indefinitely with time.

Example 3

Consider the two compartment model given in Figure 4.4.1 A. This is
a closed system since there are no irreversible losses. The model solution
to a bolus input into compartment 1 is given by (4.4.24) where and

are the solutions of (4.4.23) which is written

The two solutions are and The masses can
be written using (4.4.24):

where equals the amount of the bolus input, and .
It is clear that for the bolus input into compartment 1, as time t

increases towards infinity, approaches and approaches

However, the model is not stable. For instance, consider a constant
infusion into compartment 1, e.g.
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Clearly and increase with t, thus the response to a bounded
input is unbounded.

Oscillations

As indicated above, oscillations may be present in the solution of a
compartmental model. These occur when the exponential is a complex
number. For irreducible systems, a topological condition may exist in
the system which will exclude the presence of oscillations.

Define a cycle of length k as a path for which the product
is nonzero. It can be shown that no oscillations are

present in an arbitrary n-compartment model if there are no cycles of
length greater than 2 are present in the model. This condition is obvi-
ously satisfied for the two compartment model. It is not satisfied, for
example, in the model shown in Figure 4.4.3 since there is a cycle of
length

4.5 KINETIC PARAMETERS
In addition to the primary parameters of the compartmental model

given in the past two sections, e.g. tracee masses, production rates into
specific compartments, fluxes between compartments, and mean resi-
dence times, other kinetic parameters can be defined to characterize the
system.

Total mass in the system

The total mass in the system equals the sum of the tracee masses in
each individual compartment:

Total equivalent distribution volume in the system

The total equivalent distribution volume in the system is equal to
the volume the tracee occupies in the system assuming its concentration
is uniform and equal to its value in accessible compartment 1:
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If more than one compartment is  accessible, for example compart-
ments 1 and 2, different definitions for the equivalent distribution vol-
ume can be given. As discussed in Chapter 3 for the two accessible pool
noncompartmental model, the definition  depends upon which concen-
tration is considered as the reference concentration. The possibilities
are:

Mean residence time in the system

Recalling the definition of the generic element of the mean resi-
dence time matrix as the average time a particle entering compart-
ment j spends in compartment i before irreversibly leaving the system,
the sum of the elements of one column of the matrix, say column j,
represents the mean residence time (unit: time) spent in the
whole system by  one particle entering the system from compartment j:

In order to evaluate the kinetic parameters of the compartmental
model, it is first necessary to obtain a unique solution for the tracer
model parameters, i.e. the rate constants and the volumes or masses
of the accessible pool from the tracer data of a given input-output exper-
iment. The a priori identifiability analysis to be discussed in Chapter 5
addresses this question. Once the tracer parameters are available, the
tracee parameters, i.e. tracee masses and productions, can be evaluated.
This is the subject of Chapter 6. The tracer and tracee kinetic param-
eters provide a detailed, quantitative description of the system, both
for the accessible and nonaccessible pools. Most parameters are unique
to the compartmental model approach, for instance masses in individ-
ual compartments, production rates, intercompartmental fluxes. Others
have already been defined in the noncompartmental model formulas, for
instance mass, volume and residence time in the accessible compartment
and in the system. Additional accessible pool parameters defined in the
noncompartmental model approach such as clearance rate, rate of ap-
pearance and disappearance, can also be defined and calculated from
the compartmental model of the system by using the relationships given
in Chapter 3. However, since the interest in these parameters is rather
limited if the more detailed kinetic information from the compartmental
model of the system is available, they are not included in this section.
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Some comments will be given in Chapter 7 where compartmental and
noncompartmental approaches will be compared.

4.6 CATENARY AND MAMILLARY MODELS
Catenary and mammillary models are two classes of compartmental

models which are frequently used to interpret tracer kinetic data.
Catenary models are compartment models made up of a chain of

compartments with each, except the first and last, exchanging bidirec-
tionally with the two adjacent compartments. If the compartment num-
bers in the chain are sequential from 1 to n, then the rate constants
have the following properties:

The general catenary  structure in which the compartments are numbered
sequentially is shown in Figure 4.6.1.

Mammillary models are compartmental models where there is a
central compartment which exchanges with the all of the other com-
partments; there is no exchange between these other compartments. If
the numbering of the compartments is as illustrated in Figure 4.6.2, then
the rate constants have the following properties:
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For both the catenary and mammillary model, irreversible losses to
the environment are allowed, i.e. for some i.

The compartmental K matrix has the following form for the catenary
and mammillary model respectively.

and

In both cases, K is irreducible and invertible assuming there is a
nonzero loss from at least one compartment, i.e. for some i.
Under this condition, catenary and mammillary systems are stable. In
addition, all are positive real numbers since both classes of models
contain cycles of length 2 or less.
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Chapter 5

IDENTIFIABILITY OF THE
TRACER MODEL

5.1 INTRODUCTION

In this Chapter, it will be assumed that a compartmental model struc-
ture has been postulated to describe a set of tracer data, i.e. the number
of compartments and the connections among them have been  specified.
This structure reflects known information and assumptions about the
system under study. That is, there may be a priori knowledge about
the system which can be incorporated in the structure. As described
in Chapter 1, one can arrive at a structure by testing via simulation
what is needed to fit the data. The result at this stage is a “pencil and
paper” model which has as unknowns the rate constants  associated
with the connections and, assuming a pool is accessible for measurement,
either a volume V or a mass M of that pool depending upon whether a
radioisotope or stable isotope tracer is used.

Before performing the experiment to collect tracer data to be ana-
lyzed using the model or, if the experiment is already completed, before
using the model to estimate the unknown parameters from the data,
the following questions arises: does the tracer data contain enough in-
formation to estimate all of the unknown parameters of the postulated
model structure? This question is usually referred to as the a priori
identifiability problem [Cobelli and DiStefano, 1980; Carson et al.,
1983]. It is set in the ideal context of an error-free model structure and
noise-free, continuous time measurements, and is an obvious prerequisite
for parameter estimation from real data. In particular, if  it turns out in
such an ideal context that the postulated model structure is too complex
for the particular set of ideal tracer data, i.e. some model parameters
are not identifiable from the data, there is no way in a real situation

109
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where there is error in the model structure and noise in the data that
the parameters can be identified. The a priori identifiability problem is
also referred to as the structural identifiability problem because it is set
independently of a particular set of values for the parameters. For the
sake of simplicity, in what follows, only the words a priori will be used
to qualify the problem.

The solution of the identifiability problem in general is a difficult one
because it involves the solution of a system of nonlinear algebraic equa-
tions which increases in number of terms and nonlinearity degree with
the model order, i.e. the number of compartments in the model. These
equations become difficult to solve even for compartmental models of rel-
atively few compartments, e.g. 4 or 5. No general solution is available
except for the one, two, some three compartment models, and certain
catenary and mammillary models. To test a priori identifiability of lin-
ear compartmental models of general structure, one can take advantage
of methods of computer algebra; this will be illustrated later in this
Chapter.

Before discussing the problem in depth and the methods available
for its solution, it is useful to illustrate the fundamentals through some
simple examples. Then the definitions using these simple examples where
the identifiability issue can be addressed can be discussed.

5.2 SOME EXAMPLES

Example 1

Consider a single compartment tracer model shown below in Fig-
ure 5.2.1 where the input is a bolus injection of a radioactive tracer given
at time zero, and the measured variable is the tracer concentration.

As seen previously in this case, the model and measurement equations
are

The unknown parameters for the model are the rate constant k and the
volume V.

Equation (5.2.2) defines the observation on the system, i.e. tracer
concentration, in an ideal context of noise-free and continuous-time mea-
surements. In other words, (5.2.2) is the model output describing what is
measured continuously and without errors; it is not measurements only
at discrete times. The word “output” is used here in the information
sense. Specifically, in the context of Figure 5.2.1, u(t) and c(t) define an



Identifiability of  the Tracer Model 111

input-output experiment, and should not be confused with the material
output or outflow from the compartment.

To see how the experiment can be used to obtain estimates of these
parameters, note the solution of (5.2.1) is the monoexponential

The model output c(t) can thus be given by

The model output or ideal data are thus described by a function of the
form and the parameters that are determinable by the experiment
are and These parameters are called the observational parameters.

What is the relationship between the unknown model parameters k
and V, and the observational parameters A and From (5.2.4) one
sees immediately:

where c(0) represents an extrapolation of the data to time zero.
What happens if instead of a radioisotope tracer a bolus injection of

a stable isotope tracer is injected? By expressing the model output in
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terms of the tracer to tracee ratio

on sees immediately that the above logic can be followed using M instead
of V.

In the example above, the unknown parameters k and V (or M) of
the model are a priori uniquely or globally identifiable from the designed
experiment since they can be evaluated uniquely from the observational
parameter A and Since all model parameters are uniquely identifiable,
the model is said to be a priori uniquely or globally identifiable from the
designed experiment.

This first example was limited to a bolus injection of tracer. The same
identifiability results hold for different inputs as well. This is a general
result of dealing with linear, time-invariant models such as those de-
scribing tracer kinetics in the steady state: the identifiability properties
of a model are the same irrespective of the shape of the inputs. This is
true for a single input situation, or if there are multiple inputs with dif-
ferent tracers administered simultaneously. The result is no longer true
in a multiple input experiment with the same tracer being administered
simultaneously.

In the remaining examples, because of the above observation on the
identifiability properties of linear, time-invariant systems, only the bolus
injection will be considered.

Example 2

Consider next the two compartment tracer model shown in Figure 5.2.2
where a bolus injection of stable isotope tracer is given into compart-
ment 1. The accessible compartment is compartment 2. Assume the
measured variable is the tracer to tracee ratio,

The equations describing this model assuming a bolus input are:
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The unknown model parameters are and To see how
the experiment can be used to obtain estimates of these parameters one
notes that the solution of (5.2.9) is the following sum of two exponentials:

whence the model output or ideal data are given by

where and are the observational parameters.
It is easy to see that and play an interchangeable role in

(5.2.12); in fact, (5.2.12) can rewritten

Notice in (5.2.12) and (5.2.13) that the same sum of exponentials
describes the data. Thus the link between and

and the unknown model parameters and is not unique
and two sets of relationships can be formulated:
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or

This results in two symmetric solutions for and as a consequence,
has two solutions.

If a radioisotope tracer experiment is considered, since the model out-
put would be

one sees immediately that the above derivation remains valid with
replacing

As discussed here and illustrated by the specific example above, the
unknown parameters and of the tracer model cannot
be uniquely evaluated from the observational parameters and
of the designed experiment. Two solutions are obtained, say
and and and which provide the same
expression for the model output or When there is a finite
number of solutions (more than one; two in this case), the unknown
parameters are said to be a priori nonuniquely identifiable or locally
identifiable from the designed experiment. When all the model parame-
ters are identifiable (uniquely or nonuniquely) and there is at least one
of the model parameters which is nonuniquely identifiable (in this case,
all three are), the model is said to be a priori nonuniquely or locally
identifiable.

It is worth noting that in this case there are parameters which are
a priori uniquely identifiable, but these are not the original parameters
of interest. They are combinations of the original parameters. In this
particular case, since and have each two symmetric solutions,
their product, and their sum, are uniquely identifiable.
In addition, from (5.2.15) and (5.2.16) it is clear that the other uniquely
identifiable parameter is Thus for the example considered
here, the uniquely identifiable parameterization is and

To achieve unique identifiability of a nonuniquely identifiable model,
additional independent information about the system is necessary. In
this particular case, knowledge of or a qualitative rela-
tionship between and i.e. greater or less than (see
Figure 5.2.3), allows one to achieve unique identifiability of all model
parameters.
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Example 3

Consider next the two compartment tracer model shown in Figure 5.2.4
where a bolus injection of radioactive tracer is given at time zero and
where the measured variable is tracer concentration.

The equations describing this model are

The unknown model parameters are and
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To see how the experiment can be used to obtain estimates of these
parameters, one notes that the solution of (5.2.17) is

whence the model output or ideal data are given by

The model output or ideal data are thus be described by the monoex-
ponential function One can now see immediately the relationship
between the unknown model parameters and and the obser-
vational parameters of the experiment and

It is easy in this situation to see that while is uniquely identifiable,
and are not. In fact, as illustrated in Figure 5.2.5, there are an

infinite number of solutions lying on the straight line
When there is an infinite number of solutions for a parameter, one

says the parameter is a priori nonidentifiable from the designed exper-
iment. When there is at least one of the model parameters which is
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nonidentifiable (in this case, there are two), the model is said to be a
priori nonidentifiable.

As with the previous example, one can find a uniquely identifiable
parameterization, i.e. a set of parameters that can be evaluated uniquely.
In this case, the parameter is the sum ( has been seen to be
uniquely identifiable). Again to achieve unique identifiability of and

additional information on the system such as a relationship between
and is required.

When a compartmental model is nonidentifiable, however, it is possi-
ble to obtain for the nonidentifiable parameters upper and lower bounds
for their values, i.e. to identify an interval of values where the parame-
ters may lie. The reasoning is the following. Since by definition and

are greater than zero, one sees immediately from (5.2.23) that the
upper bound for each is For instance, for one has
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and thus the upper bound for will be achieved when is zero.
Similar results hold for The parameter bounds for and are

In this example, the intervals are the same; normally, this is not the
case.

When there is an upper and lower bound for the values that a non-
identifiable parameter can assume, one says the parameter is a priori
interval identifiable. When all of the nonidentifiable model parameters
are interval identifiable (in this case, all are), the model is said to be a
priori interval identifiable.

As with the previous two examples, this discussion holds also for stable
isotope tracers by expressing the model output in terms of the tracer to
tracee ratio, and by replacing by

5.3 DEFINITIONS
The simple examples of the previous section emphasized the impor-

tance of understanding the a priori identifiability problem, and provided
a means to introduce in an appropriate context some basic definitions
[Audoly et al., 1998]. In this section, the definitions will be generalized to
the n-compartment model discussed in It should be noted, how-
ever, that the definitions hold for more general model structures such as
the nonlinear dynamic models discussed in Cobelli and DiStefano [1980]
and Carson et al. [1983]. Both the radioactive and stable isotope tracer
models can be written

where the equations in (5.3.2) are the measurement equations for the
radioactive and stable isotope models respectively, de-
notes the unknown parameters, i.e. the transfer rate parameters the
volumes or the masses of the accessible pools, and the matrices
K, V and D are functions of p. The vector p belongs to the com-
partmental parameter space the real subspace of the complex
space C which satisfies the constraints and
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Define as R the observational parameter and as
the observational parameter vector. Each particular input-

output experiment will provide a particular value of the parameter
vector i.e. the components of can be estimated uniquely from
the data by definition. Further, the observational parameters are
functions of the basic model parameters which may or may not be
identifiable:

To state the identifiability problem of the basic model parameters
it is convenient to consider the model output y(t) as a function of time
and the observational parameter vector

The definitions are given first for a single parameter of the model, and
then for the model.

Definitions

For the input class U the single parameter is a priori
• uniquely or globally identifiable if and only if for almost any

(the real space) the equations

have one and only one solution for belonging to C,
• nonuniquely or  locally identifiable if and only if for almost any

the system of equations (5.3.5) has for more than one but a
finite number of solutions in C;
• nonidentifiable if and only if for almost any the system of
equations (5.3.5) has for infinite solutions in C; and
• interval identifiable if it is nonidentifiable and has a finite upper
and lower bounds that can be calculated from the system of equations
(in this case, the parameter interval is defined by the difference between
its upper and lower bound).

The model is a priori
• uniquely or globally identifiable if all of its parameters are uniquely
identifiable;
• nonuniquely or locally identifiable if all of its parameters are iden-
tifiable, either uniquely or nonuniquely, and at least one is nonuniquely
identifiable;
• nonidentifiable if at least one of its parameters is nonidentifiable;
and
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• interval identifiable if all its nonidentifiable parameters are interval
identifiable.

Thus to investigate the a priori identifiability of model parameters
it is necessary to solve the system of nonlinear algebraic equations in
the unknown obtained by setting the polynomials equal to the
observational parameter vector

In what follows, these equations will be called the exhaustive sum-
mary of the model.

Examples have already been provided in They are given for the
three examples by (5.2.5) and (5.2.6), (5.2.14) and (5.2.15), and (5.2.22)
and (5.2.23) respectively.

An additional problem is that the solutions of the set of nonlinear
algebraic equations with real coefficients (5.3.6) are in the whole complex
space C. Since one is interested only in the solutions belonging to the
cornpartmental space i.e. real and positive, and not complex or real
negative ones, the results on the uniqueness of model solution has to
be extended from the complex space to its real and positive subspace
satisfying the compartmental constraints. This problem can be solved
for the global identifiability and nonidentifiability cases but it is an issue
for the local identifiability case. Some comments on how to deal with
this case will be given in

5.4 THE TWO COMPARTMENT MODEL

5.4.1 Introduction

The examples of introduced the basic ingredients of the a pri-
ori identifiability problem. In particular, they dealt with single input-
single output tracer experiments only. Against the background provided
by one can proceed to more complex compartmental models and
input-output experiments which will permit a better appreciation of the
interplay between the known observational parameters and the desired
unknown model parameters.

The general two compartment model with various single or multiple
input, single or multiple output tracer experiments serves the purpose.
For sake of space only, the radioactive isotope tracer experiment will be
described in detail; the extension to the stable isotope tracer experiment
is straightforward by expressing the model outputs as the
tracer to tracee ratio and by substituting the masses of the accessible
pools for the volumes.
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5.4.2 Input into a Single Compartment

Tracer input into compartment 1

Consider the general two compartment model shown below in Fig-
ure 5.4.1.

Assume that tracer input is into compartment 1 (the case where the
input is into compartment 2 is dealt with later in this section) and that
the tracer input is a bolus injection. The model equations are

Measurement in compartments 1 and 2

Assume that the measured variables are the tracer concentrations in
compartments 1 and 2. The model outputs, or ideal data, are described
respectively by



122 TRACER KINETICS IN BIOMEDICAL RESEARCH

The unknown parameters are the rate constants and
the volumes and

The solution of the system of differential equations (5.4.1) and (5.4.2)
for and are biexponential functions (an extension of the sin-
gle compartment, single exponential case of Example 1 in whence
the model outputs are given by

where and are the observational parameters. They
are assumed to be positive with Note that
while

The functions and provide a description of the ideal tracer
data; an example is given in Figure 5.4.2.
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How are the observational parameters related to the unknown model
parameters? In contrast with the situation encountered in Examples 1,

forward manner. One needs to have the analytical expression for
and as functions of the model parameters. While this was not dif-
ficult to obtain in the single compartment examples of it is more
difficult here since there is the need to solve a system of two differential
equations, (5.4.1) and (5.4.2). If one does this, the exhaustive summary
can then be obtained as in the previous examples by equating the obser-
vational parameters and of (5.4.5) and (5.4.6) to their
counterparts of the analytical model solutions for and which
are functions of the unknown parameters. These equations must then be
solved for the unknown model parameters and

An alternative way to obtain the exhaustive summary which does
not require the solution of the system of differential equations and also
provides them in a form more easy to handle is the two-step strategy
described in Appendix E where all the details of the calculations are
given. The exhaustive summary consists of five equations:

where and are given by

The exhaustive summary can now be solved for the unknown model
parameters. By summing (5.4.7) and (5.4.8), one has

By subtracting (5.4.8) multiplied by from (5.4.7) multiplied by
one obtains

By summing (5.4.9) and (5.4.10), one has

2 and 3 of the relation among the observational and the model pa-
rameters, i.e. the exhaustive summary, cannot be written in a straight-
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By subtracting (5.4.10) multiplied by A1 from (5.4.9) multiplied by ,
one has

Finally, from (5.4.11), one obtains

Therefore, with a tracer input into compartment 1 and measure-
ments taken in compartments 1 and 2, the model is a priori noniden-
tifiable since and are nonidentifiable. Only parame-
ter is uniquely identifiable. The uniquely identifiable parameters are

and . In addition, the product is uniquely
identifiable.

How do the various input-output configurations affect the identifia-
bility properties of the model?

Measurement in Compartment 1 Only

In this situation, (cf. (5.4.5)) is the model output, and the
observational parameters are and are known while is
unknown. The parameter is uniquely identifiable from (5.4.18). Next,
from (5.4.14) and (5.4.17) it is possible to estimate and since ,

and are known. As far as and are concerned, only their
product can be estimated since it is a function of and

Clearly the model is a priori nonidentifiable since the rate constants ,
, and are nonidentifiable. The uniquely identifiable parame-

ters are , and
Parameter bounds. It is possible to obtain bounds for the four non-

identifiable parameters. They can be obtained from the observational
parameters or from the uniquely identifiable parameters of the model.
Suppose that and are known. In addition, since all rate
constants and must be nonnegative,
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A lower bound for is easily found from

Thus by using (5.4.20) the parameter interval for can be defined:

Using the same logic, the parameter interval for can be defined:

Further, since

one has the parameter interval for

Similarly for

Using equations (5.4.24), (5.4.25), (5.4.27) and (5.4.28), the parameter
intervals can also be written in terms of the observational parameters;
using (5.4.14)–(5.4.17), one has
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Role of a priori knowledge. It is of interest to see what happens if one
of the irreversible losses or is equal to zero. Suppose first that
is equal to zero. Since in this case is equal to it is clear that

is uniquely identifiable. From a knowledge of and knowing the
product is uniquely identifiable, one can estimate . Finally,
since is uniquely identifiable, with an estimate of   , an estimate
of can be obtained. Thus with the exception of , all other tracer
parameters can be estimated.

What happens if is equal to zero? Since in this case ,
one can estimate uniquely. Again since the product is uniquely
identifiable, one can estimate and as before, . Thus once again,
all tracer parameters except can be estimated.

Bound computation from submodels. The two models discussed above
represent a situation where one of the irreversible loss parameters is
set equal to its lower bound, zero. It is easy to verify that when

i.e. it reaches its lower bound, equals its upper bound
its lower bound (since is known),

and thus its upper bound. Conversely, when equals its
lower and and their upper bounds. In other words, upper and
lower bounds and for the parameters of the nonindentifiable
model can be generated from parameters of two submodels of the
original structure (see Figure 5.4.3) obtained by first letting = 0 and
then

Measurement in Compartment 2 Only

In this situation, is the model output and thus only and
are known. It is easy to see from (5.4.14)–(5.4.17) that the uniquely

identifiable parameter combinations are

and

Clearly, the model is a priori nonidentifiable.
Parameter bounds. It is still possible to obtain bounds for the four

nonidentifiable parameters. From (5.4.34), one has . Cou-
pling this with (5.4.33), one can calculate upper and lower bounds,
and for and :
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Since and where both and
are negative, one can infer is an upper bound for the four

parameters; zero is of course the lower bound. Finally, (5.4.35) provides
the bounds for These are summarized below:
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Note finally that (5.4.35) excludes the possibility that can equal zero
since is different from zero.

Tracer input into compartment 2

In the preceding, only the situation where tracer is introduced into
compartment 1 was considered. What happens if the tracer input is into
compartment 2, and the parallel cases above are discussed: measurement
in compartments 1 and 2, compartment 2 only, and compartment 1
only? Given the symmetry of the model, the solution is straightforward.
However, it is useful for what follows in to go through this case in
some detail.

Measurements in Compartments 1 and 2

As before, write the model outputs as

It is easy to see that the analogue of (5.4.14)–(5.4.18) is

where is the tracer dose administered into compartment 2. It is
of interest to note that the identifiability results for this measurement
configuration are the same as those obtained for the case of tracer input
into compartment 1 if one simply interchanges the suffixes 1 and 2 in



Identifiability of the Tracer Model 129

the transfer rate parameters and volumes. Clearly this also applies for
other measurement configurations. For instance, if only compartment 2
is observed, is uniquely identifiable as are the parameter combinations

and if only compartment 1 is observed, the combinations
and are uniquely identifiable.

5.4.3 Input into Both Compartments

Consider again the general two compartment model where now there
is tracer input into both compartment 1 and 2; this is illustrated below in
Figure 5.4.4. Consider first the situation where two different tracers are
administered simultaneously (see Remark for the case where the same
tracer is administered). Assume as was done in that the tracers
are administered as a bolus.

Measurement in Compartment 1 or 2

In this case, there are two model outputs. This situation can be dis-
cussed using the results of the previous section. First, with measurement
of tracer concentration in compartment 1 following a bolus injection into
compartment 1, from (5.4.5) the observational parameters are

and thus from (5.4.14)-(5.4.18) one has uniquely and
the product Second, with measurement of tracer concentration
in compartment 1 resulting from the bolus injection into compartment
2 the observational parameters are and of (5.4.43); thus from
(5.4.47) and (5.4.49), one has uniquely since is known from above.
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From the knowledge of one has uniquely and from and
one has uniquely and respectively. Hence all parameters except
for are uniquely identifiable. It is essential to note that for each tracer
injected, a separate set of first for (5.4.5) and (5.4.6) and then for
(5.4.43) and (5.4.44) will be found; the and however, are the same.
Thus the available from measurements in compartment 1 following
the injection into compartment 2 refers to (5.4.44) and not (5.4.6).

If instead of compartment 1, compartment 2 is observed (see (5.4.43)
and (5.4.6)), by applying the same reasoning one has uniquely all the
parameters except for

Measurement in Both Compartments 1 and 2

In this case, there are four model outputs corresponding to (5.4.5),
(5.4.6), (5.4.43) and (5.4.44). It is easy to see that one needs only three
of these in order to obtain unique identifiability of all parameters. In
fact, from the previous result, one needs only or if measurements
were taken in compartment 1 or 2 respectively. One can see that
is uniquely identifiable from either of the two measurements of tracer
concentration in compartment 2 due to tracer administered into com-
partment 2, (5.4.44). or 1, (5.4.46). The first case is straightforward
from (5.4.49). For the second situation, (5.4.6), one notes that can
be estimated from (5.4.35) since is known.

By a similar reasoning, one can estimate from the measurement of
tracer concentration in compartment 1 due to tracer administered into
compartment 1, (5.4.5), or 2, (5.4.43).

A summary of the identifiability results of the two compartment model
is given in Table 5.4.1. Given the symmetry of the model, the input-
output configurations with the role of compartments 1 and 2 reversed
are not given since the results can simply be obtained by reversing 1 and
2.

Remark on Simultaneous Tracer Administration

The above derivation is based on two different tracers being admin-
istered simultaneously into compartment 1 and 2. What happens if the
same tracer is administered simultaneously into the two compartments?
In this case, the measurements in compartments 1 and 2 cannot dis-
tinguish between the amount due to each injection; they measure the
sum of the two contributions. It can be shown that in this situation, the
input waveforms become important. Suppose for instance that the input
waveform into compartments 1 and 2 are the same, e.g. bolus injections,
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and measurements are taken in compartment 1. At variance with the
case where the two tracer inputs were different, and are no longer
uniquely identifiable; only their sum is. If on the other hand the input
format is different, for example a bolus injection into compartment 1 and
a constant infusion into compartment 2, one has the same identifiability
properties as the case where the two tracers were different.

It is worth commenting on the situation where the same tracer is ad-
ministered at different times; on one occasion, the bolus is administered
into compartment 1 and on a second occasion it is administered into
compartment 2. If one can assume that the parameters remain the same
for both tracer administrations, there are again four model outputs and
the same results obtained when two different tracers are administered
simultaneously hold.

5.5 THE LAPLACE TRANSFORM METHOD:
THE TWO COMPARTMENT MODEL
REVISITED

5.5.1 Introduction

Up to this point, the focus has been on the identifiability properties
of a model by inspecting the expression of the model output in order to
derive the exhaustive summary, i.e. the relationships between the obser-
vational parameters and the unknown model parameters. The method is
easy to understand since it does not require any particular mathematical
skills other than some fundamentals of differential calculus. However,
the approach is not practical in general since it works easily only for
simple models like the one and the two compartment model. For the
three compartment model, the method becomes quite cumbersome, and
for more complex models its application is virtually impossible.

A simpler method is available to derive the exhaustive summary. It
consists of writing the Laplace transform for the model output. This
method is also known as the transfer function method. Fundamentals of
the Laplace transform can be found in any textbook on applied mathe-
matics. Briefly, the advantage of the Laplace transform method is that
there is no need to use the analytical solution of the system of differential
equations. By writing the Laplace transform of the state variables, e.g.
masses, and then of the model outputs, e.g. concentrations, one obtains
an expression which defines the observational parameters as a function of
the unknown model parameters. This gives a set of nonlinear algebraic
equations in the original parameters, i.e. the exhaustive summary.
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5.5.2 Example of the Laplace Transform Method

To illustrate the Laplace transform method, consider the two com-
partment model shown in Figure 5.4.1 with a bolus injection into com-
partment 1 and the tracer concentrations in compartments 1 and 2 as
the measured variables. The equations describing the system are (5.4.1)–
(5.4.4).

The Laplace transforms of (5.4.1) and (5.4.2) are respectively

where L denotes the Laplace transform, and s is the Laplace variable.
Solving these algebraic equations for and one has

The Laplace transforms for the model outputs are

Due to the equivalence between the model outputs and
and their Laplace transforms, the coefficients and
are the observational parameters since they are the parameters which
are determinable from the input-output experiment. The exhaustive
summary, by defining and from (5.4.12) and (5.4.13), is
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The identifiability equations can now be solved for the unknown model
parameters. One has:

The exhaustive summary obtained using the Laplace transform method
provides the same information as that obtained with the approach em-
ployed previously, i.e. (5.4.14)–(5.4.18). Thus the same conclusions on
identifiability can be drawn.

If one applies the Laplace transform method to the three examples
given in one will clearly arrive at the same conclusions previously
reached on a priori model identifiability. It is worth noting that the
Laplace transform method gives for examples 1 and 3 of the same
exhaustive summary obtained in the time domain. In fact, one has for
the model outputs of examples 1 and 3 respectively

By contrast for the model output of example 2, one has

and thus the exhaustive summary is
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It is easy to conclude from these equations that there are two solutions
for and . This observation is somewhat more subtle to recog-
nize in the time domain of (5.2.12)–(5.2.15) where the interchangeable
role of and had to be noticed in the analytical expression for the
model output (5.2.12).

5.6 THE DIFFICULTY OF THE
IDENTIFIABILITY PROBLEM

The Laplace transform method is simple to use for generating the
exhaustive summary of models containing more than two compartments.
What becomes more and more difficult is the solution, i.e. to determine

which of the original parameters of the model are uniquely determined
by the system of nonlinear algebraic equations. In fact, one has to solve
a system of nonlinear algebraic equations which is increasing in number
of terms and nonlinearity degree with the model order, i.e. the number
of compartments in the model. One can easily grasp the nature of the
difficulty in moving from two to three compartments. This is illustrated
in the following example.

Example

Consider the model shown in Figure 5.6.1 where the input into com-
partment 1 is a bolus and the two model outputs are the concentrations
in compartments 1 and 2.

By using the Laplace transform method, one calculates

The exhaustive summary is
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The coefficients and are the observational parameters, and the
problem is to solve the system of nonlinear equations (5.6.1)–(5.6.10) in
the unknowns and Clearly this is very tedious.

It is easy to see that the difficulty of the identifiability problem has
increased considerably in moving from the two to the three compartment
model. For the two compartment case, the corresponding equations are
given by (5.5.7)–(5.5.11). Thus not only are there 8 instead of 5 algebraic
equations to solve, but the equations have become more nonlinear, i.e.
now there are products of three instead of two ; in addition, there are
more terms, 13 instead of 3, in the equations containing the product of
two
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To reinforce the fact that the difficulty of the identifiability problem
dramatically increases with model order, consider the general four com-
partment model shown in Figure 5.6.2 with input into and measurement
from compartment 1. One can show that the 3rd degree term corre-
sponding to in (5.6.3) is the sum of 200 terms! This shows clearly
that the a priori identifiability test is very difficult, if not impossible, to
be performed by hand in the general case.

Some remarks

Previously the difficulty of the identifiability problem has been shown
by using the Laplace transform method for its solution. Other methods
have been proposed to test a priori identifiability. The three that have
received the most attention are the transfer function topological method
[Audoly and DAngiò, 1983], the modal matrix method [Norton, 1980],
and the similarity transformation method [Walter and Lecourtier, 1981].
The difficulty of the problem remains, however. Each of these methods
can be shown to perform better than the others for specific compartmen-
tal models, but none of them can be shown to be superior to the others
in general. In other words all the methods work well for models of low
dimension, e.g. the two and some three compartmental models, but fail
when applied to relatively large, general structure models because the
system of nonlinear algebraic equations become to difficult to be solved.

Recently, symbolic computer languages such as Reduce [1995] and
Maple [1997] have been found to help, but to deal with the problem in
general there is the need to resort to computer algebra methods. In par-
ticular, a software tool to test a priori identifiability of linear compart-
mental models of general structure which combines the transfer function
topological method with a computer algebra method, the Gröbner basis,
is available [Audoly et al., 1998]. Before describing in the under-
lying principals which lead to this tool, in the next two sections,
and , some explicit identifiability results which are available on the
general three compartment model, and on the mammillary and catenary
models will be given. The results given in and albeit not as
complete as those obtained for the two compartment model, provide a
catalogue of explicit identifiability results which is extremely useful in
practice. Additional explicit identifiability results on some large com-
partmental models can be found in the literature; these, however, deal
with specific compartmental structures.
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5.7 THE THREE COMPARTMENT MODEL
In moving from the two to the three compartment model, the number

of possible model-experiment combinations becomes very large since one
has to consider all the possible variations of the general model shown in
Figure 5.7.1 created by allowing some of the to be zero together with
all the possible input-output configurations, i.e. now there are three
sites for input and output, and input and output can occur at more
than one site simultaneously. It has been shown, for example, that even
assuming input into one compartment only and permitting observations
of one, two or three compartments there are 826 essentially distinct non-
degenerate three compartment situations [Norton, 1982]. Thus it is vir-
tually impossible to do, as was done for the two compartment model, an
exhaustive identifiability analysis for all the possible three compartment
model-experiment configurations.
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In what follows, a summary of the catalogue of results obtained in
[Norton, 1982] by using the Laplace transform method will be given for
the situation mentioned above, i.e. input into a single compartment, say
compartment 1, and observations permitted in compartment 1, 2 or 3.
It will be assumed that the volumes of the accessible compartments are
known, i.e. only the rate constants are unknown. If the volumes are
also unknown, apart from the case when compartment 1 is accessible in
which case is uniquely identifiable, a detailed inspection is necessary
as far as and are concerned. As mentioned previously, there are
826 cases to consider.

The basic 18 model structures are shown in Figure 5.7.2. No losses
have been shown in this figure; this will be explained in a moment. In ad-
dition, structures for which a reversal of compartments 2 and 3 will result
in a model previously considered are excluded. Each compartment in
the structures shown will eventually receive material from compartment
1, i.e. input into compartment 1 will eventually reach compartments
2 and 3. For each of the eighteen structures there are seven possible
patterns of irreversible loss; there are loss from compartment 1, 2, or
3; compartments 1 and 2, 1 and 3, 2 and 3; and from compartments
1, 2 and 3. Similarly there are seven measurement possibilities. This
gives in all 882 combinations. However an examination of the symmetry
between compartments 2 and 3 in models 1, 9, 11 and 18 of Figure 5.5.1
results in 14 cases for each model which are not considered. This leaves
a total of 826 distinct possibilities. It should be noted that if the mea-
surement configurations are considered in order of increasing complexity,
many other cases need not be studied. For instance, if a model is glob-
ally identifiable from measurements in compartment 2 only, it is globally
identifiable from measurements in compartments 1 and 2, 2 and 3, and
1, 2 and 3. The same comment does not apply generally to the locally
identifiable models.

Two catalogues are summarized. Table 5.7.1 gives the minimal set
of measured compartments for global identifiability. In Appendix F,
Tables F.1 and F.2 list all sets of measured compartments giving local
identifiability and the number of solutions.
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5.8 CATENARY AND MAMMILLARY
MODELS

Catenary and mammillary models introduced previously in are
two classes of compartmental models which are frequently used to in-
terpret tracer kinetic data. In this section, some explicit a priori iden-
tifiability results which are available for these models for the case of a
single input-single output experiment in the same compartment will be
reviewed [Cobelli et al., 1979b; DiStefano, 1983]. For convenience, the
general catenary and mammillary are reproduced in Figures 5.8.1 and
5.8.2 respectively.
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The unknown parameters are the volume or mass of the accessible
compartment, and the transfer rate constants . Since the input and
observations take place in the same compartment, the volume or mass of
that compartment is uniquely identifiable. Thus the unknown parame-
ters are the individual rate constants . The results can be summarized
as follows.

Catenary Models

A catenary compartmental model which is either closed (i.e. there
is no irreversible loss to the environment so or
almost closed (i.e. there is only one non zero which can be from any
compartment) is globally identifiable if the accessible compartment (for
input and measurement) is an external compartment, i.e. compartment
1 or n in Figure 5.8.1. If the accessible compartment is an intermediate
compartment, i.e. 2, 3, • • •, or the are only nonuniquely identifi-
able and the number of different solutions increases with the distance of
the accessible compartment from either end of the chain. More precisely,
if the accessible compartment is j shown in Figure 5.8.3, the number of
solutions for the where “!” denotes the factorial, i.e.
for an arbitrary integer if the irreversible loss is
from compartment j, then is uniquely identifiable.

As an example, consider the model shown below in Figure 5.8.4. In
this model, an example of the general case shown above with and
n = 4, is uniquely identifiable but there are three different solutions
for and
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A catenary model with more than one irreversible loss is nonidentifi-
able, but since some combinations of the model parameters are uniquely
identifiable, it is still possible to derive upper and lower bounds for the
nonidentifiable parameters. If the input-output experiment is in an ex-
ternal compartment (compartment 1 or n of Figure 5.8.1), the uniquely
identifiable parameter combinations are the total rate of exit from the
compartments, and the
products An algorithm has been developed
for deriving these parameter combinations and the parameter bounds of
the from the coefficients of the multi-exponential response to a bolus
input introduced into compartment 1 or n [Chao-Min Chen et al., 1985].

Alternatively, the parameter bounds can be computed from the iden-
tification of the submodels [Cobelli and Toffolo, 1987] which are defined
from the original model structure by setting all of the irreversible losses
except one equal to zero. In this case, if the input-output experiment is
into an external compartment, the submodels are uniquely identifiable,
and their parameters coincide with the upper and lower bounds of the
original structure; this is illustrated in Figure 5.8.5.

The above figure addresses the general situation where irreversible
losses take place in all compartments. Consider now the case where
irreversible losses are only present in some compartments, for example
compartment 2 and 3 in Figure 5.8.5. In this case, two submodels have
to be considered having respectively and
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These two submodels give upper
and lower bounds for and Values for the remaining
parameters from the two submodels coincide since they are uniquely
identifiable from the given input-output experiment.

Mammillarv Models

A mammillary compartmental model, closed or almost closed, is lo-
cally identifiable and the number of different solutions is if the
accessible compartment is the central compartment (compartment 1 in
Figure 5.8.2). If there is irreversible loss from this central compartment,

then is uniquely identifiable. However, it is sufficient
to order the noncentral compartments,
where to render the model uniquely identifiable.

If the accessible compartment is a peripheral compartment, the num-
ber of different solutions is but the rate constants connecting
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the accessible compartment with the central compartment are uniquely
identifiable. Again, if the irreversible loss is from the accessible compart-
ment, this loss is uniquely identifiable. As in the previous case, ordering
the central and noncentral nonaccessible compartments is sufficient to
solve the ambiguity on model parameters.

A mammillary compartmental model is nonidentifiable when there are
more than one irreversible loss. Only some parameter combinations are
uniquely identifiable thus making it possible to bound nonidentifiable
parameters within finite limits.

The uniquely identifiable parameter combinations when the accessi-
ble compartment is the central compartment (compartment 1 in Fig-
ure 5.8.2) are the total exits from the compartments. In the case of the
model shown in Figure 5.8.2, these would be
and and the products
provided the compartments are ordered as described above. It is imme-
diate to verify that exchange parameters between the central compart-
ment and those compartments where no irreversible loss takes place are
uniquely identifiable.

Similar to the case with the catenary model, an algorithm has been de-
veloped for computing these parameter combinations and the parameter
bounds of the from the coefficients of the multiexponential response
to a bolus injection of tracer administered into the central compartment
of a generic n-compartment mammillary model [Landaw et al., 1984].

Alternatively, the identification of submodels allows one to derive the
bounds of the nonidentifiable parameters. The procedure is similar to
that described for catenary models: a number of submodels equal to
the number of irreversible losses are defined, each having all the irre-
versible losses but one set equal to the minimum value, zero. If the
non-accessible, non-central compartments are ordered as previously de-
scribed, the submodels are uniquely identifiable, and their parameters
equal the values of the upper and lower bounds of the nonidentifiable
parameters of the original model structure, as illustrated below in Fig-
ure 5.8.6. Values of the exchanges between the central compartment and
those compartments where no irreversible loss takes place are the same
for the various submodels since these parameters are uniquely identifi-
able.



5.9 A PRIORI IDENTIFIABILITY OF
GENERAL STRUCTURE
COMPARTMENTAL MODELS: A
COMPUTER ALGEBRA APPROACH

5.9.1 Introduction

The test of a priori identifiability of linear compartmental models of
general structure from multiple input-multiple output experiments is a
formidable task which, as mentioned previously in can take advan-
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tage of the tools of computer algebra. However, before describing this
approach, it is useful to mention the few available results on identifia-
bility for the general linear compartmental model.

Necessary topological conditions for identifiability are available which
can be easily checked on the compartmental diagram [Cobelli et al.,
1979a]. This means that nonidentifiability of some models for a given
input-output experiment can be easily detected. Among these, it is of
interest to discuss input-output connectibility; in order for the model
to be identifiable, all of its compartments must be connected to the
compartments where the inputs and outputs take place. One can thus
eliminate from the model the compartments that are not input and out-
put connected together with the rate constants leaving them. In fact,
it is easy to realize that only the input-output connected compartments
are reached by the input and reach the outputs, and thus only the kij pa-
rameters not outgoing from compartments which are not input-output
connected are possibly identifiable. All of the compartmental model
examples discussed so far in this Chapter are input-output connected
except the model shown in Figure 5.2.4 where compartment 2 is not
output connected. An additional example of a compartmental model
which is not input-output connected is given in Figure 5.9.1 A. As a re-
sult, the model is nonidentifiable and thus there is a need to arrive at
an input-output version of the model. This is shown in Figure 5.9.1B.
This model can now be tested for identifiability. The input-output con-
nectibility as well as the two other necessary topological conditions for
identifiability are implemented in the GLOBI (GLOBal Identifiability)
software package [Audoly et al., 1998] described later as a preliminary
check of nonidentifiability before entering the computer algebra identi-
fiability algorithm.

Another general result that is available is that the rate constants of an
input-output connected compartmental model are always interval iden-
tifiable. This result has been proven in Cobelli and Toffolo [1984], and
stems from the fact that for such a model, one of the observational pa-
rameters is always the sum of all the rate constants of the model (e.g.
(5.5.8) and (5.6.5) for the models shown in Figures 5.4.1 and 5.6.1 re-
spectively). Thus this gives the upper bound for all the rate constants
of the model with the lower bound being zero. While this proves inter-
val identifiability of the input-output connected model, in practice one
desires a narrower interval. To achieve this, one can follow the logic
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used for the two compartment model and for the mammillary and
catenary models

While the above refers to the rate constants, it is of interest to note
the role played by the volume or mass of the output compartments in
an input-output connected model. It is either uniquely identifiable if the
input and the output take place in the same compartment, or nonidenti-
fiable if the input and the output take place in different compartments.



Identifiability of the Tracer Model 151

5.9.2 Rationale

The idea behind the computer algebra approach is to combine one
classical method of a priori identifiability analysis with the Grobner ba-
sis, a powerful tool of computer algebra for solving systems of algebraic
nonlinear equations such as the . Buchberger [1988] proposed an algo-
rithm for the computation of the Grobner basis which, in some sense,
is the analogue of Gaussian elimination for systems of polynomial equa-
tions. Details about the definition, the main properties and the many
applications of the Gröbner basis and the Buchberger algorithm can be
found in Buchberger [1988] and Becker and Weispfenning [1993].

In this section, the main features of a method to solve the exhaustive
summary equations which combines the transfer function topological
method with the Gröbner basis will be described. The transfer function
topological method has been chosen since it is the one which makes, as
compared to the other classical methods (e.g. the Laplace transform or
transfer function method discussed in earlier in this Chapter, the simi-
larity transformation and the modal matrix), the Buchberger algorithm
successful for the largest class of models. Briefly, the method is able
to reduce the complexity of the exhaustive summary equations, i.e. the
number of equations, the number of terms in each equation, and the
degree of nonlinearity, in the most suitable way for the performance of
the Buchberger algorithm. The software tool, GLOBI, implements this
method to test a priori identifiability of general multicompartmental
models from multiple input-multiple output experiments [Audoly et al.,
1998].

5.9.3 The Transfer Function Topological Approach

This section provides a brief description of the transfer function topo-
logical method showing in particular where it differs from the Laplace
transform or transfer function method. The basic idea is to move from
the Laplace transform identifiability equations as illustrated in §5.4 where
the known coefficients are the observational parameters and the un-
knowns are the elements to a set of simpler equations, both in the
number of terms and nonlinearity degree, where the new unknowns are
the cycles and the paths (see below) connecting the input to the output
compartments of the compart mental model diagram.
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The cycles and paths of an n-compartment model characterized by
the K matrix are defined for as

The paths of length are

To provide an example of cycles and paths using these definitions and
notation, one can calculate the cycles and paths connecting the input to
the output compartments using the model shown in Figure 5.6.1. They
are:

The exhaustive summary is greatly simplified by using cycles and
paths. For instance, by rewriting the coefficients and

of (5.6.3)–(5.6.10) of the two output equations (5.6.1)
and (5.6.2) in terms of cycles and paths (5.9.1)–(5.9.3), the equations
become
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These equations result in a significant decrease in the number of terms
of the corresponding equations (5.6.3)–(5.6.10) derived using the clas-
sical transfer function approach. For example, (5.9.6) defining now
contains 6 terms instead of 13 corresponding to (5.6.4); equation (5.9.7)
defning now has 3 instead of the 7 terms of (5.6.5).

5.9.4 The Identifiability Algorithm

It is more informative for purposes of this text to go through the main
steps of the algorithm by considering three examples and commenting
on the results rather than providing a general description.

Example 1

Consider the four compartment model shown in Figure 5.9.2 where
input is into compartment 1 and measurements are taken from compart-
ments 1, 2 and 4. Assuming for sake of simplicity that the volumes of
the accessible compartments are known, the number of unknowns, the

is 10.
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Step 1: The algorithm calculates the observational parameters from
the Laplace transform of the three model outputs. Since the volumes
of the accessible compartments are assumed to be known, the model
outputs can be considered to be the masses in compartments 1, 2 and
4. Thus one has

The three denominators are the same and provide the observational pa-
rameters and The three numerators are different and
provide the observational parameters and and and

and for the outputs of compartments 1, 2 and 4 respectively.
The algorithm then assumes a numerical value for the observational

parameter and which derives from a particular solu-
tion of the parameter vector i.e. a value of the which satisfies
the compartmental constraints described in Chapter 4. This particular
solution can be generated automatically by a random number generator
with subsequent check of the compartmental constraints. Assume the
particular solution is that giving the compartmental matrix K shown
below:

The algorithm calculates the corresponding value of the observational
parameter and , and the denominator and the three

numerator polynomials of (5.9.13)–(5.9.15)
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Step 2: The algorithm calculates the observational parameters as func-
tions of the cycles and paths thus the exhaustive summary is given by

Step 3: The next step is the application of the Buchberger algorithm to
solve these equations. This step may not be successful for computational
limits; in this case the problem cannot be solved. If this step is successful,
the algorithm returns a new exhaustive summary expressed in terms of
the same unknowns, cycles and paths, but now showing a simplified
form. For the example under consideration, they are:
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By comparing these equations with the previous ones, one gets the
idea of the reduction in both number of terms and nonlinearity degree
accomplished by the first application of the Buchberger algorithm. It
should be noted that the number of returned independent equations can
be less than the number of cycles and paths. This fact does not mean
that the basic model parameters, i.e. the are nonidentifiable since
not all cycles and paths are independent functions of the

Step 4: The algorithm substitutes for the cycles and paths in (5.9.34)–

(5.9.46) their expressions in terms of the by applying their definition:
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Obviously this set of equations presents a reduction in the number
of terms and nonlinearity degree in comparison with the corresponding
one in the same unknowns which would have been obtained by ap-
plying the transfer function approach directly to the model shown in
Figure 5.9.2.

Step 5: By a second application of the Buchberger algorithm, if suc-
cessful, a new set of equations in the can be found showing a simplified
form over those given in Step 4:

This set gives the answer to the identifiability test. In this example, the
parameters are uniquely identifiable since the system of equations has
one and only one solution.

Example 2

The above example shows the utility of the identifiability algorithm
in handling a rather complex model structure and a rich input-output
experimental configuration. What happens when one is dealing with
a model which is a priori locally identifiable, i.e. all parameters are
identifiable but at least one has a finite number of solutions?
In other words, how does the final set of equations, the counterparts to
those found in Step 5 of the previous case study, look?
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Consider, for example, the three compartment model shown in Fig-
ure 5.9.3. Here input is into and measurements are taken from compart-
ment 1; the loss is from one of the nonaccessible compartments.

Assuming that the volume of compartment 1 is unknown, the un-
known parameters of interest are thus and By
going through the same steps as explained in the previous example, one
can generate a particular solution for the parameter vector, i.e. the
and and use this to generate a numerical value for the observational
parameters.

Suppose the particular solution is

and

The counterpart of Step 5 of the algorithm, i.e. the second application of
the Gröbner basis algorithm, for the above example gives the following
set of equations:
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This set gives the answer to the identifiability test. The system of
equations has two solutions for and thus for and The
only globally identifiable parameter is Thus the model is nonuniquely
identifiable.

Example 3

What happens when dealing with an a priori nonidentifiable model?
In this example, consider the three compartment model shown in Fig-
ure 5.9.3, but suppose the measurement is in compartment 2 instead of
compartment 1. Assume in addition that the volume of the accessible
compartment 2 is unknown. This situation is illustrated in Figure 5.9.4.

The parameters of interest are and Assume
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and

is the particular solution of the unknown parameters.
Step 5 of the algorithm returns the following set of equations:

This system of equations has an infinite number of solutions for
and while there is one and only one solution for

Some Remarks

At the end of the identifiability test, two observations are in order:

1. the answer of GLOBI has been obtained by starting from a particular
numerical point of parameter space; and

2. the analysis checks the uniqueness of solutions in the whole complex
space C.

Regarding the first point, since the purpose of the algorithm is to provide
a technique to check a priori structural identifiability, i.e. holding in the
whole parameter space except for points which have probability zero
to be considered (this set of points is said to have zero measure), one
has to know if the results also hold for all P. Note that a priori
identifiability is a generic property, that is, if it holds for a generic point
in the space it holds for almost all points belonging to that space, i.e.
except for a zero measure set. However, the implementation of GLOBI
has not been done symbolically, i.e. with a generic point (this would
dramatically affect the complexity of the Gröbner basis calculation),
but numerically. Thus the answer of GLOBI is true with probability
one. Note that the numerical point strategy is a sound alternative to
the symbolic one (required to test a structural property) since while
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retaining mathematical rigor, it allows to significantly enlarge the class
of testable models.

The second point stems from the fact that the algorithm checks a
priori identifiability that is the uniqueness of parameter solution in the
whole complex space C while we are interested in the solutions belonging
to the compartmental space P, i.e. real and positive. If the results is
global identifiability, i.e. all the model parameters are uniquely identi-
fiable, this solution, belonging to C, has to coincide with the point of
parameter space which has provided the particular value of the observa-
tional parameter vector However, if the model results locally iden-
tifiable or nonidentifiable, to extend the identifiability results obtained
in C to the compartmental space P, one must distinguish between two
situations:

1. If some model parameters are nonuniquely identifiable, while the test
provides the exact number of solutions in the whole complex space C,
one cannot know how many of these solutions will be complex, how
many will be real but negative and how many will be real and positive
when the initial point provided by the experiment will be available.
Thus, under these circumstances the number of solutions provided
by the algorithm is an upper bound of the number of solutions which
fall in P.

2. If some model parameters are nonidentifiable in C this will hold also
in all the subspaces of C. Thus one can conclude that the model is
nonidentifiable also in the real and positive space P.

The domain of applicability of the algorithm is difficult to establish
rigorously in terms of model structure. In fact, this would require to
define the limits of applicability of the Buchberger algorithm in solving
the exhaustive summary of the model. However, the complexity of the
exhaustive summary does not only depend on the model structure but
also on the input-output configuration.

The software tool GLOBI which is based upon the algorithm described
in this section has been used to test the a priori identifiability of a
wide range compartmental models available in the literature. Most of
these published models had fewer than 13 compartments with a struc-
ture where not all possible connections were present. There were multi
input-multi output experiments characterized by “single compartment”
and “sum of compartments” measurement configuration, standard in-
puts, i.e. into a single compartment, and split inputs, i.e. inputs split
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between two or more compartments, and by letting unknown parame-
ters be present also in the inputs and in the measurements. Of note is
that GLOBI can also handle explicitly constraints, linear or nonlinear,
on parameters:

where is a vector of polynomial functions describing equality con-
straints among the components of Examples of (5.9.86) are equalities
among some transfer rate constants in a model, or a knowledge of the
numerical value for some of the rate constants.
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Chapter 6

USING THE TRACER MODEL
TO ESTIMATE KINETIC PARAMETERS

6.1 INTRODUCTION
As stated previously, the goal of compartmental modeling is to quan-

tify from the tracer model a number of kinetic parameters. Some of
them, such as mean residence times, apply both to the tracer and tracee
system. Others specifically describe the behavior of the tracee; these
include the tracee mass in the nonaccessible compartments, tracee pro-
duction and intercompartmental fluxes. Parameters that apply both to
the tracer and tracee system can be calculated by applying the formulas
given in Chapter 4. The evaluation of the parameters that apply to the
tracee system only is a more complex task, since it requires solving the
tracee steady state system equations. Thus specific conditions must hold
on the tracee system to guarantee a unique solution of these equations.

Consider the a priori uniquely identifiable model shown in Figure 6.1.1.
What is estimated from the data are the rate constants and
and the volume or mass of the accessible compartment. Thus one
has directly an estimate for the fluxes leaving compartment 1:

In order to evaluate the remaining tracee fluxes, i.e. and and the
mass in the nonaccessible compartment 2, the steady state equations
for the tracee system have to be considered. For the model shown in
Figure 6.1.1, they can be written:

165
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These are two independent equations in two unknowns, and the
solution is given by

It is now possible to evaluate the fluxes leaving the nonaccessible com-
partment 2, and parameters related to the whole system
such as the total tracee mass

There are situations, however, where even if the model is a priori
uniquely identifiable, it is not possible to evaluate all of the tracee param-
eters. Consider for instance the same structure as that in Figure 6.1.1,
but assume now that tracee production can enter both compartments,
i.e. as well as This is shown below in Figure 6.1.2.

In this case, (6.1.1) and (6.1.2) are still valid, the counterpart to (6.1.3)
becomes

This system of two independent equations has three unknowns,
and meaning there is no unique solution. Only the sum
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can be evaluated uniquely, while there are an infinite number of
solutions for the individual and and thus for the flux
and the total mass

Consider now a generic n-compartment model. The evaluation of the
tracee variables requires the solution of a system of n algebraic linear
equations derived from the tracee steady state equation:

If the model is a priori uniquely identifiable, the matrix of rate constants
K and the masses in the accessible pools are known uniquely. The
unknowns are the masses in the nonaccessible compartments and the
de novo production rates, i.e. those which are not zero. A unique
value for these variables can be obtained only if conditions on the tracee
system hold which guarantee unique solution of the steady state system
(6.1.6).

It is important, therefore, to realize there are two situation that must
be satisfied in order to obtain unique estimates of the tracee parameters.
One is that the model is uniquely identifiable; the other is that there is
unique solution to the steady state equations. For convenience, in what
follows, the estimation of kinetic parameters will be discussed first for
the case where the tracer model is uniquely identifiable. Then how to
deal with a nonidentifiable tracer model will be discussed.
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6.2 ESTIMATION FROM A PRIORI
UNIQUELY IDENTIFIABLE MODELS

For an a priori uniquely identifiable n-compartment model, the ele-
ments of the K matrix and the masses in the accessible pools are known
from the tracer experiment. As already discussed in the matrix
K can be assumed to be invertible. The tracer-tracee kinetic param-
eters such as the elements of the mean residence time matrix can also
be uniquely estimated whereas the estimation of the kinetic parameters
which specifically describe the behavior of the tracee requires, as an-
ticipated in the solution of the steady state system (6.1.6). It is
a system of n linear algebraic equations where the matrix K is known
uniquely since the tracer model is a priori identifiable. In addition, the
invertibility of K assures that the system equations are independent.
Thus, the only condition for the system to have a unique solution is
that the number of unknowns, denoted by equals n, the number of
equations, or equivalently the number of compartments. Usually the un-
knowns are the masses in all of the nonaccessible compartments and the
de novo productions; their number equals n if the number of de novo
production fluxes equals the number of accessible compartments. This
means that the tracee parameters can be evaluated from an experiment
where only one compartment is accessible if the tracee production enters
the system in a single compartment. In the case where two compart-
ments are accessible, two entry sites for the tracee are admissible, and
so forth. It is worth noting that in those cases where a priori knowledge
exists on some of the tracee variables, there will be constraints among
them that will affect For instance, consider a 5 compartment model
and suppose a priori knowledge is available on the total tracee mass. If
only compartment 1 is accessible, and de novo production enters com-
partments 1 and 3, is the number of nonaccessible compartments
plus the number of tracee entry sites minus the number of constraints;
in this case, This number equals the number of
compartments, hence the tracee variables are uniquely identifiable from
the input-output experiment.

In the following, three different situations will be discussed:

1. If there is a unique solution for U and the nonaccessible
masses

2. if . there are an infinite number of solutions for U and the
nonaccessible masses and

3. if constraints among the arise from the steady state
equation (6.1.6).
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: Unique solution for the tracee variables.

If the number of unknowns equals the number of compartments, then
the tracee steady state system (6.1.6) can be solved uniquely, and all the
tracee variables are uniquely identifiable. In practice, one can solve the
system analytically as was done in for the two compartment model
shown in Figure 6.1.1. If there are known constraints among the tracee
variables, they must be explicitly considered in solving the system. This
procedure is simple when the number of compartments is small, but may
become complex if the number of compartments is large. It is convenient
to derive general expressions for the unknown tracee variables in terms
of the elements of the mean residence time matrix

To evaluate the tracee variables, write the solution for the masses M
of the tracee steady state system

Consider first the case where only one compartment, say compartment
1 is accessible, and assume that there is de novo production entering
compartment h so that the number of unknowns, that is the tracee
masses and tracee production equals n. The vector U
has only one nonzero element, , thus from (6.2.1) the components of
M are

The de novo production can be derived by solving the first equation:

and the tracee masses in the nonaccessible compartments can be evalu-
ated

Equations (6.2.3) and (6.2.4) are general expressions of the unknown
tracee variables as a function of and the

From the knowledge of the masses in all compartments, all tracee
fluxes can be evaluated

The total tracee mass (4.5.1) is then equal to
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The parameter is the product of the tracee production rate
times which represents the mean residence time in the system of
tracee particles since they enter the system in compartment h.

In addition, one can calculate the total equivalent distribution volume,
using (4.5.2):

Consider the two compartment model shown in Figure 6.1.1. Equation
(6.2.2) becomes

thus

The total tracee mass in the system is

The parameter measures the mean residence time of tracee par-
ticles since they enter the system from compartment 1.

If tracee production is into compartment 2 instead of compartment 1,
(6.2.2) becomes

and then

The mean residence time in the system of the tracee is now since
the tracee particles now enter the system from compartment 2.
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Consider now the situation where two compartments, say 1 and 2, of
an a priori uniquely identifiable n compartment model are accessible,
and suppose there is de novo tracee input into two compartments, say
h and k. Thus in the vector U, there are two nonzero components,

and . There are now n – 2 unknown tracee masses,
Thus the number of unknown parameters is n, the n – 2 masses and the
two tracee inputs. Since the number of unknowns equals the number
of compartments the steady state system can be solved uniquely. From
(6.2.2), the components of M are:

Using the first two equations, the productions and can be ex-
pressed as functions of and :

Substituting these values into (6.2.14), the tracee masses for the nonac-
cessible compartment can easily be evaluated.

The total tracee mass in the system can be written

The parameter is thus expressed as a function of tracee production
rates into compartments h and k and the mean residence times in the
system for tracee particles entering de novo into compartments h and k.

Infinite number of solutions for the tracee variables.

What happens in the case where the number of unknown tracee vari-
ables exceeds the number of compartments? In this situation, even
if the tracer model is a priori identifiable, the unknown tracee variables
cannot be solved uniquely since the tracee steady state system has an
infinite number of solutions. However, it is possible to obtain upper and
lower bounds for their values, i.e. to identify the interval of values in
which the parameters must lie.
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Consider the model shown in Figure 6.1.2, and express the tracee
masses according to (6.2.14):

Since the only loss is from compartment 1, . The sum
can be derived from (6.2.17):

The sum provides the upper bound for the individual and
while the lower bound is zero:

In order to derive upper and lower bounds for , consider from the
properties of the matrix the following inequalities hold:

Then from (6.2.17), for one has

Using (6.2.18), the upper and lower bounds for as a function of
and the are

Concerning the intercompartmental fluxes, and
can be calculated uniquely while has an infinite number of

values bounded according to the following formula:

It is easy to verify that bounds for and can also
be calculated by defining the submodels of the original structure in a
manner analogous with the procedure outlined in Chapter 5 for deriving
bounds for interval identifiable tracer parameters. In fact, when
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0, i.e. it reaches its lower bound, and reach their upper
bounds. Conversely, when and

. Therefore, upper and lower bounds for the nonidentifiable tracee
variables can be generated from the tracee variables of two submodels of
the original structure (see Figure 6.2.1) obtained by first letting
and then

The concepts presented above can easily be extended to a generic n
compartment model. Consider, for instance, the situation where only
compartment 1 is accessible, but the tracee de novo production enters
into compartments h and k, i.e. and are nonzero. Then there are
n + 1 tracee unknowns, the masses in the n – 1 nonaccessible compart-
ments and the two productions, but only n equations. Thus there are
an infinite number of solutions for the tracee parameters. From (6.2.14),
the tracee mass in compartment 1 can be expressed
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A relationship between Uh and Uk can be derived

from which the upper bound for Uh can be obtained when Uk = 0, while
the lower bound for Uj is zero:

Similarly for Uk

In order to derive upper and lower bounds for the tracee masses in the
nonaccessible compartments, say for example compartment 2, consider
the system (6.2.1) and write for M2

By substituting the expression (6.2.25) for Uk, one has

Suppose now that the following inequality hold:

For convenience, this can be rewritten

Then the lower bound for M2 is reached when Uk reaches is minimum
value, i.e. Uk = 0, and the upper bound is reached when Uk reaches it
maximum value, Thus

If on the other hand, , then the upper and lower bounds ex-
change:
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As regards the intercompartmental fluxes, only those which leave the
accessible compartment can be uniquely evaluated. The remaining fluxes
have an infinite number of solutions, but it is easy to evaluate upper
and lower bounds from the upper and lower bounds of the tracee masses

As with the two compartment model, the upper and lower bounds for
all tracee parameters of a generic n compartment model can be calcu-
lated from submodels of the original model structure obtained by letting

and equal zero. For example, when equals zero, reaches
its upper bound as well as the tracee masses in those compartment l for

which while the tracee masses in the remaining compartments
reach their lower value.

: Constraints among the parameters.

The last situation to be examined arises when the number of unknown
tracee variables is less than the number of equations. This results in con-
straints among the parameters, as illustrated in the following example.

Consider the model shown in Figure 6.2.2 where two compartments
are accessible but there is de novo production only into compartment 1.

In this situation, (6.2.9) becomes

where and are known from the tracer experiment. This
situation where the number of unknowns is less than the number of
equations results in a constraint among the parameters:

or, from the expressions for and in terms of the

This constraint has to be explicitly considered when estimating
and from the tracer data in order to make the tracer system com-
patible with the a priori knowledge of a single tracee production. This
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can be accomplished if one parameter, for instance , is expressed as
a function of the others, , and the model equations
are parameterized in terms of and :

The formulas given in this section to calculate the tracee kinetic pa-
rameters for a generic, uniquely identifiable n-compartmental model are
summarized below in Table 6.2.1 for the one and two accessible com-
partment model situations. The parameters, and their upper and lower
bounds, are expressed in terms of the , the elements of the mean
residence time matrix, and the mass in the accessible compartments,
assumed without loss of generality to be or and . These for-
mulas are shown in Table 6.2.2 for the two compartment model with an
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input-output tracer experiment in compartment 1. The tracee kinetic
parameters in this table can be expressed as a function of the and
the mass in the accessible compartment,
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6.3 ESTIMATION FROM INTERVAL
IDENTIFIABLE MODELS

Up to this point, only a priori uniquely identifiable tracer models have
been considered, i.e. models for which the can be uniquely estimated
from the tracer experiment. The two compartment model will be used
to illustrate how to deal with nonidentifiable models.

Consider the model shown in Figure 6.3.1.
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If compartment 1 is the only accessible compartment, the model is not
identifiable, and only some combinations of the rate constants, namely
the observational parameters
and k12k21 are uniquely identifiable. However, as shown in §5.4, it is pos-
sible to obtain parameter bounds for all the nonidentifiable parameters.
Hence only the kinetic parameters which can be expressed as a function
of the observational parameters can be calculated uniquely, while for the
others, only the interval of admissible values can be calculated.

Consider first the matrix for the model shown in Figure 6.3.1:

The elements can be calculated even if the model is not
uniquely identifiable since they depend only on the observational pa-
rameters. For the elements it is only possible to obtain
upper and lower bounds from bounds on k12 and k21 respectively:
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From (6.3.2) and (6.3.3), bounds for the mean residence times MRT1

and MRT2 can be calculated:

If the tracee de novo production enters compartment 1 only, then the
tracee steady state equations are

Hence can be calculated uniquely while can assume
an infinite number of values which are bounded by

Upper and lower bounds for tracee fluxes F21, F01 and F02 can then
be calculated:

The tracee flux F12 can be uniquely calculated since it only depends on
the observational parameters and the tracee de novo production:

These concepts can be extended to a generic n-compartment model;
only the kinetic parameters which depend upon the observational pa-
rameters can be calculated uniquely while other parameters can assume
an infinite number of values,not only because the tracer parameters
kij have an infinite number of solutions between their upper and lower
bounds due to the nonidentifiability of the tracer system, but also be-
cause the tracee steady state system may have an infinite number of
solutions. Calculations are easy for simple models such as the two com-
partment model of the previous example but become quite cumbersome
for more complex models. A different approach to evaluate kinetic pa-
rameters of a nonidentifiable model is based on the use of submodels
as defined in Chapter 5. They are obtained from the original model
structure by setting some kij parameters equal to zero, and eventually
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some production equal to zero so that their tracee parameters, which
represent the bounds for tracee parameters of the original structure, can
be solved uniquely.

Bounds for the parameters of the nonidentifiable compartmental model
shown in Figure 6.3.2A can be generated by using the submodels given
in Figure 6.3.2B and C. In fact, when reaches its lower bound of
zero, and equal their maximum and its minimum. Hence

and reach their lower bounds while and
assume their upper bounds. Similarly, when

and reach their upper bounds while and reach their
lower bounds.

If tracee de novo production enters both compartments 1 and 2 as
shown in Figure 6.3.3, bounds on the tracee parameters can still be
derived by using the submodels shown in panels B and C of Figure 6.3.3.
They combine the unique identifiability of the tracer model with a unique
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solution of the tracee steady state equations. The tracee parameters
of submodels can be solved uniquely, and they provide bounds for the
original structure.

The formulas to derive upper and lower bounds of tracee kinetic pa-
rameters for a nonidentifiable two compartment model are given in Ta-
ble 6.3.1.

In moving from the two compartment model to a generic nonidentifi-
able n-compartment model, it is impossible to derive general expressions
for the bounds of the kinetic parameters. The procedure outlined for the
two compartment model can give some guidelines, but each situation
must be handled separately. However, some results can be extended to
catenary and mammillary models.
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Catenary models

For a general n-compartment catenary model where the input-output
experiment is in the extremal compartment, the mean residence times

can be solved uniquely since Upper and lower bounds for
the other kinetic parameters can be interpreted as parameters of the
uniquely identifiable submodels derived from the original one by setting
all losses but one equal to zero. This is shown in Figure 6.3.4.

More precisely, upper and lower bounds for can be calcu-
lated from the mean residence time matrix of the two submodels with
tracee production and irreversible loss either in compartment 1 (panel
A of Figure 6.3.4) or compartment n (panel D of Figure 6.3.4).

Upper and lower bounds of tracee masses in the nonaccessible com-
partments, and intercompartmental fluxes can also be calculated from
submodels A and D in Figure 6.3.4.

The lower bound of tracee production and irreversible loss for any
compartment is zero. The upper bounds are given by tracee parameters
of some specific submodel, e.g. and are the tracee param-
eters of the submodel with tracee production and irreversible loss into
and from compartment 2 (submodel B of Figure 6.3.4). They can be cal-
culated from the kinetic parameters of submodels A and D since, from
(6.2.11)
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and from the mass balance equation written for the tracee in compart-
ment 2 of submodel B

In summary, bounds for all kinetic tracee parameters of the original
model can be calculated from the tracee kinetic parameters of submodels
A and D of Figure 6.3.4.

Mammillary models

For a general n-compartment mammillary model where the input-
output experiment is in the central compartment 1, the mean resi-
dence times are uniquely identifiable since . Upper and
lower bounds for kinetic parameters can be interpreted as parameters of
the uniquely identifiable submodel parameters derived from the original
model by setting all losses but one equal to zero (see Figure 6.3.5).

The lower bounds of tracee mass in the nonaccessible compartments,
and the fluxes between them and the accessible compartment 1 can be
calculated from the submodel with tracee production and irreversible
loss into and from compartment 1 (submodel A Figure 6.3.5) while the
upper and lower bounds for these parameters are the tracee parame-
ters of the submodel having tracee production and irreversible loss in
compartment i (Panel C of Figure 6.3.5):

Submodel C also gives the upper bound for tracee production and irre-
versible loss, the lower bound for both are zero.
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Similarly and can be calculated from submodel A. Finally,
the submodels also give upper and lower bounds of the parameters
since for of submodel C, the elements of the i-th column assume their
lower bounds while those in the i-th row assume their upper bounds.
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Chapter 7

COMPARTMENTAL VERSUS
NONCOMPARTMENTAL
KINETIC PARAMETERS

7.1 INTRODUCTION

In the previous chapters, two classes of models, noncompartmental
and compartmental, both of which are appropriate to interpret data
from tracer experiments in a constant steady state, were examined. Each
approach provides a quantitative description of the tracer and tracee
system through a number of specific kinetic parameters to be estimated
from the tracer and tracee measurements.

As already pointed out previously, the structural difference between
the two approaches lies essentially in the way the nonaccessible portion
of the system is modeled. For the compartmental model, both the acces-
sible and nonaccessible components of the system need to be specified in
terms of the number of compartments, the interconnections among the
compartments, and the locations of de novo production and irreversible
loss. Kinetic parameters can be estimated for all individual compart-
ments, accessible or not. They are correct if the assumptions about the
system that are incorporated into the model structure are correct.

Conversely, the noncompartmental model describes the nonaccessible
portion of the system with a recirculation/exchange arrow. Parame-
ters can be derived describing both accessible pool and system events.
However, the system parameters are correct only if specific structural
conditions in the recirculation/exchange arrow portion of the system
hold.

In this Chapter, the relation between the kinetic parameters provided
by the two modeling approaches will be analyzed. Both the one and
two accessible pool noncompartmental models will be considered. The

191
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accessible pool and the system parameters will be discussed separately
to help distinguish the two approaches.

A comparison between the compartmental and noncompartmental
model when one pool is accessible for tracer input and measurement
will be given first showing the equivalence between the compartmental
and noncompartmental definitions of the accessible pool parameters -
volume, mass, mean residence time in the accessible pool. Formulas to
calculate from the compartmental model other accessible pool noncom-
partmental parameters such as clearance rate, and rate of appearance
and disappearance will also be presented. Then, the compartmental and
noncompartmental definitions of kinetic parameters related to the whole
system will be discussed, and the domain of validity of the noncompart-
mental model will be re-examined and formalized. Next, some points
will be made related to the parameters of the nonaccessible pools. Non-
compartmental models only estimate parameters of the nonaccessible
portion of the system as a whole by evaluating the difference between
the system and accessible pool parameters. On the other hand, for
compartmental models the same parameters as those defined for the ac-
cessible pool, e.g. mass and residence time, can also be estimated for
any nonaccessible compartment. Finally, kinetic parameters from for
compartmental and noncompartmental models will be compared for the
case where two pools are accessible to measurement.

7.2 THE MEAN RESIDENCE TIME MATRIX
REVISITED

To compare the two modeling methodologies, advantage will be taken
of an interpretation of the mean residence time matrix of the compart-
mental model that is different from that discussed in . There the

element of the mean residence time matrix of a com-
partmental system was seen as the average time a particle introduced
into the system in compartment j spends in compartment i on all its
passages through i. In what follows, it will be shown that is related
to the time course of the tracer mass in compartment i resulting from
an input into compartment j.

Consider the compartmental model equation (4.3.20) rewritten

for a generic input of tracer into accessible compartment 1
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Rearranging (7.2.1), one has

By integrating (7.2.3) from zero to infinity and remembering

where indicates the value of the tracer mass in compartment i as
time t tends towards infinity. Since the system is assumed to be open, i.e.
there is at least one irreversible loss pathway accessible to any particle
in the system, In addition, by assumption Thus
from (7.2.4)

From (7.2.5), equals the area under the time course of the tracer
mass in compartment i resulting from a tracer input into compartment
1 normalized to the tracer dose, i.e.

Equation (7.2.6) holds for any compartment, accessible or not. Consider
now a tracer input into a generic compartment, say j. The compartmen-
tal equations are the same as before, i.e. (7.2.1), but the tracer input is
now
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By following the same reasoning as before when (7.2.3) and (7.2.4) were
developed, the area under the tracer mass curve in compartment i re-
sulting from an input into compartment j, denoted here by is

and thus

This equation demonstrates that the element of the mean residence
time matrix equals the area under the model-predicted tracer mass in
compartment i resulting from an input into compartment j, normalized
to the tracer dose.

Recalling that the definition of most noncompartmental parameters
is based on evaluating areas under the tracer mass or concentration
curves, it is evident that the above interpretation of the elements of the
mean residence time matrix will help in the comparison between the
compartmental and noncompartmental model parameters.

7.3 EQUIVALENCE OF THE ACCESSIBLE
POOL PARAMETERS

The noncompartmental parameters of the accessible pool, defined in
are the volume of distribution V, tracee mass M, clearance rate

CR, fractional clearance rate FCR, and mean residence time in the
accessible pool and the rates of appearance and disappearance
The compartmental model counterparts of V, M, and were defined
in and and can be written, assuming without loss of generality
that compartment 1 is the accessible pool, as and

The parameters CR, FCR, and were defined in the noncom-
partmental framework. The compartmental counterparts of these pa-
rameters are, again assuming that compartment 1 is the accessible pool,
are and Using the relationships given in Ta-
ble 3.2.2, they can be also calculated from the compartmental model:
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First, it will be shown that V, M and are equivalent to and
since the definitions coincide. The equivalence between FCR, CR,
and and and follows.

Volume of distribution and tracee mass

Assume that a dose d of tracer is injected as a bolus into the acces-
sible pool at time zero, and that tracer concentration c(t) is measured.
The noncompartmental expression for the volume of distribution of the
accessible pool is

Suppose now that a compartmental model has be postulated to de-
scribe the system and that compartment 1 is the accessible compartment.
The measurement equation (4.3.23) is

where y(t) = c(t) denotes the tracer concentration. At time zero,

since the value of the tracer mass in the accessible compartment at time
zero, equals the injected dose d. Thus

Equations (7.3.4) and (7.3.7) prove the equivalence between the non-
compartmental and compartmental expressions for the volume of dis-
tribution of the accessible pool or compartment for the bolus injection
experiment. Similarly, the proof can be extended to any method of in-
troducing the tracer. For instance, if the tracer is infused at a constant
rate then the noncompartmental expression for the volume of the
accessible pool is

The compartmental model measurement equation remains (7.3.5), but
now Taking the derivative of (7.3.5) and evaluating this at
time zero,
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To evaluate (7.3.9), an expression for is required. To do so, eval-
uate the compartmental model equation (4.3.11) at time zero:

where in this case, Since no tracer is present in the system
at time zero, and hence Using this
equality in (7.3.9), an expression equivalent to the noncompartmental
expression can be obtained:

The equivalence of the noncompartmental and compartmental tracee
mass of the accessible pool follows immediately since the tracee mass is
the volume of distribution multiplied by the tracee concentration mea-
surement.

Suppose now that the tracer measurements are expressed in terms of
the tracer to tracee ratio z(t). The equivalence of the noncompartmental
and compartmental expressions of tracee mass in the accessible pool or
compartment can be proved following the same rationale as above using
z(t) in place of c(t), and M and in place of V and The equivalence
of the expressions for the volumes of distribution follows easily since the
volume is the quotient of the tracee mass and concentration.

Mean residence time

From Table 3.2.4, the noncompartmental formula for the mean resi-
dence time in the accessible pool for a bolus injection is

where d is the dose and is the tracer mass in the accessible
pool.

The compartmental model mean residence time in the accessible com-
partment 1 for particles entering the system into compartment 1 is the

element of the matrix

since for the bolus injection into compartment 1, Clearly
(7.3.12) and (7.3.13) coincide since Therefore, when a
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single pool is accessible to tracer input and measurement, the definition
of the noncompartmental mean residence time in that pool, coincides
with the compartmental model definition of the mean residence time
in the accessible compartment for particles entering the system in that
accessible compartment.

A parallel argument to that given previously holds for different meth-
ods of introducing the tracer, or when the tracer to tracee ratio is the
measurement variable.

Fractional clearance rate, clearance rate, and the rates of
appearance and disappearance

The equivalence between the compartmental model and noncompart-
mental estimates of the fractional clearance rate, clearance rate, and the
rates of appearance and disappearance follows immediately from their
definition, Table 3.2.2 and (7.3.1) - (7.3.3), and from the equivalence
between and M , V and

In summary, these results indicate that the accessible pool parameters,
estimated using either the compartmental model or noncompartmental
modeling methodologies, coincide since their definitions coincide. In
practice, the same numerical value will be obtained for them if the same
model order is adopted, that is, if the number of exponentials in the
sum of exponential model equals the number of compartments in the
compartmental model. This guarantees that the same description for
the data will be obtained, as illustrated in the following example.

Consider the compartmental and noncompartmental model shown in
Figure 7.3.1. Assume the tracer is radioactive, and the time units of
the experiment are in minutes. The tracer dose, injected as a bolus into
the accessible compartment, is The model output is
tracer concentration c(t) (dpm/ml) in this compartment. Tracee con-
centration in the same compartment is l00mg/ml. The rate constants
for the compartmental model as shown in the figure, in units of
are and The volume of dis-
tribution of the accessible pool is 3372 ml. A plot of c(t) is shown in
Figure 7.3.1 as the graphic below the two model structures.

The mean residence time in the accessible compartment 1 is
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Tracee mass . is

The accessible pool parameters and can be calcu-
lated:

For the noncompartmental model, c(t) is expressed as the sum of two
exponentials
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Here and The model
predicted tracer concentration at time zero is

Then the noncompartmental estimates of the
accessible pool parameters V, M, , FCR, CR, and are:

In the above example, the numerical equivalence of the accessible pool
parameters is clearly seen since in both approaches, the same model
order was adopted: a two compartment model and a two exponential
noncompartmental model. This guarantees the description of the data
provided by both models will be the same since the two exponential
model is the solution of the two compartmental model. The equivalence
would no longer hold if, for example, a three compartment model were
used for the compartmental model and a sum of two exponentials for
the noncompartmental model.

Finally, it is worth noting that the accessible pool parameters can be
recovered from the compartmental modeling approach even if the model
is not a priori uniquely identifiable, since they can be expressed in terms
of the observational parameters. The following example illustrates this
point.

Example 2

Consider the a priori nonidentifiable model Figure 6.3.1 shown shown
again for convenience in Figure 7.3.2. For this model, as already dis-
cussed in is uniquely identifiable, can be uniquely calculated
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from the product where is the tracee concentration in compart-
ment 1. The parameter given in (6.3.1) can be uniquely calculated
since it only depends upon the observational parameters. Thus

and can be calculated using (7.3.1) - (7.3.3).

For a general a priori unidentifiable n-compartmental catenary model
where the input-output experiment is in the extremal compartment 1,

and can be solved uniquely, as indicated in Hence
and can be solved uniquely. The same results

hold for a general a priori nonidentifiable mammillary model where the
input-output experiment is in the central compartment 1.

7.4 NONEQUIVALENCE OF THE SYSTEM
PARAMETERS

In addition to the accessible pool parameters, parameters related to
the whole system such as total mass, distribution volumes and mean
residence time in the system can be estimated using either the noncom-
partmental or compartmental approach. However, as stated previously
in the noncompartmental model correctly recovers the true val-
ues only if disposal and de novo production take place in the accessible
pool. In this section, this observation will be formalized by comparing
in more detail the noncompartmental and compartmental estimates of
the system parameters.
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Mean residence time in the system

Consider first the estimation of the mean residence time in the system
of particles entering the accessible compartment in a compartmental
model; without loss of generality, assume it is compartment 1. The
compartmental parameter is and equals the sum of the residence
times in each individual compartment of the system:

For the noncompartmental model the system mean residence time
were given in Tables 3.3.3 and 3.3.4. For a generic input of

tracer, assuming the tracer data are expressed in terms of concentration
c(t),

or equivalently, since where m(t) is the tracer mass in the
accessible pool

since the total dose of tracer administered.
In order to compare defined in (7.4.1) and defined in

(7.4.3), one can first use (7.2.5) to relate

Second, can be related to the elements of the compartmental
mean residence time matrix From (7.2.3), by multiplying each term
by t and taking the integral from 0 to infinity:

The integral can be evaluated by integrating by parts

since

1To see that one has since

both terms of the fraction are infinitesimal, that is they tend towards zero as t tends to infinity.
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Thus (7.4.5) can be rewritten

whence

Taking advantage of (7.2.5) rewritten here

(7.4.8) can be rewritten

By using (7.4.4) and (7.4.10), given in (7.4.3) can be ex-
pressed as a function of the elements of

It is now possible to relate the noncompartmental given in
(7.4.11) to the compartmental given in (7.4.1):

Equation (7.4.12) shows that provides in general an underes-
timation of the residence time in the system of particles entering into
compartment 1 since from the properties of the mean residence time
matrix Moreover, from the probabilistic interpretation of the

elements, (7.4.12) becomes

However, is infinitesimal of higher order since it decays as a sum of exponentials. Thus
is an infinitesimal part of the infinitesimal 1/t. Thus the ratio approaches zero as t

approaches infinite.
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showing that underestimates by an amount equal to
the time spent in the nonaccessible portion of the system by those par-
ticles which will never return to the accessible compartment. .
equals only when all particles leave the system from the acces-
sible compartment 1. In fact, in this case, (see
property 4 of the mean residence time matrix, §6.2.2) or equivalently
Prob

Mean residence time in the system from total body tracer
measurements

In Chapter 3, a different noncompartmental expression for the system
parameters based on whole body tracer measurements was given. It is
now easy to show that the whole body formula for the mean residence
time matrix, coincides with the compartmental formula for

Using (7.2.5),

Total mass

The compartmental total mass in the system is the sum of the masses
in all compartments. In Chapter 6, was expressed as the product
of the tracee production and the mean residence time in the system
of particles entering the system into compartment h:

The noncompartmental formula was given in Table 3.3.2:

In what follows, first the relationship between and will be derived.
The tracee production can be estimated from the compartmental
model knowing and
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The rate of appearance in the accessible compartment is given in Ta-
ble 3.3.2 and 3.2.4 as

since following the compartmental nomenclature, and
The integral of is related to the compartmental mean

residence time (cf (7.4.4)) so that

Comparing the formula (7.4.19) for the rate of appearance with the true
rate of production (7.4.17), one can write

showing that in general underestimates the true production rate by a
factor equal to the probability for de novo synthesized particles entering
compartment h reaching compartment 1. The rate of appearance
equals either when or when but i.e. when
the tracee enters the system into the nonaccessible compartment h but
reaches compartment 1 with no possibility of being irreversibly lost first.

By using (7.4.20) in (7.4.16),

since
In order to compare the compartmental and the non-

compartmental estimate one can compare with
the product The latter term can also be written

Consider the term interpreted in terms of probabilities:

Similar interpretations hold for the other terms in (7.4.22) so that
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Finally, from (7.4.21) and (7.4.24),

The noncompartmental estimate of the total mass thus in general
underestimates the tracee mass in the system. This estimate is correct
only when two conditions hold. First, (cf. (7.4.21)),
and second, (cf. (7.4.23)). The first condition is satisfied
when all irreversible loss takes place from the accessible compartment.
This implies that all elements in the first row of the mean residence
time matrix are equal, The second condition
becomes i.e. a condition of equivalence between the first and

row of the matrix. This condition can be satisfied only if
One can conclude that provides the correct estimate of the total

tracee mass only if all irreversible loss and production occur in compart-
ment 1. This condition assures the correctness of all noncompartmental
parameters of the whole system.

These points will be illustrated in the example shown in Figure 7.4.1.
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Example

Consider first the noncompartmental model shown in Panel B. As-
suming a bolus injection d equal to the concentration of
tracer in the accessible pool was

From Table 3.3.4 (and the formula written in terms of sums of expo-
nentials as described in Chapter 9 in (9.2.7)),
The rate of appearance Ra can be calculated using (7.4.18), and equals
4,520mg/min. Finally, the total mass in the system, can be esti-
mated from (7.4.16); it equals 449,288mg.

Consider next model A. This is a situation in which tracer and tracee
input and losses are all into the accessible compartment 1. The mean
residence time matrix equals

From (7.4.1), which agrees
with the noncompartmental estimate The production rate
can be calculated from (7.4.17)

which again agrees with the noncompartmental estimate for Ra Fi-
nally, Mtot can be calculated from (7.4.15), and again agrees with the
noncompartmental estimates.

For model B, as noted in this section, there is agreement between
the two methods of estimating the system parameters since all inputs
and losses are from the accessible compartment. What happens with
the situations illustrated in models C and D? In model C, all inputs
are into the accessible compartment 1, but losses can occur from both
compartments 1 and 2. The situation is almost the same in model D
except that de novo tracee input occurs in compartment 2, i.e.
while

For both models C and D, the matrix is

From (7.4.1), for both models, this differs
from the estimate and shows
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Next, for model C, this is equal to the
estimate for Ra as the theory predicts. However, from (7.4.19) it is
easy to see that the estimates for the total mass in the system will be
different because the system mean residence time is different. In this
case,

Finally, for model D where de novo tracee input is into the nonacces-
sible compartment 2 rather than compartment 1, one has from (7.4.17)

a number which is considerably different from Ra and for models B
and C. Again since is the product of and it is clear that
for this situation the noncompartmental model will underestimate the
total mass in the system.

Model D illustrates another situation which can help explain this dif-
ference. It is easy to see in this case with tracee entering the system de
novo into compartment 2, that some tracee can be irreversibly lost along
the pathway without ever appearing in the accessible compartment.
Therefore, the tracer will not “see” the kinetics of all tracee particles.

7.5 PARAMETERS OF THE
NONACCESSIBLE POOLS

Up to this point, compartmental and noncompartmental models proved
to be equivalent in estimating the accessible pool parameters, while they
differ in estimating the system parameters. Compartmental models are
able to estimate the correct value of the mean total residence time, tracee
production and mass while noncompartmental models are only able to
provide an underestimate. The two approaches are also substantially
different in how the nonaccessible pools of the system are quantitated.
Noncompartmental models are only able to estimate the kinetic param-
eters for the nonaccessible portion of the system as a whole by subtract-
ing from the system parameters the accessible pool parameters. For
instance, the noncompartmental estimate for the mean residence time
in the nonaccessible portion of the system as denned in Table 3.3.2, de-
noted is equal to the difference between the total mean residence
time in the system and the residence time in the accessible
pool Similarly, the difference between the total tracee mass
and the accessible pool mass M gives an estimate of the tracee mass in
the nonaccessible portion of the system.
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The compartmental model provides a much more detailed kinetic pic-
ture of the system under study since it permits one to estimate kinetic
parameters such as masses, productions, residence times and intercom-
partmental fluxes for any individual compartment. In addition to that,
the definition of accessible pool kinetic parameters such as the fractional
clearance rate, and the rates of appearance and disappearance can be
extended to any nonaccessible compartment since, by writing (7.3.1) and
(7.3.2) for a generic compartment i, one has

where and are the counterparts of and
Note that the evaluation of plasma clearance rate in nonaccessible pools,

is not feasible unless the tracee concentration is known

since

Example

Consider the compartmental model shown in Figure 5.4.1B. The
kinetic parameters for the nonaccessible compartment 2 are

from which the fractional clearance rate,
and the rates of appearance and disappearance can be evaluated:

7.6 THE TWO ACCESSIBLE POOL MODEL
In this section, a comparison between kinetic parameters of the two

accessible pool noncompartmental model discussed in §3.4 and the com-
partmental model will be discussed.

7.6.1 Accessible Pool Parameters

The noncompartmental two accessible pool parameters are listed in
Table 3.4.1. The masses and and volumes and of the
two accessible pools are equivalent to the corresponding compartmental
masses and volumes. In fact, as noted in Chapter 3, they are the same
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as those for the one accessible pool model applied separately to the two
pools; in §7.3 the equivalence between the compartmental model and
noncompartmental estimates of masses and volumes of accessible pools
was shown. The other accessible pool parameters of Table 3.4.1 such as
rates of appearance, disappearance, irreversible removal and interconver-
sion between the accessible pools are unique to the noncompartmental
model. That is, they do not have an immediate counterpart in the com-
partmental model setting. However, they can be recovered from the
compartmental model using results given in §7.2.

For instance, the rate of disappearance “per se” from pool 1, was
given in Table 3.4.3 for the case of the bolus injection experiment as

Recalling that for i,j = 1,2, (7.6.1) can be rewritten

From the equality (7.2.6) between the elements of the mean residence
time matrix and the areas under the tracer mass curves, can be
derived from the compartmental model kinetic parameters as:

Similarly,

7.6.2 System Parameters

Paralleling the result obtained in §7.4 for the one accessible pool
model, one can compare in detail the two accessible pool noncompart-
mental estimates of the system parameters with the compartmental
model ones; this will demonstrate even in this experimental configu-
ration the limitations of the noncompartmental approach.
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Mean residence times

The two accessible noncompartmental model permits one to estimate
the mean residence times in the system of particles introduced into the
system in the accessible pools 1 and 2, and as defined
in (3.4.19) and (3.4.20). These were written

System parameters

The compartmental model parameters are and and
they are equal to the sums of the residence times in each individual
compartment of particles entering from compartment 1 and 2:

Consider first the link between and and assume with-
out loss of generality, the bolus injection experiment so that and

are expressed by (3.4.17) and (3.4.18). These equations are writ-
ten below in terms of the tracer and tracee masses:

By following the same reasoning as that given in §7.4 where (7.4.10) was
developed, the following equality can be derived:

Using (7.6.13) and (7.2.9), and can be related with the
elements of the mean residence time matrix:
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An expression for as a function of the elements of the mean
residence time matrix has already been derived (7.6.3) as well as for

By using these equations, and (7.6.7) together with
(7.6.14)and (7.6.15), an expression for the noncompartmental parameter

as a function of the compartmental residence times can be
derived:

rearranging (7.6.16)

The bracketed terms in (7.6.17) can be given a useful probabilistic in-
terpretation: they represent, respectively, the probability that a particle
goes from compartment i to compartment 1 without passing through
compartment 2 so that (7.6.17) can be written:

It is clear that coincides with if and only if the irre-
versible losses in the system take place in the accessible pools 1 and 2
only. In fact, under these circumstances, all particles from the generic
compartment i will reach either accessible pool 1 or 2 before irreversibly
leaving the system, and thus

Similar conclusions can be drawn for
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Total mass

The compartmental total mass in the system equals the sum of the
masses in all compartments. In Chapter 6 for the case where the tracee
enters the system in compartment h and k

while the noncompartment formulas given in Chapter 3 is

In order to derive the conditions under which Mtot equals re-
lationships among Uh, Uk, R10 and R20 are needed. Th

h and Uk can be estimated from the masses M1 and M2 and the
e production

rates U
residence times by solving the two steady state equations

From (7.6.3) - (7.6.6), R10 and R20 can be expressed as

Substituting (7.6.22) into (7.6.23) and rearranging terms, one has

Using the probabilistic interpretation developed in (7.6.18), one can
write



Compartmental Versus Noncompartmental Kinetic Parameters 213

The parameters R10 and R20 correctly recover Uh and Uk if h and k
equal 1 and 2, that is, it de novo production takes place in accessible
pools 1 and 2. If in addition irreversible loss is only from these pools,
then

and from (7.6.20) and(7.6.21),

As discussed previously in §3.4, it can be shown that in all other situa-
tions, underestimates Mtot.
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Chapter 8

PARAMETER ESTIMATION:
SOME FUNDAMENTALS OF
REGRESSION ANALYSIS

8.1 INTRODUCTION
In the formulas given in Chapter 3 for the noncompartmental param-

eters, the evaluation of certain integrals is needed. These integrals are
evaluated either from some specific time in the time domain of the data
to time infinity, or from time zero to infinity. In either case, one must ex-
trapolate beyond the finite time domain of the experimental data. The
evaluation of these integrals is best accomplished by providing a func-
tional description of the data. It should be noted that such a function
postulates the behavior of the system outside of the time domain of the
data.

This Chapter will provide the technical information for the mathe-
matics and statistics of obtaining a generic functional description of a
set of data. In the next Chapter, this information will be used to esti-
mate the noncompartmental parameters by using a sum of exponentials
as a functional description of the data. Some of the material covered
in this Chapter will be used again in Chapter 10 to describe parameter
estimation of linear compartmental models.

Parameter estimation is a difficult subject touching various aspects,
including statistical and algorithmic ones. Our treatment will try to
be comprehensive and in an easy language. For more details on both
fundamentals of regression, numerical algorithms statistical tests as well
as other techniques like maximum likelihood and Bayesian parameter
estimation, the reader can consult Bard [1974], Bates and Watts [1998],
Carson et al. [1983], Draper and Smith [1981], Landaw and DiStefano
[1994], and Seber and Wild [1989].

215
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8.1.1 The Nature of the Regression Problem
In what follows, denote by y(t) the model output variable. Depending

upon the experiment, y(t) can be tracer concentration or the tracer to
tracee ratio. For purposes of providing a functional description of the
data, the physical meaning of y(t) is not relevant. A function y(t) chosen
to describe a set of data is characterized by a set of parameters. For
example, the polynomial

is characterized by the independent variable t which in tracer experi-
ments is usually time, and the coefficients A0, A1 and A2. These coef-
ficients are the parameters for this polynomial. On the other hand, the
exponential expression

is characterized by the independent variable t, the coefficients A1 and
A2, and the exponentials and The parameters here are the coef-
ficients and exponentials. If either of these functions were being used to
“describe” a set of data, the parameters characterizing them need to be
“adjusted” until a set of values for them is obtained which provides the
“best fit” to the data. Regression analysis, which will be defined and
described in detail below, is the most widely used method to “adjust”
the parameters characterizing a particular function to obtain the “best
fit” to a set of data.

It will be seen that there are fundamentally two kinds of regression:
linear and nonlinear. The theory of linear regression is mathematically
precise with the formulas for the parameters characterizing the function
specifically defined. Nonlinear regression is more complex and results
only in approximations of the estimates of the parameters. In addition
to the parameter estimates, for both linear and nonlinear regression, one
usually wants information on the the errors of the parameter estimates.
To obtain estimates of these errors, one moves to weighted regression.
In weighted regression, a knowledge of the error structure of the data
is needed. These errors are used to calculate the weight assigned to a
datum during the regression process. The importance of understanding
the nature of the error in the data and how this relates to weighted and
unweighted regression is an essential ingredient of the regression problem
which will be made transparent. Thus there are several ingredients to
the regression problem. These will be isolated and explained in detail
with examples provided.
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With an understanding of the regression problem and an appreciation
of the complexities of nonlinear regression in particular, it will become
clear that a prerequisite for a successful nonlinear regression is a good
software tool, i.e. a computer program which has a robust algorithm
for the estimation procedure which also provides statistical information
about the fit. This can provide the investigator with an informationally
rich output including not only the numerical estimates of the param-
eters but also a measure of their precision. In addition, a number of
diagnostic tests on, for example, the residuals are available to assess the
appropriateness of a particular functional description of the data.

How do such software tools work? What does the investigator need
to know to use them? The essential ingredients are illustrated in Figure
8.1.1 below:

Figure 8.1.1. Schematic for the input into and output from a computer package
utilizing weighted non-linear regression.

Here, the box labeled weighted nonlinear regression represents the
algorithm the chosen software tool will utilize to perform the weighted
nonlinear regression. The investigator must supply certain information,
or input, in order to utilize the tool. First, the model must be specified;
in the case discussed here, these are the equations that are going to be
used to describe the data. These equations are characterized by a set of
parameters which are to be estimated from the data. The investigator
must supply the data, and an error estimate for each datum; as will be
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seen, these errors will be used to assign weights to the data. Finally,
initial estimates for each of the parameters must be provided. From
the software tool the investigator obtains an output which includes (i)
estimated parameter values, (ii) information on the fit (e.g. residuals and
sums of squares of residuals), (iii) precision of the individual parameter
estimates, and (iv) correlations among the parameters.

Before starting, a very basic point should be made. That is that the
first step in the analysis of any set of tracer data should be plotting the
data. Whereas this point is so obvious it hardly needs stating, there
are many investigators who do not do this, but go directly from the
measured sample values to some software tool to process their data.

Why is this step important? The reason is that the investigator should
look first for the qualitative characteristics of the data, i.e. features such
as the shape of the curve, the times at which “breaks” appear, apparent
bumps or humps in the curve, and data that might be spurious. In
short, the investigator should become acquainted with the data before
proceeding to a quantitative description of them. It is only through
this exercise that certain characteristics will be recognized as consistent
among various sets while other will be unique to a given set suggesting
possible problems with a particular experiment. In addition, by going
through the exercise of a careful qualitative evaluation of the data, an
investigator can often get a feeling for the parameter estimates or how
much information he might actually obtain from the data.

As an example, consider the data given in Figure 8.1.2. These data are
from a turnover experiment in which a tracer was injected as a bolus in
the system, and serial plasma samples taken for 20 days. On day 9, the
subject was given a drug, and the investigator wanted to know whether
or not the drug affected the metabolism of the tracee as reflected by
changes in the tracer decay curve.

Figure 8.1.2-B shows the best fit obtained from a sum of two expo-
nentials. In Figure 8.1.2-C, a best fit of the data to day nine by a sum
of two exponentials is given; the dotted line shows how this functional
representation of the data would extrapolate to day 20. The solid line
beyond day 9 represents a best fit of those data to a monoexponential.
This last curve indicates clearly there is a “break” in the data starting
at day 9. Obviously the two curves in Figure 8.1.2-B and Figure 8.1.2-C
support markedly different conclusions.

This example should make the reader aware of the amount of in-
formation about the system that has been obtained qualitatively from
simply plotting the data. One should also be aware of how drawing a
curve through the data can bias the interpretation of the data. Fig-
ure 8.1.2 illustrates a situation where if one had tried to draw just one
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Figure 8.1.2. A. The data from the turnover study described in the text. B. The
total data set described by a sum of two exponentials. C. The data to day nine
described by a sum of two exponentials, and extrapolated to day 20 (dotted line),
and the data fitted first to day nine, and then to day 20 (solid line). See text for
additional explanation.

curve through the data, the richness contained therein could have been
missed, and possibly an erroneous conclusion reached.

The plots shown in Figure 8.1.2 are semi-logarithmic. For purposes of
investigating data “by hand”, these are very useful since they indicate
how many exponentials may be required to describe the data; this in
turn means the number of compartments in a compartmental model.
This will also be used in Chapter 9 where a discussion of obtaining
initial estimates for the exponentials in a sum of exponentials is given.
However, following a fit, the linear plot is more informative. Thus in
this Chapter, the plots given after a successful fit will be linear unless
otherwise noted.

Once the investigator has thoroughly studied the data through this
qualitative graphical analysis, it is time to obtain a functional descrip-
tion of the data in order to subsequently estimate from it the kinetic
parameters of interest. This is the subject of the rest of this Chapter.
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8.1.2 Linear and Nonlinear Parameters

What constitutes a linear or nonlinear parameter? It is important
to understand this since, as seen in the next section, there is an exact
solution when the model contains only linear parameters while, as seen
in the solution is only approximate if the model contains at least
one nonlinear parameters. In particular, if y(t) is characterized only by
linear parameters, one uses linear regression and can obtain an exact
solution. If there is at least one nonlinear parameter in y(t), nonlinear
regression must be used, and the parameter estimates, as will be seen,
are approximate.

There are many kinds of functions which are linear in their parame-
ters; polynomials such as the following are but one:

This polynomial y(t) is characterized by the coefficients
which are the parameters to be estimated in data fitting, and the inde-
pendent variable is t. Why are polynomials linear? The reason why can
be illustrated by using the simple polynomial

When is written in this manner, it indicates y as a function
of the independent variable t and of the value assigned to the parameter
A. That is, y(t) will assume different values depending upon a specific
value for A. The function y(t) is linear in the parameter A, or equiva-
lently the parameter A in (8.1.4) is linear because if the value . is
considered, then

For example, doubling the value for the parameter A will double the
value for the function y(t).

If y(t) is not linear in at least one of its parameters, or equivalently if
not all parameters describing y(t) are linear, then y(t) is nonlinear. Non-
linearity is seen when the counterpart of (8.1.5) cannot be written for
a particular function. For example, the exponential function y(t) given
in (8.1.2) is nonlinear since is
not equal to the sum of and This
function is linear in and and nonlinear in and . How to
deal with these functions will be discussed in One should be aware
of the fact that the two types of functions are the basis for the two
types of regression discussed in this Chapter. If the function is linear,
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one uses linear regression; if the function is nonlinear, one uses non-
linear regression. As will be seen, while the linear regression problem
can be solved “exactly”, the nonlinear regression problem involves ap-
proximations based on the linear theory. Thus an understanding of the
linear regression material covered in is essential to understand the
nonlinear regression material presented in the following sections.

8.2 BASIC CONCEPTS OF REGRESSION
ANALYSIS

8.2.1 The Residual

The basic notions of regression, i.e. finding a set of parameter values
which define a function which will provide the best fit for a set of data,
can be described using the data given in Figure 8.2.1.

Suppose an investigator wishes to obtain the best fit of these data to
the straight line

(8.2.1)

How can this fit be obtained?
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To solve the problem, one sees that, for different values of A, different
straight lines will be generated. How does one find the particular value
for A which provides the best fit?

Note that for each point in time where there is a datum, denoted
there is a corresponding value predicted from y(t), Once a

value for A is chosen, the difference between the experimentally observed
datum and the calculated value, i.e. can be calculated;
this is called the residual. In general, if y(t) is a function to be fitted to
a set of data, and if is the observation, the residual is written

Suppose in (8.2.1), The calculated value and residuals are
shown in Table 8.2.1; these are plotted in Figures 8.2.2A and B.

One sees in Figure 8.2.2A that with the fit is not particularly
good. This is emphasized by the plot of the residuals in Figure 8.2.2B
where clearly there are more residuals that are positive than negative.
The best fit with is shown in Figure 8.2.2C along with the
residuals in Figure 8.2.2D which now are more randomly scattered about
0. The question is: how was this fit obtained? This question will be dealt
with in detail in subsequent sections of this chapter.

8.2.2 Residual Sum of Squares

The expression:

where N is the number of observations (N = 10 for the data in Fig-
ure 8.2.1) is called the residual sum of squares, RSS, since
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can be considered as the error between the observed and predicted
value for each sample time For the data given in Figure 8.2.1 and
the polynomial the squares of the residual and RSS are given
below in Table 8.2.2.

The residual sum of squares, RSS, can be considered a measure of
how good the fit is to the given set of data. For different numerical
values of the parameter characterizing (8.2.1), i.e. for different numerical
values for A, one will obtain a different RSS. Therefore RSS itself can
be considered as a function of the parameter characterizing the linear
function chosen to describe a set of data. One can write
for (8.2.3) to underline this fact.

The idea behind regression is to minimize RSS with respect to the
parameter values characterizing the function to be fitted to the data,



224 TRACER KINETICS IN BIOMEDICAL RESEARCH

i.e. to find a set of parameter values for y(t) which minimizes RSS. The
process is called least squares. In the case of the function defined in
(8.2.1), the problem would be to find a value for A which minimizes
RSS for the set of data given in Figure 8.2.1. Figure 8.2.2-C and D show
the results of such a minimization process; how this was reached will be
described in detail in

Another important ingredient of regression is a number commonly
encountered in statistics: degrees of freedom. Suppose a function y(t)
described by P parameters is to be fitted to a set of N data points; the
degrees of freedom is defined as the number N - P. For the example
above, y(t) given in (8.2.1) is characterized by the single parameters A,
hence The number of data given in Figure 8.2.1 is 10, hence

In this example, the degrees of freedom is 9. The degrees of freedom
are important since in order to solve the regression problem, i.e. to find
one set of parameter values for which RSS is minimum, it is necessary
that the degrees of freedom is one or greater. If the degrees of freedom
is less than one, there are an infinite number of parameter values which
will minimize RSS.

8.2.3 Weights and Weighted Residual Sum of Squares

As discussed in detail in data have errors associated with them.
Basically this means that one may have more confidence in some data
than in others, i.e. some data may be more “important” than others
in the fitting process. One would like some means by which to give
greater importance to these data. This is accomplished through assign-
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ing weights to each datum; how this is commonly done will be discussed
in more detail in

The assignment of weights is reflected in the sum of squares. If y(t) is
a function to be fitted to a set of data and is the observation,
the expression:

where N is the number of observations is called the sum of weighted
residual sum of squares, WRSS, since can be
considered as the weighted error between the observed and predicted
value for each sample time Extending the above, the theory behind
minimizing WRSS is called weighted least squares (WLS). In this
expression is the weight assigned to the datum, and the weighted
residual is written

RSS and WRSS are functions of the parameters characterizing a func-
tion y(t). They are examples of what in the theory of optimization are
called an objective or cost function. While there are other objective
functions that can be used, RSS and WRSS are most commonly used in
the analysis of tracer data, and will be the focus of this text.

8.3 THE ASSIGNMENT OF WEIGHTS TO
DATA

8.3.1 Introduction
In RSS and WRSS were defined. The difference between the two

is that in the latter case a weight was assigned to each datum. How
are these weights obtained? It is natural to link the choice of weights to
what is known about the precision of each individual datum. In other
words, one seeks to give more credibility, or weight, to those data whose
precision is high and less credibility, or weight, to those data whose
precision is small. In this section, the following will be discussed: (i)
how to obtain an estimate of the error affecting a set of data, and (ii)
how to use the errors to assign weights and thus calculate WRSS.

Clearly the sources of error are many and depend upon a given ex-
perimental situation as well as the system being studied. While the
investigator has some degree of control over some errors such as those
involved in the various procedures one must go through in the prepara-
tion of samples for measurement of tracer or tracee concentration, other
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problems that are unknown or go unnoticed will, in general, produce
systematic errors that are often extremely difficult to uncover.

8.3.2 Description of the Error in the Data
Suppose one is fitting a function y(t) to a set of data. In what follows,

it will be assumed that the function y(t) is the correct model for the
data being considered. As part of the theory to be developed in this
Chapter, information is recovered from the fitting process to test if this
assumption is in fact “correct”.

To start, for each datum at sample time there is a mea-
surement error term It is usually assumed that this term is
additive, i.e. can be expressed

In general, one knows little or nothing about and hence assump-
tions about its characteristics must be made. The most common as-
sumption is that the errors are independent with zero mean and
variance either known or known up to a proportionality constant. What
this means can be formalized in the statistical setting using the notation
E, Var, and Cov to represent respectively mean, variance and covariance.
Then:

and

or

Equation (8.3.2) means the errors have zero mean; (8.3.3) means
they are independent, and (8.3.4) means the variance is either known
(case a) or known up to a proportionality constant (case b). In these
equations, and are assumed to be known, and is the
unknown proportionality constant. A standardized measure of the error
is case a and b is provided by the fractional standard deviation FSD,
or the coefficient of variation CV:
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where SD is the standard deviation of the error

The FSD or CV are often expressed as a percent, i.e. the percent frac-
tional standard deviation or percent coefficient of variation, by multi-
plying in (8.3.5) by 100.

The difference between case a and b in (8.3.4) is that in case a the
precision of the measurements of is assumed to be known while in
case b only the relative values of the are known, i.e. is
unknown. For instance, if is unknown but constant for all
then clearly from (8.3.4)b, and denoted the unknown value
of the variance. Similarly if is unknown but proportional to
the square of the measurement, or equivalently is unknown
but constant, then and now denotes the unknown
value of the square of the fractional standard deviation. It is known
that if the errors are Gaussian, (8.3.2)-(8.3.4) specify completely
the probability distribution, otherwise they can be seen to provide a
description based on the first two moments (mean and variance).

Finally, using the fact that if Y is a random variable, and and
are constants, one has from (8.3.1) that, since

is constant, that is, the variance of an
individual datum and of its error are equal.

8.3.3 Weights and Error Variances

Knowing the error structure of the data, how are the weights cho-
sen? The natural choice is to weight each datum according to the inverse
of the variance. For the two cases introduced above, case a when the vari-
ance of the error is known (called absolute weights), and case b when
it is known up to a proportionality constant (called relative weights),
the weights are defined as follows:

It can be shown that this natural choice of weights is optimal in the linear
regression case, i.e. it produces the minimum variance of the parameter
estimates. Therefore, it is very important to have a correct knowledge of
the error of the data, and to weight each datum according to this error.
Note that only the pattern of weights, i.e. or in other words the
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relative precision of the data points, needs to be assigned, and even the
use of an approximation of this pattern is better than unweighting the
data.

The problem now is how to estimate the error variance. Ideally one
would like to have a direct estimate of the variance of all sources of error.
This is a difficult problem. For instance, the measurement error is just
one component of the error; it can be used as an estimate of the error only
if the investigator believes the major source of error is after the sample
is taken. To have a more precise estimate of the error, the investigator
should have several independent replicates of the measurement
at each sampling time which can estimate the sample variance at

If there is a major error component before the measurement process,
for instance an error related to drawing a plasma sample or preparing a
plasma sample for measurement, then it is not sufficient to repeat the
measurement per se on the same sample several times; in theory in this
situation it would be necessary to repeat the experiment several times.
Such repetition is not often easy to handle in practice. Finally, there
is the possibility that the system itself can vary during the different
experiments.

In any case, since the above mentioned approach estimates the vari-
ance at each sampling time it requires several independent replicates
of each measurement. A more practical approach will be outlined in the
following sections of this Chapter. This consists of postulating a model
for the error variance and estimating its unknown parameters from the
experimental data.

8.3.4 A Model of the Error Variance

A flexible model that can be used in tracer studies for the error vari-
ance is

to be approximated in practice by

where and are model parameters relating the variance associated
with an observation to the value of the observation itself. As explained
below, arbitrary values can be assigned to these parameters, or they can
be estimated from the data themselves.

The three classical applications of the above formula are described
below. They are illustrated in Figure 8.3.1 using the function
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In Case A, one has a constant variance, i.e. whence

Thus:

In Case B, one has a constant coefficient of variation or FSD, i.e.
and In this case:

Thus:
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For example, if The error associated with each
datum is therefore 10% of the datum. In Case C, one has Poisson (count-
ing) statistics, i.e. and Hence:

Thus

Example

To see the effect that the different choices of and have on
assigning the weights and ultimately on WRSS, consider the data
given in Figure 8.2.1 which are to be fitted by WRSS(A)
for this function depends upon these weights. Two separate weighting
schemes are illustrated in Table 8.3.1 below, and WRSS(A) is calculated
for each case when

In Table 8.3.1, the two situations are illustrated in columns B and
C labeled and respectively; the in-
dividual entries in each of these columns are the weights calculated
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according to the formula Column A is simply the square
of the residuals, and RSS(A) equals 14825. As noted above, this cor-
responds to the case when for all data. Column B illustrates
the weights for a constant variance; in this case whence

for each datum. In this case, Column C
illustrates the weights for a constant coefficient of variation; in this case

whence varies for each datum. In this case,

Clearly WRSS(A) varies widely and depends upon how the are
selected. How this selection actually affects WLS will be discussed in

and
While using a constant SD or FSD is commonly used to define the

error structure in a set of data, there is another alternative. In the next
section, how to estimate the parameters and of the error model
(8.3.9) from experimental data will be discussed. This is important
since in most situations no information is available a priori on the error
variance.

In closing, it should be noted that only the pattern of weights, i.e.
or in other words the relative precision of the data points, needs

to be assigned if the variance of each data point is not known or difficult
to determine. The previous example illustrates that it is important to
know how the assignment of weights to data will affect the sum of squares
and ultimately the parameter estimates and their precision.

8.3.5 Estimating the Parameters of the Error Model
from Standard Samples

One possible approach to estimate the model parameters and
of given in (8.3.9) from experimental data

is based on the use of standards. These are samples for which several
independent replicates of the measurement process are available. The
assumption must be made that all sources of measurement error in the
experimental data are present in these standards, and that the standards
cover the range of values observed in the experimental data.

Denote by the number of replicates for a generic standard, and
by the values for each of the replicates. The value to be
associated with the standard is the mean of the replicates:
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An estimate of the variance of the standard defined in (8.3.19) given by
(8.3.20):

For all of the standards, plotting either or the ratio versus
often suggests the appropriate relation. For instance, if the background
variance is negligible and can be assumed to equal zero, then a plot
of versus is a straight line whose slope estimates in
(8.3.9). A value of 2 for the exponent  in tracer studies is quite frequent;
this situation of course is a constant FSD.

Using the standards to estimate and in (8.3.9), one can then ap-
ply (8.3.9) to each generic measurement to estimate the variance
of the error An example is given below.

Example

Suppose one wants to determine the variance associated with mass
spectrometry measurements of peak intensity ratios in plasma during a
stable isotope glucose tracer experiment in the range of 1-15%. One
can prepare, for instance, four standard samples by mixing natural and
tracer material in different proportions, and measure ten aliquots of each
sample. An example of the kind of results one might expect from such
a strategy are summarized below in Table 8.3.2.

The results given above suggest that a variance model such as

or

is not appropriate since neither the variance nor the fractional standard
deviation are constant.
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An appropriate model for the variance (see Figure 8.3.2) can be ob-
tained by regression analysis (see §8.4) by fitting the function

defined in (8.3.9) to versus the data listed under
in Table 8.3.2. The results are

8.3.6 Estimating the Parameters of the Error Model
from Replicates of the Measurements

Often, to improve the precision of the measurements, samples are
measured at least in duplicate or triplicate since the variance of the
measurement error is reduced, as compared with the single measurement
situation, by a factor equal to the number of replicates. The value of
the sample is obtained by averaging the measurements of the two or
three replicates (see (8.3.19)). However, since the number of replicates
for each sample is small, the sample variance (8.3.20) is only a rough
estimate of the true variance.

However, duplicates or triplicates can be used to derive a better es-
timate of the variance of the measurement error if a large number of
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measurements are available. For instance, data from the same exper-
iment performed in a number of different subjects can be pooled. A
procedure to do this is illustrated in the following example.

Example

Suppose in a glucose tracer kinetic study, radioactivity is quantitated
in each plasma sample in triplicates. Suppose in addition that a total of
100 samples ranging from 20,000 cpm/ml to 400,000 cpm/ml are ana-
lyzed from experiments in 4 subjects. Denote by and the three
measurements for a generic sample. (In the general situation, one would
have samples here ). Then the “observed” value,

associated with this sample is the mean of the three measurements:

The variance of the measurement error is reduced by a factor equal to
Then an estimate of the variance associated with is

Due to the low precision of these estimates, the plot of versus
(Figure 8.3.3) shows a cluster thus making it difficult to derive the model
for

To facilitate the detection of this relation, it is convenient to split
the observation range into a number of intervals, and examine the mean
value of or equivalently of the ratio within each interval. The
results are summarized in Table 8.3.3 and plotted in Figure 8.3.4. As
seen in the Figure, the variance increases with the measurement in a
quadratic fashion, or equivalently the fractional standard deviation is
approximately constant. The model for the variance is then

where the numerical value for has been evaluated by averaging the
square of the fractional standard deviations in Table 8.3.3.
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8.3.7 Propagation of Errors

In some circumstances, the data are obtained by combining
different primary measurements usually based upon different techniques.
For instance, suppose that is the concentration in plasma of in-
tact monoiodinated insulin. In order to quantify one can measure by
scintigraphic methods the total concentration of radioactivity in plasma
associated not only with intact insulin but also with its degradation frag-
ments, and by liquid gas-chromatography the relative amount of intact
material in the sample. Intact radioactive insulin data are thus obtained
as the product of two measurements. The problem is how to derive an
estimate of the error variance affecting from a knowledge of the
error variances associated with the two primary measurements. In other
words, how do the errors associated with the two primary measurements
propagate to the error associated with itself?

Suppose, for example, that is obtained as a function f of two
measurements and

Denote by and the errors associated with and If
they are independent, a first order approximation for the variance of the
error e affecting is

where and are the partial derivatives of f with respect to
and evaluated at

Example 1

Suppose the and are two independent measurements, and that
is the difference between the two:

By using (8.3.28), an approximation for the variance of the error e af-
fecting can be computed from the variances of the errors associated
with and

since Therefore the error affecting has variance
approximately equal to the sum of the variance of the errors associated
with measurements and
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If on the other hand is obtained as the product of the and
measurements

the variance associated with is given by

or equivalently

That is, the square of the fractional standard deviation of the error of
is the sum of the squares of the fractional standard deviations of

the errors of and

8.3.8 Estimating Error Model Parameters from
Extended Least Squares

The procedures discussed so far for estimating the error model pa-
rameters require replicates of all, or some at least, measurements. An
alternative approach, which does not require replicates, still consists of
postulating a model for the error variance such as
given in (8.3.9), but its characteristic unknown parameters are estimated
simultaneously with the unknown parameters characterizing the model
of the system under study. The idea is to use an “extended” form of the
weighted residual sum of squares WRSS, EW RSS [Peck et al., 1984]:

The problem now is to minimize EW RSS not only with respect to the
unknown parameters characterizing the function y ( t ) to be fitted to the
data, but also to the unknown parameters characterizing the function

i.e. the parameters and in (8.3.9). This requires an
extension of the weighted least squares machinery.
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8.4 THE FUNDAMENTALS OF LINEAR
REGRESSION

8.4.1 Data Fitting and Linear Regression

This section will discuss and illustrate the fundamental ideas of  linear
regression by fitting a straight line through the data given in Table 8.2.1
shown again in Figure 8.4.1. The concepts introduced here, based on
least squares theory, carry over to any linear function.

The equation for the straight line used here is
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where t is the independent variable. The parameter describing this line,
A, is linear as described above. Different values for A will produce
different lines. Hence, for each value of A there is a different calculated
value of RSS, or RSS(A) to denote the functional relationship with A;
this is shown in Figure 8.4.1-C. What one seeks is the value of A, Â
which minimizes RSS(A); this point is indicated in Figure 8.4.1-C. As
part of the theory of linear regression, it is known that when the degrees
of freedom is greater than one, there is a unique value for A which will
minimize RSS(A).

In what follows, the theory of least squares and weighted least squares,
abbreviated as LS and WLS respectively, will be discussed.

8.4.2 Solving the Linear Regression Problem
How does one find Â? Corresponding to each sample time which

is assumed to be known exactly, there is an experimentally measured
datum a calculated value and a residual

For LS, the sum of squares of the residuals for the
example is given:

To find the unique value for A which minimizes this sum of squares, one
takes the derivative of RSS(A) as given in (8.4.2) with respect to A, sets
the resulting expression equal to zero, and solves this equation for A:

From differential calculus, it is known that the value for A which is a
solution of (8.4.3), Â, will minimize RSS(A). This is given by

One can apply (8.4.4) directly to the data given in Table 8.2.1. The nu-
merator and denominator in (8.4.4) are respectively 153,100 and 38,500;
hence the plot of is given in Figure 8.4.1.

It is not enough, however, that one stops here with an estimated value
Â. One must also examine the plot of the residuals themselves as has
been done in Figure 8.4.1-B. In this situation, there is no apparent cor-
relation in the pattern of the residuals, i.e. a series of positive residuals
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followed by a series of negative residuals. Hence it is reasonable to de-
scribe these data by a straight line. Formal tests based upon residuals
will be discussed in §8.6

What can happen if one takes the estimate of Â as a blind estimate,
i.e. does not examine the residuals as well. One runs the risk of selecting
an incorrect functional description of the data. Upon examination of the
residuals, nonrandomness of the errors can be discovered by observing
a patterning of the residuals. As an example of this situation, consider
the data given in Figure 8.4.2.

These data are fitted to a straight line in the manner described above.
However, a plot of the residuals, shown in Figure 8.4.2-B, clearly indi-
cates systematic deviations between the predicted and the observed val-
ues. Thus even though the sum of squares of errors has been minimized,
the systematic deviations revealed through plotting the residuals indi-
cates a straight line is probably not an acceptable functional description
of these data. Again, this will be discussed in more detail in §8.6.

8.4.3 Weighted Linear Regression

Up to now the focus has been how to obtain an estimate of the pa-
rameter A. What confidence can one have in this estimate? In what
follows, a detailed description will be given of explicitly how the error in
the data affect the precision of the estimated parameter value Â for the
function In doing this, attention is shifted from least
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squares, LS, to weighted least squares, WLS, where errors in the data
are explicitly taken into account through weights.

In moving from LS discussed above, which utilizes RSS as the function
to be minimized with respect to A, to WLS one assigns weights to
each datum. The expression to be minimized is WRSS:

The problem of minimizing this expression is identical to that discussed
previously. One takes the derivative of (8.4.5), set the resulting expres-
sion equal to zero, and solves for A to obtain the value Â :

which differs from the previous estimate, (8.4.4), because of the presence
of the

In the WLS situation, it is also possible to obtain an expression for
the precision of Â, Var(Â), which is given for case a (variance known)
and case b (variance unknown) in (8.3.7) respectively by:

In Case b, the expression for Var(Â) involves the unknown propor-
tionality constant It is possible to obtain an unbiased estimate for
it from

where WRSS(Â) denotes the minimum value of WRSS(A) obtained with

N is the number of data, and N – 1 is the degrees of freedom.
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Remember in this example, A is the only parameter being estimated
and thus the degrees of freedom is the term in the de-
nominator of (8.4.8). In the general case where P parameters are being
estimated, an unbiased estimate of can be obtained from

The precision of the estimate Â of A is often expressed in terms of
standard deviation, i.e. the square root of the variance Var(Â):

It can also be given in terms of the fractional standard deviation FSD
or the coefficient of variation CV, which measures the relative precision
of the estimate:

As noted previously, FSD and CV can be expressed as a percent by
multiplying it by 100.

From (8.4.6) and (8.4.7), one sees that both Â and VAR(Â) depend
upon the This is why it is essential that the investigator appreciate
the nature of the error in his data: weights affect the outcome of both
the estimate of Â and Var(Â). The link between LS and WLS occurs here
as well. Comparing (8.4.6) where the estimate Â for A was obtained by
WLS, with the ordinary LS case, (8.4.4), one sees that the two estimates
coincide when in (8.4.6) all This situation, however, is a special
case of WLS case b, where for all i indicating that in the
case of LS the assumption is made implicitly of a constant but unknown
measurement error variance.

8.4.4 The Effect of Weights on Parameter Estimates
and Their Precision

How does the assignment of weights affect the estimates of the lin-
ear parameters and their precision? Consider again the data shown in
Figure 8.2.1 where two different weighting structures were considered.

In the first weighting scheme for case a, was constant and equal
to 100 hence the weights were constant and equal to 0.01. Eval-
uating (8.4.6), one finds the numerator and denominator are respec-
tively 1531 and 385, hence Notice this estimate is identi-
cal to the estimate obtained for LS as expected since (8.4.6) coincides
with (8.4.4) when the are equal. In the second weighting scheme,

In this case, the numerator and denominator of
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(8.4.6) are 252.98 and 66.053 respectively, whence Model fits
for the two weighting schemes are shown in Figure 8.4.3.

The assignment of weights has a substantial effect upon the estimate
Â and its estimated standard deviation. Consider first the case where

the variance is known. The effect of the two weighting schemes can be
evaluated by using (8.4.6) and (8.4.7)a. The results are summarized
below in Table 8.4.1.

Consider now the situation where the variance is known up to a pro-
portionality constant, case b, and assume first that the variance is con-
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stant but unknown, that is and then that the fractional
standard deviation is constant but unknown, that is or

From (8.3.4b), in the former case,
and in the latter. The results are summarized below in

Table 8.4.2.

The estimates of Â are the same as for case a, Table 8.4.1. In fact from
(8.4.6), it is immediate to verify that, if all the weights are multiplied
by a constant factor, the estimate doesn’t change. As a consequence,
Â depends on the structure of the variance, and thus it is the same
when the measurement error is constant, either known (case a where

or unknown (case b where
since in the two situations the weights differ by a constant

factor equal to 100.
Similarly the same estimate for Â is obtained when the fractional

standard deviation of the measurement error is constant, either known
(case a where or unknown
(case b where

On the other hand, the variance of the estimates in case a and b is
different. From (8.4.7), one can predict the link which involves the un-
known proportionality constant appearing in the measurement error
variance of case b. In the constant variance case, represents the un-
known variance and, for this example, a value equal to 465 is estimated
a posteriori. The ratio between Var(Â) in case a when
and in case b where the estimated is 465 is equal to the ratio
100/465. Similarly if the fractional standard deviation of the measure-
ment error is assumed constant but unknown, represents the square
of the unknown fractional standard deviation. In this example, a value
equal to 0.0318 is estimated a posteriori for corresponding to a frac-
tional standard deviation equal to 17%. The ratio between Var(Â) in
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case a when and in case b when is
estimated equal to is equal to the ratio 0.01/0.0318.

8.5 THE FUNDAMENTALS OF NONLINEAR
REGRESSION

8.5.1 Introduction

What happens in case y(t), instead of being described by a set of
linear parameters, has nonlinear parameters as well? The problem of
how to estimate the parameters becomes more complex.

In the previous section, the major points were illustrated using the
function . In this section, the major points will be illus-
trated using the monoexponential function where is the
nonlinear parameter to be estimated. Later in this section, the function

will be used to introduce the covariance (variance-
covariance) matrix and the matrix of correlation coefficients.

This section will concentrate on WLS which is available in many pop-
ular computer programs. It is essential that the investigator utilizing
such programs has some knowledge of what and why certain informa-
tion is required, and how to interpret the results such programs yield.
The intent is to describe the general concepts involved in nonlinear
regression, present some of the technical difficulties in the context of
the monoexponential function defined above, and refer the reader to the
literature for more details. In this way, it is hoped the investigator will
be able to utilize nonlinear regression wisely and efficiently to extract
the desired information from the data.

How is the nonlinear case handled? The problem is solved through
a number of iterations that draws on the linear theory to obtain a set
of parameter values describing y(t) that minimizes the weighted sum of
squares of the residuals WRSS.

Some intuition into these concepts will be given; it will be clear what
is similar and different between this and linear regression. The iterative
linearization mentioned above can be described using the data given in
Table 8.5.1 (shown in Figure 8.5.1).

One starts with a set of data such as those in Table 8.5.1, error esti-
mates of the data, and a function to be used to describe the data. The
function is characterized by a set of parameters to be estimated. The
function used in this example is the parameter is One
starts by choosing a value for say , and is calculated as
in (8.5.1). How the initials estimate can be obtained is discussed in Ap-
pendix G. Then an algorithm is used to try to produce a new estimate
of say which improves upon because
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The process of passing from to is called an itera-
tion. The algorithm provides a means by which a linear approximation
of the nonlinear function can be substituted so that linear regression
can be used to produce The development of such algorithms is the
subject of a branch of applied mathematics called optimization. The al-
gorithm works in such a way that for each iteration, becomes
smaller until a minimum is reached. In Figure 8.5.1C, the improvement
in WRSS is obtained through a number of iterations until a minimum
is achieved.

With this example illustrating “iterations” and a knowledge of the
principals of linear regression, one can now proceed to the steps involved
in nonlinear regression.

8.5.2 The Steps Involved in Nonlinear Regression

STEP 1: DEFINING WRSS IN THE NONLINEAR CASE

In what follows, the same notation from the previous section will be
used where is the weight assigned to each datum and the
expression to minimize is

As noted previously, is a nonlinear function of the parameter so
an explicit analytical solution for analogous to (8.4.4) is not possible.
In fact if one takes the derivative of WRSS with respect to and sets it
equal to zero:

one obtains:

which does not yield an explicit expression for as a function of the
known quantities and
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STEP 2: FINDING MINIMUM VALUES FOR WRSS - CONCEPTS

The problem of finding a minimum for WRSS in the nonlinear case
can be explained in the context of Figure 8.5.2. An arbitrary function
y(t) is defined by a set of parameters. For example, the function can be
written indicating the parameters and the independent
variable t. WRSS is a function of these parameters. Depending upon
the number of that characterize y(t), WRSS can be a line (the one
parameter case shown in Figure 8.5.1) or a surface (the case with more
than one parameter). In the example given in Figure 8.5.2, there is more
than one “minimum” for WRSS. This is distinctly different from the
linear regression case where there is only one (unique) minimum. The
minima shown in Figure 8.5.2 in mathematical parlance are called local
minima. The difference, then, between linear and nonlinear regression is

that in linear regression these is a “unique” minimum for WRSS while in
the nonlinear case there may be several local minima for WRSS. Among
the local minima, the smallest is called the global minimum. Hence
while in the linear case, the mathematical theory to locate the unique
minimum is well-defined, in this case, one must propose a scheme to
locate these minima, and even when such a minimum is found, one is
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not sure it is the smallest of these local minima, i.e. the global minimum.
The situation is illustrated in Figure 8.5.2.

Finally, there can be different characteristics of the neighborhoods
of the local minima that can affect the iterative process. For example,
if the minimum is shallow, the iterative process can be slow or unsuc-
cessful since the changes in WRSS resulting from new estimates of the
parameters describing y(t) may be very small.

STEP 3: PARAMETER ESTIMATION BY ITERATIVE LINEAR-
IZATIONS

How is the function

fitted to the data in Figure 8.5.1 by iterative linearizations of WRSS?
That is, how is an estimate of found which results in a “satisfactory”
description of the data?

As mentioned at the beginning of this section, one seeks a means
by which to transform the problem from one of estimating a nonlinear
parameter to one of estimating a linear parameter. How can this be
accomplished? One must resort to calculus where it is known that the
function can be expressed as an infinite series called a Taylor
series around a specific value of say

where denotes the partial derivative, and means evaluated at
In writing the Taylor series expansion for one must use

the partial derivative since is a function both of and t; the Taylor
series in (8.5.5) is written for an arbitrary time t. The Taylor series is
an infinite series, i.e. the expression on the right hand side of (8.5.5)
contains an infinite number of terms. Normally, however, one uses a
truncated version of this expression, i.e. a finite number of terms of the
series given on the right hand side of (8.5.5). When this is done, the right
hand side of (8.5.5) no longer equals exactly, but approximates
it with the approximation generally being better as more terms of the
series are retained.

Now assume an initial estimate of is available. The idea behind
linearizing the problem is to assume that the terms in (8.5.5) which
contain derivatives of second order and higher are small and can be
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neglected. This means (8.5.5) can be rewritten:

Notice this equation is now linear in since is known as the assumed
initial estimate of Define:

Equation (8.5.6) can be rewritten:

which is an equation linear in Assuming the weights for the data
are known, one can write the following expression for

For convenience, define a new term:

Equation (8.5.9) can be rewritten:

WRSS can now be considered as a sum of squares of linear func-
tions of and hence can be estimated using the linear regression
machinery. Briefly, in (8.4.6), is substituted for and

One obtains:
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At this stage, a new estimate for can be obtained:

and the process repeated using instead of in the above formulas.
is obviously smaller than since was chosen to

minimize WRSS in the neighborhood of At each iteration, both the
model function and its derivative with respect to the parameter

need to be evaluated at the sample times.
The iterative process, which technically could go on forever, usually

stops when some preset criterion, for example comparing two consecutive
values of WRSS, is satisfied.

STEP 4: PRECISION OF PARAMETER ESTIMATES

The linear regression machinery used to obtain an estimate for can
also be used to obtain an estimate of the precision of this estimate.
Again assume the weights of the data are described using either:

Assume in addition that a WLS estimate of has been obtained. The
straightforward extension of the linear WLS equation, (8.4.7), for
to the nonlinear case provides (using the rationale behind (8.5.12)) an
estimate of denoted for the two choices of respectively:

or
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The derivative term is known:

Therefore, one has respectively

where the estimate for is:

where df, the degrees of freedom, equals N – 1 since there is only one
parameter to be estimated.

In the case of linear regression, the expressions for Var are exact
whereas in the case of nonlinear regression, the two expressions given in
(8.5.15) provide in general only a lower bound approximation of
More precisely, one has

An example of (8.5.19) will be given below.

8.5.3 The Covariance and Correlation Matrices

The above is a consequence of dealing with a nonlinear problem in the
presence of a limited set of noisy data. Some useful theoretical results
are, however, available which hold under certain circumstances. It is
more informative to state them in a general context where there is more
than one unknown parameter. This will accommodate functions y(t)
such as

or

where in (8.5.20) there are two parameters, A and and in (8.5.21) there
are four the ideas carry over to arbitrary functions
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y(t) described by a set of parameters It is convenient to
use vector notation to describe the set of parameters. Hence for a set

one writes:

One says p is a vector of dimension P; the T is the second expression
for p means the transpose of the vector. The dimensions of the vector
of parameters for (8.5.20), and (8.5.21),
are 2 and 4 respectively. Parameter space is denoted

The problem is now to extend the scalar case approximation for the
variance to the P-parameter vector situation; and become
two matrices of dimension PxP, and respectively, and the
inequality given in (8.5.19) becomes:

is the covariance (variance-covariance) matrix of dimen-
sion PxP. is symmetric. For (8.5.20) this becomes:

where and are equal. The diagonal elements are
the variances of the parameter estimates which are positive numbers by
definition and the off diagonal elements are the covariances which may
be either positive or negative.

A simple relation exists between and the standard devia-
tions of Â and as expressed by the inequality

where SD(Â) and are the standard deviations of Â and respec-
tively (cf (8.4.10)). The matrix of normalized quantities, known as the
correlation matrix

is a symmetric matrix since having the elements
on the main diagonal equal to one. From inequality (8.5.25), all the
elements off the main diagonal are in the range between and 1.
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The matrix from the inequality (8.5.23) is the so-called infor-
mation matrix. The generic element of the information matrix

is given for the case a and b by

where an estimate for in the above equation is given by:

For the monoexponential model given by (8.5.20), the matrix M and its
inverse are respectively

Assuming case a, (8.5.27)a applies, and the elements of M are:
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The expressions for case b are derived in a similar fashion.
Prom inequality (8.5.23), the elements of provide a lower bound

for the corresponding elements of the covariance matrix. Therefore, from
(8.5.30), in the approximation for the variance of parameter, say A in
(8.5.20), given by the information matrix, all the elements of M play a
role:

Note it is the terms on the right hand side of (8.5.34) that are provided by
WLS through (8.5.31), (8.5.32) and (8.5.33). Similarly, for the variance
of the parameter and for the covariance between A and the following
inequalities hold:

In order to evaluate the off diagonal terms of the correlation matrix
(8.5.26) from WLS results, note that they are ratio between two terms.
Inequality (8.5.36) provides a lower bound for the numerator, and in-
equalities (8.5.34) and (8.5.35) provide a lower bound for the denomina-
tor. Therefore only an approximation can be derived for their ratio:

Some results are available on how good the computed approximation
of is to The most important ones are the following. The
matrix under the assumption of optimally weighted WLS (see
(8.3.6)), approaches, for a sufficiently large sample size and/or decreas-
ing variance of the measurement error, and the estimate ap-
proaches a Gaussian distribution. If in addition the measurement errors
are Gaussian, then represents the minimum achievable variance-
covariance matrix,usually defined as the Cramer-Rao lower bound. Thus

of an optimally weighted WLS reaches this lower bound with a
sufficiently large sample size. An important result is the equivalence
of WLS with maximum likelihood estimation for the case of Gaussian
independent measurement errors.
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8.5.4 Algorithms and Software for Nonlinear Regression
The steps of nonlinear least squares estimation have been illustrated

in §8.5.2 using what is called a Gauss-Newton iterative scheme. This
outlines the principles of that class of algorithms which requires the
computation of derivatives. These are referred to as gradient methods.
Numerically efficient algorithms, e.g. the Levenberg-Marquart technique,
based on the Gauss-Newton method are available and are implemented
in many software tools.

Another category of algorithms for minimizing WRSS which has been
applied in compartmental model parameter estimation is one that does
not require the computation of the derivatives. These algorithms are
known as direct search methods, and both deterministic and random
search algorithms are available. An efficient deterministic direct search
algorithm is the simplex method. Other derivative free algorithms are
available. It is worth emphasizing that with a direct search method,
the estimation of is not required. Albeit a direct comparison of
gradient versus direct search methods is difficult and may be problem
dependent, available experience in compartmental model parameter es-
timation tends to favor the gradient type methods.

There are many software tools that both simulate (solve model equa-
tions) and optimize the model parameters to obtain a best fit to a set
of data. Which tool is best for a given situation can depend upon the
nature of the problem being solved.

8.5.5 The Effect of Weights

In §8.4.3, an example of the effect of how weights affect WLS parame-
ter estimates and their precision in the linear regression case were given.
In this section, two examples for the nonlinear regression case will be
given. The first will examine the monoexponential decay
this will focus on estimates of and The second will examine the
monoexponential decay This function is characterized by
two parameters, A and the former is a linear and the latter a nonlin-
ear parameter. This example will focus both on the parameter estimates
and their precision, and on the correlation between them,

Example 1

Consider the data given in Table 8.5.1 shown below in Table 8.5.2A,
and assume that the variance is known (case a - absolute weights). Con-
sider two situations. In the first, there is a constant standard deviation
of 0.05 assigned to each datum while in the second, a constant fractional
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standard deviation equal to 10% is assigned to each datum. The weights
are calculated as The two situations are summarized in
the table.

When the function is fitted to these data using the two
weighting schemes, an estimate of and is obtained. Table 8.5.2B
and Figure 8.5.3 summarize the results. The estimate of and its pre-
cision clearly depend upon the weighting scheme. This observation un-
derlines the importance of knowing the error structure in the data.

Now consider the situation where the variance associated with
is known up to a proportionality constant (case b - relative weights) and
assume as before two different weighting schemes shown in Table 8.5.3A.
According to the first scheme, the variance is known to be constant
but its value is unknown so that whence In the
second scheme, a constant but unknown fractional standard deviation is
assumed, that is whence

When the function is fitted to these data using the two
weighting schemes, an estimate of and is obtained. Table 8.5.3B
summarizes the results.

Note that as in the linear regression case, is the same when the
structure of the variance is the same, i.e. when a constant value for the
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variance is assumed, and this is either known or unknown, or similarly
when a constant fractional standard deviation is assumed that is either
known or unknown. The reason is that in (8.5.12) doesn’t change if
all weights are multiplied by a constant factor. On the other hand, the
variance of the estimates is different in case a and b but their relation-
ships, which can be predicted from (8.5.15)a and (8.5.15)b, are the same
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as the linear case (see §8.4.3). For instance, for the constant variance
case, the proportionality factor between for case a and b is equal
to the ratio between 0.0025 ( for case a) and 0.00097 (estimate

of case b).

Example 2

Consider next the same data and weighting schemes as those used
in Example 1, but assume now that the monoexponential function to
be fitted to the data is not but i.e. both
the coefficient A and the exponential are parameters to be estimated
from the data. The results for cases a and b are summarized below in
Tables 8.5.4 and 8.5.5.

The plot of the data versus the fitted values and the weighted residuals
are shown in Figure 8.5.4

The fractional standard deviations of the estimates have been calcu-
lated from the covariance matrix. For instance, for case a with
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the matrix is

while the correlation matrix is given by

For case b with and

and

Note that as in the previous examples, there is a constant proportion-
ality factor equal to between the covariance matrix of case a and
b. As a consequence, the correlation matrix is the same.
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8.6 TESTS ON RESIDUALS FOR GOODNESS
OF FIT

8.6.1 Introduction

Up to this point, the assumption has been made that the model is
correct, i.e. that provides the correct functional description
of the data given in §8.4, or and provide
the correct functional description of the data given in §8.5. In this case,
from the comparison between the equation describing the data (8.3.1),
e.g. for the latter case

and the definition of the residuals

one can immediately conclude that the residuals given in (8.6.2)
reflect the measurement errors given in (8.6.1). For this in fact to
be true, two conditions must hold: (i) the correct model or functional
description of the data has been selected, and (ii) the parameter esti-
mation procedure has converged to values (e.g. Â, in (8.6.2)) close to
the “true” values. The sequence of residuals can thus be viewed as an
approximation of the measurement error sequence.

One can check if the above two conditions hold by testing the assump-
tions made on the measurement errors on the sequence of residuals. As
discussed in previous sections, the measurement error is usually assumed
to be a zero mean, independent random process having a known vari-
ance, at least up to a proportionality constant. These assumptions can
be checked on the residuals by means of statistical tests. This analy-
sis can reveal the presence of errors in the model structure, i.e. in the
above example if is not an appropriate model for a
given set of data, or the failure of the parameter estimation procedure
to converge, i.e. if Â and are not close to the true values for A and
As will be discussed in §8.6.3, the analysis of the residuals can also be
used to check and modify the assumptions about the error structure.

8.6.2 Tests for Independence of Residuals

Randomness of the residuals can be tested visually using a plot of
the residuals versus time. It is expected that the residuals oscillate
around their mean, which should be close to zero, in an unpredictable
way. Systematic residuals, i.e. a long run sequence of residuals above or
below their mean suggests that the model is an inappropriate description
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of the system since it is not able to describe a non-random component
of the data. In Figure 8.6.1 a typical plot is shown for a sequence of
independent and correlated residuals.

A formal test of nonrandomness of residuals is the runs test. A run is
defined as a subsequence of residuals having the same sign (assuming the
residuals have zero mean); intuitively a very small or very large number
of runs in the residual sequence is an indicator of nonrandomness, i.e.
of systematic errors in the former and of periodicity in the latter case.

Formally, let R be the number of runs in a sequence of N residuals
having positive and negative values. Clearly Under
the assumption that the elements of the sequence are independent, R is
the outcome of a random variable having a distribution which tends,
as and become large (the approximation is good when and

are both larger than 10) to the normal distribution with
mean and variance equal to:

For the residuals shown in Figure 8.6.1 A, and
Using (8.6.3) and (8.6.4), and whence,

for this situation, The number of runs is
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On the other hand, for the residuals shown in Figure 8.2.1B,
and How these values for R can be

used to test the independence hypothesis will be described below.
The question is now the following: is the actual value of R consistent

with the statistical description of the process? If the answer is yes,
it means that the original hypothesis of independence of residuals is
correct. If the answer is no, the hypothesis is to be rejected. The
question can itself be answered in statistical terms by identifying the
region where, with probability the values of the random variable

falls. Usually the level of significance of  the test, is small (e.g.. 5%)
so that it is very unlikely that assumes values out of this region, called
the acceptance region of the test. This is illustrated in Figure 8.6.2 for
the residuals shown in Figure 8.6.1A.

If the actual value R falls within the acceptance region, it means
that it is compatible with the original hypothesis of independence, and
there is no strong reason to question it. On the other hand, a value
R outside the range, usually lower than the lower bound of the region
thus revealing a systematic error, is unlikely if the original hypothesis
was true, therefore the hypothesis of independence is to be rejected.
The error associated with this decision, i.e. the error occurring when
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the original independence hypothesis is true, but R falls in the region of
rejection can be quantified and is in fact equal to This possible error
is usually called a type I error. Nothing can be said for a type II error,
i.e. accepting the hypothesis when in fact it is false.

The upper and lower bounds of the acceptance region satisfy the fol-
lowing equations:

where p is the normal density function of
These tests, because each situation requires a knowledge of it own

are cumbersome. In order to perform the test more easily, it
is convenient to standardize by means of the transformation

is a normally distributed random variable (0,1) with zero mean
and unit variance. The transformed actual value is to be
compared with an acceptance region having and as lower
and upper bounds respectively which satisfy:

where and denote the standard normal density and distribution
function respectively. These functions are tabulated in many statistics
textbooks, and from these tables one can easily evaluate and
for a given significance level , For example, with
and

For the residuals given in Figure 8.6.1 A where
and Thus at a significance level of 5%, one
can accept the hypothesis on the independence of the residuals. For the
residuals given in Figure 8.6.1B. and the hypothesis on the
independence of the residuals should be rejected.

The runs test has been presented in this section as a two-tail test where
nonrandomness of the residuals is related to either small or high values of
R indicating systematic errors or periodicity respectively. However, the
test is often applied as a lower tail test, and in this use, the hypothesis
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of no systematic errors in the data is tested by checking whether or not
For a given level of significance now satisifies:

For example with
In the preceding discussion, the procedure of performing the test con-

sists of identifying the acceptable region of or equivalently of for
a given level of significance and checking whether or not the actual
value Z falls in this region. An alternative procedure is to calculate
the probability that the random variable assumes a value equal to or
more extreme than the actual value. This probability is called P value.
A small value of P, less than a significance level indicates that the test
assumption is to be rejected. Therefore, in order to test the hypothesis
of no systematic errors in the data, one has to evaluate the probability
that assumes a value equal or lower than the actual value:

A small P value indicates that the actual number of runs assumes a very
unlikely value, much less than expected from the statistical description of
the experiment. Therefore the underlying assumption of independence
of residuals is to be rejected.

8.6.3 Test on the Variance of the Measurement Error

As has been discussed in previous sections, WLS estimation requires
specific assumptions on the variance of the measurement errors which
must be known or known up to a proportionality constant. If the model
is correct, the residuals must reflect these assumptions.

Consider first case a given by (8.3.4a) where the variance is known,
and the weights are assigned equal to the inverse of

the variance. The weighted residuals are:

They are an approximation of the measurement errors normalized to
their standard deviations; therefore, they should be a realization of a
random process having unit variance.

Similarly in case b given by (8.3.4)b where the variance is known up to
a proportionality constant, that is, and the weights
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are assigned proportional to the inverse of the variance, the weighted
residuals are

They should be a realization of a random process having a constant
variance equal to the unknown factor

By plotting the weighted residuals versus time it is thus possible to
test visually the assumptions on the variance of the measurement errors.
Weighted residuals should lie in a constant wide band symmetrical with
respect to the time axis. In case a, the variance of the weighted residuals
should equal 1 while in case b the variance is unknown and can only be
estimated a posteriori from (8.5.28). A typical plot of weighted residuals
are shown in Figure 8.6.3.

A pattern of residuals different than expected indicates either the
presence of errors in the functional description of the data or that the
model is correct but the measurement error model is not appropriate. In
this case, it is necessary to modify the assumptions on the measurement
error structure. Some suggestions can be derived by examining the plot
of the residuals versus either the observed or predicted values.
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As an example, consider the case where the variance of the measure-
ment error is assumed to be constant. The residuals are expected to be
confined in a constant wide region. If their amplitude tends to increase
in absolute value with respect to the observed value, a possible explana-
tion is that the variance of the measurement error is not constant thus
suggesting a modification of the assumptions on the measurement error
variance.

In case a, a formal test on the variance of weighted residuals can also
be applied; this test is exact for linear regression with gaussian measure-
ment errors while it is approximated in the general case. Consider the
weighted residual sum of squares WRSS

Under the hypothesis that the weighted residuals are independent with
unit variance, WRSS is the outcome of a random variable distributed
approximately as a Chi-square statistic with a number of degrees of
freedom equal to N – P, the number of data points minus the number of
unknown parameters. It is now possible to test the original assumption
of unit variance for the weighted residuals by defining, as outlined before
for the runs test, the region where, with probability the values
of the random variable fall. If and denote the lower and
upper bound of the region,

where and are the Chi-square density and distribution
functions respectively having N — P degrees of freedom. These are tab-
ulated in many statistical textbooks. For example, if and

and
A value of WRSS within the acceptance region indicates that the

weighted residuals are likely to have unit variance. Conversely, a value
of WRSS outside the acceptance region indicates that the deviations
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between the data and model fit are not compatible with the assumptions
on the measurement errors due to errors either in the model structure
or in the statistical description of the measurement errors.

Since in most cases these errors result in a WRSS value greater than
expected, the test is often performed as an upper tail test, the acceptance
region has as an upper bound where for a given level of
significance satisfies

As for the runs test, one can evaluate the P value which is now equal
to the probability that assumes a value equal or even larger that the
actual value:

A small P value indicates that WRSS assumes a very unlikely value,
much larger than expected from the statistical description of the ex-
periment. Therefore, the underlying assumption of unit variance of the
residuals is to be rejected.

Example

Consider the plot of the residuals given in Figure 8.6.1 A. They result
from fitting the monoexponential function to the data in
Table 8.6.1 assuming or equivalently

The estimated parameters are and
It appears that the residuals are randomly scattered around the origin.
The runs test gives and The mean and
standard deviation of the asymptotic distribution of the number of runs
is: and . The actual number of runs is and
the standardized value Z is within the region of
acceptance when with a P value greater than 50%, therefore
the independence assumption can be accepted.

To test visually the assumptions on the variance of the measurement
error, consider the plot of the weighted residuals in Figure 8.6.4. Most
residuals lie between -1 and 1 indicating that they are consistent with
the above assumptions. Apply the test. The weighted residual sum
of squares is and the degrees of freedom is 22. From
the distribution, the acceptance region when the level of significance
is 5% is bounded by 10.98 and 36.78. WRSS lies in this region with a
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P value greater than 10%. Therefore the WRSS value is consistent with
the test hypothesis of unit variance for the weighted residuals.

8.7 TESTS FOR MODEL ORDER
8.7.1 Introduction

Up to this point, only the problem of testing whether or not a specific
model is an appropriate description of a set of data has been examined.
Consider now the case where different candidate models are available,
and the problem is to select the model which provides the best descrip-
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tion of the data. For example, when performing multiexponential mod-
eling of a decay curve

the model order, that is the number n of exponentials, is not known a
priori. A mono-, bi- and triexponential model is usually fitted to the
data, and the results of the parameter estimation procedure evaluated
so as to select the optimum order, i.e. the “best” value for n.

Relying solely upon WRSS and an examination of the weighted resid-
uals to determine the optimum model order is not appropriate since, as
the model order increases, WRSS will decrease. For example, in dealing
with a tracer decay curve following a bolus injection of material, each
additional exponential term to the sum of exponentials will decrease
WRSS. Similarly, the pattern of residuals will become more random.
However, each time an exponential term is added, two parameters are
added (a coefficient and an exponential), and the degrees of freedom
are decreased by two. Thus intuitively, while comparing different model
structures both WRSS and the degrees of freedom should be evaluated,
in order to check whether or not the reduction of WRSS truly reflects
a more accurate representation of the data, or is the mere result of the
increase in the number of parameters, additional tests are required. Two
tests are available that can help in making this decision; they are sum-
marized below. It should be noted that these tests must be viewed as
complementary to those described in the previous section.

8.7.2 Three Tests for Model Order

The two tests which are frequently used to compare model structure
are the F-test and tests based on the principal of parsimony. It is beyond
the scope of this text to go into the details of these tests, but the ideas
behind them are illustrated below.

F-test:

The F-test can be used in general to compare two models belonging
to the same class, e.g. sums of exponentials describing decaying data,
which have a different order, i.e. a different number of parameters. For
example, consider two different sums of exponentials models. Denote
these two different models by and respectively. Let and

be the number of parameters where associated with
and respectively.
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Suppose WLS has been performed using the models and
with and being the value of the residual sum of squares
respectively. Define the F ratio:

where N is the number of data.
Under the hypothesis that model is correct, F is the outcome

of a random variable having an asymptotic Fisher distribution with
degrees of freedom. The hypothesis is to be rejected

when model reduces significantly WRSS, i.e. the actual F is larger
than predicted from the statistical description of the process. Therefore,
for a given level of significance of the test, the acceptance region has
the lower bound equal to zero, and the upper bound

where f and F are the F density and distribution functions respectively,
having degrees of freedom. If the actual value of F
is greater than the higher order model has to be used. For
instance, when and

The test can also be formulated by evaluating the P value, that is the
probability that the random variable assumes values equal to or even
larger than the actual value F:

If P is small, the test hypothesis on the correctness of is to be
rejected.

Tests based on the principle of parsimony:

These tests implement the principle of parsimony, i.e. choose the
model which is best able to fit the data with the minimum number
of parameters. The Akaike information criterion (AIC) and the Schwarz
criterion (SC) are the most commonly used. More than two models can
be compared and the model which has the smallest criterion is the best.

If one assumes an optimally WLS has been used and that errors in
the data are uncorrelated and gaussian, then the criteria are:
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if

or if

where P is the number of parameters in the model and N are the number
of data.

While having different derivations, AIC and SC are similar as they
are made up of a goodness-of-fit measure plus a penalty function pro-
portional to the number of parameters P in the model. Note that in
SC, P is weighted with ln(N ) , i.e. with large N, this may become im-
portant. Therefore, given the usual small-size data sets encountered in
tracer kinetic studies, i.e. or 30, it is usually good to select the
model order by examining the information coming from both tests and
from the F-test.

8.7.3 Two Case Studies

While tests for goodness of fit and tests for model order have been
discussed separately to illustrate the individual point, they should in
fact be conducted simultaneously. The following case studies provides a
framework for such a complete model testing process

Case Study 1

Consider the data given in Table 8.7.1; these data are radioactive
tracer glucose concentrations measured in plasma following an injection
of tracer at time zero. The time measurements are minutes, and the
plasma measurements are dpm/ml. The experiment was performed in a
normal subject in the basal state [Cobelli et al., 1984]. In order to select
the order of the multiexponential model which is best able to describe
these data, a one, two and three exponential model can be considered:

The measurement error is assumed to be additive:
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The errors are assumed to be independent Gaussian with zero mean
and an experimentally determined standard deviation

These values are shown associated with each datum in Table 8.7.1. The
three models are to be fitted to the data by applying weighted nonlinear
regression with the weights chosen equal to the inverse of the variance
(i.e. case a). The plot of the data and the model predictions with the
corresponding weighted residuals are shown in Figure 8.7.1; the model
parameters are given in Table 8.7.2.

For the one and two exponential model, all parameters can be es-
timated with acceptable precision while some parameters of the three
exponential model have very high values for the fractional standard de-
viation. This means that the three exponential model cannot be resolved
with precision from the data; in fact, the first exponential is very rapid

and has practically vanished by the time of the first
available datum, min. The other two exponential terms have val-
ues similar to those obtained for the two exponential model. In addition,
the final estimates of and are also dependent upon the initial es-
timates; that is, starting from different initial points in parameter space,
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nonlinear regression yields different final estimates while producing sim-
ilar values of WRSS. Therefore the three exponential model is not a
posteriori or numerically identifiable, and can be rejected at this
stage. One can now compare the mono- and biexponential fits. Non-
randomness of the residuals for the monoexponental model is evident
since the plot reveals long runs of consecutive residuals of the same sign.
The runs test allows one to check the independence formally, and from
the values of Z one can conclude that the residuals of the two exponen-
tial model is consistent with the hypothesis of independence since the
Z value lies within the 5% region of acceptance or equiva-
lently the P-value is high. Conversely, for the one exponential model, the
Z value indicates that the hypothesis of independence is to be rejected,
with a P value less than 0.5%.

Most residuals for the two exponential model lie between and 1
indicating they are compatible with the assumptions on the variance of
the measurement error. On the other hand, only a few of the residuals
of the one exponential model fall in this range. To test formally if the
weighted residuals have unit variance, as expected if the model and/or
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assumptions on the variance of the measurement error are correct, the
can be applied. For the one exponential model, the degrees of

freedom and, for the level of significance equal to
5%, the region of acceptance is [16.8,47.0]. Since WRSS is greater than
the upper bound 47.0, the assumption of unit variance of the residuals
has to be rejected with a P-value less than 0.5%. For the two expo-
nential model, the P-values are higher, and WRSS lies within the 5%
region which is equal to [16.05,45.72], indicating that the residuals are
consistent with the unit variance assumption. WRSS decreases, as ex-
pected, when the number of parameters in the model increases. The
F test indicates that the two exponential model reduces WRSS signifi-
cantly when compared with the one exponential model since the F value
is greater than evaluated for a 5% level of significance from
the distribution. Similar conclusions can be derived from AIC
and SC which assume their lower values for the two exponential model.
The results are summarized below in Table 8.7.3.

One can conclude that the two exponential model is the most appro-
priate multiexponential description of the data since it is best able to fit
the data with the minimum number of parameters all of which can be
estimated with good precision.

Case Study 2

The data shown in Table 8.7.4 are from a tracer glucose kinetic study
in sheep in the basal state [Gastaldelli et al., 1997]. As was the situa-
tion with the previous case study, radioactive tracer glucose was injected
into plasma at time zero, and sequential plasma samples were quanti-
tated for tracer glucose concentrations. In this case, a two, three and
four exponential model were fitted to the data; by plotting the data
semi-logarithmically, it is clear that the monoexponential cannot fit the
data. A measurement error having a constant but unknown fractional
standard deviation was assumed. The weights are chosen in this case to
be proportional to the inverse of the variance (case b) given by
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where is unknown and to be estimated from the data, and thus

The plot of the data versus model predictions and the respective
weighted residuals are shown in Figure 8.7.2. The results of fitting
the data to the two, three and four exponential model are given in Ta-
bles 8.7.5 and 8.7.6, where the a posteriori estimate of of the square
of the unknown fractional standard deviation of the measurement error
are also shown.

Briefly, the parameters of the four exponential model cannot be esti-
mated with acceptable precision, indicating that this model is too com-
plex to be resolved from the data. On the other hand, the two exponen-
tial model is not able to fit the data since the residuals are nonrandom.
The test on WRSS cannot be applied here since it requires that the
variance of the measurement error is known (case a). The three tests for
model order, the F-test, AIC and SC, all indicate that the three expo-
nential model provides the best description of the data. Note that the
negative values for AIC and SC arise from the use of (8.7.7) and (8.7.8).
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8.8 DERIVED STATISTICS
Up to this point, the focus has been on obtaining a best fit of a function

y(p, t) to a set of data. Suppose a best fit has been obtained with
and that is known. Whereas p are the primary parameters
characterizing the function, often what is wanted, after and
have been estimated, is a parameter which can be calculated from p
through some algebraic manipulation. While it is straightforward to
calculate the value of this parameter, the estimation of the error of the
derived parameter value resulting from the estimated errors of p requires
some background.

For example, consider the function

discussed in §8.5.3. From nonlinear regression analysis, estimates of A,
and the variances and covariance of A and were obtained. As has

been discussed in Chapter 3, to estimate some of the kinetic parameters
one needs an estimate of the area under the curve (AUC) of
It is known that this area is equal to The problem is how can one
obtain an error estimate of this derived parameter knowing the estimated
errors of the A and

Derived statistics refers to estimating the variances and covariances
of functions of the primary parameters characterizing a function. The
solution to the problem is nontrivial.

An approximate expression for the variance of the derived parameters
is available similar to the one indicated in §8.3.6 for error propagation.
The difference here is that primary parameters are usually correlated,
therefore not only their variance but also the covariance among them
determine the variance of the derived parameters.

Consider the example provided by (8.8.1), and let be a
generic derived parameter. If Â and denote the estimated values for
A and the derived estimate for is

The variance associated with can be approximated by propagating
the variances and   and covariance using the
following formula:
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Using (8.8.3) applied to (8.8.1) to estimate the “area under the curve”,
can be written and

or equivalently

Formula (8.8.3) can be easily extended to the general situation where a
derived parameter depends upon more than two primary parameters.

It is important to note that many software tools will automatically
generate the derived statistics. Thus the user can specify both the model
function y(p, t) and the derived parameters and, as part of the
fitting process, obtain estimates for p and and errors of these estimates.
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Chapter 9

PARAMETER ESTIMATION IN
NONCOMPARTMENTAL
MODELS

9.1 INTRODUCTION

9.1.1 What is Needed?

From the tables listing the formulas for the accessible pool and system
kinetic parameters for the one and two accessible pool models given in
Chapter 3, one sees that, depending upon how the tracer is introduced
into the system, to estimate the parameters certain information is nec-
essary. The best way to obtain this information is through a functional
description of the data. Once a particular function such as a sum of
exponentials has been chosen, the parameters of the function can be
estimated using the techniques described in the previous chapter.

In this Chapter, how to use the information on parameter estimation
given in the previous chapter to estimate the noncompartmental param-
eters will be given. It will be seen that for the canonical inputs of tracer,
i.e. the bolus injection, the constant infusion, or primed infusion, sums
of exponentials are used. A number of other numerical methods can also
be used both for the canonical inputs of tracer as well as generic inputs
of tracer such as a staircase infusion where using sums of exponentials
can be more difficult. These will be discussed briefly in §9.1.2. The
goal in this Chapter is to provide the reader with a means by which the
parameters can be estimated with confidence.

283
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9.1.2 Numerical Methods

There are a number of numerical methods that are used to estimate
or hereafter referred to as the area under the curve

and or hereafter referred to as the mean area
under the curve (or under the first moment curve) MAUC. To exemplify
the nature of the problem, suppose a set of data are collected starting
with the first sample at time and the last sample at time Noting,
for example, that , the question is how to deal with the
integral over the interval from time 0 to and from time to infinity.
One can write

To evaluate many use “graphical” techniques such as the
trapezoidal rule; while this is an easy and convenient method, it can
systematically over or underestimate the area for a bolus injection or
constant infusion set of data respectively. The real problem to be solved
is how to extrapolate to time zero and infinity.

The problems can be illustrated using the data shown in Figure 9.1.1.
These data were collected following a bolus injection of dpm
of radiolabeled material into a subject; the serial plasma samples are
quantitated in concentration units of dpm/ml. In the nomenclature of
Chapter 3, the bolus dose d is A steady state concentra-
tion of tracee of l00mg/dl was also measured. In the nomenclature of
Chapter 3, this is C, the tracee concentration.

Suppose one wishes to use the trapezoidal rule to estimate AUC and
MAUC for the data shown in Figure 9.1.1. Denoting the datum
and noting and then

It is clear what the problems are. First, since these are a decaying set of
data, (9.1.2) will overestimate the true AUC. There are more sophisti-
cated methods which solve this problem, e.g. by using an interpolating
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polynomial or spline function. Even if this problem is dealt with using
these methods, one is left with the problem of estimating and

What zero time value should be chosen? Prom Figure 9.1.1C,
it is clear there are many options. One can use linear regression tech-
niques to extrapolate to time zero using the first two or three data;
there are no rules. However, AUC between time 0 and 5 can contribute
a significant amount to AUC depending upon how “y(0)” is estimated.
Similarly with there are no set rules on how to extrapolate
to infinity.

As seen in the next section and illustrated by the examples in this
Chapter, sums of exponentials are very easy to use and appropriate for
the canonical input of tracer. As noted there may be instances such as
a staircase input of tracer when other numerical techniques are more
suitable (e.g. based on interpolating polynomials or spline functions).

9.1.3 Using Sums of Exponentials

The remainder of this chapter will focus on using sums of exponen-
tials to estimate the noncompartmental model parameters. The reasons
why exponentials are chosen are twofold. The first reason, as explained
in Chapter 4, is that sums of exponentials are the mathematical solu-
tion of systems of linear time-invariant differential equations character-
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izing compartmental models when a tracer experiment is conducted on a
steady state tracee system, e.g. with the tracer administered as a bolus,
constant infusion or primed constant infusion. The second reason is that
extrapolations are easy using these functions.

For example, if one uses

to describe a set of tracer data collected either in terms of concentration
c(t) or tracer-tracee ratio z(t) from the accessible pool following a bolus
injection of tracer into that pool, one has

and

Equation (9.1.5) provides the required zero time estimate for the concen-
tration c(0) or tracer-tracee ratio z (0). The coefficients and the ex-
ponentials are estimated from the data using the techniques described
in Chapter 8 and Appendix G. With this information and knowing the
dose d and tracee concentration C, the noncompartmental parameters
can be estimated and, using the techniques given in §8.8, the precision
of these estimates can be obtained.

For the canonical input of tracer, that is the bolus injection, constant
infusion, or primed infusion of tracer, the general expression for y(t) is
given by (9.1.8).

Suppose the data are obtained at sample times
Once initial estimates of the coefficients and exponentials

are determined as explained in Appendix G, one can apply the theory
introduced in Chapter 8 by defining the weighted sum of squares of
residuals

where
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is the vector of parameters to be estimated. Applying the theory intro-
duced in Chapter 8, estimates of the parameters and their precision is
obtained. An assessment of the goodness of fit can be made. Finally, a
selection of how many exponentials are required in order to obtain a best
fit can be made by using the tests described in Chapter 8 to compare
exponential models.

In summary, obtaining and assessing the “best fit” of an exponential
function involves the following:

1. selecting the number of exponential terms n to be used;

2. obtaining initial estimates for the and

3. assigning weights to the data;

4. using nonlinear regression to calculate p which minimizes WRSS;

5. using tests to assess the goodness of fit; and

6. determining the best value for n.

Once the data have been described by sums of exponentials, one can
proceed to estimate the noncompartmental model parameters and their
precision. This relies on the theory introduced in §8.8 dealing with
derived statistics. Several examples will be given illustrating the points
made in this Chapter.

9.2 THE SINGLE ACCESSIBLE POOL
MODEL: FORMULAS FOR KINETIC
PARAMETERS

9.2.1 Introduction

In this and the following section, how to estimate the accessible pool
kinetic parameters given in Tables 3.2.3 and 3.2.4, and the system kinetic
parameters given in Tables 3.3.3 and 3.3.4 using sums of exponentials
will be discussed for the canonical input of tracer, i.e. the bolus injection,
the constant and primed constant infusion. In this section, the formulas
will be given using sums of exponentials, and in the next section, several
examples will be discussed which illustrate the formulas. These will
draw on the material presented in Chapter 8 in terms of evaluating the
noncompartmental parameters and estimating their precision.

9.2.2 The Bolus Injection

From Tables 3.2.3 and 3.2.4 for the accessible pool and Table 3.3.2
and 3.3.3 for the system kinetic parameters, what is required is knowing
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the initial dose d and tracee concentration C, and obtaining estimates of
z(0) or c(0) and the integrals or and or

It is assumed that d and C are known from measurements.
Suppose one has fit the following sum of exponentials to a set of data:

Then as noted previously,

provides an estimate for the zero time value z(0) or c(0). The integral
given

provides an estimate of or Finally, the integral

provides an estimate of or
If the data are quantitated in terms of z(t), then using Tables 3.2.3,

one has

The remaining accessible pool parameters can be calculated from the
formulas given in Table 3.2.3. Finally,

The remaining system kinetic parameters can be calculated from the
formulas given in Table 3.3.3.

If the data are quantitated in terms of c(t), then using Tables 3.2.3,
one has
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The remaining accessible pool parameters can be calculated from the
formulas given in Table 3.2.4. Finally,

The remaining system kinetic parameters can be calculated from the
formulas given in Table 3.3.4.

9.2.3 The Constant Infusion

From Tables 3.2.3 and 3.2.4 for the accessible pool and Table 3.3.2
and 3.3.3 for the system kinetic parameters, what is required to estimate
the parameters is the plateau value z or c, an estimate of the slope at
time zero or and an estimate of the integral or

For the constant infusion, suppose the following sum of
n exponentials provides a functional representation of the data:

The constraint on thecoefficients which guarantees
that is formally derived in Appendix H. This constraint must
be incorporated in the exponential model which describes data from a
constant infusion experiment.

In (9.2.11), estimates the plateau value z or c. In addition, since

one has

which provides an estimate for or . Finally to calculate
or which has to be integrated, one has

whence

provides an estimate for or
For the case when the data are quantitated in terms of z(t), using

Tables 3.2.3 and 3.3.3, one has
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The remaining parameters are calculated from the formulas in Tables 3.2.3
and 3.3.3.

Similarly when the data are quantitated in terms of c ( t ) , using Ta-
bles 3.2.4 and 3.3.4, one has

The remaining parameters are calculated from the formulas in Tables 3.2.4
and 3.3.4.

9.2.4 The Primed Constant Infusion

From Tables 3.2.3, 3.2.4, 3.3.3 and 3.3.4, what is required to estimate
the kinetic parameters following a primed, constant infusion of tracer is,
for data quantitated in terms of z ( t ) , z(0), the plateau value z, and the
integral For data quantitated in terms
of c(t), what is required is c(0), the plateau value c, and the integral

For the primed, constant infusion, suppose the following sum of n
exponentials provides a functional representation of the data:

The constraint among the parameters in this situation is more complex
than for the constant infusion situation. It is given by

The derivation of this constraint is given in Appendix H. This constraint
must be incorporated in the exponential model which describing data
from a primed constant infusion experiment.
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Then, as before, y(0) can be used to estimate z (0) or c(0), and
can be used to estimate the plateau z or c. The required integral can be
estimated

With this information, all kinetic parameters can be estimated.
Finally, for either the constant or primed, constant infusion, infor-

mation is available if data are collected during the washout phase. In
particular, (3.3.12) and (3.3.13) provide formulas for which can
be calculated from the washout data assuming that a plateau has been
reached at the time T when the infusion stops. What is needed is either

or . These integrals can be estimated as follows. The
rising portion of the curve can be described by

and the washout by

with

where is the value of the function describing the rise at time
T. This constraint guarantees the continuity of the response at time
T. Additional constraints exist between the coefficients and

of the rising and falling portion of the data; these are de-
rived in Appendix H and must be considered when using this exponential
model.

One can easily show that

Equation (9.2.27) can be used to estimate using the formulas
given in Table 3.3.3 or 3.3.4.

9.3 THE SINGLE ACCESSIBLE POOL
MODEL: ESTIMATING THE KINETIC
PARAMETERS

9.3.1 Introduction
In this section, a number of examples will be given. For each, it will

be assumed that one has determined the model order, i.e. the num-
ber of exponentials required to describe each set of data, and assessed
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the goodness-of-fit using the techniques discussed in Chapter 8. This
information will not be summarized in the table of results.

It should be clear by now that to estimate the noncompartmental
parameters, the most time consuming steps deal with the determination
of the model order and testing for goodness-of-fit. These were discussed
in detail in Chapter 8, and were illustrated in the two case studies in §8.7.
In addition, for each model, i.e. for each sum of exponential to be fitted
to a set of data, initial estimates for the coefficients and exponentials
are required. How to obtain these is discussed in Appendix G.

Once the investigator has selected the appropriate model to describe
the data, it is easy to use the formulas given in §9.2 to estimate the
noncompartmental parameters.

9.3.2 Example: Bolus Injection

In §8.7, Case Study 1 was a glucose turnover study in a 50.85 kg human
in which dpm of labeled glucose was injected as a bolus, and
the measured steady state concentration C was 100 mg/dl. It was found
that the two exponential model pro-
vided the best fit of the data. Here
and Knowing these coefficients and exponentials, and
the initial dose and steady state concentration, the formulas given in
Tables 3.2.4 and 3.3.4 can be used to estimate the noncompartmental
accessible pool and system parameters. In addition, knowing the preci-
sion of the estimated primary parameters and one can
derive, using the approach discussed in §8.8, the precision of the non-
compartmental parameter estimates. This is most conveniently done
using an appropriate software program. The results are summarized in
Table 9.3.1.

Case Study 2 in §8.7 was a glucose turnover study in sheep. Re-
call that the differences between the two case studies was used to illus-
trate absolute (Case Study 1) and relative (Case Study 2) weighting.
In Case Study 2, the three exponential model

provided the best fit of the data. Hence
and

. Knowing that the initial dose was and the
steady state concentration was 80mg/dl, the accessible pool and system
parameters can be estimated as illustrated above for Case Study 1. The
results are summarized in Table 9.3.2.

The selection of the model order is important. In fact, the question
arises as to how the noncompartmental parameter estimates can change
as a function of the model order. The interested reader should use the
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data from either case study in §8.7, and evaluate the parameters using
the different models tested. For example, for Case Study 2, the estimated
volume using the two exponential model is 1963ml. Comparing this
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with the estimate of 1709ml, the biexponential model overestimates the
volume by 15%. It should also be noted that the precision of both
estimates is quite good. For the two exponential model, the fractional
standard deviation of 1963ml is 3%. Just because the precision is good
does not mean the estimate is the best estimate. The point is that
it is absolutely necessary to select the most appropriate model before
estimating the noncompartmental parameters.

9.3.3 Example: Constant Infusion

To illustrate how sums of exponentials can be used to estimate the
noncompartmental parameters from a constant infusion study, consider
the data shown in Figure 9.3.1; these are the data that are discussed
in Appendix G in Figure G.16. In this experiment, the infusion rate
was 400000dpm/min for 300 minutes; the total amount of tracer ad-
ministered was The steady state tracee concentration was
50mg/ml.

The two exponential model

where provided the best fit of the data assuming a con-
stant coefficient of variation of 10% for the data. Initial estimates for the
coefficients and exponentials were obtained as described in Appendix G,
and the tests for goodness-of-fit and model order were performed as de-
scribed in Chapter 8. The best fit of the data is shown in Figure 9.3.1
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together with the weighted residuals. The results of the parameter esti-
mation are summarized in Table 9.3.3

As shown in Appendix G, Figure G.18, data were also collected during
the washout phase of this experiment. Thus an alternate formula can
be used to estimate from the washout phase:

where is the time at which the infusion stops. It is assumed
that a plateau value has been reached at time T. The washout portion
of the curve can be described by

As described in Appendix H, the constraints between the in (9.3.3)
and in (9.3.1) are
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The results of fitting the model described by (9.3.1) and (9.3.3) to all of
the data from time zero to 500 are summarized in Figure 9.3.2 and Table
9.3.4, where again a constant coefficient of variation of 10% is assumed
for the data.

Notice the estimates for the coefficients and and the exponen-
tials and are slightly different from those given in Table 9.3.3 where
only the rising portion of the curve was being fitted. This is because the
washout phase has been added to the data set.
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More importantly, notice that and and and will be
equal but opposite respectively if a plateau is effectively reached at time
T. This is because in the constraints and

the exponential terms should be zero. However, as can
be seen in Figure 9.3.2, a plateau is not reached. The result is that
for which means Thus the two
integrals required to estimate given in Table 3.4.4 will not be
equal meaning there will be different estimates for these parameters.

9.3.4 Example: Primed Infusion

To illustrate how to estimate the noncompartmental parameters from
an experiment in which the tracer is introduced as a primed constant
infusion, consider the data given as Study 2 in Table G.3 in Appendix G.

These data can best be fitted by a monoexponential model

subject to the constraint, as described in Appendix H,
The results of the fit, assuming a constant coefficient of variation of 10%
for the data, and the parameter estimates are given in Table 9.3.5.
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The monoexponential model was chosen in this example to illustrate
what happens when the accessible pool and system coincide. First, the
FCR equals Second, and coincide. The point is that one
can estimate using the formula for the required integral given
in Table 3.4.4, but this value and are equal meaning that is zero.
Finally, and M are equal.

For a monoexponential model such as (9.3.5), the system parameters
coincide with the accessible pool parameters. Of course, this is no longer
true for a multiexponential model.

9.4 THE TWO ACCESSIBLE POOL MODEL:
ESTIMATING THE KINETIC
PARAMETERS

9.4.1 Introduction

In this section, estimating the two accessible pool noncompartmental
model parameters will be discussed for the bolus injection and constant
infusion experiments. These experiments are two input-four output stud-
ies meaning four sets of data must be described functionally in order to
estimate the parameters. Examples will illustrate the main points.

9.4.2 The Bolus Injection

Consider an experiment where there are two accessible pools into
which two different tracers have been injected as a bolus. This is a
two input-four output study. An example of such a data set is given in
Table 9.4.1. In this study, a bolus injection of 200mg and 175mg respec-
tively of tracer 1 and tracer 2 was injected into the accessible pool 1 and
2 respectively; the steady state concentrations of tracee 1 and 2 were
respectively 1.43mg/ml and 3.20mg/ml.

These data are expressed in terms of % tracer to tracee ratio z ( t ) .
Hence to evaluate the two accessible pool parameters discussed in §3.4,
a functional description of these data is required. Following the notation
in §3.4, let be the tracer to tracee ratio in accessible pool i for tracer
j where i and j are 1 or 2. To fit a sum of exponentials to these data,
one sees there are two exponential decays and and two sets
of data that rise and fall and , These data can be described
by a two exponential model
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The results of fitting each set of data in Table 9.4.1 to (9.4.1) assuming a
constant coefficient of variation of 5% for the data is summarized below
in Table 9.4.2 and Figure 9.4.1.

To estimate the parameters, one must convert the data from % tracer
to tracee ratio to the actual tracer to tracee ratio. This can be accom-
plished by multiplying the coefficients and by 0.01. For example,
the functional description of the data in pool 1 for tracer 1, can be
written:



300 TRACER KINETICS IN BIOMEDICAL RESEARCH



Parameter Estimation in Noncompartmental Models 301

Table 9.4.3 summarizes the results of the noncompartmental analysis on
the set of data presented in Table 9.4.1 using the sum of two exponential
model for each data set the parameters of which are given in Table 9.4.2.

It is clear from Figure 9.4.1 that when fitting a sum of two exponentials
to each data set individually does not yield a “good fit” of the data. One
can try adding a third exponential to each, or one at a time, and find
that the model is not a posteriori identifiable. Since all one requires is
an accurate functional description of the data, is there a resolution to
this problem?
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Recall from §4.4.4 there is a relationship between sums of exponentials
and compartmental models. One can use this information as follows.
Since the data in Table 9.4.1 come from the same system, they can be
described by the same multicompartmental model where the measure-
ment equation links the solution of the system of differential equations
represented by the multicompartmental model and the data. This will
be illustrated specifically in the next Chapter.

Here what this means is that each measurement equation, i.e. the
measurement equation for is a sum of exponen-
tials where the corresponding exponentials are equal. That is, one can
write

for the three exponential model example. It should be noted, again from
§4.4.4, that there are also relationships among the and but
these are tedious to derive and if all one requires is an accurate represen-
tation of the data, not necessary. These relationships, of course, would
reduce the degrees of freedom in the fitting process, so the statistical
information from the final fitting process could be affected.

The results of fitting the constrained model (9.4.3) to the data in
Table 9.4.1 are summarized in Table 9.4.4 and Figure 9.4.2.

What affect does the improved functional description of the data have
on the estimates of the noncompartmental parameters? The new esti-
mates are given in Table 9.4.5.

One can easily see that in some cases, there are considerable dif-
ferences in the estimated parameter values as well as their precision.
The differences in the parameter values usually results from the manner
in which the data are extrapolated to time zero and infinite while the
differences in the error estimates results from the uncertainties of the
parameters which are used, as described in §8.8, in the calculation of
the derived variables.
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9.4.3 The Constant Infusion

Consider next an experiment where there are two accessible pools into
which two different tracers have been administered as a constant infu-
sion. Again, this is a two input-four output study. An example of such a
data set is given in Table 9.4.6 where, in the nomenclature of Chapter 3,
the infusion rates in terms of the tracer to tracee ratio for tracer 1,
and tracer 2, and 4.0 and 3.8 respectively. Concentrations for tracee
1 and 2 are respectively 0.75mg/ml and 0.50mg/ml. The data are in
units %tracer-tracee ratio.

From §3.4, what is needed to estimate the accessible pool and system
kinetic parameters is the following. First, each set of data must be
described by a sum of exponentials These are used to calculate
the derivatives of time zero, and from which the masses
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and can be calculated using the formulas in Table 4.4.3. They are
also used to estimate the plateau values from which
is calculated. With one can calculate and These
and the remaining accessible pool kinetic parameters can be calculated
using the formulas in Table 3.4.3. The system kinetic parameters can
then be calculated using the formulas given in §3.4. The interested
reader is encouraged to use the data in Table 9.4.4 and estimate the
noncompartmental parameters.
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Chapter 10

PARAMETER ESTIMATION IN
COMPARTMENTAL MODELS

10.1 INTRODUCTION
In the previous chapter, how to estimate the parameters defined in

Chapter 3 for the noncompartmental model was discussed; this relied
on the theory given in Chapter 8. In this chapter, how to estimate
the parameters characterizing the multicompartmental model presented
in Chapters 4 and 6 will be discussed again using the theory given in
Chapter 8 as well as Chapter 5.

It is assumed in this chapter that one is dealing with an a priori glob-
ally or locally identifiable model. As discussed in Chapter 6, sometimes
this may require the reparameterization of the original model parame-
terization, or the use of some constraints among parameters. Thus the
problem is to estimate the numerical value of the a priori identifiable
unknown model parameters and their precision from a real set of data.

Assume for the sake of simplicity the single input-single output case,
i.e. a single compartment is accessible for input and measurement; the
generalization to the multiple input-multiple output case will be dis-
cussed later. Let y(p, t) denotes the model output, i.e. the tracer con-
centration or the tracer to tracee ratio in the radioactive and stable iso-
tope case respectively (see §4.3). Recall this is a function of the unknown
parameter vector p which contains the transfer rate constants and the
accessible compartment volume or mass Let
denote the N discrete time noisy measurements (see Chapter 8). The pa-
rameter estimation can be formulated as follows using the model (4.3.20)
reproduced below in (10.1.1):

307
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The measurement equation for the radioactive experiment is (4.3.23)
given below in (10.1.2)

where V is the matrix

given in (4.3.21) where the are the volumes of the accessible compart-
ments.

The measurement equation for the stable isotope experiment is (4.3.24)
given below in (10.1.3)

where D is the matrix

given in (4.3.25) where the are the masses of the accessible compart-
ments.

Let p be the vector of parameters to be estimated. These include the
unknown elements of the K matrix, and the unknown volumes of
the V matrix or masses of the D matrix. The measurement equation
can then be written for either tracer as y(p, t ) . The problem to solve is
to estimate the numerical values for p from the measurements

where is the measurement error first discussed in §8.3.
The model output y(p, t) is a nonlinear function of the parameter

vector p. To appreciate this, consider the situation where an analytical
solution of the model can be written; in this case the dependency of
y(p, t) on p becomes explicit. To illustrate this, consider the single
compartment model shown in Figure 10.1.1 where a bolus input of dose
d is assumed.

The equations describing the model and the measurement are respec-
tively
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In this example, The function y(p, t) is nonlinear in k and
linear in since

Since the model output y(p, t) is a nonlinear function of the model pa-
rameters, one has to resort to the nonlinear regression theory developed
in Chapter 8 to estimate the unknown parameter vector p by minimiz-
ing, in an iterative fashion, the weighted residual sum of squares

where is the weight assigned to the weight is assumed to have
been chosen optimally (see §8.3).

It is worth noting that the a priori identifiability analysis described
in Chapter 5 has dealt with the ideal situation as defined by (10.1.2).
The introduction of (10.1.4) representing real measurements is the new
dimension that is added to solve the parameter estimation problem.
Thus one moves from the “yes” or “no” a priori identifiability results
to quantitative measures of identifiability, i.e. a posteriori or numerical
identifiability, which assesses the precision with which the parameters
are estimated.
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10.2 NONLINEAR LEAST SQUARES
ESTIMATION

The parameter estimation problem, i.e. the minimization of WRSS(p)
is posed similarly to the one discussed in §8.5 with reference to the sum of
exponential model. There the unknown parameters were the coefficients
and the exponentials of the exponential model while here they are the
transfer rate constants appearing in the model differential equations, and
the volume or mass characterizing the model output equations. One can
thus adopt the same strategy, i.e. obtaining by minimizing WRSS(p)
with respect to p by successive linearizing iterations.

There is, however, an important difference: in general, one does not
have the analytical solution of the compartmental model. To understand
this difference, recall how model linearization works. Assume an initial
estimate of p is available. Then y(p, t) can be linearized using, as
was done in §8.5, a Taylor series expansion about

where, if p is a p-dimensional vector, is also a p-dimension
vector, and is the p-dimensional vector of partial derivatives

Using (10.2.1), WRSS(p) becomes linear in whence can be
estimated using the linear regression machinery described in Chapter 8.
At this stage, a new estimate of p can be obtained:

and the process is repeated until some predetermined criterion to stop
the iterative process is met.

It is worth noting that the above is exactly the same as that described
in §8.5 where the model was In the notation used in
(10.2.1) and (10.2.2), p, and play the role of and
respectively. Also of note is that, similarly to what was described in §8.5,
one needs for the minimization of WRSS(p) the value of the functions
y(p, t) and only at the sampling times

Again, the difference for the multicompartmental model is that in
general one does not have the analytical solution of the compartmental
model and thus the explicit expression for y(p, t) as a function of the un-
known parameters . Thus in contrast to what was described
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in §8.5, one is not able to evaluate y(p, t) and analytically. One
is forced to resort to a different strategy to solve the general problem.

Before describing this strategy, one can ask what happens in the case
when an analytical solution is known. For example, for the single com-
partment model shown in Figure 10.1.1, one has

In this case, a bolus of dose d was administered and the measurement
variable is concentration leaving k and V as the unknown parameters.

It is more instructive for illustrating how parameter estimation works
when an analytic solution is known to consider the two compartment
model shown in Figure 10.2.1. In this case, assume a unit bolus has
been injected into the system at time zero, i.e.

One knows from §4.5 that y (p,t) can be written

where, in terms of the
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Thus with (10.2.4) - (10.2.8) known and referring to (10.2.1), one can

evaluate an-

alytically at sampling times where is the
initial estimate for the parameter vector . The
process of successive iterations proceeds by replacing these initial esti-
mates at each iterative stage with the new estimates calculated using
(10.2.2). Of note in this situation is that there are no approximations
involved apart from roundoff errors.

Unfortunately the analytical approach becomes impractical for the
three compartment model, and virtually impossible as the complexity of
the models increase. One has to look at alternative strategies. The prob-
lem is not really the evaluation of y(p, t) at various sample times since
one simply needs to solve numerically the model differential equations,
and numerical integration algorithms that are both stable and efficient
are available. The problem comes in evaluating the partial derivative
terms at the various sampling times at each iterative step. The
most commonly used methods are explained in Appendix I.

Having solved the problem of calculating y(p, t) and all of the
theory and results described in Chapter 8 can be applied. In particular,
one can calculate the lower bound approximation given in §8.5
of the covariance matrix of the least squares estimate and
the correlation matrix Finally, all the tests of the residuals,
measurement error variance and model structure discussed in §8.6 and
§8.7 can be applied here.

Needless to say all of the difficulties of nonlinear regression discussed
in §8.5, in particular the need for an initial estimate for the parame-
ter vector p and the presence of local minima, remain. As far as the
initial estimates problem is concerned, i.e. initial estimates for the rate
constants  and volume V or mass M, some help can be provided by
preprocessing the data using an exponential model. In Appendix J, how
to move from an exponential model where the coefficients and are
estimated (see Appendix G) to an estimate of the and volume V or
mass M is discussed.
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10.3 THE MULTIPLE OUTPUT CASE
Up until this point, only the single output case has been considered.

This accommodates the situation of the single accessible compartment,
or the case where several compartments are accessible but the available
measurement is a linear combination of them. Suppose now one has
multiple outputs denoted . The observed values will
thus consist of l data sets; the set contains samples taken at
times Here the double suffix is needed to allow for different
sampling schedules among the l outputs. Denote an observed value by

where and
The multiple output case version of WRSS (p) is

The above holds for the case where the weights are known, i.e.

The situation is more complicated if the weights are only known up to
a proportionality constant, i.e.

where is unknown to be estimated from the data. It has been shown
in [Bell et al., 1996] that there is the need to use an “extended” least
squares formulation for the counterpart of (10.3.1). This was described
in §8.3 and given in (8.3.34). Hence in this case, WRSS(p) becomes

In (10.3.4), it is the presence of the term which results in the
nomenclature of “extended” least squares. The estimate for is given
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by

In the iterative process, is recalculated at each iteration.

10.4 THE MULTICOMPARTMENTAL MODEL
In this section, a number of examples of multicompartmental model

parameter estimation will be given that parallel those given in Chapter 9.
For each, it will be assumed that one has determined the model order,
i.e. the number of compartments, or exponentials, required to describe
each set of data using the techniques discussed in Chapter 8. The initial
estimates for the parameters characterizing the model will be obtained
using techniques described in Appendix J.

It is worth noting that the examples given in Chapter 9 focused on
determining the best fit and model order in order to estimate the non-
compartmental parameters. Attention had to be paid to how the tracer
was introduced into the system. That is, the formulas used depended
upon whether the tracer was introduced as a bolus, constant infusion,
or primed infusion. This is not the case here.

Remember from (4.3.20) the system differential equations for the n
compartment model are

What one needs to estimate are the entries of the K matrix, i.e. the
individual which are specified by the connectivity of the compart-
mental model, and the volumes (cf. (4.3.21)) or masses (cf. (4.3.24)).
The tracer input is specified by u(t). Thus, once the initial estimates
of the unknown parameters are obtained and the input specified, one
is ready to obtain a best fit of the model to the data, and assess this
fit using the techniques described in §8.6 and §8.7. Since it is the K
matrix which links the tracer and tracee system, once this and either
the volumes or masses are known, all of the desired kinetic parameters
of the system can be estimated. Thus except for the techniques used to
obtain initial estimates of the unknown parameters, there are no special
formulas which depend upon the mode of tracer input.
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Example: A two compartment model

In §8.7, Case Study 1 was a glucose turnover study in a 50.85kg hu-
man in which dpm of labeled glucose was injected as a
bolus, and the measured steady state plasma glucose concentration
was 100 mg/dl. It was found that the two exponential model

provided the best fit of the data.
These data will be fitted using the two compartment models shown

originally in Figure 5.4.1 modified and reproduced below in Figure 10.4.1.
In these models, compartment 1 is assumed to be plasma and com-
partment 2 is an extravascular compartment which equilibrates with
plasma.

As noted in Chapter 5, Model A is a priori uniquely identifiable. This
model assumes there is no loss from the extravascular compartment.
Thus the parameters to estimate are the rate constants and

and the volume To obtain initial estimates of these rate con-
stants, one is referred to Appendix J. Briefly, if

provides a best fit to the data and if one write
an initial estimate of can be

found from An initial estimate for can
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be obtained from (J-3), and from (J-5),

Knowing and can be estimated

as the difference between 0.048 and 0.014, or 0.034. Finally,
can be estimated from (J-4) as The results of
these initial estimates are shown in Figure 10.4.2. One should notice
this estimate is quite good since the parameters from the best fit by a
sum of two exponential were used.

Model B is also a priori uniquely identifiable but, at variance with
Model A, all of the loss from the system is assumed to be from the
extravascular pool. Again, to obtain initial estimates for the rate con-
stants and the reader is referred to Appendix J. From
the knowledge of one has since Next, since

can be obtained Finally,
from one has The results of these
estimated values are shown in the right hand figure of Figure 10.4.2.

With these initial parameter estimates, and using the description for
the measurement error given in §8.7, Models A and B can be fitted to
the data resulting in estimates for and the The fit for both
models with residuals, shown in Figure 10.4.3, is identical to that shown
in Figure 8.7.1 for the two exponential model. Then can be
calculated, and other kinetic parameters of the tracee system, e.g. tracee
mass in the nonaccessible compartment 2 and tracee production
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can be estimated by solving the tracee steady state system (see
Chapter 6) which, in these two cases, have unique solutions since the
number of unknowns in the tracee steady state system equals the
number n of compartments . Note since the elements of
the matrix are also known, the noncompartmental clearance rate can
be calculated using the formulas given in Chapter 7. The results are
summarized in Table 10.4.1 below.
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It is of interest to compare these parameter values with the noncom-
partmental estimates given in Table 9.3.1. As expected, the noncompart-
mental parameters of the accessible pool, V, M and are equal in value
to their compartmental counterparts and (for both Models
A and B). For the system parameters, and correctly re-
cover the compartmental counterparts and for model A, but
underestimate those for model B. In fact, only in the former case is the
condition which assures the correctness of all noncompartmental sys-
tem parameters, i.e. all irreversible loss and production is from and into
compartment 1, satisfied. Finally, the noncompartmental parameter
equals the production rate of models A and B since the tracee enters
the system in the accessible pool.

While models A and B are both a priori uniquely identifiable, they
are, in general, not physiologically plausible. From a physiological point
of view, model C with losses from both compartments is more plausible,
but it is not a priori identifiable. There are two alternatives in dealing
with model C. One is to estimate the bounds of the rate constants. For
this example, using models A and B, these are:

The other alternative is to incorporate a priori knowledge into the
model by introducing a constraint among the rate constants To
illustrate this approach, consider the two compartment model shown as
Model C in Figure 10.4.1. If the rapidly equilibrating compartment 1 is
hypothesized to be responsible for the insulin independent tissues which,
in the normal state, utilize about 75% of the total glucose disposal, one
can write the following constraint:

However, since from the tracee steady state one
can rewrite (10.4.3)

whence

The constraint (10.4.5) allows Model C to become a priori uniquely
identifiable since it provides an additional independent relation among
the unknown parameters. The results of fitting this constrained model
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are summarized in Table 10.4.2. The fit and weighted residuals are
identical to those for Models A and B. One can calculate the system
parameters in this case, and compare them with the corresponding pa-
rameters from Models A and B shown in Figure 10.4.3. The fact that
some are different illustrates a crucial point: if one is using a model
to make predictions about nonaccessible compartments in the system,
the results are model dependent and it is thus essential that the model
structure reflects the physiology of the system.

As noted above, it is only the techniques to obtain the initial param-
eter estimates of the compartmental model that depend upon how the
tracer is introduced. The interested reader can follow the example on
the constant infusion discussed in Appendix J. Here initial estimates for
the two compartment Model A were obtained using the data given orig-
inally in Figure H.16. Once the initial estimates are obtained, a best fit
can be achieved, and the kinetic parameters can be estimated in exactly
the same manner as they were above for the bolus injection.
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Example: A three compartment model

Case Study 2 in §8.7 is a glucose turnover study in sheep. In this study,
the three exponential model where

provided the
best fit of the data. Hence

The initial dose was
and the steady state plasma glucose concentration was 80mg/dl.

These data will be analyzed using the three compartment catenary
and mammillary models shown below in Figure 10.4.4. There are several
points to be illustrated using these models.

Model A is a priori uniquely identifiable. Both Models B and C are
identifiable, but not uniquely since they admit two solutions. For Model
B, the solutions are symmetrical, i.e. exchanges with and
exchanges with As discussed in §5.8, this ambiguity can be resolved
if compartments 2 and 3 are ordered in terms of “fast” and “slow” com-
partments, i.e. For Model C, the two solutions
are not symmetrical. To resolve this ambiguity, one still could assume
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either Note that, in contrast to Model
B, the choice between the two solutions for Model C also involves an
assumption on the irreversible loss, which is attributed either to the fast
or slow compartment. Thus both Model C solutions will be considered.

Using the same description of the measurement error as that given
in §8.7, the results of fitting the models to the data are summarized in
Figures 10.4.4 and 10.4.5, and Table 10.4.3. It includes the parameters
for Model A, Model B with the assumption that compartments 2 and
3 are the fast and slow compartments as discussed above, and the two
solutions for Model C. The tracee parameters, that is the masses and
production rates are also given in Table 10.4.3. For each model, unique
values can be calculated for them since the number of unknowns in
the tracee steady state system equals the number n of compartments

. Note that, while the tracee mass in the accessible com-
partment is the same for all models as in the production rate, the tracee
masses in the nonaccessible compartments are different.

The fit and weighted residuals are the same for all models as indicated
in Figure 10.4.5. These are also the same as that given in §8.7 for the
three exponential model. However, the model predicted tracer masses in
the nonaccessible compartments are different as shown in Figure 10.4.6.

For each model, the K matrix is
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from which the mean residence time matrices can be calcu-
lated. They are respectively

Example: A three compartment model where a flux is the
measurement variable

The following example is taken from [Saccomani et al., 1995] where
bicarbonate kinetics were being studied in humans. Following an injec-
tion of of labeled bicarbonate the loss in
expired air (a tracer flux) was measured at specific time points. The
data are shown below in Table 10.4.4. The tracee loss, i.e. the flux
in the expired, was also measured; it was 9 mmol/min.

The model developed to explain the tracer data is shown in Fig-
ure 10.4.7. The model parameters to estimate from the data are

. The rate constant represents irreversible
loss via expired air and represents “loss” to other tissues such as
bone, urine or sweat. In this experiment, the tracer flux in the expired
air is the measured variable. The measurement equation is thus
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The model parameters and are uniquely identifiable, while the
parameters and admit two symmetrical solutions. As-
suming the model is a priori uniquely identifiable.

The measurement error in this study was given by

Thus the coefficient of variation ranges from 8% at the higher counts to
11% at the lower counts.

The results of fitting this model to the data are summarized in Ta-
ble 10.4.5; the fit is shown in Figure 10.4.8.
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The formulation of the tracee model requires the specification of exact
sites of entry of endogenous production of into the system. Since a
priori knowledge of these sites is not known, a parameter bound approach
was taken for quantifying the three possible tracee systems shown in
Figure 10.4.9. These three models are distinguished by the site of entry
into compartments 1, 2 or 3 respectively, and differ from the tracer
model by the addition of a fourth compartment, compartment 4. This
new compartment accounts for the exchange of material through a very
slowly turning over compartment that is not “seen” by the tracer over
the time interval of the experiment. Thus the parameter of the
tracee model in Figure 10.4.9 coincides with of the tracer model in
Figure 10.4.7.

The uncertainty over the site of entry of de novo has no con-
sequence on the estimate of endogenous production itself because the
structure of the three models shown in Figure 10.4.7 yields the same
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estimate which is identical to the   loss measured in the expired air:
Also the mass of compartment 1 is

not affected by the site of entry of since for the three tracee models
one has

The situation, however, for the masses of compartments 2 - 4, and
hence for total mass in the system, does depend upon the site of
entry of First, it should be noted that cannot be estimated.
While the flux from compartment 4 to compartment 1, is known
since it is equal to the flux from compartment 1 to compartment 4,

the individual components and are not known. Thus the
upper and lower bounds for and are

The total in the system, can also be calculated for each model
where the suffix i represents the site of endogenous production

where Hence upper and lower bounds for    can be evalu-
ated:

Example: A three compartment model with a two input-four output
experiment

The data given in Table 9.4.1 were used to estimate the noncompart-
mental parameters for the two accessible pool model. This was a two
stable isotope tracer study in which 200 mg of the first label and 175 mg
of the second label were injected into the two accessible pools respec-
tively. The tracee concentration in the first and second accessible pool
were 1.43 mg/ml and 3.20 mg/ml respectively.

Recall from §9.4.2 that the best fit of the data were obtained using
sums of two exponentials when each individual curve was fitted indi-
vidually. Note here that the exponentials for each sum were different.
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As noted in §9.4.2, this raised an important point. While for a single
data set, the number of exponentials of the best fit suggests the number
of compartment in the system, when dealing with more than one data
set, unless all corresponding exponentials in each sums are the same,
this is no longer necessarily true. In fact since the data come from the
same system, the exponentials for each of the curves must be the same.
Additionally, as previously noted, constraints also exist among the co-
efficients of the sums of exponentials. These are normally tedious to
derive, even for relatively simple models.

In §9.2.4, while the best fit for each data set was obtained using a
sum of two exponentials, these fits were not “best” in the sense that the
weighted residuals had systematic deviations. Additionally, the sum of
three exponential model was not a posteriori identifiable. Recognizing
that the data come from the same system, it was seen that sums of
three exponentials where corresponding exponentials for all four sums
were equal provided a best fit to the data. This suggests that a three
compartment model will be required to describe the data.

Recall from Chapter 5 there are many different 3 compartmental
structures. Among these, consider the model shown in Figure 10.4.10.
The model shown in panel A is the tracee model. This shows material
exchanging between the two accessible compartments 1 and 2. Compart-
ment 2 exchanges with an extravascular compartment, compartment
3. De novo input and losses occur in both accessible compartments.
The model shown in panel B shows the first tracer being injected into
compartment 1; similarly in panel C the second tracer is injected into
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compartment 2. It is assumed that the volumes of the two accessible
compartments are the same.

How does this model relate to the sums of exponentials? First, this
model represents a system of differential equations the solution of which
is a sum of three exponentials. The measurement equations are also
sums of three exponentials where the exponentials, the are the same
for each equation. By analyzing the data simultaneously, instead of
individually as was done initially in the example in §9.4.2, the condition
that the exponentials be the same and the constraints among the
coefficients are automatically built in.

Following the notation adopted in §3.4, let be the mass of tracer
i in compartment j, and let and be the mass of tracee in com-
partments 1 and 2 respectively. Then the measurement variables are the

four tracer to tracee ratio The results
of fitting the model to the data, assuming an error structure equal to
a constant coefficient of variation and relative weighting, are given in
Table 10.4.6 and Figure 10.4.11 The tracee parameters such as the mass
of the nonaccessible compartment 3, and the production rates and

are also shown. They can be calculated uniquely since the number
of unknowns equals the number of compartments,

It is clear that the fit shown in Figure 10.4.11 is more in agreement
with the constrained sum of exponential model shown in Figure 9.4.2
consistent with the observation made in §9.4 that the data come from
the same system, and the fact that a sum of three exponentials where
the exponentials are all equal provides a good fit to all data. One can
also compare the results given in Table 10.4.6 with those for noncom-
partmental analysis in Table 9.4.3. In the model shown in Figure 10.4.10
the volumes of the two accessible pools are the same; this differs from
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the volumes estimated by the noncompartmental approach. However,
all estimated volumes are very close. This carries over to the estimates
of the masses in the accessible compartments.

For this model, the K matrix is

The mean residence time matrix is thus
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Example: A four compartment model with constraints

In all the previous examples, the tracee steady state system was
uniquely solvable since the number of unknowns was equal to the
number n of compartments. In the next example, a different situation
will be illustrated. This was discussed in Chapter 6, and illustrates the
situation when is less than the number of compartments; this results
in the need for constraints among the parameters.

The data and the model to be described come from a two input-
four output study of ketone body, i.e. acetoacetate (ACAC) and
hydroxybutyrate metabolism [Cobelli et al., 1982]. On two
different occasions, labeled ACAC and  OHB

were injected. Because the label is rapidly cleared from
the body, the complete study took place in the morning thus assuring
that the same tracee steady state was present in the two tracer exper-
iments. The order of the labeled compound that was injected was ran-
domize. A typical data set is given in Table 10.4.7. For this experiment,
the concentrations of tracee ACAC and were and

respectively.
The model used to describe the data is shown in Figure 10.4.12. The

model depicts ACAC and in blood, compartments 1 and 2 re-
spectively, and assumes the existence of two other compartments, liver
(compartment 3) and an extrahepatic compartment (compartment 4),
where the two ketones interconvert vary rapidly. Production, denoted
in the model by takes place in the liver. Utilization takes place in
the extrahepatic tissues as indicated by the loss

The model is a priori uniquely identifiable where the unknown pa-
rameters are the rate constants and the volumes of the accessible
compartments and . However, the tracee steady state system pro-
vides a constraint among them since the number of tracee unknowns
is 3 ( and ) which is less than the number of compartments in
the model, 4.

To derive the constraint, first write the tracee steady state equations:
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From the first two equations, one can write

and from the last equation, one can write:

Substituting (10.4.14) into (10.4.13), and noting that and
the ratio can be written in terms of the unknown

parameters and volumes:
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This constraint, which reduces the degrees of freedom by one since
can be written as a function of the other parameters and measured

variables, is to be explicitly considered when fitting the tracer model
to the data since it assures a unique solution of the tracee steady state
system. The measurement error was assumed to increase linearly with
the tracer concentration; the variance was written
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Thus the coefficient of variation ranges from 3% at the higher counts
to 28% at the lower. The results are summarized in Table 10.4.8 and
Figure 10.4.13.

For this model, the K matrix is

The mean residence time matrix is thus

Besides illustrating some of the theoretical points addressed, this ex-
ample illustrates two practical points. One is that is a multiple input-
multiple output study such as this, it is not necessary that data from
each accessible pool be collected at each time point. There are several
reasons why this can be the case. Here it is a question of detectability
of the tracer. While the experiment ran for 60 minutes, the last sample
time for was 40 minutes while that for was 25 minutes.

The second point is that while the model is compatible with known
physiology, there are small portions of the data where the model’s de-
scription is not entirely adequate. For example, there is a rapid rise in

that could be better described. However, there is not enough infor-
mation in the data to support a change in the model structure. In this
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case, the problem goes unresolved until further experiments will yield a
richer data set.
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Chapter 11

PRECURSOR-PRODUCT MODELS

11.1 INTRODUCTION

A number of investigators use what are termed precursor-product
models to estimate, for example, the fraction of a precursor that is con-
verted to a product. Some of the commonly used methods will be dis-
cussed in this chapter. They will be seen to be special cases either of
the two accessible pool noncompartmental model, §11.2, or multicom-
partmental model, §11.3 and §11.4.

The structure of the general precursor-product model is shown in
Figure 11.1.1. In the general precursor-product model shown above,
pools 1 and 2 are the accessible precursor and product pools. In the
precursor system, this pool can exchange with other pools in the system.
Both de novo production and loss can take place from the accessible pool
or elsewhere in the system. Similarly for the product system. The box
labeled conversion indicates that there may be a number of steps in the
conversion of precursor measured in the accessible pool with the product
measured in its accessible pool. In addition, losses can occur along with
conversion pathways.

In the study of precursor-product systems, one seeks to quantitate
characteristics of the conversion of precursor to product by performing
a tracer experiment; these are described in the following sections.
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11.2 ESTIMATING THE FRACTION OF
PRODUCT ORIGINATING FROM THE
PRECURSOR: THE
NONCOMPARTMENTAL MODEL
APPROACH

The approach taken to estimate the fraction of product originating
from the tracer is usually set in a noncompartmental framework. To
do this, one can reformulate the model shown in Figure 11.1.1 in the
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noncompartmental model framework of Figures 3.4.3 and 3.4.4. This is
shown below in Figure 11.2.1.

This figure differs from Figures 3.4.3 and 3.4.4 in that there is a uni-
directional movement of material between the two accessible pools. In
addition, as indicated in Figure 11.1.1, it is important to remember in
this setting that there may be several intermediary steps between pools
1 and 2, i.e. unlike the situation in §11.3 and §11.4, pool 1 need not
necessarily be the immediate precursor of pool 2.

What information can be obtained from the one input-two output
study? From (3.4.24) since

Additionally, from (C.34) and remembering from (3.4.3) that
one has

Equation (11.2.1) gives the rate of appearance of material into accessible
pool 1. Since is the total flux of material through pool
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2, (11.2.2) gives the fraction of this flux originating from pool 1. This is
the parameter which is usually desired from the analysis.

An additional assumption that is sometimes made is that pool 1 is
the only precursor of pool 2, i.e. no de novo material can enter pool 2
except from pool 1. This situation is schematized in Figure 11.2.2 where
the absence of de novo input into pool two indicates

In this situation, and from (11.2.2),

The equality of these two integrals can thus be used to determine if pool
1 is the sole precursor to pool 2.

11.3 ESTIMATING THE FRACTIONAL
SYNTHETIC RATE: THE DERIVATIVE
APPROACH

The above formulas have been derived from the formulas of noncom-
partmental analysis. Another analytic approach that is more closely re-
lated to compartmental analysis is available to estimate the fractional
synthetic rate defined as the rate of incorporation of a precursor into
a product per unit time of product mass. A number of techniques have
been developed to estimate this parameter from tracer data [Zak et al.,
1979]. In this section, a method developed from the so-called derivative
approach will be discussed. More details of the method and examples
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are given in Foster et al. [1993]. In the next section, a method based on
the so-called integral approach will be discussed.

The usual formula to estimate this parameter is given

For the radioactive tracer, the formula is given in terms of specific activ-
ity. For the stable isotope tracer, often in this formula, tracer to tracee
ratio is replaced by enrichment. As seen in Foster el al. [1993], this is
not correct, and can lead to errors in the parameter estimate.

In what follows, the assumptions necessary to derive this formula will
be explicitly given, and then the formula will be derived. The particular
form of the precursor-product model is given for the tracee and tracer
system respectively in Figure 11.3.1.

Notice that this system differs from that shown in Figure 11.1.1; the
difference is that the conversion is direct in Figure 11.3.1.

In order to derive (11.3.1), the following assumptions must be made:

1. The tracee system remains in a steady state during the experiment.

2. The accessible precursor pool 1 and the accessible product pool 2 are
each described by a single compartment which may interact with a
complex network of other compartments.

3. The accessible precursor pool 1 is the immediate precursor to the
accessible product pool 2.

4. There is no recirculation of material from the product system back
to the precursor system.

Clearly this model is a hybrid noncompartmental and compartmental
model. While it is not necessary to postulate a multicompartmental
structure for the “remainder of the system” of the precursor or product
systems, the accessible pool precursor compartment must immediately
precede the accessible pool product compartment. This is clearly differ-
ent from the models shown in §11.2 where the interconversion between
pools 1 and 2 could have any number of intermediary steps.

For the system under study, the mass balance equation is

where is the tracer mass in compartments 1 and 2. In this expres-
sion, is a term which describes the interactions of compartment 2
with the “remainder” of the product system.
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There are two situations to consider. First, assume there is no tracer
in the product system at time zero. Then and (11.3.2)
can be rewritten

Writing

one can rewrite (11.3.3)
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Notice it is the presence of in the denominator for the expression
for which requires a protocol calling either for a bolus or primed
infusion of tracer directly into pool 1, so that

Multiplying (11.3.5) by the ratio of tracee masses , one obtains

Besides this formula for the FSR, there is a convenient relationship
that is worth pointing out. If pool 1 is the sole precursor to pool 2, i.e.

equals the production rate of pool 2, and if the only loss from the
product system is via then the FSR equals the fractional clearance
rate FCR of the product. The reason is that in this situation,

and is the FCR of the product system. This situation is
illustrated in Figure 11.3.2.
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Thus

There is another situation to consider, and this is the case when the
precursor is the only precursor to the product, and the product system
consists of a single pool. This is illustrated in Figure 11.3.3. In this case,
f (t) in (11.3.2) is zero.

Since becomes

From the steady state equation for the tracee, and one
has
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Substituting (11.3.9) into (11.3.8),

By dividing both sides of (11.3.10) by one has

Then

since (11.3.8) holds. This expressions permits one to evaluate the FSR
at any point in time, not just at time zero.

In summary, for the model shown in Figure 11.3.2, (11.3.6) holds, but
it requires that Thus the experimental input must either be
a bolus or a primed infusion. In addition, if pool 1 is the only precursor
to pool 2, and the only loss of product is from pool 2, then
On the other hand, if the above holds and, in addition, the product
system is a single pool system, then the FSR is given by (11.3.12), and
there is no restriction on the tracer input.

Example

To illustrate the application of (11.3.6), consider the data given in
Figure 11.3.4. These data, which were collected over a 120 minute period
following a primed constant infusion, are expressed in terms of %tracer-
tracee ratio; in this simulated study, the product system is a single pool
system with a FCR equal to For the precursor, the true zero
time value calculated from the priming dose is 10%.

To estimate the FSR using (11.3.6), must must estimate , the
initial tracer-tracee ratio in the precursor pool, and As noted
previously, An estimate of can be obtained by fitting

to the data, and evaluating the derivative
of at time zero.

Note in the above the term converts the units to tracer-tracee ratio
from %tracer-tracee ratio. Using (11.3.6), the FSR become
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This example also illustrates the need for an accurate estimate of
Using the data as shown in Figure 11.3.4, one might extrapolate to
obtain a zero time value of equal, for example, to 5%. Knowing
the priming dose, a more accurate estimate of 10% can be obtained.

11.4 ESTIMATING THE FRACTIONAL
SYNTHETIC RATE: THE INTEGRAL
APPROACH

A second technique to estimate the FSR can be derived using the so-
called integral equation approach. In this section, this method will be
discussed. More details of the method and examples are given in Toffolo
et al. [1993].



Precursor-Product Models 347

The form of the precursor-product model used in this section is given
in Figure 11.4.1. It is important to note the following characteristics
of the model which have the assumptions required for the derivation
embedded in the structure.

1. The tracee system remains in a steady state during the experiment.

2. The accessible precursor pool 1 is described by a single compartment
which may be embedded in a larger system the structure of which
does not need to be known.
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3. The accessible product pool 2 is described by a single compartment
only.

4. The accessible precursor pool 1 is the immediate precursor to the
accessible product pool 2.

5. The accessible precursor pool is the sole precursor to the product.

6. There is no recirculation of material from the product system back
to the precursor system.

As in §11.3, one has

The derivation of the FSR formula starts in the same manner as previ-
ously described by writing the mass balance equation

The difference between this situation and the mass balance equation
(11.3.2) is the absence of the term f (t). For two specific time points
and (11.4.2) can be solved

Dividing (11.4.3) by and using (11.4.1) and the z ( t ) notation to
represent either specific activity in the radioactive case or the tracer-
tracee ratio in the stable isotope case,

Solving this equation for and remembering that

To evaluate this expression, one must be able to measure and
in the time interval from to to evaluate

and measure and This can sometimes be difficult, and so
simplification are sought.

One such simplification arises from the assumption that during the
experiment the loss of tracer (but not necessarily tracee) is small. This
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means in (11.2.4), so the mass balance equation (11.4.2)
becomes

Solving this equation

whence

From the definition of the FSR, one can then derive

While this equation is simpler than (11.4.5), one is still left with the
problem of evaluating the integral in the denominator. The most com-
mon way to do this is to assume one can measure and and
assume between these points is a straight line. In this case

Thus from (11.4.9), the FSR can be calculated from

The formula can be further simplified by assuming and
in which case (11.4.11) can be written

Another simplification as pointed out by Zak et al. [1993] involves
assuming the precursor pool in (11.4.9) is constant between and

Suppose in this interval Then from (11.4.5)
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Example

Using the data from Figure 11.3.4 with and

Again using the data from Figure 11.3.4 with

Finally, using the data from Figure 11.3.4 where and
one can calculate using (11.4.13)

while if one chose and

Clearly the selection of time points is crucial, and in neither case does
the FSR come close to the true FSR of 0.1.

11.5 ZILVERSMIT’S RULE
Zilversmit et al. [1960] published a relationship between a precursor

and a product that became known as Zilversmit’s rule. Although often
viewed in a noncompartmental setting, to discuss the rule per se it is
more convenient to use compartmental models, and to extend the notion
of specific activity to the tracer-tracee ratio z ( t ) .

To state and derive the rule, one must assume both the precursor and
product are kinetically homogeneous pools, i.e. compartments, that the
precursor is the sole precursor to the product, and that the precursor
transfers material directly to the product (that is, there are no interme-
diary steps as can be the case with the two accessible pool noncompart-
mental model). Then Zilversmit’s rule states that, if tracer material is
injected as a bolus into the precursor pool, the precursor tracer-tracee
ratio intersects the product tracer-tracee ratio at the peak. This rule is
often invoked in tracer studies when one is trying to identify the source
of a product. However, it is a valid rule only under a very specific set of
circumstances.

The proof of the relationship follows immediately from (11.3.10) since
if is the time at which is zero, i.e. the time at which is
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maximal, then This relationship holds only if all the
assumptions related to Figure 11.3.3 are satisfied.

In the broader case, this is no longer true. Suppose one is dealing
with an n-compartment system. Then, in the notation of Chapter 4, for
compartment i, let and be respectively the tracer and tracee
masses whence Assuming there is no de novo input into

compartment from (4.3.11), one can write

Write

Let be the time at which equals zero; this is the time at which the
tracer-tracee ratio in the i-th compartment is maximal. Prom (11.5.1),

Note in these equations that is the tracer-tracee ratio of the j-th
compartment at the time at which the tracer-tracee ratio in the i-th
compartment is maximal.

One also has from the tracee steady state

that is, the tracee flow into compartment i equals the flow out. Writing

one has from (11.5.2)

Here is the fractional contribution of compartment j to the maximal
tracer-tracee ratio in compartment i. That is, (11.5.5) shows that only
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in the special situation when compartment j is the sole precursor of
compartment i, the tracer-tracee curve intersects the product tracer-
tracee curve at its maximum. Clearly it is valid only under very special
circumstances.

For instance for Zilversmit’s rule to be valid, the precursor pool can
have any kinetics, i.e. it can be embedded in a complex system of com-
partments. However, the product pool must be a single compartment.
That is, if the product compartment is embedded in a more complex sys-
tem where material is exchanging directly, from (11.5.2) it is clear there
will be two or more non-zero Moreover from this equation, it is clear
that the precursor must be pass material directly to the product pool.
Finally, there can be situations where the precursor curve intersects the
product curve at its maximal tracer-tracee ratio but other compartments
can contribute material.

Figure 11.5.1 illustrates various situations of precursor-product rela-
tionships. In the figure, it is clear that the conditions to apply Zil-
versmit’s rule apply to compartments 1 and 2, and that indeed the
tracer-tracee ratio of compartment 1 intersects that of compartment 2
at its maximum. However, this is not the case when examining com-
partments 1 and 3. The point is that if there are any delays between the
precursor and product, Zilversmit’s rule does not apply.

What happens when the product pools have more complexity than a
single compartment is illustrated in Figure 11.5.2

Here one sees that even though the precursor is the direct and sole
precursor to the product compartment 2, because there is an exchange
compartment with compartment 2 in that subsystem, Zilversmit’s rule
is no longer valid. The same is true for compartment 3.

While Zilversmit’s rule is commonly used among many researchers, it
true value is limited due to the very restrictive set of assumptions which
must be made.
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Appendix A
Relationships Among Isotopic
Variables

The purpose of this Appendix is to show, following [Cobelli and Tof-
folo, 1990], that during an experiment involving the use of a tracer, if
the relative composition of the different species in the tracer input does
not change with time, then the same relative composition is maintained
among tracer species in the system.

If and are respectively the relative compositions of species
and in the tracer,

then the assumed condition on the tracer can be written:

where

To prove that the same relative composition is maintained among tracer
species in the system, one must show that

Consider first a single pool system, and write the mass balance equa-
tion for the tracer mass and its most abundant species:
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The indistinguishability principle for species gives

from which

follows.
Multiplying (A.7) by gives

Equations (A.8) and (A.9) are identical since they have the same initial
conditions, the same “kinetics”, i.e. the same k (t), and the same input

. This means they have the same solution

From the definition of ωa, and using (A. 10), it follows immediately that

The corresponding equations for the isotopic species in the
tracer are

From (A.ll) and (A.12),

follows.
While these results are valid for the single pool system, it is easy to

show they are valid for a generic model provided that (A.2) is valid and
that the indistinguishability principle holds for all isotopic species.
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Appendix B
The Use of Enrichment in the
Kinetic Formulas

Enrichment is often used in the literature to express stable isotope
data. Its definition given in (2.5.9a) is similar to that of specific activity
defined in (2.4.5); these formulas are given for convenience below:

It follows that both measure the abundance of the labelled species above
the natural level which is for stable isotope tracers and zero for
radioactive tracers. Conversely their meaning in terms of tracer and
tracee variables is different since only sa(t) is virtually identical to the
tracer to tracee ratio z ( t ) .

It is often claimed that is the analogue of specific activity. This
has been used to justify analyzing stable isotope data quantitated in
these terms by the same techniques used to interpret radioactive data
quantitated in terms of specific activity. In this Appendix it will be
shown why this approach is not correct.

The plateau formulas

Consider first the case where the tracer is infused at a constant rate,
and measurements are confined to the plateau portion of the

data. This situation will be discussed in more detail in Chapter 3.
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For the radioactive or stable isotope tracer steady state studies where
the data are quantified in terms of specific activity or enrichment respec-
tively, the most widely used formulas are

from which it is clear that e1 cannot be used an analogue for sa since
the formulas for F in the radioactive and stable isotope tracer situations
are different.

One can establish an equivalence between the two through the use of
z. From Table 2.5.1, one has

from which the formula for F for stable isotopes can be given

Equation (B.6) gives the correct expression for F for stable isotope data
quantitated in terms of z (t). Since it is essentially the same as the ex-
pression for the radioactive tracer (B.3), this illustrates not only the
difference between sa(t) and but how z(t) accommodates the dif-
ference between the two.

The presence of in (B.4) takes into account the fact that the tracer
may not be pure, and gives the total tracer plus tracee flux:

Thus the term in (B.4) permits an estimate of F since

The time-varying tracer formulas

The previous situation deals only with data from the plateau. Suppose
now one is dealing with tracer data that vary with time as was done
in and express F as a function of Express the tracer-tracee
indistinguishability (2.2.8) in terms of
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where the relationship given in Table 2.5.1 has been used. From (B.8),
the conservation of mass principle applied to the tracer, e.g. (2.2.17),
can be written as

and thus

whence it is clear that F cannot be recovered using this formula since
f (t) is not known.

The use of z(t) solves all of these problems since F can be correctly
recovered from (2.2.20). The use of in this equation in place of z,
since will always overestimate F, the magnitude of which
depends upon and The correct expression of F in terms of
can be derived by using (B.5):

From the above, it is evident that since (B.4) is equivalent to (B.6), it as-
sumes that the endogenous system is not perturbed by the introduction
of the tracer. Only by modifying this assumption, one can use enrich-
ment instead of z in this equation. Suppose one assumes F and M are
no longer constant, but functions of time F(t) and M(t). In addition,
assume during the experiment that is constant. Then
from (B.9),

whence

In this situation, i.e. if the total (tracer plus tracee) system fluxes are
constant during the experiment, can be used in place of     in (B.6).
One has to replace the tracer dose d with its fraction associated
with the stable isotope species.
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Under what conditions can this happen? One experimental situation
involves a manipulation which ensures that . This means
one has the ability to manipulate the endogenous flux U(t) in such a way
that U(t) decreases to compensate for u(t). Under this circumstance, the
total (tracer plus tracee) system sees no perturbation, and

and . A similar condition can be obtained by means
of a very specific experimental design in which an exogenous input of
tracee, denoted , is infused at a constant rate until a new steady
state, denoted where M and are the masses in the single
pool system resulting from U and is reached. The tracer input u(t)
then starts. The key is that if one decreases the exogenous tracee input

by an amount equal to u(t), the new exogenously induced steady
state will not be perturbed by the tracer experiment. Note that the
values of U and M used here may not be equal to their baseline values,
i.e. the values before the exogenous infusion of tracee.

The other situation is when there is no perturbation on the tracee
input, i.e. but the system kinetics vary so as to maintain

constant. This happens when the system has zero order
kinetics, i.e. the fluxes and not the rate constants such as in the case of
linear, or first order kinetics, are constant. This condition can be tested
on experimental data since it implies that the total (tracer plus tracee)
concentration is not perturbed by the experiment.



Appendix C
Relationships Between the Isotope Ratio and
Tracer to Tracee Ratio for Multiple Tracer
Experiments

Consider an experimental protocol where two different stable isotope
tracers are simultaneously injected into the system. Different situations
may arise. The two tracers consist of the same substance labeled with
different isotopes, and are administered in two different locations. For
example, 70Zn can be infused intravenously and 67Zn can be adminis-
tered orally. The former can be used to describe the kinetics of zinc in
plasma while the latter, under the assumption that once 67Zn appears
in plasma it has the same kinetics as 7 0Zn, can be used to describe zinc
absorption. Alternatively, two (or more) different substances can be
labelled with different isotopes. For example, [l-13C]leucine and [5,5,5-
2H]KIC can be used to study the metabolic relationship between leucine
and KIC. Finally, the same isotope can be used, but at different po-
sitions in the substrate of interest. An example is [l,2-13C2]AcAc and

In all of these situations, samples are taken from one or more accessible
pools, but in all cases, at least three isotopic species are present in each
substance: the most abundant isotopic species again denoted , species

predominating in the first tracer, and species which predominates in
the second tracer. For example, for the zinc tracers, the accessible pool is
plasma zinc, 64Zn is the most abundant species , and the isotopes 70Zn
and 67Zn are species and respectively. Similarly for the ketone body
example, plasma AcAc and are the accessible pools. The most
abundant species consists of AcAc and molecules having four
12C atoms in positions 1,2,3,4; in species , 13C isotopes label positions
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1 and 2 while in species 13C isotopes label all the four positions 1, 2,
3 and 4 in the AcAc and molecules.

It should be noted that species different from , and will generally
be present, e.g. one can have [l-13C]AcAc or [l,2,3-13C3]AcAc. To
develop a means by which to analyze these data, assume first that species
different from and are negligible; later it will be shown how one
can deal with the more general situation.

The notation used in this Appendix is summarized below in Table C.1.

The purpose of this formalism is to express the tracer to tracee ratios
in the accessible pools of the system from isotope ratio measurements in
the same pool. A generic expression will be derived since the rationale
is the same irrespective of which specific accessible pool is considered.
Using the above notation, the isotope ratios and of species and ,
and the most abundant species are defined

Write the naturally occurring isotope ratios and :
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The isotope ratios of tracer 1 are and :

Similarly the isotope ratios of tracer 2 are and

The ratio is small, in many cases negligible compared to since
species predominates in tracer 1. Similarly, is generally negligible
compared with since tracer 2 consists primarily of species .

Using the above notation, the tracer to tracee ratios can now be writ-
ten:

Expressions for and as functions of r and can be derived
following a line of reasoning similar to that of §2.5.3. To begin, the
relationships among the isotopic variables written as

permit writing and in terms of the ratios and :

Using equalities (C.9) and (C.10), r(t) and can be expressed in
terms of the same ratios:
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Solving (C.13) and (C.14) for and , and substituting into
(C.11) and (C.12), one obtains

The expressions for the tracer to tracee ratios and in terms
of the other measurement variables, abundance and enrichment, follows
directly from their definitions. For instance, extending to the multiple
tracer case the definition of isotope abundance (2.5.5), the abundance
and of species and are defined as the ratio between the mass of
labelled species and the total mass:

Similarly, extending the original definition (2.5.9a), the enrichment of
species and are respectively given:

Finally, if species other than and are present, the definitions of
the isotope ratios r and , abundance a and , and enrichments and

are the same as before since they refer to species and only. The
expression of and as a function of isotopic species masses, i.e. (C.7)
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and (C.8) are different since and comprise all isotopic species. If,
for instance, an additional species is present in the system, then

where and denote the mass components of the additional
species in the tracee and first and second tracer. Expressions for
and as function of r and can be derived following these definitions
as

where is the natural abundance of species , and and are the
isotopic ratios of species in tracer 1 and 2 respectively.
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Appendix D
Derivation of Accessible Pool and System
Parameter Formulas

In this Appendix, formulas for the noncompartmental parameters
given in Tables 3.2.3, 3.2.4, 3.3.3, 3.3.4, 3.4.3 and 3.4.4 are discussed.
For the most common ones, either an intuitive justification or a reference
will be given. For the others, a formal proof will be given; in some cases,
these proofs are original. In giving the derivations, concentrations will
be assumed as the measurement variable; the corresponding expressions
in terms of the tracer to tracee ratio z(t) easily follow.

Before beginning, the fundamental assumptions will be summarized
to remind the reader:

1. The tracer system is linear and time invariant. This is a basic as-
sumption of noncompartmental analysis, and is satisfied if the tracee
system is in the steady state and the tracer is an ideal tracer.

2. The tracer experiment starts at time and there is no tracer in
the system prior to the experiment.

3. The system is an open system, i.e. all the tracer will leave the system
at some time.

Parameters for the single accessible pool model

Volume of distribution V (Table 3.2.4)

Formulas for this volume can be derived as follows. First, when the
tracer is injected as a bolus, its initial mass in the accessible pool is equal
to the tracer dose. V is derived by solving the expression for the initial
tracer concentration in the accessible pool c(0):

369
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As noted previously, solving for V requires a knowledge of the amount
of tracer injected, d, and a measure of c(0).

For the constant infusion experiment, the tracer mass starts from an
initial condition equal to zero, and then increases according to the input
rate and the system kinetics. At time zero, there is no role of these
system kinetics on the tracer since there is no tracer in the system, and
the rate at which the tracer mass increases is equal to the input rate.
Thus the rate at which the concentration increases is

from which one can solve for V. While to calculate (D.1) requires a
knowledge of d and c(0), in this case, one must have an estimate of c(t)
near zero so that can be calculated.

For the primed, constant infusion experiment the reasoning developed
for the bolus input applies, and thus V can be estimated by using (D.1).

Finally, the generic tracer input u(t) can be handled using the line of
reasoning developed for the constant infusion provided that
(D.2) becomes

Clearance rate CR (Table 3.2.4)

Formulas for the clearance rate are derived from the conservation of
mass principle applied to the tracer in the accessible pool. For the bolus
injection experiment, the tracer dose equals the total tracer outflow from
the accessible pool:

where the total tracer outflow has been evaluated as the integral to
infinity of the time course of the tracer disappearance flux. This integral
is finite because the system is an open system and hence the tracer
concentration c(t) decreases towards zero. Since CR is constant, it can
be taken outside of the integral sign, and (D.4) can then be solved for
CR.

A similar formula holds for the generic input case u(t) where again
total tracer input equals total tracer output:
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The only assumption made here is that the total tracer dose is finite
hence u(t)dt is finite.

For either the constant or primed, constant infusion, when a plateau
is achieved, a balance exists between tracer input and output:

Equation (D.6) can easily be solved for CR. In the event a plateau value
c is not reached, it will have to be estimated in order to estimate CR.

Tracee mass M (Table 3.2.3)

To estimate M, the same considerations given for V apply; the only
difference is that the measured variable is not the tracer concentration,
i.e. the ratio between tracer mass and volume, but the ratio between
tracer and tracee mass. For example, the counterpart to (D.1) becomes:

Clearly M can be determined knowing d and z(0). Similar modifications
hold for the constant infusion, primed, constant infusion, and generic
input.

Rate of appearance Ra (Table 3.2.3)

The derivation of the formula for given in Table 3.2.3 parallels
that given for CR. The only difference is that the measured variable is
not tracer concentration but the tracer to tracee ratio. The counterpart
of (D.4) is

from which can be expressed as the quotient of d and
Similar modifications hold for the other tracer input formats.

Some remarks on the relationships among the formulas

As is evident from the previous discussion, different mathematical
formulas apply for one specific parameter; which form to use depends
upon the tracer input format. However, these formulas can be put into a
unitary framework since the responses of a linear, time-invariant system
to different input profiles are not independent, and simple relationships
exist among them.
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The key role is played by the impulse response h(t), i.e. the tracer
curve (either concentration or the tracer to tracee ratio) when a unit
dose of tracer is injected at time zero. The tracer curve y(t) measured
after an arbitrary tracer input u(t), starting at time is related to
h(t) through the convolution integral

From (D.9), one can predict from h(t) the tracer curve in the accessi-
ble pool y(t) after different tracer inputs u(t); these are summarized in
Table D.1.

As an example, illustrated in Figure D.1, the tracer concentration
curve in the accessible pool during a primed constant infusion results
from the superposition of the tracer concentration curves measured dur-
ing a bolus injection and a constant infusion experiment, the latter being
proportional to the integral of the former.

The relationships given in Table D.1 can be used to link the different
expressions for the parameters related to the different formats of tracer
administration. Consider as an example the formulas for the clearance
rate, CR. To derive an expression for CR in terms of h(t), the tracer
concentration curve after a unit bolus injection of tracer, one has from
(D.4) (since )



Appendix D: Derivation of Noncompartmental Parameter Formulas          373

Consider now a constant infusion of tracer. From Table D.1, the tracer
concentration at time t is proportional to the integral up to time t of the
impulse response. Since the plateau value c is reached at time equal to
infinity, it will be proportional to the integral of h(t) to infinity:

Equation (D.11) becomes
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When the tracer input has a generic input profile u(t), the resulting
tracer concentration curve c(t) still permits one to calculate the integral
in the denominator of (D.10). From Table D.1:

By means of a change in the variable it is possible to simplify
the double integrals given in (D.13)

The lower limit in the integral, can be replaced by zero since the
integrand is zero for all negative values of the independent variable.
Finally, substituting t for and in (D.14), one can write

Replacing the integral of h(t) in (D.10) with the right hand side of (D.15)
results in an expressions for CR as a function of tracer concentration
data measured after a generic tracer input.

Mean Residence Time MRTNC (Tables 3.3.3 and 3.3.4)

The formula for the mean residence time in terms of tracer concen-
tration data measured after a bolus injection of tracer is a very common
one; its proof is not trivial but can be found, e.g. in Rescigno and
Gurpide [1973]. On the other hand, expressions for MRTNC following
a constant, primed or generic input of tracer have not been treated ex-
tensively in the literature. Their proofs will be given below in terms of
the expression of MRTNC for the unit impulse response:

and the relationships listed in Table D.1.
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Consider first the constant infusion experiment where
The integral in the numerator of (D.16) can be written

Finally, substituting t for in (D.17) one can write

The integral in the denominator of (D.16) is equal to the plateau value
normalized to the dose u (as given by (D.11)), and hence

Consider next the primed infusion experiment where
Defining

one has

Equation (D.21) is a linear, first order differential equation whose initial
conditions are zero, i.e. . The solution is given by

Equation (D.22) links the tracer concentration during the primed infu-
sion experiment c(t) to the tracer concentration g(t) as measured during
a unit constant infusion. In this latter case, (D.19) gives the MRTNC

as
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where g indicates the plateau value. By making use of (D.22) and of
the relationship between the plateau values of concentrations,
MRTNC can be expressed as a function of the tracer concentration
during a primed constant infusion experiment:

For the proof of the expression for MRTNC in terms of tracer concen-
tration data c(t) following a generic input of tracer u(t), one first uses
the convolution integral to calculate

Writing and recalling that u(t) is zero for t < 0, one has

Substituting t for and in the last expression above,

Equation (D.27) permits one to express the numerator of (D.16) as a
function of the c(t) measurements:

An expression for the denominator has already been given in (D.15). By
dividing (D.28) and (D.15), then, the formula for MRTNC is obtained.
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Finally, in §4.3, an expression for MRTNC is given for measurements
taken from the plateau value and washout phase. Let T be the time at
which, after a plateau has been reached, the tracer input is stopped. This
input format can be viewed as the sum of two components, a constant
infusion u, resulting in the plateau value c, minus a negative constant
infusion having the same magnitude u but starting from time T. The
tracer concentration for t > T, starting from the plateau value c, is:

where as before g(t) is the response to a unit tracer infusion, (D.20);
is the plateau value, and is the response to the

step decrease to zero of the input.
Consider now (D.23) giving MRTNC as a function of g(t). By mul-

tiplying the numerator and denominator by u, and using (D.29), one
has

The formulas for the MRTNC in terms of the tracer to tracee ratio
z(t) could be developed by following the same arguments as before since
the basic ingredients, i.e. an expression parallel to (D.16) in terms of h(t)
and the results in Table D.1 hold when the measured variables are either
tracer concentration or the tracer to tracee ratios. As an alternative, the
equivalent role played by c(t) and z(t) in the MRTNC formulas can be
verified by noting that there is a proportionality constant between the
two variables:

where C is the constant value of tracee concentration. Since in all
MRTNC formulas c(t) appears in both the numerator and denominator,
it can be divided by C to give z(t) as exemplified below for (D.18):
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Parameters for the two accessible pool model (Tables 3.4.3 and
3.4.4)

Formulas for the tracer fluxes and can be derived by solving a
set of two linear equations in two unknowns:

Equations (D.33) and (D.34) represent the extension of (D.4) to the
two accessible pool configuration, since they express the conservation of
mass principle applied to tracers injected into pool 1 and 2, e.g. (D.33)
equals the tracer dose injected into pool 1 to its total outflow from the
accessible pools.

In order to obtain expressions for and the following equations
are solved:

They still express the conservation of mass principle, e.g. (D.35) refers
to the tracer injected into pool 1, and expresses the balance between the
total tracer fluxes entering and leaving pool 2. Once and are
known, they can be solved in and      .
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Appendix E
Derivation of the
Exhaustive Summary

Obtain first an expression for and as a function of
and From (5.4.3) - (5.4.6), one has for and

and thus their derivatives are given by

However, and have also been defined by (5.4.1) and (5.4.2).
In each of these equations, and appear, and (E.1) and (E.2)
give an expression for each of these as a sum of two exponentials. Sub-
stituting these sums of exponentials into (5.4.1) and (5.4.2), one obtains:
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where

Rewriting these equations in terms of and

(E.3) and (E.4) and (E.9) and (E.10) are both expressions for the deriva-
tive of and respectively, and hence must be equal. This
means the four coefficients of and respectively must be equal.
By equating these coefficients, one obtains the four relations among the
observational parameters and the unknown model parameters given by
(5.4.14)–(5.4.17). The fifth relation, (5.4.18), can be obtained by equat-
ing the initial conditions for          .
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Appendix G
Obtaining Initial Estimates of Exponentials

Introduction

The most commonly used functional expression to describe a set of
tracer data is a sum of exponentials. As indicated in Chapter 9, once a
particular sum of exponentials has been chosen, fitting this expression
to a given set of data requires, as the first step, initial estimates for the
exponentials and the coefficients. This appendix will focus on how to
obtain these estimates.

The general formula for an exponential function y(t) is given by

where the are the exponentials, the are the
coefficients, and is a constant term. This function describes the
various experimental configurations indicated in Chapter 9. For the
single accessible pool noncompartmental model, when and the
remaining are positive, (G.1) describes the decay of tracer from the
accessible pool following a bolus injection of tracer into that pool. When

and the sum of the equals zero, i.e.
(G.1) describes the appearance of tracer in the accessible pool following a
constant infusion of tracer into that pool. In the situation when the sum
of the coefficients is not zero, (G.1) describes the tracer in the accessible
pool following a primed, constant infusion of tracer. Finally, when

and (G.1) describes the appearance of tracer in a
second accessible pool following its input into a first accessible pool. In
this situation, (G.1) can be used in estimating the noncompartmental
parameters of the two accessible pool model.

385
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How can initial estimates for the and be obtained? There are
several ways based upon the fact that semi-logarithmic plot is a lineariz-
ing plot for a monoexponential decay. That is, a semi-logarithmic plot
of the monoexponential is a straight line whose slope is and
whose intercept is ln(A). This can easily be seen by taking the natural
logarithm of

This observation will be used in obtaining estimates of the and in
(G.1) for a variety of common experimental designs.

Semi-logarithmic plots of data, i.e. plots resulting from the logarith-
mic transformation of a set of data, are obtained as follows. Each datum

is transformed into the natural logarithm of z i , ln(zi). If the data de-
cay monoexponentially, ln(zi) when plotted against t is a straight line.
Using semi-logarithmic plots, the ln(zi) are calculated automatically be-
cause the scale on the ordinate is logarithmic.

Figure G1 illustrates how (G.2) can be used to obtain an estimate for
and A. These data are taken from Table 8.5.1. The linear plots of these

data are curvilinear but, when transformed logarithmically by plotting
them using a semi-logarithmic scale on the ordinate, the transformed
data appear to be a straight line whose intercept with the ordinate is
ln(A) and whose slope is As shown in the next section, it is easy to
go from the semi-logarithmic plot to an estimate for and A.

The semi-logarithmic plot as a linearizing transformation succeeds
only for the monoexponential decay. The semi-logarithmic plot of the
monoexponential rise or of data containing more the
one exponential is not a linear plot. That is, with the exception of
the monoexponential decay, there is no transformation of (G.1) that
will result in an expression in which the are linear. However the
transformation of the monoexponential will serve as the foundation to
obtain the initial estimates of the exponentials.

Initial Estimates of a Single  Exponential Model

Monoexponential decays: Bolus injection of tracer

Single or monoexponential decays are described by the equation:

The question to be addressed in this part of the Appendix is the
following: given a set of data to be fitted by the single exponential decay
(G.3), how are initial estimates for the nonlinear parameter and linear
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parameter A in (G.3) obtained? Whereas the answer is not difficult in
this situation, a number of fundamental ideas will be introduced which
then form the basis for dealing with the multiexponential case.

To estimate A and in (G.3), consider the set of monoexponentially
decaying data shown first in Figure G.1 and reproduced in Figure G.2.
Recall the reason why the semi-logarithmic plot of a set of monoex-
ponentially decaying data appears as a straight line is because of the
transformation of

Then it is possible to use a linear regression routine and the logarith-
mically transformed data to estimate as the slope and A as the
intercept. This would result in estimates for and (A) as indicated in
Figure G.2. However, since all that is needed are approximate estimates
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of and A, it is not necessary to go through the formal procedure of
linear regression.

A more practical way to obtain an initial estimate and A can be
described as follows. First, draw a straight line through the data as
indicated in Figure G.2A. Second, chose two arbitrary points on this line
as indicated in Figure G.2B. If, for example, the two time points chosen
are and the corresponding points on the line are and

. An estimate for the slope of this line, which is can
be obtained from

In Figure G.2B, the two points are (ln(0.4), 115) and (ln(0.2), 205). Ap-
plying (G.5), one can calculate

Notice that the points chosen are points on the line, not two arbitrary
data points. The reason is that the data may not lie on the line, i.e.
if one were to choose two arbitrary data and substitute the appropriate
values into (G.5), one may not obtain a reasonable estimate of  because
of noise in the data.

Finally, an estimate for A can be obtained as the point where the
line through the data intersects the ordinate. In Figure G.2B, since the
data are plotted is semi-logarithmically, A can be read immediately as
approximately 1.
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While the single exponential model has been dealt with here, an ex-
tension of this method will form the basis for the curve-peeling method
of estimating exponentials in multiexponential functions discussed later.

The method can also be adapted to use “biological half-life” as a
parameter. This variation when adapted to the multiexponential case
is much quicker than curve-peeling in providing initial estimates for the
exponentials.

The biological half-life of a substance in the body is defined as the
length of time required for one-half of the material present in the system
at a given time to leave the system irreversibly. For a tracer which
decays monoexponentially, this can be discussed in terms of (G.3). For
example, if the units of measure are concentration, the constant A is
the amount of material injected into the system as a bolus at time zero
per unit volume. Hence one half of the material is equal to If

represents the half-time, that is the time it takes for one half of the
material to leave the system, then in terms of (G.3),

Solving (G.6) for

This equation provides the relationship between the half-time and
the exponential that will be used below to estimate More specifi-
cally, once is known,

Whereas (G.7) and (G.8) were derived starting from the initial amount
of material in the system, A, it is important to note that it is not nec-
essary to “start” with the zero time amount. Since is
decaying monoexponentially, one can “start” at any arbitrary time
The amount of material in the system at this time is
One half of this material is . The time at which half of
this material would be left is Equation (G.7) and hence (G.8)

can be obtained from solving It is this
observation, i.e. that one can start from any arbitrary point on the de-
caying monoexponential, that makes this adaption of the curve peeling
method very easy.

To illustrate how the relationship between half-times and exponen-
tials can be used to estimate the numerical value of the exponential
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consider again the data given above in Figure G.2. First, chose an arbi-
trary point on the y-axis, say and note the corresponding time
at which the point lies on the line. One half of this amount
is . Second, find the time on the abscissa at which the point

is on the line. In Figure G.2B, occurring at time
115, occurring at time 205. The difference is the
half-time for this particular situation, and an estimate can be obtained
from (G.8):

That this method is a specific case of the first method described can
be seen as follows. The two specific points chosen, when plotted on
semi-logarithmic paper, are and From (G.5)
and the above discussion, one has

Because the monoexponential when plotted semi-logarithmically is a
straight line, the same estimate for will be obtained for any start-
ing value This is not the case either for the monoexponential
rise discussed next, or for multiexponentials. However, extensions of the
method can be used in these cases.

A “monoexponential rise” is described by the equation

The reason why monoexponential rise is in quotation marks is because
in the case of the constant infusion of tracer, the tracer data rise towards
a plateau value actually reaching it if the infusion is carried out for a
sufficiently long period of time, while in the case of the primed, constant
infusion, the data can either rise or fall to the plateau depending upon
the size of the priming dose.

In (G.9), the parameter is always positive. If the tracer is infused
for an infinite time, this is the constant value can assume; it is
called the plateau value. The parameter equals in the case
of the constant infusion since but can be either
positive or negative for the primed constant infusion depending upon
the situation. Various examples are illustrated in Figure G.3.

The question to be addressed now is how to obtain an initial estimate
for and when the data are to be described by a monoexponential
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rise. Obtaining this initial estimate for in (G.9) is more complex that
the monoexponential decay because the logarithmic transformation of
(G.9) is not a linearizing transformation.

In describing how to obtain estimates for it is instructive to deal
separately with the constant and then the primed, constant infusion
of tracer. This separation for the monoexponential case will make the
extension to multiexponential functions easier.

Case 1: The constant infusion of tracer

Since and in (G.9) are equal and opposite in this situation, the
monoexponential rise to a plateau in experiments where tracer is admin-
istered into the accessible pool as a constant infusion can be described
by rewriting (G.9) as

(G.10)

where T is the time at which the infusion stops. Two situations can arise;
in one, a plateau value is clearly reached and in the other, a plateau is
not reached. Both will be considered using the data given in Table G.1
plotted in Figure G.4 in both the linear and semi-logarithmic modes.
These are simulated data from two experiments in which 40, 000 dpm of
tracer labeled material was infused into the plasma for 150 minutes.
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From this Figure, it should clear that, unlike the situation described
for the bolus injection of tracer followed by a monoexponential decay
of the data, the semi-logarithmic plots of these data are curvilinear.
Thus the estimation of the exponential does not directly parallel the
situation described for the monoexponential.

How are estimates for A and obtained? The following albeit tedious
method will provide a reasonable estimate; this method can be seen as
an adaptation of the first method used for the bolus injection.

Step 1. Obtain an estimate for A by postulating the plateau value.

Step 2. Subtract this value from each datum producing a “new” set
of data.

Step 3. Multiply this set by -1 thereby producing a second “new”
set of data.

Step 4. Obtain an estimate of using the methods described in the
previous section.
This method requires an estimation of A, the plateau value, first; this is
easy in the situation when a plateau is clearly reached as is the case with
Study 1 but more difficult in the case when the plateau is not reached
as is the case with Study 2. Subtracting A from (G.10) leaves
Multiplying this by –1 converts the expression into a monoex-
ponential decay. Thus taking the data set, subtracting A from each
datum, and multiplying this number will result in a set of “modified”
data decaying monoexponentially according to the expression
The parameter for the monoexponential rise can then be estimated
using the methods described by the monoexponential decay.

This method will be illustrated using the set of data from Study 1
given in Table G.1. An estimate of the plateau value is 3400 (see Fig-
ure G.5A), thus The results of steps 2 and 3 for this set of
data are summarized in Table G.2.

Notice the values for the modified data after 50 time units vary be-
tween positive and negative values; this is because the original data
are on the plateau, and are randomly distributed above and below the
plateau. A plot of the modified data is shown in Figure G.5B. To es-
timate one can use the half-life method discussed for the monoex-
ponential decay. This is also illustrated in Figure G.5B where, as can
be seen, the half life is 12 minutes resulting in an estimate of equal
to 0.06. Figure G.5C shows the prediction of the data by the function

These estimates should be more than sufficient to use as a starting
point for an algorithm of nonlinear weighted least squares to obtain a
“best fit” of the data.
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There is a second technique which can be used to obtain an estimate
of this can be described as follows. The slope of the monoexponential
rise described by (G.10) at any time t is given by the derivative of

In this equation, the product of A and is the coefficient of The
estimate of can be obtained by noting that evaluated at is
equal to ; i.e. the slope of the line describing the data at time zero is

Once A is estimated as the plateau value and is estimated as the
slope of the rise at time zero, an estimate of will follow immediately.
This method, while not as tedious as that previously described, is very
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sensitive to the initial slope; this can create problems if there are few
data describing the initial rise.

The question arises as to whether or not there is a counterpart to
(G.8) for the constant infusion experiment, i.e. is it possible to define a

from which can then be estimated? The answer is yes,
If A is the plateau value, define in this situation as the time it

takes, starting from time zero, to reach . Paralleling the bolus injection
experiment, (G.10) can be written and solved for

which, when simplified becomes

Taking the logarithm of both sides of (G.13) and solving for one
obtains
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This equation is identical to (G.8)!
In fact, this notion can be extended in a way that will be very useful for

multiexponential rises. If one draws a curve through the rise and picks an
arbitrary point on the curve then Solving
for the time it takes to go from that value half way to the plateau, one
obtains (G.14). To see how this works, suppose the time taken to go
half way to the plateau is written Since is numerically
equal to the average between A and can be written

Combining this with (G.10), one has

This equation can be solved for giving from which it follows
immediately that

To see how this is used to estimate for the constant infusion experi-
ment, consider the data from Table G.1 plotted in Figure G.6. For Study
1. an estimate of of 0.05 is obtained; this differs from the value 0.06
obtained from the previous. In theory, both methods are correct; the
difference in estimates is due to how they are implemented. For Study
2, an estimate for equal to 0.01 is obtained as explained in the figure
legend. A plot of and the data from Study 1,
and a plot of and the data from Study 2 are
shown in Figure G7.

One can see immediately that if the plateau value can be estimated
with some reasonable confidence that the estimate of is also reasonable,
but if one has to more or less guess at a plateau value, the estimate both
of the plateau and is not as good. However, both are sufficient as
initial estimate for most computer programs to begin the optimization
process.

Case 2: The primed, constant infusion

In the case of the primed, constant infusion the coefficients in (G.9)
are not equal and opposite; the difference between this and the previous
situation is that at time zero, Hence to obtain an initial
estimate of the scheme for the constant infusion must be modified.
The examples to be used in developing the techniques are the data from
two simulated studies given in Table G.3 (plotted in Figure G.8). In
Study 1, a priming dose of followed by a constant infusion of
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550, 000dpm/min was given; in Study 2, the priming dose was
The columns other than the two data columns will be explained later.

The equation describing data from a primed, constant infusion is

where is the plateau, is the intercept with the ordinate, and
T is the time at which the infusion stops.
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How are estimates for and obtained in this situation? The
following modification of the first method described above for the con-
stant infusion can be illustrated using the data in Table G.3 and Fig-
ure G.8.

Step 1. Obtain an estimate for the plateau
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Step 2. Subtract this value from each datum producing a modified
set of data.
At this point, there are two possible situations. If the data are rising (as
is the case in Study 1 from Table G.3), then:

Step 3. Multiply this set by –1 thereby producing a second modified
set of data.

Step 4. Obtain an estimate of using one of the methods described
for the monoexponential decay.
If the data are falling (as is the case in Study 2 from Table G.3), one
can proceed directly to an estimate of .

How does this work? Subtracting from each datum eliminates the
constant term from (G.16) leaving only the expression If this
expression is negative, multiplying each modified data by –1 converts
them into a second set of modified data which will appear as a mo-
noexponential decay whose zero time value is . If the expression is
positive, the modified data will already appear as a monoexponential
decay. These cases are illustrated in Figure G.8.

It is sufficient to estimate two parameters since the third can be de-
rived from the constraint (9.2.23) which is derived in Appendix H:

The easiest way to apply this is to estimate from the plateau value
and from the intercept. Then from (G.17)

However, this method cannot be extended to the multiexponential
case where it is necessary to estimate the from the data. Another point
must be made. In the event that the plateau is reached “immediately”,

In this case, while can still be estimated as the
ratio between the constant infusion and the priming dose (see (9.2.23)).

Finally, there is a counterpart for (G.8), the half-life method, for
the primed, constant infusion case. Consider the data from Studies 1
and 2 from Table G.3 redrawn in Figure G.9. Unlike the case for the
constant infusion where for the primed, constant infusion,

. Panels A-l and B-l in Figure G.9 illustrates for both
studies as the plateau value, and the intercept with the
ordinate.

Define in this situation as the time it takes to go from to
(see Figure G.9). Then (G.16) can be solved for from the
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following equation:

which, when simplified, becomes

The exponential can be estimated from Since this
equation is identical to (G.8),
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As with the constant infusion, the definition can be extended. If one
starts at a given point where and defines
the half-time as the time it takes to go from that point half-way to
the plateau, one can solve the equation

to obtain (G.20).

Monoexponential washout after stopping an infusion of tracer

The constant or primed, constant infusion of tracer lasts for a finite
duration of time. After the infusion is stopped, the so-called washout
period starts. It is called this because with no more tracer entering
from outside the system, what remains will be removed by the various
pathways of the particular system under study; it is being washed out.
Whether the tracer is administered as a constant or primed constant
infusion, the analysis of the washout phase is the same. An example of
monoexponential washout is given in Figure G.10.

The equation for the rising portion of the curve is

This equation is valid only during the infusion. That is, if the infusion
starts at time zero and stops at time is valid only for

What is needed now is a functional description of the washout, i.e.
for Below, a specific example is considered first followed by a
discussion of the general case.

The rising portion of the data given in Figure G.10A are those from
Study 1 given in Table G.1. These data can, as was discussed previously,
be described during the infusion period by the function

That is, for any specific between 0 and 150 minutes, a
datum at that point is approximately equal to
In particular, when i.e. when the infusion is stopped, the
calculated tracer concentration in the accessible pool for Study 1 is

The question to be addressed now is
how does this material leave the system?

As seen Figure G.10B, the washout phase appears on the semi-logarith-
mic plot as a straight line suggesting a monoexponential decay. In fact,
the exponential for this decay can be estimated using the same methods
for the monoexponential decay discussed earlier! The half-time method
illustrated in Figure G.10 gives an estimate for equal to 0.06; this value
is the same as those obtained during the rising portion of the curve. That



Appendix G: Obtaining Initial Estimates of Exponentials 403

this is the case can be seen from the observation that the monoexponen-
tial model deals with a single pool system, and the exponential during
a steady state experiment cannot change.

However, the decay representing the washout cannot be described by
since this implies the monoexponential decay starts at time zero.

In this example, the decay starts 150 minutes into the experiment. Thus
to describe the monoexponential decay which starts at 150 minutes, the
time t in the exponential function is not t but (t – 150). The effect of
this is that when the infusion stops, i.e. when
and the decay from 150 minutes proceeds as if there had been a bolus
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injection equalling into the system. The equation
describing the washout for this example is

The result of combining the two expressions is shown in Figure G.10C.
These equations are valid only for t greater than 150 minutes

What happens in the general case? The function describing the ex-
ponential rise during the constant or primed constant infusion is (G.22).
Suppose in a given experiment, the infusion is stopped at time T, and
data are collected during the washout phase. Then the calculated con-
centration of material in the system at T is:

The equation to describe the monoexponential decay of the washout is
then:

where the subscript indicates the washout portion of the curve. The
function y(t) describing all the data is thus

One can observe that in experiments where the tracer is introduced as
a constant or primed, constant infusion, a rough, initial estimate of the
exponential to describe both the rising and washout portion of the
curve can be obtained from the washout phase.

Initial Estimates of a Two Exponential Model

Introduction

The equation for the general two exponential model is

In this section, how to obtain initial estimates for the exponentials
and the coefficients and and the constant term will be
discussed. Biexponential decays can be used to describe tracer data in
the accessible pool after a bolus injection of tracer into the accessible
pool and biexponential rises can be used to describe data after a constant
or primed, constant infusion of tracer into the accessible pool. For the
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two accessible pool noncompartmental model, the biexponential rise and
fall which represents the appearance and disappearance of tracer in the
second accessible pool when the tracer was introduced into the first
accessible pool will also be discussed.

For biexponential decays, the techniques given are extensions of the
methods discussed in the previous section for the monoexponential model.
The first method estimated the exponential from the slope of the semi-
logarithmic plot of the data; the extension of this is the curve peeling
method. The second method was based on the notion of biological half-
life. The extension of this method is called the rapid or quick curve
peeling method. To describe biexponential rises, one technique described
for the monoexponential carries over directly. In fact, this is the only
technique that can be used with reliability. Another method which at
times can be less reliable is discussed because it is less tedious. Since
extensions of these methods form the basis for estimating exponentials
for arbitrary multiexporiential functions, the biexponential function like
the monoexponential will be discussed in some detail.

Biexponential decays: the bolus injection of a tracer

The general expression for the biexponential decay is given by (G.28):

where the coefficients and are positive, and and are the
exponentials. In the following, it will be assumed that

The difference between the monoexponential decay and the biexpo-
nential decay can be illustrated using the data given in Figure G.11.
These data, which were originally used in Table 8.7.4 as Case Study 2,
were collected during a study in which a bolus of tracer was injected at
time 0 into an accessible pool, and serial samples taken from this pool
for 150 minutes. It should be noted that in this Case Study it was seen
that the data could best be described by a sum of three exponentials.
To determine this, however, it was necessary to fit these data to a sum
of two, three and four exponentials. These data will be used to illus-
trate how to obtain initial estimates for a sum of two, three and four
exponentials thus providing continuity with some of the ideas presented
in Chapter 8 on determining model order.

Unlike the monoexponential case, the semi-logarithmic plot of these
data is not a straight line, but is curvilinear since in this case, the semi-
logarithmic transformation is not a linearizing plot.

However, one should not forget that all that is required are estimates
for  the  coefficients and exponentials One wants estimates that has
at least a reasonable approximation of the characteristics of the data.
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Panel C in Figure G.11 illustrates this. Here one sees the middle curve
cutting through the data in a reasonable fashion. This compares with
the upper and lower ones. The upper one results from a set of estimates
that is far too slow to represent the data while the lower one results
from a set of estimates that is far too rapid. Often in these situations
when the estimates are so far off, a computer program will not be able
to converge to a best fit.

The two methods given below describe how to obtain initial estimate
of the two coefficients and exponentials required to describe a biexpo-
nential decay. Both will rely on an analysis of the data following a semi-
logarithmic transformation, and hence are easily seen as extensions of
the concepts introduced for the monoexponential decay.
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Curve peeling

Curve peeling is a technique to estimate the exponentials by estimat-
ing one exponential at a time. The three steps that are involved, which
will be discussed in detail below, are:

1. estimating and

2. subtracting from the data to obtain a modified data set;
and

3. estimating and from the modified data set.

The data given in Figure G.11 will be used to illustrate these steps. The
original data and the results are the first two steps above are summarized
in Table G.4 below.
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Step 1: Estimate and
Draw a straight line through the tail portion of the data shown in Fig-

ure G.11; this is shown in Figure G.12. The idea is the following. In the
case of a biexponential decay, if one exponential, say is numerically
5 to 10 times larger than the second, then beyond a certain time, the
contribution that the term containing this exponential, makes
to the decay is “lost” in the sense that _ is very small numeri-
cally relative to the term containing the second exponential,
Mathematically, this means that beyond a certain time T, for all

The data for make up what is called the
tail portion of the biexponential curve. The assumption is that the tail
portion of the curve is due “entirely” to . Thus the slope of the
line through the tail portion of the curve is and the intercept with
the ordinate is Paralleling the monoexponential decay, the expo-
nential can be estimated by picking two arbitrary points on this line,

and and calculating:
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This is the counterpart of (G.5). The two points chosen in the figure
are (ln(50,000),82) and (ln(30,000), 148). Using (G.29), an estimate of
0.008 for can be obtained. An estimate for can be obtained from
the point where the line intersects the ordinate; this value at this point
is 100,000.

The half-time method described for the monoexponential decay can
also be used to estimate It is clear, for example, that the time it
takes to decay from 100,000 to 50,000 is 82 minutes, hence

The equation for the line drawn through the tail portion of the data
is thus:

This first step has resulted in an estimate for one of the two exponen-
tial and the coefficient How the estimate for the second expo-
nential and its coefficient is obtained reveals why the technique is
called curve peeling.

Step 2: Subtract from each plasma datum in Table G.4.
The idea behind curve peeling thus is to subtract from each

datum , i.e. to subtract from each datum the contribution from
the slow exponential. For the data in the tail portion of the curve, this
difference should be close to zero while in the resulting modified data,
i.e. that from the beginning portion of the curve, the result should
approximate a monoexponential.

This is illustrated using the data in Table G.4 where the results of
subtracting from each datum is shown in the third column of
the table. The modified data are shown in Figure G.13.

One sees that the modified data plotted semi-logarithmically in Fig-
ure G.13 is close to a straight line indicating a monoexponential decay.
Because the initial decay occurs rapidly, these data have been plotted
using an expanded scale; this is shown in the inset to Figure G.13.

Step 3: Estimate and
Step 1 can now be repeated using the modified data to obtain esti-

mates of and . In the example illustrated in the Figure, using the
half-time method,

and equals 110,000.
Noting that the straight line through the modified data shown in the

inset to Figure G.13 intersects the ordinate approximately at 110000
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providing an estimate for one has estimates for the remaining pa-
rameters of are obtained. The
function describing the data can be written

this is shown in Figure G.13.
In Case Study 2, these were the initial estimates for the parameters of

the two exponential model used for fitting this model to the data the re-
sults of which were given in Tables 8.7.5 and 8.7.6. However, one should
note from the inset in Figure G.13 that the initial data may not decay
monoexponentially, but biexponentially. Therefore, while the approach
here can be used to estimate the parameters of the two exponential
model, an analysis such as this can provide insights into whether the
two or a higher order exponential model will ultimately be required.

The reader should anticipate the extension of this idea to the situation
where there are more than two exponentials to estimate. Briefly, the idea
of peeling the contribution of the “slow” exponential continues until only
a monoexponential is left.
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The “quick” curve peeling method

The traditional method of curve peeling is time consuming, especially
when there are several data or more than two exponentials to be esti-
mated. Since all that is needed is are initial estimates of and the
question arises if there is a faster method. The answer is “yes”!

The quick method of estimating the exponentials utilizes the notion
of biological half-life described previously. The relationship between the
half-life and the exponential is given again below for convenience

The application of this equation to the biexponential decay is a simple
extension of the idea introduced for the monoexponential decay.

Unlike the formal curve peeling method where three steps were in-
volved in the estimation of A1, A2,    and here there are only two
steps. What is avoided is the laborious step 2 above, i.e. the subtraction

from the data. The price that is paid for this simplicity is that
the estimates of the exponentials and coefficients may not be as accurate
as those obtained in formal curve peeling, but they are usually sufficient
as initial estimates for nonlinear least squares algorithms.

Step 1. Draw two lines tangent through the tail and initial decay
portion of the curve.

This step can be illustrated using the data given in Table G.4 redrawn
below in Figure G.14.

Step 2. Estimate and
Using these tangent lines and the notion of biological half-life as ex-

pressed in (G.14), one can immediately estimate the exponentials.
To estimate as illustrated in Figure G.14, using line 2, one sees

the half-time calculated as the time to decay from 40000dpm/ml to
20000dpm/ml is about 85 minutes. Thus

The coefficient A2 can be estimated from the intercept of the tangent line
with the y-axis. This is also illustrated in Figure G.14, and is 100000.

The estimation of is simply a repetition of the above steps only
using the tangent line drawn through the rapidly decaying portion of
the curve (line 1 in Figure G.14). As illustrated in the Figure, the half-
time is being calculated as the time it takes to decay from 40000cpm/ml
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to 40000cpm/ml along the line; this time is about 10 minutes hence

Notice this estimate differs from that obtained from formal curve peeling.
This is because the affect of the tail portion has not been subtracted from
the data. Estimates of obtained in this manner will usually be less
than those obtained when formal curve peeling is used. Normally this
will not cause problems for initial estimates for exponentials.

An estimate for the parameter can be obtained as follows. The
intercept of the tangent line representing the rapid decay provides an
estimate for in this case, can be estimated equal to
210000. Using the estimate of 100000 for obtained above, one can
estimate by subtracting _ from this value; is thus 100000. Thus

. Figure G.15 shows the prediction
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of y ( t ) by using the results of the quick peeling method is not quite as
good as the one obtained by the formal curve peeling method.

In summary, if and are the half times for the fast and slow
exponential respectively, the general equations for the estimation of
and using this quick method are

where and are the biological half-lives associated with the slow, s,

and fast, f, decays respectively.

Biexponential rises: the constant and primed, constant infusion of a
tracer

A “biexponential rise” is often used to describe tracer data following
a constant or primed, constant infusion of tracer into the accessible pool
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from which samples are obtained (where the quotation marks are used
for the same reason they were for the monoexponential rise described
previously). It is described by the equation

The plateau value is always positive, while the parameters and
are can be either positive or negative depending upon the situation.

Case 1: The constant infusion

The biexponential function describing tracer data in the accessible
pool following a constant infusion of tracer into a single accessible pool
noncompartmental system is

where and are negative, and T is the time at
which the infusion stops. Notice An example is shown below
in Figure G.16.

How are estimates of and obtained? As described for the mo-
noexponential case, there is only one method which will provide reliable
estimates. For the biexponential case, the data must be modified before
an adaption of the methods used to estimate and in the biexpo-
nential decay can be used. The steps involved are the following.

Step 1. Obtain an estimate of the plateau
Step 2. Subtract this value from each datum producing a modified

set of data.
Step 3. Multiply each modified datum by –1 thereby producing yet

another modified set of data. This set of data will decay biexponentially.
Step 4. Obtain estimates of and using the methods described

for the biexponential decay.
In terms of (G.39), subtracting from each datum will eliminate the

constant term from (G.39) leaving only Multiplying
the modified data by – 1 will convert this into which
is a biexponential decay whose zero time value is Therefore,
processing the data in this manner will transform the original data from
a biexponential rise into a set of data which decay biexponentially; the
exponentials and and coefficients and can then be estimated
using the method for biexponential decays.

Is there a quicker method to estimate and Strictly
speaking, the answer is no. The reason why is that the counterpart for

is more complicated; the derivative of (G.39) evaluated
at time zero is
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While it is possible to estimate the plateau , the plateau value, just as
it was possible to estimate A in the monoexponential case, one cannot

 estimate the individual coefficients and even with estimates of
and

It is sometimes possible to adapt the half-life method to obtain ap-
proximate estimates of and This adaptation, however, is some-
times unreliable. If this is the case, it is always possible to use the
original method discussed above.
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The “quick” method can be described using the data shown in Fig-
ure G.16, and is the counterpart for the monoexponential rise case to
passing from an arbitrary point on a curve to the point half-way be-
tween that point and the plateau. As with the “quick” method for the
biexponential decay, one assumes that if then in the initial
portion of the curve the term will predominated while towards
the plateau, later in time, the term will predominated. For the
initial portion of the curve, one can define a half-time by solving

for This equation can be used to derive the standard relationship
between the half-time and In this equation, the terms and

are assumed to be negligible. Similarly, as illustrated in
the following figure, an estimate for can be derived.

The problem with this method, as noted previously, is that although
an estimate for the plateau . can be obtained, there is no reliable
“quick” way to estimate the individual There is a method
that can sometimes work. One can draw a tangent line representing
the slowly rising portion of the curve towards the plateau when the
data are plotted in semi-logarithmic form. The difference where this
line intersects the ordinate and the plateau can be used as an estimate
for . The coefficient can be estimated as the difference between
the plateau value and the estimated value for This approach is
illustrated in Figure G.17.

If a primed, constant infusion is used, the biexponential function de-
scribing the “rise” is

where can be either positive or negative,
and T is the time at which the infusion stops.

Estimating and in this case parallels the arguments developed
for the monoexponential “rise” following the primed, constant infusion.
Again, one must deal with the possibilities that the data are rising or
falling. The steps to obtain reliable estimates of and and the
coefficients are given below.

Step 1. Obtain an estimate of the plateau
Step 2. Subtract this value from each datum producing a modified

set of data.
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If the resulting data are negative which corresponds to the case when
the data are rising to a plateau, the following steps must be employed.

Step 3. Multiply each modified datum by –1 thereby producing yet
another modified set of data.
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Step 4. Obtain estimates of and using the methods
described for the biexponential decay.
If the data following step 2 are positive corresponding to the data falling
to a plateau, estimates of and can be obtained without
step 3.

The rationale for this strategy is the same as for the constant infusion
case with the modifications discussed originally for the monoexponential
rise following the primed, constant infusion applied.

The quick method described above for the constant infusion case can
also be used in this case when modified as was done for the monoex-
ponential situation. The difference is that rather than starting from a
value of 0 at time 0 to estimate , one starts with the initial value of

If the data are rising, one can adapt the method for the
constant infusion as illustrated in Figure G.9. If the data are falling,
one can estimate estimate and using the quick method described
for biexponential decays. Finally, as discussed for the monoexponential
case, one can obtain an estimate for the smaller exponential as the
quotient of the priming dose divided by the infusion rate.

Describing biexponential washouts is a direct extension of the ideas
given in for the monoexponential washout. An example is given in Figure
G.18.

The discussion given for the monoexponential washout provides a
means by which to describe data following a constant or primed, con-
stant infusion. The equation which provides this description, (G.38), is
given a more precise formalism below

where the r in is used to denote the rising portion of the curve. This
equation, which is the counterpart to (G.22) for the monoexponential
case, is valid only during the infusion. That is, if the infusion starts at
time zero and stops at time T, is valid only for

As before, consider first an example of how to describe a biexponential
washout. The data shown Figure G.18 will be used. The rising portion
are the same data as those shown in Figure G.16.

The data given in Figure G.18 can be described during the infusion
period by the function That is,
for any specific time between 0 and 300 minutes, a datum at that point
is approximately equal to In par-
ticular, when i.e. when the infusion is stopped, the calculated
tracer concentration is
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How does this amount of material decay from the system when the infu-
sion stops? As with the monoexponential case, one can regard this decay
as equivalent to injecting a bolus of magnitude  y(300) at time 300. This
is the “total injected”; thinking in terms of (G.28), the expression for
the biexponential decay, this numerically is equal to in this
expression. Thus besides offsetting the time, as described for the mono-
exponential case, by utilizing the expression (t — 300) in this example,
y(300) must also be subdivided into two constituent parts one of which
is the coefficient of the exponential containing and the other with
If is the fraction associated with then is the fraction as-
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sociated with This gives rise to the expression for the biexponential
decay:

In this expression, it is the constant α which partitions y(300) so that
and are the appropriate coefficients of the

exponential terms which will result in a description of the data. In
fitting this function to the washout, both the exponentials and
and the linear parameter must be estimated.

An estimate for can be obtained as indicated in Figure 18, Panel A.
Here one sees that most of the material, approximately 90%, decays
following the smaller exponential. Thus an estimate of 0.1 for can be
obtained. Using the estimates for and obtained from the rising
portion of the curve, given in (G.44) can be written. Panel B in
Figure G.18 shows a plot of

It should be noted that one could use the decaying portion of the
curve to estimate and respectively. This may produce slightly
different estimates of and but this should not materially affect
the estimates as used in a nonlinear regression algorithm.

What happens in the general case? The function describing the ex-
ponential “rise” during the primed constant infusion is:

where the subscript r indicates the rising portion of the curve. Suppose
in a given experiment, the infusion is stopped at time T, and data are
collected during the washout phase. Then the calculated amount of
material in the accessible pool at T is approximated by y(t) evaluated
at T:

The equation to describe the biexponential decay of the washout is then:

where the subscript w indicates the washout portion of the curve. At
time T, of course,
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In the two accessible pool noncompartmental model, a tracer intro-
duced in one accessible pool that is measured in the second accessible
pool will, following a bolus injection of tracer, rise and then fall. This
situation is illustrated in Figure G.19.

Notice in this Figure, there are no “recirculation-exchange” arrows as-
sociated with either accessible pool since, in the case of two exponentials,
such arrows do not exist.

Data such as these which rise first and then fall can be described by
a sum of two exponentials

where A is positive. Notice (G.49) with the additional assumption that
ensures that 0 and for

How does one obtain initial estimates for and in (G.49) for
data such as those shown in Figure G.19? Two steps, as illustrated in
Figure G.20, are involved.

Since the falling portion of the curve is decaying monoexponentially,
one can estimate the exponential, say associated with it. If one
assumes by the time the data are decaying monoexponentially that the
contribution in (G.49) from  is negligible, then what remains
in the expression for is the term Using the technique for
monoexponential decays, one can immediately estimate and by
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drawing a tangent line through the decaying data, and extrapolating
this line to the ordinate to obtain the estimate for A.

To obtain an estimate of , one can use the quick method for the mo-
noexponential rise described previously. These are illustrated in Figure
G.20. This example illustrates the case where the tracer is injected as
a bolus into one accessible pool and measured in the second accessible
pool. If the tracer is infused either as a constant or primed constant
infusion into one accessible pool and measured in the second, then the
product will also rise and may fall depending upon the experimental
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protocol. A sum of two exponential can still be used to describe the
data, but the discussion must be modified to take into account different
experimental protocols.

Initial estimates of models with more than two exponentials

Introduction

In the previous two sections, techniques to obtain initial estimates
of the exponentials for monoexponential and biexponential models were
given. In this section, these techniques will be expanded to permit the
investigator to obtain initial estimates for the exponentials and coeffi-
cients in multiexponential models. The example given will be for three
exponential models since the ideas carry over directly to models with
more than three exponentials.

Multiexponential decays: the bolus injection of tracer

The general expression for the multiexponential function describing a
decay is:

where for all and the are exponentials
to be estimated.

As with the biexponential decay, the curve peeling method will pro-
duce reliable estimates for the exponentials Assuming the exponen-
tials satisfy the relationship the steps involved are
the following.

1. Estimate and from the tail portion of the curve as was done
with the biexponential decay.

2. Subtract from each datum producing a modified set of
data This modified set of data can be described by

3. Estimate from the modified data set.

4. Subtract from the modified data producing

This process continues until all coefficients and exponentials have been
estimated, clearly a tedious exercise.
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In what follows, three approaches will be discussed for a sum of three
exponentials. The last which is an empirical method is the easiest to use
in moving from three exponentials to four and more. It will also be used
when estimating the rate constants in multicompartmental models.
The three exponential model to be discussed is

For the first method, consider the data given in Figure G.13. The
inset in this figure indicated that the data modified by subtracting
the contribution of the tail portion of the curve from the remaining
data could be biexponential rather than monoexponential. These mod-
ified data are shown in Panel A in Figure G.21 below. If one assumes

describes the decay of the tail portion of the curve, then as be-
fore . Rather than continuing the formal
curve peeling method, one can use the quick method to estimate the
coefficients and and the exponentials and  of (G.52). This is
indicated in Figure G.13 where estimates for and of 100,000 and
65,000 are obtained, and for and of  0.17 and 0.07 respectively.

The method is a direct extension of the quick method used for a sum of
two exponentials, but it suffers from a difficultly in estimating more than
two exponentials. The reason is that in this method, the contribution of
the individual exponentials is not subtracted out as it is in curve peeling.
If the exponentials are ordered , then the estimate for
is the most reliable and the least reliable. In addition, one can only
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estimate the sum of the and not the individual as was the case
with a sum of two exponentials.

Figure G.22 will be used to show how the quick method will work with
a sum of three exponentials. Notice in this example the initial portion
of the decay curve had to be plotted on an expanded scale in order to
estimate and more conveniently.

Finally, there is a third even quicker method that can be used; it is
an empirical method. As one goes through the process of determining
the number of exponential required to describe set of data, suppose as
in this situation the data have been fitted by a sum of two exponentials.
Since Case Study 2 is being used here, initial estimates for a sum of two
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exponentials were described in the previous section of this Appendix.
As described in a best fit by a sum of two exponentials is given
by That is, A1 = 122044, A2 =
107211, and This information can actually be
used to obtain initial estimates for the three exponential model (G.52).

First, since the tail portion of the curve can be best determined in
general, the initial estimate obtained for and of the sum of two
exponentials can be used to estimate and in (G.52). Thus

and Knowing from the sum of two exponentials that
the initial decay is described by one can obtain initial
estimates for the coefficients and and of the exponentials and

as follows. To obtain an estimate of , simply find the average of the
two exponentials best describing the biexponential decay. In this case,
this is the average of 0.14 and 0.0087 which is approximately 0.07. An
estimate for can be found by doubling the most rapid exponential
of the biexponential; in this case, that would equal 2 . 0.14 = 0.28.
Estimates for A1 and A2 can be obtained by dividing the coefficient of
the rapid exponential of the biexponential, and adding an additional
small amount to each. In this case, that coefficient is 122,044 hence set
A 1 = A2 = 65000. The result of this strategy is shown in Figure G.23A.

It is instructive to carry this one more step to a sum of four exponen-
tials. In it was found that the best fit to the data by a sum of three
exponentials was
How this information can be used to obtain initial estimates of the coef-
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ficients and exponentials of a sum of four exponentials
is an extension of what was done in passing

from two to three exponentials. First, since the tail portion of the curve
is the most reliable to estimate, one can let A4 = 98000 and
A3 can be estimated as half the value of the coefficient of the second term
of the sum of three exponentials; as noted, this value is close to 40,000 so
A3 = 40,000. An estimate for can be obtained as the average between
the middle and slowest exponential of the sum of three exponentials; in
this case, these values are 0.042 and 0.0083 so Repeating
this process, one can obtain estimates for and equal to 80,000
and 0.16 respectively (the number 80,000 arises as the sum of approxi-
mately one half of the value for the coefficient of the rapid and middle
term of the sum of three exponentials, 126,173 and 38,783 respectively).
Finally, an estimate of can be obtained, as before, by doubling 0.27
(approximately 0.5), and an estimate for A1 can be obtained as slightly
more than one half of 126,173. The results of this strategy are shown in
Figure G.23B.

This strategy is usually very reliable when one is trying to determine
model order. To be successful, one must go through the process of
formally fitting each sum of exponentials to the data before proceeding
to a model of higher order. If one wanted to proceed directly to a sum
of three exponentials, some form of curve peeling would have to be used.

While in what follows, this final strategy can be applied to multiexpo-
nential rises, or rises and falls, more “formal” methods will be discussed.
This method, however, will be very useful in understanding how quickly
to obtain initial estimates of the rate constants in linear, multicom-
partmental models.

Multiexponential rises: the constant and primed, constant infusion

A “multiexponential rise” is often used to describe tracer data follow-
ing a constant or primed, constant infusion of tracer into the accessible
pool from which samples are obtained (where the quotation marks are
used for the same reason they were for the monoexponential and biex-
ponential rise described earlier). It is described by the equation

where is the plateau value, the parameters can be either positive
or negative depending upon the situation, and T is the time at which
the infusion stops.
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Case 1: The constant infusion

The multiexponential function describing tracer data in the accessible
pool following a constant infusion of tracer into a single accessible pool
noncompartmental system is

where and the are negative. Notice this
means

The estimates of the are obtained using the same methods described
for the biexponential rise following the constant infusion of tracer. The
steps involved are the following.

Step 1. Obtain an estimate of the plateau
Step 2. Subtract this value from each datum producing a modified

set of data.
Step 3. Multiply each modified datum by – 1 thereby producing yet

another modified set of data.
Step 4. Obtain estimates of the and using the methods described

for the multiexponential decay.
The rationale for this is exactly the same as that given for the mono-

exponential rise. Subtracting from each datum will eliminate the con-
stant term from (G.54) leaving only Multiplying
the modified data by –1 will convert this into
which is a multiexponential decay whose zero time value is There-
fore, processing the data in this manner will transform the original data
from a multiexponential rise into a set of data which decay multiexpo-

nentially; both sets will be characterized by the same  coefficients and
exponentials

It is possible use the quicker method described previously to estimate
the but as noted in this discussion, the estimates can sometimes
be unreliable. Application of this technique to the data shown in Fig-
ure G.24. As with the biexponential case, the key in using this method is
drawing the tangent lines to the curve, one at the beginning initial rise,
and the other as the curve approaches the plateau. These are illustrated
in the figure.

One can estimate as the difference between where the line L3
intersects the ordinate and the plateau value. Similarly can be
estimated as the point where L2 intersects the ordinate from which an
estimate for can be obtained. Since the plateau value equals and

and estimate for can be obtained.
As noted previously, if a best fit of these data by a two exponential

model had been obtained, then paralleling the strategy discussed for
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the multiexponential decay, one could proceed to estimate the initial
parameters for the three exponential model.

Case 2: The primed, constant infusion of tracer

If a primed, constant infusion is used, the multiexponential function
describing the “rise” is
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where the can be positive or negative, and
T is the time at which the infusion stops.

As before, the only way to obtain reliable estimates of the is the
following:

Step 1. Obtain an estimate of the plateau
Step 2. Subtract this value from each datum producing a modified

set of data.
If the resulting data are negative which corresponds to the case when
the data are rising to a plateau, the following steps must be employed.

Step 3. Multiply each modified datum by –1 thereby producing yet
another modified set of data.

Step 4. Obtain estimates of using the methods described previously.
If the data following step 2 are positive corresponding to the data falling
to the plateau, estimates of can be obtained directly using the methods
described for the multiexponential decay.

The quick method described above for the constant infusion case can
also be used here. However, this method is usually successful only if one
is using an interactive computer program to test the estimates for the

and coefficients

Multiexponential washouts

The multiexponential washout is a direct extension of the biexponen-
tial washout case. Paralleling this situation, the equation which provides
a description of the rising portion of the curve is

where the in is used to denote the rising portion of the curve. The
calculated amount of material in the accessible pool at T is approximated
by evaluated at T:

The equation to describe the multiexponential decay of the washout is
then:

where

In this case, the new parameters which assign the
coefficients to each exponential term must also be estimated from the
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data. As with the biexponential case, the exponentials can be estimated
either from the rising or decaying portion of the curve.

Multiexponential rises and falls

The two accessible pool noncompartmental model discussed in the
biexponential case for the situation when the tracer is introduced as a
bolus into one accessible pool and measurements are taken in the second
accessible pool has a counterpart in the multiexponential case when the
system is more complex than only two accessible pools. This situation
is illustrated in Figure G.25.
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Data such as those shown in curves B and C which rise first and then
fall can be described by the equation

where some of the Ai are positive and others are negative. Notice that
i.e. the sum of the Ai is zero. Equation (G.59) is the coun-

terpart of (G.49). Notice, however, that in G.49) there was only one
coefficient, A, while in this case, there are   coefficients about which
little is known except they sum to zero.

Estimates for the can be obtained by extending the method de-
scribed earlier. Estimates for the  coefficients are best obtained using
an interactive computer program, and starting by using a biexponen-
tial to describe the data, and proceeding adapting the philosophy of the
last method described for the multiexponential decay. The reason why
this strategy is best is because one does not immediately know if, for
the three exponential model, two exponentials are required to describe
the rise or the fall; this is the point of the two situations illustrated in
Figure G.25 where in curve C two exponentials are required for the rise
while in curve B two are required to describe the decay.



Appendix H
Relationships Among the
Parameters of Multiexponential Models

While a sum of exponential function

is able to describe the response of a linear, time invariant system to a
bolus injection, the generic response to other canonical inputs such as
the constant infusion or the primed constant infusion is

However, constraints exist among the coefficients depending upon
which input is applied. These constraints can be derived by using the
concept of the impulse response of the system already introduced in
Appendix C. The function represents the tracer curve (either tracer
concentration or tracer to tracee ratio) when a unit dose of tracer is
injected into the system at time zero. For linear, time invariant systems,

is a sum of exponentials, and denoting by the amplitudes, one
has

The constant infusion protocol

When (H.2) is used to describe data following a constant infusion of
tracer, the relationship among the coefficients is

433
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which insures It can be formally derived by considering that
the response y(t) to a constant infusion of tracer is proportional to the
integral of h(t) (see Table C.1):

or equivalently

By letting

equation (H.2) is obtained for and condition (H.4) follows.

The primed constant infusion protocol

The link between the exponential model parameters in this case is

This relationship can be derived by expressing the response to a
primed constant infusion as the sum of the responses to the bolus injec-
tion (proportional to ) and to the constant infusion (proportional to
the integral of ):

where is the tracer dose injected as a bolus at time zero and is the
rate at which the tracer is infused. By letting

equation (H.9) can be written as in (H.2), and condition (H.8) follows.
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The washout phase

Relationships exist among the coefficients describing the rising
and washout phase Write these as

Suppose, as indicated in (H.l l) and (H.12), that the tracer is admin-
istered as a constant infusion up to time T. Condition (H.4) holds
among the coefficients In addition, if the plateau is reached before
the infusion is stopped, then

If this condition is not met, then the following relationships hold:

In order to derive (H.14), interpret as the response to an input
consisting of a constant infusion minus a negative constant infusion
having the same magnitude but starting from time T as was done in
Appendix C. Then

Equation (H.15) described the washout phase, and it is expressed in the
general form (H.12) using (H.13). If the plateau value is reached by
time T, then . Thus under these conditions (H.14) reduces
to (H.14). In any event, these equalities guarantee the continuity of
exponential function describing the data at time T, i.e.

Equation (H.14) needs to be explicitly considered when data from
both the rising portion and washout phase are simultaneously analyzed.
However, if only data from the washout phase are considered, (H.12)
can be used with no constraints among the coefficients and
MRTNC can be estimated from (8.2.34).
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Appendix I
Calculation of Model Output
Partial Derivatives

As described in for parameter estimation the problem is how
to evaluate for a given value of the parameter vector for the
various sampling times The most common technique is based upon
the approximation of the derivative with the finite difference formula;
that is, for the generic element

where is a very small number. Often to improve the accuracy of the
approximation, the central difference formula is used:

Another technique for evaluating the required partial derivatives is to
calculate the so-called sensitivity equations.

Given the model

one notes that the partial derivative of with respect to the pa-
rameter vector p can be written

437
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Moreover,

Thus at a given value of the parameter vector p, if one solves for m as
given by (I.3), then from (I.6) one has and and thus

and from (I.4) and (I.5) respectively.
In general for an compartment model with P parameters, there is

a need to solve differential equations. In most cases, however,
this number is usually less as often many of the derivatives are equal to
zero.

Example

To illustrate the sensitivity approach, consider the two compartment
model shown in Figure 10.2.1 where a bolus input dose d1 is assumed.
The equations describing this model are

The equations of (I.4) are given for the example by
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In the above equations, all initial conditions are equal to zero.
Equation (I.5) becomes

The need to solve the two sets of equations (I.7)–(I.8) and (I.10)–
(I.19) in series is clear since the sensitivity system (I.10)–(I.19) requires
as “forcing functions” the functions and That is, to solve (I.10–
I.19), one needs to know and which is precisely what the solution
to (I.7)–(I.8) provides.
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Appendix J
Initial Estimates of the Rate Constants of
Multicompartmental Models

Introduction

Obtaining the initial estimates of the rate constants of multicompart-
mental models will rely heavily on knowing how to obtain the initial
estimates of the exponentials and coefficients of the multiexponential
models discussed in Appendix G. In addition to initial estimates of the
rate constants, it is also necessary, depending upon the measurement
variable(s), to obtain initial estimates for the volume or mass of the ac-
cessible pool(s). In this appendix, how to obtain initial estimates for the
linear compartmental model from a knowledge of the exponential model
of corresponding order will be illustrated.

The single compartment model

The single compartment model is shown in Figure J.1. What is known
is the input, i.e. the amount of the bolus injection, the rate of infusion,
or the priming dose and rate of infusion. What is to be estimated from
the data is and either the volume V or mass M. Hence initial
estimates for these parameters are needed. For the single pool model,
an estimate for is in  where is the generic
expression for the monoexponential model. To obtain an estimate for V
or M depends upon how the tracer is administered.

441
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Bolus injections

To discuss the bolus injection, use the data given in Table 8.5.1 given
below for convenience in Figure J.2. These were data collected after a
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bolus injection of dose d. These data were also discussed in Figure G.2
where it was seen that initial estimates for A and in the monoexpo-
nential model of 1 and 0.008 respectively were obtained.
For convenience, Figure G.1C is reproduced in Figure J.2 indicating how
A and were estimated.

The value A is the extrapolated value of the data to time zero. If the
data are measured in concentration units in which case V needs to be
estimated, then in which case an initial estimate for V
equals in this case 1. If the data are measured in the tracer-tracee
ratio, then in which case an initial estimate for M equals

Thus for the bolus injection into the single compartment model, initial
estimates for the rate constant and either V or M are immediate
using the monoexponential model.

Constant and primed constant infusions

For the constant or primed, constant infusion into the single pool
system, the monoexponential model is either

As with the bolus case, an initial estimate for equals
the initial estimate for Again, what is required is an initial estimate
for V or M.

For the constant infusion case, recalling from Appendix H that
or where, in both cases, is the infusion rate depending

upon whether the data are collected in terms of tracer-tracee ratio or
concentration, an initial estimate for M can be obtained from
or V from

For the primed constant infusion where the priming dose is d,
estimates the zero time value for the data, and the same equa-

tions as those given for the bolus can be used to obtain initial estimates
for V or M: or

Thus there is an easy comparison between the monoexponential model
and the parameters of the single compartment model. Knowing how to
obtain the initial estimates for the monoexponential model will let one
immediately obtain the required estimates for the compartmental model.
The situation is more complex, however, for compartmental models with
two or more compartments.

The two compartment model

The general two compartment model for the single input-single output
experiment is shown in Figure J.3A. The parameters to estimate are V or
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M, and the rate constants and However, as discussed
in this model is not identifiable. Figures J.3B and J.3C show two
extreme situations which are commonly used by many investigators and
which are identifiable. In this section of the appendix, how to obtain
the estimates for M and V, and the rate constants of these two models
will be discussed.

Bolus injections

Data decaying biexponentially following a bolus injection of tracer
means that the data can be explained by a two compartment model as
well as the two exponential model. In Appendix G, how to obtain initial
estimates for the coefficients and exponentials in the biexponential model

was discussed. The question is: how can one use this information to
obtain initial estimates for V or M , and the rate constants and

in, for example, model B shown in Figure J.3? One can use the
information in to answer the question.

Suppose one has used a strategy discussed in Appendix G to obtain
initial estimates for and Knowing the dose d of the tracer,
an estimate for V or M can be obtained. For example from (5.4.18),
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and initial estimate for V is

In addition, from (5.4.14) and (5.4.17),

Notice in (J.4) that because Finally, for the configu-
ration given in Figure J.3B, equals the FCR:

With this information, one can now easily estimate the rate constants.
Using the data of Case Study 2 given in Table 8.7.4, the quick method to
estimate the coefficients and exponentials of the two exponential model
are given in Figure G.15; these are

and Knowing that the initial dose of radioactivity was
4.5 • 108dpm, one can obtain the following initial estimates for the pa-
rameters of the two compartment model shown in panel B of Figure J.3:

A plot of the results of the two compartment model shown in Fig-
ure J.3B using these initial estimates is shown below in Figure J.4.

Suppose now that one wanted to examine the model shown in Fig-
ure J.3C. In this case, and While one can use the
information on the coefficients and as was done in deriving
(J.3)–(J.5), there is another approach that is useful to illustrate. First,
one notes that (J.2) can be used to estimate V in either case.

From it is clear that there are many possible choices of values
for the rate constants and of model A in Figure J.3
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which will give the same result as those given in Figures J.4. Given one
particular set of values such as those given in Figure J.4, one can take
advantage of the fact that, for each different set of values, and

are preserved. This can be derived easily from the information
given in

One can therefore use the initial set of values given in Figure J.4 to
calculate initial estimates of the rate constants in Figure J.3C.

First, in Figure J.4, one sees There-
fore for the model shown in Figure J.3C, since Next
for the rate constants in Figure J.3C,
Since this number must be preserved between models B and C in Fig-
ure J.3, and since one knows for model C that one can cal-
culate for model C, Finally, from Figure J.4,

. For model C, whence
Thus the initial estimates for the rate

constants and volume V for model C in Figure J.3 are
and The results are shown in

Figure J.5. As expected, the plots in Figures J.4 and J.5 are essentially
identical.

Before leaving this section, there is another case that needs to be
considered. Up to now, it has been assumed that the tracer material
is kinetically homogeneous, i.e. the accessible pool is a single compart-
ment. It is sometimes the case that the accessible pool is kinetically
heterogeneous. For example, tracer labeled plasma low density lipopro-
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teins consist of at least two distinct plasma pools; it is the sum of the
tracer in these pools that form the plasma sample. How can this situa-
tion be dealt with?

For a biexponentially decaying set of data, the appropriate two com-
partment model in this situation is shown in Figure J.6.
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In this model, the sample is the sum of the tracer amounts in the
two compartments. If the tracer samples are quantitated in units of
concentration, assuming then the measurement equation is

If the tracer samples are quantitated in units of tracer-tracee

ratio, then the measurement equation is where
What is known is the total dose of tracer d together with initial esti-

mates of the coefficients and and exponentials and of the
two exponential model as discussed in Ap-
pendix G. What is unknown is how the tracer is distributed between the
two plasma compartments, i.e. what are and in Figure J.6, the
volume V or mass M, and the rate constants   and

Estimates for V or M can be obtained as was done previously. For
example, an estimate of V can be obtained from Since

there is a direct connection between the exponentials and the rate con-
stants that parallels the single exponential case, that is, and

initial estimates of and equal the initial estimates of
and It remains to estimate and This can be obtained

by realizing and are the fractions of material at time zero
in the two compartments. Thus initial estimates for and can be
obtained from and respectively. The interested reader
can try this model using the data from Table 8.7.4.

It should also be noted that for the two exponential model, the model
shown in Figure J.6 is the only situation where there is a direct con-
nection between the exponentials in the two exponential model and the
rate constants in the compartmental model. As clearly seen in the two
other examples and as discussed in detail in in all other cases the
rate constants are functions of the coefficients and exponentials.

Constant and primed constant infusions

For the constant or primed, constant infusion into the a two com-
partment system where the accessible pool is a single, homogeneous
compartment, the biexponential model is either

for the constant infusion case or

for the primed, constant infusion.
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In what follows, it will be assumed that estimates for
and have been obtained as described in Appendix G for the biexpo-
nential rising situation. It will also be assumed that the infusion rate

is known for the constant infusion, and that the priming dose d and
infusion rate is known for the primed, constant infusion experiment.

The required volume V or mass M can be estimated from where
For the primed constant infusion, the required

volume V or mass M can be estimated from
Clearly for the single input, single output experiment, the model

shown in Figure J.3A is not identifiable. As before, therefore, consider
the situation of model B shown in Figure J.3. The problem is how to
estimate the rate constants and knowing the coefficients
and exponentials

The constant infusion

For the constant infusion, consider as an example the data given in
Figure G.16. Using the quick method to estimate the the coefficients
and and the exponentials and of (J.10), one obtained as an
initial estimate

Thus and
How can this information be used to estimate the rate constants
and of model B in Figure J.3?

First, the volume can be estimated from
5700.

Next, it is known as stated previously that equals the FCR. The
clearance rate can be estimated as , For this case, the
initial estimate for the clearance rate CR is 77ml/min. The FCR is the
ratio of the clearance rate and volume; for this example, this ratio is

This provides an estimate for
To estimate and one can derive from the constant infusion

response (J.12) the biexponential response to a bolus injection. Denoting
this by and using (H.7)

Thus one can use (J.3) and (J.4) to estimate and The results
are



450 TRACER KINETICS IN BIOMEDICAL RESEARCH

Knowing is estimated at 0.013, can be estimated
The results are summarized in Figure J.7

It should be pointed out that an estimate for the FCR could be ob-
tained from (J.13) as which is the normalized area under (J.13).

At this point, the interested reader can use the strategy discussed
for the biexponential decay to estimate the initial rate constants for
model C of Figure J.3 since the strategy discussed there is independent
of the method of introducing the tracer.

The primed constant infusion

To estimate the rate constants for model B or model C of Figure J.3
for the primed constant infusion parallels that for the constant infu-
sion. If (J.l l) is used to describe the data, and if the coefficients and
exponentials and have been estimated as described in
Appendix H, the one can proceed as follows. It is assumed that the
priming dose d and the infusion rate is known.

Estimates of M or V can be obtained from where is given by
(J.l l) with the estimated coefficients and exponentials. To estimate

and one can derive from the primed constant infusion response
(J.l l) the biexponential decay response to a bolus injection by using the
relationship derived from (J.1).
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Models with more than two compartments

When dealing with more than two compartments, there are, especially
for the mammillary and catenary models, known relationships between
the coefficients and exponentials of the exponential model, and the rate
constants of the multicompartmental model. These are usually complex
and tedious to apply, especially when the only goal is sufficiently good
estimates of the rate constants to proceed with the estimation process,
e.g. weighted linear regression.

This part of the appendix will discuss some strategies which permit
one to increase the model order, i.e. number of compartments, using an
interactive computer program and a knowledge of the parameter values
providing the best fit of the model of lower order, e.g. passing from a
two to a three compartment model. The data from Case Study 2 will
be used only since the philosophy is independent of how the tracer is
introduced into the system.

For the first part of the discussion, the results from analyzing a
two compartment model applied to the data will be discussed in terms
of passing to the three compartment catenary and mammillary model
shown in Figure J.8 as Models D and E respectively. The results for the
two compartment model are shown for reference purposes.

In passing from the two to three compartment model, suppose that
the predictions of the two compartment model underestimate the initial
decay, overestimate the final decay, and overestimate the FCR. This is
because only two exponentials are available to describe a three exponen-
tial process. Thus when a third compartment gets added to the model,
one wants to have one which exchanges more rapidly with the acces-
sible pool, and one that exchanges more slowly either with that pool
(catenary model D) or with the accessible pool (mammillary model E).

The following is not meant to be a precise set of instructions to obtain
initial estimates of the parameters, but a heuristic one that under normal
conditions will produce initial estimates that are sufficient to proceed
with the fitting process.

Since the fractional catabolic rate is a function of the area under
the decay curve, the best estimate for the two compartment model can
be taken as an slight overestimate for the three compartment model.
In the example here, shown in Figure J.8 equals 0.017; thus an
initial estimate for in either model D or E can be 0.015. Also, since
the two compartment model usually underestimates the initial decay,
the best estimate for the volume V should be increased 10% to 20%
depending upon how big the underestimate is. In this example, the best
estimate is 1970ml; since the fit of the two compartment model is not
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too bad, increasing this by about 10% to 2200ml is reasonable. A more
accurate estimate for the FCR and the volume can be obtained by
fitting a sum of three exponentials to the data, and using the formulas
in Table 3.4.3.
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It remains to estimate the remaining Here one can take advantage
of relationships among the parameters of the two pool model derived
in Chapter 5. In particular, and are invariant meaning the
estimates from the two compartment model can be used for the three
compartment models. How can this be done?

For the two compartment model in this example ,
and For model D the strategy is easy. First,

if then since an estimate for is 0.064.
Knowing an estimate for is 0.069. Since
an estimate for is 0.002. It remains to estimate . Since no a priori
information is available, one has to guess. A value of can be
used. If this is not sufficient, one can usually tell from the first simulation
if needs to be increased or decreased. Normally this strategy provides
sufficiently close estimates to proceed with optimization. The results of
this strategy for model D is shown in Figure J.9.

For model E the strategy cannot be directly applied. The reason is
that in moving from the two to the three compartment catenary model,
it is easy to preserve In the mammillary three compartment model,



454 TRACER KINETICS IN BIOMEDICAL RESEARCH

model E, compartments 1 and 2 have the same structural relationship
as the two compartment model shown in Figure J.8.

In determining and knowing one must divide
between and For example, if

then For this case,  and cannot both
be preserved. Thus to estimate one can use either. If one chooses to
preserve the produce, then an estimate for equal to 0.11 is obtained.
Finally, to estimate there is no a priori information available. One
can usually let , or a number smaller. Although not done in
this example, it is also possible to obtain some additional help by noting

is known from the two compartment
model; if V1 is reduced for the three compartment model, an estimate
for can be obtained. In the example here, suppose ,
The results of this strategy for model E is given in Figure J.9.

One can easily see that the model predictions compared to the data
are not too close, but in general as is the case here, they are close enough
so that a computer program with a weighted least squares algorithm can
proceed. If one is working with an interactive program, one can always
adjust by hand these first guesses to improve the fit. But, as stated
above, usually all that is needed is a sufficiently good approximation
that the computer program can proceed with the estimation process.

Finally, it is clear that this approach is independent of how the tracer
is introduced. All that is needed is the parameter values for the two
compartment model.
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