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Preface

The use of mathematical modeling techniques in biomedical research
is playing an increasingly important role as one seeks to understand the
physiopathology of disease processes. This includes not only understand-
ing mechanisms of physiological processes, but diagnosis and treatment.
In addition, its introduction in the study of genomics and proteomics
is key in understanding the functional characteristics of gene expression
and protein assembly and secretion. Finally, with the increasing com-
plexity and associated cost of drug development, modeling techniques
are being used to streamline the process.

We have worked in close collaboration with colleagues in biomedical
and pharmaceutical research for a number of years applying and refining
mathematical modeling techniques to a variety of problems. In addition,
we have worked in collaboration with colleagues in applied mathematics
and statistics to develop new algorithms to solve new sets of problems
as they emerge in our research efforts. Finally, we have worked with
colleagues in computer science to develop new software tools that bring
the power of mathematical modeling to a broad research community.
This books brings together much of what we have learned over the years,
and presents the material in a format that should be accessible both to
the novice reader and those desiring more detailed information about
specific techniques.

We are indebted to many of our colleagues who were extremely patient
and helpful during the preparation of the book for publication. We
are encouraged by the support we have received from our respective
institutions and also review panels for several of the research grants we
have obtained during the work on the book.

There are many research programs that have led directly to material
presented in the text. Special mention must be given to the Biomedical
Technology Program in the National Center for Research Resources at
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the National Institutes of Health (USA) whose resource facility grant
Resource Facility for Kinetic Analysis (RFKA) supported all authors
during the development of the SAAM II software system. There is a
tight link between the material developed in this text and SAAM II;
SAAM II was used to develop all examples in the text.

The preparation of the book would not have been possible without
regular travel between Seattle and Padova. Funding for the travel was
provided by RFKA and the Ministero della Universita e Ricerca Scien-
tifica e Tecnologica of Italy. We are most grateful for this support.

Finally, we would like to thank Agnes Sieger and Mike Macaulay for
the final preparation of the text.

CLAUDIO CODELLI, PADOVA, ITALY
DAVID FOSTER, SEATTLE, WASHINGTON, USA

GiaNnNA TorroLo, Papova, ITALy
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Chapter 1

INTRODUCTION

1.1 WHY MODELING?

The use of tracers to study metabolic systems is becoming increas-
ingly important in biomedical research. The fundamental reason is that
while the tools of molecular biology have provided much new informa-
tion about the structure of different components of metabolic systems,
information is also needed about the function of these components. This
information can come from a knowledge of the systems kinetics, that is,
the temporal and spatial distribution of the components comprising the
system. Tracers are used as a tool to obtain the kinetic information.
One reason why tracer kinetics is enjoying a resurgence is that signif-
icant improvements have been made in both the quality and quantity
of data that are available from a tracer experiment. This is due both
to new instruments to measure data previously not available and new
instruments, especially for stable isotopes, to measure kinetic informa-
tion in increasingly small samples. For example, PET and NMR studies
using radioactive and stable isotopes are revealing details of metabolic
events heretofore unavailable.

In general, tracer kinetic studies are undertaken to understand the
physiology and pathophysiology of the metabolism of substances that
already exist in the body. Such substances include glucose, insulin, vita-
mins, minerals, amino acids and proteins, or aggregates of material such
as the plasma lipoproteins. While studies are most commonly conducted
at the “whole body” level, new techniques are permitting studies at the
organ, cellular and subcellular levels.

In order to interpret kinetic data from an experiment, one requires a
mathematical model of the system under study. A model is a construct

1



2 TRACER KINETICS IN BIOMEDICAL RESEARCH

invented by a researcher to summarize what is known and hypothesized
about a system under study. It breaks the system down to a level of
detail required into component parts indicating the relationship among
these parts. A mathematical model is simply a model that can be de-
scribed by a set of mathematical equations.

Why is mathematical modeling necessary? It is necessary because
researchers desire quantitative information on the system under study.
Models provide a means by which to calculate parameters characterizing
these nonaccessible parts of the system from information available only
from those parts of the system that are accessible for measurement. The
situation can be schematized in Figure 1.1.1.

SYSTEM PARAMETERS
Production ?
Utilization

Masses in Organ & Tissues

p

4
Transport & Transformation /~ MEASUREMENT

Figure 1.1.1. A schematic of a system characterized by unknown parameters. A
portion of the system called the accessible pool is available for measurements.

Thus to estimate these kinetic parameters, one has to link the infor-
mation available from the accessible pool measurements with the events
occurring in both in the accessible and nonaccessible portions of the
system. This requires making some assumptions about how the system
functions. In short, one has to postulate a model of the system based
upon known physiology and biochemistry, and assumptions about how
the system is interconnected. Once this is done, the model must be
described mathematically. The situation is illustrated in Figure 1.1.2.
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MEASUREMENT
O

Figure 1.1.2. A schematic of a structural model of the system. Different components
are illustrated by the circles labeled A, B, C and D. Arrows connecting the circles
represent biochemical transformation and/or transport. Arrows leaving the circles
represent utilization. Arrows entering the circles represent production. Each circle
has associated with it a mass. The accessible pool relationships with the nonaccessible
pools is also shown.

1.2 HOW MODELING?

How are these models constructed? As indicated in Figure 1.2.1, there
are basically two steps involved: structural modeling and parameter es-
timation. As mentioned previously, structural modeling is the process
by which ones knowledge and assumptions about the system are for-
malized first as a schematic and then mathematically. As will be seen
in this text, the model will always contain hypotheses and simplifica-
tions for a variety of reasons: parts of the system are unknown, or only
some features are relevant for the study. However, the model must be
parsimonious and usable. Parameter estimation is the process by which
the parameters characterizing the model are adjusted so as to obtain a
best fit of the available data. For any hypothesized structural model,
parameter estimation provides information to assess the adequacy of the
model. Criteria based upon goodness-of-fit, precision of the parameter
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estimates, parsimony, and plausibility permit an investigator to judge
the quality of the model.

A Priori Knowledge STRUCTURAL PARAMETER
Assumptions —— MODELING ESTIMATION

|-+=———— Data

[moDEL

Figure 1.2.1. A schematic of the steps involved in constructing a mathematical model
of a system.

The best one can hope for is a model to be compatible with the data
and be physiologically plausible. While never the truly “correct” model
of the system, it can be used for predictive purposes, e.g. estimating
the system parameters and simulating future experiments. However,
one must have confidence in the results and predictions of the model.
This confidence can be obtained through the process of validating the
model. Validation criteria and strategies are available which take into
account the models complexity and available data. The model is also
dynamic in the following sense. The hypotheses that are incorporated
in the models structure can be tested through new experiments. The
model will either correctly predict the results of these experiments or
not. If it does not, then the model structure will have to be changed,
and the process of compatibility with previous data and physiological
plausibility reexamined.

There are many types of mathematical models that can be used to
interpret tracer kinetic data. All have assumptions associated with them
that need to be understood in order to apply them correctly. In addition,
what type of model is chosen for a particular situation can depend upon
the information that is needed. Thus while a particular set of data could
be very rich in information content, a simple method of analysis could
be used to estimate a limited set of parameters.
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1.3 AIM OF THE BOOK

The aim of this book is to explain how mathematical models can be
used as a powerful research tool in the design and analysis of experiments
in which tracer kinetic data are generated. Starting with a description
of radioactive and stable isotopes, it will give a detailed description of
the steps involved in developing and using mathematical models.

The focus will be on systems that are studied in the steady state, since
most of the metabolic systems are non-linear, and this makes them diffi-
cult to study since the mathematical equations describing them are also
non-linear, and the nature of the non-linearities is difficult to describe
mathematically. To overcome this problem, many tracer kinetic stud-
ies are conducted in the steady state, i.e. under conditions where the
masses and fluxes of material in the system are maintained in near con-
stant conditions. This assumption results in mathematical models that
are linear and, with the numerical techniques now available in many
software programs, easy to solve.

Two common types of linear models will be presented: noncompart-
mental and (linear) compartmental models. The underlying assump-
tions of each will be explained in detail. The underlying mathematics
and statistics will also be explained, but at a level that is transparent
to the novice reader. They will be explained in terms that are easy to
understand. This is especially true in the areas of parameter estimation
and model identifiability, two areas that are critical in the process but
a poorly understood because most material in these areas is given in
full generality with little intuition as to the “what”, “how” and “why”.
Here the concepts will be explained in understandable terms; the con-
cepts will be carefully illustrated using several examples. The goal is that
the reader, upon completing the book, will be able to use mathematical
models and software programs necessary to solve them and use them as
powerful research tools. Since the modeling machinery is transparent,
it is also useful in other contexts. For example, it should be noted that
much of the material in the book is relevant to study pharmacokinetic/
pharmacodynamic systems, nonsteady state systems and physiological
control system.

14 WHO SHOULD READ THE BOOK?

Mathematical modeling has received considerable attention both in
the past and present kinetic studies. Many books and papers have been
written on the subject. The most frequently cited text include Anderson
[1983], Atkins [1969], Atkinson [1999], Carson et al. [1983], Gibaldi and
Perrier [1982], Godfrey [1983], Gurpide [1975], Jacquez [1996], Lassen
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and Perl [1979], Norwich [1977], Rescigno and Segre [1966], Riggs [1975],
Rowland and Tozer [1995], Shipley and Clark [1972], and Wolfe [1992].
In addition, there are several seminal articles including Carson and Jones
[1979], Cobelli and Caumo [1998], DiStefano and Landaw [1984], and
Landaw and DiStefano [1984].

Many of the texts listed above focus only on limited aspects of the
modeling process. Others go into mathematical and/or statistical depth
that is beyond the ability of the beginning modeler. In this book, empha-
sis is placed on aspects of analyzing tracer kinetic data obtained from in-
creasingly complex systems using increasingly sophisticated experimen-
tal designs. The mathematics involved will illustrate the key points,
especially in parameter estimation and model identifiability. However,
intuitive arguments will be given in many places so the reader will un-
derstand the assumptions and limitations of the various methodologies
discussed. When more detail is required, the reader will be pointed to
specific texts or the appendices.

With this in mind, who should read this book? The book is intended
for those individuals who are using or planning to use tracer kinetic
techniques to probe different metabolic systems. In addition, it can be
used as an introductory text in tracer kinetic analysis and mathematical
modeling of biological systems. Finally, it can be used by researchers
in pharmacokinetics who are interested in information in a more global
setting than that normally found in many pharmacokinetic text books.

Fortunately there are a number of software systems that are available
to aid the research in the model development and data analysis process.
Some users take advantage of mathematically oriented scientific software
packages; these require the user to write the models equations directly
and often require, in addition, programming skills. This level of usage is
beyond the scope of the present text so these packages will not be listed.

1.5 ORGANIZATION OF THE BOOK

This book provides a description of the processes involved in designing
and analyzing tracer kinetic studies starting from the steps involved in
choosing an isotope, or isotopes, for a tracer, or tracers, through formu-
lating models to analyze the kinetic data resulting from an experiment.
It begins with a description of the fundamentals of tracer kinetics fo-
cusing on the measurement variables, discusses two broadly used mod-
eling techniques including the underlying mathematics and statistics,
and discusses how to assess how “good” a model is. It also points out
how models can be used to test hypotheses both after an experiment is
completed, and before during which time experimental protocols can be
simulated before actually performing an experiment. Taken together,
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the goal is to obtain information rich data and then to apply modeling
techniques to extract the information.

When needed, specific references to more detailed information will be
given at the end of each chapter. These bibliographies are not meant to
be exhaustive nor historic. They are meant to provide specific supple-
mental information for those readers wanting more details about specific
material presented in the chapter.

Several examples are provided to illustrate key points. Two Case
Studies are discussed which permit a comparison of the different method-
ologies that are provided. A floppy disk with the data files used in the
examples and Case Studies is provided so that the reader can recre-
ate them. In this book the SAAM II software was used to generate all
examples and Case Studies.

Chapter 2 discusses the fundamentals of tracer kinetics first in gen-
eral terms, and then specifically related to radioactive and stable isotopic
tracers. Careful attention is paid to the measurement variables. Impor-
tant comparisons between the measurement variables for the two kinds of
tracers are made. In addition, a rigorous discussion concerning the var-
ious measurement variables for stable isotopic tracers is given. For the
readers convenience, a table is included that can help convert the usual
measurement variables for stable isotopic tracers into the measurement
variable that is needed for data analysis.

Chapters 3 and 4 describe the basics of the noncompartmental and
compartmental models of multipool systems. The former, often referred
to as the integral equation approach and claimed to be model indepen-
dent, is shown to be based upon many assumptions that are actually
shared, in part, by certain types of multicompartmental models. For
noncompartmental models, the standard formulas for the parameters are
derived for the different protocols using radioactive and stable isotopic
tracers. For compartmental systems, the basic definitions are given. In
both cases, it is assumed that the experiment is conducted in the steady
state. This will be seen to have a dramatic impact on multicompart-
mental models since the underlying differential equations have special
properties.

Chapter 5 focuses on the a priori identifiability of multicompartmental
models. This addresses the following question: given a specific model
structure and input-output protocol, will the data (in the ideal sense,
i.e. assuming the model structure is correct and the data are error free)
permit the estimation of the model parameters? Several examples will
be given to show how this crucial step fits into the modeling process. It
will be shown that new technologies are being developed which can help
to answer this question in the general case.
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Chapter 6 will show how to recover kinetic parameters from multi-
compartmental models, and in Chapter 7a comparison between these
parameters and those generated from noncompartmental models will be
given. The reader will see when the two agree, and under which cir-
cumstances they do not agree. It will be easy to understand how the
imposition of a structure in a multicompartmental model increases the
models predictive capability.

Chapter 8 discusses parameter estimation. This crucial chapter dis-
cusses unweighted and weighted linear and nonlinear regression. It will
be seen that while linear regression is exact, nonlinear regression is an
approximation. It describes in detail the error structure in the data, and
why it is essential that one appreciate this error in the modeling process.
It then goes on to discuss regression, and show why the error structure is
necessary if one desires statistical information about the fitting process.
The notions of standard and fractional standard deviations, variance-
covariance and correlations are also introduced. Chapter 8 ends with
a discussion of tests for goodness-of-fit and model order. To provide
insights into the regression process, simple examples are given.

Chapter 9 shows how to use sums of exponentials to estimate the pa-
rameters of the noncompartmental model. Several examples are given.
An appendix is provided which shows the reader how to obtain initial
estimates for the coefficients and exponentials in the exponential func-
tion.

Chapter 10 does the same for multicompartmental models. Again, an
appendix is provided to illustrate how to obtain initial parameter esti-
mates. This will again illustrate the critical link between the coefficients
and exponentials in the exponential function, and the rate constants of
a multicompartmental model. In both chapters, case studies will serve
as examples.

Chapter 11 describes a special application often found in tracer kinetic
analysis, precursor-product relationships. Here the equations are derived
with the assumptions specifically given allowing the reader to understand
fully the results from this type of analysis.
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Chapter 2

FUNDAMENTALS OF TRACER KINETICS

2.1 INTRODUCTION

As defined in Chapter 1, the kinetics of a substance in a biologi-
cal system are its spatial and temporal distribution in that system. The
kinetics are the result of several complex events including circulatory dy-
namics, transport into cells, and utilization. Utilization usually requires
biochemical transformations which are characteristics of the substance.
The substance can be an element such as calcium or zinc, or a compound
such as amino acids, proteins or sugars. All exist normally in the body,
and can be of endogenous or exogenous sources, or both. The primary
goal of the kinetic events characterizing the metabolism of a substance
is to maintain specific levels of the substance in the various components
of its systems. The maintenance of these levels is achieved by internal
control mechanisms, and involves input into the system to balance the
loss which occurs through utilization and excretion.

One wishes to understand the kinetics of a substance under normal
circumstances in order to better understand pathophysiological condi-
tions since these may be a result of abnormal kinetics. A fundamental
problem in biology and medicine, therefore, is to describe quantitatively
the kinetics of substances existing in the body. Among the tools that
are available, tracers have been extensively used. Tracers are substances
introduced externally into the system to provide data from which quan-
titative estimates of events characterizing the kinetics of the substance
can be made. Tracers can be substances such as dyes or, as described in
more detail below, substances labeled with radioactive or stable isotopes.

In this text, the focus will be on characterizing the kinetics of sub-
stances already present in the body by using isotopic tracers as probes.

11
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A naturally occurring substance is called a tracee. The tracers will
be assumed to be ideal where an ideal tracer is a substance with the
following characteristics:

a. it is detectable by an observer,

b. its introduction into a system does not perturb the system being
studied, and

c. it is indistinguishable with respect to the properties of the tracee
system being studied.

The first requirement, that of detectability, means that there must
be some method by which the amount of tracer in a sample can be
quantified. The second requirement means that the introduction of a
tracer into the system has no effect on the ongoing metabolic processes
which characterize the system under study. This requirement is usually
met by introducing an extremely small amount of tracer compared with
the amount of tracee already existing, and arguing this small pertur-
bation does not disturb the system. The third requirement means that
the system being studied is not able to distinguish between the tracer
and tracee, i.e. both follow the same processes with equal probabili-
ties. These requirements are usually met, but the investigator should be
aware that problems associated with them can arise.

By definition, the tracer has its own kinetics. The goal of a tracer
kinetic study is to infer from the tracer kinetics information on the tracee
kinetics. If the three requirements are met, this goal can be attained.

2.2 THE TRACER-TRACEE SYSTEM
2.2.1 Concepts and Definitions

A convenient scheme to illustrate the kinetics of a substance is shown
in Figure 2.2.1. In this figure, the circles represent the masses of two
interacting substances in specific forms at specific locations, and the
arrows represent the transport or flux of material and/or biochemical
transformations. This figure shows two specific substances, A and B, to
make the point that kinetics includes both transport between different
locations, and biochemical transformation. The goal of the tracer study
is to determine the masses and fluxes, i.e. transport and biochemical
transformation, in this system.

A fundamental assumption in using tracers is that there is at least
one component in the system under study which is accessible for tracer
administration, and tracer and tracee sampling. This special component
is called the accessible pool. Examples of accessible pools are a sub-
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PLASMA TISSUES

B - JBL—»

Figure 2.2.1. A schematic of the kinetics of a substance. The circles represent masses
and the arrows the fluxes of the substance. The bold arrow into circle A in the tissue
represents de novo synthesis. From this pool, it can (i) be irreversibly removed,
(ii) exchange with a plasma pool, or (iii) be transformed into form B. In turn, B can
exchange with a plasma pool, or irreversibly removed.

stance in physiological spaces such as plasma or a tissue, or a substance
in expired air.

Suppose in the system shown in Figure 2.2.1, the plasma component
for A is accessible. This means measurements of A can be obtained from
plasma. One can redraw this system to emphasize the accessibility of
this component for tracee measurement; this is shown in Figure 2.2.2.
Notice that while B also exists in plasma, it may not be possible to
sample and measure it. Thus plasma B is not accessible, even though
it is in plasma. If B could be measured, then this system would have
two accessible pools, one for A and one for B. This simple observation
will have profound consequences when multiple input-multiple output
experimental designs are discussed later.

Suppose the kinetics of the tracee substance described in Figure 2.2.2
is to be studied. The characterization of the system by identifying the
components and interconnections, and the availability of at least one
accessible pool, set the stage for using a tracer to characterize these
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PLASMA TISSUES

Tracee
Measurement

Qo

N

Figure 2.2.2. The system depicted in Figure 2.2.1 with an accessible pool identified
and highlighted by the dotted line with the bullet which indicates tracee measurement.
The bold arrow into tissue pool A represents de novo entry of material into the system.

kinetics. By appealing to the definition of an ideal tracer, one can assume
that the system described in Figure 2.2.2 for the tracee is the same as
that for the tracer. Therefore, superimposing the tracer system on that
shown in Figure 2.2.2, one has the system shown in Figure 2.2.3.

These two figures emphasize that the two systems for the tracee and
tracer are structurally identical, and demonstrate the need for an acces-
sible pool into which tracer can be introduced and from which measure-
ments of tracer and tracee can be made. The main difference between
the two is in the inputs. In the tracee system shown in Figure 2.2.2, the
input is endogenous into a nonaccessible component of the system. In
the tracer system shown above, the input is exogenous, and is into the
accessible pool.

Using these figures as representative of tracee and tracer systems, the
following will be discussed: (i) the tracee system, (ii) the tracer exper-
iment and the tracer system, (iii) the relationship between the tracee
and tracer systems, and (iv) the quantitation of the tracee system from
the tracer data. Following a general discussion, the notions will then
be applied to radioactive and stable isotopic tracers where, to pass from
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PLASMA TISSUES
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Measurement
Q
N
A [ A —
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Figure 2.2.8. The tracer system which corresponds to the tracee system depicted in
Figure 2.2.2. The administration of the tracer into and sampling from the accessible
pool is indicated by the tracer input arrow and tracer measurement sample respec-
tively. The figure implies that once in the system, the tracer is assumed to follow the
same pathways the tracee follows.

theory to practice, the measurement of the tracer will be discussed in
detail. This strategy will serve to emphasize similarities and differences
between using radioactive and stable isotopic tracers, and will form the
basis for the analysis of the tracer data with the concomitant inferences
about the metabolism of the tracee.

In this Chapter, only the single pool steady-state system will be dis-
cussed as a vehicle to introduce the necessary terminology. The precise
analyses and the extension to multipool systems will be discussed in
subsequent chapters.

2.2.2 The Tracee System

The tracee system to be discussed in this section is given in Fig-
ure 2.2.4. The system described in Figure 2.2.4 is a single pool system
which is accessible for measurement and in which it is further assumed
that the tracee is uniformly distributed. The accessible pool and the
system coincide in this particular situation.
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Tracee de novo
Production U

Tracee
Measurement C
7
/
Tracee
Mass M
Volume V
Tracee
Disposal F

Figure 2.2.4. The tracee system, depicted as a circle, consists of a single pool of
volume V' containing tracee mass M. Tracee de novo production, U, and disposal F
occurs from this pool; they are indicated by the arrows into and leaving the system
respectively. The dotted line with the bullet indicates tracee measurement. The
symbols given in this figure are summarized in Table 2.2.1

The notation introduced in Figure 2.2.4 which will be used for the
tracee system is given in Table 2.2.1. U is sometimes called de novo
synthesis, and F utilization, elimination or excretion. Concentration C
is defined below in (2.2.3).

Table 2.2.1.  Notation for tracee variables

Symbol Definition and Units

volume

mass

concentration (mass/volume)
de novo production (mass/time)
disposal (mass/time)

mMTQOE<

Assume the tracee system is in the steady-state case. A steady state
is an experimental situation where de novo production U and disposal
F are equal and constant. This means that the tracee mass M remains
constant. To formalize this assumption in mathematical terms, one ap-
plies the mass balance principal to the tracee system, i.e. at any point in
time the rate at which the tracee mass changes is the difference between
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de novo production and disposal. Remembering that U and F are equal,
the desired formalism can be expressed in the following equation:

dM(t)
=U—-F = 2.2.1
where ¢ denotes time. In other words, as a result of U = F, the rate of

. . dM(t) -
change of the tracee mass as a function of time, dt( ), is equal to zero.

This means M(t) does not change with time, hence

M(t) = M = constant (2.2.2)
For the tracee, the measured value is usually concentration C where

M
C=— 2.2.3
- (2.23)
In the steady state, C, as a result of the balance between U and F, is
a constant. However, from a knowledge of C alone, it is not possible to

estimate the fluxes U and F; to do this, a tracer must be used.

2.2.3 The Tracer System

The tracer system to be discussed in this section is given in Fig-
ure 2.2.5. As in the previous case, this is single pool system which
is accessible for measurement and in which the tracer is assumed to
distribute uniformly. Because of tracer-tracee indistinguishability, the
volume V is equal to the volume of distribution of the tracee. The no-
tation used in this figure is summarized in Table 2.2.2 below. Note in
this table, unlike Table 2.2.1, the dependence of some variables such as
mass on time ¢ is explicitly noted, i.e. m(?).

Table 2.2.2. Notation for tracer variables

Symbol Definition and Units
v volume
m(t) mass
u(t) rate of input (mass/time)
f@ disposal (mass/time)
d total input (mass)

The analogue for (2.2.1) for the tracer can be written by again ap-
pealing to the mass balance principal, i.e. the rate of change of tracer
mass is the difference between the rate of tracer input u(f) and tracer

disposal f{(?):
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Tracer
Administration u(t) Tracer
O Measurement
/
/

Tracer

Mass m(t)

Volume V

Tracer

Disposal f(t)

Figure 2.2.5. The tracer system, depicted as a circle, is a single pool of volume V
containing tracer mass m(t). Tracer is introduced into the system at a rate u(t);
the rate of disposal from this pool is given by f(¢). The dotted line with the bullet
indicates tracer measurement.

T —ut)— f(t)  m(0) =0 (2.2.4)

In(2.2.4), m(0) = 0 means that when the experiment starts at ¢t = 0,
there is no tracer mass in the system. (In mathematical terms, m(0) is
called the initial condition). In this situation, unlike the previous case
where M is constant, m(f) changes with time and hence i"dlt@ iS no
longer equal to zero.

While (2.2.4) is written in terms of tracer mass m(f), the manner
in which the amount of tracer is actually quantified depends upon the
tracer chosen. As discussed in §2.4, the radioactive tracer is usually
quantified in terms of tracer concentration c¢(#), i.e. tracer mass per unit
volume:

e(t) = @ (2.2.5)

In contrast, the most convenient way to express stable isotope measure-
ments as discussed in §2.5 is the tracer mass per unit tracee mass:

z(t) = —2~ (2.2.6)
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Since the volume V is the same for both the tracee and tracer, z(¢) also
represents the ratio between tracer and tracee concentrations:

2(t) = —= = —~ (2.2.7)

2.2.4 The Tracer-Tracee System

The link between the tracer and tracee system comes from the tracer-
tracee indistinguishability assumption. This assumption implies that
the probability that the tracer leaves the pool is equal to the probability
that a particle in the pool is a tracer. This can be written as

ft) m(t)

= 2.2.8
F+ft) M+m(t) ( )
This equation can be reorganized:
f(t) m(t)
o= M 2.2.9)
i @ (
1440 4 m
from which one obtains
F
fit) = Mm(t) (2.2.10)

which, when this expression for f(¢) is substituted into (2.2.4), gives

dm(t F

M =u(t) — f(t) = u(t) — Vm(t) = u(t) — km(t) (2.2.11)
where k = % This equation is a linear, constant coefficient differential
equation which provides the link between the tracer and tracee systems
since the tracer parameter k reflects tracee events, k& = %

2.2.5 System Parameters from Tracer and Tracee
Measurements

In the single pool system under consideration, the unknown parame-
ters of interest are F" and M. It is the purpose of the tracer experiment
to generate the tracer and tracee data from which these parameters can
be estimated. One possible method is based on the solution of the tracer
model given by (2.2.11). Here m(¢) is expressed as a function of the un-
known tracer parameter, k, (and thus of the tracee parameters since
k = F/M) and the known tracer input u(¢). For instance, if the tracer
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experiment consists of injecting the tracer as a bolus of dose d at time
zero, then the solution of (2.2.11) is

m(t) = de ** (2.2.12)
Hence the tracer measurement can be related to the model parameters.

In particular, if a radioactive tracer is used and its concentration c(t) is
measured, then

m{t) d _,
ot) = =~ = e ht (2.2.13)
where the unknown parameters are the volume J and the exponential
k. Both parameters can be estimated from the tracer data: the ratio %
equals the tracer concentration at time zero whence

d
V=— 2.2.14
while & can be estimated from the rate of decay of the tracer. From
the estimates of k£ and V, and knowing the tracee concentration C, the
system tracee mass and fluxes can be quantified since, from the definition

of C and k,

M=C-V (2.2.15)
U=F=kM

The same procedure applies if a stable isotope is used. In this case, the
tracer measurement is the tracer to tracee ratio z(#). The counterpart
of (2.2.13) become

om(t) d
A= = 5
Here M plays the role that V played in (2.2.13). The parameters & and
M can be estimated from the tracer data as before, whence U = F =
kM.

The rationale applied above serves as the basis for the compartmental
modeling analysis which will be expanded in Chapters 4-6. Alterna-
tively, the flux F' can be quantified from the tracer and tracee data by
using the noncompartmental analysis approach discussed in Chapter 3.
Briefly, the conservation of mass principal applied to the tracer (i.e., the
amount of tracer introduced into the system equals the amount leaving
the system), can be written

(2.2.16)

d= /0  w(t)dt = /0 e (2.2.17)
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since d, the total amount of tracer introduced into the system, is equal
to f5° u(t)dt. Substituting the expression for f(7) given in (2.2.10) into
this equation, one obtains

© F
d:/0 Mm(t)dt (2.2.18)

which, when solved for F, gives

d
F m

= oo m{Y)
Jo - dt
From (2.2.19), F can be expressed as a function of tracer and tracee

measurements. If the tracer is quantitated in terms of the tracer to
tracee ratio z(¢), it follows immediately from the definition that

—U (2.2.19)

d
=

If the tracer measurement is concentration c(z), then the expression for

(2.2.20)

F as a function of c¢(f) can be derived from the equality %ﬂ = Ccf),
hence
d d-C
F= = - =U (2.2.21)
> c(t) o0
030 %dt JO C(t)(it

23 THE TRACER-TRACEE SYSTEM WITH
ISOTOPIC TRACERS

2.3.1 Concepts and Definitions

The preceding section describes the underlying theory for a generic
tracer in a steady-state tracee system. In this section, the notation
given in Table 2.2.1 and Table 2.2.2 will be expanded to accommodate
the theory underlying the use of radioactive and stable isotopic tracers.

While it is assumed that the reader is familiar with the general con-
cepts of isotopes [Sorenson and Phelps, 1987; Watson, 1987; Wolfe,
1992], it is useful to summarize the basics required for the present dis-
cussion. Each element is characterized by the number of protons in its
nucleus; this determines its atomic number. The nucleus also contains
a number of neutrons. This number can vary within limits for each el-
ement. The sum of the number of neutrons and protons is the mass
number. Atoms of the same clement which have the same number of
protons but a different number of neutrons are called isotopes. They
have the same atomic number, and thus similar chemical properties, but
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a different mass number. Isotopes can either be stable (called stable
isotopes) or unstable. In the latter case, they spontaneously undergo
nuclear transition with the emission of energy, and are called radioac-
tive isotopes.

For example, the hydrogen element (symbol H) has one proton and
thus its atomic number is equal to 1. In nature, there exist three hy-
drogen isotopes with the number of neutrons equal to 0, 1 or 2. These
isotopes have different mass numbers of 1, 2 or 3, and are denoted 'H,
2H or *H where the superscript is equal to the mass number of the
isotope. Two of the isotopes are stable, 'H and 2H while the third, 3H,
is an unstable 3~ emitter.

Carbon (symbol C), on the other hand, is characterized by 6 protons.
Since the number of neutrons for carbon can range from 4 to 10, seven
carbon isotopes exist in nature. Only two, *C and *Chaving 6 and
7 neutrons respectively are stable. Among the unstable isotopes, 4C
and !C are often employed in tracer studies in biology and medicine.
The isotope “C is a S~ -emitting isotope and is often used to create a
radioactive tracer while ''C, a B*-emitting isotope, is used in positron
emission tomography (PET) studies.

For any given element, the natural abundance of its stable isotopes
is remarkably constant, and in a number of cases, one stable isotope
is much more abundant than others; this is called the most abundant
isotope. For example for hydrogen, the relative abundance of the stable
isotopes 'H and 2H is respectively 99.985% and 0.015%. For carbon, the
relative abundance of 12C and !3C is respectively 98.89% and 1.11%.

By comparison, zinc (symbol Zn) has five stable isotopes existing in
nature: %4Zn, %7Zn, 67Zn, %8Zn and "°Zn. The natural abundance of
each is respectively 48.89%, 27.81%, 4.11%, 18.57% and 0.62%.

For radioactive isotopes that are used in biology and medicine, their
mass in nature is negligible compared with the stable isotopes. For
instance in nature, the order of magnitude is one atom of 4C to 10!2
atoms of '2C

Radioactive and stable isotope tracers are used as isotopic tracers of
an element. For instance, the artificially produced radioactive isotope
69m7Zn  of zinc can be used to study zinc kinetics. As an alternative, a
stable isotope of zinc can also be used by producing an elevation of the
abundance of, for example, 7n, from 0.62% up to 95%.

Isotopes are more commonly used to create tracers for complex mol-
ecules. Glucose, for example, consists of carbon, hydrogen and oxygen
atoms. Considering the carbon atoms of natural glucose, a typical glu-
cose molecule will essentially contain *2C and '3C isotopes since the rela-
tive proportion of unstable isotopes is negligible. To produce an isotopic
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glucose tracer, the amount of *C or “Cis artificially elevated at one
or more specific carbon atom positions in the glucose molecule. Hence
the isotopic species of the molecule being studied can be defined with
reference to one specific element in one or more specific positions. The
enriched isotope is frequently called a label while the molecule is said to
be labeled by this atom. For example, the carbon isotope *C can be
used to label glucose in the number one position; the labeled species is
written [1-'4CJ-glucose. Similarly, the carbon isotope 3C canbe used to
label glucose in two positions producing, for example, [1,2-'3Cs]-glucose.
The corresponding unlabeled species are [1-'4C]-glucose and [1,2-'2Cs]-
glucose respectively. As will be seen in this Chapter, the problem is how
to quantitate the amount of tracer and tracee in a sample.

The following table, which gives a more precise formulation than Ta-
ble 2.2.2, summarizes the notation to be used for the tracer variables.
In addition to the most abundant species ¢, one less abundant stable *
and radioactive " species are considered.

Table 2.3.1.  Expanded notation for tracer variables.

Symbol Defimition and Units
|4 volume
m*(t), m*(t), m"(t) mass of species ¢, ° and "
u®(t), u’(t), u"(t) rate of input (mass/time)} of species ¢, * and "
Fe), £, 1) disposal (mass/time) of species ¢, * and "

Paralleling the above notation for the tracer, the notation to be used
for the tracee is summarized in Table 2.3.2.

Table 2.3.2. Expanded notation for tracee variables.

Symbol Definition and Unats

14 volume
M® M* mass of species ¢ and °
ce,Ct concentration (mass/volume) of species * and °
ue v de novo production (mass/time) of species * and °
Fe F® disposal (mass/time) of species * and *

Figure 2.3.1 summarizes the above definitions and notation. It will
help to elucidate the basic ideas discussed in §2.4 and §2.5 related to the
measurement of radioactive and stable isotope tracers.
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Figure 2.8.1. Bar chart showing the relative contributions of *, * and " respectively to
the tracee and the tracer in a sample taken during either a radioactive or stable isotope
tracer experiment. The symbols used are those used in Table 2.3.1 and Table 2.3.2.

2.3.2 Relationships Among Isotopic Variables

Having split the tracer and tracee masses into a number of compo-
nents related to the different isotopic species in the compound, one must
now extend the relationships given in the previous section to each iso-
tope. Considering the tracee first, one can write the indistinguishability
principal for the three isotopic species as

F*_F* _F
Me  Ms M

This is the counterpart to (2.2.10). From the steady-state mass balance
equations for the tracee, one has the counterpart of the general equation

(2.3.1)

0=U-F (2.3.2)

written as follows for the three isotopic species

US—F*=US=F*=0 (2.3.3)
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from which

U Us U
= =— 3.4
Me  Ms M (2:34)

follows.

This equation states that, for the tracee under steady state conditions,
the ratio between the input rate and mass is the same for all isotopic
species, and is equal to the ratio between total input U and total mass M.
It should be noted that a similar relationship also holds when the above
tracee fluxes and masses are time varying, provided that the isotopic
composition of the input doesn’t change with time:

a 8
Uen) _ U _ U 2.35)
Mea(ty  Ms(t) M)
and for the tracer species provided that the isotope composition of the
input is constant:

o) _ e _ ) _ ) o
me(t) — ms(t)  mr(t)  m(t) (2.3.6)

A formal proof of the above relationships can be found in Appendix A.

2.4 THE RADIOACTIVE TRACER
VARIABLES

2.4.1 Measurements

To apply the general theory of isotopic tracers to the particular case
where radioactive isotopic tracers are used, it is important to discuss in
more detail how the input 4 and the tracer mass m(f) are quantitated.
Usually the measured variable is the tracer concentration ¢(t) = %,
but its quantitation is in terms of radioactivity in order to take advan-
tage of the fact that radioactive isotopic tracers, being unstable, emit
energy as they undergo nuclear change. The measurement of the tracer
input u(?) is related to this energy emission as well. Some background
information on units and measurement techniques is necessary in order
to describe the quantitation of a radioactive isotopic tracer sample.

The recommended standard SI unit of radioactivity is disintegration
per second (dps) or bequerel. The practical units of activity used in
biomedical research are disintegrations per minute, dpm, or the curie
which equals 3.7 x 100 disintegrations per second. One usually deals
with microcuries, xC', which is equal to 1/1,000,000 of a curie. One pC'
equals: 3.7 x 10 disintegrations per second, or 2.2 x 108 disintegrations
per minute (dpm).
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One cannot, however, measure radioactivity directly in terms of dpm.
For instance, when an investigator uses a beta or gamma counter, a mea-
sure of the radioactivity in the sample of interest in terms of counts per
minute, cpm, instead of dpm, is obtained. The cpm data are a function
of the counter and the isotope being analyzed, and include background
activity from, for example, electronic noise, detection of cosmic rays,
natural radioactivity. For each counter and isotope, there are rules the
investigator must follow to convert from cpm to dpm. It will be assumed
in this text that the investigator is familiar with these concepts, and if
using a radioactive isotopic tracer, can correctly calculate the dpm for
each sample.

How does the emission of energy by a radioactive isotope help in the
quantification of the tracer concentration c¢(#)? For each radioactive
isotope of an element, there is a proportional relationship between the
mass of the isotope and the dpm emitted by that mass. This can be
written

dpm of m"(t) = vm'(t) (2.4.1)

where v is the proportionality constant. If ¢(f) denotes the measurement
of tracer concentration, in terms of dpm per unit volume, one obtains

c(t) = — (2.4.2)

This provides a measure of the tracer mass since when the tracer is
carrier free,i.e. m®*(t) = m*(t) = 0 whence m(t) = m"(t) so that

o(t) = (2.4.3)

However, as shown in the next section, even if the tracer is introduced
with a carrier which is the most common situation in practice, i.e.
m®(t} # 0 and m®(t) # 0, the tracer quantified in terms of dpm can
still be used.

Note that the mass m"(t) introduced with the tracer is negligible
since a negligible amount of tracer produces a detectable signal which
can be quantitated in terms of dpm. Mass introduced with a carrier,
m®(t) + m®(t), is also negligible since it is usually of the order of mag-
nitude of m”(¢). This is why in Figure 2.3.1 only the radioactive bar
is shown for the tracer (in contrast the most abundant and the stable
bar are absent). A mass perturbation is thus normally not an issue with
radioactive tracers.
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Another measure of radioactivity that is frequently used is the ra-
dioactivity per unit mass. This is the quotient of vm(t) to M + m(t).
This quotient is called specific activity, denoted sa. It is defined

vm(t)

S(I,(t) = m (244)

The units are dpm/mass. One usually calculates the specific activity as
the quotient of the tracer and tracee concentrations since m{t) << M:

sa(t) ~ =5 = z(t) (2.4.5)

where z(f) was defined in (2.2.6).
2.4.2 Kinetic Variables

While the variables for the general isotopic tracer are given in units of
mass, the measurements of radioactive tracers are not in terms of mass,
but energy. In order to rewrite the equations for F given in §2.2using
variables in these units, one must use v to convert d and m(f) from units
of mass to units of energy. Consider first the simplest situation where the
tracer is carrier free so that ym'(t) provides an indirect measurement of
the mass m(f); similarly for u. One can rewrite the mass balance equa-
tion (2.2.11) by multiplying both sides by the proportionality constant
v to obtain

ud”;t(t) - d(”’;(t)) = —kum(t) + vu(?) (2.4.6)
Therefore the same equation holds for the tracer whether the units are
mass as in (2.2.11) or in dpm as in (2.4.6). Paralleling the discussion in
§2.2, if one regards (2.2.11) or (2.4.6) as the compartmental model equa-
tion, the system is completely specified by coupling the state equation
(2.4.6) to the measurement equation (2.4.3). Similarly for the noncom-
partmental expression given in §2.2 for F, since the tracer is carrier free
d" =d, and (2.2.11) can be written in terms of the measured dpms, by
multiplying the numerator and denominator of this expression by the
proportionality constant v,

v-d-C _v-d-C
By fooc(t)dt

U (2.4.7)

In summary for the carrier free case, all of the formulas given in §2.2
are valid whether the radioactive tracer is quantified in terms of mass
or dpm. The reason is that the mass and dpm are proportional:
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dpm of m"(t) = vm"(t) = vm(t) (2.4.8)
dpm of d" = vd" = vd dpm of u"(t) = vu"(t) = vu(t)

The crucial observation is that these relations arc still valid even if

the tracer is not carrier free. Since the relative composition of species "
dr _ u(t)

in the tracer input, written " = % = o) and described in detail in
Appendix A, is constant, one has

u'(t) = wu(t) (2.4.9)
From (2.3.6)

m" (1) = w'm(t) (2.4.10)

The measurements of " (¢) and m'(¢) in terms of dpm are still propor-
tional to their corresponding masses:

dpm of m"(¢t) = v (t) = w vm(t) (2.4.11)
dpm of u"(t) = vu'(t) = w'vult)

These proportionalities guarantee the equivalence of the formalism whether
the radioactive tracer introduced on a carrier is quantified in terms of
mass or dpm, as it can easily be shown by following the same logic as
that used in the carrier free case with w”v replacing v,

In this section, care has been taken to separate the notions of the
tracer quantified in terms of mass and dpm. As seen, all formulas listed
in §2.2 and §2.3 are valid whether the radioactive tracer is quantified
in terms of mass or dpm. For the reason, in the remainder of the text
the notation given in §2.2 for the general tracer will be adopted for the
radioactive tracer case. This also points out the similarity with other
tracers whose mass can be quantified by a measurement proportional to
the mass.

2.5 THE STABLE ISOTOPE TRACER
VARIABLES

2.5.1 Measurements

As shown in Figure 2.3.1, the situation with stable isotope tracers
is different from the radioactive case since (i) the stable isotope tracer
introduced into a system usually has nonnegligible mass unlike the ra-
dioactive case where the mass can be assumed to be negligible; (ii) there
is always some labelled species existing at a natural level in the tracee,
(iii) there is some of the naturally most abundant species in the tracer
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input; and (iv) the measurement of the stable isotope tracer can be
expressed in a variety of ways related to ratios of isotopic species.

The fact that the tracer may have nonnegligible mass is necessary
in order to have enough tracer mass in a sample to be quantitated.
Therefore, the assumption that the endogenous constant steady-state is
not perturbed by the administration of the stable isotope tracer needs to
be explicitly taken into account. Usually the tracer perturbation is often
confined within a few percent, and hence this assumption is likely to be
satisfied. Therefore in the following, the stable isotope measurement and
kinetic variables will be discussed assuming that the endogenous steady
state is not perturbed by the input of tracer. Later the non-perturbation
assumption will be examined, and a method will be outlined to test it.

To apply the general theory of isotopic tracers to the particular case
where stable isotopic tracers are used, one must be able to quantitate the
tracer input d and mass in a sample. The notation given in Table 2.3.1
and Table 2.3.2 will be used.

The quantification in a sample of the amount of stable isotopes of an
element, i.e. the most and least abundant species relies on the ability of
the mass spectrometer instrument to distinguish among isotopic species
based on differences in their mass number. The output is given in terms
of peaks associated with each species along a mass scale; the intensities of
the peaks are proportional to the abundances of the isotope combinations
in the molecule having a given mass number. In order to derive from
the peak intensities the measurements in terms of relative composition
in the sample of labelled and unlabelled species, transformations have
to be made between the peak intensities and masses. It is assumed that
the investigator is familiar with these techniques.

The final measurements can be expressed in a variety of ways [Cobelli
et al., 1992]. One is the quotient of the amount of species * and ¢ in the
sample; this is called the isotope ratio, (7)), defined by

_ M?®+mA(t)

= T (2.5.1)

r(t)

For convenience, the naturally occurring isotope ratio is denoted rp:
MS
YE

and the isotope ratio of the tracer (before administered into the system)
by r;:

™™ (252)

dS

== (2.5.3)

rr
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As an example of 7(¢), consider as a tracer glucose molecules enriched
by C in position 3. In this case, in each sample m“(f) and m'(f) will
represent the amount of '’C and “C at position 3 contributed by the
tracer while .M® and M? is the amount of '2C and '3C at position 3
naturally present in the system. The expression for r(t) is then

[3 =13 C] — glucose
[3 =12 C] — glucose
The isotope abundance, a(?), is defined as the quotient of the mass

of the labeled species and the total mass (the sum of the labeled plus
unlabeled species):

r(t) = (2.5.4)

H = M +ms(t) M3 + mb(t)
a(t) = M +m(t)  M®+me(t) + M®+ms(t)

(2.5.5)

Isotope abundance a(f) can be expressed in terms of the isotope ratio

r(t):
_ ()
W= 15w

It is convenient to define the natural isotope abundance and the abun-
dance for the tracer (prior to administrating it into the system) by:

(2.5.6)

M3 TN
= = 2.5.
NEMA M T 11w (25.7)
and
d’ rr
= = 25.8
e a1+ (258)
respectively

The enrichment, e(f), is defined as the abundance of the labeled
species above its natural level. Unlike r(¢) and a(f) which have specific
expressions, there are two commonly used ways of expressing e(f) in
terms of r(¢). These are given below:

B o r(t) Y
ex(t) = aft) —ay = 71— (2.5.92)
ea(t) = D TN (2.5.9b)

T11r(t) =1y
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The enrichment e(f) is the most commonly used way of expressing stable
isotope data. When multiplied by 100, it is expressed as a percent called
atom percent excess. As in the previous cases, it is convenient to define
enrichment for the tracer (prior to administering it into the system):

T] TN

=q;— = — 2.5.10
fur=ar—an T+r; 1+rN ( a)
TI—=TN
o = —— 2.5.10b
S PN ( )

Finally, the measurement can also be expressed as tracer to tracee
ratio directly:

2(t) = m(t)  mo(t) +m*(t)
M Me4 M
Two other variables which can be measured are the pre-test tracee
concentration and the total concentration during the experiment, re-
spectively

(2.5.11)

c-M (2.5.12)

1%
Ctot(t) = + C(t) (2513)

2.5.2 Kinetic Variables

It follows from the definitions in the previous sections that the tracer
to tracee ratio z(¢) is the only measurement variable which is related
directly to the tracer mass. If the stable isotope data are expressed in
terms of z(#), the output equation for the data is

(2.5.14)

which is similar to the output equation (2.4.2) for the radioactive tracer;
the difference is that the volume V in (2.4.2) is replaced by tracee mass
M.

As anticipated in §2.2, the compartmental model parameters k and M
can be estimated from the data, and the system fluxes can be evaluated.
Similarly an expression for F using the noncompartmental approach can
be given in terms of z(¢) using (2.2.20).
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Neither the compartmental parameters & and M nor the noncompart-
mental expression for the system fluxes can be written in terms of stable
isotope measurements such as »(¢), a(?), e(f) or e,(t) defined above
since none of them are directly related to the tracer mass. The tracer to
tracee ratio z(f) is thus the most convenient way to express stable iso-
tope data since it also permits a formalism similar to that of radioactive
tracer data. Comparing (2.5.14) to (2.4.5), the analogy between z(¢)
and specific activity is clear.

Often in the literature, enrichment is used as the analogue of specific
activity. Why? The reason probably is because the definition of enrich-
ment is very similar to that of specific activity, i.e. it is a measure of
the relative amount of the labeled species above the natural level. As
a consequence, it has been used instead of the correct variable z(¢) in
kinetic formulas to estimate, for example, production rates or fractional
synthetic rates (FSR). Appendix B is devoted to clarifying the relation-
ship between z(f) and e(¢), and to showing that e(r) can be used to
estimate the system fluxes from steady state tracer data only in special
cases which require modifications to the usual formulas. In addition, it
is shown that these formulas cannot be extended to the case where the
tracer is time varying with one exception where a very specific assump-
tion on the tracee system is satisfied.

In the general case, it is best to deal with the data in terms of z(¢).
Thus one must be able to express z(¢) in terms of the other commonly
used measurement variables. An expression for z(f) in terms of r(f)
will be derived; the expression for z(¢) in terms of the other measured
variables follows from (2.5.6) and (2.5.9).

To begin, one can rewrite the expression for z(¢) given in (2.5.11)

mae

B me(t)(1+ ms(g)

s 2.5.15
Mo(1 + A2 ( )
Using the results in Appendix A, one obtains
8 t 8 t ds
mi(t) _ wlh) = (2.5.16)

ma(t)  wi(t) d°

Using (2.5.16) and remembering % is defined as ry in (2.5.2), the
variable z(f) can now be written

~m(t) (1+7p)
0= Trw)

Similarly, using (2.5.2) and (2.5.16), r(f) can be expressed in terms of

the ratio ’";49) by

(2.5.17)
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rNM®+rim®(t) TN+ "Il\a/[(at)

t) = = 2.5.18
7'( ) Ma _'_ma(t) 1+ rr;\‘:[(at) ( )
Solving (2.5.18) for "}CI(:) one obtains
m:t) r(t)-ry
= 2.5.19
Me rr—r(t) ( )
Substituting this into (2.5.17),
1) — 1
=TTy 14 (2.5.20)

T‘[—’I‘(t) 1+ry

The expression of z(¢) in terms of the variables given in §2.5.1 is sum-
marized in Table 2.5.1. Using these formulas, it is possible to derive z(¢)
in terms of the stable isotope measurement variables a(f), ej(t)or es(t)
The variable z(f) will be used in describing both noncompartmental and
compartmental models applied to stable isotope data.

Table 2.5.1.  Relation of Measurement Variables to z(t).

Measurement Variable 2(t)
r(t) = perme 2(t) = di=en . L
a(t) = 495 2(t) = o
e1t) = ooy — TR 2(t) = 2
ea(t) = i 2(t) = 57280 - (1 - eartfs)

The various measurement variables for stable isotopes can in fact have
different shapes. Figure 2.5.1 provides an example of these differences.

2.5.3 The Multiple Species Case

Up to this point, only the case where there are two stable isotopic
species has been considered. However, it may happen that more than
two isotopic species need to be accounted for, either because the el-
ement has more than two stable isotopes (e.g. zinc), or because the
tracer molecule is labelled in more than one position. For instance, for
the [6, 6, —QHQ]—glucose tracer case where two hydrogen atoms in posi-
tion 6 of a glucose molecule are labelled with deuterium, three species
arise: the unlabelled species having two hydrogen atoms in position six,
the labelled species having two deuterium isotopes in position 6, and a
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Figure 2.5.1. The relationship among the variables r, a, e1 and e; and z (for rnv =
0.05 and r; = 9) for different values of r(t) between 0.05 and 0.25.

partially labelled species having only one hydrogen atom in position 6
replaced with deuterium.

The measurement variables such as the isotope ratio, enrichment or
abundance refers only to labelled and unlabelled species. However, the
tracer and tracee masses appear in the equation for z(f), and by defini-
tion, comprise all isotopic species. The link between the isotope ratio r
and the tracer to tracee ratio z must be modified:

r(t)—ry 1+r+rp+r"4+ -
rr—r(t) l+ry+ry+rN+

where 7(t), 77, and ry indicate as before the ratios between the labelled
and unlabelled species, while r},77,--- and ry, 7%, - refer to all the
remaining species, and indicate the ratio between each of them and the
unlabelled species, in the infusate (subscript /) and the natural material
(subscript N) respectively.

2(t) = (2.5.21)
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2.5.4 A Test of the Endogenous Constant Steady-State
Assumption

The assumption that the endogenous constant steady-state is not per-
turbed by the administration of the stable isotope tracer is not critical;
it is only necessary that the tracee fluxes U and F, and thus the tracee
mass M are constant and equal to the pre-test level during the study.
This condition is met during the tracer perturbation if U is constant
and equal to the pre-test level, and the system kinetics are linear in the
range of values during the experiment.

In order to prove this, consider the general case where the tracee is
perturbed by the experiment. In this case, the tracee mass and fluxes are
time varying functions denoted M(t), F(f) and U(¢). The mass balance
equation for the tracee becomes

dM(t)

The tracer-tracee indistinguishability principle still holds, and the coun-
terpart of (2.2.8) for a time varying tracee becomes

f(t) m(t)

FO)+ 10~ M0) + m{l) (2:5.29)
or equivalently
F(t) = M%M(t) (2.5.24)

Define AM(t) for the tracee mass perturbation from the steady state
level:

AM{)=M(t)- M (2.5.25)
From (2.5.22) and (2.5.24), one can write

dAM(t)  dM(1)
dt —  dt

F(t) + ()
M(t) + m(t)

=U(t) — (M + AM(t))
AM@0) =0 (2.5.26)

If the system is intrinsically linear, i.e.

PO+ ) _ F

iy = =" (2.5.27)
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and the endogenous production is not perturbed:

Ult)=U = kM (2.5.28)

then (2.5.26) becomes

dAM(t)

—S2 = U - KM+ AM() = KAM(8)  AM(0) =0 (25.29)

The solution of (2.5.29) is AM (¢) = 0 indicating there is no perturbation
of the endogenous steady state.

In most cases, the tracer perturbation is confined within a few percent;
this range is usually small and the above conditions are likely to be
satisfied. However, it is possible to test the steady-state assumption in
each experimental situation by a method which relies on measurements
only, i.e. no assumptions about the system structure are required.

Briefly, the test that M equals a constant is based on the following.
If the tracee constant steady-state has been perturbed, then M becomes
a function of time M(f). The measured concentration of the substance
of interest in the accessible pool, Cy is thus

M(t t
v %4
where V is the volume. One can rewrite (2.5.30):
M) m(t), .
Cot(t) = —V—(l + M(t)) = C(t)(1 + 2(t)) (2.5.31)
The tracee concentration is thus
Ciot(t)
) = ——= 2.5.32
et 1+ 2(t) (2:5:32)

Since Cyyt(t) and z(t) are known, (2.5.32) can be used to obtain a plot
of C(t). Assuming V is constant during the study, any change in C(?)
would reflect a change in M(r). Thus a measure as to how much the
tracee concentration C(¢) is perturbed from its pro-test constant steady-
state value C can be obtained. The test may be a confirmatory one.
Alternatively, it may suggest how to improve either the experimental
design (e.g. a reduction of tracer dose, a more gentle input format) or
the model (e.g. a structural description of feedback mechanisms or of
nonlinear kinetics).
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2.6 MULTIPLE TRACER EXPERIMENTS

In previous sections of this Chapter, only the case where a single tracer
experiment is performed has been considered. That is, each element or
compound is labeled with only one stable or radioactive isotopic species
to create a tracer. However, more informative experiments can be per-
formed when different tracer inputs are used. For instance, to character-
ize the absorption of an element, one isotopic species can be injected into
plasma and a second given orally. Such a study will result in two tracer
curves. Another common example is the study of two interacting sub-
strates. Here each substrate can be labeled, the tracer injected, and four
output curves generated: the disappearance of each label for the tracer
and the appearance of that label in the other substrate. In all cases it
is important that the various tracer inputs are administered simultane-
ously to assure that the system is in the same condition for each. This
implies that all tracers are simultaneously present in the samples taken
during the experiment, and that the measurement procedures must be
able to quantitate them separately.

When dealing with multiple tracers, several possibilities exist. If ra-
dioactive isotopes are to be used, it is possible to distinguish the con-
tributions of different tracers in a sample only if different radioactive
isotopes are used as labels. The reason is that the measurement instru-
ments can detect the different levels of energy emitted by the different
isotopes. However, since the energy windows of the various isotopes usu-
ally overlap, care must be taken in quantitating the contribution of each
isotope. It is assumed that the reader using multiple radioactive isotopic
tracers is familiar with these problems, and how to deal with them.

If on the other hand stable isotopes are used, several possibilities exist.
First, paralleling the above situation, different isotopes can be used. As
noted previously, zinc has 5 stable isotopes having masses 64, 65, 66,
67, 68 and 70; %Zn is the most abundant species. Any two of the less
abundant species can be chosen for intravenous and oral administration
if absorption is being studied.

Second, the same stable isotope can be used in a different number
of positions because the mass spectrometer permits one to quantitate
them separately. As example, consider an experiment to characterize the
kinetics between acetoacetate (AcAc) and -hydroxybutyrate (JOHB)
in which '3C is the isotopic species used to label the substrates. AcAc
can be labeled in two positions to create [1,2—"'3Cy]-AcAcand the latter
in four positions to create {1, 2, 3,4 —'3C,]30HB. These two tracers can
be coinjected, and the mass spectrometer can differentiate in a sample
between [1,2—13Cy]-AcAc coming from the first tracer and [1,2,3,4—13
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C4]-AcAc derived from the conversion of (1,2, 3, 4-13C4)BOHBto AcAc.
Similarly for BOHB

Finally, in multiple tracer studies, because of the ethical concern over
the total amount of radioactivity that can be administered, many re-
searchers are turning to stable isotopes as described above, or a combi-
nation of stable and radioactive isotopes. For instance, glucose turnover
during a meal can be studied by administering simultaneously [6 —2 Hj-
glucose and [6,6, —2Hy]-glucose intravenously and orally respectively.

The ideas discussed in §2.4 and §2.5 for the single tracer case in terms
of the kinetic variables can be extended to the multiple tracer case.
In particular, the kinetic variables for radioactive tracers are individ-
ual tracer concentrations, or specific activities, while for stable isotopes
they are the tracer to tracee ratios. Paralleling the single isotope case,
expressions for the tracer to tracee ratios in terms of isotope ratio mea-
surements for a dual stable isotope study are derived in Appendix C. The
whole data base consisting of individual tracer and tracee measurements
in the accessible pools is analyzed simultaneously to estimate tracee
masses and fluxes in the system. The compartmental analysis approach
will be discussed in Chapters 4-6 for a generic input-output configura-
tion while the noncompartmental analysis approach will be discussed in
Chapter 3 for the two input-four output configuration.
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Chapter 3

THE NONCOMPARTMENTAL MODEL
OF MULTIPOOL SYSTEMS:
ACCESSIBLE POOL AND

SYSTEM PARAMETERS

3.1 FROM SINGLE TO MULTIPOOL
SYSTEMS

In Chapter 2, it was seen that in the single pool system, assuming
indistinguishability of tracer and tracee and conservation of mass, an es-
timate of the tracee kinetic parameters de novo production and disposal
could be obtained. The purpose of Chapters 3 and 4 is to develop the
theory for more complex systems in which the accessible pool is part of
a larger system containing non-accessible pools.

There are two classes of models frequently used to study such mul-
tipool systems: noncompartmental and compartmental models. This
chapter deals with noncompartmental models while Chapter 4 will deal
with compartmental models. In particular, in this chapter, parameters
characterizing the multipool system using the noncompartmental model
will be defined, and formulas to estimate them from a tracer study given.

The transition from the single to multipool system can be described
using Figure 3.1.1. In panel (A), the single pool system described in
Chapter 2 is given. From the tracer experiment on this system together
with tracee measurements, de novo production and disposal together
with the mass M and volume V could be calculated. When this pool is
embedded in a system consisting of transport among the accessible and
nonaccessible pools and biochemical interactions with other substances,
the situation becomes more complex. An example which highlights both
the accessible pool and the fact this pool is embedded as a component of
a larger system is provided in panel (B). As will be seen in this Chapter,
while the accessible pool’s mass M and volume V can still be measured,

39
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De Novo De Novo
Production Tracee Production Tracee

Measurement | 0 Measurement

/ "
% /

Disposal ?

Disposal

Figure 3.1.1. Panel (A): The single pool system described in Chapter 2. Panel (B):
The single accessible pool with mass M and volume V embedded in a more complex
system into which there is de novo production and disposal; tracee measurements can
be made in the accessible pool.

de novo production and disposal can take place anywhere in the system
making its quantitation difficult.

For a more specific example, consider the system illustrated in Fig-
ure 3.1.2 which consists of an accessible and a non-accessible pool. The
problem is to define and quantitate kinetic parameters which describe the
“accessible pool” on the one hand and the “system” (accessible plus non-
accessible pools) on the other. In particular, one would like to quantitate
the masses and volumes of the pools, estimate production and disposal,
and measure the transformation/exchanges processes. One sees in this
example immediately a problem: some tracee can enter and leave the
system from the non-accessible pool without even passing through the
accessible pool. How can this affect parameter definitions and attempts
to quantitate them?

The noncompartmental model of multipool systems formalized by
Rescigno and Gurpide [1973] is schematized in Figure 3.1.3. The accessi-
ble pool is available for measurement. The complexity of the system, i.e.
transport among system components and biochemical transformations,
are “lumped” into the tracee recirculation/exchange arrow.

The important point to note in this figure is that the input and output
are no longer called de novo production and disposal, but tracee rate of
appearance into and disappearance from the accessible pool. This dis-
tinction foreshadows some of the limitations of this method of analysis.
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De Novo Tracee
Production Measurement

Exchange/
Transformation
Disposal

Figure 3.1.2. A system in which tracee is measured in an accessible pool which un-
dergoes transformation and exchange with a non-accessible pool; de novo production
and disposal occurs from this pool.

Tracee Rate of

Appearance Tracee

Measurement

Tracee
Recirculation/
Exchange

Tracee Rate of
Disappearance

Figure 3.1.3. The noncompartmental model of the multipool system. See text for
explanation.

Consider again the system described by the two-pool model illustrated
in Figure 3.1.2. Here one sees that de novo production and disposal
occur from the non-accessible pool. In addition, there are exchanges
between the accessible and non-accessible pool; this exchange is what
permits newly synthesized tracee to enter and leave the accessible pool.
As noted previously, some tracee material entering the system in the
non-accessible pool can be irreversibly lost without even entering the
accessible pool. Measurements made in the accessible pool will reflect
the kinetics only of that fraction of the tracee which passes through
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this pool before being irreversible lost from the system; the accessible
pool will “see” only a portion of the total tracee mass. Hence, because
some tracee can be irreversibly lost without ever passing through the
accessible pool, only a fraction of de novo production, called the tracee
rate of appearance and denoted by E,, can be estimated. With this
example in mind, the question becomes: what kinetic parameters can
be estimated at the “accessible pool” level, and what can one estimate
at the “system” level?

For the noncompartmental model, the accessible pool parameters quan-
titate characteristics unique to the accessible pool such as mass, volume
and residence time. The system parameters characterize “events” in the
system occurring outside of the accessible pool but “seen” by that pool.
This anticipates the fact that some of the parameters will be correct
while others are estimates that are correct only under special circum-
stances.

In §3.2, the general definitions of the kinetic parameters for the acces-
sible pool in a multipool system will be given, and formulas to estimate
them from kinetic data listed. In §3.3, the general definition of the
“system” kinetic parameters for the multipool system will be given to-
gether with formulas to estimate them from kinetic data. Each section
will present the formulas for the bolus, constant infusion, primed infu-
sion, and a generic input of the tracer. All formulas will be derived in
Appendix D.

From the formulas given in §3.2 and §3.3, it will be seen that in order
to estimate the kinetic parameters, a functional description of the data
is required. That is, a mathematical function which “describes” the
data must be postulated. This function not only describes the data
over the time interval of the experiment, but extrapolates or “predicts”
the data for times outside the data collection period. The reason this
extrapolation is necessary is that tracer studies have a first and last
sample time, but the formulas require a functional expression which can
be integrated from time zero to infinity. It is the mathematical function
describing the data that is used to evaluate the formulas. The problem
of finding a mathematical description of the data is not simple; it is the
subject of Chapter 8. Examples are provided in Chapter 9.

The Chapter will close in §3.4 with an extension of single accessible
pool model to the situation where there are two accessible pools em-
bedded in a larger, multipool system. This can address a number of
situations including: (i) two substances in one “physiological space”,
(i1) one substance in two “physiological spaces”, and (iii) two substances
in two “physiological spaces”.
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3.2 KINETIC PARAMETERS OF THE
ACCESSIBLE POOL

3.2.1 Definitions

In this section, the kinetic parameters characterizing the accessible
pool will be defined and the formulas used to calculate them given.
These are the parameters that quantitate characteristics unique to this
pool.

The kinetic parameters for the accessible pool in the multipool system
can be introduced using Figure 3.1.3. The notation to be used in this
text for the kinetic parameters for the accessible pool are summarized
in Table 3.2.1.

Table 3.2.1.  Notation for the Accessible Pool Kinetic Parameters

Notation Units Definition

M mass Mass

v volume Volume of distribution
CR vol time™! Clearance rate

FCR time™! Fractional clearance rate
(S} time Mean residence time

Re mass time™! Rate of appearance

1

Ry mass time™ Rate of disappearance

The definition of these parameters is given below.

Mass M (units: mass): This is the mass of material in the accessible
pool, i.e. the pool in which the tracer is introduced and from which
samples measuring its amount will be taken.

Volume of distribution 7 (units: volume): This is the volume
of the accessible pool. It is a volume in which the tracee is uniformly
distributed and in which the tracer, once introduced into the system,
intermixes uniformly and instantaneously.

Clearance rate CR (units: vol time '): This is the rate at which
the accessible pool is irreversibly cleared of material per unit time.

Fractional clearance rate FCR (units: time '): This is the frac-
tion of material that is irreversibly lost from the accessible pool per unit
time. (The FCR is sometimes called the fractional catabolic rate.)

Mean residence time © (units: time): This is the average time
a particle spends in the accessible pool during all passages through it
before leaving it for the last time.
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Rate of appearance R, (units: mass time '): This is the rate at
which the material enters the accessible pool for the first time.

Rate of disappearance R, (units: mass time'): This is the rate
at which the material is irreversibly lost from the accessible pool.

The relationship among these parameters is summarized in Table 3.2.2
below where C indicates the measured value of the tracee concentration
in the accessible pool.

Table 8.2.2. Relationships Among the Accessible Pool Parameters

M=C.V (3.2.1)
FCR=%E (3.2.2)
O = 75 (3.2.3)
R.=Rs=FCR-M=CR.C (3.2.4)

3.2.2 Formulas

The two experimental situations, i.e. stable and radioactive isotopic
tracer, for which the kinetic parameters will be given are shown in Fig-
ures 3.2.1 and 3.2.2.

Tracee Rate of
M Appearance
u C=MWV
joi

\ /
Tracee /
Recirculat ion/
Exchange

Tracee Rate of
Disappearance

O =(t) = my M

Frgure 8.2.1. 'The accessible pool in the noncompartmental model for the stable iso-
tope tracer experiment. The tracer input is denoted by u(t). The measured variables
are the tracee concentration C and the tracer to tracee ratio z(t) where z(t) can
either be measured or calculated from one of the other measurement variables (see
Table 2.5.3). The tracee concentration C is constant because it is assumed that the
system is in the steady state while z(t) changes as a function of time.
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Fugure 8.2.2.  'The accessible pool in the noncompartmental model for the radioactive
isotope tracer experiment. Tracer input u is consistent with the notation introduced
in Table 2.3.1. The measured tracee and tracer concentration variables are denoted
C and c(t). The tracee concentration C is constant because it is assumed that the
system is in the steady state while ¢(¢) changes as a function of time.

As indicated in these figures, for stable isotopes, the measurements
involve masses of the isotopic species, and z(f) must be measured or
derived from other measures. For radioactive tracer experiments, the
measurements arc usually ¢(f) and C separately; as described in Chap-
ter 2, the specific activity is the quotient of these two variables, and can
be regarded as a measure of z(¢) for the radioactive tracer.

The following two tables give the formulas to estimate the accessible
pool parameters. Table 3.2.3 gives the formulas for the generic tracer
case when the data are quantified in terms of the measured tracer to
tracee ratio z(f). Following the logic given in Chapter 2, these formulas
apply to the stable isotope experiment, and to the radioactive isotope
experiment when the data are expressed as specific activity. Similarly,
Table 3.2.4 gives the formulas for the radioactive isotope case when the
data are quantified in terms of the tracer concentration c(f). The nota-
tion used here is the same as that used in Tables 2.2.1 and 2.2.2.

In these tables, the four different formats for tracer inputs are explic-
itly considered: the bolus injection, the constant infusion, the primed
constant infusion, and finally the case where a finite dose of tracer is
administered with a generic input profile u(f). In Table 3.2.3, z rep-
resents the plateau value for the constant or primed, constant infusion
experiment, and 2(0) is the derivative of z(¢) evaluated at ¢ = 0 (i.e.

dz(tt) |t:0). In Table 3.2.4, ¢ represents the plateau value for the constant
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Table 8.2.5. Formulas for the Accessible Pool Kinetic Parameters

Using z(t)
Bolus Injection Constant Infusion Primed Infusion Generic Input
d u u,d u(t)
d u d u(0)
M z(0) 2(0) 2{0) Z(Q
R d " u(t)dt
a [ z B [
v V= %
CR CR = ?‘
FCR FCR=2%
1
e © = rer
Table 3.2.4. Formulas for the Accessible Pool Kinetic Parameters
Using c(t)
Bolus Injection Constant Infusion Primed Infusion Generic Input
d u u,d u(t)
v a u d u(0)
c(0) &(0) c(0) ¢(0)
= u(t)dt
CR T= s 4 y ¢ I
Jo ce(t)dt o c(t)dt
M M=C-V
R. R, =CR-C
FCR FCR= &8
S} = 1
FCR

or primed, constant infusion experiment, and ¢(0) is the derivative of
c(f) evaluated at ¢ = 0 (i.e. dfi(tt) le=0)

When the measurement is z(¢), the physiological reference is mass;
thus M appears as the first parameter estimated in Table 3.2.3. When
the measurement is tracer concentration c(¢), the physiological reference
is volume; thus V appears as the first parameter estimated in Table 3.2.4.
These “physiological references” dictate the order in which the formulas
are presented. Again, it reflects that in the radioactive isotope exper-
iment, the natural starting point is volume since the measurement is
usually concentration while in the stable isotope experiment as well as
the radioactive isotope experiment where specific activity is adopted,
the natural starting point is mass.

The formulas given in Tables 3.2.3 and 3.2.4 are derived in Appendix D.
Some comments will be made below on these formulas.
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The bolus injection

A typical decay curve following a bolus injection of a tracer into an
accessible pool is given in Figure 3.2.3.
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Figure 8.2.8. A typical decay curve following a bolus injection of a tracer into plasma
as an accessible pool. The units of the data depend upon the tracer.

In the case where the data are expressed as z(¢) ratio, the mass M
is calculated as the quotient of the dose d and 2(0). Since data are
usually never available when ¢ = 0, it is necessary to extrapolate from
the data an estimate of z(0). Similarly for the radioactive tracer, when
the data are expressed as concentration c(¢), it is the volume V which
is calculated as the quotient of the dose d and c(0); hence a value must
be estimated for ¢(0).

In both cases, it is also necessary to evaluate an integral from ¢ = 0
to ¢ = co. When the data are expressed in terms of z(¢), the parameter
estimated from the integral is the rate of appearance R,; when expressed
in terms of concentration c(?), it is the clearance rate CR.

This extrapolation to t = 0 to ¢ = oo and the evaluation of the
integral is usually accomplished by providing a functional description of
the data. Frequently sums of exponentials are used. This is discussed in
Chapters 8 and 9.
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The constant infusion of tracer

Many experiments are designed where the tracer is infused for a given,
finite period of time with serial samples taken from the accessible pool
for quantitation of tracer. The “goal” of these experiments is to infuse
the tracer for a period of time sufficient to reach a plateau. If, from
previous experiments, the time at which a plateau is achieved is known,
the first sample may start at this time. When this design is adopted,
how the tracer arrives at the plateau is not known. As will be seen, this
can create problems in estimating the noncompartmental parameters.
An example of tracer data when a constant infusion of tracer is given is
illustrated in Figure 3.2.4.
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Figure 3.2.4. A set of data following a constant infusion of tracer. The units of the
data depend upon the tracer.

In the case where the data are expressed as z(f) ratio, the mass M
is calculated as the quotient of the dose d and 2(0). That is, one must
estimate the derivative of z(¢) evaluated at time zero. This requires an
extrapolation of the data to ¢ = 0 so that the derivative, the initial
slope of the data, can be evaluated. In addition, a true plateau must be
reached so that the R, can be estimated.

Similarly for the radioactive tracer, when the data are expressed as
concentration c(f). Here it is in the formula for ¥ that an estimated
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value for ¢(0) is required. Also, the data must reach a plateau so that
CR can be calculated.

In terms of what extrapolations are required, the difference between
the bolus and constant infusion experiment is that in the former inte-
grals need to be evaluated while; in the latter derivatives at time zero
are needed. The rising portion of the curve in the constant infusion
experiment is usually that most prone to error, and often a sufficient
number of samples are not taken. Knowing this information can help in
designing constant infusion experiments which will ensure that the early
portion of the rise can be characterized.

The previous point needs to be emphasized. While it is clear that
the same kinetic information is, in theory, available from the bolus and
constant infusion experiment, the constant infusion protocol is frequently
designed in such a way that not all kinetic parameters can be estimated.
Without data describing the rising portion of the tracer curve one can
only estimate the R, and CR as R, = u/z and CR = R,/C, or CR =
u/c and R, = CR - C respectively for the cases when the data are
expressed in terms of z(#) or f:(¢). This protocol is very common in stable
isotope tracer studies where the most widely used formula to quantify
R, is expressed as a function of enrichment:

R, = u(%’ ~1) (3.2.5)

where e is the plateau enrichment value and e/ is the enrichment of the
tracer. The equivalence of this formula with the expression for E, in
terms of z which, from Tables 3.2.3 and 3.3.3 can be written

R.=FCR M = g (3.2.6)
has been derived in Appendix B.

The primed, constant infusion of tracer

Experiments can be done in which the tracer is injected as a bolus
followed by a constant infusion for a finite period of time. This is the
so-called primed, constant infusion method. The reason this protocol
is often used is that if properly designed, the priming dose will speed
the achievement of a plateau for the tracer concentration. An example
of tracer data when a primed, constant infusion of tracer is given is
illustrated in Figure 3.2.5.

Estimating the kinetic parameters when this protocol is adopted re-
quires a combination of the formulas given in the tables. The applica-
tion of the formulas can best be understood by following their derivation
given in Appendix D.
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Figure 8.2.5. A set of data following a primed constant infusion of tracer. The units
of the data depend upon the tracer.

The generic tracer input

Kinetic parameters can be calculated from tracer data even if the
tracer input is not a bolus, a continuous infusion, or a primed constant
infusion, i.e. the input is a generic input. An example of such a situation
is given in Figure 3.2.6.
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Figure 3.2.6. A generic input of tracer is administered into a system, and data are
collected. Panel (A) shows the data; panel (B) the input function u(t). The units of
the data depend upon the tracer.
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The situation here is complicated by the fact that the input function
u(f) must be known precisely. Whether the data are collected in terms
of z(f) or c(¢), an extrapolation to time zero and the evaluation of an
integral from ¢ = 0 to t = oo is required. One must also know [ u(t)dt,
the total dose administered.

3.3 KINETIC PARAMETERS OF THE
SYSTEM

3.3.1 Definitions

The noncompartmental system parameters characterize events occur-
ring inside and outside the accessible pool. The notation used for these
parameters in this text are given below in Table 3.3.1 for the system
diagrammed in Figure 3.1.2.

Table 3.3.1.  Notation for the System Kinetic Parameters

Notation Units Definition

MNC mass Whole body mass

Ve volume Total volume of distribution

MRTNC time Mean residence time in the system

Ow time Mean residence time outside the accessible pool

The definition of these parameters are:

Total mass M (units: mass): This is the total mass of material
contained in the system as “seen” by the accessible pool.

Total volume of distribution V,},¢ (units: volume): This is the
total volume of the system seen from the accessible pool, i.e. it is the
volume in which the total mass would be distributed assuming the con-
centration of material throughout the system is uniform and equal to
the concentration of the accessible pool.

Mean residence time MRTYC (units: time): This is the average
time a particle introduced into the accessible pool spends in the system
before leaving the accessible pool for the last time.

Mean residence time outside the accessible pool Oy (units:
time): This is the average time a particle introduced into the accessible
pool spends outside the accessible pool before leaving the accessible pool
for the last time.
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The relationships among the parameters are given in Table 3.3.2.

Table 8.3.2.  Relationships Among the System Kinetic Parameters

Vol = MRTNY . CR (3.3.1)
M{E =VEC - C = MRTYC . R, (3.3.2)
Ow = MRTNY - @ (3.3.3)

The parameter Mt"(\,’tc is also called exchangeable mass. The parame-
ter Vt‘n\ic is sometimes called recirculation, exchangeable or steady state
volume. It is important to note that the physical interpretation of VtIOVLC
requires care. In fact, it is an operational volume the knowledge of which
permits one to compute a whole body mass I\/I,IJXtC by multiplying it by
the measured tracee concentration C'.

Note that the system kinetic parameters do not include any measure
of de novo tracee production in the system. In fact, only the rate R,
at which newly synthesized material enters the accessible pool can be
estimated in the noncompartmental model. Some comments on the re-
lationship between R, and de novo tracee production will be given in

§3.3.3.
3.3.2 Formulas

Paralleling the development in §3.2, the formulas the kinetic param-
eters of the system following a bolus injection of tracer, the constant
infusion of tracer, the primed infusion of tracer and the generic tracer
input are given in Tables 3.3.3 and 3.3.4 as functions of z(¢) and c(?)
respectively. The formulas are derived in Appendix D. In Table 3.3.3, z
represents the plateau value for the constant or primed, constant infu-
sion experiment, and for the washout experiment, 7 is the time at which
the washout phase starts. In Table 3.3.4, ¢ represents the plateau value
for the constant or primed, constant infusion experiment, and for the
washout experiment, 7 is the time at which the washout phase starts.

The same comments made in the previous section related to the above
formulas also hold. However, for each mode of introducing the tracer,
some additional information is possible. This is discussed below.



Table 3.5.5.

Formulas for the System Kinetic Parameters

Using z(t)
Bolus Injection Constant Infusion Primed Infusion Generic Input Washout
d u u,d u(t) -
MRTNC fox”(tm Jo et Jo 2= Jy =tmme” Tl foth(t)dt 3 foxtu(t)dt /; i(t)dt
io 2(t)dt f“ Z(t)dt ot
MNE M = MRTNC - R, M = MRTNC . R,
Ow Ow = MRTC o Ow = MRT"® - ©
Vil Vil = M /C Vil = MEE/C
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Table 8.3.4{. Formulas for the System Kinetic Parameters

Using c(t)
Bolus Injection Constant Infusion Primed Infusion Generic Input Washout
]

d u u.d u(t) -

MRTNC [T teyat [ le—e(t)dt Lx [c-% fo‘ e(t—r)e” 47 dr)dt [T tettyar _ f0°° tu(t)dt fT” c(t)dt
T c(tyat c c o c(t)dt ];’C u(t)dt ¢

v,Ne VN = MRTNC .CR VNC = MRTNC .CR
Ow Ow = MRTNC —© Ow = MRTNC - ©
szgzc Mtlgzc = 1/tlovtc -C Mt]:)/tc = ‘/t[z:]tc -C
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The bolus injection of tracer

In addition to the parameters listed in Tables 3.3.3 and 3.3.4 for the
bolus injection experiment, it is possible to quantitate the “recirculation-
exchange” arrow shown in Figure 3.2.1. Specifically, the recirculation of
the tracee, Ry (units: mass per unit time), can be described for z(r) or
c(?) using

_ 20
R =~ M~ Fa (3.3.4)
or
_ 0
Rw = —mM — Ry (3.3.5)

where £(0) and ¢(0) denote the derivatives of z(f) and c(f) evaluated at
time zero respectively.

The first term on the right hand side of (3.3.4) or (3.3.5) is the total
output from the accessible pool derived by writing the mass balance
equation for z(f) or c(f) at time zero. Considering that the total rate
of exit from the accessible pool is made up of the rate of disappearance
and the rate of recycling, (3.3.4) and (3.3.5) follow.

The constant infusion of tracer

For the constant infusion experiment, the parameter Ry can be esti-
mated from data collected during the rising portion of the tracer curve.
However, it requires the evaluation of the first and second derivatives of
the tracer measurements at time zero:

__£(0)

Rw =~ M — Ry (3.3.6)
. €0)

Rw = ~7gM = Fa (3.3.7)

where £(0), ¢(0), 2(0) and ¢(t) denote the first and second derivatives of

z(¢) and c(f) evaluated at time zero respectively (e.g. Z( T‘igﬁh ~g)
If the experiment permits only the estimation of the plateau value, no
system parameters can be estimated.

The primed, constant infusion of tracer

In this situation, the system mean residence time requires the eval-
uation of a double integral which in turn requires a knowledge of a
functional description of the data.
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The generic input of tracer

The system mean residence time requires the evaluation of several
integrals which require a knowledge of both the functional description
of the data and the input. There is a special case, however. Consider
the situation where the tracer is administered at a constant rate u up to
time 7 and then stopped. The system mean residence time MRT"C is
given by

Jootz(t)ydt T

NC _ Jo *e\w/wr 2
MRTNC = (eI (3.3.8)

The washout experiment

This situation refers to the experimental design when data are col-
lected after the infusion of tracer has stopped in the constant, primed,
constant infusion, or generic input experiment. One assumes that a
plateau has been reached before the infusion stops. The system mean
residence time MRT'C can be estimated by measurements taken only
from the plateau and the washout phase as

MRTNC = iTZZ(ﬂ (3.3.9)
MRrNe = Jr_ddt (3.3.10)

C

where z and c are the plateau values, and 7 represents the beginning of
the washout period.

3.3.3 Limitations of Noncompartmental Models

In the general case, the noncompartmental modeling analysis does not
permit one to estimate de novo tracee production in the system since R,
only measures the rate at which endogenous particles enter the accessible
pool. It provides a measure of de novo production in the system only if
all newly synthesized particles enter the accessible pool, i.e. either they
enter directly into the accessible pool or there is no loss in the pathways
between the pool into which synthesis takes place and the accessible
pool. When this condition is not satisfied, R, underestimates the true
production.

In addition, MRT, M and ¥y, given by the above formulas pro-
vide estimates of the “true” system kinetic parameters, MRT, M,, and
Vot only if disposal and de novo production of tracee particles take place
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in the accessible pool. If these constraints are not satisfied, MRTNC,
M} and Vip will underestimate the true system parameters [DiSte-
fano, 1982; DiStefano and Landaw, 1984]. While a formal proof of these
properties will be given in Chapter 7, the tracee system schematizations
shown in Figure 3.3.1 illustrate the main points: R, recovers U in sit-
uation (c) and (d) where production takes place in the accessible pool
but also in situation (b) since production in a nonaccessible compart-
ment but all tracee particles reach the accessible pool. The parameters
MRTNC, Mtl(\,/tc and Vy, are correct measures for these parameters for
situation (c) only since in the other cases either de novo production or
disposal, or both, take place from the nonaccessible pool.
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Figure 3.3.1. A two pool schematization of the tracee system. The situations are:
in (a) de novo production and disposal occurs in the non-accessible pool; (b} de novo
production occurs in the non-accessible pool and disposal occurs from the accessible
pool; (¢) both de novo production and disposal occur in the accessible pool; and (d)
de novo production occurs in the accessible pool and disposal from the non-accessible
pool.




58 TRACER KINETICS IN BIOMEDICAL RESEARCH

3.3.4 Parameters From Total Body Tracer
Measurements

Some limitations of the noncompartmental model can be overcome by
a different formulation of the system kinetic parameters which requires
that time dependent measurements of the total tracer mass in the system
are available. In practice, the application of this method is difficult.
However, it has been used in some tracer studies such as the glucose
turnover studies of Katz [1989] where the tracer was tritiated glucose.
The total tracer mass was measured indirectly by sampling the labelled
catabolic end product pool, tritiated body water. The amount of tracer
in this pool was quantified and subtracted from the administered tracer
dose to evaluate the total tracer mass in the system at specific sampling
times.

Denote by my(f) the time course of the total amount of tracer in
the system. For a bolus injection of a tracer dose d, the mean residence
time in the system of tracer particles from total body (TB) measurement
equals [Bergner, 1964]

fooo mtot(t)dt
d

As will be shown in Chapter 7, MRT™® is the residence time in the
system of particles which enter the system in the accessible pool but
leaves the system by any route. Thus it provides the correct estimate
of the “true” residence time in the system of endogenous particles if de
novo production takes place in the accessible pool.

By multiplying MRT™® by R,, an estimate of the total tracee mass
in the system can be derived:

MRTTB = (3.3.11)

MLE = R, - MRTT? (3.3.12)

Since R, correctly measures de novo production when it takes place in
the accessible pool, Mgf correctly measures the total mass in the system
only if this condition holds. In the general case, it underestimates the
true total mass in the system:

MLE < Moy (3.3.13)

In summary, this method correctly estimates the mean residence time
in the system of tracer material. It provides a correct estimate of the
mean residence time of the tracee if tracee production is only into the
accessible pool. Under these circumstances, the total tracee mass can
also be correctly quantified. It should be remembered that its application
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is restricted to very specific circumstances since the measurement of total
system tracer mass is feasible only in a few cases.

34 THE TWO ACCESSIBLE POOL
NONCOMPARTMENTAL MODEL:
ACCESSIBLE POOL AND SYSTEM
KINETIC PARAMETERS

3.4.1 Introduction

In the §3.2 and §3.3, only the case where one tracer and one acces-
sible pool are available to probe the system has been considered. As
already discussed in §2.6, a more informative experimental protocol is
often needed. This includes the situation where two or more pools are
accessible for test inputs and measurements.

A multipool system and its two accessible pool noncompartmental
model are shown in Figures 3.4.1 and 3.4.2 respectively.

As a step towards understanding how the two accessible pool noncom-
partmental model yields much more information than the one accessible
pool noncompartmental model, the reader should compare the above
figures with Figures 3.2.1 and 3.2.2. In the former figures, only one
“recirculation-exchange” arrow was defined; in the latter, two such ar-
rows were defined together with two “transport-chemical transformation
arrows” to take into account the interconversion of material between the
two accessible pools. These model parameters are in general different

Traces Tracer

A I‘;\";:"' i ) Measurement B

Traces

) Msasurement

fracer

Tracer

Pigure 8.4.1. A multipool system showing the metabolic relationship between sub-
stances X and Y. The model for substance X is that shown in Figures 2.2.2 and 2.2.3.
A shows the tracee system while B shows the tracer system.
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Figure 8.4.2. A. The two accessible pool noncompartmental model of the tracee
system shown in Figure 3.4.1. The nonaccessible pools are taken into account by
the “recirculation-exchange” and “transport-chemical transformation” arrows. The
recirculation-exchange arrows represent kinetic events that occur without passing
through the other accessible pool while the transport-chemical transformation ar-
rows represent a series of kinetic events that occurs in order for a substance to appear
in one pool from the other. Tracee fluxes and measurements are indicated. B. The
two accessible pool noncompartmental model of the tracer system in the tracee system
illustrated above. Tracer fluxes, inputs and measurements are indicated.

from those one could obtain by applying the one accessible pool noncom-
partmental analysis to the two pools separately. In this latter case, the
recirculation-exchange arrow of each accessible pool model would include
both transport-chemical transformation arrows and the recirculation-
exchange arrows of the other accessible pool. A second point must be
emphasized. Both the recirculation-exchange and transport-chemical
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transformation arrows represent sequences of metabolic events and not
necessarily a “direct”, one event pathway. This point is made for those
readers familiar with compartmental models; the arrows here have a
different meaning from the arrows linking compartments in a compart-
mental model.

The most typical situation that can be discussed in this context is the
study of the kinetics of two interacting substrates such as acetoacetate
and 3-hydroxybutyrate, leucine and a-ketoisocaproate, or hormones such
as T; and T4 from measurements in one physical space such as plasma. A
protocol would be to label two substances with different isotopes, inject
them as, for example, a bolus, and take serial samples. Each sample
could then have the amounts of each isotope quantitated in the two
substances. This protocol will produce 4 tracer curves (see, for example,
Figure 3.4.5). Each of the two tracers will produce a disappearance
curve, and, in the other substance, a curve detailing the appearance of
label.

A specific example would be an experiment in which leucine labeled
with *H and o-ketoisocaproate labeled with '*C were coinjected into
plasma and the amount of *H and '*C are measured in both substances
to produce the four tracer curves. In this example, the reader should
not confuse the physical space of plasma with an accessible pool. The
two accessible pools are plasma leucine and plasma «-ketoisocaproate.

It is possible to have situation where the two accessible pools are
actually different physiological spaces. In this case, it is the location
and not the chemical state which identifies the two accessible pools. A
specific example can be taken from zinc metabolism where, if " Zn
free from any carrier and *Zn labeled red blood cells are coinjected
into plasma and serial plasma and red blood cell samples are taken, the
amount of both labels in plasma and red blood cells can be followed.
Here the two accessible pools are plasma zinc and red blood cell zinc.

In this section, it will be seen that to determine completely the two ac-
cessible pool noncompartmerital model, a protocol calling for four tracer
curves is necessary, i.e. it is not sufficient to introduce tracer into only
one pool even if that tracer can be quantified in the other pool. More
specifically, if one obtains only two tracer curves from the injection of
only one tracer, one will not be able to apply all of the formulas in-
troduced below. Thus the possible information about the system under
study when there are two accessible pools will not be complete. Some
kinds of information that are available in the precursor-product setting
will be discussed in Chapter 10.

Only the experiment in which the tracer is introduced as a bolus or
a constant infusion will be discussed. In this way, it can clearly be seen
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how the two accessible pool model is an extension of the one accessible
pool model. As with the one accessible pool situation, both pool and sys-
tem parameters will be described. While the noncompartmental model
correctly estimates the accessible pool parameters, the equivalent sink
and source constraint discussed in §3.3.5 for the one accessible pool non-
compartmental model must apply in order for the system parameters to
be correctly estimated. That is, the system parameters are correct only
if disposal and de novo production take place in the accessible pools.

3.4.2 The Two Input - Four Output Experiment for
Radioactive and Stable Isotope Tracers

The experimental configuration for the two input - four output stable
or radioactive isotope tracer experiment is shown in Figure 3.4.3 and
Figure 3.4.4 respectively.

21 ), Zf ® Rog Z;(t) ,Zg(t)
O
/ Oc1
/ /
/

Rio

Figure 8.4.53. The two accessible pool noncompartmental model for the stable isotope
experiment showing both pool 1 and pool 2 can be sampled; tracee concentration in
each is denoted C), and C; respectively. Two distinct stable isotope tracers can be
administered, one into pool 1 (denoted u1(t)) and the other into pool 2 {denoted
uz(t)). The two tracers can be measured in both pools. This is indicated by the 2] (t)
where the subscript ¢ refers to the substance in accessible pool i and the superscript
7 refers to tracer 1 or 2. The lines connecting pools 1 and 2, denoted Ri2 and Rai,
represent transport-chemical transformation kinetic events. Recirculation-exchange
from the two accessible pools is denoted Rw, and Rw, respectively.
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1 2 1 2
c, @ , c1 ) Rzo 02 t,c 2(t)

Figure 8.4.4. The two accessible pool noncompartmental model for the radioactive
isotope experiment showing both pool 1 and pool 2 can be sampled; tracee concen-
tration in each is denoted C1 and C; respectively. Two distinct radioactive tracers
are administered, one into pool 1 (denoted uy(t)) and the other into pool 2 (denoted
uz(t)). Both tracers can be measured in both pools. This is indicated by the cZ(t)
where the subscript 7 refers to the substance in accessible pool ¢ and the superscript
7 refers to tracer 1 or 2. The lines connecting pools 1 and 2, denoted Riz and Ra:,
represent transport-chemical transformation kinetic events. Recirculation-exchange
from the two accessible pools is denoted Ry, and Rw, respectively.

As was the case for the single accessible pool noncompartmental model,
tracer measurements can be expressed either as tracer to tracee ratios
or as tracer concentrations. For the radioactive isotope experiment, as
discussed in Chapter 2, measurements are usually the four tracer con-
centrations CZ and the two tracee concentrations C; and C, . The tracer
to tracee ratios, or equivalently the specific activities, can be calculated

from

Z(t) =2 i=12, 3j=12 (3.4.1)

As discussed in Chapter 2, for the stable isotope experiment, the
tracer to tracee ratio can be either measured directly or derived from
other mass spectrometry variables such as isotope ratio or enrichment.
In particular, 2} and 2%, and then 2} and 22, can be derived by ap-
plying (C.15) and in Appendix C. In both cases as defined in
Appendix C, r; and r} equal the isotope ratios of tracer input u, and
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ry and r'; are the isotope ratios for tracer input u,. In the next section,

formulas for the kinetic parameters will be given as a function either of
J
zl or .

3.4.3 Accessible Pool Parameters: Definitions and
Formulas

The notation used for the two accessible pool noncompartmental model
is summarized in Table 3.4.1.The relationships among the parameters are
given in Table 3.4.2.

Table 8.4.1. Notation for the Two Accessible Pool Kinetic Parameters

Notation Units Definition

M; 1=1,2 mass Mass of the accessible pool 1

V. 1=1,2 volume Initial volume of distribution of pool i
R i=1,2 mass time ™’ Rate of appearance

“per se” into pool 1

1

Ro. 1=1,2 mass time~ Rate of disappearance
“per s¢” from pool i
R, i=1,2 mass time™! Rate of interconversion
from pool 7 to pool 2
Vo, i=1,2 vol time ™! Rate of disappearance “per se”
from pool 7 per unit of concentration
in pool 1.
v, i=12 vol time ™! Rate of interconversion

from pool j to pool ¢ per unit of
concentration in pool j.

The accessible pool masses and volumes are the same as those of the
one accessible pool model, applied separately to the two substances. All
of the remaining parameters listed above are unique to the two acces-
sible pool noncompartmental model. R,;and R,, are kinetic parame-
ters describing transport and/or chemical exchange processes as mate-
rial passes between accessible pools through an indeterminate number
of pools. Similarly, Ry; and Ry, are introduced. As will be discussed in
§3.4.5, these are different from the rates of disappearance of substances
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1 and 2 as defined in §3.3. Consider, for example, substance 1. Ry
differs from the rate of disappearance of substance 1, R, . The reason is
that the rate of disappearance of substance 1 includes that leaving the
system via Ry, plus that which leaves the system as substance 2 after
being converted to substance 2. Thus Ry, is less than or equal to the
rate of disappearance of substance 1.

Similar considerations apply to Rjy and R,y as compared to the rates
of appearance of substance 1 or 2 defined in §3.3. Rj, is lower than the
rate of appearance of substance 1 into the system since it doesn’t include
material coming from de novo synthesis which first enters pool 2 before
being converted to pool 1.

Remember that this model permits the existence of intermediate pools
between accessible pools 1 and 2; for instance, the arrows between pools
1 and 2 include all intermediate steps in the interconversion between
substances 1 and 2 so that R,; represents the rate of transfer from pool 1
to pool 2 by all pathways in the system. The relationships among the two
accessible pool parameters are summarzied in Table 3.4.2, where C;,C,
indicate the measured values of tracee concentration in the accessible
pools.

Table 8.4.2. Relationships Among the Two Accessible Pools Kinetic Parameters

M, = ViC; i=1,2 (3.4.2)
Ror = v0:Ch i=1,2 (3.4.3)
Ri; = v,C, =12 i (3.4.4)
Ri0 = Ro1 + R21 — Ri2 (3.4.5)
Rao = Roz2 + Riz — Ra1 (3.4.6)

As given in Appendix D, the relationships (3.4.5) and (3.4.6) can be
derived by balancing the fluxes in the accessible pools; the sum of the
input and output fluxes must be equal.

The formulas for these parameters listed in Table 3.4.1 for the bolus
injection and continuous infusion experiments are given in Tables 3.4.3
and 3.4.4 for the cases where the tracer measurements are z(¢) and c(¢)
respectively. They parallel Tables 3.2.3 and 3.2.4 for the one accessible
pool case.
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Table 3.4.9. Formulas for the Two Accessible Pool Kinetic Parameters

Using 2(t)
Bolus Injection Continuous Infusion
dy,d> U, u2
d u
M 7y 1A=
1 Eh (0) £1(0)
d u
M A STA=
2 23(0) #3(0)
d;-Azl uTzl
sL 72 <72
Roy AAz Az
R dy-Az3 uy-22
12 AAz Az
R dl»Azz2—d2 Azz1 uy zzz—ug-zz1
01 AAz Az
R do AZ]‘—dyAZQ] ug-z;—u‘l-z?
02 AAz Az
My
Vi TN
Mz
Va T
EifiTe
Vo1 1
Rop
Vo2 Cs
558
v21 Ch
. Ry
V12 Ca

A typical set of data for a simultaneous bolus injection into two acces-
sible pools is given in Figure 3.4.5. For the bolus injection experiment,
all of the kinetic parameters of the accessible pool can be expressed as
functions of four areas under the four tracer curves (such as those given
in Figure 3.4.5):

. oo
Azl =/ z] (t)dt i,j=1,2 (3.4.7)
0
or

Ad = /Oooc{(t)dt i,j=1,2 (3.4.8)

In addition to these, the rates of recycling around pool 1, Rw; and
pool 2, Rw,, without passing through the other accessible pool are:



Noncompartmental Model of Multipool Systems 67

Table 3.4.4. Formulas for the Two Accessible Pool Kinetic Parameters
Using c(t)
Bolus Injection Continuous Infusion
di,dz U1, Uz
Bolus Injection Continuous Infusion
di,d2 U1, U2
d u
Wi ;}'(OL) F{—(ltﬁ
d. u
Va pz'(z(ﬁ %
Acl el
va1 e v
e e
Vo1 dl«AczAz ;dCTACZI u"C%A—Cuz'CZI
dg-Ac} —dl-Ac? u2~cll —ulﬂczl
Vo2 AAc Ac
M, i Ch
M2 Vo - Cz
Roi vo1 - C1
Rz voz - C2
Ry vg1 - O
Ria vz - C
;1
K 0
Rw, = }( ) a, - Ro1 — Ry (3.4.9)
< (0)
2
z5(0
Rw, = 3( )Mg — Roy — Ria (3.4.10)
22(0)
1
¢1(0
Rw, = }( )Ml — Rgy — Ry (3.4.11)
01(0)
2
¢ 0
Ry, = &1 )Mz — Rgy — Ry (3.4.12)
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Figure 3.4.5.  An example of the four sets of data obtained from a simultaneous bolus
injection of two tracers into two accessible pools. Panels A and B are respectively
the results the injecting labeled substance 1 and 2. In both figures, the triangles and
squares are respectively substance 1 and 2. Thus in the left hand panel, the triangle
represent the decay of substance 1 while in the right hand panel, it represents the
appearance of substance 1 following the bolus injection of labeled substance 2.

where 2] (0) and ¢/(0) are the derivatives of z{r) and c(¢) respectively
evaluated at ¢ = 0.

For the constant infusion experiment, the plateau value of substance
i in pool j, z or ¢ is required. The substitutions used in passing from
the bolus to the constant infusion experiment in the formulas given in
Tables 3.4.3 and 3.4.4 are

di —up dy — up

Azl — 28 Az —2) A2l —2d AZS — 22

Ac% — c{ Acé — c% Ac% — cf Acg — c%

In Table 3.4.3, AAz = Az} - A2% — Az} - A2? in the case of the bolus
injection; Az = z] - 22 — 2% 2} and 2}(0) is the derivative of 2! at
t = 0 in the case of the constant infusion. The parameters Rj, and
R,y are calculated using (3.4.5) and (3.4.6) respectively. In Table 3.4.4,
AAc = Acl - Ac3 - Acl - Ac? in the case of the bolus injection; Ac =
¢} - ¢3 — cf - ¢} and ¢(0) is the derivative of ¢! at # = 0 in the case of
the constant infusion. The parameters Rjo and R,, are calculated using
(3.4.5) and (3.4.6) respectively.
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While the above tables and formulas apply only to the bolus injection
and continuous infusion experiment, formulas can be derived for the
primed, constant infusion in a manner similar to that indicated in §3.2.

3.4.4 System Parameters: Definitions and Formulas

The kinetic parameters of a multipool system which can be estimated
from a two-input four-output experimental protocol using the two ac-
cessible pool noncompartmental model are given in Table 3.4.5.

Table 3.4.5. Notation for the System Kinetic Parameters of the Two Accessible Pool
Model

Notation Unats Defintion

MNE mass Whole body mass

VN volume Total volume of distribution
/\H{TlNC i=1,2 time Mean residence times in the system

These parameters are essentially the same as those defined for the one
accessible pool model, and their definitions are similar.

Total mass MYC (units: mass): This is the total mass of material
contained in the system as “seen” by the accessible pools.

Total volume of distribution V5, (units: volume): This is the
total volume of the system seen from the accessible pools, i.e. it is either
the volume in which the total mass would be distributed assuming that
the concentration throughout the system is uniform and equal to the sum
of the concentrations of the accessible pools, or the sum of the volumes
where substances 1 and 2 distribute throughout the system assuming
the same concentrations as in the accessible pools.

Mean residence time M RTNC (units: time), i = 1,2: These are
the average times a particle introduced into the system in accessible
pool i spends in the system before leaving the accessible pools for the
last time. Notice that formulas (3.4.14) and (3.4.15) give two values for
V,NC described in Table 3.4.6.

In order to express MRT¥® and MRTPC as a function of the mea-
surement variables, it is necessary first to define 4 mean total residence
times MRT?, i,j =1,2; these represent the expected time particle in-
troduced into pool j spends in the system before leaving accessible pool
i for the last time. Their expressions as a function of =z’ (t) or c(t) as

1
measured for the bolus injection experiment respectively are
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Table 8.4.6. Relationships Among the System Kinetic Parameters of the Two Ac-
cessible Pool Model.

M{E = MRTNC Rio + MRT{ ¢ Ry {3.4.13)
NC
VA = o (3.4.14)
VA = MBI TR | MRTS Ry (3.4.15)
; otz (t)dt
MRT’ = Jo~ tz(t)dt (3.4.16)
Azf»
oo
: tcl (t)dt
MRT’ = aAGL (3.4.17)
Ac

where A2] and Ac] are defined in (3.4.7) and (3.4.8).

The mean residence time M RTIN C can be expressed by weighting
MRT}! and M RT12 according to the probability that a particle having
been introduced into pool 1 irreversibly leaves the system from pool 1
and 2 respectively; similarly with M RTNC:

1 Rot Ry,

MRTNY = MRT} === + MRT}(1 — =) (3.4.18)
Rdl Rd1
NC _ 2 Ro2 2 Rpz
MRTPC = MRT? — + MRT}(1 - =) (3.4.19)
Rdz Rd2

where Ry, and Ry, are the disappearance rates from pool 1 and 2 as
evaluated from the one accessible pool model applied to pool 1 and pool
2 separately.

Equations (3.4.18) and (3.4.19) apply to situations where data are
expressed as the tracer to tracee ratios, and the physiological references
are masses. When the measurements are tracer concentrations and the
physiological references are volumes, the equations can be conveniently
expressed as

MRTNC = MRT} =2  MRT}(1 - 22 A.

; RTY Gp- + MR (1= o0-) (3.4.20)
MRTNC = MRT} =2 | MRT2(1 — 22 A4,

2 2 CR, AT (3-4.21)
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where CR; and C' Ry are the clearance rates from pool 1 and 2 as eval-
uated from the one accessible pool model applied to pool 1 and pool 2
separately.

The relationships given in Table 3.4.6 permit one to calculate Mt’;’tc
and Vtﬁic, Different definitions for V)¢ are given depending upon the
situation. For instance, ifthe two accessible pools represent two interact-
ing substances in plasma, the use of Cy + Cs as a reference concentration
(eg. in (3.4.14)) is appropriate. On the contrary, if the two accessible
pools represent two different locations of a substance, V,NC can be eval-
uated by summing up the volumes where substance 1 and 2 distribute,
using respectively C; and C as the reference (3.4.15).

3.4.5 Relationship Between One and Two Accessible Pool
Noncompartmental Models

The definitions of the two accessible pool noncompartmental model
parameters given in this section delineate the interactions between the
two pools, and require data from a two input-four output experiment.
In addition to this analysis, one could apply the one accessible pool
noncompartmental model separately to each of the two experimental
curves describing the disappearance of the two tracers.

To derive the relationships between the two sets of parameters, con-
sider a double bolus injection experiment where the measurements are
expressed in terms of the tracer to tracee ratios z(¢). By adopting the
notation of the multiple tracer experiment for the formulas given in Ta-
ble 3.3.2, the rates of appearance and disappearance into accessible pools
1 and 2, now indicated as R4, R4, R4, and Ry, are:

di do
Ry = -=R Ry, =———-7=~HR 3.4.22
b T (1) dt “ T2 (t)dt a2 ( )
These fluxes are related to the two accessible pool model fluxes R;j,
and from their expressions given in Table 3.4.3, it is easy to verify the
following equalities:

Rio Ry
R, =R Roygp———— R,, = R Rig——————— (3.4.23
ay 10 + f20 Fia + Roo az 20 + 10 Toor + For ( )
Roo Roy
Ry, = R Ry ——m—— Ry, = Roo + Rjg——————— (3.4.24
dy o1 + NE T Ros ds 02 2R Ror ( )

It is evident from these relationships that the two accessible pool
schematization is able to isolate de novo appearance and disappearance



72 TRACER KINETICS IN BIOMEDICAL RESEARCH

fluxes per se from the contribution of the interconversion from the other
pool. Consider as an example the first equality. R,, can be subdivided
into de novo appearance into pool 1, Rjq, plus the fraction of de novo
appearance into pool 2, Ryg which appears in pool 1 after interconver-
sion. Similarly, R4, is the sum of irreversible removal of material from
pool 1 per se, Ky, plus the flux of material which leaves the system after
being converted to pool 2.

The same considerations also apply to parameters v,; as compared to
the clearance rates from accessible pools 1 and 2:

102 vo1
CRy = vp2 + v12

CRy=vg + V9 ——————
V12 + Vo2 v21 + Vo1

(3.4.25)
These equations suggest an interpretation of vg; and wvo2 as clearance
rates per se which can be compared to C'R; and CR,, parameters which
measure the clearance in toto from the accessible pools including the
effect of interconversion.

3.4.6 Limitations of Two Accessible Pool
Noncompartmental Models

To interpret correctly the two accessible pool noncompartmental pa-
rameters, one must expand to these models the concepts introduced in
§3.3.3 [Cobelli and Toffolo, 1984]. Formal proofs of what follows will be
given in Chapter 7. Consider first the conditions on the model structure
which permits one to interpret Rjg+ 229 as the true de novo production
rate in the system. Since R)o and Rgo are the rates at which endogenous
particles enter the accessible pools, their sum correctly measures the to-
tal production in the system only if all newly synthesized particles enter
the accessible pool, i.e. there is no loss of material via the pathways
between the pools into which synthesis occurs and the accessible pools.
When this condition is not satisfied, Rig + Rop will underestimate the
true production.

Concerning the mean residence time, neither MRTINC nor MRTQNC
will in general measure the mean residence time in the system for en-
dogenous particles. An estimate for this parameter can be obtained by
weighting MRT{NC and MRT]NC according to the probability that an
endogenous particle enters the system from accessible pool 1 and 2:

Ry
Rip+ Rao

Ry

MRTNC = MRTNC 0
! Rio+ Ry

+ MRTNC (3.4.26)
It will be shown in Chapter 7 that M RT™¢ correctly recovers the mean

residence time in the system of endogenous particles if productions as
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well as irreversible losses take place in the accessible pools only. The
same conditions must be satisfied in order for MY to be a correct
measure of the total mass in the system.

As already discussed in §3.3.3, the validity of these conditions must
be verified in order to interpret correctly the noncompartmental param-
eters. For instance, with reference to the tracee system schematizations
shown in Figure 3.4.6, K19+ Rog recovers U in situations (b); 210 + R
recovers U; + Us in situations (c) and (d) while M RT™C recovers the
mean residence time of endogenous particles only in situation (c). This
is the only case where A[gtc correctly measures the total mass in the

system.

A
/o /o B /o /o
F
.
C N % D a 0 % 0
Yt Vs / /

Figure 3.4.6. A three pool schematization of the tracee system. The situations are:
in (a) de novo production and disposal occurs in the non-accessible pool; (b} de novo
production occurs in the non-accessible pool and disposal occurs from the accessible
pools; (¢) both de novo production and disposal occur in the accessible pools; and (d)
de novo production occurs in the accessible pools and disposal from the non-accessible
pool.
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Note that in no case does the one accessible pool analysis applied to
either pool 1 and 2 give a correct estimate for de novo production and
then for My, since Rgo1 and Rge of the noncompartmental model are
both different from zero and thus

R, < Rig+ Ry < U i=1,2 (3.4.27)
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Chapter 4

THE COMPARTMENTAL MODEL

4.1 INTRODUCTION

In the previous chapter, specific kinetic parameters of the system
were defined and their estimation using the noncompartmental model
discussed. It was seen, however, that a model of the nonaccessible por-
tion of the system was necessary. The model is shown in Figure 4.1.1 A
where the nonaccessible portion of the system is described by the recir-
culation/exchange arrow.

An alternative to this model is to “compartmentalize” the system,
i.e. to postulate a structure for the nonaccessible portion of the sys-
tem consisting of distinct “compartments” which are interconnected by
pathways representing fluxes of material and/or biochemical conversions.
An example is illustrated in Figure 4.1.1B where the compartments are
represented by circles and the interconnections by arrows. Note that
the substances can also enter some of the nonaccessible compartments
de novo (arrows entering a compartment not origination from another
compartment) and irreversibly leave others (arrows leaving compart-
ments and nor ending at another compartment). This approach gives
rise to a compartmental structure that is unique for each system studied
since it incorporates known and hypothesized physiology and biochem-
istry; this is in direct contrast to the noncompartmental approach where
the schema is the same for all systems. In the compartmentalization
of Figure 4.1.1A given in Figure 4.1.1B, the circles representing com-
partments and the arrows representing transfers have special meanings
which will be defined precisely in this Chapter.

In the noncompartmental approach, one can estimate specific kinetic
parameters but obtain no insight into the detailed structure of the sys-

75
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Figure 4.1.1.  A. The noncompartmental representation of a system. B. A compart-
mental representation of the system. The recirculation/exchange arrow is described
by a set of nonaccessible compartments some of which exchange with the accessible
compartment. See text for additional explanation.

tern outside of the accessible pool. For this technique, the domain of
validity and the limits of the approach are known. The compartmental
method relaxes the limits imposed by the noncompartmental model. It
will provide the investigator with insights into the system structure, per-
mitting predictions about components of the system not accessible for
measurement. However, it is only as good as the assumptions that are
incorporated in this structure. This step forward in complexity will re-
ward the investigator with a much richer interpretation of tracer kinetic
data.

Both the noncompartmental and compartmental models, however, re-
quire the existence of at least one accessible pool into which test sub-
stances can be administered and from which measurements can be made.
Thus the philosophic difference between them lies in the way the nonac-
cessible portion of the system is modeled. In the former, the investigator
chooses an equivalent type of structure, the recirculation/exchange ar-
row, with the assumption of no sources or sinks along the arrow since the
noncompartmental parameters describing tracee rate of appearance and
disappearance R, and Ry refer to the accessible pool only. In the lat-
ter, the investigator postulates a definite structure for the system where
de novo production (as illustrated by the arrows into the nonaccessible
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pools from “outside” the system shown in Figure 4.1.1B) and disposal
can occur from accessible and nonaccessible compartments (as indicated
in the same figure by the arrows towards the “outside” of the system,
both from the accessible and two of the nonaccessible pools).

4.2 CONCEPTS AND DEFINITIONS

The compartmental system diagrammed in Figure 4.1.1B consists of
an accessible compartment and a structure representing the nonaccessi-
ble portion of the system consisting of 6 interconnected compartments.
The implication is that the nonaccessible portion of the system contains
six discrete entities. However, most biological systems are far more com-
plicated than this simple representation.

In fact, it is not possible to track the behavior of every molecule in a
biological system at every point in time. Hence it is useful to consider
collections of specific molecules at specific sites or in specific forms, i.e.
collections of molecules having similar characteristics but existing in
the system at different locations, or collections that exist at a given
site or location in the system but have different characteristics. As an
example of the former, zinc exists in the body in, among other locations,
plasma, red cells, muscle and bone. As an example of the latter, consider
glucose. Once glucose is transported from plasma to muscle cells, it
can be phosphorylated to glucose-6-phosphate. Thus muscle cells are a
location in the glucose system where glucose molecules are present in
two different forms, glucose and glucose-6-phosphate. One can see that
thinking of the system in these terms, i.e. collecting molecules at specific
sites or in specific forms, permits a “lumping” of the system into discrete
groups, and that arrows can be used to represent the movement from
one site or one form to another.

Examples of lumping into a discrete group could be calcium in plasma,
zinc in bone, or tri-iodothyrouine in thyroid cells. In some experi-
ments, however, the lumping can exist in the same physical space such
as plasma. For example, one could follow the kinetics of glucose, lactate
and alanine in plasma; the lumping here is glucose, lactate and alanine
as separate group of molecules in the physical space of plasma.

The basis of a compartment in a system is one of lumping material
with similar characteristics into discrete collections that are homoge-
neous and behave identically. The notions of “homogeneous” and “be-
have identically”, however, require precise definitions for it is through
the definitions that the link to mathematics is made. The basis of the
compartmental system, or model, are the arrows which are used to in-
dicate the interconnections among the various compartments. As will
be seen, the interconnections represent a flux of material (mass time™1)



78 TRACER KINETICS IN BIOMEDICAL RESEARCH

which, physiologically, represents transport or a chemical transforma-
tion, or both.

The formal definitions or a compartment and compartmental model
are:

1. a compartment is an amount of material that acts as though it is
well-mixed and kinetically homogeneous; and

2. a compartmental model is a model consisting of a finite number
of compartments with specified interconnections among them.

What exactly is well-mixed and kinetic homogeneity? These notions
are illustrated in the Figure 4.2.1 below.
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Figure 4.2.1. A. A mass of substance (denoted by circles) is nonuniformly distributed
in a system (represented by the box), i.e. the concentration of substance depends upon
where the sample is taken. Thus the two samples illustrated by 81 and S2 would have
different concentrations. B. A mass of substance is uniformly distributed in a system.
The two samples S1 and S2 taken at two different sites in the system would have the
same concentration.

Well-mixed can be described in the context of Figure 4.2.1. In Fig-
ure 4.2.1 A and B, consider the system as a single compartment. What
well-mixed means is that any two samples taken from the compartment
at the same time would have the same concentration of the substance be-
ing studied and therefore be equally representative. This is not the case
in Figure 4.2.1 A while it is the case in Figure 42.1B. Thus the concept
of well-mixed relates to uniformity of information contained in a single
compartment. It is worth noting that a single compartment may also
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represent amounts of material at two different locations. This lumping
of material at two different locations can occur because its actual mix-
ing between these two locations cannot be described within the time
frame of a particular experiment. For instance, plasma and red blood
cell glucose equilibrate rapidly in humans so the two distinct anatomical
locations can be considered a single compartment.

Kinetic homogeneity means the following: every particle in a com-
partment has the same probability of taking the pathways leaving the
compartment. This is illustrated in the following figure. There are sev-
eral pathways by which material can leave. Each pathway may and
probably will have a different probability; the sum of all of the proba-
bilities is, of course, equal to 1. This will be explained in detail below
in Figure 4.2.2.

9000000 OCRGSS
s0®000®COICSS
I I I I III I XX
0000000 [ XX ]
0000000 [ X 2]
0000000 [ XX ]
000 000

o 000

000

eoe

eoe

Figure 4.2.2. A compartment showing the pathways by which material can leave the
compartment (see text for additional information).

Every compartment is characterized both by an amount of material
and what can happen to that material. Basically, material flows into and
out from the compartment, and the balance between the two determines
the amount of material in the compartment at any point in time. For
example, referring to Figure 4.2.1B, if the accessible compartment is
plasma, then as material is carried in the circulation, it can exchange
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with the various tissues in the body. Depending upon the substance
being considered, material will leave the plasma and enter the tissues
with different rates. Thus when material leaves a compartment, it does
so because of metabolic event related to transport and utilization. For
a given compartment, there may be several such events possible. It is
the totality of such events that characterize the behavior of material in
a compartment. Kinetic homogeneity means that each particle of the
material in the compartment have the same probability of leaving due
to one of these events.

A compartment, therefore, is a discrete amount of material that be-
haves identically. The discrete nature of a compartment is what allows
one to reduce a complex biological system into a finite number of dis-
crete compartments and pathways. The subject of this and subsequent
chapters is how to use tracer kinetic studies to characterize these path-
ways in the context of a compartmental model. As will be seen, the
number of compartments required largely depends both on the system
being studied and the specific experimental design chosen to probe it.

In addition, one must distinguish between compartments that are ac-
cessible and nonaccessible for measurement. The accessible compart-
ments will play the same role as the accessible pools in noncompart-
mental models. The accessible compartment has the same problems as
the accessible pool in terms of identifying a physical space. Researchers
often try to assign physical spaces to the nonaccessible compartments.
This is a very difficult problem which is best addressed once one realizes
that the definition of a compartment is actually a theoretical construct
which may in fact lump material from several different physical spaces
in a system; to equate a compartment with a physical space depends
upon the system under study and assumptions about the model.

4.3 THE COMPARTMENTAL MODEL OF A
TRACER-TRACEE SYSTEM

4.3.1 Introduction

The notation for the tracee and tracer systems to be used in this text
are summarized below in Table 4.3.1 and Table 4.3.2. All tracee variables
are constant since the tracee system is assumed to be in a steady state.
Conversely, all tracer variables, except the compartment volumes, vary
in time to indicate that the tracer system is studied dynamically.

The link between the tracee and tracer system comes from the indis-
tinguishability principle of tracer and tracee discussed in Chapter 2:

Ey _ fiy(t)

ij . . .,
——_——:k 1 = e — [ 3.
M, ) ij i=1,-n, g=1,--,m, i#] (4.3.1)
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Table {.8.1.  Notation for Tracee Variables
Symbol Definition and Unats

n number of compartments

Vi volume of compartment i, 1 =1, -+ ,n

M, mass in compartment i, 1 =1,---,n

C, concentration (mass/volume) in compartment i,
i=1,--,n

Ui de novo production (mass/time) into compart-
ment ¢, 2 =1,---,n

F, transport (mass/time) from compartment j to
compartment i, 1 = 1,---,n; 7 =1,---,n; 7 #1

Foi disposal (mass/time) from compartment i,

i=1,--,n

Note k;; is constant since Fj;

and M; are constant. One then can write

for the tracer and tracee the following:

Fyj = ki M, i
Foi = koiM; 1
fis(8) = kiym;(t) 0
foi(t) = koym(t) 1

The constants k;; defined

3
.
I
-

N

1 om, i# ] (4.3.2)
L,
1

B
.

[
‘.P——‘

om, i#j (4.3.3)

g

1,

E

in (4.3.1) are called rate constants or

fractional transfer coefficients. They have units time~!, and rep-

resent the fractional transfer

of material between compartments or the

fractional losses from compartments. As will be seen below, it is these
constants that are estimated from tracer kinetic data. To do so, one must

link the equations describing
of the tracer experiment.

the model with the measurement variables
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Table {.8.2. Notation for tracer variables

Symbol Definition and Units

n number of compartments

V. volume of compartment 4, ¢ =1, -+, n

m; mass in compartment ¢, :=1,---,n

Uu; rate of input (mass/time) into compartment 3,
i=1,-,n

d. total tracer input (mass) into compartment z,
i=1,---,n

fis transport (mass/time) from compartment j to
compartment 2, i=1,---,n;j=1,---,n;1#j

fou disposal (mass/time) from compartment ¢,
i=1.-,n

Cy tracer concentration in compartment ¢,
i=1--,n

Zi tracer to tracee ratio in compartment ¢,
i=1,---,n

4.3.2 The One Compartment Model

Suppose one is investigating the kinetics of a substance in the steady
state, and knows that this substance is uniformly distributed in a single
compartment into which de novo production and from which disposal
occur. This is the one compartment model, and is identical to the situ-
ation described in Chapter 2. Is is diagrammed below in Figure 4.3.1A;
note these figures are identical to Figures 2.2.4 and 2.2.5.

As written in (2.2.1), the mass balance equation for the tracee system
B dM,

dt

whence U; = Fp;. From the tracee measurements, normally the tracee
concentration, one cannot estimate [/; or Fp; without more information.
A tracer experiment, as diagrammed in Figure 4.3.1B, is designed for
these purposes. As written in (2.2.4), the mass balance equation for the

=-Fu+U1=0 (4.3.4)
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Tracee de novo B
Production U4 Tracer
Tracee Administration u,(t) Tracer
Measurement C, Measurement
/
Tracee Tracer
Disposal F, Disposal lm(t)

Figure 4.8.1. A. The one compartment tracee system. B. The one compartment
tracer system. See text for additional information.

tracer is
IO — ) ) mi(0) =0 (4.35)

Again, as indicated before, the link between the tracee and tracer system
comes from tracer-tracee indistinguishability leading to the definition of

— Fou _ Jflt
the rate constant kg; = M = ﬁ;%
In terms of the rate constant kqgy, (4.3.4) and (4.3.5) can be rewritten:

aM

—dtl =—koM1+U, =0 (436)

dml(t)
dt

While these equations describe the mass balance of tracee and tracer,
no link has been made to the measurement variable for either. This
link comes either via the concentration of tracer ¢;(t) = m4(t)/V; or
the tracer to tracee ratio z)(t) = mi(t)/M;. Hence from the tracer
data, besides estimating the rate constant kg3, one will also have to
estimate V7 or M;. Knowing the rate constant kg; and Vior My, Fy,
and hence U; can be estimated either from Fy; = U; = kg V1 Cy since
the tracee concentration C; = M,;/Vi is normally measured, or from
For = Uy = ko1 M.

= —koimi(t) + u1(t) mi(0) =0 (4.3.7)



84 TRACER KINETICS IN BIOMEDICAL RESEARCH

4.3.3 The Two Compartment Model

Suppose one is investigating the kinetics of a substance in the steady
state, and postulates the system can be described by a two compart-
ment model. The most general two compartment model is shown in
Figure 4.3.2.

Figure 4.3.2. A. The two compartment tracee system; the dotted line with bullets
represents B. The two compartment tracer system; the dotted lines with bullets
represents sampling sites. This can be either the tracer concentration ¢;(t) shown
here, or tracer to tracee ratio z,(t). In this most general case, there are tracer inputs
u1(t) and uz(t) into both compartments. See text for additional explanation.

Extending the ideas of the previous section, the mass balance equa-
tions for the tracee system are

aM
71 = —For—Fo+Fio+U; = — (ko1 +ka1) M1+ki1oMo+U; =0 (4.3.8)
dM,
el Fo1 — Foy — Fio+ Ua = kot My — (koo + (ki) My + Uz =0
while those for the tracer are
dm(t
U~ )~ ) + falt) + ) (4.3.9)
= —(kor + kar)m1(t) + kigma(t) + ui(t) my(0) =0
dmg(t)

I

far(t) = foolt) — fra(t) + ua(t)
= koymy (t) — ko2 + (klz)mg(t) + UQ(t) mz(()) =0

dt
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These equations have been written purposely in terms of both the
tracee and tracer fluxes and the rate constants k;;to remind the reader
of the relationship between the two, and to emphasize the following
point: it is the masses and the fluxes that are of interest in the tracee
system, while in the tracer system it is the rate constants. In fact, one
goal of the tracer experiment is to estimate the rate constants which can
then be used to calculate the masses and fluxes in the tracee system.
Thus in the remainder of this text, figures and diagrams of the tracee
system will be written in terms of these fluxes, U; and Fj;, while those
for the tracer will be written in terms of the k;;.

To further illustrate the link between rate constants and tracee fluxes,
and to foreshadow the material to be presented in subsequent chapters,
consider the special case of the two compartment model shown in Fig-
ure 4.3.3.

Figure 4.8.3.  A. A two compartment tracee system in which compartment 1 is the
accessible pool as indicated by the dotted line with the bullet. The loss of material
occurs from both compartment 1 and 2; material enters the system de novo into
compartment 1. B. The corresponding two compartment tracer system. Here the
tracer is introduced into compartment 1 as indicated by «1(¢). See text for additional
information.

The equations for the tracee and tracer are identical to the general
equations given in (4.3.8) and (4.3.9) with Uz = wuq(t) = 0. In this
example, the tracer is introduced into compartment 1. The tracer con-
centration ¢ () = m(¢)/ V) is measured in this compartment at specified
times during the experiment; the tracee concentration C; = My /V7 is
also measured in this compartment. From the resulting data, one wishes
to estimate the individual k;; and the tracee fluxes U; and F;;. The first
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question that arises is the following: can one estimate a unique set of
rate constants k;; from the data? The implication of this question is that
some compartmental structures may be too complicated in terms of the
information content in the data, i.e. a unique set of the k;; characteriz-
ing them cannot be estimated. On the other hand, it may be possible
that more than one set of k;; can be estimated meaning there is not a
unique set. These questions relate to the a priori identifiability of the
tracer model addressed in Chapter 5.

4.3.4 The N-Compartment Model

As one might anticipate, the description of a general the n-compartment
system is more complex. The mass balance equations, however, are ob-
vious extensions of those given for the two compartment system. Given
in terms of the rate constants k;;, they are respectively for the tracee
and tracer:

dM; n n
& = T2 Tt R+l (4.3.10)
=
n n
1=0 y=1
I# 171
and
dm;(t n
n;;( ) = 3 ymi())+ S kgt tus(t) mi(0) =0 i=1,-m
3=0 1=1

J# 17
(4.3.11)

Note U; # 0 only when there is de novo entry of material into compart-
ment i, and u;(¢) can be nonzero only for accessible pools.

For a large model, it is common to represent this set of differential
equations using matrix notation. It is convenient first to define

ki =— > kjs (4.3.12)
=0

], .
J#i

which is the sum of all outgoing rate constants from a given compart-
ment, i.e. all rate constants from this to other compartments plus that
to the outside environment.

In the general case, let
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kiw ki ... kin
- kf“ kf"‘ kf” (4.3.13)
kni kno ... kpn

be the matrix of rate constants k;;. The matrix K is called the com-
partmental matrix. For the tracee system, let M be the column vector

of steady state masses incompartments ¢ =1,:--,n
M,
M,
M = . (4.3.14)
My

and U be the column vector of inputs into compartments i = 1,** e+ n

U1
U,

U=| . (4.3.15)
Un
Remember that some of the U; may be zero. Then the system of equa-
tions describing the tracee system can be written

% =KM+U=0 (4.3.16)

For the tracer system, let m(¢) be the column vector of tracer masses
in compartments 1,...,n

m(t)
m(t) = m"’:(t) (4.3.17)
mn(t)

u(?) the column vector of tracer inputs into compartments 1, ..., n

ul(t)
u(t) = u2:(t) (4.3.18)
un(t)

and %ﬂ the column vector
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dm(t)
dt

dm(t) dmalt)
= 4.3.19
p . ( )

dma, (t)
dt
Then the system of n differential equations describing the n compart-
ment model can be written

% =Km(t)+u{t) m(0)=0 (4.3.20)
For the measurement equations, suppose there are [ compartments
which are accessible for measurement. Let y(¢) be the column vector of
the measurements in terms of tracer concentration or tracer to tracee
ratio in the accessible compartments, and let C be the column vector
of tracee concentration in these compartments. Both y(¢) and C are
[-dimensional vectors.
If Vi,,---, Vi are the volumes of the accessible compartments where
1 <4 < <4 €n, define the Ixn matrix V;

Jl.” 0
vV=|... . (4.3.21)
0 v

All elements in the first row of this matrix are 0 except for the itlh column

where VL is entered. Similarly for the second row; all entries are zero
1

except for the i4* column. The measurement equations for the tracee is
C=V-M (4.3.22)

A similar equations holds for the tracer, where the measurements are
expressed in tracer concentration:

y(t) = Vm(t) (4.3.23)

For the case when the tracer-tracee ratios are the measurement vari-
ables, the tracer measurement equation becomes

y(t) = Dm(t) (4.3.24)

where the entries of the D-matrix are the reciprocals of the masses
M;,,..., M, of the accessible compartments.



The Cornpartmental Model 89

1
0

D=|.. : . (4.3.25)

1
0 o

For example, if tracee and tracer concentrations are measured in the

accessible compartments 2, 4 and 5 of a 6 compartment system, the
matrix V is the 3 6 matrix

0 &0 0 0 0
2
V=[0 0 0 ¢ 0 0
4
00 0 0 & 0
5

For the tracee, the vector C can thus be written

My

C‘z Vo
C=(Cy|=vM=|# (4.3.26a)

Cs My

5

Similarly for the tracee, the vector y(f) can be written

ma(t)

CQ(t) vV,
v(t) = <C4(t)) = V.m(t) = | ™l (4.3.26b)
es(t) m‘S/_(‘)

Example

As an example of the matrix formalism for compartmental model
equations, consider the two compartment model shown in Figure 4.3.3.
The equations equations describing the tracee system in matrix notation
can be derived by first writing the counterparts of (4.3.13), (4.3.14), and
(4.3.15):

— (ko1 + ko1) k1o
K = (k21 t ko ! ) 4.3.27
( kot — (k12 + ko2) ( )
(M
M = ( v (4.3.28)

)
U= (Ul ) (4.3.29)
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Then from (4.3.16):
— (ka1 + ko1) k12 ><M1> (Ul)
KM+U =
* ( ka1 — (k12 + ko2) ) \ Mo tlo
(4.3.30)

kot My — (k12 + ko2) Mo 0

The equivalence of the notation defined in (4.3.8) and (4.3.30) is seen by
comparing (4.3.8) with the last column vector on (4.3.30).
For the tracer system, one has for the above example

_ (—(kzl + ko1 )M +k12M2+U1> _ (0>

m(t) = (22%3) (4.3.31)
u(t) = <“1(§t)> (4.3.32)
and dm(t) dma(0)
pran (d”g“’ ) (4.3.33)
Then (4.3.20) in this case becomes
d’;‘t(t) — Km(t) + u(t)
~(ka1 + ko1) k12
( - _(k12+k02))r (4.3.34)

() ("7

Since compartment 1 is the only accessible compartment, the measure-
ment equations for the tracee and tracer concentrations are

C=(C)=V-M= <vi1 0) (%;) (4.3.35)
v(t) = (c1(8)) = V - m(t) = (% 0) <Tmn;8) (4.3.36)

The equivalence of the notation defined in (4.3.9) and (4.3.34) is seen in
a fashion analogous to that of the tracee system.

In this text, most theory will be illustrated by writing the individ-
ual equations for the two compartment model in the notation of (4.3.8)
and (4.3.9) while for compartmental systems of more than two compart-
ments, the matrix notation will be used.
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4.4 STRUCTURAL PROPERTIES
4.4.1 Introduction

In §4.3, the differential equations describing the mass balance of a
tracer in a general n-compartmental model were given. Mathematically,
since the k;; are constant, this is known as a system of linear, first or-
der, constant coefficient differential equations. A number of results are
available from which the structural properties of compartmental models
can be obtained [Anderson, 1982; Covell et al., 1984; Eisenfeld, 1979;
Eisenfeld, 1981; Hearon, 1963; Matis et al., 1983]. Here structural prop-
erties refer only to the structure of the system, i.e. they do not depend
upon the nature of the tracer input.

In this section, the properties of the compartmental matrix K which
appears in the differential equations of a general n-compartment model
(see (4.3.20)) will be discussed first. From K, the mean residence time
matrix @ = —K~! will be defined, and its properties discussed. Next,
it will be seen that the solution of the differential equations given by
(4.3.30) are sums of exponentials. Lastly, the properties of this solution
and the properties of the K matrix will be reviewed.

4.4.2 The Compartmental Matrix

The matrix K of rate constants defined in (4.3.13) relates the tracer
and tracee masses of an n-compartment model to the tracer input rate as
defined in (4.3.20) and de novo tracee input as defined in (4.3.16) respec-
tively. It is usually called the compartmental matrix since it completely
specifies the structure of the model.

The matrix has the following properties.

1. The off diagonal elements are non-negative

kij >0 i # ] i,j=1,,n (4.4.1)
2. The diagonal elements are non-positive
n
ki =—Y k<0 i=1,---,n (4.4.2)
j=0
J#i

3. The absolute value of each diagonal element |k;;| is not less than the
sum of the other elements in its column:

n
kil =) ki (4.4.3)
j=1

1#2
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These properties follow directly from the definition and physical meaning
of the rate constants. In particular, property (3) follows because ko; > 0.

There are two properties that the K matrix often has. One is that it
is invertible, i.e. det(K) # 0. The other is that it is reducible, i.e. there
exists a permutation of the indices ij so that the matrix can be written

K 0 >
K =
(1(21 K

where K, and K9y are themselves square matrices of dimension less
than n. The matrix written in the above form is called block triangular.
The matrix K is invertible if two conditions hold.

1. The system is open. That is, there is at least one compartment with
loss to the external environment.

2. The system contains no closed subsystems, or traps. That is, there is
no subsystem of compartments which can only receive material from
other compartments with no losses either to the external environment
or to other compartments outside of the subsystem.

Thus K is invertible if all particles entering the system from any com-
partment will eventually leave the system.

The matrix K is reducible if the compartmental model contains a
subsystem of compartments which cannot transfer material to any of the
remaining compartments, but particles in this subsystem will eventually
leave the system. The matrix K is not reducible, or irreducible, if the
compartmental model is strongly connected, that is, a particle in one
compartment can reach any other compartment in the model.

Example

Consider the general two compartment model shown in Figure 4.3.3.
The K matrix for this model is

—{ka1 + ko1) k1o )
K= 4.4.4
( ka1 —(k12 + ko2) (4.44)

Clearly since the rate constants k,; are all non-negative, the diagonal el-

ements are non-positive, and the off-diagonal elements are non-negative.
Thus

k11| = ka1 + ko1 2 ko (4.4.5)
|k22| = ki + ko2 > k12 (4.4.6)
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Assuming kj9, k21 and one or both of kg; and key arc non-zero, the K
matrix is invertible, or equivalently its determinant is non-zero, since
the system is open and it does not contain any closed subsystems. That
is,

det(K) = (k21 + km)(klg + kog) — kigke1 #0 (4.4.7)

The matrix K is also irreducible since the model is strongly connected.

The matrix K becomes non-invertible in the two situations depicted
in Figure 4.4.1. In case A, the system is closed since k9yand kjoare
nonzero, but kg1 = koy = 0. From (4.4.7),

ko1

Figure 4.4.1.  A. A closed, two compartment system. 3. An open two compartment
system with a closed subsystem. See text for additional information.

det(K) = korkia — kark1a =0
In case B, the system is open since kg, # 0, but it has a closed subsystem,
namely compartment 2 since kpp = 0 and k12 = 0. From (4.4.7)
det(K) = (ka1 + k1) -0 —0-k12 =0

In addition, in this case, the matrix K is reducible since the model is no
longer strongly connected, i.e. material cannot move from compartment
2 to compartment 1. The matrix in block triangular form is

=k + ko) O
K= ( ko1 0
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4.4.3 The Mean Residence Time Matrix

The concept mean residence time in the accessible pool has already
been introduced in the context of noncompartmental analysis in Chap-
ter 4 as the average time a single particle spends in the accessible pool
during all passages through it before irreversibly leaving the system. The
definition can be extended to any compartment, accessible or not, of an
n-compartment system.

From the stochastic interpretation of compartmental models, the n x
n matrix @ defined

®=-K! (4.4.8)

where K is the compartmental matrix has significant meaning since the
generic element 6,,2,7 = 1,---,n represents the average time a particle
entering the system in compartment j spends in compartment i before
irreversibly leaving the system. For this reason, ® is referred to as the
mean residence time matrix. This matrix also has an important
interpretation in probabilistic terms since the ratio %J—,i # 7 equals the
probability that a particle in compartment j will reach compartment i,
that is

11

0 < Prob[j — ] = gﬂ <1 (4.4.9)

Clearly to calculate the mean residence time matrix, the compart-
mental matrix K must be invertible; this is why the issue of invertibility
was raised in the previous section. As already discussed, this assumes
that a particle in a given compartment, no matter how it arrived in that
compartment, will eventually leave the system. This means all residence
times 6;; are finite.

The mean residence time matrix © has the following properties.

1. The elements of the main diagonal of @ are strictly positive:

B > 0 i=1,-,n (4.4.10)

since they represent the nonzero mean residence time in compartment
i for particles entering the system the same compartment.

2. The off-diagonal elements are non-negative.

y 20 i (4.4.11)
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In particular, ¢;; = 0 if and only if the probability of reaching com-
partment i from compartment j is zero, i.e. there is no pathway
connecting compartment j to compartment i [Anderson, 1982].

3. For each column, the main diagonal element is greater than or equal
to all other elements in the column.

i > 0;; j=1,-,n (4.4.12)

This result follows from (4.4.9), and indicates that the time spent
in compartment { is maximum if the particle enters the system in
i rather than in some other compartment. One can see that 6;; =
6i;,1 # j if and only if all particles from compartment j will reach
compartment i, or equivalently if there is no loss in the pathways
connecting j to i.

4. For a compartmental system with a single irreversible loss, say from
compartment i, since all particles must pass through i before they
can exit the system, one has

1

Prob[j — i] = %l =1 (4.4.13)

indicating that all elements of the it* row of @ have the same value.
In addition, it can be shown that the mean residence time 6,;is the
reciprocal of the rate kg; at which they leave the system. That is,
8ii = g-» and thus from (4.4.13),

0in=- - =0bin= o (4.4.14)
i3

Example

As an example of the mean residence time matrix calculation consider
the general two compartment model below; this was originally discussed
in Figure 4.3.3.

The compartmental matrix K is written

— (ko1 + ka1) k12 )
K = 4.4.15
( ko1 — (ko2 + k12) ( )

and thus
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011 912) ~1
O = =K ' = 4.4.16
<921 620 ( )

koa+k)2 ki2
ka1ko2+ko1koz+kotki2  k21ko2+koi1koz+ko1 k12

ka1 ko1+4k21
ka1koz+korkoz +korkiz  k2rkoz+koikoz +ko1 k12

Note that, as expected, all the elements of @ are strictly positive
since compartments 1 and 2 are interconnected, and that 8y, > 615 and
faa > 0.

Next, consider the same model shown in Figure 4.4.2, but now assume
kog 1s zero, i.e. a two compartment model where the only loss is from
compartment 1. The matrix © is now

1 1
{61 B\ _ e =
©= <921 a0 ) ko koutka (4.4.17)

ko1k12 ko1k12

showing that, as expected, all the element of the first row are equal, and

equal to k%n'

K1
1 N 2
Koy
Ko1 Koo

Figure 4.4.2. A two compartment tracer system used to illustrate the ® calculations.
The tracer and tracee inputs are not shown since ® depends only upon the K matrix.

It is clear that the above ideas can be extended to the n compartment
model, i.e. explicit formulas relating the #,, with the k,; can be formu-
lated. However, they become very complicated as soon as n exceeds 3,
and one normally uses numerical techniques to invert the compartmental
matrix K to obtain the mean residence time matrix.



The Compartmental Model 97

4.4.4 Sums of Exponentials and the Compartmental Model

From the theory of linear differential equations, the solution of the
Compartmental model equations when the k;; are all constant (which
is the situation discussed in this text) and the input into the system
is a single bolus injection into an arbitrary compartment is a sum of
exponentials.

For a one compartment system such as that diagrammed in Fig-
ure 4.3.1 in which a bolus of tracer is injected, this can easily be seen by
writing (4.3.7)

dml(t)
dt

In this case, since a bolus has been injected, u;(¢) can be written in
terms of m1(0) = d where d is the dose of tracer. The solution of this
equation is the decaying monoexponential function

= —koymi(t) m(0) =d (4.4.18)

my(t) = deFort (4.4.19)

In a similar fashion, one can show for a constant infusion or a primed,
constant infusion that the solution still depends upon the exponential
term e~*01t For the constant infusion, the solution is

my(t) = A(1 — e~ kort) (4.4.20)

and for the primed, constant infusion, the solution is

ml(t) = A1 - Ageukmt (4421)

In general, for an n-compartment model, the solution of the system
of differential equations when the input is a single bolus into a specific
compartment is given by a sum of n decaying exponentials. For example,
the solution of (4.3.20) for such a bolus input is m ( ¢) defined in (4.3.17)
where the individual components of the vector are of the form

mi(t) =Y Ajje ™! (4.4.22)
J=1

Thus the tracer mass in each compartment is a linear combination of
the n decaying exponential functions e~M¢; these exponential functions
are called the modes of the system. Remember the notation adopted in
this text is that the A; are positive whence —A, are negative. The J;
depend upon the Compartmental matrix K since they are the solution
of the equation
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det| K+ A\I| =0 (4.4.23)

where I is the #n x n identity matrix.

Finally, the solution for a n-compartmental model for a generic in-
put u(?) is still a function of the modes since, as already discussed in
Appendix D, the response of a linear system to a generic input can be
derived by combining, via the convolution operator, u(¢) with the sum
of exponential solutions to a bolus input. The following example will
illustrate this situation.

Example

For the two compartment example given in Figure 4.3.2, if compart-
ment 1 is accessible, u;(t) is a unit bolus injection at time zero, and
ug(t) = 0, then

my(t) = Ape Mt 4 Ape e (4.4.24)
mo(t) = A216—/\1i + A226_’\2t A9+ Ay =0
with A + A2 = 1.
The A; and Ag are the solution of the algebraic equation
det(K + /\I) = (kll + /\)(]C22 + /\) — kigka1 =0 (4425)

or equivalently
A2 + (k11 + kzg))\ + k11koo — ki12kor =0 (4.4.26)

Equation (4.4.24) can be used to describe the response of the system
to any tracer input u1(¢) into compartment 1. Now let my(t) and ma(t)
denote the response of the system to a generic input u;(t). The relation-
ship between these and the exponential expressions given in (4.4.24), i.e.
the response of the system to the unit input, are

t
my(t) = / ui(t — ‘r)[Aue')‘lT + Alge_’\ZT]dT

> (4.4.27)
ma(t) = / uy(t — T)[Ame—’\” + Agge_’\ﬂ]d'r

0

The above equations are known as the convolution of u;(t) and the
response of the system to the unit input.
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Some properties of the model solution for a generic tracer input can
be derived from the properties of the compartmental K matrix. These
will be discussed in the next section.

As a final remark, it is worth noting that some results given in this
section can serve to partially link compartmental and noncompartmental
models from a practical point of view. In particular, two points can be
made. First, since the parameters for the noncompartmental model are
given for systems in a constant steady state, and since such systems can
be described by linear, constant coefficient differential equations, sums
of exponentials can be used to provide the functional description of a
set of tracer data from which the noncompartmental parameters can be
estimated. Second, if one first fits a sum of exponentials to a set of tracer
data from a single input-single output experiment, and finds that # is the
number of exponentials which will provide the best fit, then in general
a compartmental model containing of at least » compartments will be
required. However, the structure of the n-compartment model needs
to be specified. This is simple when n = 2 since only the location of
the irreversible losses must be specified. It is much more complex when
n > 2 since the number of possible models becomes very large. For
example, when n = 3, the number of possible 3 compartment models is
126.

4.4.5 Non-negativity and Stability Properties of
Compartmental Model Equations

In this section, some of the more relevant structural properties of the
differential equations represented by multicompartmental models will be
discussed.

Non-negativity of the compartmental model solution

From an intuitive sense, it is obvious that the model solution for the
tracer masses in the compartments of a compartmental model must be
non-negative. After all, the models must obey conservation of mass. But
this fact can also be shown mathematically. That is, it can be proven
that

mit) >0  0<t<oo i=1,--,m (4.4.28)

for an arbitrary, n-compartment model where the input into the sys-
tem is a unit bolus injection into an arbitrary compartment. Using
the idea illustrated by (4.4.27), it can be shown that for an arbitrary
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n-compartment model, (4.4.28) holds for an arbitrary, non-negative tracer
input. Obviously one cannot have a negative input.

Stability properties

The term stability refers to the property that the response an ar-
bitrary n-compartment model to an experimental tracer input, which
is finite or bounded as opposed to an infinite amount, does not grow
indefinitely with time. That is, for an arbitrary compartment 7 in the n-
compartmental model, 0 < m;(t) < M where M is finite for 0 <t < oc.
This property is related to the properties of the system modes et
defined in the previous section.

More precisely, suppose that the K matrix is irreducible and invert-
ible, i.e. the compartmental model is strongly connected with at least
one irreducible loss to the environment. Under these circumstances, the
exponentials Ay, -+, A, are either real and positive (corresponding to
the A; of (4.4.22)), or complex conjugates with positive real parts. The
latter situation, which will be illustrated below, arises when the system
has damped oscillations; the complex conjugate means that a pair of ex-
ponentials, say A; and A, can be written A\ = ay+5y¢ and Ax = ay — By
where a; > 0 and i = —1.

The model solution to a bolus input into any compartment is a com-
bination of decaying exponentials and damped oscillations, and decays
to zero as ¢ increases:

lim m,(t) =0 (4.4.29)
t—o0
This condition assures that the response of the system to any bounded
input also decays to zero with time. In system theory, this property is
referred to as bounded input-bounded output stability.
The following two examples will illustrate the stability properties.

Example 1

Consider the two compartment model show in Figure 4.4.2. The ex-
ponentials A; and Ay are the solutions of the quadratic equation (4.4.26):

— (k11 + koa) £ (k11 + ko2)? — 4(k11kog — k12ka1)
2

Ay Ag = (4.4.30)

They are real numbers since (k11 + ko2)? — 4(ky1koz — k12ka1) = (k11 —
ko) + 4ki2kar > 0, k11 + k22 < 0 and
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|k11 + koo > \/(kn + ko2)? — 4(k11k2e — kigko1)

Thus the model is stable.
Of course stability could have been observed directly from the fact
that the model is strongly connected and has irreversible losses.

Example 2

Consider next the four compartment model shown in Figure 4.4.3.

Figure 4.4.3. A four compartment tracer system. See text for additional information.

As with the previous example, it is clear that the system is stable
since it is strongly connected and has irreversible losses. In this example,
however, not all A; are real. Write the K matrix:

kll 0 0 k14

0 k2 kyz O
For the sake of simplicity, assume the k;; are selected so that ky; = kg =
kss = k44 = o and kg1 kazkszki4 = 8. Then (4.4.23) becomes

K = (4.4.31)

det/ K+ M| = (a+ M) =8=0 (4.4.32)

This equation has two real, positive solution A; and Aj, and two complex
conjugate solutions A3 = a+bi and Ay = a—bi where a and b are positive
real numbers. The model response to a bolus input can be written
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mi(t) = Ajre ™M + Ape " + Ajze~%cos(bt) + Aqe”*sin(bt) (4.4.33)

The terms A;1e”*t and Aje~*t* are two exponentially decaying modes.
The other two terms are damped, in terms of e =%, oscillations (in terms
of cos(bt) and sin(bt)). As in the previous example, all m;(¢) decay
towards zero as time ¢ increases.

In the discussion and examples so far, it has been assumed that the
K matrix is irreducible and invertible. What happens for a general
n-compartmental model if the K matrix is either reducible or singular
(noninvertible). Then it can be shown that among the real exponentials
A; one or more may assume a value equal to zero. This results in a
constant mode since e®* = 1 meaning there is a constant component
to the system’s response to a bolus input. This means that the model’s
stability can no longer be proven, and that the response to some bounded
input may increase indefinitely with time.

Example 3

Consider the two compartment model given in Figure 4.4.1 A. This is
a closed system since there are no irreversible losses. The model solution
to a bolus input into compartment 1 is given by (4.4.24) where A; and
Ag are the solutions of (4.4.23) which is written

A2 — (ki + ko)A =0
The two solutions are A; = 0 and Ay = k12 + k21. The masses m;(t) can

be written using (4.4.24):

ml(t) = A+ Alze_(k12+k21)t

ma(t) = A9 + A22e—(k12+k21)t

where A11+Aj2 equals the amount of the bolus input, and A+ Agp = 0.
It is clear that for the bolus input into compartment 1, as time ¢
increases towardsinfinity, m,(¢) approaches Ai; and mg(t) approaches
As.
However, the model is not stable. For instance, consider a constant
infusion into compartment 1, e.g. u(t) = u for 0 < t < oo.

my(t) = Biy + Biat + Byge” (Frztha)t
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mQ(t) = B21 + ngt + B23e_(k712+k21)t

Clearly m;(t) and ma(t) increase with ¢, thus the response to a bounded
input is unbounded.

Oscillations

As indicated above, oscillations may be present in the solution of a
compartmental model. These occur when the exponential A; is a complex
number. For irreducible systems, a topological condition may exist in
the system which will exclude the presence of oscillations.

Define a cycle of length k as a path for which the product ki1 izkio i3

-+ kik—1ikkiki1 is nonzero. It can be shown that no oscillations are
present in an arbitrary n-compartment model if there are no cycles of
length greater than 2 are present in the model. This condition is obvi-
ously satisfied for the two compartment model. It is not satisfied, for
example, in the model shown in Figure 4.4.3 since there is a cycle of
length 4; ki2koskssksr # 0.

4.5 KINETIC PARAMETERS

In addition to the primary parameters of the compartmental model
given in the past two sections, e.g. tracee masses, production rates into
specific compartments, fluxes between compartments, and mean resi-
dence times, other kinetic parameters can be defined to characterize the
system.

Total mass in the system

The total mass in the system equals the sum of the tracee masses in
each individual compartment:

n
Mot = > M, (4.5.1)
=1

Total equivalent distribution volume in the system

The total equivalent distribution volume in the system is equal to
the volume the tracee occupies in the system assuming its concentration
is uniform and equal to its value C'; in accessible compartment 1:

Mot

Vier =
tot Cl

(4.5.2)
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If more than one compartment is accessible, for example compart-
ments 1 and 2, different definitions for the equivalent distribution vol-
ume can be given. As discussed in Chapter 3 for the two accessible pool
noncompartmental model, the definition depends upon which concen-
tration is considered as the reference concentration. The possibilities
are:

(4.5.3)

Mean residence time in the system

Recalling the definition of the generic element §,; of the mean resi-
dence time matrix © as the average time a particle entering compart-
ment j spends in compartment i before irreversibly leaving the system,
the sum of the elements of one column of the ® matrix, say column j,
represents the mean residence time M RT); (unit: time) spent in the
whole system by one particle entering the system from compartment j:

n
MRT; =)0, (4.5.4)
i=1

In order to evaluate the kinetic parameters of the compartmental
model, it is first necessary to obtain a unique solution for the tracer
model parameters, i.e. the rate constants k;; and the volumes or masses
of the accessible pool from the tracer data of a given input-output exper-
iment. The a priori identifiability analysis to be discussed in Chapter 5
addresses this question. Once the tracer parameters are available, the
tracee parameters, i.e. tracee masses and productions, can be evaluated.
This is the subject of Chapter 6. The tracer and tracee kinetic param-
eters provide a detailed, quantitative description of the system, both
for the accessible and nonaccessible pools. Most parameters are unique
to the compartmental model approach, for instance masses in individ-
ual compartments, production rates, intercompartmental fluxes. Others
have already been defined in the noncompartmental model formulas, for
instance mass, volume and residence time in the accessible compartment
and in the system. Additional accessible pool parameters defined in the
noncompartmental model approach such as clearance rate, rate of ap-
pearance and disappearance, can also be defined and calculated from
the compartmental model of the system by using the relationships given
in Chapter 3. However, since the interest in these parameters is rather
limited if the more detailed kinetic information from the compartmental
model of the system is available, they are not included in this section.
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Some comments will be given in Chapter 7 where compartmental and
noncompartmental approaches will be compared.

4.6 CATENARY AND MAMILLARY MODELS

Catenary and mammillary models are two classes of compartmental
models which are frequently used to interpret tracer kinetic data.

Catenary models are compartment models made up of a chain of
compartments with each, except the first and last, exchanging bidirec-
tionally with the two adjacent compartments. If the compartment num-
bers in the chain are sequential from 1 to n, then the rate constants &
have the following properties:

Kigg1 #0 i=1,---,n—1 (4.6.1)
ky1:#0 i=1,---,n—1 (4.6.2)
kij=0 Jj#ixl;i#0 (4.6.3)

The general catenary structure in which the compartments are numbered
sequentially is shown in Figure 4.6.1.

Figure 4.6.1. The n compartment catenary model.

Mammillary models are compartmental models where there is a
central compartment which exchanges with the all of the other com-
partments; there is no exchange between these other compartments. If
the numbering of the compartments is as illustrated in Figure 4.6.2, then
the rate constants k;; have the following properties:

ki #0 i=2--,n (4.6.4)

k“ #0 1= 2,"',” (465)
kj=0 i=2--n j=2--,n (4.6.6)
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Figure 4.6.2. The general n compartment mammillary model.

For both the catenary and mammillary model, irreversible losses to
the environment are allowed, i.e. ko, # 0 for some i.
The compartmental K matrix has the following form for the catenary

and mammillary model respectively.

—kiy ki O 0
k —k k 0
K=| . 7 : (4.6.7)
0 0 kn—l,n —knn
and
—k11 k2 ki3 o ki
k?l _k22 O A 0
K=| kan 0 —ksg -+ O (4.6.8)
knl 0 0 —knn

In both cases, K is irreducible and invertible assuming there is a
nonzero loss from at least one compartment, i.e. kg; # 0 for some i.
Under this condition, catenary and mammillary systems are stable. In
addition, all A; are positive real numbers since both classes of models

contain cycles of length 2 or less.
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Chapter 5

IDENTIFIABILITY OF THE
TRACER MODEL

5.1 INTRODUCTION

In this Chapter, it will be assumed that a compartmental model struc-
ture has been postulated to describe a set of tracer data, i.e. the number
of compartments and the connections among them have been specified.
This structure reflects known information and assumptions about the
system under study. That is, there may be a priori knowledge about
the system which can be incorporated in the structure. As described
in Chapter 1, one can arrive at a structure by testing via simulation
what is needed to fit the data. The result at this stage is a “pencil and
paper” model which has as unknowns the rate constants k;; associated
with the connections and, assuming a pool is accessible for measurement,
either a volume V or a mass M of that pool depending upon whether a
radioisotope or stable isotope tracer is used.

Before performing the experiment to collect tracer data to be ana-
lyzed using the model or, if the experiment is already completed, before
using the model to estimate the unknown parameters from the data,
the following questions arises: does the tracer data contain enough in-
formation to estimate all of the unknown parameters of the postulated
model structure? This question is usually referred to as the a priori
identifiability problem [Cobelli and DiStefano, 1980; Carson et al.,
1983]. 1t is set in the ideal context of an error-free model structure and
noise-free, continuous time measurements, and is an obvious prerequisite
for parameter estimation from real data. In particular, if it turns out in
such an ideal context that the postulated model structure is too complex
for the particular set of ideal tracer data, i.e. some model parameters
are not identifiable from the data, there is no way in a real situation

109
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where there is error in the model structure and noise in the data that
the parameters can be identified. The a priori identifiability problem is
also referred to as the structural identifiability problem because it is set
independently of a particular set of values for the parameters. For the
sake of simplicity, in what follows, only the words a priori will be used
to qualify the problem.

The solution of the identifiability problem in general is a difficult one
because it involves the solution of a system of nonlinear algebraic equa-
tions which increases in number of terms and nonlinearity degree with
the model order, i.e. the number of compartments in the model. These
equations become difficult to solve even for compartmental models of rel-
atively few compartments, e.g. 4 or 5. No general solution is available
except for the one, two, some three compartment models, and certain
catenary and mammillary models. To test a priori identifiability of lin-
ear compartmental models of general structure, one can take advantage
of methods of computer algebra; this will be illustrated later in this
Chapter.

Before discussing the problem in depth and the methods available
for its solution, it is useful to illustrate the fundamentals through some
simple examples. Then the definitions using these simple examples where
the identifiability issue can be addressed can be discussed.

5.2 SOME EXAMPLES
Example 1

Consider a single compartment tracer model shown below in Fig-
ure 5.2.1 where the input is a bolus injection of a radioactive tracer given
at time zero, and the measured variable is the tracer concentration.

As seen previously in this case, the model and measurement equations
are d

I m) ml0)=d (5.2.1)
dt
m(t)

c(t) = v (5.2.2)
The unknown parameters for the model are the rate constant k£ and the
volume V.

Equation (5.2.2) defines the observation on the system, i.e. tracer
concentration, in an ideal context of noise-free and continuous-time mea-
surements. In other words, (5.2.2) is the model output describing what is
measured continuously and without errors; it is not measurements only
at discrete times. The word “output” is used here in the information
sense. Specifically, in the context of Figure 5.2.1, u(¢) and c(¢) define an
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ut) c(t)
0]

Ny~

Figure 5.2.1. A single compartment tracer model. The tracer input u(t) is a bolus
injection of dose d given at time zero. The pool is characterized by a volume V and
tracer mass m(t); the measured variable is the tracer concentration c(t).

input-output experiment, and should not be confused with the material
output or outflow from the compartment.

To see how the experiment can be used to obtain estimates of these
parameters, note the solution of (5.2.1) is the monoexponential

m(t) = de ™ (5.2.3)
The model output c¢(¢) can thus be given by
d
ct) = Ve’kt = Ae M (5.2.4)

The model output or ideal data are thus described by a function of the
form Ae™*, and the parameters that are determinable by the experiment
are A and A. These parameters are called the observational parameters.

What is the relationship between the unknown model parameters &
and V7, and the observational parameters 4 and A? From (5.2.4) one
sees immediately:

(5.2.5)
A=k (5.2.6)

where ¢(0) represents an extrapolation of the data to time zero.
What happens if instead of a radioisotope tracer a bolus injection of
a stable isotope tracer is injected? By expressing the model output in
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terms of the tracer to tracee ratio
(5.2.7)

on sees immediately that the above logic can be followed using M instead
of V.

In the example above, the unknown parameters & and V (or M) of
the model are a priori uniquely or globally identifiable from the designed
experiment since they can be evaluated uniquely from the observational
parameter A and A. Since all model parameters are uniquely identifiable,
the model is said to be a priori uniquely or globally identifiable from the
designed experiment.

This first example was limited to a bolus injection of tracer. The same
identifiability results hold for different inputs as well. This is a general
result of dealing with linear, time-invariant models such as those de-
scribing tracer kinetics in the steady state: the identifiability properties
of a model are the same irrespective of the shape of the inputs. This is
true for a single input situation, or if there are multiple inputs with dif-
ferent tracers administered simultaneously. The result is no longer true
in a multiple input experiment with the same tracer being administered
simultaneously.

In the remaining examples, because of the above observation on the
identifiability properties of linear, time-invariant systems, only the bolus
injection will be considered.

Example 2

Consider next the two compartment tracer model shown in Figure 5.2.2
where a bolus injection of stable isotope tracer is given into compart-
ment 1. The accessible compartment is compartment 2. Assume the
measured variable is the tracer to tracee ratio, z2(t).

The equations describing this model assuming a bolus input are:

dTr;lt(t) = —’Cgﬂnl(t) 7711(0) =d (528)
d—njt(—t) = ka1mi(t) — koama(t) m2(0) =0 (5.2.9)
2oty = M2 (5.2.10)

M,
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t z(t)
u(t) O

N\ g

02

Figure 5.2.2. A two compartment model in which a dose d of a stable isotope tracer
is injected into compartment 1 and measurement is in compartment 2. See text for
additional explanation.

The unknown model parameters are kuj, koz and Ms. To see how
the experiment can be used to obtain estimates of these parameters one
notes that the solution of (5.2.9) is the following sum of two exponentials:

ma(t) = ———— (e Fa1t — g7hoz! 5.2.11
2(0) = o ) (5.2.11)
whence the model output or ideal data z,(t) are given by
d ko

2(t) eTRnt —eTholy = A(e Mt~ oY) (5.2.12)

B Mo(ko1 — ko2)

where A, A1 and A, are the observational parameters.
It is easy to see that k91 and kg2 play an interchangeable role in
(5.2.12); in fact, (5.2.12) can rewritten

B d-ky
Ma(koz2 — ka1)
Notice in (5.2.12) and (5.2.13) that the same sum of exponentials

A(e™Mt — e~%2t) describes the data. Thus the link between A, A;, and

A2 and the unknown model parameters ko1, kg2 and Mp is not unique
and two sets of relationships can be formulated:

25(t) (e7h0t —eThuty = A(e™M —e7M)  (5.2.13)

d-k
A= 21

= A=k Ao =k 5.2.14
Mo (Far — koz) 1 21 2 02 ( )
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or

d-k
A= 21

=— A=k A=k 5.2.15
My (koa — Far) 1 02 2 21 ( )

This results in two symmetric solutions for k21 and ko2; as a consequence,
M, has two solutions.

If a radioisotope tracer experiment is considered, since the model out-
put would be

es(t) = mf/it) (5.2.16)

one sees immediately that the above derivation remains valid with V5
replacing Mj.

As discussed here and illustrated by the specific example above, the
unknown parameters ko1, kg2 and My (or V3) of the tracer model cannot
be uniquely evaluated from the observational parameters A, A; and Ap
of the designed experiment. Two solutions are obtained, say ki;, k,
and M{ (or Vi) and k!, ki and ML! (or V4')which provide the same
expression for the model output zp(t) or co(t). When there is a finite
number of solutions (more than one; two in this case), the unknown
parameters are said to be a priori nonuniquely identifiable or locally
identifiable from the designed experiment. When all the model parame-
ters are identifiable (uniquely or nonuniquely) and there is at least one
of the model parameters which is nonuniquely identifiable (in this case,
all three are), the model is said to be a priori nonuniquely or locally
identifiable.

It is worth noting that in this case there are parameters which are
a priori uniquely identifiable, but these are not the original parameters
of interest. They are combinations of the original parameters. In this
particular case, since kg1 and kos have each two symmetric solutions,
their product, kg1ko2, and their sum, kg; + kog, are uniquely identifiable.
In addition, from (5.2.15) and (5.2.16) it is clear that the other uniquely
identifiable parameter is kﬁ; {or %21) Thus for the example considered
here, the uniquely identifiable parameterization is ke21kgs, k21 + ko2 and
%l (or %1)

2 2

To achieve unique identifiability of a nonuniquely identifiable model,
additional independent information about the system is necessary. In
this particular case, knowledge of My (or Vi), or a qualitative rela-
tionship between ki and koo, i.e. kg1 greater or less than koo (see
Figure 5.2.3), allows one to achieve unique identifiability of all model
parameters.
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Figure 5.2.8. A plot of k21ko2 = constant and k21 + ko2 = constant. The two points
where the curves intersect represent the two solutions for kz; and koz. See text for
additional information.

Example 3

Consider next the two compartment tracer model shown in Figure 5.2.4

where a bolus injection of radioactive tracer is given at time zero and
where the measured variable is tracer concentration.

The equations describing this model are

dnjzlt(t) = = (ko1 + kar)m (£) my(0) =d (5.2.17)
dnj;t(t) =knm(t)  ma(0) =0 (5.2.18)
cu(t) = m‘l,—ft) (5.2.19)

The unknown model parameters are kg1, ko1 and V.
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c(t)

u(t )

Figure 5.2.4. A two compartment model in which a dose d of radioactive tracer is
injected into compartment 1 and measurement is in compartment 1. An irreversible
loss occurs from compartment 1 together with an irreversible loss to compartment 2.

To see how the experiment can be used to obtain estimates of these
parameters, one notes that the solution of (5.2.17) is

m(t) = de~(korthar)t (5.2.20)

whence the model output or ideal data c¢;(t) are given by

al(t) = ie*km”m)t = Ae M (5.2.21)
Vi
The model output or ideal data are thus be described by the monoex-
ponential function Ae™**. One can now see immediately the relationship
between the unknown model parameters ko, ko; and V) and the obser-
vational parameters of the experiment A and A:

d
A= — 2.22
v (5.2.22)
A=koy + kn (5.2.23)

It is easy in this situation to see that while V) isuniquely identifiable,
kor and kp; are not. In fact, as illustrated in Figure 5.2.5, there are an
infinite number of solutions lying on the straight line A = kg1 + ko1.

When there is an infinite number of solutions for a parameter, one
says the parameter is a priori nonidentifiable from the designed exper-
iment. When there is at least one of the model parameters which is
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01

K

21

Figure 5.2.5. A plot of k21 +ko1 = A. Any point lying on this line will satisfy (5.2.23),
and represents a solution for ks; and kg;. See text for additional information.

nonidentifiable (in this case, there are two), the model is said to be a
priorinonidentifiable.

As with the previous example, one can find a uniquely identifiable
parameterization, i.e. a set of parameters that can be evaluated uniquely.
In this case, the parameter is the sum kg; + k12 (V; has been seen to be
uniquely identifiable). Again to achieve unique identifiability of kg; and
k21, additional information on the system such as a relationship between
ko1 and ka; is required.

When a compartmental model is nonidentifiable, however, it is possi-
ble to obtain for the nonidentifiable parameters upper and lower bounds
for their values, i.e. to identify an interval of values where the parame-
ters may lie. The reasoning is the following. Since bydefinition kp; and
ko1 are greater than zero, one sees immediately from (5.2.23) that the
upper bound for each is A. For instance, for k3, one has

kot = A — koy (5.2.24)
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and thus the upper bound for kg1, A will be achieved when ko1 is zero.
Similar results hold for kg;. The parameter bounds for ko; and kg are

k™ =0 < koy < A= k™ (5.2.25)

ERIM =0 < ko < A\ = kDX 5.2.26
21 21

In this example, the intervals are the same; normally, this is not the
case.

When there is an upper and lower bound for the values that a non-
identifiable parameter can assume, one says the parameter is a priori
interval identifiable. When all of the nonidentifiable model parameters
are interval identifiable (in this case, all are), the model is said to be a
priori interval identifiable.

As with the previous two examples, this discussion holds also for stable
isotope tracers by expressing the model output in terms of the tracer to
tracee ratio, and by replacing Vi by M.

5.3 DEFINITIONS

The simple examples of the previous section emphasized the impor-
tance of understanding the a priori identifiability problem, and provided
a means to introduce in an appropriate context some basic definitions
[Audoly et al., 1998]. In this section, the definitions will be generalized to
the n-compartment model discussed in §4.3.4. It should be noted, how-
ever, that the definitions hold for more general model structures such as
the nonlinear dynamic models discussed in Cobelli and DiStefano [1980]
and Carson et al. [1983]. Both the radioactive and stable isotope tracer
models can be written

.

m(p,t) = K(p)m(p,t) + u(t) m(p,0) =0 (5.3.1)
y(p,t) = V(p)m(p,t) (5.3.2)

y(p,t) = D(p)m(p,t)

where the equations in (5.3.2) are the measurement equations for the
radioactive and stable isotope models respectively, p = [p1,---,pp| de-
notes the unknown parameters, i.e. the transfer rate parameters k;;, the
volumes V; or the masses M; of the accessible pools, and the matrices
K, V and D are functions of p. The vector p belongs to the com-
partmental parameter space P, i.e. the real subspace of the complex
space C which satisfies the constraints k;; > 0,V; > 0, M; > 0, and

kiiz_erl:OkljSo)izly'”an'
371
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Define as ¢;, ¢ = 1, -+ ,R the observational parameter and as ® =
[#1,...,¢g] the observational parameter vector. Each particular input-
output experiment will provide a particular value ® of the parameter
vector ¥, i.e. the components of ® can be estimated uniquely from
the data by definition. Further, the observational parameters ¢; are
functions of the basic model parameters p; which may or may not be
identifiable:

& = &(p) (5.3.3)

To state the identifiability problem of the basic model parameters p;,
it is convenient to consider the model output y(#) as a function of time
and the observational parameter vector ®:

y(t) = y(®(p),t) (5.3.4)

The definitions are given first for a single parameter of the model, and
then for the model.

Definitions

For the input class U the single parameter p; is a priori
* uniquely or globally identifiable if and only if for almost any
® € R (the real space) the equations

y(®(p),t) = y(&,1) (5.3.5)

have one and only one solution for p; belonging to C,
* nonuniquely or locally identifiable if and only if for almost any
& c R the system of equations (5.3.5) has for p; more than one but a
finite number of solutions in C;
* nonidentifiable if and only if for almost any & c R the system of
equations (5.3.5) has for p; infinite solutions in C; and
 interval identifiable if it is nonidentifiable and has a finite upper
and lower bounds that can be calculated from the system of equations
(in this case, the parameter interval is defined by the difference between
its upper and lower bound).

The model is a priori
e uniquely or globally identifiable if all of its parameters are uniquely
identifiable;
* nonuniquely or locally identifiable if all of its parameters are iden-
tifiable, either uniquely or nonuniquely, and at least one is nonuniquely
identifiable;
* nonidentifiable if at least one of its parameters is nonidentifiable;
and
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e interval identifiable if all its nonidentifiable parameters are interval
identifiable.

Thus to investigate the a priori identifiability of model parameters p;,
it is necessary to solve the system of nonlinear algebraic equations in
the unknown p; obtained by setting the polynomials ®(p) equal to the
observational parameter vector &:

®(p) =& (5.3.6)

In what follows, these equations will be called the exhaustive sum-
mary of the model.

Examples have already been provided in §5.2. They are given for the
three examples by (5.2.5) and (5.2.6), (5.2.14) and (5.2.15), and (5.2.22)
and (5.2.23) respectively.

An additional problem is that the solutions of the set of nonlinear
algebraic equations with real coefficients (5.3.6) are in the whole complex
space C. Since one is interested only in the solutions belonging to the
cornpartmental space P, i.e. real and positive, and not complex or real
negative ones, the results on the uniqueness of model solution has to
be extended from the complex space to its real and positive subspace P
satisfying the compartmental constraints. This problem can be solved
for the global identifiability and nonidentifiability cases but it is an issue
for the local identifiability case. Some comments on how to deal with
this case will be given in §5.9.5.

5.4 THE TWO COMPARTMENT MODEL
5.4.1 Introduction

The examples of §5.2 introduced the basic ingredients of the a pri-
ori identifiability problem. In particular, they dealt with single input-
single output tracer experiments only. Against the background provided
by §5.2, one can proceed to more complex compartmental models and
input-output experiments which will permit a better appreciation of the
interplay between the known observational parameters and the desired
unknown model parameters.

The general two compartment model with various single or multiple
input, single or multiple output tracer experiments serves the purpose.
For sake of space only, the radioactive isotope tracer experiment will be
described in detail; the extension to the stable isotope tracer experiment
is straightforward (see §5.2.1) by expressing the model outputs as the
tracer to tracee ratio and by substituting the masses of the accessible
pools for the volumes.
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5.4.2 Input into a Single Compartment

Tracer input into _compartment 1

Consider the general two compartment model shown below in Fig-
ure 5.4.1.

IJ1 (t) ¢ 1(t) O c z(t) O
/

Figure 5.4.1. A two compartment model where input is into compartment 1. Com-
partment 1 exchanges with a second compartment, compartment 2. Irreversible loss
can occur from both compartments. See text for additional explanation.,

Assume that tracer input is into compartment 1 (the case where the
input is into compartment 2 is dealt with later in this section) and that
the tracer input is a bolus injection. The model equations are

dﬂ”(Lilt(t) = —(ko1 + ka1)m1(t) + kiamo(t) mi(0) =d,  (5.4.1)
dmo(t
Trzlzt( )k (t) = (hos + kidma(t)  ma(0)=0  (5.4.2)

Measurement in compartments 1 and 2

Assume that the measured variables are the tracer concentrations in
compartments 1 and 2. The model outputs, or ideal data, are described
respectively by

ma (t)

alt) = "5 (5.4.3)
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m2(t)
1%

The unknown parameters are the rate constants ko), ko2, k21, k12, and
the volumes V; and V5.

The solution of the system of differential equations (5.4.1) and (5.4.2)
for my(t) and mq(t) are biexponential functions (an extension of the sin-
gle compartment, single exponential case of Example 1 in §5.2) whence
the model outputs are given by

ey (t) = Aye ™Mt 4 Age M2t (5.4.5)

coft) = —Age_/\lt + Ageg'\?t (546)

where 4|, Ag, Az, A\; and A2 are the observational parameters. They
are assumed to be positive with A\; > A2. Note that ¢;(0) = A; + Ao
while ¢2(0) = 0.

The functions ¢ (¢) and cp(t) provide a description of the ideal tracer
data; an example is given in Figure 5.4.2.

Time

Figure 5.4.2.  An example of ¢1(t) and c(t) when a bolus injection of tracer is intro-
duced into compartment 1, and measurements are taken from compartments 1 and
2. See text for additional explanation.
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How are the observational parameters related to the unknown model
parameters? In contrast with the situation encountered in Examples 1,
2 and 3 of §5.2, the relation among the observational and the model pa-
rameters, i.e. the exhaustive summary, cannot be written in a straight-
forward manner. One needs to have the analytical expression for c; (%)
and c2(¢) as functions of the model parameters. While this was not dif-
ficult to obtain in the single compartment examples of §5.2, it is more
difficult here since there is the need to solve a system of two differential
equations, (5.4.1) and (5.4.2). If one does this, the exhaustive summary
can then be obtained as in the previous examples by equating the obser-
vational parameters Aj, As, Az, Ay and Ag of (5.4.5) and (5.4.6) to their
counterparts of the analytical model solutions for ¢;(t) and c3(¢) which
are functions of the unknown parameters. These equations must then be
solved for the unknown model parameters ko1, ko2, ko1, k12, V1 and Vs.

An alternative way to obtain the exhaustive summary which does
not require the solution of the system of differential equations and also
provides them in a form more easy to handle is the two-step strategy
described in Appendix E where all the details of the calculations are
given. The exhaustive summary consists of five equations:

—AViA =k ViAL — kiaAsVa (5.4.7)
—AaVidg = k1iViAs + kinAsVa (5.4.8)
AsVadl = ka1 A1Vi — kop A3Va (5.4.9)
—AsVado = koy AV + koo Vo As (5.4.10)

dy = Vi(A] + As) (5.4.11)

where k11 and kog are given by

ki1 = —(ko1 + k21) (5.4.12)
ko = — (k12 + koz) (5.4.13)

The exhaustive summary can now be solved for the unknown model
parameters. By summing (5.4.7) and (5.4.8), one has

Al + Az
Ay + Ay
By subtracting (5.4.8) multiplied by A; from (5.4.7) multiplied by A,

one obtains v Ay s> A)
kgt = S1C2WAL T A2) 5.4.15
12 Wi A3(A1 + Az) ( )

By summing (5.4.9) and (5.4.10), one has

ky = — (5.4.14)
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o V1 _ Az — A9)
v, A+ Ay

By subtracting (5.4.10) multiplied by 4, from (5.4.9) multiplied by As,
one has

(5.4.16)

Ao + A Ag

koo = — 54.17
22 AL+ Ay ( )
Finally, from (5.4.11), one obtains
d]
V= —— 5.4.18
' A+ A (5:4.18)

Therefore, with a tracer input into compartment 1 and measure-
ments taken in compartments 1 and 2, the model is a priori noniden-
tifiable since koi, ko2, k21, k12 and Va are nonidentifiable. Only parame-
ter V1 is uniquely identifiable. The uniquely identifiable parameters are
k11, k22, V1, k12Ve and k91 /Va. In addition, the product kg1 k12 isuniquely
identifiable.

How do the various input-output configurations affect the identifia-
bility properties of the model?

Measurement in Compartment 1 Only

In this situation, c¢i(t) (cf. (5.4.5)) is the model output, and the
observational parameters are A;, A2, A; and Ay are known while Aj is
unknown. The parameter Vi is uniquely identifiable from (5.4.18). Next,
from (5.4.14) and (5.4.17) it is possible to estimate &y, and kgg since Ay,
Ao, A; and A9 are known. As far as k12 and kg; are concerned, only their
product ko1k1g can be estimated since it is a function of Ay, Ay, A; and

/\2'.

A1 As(A = Ag)?
(A1 + Ap)?

Clearly the model is a priori nonidentifiable since the rate constants kg,
kg, ka1, and kq2 are nonidentifiable. The uniquely identifiable parame-
ters are V1, ki1, koo, and kor1kio

Parameter bounds. It is possible to obtain bounds for the four non-
identifiable parameters. They can be obtained from the observational
parameters or from the uniquely identifiable parameters of the model.
Suppose that ki1, koo and ko1k12 are known. In addition, since all rate
constants ko1, ko2, k21 and k2 must be nonnegative,

ki2ka1 = (5.4.19)

—ki > ko (5.4.20)
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—k22 2> ki2 (5.4.21)
kaiki2 >0 (5.4.22)
A lower bound for k9 is easily found from

ka1kig katkyo ko1k1a 4
ft = _ > _ jmin 5.4.23
2 k12 —kag — ko2 T —k22 o ( )

Thus by using (5.4.20) the parameter interval for ko) can be defined:

~ ko k
ki = 222 <y < kg = A (5.4.24)
—kaa
Using the same logic, the parameter interval for k13 can be defined:
i ko1k max
12 = % < kig < —kop = k5 (5.4.25)
—K11
Further, since
kor = —k11 — ko (5.4.26)

one has the parameter interval for kg,:

< kark
KB™ = 0 < koy < —kyy + = = K (5.4.27)
22
Similarly for kgs:
kmin —0< koo < —k koiki2 __ p.max
02 = U= kog £ —koo + P = kg (5.4.28)
22

Using equations (5.4.24), (5.4.25), (5.4.27) and (5.4.28), the parameter
intervals can also be written in terms of the observational parameters;
using (5.4.14)—(5.4.17), one has

A1Ag(A — N)? A + Aoy

kmin — < kot < _ max
2 (A1 + A2)(Arda + Ag)y) — ="TATF Ay 21
(5.4.29)
min __ AIAQ()\l - /\2)2 < ko < Ay + Aay _ j.max
20T AL A (A + Aghg) BT T A v 4, 2
(5.4.30)
i (A1 + A2)MiA2 ) nax
kit =0 < kg1 < ~—n L =L 5.4.31
o =SOSR S AT, 0 (5.4.31)
i A\ A
kgy" =0 < kog < iy Adhid kX (5.4.32)

Ajd + Aok



126 TRACER KINETICS IN BIOMEDICAL RESEARCH

Role of a priori knowledge. It is of interest to see what happens if one
of the irreversible losses ko1 or koy is equal to zero. Suppose first that kgs
is equal to zero. Since in this case kyy is equal to —kq, it is clear that
k12 is uniquely identifiable. From a knowledge of k12 and knowing the
product k21k12 is uniquely identifiable, one can estimate kop. Finally,
since kj; is uniquely identifiable, with an estimate of k93, an estimate
of kg; can be obtained. Thus with the exception of V;, all other tracer
parameters can be estimated.

What happens if kg1 is equal to zero? Since in this case kj; = —kay,
one can estimate ko1 uniquely. Again since the product ko1 k12 is uniquely
identifiable, one can estimate k)2, and as before, kgz. Thus once again,
all tracer parameters except V5 can be estimated.

Bound computation from submodels. The two models discussed above
represent a situation where one of the irreversible loss parameters is
set equal to its lower bound, zero. It is easy to verify that when
ko2 = 0, i.e. it reaches its lower bound, ki equals its upper bound
(since k12 = —koo — k12), ko1 its lower bound (since kg1kio is known),
and thus ko, its upper bound. Conversely, when kg; = 0, k3 equals its
lower and k21 and ko2 their upper bounds. In other words, upper and
lower bounds kg-‘i" and k7** for the parameters of the nonindentifiable
model can be generated from parameters k;; of two submodels of the
original structure (see Figure 5.4.3) obtained by first letting kgo = 0 and
then kg = 0.

Measurement in Compartment 2 Only

In this situation, cy(t) is the model output and thus only Az, A; and
A9 are known. It is easy to see from (5.4.14)—(5.4.17) that the uniquely
identifiable parameter combinations are

ki1 + koo = —(A1 + A2) (5.4.33)

ki1kaz — ki2ko1 = A1 Ao (5.4.34)

and
kar _ As(A1 = M)

i (5.4.35)

Clearly, the model is a priori nonidentifiable.

Parameter bounds. It is still possible to obtain bounds for the four
nonidentifiable parameters. From (5.4.34), one has kj1kos > A1 Az. Cou-
pling this with (5.4.33), one can calculate upper and lower bounds, k™max
and k™™ for k;; and kog:
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Figure 5.4.8. Panel A. The two compartment mode! where input and output are in
compartment 1. Bounds for the parameters k,; can be interpreted as parameters from
the two submodels shown in Panels B and C. Panel B is the submodel where kg; = 0;
Panel C the submodel where ko, = 0.

fmax — _()‘1 + /\2) + \/()\1 + )\272 - 4)\1)\2

5 (5.4.36)
. — — N2
min _ (A1 + A2) \/(;\1 + A2) 4019 (5.4.37)

Since ™M < k1 < &A™ and &A™ < kyp < A™2X where both &£™2X and
k™" are negative, one can infer —k™™" is an upper bound for the four k;;
parameters; zero is of course the lower bound. Finally, (5.4.35) provides
the bounds for V5. These are summarized below:

kS =0 < kor < —k™" = kg (5.4.38)
ERm =0 < kgy < —k™I0 = e (5.4.39)
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i%m =0<kp< _min _ kT (5.4.40)
= 0 < oy < K" = K (5:441)

. _kmind1 i
von _ eV, < — = max 5.4.42
2 2= A3(/\1 — /\2) 2 ( )

Note finally that (5.4.35) excludes the possibility that ko1 can equal zero
since V5 is different from zero.

Tracer input into compartment 2

In the preceding, only the situation where tracer is introduced into
compartment 1 was considered. What happens if the tracer input is into
compartment 2, and the parallel cases above are discussed: measurement
in compartments | and 2, compartment 2 only, and compartment 1
only? Given the symmetry of the model, the solution is straightforward.
However, it is useful for what follows in §5.4.3 to go through this case in
some detail.

Measurements in Compartments 1 and 2

As before, write the model outputs as

cr(t) = —Age Mt 4 Aze et (5.4.43)
cat) = Are ™Mt 4+ Age et (5.4.44)
It is easy to see that the analogue of (5.4.14)—(5.4.18) is

A1 A + AgAg
kgg = ———— 5.4.45
2 AL+ Ay ( )

Vi AiAr (M — Ay

koj— = ————— = 5.4.46
Ve T A(A + Ag) ( )

Vo Az(M1—Ag)
kig— = ——————== 5.4.47
VT A+ Ay (5.4.47)

A da + Ao
kj=——"——7——— 5.4.48
i A+ A ( )
Vo = _d (5.4.49)

PTALF A o

where dy is the tracer dose administered into compartment 2. It is
of interest to note that the identifiability results for this measurement
configuration are the same as those obtained for the case of tracer input
into compartment | if one simply interchanges the suffixes 1 and 2 in
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the transfer rate parameters and volumes. Clearly this also applies for
other measurement configurations. For instance, if only compartment 2
is observed, V5 is uniquely identifiable as are the parameter combinations
kog, k11 and ko k12; if only compartment 1 is observed, the combinations
ki1 + koo, ki1kaog — k1gks) and %}2 are uniquely identifiable.

5.4.3 Input into Both Compartments

Consider again the general two compartment model where now there
is tracer input into both compartment 1 and 2; this is illustrated below in
Figure 5.4.4. Consider first the situation where two different tracers are
administered simultaneously (see Remark for the case where the same
tracer is administered). Assume as was done in §5.4.2 that the tracers
are administered as a bolus.

Figure 5.4.4. The general two compartment model where input is into both com-
partment 1 and 2. See text for additional explanation.

Measurement in Compartment 1 or 2

In this case, there are two model outputs. This situation can be dis-
cussed using the results of the previous section. First, with measurement
of tracer concentration in compartment 1 following a bolus injection into
compartment 1, from (5.4.5) the observational parameters are A;, Ag,
A1 and Ag; thus from (5.4.14)-(5.4.18) one has uniquely Vi, k11, koo and
the product ko1k12. Second, with measurement of tracer concentration
in compartment 1 resulting from the bolus injection into compartment
2 the observational parameters are Az, A1 and Ay of (5.4.43); thus from
(5.4.47) and (5.4.49), one has uniquely ki since V is known from above.
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From the knowledge of k12 one has uniquely k21, and from k11 and ko2
one has uniquely ko1 and ko2 respectively. Hence all parameters except
for V, are uniquely identifiable. It is essential to note that for each tracer
injected, a separate set of A; first for (5.4.5) and (5.4.6) and then for
(5.4.43) and (5.4.44) will be found; the A; and A, however, are the same.
Thus the Aj available from measurements in compartment 1 following
the injection into compartment 2 refers to (5.4.44) and not (5.4.6).

If instead of compartment 1, compartment 2 is observed (see (5.4.43)
and (5.4.6)), by applying the same reasoning one has uniquely all the
parameters except for V.

Measurement in Both Compartments 1 and 2

In this case, there are four model outputs corresponding to (5.4.5),
(5.4.6), (5.4.43) and (5.4.44). 1t is easy to see that one needs only three
of these in order to obtain unique identifiability of all parameters. In
fact, from the previous result, one needs only Vs or V; if measurements
were taken in compartment 1 or 2 respectively. One can see that V3
is uniquely identifiable from either of the two measurements of tracer
concentration in compartment 2 due to tracer administered into com-
partment 2, (5.4.44). or 1, (5.4.46). The first case is straightforward
from (5.4.49). For the second situation, (5.4.6), one notes that V5 can
be estimated from (5.4.35) since ko) is known.

By a similar reasoning, one can estimate Vj from the measurement of
tracer concentration in compartment 1 due to tracer administered into
compartment 1, (5.4.5), or 2, (5.4.43).

A summary of the identifiability results of the two compartment model
is given in Table 5.4.1. Given the symmetry of the model, the input-
output configurations with the role of compartments 1 and 2 reversed

are not given since the results can simply be obtained by reversing 1 and
2.

Remark on Simultaneous Tracer Administration

The above derivation is based on two different tracers being admin-
istered simultaneously into compartment 1 and 2. What happens if the
same tracer is administered simultaneously into the two compartments?
In this case, the measurements in compartments 1 and 2 cannot dis-
tinguish between the amount due to each injection; they measure the
sum of the two contributions. It can be shown that in this situation, the
input waveforms become important. Suppose for instance that the input
waveform into compartments 1 and 2 are the same, e.g. bolus injections,



Table 5.4.1. Summary of Identifiability Results of the Two Compartment Model

Input Output General Structure Constraints
kor =0 ko2 =0

1 1 Vi ki = —(koy + k21); k22 = — (ko2 + k12); ki2k21 Vi; k21; ki2; Koz V15 k215 kiz; kor

1 2 ki1 + k22; ki1kzz — ki2k21; ka1 /V2 ko2 — ka1; ka1ko2; k21/Va k11 — kiz; kizko1; ka1 /Va

1 1,2 \%¥ kll;kzz;kn/vz; k12Va WV1: Va; ka1; k12; ko2 Vi; Va; ka1; kors ka2
1,2¢ 1 V1; k213 kot; kiz; ko2 V1 ka1 k12; ko2 V15 ka1; kou; kiz
1,2° 2 Va: k21; ko1; ki2; ko2 Va; ka1; k12; ko2 Va; ka1; ko1; k12
1,2¢ 1,2 Vi; Va; ka1 kiz; koa; ko2 V1; Vas kars ka2 ko2 Vi Vs kay; kors ka2

@ Different tracers are administered simultaneously
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and measurements are taken in compartment 1. At variance with the
case where the two tracer inputs were different, ko, and kp; are no longer
uniquely identifiable; only their sum is. If on the other hand the input
format is different, for example a bolus injection into compartment 1 and
a constant infusion into compartment 2, one has the same identifiability
properties as the case where the two tracers were different.

It is worth commenting on the situation where the same tracer is ad-
ministered at different times; on one occasion, the bolus is administered
into compartment 1 and on a second occasion it is administered into
compartment 2. If one can assume that the parameters remain the same
for both tracer administrations, there are again four model outputs and
the same results obtained when two different tracers are administered
simultaneously hold.

5.5 THE LAPLACE TRANSFORM METHOD:
THE TWO COMPARTMENT MODEL
REVISITED

5.5.1 Introduction

Up to this point, the focus has been on the identifiability properties
of a model by inspecting the expression of the model output in order to
derive the exhaustive summary, i.e. the relationships between the obser-
vational parameters and the unknown model parameters. The method is
easy to understand since it does not require any particular mathematical
skills other than some fundamentals of differential calculus. However,
the approach is not practical in general since it works easily only for
simple models like the one and the two compartment model. For the
three compartment model, the method becomes quite cumbersome, and
for more complex models its application is virtually impossible.

A simpler method is available to derive the exhaustive summary. It
consists of writing the Laplace transform for the model output. This
method is also known as the transfer function method. Fundamentals of
the Laplace transform can be found in any textbook on applied mathe-
matics. Briefly, the advantage of the Laplace transform method is that
there is no need to use the analytical solution of the system of differential
equations. By writing the Laplace transform of the state variables, e.g.
masses, and then of the model outputs, e.g. concentrations, one obtains
an expression which defines the observational parameters as a function of
the unknown model parameters. This gives a set of nonlinear algebraic
equations in the original parameters, i.e. the exhaustive summary.
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5.5.2 Example of the Laplace Transform Method

To illustrate the Laplace transform method, consider the two com-
partment model shown in Figure 5.4.1 with a bolus injection into com-
partment 1 and the tracer concentrations in compartments 1 and 2 as
the measured variables. The equations describing the system are (5.4.1)—
(5.4.4).

The Laplace transforms of (5.4.1) and (5.4.2) are respectively

sL{mi} —dy = —(kor + ka1)L{m1} + k1o L{ma} (56.5.1)
SL{WLQ} = kglL{ml} — (k‘og + le)L{mQ} (5.5.2)

where L denotes the Laplace transform, and s is the Laplace variable.
Solving these algebraic equations for L{m;} and L{my}, one has

d1s + k1o + koo

L{nu} $2 + (kg + koy + ko1 + ko2)s + karkog + kizkor + ko ko2
(5.5.3)
L{ma} = dikay
82 + (k1o + ko1 + ko1 + ko2)s + kaikoz + kizkor + k01(ké)2 "
5.

The Laplace transforms for the model outputs are

(d1s + k12 + ko2) /W1

L
ter) s? + (kig + kot + ko1 + ko2)s + karkoa + ki2kor + korkoz
__ Bas+ (5.5.5)
T 2+ ags+aq e
L{cz) dika1/Va
2 52 + (k]g + ko1 + ko1 + koQ)S + ko1kog + k12ko1 + korkoz
= n (5.5.6)

§2 4+ ags + ag

Due to the equivalence between the model outputs c;(t} and coft),
and their Laplace transforms, the coefficients oy, ag, 81, B2 and v
are the observational parameters since they are the parameters which
are determinable from the input-output experiment. The exhaustive
summary, by defining k1) and ka2 from (5.4.12) and (5.4.13), is

kairkoa + Ki2ko1 + korkoa = ki11kao — ki12ka1 = o (5.5.7)

k1o + ko1 + koy + kog = —(kn1 + koo) = an (5.5.8)
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ki + koo _ ka2 _

= 5.5.9
V. v, B (5.5.9)
d
= = b1
7, Bo (5.5.10)
dika1
= .5.11
V2 71 (5 5 )

The identifiability equations can now be solved for the unknown model

parameters. One has:
dy

V= — 5.5.12
1= 5, ( )
d
koo = =P - — (5.5.13)
B2
d
ki =—-ag+ b1 ﬁ_; (5.5.14)
d d
koikia = ﬂllg—:(QQ - ﬁlﬂ—;) - o (5.5.15)
kan M
21 5.1
a=T (5.5.16)

The exhaustive summary obtained using the Laplace transform method
provides the same information as that obtained with the approach em-
ployed previously, i.e. (5.4.14)—(5.4.18). Thus the same conclusions on
identifiability can be drawn.

If one applies the Laplace transform method to the three examples
given in §5.2, one will clearly arrive at the same conclusions previously
reached on a priori model identifiability. It is worth noting that the
Laplace transform method gives for examples 1 and 3 of §5.2 the same
exhaustive summary obtained in the time domain. In fact, one has for
the model outputs of examples 1 and 3 respectively

d/v b
L{c} = = 5.1
e} +k s+o (5:5.17)
d/Vi 5!
L = = 5.5.18
{ed} s+kor+koy s+ ( )
By contrast for the model output of example 2, one has
dk21 /M A
L = = 5.
{22} T (5.5.19)

ko2 + k12)s + kozk1a  $2 + ags + o

and thus the exhaustive summary is



Identifiability of the Tracer Model 135

k02k12 = a1 (5520)

ko2 + k12 = a2 (5.5.21)
dikyy

= .5.22

o, B (5.5.22)

It is easy to conclude from these equations that there are two solutions
for koo, k12 and My . This observation is somewhat more subtle to recog-
nize in the time domain of (5.2.12)—(5.2.15) where the interchangeable
role of k91 and kgz had to be noticed in the analytical expression for the
model output (5.2.12).

5.6 THE DIFFICULTY OF THE
IDENTIFIABILITY PROBLEM

The Laplace transform method is simple to use for generating the
exhaustive summary of models containing more than two compartments.
What becomes more and more difficult is the solution, i.e. to determine
which of the original parameters of the model are uniquely determined
by the system of nonlinear algebraic equations. In fact, one has to solve
a system of nonlinear algebraic equations which is increasing in number
of terms and nonlinearity degree with the model order, i.e. the number
of compartments in the model. One can easily grasp the nature of the
difficulty in moving from two to three compartments. This is illustrated
in the following example.

Example

Consider the model shown in Figure 5.6.1 where the input into com-
partment 1 is a bolus and the two model outputs are the concentrations
in compartments 1 and 2.

By using the Laplace transform method, one calculates

Bys? + Bas + B
83 + 382 + aps + a1

Li{a(t)} =

Y28 + 71
. A1 = — 5.6.2
{ea(t)} $3 + ags? + ags + ) (562

The exhaustive summary is

ksakoiki3 + kaskiokor + kizkizkor = o (5.6.3)
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Figure 5.6.1. A three compartment model. The input takes place in compartment 1
and measurements are tracer concentrations in compartments | and 2.

kagks1 + ksokoy + kaokis + kaokoy + kasker + keskis (5.6.4)
+koskor + kazksir + kizkoy + kiskio + kisko
+kigks1 + kiokor = an

k3z + k31 + kog + ko1 + k13 + k12 + ko1 = a3 (5.6.5)
kaok1s + k23Vk12 + kiski2 =5 {(5.6.6)
1
ko + k23:/r Mathn _ g (5.6.7)
|
1 8 (5.6.8)
Vl = (s 0.0.
k3ykas + kgi/kzl +kakis _ ” (5.6.9)
2
k
21 o (5.6.10)

72_
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Thecoefficients «;, f; and «; are the observational parameters, and the
problem is to solve the system of nonlinear equations (5.6.1)—(5.6.10) in
the unknowns k;;, V; and Va. Clearly this is very tedious.

It is easy to see that the difficulty of the identifiability problem has
increased considerably in moving from the two to the three compartment
model. For the two compartment case, the corresponding equations are
given by (5.5.7)—(5.5.11). Thus not only are there 8 instead of 5 algebraic
equations to solve, but the equations have become more nonlinear, i.e.
now there are products of three instead of two k,;; in addition, there are
more terms, 13 instead of 3, in the equations containing the product of
two ky,

u,(t)

Figure 5.6.2. 'The general four compartment model. Input and measurement takes
place in compartment 1.
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To reinforce the fact that the difficulty of the identifiability problem
dramatically increases with model order, consider the general four com-
partment model shown in Figure 5.6.2 with input into and measurement
from compartment 1. One can show that the 3rd degree term corre-
sponding to a; in (5.6.3) is the sum of 200 terms! This shows clearly
that the a priori identifiability test is very difficult, if not impossible, to
be performed by hand in the general case.

Some remarks

Previously the difficulty of the identifiability problem has been shown
by using the Laplace transform method for its solution. Other methods
have been proposed to test a priori identifiability. The three that have
received the most attention are the transfer function topological method
[Audoly and DAngio, 1983], the modal matrix method [Norton, 1980],
and the similarity transformation method [Walter and Lecourtier, 1981].
The difficulty of the problem remains, however. Each of these methods
can be shown to perform better than the others for specific compartmen-
tal models, but none of them can be shown to be superior to the others
in general. In other words all the methods work well for models of low
dimension, e.g. the two and some three compartmental models, but fail
when applied to relatively large, general structure models because the
system of nonlinear algebraic equations become to difficult to be solved.

Recently, symbolic computer languages such as Reduce [1995] and
Maple [1997] have been found to help, but to deal with the problem in
general there is the need to resort to computer algebra methods. In par-
ticular, a software tool to test a priori identifiability of linear compart-
mental models of general structure which combines the transfer function
topological method with a computer algebra method, the Grobner basis,
is available [Audoly et al., 1998]. Before describing in §5.9 the under-
lying principals which lead to this tool, in the next two sections, §5.7
and §5.8, some explicit identifiability results which are available on the
general three compartment model, and on the mammillary and catenary
models will be given. The results given in §5.7 and §5.8, albeit not as
complete as those obtained for the two compartment model, provide a
catalogue of explicit identifiability results which is extremely useful in
practice. Additional explicit identifiability results on some large com-
partmental models can be found in the literature; these, however, deal
with specific compartmental structures.
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5.7 THE THREE COMPARTMENT MODEL

In moving from the two to the three compartment model, the number
of possible model-experiment combinations becomes very large since one
has to consider all the possible variations of the general model shown in
Figure 5.7.1 created by allowing some of the k;; to be zero together with
all the possible input-output configurations, i.e. now there are three
sites for input and output, and input and output can occur at more
than one site simultaneously. It has been shown, for example, that even
assuming input into one compartment only and permitting observations
of one, two or three compartments there are 826 essentially distinct non-
degenerate three compartment situations [Norton, 1982]. Thus it is vir-
tually impossible to do, as was done for the two compartment model, an
exhaustive identifiability analysis for all the possible three compartment
model-experiment configurations.

Figure 5.7.1. The general three compartment model showing all possible rate con-
stants k,;, and possible sites of input and samples. See text for additional explanation.
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In what follows, a summary of the catalogue of results obtained in
[Norton, 1982] by using the Laplace transform method will be given for
the situation mentioned above, i.e. input into a single compartment, say
compartment 1, and observations permitted in compartment 1, 2 or 3.
It will be assumed that the volumes of the accessible compartments are
known, i.e. only the rate constants k;; are unknown. If the volumes are
also unknown, apart from the case when compartment 1 is accessible in
which case Vj is uniquely identifiable, a detailed inspection is necessary
as far as V;, and V5 are concerned. As mentioned previously, there are
826 cases to consider.

The basic 18 model structures are shown in Figure 5.7.2. No losses
have been shown in this figure; this will be explained in a moment. In ad-
dition, structures for which a reversal of compartments 2 and 3 will result
in a model previously considered are excluded. Each compartment in
the structures shown will eventually receive material from compartment
1, i.e. input into compartment 1 will eventually reach compartments
2 and 3. For each of the eighteen structures there are seven possible
patterns of irreversible loss; there are loss from compartment 1, 2, or
3; compartments 1 and 2, 1 and 3, 2 and 3; and from compartments
1, 2 and 3. Similarly there are seven measurement possibilities. This
gives in all 882 combinations. However an examination of the symmetry
between compartments 2 and 3 in models 1, 9, 11 and 18 of Figure 5.5.1
results in 14 cases for each model which are not considered. This leaves
a total of 826 distinct possibilities. It should be noted that if the mea-
surement configurations are considered in order of increasing complexity,
many other cases need not be studied. For instance, if a model is glob-
ally identifiable from measurements in compartment 2 only, it is globally
identifiable from measurements in compartments 1 and 2, 2 and 3, and
1, 2 and 3. The same comment does not apply generally to the locally
identifiable models.

Two catalogues are summarized. Table 5.7.1 gives the minimal set
of measured compartments for global identifiability. In Appendix F,
Tables F.1 and F.2 list all sets of measured compartments giving local
identifiability and the number of solutions.
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Figure 5.7.2. 'The basic 18 model structures of a three compartment model; in all
cases, tracer input is into compartment 1. See text for additional explanation.



Table 5.7.1. Minimal Sets of Observed Compartments for Global Identifiability
Model Loss from cpt
Nuymber 1 2 3 12 1,3 2,3 1,2,3
1 2,3 1,2;2.3 a 2,3 a 2,3 2,3
2 1,2;1,3;23 1,3;23 1,323 1,2,3 2,3 2,3 1,23
3 3 3;1,2 3 2,3 1,3; 2,3 1,3;2,3 2,3
4 1,3;23 1.3;23 1.3:23 1,23 2,3 2,3 1,2,3
5 1,2;1,3 1,3;2,3 1,3;2,3 1,2,3 1,3 1,3;23 1,23
6 2;13 2,13 2;13 1,2:23 1,2;23 2,3 1,2,3
7 1,2;13 2 2,13 12;23 1,2;23 2,3 1,2,3
8 1,3 1,3;2,3 1,3;23 1,2,3 1,3;2,3 1,3;2.3 1,23
9 1,2;1,3;2,3 1,2;13;2,3 a 1,2;2,3 a 1,2;1,3; 23 2,3
10 1,2;13;23 1,2;13; 23 1,2;1,3;23 1,3;23 1,3 1,3;2.3 1,2,3
11 2,3 1,2;2,3 a 23 a 2,3 1,23
12 1.2:13 2;1,3 2;13 1,2 1,2 2,3 1,2,3
13 1523 1;2 1;2 1,2;13; 23 1,2;1.3 1,3;23 1,2,3
14 1,2;13;23 2 2;13 1,2 1,2;23 2,3 1,2,3
15 1,213 1,2;13;23 13;23 1,2,3 1,2,3 2,3 1,23
16 1,2;13;23 1,2;1,3;23 1,323 1,323 1,3 1.3:;23 1,2,3
17 1,2;1.3 1,2;2,3 1,2:;1,3;23 1,2 1,2 1,23 1,2,3
18 1,2;1,3 1,2;23 a 1,2,3 a 1,2,3 1,2,3

2Covered by preceding case by symmetry.
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HOYVASHY TVOIAANOIE NI SOILANIY YADVYL



Identifiability of the Tracer Model 143

5.8 CATENARY AND MAMMILLARY
MODELS

Catenary and mammillary models introduced previously in §4.6 are
two classes of compartmental models which are frequently used to in-
terpret tracer kinetic data. In this section, some explicit a priori iden-
tifiability results which are available for these models for the case of a
single input-single output experiment in the same compartment will be
reviewed [Cobelli et al., 1979b; DiStefano, 1983]. For convenience, the
general catenary and mammillary are reproduced in Figures 5.8.1 and
5.8.2 respectively.

—o——5

Figure 5.8.1. The n compartment catenary model.

Figure 5.8.2. The general n compartment mammillary model.
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The unknown parameters are the volume or mass of the accessible
compartment, and the transfer rate constants kij. Since the input and
observations take place in the same compartment, the volume or mass of
that compartment is uniquely identifiable. Thus the unknown parame-
ters are the individual rate constants kij. The results can be summarized
as follows.

Catenary Models

A catenary compartmental model which is either closed (i.e. there
is no irreversible loss to the environment so ko; = 0, = 1,---,n) or
almost closed (i.e. there is only one non zero ko; which can be from any
compartment) is globally identifiable if the accessible compartment (for
input and measurement) is an external compartment, i.e. compartment
1 or n in Figure 5.8.1. If the accessible compartment is an intermediate
compartment, i.e. 2,3, + ¢+, or n—1, the k;, are only nonuniquely identifi-
able and the number of different solutions increases with the distance of
the accessible compartment from either end of the chain. More precisely,
if the accessible compartment is j shown in Figure 5.8.3, the number of
denotes the factorial, i.e.

[ R

. . 1\
solutions for the k;; is {n_gLTT(l])TlY where
for an arbitrary integer ¢, ¢! = ¢- (2 — 1) ---2-1; if the irreversible loss is
from compartment j, then ky; isuniquelyidentifiable.

Figure 5.8.5. 'The general catenary model where compartment j is the accessible
compartment. See text for additional explanation.

As an example, consider the model shown below in Figure 5.8.4. In
this model, an example of the general case shown above with j = 2 and
n = 4, koo is uniquely identifiable but there are three different solutions
for k21, }Clg, k32, k23, k43 and k34.
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Figure 5.8.4. A four compartment catenary model where compartment 2 is accessi-
ble. See text for additional explanation.

A catenary model with more than one irreversible loss is nonidentifi-
able, but since some combinations of the model parameters are uniquely
identifiable, it is still possible to derive upper and lower bounds for the
nonidentifiable parameters. If the input-output experiment is in an ex-
ternal compartment (compartment 1 or n of Figure 5.8.1), the uniquely
identifiable parameter combinations are the total rate of exit from the
compartments, k,, = —(koi + ki1 + kut1),i = 1,...,n — 1, and the
products k; j41ki+14,42=1,...,n — 1. An algorithm has been developed
for deriving these parameter combinations and the parameter bounds of
the k,; from the coefficients of the multi-exponential response to a bolus
input introduced into compartment 1 or #» [Chao-Min Chen et al., 1985].

Alternatively, the parameter bounds can be computed from the iden-
tification of the submodels [Cobelli and Toffolo, 1987] which are defined
from the original model structure by setting all of the irreversible losses
except one equal to zero. In this case, if the input-output experiment is
into an external compartment, the submodels are uniquely identifiable,
and their parameters coincide with the upper and lower bounds of the
original structure; this is illustrated in Figure 5.8.5.

The above figure addresses the general situation where irreversible
losses take place in all compartments. Consider now the case where
irreversible losses are only present in some compartments, for example
compartment 2 and 3 in Figure 5.8.5. In this case, two submodels have
to be considered having respectively kg1 = kg3 = ... = kg, = 0 and
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Figure 5.8.5. Top: the general n-compartment catenary model where the input-
output is in compartment 1, an external compartment. When more the one irre-
versible loss are present, the model is nonidentifiable. Bounds for the ki; can be
interpreted as parameters of the uniquely identifiable submodels derived from the
original one by setting all losses but one equal to their lower bound, zero. These are
illustrated in the bottom panels.

kor = ko2 = ko4 = ... = kon = 0. These two submodels give upper
and lower bounds for k3, kos, ko1 and kps. Values for the remaining
parameters from the two submodels coincide since they are uniquely
identifiable from the given input-output experiment.

Mammillarv Models

A mammillary compartmental model, closed or almost closed, is lo-
cally identifiable and the number of different solutions is (n — 1)! if the
accessible compartment is the central compartment (compartment 1 in
Figure 5.8.2). If there is irreversible loss from this central compartment,
i.e. ko1 # 0, then kg; is uniquely identifiable. However, it is sufficient
to order the noncentral compartments, e.g. |kag| > |ka3z| > -+ > |knnl
where |ki;| = k1: + koi to render the model uniquely identifiable.

If the accessible compartment is a peripheral compartment, the num-
ber of different solutions is (n —2)! but the rate constants k;; connecting
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the accessible compartment with the central compartment are uniquely
identifiable. Again, if the irreversible loss is from the accessible compart-
ment, this loss is uniquely identifiable. As in the previous case, ordering
the central and noncentral nonaccessible compartments is sufficient to
solve the ambiguity on model parameters.

A mammillary compartmental model is nonidentifiable when there are
more than one irreversible loss. Only some parameter combinations are
uniquely identifiable thus making it possible to bound nonidentifiable
parameters within finite limits.

The uniquely identifiable parameter combinations when the accessi-
ble compartment is the central compartment (compartment 1 in Fig-
ure 5.8.2) are the total exits from the compartments. In the case of the
model shown in Figure 5.8.2, these would be k13 = — (ka1 +- - -+kn1+ko1)
and k,; = —(k1; + koy),% = 2,- -+, n, and the products kiki;,i=2,---,n
provided the compartments are ordered as described above. It is imme-
diate to verify that exchange parameters between the central compart-
ment and those compartments where no irreversible loss takes place are
uniquely identifiable.

Similar to the case with the catenary model, an algorithm has been de-
veloped for computing these parameter combinations and the parameter
bounds of the k;; from the coefficients of the multiexponential response
to a bolus injection of tracer administered into the central compartment
of a generic n-compartment mammillary model [Landaw et al., 1984].

Alternatively, the identification of submodels allows one to derive the
bounds of the nonidentifiable parameters. The procedure is similar to
that described for catenary models: a number of submodels equal to
the number of irreversible losses are defined, each having all the irre-
versible losses but one set equal to the minimum value, zero. If the
non-accessible, non-central compartments are ordered as previously de-
scribed, the submodels are uniquely identifiable, and their parameters
equal the values of the upper and lower bounds of the nonidentifiable
parameters of the original model structure, as illustrated below in Fig-
ure 5.8.6. Values of the exchanges between the central compartment and
those compartments where no irreversible loss takes place are the same

for the various submodels since these parameters are uniquely identifi-
able.
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Figure £.8.8. Panel A, The ncompariment mommillary model where the inpul-
i pul expeciment s in the contral comportment Porametors such as Ky and ks one
uniguely identifimble while parametens such as oy, kg, kg and kg are noalderstiliahble
Fapels B and 7 The two submodels of the arsginal model structure which pesmit U
spuset ification ol e wper sl losser s of the wonldeptifiable parametess of the
nriginnd model st roctune

5.9 A PRIORI IDENTIFIABILITY OF
GENERAL STRUCTURE
COMPARTMENTAL MODELS: A
COMPUTER ALGEBRA APPROACH

5.9.1 Introduction

The test of a priori identifiability of linear compartmental models of
general structure from multiple input-multiple output experiments is a
formidable task which, as mentioned previously in §5.6, can take advan-
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tage of the tools of computer algebra. However, before describing this
approach, it is useful to mention the few available results on identifia-
bility for the general linear compartmental model.

Necessary topological conditions for identifiability are available which
can be easily checked on the compartmental diagram [Cobelli et al.,
1979a]. This means that nonidentifiability of some models for a given
input-output experiment can be easily detected. Among these, it is of
interest to discuss input-output connectibility; in order for the model
to be identifiable, all of its compartments must be connected to the
compartments where the inputs and outputs take place. One can thus
eliminate from the model the compartments that are not input and out-
put connected together with the rate constants leaving them. In fact,
it is easy to realize that only the input-output connected compartments
are reached by the input and reach the outputs, and thus only the k; pa-
rameters not outgoing from compartments which are not input-output
connected are possibly identifiable. All of the compartmental model
examples discussed so far in this Chapter are input-output connected
except the model shown in Figure 5.2.4 where compartment 2 is not
output connected. An additional example of a compartmental model
which is not input-output connected is given in Figure 5.9.1A. As a re-
sult, the model is nonidentifiable and thus there is a need to arrive at
an input-output version of the model. This is shown in Figure 5.9.1B.
This model can now be tested for identifiability. The input-output con-
nectibility as well as the two other necessary topological conditions for
identifiability are implemented in the GLOBI (GLOBal Identifiability)
software package [Audoly et al., 1998] described later as a preliminary
check of nonidentifiability before entering the computer algebra identi-
fiability algorithm.

Another general result that is available is that the rate constants of an
input-output connected compartmental model are always interval iden-
tifiable. This result has been proven in Cobelli and Toffolo [1984], and
stems from the fact that for such a model, one of the observational pa-
rameters is always the sum of all the rate constants of the model (e.g.
(5.5.8) and (5.6.5) for the models shown in Figures 5.4.1 and 5.6.1 re-
spectively). Thus this gives the upper bound for all the rate constants
of the model with the lower bound being zero. While this proves inter-
val identifiability of the input-output connected model, in practice one
desires a narrower interval. To achieve this, one can follow the logic
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B
jo
/
k1
K12
ko2

Figure 5.9.1. A: A four compartment model which is not input-output connected.
Compartment 3 is not input-connected while compartment 4 is not output-connected.
B: An input-output connected model can be obtained by eliminating compartments
3 and 4 together with their respective loss rate constants ko4 and k23, and setting k42
equal to ko2.

used for the two compartment model (§5.4) and for the mammillary and
catenary models (§5.8).

While the above refers to the rate constants, it is of interest to note
the role played by the volume or mass of the output compartments in
an input-output connected model. It is either uniquely identifiable if the
input and the output take place in the same compartment, or nonidenti-
fiable if the input and the output take place in different compartments.
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5.9.2 Rationale

The idea behind the computer algebra approach is to combine one
classical method of a priori identifiability analysis with the Grobner ba-
sis, a powerful tool of computer algebra for solving systems of algebraic
nonlinear equations such as the . Buchberger [1988] proposed an algo-
rithm for the computation of the Grobner basis which, in some sense,
is the analogue of Gaussian elimination for systems of polynomial equa-
tions. Details about the definition, the main properties and the many
applications of the Grobner basis and the Buchberger algorithm can be
found in Buchberger [1988] and Becker and Weispfenning [1993].

In this section, the main features of a method to solve the exhaustive
summary equations which combines the transfer function topological
method with the Grobner basis will be described. The transfer function
topological method has been chosen since it is the one which makes, as
compared to the other classical methods (e.g. the Laplace transform or
transfer function method discussed in earlier in this Chapter, the simi-
larity transformation and the modal matrix), the Buchberger algorithm
successful for the largest class of models. Briefly, the method is able
to reduce the complexity of the exhaustive summary equations, i.e. the
number of equations, the number of terms in each equation, and the
degree of nonlinearity, in the most suitable way for the performance of
the Buchberger algorithm. The software tool, GLOBI, implements this
method to test a priori identifiability of general multicompartmental
models from multiple input-multiple output experiments [Audoly et al.,
1998].

5.9.3 The Transfer Function Topological Approach

This section provides a brief description of the transfer function topo-
logical method showing in particular where it differs from the Laplace
transform or transfer function method. The basic idea is to move from
the Laplace transform identifiability equations as illustrated in §5.4 where
the known coefficients are the observational parameters and the un-
knowns are the k;; elements to a set of simpler equations, both in the
number of terms and nonlinearity degree, where the new unknowns are
the cycles and the paths (see below) connecting the input to the output
compartments of the compartmental model diagram.
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The cycles and paths of an n-compartment model characterized by
the K matrix K = (k;;) are defined for i = 1,---,n as

it = ky i=1,-n (5.9.1)

a2 ol = R atkig - kg l=2...n (5.9.2)
The paths of length [,/ =2, n are

Piti2 . u =k ukiz .. ki (5.9.3)

To provide an example of cycles and paths using these definitions and
notation, one can calculate the cycles and paths connecting the input to
the output compartments using the model shown in Figure 5.6.1. They
are:

c11 = ki c22 = koo c3z = ka3
ci2 = kigka c13 = kizka c23 = kaskso (5.9.4)
c123 = karksakis 321 = kozkiokal
p12 = k21 p132 = k3rkas

The exhaustive summary is greatly simplified by using cycles and
paths. For instance, by rewriting the coefficients «;, §8; and ~;,i =
1,2,3 7 = 1,2 of (5.6.3)(5.6.10) of the two output equations (5.6.1)
and (5.6.2) in terms of cycles and paths (5.9.1)—(5.9.3), the equations
become

€32€11€321 — €312 + €31C22 + €33C21 — €33€22C11 = O] (5.9.5)
—C32 — €31 + €33C22 + €33€11 + €21 + C22C1 = Qg (5.9.6)
—C33 — Cy2 — C11 = (3 (597)
w =5 (5.9.8)
1
—C33 ~ €22
— = 5.9.9
v, By ( )
L J5; (5.9.10)
i =3 ..
—C33P12 + D132
dplv__Q P2 _ ., (5.9.11)
P12 (5.9.12)

Vo
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These equations result in a significant decrease in the number of terms
of the corresponding equations (5.6.3)—(5.6.10) derived using the clas-
sical transfer function approach. For example, (5.9.6) defining as now
contains 6 terms instead of 13 corresponding to (5.6.4); equation (5.9.7)
defning a3 now has 3 instead of the 7 terms of (5.6.5).

5.9.4 The Identifiability Algorithm

It is more informative for purposes of this text to go through the main
steps of the algorithm by considering three examples and commenting
on the results rather than providing a general description.

Example 1

Consider the four compartment model shown in Figure 5.9.2 where
input is into compartment 1 and measurements are taken from compart-
ments 1, 2 and 4. Assuming for sake of simplicity that the volumes of
the accessible compartments are known, the number of unknowns, the
kij, is 10.

Figure 5.9.2. A four compartment model with input into compartment 1, measure-
ments from compartments 1, 2 and 4, and irreversible losses from compartments 3
and 4.
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Step 1: The algorithm calculates the observational parameters from
the Laplace transform of the three model outputs. Since the volumes
of the accessible compartments are assumed to be known, the model
outputs can be considered to be the masses in compartments 1, 2 and
4. Thus one has

s34+ B3s% + fas + 1

L = 9.1
{ma} st + aysd + a3s? + ags + o (5.9.13)
2
Y357 + 728 + 71
L = 5.9.14
{ma} s+ asas® + ass? + azs + oy ( )
8382 + 6 )
L{ma} = 367 + 928 + 01 (5.9.15)

st 4+ g8 + a3s? + ags + ay
The three denominators are the same and provide the observational pa-
rameters «q, a9, a3 and ay. The three numerators are different and
provide the observational parameters (), 82 and (3, 11, ¥2 and -y3, and
81, 85 and 43 for the outputs of compartments 1, 2 and 4 respectively.

The algorithm then assumes a numerical value for the observational
parameter @, ie. &;, Bi, 4; and 52-, which derives from a particular solu-
tion of the parameter vector p, i.e. a value I%U of the k;; which satisfies
the compartmental constraints described in Chapter 4. This particular
solution can be generated automatically by a random number generator
with subsequent check of the compartmental constraints. Assume the
particular solution p is that giving the compartmental matrix K shown
below:

-5 2 0 1
2 -3 3 0
K=|, 7 5% o (5.9.16)

3 0 2 -5

The algonthm calculates the correspondmg value of the observational
parameter@ ie. a;, ﬁz, 4; and 51, and the denominator and the three
numerator polynomials of (5.9.13)—(5.9.15)

s 4+ 195% + 1195% 4 2725 + 126 5.9.17)

(
s% + 145% + 565 + 63 (5.9.18)
252 4+ 225 + 70 (5.9.19)
(

352 + 275 + 49 5.9.20)
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Step 2: The algorithm calculates the observational parameters as func-
tions of the cycles and paths thus the exhaustive summary is given by

C43C21 — C43C22C11 — €4321 — €2341 + C41€32 — €41C33C22 (5.9.21)

—€44C32C11 — €44€33C21 + C44C33C22¢11 = 126

C43C22  +  €43C11 + C41€33 + 41022 + ca4C32 — caqcazcn (5.9.22)
—  €44C33C11 T €C44C21 — C44C22C11

+ c32c11 + €33¢01 — c33€22€11 = 272

—C43 — €41+ C44C33 t+ C44C22 + CaqCl) (5.9.23)
— €32 + €33C22 + €33€11 — €21 + c29¢1 = 119

—Cg4 —C33 —Co2 —C11 =19 (5.9.24)

C43C22 + €44C32 — €44€33C22 = 63 (5.9.25)

—C43 + C44€33 + C44C22 — €32 + €33C22 = 56 (5.9.26)
—Cqq — €33 — 22 = 14 (5.9.27)

—C43P12 + C44C33P12 + Praz2 = 70 (5.9.28)

—C4ap12 — C33P12 = 22 (5.9.29)

p12 =2 (5.9.30)

—c32p14 + €33€22P14 + P1234 = 49 (5.9.31)

—C33p14 — C22p14 = 27 (5.9.32)

pia=3 (5.9.33)

Step 3: The next step is the application of the Buchberger algorithm to
solve these equations. This step may not be successful for computational
limits; in this case the problem cannot be solved. Ifthis step is successful,
the algorithm returns a new exhaustive summary expressed in terms of
the same unknowns, cycles and paths, but now showing a simplified
form. For the example under consideration, they are:

c43 =4 (5.9.34)
4321 + c4123 = 40 (5.9.35)
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car = 3 (5.9.36)
caq = —5 (5.9.37)
cyn =3 (5.9.38)
c33 = —6 (5.9.39)
o1 = 4 (5.9.40)
cop = —3 (5.9.41)
ciy=-—5 (5.9.42)
pi23a =4 (5.9.43)
pla =3 (5.9.44)
piaz2 = 18 (5.9.45)
P12 =2 (5.9.46)

By comparing these equations with the previous ones, one gets the
idea of the reduction in both number of terms and nonlinearity degree
accomplished by the first application of the Buchberger algorithm. It
should be noted that the number of returned independent equations can
be less than the number of cycles and paths. This fact does not mean
that the basic model parameters, i.e. the k;;, are nonidentifiable since
not all cycles and paths are independent functions of the k;;.

Step 4: The algorithm substitutes for the cycles and paths in (5.9.34)—
(5.9.46) their expressions in terms of the k;; by applying their definition:

kyzkas = 4
kazksoka1kia + karksakoskio = 40
katk14 =3

(5.9.47)
(5.9.48)
(5.9.49)
k34 + k14 + kog = 5 (5.9.50)
k3zkas = 3 (5.9.51)
kaz + ko3 + ko3 = 6 (
korkia = 4 (
k32 + k12 = 3 (
(
(

5.9.52)
5.9.53)
5.9.54)
5.9.55)
5.9.56)

kayg + ko1 =5

k4zk3zako) = 4
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kqy =3 (5.9.57)
karksqkas = 18 (5.9.58)
koy =2 (5.9.59)

Obviously this set of equations presents a reduction in the number
of terms and nonlinearity degree in comparison with the corresponding
one in the same unknowns k;; which would have been obtained by ap-
plying the transfer function approach directly to the model shown in
Figure 5.9.2.

Step 5: By a second application of the Buchberger algorithm, if suc-
cessful, a new set of equations in the k;; can be found showing a simplified
form over those given in Step 4:

kqz = 2 (5.9.60)
ka1 = 3 (5.9.61)
kyq =2 (5.9.62)
kgy =1 (5.9.63)
kog = 3 (5.9.64)
kgt =2 (5.9.65)
kg =1 (5.9.66)
kg = 2 (5.9.67)
kos = 2 (5.9.68)
kos = 1 (5.9.69)

This set gives the answer to the identifiability test. In this example, the
parameters are uniquely identifiable since the system of equations has
one and only one solution.

Example 2

The above example shows the utility of the identifiability algorithm
in handling a rather complex model structure and a rich input-output
experimental configuration. What happens when one is dealing with
a model which is a priori locally identifiable, i.e. all parameters are
identifiable but at least one has a finite number (n > 1) of solutions?
In other words, how does the final set of equations, the counterparts to
those found in Step 5 of the previous case study, look?



158 TRACER KINETICS IN BIOMEDICAL RESEARCH

Consider, for example, the three compartment model shown in Fig-
ure 5.9.3. Here input is into and measurements are taken from compart-
ment 1; the loss is from one of the nonaccessible compartments.

Figure 5.9.3. The three compartment model used for Example 2.

Assuming that the volume of compartment 1 is unknown, the un-
known parameters of interest are thus ks, k13, ko1, k12, ko2 and Vi. By
going through the same steps as explained in the previous example, one
can generate a particular solution for the parameter vector, i.e. the k;;
and V1, and use this to generate a numerical value for the observational
parameters.

Suppose the particular solution is

-4 3 3
K=[2 -1 0 |v (5.9.70)

2 0 -3

and

Vi=1 (5.9.71)

The counterpart of Step 5 of the algorithm, i.e. the second application of
the Grobner basis algorithm, for the above example gives the following
set of equations:

Vi=1 (5.9.72)
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19k2, — 176kog = —192 (5.9.73)
88ks1 — 19kgo = 24 (5.9.74)
88k + 19kgg = 328 (5.9.75)
16k13 — 19k = 200 (5.9.76)

16k1y — 3koy = 24 (5.9.77)

This set gives the answer to the identifiability test. The system of
equations has two solutions for kg and thus for ksy, k12, k31 and k13. The
only globally identifiable parameter is Vi. Thus the model is nonuniquely
identifiable.

Example 3

What happens when dealing with an a priori nonidentifiable model?
In this example, consider the three compartment model shown in Fig-
ure 5.9.3, but suppose the measurement is in compartment 2 instead of
compartment 1. Assume in addition that the volume of the accessible
compartment 2 is unknown. This situation is illustrated in Figure 5.9.4.

Figure 5.9.4.  The three compartment model used in Example 3.

The parameters of interest are ksy, k13, ka1, k12, ko2 and Vi, Assume

-4 3 1
K=|2 -10 0 (5.9.78)

2 0 -1
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and

Vo= = (5.9.79)

is the particular solution of the unknown parameters.
Step 5 of the algorithm returns the following set of equations:

ka1 + k1o + ko + Vo =14 (5.9.80)

ko — V3 =0 (5.9.81)

kg =1 (5.9.82)

k2, + 2kiokos + kioVo — 15k1o + kiy — 15kes — Vo = —46  (5.9.83)
kioVs = 14 (5.9.84)

This system of equations has an infinite number of solutions for k31, ko2,
ka1, ki and V;, while there is one and only one solution for k3.

Some Remarks
At the end of the identifiability test, two observations are in order:

1. the answer of GLOBI has been obtained by starting from a particular
numerical point p of parameter space; and

2. the analysis checks the uniqueness of solutions in the whole complex
space C.

Regarding the first point, since the purpose of the algorithm is to provide
a technique to check a priori structural identifiability, i.e. holding in the
whole parameter space except for points which have probability zero
to be considered (this set of points is said to have zero measure), one
has to know if the results also hold for all p € P. Note that a priori
identifiability is a generic property, that is, if it holds for a generic point
in the space it holds for almost all points belonging to that space, i.e.
except for a zero measure set. However, the implementation of GLOBI
has not been done symbolically, i.e. with a generic point (this would
dramatically affect the complexity of the Grobner basis calculation),
but numerically. Thus the answer of GLOBI is true with probability
one. Note that the numerical point strategy is a sound alternative to
the symbolic one (required to test a structural property) since while
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retaining mathematical rigor, it allows to significantly enlarge the class
of testable models.

The second point stems from the fact that the algorithm checks a
priori identifiability that is the uniqueness of parameter solution in the
whole complex space C while we are interested in the solutions belonging
to the compartmental space P, i.e. real and positive. If the results is
global identifiability, i.e. all the model parameters are uniquely identi-
fiable, this solution, belonging to C, has to coincide with the point p of
parameter space which has provided the particular value of the observa-
tional parameter vector ®. However, if the model results locally iden-
tifiable or nonidentifiable, to extend the identifiability results obtained
in C to the compartmental space P, one must distinguish between two
situations:

1. If some model parameters are nonuniquely identifiable, while the test
provides the exact number of solutions in the whole complex space C,
one cannot know how many of these solutions will be complex, how
many will be real but negative and how many will be real and positive
when the initial point provided by the experiment will be available.
Thus, under these circumstances the number of solutions provided
by the algorithm is an upper bound of the number of solutions which
fall in P.

2. If some model parameters are nonidentifiable in C this will hold also
in all the subspaces of C. Thus one can conclude that the model is
nonidentifiable also in the real and positive space P.

The domain of applicability of the algorithm is difficult to establish
rigorously in terms of model structure. In fact, this would require to
define the limits of applicability of the Buchberger algorithm in solving
the exhaustive summary of the model. However, the complexity of the
exhaustive summary does not only depend on the model structure but
also on the input-output configuration.

The software tool GLOBI which is based upon the algorithm described
in this section has been used to test the a priori identifiability of a
wide range compartmental models available in the literature. Most of
these published models had fewer than 13 compartments with a struc-
ture where not all possible connections were present. There were multi
input-multi output experiments characterized by “single compartment”
and “sum of compartments” measurement configuration, standard in-
puts, i.e. into a single compartment, and split inputs, i.e. inputs split
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between two or more compartments, and by letting unknown parame-
ters be present also in the inputs and in the measurements. Of note is
that GLOBI can also handle explicitly constraints, linear or nonlinear,
on parameters:

h(p) =0 (5.9.85)
where h is a vector of polynomial functions describing equality con-
straints among the components of p. Examples of (5.9.86) are equalities
among some transfer rate constants in a model, or a knowledge of the
numerical value for some of the rate constants.
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Chapter 6

USING THE TRACER MODEL
TO ESTIMATE KINETIC PARAMETERS

6.1 INTRODUCTION

As stated previously, the goal of compartmental modeling is to quan-
tify from the tracer model a number of kinetic parameters. Some of
them, such as mean residence times, apply both to the tracer and tracee
system. Others specifically describe the behavior of the tracee; these
include the tracee mass in the nonaccessible compartments, tracee pro-
duction and intercompartmental fluxes. Parameters that apply both to
the tracer and tracee system can be calculated by applying the formulas
given in Chapter 4. The evaluation of the parameters that apply to the
tracee system only is a more complex task, since it requires solving the
tracee steady state system equations. Thus specific conditions must hold
on the tracee system to guarantee a unique solution of these equations.

Consider the a priori uniquely identifiable model shown in Figure 6.1.1.
What is estimated from the data are the rate constants k91, k12 and ko1,
and the volume V7 or mass M of the accessible compartment. Thus one
has directly an estimate for the fluxes leaving compartment 1:

Fo1 = kot My (6.1.1)
Fyy = ka1 My (6.1.2)

In order to evaluate the remaining tracee fluxes, i.e. Fjgand Uj,and the
mass M3 in the nonaccessible compartment 2, the steady state equations
for the tracee system have to be considered. For the model shown in
Figure 6.1.1, they can be written:

165
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Figure 6.1.1. A two compartment model with tracer and tracee input only into com-
partment 1, and samples taken from compartment 1. See text for additional expla-
nation.

U + kioMy — (ko1 + ko )My, =0
ko My — k1oMy =0

These are two independent equations in twounknowns, Uy and Mjy; the
solution is given by

(6.1.3)

k
M = %Ml Up = kot My (6.1.4)
12

It is now possible to evaluate the fluxes leaving the nonaccessible com-
partment 2, Fig = k1Mo, and parameters related to the whole system
such as the total tracee mass Mot = My + Ms.

There are situations, however, where even if the model is a priori
uniquely identifiable, it is not possible to evaluate all of the tracee param-
eters. Consider for instance the same structure as that in Figure 6.1.1,
but assume now that tracee production can enter both compartments,
i.e. Us #0 as well as Uy # 0. This is shown below in Figure 6.1.2.

In this case, (6.1.1) and (6.1.2) are still valid, the counterpart to (6.1.3)
becomes

Uy + kioMy — (kg1 + kot)M; =0
Uz + kot My — k1oMy =0

This system of two independent equations has three unknowns, Uy, Us,
and Mj, meaning there is no unique solution. Only the sum U; + Uy =

(6.1.5)



Using the Tracer Model to Estimate Kinetic Parameters 167

Figure 6.1.2. A two compartment model with tracer input and samples in compart-
ment 1, but tracee input in both compartment 1 and 2. See text for additional
explanation.

ko1 M1 can be evaluated uniquely, while there are an infinite number of
solutions for the individual U;, Us and My, and thus for the flux Fis
and the total mass M.

Consider now a generic n-compartment model. The evaluation of the
tracee variables requires the solution of a system of n algebraic linear
equations derived from the tracee steady state equation:

KM+U=0 (6.1.6)

Ifthe model is a priori uniquely identifiable, the matrix of rate constants
K and the masses in the accessible pools are known uniquely. The
unknowns are the masses in the nonaccessible compartments and the
de novo production rates, i.e. those U; which are not zero. A unique
value for these variables can be obtained only if conditions on the tracee
system hold which guarantee unique solution of the steady state system
(6.1.6).

It is important, therefore, to realize there are two situation that must
be satisfied in order to obtain unique estimates of the tracee parameters.
One is that the model is uniquely identifiable; the other is that there is
unique solution to the steady state equations. For convenience, in what
follows, the estimation of kinetic parameters will be discussed first for
the case where the tracer model is uniquely identifiable. Then how to
deal with a nonidentifiable tracer model will be discussed.
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6.2 ESTIMATION FROM A PRIORI
UNIQUELY IDENTIFIABLE MODELS

For an a priori uniquely identifiable n-compartment model, the ele-
ments of the K matrix and the masses in the accessible pools are known
from the tracer experiment. As already discussed in §4.4.3,the matrix
K can be assumed to be invertible. The tracer-tracee kinetic param-
eters such as the elements of the mean residence time matrix can also
be uniquely estimated whereas the estimation of the kinetic parameters
which specifically describe the behavior of the tracee requires, as an-
ticipated in §6.1, the solution of the steady state system (6.1.6). It is
a system of n linear algebraic equations where the matrix K is known
uniquely since the tracer model is a priori identifiable. In addition, the
invertibility of K assures that the system equations are independent.
Thus, the only condition for the system to have a unique solution is
that the number of unknowns, denoted by Ny, equals n, the number of
equations, or equivalently the number of compartments. Usually the un-
knowns are the masses in all of the nonaccessible compartments and the
de novo productions; their number N, equals #n if the number of de novo
production fluxes equals the number of accessible compartments. This
means that the tracee parameters can be evaluated from an experiment
where only one compartment is accessible if the tracee production enters
the system in a single compartment. In the case where two compart-
ments are accessible, two entry sites for the tracee are admissible, and
so forth. It is worth noting that in those cases where a priori knowledge
exists on some of the tracee variables, there will be constraints among
them that will affect N,,. For instance, consider a 5 compartment model
and suppose a priori knowledge is available on the total tracee mass. If
only compartment 1 is accessible, and de novo production enters com-
partments 1 and 3, N, is the number of nonaccessible compartments
plus the number of tracee entry sites minus the number of constraints;
in this case, Ny, = 4+ 2 — 1 = 5. This number equals the number of
compartments, hence the tracee variables are uniquely identifiable from
the input-output experiment.

In the following, three different situations will be discussed:

1. If Ny, = n there is a unique solution for U and the nonaccessible
masses M,;

2. if N, > n, there are an infinite number of solutions for U and the
nonaccessible masses M,; and

3. if Ny < n, constraints among the k,; arise from the steady state
equation (6.1.6).
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N, = n: Unique solution for the tracee variables.

If the number of unknowns equals the number of compartments, then
the tracee steady state system (6.1.6) can be solved uniquely, and all the
tracee variables are uniquely identifiable. In practice, one can solve the
system analytically as was done in §6.1 for the two compartment model
shown in Figure 6.1.1. If there are known constraints among the tracee
variables, they must be explicitly considered in solving the system. This
procedure is simple when the number of compartments is small, but may
become complex if the number of compartments is large. It is convenient
to derive general expressions for the unknown tracee variables in terms
of the elements ;; of the mean residence time matrix @

To evaluate the tracee variables, write the solution for the masses M
of the tracee steady state system

M=-KlU=6eu (6.2.1)

Consider first the case where only one compartment, say compartment
1 is accessible, and assume that there is de novo production entering
compartment % so that the number N, of unknowns, that is the tracee
masses Mo, -+, M, and tracee production U equals n. The vector U
has only one nonzero element, Uy, thus from (6.2.1) the components of
M are

My = 61,Up s M, = 0,,Up (6.2,2)

The de novo production Uy can be derived by solving the first equation:
M

Up =2 (6.2.3)
1n

and the tracee masses in the nonaccessible compartments can be evalu-
ated
bin .
M1=01‘hUh:—M1 Z=2,'--,TL (624)
1
Equations (6.2.3) and (6.2.4) are general expressions of the unknown
tracee variables as a function of M) and the 6;;
From the knowledge of the masses in all compartments, all tracee
fluxes can be evaluated

The total tracee mass (4.5.1) is then equal to
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n
My =S M; = 0iUn = MRT Uy, (6.2.6)
i=1

n
1=1
The parameter Mo is the product of the tracee production rate Uy
times M RT};, which represents the mean residence time in the system of
tracee particles since they enter the system in compartment 4.

In addition, one can calculate the total equivalent distribution volume,

Viot, using (4.5.2):
Mtot

1

Consider the two compartment model shown in Figure 6.1.1. Equation
(6.2.2) becomes

‘/t,ot = (6.2.7)

My, = 6,,U;
(6.2.8)
My = 0,3
thus M
Uy =+ (6.2.9)
f1
91
My = =M, (6.2.10)
f11
The total tracee mass in the system My is
Mot = M1 + My = (911+021)U1 = MRTWU; (6.2.11)

The parameter M RTj measures the mean residence time of tracee par-
ticles since they enter the system from compartment 1.

If tracee production is into compartment 2 instead of compartment 1,
(6.2.2) becomes

My = 612U,
(6.2.12)
My = 05U,
and then M
Up= —
NaT (6.2.13)
My = -2 M,
012

Mot = My + My = (912 + 022)U2 = MRTUs

The mean residence time in the system of the tracee is now M RT, since
the tracee particles now enter the system from compartment 2.
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Consider now the situation where two compartments, say 1 and 2, of
an a priori uniquely identifiable » compartment model are accessible,
and suppose there is de novo tracee input into two compartments, say
h and k. Thus in the vector U, there are two nonzero components,
U, and Uy . There are now n — 2 unknown tracee masses, M3, -+, M,
Thus the number of unknown parameters is #, the n — 2 masses and the
two tracee inputs. Since the number of unknowns equals the number
of compartments the steady state system can be solved uniquely. From
(6.2.2), the components of M are:

My =61nUn + U
. (6.2.14)
My = 0opUn + Ui
Using the first two equations, the productions Uy, and Uy can be ex-
pressed as functions of M; and M,:
_ GueMp — 0 My
02001 — O1n02k
_ D1 Mz — ban M)
O2n01k — 01002k

Un

(6.2.15)

Uk

Substituting these values into (6.2.14), the tracee masses for the nonac-

cessible compartment can easily be evaluated.
The total tracee mass in the system can be written

n n n
Moy =Y M1 = 0Un+)_ 0ixUx = MRT,Up+ MRT Uy (6.2.16)
i=1 i=1 i=1

The parameter M, is thus expressed as a function of tracee production
rates into compartments /2 and k and the mean residence times in the
system for tracee particles entering de novo into compartments /# and £.

N,. > n: Infinite number of solutions for the tracee variables.

What happens in the case where the number of unknown tracee vari-
ables NNV, exceeds the number of compartments? In this situation, even
if the tracer model is a priori identifiable, the unknown tracee variables
cannot be solved uniquely since the tracee steady state system has an
infinite number of solutions. However, it is possible to obtain upper and
lower bounds for their values, i.e. to identify the interval of values in
which the parameters must lie.
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Consider the model shown in Figure 6.1.2, and express the tracee
masses according to (6.2.14):

My = 61Uy + 612U,
My = 021U1 + 022U,

Since the only loss is from compartment 1, 8,7 = ¢15. The sum Uy 4+ Uy
can be derived from (6.2.17):

(6.2.17)

M
Uy +Up = — (6.2.18)
611
The sum U; + Uz provides the upper bound for the individual U; and
[/ while the lower bound is zero:

Ulmin =0 S Ul S % — U{’nax

1\21 (6.2.19)
Uémn:USUQS—II max

611

In order to derive upper and lower bounds for My, consider from the
properties of the ® matrix the following inequalities hold:

fho < 01 b21 < 622 (6.2.20)
Then from (6.2.17), for M2 one has

921(U1 + Ug) < My < 6x9(U; + U‘)) (6.2.21)

Using (6.2.18), the upper and lower bounds for Mj as a function of M,
and the 6;; are

i 091
Mmm —
2 0

6
ZLAL < My < 22 My = M (6.2.22)
11 11
Concerning the intercompartmental fluxes, Fo1 = kg1M; and Fy =
ko1 M1 can be calculated uniquely while Fi2 has an infinite number of

values bounded according to the following formula:

k120 k120
= 2L < Fro = kipMy < 22220 = Frax (6.2.93)

Fm'm
12
011 611

It is easy to verify that bounds for U;, U;, M2 and Fjp can also
be calculated by defining the submodels of the original structure in a
manner analogous with the procedure outlined in Chapter 5 for deriving
bounds for interval identifiable tracer parameters. In fact, when U; =
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0, i.e. it reaches its lower bound, Uy, My and Fjy reach their upper
bounds. Conversely, when Uy =0, Uy = U™, My = Mé“i“, and Fio =
Fl‘gi“. Therefore, upper and lower bounds for the nonidentifiable tracee
variables can be generated from the tracee variables of two submodels of
the original structure (see Figure 6.2.1) obtained by first letting U; =0
and then Uy = 0.

Figure 6.2.1. Panel A: A two compartment model. The tracer model is a priori
uniquely identifiable but the tracee variables Ui, Uz, M2 and Fiz have an infinite
number of solutions. Bounds for them can be interpreted as parameters of the two
submodels shown in Panels B and C. The tracee variables of these submodels can be
solved uniquely.

The concepts presented above can easily be extended to a generic n
compartment model. Consider, for instance, the situation where only
compartment 1 is accessible, but the tracee de novo production enters
into compartments 4 and k, i.e. Uy and U}, are nonzero. Then there are
n + 1 tracee unknowns, the masses in the » — 1 nonaccessible compart-
ments and the two productions, but only n equations. Thus there are
an infinite number of solutions for the tracee parameters. From (6.2.14),
the tracee mass in compartment 1 can be expressed
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My = 61,Up + 84U (6.2.24)
A relationship between U, and U can be derived
M, -8
Uy = M= Ol (6.2.25)
O1n

from which the upper bound for U, can be obtained when U, = 0, while
the lower bound for U; is zero:

M
Umin = 0 < Uy < 22 = e (6.2.26)
glh
Similarly for Uy
M,
UPin = 0 < Uy < =L = Umex (6.2.27)
O

In order to derive upper and lower bounds for the tracee masses in the
nonaccessible compartments, say for example compartment 2, consider
the system (6.2.1) and write for M,

My = 6opUp + 024U (6.2.28)

By substituting the expression (6.2.25) for U, one has
b2n ban

Mo = -——M, + (92k — 01— )Uk (6.2.29)
b1n b1n
Suppose now that the following inequality hold:

O — le— >0 (6230)

B1n

For convenience, this can be rewritten

ok _ Oan

—_—> = 6.2.31

b1 = O1n ( )

Then the lower bound for M, is reached when U, reaches is minimum
value, i.e. Uy = 0, and the upper bound is reached when U, reaches it
maximum value, Uj = éth' Thus

6 9
Mpin = 92_h My < My < %Ml M (6.2.32)

If on the other hand, g—fﬁ, then the upper and lower bounds ex-
change:
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L0
My = 2 pr, <, < _Z_%Ml — Max (6.2.33)

1k 1h
As regards the intercompartmental fluxes, only those which leave the
accessible compartment can be uniquely evaluated. The remaining fluxes
have an infinite number of solutions, but it is easy to evaluate upper
and lower bounds from the upper and lower bounds of the tracee masses
M,i=2,--,n.

FI® = kiy M™ < Fyy = kiyMy < kg M™ = FJ* (6.2.34)

As with the two compartment model, the upper and lower bounds for
all tracee parameters of a generic n compartment model can be calcu-
lated from submodels of the original model structure obtained by letting
Uy and Uy equal zero. For example, when U equals zero, Uy reaches
its upper bound as well as the tracee masses in those compartment / for
which gﬁ: < gﬁ: while the tracee masses in the remaining compartments
reach their lower value.

N, < n: Constraints among the parameters.

The last situation to be examined arises when the number of unknown
tracee variables is less than the number of equations. This results in con-
straints among the parameters, as illustrated in the following example.

Consider the model shown in Figure 6.2.2 where two compartments
are accessible but there is de novo production only into compartment 1.

In this situation, (6.2.9) becomes

M, = 011U,
My = 6,1 U

where My, My, 01, and 891 are known from the tracer experiment. This
situation where the number of unknowns is less than the number of
equations results in a constraint among the parameters:

(6.2.35)

M, M,
ek R ) 6.2.36
b b ( )
or, from the expressions for #,; and f,; in terms of the k;;
Mikyy = Ma(kog + k12) (6.2.37)

This constraint has to be explicitly considered when estimating k;;, M,
and M, from the tracer data in order to make the tracer system com-
patible with the a priori knowledge of a single tracee production. This
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Figure 6.2.2. A multiple input-output experiment on a two compartment model with
tracee input only into compartment 1. See text for additional explanation.

can be accomplished if one parameter, for instance kg, is expressed as
a function of the others, kg1 = A—A//;%(k'og + k12), and the model equations
are parameterized in terms of k12, ko1, ko2, M1 and My:

dm M.
L = —(koy + =2 (koo + K12))ma(t) + kigma(t) + uy (£)
dt M,
dm AM
d—t2 = ﬁ(km + k12)mi(t) — (ko2 + k12)ma(t)

The formulas given in this section to calculate the tracee kinetic pa-
rameters for a generic, uniquely identifiable n-compartmental model are
summarized below in Table 6.2.1 for the one and two accessible com-
partment model situations. The parameters, and their upper and lower
bounds, are expressed in terms of the k;;, the elements §;; of the mean
residence time matrix, and the mass in the accessible compartments,
assumed without loss of generality to be M; or M; and M. These for-
mulas are shown in Table 6.2.2 for the two compartment model with an



Table 6.2.1. Formulas for Tracee Kinetic Parameters of a Priori Uniquely Identifiable Models

Accessible 1 1 1,2 1,2
compartment
Tracer input h h,k h h,k
into compartment (Ny =n) (Ny > n) (N, < n) (N, =n)
Ui M, g =0 M= Myt | et
Upnax = —ff;—Ml
U - v =0 - T
Upes = M,
M, 01nUp M®in = min[f,, Umax, §,, Umax) 6.,Un 0.0 Un + 0 Uk
i=2,..,n MPa = max[8;, UM, 6, U 1=3,...,n 1=3,..,n
1=2,...,n
Fij ki; M kaM,i=0,...,n; j=1 k., M, kM,
1=0,..,n F,’J'-‘i" = k,jMJ‘-"i" ; B = kM t=0,...,n 1=0,..,n
7=1..,n 1=0,..,n; 7=2,..,n 7=1..,n j=1,..,n

*This equality results in a constraint among model parameters.

SUJOUDADJ O1JOULY IIDUWLLIST O] [OPOJA AdIDL] Y] 31/119[)

LLY
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input-output tracer experiment in compartment 1. The tracee kinetic
parameters in this table can be expressed as a function of the k;; and
the mass in the accessible compartment, M

Table 6.2.2. Formulas for tracee kinetic parameters of uniquely identifiable two com-
partment models™

L) Wzn ®y=n)
o Koy My koz k21 , o
Gz v Kiz
e o [] Kot M1
k21 g1 kot + Kz
] ['T] [ [
? L7 KzeXiz Ty !
Fa1 kzp My kgy My K2t My
Fi2 ey M W2 % "
21 My 1 ko1 +k L
T (ror e WM
For kot M1 ° ko1 M1
Koz &
F C MY
” ° Koz + Kiz o

*Compartment 1 is accessible, thus M; and the k., are known from the tracer exper-
iment.
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Table 6.2.2 (continued).

179

N,>n)
N,=n (N,>n) !
min nin
Uy =0 hoo
Uy [ nax koz Kz
-y
U gy My Ut K + K12 !
nin min
v w2 kg “ g =0 Uz =)
: Gz ! max ME kg @
Jz s Mgy My ['H -, LT}
wn Ky v “;r.. K
M a1 " L ? ek !
k ! nax <+ M2 nax K
12 w; (ﬂ V1 Ny = 'l'ﬁ'"
Fz1 Ky Wy kay W Kt My
. min e Ky kg
H . F -
Fiz "oy W 12 21 M1 12 TRYTTR
nax
Sz w( kot +kar )M Fi2 ky 1
For ) i Wy )
F i Koz ¥21 w
L e Tkl
Foa < K n * K12
—q‘—-ﬂ—-‘2 1 o F::x , koz Kay "
LT}
*Compartment 1 is accessible, thus M; and the k;; are known from the tracer exper-
iment.

IDENTIFIABLE MODELS

Up to this point, only a priori uniquely identifiable tracer models have
been considered, i.e. models for which the k;; can be uniquely estimated
from the tracer experiment. The two compartment model will be used

to illustrate how to deal with nonidentifiable models.

Consider the model shown in Figure 6.3.1.
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fgure 6.3.1. A two compartment model with tracer and tracee input into compart-
ment 1, and samples from compartment 1. See text for additional explanation.

If compartment 1 is the only accessible compartment, the model is not
identifiable, and only some combinations of the rate constants, namely
the observational parameters Vi, k13 = —(koy + k21), koo = — (ko2 + k12)
and kjyk;; are uniquely identifiable. However, as shown in §5.4, it is pos-
sible to obtain parameter bounds for all the nonidentifiable parameters.
Hence only the kinetic parameters which can be expressed as a function
of the observational parameters can be calculated uniquely, while for the
others, only the interval of admissible values can be calculated.

Consider first the ® matrix for the model shown in Figure 6.3.1:

f11 012 ) 1 ( —kgy k12 >
e = = - 6.3.1
<921 922 k11k22 - klzkzl k21 _kll ( )

The elements 8;; and 839 can be calculated even if the model is not
uniquely identifiable since they depend only on the observational pa-
rameters. For the elements 89, and 619, it is only possible to obtain
upper and lower bounds from bounds on k;; and k;; respectively:

) {x&‘m gax
O = ————= <y 2 e 6.3.2
21 kikos — korkia — 00 kirkag — karkis 2 ( )
min k" k™ .
=—= I fp < = 9{‘5‘”‘ (633)

27 Kyvkog — kotkip — T kitkoo — karkio
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From (6.3.2) and (6.3.3), bounds for the mean residence times MRT;
and MRT, can be calculated:

MRTM™ = 911 + 5™ < MRTy < 611 + 05 = MRT™  (6.3.4)

MRszi" = By + 019 N < MRT) < 09 + 015 = M RTJ™ (6.3.5)

If the tracee de novo production enters compartment 1 only, then the
tracee steady state equations are

A41 = ()]1U1

6.3.6
My = 021U1 ( )

Hence U; = M4 can be calculated uniquelywhile M> = Jgﬂl can assume
an infinite number of values which are bounded by

gmm Gmaxl\/l
agrin = 2L 7L < gy, < LT ppmax (6.3.7)
011 011
Upper and lower bounds for tracee fluxes £, o1 and Fp; can then

be calculated:

FRin — pMn AL < Fyp = koy My < kM, = Fliax (6.3.8)
me =0< Fy = kot M; < kOIale = 6rfax (6.3.9)
me =0< Fyo = kguMy < k(r]gax 2max = Forgax (6310)

The tracee flux F;, can be uniquely calculated since it only depends on
the observational parameters and the tracee de novo production:

Fia = kiaMy = ko8, U; = #”’“j:—km (6.3.11)
11822 — R12K21

These concepts can be extended to a generic n-compartment model;
only the kinetic parameters which depend upon the observational pa-
rameters can be calculated uniquely while other parameters can assume
an infinite number of values,not only because the tracer parameters
k; have an infinite number of solutions between their upper and lower
bounds due to the nonidentifiability of the tracer system, but also be-
cause the tracee steady state system may have an infinite number of
solutions. Calculations are easy for simple models such as the two com-
partment model of the previous example but become quite cumbersome
for more complex models. A different approach to evaluate kinetic pa-
rameters of a nonidentifiable model is based on the use of submodels
as defined in Chapter 5. They are obtained from the original model
structure by setting some k; parameters equal to zero, and eventually
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some production equal to zero so that their tracee parameters, which
represent the bounds for tracee parameters of the original structure, can
be solved uniquely.

Bounds for the parameters of the nonidentifiable compartmental model
shown in Figure 6.3.2A can be generated by using the submodels given
in Figure 6.3.2B and C. In fact, when kgs reaches its lower bound of
zero, ko; and ki2 equal their maximum and k2 its minimum. Hence 6s;,
MRT,, M, and F5; reach their lower bounds while 612, M RT» and Fy;
assume their upper bounds. Similarly, when ko; = 0, 85, M RTy, My,
Fy1 and Fyg reach their upper bounds while 615 and M RT5 reach their
lower bounds.

Figure 6.53.2. Panel A: The two compartment model where input and output are in
compartment 1. Bounds for the kinetic parameters can be interpreted as the kinetic
parameters of the two submodels shown in Panels B and C. See text for additional
explanation.

If tracee de novo production enters both compartments 1 and 2 as
shown in Figure 6.3.3, bounds on the tracee parameters can still be
derived by using the submodels shown in panels B and C of Figure 6.3.3.
They combine the unique identifiability of the tracer model with a unique
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solution of the tracee steady state equations. The tracee parameters
of submodels can be solved uniquely, and they provide bounds for the
original structure.

Figure 6.3.3. Panel A: The two compartment model where tracee input is into both
compartments 1 and 2. Bounds for the kinetic parameters can be interpreted as
the kinetic parameters of the two submodels shown in Panels B and C. See text for
additional explanation.

The formulas to derive upper and lower bounds of tracee kinetic pa-
rameters for a nonidentifiable two compartment model are given in Ta-
ble 6.3.1.

In moving from the two compartment model to a generic nonidentifi-
able n-compartment model, it is impossible to derive general expressions
for the bounds of the kinetic parameters. The procedure outlined for the
two compartment model can give some guidelines, but each situation
must be handled separately. However, some results can be extended to
catenary and mammillary models.



Table 6.5.1. Formulas for Tracee Kinetic Parameters of Non-Identifiable Two Compartment Models™

Y nin nax
U R bk 0 UCED UL [ Ky My
2 "zg
nin _ Y min_
U T g uz =0
[VF) h) K" Kn nax kl| kzz
U2 Ky (1 ¥ My U, = “11(1'—y—-)“‘
2 2
min Y K n Y k
M2 My = — My max_ Xy, min _ K11y max, My M"i"=—2M1 ™= oMy
I(z2 k22 k22 H k22 Y
Fa Fm'"="'Y—“| Fa= ki M mn_ Ty ax m_ Ly e
n Ky, 21 =Tk My Fa -"g 1 Fa1 =-kqy My Fa Ky 21 =T kg My
Fi2 len=_L“' lex « o - ki My len__Lul nax
12 ="kt My = Fyy =-
12 Ky 12 K,y 12 K11 My
min _ max_ b nin max Y max Y
Fa1 For = 0 Fpy =(- Ky =My Fyy =0 For =[" Ky g My | g0 _ 0 Fyy =(- Ky g My
2 22 n = 2
mén m_ Kk k
E =9 Fo, =(- K ,_Lm min max 11 Kn min max_ Ky k
Foz 2 o " Kzvz) FJ2‘°F:2="|1["T'M' Foza =0 Fp = “n("_YL'"’

*Compartment 1 is the accessible pool; thus ki1, k22 and v = k21 k12 are known from the tracer experiment.
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Catenary models

For a general n-compartment catenary model where the input-output
experiment is in the extremal compartment, the mean residence times
f;; can be solved uniquely since 8;; = 7}— Upper and lower bounds for
the other kinetic parameters can be interpreted as parameters of the
uniquely identifiable submodels derived from the original one by setting
all losses but one equal to zero. This is shown in Figure 6.3.4.

More precisely, upper and lower bounds for &;;, ¢ # 7, can be calcu-
lated from the mean residence time matrix of the two submodels with
tracee production and irreversible loss either in compartment 1 (panel
A of Figure 6.3.4) or compartment n (panel D of Figure 6.3.4).

Oi; 1>7: 6;]“"‘ from submodel A

6;;** from submodel D

8i; i<j: O from submodel D
9;}'“ from submodel A

Upper and lower bounds of tracee masses in the nonaccessible com-
partments, and intercompartmental fluxes can also be calculated from
submodels A and D in Figure 6.3.4.

M, i=2,--,n: MM™ from submodel A

M from submodel D

F;; i = 2,---,n—1: F[J’»‘i“ from submodel A
j = ix1 F7® from submodel D

The lower bound of tracee production and irreversible loss for any
compartment is zero. The upper bounds are given by tracee parameters
of some specific submodel, e.g. U3"® and Fgh** are the tracee param-
eters of the submodel with tracee production and irreversible loss into
and from compartment 2 (submodel B of Figure 6.3.4). They can be cal-
culated from the kinetic parameters of submodels A and D since, from
(6.2.11)



min
nn-1

Iaﬂn

Fmin
n-1n

Figure 6.8.4. Top: the general n-compartment catenary model where the input-output is in compartment 1, an extreme
compartment. When more the one irreversible loss are present, the model is nonidentifiable. Bounds for the k,, can be
interpreted as parameters of the uniquely identifiable submodels derived from the original one by setting all losses but one
equal to their lower bound, zero. These are illustrated in the bottom panels, A, B, C and D.
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M,
min
12

and from the mass balance equation written for the tracee in compart-
ment 2 of submodel B

U2max —

max __ prmax max min min max
F™ =1 — Fyo + By - Fp" + U

In summary, bounds for all kinetic tracee parameters of the original
model can be calculated from the tracee kinetic parameters of submodels
A and D of Figure 6.3.4.

Mammillary models

For a general n-compartment mammillary model where the input-
output experiment is in the central compartment 1, the mean resi-
dence times #;; are uniquely identifiable since 8;; = El— Upper and
lower bounds for kinetic parameters can be interpreted as parameters of
the uniquely identifiable submodel parameters derived from the original
model by setting all losses but one equal to zero (see Figure 6.3.5).

The lower bounds of tracee mass in the nonaccessible compartments,
and the fluxes between them and the accessible compartment 1 can be
calculated from the submodel with tracee production and irreversible
loss into and from compartment 1 (submodel A Figure 6.3.5) while the
upper and lower bounds for these parameters are the tracee parame-
ters of the submodel having tracee production and irreversible loss in
compartment i (Panel C of Figure 6.3.5):

M; i=2,---,n: M™" from submodel A

M from submodel C

Fy 4=2,--,n: F@" from submodel A

F{i® from submodel C

Fy i=2,---,n: F7" from submodel A
F1® from submodel C

Submodel C also gives the upper bound for tracee production and irre-
versible loss, the lower bound for both are zero.

Uy i=2,--,n: UPP=0

U™ from submodel C
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Fhgure 6.9.5. Top Panel. The n-compartment mammillary model where the input-

output experiment is in the central compartment. Parameters such as k31 and ki3
are uniquely identifiable while parameters such as ko1, k12, k21 and ko2 are noniden-
tifiable. Panels A - I>: The submodels of the original model structure which permit
the quantification of the upper and lower bounds of the nonidentifiable parameters of
the original model structure.
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Foo i=2,---,n: FEMn—-g
Fg®* from submodel C

Similarly U™ and F{#* can be calculated from submodel A. Finally,
the submodels also give upper and lower bounds of the 8;; parameters
since for @ of submodel C, the elements of the i-th column assume their
lower bounds while those in the i-th row assume their upper bounds.
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Chapter 7

COMPARTMENTAL VERSUS
NONCOMPARTMENTAL
KINETIC PARAMETERS

7.1 INTRODUCTION

In the previous chapters, two classes of models, noncompartmental
and compartmental, both of which are appropriate to interpret data
from tracer experiments in a constant steady state, were examined. Each
approach provides a quantitative description of the tracer and tracee
system through a number of specific kinetic parameters to be estimated
from the tracer and tracee measurements.

As already pointed out previously, the structural difference between
the two approaches lies essentially in the way the nonaccessible portion
of the system is modeled. For the compartmental model, both the acces-
sible and nonaccessible components of the system need to be specified in
terms of the number of compartments, the interconnections among the
compartments, and the locations of de novo production and irreversible
loss. Kinetic parameters can be estimated for all individual compart-
ments, accessible or not. They are correct if the assumptions about the
system that are incorporated into the model structure are correct.

Conversely, the noncompartmental model describes the nonaccessible
portion of the system with a recirculation/exchange arrow. Parame-
ters can be derived describing both accessible pool and system events.
However, the system parameters are correct only if specific structural
conditions in the recirculation/exchange arrow portion of the system

hold.

In this Chapter, the relation between the kinetic parameters provided
by the two modeling approaches will be analyzed. Both the one and
two accessible pool noncompartmental models will be considered. The

191
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accessible pool and the system parameters will be discussed separately
to help distinguish the two approaches.

A comparison between the compartmental and noncompartmental
model when one pool is accessible for tracer input and measurement
will be given first showing the equivalence between the compartmental
and noncompartmental definitions of the accessible pool parameters -
volume, mass, mean residence time in the accessible pool. Formulas to
calculate from the compartmental model other accessible pool noncom-
partmental parameters such as clearance rate, and rate of appearance
and disappearance will also be presented. Then, the compartmental and
noncompartmental definitions of kinetic parameters related to the whole
system will be discussed, and the domain of validity of the noncompart-
mental model will be re-examined and formalized. Next, some points
will be made related to the parameters of the nonaccessible pools. Non-
compartmental models only estimate parameters of the nonaccessible
portion of the system as a whole by evaluating the difference between
the system and accessible pool parameters. On the other hand, for
compartmental models the same parameters as those defined for the ac-
cessible pool, e.g. mass and residence time, can also be estimated for
any nonaccessible compartment. Finally, kinetic parameters from for
compartmental and noncompartmental models will be compared for the
case where two pools are accessible to measurement.

7.2 THE MEAN RESIDENCE TIME MATRIX
REVISITED

To compare the two modeling methodologies, advantage will be taken
of an interpretation of the mean residence time matrix of the compart-
mental model that is different from that discussed in §4.5. There the
i, j** element of the mean residence time matrix ® = —K~1 of a com-
partmental system was seen as the average time a particle introduced
into the system in compartment j spends in compartment i on all its
passages through i. In what follows, it will be shown that 8;; is related
to the time course of the tracer mass in compartment i resulting from
an input into compartment j.

Consider the compartmental model equation (4.3.20) rewritten

dm(t)
dt

=Km(t)+u(t)  m(0)=0 (7.2.1)

for a generic input of tracer into accessible compartment 1
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ul(t)
0
u(t) = . (7.2.2)
0
Rearranging (7.2.1), one has
mi(t) dnfilt(t) 'U«lét)
mit)=| : =K' . |-K*'| . (7.2.3)
mp(t) ‘——Hm,ﬁ(t ()

By integrating (7.2.3) from zero to infinity and remembering ® = —K~!

Jg° ma(t)dt m1(c0) = my (0) Jo~ i (t)at
: =-06 : +O 0
fooo mn(t)dt My (00) — mn(0) 0
(7.2.4)

where m;(00) indicates the value of the tracer mass in compartment i as
time ¢ tends towards infinity. Since the system is assumed to be open, i.e.
there is at least one irreversible loss pathway accessible to any particle
in the system, m;(occ) = 0. In addition, by assumption m;(0) = 0. Thus
from (7.2.4)

/0 * mit)dt = 01, /0 T u(t)dt (7.2.5)

From (7.2.5), i1 equals the area under the time course of the tracer
mass in compartment i resulting from a tracer input into compartment
1 normalized to the tracer dose, i.e.

0. — Jo© mi(t)dt
TR (bt

Equation (7.2.6) holds for any compartment, accessible or not. Consider
now a tracer input into a generic compartment, say j. The compartmen-
tal equations are the same as before, i.e. (7.2.1), but the tracer input is
now

(7.2.6)

u(t) = Ujit) (7.2.7)
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By following the same reasoning as before when (7.2.3) and (7.2.4) were
developed, the area under the tracer mass curve in compartment i re-
sulting from an input into compartment j, denoted here by m](¢) is

/oo mi (t)dt = 913‘ * Uuj (t)dt (728)
0 0
and thus
I (t)dt
0;; = ff; ()t (7.2.9)

This equation demonstrates that the ij%* element of the mean residence
time matrix @ equals the area under the model-predicted tracer mass in
compartment i resulting from an input into compartment j, normalized
to the tracer dose.

Recalling that the definition of most noncompartmental parameters
is based on evaluating areas under the tracer mass or concentration
curves, it is evident that the above interpretation of the elements of the
mean residence time matrix will help in the comparison between the
compartmental and noncompartmental model parameters.

7.3 EQUIVALENCE OF THE ACCESSIBLE
POOL PARAMETERS

The noncompartmental parameters of the accessible pool, defined in
§3.2, are the volume of distribution V, tracee mass M, clearance rate
CR, fractional clearance rate FCR, and mean residence time in the
accessible pool O, and the rates of appearance R, and disappearance Rg.
The compartmental model counterparts of 7, M, and © were defined
in §4.4 and 8§4.5 and can be written, assuming without loss of generality
that compartment 1 is the accessible pool, as V;, My, and 6.

The parameters CR, FCR, R, and R4 were defined in the noncom-
partmental framework. The compartmental counterparts of these pa-
rameters are, again assuming that compartment 1 is the accessible pool,
are CRy, FCRy, Ry and Rg. Using the relationships given in Ta-
ble 3.2.2, they can be also calculated from the compartmental model:

FCRy = - (7.3.1)
’n
i
CR,=FCRy-Vy = (7.3.2)
11
M
Ra1 = Rgy = FCRy - My = —Xv (7.3.3)

911
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First, it will be shown that ¥, M and 6 are equivalent to Vj, M; and
611 since the definitions coincide. The equivalence between FCR, CR,
R, andR; and FCR;, CRy, Ry and Rg follows.

Volume of distribution and tracee mass

Assume that a dose d of tracer is injected as a bolus into the acces-
sible pool at time zero, and that tracer concentration c(?) is measured.
The noncompartmental expression for the volume of distribution of the
accessible pool is

d
V=-—
c(0)
Suppose now that a compartmental model has be postulated to de-

scribe the system and that compartment 1 is the accessible compartment.
The measurement equation (4.3.23) is

(7.3.4)

y(t) = c(t) = Vilml(t) (7.3.5)

where y(¢) = c(t) denotes the tracer concentration. At time zero,

1 1

0) =—=mi(0) = —d 7.3.6

c(0) 7 m1(0) 7 (7.3.6)

since the value of the tracer mass in the accessible compartment at time
zero, m1(0), equals the injected dose d. Thus

i=—= (7.3.7)

Equations (7.3.4) and (7.3.7) prove the equivalence between the non-
compartmental and compartmental expressions for the volume of dis-
tribution of the accessible pool or compartment for the bolus injection
experiment. Similarly, the proof can be extended to any method of in-
troducing the tracer. For instance, if the tracer is infused at a constant
rate u, then the noncompartmental expression for the volume of the

accessible pool is
u
V= 20) (7.3.8)

The compartmental model measurement equation remains (7.3.5), but

now ¢(0) = 0. Taking the derivative of (7.3.5) and evaluating this at

time zero,

&0) = Vilml(()) (7.3.9)
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To evaluate (7.3.9), an expression for r1(0) is required. To do so, eval-
uate the compartmental model equation (4.3.11) at time zero:

my(0) = — Zn: kjim1(0) + zn: kljmj(O) + u(t) (7.3.10)
=

where in this case, ui(t) = u. Since no tracer is present in the system
at time zero, m,(0) = 0,7 = 1,---,n, and hence )(0) = u. Using this
equality in (7.3.9), an expression equivalent to the noncompartmental
expression can be obtained:

u
Vi = 20) (7.3.11)

The equivalence of the noncompartmental and compartmental tracee
mass of the accessible pool follows immediately since the tracee mass is
the volume of distribution multiplied by the tracee concentration mea-
surement.

Suppose now that the tracer measurements are expressed in terms of
the tracer to tracee ratio z(?). The equivalence of the noncompartmental
and compartmental expressions of tracee mass in the accessible pool or
compartment can be proved following the same rationale as above using
z(#) in place of c(t), and M and M in place of V" and Vj. The equivalence
of the expressions for the volumes of distribution follows easily since the
volume is the quotient of the tracee mass and concentration.

Mean residence time

From Table 3.2.4, the noncompartmental formula for the mean resi-
dence time in the accessible pool © for a bolus injection is

1 V.  V [Ze)dt  [°Ve(tydt  [5° m(t)dt
®~FerR"CcER- 4 4 ~ a4 112
where d is the dose and m(t) = Ve¢(t) is the tracer mass in the accessible
pool.

The compartmental model mean residence time in the accessible com-
partment 1 for particles entering the system into compartment 1 is the
(1,1)*" element of the © matrix (see §7.2):

- Joomi(t)dt  J7° m(t)dt

g =
T w (t)dt d

(7.3.13)

since for the bolus injection into compartment 1, d = [;° u;(t)dt. Clearly
(7.3.12) and (7.3.13) coincide since m;(t) = m(t). Therefore, when a
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single pool is accessible to tracer input and measurement, the definition
of the noncompartmental mean residence time in that pool, ©,coincides
with the compartmental model definition of the mean residence time
in the accessible compartment for particles entering the system in that
accessible compartment.

A parallel argument to that given previously holds for different meth-
ods of introducing the tracer, or when the tracer to tracee ratio is the
measurement variable.

Fractional clearance rate, clearance rate, and the rates of
appearance and disappearance

The equivalence between the compartmental model and noncompart-
mental estimates of the fractional clearance rate, clearance rate, and the
rates of appearance and disappearance follows immediately from their
definition, Table 3.2.2 and (7.3.1) - (7.3.3), and from the equivalence
between M;, V4 and 017 and M, V and 6.

In summary, these results indicate that the accessible pool parameters,
estimated using either the compartmental model or noncompartmental
modeling methodologies, coincide since their definitions coincide. In
practice, the same numerical value will be obtained for them if the same
model order is adopted, that is, if the number of exponentials in the
sum of exponential model equals the number of compartments in the
compartmental model. This guarantees that the same description for
the data will be obtained, as illustrated in the following example.

Example 1

Consider the compartmental and noncompartmental model shown in
Figure 7.3.1. Assume the tracer is radioactive, and the time units of
the experiment are in minutes. The tracer dose, injected as a bolus into
the accessible compartment, is d = 1.4 - 107dpm. The model output is
tracer concentration ¢(¢) (dpm/ml) in this compartment. Tracee con-
centration in the same compartment is 100mg/ml. The rate constants
for the compartmental model as shown in the figure, in units of min~!,
are ko1 = 0.0336, k1o = 0.1011, and kg1 = 0.0134. The volume of dis-
tribution of the accessible pool is 3372 ml. A plot of ¢(?) is shown in
Figure 7.3.1 as the graphic below the two model structures.

The mean residence time in the accessible compartment 1 is

1
911 = — = 74.6min
ko1
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Figure 7.9.1. Comparing the compartmental model (A) and noncompartmental (B)
accessible pool parameters estimates. See text for explanation.

Tracee mass .M is

My =100 - 3372 = 337200mg

The accessible pool parameters FCR;, CR1, Ry and Ry can be calcu-
lated:

1 1
FCR, = — = —— = 0.0134min "
Cfi =5~ =715 in

vV, 3372 .
CRy = 22 = 2212 _ 45.9ml
YT 746 ml/min
M 20
Ral = Ry = ——9“1 - 3?;1 60 = 4520mg/min

For the noncompartmental model, c(?) is expressed as the sum of two
exponentials

C(t) — 12026—0.1383t 4+ 29506—0.009&
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Here 4; = 1202, A; = 2950, A; = 0.1383 and A2 = 0.0098. The model
predicted tracer concentration at time zero is ¢(0) = A; + Az = 1202 +
2950 = 4152dpm/ml. Then the noncompartmental estimates of the
accessible pool parameters V, M, §, FCR, CR, R, and Ry are:

d 1.4-107
V=2 =227 _3372ml
c(0) ~ Tal152 "

M=C -V =100-3372 = 337200mg

A A
0 c(0) Ay + Ao 1202 4 2950
FCR = 1.1 _ 0.0134min !
T 9 746
vV 3372 .
CR = k7Y 45.2ml/min

R,=Ry=CR-C = 452100 = 4520mg/min

In the above example, the numerical equivalence of the accessible pool
parameters is clearly seen since in both approaches, the same model
order was adopted: a two compartment model and a two exponential
noncompartmental model. This guarantees the description of the data
provided by both models will be the same since the two exponential
model is the solution of the two compartmental model. The equivalence
would no longer hold if, for example, a three compartment model were
used for the compartmental model and a sum of two exponentials for
the noncompartmental model.

Finally, it is worth noting that the accessible pool parameters can be
recovered from the compartmental modeling approach even if the model
is not a priori uniquely identifiable, since they can be expressed in terms
of the observational parameters. The following example illustrates this
point.

Example 2

Consider the a priori nonidentifiable model Figure 6.3.1 shown shown
again for convenience in Figure 7.3.2. For this model, as already dis-
cussed in §6.3, V| is uniquelyidentifiable, M; can be uniquely calculated
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Figure 7.3.2. A two compartment model with tracer and tracee inputs into compart-
ment 1, and samples from compartment 1. See text for explanation.

from the product C;-Viwhere C} is the tracee concentration in compart-
ment 1. The parameter 6;; given in (6.3.1) can be uniquely calculated
since it only depends upon the observational parameters. Thus FCR,
CR,., R, and Ry can be calculated using (7.3.1) - (7.3.3).

For a general a priori unidentifiable n-compartmental catenary model
where the input-output experiment is in the extremal compartment 1,
Vi, My, and 61; can be solved uniquely, as indicated in §6.3. Hence
FCR,, CRy1, R, and Ry can be solved uniquely. The same results
hold for a general a priori nonidentifiable mammillary model where the
input-output experiment is in the central compartment 1.

7.4 NONEQUIVALENCE OF THE SYSTEM
PARAMETERS

In addition to the accessible pool parameters, parameters related to
the whole system such as total mass, distribution volumes and mean
residence time in the system can be estimated using either the noncom-
partmental or compartmental approach. However, as stated previously
in §3.3, the noncompartmental model correctly recovers the true val-
ues only if disposal and de novo production take place in the accessible
pool. In this section, this observation will be formalized by comparing
in more detail the noncompartmental and compartmental estimates of
the system parameters.
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Mean residence time in the system

Consider first the estimation of the mean residence time in the system
of particles entering the accessible compartment in a compartmental
model; without loss of generality, assume it is compartment 1. The
compartmental parameter is M RT), and equals the sum of the residence
times in each individual compartment of the system:

MRy =011 +601 4+ -+ 6 (7.4.1)

For the noncompartmental model the system mean residence time
MRTN¢ were given in Tables 3.3.3 and 3.3.4. For a generic input of
tracer, assuming the tracer data are expressed in terms of concentration
c(p),

Joot-ct)dt  [oTt-u(t)dt
Jo° e(t)dt Joo u(t)dt
or equivalently, since Vc(t) = m(t) where m(f) is the tracer mass in the

accessible pool

MRTNC =

(7.4.2)

Joot-m(t)dt  fo~t-u(t)dt
Jo7 m(t)dt d
since [7°u(t) = d, the total dose of tracer administered.

In order to compare M RT| defined in (7.4.1) and M RT™NC defined in
(7.4.3), one can first use (7.2.5) to relate [;° mi(t)dt to 61,

MRTNC =

(7.4.3)

e o]
/ mp(t)dt =011 -d (7.4.4)
0

Second, f;°tmy(t)dt can be related to the elements of the compartmental
mean residence time matrix ©. From (7.2.3), by multiplying each term
by ¢ and taking the integral from 0 to infinity:

Joot - ma(t)dt St dm(t) Jot -gl(t)dt
S =-0 ; +© :
Joo t - ma(t)dt St dmy(t) 0
(7.4.5)

The integral [;°¢-dm,(t) can be evaluated by integrating by parts

/0 t-dmi(t):t-mi(t)lgo—/o mi(t)dt:—/o mi(t)dt  (7.4.6)

since t - m; ()| = 0.1

'To see thatt-m,(t)|g° = 0, onehas t-m,(t)|3° = lim—oo t-m,(t) = limy oo m‘/(t” = 0 since

both terms of the fraction are infinitesimal, that is they tend towards zero as ¢ tends to infinity.




202 TRACER KINETICS IN BIOMEDICAL RESEARCH

Thus (7.4.5) can be rewritten

fgo ¢ty Jgomi(pdey (f07t
: =0 + :
Joot - my(t)dt JoC ma(t)dt 0
(7.4.7)
whence

oo o0 o0
/ £ ma(t)dt = 911/ ma(8)dt + 012/ ma(t)dt (7.4.8)
0 © 0 - 0
4 -~-+91n/ mn(t)dt+011/ £ (t)dt
0 0
Taking advantage of (7.2.5) rewritten here
oo
/ mi(t)dt = s, - d (7.4.9)
0
(7.4.8) can be rewritten
o0 o0
/ t- ml(t)dt = d[0f1 + 81901 + - +91n9n1] + 611 / t-ul(t)dt (7410)
0 0

By using (7.4.4) and (7.4.10), MRTNC given in (7.4.3) can be ex-
pressed as a function of the elements of © :
)

MRTN® :911+6210£+"'+9n1
11

bin

7.4.11
o ( )

It is now possible to relate the noncompartmental M RTNC given in
(7.4.11) to the compartmental M RT; given in (7.4.1):

012 O1n
MRTNC = MRT; — 05 (1— 2) — . =0, (1 - == 7.4.12
1 21( 011) nl( 011) ( )
Equation (7.4.12) shows that M RTNC provides in general an underes-
timation of the residence time in the system of particles entering into
compartment 1 since from the properties of the mean residence time
matrix 8;; < #11. Moreover, from the probabilistic interpretation of the

0i; elements, %:-IL = Prob[j — i], (7.4.12) becomes

However, m;(t) is infinitesimal of higher order since it decays as a sum of exponentials. Thus
m,(t) is an infinitesimal part of the infinitesimal 1/t. Thus the ratio approaches zero as ¢
approaches infinite.
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MRTNC = MRT| — 65;(1 — Prob[2 — 1))

— -+ =0p1(1 = Prob[n — 1]) (7.4.13)

showing that MRTNC underestimates M RT| by an amount equal to
the time spent in the nonaccessible portion of the system by those par-
ticles which will never return to the accessible compartment. .MRTNC
equals M RT; only when all particles leave the system from the acces-

sible compartment 1. In fact, in this case, 817 = 837 = -+ = 0,1 (see
property 4 of the mean residence time matrix, §6.2.2) or equivalently
Prob|2 - 1) =--- = Probjn — 1] = 1.

Mean residence time in the system from total body tracer
measurements

In Chapter 3, a different noncompartmental expression for the system
parameters based on whole body tracer measurements was given. It is
now easy to show that the whole body formula for the mean residence
time matrix, MRTTB, coincides with the compartmental formula for
MRT,. Using (7.2.5),

fooo mtot(t)dt
d
Joomi(t)dt + -+ + J§° ma(t)dt
d
= 0+ - +6y =MRT

MRTTB (7.4.14)

Total mass

The compartmental total mass in the system is the sum of the masses
in all compartments. In Chapter 6, M;, was expressed as the product
of the tracee production Uy and the mean residence time in the system
of particles entering the system into compartment A:

Myoe = MRT), - U, (7.4.15)

The noncompartmental formula was given in Table 3.3.2:

MpYC = MRTVC . R, (7.4.16)
In what follows, first the relationship between R, and U} will be derived.

The tracee production Uy can be estimated from the compartmental
model knowing M; and 6y:

U, = 2L
" b

(7.4.17)
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The rate of appearance in the accessible compartment is given in Ta-
ble 3.3.2 and 3.2.4 as

d d
Ri=M =M -——s55—— 7.4.18
VSV etydt T T [P ma(t)dt ( )
since following the compartmental nomenclature, V - ¢{t) = m;(¢) and
M = M,. The integral of m(t) is related to the compartmental mean
residence time 8y, (cf (7.4.4)) so that
M
R, =1 (7.4.19)
611
Comparing the formula (7.4.19) for the rate of appearance with the true
rate of production (7.4.17), one can write

Rq =Up— = Uy, - Problh — 1] (7.4.20)

showing that R, in general underestimates the true production rate by a

factor equal to the probability for de novo synthesized particles entering

compartment % reaching compartment 1. The rate of appearance R,

equals Uy either when h = 1, or when h # 1 but 6y, = 6y, i.e. when

the tracee enters the system into the nonaccessible compartment 4 but

reaches compartment 1 with no possibility of being irreversibly lost first.
By using (7.4.20) in (7.4.16),

MPE = MRTNC@Uh < MRTleﬂUh (7.4.21)
611 611
since MRTNC® < MRT.
In order to compare the compartmental M., (7.4.15), and the non-
compartmental estimate M,YC, (7.4.16), one can compare M RT}, with
the product MRTl%m. The latter term can also be written

lh

9
MRTy 2= o (B4 +6n) o
f11 611

= 91h+921—+ +9n1— (7.4.22)
011

Consider the term 021%1111 interpreted in terms of probabilities:

0 611 0
e g = Problh — 1] Prob[l — 2] - 03 (7.4.23)
f11 611 022

= Problh — 2 through 1]:62 < Problh — 2] - 699 = 6y,

Ba1-—

Similar interpretations hold for the other terms in (7.4.22) so that

MRTlﬂ <Oup+--+6nn = MRT), (7.4.24)



Compartmentai Versus Noncompartmental Kinetic Parameters 205

Finally, from (7.4.21) and (7.4.24),

MPE < MRT; - %Uh < MRT) - Uy = My, (7.4.25)
The noncompartmental estimate of the total mass thus in general
underestimates the tracee mass in the system. This estimate is correct
only when two conditions hold. First, MRTNC = MRT, (cf.(7.4.21)),
and second, 0,1%? = 0,5, (cf. (7.4.23)). The first condition is satisfied
when all irreversible loss takes place from the accessible compartment.
This implies that all elements in the first row of the mean residence
time matrix © are equal, 817 = 612 = --- = 81,,. The second condition
becomes 8,; = 65, i.e. a condition of equivalence between the first and
ht* row of the matrix. This condition can be satisfied only if h = 1.
One can conclude that M¥C provides the correct estimate of the total
tracee mass only if all irreversible loss and production occur in compart-
ment 1. This condition assures the correctness of all noncompartmental
parameters of the whole system.
These points will be illustrated in the example shown in Figure 7.4.1.

.0092

Figure 7.4.1. Comparing the noncompartmental (B) and compartmental model sys-
tem parameters estimates. Models A and B are those shown in Figure 7.3.1. Models
C and D differ from model A in that there is loss from compartment 2, and the site
of de novo tracee input differ. See text for explanation.
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Example

Consider first the noncompartmental model shown in Panel B. As-
suming a bolus injection d equal to 1.4 - 10’dpm, the concentration of
tracer in the accessible pool was

c(t) = 1202701383 | 9950, —0.0098¢

From Table 3.3.4 (and the formula written in terms of sums of expo-
nentials as described in Chapter 9 in (9.2.7)), MRTN® = 99.4min.
The rate of appearance R, can be calculated using (7.4.18), and equals
4,520mg/min. Finally, the total mass in the system, Mt];’tc, can be esti-
mated from (7.4.16); it equals 449,288mg.

Consider next model A. This is a situation in which tracer and tracee
input and losses are all into the accessible compartment 1. The mean
residence time matrix © equals

746 T4.6
©= (24.8 34‘7)

From (7.4.1), MRT) = 611 + 021 = 74.6 + 24.8 = 99.4min which agrees
with the noncompartmental estimate M RTNC. The production rate U,
can be calculated from (7.4.17)

M 337200
=-1= = 4520mg/min

Ui = 9., 746

which again agrees with the noncompartmental estimate for R, Fi-
nally, M,,, can be calculated from (7.4.15), and again agrees with the
noncompartmental estimates.

For model B, as noted in this section, there is agreement between
the two methods of estimating the system parameters since all inputs
and losses are from the accessible compartment. What happens with
the situations illustrated in models C and D? In model C, all inputs
are into the accessible compartment 1, but losses can occur from both
compartments 1 and 2. The situation is almost the same in model D
except that de novo tracee input occurs in compartment 2, i.e. U; =0
while Uy # 0.

For both models C and D, the ® matrix is

(746 678
6‘(27.3 34.7>

From (7.4.1), for both models, M RT} = 611 +62, = 101.9min; this differs
from the estimate MRTNC = 99.4min, and shows MRTNC < MRT;.



Compartmental Versus Noncompartmental Kinetic Parameters 207

Next, for model C, U; = g—’{f = 4520mg/min; this is equal to the
estimate for R, as the theory predicts. However, from (7.4.19) it is
easy to see that the estimates for the total mass in the system will be
different because the system mean residence time is different. In this
case, My = M RT) - Uy = 460, 588mg

Finally, for model D where de novo tracee input is into the nonacces-
sible compartment 2 rather than compartment 1, one has from (7.4.17)

M, 337200
Us o 678 973mg/min

a number which is considerably different from R, and U; for models B
and C. Again since My, is the product of M RTy and Us, it is clear that
for this situation the noncompartmental model will underestimate the
total mass in the system.

Model D illustrates another situation which can help explain this dif-
ference. It is easy to see in this case with tracee entering the system de
novo into compartment 2, that some tracee can be irreversibly lost along
the pathway kg2 without ever appearing in the accessible compartment.
Therefore, the tracer will not “see” the kinetics of all tracee particles.

7.5 PARAMETERS OF THE
NONACCESSIBLE POOLS

Up to this point, compartmental and noncompartmental models proved
to be equivalent in estimating the accessible pool parameters, while they
differ in estimating the system parameters. Compartmental models are
able to estimate the correct value of the mean total residence time, tracee
production and mass while noncompartmental models are only able to
provide an underestimate. The two approaches are also substantially
different in how the nonaccessible pools of the system are quantitated.
Noncompartmental models are only able to estimate the kinetic param-
eters for the nonaccessible portion of the system as a whole by subtract-
ing from the system parameters the accessible pool parameters. For
instance, the noncompartmental estimate for the mean residence time
in the nonaccessible portion of the system as denned in Table 3.3.2, de-
noted Ow, is equal to the difference between the total mean residence
time in the system MRTMC and the residence time in the accessible
pool ©. Similarly, the difference between the total tracee mass MNE
and the accessible pool mass M gives an estimate of the tracee mass in
the nonaccessible portion of the system.
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The compartmental model provides a much more detailed kinetic pic-
ture of the system under study since it permits one to estimate kinetic
parameters such as masses, productions, residence times and intercom-
partmental fluxes for any individual compartment. In addition to that,
the definition of accessible pool kinetic parameters such as the fractional
clearance rate, and the rates of appearance and disappearance can be
extended to any nonaccessible compartment since, by writing (7.3.1) and
(7.3.2) for a generic compartment i, one has

FCR; = gi (7.5.1)

i

M
Ry = Ry = M; - FCR, = 91

(7.5.2)

21

where FCR,, Ry, and Ry, are the counterparts of FCR;, R, and Rg;.
Note that the evaluation of plasma clearance rate in nonaccessible pools,
CR; = %‘; is not feasible unless the tracee concentration Cj is known

since Vi = &*.
1

Example

Consider the compartmental model shown in Figure 5.4.1B. The
kinetic parameters for the nonaccessible compartment 2 are My, =
112.088mg and 632 = 34.7min from which the fractional clearance rate,
and the rates of appearance and disappearance can be evaluated:

FCRy = gi = 0.0288min !
22

Roy = Rgo = My - FCRy = 3230mg/min

7.6 THE TWO ACCESSIBLE POOL MODEL

In this section, a comparison between kinetic parameters of the two
accessible pool noncompartmental model discussed in §3.4 and the com-
partmental model will be discussed.

7.6.1 Accessible Pool Parameters

The noncompartmental two accessible pool parameters are listed in
Table 3.4.1. The masses M; and Mj; and volumes V; and V; of the
two accessible pools are equivalent to the corresponding compartmental
masses and volumes. In fact, as noted in Chapter 3, they are the same
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as those for the one accessible pool model applied separately to the two
pools; in §7.3 the equivalence between the compartmental model and
noncompartmental estimates of masses and volumes of accessible pools
was shown. The other accessible pool parameters of Table 3.4.1 such as
rates of appearance, disappearance, irreversible removal and interconver-
sion between the accessible pools are unique to the noncompartmental
model. That is, they do not have an immediate counterpart in the com-
partmental model setting. However, they can be recovered from the
compartmental model using results given in §7.2.

For instance, the rate of disappearance “per se” from pool 1, Rp;,was
given in Table 3.4.3 for the case of the bolus injection experiment as

di (;"’zg(t —dy f3° z4(t)dt

Ro1 = 1 t)dt fé’o z% t)d j() zl( )dt fo 32( )di

(7.6.1)

} 5
Recalling that 2! (t) = ﬂ,{,,@ for i,j = 1,2, (7.6.1) can be rewritten

d Km%(t)dt d fowm;(t)dc
Rg = M, — M, (7.6.2)
fo ml(t dtf m2(t)dt f m2 dtf ml(t)dt
My M M3

From the equality (7.2.6) between the elements of the mean residence
time matrix and the areas under the tracer mass curves, Kg1 can be
derived from the compartmental model kinetic parameters as:

b — b1

Ropy=M————F"—— 7.6.3
. '011622 — 01201 (7.6.3)
Similarly,
Rys = M2M_ (7.6.4)
011022 — 612021
621
Royy=M——— 7.6.5
2 011022 — 01202 (7635)
0
Riy = M, 12 (7.6.6)

B11092 — 01201

7.6.2 System Parameters

Paralleling the result obtained in §7.4 for the one accessible pool
model, one can compare in detail the two accessible pool noncompart-
mental estimates of the system parameters with the compartmental
model ones; this will demonstrate even in this experimental configu-
ration the limitations of the noncompartmental approach.
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Mean residence times

The two accessible noncompartmental model permits one to estimate
the mean residence times in the system of particles introduced into the
system in the accessible pools 1 and2, MRTN and M RTJNC, as defined
in (3.4.19) and (3.4.20). These were written

R
MRTNC = MRT} =2 + MRT)(1 — Roy (7.6.7)
Ry Ra
System parameters
R
MRT)C = MRT?E? 4 pRT2(1 - Bo2y (7.6.8)
2Rz Rqo

The compartmental model parameters are M RTy and M RT1,, and
they are equal to the sums of the residence times in each individual
compartment of particles entering from compartment 1 and 2:

MRTy =61 +0n+ -+ 60m (7.6.9)

MRT; =612+ 02+ + bna (7.6.10)

Consider first the link between M RTN® and M RT}, and assume with-
out loss of generality, the bolus injection experiment so that M RTI1 and
MRT21 are expressed by (3.4.17) and (3.4.18). These equations are writ-
ten below in terms of the tracer and tracee masses:

fo t- ml( )dt
MRT} = Tl (0 (7.6.11)

L 5Tt mi(t)de
MRT, = mi )t (7.6.12)

By following the same reasoning as that given in §7.4 where (7.4.10) was
developed, the following equality can be derived:

00 :
/0 t-mf(t)dt = dj[0i191j+0i202j+' . '+9in9nj] 1,7 =1,2 (7613)

Using (7.6.13) and (7.2.9), MRT} and MRT} can be related with the
elements of the mean residence time matrix:

8
MRT} =611 + 021 2 402t 0n1§¥ﬁ (7.6.14)
9 11 911 011
0
MRT? =611 + 020 + 023 Y M. (7.6.15)
921 621
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An expression for Kp; as a function of the elements of the mean
residence time matrix has already been derived (7.6.3) as well as for
Rg1 = Rg1 (7.4.14). By using these equations, and (7.6.7) together with
(7.6.14)and (7.6.15), an expression for the noncompartmental parameter
MRTNC as a function of the compartmental residence times #;; can be
derived:

612 613 01n7 611(622 — B21)
MRTNC = (011 + 021~ + 031 + -+ + O o | o
RTy [ nt 2161, + 16y, o 1911]6’111922 — 01201
631 On17 021(611 — 012)
B11 + B2z + 023 2% - g o2L] T2 — F12)
+[ Ot %6 o 2n¢9'21] 611022 — O12601
(7.6.16)
rearranging (7.6.16)
NC _ 9 :
MRT{C = 6114 051 + 01| L P gzl (7617)
011 622 011 622
O1n _ 012 92n Oon _ 021 015
+ ...+9n1[911 2319;9;2_‘_922 Qf;zgf;}
1- 011 822 1- 011 022

The bracketed terms in (7.6.17) can be given a useful probabilistic in-
terpretation: they represent, respectively, the probability that a particle
goes from compartment i to compartment 1 without passing through
compartment 2 so that (7.6.17) can be written:

MRTNC = 61+ 6y (7.6.18)
n
+ Z i1 (Prob[i — 1 without passing through 2]
i=3

+ Prob[i — 2 without passing through 1])

It is clear that MRT{C coincides with M RT} if and only if the irre-
versible losses in the system take place in the accessible pools 1 and 2
only. In fact, under these circumstances, all particles from the generic
compartment i will reach either accessible pool 1 or 2 before irreversibly
leaving the system, and thus

Probli — 1 without passing through 2] (7.6.19)
+ Probli — 2 without passing through 1] =1

Similar conclusions can be drawn for MRTJ'C.
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Total mass

The compartmental total mass in the system equals the sum of the
masses in all compartments. In Chapter 6 for the case where the tracee
enters the system in compartment /4 and &

Moy = MRTUp + M RT} Uy, (7.6.20)

while the noncompartment formulas given in Chapter 3 is
MNE = MRTNCRyg + MRTC Ry (7.6.21)

In order to derive the conditions under which M,, equals Mt]gtc, re-
lationships among U, U, R;) and R, are needed. The production
rates U and U, can be estimated from the masses M; and M, and the
residence times by solving the two steady state equations

My = 010U + 014Uk (7.6.22)
Mj = 090 Up + 623Uy
From (7.6.3) - (7.6.6), R;y and Ry can be expressed as

M09 — M0
Rig= Ry + Ryy — Ri2 = 1722 22 (7623)
611622 — 012021

Ma611 — Miyy
11022 — 612621
Substituting (7.6.22) into (7.6.23) and rearranging terms, one has

Ry = Ry + Rgg — Ryy =

3

O1n _ 012 02 O _ 012
0 61, 0 ] 61, 0
R =U [ 11 11 22:’ U [ 11 11 22] 7624
10 i VYO + Uk 1— %262 ( )
f11 622 011 022
O2n _ 021014 O _ 62101k
7] 620 6 [) a2 6
R :U [ 22 22 11} U [ 22 22 11}
20 L Ty T + Uk 1= %128n
011 022 011 022

Using the probabilistic interpretation developed in (7.6.18), one can
write

Rio = UpProblh — 1 without passing through 2] (7.6.25)
+ UgProblk — 1 without passing through 2]

Rgo = UpProblh — 2 without passing through 1]
+ UgProblk — 2 without passing through 1]



Compartmental Versus Noncompartmental Kinetic Parameters 213

The parameters R;y and R,, correctly recover U, and U, if 4 and k
equal 1 and 2, that is, it de novo production takes place in accessible
pools 1 and 2. If in addition irreversible loss is only from these pools,
then

MRTN® = MRT,
(7.6.26)
MRTNC = MRT,

and from (7.6.20) and(7.6.21),

MRTNC = MRTNCRyg + MRT)NCRoy = MRT\U, + MRTyUy = My

(7.6.27)

As discussed previously in §3.4, it can be shown that in all other situa-
tions, M{Xtc underestimates M,,,.
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Chapter 8

PARAMETER ESTIMATION:
SOME FUNDAMENTALS OF
REGRESSION ANALYSIS

8.1 INTRODUCTION

In the formulas given in Chapter 3 for the noncompartmental param-
eters, the evaluation of certain integrals is needed. These integrals are
evaluated either from some specific time in the time domain of the data
to time infinity, or from time zero to infinity. In either case, one must ex-
trapolate beyond the finite time domain of the experimental data. The
evaluation of these integrals is best accomplished by providing a func-
tional description of the data. It should be noted that such a function
postulates the behavior of the system outside of the time domain of the
data.

This Chapter will provide the technical information for the mathe-
matics and statistics of obtaining a generic functional description of a
set of data. In the next Chapter, this information will be used to esti-
mate the noncompartmental parameters by using a sum of exponentials
as a functional description of the data. Some of the material covered
in this Chapter will be used again in Chapter 10 to describe parameter
estimation of linear compartmental models.

Parameter estimation is a difficult subject touching various aspects,
including statistical and algorithmic ones. Our treatment will try to
be comprehensive and in an easy language. For more details on both
fundamentals of regression, numerical algorithms statistical tests as well
as other techniques like maximum likelihood and Bayesian parameter
estimation, the reader can consult Bard [1974], Bates and Watts [1998],
Carson et al. [1983], Draper and Smith [1981], Landaw and DiStefano
[1994], and Seber and Wild [1989].

215
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8.1.1 The Nature of the Regression Problem

In what follows, denote by y(¢) the model output variable. Depending
upon the experiment, y(f) can be tracer concentration or the tracer to
tracee ratio. For purposes of providing a functional description of the
data, the physical meaning of y(¢) is not relevant. A function y(¢) chosen
to describe a set of data is characterized by a set of parameters. For
example, the polynomial

y(t) = Ag + At + Agt? (8.1.1)

is characterized by the independent variable ¢ which in tracer experi-
ments is usually time, and the coefficients 4y A; and 4, These coef-
ficients are the parameters for this polynomial. On the other hand, the
exponential expression

y(t) = Aje™™t 4 Age™?2! (8.1.2)

is characterized by the independent variable ¢, the coefficients 4, and
A, and the exponentials A; and Ag. The parameters here are the coef-
ficients and exponentials. If either of these functions were being used to
“describe” a set of data, the parameters characterizing them need to be
“adjusted” until a set of values for them is obtained which provides the
“best fit” to the data. Regression analysis, which will be defined and
described in detail below, is the most widely used method to “adjust”
the parameters characterizing a particular function to obtain the “best
fit” to a set of data.

It will be seen that there are fundamentally two kinds of regression:
linear and nonlinear. The theory of linear regression is mathematically
precise with the formulas for the parameters characterizing the function
specifically defined. Nonlinear regression is more complex and results
only in approximations of the estimates of the parameters. In addition
to the parameter estimates, for both linear and nonlinear regression, one
usually wants information on the the errors of the parameter estimates.
To obtain estimates of these errors, one moves to weighted regression.
In weighted regression, a knowledge of the error structure of the data
is needed. These errors are used to calculate the weight assigned to a
datum during the regression process. The importance of understanding
the nature of the error in the data and how this relates to weighted and
unweighted regression is an essential ingredient of the regression problem
which will be made transparent. Thus there are several ingredients to
the regression problem. These will be isolated and explained in detail
with examples provided.



Parameter Estimation: Some, Fundamentals of Regression Analysis 217

With an understanding of the regression problem and an appreciation
of the complexities of nonlinear regression in particular, it will become
clear that a prerequisite for a successful nonlinear regression is a good
software tool, i.e. a computer program which has a robust algorithm
for the estimation procedure which also provides statistical information
about the fit. This can provide the investigator with an informationally
rich output including not only the numerical estimates of the param-
eters but also a measure of their precision. In addition, a number of
diagnostic tests on, for example, the residuals are available to assess the
appropriateness of a particular functional description of the data.

How do such software tools work? What does the investigator need
to know to use them? The essential ingredients are illustrated in Figure
8.1.1 below:

DATA FINAL
ESTIMATE

ERRO? WEIGHTED PRECISION

IN DATA NONLINEAR

REGRESSION

MODEL FIT

INITIAL RESIDUALS

ESTIMATES

Figure 8.1.1. Schematic for the input into and output from a computer package
utilizing weighted non-linear regression.

Here, the box labeled weighted nonlinear regression represents the
algorithm the chosen software tool will utilize to perform the weighted
nonlinear regression. The investigator must supply certain information,
or input, in order to utilize the tool. First, the model must be specified;
in the case discussed here, these are the equations that are going to be
used to describe the data. These equations are characterized by a set of
parameters which are to be estimated from the data. The investigator
must supply the data, and an error estimate for each datum; as will be
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seen, these errors will be used to assign weights to the data. Finally,
initial estimates for each of the parameters must be provided. From
the software tool the investigator obtains an output which includes (i)
estimated parameter values, (ii) information on the fit (e.g. residuals and
sums of squares of residuals), (iii) precision of the individual parameter
estimates, and (iv) correlations among the parameters.

Before starting, a very basic point should be made. That is that the
first step in the analysis of any set of tracer data should be plotting the
data. Whereas this point is so obvious it hardly needs stating, there
are many investigators who do not do this, but go directly from the
measured sample values to some software tool to process their data.

Why is this step important? The reason is that the investigator should
look first for the qualitative characteristics of the data, i.e. features such
as the shape of the curve, the times at which “breaks” appear, apparent
bumps or humps in the curve, and data that might be spurious. In
short, the investigator should become acquainted with the data before
proceeding to a quantitative description of them. It is only through
this exercise that certain characteristics will be recognized as consistent
among various sets while other will be unique to a given set suggesting
possible problems with a particular experiment. In addition, by going
through the exercise of a careful qualitative evaluation of the data, an
investigator can often get a feeling for the parameter estimates or how
much information he might actually obtain from the data.

As an example, consider the data given in Figure 8.1.2. These data are
from a turnover experiment in which a tracer was injected as a bolus in
the system, and serial plasma samples taken for 20 days. On day 9, the
subject was given a drug, and the investigator wanted to know whether
or not the drug affected the metabolism of the tracee as reflected by
changes in the tracer decay curve.

Figure 8.1.2-B shows the best fit obtained from a sum of two expo-
nentials. In Figure 8.1.2-C, a best fit of the data to day nine by a sum
of two exponentials is given; the dotted line shows how this functional
representation of the data would extrapolate to day 20. The solid line
beyond day 9 represents a best fit of those data to a monoexponential.
This last curve indicates clearly there is a “break” in the data starting
at day 9. Obviously the two curves in Figure 8.1.2-B and Figure 8.1.2-C
support markedly different conclusions.

This example should make the reader aware of the amount of in-
formation about the system that has been obtained qualitatively from
simply plotting the data. One should also be aware of how drawing a
curve through the data can bias the interpretation of the data. Fig-
ure 8.1.2 illustrates a situation where if one had tried to draw just one
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Figure 8.1.2. A. The data from the turnover study described in the text. B. The

total data set described by a sum of two exponentials. C. The data to day nine
described by a sum of two exponentials, and extrapolated to day 20 (dotted line),
and the data fitted first to day nine, and then to day 20 (solid line). See text for
additional explanation.

curve through the data, the richness contained therein could have been
missed, and possibly an erroneous conclusion reached.

The plots shown in Figure 8.1.2 are semi-logarithmic. For purposes of
investigating data “by hand”, these are very useful since they indicate
how many exponentials may be required to describe the data; this in
turn means the number of compartments in a compartmental model.
This will also be used in Chapter 9 where a discussion of obtaining
initial estimates for the exponentials in a sum of exponentials is given.
However, following a fit, the linear plot is more informative. Thus in
this Chapter, the plots given after a successful fit will be linear unless
otherwise noted.

Once the investigator has thoroughly studied the data through this
qualitative graphical analysis, it is time to obtain a functional descrip-
tion of the data in order to subsequently estimate from it the kinetic
parameters of interest. This is the subject of the rest of this Chapter.
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8.1.2 Linear and Nonlinear Parameters

What constitutes a linear or nonlinear parameter? It is important
to understand this since, as seen in the next section, there is an exact
solution when the model contains only linear parameters while, as seen
in §8.3, the solution is only approximate if the model contains at least
one nonlinear parameters. In particular, if y(¢) is characterized only by
linear parameters, one uses linear regression and can obtain an exact
solution. If there is at least one nonlinear parameter in )(f), nonlinear
regression must be used, and the parameter estimates, as will be seen,
are approximate.

There are many kinds of functions which are linear in their parame-
ters; polynomials such as the following are but one:

y(t) = Ag + Art + Agt® + ...+ Apt" (8.1.3)

This polynomial y(¢) is characterized by the coefficients Ag, A(, Aa, ..., A
which are the parameters to be estimated in data fitting, and the inde-

pendent variable is . Why are polynomials linear? The reason why can
be illustrated by using the simple polynomial

y(t) = At = y(A, t) (8.1.4)

When y(t) = y(A,¢) is written in this manner, it indicates y as a function
of the independent variable ¢ and of the value assigned to the parameter
A. That is, y(f) will assume different values depending upon a specific
value for 4. The function y(f) is linear in the parameter 4, or equiva-
lently the parameter 4 in (8.1.4) is linear because if the value .4 + A’is
considered, then

y(A+ A t) = (A+ ANt = At + A't = y(A,t) + y(A, 1) (8.1.5)

For example, doubling the value for the parameter 4 will double the
value for the function y(f).

If y(¢) is not linear in at least one of its parameters, or equivalently if
not all parameters describing y(¢) are linear, then y(¢) is nonlinear. Non-
linearity is seen when the counterpart of (8.1.5) cannot be written for
a particular function. For example, the exponential function y(¢) given
in (8.1.2) is nonlinear since y(A; + A}, M + A}, A2 + A, Ay + A, t)is
not equal to the sum of y( A1, A1, Az, Ao, t) and y{ A}, X, A%, Ay, t). This
function is linear in A; and As and nonlinear in A; and ). How to
deal with these functions will be discussed in §8.4. One should be aware
of the fact that the two types of functions are the basis for the two
types of regression discussed in this Chapter. If the function is linear,
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one uses linear regression; if the function is nonlinear, one uses non-
linear regression. As will be seen, while the linear regression problem
can be solved “exactly”, the nonlinear regression problem involves ap-
proximations based on the linear theory. Thus an understanding of the
linear regression material covered in §8.2 is essential to understand the
nonlinear regression material presented in the following sections.

8.2 BASIC CONCEPTS OF REGRESSION
ANALYSIS

8.2.1 The Residual

The basic notions of regression, i.e. finding a set of parameter values
which define a function which will provide the best fit for a set of data,
can be described using the data given in Figure 8.2.1.

T T T T T T
4
w0® -
tI Yobs ( t i ) L <4 3
10 60 20 b 3
20 70 . v <+
30 90 ) 3
40 180 > < ]
50 230 20 | <4 .
60 200 <
70 300 : .
80 290
20 350 100 | & s
100 420 o 4 ]
a&l i —_— L . 1 1 1
0 20 40 60 80 100
Minutes

Figure 8.2.1. Data to be used to illustrate linear regression. See text for explanation.

Suppose an investigator wishes to obtain the best fit of these data to
the straight line

y(t) = At (8.2.1)

How can this fit be obtained?
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To solve the problem, one sees that, for different values of 4, different
straight lines will be generated. How does one find the particular value
for A which provides the best fit?

Note that for each point in time t; where there is a datum, denoted
Yobs(ti), there is a corresponding value predicted from y(¢), y(¢;). Once a
value for 4 is chosen, the difference between the experimentally observed
datum and the calculated value, i.e. yops(t;) — y(¢;), can be calculated;
this is called the residual. In general, if y(¢) is a function to be fitted to
a set of data, and if yns(2;) is the i** observation, the residual is written

res(t;) = Yobs(ti) — y(t:) (8.2.2)

Suppose in (8.2.1), A = 3.5. The calculated value and residuals are
shown in Table 8.2.1; these are plotted in Figures 8.2.2A and B.

Table 8.2.1.
ty Yobs () y(t) res(t;)
10 60 35 25
20 70 70 0
30 90 105 -15
40 180 140 40
50 230 175 55
60 200 210 —10
70 300 245 55
80 290 280 10
90 350 315 35
100 420 350 70

One sees in Figure 8.2.2A that with A = 3.5 the fit is not particularly
good. This is emphasized by the plot of the residuals in Figure 8.2.2B
where clearly there are more residuals that are positive than negative.
The best fit with A = 3.997 is shown in Figure 8.2.2C along with the
residuals in Figure 8.2.2D which now are more randomly scattered about
0. The question is: how was this fit obtained? This question will be dealt
with in detail in subsequent sections of this chapter.

8.2.2 Residual Sum of Squares
The expression:

N N
RSS = (yabs(ti) — y(t:))? = D res’(t:) (8.2.3)
i=1

i=1
where N is the number of observations (N = 10 for the data in Fig-
ure 8.2.1) is called the residual sum of squares, RSS, since yups(t:) —
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Figure 8.2.2. Panel A. The data given in Figure 8.2.1 are plotted together with a
line calculated from the polynomial y(t) = 3.5¢. Panel B. The plot of the residuals.
Panel C. The “best fit” by y = 3.997t. Panel D. The plot of the residuals for the best
fit. See text for additional explanation.

y(t;) can be considered as the error between the observed and predicted
value for each sample time t;. For the data given in Figure 8.2.1 and
the polynomial y = 3.5¢, the squares of the residual and RSS are given
below in Table 8.2.2.

The residual sum of squares, RSS, can be considered a measure of
how good the fit is to the given set of data. For different numerical
values of the parameter characterizing (8.2.1), i.e. for different numerical
values for 4, one will obtain a different RSS. Therefore RSS itself can
be considered as a function of the parameter characterizing the linear
function chosen to describe a set of data. One can write RSS = RSS(A)
for (8.2.3) to underline this fact.

The idea behind regression is to minimize RSS with respect to the
parameter values characterizing the function to be fitted to the data,
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Table 8.2.2.
t, yobs(tz) y(tt) reS(tl) resz(t)
10 60 35 25 625
20 70 70 0 0
30 90 105 -15 225
40 180 140 40 1600
50 230 175 55 3025
60 200 210 -10 100
70 300 245 55 3025
80 290 280 10 100
90 350 315 35 1225
100 420 350 70 4900

RSS = 14825

i.e. to find a set of parameter values for y(f) which minimizes RSS. The
process is called least squares. In the case of the function defined in
(8.2.1), the problem would be to find a value for 4 which minimizes
RSS for the set of data given in Figure 8.2.1. Figure 8.2.2-C and D show
the results of such a minimization process; how this was reached will be
described in detail in §8.4.

Another important ingredient of regression is a number commonly
encountered in statistics: degrees of freedom. Suppose a function y(?)
described by P parameters is to be fitted to a set of N data points; the
degrees of freedom is defined as the number N - P. For the example
above, y(t) given in (8.2.1) is characterized by the single parameters A,
hence P = 1. The number of data given in Figure 8.2.1 is 10, hence N =
10. In this example, the degrees of freedom is 9. The degrees of freedom
are important since in order to solve the regression problem, i.e. to find
one set of parameter values for which RSS is minimum, it is necessary
that the degrees of freedom is one or greater. If the degrees of freedom
is less than one, there are an infinite number of parameter values which
will minimize RSS.

8.2.3 Weights and Weighted Residual Sum of Squares

As discussed in detail in §8.3, data have errors associated with them.
Basically this means that one may have more confidence in some data
than in others, i.e. some data may be more “important” than others
in the fitting process. One would like some means by which to give
greater importance to these data. This is accomplished through assign-
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ing weights to each datum; how this is commonly done will be discussed
in more detail in §8.3.

The assignment of weights is reflected in the sum of squares. If y(¥) is
a function to be fitted to a set of data and y,ps(t;) is the i** observation,
the expression:

WRSS = Zwl (Yobs(t:) Zwreb (8.2.4)
i=1

where N is the number of observations is called the sum of weighted
residual sum of squares, WRSS, since /w;(yobs(t.) — y(t;)) can be
considered as the weighted error between the observed and predicted
value for each sample time ¢,. Extending the above, the theory behind
minimizing WRSS is called weighted least squares (WLS). In this
expression w; is the weight assigned to the i* datum, and the weighted
residual is written

wres(t:) = v/ (yons (t:) — y(t)) (8.2.5)

RSS and WRSS are functions of the parameters characterizing a func-
tion y(f). They are examples of what in the theory of optimization are
called an objective or cost function. While there are other objective
functions that can be used, RSS and WRSS are most commonly used in
the analysis of tracer data, and will be the focus of this text.

8.3 THE ASSIGNMENT OF WEIGHTS TO
DATA

8.3.1 Introduction

In §8.2, RSS and WRSS were defined. The difference between the two
is that in the latter case a weight w; was assigned to each datum. How
are these weights obtained? It is natural to link the choice of weights to
what is known about the precision of each individual datum. In other
words, one seeks to give more credibility, or weight, to those data whose
precision is high and less credibility, or weight, to those data whose
precision is small. In this section, the following will be discussed: (i)
how to obtain an estimate of the error affecting a set of data, and (ii)
how to use the errors to assign weights and thus calculate WRSS.

Clearly the sources of error are many and depend upon a given ex-
perimental situation as well as the system being studied. While the
investigator has some degree of control over some errors such as those
involved in the various procedures one must go through in the prepara-
tion of samples for measurement of tracer or tracee concentration, other
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problems that are unknown or go unnoticed will, in general, produce
systematic errors that are often extremely difficult to uncover.

8.3.2 Description of the Error in the Data

Suppose one is fitting a function y(¢) to a set of data. In what follows,
it will be assumed that the function y(f) is the correct model for the
data being considered. As part of the theory to be developed in this
Chapter, information is recovered from the fitting process to test if this
assumption is in fact “correct”.

To start, for each datum yeps(t;) at sample time ¢;, there is a mea-
surement error term e(t;). It is usually assumed that this term is
additive, i.e. can be expressed

Yobs (t) = y(t:) + e(ts) (8.3.1)

In general, one knows little or nothing about e(¢;), and hence assump-
tions about its characteristics must be made. The most common as-
sumption is that the errors e(t;) are independent with zero mean and
variance either known or known up to a proportionality constant. What
this means can be formalized in the statistical setting using the notation
E, Var, and Cov to represent respectively mean, variance and covariance.
Then:

E(e(t;)) = 0 (8.3.2)
Cov(e(t:), e(t;)) =0 for ¢; # t; (8.3.3)
and
Case a : Var(e(t;)) = o2(t;) (8.3.4a)
Case b : Var(e(t;)) = v(t;)o? (8.3.4b)

Equation (8.3.2) means the errors e(¢;) have zero mean; (8.3.3) means
they are independent, and (8.3.4) means the variance is either known
(case a) or known up to a proportionality constant (case b). In these
equations, o2(t;) and w(t;) are assumed to be known, and o*is the
unknown proportionality constant. A standardized measure of the error
is case a and b is provided by the fractional standard deviation FSD,
or the coefficient of variation CV:

FSD(e(t;)) = CV(e(t;)) = S—;)Ei((:% (8.3.5)
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where SD is the standard deviation of the error

SD(e(t;)) = 4/ Var(e(t;)) (8.3.6)

The FSD or CV are often expressed as a percent, i.e. the percent frac-
tional standard deviation or percent coefficient of variation, by multi-

plying S2eid) in (8.3.5) by 100,
The difference between case a and b in (8.3.4) is that in case a the

precision of the measurements of ys(t,) is assumed to be known while in
case b only the relative values v(t;) of the Var{e(t;)) are known,i.e. o?is
unknown. For instance, if Var(e(t;))is unknown but constant for all ¢;,
then clearly from (8.3.4)b, v(t;) = 1, and o? denoted the unknown value
of the variance. Similarly if Var(e(¢;)) is unknown but proportional to
the square of the measurement, or equivalently FSD(e(t;}) is unknown
but constant, then v(t;) = y2%,(t:;), and 0% now denotes the unknown
value of the square of the fractional standard deviation. It is known
that if the errors e{t;) are Gaussian, (8.3.2)-(8.3.4) specify completely
the probability distribution, otherwise they can be seen to provide a
description based on the first two moments (mean and variance).

Finally, using the fact that if Y is a random variable, and « and 3
are constants, Var(a+8Y) = *Var(Y), one has from (8.3.1) that, since
y(t;) is constant, Var(yess(t;)) = Var(e(t;)), that is, the variance of an
individual datum and of its error are equal.

8.3.3 Weights and Error Variances

Knowing the error structure of the data, how are the weights w; cho-
sen? The natural choice is to weight each datum according to the inverse
of the variance. For the two cases introduced above, case a when the vari-
ance of the error is known (called absolute weighty, and case b when
it is known up to a proportionality constant (called relative weights),
the weights are defined as follows:

1
Case a: w; = 25 (8.3.7a)
1
Twy = 8.3.
Case b : w; o) (8.3.7b)

It can be shown that this natural choice of weights is optimal in the linear
regression case, i.e. it produces the minimum variance of the parameter
estimates. Therefore, it is very important to have a correct knowledge of
the error of the data, and to weight each datum according to this error.
Note that only the pattern of weights, i.e. 1/v(t;) or in other words the
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relative precision of the data points, needs to be assigned, and even the
use of an approximation of this pattern is better than unweighting the
data.

The problem now is how to estimate the error variance. Ideally one
would like to have a direct estimate of the variance of all sources of error.
This is a difficult problem. For instance, the measurement error is just
one component of the error; it can be used as an estimate of the error only
if the investigator believes the major source of error is after the sample
is taken. To have a more precise estimate of the error, the investigator
should have several independent replicates of the measurement Yups(;)
at each sampling time #; which can estimate the sample variance o*(¢;)at
t,. If there is a major error component before the measurement process,
for instance an error related to drawing a plasma sample or preparing a
plasma sample for measurement, then it is not sufficient to repeat the
measurement per se on the same sample several times; in theory in this
situation it would be necessary to repeat the experiment several times.
Such repetition is not often easy to handle in practice. Finally, there
is the possibility that the system itself can vary during the different
experiments.

In any case, since the above mentioned approach estimates the vari-
ance at each sampling time ¢;, it requires several independent replicates
of each measurement. A more practical approach will be outlined in the
following sections of this Chapter. This consists of postulating a model
for the error variance and estimating its unknown parameters from the
experimental data.

8.3.4 A Model of the Error Variance

A flexible model that can be used in tracer studies for the error vari-
ance is

o2(t:) = a + B(y(t))” (8.3.8)
to be approximated in practice by
Ug(tl) =a+ ﬂ(yobs(ti))’y (839)

where « £ and <y are model parameters relating the variance associated
with an observation to the value of the observation itself. As explained
below, arbitrary values can be assigned to these parameters, or they can
be estimated from the data themselves.

The three classical applications of the above formula are described
below. They are illustrated in Figure 8.3.1 using the function y(t) =
26256*0.09t + 32506_0‘00%.
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Figure 8.3.1. The top panel shows a graph of y(t) = 2625¢™ %" 4-3250¢ 9% This
function will be used to illustrate (8.3.9). Cases A, B and C illustrate respectively
constant variance, constant FSD, and Poisson statistics (see text for additional ex-
planation). For each case, the top figure is a plot of the variance versus y(t) and the
bottom figure is a plot of the FSD versus y(t).

In Case A, one has a constant variance, i.e. 3 = () whence
o?(t;) = a (8.3.10)

Thus:
o(t;) = Va (8.3.11)
Y O(tl) _ \/a
FSD(e(tl)) B yobs(tz) B yObS(tl) (8.3‘12)

In Case B, one has a constant coefficient of variation or FSD, i.e. a =0
and v = 2. In this case:

o (t;) = Byos(t:) (8.3.13)

Thus:
o(t:) = VB Yobs(t:) (8.3.14)
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FSD(e(t;)) = VB (8.3.15)

For example, if § = 0.01, FSD = 0.1. The error associated with each
datum is therefore 10% of the datum. In Case C, one has Poisson (count-
ing) statistics, i.e. @ =0 and v = 1. Hence:

UQ(ti) = ﬁyobs(ti) (8316)
Thus
a(ti) =y ﬁyobs(ti) (8.3.17)
Y 5
FSD(e(t:)) = vl (8.3.18)
Example

To see the effect that the different choices of «, [ and <y have on
assigning the weights w; and ultimately on WRSS, consider the data
given in Figure 8.2.1 which are to be fitted by y(t) = At. WRSS(4)
for this function depends upon these weights. Two separate weighting
schemes are illustrated in Table 8.3.1 below, and WRSS(4) is calculated
for each case when A = 3.5.

Tuble 8.3.1.
A B C
w, =1 o2(t;) = 100 o2 (t:) = (0.1 - yobs(t:))?

t, Yobs (t:)  y(t.) res®(t.) w,  wres?(t;) w; wres?(t:)
10 60 35 625 0.01 6.25 0.028 17.361
20 70 70 0 0.01 0.00 0.020 0.000
30 90 105 225 0.01 2.25 0.012 2.778
40 180 140 1600 0.01 16.00 0.003 4.938
50 230 175 3025 0.01 30.25 0.002 5.718
60 200 210 100 0.01 1.00 0.003 0.250
70 300 245 3025 0.01 30.25 0.001 3.361
80 290 280 100 0.01 1.00 0.001 0.119
90 350 315 1225 0.01 12.25 0.001 1.000
100 420 350 4900 0.01 49.00 0.001 2.778

RSS = 14825 WRSS = 148.25 WRSS = 38.303

In Table 8.3.1, the two situations are illustrated in columns B and
C labeled o%(t;) = 100 and o?(t;) = (0.1yeps(t:))? respectively; the in-
dividual entries in each of these columns are the weights w; calculated
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according to the formula w; = E’ﬁ Column A is simply the square
of the residuals, and RSS(4) equals 14825. As noted above, this cor-
responds to the case when w; = 1 for all data. Column B illustrates
the weights for a constant variance; in this case o%(t;) = 100 whence
w; = .01 for each datum. In this case, WRSS(A4) = 148.25. Column C
illustrates the weights for a constant coefficient of variation; in this case
o2(t;) = (0.1 - yobs(ti))>whence w; varies for each datum. In this case,
WRSS(A) = 38.3.

Clearly WRSS(4) varies widely and depends upon how the w; are
selected. How this selection actually affects WLS will be discussed in
§8.4 and §8.5.

While using a constant SD or FSD is commonly used to define the
error structure in a set of data, there is another alternative. In the next
section, how to estimate the parameters «, 3 and 7y of the error model
(8.3.9) from experimental data will be discussed. This is important
since in most situations no information is available a priori on the error
variance.

In closing, it should be noted that only the pattern of weights, i.e.
v(t;), or in other words the relative precision of the data points, needs
to be assigned if the variance of each data point is not known or difficult
to determine. The previous example illustrates that it is important to
know how the assignment of weights to data will affect the sum of squares
and ultimately the parameter estimates and their precision.

8.3.5 Estimating the Parameters of the Error Model
from Standard Samples

One possible approach to estimate the model parameters «, F and
v of a%(t;) = a + B(yobs(ti))” given in (8.3.9) from experimental data
is based on the use of standards. These are samples for which several
independent replicates of the measurement process are available. The
assumption must be made that all sources of measurement error in the
experimental data are present in these standards, and that the standards
cover the range of values observed in the experimental data.

Denote by N; the number of replicates for a generic standard, and
by y1,--+,yn~, the values for each of the replicates. The value to be
associated with the standard is the mean of the replicates:

1 &
Yobs = TV_ z Yk (8319)
T k=1
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An estimate of the variance of the standard defined in (8.3.19) given by
(8.3.20):

N,
. 1 o
62 = > Wk — Yobs)? (8.3.20)
Ny -1 =
For all of the standards, plotting either &2 or the ratio 2 Versus Yobs

often suggests the appropriate relation. For instance, if the sbackground
variance « is negligible and can be assumed to equal zero, then a plot
of log(&?%) versus log(yops) is a straight line whose slope estimates ~in
(8.3.9). A value of 2 for the exponent ~ in tracer studies is quite frequent;
this situation of course is a constant FSD.

Using the standards to estimate a, 3 and v in (8.3.9), one can then ap-
ply (8.3.9) to each generic measurement yqps(t;) to estimate the variance
of the error e(t;)). An example is given below.

Example

Suppose one wants to determine the variance associated with mass
spectrometry measurements of peak intensity ratios in plasma during a
stable isotope glucose tracer experiment in the range of 1-15%. One
can prepare, for instance, four standard samples by mixing natural and
tracer material in different proportions, and measure ten aliquots of each
sample. An example of the kind of results one might expect from such
a strategy are summarized below in Table 8.3.2.

Table 8.5.2.
Yobs 01\2 & F/S\l)
1.06 0.00238 0.049 4.60%
2.18 0.00297 0.054 2.50%
8.88 0.0133 0.115 1.30%
13.96 0.0236 0.154 1.10%

The results given above suggest that a variance model such as
o2(t) = « (8.3.21)

or
o (t.) = Bydys(ti) (8.3.22)

is not appropriate since neither the variance nor the fractional standard
deviation are constant.
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An appropriate model for the variance (see Figure 8.3.2) can be ob-
tained by regression analysis (see §8.4) by fitting the function o2(t;) =
o+ B(yobs(ti))? defined in (8.3.9) to y2,(¢;) versus the data listed under
&2 in Table 8.3.2. The results are

a?(t,) = 0.0028 + 0.00011y2,,(t;) (8.3.23)

0.02

0.01

Yobs

Figure 8.3.2. Plot of the best fit of 02(t1) = a + O(yobs(t.))” to the data given in
Table 8.3.2. See text for additional explanation.

8.3.6 Estimating the Parameters of the Error Model
from Replicates of the Measurements

Often, to improve the precision of the measurements, samples are
measured at least in duplicate or triplicate since the variance of the
measurement error is reduced, as compared with the single measurement
situation, by a factor equal to the number of replicates. The value of
the sample is obtained by averaging the measurements of the two or
three replicates (see (8.3.19)). However, since the number of replicates
for each sample is small, the sample variance (8.3.20) is only a rough
estimate of the true variance.

However, duplicates or triplicates can be used to derive a better es-
timate of the variance of the measurement error if a large number of
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measurements are available. For instance, data from the same exper-
iment performed in a number of different subjects can be pooled. A
procedure to do this is illustrated in the following example.

Example

Suppose in a glucose tracer kinetic study, radioactivity is quantitated
in each plasma sample in triplicates. Suppose in addition that a total of
100 samples ranging from 20,000 cpm/ml to 400,000 cpm/ml are ana-
lyzed from experiments in 4 subjects. Denote by y;, y2 and y3the three
measurements for a generic sample. (In the general situation, one would
have N, samples yi,: -, yn,; here N, = 3). Then the “observed” value,
Yobs associated with this sample is the mean of the three measurements:

N,

1 & tuya
Yobs = 3 O Uk = gl—y;ﬂ (8.3.24)
T k=1

The variance of the measurement error is reduced by a factor equal to
N,. Then an estimate of the variance associated with ygps is

N 3
. 1 X 1
5 = N. -1 Z(yk - yobs)2 = 2 Z(ylc - yobs)2 (8.3.25)
T k=1 k=1

%[(yl ~ Yobs)* + (y2 — Yobs)® + (Y3 — Yobs)”]
Due to the low precision of these estimates, the plot of 62 versus Yobs
(Figure 8.3.3) shows a cluster thus making it difficult to derive the model
for &2

To facilitate the detection of this relation, it is convenient to split
the observation range into a number of intervals, and examine the mean
value of 42 or equivalently of the ratio Lb within each interval. The
results are summarized in Table 8.3.3 and Splotted in Figure 8.34. As
seen in the Figure, the variance increases with the measurement in a
quadratic fashion, or equivalently the fractional standard deviation is
approximately constant. The model for the variance is then

a?(ti) = B yhs(ti) = 0.000225y2,,(t,) (8.3.26)

where the numerical value for 3 has been evaluated by averaging the
square of the fractional standard deviations in Table 8.3.3.
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Figure 8.3.3. A plot of the sample variance of the mean versus the mean
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of each

Table 8.5.5.
Range (cpm/ml) o2 & FSD
0-25,000 130,016.16 345.96 0.0222
25,000-50,000 263,953.03 519.04 0.0132
50,000-75,000 506,885.59 738.26 0.0117
75,000-100,000 755,615.63 960.73 0.0109
100,000-125,000 1,629,800 1344.63 0.0118
125,000-150,000 4,286,529 2294.02 0.0165
150,000-175,000 3,136,463 1713.05 0.0105
175,000-200,000 10,818,588 3600.83 0.0193
> 200, 000 15,032,556 4063.37 0.0175
20000000
o 15000000
Q
c
[
T
g
2 10000000 -
«
3
5000000 -
o L] L]
100000 200000 300000
Range (cpm/ml)

Figure 8.8.4. Bar graph of the mean variance for the ranges given in Table 8.3.3. The
continuous line is a plot of 52(t;) given in (8.3.26). See text for additional explanation.
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8.3.7 Propagation of Errors

In some circumstances, the data y,,(¢;) are obtained by combining
different primary measurements usually based upon different techniques.
For instance, suppose that yeps(t;) is the concentration in plasma of in-
tact monoiodinated insulin. In order to quantify y,,,, one can measure by
scintigraphic methods the total concentration of radioactivity in plasma
associated not only with intact insulin but also with its degradation frag-
ments, and by liquid gas-chromatography the relative amount of intact
material in the sample. Intact radioactive insulin data are thus obtained
as the product of two measurements. The problem is how to derive an
estimate of the error variance affecting y,,s(t,) from a knowledge of the
error variances associated with the two primary measurements. In other
words, how do the errors associated with the two primary measurements
propagate to the error associated with y,ps(2;) itself?

Suppose, for example, that ¥yg(t;) is obtained as a function f of two
measurements m (¢;) and ma(t;):

Yobs (t) = f(ma(ti), ma(t:)) (8.3.27)

Denote by e;(t,) and ea(t;) the errors associated with m; and mq. If
they are independent, a first order approximation for the variance of the
error e affecting yqps 1S

of
8m1 t

Var(e(t) (2o PVar(er () + (g, Var(ea(ts) (83.29)

where 3—3"% and BQng are the partial derivatives of f with respect to m;

and mq evaluated at t = ¢,.

Example 1

Suppose the m; and my are two independent measurements, and that
Yobs 18 the difference between the two:

Yobs(t:) = my(t;) — ma(t,) (8.3.29)

By using (8.3.28), an approximation for the variance of the error e af-
fecting yeps can be computed from the variances of the errors associated
with m, and msy:

Var(e(t;)) =~ Var(e;(t;)) + Var(ea(t;)) (8.3.30)

. af _ af _ . .
since Fn{—l = a—m% = 1. Therefore the error affecting y.ps has variance
approximately equal to the sum of the variance of the errors associated
with measurements m; and mo.
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If on the other hand y,s is obtained as the product of the m; and m
measurements

yobs(tz) = 7”1(t1) : 7712(t1) (8.3.31)
the variance associated with y,,s is given by
Var(e(t;)) = mao(t;)*Var(ey (t,)) + my (t:)* Var(ea(t,)) (8.3.32)

or equivalently

_ Var(e(t,)) Var(ei(t:)) | Var(ea(t,))
PSDYet) = “E ) T Tmi) T omdy O

= FSD%(e(t;)) + FSD?(ea(t;))

That is, the square of the fractional standard deviation of the error of
Yobs 18 the sum of the squares of the fractional standard deviations of
the errors of m; and mao.

8.3.8 Estimating Error Model Parameters from
Extended Least Squares

The procedures discussed so far for estimating the error model pa-
rameters require replicates of all, or some at least, measurements. An
alternative approach, which does not require replicates, still consists of
postulating a model for the error variance such as o2(t;) = o+ Byops(ti)”
given in (8.3.9), but its characteristic unknown parameters are estimated
simultaneously with the unknown parameters characterizing the model
of the system under study. The idea is to use an “extended” form of the
weighted residual sum of squares WRSS, EWRSS [Peck et al., 1984]:

EWRSS = z[ (et = (0 + ()| (3:3.34)

1

ti)
The problem now is to minimize EWRSS not only with respect to the
unknown parameters characterizing the function y (¢) to be fitted to the
data, but also to the unknown parameters characterizing the function
o?(t;), i.e. the parameters a, § and « in (8.3.9). This requires an
extension of the weighted least squares machinery.
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8.4 THE FUNDAMENTALS OF LINEAR
REGRESSION

8.4.1 Data Fitting and Linear Regression

This section will discuss and illustrate the fundamental ideas of linear
regression by fitting a straight line through the data given in Table 8.2.1
shown again in Figure 8.4.1. The concepts introduced here, based on
least squares theory, carry over to any linear function.
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Figure 8.4.1. Panel A shows a set of data with a straight line through them where
the line was calculated using linear regression. Panel B is a plot of the residuals
illustrating the pattern of “above” or “below” zero. Panel C shows a plot of RSS({A)
versus A, and illustrates the main point that there is a unique value of A for which
RSS(A) is minimal.

The equation for the straight line used here is

y=y(A,t) = At (8.4.1)
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where ¢ is the independent variable. The parameter describing this line,
A, is linear as described above. Different values for 4 will produce
different lines. Hence, for each value of 4 there is a different calculated
value of RSS, or RSS(4) to denote the functional relationship with A;
this is shown in Figure 8.4.1-C. What one seeks is the value of 4, A
which minimizes RSS(4); this point is indicated in Figure 8.4.1-C. As
part of the theory of linear regression, it is known that when the degrees
of freedom is greater than one, there is a unique value for 4 which will
minimize RSS(4).

In what follows, the theory of least squares and weighted least squares,
abbreviated as LS and WLS respectively, will be discussed.

8.4.2 Solving the Linear Regression Problem

How does one find A4? Corresponding to each sample time t,, which
is assumed to be known exactly, there is an experimentally measured
datum y.ps(t;), a calculated value y(t;) = At;, and a residual res(t;) =
Yobs(t,) — y(t;). For LS, the sum of squares of the residuals for the
example is given:

N N

N
RSS(A) = Zresz(ti) = Z(yobs(ti) - y(t1))2 = Z(yobs(ti) - Ati)2
1=1

i=1 i=1
(8.4.2)
To find the unique value for 4 which minimizes this sum of squares, one
takes the derivative of RSS(A) as given in (8.4.2) with respect to 4, sets
the resulting expression equal to zero, and solves this equation for 4:

dRSS(4)) _ % VA =
—dA— = -2 ; ti(yobs(tz) - Atl) =0 (843)

From differential calculus, it is known that the value for 4 which is a
solution of (8.4.3), 4, will minimize RSS(4). This is given by

) N N
A= (X yas(tts) /O 1) (8.4.4)
i=1 i=1

One can apply (8.4.4) directly to the data given in Table 8.2.1. The nu-
merator and denominator in (8.4.4) are respectively 153,100 and 38,500;
hence A = 3.977; the plot of y(t) = 3.997t is given in Figure 8.4.1.

It is not enough, however, that one stops here with an estimated value
A. One must also examine the plot of the residuals themselves as has
been done in Figure 8.4.1-B. In this situation, there is no apparent cor-
relation in the pattern of the residuals, i.e. a series of positive residuals
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followed by a series of negative residuals. Hence it is reasonable to de-
scribe these data by a straight line. Formal tests based upon residuals
will be discussed in §8.6

What can happen if one takes the estimate of 4 as a blind estimate,
i.e. does not examine the residuals as well. One runs the risk of selecting
an incorrect functional description of the data. Upon examination of the
residuals, nonrandomness of the errors can be discovered by observing
a patterning of the residuals. As an example of this situation, consider
the data given in Figure 8.4.2.
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Figure 8.4/.2. Plot of a straight line through a set of data (panel A) and the residuals
(Panel B). See text for an explanation.

These data are fitted to a straight line in the manner described above.
However, a plot of the residuals, shown in Figure 8.4.2-B, clearly indi-
cates systematic deviations between the predicted and the observed val-
ues. Thus even though the sum of squares of errors has been minimized,
the systematic d