
Universitext

Roger Godement

Analysis IV
Integration and Spectral Theory, 
Harmonic Analysis, the Garden of 
Modular Delights



Universitext



Universitext

Series Editors:

Sheldon Axler
San Francisco State University

Vincenzo Capasso
Università degli Studi di Milano

Carles Casacuberta
Universitat de Barcelona

Angus MacIntyre
Queen Mary University of London

Kenneth Ribet
University of California, Berkeley

Claude Sabbah
CNRS, École Polytechnique, Paris

Endre Süli
University of Oxford

Wojbor A. Woyczynski
Case Western Reserve University, Cleveland, OH

Universitext is a series of textbooks that presents material from a wide variety of mathematical
disciplines at master’s level and beyond. The books, often well class-tested by their author,
may have an informal, personal, even experimental approach to their subject matter. Some of
the most successful and established books in the series have evolved through several editions,
always following the evolution of teaching curricula, into very polished texts.

Thus as research topics trickle down into graduate-level teaching, first textbooks written for
new, cutting-edge courses may make their way into Universitext.

More information about this series at http://www.springer.com/series/223

http://www.springer.com/series/223


Roger Godement 

Analysis IV

Harmonic Analysis,
the Garden of Modular Delights

Translated by Urmie Ray

Integration and Spectral Theory,



Roger Godement 
Paris, France 

 

Translation from the French language edition: 
Analyse mathematique IV by Roger Godement  
Copyright © Springer-Verlag GmbH Berlin Heidelberg 2003  
Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media 

 
ISSN 0172-5939   ISSN 219 1-6675 (ele ctronic)  
Universitext 
ISBN 978-3-319-16 -    ISBN 978 -3-319-16 - (eB ook)
DOI 10.1007/978-3-319-16907-1 
 
Library of Congress Control Number: 2015935238
 
Springer Cham Heidelberg New York Dordrecht London 
© Springer International Publishing Switzerland 2015 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, 
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or 
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar 
methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are exempt 
from the relevant protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this 
book are believed to be true and accurate at the date of publication. Neither the publisher nor the 
authors or the editors give a warranty, express or implied, with respect to the material contained herein 
or for any errors or omissions that may have been made. 
 
Printed on acid-free paper 
 
Springer International Publishing AG Switzerland is part of Springer Science+Business Media 
(www.springer.com) 

906 4 907 1

All Rights Reserved.

Translator: Urmie Ray

http://www.springer.com


Table of Contents of Volume IV

XI – Integration and Fourier Transform . . . . . . . . . . . . . . . . . . . . . . 1
§ 1. The Upper Integral of a Positive Function . . . . . . . . . . . . . . . . . . . . 5

1 – Integral of an lsc Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
(i) Positive measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
(ii) Dini’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
(iii) Integral of an lsc function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 – Upper Integral of a Positive Function. Null Sets, Reasonable
Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(i) Upper integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
(ii) Null sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
(iii) Reasonable sets and functions . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 – F p Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(i) Definition of F p spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
(ii) Convergence in mean and almost everywhere . . . . . . . . . . . . 17

§ 2. Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 – Integrable Functions, Lp Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

(i) Integral of an integrable function . . . . . . . . . . . . . . . . . . . . . . . 20
(ii) Lpspaces ; the Riesz-Fischer theorem . . . . . . . . . . . . . . . . . . . 23
(iii) The case of lsc or usc functions . . . . . . . . . . . . . . . . . . . . . . . 26

5 – Lebesgue’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
(i) The dominated convergence theorem . . . . . . . . . . . . . . . . . . . . 27
(ii) Relation between Lpand L1 ; Hölder’s inequality . . . . . . . . . 30
(iii) Applications to Fourier transforms on R . . . . . . . . . . . . . . . . 34

§ 3. Measurable Sets and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6 – Measurable and Integrable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(i) Properties of integrable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
(ii) Measurable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 – Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(i) Separable spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
(ii) Measurable maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 – Measurability and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(i) Egorov’s and Lusin’s theorems . . . . . . . . . . . . . . . . . . . . . . . . . 45
(ii) Lusin-measurable functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

V



VI Table of Contents of Volume IV

9 – Measurability and Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
§ 4. Lebesgue-Fubini’s Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

10 – The Lebesgue-Fubini Theorem (LF) . . . . . . . . . . . . . . . . . . . . . . 53
(i) Product of measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
(ii) The Lebesgue-Fubini theorem . . . . . . . . . . . . . . . . . . . . . . . . . 54
(iii) Additions to the LF theorem . . . . . . . . . . . . . . . . . . . . . . . . . 57
(iv) The Fourier inversion formula . . . . . . . . . . . . . . . . . . . . . . . . . 61

(i) Polish spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
(ii) Lsc functions on a locally compact Polish space . . . . . . . . . . 67
(iii) Borel sets in a Polish space . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12 – Continuous Sums of Measures: Examples . . . . . . . . . . . . . . . . . . 70
(i) Product measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
(ii) Measures induced by locally integrable densities . . . . . . . . . 70
(iii) Image of a measure under a map . . . . . . . . . . . . . . . . . . . . . . 71
(iv) Quotient of an invariant measure . . . . . . . . . . . . . . . . . . . . . . 72

13 – Integrable Functions with respect to a Continuous Sum . . . . . 74
(i) The case of lsc functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
(ii) The generalized Lebesgue-Fubini theorem . . . . . . . . . . . . . . . 76

14 – Integrable Functions with respect to the Image of a Measure . 79
15 – Invariant Measures under Group Actions . . . . . . . . . . . . . . . . . . 84

(i) Invariant measures on a group . . . . . . . . . . . . . . . . . . . . . . . . . 84
(ii) Continuous linear representations . . . . . . . . . . . . . . . . . . . . . . 86
(iii) Quotient of a space by a group . . . . . . . . . . . . . . . . . . . . . . . . 89
(iv) Quotient of an invariant measure . . . . . . . . . . . . . . . . . . . . . . 91

. . . . . . . . . . . . . . . . 94
(vi) The case of homogeneous spaces . . . . . . . . . . . . . . . . . . . . . . . 96
(vii) The case of discrete groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

§ 5. The Lebesgue-Nikodym Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
16 – Measures With Respect To a Base Measure λ: Integrable

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
17 – The Lebesgue-Nikodym Theorem (LN) . . . . . . . . . . . . . . . . . . . . 107

(i) Characterization of absolutely continuous measures . . . . . . . 107
(ii) Application to complex measures . . . . . . . . . . . . . . . . . . . . . . 108
(iii) Lebesgue decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

18 – Continuous Linear Functionals on Lp. The L∞ Space . . . . . . . 114
§ 6. Spectral Decomposition on a Hilbert Space . . . . . . . . . . . . . . . . . . . . 118

19 – Operators on a Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
(i) Definitions, continuous linear functionals . . . . . . . . . . . . . . . . 118
(ii) Orthonormal bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
(iii) Adjoints, Hermitian operators . . . . . . . . . . . . . . . . . . . . . . . . . 122
(iv) Spectrum of a Hermitian operator . . . . . . . . . . . . . . . . . . . . . 124
(v) Weak topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
(vi) Hilbert-Schmidt operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
(vii) Von Neumann algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

(v) RnAn example: the orthogonal group on

–11 – A Topological Interlude: Polish Spaces . . . . . . . . . . . . . . . . . . . . 61



Table of Contents of Volume IV VII

20 – Gelfand’s Theorems on Normed Algebras . . . . . . . . . . . . . . . . . . 134
21 – A Characterization of Algebras of Continuous Functions . . . . 141
22 – Spectral Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

(i) The GN algebra of a normal operator . . . . . . . . . . . . . . . . . . . 143
(ii) Spectral measure of an operator algebra . . . . . . . . . . . . . . . . 145
(iii) Integration with respect to a spectral measure . . . . . . . . . . 146
(iv) Spectral decomposition of a normal operator . . . . . . . . . . . . 151

23 – Self-Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
(i) Inverse of an injective Hermitian operator . . . . . . . . . . . . . . . 153
(ii) Canonical extension of a positive symmetric operator . . . . . 156

24 – Continuous Sum Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 162
(i) Virtual eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
(ii) Continuous sums of Hilbert spaces . . . . . . . . . . . . . . . . . . . . . 167
(iii) The L2 space of the integral of a measure . . . . . . . . . . . . . . 170

§ 7. The Commutative Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 173
25 – Convolution Product on a Lcg . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

(i) Convolutions and representations . . . . . . . . . . . . . . . . . . . . . . . 173
(ii) Convolution of two measures . . . . . . . . . . . . . . . . . . . . . . . . . . 175
(iii) Convolution of a measure and a function . . . . . . . . . . . . . . . 178
(iv) Convolution of two functions . . . . . . . . . . . . . . . . . . . . . . . . . . 181
(v) Dirac sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

26 – Fourier Transform on L1(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
(i) Characters of a commutative lcg . . . . . . . . . . . . . . . . . . . . . . . . 185
(ii) The topology on the dual group . . . . . . . . . . . . . . . . . . . . . . . 188

(iii) The canonical homomorphism G −→ ̂̂
G . . . . . . . . . . . . . . . . 191

27 – Fourier Transform on L2(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
(i) The algebra A(G) and its characters . . . . . . . . . . . . . . . . . . . . 192
(ii) Spectral decomposition of the regular representation . . . . . . 195
(iii) The invariant measure on the dual . . . . . . . . . . . . . . . . . . . . . 196
(iv) Fourier inversion formula and biduality . . . . . . . . . . . . . . . . . 201

§ 8. Unitary Representations of Locally Compact Groups . . . . . . . . . . . . 204
28 – Further Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 204
29 – Fourier Transform on a Compact Group . . . . . . . . . . . . . . . . . . 207

(i) Irreducible representations of central groups . . . . . . . . . . . . . 207
(ii) Central functions on a compact group . . . . . . . . . . . . . . . . . . 209
(iii) Spectral decomposition of Z(G) . . . . . . . . . . . . . . . . . . . . . . . 214
(iv) Characters of Z(G) and irreducible representations . . . . . . . 217
(v) Easy generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

30 – Measures and Functions of Positive Type . . . . . . . . . . . . . . . . . . 224
(i) Measures of positive type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
(ii) Case of a commutative group . . . . . . . . . . . . . . . . . . . . . . . . . . 226
(iii) Functions of positive type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

31 – Quasi-Regular Representations of a Unimodular Group . . . . . 233
(i) Central measures of positive type . . . . . . . . . . . . . . . . . . . . . . . 233
(ii) The commutation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235



VIII Table of Contents of Volume IV

(iii) Traces on a Hilbert algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
(iv) Case of a commutative group . . . . . . . . . . . . . . . . . . . . . . . . . 246
(v) Characters of a locally compact group . . . . . . . . . . . . . . . . . . 247
(vi) Characters of type (I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

32 – Discrete Components of the Regular Representation . . . . . . . . 251

XII –The Garden of Modular Delights or The Opium of Math-
ematicians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
§ 1. Infinite Series and Products in Number Theory . . . . . . . . . . . . . . . . 261

1 – The Mellin Transform of a Fourier Transform . . . . . . . . . . . . . . . 261
2 – The Functional Equation of the ζ Function . . . . . . . . . . . . . . . . . 266
3 – Weil’s method for the Function η(z) . . . . . . . . . . . . . . . . . . . . . . . 273

§ 2. The series
∑

1/ cosπnz and
∑

exp
(
πin2z

)
. . . . . . . . . . . . . . . . . . . 281

4 – The series
∑

1/ cosπnz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
5 – The Identity

∑
1/ cosπnz = θ(z)2 . . . . . . . . . . . . . . . . . . . . . . . . . 283

(i) The fundamental domain of Γ (θ) . . . . . . . . . . . . . . . . . . . . . . . 283
(ii) A general method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
(iii) The identity f(z)/θ(z)2 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 286

6 – The Infinite Product of the Function θ(u, z) . . . . . . . . . . . . . . . . 288
7 – The Reciprocity Law for Gauss Sums . . . . . . . . . . . . . . . . . . . . . . 291

(i) Cauchy’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
(ii) The Dirichlet method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
(iii) The quadratic reciprocity law . . . . . . . . . . . . . . . . . . . . . . . . . 295

§ 3. The Dirichlet Series L(s;χ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
8 – The Functional Equation of η(z): bis . . . . . . . . . . . . . . . . . . . . . . 298
9 – Arithmetic Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

(i) Quotient rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
(ii) The groups G(m) ; characters modm . . . . . . . . . . . . . . . . . . . 302
(iii) Orthogonality relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
(iv) Gauss sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
(v) Case of the unit character . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

10 – The Series θf (x;χ) and L(s;χ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
(i) Functional equation of θf (x;χ) . . . . . . . . . . . . . . . . . . . . . . . . . 311
(ii) The series L(s, χ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

§ 4. Elliptic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
11 – Liouville’s Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
12 – Elliptic Functions and Theta Series . . . . . . . . . . . . . . . . . . . . . . . 318

(i) Abel’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
(ii) General theta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
(iii) Metamorphoses of the Jacobi series . . . . . . . . . . . . . . . . . . . . 323

13 – Eisenstein and Weierstrass’s Point of View . . . . . . . . . . . . . . . . 328
(i) Convergence of Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . 328
(ii) The Weierstrass ℘-function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
(iii) The series

∑
π2/ sin2 π(u+ nz) and G2(z) . . . . . . . . . . . . . . 333



Table of Contents of Volume IV IX

(iv) Relation between ℘ and θ1 functions . . . . . . . . . . . . . . . . . . . 335
(v) Elliptic functions with given simple poles . . . . . . . . . . . . . . . . 338
(vi) The functions ζL and σL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

14 –Elliptic Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
(i) The field of elliptic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
(ii) The Riemann surface of the field of elliptic functions . . . . . 342
(iii) Addition formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

§ 5. SL2(R) as a Locally Compact Group . . . . . . . . . . . . . . . . . . . . . . . . 349
15 – Subgroups, Invariant Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

(i) Actions of SL2(R) on the half-plane . . . . . . . . . . . . . . . . . . . . 349
(ii) Automorphic forms as functions on G . . . . . . . . . . . . . . . . . . 349
(iii) Subgroups of SL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
(iv) Fixed points and eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . 355
(v) Invariant measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
(vi) The point of view of the unit disc . . . . . . . . . . . . . . . . . . . . . . 357

16 – The Discrete Series of Representations of SL2(R) . . . . . . . . . . 359
(i) Integrable holomorphic functions on the half-plane . . . . . . . . 360
(ii) The spaces Hpr of the unit disc . . . . . . . . . . . . . . . . . . . . . . . . . 364
(iii) A theorem of Paley-Wiener type for H2

r(P ) . . . . . . . . . . . . . 366
(iv) The kernel function of H2

r(P ) . . . . . . . . . . . . . . . . . . . . . . . . . 368
(v) The holomorphic discrete series of irreducible representa-

tions of SL2(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
(vi) Solutions of the equation f ∗ ωr = f . . . . . . . . . . . . . . . . . . . . 372

§ 6. Modular Functions: The Classical Theory . . . . . . . . . . . . . . . . . . . . . 376
17 – Fundamental Domain, Modular Forms . . . . . . . . . . . . . . . . . . . . 376

(i) Generators of the modular group . . . . . . . . . . . . . . . . . . . . . . . 376
(ii) Fundamental domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
(iii) The classical definition of modular forms . . . . . . . . . . . . . . . 378
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XI – Integration and Fourier Transform

� 1. The Upper Integral of a Positive Function – � 2. Lp Spaces –
� 3. Measurable Sets and Functions – � 4. Lebesgue-Fubini’s
Way – � 5. The Lebesgue-Nikodym Theorem – � 6. Spectral De-
compositions in a Hilbert Space – � 7. The Commutative Fourier
Transform – � 8. Unitary Representations of Locally Compact
Groups

Bourbaki has sometimes been blamed for giving priority to function in-
tegrals instead of first defining measures on sets like everyone and like Borel
and Lebesgue. From a historical viewpoint, it should be borne in mind that
since no later than Leibniz, an integral is, strictly speaking, not the measure
of a surface area: an area is always positive, whereas in all classical definitions
of an integral, areas above the x-axis are counted positively while those below
the x-axis are counted negatively. Why? Naturally, in order to ensure that
the linearity formula ∫

αf + βg = α

∫
f + β

∫
g

holds, a formula made obvious by Leibniz’s notation and without which the
whole machinery of Calculus would fall apart. In fact, from Newton to Borel
and Lebesgue, everyone, even Cauchy and Dirichlet, integrated functions as-
suming this does not present any problems, and from Riemann to our times,
endeavouring to extend the definition to more and more general functions.
Before Cauchy, integration was considered either as the inverse operation of
differentiation, especially as this is our only chance of computing an integral
explicitly, or in Euler and Fourier’s work, as a method for proving countless
identities, for example by integrating series of functions term by term – a
central problem in Lebesgue theory. By the time we get to Riemann, the
area alluded to had virtually disappeared from the definition of the integral,
becoming merely an intuitive geometric interpretation of the latter.

Soon afterwards, others – Cantor, Peano, Jordan – attempted to define
the measure m(A) of a subset A of the line or the plane by approximating it
by finite unions of intervals or slabs. They thus obtained a category of sets
for which the measure of a finite union of pairwise disjoint sets is the sum of

1
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the measures of the individual sets. Definitions of multiple integrals extended
to simple sets could thereby be made more rigorous, but over the line, stay
within the framework established by Riemann. The first decisive step is due
to Borel who, in 1898, defined the measure of an open subset of the line
to be the sum of the series of the lengths of its constituent intervals (con-
nected components), introduced “ Borel ” sets and assigned them a measure
(the infimum of the measures over all open sets containing them). With this
definition, not only the measure of a finite union but of a countable union
of pairwise disjoint sets is the sum of the measures of the individual sets. In
his thesis in 1902, Lebesgue, who was primarily trying to extend the classical
relation between integration and differentiation to very general functions, ex-
panded the definition to measurable sets, i.e. to unions of a Borel set and of a
set of measure zero. This decisive step enabled him to obtain limit theorems,
now named after him, which he presented in a famous book in 1905.

In 1894, Stieltjes had defined the notion of a far more general integral over
the line – a notion, however, not any “ deeper ” than Riemann’s (Chap. V,
n◦ 32) as it applies to the same functions – from which the notion of surface
area had totally disappeared. It was founded on an easy generalization of the
measure of an interval ; any physicist familiar with mass distribution could
have invented it. In 1909, Frédéric Riesz proved that any continuous linear
functional on the space of continuous functions on a compact interval K is the
same as a Stieltjes integral ; this time, the function integral is at the centre
of the construction. Riesz’s theorem together with the equally fundamental
Riesz-Fischer theorem (1907) established the theory in the almost algebraic
framework of linear functional analysis; it is even one of its main starting
points. The rest of the story is simply a matter of generalizations to the space
Rn (Radon, 1913) or to “ abstract ” measures, i.e. defined on sets without a
topology (Fréchet 1915 and especially Caratheodory in a 1918 book). Around
the same period, W. H. Young (1911) and P. J. Daniell (1918) showed how to
define, in the framework of the usual measure, Lebesgue integrable functions
from the integral of continuous functions without resorting to measures on
sets. Their method did not meet with success before being systematically
developed by N. Bourbaki in his book on this topic.

When he came up with his theory, Lebesgue had no idea of what a func-
tional space or a vector space was. These concepts progressively appeared
during the following years, when the theory of integral equations and Hilbert
spaces, on the one hand, and “ abstract ” and “ modern ” algebra, on the
other, were developed. Lebesgue was too focused on “ fine ” analysis argu-
ments about functions of real variables and trigonometric series to convert to
the new fields that were being developed before his very eyes. This is also true
of many of those who presented the subject before Bourbaki, a polycephalous
author familiar with as much algebra as analysis.

Therefore, those who blamed Bourbaki for having discarded the point of
view of Borel, Lebesgue and others just because it is more natural (why?) to
try and measure sets than to integrate functions, are mistaken, all the more
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so as in general, with Bourbaki, theorems related to the measure of sets, that
were obviously not forgotten, follow directly from properties of integrals.
Besides, all that is needed is opening randomly some analysis books and
articles to see that, with few exceptions, they contain countless integrals and
very little measures of sets. There are no sacred texts in mathematics and
every day theories are developed using methods radically different from those
of their creators without anyone protesting.

The most serious objections to the point of view presented here came from
probabilists who, following Kolmogorov (1933), have interpreted a probability
as a measure on a set without a topology. This point of view, developed in the
first drafts of N. Bourbaki’s book, had led to a presentation, the Diplodocus,
whose complexity and ugliness ended up disgusting all members of the group.
I joined it right when the decision was taken to stick to the view subsequently
published. If I remember correctly I was instructed to prepare the first de-
tailed drafts of chapters III and V and the two first ones of chapter IV in this
new perspective. So I am in a fairly good position to comparer both methods.
Moreover in general, almost all authors taking the “ abstract ” view refrain –
prudently? – from dealing with questions studied in detail by N. Bourbaki:
measures defined by a density, image of a measure, integration of measures,
quotient measures, etc.

In fact, Radon measures are enough for almost all purposes in Analysis
and in most cases, are better adapted than “ abstract ” measures. As used to
say not so long ago a specialist of partial differential equations, � all I ask of
integration theory is to provide me with Banach spaces � . The definition of
a measure as a linear functional on continuous functions is perfectly adapted
to this point of view since Bourbaki’s goal is the construction of Lp Ba-
nach spaces. By contrast, Rudin’s book, Real and Complex Analysis (1966),
which does not refer to those of N. Bourbaki though they were published
ten years earlier, is convincing in this respect: after the “ compulsory ” chap-
ter on abstract measures, its author is forced to make the connection with
the topological viewpoint and prove F. Riesz’s theorem . Thus he is forced
to start by defining the measure of an open set using a method which, in
N. Bourbaki, defines more easily (because it is linear) the integral of any lower
semi-continuous function; after which abstract measures disappear when he
applies the theory to analytic functions and Fourier transforms. The book
by P. Malliavin and H. Airault, Intégration, analyse de Fourier, probabilités,
analyse gaussienne (Masson, 1994) or Integration and Probability (Springer,
1995), also starts with a presentation about abstract measures, followed by
an equally long chapter on Radon measures, and then by an excellent chap-
ter on Fourier transforms where abstract measures are not involved. The
latter only occur (almost always together with Radon measures) in the two
chapters on probability theory. Not only can their usefulness be seen in this
framework, but also the conceptual difficulties and the complicated notations
resulting from the simultaneous consideration of measures defined on varying
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“tribes” – all this in a textbook meant for students who probably have not
yet mastered the fundamental classical theorems.

Finally, from a pedagogical viewpoint, it is sufficiently clear that someone
who has taken in N. Bourbaki’s viewpoint will not have any serious difficulty
in understanding, if necessary, abstract measures and more recent develop-
ments beyond the framework of locally compact spaces.

Therefore, like Dieudonné’s presentation in his Eléments d’analyse, my
presentation closely follows that of N. Bourbaki, probably for the same rea-
sons as him: we have both spent quite some time developing it, and have not
yet come across anything better or more complete if we keep to the frame-
work of locally compact spaces, and at the very least, this framework covers
95% of the needs of analysts.

We warn the reader learning about this topic that this chapter includes
several parts of unequal importance. Lebesgue’s fundamental theorems, with-
out which nothing can be accomplished, are the subject matter of §§ 1 to 3
and of the beginning (Lebesgue-Fubini) of § 4. The rest of § 4 shows how using
Lebesgue-Fubini’s arguments, generalized to “ continuous sums ” of measures,
it is possible to unify apparently dissimilar developments: integration with
respect to the image of a measure, or with respect to a measure defined by
a density, group invariant measures and quotient measures, etc. § 5 charac-
terizes integrable functions with respect to a measure defined by a density, a
result that could have been inserted in § 4, and proves the Lebesgue-Nikodym
theorem. Although §§ 4 and 5 contain important results, mainly theorem 25
about measures defined by a density (constantly used, usually without real-
izing it as it seems so natural. . . ) and the Lebesgue-Nikodym theorem, these
§§ are less universally useful than §§ 1 to 3. Like the countless exercises found
in Dieudonné and N. Bourbaki, they will help the reader to understand these
fundamental theorems since it is in general hard to master them without us-
ing them again and again: as Niels Bohr once said about quantum physics,
in this field, � the experts are those who have already made all possible mis-
takes �. He should have added: once and only once, but in his case this was
self-evident. . .

The same can be said about §§ 6 and 7 on spectral theory and Fourier
transforms on commutative groups: these topics are perfect illustrations of
the previous §§ (and as far as I am concerned, mutually influenced each other
at the end of the 1940s). § 7 is not a mere gratuitous generalization of clas-
sical Fourier transforms: John Tate’s thesis in the 1950s on zeta functions of
algebraic number fields, where these results are first used, also gives the first
proof of possible simplifications and clarifications of classical results intro-
duced by general Fourier transforms and the “ adelic ” viewpoint. The latter
was later extended to noncommutative groups in the theory of automorphic
functions. Finally, § 8 is an introduction to “ integral ” methods applicable to
general locally compact groups.
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§ 1. The Upper Integral of a Positive Function

1 – Integral of an lsc Function

Let X be a locally compact space, i.e. a topological space satisfying the Haus-
dorff separation axiom and in which all points have a compact neighbourhood.
L(X) will denote the vector space of continuous functions f : X −→ C with
compact support.1 It is a union of subspaces L(X,K) where, for any com-
pact set K ⊂ X, L(X,K) denotes the set of f ∈ L(X) vanishing outside
K. Let LR(X) (resp. LR(X,K)) be the set of real-valued functions on these
spaces and, likewise, L+(X) (resp. L+(X,K)) be the set of positive-valued
functions. The subspaces L(X,K) are complete with respect to the norm

‖f‖X = sup |f(x)|

of uniform convergence on X, which we shall denote by ‖f‖ when no ambi-
guity is possible. However, L(X) itself may not be so if X is not compact.

As shown for metrizable spaces in Chap. IX, n◦ 17 – but this assumption
only helps to simplify the proof2 –, there are enough functions in L(X) for
the construction of partitions of unity : if A ⊂ X is compact and (Ui)1≤i≤n a
finite open cover of A, then there are fi ∈ L+(X) such that

∑
fi(x) = 1 on

A and whose supports are contained in the sets Ui.

(i) Positive measures. A measure on X is a linear functional

µ : L(X) −→ C

whose restriction to each L(X,K) is continuous with respect to the topology
of uniform convergence; this amounts to attributing to every compact set
K ⊂ X a constant M(K) such that

f ∈ L(X,K) =⇒ |µ(f)| ≤M(K)‖f‖ .

µ will be said to be real if µ(f) is real for f real, and to be positive if µ(f) ≥ 0
for all f ≥ 0. Examples of such measures were given in Chap. V, § 9 . If X is
an oriented differential manifold and ω a differential form of maximum degree

1 The support of a function is the smallest closed set outside which the function
is zero.

2 See N. Bourbaki, Topologie générale, Chap. X, in particular § 4 on normal spaces,
i.e separated and satisfying the following condition: if A and B are two disjoint
closed sets, there exist open disjoint sets U ⊃ A and V ⊃ B. As shown by
Urysohn, this condition means that there is a continuous map from X to [0, 1]
equal to 1 on A and 0 on B, or that any continuous map from a closed set F ⊂ X
to [0, 1] extends to X. A locally compact space is not necessarily normal, but
every compact subspace of X is. Thus, in this case, Urysohn’s theorem continues
to hold if A is supposed to be compact and B to be the complement of a compact
neighbourhood of A.

© Springer International Publishing Switzerland 2015  
R. Godement, V, Universitext, DOI 10.1007/978-3-319-16907-1_1  Analysis I
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on X, the support of the form fω is compact for all f ∈ L(X). Thus, setting
µ(f) =

∫
X
fω (Chap. IX, n◦ 17), we get a measure on X.

As we will see, Leibniz’s notation

µ(f) =

∫
X

f(x)dµ(x) ,

essential in applications, is hardly needed in most of the theory.
For positive measures, continuity follows in fact from positivity thanks to

the next lemmas:

Lemma 1. Let µ be a positive linear functional on L(X). Then

|µ(f)| ≤ µ(|f |) for all f ∈ L(X) .(1.1)

This is obvious if f is real since f = f+−f−, |f | = f+ +f−. If f = g+ ih
is complex-valued, multiplying f by a complex factor with absolute value 1,
µ(f) may be assumed to be real and > 0. Then µ(h) = 0 and |µ(f)| = µ(f) =
µ(g) ≤ µ(|f |) since g ≤ |g| ≤ |f |.

Lemma 2. For any compact set K ⊂ X, there is a constant MK(µ) such
that

|µ(f)| ≤MK(µ)‖f‖ for all f ∈ L(X,K) .(1.2)

Indeed, there is a positive-valued continuous function p on X equal to 1
on K and zero outside a compact set K ′ ⊃ K . Then |f(x)| ≤ ‖f‖p(x) for all
f ∈ L(X,K), and so

|µ(f)| ≤ µ (|f |) ≤ µ (‖f‖p) = ‖f‖µ(p) ,

qed.
Every measure is obviously of the form µ′ + iµ′′ where µ′ and µ′′ are

real. Though elementary, it is slightly less obvious that every real measure is
the difference of positive measures. We will prove this in n◦ 17 (theorem 29)
when we will need it: integration theory is mostly about positive measures,
and in what follows, we will almost always refrain from mentioning that the
measures considered are.

(ii) Dini’s Theorem. Let us start with a locally compact space X and a
(positive !) measure µ on X. As already stated in Chap. V, the first step
towards Lebesgue theory is to define µ(ϕ) for every lower semi-continuous
function ϕ with values in [0,+∞].

We start by recalling (Chap. V, § 2, n◦ 10) that an increasing philtre is
a non-empty set Φ of functions defined on X, with values in ]−∞,+∞] and
satisfying the following condition: For all f, g ∈ Φ, there exists h ∈ Φ such
that sup(f, g) ≤ h. If there are finitely many functions fi ∈ Φ, then there
exists g ∈ Φ such that g ≥ fi for all i.
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Increasing philtres generalize increasing sequences of functions and en-
ables us to generalize the notion of limit. Given a function I : Φ −→ C and
some a ∈ C, we will write

lim
Φ
I(f) = a

if, for any number r > 0, there is a function r′ ∈ Φ such that

f ∈ Φ & f ≥ r′ =⇒ |I(f)− a| < r .

The reader will easily be able to extend the elementary properties of limits to
this general framework: the function f plays the role of the traditional index
n ∈ N and I(f) replaces un ; the fact that neither f ≤ g nor g ≤ f in general
( i.e. no “ total ” order), contrary to what happens in N, makes no difference.

In practice, we mostly need to consider functions I with values in
]−∞,+∞] and increasing, i.e. such that f ≤ g implies I(f) ≤ I(g). Then

lim
Φ
I(f) = sup

f∈Φ
I(f) ,

which is readily explained by the case of an increasing sequence, and by
convention, the left hand side is defined using this relation when the right
hand side is equal to +∞. If it is written a, then the following properties
hold:

(i) I(f) ≤ a for all f ∈ Φ,
(ii) for all M < a, there exists r′ ∈ Φ such that I(r′) > M , in which case

f ≥ r′ implies M ≤ I(f) ≤ a .

Choosing I(f) = f(x) for a given x ∈ X, this give the definition of a
function

x 7−→ sup
f∈Φ

f(x) ≤ +∞ ,

which is just the upper envelope of the f ∈ Φ, written sup(Φ).

Lemma 3 (Dini’s Theorem). Let Φ ⊂ LR(X) be an increasing philtre
ϕ = sup(Φ). Suppose that ϕ ∈ L(X). Then

lim
Φ
‖ϕ− f‖X = 0 and µ(ϕ) = lim

Φ
µ(f) = sup

Φ
µ(f) .(1.3)

This result says that Φ converges uniformly on X if its limit is continuous
and with compact support.

The proof is the same as in Chap. V, n◦ 10. We first suppose that Φ ⊂
L+(X). Let r be a number > 0 and K the support of ϕ. As ϕ(x) = sup f(x) is
everywhere< +∞, for all a ∈ K, there exists f ∈ Φ such that f(a) > ϕ(a)−r .
This relation continues to hold in an open neighbourhood V (a) of a since f
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and ϕ are continuous. As K is compact, there are finitely many points ai ∈ K
such that the set V (ai) cover K, as well as functions fi ∈ Φ that are upper
bounds for ϕ−r in V (ai). There is a function r′ > sup(fi) in Φ since there are
finitely many fi, and so ϕ(x) − r < r′(x) ≤ ϕ(x) for all x ∈ K and perforce
for all f ∈ Φ such that r′ ≤ f . As these functions f are positive-valued and
bounded above by ϕ, they all vanish outside K . As a result,

r′ ≤ f =⇒ ‖ϕ− f‖X ≤ r ,

which proves the first relation (3). Moreover,

µ(ϕ)− µ(f ′) = µ(ϕ− f ′) ≤MK(µ)‖ϕ− f ′‖K ≤MK(µ)r ,

proving the second one.
If the functions f ∈ Φ are not all positive, replace them with f−f0, where

f0 ∈ Φ is chosen once and for all, and only consider functions f ≥ f0. The
f − f0 clearly form an increasing philtre converging to ϕ − f0. The results
concerning Φ readily follow.

(iii) Integral of an lsc function. Given a function ϕ : X −→ ]−∞,+∞], we
shall denote by Linf(ϕ) the set of f ∈ LR(X) such that f ≤ ϕ . It is necessary
to assume that ϕ(x) ≥ 0 outside a compact subset of X. Otherwise Linf(ϕ)
would be empty. This is an increasing philtre since f ′, f ′′ ∈ Linf(ϕ) =⇒
sup(f ′, f ′′) ∈ Linf(ϕ). The functions ϕ : X −→ ]−∞,+∞] for which

ϕ(x) = sup
Linf (ϕ)

f(x)(1.4)

for all x ∈ X are characterized by the condition of being positive outside a
compact set and lower semi-continuous (lsc): for all a ∈ X and all M < ϕ(a),
ϕ(x) > M in the neighbourhood of a. The condition is necessary since, by
definition of a supremum, there exists f ∈ Linf(ϕ) such that f(x) > M for
x = a, hence by continuity, also in the neighbourhood of a. So ϕ(x) > M
in this neighbourhood. Conversely, suppose that ϕ lsc and positive outside a
compact set K . As shown in Chap. V, n◦ 10, (vi) by generalizing the classic
argument applied to continuous functions, ϕ is bounded below over K ; if
m is its minimum over K, then ϕ(x) ≥ m everywhere. Then there exists
g ∈ LR(X) such that g ≤ ϕ (take g ≤ 0 everywhere and ≤ m over K), and so
ϕ = g + ϕ′ where ϕ′ is lsc and positive. As Linf(ϕ) is the set of g + f ′ where
f ′ ∈ Linf(ϕ

′), the proof reduces to showing that ϕ′ is the upper envelope of
functions f ′ ∈ Linf(ϕ

′). Suppose that ϕ′(x) > M in an open neighbourhood
V of a given point a. Clearly, there is some f ∈ L+(X) zero outside V ,
bounded above by M in V and equal to M at a . Then f ∈ Linf(ϕ

′), and the
result follows.3

3 In practice, an lsc function positive outside a compact set is the upper envelope
of a countable family of continuous functions with compact support. This result
for the moment unnecessary will be proved later [n◦ 11, (ii)].
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I (resp. I+) will denote the set of lsc functions on X with values in
]−∞,+∞] and positive outside a compact set (resp. everywhere). The upper
envelope of a finite or infinite family of functions fi ∈ I is also in I. This
is also the case of the lower envelope or of the sum of a finite family. The
unordered sum (Chap. II, n◦ 15) of a series of positive lsc functions is also
lsc since it is the upper envelope of its partial sums, all of which are lsc.

For all ϕ ∈ I, define the upper integral of ϕ by

µ∗(ϕ) = sup
Linf (ϕ)

µ(f) ≤ +∞ .(1.5)

Clearly, µ∗(f) = µ(f) for all f ∈ LR(X) and

ϕ ≤ ψ =⇒ µ∗(ϕ) ≤ µ∗(ψ) .

Lemma 4. Let Φ be an increasing philtre of continuous functions with com-
pact support and ϕ its upper envelope. Then

µ∗(ϕ) = sup
Φ
µ(f) = lim

Φ
µ(f) .(1.6)

The first expression is obviously greater than the second one. So, it suffices
to prove the reverse inequality. For any g ∈ Linf(X), let Φg ⊂ LR(X) be the
set of functions of the form inf(f, g) where f ∈ Φ. Since, generally speaking,

f ≥ f ′ =⇒ inf(f, g) ≥ inf(f ′, g) ,

Φg is an increasing philtre; it converges simply to g. Indeed, for all x ∈ X
and M < ϕ(x), there exists f ∈ Φ such that f(x) > M . As g(x) ≤ ϕ(x),
we can take M = g(x) − r, where r > 0 is given. For f ′ = inf(f, g) ∈ Φg,
f ′(x) ≥ g(x)− r. The result follows.

Lemma 3 applied to Φg then shows that

µ(g) = sup
f∈Φg

µ [inf(f, g)] ≤ sup
Φ
µ(f)

since inf(f, g) ≤ f . As the right hand side does not dependent on the function
g ∈ Linf(ϕ), the supremum of all µ(g), namely µ∗(ϕ), is inferior to it, proving
the lemma.

Theorem 1. The function ϕ 7→ µ∗(ϕ), ϕ ∈ I, has the following properties:
(i) Additivity:

µ∗(ϕ+ ψ) = µ∗(ϕ) + µ∗(ψ) ;

(ii) Passage to the limit for increasing sequences:

µ∗ (supϕn) = supµ∗ (ϕn) ,
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and more generally

µ∗
(

sup
Φ
ϕ

)
= sup

Φ
µ∗(ϕ)

for any increasing filtering set Φ ⊂ I;
(iii) Term by term integration of all positive function series:

µ∗
(∑

ϕn

)
=
∑

µ∗(ϕn) ≤ +∞ .

The proofs are the same as in Chap. V, n◦ 10 and 11. To prove (i),
choose two increasing philtres Φ and Ψ in L+(X) converging to ϕ and ψ and
note that the functions f + g, with f ∈ Φ and g ∈ Ψ , form an increasing
philtre converging to ϕ+ψ . It then remains to apply lemma 4. To prove (ii),
consider the set Ψ =

⋃
Linf(ϕ) of functions bounded above by at least one

of the ϕ ∈ Φ. That it is an increasing philtre is immediate. It converges to
ψ = supϕ since, for all x ∈ X and M < ψ(x), there exists ϕ ∈ Φ such that
ϕ(x) > M , hence also some f ∈ Linf(ϕ) ⊂ Ψ such that f(x) > M . This done,
lemma 4 shows that

µ∗(ψ) = sup
Ψ
µ(f) = sup

Φ
sup

Linf (ϕ)

µ(f) = sup
Φ
µ∗(ϕ)

[associativity of suprema: Chap. II, (9.9)]. Finally, (iii) is obtained by applying
(ii) to the partial sums of the series.

Clearly, µ∗(tϕ) = tµ∗(ϕ) for all scalars t ≥ 0, agreeing, as will always be
the case, that

α.+∞ = +∞ if 0 < α ≤ +∞ , 0.+∞ = 0 .

Like in Chap. V, n◦ 10 and 11, an entirely similar theory could be constructed
for upper semi-continuous functions admitting functions of LR(X) as upper
bounds. It reduces to the previous case since a function f is usc if and only
if −f is lsc.

2 – Upper Integral of a Positive Function.
Null Sets, Reasonable Sets

(i) Upper integrals. Let us begin with a function f on X taking values in
[0,+∞]. There are functions ϕ ∈ I such that ϕ ≥ f , for example the function
which is everywhere equal to +∞. Then define the upper integral of f by
setting

µ∗(f) = inf
ϕ≥f
ϕ lsc

µ∗(ϕ) ,(2.1)

so that µ∗(f) ∈ [0,+∞].
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Despite the adopted notation – I will also sometimes write

µ∗(f) =

∫
f(x)dµ∗(x)

–, this definition is different4 from the one given in Chap. V, n◦ 1, which at
best has only the pedagogical merit of being simple.

If ϕ is lsc, definition (1) clearly provides the same value as (1.5). Another
trivial but constantly used point is that

f ≤ g =⇒ µ∗(f) ≤ µ∗(g) .(2.2)

Also,

µ∗(tf) = tµ∗(f) for t ≥ 0

provided that here too, the calculation rules for the symbol +∞ set out above
are respected.

In particular, we define the outer measure of a set A ⊂ X by setting

µ∗(A) = µ∗ (χA) ,(2.3)

which is the upper integral of the characteristic function of A. Then

µ∗(A) = inf µ∗(U) ,(2.3’)

where U varies in the set of all open subsets containing A. As the functions
χU are lsc and upper bounds of χA, the left hand side is less than the right
hand one. For the reverse inequality, there is nothing to show if µ∗(A) =
+∞ ; otherwise, for all r > 0, there is a function lscϕ ≥ χA such that
µ∗(ϕ) ≤ µ∗(A) + r ; for the open set U = {ϕ(x) > 1}, χU ≤ ϕ and so
µ∗(U) ≤ µ∗(A) + r. (3’) follows since A ⊂ U .

The outer measure of every compact set K ⊂ X is clearly finite: indeed,
there is some f ∈ L+(X) which is ≥ 1 on K, and so µ∗(K) ≤ µ(f) by (2).

As already seen in Chap. V, n◦ 11 in the case of open sets, most statements
related to the measure of sets are obtained more or less trivially by applying
the statements valid for arbitrary functions to their characteristic functions.

Non-trivial properties of µ∗(f) proved for lsc functions (theorem 1) can
be partly extended to the general case:

4 If X is a compact interval in R, then as was seen in n◦ 2 of Chap. V, in Riemann
theory, the upper integral of the function equal to 1 on X ∩Q and 0 everywhere
else is equal to 1. In Lebesgue theory, it is equal to 0, as we will see later for any
countable set.
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Theorem 2. The function µ∗ has the following properties:
(i) Countable convexity:

µ∗
(∑

fn

)
≤
∑

µ∗ (fn) ≤ +∞(2.4)

for all series of functions with values in [0,+∞] ;
(ii) Passage to the limit for increasing sequences:

µ∗ (lim fn) = limµ∗ (fn) ≤ +∞ .(2.5)

To prove (4), it suffices to show that

µ∗(f + g) ≤ µ∗(f) + µ∗(g)(2.6)

for all f and g, and then to apply (5) to the partial sums of the series fn.
(6) is obvious if the right hand side is infinite. Otherwise, for all r > 0,

there are lsc functions ϕ ≥ f and ψ ≥ g such that µ∗(ϕ) ≤ µ∗(f) + r and
µ∗(ψ) ≤ µ∗(g) + r. Thus

µ∗(f + g) ≤ µ∗(ϕ+ ψ) = µ∗(ϕ) + µ∗(ψ) ≤ µ∗(f) + µ∗(g) + 2r ,

which leads to (6).
To prove (ii), first note that, by (2), the right hand side of (5) is less

than the left hand one. Hence it suffices to show the reverse inequality. This
requires a proof only if the right hand side is finite.

Let us take a sequence of numbers rn > 0 and, for all n, consider a lsc
function ψn satisfying

ψn ≥ fn and µ∗ (ψn) ≤ µ∗ (fn) + rn .

Then setting

ϕn = sup (ψ1, . . . , ψn) , whence ϕn ≥ sup (f1, . . . , fn) = fn ,

ϕn+1 = sup (ϕn, ψn+1). So

ϕn+1 + inf (ϕn, ψn+1) = ϕn + ψn+1 .

As a result (theorem 1),

µ∗ (ϕn+1) + µ∗ [inf (ϕn, ψn+1)] = µ∗ (ϕn) + µ∗ (ψn+1) .

Since inf (ϕn, ψn+1) ≥ inf (fn, fn+1) = fn, the left hand side is greater than
µ∗ (ϕn+1) + µ∗ (fn), and so

µ∗ (ϕn+1) ≤ µ∗ (ϕn)− µ∗ (fn) + µ∗ (ψn+1)

≤ µ∗ (ϕn)− µ∗ (fn) + µ∗ (fn+1) + rn+1 .
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Adding the first n− 1 relations sidewise, it follows that

µ∗ (ϕn)− µ∗ (fn) ≤ r1 + . . .+ rn

since ϕ1 = ψ1. Choosing rn = r/2n for a given r > 0 thus gives an increasing
sequence of lsc functions ϕn ≥ fn satisfying

µ∗ (ϕn) ≤ µ∗ (fn) + r

for all n. f = sup(fn) is bounded above by the upper envelope ϕ of all ϕn
and (theorem 1)

µ∗(f) ≤ µ∗(ϕ) = supµ∗ (ϕn) ≤ supµ∗ (fn) + r ,

qed.

Corollary. For5 any countable family of sets An ⊂ X,

µ∗
(⋃

An

)
≤
∑

µ∗ (An)(2.4’)

and for any increasing sequence,

µ∗
(⋃

An

)
= limµ∗ (An) .(2.5’)

These results must not be applied to arbitrary increasing philtres of posi-
tive functions; countability is essential here.

(ii) Null sets. Let us now introduce the basic notion of a measure-zero-set
or null set , i.e. such that

µ∗(N) = µ∗ (χN ) = 0 .(2.7)

By (3’), this is equivalent to the requirement that, for all r > 0, there exists
U such that

N ⊂ U & µ(U) ≤ r .(2.7’)

Theorem 3. All subsets of a null set are null; the finite or countable union
of a family of null sets is null.

Obvious.
With respect to the usual Lebesgue measure on R, a set reduced to a

unique point is obviously null. Hence this is also the case of all countable
sets, for instance Q. The converse is, however, false. The most well-known

5 Do not assume that if the setsAn were pairwise disjoint, we would get an equality:
as we will see further down, for this the sets An need to be assumed to be
measurable.
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counterexample is the Cantor triadic set of numbers x ∈ K = [0, 1] which do
not contain the digit 1 in their base-3 expansion. It can be easily shown (n◦ 6)
to have measure zero (fanciful proof: the probability that the expansion of a
randomly chosen number does not contain the digit 1 is zero). It is equipotent
to R: the map f from the Cantor set to [0, 1] associating the binary number
f(x) = 0, x′1x

′
2 . . ., with x′i = xi if xi = 0 and x′i = 1 if xi = 2, to every

x = 0, x1, x2, . . . whose base-3 expansion contains only 0s and 2s is surjective,
which suffices.

When a relation P{x} depends on one variable x ∈ X, P{x} is said
to be true almost everywhere (ae.) if the set of points x for which P{x} is
not true has measure zero: with respect to the Lebesgue measure, almost
every real number is irrational and even transcendental because the set of
algebraic equations with rational coefficients is countable, and hence so is
the set of their roots. If, taken separately, each one of a finite or countable
family of propositions Pn{x} is true almost everywhere then, by theorem 3,
they are all simultaneously true almost everywhere. For example, the sum of
a series of functions zero almost everywhere is zero almost everywhere. The
set of complex-valued null functions, i.e. zero almost everywhere, is clearly
a vector space N (X;µ) = N . Despite the terminology, supposedly null sets
and functions are far from being negligible. They actually serve to cover up
horrors that are useless to consider when calculating integrals because they
do not occur in the calculations.

(iii) Reasonable sets and functions. Let us start by prove the following
result:

Theorem 4. Let f be a function with values in [0,+∞] ; then

µ∗(f) = 0⇐⇒ f(x) = 0 ae. ,(2.8)

µ∗(f) < +∞ =⇒ f(x) < +∞ ae.(2.9)

Any function such that µ∗ (|f |) < +∞ vanishes outside a countable union of
sets of finite outer measure.

Supposing that f ≥ 0 and µ∗(f) = 0, let us consider the set Np of x where
f(x) > 1/p and its characteristic function χp. Then f ≥ χp/p, whence

µ∗ (Np) = µ∗ (χp) ≤ pµ∗(f) = 0 .

Being the union of the sets Np, the set N = {f(x) > 0} has measure zero.
To prove the converse, choose Np = {p ≤ f(x) < p+ 1}. This time fχp ≤
(p+ 1)χp. So µ∗ (fχp) ≤ (p+ 1)µ∗ (χp) = 0. As f =

∑
p≥0 fχp, µ

∗ (|f |) = 0
by theorem 2, leading to (8).

To prove (9), we set Ap = {f(x) > p} and again let χp be the character-
istic function of Ap. Then f > pχp, whence µ∗(χp) ≤ µ∗(f)/p . As the set
N = {f(x) = +∞} in the intersection of the sets Ap, µ

∗(N) ≤ µ∗(f)/p for
all p, giving (9).
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Finally, if µ∗ (|f |) < +∞, there is a lsc function ϕ ≥ |f | such that µ∗(ϕ) <
+∞. So it suffices to prove the third proposition of the statement for ϕ. Now
the set {ϕ 6= 0} is the union of the open sets Un = {ϕ(x) > 1/n} and each one
of them has finite outer measure since its characteristic function is bounded
by ϕ, up to a factor n, qed.

To simplify the language and at the risk of introducing unorthodox termi-
nology, I will say that a set E ⊂ X is reasonable if it is contained in the union
of a countable family of sets of finite outer measure, and that a function f
is reasonable if so is the set {f 6= 0} . By the previous theorem, that is the
case if µ∗ (|f |) < +∞. Clearly, every subset of a reasonable set is reasonable,
and so is the countable union of reasonable sets. Finally, the measure µ itself
will be said to be reasonable if X is the union of a countable family of sets
of finite outer measure, i.e. is reasonable, in which case all sets and functions
are reasonable with respect to µ.

Since the outer measure of every compact set is finite, any set E ⊂ X
contained in the union of a countable family of compact sets and of a measure-
zero-set is reasonable. The converse will be proved later. If the space X is
countable at infinity, i.e. the union of a countable family of compact sets,
then all subsets of X as well as all measures on X are reasonable. Due to this
remark, these notions lose much of their importance since in practice, spaces
over which integration is done are almost always countable at infinity. But
introducing assumptions of countability at infinity for X or the measure µ
would not affect the validity of the fundamental theorems of § 3 nor simplify
their proofs. These assumptions will be useful, even essential, § 4 onwards.

Exercise. Let X be a discrete set: all subsets of X are open, the compact
subsets are the finite subsets of X, all functions are continuous. Choose the
measure µ(f) =

∑
f(x). Show that a subset of X has finite outer measure if

and only if it is finite, and is reasonable if and only if it is countable.

3 – F p Spaces

(i) Definition of F p spaces . For a complex-valued function f , we set

N1(f) = µ∗ (|f |) ≤ +∞(3.1)

and more generally

Np(f) = µ∗ (|f |p)1/p(3.1’)

for any real number p ≥ 1. By far the two most important cases are p = 1
and p = 2, but to deal with them simultaneously as will be done here, one
might as well consider the general case: it is not harder and avoids unnec-
essary repetitions imposed on their readers by the vast majority of authors.
Moreover, general Lp spaces occur in many applications of the theory. Like
N. Bourbaki in Intégration, Chap. III, the case of functions with values in
a Banach space H could be dealt with at the same time without changing
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notations: it would suffice to denote the norm of a vector a by |a|, which
is not forbidden by higher authorities, and the function x 7→ |f(x)| by |f |,
and to agree that what we denote by L(X) is the set of continuous functions
with compact support and values in H ; at least up to the Lebesgue-Fubini
theorem, results and proofs will be exactly the same as those for complex-
valued functions; this the reader can check step by step.6 The only additional
difficulty lies in the definition of the integral of a vector-valued function; we
will do this in the next n◦.

For p ≥ 1, the only case considered, the function Np has quite simple
properties:

Np(αf) = |α|Np(f)(3.2)

for all scalars α. It is equally clear that

|f | ≤ |g| =⇒ Np(f) ≤ Np(g) .(3.3)

Last but not least, Minkowski’s inequality

Np(f + g) ≤ Np(f) +Np(g)(3.4)

and Hölder’s inequality

Nr(fg) ≤ Np(f)Nq(g) if 1/p+ 1/q = 1/r(3.4’)

of Chap. V, n◦ 14 hold in this general context because they are only based on
the formal properties (2.3), (2.4) and (2.5) of the function µ∗(f) for f ≥ 0.
Inequality (4) is trivial for p = 1 – it suffices to write that |f +g| ≤ |f |+ |g| –
and (4’) is mostly useful for r = 1 in the form

|µ∗(fg)| ≤ Np(f)Nq(g) if 1/p+ 1/q = 1 .(3.4”)

This assumes p > 1 and q > 1 since p and q must be finite.
The set Fp(X;µ) = Fp of complex functions such that Np(f) < +∞ is,

therefore, a vector space on which the function Np is a norm, except for one
detail: by (2.8),

Np(f) = 0 is equivalent to f(x) = 0 ae.(3.5)

and not to f = 0. If two functions f and g are equal almost everywhere, then,
by (4) and (5), Np(f) ≤ Np(g) +Np(f − g) = Np(g). Thus symmetry implies

f = g ae. =⇒ Np(f) = Np(g) .(3.6)

6 The case of functions with values in a Banach space is not an unwarranted
generalization of the classical theory. It is an essential part of the representation
theory of locally compact groups (n◦ 19) and of many other questions. This does
not force the reader to be concerned with it before needing to do so.
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Hence the number Np(f) does not depend on the class of f modulo the

subspace N of null functions; denoting – very provisionally – this class by ḟ ,
we set

‖ḟ‖p = Np(f) .(3.7)

Relations (2) and (4) hold for these classes, and as all has been done so that
‖f̃‖p = 0 implies ḟ = 0, the quotient space

F p(X;µ) = F p = Fp(X;µ)/N (X;µ)

becomes a genuine normed vector space. Convergence in this space, defined
by

limNp(f − fn) = 0 ,

is called convergence in mean of order p ; instead of writing

lim

∫
|f(x)− fn(x)|p dµ∗(x) = 0 ,

which for explicitly given functions can be quite cumbersome, it is sometimes
convenient to use the expression

f(x) = l.i.m.p fn(x)

(limit in mean).

(ii) Convergence in mean and almost everywhere. Proving relations be-
tween convergence in mean and simple convergence or, more generally, al-
most everywhere, is one of the basic features of the theory, as the next result
already shows.

Theorem 5. Let
∑
fn(x) be a series of complex-valued functions such that∑

Np(fn) < +∞ for given p ≥ 1. Then∑
|fn(x)| < +∞ ae.(3.8)

and any function f such that

f(x) =
∑

fn(x) ae.(3.9)

satisfies

Np(f) ≤
∑

Np(fn) ,(3.10)

f(x) = l.i.m.p f1(x) + . . .+ fn(x) .(3.11)

The normed vector space F p is complete, and any sequence of functions
fn ∈ Fp converging in mean to a limit f contains a subsequence converging
almost everywhere to f .
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Let us start with the case of a series
∑
fn whose terms are ≥ 0 and denote

the partial sums by sn. The increasing sequence of functions spn converges to
fp, where for all x, we set f(x) =

∑
fn(x) ≤ +∞. Then, by theorem 2,

µ∗(fp) = limµ∗(spn) and so, raising to the power of 1/p,

Np(f) = limNp (sn) ≤ lim [Np (f1) + . . .+Np (fn)] ≤
∑

Np (fn) ,

whence (10). As this implies Np(f) < +∞, f(x) < +∞ ae., and (8) follows.
In the general case, apply the results obtained above to the functions

|fn| : Since Np(fn) = Np (|fn|) (8) follows, and since (9) shows that |f | ≤∑
|fn| ae., relation (10) for the functions |fn| implies (10) for functions fn.

Relation (11) is obtained by removing the first n terms from the given series,
which subtracts the partial sum sn of the series from f . Then (10) shows
that

Np (f − sn) ≤
∑
m>n

Np(fm) ,(3.12)

which leads to the result since the series
∑
Np(fn) converges.

To show that F p is complete, let (fn) be a sequence of functions in Fp
and suppose that, for all r > 0,

Np (fj − fi) ≤ r for large i and j .

It is a matter of proving the existence of a function f ∈ Fp such that
limNp(f − fn) = 0. Like in any metric space, this means that it suffices
to show that a subsequence converging in F p can be extracted from any
given Cauchy sequence.

By successively taking r = 1/2, 1/22, . . ., a subsequence such that

Np
(
fnk+1

− fnk
)
≤ 1/2k(3.13)

can readily be extracted from the given sequence. Since the differences

gk = fnk+1
− fnk(3.14)

satisfy
∑
Np(gk) < +∞, the series

∑
gk converges absolutely almost every-

where and in mean to a function g which, from the first part of the proof,
is also the limit (almost everywhere and in mean) of the partial sums of the
series. But (14) shows that

g1(x) + . . .+ gk(x) = fnk+1
(x)− fn1

(x) .(3.15)

As the left hand side tends to g(x) ae., one can deduce that

lim fnk(x) = g(x) + fn1
(x) ae.



§ 1. The Upper Integral of a Positive Function 19

Denoting by f(x) the limit function – regardless of its value at points
where it is defined –, by (15),

g − g1 − . . .− gk = f − fnk+1
ae. .

So

limNp
(
f − fnk+1

)
= 0

since the series
∑
gk converges in mean to g. This leads to a subsequence

converging to f both in F p and almost everywhere, qed.
Exercise. Let (an) be a sequence of real numbers (for example the sequence

of rational numbers). Show that the series
∑

1/|n2x−an|1/2 converges almost
everywhere in R.

The previous theorem shows that F p is a Banach space (Appendix to
Chap. III, n◦ 5). In practice, it is not very useful because the functions used
to define it are far too general for other non-trivial properties apart from the
previous theorems to be proved. Proper integration theory will be obtained
by replacing F p with a far more practical closed space, namely the space of
limits in mean of continuous functions with compact support.
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§ 2. Lp Spaces

4 – Integrable Functions, Lp Spaces

(i) Integral of an integrable function. A complex-valued function f is said to
be integrable if, for all r > 0, there is a continuous function g with compact
support such that

N1(f − g) = µ∗ (|f − g|) ≤ r .(4.1)

To require the existence of a sequence of functions fn ∈ L(X) such that

limN1 (f − fn) = 0(4.1’)

would be equivalent. The integral of f is then defined by writing

µ(f) = limµ(fn) .(4.2)

This limit exists and does not depend on the chosen sequence (fn). Indeed,

|µ(fp)− µ(fq)| = |µ(fp − fq)| ≤ µ (|fp − fq|) = N1(fp − fq)
≤ N1(fp − f) +N1(f − fq) ,

an arbitrarily small result when p and q are sufficiently large. Therefore, the
sequence µ(fn) satisfies the usual Cauchy criterion and converges. If another
sequence (gn) of continuous functions satisfies (1’), then similarly

|µ(fn)− µ(gn)| ≤ µ (|fn − gn|) = N1(fn − gn) ≤ N1(fn − f) +N1(f − gn) ,

whence limµ(fn) − µ(gn) = 0, qed. There is also a general theorem about
the extension of a continuous linear functions. Its proof is similar. . .

Any continuous function f ∈ L(X) is integrable [take g = f in (1)] and
its Lebesgue integral equals µ(f). As the relation

|µ(f)| ≤ N1(f)(4.3)

holds for all continuous functions, by passing to the limit, it can be generalized
to integrable functions. If f is integrable, so is7 |f | because of inequality∣∣|f | − |g|∣∣ ≤ |f − g|, and

N1(f) = µ (|f |) for f integrable .(4.3’)

Indeed, the same inequality and (1’) show that |fn| converges in mean to |f |,
whence

µ (|f |) = limµ (|fn|) = limN1 (|fn|) = N1 (|f |) = N1(f) .

7 Thus Lebesgue theory generalizes the absolutely convergent integrals of Chap. V,
§ 7.

© Springer International Publishing Switzerland 2015  
R. Godement, V, Universitext, DOI 10.1007/978-3-319-16907-1_2  Analysis I

20



§ 2. Lp Spaces 21

On the other hand, it is clear that all functions equal ae. to an integrable
function are integrable and that the integrals of these functions are equal.

Lemma 1. If f and g are integrable, so is αf + βg for all α, β ∈ C, and

µ(αf + βg) = αµ(f) + βµ(g) .

This follows from the inequality

N1 [(f + g)− (fn + gn)] ≤ N1 (f − fn) +N1 (f − fn)(4.4)

and from the linearity of the integral of continuous functions.

It was stated above that this theory can be generalized word for word
to functions with values in a Banach space H. Nonetheless, the integral
µ(f) ∈ H has to be defined for every integrable function f with values
in H and, to begin with, for every continuous function with compact
support. Though elementary, the construction requires several stages.

(a) We first suppose that

f(x) =
∑

fi(x)ai(*)

with finitely many fi ∈ L(X) and ai ∈ H . We then naturally set

µ(f) =
∑

µ(fi)ai .(**)

If f(x) =
∑
gj(x)bj is another similar representation of f , then there

are finitely many linearly independent elements ck satisfying relations8

ai =
∑
αikck,bj =

∑
βjkck, whence∑

fi(x)αik =
∑

gj(x)βjk for all k .

Integrating, one can deduce that
∑
µ(fi)αik =

∑
µ(gj)βjk and so, mul-

tiplying by ck and summing, that∑
µ(fi)ai =

∑
µ(gj)bj .

This shows that µ(f) only depends on f , justifying definition (**).
(b) As assumptions on f remain the same, inequality

|µ(f)| ≤ µ (|f |)(***)

needs to be generalized to this case. Recall that absolute values denote
the norm in H and |f | is the function x 7→ |f(x)|. The quickest proof is

8 Choose the elements ck so that they form a basis for the (finite-dimensional)
vector subspace generated by the ai and the bj .
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based on the following consequence of the Hahn-Banach theorem, which
I will admit:9 for all a ∈ H,

|a| = sup |ϕ(a)| ,(****)

where ϕ varies in the set of continuous linear functionals having norm
≤ 1 on H. Now, for such a form, (**) shows that

ϕ [µ(f)] =
∑

µ(fi)ϕ(ai) = µ
[∑

fiϕ(ai)
]

= µ(ϕ ◦ f) ,

where ϕ ◦ f is the numerical function

x 7−→ ϕ [f(x)] =
∑

fi(x)ϕ(ai) .

Since by assumption |ϕ| ≤ 1, |ϕ ◦ f(x)| ≤ |f(x)|, and so

|ϕ [µ(f)]| ≤ µ (|ϕ ◦ f |) ≤ µ (|f |) .

As this holds for every ϕ having norm ≤ 1, inequality (****) for a = µ(f)
proves (***).

(c) Now let f be a continuous function with values in H and vanishing
outside a compact set K ⊂ X. For all r > 0, there is (BW) a finite open
cover (Ui) of K such that f is constant on each Ui, up to r (uniform
continuity. . . ) ; and there exist fi ∈ L+(X) zero outside Ui and such
that

∑
fi(x) = 1 on K. So f(x) =

∑
fi(x)f(x) for all x ∈ X. Let us

choose some xi ∈ Ui and set ai = f(xi), g(x) =
∑
fi(x)ai, whence

|f(x)− g(x)| =
∣∣∣∑ fi(x) [f(x)− ai]

∣∣∣ ≤∑ fi(x) |f(x)− ai| .

For any given x ∈ X, the only terms that matter correspond to the indices
i for which fi(x) 6= 0. But this implies x ∈ Ui and so |f(x) − ai| ≤ r .
Hence |ϕ(x) − g(x)| ≤ r

∑
fi(x) = r. This shows that f is the uniform

limit of functions of type (*) vanishing outside a fixed compact set.

9 The framework for the present case is actually a finite-dimensional subspace ofH,
so that the Hahn-Banach theorem in finite dimension is sufficient. It is obvious
(Cauchy-Schwarz) for a Hilbert norm, but less so in the general case. Rudin,
Real and Complex Analysis, Chap. 5, gives a proof of a special version of the
HB theorem. The proper statement, found in N. Bourbaki, Espaces vectoriels
topologiques, is as follows: let C be a convex and closes set in a topological
vector space H whose topology is defined by seminorms (i.e. locally convex). C
is then defined by relations Re [fi(x)] ≤ 1, where the fi are continuous linear
functionals on H . In other words, C is an intersection of “ closed real half-
spaces ”. In exercises 3 and 4 of his Chap. XII.15, Dieudonné also proves some
particular cases, since he obviously does not wish to have to invoke transfinite
induction, which in some form or other is essential in the general case (including
for Banach spaces). The theory was finalized during the war by Dieudonné and
independently by George W. Mackey.
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(d) µ(f) can now be defined by approximating it with functions fn
of type (*) zero outside a fixed compact set: inequality (***) shows that
(µ(fn)) is a Cauchy sequence, and so converges to a limit µ(f), which is
obviously the same for all sequences (fn). Inequality (***) readily gener-
alizes to this case.

(e) Finally, let f be an integrable function, i.e. such that there exist
continuous functions fn with compact support satisfying

limN1(f − fn) = limµ∗ (|f − fn|) = 0 .

As (fn) is a Cauchy sequence with respect to the norm N1, (***) again
shows that their integrals converge to a limit depending only on f . This
gives the definition of µ(f) in the general case, inequality (***) remaining
valid.

Finally note the following linearity property: let f be an integrable
function with values in a Banach space H and T a continuous linear map
from H to a Banach space H′ . The function T ◦ f is then integrable and

µ(T ◦ f) = T [µ(f)]

or, in more standard notation,∫
T f(x).dµ(x) = T

∫
f(x)dµ(x) .(*****)

This is obvious for functions (*), and, given the continuity of T , the
general case follows by passing to the limit. The previous relation is
frequently used when T : F 7→ C is a continuous linear functional on F .

(ii) Lp spaces ; the Riesz-Fischer theorem. More generally, let us now
define pth power integrable functions for all p ≥ 1 by requiring that for each
such function f , there be functions fn ∈ L(X) such that

limNp(f − fn) = 0 .(4.5)

The set Lp(X;µ) = Lp of these functions is clearly a vector subspace of Fp.
Since Np(f) remains invariant if we modify f on a null set, only the class of
f mod N occurs in f ∈ Lp.

The quotient space

Lp(X;µ) = Lp(X;µ)/N (X;µ) ,

denoted simply by Lp when no confusion is possible, is a normed vector
space; it is the closure in F p of the set of classes mod N of continuous
functions with compact support. Since F p is complete, so is Lp, which is,
therefore, a Banach space (and historically, probably the first of its kind
apart from Hilbert spaces). Almost always, by abuse of language, one writes
f ∈ Lp instead of f ∈ Lp and ‖f‖p instead of Np(f). Another convenient
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convention consists in extending the previous definitions to functions only
defined outside a null set or taking the value +∞ or −∞ on such a set.
Assigning to them arbitrary finite values on the null set in question reduces
the definition to the previous one. The norm Np of the function thus modified
and its class moduloN only depend on the initial function. Hence hereinafter,
an expression of type � let f be a function defined on X � may also mean
a function defined on the complement of a null set. This convention may
seem somewhat strange when encountered for the first time, but one quickly
gets used to it because of its convenience, provided some minimal caution is
exercised.

Lemma 2. Let (fn) be a sequence of functions in Lp and f a function such
that limNp(f − fn) = 0. Then f is in Lp. If p = 1, then

µ(f) = limµ(fn) .(4.6)

Obvious.

Theorem 6. Let (fn)be a sequence of functions in Lp such that
∑
Np(fn) <

+∞. Then
∑
|fn(x)| < +∞ ae. Any function f satisfying f(x) =

∑
fn(x) ae.

is in Lp and satisfies

limNp (f − f1 − . . .− fn) = 0 ,(4.7)

µ(f) =
∑
µ(fn) if p = 1 .(4.8)

This is theorem 5 applied to functions in Lp . By lemma 2, the (class of
the) limit function f is still in Lp and (8) follows from (4) and (7).

Corollary. Let
∑
fn(x) be a sequence of positive integrable functions. The

sum of the series is integrable if and only if
∑∫

fn(x)dµ(x) < +∞ . The
series then converges almost everywhere and in the space L1, and∫

dµ(x).
∑

fn(x) =
∑∫

fn(x)dµ(x) .

It suffices to observe that for a positive integrable function f , N1(f) =
µ(|f |) = µ(f).

Compare with theorems 20 and 21 of Chap. V, n◦ 23: uniform or nor-
mal convergence has disappeared from assumptions and restricting oneself to
regulated functions is no longer necessary.

Theorem 7 (Riesz-Fischer). The normed vector space Lp is complete. A
sequence of functions fn(x) in Lp converging in mean to a limit f contains a
subsequence converging almost everywhere to f . If, moreover, the sequence
fn(x) converges almost everywhere to a limit g(x), then f(x) = g(x) almost
everywhere.



§ 2. Lp Spaces 25

Being a closed subspace of a complete space, Lp is complete. The second
proposition of the statement is here too theorem 5 in the special case of Lp.

The appearance of “ exceptional ” null sets in these statements cannot
be avoided: the behaviour everywhere of a sequence or of a series cannot be
expected to follow from integral computations. Similarly, statistics provides
no information on an individual case (the reason why Condorcet had already
realized around 1750 that statistics are only useful for political leaders). It is
already noticeable in Riemann theory, but in Lebesgue theory, it can be done
only if one specifically tolerates null sets about which nothing can be said.

In some very particular cases, classical analysis can reinforce integration
theory.

If for example X is an open subset in C, and if µ is the usual measure
dxdy, then a sequence of holomorphic functions fn ∈ Lp(X,µ) converging
in Lp converges uniformly in every compact set to a holomorphic function
[Chap. VIII, n◦ 4, (iv)], which is necessarily their limit in Lp . This proves
that in the space Lp considered, the set of holomorphic functions is a possibly
trivial closed vector subspace. But it was obviously not in order to integrate
such harmless functions that Lebesgue and his successors worked for half a
century. And even in this idyllic case, compact convergence does not imply
convergence in mean.

Exercise 1. Suppose that X = [0, 1], dµ(x) = dx and set

fp(x) = cos2n 2πnx where n = 2p .

Calculate µ(fp) [observe that fp is a trigonometric polynomial whose constant
term can be calculated by using Euler’s relation and the binomial formula].
Using Stirling’s formula show that fp converges in mean to 0. For which
x ∈ X does lim fp(x) = 0?

As any function f ∈ Lp is by definition the limit in mean of continuous
functions, theorem 7 shows the existence of a sequence of continuous functions
with compact support that converges almost everywhere to f(x). The proof
of theorem 5 even leads to a somewhat more precise though obvious result:

Corollary 1. For any f ∈ Lp, there is a series of continuous functions with
compact support such that∑

Np(fn) < +∞ , f(x) =
∑
fn(x) ae. ,

limNp (f − f1 − . . .− fn) = 0 .

If f is real-valued, the fn may be assumed to be real. Writing ϕ′(x) =∑
f+n (x), ϕ′′(x) =

∑
f−n (x) defined lsc functions with values in [0,+∞], but

finite almost everywhere, since Np(ϕ
′) ≤

∑
Np(f

+
n ) ≤

∑
Np(fn) < +∞, and

we get

f(x) = ϕ′(x)− ϕ′′(x) ae. ,

as well as µ(f) = µ(ϕ′)− µ(ϕ′′) if p = 1.
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This result shows that, for real-valued functions, Lebesgue theory would
not go beyond the framework of lsc functions if null functions did not exists.

Corollary 2. Every function belonging to the space Lp (p < +∞) is reason-
able.

It suffices to consider the supports Kn of the functions fn of corollary 1
and to note that f vanishes outside the union of these Kn and a null set.
This result is of little interest when X is countable at infinity. . .

Corollary 3. For all f ∈ Lp, there is a sequence of functions fn ∈ L(X)
and a function F ∈ Lp such that

f(x) = lim fn(x) ae. , |fn(x)| ≤ |F (x)| ae.

If |f(x)| ≤M almost everywhere, we may assume that |fn(x)| ≤M for all x
and n.

To prove the first point, it suffices to consider the partial sums sn(x) of
the series whose existence is ensured by corollary 1 and to choose F (x) =∑
|fn(x)| . By theorem 6 applied to the |fn|, F ∈ Lp. To prove the second

point, consider the contraction p of the complex plane onto the disc |z| ≤M
given by

p(z) = Mz/ sup (|z|,M) .

The functions gn = p ◦ fn are still in L(X), |gn(x)| ≤ |F (x)| still holds ae.,
and finally lim fn(x) = lim gn(x) since f(x) ≤M , qed.

When, for a sequence of a priori arbitrary functions fn, there is a func-
tion F such that

Np(F ) < +∞ & |fn(x)| ≤ |F (x)| ae. ,

the sequence (fn) is said to be dominated in Lp. This notion, almost always
applied to sequences fn ∈ Lp, plays a fundamental role in Lebesgue’s con-
vergence theorems. In particular, we will see (theorem 9) that, under the
assumptions of the corollary, the functions fn converge to f in Lp and not
only almost everywhere.

(iii) The case of lsc or usc functions.

Lemma 3. A lsc or usc function ϕ is integrable if and only if N1(ϕ) < +∞.

As −ϕ is lsc if ϕ is usc, we need only consider the case when ϕ is lsc and
show that condition N1(ϕ) < +∞ is sufficient. As ϕ is lsc, ϕ+ is lsc, ϕ− is
usc and these two functions satisfy the condition of the lemma.

Let us first consider ϕ+. For all r > 0, there is a function f ≤ ϕ+ in
LR(X) such that

µ(f) ≤ µ∗(ϕ+) = N1(ϕ+) ≤ µ(f) + r .
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As ϕ+ = f + (ϕ+− f), and as f and ϕ+− f are lsc since f is continuous, by
property (i) of theorem 1,

N1(ϕ− f) = µ∗ (|ϕ− f |) = µ∗(ϕ− f) = µ∗(ϕ)− µ(f) ≤ r ,

whence ϕ+ ∈ L1.
Next consider ϕ−. Since µ∗(ϕ−) = N1(ϕ−) < +∞, there exists a lsc

function ψ such that ψ ≥ ϕ− and µ∗(ψ) < +∞. The function ψ − ϕ−

being lsc,10 positive and bounded above by ψ, µ∗(ψ − ϕ−) < +∞, so that,
by the first part of the proof, ψ − ϕ− and ψ are integrable. As a result,
ϕ− = ψ − (ψ − ϕ−) is integrable, qed.

Lemma 4. A function f with values in [−∞,+∞] is integrable if and only if,
for all r > 0, there exist integrable functions ϕ and ψ, lsc and usc respectively,
such that

ψ ≤ f ≤ ϕ & µ∗(ϕ− ψ) ≤ r .

If f is integrable, there is a function u ∈ LR(X) such that µ∗(|f−u|) < r,
hence a lsc function θ such that

|f − u| ≤ θ , µ∗(θ) ≤ r .

As −θ ≤ f − u ≤ θ, u − θ ≤ f ≤ u + θ since u is finite-valued. Since u is
continuous, u + θ = ϕ is lsc, u − θ = ψ is usc, and like u and θ (lemma 3)
these two functions are integrable. Seeing that

µ∗(ϕ− ψ) = µ∗(2θ) ≤ 2r

the condition is necessary.
Conversely, if it holds, the function ϕ − ψ, which is lsc and positive, is

integrable (lemma 3). As N1(ϕ − f) ≤ µ∗(ϕ − ψ) ≤ r, the function f is
the limit in mean of usc and integrable functions (put r = 1/n), hence is
integrable, qed.

5 – Lebesgue’s Theorems

(i) The dominated convergence theorem.

Lemma 1. The upper (resp. lower) envelope of a finite family of functions
of Lp is in Lp.

For real functions, inequality |f+−g+| ≤ |f−g| shows that Np(f
+−g+) ≤

Np(f − g) . If f is in Lp, so are f+ and f−. We conclude the proof using
relations

10 As ϕ(x) > −∞ everywhere, the function −ϕ− does not take the value −∞, and
hence is in I, and consequently so is ψ − ϕ−.
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sup(f, g) = f + (g − f)+ , inf(f, g) = g − (g − f)+ .

Likewise, an analogous argument using inequality
∣∣|f | − |g|∣∣ ≤ |f − g| shows

that

f ∈ Lp =⇒ |f | ∈ Lp .

The converse is almost true (theorem 10).

Theorem 8. Let (fn) be an increasing sequence of positive functions in
Lp. f = sup fn = lim fn is in Lp if and only if supNp(fn) < +∞. Then
limNp(f − fn) = 0.

The condition is clearly necessary since 0 ≤ fn ≤ f for all n. To obtain
the converse, it suffices to show that the sequence (fn) satisfies Cauchy’s
criterion in Lp.

This is easy if p = 1. Indeed, since fj − fi is integrable and positive for
i ≤ j,

N1 (fj − fi) = µ (fj)− µ (fi) .

As the sequence µ(fn) is increasing and bounded above, Cauchy’s criterion
follows readily. One can also apply the corollary of theorem 6 to the series∑

(fn+1 − fn).
In the general case, we first note that, if two positive functions f and g

are continuous and with compact support, then

Np(f)p +Np(g)p ≤ Np(f + g)p .(5.1)

To see this, it suffices to apply µ to the inequality fp+gp ≤ (f+g)p. Now, any
positive function f ∈ Lp is the limit in mean of positive functions fn ∈ L(X)
since, if a sequence fn ∈ L(X) converges to f in Lp, so must functions
Re(fn)+. Passing to the limit, we conclude that (1) holds for positive f, g ∈
Lp.

We then consider an increasing sequence (fn) of positive functions in Lp.
For i ≤ j, (1) can be applied to the positive functions fi and fj − fi, whence

Np (fj − fi)p ≤ Np (fj)
p −Np (fi)

p
.

If supNp(fn) < +∞, the increasing sequence of numbers Np(fn)p converges
to a finite limit, and so Cauchy’s criterion holds in Lp for the sequence (fn),
qed. As mentioned in the case p = 1, one could also apply theorem 6 to the
series (fn+1 − fn).

Lemma 2. Any decreasing sequence (fn) of positive functions in Lp con-
verge in mean.

Apply theorem 8 to functions f1 − fn.

Lemma 3. The lower envelope of a countable family (fn) of positive func-
tions in Lp is in Lp.



§ 2. Lp Spaces 29

Apply the previous result to the functions inf(f1, . . . , fn); we already know
(lemma 1) they are in Lp.

Lemma 4. The upper envelope of a countable family of positive functions
fn ∈ Lp is in Lp if and only if there is function F ≥ 0 such that11

Np(F ) < +∞ & fn(x) ≤ F (x) ae. for all n .

The condition is necessary: for F take the upper envelope of the functions
fn. If it holds, the functions gn = sup(f1, . . . , fn) ∈ Lp form an increasing
sequence and satisfy gn ≤ F ae., whence Np(gn) ≤ Np(F ) < +∞. Apply
theorem 8 to functions gn completes the proof.

For real-valued functions fn, it is better to assume that |fn(x)| ≤
F (x) ae. . The upper and lower envelopes of the fn are then clearly in Lp. In
this case:

Theorem 9 (dominated convergence12). Let (fn) be a sequence of func-
tions inLp converging ae. to a function f . Suppose that there is a function
F ≥ 0 such that

Np(F ) < +∞ & |fn(x)| ≤ F (x) ae. for all n .

Then f is in Lp and

limNp(f − fn) = 0 , limµ(fn) = µ(f) if p = 1 .

It suffices to show that (fn) is a Cauchy sequence with respect to conver-
gence in mean.

As |fi − fj | ≤ 2F ae., lemma 4 shows that the functions

gn(x) = sup
i,j≥n

|fi(x)− fj(x)|

are in Lp, and lemma 2 that this decreasing sequence of positive functions
converges in mean in Lp. But since the given sequence converges outside a
null set N , the usual Cauchy criterion tells us that lim gn(x) = 0 for x /∈ N .13

11 The relation fn(x) ≤ f(x) almost everywhere for all n means that, for all n, there
is null set Nn, possibly dependent on n, such that fn(x) ≤ f(x) for x /∈ Nn, hence
for x /∈ N =

⋃
Nn.

12 Throughout this theory, a function f or a sequence of functions fn is said to be
dominated by a function g if |fn(x)| ≤ |g(x)| ae. for all n. As it is constantly
used, theorem 8 is often called Lebesgue’s theorem.

13 For a sequence of complex numbers, the relation

i, j ≥ n =⇒ |ui − uj | ≤ r

is equivalent to
vn = sup

i,j≥n
|ui − uj | ≤ r ,

so that Cauchy’s criterion means that lim vn = 0.
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Theorem 7 then shows that limNp(gn) = 0. However, |fi(x) − fj(x)| ≤ gn
and so

Np(fi − fj) ≤ Np(gn) for i, j ≥ n .

This gives Cauchy’s criteria and convergence in Lp, qed.
Compare with theorem 19 of Chap. V, n◦ 23.

Corollary. Let p and q be two real numbers such that 1 ≤ p, q < +∞ . For
all functions f ∈ Lp ∩ Lq, there exists a sequence of functions fn ∈ L(X)
converging to f almost everywhere, as well as in Lp and in Lq.

Indeed, it is possible to extract from L(X) two sequences (gn) and (hn)
that are convergent to f ae. and such that f is the limit in Lp (resp. Lq) of
the sequence (gn) (resp. (hn)) . They can even be assumed to be dominated
by two functions G ∈ Lp and H ∈ Lq (corollary 3 of Riesz-Fischer). The
function ωn(x) = gn(x)/|gn(x)| is defined and continuous on the open set
Un = {gn 6= 0}. Let us define fn by

fn(x) =
inf(|gn(x)|, |hn(x)|) ωn(x) if gn(x) 6= 0 ,

0 if gn(x) = 0 .

The function fn is continuous on Un, and as |fn(x)| ≤ |gn(x)| everywhere,
it is also continuous at every x ∈ X − Un . As a result, fn ∈ L(X). fn(x)
obviously converges ae. to f(x), and as fn is dominated by G and by H,
convergence in Lp and in Lq follow, qed.

(ii) Relation between Lp and L1 ; Hölder’s inequality. Lebesgue’s theo-
rem is going to enable us to explain the expression “ p-th power integrable
functions ”:

Theorem 10. A function f is in Lp if and only if the function |f |p−1f is
in L1. Then so is the function |f |p and

Np(f) = µ (|f |p)1/p .(5.2)

We obviously assume that p > 1 and confine ourselves to finite-valued
functions as others reduce to them thanks to null sets.

Let us suppose that f ∈ Lp, choose (corollary 1 of theorem 7) a series of
functions fn ∈ L(X) such that∑

Np(fn) < +∞ , f(x) =
∑

fn(x) ae.

and set

sn(x) = f1(x) + . . .+ fn(x) , S(x) =
∑
|fn(x)| .
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The functions gn = |sn|p−1sn are still in L(X) since p > 1. On the other
hand, |gn| = |sn|p ≤ Sp = G with a function G having values in [0,+∞]
satisfying

N1(G) = N1(Sp) = Np

(∑
|fk|
)p
≤
(∑

Np(fk)
)p

< +∞ .

The dominated convergence theorem can therefore be applied in L1 to the
sequence (gn), and as it converges ae. to the function g = |f |p−1f , it is
integrable, and hence so is its absolute value |f |p. The same argument applies
to functions |gn|, which converge ae. to |f |p, whence

µ (|f |p) = limµ (|gn|) = limµ (|sn|p) = limNp(sn)p

since the sn ∈ L(X) are integrable. Since the series
∑
fn converges to f in

Lp, it finally follows that

µ (|f |p) = Np(f)p ,

whence (2).
Conversely, suppose that g = |f |p−1f ∈ Lp. The theorem being trivial for

p = 1, one may suppose that p > 1. The map z 7→ |z|p−1z from C to C is
a homeomorphism. Its inverse is z 7→ |z|−1/qz, with 1/p + 1/q = 1 and so
0 < 1/q < 1 . To ensure continuity at 0, one needs to assume |0|−1/q.0 = 0.
As a result,

f(x) = |g(x)|−1/q g(x) .(5.3)

Let gn ∈ L(X) be a sequence of functions such that∑
N1(gn) < +∞ , g(x) =

∑
gn(x) ae.(5.4)

and we set

fn = |g1 + . . .+ gn|−1/q (g1 + . . .+ gn) .

The map z 7→ |z|−1/qz from C to C being continuous and zero at z = 0, like
gk for all k, fn is in L(X) for all n. Then

|fn| = |g1 + . . .+ gn|1/p ≤
(∑

|gk|
)1/p

= h .

The first relation (4) implies that N1 (
∑
|gk|) < +∞, and as a result,

Np(h)p = N1 (|h|p) = N1 (
∑
|gk|) < +∞. Therefore, the dominated con-

vergence theorem in Lp applies to the sequence (fn). However, (4) shows
that it converges ae. to |g(x)|−1/qg(x) = f(x), whence f ∈ Lp, qed.
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Theorem 11 (Hölder). Let p, q > 1 and r ≥ 1 be real numbers such that
1/p+ 1/q = 1/r. Then

f ∈ Lp & g ∈ Lq =⇒ fg ∈ Lr(5.5)

and

Nr(fg) ≤ Np(f)Nq(g) .(5.6)

Relation (6) is a particular case of (3.4’), which holds without any in-
tegrability assumptions. It, therefore, suffices to prove (5). To this end, we
choose sequences (fn) and (gn) in L(X) such that

limNp(f − fn) = 0 & limNq(g − gn) = 0 .

The proof reduces to showing that limNr(fg − fngn) = 0. Now, (fn) may
be assumed to converge almost everywhere to f and to be dominated by
a function F ≥ 0 such that Np(F ) < +∞ ; even (gn) may be assumed to
converge ae. to g and to be dominated by someG ≥ 0 such thatNq(G) < +∞.
Then the product fngn, being dominated by the function FG whose norm Nr
is finite by (6), converges ae. to fg. Applying Lebesgue’s theorem completes
the proof.

Corollary 1. If f, g ∈ L2, then fg is integrable and

|µ(fg)| ≤ N2(f)N2(g) .(5.7)

This corollary shows that a Hilbert inner product

(f |g) = µ(fg) =

∫
f(x)g(x)dµ(x)(5.8)

can be defined on L2. It is obviously linear14 in f , satisfies the condition
(f |g) = (g|f), and finally, by theorem 9,

(f |f) = µ
(
|f |2

)
= N2(f)2 ≥ 0 ,

which reduces (7) to the Cauchy-Schwarz inequality. This shows that (f |f) =
0 implies f = 0 ae., or f = 0 if one argues, as one should, in terms of classes
mod N . As, moreover, L2 is complete, we conclude that L2 is a genuine
Hilbert space. This result explains its importance in applications since the
theory of Hilbert spaces is far simpler and more complete than that of other
classes of topological vector spaces. We will again come across the L2 spaces
in relation to Fourier transforms, but they have many other applications.

14 One can formulate the same definition on F 2, but the result would not be an
inner product: the function µ∗ is not linear on F 1.
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Relation (6) is mainly of interest for 1/p+ 1/q = 1, from which r = 1 and
the same conclusion as above follow: for f ∈ Lp and g ∈ Lq, the function fg
is integrable and

|µ(fg)| ≤ N1(fg) ≤ Np(f)Nq(g) .(5.9)

As a result, for given g ∈ Lq, the map

f 7−→ µ(fg)

is a continuous linear functional on Lp. It will be shown later (n◦ 18, theo-
rem 30) that it is the only one. As q must be finite, this supposes that p > 1.
For p = 1, a space L∞, which we shall also define later, is needed.

Corollary 2. If f ∈ Lp, then fχ
K
∈ L1 for every compact set K ⊂ X and

fg ∈ L1 for all g ∈ L(X).

Indeed, the function χ
K

is in L1 (n◦ 4, lemma 7) and hence is in Lq

for all q (theorem 10), whence fχ
K
∈ L1. Use the same argument for the

product fg.
In fact, both propositions of corollary 2 are equivalent:

Lemma 5. The following two properties are equivalent for all functions j:
(LI 1) the function j(x)χ

K
(x) is integrable for all compact sets K ;

(LI 2) the function j(x)f(x) is integrable for all f ∈ L(X).
The map f 7→ µ(f j) is then a complex measure on X.

(LI 1) =⇒ (LI 2): if f vanishes outside a compact set K, then f j = f.jχ
K

.
Hence, corollary 2 applied to fχ

K
gives the result.

(LI 2) =⇒ (LI 1): if f j ∈ L1 for all f ∈ L(X), f can be chosen to be equal
to 1 on K, so that, by corollary 2, jχ

K
= f j.χ

K
is integrable.

The map f 7→ µ(f j) is obviously a linear functional on L(X) . If f ∈
L(X,K), where K is a compact set, then

|f(x)j(x)| = |f(x)χ
K

(x)j(x)| ≤ ‖f‖. |j(x)χ
K

(x)|

and so

|µ(f j)| ≤ ‖jχ
K
‖1 .‖f‖ ,

whence the continuity of f 7→ µ(f j) on L(X,K), qed.
A function j is said to be locally integrable with respect to µ if it satisfies

the equivalent conditions of lemma 5. We then set15∫
K

j(x)dµ(x) =

∫
j(x)χ

K
(x)dµ(x)(5.10)

15 One can define the integral over any measurable set A such that j(x)χA(x) is
integrable in a similar way, for example if A is contained in a compact set.
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for every compact set K ⊂ X, and we say that f 7→ µ(f j) = ν(f) is the mea-
sure with density j (for “ Jacobian ”) with respect to µ. This is symbolically
written as

dν(x) = j(x)dµ(x) .

Hence, by definition,∫
f(x).j(x)dµ(x) =

∫
f(x)j(x).dµ(x)

for all f ∈ L(X) . A punctuation mark has been inserted in every integral so
as to separate the function being integrated from the measure with respect
to which it is integrated. We will see in n◦ 16 that the previous relation
generalizes to integrable functions f with respect to the measure jdµ, but
this result, “ obvious from a physics viewpoint ” is far from being so from a
mathematical one. . .

For example, d∗x = dx/|x| is a measure on R∗ (but not on R).

(iii) Applications to Fourier transforms on R. The definition of Lp spaces
adopted above can be directly applied. Let us show for example that there
exists a unique isomorphism from L2(R) onto L2(R) which, on the Schwartz
space S 16 , reduces to the Fourier transform. Indeed, we know that the map
f 7→ f̂ from S to S is bijective and preserves the L2 norm (Chap. VII, n◦ 31,
theorem 28). On the other hand, S is everywhere dense in L2(R) because any
function f ∈ L(R) can be approximated using C∞ functions zero outside a
fixed compact set (Chap. V, n◦ 27, theorem 26), which implies convergence in
all Lp spaces. Thus the Fourier transform extends to L2(R) and the extension
is unique. The same would be the case if R were replaced with T: for every
f ∈ L2(T), there is a Fourier series

∑
f̂(n)un for which∑∣∣∣f̂(n)

∣∣∣2 = ‖f‖22 ,

and conversely. The convergence of the series is not an obvious consequence.
However, it is possible to show that the symmetric partial sums of the series∑
f̂(n)en(u) converge almost everywhere to f(u), a difficult result to prove

– and false for L1(T).
One can also define the Fourier transform in L1(R): since L(R) is every-

where dense in L1(R) and since

‖f̂‖ ≤ ‖f‖1

holds trivially for all f ∈ L(R), the left hand side being as usual the uniform

norm on R, the map f 7→ f̂ can be extended by continuity to a map from

16 Recall that, it is the space of C∞ functions ϕ on R for which all functions
xpϕ(q)(x) are bounded.
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L1(R) to the space of continuous functions on R, which is obviously given by
the formula

f̂(y) =

∫
f(x)e(xy)dx ae.(5.11)

where, like in Chap. VII, we set e(x) for exp(2πix). As we know that f̂
(Chap. VII, n◦ 27, theorem 23) tends to 0 at infinity for f ∈ L(R), the
Fourier transform maps L1(R) to the space L∞(R) of continuous functions
tending to 0 at infinity.

It should be noted that for f ∈ L1(R) ∩ L2(R), we thus have at our
disposal two possible definitions of the Fourier transform. Let us show that
they are compatible. Indeed, we know (corollary of theorem 9) that there is a
sequence of functions fn ∈ L(R) converging to f both in L1 and in L2. Then

(f̂n), given by (11), converges in L∞(R) (uniform convergence) to function
(11) for f , and in L2(R) to the Fourier transform of f in the L2 sense . Hence
by the Riesz-Fischer theorem for L2, it is the (class of) function (11).

This result enables us to calculate f̂ using a formula analogous to (11)
whenf ∈ L2(R). Indeed, let fn denote the function equal to f for |x| ≤ n
and 0 elsewhere. By corollary 2 above, it is in L1. It is also in L2 since, being
the product of |f |f ∈ L1 and the characteristic function of [−n, n], |fn|fn is
in L1. Its Fourier transform can therefore be calculated using (11). On the
other hand, fn clearly converges (dominated convergence) to f in L2. As a
result,

f̂(y) = l.i.m.2
∫
fn(x)e(xy)dx

or using notation (10),

f̂(y) = l.i.m.2
∫ +n

−n
f(x)e(xy)dx .(5.12)

If, for example f is a regulated function approaching 0 monotonously at in-
finity, the (ordinary) limit of the integral exists for all y 6= 0 (Chap. V, n◦ 24,
theorem 23) . So, if we know beforehand that f ∈ L2, in other words (exer-
cise !) that the Riemann integral

∫
|f(x)|2dx converges, we can replace the

symbol l.i.m.2 with an ordinary limit for y 6= 0, which by the way shows that
it is necessary to include functions that are only defined almost everywhere.

We will see in n◦ 10, (iv) how to generalize the Fourier inversion formula
(Chap. VII, n◦ 30, theorem 26) to functions f ∈ L1(R), namely that, if

f̂ ∈ L1(R) as well, then

f(x) =

∫
f̂(y)e(xy)dy .(5.13)
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Finally note that all this falls in the framework of Fourier transforms of
tempered distributions [Chap. VII, n◦ 32, formula (32.11)]. It should first be
observed that every f ∈ Lp(R) defines a distribution Tf given by

Tf (ϕ) =

∫
ϕ(x)f(x)dx for ϕ ∈ S .

The integral is well-defined since for all q, ϕ ∈ Lq, and Hölder’s inequality
readily shows (exercise !) that Tf is “ tempered ”. By definition, the Fourier
transform of Tf is the distribution

Tf̂ (ϕ) = Tf (ϕ̂) =

∫
ϕ̂(y)f(y)dy .

For f ∈ L2, this integral is the inner product of ϕ̂ and f , and so is also

equal to the inner product of ̂̂ϕ and the Fourier transform of f , which is the

conjugate of f̂(−x) . As ̂̂ϕ(x) = ϕ(−x) for ϕ ∈ S,

Tf̂ (ϕ) =

∫
ϕ(x)f̂(x)dx

readily follows. As a result, the Fourier transform of the distribution defined
by f is the distribution defined by f̂ .

If it is possible to identify a function f ∈ Lp with the distribution Tf , then
the latter can be assigned a Fourier transform, but it is not always defined
by a function.
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§ 3. Measurable Sets and Functions

The definition of integrable functions as limits in mean of continuous func-
tions with compact support cannot always be used. This § will show that a
function f is in Lp if and only if it is not too complicated and, of course, that
it satisfies Np(f) < +∞.

6 – Measurable and Integrable Sets

(i) Properties of integrable sets. In line with the general principle stated in
n◦ 2, a set A ⊂ X is integrable if so is its characteristic function χA; the
measure of A is then the number

µ(A) = µ(χA) = µ∗(A) .(6.1)

The following properties are immediate restatements of results from the pre-
vious n◦. An open set U is integrable if and only if µ∗(U) < +∞, and then
µ(U) = µ∗(U) (n◦ 4, lemma 3). The intersection of a finite or countable
family of integrable sets is integrable (n◦ 5, lemma 3) . In addition, for a
decreasing sequence of integrable sets (An),

µ
(⋂

An

)
= inf µ(An) = limµ(An) .(6.2)

The union of a finite family of integrable sets is integrable (n◦ 5, lemma 1) .
The same is true for the union of a countable family (An) provided its outer
measure is finite (n◦ 5, lemma 4) or, equivalently, provided there is a set of
finite outer measure containing all the sets An ; then

µ
(⋃

An

)
≤
∑

µ(An)(6.3)

since the characteristic function of A is bounded above by the sum of those of
the sets An. Furthermore, the relation

∑
µ(An) < +∞ suffices to ensure the

integrability of
⋃
An, and if the sets An are pairwise disjoint, inequality (3)

becomes an equality (theorem 6). If, moreover, the sequence An is increasing,
then

µ
(⋃

An

)
= supµ(An) = limµ(An)(6.4)

(theorem 8 of n◦ 5).
Finally, it is clear that if A and B are integrable and if A ⊂ B, then B−A

is integrable and

µ(B −A) = µ(B)− µ(A) .(6.5)

Any compact set K is integrable since its characteristic function is usc and
it upper integral is finite.
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Let us, for example, show that the Cantor set C has measure zero. This
follows by removing from K = [0, 1] its median interval ]1/3, 2/3[, then by
repeating this process for the two remaining intervals, then for each of the
four remaining ones, and so on. The sum of the measures of the strictly open
intervals equals

1/3 + 2/32 + 22/33 + . . . = 1 ,

and as they are pairwise disjoint, µ(K − C) = 1, and so µ(C) = 0.

Lemma 1. A set A ⊂ X is integrable if and only if, for all r > 0, there is
an open set U and a compact set K such that

K ⊂ A ⊂ U & µ(U −K) < r .

Every integrable set is the union of a null set and a countable family of
compact sets.

By lemma 4 and n◦ 4, the condition is sufficient since the characteristic
functions of K and U are respectively usc and lsc. To show that it is necessary,
we choose integrable functions ϕ and ψ respectively lsc and usc such that

ψ ≤ χA ≤ ϕ and µ(ϕ− ψ) ≤ ε ,(6.6)

where ε > 0 is given. They can be assumed to be positive, if need replacing
them with ϕ+ and ψ+.

For any integer n ≥ 1, the relation ϕ(x) > 1 − 1/n defines an open set
U ⊃ A, and (1 − 1/n)µ(U) ≤ µ(ϕ) ≤ µ(A) + ε. So µ(U) ≤ µ(A) + r if ε is
sufficiently small and n sufficiently large.

On the other hand, the function ψ being usc and positive, and so bounded
above by a continuous, positive function with compact support, the relation
ψ(x) ≥ 1/2 defines a compact set K ⊂ A. As ψ(x) < 1/2 on A − K and
ψ(x) ≤ 1 on K, ψ(x) ≤ χA−K(x)/2 + χ

K
(x) for all x ∈ A, and in fact for all

x ∈ X. As a result, µ(ψ) ≤ µ(A−K)/2 + µ(K). But (6) shows that

µ(χA − ψ) = µ(A)− µ(ψ) ≤ µ(ϕ− ψ) ≤ ε .

Hence, it follows that

µ(A)− ε ≤ µ(ψ) ≤ µ(A−K)/2 + µ(K) .

So µ(A−K) ≤ ε+ µ(A−K)/2 and finally µ(A−K) ≤ 2ε.
At last, for compact sets Kn ⊂ A and open sets Un ⊃ A such that

µ(Un −Kn) < 1/n, the set N = A −
⋃
Kn, contained in Un −Kn for all n,

has measure zero, qed.
A consequence of the previous lemma is that any reasonable set E ⊂ X is

contained in the union of a null set and a countable family of compact sets.
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The converse is obvious. Indeed, by definition, E ⊂
⋃
En, where µ∗(En) <

+∞ for all n. By (2.3’), each En is contained in an open set Un such that
µ∗(Un) < +∞, and so is integrable. As a result, Un = Nn ∪

⋃
Knp, where

the sets Knp are compact and Nn null sets. E is, therefore, contained in the
union of a null set N =

⋃
Nn and a family of sets Knp, qed.

The entire space X may be integrable, in particular if X is compact.
The measure µ is then said to be bounded. The whole of X is then clearly
reasonable, and hence so are all subsets of X. As, on the other hand, |f | ≤
‖f‖χ

X
for any function f ∈ L(X), it follows that

|µ(f)| ≤M‖f‖ where M = µ(X) .

Conversely, every measure satisfying an inequality of this type is bounded
since µ∗(X), a supremum of µ(f) for f ∈ L(X) such that 0 ≤ f ≤ 1, is then
≤ M . Hence if we equip L(X) with the norm ‖f‖ = ‖f‖X of uniform con-
vergence on X, bounded measures are just the continuous linear functionals
on L(X) that are positive for f ≥ 0. If for example j is a positive integrable
function, then the function f j is integrable for all f ∈ L(R) (corollary 2 of
theorem 11) and the map

f 7−→ µ(f j) =

∫
f(x)j(x)dµ(x)

is a bounded measure since |f j| ≤ ‖f‖j and so

|µ(f j)| ≤ N1(j)‖f‖ .

We will show later [n◦ 17, (ii)] that this property characterizes integrable
functions.

(ii) Measurable sets. The notion of a measurable set is at least as useful
as that of an integrable one. That is the name given to any set A ⊂ X such
that A ∩K is integrable for all compact sets K ⊂ X . This is the case of all
integrable, closed or open sets. Properties of integrable sets regarding unions
and intersections readily show that

(i) any finite or countable intersection of measurable sets is measurable,
(ii) the complement of a measurable set is measurable, and hence
(iii) any finite or countable union of measurable sets is measurable.

In addition:
(iv) a set A is integrable if and only it is measurable and of finite outer

measure.
Indeed, if A is integrable, then so is A∩K for any compact setK. Thus A is

measurable. Conversely, suppose that A is measurable and that µ∗(A) < +∞.
There is a lsc function ϕ ≥ χA such that µ∗(ϕ) < +∞ . It is integrable (n◦ 4,
lemma 3), and so vanishes outside a set of the form N ∪

⋃
Kn, where N is

null and the Kn are compact (n◦ 4, corollary 2 of theorem 7). The same is
true for χA. Thus



40 XI – Integration and Fourier Transform

A = (A ∩N) ∪
⋃

(A ∩Kn) ,

which is the countable union of integrable sets since A is measurable. As
µ∗(A) < +∞, this union is also integrable, qed.

One could add that
(v) a measurable set A is reasonable if and only if it is the union of a null

set and a countable family of compact sets.
We saw above that, if A is reasonable, then it is contained in a set of the

form N ∪
⋃
Kn, where N is null and the Kn are compact. A∩N is null and

A ∩Kn integrable, and so of the form Nn ∪
⋃
Knp, qed.

Properties (i) and (ii) are sometimes expressed as saying that the set of
measurable subsets of X is a tribe or a σ-algebra, a barbarous expression17

used by abstract measure specialists. These results enable us to construct
more and more complicated measurable sets from open or closed sets: count-
able intersections of countable unions of countable intersections of. . . As no
one has ever constructed a non- measure set without resorting to the axiom
of choice in some form or other, it may be thought that none are encountered
in classical mathematics. In fact, as the Lebesgue-Fubini theorem will show,
there are fields where caution is warranted.

A tribe is a subset of the set P(X) of subsets of X (Chap. I, n◦ 4),
and it readily follows from the definition that any intersection of tribes is
again a tribe. Hence, one may talk of a smallest tribe containing the open
sets. By definition, its elements are the Borel sets . They are measurable
with respect to all measures µ on X, which is why they are of interest. The
next simplest ones are the countable intersections of open sets (the Gδ sets in
usual notation, a category containing the closed subsets if X is metrizable18),
then the countable unions of Gδ sets (the Gδσ sets), then the countable
intersections of Gδσ sets (the Gδσδ sets), etc. From these classes of sets, in
general pairwise distinct and each larger than the preceding one, the reader
may get the impression that all Borel sets can be obtained by this rather
simple mechanical process. False. Choosing in each of these classes a set not
belonging to any of the previous ones gives the union of a countable family
of Borel sets that does not in general belong to any of these classes. The
construction would need to be continued beyond countability.

17 In the special issue of Pour la Science dedicated to N. Bourbaki, it is said that
the terms “ clan, phratry, tribe ” used by this author before he decided to reject
abstract measures show his lack of taste for the topic. It was more a matter
of wishing to express himself in French. The English translation of N. Bour-
baki’s book came back to σ-algebras, probably because of what the English and
Americans themselves call the NIH syndrome (not invented here). . .

18 If X is a metric space, any closed subset F is a Gδ set since it is the intersection
of the open sets defined by the inequalities d(x, F ) < 1/n. I take it that the
letters δ and G comes from the German for intersection, Durchschnitt and open
geffnet.
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The notion of a tribe explains the theory of abstract measures.19 Take a
set E without topology, a tribe of subsets of E and a function µ on it with
values in [0,+∞] having the same formal properties (countable additivity)
as a Radon measure. This leads to the definition of integrable functions, Lp

spaces and to Lebesgue’s theorems. For example, if there is a Radon measure
λ on a locally compact space X and if E is taken to be a measurable subset
of X, the measurable sets contained in E form a tribe on which the function
µ(A) = λ(A) is a measure on E in the previous sense. If E is locally compact
(i.e. the intersection of an open and a closed set), µ is the Radon measure on
E which can be directly defined by putting

µ(f) = λ(f ′)

where, for all f ∈ L(E), f ′ denotes the function equal to f on E and 0
elsewhere. As a compact subset of E is also a compact subset of X, f ′ ∈ L(X).
µ is said to be the measure induced by λ on E. For example, this enables us to
talk of the Lebesgue measure on a locally compact subset of a space Rn. If µ
is defined by the previous formula, we immediately encounter the problem of
having to prove the following result, “ obvious from a physics viewpoint ”: a
function f on E is integrable with respect to µ if and only if so is its extension
f ′ with respect to λ, in which case the previous formula continues to hold.
This in fact require a non-trivial proof.20

7 – Measurable Functions

(i) Separable spaces. Let us consider a locally compact space X, a positive
measure µ on X and a sequence of maps fn from X to a metric space P .
Suppose that the sequence (fn) converges everywhere to a limit function
f(x). For a given a ∈ P and a given number R > 0, let A ⊂ X be the set of
x where

d [f(x), a] < R .

We intend to compute it using similar sets with respect to the functions fn.
The relation x ∈ A means that there are integers m and k (dependent on

x) such that

d [fn(x), a] < R− 1/m for all n ≥ k .(7.1)

We set

Am,n = {d [fn(x), a] < R− 1/m} .

For given m and k, (1) clearly means that

x ∈
⋂
n≥k

Am,n .

19 See for example Chap. 1 in Walter Rudin’s Real and Complex Analysis.
20 See N. Bourbaki, Integration, Chap. V.
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Hence

A =
⋃

m,k>0

⋂
n≥k

Am,n .(7.2)

If, instead of converging everywhere, the sequence fn converged almost every-
where to f , the result would obviously remain the same up to a null set. This
shows that if the inverse images of the open balls of P under the functions
fn are measurable, then f also has the same property.

This argument, however, relies on using a metric d defining the topology
on P . To obtain a result involving only the topology on P , we would need
to show that it is preserved if d is replaced by another metric compatible
with the topology on P . Now, any open d′-ball (and more generally any open
subset of P ) is then a union of open d-balls. Hence there is no problem if
every open d′-ball is known to be the countable union of open d-balls and
conversely. It is simplest to suppose that all open subsets U of P is the
countable union of open balls, a property independent of the chosen metric
since a family (Bmn) dependent on two integer indices is still countable.

This is for example the case if P = Rn: every open subset of P are the
unions of open balls of rational radii and centred at points with rational
coordinates. Let us suppose that in the general case there is a countable and
everywhere dense set D in the metric space P . P is then said to be separable.
If U is open in P and if a ∈ U , U contains an open ball B(a, r) with r ∈ Q, and
the ball B(a, r/2) contains some d ∈ D. The ball B(d, r/2) is then contained
in U and contains a. Since a ∈ U is arbitrary, U is the union of open balls
centred at points of D and of rational radii, whence the result.

The existence of D is equivalent to the next property:

(TD) There is a countable family of open set (Un) such that any open
subset of P is the union of those Un contained in it.

We saw above that (TD) is clearly necessary. Conversely, if (TD) is satisfied
and if, for all n, some an ∈ Un is chosen arbitrarily, the set D of the points
an meets every open subset of P , and so is everywhere dense. For metrizable
spaces, (TD) is thus equivalent to separability.

A separated topological space (Hausdorff axiom) satisfying (TD) is said
to be of countable type; any family (Un) satisfying (TD) is called a basis for
the topology of X. We will return in much greater detail to all this in n◦ 11.

(ii) Measurable maps. After these preliminaries, let us return to X and
to the measure µ. A map f from X to a metrizable and separable space P is
said to be measurable21 when it satisfies the condition

(FM): the inverse image under f of every open subset of P is measurable.

21 A definition applicable to all topological spaces will be given later.
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Every continuous map is obviously measurable. The arguments that have led
to relation (2) then prove the next result:

Theorem 12. If a sequence of measurable functions with values in a metriz-
able and separable space converges almost everywhere, then the limit function
is measurable.

An immediate corollary:

Theorem 13. All functions belonging to a Lp space are measurable.

Because it is the limit almost everywhere of a sequence of continuous
functions with values in C, the archetype of a metrizable and separable space.

For a function f with values in R or, more generally, in [−∞,+∞], mea-
surability means that f−1(I) is measurable for every interval I, including
for example if I = {+∞}, or {−∞}, or [3,+∞[, etc. . It would even suf-
fice to require this for intervals of the form I = [a,+∞] where a is finite
since every other interval can be obtained from this type of intervals using
a countably infinite number of standard operations. For example, [−∞, a[ is
the complement of [a,+∞], and [0, a[ = [0,+∞] ∩ [−∞, a[. So

[0, 1] = [0,+∞] ∩
⋂

[−∞, 1 + 1/n[ .

Theorem 13 continues to hold for these functions since they are anyhow finite
almost everywhere. We will see later that, modulo the condition Np(f) <
+∞, this theorem characterizes the functions of Lp.

A measurable function remains so if it is modified on a null set. Hence
the definition can be applied to functions defined almost everywhere.

Property (FM) can be generalized:

Theorem 14. Let P be a metrizable and separable set. The inverse image of
every Borel set B ⊂ P under a measurable map f : X −→ P is measurable.

Let T be the set of subsets E of P such that f−1(E) is measurable. Ele-
mentary formulae about the inverse image of an intersection or a complement
show that, like the family of measurable subsets of X, T is a tribe. However,
by definition, T contains all the open subsets of P , and hence also all its
Borel subsets.

Lemma 1. Let f1, . . . , fn be maps from X to metrizable and separable sets
P1, . . . , Pn . Then the map

f : x 7→ (f1(x), . . . , fn(x))

from X to the product space P = P1 × . . . × Pn is measurable if and only if
so are the maps fi.

First, the product space is metrizable and separable since if, for each i,
Di is everywhere dense in Pi, then the product of the sets Di is everywhere
dense in P . If f is measurable, then, for any Borel set B ⊂ P1, the set
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f−1 (B × P2 × . . .× Pn) = f−11 (B)

is measurable. Hence the condition is necessary.
To show that it is sufficient, note that, if Ui is an open subset of Pi, the

product of the sets Ui is open in P ,. Since

f−1 (U1 × . . .× Un) =
⋂
f−1i (Ui) ,

the left hand side is measurable. Hence so is f−1(U) for any open set U ⊂ P
if U is shown to be the countable union of a product of open sets. To see this,
we equip P with the distance

d(a, b) = sup di (ai, bi) ,

where di is the distance on Pi . It defines the topology of the product. The
open balls of the product are then products of open balls in the sets Pi, which
are unions of open balls of rational radii centred at points of countable and
everywhere dense sets Di ⊂ Pi, qed.

In the next statement, if P and Q are separable metric spaces, ϕ : P −→ Q
will be said to be a Borel map if, for any open ball V ⊂ Q, ϕ−1(V ) is a Borel
subset of P . Then, more generally, the same holds for all Borel sets V since
the set of subsets V for which f−1(V ) is a Borel set is a tribe. A Borel map
from X to a separable and metrizable space is, therefore, measurable. The
argument used to prove theorem 12 shows that the limit f of a sequence of
Borel maps fn converging EVERYWHERE is a Borel map,22 since the sets
Am,n of relation (2) and so A are then Borel sets. For example, any regulated
function on R is a Borel map.

Lemma 2. Let P and Q be two separable and metrizable spaces, ϕ a Borel
map from P to Q and f a measurable map from X to P . Then g = ϕ ◦ f :
X −→ Q is measurable.

It suffices to write that g−1(B) = f−1(B′), where B′ = ϕ−1(B).

Theorem 15. Let P1, . . . , Pn and Q be separable and metrizable spaces, ϕ
a Borel map from P1 × . . . × Pn to Q and fi : X −→ Pi measurable maps.
Then the map

x 7−→ ϕ [f1(x), . . . , fn(x)]

is measurable.

This is a direct consequence of the previous two lemma.
Theorems 12 and 15 enable us to check that all usual operations (quasi-

algebraic formulae, passages to the limit) that can be performed on measurable

22 Were convergence ae. sufficient, then (among others) any integrable function
would be a Borel map, any null set would be a Borel set, and hence so would be
any subset of such a set, etc.
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functions lead to measurable functions. In fact, far more ingenuity would be
needed to invent, using explicit formulae, non-measurable maps, possibly even
non-Borel maps. However, see end of n◦ 11: the image of a measurable (resp.
Borel) set under a continuous map may not be a measurable (resp. Borel)
map, including in the case of the projection (x, y) 7→ x from R2 onto R.

The set of measurable functions with values in C (or in a separable Banach
space) is a vector space since (u, v) 7→ αu + βv from C × C to C is a Borel
map. Together with theorem 12, this result shows that if a series

∑
fn(x) of

measurable functions converges ae., its sum, i.e. the limit of its partial sums,
is measurable. The same holds for functions fn with values in [−∞,+∞],
provided the expression (−∞) + (+∞) is given a meaning. This can be done
(in integration theory. . . ) by assigning once and for all an arbitrary value to
it since, if (fn) is a countable family with values in [−∞,+∞], the set of x
where −∞ and +∞ appear in the sequence (fn(x)) is measurable as it is the
intersection of the measurable sets

f−1n ({−∞}) ∩ f−1n ({+∞}) .

The product of two complex-valued measurable functions is measurable.
This result holds for any continuous bilinear map. For example, if f and g
take values in a separable Hilbert space, the function x 7→ (f(x)|g(x)) is
measurable. If f with values in a Banach space F is measurable, so is the
function x 7→ ‖f(x)‖ since u 7→ ‖u‖ is a continuous map from F to R. If f and
g, with values in a separable and metrizable space P , are measurable, so is the
function x 7→ d [f(x), g(x)] with respect to any distance compatible with the
topology of P , since the map (u, v) 7→ d(u, v) from P ×P to R is continuous.
If f and g, with values in [−∞,+∞], are measurable, so are sup(f, g) and
inf(f, g). Thanks to theorem 12, we can deduce that the upper and lower
envelopes of a countable family of real measure functions are measurable.
Etc.

Exercise. Define the measurable functions with values in the Riemann
sphere Ĉ [Chap. VIII, n◦ 5, (vi)] and show that if f is measurable, then so is
1/f . Define the map x 7→ 1/x from [−∞,+∞] to itself by agreeing, either that
1/0 = +∞, or −∞, or any other value. Show that if f : X −→ [−∞,+∞] is
measurable, then so is 1/f in all three cases.

8 – Measurability and Continuity

(i) Egorov’s and Lusin’s theorems. We saw above that any limit ae. of mea-
surable functions is measurable. There is actually a more precise result whose
proof, like the calculations of n◦ 7, (i), is a set theory exercise:

Theorem 16 (Egorov). Let (fn) be a sequence of measurable functions
with values in a separable metric space P and converging ae. to a function
f : X −→ P . For all ε > 0 and all integrable sets A ⊂ X, there exists an
integrable set B ⊂ A such that µ(A − B) < ε and in which the sequence
(fn(x)) converges uniformly to f(x).
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Removing a null set from A, we may suppose that lim fn(x) = f(x) for
all x ∈ A without exception. Henceforth, all arguments apply exclusively to
A.

For integers m, p ≥ 1, consider the measurable set

Am(p) = {d [f(x), fn(x)] < 1/m for all n ≥ p} .

Obviously

Am(p) ⊂ Am(p+ 1) .(8.1)

By definition of simple convergence,

A =
⋃
p≥1

Am(p) for all m.(8.2)

Convergence is uniform in a subset B of A if and only if, for all m, there
exists p such that B ⊂ Am(p), in other words, if and only if there exists a
sequence (pm) such that B ⊂

⋂
Am(pm) . Therefore, the proof reduces to

showing that there exist integers pm such that the set

B =
⋂
Am (pm)(8.3)

satisfies µ(B) ≥ µ(A) − ε. As A − B =
⋃

[A−Am(pm)], for this to be the
case it suffices that

µ(A)− µ [Am (pm)] ≤ ε/2m(8.4)

for all m. Since for given m, by (1), the sequence (Am(p)) is increasing, for
each m, the existence of an integer pm satisfying (4) follows from (2), qed.

Using Egorov’s theorem, measurability can be related to continuity. In-
deed, the function f is the limit ae. of a sequence of functions continuous
everywhere – for example if f belongs to a Lp space –, and if the result is
applied to a compact set K ⊂ X, then f has the following property:

(LUS) For all compact sets K ⊂ X and all ε > 0, there exists a compact
set K ′ ⊂ K such that µ(K −K ′) < ε and such that the restriction of f
to K ′ is continuous.23

More generally:

Theorem 17 (Lusin). A function f with values in a metrizable and sepa-
rable space P is measurable if and only if f satisfies condition (LUS).

23 In the following, by abuse of language, we will often say that “ f is continuous
on A ” meaning that the restriction of f to A is continuous. This does not
mean that f is continuous at every point x ∈ A as a function on X (example:
the characteristic function of A is continuous on A in the previous sense, but
discontinuous at every boundary point of A as a function on X).
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We break up the proof of this result into several parts.
(a) Let us first suppose that there is a countable partition of X into

measurable sets En such that f is constant on each of them. We will then say
that f is a step function. This is a less trivial analogue of the step functions of
Chap. V, n◦ 1. All functions of this type are measurable. Indeed, if f(x) = un
on En and if U is a subset of P , the set f−1(U) is the union of the sets En
for n such that un ∈ U . Hence it is measurable.

(b) Let us now show that all step functions f have the stated property.
Indeed, let K be a compact set. K is the disjoint union of integrable sets
K ∩ En. Hence, for ε > 0 and all n, there is a compact set Kn ⊂ K ∩ En
such that µ (K ∩ En −Kn) < εn = ε/2n. Since f is constant on each En, it
is continuous on each Kn, hence also on

K ′n = K1 ∪ . . . ∪Kn

for all n since the Ki are closed and pairwise disjoint. But

µ (K −K ′n) =
∑
p≤n

µ (K ∩ Ep −Kp) +
∑
p>n

µ (K ∩ Ep) .

The second sum is arbitrarily small for large n since∑
p≥1

µ (K ∩ Ep) = µ(K) < +∞

and the first one is bounded above by ε1 + . . .+ εn < ε, qed.
(c) If there is sequence (fn) of measurable functions, then for all ε > 0,

there is a compact set K ′ ⊂ K such that µ(K−K ′) ≤ ε and on which all func-
tions fn are continuous. Indeed, for each n, there are sets Kn ⊂ K on which
fn is continuous and such that µ(K −Kn) ≤ ε/2n . Then µ (K −

⋂
Kn) ≤ ε

and the compact set K ′ =
⋂
Kn answers the question.

(d) Let f : X −→ P be an arbitrary measurable map. To show that it
has Lusin’s property, choose a distance d on P and a number r > 0. As P is
separable, it is the union of a sequence of open balls An of radius r. Replacing
the An by the sets

B1 = A1, . . . , Bn = An −An ∩ (A1 ∪ . . . ∪An−1) ,

we get a partition of P into Borel sets of diameter ≤ 2r. Since f is measurable,
the sets En = f−1(Bn) form a partition of X into measurable sets on which
the function f is constant up to 2r. For each n, we choose some xn ∈ En and
we define a step map f from X to P by the condition g(x) = f(xn) on En.
Then the uniform distance d(f, g) = sup d[f(x), g(x)] is clearly ≤ 2r.

Giving values of type 1/n to r, we thus see that f is the uniform limit
in X of a sequence of measurable step functions gn with values in P . Now,
section (c) of the proof shows that there is a compact set K ′ ⊂ K satisfying
µ(K −K ′) ≤ ε and on which the functions gn are continuous. Hence so is f ,
and property (LUS) follows for f .
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(e) It remains to prove that conversely, any function f having this property
is measurable, i.e. that the set f−1(U) ∩ K is integrable for any open set
U ⊂ P and any compact set K ⊂ X. By assumption, K is the union of a
sequence of compact sets Kn on each of which f is continuous and a null set
N . Therefore, f−1(U) ∩Kn is open in Kn, and so is a Borel set, and thus is
measurable. Hence, so is f−1(U)∩K, the union of thef−1(U)∩Kn and a null
set. As f−1(U) ∩K has finite outer measure, it is integrable [n◦ 6, property
(iv)], qed.

The proof highlights the analogy between continuity and measurability:
f is continuous (resp. measurable) if and only if there is a countable cover
of X by open (resp. measurable) sets on which f is constant up to ε. This
obviously supposes that P is separable.

Here is a useful application of Lusin’s theorem:

Corollary. Let X be a locally compact space, µ a positive measure on X
and j a locally integrable function with respect to µ.∫

f(x)j(x)dµ(x) = 0 for all f ∈ L(X)

if and only if j(x) = 0 almost everywhere on every compact set24 K ⊂ X
[hence j(x) = 0 almost everywhere if X is countable at infinity or if µ is
reasonable].

The condition is clearly sufficient. To show that it is necessary, we argue by
contradiction. As j is measurable, there is a compact set K and a measurable
set A ⊂ K with non-zero measure such that j(x) 6= 0 for all x ∈ A . Lusin’s
theorem enables us to assume that A is compact and that j continuous on A.
The function j(x)χA(x) being integrable by assumption or definition, there is
a sequence of functions fn ∈ L(X) converging almost everywhere to jχA. As
jχA vanishes outside the compact set A, the fn may be assumed to be zero
outside a compact neighbourhood B of A. As jχA is bounded, the functions
|fn| can also be assumed to be bounded above by a constant M independent
of n (corollary 3 of theorem 7). Then the functions fn(x)j(x) converge almost
everywhere to |j(x)|2χA(x) and are dominated by the function M j(x)χA(x),
which are integrable by assumption. Hence∫

|j(x)|2 χA(x)dµ(x) = lim

∫
j(x)fn(x)dµ(x) = 0 ,

and thus j(x) = 0 almost everywhere on A, a contradiction.
It should be noted that the condition in the statement says that the

measure j(x)dµ(x) with density j [n◦ 5, (ii)] is zero.
Exercise 1. Let K be a compact set and f a function vanishing outside

K and lsc on K. Show that f is measurable. Deduce that for real functions

24 This means that the set N = {j(X) 6= 0} satisfies µ(N ∩K) = 0 for any compact
set. Such a set is said to be locally null.
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with values ≤ +∞, “ continuous ” can be replaced by “ lsc ” in the (LUS)
statement.

(ii) Lusin-measurable functions. Apart from the importance of Lusin’s
theorem for its own sake, it can be used to construct a theory of measurable
functions with values in a general (separated) topological space: by definition,
these are maps f having property (LUS) of Lusin’s theorem. This point of
view, taken by N. Bourbaki, often enables us to free ourselves from separabil-
ity assumptions. Though they hold in most applications, as we will see later
in relation to the vague topology on measure spaces, in functional analysis,
we also need to for example consider functions with values in non-separable
Banach spaces and even in non-metrizable topological vector spaces. In the
exercises below, (LUS) is taken as the definition of measurability.

Exercise 2. A function equal almost everywhere to a measurable function
is measurable.

Exercise 3. If the restrictions of a function f to a sequence of measurable
sets An are continuous and if X = N ∪

⋃
An, where µ(N) = 0, then f is

measurable.
Exercise 4. Let f be a measurable map from X to a topological space P .

Show that f−1(B) is measurable for every Borel set B ⊂ P (consider first
the case of open sets). The converse may be false if X is not separable.

Exercise 5. Let fi be finitely many maps from X to topological spaces Pi
and g a continuous map from the Cartesian product of the Pi to a topological
space Q. Show that the map

x 7−→ g [f1(x), . . . , fn(x)]

from X to Q is measurable.
Exercise 6. Let us say that a family (fi) of measurable maps from X to a

topological space P is equimeasurable if for all compact sets K and all ε > 0,
there exists a compact set K ′ ⊂ K such that µ(K −K ′) < ε and on which
the maps fi are continuous. Show that this is always the case for a countable
family of measurable functions.

Exercise 7. Show that Egorov’s theorem continues to hold for functions
with values in an arbitrary metrizable space (use exercises 4 and 6).

Exercise 8. (a) Let A be a compact subset of a Banach space H . Show
that the closed vector subspace of H generated by A is separable. (b) Let
X be a locally compact space, µ a measure on X and f a map from X to
H. Suppose that f is measurable and reasonable. Show that there exists a
separable closed subspace H′ of H such that f(x) ∈ H′ almost everywhere.

The importance of equimeasurable families is due to the next result, which
will prove useful later:

Lemma 1. Let (fi)i∈I be an equimeasurable and increasing filtering family of
functions with values in [0,+∞]. The function sup fi(x) = f(x) is measurable
and
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µ∗ (χ
K
f) = supµ∗ (χ

K
fi)(8.5)

for all compact sets K. If f is reasonable, then

µ∗(f) = supµ∗ (fi) .(8.6)

Let us first suppose that f and hence that the functions fi are bounded.
If K is a compact set on which all the functions fi are continuous, then the
function f is lsc on K, so that χ

K
f is measurable (exercise 1), and hence is

continuous on a compact set K ′ ⊂ K such that µ(K−K ′) is arbitrarily small.
Thus f satisfies condition (LUS), and so is measurable. As f is continuous on
K ′, the functions fi converge uniformly to f on K (Dini’s theorem), which
proves (5) for K ′ since

|µ (χK′fi − χK′f)| ≤ µ (K ′) ‖fi − f‖K′ .

The case of an arbitrary compact set K is obtained by passing to the limit
using an increasing sequence of compact sets Kn ⊂ K whose union is K, up
to a null set. If the set {f(x) 6= 0}, which is measurable, is reasonable [use
property (v) of n◦ 6], then (6) is proved in a similar manner.

If f is not bounded, consider the family of functions inf(fi, n) = fi,n
with i ∈ I and n ∈ N. Like the given family, it is equimeasurable. It also
an increasing filtering family for fixed i and varying n, or for fixed n and
varying i, or for varying i and n. For fixed i, its upper envelope is fi ; for
fixed n, it is fn = inf(f, n), a function which the first part of the proof tells
us is measurable; hence so is f = sup fn. Therefore (associativity!), supposing
first that f vanishes outside a compact set,

µ∗(f) = sup
n
µ∗ (fn) = sup

n
sup
i
µ∗ (fi,n)

= sup
i

sup
n
µ∗ (fi,n) = sup

i
µ∗ (fi) ;

this proves (5) in the general case, and (6) as above if f is reasonable.

9 – Measurability and Integrability

The fact that a measurable set of finite outer measure is integrable (n◦ 6) is
merely a particular case of the next result:

Theorem 18. A function f with values in25 C or [−∞,+∞] is in Lp if and
only if it is measurable and Np(f) < +∞.

(a) As |f(x)| < +∞ ae., we need only consider the case of finite-valued
function. By Lusin, there is a sequence of compact sets Kn, which may be
assumed to be increasing, such that f is continuous on each Kn and zero

25 or in a Banach space H, provided Lusin’s definition is used.



§ 3. Measurable Sets and Functions 51

ae. outside the union of these Kn because Np(f) < +∞. Let fn denote the
function equal to f on Kn and 0 elsewhere; then f(x) = lim fn(x) ae. and
|fn(x)| ≤ |f(x)| ae. So the proof reduces (dominated convergence) to showing
that fn ∈ Lp for all n. Thus, it reduces to the case where f is zero outside a
compact set K and is continuous on K, which we will now suppose.

(b) For all n ≥ 1, K may be covered by finitely many open subsets Uk,n
of X such that f is constant on K ∩ Uk,n, up to 1/n. As in point (d) in the
proof of Lusin’s theorem, for given n, the Borel sets K∩Uk,n can be replaced
by pairwise disjoint Borel sets Ak,n. Let uk,n = f(ak,n), where ak,n ∈ Ak,n is
chosen arbitrarily, and consider a step function fn equal to uk,n in Ak,n and
0 outside K . Denoting the characteristic function of Ak,n by χk,n,

fn(x) =
∑
K

χk,n(x)uk,n everywhere .

We already know that the characteristic function of a measurable set of finite
outer measure is integrable; hence (n◦ 5, theorem 10) is in Lp for all p, so are
the functions fn. In Ak,n,

|f(x)− fn(x)| = |f(x)− uk,n| ≤ 1/n ,

and so

|fn(x)| ≤ |f(x)|+ χ
K

(x) .

As everything vanishes outside the union K of the sets Ak,n, one can conclude
that the sequence fn converges everywhere to f while remaining dominated
by the function g = |f | + χ

K
. However, its norm Np is finite like those of f

and χ
K

. The dominated convergence theorem then shows that the limit f of
the functions fn is in Lp, proving the theorem.

Its usefulness is due to the already mentioned fact that in practice, and to
a large extent also in theory, all functions that one encounters are measurable.
It then suffices to check that Np(f) is finite, which in general only requires
finding easy upper bounds.

Corollary 1. The product of a function of Lp and a bounded measurable
function is in Lp.

Obvious.

Corollary 2. Let f be a reasonable and measurable function. f ∈ Lp if and
only if

sup
K⊂X

∫
K

|f(x)|p dµ(x) < +∞ .
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The condition is obviously necessary. As f vanishes outside the union of
a null set and an increasing sequence of compact sets Kn, by theorem 2,

µ∗ (|f |p) = limµ∗ (|f |pχKn) ;

hence the result. It can be applied for any measure on R by taking Kn =
[−n, n].

Corollary 3. Let f be a reasonable and measurable function with values
in [0,+∞]. Then there is an increasing sequence (fn) of bounded positive
integrable functions such that

f(x) = lim fn(x) for all x ∈ X .

Indeed, let An be an increasing sequence of integrable sets whose union
is the measurable set {f(x) 6= 0}. We set

fn(x) =
inf [f(x), n] if x ∈ An ,

0 otherwise .

fn is the product of the measurable function inf(f, n) and the characteristic
function of An, and so is measurable and even integrable since µ∗(|fn|) ≤
nµ(An) < +∞. These functions answer the question.
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§ 4. Lebesgue-Fubini’s Way

10 – The Lebesgue-Fubini Theorem (LF)

(i) Product of measures. Let X and Y be two locally compact spaces, λ and µ
two positive measures on X and Y . Like in Chap. V, the product measure ν
on X × Y is given by the formula∫∫

X×Y
f(x, y)dν(x, y) =

∫
X

dλ(x)

∫
Y

f(x, y)dµ(y)(10.1)

for all functions f ∈ L(X × Y ). Checking that (1) is well-defined is the only
issue since if that is the case then obviously, the result depends linearly on f
and is ≥ 0 if f ≥ 0.

For given x, integration over Y does not raise any problems since the
function fx : y 7→ f(x, y) is in L(Y ). On the other hand, f vanishes outside a
product K×H, where K ⊂ X and H ⊂ Y are compact.26 The integral in y is
thus zero for x /∈ K. It remains to show that the function x 7→

∫
f(x, y)dµ(y)

is continuous, and hence that, as x tends to some a ∈ X, the function fx(y) =
f(x, y) converges uniformly to fa(y) on Y , in other words that, for all r > 0,
there is a neighbourhood U of a in X such that

|f(x, y)− f(a, y)| ≤ r for all x ∈ U and all y ∈ H .

There are general theorems on the topic (uniform continuity in the classical
case), but we may as well argue directly. As f is continuous, for all y, there is
a neighbourhood of the point (a, y) in X×Y on which f is constant, up to r.
This neighbourhood may be supposed to be the product of a neighbourhood
U(a, y) of a in X and a neighbourhood V (y, a) of y in Y . As H is compact,
it can be covered by finitely many sets V (yi, a). Then the set U =

⋂
U(a, yi)

clearly answers the question.
It goes without saying that the formula∫

X

dλ(x)

∫
Y

f(x, y)dµ(y) =

∫
Y

dµ(y)

∫
X

f(x, y)dλ(x) ,

proved in Chap. V for particular cases, can be extended to the general case.
One shows that functions f ∈ L(X × Y ) vanishing outside a compact set
K ×H are uniform limits of finite sums

∑
kp(x)hq(y), with functions kp ∈

L(X) and hq ∈ L(Y ) that may be assumed to vanish outside fixed compact
neighbourhoods K ′ and H ′ of K and H: uniform continuity together with
the existence of partitions of unity [Chap. IX, n◦ 17, (ii), lemma 4]. One may
also apply the Stone-Weierstrass to the sums of functions k(x)h(y). We leave
it to the reader to fill in the gaps in this “ proof ”.

26 For example for K and H take projections of a compact set A ⊂ X × Y outside
which f vanishes.
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This done, the LF theorem aims, if not to characterize in a precise manner
integrable functions f with respect to the product measure – it can be done
if f is known in advance to be measurable with respect to ν –, at least to
generalize formula (1) to these function, as was done in Chap. V in very
particular cases.

(ii) The Lebesgue-Fubini theorem.

Theorem 19. Let X and Y be two locally compact spaces, λ and µ measures
on X and Y , ν = λ×µ the product measure and f ∈ L1(X×Y, ν) an integrable
function with respect to ν. Then:

(i) the function y 7→ f(x, y) is µ-integrable for almost all x ∈ X,
(ii) the function x 7→

∫
f(x, y)dµ(y), defined almost everywhere, is λ-

integrable,
(iii) the next equality holds:

ν(f) =

∫∫
X×Y

f(x, y)dλ(x)dµ(y) =

∫
X

dλ(x)

∫
Y

f(x, y)dµ(y) .(10.2)

(iv) For any reasonable and measurable function f with respect to ν,27

ν∗ (|f |) =

∫
dλ∗(x)

∫
|f(x, y)| dµ∗(y) ;(10.2’)

f is integrable with respect to ν if and only if∫
dλ∗(x)

∫
|f(x, y)| dµ∗(y) < +∞ .(10.2”)

Obviously, results permuting the order of integration should also be men-
tioned, in particular one should take not of the constantly used formula∫

dλ(x)

∫
f(x, y)dµ(y) =

∫
dµ(y)

∫
f(x, y)dλ(x) ,

valid for all integrable functions with respect to the product measure. If f
is measurable, it holds whenever the right hand side of (2’) – or else the
similar expression obtained by switching the roles played by λ and µ – is
finite. Finally, similar results clearly hold for all functions f belonging to an
Lp space: it suffices to apply the theorem to the function |f |p−1f .

Exercise 1. Interpret the theorem when one or both spaces are discrete.
The proof of the LF theorem comprises several parts. In what follows, the

letters f and ϕ will denote functions defined on Z and we shall write fx(y)
for f(x, y).

27 Recall that, generally speaking, one writes
∫
f(x)dλ∗(x) = λ∗(f) for all measures

and positive functions.
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For f ∈ L(Z), the definition of ν can then be written as

ν(f) =

∫
µ(fx)dλ(x) .

(a) Let us start with a positive lsc function ϕ on Z = X × Y and the set
Linf(ϕ) of f ∈ L+(Z) such that f ≤ ϕ. By definition,

ν∗(ϕ) = sup
Linf (ϕ)

ν(f) = sup

∫
µ(fx)dλ(x) .

The functions fx are continuous, their set is an increasing philtre since
Linf(ϕ), and their upper envelope is ϕx. Thus (theorem 1)

supµ(fx) = µ∗(ϕx) ,

which shows that the function x 7→ µ∗(ϕx) is lsc. As the functions x 7→ µ(fx)
are also continuous and form an increasing philtre, theorem 1 shows that

sup

∫
µ(fx)dλ(x) =

∫
µ∗(ϕx)dλ∗(x) .

So the relation

ν∗(ϕ) =

∫
µ∗(ϕx)dλ∗(x)(10.3)

finally follows for all positive lsc functions on Z.
(b) We next consider an arbitrary function f with values in [0,+∞]. By

definition, ν∗(f) is the infimum of the numbers ν∗(ϕ) for lsc functions ϕ ≥ f .
Since this inequality implies µ∗(ϕx) ≥ µ∗(fx) for all x, and hence by (3) that

ν∗(ϕ) ≥
∫
µ∗(fx)dλ∗(x) ,

it follows that

ν∗(f) ≥
∫
µ∗(fx)dλ∗(x) for all f ≥ 0 on Z .(10.4)

(c) Let us in particular suppose that f is the characteristic function of
a null set N ⊂ Z. The function fx is then the characteristic function of the
“ vertical cut ” Nx of N , i.e. the set of y such that (x, y) ∈ N . The right hand
side of (4) is zero, and so (n◦ 2, (iii), theorem 4)

µ∗(Nx) = 0 for almost all x ∈ X .(10.5)

(d) Now let f be an integrable function with values in C or [−∞,+∞] (or
a Banach space). Denoting by N1 the norm L1 with respect to the measure
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ν, there is (n◦ 4, (ii), theorem 7) a null set N ⊂ Z with respect to ν and a
series of functions fn ∈ L(Z) such that∑

N1(fn) < +∞ & f(z) =
∑

fn(z) for all z ∈ Z −N .

The series
∑
fn then converges in mean to f in L1(Z, ν) and

ν(f) =
∑

ν(fn) =
∑∫

µ (fn,x) dλ(x) .(10.6)

However, ∑∫
µ (|fn,x|) dλ(x) =

∑
ν (|fn|) =

∑
N1 (fn) < +∞ .(10.7)

Hence, by theorem 4,
∑
µ(|fn,x|) < +∞ outside a λ-null set M ′ ⊂ X, and

the series fn,x converges in L1(Y, µ) for all x ∈ X −M ′.
But

∑
fn(z) = f(z) for all z ∈ Z−N and, by (5), we know that µ∗(Nx) =

0 for all x /∈M ′′, where M ′′ is a null set with respect to λ. If x /∈M ′ ∪M ′′ =
M , then the series

∑
fn,x(y) converges both µ-almost everywhere to fx(y)

and in L1(Y, µ). So, for all x /∈M , (theorem 7)

fx ∈ L1(Y, µ) & µ(fx) =
∑

µ (fn,x) .(10.8)

Finally, as
∑
|µ(fn,x)| ≤

∑
µ(|fn,x|), theorem 6 on series shows that the

function
∑
µ(fn,x) is λ-integrable and that∫ ∑

µ (fn,x) dλ(x) =
∑∫

µ (fn,x) dλ(x) = ν(f)

by (8). As
∑
µ(fn,x) = µ(fx) for x /∈ M by (8), the function x 7→ µ(fx),

defined almost everywhere with respect to λ, is λ-integrable, with in addition

ν(f) =

∫
µ(fx)dλ(x) ,(10.9)

which proves propositions (ii) and (iii) of the statement.
(e) To prove (iv), let f be a reasonable function with values in [0,+∞] and

ν-measurable. It is the simple limit of an increasing sequence of ν-integrable
functions fn ≥ 0 converging everywhere (n◦ 9, corollary 3 of theorem 18).
Theorem 2 of n◦ 2 then shows that

ν∗(f) = lim ν∗(fn) = lim ν(fn)

and so, by proposition (iii) of the theorem, that

ν∗(f) = lim

∫
µ∗ (fn,x) dλ(x) .
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However, the functions x 7→ µ∗(fn,x), with values in [0,+∞], form an in-
creasing sequence like (fn). Applying theorem 2 to λ then leads to

ν∗(f) =

∫
dλ∗(x). limµ∗ (fn,x) .

Since the same theorem 2, now applied to µ, shows that

limµ (fn,x) = µ∗ (fx) ,

ν∗(f) =

∫
µ∗ (fx) dλ∗(x) .

Integrability condition (2”) readily follows, qed.
Exercise 2. Suppose that X is the set R equipped with the discrete topol-

ogy, that Y = R is equipped with the usual topology, that λ({x}) = 1 for all
x ∈ X and that µ is the Lebesgue measure. Show that

ν∗(ϕ) =
∑
x

∫
ϕ(x, y)dy

for any positive lsc function ϕ.28 Let f(x, y) be the (unreasonable) function
equal to 1 if y ∈ Q and 0 otherwise. Show that f is measurable with respect
to ν and that for this function, the left hand side of (2’) is infinite and the
right hand side zero.

(iii) Additions to the LF theorem. Let us now present some consequences
of the LF theorem and additions to it.

Applying it to a characteristic function shows that:
(C1) Let E ⊂ X × Y be an integrable set; then the set Ex of y ∈ Y such

that (x, y) ∈ E is µ-integrable for almost all x, the function x 7→ µ(Ex) is
λ-integrable and

ν(E) =

∫
X

µ (Ex) dλ(x) ,(10.10)

a result already obtained in Chap. 5, n◦ 33 by assuming E to be compact. In
particular,

ν(E) = 0⇐⇒ µ(Ex) = 0 for almost all x .(10.11)

By (2’), this equivalence continues to hold for all ν-measurable sets E ⊂
X × Y .

28 The sum of the right hand side series is, by definition, the supremum of its partial
sums (unconditional convergence for a series extended to an uncountable set).
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(C2) If U ⊂ X and V ⊂ Y are open, then

ν∗(U × V ) = λ∗(U)µ∗(V ) .

Obvious by (3).

(C3) If K ⊂ X and H ⊂ Y are compact, then

ν(K ×H) = λ(K)µ(H) .

Apply (2) to the characteristic function of the compact set K ×H.

(C4) If A ⊂ X and B ⊂ Y are integrable, A×B is integrable and

ν(A×B) = λ(A)µ(B) .(10.12)

If a product A × B is integrable and if neither A nor B is a null set, then
both A and B are integrable.

Indeed, for all ε > 0, there are compact and open sets such that

K ⊂ A ⊂ U , λ(U −K) < ε ,

H ⊂ B ⊂ V , µ(V −H) < ε .

As U × V −K ×H ⊂ U × (V −H) ∪ (U −K)× V ,

ν(U × V )− ν(K ×H) ≤ λ(U)µ(H − U) + λ(U −K)µ(V ) ,

a quantity < r for sufficiently small ε. Hence the first proposition.
Conversely, let us suppose A × B = E to be integrable. Then, for all

x ∈ X, Ex = B or ∅ depending on whether x belongs to A or not. However,
by (C1), the set of x for which Ex is not integrable has measure zero. Hence,
if A is not a null set, then B is integrable, qed.

(C5) If N ⊂ X is a null set and if B ⊂ Y is reasonable, then N ×B has
measure zero with respect to ν.

This is obvious by (C4) since B = N∪
⋃
Kn. The assumption on B always

holds if µ is countable at infinity; otherwise, N × Y may well not be a null
set.

Let us for example suppose that Y is an uncountable discrete space and
that µ(f) =

∑
f(y) for any function f ∈ L(Y ), i.e. with finite support,

whence obviously µ∗(f) =
∑
f(y) for any function f ≥ 0. If the product

E = N × Y is a null set, there is a lsc function ϕ on X × Y which is
everywhere positive, ≥ 1 on N × Y and such that ν∗(ϕ) < +∞. But, by (3),

ν∗(ϕ) =
∑∫

ϕ(x, y)dλ∗(x) ,

and this sum is finite only if the set of y such that
∫
ϕ(x, y)dλ∗(x) 6= 0 is

countable. Thus the set of x such that ϕ(x, y) > 0 must have measure zero
for uncountably many values of y. However, for all y, this set contains N and



§ 4. Lebesgue-Fubini’s Way 59

is open since ϕ est lsc. We, therefore, infer that N ×Y may be a null set only
if N is contained in an open null set, a condition which, by (C2), is anyhow
sufficient. Hence if X = R is chosen to have the Lebesgue measure and Y to
be as indicated, then N ×Y is a null set only if N is empty. Measures of this
type are not encountered in Nature, but that of mathematicians is not that
of physicists.

(C6) If f ∈ Lp(X,λ) and g ∈ Lp(Y, µ), then the function

f × g : (x, y) 7−→ f(x)g(y)

is in Lp(X × Y, ν) and

‖f × g‖p = ‖f‖p‖g‖p ,(10.13)

ν(f × g) = λ(f)µ(g) for p = 1 .(10.13’)

Finite sums of such functions are everywhere dense in Lp(X × Y ).
To show this, choose fn ∈ L(X) and gn ∈ L(Y ) such that∑

Np (fn) < +∞ ,
∑
fn(x) = f(x) for x ∈ X −M ,∑

Np (gn) < +∞ ,
∑
gn(y) = g(y) for y ∈ Y −N ,

where M and N are null sets. Then

Np (fm × gn) = Np (fm)Np (gn) ,

and so
∑
Np(fm × gn) < +∞.

On the other hand, ∑
fm(x)gn(y) = f(x)g(y)(10.14)

unless x ∈M or y ∈ N , i.e. outside (M × Y ) ∪ (X ×N). As f (resp. g) is in
Lp, there is a reasonable set A (resp. B) outside which the functions f and
fm (resp. g and gn) are all zero (all unions of countable reasonable sets are
reasonable), so that (14) holds outside (A× Y ) ∪ (X ×B). We may suppose
that M ⊂ A and N ⊂ B. Hence relation (13) in fact holds outside the set
(M×B)∪ (A×N), so by property (C5) above, almost everywhere. Therefore
the series

∑
fm × gn converges in mean to f × g (n◦ 4, theorem 6), giving

the first result.
To show that any h ∈ Lp(X ×Y ) can be approximated by functions such

as
∑
fi × gi, with fi and gi in the Lp spaces with respect to λ and µ, h may

be assumed to be continuous and zero outside K × H, where K ⊂ X and
H ⊂ Y are compact. The Stone-Weierstrass theorem then shows that h is
the uniform limit on K ×H of functions fi × gi, where all fi are defined and
continuous on K and all gi on H.
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Extending these function by 0 outside K or H gives integrable functions
on X or Y , and

‖h−
∑

fi × gj‖p ≤ ν(K ×H)1/p‖f −
∑

fi × gj‖ ,

where, the norm on the right hand side is the uniform norm on K×H, which
may be made arbitrarily small, qed. (As in Chap. V, n◦ 30, theorem 30, one
can also use partitions of unity).

(C7) If f : X −→ P and g : Y −→ Q are measurable, then the function
(f, g) : (x, y) 7→

(
f(x), g(y)

)
is measurable.

Let K ⊂ X and H ⊂ Y be compact sets. Then there are decompositions

K = M ∪
⋃
Kn , H = N ∪

⋃
Hn ,

where Kn and Hn are compact, M and N null sets, so that the restriction
of f (resp. g) is continuous on each Kn (resp. Hn). Then, (f, g) is clearly
continuous on the sets Kp×Hq, whose union, thanks to (C5), is the compact
set K ×H, up to a null set. As all compact subsets of X × Y are contained
in such a product, the function (f, g) satisfies Lusin’s theorem, qed.

Corollary. If f and g are complex-valued, the function f(x)g(y) is measur-
able [and we recover (C6) by taking (2’) into account].

(C8) Let us suppose λ and µ to be reasonable and let f be a measurable
map from X × Y to a topological space P . Then the function

x 7−→ f(x, y) (resp. y 7−→ f(x, y))

is measurable for almost all y (resp. x).
Since λ and µ are reasonable, by statements (C3) and (C4) above, so is

the product measure ν. As was seen at the end of n◦ 10, then Z = N ∪
⋃
An,

where N is a null set and for each n, An is an integrable set on which the
restriction of f is continuous. For all x ∈ X, let An,x be the set of y such
that (x, y) ∈ An and let Nx be the similar set relatively to N . The restriction
of the function y 7→ f(x, y) to An,x is clearly continuous for all x. However,
by (C1), An,x is integrable for almost all x, and µ(Nx) = 0 for almost all x.
The exceptional sets occurring here depend on n, but there is a countably
infinite number of them, so that their union M ⊂ X is a null set. As the
relation Z = N ∪

⋃
An implies Y = Nx ∪

⋃
An,x for all x, for all x /∈ M ,

Y is the union of a null set (namely Nx) and a sequence of integrable sets
(namely An,x) on which the restrictions of fx are continuous. The function
fx is, therefore, measurable for x /∈M , qed.

When P is a Polish space (n◦ 11), for the function fx : y 7→ f(x, y) to be
measurable, f−1x (U) needs to be measurable for all open sets U ⊂ P , which
leads to another proof in this case. Exercise !

Applying (C8) to the characteristic function of a measurable set A ⊂
X × Y shows that Ax is measurable for almost all x.
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(iv) The Fourier inversion formula. Let us consider two functions
f, g ∈ L1(R). Since their Fourier transforms are continuous and bounded,

the functions f(x)ĝ(x) and f̂(x)g(x) are integrable, and∫
f(x)ĝ(x)dx =

∫
f(x)dx

∫
g(y)e(xy)dy .

The exponential being continuous and bounded, the function f(x)g(y)e(xy)
is integrable over R× R by (C6), and permuting the integrations gives∫

f(x)ĝ(x)dx =

∫
f̂(y)g(y)dy .(10.15)

As the Fourier transform maps the Schwartz space S to itself, ĝ may be
replaced with an arbitrary function h ∈ S. By the Fourier inversion formula
(Chap. VII, n◦ 30, theorem 26) in S, this substitution replaces g(y) with

ĥ(−y) ; and so ∫
f(x)h(x)dx =

∫
f̂(−y)ĥ(y)dy .

Let us also suppose that f̂ is integrable. (15) can then be applied to the

function f̂(−y), whose Fourier transform is∫
f̂(y)e(xy)dy =

̂̂
f (−x) .

So ∫
f(x)h(x)dx =

∫ ̂̂
f (−x)h(x)dx

for all h ∈ S. The function f(x)−̂̂f (x), which is the difference of an integrable
function and a continuous one, is, therefore “ orthogonal ” to S, and hence
to L(R) since every h ∈ L(R) is the uniform limit of a sequence of functions
hn ∈ S vanishing outside a fixed compact. The Fourier inversion formula,
namely

f(x) =

∫
f̂(y)e(xy)dy ae. if f and f̂ ∈ L1(R) ,(10.16)

now follows from the corollary of Lusin’s theorem [n◦ 8, (i)].

Exercise 3. Prove (16) assuming that f ∈ L2(R) and f̂ ∈ L1(R).

11 – A Topological Interlude29: Polish Spaces

(i) Polish spaces. Metrizable and separable spaces have frequently occurred
in previous sections. Clearly, the completion of such a space P with respect

29 The results of this n◦ will not be used before n◦ 13.
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to a metric compatible with its topology, is again metrizable and separable (a
sequence everywhere dense in P is everywhere dense in its completion) and,
a function with values in P is measurable if and only if it is measurable as a
function with values in the completion of P .

From a classical viewpoint where measurability is defined using condition
(FM) of n◦ 7, one may confine oneself to functions with values in spaces
satisfying the following two conditions, involving in fact only the topology of
P :

(EP 1) the topology of P can be defined by a distance with respect to
which P is complete,

(EP 2) P isseparable.

As was seen in n◦ 7, the second condition is equivalent to saying that P
contains either an everywhere dense countable set, or else a countable family
of open sets Un such that any open subset of P is the union of the sets Un
contained in it.

These are the Polish spaces30 of N. Bourbaki, Topologie générale, Chap. IX,
§ 6. Their importance also stems from the fact that they are the only spaces
in which non-trivial theorems about Borel sets can be proved. Apart from
some exceptions, most results presented in this n◦ are not really essential for
the rest of this chapter, but it is useful to know how far one can go without
encountering unannounced pitfalls.

Lemma 1. Eery metric space is Polish.

First, by Cauchy’s criterion together with BW, it is complete with respect
to a metric compatible with its topology. On the other hand, for all n, it can
be covered by a finite number of open balls of radii 1/n . The centres of the
balls thus obtained are everywhere dense in X, qed.

Conversely, every compact space of countable type can be shown to be
metrizable, and hence Polish.

Lemma 2. A locally compact metric space X is separable if and only if it is
countable at infinity.

Indeed if X is the countable union of compact sets Kn, each Kn contains
an everywhere dense countable subset Dn. This gives the result for X by

30 An abbreviation that I had jokingly suggested to N. Bourbaki in 1949 after hav-
ing learnt the subject from Casimir Kuratowski’s Topology (Warsaw Acad. of
Sciences, 1933, in French, re-published in two volumes in the 1950s) and realized
the contribution made by the Polish. I could have also called them “ Polono-
Russian ”. The joke, in fact not completely a joke, was taken seriously and since
then all experts have adopted this strange terminology, generally without men-
tioning N. Bourbaki except Kuratowski himself who, in a small book published
in 1974 on the history of Polish mathematics, justifiably saw in it a tribute to the
latter. Just like we make a distinction between metric and metrizable space, so
should we make a distinction between Polish spaces (in which a complete metric
is given) and Polishable ones (in which such a metric exists).
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considering the union of all Dn. Conversely, if (Un) is a countable basis for
the topology on X, for all a ∈ X, let us choose a compact neighbourhood
V (a). Its interior being the union of sets Un, one of them contains a. Its
closure, contained in V (a) is compact . As a is arbitrary, X is the union of
the sets Un whose closure is compact. This gives countability at infinity.

All locally compact separable and metrizable sets X will later be shown
to be Polish.

Many spaces encountered in classical analysis are Polish, but familiar
spaces that are not saw can be found without venturing too far. For example,
the space of continuous and bounded numerical functions on R equipped with
the norm of uniform convergence, though being a complete metric space, is
not separable. One would obtain a separable and hence a Polish space by
confining ourselves to functions tending to finite limits as x tends to +∞ or
−∞. Indeed, these functions are just the continuous functions on the compact
metrizable space31 [−∞,+∞], the finished line of N. Bourbaki. Hence the
result using the next exercise.

Exercise 1. (a) Let X be a compact metric space, d a distance on X,
(an) a sequence everywhere dense in X and we set fn(x) = d(x, an). Let A
be the set in L(X) of polynomials in a finite number of functions fn whose
coefficients are complex. Show that A is everywhere dense in the Banach
space L(X) (use the Stone-Weierstrass theorem). Replace A by the set A0 of
polynomials in fn whose coefficients are rational. Show that A0 is countable
and everywhere dense in A, hence in L(X). (b) Let X be a locally compact
metrizable space and countable at infinity (i.e. Polish, see further down).
Show that there is a countable subset D of L(X) with the following property:
for every compact set K ⊂ X, there is a compact neighbourhood H of K such
that any f ∈ L(X,K) is the uniform limit of functions belonging to D and
vanishing outside H [first show that L(X,K) is separable for all K]. Deduce
that the Lp(X;µ) spaces of measures on X are separable for p < +∞.

If a metric space X is separable, so is also every subspace Y of X since
if (Un) is a basis for the topology on X, then the sets Un ∩ Y play the same
role for the topology of Y . It already follows that every closed subset Y of
a Polish space X is Polish since it is separable and complete with respect to
every metric of X with respect to which X is Polish. As will be seen so are
all Gδ sets in X. Let us start with the simplest case:

Lemma 3. Every open subspace P of a Polish space X is Polish.

Let P = X − F , where F is closed, and we set

f(x) = d(x, F )

assuming that X is complete with respect to d. The relation f(x) 6= 0 is
equivalent to x ∈ P . In the Cartesian product R × X, which is obviously

31 To transform [−∞,+∞] into a Polish space, choose a strictly increasing continu-
ous function f(x) on R converging to −1 (resp. +1) as x tends to −∞ (resp. +∞),
write f(−∞) = −1, f(+∞) = +1, and use the metric d(x, y) = |f(x)− f(y)|.
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Polish, the set Z of ordered pairs (u, x) such u.f(x) = 1 is closed, and hence
Polish. However, (u, x) 7→ x is a continuous bijection from Z onto P ; its
inverse x 7→ (1/f(x), x) is continuous since 1/f is continuous on P . As a
result, P is homeomorphic to a Polish space, qed.

The proof equally shows that every open subspace of a complete metric
space is a complete metric space – obviously not with respect to the metric
of X, but that of Z in R×X, namely

d′(x, y) = d(x, y) + |1/d(x, F )− 1/d(y, F )| .

IfX1, . . . , Xn are complete metric spaces, their Cartesian product, equipped
for example with the distance

d [(xi) , (yi)] =
∑

di (xi, yi) ,

is a complete metric space. If the spacesXi are Polish, then so is their product.
More generally, let (Xn), n ∈ N, be a countable family of complete metric

spaces and, for each n, choose a distance dn ≤ 1 in Xn with respect to which
Xn is also complete.32 We denote a generic element u = u(n) of X =

∏
Xn

as a function defined on N with values in the spaces Xn. The formula

d(u, v) =
∑

2−ndn [u(n), v(n)](11.1)

defines a metric on X. As series (1) converges normally in X×X, the relation
limup = u with respect to the metric d is equivalent to

limup(n) = u(n) for all n ∈ N(11.2)

(Chap. III, n◦ 13, theorem 17). Hence, if the spaces Xn are complete, then
so is X.

If the spaces Xn are separable, then so is X. Indeed, the definition of the
distance shows that every ball centered at a ∈ X contains an open set of the
form

∏
En, where, for a finite set F of values for n, En is a ball centered at

a(n) and where En = Xn for n /∈ F . Choosing for all n, a basis (Unp) for
the topology of Xn, we get a basis for the topology of X by considering the
products

∏
En, where En is one of the Unp for n ∈ F and where En = Xn

otherwise. Now, the results of Chap. I, n◦ 7 tell us that the set of these
products is countable. A countable product of Polish spaces is, therefore,
Polish.

This is in particular the case of the set RN of functions or sequences
u : N −→ R equipped with distance (1). It is necessary to choose a distance
≤ 1 on each component R, for example

32 If d is a metric on a set E, the function d′(x, y) = d(x, y)/[1 + d(x, y)] is a
metric ≤ 1 defining the same topology and having the same Cauchy sequences
as d. If E is complete with respect to d, it is equally so with respect to d′. Hence
the existence of the distances dn.
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dn(u, v) = |u− v|
/

(1 + |u− v|) .

As in the general case, the topology of RN is just that of simple convergence:
a sequence un ∈ RN converges to some u ∈ RN if, for all p, un(p) converges
to u(p).

These constructions enable us to justify what had been announced before
lemma 3:

Theorem 20. A subspace P of a Polish space X is Polish if and only if P
is the intersection of a countable family of open subsets of X.

Since a subspace of a separable space X is itself separable, we might as
well prove a more general result:

Theorem 20 bis. The topology of a subspace P of a complete metric space
X is induced by a metric with respect to which P is complete if and only if
P is a Gδ set in X.

The proof is similar to that of lemma 3. Since a closed subspace of a
metric space X is complete and is a Gδ set in X, we may assume P to be
everywhere dense in X: replace X by the closure of P .

(a) Let us suppose that P is complete with respect to a distance d. For
all x ∈ X, let ω(x) be the infimum of diameters33 of the (by assumption non-
empty) sets V ∩ P , where V is an arbitrary open neighbourhood of x in X.
For all r > 0, V may be chosen so that the diameter of P ∩ V is < ω(x) + r.
As V is also an open neighbourhood of each of its points, ω(y) < ω(x) + r
for all y ∈ V . Therefore, the set Gn of x such that ω(x) < 1/n is open in X.
For x ∈ P , the sets V ∩P are just the open neighbourhoods of x in P , which
include all open balls. Hence ω(x) = 0 and as a result, P ⊂

⋂
Gn. We show

that P =
⋂
Gn.

To do this, we consider some a ∈
⋂
Gn. There are neighbourhoods Vn of

a in X such that the diameters of the sets Vn ∩P are ≤ 1/n . As any smaller
neighbourhood is perforce suitable, X being metrizable, the sets Vn can be
assumed to be closed, decreasing and with intersection

⋂
Vn = {a}. Choosing

some un ∈ Vn∩P for all n, for n ≥ p, q, we see that the set Vn contains Vp and
Vq, so that up and uq are in Vn ∩ P . Hence d(up, uq) ≤ 1/n for p, q ≥ n. As
P is complete with respect to d, (un) converges to some u ∈ P . But for each
p ≥ n, up is in the closed set Vn. So u ∈ Vn for all n. Thus u ∈

⋂
Vn = {a}

and a ∈ P , which proves that P =
⋂
Gn as expected.

(b) Conversely, let us suppose that P =
⋂
Gn where the sets Gn = X−Fn

are open in X. Let d now denote a distance with respect to which X is
complete. The relation x ∈ P is then equivalent to

d (x, Fn) = fn(x) 6= 0 for all n .

33 The diameter of a non-empty set E ⊂ X is the supremum of numbers d(x, y)
where x, y vary in E. Attention should be paid to the fact that the metric d of
P is not that of X .
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For all x ∈ X, let f(x) ∈ RN denote the sequence n 7→ fn(x). Like the maps
fn, f is continuous since the relation limxp = x implies that lim fn(xp) =
fn(x) for all n. Let Z be the subset of the Cartesian product RN × X, a
complete metric space like RN and X, of ordered pairs (u, x) such that

u(n)fn(x) = 1 for all n .(11.3)

It is obviously closed, and hence a complete, metric space (Polish if so is X).
The projection (u, x) 7→ x is clearly a bijection from Z onto P . Its inverse,
which maps each x ∈ P to the point (u, x) for which u(n) = 1/fn(x) is
continuous for n, since if the sequence of points xp ∈ P converges to some
x ∈ P , then the sequences (fn(xp)) converge to non-zero limits fn(x) . Finally,
P is homeomorphic to Z, qed.

Corollary 1. Let P a metrizable space. Suppose that P is complete with
respect to some distance compatible with its topology. Then P is a Gδ set in
its completion with respect to any distance compatible with its topology.

Obvious.
The proof does not use separability. This result enables one to show a bit:

Corollary 2. Every Polish space is homeomorphic to a Gδ set in a compact
Polish space.

To prove this, let us consider the infinite-dimensional cube IN, where
I = [0, 1]. It is the set of maps or sequences u : N −→ I equipped with the
distance

d(u, v) =
∑

2−n |un − vn|

which, as was seen above for the product RN, induces the topology of simple
convergence. We show it is compact by using Bolzano-Weierstrass together
with Cantor’s “ diagonal argument ”:34 if there is a sequence u(p) = (un(p)) in
IN, the sequence u1(p) contains (BW for I) a subsequence u1(pm,1) converging
to a limit u1, the sequence u2(pm,1) a subsequence u2(pm,2) converging to a
limit u2, etc. The diagonal sequence (u(pn,n)) then converges to u = (un).
To see this it suffices to show that

lim
m
un (pm,m) = un = lim

m
un (pm,n)

for all n, which follows from the fact that, for given n, the sequence (pm,m)
for m > n is is a subsequence of the sequence (pm,n).

This done, to construct a set Z in IN homeomorphic to a given Polish
space P , one chooses a sequence (an) everywhere dense in P and a distance

34 The following argument applies to all products of a countable family of com-
pact metric spaces (see for example Dieudonné, (12.5.9)). A result without any
countability or metrizability assumptions using a far more sophisticated version
of BW (“ ultrafilters ”) can be found in N. Bourbaki’s Topologie générale.
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d ≤ 1 with respect to which P est complete. Then the image Z of X under
the map x 7→ (d(an, x)) from X to IN answers the question. To see this, it
suffices to show that in X, the relation limxp = x is equivalent to

lim d (an, xp) = d (an, x) for all n .

If this holds, then indeed, for all r > 0, there exists n such that d(an, x) < r .
As d(an, xp) < r for large p, we deduce that d(xp, x) < 2r , whence limxp = x.
As P is a complete metric space, its image in IN is necessarily a Gδ set, qed.

If in particular a locally compact space P is metrizable and separable (i.e.
countable at infinity: lemma 2), then its completion with respect to a metric
compatible with its topology, being Polish, is homeomorphic to a subset of
IN, hence so is P itself. As P and IN are locally compact, P is the intersection
of an open and of a closed subset of IN . But a closed subset in a metrizable
space is a Gδ set. Hence P is a Gδ set in IN, and so:

Corollary 3. Every locally compact metrizable space countable at infinity is
Polish.

(ii) Lsc functions on a locally compact Polish space. A good way to under-
stand the quasi-necessity of introducing Polish spaces consists in analyzing
the proof of the next result:

Theorem 21. Let X be a locally compact Polish space. Every positive lsc
function on X is the limit of an increasing sequence of continuous functions
with compact support.

It suffices to show that every positive lsc function ϕ is the upper enve-
lope of a countable family of functions fn ∈ L(X) because the functions
sup(f1, . . . , fn) converge to ϕ.

Let us consider the open sets

Upn = {ϕ(x) > p/n}(11.4)

for p ≥ 0, n ≥ 1. Denoting by χpn the characteristic of the function of Upn,
the functions χpn, the functions

ϕn(x) =
1

n

∑
p≥1

χpn(x)(11.5)

are lsc, and ϕ = sup(ϕn). Indeed, let x be a point of X. If ϕ(x) ≤ 1/n, then
χpn(x) = 0 for all p ≥ 1. Hence ϕn(x) = 0 (if ϕ(x) = 0) or 1 (if ϕ(x) > 0),
and so

ϕn(x) ≤ ϕ(x) ≤ ϕn(x) + 1/n(11.6)

in this case. If q/n < ϕ(x) ≤ (q+ 1)/n for some q ≥ 1, the point x belongs to
all the sets Upn such that 1 ≤ p ≤ q and to none of the following ones, so that
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ϕn(x) = q/n, leading again to (6). Finally, if ϕ(x) = +∞, then χpn(x) = 1
for all p. Hence ϕn(x) = +∞ = ϕ(x). Therefore, relation (6) holds for all
x ∈ X and n ≥ 1, whence ϕ = sup(ϕn).

On the other hand, if the theorem holds for a sequence of lsc functions, it
clearly holds for their upper envelope and for their sum. Hence the proof re-
duces to showing this for the functions χpn, i.e. for the characteristic function
of an open set U ⊂ X.

Now, if an increasing sequence of functions fn ∈ L+(X) converges
to χU , clearly fn(x) ≥ 1 − 1/p for large n, for all x ∈ U and p ≥ 1.
As the functions fn vanish outside U , U is the union of the compact sets
Kp,n = {fn(x) ≥ 1− 1/p}. Hence to go on with the proof, one needs to show
that all open subsets of X are countable at infinity.35 This is indeed the
case since X being locally compact and Polish, so is U (lemma 1), which is,
therefore, countable at infinity (lemma 2).

The open set U is then the union of an increasing sequence of compact sets
Kn. As any compact set has a compact neighbourhood in U ,36 one may even
assume that each Kn+1 contains an open set Un+1 containing Kn. Then, for
each n, there exists a continuous function on U with values in [0, 1], equal to
1 on Kn and 0 on X−Un+1 (Chap. IX, n◦ 17, lemma 1), hence on U−Kn+1.
If fn(x) is replaced by 0 for all x /∈ U , the functions fn are in L(X) and their
upper envelope is, as desired, the function χU , qed.

Exercise 2. Let X be a metric space and U = X − F an open subset
of X. Set fn(x) = n. inf [d(x, F ), 1/n]. Show that χU (x) = sup fn(x) for all
x. Deduce that every positive lsc function on a metric space is the limit of
an increasing sequence of continuous functions on X. Does this lead to an
alternative proof of theorem 21?

(iii) Borel sets in a Polish space. Polish spaces have far stranger properties
than the above ones. We are going to state some of them without proof in
this n◦, not because they will be immediately needed, but in order to show
how quite simple theoretical constructions in set theory and general topology
can lead to non-measurable sets, even in familiar spaces such as R.

Exercise 3. Let B be the set in RN consisting of u = (un) for which limun
exists. Show that B is a Borel set.

Exercise 4. Let X be the set of real-valued continuous functions on I =
[0, 1]. Equipped with the distance associated to uniform convergence, it is
Polish (exercise 1). Let S be the unit ball of X and SN the set of sequences
f = (fn) with fn ∈ S, equipped with the distance

d(f, g) =
∑
‖fn − gn‖

/
2n .

35 X being countable at infinity is not sufficient for this. Any locally compact space,
even uncountable at infinity, is an open subset of a compact set, for example, its

Alexandrov compactification X̂ = X ∪ {∞}.
36 Recall that a neighbourhood of a set E must contain an open set containing E.
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Show that SN is Polish. Let B be the set of f ∈ SN for which lim fn(x) exists
for all x ∈ I ∩Q. Show that B is a Borel set. Answer the same question for
the set of f for which the sequence of functions fn is increasing.

The simplest example of an apparently strange Polish space is the set

P = R−Q =
⋂
ξ∈Q

R− {ξ}

of irrational numbers. It is a Gδ set in R and even in the compact space
[−∞,+∞]. Equipped with the topology of R, P is, therefore, Polish. Here
the sets Fn in the proof of theorem 20 bis are the sets {a}, a ∈ Q. The space
P is totally discontinuous: for all x ∈ P , any of its neighbourhoods contains a
neighbourhood which is both open and closed in P , namely the intersection
of P and an interval centered at x and with rational endpoints. It is then
obvious that P cannot be locally compact.

This space has a literally miraculous “ universal ” property concerning
Borel subsets: an uncountable subset B of a Polish set X is a Borel set if
and only if it is the image of R − Q under a continuous and injective map .
In particular, this property holds for X itself. Hence, if X and Y are Polish,
any continous and injective map from X to Y transforms Borel subsets of X
into Borel subsets of Y .

The theory of Borel sets is connected to the more general theory of
Suslin’s37 analytic sets. These are images of Polish spaces (or, more sim-
ply of R−Q) under continuous maps that are not necessarily injective. Any
union or intersection of countably analytic sets is analytic, but in a Polish
space, the complement of analytic space A is analytic if and only if A is a
Borel set. It can be shown that all analytic sets are measurable with respect
to any Radon measure in a locally compact Polish set.

The image of an analytic set under a continuous map is clearly also an-
alytic, but the image of the complement of an analytic non-Borel set under
such a map may well be neither analytic, nor the complement of an analytic
set. Thus, the class of analytic sets leads to the definition of more and more

37 Yakovlevich Suslin (1894–1920), son of “ poor peasants ” who, as stated by one
of his biographers, brilliantly completed his secondary school studies thanks to
the help of “ rich people ” from his village, was admitted to Moscow university in
1913 where he worked, with some other future brilliant mathematicians, under
the supervision of N. Lusin. Reading an article of 1905 where Lebesgue “ proves ”
that, in R2, the projection of a Borel set is again a Borel set, Suslin noticed
that the proof was wrong and published a counterexample in 1917 in a note to
the Comptes-rendus of the Paris Académie des sciences (Lebesgue reacted with
delight at his mistake: it made Science progress. . . ). This is practically Suslin’s
only publication: lack of funds, health problems (seemingly tuberculosis) and
hunger led him to return to his village, where he died of typhus. Lusin, who
took over, remained for a long time one of the bosses of Soviet mathematics.
In Bourbaki, any metrizable space which is the image of a Polish space under a
surjective continuous map (resp. bijective and continuous) is called a Suslin (resp.
Lusin) space. This terminology seems to have been adopted by all specialists.
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complicated sets: complements of analytic sets, continuous images of these
complements, complements of these continuous images, continuous images of
complements of continuous images of complements of analytic sets, etc. In
this way, we get the projective sets . In a locally compact space equipped with
a measure they may be non-measurable contrary to analytic sets.

These results as well as many others were obtained using classical tech-
niques of set theory and general topology with much ingenuity and imagi-
nation. The topic continues to be the subject of active research that often
causes serious problems of mathematical logic.38

12 – Continuous Sums of Measures: Examples

(i) Product measures. As in n◦ 10, let X and Y be two locally compact
spaces, λ and µ positive measures on X and Y and ν the product measure
on Z = X × Y . For all x ∈ X, the map

µx : f 7−→
∫
f(x, y)dµ(y)(12.1)

is a measure µx on Z, and the function x 7→ µx(f) is continuous with compact
support, hence λ-integrable, for all f ∈ L(Z). The definition of the product
measure can then be put in the form

ν(f) =

∫
µx(f)dλ(x) , f ∈ L(Z) .(12.2)

If the space X is finite (resp. discrete), a sum (resp. series) of measures is
thereby obtained. In the general case, the “ discrete ” sum is replaced by a
“ continuous ” sum of measures. As will be seen, this situation occurs else-
where.

(ii) Measures induced by locally integrable densities. The most elementary
analysis provides examples of measures induced by a “ density ” from the
Lebesgue measure on R, for example the map

f 7−→
∫
f(x)x2dx

where f ∈ L(R), or

f 7−→
∫ +∞

0

f(x)x−1dx

38 See Alexander S. Kechris, Classical Descriptive Set Theory (Springer, 1995) and
his bibliography. For an introduction to the topic, see Chap. IX, § 6, of N. Bour-
baki, Topologie générale. The book of the Polish mathematician W. Sierpin-
ski, Les ensembles projectifs et analytiques (Gauthier-Villars, 1952), as well as
Topologie by Kuratowski are other references.
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in the case of R∗+. In the general case of a measure λ on a locally compact
space X, a function j with values in C or in [−∞,+∞] will be said to [n◦ 5,
(ii)] be locally integrable if f j is integrable for all f ∈ L(X). This is for
example the case if j ∈ Lp for an exponent p ≥ 1 (corollary 2 of theorem 11:
Hölder). The map f 7→ µ(f j) is then a complex measure ν (n◦ 5, lemma 5),
the measure j(x)dµ(x) with density j with respect to µ, defined by∫

f(x)dν(x) =

∫
f(x)j(x).dλ(x) .(12.3)

A measure of this type is also called a measure with base µ, a N. Bourbaki
terminology, or, in a more traditional terminology, an absolutely continu-
ous measure with respect to µ . We will see later how to characterize them
(Lebesgue-Nikodym theorem).

These measures can be written in similar way to (2). If dν = jdλ and if
the measure

µx : f 7−→ j(x)f(x)(12.4)

proportional to the Dirac measure at the point x is associated to every x ∈ X,
then clearly

ν(f) =

∫
µx(f)dλ(x) for all f ∈ L(X) ;(12.4’)

In this case, functions x 7→ µx(f) are integrable with respect to λ but are
not continuous if neither is j.

(iii) Image of a measure under a map. Let us consider two locally compact
spaces X and Z, a positive measure λ on X and a Lusin-measurable map
p : X −→ Z. For all f ∈ L(Z), the composite function f ◦p is then measurable
and bounded. Let us suppose it is integrable. This is for example the case if
λ is bounded. Then the formula

ν(f) =

∫
f [p(x)] dλ(x)(12.5)

defines a positive measure on Z, the image of λ under p. Setting

µx(f) = f [p(x)](12.6)

to be the Dirac measure at p(x), one recovers formula (2).
A particularly simple case is that of a continuous and proper map p, i.e.

such that p−1(K) is compact for any compact set K ⊂ Z. The function f ◦ p
is then in L(X) for all f ∈ L(Z). For X, one can for example take in R2,
for Z, the space R, and for p, the projection (x, y) 7→ x. The latter is proper
if and only if, for every compact interval K ⊂ R, the set X ∩ (K × R) is
compact. If λ is the Lebesgue measure on X, the measure ν is given by
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∫
R
f(x)dν(x) =

∫∫
X

f(x)dxdy .

Hence, if m(x) denotes the (linear) Lebesgue measure of the compact set
consisting of y ∈ R such that (x, y) ∈ X, then∫

f(x)dν(x) =

∫
f(x)m(x)dx ,

where integration is over R.
Another important example: we consider a compact group G and the map

(x, y) 7→ xy from G×G to G. If λ and µ are two positive measures on G, the
image of the product measure is the convolution product λ ∗ µ = ν, defined
by

ν(f) =

∫∫
f(xy)dλ(x)dµ(y)

for all f ∈ L(G). If λ = εa and µ = εb are Dirac measures, then obviously

εa ∗ εb = εa∗b .

The generalization to the case of a locally compact group (lcg) will be given
in n◦ 25 . This how a group G equipped with a locally compact topology with
respect to which the maps (x, y) 7→ xy and x 7→ x−1 are continuous is called.
These groups occur everywhere: discrete groups, Rn, Tn, closed subgroups of
GLn(k) where k is a locally compact field such as R, C, p-adic fields, etc.

(iv) Quotient of an invariant measure.39 To give another example of rela-
tion (2), we consider a locally compact space Z and a lcgG acting “ on the
left ” on Z by a continuous map (g, x) 7→ gx satisfying obvious algebraic
conditions. One can then define a quotient set G\Z whose elements are the
orbits Gx of G, as well as a map p : Z 7→ G\Z taking each x to its class Gx.
As in every quotient of a topological space by an equivalence relation, there
is a natural topology on G\Z: a set U ⊂ G\Z is open if and only if p−1(U)
is open in Z. As will be seen in n◦ 15, in “ good cases ”, the quotient space is
locally compact.

As G is locally compact, there is a measure on G which is invariant under
right translations g 7→ ga, the (Haar measure40), i.e. such that

39 Do not look for proofs in this section, which will be detailed in n◦ 15.
40 Such a measure always exists and is unique up to a constant factor, its image

under g 7→ g−1 also being an invariant measure under left translations g 7→ ag. A
proof of this result can be found in Dieudonné, Eléments d’analyse, XIV.1, but
as the proof, however ingenious, does not teach anything more than the theorem,
it can be admitted without any inconvenience. To know the properties of Haar
measures is far more important, especially everything that concerns convolution
products (n◦ 15 and 25).
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∫
ϕ(ga)dµ(g) =

∫
ϕ(g)dµ(g)(12.7)

for all ϕ ∈ L(G) and a ∈ G. For f ∈ L(Z), the function

z 7−→
∫
G

f(gz)dµ(g)

on Z may then be considered. The function being integrated is in L(G) if the
set of g such that gK ∩H 6= ∅ is supposed to be compact for every compact
sets K,H ⊂ Z. Replacing z by az for some a ∈ G replaces g by ga, hence
does not change the integral. So function (7) is in fact a function on the space
X = G\Z, given by

fG(x) =

∫
f(gz)dµ(g) if x = p(z) .(12.8)

Since, for given x, the right hand side is a positive linear functional on L(Z),
one may write

fG(x) = µx(f) ,(12.9)

where µx is a measure > 0 on Z, namely the image of µ under g 7→ gz.
As will be seen in n◦ 15, in “ good cases ”, f 7→ fG is a surjective map

from L(Z) to L(X) and even from L+(Z) onto L+(X).
Then suppose we are given a measure ν > 0 on Z, G-invariant, i.e. such

that ∫
f(gz)dν(z) =

∫
f(z)dν(z)

for all g ∈ G. If dµ(g) = dµ(g−1), we show that

fG = 0 =⇒ ν(f) = 0 .

Hence the integral ν(f) only depends on fG, and depends on it linearly, and
as the map L+(Z) −→ L+(X) is surjective, it follows there is a measure
λ ≥ 0 on X such that41

ν(f) = λ
(
fG
)

(12.10)

for all f ∈ L(Z). Taking account of (9), it is written

ν(f) =

∫
µx(f)dλ(x) ,(12.11)

which again gives a continuous sum of measures.

41 We have here a particularly clear example of the usefulness of defining a measure
as a linear functional on functions. Adopting the traditional viewpoint of tribes
or abstract measures would give rise to serious complications.
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Choosing Z = R, G = Z acting on R by z 7→ z+n and for ν the Lebesgue
measure, the quotient X = R/Z is just the group T of the theory of Fourier
series, λ is the measure dm(u) on T (Chap. VII, § 1) and (11) is just the
relation ∫

R
f(t)dt =

∫
T
dm(u)

∑
Z
f(t+ n)

(
u = e2πit

)
which is the cornerstone of the Poisson summation formula.

13 – Integrable Functions with respect to a Continuous Sum

(i) The case of lsc functions. As in the case of a product measure, the exam-
ples in the previous n◦ give rise to the problem of characterizing if possible
measurable and integrable functions with respect to the measure

ν(f) =

∫
µx(f)dλ(x) .(13.1)

Hence let us consider two locally compact spaces X and Z, a measure
λ > 0 on X and a map x 7→ µx from X to the set M+(Z) of positive
measure on Z. (1) defines a measure if and only if – linearity and positivity
– the following condition holds:

(INT) for all f ∈ L(Z), the function Ff (x) = µx(f) is integrable with
respect to λ.

The first problem is then to compute the upper integral ν∗(ϕ) of positive
lsc function over Z. By definition,

ν∗(ϕ) = sup ν(f) = sup

∫
µx(f)dλ(x) = supλ (Ff )(13.2)

and

µ∗x(ϕ) = supµx(f) = supFf (x) ,(13.3)

where f varies in the set Linf(ϕ) of f ∈ L+(Z) dominated by ϕ. Now, the
corresponding functions Fϕ are positive and their set is an increasing philtre
since, if h is an upper bound for f and g, Fh is obviously an upper bound for
Ff and Fg. By (3), the upper envelope of this philtre is the function Ff . But
the functions Ff have no reason to be continuous or even lsc. Hence without
any additional assumptions, it is not possible to readily deduce that

supλ (Ff ) = λ∗ (Fϕ)

as we did when proving LF. We can only write that

supλ (Ff ) ≤ λ∗ (Fϕ) .

Nonetheless, it is possible to obtain the equality in some simple cases.
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(α) Suppose first that the function x 7→ µx(f) is lsc for all f ∈ L+(Z).
This is the case in example (i) of the previous n◦ – they are even continuous
–, in example (ii) if the density j(x) is lsc, and in example (iii) if the map
p is continuous. Then, by (3), the function x 7→ µ∗x(ϕ) is lsc, and (2) shows
(theorem 1)42 that

ν∗(ϕ) = sup

∫
µx(f)dλ(x) =

∫
µ∗x(ϕ)dλ∗(x) .(13.4)

(β) If Z is Polish, we know (theorem 21) that ϕ is the simple limit of an
increasing sequence of functions fn ∈ L+(Z). Theorem 2 of n◦ 2, applied first
to ν then to the measures µx, first shows that

ν∗(ϕ) = sup ν (fn) = sup

∫
µx (fn) dλ(x) ,

then that

µ∗x(ϕ) = supµx (fn) .

Since, by condition (INT), the functions x 7→ µx(fn) are integrable with
respect to λ, the same theorem 2, now applied to λ, enables us to pass to the
limit under the

∫
sign and again obtain relation (4). In practice, it is by far

the most important case.
(γ) In the general case, let us impose an additional condition to the mea-

sures µx
(MVM) The family of functions

Ff (x) = µx(f) , f ∈ L(Z) ,

is equimeasurable with respect to λ.
This means (n◦ 8, exercise 6) that for every compact set K ⊂ X and for

all r > 0, there is a compact set K ′ ⊂ K such that λ(K −K ′) < r and on
which all functions Ff are continuous. Under this assumption, the lemma of
n◦ 8 justifies relation (4) if the set {ϕ 6= 0} is reasonable. This restriction
cannot be removed from the general theorem (including the classical version
of LF), but the lemma of n◦ 8 shows that, for want of anything better,

ν∗ (χ
K
ϕ) = sup

∫
µx (χ

K
f) dλ(x) =

∫
µ∗x (χ

K
ϕ) dλ∗(x)(13.4’)

always holds for every compact set K ⊂ X and even, passing to the limit,
for every reasonable set.

Condition (MVM) trivially holds in case (i) of the previous n◦. In case
(ii), Ff (x) = j(x)f(x), where j is locally integrable and hence measurable. If

42 Recall that, for us, the notation dλ∗(x) indicates an upper integral with respect
to λ.
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j is continuous on a compact set, so are the functions Ff . In case (iii) of the
image of a measure under a map p, µx(f) = f [p(x)], i.e. Ff = f ◦ p, so that
these functions are continuous on all sets on which p is continuous. Therefore,
if p satisfies (LUS), condition (MVM) is then satisfied.

In what follows, we will express condition (MVM) by saying that x 7→ µx
is vaguely measurable.

To justify this expression, we need to equip the spaceM(Z) of (complex)
measures on Z with a topology such that condition (MVM) rephrases
property (LUS). Vague topology is the one that is suitable: by identifying
every measure µ on Z to the map f 7→ µ(f) from L(Z) to C, the vague
topology is that of simple convergence. In other words, a variable measure
µ converges vaguely to a limit µ0 if and only if µ(f) tends to µ0(f) for all
f ∈ L(Z). There is an obvious analogy with the notion of convergence for
Laurent Schwartz’s distributions43 (Chap. V, § 10), which incidentally is
influenced by the vague topology used at the time by Henri Cartan in
potential theory. Saying that x 7→ µx is continuous on a subset A of X
then amounts to saying that, for all f ∈ L(Z), the function x 7→ µx(f)
is continuous on A: express that µx converges vaguely to µa if x ∈ A
converges in A to a ∈ A. Choosing a compact set for A and applying
Lusin’s definition, one sees that condition (MVM) means precisely that
x 7→ µx is measurable with respect to the vague topology. By the way,
note that it is not in general metrizable, even when Z is as simple a space
as [0, 1].

Condition (MVM) holds if x 7→ µx is vaguely continuous, i.e. if µx(f)
is continuous for all f ∈ L(Z). This is the case in example (i) of the
previous n◦, in example (ii) if the function j is continuous, and in example
(iii) if p is continuous. Assumption (α) is then satisfied, and hence (4)
holds without any restrictions on ϕ.

(ii) The generalized Lebesgue-Fubini theorem. Though the results need to
be rounded off in each particular case, the next theorem makes it possible to
unify the situations described in the previous n◦.

Theorem 22. Let X and Z be locally compact spaces, µx a family of positive
measures on Z depending on a parameter x ∈ X, and λ a positive measure
on X. Suppose that condition (INT) holds and that this is also the case of
one of the following conditions:

(α) the function x 7→ µx(f) is lsc for all positive f ∈ L(X) positive ;
(β) Z is Polish ;

43 As in this case, the open subsets of M(Z) can be easily defined. For given
µ0 ∈M(Z) and f1, . . . , fn ∈ L(Z), let W (µ0; f1, . . . , fn) be the set of µ ∈M(Z)
such that |µ(fi)−µ0(fi)| < 1 for 1 ≤ i ≤ n . A set U ⊂M(Z) is then open if and
only if it is the union of sets of this type. See some additional fact in Dieudonné,
XIII.4.
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(γ) the map x 7→ µx is vaguely measurable with respect to λ.

The following results then hold.
(i) The function

ν(f) =

∫
µx(f)dλ(x) , f ∈ L(Z) ,(13.5)

is a positive measure on Z.
(ii) If f ∈ L1(Z; ν), then f is µx-integrable for almost all x ∈ X, the

function x 7→ µx(f), defined for almost all x, is λ-integrable and∫
Z

f(z)dν(z) =

∫
X

dλ(x)

∫
Z

f(z)dµx(z) .(13.5’)

(iii) If f is measurable with respect to ν and vanishes outside a reasonable
set, then

ν∗ (|f |) =

∫
µ∗x (|f |) dλ∗(x) .(13.5”)

The following arguments bear a strong resemblance, and with good reason,
to those used to prove the Lebesgue-Fubini theorem.

Proposition (i) in the statement is obvious.44

To prove (ii), we start with the equality

ν∗(ϕ) =

∫
µ∗x(ϕ)dλ∗(x) ,

proved above for all positive lsc functions on Z in cases (α), (β) and, if
ν∗(ϕ) < +∞, in case (γ); we then imitate the proof of the classical LF
theorem. Its part (b) and relation (4) lead to the inequality

ν∗(f) ≥
∫
µ∗x(f)dλ∗(x)(13.6)

which holds for every function f ≥ 0 on Z, including in case (γ): there is
nothing to prove if ν∗(f) = +∞, and otherwise it suffices to calculate ν∗(f)
using lsc functions ϕ dominating f and for which ν∗(ϕ) < +∞; in that case,
(4) can be applied to them. For a characteristic function, (6) shows that

{ν∗(N) = 0} =⇒ {µ∗x(N) = 0 for almost all x} .(13.7)

Now, let f be a function on Z with values in C or [−∞,+∞], and suppose
it is integrable with respect to ν. Denoting by N1 the L1 norm with respect

44 Because measures have been defined as positive linear functionals on L(X). If
the other possible definition had to be used (countably additive functions on
Borel sets, for example), we would come across additional difficulties. . .
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to the measure ν, there is (n◦ 4, corollary 1 of theorem 7) then a null set
N ⊂ Z with respect to ν and a series of functions fn ∈ L(Z) such that∑

N1 (fn) < +∞ & f(z) =
∑

fn(z) for all z ∈ Z −N .

The series
∑
fn converges in mean to f in L1(Z, ν) and

ν(f) =
∑

ν (fn) =
∑∫

µx (fn) dλ(x) .(13.8)

However, ∑∫
µx (|fn|) dλ(x) =

∑
ν (|fn|) =

∑
N1(fn) < +∞ .(13.9)

By theorem 6,
∑
µx(|fn|) < +∞ outside a λ-null set M ′ ⊂ X, the series fn,

moreover, converging in L1(Z, µx) for all x ∈ X −M ′.
But

∑
fn(z) = f(z) for all z ∈ Z −N and (7) tells us that µ∗x(N) = 0 for

all x /∈M ′′, where M ′′ is a λ-null set. Hence, if x /∈M ′ ∪M ′′ = M , a λ-null
set, then the series fn(z) converges to f(z) both µx-almost everywhere and
in L1(Z, µx). Thus (theorem 7) f ∈ L1(Z, µx) and

µx(f) =
∑

µx(fn) for x /∈M .(13.10)

As
∑
|µx(fn)| ≤

∑
µx(|fn|), relation (9) shows that the function µx(fn) is

λ-integrable and that∑∫
µx(fn)dλ(x) =

∫
dλ(x).

∑
µx(fn) = ν(f) .

But
∑
µx(fn) = µx(f) for x /∈ M by (10). The function x 7→ µx(f), de-

fined almost everywhere with respect to λ, is, therefore, λ-integrable with,
furthermore,

ν(f) =

∫
µx(f)dλ(x) ,(13.11)

which proves point (ii) of the statement (including for functions with values
in a Banach space).

To prove (iii), let f be a reasonable and measurable function on Z with
respect to ν, with values in [0,+∞]. Then f is the simple limit of an increas-
ing sequence of ν-integrable functions fn ≥ 0 converging everywhere (n◦ 9,
corollary 3 of theorem 18). Theorem 2 shows that

ν∗(f) = lim ν∗(fn) = lim ν(fn)

and hence, by proposition (ii) proved above, that
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ν∗(f) = lim

∫
µ∗x(fn)dλ∗(x) .

The same theorem 2 applied to a µx shows that

limµ∗x(fn) = µ∗x(f) for all x ∈ X .

The sequence of functions x 7→ µ∗x(fn) being increasing, applying theorem 2
once again this time to λ, shows that

lim

∫
µ∗x(fn)dλ(x) =

∫
µ∗x(f)dλ∗(x) ,

whence (5”), which completes the proof.
The necessary and sufficient condition for integrability should also be

added, namely ∫
µ∗x (|f |) dλ∗(x) < +∞

if f is measurable and reasonable with respect to ν.
Finally, a pth power ν-integrable function also has this property with

respect to µx for almost all x . Denoting by f and fx its classes in Lp(Z; ν)
and Lp(Z;µx),

‖f‖pp =

∫
‖fx‖pp dλ(x) .(13.12)

For p = 2, we compute the inner product in L2(Z; ν) by

(f |g) =

∫ (
fx
∣∣gx) dλ(x) ,(13.13)

a formula analogous to the one defining inner products on direct products of
Hilbert spaces. But the analogy is misleading; it is already so in the case of a
space X with two elements: the L2 space of a sum µ1+µ2 is not in general the
direct sum of the L2 spaces of the given measures (trivial counterexample:
take µ1 = µ2). We will come back to this point in the context of the Lebesgue-
Nikodym theorem.

14 – Integrable Functions with respect to the Image of a Measure

Theorem 19, i.e. the classical formulation of LF, is not exactly a simple re-
wording of theorem 22. The latter asserts that, for almost all x ∈ X, the
function f is µx-integrable, whereas theorem 19 asserts that the function
fx(y) = f(x, y) is µ-integrable. To obtain proposition (i) – and hence (ii) and
(iii) – of theorem 19, it is thus necessary to show that

f ∈ L1 (µx, Z)⇐⇒ fx ∈ L1(Y, µ)(14.1)
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and that, in this case, µx(f) = µ(fx) . Similarly, (10.5’) reduces to formula
(13.2’) of theorem 22 if

µ∗x(f) = µ∗(fx)(14.2)

for all reasonable functions f . All this may seem obvious since µx is obtained
by transposing to the vertical

Y (x) = {x} × Y

of x the measure µ given on Y or, equivalently, since µx is the image of µ
under the map y 7→ (x, y) from Y to Z . It still needs to be proved.

As an exercise, the reader will easily find a direct ad hoc proof. But a
general result holding in the framework of example (iii) of n◦ 12 can also
be proved.45 It will come in useful later in the very particular case where
p : X 7→ Z is continuous and proper. While somewhat simplifying the proof,
this assumption does get rid of all difficulties.

Theorem 23. Let X and Z be two locally compact spaces, λ a positive
measure on X and p a measurable map from X to Z. Suppose that, for all
f ∈ L(Z), the function f ◦ p is λ-integrable. Let

ν(f) = λ(f ◦ p) , f ∈ L(Z) ,

be the image measure of λ under p.
(i) A reasonable function f on Z is ν-integrable if and only if f ◦ p is

λ-integrable ; then

ν(f) = λ(f ◦ p) .(14.3)

(ii) A function f on Z is ν-measurable if and only if f ◦p is λ-measurable.
(iii) the equality

ν∗(f) = λ∗(f ◦ p)(14.3’)

holds for any reasonable (but not necessarily measurable) function f ≥ 0,
and for all f ≥ 0 if the map p is continuous and proper.

Let us first state two results which we will will need:

Lemma 1. Let X and Z be two locally compact spaces and p a continuous
proper map from X to Z. The image p(F ) of every closed set F ⊂ X is
closed in Z.

The restriction of p to F being proper, we may assume that X = F .
Let z ∈ Z be a closure point of p(X). Since every compact neighbourhood
W of z has non-trivial intersection with p(X), the compact sets p−1(W ) are

45 See N. Bourbaki, Intégration, Chap. IV, §4, from which I got rid of the “ essential
upper integrals ” (limits of integrals over compact sets).
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non-empty. The intersection of two sets of this type being again of the same
time, they have a common point x (Chap. V, § 2, n◦ 6, corollary 1 of the
Borel-Lebesgue theorem, which holds in all generality). As p(x) belongs to
all compact neighbourhoods W of z, z = p(x) ∈ p(X), qed.

Lemma 2. Let X and Z be two locally compact spaces, p a continuous proper
surjective map from X to Z and f a map from Z to a topological space. f is
continuous if (and only if) f ◦ p is continuous.

By lemma 1, p maps every closed subset of X onto a closed subset of Z.
Hence for a set A ⊂ Z to be closed it is sufficient (and necessary since p
is continuous) for p−1(A) to be closed. Hence V ⊂ Z is open if and only if
p−1(V ) is open in X. By the way, this shows that Z is the quotient space of X
by the equivalence relation p(x) = p(y). If f is a map from Z to a topological
space E and if U ⊂ X and V ⊂ Z are the inverse images of an open set W
of E under f ◦ p and f , then U = p−1(V ) and V = p(U). As a result, U is
open if and only if so is V , qed.

Let us come back to the family of measures

µx(f) = f [p(x)] .

As was seen before the statement of theorem 22, it satisfies condition (γ)
of theorem 22, and even condition (α) if p is continuous. In all cases, ν =∫
µxdλ(x).

Proof of (i): necessity of the condition. If f is ν-integrable, then theo-
rem 22 shows that f is µx-integrable for almost all x – not very surprising46 –,
that the function µx(f) = f [p(x)], defined for almost all x, is λ-integrable,
and finally that ν(f) =

∫
f [p(x)]dλ(x), whence (3).

If in particular f is the characteristic function of a ν-integrable set E ⊂ Z,
then f ◦ p is that of p−1(E). If E ⊂ Z is ν-integrable, then one deduces that
p−1(E) is λ-integrable, and one gets

ν(E) = λ
[
p−1(E)

]
.(14.4)

If E is a null set, then so is p−1(E).
Proof of (ii). Suppose that f ◦ p is λ-measurable and let us show that so

is f with respect to ν. Let H ⊂ Z be compact. As stated above, A = p−1(H)
is integrable. Since p and f ◦p are measurable, there is a sequence of compact
sets Kn ⊂ A on which p and f ◦p are continuous and such that M = A−

⋃
Kn

is a null set. We consider the compact sets Hn = p(Kn). As p is a continuous
and surjective map from Kn to Hn and as f ◦p is continuous on Kn, lemma 2
shows that f is continuous on Hn. It remains to show that N = H −

⋃
Hn

is a null set with respect to ν. Now,

p−1(N) = A−
⋃
p−1(Hn) ⊂ A−

⋃
Kn = M ,

46 but not totally trivial: it means that |f(x)| < +∞ for almost all x.
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which is a null set. As N is a Borel set contained in H, it is ν-integrable, and
so by (4), ν(N) = λ[p−1(N)] ≤ λ(M) = 0. Thus f is measurable.

Conversely let us suppose that f is ν-measurable and that K ⊂ X is
compact. K is the union of compact sets Kn on which p is continuous, up to
a null set. To show that f ◦p satisfies condition (LUS) on K, it suffices to show
it for each Kn. In other words, p may be assumed to be continuous on K. But
then p(K) = H is compact, and so H = N ∪

⋃
Hn, where N = H −

⋃
Hn is

a null set and the sets Hn are compact ones on which f is continuous. The
function f ◦ p is continuous on Kn = K ∩ p−1(Hn). These are compact sets
since they are closed in K. On the other hand, (4) applied to N shows that
K ∩ p−1(N) = M is a null set. As

K ∩ p−1(H) = p−1(N) ∩
⋂
p−1(Hn) ,

K = M ∪
⋃
Kn. Hence f ◦ p is measurable even if f is a function with values

in a topological space.
Proof of (i): sufficiency of the condition. We suppose that f ◦ p is inte-

grable, and hence measurable. By (ii), f is measurable. If f is reasonable,
proposition (iii) of theorem 22 enables us to apply (3’). Hence, if f ◦ p is
integrable, then ν∗(f) < +∞ and f is integrable.

In particular, this shows that a reasonable set E ⊂ Z is integrable (resp.
null) if and only if so is p−1(E), in which case (4) applies.

Proof of (iii): case where p is continuous and proper. Let ϕ be a lsc
function on X and ψ the function on Z given by

ψ(z) = inf
p(x)=z

ϕ(x) .(14.5)

We show that ψ is lsc. Since p−1({z}) is compact for all z, there is a point
in p−1({z}) where ϕ reaches its minimum over this compact set [Chap. V,
n◦ 10, (vi)]. Hence for given m ∈ R, ψ(z) ≤ m if and only if there exists x
such that p(x) = z and ϕ(x) ≤ m. So putting

F = {ϕ(x) ≤ m} , G = {ψ(z) ≤ m} ,

we get G = p(F ). Since p is continuous and proper, p(F ) is closed (lemma 1),
whence the result.

This being so, let f be a positive function on Z. By (13.6), ν∗(f) ≥
λ∗(f ◦ p), so that it suffices to prove that ν∗(f) ≤ λ∗(ϕ) for any lsc function
ϕ ≥ f ◦ p. But for the corresponding function (5), obviously ψ ◦ p ≤ ϕ . As
f ◦ p ≤ ϕ and sof(z) ≤ ϕ(x) if p(x) = z, we also get f ≤ ψ. Hence both

ν∗(f) ≤ ν∗(ψ) and λ∗(ψ ◦ p) ≤ λ∗(ϕ)

hold.
The map p being continuous, assumption (α) of theorem 22 holds. As ψ

is lsc, by (13.4), ν∗(ψ) = λ∗(ψ ◦ p), which gives (iii) in this particular case. It
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will come in useful for the completion of the proof in the general case. The
idea is the same as in the previous proof, but contains additional technical
details.

Proof of (iii): general case. We first note that (3’) is proposition (iii) of
theorem 22 if f is measurable. But (3’) only assumes f to be reasonable.

By (13.6), ν∗(f) ≥ λ∗(f ◦ p), which, as in the preceding case, reduces the
proof to showing that

ν∗(f) ≤ λ∗(ϕ) for any lsc function ϕ ≥ f ◦ p .(14.6)

As f is reasonable, it suffices (theorem 2) to do this when f vanishes outside
a compact set H ⊂ Z ; f ◦ p is then zero outside the set A = p−1(H), which
is integrable by the already proved proposition (ii). Since p−1[p(A)] = A is
measurable, (ii) proves that p(A) = B is measurable, and hence integrable
since it is contained in H.

Let us choose an increasing sequence of compact sets Kn ⊂ A on which
p is continuous and such that M = A −

⋃
Kn are a null sets, and consider

the compact sets Hn = p(Kn) and the measurable set N = B −
⋃
Hn. Since

p−1(N) ⊂M , N is a null set by (4). Then B = N ∪
⋃
Hn.

Let ϕ be a positive lsc function on X dominating f ◦ p. Setting

ψn(z) = inf
p(x)=z
x∈Kn

ϕ(x) for z ∈ Hn ,(14.7)

ψn(z) = +∞ for z ∈ B −Hn ,(14.7’)

ψn(z) = 0 for z ∈ Z −B ,(14.7”)

let us show that

ψn(z) ≥ f(z) for all z ∈ Z .(14.8)

If z ∈ Hn, then ϕ(x) ≥ f [p(x)] = f(z) for all x ∈ Kn such that p(x) = z,
whence ψn(z) ≥ f(z) by (7). If z ∈ B −Hn, the same holds by (7’). Lastly,
if z ∈ Z −B, then both sides are zero by (7”).

On the other hand, clearly,

ϕ(x) ≥ ψn ◦ p(x) on Kn .(14.9)

Finally, the sequence ψn is decreasing since Kn ⊂ Kn+1 for all n.
Setting ψ = inf(ψn), ψ(z) ≥ f(z) by (8). Thus

ν∗(ψ) ≥ ν∗(f) .(14.10)

Let us show that ϕ(x) ≥ ψ ◦ p(x) ae. For x ∈ Kn = A−M , this follows from
(9). If x ∈M , it does not matter if it is false since M is a null set. Finally, if
x ∈ X −A, then p(x) ∈ Z −B, whence ψ ◦ p(x) = 0 by (7”).
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This implies that

λ∗(ϕ) ≥ λ∗(ψ ◦ p) .(14.11)

By (10) and (11), the proof of relation (6) and hence of proposition (iii) will
follow if we show that

ν∗(ψ) = λ∗(ψ ◦ p) .(14.12)

As ψ is reasonable by (7”), for this purpose, it suffices to check that ψ is
measurable [theorem 22, (13.5”)] or, since ψ = inf(ψn), that so are ψn.

The function ψn being constant on the measurable sets B−Hn and Z−B,
the proof reduces to verifying it on the compact set Hn = p(Kn). Now, p is
continuous (and, trivially, proper) on Kn, and the restriction of ϕ to Kn is
lsc. Replacing X and Z by Kn and Hn, we are back in the particular case
proved above: the restriction of the function ψn to Hn is lsc, qed.

15 – Invariant Measures under Group Actions

We will now consider case (iv) of n◦ 12, but the topics covered in this n◦

go far beyond the framework of a simple application of the generalized LF
theorem. It is rather a matter of presenting the abc of what André Weil called
Integration in topological groups and its applications in a famous book which
was like the Bible to me in the 1940s (Paris, Hermann, 1941).

(i) Invariant measures on a group. On every lcgG, there is measure dµr(g)
invariant under right translations g 7→ ga, as well as a measure dµl(g) inva-
riant under left translations g 7→ ag. Though the existence theorem of these
Haar measures is essential for the general case, as mentioned above, it does
not teach us anything beyond its simple statement. In practice, the prob-
lem is the explicit calculation of these measures; this requires quite different
methods, in particular for Lie groups often needing the Chap. IX results on
differential forms.47

Exercise 1. Let G = GLn(R) be the group of n× n invertible real matri-
ces, open in Mn(R). Show that the measure det(g)−ndm(g), where m is the
Lebesgue measure on Mn(R), is right and left invariant on G. Is it well-defined
as a measure on Mn(R)?

In fact, the most useful result is that these invariant measures are unique
up to constant factors. The method presented in Chap. IX, n◦ 10, lemma a

47 A Lie group is equipped with the structure of a C∞ (and even analytic) man-
ifold such that the map (x, y) 7→ xy−1 is C∞. For all g, the map x 7→ gx is
a diffeomorphism whose tangent map at e is an isomorphism from G′(e) onto
G′(g). Choosing an alternating multilinear form of maximum degree ω 6= 0 on
G′(e) and denoting by ω(g) the form on G′(g) it induces by x 7→ gx, we get a
differential form (also denoted ω) of maximum degree and everywhere 6= 0 on G.
This shows that the manifold G is orientable and enables us to define a positive
measure µ on G by µ(f) =

∫
fω. It is the left invariant measure.
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shows this as easily as for Rn. On the other hand, the map g 7→ g−1 obviously
transforms every left invariant measure into a right invariant one.

It is often troublesome to use the same letter µ to denote the Haar mea-
sures of several different groups, and hardly more convenient to denote them
by λ, µ, ν, etc. Just like dx denotes the Haar (i.e. Lebesgue) measure on
Rn, in his book, André Weil only used dg (or dh, dk, etc. if the group is
written H, K, etc.) for the left invariant measure of G. He never used the
right invariant measure since, to integrate a function f with respect to it, one
computes

∫
f(g−1)dg. This convention simplifies notations when only general

groups are considered. Other authors prefer to distinguish between dlg and
drg by setting drg = dl(g

−1). In his Chap. VII et VIII on the Haar measure
and the convolution product, N. Bourbaki denotes by β – why not? – the
left invariant measure. Hereinafter, I will follow Weil’s convention, even if it
means coming back to more precise notations where required. The notation
Lp(G) will refer to the measure dg, and so will any mention of integrable and
measurable functions unless otherwise stated.

The uniqueness of the measure dg up to a factor has consequences. If, for
a given a ∈ G, we consider the image of the left invariant measure dx under
the right translation x 7→ xa, we again get a left invariant measure because
b(xa) = (bx)a. Hence there is a number ∆G(a) = ∆(a) > 0 such that48∫

f(xa−1)dx = ∆(a)

∫
f(x)dx(15.1)

for all f ∈ L(G) or more generally integrable. Then ∆(xy) = ∆(x)∆(y) and
the function ∆ is clearly continuous. In many cases, ∆(x) = 1, especially if
G is compact (Chap. IX, n◦ 10, lemma e) . G is then said to be unimodular.

The measure ∆(x)−1dx is right invariant since, in short, ∆(xa)−1d(xa) =
∆(xa)−1∆(a)dx = ∆(x)−1dx. The measure d(x−1) is also right invariant
since (xa)−1 = a−1x−1. Hence d(x−1) = c∆(x)−1dx with a constant c > 0,
and so, x 7→ x−1 gives dx = c∆(x).d(x−1) and thus c = 1. As a result,

d(xa) = ∆(a)dx , dx−1 = ∆(x)−1dx = drx .(15.2)

Since the second relation can be set out more explicitly as∫
f
(
x−1

)
dx =

∫
f(x)∆(x)−1dx ,

it, in particular, shows that if G is unimodular, then the Haar measure is
invariant under x 7→ x−1.
48 Applying (1) to the characteristic function of a measure set X ⊂ G gives the
m(Xa) = ∆(a)m(X), where dm(x) = dx. If, like Leibniz, we consider that the
symbol dx denotes an “ infinitesimal volume element ” at point a, then dx.a =
∆(a).dx, which is more conveniently written as d(xa) = ∆(a)dx. Then Formula
(1) is obtained by the variable change x 7→ xa in the first integral since it
transforms f(xa−1) into f(x) and dx into d(xa). The notation d(x−1) used in
(2) can be interpreted in a similar way. Compare with the change of variable
formulas for multiple integrals (Chap. IX, n◦ 10).
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Exercise 2. Let G be the group of matrices49 (x y|0 1) with x ∈ R∗, y ∈ R .
It acts on R by t 7→ xt+ y. Show that its invariant measures are of the form
j(x, y)d∗xdy and calculate the ∆ function of the group.

(ii) Continuous linear representations. In all cases, the group G defines
continuous linear operators on Lp(G) spaces, whose study, for p = 1 and
mostly for p = 2, is the foundation of harmonic analysis on G. For example,
for all a ∈ G, denoting by L(a) the operator transforming every f ∈ Lp(G)
into the function

L(a)f : x 7−→ f
(
a−1x

)
,(15.3)

which is also in Lp(G), defines an isometric operator (i.e. preserves the norm)
on this Banach space, and for p = 2, even a unitary one,50 and L(xy) =
L(x)L(y) for all x, y. An operator R(a) in Lp defined by

R(a)f : x 7−→ f(xa)(15.3’)

can be associated to all a ∈ G. Then R(xy) = R(x)R(y) and

L(x)R(y) = R(y)L(x) ,

but the operators R(y) are isometric only if G is unimodular. The maps
x 7→ L(x) and x 7→ R(x), called left and right regular representations from G
to the Lp spaces, are not continuous as maps on the Banach space of bounded
operators on Lp(G), but the maps (x, f) 7→ L(x)f and (x, f) 7→ R(x)f from
G× Lp to Lp are. To see this, first notice that

‖L(x)f − L (x0) f0‖p ≤ ‖L(x)‖ . ‖f − f0‖p + ‖L(x)f0 − L (x0) f0‖p .

As (x, f) converges to (x0, f0), the first term on the left hand side tends
to 0 since ‖L(x)‖ = 1. It, therefore, suffices, to analyze the second term,
namely to check that the map x 7→ L(x)f from G to Lp is continuous for
all f ∈ Lp. Checking it for everywhere dense functions f is in fact sufficient
because, if fn converges to f , L(x)fn converges uniformly to L(x)f on G.
However, if f ∈ L(G), then this is immediate since if x tends to x0, thus stays
in a compact neighbourhood V of x0, the function L(x)f vanishes outside
the compact set V K, where K is the support of f and, f being continuous,
converges uniformly to L(x0)f while remaining zero outside V K. This implies
convergence in Lp. Same arguments apply to R(x).

49 To simplify typing, it is convenient to set

(a b|c d) =

(
a b

c d

)
.

50 i.e. bijective and isometric. See n◦ 19.
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This situation can be generalized using the notion of a linear representa-
tion (implied to be continuous) of G: It consists of an ordered pair51 (H, U)
where H is a Banach space and U a map x 7→ U(x) to the group of continuous
invertible operators of H, satisfying the following two conditions:

(RL 1) U(xy) = U(x)U(y), where U(e) = 1 and U(x−1) = U(x)−1,
(RL 2) the map x 7→ U(x)a from G to H is continuous for all a ∈ H.

Condition (RL 2) actually implies that (x,a) 7→ U(x)a is continuous. This
can be shown by writing as above that

‖U(x)a− U (x0) a0‖ ≤ ‖U(x)‖ . ‖a− a0‖+ ‖U(x)a0 − U (x0) a0‖

and by taking into account the fact that 52

sup
x∈K
‖U(x)‖ < +∞(15.4)

for any compact set K ⊂ G . This enables one to show that the first term of
the right hand side tends to 0 (for K take a neighbourhood of x0), the same
holding for the second term by (RU 2). It is actually enough to check (RU 2)
for vectors everywhere dense in H.

If H is a Hilbert space53 and if all U(x) are unitary, (H, U) is said to be
a unitary representation of G. In dimension 1, such a representation is just
a continuous solution with absolute value 1 of the functional equation

51 What I write as U(g) is usually written π(g), following Harish-Chandra. In alge-
bra, which (theoretically) does not involve topology, a linear representation of a
group G is a homomorphism g 7→ U(g) from G to the group GL(E) of in general
a finite-dimensional vector space E over a commutative field.

52 Since continuous functions x 7→ ‖U(x)a‖ are bounded on every compact set for
all a ∈ H, it suffices to use a Banach theorem, a quick proof for which follows.
We start by proving the famous Baire’s theorem: let H be a complete metric
space and (Fp) a sequence of closed sets such that H =

⋃
Fp . Then at least

one of the sets Fp contains an open subset of H. Otherwise, if B is a closed
ball, the interior of B is not contained in any Fp, and so for each p, contains a
closed ball which does not intersect Fp. Hence, starting from an arbitrarily chosen
closed ball B0 of radius 1, we can construct a decreasing sequence of closed balls
Bp, of radius ≤ 1/p, such that Bp ∩ Fp = ∅ for all p. As H is complete, there
exists x ∈

⋂
Bn, a contradiction since x ∈ Fp for at least some p. (Exercise:

the theorem continues to hold if H is replaced by some Gδ set in H and the
sets Fn by their intersections with it). Banach-Steinhaus theorem: Let E be a
set of continuous linear maps from a Banach space H to another. Suppose that
sup ‖Ta‖ = p(a) < +∞ for all a ∈ H . Then sup ‖T‖ < +∞. Otherwise, there
exist Tn ∈ E such that sup ‖Tn‖ = +∞. For all p, the set Fp of x ∈ H satisfying
‖Tnx‖ ≤ p‖x‖ for all n is closed, and as sup ‖Tnx‖ < +∞ for all x,H =

⋃
Fp.

Hence, one of the sets Fp contains a ball B(a, r) . Then, for ‖x− a‖ ≤ r,

‖Tn(x− a)‖ ≤ ‖Tnx‖+ ‖Tna‖ ≤ p‖x‖+ p(a) = c ,

a constant independent of n; whence sup ‖Tn‖ ≤ c/r, a contradiction. We also
state the closed graph theorem: a linear map T : H1 −→ H2 is continuous if and
only if its graph G ⊂ H1 ×H2 is closed.

53 For elementary properties of Hilbert spaces see n◦ 19.
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χ(xy) = χ(x)χ(y) .

This is called a character of the group G. If G is commutative, there are
enough of them so that, like on T or R, one can construct a theory of Fourier
transforms on G without any explicit calculations (§ 7). But if G is not com-
mutative, the function 1 may well be the only solution, for example as in the
case of SL2(R) which does admit any non-trivial finite-dimensional unitary
representations. Characters are then replaced by irreducible unitary represen-
tations, i.e for which the only closed subsets of H stable under the operators
U(x) are {0} and H. However, since(

U(x)a
∣∣U(x)b

)
= (a|b) ,

if a closed vector subspace of H is invariant under operators U(x), then so
its orthogonal subspace and conversely. Among other things, this property
explain the importance of unitary representations. If H is finite-dimensional,
in which case it contains a non-zero invariant subspace of minimal dimen-
sion (possibly H itself), it then follows that H is a direct sum of minimal and
pairwise orthogonal invariant subspaces, i.e. on which the representation is ir-
reducible. As it is based on a simple dimension argument, the latter no longer
holds in infinite dimension, though there are cases where it does (compact
groups), but one can prove a similar but imperfect result by broadening the
notion of a direct sum. In the case of a general lcg, one first shows (Gelfand
and Räıkov, 1943), using quite ingenious arguments from functional analysis
(see end of n◦ 30), that there are many irreducible unitary representations,54

then that any unitary representation is a “ continuous sum ” or a “ direct inte-
gral ” of irreducible representations in the sense of n◦ 24. Chap. XII will give
concrete non-trivial examples of infinite-dimensional irreducible representa-
tions. If G is compact, the irreducible representations are finite-dimensional
and for any unitary representation (H, U) of G, there is a decomposition of
H into a Hilbert (“ discrete ”) direct sum of minimal invariant subspaces, in
which the U(x) define irreducible representations (end of n◦ 29, (iii). This is
not hard to prove for the regular representation of a linear group since in this
case the existence of several minimal finite-dimensional invariant subspaces
is obvious:

Exercise 3. Let G be a compact subgroup of GLn(R). (a) Show that
polynomial functions in coefficients of g are everywhere dense55 in L2(G)
(use Stone-Weierstrass). (b) Let Hd be the subspace of H = L2(G) con-
sisting of polynomials of total degree ≤ d in coefficients of G. Show that it

54 This means that for all x 6= e, there is an irreducible representation such that
U(x) 6= 1. Gelfand and Räıkov’s article being in Russian, it is probably better
to look up Henri Cartan and Roger Godement, Analyse harmonique et théorie
de la dualité dans les groupes abéliens localement compacts (Ann. Sc. de l’Ecole
normale supérieure, 1947).

55 Polynomial functions on a non-compact closed subgroup G of GLn(R) can never
be in L2(G). In this case, the exercise shows that there are finite-dimensional
linear representations of G, but nothing more.
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is finite-dimensional and invariant under operators L(x) and R(x) defined
in (3) and (3’) or as the saying goes, bi-invariant. (c) Show that every left
invariant (resp. bi-invariant) finite-dimensional subspace M 6= {0} of L2(G)
contains a minimal subspace of the same type and thatM is the direct sum
of pairwise orthogonal minimal left invariant (resp. bi-invariant) subspaces.
(d) Show that L2(G) is a Hilbert direct sum of minimal left invariant (resp.
bi-invariant) subspaces. (e) For G = T, rewrite the result in the language of
the theory of Fourier series.

Unlike the above, the next exercise shows an intractable situation.
Exercise 4 (von Neumann, 1943). Let G be a discrete group, so that the

measures or Dirac functions

εx(y) = 1 if y = x , = 0 if y 6= x

form an orthonormal basis for L2(G). Show that L(x)εy = εxy. Let A be a
continuous operator in L2(G) such that AL(x) = L(x)A for all x. Show that

Af(x) =
∑

a
(
xy−1

)
f(y)

for all f ∈ L2(G) where a = Aεe ∈ L2(G). Show that AL(x) = L(x)A for all x
if and only if the function a satisfies a(xyx−1) = a(y) for all x and y. Suppose
that, for all y 6= e, the set of conjugates xyx−1 of y is infinite. Show that A is
a scalar and deduce that in this case, L2(G) does not contain any non-trivial
closed bi-invariant subspace (observe that the orthogonal projection operator
onto such a subspace commutes with all L and R. This also mean that the
unitary representation (x, y) 7→ L(x)R(y) from G×G to L2(G) is irreducible.
[in this case, the quotient of the group SL2(Z) by its centre {1,−1} is, like
all “ arithmetically defined ” groups such as SLn(Z), the group of matrices
with integer entries preserving an (indefinite) quadratic form with integer
coefficients, etc.]

(iii) Quotient of a space by a group. Let Z be a locally compact space and
G a lcg acting on the left (or the right) on Z by a continuous map (g, x) 7→ gx
(or xg) satisfying obvious algebraic conditions. For A ⊂ G and B ⊂ Z, let
AB be the set of products gz, where g ∈ A and z ∈ B. For B = {z}, the
set GB, written simply Gz, is the orbit of z. gB is defined likewise by taking
A = {g}.

One can then define a quotient set X = G\Z (or Z/G if G acts on the
right), a map p : Z 7→ G\Z taking each z to its orbit Gz, and a topology on
X with respect to which the set U ⊂ G\Z is open if and only if p−1(U) is
open in Z. For simplicity’s sake, it is often convenient to use the notation

p(z) = ż .

The continuous map p is open, i.e. transforms every open subset W of Z
into an open subset U of X since p−1[p(W )] =

⋃
gW is a union of open sets.
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Hence, if X is separated, p maps every compact neighbourhood of z ∈ Z onto
a compact neighbourhood of p(x) in X. As a result, X is locally compact if
it is separated.

Lemma 1. Let Z be a separated topological space and R ⊂ Z×Z the graph56

of an equivalence relation on Z such that the map p : Z 7→ Z/R is open. Z/R
is separated if and only if R is closed in Z × Z.

Let us set Z ′ = Z/R . The map (x, y) 7→ (p(x), p(y)) from Z×Z to Z ′×Z ′
is continuous. However, the set R of ordered pairs such that p(x) = p(y) is
the inverse image of the diagonal of Z ′ × Z ′, which is closed if and only if Z
is separated (exercise !) . Hence the necessity of the condition follows without
any assumption on p. Conversely, if R is closed and if p(x) 6= p(y), the ordered
pair (x, y) is exterior to R, hence there are neighbourhoods U and V of x
and y in Z such that U × V ∩ R = ∅ . Then the images p(U) and p(V ) are
disjoint open neighbourhoods of p(x) and p(y) in Z ′, qed.

Lemma 2. Let G be a group acting on a separated topological space Z. The
quotient space G\Z is separated if and only if the following condition holds:
for every pair of points c, c′ ∈ Z such that Gc 6= Gc′, there are neighbourhoods
U and U ′ of c and c′ in Z such that

gU ∩ U ′ = ∅ for all g ∈ G .(15.5)

For any compact set K ⊂ Z, the set GK is then closed. If Z is Polish, then
GB is a Borel set for any open or closed set B ⊂ Z.

We denote by R the equivalence relation defined by G. As was seen above,
the map p is open. Let (c, c′) be a closure point of R. Any neighbourhood of
(c, c′) contains a set U ×U ′, where U and U ′ are neighbourhoods of c and c′

in Z. Saying that U ×U ′ intersects R non-trivially means that there is some
z ∈ U , z′ ∈ U ′ and g ∈ G such that z′ = gz, i.e. some g such that57 gU#U ′.
The statement R is closed is expressed by saying that if this condition holds
for all U and U ′, then (c, c′) ∈ R, i.e. Gc = Gc′. This gives condition (10).

To prove the second proposition of the lemma, suppose first that B is
compact. Then GB = p−1[p(B)]. As p(B) is compact and hence closed G\Z
being separated, GB is closed, whether or not Z is Polish. If it is, then it
is metrizable and countable at infinity, and as was seen in n◦ 10, so are all
its locally compact subspaces. Hence, if B is the countable union of compact
sets, for example if B is closed or open, then GB is the countable union of
closed sets, and so is a Borel set,58 qed.

56 It is the set of ordered pairs (x, y) satisfying the given relation.
57 Generally speaking, one writes E#F instead of E ∩ F 6= ∅.
58 One may wonder whether the result continues to hold for all Borel sets B. In

fact, it is only possible to sat that p(B) is analytic (n◦ 10), and hence that so is
p−1[p(B)] = GB, so that p(B) is measurable with respect to any measure on Z.
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Lemma 2 does not assume that G is equipped with a topology. Suppose
that that G is locally compact and that the map (g, z) 7→ gz is continuous.
R is the image of X = Z ×G under the continuous map

π : (z, g) 7−→ (z, gz)

to Y = Z×Z. If G is locally compact, so are X and Y . On the other hand, the
graph of the equivalence relation defined by G being π(Z ×G), it is closed
if π is proper (n◦ 14, lemma 1), i.e. if the inverse image of any compact
set K ⊂ Z × Z is compact. As it is closed, it suffices to express this for a
product B ×A, where A and B are compact. Then π−1(K) = B ×C, where
C = C(A,B) is the set of g such that gA#B. As a result:

Lemma 3. Let G be a locally compact set acting on a locally compact space
Z. The quotient space G\Z is locally compact if the following condition is
satisfied:

(GOP): for all compact sets A,B ⊂ Z, the set C(A,B) of g ∈ G such
that gA#B is compact.

G is then said to act properly on Z. All closed subgroups of G act properly
on Z.

Exercise 5. Suppose that G and Z are metrizable so as to be able to
use BW. Show by a direct argument that condition (GOP) implies (5) for
sufficiently small U and U ′ (consider sequences gn, zn and z′n such that z′n =
gnzn, lim zn = c, lim z′n = c′).

(iv) Quotient of an invariant measure. This preliminary stage completed,
let G be a lcg acting properly (on the left) on a locally compact space Z. For
f ∈ L(Z,K) and z ∈ Z, the function g 7−→ f(gz) vanishes outside the set of
g such that gz ∈ K . As it is compact by (GOP), like in n◦ 12, (iv) one can
define a function

z 7−→
∫
f(gz)drg =

∫
f
(
g−1z

)
dg(15.6)

using Weil’s notation for the left invariant measure dg. This function is G-
invariant since replacing z by az amounts to replacing g by ga. This leads to
a function on X = G\Z given by

fG(ż) =

∫
f(gz)drg ,(15.7)

where recall that ż = p(z). If K is the support of f , the integral vanishes
outside GK, so that fG vanishes outside the compact set p(K). Finally, it is
more or less obvious that function (7) is continuous, and thus

f ∈ L(Z) =⇒ fG ∈ L(X) .(15.8)
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Lemma 4. The map f 7−→ fG from L+(Z) to L+(X) is surjective.

First note that any compact set K ⊂ X is the image under p of a compact
subset of Z . For all x = p(z) and all compact neighbourhoods W of z, the
image p(W ) is indeed a compact neighbourhood of x. By BL, K can be
covered by finitely many such sets p(Wi). As H =

⋃
Wi satisfies p(H) ⊃ K,

the compact set H ∩ p−1(K) answers the question.
This being so, first note59 that if some f ∈ L+(Z) is > 0 on a com-

pact set H ⊂ Z, then fG > 0 on p(H). Hence, for all ϕ ∈ L+(X) with
support p(H), there exists ψ ∈ L+(X) such that ϕ = fGψ . The function
h(z) = f(z)ψ[p(z)] = f(z)ψ(ż) also being in L+(Z), it is possible to compute

hG(ż) =

∫
f(gz)ψ [p(gz)] drg =

∫
f(gz)ψ(ż)drg = ψ(ż)

∫
f(gz)drg =

= ψ(ż)fG(z̃) = ϕ(ż) ,

whence the lemma. It obviously also applies to L(Z) and L(X).
We now suppose that there is a G-invariant measure on Z, i.e. such that∫

f(gz)dν(z) =

∫
f(z)dν(z) .(15.9)

We will also need functions

fG(z) =

∫
f(gz)dlg =

∫
f(gz)∆G(g)drg .(15.7’)

For all a ∈ G, one readily gets

fG
(
a−1z

)
= ∆G(a)fG(z) .(15.10)

One can show as above that the map f 7−→ fG from L+(Z) to the set
L+(X;∆G) of continuous, positive solutions with compact support modG
of (10) is surjective. The distinction between fG and fG is of interest only if
G is not unimodular, but that it is precisely what often happens in practice.

Lemma 5. For f ∈ L(Z), the relation fG = 0 implies ν(f) = 0.

Let A be the support of f and B that of a function h ∈ L(Z) . The relation
h(z)f(gz) 6= 0 requires z ∈ B and gz ∈ A, hence g ∈ C(B,A), a compact set
by (GOP). The function (z, g) 7−→ h(z)f(gz) is, therefore, in L(Z ×G). The
most elementary version of LF then shows that

59 Every non-empty open set U has > 0 measure with respect to the left invariant
measure of G. Otherwise, all the cosets aU would be null sets, and hence compact
subsets of G (apply BW).
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∫
fG(z)h(z)dν(z) =

∫
dlg

∫
h(z)f(gz)dν(z) =

=

∫
dlg

∫
h
(
g−1z

)
f(z)dν(z) =

=

∫
f(z)dν(z)

∫
h
(
g−1z

)
dlg =

=

∫
f(z)dν(z)

∫
h(gz)drg =

∫
f(z)hG(z)dν(z) .

Choosing h in such a way that the function hG equals 1 on the support A
of f , we find ν(f) = ν(fGh), qed.

Since lemma 5 shows that the integral ν(f) only depends on the func-
tion fG, the analogue of lemma 4 for the map f 7−→ fG proves that

ν(f) = λ (fG) ,(15.11)

where λ is a well-defined positive linear functional on L(X;∆G) . It is the
quotient pseudo-measure of ν by G. So, using the integral notation for λ,∫

f(z)dν(z) =

∫
dλ(z)

∫
f(gz)dlg .(15.11’)

In what precedes, starting from an invariant measure ν on Z, we inferred
a pseudo-measure λ on X. We could as well have started from λ and defined ν
by (10) since fG ∈ L(X;∆G). Clearly this would give an invariant measure on
Z. Invariant measures on Z thus correspond bijectively to genuine measures
on X if G is unimodular.

To apply theorem 22 to the measure ν in this case, we set

µx(f) =

∫
f(gz)dg if x = p(z) .(15.12)

This gives for each x ∈ X = G\Z, a positive measure µx on Z . It is the
image of dg under the (continuous and proper) map g 7−→ gz. Relation (11)
then becomes

ν(f) =

∫
µx(f)dλ(x) .(15.13)

Here the situation is particularly simple since (12) shows that x 7−→ µx(f) is
continuous for all f ∈ L(Z) . Assumption (a) of theorem 22, therefore, holds.
It follows that if a function f on Z is ν-integrable, then f is µx-integrable for
almost all x ∈ X, the function x 7−→ µx(f) is λ-integrable and the equivalent
formulas (12) and (13) continue to hold. Moreover, theorem 23, (i), shows
that f ∈ L1(µx;Z) if and only if the function g 7−→ f(gz) is dg-integrable, in
which case (12) continues to hold. Hence finally, relation (13) can be written
in form (11) in all cases. This assumes that Z is countable at infinity and
that G is unimodular. If G is not unimodular, there is an analogous result,
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but before that integration theory needs to be rewritten for linear functionals
on L(X;∆G) – an excellent way to spend rainy days.

Exercise 5. Suppose that Z is a unimodular lcg, that dν(z) = dz and that
G is a closed subgroup of Z acting by (g, z) 7−→ gz, which gives a positive
linear functional λ on the space L(G\Z,∆G) of continuous solutions with
compact support of f(g−1z) = ∆G(g)f(z). Suppose there is a closed subset
H ⊂ Z such that (g, h) 7−→ gh is a homeomorphism on Z, which enables us
to identify L(G\Z,∆G) with L(H) by restricting ourselves to H. Show that∫

f(z)dz =

∫∫
f(gh)dlgdrh for all f ∈ L(Z) .

(v) An example: the orthogonal group on Rn. For Z take the space Rn,
for G the compact group On(R) of orthogonal matrices (g′g = 1) acting in an
obvious way on Rn and for ν the Lebesgue measure dz on Rn, which is clearly
G-invariant [Chap. IX, n◦ 10, (i)]. For z′, z′′ ∈ Rn, there exists g ∈ G such
that z′′ = gz′ if and only if ‖z′‖ = ‖z′′‖, where this is the standard Euclidean
norm. Here the quotient G\Z is R∗+, the map p being just p(z) = ‖z‖. Hence,
letting dg denote the invariant measure of G normalized by µ(G) = 1, there
is a unique measure λ on R∗+ such that∫

Rn
f(z)dz =

∫ +∞

0

dλ (ż)

∫
G

f(gz)dg .

Denoting by e1 the first vector of the canonical basis of Rn, any point z can be
written z = t.ue1 for some u ∈ G and t = ‖z‖ = ż, and so f(gz) = f(t.gue1) .
As µ is invariant, by theorem 22, the previous formula becomes∫

Rn
f(z)dz =

∫ +∞

0

dλ(t)

∫
G

f (t.ge1) dg(15.14)

for all f ∈ L1(Rn). This being so, let us apply (14) to the function
f(αz),where α ∈ R∗+ . The left hand side is multiplied by α−n . On the right,
t is replaced by αt. Therefore the measure λ must satisfy

α−n
∫
fG(t)dλ(t) =

∫
fG(αt)dλ(t) ,

whence

dλ(t) = cnt
nd∗t ,

with a constant cn > 0. To determine the latter, we may choose the function

f(z) = exp
[
−π‖z‖2

]
.

The left hand side of (14) can be calculated by LF and equals 1n = 1
(Chap. VII, n◦ 28 for n = 1). On the right, f(t.ge1) = f(te1), so that the
integral in g equals f(te1) = exp(−πt2) . Thus the right hand side equals
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cn

∫ +∞

0

tn exp
(
−πt2

)
d∗t =

1

2
π−n/2Γ (n/2)cn ,

and so cn = 2πn/2/Γ (n/2) . Note that t Γ (n/2) is readily computed if n is
even and reduces to Γ (1/2) = π1/2 if n is odd. Finally, relation (13) becomes∫

Rn
f(z)dz =

2πn/2

Γ (n/2)

∫ +∞

0

tnd∗t

∫
G

f (t.ge1) dg .(15.15)

For n = 1, Γ (n/2) = π1/2, whence cn = 2 . Here, the group G reduces to two
maps x 7→ x and x 7→ −x, the measure µ being induced by assigning weight
1/2 to each of these two elements of G. Hence, the value of the integral over
G is 1/2[f(t) + f(−t)], tnd∗t = dt and a known formula is recovered. . .

For n = 2, in which case Rn can be identified to C, c2 = 2π, the group G
is simply T and, keeping the notation of Chap. VII, § 1,∫

R2

f(x)dx = 2π

∫ +∞

0

tdt

∫
T
f [t.e(u)] dm(u) .

Replacing e(u) = exp(2πiu) by exp(iu), replaces integration over T by inte-
gration over [0, 1] and the invariant measure dm(u) by du/2π . The previous
formula reduces to one enabling us to compute the integrals in polar coordi-
nates. For n = 3, Γ (3/2) = Γ (1/2 + 1) =

√
π/2, whence c3 = 4π and∫

R3

f(x)dx = 4π

∫ +∞

0

t2dt

∫
G

f (t.ge1) dg .

As will be seen a bit later, (15) is often written in a slightly different and
more familiar form.

All this is very simple because the group G is compact. The question
would become far more complicated if, instead of the subgroup of GLn(R)
leaving the quadratic form

∑
z2i invariant, where the zi are the canonical

coordinates of some z ∈ Rn, one considered the orthogonal group of
a indefinite quadratic form, i.e. reducible to the form q(z) =

∑
εiz

2
i

with positive and negative signs εi. In R4, the quadratic form x2 + y2 +
z2 − c2t2 of physicists falls in this case, G being the Lorentz group. One
can then show that the orbits (Witt’s theorem60) are the hyperboloids
q(z) = Cte, but the group no longer acts properly [even outside the null
set of “ isotropic ” vectors, i.e. such that q(z) = 0] . To start with, the
stabilizer Gz of a point z is not even always compact.61 Hence, less brutal

60 See for example my Cours d’Algèbre, exercises 19 and 20, pp. 645–646.
61 If a is a non-isotropic vector, Rn is the direct sum of Ra and the subspace E(a)

of orthogonal vectors to a (with respect to q) . The stabilizer of a in G is thus
isomorphic to the orthogonal group with respect to q in E(a). As a result, it is
compact only if the restriction of q to E(a) is positive or negative definite. For
the Lorentz form, any non-isotropic vector x is of the form Ge1 if q(x) > 0 and
Ge4 if q(x) < 0, up to a factor > 0, where (ei) is the canonical basis of R4. The
stabilizer if x is compact in the second case, but not in the first. In fact, G acts
properly on the open set q(x) < 0, but not on the open set q(x) > 0.
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methods than formulas (6) and (11), which are no longer well-defined,
need to be used. So, the analytic theory of quadratic forms with integer
coefficients, which aims, as a first approximation, to find the number of
integer solutions of q(x) = r for a given integer r, become much more
complicated.

(vi) The case of homogeneous spaces. Let us consider the extremely im-
portant case of a lcgG and a closed subgroup K of G acting on G either
on the left by (k, g) 7→ kg, or on the right by (k, g) 7→ gk . The correspond-
ing quotient spaces, written K\G and G/K, are by definition homogeneous
spaces . In the former case, their elements are the cosets Kg, in the latter
one gK. In this case, condition (GOP) always hold. Indeed, as kg = g′, i.e.
k = g′g−1, C(A,B) = K ∩ BA−1, where BA−1, the image of A × B under
the continuous map (g, g′) 7→ g′g−1, is compact . Hence so is C(A,B) because
of the essential assumption that K is closed. As a result, every homogeneous
space is locally compact.

On the other hand, any closed subgroup Γ of G, including G itself, acts on
the left on G/K by the formula γ(gK) = (γg)K . This enables us to defined
new quotient spaces Γ\G/K; their elements are the double cosets ΓgK ⊂ G,
i.e. the sets of products γgk, where γ ∈ Γ and k ∈ K. These are also the
orbits of Γ ×K acting on G by (γ, k)g = γgk−1. To express (GOP), note that
here C(A,B) is the set of (γ, k) such that γAk−1#B, i.e. such that γA#Bk.
By far the most important case is that of a compact subgroup K. Since the
previous relation implies that γ belongs to the compact set BKA−1, the set
of γ which satisfy it is then contained in a compact subset M of Γ , and
so are the corresponding k. Thus C(A,B) is contained in a compact subset
of Γ × K, and the closure of C(A,B) remains to be shown. But if some
(γn, kn) ∈ C(A,B) converge to a limit (γ, k), and if one chooses an ∈ A and
bn ∈ B such that γnan = bnkn, taking a subsequence if necessary, (an) may
be assumed to converge to some a ∈ A and the bn to some b ∈ B. Then
γa = bk, whence (γ, k) ∈ C(A,B) and the result. In conclusion:

Theorem 24. Let G be a locally compact group, K a compact subgroup of
G and Γ a closed subgroup of G. Then Γ acts properly on the homogeneous
space G/K and the quotient space Γ\G/K is locally compact.

The general formula (11) applies to any homogeneous spaceG/K provided
K is unimodular. As we make K act on the right on G, we choose ν to be
the measure drg of G, invariant under g 7→ gk . The measure λ is determined
by ∫

G

f(g)drg =

∫
G/K

dλ (ġ)

∫
K

f(gk)dk ,(15.16)

where ġ = gK. The effects of the operations of G on λ are easily calculated.
Denoting by µr the right invariant measure of G, (16) becomes
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µr(f) =

∫
fK(z)dλ(z) .

Replacing f(g) by f(a−1g) with a ∈ G replaces fK(z) by fK(a−1z) and the
right hand side of (16) by

∫
fK(a−1z)dλ(z). On the other hand, the left hand

side of (16) is replaced by∫
f
(
a−1g

)
drg = ∆G(a)

∫
f(g)drg = ∆G(a)

∫
fK(z)dλ(z) ,

where ∆G is with respect to G. As fK is arbitrary in L(Z),∫
f
(
a−1z

)
dλ(z) = ∆G(a)

∫
f(z)dλ(z)(15.17)

for all f ∈ L(Z) . Therefore, the transformation formula is the same as that
for the measure drg (case where K = {e}) and could be written

dλ(az) = ∆G(a)dλ(z) .

In particular, if the group G is unimodular, the measure λ on G/K is G-
invariant for all closed subgroup K of G.

With different assumptions on G and K, we get some other analogous
results, and even a general result without any assumptions whatsoever. See
N. Bourbaki’s chapter on the Haar measure.

Exercise 6. Let G be a unimodular lcg, K and H two closed subgroups of
G such that the map (h, k) 7→ hk from H ×K to G is a homeomorphism.62

Show that ∫
G

f(g)dg =

∫∫
H×K

f(hk)dlhdk .

(Identify G/K with H, set out explicitly the action of H on G/K and use
the invariance of the quotient measure).

These calculations enable us to put (15) in its classical form. Points of
type ge1, where g ∈ On(R) = Gn are just those of the unit sphere Sn−1 of Rn.
Since the stabilizer of the vector e1 in Gn is obviously the orthogonal group
On−1(R) = Gn−1 and since the map g 7→ ge1 is constant on the cosets gGn−1,
the homogeneous space Gn/Gn−1 can be identified with the sphere. Thus the
invariant measure of Gn defines a measure σ on it which is invariant under
the groups Gn and of total mass 1 [apply (16) by choosing the normalized
invariant measures of Gn and Gn−1]. Then relation (15) becomes∫

Rn
f(x)dx =

2πn/2

Γ (n/2)

∫ +∞

0

tnd∗t

∫
Sn−1

f(t.u)dσ(u) .(15.18)

62 Example: G = GLn(R), K = On(R), and for H take the subgroup of triangular
matrices whose diagonal entries are > 0.
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But users do not work with measures σ of total mass 1, but with “ the surface
element ” dΣ(u) of the unit sphere to obtain the simpler formula63∫

Rn
f(x)dx =

∫ +∞

0

tnd∗t

∫
Sn−1

f(t.u)dΣ(u) .

As the measure Σ is invariant under rotations, and hence proportional to
σ, in effect we are multiplying σ by 2πn/2/Γ (n/2). We thus discovered that
in R2 (resp. R3), the length (resp. surface) in the usual sense of the unit
sphere is equal to 2π (resp. 4π). One could also calculate the volume of the
ball ‖x‖ ≤ R. It suffices to apply the previous relation to its characteristic
function, which reduces the calculation to integrating tn−1dt from 0 to R.
One would thus recover πR2, 4πR3/3, etc.

(vii) The case of discrete groups. The case of a discrete group is particu-
larly simple and, moreover, important .

Lemma 6. Let Γ be a discrete group acting on a locally compact space Z.
The quotient space Γ\Z is locally compact, if the following condition holds:

(GPD) for all compact sets A,B ⊂ Z, the set of γ ∈ Γ such that γA#B
is finite.

If z, z′ are two points of Z and U , U ′ are sufficiently small neighbourhoods
of z and z′, then

γU#U ′ ⇐⇒ γz = z′ .(15.19)

The first proposition is clear. If Γz 6= Γz′, γU ∩ U ′ is empty for all γ for
sufficiently small U and U ′ (lemma 2). So (19) follows in this case. If Γz =
Γz′, let V and V ′ be compact neighbourhoods of z and z′ . The set C of γ such
that γV#V ′ is finite by (GPD). Let γ1, . . . , γp be the elements of C such that
γiz 6= z′. As Z is separated, there are neighbourhoods Wi ⊂ V and W ′i ⊂ V ′
of z and z′ such that γiWi ∩W ′i = ∅. We set U =

⋂
Wi and U ′ =

⋂
W ′i . If

γU#U ′, then γV#V ′, and so γ ∈ C. Thus either γz = z′ or else γ = γi for
some i. The second case does not occur since γU ∩U ′ ⊂ γiWi∩W ′i = ∅, qed.

Under the assumptions of lemma 6, Γ is said to act properly discontinu-
ously on Z, a terminology inherited from the theory of automorphic functions,
as well as the notation Γ , the letter G being set aside for “ continuous ” groups
like SL2(R).

Some simple consequences follow from condition (GPD). First of all, the
orbits Γz are discrete and closed in Z. The second claim is clear even if Γ

63 Arguments following Leibniz consist in calculating the volume of the portion
of space comprised between the spheres of radius t and t + dt and in the inte-
rior of the cone with base the infinitesimal surface element dΣ(u) of the unit
sphere. “Obviously”, tn−1dtdΣ(u) = tnd∗tdΣ(u). The formula thus follows by
integration.
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is not discrete: ΓA is closed for any compact set A ⊂ Z (lemma 2). On the
other hand, (19) for z = z′ shows that Γz ∩U = {z} for all sufficiently small
neighbourhood of z, hence the first claim.

By (GPD), for all z ∈ Z, the set of γ such that γz = z is clearly a
finite subgroup Γz of Γ . It is the stabilizer of z in Γ . Hence, for any open
neighbourhood V of z, the set

U =
⋂
γ∈Γz

γV

is an open neighbourhood of z, obviously stable under the γ ∈ Γz . For this
neighbourhood, (19) becomes

γU#U ⇐⇒ γz = z ⇐⇒ γU = U .(15.20)

To express (11) in the case of a discrete group Γ , one may suppose that∫
h(γ)dγ =

∑
h(γ)

for all functions with compact (i.e. finite) support in Γ . Then

hΓ (ż) =
∑

h(γz) ,

and (11) becomes ∫
Z

f(z)dν(z) =

∫
Γ\Z

dλ (ż)
∑
γ

f(γz) .(15.21)

For Z = R and G = Z acting by (z, n) 7→ z+n, this relation is the cornerstone
of the Poisson summation formula. Theorem 22 shows that if f is ν-integrable,
then the series

∑
f(γz) converges unconditionally for almost all ż ∈ Γ\Z,

its sum is λ-integrable and relation (21) remains valid.

The general notion of a quotient measure does not seem to have appeared
in the literature before d’André Weil’s book, which only dealt with homoge-
neous spaces. He already defined the quotient measure in the way we have
done, thus giving an example of the simplifications due to the definition of
measures as linear functionals. He was the first to use it in this context at
a time when his partisans were very rare. The general case, which is an
easy extension of the case studied by Weil, is hardly mentioned before the
N. Bourbaki’s chapter dedicated to the Haar measure, but it was obviously
known, at least implicitly, by some other others, especially Gelfand and his
school even if, before 1950, they confined themselves to particular cases such
as SLn(C). In fact, they were the first to publish the earliest good methods
to calculate Haar measures by exploiting the existence of subgroups (see ex-
ercise 6). At the time, some authors were also studying quotient measures
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for one-parameter groups (G = R) acting improperly on compact spaces, in
the framework of ergodic theory – a much more difficult question. Chap. V of
Bourbaki defines such measures for general “ measurable ” equivalence rela-
tions.

Around 1880, the notion of a quotient space by a properly discontin-
uous discrete group appears, very vaguely of course, in the work of Henri
Poincaré, Felix Klein and others, in the framework of the classical theory of
automorphic forms since it is essential in the definition of the corresponding
Riemann surfaces (Chap. XII). But these authors and their successors, in-
cluding Carl Ludwig Siegel much later than 1940, never wrote relation (21) in
the “ natural ” form that we are now familiar with: they replaced the quotient
space by a fundamental domain of Γ .

This is how any measurable set F ⊂ Z such that, for any function f ∈
L1(Γ\Z;λ), ∫

Γ\Z
f(x)dλ(x) =

∫
F

f [p(z)] dν(z)(15.22)

is called (we still hope for something much better). With this definition, (21)
becomes ∫

Z

f(z)dν(z) =
∑
γ

∫
F

f(γz)dν(z) =
∑
γ

∫
γF

f(z)dν(z)(15.23)

for any function f ∈ L1(Z; ν). The most obvious case is obtained by making
Z act on R . One can take F = [0, 1] and thus recover the equality∫ +∞

−∞
f(z)dz =

∑∫ 1

0

f(z + n)dz .

Relation (23) holds if

Z =
⋃
γF(15.24)

and if, moreover, the sets γF are pairwise disjoint. But this at the very least
supposes that Γ acts without fixed points, i.e. that Γz = {e} for all z . This
is the case if one makes Γ act on G since then γg = g implies γ = e . It is
rarely the case in quotients G/K as we will see in the context of modular
functions.64 In fact, (23) remains valid if one only assumes that

64 The general framework of the theory of automorphic forms consists in consider-
ing a space Z = G/K, where K is compact and G unimodular, and a discrete
subgroup Γ of G . One then studies functions f(z) Γ -invariant or functions sat-
isfying a slightly less simple condition. All cases reduce to vector functions on
G satisfying f(γgk) = p(k)−1f(g), where p is a finite-dimensional unitary rep-
resentation of K. By (9) and (21), integration over Γ\Z reduces to integration
over Γ\G. Then, if we so wish, we can use a fundamental domain of Γ in G. See
Chap. XII for the case G = SL2(R).
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ν (F ∩ γF ) = 0 for all γ 6= e .(15.25)

If this condition holds, γF ∩ γ′F = γ(F ∩ γ−1γ′F ) is a null set whenever
γ 6= γ′ because of the invariance of the measure. Since in practice a discrete
group is always countable,65 (23) then follows from the general lemma:

Lemma 7. Let X be a locally compact space, µ a positive measure on X
and (Fn) a countable family of measurable sets in X. Assume that X is the
union of sets Fn, up to a null set, and that Fp ∩ Fq is a null set whenever
p 6= q. A measurable function f is integrable if and only if∑∫

Fn

|f(x)| dµ(x) < +∞ .

Then ∫
X

f(x)dµ(x) =
∑∫

Fn

f(x)dµ(x) .(15.26)

Indeed, let χn be the characteristic function of Fn. The value taken by
the function

χ(x) =
∑

χn(x)

at x ∈ Fp is the number of indices q such that x ∈ Fq, and so equals 1 in

Fp −
⋃
p 6=q

Fp ∩ Fq .

Since the union of Fp ∩ Fq is a null set, χ(x) = 1 almost everywhere on
Fp, hence almost everywhere on X. Hence, for given f , one sets fn = fχn,
|f | =

∑
|fn| ae., and as µ(fn) is the integral of f over Fn, the lemma follows

from theorem 6.
The existence of such sets F remains to be shown when Γ is discrete,

an essential assumption to ensure that Γ is countable and apply lemma 6.
Apart from purely measure theoretic arguments, Poincaré uses a method
applicable to all cases encountered in the theory of automorphic functions
of one or many variables. G/K is then a C∞ manifold, the group G acts
through diffeomorphisms and in G/K there is a G- invariant Riemannian
ds2. This gives an indefinitely differentiable distance function d(z, z′) such
that d(gz, gz′) = d(z, z′) and with respect to which the balls d(a, z) ≤ r are
compact submanifolds. The invariant measure ν is defined by a G-invariant
differentiable form of maximal degree, so that (n◦ 16, exercise 2) any subva-
riety of G/K has measure zero as in Rn. For all γ 6= e, the relation γz = z
defines a subvariety of G/K, hence a null set if, as is natural, ones assumes

65 Every discrete subgroup of a locally compact group countable at infinity is count-
able since its intersection with any compact set is finite.
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that the relation gz = z implies g = e for all z. Choosing once and for all some
ω ∈ Z outside the union of this countable family of null sets, we see that,
for given z, there are only finitely many points z′ ∈ Γz in a ball d(ω, z′) ≤ r
since the orbit of z is discrete. Hence there is at least some z′ ∈ Γz for which
d(ω, z′) is minimal. So, denoting by F the set of z such that

d(ω, z) ≤ d(ω, γz) for all γ ∈ Γ ,

Z =
⋃
γF . The set F is closed since, for given γ, the previous relation

defines a closed set. To be able to apply lemma 7, we still need to know that
ν(F∩γF ) = 0 for all γ 6= e. But for all z ∈ F∩γF , γ−1z ∈ F , and so d(ω, z) =
d(ω, γ−1z) = d(γω, z). In the cases considered, any equation d(a, z) = d(b, z),
where a 6= b, defines a submanifold of measure zero; whence the result since
ω was chosen in such a way that γω 6= ω for all γ 6= e. Poincaré in fact proved
much more. Dieudonné transformed all this into exercises (Chap. XXII, 3,
exercise 15), without as usual giving any references.66

66 Perhaps C.L. Siegel, Topics in Complex Function Theory, Vol. II (Wiley, 1971).
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§ 5. The Lebesgue-Nikodym Theorem

16 – Measures With Respect To a Base Measure λ: Integrable
Functions

Let X be a locally compact Polish space, λ a positive measure on X and j
a locally integrable function with respect to λ [n◦ 5, (ii)]. By definition, the
function jf is integrable for f ∈ L(X), whence a measure

ν(f) =

∫
f(x)j(x)dλ(x)(16.1)

on X. When j ≥ 0, the measure dν = jdµ is positive, which gives rise to the
problem of characterizing integrable functions with respect to it. Formula (1)
irresistibly suggests the answer: a function f is integrable with respect to jdλ
if and only if so is the function f j with respect to λ. Then,∫

f(x).j(x)dλ(x) =

∫
f(x)j(x).dλ(x) .(16.2)

The similarity between (2) and the associativity formula of multiplication
does not, however, make the result obvious, except perhaps for a physi-
cist identifying dλ(x) to an infinitesimal volume element and the measure
j(x)dλ(x) to a mass or electric charge distribution with density j(x) and cal-
culating in Leibniz’s manner . One could also invoke the latter’s theory of
pre-established harmony [Chap. IX, n◦ 12, (ii)]. For mathematicians, results
explain the notation adopted.

Theorem 25. Let X be a locally compact Polish space, λ a positive measure
on X and j ≥ 0 a locally λ-integrable function. A function f with values in C
or [−∞,+∞] is integrable with respect to the measure dν = jdλ if and only
if f j is λ-integrable. Relation (2) then holds.

A complex-valued function j′ is locally ν-integrable if and only if j′j is
λ-integrable. The measure with density j′ with respect to ν is then identical
to the measure with density j′j with respect to λ:∫

f(x).j′(x)dν(x) =

∫
f(x)j′(x)j(x).dλ(x)(16.3)

for all f ∈ L(X).

The proof is rather long and comprises various parts.
(a) As observed at the end of section (ii) of n◦ 12, it suffices to set Z = X

and

µx(f) = j(x)f(x) for all f ∈ L(X)(16.4)
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in order to put ν into the form

ν(f) =

∫
µx(f)dλ(x) .(16.5)

Then theorem 22 shows that, if a complex-valued functions f is ν-integrable,
then f is µx-integrable (i.e. finite at x) for almost all x, the function x 7→
µx(f) = f(x) is λ-integrable, and finally formula (5), i.e. (2), remains valid.

(b) But theorem 25 also affirms that it suffices that f j ∈ L1(X,λ) for f
to be in L1(X, ν). If the function f is ν-measurable, then67

ν∗ (|f |) =

∫
|f(x)| j(x).dλ∗(x)(16.6)

by (13.5”). Hence in this case, the condition is sufficient. Thus the proof re-
duces to showing that if f j ∈ L1(X,λ), then f is ν-measurable. We might as
well prove a general relation between ν-measurable and λ-measurable func-
tions:

Theorem 26. Let X be a locally compact Polish space, λ a positive measure
on X, j a locally λ-integrable positive function and dν = jdλ the measure
with density j with respect to λ. Let f be a map from X to a topological space
Y , S the set of x for which j(x) 6= 0, and fS a map with values in Y , equal
to f on S and constant on X − S. f is ν-measurable if and only if fS is
λ-measurable.

Lemma 1. For all N ⊂ X,

ν∗(N) = 0⇐⇒ λ∗(N ∩ S) = 0 .(16.7)

Indeed if the first relation holds, then the function f = χ
N

is ν-integrable
and formula (5) applies. Thus f(x)j(x) = 0 outside a λ-null set and relation
(7) holds.

Conversely let us suppose that it holds. For any integer p ≥ 1, let χp be
the characteristic function of the set Sp of x ∈ X where j(x) ≥ 1/p. Since
j(x) ≥ p−1χp(x) for x,

ν(f) = λ(f j) ≥ p−1λ (fχp)(16.8)

for all positive f ∈ L(X). Taking the upper limit in (8) of an increasing
sequence of functions, one gets the same result for all lsc functions (n◦ 11,
(ii), theorem 21), then, taking infima, one sees that

ν∗(F ) ≥ p−1λ∗ (Fχp) for all F ≥ 0 .(16.9)

67 We will see at the end of this n◦ that in fact relation (6) holds for all f , but this
does not follow directly from theorem 22.
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If F = χ
N

for some N ⊂ X, it follows that the relation ν∗(N) = 0 implies
λ(N ∩ Sp) = 0 for all p, which proves the lemma since S =

⋃
Sp.

In particular

ν∗(X − S) = 0 .(16.10)

Thus the ν-measurability of a function f only depends on its restriction to
S. This is a very natural result. . . Also

λ∗(N) = 0 =⇒ ν∗(N) = 0(16.11)

since the first relation trivially implies λ∗(N ∩ S) = 0.
Having settled this point, let us return to theorem 26. Two functions equal

almost everywhere being simultaneously measurable or non-measurable, by
(10) f is ν-measurable if and only if so is fS . On the other hand, as S is
λ-measurable, if f is λ-measurable, then clearly so is fS as well (the converse
is obvious false if X − S is not λ-null).

This being so, suppose that fS is λ-measurable. For every compact set
K ⊂ X, (Lusin) K = N ∪

⋃
Kn with λ(N) = 0 and compact sets Kn on

which the restrictions of f are continuous. Since ν(N) = 0 by (11), fS and
hence f are ν-measurable.

To prove the converse, one can once again confine oneself to the case
where f is constant outside S. As f is ν-measurable, for every compact set
K ⊂ X, there is a sequence of compact sets Kn such that N = K −

⋃
Kn is

ν-null and f is continuous on Kn. Writing K = (N ∩S)∪ (N −N ∩S)∪Kn,
one sees that λ(N ∩ S) = 0 since µ(N) = 0, and that f is continuous on Kn

and on N −N ∩ S (as it is constant). Thus f is λ-measurable, qed.
An immediate consequence of the previous theorem is that all λ-measurable

functions are ν-measurable, for if f is λ-measurable, so is fS since S is λ-
measurable.

(c) We can now return to the characterization of ν-integrable functions
f . As was seen by using (6), the proof reduces to showing that if f j is λ-
measurable, then f ν-measurable. Given theorem 26, proving the next result
is sufficient:

Lemma 2. Let f be a function with values in C or [−∞,+∞]. Then f is
measurable with respect to dν = jdλ if and only if f j is λ-measurable.

The function j′(x) equal to 1/j(x) on S and 0 onX−S, being λ-measurable
like j and constant outside S, is ν-measurable by theorem 26. So, if f j is λ-
measurable, and hence ν-measurable, then so is f jj′, a function equal to f on
S and 0 elsewhere. Thus f is ν-measurable by the same theorem. Conversely,
if f is ν-measurable, then the function f jj′, equal to f on S and 0 elsewhere,
is λ-measurable. Hence so is also f jj′.j = f j, proving the lemma.

(d) The the proof of theorem 25 will be complete once we have char-
acterized the locally integrable functions j′(x) with respect to the measure
dν = jdλ. This is readily done since we need to show that, for all f ∈ L(X),
the function f j′ is ν-integrable, i.e. that the function f j′j is λ-integrable, etc.
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A convenient form of the previous result is as follows:

j′.jdλ = j′j.dλ ,(16.12)

which makes it obvious, but this is misleading.

Relation (6) was obtained using theorem 22 and assuming f to be ν-
measurable. Actually, it holds without this assumption. In what follows, we
will suppose that f takes its values in [0,+∞] and we will not forget conven-
tions about +∞:

α.+∞ = +∞ if α < 0 ≤ +∞ , 0.+∞ = 0 .(16.13)

The general relation (13.6) first shows that inequality

ν∗(f) ≥ λ∗(f j)

holds in all cases. Thus it suffices to prove the opposite inequality, i.e. by
definition of the right hand side, that

ν∗(f) ≤ λ∗(ϕ) for any lsc function ϕ ≥ f j .(16.14)

To prove this we consider the function

g(x) = ϕ(x)/j(x) if j(x) 6= 0 , g(x) = +∞ otherwise .

It is λ-measurable like ϕ and j. gj = ϕ ≥ f j and hence g ≥ f on S,. This is
also the case on X − S since then g(x) = +∞. Hence

ν∗(f) ≤ ν∗(g) .

But as g is λ-measurable, (6) shows that

ν∗(g) = λ∗(gj) .

However, gj equals ϕ on S and 0 on X − S since j(x) = 0. So gj ≤ ϕ every-
where. As a result,

λ∗(gj) ≤ λ∗(ϕ) ,

which leads to the expected result.
Functions j ≥ 0 for which jdµ is a bounded measure can be characterized.

This means that the function 1 must be integrable and hence, by theorem 22,
that j ∈ L1(X;µ). (This result will be later generalized to complex-valued
functions j). In the case of a general locally compact space, this condition
should be replaced by

sup
K

∫
K

j(x)dµ(x) < +∞ ,
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where K varies in the set of compact subsets of X.
Exercise 1. Assuming that the functions f considered are “ reasonable ”,

show that theorems 25 and 26 hold in every locally compact space, Polish or
not [note that assumption (c) of theorem 22 holds].

Exercise 2. (a) Let X be a n-dimensional oriented manifold and ω a
differential form of degree n on X. Suppose that, in every local chart (U,ϕ)
compatible with the orientation of X, there is a relation of the form

ω = j(ξ)dξ1 ∧ . . . ∧ dξn ,

where ξi = ϕ(x)i and j(ξ) ≥ 0. Show that the map

f 7−→
∫
fω

is a positive measure on X. (b) Show that every submanifold of X of dimen-
sion < n has measure zero with respect to this measure.

17 – The Lebesgue-Nikodym Theorem (LN)

(i) Characterization of absolutely continuous measures.

Theorem 27. Let λ and ν be two positive measures on a locally compact
Polish space X.68 There is a locally λ-integrable function j such that dν(x) =
j(x)dλ(x) if and only if every λ-null set is ν-null.

Relation (16.2) shows that the condition is necessary. The converse re-
quires some developments.

(a) Let us first suppose that ν ≤ λ and that there is a compact set K
such that ν(X −K) = 0. The first assumption shows that ν∗(f) ≤ λ∗(f) for
any function f ≥ 0. Then, for all f ∈ L(X),

|ν(f)| = |ν (fχ
K

)| ≤ |λ (fχ
K

)| ≤ N2 (χ
K

)N2(f) ,

where N2 is a λ-norm. The map f 7→ ν(f) thus extends to a continuous linear
functional on the Hilbert space L2(X;λ).

However, we know (n◦ 19, theorem 31) that on a Hilbert space H, the only
continuous linear functionals are the inner products f 7→ (f |g) with g ∈ H.
Hence there is a function j ∈ L2(X;λ) such that

ν(f) = λ
(
f j
)

for all f ∈ L(X) .

This proves that dν = jdλ. We leave it to the reader to show that j(x) ≥ 0 λ-
almost everywhere and that j(x) = 0 ae. outside K. This argument simplifies

68 Superfluous assumption provided “ null ” is replaced by “ locally null ” in the
statement: λ(N ∩ K) = 0 for any compact set K implies ν(N ∩ K) = 0. The
proof of the general case, which was unknown before N. Bourbaki, uses transfinite
induction.
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Lebesgue’s proofs for the measure named after him and those of Nikodym
(1930) for general abstract measures. It is due to von Neumann (1940).

(b) We assume that ν ≤ λ still holds, but we drop the assumption that
the support of ν is compact. For every compact set K, von N’s arguments can
be applied to the measure dνK(x) = χ

K
(x)dν(x). Hence there is a function

jK ∈ L2(X;λ) such that dνK = jKdλ. One can obviously suppose that jK
vanishes outside K.

If K and H are two compact sets (theorem 25), then

χHdνK = χHχK .dν(x) = χ
K
dνH = χ

K
χHdν

and hence χHjKdλ = χ
K

jHdλ. As a result (exercise !),

χHjK = χ
K

jH = χK∩Hj λ− almost everywhere .

Let Kn be an increasing sequence of compact sets such that X =
⋃
Kn, up to

a λ-null set. Let χn (resp. jn) denote the function χ
K

(resp. jK) corresponding
to Kn. These functions vanish outside Kn. Then the previous relation shows
that, for all n, there is a λ-null set Nn ⊂ Kn such that

jn+1(x) = jn(x) for all x ∈ Kn −Nn .

If N =
⋃
Nn, then there is a function j on X such that j = jn on Kn−Kn∩N

for all n . Its value on the λ-null set X−
⋃
Kn is immaterial. If K is a compact

set, then j = jK = jn almost everywhere on K∩Kn, hence almost everywhere
on K. Thus dν = jdλ.

(c) In the general case, λ and ν are bounded above by the measure ρ =
λ+ ν. Hence

dλ = pdρ , dν = qdρ

with locally ρ-integrable functions p and q. Let us consider the sets S =
{p(x) 6= 0} and T = {q(x) 6= 0}. We know from lemma 1 of the previous
n◦ that X − S (resp. X − T ) is a λ- (resp. ν-) null set. As λ∗(N) = 0 is
assumed to imply ν∗(N) = 0, one can deduce that ν∗(X − S) = 0 and hence
(n◦ 16, lemma 1) that ρ∗[(X −S)∩T ] = 0. Replacing q(x)by 0 at each point
x ∈ (X − S) ∩ T , which preserves the relation dν = qdρ, one may, therefore,
assume that q = 0 in X − S, in other words that T ⊂ S.

We then consider the function j(x) equal to q(x)/p(x) on S and 0 else-
where, whence q = jp everywhere. Since jp is locally ρ-integrable, j is locally
integrable with respect to pdρ = dλ and

jdλ = j.pdρ = jp.dρ = qdλ = dν

[theorem 25, (16.3)], proving the Lebesgue-Nikodym theorem.

(ii) Application to complex measures. When 0 ≤ λ ≤ µ, λ∗(f) ≤ µ∗(f)
clearly holds for any function f with values in [0,+∞] and so λ∗(A) ≤ µ∗(A)
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for all A ⊂ X. In conclusion, dλ(x) = j(x)dµ(x) with a function j obviously
satisfying 0 ≤ j(x) ≤ 1. The next result will follow from this:

Theorem 28. For every complex measure λ, there is a positive measure µ
and a function j locally µ-integrable such that

dλ(x) = j(x)dµ(x) .

Let us set λ = λ1 + iλ2, where λ1 and λ2 are real and suppose there are
positive measures such that

λ1 = λ′1 − λ′′1 , λ2 = λ′2 − λ′′2 .

The measure

µ = λ′1 + λ′′1 + λ′2 + λ′′2

is positive and is an upper bounded for the four measures on the right hand
side. Hence they are all of the form j(x)dµ(x). Thus so is λ. A far more
elementary and frequently proclaimed result remains to be proved:

Theorem 29. Every real Radon measure ν on a locally compact X is the
difference of two positive measures.

It suffices to prove that a positive measure λ ≥ ν exists. For such a
measure, the relation 0 ≤ h ≤ f implies ν(h) ≤ λ(h) ≤ λ(f). For all f ∈
L+(X), this leads one to write

ν+(f) = sup
0≤h≤f
h∈L(X)

ν(h) .(17.1)

Thus ν(f) ≤ ν+(f) ≤ λ(f) for all f ≥ 0 and every positive measure λ ≥ ν.
If ν+ is shown to be the restriction of a positive measure to L+(X), not only
will the theorem have been proved but also that ν+ is the smallest positive
measure bounding ν above.

First, 0 ≤ ν+(f) < +∞ since functions h such that 0 ≤ h ≤ f vanish
outside a fixed compact set and satisfy ‖h‖ ≤ ‖f‖. Obviously, ν+(αf) =
αν+(f) for 0 ≤ α < +∞. So is

ν+(f + g) ≥ ν+(f) + ν+(g)

for f, g ∈ L+(X) since h′ + h′′ ≤ f + g if h′ ≤ f and h′′ ≤ g.
To prove the opposite inequality, let us consider some h ∈ LR(X) such

that 0 ≤ h ≤ f + g and set h′ = hf/(f + g), h′′ = hg/(f + g), by prescribing
that h′(x) = h′′(x) = 0 at all points where f + g vanishes. Let us show that
h′ and h′′ have continuous compact supports. The first claim is clear. So is
continuity at all points where f(x) + g(x) > 0. If f and g are zero at x,
hence also h, continuity follows from the fact that h′ and h′′ are everywhere
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contained between 0 and h, the latter being a continuous function vanishing
at x.

This being so, h = h′ + h′′ with 0 ≤ h′ ≤ f and 0 ≤ h′′ ≤ g, whence

ν(h) = ν (h′) + ν (h′′) ≤ ν+(f) + ν+(g) .

Taking the supremum of the left and side for the functions h considered gives
ν+(f + g) ≤ ν+(f) + ν+(g), which leads to the expected equality:

ν+(f + g) = ν+(f) + ν+(g) .(17.2)

We next define ν+ in LR(X) by setting

ν+(f) = ν+ (f ′)− ν+ (f ′′)(17.3)

if f = f ′− f ′′ with positive f ′ and f ′′. As f ′− f ′′ = g′− g′′ implies f ′+ g′′ =
g′ + f ′′ and hence, by (2), the same relation by applying ν+ to the functions
considered, (3) defines ν+(f) without any ambiguities and reduces to (1) for
f ≥ 0. As a result, ν+ is a positive result. As (1) shows that ν(f) ≤ ν+(f)
for all f ≥ 0, the difference ν+ − ν is also a positive measure, qed.

Note that this proof applies to other cases. For example, L(X) can be
replaced by the Banach space E of bounded continuous real functions on an
arbitrary topological space and ν can be chosen to be a linear functional on
E.

To justify notations, it is necessary to show that

ν = ν+ − ν− where ν− = (−ν)+ .

Now, by definition,

(−ν)+(f) = sup
0≤h≤f

−ν(h) = sup
0≤h≤f

− [ν(f)− ν(f − h)]

= −ν(f) + sup
0≤h≤f

ν(f − h) = −ν(f) + ν+(f)

since h 7→ f − h permutes the functions h considered, whence the result.
Additional discussions on upper envelopes of a family of measures will be

found in N. Bourbaki.
Theorem 28 enables us to define the absolute value of a complex mea-

sure λ: we choose any measure µ ≥ 0 such that dλ(x) = j(x)dµ(x) and set
d|λ|(x) = |j(x)|dµ(x) . The result is independent of the choice of µ. Indeed, if
dλ = j′dµ′ = j′′dµ′′, writing µ = µ′ + µ′′ gives dµ′ = ϕ′dµ, dµ′′ = ϕ′′dµ with
ϕ′, ϕ′′ ≥ 0 . Then theorem 25 shows that

dλ = j′.ϕ′dµ = j′ϕ′.dµ = j′′ϕ′′.dµ .
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Thus j′ϕ′ = j′′ϕ′′ µ-almost everywhere, and so also |j′|ϕ′ = |j′′|ϕ′′ . Then

|j′| dµ′ = |j′|ϕ′dµ = |j′′|ϕ′′dµ = |j′′| dµ′′

as announced.
Then for any function f ∈ L(X),

|λ(f)| = |µ (jf)| ≤ µ (|jf |) = |λ| (|f |) ,(17.4)

or, using more traditional notation,∣∣∣∣∫ f(x)dλ(x)

∣∣∣∣ ≤ ∫ |f(x)|d|λ| (x) ,

a result that may seem as obvious as the triangle inequality ! More generally,
a function f will be said to be λ-integrable if it is|λ|-integrable, i.e. if jf is
µ-integrable, in which case, we obviously set λ(f) = µ(jf).

Choosing as above a measure µ ≥ 0 such that dλ = j.dµ, whence d|λ| =
|j|dµ, the function

ω(x) =
j(x)

/
|j(x)| if j(x) 6= 0 ,

1 if j(x) = 0

is µ-measurable, and so locally integrable since it is bounded. As j(x) =
ω(x)|j(x)| for all x and as the right hand side is locally integrable, (16.3)
applies and shows that

dλ(x) = ω(x)d|λ|(x) .(17.5)

Conversely if, for a measure µ ≥ 0, dλ = ωdµ with |ω(x)| = 1 almost every-
where, then clearly µ = |λ|.

Finally, we state a formula, analogous to (1). It will come in useful in the
next n◦ and will enable us to define |λ| bypassing the LN theorem: for all
f ∈ L+(X),

|λ|(f) = sup
|g|≤f
g∈L(X)

|λ(g)| .(17.6)

Setting |λ| = µ and dλ = ωdµ, the proof reduces to showing that

µ(f) = sup
|g|≤f
g∈L(X)

|µ(ωg)| .(17.6’)

First of all, |µ(ωg)| ≤ µ(|ωg|) ≤ µ(f) for all functions g considered. The
left hand side of (6) is thus greater than the right hand side. To prove the
opposite inequality, it suffices to show that there are functions gn such that
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limµ(ωgn) = µ(f). However, there is an increasing sequence of compact sets
Kn contained in the support K of f , such that K −

⋃
Kn is a null set, and

on each of them the function ω is continuous and with absolute value 1. For
all n, there is a continuous function hn on X69 equal to ω on Kn. Taking
its composition with a continuous map from C to the disc D = {|z| ≤ 1}
equal to z 7→ z on D and in particular on its boundary, one may suppose
that |hn(x)| ≤ 1 everywhere. The function gn = hnf , which is in L(X), then
satisfies |gn| ≤ f everywhere and ωgn = f on Kn. Thus, the decomposition
of integrals on K into integrals on Kn and K −Kn gives

|µ (ωgn)− µ(f)| ≤
∫
K−Kn

|ω(x)gn(x)− f(x)| dµ(x) .

As |ωgn − f | ≤ 2f everywhere, the right hand side tends to 0, proving (6).
Exercise. (a) Show that λ is bounded if and only if so is |λ|. (b) Suppose

that dλ = jdµ with respect to a reasonable measure µ ≥ 0. Show that λ is
bounded if and only if j ∈ L1(X;µ), and then that

‖λ‖ =

∫
|j(x)| dµ(x) .

(iii) Lebesgue decomposition. Let µ and µ′ be two positive measures on
X and let us consider the measure ν = µ+µ′. The LN theorem enables us to
write dµ = pdν, dµ′ = p′dν for some positive locally ν-integrable functions p
and p′ such that p+ p′ = 1 ae. We set

q(x) = p′(x)/p(x) if p(x) 6= 0 , q(x) = 0 if p(x) = 0 ,

q′(x) = 0 if p(x) 6= 0 , q′(x) = p′(x) if p(x) = 0 .

These functions are ν-measurable. As p′ = pq + q′,

dµ′ = pq.dν + q′dν = q.pdν + q′dν = qdµ+ q′dν .

69 This follows from Urysohn’s theorem: if X is a normal topological space [i.e. such
that, for any closed disjoint sets A,B ⊂ X, there exist open disjoint sets U ⊃ A
and V ⊃ B], then any function with values in R (or Rn) defined, continuous
and bounded on a closed set A has a continuous extension to X (if X is locally
compact without being normal, A must be assumed to be compact, which is
the case here); N. Bourbaki, Topologie générale, Chap. IX, § 4.1. The case of
metrizable spaces is dealt with in Dieudonné, IV.5: if f is defined on a closed
subset A of X, the function g equal to f on A and defined outside A by

d(x,A)g(x) = inf
y∈A

d(x, y)f(y)

is continuous and answers the question. The proof reduces to showing that g is
continuous at all boundary points of A.
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Setting dλ = q′dν,

dµ′ = qdµ+ dλ(17.7)

follows. The sets S = {p(x) 6= 0}, S′ = {q′(x) 6= 0} are disjoint by definition
of q′. Since dµ = pdν, µ(X−S) = 0 by lemma 1 of n◦ 16, hence also µ(S′) = 0;
similarly λ(X − S′) = 0 since dλ = q′dν.

Note that X being countable at infinity, any ν-measurable function is
equal ae. to a Borel function (observe that a continuous function on a compact
subset and vanishing elsewhere is Borel, then use Lusin’s theorem). Hence one
may assume p and p′ to be Borel, and thus also q and q′, in which case S′ is
a Borel set.

Relation (7) therefore gives a decomposition of µ′ into the sum of two
measures, one absolutely continuous with respect to µ and the other concen-
trated (obvious definition) on a Borel and µ-null set S′ . This is the Lebesgue
decomposition of µ′ with respect to µ. It is unique (exercise !).

Two positive measures µ and µ′ are said to be disjoint when they are
concentrated on disjoint sets. Setting ν = µ + µ′ and dµ = pdν, dµ′ = p′dν
as above, this obviously means that

inf [p(x), p′(x)] = 0 almost everywhere with respect to ν .

As any measure λ ≥ 0 bounded above by µ and µ′ is of the form qdν with
q ≤ p, p′, this means that 0 is the only measure bounded above by µ and µ′.

The notion of disjoint measures can be interpreted in a completely differ-
ent manner. Let us consider finitely-many n positive measures µi and their
sum ν. Thus dµi = pidν with functions satisfying

∑
pi(x) = 1, 0 ≤ pi(x) ≤ 1

almost everywhere with respect to ν. We consider the L2 spaces of these
measures. By theorem 25, which is nothing special in this case, any square
integrable (resp. null) function f with respect to ν is also of this type with
respect to any of the measures µi and conversely. Hence one can associate
classes fi ∈ L2(X;µi) to each class f ∈ L2(X; ν). This gives an injective
linear map

L2(X; ν) −→ L2 (X;µ1)× . . .× L2 (X;µn)(17.8)

compatible with the Hilbert structures of these spaces since

(f |g) =

∫
f(x)g(x)dν(x) =

∑∫
f(x)g(x)dµi(x) =

∑
(fi|gi)

for all f, g ∈ L2(X; ν). This said, let us show that map (8) is bijective if and
only if the measures µi are pairwise disjoint, i.e. concentrated on pairwise
disjoint sets Si.

If this condition holds, taking for all i, a square integrable function fi
with respect to µi, it may be assumed to vanish outside Si . The function
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f =
∑
fi is equal µi-ae. to fi for all i since µi(Sj) = 0 for j 6= i. Thus (8) is

surjective. Conversely, if (8) is surjective, then, for all fi ∈ L2(X;µi), there
exists f ∈ L2(X;µ) such that

f(x) = fi(x) µi − almost everywhere .

For a given i, let us choose fj = 0 for all j 6= i and fi = χ
K

, where K is
a compact set. Setting N = {f(x) 6= 0}, µj(N) = 0 and so µj(K ∩ N) = 0
for all j 6= i. Since f(x) = 1 almost everywhere on K with respect to µi,
µi(K − K ∩ N) = 0. The application of this construction to an increasing
sequence of compact sets whose union is X shows that the union N of the
Np corresponding to the Kp satisfies

µj(N) = 0 for all j 6= i , µi(X −N) = 0 .

Hence µi and µj are disjoint for i 6= j, qed.
This result can be partly generalized to “ continuous sums ”

ν =

∫
µxdλ(x)

of n◦ 12 and 13, by associating to each class f ∈ L2(Z; ν) = H the corre-
sponding classes fx ∈ L2(Z;µx) = Hx. Theorem 22, (13.13), shows that

(f |g) =

∫ (
fx
∣∣gx) dλ(x)(17.9)

for all f, g ∈ H, which suggests a continuous analogue of a Hilbert direct sum.
n◦ 23, (v) will clarify this vague notion encountered in many fields, mostly
under a form related to Leibniz ’s idea of an integral. But von Neumann has
passed this way, even if many people seem or prefer to ignore it.

18 – Continuous Linear Functionals on Lp. The L∞ Space

Let X be a locally compact space and µ a positive measure on X. For all
p > 1, Hölder’s inequality shows that, if j ∈ Lq, the map

f 7−→ µ(f j)

is a continuous linear functional on the Lp Banach space . The same is true
for p = 1 if j is chosen to be a bounded measurable function. We intend to
show that all continuous linear functionals on Lp are obtained in this way.

So let ν be a continuous linear functional on Lp or, equivalently, since
L(X) is everywhere dense in Lp(X;µ), on the space L(X) equipped with the
Lp norm.

Since continuity reduces to the existence of a constant M such that

|ν(f)| ≤M‖f‖p = M

[∫
|f(x)|p dµ(x)

]1/p
(18.1)
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for all f ∈ L(X), for any compact set K ⊂ X,

|ν(f)| ≤Mµ(K)1/p‖f‖ if f ∈ L(X,K) ,

where ‖f‖ is the norm of uniform convergence. As a result, ν is a complex
measure on X. Assuming M = 1 for simplicity’s sake and writing (1) as
|ν(f)|p ≤ µ(|f |p), formula (17.6) defining |ν| shows that

|ν|(f)p = sup |ν(g)|p ≤ supµ (|g|p) ,

whence

|ν|(f) ≤ µ (fp)
1/p

= ‖f‖p(18.2)

for all f ∈ L+(X) . Hence ν may be assumed to be positive.
Then let ϕ be a positive lsc function. If Φ is the increasing philtre of

f ∈ L+(X) bounded above by ϕ, the set of fp where f ∈ Φ is an increasing
philtre whose upper envelope is ϕp. Taking suprema in (2), (2) follows for ϕ.
Hence, if f is now an arbitrary function with values in [0,+∞], then

ν∗(f)p = inf
ϕ≥f

ν(ϕ)p ≤ inf
ϕ≥f

µ (ϕp) .

However, the strictly increasing functions t 7→ tp and t 7→ t1/p transform
every lsc function into an lsc function. The functions ϕp are, therefore, all lsc
and upper bounds for fp. In conclusion,

ν∗(f)p ≤ µ∗ (fp)

for any function f ≥ 0. In particular any µ-null set is ν-null. Thus dν = jdµ
for a locally µ-integrable function j ≥ 0. So ν(f) = µ(jf) for all f ∈ L+(X)
and ν∗(f) = µ∗(jf) for all f ≥ 0 by theorem 25.

But if j satisfies

µ∗(jf)p ≤ µ∗ (fp) for all f ≥ 0 ,(18.3)

so does every positive, locally integrable function and ≤ j, in particular jn =
inf(j, n) for all n ∈ N and so perforce jn,K = jnχK = j′ for any compact set
K. We next need to distinguish between two cases.

If p > 1, there exists q > 1 such that 1/p + 1/q = 1, which can also be
written p(q−1) = q, whence (j′q−1)p = j′q. This function is µ-integrable since
it is measurable, bounded and zero outside a compact set (n◦ 9, theorem 18).
Replacing j by j′ and f by j′q−1 in (3) gives

µ∗ (j′q)
p ≤ µ∗ (j′q)

and as a consequence, µ∗(j′q) ≤ 1. As this holds for all n, (theorem 8) jχ
K

=
supn jn,K is in Lq(X;µ) and ‖jχ

K
‖q ≤ 1 for all K. Hence, if µ is reasonable,

then j is in Lq(X;µ) and satisfies ‖j‖q ≤ 1.



116 XI – Integration and Fourier Transform

If p = 1, relation (3) means that the measure µ− jdµ is positive, and so
j(x) ≤ 1 almost everywhere.

Hence, coming back to a complex measure ν, relation (1) shows that
dν = jdµ where the locally integrable (complex) function j satisfies ‖j‖q ≤M
if p > 1, and |j(x)| ≤M almost everywhere p = 1. By Hölder’s inequality,the
expression µ(f j) is then well-defined for all f ∈ Lp and is a continuous
linear functional on Lp. Since it coincides with the given linear function on
the everywhere dense subspace L(X), relation ν(f) = µ(f j) is true for all
f ∈ Lp. In conclusion, and assuming µ to be reasonable:

Theorem 30. For every continuous linear functional ν on the Banach space
Lp(X;µ) with 1 < p < +∞ ( resp. p = 1), there is a function j ∈ Lq(X;µ)
( resp. bounded) such that

ν(f) = µ(f j)(18.4)

for all f ∈ Lp(X;µ). |ν(f)| ≤ M.‖f‖p for all f ∈ Lp(X;µ) if and only if
‖j‖q ≤M ( resp. |j(x)| ≤M almost everywhere).

This shows that for p > 1, the norm of the given linear functional ν on
Lp is

‖j‖q = sup |ν(f)|
/
‖f‖p .(18.5)

For p = 1, Lq needs to be replaced by the space L∞(X;µ) of classes of bounded
measurable functions with respect to µ . To get a relation similar to (5) in
this case, denote by ‖j‖∞ the smallest number M such that |j(x)| ≤ M ae.
Its existence is immediate since, if M is the infimum of the set of M ′ such
that |j(x)| ≤M ′ ae., then |j(x)| ≤M+1/n ae. for all n and so |j(x)| ≤M ae.

Theorem 30 says that the dual70 of Lp is Lq for 1 ≤ p < +∞. But it
should not be thought that the dual of L∞ is L1. The arguments used to
prove theorem 29 fall apart in this case for the simple raison that L(X) is
not everywhere dense in L∞. Hence by the general Hahn-Banach theorem,71

there are continuous linear functionals 6= 0 on L∞ that vanish on L(X). Such
a form is obviously not defined by a measure on X. This is already the case
if µ is the measure µ(f) =

∑
f(x) on N though, in this apparently trivial

case, it is impossible to explicitly construct a continuous linear functional on
L∞ (the space of bounded sequences) not defined by some j ∈ L1. For this,

70 The topological dual E′ (not to be confused with the algebraic dual E∗) of a
Banach space E is the space of continuous linear functionals on E.

71 In other words: if H0 is a closed vector subspace of a Banach space H, there is
a family (ui) of continuous linear functionals on H such that

x ∈ H0 ⇐⇒ ui(x) = 0 for all i .

Dieudonné (XII.15, exercises 3 and 4) proves a more general result by assuming
the space is separable, which is the case of L∞ only if µ reduces to a finite sum
of Dirac measures.
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“ ultrafilters ” from N. Bourbaki’s Topologie générale or similar procedures
founded on transfinite induction need to be used. This does not prevent
the space L∞, a space that should be handled prudently, from playing as
important a role as L1 and L2 in analysis.

Corollary. A locally µ-integrable function j is in Lp(X;µ) for some p ∈
[1,+∞] if and only if there is a constant M such that

|µ(jf)| ≤M.Nq(f) for all f ∈ L(X) .

Then ‖j‖p ≤M .

Indeed, the map f 7→ µ(jf) is a linear functional on L(G) which, being
continuous with respect to the norm Nq, can be extended to Lq if q < +∞.
This gives a j′ ∈ Lp such that µ(jf) = µ(j′f) for all f ∈ L(G), proving the
corollary in this case. If q = +∞, i.e. if p = 1, in which case Nq(f) = ‖f‖∞ ≤
‖f‖, where this is the uniform norm of f , then the measure f 7→ µ(jf) is
bounded and the norm ≤M . Thus N1(j) ≤M , qed.

Exercise. For any function ϕ ∈ L∞(X;µ), set M(ϕ)f = ϕf for all f ∈
Lp(p < +∞). Show that all continuous operators on Lp commuting with the
M(ϕ) are of the same type.
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§ 6. Spectral Decomposition on a Hilbert Space

19 – Operators on a Hilbert Space

(i) Definitions, continuous linear functionals. Recall that a Hilbert space H
is a complex vector space equipped with an “ inner product ” (x|y) satisfying
the following conditions:

(H 1) the function x 7→ (x|y) is linear for all y,

(H 2) (x|y) = (y|x) for all x and y,

(H 3’) (x|x) is always ≥ 0,

(H 3”) (x|x) = 0 implies x = 0,

(H 4) H is complete with respect to the distance

d(x, y) = (x− y|x− y)
1/2

= ‖x− y‖ .

In practice, a complex vector space H is often equipped with a positive Her-
mitian form, i.e. a map B : H ×H −→ C satisfying conditions (H 1), (H 2)
and (H 3’), but not the following ones. The Cauchy-Schwarz inequality

|B(x, y)|2 ≤ B(x, x)B(y, y)

then shows that the set N of x such that B(x, x) = 0 is a vector subspace
of H and that B(x, y) only depends on the classes of x and ymodN . Hence
denoting by x 7→ xB the map associating to each x its class xB ∈ H/N
provides the quotient space with a positive Hermitian form satisfying (H 3”)
as well as with a distance. To get a proper Hilbert space, it remains to replace
H/N by its completion with respect to this distance. By abuse of language
it will be called the completion of H with respect to B. The spaces L2(X;µ)
of integration theory are obtained in this way: one endows L(X) with the
Hermitian form

B(f, g) =

∫
f(x)g(x)dµ(x)

and then one proceeds to its completion. Here, proceeding to the quotient
corresponds to going from functions to classes of functions defined up to null
sets.

In a complex vector space, every Hermitian form B(x, y) satisfies the
identity

4B(x, y) = B(x+ y, x+ y)−B(x− y, x− y)(19.1)

+B(x+ iy, x+ iy)−B(x− iy, x− iy)

following from axioms (AH 1) and (AH 2). It is frequently used. For a Hilbert
inner product, it is written

4 (x|y) = ‖x+ y‖2 − ‖x− y‖2 + ‖x+ iy‖2 − ‖x− iy‖2 .(19.1’)
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The Cauchy-Schwarz inequality shows that, for all a ∈ H, the map x 7→
(x|a) is a continuous linear functional on H. Conversely:

Theorem 31 (M. Fréchet, 1907). For any continuous linear functional
f on H, there is a unique a ∈ H such that f(x) = (x|a) for all x ∈ H.

One may assume that f 6= 0. The subspace E defined by f(x) = 0 is then
closed and distinct from H. Let us suppose that there exists b 6= 0 orthogonal
to E ; the relation f(x) = 0 then implies (x|b) = 0, whence f(b) 6= 0. So one
may assume that f(b) = 1. Then

f(x) = f [f(x)b]

and thus x − f(x)b ∈ E . So (x|b) = (f(x)b|b) = f(x)(b|b). The vector a =
b/(b|b) answers the question.

Hence the proof reduces to showing the existence of b. This is a conse-
quence of lemma 2 below.

Lemma 1. Let C be a closed convex set in H. For all a ∈ H, there is a
unique a′ ∈ C such that

‖x− a‖ < ‖a′ − a‖(19.2)

for all x ∈ C other than a′.

Indeed, let m be the distance from a to C and let us choose elements
an ∈ C such that lim ‖an−a‖ = m. Applying to a−x and a−y, the identity

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
,(19.3)

which follows from formal properties of the inner product, shows that

‖x− y‖2/4 =
1

2

(
‖a− x‖2 + ‖a− y‖2

)
− ‖a− 1

2
(x+ y)‖2

for all x and y. For x = ap and y = aq,
1
2 (x + y) ∈ C, so that the last term

is ≥ m. Thus

‖ap − aq‖2
/

4 ≤ 1

2

(
‖a− ap‖2 + ‖a− aq‖2

)
−m,

an arbitrarily small result for large p and q. Therefore, (an) converges to some
a′ ∈ C obviously satisfying ‖a− a′‖ = m. If a′′ ∈ C is , like a′, the minimum
distance from a, then by (3)

‖a′ − a′′‖2
/

4 =
(
‖a− a′‖2 + ‖a− a′′‖2

)
− ‖a− 1

2
(a′ + a′′) ‖2 .

The first term on the right hand side is equal to m and the second term is
≥ m . The left hand side is thus ≤ 0, qed.
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Lemma 2. Let E be a closed vector subspace of H. Then H is the direct sum
of E and of the orthogonal complement of E.

For all a ∈ H, let a′ be the unique point of E at a minimum distance from
a. For all x ∈ E and all λ ∈ C,

‖a− (a′ + λx)‖2 = ‖a− a′‖2 + 2 Re [λ (a− a′|x)] + |λ|2‖x‖2 ≥ ‖a− a′‖2

and so

|λ|2‖x‖2 + 2 Re [λ (a− a′|x)] ≥ 0

for all λ ∈ C. Thus (a − a′|x) = 0 for all x ∈ E , which proves that a − a′ is
orthogonal to E . The sum of E and its orthogonal complement is direct since
(x|x) = 0 for all common vectors, qed.

Denoting by E⊥ the orthogonal complement of E , a corollary of lemma 2
says that conversely

E =
(
E⊥
)⊥

since H = E ⊕ E⊥ = E⊥ ⊕ (E⊥)⊥; however, E ⊂ (E⊥)⊥.

Theorem 31 also has a very important corollary:

Corollary. Let H and H′ be two Hilbert spaces, D and D′ subspaces every
dense in H and H′, and B : D ×D′ −→ C a sesquilinear form72. There is a
continuous linear map A : H −→ H′ such that

B(x, y) = (Ax|y) for x ∈ D , y ∈ D′

if and only there is constant M such that

|B(x, y)| ≤M‖x‖.‖y‖ for x ∈ D , y ∈ D′ .

Necessity is obvious. Conversely, the stated condition shows that, for all x ∈
D, the linear functional y 7→ B(x, y) is continuous on D′, and so can be
extended to H′. Thus B(x|y) = (x′|y) for some unique x′ ∈ H′ obviously
depending linearly on x. Setting x′ = Ax,

‖Ax‖ = sup |(x′|y)|
/
‖y‖ = sup |B(x, y)|

/
‖y‖ ≤M‖x‖ ,

qed.
Throughout this chapter, the notation L(H) will denote the set of con-

tinuous linear maps (“ operators ”) from H to H. It is a Banach space with
respect to the norm73

72 This means that the partial maps x 7→ B(x, y) and y 7→ B(x, y) are linear.
73 It should be pointed out that the vector x = 0 is excluded from the relation. I

prefer relying on the reader’s common sense.
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‖A‖ = sup ‖Ax‖/‖x‖ .

(ii) Orthonormal bases. A family (ei) of vectors in a Hilbert space H is
said to be orthonormal if (ei|ej) = 0 or 1 according to whether i and j are
distinct or equal. Every Hilbert space has orthonormal bases. This is how one
calls an orthonormal family (ei)i∈I such that 0 is the only vector orthogonal
to all ei; in other words, any maximal orthonormal family. Lemma 2 shows
that the closed subspace generated by the vectors ei is H. For a finite subset
F of I, letting HF denote the subspace generated by the vectors ei (i ∈ F ),
and for all x ∈ H, setting ξi = (x|ei), the orthogonal projection xF of x onto
HF is clearly the partial sum of the series

∑
ξiei extended to F . Thus∑

i∈F
|ξi|2 = ‖x‖2 − ‖xF ‖2 ≤ ‖x‖2 .

The set of i such that ξi 6= 0 is, therefore, countable. Moreover, as the finite
linear combinations of the vectors ei are every dense in H, enabling us to
approximate x by the points xF (points in HF at a minimum distance from
x), taking the limit,

‖x‖2 =
∑
|ξi|2 =

∑
|(x|ei)|2

and

x = lim
F⊂I

∑
i∈F

ξiei ,

where the limit is extended to all finite subsets F of I, as in the case of
unconditional convergence. A learned way of putting this would be to say
that H is isomorphic (obvious definition) to the space L2(I;µ) where I is
equipped with the discrete topology and where the measure µ assigns the
weight 1 to each point of I.

The previous formula does not mean that the series
∑
ξiei converges

absolutely to x: for this to be the case, it is necessary that
∑
|ξi| < +∞.

Exercise 1. Suppose H = L2(X;µ) where X and µ are arbitrary. Let
K(x, y) be a square integrable function with respect to the product measure.
(a) Show that there is continuous linear operator AK on H such that

(AKf |g) =

∫∫
K(x, y)f(x)g(y)dµ(x)dµ(y)

for all f, g ∈ H and that

AKf(x) =

∫
K(x, y)f(y)dµ(y)

for all f ∈ H, the integral being convergent for almost all x. (b) Let (ei)
be an orthonormal basis for H. Show that the functions ei(x)ej(y) form an
orthonormal basis for L2(X ×X;µ× µ). (c) Set
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AKei =
∑

aijej

with aij ∈ C. Show that
∑
i,j |aij |2 < +∞. Converse?

In the general case, the existence of orthonormal bases can only be proved
by using transfinite inductions (Zorn’s theorem). But when H is separable,
some may be constructed by applying the Schmidt orthonormalization pro-
cess: choose linearly independent vectors an whose linear combinations are
everywhere dense in H and change them as follows: replace a1 by a1/‖a1‖,
subtract from a2 its projection on the subspace generated by a1 and divide
the result by its norm. subtract from a3 its projection on the subspace gen-
erated by a1 and a2 and divide the result by its norm, etc. On could write
down explicit formulae; they can be useful at times:

Exercise 2. Since any continuous function on X = [0, 1] is the uniform
limit of polynomials, these are everywhere dense in the space H = L2(X)
of Lebesgue measure. Hence an orthonormal basis for H can be obtained by
orthonormalizing the sequence of functions 1, t, t2,. . . Calculate the functions
obtained.

Exercise 3 (von Neumann). Let X be a locally compact space, µ a posi-
tive measure on X, H a separable Hilbert space and an(x) a sequence of
measurable maps from X to H. Suppose that, for almost all x, the closed
subspace of H generated by the maps an(x) is the all of H. Show that there
are measurable maps en(x) from X to H such that, for almost all x, the
family of maps en(x) is an orthonormal basis of H.

(iii) Adjoints, Hermitian operators. Now consider a continuous linear op-
erator A inH,74 or more generally a continuous linear map fromH to another
space H′. The form B(x, y) = (x|Ay) is accountable for the corollary of the-
orem 31, with M = ‖A‖. This gives a continuous operator A∗ : H′ −→ H,
the adjoint of A, characterized by the identity

(Ax|y) = (x|A∗y) .(19.4)

We then deduce that

(A+B)∗ = A∗ +B∗ , (AB)∗ = B∗A∗ , (A∗)
∗

= A(19.5)

as in finite dimension. Since it has been proved above that ‖A∗‖ ≤ ‖A‖, the
last equality shows that actually

‖A∗‖ = ‖A‖ .(19.6)

The sequence also satisfies the essential property

‖A∗A‖ = ‖A‖2 .(19.7)

74 The terms “ operator ” and “ map ” are synonymous. The former, in use since
long before the latter and still very widespread, is almost exclusively employed
to denote a linear map from a Banach space H (or a subspace of it) to itself.
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To see this, it suffices to show that the left hand side is greater than the right
hand one. Now, for all x ∈ H,

(A∗Ax|x) = (Ax|Ax) = ‖Ax‖2 ,

whence

‖A‖2 = sup
x
‖Ax‖2/‖x‖2 = sup (A∗Ax|x)

/
‖x‖2 ≤ ‖A∗A‖ ,

qed.
In this chapter, we will repeatedly make use of self-adjoint operator al-

gebras. These are sets A of operators that are vector subspaces and subrings
of L(H) and such that

T ∈ A =⇒ T ∗ ∈ A .

Lemma 3. Let E be a closed subspace of H and A a self-adjoint operator
algebra on H. The following properties are then equivalent:

(i) E is A-invariant;75

(ii) the operator P of orthogonal projection onto E commutes with all
T ∈ A.
The orthogonal complement of E is then A-invariant.

(i) =⇒ (ii): if x is orthogonal to E , then 0 = (x|Ty) = (T ∗x|y) for all
y ∈ E and all T ∈ A, so that the orthogonal complement of E is A-invariant.

(ii) =⇒ (i): the elements x ∈ E are characterized by the relation Px = x,
which implies that Tx = TPx = PTx. Hence Tx ∈ E for all T ∈ A, qed.

(Continuous) operators H such that H∗ = H are said to be Hermitian .
They are characterized by the fact that

(Hx|x) ∈ R for all x ∈ H(19.8)

or that (Hx|y) is a Hermitian form on H. If a closed vector subspace E of H
is H-invariant, so is its orthogonal complement (lemma 3). Since (Hx|y) =
(x|Hy), the orthogonal complement of Im(H) is Ker(H) and that of Ker(H)
is the closure (which is not generally closed) of the subspace Im(H).

Positive Hermitian are defined by the condition that

(Hx|x) ≥ 0 for all x ∈ H .(19.9)

This is the case of H = A∗A for all A ∈ L(H). We write H ≤ H ′ when
H ′ −H is positive, i.e. if (Hx|x) ≤ (H ′x|x) for all x.

75 This means that every T ∈ A maps E to E .
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If H ≥ 0, (Hx|y) is a positive Hermitian form satisfying the Schwarz
inequality

|(Hx|y)|2 ≤ (Hx|x) (Hy|y) .(19.10)

It follows that

‖H‖ = sup |(Hx|x)|
/

(x|x) .(19.10’)

Hence ‖H‖ ≤ ‖H ′‖ if 0 ≤ H ≤ H ′.
Relation (10) also shows that

Hx = 0⇐⇒ (Hx|x) = 0 .(19.10”)

It follows that Ker(H ′+H ′′) = Ker(H ′)∩Ker(H ′′) if H ′ and H ′′ are positive.
If E is a closed vector subspace, the operator PE , which associates to all

x ∈ H its orthogonal projection on E , is Hermitian positive since, x − PEx
being orthogonal to PEx,

(PEx|x) = (PEx|PEx) ≥ 0 .

The relation

P ∗ = P 2 = P(19.11)

is easily seen to characterize these operators, the corresponding subspace E
being the image of H under P .

(iv) Spectrum of a Hermitian operator. In finite dimension, hermitian
operators H are known to be diagonalizable. There is even an orthonormal
basis whose elements are the eigenvectors of H, the corresponding eigenvalues
being real. In infinite dimension, the situation is not so simple, but results
heading in that direction can be easily obtained.

Lemma 4. Let H be a Hermitian operator on a Hilbert space H. Then H−ζ
is invertible for all ζ /∈ R.

If ζ = α+ iβ with β 6= 0, then H− ζ = β[(H−α)/β− i] . As (H−α)/β is
again Hermitian, it suffices to prove the lemma for ζ = i. First of all, H − i
is injective since the imaginary part of

((H − i)x|x) = (Hx|x)− i‖x‖2

is ‖x‖2. To show that H − i is surjective, start with the relation

‖(H − i)x‖2 = ‖Hx‖2 + ‖x‖2 ≥ ‖x‖2 .

If, for a sequence (xn), the sequence with general term yn = (H − i)xn
converges, and so satisfies Cauchy’s criterion, so does (xn). It follows that
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H − i maps H onto a closed subspace H′ of H. Any y ∈ H orthogonal to
H′ must satisfy ((H − i)x|y) = 0 for all x, and so (Hx|y) = i(x|y). Hence
(Hy|y) = i(y|y), which gives y = 0 since the left hand side is real. Finally,
the inequality used above tells us that H − i is bijective and its inverse is
continuous, qed.

Lemma 4 enables us to associate the Cayley transform

U = (H − i)(H + i)−1

to H. Then UH = HU and, by (5),

U∗U = UU∗ = 1 .

This relation, which defines unitary operators and means that x 7→ Ux, is an
isomorphism from H onto H: U is bijective and preserves the inner product.
The definition of U from H shows that H(1−U) = i(1 +U). To deduce that

H = i(1 + U)(1− U)−1 ,(19.12)

one needs to show that 1 − U is invertible. Now, (1 − U)x = 0 implies that
(1 + U)x = 0. Thus Ux = 0 and so x = 0. On the other hand, the equation
a = (1− U)x, where a is given, is equivalent to

a = x− (H − i)(H + i)−1x ,

i.e. to (H + i)a = 2ix and so always has a solution. As a result, 1 − U is
bijective, which justifies the formula. As

(1− U)−1 = 2i(H + i)−1 ,

the inverse of 1− U is continuous.
Conversely, (12) defines a Hermitian operator for every unitary operator

U such that 1− U is invertible. See n◦ 23, (ii), exercise 4.

For a continuous operator A on H, the set of ζ ∈ C for which A− ζ is not
invertible is called the spectrum of A, and written Sp(A). We will see in the
next n◦ that it is a non-empty compact set. For a Hermitian operator H, the
infimum and supremum can be determined by introducing the numbers

mH = inf (Hx|x)
/

(x|x) , MH = sup (Hx|x)
/

(x|x)(19.13)

contained between −‖H‖ and +‖H‖. So saying that H is positive mean that
mH ≥ 0.

Lemma 5. The spectrum of a Hermitian operator H is contained in the
interval [mH ,MH ] and contains its endpoints.

Let us suppose that for example ζ < mH and replace H by H − ζ, which
subtracts ζ from mH and MH . For the new operator, mH > 0 and the proof
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reduces to deducing that H is invertible. As (Hx|x) ≥ mH(x|x), H is injective
and mH‖x‖ ≤ ‖Hx‖, so that the image of H under H is closed. A vector y
orthogonal to it must satisfy (Hx|y) = 0 for all x, and so (x|Hy) = 0, whence
Hy = 0. Thus y = 0 since H is injective. The image of H is, therefore, (lemma
2) equal to H. For ζ > MH , apply arguments to the operator ζ −H.

It remains to show that H − ζ is not invertible for ζ = mH or else that
if a positive Hermitian operator H is invertible, then mH > 0. Setting m =
‖H−1‖, by (10),

m = inf ‖Hx‖/‖x‖ = inf |(Hx|y)| /‖x‖.‖y‖ ,

whence

m2 = inf |(Hx|y)|2
/
‖x‖2.‖y‖2

≤ inf (Hx|x) (Hy|y)
/
|‖x‖2‖y‖2

= inf (Hx|x)
/
‖x‖2. inf (Hy|y)

/
‖y‖2 = m2

H .

Thus mH ≥ m > 0 (and in fact equality holds), qed.
We will show later that, short of being diagonalizable as in finite dimen-

sion, any Hermitian operator H has the following property: there are closed
H-invariant subspaces H′ other than 0 and H. For all r > 0, the spectral
theory of n◦ 22 even enables us to decompose H into a direct sum of finitely
many pairwise orthogonal, closed H-invariant subspaces Hi, and such that
for each of them there is a scalar λi ∈ R for which

‖Hx− λix‖ ≤ r‖x‖ for all x ∈ Hi .

Thus the operator H satisfies ‖H − λi‖ ≤ r on each Hi. This is an approxi-
mative form of diagonalization, precisions about which we will given in n◦ 24
by constructing “ virtual eigenspaces ” that are not contained in H.

(v) Weak topology. Recall (Chap. III, Appendix) that the seminorm on a
complex vector space H is a function p(x) ≥ 0 satisfying identities

p(ax) = |a|p(x) , p(x+ y) ≤ p(x) + p(y) .

Any family (pi)i ∈ I of seminorms enables us to define a topology on H
which is compatible with its vector structure and with respect to which the
functions pi become continuous: any set defined by finitely many inequalities

|pi(x)− αi| < ri ,(19.14)

where ri > 0 and αi ∈ C are given, being necessarily open, it suffices to define
the open subsets of H to be the finite and infinite unions of sets (14). That
the axioms hold is readily verified. In fact one only does the bare minimum
to make the functions pi continuous. The Hausdorff axiom holds if and only
if 0 is the only vector for which pi(x) = 0 for all i.
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The topology on a Banach space is obtained through this process by using
the seminorm p(x) = ‖x‖. But there is another way of obtaining it, consisting
of choosing functions

x 7−→ |f(x)| ,

where f varies in the set H′ (topological dual of H) of continuous linear
functionals on H. This gives the weak topology on H, defined by the norm
which most authors call strong topology . Since |f(x)| ≤M‖x‖ for all f ∈ H′,
all open (resp. closed) subsets E of H with respect to the weak topology are
clearly of the same type with respect to the strong topology. The converse
holds if E is a vector subspace for if E is (strongly) closed, it is defined
by a family (in general infinite) of equations fi(x) = 0, where the fi are
continuous linear functionals (a consequence of the Hahn-Banach theorem).
It is, therefore, also weakly closed. In the case of a Hilbert space, lemma 2
enables one to avoid (or prove) Hahn-Banach.

In this case, H′ = H by theorem 31. Thus the weak topology is obtained
by doing the bare minimum to make the function

x 7−→ (x|u)

continuous for all u ∈ H. Hence saying (for example) that a sequence xn ∈ H
converges weakly to some x ∈ H means that lim(xn|u) = (x|u) for all u.

Choosing an orthonormal basis (en),
∑
|(en|x)|2 < +∞ and so lim(en|x) =

0. Thus en converges weakly to 0, but not strongly since ‖en‖ = 1 for all n.
The identity

‖xn − x‖2 = ‖xn‖2 − 2 Re (xn|x) + ‖x‖2 ,

shows that a sequence xn converging weakly to a limit x converges strongly
to x if and only if lim ‖xn‖ = ‖x‖.

There are some useful consequences of Baire’s theorem [n◦ 15, (ii), note
53] in this field. These are only particular cases of results holding for far
more general topological vector spaces, the Fréchet spaces, but which can
essentially be proved in the same way; see N. Bourbaki’s book on the topic.
In all cases, countability and Baire’s theorem play a crucial role.

Lemma 6. Let (an) be a sequence of vectors such that lim(an|y) exists for
all y . Then sup ‖an‖ < +∞ and the sequence (an) converges weakly.

Setting fn(x) = (an|x) and f(x) = lim fn(x), the proof reduces to showing
that the linear functional f is continuous, and to obtain this, that the norms
of fn (i.e. of an) are bounded. For all N , let us consider the set FN of x
for which |fp(x)− fq(x)| ≤ 1 for all p, q ≥ N . Cauchy’s criterion shows that
H =

⋃
FN . However, the sets FN are closed since the fp− fq are continuous.

Thus one of the FN (Baire’s theorem) has an interior point a. So there exists
r > 0 such that
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‖x‖ ≤ r =⇒ |fp(x+ a)− fq(x+ a)| ≤ 1

for all p, q ≥ N . As |fp(a) − fq(a)| ≤ 1, it follows that ‖fp − fq‖ ≤ 2/r for
all p, q ≥ N , whence sup ‖fn‖ < +∞. Therefore, the linear functional f is
continuous, and so there exists a ∈ H such that lim(an|x) = (a|x), qed.

Lemma 7. Let (An) be a sequence of continuous linear operators such that
lim(Anx|y) exists for all x, y. Then sup ‖An‖ < +∞ and there is a continuous
linear operator A such that

lim (Anx|y) = (Ax|y) .

The corollary of theorem 31 tells us that it is sufficient to prove the first
proposition. By the previous lemma, we already know that sup ‖Anx‖ < +∞
for all x ∈ H, which is sufficient to prove the lemma [n◦ 15, (ii), note 53].

Lemma 8. Let H1 ≤ H2 ≤ . . . be an increasing sequence of Hermitian
operators. Suppose that sup(Hnx|x) < +∞ for all x ∈ H. Then there is a
continuous linear operator H such that lim ‖Hx−Hnx‖ = 0 for all x ∈ H.

As Hpq = Hq −Hp ≥ 0 for q ≥ p,

|(Hpqx|y)|2 ≤ (Hpqx|x) (Hpqy|y) .

Hence like the sequences (Hnx|x) and (Hny|y), (Hnx|y) satisfies Cauchy’
criterion, which shows the existence of some continuousH such that (Hx|y) =
lim(Hnx|y). Obviously, H ≥ Hn for all n, whence

|(Hx−Hnx|y)|2 ≤ (Hx−Hnx|x) (Hy −Hny|y)

≤ ‖H −Hn‖ .‖y‖. (Hx−Hnx|x)

et ‖Hx−Hnx‖2 ≤ ‖H −Hn‖(Hx−Hnx|x). However, sup ‖H −Hn‖ < +∞
by lemma 7.

(vi) Hilbert-Schmidt operators. In finite dimensional, any operator A has a
trace Tr(A): this is the sum of its diagonal entries with respect to an arbitrary
basis of the space H considered. The positive Hermitian form

Tr (AB∗) =
∑

aijbij

(obvious notation) transforms L(H) into a new Hilbert space. To make the
symbol Tr(A∗A) well-defined when A is a continuous operator on an infinite-
dimensional Hilbert space H, the most naive idea is to choose an orthonormal
basis (ei) of H and to set, as in finite dimension,

Tr (A∗A) =
∑(

A∗Aei
∣∣ei) =

∑
‖Aei‖2 .



§ 6. Spectral Decomposition on a Hilbert Space 129

At the very least, this supposes that∑
‖Aei‖2 < +∞(19.15)

and that the the sum is independent of the chosen basis. However, for any
orthonormal basis (e′i),∑

i

‖Aei‖2 =
∑
i,j

∣∣(Aei
∣∣e′j)∣∣2 =

∑
i,j

∣∣(ei∣∣A∗e′j)∣∣2
=
∑
j

∥∥A∗e′j∥∥2 .
Hence if (15) holds for a particular basis, then

∑
‖A∗e′i‖2 < +∞ in all bases.

So applying arguments to A∗, we see that
∑
‖Ae′′i ‖2 < +∞ in all bases, qed.

Condition (15) defines the Hilbert-Schmidt operators (HS), a very impor-
tant class of operators in most analysis problems and which includes all finite
rank operators, i.e. for which the dimension of Im(A) is finite. Exercise 1 of
section (ii) explains their historical origin.

The sum of two HS operators is HS thanks to the Cauchy-Schwarz inequal-
ity applied to the “ square integrable ” sequences ‖Aei‖ and ‖Bei‖ (Chap. II,
n◦ 15, corollary of theorem 7). The set L2(H) of these operators is, there-
fore, a vector subspace of L(H). If A is HS, clearly so is A∗ as well. For all
P ∈ L(H), ‖PAei‖ ≤ ‖P‖.‖Aei‖, so that PA is a HS operator, and hence so
is A∗P ∗ as well. Replacing A by A∗, in conclusion, if A is HS, then PAQ is
HS for all P and Q. In other words, L2(H) is a two-sided ideal of L(H).

It is useful to observe that, for every family of vectors (ai) such that∑
‖ai‖2 < +∞, there is a unique operator A ∈ L2(H) such that ai = Aei

for all i: it suffices to set

Ax =
∑
i∈I

ξiai for x =
∑
i∈I

ξiei .

Then ∑
|ξi| . ‖ai‖ ≤

(∑
|ξi|2

)1/2 (∑
‖ai‖2

)1/2
,

so that the series defining Ax converges absolutely. Moreover,

‖Ax‖ ≤
∑
‖ξiai‖ ≤M‖x‖

where M = (
∑
‖ai‖2)1/2. A is clearly a HS operator.

If A and B are HS, then Tr(B∗A) =
∑

(Aei|Bei) is well-defined thanks
to Cauchy-Schwarz. It does not depend on the choice of the basis: this was
shown for B = A, and the general case can be deduced by using identity
(1). It remains invariant if A and B are replaced by U−1AU and U−1BU ,
where U is unitary: this amounts to changing orthonormal bases. The same
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calculations using the matrices of A and B with A and B with respect to an
orthonormal basis show that

Tr(AB) = Tr(BA)

like in finite dimension. Tr(B∗A) is an inner product on the space L2(H).
The corresponding norm is written

‖A‖2 = Tr (A∗A)
1/2

=
(∑

‖Aei‖2
)1/2

.

L2(H) is complete with respect to this norm, and so is a Hilbert space. Indeed,
associating the matrix aij = (Aei|ej) to each A ∈ L(H) gives ‖Aei‖2 =∑
|aij |2. The space of Hilbert-Schmidt operators equipped with its inner

product is, therefore, isomorphic to the space of all families (aij) such that∑
|aij |2 < +∞. Like any L2(X;µ) space, it is complete, even and especially

if X = I × I is discrete. . . If Eij denotes the operator mapping ei onto ej
and and other basis vectors to 0, this clearly gives an orthonormal basis for
L2(H), the aij being the coordinates of A with respect to this basis.

As any norm 1 vector x ∈ H belongs to an orthonormal basis, ‖Ax‖2 ≤
Tr(A∗A) and so

‖A‖ ≤ Tr (A∗A)
1/2

= ‖A‖2 if A is HS .

Also

‖PAQ‖2 ≤ ‖P‖.‖A‖2.‖Q‖

for all P,Q ∈ L(H).
Exercise 4. Let µ be a positive measure on a space X and K(x, y), H(x, y)

two square integrable functions with respect to µ × µ, whence (exercise 1)
HS operators

AKf(x) =

∫
K(x, y)f(y)dµ(y)

and AH on H = L2(X;µ). Show that

Tr (A∗HAK) =

∫∫
K(x, y)H(x, y)dµ(x)dµ(y) ;

The Hilbert space L2(H) is, therefore, canonically isomorphic to the L2 space
of µ× µ.

(vii) Von Neumann algebras.76 Von Neumann began his work on operator
algebras with F. J. Murray by introducing several useful topologies, all of
them defined by families of seminorms, on the space L(H) of continuous

76 The content of this section will be rarely used before n◦ 31 of this chapter.
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operators on H. They are the following ones, which impose more and more
restrictive conditions on the notion of convergence.

(a) The weak topology77 (or of simple weak convergence) is obtained by
making the maps T 7→ Tx continuous with respect to the weak topology of
H, in other words by making all functions T 7→ (Tx|y) in L(H) continuous in
L(H). It is, therefore, defined by the seminorms T 7→ |(Tx|y)|. Hence every
finite system of inequalities

|(Txi −Axi|yi)| < ri

is an open neighbourhood of A with respect to the weak topology, and every
open subset is the (finite or infinite) union of such open subsets.

(b) The strong topology (or of simple strong convergence) is obtained by
doing the bare minimum to make the map T 7→ Tx continuous for all x ∈ H.
It is defined by the seminorms T 7→ ‖Tx‖. A subset E of L(H) is a strong
neighbourhood of a given A if and only if there are finitely many xi ∈ H and
ri > 0 such that E contains all operators T satisfying inequalities

‖Txi −Axi‖ < ri .

(c) The ultrastrong topology is given by the seminorms

pA(T ) = ‖TA‖2

for all Hilbert-Schmidt operators A . This time, the bare minimum is done to
ensure that all maps T 7→ TA from L(H) to L2(H) are continuous. It can also
be defined differently: any family (ai) of vectors such that

∑
‖ai‖2 < +∞

defines a seminorm

T 7−→
(∑

‖Tai‖2
)1/2

,

on L(H) and these are the seminorms which give rise to the ultrastrong
topology.

(d) The last and most obvious one is defined by the norm ‖T‖, and is
the one that we will most frequently use. Some authors call it the uniform
topology (understood: of uniform convergence on the unit sphere of H), but
I will often say convergence in norm.

Studying the properties of algebraic operations in relation to the above
topologies is important. Results are readily obtained, but risks of confusion
cannot be ignored. Statement (δ) is the most useful and simplest.

(α) The maps (A,B) 7→ AB and A 7→ A∗ are continuous with respect to
theuniform topology (obvious).

77 Not to be confused with the weak topology on the Banach space L(H): there
are many other types of continuous linear functionals on this space apart from
the functions considered here. See J. Dixmier, Les fonctionnelles linéaires sur
l’ensemble des opérateurs bornés d’un espace de Hilbert (Annals of Math., 51,
1950)
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(β) The map (S, T ) 7→ ST is unrestrictedly continuous only with respect
to the convergence in norm. For example, considering the unitary operators
U and V in L2(Z) given by,

Uf(n) = f(n+ 1) , V f(n) = f(n− 1) ,

it follows that Upf and V pf , converge weakly to 0 for all f as p increases
indefinitely (exercise !), but UpV p = 1 does not converge weakly to 0.

(γ) The inequality

‖STx− S0T0x‖ ≤ ‖S‖. ‖Tx− T0x‖+ ‖ST0x− S0T0x‖

shows that the map (S, T ) 7→ ST is strongly continuous if S (or T ) is forced
to stay in a bounded subset of L(H). In particular, the map T 7→ ATB is
strongly continuous for given A and B.

(δ) The map T 7→ ATB is weakly continuous for all A and B since

(ATBx|y) = (TBx|A∗y) .

It is also strongly continuous since, for all x ∈ H,

‖AT ′Bx−AT ′′Bx‖ ≤ ‖A‖. ‖(T ′ − T ′′)Bx‖ ,

and a similar calculation shows that it is continuous with respect to the
ultrastrong topology. The map T 7→ T ∗ is weakly continuous since |(T ∗x|y)| =
|(Ty|x)|.

These topologies are mainly useful in the theory of self-adjoint operator
algebras. If A is such an algebra, the set A′ of operators commuting with
all the T ∈ A is obviously also a self-adjoint algebra, containing the unit
operator, closed with respect to the weak topology [because of property (δ)]
and perforce with respect to the others. It is called the commutator algebra
of A. A′ induces a new self-adjoint algebra A′′ = (A′)′ containing A, its
bicommutator, then (A′′)′ = (A′)′′ and so on. Fortunately, the sequence is
periodic since it is always the case that (A′)′′ = A′.

Von Neumann density theorem. Let A ⊂ L(H) be a self-adjoint algebra.
Then (A′)′′ = A′. If A contains the unit operator, A′′ is the closure of A
with respect to each topology, weak, strong, and ultrastrong. If A is closed
with respect to one of these topologies, then A′′ = A.

(i) The first step is to show that, for all T ∈ A′′, all a ∈ H and all r > 0,
there exists S ∈ A such that ‖Ta − Sa‖ < r. Now, the closure E of the set
of Sa is a A-invariant vector subspace. As a result, the projection onto E
is in A′ (lemma 3), hence commutes with the elements of A′′, so that E is
A′′-invariant. However, E contains a since 1 ∈ A . So Ta ∈ E , and the result
follows.
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(ii) Let us now show that for all r > 0, T ∈ A′′ and ai ∈ H such that∑
‖ai‖2 < +∞, there exists S ∈ A such that∑

‖Tai − Sai‖2 < r2 ,(19.16)

which will prove that A is dense in A′′ with respect to the ultrastrong
topology. To do this, we consider the space H′ of x = (xi) such that∑
‖xi‖2 < +∞, equipped with the inner product (x|y) =

∑
(xi|yi). It is

complete since it is actually the space of Hilbert-Schmidt operators. For all
A ∈ L(H′), there is a matrix (Aij) with entries in L(H) such that

y = Ax⇐⇒ yi =
∑
j

Aijxj .

The usual multiplication rule holds for these matrices if the order of the
factors is respected. The matrices Aij cannot obviously be chosen arbitrarily
unless, for example, they are all zero up to finitely many exceptions.

Let us associate to each S ∈ L(H) the “ diagonal ” operator π(S) in L(H′)
which multiplies each component of x by S. An operator A on H′ clearly
commutes with these π(S) if and only the matrices Aij commute with all S,
i.e. are in A′. An operator B commutes with all these operators A if and only
if ∑

k

BikAkj =
∑
k

AikBkj

for all i, j and Aij ∈ A′. Supposing all except one of these Aij to be zero,
one sees that B = π(T ) with T ∈ A′′, and conversely. In other words,

π(A)′′ = π (A′′)

Applying the result obtained in (i) to π(A) and setting a = (ai) the conclusion
follows that, for all T ∈ A′′, there exists S ∈ A such that

‖π(T )a− π(S)a‖ < r ,

which leads to (16) and to the fact that A′′ is the ultrastrong closure of A.
(iii) Let B ⊂ A′′ be the weak closure of A. It is a self-adjoint algebra

containing 1, which is weakly and thus ultrastrongly closed. As a consequence,
by the result just obtained, B′′ = B. However, anything commuting with A
commutes with B because of property (δ) above, and conversely since B ⊃ A.
Hence B′ = A′, and so B = B′′ = A′′.

(iv) If 1 /∈ A, then 1 ∈ A′, and so A′ = (A′)′′, qed.

In practice, one frequently needs to apply the previous theorem to self-
adjoint algebras A not containing the unit operator. One can then apply it
to operators T + λ1, where T ∈ A and λ ∈ C, but it would be good to be
able to avoid additional scalars. The next lemma enables us to choose:
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Lemma 9. Let A be a self-adjoint operator algebra on a Hilbert space H.
A is everywhere dense in A′′ with respect to the ultrastrong topology if and
only if

Ax = 0 for all A ∈ A =⇒ x = 0 .(19.17)

(17) is obviously necessary. So suppose that (17) holds.
The previous theorem tells us operators T + λ1, where T ∈ A, are ultra-

strongly dense in A′′. If one shows that the operator 1 is in the ultrastrong
closure of A, the result will follow.

Coming back to the space H′ in the proof of the density theorem, the
proof reduces to showing that every a ∈ H′ belongs to the closure E of the
subspace of the set of vectors π(T )a. To this end, let us write a = a′ + a′′

with a′ ∈ E and a′′ orthogonal E . Since operators π(T ) map mcalE to E ,
they transform every vector orthogonal to E into a similar vector (lemma 3).
The vector π(T )a′′ is, therefore, orthogonal to E . But it is equal to Ta−Ta′,
which is in E like Ta and a′. Hence π(T )a′′ = 0 for all T , so that Ta′′i = 0 for
all components of a′′. Thus, if condition (17) holds, then a′′ = 0 and a ∈ E ,
qed.

Self-adjoint algebras containing 1 and weakly (or strongly, or ultra-
strongly) closed, i.e. von N’s rings of operators, are not now called von
Neumann algebras.78 They are characterized by the relation A′′ = A.
A′ ∩ A′′ = A′ ∩ A is clearly the centre of A, i.e. the set of S ∈ A such
that ST = TS for all T ∈ A. Von N’s entire theory is about algebras for
which A′ ∩ A reduces to scalars, i.e. algebras he used to call factors and
which he classified, a classification that has since been much improved.

20 – Gelfand’s Theorems on Normed Algebras

The set L(H) of continuous operators on a Hilbert space, or more gener-
ally a Banach space, is an example of a complete normed algebra, a notion
introduced by Gelfand in his famous 1941 article. Like everyone, I will fol-
low it closely since attempts at simplification are bound to fail. This theory
gave rise to much hope in the 1940s. It also showed its limits fairly quickly:
one cannot prove everything without any explicit calculations or only using
abstract nonsense, as Serge Lang calls it.

This is the name given to any algebra79 A over C, with a unit element,
equipped with a norm satisfying

78 See Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien
(Gauthier-Villars, 1957) andLes C∗-algèbres et leurs représentations (Gauthier-
Villars, 1964) and, more recent and less concise, Richard Kadison and John
R. Ringrose, Fundamentals of the Theory of Operator Algebras (AMS, 4 vol-
umes, two of text and two of solved exercises, 1999–2001).

79 An algebra A over a commutative field k is a ring with unit element equipped
with the structure of a vector space over k such that λ1.x = x.λ1 = λx for all
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‖xy‖ ≤ ‖x‖.‖y‖(20.1)

and with respect to which A is a complete space, and hence a Banach one.
Other examples occur readily: the algebra of bounded continuous functions on
a topological space X, equipped with the usual multiplication and the norm
of uniform convergence; the algebra of bounded measures on some lcgG,
equipped with the convolution product and the usual norm. And any closed
subalgebra containing 1 of a complete normed algebra is also a complete
normed algebra. If for example H is a Hermitian operator on a Hilbert space
H then considering the set A of continuous operators that are limits, with
respect to the usual norm, of polynomials

∑
anH

n in H, we get a complete
normed algebra which, as we will see, is isomorphic to the algebra of contin-
uous functions on the spectrum of H. The spectral decomposition of H will
follow easily from this result.

The spectrum of x ∈ A, defined to be the set Sp(x) of ζ ∈ C for which
x − ζ is not invertible80 in A generalizes the notion of the spectrum of an
operator. If P is a single-variable polynomial with complex coefficients, the
relation

P (x)− P (ζ) = (x− ζ)Q(x) = Q(x)(x− ζ) ,

where Q is also a polynomial, shows that

ζ ∈ Sp(x) =⇒ P (ζ) ∈ Sp [P (x)] .

Indeed, if P (x)− P (ζ) has an inverse y, then

yQ(x)(x− ζ) = (x− ζ)Q(x)y = 1 ,

so that x− ζ is invertible.

Lemma 1. Let A be a complete normed algebra. For all x ∈ A, the spectrum
of x is a non-empty compact set contained in the disc |ζ| ≤ ‖x‖.

To prove this, one sets that the geometric series
∑
xn converges for ‖x‖ <

1. Since calculations already encountered in Chap. II show that

(1− x)(1 + x+ . . .) = 1 ,

it follows that 1− x is invertible for ‖x‖ < 1 and that

(1− x)−1 = 1 + x+ x2 + . . . .

λ ∈ k and all x ∈ A . λ1 is usually shortened to λ. Examples: the algebra Mn(k) of
k-valued functions on a given set, etc. Finite-dimensional algebras over Q have
long been studied using methods totally unrelated to those we are interested
in here, and that are far more difficult; see André Weil, Basic Number Theory
(Springer, 1967).

80 An element x of a ring is invertible if yx = 1 and xz = 1 have solutions. Then
y = z = x−1.
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For arbitrary x and ζ 6= 0,

ζ − x = ζ(1− x/ζ) ,

so that left hand side is invertible for |ζ| > ‖x‖, which shows that the spec-
trum of x is contained in the disc of radius ‖x‖. If ζ −x = y is invertible and
if h ∈ C, then

y + h = y
(
1 + hy−1

)
is invertible for sufficiently small |h|, which shows that ζ ′−x is invertible for
ζ ′ sufficiently near ζ. The complement of the spectrum is thus open, and the
spectrum is compact.

The function f(ζ) = (ζ − x)−1 is defined on the open set C − Sp(x). It
is analytic on it since standard calculations show that, like in C, f(ζ + h)
is a power series with coefficients in A for the variable h ∈ C, when |h| is
sufficiently small. For |ζ| > ‖x‖,

(ζ − x)−1 = ζ−1(1− x/ζ)−1 = ζ−1
∑

xn
/
ζn ,(20.2)

from which it follows that f(ζ) tends to 0 at infinity.
If the spectrum of x was empty, then f would be an analytic function on

all of C, tending to 0 at infinity. Liouville’s theorem would then show that
f = 0, which is absurd, qed.

This supposes a generalization of Liouville’s theorem to functions with
values in a Banach space H. In fact, the entire theory of analytic or holo-
morphic functions (and much more: derivatives and differentials of functions
of real variables, integrals, Fourier series and integrals, etc.) is valid in this
framework, the proofs being almost the same as in the standard case. For
example, an analytic function is holomorphic, i.e. has has a derivative

f ′(ζ) = lim [f(ζ + h)− f(ζ)]
/
h ,

and actually f(ζ + h) =
∑
fn(ζ)h[n] implies that f ′(ζ) =

∑
fn(ζ)h[n−1],

with coefficients fn(ζ) ∈ H. The path integral of a holomorphic function with
values in a Banach space can be defined as in Chap. VIII because, since n◦

4 of the present chapter, we know how to integrate vector-valued continuous
functions. Invariance under homotopy is not a problem, neither is Cauchy’s
integral formula for a circle [Chap. VIII, n◦ 4, (iii)] or a more complicated
contour. It follows that a holomorphic function f is represented in a disc
centered at some a where it is defined by its power series at a ∈ C, hence in
all of C if f is entire. Then Liouville’s theorem follows as in Chap. VII, n◦ 18
by taking upper bounds of the coefficients of the power series using Cauchy’s
formula for a circle.

Lemma 2. If every non-trivial element of a complete normed algebra A is
invertible, then A has dimension 1.
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Indeed, for all x ∈ A, there exists ζ ∈ C such that x− ζ is not invertible,
whence x− ζ = 0.

In a ring A with unit element, a left ideal is an additive subgroup I of A
for which

x ∈ I & y ∈ A =⇒ yx ∈ A .

Right and two-sided ideals can be similarly defined. If A is commutative, one
talks of ideals. For example, in Z, any ideal is the set of multiples nZ of a
given integer n, namely the smallest n > 0 such that n ∈ I. In L(H), where
H is a vector space, the operators with a given x ∈ H as a zero form a left
ideal. In the ring of continuous functions on a space X, the functions with a
given point as a zero form an ideal. Etc.

In a commutative ring A, the set Ax of multiples of a given x ∈ A is an
ideal. It is equal to A if and only if x is invertible. A commutative ring A is,
therefore, a field if and only if its only ideals are {0} and A.

A left ideal I ⊂ A is said to be maximal if I 6= A and I is not strictly
contained in any other left ideal apart from A. In Z, this means that I = pZ
for some prime p.

Lemma 3 (Gelfand-Mazur). Let I be a maximal ideal of a commutative
complete normed space A. Then dim(A/I) = 1.

Indeed, the quotient of a commutative ring by an ideal I can be consid-
ered to be a commutative ring by observing that, for x, y ∈ A, the coset of
xymod I only depends on those of I: if a, b ∈ I, then indeed

(x+ a)(y + b) = xy + ay + xb+ ab ∈ xy + I

because of commutativity. The inverse images under the ring homomorphism
p : A −→ A/I of the ideals of A/I are obviously the ideals of A containing
I. As a result, an ideal I 6= A is maximal if and only if A/I is a field.

But if A is a complete normed space, the elements x such that ‖x−1‖ < 1
are invertible. Hence any non-trivial ideal has trivial intersection with this
open ball, so that the closure of a non-trivial ideal is again a non-trivial ideal.
Any maximal ideal is, therefore, closed.

But then the quotient A/I is also a complete normed space with respect
to the norm

‖p(x)‖ = inf
p(y)=p(x)

‖y‖(20.3)

which can be more generally defined on the quotient of Banach spaces by
closed vector subspaces. The outcome is again a Banach space since any
Cauchy sequence in the quotient is the image under p of a Cauchy sequence
in the original space. Relation (1) is also be readily verified to hold in A/I,
which thus becomes a commutative complete normed algebra without any
non-trivial ideals. All its non-zero elements are, therefore, invertible. The
result now follows from lemma 2 applied to this algebra.
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The question of the existence of maximal ideals can be radically solved:

Krull’s Theorem. Every left ideal I 6= A in a ring A with unit element is
contained in at least one maximal left ideal.

This is natural more difficult than proving the existence of prime divisors
in Z. If A is a finite-dimensional algebra over a field, the result follows imme-
diately from a dimension argument. This is also the case if A is a Noetherian
commutative ring (i.e. in which every increasing chain of ideals is stationary),
but such objects are not encountered in functional analysis. In the general
case, one is forced to use methods based on transfinite induction.81 This is
also the case when, for example, proving the Hahn-Banach theorem. Krull’s
theorem is extraordinarily simple, as general as can be and above all is useful
outside functional analysis. It is therefore better to admit it rather than in-
venting ad hoc arguments for separable normed algebras as Dieudonné does
(15.3.4.1).

Theorem 32. Let I be a maximal ideal of a commutative complete normed
space A. Then there is a linear functional χ on A such that χ(1) = 1,

χ(xy) = χ(x)χ(y) for x, y ∈ A(20.4)

and for which I is defined by the relation χ(x) = 0. For every solution of (4),

|χ(x)| ≤ ‖x‖ for all x ∈ A .(20.5)

Since A/I has dimension 1, for all x ∈ A there is a unique scalar χ(x)
such that

x− χ(x).1 ∈ I .

The multiplicativity formula follows trivially. So does the characterization

of x ∈ I. Conversely, any non-trivial solution of (3) clearly defines an ideal
I 6= A . As x−χ(x).1 ∈ I cannot be invertible, χ(x) belongs to the spectrum
of x, which gives |χ(x)| ≤ ‖x‖ and the continuity of χ.

81 The universal tool to prove this type of result is Zorn’s theorem, which we now
state. Consider a set E equipped with an order relation x ≤ y. Suppose that
every totally ordered subset F (i.e. x ≤ y or y ≤ x always holds in it) of E has
a supremum in E: there exists M ∈ E such that, for x ∈ E,

x ≥ y for all y ∈ F ⇔ x ≥M .

Then E has at least one maximal element x, i.e. such that y ≥ x implies that
y = x. Krull’s theorem follows by taking E to be the set of left ideals J ⊃ I
distinct from A, ordered by inclusion. For a totally ordered subset F of E, the
union of J ∈ F , distinct from A as they do not contain 1, is again an ideal and
is obviously the supremum of F in E.
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Non-trivial solutions of (4) are called the characters of A. The spectrum

of A, i.e their set, will be written Â. To each, x ∈ A associate the function x̂
on Â, the Gelfand transform of x, given by

x̂(χ) = χ(x) .(20.6)

The map x 7→ x̂ is, therefore, linear and satisfies

(̂xy) = x̂ŷ , ‖x̂‖ ≤ ‖x‖ ,

where ‖x̂‖ is the uniform norm on Â. Furthermore, the spectrum of x is
the set of values of the function x̂. Indeed, x ∈ A is not invertible if and
only if the ideal Ax of multiples of x is distinct from A, hence is contained
in a maximal ideal. So ζ belongs to the spectrum of x if and only if there
exists χ such that χ(x) = ζ, proving the result. In conclusion, the function
f(ζ) = (ζ − x)−1 is defined and holomorphic on |ζ| > ‖x̂‖.

The inequality ‖x̂‖ ≤ ‖x‖ can be made more precise:

Lemma 4. For all x ∈ A,

‖x̂‖ = lim ‖xn‖1/n .(20.7)

For all n and character χ, |χ(x)n| = |χ(xn)| ≤ ‖xn‖. Thus |χ(x)| ≤
‖xn‖1/n for all χ and so

‖xn‖1/n ≥ ‖x̂‖ for all n .(20.8)

On the other hand, the function f(ζ) = ζ(ζ − x)−1 = (1− x/ζ)−1 is defined
and holomorphic for |ζ| ≥ ‖x̂‖, hence has a Laurent series expansion in this
open subset. However, f(ζ) =

∑
xn/ζn for |ζ| > ‖x‖. This series, therefore,

converges for |ζ| > ‖x̂‖ (uniqueness of the Laurent series). For |ζ| = ‖x̂‖+ r
with r > 0, its terms tend to 0, and so ‖xn‖ ≤ |ζ|n. Hence ‖xn‖1/n ≤ ‖x̂‖+ r
for large n. This together with (8) proves (7), including the existence of the
limit.

There is a natural topology on Â, which is obtained by doing the bare
minimum to make the functions x̂ continuous. This means that (a) for all

χ0 ∈ Â, x ∈ A and r > 0, the inequality

|x̂(χ)− x̂(χ0)| < r ,

i.e.

|χ(x)− χ0(x)| < r ,(20.9)

must define an open subset of Â, (b) a subset of Â is open if and only if it
is the union of sets defined by finitely many inequalities of the form

|χ (xi)− χi (xi)| < ri .
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As stated above, this is the weak topology, which can be defined on the dual
of any topological vector space.82

Lemma 5. Let H be a Banach space, H′ the space of continuous linear
functionals on H and B′ the unit ball ‖f‖ ≤ 1 of H′. Then B′ is compact
with respect to the weak topology.

The proof is easy provided any (finite or infinite) Cartesian product of
compact spaces is admitted to be compact, which is another application of
Zorn’s theorem mentioned above in a footnote. This being admitted, let D
be the disc |z| ≤ 1 of C and B the unit ball ‖x‖ ≤ 1 of H. To each x ∈ B, let
us associate a copy Dx of D and let Ω the Cartesian product of the sets Dx:
it is therefore the set of families ζ = (ζx) of elements of D, equipped with
the minimum topology making the maps ζ 7→ ζx from Ω to D continuous.
As D is compact, so is Ω.83 This done, let us associate to each f ∈ B′ the
element ζ = j(f) of Ω given by ζx = f(x) for all x ∈ B. The map j from B′

to Ω is obviously injective, and is a homeomorphism from B onto its image
since in both cases, we did the bare minimum to make the maps f 7→ f(x)
and ζ 7→ ζx continuous. Hence the proof reduces to showing that j(B′) is
closed in Ω, i.e. that if a linear functional f ∈ B′ varies in such a way that
lim f(x) = g(x) exists for all x ∈ B, then g is the restriction of a continuous
linear functional g ∈ B′ to B. This is clear since the limit of a sum is the sum
of the limits and since taking limits preserves the inequality |f(x)| ≤ ‖x‖.

If we come back to the normed algebra A, the space Â is obviously con-
tained in the unity ball of the topological dual A′ of A. It is closed with
respect to the weak topology since, by definition of the weak topology, for
given x and y, both sides of the equality χ(xy) = χ(x)χ(y) are continuous
functions of χ. Taking limits also preserves equality χ(1) = 1. In conclusion,

the space Â is compact.

82 Even more generally, taking a set X, a family (Fi) of topological spaces and a
family (fi) of maps from X to Fi, there are topologies on X with respect to
which the maps fi are continuous. With respect to such a topology, the sets
f−1
i (Ui), as well the intersection of finitely many such sets, must be open for all
i and all open subsets Ui of Fi. The simplest is then to stipulate that a subset of
X is open if and only it is the union of such intersections. Checking the axioms
reduces to the calculation rule on sets of Chap. I. With respect to this topology,
a varying x ∈ X converges to a limit a ∈ X if and only if lim fi(x) = fi(a) for
all i. For example, if X is a set of linear functionals on a real or complex vector
space H, the weak topology on X is obtained by applying the previous procedure
to the functions f 7→ f(x), x ∈ H. If X is the Cartesian product of a family of
topological spaces Xi, the product topology on X is obtained by choosing the
projections x 7→ xi, onto the factors Xi.

83 If H is separable and if (xn) is a sequence everywhere dense in the unit ball B
of H, then the weak topology on B′ (but not on H′) can be defined using the
functions f 7→ f(xn), with values in D. This defines a map f 7→ (f(xn)) from
B′ to the Cartesian product DN, whose compactness has been proved without
applying Zorn’s theorem in n◦ 11, (i) about corollary 2.
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21 – A Characterization of Algebras of Continuous Functions

Let X be a compact space and A = L(X) the normed algebra whose elements
are the continuous functions on X, equipped with the norm

‖f‖ = sup |f(x)|(21.1)

of uniform convergence. If

f∗(x) = f(x) ,(21.2)

denotes the conjugate function of a function f ∈ A, relations (19.5), (19.6)
and (19.7) obviously hold. I will use the terminology GN algebra (following
Gelfand and Neumark, 1943) rather than “C∗-algebra ”, like many authors
do, for a complete normed algebra A equipped with an involution x 7→ x∗

satisfying relations:

(λx)∗ = λx∗ , (xy)∗ = y∗x∗ , (x∗)∗ = x ,(21.3)

‖x∗‖ = ‖x‖ , ‖x∗x‖ = ‖x‖2 .(21.3’)

The Gelfand-Naimark theorem affirms that, for a commutative GN algebra,
the map x 7→ x̂ from A to the algebra L(Â) of continuous functions on
the spectrum of A, in other words the “ Gelfand transform ” (20.6), is an
isomorphism no matter how you look at it. This means that it is a ring
homomorphism – obvious –, that it transforms the given norm ‖x‖ into the
norm (1) of the function x̂, that it transforms the given involution x 7→ x∗

into the involution (2), and finally that it is bijective.
The proof is simple but very ingenious. Its authors were quite obviously

inspired by what was already known about operators on a Hilbert space, and
in particular by lemmas 4 and 5 of n◦ 19. In what follows, we shall set X = Â.

We start by observing that, if x ∈ A is invertible, so is x∗. Since (ζ−x)∗ =
ζ − x∗, the spectrum of x∗ is the image of the spectrum of x under ζ 7→ ζ.

Secondly, the spectrum of every x such that x = x∗ is real. As in the case
of a Hermitian operator, it suffices to show that x − i is invertible. Suppose
this is not true. As x − i = (x − ζi) − i(ζ − 1), i(ζ − 1) ∈ Sp(x − ζi) for all
ζ ∈ C. Hence |ζ − 1| ≤ ‖x− ζi‖, and so, for any real ζ,

(ζ − 1)2 ≤ ‖x− ζi‖2 = ‖(x− ζi)∗(x− ζi)‖ =
∥∥x2 + ζ2

∥∥ ≤ ‖x‖2 + ζ2 ,

which contradicts the first order binomial theory.
Since any x ∈ A can be written x = x′+ix′′ with Hermitian x′ = 1

2 (x+x∗)
and x′′ = (x− x∗)/2i, and so x∗ = x′ − ix′′, more generally,

χ (x∗) = χ(x)(21.4)

for any character of A.
The image of A in L(X) under x 7→ x̂ is, therefore, stable under conjuga-

tion. This image is a subalgebra of L(X). It separates the points of X since
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the relation χ(x) = χ′(x) is satisfied by all x only if χ = χ′. The Stone-Wei-
erstrass theorem then shows that x 7→ x̂ maps A onto an everywhere dense
subspace of L(X).

To show that the image of A is equal to L(X), it then suffices to show
that it is closed, and for this purpose to use the last relation

‖x‖ = ‖x̂‖

which needs to be proved. Since, by assumption ‖x∗x‖ = ‖x‖2 and, by (4),
|χ(x∗x)| = |χ(x)|2, it suffices to prove it for x∗x, i.e. for Hermitian x. However,
we know (n◦ 21, lemma 4) that ‖x̂‖ = lim ‖xn‖1/n. Since xn is Hermitian for
all n, by (4), ∥∥x2∥∥ = ‖x‖2 ,

∥∥x4∥∥ =
∥∥x2∥∥2 = ‖x‖4

etc. So for n = 2p, ‖xn‖1/n = ‖x‖, whence the theorem:

Theorem 33. Let A be a commutative GN algebra. Then the Gelfand trans-
form x 7→ x̂, defined by

x̂(χ) = χ(x) ,

is an isomorphism from A onto the GN algebra of continuous functions on
the spectrum Â of A.

A corollary of this result is that, if f(ζ) is a complex-valued function
defined and continuous (but not necessarily analytic !) on the spectrum of
some x ∈ A, then there is a unique y ∈ A such that

ŷ(χ) = f [x̂(χ)] for all χ :

it suffices to check that the right hand side is a continuous functions on
X = Â. We set y = f(x) . The spectrum of y is the image under f of the
spectrum of x, and ‖y‖ = ‖f‖, where this is the uniform norm on Sp(x). If
f = g + h or gh, then f(x) = g(x) + g(h) or g(x)h(x). Composing f with a
continuous function g on the image of Sp(x) under f gives g ◦f(x) = g[f(x)],
etc.

Let us for example consider the algebra A of bounded continuous complex
functions on a topological space E, with the obvious norm and involution.
Every x ∈ E defines a character χx : f 7→ f(x) of A which, by definition, is

a continuous function of x with respect to the topology of Â. This gives a
continuous map from E to the Čech compactification Â of E. It is a compact
space which in general is far too gigantic to be of any interest other than
theoretical. In particular, it is not metrizable, even for E = N.

But if E is compact, in which case B(E) = L(E), the embedding of E

into X = Â is a homeomorphism. As it is continuous, it suffices to show
that it is bijective. Injectivity is equivalent to saying that, for given x 6= y,



§ 6. Spectral Decomposition on a Hilbert Space 143

there exists f ∈ L(E) such that f(x) 6= f(y). This is obvious. Surjectivity is
equivalent to saying that, for every character χ of L(E), there exists x such
that χ(f) = f(x) for all f ∈ L(E). However, let I be the ideal χ(f) = 0. If
there exists x such that f ∈ I, the linear functionals f 7→ χ(f) and f 7→ f(x)
have the same kernel, hence are proportional and in fact identical since these
are characters, proving the result. So it suffices to show that all the functions
f ∈ I vanish at some point of X. Otherwise, for all x ∈ X, there exists f ∈ I
which does not vanish at x and hence in the neighbourhood of x. By BL, we
get finitely many fi ∈ I such that the open sets {fi(x) 6= 0} cover E. The
function g =

∑
f∗i fi =

∑
|fi|2 is again in I, it is > 0 everywhere, and so

invertible in A, a contradiction since I 6= A.
Exercise 1. Let E be a locally compact space and A the algebra of con-

tinuous functions on E which tend to a finite limit at infinity. Equip A with
the obvious norm and involution. Using the same method, show that Â is
the Alexandrov compactification E ∪ {∞} of E.

22 – Spectral Decompositions

(i) The GN algebra of a normal operator. Let H be a Hilbert space and
A ⊂ L(H) a GN algebra, i.e. satisfying the following conditions: A is self-
adjoint, i.e. T ∈ A implies T ∗ ∈ A, A is closed with respect to the topology
defined by the norm of the operators. Let us suppose that A is commutative.
The elements of A then satisfy N∗N = NN∗. This property characterizes
normal operators, which were studied by von Neumann around 1927 in the
context of Hilbert spaces. In finite dimensional, they are diagonalizable, for if
ζ is an eigenvalue of N , the corresponding eigenspace H(ζ) is invariant under
N and N∗ since N and N∗ commute, hence so is its orthogonal complement
(n◦ 19, lemma 3), and diagonalization follows by induction on the dimension
of H.

Starting from a normal operator N and considering operators that are
limits (in norm) of polynomials

P (N,N∗) =
∑

apqN
pN∗q ,(22.1)

one gets an algebra A(N) = A of the former type, hence isomorphic to
the algebra of continuous functions on the spectrum of A. It can be easily
determined:

Lemma. Let N be a normal operator on a Hilbert space H. Then the map
χ 7→ χ(N) is a homeomorphism from the spectrum of A(N) onto the spectrum
of N in L(H).

For a character χ of A = A(N), clearly

χ [P (N,N∗)] = P
[
χ(N), χ(N)

]
(22.2)
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since χ(T ∗) = χ(T ) for all T ∈ A. As the linear functional χ is continuous, it
is fully determined by the number ζ = χ(N). This gives a continuous injective

map (hence a homeomorphism) χ 7→ χ(N) from the compact space Â onto
a compact subspace of C, namely the spectrum S of N in A as was seen in
n◦ 20 for every normed algebra. Thus A(N) is isomorphic to the algebra of
continuous functions on S by the GN theorem. Let σ be the spectrum of N in
L(H). Clearly σ ⊂ S. To prove the inverse inclusion, it suffices to show that if
N − ζ is invertible as an operator on H, then its inverse is in A. Replacing N
by N − ζ, the proof then reduces to showing that if N is invertible in L(H),
then N−1 is the limit in norm of polynomials of N and N∗. This property is
special to normal operators.

To prove this, we consider the set B = A(N,N−1) of limits in norm of
polynomials of N,N−1 and of their adjoints. It is again a GN algebra. As
above, the map χ 7→ χ(N) from the spectrum B̂ of B to C is clearly injective

and continuous, and so is a homeomorphism from B̂ onto a compact subset K
of C∗, and the map f 7→ f(N) is an isomorphism from the algebra L(K) onto
B. The elements N,N−1 and N∗ of B correspond to the functions ζ, 1/ζ and
ζ on K. However, the function 1/ζ is the uniform limit on K of polynomials
in ζand ζ (Stone-Weierstrass). As f 7→ f(N) preserves norms, N−1 is the
limit of polynomials of N and N∗, qed.

In fact this proves that A(N,N−1) = A(N) if N is an invertible normal
operator in L(H). An immediate consequence of the previous lemma is that
if N belongs to a closed self-adjoint subalgebra A of L(H), commutative or
not, then the spectrum of N in A is the same as its spectrum in L(H), in
other words does not depend on A, since if, for example, N is invertible as an
operator, then N−1 ∈ A(N) ⊂ A. Hence it is possible to talk of the spectrum
of a normal operator without mentioning the GN algebra considered.

We saw in n◦ 19, lemma 5 that, for a Hermitian operator H, the smallest
compact interval of R containing the spectrum of H is [mH ,MH ]. If H is
positive, i.e. if mH ≥ 0, the function f(ζ) = ζ1/2 is defined and continuous
on this interval. Setting H1/2 = f(H) gives a Hermitian operator such that

(H1/2)2 = H , H1/2 ≥ 0 .(22.3)

These properties fully determine H1/2 among all Hermitian operators in H.
Indeed, let H ′ be a positive Hermitian operator such that (H ′)2 = H. The
algebra A(H ′) is isomorphic to L(S′), where the spectrum S′ of H ′ is con-
tained in R+ (n◦ 19, lemma 5). A(H ′) contains H, hence also H1/2 ∈ A(H) ⊂
A(H ′). The continuous functions corresponding to H and H ′ in L(S′) are
ζ 7→ ζ2 and ζ 7→ ζ. The one corresponding to H1/2 is positive-valued since its
values are the elements of the spectrum of H1/2. It is, therefore, the positive
square root of the function ζ 7→ ζ2 on S′, hence the function ζ 7→ ζ; thus
H1/2 = H ′, qed.

Exercise 1. Let H and H ′ be two commuting positive Hermitian opera-
tors. Show that their square roots commute. Deduce that HH ′ is positive
Hermitian.
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Exercise 2. Let B be the set of Hermitian operators H such that 0 ≤
H ≤ 1. (a) Show that, for all r > 0, there is a real polynomial p(ζ) such that
‖H1/2−p(H)‖ < r for all H ∈ B. (b) Let Hn ∈ B be a sequence of operators
strongly converging to some H ∈ B [for example, an increasing sequence:

n◦ 19, (v), lemma 8]. Show that H
1/2
n strongly converges to H1/2 [first show

that, for any polynomial p, the map H 7→ p(H) is strongly continuous on B].
Exercise 3. For a positive Hermitian operator H, define a positive Hermi-

tian operator Hs, where s ∈ R and show that HsHt = Hs+t. Show that the
function s 7→ Hs extends to a holomorphic function on C−R− and that the
set of Hit, t ∈ R, is a group of unitary operators.

(ii) Spectral measure of an operator algebra. Let us now consider the gen-
eral case of a commutative GM algebra A in L(H) and denote its spectrum

by X = Â; it is a compact space. Conversely, the Gelfand transform T 7→ T̂
being bijective, one can associated the operator T = M(f) ∈ A defined by
the condition that

T̂ = f

to each f ∈ L(X). Relations

M(f + g) = M(f) +M(g) , M(f) = M(f)∗ ,(22.4)

M(fg) = M(f)M(g)

as well as

‖M(f)‖ = ‖f‖

trivially hold. The map f 7→ M(f) from L(X) to A will be called a spectral
measure of A. It is linear and transforms every real (resp. positive) func-
tion into a Hermitian (resp. positive Hermitian) operator. The characteristic
of these “ measures ” is the relation M(fg) = M(f)M(g): the only usual
numerically-valued measures satisfying it are the Dirac measures.

The isomorphism f 7→ M(f) transforms every continuous linear func-
tional on A into a continuous linear functional on L(X), i.e. into a measure
on X. This the case of the map

T 7−→ (Tx|y)

for all x, y ∈ H. This gives a unique measure µx,y on X such that

(M(f)x|y) = µx,y(f) =

∫
f(χ)dµx,y(χ)(22.5)

for all f ∈ L(X) or, using a different notation,

(Tx|y) =

∫
T̂ (χ)dµx,y(χ)

for all T ∈ A and x, y ∈ H. These measures satisfy fairly obvious properties:
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(MS 1) the map x 7→ µx,y is linear ;
(MS 2) the measures µy,x are µx,y are imaginary and conjugate ;
(MS 3) the measures µx,x are positive and of total weight ‖x‖2 ;

(MS 4) dµTx,y(χ) = T̂ (χ)dµx,y(χ) for all T ∈ A ;
(MS 5) An operator T commutes with the elements of A if and only if

µTx,y = µx,T∗y for all x, y ∈ H .(22.6)

Property (MS 2) follows from the observation that, for real f ∈ L(X),
the operator M(f) is Hermitian, so that (M(f)x|y) = (M(f)y|x), which can
also be written µx,y(f) = µy,x(f). Hence the result. (MS 3) says that the
operators M(f) are positive Hermitian for f positive. So (M(f)x|x) ≥ 0 . As

|µx,y(f)| = |(M(f)x|y)| ≤ ‖M(f)‖ .‖x‖.‖y‖

and ‖M(f)‖ = ‖f‖, in fact

‖µx,y‖ ≤ ‖x‖.‖y‖ .

(MS 4) follows from the fact that, for f, g ∈ L(X),

µM(f)x,y(g) = (M(g)M(f)x|y) = (M(fg)x|y) = µx,y(fg) .

(MS 5) follows from relations

µTx,y(f) = (M(f)Tx|y) , (TM(f)x|y) =
(
M(f)x

∣∣T ∗y) = µx,T∗y(f) .

(iii) Integration with respect to a spectral measure. Instead of starting
from a spectral measure associated to a GN algebra, more generally, it is
possible to define a spectral measure for any locally compact space X as a
map M : f 7→ M(f) from L(X) to the algebra L(H) of a Hilbert space H,
which must satisfy above conditions (4). By (5), one then gets measures µx,y,
and they clearly satisfy (MS 1) and (MS 2). They also satisfy (MS 4) under
the form

dµM(f)x,y(t) = f(t)dµx,y(t)

for f ∈ L(X), and (MS 5) for operators T commuting with all M(f). The
fact that µx,x ≥ 0 is obvious. ‖M(f)‖ ≤ ‖f‖ always holds since, for |z| > ‖f‖,
there exists g ∈ L(X) such that (f + z)(g + z−1) = 1. This relation implies
[M(f)+z][M(g)+z−1] = 1 and shows that the spectrum of M(f) is contained
in the disc of radius ‖f‖, whence the result. One then readily sees that the
measures µx,x are bounded and that

‖µx,x‖ = sup
|f |≤1
f∈L(X)

µx,x
(
|f |2

)
= sup ‖M(f)x‖2 ≤ ‖x‖2 .
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Relation µx,x(X) = ‖x‖2, which implies µx,y(X) = (x|y), nonetheless re-
quires an additional assumption when X is not compact; it will be given
later. The Cauchy-Schwarz inequality

|µx,y(f)|2 ≤ µx,x(f)µy,y(f)(22.7)

shows that µx,y is bounded for all x and y and that

‖µx,y‖ ≤ ‖x‖.‖y‖ .

When there is measure, even if it is with values in L(H), continuous
functions are not the only ones that are integrable. A function ϕ on X will
be said to be M -measurable (resp. M -integrable) if it is measurable (resp.
integrable) with respect to all measures µx,x, which is the case of Borel
functions, if need be bounded to ensure integrability. A set N ⊂ X will even
be said to be M -null if µx,x(N) = 0 for all x, and so µx,y(N) = 0. The map
(x, y) 7→ µx,y having all the formal properties of a Hermitian form – except
that its values are measures –, the relation

4 (x|y) = (x+ y|x+ y)− (x− y|x− y) + . . .

indeed shows that the µx,y are linear combinations of positive measures µz,z.
For a M -integrable function ϕ, the number µx,y(ϕ) depends linearly on x

by (MS 1) and semi-linearly on y by (MS 2). Moreover, as

|µx,y(ϕ)| ≤ ‖µx,y‖ .‖ϕ‖ ≤ ‖ϕ‖.‖x‖.‖y‖ ,

there is a unique continuous operator M(ϕ) on H such that

(M(ϕ)x|y) = µx,y(ϕ)

for all x, y (n◦ 19, corollary of theorem 33). The map ϕ 7→M(ϕ) also satisfies
relations (4) as we are now going to see.

The first two are obvious by (MS 1) and (MS 2). To prove the third one,
for which theorem 25 on the definition of measures by a density is essential,
let us begin with an “ arbitrary ” function ϕ and a continuous function g.
Applying (M 5),

(M(ϕg)x|y) =

∫
ϕ(t)g(t).dµx,y(t) =

∫
ϕ(t).g(t)dµx,y(t)

=

∫
ϕ(t)dµM(g)x,y(t) = (M(ϕ)M(g)x|y) ,

whence M(ϕg) = M(ϕ)M(g). Taking adjoints, M(ϕ)M(g) = M(g)M(ϕ)
follows since∫

gdµM(ϕ)x,y = (M(g)M(ϕ)x|y) = (M(ϕ)M(g)x|y)

=

∫
ϕdµM(g)x,y =

∫
ϕ.gdµx,y by (MS 4)

=

∫
ϕg.dµx,y =

∫
g.ϕdµx,y .
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Thus

dµM(ϕ)x,y(t) = ϕ(t)dµx,y(t) ,(22.8)

which is the analogue of (MS 4) for ϕ. Now if ψ is an “ arbitrary ” function
on X, then theorem 25 shows that

(M(ψ)M(ϕ)x|y) = µM(ϕ)x,y(ψ) =

∫
ψ.ϕdµx,y∫

ψϕ.dµx,y = (M(ψϕ)x|y) .

So we finally get M(ϕψ) = M(ϕ)M(ψ).
The latter shows that M(ϕ) = M(1)M(ϕ) for all ϕ, and (4) that M(1) =

M(1)∗ = M(1)2. As a consequence, M(1) = E is the projection onto a
closed M(ϕ)-invariant subspaceH′ ofH mapping the orthogonal complement
H′ onto 0. Obviously, H′ = H if X is compact. This is the case of the
spectral measure of a GN algebra. M is then said to be non-degenerate. As
µx,x(X) = µx,x(1) = ‖M(1)x‖2, condition

µx,x(X) = ‖x‖2

says that M is non-degenerate. Otherwise, H may as well be replaced by H′.
Hence in what follows, M will be assumed to be non-degenerate.

Likewise, a trivial calculation using (MS 5) shows that M(ϕ) commutes
with every operator commuting with M(f), for all f ∈ L(X), in other words,
belongs to the von Neumann algebra generated by all M(f) [n◦ 19, (vii),
density theorem].

Lebesgue’s theorems lead to limit properties for operators M(ϕ). First of
all,

‖M(ϕ)x‖2 = (M(ϕ)x|M(ϕ)x) = (M(ϕ)∗M(ϕ)x|x) =(22.9)

=

∫
|ϕ(t)|2 dµx,x(t) .

So if a sequence (ϕn) converges M -almost everywhere to a function ϕ, relation

‖M(ϕ)x−M (ϕn)x‖2 =

∫
|ϕ(t)− ϕn(t)|2 dµx,x(t)

shows that

limM (ϕn)x = M(ϕ)x for all x ∈ H(22.10)

provided (ϕn) converges in mean to ϕ in all L2(µx,x) spaces, for example if
the functions ϕn are dominated by a bounded Borel function. Theorems on
increasing series and sequences can be similarly interpreted.

We next consider aM -measurable set ω ⊂ X and let f be its characteristic
function. Then f = f = f2, and so
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M(f) = M(f)∗ = M(f)2 .

As a result, M(f) = M(ω), traditionally written E(ω), is an orthogonal
projection operator onto a closed subspace H(ω) of H. By definition,

(M(ω)x|y) =

∫
ω

dµx,y(t) = µx,y(ω)(22.11)

and in particular, M(ω) being a projection,

‖M(ω)x‖2 = (M(ω)x|x) = µx,x(ω) .(22.12)

Therefore, as x ∈ H(ω) is equivalent to ‖M(ω)x‖ = ‖x‖, hence to

‖x‖2 = µx,x(ω) ,

and as µx,x(X) = ‖x‖2, one sees that

x ∈ H(ω)⇐⇒ µx,x(X − ω) = 0 .(22.13)

The H(ω) are the spectral manifolds of the measure M (or of the algebra A
when M is associated to A).

Let us for example suppose that ω = {χ0} for some χ0 ∈ X. Elements
x ∈ H(ω) are then characterized by the fact that

Tx = χ0(T )x for all T ∈ A .(22.14)

Indeed, these x are characterized by µx,x(X − {χ0}) = 0 or, if ϕ denotes the

characteristic function of ω, by the fact that T̂ (χ) − χ0(T )ϕ(χ) = ψ(χ) is
zero almost everywhere with respect to µx,x. As

M(ψ) = T − χ0(T )M(ϕ) = T − χ0(T )M(ω)

and as µx,x(ψ) =
∫
|ψ(χ)|2dµx,x(χ) = ‖M(ψ)x‖2, the result follows.

The map ω 7→M(ω) has properties analogous to those of a measure and
others without any parallel. First of all, for any finite or countable family
(ωn), relation (13) shows that

H
(⋂

ωn

)
=
⋂
H (ωn) .(22.15)

If the sets ωn are pairwise disjoint, the corresponding projections cancel pair-
wise since M(ϕψ) = M(ϕ)M(ψ). So the subspaces H(ωn) are pairwise or-
thogonal. Moreover, H (

⋃
ωn) is the Hilbert direct sum of the spaces H(ωn).

Indeed, let ϕn be the characteristic function of ωn and ϕ =
∑
ϕn that of

ω =
⋃
ωn. For all x ∈ H,

M(ω)x = lim [M (ω1)x+ . . .+M (ωn)x]
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by (10) applied to the sequence ϕ1 + . . .+ϕn. The vectors xn = M(ωn)x are
pairwise orthogonal. If x ∈ H(ω), then M(ω)x = x, and so

x = lim (x1 + . . .+ xn)

and ‖x‖2 =
∑
‖xn‖2. Conversely, taking xn ∈ H(ωn) such that

∑
‖xn‖2 <

+∞, the limit x of the partial sums exists and M(ω)x is the limit of the
partial sums of the series

∑
M(ω)xn. Now, M(ω)xn = xn since

xn = M (ϕn)xn = M (ϕϕn)xn = M(ϕ)M (ϕn)xn = M(ω)xn .

The projections M(ω) can be zero; but, for a GN algebra, M(ω) 6= 0 if
ω is a non-empty open set. Indeed, there is then a continuous function f on
Â which is not identically zero, but vanishes outside ω. As it is equal to its
product with the characteristic function of ω, M(f)M(ω) = M(f). Since f
is continuous, the operator M(f) = A is in A and like f , is not zero. Hence
M(ω) 6= 0.

This shows that, if A does not only consist of scalar operators,, i.e. if the
spectrum Â of A has at least two points, then there exist spectral manifolds
other than {0} and H: indeed, there are two non-empty disjoint open subsets

ω and ω′ in Â, hence the that result since then H(ω) and H(ω′) are non-zero
and orthogonal.

An integral may be calculated approximatively using Lebesgue sums. Sim-
ilarly, let us consider for an arbitrary spectral measure M , a M -integrable
function ϕ and, for given r > 0, let us partition X into finitely or countably
many M -measurable sets ωn on each of which ϕ is constant, up to r. Let ϕn
be their characteristic functions. Choosing tn ∈ ωn,∣∣∣ϕ(t)−

∑
ϕ (tn)ϕn(t)

∣∣∣ ≤ r for all t

and so ∥∥∥M(ϕ)−
∑

ϕ (tn)M (ωn)
∥∥∥ ≤ r .(22.16)

This result justifies or explains the spectral decomposition formula

M(ϕ) =

∫
ϕ(t)dM(t) ,(22.17)

which is merely notation. For an algebra A and ϕ ∈ L(Â), the operator

M(ϕ) = A is in A and ϕ(χ) = Â(χ). So (17) shows that in particular

A =

∫
Â(χ)dM(χ) for all A ∈ A .(22.17’)

The fact that each A ∈ A can be approximated by linear combinations of
projections M(ω) shows that a continuous operator T on H commutes with
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all A ∈ A if and only if it commutes with the projections M(ω), in which
case it commutes with M(ϕ) for any M -measurable bounded function ϕ on

Â.
This result has an easy but important consequence, another version of

which will be given in n◦ 23.

Schur’s Lemma84 I. Let A be a self-adjoint subalgebra of L(H) containing
the unit operator. The following properties are equivalent:

(i) the only A-invariant closed subspaces of H are {0} and H ;
(ii) the only Hermitian operators commuting with all A ∈ A are scalars.

A is then everywhere dense in L(H) with respect to the ultrastrong topology.
If H is finite-dimensional, then A = L(H).

Since A is self-adjoint, the orthogonal complement of a closed invariant
subspace is again invariant (n◦ 19, lemma 3), so that the corresponding pro-
jection commutes with all A ∈ A . This shows that (ii) =⇒ (i).

If (i) holds – in which case the algebra A is said to be irreducible –, let
H be a Hermitian operator commuting with A. As was seen above, so do its
spectral projections [apply arguments to A(H)], the corresponding subspaces
are A-invariant, and hence are trivial.

Finally, under the assumption of the Lemma, the von Neumann algebra A′

of operators commuting with A consisting only of scalars, A′′ = L(H). Von
Neumann’s density theorem [n◦ 19, (vii)] then shows that A′′ is the closure of
A with respect to the ultrastrong topology (but obviously not with respect
to the topology defined by the norm if H is infinite-dimensional). If H is
finite-dimensional, so is L(H), all topologies coincide, and A = L(H) since
in finite dimensional, every subspace is closed, qed.

Above all, this result is relevant for unitary representations of a locally
compact group G. Such a representation is [n◦ 15, (ii)] an ordered pair (H, U)
consisting of a Hilbert space H and of a linear representation x 7→ U(x)
by unitary operators. As U(x)∗ = U(x)−1 = U(x−1), the set A of linear
combinations of U(x) is a self-adjoint algebra, and the A-invariant subspaces
(closed or not. . . ) are invariant under operators U(x) and conversely. If the
representation (H, U) is irreducible, the only continuous linear operators in
H commuting with all U(x) are scalars, and conversely. We will return to
this point in more detail in § 8.

(iv) Spectral decomposition of a normal operator. Let us study the classical
case of a normal operator N and of the algebra A = A(N) generated by

N and N∗. The space Â can be identified to the spectrum of N by χ 7→
χ(N) = ζ. All measures, functions, integrals introduced in the general case

84 The traditional version of Schur’s lemma assumes that we are in dimension is
finite and can be proved in an elementary manner. A less obvious version, which
does not use Hilbert structures, applies to “ semisimple ” algebras, i.e. those in
which every invariant subspace has an invariant complement.
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are, therefore, defined on Sp(N) = X ⊂ C, and N is the operator M(ϕ) for
the function ζ. Then relation (17) becomes

NpN∗q =

∫
ζpζqdM(ζ) , or

(
Npx

∣∣Nqy
)

=

∫
ζpζqdµx,y(ζ) .(22.18)

This result is due to von Neumann85 except for notation: what I write dM(ζ)
is usually written dE(ζ).

If H is Hermitian, its spectrum is real and contained in [mH ,MH ]. In the
former version of spectral decomposition, everything was reduced to Stieltjes
integrals over R using projections

E(λ) = M ([mH , λ]) , λ ∈ [mH ,MH ] ,(22.19)

and right-continuous and increasing functions

µx,x(λ) = µx,x ([mH , λ])(22.20)

which define the right Radon measures µx,x of the general theory. Formula
(17) is traditionally written

f(H) =

∫ MH

mH

f(λ)dM(λ)(22.21)

for every bounded Borel function f on [mH ,MH ] . It was only really used
for f(λ) = λn. One had to interpret as a Stieltjes integral in which the
“ measure ” of an interval is an orthogonal projective operator on H. For
example, the measure of ]α, β] ⊂ [mH ,MH ] is E(β) − E(α), i.e. M(]α, β])
in the notation M(ω) of section (iii), but that of ]α, β[, i.e. M(]α, β]), is
defined by taking the limit of E(β′)−E(α) as β′ < β tends to β, etc. These
constructions contained many traps since no one, apart from F. Riesz, used
the characterization of measures as linear functions. The GN theorem, that
was beginning to be glimpsed in the case of the algebra A(H), was replaced
by explicit arguments on operators.

If U is unitary, then U∗ = U−1, whence |χ(U)| = 1 for every character
of A(U). So the spectrum of U is contained in the unit circle |ζ| = 1; thus
one can interpret M as the spectral measure on T and write the spectral
decomposition of U as

Un =

∫
T
undM(u) ,

which is far better86 than the formula
85 Von Neumann considered operators that were not defined everywhere, a far more

difficult case than the one considered here. His 1929 articles in Math. Annalen
are perfect examples of axiomatic and abstract arguments and can still be read
profitably. Those who criticize N. Bourbaki’s taste for “ modern ” mathematics
could also target the “ father of computer science ” . . .

86 Since it can be generalized to unitary representations of all locally compact
commutative groups.



§ 6. Spectral Decomposition on a Hilbert Space 153

Un =

∫ 2π

0

enitdE(t)

that one still encounters.

23 – Self-Adjoint Operators

(i) Inverse of an injective Hermitian operator. Besides continuous Hermitian
operators, there are non-continuous ones that are not defined everywhere.
These are the self-adjoint operators; they are very important, in particular
in the theory of partial differential equations. They are the subject (von
Neumann) of a similar theory where the spectrum is an unbounded interval
of R, hence on which the function λ is not necessarily integrable with respect
to all measures µx,x. It is easy to understand where they come from even
without leaving an “ abstract ” framework – it suffices to study the inverse,
not defined everywhere, of a Hermitian operator, which is what we are going
to do –, but it is possible to come up with concrete examples: the operator in
L2(R), which transforms every function f(t) into tf(t) is obviously not defined
everywhere, though it is quite reasonable. Taking the Fourier transform one
gets f 7→ 2πif ′, an operator whose direct definition would be more tricky.

So let us consider a Hermitian, and hence continuous, operator H on H,
and set X = Sp(H) to be a compact subset of R. H is invertible if and only
if the function λ has a continuous inverse in X, which means that 0 /∈ X
since X is closed. Introducing the measures µx,y of (22.21) then gives(

H−1x|y
)

=
∫
X
λ−1dµx,y(λ) ,(23.1)

‖H−1x‖2 =
∫
X
λ−2dµx,x(λ)(23.2)

for all x, y ∈ H. But if 0 ∈ X, there is no reason why the function λ−1 should
be integrable, much less why it should be square-integrable, with respect to
the spectral measures µx,y of H, so that (1) and (2) need not be make sense.

The difficulty comes from the fact that H may be neither injective, nor
surjective.87 The first one is not serious. The subspace Ker(H) of x for which
Hx = 0, i.e. such that (x|Hy) = 0 for all y, is orthogonal to the subspace
Im(H). The orthogonal complement of Ker(H), i.e. the closure of Im(H),
is a closed H-invariant subspace on which H is injective. It is, therefore,
reasonable, to work in this subspace, in other words, to suppose that H
is injective, which is what we will do in what follows. The subspace D =
Im(H) is then everywhere dense in H. By the way, note that, by (22.14), the
injectivity of H is equivalent to

µx,x({0}) = 0 for all x ∈ H .

87 Counterexample on H = L2(N): the operator defined by Hf(n) = 0 if n = 0,
Hf(n) = f(n)/n if n 6= 0.
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In these conditions, H has an inverse

H−1 : D = Im(H) −→ H

given by

y = H−1x⇐⇒ x = Hy .

This operator, which is not defined everywhere and even less continuous, has
very remarkable properties.

Theorem 34. Let H be an injective continuous Hermitian operator on a
Hilbert space H and H−1 : D = Im(H) −→ H its inverse.

(a) The elements x ∈ D are characterized by the relation∫
λ−2dµx,x(λ) < +∞ .(23.3)

(b) The following hold:

H−1Hx = x for all x ∈ H ,
HH−1x = x for all x ∈ D .

(c) Every continuous operator A commuting with H maps D to D and
satisfies

AH−1x = H−1Ax for all x ∈ D .

(d) The function λ−1 is integrable with respect to µx,y for all x ∈ D and
y ∈ H and

dµH−1x,y(λ) = λ−1dµx,y(λ) ,(
H−1x|y

)
=
∫
λ−1dµx,y(λ) for x ∈ D and y ∈ H .(23.4)

(e) The operator H−1 is self-adjoint:(
H−1x|y

)
=
(
x|H−1y

)
for x, y ∈ D ,

and the only y ∈ H for which the map x 7−→ (H−1x|y) from D to H is
continuous are the elements y ∈ D.

(f) For any Borel set ω ⊂ X whose complement is a neighbourhood of
0 in X, H(ω) ⊂ D, H−1 maps H(ω) to H(ω) and the restriction of H−1 to
H(ω) is continuous.

Proof of (a). We begin by observe that, {0} being a null set with respect
to all spectral measures of H, the functions λ−1 and λ−2 are defined almost
everywhere with respect to these measures. Let us then consider a vector
x = Hx′ ∈ Im(H), whence
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dµx,x(λ) = λ2dµx′,x′(λ)

by property (MS 4) of spectral measures [n◦ 22, (ii)]. As the function λ−2λ2

is almost everywhere equal to 1, and hence integrable with respect to µx′,x′ ,
theorem 25 shows that λ−2 ∈ L1(X;µx,x), proving the necessity of (3).

Conversely, let us suppose that (3) holds and write B∞(X) for the set
of bounded Borel functions on X. It is everywhere dense in L2(X;µx,x). Let
H(x) be the closure of the set of M(f)x in H, where f ∈ B∞(X). As

‖M(f)x‖2 =

∫
|f |2dµx,x

by (22.9), the map f 7−→ M(f)x extends to an isomorphism j from
L2(X;µx,x) onto H(x). Relation M(fg)x = M(f)M(g)x, i.e. j(fg) =
M(f)j(g), which holds for all f, g ∈ B∞(X) by n◦ 22, (ii), shows that j
transforms the multiplication operator ϕ 7−→ fϕ in L2(X;µx,x) – a continu-
ous operator since f is bounded – into the operator M(f) in H(x). Therefore,

j(fϕ) = M(f)j(ϕ)

for all f ∈ B∞(X) and all bounded and unbounded ϕ ∈ L2(X;µx,x).
This being so, let us suppose that x satisfies (3). The function ϕ(λ) = λ−1

is in L2(X;µx,x), the function f(λ) = λ is bounded and Borel on X and
fϕ = 1 almost everywhere with respect to µx,x. So M(f)j(ϕ) = M(fϕ) =
M(1) = x. Thus there exists x′ = j(ϕ) such that x = M(f)x′ = Hx′, which
is what needed to be proved.

Proof of (b). Set theory, chap. I.
Proof of (c). If A commutes with H and if x ∈ D, then there exists x′ such

that x = Hx′, whence Ax = Hy′ where y′ = Ax′. As a result, Ax = y = Hy′

is in D and H−1Ax = H−1y = y′ = Ax′ = AH−1x.
Proof of (d). For x ∈ D, we once again consider the isomorphism j :

L2(X;µx,x) −→ H(x) used in point (a) of the proof. As was then seen,
x = j(ϕ), where ϕ(λ) = λ−1 and x = Hx′, where x′ = j(f), f(λ) = λ. Then,
for all y ∈ H,

dµx,y(λ) = dµHx′,y(λ) = λ.dµx′,y(λ) .

This relation obviously continues to hold if the measures and the function λ
are replaced by their absolute values [n◦ 17, (ii)]. As λ−1λ = 1 is integrable
with respect to |µx′,y|, theorem 25 shows that λ−1 is integrable with respect
to |µx,y| and that

λ−1.dµx,y(λ) = dµx′,y(λ) if x′ = H−1x , y ∈ H ,

which is the first relation in (4). Integration of the function 1 with respect to
these two measures leads to the second one.
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Exchanging the roles of x and y and taking conjugate measures, the for-
mula

λ−1.dµx,y(λ) = dµx,y′(λ) if y′ = H−1y , x ∈ H

is obtained in a similar way. Replacing y by y′ in the last but one formula,
once again thanks to theorem 25, which is in fact almost trivial in this case,

λ−2.dµx,y(λ) = dµx′,y′(λ) if x′ = H−1x and y′ = H−1y .(*)

Proof of (e). These relations show that

(
H−1x|y

)
=
(
x|H−1y

)
⇐⇒

∫
λ−1dµx,y(λ) =

∫
λ−1dµx,y(λ) ,

which is clear and shows that, for all y ∈ D, the linear functional x 7−→
(H−1x|y) is continuous on D. Conversely suppose that, for some y ∈ H,
there is a vector y′ such that (H−1x|y) = (x|y′) for all x ∈ D, hence of the
form x = Hx′. As Hx ∈ Im(H) = D, x may be replaced by Hx in this
relation, whence (x|y) = (Hx|y′) = (x|Hy′) . Since D is everywhere dense,
one deduces that y = Hy′ ∈ D.

Proof of (f). If the open set ω avoids the neighbourhood of 0, then there
is a number m > 0 such that |λ| ≥ m for all λ ∈ ω. But for all x ∈ H(ω),
µx,x(X−ω) = 0 by (22.12). The bounded function λ−2 on X−ω, is, therefore,
integrable with respect to µx,x, whence x ∈ D. Furthermore,

‖H−1x‖2 =

∫
dµH−1x,H−1x(λ) =

∫
λ−2dµx,x(λ) by (∗)

≤ m−2
∫
dµx,x(λ) = m−2‖x‖2 .

ThusH−1 is continuous onH(ω).H−1 mapsH(ω) toH(ω) sinceH−1M(ω) =
M(ω)H−1, which is a very particular case of (c) for A = M(ω), qed.

Exercise 1. Let A be a GN algebra in H and ϕ a real Borel function on the
spectrum of A. Find the assumptions needed to define M(ϕ) as a self-adjoint
operator.

(ii) Canonical extension of a positive symmetric operator. Point (e) of the
statement implicitly defined the notion of a self-adjoint operator. To under-
stand it, consider an everywhere dense subspace D of H and a symmetric
map S : D −→ H (I prefer keeping the term “ Hermitian ” for continuous
operators), i.e. such that

(Sx|y) = (x|Sy) for x, y ∈ D .

For all y ∈ D, the linear functional x 7→ (Sx|y) is therefore continuous on
D. But it may also be so for some y /∈ D. Let D∗ be the set of such y. It
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is a subspace of H containing D, and associating to each y ∈ D∗, its unique
vector y∗ such that (Sx|y) = (x|y∗) for all x ∈ D, we define a map

S∗ : D∗ −→ H

naturally called the adjoint map of S extending S. S is said to be self-adjoint
if D∗ = D, in which case S does not admit any other symmetric extension
apart from itself. This is exactly what proposition (e) of the previous theorem
says.

When a symmetric operator S is not self-adjoint, it is not always possible
to find a self-adjoint operator extending it. I will not address this problem
in the general case,88 but in the far simpler and often used case, where S
is positive, i.e. satisfies (Sx|x) ≥ 0 for all x ∈ D. Then there is a canonical
self-adjoint extension of S. It is a consequence of the next result:

Theorem 3589. Let H be a Hilbert space, D an everywhere dense subspace
of H and S a positive symmetric operator defined on D. Set

m = inf (Sx|x)
/

(x|x) .(23.5)

If m > 0, there is an injective, positive, continuous Hermitian operator H in
H having norm ≤ 1/m such that

(a) HS = id on D,
(b) H commutes with every unitary operator U such that90

U(D) ⊂ D , USx = SUx for all x ∈ D .

If m = 0, then there is an injective, positive, continuous Hermitian operator
H in H having norm ≤ 1 such that HS = 1−H on D and satisfying (b).

The case m = 0 immediately reduces to the previous on by taking S + 1.
Hence, one may suppose m > 0 and even m = 1.

The proof only uses the elementary results of n◦ 19. It consists in con-
structing a second Hilbert space H′ and a bijection from H′ onto a subspace
of H. There is a tendency to identify H′ with this subspace, but it is then
impossible to know whether its vectors should be considered to be elements
of H or of H′. This book not being aimed at experts, I will use somewhat
clumsy but precise notation in order to avoid such possible confusion.

88 See for example Dieudonné, XV.13 or any other treatise on Hilbert spaces.
89 According to Béla v. Sz. Nagy, Spektraldarstellung Linearer Transformationen

des Hilbertschen Raumes (Ergebnisse der Math., Bd. R, 1942, p. 35–36), a book
that in earlier times was like the Bible for me, this theorem was first proved by
von Neumann (1929), then by M. H. Stone in his book on Hilbert spaces (1932).
The proof in the text is due to Hans Freudenthal (1936) and simplifies a proof
by Kurt Friedrichs, Spektraltheorie halbbeschrnkter Operatoren (Math. Annalen,
109 and 110, 1934). French PDE tradition attributes it to Gelfand, Lions, Kato,
etc. Looking at it this way, it could also be attributed to me since I was using it
in 1946–1947. . .

90 If these properties hold, U will be said to commute with S.
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(i) Let us consider the positive Hermitian form

(x|y)
′

= (Sx|y)(23.6)

on D. It enables us [n◦ 19, (i)] to construct a Hilbert space H′, whose norm
will be written ‖x‖′, and a canonical map

π : D −→ H′

from D onto an everywhere dense subspace D′ of H′. Hence(
π(x)

∣∣π(y)
)′

= (Sx|y) for x, y ∈ D(23.6’)

and, by assumption (5) for m = 1,

‖x‖ ≤ ‖π(x)‖′ for x ∈ D .

Thus the map π is injective. Furthermore, the set of π(x) being everywhere
dense in H′, there is a unique continuous linear map

J : H′ −→ H ,

having norm ≤ 1, such that

J [π(x)] = x for all x ∈ D .

(6’) then shows that (u|v)′ = (SJu|Jv) for u, v ∈ D′. But for given u ∈ D′,
both sides are continuous functions of v ∈ H′ since J is continuous. Hence,
as D′ is dense in H′,

(u|v)
′

=
(
SJu

∣∣Jv) for u ∈ D′ , v ∈ H′ .

In particular, Jv = 0 implies (u|v)′ = 0 for all u ∈ D′ and so v = 0. As a
result, J is injective.

(ii) Since J : H′ −→ H is continuous, it has an adjoint [n◦ 19, (iii)]

J∗ : H −→ H′

having norm ≤ 1 like J . By definition,

(J∗x|v)
′

= (x|Jv) for x ∈ H and v ∈ H′ ,

which shows that J∗x = 0 implies (x|Jv) = 0 for all v ∈ H′. Thus x = 0 since
J(H′) is everywhere dense in H. The operator J∗ is, therefore, injective (as
is the adjoint of any operator whose image is everywhere dense).

Replacing x by Sx and v by π(y) for y ∈ D in the previous relation, for
all y ∈ D, (

J∗Sx
∣∣π(y)

)′
= (Sx|Jπ(y)) = (Sx|y) = (π(x)|π(y))

′
.
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So the set of π(y) being everywhere dense in H′, J∗Sx = π(x) for all x ∈ D.
Hence

JJ∗Sx = x for all x ∈ D .

The operator

H = JJ∗ : H −→ H ,

is continuous, has injective norm ≤ 1 like J and J∗ and satisfies condition
(a) of the statement. H is positive Hermitian like any operator of the form
AA∗.

(iii) Let us consider a unitary operator U on H which preserves D and
commutes with S on D. Then, for x, y ∈ D,

(π(Ux)|π(Uy))
′

= (SUx|Uy) = (USx|Uy) = (Sx|y) = (π(x)|π(y))
′
.

As a result, there is a unitary operator U ′ on H′ such that

π ◦ U = U ′ ◦ π .

By definition of J , it is written J(U ′y) = UJ(y) for all y ∈ D′. The same is
true (continuity) for y ∈ H′, whence JU ′ = UJ . This implies

J∗U∗ = U ′∗J∗ and so U ′J∗ = J∗U

since U∗ = U−1 for all unitary operators. The fact that U commutes with H
is then obvious. qed.

Let us now show how to deduce from the theorem a canonical self-adjoint
extension of S, i.e. commuting with every unitary operator commuting with
S.

If m > 0, it is the inverse H−1 of H defined in theorem 34. It is positive
like H, defined on the image of H, hence on D, and as H−1H = 1, clearly
H−1x = Sx for all x ∈ D.

If m = 0, we start from the relation HS = 1−H and write the spectral
decomposition

H =

∫
X

λdM(λ) , 1−H =

∫
X

(1− λ)dM(λ)

of H, where X ⊂ [0, 1] is the spectrum of H. For x ∈ D, HSx is the image of
H, hence also x = HSx + Hx. So H−1 may be applied, the outcome being
the relation

Sx = H−1x− x .(23.7)
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As a result, the self-adjoint operator

H−1 − 1 =

∫
X

(
λ−1 − 1

)
dM(λ)

extends S. It is defined on the same vectors as H−1, i.e. on x ∈ H such that∫
X

λ−2dµx,x(λ) < +∞ .

Exercise 2. Suppose H = L2(R), D = L(R) and Sf = ϕf , where ϕ ≥ 1 is
such that ϕ2 is locally integrable. Set out explicitly H′, J , J∗ and H in this
case. Compute the self-adjoint extension of S assuming only ϕ ≥ 0.

Corollary 1. Let S be a non-trivial positive symmetric operator defined on
an everywhere dense subspace D of H. There is a non-zero positive, contin-
uous Hermitian operator S′ on D such that:

(a) (S′x|x) ≤ (Sx|x) for all x ∈ D,
(b) S′ commutes with all unitary operator commuting with S.

Indeed, let us choose numbers a and b such that 0 < a < b < 1 and
consider the spectral projection

M(a, b) = M ([a, b]) =

∫
[a,b]

dM(λ)

of the operator H of the theorem. Since(
H−1 − 1

)
M(a, b) =

∫
[a,b]

(
λ−1 − 1

)
dM(λ)

with a > 0, this operator can be extended by a continuous operator S′ on
H, which is obviously Hermitian positive and commutes with every unitary
operator commuting with S.

S′ satisfies condition (b) – obvious – and condition (a) since

(S′x|x) =
∫
[a,b]

(
λ−1 − 1

)
dµx,x(λ) for x ∈ H ,

(Sx|x) =
∫
[0,1]

(
λ−1 − 1

)
dµx,x(λ) for x ∈ D .

On the other hand, the kernel of S′ is the set of x such that

‖S′x‖2 =

∫
[a,b]

(
λ−1 − 1

)2
dµx,x(λ) = 0 .

Since 0 < a < b < 1, this means that [a, b] is a null set with respect to
µx,x. If, for given x ∈ D, this is the case for all a and b, the measure µx,x is
concentrated on the subset {0, 1} of the spectrum of H. As H is injective, 0 is
not an eigenvalue of H and as a result, µx,x({0}) = 0. Thus µx,x([0, 1[) = 0,
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whence Hx = x. Therefore, S′ = 0 may hold on D for all choices of a and b
only if H = 1 on D. But then relation HS = 1−H shows that HS = 0, and
so S = 0 since H is injective, qed.

Corollary 2 (Schur’s lemma II). Let (H, U) be an irreducible unitary rep-
resentation of some lcgG and S a self-adjoint or positive symmetric operator
defined on an everywhere dense subspace D of H. Suppose D is U(x)-invariant
and that U(x)S = SU(x) in D. Then S is a scalar.

If S is positive symmetric, the canonical self-adjoint extension S com-
mutes with all U(x), hence so do its spectral projections, which being con-
tinuous, are scalars, proving the result in this case.

If S is not positive, but self-adjoint, consider S + i. As in n◦ 19, (iv),

‖(S + i)x‖2 = ‖Sx‖2 + ‖x‖2 for all x ∈ D ;

Thus S + i is injective. If lim(S + i)xn = v exists for xn ∈ D, the sequence
(xn) satisfies Cauchy’s criterion, and so converges to some x ∈ H. Thus
limSxn = y = v − ix exists. But then, for all u ∈ D,

(Su|x) = lim (Su|xn) = lim (u|Sxn) = (u|y) .

Hence x ∈ D and Sx = y since S is self-adjoint. The limit y + ix of the
(S+ i)xn is, therefore, (S+ i)x, and so the subspace Im(S+ i) is closed. Any
vector y orthogonal to all (S + i)x satisfies (Sx|y) = −i(x|y) for all x ∈ D,
and thus is in D since S is self-adjoint, and since Sy = iy then holds, it
follows that y = 0. Finally, Im(S + i) = H. So S + i is a bijection from D
onto H, its inverse being also continuous and having norm ≤ 1. (See exercise
below for the rest. . .).

That being so, if S commutes with all U(x), so does S+ i, and hence also
its inverse, which, being continuous, is a scalar by Schur’s lemma I [n◦ 22,
(iii), end]. Thus so is S, qed.

Exercise 3 (von Neumann, 1930). Let H be a self-adjoint operator defined
on a subspace D of H. We have just seen that H + i : D −→ H is bijective
and that the inverse map (H + i)−1 from H to D is a continuous operator.
(a) Show that the map U : x 7→ (H − i)(H + i)−1x from H to H is unitary
and that

1− U = 2i(H + i)−1 .

(b) Let

Un =

∫
T
un.dM(u)

be the spectral decomposition of U . Show that the spectral manifold H({1})
is trivial. Denote by dM(λ) the image of dM(u) under the homeomorphism

u 7−→ λ = i(1 + u)/(1− u)
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from T−{1} onto R. Show that this gives a non-degenerate spectral measure
on R such that

H =

∫
λ.dM(λ) ,

the elements x ∈ D being characterized by λ2dµx,x(λ) < +∞.

24 – Continuous Sum Decomposition

(i) Virtual eigenvectors. In finite dimension, any commutative GN algebra A
is diagonalizable: if, for every character χ of A, H(χ) denotes the subspace
of x ∈ H such that

Tx = χ(T )x for all T ∈ A ,(*)

then the subspaces H(χ) are pairwise orthogonal and H is the direct sum of
these subspaces.

This is obviously no longer the case in infinite dimension – relation (*)
usually has no solution x 6= 0 –, but we will see that, nonetheless, there is
an analogous result provided “ eigenvectors ” not belonging to H are allowed,
“ direct integrals ” or “ continuous sums ” are substituted to standard direct
sums and H is assumed to be separable.

So let A ⊂ L(H) be a commutative GN algebra X its spectrum and let us
suppose that H is separable. Once and for all, we choose linearly independent
vectors an whose linear combinations are everywhere dense in H, and denote
by µn the spectral measure µx,x for x = an. There are numbers αn > 0 such
that ∑

αn‖an‖2 =
∑

αnµn(X) < +∞ ,

which enables us to define the measure µ =
∑
αnµn by µ(f) =

∑
αnµn(f).

This is a trivial case of a continuous sum of measures. The measures µn are
clearly bounded above by µ, up to some factors, so that if ω ⊂ X is a Borel
and µ-null set, then

‖M(ω)an‖2 =
(
M(ω)an

∣∣an) = µn(ω) = 0 .

So M(ω) = 0, and hence (M(ω)x|x) = 0 as well for all x. As a result (LN),
all measures µx,y are absolutely continuous with respect to µ and relations
M(ω) = 0 and µ(ω) = 0 are equivalent. Any measure µ ≥ 0 with this
property is suitable for the following arguments.

Let us set

dµx,y(χ) = px,y(χ)dµ(x) .

px,y ∈ L1(X,µ) = L1 since µx,y is bounded. Functions px,y clearly have the
same formal properties as the measures µx,y, for example
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py,x(χ) = px,y(χ) , px,x(χ) ≥ 0 ,(24.1)

but these relations hold almost everywhere only with respect to µ. If they
were true for all χ (which is the case if Â is finite), the function (x, y) 7→
px,y(χ) would be a positive Hermitian form on H with respect to all χ.
Taking the quotient by the subspace of x such that px,x(χ) = 0 and then its
completion (n◦ 19, beginning) would lead to a Hilbert space H(χ), with a
canonical map from H to H(χ) which it would be natural to write

x 7−→ x(χ) ;

px,y(χ) = (x(χ)|y(χ))

would then hold and as a result,

(M(ϕ)x|y) =

∫
ϕ(χ) (x(χ)|y(χ)) dµ(χ)

for all x, y and bounded measurable functions ϕ on X. Thus the space H
would seemingly be the “ continuous sum ” or “ direct integral ” of spaces
H(χ) with respect to µ, operators M(ϕ) likely mapping a function x(χ) to
the function ϕ(χ)x(χ) with, in particular, the relation

y = Tx =⇒ y(χ) = χ(T )x(χ) for all T ∈ A

analogous to (*). . .
This far too naive argument needs to be corrected using the null-set elim-

ination machinery. The method, due to von Neumann,91 consists in coming
back to the initial pseudo-basis (an) and in assuming x = ai, y = aj in (1).
The corresponding functions px,y = pi,j being chosen once and for all, rela-
tions (1) hold outside null sets Nij , and thus do so simultaneously outside a
null set. The latter can even be chosen in such a way that for all χ ∈ X −N ,
the matrix (pi,j(χ)) is positive Hermitian, in other words satisfies∑

1≤i,j≤n

pi,j(χ)ξiξj ≥ 0(24.2)

for all integers n and coefficients ξ1, . . . , ξn ∈ C. Indeed, setting x =
∑
ξiai,

the left hand side of (2) is just px,x(χ), up to a null set, so that (2) holds
outside a null set Nx,x. But to check (2) for given n and χ and arbitrary
coefficients ξi, by continuity, it suffices to do so when the set of ξi is every-
where dense in C, hence in a countably infinite number of cases. By making
n vary, one finally gets a countably infinite number of sets Nx,x to be elimi-
nated. Taking their union with the null set introduced above gives a null set
N outside which formulas (1) and (2) hold for all ordered pairs (i, j).

91 On rings of operators. Reduction theory (Annals of Math., 50, 1949).
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Let us denote by Λ the (everywhere dense but not closed) vector subspace
of H generated by all an. If x, y ∈ Λ, then

x =
∑

ξnan , y =
∑

ηnan(24.3)

with well-determined coefficients since the an have been assumed to be lin-
early independent. Hence

px,y(χ) =
∑

ξηjpi,j(χ) ae.(24.4)

The functions px,y being determined up to null sets, for ordered pairs of form
(3), (4) can be taken to define px,y(χ) for all χ ∈ X−N . For these χ, by (2),
the map (x, y) 7→ px,y(χ) is then a positive Hermitian form on the subspace Λ
of H consisting of vectors (3). Replacing all pi,j(χ) by 0 on N , (4) may even
be assumed to hold for all χ.

Arguments similar to those used at the beginning of n◦ 19 lead to a
genuine Hilbert space H(χ) and to a linear map x 7→ x(χ) from Λ onto an
everywhere dense subspace of H(χ), a map for which, for all χ,

(x(χ)|y(χ)) = px,y(χ) for al x, y ∈ Λ .

The left hand side is a µ-integrable function. Since

(M(ϕ)x|y) =

∫
ϕ(χ)dµx,y(χ) =

∫
ϕ(χ).px,y(χ)dµ(χ)

=

∫
ϕ(χ)px,y(χ).dµ(χ) ,

the formula

(M(ϕ)x|y) =

∫
ϕ(χ) (x(χ)|y(χ)) dµ(χ)(24.5)

becomes legitimate for x, y ∈ Λ and for every bounded Borel function ϕ. In
particular it shows that

‖x‖2 =

∫
‖x(χ)‖2 dµ(χ) .(24.6)

‖x‖ is thus the norm N2 of the function ‖x(χ)‖, which is in L2(X,µ) since
‖x(χ)‖2 = px,x(χ) is in L1(X,µ).

Let us now show that a function x(χ) ∈ H(χ), defined up to a null set,
can be associated to each x ∈ H in such a way that (5) continues to hold for
x, y ∈ H. We start by remarking that, for all x ∈ H, there exist xn ∈ Λ such
that

x =
∑

xn &
∑
‖xn‖ < +∞ .
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Since the second relation can be written∑(∫
‖xn(χ)‖2 dµ(χ)

)1/2

< +∞ ,

theorem 6 of n◦ 4 applied for p = 2 to functions ‖xn(χ)‖ shows that the series∑
‖xn(χ)‖ converges ae. and in L2(X;µ) to a square integrable function F (χ)

with respect to µ. Thus the series
∑
xn(χ) converges ae. to some x(χ) ∈ H(χ)

satisfying ‖x(χ)‖ ≤
∑
‖xn(χ)‖ = F (χ) ae. Setting sp = x1 + . . . + xp ∈ Λ,

x(χ) = lim sp(χ) ae., the functions ‖sp(χ)‖ being, moreover, in L2(X;µ) and
dominated by F . Therefore, the the function ‖x(χ)‖ is square integrable and
its norm N2 is bounded above by the sum of norms N2 of functions ‖xn(χ)‖.
Replacing x by x− sp, this shows that

lim
p∞

∫
‖x(χ)− sp(χ)‖2 dµ∗(χ) = 0 .

It follows that the function χ 7→ x(χ) only depends on the vector x ∈ H,
up to a null set. Indeed, if x =

∑
x′n is another way of approximating x by

x′n ∈ Λ, the series
∑
xn − x′n converges to 0. The previous result then shows

that

lim
p∞

∫ ∥∥sp(χ)− s′p(χ)
∥∥2 dµ(ξ) = 0 .

Hence a partial sequence tending ae. to 0 can be extracted from the sequence
of functions ‖sp(χ) − s′p(χ)‖, and as anyhow the complete sequences sp(χ)
and s′p(χ) converge ae., this is sufficient to prove that∑

xp(χ) =
∑

x′p(χ) pp

as expected.
This being settled, let us prove (5) for x, y ∈ H. To this end, we choose

sequences sn (resp. tn) in Λ satisfying the following conditions: (a) they
converge to x (resp. y) in H, (b) sn(χ) (resp. tn(χ)) converges to x(χ) (resp.
y(χ)) in H(χ) for almost all χ, (c) the functions ‖sn(χ)‖ (resp. ‖tn(χ)‖) are
dominated by functions F (resp. G) in L2(X;µ). Then, by (5) applied to Λ
and the continuity of M(ϕ),

(M(ϕ)x|y) = lim
(
M(ϕ)sp

∣∣tp) = lim

∫
ϕ(χ)

(
sp(χ)

∣∣tp(χ)
)
dµ(χ) .

As the functions (sp(χ)|tp(χ)) are (Cauchy-Schwarz) dominated by FG ∈
L1(X;µ) and converge ae. to (x(χ)|y(χ)), Lebesgue’s theorem immediately
least to (5) for x, y and even (replace ϕ by ϕψ) to

(
M(ϕ)x

∣∣M(ψ)y
)

=

∫
ϕ(χ)ψ(χ)

(
x(χ)

∣∣y(χ)
)
dµ(χ)(24.7)
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for all bounded and measurable ϕ and ψ.
Let us now show that

y = M(ϕ)x =⇒ y(χ) = ϕ(χ)x(χ) pp.(24.8)

and that in particular

y = Tx =⇒ y(χ) = χ(T )x(χ) ae.

for all T ∈ A. This result is essential if we want the x(χ) to resemble common
eigenvectors of all T ∈ A. Indeed, by (7), for y = M(ϕ)x,

0 = ‖M(ϕ)x− y‖2 = (M(ϕ)x|M(ϕ)x)− 2 Re (M(ϕ)x|y) + (y|y)

=

∫
|ϕ(x)|2 . ‖x(χ)‖2 dµ(χ)− 2 Re

∫
ϕ(χ) (x(χ)|y(χ)) dµ(χ)

+

∫
‖y(χ)‖2 dµ(χ)

=

∫
dµ(χ)

[
‖ϕ(χ)x(χ)‖2 − 2 Re ((ϕ(χ)x(χ)|y(χ)) + ‖y(χ)‖2

]
.

The expression under the
∫

sign is just ‖ϕ(χ)x(χ)− y(χ)‖2, whence∫
‖ϕ(χ)x(χ)− y(χ)‖2 dµ(χ) = 0

and (8).
Finally the functions x(χ) thus obtained need to be characterized. The

following two conditions answer the question:
(a) the function (x(χ)|y(χ)) is measurable for all y ∈ Λ,
(b)

∫
‖x(χ)‖2dµ∗(χ) < +∞.

Indeed, suppose that these two conditions hold. The function ‖x(χ)‖ is then
measurable since

‖x(χ)‖ = sup
y
|(x(χ)|y(χ))|

/
‖y(χ)‖

provided y ∈ H is made to vary in such a way that the set of y(χ) is ev-
erywhere dense in H(χ). For this to be the case, it suffices to chose linear
combinations of an with “ rational complex ” coefficients. The set of these y
being countable, condition (a) immediately implies that the function ‖x(χ)‖
is measurable. Condition (b) then shows that it is in L2(X;µ).

For two functions x(χ) and y(χ) satisfying (a), the inner product (x(χ)|y(χ))
is measurable because of the age-old identity

4B(x, y) = B(x+ y, x+ y)− . . .

valid for all Hermitian forms. If x and y also satisfy (b), the function
(x(χ)|y(χ)) is integrable (Cauchy-Schwarz). By (5) applied to y ∈ H,
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∣∣∣∣∫ (x(χ)
∣∣y(χ)

)
dµ(χ)

∣∣∣∣2 ≤ ∫ ‖x(χ)‖2 dµ(χ).

∫
‖y(χ)‖2 dµ(χ)

= ‖y‖2
∫
‖x(χ)‖2 dµ(χ) .

Hence there exists (n◦ 19, theorem 31) x′ ∈ H such that

(x′|y) =

∫
(x(χ)|y(χ)) dµ(χ) for all y ∈ H ,

i.e. ∫
(x(χ)− x′(χ)|y(χ)) dµ(χ) = 0 for all y ∈ H .

By (7), replacing y by M(ϕ)y multiplies y(χ) by ϕ(χ) , whence∫
ϕ(χ) (x(χ)− x′(χ)|y(χ)) dµ(χ) = 0

for all y ∈ H. As ϕ is arbitrary, (x(χ) − x′(χ)|y(χ)) = 0 ae. . Applying this
result to the vectors y = an, by eliminating the null sets, we conclude that
x(χ) = x′(χ) ae., which completes the construction.

In conclusion, starting from the given algebra A in H, it is possible to
find a measure µ on X and a decomposition of H into continuous sums
(with respect to µ) of Hilbert spaces H(χ) so that all T ∈ A multiply the

“ components ” x(χ) for all x ∈ H in H(χ) by T̂ (χ), the M(ϕ) multiplying
them more generally by ϕ(χ). This is the perfect analogue of a simultaneous
diagonalization, and like in finite dimension, this is the result that should
be called the spectral decomposition of A. The number dimH(χ), defined
almost everywhere, plays the role of the “ multiplicity ” of the “ common
eigenvalue ” χ of T ∈ A.

The difference with the case of finite-dimensional spaces is the availability
of a wide choice of measures µ. The only canonical aspect of the construction
is the class of µ in the sense of Lebesgue-Nikodym. Changing µ would modify
H(χ) only almost everywhere and would multiply x(χ) by scalars independent
of x. This is the best that one can hope for in this abstract and general
context.

In concrete examples, H is often a function space of L2 type. Our hope
is then to be able to consider the H(χ) as spaces of eigenfunctions (or distri-
butions) of operators M(ϕ). This requires methods from analysis far beyond
the framework of integration theory.

(ii) Continuous sums of Hilbert spaces. In all of the above, we have talked
of continuous sums or of direct integrals of Hilbert spaces as physicists do, i.e.
without mathematically defining this notion. We can now do so, and I will
content myself with it in order not to lengthen the presentation excessively.
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For this, let us take a locally compact space92 T , a measure µ ≥ 0 on T
and, for all t ∈ T , a Hilbert space H(t). Direct sums of trivial spaces being of
little interest, it is reasonable to suppose that H(t) 6= {0} almost everywhere.
For the same reason, it is reasonable to suppose that the support93 of µ is all
of T .

As “ measurable ” or “ square integrable ” functions x(t) with values in
H(t) need to be defined, which on the fact of it has no meaning if the spaces
H(t) are unrelated to each other, suppose given in advance a family Λ of
functions x(t) with values in H(t), defined up to null sets, and satisfying the
following conditions:

(VN 1) αx+ βy ∈ Λ for all x, y ∈ Λ and α, β ∈ C ;
(VN 2) the function (x(t)|y(t)) is measurable for all x, y ∈ Λ ;
(VN 3) there is a countable set D ⊂ Λ such that, for almost all t, the

set of x(t), x ∈ D, is everywhere dense in H(t).

It is possible to dispense with countability in (VN 3) by having recourse to
Lusin’s theorem and to equimeasurable families, but this would needlessly
complicate matters.

These assumptions enable us to define functions x(t) that will be referred
to as measurable: they are required to satisfy the condition that (x(t)|y(t))
is measurable for all y ∈ D; by (VN 2), this is the case for all x ∈ Λ. If
x(t) is measurable, then clearly so is ϕ(t)x(t) for any bounded measurable
scalar function ϕ and any limit-ae. of measurable functions is measurable. If
x(t) is measurable, then so is ‖x(t)‖ by (VN 2) and (VN 3). If x and y are
measurable, then so is the function

(x(t)|y(t)) = ‖x(t) + y(t)‖2 /4− . . .

A function x(t) will be said to be square integrable if it is measurable and if∫
‖x(t)‖2 dµ(t) < +∞ .(24.9)

The existence of such functions is immediate: choose a measurable function
x(t) which is not zero ae., replace x(t) by x(t)/‖x(t)‖ if x(t) 6= 0 and by
0 if x(t) = 0, and finally multiply the result by an arbitrary function ϕ ∈
L2(T ;µ).

This said, the continuous sum H ofH(t) with respect to µ is, by definition,
the set of classes of square integrable functions x(t), equipped with the inner
product

92 In the chapter of his book on von Neumann algebras dedicated to this
topic, Dixmier even considers the case of an “ abstract ” measure because the
“ spectrum ” of a non-commutative GN algebra, equipped with its natural topol-
ogy, is not always locally compact in a strict sense.

93 Open sets such that µ(U) = 0 that form an increasing filtering family, their union
also being a null set. The support of µ is its complement. Saying that the support
of µ is T means that 0 is the only function f ∈ L+(T ) such that µ(f) = 0.
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(x|y) =

∫
(x(t)|y(t)) dµ(t) .

By (8) and Cauchy-Schwarz, the integral converges for x and y. One can then
associate a continuous operator M(ϕ) on H defined by

y = M(ϕ)x if y(t) = ϕ(t)x(t)

to any ϕ ∈ L∞(T ;µ). Formulas (22.4) of spectral theory continue to hold
here: ‖M(ϕ)‖ ≤ ‖f‖∞, where this is the norm of f in L∞(T ;µ), and in fact

‖M(ϕ)‖ = ‖f‖∞(24.10)

as is easily seen.
By confining ourselves to continuous ϕ on the Alexandrov compactifi-

cation of T , we thus get a self-adjoint algebra A in H containing the unit
operator. As the support of µ is assumed to be T , the norm N∞ of such a func-
tion is the same as its uniform norm ‖f‖. Then because of ‖M(ϕ)‖ = ‖ϕ‖,
A is closed in the Banach space L(H), and so is a commutative GN algebra.
As was seen at the end of n◦ 12, its spectrum is the compactification of T . If
T is compact, a case it can easily be reduced to, we thus clearly recover the
spectral decomposition of A in the sense defined above. Hence decomposing
a Hilbert space H into a continuous sum of spaces H(t) reduces to choosing a
separable GN algebra A in H and to carrying out the spectral decomposition.
For example, A may be assumed to be generated by a Hermitian operator
H, in which case T is the spectrum of H, which acts on each H(λ) as the
scalar λ, like in finite dimension. . .

Exercise 1. Show that an equivalent definition94 of direct integrals would
consist in taking T , µ, separable Hilbert spaces H and H(t), t ∈ T , and in
assuming that a class of functions x(t) ∈ H(t) satisfying the following con-
ditions is associated to each x ∈ H: (i) linearity, (ii) (x(t)|y(t)) is integrable
for all x, y ∈ H and (x|y) =

∫
(x(t)|y(t))dµ(t), (iii) every function x(t) such

that (x(t)|y(t)) is integrable for all y ∈ H corresponds to some x ∈ H.
Finally, let us give some indications about “ decomposable ” operators in

a direct integral. Let A(t) be a function whose values are continuous linear
operators in H(t). Assuming the functions A(t)x(t) to be measurable for all
x ∈ D and the function ‖A(t)‖ to be bounded, there is a unique continuous
operator A on H such that

y = Ax⇐⇒ y(t) = A(t)x(t) pp.

“ Decomposable ” operators obtained thereby commute with all M(ϕ). Con-
versely, any operator A on H commuting with all M(ϕ) is decomposable. On
the other hand, suppose given a von Neumann algebra A in H. For almost all
t, there is a von Neumann algebra A(t) in H(t) such that the relation A ∈ A
94 See for example Richard Kadison and John R. Ringrose, Fundamentals of the

Theory of Operator Algebras (AMS, 4 vol., 1999–2001), chap. 14.
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is equivalent to A(t) ∈ A(t) ae. if and only if the algebra Z of operators
M(ϕ) is contained in the centre of A. This is also true for the commutator
algebra A′, and A′(t) = A(t)′ ae. Etc. . .

(iii) The L2 space of the integral of a measure. At the end of n◦ 17, we
mentioned the following question: given an integral of measures

ν =

∫
µxdλ(x) ,

under what condition is the L2 space of ν the continuous sum (with respect
to λ) of L2 spaces for µx? As we saw, the answer is simple if there are finitely
many µx: they must be pairwise disjoint. Let us now consider the general case
keeping the notation of n◦ 14 and giving its precise meaning to the notion of
“ continuous sum ”.

(a) To begin with, it is prudent to suppose X and Z to be Polish. L2(Z; ν)
and H(x) = L2(Z;µx) are then separable. For almost all x, each f ∈ L2(Z; ν)
is square integrable with respect to µx (generalized LF), hence defines a vector
fx ∈ H(x) . For f, g ∈ L2(Z; ν), the function (fx|gx) is integrable and

(f |g) =

∫
(fx|gx) dλ(x) .(24.11)

The set Λ of functions x 7→ fx, f ∈ L(Z) obviously satisfies axioms (VN 1),
(VN 2). To check (VN 3), we choose a countable subset D of L(Z) such that
every f ∈ L(Z) is the uniform limit of functions fn ∈ D vanishing outside a
fixed compact set. The classes of f ∈ D in the L2 space of all measures on Z
are then everywhere dense, so that (VN 3) is satisfied by choosing functions
x 7→ fx for f ∈ D.

This enables us to define measurable functions with values in H(x) and
hence the direct integral H of H(x). By (10), it is clear that, for any
f ∈ L2(Z; ν), the associated function x 7→ fx is in H and that this gives
an isomorphism from L2(Z; ν) onto a closed subspace H0 of H, but not nec-
essarily onto H as already seen in n◦ 17.

(b) Let us now show that H0 = H if and only if, for all f ∈ L2(Z; ν) and
all bounded measurable scalar function ϕ, there exists g ∈ L2(Z; ν) such that

gx = ϕ(x)fx ae. for λ .

This means that the subspace L2(Z; ν) = H0 of H must be stable un-
der operators M(ϕ). This condition is clearly necessary.95 To show that it

95 It is not always easy to check in concrete examples, in particular in extensions
of Fourier transforms to semisimple groups, when it is not immediately obvious
what the operators M(ϕ) are and, as far as I know, no author who has dealt with
the topic has given them explicitly. If this is really the case, this means that the
(generalized Plancherel) decomposition of the regular representation of the group
into “ continuous sums ” of irreducible representations has not yet been proved
in the strict sense of the word, even for groups such as SL2(R) (Harish-Chandra)
or SL2(C) (Gelfand and Neumark). . .
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is sufficient, let x 7→ hx be an element of H orthogonal to H0. By as-
sumption,

∫
(fx|hx)dλ(x) = 0 for all f ∈ H0, hence also by assumption,∫

ϕ(x)(fx|hx)dλ(x) = 0 for all bounded measurable ϕ, and so hx = 0 ae.
follows from (VN 3), qed.

(c) We suppose that this condition holds and let X = A∪B be a partition
of X into two measurable sets A and B = X −A. Setting

νA =

∫
µx.χA(x)dλ(x) , νB =

∫
µx.χB(x)dλ(x) ,(24.12)

ν = νA + νB and the space L2 of νA (resp. νB) can be identified with the
subspace of f ∈ L2(Z; ν) such that fx = 0 outside A (resp. B). However,
the operator EA = M(χA) on a continuous sum of Hilbert spaces is, by
definition, the orthogonal projection onto the subspaces of vectors whose
“ components ” are trivial outsideA. As a result, EA (resp. EB) maps L2(Z; ν)
onto L2(Z; νA) (resp. L2(Z; νB)). The subspace H0 of H is, therefore, stable
under all operators EA and

L2(Z; ν) = L2(Z; νA)⊕ L2(Z; νX−A) , direct sum .(24.13)

Conversely, this condition ensures that L2(Z; ν) = H. Indeed, it shows that
L2(Z; ν) is stable under M(ϕ) for any function ϕ which is the linear com-
bination of characteristic functions of measurable sets. Now, any bounded
measurable function ϕ is the uniform limit of a sequence of functions ϕn
of the previous type. As ‖M(ϕ)‖ = ‖ϕ‖∞ for all bounded ϕ, the functions
M(ϕn)f ∈ H0 converge in H to g = M(ϕ)f . Thus g ∈ H0 since H0 is closed.
Condition (11), therefore, holds, whence L2(Z; ν) = H by section (b) above.

(d) Hence, L2(Z; ν) = H if and only if (13) holds for any measure subset
A of X. By n◦ 17, (iii), this means that

νA and νX−A are disjoint(24.14)

for all A. The generalization to finite or countable partitions of X is obvious.
It would be tempting to conjecture that this condition means that the mea-
sures µx and µy are disjoint whenever x 6= y. As will be shown in point (e)
below, this is almost necessary, but the following counterexample shows that
it is not sufficient.

Exercise 2. Take X = Z = [0, 1]. Let m denote the Lebesgue measure and
εx the Dirac measure at x. Choose µx = m for x = 0, µx = εx for x > 0 and
λ = m+ ε0. Show that, for A = {0} and B = ]0, 1], νA = νB = m.

(e) In the general case, we let D denote the diagonal of the product X×X
and assume that (13) holds. Then the measures µx and µy are disjoint for
almost all (x, y) ∈ X × X − D. The condition is thus necessary, but not
sufficient.

If νA and νB are disjoint, then indeed there is (LN) a Borel set N ⊂ Z
such that
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νA(Z −N) = 0 , νB(N) = 0 .

By theorem 22, or (13.7) applied to measures νA and νB ,

µx(Z −N) = 0 for all x ∈ A−NA ,(24.13’)

µy(N) = 0 for all y ∈ B −N ′A

where NA and N ′A are λ-null sets. However, the set NA,B of (x, y) ∈
A × B such that the measures µx and µy are not disjoint is contained in
A×N ′A ∪NA ×B, a null set by (LF). Hence

λ× λ(NA,B) = 0 .

Since X ×X −D is open in the product, it can be covered by open sets of
the form U × V , where U and V are open in X and disjoint (Hausdorff). As
X ×X −D is locally compact and separable, and so the union of a sequence
of compact sets, X ×X −D is the union of sets Un × Vn where, for each n,
Un are Vn are disjoint open sets. As

Un × Vn ⊂ Un × (X − Un) ,

relation (13) for A = Un andB = X−Un shows that the set of (x, y) ∈ Un×Vn
such that µx and µy are not disjoint is a null set with respect to λ×λ, proving
the result. This is the best that can be said since one can modify the measures
µx on a null set without changing ν.

Exercise 3. Let G be a unimodular lcg acting properly on a space Z, ν
a G-invariant measure on Z and λ the quotient measure [n◦ 15, (iv)]. Hence
ν =

∫
µxdλ(x) using notation (15.13). Show that the condition of point (d)

holds in this case.
Exercise 4. (a) Let µ′ and µ′′ be two positive measures on a locally com-

pact space Z. For any f ∈ L+(Z), set

µ(f) = inf
h∈L+(Z)

h≤f

[µ′(h) + µ′′(f − h)] .

Show that µ is the restriction to L+(Z) of a measure on Z and that a positive
measure is bounded above by µ′ and µ′′ if and only if it is bounded above
by µ. Set µ = inf(µ′, µ′′). (b) Suppose Z to be separable. Show that in the
previous formula, it is enough to make h vary in a countable set independent
of µ′ and µ′′ . (c) Let X and Z be two separable locally compact sets, λ a
positive measure on X and (µ′x), (µ′′x) two families of positive measures on
Z measurable with respect to λ. Set µx,y = inf(µ′x, µ

′′
y) for x, y ∈ X. Show

that, for all f ∈ L(X ×X), the function (x, y) 7→ µx,y(f) is measurable with
respect to λ× λ and that the set of (x, y) such that µx,y = 0 is measurable.
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25 – Convolution Product on a Lcg

To illustrate the general statements in integration theory and in particular
the Lebesgue-Fubini theorem, let us begin by show how they can be used to
extend to a lcgG the convolution product which has already been encountered
in Chap. VII (Fourier series) and even in Chap. II, n◦ 18, example 3 for dis-
crete groups. In all that follows, unless otherwise mentioned, “ measurable ”
or “ integrable ” over G or over G×G will be with respect to a left invariant
measure dx or to the product measure dxdy. To simplify, G may be assumed
to be countable at infinity, though this assumption is not needed for any of
the results.

(i) Convolutions and representations. Let us start by proving a reassuring
result:

Lemma 1. Let f be a function on G with values in a topological space. The
function (x, y) 7→ f(xy) is measurable on G×G if and only if f is measurable
on G.

Indeed, the most primitive version of LF shows that l’on a∫∫
F (x, y)dxdy =

∫∫
F
(
x, y−1

)
∆(y)dxdy =

∫
∆(y)dy

∫
F
(
x, y−1

)
dx

=

∫
∆(y)dy

∫
F
(
xy, y−1

)
∆(y)−1dx

=

∫∫
F
(
xy, y−1

)
dxdy

for all F ∈ L(G × G), where the function ∆ is that of n◦ 15, (i). Therefore,
the measure dxdy is invariant under the homeomorphism (x, y) 7→ (xy, y−1),
so that the latter transforms every measurable function into a measurable
function. As it transforms f(xy) into f(x), (x, y) 7→ f(xy) is measurable if
and only if so is (x, y) 7→ f(x), i.e. if and only if so is f , qed.

The most natural way of introducing the convolution product is to start
with a representation (H, U) of G [n◦ 15, (ii)], which need not be unitary
nor bounded. The function U(x)a being continuous for all a ∈ H and hence
bounded on all compact sets K ⊂ G, (n◦ 15)

sup
x∈K
‖U(x)‖ < +∞ .(25.1)

The function ‖U(x)‖ = ρ(x) is, moreover, lsc since it is the upper envelope of
the continuous functions x 7→ ‖U(x)a‖/‖a‖. So, for any compact set K ⊂ G,
there is point where ρ is minimum [Chap. V, n◦ 10, property (vi)]. This
minimum cannot be zero since the functions U(x) are invertible, whence
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inf
x∈K
‖U(x)‖ > 0 .(25.1’)

This being settled, the continuous function x 7→ U(x)a can be integrated (n◦

4) with respect to any complex measure µ such that∫
ρ(x)d|µ|(x) < +∞ .(25.2)

The vector

U(µ)a =

∫
U(x)a.dµ(x)

thus obtained depends linearly on a, and∥∥∫ U(x)a.dµ(x)
∥∥ ≤ ∫ ‖U(x)a‖ .d|µ|(x)

by (17.4), also holds for vector-valued functions. The operator U(µ) is thus
continuous and

‖U(µ)‖ ≤
∫
ρ(x)d|µ|(x) .

In particular, if the functions U(x) are isometric, in which case µ must be a
bounded measure, then ‖U(µ)‖ ≤ ‖µ‖, where ‖µ‖ = |µ|(G) is the norm of µ.

If λ are µ are two measures satisfying (2), first of all (n◦ 4)

U(x)U(µ)a = U(x)

∫
U(y)a.dµ(y) =

∫
U(x)U(y)a.dµ(y) .

Thus

U(λ)U(µ)a =

∫
U(x)U(µ)a.dλ(x) =

∫
dλ(x)

∫
U(xy)a.dµ(y) ,

and

U(λ)U(µ)a =

∫∫
U(xy)a.dλ(x)dµ(y) .(25.3)

Since ρ(xy) ≤ ρ(x)ρ(y), the double integral is bounded above by∫∫
ρ(x)ρ(y).d|λ|(x)d|µ|(y) =

∫
ρ(x)d|λ|(x).

∫
ρ(y)d|µ|(y) < +∞ ,

up the a factor ‖a‖, and LF justifies the formal calculation.
However, for any f ∈ L(G), by (1’), the function |f(x)| is dominated

by ‖U(x)‖, up to a constant factor. Hence, since ‖U(xy)‖ is integrable with
respect to d|λ|(x)d|µ|(y), so is f(xy). Setting
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ν(f) =

∫∫
f(xy)dλ(x)dµ(y)(25.4)

defines a linear functional on L(G). It is positive if this is also the case of
λ and µ. In the general case, λ and µ are linear combinations of positive
measures bounded above by |λ| and |µ|. This leads to the conclusion that (4)
is a complex measure.

(ii) Convolution of two measures. Regardless of whether representations
of G are used or not, these arguments lead to the definition of the measure

λ ∗ µ : f 7−→
∫∫

f(xy)dλ(x)dµ(y) =

∫∫
εxy(f)dλ(x)dµ(y)

provide only that ∫∫
|f(xy)| d|λ|(x)d|µ|(y) < +∞(25.5)

for all f ∈ L(G). For example no restrictions need be imposed if one of the
measures has compact support because, if λ is concentrated on a compact
set, the function y 7→

∫
|f(xy)|d|λ|(x) is in L(G). The measure ν has compact

support if this is also the case of λ and µ since, denoting by K and H the
compact subsets of G on which λ and µ are concentrated, ν(f) 6= 0 only if
the function f(xy) is not identically zero on K ×H . This supposes that f is
not identically zero on the compact set KH of xy where x ∈ K and y ∈ H.
The measure ν is, therefore, concentrated on KH. In particular, if λ and µ
are the Dirac measures εa and εb at the points a and b of G, then

εa ∗ εb = εab ,

and, for any measure µ, the measure

εa ∗ µ : f 7−→
∫
f(ay)dµ(y) ,

is the image of µ under the translation g 7→ ag. There is a similar result for
µ ∗ εa. Writing simply ε for the Dirac measure at e reveals its role of unit
element for the convolution product.

The definition also makes sense if λ and µ, hence λ×µ as well, are bounded
since, for f ∈ L(G), the function f(xy) is continuous and bounded on G×G.
The measure ν is then bounded and

‖λ ∗ µ‖ ≤ ‖λ‖.‖µ‖(25.6)

since integral (5) is ≤ ‖λ‖.‖µ‖.‖f‖.
As λ ∗µ is the image of λ×µ under (x, y) 7→ xy, theorem 23 of n◦ 14 can

be applied. It follows that:
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(a) a function f defined on G and with values in a topological space
is measurable with respect to ν if and only the function (x, y) 7→ f(xy) is
measurable with respect to the product measure |λ| × |µ|,

(b) a reasonable function f with values in a Banach space is integrable
with respect to λ ∗ µ if and only if it satisfies (5),

(c) relation (4) continues to hold in this case. In particular, (3) shows that

U(λ ∗ µ) = U(λ)U(µ) .(25.7)

Exercise 1. Show that

λ ∗ µ =

∫
εx ∗ µ.dλ(x) =

∫
λ ∗ εx.dµ(x)

(apply the definition of n◦ 12) and compare the previous results to those
obtained by directly applying the generalized LF theorem [n◦ 13, theorem 22,
in cases where condition (a) holds].

Every measure is the continuous sum of punctual measures

µ =

∫
εx.dµ(x)

and the convolution product, which from this point of view is just

λ ∗ µ =

∫∫
εx ∗ εy.dλ(x)dµ(y) ,

consists in extending by linearity group multiplication to these sums. This
is the argument which, a century ago, led Schur to define “ the algebra ”
of a finite group: it is a vector space over C (or any other commutative
field) having as basis the elements of the group, i.e. the Dirac measures, and
equipped with a an associative and linear multiplication whose restriction to
the basis is the composition law of G. In the case of a general lcg, the analogue
of Schur’s construction is any one of the following: the algebra M1(G) of
bounded measures on G or the algebra L1(G) equipped with the convolution
defined below. The second choice is better than the first one which is far too
extensive.

The convolution product is bilinear (obvious) and associative:

(λ ∗ µ) ∗ ν = λ ∗ (µ ∗ ν)(25.8)

provided ∫∫∫
|f(xyz)| d|λ|(x)d|µ|(y)d|ν|(z) < +∞(25.9)

for all f ∈ L(G). Indeed then∫∫
f(xyz)dλ(x)dµ(y) =

∫
f(uz)dλ ∗ µ(u)
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by LF, so that∫∫∫
f(xyz)dλ(x)dµ(y)dν(z) =

∫∫
f(uz)dλ ∗ µ(u)dν(z)

is the integral of f with respect to the left hand side of (8). But it is also∫
dλ(x)

∫∫
f(xyz)dµ(y)dν(z) =

∫
dλ(x)

∫
f(xv)dµ ∗ ν(v) ,

whence (8). The order of integration being of no importance, under assump-
tion (9), relation

λ ∗ µ ∗ ν =

∫
λ ∗ εx ∗ ν.dµ(x)

and other similar ones follow.

The case of a unitary representation (H, U) leads to the definition of an
operation µ 7→ µ̃ on measures which plays an important role. It is obtained
by calculating the adjoint of U(µ):

(U(µ)∗a|b) = (U(µ)b|a) =

∫
(U(x)b|a)dµ(x) =

∫ (
U
(
x−1

)
a|b
)
dµ(x)

=

∫
(U(x)a|b) dµ̃(x) ,

where

dµ̃(x) = dµ(x−1)(25.10)

is set to be the image under x 7→ x−1 of the conjugate µ. The notation µ∗

would be better since

U(µ)∗ = U(µ̃) .(25.11)

An immediate calculation shows that

(λ ∗ µ)˜= µ̃ ∗ λ̃(25.12)

if the convolution of λ and µ exists, and if

ε̃x = εx−1 for all x ∈ G .
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(iii) Convolution of a measure and a function. We suppose dµ(x) =
ϕ(x)dx where ϕ is locally integrable. Then, formally,

ν(f) =

∫∫
f(xy).dλ(x)ϕ(y)dy =

∫∫
f(xy).ϕ(y)dλ(x)dy

=

∫∫
f(y)ϕ(x−1y).dλ(x)dy .

Thus, permuting the names of the variables x and y,

ν(f) =

∫
f(x).λ ∗ ϕ(x)dx ,

where the function

λ ∗ ϕ(x) =

∫
ϕ
(
y−1x

)
dλ(y)(25.13)

is, by definition, the convolution of the function ϕ and the measure λ. For
example,

εy ∗ ϕ(x) = ϕ
(
y−1x

)
,(25.14)

whence

λ ∗ ϕ(x) =

∫
εy ∗ ϕ(x).dλ(y) .

No problems arise when ϕ or λ has compact support, or else when ϕ is
integrable and λ bounded, in which case ϕ∗λ is integrable (since the measure
λ ∗ µ is bounded) and satisfies

‖λ ∗ ϕ‖1 ≤ ‖λ‖.‖ϕ‖1 .

If we now suppose that dλ(x) = ϕ(x)dx, then for any measure µ, formally,

ν(f) =

∫∫
f(xy)ϕ(x)dxdµ(y) =

∫∫
f(x)ϕ

(
xy−1

)
∆(y)−1dxdµ(y) .

So dν(x) = ϕ ∗ µ(x)dx, where

ϕ ∗ µ(x) =

∫
ϕ
(
xy−1

)
∆
(
y−1

)
dµ(y) .(25.13’)

In particular,

ϕ ∗ εy(x) = ϕ
(
xy−1

)
∆(y)−1 .(25.14’)

These factors ∆ disappear if G is unimodular.
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Theorem 36. If λ is a bounded measure, then λ ∗ ϕ is defined for all
ϕ ∈ Lp(G) and all p ∈ [1,+∞], and is again in Lp and

‖λ ∗ ϕ‖p ≤ ‖λ‖.‖ϕ‖p .(25.15)

λ and ϕ may be supposed to be positive by replacing them with their
absolute values. We first need to show that, for all f ∈ L+(G), the func-
tion f(xy) is integrable with respect to dλ(x)ϕ(y)dy, i.e. (theorem 25) that
f(xy)ϕ(y) is integrable with respect to dλ(x)dy. First, it is measurable with
respect to dλ(x)dy: the function (x, y) 7→ ϕ(x) is measurable since ϕ is mea-
surable with respect to dx [n◦ 11, property (C7)], and so is (x, y) 7→ f(xy)
since it is continuous. By LF [Theorem 19, (iv)], it therefore suffices to show
that ∫

dλ(x)

∫
f(xy)ϕ(y)dy < +∞ ,(25.16)

where a priori these are upper integrals. The integral with respect to y poses
no problem since ϕ is locally integrable. As L(G) ⊂ Lq(G), where 1/p+1/q =
1, given left invariance of the measure needed to define ‖f‖q,∫

f(xy)ϕ(y)dy ≤ ‖f‖q‖ϕ‖p .

So the left hand side of (16) is ≤ ‖λ‖.‖f‖q‖ϕ‖p < +∞, which proves the first
result (corollary of theorem 30, n◦ 18). It remains to show that the measure
λ ∗ ϕ is in fact defined by a function satisfying (15).

We start by observing that the measure dλ(x)dy is invariant under the
homeomorphism (x, y) 7→ (x, x−1y) from G × G onto G × G since for all
F ∈ L(G×G),∫∫

F (x, y)dλ(x)dy =

∫
dλ(x)

∫
F (x, y)dy =

∫
dλ(x)

∫
F
(
x, x−1y

)
dy .

As this homeomorphism transforms the function f(xy)ϕ(y) appearing in (16)
into f(y)ϕ(x−1y), if ν = λ ∗ ϕ, then

ν(f) =

∫∫
f(xy)ϕ(y)dλ(x)dy =

∫∫
f(y)ϕ

(
x−1y

)
dλ(x)dy =

=

∫
f(y)dy

∫
ϕ
(
x−1y

)
dλ(x) .

LF then shows that, with respect to the Haar measure, the function x 7→
ϕ(x−1y) is λ-integrable96 for almost all y where f is not zero, hence almost

96 This result always seems incredible when first encountered: what does measura-
bility with respect to dx have to do with measurability with respect to an almost
arbitrary measure λ? But we do not claim that ϕ(x−1y) is λ-measurable with
respect to all y, we only claim that this is the case almost always. Exercise:
suppose G = R and λ(f) =

∑
f(ξn)/n2, where n 7→ ξn is a bijection from N

onto Q. Find an interpretation for this result in this case.
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everywhere if G is supposed to be countable at infinite (or almost everywhere
on every compact set otherwise). In addition, this calculation shows that the
function

λ ∗ ϕ(y) =

∫
ϕ
(
x−1y

)
dλ(x) ,

defined almost everywhere, is locally integrable and that as was seen above,

|ν(f)| ≤
∫
|λ ∗ ϕ(y)| . |f(y)| dy ≤ ‖λ‖.‖f‖q‖ϕ‖p

for all f ∈ L(G). Corollary of theorem 30, n◦ 18 finally shows that λ ∗ ϕ ∈
Lp(G) and satisfies (15), qed.

If Up(x) denotes the representation of G by left translations on Lp [n◦ 15,
(ii)], the function y 7→ ϕ(x−1y) is just Up(x)ϕ. However, the general definition
(4)

Up(λ)a =

∫
Up(x)a.dλ(x)

applies to the representation considered on Lp(G). It is, therefore, “ obvious ”
that, in this case,

Up(λ)ϕ = λ ∗ ϕ(25.17)

for all ϕ ∈ Lp. This is correct, but the left hand side is the integral of the
function x 7→ Up(x)ϕ with values in Lp, defined by the general method of
n◦ 4, (i), whereas the right hand side is defined in a completely different way.
Hence a proof is needed.

For the convenience of calculations, generally speaking, we set

(ϕ|ψ) =

∫
ϕ(x)ψ(x)dx if ϕ ∈ Lp , ψ ∈ Lq .

To show that ϕ = 0, it suffices to show that (ϕ|f) = 0 for all f ∈ L(G). So
the proof reduces to checking that

(Up(λ)ϕ− λ ∗ ϕ|f) = 0 for f ∈ L(G) .

As ϕ 7→ (ϕ|f) is a continuous linear functional on Lp, [n◦ 4, (i)]( ∫
Up(x)ϕ.dλ(x)

∣∣f) =

∫
(Up(x)ϕ|f) dλ(x) .

Hence by definition of Up(x), at least formally,( ∫
Up(x)ϕ|f

)
dλ(x) =

∫
dλ(x)

∫
ϕ
(
x−1y

)
f(y)dy

=

∫
f(y)dy

∫
ϕ
(
x−1y

)
dλ(x)

=

∫
λ ∗ ϕ(y).f(y)dy = (λ ∗ ϕ|f) .
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This calculation is justified by LF since we already know that under the
assumptions made, the function f(y)ϕ(x−1y) is integrable with respect to
dλ(x)dy. Hence (17).

As U(λ ∗ µ) = U(λ)U(µ) in any representation, (17) shows that

(λ ∗ µ) ∗ ϕ = λ ∗ (µ ∗ ϕ)

for all bounded measures λ and µ and the function ϕ ∈ Lp(G). This also
follows from (8).

Finally, the map µ 7→ µ̃ defined in (10) can be restated when dµ(x) =
ϕ(x)dx. Clearly,

dµ̃(x) = ϕ (x−1)d
(
x−1

)
= ϕ̃(x)dx ,

where

ϕ̃(x) = ϕ (x−1)
/
∆(x), = ϕ (x−1) if G is unimodular .(25.18)

The map ϕ 7→ ϕ̃ is isometric on L1(G), and even on all Lp(G) if G is uni-
modular. Relation (12) shows that

(λ ∗ ϕ)˜= ϕ̃ ∗ λ̃ .(25.19)

(iv) Convolution of two functions. If dλ(x) = ϕ(x)dx and dµ(x) = ψ(x)dx
are absolutely continuous, whence d|λ|(x)d|µ|(y) = |ϕ(x)ψ(y)|dxdy, then the
existence of the convolution product means (theorem 25) that f(xy)ϕ(x)ψ(y)
is integrable over G × G for all f ∈ L(G). Besides, it would be enough to
check it when f , instead of being continuous, is the characteristic function of
a compact set K ⊂ G, which would be reflected by the condition∫∫

xy∈K
|ϕ(x)ψ(y)| dxdy < +∞ .

Then

ν(f) =

∫∫
f(xy)ϕ(x)ψ(y)dxdy =

∫∫
f(x)ϕ(xy)ψ(y−1)dxdy .

Hence, if the measure ν is well-defined, the function y 7→ ϕ(xy)ψ(y−1) is (LF)
integrable for almost all x and its integral is a locally integrable function of
x since its product with any f ∈ L(G) is integrable. This gives the definition
of the convolution

ϕ ∗ ψ(x) =

∫
ϕ(xy)ψ(y−1)dy =

∫
ϕ(y)ψ(y−1x)dy(25.20)

of two locally integrable functions and the formula
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ν(f) =

∫
f(x).ϕ ∗ ψ(x)dx .(25.21)

Instead of y, it is possible to take y−1 in (20) provided dy = dly is replaced
by dy−1 = ∆(y)−1dy, a detail that should not be forgotten when G is not
unimodular.

There still remains to find assumptions under which integral (20) will be
well-defined. This is obviously the case if one of the functions ϕ, ψ is in L(G)
and the other one is integrable, the result being a continuous function with
compact support if this is also the case of ϕ and ψ. Theorem 36 leads to a
less trivial result:

Theorem 37. Let G be a locally compact group. For all ϕ ∈ L1(G) and
ψ ∈ Lp(G), 1 ≤ p ≤ +∞, the function y 7→ ϕ(xy)ψ(y−1) is integrable for
almost all x ∈ G, the function∫

ϕ(xy)ψ(y−1)dy = ϕ ∗ ψ(x)

is in Lp(G) and

‖ϕ ∗ ψ‖p ≤ ‖ϕ‖1.‖ψ‖p .(25.22)

If G is unimodular, the product ϕ ∗ ψ exists when ϕ ∈ Lp, ψ ∈ Lq with
1/p+1/q = 1. To see this it suffices to verify that f(xy)ϕ(x)ψ(y) is integrable
over G × G for all f ∈ L(G). The change of variable (x, y) 7→ (x, x−1y)
reduces the verification to the function f(y)ϕ(x)ψ(x−1y), and the change of
variable (x, y) 7→ (yx, y) to f(y)ϕ(yx)ψ(x−1). The function x 7→ ϕ(yx) is also
in Lp for all y, and x 7→ ψ(x−1) is again in Lq(G) since G is unimodular.
Moreover, the norm of these functions is the same as that of ϕ and ψ. Hence∫
|ϕ(yx)ψ(x−1)|dx ≤ ‖ϕ‖p‖ψ‖q, and so the double integral is convergent,

with here too relation (19).
For p = 1, (22) enables us to consider L1(G), equipped with the convolu-

tion product and the norm of L1, as a complete normed algebra – except that
it does not necessarily have a unit element. Such an element would indeed be
a function ε ∈ L1 for which ε ∗ f = f for all f , i.e. for which∫

f(xy)ε
(
y−1

)
dy = f(x) almost everywhere .

But if f ∈ L(G), both sides are continuous functions of x, so that the previous
relation must hold for all x. So the measure ε(y−1)dy is the initial Dirac
measure. It can be defined by an integrable function only if G is discrete.
Replacing L1 by the product

A1(G) = C× L1(G)

equipped with the obvious multiplication and the norm ‖(α, f)‖ = |α|+‖f‖1
reduces the general case to a normed algebras with unit element ε. This boils
down to introducing measures of the form αdε(x) + f(x)dx with α ∈ C.



§ 7. The Commutative Fourier Transform 183

When ϕ and ψ are both integrable, relation (7) shows that

U(ϕ ∗ ψ) = U(ϕ)U(ψ)(25.23)

for any bounded representation (H, U) of G, i.e. such that sup ‖U(x)‖ < +∞ .
If (H, U) is unitary, (11) shows that

U(ϕ)∗ = U(ϕ̃) .(25.23’)

It should be noted that, for ϕ,ψ ∈ L(G),

ψ̃ ∗ ϕ(x) =

∫
ψ̃(xy)ϕ

(
y−1

)
dy =

∫
ψ (y−1x−1)∆(xy)−1ϕ

(
y−1

)
dy

=

∫
ψ (yx−1)∆(x)−1ϕ(y)dy =

∫
ϕ(yx)ψ(y)dy

since d(yx) = ∆(x)dy. For x = e, this gives the very useful relation

(ϕ|ψ) = ε(ψ̃ ∗ ϕ)(25.24)

which enables us to compute the inner product of L2(G), at least if ϕ,ψ ∈
L(G). Similarly

ϕ ∗ ψ̃(x) =

∫
ϕ(xy)ψ̃(y−1)dy =

∫
ϕ(xy)ψ(y)∆(y)dy

and so

(ϕ|ψ) = ε
(
ϕ ∗ ψ̃

)
if G is unimodular .(25.24’)

Therefore, the identity

ε(f ∗ g) = ε(g ∗ f) for f, g ∈ L(G)(25.25)

characterizes unimodular groups. Measures satisfying it are said to be central
and will play an important role in n◦ 31.

(v) Dirac sequences . We saw how useful they were in Chap. V, n◦ 27 and
again in Chap. VII in relation to Fourier sequences and integrals. In fact they
can be defined in any locally compact space and, in the case of a group, they
can be constructed using convolution products. Let us start with a general
result:
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Lemma 2. Let X be a locally compact space, a a point of X and (µn) a
sequence97 of bounded complex measures on X. Assume the following condi-
tions hold:

(D 1) sup ‖µn‖ < +∞ ;

(D 2) lim
∫
dµn(x) = 1 ;

(D 3) for any compact neighbourhood V of a,

lim

∫
X−V

d|µn|(x) = 0 .(25.26)

Then

lim

∫
f(x)dµn(x) = f(a)(25.27)

for all Borel functions f , bounded and continuous at a. If the measures µn are
carried by a fixed compact set K, (27) holds for any Borel function continuous
at a and bounded on K.

Dividing µn by µn(1) which, by (D 2), tends to 1 reduces the proof to
the case where µn(1) = 1 for all n. The function f being Borel and bounded,
and hence integrable with respect to any bounded measure,

µn(f)− f(a) = µn [f − f(a)] = µn(g) ,

where g satisfies the same assumptions as f , with moreover g(0) = 0. Then,
for any compact neighbourhood V of a,

µn(g) =

∫
V

g(x)dµn(x) +

∫
X−V

g(x)dµn(x) .

The absolute value of the right hand side is bounded above by integral (26),
up to the factor ‖g‖∞, and so tends to 0 for all V . As g is continuous and
zero at a, |g(x)| < r on V if V is sufficiently small. For such a neighbourhood
V and sufficiently large n, (D 1) shows that the left hand side is ≤ Mr,
where M is a constant, whence (27). If there is a compact set K ⊂ X such
that |µn|(X −K) = 0 for all n, it is then unnecessary to investigate what is
happening in X −K, and replacing ‖g‖∞ by the uniform norm ‖g‖K on K,
the argument remains the same, qed.

It should again be noted that the proof equally applies to functions with
values in a Banach space. This can prove useful as we will see.

If (H, U) is a representation of some lcgG, this result can indeed be
applied to the function x 7→ U(x)a for all a ∈ H, since such a function

97 This countability assumption could be avoided by considering a family of mea-
sures µV dependent on a sufficiently small neighbourhood V of e and by changing
conditions (D 1) to (D 3) in an obvious manner.
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is continuous and bounded on every compact set. As a result, if (µn) is a
Dirac sequence at a = e, then

limU(µn)a = a(25.28)

for all a ∈ H.
Let us for example choose the representation given by left translations on

Lp(G) and apply (17). We find that

l.i.m.pµn ∗ ϕ = ϕ for all ϕ ∈ Lp(G) .(25.29)

If dµn(x) = fn(x)dx, where the functions fn are in L+(X), with integrals
equal to 1, and for large n, vanish outside an arbitrary compact neighbour-
hood of the unit element, then the conditions of lemma 2 hold. Thus

l.i.m.pfn ∗ ϕ = ϕ .(25.29’)

But in this case, the functions fn∗ϕ are continuous. Indeed, for all f ∈ L(X),

f ∗ ϕ(x) =

∫
f(xy)ϕ(y−1)dy .

As x tends to a limit x0, the function y 7→ f(xy) converges uniformly to
y 7→ f(xy0) while remaining zero outside a fixed compact set over which ϕ
is integrable. This enables to pass to the limit in the integral and so gives a
systematic way of approximating any f ∈ Lp by continuous functions.

These results admit several variants that one learns as and when required.
Till n◦ 28, we will content ourselves with commutative lcgs.

26 – Fourier Transform98 on L1(G)

(i) Characters of a commutative lcg. Though generally speaking the algebra
L1(G) does not have any unit element, we will say that a character of L1(G)
is a homomorphism χ from L1(G) to C satisfying χ(ε) = 1 if G is discrete; χ
may, on the contrary, be considered to be the trivial homomorphism when G
is not discrete. I will denote by X(G) the set of these characters and by ∞
the trivial character. Every character χ of L1 then arises from the character
(λ, f) 7→ λ+ χ(f) of the algebra A1(G) = C× L1(G), and so is continuous.
At the same time, X(G) is just the spectrum of the normed algebra A1(G).

98 All following results are already in André Weil’s book, but he used what was then
known (L. Pontrjagin) on the construction of general commutative lcgs based on
“ classical ” groups. Henri Cartan and the author’s article, Analyse harmonique et
théorie de la dualité dans les groupes abéliens localement compacts (Ann. scient.

de l’École normale supérieure, 1947) gives a direct presentation of the theory
starting from the Gelfand-Räıkov theorem on the existence of irreducible unitary
representations for every lcg and using functions of positive type which we will
discuss in the next §.



186 XI – Integration and Fourier Transform

Example 1. If G = R, the Fourier transform immediately provides us with
such homomorphisms, namely

f 7→ f̂(y) =

∫
f(x)e(xy)dx ,

where recall that e(x) = exp(2πix). If R is replaced by a Cartesian space E
with dual E∗, then likewise, setting

e(x, y) = exp (2πi 〈x, y〉) ,(26.1)

where 〈x, y〉 = y(x) is the value of the linear functional y ∈ E∗ at x ∈ E,
every y ∈ E∗ defines a character

f 7→ f̂(y) =

∫
f(x)e(x, y)dx

of L1(E), where dx is “ the ” Lebesgue measure on E used to define the
convolution product

f ∗ g(x) =

∫
f(x− y)g(y)dy .

Lemma 1. Let χ be a homomorphism from L1(G) to C which is not iden-
tically zero. Then there is a unique continuous function χ(x) on G such that

χ(xy) = χ(x)χ(y)(26.2)

and for which

χ(f) =

∫
f(x)χ(x)dx(26.3)

for all f ∈ L1(G). Then |χ(x)| = 1 and conversely, every bounded and mea-
surable solution of (2) defines a character of L1(G).

The existence of a bounded and measurable function χ(x) satisfying (3)
follows from the duality of Lp (n◦ 18, theorem 30). By definition of f ∗ g,
relation χ(f ∗ g) = χ(f)χ(g) can then be written∫∫

χ(xy)f(x)g(y)dxdy =

∫∫
χ(x)χ(y)f(x)g(y)dxdy .

This is in particular the case for f, g ∈ L(G). If χ is shown to be almost
everywhere equal to a continuous function, it will obviously satisfy the first
relation (1), |χ(x)| = 1 following from the fact that, for any x, the set of
numbers χ(x)n = χ(xn) must be bounded.
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But as the previous equality holds for all f, g ∈ L(G),∫
g(y)χ(xy)dy =

∫
g(y)χ(x)χ(y)dy = χ(x)χ(g)

necessarily holds for almost all x. The left hand side is the convolution of a
locally integrable function and of a continuous function with compact support
y 7→ g(y−1). So it is a continuous function of x. Thus the result follows by
choosing g in such a way that χ(g) 6= 0. The converse is obvious, qed.

A bounded, continuous solution of (2) which is identically zero is, by

definition, a character of the group G ; Ĝ will denote the set of characters of
G. Hence

X(G) =
Ĝ if G is discrete

Ĝ ∪ {∞} otherwise .
(26.4)

Following André Weil, the elements of Ĝ are often written by letters such as
x̂, ŷ, ĝ, etc, the value of the character x̂ at x ∈ G being written 〈x, x̂〉 = x̂(x).
To avoid confusion with the notation of linear algebra – also found in Fourier
transforms: example 1 above –, I will instead use the notation

e(x, χ) = χ(x)(26.5)

which recalls that of Chap. VII.
Example 2. For G = R, we recover the exponentials e(xy) of Fourier trans-

forms. There are no other solutions given the characterization of exponential
functions by their functional equation (Chap. IV). In the more general case
of a Cartesian space E, we clearly only get the functions e(x, y) of exam-
ple 1. If G = T, the multiplicative group of complex numbers with absolute
value 1, we obtain the exponentials en(u) = un of the theory of Fourier series
(Chap. VII, § 1), etc.

As the product of two characters is again a character, and so is the inverse
of a character, multiplication defines a commutative group structure on Ĝ.
Hence

e(xy, χ) = e(x, χ)e(y, χ) , e(x, χχ′) = e(x, χ)e(x, χ′) ,(26.6)

e(x, χ)−1 = e
(
x, χ−1

)
= e(x, χ) , |e(x, χ)| = 1 .(26.6’)

Example 3. For G = R, the characters are parameterized by real numbers
and multiplication in Ĝ becomes addition in R. For G = T, they are param-
eterized by n ∈ Z and Ĝ is the additive group Z. For G = Z, the characters
are functions n 7→ un, where u ∈ T, and, as a group, Ĝ is isomorphic to T.

By the way, note that in these three classical cases,
̂̂
G = G provided Ĝ is

equipped with the usual topology.
Exercise 1. Determine Ĝ when G is the multiplicative group C∗.
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In the light of these examples, in the general case, we associate a Fourier
transform

f̂(χ) =

∫
f(x)e(x, χ)dx(26.7)

to all functions f ∈ L1(G). By definition of characters,

f̂(χ) = χ(f)(26.7’)

and so, trivially, f̂ ∗ g = f̂ ĝ and
̂̃
f = f̂ . Also note the very useful formula

f ∗ χ(x) =

∫
f(y)χ

(
xy−1

)
dy = f̂(χ)χ(x)(26.8)

valid for all f ∈ L1(G).

(ii) The topology on the dual group. In the standard theory, the Fourier
transform of an integrable function is continuous and tends to 0 at infinity
(Chap. VII, n◦ 27, theorem 23). To generalize this theorem of Riemann-
Lebesgue proved in Chap. VII by methods special to R, we are going to
transform it into the definition of the topology of Ĝ. We will thus avoid
proving it, even if it means checking whether this topology is indeed the
usual one in standard cases.

Thus first of all it means equipping Ĝ with a topology that will make the
Fourier transforms f̂(χ) = χ(f) continuous. The simplest way of proceeding

is to do the bare minimum to ensure this result. However, Ĝ only differs
from the spectrum X(G) of A1(G) by the possible addition of the character

(λ, f) 7→ λ. So the solution is to equip Ĝ with the weak topology of the dual

of A1(G), i.e. of the dual L∞ of L1: a neighbourhood of a character χ0 ∈ Ĝ
must contain the intersection of a finite number of subsets of Ĝ each defined
by a relation of the form

|χ(f)− χ0(f)| < r , i.e.
∣∣∣f̂(χ)− f̂(χ0)

∣∣∣ < r .

Now, the set X(G) of characters of A1(G) is compact with respect to the

weak topology (n◦ 20, end). Since by lemma 1 or relation (4), Ĝ can be

identified with X(G) if G is discrete and with X(G)−{∞} otherwise, Ĝ is a
locally compact space in all cases (and compact if G is discrete, in which case
it is not necessary to check that the Fourier transforms tend to 0 at infinity!).

If G is not discrete, the compact subsets of Ĝ are the closed subsets of X(G)

which do not contain 0. Now, any relation of the form |f̂(χ)| ≥ r with r > 0
defines a closed subset of X(G) which does not contain 0. Thus relation

|f̂(χ)| ≥ r defines a compact subset of Ĝ, and so the function f̂ tends to
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0 at infinity99 on Ĝ as expected. This result, trivial except for vocabulary,
explains the notation ∞.

Lemma 2. The weak topology is identical to the topology of compact con-
vergence on Ĝ, t

(This shows that, for G = R, this is the usual topology of R). First,
compact convergence implies weak convergence in the unit ball of L∞. Indeed,
for f ∈ L1 and ϕ,ϕ0 in the unity ball of L∞,∣∣∣∣∫

G

f(x)ϕ(x)dx−
∫
G

f(x)ϕ0(x)dx

∣∣∣∣ ≤ ∫
G

|f(x)| . |ϕ(x)− ϕ0(x)| dx

=

∫
K

|f(x)| . |ϕ(x)− ϕ0(x)| dx+

∫
G−K

for every compact set K ⊂ G. For all r > 0, K can be chosen so that the
integral of |f | over G−K is < r. Then the latter integral is ≤ 2r for all ϕ and
ϕ0. If moreover |ϕ(x) − ϕ0(x)| ≤ r on K, in other words if ϕ is sufficiently
near ϕ0 with respect to the topology of compact convergence, the former one
is ≤ r‖f‖1. Hence the result.

Conversely, to prove that, weak convergence in Ĝ implies compact con-
vergence, we use a general result:

Lemma 3. Let E be a Banach space, E′ its topological dual, B′ the unit
ball100 of E′ and K a compact subset of E. Weak convergence in B′ is equiv-
alent to uniform convergence in K.

We need to show that, for all f0 ∈ B′ and all r > 0, there exists a
neighbourhood V of f0 in B′ equipped with the weak topology such that

f ∈ V =⇒ |f(x)− f0(x)| < r for all x ∈ K .

K being compact, for all r > 0 there are finitely many xi ∈ K such that
the balls B(xi, r) ⊂ E cover K. By definition, the set of f ∈ B′ such that
|f(xi)− f0(xi)| < r for all i is a neighbourhood V of f0 with respect to the
weak topology. For all x ∈ K, there exists i such that ‖x − xi‖ < r. For
f ∈ V , all of

|f (xi)− f0 (xi)| < r , |f (xi)− f(x)| ≤ r , |f0(x)− f0 (xi)| ≤ r
99 Recall that a function f defined on a locally compact space X tends to 0 at

infinity if the set |f(x)| ≥ r is contained in a compact set for all r > 0. Taking
the Alexandrov compactification X∪{∞} of X and setting f(∞) = 0, this means
that f is continuous at ∞ since its open neighbourhoods are by definition the
complements of the compact subsets of X.

100 If E is a Banach space, any continuous linear functional f on E has a norm

‖f‖ = sup |f(x)|
/
‖x‖ ,

so that the set E′ of these linear functionals is also a normed space, which is
obviously complete.
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hold. The last two inequalities follow from the essential assumption that
‖f‖ ≤ 1. Thus

f ∈ V =⇒ |f(x)− f0(x)| ≤ 3r

for all x ∈ K, qed.
Coming back to the proof of lemma 2, as a general rule let us set that

fx(y) = f(xy). Then relation (8) becomes

f̂(χ)χ(x) = f ∗ χ(x) =

∫
f(xy)χ(y)dy = χ(fx) .(26.9)

As fx is the image of f under the translation operator U(x−1) on L1, the
map x 7→ fx from G to the Banach space L1 is continuous [n◦ 15, (ii)].
For any compact set K ⊂ G, the set Kf of fx, where x ∈ K, is, therefore,

a compact subset of L1. Hence, if a varying χ ∈ Ĝ converges weakly to a
limit χ0 ∈ Ĝ, lemma 2 then implies the compact convergence of functions
f̂(χ)χ(x) to f̂(χ0)χ0(x). As f̂(χ) tends to f̂(χ0) and as f can be chosen so

that f̂(χ0) 6= 0, we conclude that χ(x) converges uniformly to χ0(x) on K,
proving lemma 2.

This result shows that the topology of Ĝ is compatible with the group
structure of Ĝ.

The set of functions f̂ is an algebra of continuous functions on X(G)

since f̂ ∗ g = f̂ ĝ. Replacing f by f̃ replaces f̂ by the conjugate function. The
functions f̂ separate the points of Ĝ. It would even be enough to only consider
f ∈ L(G). Functions of the form χ 7→ f̂(χ) + λ, where λ is an arbitrary
constant – i.e. the Gelfand transforms of the elements of A1(G) –, separate
the points of X(G). Hence they enable us to verify that the assumptions
of the Stone-Weierstrass theorem hold. As a result, Functions of the form
f̂(χ) +λ are everywhere dense in the space of continuous functions on X(G).

But to approximate a function vanishing at 0 =∞, i.e. a function of L∞(Ĝ),
there is no need to add constants. Thus:

Lemma 4. Fourier transforms of f ∈ L1(G) are everywhere dense in the

space L∞(Ĝ) of continuous functions tending to 0 at infinity on Ĝ.

We have already seen that if G is discrete, then Ĝ is compact. Let us show
that if G is compact, Ĝ is discrete. To this end, we use the orthogonality
relations ∫

χ(x)χ′(x)dx = 1 if χ = χ′ , = 0 if χ 6= χ′(26.10)

for the characters of a compact group, already encountered in Chap. VII
when G = T. This assumes that the invariant measure of G is normalized,
thus making (10) obvious for χ = χ′. For χ 6= χ′, we compute

χ′ ∗ χ(x) =

∫
χ′
(
xy−1

)
χ(y)dy = χ′(x) (χ|χ′) .
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As χ′ ∗ χ = χ ∗ χ′, χ′(x)(χ|χ′) = χ(x)(χ|χ′), and as two characters are
proportional only if they are the same, the expected result follows. This being
settled, it remains to check that the left hand side of (10) is a continuous

function of (χ, χ′) on Ĝ × Ĝ. This is clearly since the topology of Ĝ is that
of uniform convergence in G.

To summarize:

Theorem 38. Let G be a locally compact commutative group. The weak
topology of the dual of L1 coincides with the topology of compact convergence
on the multiplicative group Ĝ of characters of G. The Fourier transform of
every f ∈ L1(G) is continuous and tends to 0 at infinity on Ĝ. Any continuous

function tending to 0 at infinity on Ĝ is the uniform limit of functions f̂ ,
where f ∈ L1(G).

(iii) The canonical homomorphism G −→ ̂̂
G . Since, for given x, the func-

tion χ 7→ χ(x) = e(x, χ) is continuous, by (6), it is a character of Ĝ, and

hence an element of
̂̂
G . This gives a homomorphism of groups

j : G −→ ̂̂
G(26.11)

for which, by definition,

e(x, χ) = e [χ, j(x)] .(26.12)

In this relation, the left hand side refers to the duality between G and Ĝ,

the right hand one to the duality between Ĝ and
̂̂
G . Let us show that j is

continuous, in other words that, if some varying x ∈ G converges to some
a ∈ G, then e(x, χ) = χ(x) converges uniformly to χ(a) on every compact

set K ⊂ Ĝ.
Indeed, by (9),∣∣∣f̂(χ)χ(x)− f̂(χ)χ(a)

∣∣∣ = |χ(fx − fa)| ≤ ‖fx − fa‖1

for all χ ∈ Ĝ and f ∈ L1. As x 7→ fx is continuous, the right hand side
is arbitrarily small for x sufficiently near a. So, for all r > 0, there is a
neighbourhood V of a such that x ∈ V implies∣∣∣f̂(χ)χ(x)− f̂(χ)χ(a)

∣∣∣ < r for all χ ∈ Ĝ .

To deduce that, for all r > 0,

|χ(x)− χ(a)| < r for all χ ∈ K

if x is sufficiently near a, it suffices to show that there exists f ∈ L1 such
that
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inf
χ∈K

∣∣∣f̂(χ)
∣∣∣ > 0 .(26.13)

This is computation rule (R 3) of Chap. III, n◦ 7 concerning uniform con-
vergence. But using the function f̃(x) defined at the end of n◦ 24, (iii), a
trivial calculation shows that the Fourier transforms of f and f̃ are mutually
conjugate. As a result,

f =
∑

f̃i ∗ fi =⇒ f̂(χ) =
∑∣∣∣f̂i(χ)

∣∣∣2 ≥ 0 .(26.14)

This said, for all χ 6= 0, there exists f such that f̂(χ) 6= 0. One may assume

that |f̂(χ)| > 1 in the neighbourhood of χ, and so cover the compact set K
with finitely many open sets {|fi(χ)| > 1}. The function f =

∑
f̃i ∗fi is then

> 1 on K, qed.

27 – Fourier Transform on L2(G)

(i) The algebra A(G) and its characters. We consider the regular represen-
tation (H, U) of G,where H = L2(G) and where U(x) transforms f ∈ H
into

U(x)f : y 7−→ f
(
x−1y

)
.(27.1)

As was seen in (25.17), for f ∈ L1, the integrals

U(f) =

∫
U(x)f(x)dx(27.2)

are the convolution operators

U(f)g = f ∗ g(27.3)

on H. They satisfy

U(f ∗ g) = U(f)U(g) , U(f + g) = U(f) + U(g)(27.4)

and also

U(f)∗ = U(f̃) .(27.5)

These formal properties show that the set A(G) of limits in norm of operators
of the form U(f) +λ1 is a commutative GN algebra, not to be confused with
the algebra A1(G) used above. The Fourier transform on L2 will be obtained
by setting out clearly the results of n◦ 22 in this case; this is in particular
the case of Plancherel’s formula∫

|f(x)|2 dx =

∫
|f̂(χ)|2dχ ,
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which obviously assumes that the invariant measure dχ of Ĝ has been con-
veniently chosen.

Let us begin with the characters χ of A(G). Knowing them on an every-
where dense subspace is sufficient, for example on the subspace of operators
U(f) + λ1, and as χ(λ1) = λ, it is sufficient to know χ on all U(f). Since
‖U(f)‖ ≤ ‖f‖1, every character χ of A(G) defines a character of L1(G),
which will also be denoted by χ, such that

χ(f) = f̂(χ) = χ [U(f)] .(27.6)

This leads to an injective map from A(G) to X(G) which, as will be seen
later, is a homeomorphism.

For the moment, let us draw an important consequence of (6):

Theorem 39. The Fourier transform f 7→ f̂ , f ∈ L1(G), is injective. For
any pair of distinct elements x, y of G, there is a character χ of G such that
χ(x) 6= χ(y).

If f̂(χ) = 0 for all χ ∈ Ĝ, then, by (6), χ[U(f)] = 0 must perforce hold
for any character χ of A(G). But in a GN algebra, the Gelfand transform is
injective (theorem 33). Hence U(f) = 0, i.e. f ∗ g = 0 for all g ∈ L2. Thus
replacing g by a Dirac sequence and using (25.29) gives f = 0.

The second proposition, obvious for the groups mentioned in the examples
of the previous n◦, reduces to showing that for x 6= e, there exists χ such
that χ(x) 6= 1. But (26.9) can also be written

χ(f)χ(x) = χ (fx) ,(27.7)

where fx(y) = f(x−1y). If χ(x) = 1 for all χ, then χ(f − fx) = 0 for all

χ ∈ Ĝ and f ∈ L(G), whence it would follow from the first proposition of
the theorem that f − fx = 0 for all f ∈ L(G), an absurdity if x 6= e.

The map Â(G) −→ X(G) defined by (6) is clearly continuous with respect
to the weak topologies of the duals of A(G) and L1. As it is injective, it is,
therefore, a homeomorphism from A(G) onto a compact subset of X(G). In
fact:

Lemma 1. The map Â(Ĝ) to X(G) is surjective.

The proof consists of two parts, the first one comprising computations
without any immediately clear connections with the statement.

(a) We choose a character χ ∈ Ĝ. For all f ∈ L1, the function

χ′ 7−→ f̂
(
χ−1χ′

)
=

∫
f(x)χ(x)χ′(x)dx

is the Fourier transform of the function

V (χ)f : x 7−→ f(x)χ(x) = f(x)e(x, χ) .(27.8)
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Thus, considering χ′ a linear functional on L1,

χ′ [V (χ)f ] = f̂
(
χ−1χ′

)
.(27.9)

Operator (8) of multiplication by a function with absolute value 1 can be
defined on every Lp and in particular on L2, where it is unitary and satisfies

V (χ)∗ = V (χ) = V (χ)−1 .

In fact the map e χ 7→ V (χ) is a unitary representation of Ĝ on L2(G).
The product of V (χ) and some U(f) can be easily found:

V (χ)U(f)g(x) = χ(x).f ∗ g(x) = χ(x)

∫
f
(
xy−1

)
g(y)dy

=

∫
χ
(
xy−1

)
f(xy−1)χ(y)g(y)dy .

This function is obtained by applying the operator V (χ) to g, then the con-
volution operator by χ(x)f(x), i.e. by function (8), on the function obtained.
As a result, V (χ)U(f) = U [V (χ)f ]V (χ), i.e.

U [V (χ)f ] = V (χ)U(f)V (χ)−1 for all χ ∈ Ĝ .(27.10)

It follows that

T ∈ A(G) =⇒ V (χ)TV (χ)−1 ∈ A(G) .(27.11)

This is shown by (9) for T = U(f), hence for T = λ1 + U(f), and in the
general case can be deduced by passing to the limit in norm.

(b) We are now ready to prove the lemma. Let χ′ be a non-trivial character
of A(G) on L1. Map (11) being a ring homomorphism, by (10), the map

χ′′ : T 7−→ χ′
[
V (χ)TV (χ)−1

]
is also a non-trivial character of A(G) on L1. Identifying χ′ and χ′′ with the
corresponding characters of L1, if T = U(f), then (10) shows that, for all
χ ∈ G, V (χ)TV (χ)−1 corresponds to the function V (χ)f . So by (9),

χ′′(f) = χ′ [V (χ)f ] = f̂
(
χ−1χ′

)
.

Hence if a character χ′ of G stems from a character of A(G), so does χ−1χ′

for all χ ∈ Ĝ. As a result, any character of G stems from a character of A(G),
qed.

Exercise101 1. Show that the set of operators uV (χ)U(x), where u is a

scalar with absolute value 1 and where x ∈ G, χ ∈ Ĝ, is a group with the
usual multiplication. What the group law is thereby obtained on T×G× Ĝ?

101 Trivial starting point from which in 1964 André Weil drew far less trivial con-
sequences (Collected Works, volume 3, pp. 143–211). For G = R, the question is
related to the Heisenberg group, i.e the set of real 3× 3 upper triangular matri-
ces with 1’s on the diagonal, whose Plancherel formula I had computed in 1949
(Journal de Liouville, 1951). Dieudonné transformed part of Weil’s article into
exercises 1 to 8 of XXII.15.
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(ii) Spectral decomposition of the regular representation. We are now able
to apply the general constructions of n◦ 22 to the algebraA(G). Before doing
so, we set out clearly the GN theorem in this case.

For all T ∈ A(G), by lemma 1, the Gelfand transform of the general case

can be identified with a continuous function T̂ (χ) on X(G) such that

T̂ (χ) = f̂(χ) if T = U(f) ,(27.12)

on the understanding that f̂(0) is set to be equal to 0 if χ is trivial on

U(f) for all f ∈ L1(G). The GN theorem tells us that the map T 7→ T̂ is an

isomorphism for all structures. The functions T̂ are, therefore, the continuous
functions on X(G), i.e. functions of the form ϕ+Cte, where ϕ ∈ L∞(Ĝ), the

Fourier transforms of f ∈ L1(G) being functions belonging to L∞(Ĝ).
On the other hand, n◦ 22 enables us to associate to any pair of functions

p, q ∈ H = L2(G) a measure µp,q on X(G) such that

(Sp|Tq) =

∫
X(G)

Ŝ(χ)T̂ (χ)dµp,q(χ)(27.13)

for all S, T ∈ A(G). For S = U(f) and T = U(g) or 1, Ŝ = f̂ and T̂ = ĝ or 1.
Thus relations

(f ∗ p|g ∗ q) =

∫
f̂(χ)ĝ(χ)dµp,q(χ)(27.14)

(f ∗ p|q) =

∫
f̂(χ)dµp,q(χ)(27.14’)

which hold for all f, g ∈ L1. All these integrals are a priori extended to X(G)

and not only to Ĝ.
These measures enable us to associate an operator M(ϕ) on L2(G), given

by

(M(ϕ)p|q) =

∫
X(G)

ϕ(χ)dµp,q(χ) ,(27.15)

to “ every ” bounded (for example Borel) function ϕ on X(G). These opera-
tors commute with all T ∈ A(G), in particular with all U(f), and commute
pairwise as in all spectral decompositions. As was seen in n◦ 22,

M(αϕ+ βψ) = αM(ϕ) + βM(ψ) ,

M(ϕψ) = M(ϕ)M(ψ) , M(ϕ) = M(ϕ)∗ ,(27.16)

and also, by (14’),

M(f̂) = U(f) for all f ∈ L1 .(27.17)
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In particular, any reasonable subset ω ⊂ X(G) defines a projection oper-
ator M(ω) on L2. Computing the operator M associated to the product of
the characteristic function of ω and a bounded function ϕ shows that

(M(ω)M(ϕ)p|q) =

∫
ω

ϕ(χ)dµp,q(χ)(27.18)

for all bounded ϕ and p, q ∈ L2(G). Let us for example take ω = {∞}
by assuming that G is not discrete. For ϕ = f̂ , the right hand side of
(12) is f̂(∞)µp,q(ω) = 0. Hence, as in this case M(ϕ)p = U(f)p = f ∗ p,
(M(ω)U(f)p|q) = 0. So q ∈ L2 being arbitrary, this proves that, for all
functions f ∈ L1 and p ∈ L2, f ∗ p is a zero of M(ω). But in L2, every
function p can be approximated by such convolutions using Dirac sequences.
So M(ω) = 0, which shows that {∞} is null with respect to all µp,q. Hence

in (13) it is enough to integrate over Ĝ or, equivalently, to regard all µp,q as

bounded measures on Ĝ.
One can also choose the function χ 7→ χ(x) for some x ∈ G. It is contin-

uous and bounded. Denoting by M(x) the corresponding operator,

(M(x)M(ϕ)p|q) =

∫
χ(x)ϕ(χ)dµp,q(χ)

for all bounded and Borel ϕ on Ĝ, in particular for ϕ = 1. Let us show that
M(x) = U(x)−1. For ϕ = f̂ , a trivial calculation gives

χ(x)f̂(χ) =

∫
f(xy)χ(y)dy .

This is the Fourier transform of the function U(x)−1f = fx : y 7→ f(xy). So,
as M(ϕ) = U(f) in this case,

M(x)U(f) = U(fx) =

∫
f(xy)U(y)dy = U(x)−1U(f) ,

whence M(x) = U(x)−1. Therefore,

(U(x)M(ϕ)p|q) =

∫
e(x, χ)ϕ(χ)dµp,q(χ)(27.19)

for any bounded and Borel function ϕ on Ĝ, especially for ϕ = 1.

(iii) The invariant measure on the dual. To simplify notation, set

L12 = L12(G) = L1(G) ∩ L2(G) ,

A confusion with the space Lp for p = 10 + 2 = 7 + 5 being unlikely. The
Fourier transforms of f ∈ L12 are everywhere dense in L∞(Ĝ) since L12
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contains L(G). The set they form is also a subalgebra of L∞(Ĝ) with respect
to the usual multiplication, since L12 is a subalgebra of L1 with respect to
the convolution product thanks to relations

L1 ∗ L1 ⊂ L1 , L1 ∗ L2 ⊂ L2 .

The measures µp,q associated to the functions of L12 satisfy an identity that
will be the starting point of the proof of Plancherel’s theorem:

Lemma 2. For all f, g, p, q ∈ L12(G),

f̂(χ)ĝ(χ)dµp,q(χ) = p̂(χ)q̂(χ)dµf,g(χ) .(27.20)

As (20) is an identity between two measures, we need to show that∫
ϕ(χ)f̂(χ)ĝ(χ)dµp,q(χ) =

∫
ϕ(χ)p̂(χ)q̂(χ)dµf,g(χ)(27.20’)

for all ϕ ∈ L(Ĝ) or, more generally, Borel and bounded. This means that

(M(ϕf̂ ĝ)p|q) =
(
M
(
ϕp̂q̂

)
f |g
)

or, by (16) and (17), that

(M(ϕ)U(f)p|U(g)q) = (M(ϕ)U(p)f |U(q)g) .

This is obvious since, under the assumptions of the lemma,

U(f)p = U(p)f = f ∗ p

because G is commutative.

Lemma 3. For p, q ∈ L12(G), the measure dµp,q does not depend on the
function p ∗ q̃.

Indeed by (17), under the assumptions of the lemma, for f ∈ L(G)

µp,q(f̂) = (M(f̂)p|q) = (U(f)p|q) = (f ∗ p|q) .

So by (25.24’),

µp,q(f̂) = (f ∗ p) ∗ q̃(e) = f ∗ (p ∗ q̃) (e) ,

associativity being justified since f , p and q are integrable. As f̂ determines f
(theorem 39) and as all f̂ are everywhere dense in L∞(Ĝ), the bounded
measure µp,q only depends on p ∗ q̃, which proves the lemma.
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Theorem 40. The invariant measure on Ĝ can be chosen in such a way
that

dµp,q(χ) = p̂(χ)q̂(χ)dχ(27.21)

for all p, q ∈ L12(G).

To simplify calculations, I will denote by Λ the set of functions of the
form P (χ) = p̂(χ)q̂(χ) on G, where p, q ∈ L12(G). Lemma 3 enables us to
associate the measure

dµP (χ) = dµp,q(χ)

to such a function P . Then the following properties hold:

(Λ 1): PQ ∈ Λ for all P,Q ∈ Λ ;
(Λ 2): for all P,Q ∈ Λ,∫

P (χ)dµQ(χ) =

∫
Q(χ)dµP (χ) ;(27.22)

(Λ 3): for every compact set K ⊂ Ĝ, there exists P ∈ Λ such that
P (χ) 6= 0 for all χ ∈ K.

The first one follows from the fact that L12 ∗L12 ⊂ L12. The second one is
just lemma 2. To obtain the third one, observe that, the Fourier transforms
of f ∈ L(G) being everywhere dense on L∞(Ĝ), there exists p ∈ L(G) such
that |p̂(χ)| ≥ 1 on K. The function P (χ) = |p̂(χ)|2 answers the question.

This being settled, let us show that there is a measure µ on Ĝ such that
dµP (χ) = P (χ)dµ(χ) for all P ∈ Λ, i.e.

µP (ϕ) = µ(ϕP ) for ϕ ∈ L(Ĝ) and P ∈ Λ .(27.23)

As (22) can be formally written as

P (χ)−1dµP (χ) = Q(χ)−1dµQ(χ) ,(*)

“ obviously ” the measure P (χ)−1dµP (χ) does not depend on P , which gives
the expected measure µ. But both sides of (*) are well-defined only if the
functions P and Q do not vanish.102 Arguments, therefore, need to be less
brutal.

Therefore, let us associate the open set ΩP = {P (χ) 6= 0} to each P ∈ Λ
and identify L(ΩP ) with the subspace of f ∈ L(Ĝ) whose support is contained

in ΩP . We define a measure νP on ΩP – and not on Ĝ – setting

102 The reader desiring an easy proof for G = Rn will observe that, in this case, the
function p(x) = exp(−π‖x‖2), obviously in L12, does not vanish and is equal to

its Fourier transform (here Ĝ = G). For P (χ) = p̂(χ)p̂(χ) = p(χ)2, the left hand
side of (*) is well-defined. Denoting it by dµ(χ), both sides of (14) can then be

divided by P (χ), and so dµp,q(χ) = p̂(χ)q(χ)dµ(χ) for all p, q ∈ L12, qed.
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νP (ϕ) =

∫
ϕ(χ)P (χ)−1dµP (χ)

for all ϕ ∈ L(ΩP ). This is well-defined since the function being integrated
vanishes outside a compact subset of ΩP . To show that the result does not
depend on P , we consider another function Q ∈ Λ and suppose that the
support K of ϕ is contained in ΩP ∩ΩQ. As PQ does not vanish on ΩP ∩ΩQ,
ϕ = ψPQ for some ψ ∈ L(X,K). Thus by (22),

νP (ϕ) = µP (ψQ) = µQ(ψP ) = νQ(ϕ) .

As (Λ 3) implies that the open sets ΩP cover Ĝ, the existence of µ will
be a consequence of a general result which enables us to construct a measure
by “ gluing ” together measures defined on open sets:

Lemma 4. Let X be a locally compact space and (Ωi)i ∈ I an open cover of
X. Suppose that a measure µi is given on each Ωi. There is a measure µ on
X such that

µ(f) = µi(f)(27.24)

for all f ∈ L(X) with support contained in Ωi if and only if, for any ordered
pair (i, j),

µi(f) = µj(f)(27.25)

for all f ∈ L(X) with support K ⊂ Ωi ∩Ωj.

(25) is clearly necessary. If this condition holds and if some f ∈ L(X)
vanishes outside a compact set K, there exist pi ∈ L(X) whose supports are
contained in the sets Ωi, which are trivial for almost all i, and such that∑
pi = 1 on K. If some qi ∈ L(X) satisfy the same conditions, then by the

Lemma’s assumptions µi(fpiqj) = µj(fpiqj). Hence∑
i

µi(fpi) =
∑
i,j

µi(fpiqj) =
∑
i,j

µj(fpiqj) =
∑
j

µj(fqj) .

Therefore, the expression µ(f) =
∑
µi(fpi) only depends on f . It is the

expected measure µ.
We have thus shown that there exists a (unique) measure µ on Ĝ such

that

(M(ϕ)p|q) = µp,q(ϕ) =

∫
ϕ(χ)p̂(χ)q̂(χ)dµ(χ)(27.26)

for all functions ϕ ∈ L(Ĝ) and p, q ∈ L12(G). It is positive since the left hand
side is ≥ 0 for ϕ ≥ 0 and p = q. The invariance of µ remains to be shown. .

First of all, (26) means that the measures dµp,q(χ) and p̂(χ)q̂(χ)dµ(χ) are
identical for all p, q ∈ L12(G). Since the measure dµp,p(χ) = |p̂(χ)|2dµ(χ) is
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bounded, this shows (n◦ 18, corollary of theorem 30) that p̂ ∈ L2(Ĝ;µ) for
all p ∈ L12(G). Formula (26) thus holds for any bounded continuous (and

even Borel: theorem 25) function ϕ on Ĝ, and in particular if ϕ(χ) = f̂(χ)
for some f ∈ L12(G). In this case, (26) becomes

(f ∗ p|q) =

∫
f̂(χ)p̂(χ)q̂(χ)dµ(χ)(27.27)

for f, p, q ∈ L12. As in general

p̂
(
χχ−10

)
=

∫
p(x)e

(
x, χχ−10

)
dx =

∫
p(x)χ0(x)e(x, χ)dx ,

making a translation act on the function being integrated in (27) amounts
to multiplying f , p and q by the same character χ0 de G. Denoting this
operation by f 7→ f ′,

f ′ ∗ p′(x) =

∫
χ0

(
xy−1

)
f
(
xy−1

)
χ0(y)p(y)dy = χ0(x).f ∗ p(x) ,

i.e. (f ∗ p)′ = f ′ ∗ p′. Therefore, since f 7→ f ′ is obviously unitary,

(f ′ ∗ p′|q′) = (f ∗ p|q) .(27.28)

This proves that integral (27) does not change if the integrated function is
made to undergo a translation χ 7−→ χχ−10 or else that any image µ′ of µ
under a translation also satisfies (27). So∫

f̂(χ)p̂(χ)q̂(χ)dµ(χ) =

∫
f̂(χ)p̂(χ)q̂(χ)dµ′(χ)

for all p, q ∈ L12(G). As the functions f̂ are everywhere dense on L∞(Ĝ), the
equality

p̂(χ)q̂(χ)dµ(χ) = p̂(χ)q̂(χ)dµ′(χ)

between bounded measures follows, whence µ = µ′ because of (Λ 3). This
completes the proof of theorem 40.

Corollary 1 (Plancherel). There is a unique isomorphism f 7→ f̂ from

L2(G) onto L2(Ĝ) which reduced to the Fourier transform on L12(G).

The proof reduces to showing that the set of f̂ , f ∈ L12, is everywhere
dense on L2(Ĝ). Otherwise, there is a non-zero function F ∈ L2(Ĝ) orthog-

onal to all f̂ , in particular to all P ∈ Λ used in the proof of theorem 40,
whence ∫

F (χ)p̂(χ)q̂(χ).dχ = 0
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for all p, q ∈ L12(G). As F and p̂ are in L2(Ĝ), the measure F (χ)p̂(χ)dχ is
bounded, and the previous relation becomes (theorem 25)∫

q̂(χ).F (χ)p̂(χ)dχ = 0 .

The functions q̂ being everywhere dense on L∞(Ĝ), the measure F (χ)p̂(χ)dχ

is zero, and as the open sets {p̂(χ) 6= 0} cover Ĝ, the same holds for F (χ)dχ,
whence F (χ) = 0 ae., qed.

Corollary 2. The Fourier transform of the product fg of two square inte-
grable functions is the convolution f̂ ∗ ĝ of their Fourier transforms.

Let us prove this by replacing g by its conjugate. The Fourier transform
of the convolution is the function

χ 7−→
∫
f(x)g(x)e(x;χ)dx .

That of the function g(x)e(x;χ) is clearly the function

χ′ 7−→ ĝ
(
χχ′−1

)
.

Plancherel’s formula thus shows that the Fourier transform of fg is

χ 7−→
∫
f̂ (χ′) ĝ (χχ′−1)dχ′ ,

qed.

(iv) Fourier inversion formula and biduality.

Theorem 41. Let f be a function belonging either to L1(G) or to L2(G),
and whose Fourier transform is integrable ; then

f(x) =

∫
e(x;χ)f̂(χ)dχ almost everywhere(27.29)

and the right hand side is a continuous function on G.

(a) If f ∈ L1(G), then the operator U(f) : g 7→ f ∗ g is in the algebra
A(G) and

(U(f)p|q) =

∫
f̂(χ)p̂(χ)q̂(χ)dχ(27.30)

for all p, q ∈ L2(G). Hence, if p, q ∈ L(G), then

(U(f)p|q) =

∫∫
f̂(χ)p̂(χ)q(x)e(x;χ)dxdχ ,
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the function being integrated being in L1(G× Ĝ) since f̂ and q are integrable
and p̂ bounded. If this result is applied to the functions p ∈ L+(G) with
integrals equal to 1 and vanishing outside smaller and smaller neighbourhoods
of e, then the function p̂(χ) converges uniformly to 1 on every compact set,
with |p̂(χ)| ≤ 1. Hence passing to the limit in the integral is possible. On the
left hand side, U(f)p = f ∗ p converges to f in L1(G), and as q is assumed
to be in L(G), passing to the limit on the left hand side is possible. So∫

f(x)q(x)dx =

∫∫
f̂(χ)q(x)e(x;χ)dxdχ

for all q ∈ L(G). The double integral does not pose any problems because of

the assumptions on f̂ . Thus the inversion formula readily follows.
(b) Case where f ∈ L2(G). For all g ∈ L(G), (Plancherel)

f ∗ g̃(x) = (f |U(x)g) =

∫
f̂(χ)ĝ(χ)e(x, χ)dχ .

Let us apply this identity to some gn ≥ 0 with integral 1 and converging
to the Dirac measure at e. The function appearing in the integral tends to
f̂(χ)e(x, χ) while remaining ≤ |f̂(χ)|. Therefore, the second integral tends

(dominated convergence) to
∫
f̂(χ)e(x, χ). On the left hand side,

f ∗ g̃n(x) = U(g̃n)f

and so, by (25.29),

f = l.i.m.2f ∗ g̃n(x) .

The result then follows from Riesz-Fischer.

Theorem 42. The canonical homomorphism j : G −→ ̂̂
G is bijective.

The Fourier transform on G is an isomorphism f 7→ f̂ from L2(G) onto

L2(Ĝ). Likewise, the Fourier transform on Ĝ is an isomorphism onto L2(
̂̂
G)

mapping f̂ onto
̂̂
f . This gives an isomorphism f 7→ ̂̂

f from L2(G) onto L2(
̂̂
G).

If f̂ ∈ L12(Ĝ), the functions f and
̂̂
f are continuous and, by the previous

theorem, coincide on G if the Fourier transform on Ĝ is defined accordingly.
The theorem will follow once we have shown that, under the assumption

G 6= ̂̂
G , there exists a function f 6= 0 such that f̂ ∈ L12(Ĝ) and

̂̂
f = 0 on G.



§ 7. The Commutative Fourier Transform 203

For this purpose, we consider two functions p, q ∈ L(
̂̂
G) and the corre-

sponding functions ϕ,ψ ∈ L2(Ĝ). Plancherel’s formula for Ĝ (corollary 2

above) shows that p ∗ q, calculated in
̂̂
G , is the Fourier transform of ϕψ.

This function is integrable and, since the Fourier transforms of ϕ and ψ are
integrable, ϕ and ψ are given by the inversion formula applied to Ĝ. As a
result, ϕ and ψ are continuous and bounded, and so ϕψ ∈ L12(Ĝ). By the

previous theorem applied to G, the function f ∈ L2(G) such that f̂ = ϕψ is,

therefore, continuous on G and
̂̂
f = p ∗ q. If G 6= ̂̂

G , p and q can easily be

chosen in such a way that p ∗ q is zero on G, but not on all of
̂̂
G : if A and

B are the supports of p and q, it suffices for the intersection of AB and the

closed set G ⊂ ̂̂
G to be empty. This condition is satisfied by choosing A to

be a disjoint compact subset of G with non-empty interior, and B to be a
sufficiently small compact neighbourhood of the unit, qed.

Exercise 1. Generalize the Poisson summation formula.
Exercise 2. Show that

dµp,q(x) = p̂(x)q̂(x)dx

for all p, q ∈ L2(G).
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§ 8. Unitary Representations of Locally Compact Groups

28 – Further Representation Theory

As was mentioned in n◦ 15 and 23, a representation of a lcgG is a homomor-
phism x 7→ U(x) from G to the group of invertible continuous operators of a
Banach space H such that the map

x 7−→ U(x)a

is continuous for all a ∈ H. n◦ 25, (i) enabled us to associate to every complex
measure µ on G a continuous operator U(µ) given by

U(µ)a =

∫
U(x)a.dµ(x) ,(28.1)

at least if
∫
||U(x)||d|µ|(x) < +∞, an empty condition when µ has compact

support, and in particular when dµ(x) = f(x)dx for some f ∈ L(G). The
corresponding operator is then denoted by U(f). n◦ 25 shows that

U(µ ∗ ν) = U(µ)U(ν)(28.2)

if these operators are well-defined, and especially if µ and ν have compact
support. In particular,

U(f ∗ g) = U(f)U(g)(28.2’)

for all f, g ∈ L(G). The next result, where we only consider functions f ∈
L(G), though easy is very useful:

Lemma 1. Let (H, U) be a representation of G. Every a ∈ H is the limit
of vectors of the form U(f)a. A closed vector subspace of H is invariant
under all U(x), if and only if it is so under all U(f). A continuous operator
commutes with all U(x) if and only if it commutes with all U(f). If (H, U)
is unitary, the set of U(f) is everywhere dense with respect to the ultrastrong
topology on the von Neumann algebra they generate.

The first proposition was proved at the end of n◦ 25: given measures of the
form fn(x)dx, with fn ≥ 0 having integral equal to 1 and vanishing outside
compact on decreasingly small neighbourhoods of e, limU(fn)a = a for all a.
This also implies the last proposition: indeed if A denotes the von Neumann
algebra generated by all U(f), i.e. the set of operators which commute with all
operators commuting with all U(f), then [n◦ 19, (vii)] the set of U(f) +λ1 is
known to be everywhere dense in A with respect to the ultrastrong topology;
to show that so is the set of U(f), it suffices [n◦ 19, (vii), lemma 9] to check
that 0 is the the only element of H mapped to 0 by all U(f), which is obvious.
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On the other hand, the formula U(f)a =
∫
U(x)a.f(x)dx shows that

U(f)a is a limit of linear combinations of vectors U(x)a. Any closed subspace
invariant under all U(x) is, therefore, invariant under all U(f). The relation

U(x)U(f)a = U (εx)U(f)a = U (εx ∗ f) a

shows that any subspace, not necessarily closed, invariant under all U(f), is
invariant under all U(x).

If a continuous linear operator A on H commutes with all U(x), the
linearity of the integral of vector functions [n◦ 4, formula (*****)] shows that

AU(f) =

∫
AU(x)f(x)dx =

∫
U(x)Af(x)dx = U(f)A .

Conversely, if A commutes with all U(f), for any x ∈ G, we choose fn such
that the measure fn(y)dy converges to the Dirac measure at x. Then

U(x)Aa = limU (fn)Aa = A. limU (fn) a = AU(x)a ,

qed.
In the case of a unitary representation, formulas (25.10) and (25.11) hold

for any bounded measure µ:

U(µ)∗ = U (µ̃) où µ̃(x) = dµ (x−1) ,(28.3)

U(f)∗ = U(f̃) où f̃(x) = f (x−1)
/
∆(x)(28.3’)

for f ∈ L1(G). The set of operators U(f) is, therefore, a self-adjoint algebra in
H. Conversely, a unitary representation of G can be obtained from operators
U(f):

Lemma 2. Let H be a Hilbert space and f 7→ U(f) a homomorphism from
the algebra L(G) to the algebra L(H). Suppose that

U(f)∗ = U(f̃) , ‖U(f)‖ ≤ ‖f‖1 for all f ∈ L(G)

and that the relation U(f)a = 0 for all f ∈ L(G) implies a = 0. Then there
is a unique unitary representation x 7→ U(x) of G in H such that

U(f) =

∫
U(x)f(x)dx for all f ∈ L(G) .

First, the subspace H0 generated by all vectors U(f)a is everywhere dense
in H because a vector orthogonal to H0 is a zero of all U(f)∗, hence of all
U(f), and so is zero.

To define U(x) for x ∈ G, we first do so on H0. The formula to be used
is obvious:

U(x)
∑

U (fi) ai =
∑

U (εx ∗ fi) ai .
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A small calculation immediately shows that the norms of the two sums are
equal, which gives bijective and isometric U(x) : H0 −→ H0 such that
U(xy) = U(x)U(y). They can be extended to unitary operators on H. We
check that the maps x 7→ U(x)a are continuous and that the representation
(H, U) satisfies the required condition by using the simplest properties of the
convolution product on L(G).

L(G) could be replaced by L1(G) in this statement.
Both versions of Schur’s lemma proved at the end of n◦ 22, (iii) and in

n◦ 23, (iii), corollary 2 of theorem 35 can be applied to irreducible unitary
representations. The next version is also very useful:

Schur’s Lemma III. Let (H, U) and (H′, U ′) be two irreducible unitary
representations of G and T : H −→ H′ a continuous linear map such that
TU(x) = U ′(x)T for all x ∈ G. If T 6= 0, the two given representations are
equivalent.103

To prove proposition (b), observe that T ∗T : H −→ H commutes with all
U(x), and so is a scalar which can be assumed to be equal to 1. The map T is
then isometric, and so its image is a closed subspace of H′. As it is invariant
and non-trivial, T is bijective, qed.

A trivial corollary: Every irreducible unitary representation of a commu-
tative lcg G has dimension one, i.e. is a group character. Hence Plancherel’s
formula can be regarded as a decomposition of the regular representation into
a continuous sum of irreducible representations of dimension one:∫

G

(U(x)f |g) =

∫
Ĝ

(
U(x;χ)f̂(χ)

∣∣ĝ(χ)
)
dχ .

On the left hand side, U(x) is the translation operator which, in L2(G),
transforms the function f(y) into the function f(x−1y), On the right hand

side, we equip C with the inner product (u|v) = uv, Finally, for χ ∈ Ĝ,
U(x;χ) is the multiplication operator by χ(x) = e(x;χ) on C. By the way,
note that in the formula

f̂(χ) =

∫
f(x)χ(x)dx =

∫
U
(
x−1;χ

)
f(x)dx

f̂(χ) appears as the operator U(f) associated to the conjugate representation
χ of χ. In the case of a non-commutative lcg, to obtain formulas compatible
with the previous one, one would need to define operators U(f) by U(f) =∫
U(x−1)f(x)dx. The “ Fourier transform ” of f would then be the function

which associates to each class of irreducible unitary representations of G the
corresponding operator U(f). But this definition of U(f) would lead to the
relation U(f ∗ g) = U(g)U(f) which, on a commutative group, assuredly

reduces to the formula (f ∗ g)̂ = f̂ ĝ, but which nobody wants in the general
case.

103 i.e. there is an isomorphism from H onto H′ transforming U(x) into U ′(x).
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Exercise 1 (Gelfand and Neumark). (a) Let f be a measurable function on
R. Show that the function (t, x) 7→ f(tx) is measurable on R∗×R. (b) Suppose
that, for all a 6= 0, there is a null set N(a) such that

f(ax) = f(x) for all x /∈ N(a) .

Show that f is almost everywhere equal to a constant [using property (C1)
of n◦ 10, show that, for almost all x, f(ax) = f(x) for almost all a]. (c) In
L2(R), consider the unitary operators

U(a, b) : f(x) 7−→ a1/2+itf(ax+ b)

with given t ∈ R, and varying a ∈ R∗, b ∈ R. Using a Fourier transform show
that any continuous operator commuting with these operators is a scalar.
(d) Use this result to construct irreducible representations of the group x 7→
ax+ b (a ∈ R∗, b ∈ R) on L2(R). What about the case where a > 0?

29 – Fourier Transform on a Compact Group

(i) Irreducible representations of central groups. Let G be a lcg. Schur’s lemma
shows that the centre Z of G acts by scalars on every irreducible unitary
representation (H, U) of G:

U(z) = α(z)1

where α is a character of Z. So the coefficients

ϕa,b(x) = (U(x)a|b)

of the representation are solutions of the functional equation

f(xz) = f(x)α(z) .

It follows that the functions |f(x)| are in fact defined on the quotient group
G/Z. Hence, if the latter is compact, in which case G is said to be a central
group, they can be integrated over G/Z.

Here too, Schur’s lemma is going to prove a basic property of these groups
using arguments which, in a slightly less simple version, will lead us to the
Bargmann orthogonality relations in n◦ 32.104

104 As regards my own case, a few months after having proved the Bargmann rela-
tions in 1947, I realized how the same type of arguments led to a direct proof
of this theorem which all specialists, few in number at the time, obviously knew
(at least in the case of a compact group). The “ result ” was new inasmuch as
in 1927 the inventors of compact group theory, Fritz Peter and Hermann Weyl,
were only considering finite dimensional irreducible representations. But every-
one could prove it from their results (see Dieudonné, XXI.4, whose notation
complicates a quite straightforward question). This proof is now attributed to
Leopoldo Nachbin, an excellent Brazilian mathematician who took the trouble
to publish it in 1961.
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Theorem 43. Every irreducible unitary representation of a central lcg G is
finite-dimensional. If (H, U) and (H′, U ′) are two non-equivalent irreducible
unitary representations of G defining the same character of the centre Z of G,
then ∫

G/Z

(U(g)a|b) (U ′(g)a′|b′)dg = 0(29.1)

for all a,b ∈ H and a′,b′ ∈ H′. If (H, U) = (H′, U ′), then∫
G/Z

(U(g)a|b) (U ′(g)a′|b′)dg = dim(H)−1 (a|a′) (b|b′)(29.2)

where dg is the normalized Haar measure of G/Z.

For given b ∈ H and b′ ∈ H′, we set

T (x,x′) =

∫
G/Z

(U(g)x|b) (U ′(g)x′|b′)dg .

This gives

|T (x,x′)| ≤ ‖b‖.‖b′‖.‖x‖.‖x′‖ ,(29.3)

and so [n◦ 19, corollary of theorem 31] a continuous linear map T from H to
H′, satisfying ‖T‖ ≤ ‖b‖.‖b′‖, and such that

(Tx|x′) =

∫
G/Z

(U(g)x|b) (U ′(g)x′|b′)dg .

The invariance of the measure shows that (TU(h)x|U ′(h)x′) = (Tx|x′) for
all h ∈ G. So, if the given representations are not equivalent, then T = 0
(Schur’s lemma III), which proves the first proposition of the theorem.

In the second case, T is a scalar T (b′,b), whence

T (b′,b) (x|x′) =

∫
G/Z

(U(g)x|b) (U ′(g)x′|b′)dg .

(3) again shows that T (b′,b) = (Tb′|b), where T ∈ L(H), and the invariance
of the measure again shows that T commutes with all U(g), and so is a scalar
λ. Thus

λ (b′|b) (x|x′) =

∫
G/Z

(U(g)x|b) (U(g)x′|b′)dg .

Then let e1, e2, . . . be a finite or infinite orthonormal basis ofH. The functions

uij(g) = (U(g)ei|ej)

are pairwise orthogonal in L2(G). Using Kronecker’s index, we even have
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(uij |upq) = δipδjqλ ,(29.4)

where the scalar product is obviously calculated on G/Z. So ‖uij‖22 = λ.
Since ‖x‖2 =

∑
|(x|ei)|2 for all x,∑

i,j≤n

|uij(g)|2 =
∑
i,j≤n

|(U(g)ei|ej)|2 ≤
∑
i≤n

‖U(g)ei‖2 .

This result equals n since all U(g) are unitary. Integrating the left hand side
shows that n2λ ≤ n, and so n ≤ λ−1, which proves that dim(H) ≤ λ−1. For n
maximum, the inequality is replaced by an equality and thus λ = dim(H)−1,
qed.

The orthogonality relations can also be written differently by considering
the integral ∫

Tr[AU(g)]Tr[BU(g)]dg .

As a function of the ordered pair (A,B), it is a positive Hermitian form
on L(H), and equals Tr(ASB∗) for some unique S ∈ L(H). As above, the
invariance of the measure shows that S commutes with all U(x), and so is
a scalar λ. For A and B choosing operators whose matrices, with respect to
an orthonormal basis of H, only contain one non-zero entry, we recover the
orthogonality relations of the theorem and λ = dim(H)−1; and∫

Tr[AU(g)]Tr[BU(g)]dg = dim(H)−1 Tr(AB∗) .(29.5)

(ii) Central functions on a compact group. The functions f(g) = Tr[U(g)]
satisfy f(xy) = f(yx), i.e. are central functions on G. Over a compact group,
the formula

f \(g) =

∫
f(s−1gs)ds(29.6)

transforms every f ∈ L(G) into a continuous central function equal to f if f
is central, and non-zero if f is > 0. Proving the formulas

(f \)\ = f \ , (f |g) = (f \|g) if g is central ,(29.7)

(f \ ∗ g)\ = f \ ∗ g\(29.7’)

using the Haar measure will be a simple exercise for the reader. Clearly,

U(f \) =

∫
U(s)U(f)U(s)−1.ds(29.8)

on any finite or infinite-dimensional continuous linear representation (H, U)
of G, for all functions such that

∫
‖U(x)‖.|f(x)|dx < +∞.
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The group G acts on the space G by the map (s, g) 7−→ sgs−1. Being
compact, G acts properly [n◦ 15, (iii), lemma 3]. The quotient space X of
conjugacy classes of G is, therefore, separated and even compact. Lemma 4
of n◦ 15, (iv) on quotient measures shows that if the central functions are
considered to be defined on the quotient space, the map f 7−→ f \ transforms
L(G) into L(X). Computing the quotient measure when G is a Lie group is
a famous exercise using the structure of semisimple Lie algebras and enables
us to compute explicitly the characters of G (H. Weyl105).

Using central functions, we get the Dirac sequences at the origin. Indeed,
transforming by (6) all f ≥ 0 with integral 1 of a Dirac sequence at the origin
gives positive functions f \ with integral 1. If f vanishes outside a neighbour-
hood W of e, f \ vanishes outside the union of sWs−1. So the proof reduces
to showing that for any open neighbourhood V of e, there is a neighbourhood
W such that sWs−1 ⊂ V for all s. To this end, we associate to each open
neighbourhood W of e the set W ′ of s such that W ⊂ sV s−1. As V and W
are open, so is W ′. As sV s−1 is a neighbourhood of e for all s, every s ∈ G
belongs to some W ′. Since the open sets W ′ cover the compact space G, there
are neighbourhoods W1, . . . ,Wn such that W ′p cover G. This means that, for
all s ∈ G, there exists p such that sV s−1 ⊃Wp. Hence

sV s−1 ⊃W1 ∩ . . . ∩Wn = W ,

qed. This result shows that, for ϕ ∈ L2(G),

f ∗ ϕ = 0 for all central f =⇒ ϕ = 0 .(29.9)

The map \ can be extended to all Lp(G) and is still defined almost every-
where by relation (6). To begin with,∫∫

f(sgs−1)dsdg =

∫
f(g)dg

for all f ∈ L(G). This means that the image of the measure dsdg under
the map (s, g) 7−→ sgs−1 is the invariant measure of G. So theorem 23 of
n◦ 14 can be used: for all f ∈ Lp(G), the function (s, g) 7−→ f(sgs−1) is in
Lp(G×G), and so is integrable. As a result,

∫
|f(sgs−1)|ds < +∞ for almost

all g, which makes integral (6) well-defined almost everywhere. Finally∫∫ ∣∣f (sgs−1)∣∣p ds =

∫
|f(g)|p dg

shows that ‖f \‖p ≤ ‖f‖p. This is obtained by extending the map f 7−→ f \

from L(G) to L(G) by continuity to any Lp(G). Z(G) will denote the set of
central functions in L(G) and Zp(G) the set of central functions in Lp(G).

105 The general formula can be found in Dieudonné, Eléments d’analyse, chap. XXI,
p. 106, the main problem being that notations are hard to understand.
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On the other hand, f̃ is clearly central if so is f . This is also the case of
f ∗ g if so are f and g. An easy calculation shows that central functions are
characterized by the fact that

f ∗ g = g ∗ f for all g ∈ L1(G) .

In L2(G), the set of operators

L(f) : g 7−→ f ∗ g , f ∈ Z1(G)

is, therefore, a self-adjoint commutative algebra whose elements commute
with all left and right translations

L(x) : g 7−→ εx ∗ g , R(x) : g 7−→ g ∗ εx

as well as with all left and right convolution operators. So do the operators of
the Gelfand-Neumark algebra Z(G) generated by these L(f), i.e. the limits
in norm of operators L(f) + α1, where α ∈ C and f ∈ Z1(G), and of
the corresponding von Neumann algebra106 Z(G), i.e. the (weak, strong,
ultrastrong) limits of the same operators [n◦ 19, (vii)]. It is not necessary to
add scalar operators to the set of operators L(f) since using Dirac sequences
shows that the unit operator is the ultrastrong limit107 of operators L(f).

As an interlude, let us show that Z(G) is in fact the set of all operators
commuting with all right and left translations. Indeed let L(G) = L be the
von Neumann algebra generated by all L(x) and R(G) = R the algebra
generated by all R(x). Clearly, L ⊂ R′ and R ⊂ L′. In fact, L = R′ and
R = L′. We will generalize this result [n◦ 31, (ii)] to all unimodular groups
later. To see this, let us consider operators A ∈ L′ and B ∈ R′. A commutes
with all L(x), so with L(f) for all f ∈ L1(G), hence for all f ∈ L2(G) since
G is compact. So, for f, g ∈ L2(G) ⊂ L1(G),

A(f ∗ g) = AL(f)g = L(f)Ag = f ∗Ag

and similarly B(f ∗ g) = Bf ∗ g ; whence

AB(f ∗ g) = A(Bf ∗ g) = Bf ∗Ag = B(f ∗Ag) = BA(f ∗ g) .

These calculations are well-defined in a compact group since the convolution
product of two functions in L2(G) is again in L2(G). It is in fact a continuous
function. As the set of convolutions f ∗g is everywhere dense in L2, it follows
that AB = BA for all A ∈ L′ and B ∈ R′. Hence, using the notation of von N
[n◦ 19, (vii)], L′ ⊂ R′′ and R′ ⊂ L′′. But by his density theorem, R′′ = R
and L′′ = L. So

106 Henceforth, italicized capital letters will be used for von Neumann algebras and
bold capitals for GN algebras.

107 By lemma 6 of n◦ 19, (vii), it suffices to shows that if a function g ∈ L2(G) is a
zero of all operators L(f), then g = 0. This is obvious thanks to Dirac sequences.
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R(G)′ = L(G) , L(G)′ = R(G) .

We can now come back to the algebra Z(G) generated by the operators
L(f) = R(f), for central f . We need to show that every operator A commut-
ing with all left and right translations, i.e. such that A ∈ L ∩R, is in Z(G).
The functions f ∈ Z1(G) being characterized by the relation L(x)R(x)f = f ,
Af is central if so is f . Let us then choose a Dirac sequence consisting of mea-
sures fn(x)dx, where the functions fn are central . The sequence of L(fn) con-
verges weakly to the unit operator, so that the sequence of AL(fn) converges
weakly to A. But since A ∈ R, AL(fn)g = A(fn ∗ g) = Afn ∗ g = L(Afn)g
for all g ∈ L2. As all Afn are central, L(Afn) ∈ Z(G), so that A is the limit
of operators belonging to Z(G), and so is in Z(G). Thus, indeed

Z(G) = L(G) ∩R(G) .

In the case of a general lcg, an algebra Z(G) generated by convolutions can
always be defined using integrable central functions. But the only integrable
central function on G may be the trivial one, for example if G is a semisimple
non-compact Lie group such as SL2(R). Then Z1(G) = {0}. In this case, the
algebra Z(G) is defined by the previous formula,108 but it is then impossible
to replace Z(G) by a GN algebra whose spectrum would be much more
reasonable than the totally discontinuous one of Z(G). This is where the
difficulty of the general case lies.

Using Z(G) in the same way as the algebra A(G) of the commutative
case [n◦ 25, (i)], we will obtain the entire theory of compact groups.109 To
understand the method – there are other ones –, it is useful to start with the
proof of some formulas related to irreducible representations.

By Schur’s lemma, the operators U(f), f ∈ Z1(G), on any irreducible
representation (H, U), are scalars. Setting U(f) = χ(f)1,

χ(f) = dim(H)−1 Tr[U(f)] = Sp[U(f)] .

This convenient notation (Spur = trace in German) restricts the legions of
factors dim(H) that clutter most presentations. Sp(1) = 1 and as Sp is a
linear functional on L(H),

Sp[U(f)] =

∫
Sp[U(x)]f(x)dx =

∫
f(x)χ(x)dx ,

where

108 Z(G) is the von N algebra generated by Z(G) if and only if every neighbourhood
of e in G contains an invariant neighbourhood under inner automorphisms. Apart
from central groups, about the only ones to have this property are the discrete
groups.

109 The reader is advised to interpret all the following calculations and results in the
case where G is commutative.



§ 8. Unitary Representations of Locally Compact Groups 213

χ(x) = Sp[U(x)] = dim(H)−1 Tr[U(x)](29.10)

is a central function proportional to what is usually called the character
of (H,U), namely the function Tr[U(x)]. As χ(e) = 1, I will call (10) the
normalized character of the representation considered. Obviously χ̃ = χ. As
there is a relation analogous to (5) for inequivalent representations, except
that the right hand side is then zero, putting A = B = 1 shows that the
(standard or normalized) characters of two inequivalent representations are
orthogonal.

The map

f 7−→ χ(f) =

∫
f(x)χ(x)dx

is a character of the normed algebra Z1(G) which, in fact, can be extended
to Z(G) since, all irreducible representations (H, U) being realizable on110

L2(G), U(f) is the restriction to H of the convolution operator L(f) by f
whose norm on H is bounded above by its norm on L2(G). Thus ‖U(f)‖ ≤
‖L(f)‖. Relation (10) can be generalized to all f ∈ L1(G) in the form

Sp[U(f)] = χ(f \) ,

since, by invariance of the trace,

Sp[U(f)] = Sp
[
U(s)U(f)U

(
s−1
)]

for all s ∈ G. Thus integrating with respect to s and using (8) lead to the
formula. We also write down the relation

χ ∗ f(x) =

∫
Sp
[
U
(
xy−1

)]
f(y)dy = Sp [U(x)U(f ′)] ,

where f ′(y) = f(y−1). If f is central, U(f ′) reduces to the scalar

Sp [U(f ′)] =

∫
Sp
[
U
(
y−1

)]
f(y)dy = (f |χ) .

Thus

χ ∗ f = (f |χ)χ if f ∈ Z1(G)(29.11)

and in particular

χ ∗ χ = (χ|χ)χ , χ ∗ χ′ = 0 ifχ 6= χ′ .(29.11’)

110 Choose a non-zero vector a in H and associate the function

g 7−→
(
U(g−1)x|a

)
to each x ∈ H. This map transforms the operator x 7−→ U(s)x into the left
translation L(s).
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We prove the second relation by first observing that, by (11), χ ∗ χ′ =
(χ|χ′)χ = 0, then that χ and χ′ are orthogonal as was seen above.

Normalized characters have a simple functional equation. For all x, the
operator

∫
U(uxu−1)du commutes with the representation, and so reduces to

the scalar

Sp

[∫
U
(
uxu−1

)
du

]
=

∫
Sp
[
U
(
uxu−1

)]
du =

∫
Sp [U(x)] du = χ(x) .

Hence ∫
U
(
uxu−1

)
du = Sp [U(x)] 1 for all x ∈ G .(29.12)

We then deduce that∫
χ
(
uxu−1y

)
du = Sp

[∫
U
(
uxu−1

)
U(y)du

]
= Sp[U(x)] Sp[U(y)] ,

i.e. that ∫
χ
(
uxu−1y

)
du = χ(x)χ(y) .(29.13)

Setting U(x) = A, relation (12) becomes∫
U(u)AU(u)−1du = Sp(A)(29.14)

and in fact holds for all A ∈ L(H), since any operator A is a linear combina-
tion of operators U(x) by von Neumann’s density theorem, which is almost
trivial and purely algebraic in finite dimension (“ Burnside’s lemma ”). We
could have also observed that the left hand side commutes with all U(x), and
so reduces to a scalar necessarily equal to Sp[

∫
U(u)AU(u)−1du] = Sp(A).

We will again encounter these formula for the simple reason that, like in
the case of a commutative group, (classes of) of irreducible representations
of G correspond bijectively to the characters of Z(G).

(iii) Spectral decomposition of Z(G). Let us denote the compact spectrum

of Z(G) by X(G) and let Ĝ be the set of χ ∈ X(G) that are not identically

zero on Z1(G). Since Ĝ is the complement of at least one element of X(G) –

obviously X(G) = Ĝ if G is finite –, it is a locally compact space (in fact,
discrete as will be seen) for which the forgotten character of Z(G) plays the
role of the “ point at infinity ”. For χ ∈ X(G) and f ∈ L1(G),∣∣χ (L(f \)

)∣∣ ≤ ∥∥L (f \)∥∥ ≤ ∥∥f \∥∥
1
≤ ‖f‖1 .

So there is (duality between L1 and L∞) a bounded measurable function
χ(x) such that
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χ
[
L(f \)

]
=

∫
f(x)χ(x)dx

for all f ∈ L1(G). The function χ may be assumed to be central – otherwise,
replace it with χ\ –, which determines it completely since then∫

f(x)χ(x)dx =

∫
f \(x)χ(x)dx = χ

[
L(f \)

]
.(29.15)

It is zero if χ is the point at infinity of Ĝ.
For all f ∈ L1(G), we will set

χ(f) =

∫
f(x)χ(x)dx = χ(f \) = (f |χ) .(29.16)

For given f , we get a continuous function χ 7−→ χ(f) on Ĝ tending to 0 at
infinity by definition of the topology of X(G). The equality

χ(f ∗ g) = χ(f)χ(g)

holds if f or g is central because of the second relation (7).
If χ is a character of Z(G), so is the conjugate function

χ(f) = χ(f) .

Let us now show that, for all χ ∈ Ĝ,

χ ∗ χ(x) = (χ|χ)χ(x)(29.17)

(a priori almost everywhere) and more generally that

f ∗ χ(x) = (f |χ)χ(x)(29.18)

for all f ∈ Z1(G). To this end, let us set g′(x) = g(x−1) for all functions g.
Clearly, (g ∗ h)′ = h′ ∗ g′ since G is unimodular. Moreover,

∫
g(x)h(x)dx =

g′∗h(e) for all g, h and in particular χ(f) = f ′∗χ(e). Hence, setting χ∗f = ϕ,
i.e. a central function like f and χ, for any function h ∈ L1(G),∫

h(x).ϕ(x)dx = h′ ∗ ϕ(e) = h′ ∗ f ∗ χ(e) = (h′ ∗ f ′)′ ∗ χ(e) = χ(h ∗ f ′)

= χ(h)χ(f ′) = χ(f ′)

∫
h(x).χ(x)dx

since f ′ is central, whence ϕ = χ(f ′)χ = (f |χ)χ almost everywhere, qed.
As the function χ ∗χ is continuous, χ(x) may be supposed to be continu-

ous, which determines it everywhere. It then satisfies (17) and (18) including
with respect to a null measure, and as χ ∗ χ(e) = (χ|χ), we deduce that
χ(e) = 1.
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Exercise 1. Using the fact that

χ
(
f \ ∗ g\

)
= χ

(
f \
)
χ
(
g\
)

= χ(f)χ(g)

for all f and g ∈ L(G), show that∫
χ
(
uxu−1y

)
du = χ(x)χ(y) .(29.19)

If χ and χ′ are distinct characters, (18) shows that χ ∗ χ′ is proportional
to χ and χ′. As two proportional characters of a normed algebra must be
identical,

χ ∗ χ′ = 0 , (χ|χ′) = 0 .(29.20)

However, for all f ∈ Z1(G), the function (f |χ) is continuous on Ĝ. This is the

case of χ 7−→ (χ′|χ) for all χ′ ∈ Ĝ. Since this function vanishes everywhere

except at χ = χ′, the subspace Ĝ = X(G)− {∞} is discrete.
The spectral decomposition

T =

∫
X(G)

T̂ (χ)dM(χ) , T ∈ Z(G) ,

of n◦ 22 is then particularly simple. First, for each χ ∈ Ĝ, by (22.14), the
spectral manifold L2(G;χ) associated to the open set {χ} ⊂ X(G) is the set
of ϕ ∈ L2(G) such that

Tϕ = χ(T )ϕ for all T ∈ Z(G),

or even only for T = L(f) where f ∈ Z1(G). In this case, χ(T ) = χ(f) =
(f |χ) by (16), whence

f ∗ ϕ = χ(f)ϕ = (f |χ)ϕ .(29.21)

If f = χ′ ∈ Ĝ, then χ(f) =
∫
χ′(x)χ(x)dx = 0 except if χ′ = χ, in which

case χ(f) = (χ|χ). So

χ ∗ ϕ = (χ|χ)ϕ(29.21’)

in L2(G;χ). Conversely, (21’) implies (21) since

(χ|χ)f ∗ ϕ = f ∗ (χ ∗ ϕ) = (f ∗ χ) ∗ ϕ = (f |χ)χ ∗ ϕ = χ(f)(χ|χ)ϕ

by (18) for χ. Hence

ϕ ∈ L2(G;χ)⇐⇒ χ ∗ ϕ = (χ|χ)ϕ .(29.22)

Given (17) for χ, χ ∈ L2(G;χ).
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According to the general results of n◦ 22, (iii), the spectral manifold as-

sociated to the open and discrete subset Ĝ = X(G) − {∞} of X(G), is the

Hilbert direct sum of the spaces L2(G;χ) for all χ ∈ Ĝ. Therefore, like in any

GN algebra, the spectral manifold associated to X(G) = Ĝ ∪ {∞}, namely
L2(G) is the direct sum of the spaces L2(G;χ) and of the spectral manifold
associated to {∞}. It is trivial since its elements satisfy L(f)ϕ = 0 for all

f ∈ Z1(G), whence ϕ = 0 by (9). So the spectral manifold associated to Ĝ is
L2(G), and so

L2(G) =
⊕
χ∈Ĝ

L2(G;χ) ,(29.23)

which is a Hilbert direct sum.
Let us compute E(χ), the orthogonal projection operator onto L2(G;χ).

The operator f 7−→ χ∗f is Hermitian and proportional to its square by (17).
By (22), it reduces to the scalar (χ|χ) on L2(G;χ) and it obviously vanishes
on the other spectral manifolds L2(G;χ′). So it is proportional to E(χ), and
as E(χ) needs to equal 1 on L2(G;χ),

E(χ)f = (χ|χ)−1.χ ∗ f(29.24)

necessarily holds for all f ∈ L2(G).
Permuting χ and χ in (23), for all f ∈ L2(G),

f =
∑

(χ|χ)−1.χ ∗ f ,(29.25)

i.e. a series of pairwise orthogonal functions, and

(f |g) =
∑

(χ|χ)−2(χ ∗ f |χ ∗ g)(29.25’)

for all f and g. Summation is over χ ∈ Ĝ, series (25’) converging uncondi-
tionally (Chap. II, n◦ 15).

(iv) Characters of Z(G) and irreducible representations. As operators T ∈
Z(G) commute with all the right and left translations, the spaces L2(G;χ)
are bi-invariant. Let us show that, the right and left translation operators on
L2(G;χ) define an irreducible representation of G×G.

Indeed, let A be an operator on L2(G;χ) commuting with these trans-
lations. Extend it to L2(G) by requiring it to be zero on the other spaces
L2(G;χ′). This gives an operator T belonging to the von N algebra L(G) ∩
R(G) = Z(G) generated by Z(G) [end of section (ii)]. As any T in Z(G), or in
Z(G), reduces to a scalar on L2(G;χ), so does A, which implies irreducibility.

G×G being compact, theorem 42 shows that the subspaces L2(G;χ) are
finite-dimensional. Then let H be a minimal non-trivial left invariant sub-
space of L2(G;χ). Denoting by U(x) : ϕ 7−→ εx ∗ ϕ the restriction of L(x) to
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H, the representation (H, U) of G is irreducible. For all f ∈ Z1(G), the op-
erator U(f) =

∫
U(x)f(x)dx, which is the restriction of L(f) = L(x)f(x)dx

to H, reduces to a scalar, namely

λ(f) = Sp[U(f)] =

∫
f(x)λ(x)dx ,

where

λ(x) = Sp[U(x)]

is the normalized character of the representation (H, U) defined in section (ii).
As every T ∈ Z(G) reduces to the scalar χ(T ) on L2(G;χ) and so perforce
in H, λ(f) = χ[L(f)] =

∫
f(x)χ(x)dx. Thus

χ(x) = Sp[U(x)](29.26)

for any irreducible component (H, U) of the left regular representation of G
on L2(G;χ). Hence the algebra Z(G) only has characters defining the irre-
ducible representations of G (and the character “ at infinity ”). Exercise 1 was
therefore superfluous since we already knew (13).

We can now reconstruct L2(G;χ) using (H, U). To begin with, by (24),
L2(G;χ) is the set of functions of the form f ∗χ. However, for all f ∈ L2(G),

f ∗ χ(x) =

∫
f(xy)χ(y)dy =

∫
f(xy) Sp[U(y)]dy

and so

f ∗ χ(x) = Sp[U(x)−1U(f)] .(29.27)

As every A ∈ L(H) is in some U(f) because of irreducibility, it follows that
L2(G;χ) is the set of functions of the form

x 7−→ Sp
[
AU(x)−1

]
.

The preceding calculations assume that a minimal left invariant subspace
H has been chosen, but changing H replaces the representation (H, U) by an
equivalent representation since, as was seen above, the characters of two in-
equivalent irreducible representations are orthogonal. In conclusion, the sub-
spaces L2(G;χ) correspond bijectively to irreducible representations of G.

The equality

(f |g) =
∑

(χ|χ)−2(χ ∗ f |χ ∗ g) .

can now be written differently. Calculations leading to (27) also shows that

f ∗ χ(x) = Sp [U(x)U(f ′)] ,
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where f ′(x) = f(x−1). So, using the orthogonality relations in the form (5),

(χ ∗ f |χ ∗ g) =

∫
Sp [U(x)U(f ′)] Sp [U(x)U(g′)]dx

= dim(H)−2 Sp [U(f ′)U(g′)∗] = (χ|χ) Sp [U(f ′)U(g′)∗]

because (5) for A = B = 1 also shows that

(χ|χ) = dim(H)−2 .

Hence

(χ|χ)−2(χ ∗ f |χ ∗ g) = (χ|χ)−1 Sp [U(f ′)U(g′)∗]

= dim(H)2 Sp [U(f ′)U(g′)∗]

= dim(H) Tr [U(f ′)U(g′)∗] .

This gives Plancherel’s formula (it is better to say Peter-Weyl’s, even if they
argued in terms of matrices instead of operators)

(f |g) =
∑

dim(H) Tr [U(f ′)U(g′)∗] ,(29.28)

where the summation is over the irreducible classes of representations. Be-
sides, as (f ′|g′) = (f |g), f ′ and g′ can also be replaced by f and g on the
right hand side.

To obtain a formula which, for a commutative G, reduces to those of the
previous §, for each χ ∈ Ĝ, we could choose an irreducible representation

x 7−→ U(x;χ)

with character χ in the space H(χ) and set

f̂(χ) =

∫
U(x;χ)∗f(x)dx = U(f ′;χ) .(29.29)

For every f ∈ L1(G) ; this Fourier transform of f , a function whose values
are operators, reduces for central f to the scalar(f |χ). Denoting by dim(χ)
the dimension of H(χ), (28) becomes

(f |g) =
∑

dim(χ) Tr
[
f̂(χ)ĝ(χ)∗

]
(29.28’)

for f, g ∈ L2(G). This immediately gives formulas

g(x) = f(axb) =⇒ ĝ(χ) = U(b, χ)f̂(χ)U(a, χ) ,(29.30) (
f̂ ∗ g

)
(χ) = ĝ(χ)f̂(χ) .(29.31)
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Exercise 2. Prove an analogue of the Fourier inversion formula.
Exercise 3. Consider the von Neumann algebra Z(G). Every T ∈ Z(G)

acts on each subspace L2(G;χ) by a scalar T̂ (χ). Show that this gives all the
functions such that

sup |T̂ (χ)| < +∞ .

To conclude, let us show how a unitary representation (H, U) of G can be de-

composed.111 Since, by (17), the function (χ|χ)−1χ is Hermitian and identical
to its convolution square, the operator

E(χ) = (χ|χ)−1
∫
U(x)χ(x)dx = (χ|χ)−1U(χ)(29.32)

is a projection onto a subspace H(χ). Since χ ∗ χ′ = 0 if χ 6= χ′, these
subspaces are pairwise orthogonal, and invariant since the characters are
central functions. For a,b ∈ H, age-old calculations give

(χ|χ)−1
∫ (

U(xy−1)a|b
)
χ(y)dy = (U(x)E(χ)a|b) = (U(x)E(χ)a|E(χ)b) .

If a ∈ H(χ), the coefficient

(U(x)a|b) = ϕa,b(x)(29.33)

of (H, U) thus satisfies (χ|χ)−1.χ ∗ϕa,b = ϕa,b, and so is in L2(G;χ). There-
fore, as b varies in H, functions (33) remain in a finite-dimensional subspace
of L2(G), in fact of L(G). It follows that the subspace H(a) of H generated
by all U(x)a is also finite-dimensional. As it is invariant, it is the direct sum
of minimal non-trivial invariant subspaces on each of which the operators
U(x) act irreducibly. The representations thus obtained on H(a) all belong
to the class χ considered since there operators (32) are equal to 1. As for the
subspace H(χ), it can be infinite-dimensional, but as the orthogonal comple-
ment of someH(a) inH(χ), it is also invariant.H(χ) is the Hilbert direct sum
(in several ways!) of subspaces H(a), hence of finite-dimensional irreducible
subspaces, each of which correspond to a representation with character χ.

It remains to be shown that H is a Hilbert direct sum of the subspaces
H(χ). This is an exercise whose details can surely be omitted at this point
of the presentation.

(v) Easy generalizations. The reader, having probably observed similari-
ties between the methods used for commutative groups and compact groups,
will suspect that it should be possible to address both cases simultaneously.
There are three ways at our disposal to achieve this. I will only briefly outline
them.

111 Apart from orthogonality questions, the following arguments apply to all contin-
uous representations in a Banach space.
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(a) The obvious method112 consists in generalizing calculations and results
to central groups (G/Z compact) and, for every character α of the centre Z
of G, in replacing L2(G) by the space L2(G/Z;α) of modZ square integrable
solutions of f(xz) = f(x)α(z). There is still a map f 7−→ f \ from L1(G) onto
its centre Z1(G), given by

f \(x) =

∫
G/Z

f
(
uxu−1

)
du .

The convolution products by f ∈ Z1(G) obviously preserve the space
L2(G/Z;α) on which an ersatz of the convolution can be defined by setting

f ∗Z g(x) =

∫
G/Z

f
(
xy−1

)
g(y)dy .

In this space, (ordinary) convolutions by f ∈ Z1(G) generate an algebra
Z(G/Z;α) with the same properties as the algebra Z(G) of the compact
case. As above, one can show that the characters of this algebra are the
functions χ(x) = Sp[U(x)] of the irreducible representations (H, U) on which
the centre Z de G acts by α. Denoting by L2(G;χ) the subspace of functions
Tr[AU(x)−1], where A ∈ L(H), L2(G/Z;α) is shown to be a Hilbert direct
sum of these subspaces. If, for any character χ, (U(x;χ),H(χ)) denotes a
representation with normalized character χ(x) = Sp[U(x;χ), the projection
of f ∈ L2(G/Z;α) onto L2(G;χ) is the function

x 7−→ dim(χ)

∫
G/Z

Tr
[
U(xy−1;χ)

]
f(y)dy .

On the other hand, associating the function

fα(x) =

∫
f(xz)α(z)dz

to each f ∈ L(G) gives functions fα everywhere dense in L2(G;α). The
projection of fα onto L2(G;χ) is the function

dim(χ)
∫
G/Z

dy
∫
Z

Tr
[
U(xy−1;χ)

]
f(yz−1)α(z)dz =

= dim(χ)
∫
dy
∫

Tr
[
U(x(yz)−1;χ)

]
f(yz)dz =

= dim(χ)
∫
G

Tr
[
U(xy−1;χ)

]
f(y)dy ,

i.e. setting

f̂(χ) =

∫
U(x;χ)∗f(x)dx

112 S. Grosser and M. Moskowitz, Harmonic analysis on central topological groups
(Trans. AMS, 156, 1971, pp. 419–454). Also Calvin Moore, Groups with finite-
dimensional irreducible representations (idem, 166, 1972, pp. 401–410).
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as in the compact case, this is the function dim(χ) Tr[U(x;χ)f̂(χ)]. There is
again an expansion

(fα|gα) =
∑

χ=α sur Z

dim(χ) Tr
[
f̂(χ)ĝ(χ)∗

]
(29.34)

for f, g ∈ L(G). But Plancherel’s formula for Z shows that the inner product
(f |g) on L2(G) is given by

(f |g) =

∫
G/Z

dx

∫
Z

f(xz)g(xz)dz =

∫
G/Z

dx

∫
Ẑ

fα(x)gα(x)dα ,

i.e. by

(f |g) =

∫
(fα|gα)dα .(29.35)

Hence, given (34),

(f |g) =

∫
Ẑ

dα
∑

χ=α sur Z

dim(χ) Tr [f(χ)ĝ(χ)∗] .

This can be simplified further. In the locally compact space Ĝ of the char-
acters of Z1(G), the relation {χ = χ′ on Z} is an equivalence relation whose
classes are discrete sets. The quotient space can be canonically identified to
the dual Ẑ of Z. A measure dχ can then be defined on Ĝ by setting∫

Ĝ

ϕ(χ)dχ =

∫
Ẑ

dα
∑

χ=α on Z

f(χ)

for all f ∈ L(Ĝ). This is a very simple example of a continuous sum of discrete
measures (n◦ 13). This definition leads to the final formula∫

G

f(x)g(x)dx =

∫
Ĝ

Tr
[
f̂(χ)ĝ(χ)∗

]
dim(χ)dχ .(29.36)

It unifies the results obtained for commutative groups and compact groups.
Though the subject is not of much use, proving all these formulas without
having recourse to we already know about commutative or compact groups
would be one of the best exercises for the reader to familiarize himself with
these methods.

(b) A significantly more difficult generalization113 as it uses G. W. Mackey’s
theory of induced representations consists in supposing that G contains a nor-
mal commutative closed subgroup (but not necessarily central) Z such that
G/Z is compact.

113 Kleppner and R. L. Lipsman, Plancherel formula for group extensions (Ann. sc.

École normale sup., 5 (1972) and 6 (1973)).
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(c) The third and an extremely ingenious and much more useful method
is Gelfand’s theory of spherical functions. Suppose we are given a compact
subgroup K in G such that the convolution product is commutative on the
set of functions such that f(uxv) = f(x) for all u, v ∈ K. A trivial example:
G = K × K, the compact subgroup being the diagonal of the product; the
solutions of f(uxv, uyv) = f(x, y) can be identified to the central functions
on K. A far less trivial example: suppose there is an “ involution ” x 7→ x′ in
G satisfying

(x′)
′

= x , (xy)′ = y′x′ , x′ = x−1 for all x ∈ K ,

and that all x ∈ G can be written as x = kp with k ∈ K and p′ = p.
For G = GLn(R), K is the orthogonal group and x′ the transpose of the
matrix x. The situation is the same in every real semisimple Lie groups.114

It then only requires one line of calculations to check that the convolution
product, restricted to K-bi-invariant functions, is commutative for the simple
reason that we then have f(x′) = f(x). In all cases, the set of integrable K-bi-
invariant functions is again a commutative normed algebra whose characters,
in other words the functions said to be spherical, are the (necessarily bi-
invariant) solutions of the functional equation∫

f(xky)dk = f(x)f(y) .

There is still a Plancherel’s formula not for all of L2(G) – it would be mirac-
ulous – but, for want of anything better, for the subspace of L2(G) generated
by the images of bi-invariant functions under right and left translations. Only
irreducible unitary representations of G admitting a K-invariant vector are
involved in this formula. This vector is necessarily unique up to a scalar. This
method was adopted by Dieudonné in his volume 6, and I could have done
the same.115 Regardless of its merit, it seemed more reasonable to me not to
throw into disarray readers who are not expected to already know everything.
In addition, the real problems – explicit calculations of irreducible spherical
functions using integral formulas, explicit calculations of Plancherel’s formula
– cannot be solved by this type of abstract nonsense, however ingenious it

114 As a first approximation, these are the closed subgroups of GLn(R) satisfying
the following conditions: (i) G is algebraic, i.e. defined by polynomial equations,
(ii) Every commutative closed normal subgroup of G is finite. Examples: SLn(R),
the group of automorphisms of symmetric or alternate bilinear forms (orthogonal
or symplectic groups), the subgroups of SLn(C) leaving a symmetric bilinear
form or a Hermitian form invariant, etc. There are also “ exceptional groups ” that
cannot be easily defined. . . General semisimple groups are coverings of semisimple
linear groups. The most simple general definition uses the Lie algebra of G.

115 I presented it at the Séminaire Bourbaki (1958) adding to Gelfand’s short note
in Doklady a Plancherel formula which did not appear there. My talk, or that of
Serge Lang, SL2(R) (Springer, 1985), Chap. IV, is probably easier to read than
that of Dieudonné’s. . .
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may be. They have been completely solved by Harish-Chandra116 in arti-
cles that display his genius, a term that should not be used lightly, and his
prodigious obstinacy.

We are now going to drop the subject of compact groups and briefly
outline possible (or impossible) extensions to general lcgs.117

30 – Measures and Functions of Positive Type

(i) Measures of positive type. Let G be a locally compact group. As was seen
in n◦ 25, the inner product on L2(G) is given by

(f |g) = ε (g̃ ∗ f) ,(30.1)

where ε is the Diract measure at e. It follows that the map

(f, g) 7−→ ε (g̃ ∗ f)(30.2)

is a positive Hermitian form on L(G), and one obviously obtains L2(G) by
applying the general method of n◦ 19 to it .

It is thus necessary to more generally consider measures µ on G having
this property, namely measures of positive type (notation: µ � 0). Such a
measure enables us to define a unitary representation of G, which, for µ = ε,
is just the “ left ” regular representation of G on L2(G).

Indeed, if µ� 0, then taking the quotient and the completion, the general
method of n◦ 19, (i) leads to a Hilbert space H(µ) and to a canonical map
f 7→ fµ from L(G) onto an everywhere dense subspace of H(µ). By definition,

(fµ|gµ) = µ (g̃ ∗ f) =

∫
f(yx)g(y)dµ(x)dy(30.3)

follows from (28.3’). If f and g are made to undergo the same left translation,
the function g̃ ∗ f does not change. So, if fµ = 0, neither do any of images
of f under left translations. Hence, for each x ∈ G there is a linear operator
Lµ(x) defined on the subspace of fµ by

g = εx ∗ f =⇒ gµ = Lµ(x)fµ .(30.4)

It is bijective, preserves the inner product and can be extended to all of H(µ).
This gives a unitary representation of G on H(µ). To check that the maps

116 About Harish-Chandra, the “ second Ramanujan ” as he is now called in India, see
the articles by Borel, Helgason, Langlands and Varadarajan in Robert S. Doran
& V.S. Varadarajan, eds., The Mathematical Legacy of Harish-Chandra (Amer.
Math. Soc. 2000). India has produced other first-class mathematicians, but only
rarely does one meet there or elsewhere Harish’s level.

117 For the rest of this chapter, it will be useful to refer to the second part of
Dixmier’s more complete presentation, C∗-algebras (North-Holland, 1972), which
has the inconvenience or advantage, depending on one’s point of view, of being
based on the general theory of GN algebras. See also Nolan R. Wallach, Real
Reductive Groups II (Academic Press, 1992), Chap. 14.
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x 7→ Lµ(x)a are continuous for all a ∈ H(µ), it suffices to do so for all a
everywhere dense, for example, for fµ, where f ∈ L(G), and only at x = e.
As

‖Lµ(x)fµ − fµ‖2 = µ
[
(εx ∗ f − f)˜ ∗ (εx ∗ f − f)

]
,

it suffices to check that x 7→ µ(f̃ ∗ εx ∗ f) is continuous.
Every f ∈ L(G) defines an operator

Lµ(f) =

∫
Lµ(x)f(x)dx(30.5)

on H(µ). By definition,

(Lµ(f)gµ|hµ) =

∫
(Lµ(x)gµ|hµ) f(x)dx = µ

(
h̃ ∗ εx ∗ g

)
f(x)dx

= µ
(
h̃ ∗ f ∗ g

)
= ((f ∗ g)µ|hµ)

[n◦ 25, (ii), exercise 1]. We then deduce that

h = f ∗ g =⇒ hµ = Lµ(f)gµ(30.6)

for f, g, h ∈ L(G).
This result could be interpreted by first observing that, by Cauchy-

Schwarz, in the algebra L(G), the relation µ(f̃ ∗ f) = 0 is equivalent to
µ(g̃ ∗ f) = 0 for all g ∈ L(G), whence µ(f̃ ∗ g̃ ∗ g ∗ f) = 0. The set of f such
that fµ = 0 is, therefore, a left ideal I(µ) of L(G). But if I is a left ideal of
a ring A, A can be made to act on the quotient A/I since, for f, g ∈ A, the
coset of f ∗ g mod I only depends on the coset of g. Formula (6) falls within
this algebraic framework.

The Hermitian symmetry of µ(g̃ ∗ f) shows that

µ (g̃ ∗ f) = µ
(
f̃ ∗ g

)
.

Making the measure g(x)dx converge to the Dirac measure at e gives µ(f) =

µ(f̃). Thus

µ̃ = µ if µ� 0 .(30.7)

When G is a Lie group,118 one can consider C∞ functions on G, and
thus define the Schwartz space D(G) of C∞ functions with compact support,
hence also distributions on G by generalizing in an obvious manner what has
been said in Chap. VII for R. For f, g ∈ D(G), f ∗g ∈ D(G), which enables us
to define distributions of positive type by requiring that µ(g̃ ∗f) be a positive

118 i.e. equipped with a C∞ manifold structure such that the map (x, y) 7→ xy−1 is
C∞.
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Hermitian form on D(G). The construction of the space H(µ) and of the
unitary representation x 7→ Lµ(x) can be generalized to this case.

(ii) Case of a commutative group. Since the representation defined by ε
leads to Plancherel’s formula, one expects a similar result for all measures
µ� 0, namely:

Theorem 44. Let G be a commutative lcg and µ a measure of positive type
on G. Then there is a unique positive measure µ̂ on Ĝ such that

µ (f ∗ g̃) =

∫
f̂(χ)ĝ(χ)dµ̂(χ)(30.8)

for all f, g ∈ L(G).

The proof is almost the same as that of theorem 40. Consider the set
A(µ) in H(µ) of limits in norm of operators of the form Lµ(f) + λ1; it is a
commutative GN algebra and the proof reduces to setting out explicitly its
spectral decomposition. To start with, as

‖Lµ(f)‖ ≤ ‖f‖1 ,

any character of A(µ) defines a (possibly trivial) character of L1(G), which
gives a homeomorphism from the spectrum A(µ) onto a compact subspace

Xµ(G) of X(G) = G or G∪{∞}. The Gelfand transform T 7→ T̂ for A(µ) as-

sociates the restrictions to Xµ(G) of the Fourier transforms f̂(χ) to operators
Lµ(f). Hence by the general theory of n◦ 22, (ii) et (iii), for f, p, q ∈ L(G),

(Lµ(f)pµ|qµ) =

∫
f̂(χ)dµp,q(χ) ,

where µp,q is, in theory, a measure on the compact set Xµ(G), and so can
be identified to a measure on X(G) concentrated on Xµ(G). Any bounded
Borel function ϕ on X(G) defines an operator M(ϕ) on H(µ) such that

(M(ϕ)pµ|qµ) =

∫
ϕ(χ)dµp,q(χ) .

As was seen using formula (27.18) in the case of the regular representation,
{∞} is a null set with respect to the measures µp,q, which, therefore, become

bounded on Ĝ.

Then, replacing ϕ by f̂ ĝ, where f, g ∈ L(G), in the previous formula,∫
f̂(χ)ĝ(χ)dµp,q(χ) = (Lµ(g)∗Lµ(f)pµ|qµ)

= µ (q̃ ∗ g̃ ∗ f ∗ p) = µ (g̃ ∗ q̃ ∗ p ∗ f)

=

∫
p̂(χ)q̂(χ)dµf,g(χ) .
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We then deduce that

f̂(χ)ĝ(χ)dµp,q(χ) = p̂(χ)q̂(χ)dµf,g(χ)

for all f, g, p, q ∈ L(G). The end of the proof is now obvious.

This theorem shows that f̂ ∈ L2(Ĝ; µ̂) for all f ∈ L(G) and that the map

f 7→ f̂ can be extended (modulo taking the quotient) to an isometric map of

H(µ) in L2(Ĝ; µ̂). As in the classical case (µ = ε), it is bijective (exercise !).
By definition, the measure µ̂ is the Fourier transform of µ. Plancherel’s

traditional formula thus says that the Fourier transform of the measure ε is
an invariant measure of Ĝ.

If G is of the form Rp×Tq, in which case Ĝ = Rp×Zq, the arguments of
theorem 44 associate a measure µ̂ ≥ 0 on Ĝ to each distribution µ� 0 on G,
with formula (8) holding for f, g ∈ D(G). We leave it to the reader to fill in
the gaps in this proof if he feels the need to do so. The space S(G) of rapidly
decreasing C∞ functions on G can also be defined over such a group, i.e.
functions for which the product of any derivative and a polynomial function
tends to 0 at infinity. Hence the notion of tempered distributions on G as in
Chap. VII. If such a distribution µ is of positive type, D(G) can be replaced
by S(G) in the previous arguments and formula (8) thereby obtained for all
f, g ∈ S(G). It follows that the Fourier transform of a tempered distribution
of positive type is a positive tempered measure, which means that there is a
polynomial function p on Ĝ such that the measure p(χ)dµ̂(χ) is bounded.

Measures µ̂ obtained from distributions of positive type are not the most
general positive measures on Ĝ. To obtain these, D(G) or S(G) would need to
be replaced by the algebra (with respect to the convolution product)W(G) of
functions whose Fourier transform has compact support (for G = R, see the
Paley-Wiener theorem in Chap. VIII, n◦ 12). It is then possible to associate

to any measure ν ≥ 0 on Ĝ a linear functional µ : f 7→ ν(f̂) on W(G) for
which

µ(f̃ ∗ f) = ν
(
|f̂ |2

)
≥ 0 .

In fact all this falls within the scope of a general theorem which Dieudonné
(XV.9) strangely called “ Plancherel-Godement ” as he had heard me present
it around 1950. As it was an almost trivial generalization of the method
used by Cartan and myself to present the Fourier transform on commutative
groups, I did not publish the result.

Exercise 1. Suppose that dµ(x) = f(x)dx for some f ∈ L2(G). Show that

dµ̂(χ) = f̂(χ)dχ and that f̂(χ) ≥ 0 almost everywhere.

(iii) Functions of positive type. Among measures of positive type on a lcg,
there are measures dµ(x) = ϕ(x)dx, where ϕ is locally integrable. ϕ is then
said to be of positive type. However, by (6),

µ (g̃ ∗ f) =

∫
f(yx)g(y)ϕ(x)dxdy =

∫
ϕ
(
y−1x

)
f(x)g(y)dxdy .
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Hence the condition ∫
ϕ
(
y−1x

)
f(x)f(y)dxdy ≥ 0(30.9)

valid for all f ∈ L(G). As will be seen, a general procedure for obtaining
continuous functions of positive type consists in starting from a unitary rep-
resentation (H, U) of G and in considering a diagonal coefficient

ϕ(x) = (U(x)a|a) , a ∈ H ,(30.10)

of the latter. Then indeed, for dµ(x) = ϕ(x)dx,

µ (g̃ ∗ f) =

∫∫ (
U
(
y−1x

)
a|a
)
f(x)g(y)dxdy

=

∫∫
(U(x)a|U(y)a) f(x)g(y)dxdy ,

whence

µ(g̃ ∗ f) = (U(f)a|U(g)a).(30.11)

As the left hand side is, by definition, (fµ|gµ), the representation of G de-
fined by ϕ(x)dx can be obtained up to equivalence in the following manner:
H(µ) is the closure of the subspace of U(f)a ∈ H, operators Lµ(x) being
the restrictions of U(x) to this subspace. In particular, if the representation
(H, U) is irreducible, it is equivalent to the representation defined by µ.

Lemma 1 (Gelfand-Raikov). Every locally integrable function ϕ of posi-
tive type bounded in the neighbourhood of unity is almost everywhere equal
to a bounded continuous function. There is a unitary representation (H, U) of
G such that ϕ(x) = (U(x)a|a) for some a ∈ H. It is unique up to equivalence
if the linear combinations of the U(x)a are required to be everywhere dense
in H.

Here too, the result is obtained by using the unitary representation defined
by dµ(x) = ϕ(x)dx. Indeed, for f, g ∈ L(G),

(fµ|gµ) = µ (g̃ ∗ f) =

∫∫
ϕ
(
y−1x

)
f(x)g(y)dxdy .(30.12)

By assumption, |ϕ(x)| ≤ M ae. in a neighbourhood of 0 which can be sup-
posed to be of the form K−1K, where K is a compact neighbourhood of e.
If f vanishes outside K and if we put g = f in (12), we get the inequality

‖fµ‖ ≤M
∫
|f(x)| dx .

Then, choosing functions f ≥ 0 with integral equal to 1 and vanishing outside
K, we suppose that the measure f(x)dx converges to a Dirac measure at e.
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As the function∫
ϕ
(
y−1x

)
g(y)dy =

∫
ϕ
(
y−1

)
g(xy)dy = g ∗ ϕ(x)

is continuous for g ∈ L(G), (fµ|gµ) converges to the value of this function at
x = e. Since ‖fµ‖ ≤M for the functions f considered, at the limit,∣∣∣∣∫ ϕ

(
y−1

)
g(y)dy

∣∣∣∣ ≤M ‖gµ‖ for all g ∈ L(G) .

So there is a vector a ∈ H(µ) such that

(a|gµ) =

∫
ϕ
(
y−1

)
g(y)dy

for all g ∈ L(G) and, replacing g(y) by g(xy),∫
ϕ
(
y−1

)
g(xy)dy =

(
a|Lµ

(
x−1

)
gµ
)

= (Lµ(x)a|gµ) ;

but then (12) becomes

(fµ|gµ) =

∫
(Lµ(x)a|gµ) f(x)dx = (Lµ(f)a|gµ) ,

whence fµ = Lµ(f)a for all f ∈ L(G). So∫∫
ϕ
(
y−1x

)
f(x)g(y)dxdy = (fµ|gµ) = (Lµ(f)a|Lµ(g)a)

=

∫∫
(Lµ(x)a|Lµ(y)a) f(x)g(y)dxdy

for all f, g ∈ L(G). We then deduce that

ϕ
(
y−1x

)
= (Lµ(x)a|Lµ(y)a) =

(
Lµ(y−1x)a|a

)
almost everywhere on G×G. Thus

ϕ(x) = (Lµ(x)a|a)

for almost all x.
Conversely, if ϕ(x) = (U(x)a|a) for a unitary representation (H, U) and

some a ∈ H, H may be assumed to be generated by all U(x)a. Then, as was
seen above, for the measure dµ(x) = ϕ(x)dx and f, g ∈ L(G),

(U(f)a|U(g)a) = µ (g̃ ∗ f) = (fµ|gµ) .(30.13)

Therefore, there is an isomorphism fromH(µ) ontoH which, for all f ∈ L(G),
maps fµ onto U(f)a. So the representation defined by µ is equivalent to
(H, U), which proves the lemma.
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In particular if (H, U) and (H′, U ′) are two unitary representations ad-
mitting “ generators ” a and a′, and if (U(x)a|a) = (U ′(x)a′|a′) for all x, then
all given representations are equivalent. Corollary: two irreducible represen-
tations having a common diagonal coefficient are equivalent.

Supposing that ϕ is continuous, it is clear that ϕ(e) ≥ 0, |ϕ(x)| ≤ ϕ(e)
and

ϕ
(
x−1

)
= ϕ(x)

for all x. Hence ϕ̃(x) = ∆(x)ϕ(x), i.e. ϕ̃ = ϕ when G unimodular.
On the other hand, under the same assumptions, relation (13) shows that

if a measure ν of positive type is � µ, then ν(f̃ ∗ f) ≤ ‖U(f)a‖2 and so

|ν (g̃ ∗ f)| ≤ ‖U(f)a‖ . ‖U(g)a‖ .

The U(f)a being everywhere dense in H, there is (n◦ 19, corollary of theorem
31) a Hermitian operator H satisfying 0 ≤ H ≤ 1 and

ν (g̃ ∗ f) = (HU(f)a|U(g)a) .

The left hand side being invariant if f and g are made to undergo the same
left translation, H commutes with all U(f) and all U(x). Hence if (H, U) is
irreducible, then H is a scalar and ν is proportional to µ.

Conversely suppose that this condition holds for a measure µ of the form
ϕ(x)dx, where ϕ is continuous of positive type. If a Hermitian operator H
on H, satisfying 0 ≤ H ≤ 1, commutes with all U(x), so does H1/2 and the
function

ϕH(x) = (U(x)Ha|a) =
(
U(x)H1/2H1/2a|a

)
=
(
U(x)H1/2a|H1/2a

)
is of positive type, as well as ϕ1−H = ϕ − ϕH . Therefore, ϕH � ϕ, and so
ϕH = cϕ for some scalar c ≥ 0. It readily follows that H is a scalar.

Let us say that a continuous function of positive type is elementary if
it is a “ diagonal ” coefficient of an irreducible unitary representation. The
previous arguments prove the next statement:

Lemma 2. Let ϕ be a continuous function of positive type. ϕ is elementary
if and only if every continuous function of positive type ψ � ϕ is proportional
to ϕ. Every measure µ of positive type such that µ� ϕ is then proportional
to the measure ϕ(x)dx.

An easy calculation shows that, for any finite number of xi ∈ G and
scalars ξi ∈ C, in notation (10),∑

ϕ
(
x−1j xi

)
ξiξj =

∥∥∥∑ ξiU (xi) a
∥∥∥2 ≥ 0 .(30.14)

This is the original definition of (continuous) functions of positive type used
in the 1930s by Salomon Bochner for G = R, and adopted by everyone,
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in particular by probabilists studying stationary stochastic processes. The
equivalence of (14) and (9) can be easily shown. Indeed, if K is a compact
set outside which the continuous functions f and g appearing in (9) vanish,
then K can be partitioned into finitely many measurable sets Ai on which f
and g are constant up to r > 0. Choosing xi in Ai and denoting the extension
of the integral of f (resp. g) to Ai by ξi (resp. ηi), ϕ being continuous, the
difference between integral (9) and the sum

∑
ϕ(x−1j xi)ξiηj can clearly be

made to be arbitrarily small. Hence the result.
For G = R, F. Riesz119 was the first to see the relations between con-

tinuous functions of positive type and unitary representations of R studied
by Marshall Stone. This is where Gelfand and Raikov (1943) probably got
the idea of generalizing the result to arbitrary lcg; this was my case a year
later. This point of view cannot be found in Weil’s book, but it contains the
generalization of Bochner’s essential result to all commutative lcgs:

Theorem 45 (S. Bochner). A continuous function ϕ on a commutative
lcg G is of positive type if and only if there is a bounded positive measure120

dϕ̂(χ) on Ĝ such that

ϕ(x) =

∫
e(x, χ)dϕ̂(χ) for all x ∈ G .(30.15)

The measure ϕ̂ is unique.

Indeed, applying theorem 44 to the measure dµ(x) = ϕ(x)dx, we get a

measure µ̂ ≥ 0 on Ĝ such that∫
f̂(χ)ĝ(χ)dµ̂(χ) = µ (f ∗ g̃) =

∫∫
ϕ
(
y−1x

)
f(x)g(y)dxdy

for all f, g ∈ L(G). To show that µ̂ is bounded, we put f = g and make the
measure f(x)dx tend to the Dirac measure at e. The second integral tends

to ϕ(e) since ϕ is continuous and bounded. On the left hand side, |f̂(χ)|2
converges uniformly to 1 on every compact set while staying dominated by
a constant. So the left hand side tends to µ̂(1). Thus µ̂(1) = ϕ(e) < +∞.
To get (15), we make g(y)dy tend to a Dirac measure at e and f(x)dx to

a Dirac measure at a point a ∈ G. f̂(χ) converges to e(a, χ) and ĝ(χ) to
1, while staying dominated by a constant function. This enables us to pass
to the limit in the first integral. In the middle expression, the limit is ϕ(a),
giving (15). The converse consists in calculating µ(f ∗ g̃) from (15).

Exercise 2. State the theorem explicitly for G = Z (The G. Herglotz
“ moment problem ”) and G = T.

119 Über Sätze von Stone und Bochner (Acta Szeged, 1933, pp. 184–198)
120 So the notation ϕ̂ does not denote a function, though, in some cases, the measure

dϕ̂(χ) is absolutely continuous with respect to dχ.



232 XI – Integration and Fourier Transform

Exercise 3. (a) Show that the Fourier transform (in the sense of Plancherel’s
formula) of a square integrablecontinuous function ϕ of positive type is posi-

tive, in L12(Ĝ) and that

ϕ(x) =

∫
e(x, χ)ϕ̂(χ)dχ .

(b) Show that there is a unique function ψ ∈ L2(G) of positive type such that
ϕ = ψ ∗ ψ. (c) Let (H, U) be the unitary representation defined by ϕ (The
Gelfand-Raikov lemma). Show that it is equivalent to the representation on

L2(Ĝ; ϕ̂) associating the operator of multiplication by e(x;χ) to each x ∈ G.
(d) Denote by H(ψ) the smallest closed invariant subspace of L2(G) contain-
ing ψ. Show that (H, U) is equivalent to the representation by translations
on H(ψ).

Exercise 4. Let (H, U) be a unitary representation of G. Using Bochner’s

theorem, show there is spectral measure M on Ĝ, in the sense of n◦ 22, such
that121

U(x) =

∫
e(x, χ)dM(χ)

for all x ∈ G and U(f) = M(f̂) for all f ∈ L1(G). What about the case
G = Z?

Exercise 5. (a) Let G be a lcg and K ⊂ L∞(G) the convex set of contin-
uous functions of positive type such that ϕ(e) ≤ 1. Show that K is compact
with respect to the weak topology of L∞(G) (use lemma 1 and the fact that,
in the topological dual of a Banach space, the unit ball is weakly compact).
(b) A point of a convex set K is said to be extremal if it is not in the in-
terior of any line segment contained in K. Using lemma 2, show that the
extremal points of K are precisely the elementary ϕ such that ϕ(e) = 1 and
the function 0.

In a locally convex topological vector space, for example L∞(G) equipped
with the weak topology, every compact convex set is the smallest closed convex
set containing all its extremal points (Krein-Milman theorem). The previous
exercise then enables us to show the existence of “ many ” elementary func-
tions of positive type and even that, for all x ∈ G such that x 6= e, there

121 For G = R, it is Stone’s theorem referred to in the title of F. Riesz’s article
mentioned above. It extension to the general case was independently published
by M. A. Neumark (1943), W. Ambrose (1944) and myself (CR de l’Académie
des Sciences, June 1944) at a time when, as I have already mentioned some-
where, Soviet (or American) journals did not reach France. Mine is even now
not cited, perhaps because it was published in CRAS, a journal little read by
mathematicians. Some have criticized CRAS for not having referees. As most
mathematicians are familiar with the distinction between a necessary and a suf-
ficient condition, this argument does not prove anything: to decide whether a
two page article is interesting or not, it should be read. Let me add that my note
already contained much of the formalism of spectral measures given in n◦ 22.
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is an irreducible unitary representation (H, U) of G such that U(x) 6= 1:
This is Gelfand-Raikov’s result and their proof. To go further, two methods
are available. The general theorem for G can be used. Choquet’s theorem for
compact convex: for all ϕ ∈ K such that ϕ(e) = 1, there is a positive measure
m on K, of total weight 1, concentrated on the set of elementary functions
and such that

ϕ(x) =

∫
ψ(x)dµ(ψ) for all x .

This result generalizes Bochner’s theorem, except for the uniqueness of the
measure µ. Otherwise, using von Neumann’s methods described in n◦ 24,
one can show that any unitary representation of G is a continuous sum of
irreducible representations. But this result from pure measure theory is of
little interest. In concrete cases, one always expects to find a much more
natural or canonical decomposition, not to mention the fact that, for some
bizarre groups, a given representation can be decomposed into irreducible
representations in two completely different ways.

31 – Quasi-Regular Representations of a Unimodular Group

(i) Central measures of positive type.122 As was seen in section (i) above, the
regular representation of G by left translations

L(x) : f 7−→ εx ∗ f(31.1)

on L2(G) is obtained by applying the method valid for any measure µ � 0
to the Diract measure ε. But right translations defined by

R(x) : f 7−→ f ∗ εx(31.1’)

define a second representation on L2(G)123 commuting with the previous one.
It is unitary because, G being unimodular, the measure ε satisfies the identity

ε(f ∗ g) = ε(g ∗ f) ,(31.2)

equivalent to ∫
f(x)g

(
x−1

)
dx =

∫
g(x)f

(
x−1

)
dx .

122 For this section, see my Mémoire sur la théorie des caractères dans les groupes
localement compacts unimodulaires (Journal de math. pures et appliquées, XXX,
1951, pp. 1–110).

123 As f ∗εx is the function y 7→ f(yx−1), R(xy) = R(y)R(x), so that we get a repre-
sentation of the “ opposite ” group, obtained by replacing the given composition
law (x, y) 7→ xy by (x, y) 7→ yx. The map x 7→ R(x−1) is the one that would
define a representation of G. Denoting by G′ the “ opposite ” group to G, the
map (x, y) 7→ L(x)R(y) is, therefore, a – very particular – unitary representation
of the group G×G′.
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Then

(R(x)f |g) = ε (g̃ ∗ f ∗ εx) = ε (εx ∗ g̃ ∗ f)

= ε[(g ∗ εx−1)
˜ ∗ f ] =

(
f |R

(
x−1

)
g
)
,

whence the result. Moreover, L2(G) contains an “ involution ”

S : f 7−→ f̃

for which

SL(x)S−1 = R
(
x−1

)
.(31.3)

(2) says that the measure ε is central. An immediate calculation shows that
central measure are invariant under inner automorphisms x 7→ sxs−1 de G,
and conversely.

Similarly, for any central measure µ of positive type, there are two unitary
representations Lµ and Rµ and an involution on the space H(µ). Indeed the
inner product (fµ|gµ) = µ(g̃ ∗f) is invariant under left and right translations
f 7→ εx ∗f and f 7→ f ∗ εx; hence two representations Lµ(x) and Rµ(x). They
commute like they do on L2(G). For the same reason,

µ (g̃ ∗ f) = µ
(
f̃ ∗ g

)
(car µ� 0) = µ

(
g ∗ f̃

)
= µ (f ∗ g̃) ,

which proves that f 7→ f̃ induces a quotient map and defines an involution S
on H(µ) such that

g = f̃ =⇒ gµ = Sfµ .(31.4)

Relation (3) obviously holds in this setup.
Let us denote by A(µ) the image of L(G) under f 7→ fµ. It is the quotient

of L(G) by the left ideal I(µ) consisting of f such that µ(f̃ ∗ f) = 0. As µ
is central, this ideal is stable under f 7→ f̃ , and so is a two-sided ideal124

of L(G). This provides an algebra structure on A(µ) = L(G)/I(µ). Hence,
denoting multiplication in A(µ) by a point to avoid any confusion,

fµ.gµ = (f ∗ g)µ ,(31.5)

S (fµ.gµ) = Sgµ.Sfµ .(31.6)

Except in some cases, in general the fµ cannot be interpreted as functions
on G. The symbol used to multiply them is, therefore, not a convolution
product in the usual sense.

Over a Lie group, L(G) could be replaced by the Schwartz space D(G)
and the same constructions carried out for all central distributions of posi-
tive type. We could even go further by considering positive Hermitian

124 In a ring A, a two-sided ideal is a subgroup I of the additive group such that
axb ∈ I for all a, b ∈ A and x ∈ I. Relations x = x′mod I and y = y′mod I then
imply xy = x′y′mod I, defining a multiplication – a ring structure – on A/I.
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forms µ(f, g) defined on a vector subspace a of L1(G) whose elements are
“ sufficiently regular ” functions – whatever that means. . . – satisfying some
obvious conditions:125

(BT 1) a is invariant under the maps f 7→ f̃ , f 7→ εx ∗ f for all x and
f 7→ g ∗ f for all g ∈ a [so that a is a subalgebra of L1(G)],

(BT 2) a is everywhere dense in L1(G),
(BT 3) the function µ(εx ∗ f, g) is continuous for all f, g ∈ a and

µ(h ∗ f, g) =

∫
µ (εx ∗ f, g)h(x)dx(31.7)

for all h ∈ L(G),
(BT 4) µ(f̃ , g̃) = µ(g, f) for all f, g ∈ a.

There is no need to go further to find examples of such objects: take G = R,
for a take the set W (R) [not contained in L(G)] of integrable functions whose
Fourier transforms have compact supports as in n◦ 30, (ii) and set µ(f, g) =∫
f̂(t)ĝ(t)dλ(t), where λ is a positive arbitrary measure on R. If µ is a central

distribution of positive type on a Lie group G, choose a to be Schwartz space
D(G) and set µ(f, g) = µ(g̃ ∗ f).

In the general case, specifying a function µ satisfying the stated conditions
enables us to define a Hilbert space H(µ), a canonical map f 7→ fµ from a
to H(µ), an involution S, two representations Lµ and Rµ of G and of the
opposite group G′, and finally a multiplication in the image A(µ) of a in
H(µ). Like Dixmier, we will call such a Hermitian form µ a bitrace on G.

(ii) The commutation theorem. “ Two-sided representations ” of a unimod-
ular group defined by bitraces have a property well-known (and trivial) in
the case of the regular representation of a finite group which was proved in
n◦ 29, (ii) for the regular representation of a compact group:

Theorem126 46. Let µ be a bitrace on a locally compact unimodular group G
and L(µ) [resp. R(µ)] the algebra of continuous operators on the space H(µ)
commuting with right (resp. left) translations. Then

L(µ) = R(µ)′ , R(µ) = L(µ)′(31.8)

and

SAS−1 = A∗ for all A ∈ L(µ) ∩R(µ) .(31.9)

125 See R. Godement, Séminaire Bourbaki, Mars 1951, and Théorie des caractères II
(Annals of Math., 59, 1954, pp. 63–85), where spaces a of bounded measures
are considered instead. The definition adopted here consists in replacing a by its
intersection with L1(G) and is suffices for our purpose.

126 For the regular representation, see I. E. Segal (Annals of Math., 51, 1950,
pp. 293–298) and for the general case, R. Godement (J. de Math. pures et appli-
quées, XXX, 1951, pp. 1–110) and notes in CRAS (November 1949).
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Since A′′ = A for any von Neumann algebra [n◦ 19, (vii)], relations (8)
are equivalent. As R(µ) contains all R(x), it is clear that R(µ)′ ⊃ L(µ) and
L(µ)′ ⊃ R(µ). So it suffices to show that all A ∈ L(µ) commute with all
B ∈ R(µ).

For f ∈ a, the definition algebra of µ, consider the operators

Lµ(f) =

∫
Lµ(x)f(x)dx , Rµ(f) =

∫
Rµ(x)f(x)dx .

Formula (31.7), or (30.4) in the case of a measure, shows that, in notation (5),

Lµ(f)gµ = (f ∗ g)µ = fµ.gµ

and similarly,

Rµ(f)gµ = (g ∗ f)µ = gµ.fµ .

The assumption implies that A commutes with all Rµ(f) and B with all
Lµ(f), and so that

A (gµ.fµ) = Agµ.fµ , B (fµ.gµ) = fµ.Bgµ(31.10)

for f, g ∈ a. The “ obvious ” proof of the theorem, used for compact groups,
would consist in writing that

BA (fµ.gµ) = B (Afµ.gµ) = Afµ.Bgµ ,

AB (fµ.gµ) = A (fµ.Bgµ) = Afµ.Bgµ ,

but neither Afµ nor Bgµ are in general in A(µ), and a priori, their product
is not well-defined, even if G = R and µ = ε.

It is, therefore, necessary to use somewhat less simple arguments. The
theorem being only a particular case of a much more general theorem with
exactly the same proof, but more applications, we will work in the latter
framework.

We start from the following three data:127

(i) an algebra A with or without unit element whose multiplication will be
denoted by f.g,

(ii) a semi-linear map (“ involution ”) S on A such that S2 = 1,
(iii) an inner product (f |g) on A such that (f |f) = 0 implies f = 0.

127 The notation used (f, g, ϕ, etc.) aims at highlighting the similarity with the
regular representation case, where Roman letters denote functions of L(G), Greek
letters a priori arbitrary functions on L2(G). For what follows, see R. Godement,
Théorie des caractères. I. Algèbres unitaires (Annals of Math., 59, 1954, pp. 47–
62) and a talk of March 1951 in séminaire Bourbaki. At the time, exchanging
ideas with Jacques Dixmier was very helpful for me. See his article in Compositio
Mathematica of 1952 and the two books already referred to.
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Set ‖f‖ = (f |f)1/2 and denote by H the Hilbert space completion of A,
which, therefore, is H(µ) in the case of the theorem and L2(G) if µ = ε. The
map S can be extended to H. I will in general write Sf = f̃ .

A will be said to be a Hilbert algebra if it satisfies the following conditions:

(AH 1) Sf.Sg = S(g.f) for f, g ∈ A

(AH 2) (f.g|h) = (g|Sf.h) for f, g, h ∈ A ;

(AH 3) (f |g) = (Sg|Sf) for f, g ∈ A ;

(AH 4) for all f ∈ A, there is an upper bound ‖f.g‖ ≤M(f)‖g‖ ;

(AH 5) the products f.g are everywhere dense in A (hence in H).

These axioms are satisfied by the algebra A(µ) associated to a bitrace µ. The

first one is obvious. The second one can be written h̃∗(f∗g) =(f̃∗h)∗g. (AH 3)
follows from (BT 4). (AH 4) is clear since fµ.gµ = Lµ(f)gµ with a continuous
operator Lµ(f) on H(µ), as on any unitary representation. Finally, (AH 5)
follows from the fact that, for any unitary representation (H, U), every x ∈ H
is in the closure of the set of vectors U(f)x where f ∈ L1(G). However, a is
everywhere dense in L1(G).

We next consider the general “ abstract ” situation. For all f ∈ A, multi-
plication in A leads to maps

L(f)g = f.g,R(f)g = g.f(31.11)

from A to H. By (AH 4), the maps L(f) extend to continuous operators on
H. (AH 2) says that

L(f)∗ = L(f̃) for f ∈ A .(31.12)

On the other hand, (AH 1), (AH 2) and (AH 3) show that

SL(f̃)S−1g = S(f̃ .g̃) = g.f = R(f)g ,

i.e. that

SL(f̃)S−1 = R(f) ,(31.13)

and so all R(f) also extend to continuous operators on H. Trivially (associa-
tivity),

L(f)R(g) = R(g)L(f) , L(f)g = R(g)f

for f, g ∈ A. These operators enable us to consider H as a “ bimodule ” over
the ring A: for this it suffices to set

f.ϕ = L(f)ϕ , ϕ.f = R(f)ϕ for f ∈ A , ϕ ∈ H .(31.14)

Associativity follows from L(fg) = L(f)L(g), R(fg) = R(g)R(f). For the
regular representation on L2(G) we thereby obtain convolution products,
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and this example shows (if G is not compact) that, without assumptions on
ϕ and ψ, the product ϕ.ψ of two elements of H is not well-defined (or, if it
is from the point of view of group theory, does not belong to H).

To get theorem 46, it, therefore, suffices to prove the next result:

Theorem 47. Let A be a Hilbert algebra and H its completion. If A and B
are continuous operators on H such that

AR(f) = R(f)A , BL(f) = L(f)B

for all f ∈ A, then AB = BA.

The first step of the proof consists in associating to each ϕ ∈ H a linear
map R(ϕ) : A −→ H by setting

R(ϕ)f = L(f)ϕ = f.ϕ for f ∈ A .(31.15)

ϕ will be said to be right moderate if R(ϕ) is continuous, which the case of
f ∈ A by (AH 3), and the extension of R(ϕ) to H will also be denoted by
R(ϕ). The left moderate ϕ are defined in the same way. Hence in this case,
there is a continuous operator L(ϕ) satisfying

L(ϕ)f = R(f)ϕ for all f ∈ A .(31.15’)

Lemma 1. If ϕ ∈ H is right moderate, so is Bϕ and

R(Bϕ) = BR(ϕ) .

Indeed, for all f ∈ A,

BR(ϕ)f = BL(f)ϕ = L(f)Bϕ .

As B and R(ϕ) are continuous, the map f 7→ L(f)Bϕ is continuous, so that
Bϕ is right moderate, qed.

Similarly, if ϕ is left moderate, so is Aϕ and

L(Aϕ) = AL(ϕ) .

Lemma 2. If ϕ is right moderate, then so is ϕ̃ and

R(ϕ̃) = R(ϕ)∗ .

Indeed by (15), for f, g ∈ A,

(R(ϕ)f |g) = (L(f)ϕ|g) = (ϕ|L(f̃)g) = (ϕ|f̃ .g) = (g̃.f |ϕ̃)

= (L(g̃)f |ϕ̃) = (f |L(g)ϕ̃) = (f |R(ϕ̃)g) .



§ 8. Unitary Representations of Locally Compact Groups 239

This proves the formula and shows that ϕ̃ is right moderate.
Similarly,

L(ϕ̃) = L(ϕ)∗

if ϕ is left moderate.

Lemma 3. Any right moderate ϕ ∈ H is left moderate and

SR(ϕ)S−1 = L(ϕ̃) = L(ϕ)∗

For f ∈ A,

SR(ϕ)S−1f = SR(ϕ)f̃ = SL(f̃)ϕ = R(f)S−1ϕ by (10)

= R(f)ϕ̃ = L(ϕ̃)f

by (15’), so that ϕ̃ is left moderate. Hence so is ϕ = (ϕ̃)̃ by lemma 2, qed.
Lemmas 2 and 3 show that the notions of left and right moderation are

the same. Hence we will talk of moderate elements without any further detail.

Lemma 4. If ϕ and ψ are moderate, then

L(ϕ)ψ = R(ψ)ϕ .(31.16)

For f ∈ A,

(L(ϕ)ψ|f) = (ψ|L(ϕ̃)f) (lemma 2)

= (ψ|R(f)ϕ̃) = (R(f̃)ψ|ϕ̃) = (SL(f)S−1ψ|Sϕ) by (13)

= (ϕ|L(f)ψ̃) = (ϕ|R(ψ̃)f) = (R(ψ)ϕ|f)

by lemma 2, qed.
We are now ready to show that AB = BA. For f, g ∈ A, Af and Bg are

moderate by lemma 1. So

AB(f.g) = ABL(f)g = AL(f)Bg = L(Af)Bg (lemma 1)

= R(Bg)Af (lemma 4) = BR(g)Af (lemma 1)

= BAR(g)f = BA(f.g) ;

(AH 4) then shows that AB = BA, qed.
The equality

SAS−1 = A∗(31.17)

remains to be proved for any continuous operator A commuting with all
L(f) and all R(f), i.e. belonging to the common centre of the von Neumann
algebras L and R associated to A. For f, g, h ∈ A,
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(SAS−1(f.g)|h) = (h̃|A(g̃.f̃)) = (h̃|AL(g̃)f̃) =

= (h̃|L(g̃)Af̃) = (L(g)h̃|Af̃) = (R(h̃)g|Af̃) =

= (g|R(h)Af̃) = (g|AR(h)f̃) = (g|R(Ah)f̃) (lemma 1)

= (g|L(f̃)Ah) (lemma 4) = (L(f)g|Ah) = (f.g|Ah) .

Thus (17) follows since the f.g are everywhere dense. qed.
Finally, note that the set of operators L(f) where f ∈ H is moderate is

a two-sided ideal L2 of the von Neumann algebra L (the notation will be
explained later). Indeed, lemma 1 shows that it is a left ideal. On the other
hand, keeping the notation of lemma 1,

R(ϕ)B = [B∗R(Sϕ)]
∗

= R (B∗Sϕ)
∗

= R (SB∗Sϕ) .

The result follows by permuting left and right.

Corollary. The set of L(f) [resp. R(f)], f ∈ A, is ultrastrongly everywhere
dense in the von Neumann algebra L (resp. R) of continuous operators com-
muting with R(f) [resp. L(f)] for any f ∈ A.

Indeed the theorem shows that L = R′, so that [n◦ 19, (vii), density
theorem] the algebra of L(f) + λ1 is ultrastrongly dense in L. To show that
that so are the L(f), it suffices [n◦ 19, (vii), lemma 6] to show that, for ϕ ∈ H,
for all f ∈ A, relation L(f)ϕ = 0 implies ϕ = 0. As

(L(f)ϕ|g) =
(
ϕ|f̃ .g

)
,

this is axiom (AH 5) of Hilbert algebras, qed.

Lemma 4 enables us to define in the set Â of moderate ϕ ∈ H a multipli-
cation extending that considered in A, namely

ϕ.ψ = L(ϕ)ψ = R(ψ)ϕ .(31.18)

ϕ.ψ can even be defined if only one of the factors is moderate: set

ϕ.ψ = L(ϕ)ψ or R(ψ)ϕ(31.18’)

according to whether ϕ or ψ is moderate. This multiplication is associative
in the set of moderate elements of H, which thereby becomes an algebra, and
transforms H into a bimodule over it. Indeed if ϕ and ψ are moderate, then
for all θ ∈ H

(ϕ.ψ) .θ = L (ϕ.ψ) θ = L (L(ϕ)ψ) θ

= L(ϕ)L(ψ)θ (lemma 1) = ϕ. (ψ.θ) .

In particular, L(ϕ.ψ) = L(ϕ)L(ψ) and R(ϕ.ψ) = R(ψ)R(ϕ). On the other
hand, the involution ϕ 7→ ϕ̃ preserves moderate elements and by lemma 3,

(̃ϕ.ψ) = SL(ϕ)ψ = SL(ϕ)S−1Sψ = R(ϕ̃)ψ̃ = ψ̃.ϕ̃ .
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The algebra Â – nothing to do with a dual group or a spectrum – of
moderate elements clearly satisfies conditions (AH 1),. . . , (AH 5), and so
is a Hilbert algebra. Applying the previous construction to it does not give
anything more. If the only moderate elements of H are the maps f ∈ A, A
will be said to be a maximal (or full in Dixmier) Hilbert algebra.

For example, let us take A = L(G), where G is commutative, whence
H = L2(G). By Fourier transform, the moderate ϕ ∈ H are the functions

for which the map f̂ 7→ ϕ̂f̂ , defined on the Fourier transforms of f ∈ L(G),

is continuous on L2(Ĝ). This obviously means that ϕ̂ is bounded. So in this

case, the maximal algebra Â is the set of f ∈ L2(G) with bounded Fourier

transform. If unimodular G is not commutative, then Â is the set of ϕ ∈
L2(G) such that f 7→ ϕ ∗ f (or f 7→ f ∗ ϕ: lemma 3) maps L2(G) to L2(G).

If a Hilbert algebra A is irreducible, i.e. if H does not contain any non-
trivial right and left invariant closed subspace, the algebra Z = L ∩ R of
operators commuting with all L(f) and all R(f) is reduced to scalars. As Z
is the centre of L, algebras L and R are factors in the sense of von Neumann
theory [n◦ 19, (vii)].

Exercise 1. Let H′ be a closed subspace of H invariant under all L(f) and
all R(f) and let E be the projection ontoH′. Show that A′ = A∩H′ = E(A′)
is everywhere dense in H′ and is a maximal Hilbert algebra in H′ if A is
maximal in H.

(iii) Traces on a Hilbert algebra. Let us first consider a central measure
dµ(x) = ϕ(x)dx defined by a continuous function ϕ such that ϕ(xy) = ϕ(yx).
This simple particular case rarely occurs except for commutative, compact or
discrete groups. We denote the algebra of moderate elements of H(µ) = H by
A. There is [n◦ 30, (iii), proof of the Gelfand-Raikov lemma] a vector u ∈ H
such that

ϕ(x) = (Lµ(x)u|u) , fµ = Lµ(f)u

for all x ∈ G and all f ∈ L(G), whence fµ = fµ.u by definition (18’) of the
multiplication. It follows that R(u) = 1, and so that u is a moderate element
of H(µ). Since then v.u = R(u)v = v, the vector u is a right unit element of
the algebra A, and since v.u = v implies ũ.ṽ = ṽ, u is in fact a unit element
of A and ũ = u. The most obvious example is that of the measure ε on a
discrete group G. As L(u) = R(u) = 1, for any operator A ∈ L and any
f ∈ A,

Af = A(u.f) = AR(f)u = R(f)Au = Au.f = a.f .(31.19)

The element Au = a ∈ H defines A = L(a) and is moderate since A is
continuous. The von Neumann algebra L is, therefore, the set of L(a), a ∈ A.

For all A ∈ L, the formula

Tr(A) = (Au|u) = (a|u)(31.20)
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defines a linear functional on L with all the properties of a trace. Indeed, if
A = L(a) and B = L(b) where a, b ∈ A, then

Tr (B∗A) = (Au|Bu) = (a|b) = (b̃
∣∣ã) = Tr (AB∗) ,

whence

Tr(AB) = Tr(BA) .(31.21)

Obviously

Tr (A∗) = Tr(A) , Tr(H) ≥ 0 if H∗ = H ≥ 0 .(31.22)

If moreover 0 = Tr(H) = (Hu|u) = ‖H1/2u‖2, then H1/2 = L(H1/2u) = 0
and so H = 0; trace (20) is then said to be faithful.

If (Hn) is an increasing sequence of positive Hermitian operators on L
and is bounded above [n◦ 19, (v), lemma 8], then the definition of supHn

shows that

Tr (supHn) = sup Tr (Hn) .(31.23)

Finally, it is clear that the initial function ϕ(x) = (Lµ(x)u|u) becomes

ϕ(x) = Tr [Lµ(x)](31.24)

and that

(fµ|gµ) = Tr [Lµ(g)∗Lµ(f)](31.25)

for all f, g ∈ L(G). Besides this is only a different way of stating relation

Tr [L(b)∗L(a)] = (a|b)(31.25’)

obtained above as an aside. All this generalizes in an obvious way to uni-
tary algebras with unit element and is directly connected to the theory of
von Neumann algebras of finite type due to Dixmier and to their wonderful
properties.128

In the general case of a maximal algebra A without unit element, the two-
sided ideal L2 of L defined above is the set of L(f), f ∈ A. For A,B ∈ L2,
in accordance with (25’), we set

Tr (B∗A) = (f |g) if A = L(f) , B = L(g) ,

128 For example, Dixmier has shown that, if Z is the centre of such an algebra A,
then there is a map T 7→ T \ from A onto Z with the formal properties of the
similar map with respect to a compact group, that T \ is the only element of
Z belonging to the closed convex envelope of the set of UTU−1, where U is
unitary in A, and that the traces on A are the functions T 7→ χ(T \) where χ is
a character of Z.
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where f, g ∈ A. The result only depends on the operator B∗A = L(g̃.f) since,
for u, v ∈ A,

(B∗Au|v) = (L (g̃.f)u|v) = (L(f)u|L(g)v) = (R(u)f |R(v)g) .

Choosing un and vn such that R(un)f and R(vn)g converge to f and g in
H (density theorem), (f |g) = lim(B∗Aun|vn), whence the result. Tr(B∗A) is
clearly a positive Hermitian form on L2. Equipping L2 with this inner product
and with the obvious involution gives a Hilbert algebra isomorphic to A, for
good reason. . . As above, the relation Tr(AB) = Tr(BA) is equivalent to the
formula (f |g) = (g̃|f̃).

One can also define the trace of an operator H in the set L+ of positive
Hermitian operators on L. Set

Tr(H) = Tr
(
H1/2H1/2

)
if H1/2 ∈ L2 ,(31.26)

Tr(H) = +∞ if H1/2 /∈ L2 .(31.26’)

Tr(H) ≥ 0 and Tr(H) = 0 if and only if H = 0.

Theorem 48. The function Tr(H) has the following properties:

(a) Tr(UHU∗) = Tr(H) for any unitary operator U ∈ L ;
(b) 0 ≤ H ′ ≤ H implies Tr(H ′) ≤ Tr(H).
(c) Tr(H ′ +H ′′) = Tr(H ′) + Tr(H ′′).
(d) If H1 ≤ H2 ≤ . . . is an increasing sequence129 bounded above in L+,

then

Tr (supHn) = sup Tr (Hn) .(31.27)

(a) The operator UH1/2U∗ is positive Hermitian and U∗U = 1 since U is
isometric. So (UH1/2U∗)2 = UH1/2U∗UH1/2U∗ = UHU∗ and

UH1/2U∗ = (UHU∗)
1/2

.

This being so, we first suppose that Tr(H) < +∞, whence H1/2 = L(a) for
some moderate a ∈ H. Using relations UL(f) = L(Uf) and L(f)∗ = L(f̃) =
L(Sf) of section (ii), it follows that

UH1/2U∗ = UL(a)U∗ = L(Ua)U∗ = [UL(Ua)∗]
∗

= [UL(SUa)]
∗

= L(USUa)]∗ = L(SUSUa) .

As SUSUa is moderate, UHU∗ has finite trace and

Tr
(
UHU−1

)
= (SUSUa|SUSUa) = (a|a) = Tr(H)

129 The argument equally applies to an increasing filtering family. See Dixmier’s
book on von Neumann algebras.
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since U and S are isometric.
On the other hand, H = U∗(UHU∗)U . Conversely, if U and U∗ are iso-

metric, in other words if U is unitary, then Tr(H) < +∞ since Tr(UHU∗) <
+∞, qed.

(b) One may assume that Tr(H) < +∞, and so H1/2 = L(u) for some
u ∈ A. As ‖H ′1/2f‖2 = (H ′f |f) ≤ (Hf |f) = ‖u.f‖2, there is a continuous
operator A′ on H such that H ′1/2f = A′H1/2f for all f ∈ A. Since this
relation only determines A′ on the image of H1/2, image whose orthogonal
is N = Ker(H1/2), A′ can be required to be trivial on N . The operator
A′ in then fully determined and satisfies H ′1/2 = A′H1/2 = H1/2A′∗ since
H ′ = H ′∗. This relation shows that the image of H ′1/2 is contained in the
image of H1/2. Denoting its closure by M, i.e. the subspace orthogonal to
N , one sees that A′ maps M to M and N to N .

Let us show that A′ ∈ L, i.e. that it commutes with all R(g), g ∈ A.

R(g)A′H1/2f = R(g)H ′1/2f = H ′1/2R(g)f = A′H1/2R(g)f = A′R(g)H1/2f

holds for all f ∈ A, so that R(g)A′ and A′R(g) coincide on M. As R(g)
commutes with H, it preserves N ; R(g)A′ and A′R(g) are, therefore, trivial
on N . Thus R(g)A′ = A′R(g) as desired.

This said, by lemma 1 about Hilbert algebras, H ′1/2 = A′H1/2 =
A′L(u) = L(A′u). As a result,

Tr (H ′) = ‖A′u‖2 ≤ ‖u‖2 = Tr(H)

since the norm of A is ≤ 1, qed.
(c) As H ′ + H ′′ = H is an upper bound of H ′ and H ′′, the trace of H ′

and H ′′ may be assumed to be finite. So H ′1/2 = L(u′) and H ′′1/2 = L(u′′)
for some u′, u′′ ∈ A. As was mentioned above, there are operators A′, A′′ ∈ L
that vanish on the subspace N of vectors orthogonal to Im(H1/2), preserving
the orthogonal M of N , and such that

H ′1/2 = A′H1/2 = H1/2A′∗ , H ′′1/2 = A′′H1/2 = H1/2A′′∗ .(31.28)

By lemma 1,

H ′ = H1/2A′∗H ′1/2 = H1/2A′∗L (u′) = H1/2L (v′) where v′ = A′∗u′ .

Likewise, H ′′ = H1/2L(v′′) , where v′′ = A′′∗u′′. So

H = H1/2L(v) where v = A′∗u′ +A′′∗u′′ .

All vectors u′, . . . , v′′ are moderate, and so are in A.
The previous relation shows that the operator

T = H1/2 − L(v) = H1/2 −A′∗H ′1/2 −A′′∗H ′′1/2(31.29)

is a zero of H1/2. Since M and N are invariant under H1/2, A′ and A′′,
hence also under their adjoint maps, so are they under T as well. Now, H1/2
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is injective on the orthogonal subspaceM to Ker(H1/2). So H1/2 = L(v) on
M. The images of H ′1/2 and H ′′1/2 being contained inM as was seen in the
previous lemma, these operators act trivially on N , whence T = 0.

Thus H1/2 = L(v), which shows that H has finite trace, and by definition,

Tr(H) = ‖v‖2 , Tr (H ′) = ‖u′‖2 , Tr (H ′′) = ‖u′′‖2 .

However, the relation H = H1/2(A′∗A′ +A′′∗A′′)H1/2 shows that

‖f‖2 = ‖A′f‖2 + ‖A′′f‖2(31.30)

for all f of the form H1/2g, and so for all f ∈M. On the other hand,

L (u′) = A′H1/2 = A′L(v) = L (A′v)

(lemma 1), whence u′ = A′v by axiom (AH 5) of Hilbert algebras. Likewise,
u′′ = A′′v. Relation (30), therefore, proves that Tr(H) = Tr(H ′) + Tr(H ′′) if
M is shown to contain v. ButM is the closure of the set of vectors H1/2f =
L(v)w = R(w)v with w ∈ A since L(v) is continuous, and we know that the
unit operator is a strong limit of operators R(w), qed.

(d) The first expression being greater than the second one, it suffices
to prove the inverse inequality when the second expression is finite. Thus

H
1/2
n = L(an) with an ∈ A such that ‖an‖2 = Tr(Hn). Set H = supHn. We

know that (Hn) [n◦ 19, (v), lemma 8] converges strongly to H and [n◦ 22,

(i), exercise 2] that H
1/2
n converges strongly to H1/2. So, for x, y ∈ A,(

H1/2x|y
)

= lim
(
H1/2
n x|y

)
= lim (an.x|y) = lim (an|y.x̃) .

As sup ‖an‖ < +∞ and as the y.x̃ are everywhere dense in H, (an) converges
weakly to some a ∈ H such that

(H1/2x|y) = (a|y.x̃) = (a.x|y)

for all x, y ∈ A. As H1/2 is continuous, a is moderate and H1/2 = L(a),
whence Tr(H) = ‖a‖2 ≤ sup ‖an‖2 = sup Tr(Hn), qed.

Exercise 2. For all H ∈ L+, there exists H ′ ∈ L+ such that

H ′ ≤ H , 0 < Tr (H ′) < +∞ .

[Set H ′ = H1/2L(f̃ .f)H1/2 for some conveniently chosen f ∈ A].
Exercise 3. Tr(A∗A) = Tr(AA∗) for all A ∈ L.
In general there are many other functions on L+ having properties

(a),. . . , (d) of the statement: setting Z = L ∩ R and Z+ = Z ∩ L+, any
A ∈ Z+ defines such a function, namely

TrA(H) = Tr(AH) .(31.31)

This is well-defined since, A and H being positive Hermitian and commuting,
AH ∈ L+ [n◦ 22, (i), exercise 1]. If H1/2 = L(a) for some moderate a ∈ H,
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then (AH)1/2 = A1/2H1/2 = L(A1/2a), and since A1/2a is moderate, it
follows that

TrA(H) = (A1/2a|A1/2a) ≤ ‖A‖Tr(H) .

As shown by Dixmier, this gives all traces having properties (a),. . . , (d) of the
theorem and that of exercise 3. Dixmier has also shown that any “ reasonable ”
trace on a von Neumann algebra can be obtained in this manner from a
unitary algebra; see this books.

(iv) Case of a commutative group. In the case of a commutative lcg, one
can add to theorem 44 thanks to the Fourier transform. We will confine
ourselves to the case of the measure µ = ε. The reader can easily address the
general case by the same method.

Theorem 49. Let G be a locally compact commutative group and T a con-
tinuous operator on L2(G) commuting with the translations. Then there is a

function T̂ ∈ L∞(Ĝ) such that T is the operator f̂ 7−→ T̂ f̂ .

The set R(G) of these operators is a von Neumann algebra to which
theorem 46 can be applied for µ = ε: since G is commutative, R(G) =

R(G)′. Let M(Ĝ) be the image of R(G) under the Fourier transform. It
it the commutator of the algebra A of operators M(p) : f 7−→ pf , where

p is a finite linear combination of characters of Ĝ. Hence M(Ĝ) = A′, and

so M(Ĝ) = M(Ĝ)′ = A′′ using von N’s notation. Since A is a self-adjoint

algebra containing 1, A is everywhere dense in M(Ĝ) with respect to the
ultrastrong topology [density theorem, Chap. XI, n◦ 19, (vii)].

This means that, if (ei) is an orthonormal basis130 of L2(Ĝ), then, for all

r > 0, there is a linear combination p of characters of Ĝ such that∑
‖Tei − pei‖22 < r2 .

So there is as sequence of functions pn for which

Tei(χ) = l.i.m.2 pn(χ)ei(χ) for all i .

By the Riesz-Fischer theorem, for each i, there is a subsequence for which
the previous relation holds in the sense of convergence almost everywhere.
As the set of indices i is countable, the same subsequence can be assumed to
be suitable for all i, in other words that

Tei(χ) = lim pn(χ)ei(χ) ae.

for all i.

130 To simplify the proof, it will be assumed to be countable, which amounts to
supposing that G is separable.
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However, Ĝ is the union of sets {ei(χ) 6= 0}, up to a null set, since

otherwise there would be functions 6= 0 on L2(Ĝ) orthogonal to all ei. As a
result, the limit

T̂ (χ) = lim pn(χ)

exists almost everywhere. As Tei(χ) = T̂ (χ)ei(χ) ae. for all i, Tf(χ) =

T̂ (χ)f(χ) ae. for any finite linear combination of ei. But any f ∈ L2(Ĝ)
is a limit in mean, hence also almost everywhere, of such combinations. So
Tf(χ) = T̂ (χ)f(χ) ae. for all f ∈ L2(Ĝ). It remains to observe that, the

operator T being continuous, ‖T̂‖∞ = ‖T‖ necessarily holds.
The reader will easily show that if T is positive Hermitian, then the func-

tion T̂ is positive and that Tr(T ) =
∫
T̂ (χ)dχ.

(v) Characters of a locally compact group. Let µ be a bitrace on a uni-
modular lcg G, (H(µ), Lµ, Rµ) the two-sided representation of G and A(µ)
the maximal Hilbert algebra defined by µ. For all f ∈ L(G), the image fµ of
f in H(µ) is in A(µ). For f, g ∈ L(G), by definition,

µ(f, g) = (fµ|gµ) = Tr [Lµ(g)∗Lµ(f)]

where Tr is the canonical trace (theorem 48) on the von Neumann algebra
L(µ) generated by the Lµ(f) or Lµ(x). µ will be said to be a character of G if
the algebra Z(µ) of operators commuting with all Lµ(f) and Rµ(f) is reduced
to scalars, in other words if the algebras L(µ) and R(µ) are factors in the
sense of von Neumann. The representation (x, y) 7−→ L(x)R(y) of G×G on
H(µ) is, therefore, irreducible and conversely.

As shown by von N., there are four large classes of factors. He distin-
guished between them by investigating the closed subspaces E of H such that
the corresponding projection PE is in the algebra A considered, and by con-
sidering equivalent two subspaces E ′ and E ′′ when there is an operator on A
mapping E ′ isometrically onto E ′′. The equivalence classes of these subspaces
are characterized by a number dim(E) ∈ [0,+∞] having the formal properties
of a dimension. Then, up to a constant factor, the possibilities are as follows:

Case (In), n ∈ N ∪ {+∞}: the dimension takes values 0, 1, . . . , n ;
Case (II1): it takes all values in the interval [0, 1] ;
Case (II∞): it takes all values in the interval [0,+∞] ;
Case (III): it only takes values 0 and +∞.

This classification applies to characters of a unimodular lcg. Case (III) does
not occur, but it is encountered in the regular representation of some non-
unimodular groups.

In the case of the algebra A = L(H), the von N dimension is the usual
one and is just Tr(PE), where PE is the orthogonal projection onto E and
where Tr(H) =

∑
(Hei|ei) is the usual trace calculated in an orthonormal

basis. Nonetheless, the notion of the trace of an operator hardly appears
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in von N.’s articles. Partly influenced by representations defined by central
measures of positive type (the case of compact groups was already indicative),
Dixmier reinterpreted von N.’s theory in terms of traces and freed it from its
restriction to factors. In the case of a factor, Dixmier showed that, up to a
constant factor, there is a unique function Tr defined on Hermitian elements
≥ 0 of A, satisfying theorem 48 and such that dim(E) = Tr(PE).

Like elementary functions of positive type [n◦ 30, (iii), lemma 2], char-
acters can be defined by an “ extremal ” property. To see this, it suffices to
observe that, for every bitrace µ, bitraces µ′ � µ correspond bijectively to
operators H ∈ Z(µ) such that 0 ≤ H ≤ 1, the bitrace defined by such an H
being

µH(f, g) = Tr [Lµ(g)∗HLµ(f)] .

Conversely, every bitrace µ′ � µ defines an operator H by

(Hfµ|gµ) = µ′(f, g) .

The proof is the same as that of lemma 2 of n◦ 30. The conclusion that fol-
lows is that a bitrace µ is a character if and only if every bitrace µ′ � µ is
proportional to µ, which is equivalent to saying that characters of G corre-
spond to extremal generators of the convex cone of bitraces. In this general
situation, there is unfortunately no analogue of the Krein-Milman existence
theorem, let alone of Choquet’s theorem, on compact convex sets.

Nonetheless, the theory of direct integrals of Hilbert spaces of n◦ 24 applies
to the algebra Z(µ) or to any Gelfand-Naimark subalgebra Z ⊂ Z(µ) such
that Z′′ = Z(µ). Indeed, using separability assumptions, there is then a
decomposition

H(µ) =

∫
H(ζ)dλ(ζ) ,

where integration is over the spectrum of Z. There then exist operators T (ζ)
in H(ζ), defined up to a null set, corresponding to every bounded operator
T commuting with Z, i.e. with Z(µ). In particular, for almost every ζ, the
decomposition of operators Lµ(x), Lµ(f), Rµ(x), Rµ(f) and S, leads to sim-
ilar operators L(x; ζ), etc. in H(ζ). Likewise, in almost all H(ζ), there are
algebras L(ζ) and R(ζ) generated respectively by the L(f ; ζ) and R(f ; ζ)
corresponding to the algebras L(µ) and R(µ) [n◦ 24, (ii), end]. The algebras
L(ζ) and R(ζ) are factors for almost all ζ and the canonical trace Tr on L(µ)
can be computed by the relation

Tr(T ∗T ) =

∫
Tr [T (ζ)∗T (ζ)] dλ(ζ) ,(31.32)

where, for each ζ, a convenient function Tr is chosen on the factor L(ζ). For
all T = Lµ(f) where f is in the domain of definition of the initial bitrace µ,
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this gives or almost all ζ a bitrace f 7−→ Tr[L(f ; ζ)L(g; ζ)∗] f that is the
character of G. The subject is dealt with in detail by Dixmier in chap. 8,
17, 18 of his C∗-algebras. See also Lajos Pukánszky, Characters of connected
Lie groups (AMS, 1999) and Chap. 14, Abstract Representation Theory, of
Nolan R. Wallach, Real Reductive Groups II (Academic Press, 1992).

Case (II1) corresponds to irreducible Hilbert algebras with unit element
or, in group theory, to central continuous functions of positive type studied
at the beginning of section (iii) above. Consider for example the regular
representation of a discrete group all of whose conjugacy classes are infinite.

In case (II∞), thanks to his theory of induced representations, G. W.
Mackey obtained examples for groups seemingly quite simple, the semidirect
products131 of commutative groups.

(vi) Characters of type (I). Groups that have been by far the most stud-
ied are those whose characters are of type (I): all linear algebraic groups
fall in this case; so do real semisimple Lie groups with infinite centre, a fun-
damental result proved by Harish-Chandra, and all solvable real algebraic
groups, i.e. whose matrices are, if necessary by passing to C, simultaneously
triangularizable (Dixmier, Kirillov, etc.); the others are, as a first approxima-
tion, semidirect products of a solvable group and a semisimple group, which
enabled Dixmier to obtain the general result. Actually, for these groups, char-
acters can be shown to be distributions and, in the semisimple case, locally
integrable functions, a very hard result of Harish-Chandra’s.

Let A be a unitary algebra and H its completion. Assuming A to be
irreducible, the von N. algebras L and R are factors. Let us suppose they
are of type (I) – as they are isomorphic by T 7−→ STS−1, it suffices that
one of them be so – and let Tr be the trace on R, normalized so as to take
values 0, 1, 2, . . . We choose a projection P ∈ R such that Tr(P ) = 1 and let
E = Im(P ). Since P ∈ R, the subspace E is invariant under T ∈ L. These
act irreducibly on E . Indeed, if a closed subspace E ′ ⊂ E is L-invariant, the
corresponding projection P ′ is in R and satisfies 0 ≤ P ′ ≤ P . So Tr(P ′) ≤
Tr(P ), whence Tr(P ′) = 0 or 1. In the first case, E ′ is trivial; in the second,
Tr(P − P ′) = 0. Thus P ′ = P and E ′ = E , which gives the result. It follows
that the restrictions of operators T ∈ L to E are everywhere dense in the
algebra L(E) of all continuous operators on E . But as L is closed with respect

131 G is said to be a semidirect product of two groups H and N if H and N are
closed subgroups of G, if N is invariant in G, and if the map (h, n) 7−→ hn is
bijective. An easy example: the Euclidean group in Rn is the semidirect product
of the group of rotations about the origin and the group of translations. An
example difficult to analyze: the group of transformations

(z, z′) 7−→
(
e(αt)z + u, e(α′t)z′ + u′

)
,

of C2, where t ∈ R, u, u′ ∈ C and where α, α′ are non-trivial real constants with
irrational ratio; G is the semidirect product of R and the additive group C2. In
fact, all possible “ pathological ” circumstances seem to be encountered in groups
of this type.
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to all von N. topologies and preserves E , the set of restrictions of operators
T ∈ L to E is identical to L(E). On the other hand, if T ∈ L is trivial on E , it
is trivial on the closed subspace generated by A(E), where A ∈ R. Now, this
closed subspace is bi-invariant, and so is identical to H since A is irreducible.
As a consequence, the map associating to each T ∈ L its restriction to E is
an isomorphism from L onto L(E). Since, there is a unique trace function on
L, up to a constant factor, it is necessarily the usual trace function of L(E).
In conclusion, for some T ∈ L, the condition Tr(T ∗T ) < +∞ means that the
restriction of T to E is a de Hilbert-Schmidt operator.

In the case of Hilbert algebras associated to groups, one readily deduces
the next result:

Theorem 50. Let µ be a character of type (I) of a unimodular group G,
defined on a subalgebra a of L1(G). There is an irreducible unitary represen-
tation (E , U) of G having the following properties:

(a) U(f) =
∫
U(x)f(x)dx is a Hilbert-Schmidt operator for all f ∈ a,

(b) for all f, g ∈ a

µ(f, g) = Tr [U(f)U(g)∗] .(31.33)

This property shows that, from the point of view of harmonic analysis, in
some sense groups of type (I) generalize compact groups. It would be wrong
to infer conjectures optimistic about difficulties involved in their study (clas-
sification of irreducible representations, explicit computation of characters
and of Plancherel’s formula, etc.): fifty-five years of efforts (1947–2002) have
not been enough to solve all these problems, in particular the first one, in the
case of semisimple groups.

The fact that real semisimple groups (Harish-Chandra, 1950–52) or over a
local field (J. Bernstein, 1974) have property (a) of the theorem follows from
a far more important theorem. For the sake of simplicity, let us suppose that
the centre of G is finite. Then there are pairwise conjugate maximal compact
subgroups in G,132 and if K is one of them, one can show that, for any
irreducible unitary representation (H, U) of G and any type d of irreducible
representations of K, the multiplicity of d in the given representation of G is
≤ dim(d). If χ is a character of K, normalized by the condition that χ∗χ = χ,
and if

U(χ) =

∫
U(k)χ(k)dk

[n◦ 29, (iii), end, where this operator is written E(χ)], then the subspace
H(χ) = Im(U(χ)) has dimension dim(χ)2, where dim(χ) denotes the dimen-
sion of the irreducible representation having character χ. However, for any
f ∈ L1(G) such that

132 Typical examples: the group SO(n) in SLn(R), the group SU(n) in SLn(C), etc.
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f(x) = χ ∗ f ∗ χ′(x) =

∫∫
f(kxk′)χ(k)χ′(k′)dkdk′ ,(31.34)

U(f) = U(χ)U(f)U(χ′) . The rank of the operator U(f) is, therefore, finite.
But using the theory of compact groups of n◦ 29 it is easy to see that finite
sums of functions of the previous type are everywhere dense in L1(G). Hence
it follows that the set a of f ∈ L1(G) for which U(f) is a Hilbert-Schmidt
operator satisfies conditions of section (i) of this n◦. This enables us to asso-
ciate a character µ(f, g) = Tr[U(f)U(g)∗], obviously of type (I), to the given
representation.

Conversely, any character µ of G is obtained in this manner. Indeed, let
(H, L,R, S) be the two-sided representation of G associated to µ. The map
(x, x′) 7−→ L(x)R(x′) is an irreducible representation of the semisimple group
G × G in which K × K is a maximal compact subgroup. The characters of
K ×K are obviously the functions (x, x′) 7−→ χ(x)χ′(x′) where χ and χ′ are
characters of K, and for the corresponding projections,

E(χ, χ′) =

∫∫
L(k)R(k′)χ(k)χ′(k′)dkdk′ = L(χ)R(χ′) .

We then choose some χ′ such that R(χ′) 6= 0 and set E = Im(R(χ′)). This
closed subspace is invariant under the von Neumann algebra L. Denoting the
restriction of L(x) to E by U(x), we get a unitary representation (E , U) of
G. Obviously, E(χ) = Im[L(χ)R(χ′)] holds for the latter. But as G × G is
semisimple, the general result stated above implies that this subspace is finite-
dimensional. We then deduce that that there are several operators T ∈ L
whose restrictions to E are Hilbert-Schmidt operators, and as L is a factor,
this is enough to show that L, and so µ, is of type (I).

Once again, I refer to Dixmier’s books for additional information or more
general proofs.

32 – Discrete Components of the Regular Representation

Given a unimodular group G, the basic problem is to decompose the regular
representation of G into a direct integral of irreducible representations. Such
a decomposition can include a “ discrete spectrum ” and a “ continuous spec-
trum ”. As in the theory of compact groups where the second one does not
exist, the first one is obtained by using irreducible representations that can
be embedded in L2(G), in other words the minimal left – or right (at choice)
– invariant closed subspaces of L2(G). Such a representation is, by definition
a discrete component of the regular representation. They are sufficient for the
decomposition of the regular representation if G is compact, but do not exist
if G = R. Hence it may be thought that they also do not exist in the general
case. Using explicit calculations, one of Einstein’s assistants in Princeton,
Valentine Bargmann, found133 that the group SL2(R) does have some, as

133 Irreducible unitary representations of the Lorentz group (Ann. of Math., 48, 1947,
pp. 568–640). The Lorentz group itself is isomorphic to the quotient of SL2(C) by
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will be seen in Chap. XII, n◦ 16 and 30. In this case, the decomposition
of the regular representation, i.e. Plancherel’s formula for G, contains both
“ Fourier ” series and integrals. More precisely, Bargmann found that there
are irreducible representations (H, U) some of whose coefficients are square
integrable, and checked that they satisfy orthogonality relations similar to
those of compact group theory. As shown by Harish-Chandra, these repre-
sentations are also encountered in the case of semisimple groups having a
maximal compact torus, for example the symplectic group Spn(R). They are
realized on square integrable holomorphic functions spaces and are essential
in his general Plancherel formula. They are also encountered in the case of
semisimple p-adic groups and in that of associated adelic groups, which are
lcgs but not Lie groups, and they exist for some nilpotent Lie groups.134

In fact, Bargmann already knew, and Harish-Chandra insisted on this
point in the general case, that it is essential to consider not only SL2(R), but
its universal cover G, a group that cannot be embedded in a linear group. Like
any Lie group, SL2(R) is isomorphic to the quotient of its universal cover by
a discrete subgroup Z of the latter’s centre. In this case, Z is isomorphic to
Z, and so is infinite.

More generally, let G be a lcg, Z its centre and (H, U) a unitary rep-
resentation of G. If (H, U) is irreducible, there is a character α of Z such
that

U(z) = α(z)1 for all z ∈ G .(32.1)

The coefficients

ϕa,b(x) = (U(x)a|b)(32.2)

of (H, U), therefore, satisfy the functional equation

its centre {1,−1} . Around the same period, using integral methods, Gelfand and
Naimark obtained Plancherel’s formula for SL2(C) then for SLn(C); see my two
talks in the Séminaire Bourbaki of 1948–49. Harish-Chandra quickly generalized
their Plancherel formula to all complex semisimple groups. Bargmann was only
using infinitesimal methods, which, at the time, assumed that some coefficients
of the representations were analytic functions on the group; but like a good
physicist, Bargmann did not let this“ detail ” stop him. The existence of several
“ analytic ” vectors, i.e. for which the function x 7−→ U(x)a is analytic, was
shown shortly after (see Chap. XII, n◦ 26). Bargmann’s and GN’s articles are
still worth reading. The explicit Plancherel formula for SL2(R), more difficult to
obtain than for SL2(C), is also due to Harish-Chandra (1950) ; see Serge Lang,
SL2(R) (Springer, 1985).

134 C. C. Moore and J. A. Wolf, Square integrable representations of nilpotent Lie
groups (Trans. AMS, 185 (1973), pp. 445–462). A Lie group G is nilpotent if
there are closed normal subgroups Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = {e} in G such that,
for all p, the image of Zp in G/Zp−1 is in the centre of G/Zp−1, i.e. if

x ∈ G & y ∈ Zp =⇒ xyx−1y−1 ∈ Zp−1 .

Example: any closed subgroup of the of triangular matrices with diagonal 1
(unipotent matrices).
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ϕ(xz) = ϕ(x)α(z) .(32.3)

If Z is infinite, they cannot be square integrable over G; but as |ϕ(xz)| =
|ϕ(x)|, they can be square integrable over the quotient group G/Z. The rep-
resentation will be said to be square integrable if all its coefficients are square
integrable modZ. The set of classes of measurable solutions ϕ of (3) such
that ∫

G/Z

|ϕ(x)|2 dx < +∞(32.4)

is a Hilbert space L2(G/Z;α) with inner product

(f |g) =

∫
G/Z

f(x)g(x)dx .(32.5)

Since Z is in the centre of G, left and right translationsf 7−→ εx ∗ f and
f 7−→ f ∗ εx clearly act on this space, and so does the involution f 7−→ f̃ .
This gives a “ two-sided representation ” which will be seen to be identical to
the two-sided representation defined by a central measure µ of positive type.
One could call it the regular representation defined by α. All this has already
been seen in the context of “ central groups ” [n◦ 29, (iii)].

For any f ∈ L(G), the function

fα(x) =

∫
f(xz)α(z)dz(32.6)

obviously satisfies (3) and thereby gives all the continuous solutions of (3)
having compact support modZ. The proof, left to the reader, consists in imi-
tating that of n◦ 15, (iv) related to the unit character. As the reader will also
easily check by imitating standard integration theory, the space L(G/Z;α) of
these continuous solutions with compact support modZ is everywhere dense
in L2(G/Z;α). All limit theorems valid for the usual spaces L2(G/Z), and
especially Riesz-Fischer, can be applied to L2(G/Z;α). Finally, as in the case
of central groups, the regular representation of G on L2(G) is clearly the
continuous sum of its representations on L2(G/Z;α): this is relation (29.35).

For f, g ∈ L(G),

(fα|gα) =

∫
G/Z

dx

∫∫
f(xz1)g(xz2)α(z1)α(z2)dz1dz2 =

=

∫
α(z)dz

∫
G/Z

dx

∫
f(xz2z)g(xz2)dz2 .

But integrating over Z then over G/Z amounts to integrating over G. As a
result,

(fα|gα) =

∫
α(z)dz

∫
G

f(xz)g(x)dx =

∫
g̃ ∗ f(z)α(z)dz .
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Hence associating the measure µ on G defined by

µ(f) =

∫
Z

f(z)α(z)dz(32.7)

to the character α of Z, we at last get

(fα|gα) = µ(g̃ ∗ f) .(32.8)

This shows that the obviously central measure µ is of positive type and that
L2(G/K;α) is isomorphic to the space H(µ) of section (i), the isomorphism
transforming fα into fµ for all f ∈ L(G) being compatible with representa-
tions of G on these two spaces and transforming the algebra L(G/Z;α) into
the Hilbert algebra A(µ). Multiplication in the latter is defined by (31.7):
fµ.gµ = (f ∗ g)µ for f, g ∈ L(G). A small calculation readily shows that, for
f, g ∈ L(G/Z;α), this product is just the “ convolution modZ ”

fµ.gµ(x) = f ∗Z g(x) =

∫
G/Z

f(xy)g(y−1)dy .(32.9)

Theorem 51 (Bargmann orthogonality relations). Let (H, U) be an
irreducible unitary representation of a locally compact unimodular group G
and Z the centre of G. Set U(z) = α(z)1 for all z ∈ Z.

(i) If the representation (H, U) has a non-trivial square integrable coeffi-
cient over G/Z, it is square integrable.

(ii) For such a representation, there exists a scalar λ > 0 such that∫
G/Z

(U(g)a|b) (U(g)a′|b′)dg = λ (a|a′) (b|b′)(32.10)

for all a, a′, b, b′ ∈ H.
(iii) For all f ∈ L(G), U(f) is a Hilbert-Schmidt operator everywhere

dense in the Hilbert space L2(H).
(iv) The coefficients of two inequivalent square integrable irreducible uni-

tary representations corresponding to the same character α of Z are orthog-
onal.

(v) Every square integrable representation such that U(z) = α(z)1 is a
discrete component of the regular representation of G on L2(G/Z;α) and
conversely.

We start by observing that for any representation (H, U) of G, coeffi-
cients (2) satisfy

ϕa,b
(
y−1gx

)
= ϕU(x)a,U(y)b(g)(32.11)

and

ϕa,b(g) = ϕb,a
(
g−1

)
.(32.12)
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So, if G is unimodular, then

(ϕa,b)̃ = ϕb,a .(32.13)

Proof of (i) and (ii). Let us suppose that ϕa′,a ∈ L2(G/Z;α) for a pair of
vectors a, a′ ∈ H. The set D of u ∈ H such that ϕu,a has the same property
is invariant by (11), and so is everywhere dense in H. We equip D with the
inner product

(u|v)
′

= (u|v) + (ϕu,a|ϕv,a) ,(32.14)

the right hand side being calculated in L2(G/Z;α), and let H′ be the com-
pletion of D. For all x ∈ G, U(x), is clearly unitary with respect to this inner
product. If (un) is a Cauchy sequence in D with respect to inner product (14),
clearly, limun = u exists in H and the coefficients ϕ corresponding to ordered
pairs (un, a) converge in mean in L2(G/Z;α). Now, they converge everywhere
to ϕu,a in G since (un) converges to u in H. As a result (Riesz-Fischer),

l.i.m.2 ϕun,a = ϕu,a in L2(G/Z;α) .

So u ∈ D and as (un) converges to u in H′, D = H′.
Since (u|u) ≤ (u|u)′, the canonical injection J from H′ to H is continuous,

hence has an adjoint J∗ : H −→ H′ = D. JJ∗ : H =⇒ H clearly commutes
with U(x), hence is a scalar, so that J∗ is proportional to an isometric op-
erator. Thus its image is a closed invariant subspace contained in D, whence
D = H. It first follows that ϕu,a ∈ L2(G/Z;α) for all u ∈ H, hence, applying
arguments to u, also that ϕu,v ∈ L2(G/Z;α) for all u and v, and then that,
for given a, J∗ is unitary up to a constant factor. Hence so is J , which gives
relation of the form

(ϕu,a|ϕu′,a) = λ(a) (u|u′) .(32.15)

For u = u′, the left hand side does not change if a and u are permuted. Thus
λ(a)(u|u) = λ(u)(a|a), and so λ(a) = λ(a|a) where λ is a constant. Then (15)
becomes

(ϕu,a|ϕu′,a) = λ (a|a) (u|u′) .(32.15’)

Therefore, (10) follows by 4(a|b) = (a+ b|a+ b)− . . .
Proof of (iii). Let (ei) be an orthonormal basis for H. Setting

ϕij(x) = (U(x)ei|ej) ,(32.16)

for all f ∈ L(G),(
U(f)ei|ej

)
=

∫
G

f(x)fij(x) =

∫
G/Z

dx

∫
Z

f(xz)fij(x)α(z)dz .
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Thus (
U(f)ei|ej

)
= (ϕij |fα) .(32.17)

By function (16), this is an inner product on L2(G/Z;α). However, (10) shows
that the functions ϕij are pairwise orthogonal and have the same norm on
L2(G/Z;α). Therefore, they are part of an orthonormal basis, up to a factor,
and so

∑
|(ϕij |ψ)|2 ≤ ‖ψ‖2 for all ψ ∈ L2(G;α); in particular∑

|(U(f)ei|ej)|2 ≤ ‖fα‖2 < +∞(32.18)

by (17). This shows that for all f , U(f) is an operators of HS. To prove
that they are everywhere dense in the space of operators HS, it suffices to
show that, for all S ∈ L2(H) and all r > 0, there exists f ∈ L(G) such that
‖U(f)− S‖2 < r, where

‖A‖2 =
(∑

‖Aei‖2
) 1

2

= Tr (A∗A)
1
2

is the norm on L2(H). This inequality written∑
‖U(f)ei − Sei‖2 < r2

will follow from von Neumann’s ultrastrong density theorem [n◦ 19, (vii)].
To prove it, we first recall that as the commutator algebra of U(f) reduces

to scalars, L(H) is the bi-commutator of the self-adjoint algebra of U(f).
So the operators U(f) are dense in L(H) with respect to the ultrastrong
topology [n◦ 19, (vii), lemma 9]. For all g ∈ L(G), let us set ai = U(g)ei.

Since
∑
‖ai‖2 < +∞, the map T 7−→ (

∑
‖Tai‖2)

1
2 is one of the seminorms

defining the ultrastrong topology of L(H). So there exists f ∈ L(G) such that

‖U(f)U(g)ei − SU(g)ei‖2 =
∑
‖U(f)ai − Sai‖2 < r2 .

As U(f)U(g) = U(f ∗g), the operators U(f) enable us to approximate SU(g)
in L2(H). However, for all S of type HS, the map T 7−→ ST from the space
L(H), equipped with the ultrastrong topology, to the Hilbert space L2(H) is
continuous. On the other hand, we know that the operator 1 is the ultrastrong
limit of operators U(g). So S can be approximated with operators SU(g),
hence by operators U(f). Thus the U(f) are dense in L2(H).

Proof of (iv). See theorem 41 on compact groups.
Proof of (v). Let us suppose that (H, U) is irreducible and square inte-

grable, choose some non-trivial a ∈ H and associate the function ϕu,a(x) =
(U(x)u|a) to each u ∈ H. By orthogonality relations,

(ϕu,a|ϕv,a) = λ (a|a) (u|v) .(32.19)

For given a, the set of functions ϕu,a is, therefore, a closed subspace H(a) of
L2(G/Z;α). Replace u by U(x)u by replacing ϕu,a(g) by ϕu,a(gx). Then the
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map u 7−→ ϕu,a transforms representation U of G on H into the right regular
representation on L2(G/Z;α), so that (H, U) is a discrete component of the
latter.

Note that the orthogonality relations lead to a formula for convolution
products modZ of two coefficients:

ϕu,a ∗Z ϕv,a(x) =

∫
(U(xg)u|a)

(
U
(
g−1

)
v|a
)
dg =

=

∫ (
U(g)u|U

(
x−1

)
a
)

(U(g)a|v)dg =

= λ(u|a)
(
v|U(x)−1a

)
,

whence

ϕu,a ∗Z ϕv,a = λ(u|a)ϕv,a .(32.20)

The convolution of two functions of H(a) is again in H(a).
Conversely, let E be a closed subspace of L2(G/Z;α) invariant under

right translations R(x) and minimal. The proof reduces to showing that the
functions

(u|R(x)v) =

∫
G/Z

u(y)v (yx−1)dy = ṽ ∗Z u(x)(32.21)

are square integrable modZ for all u, v ∈ E , and that for this to be the case
so is one of the coefficients.

Let A = L(G/Z;α) denote the Hilbert algebra associated to the measure

α(z)dz on G and, as in n◦ 31, Â be the corresponding maximal Hilbert
algebra. It is the set of u ∈ L2(G/Z;α) = H such that the maps

R(u) : f 7−→ f.u , L(u) : f 7−→ u.f

from A to H are continuous with respect to the L2 norm. Besides, as was
seen in the proof of theorem 47 of n◦ 31, it suffices that this holds for one of
them. If vn ∈ A converge in H, by (9) the functions vn.u = vn ∗Z u clearly
converge everywhere and even uniformly on G. At the limit, we thus again
get

v.u = R(u)v = v ∗Z u(32.22)

for all v ∈ H. Replacing v by ṽ, (21) shows that

ṽ.u(g) = (u|R(x)v)

for all u ∈ Â and v ∈ H. The left hand side being in L2, the proof, therefore,
reduces to showing that E contains a non-trivial u ∈ Â. However, E being
right invariant, the projection P of L2(G/Z;α) onto E commutes with R(u)

for all u ∈ A, hence also for all u ∈ Â. Then, for u, v ∈ Â,
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PL(v)u = PR(u)v = R(u)Pv = L(Pv)u .

As PL(v) is continuous, so is L(Pv), which shows that Pv ∈ Â for all v ∈ Â.
Hence the moderate elements of E are everywhere dense in E , qed.

Exercise 1. Show that E ⊂ Â.
Exercise 2. Let (H, U) be a square integrable irreducible representation

such that U(z) = α(z)1. Show that, if the rank of A,B ∈ L(H) is finite, then∫
G/Z

Tr [U(x)A] Tr [U(x)B]dx = λTr (AB∗) .

Associate the function ϕA(x) = λ−
1
2 Tr[U(x)A] to each A of finite rank.

Show that A 7−→ ϕA extends to an isomorphism from the Hilbert space
L2(H) onto a minimal closed bi-invariant subspace M of L2(G/Z;α) and
that every isomorphism from (H, U) onto a minimal right (or left) invariant
closed subspace of L2(G/Z;α) maps H toM. Show that if G is compact one
recovers the subspaces L2(G;χ) of n◦ 29, (ii).

Exercise 3. (a) Show that a function ϕ ∈ H = L2(G/Z;α) is of positive
type if and only if the operator L(ϕ) : A −→ H is positive symmetric. Assume
this condition holds in what follows. (b) Let

H =

∫ +∞

0

λdM(λ)

be the self-adjoint canonical extension of S = L(ϕ) [theorem 35 of n◦ 23, (ii)],
whence S = H in A. Let ω be a compact set contained in R∗+ and M(ω) the
corresponding spectral projection [notation of n◦ 22, (iii)]. Show that M(ω)
belongs to the von Neumann algebra L and that M(ω)L(ϕ) is continuous.
Deduce that ϕ′ = M(ω)ϕ is moderate and that 0� ϕ′ � ϕ. (c) Assume that
ϕ is continuous and elementary [n◦ 30, (iii)]. Show that ϕ is moderate, that
ϕ∗Z ϕ is proportional to ϕ and that L(ϕ) is proportional to a projection. Let
E = Im(L(ϕ)). (d) Show that the representation of G on E by right trans-
lations is equivalent to the irreducible representation associated to ϕ [n◦ 30,
(iii)]. (e) Show that all elements of E are moderate and that the function
(R(x)u|v) is in L2(G/Z;α) for all u, v ∈ E . Deduce the orthogonality rela-
tions for any irreducible representation having a square integrable diagonal
coefficient.135

135 Theorem 51 has a curious history. Immediately after having read Bargmann’s
article, I published a proof of it (CRAS, September and October 1947) which as-
sumes Z is finite using moderate functions in L2(G) and theorem 35 of n◦ 23 ; this
is the one proposed in exercise 3. In 1956, Harish-Chandra (Œuvres complètes, II,
pp. 90–107) generalized the result to semisimple Lie groups without any assump-
tions on Z and supposing that a not necessarily diagonal coefficient is square
integrable. He refers to my notes and says that my proof could perhaps be mod-
ified so as to apply to the case of an infinite Z. His proof uses very special
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Exercise 4 [Dixmier, C∗-algebras, n◦ 13.8]. More generally show that if
a function ϕ ∈ L2(G/Z;α) is continuous and of positive type, there is a

function ψ ∈ L2(G/Z;α) such that ϕ = ψ̃ ∗Z ψ. What about the case of a
commutative group?

properties of semisimple groups, but his far harder aim was the explicit com-
putation of the characters of the representations considered. Proposition (i) of
the theorem can also be proved using the closed graph theorem; see for exam-
ple A. Borel, Représentations de groupes localement compacts (Springer, Lecture
Notes, 276, 1972, pp. 56–57), Dieudonné XXI.4, exercises 5 to 9 and N. Wallach,
Real Reductive Groups (Academic Press, 1988), chap. I, which do not mention
the inventor of the method.
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XII – The Garden of Modular Delights or
The Opium of Mathematicians

� 1. Infinite Series and Products in Number Theory – � 2. The
series

∑
1/ cos πnz and

∑
exp (πin2z) – � 3. The Dirichlet se-

ries L(s;χ) – � 4. Elliptic Functions – � 5. SL2(R) as a Locally
Compact Group – � 6. Modular Functions: the Classical Theory –
� 7. Fuchsian Groups – � 8. Hecke Theory – � 9. SL2(R) as a Lie
Group

§ 1. Infinite Series and Products in Number Theory

1 – The Mellin Transform of a Fourier Transform

There are more interesting relations between Mellin and Fourier transforms
(Chap. VIII, n◦ 13) than those arising from a trivial variable change in the
integration. At the very least, they apply to all functions f defined, continuous
and integrable over R (with respect to the usual measure dx) and whose
Fourier transforms are themselves integrable, in other words to functions f ∈
F 1(R). The Fourier inversion formula [Chap. VII, § 6, theorem 26 or Chap. XI,
n◦ 27, (iv), theorem 41] applies to these functions. Setting d∗x = dx/|x| as
before, one can associate functions

Γ 0
f (s) =

∫
R∗
f(x)|x|sd∗x , Γ 1

f (s) =

∫
R∗
f(x)|x|s sgn(x)d∗x ,(1.1)

to such a function as well as to its Fourier transform. These are in fact
the Mellin transforms of the functions f+(x) = f(x) + f(−x) and f−(x) =
f(x)− f(−x) and they are equal to 2Γf (s) (resp. 0 ) if f is even (resp. odd)
and conversely. As f is continuous, its convergence in the neighbourhood
of 0 is guaranteed for Re(s) > 0 ; and as f is integrable with respect to
dx, convergence at infinity is guaranteed if the function |x|s−1 is bounded
there, hence for Re(s) < 1. The functions (1) are, therefore, defined and
holomorphic at least on the strip

0 < Re(s) < 1 .(1.2)

If f is in the Schwartz space S(R), f+ and f− are also in S. So their Mellin
transforms are meromorphic on C, possibly with simple poles at the points
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n ≤ 0, and are rapidly decreasing at infinity on any vertical strip of finite
width (Chap. VIII, § 3, n◦ 13, theorem 14). In fact, the functions Γ 0

f (s) and

Γ 1
f (s) have simple poles at even negative integers in the former case and at

odd ones in the latter one: consider the asymptotic expansions of f+ and f−
at the origin.

The basic result is that, for f ∈ F 1(R), the ratios

Γ 0
f (1− s)/Γ 0

f̂
(s) and Γ 1

f (1− s)/Γ 1
f̂

(s)

are independent of f and can be explicitly calculated. This can be generalized
to much more complicated situations than that of the very trivial field of
real numbers and arises out1 of John Tate’s Ph.D. thesis; around 1950, in
Harvard, he used calculations of this type to study zeta functions of algebraic
number fields in the “ adelic ” framework. There are also non-commutative
generalizations, for example by replacing the field R by the ring Mn(R) of
real n × n matrices, the multiplicative group R∗ by the group GLn(R) of
invertible matrices and the function x 7−→ |x|s by g 7−→ |det(g)|s in the
simplest case.

To unify calculations, it is useful to temporarily set

χ(x) = |x|s or |x|s sgn(x)(1.3)

according to cases. Hence χ(xy) = χ(x)χ(y), and

Γf (χ) =

∫
f(x)χ(x)d∗x ,(1.4)

where integration is over R∗. We will also set

χ∗(x) = χ(x)−1|x| ,

which corresponds to the shift from s to 1− s.
Therefore the result we have in mind means that, for all f, g ∈ F 1(R),

Γf (χ∗)Γĝ(χ) = Γg (χ∗)Γf̂ (χ) .(1.5)

0 < Re(s) < 1 needs to be assumed, but the result holds in all of C by analytic
extension if f and g are in S(R) and even under broader assumptions.

A formal calculation reduces the proof to showing that∫∫
f(x)ĝ(y)χ∗(x)χ(y)d∗xd∗y =

∫∫
g(x)f̂(y)χ∗(x)χ(y)d∗xd∗y .(*)

The change of variable y 7−→ xy in the integration with respect to y trans-
forms relation (*) into∫∫

f(x)ĝ(xy)χ(y)dxd∗y =

∫∫
g(x)f̂(xy)χ(y)dxd∗y .

1 Like the method used in § 3 for the series L(s;χ).
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So showing that ∫
f(x)ĝ(xy)dx =

∫
g(x)f̂(xy)dx(**)

is sufficient, but we have known this relation for a long time.2

These operations remain to be justified. Since, for 0 < Re(s) < 1,
f(x)χ∗(x) and ĝ(x)χ(x) are integrable with respect to d∗x, the product
f(x)χ∗(x)ĝ(y) χ(y) is integrable with respect to the product measure d∗xd∗y,
and so is the function obtained by permuting f and g. Hence it is possible
to compute both sides of (*) by first integrating with respect to y for given
x, which entitles us to make the variable change y 7−→ xy, then with respect
to x: Lebesgue-Fubini theorem.

Relation (5) being proved, the ratios Γ 0
f (1−s)/Γ 0

f̂
(s) and Γ 1

f (1−s)/Γ 1
f̂

(s)

remain to be explicitly calculated assuming f even in the former case, odd in
the latter one. The same then holds for f̂ and the functions Γ 0

f , etc. reduce
to Γf , up to a factor of 2. The easiest is to choose a particular function g
whose Fourier transform is known.

In the first case, we can for example choose

g(x) =
(
1 + x2

)−1
, and so ĝ(y) = π exp (−2π|y|)(1.6)

by (8.12) of Chap. VIII for w = 1. Here it is necessary to assume 0 < Re(s) <
1 in order to get convergent integrals in the formulas

Γ 0
g (1− s) =

∫
R∗

|x|1−s

1 + x2
d∗x = 2

∫ +∞

0

x−s

1 + x2
dx ,

Γ 0
ĝ (s) = 2π

∫ +∞

0

exp(−2πx)xsd∗x .

The first integral is just function (15.2) of Chap. VIII for 1− s. So by VIII,
(15.10),

Γ 0
g (1− s) = π/ cos(πs/2) .(1.7)

The change of variable x 7−→ x/2π shows that on the other hand

Γ 0
ĝ (s) = (2π)1−sΓ (s)

by definition of the Γ function. For this choice of g and for χ(x) = |x|s,
f ∈ F 1, relation (5) becomes

(2π)1−sΓ (s)Γ 0
f (1− s) =

π

cos(πs/2)
Γ 0
f̂

(s) .(1.8)

2 Relation (**) not being exact if integration is restricted to be over x > 0, this
calculation shows that in the definition of Mellin transforms used here it is nec-
essary to integrate over R∗ and not simpy over R∗+ as in Chap. VIII.
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If f is even, Γ 0
f and Γ 0

f̂
can be replaced in the formula by the Mellin transforms

Γf and Γf̂ . This result assumes 0 < Re(s) < 1 but by analytic extension

remains valid if the Mellin transforms of f and f̂ are meromorphic on C, for
example if f ∈ S(R). When one obtains such a formula, it is prudent to at
least check that both sides have the same poles.

We could have also chosen the function

g(x) = exp
(
−πx2

)
= ĝ(x)(1.9)

(Chap. V, n◦ 25, example 2 and Chap. VII, n◦ 28). In this case, the change

of variable πx2 = y for which d∗x = 1
2d
∗y and x = (y/π)

1
2 gives

Γ 0
g (x) = 2

∫ +∞

0

e−πx
2

xsd∗x =

∫ +∞

0

e−y (y/π)
s/2

d∗y = π−s/2Γ (s/2) .

Formula (5) then becomes

π−s/2Γ (s/2)Γ 0
f (1− s) = π−(1−s)/2Γ [(1− s)/2]Γ 0

f̂
(s) .(1.10)

Applying it to function (6), one deduces that

π−s/2Γ (s/2)π/ cos(πs/2) = π−(1−s)/2Γ [(1− s) /2] (2π)1−sΓ (s) .

As relation Γ (s)Γ (1− s) = π/ sinπs shows that

π/ cos(πs/2) = Γ [(1− s) /2]Γ [(1 + s) /2] ,

(10) is equivalent to

Γ (s) = π−
1
2 2s−1Γ (s/2)Γ [(1 + s) /2] .(1.11)

This result is itself equivalent to the duplication formula

Γ (2s) = π−
1
2 22s−1Γ (s)Γ

(
s+

1

2

)
of Chap. VIII, (10.5.9) and we thereby get a more natural proof of it.

Relation (10) has the benefit of being perfectly symmetric in s and 1− s.
Multiplying both sides by Γ

(
1
2 + s/2

)
and taking account of the duplication

formula and Euler’s relation, it can (exercise !) be expressed in the simpler
form

Γ 0
f (1− s) = 2(2π)s−1 sin(πs/2)Γ (1− s)Γ 0

f̂
(s) .(1.10’)

In the case of Γ 1
f (s), choose for example

g(x) = x exp
(
−πx2

)
= −g(−x) .
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This is more or less the derivative of the Gaussian function, so that

ĝ(y) = −iy exp
(
−πy2

)
= −ig(y) .

Thus

Γ 1
g (s) =

∫ +∞

−∞
exp

(
−πx2

)
|x|s+1d∗x = π−(s+1)/2Γ [(1 + s)/2] .

As Γ 1
ĝ = −iΓ 1

g , this time

− iπ−(s+1)/2Γ [(1 + s)/2]Γ 1
f (1− s) = π−(2−s)/2Γ (1− s/2)Γ 1

f̂
(s)(1.12)

or

Γ [(1 + s)/2]Γ 1
f (1− s) = iπs−

1
2Γ (1− s/2)Γ 1

f̂
(s) .

Multiplying by Γ [(1− s)/2], by the relation on complements and (11),

Γ 1
f (1− s) = iπs−3/2 cos(πs/2)Γ (1− s)π 1

2 2sΓ 1
f̂

(s) .

Thus finally the formula

Γ 1
f (1− s) = 2i(2π)s−1 cos(πs/2)Γ (1− s)Γ 1

f̂
(s)(1.12’)

similar to (10’). The poles s = 1, 3, . . . of Γ (1 − s) are canceled out by the
zeros of cos(πs/2), so that the left hand side has poles at s = 2, 4, . . . as it
should since f is odd.

Exercise. Let S ′ be the space of tempered distributions on R (Chap. VII,
§ 6, n◦ 32). (a) Find a reasonable definition of meromorphic functions with
values in S ′. (b) For non-negative integers s, define the distributions |x|sd∗x
and |x|s sgn(x)d∗x and compute their Fourier transforms. (c) Regarding s 7−→
|x|sd∗x as a meromorphic function with values in S ′, calculate its residues at
0,−1, . . .

Finally, we could choose the function

f(x) = 1/ chπx = f̂(x)

of Chap. VIII, n◦ 15, but the outcome would be quite different. It is obviously
in the Schwartz space. As it is even, it suffices to calculate

Γf (s) = 2

∫ +∞

0

xsd∗x

eπx + e−πx
= 2

∫
e−πxxsd∗x

1 + e−2πx
=

= 2

∫
e−πxxsd∗x

∑
(−1)ne−2nπx =

= 2
∑

(−1)n
∫
e−(2n+1)πxxsd∗x =

= 2π−sΓ (s)
∑
N

(−1)n/(2n+ 1)s .
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The first series expansion is justified since e−πx < 1, and so is the permutation
with the integral for Re(s) > 1 because∑∫ ∣∣∣(−1)ne−(2n+1)πxxs

∣∣∣ d∗x < +∞

(Chap. XI, n◦ 4, theorem 5, a result that will be constantly used in this type
of calculations).

The series obtained can also be written

L(s, χ) =
∑

(−1)n
/

(2n+ 1)s =
∑

χ(n)/ns ,(1.13)

where the “ character mod 4 ” χ, unrelated to functions (3), is given by

χ(n) =

1 if n = 1 (mod 4)

0 if n = 0 or 2 (mod 4)

−1 if n = 3 (mod 4) .

(1.14)

It resembles the Riemann series ζ(s) =
∑

1/ns . Relation

Γf (s) = 2Γ (s)π−sL(s;χ)(1.15)

shows that the function L(s;χ) = Γf (s)/2Γ (s)πs extends analytically to all
of C like Γf (s), which has simple poles at the points s = −1,−2,−5, . . . As
1/Γ (s) is an entire function with zeros at these values of s, the series L(s)
is the restriction of an entire function to the half-plane Re(s) > 1. And as
2Γf = Γ 0

f = Γ 0
f̂

since f is even and identical to its Fourier transform, (10)

leads to a functional equation for L(s), which can, as usual, be simplified by
some gamma function calculations: the function

(π/4)−(1+s)/2Γ [(s+ 1)/2]L(s;χ)(1.16)

is invariant under s 7−→ 1− s. This result will be generalized in § 3, n◦ 10.

2 – The Functional Equation of the ζ Function

This topic has already been addressed in Chap. VIII, n◦ 13, but let us present
it again for the convenience of the reader. We start with the Poisson summa-
tion formula

∑
f(n) =

∑
f̂(n), which is at least valid for all f ∈ S(R), and

apply it to the function y 7−→ f(x−1y) for given x 6= 0. A trivial calculation
then shows that ∑

f
(
x−1n

)
= |x|

∑
f̂(xn) .

Hence, setting

θ∗f (x) =
∑
n 6=0

f(nx) = θ∗f (−x) ,(2.1)
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f(0) + θ∗f
(
x−1

)
= f̂(0)|x|+ |x|θ∗

f̂
(x) .(2.2)

We are going to deduce a relation between Mellin transforms of θ∗f and of θ∗
f̂
,

but first their behaviour at the origin and at infinity need to be studied.

Lemma 1. For all f ∈ S(R), the function θ∗f is C∞ on R∗ and rapidly
decreasing at infinity and so are all its derivatives.

As, for all N ∈ N, there is an upper bound |xNf(x)| ≤ cN valid in all of
R [the left hand side is continuous on R and bounded for large |x|, hence on
R], it follows that, for N ≥ 2,∣∣θ∗f (x)

∣∣ ≤ cN∑ |nx|−N = c′N |x|−N .

Hence it is rapidly decreasing at infinity. To show that θ∗f is C∞, it suf-

fices to prove that the derived series
∑
npf (p)(nx) = x−p

∑
gp(nx), where

gp(x) = xpf (p)(x), converge uniformly in every compact subset of R∗, which
is obvious since gp ∈ S(R). The previous calculation then shows that the
first derived series of θ∗f (x) and hence, by induction, the following ones, are
rapidly decreasing at infinity, qed.

Formula (2) now gives the behaviour of θ∗f in the neighbourhood of x = 0,
namely

θ∗f (x) = f̂(0)|x|−1 − f(0) +O
(
|x|N

)
for all N by lemma 1. This can be written as an unlimited asymptotic expan-
sion whose only non-trivial trivial terms are the first two. Hence the methods
and results of Chap. VIII, n◦ 13 can be applied to the Mellin transform

ξf (s) =

∫ +∞

0

θ∗f (x)xsd∗x , Re(s) > 1 .(2.3)

It is holomorphic on the indicated half-plane; it extends to a meromorphic
function on C whose only singularities are simple poles at s = 1 and s = 0,
the corresponding residues being

Res (ξf , 0) = −f(0) , Res (ξf , 1) = f̂(0) ;(2.4)

finally ξf (s) and all its derivatives are rapidly decreasing at infinity on any
vertical strip of finite width.

Moreover, we have

ξf (s) = ξf̂ (1− s) .(2.5)

To see this, let us consider the entire function

ξ+f (s) =

∫ +∞

1

θ∗f (x)xsd∗x .(2.6)
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For Re(s) > 1, by (2),

ξf (s)− ξ+f (s) =

∫ 1

0

θ∗f (x)xsd∗x =

∫ +∞

1

θ∗f
(
x−1

)
x−sd∗x =

=

∫ +∞

1

[
f̂(0)x− f(0) + xθ∗

f̂
(x)
]
x−sd∗x =

= f̂(0)

∫ +∞

1

x−sdx− f(0)

∫ +∞

1

x−s−1dx+

+

∫ +∞

1

θ∗
f̂
(x)]x1−sd∗ , x ,

all the integrals being convergent. Hence finally

ξf (s) = ξ+f (s) + ξ+
f̂

(1− s)−

[
f(0)

s
+
f̂(0)

1− s

]
.(2.7)

As
ˆ̂
f(x) = f(−x), replacing f by f̂ and s by 1− s clearly permutes the first

two and the last two terms on the right hand side, whence (5). Relation (7)
confirms that ξf (s) extends analytically to a meromorphic function with at
most simple poles at 0 and 1.

However, for Re(s) > 1,

ξf (s) =
∑
n 6=0

∫ +∞

0

f(nx)|x|sd∗x =
∑
n≥1

∫ +∞

−∞
=

=
∑
n≥1

n−s
∫
f(x)|x|sd∗x = Γ 0

f (s)ζ(s) ,

where Γ 0
f is defined by (1.1) and where ζ(s) =

∑
1/ns is the Riemann func-

tion. To justify these formal calculations, showing∑∫
|f(nx)| . |xs| d∗x < +∞

is sufficient, but this is clear for Re(s) > 1.
This being proved, relation (7) becomes

Γ 0
f (s)ζ(s) = Γ 0

f̂
(1− s)ζ(1− s)(2.8)

provided both sides are defined by analytic extension since without relation
(7), the left hand side would suppose that Re(s) > 1 and the right hand one
that Re(s) < 0.
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Theorem 1. The function

ξ(s) = π−s/2Γ (s/2)ζ(s) , Re(s) > 1(2.9)

extends analytically to a meromorphic function on C whose only singularities
are simple poles at s = 1 and s = 0, where its residues are equal to 1 and
−1. It satisfies the functional equation

ξ(1− s) = ξ(s) .(2.10)

The ζ function extends analytically to all of C, except for a simple pole at
s = 1 where

Res(ζ, 1) = 1 .(2.11)

ζ(s) = 0 for s = −2,−4, . . . .

The assertions about ξ(s) follow from properties of ξf by choosing

f(x) = exp(−πx2) = f̂(x), whence Γf (s) = 1
2π
−s/2Γ (s/2). On the other

hand, thanks for example to the infinite product expansion of Euler’s func-
tion, we know that 1/Γ (s) is an entire function of s. We also know that the
only singularities of Γ (s) simple poles at points s = 0,−1,−2, . . ., which are,
therefore, simple zeros of 1/Γ (s). In

ζ(s) =
πs/2

Γ (s/2)
ξ(s) ,

the simple pole of ξ(s) at s = 0 is canceled out by the simple zero of Γ (s/2)
at this point, so that ζ(0) 6= 0. The fact that ζ(s) = 0 for s = −2,−4, . . .

follows from the analogous property of Γ (s/2). At s = 1, Γ (s/2) = π
1
2 , and

as ξ has a simple pole with residue 1 at this point, in the neighbourhood of
s = 1,

ζ(s) = [1+?(s− 1) + . . .] [1/(s− 1) + . . .] .

Hence the existence of a simple pole and relation (11), qed.
Exercise 1. Show that

ζ(1− 2n) = −b2n/2n

for n = 1, 2, . . ., where the b2n are the Bernoulli numbers of Chap. VI, n◦ 12.
[Use functional equation (10), relation (13.7)

2ζ(2n) = (−1)n+1(2π)2nb2n/(2n)!

of Chap. VI, formula

Γ

(
1

2
− n

)
Γ

(
1

2
+ n

)
= (−1)nπ



270 XII – The Garden of Modular Delights

and the duplication formula of the Γ function].
Exercise 2 (Riemann). Show that Γ (s)ζ(s) is the Mellin transform of the

function 1/(et − 1) and that

2πiζ(s)/Γ (1− s) =

∫ (0+)

−∞

(
e−z − 1

)−1
zs−1dz

for all s ∈ C, where integration is over the same path as for the Hankel
integral for the Γ function (Chap. VIII, n◦ 10, (iii)). What is the connection
with previous exercise?

As all authors of textbooks on analytic function theory remind their read-
ers, Riemann, the first to have proved theorem 1 using the Jacobi function3

θ(ix) =
∑

exp
(
−πn2x

)
,

conjectured in 1859 that the only non-trivial zeros (i.e. other than −2,−4, . . .)
of his function are located on the line Re(s) = 1

2 . For more than a century,
many eminent mathematicians have made significant efforts to prove this.
Amateurs, who have written thousands of wrong proofs of Fermat’s theorem,
do not tackle Riemann’s hypothesis – too technical, whereas Fermat’s theo-
rem can be regarded as elementary arithmetic . . . –, neither do professional
lacking unlimited confidence in their own ability.4 For a long time, it was
hoped standard methods of analytic function theory would work. They have
led to significant results, but not to the result. For example, G. H. Hardy
showed in 1914 that the ζ function has infinitely many zeros on the “ critical
line ” Re(s) = 1

2 , which could explain his comments on the intellectual level
of mathematics applied to artillery and his conviction that his mathematics
will not be useful as it neither tends to accentuate the existing inequalities in
the distribution of wealth, [n]or promotes directly the destruction of human
life.

See my Postface to vol. II. In an article on mathematics in Le Monde on
May 25th, 2000, exalting applications without any discriminations, by a curious
coincidence, I found the following passage:

Thus, one should reflect on the unfortunate comments of the English
mathematician Godfrey Hardy, who considered that real mathematics
would never have any military applications. If only because, through cryp-
tography, the theory of prime numbers plays an essential role in the world
of intelligence and in that of the internet.

These comments seem to me to be far more “ unfortunate ” than Hardy’s dec-
laration.

3 Generally speaking, we set θ(z) =
∑

exp(πin2z) for Im(z) > 0.
4 In his youth, André Weil hoped to prove it before its centenary date and to

publish it in 1959. He burst out laughing the day when, after the publication
of his complete works, I remarked to him that if he finally found a fifteen page
proof, Springer-Verlag would be obliged to add a very thin volume to its edition.
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(1) Though Le Monde twice dedicated two pages to “ the year of mathe-
matics ”, the cited passage is the one and unique reference to their military
use. Is this topic so irrelevant – or so dangerous? – that it is only worth five
ironic lines?

(2) M. Augereau forgets to mention the word “ directly ” that Hardy had
prudently employed, which enables him, as well as most commentators, to
get away with ridiculing him. When Hardy wrote this in 1915, the chemistry
of toxic gases (chlorine, phosgene, mustard gas, etc.) was starting to play a
direct role in warfare thanks to future German Nobel laureates (Fritz Haber,
James Franck, Otto Hahn, Gustav Hertz) and to dozens of less well-known
chemists, who were readily imitated by their French and British colleagues.5

Haber’s initiative caused an enormous scandal; its author, fearing he would
be judged by the Allies, temporarily fled to Switzerland in 1918. In 1919,
he received the chemistry Nobel prize for his pre-1914 research on the direct
synthesis of ammonia, which was doubly scandalizing since the first use of the
new technique, developed by BASF in 1912, saved Germany from an armament
crisis6 that would have been fatal for the country long before 1918. To this
day, public opinion continues to disapprove the use of these armaments, gas
warfare having given rise after 1918 to the first “ anti-Science ” comments in
some circles. Grass-root veterans of my youth, knowing very well that they and
their German counterparts had been in the same drunken boat together, did
not feel any hatred for them; but according to them, Haber should have been
shot in 1918.

People who ridicule Hardy should learn about the context. Haber’s chem-
istry is altogether a different matter from using the Arabs’ trigonometry to
locate enemy batteries or inventing a cryptography system allowing the mili-
tary of all nations to protect their little secrets. . .

(3) That the new cryptography is of interest to the “ world of intelligence ”,
which I mentioned (Chap. V, § 5, note 36) without waiting for M. Augereau and
the mathematicians he interviewed, is in no way obvious. Upon its invention
by Diffie and Hellman in 1976, the principle of public-key cryptography was
made. . . public,7 after which Rivest, Samir and Adelman invented and they too
made public8 their system based on the factorization of very large integers; it
was commercialized by a company, RSA Systems, which today is worth billions
of dollars on Wall Street. It stands to reason that a cryptography system can
really be of use to a government agency – in this case, the American National
Security Agency – only if it has exclusive rights to it, particularly concerning
an almost indecipherable system. Making it available for everyone was a first
in the history of the subject, and from the point of view of the NSA, was ex-
tremely absurd since the Soviets, who were not “ bad at Maths ”, could use it.
All this was done despite opposition from the NSA and a 1951 law that would

5 The main source for the topic is L. F. Haber, The Poisonous Cloud (Oxford UP,
1986), whose author, the son of the chemist, is a specialist of the history of the
chemical industry.

6 After the war, the new technique made it possible to introduce large quantities of
chemical nitrogen fertilizers – this was in theory BASF’s original purpose – and
to almost multiply the world population by four in one century. Chemists have
“ revolutionized society ” long before von Neumann and computer scientits. Va-
clav Smil, Enriching the Earth. Fritz Haber, Carl Bosch, and the Transformation
of World Food Production (MIT Press, 2001).

7 Including in France, thanks to the translation (Pour la Science, October 1979)
of one of Hellman’s article in Scientific American.

8 Communications of the ACM, 21, 1978, pp. 120–126.
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have allowed it to “ classify ” these new methods,9 obstacles which resistance
from scientific circles and the enormous power of business successfully over-
came. As recently written by an American journalist, the outcome10 is that
the efficiency of the NSA, submerged under a flow of messages especially due
to the development of the internet, has significantly diminished, the process
being heightened by the development of fibre optics.

(4) If Hardy must be contradicted, it would have been better to remark
that making the new methods of cryptography available to international trade
and money launderers is not such as to reduce existing inequalities in the dis-
tribution of wealth.

Computers have made it possible to calculate more than a billion zeros of the ζ
function, all on the critical line, i.e. whose real part is 0,5000. . . with a very large
but finite number of zeros. This keeps calculators busy and were it needed, would
reassure mathematicians; but it does not prove anything. Everyone has always
believed in Fermat’s theorem, but the problem was proving it, not checking it
numerically. This proved to be tremendously more interesting than the statement
itself. This will obviously also be the case of the Riemann hypothesis and it is
mainly for this reason that it fascinates those who hope to be able to justify it.

Similarities between the Riemann function and series associated to algebraic
curves have now convinced specialists that methods of algebraic geometry will lead
to the proof, as was the case with Ramanujan’s conjecture (Chap. IV, § 3, n◦ 20)
and with Fermat’s theorem. It may well be so. Others consider combining them
to those of non-commutative harmonic analysis, i.e. to generalizations of Fourier
transforms to non-commutative groups like SL2(R). In such cases, the best is to do
like the English: wait and see.

Riemann showed that his hypothesis, whose statement is at a first glance anec-
dotal, was connected to the statistical distribution of prime numbers. Using prime
number and logarithm tables, Gauss and Legendre had conjectured that, if π(x)
denotes the number of prime numbers p < x, then

π(x) ∼ x/ log x(2.12)

and what is even somewhat better,

π(x) ∼ li(x) =

∫ x

2

dt/ log t (“ logarithmic integral ”) .(2.13)

Exercise. Show that

li(x) ≈ x/ log x− x/ log2 x+ x/ log3 x− . . . when x −→ +∞ .

9 Among the articles I collected at the time, I find Duncan Campbell, Whose eyes
on secret data? (New Scientist, 2 March 1978), Cryptology: A Secret Meeting at
IDA? (Science, 200, 14 April 1978), Intelligence Agency Chief Seeks “ Dialogue ”
with Academics (Science, 202, 27 October 1978), Prior Restraints on Cryptog-
raphy Considered (Science, 208, 27 June 1980), Cryptography: A New Clash Be-
tween Academic Freedom and National Security? (Science, 209, 29 août 1980),
High Technology: Back in the Bottle? (Technology Review, août/septembre
1981), Christopher Paine, Admiral Inman’s tidal wave (The Bulletin of the
Atomic Scientists, March 1982).

10 Seymour M. Hersh, The Intelligence Gap, The New Yorker, 6 December 1999,
by the author of a famous book on the “ My Läı massacre ” during the Vietnam
war.
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In 1896 Jacques Hadamard and Charles de la Vallée-Poussin independently obtained
proofs of these results,11 related to the non-existence of zeros of ζ(s) on the line
Re(s) = 1, and they have been much improved since. But the Riemann hypothesis
is equivalent to

π(x) = li(x) +O
(
x

1
2
+ε
)

for all ε > 0 ,

a far stronger result than the previous one. With their probabilistic conception of
real mathematics, obviously, cryptography experts do not hesitate to make use of
it.

3 – Weil’s method for the Function η(z)

In Chap. IV, § 3 of n◦ 20 entitled“ strange identities ”, we introduced the function

η(z) = eπiz/12
∏
n≥1

(1− exp(2πinz)) = q1/12
∏(

1− q2n ,(3.1)

where q is set to be

q = exp(πiz) , qs = exp(πis)

for Im(z) > 0 and s ∈ C. These are simple abbreviations, the variable still being
z and not q. As was seen then, the infinite product is absolutely convergent for
Im(z) > 0 since |q| < 1. Moreover, since the series

∑
exp(2πinz) =

∑
e(nz) is

dominated in the half-plane y ≥ r by the convergent series
∑

exp(−2πr)n for
all r > 0, the infinite product is normally convergent in such a half-plane. So
function (1) is holomorphic on the half-plane Im(z) > 0 (Chap. VII, § 4, n◦ 20,
theorem 18). In Chap. IV, we stated the two functional equations satisfied by the
η function. We are now going to show how the Mellin transform simplifies their
proof using a method 12 which amounts to reversing the arguments leading to the
functional equation of the zeta function; this is a great exercise. A proof using the
series expansion

η(z) = exp(πiz/12)
∑

(−1)n exp [n(n+ 3)πiz]

and the Poisson summation formula will be given later (§ 3, n◦ 7).

Theorem 2 (Dedekind). The following relations hold:

η(z + 1) = exp(πi/12)η(z) ,(3.2’)

η(−1/z) = (z/i)
1
2 η(z) .(3.2”)

The first relation is obvious. By analytic extensions, it is sufficient to prove
the second one for purely imaginary z = iy with y > 0. The η function, being

11 See for example Freitag & Busam, Chap. VII, § 6, or the last chapter in Serge
Lang’s Complex Analysis (Springer-Verlag, 4th. ed., 1999). All that was known
before 1978 can be found in K. Prachar, Primzahlverteilung (2. Aufl., Springer-
Verlag).

12 André Weil, Sur une formule classique (J. Math. Soc. Japan, vol. 20, 1967,
pp. 400–403). This type of method was in fact invented in 1936 by the great
expert of the theory of modular functions, Erich Hecke. We could even go back
to Riemann, with his proof of the functional equation of the ζ(s) function.
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represented by an absolutely convergent product all of whose terms are non-zero,
has no zeros (Chap. IV, § 3, n◦ 17, theorem 13) and for z = iy, all its terms are
> 0. Hence its logarithm may be considered. It is somewhat simpler to study the
function

f(y) = −πy/12− log η(iy) = −
∑

log (1− exp(−2πy)n) =

=
∑
m,n≥1

exp(−2πy)mn/m ,(3.3)

the logarithmic series being justified since exp(−2πy) < 1. By the general theorems
(Chap. II, § 2, n◦ 15 and 18), the double series (3) with positive terms obviously
converges unconditionally. So the terms can be arbitrarily arranged (associativity).

The Mellin transform of f is

Γf (s) = ϕ(s) =

∫
ysd∗y

∑
m−1 exp(−2πmny) =

=
∑∫

m−1 exp(−2πmny)ysd∗y =

= (2π)−sΓ (s)
∑

1/ms+1ns ,

whence

ϕ(s) = (2π)−sΓ (s)ζ(s)ζ(s+ 1) .(3.4)

This formal calculation is justified by the convergence of the series whose general
term is ∫ ∣∣m−1 exp(−2πmny)ys

∣∣ d∗y = (2π)−sΓ (σ)/mσ+1nσ ,

where σ = Re(s), i.e. the product of two absolutely convergent series for Re(s) > 1.
As the ζ function has a rather remarkable functional equation, namely

ξ(1− s) = ξ(s) where ξ(s) = π−s/2Γ (s/2)ζ(s) ,(3.5)

ϕ(s) needs to be compared to the function

ξ(s)ξ(s+ 1) = π−s−
1
2 Γ (s/2)Γ [(s+ 1)/2] ζ(s)ζ(s+ 1) ,

However, the duplication formula (1.11) of the gamma function

Γ (s/2)Γ ((s+ 1)/2) = π
1
2 21−sΓ (s)(3.6)

shows that

ξ(s)ξ(s+ 1) = 2(2π)−sΓ (s)ζ(s)ζ(s+ 1) .(3.7)

Hence

ϕ(s) =
1

2
ξ(s)ξ(s+ 1) , whence ϕ(s) = ϕ(−s) .(3.8)

Since ξ(s) is meromorphic and its only singularities are simple poles at s = 0 and
s = 1, ϕ(s) extends analytically to all of C, except for simple poles at 1 and −1
and a double pole at s = 0 with residues
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Res(ϕ, 1) =
1

2
ξ(2) Res(ξ, 1) =

1

2
ξ(2) =

1

2
π−1Γ (1)ζ(2) = π/12(3.9)

since ζ(2) = π2/6, and so, by symmetry,

Res(ϕ,−1) = −π/12 .(3.9’)

In the neighbourhood of s = 0, there are series expansions

ξ(s) = −1/s+ c0 + c1s+ . . . ,

ξ(s+ 1) = ξ(−s) = 1/s+ c0 − c1s+ . . . ,

whence

ϕ(s) = −1/2s2 + a0 + a2s
2 + . . .(3.9”)

whose coefficients are of no relevance for the rest of this book.
Let us now show that the Mellin inversion formula

2πif(y) =

∫
Re(s)=σ>1

ϕ(s)y−sdy(3.10)

can be applied to f . Indeed, the function t 7−→ ϕ(σ + it) is the Fourier transform
of the integrable function u 7−→ f [exp(2πu)] exp(2πσu). But as ξ(s) is rapidly
decreasing at infinity on every vertical, so is ϕ(s) = 1

2
ξ(s)ξ(s + 1). The Fourier

inversion formula then proves (10) as in the proof of theorem 14 of Chap. VIII,
n◦ 13.

To exploit relation ϕ(−s) = ϕ(s), (10) needs to be compared with the similar
integral along the vertical Re(s) = −σ, i.e. the residue formula needs to be applied
to the contour bounded by verticals σ and −σ and horizontals T and −T . At the
limit, these do not contribute to the integral since |y−s| = y−σ is independent of
T , whereas ϕ(σ ± iT ) is rapidly decreasing. On the other hand, the integral over
Re(s) = −σ reduces to an integral over Re(s) = σ by s 7−→ −s. Setting

ψ(s) = ϕ(s)y−s = ϕ(−s)y−s ,

therefore, gives

2πi
∑

Res(ψ) =

∫
Re(s)=σ

[ψ(s)− ψ(−s)] ds =

=

∫
Re(s)=σ

[
y−sϕ(s)− ysϕ(s)

]
ds =

= 2πi [f(y)− f(1/y)] ,(3.11)

whence

f(1/y) = f(y)−
∑

Res(ψ) .

The residues of ψ(s) = ϕ(s)y−s at poles 1, 0 and −1 remain to be calculated. As 1
and −1 are simple poles of ϕ, by (9) and (9’)

Res(ψ, 1) = π/12y , Res(ψ,−1) = −πy/12 .

In the neighbourhood of 0, by (9”)
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ϕ(s) = −1/2s2 + a0 + . . . ,

y−s = exp(−s log y) = 1− s log y + . . . ,

whence

Res(ψ, 0) =
1

2
log y .

So

f(1/y) = f(y)− π/12y + πy/12− 1

2
log y ,

i.e.

f(1/y) + πy−1/12 = f(y) + πy/12− 1

2
log y .(3.12)

Since, by (1) and (3), η(iy) = exp[−f(y)− πy/12], it follows that

η(i/y) = y
1
2 η(iy) .

Thus, by analytic extension, we get the strange identity

η(−1/z) = (z/i)
1
2 η(z)

that had been prematurely announced at the end of Chap. IV, § 3 in the hope of
inspiring new Ramanujans.

Exercise. Let w be a complex number such that |w| < 1, w 6= 1. Set

f(y) = − log
(
1− we−y

)
=
∑

wne−ny
/
n .

Show that f satisfies the assumptions of Chap. VIII, n◦ 13, theorem 14 and deduce
that the function

Γ (s)
∑

wn
/
ns+1

extends analytically to C.

Several infinite products similar to the Dedekind function are encountered in
the theory of elliptic or modular functions. Like the latter, they all have simple
functional equations that can be proved in the same way.

Exercise 1: functional equation of F (z) = q−1/24∏(1 + q2n−1). The Mellin
transform of

f(y) = πy/24− logF (iy) =
∑

(−1)me−(2n−1)mπy/m(3.13)

is given by

ϕ(s)/π−sΓ (s) =
∑

(−1)m/(2n− 1)sms+1 =

=
∑

(−1)m/ms+1
∑

1/(2n− 1)s .(3.14)

Using (7) and∑
1/(2n− 1)s = ζ(s)−

∑
1/(2n)s =

(
1− 2−s

)
ζ(s) ,
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one deduces that

ϕ(s) = π−sΓ (s)ζ(s)ζ(s+ 1)
(
1− 2−s

) (
2−s − 1

)
=

=
1

2
ξ(s)ξ(s+ 1)

(
1− 2−s

)
(1− 2s) = ϕ(−s) .(3.15)

Like ξ, the function ϕ is rapidly decreasing on every vertical strip since the functions
2s and 2−s are bounded there. The function

ψ(s) = ϕ(s)y−s =
1

2
ξ(s)ξ(s+ 1) (1− 2s)

(
1− 2−s

)
y−s(3.16)

being integrated is, like ϕ, rapidly decreasing on all vertical strips since the factor
y−s is at most of polynomial growth. Hence the Mellin inversion formula applies,
and calculating as in (11) gives

f(1/y) = f(y)−
∑

Res(ψ) ,

the residues being with respect to poles contained between verticals σ > 1 and −σ.
But (24) shows that, like the function ξ(s)ξ(s+1), ψ has at most poles at points 1, 0
and −1. The corresponding residues remain to be calculated.

As the poles of 1
2
ξ(s)ξ(s+ 1) at 1 and −1 are simple, it suffices to multiply the

residues by the values of the function (1 − 2s)(1 − 2−s)y−s at 1 and −1, i.e. by
−1/2y at s = 1 and −y/2 at s = −1, whence

Res(ψ, 1) = −π/24y , Res(ψ,−1) = πy/24 .(3.17)

The function 1
2
ξ(s)ξ(s + 1) has a double pole at s = 0. It is canceled out by the

double zero of the factor (1−2s)(1−2−s), thus the corresponding residue is trivial.
So finally,

f(1/y) = f(y)− πy/24 + π/24y .(3.18)

One, therefore, concludes that the function

F (z) = q−1/24
∏(

1 + q2n−1) where q = exp(πiz)

satisfies the functional equation

F (−1/z) = F (z)(3.19)

and trivially,

F (z + 2) = q−1/12F (z) .

Exercise 2 : functional equation of G(z) = q−1/24∏(1 − q2n−1). The Mellin
transform of

f(y) = πy/24− logG(iy) =
∑

e−(2n−1)mπy/m

is

ϕ(s) = π−sΓ (s)
∑

1/ms+1(2n− 1)s = (2s − 1) (2π)−s Γ (s)ζ(s)ζ(s+ 1) =

=
1

2
(2s − 1) ξ(s)ξ(s+ 1) ,
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from which one concludes that

ϕ(−s) = −2−sϕ(s) .

The residues of the function ψ(s) = y−sϕ(s) are π/12y at s = 1, − 1
2

log 2 at s = 0
[since 2s = exp(s log 2) = 1 + s log 2 + . . .] and πy/24 at s = −1. Here method (11)
gives

f(y) + f(2/y) = π/12y + πy/24− 1

2
log 2 ,

and so, replacing y with 2y,

G(2z)G(−1/z) =
√

2(3.20)

by analytic extension. We could have deduced this result from the functional equa-
tion of the Dedekind function by observing that

G(2z) = η(z)
/
η(2z) .

Exercise 3 : functional equation of H(z) = q1/24
∏

(1− (−q)n). We start from

f(y) = −πy/24− logH(iy) =
∑

(−1)mn exp(−πmny)
/
m (y > 0) .

A few calculations then show that the Mellin transform of this function is

ϕ(s) = π−sΓ (s)
∑

(−1)mn/ms+1ns =
1

2
ξ(s)ξ(s+ 1)a(s)a(−s) ,

where a(s) = 2s/2 + 1 − 2−s/2. So it is invariant under s 7−→ −s. Calculating the
residues and using the inverse Mellin transform like in previous exercises lead to
the functional equation

H(−1/z) = (z/i)
1
2H(z) .

Observing that

η (1/2 + z/2) = exp (πi/24)H(z) ,

the relation obtained means that the η(z) function satisfies

η (1/2− 1/2z) = (z/i)
1
2 η (1/2 + z/2) .(3.21)

With a few lines of calculations, one can deduce this relation from the functional
equations of η(z):

η ((z − 1)/2z) = exp(πi/12)η (−(z + 1)/2z) =

= exp(πi/12) [2z/i(z + 1)]
1
2 η [2z/(z + 1)] =

= exp(πi/12) [2z/i(z + 1)]
1
2 η [2− 2/(z + 1)] =

= exp(πi/4) [2z/i(z + 1)]
1
2 η [−2/(z + 1)] =

= exp(πi/4) [2z/i(z + 1)]
1
2 [(z + 1)/2i]

1
2 η [(z + 1)/2] .

This proves (21) provided

exp(πi/4) [2z/i(z + 1)]
1
2 [(z + 1)/2i]

1
2 = (z/i)

1
2
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holds. Despite appearances, this is not obvious13 since, by (14.12) of Chap. VIII,

(w1w2)
1
2 = w

1
2
1 w

1
2
2 ⇐⇒ |Arg (w1) + Arg (w2)| < π ,(*)

which excludes formal calculations available for integer exponents. However, like
z, the points (z + 1)/2 and 2z/(z + 1) are in the upper half-plane, so that their
arguments are between 0 and π . The points

w1 = 2z/i(z + 1) = −2iz/(z + 1) and w2 = (z + 1)/2i = −i(z + 1)/2

occurring in (15) are, therefore, in the half-plane Re(w) > 0. So |Arg(w1)| < π/2
and |Arg(w2)| < π/2. Thus, condition (*) holds. Hence[

2z
/
i(z + 1)

] 1
2
[
(z + 1)

/
2i
] 1

2 = (−z)
1
2

as expected. But as Arg(−z) ∈ ]−π, 0[ , Arg(z/i) = π/2 + Arg(−z) has to be

chosen in such a way that it stays in the interval ]−π,+π[ , whence (z/i)
1
2 =

(−z)
1
2 exp(πi/4), qed.

Exercise 4 : functional equation of P (z) = q1/24
∏

(1 + q2n). This time we set

f(y) = log
∏(

1 + e−2πny) =
∑

(−1)m−1 exp(−2πmny)
/
m,

and so, for the Mellin transform

ϕ(s) = (2π)−sΓ (s)
∑

(−1)m−1/ms+1ns =
1

2

(
1− 2−s

)
ξ(s)ξ(s+ 1)

and ϕ(−s) = −2sϕ(s). The residues of ϕ(s)y−s are π/48y at s = 1, 0 at s = 0 and
πy/24 at s = −1. The Mellin inversion then shows that

f(y) + f(1/2y) = π/48y + πy/24 ,

whence

P (z)P (−1/2z) = 1 .(3.22)

13 More generally, if a, b, c, d are integers such that ad − bc = 1, setting γ(z) =
(az + b)/(cz + d), we get

η [γ(z)] = ε(γ)(cz + d)
1
2 η(z) ,

but the explicit calculation of the constant ε(γ) encounters arithmetical problems
which, however “ elementary ”, were not solved before 1931 (Hans Rademacher)
or, with a simpler formula, 1954 (Hans Petersson), despite the fact that the η
function was known for a long time. See for example M. I. Knopp, Modular Func-
tions in Analytic Number Theory (Markham, 1970). A similar problem arises for
the θ(z) function. It was solved by Erich Hecke in 1944 ; see for example Neal
Koblitz, Introduction to Elliptic Curves and Modular Functions (Springer-Verlag,
2d ed., 1993), pp. 148–152.
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To conclude this n◦, let us note the similarity between

η(z) = q1/12
∏(

1− q2n
)

and the function ∏(
1− q2n

)−1
=
∑

p(n)q2n = q1/12η(z)−1

of partition theory (Chap. IV, § 3, n◦ 20 ; the variable q of Chap. IV has been
replaced by q2). A detailed study of the behaviour of η(z) in the neighbourhood of
the real axis leads to precise information about the asymptotic behaviour of p(n)
for large n, for example the asymptotic formula

p(n) ∼ 1

4(3n) 1
2

exp
[
(2n/3)

1
2 π
]
,

due to Hardy and Ramanujan, then an expansion of p(n) into a convergent series
due to Hans Rademacher, the author of what still is one of the most beautiful books
on analytic number theory.14

14 Dieudonné gives, obviously without proofs, a very very good idea of the sub-
ject in the Dictionnaire des Mathématiques, algèbre, analyse, géométrie (Paris,
Encyclopaedia Universalis and Albin Michel, 1997) and, probably wising to give
educated populations an idea of the power of mathematics, writes the 27 digits
of p(721). Let us also draw attention to the excellent article by Jean-Luc Verley
on analytic functions in the same volume. Except for some details, the articles
of the Dictionnaire can be found in the many volumes of the Encyclopaedia
Universalis.
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§ 2. The series
∑

1/ cosπnz and
∑

exp (πin2z)

4 – The series
∑

1/ cosπnz

We showed in Chap. VIII, n◦ 15 that the function 1/ chπx is equal to its Fourier
transform. A change of variable then shows that, for all t > 0, the Fourier transform
of x 7−→ 1/ ch(πx/t) is x 7−→ t/ ch(πxt). This function being in the Schwartz space
S(R), the Poisson summation formula can be applied to it; thus

ϕ(1/t) = tϕ(t) where ϕ(t) =
∑
Z

1/ ch(πnt)(4.1’)

and more generally,∑
1/ ch

[
π(u+ n)t−1] = t

∑
e(nu)/ ch(πnt)(4.1”)

for all u ∈ R.
Let us now consider the analogous series

f(z) =
∑

1/ cos(πnz) .(4.2)

We begin by showing that it converges normally in all half-planes of the form
Im(z) ≥ r > 0. Indeed, in this half-plane

2 |cos(πnz)| =
∣∣∣eπ(ny−inx) + eπ(−ny+inx)

∣∣∣ ≥
≥
∣∣∣eπ|n|r − e−π|n|r∣∣∣ ≥ eπ|n|r − 1 .

The convergent series
∑

1/(eπ|n|r − 1) thus dominates series (2) in the half-plane
considered.

We now now that f satisfies two simple functional equations. First,

f(z + 2) = f(z) .(4.3)

On the other hand, function (2) is holomorphic on the half-plane Im(z) > 0 and
reduces to ϕ(t) for z = it. Relation (1’) meaning that

f(−1/z) = (z/i).f(z)(4.4’)

for imaginary z and both sides being analytic on the half-plane Im(z) > 0, (4’) holds
on the latter.

Similarly, relation (1”) shows that, for u ∈ R,∑
1/ cos [−π(u+ n)/z] = (z/i)

∑
e(nu)/ cos(πnz) .(4.4”)

Relations (3) and (4’) resemble those proved in Chap. VII, n◦ 28 for the Jacobi
function

θ(z) =
∑

exp
(
πin2z

)
= 1 + 2

(
q + q4 + q9 + q16 + . . .

)
,

where

q = exp(πiz) .

© Springer International Publishing Switzerland 2015  
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Here too, the series converges for Im(z) > 0. Applying the Poisson summation for-
mula and the fact that the function x 7−→ exp(−πx2) equals its Fourier transform,
we have already shown that

θ(−1/z) = (z/i)
1
2 θ(z) ,

which is the reason why Riemann used it to prove the functional equation of his
ζ(s) series. Obviously,

θ(z + 2) = θ(z)

holds as well. Thus the function θ(z)2 satisfies (3) and (4’). In fact,

f(z) = θ(z)2 .(4.5)

The proof of this equality is going to take us directly to the theory of modular
functions in the next n◦.

Like the theta series, f has an easily computable Fourier series expansion
(Chap. VII, § 4, n◦ 17). Indeed

f(z) = 1 + 4
∑
m≥1

qm

1 + q2m
= 1 + 4

∑
m≥1

qm
∑
k≥0

(−1)kq2km =

= 1 + 4
∑

m≥1,k≥0

(−1)kq(2k+1)m = 1 + 4
∑
n≥1

anq
n(4.6)

with a series which theorem 7 of of Chap. II, n◦ 15 tells us converges unconditionally.
The coefficient an is the sum of the numbers (−1)k for all ordered pairs (k,m) such
that k ≥ 0, (2k+1)m = n, But the existence of an integer m such that (2k+1)m = n
means that 2k + 1 is an odd divisor of n. We infer from this that

an = number of divisors of n of the form 4k + 1−
− number of divisors of n of the form 4k + 3 ,(4.7)

the number 1(k = 0), and possible also n, always occurring among the enumerated
divisors. Easy calculations then show that

f(z) = 1 + 4
(
q + q2 + q4 + 2q5 + q8 + q9 + 2q10 + 2q13 + . . .

)
.

For n = 12 for example, odd divisors are 1 ≡ 1(mod 4) and 3 ≡ 3(mod 4), and so
an = 0. For n = 25, these are 1, 5 and 25, all ≡ 1(mod 4), and so a25 = 3. For
n = 50, the odd divisors are the same, thus again a50 = 3.

To make conjecture (5) plausible, let us calculate the expansion of θ(z)2.

θ(z) =
∑
Z

qx
2

= 1 + 2
∑
x≥1

qx
2

and so

θ(z)2 = 1 + 4
∑
x≥1

qx
2

+ 4
∑
x,y≥1

qx
2+y2 = 1 + 4

∑
n≥1

bnq
n .

If n is not a square, bn is clearly the number of ordered pairs (x, y) with integers
x, y ≥ 1 such that x2 +y2 = n ; if n is a square, 1 needs to be added to this number
to obtain bn, which amounts to admitting the ordered pair (x, 0) if n = x2. Hence,
in all cases, bn is the number of ordered pairs (x, y) such that
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x2 + y2 = n , x ≥ 1 , y ≥ 0 .(4.8)

Again easy calculations then show that the beginning of the expansion is the same
as that of f . For n = 12, (8) has no solution, whence b12 = 0. For n = 25 = 52 =
32 + 42 = 42 + 32, we find b25 = 3. For n = 50,

50 = 12 + 72 = 72 + 12 = 52 + 52 ,

whence b50 = 3. The reader having access to a computer will be able to check
further if, like the new cryptographers, he considers it important to replace obsolete
deductive mathematics of the past by new inductive or experimental mathematics.15

Hence equality f(z) = θ(z)2.
Admitting it without proof, we get a classical result of arithmetic: the number

of solutions of (8) is given by formula (7).
There are elementary proofs of this result, for example in Hardy & Wright.

Conversely, (5) can be deduced from the classical result.16

5 – The Identity
∑

1/ cosπnz = θ(z)2

As for proving directly that f(z) = θ(z)2, as stated above, it is a problem in the
theory of modular functions. In fact, apart from the infinite product expansion of the
θ that has not yet been proved, everything can be proved “ without any knowledge ”
of this theory, or almost without. Some of its features will be presented in § 5.

(i) The fundamental domain of Γ (θ). First, the function

g(z) = f(z)
/
θ(z)2

is clearly invariant under the maps

T : z 7−→ z + 2 , S : z 7−→ −1/z(5.1)

from the half-plane

P = {Im(z) > 0}

to itself, hence also under every map T pSqT r . . ., where p, q, r, . . . are arbitrary
rational integers (in fact it suffices to give the exponents of S the values 0 and 1
since S2 = id). These form a group Γ (θ) of conformal representations

γ(z) = (az + b)
/

(cz + d)

of P on itself, with coefficients a, b, c, d ∈ Z such that ad − bc = 1, like S and T .
Multiplication of transformations of this type is similar to that of the corresponding

15 See Jacques Stern, La science du secret (Paris, Odile Jacob, 1998), Chapter VI.
16 This is what Freitag and Busam do, in exercises of their chapter VII, § 3, Funk-

tionentheorie, albeit they write f(z) in the less spectacular form that can be
obtained by permuting the summations with respect to k and m in the first dou-
ble series of equation (6), which conceals the cosπnz. Their method consists in
comparing the Mellin transforms of f(z) and θ(z)2, which are quite well-known
Dirichlet series. We will return to this later. The method used here, directly taken
from Freitag and Busam (chap. VII, 1.8), is standard in the theory of modular
functions. I did not find anywhere calculations leading directly to the functional
equation of f(z) and to the behaviour of f(1 − 1/z) at infinity, but then the
literature is considerable.
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matrices17 (a b|c d). The latter form the modular group. Transformations γ ∈ Γ (θ)
may be showed to be characterized by the additional condition

a+ b+ c+ d ≡ 0 (mod 2) ,

but it is less obvious and useless. When studying elliptic functions in C with fun-
damental periods ω1 and ω2 (Chap. II, § 3, n◦ 23), it is not necessary to consider
them on all of C. It suffices to consider them on the parallelogram P generated by
these two vectors since any z ∈ C can be transformed into P by adding periods. We
thus need to imitate this procedure by replacing C and the group of periods by the
half-plane P and the group Γ (θ), i.e. to construct a subset F of P , of the simplest
form possible, such that, for any z ∈ P , there exists a transformation γ ∈ Γ (θ) that
maps z to a point of F . This amounts to requiring that

P =
⋃

γ∈Γ (θ)

γ(F) .(5.2)

The ideal would be to make sure that the sets γ(F) are pairwise disjoint, but this is
impossible since there may exist γ ∈ Γ (θ) such that γ(z) = z, for example S which
leaves the point i fixed. It is, however, possible to choose F in such a way that
(i) F is the closure of some open set, (ii) the intersection of two images γ′(F) and
γ′′(F) only contains subsets of their boundaries. This is what happens for elliptic
functions. The next lemma describes such a fundamental domain of the group Γ (θ)
[Chap. XI, n◦ 15, (vii)].

Lemma. The set F defined by inequalities

0 ≤ Re(z) ≤ 2 , |z| ≥ 1 , |z − 2| ≥ 1 .(5.3)

satisfies (2). So does the set F defined by

|Re(z)| ≤ 1 , |z| ≥ 1 .(5.3’)

To see this, we first note that if γ = (a b|c d) is a real matrix with determinant
ad− bc = 1, then

Im [γ(z)] =
1

2i

(
az + b

cz + d
− az + b

cz + d

)
=

Im(z)

|cz + d|2 .(5.4)

This formula shows that γ maps P to P , and since so does the inverse γ−1 =
(d −b|−c a), any matrix of this form defines a conformal representation of the
half-plane P onto itself.

This being so, for given z ∈ P , let us consider the imaginary parts of the points
γ(z) for γ ∈ Γ (θ). As both c and d are non-trivial integers, the numbers cz + d
appearing in (4) belong to the lattice generated by 1 and z in C. Hence c and d
can be so chosen that |cz + d| is minimal, hence that Im[γ(z)] is maximal. As the
translation T : z 7−→ z+ 2 leaves Im(z) invariant, multiplying γ with a power of T ,
one may even suppose that |Re γ(z)| ≤ 1. Since S ∈ Γ (θ), the image z′ = γ(z) of z
obtained thereby then satisfies∣∣Re

(
z′
)∣∣ ≤ 1 , Im

(
−1/z′

)
≤ Im

(
z′
)
.

17 In what follows, the notation (a b|c d) will sometimes denote the 2 × 2 matrix
whose first row is a b and the second one c d.
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But Im(−1/z′) = Im(z′)/|z′|2. Therefore, both∣∣Re
(
z′
)∣∣ ≤ 1 , |z′| ≥ 1

hold, whence (3’).
We proceed in the same way to reduce to inequalities (3). For given z ∈ P ,

choose γ such that Im(γz) is maximal. So as above, |cz′ + d| ≥ 1 for any matrix in
the group. Using z 7−→ z + 2, transform z′ into the strip bounded by the verticals
of 0 and 2. Relation Im(−1/z′) ≤ Im(z′) shows that |z′| ≥ 1, inequality |z′− 2| ≥ 1
being obtained in a similar way using TS : z 7−→ (z − 1)/(z − 2), qed.

Pursuing these calculations further, the pairwise intersection of the images γ(F)
could be shown to only contain boundary points, but this is not needed for what
follows.

0 1 2

Fig. 1.

The above figure represents set (3). Observing that any homography z 7−→
(az+b)/(cz+d) with real coefficients and determinant 1 transforms a circle centered
on the real axis or possibly at the limit of a vertical into a figure of the same type, its
images under γ ∈ Γ (θ) are easily obtained. The images of (3’) form a tessellation of
the half-plane P with closed triangles bounded by circular arcs centered on the real
axis, or with verticals, and accumulating on the real axis. The reader can practise
drawing the tessellation obtained from the set F defined by (3) or (3’).

(ii) A general method. Let us consider a function g(z) in P which is holomorphic
everywhere and invariant under the group Γ (θ). We intend to search for conditions
enabling us to affirm that g(z) = 1. The analogous problem in the theory of el-
liptic functions is easy to solve (Chap. VII, § 4, n◦ 18): if an elliptic function g is
holomorphic everywhere, the continuous function |g(z)| has a maximum in a period
parallelogram since it is compact, hence by periodicity in C. The result follows.

Likewise, in the case at hand, it would suffice to show that |g(z)| has a maximum
in the closed set F . The latter is not compact but can be made to be so by removing
all z such that either Im(z) > c for given c > 0, or |z − 1| < ε for given ε > 0. So,
to show that g = 1, it suffices to show that g(z) tends to 1 as z ∈ F tends either to
infinity or 1. Indeed, if this is the case, then, for all r > 0, inequality |g(z)− 1| ≥ r
gets rid of all points z ∈ F too near 1 or infinity, hence defines a compact set
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K(r) ⊂ F . If g − 1 were not identically zero, then K(r) would be non-empty for
sufficiently small r and there would be some a ∈ K(r) such that

|g(z)− 1| ≤ |g(a)− 1|

for all z ∈ K(r), hence for all z ∈ F , thus by “ periodicity ” for all z ∈ P , a
contradiction.

So it suffices to analyze the behaviour of g(z) either for large Im(z) or for z ∈ F
near 1. In the second case, we set

z = 1− 1/ζ , whence ζ = 1/(1− z) .

The half-circles |z − 1| = 1 and |z − 2| = 1 bounding F are transformed into the
verticals Re(z) = 1

2
and Re(z) = − 1

2
, so that making z tend to 1 on F reduces to

making ζ tend to infinity on the strip bounded by these verticals. Thus it follows
that to prove g(z) = 1, it suffices to show that

lim g(z) = lim g(1− 1/z) = 1(5.5)

as z tends to infinity on the strip 0 ≤ Re(z) ≤ 2 in the former case, on the strip
− 1

2
≤ Re(z) ≤ 1

2
in the latter one. Thus it is all the more sufficient to check (5) as

Im(z) tends to +∞. This is what we will do.

(iii) The identity f(z)/θ(z)2 = 1. Let us then come back to the function

g(z) = f(z)/θ(z)2 ,

invariant under the group Γ (θ). It is holomorphic on P because the theta series has
no zeros there thanks to a miraculous infinite product expansion

θ(z) =
∏
n≥1

(
1− q2n

) (
1 + q2n−1)2 , q = exp(πiz) ,

a more general form of which will be proved in the next n◦.
To study the behaviour of g as Im z tends to infinity, i.e. as q tends to 0, observe

that

θ(z) = 1 + 2
(
q + q4 + q9 + . . .

)
, f(z) = 1 +

∑
n>0

anq
n .

The first condition (5) thus trivially holds. The second one requires some calcula-
tions. Summation is over all n ∈ Z in what follows.

θ(z + 1) =
∑

exp
(
πin2z + πin

)
since n and n2 are either both odd or both even. As our study concerns θ(1 −
1/z), the Poisson summation formula which we have successfully used for the θ(z)
series is again required. The Fourier transform of t 7−→ exp(πit2z) being u 7−→
(z/i)−

1
2 exp(−πiu2/z), the general formula∑

ϕ(t+ n) =
∑

ϕ̂(n) exp(2πint)

shows that∑
exp

(
−πin2/z + 2πint

)
= (z/i)

1
2

∑
exp

[
πiz(t+ n)2

]
.(5.6)
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For t = 1
2
, this gives

θ(1− 1/z) = (z/i)
1
2

∑
exp

[
πiz

(
n+

1

2

)2
]

= (z/i)
1
2 q

1
4

∑
qn(n+1) =

= 2(z/i)
1
2 q

1
4
(
1 + q2 + q6 + . . .

)
.

Hence

θ(1− 1/z)2 ∼ 4(z/i)q
1
2 as Im(z) −→ +∞ .(5.7)

If the same result is obtained for f(z) =
∑

1/ cosπnz, this will prove the second
condition (5), and hence that f(z) = θ(z)2.

To this end, we need to study the behaviour of

f(1− 1/z) =
∑ (−1)n

cos(−πn/z) =
∑ e(n/2)

cos(−πn/z)

as Im(z) tends to +∞. The formula∑
1 /cos [π(u+ n)z] = (z/i)−1

∑
e(nu) /cos(−πn/z)(4.4”)

obtained above is going to lead to the result: putting u = − 1
2

gives

f(1− 1/z) = (z/i)
∑

1/ cos

[
π

(
n− 1

2

)
z

]
=

= 2(z/i)
∑
Z

1
/(

qn−
1
2 + q

1
2
−n
)

= 4(z/i)q
1
2

∑
n≥0

qn

1 + q2n+1
.

The latter series converges normally for |q| ≤ r < 1. So it is possible to pass to the
limit term by term as q tends to 0. The term n = 0 tends to 1 and the others to 0,
so that the sum of the series tends to 1. Hence

f(1− 1/z) ∼ 4(z/i)q
1
2(5.8)

in accordance to (7). The result follows.

Theorem 3. For Im(z) > 0,∑
Z

1/ cosπnz = θ(z)2 .(5.9)

Other authors prefer writing(∑
Z

qn
2

)2

= 1 + 4

∞∑
1

qn

1 + q2n
, |q| < 1 .(5.9’)
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6 – The Infinite Product of the Function θ(u, z)

The previous proof is based on the equality

θ(z) =
∏
n≥1

(
1− q2n

) (
1 + q2n−1)2 , q = exp(πiz) ,(6.1)

which is necessary (or sufficient – but no other proof is known) to show that θ(z)
does not have any zeros in the half-plane. The calculations of n◦ 3 and the arguments
used above to show that

∑
1/ cosπnz = θ(z)2 enable us to prove (1).

Once again, let us consider the functions

η(z) = q1/12
∏(

1− q2n
)
,

F (z) = q−1/24∏(1 + q2n−1
)

of n◦ 3. Equality (1) which we need to prove becomes

θ(z) = η(z)F (z)2 .(6.1’)

As

η(z + 1) = exp(πi/12)η(z) , η(−1/z) = (z/i)
1
2 η(z)

F (z + 2) = exp(−πi/12)F (z) , F (−1/z) = F (z) ,

θ(z + 2) = θ(z) , θ(−1/z) = (z/i)
1
2 θ(z) ,

The ratio θ(z)/η(z)F (z)2 is clearly invariant under z 7−→ z + 2 and z 7−→ −1/z,
hence under the group Γ (θ) of the function θ. The denominator, a convergent
infinite product, has no zeros in P . Like in the proof of the previous theorem, to
prove (10’), it will, therefore, be sufficient to show that, as Im z tends to infinity,

θ(z) ∼ η(z)F (z)2 ,(6.2’)

θ(1− 1/z) ∼ η(1− 1/z)F (1− 1/z)2 .(6.2”)

The first point is clear: as z ∈ F tends to infinity, i.e. as q tends to 0, θ(z) ∼ 1
and

η(z) ∼ q1/12 , F (z) ∼ q−1/24

since the infinite product tends to 1.
To obtain (2”), we first observe that, by (5.7),

θ(1− 1/z) ∼ 2(z/i)q1/4 .

On the other hand,

η(1− 1/z) = exp(πi/12)η(−1/z) = exp(πi/12)(z/i)
1
2 η(z)

and so

η(1− 1/z) ∼ exp(πi/12)(z/i)
1
2 q1/12 .

Finally, to obtain the behaviour of F (1− 1/z), we use the relation

F (z + 1) = exp(−πi/24)G(z) ,
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where G(z) = q−1/24∏(1 − q2n−1) is the function of exercise 2 of n◦ 3. Formula
(3.20) then shows that

F (2z + 1)F (1− 1/z) =
√

2 exp(−πi/12) .

As F (2z + 1) = e−(2z+1)πi/24∏(1− q4n−2) and hence as

F (2z + 1) ∼ exp(−πi/24)q−1/12 ,

it follows that

F (1− 1/z) ∼
√

2 exp(−πi/24)q1/12

and as a result,

η(1− 1/z)F (1− 1/z)2 ∼ θ(1− 1/z) ,

proving (1).
Exercise. (1) is equivalent to

θ(z)η(z) = exp(πi/12)η [(z + 1)/2]2 .(6.3)

As (1) is only a particular case of a much more general formula whose classic
proof uses far more “ elementary ” methods, the previous proof is likely to make
experts scream; but I am not writing for them. Moreover, (1) is going to provide
us with a very quick proof of the general formula:

Theorem 4 (Jacobi, 1828). For |q| < 1 and w ∈ C∗,∑
Z

qm
2

wm =
∏
n≥1

(
1− q2n

) (
1 + q2n−1w

) (
1 + q2n−1w−1) .(6.4)

In what follows, J(q, w) will denote the Jacobi series and A(q, w) the Abel
infinite product like in Remmert, Funktionentheorie 2, pp. 22–27, which presents
the classic proof that I will not follow, except for its quasi-trivial part. Mine(?) will
show the reader getting to grips with these questions that he has not worked in
vain by following the calculations of n◦ 3.

By Weierstrass’ general theorems on normally convergent infinite products
(Chap. VII, n◦ 20, theorem 18), for given q, A(q, w) is clearly a holomorphic function
of w on C∗, so has a Laurent series expansion

A(q, w) =
∑
Z

an(q)wn .

Replacing w by q2w in the product A(q, w), removes the factor 1+qw and adds
a factor 1 + q−1w−1 = q−1w−1(1 + qw). So

A
(
q, q2w

)
= q−1w−1A(q, w) ,(6.5)

i.e. ∑
an(q)q2nwn =

∑
an(q)q−1wn−1 =

∑
an+1(q)q−1wn .

We deduce that an+1(q) = q2n+1an(q), then that

an(q) = qn
2

a0(q) ,(6.6)
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first for n ≥ 0, in fact for all n since a−n(q) = an(q) because of the invariance of
the infinite product under w 7−→ w−1. Hence

A(q, w) = a0(q)J(q, w)(6.7)

for all w ∈ C∗ and |q| < 1.
For w = 1, A(q, w) and J(q, w) reduce to the two sides of identity (1), and so

are equal. Thus

A(q, 1) = a0(q)A(q, 1) .

As |q| < 1, none of the factors of the infinite product A(q, 1) is zero, so that
A(q, 1) 6= 0 (Chap. IV, n◦ 17, theorem 13). Thus a0(q) = 1, qed.

The θ(z) series is that value for u = 0 of the function

θ(u, z) =
∑
Z

eπin
2z+2πnu =

∑
Z

qn
2

wn ,(6.8)

where q = exp(πiz), w = e(u) for Im(u) > 0, u ∈ C. We will again come across it
in the theory of elliptic functions.

As was mentioned in Chap. IV, this history of this formula is somewhat strange.
Jacobi had discovered before 1828 the significance of the left hand side series, Abel
having, for his part, used the right hand side infinite product. When Jacobi pub-
lished his formula, Gauss wrote to him that he was familiar with his result ever
since 1808, greatly outraging Legendre who accused Gauss of wanting to appropri-
ate Jacobi’s result. Nonetheless, Gauss (1777–1855) was right as was realized when
his secret paper were published in 1868. He had became interested in these ques-
tion even before 1800, used to write down his results every day in his diary and,
Houzel relates that,18 he had obtained most of Abel and Jacobi’s infinite product
expansions of elliptic functions as well as many more results of the same type. One
wonders why he never published them.

To prove (4), there are methods that do not require algebraic calculations on
series.19 G. H. Hardy and E. M. Wright classic An Introduction to the Theory of
Numbers, as well as Remmert, give the simplest proof. Its starting point, replacing
w by q2w, is already in Gauss, and as was seen, immediately leads to relation (6).
We then check through ingenious calculations that

A(q, i) = A
(
q4,−1

)
, J(q, i) = J

(
q4,−1

)
,

from which we deduce that a0(q4) = a0(q). As a0(q) is obviously a power series in
q, we conclude that a0(q) = a0(0) = A(0, w)/J(0, w) = 1.

Let us give two striking consequences of (4).

Corollary 1 (Euler).∏
n≥1

(1− qn) =
∑
Z

(−1)mq(3m+1)m/2 .(6.9)

Replace q by q3/2 and w by −q
1
2 in (2).

18 See his article on the history of elliptic functions in Jean Dieudonné, Abrégé
d’histoire des mathématiques (Hermann, 1978), vol. 2, pp. 34–40)

19 See for example G. E. Andrews, Proc. AMS, 16, 1965, pp. 333–334.
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The previous formula can also be written as

η(z) =
∑
Z

(−1)m exp
[
(6m+ 1)2πiz/12

]
and can be used to prove the functional equation of the η function in just a few
lines; see n◦ 8.

Corollary 2 (Jacobi).∏
n≥1

(1− qn)3 =
∑
Z

(−1)mmqm(m+1)/2 =

=
∑
m≥0

(−1)m(2m+ 1)qm(m+1)/2 .(6.10)

Replacing q by q
1
2 and w by −q

1
2w in (4) gives∑

(−w)mqm(m+1)/2 =
∏

(1− qn) (1− qnw)
(
1− qn−1w−1) =

=
(
1− w−1)∏ (1− qn) (1− qnw)

(
1− qnw−1) ,

and so

1

w − 1

∑
(−w)mqm(m+1)/2 = w−1

∏
n≥1

(1− qn) (1− qnw)
(
1− qnw−1) .

As w tends to 1, the right hand side, which converges normally in every annulus
0 < r ≤ |w| ≤ R < +∞, tends to product (10). The left hand side tends to the
derivative of the Laurent series at w = 1, qed.

7 – The Reciprocity Law for Gauss Sums

(i) Cauchy’s method. As was seen in the proof of (6.1), the behaviour of the θ(z)
function in the neighbourhood of z = 1 on the real axis in given by

θ(1− 1/z) ∼ 2(z/i)1/2eπiz/4 ,(7.1)

as z tends to infinity in the fundamental domain F . More generally, one can work in
the neighbourhood of a rational point on the real axis and thus prove analytically
one of Gauss’ most famous discoveries. Cauchy was the first to notice this.

For this, we set z = 2p/q+ it where p and q are non-trivial rational integers and
where t tends to 0 through positive values or, more generally, so that −1/z tends
to infinity on F . As −1/z ∼ i/t, this means that Re(1/t) tends to +∞.

This said,

θ (2p/q + it) =
∑

exp
(
2πin2p/q − πn2t

)
.

As exp(2πiz) = e(z) = e(z + 1), the value of exp(2πin2p/q) = e(n2p/q) only
depends on the class of nmod q. So we also have

θ (2p/q + it) =
∑

nmod q

e
(
n2p/q

)∑
m

exp
[
−π(n+mq)2t

]
.(7.2)
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The Poisson summation formula shows that, for all n and Re(t) > 0,∑
exp

[
−π(n+mq)2t

]
=
(
q2t
)− 1

2
∑

exp
(
−πm2/q2t+ 2πimn/q

)
,

where the argument of (q2t)−
1
2 must be chosen between −π/4 and +π/4. As∣∣exp

(
−πm2/q2t+ 2πimn/q

)∣∣ = exp
[
−πm2 Re(1/t)/q2

]
,

the series obtained converges normally in Re(1/t) ≥ r for all r > 0. It is, therefore,
possible to pass to the limit term by therm as Re(1/t) increases indefinitely. How-
ever, except for the term m = 0, all the terms of the series then tend to 0. Thus,
for given n, ∑

exp
[
−π(n+mq)2t

]
∼
(
q2t
)− 1

2 as Re(1/t) −→ +∞ .(7.3)

Substituting this result in (2), we get

θ (2p/q + it) ∼ G(p, q)
(
q2t
)− 1

2 ,(7.4)

where

G(p, q) =
∑

nmod q

e
(
n2p/q

)
(7.5)

is the Gauss sum. To exploit the relation θ(−1/z) = (z/i)
1
2 θ(z), let us set z =

2p/q + it and −1/z = −q/2p+ iu. A few calculations show that, as Re(1/t) tends
to +∞, so does

Re(1/u) = 4 Re(1/t)p2/q2 ,

with moreover 4p2u ∼ q2t. Instead of (2), we write

θ (−q/2p+ iu) =
∑
Z

exp
(
−πin2q/2p− πn2u

)
=

=
∑

nmod 2p

exp
(
−πin2q/2p

)∑
m

exp
[
−π(n+ 2pm)2u

]
.

By (3) for q = 2p, the sum over m is equivalent to (4p2u)−
1
2 as Re(1/u) tends to

+∞. As 4p2u ∼ q2t, setting

G′(q, p) =
∑

nmod 2p

exp
(
πin2q/2p

)
=
∑

e
(
n2q/4p

)
,(7.6)

it, therefore, follows that

θ (−q/2p+ iu) ∼ G′(−q, p)
(
q2t
)− 1

2 .

But the left hand side of the relation found is just θ(−1/z) = (z/i)
1
2 θ(z), where

z = 2p/q + it. Thus, by (4),

θ (−q/2p+ iu) ∼ (t+ 2p/iq)
1
2 G(p, q)

(
q2t
)− 1

2
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as well. As t tends to 0 from the right of the imaginary axis, z/i tends to 2p/iq. As

(z/i)
1
2 is defined by choosing Arg(z/i) between −π/2 and +π/2 for Im(z) > 0, we

have to choose

Arg(2p/iq) = −π/2 if p/q > 0 , = +π/2 if p/q < 0 .

Hence

(2p/iq)
1
2 = |2p/q|

1
2 exp [−πi. sgn(pq)/4] =

= |p/q|
1
2 [1− sgn(pq)i] .(7.7)

Comparing the two asymptotic evaluations found for θ(−q/2p+ iu), we finally get
the equality

|p|−
1
2G′(−q, p) = |q|−

1
2G(p, q) [1− sgn(pq)i] .(7.8)

In particular, this result applies for p = 1. Then G′(−q, p) = 1+exp(−πiq/2) =
1 + i−q, and so

|q|−
1
2G(1, q) =

(
1 + i−q

) /
[1− sgn(q)i](7.9)

and (Gauss)

q−
1
2G(1, q) =

1 + i−q

1 + i−1
=

1 + i if q ≡ 0 mod 4
1 if q ≡ 1 mod 4
0 if q ≡ 2 mod 4
i if q ≡ 3 mod 4 .

(q > 0)(7.9’)

In the general case to which we now return, sum (6) can be calculated differently.
For this observe that, if p is odd and 6= 1, then each class mod 2p is obtained once
and only once by setting n = 2u + pv where u varies mod p and vmod 2, which
transforms the general term of (6) into e(u2q/p)e(v2pq/4). The sum over umod p
equals G(q, p) and the sum over vmod 2 equals 1 + ipq. Hence

G′(q, p) = G(q, p) (1 + ipq) ,(7.10)

a result which, for p and q odd, can also be written

G′(q, p) = G(q, p) [1 + ε(pq)i](7.10’)

by setting

ε(n) = 1 if n ≡ 1 mod 4 , = −1 if n ≡ 3 mod 4 .

By the way, notice the useful relations

n ≡ ε(n) mod 4 , ε(−n) = −ε(n) ,

ε(mn) = ε(m)ε(n) , 1 + in = 2
1
2 [1 + ε(n)i] .

Comparing (8) and (10) and observing that

G(−q, p) = G(q, p) ,

it follows that, for p and q odd,
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|p|−
1
2G(q, p) = |q|−

1
2G(p, q) [1− sgn(pq)i]

/
[1− ε(pq)i] .(7.11)

Before deducing the arithmetic consequences of point (iii), we give a very different
method to obtain these formulas.

(ii) The Dirichlet method. These formulas have many proofs, including of course
arithmetic ones. Dirichlet had the idea of applying his theorem on Fourier series
(Chap. VII, § 3, n◦ 11, Theorem 7 bis) to the function with period 1 on R given by

f(t) =
∑

0≤k≤q−1

e
[
(t+ k)2p/q

]
for 0 < t < 1 .(7.12)

As t ∈ ]0, 1[ tends to 0 or 1, its limit values equal G(p, q), and since it has right and
left derivatives everywhere,

G(p, q) =
∑

f̂(n) ,(7.13)

the sum of the series being the limit of its partial symmetric sums. We are going to
deduce relation (8), which is not essential in the proof of reciprocity formula (11).

To make the clever calculations of the general case more understandable, let us
first suppose p = q = 1, so that G(p, q) = 1. Here,

f̂(−n) =

∫ 1

0

e
(
t2 + nt

)
dt = e

(
−n2/4

) ∫ 1

0

e
[
(t+ n/2)2

]
dt =

= e
(
−n2/4

) ∫ (n+2)/2

n/2

e
(
t2
)
dt .

So, by Dirichlet’s theorem on Fourier series,

1 =
∑
n

e
(
−n2/4

) ∫ (n+2)/2

n/2

e
(
t2
)
dt .

Setting n = 2m or 2m+ 1 according to the case, this becomes

1 =
∑
Z

∫ m+1

m

e
(
t2
)
dt− i

∑
Z

∫ 1
2
+m+1

1
2
+m

e
(
t2
)
dt .

Setting t2 = u reduces to proof to integrating the functions |u|−
1
2 cos(2πu)

and |u|−
1
2 sin(2πu) over R, which leads to (not absolutely) convergent integrals

(Chap. V, § 7, n◦ 24, Theorem 23), thereby giving the formula∫
R

exp
(
2πit2

)
dt = 1/(1− i) = (1 + i)/2(7.14)

which is going to prove useful later. The reader will deduce the Fresnel integrals∫
cos(2πt2)dt and

∫
sin(2πt2)dt extended to R+.

Exercise 1. Recover (14) by integrating the function exp(2πiz2) along the closed
contour consisting of the interval [0, R] of R, of the arc 0 < Arg(z) < π/4 of the
circle centered at 0 of radius R, and of the line segment connecting the endpoint of
this arc to the origin. Jordan’s lemma (Chap. VIII, n◦ 8, (iv)) will be useful.
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Exercise 2. Recover (14) starting from the integral of exp(πit2z), Im(z) > 0,
and passing to the limit. Show that∫

f̂(t) exp
(
πit2z

)
dt = (z/i)

1
2

∫
f(t) exp

(
−πit2/z

)
dt

for all f ∈ S(R) and Im(z) > 0. Deduce that the Fourier transform of the distribu-

tion20 exp(πit2)dt is e−πi/4 exp(−πit2)dt.
Let us now consider the general case.

f̂(−n) =
∑
k

∫ 1

0

e
[
nx+ (x+ k)2p/q

]
dx =

∫ q

0

e
(
nx+ x2p/q

)
dx

since k varies from 0 to q − 1. Second degree trinomial theory then shows that

f̂(−n) = e
(
−n2q/4p

) ∫ q+nq/2p

nq/2p

e
(
x2p/q

)
dx .

As the exponential only depends on the class of nmod 2p,

G(p, q) =
∑

nmod 2p

e
(
−n2q/4p

)∑
m

∫ (m+1)q+nq/2p

mq+nq/2p

e
(
x2p/q

)
dx =

=
∑

nmod 2p

e
(
−n2q/4p

) ∫
R

e
(
x2p/q

)
dx .

So, setting t = p/q,

G(p, q) = G′(−q, p)
∫
R

e(tx2)dx ,(7.15)

where G′(q, p) is sum (6). By (14), the integral equals |p/q|−
1
2 /[1 − sgn(pq)i] and

we recover relation (8) obtained by Cauchy’s method.

(iii) The quadratic reciprocity law.21 If p is a prime number, then the ring
Fp = Z/pZ of integers mod p is a field, the multiplicative group G(p) then being
the set of its non-trivial elements. As it is commutative, its image under the map
x −→ x2 is a subgroup G(p)+ whose number of elements is equal to the quotient of
Card[G(p)] = |p| − 1 by the number of solutions of x2 = 1, namely 2 if p is odd as
will be assumed. Integers that are not divisible by p fall into two disjoint sets: the
set G(p)+ of quadratic remainders mod p, and the set G(p)− of non-squares. Then,
for n ∈ Z non-multiple of p, we set

(
n

p

)
=

(
n

|p|

)
=

+1 if n ∈ G(p)+

0 if n = 0 mod p

−1 if n ∈ G(p)− .

(7.16)

20 See Chap. VII, n◦ 32. Generally speaking, ϕ(t)dt denotes the distribution f −→∫
f(t)ϕ(t)dt.

21 This section assumes that the reader is familiar with the definitions of n◦ 9.
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Since there are only two cosets modulo G(p)+ in the group G(p), the Legendre
symbol that has just been defined clearly satisfies(

mn

p

)
=

(
m

p

)(
n

p

)
(7.17)

for all m,n ∈ Z. Hence it is a character mod p in the sense of n◦ 9, (iii).
G(p)+ and G(p)− having the same number of elements, the cardinality of G(p)+

is (|p| − 1)/2. So22

n(|p|−1)/2 = 1 for all n ∈ G(p)+ ,(7.18)

as well as

n|p| ≡ nmod p for all n ∈ Z .

This is “ Fermat’s little theorem ” used by cryptographers.
In fact, relation (18) characterizes squares since, being an algebraic equation of

degree (|p| − 1)/2, it cannot have more that (|p| − 1)/2 roots in the field Fp.
(18) enables us to determine whether −1 is or is not a quadratic remainder

mod p. The first case occurs if and only if (−1)(|p|−1)/2 = 1 in Z/pZ, hence in fact
in Z since p is odd. In other words,(

−1

p

)
= (−1)(|p|−1)/2 = ε (|p|) = ε(p) sgn(p) .(7.19)

This result will prove useful. Recall that ε(n) = 1 or −1 according to whether odd
n equals = 1 or 3 mod 4, so that n = ε(n) mod 4.

Let us now return to the Gauss sum G(p, q) by assuming that p and q are odd
primes. Setting e(z) = exp(2πiz),

G(p, q) =
∑

nmod q

e
(
n2p/q

)
= 1 + 2

∑
G(q)+

e(mp/q)(7.20)

since any quadratic remainder can be written in two ways as n2. We then distinguish
between the two cases.

If p ∈ G(q)+, the map m 7−→ mp permutes the elements of the group G(q)+.
Hence

G(p, q) = 1 + 2
∑
G(q)+

e(m/q) .(7.21)

This result is independent of p, and so is equal to its value for p = 1. Thus

G(p, q) = G(1, q) if p ∈ G(q)+ .(7.22)

22 If G is finite group and if x ∈ G, the powers xn are not pairwise distinct. Thus
there is some n > 0 such that xn = e, the unit element, and the smallest n with
this property is obvious the cardinality of the subgroup G(x) generated by x. As
G is the union of cosets G(x)y containing the same number of elements as G(x),

the cardinality of G is a multiple of the cardinality of G(x). Thus xCard(G) = e
for all x ∈ G.
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If, however, p ∈ G(q)−, then m 7−→ mp is a bijection from G(q)+ onto G(p)−

and

G(p, q) = 1 + 2
∑
G(q)−

e(m/q) =

= 1 + 2
∑
G(q)

e(m/q)− 2
∑
G(q)+

e(m/q) .(7.23)

The sum over G(q) would be zero if m varied over all of Z/pZ (sum of the roots of
unity qe) ; as summation is over all m 6= 0, it equals −1. Taking (21) and (22) into
account leads to

G(p, q) = −G(1, q) if p ∈ G(q)− .(7.24)

Both cases are unified by

G(p, q) =

(
p

q

)
G(1, q) .(7.25)

Exercise. Set

χ(n) =

(
n

q

)
.

Show that

G(p, q) =
∑

nmod q

χ(n)e(np/q) = G(χ, q)

in the notation of n◦ 9, (iv) and deduce (24).
Let us now come back to relation (11). For n odd, in = ε(n)i . Thus (11) now

becomes

|p|−
1
2

(
q

p

)
G(1, p) = |q|−

1
2

(
p

q

)
G(1, q)

1− sgn(pq)i

1− ε(pq)i .

|p|−
1
2G(q, p) = |q|−

1
2G(p, q) [1− sgn(pq)i]

/
[1− ε(pq)i] .(7.11’)

But, we saw above that for an odd prime q,

|q|−
1
2G(1, q) =

(
1 + i−q

) /
[1− sgn(q)i] = [1− ε(q)i]

/
[1− sgn(q)i]

and that there is also a similar relation for p. It then follows that(
p

q

)(
q

p

)
=

1− ε(q)i
1− sgn(q)i

1 + sgn(p)i

1 + ε(p)i

1− sgn(pq)i

1− ε(pq)i .(7.25)

The right hand side being equal to +1 or −1, it suffices to calculate its argument
mod 2π. For α = +1 or −1, the argument of 1 + αi equals απ/4. Mod 2π, the
argument of the right hand side, therefore, equals kπ/4, where

k = −ε(q) + sgn(p)− sgn(pq) + sgn(q)− ε(p) + ε(pq) =

= [ε(p)− 1] [ε(q)− 1]− [sgn(p)− 1] [sgn(q)− 1] .
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Since ε(p) = pmod 4, we finally get the quadratic reciprocity law(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4

which holds for positive odd primes p and q or only when they are not both negative.
The result changes sign otherwise. There are easy generalizations where p and q are
no longer assumed to be prime. They can be found in all number theory textbooks.

Legendre guessed the formula and Gauss attained instant fame by proving it.
Finding generalizations, for example for rings of algebraic integers, or other proofs
was a national sport for the German dynasty created by Gauss until the rest of the
world, from Japanese Takagi in 1920 to Chevalley some ten years later, discovered
the topic, and after 1935, expanded it. Governed by a High Commissioner rigor-
ously monitoring the alignment of the Great Pyramids, it is today one of the most
respected domains in mathematics.

§ 3. The Dirichlet Series L(s;χ)

8 – The Functional Equation of η(z): bis

Consider once again the formula

η(z) = exp(πiz/12)
∑
n≥1

(
1− q2n

)
=
∑
Z

(−1)m exp
[
(6m+ 1)2πiz/12

]
=

=
∑
Z

exp
[
(12m+ 1)2πiz/12

]
−
∑
Z

exp
[
(12m+ 7)2πiz/12

]
(8.1)

which follows from the Jacobi identity (Corollary 1). Let χ(n) denote the function
whose values, depending only on the class of nmod 12, are given by the following
table:

n 0 1 2 3 4 5 6 7 8 9 10 11

χ(n) 0 1 0 0 0 −1 0 −1 0 0 0 1
;

Clearly, χ(n) 6= 0 if and only if n is coprime to 12 and

χ(mn) = χ(m)χ(n) , χ(−n) = χ(n)(8.2)

for all m,n ∈ Z. With this notation, (1) can also be written

η(z) =
1

2

∑
Z

χ(n) exp
[
πin2z/12

]
.(8.3)

If indeed χ(n) = 1, then either n = 12m+ 1, or n = 12m+ 11 = −(12m′ + 1) with
m′ = −m−1. Because of the 1

2
factor, the contribution of these values of n to series

(3) is equal to the first series (1). If, however, χ(n) = −1, then either n = 12m+ 7,
or n = 12m+ 5 = −(12m′ + 7) with m′ = −m− 1. Hence the second series (1).

That being so, let us write∑
Z

χ(n) exp
[
πin2z/12

]
=

∑
amod 12

χ(a)
∑
Z

exp
[
πi(a+ 12n)2z/12

]
© Springer International Publishing Switzerland 2015  
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and apply the Poisson summation formula to each subseries. After a few lines of
calculations, we find∑

exp
[
πi(a+ 12n)2z/12

]
= (12z/i)−

1
2

∑
exp

[
−πin2/12z + πian/6

]
.

In consequence,

(12z/i)
1
2 η(z) =

∑
amod 12

χ(a)
∑
Z

exp
[
−πin2/12z + πian/6

]
.

As the factor exp(πian/6) = e(an/12) only depends on the class of amod 12, the
result can also be written as

(12z/i)−
1
2 η(z) =

∑
G(χ, n) exp

(
−πin2/12z

)
(8.4)

setting

G(χ, n) =
∑

χ(a)e(an/12) =
∑

χ(a) exp(πian/6) ,(8.5)

where summation is extended to the four classes a = 1, 5, 7 and 11 mod 12 . The
result only depends on the class of nmod 12 since e(z + 1) = e(z).

Setting ω = exp(πi/6), which implies ω6 = −1 and ω12 = 1, and taking into
account the values of χ(n), we get

G(χ, n) = ωn − ω5n − ω7n + ω11n = ωn + ω−n + (−1)n+1 (ωn + ω−n
)

=

= 2
[
1 + (−1)n+1] cosπn/6 .

Like χ(n), the result is trivial if n is even and, if n = 2m+ 1, it equals 4 cosnπ/6.

As cosπ/6 = cos 11π/6 =
√

3/2, cos 3π/6 = cos 9π/6 = 0 and cos 5π/6 = cos 7π/6 =

−
√

3/2, it finally follows that

G(χ, n) =
√

12χ(n)(8.6)

for all n.
Hence relation (4) can now be written as

η(z) = (12z/i)−
1
2 12

1
2

∑
χ(n) exp

[
−πin2/12z

]
= (z/i)−

1
2 η(−1/z) ,

where the summation is over Z, thereby leading to a functional equation of the
Dedekind function by a much simpler method than Weil’s; but it assumes the Jacobi
identity.

By the way, note that, by (3), the Mellin transform of t 7−→ η(it2) − 1 is the
series

1

2

∑
Z

χ(n)

∫
exp

(
−πn2t2/12

)
tsd∗t = (π/12)−s/2Γ (s/2)

∑
n≥1

χ(n)
/
ns .

The relation η(it−2) = tη(it2) immediately gives a functional equation for it in
s 7−→ 1− s.
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9 – Arithmetic Interlude

(i) Quotient rings. A ring (commutative in what follows) with unit element is a set
A with two operations (x, y) 7−→ x + y and (x, y) 7−→ xy satisfying all algebraic
rules, including the existence of elements 0 and 1 that had better be assumed to
be distinct short of a fascination for properties of rings with no elements or only
one. So called elementary arithmetics is the study of the ring Z. A field is a ring
in which every x 6= 0 has an inverse and where 1 6= 0, so that a field always has
at least two elements, the set {0, 1} equipped with the obvious rules is effectively a
field with two elements.

If A′ and A′′ are two rings, a ring structure can be defined on the Cartesian
product A′ ×A′′ by setting(

x′, x′′
)

+
(
y′, y′′

)
=
(
x′ + x′′, y′ + y′′

)
,
(
x′, x′′

)
.
(
y′, y′′

)
=
(
x′x′′, y′y′′

)
.

Identifying every x′ ∈ A′ with the ordered pair (x′, 0) and every x′′ ∈ A′′ with the
the ordered pair (0, x′′), then gives (x′, x′′) = x′ + x′′, but the product

x′x′′ =
(
x′, 0

) (
0, x′′

)
= (0, 0) = 0

in A′ ×A′′ is not equal to (
x′, x′′

)
=
(
x′, 1

) (
1, x′′

)
.

An ideal of a ring A is an additive subgroup I of A such that

x ∈ A & y ∈ I =⇒ xy ∈ I .

For example, the set xA of multiples xy of x ∈ A. These are the only ones in Z, for
if, in a non-trivial ideal I of Z, d denotes its smallest element > 0 (such an element
exists since x ∈ I =⇒ −x ∈ I) and if every x ∈ Z is written as

x = dq + r with q ∈ Z , 0 ≤ r < d ,

the remainder r = x− dq of the Euclidean division of x by d, which is in I if x ∈ I,
is trivial as it is < d ; whence I = dZ. Clearly,

dZ ⊃ aZ⇐⇒ d|a ,

where we use conventional notation to say that d divides a.
This result shows that, for all a, b ∈ Z,

aZ ∩ bZ = mZ ,

where m is the lcm of a and b: the common multiples of a and b are precisely the
multiples of m.

As the sum aZ+ bZ is also an ideal of Z, likewise

aZ+ bZ = dZ

for some number d = au+ bv. As dZ contains aZ and bZ, d is a common divisor of
a and b. Any other common divisor divides au+ bv, hence divides d. In other words
d is the gcd of a and b, and is denoted d = (a, b). It is easily seen that ab = md. If
(a, b) = 1, a and b are said to be coprime. Equivalently: all x ∈ Z is of the form

x = au+ bv (Bezout′s identity) ,(9.1)
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whereas, in the general case, this property assumes that x is a multiple of (a, b). In
all cases,

a = da′ , b = db′ with (a′, b′) = 1 .

If I is an ideal of a ring A, the relation x − y ∈ I is written x ≡ ymod I, The
coset mod I of x ∈ A is the set x+ I of x+ y where y ∈ I. For x, y ∈ A, it is clear
that the cosets mod I of x+ y and xy only depend on the cosets of x and ymod I.
This defines an addition and a multiplication in the set A/I of cosets mod I, which
enables us to talk of the quotient ring A/I.

The coset of a ∈ A is invertible in A/I if and only if there exists u ∈ A such
that au ≡ 1 mod I. Then x ≡ auxmod I for all x ∈ A. Hence A = aA + I, and
conversely. In the case A = Z, I = bZ, this means that there are integers u and v
such that au + bv = 1, in other words that (a, b) = 1. Like in any ring, the set of
invertible elements of A/I is a multiplicative group (A/I)∗. The groups

G(m) = (Z/mZ)∗

play a particularly important role in arithmetics.
A/I is a field if and only if A = aA+ I for all a not belonging to I. This means

that the only ideals J containing I are I and A since J ⊃ aA+ I for all a ∈ J . I is
then said to be a maximal ideal of A. In the case A = Z, I = pZ, the ideals J = dZ
containing I correspond to the divisors of p. So the ideal pZ is maximal if and only
if p is a prime. Equivalently: if p divides xy, it divides x or y. Indeed this relation
means that, in the quotient ring Z/pZ, the relation xy = 0 implies x = 0 or y = 0,
in other words that Z/pZ is an integral ring or that, for all x 6= 0 in Z/pZ, the map
y 7−→ xy is injective. As Z/pZ is a finite set, this map is bijective and x is invertible
in Z/pZ. The quotients Fp = Z/pZ, p = 2, 3, 5, 7, 11, . . . are the simplest examples
of finite fields.

All integers are products of prime factors. This is written as

n = ε
∏

pvp(n)

with a factor ε ∈ {−1, 1} and exponents vp(n) ∈ N all of which except a finite
number are trivial. For the gcd (resp. lcm) of two integers m and n, the exponent
p is the smallest (resp. the largest) of all integers vp(m) and vp(n). So any prime
factor of the lcm is a prime factor of m or of n (or both).

If I and J are ideals of a commutative ring A and if I ⊃ J , relation x ≡ ymod I
implies x ≡ ymod J . Hence the coset mod J of x ∈ A only depends on its coset
mod I. This gives a “ canonical ” map

A/I −→ A/J

which is a ring homomorphism. If I, J,K are ideals such that I ⊂ J ⊂ K, the map
A/I −→ A/K is clearly composed of maps A/I −→ A/J and A/J −→ A/K.

If m = m′m′′ in Z, we get a canonical ring homomorphism

Z/m′m′′Z −→ Z/m′Z× Z/m′′Z(9.2)

by associating to the class modm of every x ∈ Z its classes modm′ and m′′.

Lemma 1. Homomorphism (2) is injective if and only if (m′,m′′) = 1 ; it is then
bijective.
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The injectivity of (2) means that any common multiple of m′ and m′′ is a
multiple of m′m′′, hence that m′m′′ is the lcm of m′ and m′′. As this lcm is always
equal to m′m′′/(m′,m′′), condition (m′,m′′) = 1 follows. Conversely if the latter
holds, the surjectivity of (2) remains to be proved, in other words that, for all
a′, a′′ ∈ Z, there exists x ∈ Z such that both x ≡ a′modm′ and x ≡ a′′modm′′

hold. However, by Bezout’s theorem, there are integers u′, u′′ such that

a′ − a′′ = m′′u′′ −m′u′ .

The number x = a′ +m′u′ = a′′ +m′′u′′ then answers the question.

(ii) The groups G(m) ; characters modm. For any integer m ≥ 2, as was men-
tioned above, we set

G(m) = (Z/mZ)∗ .

This is the multiplicative group of classes of coprimes to m, for example the classes
of 1, 5, 7 and 11 if m = 12. The canonical map A/I −→ A/J defined in the general
case for the ideals I and J ⊃ I induces a homomorphism from the multiplicative
group (A/I)∗ to the multiplicative group (A/J)∗. For A = Z, there is a more precise
result:

Lemma 2. Let m and m′ be two integers such that m′|m. The canonical homo-
morphism G(m) −→ G(m′) is surjective.

The proof reduces to showing that any a′ such that (m′, a′) = 1 is the class
modm′ of some a such that (m,a) = 1, i.e. that there exists x such that (m,a′ +
xm′) = 1. This means that no prime divisor p of m should divide a′ + xm′. If
p divides m′, it divides xm′ but not a′ since (a′,m′) = 1. For these primes, the
condition thus holds for all x. If, on the other hand p does not divide m′, there are
two possible cases. If p divides a′, any x not divisible by p is suitable. If p does not
divide a′, any x divisible by p is suitable. So the proof reduces to including in the
list of prime factors of x all the prime factors of m dividing a′ (they do not divide
m′) and to excluding from it those that divide a′, which is possible since these sets
of primes are disjoint, qed.

Let us suppose that m = m′m′′. Homomorphism (2), namely x 7−→ (x′, x′′),
defines a homomorphism from G(m) to the multiplicative group A∗ of invertible
elements of the ring Z/m′Z× Z/m′′Z = A. The unit element of A being (1, 1), its
invertible elements are the ordered pairs (x′, x′′) with x′ ∈ G(m′), x′′ ∈ G(m′′).
If, for all x ∈ Z/mZ, x′ and x′′ denote the images of x in Z/m′Z and Z/m′′Z,
homomorphism (2) transforms x into (x′, x′′) ∈ A and the map

G(m) −→ G
(
m′
)
×G

(
m′′
)

(9.3)

thus obtained is obviously a homomorphism from the group G(m) to the Carte-
sian product of the groups G(m′) and G(m′′). As the multiplicative groups of two
isomorphic rings are isomorphic, lemma 2 shows that (3) is an isomorphism if and
only if (m′,m′′) = 1. As (x′, x′′) = (x′, 1)(1, x′′) in the Cartesian product A, the
result can also be formulated as follows:

Lemma 3. Let m′ and m′′ be two coprimes and m = m′m′′. Let G′(m) ( resp.
G′′(m)) be the subgroup of x ≡ 1 (modm′′) ( resp. (modm′)) in G(m). Then every
x ∈ G(m) is uniquely expressible as the product of an element of G′(m) and of an
element of G′′(m) and these subgroups are isomorphic to G(m′) and G(m′′).
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This enables us to calculate the number ϕ(m) of elements of G(m), known as
the Euler indicator of m. To start with, it is clear that ϕ(m′m′′) = ϕ(m′)ϕ(m′′) if
(m′,m′′) = 1. Obviously, for a prime m = p,

ϕ(p) = p− 1 = m(1− 1/p) .

If m = pr with p prime, G(m) decomposes into classes of numbers not divisible
by p. There are pr − pr−1 of them, and so once again ϕ(m) = m(1 − 1/p). In the
general case, m has a prime factor decomposition and we get a product

ϕ(m) = m
∏

(1− 1/p)(9.4)

extended over all prime divisors of m.
If, instead of only considering G(m), one also consider Z/mZ, the elements x

can be classified according to the value of d = (x,m), For any divisor d of m,
these x are the classes modm of the numbers dy with (y,m/d) = 1. As the relation
dy ≡ 0(modm) is equivalent to y ≡ 0(modm/d), it follows that the number of such
classes is equal to ϕ(m/d). Hence the formula∑

d|m

ϕ(m/d) = m =
∑
d|m

ϕ(d) .(9.5)

For an integer m 6= 0, 1,−1, the character modm is said to be any function

χ : G(m) −→ C

satisfying

χ(xy) = χ(x)χ(y) , χ(1) = 1 .(9.6’)

Let us extend the definition by setting

χ(x) = 0 if (x,m) 6= 1(9.6”)

so that relation (6’) continues to hold for all x and y.

|χ(n)| = 1 if (m,n) = 1(9.7)

necessarily holds since the image of G(m) under χ is a finite subgroup of C∗. Its
elements are roots of unity since the powers of an element of a finite group are not
pairwise distinct. The simplest character is x 7−→ 1; it is called the unit character.
If χ′ and χ′′ are two characters, so is their product x 7−→ χ′(x)χ′′(x).

If m′ is a divisor of m and if π : G(m) −→ G(m′) is the canonical map, every
character χ′modm′ defines a character

χ = χ′ ◦ π de G(m) .

Do not forgot to set χ(x) = 0 for (x,m) 6= 1. It is then clear that23

(x,m) = 1 & x ≡ 1 modm′ =⇒ χ(x) = 1 .(9.8)

Conversely, let us suppose that this condition holds. As the homomorphism π :
G(m) −→ G(m′) is surjective and as (8) means that χ(x) = 1 for x such that
π(x) = 1, relation (6’) shows that π(x) = π(y) implies χ(x) = χ(y), so that χ is

23 Be careful with the condition (x,m) = 1. A coprime x to m′ is not necessarily
coprime to m. Equality χ = χ′ ◦ π no longer holds in G(m).
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given by the composition of π and a well-determined character χ′ of G(m′). χ will
then be said to arise from a character modm′ or, simply, by abuse of language, that
χ is a character modm′. If m′|m′′|m, then clearly χ also arises from a character
χ′′modm′′, namely that given by the composition of χ′ and of the canonical map
from G(m′′) onto G(m′).

A character modm is said to be primitive if it can be obtained in this way from
a non-trivial divisor of m. This means that, for divisors m′ of m, it never reduces
to 1 on the kernel of the homomorphism G(m) −→ G(m′), in other words that, for
every divisor m′ 6= m de m, there exists x satisfying

(x,m) = 1 , x ≡ 1 modm′ , χ(x) 6= 1 .(9.9)

In the notation of lemma 3, this means that, for non-trivial decompositions m =
m′m′′, χ never reduces to the unit on G′(m).

Lemma 4. Let χ be a character modm and m′,m′′ divisors of m such that χ is
both a character modm′ and modm′′. Let d be the gcd of m′ and m′′. Then χ is a
character mod d.

Let µ be the lcm of m′ and m′′ ; it divides m, so that χ follows from the
composition either of maps

G(m) −→ G(µ) −→ G(m′) −→ χ′ ,

or of analogous maps for m′′ and χ′′, where χ′ and χ′′ are the characters of G(m′)
and G(m′′). As χ cannot arise from two different characters of G(µ) G(m) −→ G(µ)
being surjective, it is enough to consider G(µ), in other words to suppose that m
is the lcm of m′ and m′′, whence m = m′m′′/d.

By (9), the proof then reduces to showing that

(x,m) = 1 & x ≡ 1 mod d =⇒ χ(x) = 1 .

But, by Bezout, x ≡ 1 mod d means there are u′ and u′′ such that x = 1 +m′u′ +
m′′u′′. (m, 1+m′u′) = 1 for if a prime p divides m and 1+m′u′, it could not divide
m′ or it would divide 1, thus also m′′ since m is the lcm of m′ and m′′, hence would
divide 1 +m′u′+m′′u′′ = x, which is impossible as (x,m) = 1. This being so, since
x and 1 + m′u′ are coprime to m and equal modm′′, χ(x) = χ(1 + m′u′) by (8)
applied to m′′. But as 1 +m′u′ is coprime to m and ≡ 1 modm′, χ(1 +m′u′) = 1
by (8) applied to m′, qed.

This implies that, if d is the gcd of all divisors m′ of m such that χ is a character
modm′, then χ arises from an obviously primitive character mod d. The numbers m′

considered are then clearly all the possible multiples of d dividing m. The number
d is called the conductor of χ; it is the unique divisor d of m for which χ arises
from a primitive character mod d.

(iii) Orthogonality relations. The definition of characters modm can be gen-
eralized to all groups G: a character of G is a homomorphism χ from G to the
multiplicative group C∗. The simplest case is that of a finite commutative group G.
To address it, one could invoke the general theory of Chap. XI, n◦ 26 and 27, but
it is much simpler to argue directly.

Let us consider the (finite-dimensional) Hilbert space L2(G), i.e. the vector
space of functions f : G −→ C equipped with the inner product

(f |g) = Card(G)−1
∑

f(x)g(x) .(9.10)
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In L2(G), the translation operator Ua, transforming the function f(x) into the
function Uaf(x) = f(ax) for all f ∈ L2(G), can be associated to all a ∈ G. Trivial
calculations show that

(Uaf, Uag) = (f, g)

for all a, f and g, as well as

UaUb = Uab

for all a, b ∈ G. The former relation says that all Ua are unitary and hence di-
agonalizable. Since G is commutative, the latter one implies that they they can
be simultaneously diagonalized, more precisely that there is an orthogonal basis
of L2(G) whose elements are the eigenvectors of all Ua. If χ ∈ L2(G) is such an
element, relation Uaχ = λ(a)χ with λ(a) ∈ C means that χ(ax) = λ(a)χ(x) for
all a and x. Thus χ(a) = χ(e)λ(a) and so χ(a)χ(x) = χ(e)χ(ax). As χ is not the
trivial function, one can always assume that χ(e) = 1, in which case it follows that

χ(xy) = χ(x)χ(y) .

The image of G under χ being a finite group in C∗, |χ(x)| = 1 for all x and so

(χ|χ) = 1

since out of precaution, we introduced a factor Card(G)−1 in the definition of
the inner product. Finally, there is an orthonormal basis of L2(G) composed of
n = Card(G) characters of G.

Besides, the vectors of the basis χi, 1 ≤ i ≤ Card(G) that have been found are
the only characters of G. Indeed, almost by definition, a character χ′ is a common
eigenvector of all Ua. If χ′ 6= χi for some i, there exists x such that χ′(x) 6= χi(x),
so that χ′ and χi are eigenvectors for Ux with distinct eigenvalues . Hence they
are orthogonal. As a non-trivial element of L2(G) cannot be orthogonal to all basis
vectors, the conclusion follows.

The equalities

(
χ|χ′

)
=

1 if χ = χ′ ,

0 if χ 6= χ′
(9.11)

are the orthogonality relations for characters.
Exercise 1. For every function f ∈ L2(G), set

f̂(χ) = (f |χ) .

Without using § 7 du Chap. XI nor the Lebesgue integral prove that

f(x) = Card(G)−1
∑

f̂(χ)χ(x)

for all x ∈ G and that

(f |g) = Card(G)−1
∑

f̂(χ)ĝ(χ) =
(
f̂ |ĝ
)

for all f, g. Analogy with Fourier series?
Exercise 2. The product of two characters of G being also a character of G, a

multiplication can be defined on the set Ĝ of characters of G. It transforms Ĝ into

a commutative group, the dual of G. Show that every character of Ĝ is of the form
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x̂ : χ 7−→ χ(x) for some unique x ∈ G. Deduce that x 7−→ x̂ is an isomorphism

from G onto
ˆ̂
G. Write down the orthogonality relations for the characters of Ĝ.

Exercise 3. Let H be a subgroup of G and χ a character of H. Let L2(G;χ) be
the space of functions f on G such that f(xh) = f(x)χ(h) for all h ∈ P , equipped
with the inner product

(f |g) = Card(G/H)−1
∑
xH

f(x)g(x)∗ ,

where summation is over all cosets modH since the function being “ integrated ” is
constant on these classes. Show that the characters of G equal to χ on H form an

orthogonal basis for L2(G;χ). Deduce that the restriction homomorphism Ĝ −→ Ĥ
is surjective. Generalize to all locally compact commutative groups.

(iv) Gauss sums. One can construct a theta series

θf (x;χ) =
∑

χ(n)f
(
nx/m

1
2
)

= χ(−1)θf (−x;χ)(9.12)

from a character χmodm and a function f ∈ S(R) as was done in n◦ 2 to prove
the functional equation of the ζ function or, less trivially, in n◦ 8 to prove that
of the η function. As χ(−n) = χ(−1)χ(n), the formula only involves the function
1
2
[f(x)+χ(−1)f(−x)]; so it is reasonable to confine ourselves functions f for which

f(−x) = χ(−1)f(x). The reason for the factor m
1
2 will become clear later. In the

meantime to make calculations easier, we set

g(x) = f
(
x/m

1
2
)
, whence ĝ(x) = m

1
2 f̂
(
xm

1
2
)
.

Grouping together the terms of series (19) belonging to a same class modm
shows that

θf (x;χ) =
∑
Z/mZ

χ(a)
∑
p∈Z

g [(a+ pm)x] .

The Poisson summation formula can then be applied to the function t 7−→ g[(a +
tm)x]. Three lines of calculations lead to

θf (x;χ) = (mx)−1
∑

a,nmodm

ĝ(n/mx)χ(a)e(an/m) =

= (mx)−1
∑

Γm(n, χ)ĝ(n/mx)(9.13)

with Gauss sums

Γm(n, χ) =
∑

amodm

χ(a)e(an/m)(9.14)

that most authors simply denote by G(n, χ). The function e(z) = exp(2πiz) has
period 1, which justifies the summation modm, which in fact is extended to all
a ∈ G(m) for otherwise χ(a) = 0. We also set

Γm(χ) = Γm(1, χ) =
∑

χ(a)e(a/m) .(9.15)
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The functional equation of the series θ(x;χ) being primarily based on properties
of Gauss sums, in this section we will prove those that will be essential for us, and
even a bit more. The main result is point (a 1) of the next theorem:

Theorem 5. Let χ be a character modm and n an integer. Set

d = (m,n) , m = dm′ , n = dn′ .(9.16)

(a) In the three following cases

Γm(n, χ) = Γm(χ)χ(n) :(9.17)

(a 1) for all n if χ is primitive ;
(a 2) for (m,n) = 1 for all χ ;
(a 3) χ is not a character modm′.

(b) If χ arises from a character χ′modm′, then

Γm(n, χ) =
ϕ(m)

ϕ(m′)
Γm′(χ

′)χ′(n′) .(9.17’)

(14) shows that first of all

Γm(n, χ)χ(y) =
∑

χ(xy)e(xn/m) for all y ∈ Z .

y may be supposed24 to be in G(m) for otherwise the previous relation would reduce
to 0 = 0. Let z be the inverse of y in G(m). The map x 7−→ xy = x′ permutes the
elements of G(m), and as x = x′z, this change of variable in the Gauss sum shows
that

Γm(n, χ)χ(y) =
∑

χ(x′)e
(
x′zn/m

)
= Γm(zn, χ) .

Several cases that need to be considered
If n is coprime to m, one may choose y = n, in which case zn = 1 modm. Then

χ(y) = χ(n), and so since |χ(n)| = 1,

Γm(n, χ) = Γm(χ)χ(n) if (n,m) = 1 ,(9.18)

which proves proposition (a 2) in the statement. For example, in the extreme case
where χ is a unit character,

Γm(n, 1) =
∑

a∈G(m)

e(an/m)

has the same value for all exponents n coprime to m.
If n is not coprime to m, use (16), which implies (m′, n′) = 1. As e(an/m) =

e(an′/m′) only depends on the class of amodm′, the terms of G(m) belonging to
the same class modm′ can be grouped together in (14), before summing over all
classes modm′. Hence

Γm(n, χ) =
∑

xmodm′

e
(
xn′/m′

) ∑
a≡xmodm′

χ(a) .(9.19)

24 In this type of calculations, it is convenient not to make any difference between
an integer and its class modm; the context always indicates the correct inter-
pretation.
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Since χ(a) 6= 0 assumes (m,a) = 1, the partial sum over all a is extended to all
a ∈ G(m) with the same image as x in G(m′). These are xh for h in the kernel H
of the homomorphism G(m) −→ G(m′), whence∑

a≡xmodm′

χ(a) = χ(x)
∑
h∈H

χ(h) .

The restriction of χ to the subgroup H being a character of H, two cases are
possible:

If χ is not a character modm′, the restriction of χ to H is a non-trivial character
of H. So all partial sums (18) of the Gauss sum Γm(χ, n) are trivial by orthogonality
relations (11). Hence χ(n) = 0, and thus we also have

Γm(n, χ) = Γm(χ)χ(n) ,(9.20)

which proves propositions (a 1) and (a 3) of the theorem in this case.
If χ is a character modm′, then χ = 1 on H and the sum of all χ(h) equals

Card(H) = Card[G(m)]/Card[G(m′)] = ϕ(m)/ϕ(m′). Then the value of the partial
sum over all a ≡ xmodm′ is Card(H)χ(x)e(xn′/m′) and

Γm(n, χ) = ϕ(m)
/
ϕ(m′)

∑
χ(x)e

(
xn′/m′

)
,(9.21)

where summation is modm′ over all x ∈ G(m). But if χ′ is the character of G(m′)
from which χ arises and each x ∈ G(m) is replaced by its image x′ in G(m′), then
χ(x) = χ′(x′) and e(xn′/m′) = e(x′n′/m′) since x′ = xmodm′. Thus relation (21)
becomes

Γm(n, χ) = ϕ(m)
/
ϕ(m′)

∑
x′∈G(m′)

χ′(x′)e
(
x′n′/m′

)
=

= ϕ(m)
/
ϕ(m′) Γm′

(
n′, χ′

)
.

However, by definition of m′, (m′, n′) = 1. So (18) can be applied to the new
situation. Hence

Γm(n, χ) = Γm′(χ
′)χ′(n′)ϕ(m)/ϕ(m′) ,(9.22)

with

Γm′(χ
′) =

∑
G(m′)

χ′(x′)e
(
x′/m′

)
,(9.23)

which proves proposition (b) of the theorem.

(v) Case of the unit character. As a useful illustration, for the unit character
χ take: χ(x) = 1 if x ∈ G(m), χ(x) = 0 otherwise. Then χ′ = 1 as well, hence
χ′(n′) = 1 since (m′, n′) = 1. Setting

Γm(n) = Γm(n, 1) =
∑

(a,m)=1
amodm

e(na/m) = Γm(−n)(9.24)

and

µ(m) = Γm(1)
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in order to simplify notation, we therefore find

Γm(n) =
ϕ(m)

ϕ(m/d)
µ(m/d) if d = m/(m,n) .(9.25)

Sums (24) satisfy

∑
d|m

Γm/d(n) =
m if m|n ,
0 otherwise .

(9.26)

Indeed if the restriction (a,m) = 1 is omitted in sum (24), we would get the sum∑
e(na/m) extended to all a ∈ Z/mZ. As a 7−→ e(na/m) is an additive character

which reduces to the unit only if m|n, the result obtained would be equal to the
right hand side of (26). But, in the sum extended to all roots of unity, let us
group together the terms according to the value d of (a,m). Setting m = dm′ and
a = da′, we get (a′,m′) = 1 and e(na/m) = e(na′/m′). So the contribution from
these classes equals Γm/d(n). As d can take any value, including d = m which
corresponds to the term a = 0 of (24), (26) follows.

For n = 1, (26) becomes

∑
d|m

µ(m/d) =
∑
d|m

µ(d) =
1 if m = 1 ,

0 if m > 1 .
(9.26’)

To compute this Möbius function, named after the inventor of the strip, first observe
that µ(1) = 1 by (24) and

µ(p) = −1 if p is prime(9.27.1)

since 1 and p are the only divisors of p. If m = pr, the divisors of m are 1, p, . . . , pr,
and so

µ (pr) = 0 if r ≥ 2 .(9.27.2)

In the general case, first observe that(
m′,m′′

)
= 1 =⇒ µ

(
m′m′′

)
= µ

(
m′
)
µ
(
m′′
)
.(9.27.3)

Since d = d′d′′, we can identify divisors of m = m′m′′ with ordered pairs of divisors
of m′ and m′′. If the relation we need to show is proved for all < m = m′m′′, then
µ(d) = µ(d′)µ(d′′) except possibly if d = m, in which case d′ = m′, d′′ = m′′. But
then (26) becomes

µ(m) +
∑
d′|m′
d′′|m′′

µ(d′)µ(d′′) = 0

provided the pair m′,m′′ of the sum is omitted. On the other hand, multiplying
relations (26) for m′ and m′′, the same relation is recovered except that µ(m) is
replaced by µ(m′)µ(m′′). Hence (27.3) holds by induction on m = m′m′′.

To summarize:

µ(m) =

1 if m = 1 ,

(−1)k if m = p1 . . . pk with distinct pi

0 in other cases .

(9.28)
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The Möbius function – as well as many other analogues – is related to the
Riemann ζ function. Indeed, let us compute∑

1/ns
∑
m≥1

µ(m)
/
ms =

∑
m,n≥1

µ(m)
/

(mn)s

by grouping together terms according to the value k of mn. They are obtained by
choosing an arbitrary divisor d of k and by setting m = d, n = k/d. The total
coefficient of 1/ks in the product of the two series is, therefore, the sum

∑
µ(d)

extended to divisors of k, which is trivial if k ≥ 2 and equal to 1 for k = 1. As a
result,

1/ζ(s) =
∑

µ(n)
/
ns .(9.29)

(Alternatively, we could have used (28) to get the infinite product of the ζ func-
tion directly). This supposes Re(s) > 1 if we are keen on convergent series. But
the computation is purely formal and some authors even turn this into a theory
analogous to that of formal series

∑
anX

n and, for example, define some sort of
associative convolution product

f ∗ g(m) =
∑
d|m

f(d)g(m/d)(9.30)

applicable to functions on integers n ≥ 1. At least it has the not so worthwhile
merit of satisfying the identity∑

m≥1

f(m)
/
ms

∑
m≥1

g(m)
/
ms =

∑
m≥1

f ∗ g(m)
/
ms ,(9.31)

which can be written

ζfζg = ζf∗g

using obvious notation. In particular let us take g(m) = 1 for all m, whence

f ∗ g(m) =
∑

f(m/d) = f ′(m) .

As ζg(s) = ζ(s), it follows that ζfζ = ζf ′ , and so

ζf (s) = ζf ′(s)
/
ζ(s) = ζf ′(s)ζµ(s) = ζf ′∗µ(s) .

This implies the Möbius inversion formula:

f ′(m) =
∑

f(m/d)⇐⇒ f(m) =
∑

µ(d)f ′(m/d) .(9.32)

We next consider the equality
∑
ϕ(m/d) = m satisfied by Euler’s indicator. As the

function g remains the same, ϕ ∗ g(m) = m for all m. However, the function ζh
associated to h(m) = m is ζ(s− 1). Hence ζϕ(s)ζ(s) = ζ(s− 1), and so∑

m≥1

ϕ(m)
/
ms = ζ(s− 1)

/
ζ(s) .(9.33)
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We can at last apply the method to the function f(m) = Γm(n) = Γm(|n|) for
given n. Here f ′(m) = m if m|n, = 0 otherwise. Thus, setting

σs(n) =
∑
d|n

ds =
∑
d|n

(n/d)s = nsσ−s(n)

for all n > 0 gives

ζ(s)ζf (s) = ζf ′(s) =
∑
m|n

(|n|/m)1−s = σ1−s (|n|) .

Therefore, we finally get the formula∑
m≥1

Γm(n)m−s = σ1−s (|n|)
/
ζ(s) = ns−1σs−1 (|n|)

/
ζ(s)(9.34)

which will be used to get the Fourier series expansion of the “ reduced ” Eisenstein
and Maaß series.

10 – The Series θf(x;χ) and L(s;χ)

(i) Functional equation of θf (x;χ). We can now come back to the series

θf (x;χ) =
∑

χ(n)f
(
nx/m

1
2

)
defined in (9.12) and to relation (9.13)

mxθf (x;χ) =
∑

Γm(n, χ)ĝ (n/mx)

with g(x) = f
(
x/m

1
2

)
and ĝ(x) = m

1
2 f̂
(
xm

1
2

)
. It can be written

mxθf (x;χ) = m
1
2

∑
Γm(n, χ)f̂

(
n/m

1
2 x
)
.

If χ is a primitive character modm, theorem 5 enables us to replace Γm(n, χ) by

Γm(χ)χ(n). So, replacing x by 1/x and setting

ε(χ) = Γm(χ)
/
m

1
2 ,(10.1)

θf (1/x;χ) = ε(χ)xθf̂ (x;χ) .(10.2)

Replacing f by f̂ in (1), replaces the function f̂ by x 7−→ f(−x). So, if χ is also
replaced by the conjugate character χ, then

θf̂ (x;χ) = ε (χ)x−1θf (−1/x;χ) .

Thus, substituting in (1),

θf (1/x;χ) = ε(χ)ε (χ) θf (−1/x;χ) .

As χ(−n) = χ(−1)χ(n),

θf (−x;χ) = χ(−1)θf (x;χ)(10.3)
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for all x and f . Since the functions θf (x;χ) are not all trivial for given χ, it follows
that

ε(χ)ε(χ) = χ(−1)(10.4)

for every primitive character. But

Γm (χ) =
∑

χ(a)e (a/m) =
∑

χ(a)e (−a/m) = Γm(−1, χ) = χ(−1)Γm(χ) .

Hence

ε (χ) = χ(−1)ε(χ)(10.5)

as well, so that (4) becomes

|ε(χ)| = 1(10.6)

or, taking (2) into account,

|Γm(χ)| = m
1
2 .(10.6’)

As an example let us choose the even function 1/ chπx, which is identical to its
Fourier transform and suppose that χ is primitive and χ(−1) = +1. Then, by (1),
the function

f(z;χ) =
∑

χ(n)
/

cos
(
πnz/m

1
2

)
, Im(z) > 0(10.7)

satisfies

f (−1/z;χ) = ε(χ)(z/i)f (z;χ)(10.8)

for pure imaginary z = ix, hence on all of the half-plane, which generalizes the
formulas found in n◦ 4 in the case χ(n) = 1 for all n ∈ Z.

We could also have chosen the function x 7−→ exp(πix2z) where Im(z) > 0.

Its Fourier transform is x 7−→ (z/i)−
1
2 exp(−πix2/z) and writing (1) for x = 1, we

conclude that the function

θ(z;χ) =
∑
n∈Z

χ(n) exp
(
πin2z/m

)
= θ(z + 2m;χ)(10.9)

satisfies

θ(−1/z;χ) = ε(χ)(z/i)
1
2 θ (z;χ)(10.10)

by assuming χ to be primitive and even.

(ii) The series L(s, χ). To generalize the calculations of § 1, n◦ 2 concerning
the Riemann series to the series θf (x;χ), it is necessary to study their asymptotic
behaviour as |t| tends to +∞ or .

Assuming f(−x) = χ(−1)f(x) and noting that χ(0) = 0 for any character
modulo an integer, m > 1,

1

2
θf (x; k) =

∑
n≥1

χ(n)g(nx) ,(10.11)

where g(x) = f
(
x/m

1
2
)
. As g is rapidly decreasing at infinity and as |χ(n)| = 1, by

the lemma of § 1, n◦ 2, the result is rapidly decreasing at infinity.
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In the neighbourhood of 0, the relation

θf (x;χ) = (mx)−1
∑

Γm(n, χ)ĝ (n/mx) ,

where summation is over n ∈ Z, shows that the left hand side is the sum of a
function O(|x|N ) for all N and of the additional term

(mx)−1ĝ(0)Γm(0, χ) .

But Γm(0, χ) =
∑
χ(a), where summation is over all a ∈ G(m). This is the inner

product (9.8) on L2[G(m)] of χ and the unit character. If χ is the unit charac-
ter, then Γm(0, χ) = ϕ(m), i.e. the number of elements of G(m). Otherwise, the
result is trivial because of the orthogonality relations. Getting rid of the case of
the unit character, which anyhow is not primitive, shows that the function θf (x;χ)
is O(|x|N ) for all N in the neighbourhood of 0. As a result, the integral defin-
ing its Mellin transform converges for all s ∈ C and so is an entire function of s
(Chap. VIII, n◦ 13).

A formula calculation shows it is equal to∫ +∞

0

θf (x;χ)xsd∗x = 2
∑
n≥1

χ(n)

∫ +∞

0

f
(
nx/m

1
2

)
xsd∗x =

= ms/2Γf (s)L(s;χ) ,(10.12)

where Γf (s) is the Mellin transform of f and where the Dirichlet series

L(s;χ) =
∑
n≥1

χ(n)
/
ns(10.13)

converges absolutely for Re(s) > 1. In this domain, term by term integration is
justified because of ∑∫ ∣∣∣f (nx/m 1

2

)
xs
∣∣∣ d∗x < +∞ ,

which amounts to the convergence of the Riemann series since the integral defining
the Mellin transform of f ∈ S(R) converges absolutely on Re(s) > 0. Hence this

calculation shows that, if χ is not the unit character, the product ms/2Γf (s)L(s;χ)
is the restriction of an entire function of s to the half-plane Re(s) > 1.

As this assumes f(−x) = χ(−1)f(x), one can for example choose

f(x) = exp
(
−πx2

)
= f̂(x) if χ(−1) = +1 ,(10.14’)

f(x) = πx exp
(
−πx2

)
= if̂(x) if χ(−1) = −1 .(10.14”)

As shown by the calculations of § 1, n◦ 1, the first case leads to the function

Λ(s;χ) = (π/m)−s/2Γ (s/2)L(s;χ) , χ(−1) = +1 ;(10.15’)

and in the second one, multiplying the result by the cosmetic factor m
1
2 gives

Λ(s;χ) = (π/m)−(1+s)/2Γ [(1 + s)/2]L(s;χ) , χ(−1) = −1 .(10.15”)

As 1/Γ (s) is an entire function, so is the series L(s;χ). If χ is even, it has zeros
at s = 0,−2, . . . like 1/Γ (s/2). If χ is odd, it has zeros at s = −1,−3, . . . like
1/Γ [(1 + s)/2].
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Taking into account the functional equation

θf (1/x;χ) = ε(χ)xθf
(
x;χ∗

)
,

which holds if χ is primitive, finally leads to the next result:

Theorem 6. Let m be an integer > 1 and χ a primitive character modm. Then
the function

L(s;χ) =
∑

χ(n)
/
ns

is the restriction of an entire function to the half-plane Re(s) > 1, and the function
Λ(s;χ) defined by (15’) or (15”) satisfies the functional equation

Λ(1− s;χ) = ε(χ)Λ
(
s; k
)

if χ(−1) = +1 ,(10.16’)

Λ(1− s;χ) = −iε(χ)Λ
(
s; k
)

if χ(−1) = −1 .(10.16”)

As a first example, let us take m = 3 and the character χ(n) = 1 if n = 1 mod 3,
χ(n) = −1 if n = 2 mod 3. This is the only possibility in this case. Then

L(s;χ) =
∑

1
/

(3n+ 1)s −
∑

1
/

(3n+ 2)s(10.17)

where summation is over all n ∈ N, including 0. As

Γ3(χ) =
∑

χ(a)e(a/m) = exp (2πi/3)− exp (4πi/3) = 3
1
2 i ,

ε(χ) = i. Hence, since χ = χ, (16”) shows that

Λ(1− s;χ) = Λ(s;χ) ,

where

Λ(s;χ) = (π/3)−(1+s)/2Γ [(1 + s)/2]L(s;χ) .

The reader who is not very familiar with these calculations should completely redo
them in this particular case.

For m = 4 and the character used at the end of n◦ 1 of § 1,

Γ4(χ) = e(1/4)− e(3/4) = i− i3 = 2i = 4
1
2 i ,

whence ε(χ) = i. As χ(−1) = −1,

Λ(s;χ) = (π/4)−(1+s)/2Γ [(1 + s)/2]L(s;χ) .

Relation (16”) shows that Λ(s;χ) = Λ(1− s;χ), as obtained in n◦ 1.
For m = 12 and the character χ used in n◦ 8, formula (8.6) shows that Γ12(χ) =

12
1
2 , whence ε(χ) = +1. As χ is even, formula (16’) applies. Here

L(s;χ) =
∑

1/(12n+ 1)s − 1/(12n+ 5)s − 1/(12n+ 7)s +

+1/(12n+ 11)s ,(10.18)

where summation is over n ≥ 0.
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Like the Riemann ζ function, the functions L(s;χ) have an infinite product
expansion

L(s;χ) =
∏

[1− χ(p)/ps]−1 , Re(s) > 1 ,(10.19)

extended to all prime numbers not dividing m since χ(p) = 0 for the others. Indeed,
for all p,

[1− χ(p)/ps]L(s;χ) =
∑

χ(n)
/
ns −

∑
χ(pn)

/
(pn)s ,

which removes from the series all terms for which p divides n. The end of the
argument ends is like in the case of the zeta function. (19) shows that the series
L(s;χ) are 6= 0 for Re(s) > 1.

(19) does not suppose χ to be primitive. If f is the conductor of χ, i.e. the least
divisor f of m such that χ is a character mod f , and if χ′ denotes the primitive
character mod f from which χ arises, expansions (15) of L(s;χ) and L(s;χ′) are
the same except that factors corresponding to p coprime to f but not to m appear
in L(s;χ′), but equal 1 in L(s;χ). Hence

L
(
s;χ′

)
= L(s;χ)

∏[
1− χ′(p)

/
ps
]−1

,(10.20)

where the product is extended to all p dividing m but not f . As theorem 6 applies
to the left hand side, it can be deduced that, even if χ is a primitive character, the
L(s;χ) series extends analytically.

Finally note that there is a property of the series L distinguishing them from
the Riemann ζ function: if χ is not the unit character, the series L(s;χ) converges
uniformly25 in the half-plane Re(s) ≥ σ for all σ > 0 whereas, for the ζ function,
σ > 1 would need to be assumed.

These series having been invented by Dirichlet, it is not surprising that the
result can be obtained by the arguments used in Chap. III, § 3, n◦ 11 to prove the
convergence criterion by the same author. Recall that it is about a numerical series∑
unvn whose partial sums are assumed to be bounded and the sequence vn > 0

to tend decreasingly to 0. These assumptions are too restrictive. In fact, un and vn
may be taken to be complex, in which case the assumptions to be checked are

(1) the sums sn are bounded,
(2) lim vn = 0 ,
(3)

∑
|vn+1 − vn| < +∞ .

Indeed let us set tn = u1v1 + . . .+ unvn. The proof reduces to showing that, for all
ε > 0, |tq − tp−1| < ε for sufficiently large p and q. To this end, as in Chap. III, let
us write

tq − tp−1 = −sp−1vp + sp (vp − vp+1) + . . .+ sq−1 (vq−1 − vq) + sqvq .

Assumption (1) provides an upper bound

|tq − tp−1| ≤ M |vp|+M |vq|+M (|vp − vp+1|+ . . .+

+ |vq−1 − vq|) ,(10.21)

25 Recall that, for a series of functions, uniform convergence is by definition equiva-
lent to that of its partial sums. It is obviously guaranteed by normal convergence,
but does not hold for the L-series. In the case of a series of holomorphic func-
tions, uniform convergence ensures that the sum also converges uniformly and
its derivatives can be computed by differentiating the given series term by term.
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assumption (2) shows that the first two terms tend to 0 and assumption (3) that
so does the third one, whence the general theorem.

In the particular case at hand, set un = χ(n) and vn = 1/ns. The first assump-
tion holds . As χ(n+km) = χ(n), the sum of χ(n) as n varies from km to (k+ 1)m
is indeed equal to the sun of χ(x) extended to x ∈ G(m), and so is trivial since
χ is not a unit character. Hence setting n = mq + r with 0 ≤ r < q, sn = sr.
As a consequence, there are finitely many possible values for sn and a constant M
independent of the parameter s.

To show that convergence is uniform in the half-plane P defined by Re(s) ≥ σ
with σ > 0, it is necessary to show that, for all ε > 0, there is an integer N
independent of s such that

s ∈ P & p, q > N =⇒ |tq − tp−1| < ε .

As |vn| = 1/nRe(s) ≤ 1/nσ, the first two terms of the right hand side of (21) do not
create any problems. Finding an upper bound for the differences

vn − vn+1 = n−s − (n+ 1)−s = n−s
[
1− (1 + 1/n)−s

]
amounts to finding an upper bound for |(1 + z)−s − 1| for z = 1/n. Newton’s
binomial formula shows that (1+z)−s−1 = −sz+O(1/z2) as z tends to 0, whence
vn − vn + 1 = O(1/ns+1). This result is sufficient to prove convergence, but not
that the latter is uniform. The derivative of the function t 7−→ (1 + tz)−s being
−sz(1 + tz)−s−1, TF shows that

∣∣(1 + z)−s − 1
∣∣ =

∣∣∣∣−sz ∫ 1

0

(1 + tz)−s−1dt

∣∣∣∣ ≤ |sz|. sup
0≤t≤1

|1 + tz|−Re(s)−1 .

For z = 1/n, |1 + tz| varies between 1 and 1 + 1/n. As the exponent is < 0, sup is
attained at t = 0. Thus

|vn − vn+1| ≤ |s|n−Re(s)−1 ≤ |s|n−σ−1

in the half-plane P and so

|vp − vp+1|+ . . .+ |vq−1 − vq| ≤ |s|
(
p−σ−1 + . . .+ q−σ−1) .

As the series
∑

1/nσ+1 converges, Cauchy’s criterion for it gives the expected uni-
form upper bound.

§ 4. Elliptic Functions

11 – Liouville’s Theorems

Lett ω1 and ω2 be two complex numbers whose ratio is not real and L the lattice
of points ω = n1ω1 + n2ω2 with n1, n2 ∈ Z. An elliptic function attached to the
lattice L is a meromorphic function on C satisfying

f(u+ ω) = f(u)

for all ω ∈ L, for example the series
∑

1/(u− ω)k with k > 2 and

℘L(u) = 1/u2 +
∑[

1/(u− ω)2 − 1/ω2]
© Springer International Publishing Switzerland 2015  
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of Chap. II, n◦ 23, which we will encounter again later. The general properties
of these functions are set out in theorems due to Liouville (1844), Hermite and
Weierstrass, now easy to prove. If f is elliptic, then obviously so is f(u + a) for
all a, as well as the derivatives of f . Any function P (f1, . . . , fn)/Q(f1, . . . , fn),
where P and Q are polynomials and the fi are elliptic functions is again an elliptic
function. In fact, it will be shown further down that any elliptic functions is a
rational function of ℘ and ℘′.

This theory is the simplest non-trivial illustration of the expansions on Riemann
surfaces given in Chap. X. First of all, the quotient S(L) = C/L of the additive
group C by the discrete subgroup L can be considered as a compact group [Chap. XI,
n◦ 15, (vi)]. It is compact since there are compact sets K ⊂ C having non-trivial
intersections with all classes modL, for example the parallelogram generated by ω1

and ω2. To define a Riemann surface structure on S(L) , it must be equipped with
an atlas (Ui, ϕi) whose chart changing maps are holomorphic (Chap. X, n◦ 1). To
this end, we consider open sets W in C whose images W + ω under translations
by elements of L are pairwise disjoint. For all z ∈ C, any sufficiently small disc
centered at z clearly answers the question. Since the canonical map π from C onto
C/L transforms every open set into an open set [Chap. XI, n◦ 15, (iii)], it maps
each W homeomorphically onto an open subset of C/L. Hence there is an inverse
homeomorphism ϕ from π(W ) onto W , and thus a chart π(W ). If W and W ′ are
two such open subsets and ϕ,ϕ′ the corresponding maps, for all ζ ∈ π(W )∩π(W ′),
there exists ω ∈ L such that ϕ′(ζ) = ϕ(ζ) + ω, and as there clearly exists only one
ω mapping a sufficiently small disc centered at ϕ(ζ) onto a disc centered at ϕ′(ζ),
the change of chart map reduces to a translation z 7−→ z + ω on every sufficiently
small open subset of π(W ) ∩ π(W ′), qed.

With this definition, holomorphic functions on an open subset U of C/L are
the same as holomorphic functions defined on the L-invariant subset π−1(U). The
notion of poles, of the order of a pole or of a zero, etc. is the same as in C and in
C/L. In particular, elliptic functions are just the meromorphic functions on C/L.

Henceforth, when used without further explanations, the letter ω will denote
an arbitrary element of L.

Theorem 7 (Liouville, Hermite). All entire elliptic functions are constants.
For any non-constant elliptic function f ,∑

va(f) = 0 ,
∑

Res(f, a) = 0 .

Needless to say that summations are extended to all classes modL. The former
result is obvious even without knowing Cauchy theory: it suffices to expand the
given function into a Fourier series with respect to one of the periods (Chap. VII,
n◦ 17) and to write the relations that coefficients have to satisfy so that it admits
the other period. The latter, as indeed the former, is just a restatement of theorem
1 of Chap. X, n◦ 1.

Corollary 1. Let f and g be two elliptic functions such that va(f) = va(g) for all
a ∈ C.Then f and g are proportional.

For f/g is an elliptic function without any zeros or poles.

Corollary 2. There are no elliptic functions of order 1.

For such a function would have a unique simple pole with non-trivial residue.

Corollary 3. An elliptic function has as many zeros as poles.
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The zeros and poles are obviously counted modL and their multiplicities taken
account of. The total number of zeros or poles, or more generally of the equation
f(u) = c, is called the order of f .

Applying this corollary to f − c, where c is a constant, shows that f is of order
p, and the equation f(u) = c has p roots modL, as usual taking their multiplicities
into account. For example, an elliptic function of minimal possible order, namely
2, has only the following possibilities:

(i) two simple poles and two simple zeros,
(ii) a double pole and two simple zeros,
(iii) two simple poles and a double zero,
(iv) a double pole and a double zero.

On a Riemann surface, it is necessary to consider meromorphic differential
forms as well as functions. If $ is such a form on S(L), its inverse image $ ◦ π is
clearly (Chap. IX, n◦ 16) a meromorphic differential form f(z)dz invariant under
z 7−→ z + ω, which is equivalent to saying that f is an elliptic function. As, in the
neighbourhood of every point of C, the form f(z)dz expresses $ in a local chart
of C/L at π(z) = a, the order va($) at a defined in Chap. X, n◦ 1, is just va(f).
Hence v($) = v(f) = 0, and as the genus g of a compact Riemann surface is defined
by the relation v($) = 2g − 2, we conclude that the Riemann surface C/L is of
genus 1. One can show that all compact Riemann surfaces of genus 1 are obtained
in this way.

Finally note that C can be considered to be the universal covering space of the
Riemann surface C/L (Chap. X, n◦ 3).

12 – Elliptic Functions and Theta Series

There has always been two possible points of view concerning the construction of
elliptic functions: that of Abel and Jacobi, historically the first one, on the use
of theta series and infinite products representing them and that of Eisenstein and
Weierstrass, based on partial fractions expansions. Most textbook authors follow
the second one, which is easier as it spares readers Abel and Jacobi’s calculations.
This advantage is in fact an inconvenience, for as was seen in the preceding §§
these calculations have other uses. When they have been understood, they lead
to existence theorems more quickly than Weierstrass’ methods. We will therefore
present both points of view starting with that of Abel and Jacobi in this n◦.

(i) Abel’s theorem. Abel and Jacobi infinite products studied in § 2, n◦ 6 enable
us to find all elliptic functions through an extraordinarily simple procedure.

Theorem 8. Let a1, . . . , an be the zeros and b1, . . . , bn the poles modL of an elliptic
function f , counted with their multiplicities. Then∑

ak ≡
∑

bk modL .(12.1)

Conversely, relation (1) ensures the existence of an elliptic function f whose only
zeros and poles modL are the points ak andbk. This function is unique up to a
constant.

Necessity of the condition. Let us set g = f ′/f and h(u) = ug(u). The function g
being elliptic, h(u+ω) = h(u) +ωg(u). Consider the period “ parallelogram ” given
above. It is somewhat deformed so that f does not have any poles or zeros on its
boundary.
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A

B

C

D

Fig. 2.

As ∫
AB

h(u)du+

∫
CD

h(u)du =

∫
AB

h(u)du+

∫
BA

h (u+ ω2) du =

= −ω2

∫
AB

g(u)du

and as there is a similar relation between integrals along BC and DA,∫
ABCDA

h(u)du = −ω1

∫
BC

df/f − ω2

∫
AB

df/f .(12.2)

Since f(A) = f(B) = f(C) = f(D), the next lemma applies:

Lemma. Let µ : [0, 1] −→ C be a C1 path and f a holomorphic function on an
open set containing µ(I) and without zeros in µ(I). Suppose that the values of f at
the endpoints are equal. Then ∫

µ

df/f ∈ 2πiZ .

By definition, the integral to be calculated is obtained by integrating along the
inverse image I = [0, 1] under µ of the differential form df/f . Setting ϕ(t) = f [µ(t)],
it is, therefore, a question of integrating dϕ/ϕ = ϕ′(t)dt/ϕ(t) from 0 to 1. However,
the map t 7−→ ϕ(t) is a path γ in C, and the integral to be calculated is, by
definition, just that of dz/z along γ, i.e. the variation of a uniform branch of Log z
along γ [Chap. VIII, § 2, n◦ 4, (i)]. If ϕ(0) = f [µ(0)] = f [µ(1)] = ϕ(1), the path γ
is closed. So this variation is an integer multiple of 2πi, qed.

This being settled, (2) shows that the integral of h along ABCDA is of the form
n1ω1 +n2ω2, up to a factor 2πi, i.e. is in L. But the poles of h in the interior of this
contour are the zeros and poles of f . At a point a where the series expansion of f
starts with a term in (u− a)k, that of f ′/f starts with a term k/(u− a) and that
of uf ′(u)/f(u) with the term ka/(u − a), whence Res(h, a) = ka. So the sum of
the residues of h in P (a) equals the sum of the zeros ak minus that of the poles bk,
repeated as many times as their multiplicities since each point a where the order
of f is k, which can be positive of negative, contributes an amount equal to ka to
the result, proving the necessity of (1).

Sufficiency of the condition. The solution is clearly unique by corollary a of
theorem 7.
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To simplify calculations a bit, the proof can be reduced to the case where the
lattice L is generated by 1 an z with Im(z) > 0. To see this, it suffices to observe
that the imaginary parts of ω1/ω2 and ω2/ω1 are of opposite signs, which enables
us to assume that z = ω2/ω1 is in the upper half-plane. Then the elliptic functions
of the given lattice L are clearly the functions f(ω1u), where

f(u+ 1) = f(u+ z) = f(u) .

On the other hand, the given ak and bk are clearly only involved through their class
modL. To construct the expected function f , one can, therefore, suppose that∑

ak =
∑

bk .(12.3)

This being so, let us set

q = exp(πiz) , w = e(u) = exp(2πiu)(12.4)

and start from the Jacobi identity (n◦ 6, theorem 4)

θ(u; z) =
∑

eπin
2z+2πinu =

∑
qn

2

wn =

=
∏
n>0

(
1− q2n

) (
1 + q2n−1w

) (
1 + q2n−1w−1) .(12.5)

A trivial calculation using the series shows that

θ(u+ 1, z) = θ(u; z) , θ(u+ z) = q−1e(−u)θ(u; z) .(12.6)

Since θ(u, z) is, moreover, an entire function of u (Chap. VII, § 4, n◦ 20, theorem 18),
clearly, for all c ∈ C, the function

f(u) =
∏

θ (u− ak + c; z)
/∏

θ (u− bk + c; z)(12.7)

is meromorphic and

f(u+ 1) = f(u) , f(u+ z) = e
(∑

ak −
∑

bk
)
f(u) = f(u)

by (3). The points ak and bk remain to be shown to be the only zeros and poles of
f , counting multiplicities.

However, the zeros of the infinite product θ(u, z) are the values of u where
w = q2n−1 for some n ∈ Z, i.e. such that

u ≡ ω0 modL where ω0 =
1

2
(1 + z) .

For two different factors of the infinite product to be simultaneously zero would
require q2n−1w = 1 for two (not necessarily positive) values of n. But then w would
be a root of unity, and so |q| = 1, which is impossible. As moreover the roots of
the equation e(u) = c are simple, the zeros of θ(u, z) are u ≡ ω0 modL and are all
simple.

Choosing c = ω0 shows that the zeros of the numerator (resp. denominator)
of the right hand side of (7) are, modulo L, the points ak (resp. bk) with the
correct multiplicities. The zeros of the numerator cannot cancel out those of the
denominator since all ak are distinct from all bh modL. So the function

f(u) =
∏

θ (u− ak + ω0; z)
/∏

θ (u− bk + ω0; z)(12.8)
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answers the question upon the choice of (3), which is always possible, for ak and
bh, qed.

Using the function θ1(u; z) defined in (iii) further down, the result can be put
in the much simpler form∏

θ1 (u− ak; z)
/∏

θ1 (u− bk; z) ,(12.9)

which Hermite availed of in the 1860s. He was one of the first to systematically
apply Cauchy’s methods.

Without more ado, some authors attribute the previous theorem to Abel, who
used an infinite product very similar to that of Jacobi. Abel and Jacobi, and Gauss
before them without publishing, could obviously show that formula (8) provides
some elliptic functions and, through explicit calculations, those that were already
known. But how could they have proved that it gives all of them in the 1820s,
when Cauchy’s theory, barely invented, were practically unknown, starting with
the precise notion of an analytic or a holomorphic or a meromorphic function?
For example, Christian Houzel says26 that �without in any way using Cauchy’s
methods to study one variable complex functions �, in 1844 Liouville proved that a
doubly periodic functions has as many zeros as poles, that the sum of its zeros is
equal to the sum of its poles and that if f is an elliptic function of order 2, any
�meromorphic � function admitting the same periods is of the form P (f)+Q(f)f ′,
where p and Q are rational fractions. He also says that Hermite was the first who
introduced in 1848 Cauchy’s methods by integrating along the boundary of a period
parallelogram, Cauchy showing in 1851 that all this follows easily from his residue
theory. In fact, referring to Cauchy was not necessary to implicitly ensure that,
in the neighbourhood of each point a ∈ C, elliptic functions are power series in
z − a possibly divided by a power of z − a: this is how a rational fraction behaves,
a fact then long well known, and this is what Liouville implicitly implied when
talking of � functions of x +

√
−1y �. For example to show that (8) represents all

elliptic functions, it then suffices to show that an elliptic function without poles
is a constant. As I mentioned in Chap. VII, n◦ 18 this Liouville knew how to do
using Fourier series. As for Abel and Jacobi, they seemingly found it sufficient to
have shown that their miraculous infinite products made it possible to compute all
elliptic integrals and functions that they give rise to.

Finally, note that the Jacobi series has the advantage over infinite products of
converging far more rapidly because the exponents of q are the squares 1, 4, 9,
16, etc.. This makes numerical computations easier for practical purposes. Jacobi
was the first to have observed this in the case of the “ Poinsot type ” movement of
a heavy solid body with a fixed point, a problem of mechanics leading directly to
elliptic integrals.

(ii) General theta functions. The previous proof shows the importance of having
available entire functions, the “ general theta functions ”, which, instead of being
doubly periodic, satisfy relations of the form

f(u+ 1) = e(au+ b)f(u) , f(u+ z) = e(cu+ d)f(u)(12.10)

with given constants a, b, c, d. There is then obviously a more general relation

f(u+ ω) = e (aωu+ bω) f(u)

26 in Jean Dieudonné, Abrégé d’histoire des mathématiques 1700–1900 (Hermann,
1978), tome II, pp. 21–22.
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for all ω ∈ L, so that the zeros of such a function can be divided into finitely many
classes modL. The same is also true for all products and quotients of meromorphic
functions satisfying identities such as (10).

If P (u) = au2 + bu+ c is a second degree polynomial, then

P (u+ 1) = P (u) + 2au+ a+ b , P (u+ z) = P (u) + 2auz + az2 + bz ,

so that f(u) = exp[P (u)] is a theta function, so-called trivial for obvious reasons. It
has no zeros, and this property characterizes the trivial theta functions since (10)
shows that (f ′/f)′ is an elliptic function without any poles and so is constant if f
has no zeros. It is then immediate that multiplying a solution of (10) by a trivial
theta function, one may reduce to the case where

f(u+ 1) = f(u) , f(u+ z) = e(cu+ d)f(u)(12.10’)

with coefficients c and d different from above, which makes calculations somewhat
easier and as will be seen, enables us to determine all the solutions of the problem.

Replacing u with u + 1 in the second relation (10), we first observe that the
function e(cu+d) must be of period 1. Hence it is necessary to assume c = −p ∈ Z.

On the other hand, the first relation (10’) means (Chap. VII, § 4, n◦ 17) that f
is a Fourier series

f(u) =
∑
Z

ane(nu)(12.11)

converging normally in every compact set. The second relation (10’) is equivalent
to ∑

anq
2ne(nu) = e(d)

∑
ane [(n− p)u] = e(d)

∑
an+pe(nu) .

So

an+p = e(−d)q2nan

and more generally, after a short calculation,27

an+kp = ane(−kd)qk(k−1)p+2kn

for all not positive and negative k ∈ Z. Decomposing series (11) into partial sums

fn(u) =
∑

r≡nmod p

are(ru) = e(nu)
∑
k∈Z

an+kpe(pku) ,(12.12)

gives

fn(u) = e(nu)
∑
k∈Z

e(−kd)qk(k−1)p+2kne(kpu) = e(nu)
∑

qpk
2

e(kv) ,

up to a factor an, and so

fn(u) = e(nu)
∑
k∈Z

qpk
2

e(kv) = e(nu)θ(v; pz) ,(12.13)

27 There are many trivial but tedious calculations in this theory that I will not give
details of, leaving it to the reader to do so.
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where

v = pu− u0 + nz , u0 = d+ pz/2 .(12.14)

This calculation however assumes that∑
k∈Z

|q|pk
2+(2n−p)k < +∞ .

Since, for large |k|, the exponent |q| is equivalent to pk2, the series converges in the
same conditions as ∑

exp
(
πipzk2

)
,

i.e. for Im(pz) > 0. As Im(z) > 0, it is, therefore, necessary to assume p ≥ 1 to get
non-trivial solutions.

As the Jacobi series satisfies (9), it is conversely to see, after some short calcu-
lations, that function (13) satisfies

f(u+ 1) = f(u) , f(u+ z) = e(−pu+ d)f(u)(12.15)

for all n. The coefficients an (0 ≤ n ≤ p− 1) can be chosen arbitrarily, from which
one deduces that, for c = −p, the solutions of (10) form a p-dimensional complex
vector space. In fact, this assumes that the p functions fn(u) are known to be
linearly independent, but (12) shows that the same function e(ku) never occurs in
two different series (12). Linear independence then follows from the fact that a (real
or complex) Fourier series can be identically zero only if all its coefficients are zero.

For p = 1, the previous calculations shows that all solutions of

f(u+ 1) = f(u) , f(u+ z) = e(−u+ d)f(z)

are proportional to θ(u− u0; z), where u0 = d+ z/2.

(iii) Metamorphoses of the Jacobi series. The Jacobi series has fascinated dozens
of mathematicians in the 19th and also in the 20th century. Starting with Jacobi
himself,28 they have proved numerous identities where it occurs. Jacobi, and much
before him Gauss in his secret papers, singled out four particularly important func-
tions (in all cases summation is over n ∈ Z):

28 The reader can refer to his memoir Ueber unendliche Reihen deren Exponenten
zugleich in zwei verschiedenen quadratischen Formen enthalten sind (Œuvres
complètes, tome 2, pp. 217–288) . Dozens of identities between infinite products
and series can be found in it. They are collected at the end of the article in three
typographically very dense pages of results.
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θ1(u; z) = −i exp(πiu+ πiz/4)θ [u+ (z + 1)/2; z]

= −i
∑

(−1)n exp
[
πi
(
n+ 1

2

)2
z + (2n+ 1)πiu

]
= 2q1/4

(
sinπu− q1.2 sin 3πu+ q2.3 sin 5πu− . . .

)
θ2(u; z) = exp(πiu+ πiz/4)θ(u+ z/2; z)

=
∑

exp
[
πi
(
n+ 1

2

)2
z + (2n+ 1)πiu

]
= 2q1/4

(
cosπu+ q1.2 cos 3πu+ q2.3 cos 5πu+ . . .

)
θ3(u; z) = θ(u; z)

=
∑

exp
(
πin2z + 2πinu

)
= 1 + 2

(
q cos 2πu+ q4 cos 4πu+ q9 cos 6πu+ . . .

)
θ4(u; z) = θ

(
u+ 1

2
; z
)

=
∑

(−1)n exp
(
πin2z + 2πinu

)
= 1− 2

(
q cos 2πu− q4 cos 4πu+ q9 cos 6πu− . . .

)
.

In my preface to vol. I I wrote that I refused to economize paper. There are nev-
ertheless limits to be respected, and as a simple but efficient way of limiting the
length of text is to replace detailed proofs by exercises, here are some. They will be
referred to later.

Exercise 1. Prove the following relations, where w = e(u):

θ1(u; z) = q1/4
∏
n≥1

(
1− q2n

) (
1− q2nw

) (
1− q2n−2w−1) ;

θ2(u; z) = q1/4
∏
n≥1

(
1− q2n

) (
1 + q2nw

) (
1 + q2n−2w−1) ;

(12.16)

θ3(u; z) =
∏
n≥1

(
1− q2n

) (
1 + q2n−1w

) (
1 + q2n−1w−1) ;

θ4(u; z) =
∏
n≥1

(
1− q2n

) (
1− q2n−1w

) (
1− q2n−1w−1) .

Exercise 2. The table below gives the zeros of functions modulo periods, the
factors by which u 7−→ u + 1 or u 7−→ u + z multiplies them by and what they
become under z 7−→ −1/z.

zéros u 7−→ u+ 1 u 7−→ u+ z z 7−→ −1/z

θ1(u; z) 0 −1 −e(−u− z/2) −i(z/i)
1
2 exp

(
πiu2z

)
θ1(uz; z)

θ2(u; z) 1/2 −1 +e(−u− z/2) (z/i)
1
2 exp

(
πiu2z

)
θ4(uz; z)

θ3(u; z) (1 + z)/2 +1 +e(−u− z/2) (z/i)
1
2 exp

(
πiu2z

)
θ3(uz; z)

θ4(u; z) z/2 +1 −e(−u− z/2) (z/i)
1
2 exp

(
πiu2z

)
θ2(uz; z)
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Concerning the effect of z 7−→ −1/z, use the Poisson formula∑
f(t+ n) =

∑
f̂(n)e(nt)(12.17)

and the fact that the Fourier transform of exp(πit2z) is (z/i)−
1
2 exp(−πit2/z) for

Im(z) > 0 (Chap. VII, § 6, n◦ 28).
Show that the functions u 7−→ θk(u; z) are even for k ≥ 2 and that θ1(u; z) is

odd.
The importance of these series is that their zeros are obvious and they all

transform under u 7−→ u+ 1 or u 7−→ u+ z in the same way, up to sign.
Exercise 3. Define the Germans’ Thetanullwerte by

θk(z) = θk(0; z) for 2 ≤ k ≤ 4 .

Show that

θ2(z) = 2q1/4
∏(

1− q2n
) (

1 + q2n
)2

=
∑

exp
[
πi
(
n+ 1

2

)2
z
]
,

θ3(z) =
∏(

1− q2n
) (

1 + q2n−1
)2

=
∑

exp
(
πin2z

)
= θ(z) ,

θ4(z) =
∏(

1− q2n
) (

1− q2n−1
)2

=
∑

(−1)n exp
(
πin2z

)(12.18)

and that

θ4(z)θ2(z/2) = 2η(z)η(z/2) ,(12.19)

where η(z) is the Dedekind function (n◦ 3).

Exercise 4. Let θ
(n)
k (z) denote the nth derivative of l u 7−→ θk(u; z) for u = 0;

an abusive but traditional notation. Show that

θ′1(z) = πq1/4
∑
Z

(−1)n(2n+ 1)qn(n+1)(12.20)

and that

θ′1(z) = 2πη(z)3 = 2πq1/4
∏(

1− q2n
)3
,(12.21’)

= πθ2(z)θ3(z)θ4(z) .(12.21”)

Reduce (21’) to identity (6.10) of § 2 and, for (21”), use the identity∏
(1 + qn)

(
1− q2n−1) = 1 ,(12.22)

which is proved by multiplying the left hand side by
∏

(1− qn).
Exercise 5. Justify the table below, which gives the effect of z 7−→ z + 1 and

z 7−→ −1/z on the functions concerned:

z 7−→ z + 1 z 7−→ −1/z

θ′1(z) i
1
2 θ′1(z) (z/i)3/2θ′1(z)

θ2(z) i
1
2 θ2(z) (z/i)

1
2 θ4(z)

θ3(z) θ4(z) (z/i)
1
2 θ3(z)

θ4(z) θ3(z) (z/i)
1
2 θ2(z)
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where i
1
2 = exp(πi/4).

Exercise 6. Recover formulas of exercises 1 to 4 of §1, n◦ 3.
Exercise 7. Prove (21’) and (21”) by investigating the behaviour of both sides

under z 7−→ z + 2 and z 7−→ −1/z and by showing that the ratio of one side of
(21’) or of (21”) to the other satisfies condition (5.5) of § 2, n◦ 5.

Exercise 8. Using the same method show that

θ3(z)4 = θ2(z)4 + θ4(z)4(12.23)

or that

q
(
1 + 2q1.2 + 2q2.3 + . . .

)4
+
(
1− 2q + 2q4 − 2q9 + . . .

)4
=

=
(
1 + 2q + 2q4 + 2q9 + . . .

)4
.

Check the plausibility of this relation by a direct calculation of the first few terms
of both sides.

Exercise 9. Using the fact that, for c = −p, the set of solutions of (10) has
dimension p, show that the four functions θk(u; z)2 generate a 2-dimensioinal vector
space. Using the fact that two general theta functions satisfying the same functional
equations and having the same zeros are proportional, show that

θ4(z)2θ4(u; z)2 = θ3(z)2θ3(u; z)2 − θ2(z)2θ2(u; z)2 ,(12.24’)

θ4(z)2θ1(u; z)2 = θ2(z)2θ3(u; z)2 − θ3(z)2θ2(u; z)2 ,(12.24”)

by first showing that the right hand side of (24’) is of the form c(z)θ4(u; z)2 and by
calculating c(z) using (23).

Exercise 10. Show that(
θ′1(z)θ4(u; z)

θ4(z)θ1(u; z)

)2

−
(
θ′1(z)θ2(u; z)

θ2(z)θ1(u; z)

)2

= π2θ3(z)4 ,(12.25’)

π2θ3(z)4 = θ′′4 (z)
/
θ4(z)− θ′′2 (z)

/
θ2(z) .(12.25”)

First check that the left hand side of (25’) is independent of u. To calculate its
value, put u = 1

2
and use (21”). To get (25”), use the Taylor series of the functions

u 7−→ θk(u; z) at u = 0.
Exercise 11. Show that (notation of exercises 3 and 4)

θ′′k (z) = 4πi.dθk(0; z)/dz .

Using (25”), deduce that(∑
Z

qn
2

)4

= 1 + 8
∑
m≥1

mqm
/

(1− qm)− 8
∑
m≥1

4mq4m
/ (

1− q4m
)

=

= 1 + 8
∑

cnq
n ,

where cn is the sum of the positive divisors of n that are not multiples of 4. Show
(Lagrange, and proved again by Jacobi) that every rational integer is the sum of
four squares.29

29 There is a very different proof using Eisenstein series, as well as a result related
to sums of 8 squares; see for example Freitag and Busam, Funktionentheorie,
Chap. VII, §1.
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Many other properties of theta series can be found in Rademacher, Topics
in Analytic Number Theory (Springer, 1973), Chap. 10 and 11, in Whittaker &
Watson, Modern Analysis, where I found these exercises, in David Mumford, Tata
Lectures on Theta I (Birkhäuser, 1983), in Henry McKean & Victor Moll, Elliptic
Curves (Cambridge UP, 1997) and in a number of earlier authors. Nowadays, mostly
analogous series in several variables are studied. They have been used since Riemann
in algebraic function theory and in other questions, for example in analytic theory of
quadratic forms with integer coefficients, not to mention the extraordinary identities
given recently by Macdonald, some of which we now describe.

They provide series expansions for all functions η(z)N , where η(z) is the
Dedekind function (n◦ 3) and N the dimension of a complex semisimple Lie al-
gebra or, equivalently, of a compact subgroup of some GLn(R) with finite centre.
How to classify them and study them using the theory of “ root systems ” has long
been known. This can for example be learnt in N. Bourbaki’s books on Lie algebras,
in Dieudonné, vol. 5 and many other books. The simple ones consist of four series
of classical groups (unitary, orthogonal with even or odd numbers of variables, and
symplectic groups) and five exceptional groups with a complicated description. In
the next formulas, summation is over integer vectors v satisfying certain conditions
and ‖v‖2 denotes the sum of the squares of the coordinates of v. A constant c0
appears in each formula; it could be explicitly given by taking the constant term
into account. We set q = exp(πiz).

For the unitary group with n+ 1 variables and n even,

η(z)n(n+2) = c0
∑
v

∑
i<j

(vi − vj) q ||v||
2/(2n+2) ,

where summation is extended to all v = (v0, . . . , vn) ∈ Zn+1 for which
∑
vi = 0

and vi ≡ imodn+ 1.
The other classical groups give similar formulas with N = n(2n+1) or n(2n−1).
Using the five exceptional groups, it is possible to expand η(z) to the power of

14, 52, 78, 133 and 248. For example,

η(z)248 = c0
∑
u,v

∑
i<j

(vi − vj)
∑
i<j<k

(u+ vi + vj + vk) q (||v||2−u2)/60 ,

where summation is over u ∈ Z and vectors v = (v1, . . . , v9) ∈ Z9 satisfying

u ≡ 8 mod 30 , vi ≡ imod 30 (1 ≤ i ≤ 8) , v9 = 0 , 3u+
∑

vi = 0 .

Macdonald gives other curious formulas, for example

η(z)7η(3z)7 = c0
∑
v

∏
i

vi
∑
i<j

(vi − vj) q ||v||
2/12 ,

where summation is over v ∈ Z3 such that vi ≡ imod 6 and
∑
vi = 0.

Those who think that the age of beautiful formulas is over are mistaken.
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13 – Eisenstein and Weierstrass’ Point of View

(i) Convergence of Eisenstein series. Obtaining functions defined on a group G, not
necessarily commutative, and right invariant under a countable subgroup30 Γ of G,
i.e. satisfying

f(xγ) = f(x) for all x ∈ G and all γ ∈ Γ ,

consists in choosing a function ϕ on G and in setting

f(x) =
∑

ϕ(xγ) .(13.1)

Indeed

f
(
xγ′
)

=
∑

ϕ
(
xγ′γ

)
(13.2)

then, and since, by definition of a group, the map γ 7−→ γ′γ is a permutation
of the elements of Γ , relation (1) trivially follows. For example, this is what the
transformation of a function f on R into a function

∑
f(x + n) in the Poisson

summation formula is all about.
A slightly more general situation consists in supposing that Γ acts on a set X

and to then search for Γ -invariant-functions on X, i.e. satisfying

f(γx) = f(x)

for all γ ∈ Γ and x ∈ X. (1) is then replaced by

f(x) =
∑

ϕ(γx) .(13.1’)

This argument nevertheless supposes that series (1) or (1’) converges uncon-
ditionally, as this is the only assumption under which it can undergo the same
transformations as a finite sum.

Hence, if G is chosen to be the additive group C and Γ the period lattice L,
then this leads to the construction of elliptic functions of the form∑

f(u− ω) ,(13.3)

where summation is extended over all periods ω ∈ L. The series first needs to
be made unconditionally convergent, which supposes that f tends to 0 sufficiently
rapidly at infinity. As the aim is to get holomorphic or meromorphic functions, f
must satisfy the same assumption. By Liouville’s theorem f cannot be supposed
to be entire. Hence f must be admitted to have at least one pole at a point a, in
which case if series (3) converges in a reasonable way, it will have poles at all points
a+ ω.

Functions f(u) = 1/uk where k is an integer > 0 are the simplest ones satisfying
these conditions. They lead to the series

℘k(u) =
∑

1/(u− ω)k .(13.4)

These converge unconditionally for k ≥ 3 as shown by the following argument
(Chap. II, § 3, n◦ 23).

30 In practice, the group G is always equipped with a locally compact topology (or
even with a differentiable structure) and Γ is always a discrete subgroup of G.
See Chap. XI, n◦ 15, (vi).
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Let us start by considering a compact set K ⊂ C and the general term of (4)
when u remains in K. To analyze the behaviour of series (3), terms for which u−ω
is 0 in K must first be omitted, i.e. the points ω ∈ K . As there are finitely many of
them, the sum of these exceptional terms is a rational function of u. For the other
terms, the relation |ω| − |u| ≤ |u − ω| ≤ |u| + |ω| shows that, for sufficiently large
|ω| 1

2
|ω| ≤ |u− ω| ≤ 2|ω| for all u ∈ K. Normal convergence in all compact subsets

of (4) is equivalent to the unconditional convergence of
∑

1/|ω|k.
To determine the suitable values of k – here k need not be an integer – we use

the partition of the period lattice L into sets Ln of 8n elements, namely containing
the points ω ∈ L located on the contour of the parallelogram Pn, image of the fun-
damental parallelogram under the homothety with centre O and ratio n. For these
ω ∈ Ln, rn ≤ |ω| ≤ Rn with constants r,R > 0 independent of n. However, by the
general theorems (Chap. II, § 2, n◦ 18, associativity theorem 13), the unconditional
convergence of the series

∑
1/|ω|k is equivalent to∑
n>0

∑
ω∈Ln

1/|ω|k < +∞ .

The partial sum extended to Ln having the same order of magnitude as n/nk =
1/nk−1, the question reduces to the convergence of the Riemann series, whence the
condition k > 2.

These arguments still apply if in (3), instead of 1/uk, one chooses a rational
function f satisfying

f(u) � 1/uk at infinity with , k ≥ 3

hence of the form p(u)/q(u) with d◦(q) ≥ d◦(p) + 3. The general term f(u− ω) is
again of the same order of magnitude as 1/|ω|k and, for large |ω|, there is again an
upper bound |f(u−ω)| < MK/|u−ω|k < M ′K |ω|k valid for all u in a given compact
set K. If K is chosen to be an arbitrary closed disc, apart from finitely many terms
with a pole in K, we get a normally convergent holomorphic functions series in K
and so a holomorphic sum in the interior of D. In conclusion:

Theorem 9. Let f be a rational function such that f(u) � 1/uk at infinity, with
k ≥ 3. Then the series

fL(u) =
∑

f(u− ω)(13.5)

converges normally in every compact set and its sum is an elliptic function whose
poles are, modL, those31 of f , with the same polar parts.

This is in particular the case of the functions ℘k defined by (4): they have a
pole of order k at lattice points and are holomorphic elsewhere. But the theorem
applies to several other rational functions other than 1/uk, for example to 1/(u −
a)(u− b)(u− c) where a, b, c are distinct modL.

(ii) The Weierstrass ℘-function. The series
∑

1/(u−ω)2 diverges and so cannot
be used to construct an elliptic function with double poles at lattice points. As was
shown in Chap. II, n◦ 23, the modified series32

31 To get the polar part of fL at a point a, the polar parts of f at all points
a+ ω must be added, so that fL may well not have a pole at a. Hence, strictly
speaking, the poles of f would need to be assumed to be distinct modL.

32 In formula (6) and many similar ones, the series are obviously extended to non-
trivial periods. Some authors use the symbol

∑′ to indicate this explicitly. I
prefer to trust the reader’s common sense.
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℘(u) = 1/u2 +
∑[

1/(u− ω)2 − 1/ω2](13.6)

converges because, for large |ω|,

1/(u− ω)2 = ω−2 (1 + 2u/ω + 3u2/ω2 + . . .
)

=

= 1/ω2 + ω−3u (2 + 3u/ω + . . .) .

If u remains in a compact set K ⊂ C, then |u/ω| ≤ 1
2

except for a finite and fixed
set of periods. Hence, for all ω not in K, there is an upper bound∣∣1/(u− ω)2 − 1/ω2

∣∣ ≤M/|ω|3

with a constant M independent of u ∈ K. Series (6) from which the finitely many
terms for which ω ∈ K have been removed is thus normally convergent in K, which
shows that its sum is meromorphic on C, with double poles at all lattice points.

Though correct, the relation ℘(u + ω) = ℘(u) is no longer obvious. A direct
proof was given in Chap. II, but as a similar problem arises in other cases, the
situation may as well be generalized:

Lemma. Let Γ be a group acting on the set X, f a function defined on X and c a
function defined on Γ . Suppose the following conditions hold:

(i) the series

g(x) =
∑

[f(γx)− c(γ)](13.7)

converges unconditionally for all x ∈ X ;
(ii) the series

∑
[c(γγ0)− c(γ)] converges unconditionally for all γ0 ∈ Γ ;

(iii) for all γ0 ∈ Γ of finite order and all γ ∈ Γ ,33

lim
|n|=+∞

c (γγn0 ) = 0 .(13.8)

Then g(γx) = g(x) for all γ ∈ Γ and all x ∈ X.

As γ0 ∈ Γ is given, first of all,

g (γ0x) =
∑

[f (γγ0x)− c(γ)] =

=
∑

[f (γγ0x)− c (γγ0)] +
∑

[c (γγ0)− c(γ)] .

This formal calculation is justified by assumptions (i) and (ii). The map γ 7−→ γγ0
being a permutation of the elements of Γ , the first series has sum g(x). So the proof
reduces to showing that

33 If γ is an element of a group Γ , the set of powers γn (n ∈ Z) of γ can, depending
on the case, be finite or infinite. The order of γ is by definition the cardinal
of this set. Example: in the multiplicative group T of complex numbers with
absolute value 1, the roots of unity have finite order and the other elements
infinite order. In the modular group SL2(Z) of 2×2 matrices with integer entries
and determinant 1, which acts on the upper half-plane by z −→ (az+b)/(cz+d),

the matrix S =

(
0 −1
1 0

)
has order 2 and the matrix T =

(
1 1
0 1

)
infinite order.

They define the transformations z −→ −1/z and z −→ z+1 that we have already
extensively used.
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∑
[c (γγ0)− c(γ)] = 0(13.9)

for all γ0.
This result generalizes the “ obvious ” formula∑

n∈Z

[f(n+ 1)− f(n)] = 0(13.10)

whose proof is immediate in the case that is going to be useful to obtain the Lemma.
If the series converges reasonably, its sum is the limit of its partial symmetric sums
f(n+ 1)− f(−n). This gives (10) if f(n) tends to 0 as |n| increases indefinitely.34

Another useful case is that of a periodic function f , i.e. satisfying f(n+p) = f(n)
for a given integer p. As the general term remains unchanged under n 7−→ n + p,
formula (10) is not well-defined in this case and it needs to be replaced by∑

nmod p

[f(n+ 1)− f(n)] = 0 .(13.11)

The proof reduces to checking that

f(1)− f(0) + f(2)− f(1) + . . .+ f(p)− f(p− 1) = 0 ,

which is obvious since f(0) = f(p).
Coming back to (10), let Γ0 denote the set of γn0 , n ∈ Z. Writing γΓ0 for the

set of elements γγ′ with γ′ ∈ Γ0 (coset modΓ0), we get a partition of Γ . The
associativity theorem for unconditional convergence then shows that series (10)
becomes ∑

γΓ0

∑
γ′∈γΓ0

[
c
(
γ′γ0

)
− c

(
γ′
)]
,

where summation is first over elements γ′ of some coset γΓ0, then over the set of
these cosets. As γ′′ 7−→ γγ′′ is a bijection from Γ0 onto γΓ0, the previous series can
also be written ∑

γΓ0

∑
γ′′∈Γ0

[
c
(
γγ′′γ0

)
− c

(
γγ′′

)]
.

Hence it suffices to show that∑[
c
(
γγ′′γ0

)
− c

(
γγ′′

)]
= 0 ,

where summation is over γ′′ ∈ Γ0, i.e. over the set of powers of γ0. Setting γ′′ = γn0
and f(n) = c(γγn0 ), the general term of the series becomes f(n + 1) − f(n). This
reduces the proof to (10) if γ0 has infinite order since the elements γγn0 of Γ are
then pairwise distinct, and assumption (iii) of the lemma ensures the conclusion. If
γ0 has finite order p, then35 γp0 = e, the identity element. Hence f(n + p) = f(n),
which reduces the proof to (11), proving the lemma.

34 In Bernoulli’s days, it would probably have been noticed that each term f(n)
occurs twice with opposite signs (for example if f(n) = n . . .). The argument
of the text shows that sum (10) equals f(+∞) − f(−∞) if f(n) tends to finite
limits as n tends to +∞ or −∞.

35 If an element g of a group G has finite order, its powers are pairwise distinct,
and so ga = gb with distinct integers a and b. Hence there are integers p > 0 such
that gp = e. If p is the smallest one among them, the elements g0 = e, g, . . . , gp−1

are pairwise distinct and the other powers gn reduce to them by replacing n with
the remainder of its division by p. The number p is thus the order of g.
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Example: The function

f(z) = 1/z +
∑

[1/(z + n)− 1/n]

on C−Z has period 1: make the additive group Z act on C by translations and set
c(n) = 1/n if n 6= 0, c(0) = 0. The function f is meromorphic on C, its poles are
obvious and f(z)−π cotg πz is entire with period 1. To show that f(z) = π cotg πz,
the difference would need to be shown to tend to 0 at infinity, a non-obvious exercise.

Coming back to the Weierstrass function (6), the lemma can be applied by
choosing X = C with its periods removed since the series is not strictly speaking
well-defined if u ∈ L, and Γ to be the additive group L acting on X by translations
u 7−→ u + ω. The simplest function c36 is then given by c(ω) = 1/ω2 if ω 6= 0,
c(0) = 0. As was seen earlier, assumption (i) holds. Assumption (ii) means that∑∣∣1/ (ω + ω0)2 − 1/ω2

∣∣ < +∞ ,

where the two terms that are not well-defined are omitted. This is already known
since the general term is O(1/ω3). Finally, assumption (iii) means that lim 1/(ω +
nω0)2 = 0 for ω0 6= 0, which is clear. Formula (6) thus defines an elliptic function.
We already know that its only singularities are double poles at lattice points.

This property more or less characterizes the function ℘. Indeed if ϕ(u) is an
elliptic function whose only singularities are double poles at points of L, there is
an expansion ϕ(u) = a/u2 + b + . . . in the neighbourhood of the origin because
the residues of ϕ are zero by theorem 7. The elliptic function ϕ(u)− a℘(u) is then
entire, hence constant. In conclusion:

Theorem 10. The series37

℘L(u) = 1/u2 +
∑[

1/(u− ω)2 − 1/ω2](13.12)

converges normally in every compact set and its sum is an elliptic function whose
only singularities are double poles at lattice points. Any other elliptic function with
this property is of the form a℘L(u) + b where a and b are constants.

As was seen in Chap. II, n◦ 23, and as is now obvious because of Weierstrass’
theorem on holomorphic function series (term by term differentiation), for k ≥ 3,
the functions

℘k(u) =
∑

1/(u− ω)k

are proportional to the derivatives of ℘:

℘′(u) = −2℘3(u) , ℘′′(u) = 2.3℘4(u), . . . .(13.13)

Note that as u tends to 0, the terms of series (12) with the term 1/u2 removed tend
to 0. As this series converges normally in the neighbourhood of the origin, its sum
also tends to 0. Therefore, the function ℘ being even, there is a series expansion of
the form

36 The choice c(0) = 0 as well as that of c(e) in the general lemma are is irrelevant.
Modifying c(γ) for a finite set of values of γ adds a constant to function (7), so
does replacing c(γ) by c(γ) + c′(γ) where

∑
|c′(γ)| < +∞.

37 The notation ℘L is used to point out the dependence with respect to the lattice
L. It will always be omitted when there is no ambiguity.
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℘(u) = 1/u2 + cu2 + . . . .

Calculating its coefficients is easy: the series appearing on the right had side of
(12) being normally convergent in the neighbourhood of 0, the power series of the
functions it is composed of can be added term by term.38 However, for ω 6= 0,

1/(u− ω)2 = ω−2(1− u/ω)−2 = ω−2
∑

(n+ 1)un/ωn =

=
∑

(n+ 1)un/ωn+2 .

Thus

℘L(u) = 1/u2 +
∑

a2nu
2n(13.14’)

with

a2n = (2n+ 1)
∑

1
/
ω2n+2 = (2n+ 1)G2n+2(L) ,(13.14”)

where summation is over non-trivial periods. As shown much earlier (Chap. II,
n◦ 23, Chap. VII, n◦ 18), as a result, the function ℘ satisfies the differential equation

℘′(u)2 = 4℘(u)3 − 20a2℘(u)− 28a4 = 4℘(u)3 − g2℘(u)− g3

in conventional notation. The proof consists in showing that the polar parts of both
sides coincide at the origin, and that, as a consequence, the difference between the
two sides is an elliptic function without any poles, hence constant, and in checking
that it is trivial by calculating the terms independent of u in the power series of
both sides of (14”).

In the case where the lattice L is generated by 1 and z, with Im(z) > 0, let
℘(u; z) denote the corresponding function ℘L. Then

a2n = (2n+ 1)
∑

1
/

(cz + d)2n+2 = (2n+ 1)G2n+2(z) ,

where summation is over all ordered pairs of integers (c, d) 6= (0, 0). As will be seen,
the Eisentein series G2n(z) play a basic role in the theory of modular functions
because of the functional equation

Gn [ (az + b)/ (cz + d)] = (cz + d)nGn(z)

satisfied by all transformations of SL2(Z). The function ℘(u; z) remains unchanged
if z is replaced by z + 1, but an immediate calculation shows that

z−2℘ (−u/z;−1/z) = ℘(u; z) .(13.15)

(iii) The series
∑
π2/ sin2 π(u + nz) and G2(z). For a less trivial example of

the construction of elliptic functions that makes elliptic functions out of functions

38 The coefficients of the power series of a holomorphic function in the neighbour-
hood of 0 are its successive derivatives at the origin. However, one can pass to the
limit in the derivatives of a uniformly convergent series of holomorphic functions
(Weierstrass). The power series of a uniformly convergent limit (resp. series) is
thus given by the formal calculation that would have seemed obvious to Euler. . .
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that are not, consider the function π2/ sin2 πu. It has period 1 and double poles at
points n ∈ Z. In a given compact set K, the terms of the series

f(u; z) =
∑

π2/ sin2 π(u+ nz)(13.16)

are all holomorphic except the finitely many that have a pole in K. Hence, if (16)
converges normally in all of K ⊂ C− L, then the result will be of the form

f(u; z) = a(z)℘(u; z) + c(z)

with the constants appearing in the Laurent series

f(u; z) = a(z)/u2 + c(z) + . . .

of f at the origin.
To analyze convergence, observe that setting as usual q = exp(πiz) and w =

exp(2πiu),

f(u; z) = −4π2
∑
Z

1

/(
qnw

1
2 − q−nw−

1
2

)2
.

If u stays in a compact subset of C− L, then r ≤ |w| ≤ R with 0 < r < R < +∞,

and so |qnw
1
2 − q−nw−

1
2 | ≥ |r

1
2 |q|n − R

1
2 |q|−n| 6= 0 since |q| < 1. As n tends to

+∞, qn tends to 0 and |q|−n to +∞. Thus∣∣∣qnw 1
2 − q−nw−

1
2

∣∣∣ ≥ 1

2
R

1
2 |q|−n for large n ,

and so |1/(qnw
1
2 − q−nw−

1
2 )2| ≤ 2R−

1
2 |q|n, which shows that the series with terms

n ≥ 0 converges normally. The proof remains the same for the series extended to
n ≤ 0.

To evaluate the constants a(z) and c(z), observe that, for any normally con-
vergent series of meromorphic functions, the Laurent series of the sum can be
formally calculated from those of the terms of the series. For n 6= 0, the term
π2/ sin2 π(u+ nz) contributes its value π2/ sin2 πnz at u = 0 to the calculation of
c(z) and nothing to the calculation of a(z). For n = 0, we use the formula

π2/ sin2 πu = π2 (πu− π3u3/6 + . . .
)−2

= u−2 + πu2/3 + . . . ,

which gives a(z) = 1 and a contribution π2/3 to the calculation of c(z), so that

c(z) = π2/3 +
∑
n 6=0

π2/ sin2 πnz .

We thus get the formula

℘(u; z) =
∑
Z

π2/ sin2 π(u+ nz)− π2/3−
∑
n 6=0

π2/ sin2 πnz .(13.17)

It is not unrelated to that of Weierstrass. Indeed39

39 Differentiate the relation

π cotg πu =
1

u
+
∑
n 6=0

(
1

u− n +
1

n

)
.
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π2/ sin2 πu =
∑
Z

1
/

(u−m)2

for non-integer u ∈ C, and so

f(u; z) =
∑
n∈Z

∑
m∈Z

1
/

(u−m− nz)2 .

We recover the series
∑

1/(u− ω)2 except for a “ detail ”: its unconditional sum is
not well-defined, whereas a convergent result is obtained by first summing over m
then over n. We can then write

℘(u; z) =
∑
n

∑
m

1
/

(u−m− nz)2 − π2/3−

−
∑
n6=0

∑
m

1
/

(m+ nz)2 .(13.18)

Grouping together similar terms of both series, we find

℘(u; z) = 1/u2 +
∑
ω 6=0

[
1
/

(u− ω)2 − 1
/
ω2 ]− π2/3 +

∑
m 6=0

1
/
m2 .

This is Weierstrass’ formula since
∑

1/m2 = π2/3. (18) is generally written as

℘(u; z) =
∑
n

∑
m

1
/

(u−m− nz)2 −G2(z)(13.19)

with a function

G2(z) =
∑
n

∑
m

(m,n) 6= (0,0)

1
/

(m+ nz)2 = π2/3 +
∑
n6=0

π2 /sin2 πnz(13.20)

similar to the series G2n(z) (n ≥ 2), but which should be used cautiously since the
double series does not converge unconditionally. The next section will show that
permuting the summation order actually changes the result.

(iv) Relation between ℘ and θ1 functions . Suppose the lattice L is generated
by 1 and z with Im(z) > 0. To construct the Weierstrass function let us return to
the power series θk(u; z) introduced in n◦ 2, (iii). We know their zeros (all simple
because of infinite product expansions) and their transformation formulas under
u 7−→ u+ 1 and u 7−→ u+ z (n◦ 12, Exercise 2). These immediately show that the
functions

fk(u) = θk (u; z)2
/
θ1(u; z)2 (k = 2, 3, 4)

are elliptic and their only singularities are double poles at the period lattice points.
Hence

fk(u) = ak(z)℘(u; z) + bk(z) = ak(z)/u2 + bk(z) + . . . ,

with coefficients depending only on z. These are calculated by considering the Lau-
rent series of the functions fk at the origin. Setting

θ∗k(u; z) = θk(u; z)/ θk(z) for 2 ≤ k ≤ 4 ,

θ∗1(u; z) = θ1(u; z)/ θ′1(z)
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in order to get functions in the neighbourhood of 0 equivalent to 1 for k ≥ 2 and
to 1/u for k = 1, we find

℘(u; z) = θ∗k(u; z)2
/
θ∗1(u; z)2 − θ′′k (z)

/
θk(z) ,

where recall that θ′′k (z) denotes the second derivative at u = 0 of the function
u 7−→ θk(u; z). This result is not unrelated to Exercise 9 of n◦ 12.

Another method amounts to observing that, given a general theta function f(u)
satisfying relations of the form

f(u+ 1) = exp(az + b)f(u) , f(u+ z) = exp(cz + d)f(u) ,

its logarithmic derivative g = f ′/f satisfies

g(u+ 1) = g(u) + a , g(u+ z) = g(u) + c ,

so that h = (f ′/f)′ is an elliptic function.
For example let us choose the odd function θ1(u; z) which is non-trivial at lattice

points. Writing

θ1(u; z) = a(z)u+ b(z)u3 + . . .

in the neighbourhood of 0 gives g(u) = 1/u+ . . . and hence h(u) = −1/u2 + . . . So
there is a relation of the form[

θ′1(u; z)
/
θ1(u; z)

]′
= −℘(u; z) + c(z)

with a function c(z) which, as will be seen, is the same as the one used to obtain
(17). Since

f(u) = θ1(u; z) =
∏(

1− q2n
) (

1− q2nw
) (

1− q2n−2w−1)
with w = exp(2πiu) and differentiating with respect to u,w′ = 2πiw, (w−1)′ =
−2πiw−1,

f ′(u)/f(u) = −2πi
∑
n≥1

q2nw
/ (

1− q2nw
)

+

+2πi
∑
n≥0

q2nw−1/ (1− q2nw−1) .(13.21)

Differentiating again with respect to u, it follows that(
f ′(u) /f(u)

)′
= 4π2

∑
q2nw

/ (
1− q2nw

)2
+

+ 4π2
∑

q2nw−1/ (1− q2nw−1)2(13.21’)

and (
f ′(u) /f(u)

)′
= 4π2

∑
n≥1

1

/(
qnw

1
2 − q−nw−

1
2

)2
+

+4π2
∑
n≥0

1

/(
qnw−

1
2 − q−nw

1
2

)2
=

= 4π2
∑
n≥1

1
/

[2i sinπ(u+ nz)]2 +

+4π2
∑
n≥0

1
/

[2i sinπ(−u+ nz)]2 .
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So finally, [
θ′1(u; z)

/
θ1(u; z)

]′
= −

∑
Z

π2/ sin2 π(u+ nz) .

This is function (16). Using (17), c(z) = −G2(z) follows and so[
θ′1(u; z)

/
θ1(u; z)

]′
= −℘(u; z)−G2(z) .(13.22)

This result enables us to calculate the effect of z 7−→ −1/z on the function
G2(z). Let us denote by h(u; z) the left hand side and, in (22), replace z by −1/z.
Taking into account the relation

θ1(u;−1/z) = −i(z/i)
1
2 exp(πiu2z)θ1(uz; z)

and the factor z2 which occurs when the last term of the right hand side is differ-
entiated twice with respect to u, we get

h (u;−1/z) = z2h(uz; z) + 2πiz = z2 [℘(uz; z) +G2(z)] + 2πiz .

However, by (15), ℘(u;−1/z) = z2℘(uz; z). So relation (22) for −1/z becomes

z2 [℘(uz; z) +G2(z)]− 2πiz = z2℘(uz; z) +G2 (−1/z) ,

given the expected formula

G2(−1/z) = z2G2(z)− 2πiz .(13.23)

It is due to Eisenstein who gave a direct elementary proof,40 but full of traps.
Definition (20) shows that

G2 (−1/z) = z2
∑
n

∑
m

1
/

(n−mz)2 = z2
∑
m

∑
n

1
/

(m+ nz)2 ,

(the term m = n = 0 is obviously omitted), so that we again get the series G2(z),
up to the factor z2, but the order of summation has be changed. This operation,
which would not change anything if the double series converged unconditionally, is
not innocuous: indeed (23) can be put in the form∑

m

∑
n

1
/

(m+ nz)2 =
∑
n

∑
m

1
/

(m+ nz)2 − 2πi/z .(13.23’)

Exercise 1. Show that, applying the relation 1/(1− z) =
∑
zm, which supposes

|z| < 1, to the terms of the two series appearing in (21) gives a double series
converging unconditionally if and only if u is in the horizontal strip

B : − Im(z) < Im(u) < 0 .

Permuting the summation order, show that

℘(u; z) = −G2(z) + 4π2
∑
m 6=0

mqm

qm − q−m e(mu) .(13.24)

40 See for example Freitag and Busam, pp. 390–393.
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This is the Fourier series expansion of the function u 7−→ ℘(u; z).41 What is the
Fourier series of ℘(u) in the strip p Im(z) < Im(u) < (p+ 1) Im(z), where p ∈ Z?

Exercise 2. Using the identity∑
n≥1

nxn /(1− xn) =
∑
m,n≥1

nxmn =
∑
m≥1

xm (1− xm)2

valid for |x| < 1, as well as the infinite product of the function η(z), show that

G2(z) = −4πiη′(z)
/
η(z) ,(13.25)

η being the Dedekind function. Deduce42 that

G2 (−1/z) = z2G2(z)− 2πiz ⇐⇒ η (−1/z) = (z/i)
1
2 η(z) .

(v) Elliptic functions with given simple poles. They can be obtained either using
Abel and Jacobi’s infinite products, or the Eisenstein-Weierstrass method. We still
assume that L is generated by 1 and z.

The first one, presented above, is the simplest: we fix the zeros ak and the poles
bk (1 ≤ k ≤ n) modL beforehand and consider the function

ϕ(u) =
∏

θ1 (u− ak)/ θ1 (u− bk) .(13.26)

It clearly answers the question if it is elliptic. Invariance under u 7−→ u + 1 is
obvious. Due to formulas of n◦ 12, exercise 2, u 7−→ u + z multiplies the function
by a factor∏

e [− (u− ak)− z/2]
/∏

e [− (u− bk)− z/2] = e
(∑

ak −
∑

bk
)
.

Therefore, supposing
∑
ak ≡

∑
bk modZ is sufficient to obtain the result. As we

anyhow need to suppose
∑
ak ≡

∑
bk modL, the condition can always be assumed

to hold.
This method allows us to impose poles and zeros, but not residues. It is possible

to construct an elliptic function with simple poles modL at given pairwise distinct
points a1, . . . , an, with given residues %k at these points, but we then have no infor-
mation about its zeros: everything cannot be imposed at the same time. Hermite
only remarks that, if ∑

%k = 0 ,

a compulsory condition by theorem 8, then the function

C +
∑

%kθ
′
1 (u− ak; z)/ θ1 (u− ak) ,

where C is a constant, clearly answers the question (i.e. is elliptic) thanks to the
transformation formulas given in the exercises of n◦ 12.

41 It holds in strip (24) where it is holomorphic of period 1 and diverges elsewhere.
42 This is for instance what Neal Koblitz does in Introduction to Elliptic Curves

and Modular Forms (Springer, 1993, 2d. ed.), p. 121 to get (23).
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The lattice L now being arbitrary, Weierstrass starts from the rational function

f(u) =
∑

%k /(u− ak)(13.27)

satisfying the imposed conditions but which is not elliptic and makes it elliptic
using the series

fL(u) =
∑

f(u− ω) =
∑∑

%k /(u− ω − ak) .(13.28)

For it to converge, one must make sure that f(u) decreases sufficiently rapidly at
infinity. At a first glance, f(u) ∼ c/u where c =

∑
%k. Hence one must assume that∑

%k = 0, a not very surprising condition. Then for large ω,

%k (u− ω − ak)−1 = −%kω−1 [1 + (u− ak)/ω]−1 =

= %k
[
1/ω − (u− ak)/ω2 + (u− ak)2

/
ω3 − . . .

]
.

Adding the results for 1 ≤ k ≤ n, the terms in 1/ω disappear since
∑
%k = 0 and

the coefficient of 1/ω2 reduces to
∑
%kak. To make sure that (28) converges, it is

also necessary to suppose

c =
∑

%kak = 0 ;(13.29)

which does not augur well. Let us in particular suppose that n = 2. The two residues
are opposites and (29) means that a1 = a2, in which case the function f , hence
also fL, is identically zero. . . Nonetheless, there are elliptic functions with only two
given simple poles a1 and a2 as can be seen by using theta series.

The general lemma used above to construct the Weierstrass function explains
the mystery. For n = 2, f(u) = 1/(u − a1) − 1/(u − a2), up to a constant factor,
and so for given u and large ω,

f(u− ω) = c/ω2 +O
(
1/ω3)

with c = a1 − a2. Thus the solution, for c 6= 0, is to define fL not by (28), which
diverges, but by

fL(u) = f(u) +
∑[

f(u− ω)− c/ω2] =

=
∑

[f(u− ω)− c(ω)] ,(13.30)

where c(ω) = c/ω2 if ω 6= 0, c(0) = 0. Conditions (i), (ii) and (iii) of the general
lemma can be readily checked and this gives the expected elliptic function.

More generally, when starting from the function

f(u) =
∑

%k /(u− ak) with
∑

%k = 0 ,

the necessity of condition (27) to ensure convergence of the series
∑
f(u − ω) is

dealt with in a similar way. As we saw, for large ω,

f(u− ω) = c/ω2 +O
(
1/ω3) where c =

∑
ak%k .

Hence we apply the general lemma by choosing the function

c(ω) = c/ω2 if ω 6= 0 , c(0) = 0 ,
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which leads to a function

fL(u) = f(u) +
∑
ω 6=0

[
f(u− ω)− c/ω2](13.31)

with simple poles at ak + ω, and given residues %k, and holomorphic elsewhere. It
is unique, up to an additive constant.

(vi) The functions ζL and σL. Let us continue our variations on the same the
with Weierstrass and start from the function f(u) = 1/u. The series 1/(u−ω) does
not converge. For large ω,

1/(u− ω) = −1/ω(1− u/ω) = −
(
1/ω + u/ω2 + u2/ω3 + . . .

)
=

= −1/ω − u/ω2 +O
(
1/ω3) ,

so that the series

ζL(u) = 1/u+
∑[

1/(u− ω) + 1/ω + u/ω2] =

= 1/u+
∑(

u2/ω3 + u3/ω4 + . . .
)

=

= 1/u+
∑
n≥2

G2n(L)u2n−1(13.32)

converges and represents an odd meromorphic function whose singularities are obvi-
ous. This why this type of formula is important. Because of the presence of the term
u/ω2, depending on u, the general lemma cannot be applied to prove invariance
under u 7−→ u+ ω. Term by term differentiation gives

−ζ′L(u) = ℘L(u) .(13.33)

Thus, for any period,

ζL(u+ ω) = ζL(u) + ηL(ω)(13.34)

with a constant

ηL(ω) = 2ζL (ω/2) if ω/2 /∈ L(13.34’)

since ζL is odd. Obviously,

ηL
(
ω′ + ω′′

)
= ηL

(
ω′
)

+ ηL
(
ω′′
)

for all periods ω′ and ω′′.
Exercise 3. If Im(ω2/ω1) > 0, then ω2ηL(ω1)− ω1ηL(ω2) = 2πi.
The function ζL enables us to put formula (25) in the form

fL(u) =
∑

%kζL (u− ak)(13.35)

because the sum of the terms %k/ω which should appear in the last sum of (25) is
0 since

∑
%k = 0. By relation (34), the periodicity of the right hand side of (35) is

obvious.
Another function related to ℘L and ζL is the infinite product

σL(u) = u
∏
ω 6=0

(1− u/ω) exp
(
u/ω + u2/2ω2) = −σL(−u)(13.36)
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invented by Weierstrass to obtain an entire function with simple zeros at all points
of the lattice L and 6= 0 elsewhere. Convergence is immediate since the general term
is

(1− u/ω)
(
1 + u/ω + u2/2ω2 + . . .

) (
1 + u2/2ω2 + . . .

)
=

= (1− u/ω)
(
1 + u/ω + u2/ω2 + . . .

)
= 1 +O

(
u3/ω3

)
.

Differentiating (3) logarithmically gives

σ′L(u)
/
σL(u) = ζL(u)(13.37)

and as a result,

℘L = −
(
σ′L/σL

)′
.(13.38)

Comparison with (22) suggests a simple relation between functions σ and θ1 and,
at the very least, an infinite product expansion of σ43 very different from (36). . .

14 – Elliptic Integrals

(i) The field of elliptic functions. Weierstrass was apparently the first to obtain the
next result:

Theorem 11. Every elliptic function f is a rational function of ℘ and ℘′.

This means that there is a function R(X,Y ) = P (X,Y )/Q(X,Y ) of two vari-
ables, where P and Q are polynomial, such that

f(u) = R
(
℘(u), ℘′(u)

)
(14.1)

for all u ∈ C for which the relation is well-defined, i.e. except for a discrete set of
values of u.

If the function f has poles not belonging to the period lattice L, then let ak
(1 ≤ k ≤ m) denote their representatives modL and let rk be their multiplicities.
As the function ℘ = ℘L is holomorphic at these points, the elliptic function

g(u) = f(u)
∏

[℘(u)− ℘ (ak)]rk

is holomorphic outside L. If it is holomorphic at u = 0, hence on all of C, it is
constant and the theorem is proved.

So let us suppose this is not the case. There is a Laurent series

g(u) = cr/u
r + cr−1

/
ur−1 + . . .

in the neighbourhood of 0 with cr 6= 0 and r ≥ 2 since an elliptic function cannot
have a single simple pole modL. If r = 2, the function g(u)−c2℘(u) has, at most, a
simple pole, and so is again constant. If r ≥ 3, there are two possibilities. If r = 2m,
the order of the pole of g can be reduced by subtracting the function cr℘(u)m. If r
is odd, then r = 3m + 2n with n ∈ {0, 1}. As ℘′(u) = −2/u3 + . . ., it is obviously
possible to choose a constant c such that g(u)− c℘′(u)m℘(u)n has a pole of order
< r at the origin. Induction on r implies that a polynomial in ℘ and ℘′ canceling
out the pole of g can be subtracted from g, thus making g constant, qed.

43 See for example Joseph H. Silverman, Advanced Topics in the Arithmetic of
Elliptic Curves (Springer, 1994), p. 53.
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Since ℘′2 is a polynomial in ℘, this argument shows that every elliptic function
is actually of the form

f = R1(℘) + ℘′R2(℘)(14.2)

where the Ri are rational functions of one variable.
Even if theorem 11 does not hold for all elliptic functions, it is far from being

restricted to the function ℘. One could for example use a function with only two
simple poles. This is form (2) of R(℘, ℘′) which is so because of its simplicity.

This can be interpreted in the algebraic language of commutative field theory.
For a given lattice L, let K denote the set of corresponding elliptic functions.
They can be added, multiplied and divided, and these operations, applicable to
all meromorphic functions on a given domain, obviously satisfy the axioms of a
commutative field. Among the functions f ∈ K there are rational functions of ℘,
which form a subfield C(℘) of K containing C. The element ℘ of C(℘) is obviously
transcendent over C, i.e. does not satisfy any algebraic equation

∑
an℘

n = 0 with
coefficients in C: such a relation would force the Weierstrass function to take only
finitely many values.

The differential equation of the function ℘ shows that, on the other hand, ℘′ is
algebraic over C(℘): ℘′2 ∈ C(℘). In fact, every f ∈ K is algebraic over C(℘). To see
this, it suffices to write f and f2 as in (2) and to remove ℘′ from the two relations
that arise. This clearly gives an equation af2 + bf + c = 0 with a, b, c ∈ C(℘). a,
b, c can be assumed to be polynomials in ℘ (get rid of denominators), which means
that there is always a non-trivial algebraic relation P (f, ℘) = 0 between f and ℘.
More generally:

Corollary 1. Let f and g be two elliptic functions having the same periods. There
is a non-trivial polynomial P ∈ C[X,Y ] such that P (f, g) = 0.

It could be tempting to prove this by constructing a polynomial P for which
the elliptic function P [f(u), g(u)] does not have poles. This would require intricate
calculations since f and g cannot have an arbitrary number of poles randomly
distributed in C , modulo the period lattice. The abc of commutative field theory
gets totally rid of these difficulties and makes the corollary a very particular of a
much more general and purely algebraic result.44

Corollary 2. Every elliptic function satisfies a differential polynomial equation
P (f, f ′) = 0.

(ii) The Riemann surface of the field of elliptic functions. We saw in n◦ 11 that
elliptic functions of the lattice L can be identified with meromorphic functions on
the compact Riemann surface C/L. On the other hand, the functions ℘ and ℘′ are
connected by algebraic equation (13.14”), which will be written

ζ2 − 4z3 + g2z + g3 = 0(14.3)

44 For this consider a field K and a subfield k of K (here take k = C) and assume
there are d elements xi of K (here take d = 1 and x1 = ℘) such that every
element of K is algebraic over the subfield k(x1, . . . , xd) generated by k and the
elements xi. This general theorem asserts that there always is a non-trivial alge-
braic relation P (y1, . . . , yd+1) = 0 with coefficients in k between d + 1 elements
yj of K. The reader will find the proof – consisting essentially of linear algebra
– in Serge Lang, Algebra and several other textbooks. In fact, §§ 9 and 26 to 29
of my Cours d’algèbre and the corresponding exercises ought to be enough.
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here so as to follow the notation of Chap. X, n◦ 4. There is a compact Riemann

surface X̂ connected to this equation, which except for critical points of (3), is the
set of solutions (z, ζ) of this equation. As (℘(u), ℘′(u)) clearly satisfies (3) for u /∈ L,
the next result arises naturally:

Theorem 12. The map

j : umodL 7−→
(
℘(u), ℘′(u)

)
(14.4)

can be extended to an isomorphism from the Riemann surface C/L onto the algebraic

Riemann surface X̂ associated to equation (3).

There would be nothing to prove if we already knew that, when the fields of
meromorphic functions of two compact Riemann surfaces are isomorphic, so are the
two surfaces considered. But we will have to forego this general theorem, construct
the compact Riemann surface of (3) following step by step n◦ 4 of Chap. X, then
define j for all u ∈ C and check that, this gives a holomorphic bijection from C/L
onto X̂, whose inverse is also holomorphic. In fact, we will construct a holomorphic

surjective map j from C onto X̂ such that j(u) = j(v) if and only if u ≡ vmodL.
Passing to the quotient will give the expected isomorphism.

In accordance with Chap. X, n◦ 4, we start by removing from C of the values of
z where the equation in ζ has a multiple root. These are the roots usually denoted
by e1, e2, e3, of the equation

4z3 − g2z − g3 = 0 .(14.5)

They correspond to numbers u ∈ C where ℘′(u) = 0, As ℘′ is an odd holomorphic
elliptic function outside L, ℘′(u) = 0 if u ≡ −u 6≡ 0 modL, hence if u = ω/2 for a
period ω such that ω/2 /∈ L. So, denoting by ω1 and ω2 a basis of L,

u ∈
{
ω1/2, ω2/2, (ω1 + ω2)

/
2
}

modL .(14.6)

These three numbers being distinct modL,

e1 = ℘ (ω1/2) , e2 = ℘ (ω2/2) , e3 = ℘
[
(ω1 + ω2)

/
2
]

= −e1 − e2(14.7)

since the sum of the roots of (4) is zero. These roots of (4) are simple. Indeed if for
example e1 = e2, then the elliptic functionf(u) = ℘′(u)/2[℘(u)− e1] would clearly
satisfy the equality f(u)2 = ℘(u)− e3, which is impossible since then f would have
a single simple pole.

To construct X̂ and the map π : X̂ −→ Ĉ, we start by constructing the open

subset X of X̂ located on top of B = C− {e1, e2, e3}. Topologically it is the set of
solutions P = (z, ζ) ∈ C2 of (3) for which z ∈ B, the map π being given on X by
π(z, ζ) = z.

Let us show that, for such an ordered pair, there exists a unique u ∈ C modL
for which z = ℘(u), ζ = ℘′(u). The function ℘ being elliptic of order 2, the equation
℘(u) = z has two simple roots or one double root, modulo L (corollary of theorem 7).
In the second case, ℘′(u) = 0, and so z ∈ {e1, e2, e3}, a case temporarily excluded.
As moreover ℘ is even and ℘′ odd and as z determines ζ up to sign, the result
follows.

Let π1, π2 and π3 denote points of C where ℘ takes values e1, e2 and e3, B′

the set of u ∈ C distinct from π1, π2, π3 and 0, modL, and let Ω be the image of
B′ in C/L, an open subset whose complement consists of the classes of π1, π2, π3

and 0. We associate the element j(u) of X given by (4) to all u ∈ B′ . Taking the
quotient modL, j defines a bijection from Ω onto X.
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Let us show that j is an isomorphism between the non-compact Riemann sur-
faces X and Ω. Let P = (a, α) be a point of X. In the neighbourhood of P , the
function q(z, ζ) = z−a is a conformal representation of a neighbourhood of P on a
neighbourhood of a since we are on top of a critical point of (3). On the other hand,
if b ∈ C is chosen so that a = ℘(b) and α = ℘′(b), the function ℘ is a conformal
representation of any sufficiently small neighbourhood of b on a neighbourhood of
a since ℘′(b) 6= 0. The composition of u 7−→ ℘(u) and the inverse of (z, ζ) 7−→ z−a
shows that u 7−→ (℘(u), ℘′(u)) = j(u) is clearly also a conformal representation of
a neighbourhood of b on a neighbourhood of (a, α). Thus there is an isomorphism
between Ω and X.

j now needs to be defined at the four points of C/L that are not in Ω, i.e. at
u ≡ π1, π2, π3 or 0 modL.

Let us first analyze the surface X̂ on top of a neighbourhood of a = e1 = ℘(π1).
Let (notation of Chap. X, n◦ 4) D(a)∗ be a pointed disc centered at a not containing
any of the other points ej . The inverse image π−1[D(a)∗] ⊂ X is a covering of order
2 of D(a)∗. Let us show it is connected. Otherwise, it would be possible to define
two uniform branches f(z) of equation (2) (Chap. X, theorem 5 for k = 1) in the
neighbourhood of a, i.e two solutions of

f(z)2 = 4(z − a)(z − e2)(z − e3)

holomorphic for sufficiently small |z− a| > 0. Such a function f would be bounded
in the neighbourhood of a, hence holomorphic on a closed disc centered at a and
zero at a: this is absurd since the right hand side has a simple zero at a.

Hence this shows that there is a unique point Pi of X̂ on top of each critical
point a = ei. When P ∈ X converges to Pi, the ordered pair (z, ζ) = P converges
in C2 to (ei, 0), which enables us to identify Pi with (ei, 0) = (℘(πi), ℘

′(πi)). Thus
in accordance to (4), we set j(πi) = Pi. This defines j on C − L, i.e. on C/L with
the class of 0 removed. j is clearly continuous.

To show that j is an isomorphism in πi, one needs to use a local uniformizer qi
at Pi. Now, we know [Chap. X, eq. (4.2)] that it can be chosen in such a way that

qi(z, ζ)
2 = z − ei = ℘(u)− ℘(πi) if (z, ζ) = j(u) .(14.8)

As ℘′(πi) = 0, on the other hand, in the neighbourhood of πi,

℘(u)− ℘ (πi) = (u− πi)2 g(u) ,

where g is defined and holomorphic on a neighbourhood of πi and non-trivial at πi,
and so qi[j(u)]2 = (u − πi)2g(u) in the neighbourhood of πi. As g(πi) 6= 0, there
is a holomorphic function such that g(u) = f(u)2 on a neighbourhood of πi. It is
unique up to sign. Both sides of

qi [j(u)]2 = (u− πi)2 f(u)2(14.9)

are holomorphic on a pointed disc D(πi)
∗ since j is holomorphic except at the

points πi. Hence, as D(πi)
∗ is connected, if need be replacing f by −f ,

qi [j(u)] = (u− πi) f(u) .(14.10)

It follows that the left hand side is holomorphic on a neighbourhood of πi, which

shows that j is holomorphic as a map from C − L to the Riemann surface X̂.

Therefore, as j is clearly injective, it is an isomorphism from C − L onto X̂ with

the points projecting onto ∞ ∈ Ĉ removed.
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To finish the construction of j, let us analyze the surface X̂ on top of the
point ∞ of the Riemann sphere. To reduce to finite values of z and ζ, we set
z = 1/z′, ζ = 1/ζ′, which transforms equation (3) into

z′3 − ζ′2
(
4− g2z′2 − g3z′3

)
= 0(14.11)

which has to studied in a neighbourhood of z′ = 0, a value where it has the double
root ζ′ = 0. The point at infinity is, therefore, a critical point of the initial equa-

tion (3). If there were two points of X̂ on top of∞, the algebraic function ζ′ = F(z′)
defined by (11) would decompose into two uniform branches f(z′) and −f(z′) in a
neighbourhood of 0, and by (11), one would have f(z′)2 = z′3g(z′) with g(0) = 1/4.

This is obviously impossible. So there is a unique point P∞ of X̂ projecting onto

the point z = ∞ of Ĉ, with a local uniformizer q∞ satisfying q∞(z′, ζ′)2 = z′ as
above or, coming back to the initial variables,

q∞(z, ζ)2 = 1/z ,

which holds for large |z|.
To define j at 0, it is natural to set j(0) = P∞. We still need to show that j

is an isomorphism from a neighbourhood D(0) of 0 onto a neighbourhood of P∞.
However, j(u) = (℘(u), ℘′(u)) on D(0)∗, and so

q∞ [j(u)]2 = 1/℘(u) .

As 0 is a double pole of ℘, 1/℘(u) = u2f(u)2 where f is holomorphic on D(0) and
not zero at 0. The arguments used for neighbourhoods of the other critical points
imply that q∞[j(u)] = uf(u), which ends the proof of theorem 12.

(iii) Addition formula. Corollary 1 of theorem 11 enables us to show for example
that, if f(u) is an elliptic function, then for all n ∈ Z, there is a non-trivial algebraic
relation between functions f(u) and f(nu): it suffices to observe that u 7−→ f(nu)
admits the same periods (as well as others. . . ) as f(u). Ever since the second half
of the 19th century, the study of these relations has given rise to research that has
powerfully contributed to the development of the theory of algebraic equations, in
particular Galois theory. Similarly, for all a ∈ C, there is a relation between f(u)
and f(u+a), in other words an “ addition theorem ”. Abel and Jacobi were familiar
with these results. Particular cases were known even before them. These had been
obtained by explicit calculations sometimes close to wizardry.45

If f is the ℘-function of the lattice L considered, the addition theorem is ob-
tained very simply. To calculate it, suppose for the moment that 2a is not in L.
This condition ensures two propositions used in the proof: (a) the only zeros of the
function ℘(u)−℘(a) are the obvious ones, namely the points a and −amodL ; (b)
℘′(a) 6= 0 since a has just been shown to be a simple zero of ℘(u)− ℘(a).

This being so, the only singularities of the function ℘(u − a) are double poles
at points ω + a, where ω ∈ L. In the neighbourhood of such a point, it is the sum
of 1/(u − a)2 and of a power series in (u − a)2 without any constant term. As on
the other hand ℘ is holomorphic at a, ℘(u) − ℘(a) = ℘′(a)(u − a)[1 + . . .], with
℘′(a) 6= 0 as has just been shown. So the elliptic function

g(u) = ℘(u− a)− ℘′(a)2
/

[℘(u)− ℘(a)]2(14.12)

45 See Houzel’s article in Dieudonné’s Abrégé d’histoire des mathématiques tome 2,
in particular pp. 8–11 that are difficult to understand without referring to sources
since they present little else but results formulated in the notation of the time.
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has at most a simple pole at a. Its other possible poles are the zeros of ℘(u)−℘(a),
i.e. the points u = a or u = −amodL by (a), and these are double poles since
℘′(a) 6= 0. But as ℘′(u) is odd, ℘′(u) +℘′(a) = 0 for u = −a. To remove the double
pole at a, it is, therefore, sufficient to replace function (12) by

h(u) = ℘(u− a)−
[
℘′(u) + ℘′(a)

]2/
4 [℘(u)− ℘(a)]2 .(14.13)

Since, in the neighbourhood of u = a,[
℘′(u) + ℘′(a)

]2/
4 [℘(u)− ℘(a)]2 =

[
2℘′(a) + . . .

]2/
4
[
℘′(a)(u− a) + . . .

]2
=

= (u− a)−2 + . . . ,

and ℘(u − a) = (u − a)−2 + . . . , like g, the new function h, has at most a simple
pole at a.

Thus everything has been done to remove the pole of g at −a, but replacing
g by h introduces a singularity at u = 0, which now needs to be investigated by
writing down the first few terms of the Laurent series of the functions concerned
at the origin.

Since ℘(u) = u−2 + a2u
2 + . . . in the neighbourhood of 0,

℘(u)− ℘(a) = u−2
[
1− ℘(a)u2 + g2u

4 + . . .
]
,

[℘(u)− ℘(a)]2 = u−4
[
1− 2℘(a)u2 + . . .

]
,

[℘(u)− ℘(a)]−2 = u4
[
1 + 2℘(a)u2 + . . .

]
.(14.14)

Similarly, ℘′(u) = −2u−3 + 2a2u+ . . . , and so

℘′(u) + ℘′(a) = −2u−3[1− 1

2
℘′(a)u3 − g2u4 + . . .

]
et [

℘′(u) + ℘′(a)
]2/

4 = u−6 [1− ℘′(a)u3 + . . .
]
.(14.15)

Multiplying (14) and (15) sidewise, it follows that[
℘′(u) + ℘′(a)

]2/
4 [℘(u)− ℘(a)]2 = u−2 [1 + 2℘(a)u2 + . . .

]
=

= u−2 + 2℘(a) + . . . .

As ℘(u− a) = ℘(−a) + u℘′(−a) + . . . = ℘(a)− ℘′(a)u+ . . . ,

h(u) = −u−2 − ℘(a) + . . . .(14.16)

Thus the function h(u) + ℘(u) is holomorphic at the origin, and so at points of L.
Outside L, it has the same singularities as h, hence at most simple poles at points
u = amodL. In other words, h + ℘ is an elliptic function of order ≤ 1, and so is
constant. However, (8) shows that h(u) +℘(u) = −℘(a) + . . . in the neighbourhood
of 0. Therefore, h(u) + ℘(u) = −℘(a), and taking (13) into account, we get

℘(u− a) =
[
℘′(u) + ℘′(a)

]2/
4 [℘(u)− ℘(a)]2 − ℘(u)− ℘(a) .(14.17)
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This result is generally written in its most symmetric form

℘(u+ v) + ℘(u) + ℘(v) =
1

4

(
℘′(u)− ℘′(v)

℘(u)℘(v)

)2

.(14.18)

The proof of (18) was nonetheless based on the assumption that a, or −v in the
notation of (18), is not a half-period. This restriction is irrelevant since, for given
u, both sides of (10) are meromorphic functions of v. If relation (18) holds outside
a discrete subset of C, it does so for every v where both sides are well-defined, in
other words provided none of the three numbers u, v, u+ v is a period.

For u = v, the fraction appearing in (18) obviously needs to be calculated by
passing to the limit, which leads to the duplication formula

℘(2u) + 2℘(u) = ℘′′(u)2
/

4℘′(u)2 .(14.19)

Calculating ℘′′ by differentiating the differential equation of the ℘-function gives

℘(2u) =

[
℘(u)2 + g2

/
4
]2

+ 2g3℘(u)

4℘(u)3 − g2℘(u)− g3
.

The geometric interpretation of (18) consists in considering the curve in C2

having equation

y2 = 4x3 − g2x− g3 .(14.20)

The differential equation of the ℘-function gives a parametric representation

u 7−→
(
℘(u), ℘′(u)

)
(14.21)

of it, as was was seen in the proof of theorem 12. If y = mx+ p is the equation of a
line in C2, the x-coordinates of its intersection points with the curve are the roots
of the equation

4x3 − g2x− g3 − (mx+ p)2 = 0 .

Hence, if A = (a, a′), B = (b, b′) and C = (c, c′) are these three points, then
a + b + c = m2/4. Next let u, v and w be parameters, determined modL, of the
points A, B and C. The slope of the line AB being

m =
(
b′ − a′

)/
(b− a) =

[
℘′(v)− ℘′(u)

]/
[℘(v)− ℘(u)] ,

we get

℘(u) + ℘(v) + ℘(w) =
1

4

[
℘′(v)− ℘′(u)

]2/
[℘(v)− ℘(u)]2 .

Comparing with the addition formula, we conclude that ℘(w) = ℘(u+ v), whence
w = ±(u+v). As u, v and w can be arbitrarily permuted, u+v+w = 0. Therefore,
the addition formula says that the points with parameter u, v and −(u+v) of curve
(20) are aligned.

These calculations assume that none of the points u, v, u+v is in L. In particular
there is no point O on the curve such that A + O = O for all A since it would
correspond to the value u = 0 of the parameter. To get rid of this restriction,
we need to work in the complex projective plane P2(C) and replace (19) by the
equation

4x3 − y2t− g2xt2 − g3t3 = 0(14.22)



348 XII – The Garden of Modular Delights

where x, y, t denote the standard homogeneous coordinates [Chap. IX, § 4, n◦ 11,
(iii)] in P2(C), which adds a point “ at infinity ” to the curve having homogeneous
coordinates (0, 1, 0). Map (21) can then be defined for all u ∈ C: if u is not in
L, it associates the point with homogeneous coordinates (℘(u), ℘′(u), 1) to u. In
the neighbourhood of 0, we for example replace these homogeneous coordinates
by (u3℘(u), u3℘′(u), u3), and find the point (0,−2, 0) at the limit, equivalently, the
point (0, 1, 0) at infinity of the projective curve. Map (21) becomes injective when it
is interpreted as a map from C/L to P2(C). Its image is precisely curve (22). All this
is simply a restatement of theorem 12. As the composition law (u, v) 7−→ u+v in C
passes to the quotient by the subgroup L, it induces a commutative group structure
on C/L, hence also on curve (14). Its identity element is then the already O with
homogeneous coordinates (0, 1, 0) we have already found, i.e. the only intersection
point of (21) with the line at infinity of P2(C) and hence an inflection point of
the curve. If A, B are two points of the curve, the point C = A + B given by
the composition law is just the symmetric point with respect to Ox of the third
intersection point of the line AB (or, if A = B, of the tangent at A) with the curve.

Exercise 4. Give a geometric interpretation for the equality

A+ (B + C) = (A+B) + C .

To go further than this brief overview, it is necessary to go deeper into the much
more general theory of Abelian varieties; a far too extensive program.
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§ 5. SL2(R) as a Locally Compact Group

15 – Subgroups, Invariant Measure

(i) Actions of SL2(R) on the half-plane. In the theory of modular or more generally
automorphic functions, one uses the group46 G = SL2(R) of matrices

g =

(
a b
c d

)
with a, b, c, d ∈ R , ad− bc = 1 ,

and so

g−1 =

(
d −b
−c a

)
.

Setting

gz = (az + b)/(cz + d)

in order to simplify notation and observing that

Im(gz) = |cz + d|−2 Im(z)(15.1)

has the same sign as Im(z), one sees that G acts on the upper half-plane

P : Im(z) > 0

by conformal representations z 7−→ gz. These are the only ones: this is an easy
classic result. For all z, z′ ∈ P , there clearly exists g ∈ G such that z′ = gz. In fact,
only matrices with c = 0 need be considered.

If Γ is an arbitrary subgroup of G, the stabilizer of any z ∈ P in Γ is the
subgroup Γz of γ ∈ Γ such that γz = z. For Γ = G, I will rather denote it by Kz.
The reason for this will readily become apparent. Writing z = xi for x ∈ G, one
need only search for elements g such that gxi = xi, i.e. such that x−1gx ∈ Ki. This
subgroup is the set of matrices such that a = d, c = −b, hence of the form

k(t) =

(
cos 2πt sin 2πt
− sin 2πt cos 2πt

)
(15.2)

with real t. Ki, denoted simply K, is compact and isomorphic to R/Z or T. So in
the general case,

Kz = xKx−1 if z = xi .

This is a compact subgroup like K.
As every z ∈ P is the image of some i under a unique g ∈ G modK, P may

be identified with the homogeneous space G/K, even from a topological point of
view. Thus G acts properly on P , and more generally so does any closed subgroup
Γ , for example discrete, of G (Chap. XI, n◦ 15, theorem 24). In particular, the
quotient space Γ\P is locally compact and for all compact sets A,B ⊂ P , the set
of γ ∈ Γ such that γA∩B 6= ∅ is compact, and so finite if Γ is discrete. The theory
of automorphic functions would be impossible without these two results.

(ii) Automorphic forms as functions on G. It is convenient to set

46 Some authors prefer to use the group GL+
2 (R) of matrices with determinant > 0.
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J(g; z) = cz + d .(15.3)

Thus d(gz)/dz = J(g; z)−2, Im(gz) = |J(g, z)|−2 Im(z), and

J(g′g; z) = J(g′; gz)J(g; z).(15.4)

This last formula is basic. As J(e; z) = 1, it follows that

J(g−1; gz) = J(g; z)−1 .(15.4’)

These functions are needed for functional equations of automorphic functions.
Given a discrete subgroup Γ de G, for example the modular group SL2(Z) = G(Z)
of integer matrices,47 I will say that a function f(z) – not necessarily holomorphic
or meromorphic, except in the classical theory – satisfying

f(γz) = J(γ, z)rf(z) for all γ ∈ Γ(15.5)

is a generalized automorphic form of integer weight r for Γ . For G(Z), the most
obvious examples are the functions

G2n(z) =
∑

(cz + d)−2n

of the theory of elliptic functions (§ 3, n◦ 13).
Associating the function

Lr(x)f : z 7−→ J(x−1; z)−rf(x−1z)(15.6)

to every f(z) in P and to every x ∈ G, for each r ∈ Z, one gets linear operators
Lr(x) in the vector space of numerical functions defined on P . By definition, for
x, y ∈ G,48

Lr(x)Lr(y)f(z) = J
(
x−1; z

)−r
Lr(y)f

(
x−1z

)
=

= J
(
x−1; z

)−r
J
(
y−1;x−1z

)−r
f
(
y−1x−1z

)
=

= J
(
y−1x−1; z

)−r
f
(
y−1x−1z

)
= Lr(xy)f(z) ,

whence

Lr(x)Lr(y) = Lr(xy) .(15.7)

If Γ is a discrete subgroup of G, the functional equation

f(γz) = (cz + d)rf(z)

47 The reasons for the notation G(Z) are as follows. Let G ⊂ SLn(C) be a group
of matrices g = (gij) defined by the condition det(g) − 1 = 0 and polynomial
equations pi(g) = 0 with coefficients in Z. For every commutative ring A con-
taining Z, one can then consider the set G(A) ⊂ SLn(A) of solutions with coef-
ficients gij ∈ A. It is a subgroup of SLn(A), a result which is less obvious in the
general case than in those we will encounter here. The case of an algebraic sub-
group of GLn reduces to the previous one by associating the “ diagonal ” matrix
(x,det(x)−n) of order n+1 to every matrix x ∈ GLn. For a ring A not containing
Z, for example a field whose characteristic p 6= 0 divides the coefficients of the
pi, it may be that G(A) = SLn(A) or GLn(A). . .

48 Recall that, as in Chap. IX, a notation like Lr(g
−1)f(z) denotes the value of the

function Lr(g
−1)f at the z.
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then becomes

Lr(γ)f = f for all γ ∈ Γ .

All this looks like translation operators of group theory, and in fact, easily reduces
to them. For example, for r = 0, one can associate the function

f0(g) = f(z) if z = gi

on G to every function f on P . This gives all the solutions of

ϕ(gk) = ϕ(g)

and clearly,

f(γz) = f(z)⇐⇒ f0(γg) = f0(g) .

For r 6= 0, we associate the function

fr(g) = Lr
(
g−1) f(i) = J(g; i)−rf(gi) = (ci+ d)−rf

(
ai+ b

ci+ d

)
(15.8)

to f , where the Lr are defined as above. For x ∈ G, let us set f ′ = Lr(x)f and let
f ′r be the function corresponding to f ′ on G. Applying (8) to f ′ and using (7) gives

f ′r(g) = Lr
(
g−1) f ′(i) = Lr

(
g−1)Lr(x)f(i) = Lr

(
g−1x

)
f(i) = fr

(
x−1g

)
.

So the map f 7−→ fr transforms the operator Lr(x) into the left translation operator

L(x)ϕ = εx ∗ ϕ g 7−→ ϕ
(
x−1g

)
,(15.9)

which brings us back to a situation familiar in group theory and to the “ commutative
diagram ”

L(x)
fr −−−−−−−−−−−→ f ′rx x

Lr(x)
f −−−−−−−−−−−→ f ′

Since the relation Lr(x)f = f is equivalent to L(x)fr = fr, for all γ ∈ G,

f ′(z) = J(γ; z)−rf(γz)⇐⇒ f ′r(g) = fr(γg) .(15.10)

For every subgroup Γ of G, going from f to fr thus transforms the solutions of (5)
into left Γ -invariant functions.

Independently of any subgroup Γ , function (8) has another quasi-invariance
property. Let us consider the subgroup K in G. For matrix (2) with parameter t,

J(k; i) = exp(−2πit) = e(−t) ;(15.11)

the definition of fr then shows that

fr(gk) = J(gk; i)−rf(gki) = J(g; i)−rJ(k; i)−rf(gi) = J(k; i)−rfr(g) .

So

fr(gk) = fr(g)χr(k) for k ∈ K , g ∈ G ,(15.12)
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where the functions

χr(k) = e(rt) = J(k; i)−r for k = k(t)(15.13)

are characters of the compact group K. Reversing the order of calculations shows
that conversely, for every function ϕ of weight r on G, where a function of weight r
on G designates a solution of (12), conversely there is a function

f(z) = J(g; i)rϕ(g) (z = gi)

on the half-plane P such that ϕ = fr. It will sometimes be written ϕP (z). Clearly,
the set Fr(G) of functions of weight r on G is stable under left translations and
every function ϕ on G at least slightly reasonable can be represented by a series
of functions of weight r: it suffices to expand k 7−→ ϕ(gk) as a Fourier series. Let
Hr(G) denote the set of functions of weight r induced by holomorphic functions on
P . They will sometimes be called holomorphic functions of weight r on G.

We start from a generalized automorphic form f of weight r for a subgroup Γ .
The corresponding function fr then satisfies

fr(γgk) = fr(g)χr(k)

and this relation is precisely functional equation (5).
We have thereby obtained a result which, judging from some recent books, does

not seems to be yet adopted by all experts of the classical theory though it has been
known at least since 1950. Despite being easy – it would take more to trivialize the
theory of automorphic functions – it ought to be stated:

Theorem 13. Let r be a rational integer and to every function f defined on the
upper half-plane P let us associate the function on G = SL2(R) defined by

fr(g) = J(g; i)−rf(gi) .

The functions obtained are characterized by the relation

ϕ(gk) = ϕ(g)χr(k) for all k ∈ K .

For all γ ∈ G = SL2(R), the functional equation

f(γz) = J(γ; z)rf(z)(15.14)

is equivalent to

fr(γg) = fr(g) .(15.15)

In the most classical theory, Γ is the subgroup SL2(Z) of integer matrices
which, as already mentioned, I will often denote by G(Z). But there are many
other interesting groups Γ , in particular the congruence subgroups of the modular
group G(Z). To define them, we choose an integer N > 1 and, for any matrix
γ ∈ G(Z), let γN denote the matrix obtained by reducing the entries of γ modN .
This gives rise to a homomorphism

SL2(Z) −→ SL2(Z/NZ)

which is surjective (exercise). Its kernel, written Γ (N), is thus the set of γ such
that γ ≡ 1(modN). This being so, the congruence subgroups of G(Z) are those
containing some Γ (N). The group Γ (θ) of the Jacobi function, generated by z 7−→
−1/z and z 7−→ z + 2, contains Γ (2).
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As G(Z) contains the matrix −1, condition (14) clearly has no solution f 6= 0
if r is odd. But the group Γ (N) does not contain the matrix −1 for N ≥ 3, so that
r can take any values.

There is also the much more general class of Poincaré’s Fuchsian groups, which
will be defined later. They are not characterized by arithmetic conditions, so that
in their case, results easily proved for G(Z) – convergence of Eisenstein series,
construction of fundamental domains, etc. – require more complicated arguments.
This inconvenience is in fact an advantage for those who want to understand the
subject as it gets rid of ad hoc arguments that cannot be generalized.

(iii) Subgroups of SL2. Clearly,

J(g; z) = 1 for all z ⇐⇒ g =

(
1 u
0 1

)
= x(u)(15.16)

for some u ∈ R. The set of these matrices is a subgroup U of G which acts by
translations z 7−→ z + u on the half-plane. Instead of x(u) we will often write u, in
other words, make no distinction between the matrix x(u) and its parameter u.

Clearly, by (3),

J
(
g′g; z

)
= J(g; z) for all z ⇐⇒ g′ ∈ U ,(15.17)

or

J
(
g′; z

)
= J(g; z) for all z ⇐⇒ g′ ∈ Ug .(15.17’)

Hence the function z 7−→ J(g; z) only depends on the coset Ug of g modulo U and,
in fact, characterizes it.

We will also constantly need the subgroup49 B of triangular matrices (c = 0).
It acts on P by similitudes z 7−→ az + b with a real > 0 and b ∈ R. If A denotes
the subgroup of matrices

h =

(
t 0
0 t−1

)
= h(t) , t 6= 0 ,(15.18)

and A+ the subgroup t > 0 of A, then clearly, any b ∈ B can be written in a unique
way as b = hu with h ∈ A and u ∈ U and hUh−1 = U for all h ∈ A:(

t 0
0 t−1

)(
1 u
0 1

)(
t−1 0
0 t

)
=

(
1 α(h)u
0 1

)
where α(h) = t2 .(15.19)

The subgroups gBg−1 of G are called Borel subgroups of G. As any matrix in
GLn(R) with real eigenvalues is well known to be the conjugate of a triangular
matrix, it follows that any g ∈ G satisfying this condition belongs to a Borel
subgroup.

Introducing the matrix50

w =

(
0 −1
1 0

)
= S(15.20)

49 Borel (Armand)’s initial, who made much use of it in far less trivial situations. In-
cidentally, let me mention his Automorphic Forms on SL2(R) (Cambridge Tracts,
1997), a presentation of the new theory (Maaß-Selberg) of non-holomorphic auto-
morphic functions for a Fuchsian group from a purely group-theoretic viewpoint.

50 The character S is used in the theory of modular functions (z 7−→ −1/z) ; the
character w, Hermann Weyl’s initial, refers to the theory of semisimple groups.
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which acts by z 7−→ −1/z on P , we get

G = B ∪BwB(15.21)

(Bruhat decomposition in a trivial case).51 Since B = AU and Aw = wA, every
g /∈ B can even be written as

g = uwb with u ∈ U , b ∈ B .

An elementary calculation shows that this decomposition is unique. Analogous sub-
groups are encountered in all semisimple Lie groups and all linear algebraic groups
over an arbitrary field.

Exercise 1. Every matrix g such that c 6= 0 can be written in a unique way as

g = x
(
u′
)(1 0

c 1

)
x
(
u′′
)
.(15.22)

Let us give some other ways of writing g ∈ G using subgroups already defined.
The first one is the Iwasawa decomposition in a trivial case. It consists in writing
that

g = bk = uhk

with b ∈ B, h ∈ A, u ∈ U and k ∈ K. Indeed

x+ iy =

(
1 x
0 1

)(
y

1
2 0

0 y−
1
2

)
i = uhi(15.23)

for all z = x + iy ∈ P , so that setting gi = z, g is the product of the previous
matrix, which is in B, and a matrix leaving the point i fixed, so in K. (23) can also
be written

x(u)hki = u+ α(h)i(15.23’)

for u ∈ U , h ∈ A, k ∈ K, where α(h) = t2 already occurred in (19). The definition
of α can be conveniently generalized to all of G by setting

α(g) = Im(gi) = J(g; i)−2 .(15.24)

Obviously

51 For a considerably less trivial example, see my Cours d’Algèbre, § 15, exercise 23.
In my young days, when traumatizing secondary school children still went on,
we used to learn that

ax+ b

cx+ d
= a/c− (ad− bc)/c2

x+ d/c
,

from which we deduced that every homographic transformation decomposes into
two translations, a homothety and the inversion x 7−→ −1/x. Exercises 20, 21 and
22 will be useful for other similar algebraic properties of SL2 (commutator group,
normal subgroups, definition by generators and relations). These exercises are
inspired from C. Chevalley who proved all this for “ split ” semisimple algebraic
groups over a commutative field in his famous article in Tohoku Math. Journal
and thus started a theory that has in particular led to enormous progress in our
knowledge of finite groups.
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α(uhgk) = α(h)α(g)(15.25)

for all u, h, g, k and, for z = g′i,

J(g; z) = J
(
g; g′i

)
= J

(
gg′; i

)/
J
(
g′; i

)
,

whence

J(g; z)−2 = α
(
gg′
) /
α
(
g′
)

for z = g′i .(15.26)

Two other occasionally useful decompositions consist in putting every g ∈ G in
the form

g = kp = k1hk2(15.27)

with k, k1, k2 ∈ K, p symmetric positive definite and h ∈ A+. For this observe that
if g′ denotes the transpose of g, then the matrix g′g is symmetric positive definite,
and so g′g = p2 where p is symmetric positive definite.52 Then the matrix k = p−1g
satisfies k′k = 1, proving the first result. It shows that P could be identified with
the space of symmetric positive definite matrices by associating to a matrix p of
this type the point z = pi of P .

On the other hand, any symmetric real matrix can be diagonalized over R using
an orthonormal basis change in the Euclidean space it acts on. This means that
p = k−1

2 hk2 with k2 orthogonal, h ∈ A and even h ∈ A+ if p is positive definite.
The first relation (27) thus implies the second one.

(iv) Fixed points and eigenvalues. The eigenvalues of g ∈ G are the roots of the
equation

t2 − Tr(g)t+ 1 = 0.

They are real and distinct if |Tr(g)| > 2; g is then said to be hyperbolic. In this case,
R2 has a basis of eigenvectors of g, so that hyperbolic matrices are the conjugates
in G of the matrices h ∈ A other than ε = ±1.

If |Tr(g)| = 2, g is said to be parabolic. So g has a double eigenvalue equal to 1
or −1. Then there is a vector a ∈ R2 such that g(a) = εa with ε = ±1. Choosing
b ∈ R2 non-proportional to a, g(b) = ua+εb for some u ∈ R. Thus g is the conjugate
of a matrix u ∈ U , up to the factor ε. Therefore, in both cases, g belongs to a Borel
subgroup of G.

If |Tr(g)| < 2, g is said to be elliptic. Its eigenvalues are imaginary and g can
no longer be triangularized or diagonalized over R in this case. To bring back g in a
standard subgroup of G, we look for the fixed points of g in P , defined for all g ∈ G
by gz = z. Assume that g 6= ±1. The solutions are the roots of the equation

cz2 + (d− a)z − b = 0 .

If g est elliptic, then c 6= 0. This is then a quadratic equation with discriminant
Tr(g)2−4 < 0 and hence two distinct conjugate imaginary roots. One of them being
in P , an elliptic matrix is thus the conjugate of an element of K and conversely.

52 For any real symmetric positive definite matrix p, there exists a unique matrix

p
1
2 of the same type such that p =

(
p

1
2

)2
. Existence: diagonalize p. Uniqueness:

diagonalize p
1
2 .
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(v) Invariant measure. There is a left invariant measure dg on G like in the case
of a locally compact group. It is actually also right invariant for the simple reason
that there is no non-trivial homomorphism from G to a commutative group.53

Since P = G/K where K is compact, there is a G-invariant measure m on P ;
it is unique up to a constant factor and∫

ϕ(g)dg =

∫
dm(z)

∫
ϕ(gk)dk (z = gi)(15.28)

for any function ϕ ∈ L(G), or more generally integrable. It can also be obtained by
transforming every function f(z) on P into the function f0(g) = f(gi) and setting∫

f(z)dm(z) =

∫
f0(g)dg(15.28’)

where dg is a left invariant measure on G. The decomposition G = A+UK or,
equivalently, the map b 7−→ bi, enables us to identify B+ = A+U with P = G/K,
which transforms the action of B+ on P into left translations on B+. Considered as
a measure on B+, m must therefore be the left invariant measure db of the subgroup
B+. But for B = AU , one readily checks that it is possible to assume∫

ϕ(b)db =

∫∫
ϕ(hu)dhdu

where dh and du are the obvious invariant measures on A and U . Using calculations
similar to (23), it can be deduced that

dm(z) = y−2dxdy .(15.29)

Its G-invariance can be directly checked using the change of variable formula for
multiple integrals. In fact dm(z) is associated to the invariant differential form
ω = y−2dz ∧ dz.

Formula (28’) defines a positive linear functional on the functions f(z). It is
invariant under the operator L0(x) for all x ∈ G. To obtain non-trivial integrals
invariant under all Lr(x), it suffices to integrate |fr(g)|p (1 ≤ p < +∞) so as to
obtain strictly K-invariant functions on G.

As it is then sufficient to integrate over B, the result is obtained by observing
that, by definition (9) of fr,

fr(b) = yr/2f(z) if z = bi ,

|fr(g)| = yr/2 |f(z)| if z = gi .

Hence ∫
P

yr/2 |f(z)| dm(z) =

∫
G

|fr(g)| dg = ‖fr‖1 .(15.30)

This expression is invariant under operators Lr(x). The same is true for the integral(
f ′|f ′′

)
r

=

∫
P

yrf ′(z)f ′′(z)dm(z) =
(
f ′r
∣∣ f ′′r ) ,(15.30’)

53 An algebraic proof would require showing that, as an abstract group, G is gen-
erated by its commutators xyx−1y−1.
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the inner product on L2(G). Hence generally speaking, one can define spaces Lpr(P )
by the condition that ∫ ∣∣∣yr/2f(z)

∣∣∣p dm(z) < +∞ .

Hans Petersson54 introduced or used these notions without referring to the
notion of a quotient measure. He defined the inner product of two automorphic
forms f ′ and f ′′ of weight r by integrating over a fundamental domain of Γ in
P . Weil’s book, published in 1940 and which German specialists of the time did
not read, gave the correct solution: every discrete subgroup Γ of G acts properly
on G or P , Γ\G is locally compact, and so is Γ\P = Γ\G/K (Chap. XI, n◦ 15,
theorem 24). Associating the function

ϕΓ (g) =
∑

ϕ(γg)(15.31)

to every ϕ ∈ L(G), which gives a map from L(G) onto L(Γ\G), defines a “ natural ”
measure λ on X = Γ\G by setting∫

Γ\G
ϕΓ (x)dλ(x) =

∫
G

ϕ(g)dg .(15.32)

We will always write this formula in the abusive but convenient form∫
Γ\G

ϕΓ (g)dg =

∫
G

ϕ(g)dg .(15.32’)

If one insists on working in the upper half-plane and on defining the inner product
of two automorphic forms f ′ and f ′′ of weight r for Γ in a natural way, then let(

f ′
∣∣ f ′′) =

∫
Γ\G

f ′r(g)f ′′r (g)dg =

∫
Γ\G

yrf ′(z)f ′′(z)dm(z) .(15.33)

Formula (32) holds for every function f ∈ L1(G): then the series
∑
f(γg) converges

absolutely almost everywhere and its sum is in L1(Γ\G). This is a particularly
simple application of the generalized Lebesgue-Fubini theorem [Chap. XI, n◦ 13,
(ii)]: denoting by π the canonical map fromG onto Γ\G and associating the measure

µx : f 7−→
∑

f(γg) where π(g) = x

to each x ∈ Γ\G, relation (32) means that the measure dg of G is the integral of
the measures µx with respect to the measure λ. Theorem 22 of Chap. XI, n◦ 13,
(ii) then shows that f ∈ L1(G) implies that∑

|f(γg)| < +∞ almost everywhere

(and, in good cases, everywhere), that the function fΓ (g) =
∑
f(γg) is integrable

over Γ\G and that (32) again holds.

(vi) The point of view of the unit disc. It is sometimes useful to rewrite the
definitions and results of this n◦ differently using the conformal representation

54 ber eine Metrisierung der ganzen Modulformen (Jahresber. Deutschen Math.
Verein., 49, 1939, pp. 49–75).
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z 7−→ (z − i)/(z + i) = ζ of P on the unit disc D. Easy calculations show that
SL2(R) is replaced by the group G′ of matrices(

a b
b a

)
such that aa− bb = 1 ,(15.34)

K becoming the group K′ of rotations about 0. More precisely, if one chooses a
matrix s with determinant 1 such that z = sζ (which determines it up to the factor
±1), the map

g 7−→ g′ = s−1gs(15.35)

is an isomorphism from G onto G′ transforming every subgroup Γ of G into a
subgroup Γ ′ of G′. In particular, the matrix k(t) ∈ K defined in (2) is transformed
into

k(t)′ = k′(t) =

(
e(t) 0

0 e(−t)

)
(15.36)

as can be easily seen.
On the other hand,

Im(z) =
(
1− ζζ

)/
|1− ζ|2 .(15.37)

Since z = i(ζ + 1)/(1− ζ),

dz = 2idζ/(1− ζ)2 , dz ∧ dz = 4dζ ∧ dζ
/
|1− ζ|4 .

Multiplication by y−2 = |1 − ζ|4(1 − ζζ)−2 gives a measure on D invariant under
group (34), namely

dm(ζ) = 4
(
1− |ζ|2

)−2
dξdη ,(15.38)

the image of dm(z).
The functional equation

f(γz) = J(γ; z)rf(z)(15.39)

of automorphic forms for the discrete group Γ can be easily reworded. Setting
J(g; z) = cz + d for any complex matrix g with determinant 1 and all z ∈ C, the
identities

J
(
gg′; z

)
= J

(
g; g′z

)
J
(
g′; z

)
, d(gz) = J(g; z)−2dz

continue to hold. Using (35), relation (39) becomes

f
(
sγ′ζ

)
= f(γsζ) = J(γ; sζ)rf(sζ) = J(γs; ζ)rJ(s; ζ)−rf(sζ) =

= J
(
sγ′; ζ

)r
J(s; ζ)−rf(sζ) =

= J
(
s; γ′ζ

)r
J
(
γ′; ζ

)r
J(s; ζ)−rf(sζ) .

Associating the function

fD(ζ) = J(s; ζ)−rf(sζ) = J(s; ζ)−rf(z) = J(s−1; z)rf(z)(15.40)

to f(z), which is holomorphic if and only if so is f , we thereby get the functional
equation
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fD(γ′ζ) = J(γ′; ζ)rfD(ζ) ,(15.41)

which replaces (39). Note that, for all f ,

fD(ζ) = (z + i)rf(z) ,(15.41’)

up to a factor ±
√

2.
Everything that has been said above for integer r of operators Lr(g) in the

space of functions on P can be trivially transposed. The formulas are the same. On
the other hand, (37) and (40) show that

yr/2f(z) = (1− ζζ)r/2(1− ζ)−rJ(s, ζ)rfD(ζ) .

As s has determinant 1,

J(s; ζ)−2 = dz/dζ = 2i(1− ζ)−2 .

So J(s; ζ) = (1 − ζ)/(2i)
1
2 . This is the value of i

1
2 that should be used depending

on the matrix s chosen. Hence

yr/2f(z) = cr(1− ζζ)r/2fD(ζ) ,(15.42)

where cr = 2r/2(i
1
2 )r.

In theory, all this assumes r is an integer. For non-integer real r, (40) can still
be used to associate a function fD defined on D to every function defined on P : it
suffices to choose once and for all a uniform branch of J(s; ζ)−r on D. Relation (42)
continues to hold if cr is suitably defined. In particular, for all p ≥ 1,∫ ∣∣yr/2f(z)

∣∣pdm(z) =

∫ ∣∣(1− ζζ)r/2fD(ζ)
∣∣pdm(ζ)(15.43)

(up to a constant factor). For p = +∞, we replace the integrals by the norms of
uniform convergence.

16 – The Discrete Series of Representations of SL2(R)

In Chap. VIII, n◦ 12, we defined a space55 H1
r(P ), for all real r = 2k. It is the set

of holomorphic functions on P such that

‖fr‖1 =

∫
yr/2|f(z)|dm(z) < +∞ .

One can more generally define spaces Hpr(P ) by setting

55 The notation adopted here is different from those of chap. VIII: the measure
written dm(z) in Chap. VIII is dxdy . For what follows, the results of Chap. VIII

need to be applied to the measure dµ(z) = yk−2dxdy = yr/2dm(z) in the notation
adopted here, so that here the function %(y) of Chap. VIII is yk−2. Finally I write
H1
r(P ) for the space denoted by H1

k(P ) in chap. VIII, and H1
r(G) for the space

of fr where f ∈ H1
r(P ). This is a closed subspace of L1(G). In the maps that

interest us here, r is an integer, but everything remains valid for all real numbers
r, provided (34) is taken as the definition of the symbol ‖fr‖. The case of a
non-integer real exponent r occurs when SL2(R) is replaced by its universal
covering.



360 XII – The Garden of Modular Delights

‖fr‖p =

(∫ ∣∣∣yr/2f(z)
∣∣∣p dm(z)

)1/p

(p < +∞) ,

‖fr‖∞ = sup
∣∣∣yr/2f(z)

∣∣∣ < +∞ .

For integer r, the spaces which correspond to them on G by theorem 13 of n◦ 15,
(ii) are

Hpr(G) = Hr(G) ∩ Lp(G) .

For all r ∈ R, Hpr(P ) is complete and in fact convergence in mean implies
compact convergence in P [Chap. VIII, n◦ 4, (iv)], or in G if r ∈ Z. For integer r,
these spaces play an important role in the theory of automorphic functions as well
as for harmonic analysis on the group G. The same is true for non-integer r – for
some time now, experts have been devoting much energy to the study of modular
forms of weight 1/2, 1 and 3/2 –, but then we must accept to replace G by its
universal covering, a topic that will not be broached in this chapter.56 Nonetheless,
for a real r, it should be observed that the formula

Lr(g
−1)f(z) = J(g; z)−rf(gz) ,

though it is not well-defined for all g ∈ G, does not raise any difficulties for g ∈ B+:
it suffices to set

Lr(b
−1)f(z) = trf(t2z + u) for b =

(
t t−1u
0 t−1

)
, t > 0(16.1)

defining as usual tr = exp(r log t). We thereby get a representation of B+ on each
Hpr(P ). This remark will prove useful later, so will the expression

‖f‖22 =

∫
|fr(b)|2db

of the norm on H2
r(P ). This equality is obvious since dg = dbdk for g = bk.

We start by recalling and completing the properties of functions of H1
r(P ).

(i) Integrable holomorphic functions on the half-plane. Let us make the weaker
assumption ∫

Im(z)<T

yr/2 |f(z)| dm(z) < +∞ for all T > 0 .(16.2)

56 See a detailed construction in R. Godement, Introduction à la théorie des groupes
de Lie (Springer, 2003), § 2, n◦ 7. An element of the covering is an ordered pair
g = (g, ω) where the continuous and real-valued function ω(z) satisfies

J(g; z) = |J(g; z)|e[ω(z)] ,

and so is one of the uniform branches in P of the “ function ” Arg(cz+ d), up to
the factor 2π. Multiplication is defined by(

g′, ω′
) (
g′′, ω′′

)
= (g, ω) where g = g′g′′ , ω(z) = ω′

(
g′′z
)

+ ω′′(z) .

G cannot be realized as a matrix group. On forms of weight 1/2, see the somewhat
opaque Chap. IV of Neal Koblitz, Introduction to Elliptic Curves and Modular
Forms (2d ed., Springer, 1993).
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As was seen in Chap. VIII by comparing it to the integral of f over a horizontal
strip of finite width, the series

∑
f(z + n) and hence all its derived series converge

normally in all compact subsets of P . The function x 7−→ f(x + iy) and all its
derivatives are therefore integrable and tend to 0 at infinity. The Fourier transform
of f(x + iy) is continuous and O(t−N ) for all N > 0, and thus is integrable. The
Fourier inversion formula can, therefore, be applied. But integrating along the con-
tour of a horizontal rectangle whose vertical sides tend to infinity, we had shown
that the integral

f̂(t) =

∫
Im(z)=y

f(z)e(−tz)dz = e(−ity)

∫
f(x+ iy)e(−tx)dx(16.3)

does not depend on y. Then the inversion formula becomes

f(z) =

∫
f̂(t)e(tz)dt(16.4)

and shows that f is a complex Fourier transform. Finally, the Poisson summation
formula applied to x 7−→ f(x+ iy) shows that∑

f(z + n) =
∑

f̂(n)e(nz) ,(16.5)

both series converging normally in every horizontal strip of finite width. All this
remains necessarily true if f ∈ H1

r(P ).
Moreover, by (3), ∣∣∣f̂(t)

∣∣∣ exp(−2πty) ≤
∫
|f(x+ iy)| dx ,

whence ∫ T

0

∣∣∣f̂(t)
∣∣∣ exp(−2πty)yk−2dy ≤

∫
y≤T

∣∣∣yr/2f(z)
∣∣∣ dm(z) < +∞ .

If T < +∞, the left hand side is finite if and only if k > 1, i.e. if r > 2, a
condition which is thus necessary for the existence of functions f 6= 0 satisfying (2).
If T = +∞, the integral in y diverges for t ≤ 0, so that convergence also supposes

that f̂(t) = 0 for all t ≤ 0 since f̂ is continuous. Hence finally,

f(z) =

∫ +∞

0

f̂(t)e(tz)dt for all f ∈ H1
r(P ) .(16.6)

For r > 2, as we have already checked that the functions (z − w)−p are in H1
r(P )

for all w ∈ P provided p > r, it finally follows that H1
r(P ) 6= {0} if and only if

r > 2.
To go further than these results of Chap. VIII, let us start by finding upper

bounds for f̂(t) and f(z) for f ∈ H1
r(P ). Since yr/2f(z) is integrable [with respect

to dm(z), as usual in this context] and e(tz) is bounded by 1 in P for t ≥ 0, one
can compute∫

yr/2f(z)e(tz)dm(z) =

∫
yr/2−1d∗y

∫
f(x+ iy) exp(−2πty)e(−tx)dx =

= f̂(t)

∫
yr/2−1 exp(−4πty)d∗y =

= (4πt)1−r/2Γ (r/2− 1) f̂(t) .
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The left hand side being bounded above by57 ‖fr‖1 =
∫
yr/2|f(z)|dm(z), we suc-

cessively deduce that

t1−r/2
∣∣∣f̂(t)

∣∣∣ ≤ c1(r) ‖fr‖1 ,

|f(z)| ≤
∫ ∣∣∣f̂(t)e(tz)

∣∣∣ dt ≤ c1(r) ‖fr‖1
∫
tr/2 exp(−2πty)d∗t ,(16.7)

yr/2 |f(z)| ≤ c2(r) ‖fr‖1(16.8)

with constants

c1(r) =
(4π)r/2−1

Γ (r/2− 1)
, c2(r) = (2π)−r/2Γ (r/2)c1(r) .

Since yr/2f(z) is bounded on P , one can also deduce that

H1
r(P ) ⊂ Hpr(P ) for all p ≥ 1 .(16.9)

For integer r, |fr(g)| = |J(g; i)−rf(z)| = yr/2|f(z)|, so that fr is bounded on G.
Similarly,

‖fr‖∞ ≤ c2(r) ‖fr‖1(16.8’)

and, instead of (9),

H1
r(G) ⊂ Hpr(G) for 1 ≤ p ≤ +∞ .(16.9’)

(8’) also shows that, in H1
r(G), convergence in mean implies uniform convergence

on G and not only on every compact subset.

D

A

−t

v'

v''

0 t

C

B

z

Fig. 3.

Exercise 1 [direct proof of (8)]. (a) Applying Cauchy’s formula to the contour
ABCD above and making t tend to +∞, show that

57 I use this convenient notation despite the fact that the function fr(g) is not
well-defined for non-integer r.
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2πif(z) =

∫
Im(w)=v′

f(w)

w − z dw −
∫
Im(w)=v′′

f(w)

w − z dw

for 0 < v′ < Im(z) < v′′, the integrals being convergent. Let c′ and c′′ be the values,
independent of v′ and v′′, of these two integrals. (b) Let B be the horizontal strip
v′′1 ≤ Im(w) ≤ v′′2 . Show that, for Im(z) < v′′1 < v′′2 ,∣∣∣∣∫

B

vr/2f(w)

w − z dm(w)

∣∣∣∣ ≤ ‖fr‖1
v′′1 − Im(z)

.

Computing the left hand side in terms of c′′, v′′1 and v′′2 , show that c′′ = 0 and
that

2πif(z) =

∫
Im(w)=v

f(w)

w − z dw for 0 < v < Im(z) .(16.10)

(c) For 0 < T < Im(z), compute the integral∫
v≤T

vr/2f(w)

w − z dm(w)

and deduce that yr/2f(z) is bounded on P .

For p = 2, (9) proves the convergence of the integral

‖fr‖22 =

∫
yr |f(z)|2 dm(z) =

∫
yr−1d∗y

∫
|f(x+ iy)|2 dx

for all f ∈ H1
r(P ). However, for given y, f(x+iy) is bounded by (8), and integrable,

and so is in L2(R) ∩ L1(R). Its Fourier transform, namely f̂(t)e(ity), is, therefore,
in L2(R). Plancherel’s formula then shows that∫

yr |f(z)|2 dm(z) =

∫∫
yr−1 exp(−4πty)

∣∣∣f̂(t)
∣∣∣2 dtd∗y =

=

∫∫
yr−1 exp(−4πy)

∣∣∣f̂(t)
∣∣∣2 t1−rdtd∗y =

= (4π)1−rΓ (r − 1)

∫ ∣∣∣f̂(t)
∣∣∣2 t1−rdt .

This calculation is justified by LF since it only concerns positive functions. It follows
that, for all f ∈ H1

r(P ), ∫
t1−r

∣∣∣f̂(t)
∣∣∣2 dt < +∞ ,(16.11)

which improves (7) but without characterizing the functions f̂ (see theorem 15
below). Finally, the identity 4(f |g) = . . . shows that, more generally, for f, g ∈
H1
r(P ),

(fr| gr) =

∫
yrf(z)g(z)dm(z) =

= c3(r)

∫
f̂(t)ĝ(t)t1−rdt

where c3(r) = (4π)1−rΓ (r − 1) .(16.12)
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(ii) The spaces Hpr of the unit disc. We saw at the end of the previous n◦, whose
notation we keep, that associating the function

fD(ζ) = J(s; ζ)−rf(sζ) = J(s; ζ)−rf(z) = J(s−1; z)rf(z)

on the unit disc D to every function f on P gives

yr/2f(z) =
(
1− |ζ|2

)r/2
fD(ζ) ,

up to a constant factor. So, for p < +∞,the space Hpr(P ) is transformed into the
space Hpr(D) of holomorphic functions on |ζ| < 1 satisfying∫ ∣∣∣(1− |ζ|2)r/2 ϕ(ζ)

∣∣∣p dm(ζ) < +∞(16.13)

where dm(ζ), proportional to (1 − |ζ|2)−2dξdη, is an invariant measure on D. In
polar coordinates, this becomes∫∫

|ϕ(ζ)|p
(
1− %2

) 1
2
pr−2

%d%dθ < +∞ ,(16.13’)

where integration with respect to p is extended to (0, 1). As∫ 1

0

(
1− %2

) 1
2
pr−2

%d% < +∞⇐⇒ pr > 2 ,

for all r > 2/p, integer or not, Hpr(D) contains every function ϕ(ζ) bounded on
the unit disc. Coming back to the half-plane, this means that, for r > 2/p, the
space Hpr(P ) contains every function f(z) such that (z + i)rf(z) is bounded, for
example the function (z + i)−r, a result that can be easily verified directly. Hence
Hpr(P ) 6= {0} for all real exponent r > 2/p.

This argument supposes p < +∞. For p = +∞, condition (13) is replaced by

sup
(
|1− ζ|2

)r/2 |ϕ(ζ)| < +∞ ,(16.13”)

whence H∞r (D) 6= {0} for all r ≥ 0, including r = 0.
Conversely, let us suppose that Hpr(D) 6= {0}. Though the operator Lr(g) is not

well-defined for all g ∈ G′ if r is not an integer, for all ϕ ∈ Hpr(D) and all t ∈ R,
the function ϕ[e(t)ζ] is clearly still in Hpr(D). This gives a representation of the
group of rotations on Hpr(D), which is obviously continuous and isometric. It can
be decomposed into one-dimensional representations,58 so that there are functions
ϕ 6= 0 in Hpr(D) such that

ϕ [e(t)ζ] = e(t)mϕ(ζ)

for some m ∈ Z. Since ϕ is holomorphic, this requires ϕ(ζ) = cζm and m ≥ 0.
Substituting in (13’) gives

58 This was shown (for every compact group) at the end of n◦ 29, (ii) of Chap. XI
for unitary representations, but the proof and the result are easily generaliz-
able to all representations (H, U) on an arbitrary Banach space: use operators∫
U(k)χ(k)dk, where χ varies in the set of characters of K.
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∫ (
1− %2

) 1
2
pr−2

%pm+1d% < +∞ .

As m ≥ 0, by (13”), the converse reduces to the condition r > 2/p if p < +∞, and
to r ≥ 0 if p = +∞. As a result:

Theorem 14. The space Hpr(P ) is non-trivial if and only if r > 2/p when p < +∞,
or r ≥ 0 when p = +∞.

We had already obtained this result for p = 1 using Fourier transforms, but less
easily.

When r is an integer, one can use the representation Lr of G′ on Hpr(D). For the
matrix k′ = diag(e(t), e(−t)) which corresponds to k(t) ∈ K and for ϕ(ζ) = amζ

m,

Lr
(
k′−1)ϕ(ζ) = J

(
k′; ζ

)−r
ϕ
(
k′ζ
)

= e(t)rf [e(2t)ζ] = e(t)2m+rϕ(ζ)

or, coming back to Hpr(P ), Lr[k(t)−1]f(z) = e(t)2m+rf(z). So setting n = 2m + r
and χn[k(t)] = e(nt) in accordance to (15.13),

Lr
(
k−1) f = χn(k)f with n ≥ r , n ≡ r (mod 2) .(16.14)

For all n of the form indicated, (14) has a unique solution, up to a constant factor.
By (15.41’) for ϕ(ζ) = ζm, it is the function

f(z) = (z + i)−r
(
z − i
z + i

) 1
2
(n−r)

= (z − i)
1
2
(n−r)(z + i)−

1
2
(n+r) .(16.15)

As was seen above, the functions f ∈ Hr(G) represented on the unit disc by a
monomial in ζ are characterized by a character χ of K such that

f(kx) = χ(k)f(x) , i.e. χ ∗ f = f .

For all f ∈ Hr(G), the function χ ∗ f trivially satisfies this condition and on D
obviously corresponds to one of the terms of the power series of fD(ζ), or to 0.
Hence

f(x) =
∑

χ ∗ f(x) for all f ∈ Hr(G) ,

the series converging normally on every compact subset of G as does the power
series of fD on every compact subset of D.

This argument also shows that the subspace of solutions of χ ∗ f = f has
dimension 0 or 1 for all χ. For χ = χr, it is obviously generated by the function
$r which on D correspond to the function 1. It is, therefore, characterized by the
relations

$r ∈ Hr(G) , χr ∗$r = $r , $r(e) = 1 .

For f ∈ Hr(G), let us then consider the function

χr ∗ f(x) =

∫
f(kx)χr(k)dk .

It trivially satisfies the first two conditions imposed on $r, and so is proportional
to it. For x = e, the previous integral equals f(e) since f has weight r. Thus it
equals f(e)$r(x) for all x. Replacing f by L(y−1)f ∈ Hr(G) gives∫

f(ykx)χ(k)dk = f(y)$r(x) for all f ∈ Hr(G) .
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As k varies, the images kx(0) of the point 0 ∈ D under kx describe a circle centered
at 0 and passing through x(0), and the ykx(0) describe the image of this circle
under y, thus a circle whose interior contains the point y(0). So the previous formula
essentially means that integrating fD(ζ) along this circle gives the value of fD at
y(0). As for Baron Cauchy, he did not only integrate over circles. . .

Thus, all this is simply a clever re-writing of standard and easy properties of
power series. The group G is too simple for the power of these methods to be gauged.
If G is only semisimple, with a maximal compact (non-commutative) subgroup K
so that G/K has a complex analytic structure, then one should refer to Harish-
Chandra’s marvelous and far less than semi-simple articles on Discrete series for
semi-simple Lie groups which can be found in his Collected Works (Springer).

(iii) A theorem of Paley-Wiener type for H2
r(P ). Fourier transforms have en-

abled us to associate a function f̂(t) with complex Fourier transform f to each
f ∈ H1

r(P ) In section (i) we obtained properties, but not any characterization,

of these functions. One can also associate Fourier transforms f̂(t) to functions
f ∈ H2

r(P ), and this time characterize them fully, but proofs are more difficult.

Theorem 15. For all f ∈ H2
r(P ), r > 1, there is a measurable function f̂(t) zero

for t ≤ 0, satisfying ∫ ∣∣∣f̂(t)
∣∣∣2 t1−rdt < +∞(16.16)

and for which

f(z) =

∫ +∞

0

f̂(t)e(tz)dt .(16.17) ∫
yrf(z)g(z)dm(z) = (4π)1−rΓ (r − 1)

∫ +∞

0

f̂(t)ĝ(t)t1−rdt(16.18)

for all f, g ∈ H2
r(P ).

Conversely, integral (17) converges for all solutions of (16) and belongs to
H2
r(P ).

Since
∫∫

yr−2|f(z)|2dxdy < +∞, there is a null set N(f) such that∫
|f(x+ iy)|2 dx < +∞ for y /∈ N(f) .

The function fy(x) = f(x+ iy) then has a Fourier transform

f̂y(t) = l.i.m.2
∫ n

−n
f(x+ iy)e(−tx)dx(16.19)

in L2(R), and Plancherel’s formula shows that∫
|f(x+ iy)|2 dx =

∫ ∣∣f̂y(t)
∣∣2dt .

Let us show that there is function f̂(t) such that, for all y /∈ N(f),

f̂y(t) = exp(−2πty)f̂(t) for almost all t ∈ R .(16.20)

To this end, we set
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f̂y,n(t) =

∫ n

−n
f(z)e(−tz)dx

and show that

lim
n∞

[
f̂a,n(t)− f̂b,n(t)

]
= 0(16.21)

for all a, b > 0 and t ∈ R.

Lemma 1. For all functions f ∈ Hpr(P ), p < +∞,

lim
|x|∞

f(x+ iy) = 0

uniformly on every compact subset of R∗+.

Indeed let us suppose that z stays in a strip B : 0 < a ≤ y ≤ b < +∞ and
consider a strip B′ : 0 < a′ ≤ y ≤ b′ < +∞, with a′ < a and b < b′. Let K′ ⊂ B′

be the set of ζ = ξ + iη such that

−1 ≤ ξ ≤ 1 , a′ ≤ η ≤ b′

and set K = K′ ∩B. There is [Chap. VIII, n◦ 4, (iv)] a constant cp such that

|f(z)|p ≤ cp
∫
K′
|f(ζ)|p dm(ζ) for all z ∈ K

and all holomorphic functions on B′. Letting the same horizontal translation z 7−→
z+u act on f , K and K′ replaces the left hand side with f(z+u) and on the right
hand side, K′ with K′ + u. Thus

|f(x+ iy)|p ≤ cp
∫
K′+x

|f(ζ)|p dm(ζ) for a ≤ y ≤ b .

As the integral
∫
|f(ζ)|pdm(ζ) extended to all of the strip B′ converges, the right

hand side clearly tends to 0 as |x|increases indefinitely, qed.
Relation (21) readily follows from the lemma. Integration of f(z)e(−tz) along

the rectangle bounded by horizontals a and b and verticals n and −n shows that

f̂a,n(t)− f̂b,n(t) is indeed the difference between the integrals of f(z)e(−tz) along
the verticals n and −n of strip B. As |e(−tz)| = exp(2πty) is bounded on B,
the product f(z)e(−tz) converges uniformly to 0 as z tends to infinity in strip B,
whence (21).

We can now return to the proof of (20). For all y /∈ N(f), relation (19) can also
be written

f̂y(t) = l.i.m.2 f̂y,n(t) exp(−2πty) ;

for a, b /∈ N(f), the difference f̂a(t)− f̂b(t) is thus the limit in mean of a sequence

converging everywhere to 0, and so (Riesz-Fischer) f̂a(t) = f̂b(t) for almost all t,
whence (20).

This being so, (Plancherel and LF)

‖f‖22 =

∫∫
yr−2|f(z)|2dxdy =

∫
yr−2dy

∫ ∣∣∣f̂(t)
∣∣∣2 exp(−4πty)dt =

=

∫ ∣∣∣f̂(t)
∣∣∣2 dt ∫ yr−1 exp(−4πty)d∗y .(16.22)
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In theory, these are upper integrals. The convergence of the integral in y requiring
t > 0, it follows that

f̂(t) = 0 for almost all t ≤ 0

[and no longer for all t < 0 as was the case in H1
r(P )], then that

(4π)1−rΓ (r − 1)

∫ ∣∣∣f̂(t)
∣∣∣2 t1−rdt = ‖f‖22 < +∞ ,

which proves (16), as well as (18) for f = g, and so for arbitrary f and g by
4(f, g) = . . ..

As f̂(t)t(1−r)/2 and t 7−→ e(tz)t−(1−r)/2 are square integrable over t ≥ 0 for
Im(z) > 0 (and r > 1), integral (17) obviously converges. By (20), the Fourier

transform f̂y(t) = f̂(t)|e(tz)| is integrable for y /∈ N(f); since x 7−→ f(x + iy) is
continuous, the Fourier inversion formula

f(x+ iy) =

∫
f̂y(t)e(tx)dt =

∫
f̂(t)e(tz)dt

is justified for y /∈ N(f). But the second integral is a continuous function of z
(dominated convergence). So (17) holds for all z.

Conversely, starting from a solution of (16), the same arguments show that
integral (17) converges, represents a holomorphic function and (22) that f ∈ H2

r(P ),
qed.

Multiplying the functions f̂(t) by t(1−r)/2, the following statement follows: for
all r > 1, the map associating the function

z 7−→
∫
t(r−1)/2ϕ(t)e(tz)dt

to all ϕ ∈ L2(R+) is an isomorphism from L2(R+) onto H2
r(P ). The typical Paley-

Wiener theorem, which they in effect proved and which is given by all authors,
corresponds to the case r = 1, excluded here because H2

r(P ) = {0} for r ≤ 1. It
characterizes complex Fourier transforms of ϕ ∈ L2(R+). The reader will easily find
the statement and proof based on previous arguments.

(iv) The kernel function of H2
r(P ). The (complete) Hilbert space H2

r(P ) is non-
trivial if and only if r > 1. On it, convergence in norm implies simple (and even
compact) convergence. So, for all z ∈ P , there is (Chap. XI, n◦ 19, theorem 31) a
function Kz ∈ H2

r(P ) such that

f(z) = (f |Kz ) for all f ∈ H2
r(P ) .(16.23)

It can be determined in several ways.
Setting

Kr(z, w) = Kz(w) for Im(z) > 0 , Im(w) > 0 ,

gives

f(z) =

∫
vrKr(z, w)f(w)dm(w) (w = u+ iv) .(16.24)

where Kr is the kernel function of H2
r(P ), a notion invented by Stefan Bergman in

the 1920s- 30s and applicable to any Hilbert space whose elements are holomorphic
functions, as well to many other situations (elliptic partial differential equations).
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For given z, Kr(z, w) is clearly a holomorphic function of w. Relation (23) shows
that (Kz|Kw) = Kz(w). Thus

Kr(z, w) = (Kw,Kz) = Kr(w, z) ,(16.25)

so that Kr(z, w) is holomorphic at z for given w.

First method. We now consider the representation Lr of the subgroup B+ on
H2
r(P ) defined at the start of this n◦. It is obviously unitary. By (15.6), replacing

f by Lr(b
−1) for b ∈ B+ gives

J(b, z)−rf(bz) =
(
Lr(b)

−1f |Kz

)
= (f |Lr(b)Kz) .

This can also be written

(f |Kbz) = f(bz) = J(b; z)
r

(f |Lr(b)Kz) .

Comparing with (23) for bz and taking into account the fact that Kz is determined
by (23), it follows that

Kbz = J(b, z)
r
.Lr(b)Kbz ,(16.26)

which is equivalent to

Kr(bz, bw) = J(b, z)rJ(b, w)
r
Kr(z, w)(16.26’)

or to Kr(tz+ξ, tw+ξ) = t−rKr(z, w) for all t > 0 and all ξ ∈ R. Setting H(z, w) =
(z−w)rKr(z, w) gives a holomorphic function in z and antiholomorphic in w such
that H(tz + ξ, tw + ξ) = H(z, w). So

H(z, w) = H [i, (w − x)/y] ,

an expression which, for given w, must be holomorphic in z. However, H(i, w) is
antiholomorphic in w. Hence its differential with respect to w is proportional to
dw. For given w, the differential of the function z 7−→ H[i, (w − x)/y] with respect
to z is thus proportional to d[(w∗−x)/y] and not to dz if H(i, w) is not a constant.
Thus the only possibility is that H(i, w), and so H(z, w), is constant. Therefore,

Kr(z, w) = cr (z − w)−r(16.27)

and

f(z) = cr

∫
(z − w)−r f(w)vrdm(w) .(16.28)

By a strange coincidence, function (27) appears among those which, in Chap. VIII,
n◦ 12, (iv), eq. (12.23), have proved useful to show that H1

r(P ) 6= {0} if and only
if r > 2: indeed we had shown that the function (z − w)−p is in H1

r(P ) if and only
if both Re(p) > 1 and Re(p) > r/2, hence for p = r > 2. For r > 2, function (27)
is, therefore, in H1

r(P ) and not only in H2
r(P ), and as H1

r(P ) ⊂ H2
r(P ), it follows

that, for r > 2, relation (23) applies to all f ∈ H1
r(P ) – and to all f ∈ H2

r(P ) if
r > 1.

Second method. Show that, for all z ∈ P , there is a function gz ∈ H2
r(P ) such

that

ĝz(t) = tr−1
+ e(tz)(16.29)
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and that f(z) =
∫
f(w)gz(w)dm(w), up to a constant factor. Calculating gz(w),

show that

Kr(z, w) =
r − 1

4π
(z − w)−r .(16.30)

Third method. When r is an integer, it is also possible to work in G. To do
this, we replace H2

r(P ) with H2
r(G) = Hr(G)∩L2(G). As the space of holomorphic

functions of weight r, it is closed in L2(G) and ϕ 7−→ ϕ(x) is a continuous linear
functional for all x ∈ G. Hence there is a unique function ωr ∈ H2

r(G) such that

ϕ(e) = (ϕ|ωr)

and so, replacing ϕ by L(x−1)ϕ,

ϕ(x) =
(
L(x)−1ϕ|ωr

)
= (ϕ|L(x)ωr) .(16.31)

For ϕ = ωr, (31) becomes

ωr(x) = (ωr|L(x)ωr) ,

which shows that ωr is a function of positive type on G [Chap. XI, n◦ 30, (iii)],

hence satisfies ωr(x
−1) = ωr(x). Then, by (31),

ϕ(x) =

∫
ϕ(y)ωr (x−1y)dy =

∫
ϕ(y)ωr

(
y−1x

)
dy ,

in other words,

ϕ = ϕ ∗ ωr .(16.32)

This is relation (24) for G. Once again everything is easier on G than on P or D.
Furthermore, (27) follows readily from this. Indeed, the function ωr = ω̃r sat-

isfies χr ∗ ωr = ωr. Relations (14) and (15) of section (ii) then readily show that,
the corresponding function on the unit disc is the monomial of degree 0 in ζ, hence
that, for a constant cr, ωr corresponds to cr(z + i)−r.

(v) The holomorphic discrete series of irreducible representations of SL2(R).

Theorem 16 (V. Bargmann). For all reals r > 1, the representation Lr of B+

on H2
r(P ) is irreducible. For integer r, the unitary representation Lr of SL2(R) on

H2
r(P ) is irreducible and square integrable.

Let us first suppose that r is an integer. To prove irreducibility, it suffices to
show that any operator A in H2

r(G) commuting with left translations L(x) is a
scalar. It then amounts to showing that the function ω′ = Aωr is proportional to
ωr, since relation Aωr = λωr implies AL(x)ωr = λL(x)ωr. Thus the result follows
since linear combinations of L(x)ωr are everywhere dense in H2

r(G). However, as
ωr is Hermitian symmetric, it satisfies

ωr
(
kgk′

)
= χr(k)ωr(g)χr

(
k′
)

(16.33)

and so L(k−1)ωr = χr(k)ωr. As A commutes with all Lr(k), the function ω′ also
satisfies (33). However, for all characters χ of K, the subspace of f ∈ Hr(G) satis-
fying χ ∗ f = f has dimension 0 or 1. Hence Aωr = λωr.

Finally, the representation is square integrable since its coefficient (ωr|Lr(x)ωr) =
ωr(x) is in L2(G) (Chap. XI, n◦ 32).
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In the general case, this argument no longer holds in this precise form. But it
is still possible to use operators

Lr
(
b−1) f(z) = trf

(
t2z + u

)
for b =

(
t t−1u
0 t−1

)
, t > 0(16.34)

and to show that any operator A in H2
r(P ) commuting with all Lr(b) is a scalar.

As in the computation of the kernel function Kr(z, w), by (23), we associate the
function

KA(z, w) = (AKw|Kz) = AKw(z)

to A . It is holomorphic in z and antiholomorphic in w. By (26) and equality
ALr(b) = Lr(b)A, the function KA satisfies the same functional equation (26’) as
Kr. Now, we have shown that it determines Kr up to a constant factor. Hence
(AKw|Kz) = λ(Kw|Kz), and so A = λ1 since the functions Kz generate H2

r(P ),
qed.

Exercise 2. Associating the function

ϕ(λ) = λ(1−r)/2f̂(λ) ,

to each f ∈ H2
r(P ), show that the question reduces to L2(R+) and operators

ϕ(λ) 7−→ e(uλ)t−1ϕ
(
t−2λ

)
.(16.35)

Conclude that all representations Lr of B+ on H2
r(P ) are mutually equivalent.

Exercise 3. Associate the function

fr(b) = J(b; i)−rf(bi) , ϕ(λ) = λ(1−r)/2f̂(λ) .

to f ∈ H2
r(P ). Show that fr = Jrϕ where Jr is an isomorphism from L2(R+) onto

a minimal closed invariant subspace of the left invariant representation of B+, up
to a constant factor. The irreducible representations of B+ on these subspaces are
equivalent to representation (35). (The group B+ has other irreducible representa-
tions: those obtained by replacing these invariant subspaces with their conjugates,
as well the one-dimensional representations

b 7−→ tiσ , σ ∈ R .

These are the only ones).
Exercise 4. Fourier transforms on H2

r(P ) enable one to reduce operators of B
to formulas (35) in L2(R∗+). For integer r, the group G acts on H2

r(P ), hence on
the functions ϕ(λ). Calculate the effect of the matrix w on these functions. This
will give an integral operator whose kernel can be written using Bessel functions;
see n◦ 22, (iii).

Bargmann did not bother with arguments from functional analysis. By making
the Lie algebra of G act on an arbitrary unitary representation of G, he obtained
symmetric operators not defined everywhere which he assumed to be essentially
self-adjoint (correct but not proved) and deduced the classification of irreducible
representations of G using simple algebraic calculations that will be given in n◦ 29.
He thus calculated explicitly the coefficients using differential equations whose solu-
tions are special functions whose properties were well-known (integrable formulas,
orthogonality relations, asymptotic behaviour, etc.). From this he deduced that
some representations can be realized on spaces of holomorphic or antiholomorphic
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functions59 and that, with respect to a privileged orthonormal basis (the functions
ζn in the unit disc interpretation), the coefficients of the representation are square
integrable and pairwise orthogonal. Some of his methods will be presented in § 8.
They converted Harish-Chandra to group theory; his generalizations are extraor-
dinary, and Bargmann’s physicist arguments were soon justified. But his method
remains the only one60 and, moreover, applies to the universal covering of G. In
n◦ 32 du Chap. XI on Bargmann’s orthogonality methods, the steps to be followed
in this case were clearly set out.

Exercise 5. Let (H, U) be a unitary representation of G. For any character χ of
K, let H(χ) be the subspace of a ∈ H such that U(k)a = χ(k)a, so that H is the
Hilbert direct sum of these H(χ). Assume there exists χ and a ∈ H(χ) such that
H(χ) is one-dimensional and that the elements U(x)a generate H. Show that the
representation is irreducible and that the function ω(x) = (U(x)a|a) satisfies the
functional equation

ω(e)

∫
ω(xky)χ(k)dk = ω(x)ω(y) .

(Any irreducible representation of G is of the previous type: n◦ 30).

(vi) Solutions of the equation f ∗ ωr = f . We showed at the end of section (iv)
that, for integer r, f = f ∗ ωr for any function f ∈ H2

r(G) = L2(G) ∩ Hr(G).
Actually, the map P : f 7−→ f ∗ωr on the space L2(G), is the orthogonal projection
operator onto the closed subspace H2

r(G). Indeed if f ′ is the projection of f on
H2
r(G), then

f ∗ ωr(x) =

∫
f(xy)ωr(y)dy = (f |L(x)ωr) =

(
f ′|L(x)ωr

)
= f ′(x)

since f ′ satisfies (32), whence the result. The fact that P is a projection can also
be deduced from the Bargmann orthogonality relations.

Hence formula (32) characterizes functions f ∈ L2(G)∩Hr(G), but we will need
a similar result for functions about which all that we know is that they are locally
integrable and for which, the expression f ∗ ωr is well-defined. For example, if Γ is
a discrete subgroup of G, this is the case for all f ∈ Lp(Γ\G) for any p.

Lemma 2 (integer r ≥ 2). Let f be a locally integrable function such that f ∗ωr =
g is defined. Then61 g ∈ Hr(G), and f is in Hr(G) if and only if f ∗ ωr = f .

59 A function f(z) is antiholomorphic if its conjugate is holomorphic. Replacing
the functions f ∈ H2

r(P ) by their conjugates and making obvious changes to the
definition of Lr(g) leads to another series of representations on which theorem
16 can be applied. “ Antiholomorphic ” representations are not equivalent to
“ holomorphic ” ones.

60 V. Bargmann, Irreducible unitary representations of the Lorentz group (Annals
of Math., 48, 1947, pp. 568–640) ; see for example Serge Lang, SL2(R) (Addison-
Wesley, 1975 or Springer, 1985). In his Panorama des mathématiques contempo-
raines where Dieudonné proposes a list of “ initiators ” for each major field, in
particular non-commutative harmonic analysis, I cannot find Bargmann, neither
Gelfand and yet, at about the same time, together with Neumark he studied
the group SL2(C) and influenced HC as much as Bargmann. HC told me one
day: semi-simple groups are my friends, I know them all individually. This is not
reflected in his articles, where he always from the onset only considers the most
general case, but. . .

61 As f is not assumed to be continuous, this relation means that g is equal almost
everywhere to the function g′ ∈ Hr(G). The same remark applies to the relation
f ∗ ωr = f .
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We first recall [Chap. XI, n◦ 25, (iv)] that, f ∗ ωr is defined if and only if, for
all p ∈ L(G), ∫∫ ∣∣p(xy)f(x)ωr(y)

∣∣dxdy < +∞ .(16.36)

The function

f ∗ ωr(x) =

∫
f
(
xy−1)ωr(y)dy =

∫
f(y)ωr

(
y−1x

)
dy(16.37)

is then defined almost everywhere and is locally integrable. Associativity of the
convolution product will be used in the cases covered by lemma 3 below.

Let us first suppose that f ∈ Hr(G) and that f ∗ ωr exists (which is obviously
not always true, for example if f = fr where f(z) = ez). For every character χ
of K, the function χ ∗ f ∈ Hr(G) is either trivial or corresponds to a monomial on
D. So

χ ∗ (f ∗ ωr) = (χ ∗ f) ∗ ωr = χ ∗ f

and thus χ ∗ (f ∗ ωr − f) = 0 for all χ, which implies the result because 0 is the
only locally integrable function g such that χ ∗ g = 0 for all χ (exercise !).

Before proving the converse, let us show that there are functions ϕ on L(G)
such that

ϕ ∗ ωr = ωr ∗ ϕ̃ = ωr .(16.38)

To this end we consider the unitary representation (H2
r(G), L) of G. As

ϕ ∗ ωr(x) =

∫
ϕ(y)ωr(y

−1x)dy =

∫
ϕ(y)(L(y)ωr|L(x)ωr) = (L(ϕ)ωr|L(x)ωr) ,

the proof reduces to choosing ϕ in such a way that L(ϕ)ωr = ωr. However, there
exist ϕn ∈ L(G) such that L(ϕn)ωr converges to ωr (take a Dirac sequence). Then

ωr = χr ∗ ωr = L(χr)ωr = limL(χr ∗ ϕn)ωr ;

but the function L(χr ∗ ϕn)ωr = ω′ ∈ H2
r(G) trivially satisfies χr ∗ ω′ = ω′, and so

is proportional to ωr, qed.
Let us now come back to a function f for which f ∗ ωr = g exists. Replacing

f with 0 outside larger and larger compact sets leads to a sequence of functions
fn ∈ L1(G) converging everywhere to f . Then (dominated convergence)

f ∗ ωr(x) = lim fn ∗ ωr(x) = lim gn(x) for almost all x .(16.39)

Since L1 ∗ L2 ⊂ L2 [Chap. XI, n◦ 25, (iv), theorem 35], gn = fn ∗ ωr is in L2, and
so gn ∗ωr ∈ H2

r(G) as was seen above. However the convolution ωr ∗ωr exists since
ωr ∈ L2(G). Hence

gn ∗ ωr = (fn ∗ ωr) ∗ ωr = fn ∗ (ωr ∗ ωr) = fn ∗ ωr = gn

by lemma 3 for dλ(x) = fn(x)dx. Thus the functions gn are in H2
r(G) and, being

dominated by the locally integrable function

p(x) =

∫ ∣∣f (xy−1) ∣∣.∣∣ωr(y)
∣∣dy ,
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converge almost everywhere to g. Let us then choose some ϕ ∈ L(G) satisfying (38).
By lemma 3, gn ∗ ϕ̃ = fn ∗ ωr = gn. Since ϕ is continuous with compact support,
lim gn ∗ ϕ̃(x) = g ∗ ϕ̃(x) as well (dominated convergence ), whence g ∗ ϕ(x) = g(x)
almost everywhere. Furthermore,∣∣gn ∗ ϕ̃(x)− g ∗ ϕ̃(x)

∣∣ ≤ ∫ ∣∣gn(y)− g(y)
∣∣.∣∣ϕ̃(y−1x)

∣∣dy .
If M is the support of ϕ̃, the integral is extended to the compact set xM−1, hence
to a fixed compact set M ′ if x stays in a compact subset A of G. As the functions
|gn(y)− g(y)|, dominated by 2p(y), tend to 0, the right hand side tends uniformly
to 0 on A. The function g = g ∗ ϕ̃ is therefore the limit of functions gn ∈ Hr(G)
with respect to compact convergence, whence g ∈ Hr(G), qed.

The associativity formula used for the convolution product remains to be jus-
tified:

Lemma 3. Let µ and ν dbe two measures such that µ ∗ ν exists. Then

λ ∗ (µ ∗ ν) = (λ ∗ µ) ∗ ν and µ ∗ (ν ∗ λ) = (µ ∗ ν) ∗ λ(16.40)

for all measures λ with compact support.

We showed in Chap. XI, n◦ 25, (ii) that, generally speaking, the previous relation
only involves absolute values of the measures considered and that, for positive
measures, it holds provided∫∫∫

p(xyz)dλ(x)dµ(y)dν(z) < +∞

for all p ∈ L+(G). If λ has compact support, then clearly
∫
p(xyz)dλ(x) = q(yz)

with some q ∈ L+(G). So if µ ∗ ν exists, the upper integral∫
p(xyz)dλ(x)

∫∫
dµ(y)dν(z)

is by definition of µ∗ν finite. Thus Lebesgue-Fubini follows by (40). The same proof
holds if λ ∗ µ exists and if ν has compact support.

The reader is likely to think that, as formula (28) holds for all gn, it also holds
for the limit g making the holomorphy of g obvious. To justify this argument, it is
at the very least necessary to prove a general result enabling us to pass to the limit
in Cauchy’s formula for the functions gn:

Lemma 4. Let U be an open subset of C and (gn) a sequence of holomorphic
functions on U . Suppose that lim gn(z) = g(z) exists almost everywhere and that
there is a locally integrable function q ≥ 0 on U such that |gn(z)| ≤ q(z) for all
z ∈ U . Then the sequence (gn) converges uniformly in every compact set and g is
equal almost everywhere to a holomorphic function.

Compact convergence being a local property, using a translation, it is possible
to work in a disc D : |z| ≤ r contained in U . Choosing numbers r′ and r′′ such that
r < r′ < r′′ assuming the closed disc |z| ≤ r′′ to be contained in U , for all t z ∈ D
and all % ∈ [r′, r′′],

gn(z) =

∫
gn (%e(t)) (%e(t)− z)−1 %e(t)dt .

Using polar coordinates, we get a formula of type
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gn(z) = c

∫∫
gn(w)(1− z/w)−1dudv (w = u+ iv)(16.41)

where integration is over the annulus M : r′ ≤ |w| ≤ r′′. This being so,∣∣gn(w) (1− z/w)−1
∣∣ ≤ q(w) |1− z/w|−1 .

This is an integrable function on M since, almost by definition, q is integrable over
all compact sets [Chap. XI, n◦ 5, (ii)]. It is thus possible to pass to the limit in
relation (41) for the functions gn, proving (41) for g, which is therefore holomorphic.
The convergence of the functions gn on every compact set is obviously uniform: it
follows from the usual upper bounds, qed.

In fact, relation (38) replaces formula (41) and can be applied in far more general
situations (spherical functions) where no complex analytic structure is available.

We will also use the fact that µ∗f ∈ Hr(G) for all f ∈ Hr(G) and all measures µ
with compact support. As Hr(G) is left invariant and closed with respect to the
compact topology, it suffices to show that, on any compact set, for any continuous
function f on G, the function

µ ∗ f(x) =

∫
f
(
y−1x

)
dµ(y)

is the uniform limit of linear combinations of left translations of f . Now, if x stays
in a compact set A and if B is the support of µ, then the integral is extended to
the compact set AB−1 = C. As f is continuous, for all ε > 0, B can be covered by
finitely many open sets Ui such that, for y1, y2 ∈ Ui,∣∣f (y−1

1 x
)
− f

(
y−1
2 x

)∣∣ < ε for tall x ∈ A

(uniform continuity). Replacing the Ui with pairwise disjoint Borel sets Ei ⊂ Ui
and choosing some yi ∈ Ei for all i, we get∣∣∣µ ∗ f(x)−

∑
f
(
y−1
i x

)
µ (Ei)

∣∣∣ ≤∑∫
Ei

∣∣f (y−1x
)
− f

(
y−1
i x

)∣∣ d|µ|(x)

for all x ∈ A. The right hand side is ≤ ε
∑
|µ|(Ei) ≤ ε|µ|(G), qed.
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§ 6. Modular Functions: The Classical Theory

In all of this §, Γ will denote the modular group SL2(Z) = G(Z), unless otherwise
stated.

17 – Fundamental Domain, Modular Forms

(i) Generators of the modular group. The modular group Γ contains the transfor-
mations

T : z 7−→ z + 1 , S : z 7−→ −1/z

corresponding to matrices

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
= w .(17.1)

We start with an essential result:

Theorem 17. The modular group is generated by matrices S and T .

This means that any γ ∈ Γ is for the form T pSqT r . . . with exponents in Z. As
S2 = −1, powers of S can be omitted, if need be by replacing γ with −γ.

The proof if simple. Let a, b, c, d be the entries of γ; we may assume that c ≥ 0.
We will use induction on c. If c = 0, equality ad = 1 requires a = d = ±1, and γ is
then a power of T , up to sign. When c > 0,

Tnγ =

(
a+ nc b+ nd
c d

)
and we choose n in such a way that 0 ≤ a + nc < c (Euclidian division with
remainder). The entries of γ′ = Tnγ then satisfy c′ = c, 0 ≤ a′ < c. As(

0 −1
1 0

)(
a′ b′

c d′

)
=

(
−c −d′
a′ b′

)
,

for γ′′ = Sγ′ = STnγ, the new entry c′′ = a′ satisfies 0 ≤ c′′ < c. The induction
hypothesis then shows that γ′′ is a non-commutative monomial in T and S, up to
sign. Hence so is γ, qed.

Corollary 1. A function f(z) satisfies

f(γz) = J(γ; z)rf(z) for all γ ∈ G(Z)

for some even integer r if and only if

f(z + 1) = f(z) , f(−1/z) = zrf(z) .(17.2)

It goes without saying that for r odd, f is necessarily 0 since −1 ∈ Γ .

(ii) Fundamental domain. The second result is about the explicit determination
of a fundamental domain for Γ acting on the upper half-plane P . This is a classic,
but no longer so useful exercise (seemingly resolved by Gauss in his secret papers): as
such precise results are not available for arithmetic subgroups of general semisimple
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groups, weaker results have to make do, even for classical groups studied by Hermite,
Minkowski, Siegel, etc.

The method is the same as that used for the group of the function θ(z) in § 2,
n◦ 5. For given z ∈ P ,

Im(γz) = y/|cz + d|2 ,(17.3)

which enables us to choose γ in such a way that Im(γz) is maximal. As integral
translations Tn : z 7−→ z+n leave Im(z) invariant, γ can be required to also satisfy
|Re(γz)| ≤ 1

2
. But, our choice of γ implies

Im(γz) ≥ Im(Sγz) = Im(−1/γz) = Im(γz)/|γz)|2 ,

so |γz| ≥ 1 follows. Finally, any z ∈ P can be mapped by Γ to a closed subset F of
P defined by the inequalities

F : |x| ≤ 1

2
, |z| ≥ 1 .(17.4)

By the way, note that the invariant measure on F is finite as is that of any subset
of P contained in the strip |x| ≤M , y ≥ c > 0.

To show that F is really a fundamentally domain for Γ in a strict sense, it is
also necessary to check that two points z′, z′′ of F cannot be equivalent modΓ if
one of them is in the interior of F . So suppose that z′′ = γz′. The entry c of γ
can be assumed to be ≥ 0 (otherwise, replace γ by −γ), so can y′′ ≥ y′ (otherwise
permute z′ and z′′). By (3), the relation y′′ ≥ y′ can be written∣∣cz′ + d

∣∣2 =
(
cx′ + d

)2
+ c2y′2 ≤ 1

and implies |cy′| ≤ 1. However it is sort of obvious that y′ ≥ sinπ/3 for all z′ ∈ F .
Hence c2 ≤ 4/3, and so c = 0 or 1.

If c = 0, then z′′ = z′ + n, which requires z′ and z′′ to be located on the
intersections of the vertical sides of F with a horizontal, γ then being z 7−→ z + 1
or z 7−→ z − 1.

If c = 1, then |z′ + d| ≤ 1, which requires d ∈ {−1, 0, 1} as follows from the
images of F under integral translations. Hence there are again two possible cases.

If d = 0, (4) shows that |z′| ≤ 1, hence that |z′| = 1, and

γ =

(
a −1
1 0

)
=

(
1 a
0 1

)(
0 −1
1 0

)
.

Thus z′′ = a − 1/z′. For |z′| = 1, the point −1/z′ being the symmetric of z′ with
respect to the imaginary axis, for a − 1/z′ to be in F a must be 0 unless z′ and
z′′ are the two vertices62 exp(2πi/3) = j and exp(πi/3) = −j of “ triangle ” F , in
which case a = −1 or +1 may be appropriate according to the case.

If |d| = 1, for |z′| = 1, |z′ + d| ≤ 1 is possible only if either z′ = j and d = 1, or
z′ = −j and d = −1, as indicated above.

To summarize:

Theorem 18. Let F be the subset of the half-plane P defined by inequalities

|z| ≥ 1 , |x| ≤ 1

2
.(17.5)

62 In my youth, the notation j = exp(2πi/3) was standard in France. Freitag and
Busam use the letter %, Koblitz the letter ω, etc. An international commission
should be convened.
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Then P =
⋃
γ(F ) and two distinct points z′, z′′ ∈ F can be mapped onto each other

by a γ ∈ Γ only if they are on the boundary of F and symmetric with respect to the
imaginary axis, i.e. if Im(z′) = Im(z′′). For Im(z) > 1, Im(γz) > 1 if and only if
γ ∈ Γ∞ = Γ ∩B.

The arguments that have led us to case (b) show a bit more. We will say that
a point z ∈ P is a fixed point of Γ if there exists γ 6= ±1 in Γ such that γz = z.
The proof of the theorem shows that the only fixed points in F are (a) z = i = Sz,
(b) z = exp(2πi/3) = j = STz = T−1Sz, (c) z = exp(πi/3) = −j = ST−1z = TSz.
As the other fixed points can made mapped onto F by Γ , they are the images
under Γ of the points found. It is even unnecessary to consider both j and −j since
−j = Tj. Hence if the fixed points are divided into classes modΓ , there are only
two such classes: that of i and that of j. Moreover, if we do not distinguish between
matrices γ and −γ which define the same transformations on P , the stabilizer of i in
Γ is the subgroup {1, S} of order 2, whereas that of j is the subgroup {1, ST, T−1S}
of order 3.

Exercise 1. Let Γ be a discrete subgroup of a connected locally compact group
G. An open subset Ω ⊂ P will be said to be an open fundamental set for Γ if
(a) P =

⋃
γΩ, and if (b) there are finitely many matrices γ such that γΩ ∩Ω 6= ∅.

Show that Γ is generated by the elements γ such that γΩ#Ω (show that, if Γ ′

is the subgroup generated by these elements of Γ , the union of γΩ for γ ∈ Γ ′ is
both open and closed in P ). [In generalizations of the theory to semisimple groups,
only very rarely is it possible to construct genuine fundamental domains F . Open
fundamental sets are just as useful. In the case of the modular group, one can
choose any set defined by inequalities |x| < a, y > T with sufficiently large a and
sufficiently small T > 0].

Exercise 2. Let Γ ′ be a subgroup of finite index n in the modular group Γ and
Γ ′γ1, . . . , Γ

′γn the n cosets modΓ ′ in Γ . Show that F ′ =
⋃
γiF is a fundamen-

tal domain for Γ ′. What about the group of the function θ(z)? What about the
subgroup63 Γ (2) of matrices ≡ 1(mod 2)?

(iii) The classical definition of modular forms. The simplest version of the clas-
sical theory with respect to Γ = G(Z) consists in studying meromorphic functions
satisfying

f(γz) = J(γ; z)rf(z)(17.6)

for a given even integer r. As will be seen, to get results, these functions must not
increase too rapidly as Im(z) increases indefinitely.

First note that the poles of f in P can be divided into classes modΓ . By the
previous theorem, two poles z, z′ with imaginary parts > 1 can belong to the same
class only if there exists n ∈ Z such that z′ = z + n. The set of poles contained in
the fundamental domain F is a discrete subset of F , which does not stop them from
accumulating to infinity. To get rid of this possibility, f must first be required to
be holomorphic for sufficiently large Im(z), so that f only has finitely many poles
in F or, equivalently, that the poles of f in P are divided into finitely many classes
modΓ .

As f(z + 1) = f(z), there is then a Fourier series expansion

f(z) =
∑

ane(nz) , an =

∮
f(z)e(−nz)dx(17.7)

63 For a diagram representing a fundamental domain for Γ (2), see Neal Koblitz,
Introduction to Elliptic Curves and Modular Forms (Springer, 2d. ed., 1993),
p. 106.
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valid for sufficiently large Im(z).64 This expansion is also a Laurent series in the
variable ζ = e(z) since the map z 7−→ e(z) transforms every half-plane Im(z) >
T > 0 into a disc centered at 0. Note that |e(z)| = exp(−2πy) tends to 0 as Im(z)
tends to infinity. This being so, the second condition that f must be required to
satisfy is that there be only finitely many terms of degree n < 0 in this Laurent
series, in other words that

f(z) = O
(
e2πpy

)
, y −→ +∞(17.8)

for some integer p > 0. If k is the smallest integer for which ak 6= 0, f will be said
to have a pole of order −k at infinity if k < 0, and a zero of order −k at infinity if
k > 0. For obvious reasons, we set k = v∞(f).

These two conditions define the modular forms of weight r in the precise sense
of the word. For r = 0, the expression modular functions is used instead. These are
analogous to elliptic functions for the group Γ .

If f and g are modular forms of weight p and q, the quotient f/g is clearly a
form of weight p− q.

Modular forms holomorphic at infinity are characterized by the fact that they
are bounded on {Im(z) ≥ T} for sufficiently large T , because a Laurent series
converging for 0 < |z| < R is a power series if and only its sum is bounded in the
neighbourhood of 0. Similarly, it would suffice to have an upper bound

f(z) = O
(
yN
)

for large y ,

since were this the case, then

|an| ≤
∫ 1

0

|f(z)e(−nz)| dz ≤MyN exp(2πny)

for large y, an expression tending to 0 for all n < 0. For such a function we denote
the constant term of the Fourier series of f by

f(∞) = a0 = lim f(z) .(17.9)

Modular forms that are holomorphic everywhere, including at infinity, are said
to be entire. They are the analogues of the theta functions of theory of elliptic
functions. The Fourier series of an entire form f converges and represents f for all
z ∈ P and, by definition, only involves exponentials e(nz) with exponent n ≥ 0.
This shows that any entire modular form is bounded on every half-plane Im(z) ≥
T > 0.

For any entire modular form f , the asymptotic behaviour of the function f(iy)
as y tends to 0 or +∞ can be easily obtained. For large y, f(iy) ∼ an exp(−2πny)
where n ≥ 0, which is much better than an asymptotic expansion. As y tends to
0, relation f(iy) = (−iy)−rf(i/y) shows that f(iy) ∼ (−iy)−ran exp(−2πn/y). In
particular,

f(iy) =
O(1) as y −→ +∞ ,

O(y−r) as y −→ 0 .
(17.10)

This result will enable us [n◦ 23, (i)] to define the Mellin transform of f(iy), a
Dirichlet series with a simple functional equation.

64 Chap. VII, n◦ 17: if f(z) = f(z+ 1) is holomorphic on a strip B : a < Im(z) < b,
the Fourier series of f converges normally on every compact subset of B and
represents f on all of this strip.
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Entire modular forms such as Hecke Spitzenformen (Spitze = cusp) f(∞) = 0,
are also called parabolic or cusp forms. As Im(z) tends to infinity, f(z) tends to 0. In
fact there is an upper bound |f(z)| ≤M(T )e−2πy on the half-plane Im(z) ≥ T > 0,
which replaces (10) by

f(iy) =
O
(
e−2πy

)
as y −→ +∞ ,

O
(
y−re−2π/y

)
as y −→ 0 .

(17.11)

This result makes the integral defining the Mellin transform of f(iy) convergent for
all s.

As was seen in n◦ 15, each solution of the functional equation f(γz) =
J(γ; z)rf(z) can be transformed into a function

fr(g) = J(g; i)−rf(gi)(17.12)

on G, invariant under left translations g 7−→ γg. f is holomorphic if and only if fr
belongs to the space Hr(G) of n◦ 15, (ii). The set of these functions will be written
Hr(Γ\G). We recall the formula

|fr(g)| = yr/2|f(z)| .(17.13)

(iv) Eisenstein and Poincaré series. The most obvious way to construct left
Γ -invariant functions on G is to use the series ϕΓ (g) =

∑
ϕ(γg) of Chap. XI, n◦ 15,

(vii). If ϕ ∈ L1(G), the series converges almost everywhere, its sum is in L1(Γ\G)
and ∫

Γ\G
ϕΓ (g)dg =

∫
G

ϕ(g)dg .(17.14)

As here we only holomorphic functions interest us, we choose ϕ to be a function in
L1(G)∩Hr(G) = H1

r(G), hence of the form fr where f ∈ H1
r (P ), the space defined

in n◦ 16, (i). By n◦ 15, (ii), ϕΓ is then a function of weight r associated to the
Poincaré series

Pr,f (z) =
∑
Γ

J(γ; z)−rf(γz) =
∑

Lr(γ)f(z) .(17.15)

As these are holomorphic functions, convergence in L1 implies compact convergence
– details about this point will be given in a more general framework in n◦ 21, (i) –
and the next theorem 19 will show that these series are parabolic forms. All this
supposes that H1

r(G) 6= {0}. So r > 2 and r is even, and thus r ≥ 4. In fact, to have
any chance of obtaining sums that are not identically zero, one needs to assume
that r ≥ 12, but every parabolic form will be shown to be a Poincaré series later
in a more general framework.

Another type of series is obtained by grouping together the terms in sum (15)
belonging to a same coset γU∞, where U∞ = U ∩ Γ = U(Z) is the group of
translations z 7−→ z + n. This gives

Pr,f (z) =
∑
U∞\Γ

J(γ; z)−r
∑
Z

f(n+ γz) .(17.16)

But for any f ∈ H1
r(P ) there is a Poisson summation formula
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∑
f(z + n) =

∑
n>0

f̂(n)e(nz)

[n◦ 16, (i)]. Hence, at least formally, we find

Pr,f (z) =
∑

f̂(n)Er,n(z)(17.17)

with Poincaré-Eisenstein series

Er,n(z) =
∑
U∞\Γ

J(γ; z)−re(n.γz) .(17.18)

They converge for r > 2 and n > 0 and again define parabolic forms. In fact, like
Poincaré series, the forms of weight r corresponding to them on G, namely

Er,n(g) =
∑

er,n(γg)n ,

where summation is modU∞ and where

er,n(g) = J(g; i)−re(nz) ,

are integrable modΓ . Indeed∫
Γ\G
|Er,n(g)| dg ≤

∫
Γ\G

dg
∑
U∞\Γ

|er,n(γg)| =
∫
U∞\G

|er,n(g)| =

=

∫
U∞\P

yr/2 exp(−2πny)dm(z) =

=

∫
R∗+

yr/2−1 exp(−2πny)d∗y < +∞

since n > 0 and r > 2.
For n = 0, this calculation falls apart but series (18) still converge. The coset

U∞γ of a matrix γ ∈ Γ is the set of all γ′ ∈ Γ whose second row (c d) is the same
as that of γ, because relations ad−bc = a′d−b′c = 1 are equivalent to the existence
of n such that a′ = a+ nc, b′ = b+ nd. Hence

Er,0(z) =
∑

(c,d)=1

(cz + d)−r =
∑
U∞\Γ

J(γ; z)−r ,(17.19)

a sum extended to all ordered pairs of coprime integers. As r is even, the terms in
c d and −c − d are equal, and the functions

Er(z) =
1

2
Er,0(z) .(17.20)

are called reduced Eisenstein series.
They are related to the first known examples, the full Eisenstein series

Gr(z) =
∑

(cz + d)−r = 2ζ(r)Er(z)(17.21)

of the theory of elliptic functions [n◦ 17, (iii)], where summation is over all ordered
pairs (c, d) 6= (0, 0). The factor 2ζ(r) is obtained by grouping together the terms in
(nc, nd) with pgcd(c, d) = 1 and n 6= 0. Convergence of these series for r = 4, 6, . . .
is clear [n◦ 13, (i)], as well as the functional equation. Note that if formula (19) has
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a clear meaning from a group theoretic viewpoint, this is not the case of (21), a
major reason for only considering series (20).

To show that functions (20) or (21) are entire modular forms, the most simple is
to compute the Fourier series, a task which is anyhow essential. The usual method
– it of course does not generalize – consists in starting from formula (27.10)∑

Z

(z + n)−s =
(−2πi)s

Γ (s)

∑
n≥1

ns−1e(nz)(17.22)

of Chap. VII, § 6, valid for integer s ≥ 2 and Im(z) > 0, and even65 for Re(s) > 1
[Chap. VIII, (10.9)]. Applying it to the summation over d, we get

1

2
Gr(z) = ζ(r) +

(−2πi)r

Γ (r)

∑
c,d≥1

dr−1e(cdz) .

The double series converges unconditionally, and even normally in all of the half-
plane Im(z) = y ≥ T > 0: setting q = exp(−2πT ) < 1, |e(cdz)| ≤ qcd in this
half-plane, so that the proof reduces to checking the convergence of the double
series

∑
dr−1qcd. First summing over c reduces to the series

∑
dr−1qd/(1 − qd)

whose general term is equivalent to dr−1qd for large d. This gives convergence for
|q| < 1.

This being settled, it is possible to group together in the series obtained the
terms for which cd has a given value n. The coefficient of e(nz) then becomes equal
to

σr−1(n) =
∑
d|n

dr−1 ,

a sum extended to divisors d ≥ 1 of n. Hence the final result:

1

2
Gr(z) = ζ(r) +

(−2πi)r

Γ (r)

∑
n≥1

σr−1(n)e(nz) .(17.23)

We thus get a power series in e(z), which confirms that Gr(z) is an entire modular
form, for which Gr(∞) = 2ζ(r).

Since Er(z) = Gr(z)/2ζ(r), similarly

Er(z) = 1 +
1

ζ(r)

(−2πi)r

Γ (r)

∑
n≥1

σr−1(n)e(nz) .(17.24)

This expansion shows that the series Er are entire modular forms for which

Er(∞) = 1 .(17.25)

There is a simpler form for the factor preceding series (23). Indeed, we have
shown [Chap. VII, § 3, eq. (11.27)] that

2ζ(2p) = (−1)p+1(2π)2pb2p
/

(2p) !

65 Many authors prove (22) by differentiating term by term the partial fractions
expansion of the function cotg πz. This is not quicker than using the Poisson
summation formula and this elegant method is unlikely to provide the result
for complex s. This is also the reason why, even for an even integer r, I do not
transform (−2πi)r into (2πi)r.
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where b2p is the Bernoulli number of index 2p. As here r is even, this can also be
written

ζ(r) = − (−2πi)r

Γ (r)

br
2r
,

whence

Er(z) = 1− 2r

br

∑
n≥1

σr−1(n)e(nz) .(17.26)

The series obtained has rational coefficients. It was found in the 19th century by
setting q = e(z), and its computation would have taken Euler half of a quarter of
an hour if only he had had the idea that

E4(z) = 1 + 240
(
q + 9q2 + 28q3 + . . .

)
,

E6(z) = 1− 504
(
q + 33q2 + 244q3 + . . .

)
,

E8(z) = 1 + 480
(
q + 129q2 + 2118q3 + . . .

)
,

E10(z) = 1− 264
(
q + 513q2 + 19684q3 + . . .

)
,

E12(z) = 1 +
65520

691

(
q + 2049q2 + 177198q3 + . . .

)
,

E14(z) = 1− 24
(
q + 8193q2 + 1594774q3 + . . .

)
.

Needless to say that the arithmetic properties of these strange coefficients have
made many people cogitate and continue to make several computers run. . .

I will not dwell further on these series, whose study will be again taken up in
the framework of Fuchsian groups. It should nonetheless be added that the theory
of elliptic functions leads to a parabolic form of weight 12 defined in a very different
manner, the function

∆(z) = e(z)
∏
n≥1

[1− e(nz)]24 = η(z)24 ,(17.27)

where η(z) = e(z/24)
∏

[1− e(nz)] is the Dedekind function of n◦ 3. As

η(z + 1) = exp(πi/12)η(z) , η(−1/z) = (z/i)
1
2 η(z) ,

and as, in Ramanujan’s notation,

∆(z) = e(z) [1− 24e(z) + . . .] =
∑

τ(n)e(nz)(17.28)

is clearly a power series in e(z) without a constant term, ∆ is obviously a parabolic
form of weight 12.

It was mentioned above that Poincaré series are parabolic because they are
integrable over Γ\G. The next general theorem justifies this point:

Theorem 19. (a) Every entire modular form of weight r < 0 (resp. r = 0) is
trivial (resp. constant).

(b) For any modular form of weight r ≥ 4,

f(z) = f(∞)Er(z) + g(z)(17.29)
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where g is parabolic.
(c) A solution of

f(γz) = J(γ; z)rf(z) , r ≥ 2 ,

holomorphic everywhere on P is a parabolic form only if (resp. if)

fr ∈ Lp(Γ\G)(17.30)

for all (resp. for some) p ≤ +∞.
(d) The Fourier coefficients of all entire (resp. cusp) forms of weight r > 2

satisfy

an = O (nr) (resp. O
(
nr/2

)
) .(17.31)

(a) Let f be an entire modular form of weight r. Then, as was seen above, f(z)
is bounded on the fundamental domain F . If r = 0, it is bounded on P since it is
Γ -invariant. Removing the constant term of its Fourier series, it may be supposed to
be trivial, in which case, f(z) tends to 0 as Im(z) tends to +∞. From the arguments
already used in n◦ 5, it then follows that |f(z)| reaches its maximum at a point
of F , and as its maximum in F is also its maximum in P , the function is constant.

If r < 0, like f and yr/2, the function |yr/2f(z)| is bounded on F . As it is
Γ -invariant, it is bounded on P . Hence fr ∈ H∞r (G), a space which reduces to 0
for r < 0 [n◦ 16, (ii), theorem 14].

(b) Obvious because of (25).
(c) Formula (7) for calculating Fourier coefficients shows that

|an| ≤ exp(2πny)

∮
|f(x+ iy)| dx .

For p < +∞, to start with it, we deduce (Hölder for [0, 1]) that

|an|p ≤ exp(2πnpy)

∮
|f(x+ iy)|p dx .

So, setting r/2 = k, for all T > 0∫∫
|x|≤ 1

2
y≥T

∣∣∣ykf(z)
∣∣∣p dm(z) ≥ |an|p

∫
y≥T

exp(−2πnpy)ypk−1d∗y .

For n < 0, the second integral diverges for all p and k. Hence, if the left hand
side is finite for some p < +∞, then an = 0 for n < 0. For n = 0, convergence
would suppose pk < 1 and so necessarily k < 1. Thus a0 = 0 also holds if r ≥ 2.
Conversely if f is parabolic, then f(z) = O(exp(−2πy)) for large y. This condition
is more than sufficient to ensure fr ∈ Lp(Γ\G) for all p and k, including p = +∞.

Conversely, if fr(g) is bounded on G, it is in Lp(Γ\G) for all p < +∞ since
Γ\G has finite volume, which reduces the proof to the previous case.

(d) If f is parabolic, yr/2f(z) is bounded on P and the inequality

|an| ≤ exp(2πny)

∮
|f(x+ iy)| dx

shows that

|an| ≤My−r/2 exp(2πny)
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for all y. Putting y = 1/n, the expected upper bound follows.66 If f is not parabolic,
it can be made to be by removing f(∞)Er(z). Now, the Fourier coefficients of
Eisenstein series are proportional to the sums σr−1(n). Such a sum having at most
n terms ≤ nr−1, the result is O(nr), qed.

Proposition (c) is particularly useful in the case r = 2. It will be seen later that
there are no non-trivial entire modular forms in this case. But theorem 19 applies
to far more general groups for which there are no such objections.

18 – Analogues of Liouville’s Two Theorems

(i) The Riemann surface of SL2(Z). It was shown above that there are no non-trivial
entire modular forms of weight r < 0 and that, for r = 0, they reduce to constants.
This last result resembles Liouville’s first theorem on elliptic functions. There is
also an analogue for modular forms of Liouville’s second theorem about the zeros
and poles of elliptic functions. The standard proof which consists of integrating
df/f along the boundary of the fundamental domain F can be found everywhere.
Since in n◦ 11, we have reduced Liouville’s theorems to the simpler result that is
proved in the theory of Riemann surfaces (Chap. X, n◦ 1, theorem 1), we might as
well apply the same method here, which remains valid for all generalizations of the
modular group.

As a first approximation, the Riemann surface X(Γ ) = X attached to Γ is
the quotient space Γ\P . We equip it with the structure of a complex manifold by
requiring that for any open set Ω ⊂ Γ\P , the “ holomorphic ” functions on Ω be,
by definition, the holomorphic Γ -invariant functions on the inverse image π−1(Ω)
under the canonical map π : P −→ X. To show that this gives a Riemann surface, it
is necessary to exhibit local uniformizers and holomorphic chart changes (Chap. X,
n◦ 1).

Let α = π(a) be a point of X and Γa = Γ ∩Ka the stabilizer of a in G. The
conformal representation z 7−→ (z − a)/(z − a) of P on the unit disc transforms
Ka into the rotation group about the origin. As was seen in Chap. XI, n◦ 15, (vii)
in a far more general case, there are arbitrarily small open neighbourhoods W of a
having the following three properties:

(i) W is stable under Ka,
(ii) γW#W ⇐⇒ γ ∈ Γa,
(iii) the image of W under z 7−→ (z − a)/(z − a) is a disc centered at67 0.

For such a W , π(W ) is an open neighbourhood of α in X which can be identified
with the quotient space Γa\W by (i) and (ii). Let us consider a function f(z) on
W . It can be extended to an invariant function on π−1(π(W )) = Γ.W if and only
if its restriction to W is Γa-invariant. Indeed if this condition holds then, setting
f(z) = f(γ−1z) for all z belonging to some γW , the result only depends on the
choice of γ since, by (ii), γ is unique modΓa. Besides, f is clearly holomorphic on
Γ.W if and only if it is on W . “ Holomorphic ” functions on π(W ) can therefore be
identified with holomorphic functions on the Γa-invariant set W .

However, the map z 7−→ (z− a)/(z− a) being a conformal representation of W
on a disc centered at 0, the holomorphic functions on W are the power series in

66 This argument, as well the use of Fourier series, is due to Hamburg mathemati-
cian Erich Hecke, who in the 1930s gave new life to a theory threatened to become
obsolete by introducing ideas that continue to reveal their importance.

67 So W is the set of points of C for which the ratio of distances to points a and a
is less than a given number e < 1. The boundary of W is a circle not centered
at a.
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(z− a)/(z− a). As was seen after theorem 18, Γa = {1,−1} unless a is of the form
γ(i) or γ(j). In the first case, the condition of Γa-invariance is empty. If a = γ(i),
Γa contains two matrices 1 and Sa, up to the factor ±1 which acts trivially, where
Sa = γSγ−1 satisfies S2

a = 1. As the only rotation of order 2 about the origin is
ζ 7−→ −ζ, the holomorphic functions on the Γa-invariant set W are the power series
in [(z−a)/(z−a)]2. Finally if a = γ(j), Γa contains the conjugates of γ by the three
matrices 1, ST and T−1S = (ST )2, up to the factor ±1; on the unit disc, these
are the rotations of angle 0, 2π/3 and 4π/3, in other words the multiplications by
cubic roots of unity. The Γa-invariant power series are then clearly the power series
in [(z − a)/(z − a)]3.

We then let n(a) = 1, 2 or 3 denote the order of Γa/{1,−1} and set

ζa(z) = [(z − a)/(z − a)]n(a) for a ∈ P .(18.1)

These functions are holomorphic and invariant under the corresponding Γa. Fur-
thermore, they clearly have the following property:

(iv) for z, z′ ∈ P , there exists γ ∈ Γa such that z′ = γz if and only if ζa(z) =
ζa(z′).

Hence there is a function qa on π(W ) for which

qa ◦ π = ζa on W .(18.2)

By (iv), qa is a homeomorphism from π(W ) onto a disc centered at O in C. This
gives a local topological chart (π(W ), qa) of X in the neighbourhood of α. The
neighbourhood π(W ) of α depends on the choice ofW , but, for given a, the functions
qa corresponding to the various possible choices for W are clearly pairwise equal
on their common domains of definition.

If “ holomorphic ” functions on open subsets of X are defined as above, then the
“ holomorphic ” functions on π(W ) are precisely the power series in qa. A function
defined on an arbitrary open subset Ω of X is“ holomorphic ” if and only if in
the neighbourhood of any α ∈ Ω, it can be holomorphically expressed in a chart
(π(W ), qa) centered at α.

Chart changes remain to be shown to be holomorphic. This amounts to checking
that, for all a, a′ ∈ P and neighbourhoods W,W ′ of a, a′ satisfying conditions (i),
(ii) and (iii), ζa is a holomorphic function of ζa′ on W ∩W ′ and conversely. This
is obvious if a = a′, or if ζa and ζa′ are conformal representations of W ∩W ′ on
open subsets of C, i.e. are injective on W ∩W ′ [Chap. VIII, n◦ 5, theorem 7]. This
is always the case if a 6= a′.

Indeed suppose there are distinct points a1 and a2 in W ∩W ′ such that ζa(a1) =
ζa(a2). By (iv), there exists γ ∈ Γa such that a2 = γa1. It follows that γW ′#W ′,
hence that by (ii) applied to for W ′, γ ∈ Γa′ , so that γa′ = a′. A non-trivial elliptic
matrix having a unique fixed point in P , a = a′, a contradiction.

In conclusion, the local charts introduced on X = Γ\P satisfy the conditions
set a priori. They turn X into a Riemann surface and, for any open subset Ω of
X, a function f defined on Ω is holomorphic – this term can now be used for it –
if and only if f ◦ π is holomorphic on π−1(Ω). This result says precisely that π is a
holomorphic map from P onto X. It generalizes to meromorphic functions: in the
neighbourhood of a pole α = π(a), such a function f is, by definition, a Laurent
series in the local uniformizer qa, with finitely many terms of negative degree.
Hence, in the neighbourhood of a, f ◦ π is a Laurent series in [(z − a)(z − a)]n(a)

and conversely, this property is equivalent to Γa-invariance. .
At the same time, denoting by vα(f) the order at α of a meromorphic function

in the neighbourhood of α ∈ X and by va(f) the order at a of a meromorphic
function f(z) on an open subset of P ,
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vα(f) = va(f ◦ π)/n(a)

for every meromorphic function in the neighbourhood of π(a). It follows that the
total order of a function f defined and meromorphic on X is∑

α∈X

vα(f) =
∑

amodΓ

va(f ◦ π)/n(a) =

= vi(f ◦ π)/2 + vj(f ◦ π)/3 +
∑

va(f ◦ π) ,(18.3)

the latter
∑

being extended over all classes modΓ of points a that are not fixed
points of Γ .

Were X compact, it would show that, like in the theory of elliptic functions,∑
va(f)/n(a) = 0 for any meromorphic modular function of weight 0. But X is

not compact, either because the fundamental domain F is not so, either, and this
is a better argument, because of a simple and general result (Poincaré) which will
be proved later: a discrete subgroup Γ of G such that Γ\P is compact does not
contain any parabolic matrices.

But the Riemann surface X = Γ\P can be compactified by taking into account
the conditions imposed on the behaviour of modular functions at infinity. Theorem
18 shows that, for T > 1, the image X(T ) in X of the half-plane S∞(T ) = {Im(z) >
T} can be identified with the quotient of S∞(T ) by the subgroup Γ∞ = Γ ∩ B.
A function f defined on X(T ) is, therefore, holomorphic if and only if f ◦ π is
holomorphic on S∞(T ), i.e. is a Laurent series in

ζ∞(z) = e(z) .(18.4)

As e(z) is periodic, there is a function q∞ on X(T ) such that

q∞ ◦ π(z) = ζ∞(z) ,(18.5)

and q∞ is clearly a homeomorphism from X(T ) onto the dis |ζ| < exp(−2πT ) of C
with its centre removed. On the other hand, all S∞(T ) clearly satisfy conditions (i),
(ii), (iii) and (iv) provided Ka is replaced by U in (i), Γa by Γ∞ = Γ ∩ B in (ii)
[theorem 15, (a)], (z − a)/(z − a) by e(z) in (iii) and ζa by ζ∞ in (iv). From the
above, it then follows that any holomorphic function defined and periodic on S∞(T )
extends to a holomorphic Γ -invariant function on π−1(X(T )).

We next adjoin a point denoted by∞ to X, as in the definition of the Riemann

sphere or of algebraic functions in Chap. X , and call a set Ω ⊂ X̂ = X ∪{∞} open
if Ω ∩X is open in X, and in case ∞ ∈ Ω, if it contains X(T ) for sufficiently large

T . Setting X̂(T ) = X(T )∪{∞} and defining q∞(∞) = 0, ordered pairs (X̂(T ), q∞)

are clearly charts of X̂ in the neighbourhood of the point ∞.
Let us show that these charts (which assume T > 1) are mutually holomorphi-

cally compatible (obvious) and with (π(W ), qa) introduced above on X. The proof
amounts to showing that ζ∞(z) and ζa(z) are injective on W ∩ S∞(T ). Were ζa
not so, by (iv) there would exist γ ∈ Γa such that γS∞(T ) #S∞(T ), which by
(ii) applied to S∞(T ), would imply γ ∈ Γ∞, which is absurd. The function ζ∞ is
also injective on W ∩ S∞(T ). Otherwise, by (iv) applied to S∞(T ) there would
exist γ ∈ Γ∞ such that γW #W , hence such that γ ∈ Γa, equally absurd. Thus
the charts at infinity are compatible with those already known on X.

As modular functions (of order 0) on P have been required to be meromor-
phic everywhere and for T sufficiently large, to have an expansion of the form∑
n≥N ane(z)n on S∞(T ), it is now clear that the modular functions (r = 0) are

the meromorphic functions X̂(Γ ) and that, considered as such, their order v∞(f)
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at the point ∞ of X̂ is just their order as Laurent series in e(z). To get the total

order of the corresponding meromorphic function on X̂, it therefore suffices to add
v∞(f) to sum (3).

To finish, we still need to show that the Riemann surface X̂(Γ ) is compact. To

this end, let αn be a sequence of points of X̂. If infinitely many of its terms are
equal to ∞, extracting a convergent subsequence from it is not difficult. Hence we
may suppose that αn = π(an) for some an ∈ P , determined modΓ and which can
be assumed to be in F . If sup Im(an) < +∞, the points an belong to a compact
subset of P . Thus Bolzano-Weierstrass holds. If sup Im(an) = +∞, extracting a
subsequence, we may assume that lim Im(an) = +∞, hence that, for all T > 0,
an ∈ S∞(T ) for large n. This says precisely that limαn =∞, qed.

(ii) Zeros and poles. We are now ready to prove the classic result:

Theorem 20. For any meromorphic modular form f of weight r,

ν(f) =
∑

amodΓ

va(f)/n(a) =

= vi(f)/2 + vj(f)/3 + v∞(f) +
∑

a6=i,j,∞

va(f) = r/12 .(18.6)

If r = 0, as shown above, ν(f) is the sum of the orders of zeros and poles of

the meromorphic function which corresponds to f on X̂(Γ ). Hence ν(f) = 0 in this
case (Chap. X, n◦ 1, theorem 1).

In the general case, if f and g are modular forms of arbitrary weights, then it
is clear that ν(fg) = ν(f) + ν(g). If f and g have equal weight, f/g has weight
0, whence ν(f) = ν(g). As a result, ν(f) is an additive function of r ∈ Z, and so
ν(f) = cr with a constant c which needs to be determined. To do this, we choose
the form ∆(z) = η(z)24 of weight 12 already introduced in n◦ 16. It is holomorphic
everywhere, including infinity where v∞(∆) = 1, and has no zeros in P . Hence
ν(∆) = 1. As a result, 12c = 1, c = 1/12 and the proof of (6) follows using the
Dedekind function.

A less miraculous argument consists in considering a meromorphic differential

form ω on X̂. The map π : P 7−→ X being holomorphic, ω has a meromorphic
inverse image ω ◦ π = f(z)dz. As ω ◦ π is Γ -invariant, the meromorphic function f
satisfies the functional equation f(γz) = J(γ; z)−2f(z) for modular forms of weight
2. Let α = π(a) be a point of X and (π(W ), qa) a local chart of X at α. Then
ω = ha.dqa on π(W ) where ha, meromorphic on π(W ), is a Laurent series in qa. If
it starts with a term qpa, by definition, the number p is the order vα(ω) of ω at α
(Chap. X, n◦ 1). Then by (2), ω ◦π = (ha ◦π)d(qa ◦π) = (ha ◦π)dζa on W . By (1),

dζa = (z−a)n(a)−1ca(z)dz where ca(a) 6= 0. On the other hand, ha ◦π is a Laurent
series in ζa starting with a term of degree vα(ω) in ζa, hence of degree n(a)vα(ω)
in z − a. Thus

va(f) = n(a)vα(ω) + n(a)− 1 .(18.7)

Let us now work in the neighbourhood of the point ∞ of X̂. The same arguments
and the relation

f(z)dz = ω ◦ π = (h∞ ◦ π) dζ∞ = 2πi (h∞ ◦ π) e(z)dz

show that, for sufficient large T , the Fourier series of F on S∞(T ) starts with a
term of degree v∞(ω) + 1, whence
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v∞(f) = v∞(ω) + 1 .(18.8)

This also shows that at infinity f satisfies the definition of modular forms of weight
2.

As a result, adding relations (7) and (8) and taking into account the fact that
n(a) = 1 unless n(i) = 2 and n(j) = 3, we see that

ν(f) = v∞(f) +
∑
a∈P

va(f)/n(a) =

=
∑
α∈X̂

vα(ω) + 1 + (1− 1/2) + (1− 1/3) .(18.9)

By definition of the genus g of X̂, (Chap. X, n◦ 1),
∑
vα(ω) = 2g− 2. So the right

hand side of (9) equals

2g − 2 + 1 + 1/2 + 2/3 = 2g + 1/6 .

But since f is a form of weight 2, the left hand side equals 2c, where c if the constant
such that ν(f) = cr for all forms of weight r. Hence c = g + 1/12. In conclusion,

theorem 20 says that the compact Riemann surface X̂(Γ ) has genus 0.
Proving directly that g = 0 is a different matter. If a compact Riemann surface

is known to be of genus 0 if and only if it is homeomorphic to the Riemann sphere

– which was not proved in Chap. X –, then we only need to check that X̂ falls in

this case. However, X̂ is obtained from the fundamental domain F by identifying
two points of F that are mapped to each other by Γ . This amounts to identifying
points on the boundary of F having the same y coordinate and to adjoining the
point at infinity to the result. Very gifted for selling their wares, topologists will
explain that, to understand what is going on, you need to cut the paper of infinite
length on which you have drawn F along the boundary of F , then to glue together
its vertical sides as well as the two circular arcs |z| = 1 located on both sides of the
Oy axis. You thus get a tube of infinite length,68 and you then contract to a unique
point its vaguely circular “ boundary ” with which it “ ends ” at infinity. The result
can then “ clearly ” be deformed into a sphere. Elementary, my dear Watson.

A less fanciful proof consists in showing that there is a meromorphic function J

on X̂ with a simple pole at infinity and holomorphic elsewhere. For such a function,

the map J from X̂ to the Riemann sphere Ĉ is bijective because, for any mero-

morphic function f on a compact Riemann surface and any z ∈ Ĉ, the number
of solution of the equation f(ζ) = z does not depend on z (Chap. X, n◦ 1). As

J : X̂ −→ Ĉ is continuous, J is a homeomorphism – and even an isomorphism of
analytic manifolds since a holomorphic and injective map is a conformal represen-
tation. Whence g = 0. But J needs to be constructed. We will do this later, again
unfortunately, using the miraculous Dedekind function: J = E3

4/∆.

Exercise 1. If ω is a meromorphic differential form on X̂, we showed that ω◦π =
f(z)dz where f is a meromorphic modular form of weight 2. Prove the converse.

Exercise 2. Keeping the notation of the previous exercise, express the fact that
the sum of residues of ω is zero (Chap. X, theorem 1) using f and show that there
is an analogous formula for f of arbitrary weight r.

68 Transforming P into the unit disc by z 7−→ (z−i)/(z+i), F becomes a curvilinear
triangle bounded by three circular arcs orthogonal to |z| = 1 and with one vertex
on the latter. This vertex plays the role of the point at infinity of F , which
simplifies the topological argument.
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(iii) Construction of modular forms using ∆(z) and Eisenstein series. Theorem
20 has immediate consequences.

If f is an entire modular form of weight r ≥ 2, the integers vi(f), etc. of
theorem 20 must all be ≥ 0. For r = 2, this is clearly impossible, and so there
are no non-trivial entire modular forms69 of weight 2. Besides, such a form would

correspond to a differential form holomorphic everywhere on X̂, i.e. on the Riemann
sphere. For small values of r, it is easy to convince oneself that the only possibilities
are given by the following table, where v∞(f) is included in the sum

∑
va(f):

(18.10)

r vi(f) vj(f)
∑
va(f)

4 0 1 0
6 1 0 0
8 0 2 0

10 1 1 0
14 1 2 0

However, if f and g are modular forms of equal weight such that va(f) = va(g)
for all a, including a =∞, the quotient f/g is a Γ -invariant function without any
zeros or poles, hence a constant. So for r = 4, 6, 8, 10 or 14, there is at most one
entire modular form of weight r, up to a constant factor. The existence of such a
form is obvious: for all r ≥ 4, the reduced Eisenstein series Er(z) =

∑
1/(cz + d)r

satisfies the functional equation, is holomorphic everywhere on P and tends to 1 as
z tends to the vertex ∞ of the fundamental domain F .

New strange identities follow from this. If f and g are entire modular forms of
weight r and s, f(z)g(z) is clearly entire of weight r + s. Hence

E4(z)2 = E8(z) , E4(z)E6(z) = E10(z) , E6(z)E8(z) = E14(z)(18.11)

since, in each case, the left hand sides take value 1 at infinity.
Let us now suppose r = 12. First we have the case where va(f) = 0 for all a

except v∞(f) = 1. The series E12(z) falls in this case and is the only one in it,
up to a constant factor. As it takes value 1 at infinity, f − f(∞)E12 is parabolic
for every entire modular form of weight 12. However, ∆(z) = η(z)24 is a parabolic
form of weight 12 which is zero only at infinity. Hence, if f is another parabolic
form of weight 12, the function f/∆ is holomorphic everywhere on P , Γ -invariant
and holomorphic at infinity since it is of the form (a1q + . . .)/q(1 + . . .) where
q = e(z), hence regular. As a result, ∆ is the only parabolic form of weight 12, up
to a constant factor. So the only entire modular forms of weight 12 are the linear
combinations of E12 and ∆.

For r = 12, E4(z)3, E4(z)E8(z) and E6(z)2 are necessarily equal to E12(z) + c∆(z),
with a constant c depending on the case. It can be calculated using the first few
terms of their Fourier series which were computed in the previous n◦. For example,

E6(z)2 = [1− 504e(z) + . . .]2 = 1− 1008e(z) + . . . ,

E12(z) = 1 + 65520e(z)/691 + . . . .

As ∆(z) = e(z) + . . .,

E12(z)− E6(z)2 = c∆(z) with c = 263572/691 .(18.12)

The same type of argument shows that E4(z)3 − E6(z)2 is proportional to ∆(z).
As E4(z) = 1 + 240e(z) + . . . and E6(z) = 1− 504e(z) + . . .,

69 Naturally, there are meromorphic forms of weight 2, for example E14/∆.
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E4(z)3 − E6(z)2 = (3.240 + 2.504)e(z) + . . . = 1728e(z) + . . . ,

whence

E4(z)3 − E6(z)2 = 1728∆(z) .(18.13)

For a form f of weight r > 14, we use ∆ to reduce to forms of weight < 14.
To start with, f = f(∞)Er + h where h is parabolic ; So the quotient h/∆ is an
entire modular form of weight r− 12. Thus f = f(∞)Er + g∆ where g is of weight
r − 12 . If r − 12 ≤ 14, g is proportional to Er−12 if r 6= 24 and, if r = 24, a linear
combination of E12 and ∆. Redoing the operation if r > 26 leads to the next result:

Theorem 21. Every entire modular form of weight r is a linear combination of
functions Er, Er−12∆, Er−24∆

2,. . .

The sequence ends when it gives nonexistent forms of weight ≤ 2. These functions
are linearly independent because their power series in q = e(z) start respectively
with the term 1, q, q2, etc. So they form a basis for the finite dimensional vector
space of entire modular forms of weight r.

Exercise 3. Every entire modular form is a polynomial in E4 and E6.

(iv) Application to elliptic functions. Let L be a period lattice in C and let us
consider the Weierstrass function y = ℘L(u). It satisfies the differential equation

y′2 = 4y3 − py − q(18.13)

where

p = g2(L) = 60
∑

1/ω4 , q = g3(L) = 140
∑

ω6 .(18.14)

We are going to show that, for any set of given coefficients, there is a corresponding
lattice L, except for one restriction.

To this end we choose a basis ω1, ω2 of L such that

ω2/ω1 = z ∈ P .

So

p = c2E4(z) with c2 = 120ζ(4)/ω4
1 = 4π4/3ω4

1 ,(18.15’)

q = c3E6(z) with c3 = 280ζ(6)/ω6
1 = 8π6/27ω6

1 .(18.15”)

Incidentally, notice the useful detail that c32 = c23. We saw above that

1728∆(z) = E4(z)3 − E6(z)2 = (π/ω1)−12 [(3/4)3p3 − (27/8)2q2
]

=

= (π/ω1)−12(p3 − 27q2)33/26 ,

whence

p3 − 27q2 = (2π/ω1)12∆(z) .(18.16)

As ∆(z) 6= 0 for all z ∈ P , we need to assume

p3 − 27q2 6= 0 .

This relation says that the equation 4x3 − px− q = 0 does not have double roots.
This is an exceptional case where the Weierstrass differential equation can be solved
using elementary algebraic functions.
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So let us assume this condition holds. We need to show the existence of z ∈ P
and ω1 satisfying (15’) and (15”). However, the ratio

J(z) = 1728p3/(p3 − 27q2) = E4(z)3/∆(z)(18.17)

does not depend on ω1. If we can find some z for which it takes the value required by
those fixed for p and q, then we can find some ω1 satisfying (16), which determines
it up to a 12th root of unity. As

p3 = E4(z)3(p3 − 27q2)/1728∆(z) = (π/ω1)12263−3E4(z)3 =

=
[
4π4E4(z)/3ω4

1

]3
,

relation (15’) then holds modulo a cubic root of unit, which can be removed by
multiplying it by ω1. As (15’) holds, the relation

E4(z)3[p3 − 27q2) = 1728p3∆(z) = p3[E4(z)3 − E6(z)2]

shows that

27q2E4(z)3 = p2E6(z)2 = c32E4(z)3E6(z)2 .

If E4(z) 6= 0, it follows that q2 = c23E6(z)2 giving (15”) up to sign, an ambiguity
which can once again be removed by multiplying ω1 by a 12th root of unity, which
solves the problem in this case. If E4(z) = 0 and so p = 0, it is easier.

Finally, the proof reduces to showing that there always exists z ∈ P where ratio
(17) has a given value. Now, this ratio, the modular function J(z) = E4(z)3/∆(z)
that Charles Hermite hoped to encounter on arrival in Heaven, is strictly Γ -invariant
and holomorphic everywhere on P . Its Fourier series at infinity is

[1 + . . .]/[e(z) + . . .] = e(z)−1 + . . . ,

where as usual the degrees of the omitted terms are greater than those of the term
explicitly written. In fact

J(z) = e(−z) + 744 + 196884e(z) + 21493760e(2z) + . . . .

As a result, like E4(z), J(z) is a modular function (r = 0) for which v∞(J) = −1,
and va(J) ≥ 0 elsewhere. So is the function f(z) = J(z)− c for all c ∈ C. For r = 0,
by theorem 20, this implies the existence of some a ∈ P such that va(f) > 0, hence
of a root of J(z) = c, qed.

The number z is obviously not unique since γz is equally suitable for all γ ∈ Γ ,
but thanks to theorem 18, it is the only solution when c 6= J(i), J(j).

When c = J(i), vi(f) = 2 because only then does

vi(f)/2 + vj(f)/3 +
∑

va(f) = −v∞(f) = 1

have integer solutions. Hence in this case, z is again the unique solution modΓ . As
E6(i) = 0 and E4(i) 6= 0, it follows that p 6= 0 and q = 0 in this case.

When c = J(j), the results are the same: vj(f) = 3, p = 0 and q 6= 0, and there
is a unique solution modΓ .

Coming back to differential equation (13) with p3 − 27q2 6= 0, the previous
results can be applied. Choose a solution z of (15) then ω ∈ C satisfying (14). The
squares and cubes of formulas (3) then hold. If there is an added factor −1 in (3”),
it can be made to vanish by multiplying ω by an arbitrary 6th root of −1, which is
then chosen to make sure (15’) holds. It remains to observe that when z is replaced
by (az + b)/(cz + d), this replaces z = ω′/ω by (aω + bω′)/(cω + dω′), which is
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equivalent to taking the basis (aω + bω, cω + dω′) of L instead of (ω, ω′) and does
not change L. Therefore, the lattice L only depends on the class of zmodΓ . To
summarize:

Theorem 22. Let p and q be two complex numbers such that p3−27q2 6= 0. There
is a unique lattice L such that p = g2(L), q = g3(L).

To conclude, let us also state the next result:

Theorem 23. Every modular function is a rational function of J(z). The func-

tion J is an isomorphism from the Riemann surface X̂(Γ ) onto the Riemann sphere

Ĉ.

To see this, we again consider the relation
∑
νa(f) = 0 which holds for every

modular form of weight 0, where νa(f) is an integer obtained by dividing the usual
order va(f) by 2 if a = γ(i), by 3 if a = γ(j), and by 1 otherwise. The function∏

[J(z)− J(a)]νa(f)

where the product is extended to all a (including ∞) where νa(f) 6= 0, has exactly
the same zeros and poles as f , including at infinity, and with the same multiplicities.
So it is proportional to f . The second proposition is obvious since, taking the
quotient and setting J(∞) = ∞ gives a bijective analytic map, hence a conformal
representation, qed.

All this is only the beginning of the abc of a theory that, at the end of the 19th
century, gave rise to a great body of work related to the algebra of number fields,
Galois theory, the geometry of algebraic curves of genus 1, the “ division ” of elliptic
functions, etc. After almost a half-century of hibernation, it again expanded after
the war under the impulse of Shimura, Taniyama, Weil, etc. who naturally had
methods and ideas at their disposal that were unknown or not well understood by
Felix Klein’s contemporaries.70

70 For the former period, see for example Felix Klein and Robert Fricke, Die Ellip-
tischen Funktionen und ihre Anwendungen (Teubner, 1916) ; for the relatively
recent period, Goro Shimura, Introduction to the Arithmetic Theory of Auto-
morphic Functions (Princeton UP, 1971), Serge Lang, Introduction to Modular
Forms (Springer, 1976), Anthony W. Knapp, Elliptic Curves (Princeton UP,
1992).
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§ 7. Fuchsian Groups

19 – Generalities on Automorphic Forms

(i) Two lemmas on discrete subgroups. If Γ is a discrete subgroup of G, z ∈ P is
said to be a fixed elliptic point of Γ if the stabilizer Γz of z in Γ is not contained in
{1,−1}. As Γz is the intersection of Γ with the compact subgroup Kz, it is a finite
group. The set of these fixed point is a discrete subset of P (but not of C: they may
accumulate on R). Indeed as Γ acts properly on P , any z ∈ P has a neighbourhood
W such that the relation γW #W implies γz = z [Chap. XI, n◦ 15, (vii)]. Hence
Γz′ ⊂ Γz for all z′ ∈ W , and as matrices 1 and −1 are the only k ∈ Kz leaving
points other than z fixed, it follows that z′ is not a fixed point of Γ if z′ 6= z, whence
the result.

The parabolic fixed points of Γ are equally important. To define them, we first
observe that the elements b ∈ B are characterized by the fact that

lim
z=∞

bz =∞ .

On the other hand, for a matrix g /∈ B, lim gz = a/c ∈ R. We are thus led to make
G act on a set vaguely analogous to the Riemann sphere, namely

P̂ = P ∪ R ∪ {∞} = P ∪ P1(R)

where P1(R) = R ∪ {∞} is the projective line.71 By definition, we set g∞ = a/c if
c 6= 0 and g∞ = ∞ if c = 0. As, for all ξ ∈ P1(R), there exists x ∈ G such that
ξ = x(∞), the relation g(ξ) = ξ is equivalent to g−1xg(∞) =∞. The stabilizers Gξ
of the points of P1(R) are therefore the Borel subgroups of G.

ξ ∈ P1(R) is then said to be a parabolic fixed point of Γ if Γξ = Γ ∩Gξ contains
parabolic matrices 6= ±1. For example, parabolic fixed points of SL2(Z), or of a
congruence group, are those of Q∪{∞}, because the only fixed point of a parabolic
matrix is (a− d)/2c.

The reader will probably expect there to be also hyperbolic fixed points of Γ .
They certainly exist but will not occur in this chapter and present very complex
problems when, for some extraordinary reason, they are considered.

We will need some simple results for groups having parabolic fixed points. They
are almost trivial in the case of G(Z).

Lemma 1. Let Γ be a discrete subgroup of G such that Γ ∩ U 6= {e}.
a) For all compact sets M ⊂ P , there exists T < +∞ such that

Γ.M ⊂ {Im(z) ≤ T} .

b) For sufficiently large T ,

Im(z) > T & Im(γz) > T

if and only if γ ∈ Γ ∩B = Γ∞.

Let us first show that

71 G and more generally GL2(R) are made to act on P1(R) by considering G as a
group of linear transformations on R2. This group acts on the set of 1-dimensional
vector subspaces, which by definition is P1(R), and can be identified with R∪{∞}
by associating its slope t, in the elementary sense of the term, to each line y = tx
with initial point the origin [Chap. IX, § 4, n◦ 11, (iii)].
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inf
γ /∈Γ∩B

|c(γ)| > 0 .(19.1)

Any matrix γ such that c 6= 0 can indeed be written as

γ = x
(
u′
)(1 0

c 1

)
x
(
u′′
)

by (15.22). Since U/Γ∩U is compact, leaving c invariant, u′ and u′′ may be assumed
to stay in a fixed compact subset of R. If there exist γn such that cn 6= 0 tend to
0, the corresponding u′n and u′′n can be assumed to converge to limits u′ and u′′.
Then (γn) converges to x(u′)x(u′′), and so γn ∈ U for large n since Γ is discrete, a
contradiction which proves (1).

This being settled, the relation |cz + d|2 = (cx+ d)2 + c2y2 = y/ Im(γz) shows
that, for c 6= 0, Im(z) Im(γz) ≤ 1/c2 ≤ m where m > 0 is a constant. Thus propo-
sition b) of the lemma follows. If z stays in a compact set M , so that inf Im(z) > 0,
then sup Im(γz) < +∞, proving proposition a), qed.

These results shows that if Γ\P is compact, Γ only contains elliptic of hyperbolic
matrices. Replacing Γ with a conjugate, it suffices to show that Γ ∩ U = {e}.
This follows from proposition a) of the lemma since, by assumption, there exists a
compact set M ⊂ P such that Γ.M = P . (Alternate proof: show that, for all γ ∈ Γ ,
the set of conjugates gγg−1 is closed in G and deduce the result).

The next lemma gives more details about the structure of the subgroup of γ ∈ Γ
such that c(γ) = 0: for these matrices, d(γ) = ±1.

Lemma 2. Let Γ be a discrete subgroup of G having ∞ as a parabolic fixed point.
There exists a unique ω > 0 such that U∞ = U(ωZ). The subgroup Γ∞ = Γ ∩B is
then one of the three following groups:

±
(

1 nω
0 1

)n
(case where − 1 ∈ Γ ) ,(19.2)

(
1 nω
0 1

)n
(case where − 1 /∈ Γ ) ,(19.2’) (

−1 ω/2
0 −1

)n
(case where − 1 /∈ Γ )(19.2”)

Let x(ω), ω > 0 be the generator of Γ ∩ U = U∞. If the first row of γ ∈ Γ∞ is
(a b), then γnx(ω)γ−n = x(a2nω), whence a2 = 1.

If −1 ∈ Γ , for example in the case of G(Z), then ±γ ∈ U∞ and we are in
case (2).

If −1 /∈ Γ , then either Γ∞ = U∞, or else Γ∞ 6= U∞. The first case is (2’). In
the second case, Γ contains matrices of the form

γ =

(
−1 b
0 −1

)
(19.3)

with b 6= 0. As γ2 = x(−2b) ∈ Γ ∩ U , 2b = kω for some integer k. But Γ∞ also
contains matrices

γ

(
1 −pω
0 1

)
=

(
−1 (p− k/2)ω
0 −1

)
.(19.4)
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If k is even, then one may choose p = k/2, whence −1 ∈ Γ , but this case is excluded.
So b = kω/2 with k odd for all matrices (3) in Γ . Relation (4) then shows that Γ∞
contains the matrix

γ∞ =

(
−1 −ω/2
0 −1

)
.(19.5)

Its square is the matrix x(ω), and so γ = γ2p
∞ for all γ ∈ U∞. For γ /∈ Γ ∩U , hence

of form (3), b = (2p+ 1)ω/2; thus γ = γ2p+1
∞ . As a result, γ∞ generates Γ∞, which

finishes the proof.
This lemma shows that, for solutions of

f(γz) = J(γ; z)rf(z) ,

there are three possible cases for the action of Γ∞.
If −1 ∈ Γ , then f(z + ω) = f(z) and r must be even.
If −1 /∈ Γ , then no restrictions apply to r, and f(z+ω) = f(z) again; but if ∞

is irregular [case (2”)], the function f must also satisfy f(z + ω/2) = (−1)rf(z).
Exercise 1. Let Γ be the subgroup of γ ∈ G(Z) satisfying

b ≡ c , a ≡ d ≡ (−1)b mod 4 .

Show that ∞ is an irregular parabolic fixed point of Γ .
Lemmas 1 and 2 concern the point at infinity. There are obviously similar

result for any other parabolic fixed point ξ = x(∞): apply the lemmas to the group
x−1Γx = Γ ′. Setting z = xz′ and

S∞(T ) = {Im(z) > T}(19.6)

for all T > 0, lemma 1 applied to Γ ′ shows that, for all compact sets M ⊂ P ,
x−1Γx.M ∩S∞(T ) = ∅ for large T . Hence, choosing M ′ = x−1M and setting

Sξ(T ) = xS∞(T ) ,(19.7)

for any compact set M ⊂ G,

Γ.M ∩Sξ(T ) = ∅ for large T .(19.8)

Sets like in (7) are horocycles centered at72 ξ. Finding its shape is easy. If x ∈ B,
then ξ = ∞ and x transforms (6) into another horocycle centered at ∞. If x /∈ B,
we set x = uwb. Since b transforms S∞(T ) into a similar set, it may be assumed
that x = uw where u maps 0 onto ξ since w(∞) = 0. As Im(−1/z) = y/|z|2, the
set wS∞(T ) is defined by a relation y/|z|2 > T . It is thus a tangent disc to the real
axis at the origin. Making it undergo the translation z 7−→ z + ξ gives a horocycle
centered at ξ represented by the figure below.

To work in G, we replace horocycles by their inverse images in G. These are
Siegel domains in G. Those corresponding to horocycles centered at ∞ are the sets

S(T ) : α(g) > T > 0(19.9)

where we have set α(g) = Im(gi) as in n◦ 15. Obviously

US(T ) = S(T )

for all T . Siegel domains corresponding to horocycles centered at ξ = x(∞) are
translations xS(T ) of the previous sets.

72 The notation S(ξ) will also be used to denote an unspecified horocycle centered
at ξ.
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fig. 4.

(ii) Generalities on automorphic forms. We saw that in the case of the group
G(Z) to obtain theorems about holomorphic or even simply meromorphic solutions
of the functional equation

f(γz) = J(γ; z)rf(z) ,(19.10)

restrictions must be imposed on their behaviour in the neighbourhood of the point
∞, the only parabolic fixed point of G(Z), up to equivalence. A general discrete
group Γ has parabolic fixed points if and only if it contains unipotent matrices.
It may have none, for example if the quotient Γ\P is compact, for there is then a
compact set M ⊂ P such that ΓM = P , which contradicts (8). There is then no
point in distinguishing “ entire ” forms from “ cusp ” ones.

The question arises in the other case, but as already seen in n◦ 5, the point∞ is
not the only one that matters for the group of the function θ(z). For every parabolic
fixed point ξ = x(∞), it is also necessary to consider its stabilizer subgroup Γξ =
xBx−1 ∩ Γ in Γ , and Uξ = xUx−1 ∩Γ which plays the same role for ξ as U∞ does
for ∞. If ξ is such a point, so are η = σξ for all σ ∈ Γ and

Uη = σUξσ
−1 , Γη = σΓξσ

−1 .

Two such fixed points are said to be equivalent.
The structure of the subgroups Γξ is easy to work out. For the group

Γ ′ = x−1Γx ,

∞ is a parabolic fixed point. Besides, it is clear that

Γξ = xΓ ′∞x
−1 , Uξ = xU ′∞x

−1

with the obvious notation. Lemma 2 applies to Γ ′ and gives the result. In all cases,

Uξ = xU(ωZ)x−1

for some ω > 0, which is obvious, the three cases of lemma 2 being possible for Γξ.
Lemma 1 applied to Γ ′ shows that if S(T ) is a sufficiently small Siegel domain

in G, then
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γxS(T ) #xS(T )⇐⇒ γ ∈ Γξ .

Hence the canonical map

Γξ\xS(T ) −→ Γ\G

is injective for large T .
For any left Γ -invariant function ϕ on G, Uξ-invariance implies ϕ(xug) = ϕ(xg)

for all u ∈ U(ωZ). If ϕ = fr for a solution of

f(γz) = J(γ; z)rf(z) ,

then by (15.6), the function ϕ(xg) = L(x−1)ϕ(g) corresponds to the function

Lr(x
−1)f : z 7−→ J(x; z)−rf(xz) .

Thus there is a basic principle: studying the behaviour of f(z) in the neighbourhood
of ξ = x(∞) is equivalent to studying that of J(x; z)−rf(xz) in the neighbourhood
of ∞.

If f(z) is holomorphic on a horocycle centered at ξ = x(∞), then there is an
expansion

J(x; z)−rf(xz) =
∑

ane(z/ω)n(19.11)

involving all n ∈ Z and valid for large Im(z), and even for all z if f is holomorphic
on P . f will be said to be holomorphic (resp. parabolic) at ξ if an = 0 for all n < 0
(resp. n ≤ 0).

Expansion (11) only takes Uξ-invariance into account. Γξ-invariance does not
impose any further conditions except if the fixed point ξ is irregular. Indeed, the
translation z 7−→ z + ω/2 multiplies function (11) by (−1)r. Hence an 6= 0 only if
n ≡ rmod 2. In particular, if r is odd and ξ irregular, any holomorphic form in ξ
is parabolic in ξ.

Denoting by

er(g, t) = J(g; i)−re(tz) , z = gi

the function of weight r which corresponds on G to the exponential e(tz) for all
t ∈ R, expansion (12) becomes

fr(xg) =
∑

aner(g, n/ω) for g ∈ xS(T )(19.11’)

and sufficiently large T . The J factors have disappeared.
This expansion only depends on the class of the point ξ, because if ξ is replaced

by η = σξ with σ ∈ Γ , the function fr(xg), replaced by fr(σxg), remains invariant
and the expansions with respect to ξ and η are mapped to each other by the
translation g 7−→ σg.

We also need to know the effect of a change of matrix x on (11) or (11’) at
ξ = x(∞). The only possibility is replacing x with x′ = xb where b ∈ B, which
replaces U(ωZ) by b−1U(ωZ)b. Simple calculations then show that ω is multiplied
by a factor > 0 and the coefficients an by non-trivial factors only depending on b.
It follows that a relation such as an 6= 0 is independent of the choice of x. Saying
that the function f is holomorphic or parabolic at ξ has an absolute meaning.

Besides, the matrix x such that ξ = x(∞) being only defined modulo B, one
may assume that x = uw if ξ 6=∞, which removes all arbitrariness. Then

x−1 =

(
0 −1
1 −ξ

)
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and x−1z = −1/(z− ξ), J(x−1;x−1z) = (z− ξ)−1 for all z. So, replacing z by x−1z
in (11) gives

(z − ξ)rf(z) =
∑

ane [−1/ω(z − ξ)]n .

If f is holomorphic at ξ, it is convenient to set

f(ξ) = a0 .

Hence, if a0 6= 0,

f(z) ≈ f(ξ)(z − ξ)−r(19.13)

as z tends to ξ in such a way that e[−1/ω(z − ξ)] tends to 0. For this the variable
−1/(z − ξ) = x−1z only needs to tend to infinity without leaving a strip

a ≤ u ≤ b , v ≥ T > 0(19.14)

of finite width. A set of this type is said to be a parabolic cusp at infinity in P , and
its image under the matrix x a a parabolic cusp at the vertex ξ. Similarly, we define
parabolic cusps with vertex ξ in G: these are the inverse images of the parabolic
cusps with vertex ξ in P under g 7−→ gi . They are deduced from the parabolic
cusps at∞ by applying the translation g 7−→ xg. Hence a parabolic cusp in G, with
vertex ξ = x∞, is defined by inequalities of the form

|Reα(xg)| ≤ c < +∞ , Imα(xg) ≥ T > 0 .(19.14’)

It is obvious that, in P or in G, the invariant measure on any parabolic cusp is
finite.

As the images under x of the verticals a and b are circles orthogonal to the real
axis at ξ, while x transforms the horocycle y > T into a horocycle centered at ξ,
a parabolic cusp at ξ is a subset of a horocycle centered at ξ contained between
two circular arcs orthogonal to the real axis at ξ. See the figure at the end of
section (i). Relation (13) is exact on every parabolic cusp at ξ, but any other type
of convergence to ξ gives rise to uncontrollable variations of f(z).

For r > 0, automorphic forms holomorphic (meromorphic) or parabolic at a
given fixed point ξ can be characterized as in theorem 19, (c). More generally, let
us consider a solution f of the usual functional equation defined on an invariant
open subset of P , and suppose it is defined and holomorphic on a horocycle centered
at ξ = x(∞). This gives expansions (11) and (11’). As α(g) = Im(gi) tends to +∞,
the following possibilities may arise, where S(T ) denotes a sufficiently small Siegel
domain:

(1) fr(xg) = O[α(g)N ] for some N ≥ 0 ;
(2) f(z) is holomorphic at ξ ;
(3) f(z) is parabolic at ξ ;
(4) fr(xg) is bounded on S(T ) ;
(5) |fr(g)|p is integrable modΓξ over xS(T ) for all p < +∞ ;
(6) there exists p < +∞ such that |fr(xg)|p is integrable modΓξ over S(T ).

To find the logical connections between these statements, we may assume that
x = e, hence work in the half-plane Im(z) > T using the relation

|fr(g)| = yr/2 |f(z)|

and the formula
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an =

∮
f(x+ iy)e(−nz/ω)dx = exp(2πny/ω)

∮
f(x+ iy)e(−nx/ω)dx ,

where integration is over R/ωZ.
To start with,

(1)⇐⇒ (2) for all r ∈ Z ,

because then

|an| ≤MyN−r/2 exp(2πny/ω) .

This expression tends to 0 at infinity for all n < 0.
On the other hand,

(3)⇐⇒ (4) =⇒ (5) if r > 0 .(19.15)

If f is parabolic, then f(z) = O[exp(−2πy/ω)], whence (4). Conversely, (4) implies

|a0| ≤My−r/2, whence (3). (4) implies (5) because a bounded function belongs to
all Lp when integration is over a set of finite measure.

Finally,

(3)⇐⇒ (4)⇐⇒ (5)⇐⇒ (6) if r ≥ 2 .(19.15’)

As (5) =⇒ (6), by (15), it suffices to show that (6) =⇒ (3). The proof of theorem
19, (c), based on the inequality∫∫

|x|≤ω/2
y≥T

∣∣yr/2f(z)
∣∣pdm(z)≥|an|p

∫
y≥T

exp(−2πnpy/ω)y
1
2
pr−1d∗y ,(19.16)

applies without any changes since the integral on the right hand side always diverges
if n < 0. For n = 0, convergence of this integral assumes that r < 2/p ≤ 2. So the
result follows if r ≥ 2.

The p = 2 case will be needed later. The integral with respect to a0 then
converges if and only if r < 1. Hence,

(3)⇐⇒ (4)⇐⇒ (6) if r ≥ 1 , p = 2 .(19.15”)

Exercise 2. Suppose that Γ = U(Z) and set

Hpr(Γ\G) = Hr(G) ∩ Lp(Γ\G) .

Under what condition is this space non-trivial? Find properties of the spaces
H2
r(Γ\P ) similar to those of H2

r(P ) of n◦ 16.
These calculations enable us to generalize all the definitions made about the

modular group to Γ . In the precise sense of the word, an automorphic form of
weight r for Γ , must satisfying the following conditions:

(FA 1): f is meromorphic on P ;
(FA 2): f(γz) = J(γ; z)rf(z) for all γ ∈ Γ ;
(FA 3): the zeros and poles of f in P are divided into finitely many classes
modΓ ;
(FA 4): in the neighbourhood of a parabolic fixed point of Γ , the Fourier series
of f only has finitely many terms of degree < 0.
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f is said to be entire (resp. parabolic) if it is holomorphic on P and holomorphic
(resp. parabolic) at parabolic fixed points of Γ . Generalizing n◦ 18, (i) about the
modular group, we are now going to show that automorphic functions (r = 0) on
Γ can be identified with meromorphic functions on a Riemann surface associated
to Γ .

(iii) The topology of horocycles. The Riemann surface of Γ . As already men-

tioned, the group G acts on P̂ = P ∪P1(R). A strange topology but one fitted to to

the theory of automorphic functions can be defined on P̂ 73 because, in this topol-
ogy, automorphic forms on a group Γ holomorphic at some parabolic fixed point ξ

become continuous at ξ. To define it, we declare a set E ⊂ P̂ to be open if E ∩ P is
open in P in the usual sense and if, for all ξ ∈ E ∩ P1(R), E contains a horocycle
centered at ξ. The neighbourhoods of ξ ∈ P 1(R) are then the sets containing a

horocycle centered at ξ. The elements of the group act on P̂ as homeomorphisms
as they map horocycles to horocycles.

A sequence of zn ∈ P converges in this topology to another point ξ = x(∞) if
and only if

lim Im
[
x−1(zn)

]
= +∞ .

Indeed, for all T , we need to state that zn ∈ xS∞(T ), i.e. Im(x−1zn) > T , for large
n. For this, it is enough that zn converges to ξ in the usual sense staying all the
while in a parabolic cusp with vertex ξ, a notion which like above can be defined
without referring to any group Γ .

Obviously, P̂ , equipped with this topology, satisfies the Hausdorff axiom. P1(R)
is discrete in this topology because the only point of P1(R) contained in a a horo-

cycle centered at ξ is ξ itself. But P̂ is not locally compact : the sequence zn = i+n
does not contain any subsequence converging to a point of P , nor any subsequence

converging to∞ in the topology of P̂ since this would imply that lim Im(zn) = +∞.
Hence no horocycle satisfies BW.

On the other hand, every parabolic cusp

E : −∞ < a ≤ x ≤ b < +∞ , y ≥ T > 0

at ∞ is compact in P̂ . Indeed for a sequence zn ∈ E ∩ P , either sup yn < +∞
and it then contains a subsequence converging in P to a point E since xn stays
in a compact subset of R, or sup yn = +∞ and it then contains a subsequence
converging to the point ∞ ∈ E in the topology of horocycles. Thus E is compact.

As the elements of G act on P̂ as homeomorphisms, we conclude that every parabolic

cusp is compact in P̂ .

To obtain the Riemann surface associated to a discrete group Γ , we replace P̂

by the union P̂ (Γ ) of P and the countable set of parabolic fixed points of Γ . Hence

for Γ = G(Z), P̂ (Γ ) = P ∪ P1(Q). The group Γ acts on P̂ (Γ ) by homeomorphisms,
which enables us to define quotient spaces

73 I am unable to say who had the idea first, but its inventor must have clearly
been familiar with baroque topologies, which, before the 1960s, excludes mod-
ular function specialists dedicated to classical analysis. G. Shimura uses it in
his excellent Introduction to the Arithmetic Theory of Automorphic Functions
(Princeton UP, 1971), I presented it in my lectures in 1971–72, but Henri Cartan
was already familiar with it in the 1950s.
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X(Γ ) = Γ\P (Γ ) , X̂(Γ ) = Γ\P̂ (Γ ) .

Theorem 24. Let Γ be a discrete subgroup of G and a, a′ two points of P̂ (Γ ).

(a) If W and W ′ are two sufficiently small neighbourhoods of a and a′ in P̂ (Γ ),
then

γW #W ′ ⇐⇒ γa = a′ .(19.17)

(b) The quotient space X̂(Γ ) = Γ\P̂ (Γ ) is locally compact.

To prove the first proposition, we need to distinguish three cases.
(1) If a, a′ ∈ P , there is a more general result available [Chap. XI, n◦ 15, (vi),

theorem 24].
(2) If a ∈ P and if a′ = x(∞) is a parabolic fixed point of Γ , replacing Γ by

xΓx−1 and a by x−1a reduces the proof to the case where a′ =∞ andW ′ = S∞(T ).
It then suffices to show that, for any compact set W ⊂ P and sufficiently large
T > 0, ΓW ∩S∞(T ) = ∅. This is lemma 1 of section (i). By the way, observe that
the proof of this lemma also shows that

inf
γ /∈Γ∞

∣∣c(γ)
∣∣ > 0 ,(19.18)

where c(γ) denotes the coefficient c of γ, so that c(γ) = 0 is equivalent to γ ∈ Γ∞.
(3) Finally suppose that a = ξ and a′ = ξ′ are parabolic fixed points of Γ .

This immediately reduces the proof to the case ξ′ =∞. Setting ξ = x(∞) for some
x ∈ G, we need to show that if S = {Im(z) > T} and S′ = {Im(z) ≥ T ′} are
closed horocycles centered at ∞ and if T and T ′ are sufficiently large, the relation
γxS#S′ requires γξ =∞, i.e. γx ∈ B.

If ξ = σ(∞) for some σ ∈ Γ , then x = σb for some b ∈ B, and as b transforms S
into another horocycle centered at ∞, γxS#S if and only if γσS#S for some
other S. Hence the proof reduces to showing that

γS#S =⇒ γ ∈ Γ∞

if S is sufficiently small. This is point (b) of lemma 1 of section (i).
If ξ does not belong to the same class of fixed points as ∞, i.e. if x /∈ B, the

horocycles γxS = γS(ξ) are tangent discs to the real axis. If such a disc has non-
trivial intersection with S′, then this is also the case of its intersection with the limit
horizontal Im(z) = T ′. Multiplying γ on the left by an element of Γ ∩U , γS(ξ) can
even be assumed to have non-trivial intersection with some fixed compact subset
C′ of this horizontal. But then the intersection of γ−1C′ and S(ξ) is non-trivial,
which, by lemma 1, is impossible if S(ξ) is sufficiently small.

Let us now prove the second proposition of the theorem. As Γ is a group of

homeomorphisms of P̂ (Γ ), the canonical map

π : P̂ (Γ ) −→ X̂(Γ )

is open. Proposition (a) of the theorem then shows that X̂(Γ ) is separated. On the

other hand, the image in X̂(Γ ) of any z ∈ P clearly has a compact neighbourhood,
for example the image of the closed disc centered at z. If ξ is a parabolic fixed point,
the image of any horocycle74 S(ξ) is a neighbourhood of π(ξ). But Uξ enables us to
put all z ∈ S(ξ) in the same parabolic cusp at ξ. As any parabolic cusp is compact

in the topology of P̂ , so is the image of S(ξ), qed.

74 We set ξ ∈ S(ξ).
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Applied to a parabolic fixed point ξ = x(∞), proposition (a) of the theorem
says that if S(ξ) is a sufficiently small horocycle centered at ξ, then

γS(ξ) #S(ξ)⇐⇒ γ ∈ Γξ .

A function f defined on S(ξ) can be extended into a solution of

f(γz) = J(γ; z)rf(z)

defined on ΓS(ξ) if and only if, as in n◦ 18, this relation is satisfied by all z ∈ S(ξ)
and all γ ∈ Γξ. Uξ-invariance means there is (if f is holomorphic) an expansion

J(x; z)−rf(xz) =
∑

ane(nz/ω) .

But this condition is sufficient for ensuring Γξ-invariance only if ξ is a regular
parabolic fixed point. If ξ is irregular, Γξ contains the conjugate under x of matrix
(5) of lemma 2. This gives the additional condition f [x(z + ω/2)] = (−1)rf(xz),
which, as was seen above is equivalent to an = (−1)r−nan. For r even (resp. odd),
we, therefore, find an expansion depending on the even (resp. odd) powers of e(z/ω).

The different cases can be unified by setting

ζξ(z) = e
[
x−1(z)/ωξ

]
,(19.19)

where

ωξ =
ω if ξ is regular ,

ω/2 if ξ is irregular .
(19.19’)

For all r if ξ is regular, for all even r if ξ is irregular, any holomorphic form of weight
r on a horocycle S(ξ) centered at ξ is then a Laurent series in variable (19) in this
horocycle. Conversely, any Laurent series in ζx defined in S(ξ) can be extended into
a solution of the functional equation on Γ.S(ξ). Using variable (19), we define the
order vξ(f) at the point ξ of a function of weight r (even or odd) for Γ meromorphic
at ξ: it is an integer if r is even and of the form 1

2
+ n if r is odd and ξ irregular.

To equip X̂(Γ ) with the structure of a complex manifold, we proceed as we did
in n◦ 18, (i) for the modular group, so that we need not spell everything out in
detail.

To start with, this structure has to be defined on X(Γ ) = Γ\P . Hence we need
local uniformizers at each point α = π(a). For this we use open neighbourhoods W
of a in P satisfying conditions (i), (ii) and (iii) of n◦ 18, (i). Since the conformal
representation

z 7−→ (z − a)/(z − a)

transforms the actions of the stabilizer Γa into a group of rotations of finite order
n(a), holomorphic Γa-invariant functions on W are, as in n◦ 18, power series in the
variable

ζa(z) = [(z − a)/(z − a)]n(a)

and property (iv) of n◦ 18 continues to hold here. Denoting by qα the function which,
in π(W ), corresponds to ζa, as in n◦ 18, (π(W ), qα) is a local chart of X(Γ ) at α
and, properties (i) to (iv) of n◦ 18 tell us that these local charts are holomorphically
compatible.
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We then need to extend this structure to X̂(Γ ) = Γ\P̂ (Γ ) and so define local
charts in the neighbourhood of π(ξ) for ξ = x(∞). It was shown above that a
holomorphic function f(z) defined in a neighbourhoodW = S(ξ) of ξ is Γξ-invariant
if and only if it is a power series in the Γξ-invariant function ζξ(z) which only
depends on ξ up to a constant factor. Since it is clear that

ζξ(z) = ζξ(z
′)⇐⇒ π(z) = π(z′) ,

the local chart (π(W ), qξ) of X̂(Γ ) at π(ξ) is then obtained by transforming ζξ into
a function qξ on π(W ).

As in n◦ 18, (i), it follows that the charts of X̂(Γ ) thereby obtained are mutually
holomorphically compatible. More precisely, if a and a′ are two distinct points

of P̂ (Γ ) and W and W ′ are neighbourhoods of a and a′ satisfying the required
conditions, then ζa and ζa′ are injective on W ∩W ′ (hence holomorphic functions
of each other). Indeed, if ζa(z1) = ζa(z2) for distinct points in W ∩ W ′, then there
would be some γ ∈ Γa such that z2 = γz1, whence γW ′#W ′ and so γ ∈ Γa′ . This

is impossible for a 6= a′ since a parabolic matrix has a unique fixed point in P̂ .

(iv) Fuchsian groups. The Riemann surface of the modular group is compact
because it is covered by the image of any sufficiently large horocycle. Because of
this trivial remark, the following definition of Poincaré’s Fuchsian groups becomes
natural: these are discrete groups Γ satisfying conditions

(GF 1) the parabolic fixed points of Γ are divided into finitely many classes
Γξi,
(GF 2) there exist a compact subset M ⊂ P and finitely many horocycles S(ξi)
such that

P =
⋃
γF where F = M ∪

⋃
S(ξi) .

The reader will probably observe that the first condition could have been omitted
since it clearly follows from the second one. The compact set M is superfluous
if Γ has parabolic fixed points: it suffices to choose sufficiently large horocycles.
Besides, condition (GF 2) can be immediately restated for G: there exist a compact
set M ⊂ G and a Siegel domain S such that G = ΓF where F is the union of M
and of finitely many translations xiS of S.

Clearly,G(Z) satisfies these conditions, with n = 1 in this case. In the trivial case
from this point of view of a group with a compact quotient, we choose F = M . Any
subgroup of finite index in a Fuchsian group Γ is again a Fuchsian group (obvious).
In particular, all congruence subgroups of the modular group are Fuchsian groups.

The set F of condition (GF 2) is obviously not a proper fundamental domain
for Γ . To start with, each horocycle S(ξi) is invariant under the stabilizer of the
point ξi in Γ . If ξi =∞, this is a discrete group of horizontal translations, enabling
us to put every z ∈ S(∞) in a strip of finite width, i.e. in a parabolic cusp at ∞.
The same holds for the other ξi. In other words, condition (GF 2) can be satisfied
by replacing each S(ξi) by a parabolic cusp at ξi. Since a closed parabolic cusp is

compact in the topology of horocycles, as expected, the Riemann surface X̂(Γ ) is
compact.

Every parabolic cusp in P having a finite and invariant measure, so does F .
However, by assumption, the map from P onto Γ\P is surjective when it is restricted
to F . So theorem 24 can be completed as follows:

Theorem 25. The Riemann surface X̂(Γ ) of every Fuchsian group Γ is compact.
The total mass of the invariant measure on Γ\G is finite.
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The converse holds and is mostly interesting because of its proof. The easiest is

to show that, if X̂(Γ ) is compact, then Γ is a Fuchsian group. Indeed, we saw that

the set of parabolic fixed points of Γ is discrete in P̂ (Γ ). It is also closed. Its image

in X̂(Γ ) having the same properties, it is finite, giving (GF 1). Then for each ξ let
us choose an open horocycle S(ξ) in such a way that S(γξ) = γS(ξ). The image

of P −
⋃

S(ξ) in X̂(Γ ) is clearly a set contained in X(Γ ), closed in X̂(Γ ), hence
compact, and so the image of a compact subset75 M of P . Then P −ΓS(ξ) = ΓM ,
whence (GF 2).

Showing that the relation m(Γ\G) < +∞ implies (GF 1) and (GF 2) is far
from being as easy. The proof is mainly interesting because it requires construct-
ing genuine fundamental domains bounded by finitely many circular arcs or rays
orthogonal to the real axis. This amounts to non-Euclidean geometry open to con-
siderable generalizations. But all this would take up too much space.76

For a Fuchsian group, these constructions show that, for r = 0, automorphic
forms on Γ can be identified with meromorphic functions on the compact Riemann

surface X̂(Γ ). Poincaré had already announced in his early works that, conversely,
any compact Riemann surface X of genus g ≥ 2 is isomorphic to X(Γ ) for some
group with compact quotient acting without fixed points, hence not containing any
hyperbolic matrices. The proof consists in considering the universal covering of
X and in proving that any simply connected Riemann surface is isomorphic to
the Riemann sphere or, if it is not compact, to some open subset of C, hence,
by Riemann’s theorem on simply connected domains, either to C, or to P . The
fundamental group of the compact surface X considered then becomes a discrete
group Γ of analytic automorphisms of C or of P , so that either X = C/L, or X =
Γ\P where, in the former case, L is the period lattice in C (elliptic functions, g = 1)
and, in the latter, a Fuchsian group with compact quotient acting without fixed
points (automorphic functions, g ≥ 2). In the latter case, the rational function field
of X is just the field of automorphic functions on Γ (r = 0), which, for any Fuchsian
group, is indeed an algebraic function field of one variable as in the theory of
elliptic functions. Applying the result to the Riemann surface associated in Chap. X
to an irreducible algebraic equation P (X,Y ) = 0, we conclude that there are two
automorphic functions f and g on Γ such that all solutions of P (z, w) = 0 are given
by z = f(u), w = g(u) for some u ∈ P unique modΓ . This is the generalization
of theorem 12 of n◦ 14, (ii) about elliptic functions, a result which could be called
Poincaré’s youthful dream by analogy to Kronecker’s in another domain.

Relations between the French and Germans, even in the case of mathemati-
cians, was somewhat ambiguous between 1870 and 1914. It has needed at least a
quarter century of cooperation-competition between Poincaré and some Germans
(H.-A. Schwarz and especially Paul Koebe) to prove this difficult result using meth-
ods from potential theory (existence of harmonic functions whose only singularity is
a simple pole) at a time when this domain of analysis was still sufficiently primitive
for Poincaré himself to make mistakes. In the early 1950s, another Franco-German
undertaking made all this far more comprehensible by using algebraic topology and
“ coherent sheaves ” of analytic functions.

At a much more accessible level, using general theorems on compact Riemann
surfaces, presented in Chap. X, would enable us to obtain immediately proposi-

75 Every point π(a) of X(Γ ) has neighbourhoods of the form π(W ) where W is a
compact neighbourhood of a in P . Hence the existence of M by BL.

76 The construction is in Poincaré, but the first fully correct proof is probably the
one found in C. L. Siegel, Topics in Complex Function Theory, vol. 2 (Wiley,
1971).
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tions (a) and (e) of the following result, which generalizes theorem 19 of n◦ 17. But
it is possible to proceed differently. Proposition (e) and its proof can be general-
ized to situations where neither Riemann surfaces nor holomorphic functions are
encountered.

Theorem 26. Let Γ be a Fuchsian group.
(a) Every entire automorphic form of weight r is trivial (resp. constant) if r < 0

(resp. r = 0).
(c) An everywhere holomorphic solution f on P of

f(γz) = J(γ; z)rf(z)

is a parabolic form if and only if fr ∈ L∞(Γ\G), when r > 0 . When r ≥ 2, only if
(resp. if)

fr ∈ Lp(Γ\G)(19.22)

for all (resp. for some) p ≤ +∞.
(d) The set of parabolic forms of weight r ≥ 1 is identical to the space

H2
r(Γ\G) = L2(Γ\G) ∩Hr(G) .

(e) If f is parabolic, its Fourier coefficients at every parabolic fixed point of Γ∞
satisfy an = O(nr/2).

(f) The space of entire forms of weight r is finite-dimensional.

(a) If r = 0, the function f(z) is holomorphic everywhere in X̂(Γ ), hence con-
stant. If r < 0 and if ∞ is a parabolic fixed point, f(z) is bounded for y > T ,

hence also yr/2|f(z)| = |fr(g)| since r < 0. For an arbitrary parabolic fixed point
ξ = x(∞), the function fr(xg) is bounded for y > T . So fr(g) is bounded on xS for
any Siegel domain (9) in G. By (GF 2), Γ\G is the union of finitely many images
of sets of this type. As a result, fr is bounded on G, especially if Γ\G is compact,
and so is in H∞r (G). Now, this space reduces to 0 if r < 0 (n◦ 16, theorem 14 for
p = +∞).

(c), (d) If f is parabolic and if r > 0, the invariant function yr/2|f(z)| is bounded

on every horocycle of P̂ (Γ ), hence on P by (GF 2). So parabolic forms belong to
L∞(Γ\G), and thus necessarily to Lp since m(Γ\G) < +∞. Conversely, if fr is
bounded, fr is parabolic by relation (15) of section (ii).

To make sure that fr ∈ Lp(Γ\G) for given p < +∞, it suffices to check con-
vergence in every parabolic cusp since Γ\G is the union of a compact set and
images of finitely many parabolic cusps. Propositions (c) and (d) then follow from
equivalences (15’) and (15”).

(e) Same proof for the modular group.
(f) An entire form f is parabolic if and only if f(ξ) = 0 for every parabolic

fixed point of Γ , which forces a finite number of linear conditions on f . Hence it is
enough to prove (e) for the subspace Sr(Γ\G) of parabolic forms, the latter being
trivial if r ≤ 0. If r ≥ 1, by (15) and (15”)

Sr(Γ\G) = Hr(Γ\G) ∩ L2(Γ\G) = Hr(Γ\G) ∩ L∞(Γ\G) .

Moreover, Sr(Γ\G) is closed in L2 and L∞ since, in all Lp(Γ\G), convergence
in mean for holomorphic functions implies compact convergence, and so preserves
holomorphy. Now, m(Γ\G) < +∞. So all we need is to prove a general lemma:

Lemma 3. Let X be a locally compact space, µ a bounded positive measure on
X and H a subspace of L2(X;µ) ∩ L∞(X;µ) closed in L2(X;µ) and L∞(X;µ).
Assume that all classes f ∈ H contain a continuous function. Then dim(H) < +∞.
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We denote by H2 (resp. H∞) the space H equipped with the L2 (resp. L∞)
norm. By the Fischer-Riesz theorem, the set of pairs (f, f) where f ∈ H is closed
in the Banach space H2 × H∞. Thus the two topologies introduced on H are the
same (closed graph theorem), and so there is an upper bound

‖f‖∞ ≤M‖f‖2

valid for all f ∈ H. If S is the support of µ (complement of the union of open null
subsets) and if every class f ∈ H is identified with the unique continuous function
on S which it contains, the left hand side is the uniform norm of f on S. So for all
x ∈ S, |f(x)| ≤M‖f‖2. This gives an ωx ∈ H such that

f(x) = (f |ωx)

for all f ∈ H. Moreover, by the previous inequality, ‖ωx‖2 ≤ M . Then let (ei) be
an orthonormal basis for H. For any finite subset F of the set of indices i,∑

F

|ei(x)|2 =
∑
F

|(ei|ωx)|2 ≤ ‖ωx‖22 ≤M2 .

Thus, integrating,
∑
F ‖ei‖

2
2 ≤M2µ(X). The left hand side equals Card(F ), qed.

Using the Riemann-Roch theorem on Riemann surfaces, the dimension of the
space of entire or cusp forms of weight r can be explicitly calculated.77 In partic-
ular, for r = 2, parabolic forms correspond precisely to everywhere holomorphic

differential forms on X̂(Γ ). So the space of parabolic forms of weight 2 has dimen-
sion g. The space of entire forms of weight 2 can also be shown to have dimension
g +N − 1, where N is the number of classes of parabolic fixed points. This shows
that ( as will be seen, contrary to what happens for r > 2), the values f(ξ) of an
entire form of weight 2 cannot be chosen arbitrarily at parabolic fixed points. This
is no great surprise. If f(z) =

∑
anq

n where q = e(z/ω) or e(z/ω)2 is the local
uniformizer at infinity and if ωf is the differential form corresponding to f(z)dz on

X̂(Γ ), then

ωf =
∑

anq
ndq/q

up to a factor 2πi or 4πi, so that ωf has a simple pole at π(∞), where its residue is
equal to f(∞). Hence

∑
f(ξ) = 0, which gives a non-trivial linear relation between

the f(ξ). Saying that the dimension is exactly g+N−1, therefore, means that there

are meromorphic differential forms on X̂(Γ ) whose only singularities are simple
poles at given points with given residues, provided their sum is zero. This is a
general result about Riemann surfaces. In the case at hand, standard methods
(Poincaré or Eisenstein series) do not lead to it because they always assume r > 2.

Theorem 20 on zeros and poles of meromorphic modular forms can also be
generalized to Fuchsian groups. We will see later (theorem 27) that they exist for
all r, even if −1 ∈ Γ . First of all, it is clear that automorphic forms of weight 0

are precisely the meromorphic functions on X̂(Γ ). So, for any form f of weight 0,∑
va(f)/n(a) = 0, the sum being extended to Γ\P̂ (Γ ), with n(a) = 1 except if a

is an elliptic fixed point of Γ . The arguments used to obtain theorem 20 show that,
for f of weight r, ∑

va(f)/n(a) = cr

77 See for example T. Miyake, Modular Forms (Springer, 1989), Chap. 2.
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where the constant c is independent of r. We calculate it for r = 2, in which case

f(z)dz = ωf ◦ π for some meromorphic differential form ωf on X̂(Γ ). The problem

amounts to comparing the usual order va(f) of f at some point a ∈ P̂ (Γ ) and the
order vα(ωf ) of ωf at α = π(a). The arguments and the result are the same as in
n◦ 18:

va(f) = n(a)vα(ωf ) + n(a)− 1 , or vα(f) = va(ωf ) + 1 ,

according to whether a is in P or a parabolic fixed point. Hence∑
va(f)/n(a) =

∑
vα(ωf ) +

∑
[1− 1/n(a)] +N

where N is the number of classes of parabolic fixed points and where the latter
∑

is extended to all classes of elliptic fixed points. Thus, if X̂(Γ ) has genus g, then
setting n(a) = +∞ if a is a parabolic fixed point,

2c = 2g − 2 +
∑

[1− 1/n(a)] .

So the problem reduces to the calculation of the genus of X(Γ ). I will not discuss
these questions at any greater length as they as they have little to do with group
theory.

Exercise 3. (a) Show that if f(z) is an automorphic form of weight r for the
modular group, the function f [(z + 1)/2] is an automorphic form of weight r for
the group Γ (θ) of the Jacobi function (see exercise 3 of n◦ 3).

(b) Using the arguments of n◦ 5, show that

π4θ(z)8 = 48G4(z)− 3G4 [(z + 1)/2] .

Deduce a formula giving the number of representations of an integer as a sum of
eight squares.

20 – Parabolic Forms and Representations of G

Theorem 26 shows in particular that, for a Fuchsian group,

ϕ ∈ L2(Γ\G)⇐⇒ ϕ parabolic if r ≥ 1 .

However, for any discrete subgroup Γ , the group G acts on L2(Γ\G) by right
translations V (x) given by

V (x)ϕ(g) = ϕ(gx) .

This gives a unitary representation of G. The closed subspaces

H2
r(Γ\G) = Hr(G) ∩ L2(Γ\G)

are not invariant, in particular because the translations V (x) destroy the relation

ϕ(gk) = ϕ(g)χr(k) or V (k)ϕ = χr(k)ϕ(20.1)

satisfied by all ϕ ∈ H2
r(Γ\G), not to mention the holomorphy condition. But for all

ϕ ∈ L2(Γ\G), in particular holomorphic, the elements V (x)ϕ generated a closed
invariant subspace H(ϕ) in L2(Γ\G). Similarly, As x ∈ G and ϕ ∈ H2

r(Γ\G) vary,
the elements V (x)ϕ generate a closed invariant subspace Dr. It is the closure of
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the sum of H(ϕ) for ϕ ∈ H2
r(Γ\G). One of the results of the new theory is that

representations of G obtained on H(ϕ) are all isomorphic to the conjugate78 of the
representation by left translations on the space H2

r(G) defined in n◦ 16. This at the
very least supposes r > 1 for otherwise H2

r(G) would be trivial.
Henceforth, as Harish-Chandra would have done, we will denote by πr the

representation of G on H2
r(G). So πr(x) is the restriction to H2

r(G) of the left
translation operator L(x) on L2(G). For all r > 1, ωr will denote the kernel function
of H2

r(G), defined in n◦ 16, (iv). It is integrable for r > 2. Because of this property
calculations are well-defined for r = 2, which they otherwise would not be. Γ will
only be assumed to be a Fuchsian group simply because this assumption is perfectly
useless: the theorem applies to the group Γ = U(Z) for example and to Γ = {e}, a
case not without significance. We will only need to know that H2

r(Γ\G) is a closed
subspace of L2(Γ\G). This is clear since, as it concerns holomorphic functions,
convergence in mean implies compact convergence. We assume r to be an integer
because we are working in SL2(R). Similar results can be derived for a real r by

using its universal covering Ĝ provided the centre of Ĝ is taken account of as in
Chap. XI by proving the Bargmann orthogonality relations.

Theorem 27. Let Γ be a discrete subgroup of G and x 7−→ V (x) the representation
of G on L2(Γ\G) by right translations. For any ϕ ∈ H2

r(Γ\G), let H(ϕ) be the
smallest closed invariant subspace of L2(Γ\G) containing ϕ.

(i) (r ∈ Z) The representation (H(ϕ), V ) of G is irreducible.
(ii) (r > 1) It is equivalent to the conjugate of πr and is square integrable and

(V (x)ϕ|ϕ) =

∫
Γ\G

ϕ(yx)ϕ(y)dy =
(ϕ|ϕ)

ωr(e)
ωr(x) if r ≥ 2 .(20.2)

(iii) (r ≥ 2) The semilinear map J given by

Jf(x) = ωr(e)
1
2 (V (x)ϕ|f) = ωr(e)

1
2

∫
Γ\G

ϕ(yx)f(y)dy(20.3)

is an isometric isomorphism from H(ϕ) onto H2
r(G) compatible with the represen-

tations of G on these spaces.
(iv) (r > 2) The orthogonal projection L2(Γ\G) −→ H2

r(Γ\G) is the map
f 7−→ f ∗ ωr.

(v) (r > 1) For any closed invariant subspace H of L2(Γ\G) such that the
representation (H, V ) is isomorphic to the conjugate of πr, there exists ϕ ∈ H2

r(G),
unique up to a constant factor, such that H = H(ϕ).

(vi) (r > 1) If (fi) is an orthogonal basis of H2
r(Γ\G), the subspaces H(fi)

are pairwise orthogonal and their direct sum is the closed invariant subspace Dr of
L2(Γ\G) generated by H2

r(Γ\G).

The proof found everywhere uses differential operators associated to the Lie
algebra of G. It will be presented in n◦ 30. The one given here uses the simplest
notions about unitary representations – abstract nonsense – and, instead of Lie
algebras, integral methods of n◦ 16. As the spaces H2

r(G) can be generalized to all
semisimple groups G for which G/K has a complex analytic structure as shown by
Harish-Chandra in the 1950s, this is surely also the case of theorem 27. There are

78 The conjugate of a unitary representation (H, U) is obtained with replacing the
map (λ, f) 7−→ λf by (λ, f) 7−→ λ∗f , the inner product (f |g) with (g|f), and
by preserving the operators U(x). By setting the functions (U(x)f |g) to be the
coefficients of (H, U), those of the conjugate representation are the functions
(g|U(x)f).
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also reasons to suppose that these results, once suitably reformulated, will apply
to all locally compact groups by replacing the representation πr with a square
integrable irreducible unitary representation, as in the case, of course trivial, of
compact groups.

(a) Let us consider the representation of G by right translations V (x) on
L2(Γ\G) and show that, for any ϕ ∈ H2

r(Γ\G) and all f ∈ L2(Γ\G), the coef-
ficient

Φf (x) = (V (x)ϕ|f) =

∫
Γ\G

ϕ(yx)f(y)dy(20.4)

is in Hr(G). If f is continuous with compact support modΓ , there is [Chap. XI,
n◦ 15, (iv)] a function p ∈ L(G) such that

f(x) =
∑

p(γx) .

For given x, the function y 7−→ ϕ(yx)p(y) is locally L2 like ϕ, with compact support
like p, and so integrable over G. As a result (generalized LF),∫

Γ\G
ϕ(yx)f(y)dy =

∫
Γ\G

dy
∑
Γ

ϕ(γyx)p(γy)dy =

=

∫
G

ϕ(yx)p(y)dy = p̃ ∗ ϕ(x) ;(20.5)

So, by the final remark of n◦ 16, the left hand side is in Hr(G) like ϕ. If now
f ∈ L2(Γ\G), there exist fn ∈ L(Γ\G) such that lim ‖f − fn‖2 = 0 . As

|Φf (x)| ≤ ‖ϕ‖2.‖f‖2

for all x and f , the functions (V (x)ϕ|fn) converge uniformly to (V (x)ϕ|f), whence
the result.

(b) As V (k)ϕ = χr(k)ϕ, the function Φ(x) = (V (x)ϕ\ϕ) satisfies

Φ(kxk′) = χr(k)Φ(x)χr(k
′) .(20.6)

However, in Hr(G), (6) determines Φ up to a constant factor: Φ corresponds to a
constant function on the unit disc D [n◦ 16, (ii)]. We then consider the operator
A in H(ϕ) commuting with all V (x) and set Aϕ = f . The function (V (x)ϕ|Aϕ)
is in Hr(G) and a trivial calculation shows that it satisfies (6), and so is propor-
tional to (V (x)ϕ|ϕ). Since the V (x)ϕ generate H(ϕ) topologically, Aϕ = λϕ. Hence
AV (x)ϕ = λV (x)ϕ and A = λ1. So for all r, the representation is irreducible, even
when H2

r(Γ\G) = {0}. . .
(6) also shows that Φ ∈ H2

r(G) whenever H2
r(G) is non-trivial, i.e. for r > 1.

The representation (H(ϕ), V ) is then square integrable since one of its coefficients is
in L2(G), from which it follows (Bargmann) that the function (V (x)f |f ′) is square
integrable over G for all f, f ′ ∈ H(ϕ).

(c) If r > 1, simply by definition, the kernel function ωr of the space H2
r(G)

satisfies ωr ∗ ω̃r = ωr = ω̃r, i.e.

ωr(x) =

∫
G

ωr(xy)ωr(y)dy = (ωr|L(x)ωr) ,

the inner product being on L2(G). As ωr is in Hr(G) and satisfies (6), the func-
tions Φ and ωr are proportional, and the coefficient of proportionality is necessarily
indicated in (2): put x = e. But if two irreducible unitary representations have a
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common diagonal coefficient, they are equivalent as was seen in Chap. XI, n◦ 31,
(iii) following the proof of lemma 1. The representation (H(ϕ), V ) is therefore equiv-
alent to the conjugate of ωr. Propositions (i), (ii) and (iii) of the theorem are now
proved.

(d) Proposition (iv) is, here too, a matter of trivial facts about representations
admitting a generating vector. Since (V (x)ϕ|ϕ) = λ(ωr|L(x)ωr), there is a semilin-
ear isomorphism J fromH(ϕ) ontoH2

r(G) commuting with the representations and,

omitting a factor λ
1
2 without any significance, mapping ϕ onto ωr. By assumption,

JV (x) = L(x)J ,
(
Jf |Jf ′

)
=
(
f ′|f

)
for f, f ′ ∈ H(ϕ). For f ∈ H(ϕ),

Jf(x) = (Jf |L(x)ωr) ,

the main property of the kernel function [n◦ 16, (iv)]. Thus

Jf(x) = (Jf |L(x)Jϕ) = (Jf |JV (x)ϕ) = (V (x)ϕ|f) ,

which is formula (3).
Exercise 1 (r > 2). Show that on the everywhere dense subspace H1

r(G), the

map J−1 is given by J−1f = ϕ ∗ f̃ up to a constant factor. (On the face of it, it
is not obvious that this map extends continuously to H2

r(G). This follows from the
existence of J).

Exercise 2 (r > 1). Using the Bargmann orthogonality relations, show directly
that there is a constant c such that

(Φf |Φf ′) = c (f |f ′)

for all f, f ′ ∈ H(ϕ). The inner products are calculated on L2(G) and L2(Γ\G)
respectively.

(e) Before proving proposition (iv), we recall that it is possible to associate
to any bounded measure µ on G an operator V (µ) =

∫
V (y)dµ(y) in L2(Γ\G)

[Chap. XI, n◦ 25, (i)]. We have ‖V (µ)‖ ≤ ‖µ‖,

V (µ ∗ ν) = V (µ)V (ν) , V (µ̃) = V (µ)∗ .

All closed invariant subspace of L2(Γ\G), in particular the subspaces H(ϕ), are
stable under the operators V (µ). For f, f ′ ∈ L2(Γ\G),(

V (µ)f |f ′
)

=

∫
G

(
V (x)f |f ′

)
dµ(x) =

∫
dµ(x)

∫
Γ\G

f(yx)f ′(y)dy =

=

∫
Γ\G

f ′(y)dy

∫
f(yx)dµ(x) =

(
f ∗ µ̃|f ′

)
,(20.7)

but we need to justify the permutation of integrals needs to be justified and show
that f ∗ µ̃ ∈ L2(Γ\G) in order to prove that this formal calculation is legitimate.
Now, f and f ′ being in L2(Γ\G), the function

x 7−→
∫ ∣∣f(yx)f ′(y)

∣∣ dy
is bounded above by ‖f‖2‖f ′‖2. As µ is bounded,∫

d|µ|(x)

∫ ∣∣f(yx)f ′(y)
∣∣ dy ≤ ‖µ‖.‖f‖2‖f ′‖2 < +∞ .(20.8)
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So the integrals can be permuted by LF.
Moreover as the latter integral in (7) is well-defined for all f ′ ∈ L(Γ\G), the

function ∫
f(yx)dµ(x) = f ∗ µ̃(y) ,

is defined for almost all y by LF, and is locally integrable by definition [Chap. XI,
n◦ 12, (ii)]. By (7) and (8),∫

Γ\G

∣∣f ′(y).f ∗ µ̃(y)
∣∣ dy ≤ ‖µ‖.‖f‖2‖f ′‖2

for all f ′ ∈ L2(Γ\G). As a result, f ∗ µ̃ belongs to L2(Γ\G) [Chap. XI, n◦ 18,
corollary of theorem 30] and

f ∈ L2(Γ\G) =⇒ f ∗ µ̃(x) = V (µ) f(x) ae.(20.9)

(f) This result shows that ϕ ∗ µ̃ ∈ H(ϕ). If r > 2, one may choose dµ(x) =
ωr(x)dx since ωr ∈ L1(G). As

ω̃r = ωr = ωr ∗ ωr ,

the operator

f 7−→ f ∗ ωr = V (ωr) f(20.10)

is an orthogonal projection. However, if f ∈ L2(Γ\G), lemma 2 of n◦ 16, (vi) shows
that f ∗ ωr = f if and only if f ∈ H2

r(Γ\G). Hence for f ∈ L2(Γ\G),

f ∈ H2
r(Γ\G)⇐⇒ V (ωr) f = f (r > 2) ,(20.11)

proving proposition (iv).
(g) Let J−1 : H2

r(G) −→ L2(Γ\G) be a semilinear isomorphism compatible
with the representations. We set ϕ = J−1ωr and let H(ϕ) be the image of H2

r(G)
under J−1, i.e. the closed invariant subspace of L2(Γ\G) generated by the V (x)ϕ.
Proposition (v) of the theorem reduces to proving that ϕ belongs to H2

r(Γ\G) and
is the only function f ∈ H(ϕ) with this property, up to a constant factor.

Let J : H(ϕ) −→ H2
r(G) be the inverse map of J−1, whence ωr = Jϕ. For all

f ∈ H(ϕ),

(V (x)ϕ|f) =
(
Jf |JV (x)J−1ωr

)
= (Jf |L(x)ωr) = Jf(x)

by definition of the kernel function of H2
r(G). The function Φf (x) = (V (x)ϕ|f)

is, therefore, in Hr(G) for all f ∈ H(ϕ), and even for all f ∈ L2(Γ\G): replace
f with its projection on H(ϕ). Like in point (a) of the proof, one may choose
f(y) =

∑
p(γy) where p ∈ L(G). By (5),

Φf = ϕ ∗ p̃ ∈ L2(Γ\G) ∩Hr(G) = H2
r(Γ\G) .

Choosing the pn so that the measures pn(x)dx form a Dirac sequence at e, like in
any unitary representation of a locally compact group, [Chap. XI, n◦ 25, (v)],

ϕ = l.i.m.2 V (pn)ϕ = l.i.m.2 ϕ ∗ p̃n ,

where this is the limit in L2(Γ\G). However all ϕ∗ p̃n belong to the closed subspace
H2
r(Γ\G) of L2(Γ\G) for all Γ (and finite-dimensional if Γ is a Fuchsian group).

So the same holds for ϕ.
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All that remains to be shown is that every ϕ′ ∈ H(ϕ) ∩ H2
r(Γ\G) is propor-

tional to ϕ. As the representation V on H(ϕ), equivalent to the conjugate of πr,
is irreducible, H(ϕ′) = H(ϕ). Hence, by proposition (ii) of the theorem, there is
an isomorphism J ′ : H(ϕ′) −→ H2

r(G) mapping ϕ′ onto ωr. J and J ′ differ by an
automorphism of the representation on H2

r(G), so by a scalar since it is irreducible.
This gives proposition (v) of the theorem.

Alternative version: V (k)ϕ′ = χr(k)ϕ′ since ϕ′ ∈ H2
r(Γ\G). But the subspace

of f ∈ H2
r(G) such that L(k)f = χr(k)f has dimension one (constant functions on

the unit disc) and contains ωr, qed. It is even possible to refer to the general result
that will be proved in n◦ 30: in every irreducible unitary representation (H, U) of G,
the subspace of solutions of U(k)a = χ(k)a has dimension ≤ 1 for all characters χ
of K.

Exercise 3. For r > 2, show directly that J(f ∗ ωr) = Jf for all f ∈ H(ϕ).
(h) To finish the proof, consider two functions ϕ,ψ ∈ H2

r(Γ\G) and the pro-
jection P on H(ϕ) in L2(Γ\G). It commutes with all V (x), and so maps H(ψ)
onto a subspace in which the linear combinations of PV (x)ψ = V (x)Pψ are every-
where dense. The subspaces H(ϕ) and H(ψ) are, therefore, orthogonal if and only
if Pψ = 0. This condition remains to be shown to be equivalent to (ϕ|ψ) = 0 and,
to this end, that Pψ is proportional to ϕ. But as P commutes with all V (k),

V (k)Pψ = PV (k)ψ = χr(k)Pψ

and we remarked above that the only elements of H(ϕ) satisfying this relation are
the multiples of ϕ.

Finally, let (ϕi) be an orthonormal basis of the space H2
r(Γ\G). The spaces

H(ϕi) are pairwise orthogonal and contained in the closed invariant subspace
Dr generated by H2

r(Γ\G). Now, the finite sums of functions V (x)ϕ, where
ϕ ∈ H2

r(Γ\G), are everywhere dense in Dr. As every ϕ ∈ H2
r(Γ\G) is the limit

of finite linear combinations of the functions ϕi, these V (x)ϕ are in the Hilbert

sum of the spaces H(ϕi). Thus Dr =
⊕̂
H(ϕi). This is a Hilbert direct sum for all

Γ , and a finite direct sum if Γ is Fuchsian.
Exercise 4. Interpret the theorem in the case Γ = {e}.

21 – Poincaré, Eisenstein and Maaß-Selberg Series

The reader will probably have noticed that, contrary to the statement of theo-
rem 19, that of theorem 26 does not include any point (b). It could be, but is
not, the author’s “ malfunction ”, as is politely said nowadays. In this n◦, we will
present methods that, together with very simple series, enable us, like in the case
of the modular group, to effectively construct automorphic forms and in particular
analogues for Fuchsian groups for Eisenstein series, following which the omitted
proposition (b) will become as obvious as for the modular group.

(i) Poincaré series79. In 1880, wishing to extend the theory to discrete groups
to which conventional calculations cannot be generalized, Poincaré found a less

79 Most of the arguments and calculations of this n◦ can be generalized to the
much more general case of the Siegel modular group; see my talks in the Cartan
Seminar on automorphic functions of several variables (1957–1958). They have
been reproduced for SL2 in Miyake, Modular Forms, chap. 6, probably because
through Ichiro Satake’s participation in the Cartan Seminar a copy of it reached
Japan! See also Walter L. Baily, Jr., Introductory Lectures on Automorphic Forms
(Princeton UP, 1973), interesting in more than one respect.
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miraculous way than arithmetic for constructing entire (and even, as will be seen,
parabolic) automorphic forms. An arbitrary discrete subgroup Γ of G being given,
starting from a holomorphic function f(z) on P or even only on an open Γ -invariant
subset Ω ⊂ P , it consists in considering the series

Pr,f (z) =
∑
Γ

J(γ; z)−rf(γz) =
∑

Lr(γ)f(z)(21.1)

hoping they converge. If that is the case, (15.10’) shows that the function of weight
r associated to Pr,f on the inverse image of Ω under g 7−→ z = gi is

Pr,f (g) =
∑

fr(γg) ,(21.1’)

which, hundred years later, makes Poincaré’s idea trivial. If the function fr is in-
tegrable over π−1(Ω), the series (1) or(1’) converges in mean – which, if f is holo-
morphic, most probably implies compact convergence – and its sum is integrable
modΓ . If Γ is a Fuchsian group and if Ω = P , it will therefore be a parabolic form
by theorem 26, (c). These heuristic considerations remain to be justified. We do this
by comparing series (1) to an integral. This method appears somewhat implicitly
(see below) in Poincaré and was systematically exploited much later. Both Cartan
Seminars of 1953/54 and 1957/58 on automorphic functions use it extensively, as
well as Siegel.80

We again start from the fact that, for any compact set A ⊂ Ω and any compact
neighbourhood A′ ⊂ Ω of A, there is a constant M1 such that the uniform norm
on A of any holomorphic function f on Ω has an upper bound

‖f‖A ≤M1

∫∫
A′
|f(z)| dxdy .

To formulate this result in terms of fr, we use (15.30)∫
|fr(g)| dg =

∫ ∣∣∣yr/2f(z)
∣∣∣ dm(z) .

As the variable y stays away from 0 and +∞ in A′, in the previous inequality, the
Euclidean measure dxdy can be replaced by the invariant measure dm(z), so that
it can equally well be written

‖fr‖C ≤M2

∫
C′
|fr(g)| dg(21.2)

where C and C′ are the inverse images of A and A′ under g 7−→ gi. For given A
and A′, the constant M2 being the same for all holomorphic functions on P , (2)
may be applied to the left translations L(γ)fr of fr. Thus∑

Γ

‖L(γ)fr‖C ≤M2

∑
Γ

∫
C′
|fr(γg)dg = M2

∑
Γ

∫
γC′
|fr(g)|dg .

However, γC′# γ′C′ implies γ−1γ′ ∈ C′C′−1 ∩ Γ . The latter, being a compact
discrete set, is finite with N elements. Hence each γC′ has non-trivial intersection

80 Carl Ludwig Siegel, Einführung in die Theorie der Modulfunktionen n-ten Grades
(i.e. related to the group Sp(n,R)), Math. Annalen, 116, 1939, pp. 617–657.
There are probably older references by the same author, in whose complete works
can be found considerable ideas and beautiful calculations despite the hostility
Siegel showed in his old days for new methods (representations and adeles).
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with at most N sets γ′C′, so that the sum of the integrals extended to all γC′ is
equal to at most N times the integral extended to the union Γ.C′ of these γC′.
This is an easy exercise of measure theory. Series (1) therefore converges normally
in every compact subset provided∫

ΓA

yr/2 |f(z)| dm(z) < +∞(21.3)

for all compact sets A ⊂ Ω. This condition is also necessary since∫
γC

|fr(g)| dg ≤ m(C) sup
x∈C
|f(γx)| .

The problem is then to show that there are functions f satisfying condition (3).
To evaluate the obstacle, let us suppose that Ω = P and that the quotient Γ\P is
compact. A can then be chosen so that ΓA = P , in which case the condition means
that f ∈ H1

r(P ). The latter is a non-trivial space if and only if r > 2. In the case
of an arbitrary group Γ , condition f ∈ H1

r(P ) is obviously sufficient. Moreover, as
this assumption means that the function fr is integrable over G, the sum of series
(1’) is integrable over Γ\G. As a result:

Theorem 28. For all discrete subgroups Γ ⊂ G, all open Γ -invariant subsets
Ω ⊂ P , all r > 2 and all holomorphic functions such that∫

Ω

yr/2 |f(z)| dxdy < +∞ ,

the Poincaré series Pr,f (z) =
∑
J(γ; z)−rf(γz) converges normally in every com-

pact subset of Ω and its sum belongs to H1
r (Γ\Ω).

In fact, initially Poincaré only considered series Pr,f (z) for functions f which, on
the unit disc D, correspond to polynomials in z. His arguments are a bit different.
The conformal representation

z 7−→ ζ = (z − i)/ (z + i) = s−1z

used in n◦ 15, (vi) transforms Γ into a subgroup Γ ′ = s−1Γs of the group G′ of
automorphisms (15.34) of D. Associating the function

ϕ(ζ) = J(s; ζ)−rf(sζ)

to f , series (1) becomes ∑
J
(
γ′; ζ

)−r
ϕ
(
γ′ζ
)
,(21.4)

where summation is over Γ ′. This does not appear to simplify the problem. But
instead of comparing the terms of the new series to integrals with respect to the
invariant measure of D, Poincaré uses the Euclidean measure dξdη = dµ(ζ) on
the complex plane. For any sufficiently small disc A centered at ζ, the area µ(γ′A)
is approximately equal to the product of µ(A) and the Jacobian of γ′ calculated
somewhere in A, namely81∣∣d (γ′ζ) /dζ∣∣2 =

∣∣J (γ′; ζ)∣∣−4
.

81 The Jacobian of a holomorphic map z 7−→ f(z) is |f ′(z)|2 because of Cauchy’s
holomorphy condition: Chap. III, formula (24.9).
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As µ(D) < +∞, without strictly speaking using integrals, he concludes that∑
µ(γ′A) < +∞ and as a result that∑∣∣J (γ′; ζ)∣∣−4

< +∞ .

So it suffices to assume that ϕ is bounded on D, for example is polynomial, in order
to make series (4) convergent for r = 4. And if it converges for r = 4, it necessarily
converges for r > 4.

This argument, based on∑∣∣d (γ′ζ) /dζ∣∣2 < +∞ ,

is simpler that the previous one since it only uses spaces Hr1; but it does not include
the case r = 3, which occurs for groups that do not contain −1 (as well as non-
integral r ∈ ]2, 4[), and the assumption that ϕ is bounded is too restrictive. In fact
it is enough for ϕ to belong to the space H1

r (D). It can be immediately generalized
to groups acting on a bounded domain of a space Cn.

Characterizing polynomials to which Poincaré confined himself is easy. On D,
these are precisely the holomorphic functions whose images under rotations centered
at 0 generate a finite-dimensional vector space. Returning to the half-plane and to
G, we get functions fr whose left translations g 7−→ fr(kg) under k ∈ K generate
a finite-dimensional space. They will be called K-finite functions82 on G. Formula
(16.15), with n = r + 2p, p ≥ 0, provides a basis for it for all r.

Exercise 1. What is relation (5) in P?
Let us consider the simplest case of the function f(z) = (z−w)−p where p > 0

and choose Ω = P−Γw. Any compact subset of Ω is contained in P−ΓV where V is
a compact neighbourhood of w in P . As Ω ⊂ P−V , to show that the corresponding
Poincaré series converges normally in every compact subset of Ω, it suffices to check
that yr/2|f(z)| is integrable in P −ΓV , or even more so in P −V . In this open set,
the ratio |(z − w)/(z − w)| stays in a compact subset of R+ since

z 7−→ (z − w)/ (z − w)

transforms P − V into D − V ′, where V ′ is a neighbourhood of 0. Hence it is
enough to check that the function yr/2(z − w)−p is integrable in P − V . Now, we
know [Chap. VIII, n◦ 12, (iv)] that for p > r/2 > 1, it is in the space H1

r(P ), which
is better. The corresponding Poincaré series Pr,f therefore converges normally in
every compact subset of P − Γw if p > r/2 > 1.

If w is not a fixed point of Γ , the only terms of the series having a pole at w
correspond to γ = ±1. If −1 /∈ Γ , w and its images are poles of order p of Pr,f ;
if −1 ∈ Γ , the result is the same for r even. To deduce that Pr,f is a (non-entire)
automorphic form of weight r, its behaviour at parabolic fixed points of Γ needs to
be analyzed. Since f is integrable in P −ΓV , the series Pr,f is integrable modΓ in
this open set. However, thanks to lemma 1 of the previous n◦, for every parabolic
fixed point ξ of Γ, P − ΓV contains a horocycle centered at ξ. So the function Pr,f
is not only holomorphic, but also parabolic at each of these points.

82 Their importance is not only due to the fact that they are known explicitly.
K-finite functions can be defined for all groups G and all compact subgroups K
of G. Their role is essential in Harish-Chandra’s theory (G semisimple, K maxi-
mal compact) and in automorphic function theory à la Maaß-Selberg-Langlands,
because the Lie algebra of G acts almost algebraically on K-finite vectors of an
irreducible representation. See § 8 of this chapter.
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Theorem 29. Let Γ be a Fuchsian group. For all r ∈ Z, even if −1 ∈ Γ , there
exist non-trivial automorphic forms of weight r for Γ .

the previous argument proves the theorem for all r > 2: choose f(z) = (z−w)−p

with p > r. If w′ /∈ Γw is not an elliptic fixed point, the function f ′(z) = (z−w′)−p
′

is also appropriate for all r′ > 2 and all p′ > r′. The quotient Pr,f (z)/Pr′,f ′(z) is
then a non-trivial automorphic form of weight r − r′ having poles of order ≥ p at
the points γw and zeros of order ≥ p′ at the points γw′, qed.

These results can be refined; see for example Miyake, § 2.6. I will not go any
further in this direction and henceforth will keep to entire automorphic forms.

For f ∈ H1
r(P ), though it is already known, using results of n◦ 16, (i) the series

Pr,f can be checked to indeed be parabolic forms for all Fuchsian subgroups Γ .
More generally, let us consider a group Γ admitting ∞ as a parabolic fixed

point and set

U∞ = Γ ∩ U

to be the subgroup of matrices x(nω) for some ω > 0. Then any holomorphic
solution of f(γz) = J(γ; z)rf(z) has an expansion

f(z) =
∑

ane(z/ω)n , an = ω−1

∮
f(z)e(z/ω)−ndx(21.5)

where integration is modulo ω. We need to show directly that if f is a Poincaré
series, then an = 0 for all n ≤ 0.

The easiest is to argue in G. We have to expand the function u 7−→ Pr,f (ug) =∑
fr(γug), as a U∞-invariant Fourier series. Identifying the matrix x(u) ∈ U with

the number u ∈ R, the expected Fourier series can be written

Pr,f (ug) =
∑

e(u/ω)nan(g) =
∑

an(ug)

where

an(g) = ω−1

∫
U∞\U

e(u/ω)−ndu
∑
Γ

fr(γug) .

Grouping together the terms γγ′ where γ′ ∈ U∞ and observing that e(u/ω) is
U∞-invariant, we get

ωan(g) =

∫
U∞\U

du
∑
γ.U∞

∑
γ′∈U∞

e
[
γ′(u)/ω

]
)−nfr

(
γγ′ug

)
=

=
∑
γ.U∞

∫
U∞\U

du
∑
γ′

e
[
γ′(u)/ω

]−n
fr
(
γγ′ug

)
,

whence

ωan(g) =
∑
Γ\U∞

∫
U

e(u/ω)−nfr(γug)du .

This formal calculation, which does not assume f to be holomorphic, is justified
because exponential factors have absolute value 1. Like the Poincaré series, for all
g, the series being integrate thus converges normally over any compact subset of
Ug. For γ = e,
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∫
U

fr(ug)e(u/ω)−ndu =

∫
R
J(g; i)−rf(z + u)e(u/ω)−ndu =

= J(g; i)−re(z/ω)nf̂(n/ω)

as was seen in n◦ 16, (i). There are similar formulas for the translations g 7−→ fr(γg)

of fr under γ ∈ Γ as they are also in H1
r(G). Hence, since f̂(t) = 0 for t ≤ 0 for all

f ∈ H1
r(P ), an(g) = 0 for n ≤ 0, qed.

This computation method does not provide any explicit formulas for the coeffi-

cients an, since the effect of left translations by γ ∈ Γ on f̂ is not simple [n◦ 16, (v),
exercise 3]. To get the coefficients an, summing over the cosets U∞γ is necessary
as will be seen later.

We can at last address the question whether, for a Fuchsian group Γ , a parabolic
form of weight r > 2 is a Poincaré series. Let f ∈ H1

r(G) and ϕ ∈ H2
r(Γ\G) be a

parabolic form. Let us calculate the inner product

(ϕ|Pr,f ) =

∫
Γ\G

ϕ(g)Pr,f (g)dg =

∫
Γ\G

dg
∑
Γ

ϕ(γg)fr(γg) =

=

∫
G

ϕ(g)fr(g)dg .

This formal calculation supposes ϕ(g)fr(g) to be integrable over G, which is the case
since ϕ is bounded on G (theorem 26) and fr is integrable. Hence if ϕ is orthogonal
to all Poincaré series, then it is also orthogonal toH1

r(P ). However, every ϕ ∈ Hr(G)
orthogonal to H1

r(G) is trivial because the corresponding holomorphic function ϕD
on the unit disc is orthogonal to monomials ζn. By the way, this shows that it is
enough to consider the series Pr,f of K-finite functions.

Hence, the subspace orthogonal to Poincaré series inH2
r(Γ\G) is trivial. If Γ is a

Fuchsian group, H2
r(Γ\G) is finite-dimensional, whence f = 0. Every f ∈ H2

r(Γ\G)
is therefore a Poincaré series. In the next section, we will be able to give more
details about this result due to H. Petersson.

The previous calculations lead to the construction of a kernel function for the
space H2

r(Γ\G) when Γ is a Fuchsian group.
Exercise 1. Suppose r > 2. Let ωr be the kernel function of H2

r(G). It is inte-
grable. (a) Set

ωΓr (x, y) =
∑

ωr
(
x−1γy

)
.

Show that, for all x, the function y 7−→ ωΓr (x, y) is in H1
r (Γ\G). (b) Show that

ϕ(x) =

∫
Γ\G

ωΓr (x, y)ϕ(y)dy(*)

for all ϕ ∈ H2
r(Γ\G). In particular,∫

Γ\G
ωΓr (x, z)ωΓr (y, z)dz = ωΓr (x, y) .

(c) Using the fact that, for all ϕ ∈ H2
r(Γ\G) = H∞r (Γ\G), the second integral (*)

is a bounded function of x, show that

sup
x∈Γ

∫
Γ\G

∣∣∣ωΓr (x, y)
∣∣∣2 dy < +∞
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and that ωΓr (x, y) is bounded on G×G. (d) Set

Erϕ(x) =

∫
Γ\G

ωΓr (x, z)ϕ(z)dz

for all ϕ ∈ L2(Γ\G). Show that Er is the orthogonal projection of L2(Γ\G) on
H2
r(Γ\G). Deduce that

dimH2
r(Γ\G) =

∫
Γ\G

dx
∑
Γ

ωr
(
x−1γx

)
.

The rest of the calculation consists in grouping together the terms of the series
according to the conjugacy classes in Γ , in calculating the centralizers of the γ
in G (if γ 6= ±1, these are well determined conjugates of the subgroups K, A
or U according to whether γ is elliptic, hyperbolic or parabolic), in transforming
the integral over Γ\G of the subseries extended to a class into an integral modulo
the centralizer of γ, in checking that everything converges, etc., in other words of
techniques developed by Selberg for his “ trace formula ”.

(ii) Poincaré-Eisenstein series. Supposing that Γ admits ∞ as a parabolic
fixed point, which implies U∞ = U(ωZ) for some ω > 0, we are going to show
that the Poincaré series can be written in terms of standard series involving
no “ arbitrary ” function f . For Γ = U(Z), this result will reduce to formula∑
f(z + n) =

∑
f̂(n)e(nz) of n◦ 16, (i) and for SL2(Z), to calculations of n◦ 17,

(iii).
Grouping the terms of the series into cosets γU∞,

Pr,f (z) =
∑
U∞\Γ

J(γ; z)−r
∑
Z

f [γ(z) + nω] =

= ω−1
∑

J(γ; z)−r
∑

f̂(n/ω)e [γ(z)/ω]n .(21.6)

Thus, calculating formally,

ωPr,f (z) =
∑
n>0

f̂(n/ω)Er,n(z)(21.7)

with Poincaré-Eisenstein series

Er,n(z) =
∑
U∞\Γ

J(γ; z)−re(γz)n (r > 2, n > 0)(21.8)

which should be written Er,n,∞ to indicate that they are with respect to the fixed
point ∞. To get functions that are not trivially zero, we need to assume that r is
even if −1 ∈ Γ . If ∞ is irregular, Γ contains the matrix

γ0 =

(
−1 ω/2
0 −1

)
and as Γ∞γ = U∞γ ∪ U∞γ0γ, the terms of series (8) in γ and γ0γ can be grouped
together and it can then be summed modΓ∞. As J(γ0γ; z) = −J(γ; z) and

e [γ0γ(z)/ω] = e
[
γ(z)/ω +

1

2

]
= −e [γ(z)/ω] ,

this gives a factor 1 + (−1)n+r in each term of the sum modΓ∞. As a result,
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Er,n(z) = 0 if ∞ is irregular and n+ r odd .(21.9)

To justify the permutation of the
∑

in (6) and, at the same time, to ensure
compact convergence of series (8), it suffices to prove that series (6) converges
unconditionally. For z in a fixed compact set, there is (lemma 1) an upper bound
Im(γz) ≤ T for all γ and so

|e [γ(z)/ω]| ≤ exp(−2πT ) .

As a result,∑
n

∣∣∣f̂(n/ω)e [γ(z)/ω]n
∣∣∣ ≤∑∣∣∣f̂(n/ω) exp(−2πnT )

∣∣∣ = M < +∞ .

Like
∑
f̂(n)e(nz), the second series converges for all f ∈ H1

r(P ) [n◦ 16, (i)]. Then∑
U∞\Γ

|J(γ; z)|−r
∑
n

∣∣∣f̂(n/ω)e [γ(z)/ω]n
∣∣∣ ≤M ∑

U∞\Γ

|J(γ; z)|−r ,

so that to justify going from (6) to (7) and compact convergence of series (8) for
n > 0, it suffices to show that∑

U∞\Γ

|J(γ; z)|−r < +∞ ,(21.10)

which brings us back to the convergence of the Eisenstein series

Er,∞(z) =
∑
U∞\Γ

J(γ; z)−r (r > 2)(21.11)

associated to the parabolic fixed point ∞.
If this point, which will be proved in section (iii) in the general case, is admitted

for now, relation (7) and theorem 26, (f) show that the series Pr,f are limits of linear
combinations of series (8). But in finite dimension, every vector subspace is closed.
As shown at the end of section (i), every f ∈ H2

r(Γ\G) is a Poincaré series. Thus
the results of these two sections can be summarized as follows:

Theorem 30 (H. Petersson). Let Γ be a Fuchsian group.
(i) For all r > 2, the space H2

r(Γ\G) of parabolic forms of weight r for Γ is the
set of Poincaré series Pr,f associated to K-finite functions f ∈ H1

r(P ).
(ii) Every parabolic form of weight r > 2 is a linear combination of Poincaré-

Eisenstein series.

If Γ contains the matrix −1, r is even and the general term of (11) only depends
on the coset of γ modulo the subgroup

Γ∞ = Γ ∩B = U∞ ∪ −U∞

of matrices for which c = 0, d = ±1. So the sum is twice that obtained by summing
modΓ∞. To avoid this factor 2, in the case of SL2(Z), a factor 1

2
was introduced in

(17.20) in definition (11). We will not do so here in order to get formulas for all Γ .
If the fixed point∞ is irregular, the formal argument leading to (9) applies equally
for n = 0. Thus the series Er,∞ are trivial for r odd.

Exercise 2. (a) Show that∑
ωr(z + n) =

∑
n>0

nr−1e [n(z + i)]
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up to a constant factor. (b) Show that∑
ωr(γg) =

∑
n>0

exp(−2π/ω)nnr−1Er,n(g)

up to a constant factor. (c) Using exercise 1, recover theorem 30.

Another reason for the importance of the series Er,n studied by Petersson but
also found in Poincaré83 for the modular group, follows from the next calculation.
Let f be a holomorphic solution of the functional equation f(γz) = J(γ; z)rf(z),
without any other restrictions for the moment, and let us compute the integral

(f |Er,n)r =

∫
Γ\P

yrf(z)Er,n(z)dm(z) =

∫
Γ\G

fr(g)Er,n(g)dg ,(21.12)

where

Er,n(g) = J(g; i)−rEr,n(z) =
∑

er(γg;n/ω)

and

er(g; t) = J(g; i)−re(tz)

are the functions of weight r associated to Er,n(z) and e(tz) on G. Let us suppose
that the function under the

∫
sign in (12) is integrable. As fr(γg) = fr(g),

(f |Er,n)r =

∫
Γ\G

dg
∑
U∞\Γ

fr(γg)er(γg;n/ω) .

Thus

(f |Er,n)r =

∫
U∞\G

fr(g)er(g;n/ω)dg =

=

∫
U∞\P

yr−1f(z)e(nz/ω)dxd∗y .(21.13)

Using the Fourier series f(z) =
∑
ape(pz/ω) and integrating term by term, we get

(f |Er,n)r =
∑
p

ap

∫
U∞\P

yre(pz/ω)e(nz/ω)dm(z) .(21.14)

Replacing z by ωz, leaves the measure invariant, replaces U∞ by U(Z) and multiplies
yr by ωr. Integration is then via an integral over xmodZ, which is zero for n 6= p.
For n = p, the product of the two exponentials equals exp(−4πny), thus the final
result follows readily:

(f |Er,n)r = (4πn)1−r Γ (r − 1)ωran .(21.15)

83 See Fonctions modulaires et fonctions fuchsiennes (Œuvres complètes, end of vol-
ume II), a 1912 article sent to Ann. of the Fac. of Sc. of Toulouse on the eve of his
admission to a clinic for a prostrate operation which went wrong. . . Formula (12)
is already in there for particular functions f (those corresponding to monomials
ζp on the unit disc), and so are the Fourier series of the functions Er,n (n ≥ 0)
on the modular group and the arithmetic sums occurring in their coefficients.
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These calculations still remain to be justified assuming f to be parabolic. To get
(13), it suffices to show that the integral obtained extended to the strip |Re(z)| ≤
ω/2 of P is convergent. Now, the function yr/2f(z) is bounded on P if Γ is a
Fuchsian group, the exponential is rapidly decreasing at infinity since n > 0 and
the function yr−1 is integrable with respect to d∗y in the neighbourhood of 0 since
r > 1. So it clearly converges.

To justify going from (14) to (15), it suffices to show that∑
p

|ap|
∫
U∞\P

yr |e(pz/ω)e(nz/ω)| dm(z) < +∞ .

The integral is proportional to (n+ p)1−r ≈ p1−r, whence the condition∑
|ap|/pr−1 < +∞ .

As we know that ap = O(pr/2) for any parabolic form, assumption r > 4 justifies
the calculation, but leaves open the cases r = 3 and r = 4. The question is academic
for the modular group. If Γ is a congruence group, Deligne’s upper bound

ap = O
(
p

1
2
(r−1)+ε

)
can be used. This result, which does not come very cheap, takes care of the question
for r = 4 but not for r = 3. To make the series convergent in this case, we need an
estimation of the genus in O(p1−ε), but these gentlemen say that it is not possible
to go beyond O(p1+ε).

In conclusion, The Fourier coefficient with index n > 0 of any parabolic form f
of weight r is the inner product of f and the Poincaré-Eisenstein series Er,n, up to
a simple factor, at least for r > 4.

(iii) Eisenstein series. They do not generalize the series Gr(z) of the modular
group, which are not well-defined for non-arithmetic groups Γ , but the reduced
series

Er,∞(z) =
∑
U∞\Γ

J(γ; z)−r(21.16)

introduced in (17.20) with a factor 1
2
. They are defined for any discrete group Γ

having ∞ as a parabolic fixed point. For r odd, as was seen above, the series is
trivial if −1 ∈ Γ or if the fixed point ∞ is irregular.

The convergence of these series, obvious if Γ ⊂ SL2(Z), requires a more difficult
proof for other groups, but its principle can be applied to multiple Eisenstein series
associated to arithmetic subgroups of general semisimple groups. In fact we will
study the Maaß-Selberg series84

84 Hans Maaß, Über eine neue Art von nichtanalytischen automorphen Funktionen
und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen (Math.
Annalen, 121, 1949, pp. 141–183), Atle Selberg, Harmonic analysis and discon-
tinuous groups in weakly symmetric Riemannian spaces (J. Indian Math. Soc.,
20, 1956). There is also, for all r ∈ Z, a series

Mr,∞(z, s) =
∑

J(γ; z)−r Im(γz)s−r/2 .

These series, which satisfy differential equations which we shall prove in § 8, en-
able us to write down explicitly the “ continuous spectrum ” of the representation
of G on L2(Γ\G), hence their importance.
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M∞(z; s) =
∑
Γ∞\Γ

Im(γz)s =
∑
Γ∞\Γ

α(γg)s(21.17)

where s is a complex exponent. As |J(γ; z)|−2 = Im(γz)/ Im(z), convergence will be
obtained for (16) when r > 2 by showing that series (17) converges for Re(s) > 1.
Summation modΓ∞ aims to ensure that the “ constant ” term, i.e. independent
of x, of the Fourier series

M∞(z; s) =
∑

an(y)e(nx/ω)

of the function is, as will be seen, of the form a0(y) = ys + a(s)y1−s without any
superfluous factor 2 if U∞ 6= Γ∞. However, summing modΓ∞ is problematic for
the series

Mr,∞(z; s) =
∑
Γ∞\Γ

J(γ; z)−r Im(γz)s−r/2(21.17’)

when Γ∞ 6= U∞. One obviously needs to assume r is even if −1 ∈ Γ or else if the
fixed point∞ is irregular. In the latter case, summing modU∞ is certainly possible
for r odd, but the result would be zero.

We will set

α(g) = |J(g; i)|−2 = Im(gi)

as in n◦ 15, whose notation we will keep. For k ∈ K, u ∈ U , h = h(t) ∈ A and
z = gi,

uhgi = uhz = t2z + u = α(h)z + u ,

whence

α(uhgk) = α(h)α(g) .

The Haar measure of G is given by

ϕ(g)dg =

∫∫
ϕ(bk)dbdk =

∫∫∫
ϕ(huk)dhdudk =

=

∫∫∫
ϕ(uhk)α(h)−1dudhdk .

g 7−→ gi transforms the horocycles centered at ∞ into Siegel domains

S(T ) : g = uhk with α(h) ≥ T

of (19.9) and the horocycles centered at ξ = x∞ into their translations xS(T ).

Theorem 31. For every discrete subgroup Γ of G having a parabolic fixed point
at infinity, the series

M∞(g; s) =
∑
Γ∞\Γ

α(γg)s =
∑

Im(γz)s(21.18)

converges absolutely for Re(s) > 1. For any parabolic fixed point ξ = x∞ of Γ , the
series converges normally in every horocycle S(ξ), unless ξ = σ∞ (σ ∈ Γ ) belongs
to the same class as the point ∞. In this case the series with the term α(σ−1g)s

removed converges normally in S(ξ).
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Again, the proof amounts to comparing the series with an integral.

Lemma 1. Normal convergence in S(ξ) is equivalent to convergence at x ∈ G.

To prove this it suffices to find an upper bound

α(γxg) ≤Mα(γx)

valid for γ /∈ Γ∞ and g ∈ S(T ).
Let us first show that there is a constant M such that

α(yg) ≤Mα(y)(21.19)

for all y ∈ G − B and all g ∈ S(T ). The ratio between both sides being invariant
under y 7−→ uhy, one may assume that y ∈ K, a compact set in which α(y) stays
away from 0 and +∞. So it suffices to prove that α(yg) is bounded for y ∈ K−K ∩B
and g ∈ S(T ). Then (Bruhat) y = huwu′ where, h, u and u′, like y, stay in compact
sets. In α(yg) = α(h)α(wu′g), u′g stays in US(T ) = S(T ), which gets rid of u′.
On the other hand, the factor α(h) is bounded since y ∈ K. Hence the function

g 7−→ α(wg) = Im(wgi) = Im(−1/z) where z = gi

remains to be shown to be bounded on S(T ), but this is obvious.
This being settled, let us return to series (18) in xS(T ). By (19),

α(γxg) ≤Mα(γx) for γx /∈ B , g ∈ S(T ) .(21.20)

If the fixed point ξ belongs to the same class as ∞, i.e. if x = σb for some σ ∈ Γ
and some b ∈ B, clearly,

γx /∈ B ⇐⇒ γσ /∈ Γ∞ .

Thus (20) applies to all terms of the series except α(σ−1g). Therefore, normal con-
vergence in S(T ) of the series with this term removed follows from its convergence
at x (or any other point). If, on the other hand, ξ is not equivalent to the fixed
point ∞, since γx ∈ B, γξ = ∞, which is impossible. In this case, (20) applies to
all γ, qed.

Lemma 2. Let ϕ be a continuous function with values > 0 on G such that

ϕ(uhg) = α(h)sϕ(g) for some s ∈ R .(21.21)

For all compact sets C ⊂ G with measure > 0, there exist constants m,M > 0 such
that

mϕ(x) ≤
∫
C

ϕ(xg)dg ≤Mϕ(x)

for all x ∈ G.

Let ϕ′(x) denote the integral. The function ϕ′ is continuous, satisfies (21) like
ϕ and is everywhere > 0 since m(C) > 0. The ratio ϕ(x)/ϕ′(x) > 0 is invariant
under x −→ uhx, and so takes the same values in G as in K. Since K is compact,
in G, it stays away from 0 and +∞, qed.

As the Maaß series is of the form
∑
ϕ(γg) where ϕ satisfies (21), we might as

well consider the general case. For all x ∈ G and all C ⊂ G,

ϕ(γx) �
∫
C

ϕ(γxg)dg =

∫
γxC

ϕ(g)dg =

∫
γC′

ϕ(g)dg
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where C′ = xC, which reduces to the proof to the convergence of the series∑
Γ∞\Γ

∫
γC′

ϕ(g)dg .

As C is only required to be compact and have measure > 0 and as Γ is discrete, we
may suppose that C is sufficiently small so that, for given x, the γC′ are pairwise
disjoint. Convergence of the previous series then amounts to saying that ϕ(g) is
integrable over Γ∞\ΓC′.

But the map g −→ gi = z from G to P transforms C′ into a compact subset W
of P and ΓC′ into a set ΓW contained in the strip Im(z) < T for some T < +∞ by
lemma 1 of n◦ 19, (i). Therefore, the set ΓC′ is contained in the complement of a
Siegel domain. So it suffices to show that ϕ(g) is integrable over the set of g = uhk
where u stays in a compact set (since integration is modΓ∞) and where α(h) < T .
As was seen above,

dg = α(h)−1dudhdk for g = uhk .

Hence convergence reduces to that of the integral∫ b

a

du

∫
K

ϕ(k)dk

∫
α(h)<T

α(h)s−1dh

where [a, b] is a compact interval of R. For h = diag(t, t−1), α(h)s−1 = t2(s−1) and
dh = d∗t. Thus the condition Re(s) > 1 follows, ending the proof of the theorem.

The latter applies to series with respect to the point at ∞, but a similar series
can be associated to any other parabolic cusp ξ = x∞ of Γ . It suffices to apply
the formula to the group Γ ′ = x−1Γx for which ∞ is a parabolic fixed point. This
gives the series ∑

Γ ′∞\Γ ′
α(γ′g)s =

∑
Γξ\Γ

α
(
x−1γxg

)s
.

To get a Γ -invariant function, we replace g by x−1g, whence the series∑
α
(
x−1γg

)s
=
∑∣∣J(x−1; γz)

∣∣−2s
Im(γz)s =

=
∑

Im
(
x−1γz

)s
(21.22)

where summation is modΓξ. By the previous theorem, the series associated to Γ ′,

with possibly one term removed, converges normally in every horocycle of P̂ (Γ ′).
However, the parabolic fixed points of Γ ′ are the ξ′ such that x−1γxξ′ = ξ′ for some

γ 6= ±1. Hence these are the points xη where η ∈ P̂ (Γ ), which, by the way, shows

that P̂ (Γ ′) = xP̂ (Γ ). Since g 7−→ x−1g transforms the horocycles of Γ ′ into those
of Γ , it follows that, for any parabolic fixed point η of Γ , series (22) converges
normally in S(η) unless obviously η = σξ is equivalent to ξ, in which case the
result continues to hold provided the term α(x−1σg)s which increases indefinitely
as z tends to η in the topology of horocycles is removed from the series.

Series (22) depends on the choice of x such that ξ = x∞. But since x 7−→ xb
multiplies α(x−1g) by α(b−1) for all g, changing x multiplies (34) by a constant.
A result independent of x is obtained by dividing all the terms of the series by
α(x−1)s, which leads to the series
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α
(
x−1)−s ∑

Γξ\Γ

α
(
x−1γg

)s
=
(
c2 + d2

)s∑
Im
(
x−1γz

)s
where (c d) is the second row of the matrix x−1. For (c d) = (1 − ξ), (22) is the
function

Mξ(z; s) =
∑
Γξ\Γ

|γz − ξ|−2s Im(γz)s =
∑

Im [−1/(γz − ξ)]s .(21.23)

This obviously supposes ξ 6=∞. As the transformation z 7−→ −1/(z− ξ) of G maps
the point ξ to infinity, series (23) with respect to Γ and to ξ is clearly obtained by
applying x to the analogous series with respect to Γ ′ = x−1Γx and the point at
infinity.

We can now return to classical Eisenstein series

Er,∞(z) =
∑

J(γ; z)−r

where summation is modU∞ or, up to a possible factor 2, modΓ∞. As

yr/2 |J(γ; z)|−r = Im(γz)r/2 ,

comparison with the Maaß series is immediate: the series converges for r > 2. The
Maaß series converges normally in all parabolic cusps with vertex ξ not equivalent
to ∞, so that ∣∣∣yr/2Er,∞(z)

∣∣∣ ≤Mr/2,∞(z)

is bounded and as a result parabolic at these points. On the contrary, in a cusp at
a vertex ξ equivalent to ∞, we have to remove the ν ≤ 2 equal terms if the series
is not trivially zero, for which U∞γ ⊂ Γ∞. So, for ξ =∞,

yr/2Er,∞(z) = νyr/2 +O(1) for large y ,

whence a Fourier series expansion of the form

Er,∞(z) = ν +
∑
n≥1

ane(nz/ω) = ν +O
[
y−r/2 exp(−2πy/ω)

]
.

The series is, therefore, holomorphic but not parabolic at∞. On this matter, recall
[n◦ 19, (ii)] that a holomorphic form f at a fixed parabolic point ξ is parabolic at

ξ if and only if the function yr/2|f(z)|, and not f(z), is bounded in a horocycle
centered at ξ.

Denoting by

αr(g) = J(g; i)−rα(g)r/2

the function of weight r on G associated to yr/2, the function associated to Er,∞(z)
clearly becomes

Er,∞(g) =
∑

αr(γg) ,

where summation is modU∞. To associate an Eisenstein series to a parabolic fixed
point ξ = x(∞), we replace Γ by Γ ′ = x−1Γx. This gives a series
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E′r,∞(g) =
∑

αr(γ
′g)

with respect to Γ ′. In accordance with the basic principle of n◦ 19, (ii), the expected
series Er,ξ(g) is given by

Er,ξ(g) = E′r,∞
(
x−1g

)
.

Thus it easily follows that

Er,ξ(z) =
∑
Uξ\Γ

J
(
x−1γ; z

)−r
.

Conclusions are obviously the same as earlier: if ξ is irregular and r odd, the series
is identically zero; if ξ is regular or if r is even, then

Er,ξ(η)
6= 0 if η is equivalent to ξ ,

= 0 otherwise .

If f is an entire automorphic form of weight r, f can therefore be made parabolic
at ξ by subtracting a scalar multiple of Er,ξ from it. This operation does not alter
f(η) at parabolic fixed points η not equivalent to ξ. Hence the next result which
generalizes what we already know about the modular group:

Theorem 32. Let Γ be a Fuchsian group. Every entire automorphic form of weight
r > 2 is, in a unique way, the sum of a parabolic form and of a linear combination
of Eisenstein series associated to parabolic fixed points of Γ .

For r even, the dimension of the vector space generated by the Eisenstein series
is the number of classes of parabolic fixed points. For r odd, it is zero if −1 ∈ Γ
and equal to the number of regular fixed points otherwise.

22 – Fourier Series Expansions

(i) General method. The computation of the Fourier series of the functions Er(z) in
n◦ 17, (iii) uses the series Gr(z) and, on this account, cannot be applied to general
discrete groups. Computing the Fourier coefficients of an automorphic function is
a problem encountered in many other situations, either when the assumption of
holomorphy is abandoned, or when more general groups Γ than the modular group
are considered. To unify them, we consider G and a series of the form

Eϕ(g) =
∑

ϕ(γg) .(22.1)

Summation is over Γ in the case of Poincaré series and of a function ϕ integrable
over G. In the case of a series associated to a parabolic fixed point which will be
assumed to be∞, the function ϕ is left Γ∞-invariant and summation is over Γ∞\Γ .
We will consider the second case since replacing ϕ(g) by

∑
ϕ(γg), where summation

is over Γ∞, reduces the first one to it, as was seen for Poincaré series.
Expanding Eϕ in a a Fourier series in the neighbourhood of a parabolic fixed

point ξ = s(∞) of Γ reduces this case to expanding the function

Eϕ(sg) =
∑
Γ∞\Γ

ϕ(γsg)

at infinity. To this end, we group together the terms belonging to a same double
coset Γ∞cUξ, hence of the form Γ∞γγ

′ with γ′ ∈ Uξ. For γ′, γ′′ ∈ Uξ,
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Γ∞γγ
′ = Γ∞γγ

′′ ⇐⇒ γ′γ′′−1 ∈ Uξ ∩ γ−1Γ∞γ = Uξ(γ) .

This relation is equivalent to Uξ(γ)γ′ = Uξ(γ)γ′′. So one has to sum over the classes
Uξ(γ)γ′, and so

Eϕ(sg) =
∑

Γ∞γUξ

∑
Uξ(γ)\Uξ

ϕ
(
γγ′sg

)
.

However, the γ′ ∈ Uξ(γ) satisfy γ′ξ = ξ and γγ′γ−1∞ =∞, hence leave invariant ξ
and γ−1∞. Hence, since a parabolic matrix other than ±1 has a unique fixed point,

Uξ(γ) = {e} if γξ 6=∞(22.2)

and summation over γ′ is then extended to Uξ. Therefore,

Eϕ(sg) =
∑

Γ∞γUξ

∑
Uξ

ϕ
(
γγ′sg

)
if ξ not equivalent to ∞ .(22.3)

On the contrary,

Uξ(γ) = Uξ if γξ =∞ .(22.4)

In this case, one may assume s = γ−1. Thus Eϕ(sg) = Eϕ(g). Then one might as
well keep to the case ξ =∞. The relation γ∞ =∞ is equivalent to γ ∈ Γ∞, which
gives a term equal to ϕ(g) in the series Eϕ(g). If γ /∈ Γ∞, then again U∞(γ) = {e}
and summing over all γ′ ∈ U∞ is necessary. So

Eϕ(g) = ϕ(g) +
∑

Γ∞γU∞
γ /∈Γ∞

∑
U∞

ϕ
(
γγ′g

)
.(22.3’)

The formula is the same as in the previous case except for a constant term. These
formal calculations are no problem if the series Eϕ(g) converges unconditionally.

In both cases, Uξ = sU(ωZ)s−1 for some ω > 0, whence∑
Uξ

ϕ
(
γγ′sg

)
=
∑
Z

ϕ [γsx(nω)g] .

Introducing the Fourier transform

at
(
g′, g

)
=

∫
ϕ
[
g′x(u)g

]
e(−tu)du(22.5)

defined independently of all discrete groups for g′ ∈ G−B,

at
[
g′, x(v)g

]
= at

(
g′, g

)
e(tv) .(22.6)

At least formally, the Poisson summation formula shows that∑
ϕ [γsx(nω)g] = ω−1

∑
an/ω(γs, g) .(22.7)

It then follows that

Eϕ(sg) = δ(ξ)ϕ(sg) +
∑

Γ∞γUξ

∑
Z

ω−1an/ω(γs, g) ,(22.8)
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where δ(ξ) = 1 or 0 according to whether ξ is or is not equivalent to ∞, and where
summation is over all cosets except the coset Γ∞ if ξ is equivalent to∞. Therefore,
by (6), the expected Fourier series expansion is given by

Eϕ [sx(u)g] = δ(ξ)ϕ(sg) +
∑

an(g)e(nu/ω) ,(22.9)

an(g) =
∑

Γ∞γUξ

ω−1an/ω(γs, g) ,(22.9’)

with the same restriction on the summation as above.
These formal calculations remain to be justified. Supposing the series Eϕ(g)

converges normally in every compact set, the series∑
n

ϕ [γsx(ωu+ ωn)g] ,

obtained by grouping the terms of the coset Γ∞γUx considered and by replacing
g by x(ωu)g, converges normally in all compact subsets of U , so that formula (5)
is well-defined. To go from here to (7), it suffices to assume that the series on the
right hand side of (7) converges absolutely.85 As going from (8) to (9) presumes a
permutation of summations, the easiest is to assume that∑

Γ∞γUξ

∑
Z

∣∣an/ω(γs, g)
∣∣ < +∞ .(22.10)

If ϕ = fr for a U∞-invariant function f(z), then

Eϕ(g) = J(g; i)−rEr,f (z) where Er,f (z) =
∑
Γ∞\Γ

J(γ; z)−rf(γz) .(22.11)

In this case,

ϕ
[
g′x(u)g

]
= J

(
g′; z + u

)−r
J(g; i)−rf

[
g′(z + u)

]
.

Thus,

at
(
g′, g

)
= J(g; i)−r

∫
J
(
g′; z + u

)−r
f
[
g′(z + u)

]
e(−tu)du =

= J(g; i)−rat
(
g′, z

)
,

where we have set

at
(
g′, z

)
=

∫
J
(
g′; z + u

)−r
f
[
g′(z + u)

]
e(−tu)du

or, for g ∈ G−B with second row (c d) and z ∈ P ,

e(−tz)at(g, z) =

∫
Im(ζ)=y

(cζ + d)−rf(gζ)e(−tζ)dζ .(22.12)

85 For a continuous function f on R such that the series
∑
f(x + n) converges

normally on every compact set,
∑
f(x + n) =

∑
f̂(n)e(nx) if

∑
|f̂(n)| < +∞

because every periodic continuous function whose Fourier series converges abso-
lutely is equal to its sum (Chap. VII, n◦ 6, theorem 2 or n◦ 27, theorem 24).
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The integral does not depend on x, but on y if f is not holomorphic. Using (g) and
(g′), and setting

an(z) = ω−1
∑

Γ∞γUξ

an/ω(γs, z) = an(iy)e(nx/ω) ,(22.13’)

finally,

J(s; z)−rEr,f (sz) = δ(ξ)f(sz) +
∑

an(z) .(22.13)

The general term on the right hand side is indeed invariant under z 7−→ z+ω, and
so is the term f(sz) since sU(ωZ) = U∞s when ξ is equivalent to∞. If the function
f is holomorphic and bounded on P , we will see that integral (12) is independent
of y and zero for t ≤ 0, the function an/ω(γs, z) is proportional to e(nz/ω) and
(13”) reduces directly to a series of the form

∑
n≥0 ane(nz/ω).

(ii) The case of Poincaré-Eisenstein series. Let us consider the series

Er,p(z) =
∑
Γ∞\Γ

J(γ; z)−re(γz)p (r > 2 , p ≥ 0) .

This is series Er,f where f(z) = e(pz) is holomorphic and bounded on P . For
g ∈ G−B,

e(−tz)at(g, z) =

∫
(cζ + d)−re [p.g(ζ)− tζ] dζ .(22.15)

Integration is over the horizontal Im(ζ) = y of P , but the result does not depend
on y. |e(−tζ)| = exp(2πtη) is bounded on all of the closed horizontal strip B ⊂ P
of finite width, and so is f [g(ζ)]. Thus the function being integrated is O(ζ−r) at
infinity on B with r > 2. The result then follows from Cauchy.

This being so, the Bruhat decomposition

gz = (az + b)/(cz + d) = −1/c2(z + d/c) + a/c

shows that

e(−tz)at(g, z) = c−re [(pa+ td)/c]

∫
ζ−re

(
−p/c2ζ − tζ

)
dζ .(22.15’)

As p ≥ 0 and −1/c2ζ ∈ P , the function e(−p/c2ζ) is bounded on P . So is e(−tζ) if
t ≤ 0. The function being integrated is then holomorphic and O(ζ−r) on Im(z) ≥
T > 0, whence

at(g, z) = 0 for t ≤ 0(22.16)

again thanks to Cauchy.
For t > 0, two cases need to be distinguished.
(a) The case of Eisenstein series Er(z). As f(z) = 1,

e(−tz)at(g, z) = c−re(td/c)

∫
ζ−re(−tζ)dζ .

The function being integrated isO(ζ−r) at infinity on all of the half-plane Im(ζ) < T
and holomorphic for ζ 6= 0. Hence integration over the horizontal can be replaced
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by integration counterclockwise around a circle centered at 0. The result is the
product of −2πi by the residue at ζ = 0, namely

e(−tz)at(g, z) =
(−2πi)r

Γ (r)
c−re(td/c)tr−1 .(22.17)

Taking into account the factors ω, expansion (13) in the neighbourhood of the cusp
ξ = s∞ is therefore

J(s; z)−rEr(sz) = δ(ξ) +
∑
n>0

ane(nz/ω) ,(22.18)

where

an =
(−2πi)r

Γ (r)
ω−1

∑
Γ∞γUξ

e(nd/cω)c−r(22.18’)

and where (c d) is the second row of the matrix γs, but not of γ. As

Γ∞γUξs = Γ∞γsU(ωZ)

by definition of ω, the coefficient c of γs only depends on the coset Γ∞γUξ. The same
holds for the exponential since multiplying γ by an element of Uξ = sU(ωZ)s−1

adds a multiple of cω to the coefficient d of γs. Finally, we sum over all cosets
Γ∞γUξ if ξ is not equivalent to ∞ and all cosets other than Γ∞ if ξ =∞.

Supposing ξ = ∞, let us for example consider the Eisenstein series of the
modular group. Summing over γ for which c > 0 is sufficient. The arithmetic nature
of Γ plays a role here:

Lemma 1 [Γ = SL2(Z)]. Let γ and γ′ be two matrices of Γ such that c > 0,
c′ > 0. Γ∞γU∞ = Γ∞γ

′U∞ if and only if

c′ = c , d′ ≡ dmod c .(22.19)

Obviously, Γ∞γU∞ = Γ∞γ
′U∞ if and only if U∞γU∞ = U∞γ

′U∞ since c > 0,
c′ > 0. On the other hand,

x(m)γx(m′) =

(
1 m
0 1

)(
a b
c d

)(
1 m′

0 1

)
=

(
a′ b′

c′ d′

)
= γ′

is equivalent to c′ = c, a′ = a + mc, d′ = d + m′c, hence proving the necessity of
(19). Conversely, (19) implies ad ≡ a′d′ ≡ 1 mod c. Applying arguments to the group
(Z/cZ)∗, we see that a′ ≡ amod c is equivalent to d′ ≡ dmod c. Conditions (19) are
therefore sufficient, qed.

Hence

an = (−2πi)rnr−1/Γ (r)
∑
c>0

c−r
∑

dmod c
(c,d)=1

e(nd/c) =

= (−2πi)rnr−1/Γ (r)
∑
c>0

Γc(n)c−r ,

where these are Gauss sums. Since it was shown in (9.34) that∑
c>0

Γc(n)c−s = n1−sσs−1(n)/ζ(s)
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for Re(s) > 1, the sum of the previous series is equal to

1

ζ(r)

(−2πi)r

Γ (r)
σr−1(n)

and we recover (17.25).
(b) The case of Poincaré-Eisenstein series Er,p(z), p > 0. Now f(z) = e(pz)

and (15’) includes an integral of the form∫
ζ−re (−uζ − v/ζ) dζ(22.20)

taken along a horizontal Im(ζ) = T of P , with u > 0 and v > 0. To reduce it to a
standard form, we analyze the function under the

∫
sign on the set

Im(ζ) ≤ T , |ζ| ≥ % > 0 .

|e(−uζ)| = exp(2πuη) ≤ exp(2πuT ), and as |1/ζ| ≤ 1/%, the function being in-
tegrated is O(ζ−r). The integration horizontal can thus be replaced by a circle

centered at 0 followed counterclockwise. Choosing the circle ζ = (v/u)
1
2 exp(iϕ),

dζ = iζdϕ and

−uζ − v/ζ = −2(uv)
1
2 cosϕ .

As a result, ∫
ζ−re (−uζ − v/ζ) dζ =

= −i(v/u)(1−r)/2
∫

exp [−4πiλ cosϕ+ (1− r)ϕ] dϕ(22.21)

where integration is from 0 to 2π and where λ = (uv)
1
2 . The simplest Bessel func-

tions

Jk(w) =

∫
eiw sinϕ−kiϕdϕ = i−k

∫
e−iw cosϕ−kiϕdϕ =

= (w/2)k
∑
n≥0

(
−w2)n /22nn!(n+ k)! (k ≥ 0)(22.22)

occur and we find∫
ζ−re (−uζ − v/ζ) dζ = −ir (v/u)(1−r)/2 Jr−1(4πλ) .(22.23)

This being settled, since

e(−tz)at(g, z) = c−re [(pa+ td)/c]

∫
ζ−re

(
−p/c2ζ − tζ

)
dζ ,

e(−tz)at(g, z) =

= −ir(t/p)(r−1)/2c−r|c|r−1e [(pa+ td)/c] Jr−1

(
4π
√
tp/c2

)
.(22.24)

Then the general formula
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J(s; z)−rEr,f (sz) = δ(ξ)f(sz) + ω−1
∑

an/ω(γs, z)

involves the exponentials

e [(paω + nd)/cω] ,

where a, c and d are the coefficients of γs. Multiplying γ on the left by a matrix
x(m) ∈ Γ∞ and on the right by an element of Uξ, hence of the form sx(m′ω)s−1

with m,m′ ∈ Z, the matrix γs is multiplied on the left by x(m) and on the right
by x(m′ω). As(

1 m
0 1

)(
a b
c d

)(
1 m′ω
0 1

)
=

(
a+mc ?

c d+m′cω

)
,

the value of the exponential does not change, which forebodes well for the exactness
of calculations. Moreover, the coset U∞γUξ is characterized by the value of c and
the values of amod cZ and dmod cωZ. Then the cosets Γ∞γUξ can be grouped
together in (13’) according to the value of the coefficient c of γs. The sum∑

amod cZ
dmod cωZ

e

(
paω + nd

cω

)
= Kp,n (U∞γUξ)(22.25)

occurs as a factor. Thus

J(s; z)−rEr,p(sz) = δ(ξ)e(p.sz) + ω−1
∑

ane(nz/ω) ,(22.26)

an = − ir(n/pω)(r−1)/2×

×
∑

Γ∞γUξ

sgn(c)r

|c| Kp,n (U∞γUξ) Jr−1

[
4π
√
p/nc2

]
.(22.26’)

It is not very easy.
For Γ = SL2(Z) and ξ =∞, s = e, the coefficients a, c and d are integers and

lemma 1 shows that sums (25) reduce to Kloosterman sums

Kn(u, v) =
∑

x,ymodn
xy≡1modn

e [(ux+ vy)/n]

that occur elsewhere in number theory and that, for v = 0, reduce to Gauss sums
Γ . All this can already be found in Poincaré’s work of 1912. For given n 6= 0, the
expression e(x/n) only depends on the class of xmodn and as a result defines a
character x 7−→ e(x) of the additive group of the ring A = Z/nZ. Kloosterman
sums only depend on classes of u and v and are then written as

KA(u, v) =

∫
A∗

e
(
ux+ vx−1) d∗x ,

where integration is over the multiplicative group A∗ with respect to the invariant
measure (weight 1 at each point) on this group. It may seem ridiculously scholarly,
but shows that these sums are arithmetic analogues of classical Bessel integrals.
Similarly, Gauss sums are arithmetic analogues of the Γ function. Adelic meth-
ods would enormously simplify these calculations and enable us to deal with all
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congruence subgroups of SL2(Z) simultaneously. The same remark applies to the
following.

(iii) The case of Maaß-Selberg forms ; analytic extensions. For the functions

M∞(z; s) =
∑
Γ∞\Γ

Im(γz)s = ys
∑
|J(γ; z)|−2s ,

r = 0 and f(z) = Im(z)s. So now, setting

Ws(t) =

∫
R

(
1 + u2)−s e(−tu)du = Ws (|t|)(22.27)

for Re(s) > 1
2
, t ∈ R, an unorthodox but convenient notation, we get

at(g, z) =

∫
Im [g(z + u)]s e(−tu)du =

= ys
∫ [

(cx+ cu+ d)2 + c2y2
]−s

e(−tu)du =

= y1−s|c|−2se(td/c)Ws(ty)e(tx) .

Exercise 2. Show that∑
ys/|z + n|2s = y1−s

∑
Ws (|n|y) e(nx)

pour Im(z) > 0, Re(s) > 1.
Exercise 3. As usual set α(g) = y for z = gi. Show that∫

α [wx(u)g]s e(−tu)du = ysWs(ty)e(tx) .

The coefficients of the Fourier series

M∞(xz; s) =
∑
Z

an(y; s)e(nx/ω)(22.28)

at a parabolic cusp86 ξ = x∞, are of the form

a0(y; s) = δ(ξ)ys + a0(s)Ws(0)y1−s ,(22.29)

an(y; s) = an(s)Ws (|n|y/ω) (n 6= 0) .(22.29’)

The first term ys on the right hand side of (29) is the contribution of the coset
Γ∞Uξ in the case where ξ is equivalent to ∞. The numerical coefficients an(s) are
the series

an(s) =
∑

Γ∞γUξ

|c|−2se (nd/cω) ,(22.30)

where (c d) is the second row of γx and where the sum is subject to the usual
restrictions.

In the case of the modular group, lemma 1 shows that

86 Change s to x so as to avoid confusion with the variable s. x was changed to s
above in order not to have to write expressions such as xx(t).
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an(s) =
∑
c>0

c−2s
∑

dmod c
(c,d)=1

e(nd/c) = σ1−2s (|n|) /ζ(2s)

if n 6= 0. For n = 0, Γc(0) = Card[(Z/cZ)∗] = ϕ(c), i.e. the Euler indicator (number
of classes). Thus

a0(s) =
∑

ϕ(c)c−2s = ζ(2s− 1)/ζ(2s)

by (9.33). Hence, the “ constant ” term, i.e. independent of x, of the Fourier series
of

M(z, s) =
∑

Im(γz)s = M∞(z; s) ,

is

ζ(2s)a0(y; s) = ζ(2s)ys + ζ(2s− 1)Ws(0)y1−s(22.31)

with (see further down)

Ws(0) = π
1
2 Γ (s− 1/2)/Γ (s) =

= π−(s− 1
2 )Γ (s− 1/2)/π−sΓ (s) .(22.32)

Introducing the function ξ(s) = π−s/2Γ (s/2)ζ(s), it follows that

ξ(2s)M(z; s) = ξ(2s)ys + ξ(2− 2s)y1−s +

+π−sΓ (s)y1−s
∑
n 6=0

σ1−2s(n)Ws (|n|y) e(nx)(22.33)

or

ξ(2s)M(z; s) = α0(y; s) +
∑

αn(y; s)e(nx)(22.34)

with

α0(y; s) = ξ(2s)ys + ξ(2− 2s)y1−s ,(22.35)

αn(y; s) = σ1−2s(n)π−sΓ (s)y1−sWs (|n|y) (n 6= 0) .(22.35’)

The term α0(y; s) being clearly invariant under s 7−→ 1 − s, conjecturing that the
same holds for αn(y; s) makes sense. This requires a simple relation between Ws

and W1−s. Integrals (27) have been the focus of extensive studies, but it is best to
follow Jacquet and Langlands.87 We start by writing that

π−sΓ (s)
(
u2 + 1

)−s
= 2

∫ +∞

0

exp
[
−πt2

(
u2 + 1

)]
t2sd∗t for Re(s) > 0 .

So

1

2
π−sΓ (s)Ws(y) =

∫
e(uy)du

∫
exp

[
−πt2

(
u2 + 1

)]
t2sd∗t =

=

∫
exp

[
−π
(
y2/t2 + t2

)]
t2s−1d∗t

87 Automorphic Forms on GL(2) (Springer, Lecture Notes 114, 1970).
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for all y ∈ R. This leads to (32) for y = 0 and, for y > 0,

1

2
π−sΓ (s)Ws(y) = ys−

1
2

∫
exp

[
−πy

(
t2 + t−2)] t2s−1d∗t .(22.36)

Introducing Bessel functions

Kν(y) =
1

2

∫ +∞

0

exp
[
−y
(
t+ t−1) /2] tνd∗t ,

defined for all ν ∈ C and y > 0, (35’) can be written as the Maaß form

αn(y; s) = 2|n|s−
1
2 σ1−2s(n)y

1
2Ks− 1

2
(2π|n|y) (n 6= 0) ,(22.35”)

but it is best to preserve the Ws, especially so as not to fall under the temptation
of becoming absorbed in the contemplation of the 12.345 formulas obtained by
specialists of Bessel functions who have never come across SL2(R) and omit the
factor 2π in the exponentials defining the Fourier transforms.

This calculation is justified provided∫
t2Re(s) exp

(
−πt2

)
d∗t

∫
exp

(
−πt2u2) du < +∞ ,

hence for Re(s) > 1/2. But integral (36) converges for all s since, at infinity or 0,
the exponential under the

∫
sign tends to 0 more rapidly than any power of t. As

a result,

π−sΓ (s)Ws(y)y
1
2
−s

is an entire function of s invariant under s 7−→ 1 − s. As 1/Γ (s) is an entire
function, so is Ws(y) for all y > 0. Observing that

|n|s−1σ1−2s(n) =
∑

d1d2=|n|

ds1d
1−s
2

is invariant under s 7−→ 1 − s, we readily see that, for n 6= 0, αn(y; s) is an entire
function of s invariant under s 7−→ 1− s.

To deduce a similar result for the function ξ(2s)M(z; s), it suffices to show that,
for all y > 0, the series

∑
αn(y; s)e(nx) converges normally in all compact subsets

of the plane of the variable s. Now,

1

2
π−sΓ (s)Ws(y) = exp(−2πy)ys−

1
2

∫
exp

[
−πy

(
t− t−1)2] t2s−1d∗t .

The exponential is a decreasing function of y, while, on the strip 1−σ ≤ Re(s) ≤ σ,
the function |t2s−1| remains between its values at σ and 1− σ. So in a set such as

y ≥ T > 0 , 1− σ ≤ Re(s) ≤ σ ,(22.37)

there is an upper bound of the form∣∣∣∣12π−sΓ (s)Ws(y)

∣∣∣∣ ≤ c(T ;σ) exp(−2πy)yσ−
1
2 ,(22.38)

where, using (35’) and a trivial upper bound of σ1−2s(n),
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|αn(y; s)| = y
1
2O
(
nN exp (−2π|n|y)

)
.

The precise value of the exponent N does not matter much since the result obtained
suffices to prove normal convergence in (37) of the Fourier series of ξ(2s)M(z; s)
with its “ constant ” term

ξ(2s)ys + ξ(2− 2s)y1−s = ξ(2s)ys + ξ(2s− 1)y1−s(22.39)

removed. Its singularities are [n◦ 2, theorem 1] those of the function

ys
(

1

2s− 1
− 1

2s

)
+ y1−s

(
1

2s− 2
− 1

2s− 1

)
.(22.40)

The two simple poles at s = 1
2

cancel out and the residues at 1 and 0 are 1
2

and

− 1
2
. In conclusion:

Theorem 33 [Γ = SL2(Z), Maaß]. The function ξ(2s)M(z; s) extends analyti-
cally to a meromorphic function of s invariant under s 7−→ 1 − s and whose only
singularities are simple poles at s = 1 and s = 0, where the residues are equal to 1

2

and − 1
2

.

Since 1/ξ(2s) is zero at s = 0, this point is not a pole of M(z; s). All the zeros of
ξ(2s) being located in Re(s) < 1

2
, the only pole of M(z; s) in Re(s) ≥ 1

2
is s = 1.

As

M(z; s) = ys + ξ(2s− 1)y1−s
/
ξ(2s) + ϕ(z; s)

/
ξ(2s)(22.41)

and as

ϕ(z; s) =
∑
n 6=0

αn(y; s)e(nx)

is an entire function of s, the residue of M(z; s) at s = 1 can be calculated by
writing that

ξ(2s− 1)/ξ(2s) = [1/2(s− 1) + a+ . . .]
/ [
ξ(2) + 2ξ′(2)(s− 1) + . . .

]
=

= 1/2ξ(2)(s− 1) + b+ . . .

where b = aξ(2) + ξ′(2), whence

lim
s=1

(s− 1)M(z; s) = 1/2ξ(2) = 3/π .

Moreover,

limM(z; s)− 3/π(s− 1) = y + ϕ(z; 1)/ξ(2)+

+ lim
[
ξ(2s− 1)y1−s

/
ξ(2s)− 1/2ξ(2)(s− 1)

]
.

However,

ξ(2s− 1)y1−s
/
ξ(2s) = [1/2ξ(2)(s− 1) + b+ . . .] [1− (s− 1) log y + . . .] =

= 1/2ξ(2)(s− 1) + b− log y/2ξ(2) + . . . .

As a consequence,

lim
s=1

[
M(z; s)− 3

π(s− 1)

]
= y + b− 3

π
log y +

1

ξ(2)

∑
an(y; 1)e(nx) ,
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a Γ -invariant result.
Similarly, in the neighbourhood of s = 1

2
,

ξ(2s− 1)/ξ(2s) =
−1/(2s− 1)− a+ . . .

1/(2s− 1) + a+ . . .
= −1 + a2(2s− 1)2 + . . . ,

y1−s = y
1
2
[
1 +

(1

2
− s
)

log y + . . .
]
,

ys = y
1
2
[
1 +

(
s− 1

2

)
log y + . . .

]
.

So

ys + ξ(2s− 1)y1−s
/
ξ(2s) = (2s− 1)y

1
2 log y + . . .

and

M(z; s) = (2s− 1)y
1
2 log y + . . .+ [(2s− 1) + . . .]

[
ϕ
(
z;

1

2

)
+ . . .

]
.

Hence limM(z; s) = 0 and

lim
s= 1

2

M(z; s)
/

(2s− 1) = y
1
2 log y +

∑
n 6=0

αn
(
y;

1

2

)
e(nx) .

Like the Maaß series, this function is Γ -invariant.
Exercise 4. Set a(s) = Ws(0)ζ(2s− 1)/ζ(2s). Show that

M(z; s)−
[
ys + a(s)y1−s

]
= O

[
y

1
2 exp(−2πy)

]
for large y.

Exercise 5. Let

f(z) =
∑

an(y)e(nx)

be an invariant function under the modular group and O(y−N ) at infinite for all
N . Calculating the inner product (on Γ\G) of f and M(z; s), show that the Mellin
transform of the function a0(y) can be analytically extended to a functional equa-
tion in s 7−→ 1− s.

A far simpler method for obtaining a more general result than the previous
theorem consists in associating the series

θF (t; g) =
∑
ξ∈Z2

F
[
t.g−1(ξ)

]
= F (0) +

∑
U∞\Γ

∑
n>0

F
[
nt.g−1γ−1 (e1)

]
to every function F on the Schwartz space S(R2), where e1 is the first basis vector
of R2. G acts linearly, Γ transforms e1 into primitive vectors of the lattice Z2 and
U∞ is the stabilizer of e1. Convergence is obvious for t 6= 0. Defining the Fourier
transform by

F̂ (x, y) =

∫
F (u, v)e(yu− xv)dudv(22.42)

and using the Poisson summation formula in R2, we get
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θF
(
t−1; g

)
= t2θF̂ (t; g) .

Thus the series behaves asymptotically in the neighbourhood of t = 0 since this is
obvious for large t. Setting

θ∗F = θF − F (0) ,

ΓF (g; s) =

∫
F
(
t.g−1e1

)
tsd∗t for Re(s) > 0 ,

the method used for the Riemann function then leads immediately to the analytic
extension of the Mellin transform

MF (g; s) =

∫
θ∗F (t; g)t2sd∗t = ζ(2s)

∑
U∞\Γ

ΓF (γg; 2s) .(22.43)

It has at most simple poles at 1 and 0 and

MF̂ (g; 1− s) = MF (g; s) .(22.44)

Supposing that F [k(x)] = χr(k)F (x) for some character K, ΓF (g; 2s) is [n◦ 15, (i),
theorem 13] the function of weight r associated to

f(z) = J(g; i)rΓF (g; 2s) .

As

ΓF

[(
y

1
2 y−

1
2 x

0 y−
1
2

)
; 2s

]
=

∫
F
(
ty−

1
2 e1
)
t2sd∗t = ΓF (e; 2s)ys

implies that

f(z) = ΓF (e; 2s)ys−r/2 ,

MF (g; s) is then, up to the factor ΓF (e; s)ζ(2s), the function Mr(g; s) of weight r
associated to the series

Mr(z; s) =
∑

(cz + d)−r Im(γz)s−r/2 ,(22.45)

which is obviously zero for r odd. Choosing

F (u, v) =
(u+ iv)r exp

[
−π
(
u2 + v2

)]
if r ≥ 0 ,

(u− iv)−r exp
[
−π
(
u2 + v2

)]
if r ≤ 0 ,

(22.46)

we find

ΓF (e; 2s) =

∫
t|r| exp

(
−πt2

)
t2sd∗t =

1

2
π−s+|r|/2Γ (s− |r|/2) .

On the other hand, the general relation

(d/du± id/dv)

∫
F (x, y)e(yu− xv)dxdy =

= 2π

∫
(x± iy)F (x, y)e(yu− xv)dxdy
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shows that Fourier transforms (42) of functions (46) are given by F̂ = (−1)rF . In
conclusion, for r even, the function

π−s+|r|/2Γ (s− |r|/2) ζ(2s)Mr(z; s)

extends analytically and is invariant under s 7−→ 1− s.
We leave it to the reader to fill in the details and to generalize exercise 5 to this

case by assuming f to be of weight r. In particular, series (45) are orthogonal to
parabolic forms of weight r, as well as to their conjugates. This method can also be
used to compute the Fourier series of Mr(z; s) and more generally of MF (g; s) for
all F ∈ S(R2).

Here too, adelic calculations, inaugurated by John Tate in his thesis on zeta
functions are far simpler and enable us not only to generalize results to congruence
groups, but also to replace Q by an arbitrary algebraic number field.88 The far
harder analytic extension of Maaß-Selberg series for an arbitrary Fuchsian group
was announced by A. Selberg in 1956 in a famous article whose proofs were put off
till the recent publication of his complete works. But other authors have dealt with
the subject.89

88 R. Godement, Analyse spectrale des fonctions modulaires (Séminaire Bourbaki,
1964/65), I.M. Gelfand, M. Graev and I. Piateski-Shapiro, Representation Theory
and Automorphic Functions (trad. Saunders, 1968, or Academic Press, 1990),
S. Gelbart, Automorphic Forms on Adele Groups (Princeton UP, 1975).

89 S. Lang, SL2(R), who presents Fadeev’s the method, Peter Lax & Ralph
S. Philips, Scattering Theory for Automorphic Functions (Annals of Math. Stud-
ies, 1976) T. Kubota, Elementary Theory of Eisenstein Series (Tokyo, Kodansha,
1973), A. Venkov, Spectral Theory of Automorphic Functions (Kluwer, 1990),
A. Borel, Automorphic Forms on SL(2,R) (Cambridge UP, 1998). And all this
was generalized to general semisimple groups by R. P. Langlands at the start of
the 1960s (Springer Lecture Notes, 544, 1976).
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§ 8. Hecke Theory

23 – Modular Forms and Dirichlet Series

(i) Hecke series. If

f(z) =
∑
N

ane(nz)(23.1)

is an entire modular form of weight r, the function

g(y) = f(iy)− a0 =
∑
n≥1

an exp(−2πny)

decreases rapidly as y tends to +∞. Since f(−1/z) = zrf(z),

g
(
y−1) = (iy)rg(y) + a0(iy)r − a0 ,

and so g(y) = a0(iy)−r − a0 + O(yN ) in the neighbourhood of y = 0 for all N .
Therefore, the Mellin transform

Λf (s) =

∫ +∞

0

[f(iy)− a0] ysd∗y(23.2)

falls within the compass of the general theorems of Chap. VIII, n◦ 12: integral (2)
converges for Re(s) > r, extends analytically to a meromorphic function on C and
its only singularities are simple poles at s = r and s = 0, with

Resr (Λf ) = a0i
r , Res0 (Λf ) = −a0 .(23.3)

Besides, the arguments used for the zeta function apply here in too obvious a
manner for there to be any need to give details: introducing the entire function

Λ+
f (s) =

∫ +∞

1

g(y)ysd∗y ,(23.4)

Λf (s) = Λ+
f (s) + irΛ+

f (r − s)− a0 [1/s+ ir/(r − s)](23.5)

for Re(s) > r, for all s. Hence the functional equation

Λf (r − s) = irΛf (s)

and the poles and residues of Λf .
To compute Λf (s) in terms of the coefficients an, we first write formally that

Λf (s) =
∑

an

∫
ys exp(−2πny)d∗y = (2π)−sΓ (s)

∑
an/n

s ,(23.6)

where summation is over n ≥ 1. To justify this computation it suffices to check that∑
n≥1

∫
|anys exp(−2πny)| d∗y < +∞ ,

which reduces to checking that the series
∑
an/n

s converges absolutely. For this, we
need information about the order of magnitude of the an. Now, as was seen (n◦ 17,

© Springer International Publishing Switzerland 2015  
R. Godement, V, Universitext, DOI 10.1007/978-3-319-16907-1_16  Analysis I
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theorem 16) earlier, an = O(nr/2) if f is parabolic. In this case, the calculation is
justified for Re(s) > 1 + r/2, and even for Re(s) > 1

2
+ r/2 using Deligne’s results.

If f is not parabolic, we subtract f(∞)Er(z) from it to make it parabolic. Since,
for Er(z), an is proportional to σr−1(n), it suffices to analyze the corresponding
series, namely ∑

n≥1

∑
d|n

dr−1/ns
up to a constant factor. Setting n = md, reduces the question to the double series∑

dr−1/(md)s =
∑

1/ds−r+1ms = ζ(s− r + 1)ζ(s) ,

which converges for Re(s) > r. The associativity theorem for unconditional conver-
gence (Chap. II, § 2, n◦ 18, theorem 13) then justifies (6). In conclusion:

Theorem 34. Let f(z) =
∑
ane(nz) be an entire (resp. parabolic) modular form

of weight r. Then the Dirichlet series

Lf (s) =
∑
n≥1

an/n
s(23.7)

converges for Re(s) > r (resp. Re(s) > (r + 1)/2). The function

Λf (s) = (2π)−sΓ (s)Lf (s)(23.8)

extends analytically to a meromorphic (resp. entire) function on C whose only sin-
gularities are simple poles at 0 and r, where its residues equal ira0 and −a0. It
satisfies the functional equation

Λf (r − s) = irΛf (s) .(23.9)

For example, if one considers the parabolic form

∆(z) =
∑

τ(n)e(nz) ,

one notices that the series
∑
τ(n)/ns converges for Re(s) > 13/2, extends to an

entire function and satisfies a functional equation in s 7−→ 12 − s. These results
were conjectured by Ramanujan in 1916 and proved by Mordell in 1917, except
obviously for the abscissa of convergence which is based on rather difficult Deligne
theory, and for Ramanujan’s conjecture according to which non-trivial zeros of the
Dirichlet series are located on the “ critical line ” Re(s) = 6. It will be seen later
that, besides, the series

∑
τ(n)/ns has an infinite product expansion.

(ii) Weil series. All of the above is in Hecke (Math. Annalen, 114, 1937) ; André
Weil (Math. Annalen, 168, 1967) discovered that it can be generalized to series

Lf (s;χ) =
∑

anχ(n)/ns(23.10)

where χ is a character modulo an arbitrary integer m (§ 3, n◦ 9). Calculations
resemble, and for good reason, those developed in n◦ 10 to obtain the functional
equation of the Dirichlet series L(s;χ).

In fact, Weil’s calculations are to a large extent valid for all solutions, not just
holomorphic ones, of the functional equation f(γz) = J(γ; z)rf(z). We set
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f(z;χ) =
∑

amodm
(a,m)=1

χ(a)f [(z + a)/m] = f(z +m;χ) .(23.11)

Recall that χ(a) = 0 if a is not coprime to m. As every so often, it will be useful
to only use left invariance of the function

fr(g) = J(g, i)−rf(z) (z = gi) .

Using notations (15.16) and (15.18), the translations z 7−→ z + u are defined
by matrices x(u) ∈ U and the homothety z 7−→ z/m by the diagonal matrix90

h
(
m−

1
2

)
, and J [h(t)x(u), z] = t−1 for all u, t and z. As a result,

f [(z + a)/m] = f
[
h
(
m−

1
2

)
x(a)z

]
=

= J
[
h
(
m−

1
2

)
x(a)g, i

]r
fr
[
h
(
m−

1
2

)
x(a)g

]
=

= J
[
h
(
m−

1
2

)
x(a), z

]r
J(g, i)rfr

[
h
(
m−

1
2

)
x(a)g

]
=

= J(g, i)rmr/2fr
[
h
(
m−

1
2

)
x(a)g

]
.

Relation (11), multiplied by J(g, i)−r, becomes

J(g, i)−rf(z;χ) = mr/2
∑

amodm
(a,m)=1

χ(a)fr
[
h
(
m−

1
2

)
x(a)g

]
.(23.12)

The factor m−r/2 being well-defined only for functions of weight r on G, we are led
to more generally set

ϕ(g;χ) =
∑

amodm
(a,m)=1

χ(a)ϕ
[
h
(
m−

1
2

)
x(a)g

]
(23.12’)

for all left Γ -invariant functions ϕ on G, for the moment without any other as-
sumption. Using the Fourier series expansion

ϕ(ug) =
∑
Z

an(g)e(u)n , u ∈ U ,(23.13)

whose coefficients

an(g) =

∫
U∞\U

ϕ(ug)e(u)
n

(23.14)

satisfy

an(ug) = e(u)nan(g) ,(23.15)

we get

90 Abhorring useless square roots, conservative arithmeticians prefer to consider
the group GL2(R) of 2×2 matrices with determinant > 0, i.e. the direct product
of G and of R∗+ ; see the beginning of the next n◦.
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ϕ(g;χ) =
∑

amodm

χ(a)
∑
n

an
[
h
(
m−

1
2

)
x(a)g

]
=

=
∑

χ(a)
∑

an
[
x(a/m)h

(
m−

1
2

)
g
]

=

=
∑

χ(a)
∑

an
[
h
(
m−

1
2

)
g
]
e(na/m) =

=
∑

an
[
h
(
m−

1
2

)
g
]∑

χ(a)e(na/m) .

Hence, introducing the Gauss sums

Γm(n, χ) =
∑

amodm
(a,m)=1

χ(a)e(na/m)(23.16)

of n◦ 9, (v),

ϕ(g;χ) =
∑
n 6=0

Γm(n, χ)an
[
h
(
m−

1
2

)
g
]
,

expression from which a0 has disappeared because
∑
χ(a) = 0 if we assume χ is

not the unit character and, a fortiori, as we will do to simplify the presentation,
that χ is a proper character modm. Theorem 5 of n◦ 9 then shows that

ϕ(g;χ) = Γm(χ)
∑

an
[
h
(
m−

1
2

)
g
]
χ(n)(23.17)

where Γm(χ) = Γm(1, χ) =
∑
χ(a)e(a/m) satisfies |Γm(χ)| = m

1
2 by (10.6’).

When ϕ(g) arises from an entire modular form f(z) =
∑
ane(nz) of weight r,

an(g) = J(g, i)−rane(nz) , z = gi ,

and so

an
[
h
(
m−

1
2

)
g
]

= J
[
h
(
m−

1
2

)
, z
]−r

J(g, i)−rmrane(nz/m) =

= J(g, i)−rmr/2ane(nz/m) .

Since ϕ(g;χ) = J(g, i)−rmr/2f(z;χ),

f(z;χ) = Γm(χ)
∑
n≥1

anχ(n)e(nz/m) ,(23.17’)

a result that could have been obtained by a direct calculation starting from (11).
As a0 disappears from the result, f(z;χ) is an entire series in e(z/m) without a
constant term, hence decreasing exponentially as Im(z) tends to +∞.

Let us now show that, for any Γ -invariant function ϕ(g),

ϕ(wg;χ) = χ(−1)ϕ (g;χ) .(23.18)

The left hand side of (18) is obtained by replacing g with wg in (12). Denoting by
a′ a general solution of aa′ ≡ 1 modm, the right hand side of (18) is obtained by
replacing χ(a) with χ(−a′) in definition (12’) of ϕ(g;χ) or, what is equivalent since
a 7−→ −a′ permutes the summation, by replacing a with −a′ in the term x(a/m).
Hence to prove (18), it suffices to show that the ϕ takes the same value at points
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h
(
m−

1
2

)
x(a)wg and h

(
m−

1
2

)
x(−a′)g of G. The only way to do this is to check

that, for all a and g,

h
(
m−

1
2

)
x(a)wg ∈ Γ.h

(
m−

1
2

)
x
(
−a′

)
g .

However, this means that the entries of the matrix

h
(
m−

1
2

)
x(a)wx

(
a′
)
h
(
m−

1
2

)
=

(
a (aa′ − 1)

/
m

m a′

)
are integers, which is clear.

When ϕ = fr is associated to a generalized modular form f(z) of weight r,
going from g to wg transforms z into −1/z. As

J(wg, i) = J(w, z)J(g, i) = J(g, i)z ,

(18) becomes

f (−1/z;χ) = χ(−1)zrf (z;χ) .(23.18’)

If the right hand side decreases exponentially to 0 as y tends to +∞, this relation
shows that so does the left hand side and hence the right hand side as y tends to 0.
This is the case of entire modular forms and of Maaß series since going from f(z) to
f(z;χ) removes the constant term of polynomial growth from their Fourier series.

This being done, we associate the Mellin transform

Λf (g; s, χ) =

∫
ϕ(hg;χ)α(h)sdh = Λf (−g; s, χ)(23.19)

to ϕ, where α(h) = Im(hi) = t2 for h = h(t). Convergence for all s is obvious if ϕ =
fr for some entire modular form of weight r or a Maaß series (21.17) or if, trivially,
it is continuous and with compact support modΓ for then a continuous function
of h with compact support is being integrated. In fact, the correct assumption to
use is ϕ(g) = O[α(g)N ]. So using (18), we find

Λϕ (g; s, χ) =

∫
ϕ (hg;χ)α(h)sdh = χ(−1)

∫
ϕ(whg;χ)α(h)sdh =

= χ(−1)

∫
ϕ(hwg;χ)α(h)−sdh ,

i.e.

Λϕ (g; s, χ) = χ(−1)Λϕ(wg;−s, χ) .(23.20)

To obtain Weil’s result, we apply (20) for g = e to a function

ϕ(g) = J(g, i)−rf(z) = J(g, i)−r
∑

ane(nz)

of weight r. For h = h(t),

ϕ(h;χ) = J(h, i)−rmr/2f(iy;χ) = mr/2trf
(
t2i;χ

)
by (12) and (12’), and setting by definition,

Λf (s;χ) =

∫ +∞

0

f(iy;χ)ysd∗y



446 XII – The Garden of Modular Delights

for every generalized modular form f(z), for example entire or Maaß, for which the
integral converges, we get

Λϕ (e; s, χ) = mr/2

∫
trf
(
t2i;χ

)
t2sd∗t =

=
1

2
mr/2

∫
f (iy;χ) ys+r/2d∗y =

1

2
mr/2Λf (s+ r/2;χ) .

On the right hand side of (20), we need to compute

Λf (w;−s, χ) =

∫
ϕ(hw;χ)α(h)−sdh ,

where

m−r/2ϕ(hw;χ)=mr/2J(hw, i)−rf(hwi;χ)= i−rtrf(hi;χ)= i−ryr/2f(iy;χ) .

Hence

m−r/2Λf (w;−s, χ) = i−r
∫
yr/2f(iy;χ)y−sd∗y =

= i−r
∫
f(iy;χ)yr/2−sd∗y = i−rΛf (r/2− s, χ) .

Relation (20) then becomes

Λf (s+ r/2, χ) = χ(−1)Λf (r/2− s, χ)

or, in Weil’s form,

Λf (r − s, χ) = χ(−1)Λf (s, χ) .(23.20’)

Here too, (20’) can be easily deduced from (18’).
As ∫

f(iy;χ)ysd∗y = Γm(χ)
∑

an

∫
χ(n)e (−2πny/m) ysd∗y =

= Γm(χ) (2π/m)−s Γ (s)
∑

anχ(n)n−s ,

where summation is over n > 0, the usual arguments together with (14) lead to the
final result:

Theorem 35 (A. Weil). Let f(z) =
∑
n≥0 ane(nz) be an entire modular form of

weight r and χ a proper character modulo m > 1. The function

f(z;χ) =
∑

amodm
(a,m)=1

χ(a)f [(z + a)/m]

satisfies functional equations

f(z +m;χ) = f(z;χ) , f (−1/z;χ) = χ(−1)zrf(z;χ) .

The integral

Λf (s;χ) =

∫
f(iy;χ)ysd∗y =

= Γm (χ) (2π/m)−sΓ (s)
∑
n≥1

anχ(n)/ns(23.21)



§ 8. Hecke Theory 447

converges for all s ∈ C, is an entire function and

Λf (r − s;χ) = irχ(−1)Λf (s;χ) .(23.22)

Exercise. Write down (21) explicitly when f is an Eisenstein series.
Weil’s far more complete results are mostly about congruence groups and admit

a converse which says that if the series
∑
anχ(n)/ns, with given an = O(nk),

satisfy (22) for “ sufficiently many ” characters χ, then f(z) =
∑
ane(nz) is a

modular form91 for a congruence group. Weil’s aim was to show that zeta functions
of elliptic curves over Q are obtained in this manner using modular forms with
respect to congruence subgroups. Once you get on this slippery slope, you run the
risk of going, like Deligne, Serre and others, as far as the now proved Taniyama,
Shimura and Weil conjectures, Fermat’s theorem, etc. Mercy !

(iii) Generalization to non-holomorphic forms. Apart from functional equa-
tion (22), we would like to put Λϕ(g; s;χ) in the form of a Dirichlet series for
an “ arbitrary ” function ϕ on Γ\G as we did when ϕ arises from an entire modular
form. This is possible using an assumption known to hold in the case of Maaß-
Selberg series.

Writing the Fourier series expansion

ϕ(ug) =
∑

an(g)e(nu)(23.23)

of ϕ gives

ϕ(ug;χ) = Γm(χ)
∑

an
[
h
(
m−

1
2

)
x(u)g

]
χ(n) =

= Γm(χ)
∑

an
[
x(u/m)h

(
m−

1
2

)
g
]
χ(n) =

= Γm(χ)
∑

an
[
h
(
m−

1
2

)
g
]
χ(n)e(nu/m) .

Thus

Λϕ(g; s, χ) =

∫
ϕ(hg;χ)α(h)sdh =

= Γm(χ)

∫ ∑
an
[
h
(
m−

1
2 t
)
g
]
χ(n)t2sd∗t =

= msΓm(χ)
∑

χ(n)

∫
an [h(t)g] t2sd∗t .

When ϕ(g) = J(g, i)−rf(z) = J(g, i)−r
∑
n e(nz) arises from an entire modular

form f of weight r,

an(g) = J(g, i)−ran exp(−2πny)e(nx) .(23.24)

So

91 A. Weil, Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichun-
gen (Math. Annalen, 168, 1967, pp. 255–261). See also Andrew Ogg, Modular
Forms and Dirichlet Series (Benjamin, 1969) and Serge Lang, Modular Forms
(Springer, 1976). All this has been fully revolutionized in an adelic framework by
Hervé Jacquet and R. P. Langlands, Automorphic Forms on GL(2) (Springer,
1970, Lecture Notes n◦ 114, 548 pp.) and Hervé Jacquet, Automorphic Forms
on GL(2), Part II (Lecture Notes n◦ 278, 1972).
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an [h(t)g] = J(g, i)−rant
re
(
nt2z

)
and ∫

an [h(t)g] t2sd∗t = J(g, i)−r
∫
ane

(
nt2z

)
t2s+rd∗t .

As ∫ +∞

0

exp(−wt)tsd∗t = Γ (s)w−s for Re(w) > 0 ,

and equality showed in Chap. VIII, n◦ 10, it follows that∫
an [h(t)g] t2sd∗t =

1

2
J(g, i)−ranΓ (s+ r/2) (−2πinz)−r/2−s .

In particular, for g = e and z = i,∫
an [h(t)] t2sd∗t =

1

2
i−ranΓ (s+ r/2) (2πn)−r/2−s =

=
1

2
i−r(2π)−s−r/2Γ (s+ r/2) an/n

s+r/2 ,

whence a Dirichlet series in accordance with the previous theorem.
In the case of a function ϕ(g) = J(g, i)−rf(z) =

∑
an(g) associated to a not

necessarily holomorphic function f , the previous calculation again leads to a Dirich-
let series if, instead of (24), we have a relation of the form

an(g) = J(g, i)−ranW (2π|n|y) exp(2πinx)

i.e.

f(z) =
∑
Z

anW (2π|n|y) e(nx) ,(23.25)

with constants an and a function W (2π|n|y)e(nx) replacing the function e(nz) =
exp(−2πny)e(nx) of (24) for n > 0, as in the case of the Maaß series. Indeed
relation (25) shows that∫

an [h(t)g] t2sd∗t =

∫
J(g, i)−rtranW

(
2π|n|t2y

)
e
(
nt2x

)
t2sd∗t =

=
1

2
J(g, i)−ran|n|−s−r/2(2π)−s−r/2

×
∫
W (ty)e(tx)ts+r/2d∗t

and in particular that for g = e,∫
an [h(t)] t2sd∗t =

1

2
(2π)−s−r/2ΓW (s+ r/2) an|n|−s−r/2(23.26)

where

ΓW (s) =

∫
W (t)tsd∗t(23.27)
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is the Mellin transform of W .
In the case of the Maaß series M∞(z;u), for u > 1

2
, the function

W (t) = Wu(t) =

∫ (
1 + x2

)−u
e(−tx)dx

is the Fourier transform of (1 + x2)−u. By the change of variable 1 + x = 1/y, its
Mellin transform is∫ +∞

0

(
1 + x2

)−u
xsd∗x =

1

2

∫ +∞

0

(1 + x)−uxs/2d∗x =

=
1

2

∫ 1

0

yu−s/2−1(1− y)s/2−1dy =

=
1

2
Γ (u− s/2)Γ (s/2)

/
Γ (u) .

The general relation

π−s/2Γ (s/2)Γf (1− s) = π−(1−s)/2Γ [(1− s)/2]Γf̂ (s)

of n◦ 1 of this chapter, applied to f(x) = (1 + x2)−u, then shows that92

π−(1−s)/2Γ [(1− s)/2]ΓW (s) =

= 1
2
π−s/2Γ (s/2)Γ [u− (1− s)/2]Γ [(1− s)/2]

/
Γ (u) .

Thus

ΓW (s) = π
1
2
−sΓ

(
u− 1− s

2

)
Γ
( s

2

)/
Γ (u) if W = Wu .

This relation makes it possible to compute the series Lf (s;χ) corresponding to
Maaß functions f(z) = M(z;u). The result is not of much interest since, as was
seen in n◦ 22, eq. (35’), in this case

ξ(2u)an(y;u) = σ1−2u(n)π−uΓ (u)y1−uWu (|n|y) .

From what precedes, this is a function whose Mellin transform at y is

σ1−2u(n)π−uΓ (u)|n|u−s−1ΓW (s+ 1− u) .

We, therefore, obtain, up to factors Γ , the series
∑
σ1−2u(n)/|n|s+1−u, whose func-

tional equation is obvious. But as an exercise, the reader can give the details of all
the computations in this case.

The existence of a Fourier series like (25) means that the integral∫
xmod Z

f(x+ iy)e(nx)dx

only depends on the product |n|y. If Wf (2πy) denotes its value for n = 1, then∫ 1

0

f(x+ iy)e(−nx)dx = Wf (2π|n|y) .

This property is related to Jacquet-Langlands “ Whittaker models ”.

92 Restrictions obviously need to be imposed on s and u to ensure that the integrals
converge.
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24 – Hecke Operators

(i) Operators T (x) for an abstract group. If a function ϕ(g) on a group G is invariant
under a subgroup Γ of G, it is no longer in general the case for its left translations
under L(x)ϕ : g 7−→ ϕ(x−1g). Indeed

L(γ)L(x)ϕ = L(x)L
(
x−1γx

)
ϕ ,

so that invariance of L(x)ϕ under γ presupposes x−1γx ∈ Γ and so

γ ∈ xΓx−1 ∩ Γ = Γ (x) .

Hence only

γ ∈ Γ (x) =⇒ L(γx)ϕ = L(x)ϕ(24.1)

can be guaranteed. Article 1 of group theory rules having been recalled, let us recall
article 2 (Poisson-Eisenstein law): to make L(x)ϕ Γ -invariant, replacing it by the
sum

T (x)ϕ =
∑

L(γx)ϕ(24.2)

extended to γ ∈ Γ . But nothing ensures the convergence of the series, everything
even shows that in general it diverges. Formula (2) is nonetheless well-defined if we
only consider matrices x for which series (2) can be replaced by a finite sum. Since,
by (1), L(γx)ϕ only depends on the coset γΓ (x), it therefore suffices to assume
that there finitely many such cosets in Γ . In fact, as will be seen, it is better to
assume that

Γ (x) and Γ (x−1) have finite index in Γ(24.3)

if we want results. We then also have[
xΓx−1 : Γ (x)

]
< +∞ ,

[
x−1Γx : Γ

(
x−1)] < +∞(24.3’)

because the automorphism g 7−→ xgx−1 maps Γ onto xΓx−1 and Γ (x−1) onto

xΓ
(
x−1)x−1 = x

(
x−1Γx ∩ Γ

)
x−1 = Γ ∩ xΓx−1 = Γ (x) .

From now on

C(x) = Γx−1Γ .(24.4)

The group Γ acts on the right and on the left on C(x), so there is a quotient set
Γ\C(x), which is also the quotient of x−1Γ by the equivalence relation Γx−1γ =
Γx−1γ′. However this is equivalent to x−1γ′γ−1x ∈ Γ , i.e. to γ′γ−1 ∈ xΓx−1∩Γ =
Γ (x). Hence a bijection

Γ (x)\Γ −→ Γ\C(x)(24.5)

transforming the coset Γ (x)γ into the coset Γx−1γ.
We will denote by Γ ′ the set of x satisfying (3). These are the elements of G

for which operators

T (x)ϕ =
∑
γΓ (x)

L(γx)ϕ(24.6)
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can be defined or, more explicitly, using map (5),

T (x)ϕ(g) =
∑
γΓ (x)

ϕ
(
x−1γ−1g

)
=
∑
Γ (x)γ

ϕ
(
x−1γg

)
=

∑
Γ\C(x)

ϕ(ug) .(24.6’)

A first trivial property of operators T (x) is that they commute with right trans-
lations, which act on left Γ -invariant functions. Another is that T (x) only depends
on the double coset C(x) = Γx−1Γ as shown by the latter sum (6’). Others will be
useful for the modular group, but can be proved in all generality, which avoids ques-
tions unrelated to the problem or restrictions to operators associated to elements
x ∈ Γ ′ that are too specific to make calculations comprehensible.93

Lemma 1. Γ ′ is a subgroup of G.

Clearly, x ∈ Γ ′ implies x−1 ∈ Γ ′. On the other hand,

Γ (xy) = xyΓy−1x−1 ∩ Γ = x
(
yΓy−1 ∩ x−1Γx

)
x−1 .

But if Γ (x) has finite index in Γ , yΓ (x)y−1 has finite index in yΓy−1, so Γ ∩yΓ (x)y
is of finite index in Γ ∩ yΓy−1 = Γ (y). However,

Γ ∩ yΓ (x)y−1 = Γ ∩ y
(
Γ ∩ xΓx−1) y−1 =

= Γ ∩ yΓy−1 ∩ yxΓx−1y−1 = Γ (y) ∩ yxΓx−1y−1 .

As this group is contained in Γ , it is equal to

Γ (y) ∩ Γ ∩ yxΓx−1y−1 = Γ (y) ∩ Γ (yx) ,

which is of finite index in Γ (y), hence in Γ . As it contains Γ (yx), it follows that
Γ (yx) is nenecessarily of finite index in Γ . So yx satisfies the first condition (3),
and so does xy, thus also xy−1, qed.

Lemma 2. For all x, y ∈ Γ ′, the operator T (x)T (y) is a linear combination with
integer coefficients ≥ 0 of T (z), z ∈ Γ ′.

By (5),

T (x)T (y)ϕ(g) =
∑

Γ\C(x)

T (y)ϕ(ug) =
∑

Γ\C(x)

∑
Γ\C(x)

ϕ(uvg) .

The result is of the form
∑
c(x, y;w)ϕ(wg) with integers c(x, y;w) not depending on

ϕ for any w ∈ Γ ′. To calculate them, we count the ordered pairs (u, v) ∈ C(x)×C(y)
such that uv = w taking into account the fact that only the cosets Γu and Γv
matter. Since replacing u by γu replaces w by γw, the product uv = w only occurs
via the coset Γw, which means that

c(x, y; γw) = c(x, y;w) .(24.7)

The substance of the proof consists in showing that we also have

c(x, y;wγ) = c(x, y;w) .(24.7’)

93 In 2000 or thereabout, some authors still for example, replace summation over
Γ (x)\Γ by summation over a “ system of representatives ” of cosets Γ (x)γ in Γ ,
i.e. over γi such that each coset Γ (x)γ contains a unique γi. Quotient sets were
invented more than sixty years ago to get rid of this type of calculations.
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As C(x)−1 = C(x−1), uv = w implies that

v = u−1w ∈ C
(
x−1)w ∩ C(y) ,

where this is a left Γ -invariant set dependent only on Γw. Conversely, every element
v of this set is in C(y) and satisfies uv = w for some u ∈ C(x). However, knowing
v determines Γu = Γwv−1 . Replacing v by γv replaces u = wv−1 by uγ−1 =
wv−1γ−1 ∈ wv−1Γ , and conversely. So, for given Γv, the cosets Γu involved in the
calculation of c(x, y;w) are those having non-trivial intersection with wv−1Γ , i.e.
those corresponding to elements of Γwv−1Γ . There are

Card
(
Γ\Γwv−1Γ

)
= Card

[
Γ\Γw(Γv)−1]

of them. Hence

c(x, y;w) =
∑

Γv⊂C(x)w∩C(y)

Card
[
Γ\Γw(Γv)−1] ,(24.8)

where summation is over cosets Γv.
To deduce (7’), we write

c(x, y;wγ) =
∑

Γv⊂C(x)wγ∩C(y)

Card
[
Γ\Γwγ(Γv)−1] =

=
∑

Γv⊂[C(x)w∩C(y)]γ

Card
[
Γ\Γw

(
Γvγ−1)−1

]
=

=
∑

Γvγ−1⊂C(x)w∩C(y)

Card
[
Γ\Γw

(
Γvγ−1)−1

]
.

The sum obtained can be deduced from (8) by the permutation Γv 7−→ Γvγ−1,
whence (7’).

This being settled, let us calculate the contribution of a double coset

ΓwΓ =
⋃

Γ(w−1)\Γ

Γwγ

to the sum

T (x)T (y)ϕ(g) =
∑

c(x, y;w)ϕ(wg)

extended to all cosets Γw ∈ Γ ′, but with finitely many non-trivial coefficients. It is
clearly

c(x, y;w)
∑

Γ(w−1)\Γ

ϕ(wγg) = c(x, y;w)T
(
w−1)ϕ(g) .

Summing over all ΓwΓ now gives the final formula

T (x)T (y) =
∑

Γ\Γ ′/Γ

c(x, y;w)T
(
w−1) .(24.9)

This finishes an “ elementary ” proof in which, believe the author, it is easy to get
lost in dead-ends.
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(ii) Operators T (x) for a locally compact group. We now assume G to be locally
compact unimodular and Γ to be discrete.

Lemma 3. For all x ∈ Γ ′, the operator T (x) maps L(Γ\G) to L(Γ\G).

For ϕ ∈ L(Γ\G), let M be a compact set such that ϕ is zero outside ΓM .
T (x)ϕ(g) 6= 0 only if x−1Γg#ΓM , hence only if g ∈ ΓxΓM = ΓxΓx−1.xM . By
(3’), xΓx−1 is a finite union of cosets Γ (x)hi. Thus ΓxΓx−1.xM =

⋃
ΓhixM =

ΓM ′, where M ′ =
⋃
hixM is compact, qed.

Theorem 36. For all x ∈ Γ ′ and all p ≥ 1, the operator T (x) : L(Γ\G) −→
L(Γ\G) has a continuous extension to Lp(Γ\G) and

(T (x)ϕ|ψ) =
(
ϕ|T

(
x−1)ψ)(24.10)

for all ϕ ∈ Lp(Γ\G) and ψ ∈ Lq(Γ\G). In particular,

T (x)∗ = T
(
x−1)(24.10’)

in L2(Γ\G).

Let us start by remarking that the automorphism g 7−→ x−1gx preserves the
measure dg and that its inverse transforms Γ into xΓx−1. Hence for all p ≥ 1 we get
an isomorphism from Lp(Γ\G) onto Lp(xΓx−1\G) by transforming every function
ϕ(g) of the former space to a function ϕ(x−1gx) of the latter one.94 It follows that∫

Γ\G
|ϕ(g)|p dg =

∫
xΓx−1\G

∣∣ϕ (x−1gx
)∣∣p dg =

=

∫
xΓx−1\G

∣∣ϕ (x−1g
)∣∣p dg(24.11)

since quotient measures are right invariant. The same argument implies that∫
Γ\G

ϕ(g)dg =

∫
x−1Γx\G

ϕ(xg)dg(24.11’)

for all ϕ ∈ L1(Γ\G).

94 The attractive formula∫
Γ\G

ϕ
(
x−1g

)
ψ(dg) =

∫
Γ\G

ϕ(g)ψ(xg)dg ,

where ϕ and ψ are left Γ -invariant and where x /∈ Γ , is not well-defined since the
function g 7−→ ϕ(x−1g) is not Γ -invariant . But formula (11’) is correct. More
generally: let G be a lcg, H a closed subgroup of G and s an automorphism of
G preserving the measure dg. Then, for any left H-invariant function ϕ,∫

H\G
ϕ(g)dg =

∫
s−1(H)\G

ϕ(sg)dg .

This relation is connected to integration formulas for images of measures
(Chap. XI, n◦ 13, theorem 23) and, if H is discrete, reduces to them by re-
placing integration over H\G by integration over a “ fundamental domain ” of H
in G. See the change of variable formula for the simplest Riemann integrals over
R.
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Then let ϕ and ψ be two continuous functions with compact support modΓ .
(11’) applied to T (x)ϕ(g).ψ(g) gives∫

Γ\G
T (x)ϕ(g).ψ(g)dg =

∫
x−1Γx\G

T (x)ϕ(xg).ψ(xg)dg =

=

∫
x−1Γx\G

dg
∑

Γ (x)\Γ

ϕ
(
x−1γxg

)
ψ(γxg)

car ψ(γg) = ψ(g)

=

∫
x−1Γx\G

dg
∑

Γ(x−1)\x−1Γx

ϕ(γg)ψ(xγg) ,

which is seen by transforming the sum by γ 7−→ x−1γx. Thus∫
Γ\G

T (x)ϕ(g).ψ(g)dg =

∫
Γ(x−1)\G

ϕ(g)ψ(xg)dg =

=

∫
Γ\G

ϕ(g)dg
∑

Γ(x−1)\Γ

ψ(xγg) =

=

∫
Γ\G

ϕ(g).T
(
x−1)ψ(g)dg .

Hence, replacing ψ with its conjugate,

(T (x)ϕ|ψ) =
(
ϕ|T

(
x−1)ψ) ,(24.12)

where this is the inner product on L2(Γ\G) or, more generally, the duality between
Lp and Lq. Therefore, to finish the proof, the continuity of T (x) on Lp(Γ\G)
remains to be shown.

To do this, we start from the relation (same proof)∫
Γ (x)\G

L(x)ϕ(g).ψ(g)dg =

∫
Γ\G

T (x)ϕ(g).ψ(g)dg ,

where ϕ and ψ are continuous with compact support modΓ . It shows that
|(T (x)ϕ|ψ)| is bounded above by the product of the norms of L(x)ϕ on Lp(Γ (x)\G)
and of ψ on Lq(Γ (x)\G). But by (11),∫

Γ (x)\G
|ψ(g)|q dg = [Γ : Γ (x)] .‖ψ‖qq ,

where this is the norm on Lq(Γ\G). Hence (Hölder)

|(T (x)ϕ|ψ)| ≤ [Γ : Γ (x)]1/q .‖ψ‖q

(∫
Γ (x)\G

∣∣ϕ (x−1g
)∣∣p dg)1/p

,

where the norm of ψ is calculated on Lq(Γ\G). Applying g 7−→ xgx−1 to the latter
integral transforms it to∫

Γ(x−1)\G

∣∣ϕ (gx−1)∣∣p dg =

∫
Γ(x−1)\G

|ϕ(g)|p dg =

=
[
Γ : Γ

(
x−1)] ∫

Γ\G
|ϕ(g)|p dg .
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So finally,

|(T (x)ϕ|ψ)| ≤ [Γ : Γ (x)]1/q
[
Γ : Γ

(
x−1)]1/p ‖ϕ‖p‖ψ‖q .

As this inequality holds for all ϕ, ψ ∈ L(Γ\G), it follows that the operator T (x)
extends to Lp(Γ\G) and satisfies

‖T (x)‖ ≤ [Γ : Γ (x)]1/q
[
Γ : Γ

(
x−1)]1/p(24.13)

on Lp(Γ\G), which gives the theorem proved for holomorphic modular forms in
1939 by its inventor, Hans Petersson by repeatedly using fundamental domains.95

(iii) Operators T (x) for the modular group. If G = SL2(R) and if Γ is the
modular group, as will be seen, x can be chosen to be any matrix proportional to
a rational matrix or equivalently, an integer matrix with determinant > 0. Such a
matrix can be written as

x = n−
1
2

(
a b
c d

)
, a, b, c, d ∈ Z , ad− bc = n > 0(24.14)

and only these matrices will be used in what follows. Replacing G = SL2(R) with
GL2(R) would avoid square roots, disliked by arithmeticians; it is the point of view
taken by Jacquet and Langlands, but here I will keep to SL2(R).

As the operators T (x) only depend on cosets ΓxΓ , we start by determining
them. The answer is provided by the elementary divisor theorem:96 if L is a lattice
in Zn, there is a basis (ai) of Zn and integers di > 0 satisfying

d1|d2| . . . |dn ,(24.15)

fully determined by L and such that the vectors bi = diai form a basis for the lattice
L. This being so, if g ∈Mn(Z) is a matrix with determinant > 0 and if this result
is applied to L = g(Zn), one can deduce that there are matrices γ, γ′ ∈ SLn(Z)
such that

γgγ′−1 = diag (d1, . . . , dn) .

Let us come back to SL2. Matrix (14) can, therefore, be written as

x = γ

(
d1 0
0 d2

)
γ′ with 0 < d1|d2 ,

up to the factor n−
1
2 , where γ, γ′ ∈ Γ = SL2(Z). So it is possible to only consider

diagonal x. The matrix x−1 is then proportional to wxw−1. Thus

ΓxΓ = Γx−1Γ , T
(
x−1) = T (x) , Γ

(
x−1) = Γ (x)(24.16)

for all x ∈ Γ ′. (13) then shows that ‖T (x)‖ ≤ [Γ : Γ (x)].
This can also be proved without knowing anything. To this end, let us consider

the involution σ of G given by

95 The same could be done here provided G is known to contain a measurable set
F meeting each coset Γg at precisely one point. True, but you will not be able
to prove this in the general case without using the methods of Chap. XI, n◦ 12.

96 See for example exercises in § 31 of my Cours d’algèbre, or, of course, Serge Lang,
Algebra.
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σ

(
a b
c d

)
=

(
d b
c a

)
= ωg−1ω−1 where ω =

(
1 0
0 −1

)
.(24.17)

We have σ(Γ ) = Γ , whence ΓxΓ = σ(Γσ(x)Γ ), i.e.

ΓxΓ = ω−1Γωx−1ω−1Γω = ω−1Γω.x−1.ω−1Γω = Γx−1Γ .

Theorem 37 (Hecke-Petersson). The operators T (x) commute and are Hermi-
tian on L2(Γ\G).

The latter point is obvious: T (x)∗ = T (x−1) (theorem 36) for all x ∈ Γ ′, and
T (x−1) = T (x).

To prove the former, we start from (9)

T (x)T (y) =
∑

c(x, y; z)T
(
z−1) =

∑
c(x, y; z)T (z) .

The coefficients being real, it follows that

T (y)∗T (x)∗ =
∑

c(x, y; z)T (z)∗

on L2(Γ\G), and so

T (y)T (x) =
∑

c(x, y; z)T (z) ,

qed.97

(iv) Operators T (p): the case of functions on Γ\G. As the substance of the the-
ory is obtained by supposing n to be prime in (14), for the moment this restriction
will apply. Still without knowing anything, let us first show that ΓxΓ = ΓhpΓ ,
where generally speaking, we set

hm =

(
|m|

1
2 0

0 |m|−
1
2

)
.(24.18)

If x is as in (14) with n = p, then ad − bc = p and the gcd of c and d is either 1
or p. If (c, d) = 1, a′d − b′c = 1 can be solved; so there is some u ∈ Z such that
a = pa′ + cu and b = pb′ + du ; then

x = p−
1
2

(
a b
c d

)
= p−

1
2

(
1 u
0 1

)(
p 0
0 1

)(
a′ b′

c d

)
= x(u)hpγ

′

where γ′ ∈ Γ , and so ΓxΓ = ΓhpΓ since x(u) ∈ Γ . If (c, d) = p, then (a, b) = 1,
the matrix wx falls in the previous case and as w ∈ Γ , once again ΓxΓ = ΓwxΓ =
ΓhpΓ , qed.

We will set T (p) = T (hp) = T (h−1
p ), whence

T (p)ϕ(g) =
∑

Γ (hp)γ

ϕ
(
h−1
p γg

)
,(24.19)

97 Some readers will probably regret that this proof of a purely algebraic result
uses calculus from theorem 36. But a substitute for this theorem could be use
by considering G as an “ abstract ” or discrete group and by replacing L(Γ\G)
with the space of Γ -invariant functions having finite support modΓ . Integrals
are then replaced by finite sums.
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where summation is over Γ (hp)\Γ and where Γ (hp) is the set of γ ∈ Γ such that
h−1
p γhp ∈ Γ . (

p−
1
2 0

0 p
1
2

)(
a b
c d

)(
p

1
2 0

0 p−
1
2

)
=

(
a b/p
pc d

)
,

shows that Γ (hp) is the congruence subgroup b ≡ 0 mod p of Γ , which corresponds
to a Borel subgroup in SL2(Z/pZ). The Bruhat decomposition being valid over
any field, cosets Γ (hp)γ are represented by matrices 1 and wy(m) = x(m)w where
m varies mod p, or by matrices w and x(m) since γ 7−→ γw permutes these cosets.
There are p+ 1 of them and

T (p)ϕ(g) = ϕ
(
h−1
p wg

)
+
∑

ϕ
[
h−1
p x(m)g

]
.

As ϕ is w-invariant, we finally find

T (p)ϕ(g) = ϕ (hpg) +
∑

mmod p

ϕ
[
h−1
p x(m)g

]
.(24.20)

Let us now analyze the effect of the operators T (p) on the Fourier series

ϕ [x(u)g] =
∑

an(g)e(nu)(24.21)

of ϕ, whence

an [x(u)g] = an(g)e(nu) .

By (20),

T (p)ϕ [x(u)g] = ϕ [hpx(u)g] +
∑

ϕ
[
h−1
p x(u+m)g

]
=

= ϕ [x(pu)hpg] +
∑

ϕ

[
x

(
u+m

p

)
h−1
p g

]
=

=
∑
n

an(hpg) e(pnu) +
∑
n

an
(
h−1
p g

)
e(nu/p)

∑
mmod p

e (m/p)n .

On the right hand side, the sum over m equals 0 if p does not divide n and p if it
does. Hence

T (p)ϕ [x(u)g] =
∑

an (hpg) e(pnu) +
∑

papn
(
h−1
p g

)
e(nu) .

The coefficients of the expected expansion

T (p)ϕ [x(u)g] =
∑

ap;n(g)e(nu)(24.22)

are therefore functions

ap;n(g) =
papn

(
h−1
p g

)
+ an/p (hpg) if p|n ,

papn
(
h−1
p g

)
if (p, n) = 1 .

(24.23)

In particular,

ap;0(g) = pa0
(
h−1
p g

)
+ a0 (hpg) .
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So equality a0(g) = 0 is preserved.
Since hmhn = hmn, relations (23) can also be written

ap;n
(
h−1
n g

)
=
papn

(
h−1
pn g

)
+ an/p

(
h−1
n/pg

)
if p|n ,

papn
(
h−1
pn g

)
if (p, n) = 1 .

(24.23’)

(v) Eigenfunctions of Hecke operators. Eigenfunctions of operators T (p) have
curious properties. Let us suppose that a function

ϕ(g) = a0(g) +
∑

an(g)

satisfies

T (p)ϕ(g) = λ(p)ϕ(g)

for all p and set

Wn(g) = nan
(
h−1
n g

)
for n 6= 0 ,(24.24)

whence Wn(gu) = Wn(g)e(nu) and

ϕ(g) = a0(g) +
∑
n 6=0

n−1Wn (hng) .

Relations (23’) multiplied by n become

λ(p)Wn(g) =
Wpn(g) + pWn/p(g)

Wpn(g)
(24.25)

according to whether p divides n or not. In particular,

W±p(g) = λ(p)W±1(g)(24.25’)

for p prime, as well as

λ(p)a0(g) = pa0
(
h−1
p g

)
+ a0 (hpg) .(24.25”)

Lemma 4. Every function λ(p) defined on the set of prime numbers extends to a
unique function λ(n) defined for n ≥ 1 and such that λ(1) = 1,

λ(p)λ(n) = λ(pn) if (p, n) = 1 ,(24.26)

λ(p)λ(n) = λ(pn) + pλ(n/p) if p|n .(24.26’)

Moreover, λ(mn) = λ(m)λ(n) if (m,n) = 1.

The proof is obvious. Since λ(1) = 1, (26) holds for n = 1 for all p. Because of

λ
(
pk+1

)
= λ(p)λ

(
pk
)
− pλ

(
pk−1

)
,

it is possible to calculate the numbers λ(pk), hence the numbers λ(n) =
∏
λ(pk)

starting from the prime factor decomposition of n. The function obtained obviously
satisfies the conditions of the lemma.
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Similar arguments and relations (25) and (25’) show that, for all g, W1(g) = 0
implies Wn(g) = 0 for all n > 0. If, on the other hand, W1(g) 6= 0, the lemma
applies to expressions Wn(g)/W1(g). Hence

W±n(g) = λ(|n|)W±1(g) for all n > 0(24.27)

or, coming back to the an(g) and to (24),

nan(g) =
λ(n)a1 (hng) for n > 0 ,

λ(|n|)a−1 (hng) for n < 0 ,
(24.28)

as well as

λ(p)a0(g) = a0 (hpg) + pa0
(
h−1
p g

)
.(24.28’)

The Fourier series of ϕ is, therefore, of the form

ϕ(g) =
∑
n<0

λ(|n|)n−1W−1 (hng) + a0(g) +
∑
n>0

λ(n)n−1W1 (hng) .(24.29)

Lemma 5. Relations (26) and (26’) are equivalent to the identity∑
n≥0

λ(n)Xn =
∏[

1− λ(p)X + pX2]−1
(24.30)

between formal series.

Setting

Fp(X) =
∑

λ
(
pk
)
Xk ,

it is clear that the series F (X) =
∑
λ(n)Xn satisfies

F (X) =
∏

Fp(X) .

But (26’) for n = pk+1 implies that

Fp(X) = 1 + λ(p)X +
∑

λ
(
pk+2

)
Xk+2 =

= 1 + λ(p)X +
∑[

λ(p)λ
(
pk+1

)
− pλ

(
pk
)]
Xk+2 =

= 1 + λ(p)X + λ(p)X [Fp(X)− 1]− pX2Fp(X) =

= 1 + λ(p)XFp(X)− pX2Fp(X)

i.e. [
1− λ(p)X + pX2]Fp(X) = 1 ,(24.31)

whence (30). The converse is obvious.
Identity (30) between formal series can be transformed into an identity between

convergent series if (λ(n)) does not increase too rapidly. It suffices to replace Xn

with any other function α(n) satisfying α(1) = 1, α(mn) = α(m)α(n) if (m,n) = 1
and α(pk) = α(p)k. Fp(X) is then replaced with
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∑
λ
(
pk
)
α(p)k =

[
1− λ(p)α(p) + pα(p)2

]−1
.

Computing the product gives∑
n>0

λ(n)α(n) =
∏[

1− λ(p)α(p) + pα(p)2
]−1

.(24.32)

For example, we may choose α(n) = χ(n)n−s, where χ is a character modulo an
arbitrary integer m > 0. Then∑

n>0 λ(n)χ(n)/ns =
∏[

1− λ(p)χ(p)p−s + χ
(
p2
)
p1−2s

]−1
.(24.33)

This supposes λ(n) = O(nσ) for sufficiently large σ.
Multiplying (33) by W±1(g), we get two relations∑

n>0

W±n(g)χ(n)n−s =

= W±1(g)
∏[

1− λ(p)χ(p)p−s + χ
(
p2
)
p1−2s]−1

.(24.33’)

(vi) Applications to modular forms. All of the above only assumes that ϕ(g) is
an eigenfunction of the operators T (p). Calculations now need to be made more
specific in order to get results about modular forms.

First of all, the operators T (x) commute with right translations and preserve
the subspace Fr(Γ\G) of functions of weight r. Hence, if

ϕ(g) = J(g; i)−rf(gi) = fr(g)

is a solution of f(γz) = (cz + d)rf(z),

T (p)fr(g) = J(g; i)−rTr(p)f(z)(24.34)

where the function Tr(p)f has the same property. It is given by

Tr(p)f(z) = J(g; i)rfr (hpg) +
∑

J(g; i)rfr
[
h−1
p x(m)g

]
=

= J(g; i)rJ (hpg; i)−r f (hpgi) +

+ J(g; i)r
∑

J
[
h−1
p x(m)g; i

]−r
f
[
h−1
p x(m)gi

]
=

= J (hp; z)
−r f(pz) +

∑
J
(
h−1
p ; z +m

)−r
f [(z +m)/p] ,

whence

Tr(p)f(z) = pr/2f(pz) + p−r/2
∑

mmod p

f [(z +m)/p] .(24.35)

The standard Hecke operator

Tpf(z) = pr−1f(pz) + p−1
∑

mmod p

f [(z +m)/p] ,(24.35’)

which it would be more appropriate to denote by Tr;p, is the product of pr/2−1 and
the previous operator. It applies to all solutions of the functional equation
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f(γz) = (cz + d)rf(z) ,(*)

whether holomorphic or not. To avoid confusion, for functions on G, I will keep to
definition (20), which does not assume the weight of ϕ to be r, and for functions on
P to (35), even if this means reformulating results in Hecke’s notation to obtained
somewhat simpler formulas, for example by using the fact that

Tr(p)f = λ(p)f ⇐⇒ Tpf = λpf where λp = pr/2−1λ(p) .(24.36)

Because of (35) the operators Tr(p) clearly preserve the set of entire (resp.
parabolic) modular forms of weight r. So they act on the space H2

r(Γ\G) ⊂
L2(Γ\G) of parabolic forms of weight r. The operators T (p) are Hermitian and
commute pairwise (theorem 37) on this finite dimensional space. As a result, the
eigenfunctions of the operators T (p) generate the vector space H2

r(Γ\G), a result
due to Petersson.

If f(z) =
∑
an(y)e(nx) is the Fourier series of a solution of (*), comparing

with (21) shows that, for z = gi,

an(y)e(nx) = J(g; i)ran(g) = J(g; i)rn−1Wn (hng) .(24.37)

Replacing g with h−1
n g replaces J(g; i) with J(h−1

n g; i) = |n|
1
2 J(g; i) and z with

h−1
n z = z/|n|. Hence

Wn(g) = n|n|−r/2J(g; i)−ran (y/|n|) e(±x) ,(24.38)

Wn(ug) = Wn(g)e(±u)(24.39)

for all u ∈ U , the sign that should be chosen being that of n.
In the case of an entire modular form f(z) = ane(nz),

an(y) = an exp (−2πny)

with non-zero an for n < 0. Thus

Wn(g) = n1−r/2anJ(g; i)−r exp (−2πy) e(x)(24.40)

for n > 0, a result proportional to n1−r/2an = a′n. Setting

Tr(p)f(z) =
∑

ap;ne(nz) ,(24.41)

according to the case, relations (25) transform into

λ(p)a′n = a′pn + pa′n/p or a′pn(24.42)

if Tr(p)f = λ(p)f for all p. Lemma 4 then shows that

a′n = λ(n)a′1 , i.e. an = λna1 for n > 0(24.43)

by (36). Incidentally, observe that if the form f(z) is parabolic, it is determined
by λp, up to a constant factor.

For n = 0, (42) shows that

a0 6= 0 =⇒ λp = 1 + pr−1 = σr−1(p) .(24.44)

This expression is the Fourier coefficient ap of the Eisenstein series Er(z) of (17.25),
up to the factor −2r/br. To deduce



462 XII – The Garden of Modular Delights

TpEr(z) = λpEr(z) ,(24.45)

it suffices to check (42) for all a′n corresponding to an = σr−1(n), which is easy. As
Maaß series also satisfy (46), with other eigenvalues, this proof of (46) is obviously
not correct. . .

To conclude this n◦, let us summarize the main results obtained:

Theorem 38. For every even integer r > 2, the space of parabolic forms of weight
r for SL2(Z) has a basis whose elements satisfy the following properties:

(i) Tpf = λpf for all prime p ;
(ii) f(z) =

∑
λne(nz) ;

(iii) for all m ≥ 1 and all characters χmodm,∑
λnχ(n)n−s =

∏[
1− λpχ(p)p−s + χ(p)2pr−1−2s]−1

;(24.46)

(iv) the function f is fully determined by the eigenvalues λp.

These results complete Weil’s theorem [n◦ 23, (ii)]. As ‖T (p)‖ = ‖T (hp)‖ ≤ [Γ :

Γ (hp)] = p + 1, |λp| ≤ p
r
2
−1(p + 1), a “ trivial ” result proving the convergence of

both sides of (46) for Re(s) > r/2 + 1.
For r = 12, the only parabolic form is the function

∆(z) =
∑

τ(n)e(nz) .

This is obviously an eigenfunction of the operators T12(p), whence the relation∑
τ(n)χ(n)n−s =

∏[
1− τ(p)χ(p)p−s + χ(p)2p11−2s]−1

,

conjectured by Ramanujan in 1916 and proved by Mordell in 1917, both of whom
only considered the trivial character.

There are also Hecke operators associated to congruence groups. The Jacquet-
Langlands method reduces them to convolution products on the adelic group SL2

or GL2, but it does not avoid explicit computations to get precise results about
the associated L-series. See Koblitz’s book, already referred to, which keeps to the
most classical methods.
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§ 9. SL2(R) as a Lie Group

25 – Lie Groups

(i) Definition and examples. A Lie group G is both a C∞ manifold and a group, the
map (x, y) 7−→ xy−1 from G×G to G having to be C∞. Then so are (x, y) 7−→ xy,
x 7−→ x−1, etc. Maps x 7−→ ax or xa or x−1 are diffeomorphisms from G onto itself.
If G and H are to Lie groups, a homomorphism from G to H is a C∞ map f such
that f(xy) = f(x)f(y).

Additive groups Rn, multiplicative groups R∗ and C∗, n× n triangular matrix
groups with non-trivial diagonal entries, or else > 0, or else equal to 1, groups
GLn(R), open in Mn(R), groups GLn(C), open in Mn(C), are Lie groups.

A subgroup H of a Lie group G that is a submanifold of G is a Lie group; H
will be said to be a Lie subgroup of G, Indeed the map (x, y) 7−→ xy−1 from G×G
to G maps the submanifold H ×H to H. It is therefore C∞ as a map from H ×H
to H (Chap. IX, n◦ 13, exercise 3). A Lie subgroup is closed (and conversely, but
it is far less obvious). Its closure H ′ in G is indeed a subgroup in which H is open.
This is a general property of submanifolds [Chap. IX, n◦ 13, end of section (i)].
However, H ′ is the union of cosets xH, which, like H, are open in H ′ and pairwise
disjoint, hence closed in H ′. In particular, H is closed in H ′, hence in G, qed.

The next general result leads to many examples of Lie groups. Let us suppose
that a Lie group G acts on a manifold X in such a way that the map (g, x) 7−→ gx
is C∞. Then the map j : g 7−→ gx has constant rank for all x ∈ X, i.e. is a
subimmersion [Chap. IX, n◦ 12, (iii), end]. Indeed for all a ∈ G, j(ag) = aj(g). The
tangent linear map to j at ag is therefore the composition of the tangent map to j
at g and of the tangent map to x 7−→ ax at j(g). Now, the latter is an isomorphism
like x 7−→ ax, qed.

This being settled, it follows that, for all x ∈ X, the subgroup Gx of g such
that gx = x is a submanifold of G [Chap. IX, n◦ 13, (ii)], hence a Lie group.

For example, the subgroup of G defined by gs = sg is a Lie group for all s ∈ G:
make G act on G by (g, x) 7−→ gxg−1. If G = GLn(R), G can also be made to
act on the right by (g, s) 7−→ g′sg, where g′ is the transpose of g. The group of
automorphisms of a non-degenerate bilinear form, for example orthogonal groups
in the symmetric case or symplectic groups in the alternate one, is therefore a Lie
group. Making G act on R∗ by (g, x) 7−→ det(g)x shows that SLn(R) is a Lie
subgroup of G.

Every C∞ homomorphism f : H 7−→ G from a Lie group to another is a
subimmersion: make H act on G by f (h, g) 7−→ f(h)g. The kernel of f is therefore
a Lie subgroup of H. On the other hand, the image of f is not necessarily a Lie
subgroup of G.

Indeed, apart form subgroups that are genuine closed submanifolds, a Lie group
G can contain subgroups H which, though not submanifolds, are equipped with the
structure of a Lie group such that the identity map H −→ G is an immersion. Lie
group theory cannot be constructed without giving as much importance to these
“ bad ” subgroups as to the “ good ” ones.

In particular, one-parameter subgroups whose elements are homomorphisms
t 7−→ γ(t) from R to G, play a fundamental role. Such a homomorphism only
need to be continuous to be C∞ – obvious if G = GLn(R). It is then an immersion,
unless γ(t) = e for all t, since the map has rank 1 everywhere or rank 0 everywhere.
In the general case, the kernel of γ is either {0}, or a discrete subgroup ωZ of R. In
the latter case, the image γ(R) is a compact subgroup, and γ(R) is a 1-dimensional
Lie subgroup isomorphic to R/ωR. But in the former case, γ(R) may be everywhere
dense [Chap. IX, n◦ 13, (iii)].
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We show that a continuous homomorphism from a Lie group to another is C∞.
This is particularly easy to prove for finite-dimensional continuous linear represen-
tations (H, π) of a Lie group G, which are homomorphisms to some GLn. For any
function ϕ ∈ D(G), i.e. C∞ and with compact support, the function

π(x)π(ϕ) = π(x)

∫
π(y)ϕ(y)dy =

∫
π(xy)ϕ(y)dy =

∫
π(y)ϕ

(
x−1y

)
dy

is indeed C∞. This follows from the simplest theorems on differentiation under
the

∫
sign. On the other hand, there exist ϕ whose support is an arbitrarily small

neighbourhood of e, hence Dirac sequences composed of functions ϕn ∈ D(G). So
the unit operator is a limit of operators π(ϕ). But in finite dimension, an everywhere
dense vector subspace is the whole of the space. Hence there exist ϕ such that
π(ϕ) = 1, qed.

A final remark: every Lie group can be equipped with an analytic structure
compatible with its C∞ structure, i.e. for which change of charts functions and
the composition law (x, y) 7−→ xy−1 have real power series expansions. Such an
analytic structure is unique.

(ii) Operations on tangent vectors. Let G be a Lie group. Since, for all a ∈ G, the
map g 7−→ ag is a diffeomorphism, the tangent map G′(g) −→ G′(ag) is bijective.
It is then natural to denote by ah the image of h ∈ G′(g) under this application.
ha can be similarly defined. We check that a(hb) = (ah)b by differentiating the
identity a(xb) = (ax)b. Hence we can talk of ahb without ambiguity. If h is the
tangent vector at t = 0 to some path γ(t) on G, then

df(agb; ahb) =
d

dt
f [aγ(t)b] for t = 0 .(25.1)

Let us now set m(x, y) = xy and calculate

m′(a, b) : G′(a)×G′(b) −→ G′(ab) .

To do this, we need to differentiate (x, y) 7−→ f(xy), hence98 add the differentials
of x 7−→ f(xb) and y 7−→ f(ay). As a result,

m′(a, b) : (h, k) 7−→ hb+ ak .(25.2)

In Leibniz style: d(xy) = dx.y + x.dy. In particular, m′(e, e) is addition (h, k) 7−→
h + k in G′(e) even if G is not commutative. If h and k are given by h = γ′(0),
k = δ′(0) where γ and δ are curves over G, vector (2) is tangent to t 7−→ γ(t)δ(t)
at t = 0. Generally speaking, setting

98 We recall the calculus rule of Chap. IX, n◦ 12, (iv): let f(x, y) be a map from a
product manifold X × Y to a manifold Z. Denote by dXf(a, b) the differential
of x 7−→ f(x, b) at a and by dY f(a, b) the differential of y 7−→ f(a, y) at b. Then
the “ total ” differential of f is given by

df ((a, b); (h, k)) = dXf ((a, b);h) + dY f ((a, b); k) .

For obvious reasons, I will call this result the differentiation formula of a product.
Together with the chain rule, it shows that given maps γ : T −→ X and δ :
T −→ Y from a manifold T to X and Y and setting F (t) = f [γ(t), δ(t)], the
tangent linear map F ′(t0) at a point t0 is the sum of the tangent maps to t 7−→
F [γ(t), δ(t0)] and t 7−→ F [γ(t0), δ(t)].
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D0f(t) = f ′(0) = lim [f(t)− f(0)]
/
t

for any differentiable function at t = 0, which contradicts taboos related to free
variable, we therefore get

df(ab;hb+ ak) = D0f [γ(t)δ(t)](25.3)

for all f ∈ C1(G). Setting F (x, y) = f(xy), formula (3) becomes

D0F [γ(t), δ(t)] = D0F [γ(t), b] +D0F [a, δ(t)](25.4)

as a consequence of the differentiation rule of a product. More generally,

d

dt
γ(t)δ(t) = γ′(t)δ(t) + γ(t)δ′(t)(25.5)

for all t, both sides being in the tangent space at γ(t)δ(t). In particular, if δ(t) =
γ(t)−1, then

γ′(t)δ(t) + γ(t)δ′(t) = 0 ,

whence

d

dt
γ(t)−1 = −γ(t)−1γ′(t)γ(t)−1 .(25.6)

Even more particularly,

D0

[
γ(t)−1] = −D0 [γ(t)] if γ(0) = e .(25.6’)

This result says that the tangent map to x 7−→ x−1 at e is X 7−→ −X.
Since g 7−→ ga induces an isomorphism from G′(e) onto G′(a), the manifold

T (G) of tangent vectors to G can be identified to the product G′(e)×G by associ-
ating the vector Xa ∈ G′(a) to the ordered pair (X, a). The law of composition m′

of T (G) being associative,

XaY b = X.aY a−1.ab = X.ad(a)Y.ab

where the image vector

ad(a)Y = aY a−1 ,(25.7)

under the tangent map to x 7−→ axa−1 at e, is still in G′(e). The map g 7−→
ad(g)X is a linear representation of G on G′(e), the adjoint representation of G.
If G is a linear group and if the elements X ∈ G′(e) are identified to matrices or
endomorphisms, then obviously

ad(g)X = gXg−1 .

(iii) Differentiation and invariant vector fields. Translations on G enable us to
associate two C∞ vector fields, namely

LX : g 7−→ −Xg , RX : g 7−→ gX ,(25.8)

to every X ∈ G′(e). They satisfy relations

L(ga) = L(g)a , R(ag) = aR(g)
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and these clearly characterize them (put g = e). If (Xi) is a basis for G′(e), the
vectors gXi (or Xig) form a basis for G′(g) for all g, so that any vector field on G
can be written as a linear combination with variable coefficients of gXi or Xig.

However, we saw in Chap. IX, n◦ 14 that to every vector field L on a manifold,
one can associate a differential operator given by

Lf(x) = df(x;L(x))

for all x ∈ G and all function f differentiable everywhere with values in C (or even
in a Banach space). We will denote by L(X) and R(X) the operators associated to
the vector fields LX and RX . Hence

R(X)f(g) = df(g; gX) = D0f [gγ(t)] ,(25.9)

L(X)f(g) = df(g;−Xg) = D0f
[
γ(t)−1g

]
(25.9’)

if X = γ′(0). Clearly R(X) (resp. L(X)) commutes will left (resp. right) trans-
lations. Operators R(X) commute with operators L(Y ), for if X = γ′(0) and
Y = δ′(0), we get R(X)L(Y )f(g) by differentiating L(Y )f [gγ(s)] at s = 0, hence
by differentiating f [δ(t)−1gγ(s)] with respect to s and t at s = t = 0. The order of
differentiation is irrelevant. Denoting by R(x) and L(x) the translations operators
given by99

R(x)f(g) = f(gx) , L(x)f(g) = f
(
x−1g

)
for x ∈ G ,

it is at least formally possible to write that

R(X) = D0R [γ(t)] , L(Y ) = D0L [δ(t)] .(25.10)

These vector fields are related to one-parameter subgroups of G. Indeed, since
RX(ag) = aRX(g), left translations permute the maximal integral curves of the
vector field RX (Chap. IX, n◦ 15). If γ(t) is the maximal integral such that γ(0) = e,
γ′(0) = X, then by definition γ′(t) = γ(t)X. However, if I is the definition interval
of γ(t), for all s ∈ I and all vector fields, the curve t 7−→ γ(s + t) is the maximal
integral with initial point γ(s). The curve t 7−→ γ(s)−1γ(s + t) = δ(t) is therefore
also a maximal integral of RX , such that δ(0) = e, δ′(0) = γ(s)−1γ′(s) = X and
defined in I − s. As a result, I = I − s. Thus I = R and γ(s + t) = γ(s)γ(t) for
all s, t. Hence the integral curve γ(t) is a one-parameter subgroup, which will be
denoted by γX(t).

Conversely, for any one-parameter subgroup, γ(t) is obtained in this manner:
by differentiating the equality γ(s+ t) = γ(s)γ(t) at s = 0, we find γ′(t) = Xγ(t) =
γ(t)X = RX [γ(t)] where X = γ′(0).

If G is a Lie subgroup of GLn(R) and X is identified to a matrix, then

γX(t) = exp(tX) =
∑

(tX)[n]

[Chap. IX, n◦ 15, (v)], which, in the general case, explains the conventional notation

γX(t) = expG(tX) .(25.11)

As a homomorphism π : G −→ H of Lie groups transforms one-parameter sub-
groups of G into their analogues in H, clearly, π ◦ expG = expH ◦π′(e). For G = H
and π(x) = gxg−1,

99 Attention should be paid to the definition of operators R(x) adopted here: it is
different from that of Chap. XI, n◦ 31.
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g. exp(X)g−1 = exp [ad(g)X](25.12)

follows. So g such that ad(g) = e are the elements of G commuting with exp(X)
for all X, hence with the subgroup they generate. We will see later that it is in G
if G is connected. In this case, the kernel of the adjoint representation is, therefore,
the centre of G.

If (H, π) is a finite dimensional continuous linear representation of G, hence
C∞, then, setting

π(X) = π′(e)X = D0π [γ(t)](25.13)

for all X ∈ G′(e),

π [expG(X)] = exp [π(X)]

where the right hand side is the usual exponential of a matrix. One readily deduces
that, if G is connected, then an operator T : H −→ H commutes with all π(g) if
and only if it commutes with all π(X). Likewise, subspaces of H invariant under
the π(g) or the π(X) can be shown to be the same.

In fact, invoking the exponential map to get these results is unnecessary. In-
deed if G is made to act on the manifold of endomorphisms of H by (g, T ) 7−→
π(g)Tπ(g)−1, by section (i) above, for all T , we get a map of constant rank. To
show that it is constant in the neighbourhood of e (hence in G if G is connected),
it is sufficient to show that its rank at the origin is zero. But if γ′(0) = X, then

D0

[
π (γ(t))Tπ (γ(t))−1] = π(X)T − Tπ(X)(25.14)

by (6’) and the differential rule of a product, whence the result.

(iv) Canonical coordinates. As the vector field RX depends in a C∞ manner
on the parameter X, the map (X, t) 7−→ expG(tX) is C∞ (Chap. IX, n◦ 15), hence
so is X 7−→ expG(X). On a neighbourhood of 0, but not globally in general, it is a
diffeomorphism because the tangent map to expG at 0 is X 7−→ D0 expG(tX) = X.
The subgroup generated by the image of expG, i.e. the set of products

exp (X1) . . . exp (Xn) ,

is therefore open in G; it is G if G is connected.
For any sufficiently small neighbourhood V of e in G, there is a unique diffeo-

morphism logG from V onto a neighbourhood W of 0 in G′(e) such that expG ◦ logG
is the identity on V , whence a chart (V, logG), called canonical,100 from G to V .
For all g ∈ G, the map Y 7−→ g. exp(Y ) is, therefore, a chart of G in the open set
gV . It follows that a function f is of class Cp on G if and only if, for all g, the map
Y 7−→ f [g. exp(Y )] is of class Cp on W , i.e. has continuous partial derivatives of
order ≤ p. For example, the first order derivatives are the functions

Y 7−→ D0f [g. exp(Y + tX)](25.15)

where X varies in a basis of G′(e). For Y = 0, we recover the functions

R(X)f(g) = D0f [g. exp(tX)]

defined above by supposing that f is differentiable, but due to the previous for-
mula, they can be defined whenever they are well-defined. If f is of class Cp, these
functions exist and are of class Cp−1.

100 The notation exp and log will be used when there is no possibility of confusion.
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The converse is obvious if f is differentiable at every point of G, since then
R(X)f(g) = df(g; gX). However, in every local chart, differentiation operators with
respect to these coordinates are linear combinations with C∞ coefficients of the
operators R(X) associated to the vectors X in a basis of G′(e). But it is not a
priori obvious that the existence and the continuity of functions R(X)f imply the
differentiability of f , because the derivatives R(X)f(g) are computed in a chart
depending on g contrary to derivatives (15). Hence a proof is needed.

Theorem 39. Let G be a Lie group. A function f defined on G is of class Cp if
and only if, for all X ∈ G′(e), the derivative

R(X)f(g) = D0f [g. exp(tX)](25.16)

exists and is a function of class Cp−1 on G.

Let us first show that the map X 7−→ R(X)f is linear. Indeed, suppose that, for
given X, the derivative R(X)f exists and is a continuous function of g. Replacing
g by g. exp(tX), the function t 7−→ f [g. exp(tX)] is seen to be differentiable and its
derivative

Df [g. exp(tX)] = R(X)f [g. exp(tX)] , où D = d/dt ,

to be a continuous function of (g, t). Hence, if M is a compact subset of G, the
right hand side is bounded for g ∈M and |t| ≤ 1. Integrating with respect to t then
gives an inequality of the form

|f [g. exp(tX)]− f(g)| ≤ c(M)|t|

which holds for all g ∈ M and |t| ≤ 1. Then for any ϕ ∈ D(G), (dominated
convergence)

lim
t=0

∫
f [g. exp(tX)]− f(g)

t
ϕ(g)drg =

∫
R(X)f(g).ϕ(g)drg .

But the left hand side also equals

lim
t=0

∫
f(g)

ϕ [g. exp(−tX)]− ϕ(g)

t
drg .

As ϕ ∈ D(G), the quotient converges uniformly to the function −R(X)ϕ staying
zero outside a fixed compact set. It is therefore possible to pass to the limit under
the

∫
sign. Hence∫

R(X)f(g).ϕ(g)drg +

∫
f(g).R(X)ϕ(g)drg = 0(25.17)

for all ϕ ∈ D(G). The right hand side being a linear function of X, the linearity of
R(X)f follows from the assumption of the theorem.

To show that f ∈ Cp(G), it is convenient to use canonical charts “ of the second
kind ”. They are defined using a basis (Xi)1≤i≤n of G′(e) and a map

X = t1X1 + . . .+ tnXn 7−→ exp (t1X1) . . . exp (tnXn) .(25.18)

As the tangent vector to t 7−→ exp(tX) at t is, by definition, exp(tX)X, the differ-
entiation formula of a product shows that the tangent map to (18) at X = 0 is the
identity. Map (18) is thus a diffeomorphism in the neighbourhood of 0. A function
f is then of class Cp if and only if so is the function
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F (t1, . . . , tn) = f [g. exp (t1X1) . . . exp (tnXn)]

on Rn for all g.
To compute the derivative DiF with respect to ti, we use by definition the

expression

f [g exp (t1X1) . . . exp (tiXi + hXi) . . . exp (tnXn)] .

Setting

x = exp (t1X1) . . . exp (tnXn) , xi = exp (ti+1Xi+1) . . . exp (tnXn) ,

it equals

f
[
gx.x−1

i exp (hXi)xi
]

= f
[
gx. exp

(
hX ′i

)]
où X ′i = ad (xi)

−1Xi .

Thus

DiF (t) = D0f
[
gx. exp

(
tX ′i
)]

= R
(
X ′i
)
f(gx) ,

the existence of the left hand side being equivalent to that of the right hand one.
Hence these derivatives exist if R(X)f is well-defined for all X. However, there are
relations of the form

ad(g)−1Xi =
∑

aij(g)Xj(25.19)

with coefficients aij ∈ C∞(G), whence

X ′i =
∑

aij (xi)Xj .

As R(X)f(g) is a linear function of X, it follows that

DiF (t) =
∑

aij (xi)R (Xj) f(gx)

where aij(xi) are C∞ functions of the coordinates tk. For given g and under the
assumption of the theorem, the right hand side is, therefore, a function of class
Cp−1 of the tk, qed.

We will return to this “ obvious ” theorem in the next n◦ in the context of C∞

vectors in infinite dimensional representations.

(v) The Lie algebra of a group. There are several infinitesimal methods to em-
phasize the non-commutativity of multiplication in a Lie group G. The simplest
consists in considering vectors X,Y ∈ G′(e) defined by curves γ(t) and δ(t). Ap-
plying formula (9’) twice shows that

R(X)R(Y )f(g) =
d2

dsdt
f [gγ(s)δ(t)] for s = t = 0(25.20)

R(Y )R(X)f(g) =
d2

dsdt
f [gδ(t)γ(s)] for s = t = 0 .(25.20’)

The Jacobi bracket R = [R(X), R(Y )] = R(X)R(Y )−R(Y )R(X) of the two oper-
ators considered is, therefore, given by

Rf(g) =
d2

dsdt
{f [gγ(s)δ(t)]− f [gδ(t)γ(s)]}(25.21)
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at s = t = 0. Now, like R(X) and R(Y ), R is defined by a vector field (Chap. IX,
n◦ 14). Like RX and RY , it is right invariant. Hence there exists Z ∈ G′(e) such
that R = R(Z). We set Z = [X,Y ]. So by definition,

R ([X,Y ]) = [R(X), R(Y )] .(25.22)

For g = e, the previous formula shows that, for all f ∈ C2(G),

df (e; [X,Y ]) =
d2

dsdt
{f [γ(s)δ(t)]− f [δ(t)γ(s)]} .(25.23)

This expression needs to be calculated at s = t = 0. A similar calculation would
also show that

L ([X,Y ]) = [L(X), L(Y )] .(25.23’)

If π is a homomorphism from G to a Lie group H, then denoting by π′(e) the
tangent map to π at the origin, once again

π′(e)([X,Y ]) =
[
π′(e)X,π′(e)Y

]
(25.24)

because π transforms the product γ(s)δ(t) of two paths defining X and Y into the
product of paths π ◦ γ(s) and π ◦ δ(t), which are tangent to the vectors π′(e)X and
π′(e)Y at the origin. If π us a finite-dimensional representation of G, for f = π, the
function to be differentiated in (23) equals

π [γ(s)]π [δ(t)]− π [δ(t)]π [γ(s)] .

The derivative of s 7−→ π[γ(s)] at the origin being by definition π(X),

π ([X,Y ]) = [π(X), π(Y )]

follows, where these are now linear operators.
Exercise 1. Let γ(t) and δ(t) be two paths with initial point e tangent to X and

Y . Differentiating the expression f [γ(t)δ(s)γ(t)−1] with respect to s and t, show
that

[X,Y ] = D0ad [γ(t)Y ] .(25.25)

Hence, setting ad(X)Y = [X,Y ],

ad(X) = D0ad [γ(t)](25.25’)

for every path defining X, for example γX(t) = expG(tX). We have

ad ([X,Y ]) = [ad(X), ad(Y )] .

Exercise 2. If x, y are elements of a group G, their commutator is the element
[x, y] = xyx−1y−1 which measures the deviation of yx from xy. Suppose that G ⊂
GLn(R) and consider paths γ and δ with initial point e defining vectors X,Y in
G′(e) ⊂Mn(R). Using limited expansions of order 2 of γ(t) and δ(t), show that

[γ(t), δ(t)] = 1 + t2(XY − Y X) + o
(
t2
)

and that XY − Y X is the tangent vector to t 7−→ [γ(t
1
2 ), δ(t

1
2 )].

The vector space G′(e), equipped with the Jacobi bracket [X,Y ], is the Lie
algebra of G and is usually written g. In the rest of this §, it is better to keep
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this notation for the corresponding complex vector space. The elements of g can
be identified with differentiation operators having left and right invariant complex
coefficients.

The bracket [X,Y ] is bilinear in X,Y , alternate and, like the corresponding
differential operators, satisfy the Jacobi identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 .

Setting

ad(X)Y = [X,Y ] ,

the previous relation means that

[ad(X), ad(Y )] = ad ([X,Y ]) .

A vector space equipped with a bilinear composition law (X,Y ) 7−→ [X,Y ] sat-
isfying the preceding formulas is a Lie algebra. A linear map π from the latter
to the space of operators of a vector space H is a representation if π([X,Y ]) =
[π(X), π(Y )].

(vi) Lie algebras of classical groups. Let us show how to determine the Lie
algebras of the groups defined in section (i) using subimmersions. If a Lie group
acts on a manifold X, the maps g 7−→ ga have been seen to be subimmersions. If
H is the stabilizer of a in G, the Lie algebra of H is thus the kernel of the tangent
map to g 7−→ ga at e.

For the map x 7−→ xsx−1 = y from G to G, we differentiate equality xs = yx.
This gives dx.s = dy.x+ y.dx and, for x = e,

dy = dx.s− y.dx = dx.s− sdx .

The kernel of dx 7−→ dy is thus defined by dx.s = s.dx, whence H ′(e) = Ker[ad(s)−
1].

For G = GLn(R) acting on itself by x 7−→ x′sx = y (where x′ is the transpose
of x), dy = dx′.s + s.dx at x = e. So H ′(e) is the set of X ∈ G′(e) = Mn(R) such
that X ′s+ sX = 0. If s = s′, this means that the matrix sX is antisymmetric, and
if s′ = −s, that it is symmetric. This gives the Lie algebras of the orthogonal and
symplectic groups.

The group SLn(R) of real matrices with determinant 1 is obtained by making
GLn(R) act on R∗ by(g, x) 7−→ det(g)x. All that is needed is to compute the tangent
map to the determinant at g = e. If (ei) is the canonical basis of Rn, then

det(g) = D [g (e1) , . . . , g (en)] ,

where D is the n-linear alternate form equal to 1 at (e1, . . . , en). The differentials
of the functions g 7−→ g(ei) at the origin being X 7−→ X(ei), the differential of the
determinant at e is the linear functional

X 7−→ D [X (e1) , e2, . . . , en] + . . .+D [e1, . . . , en−1, X (en)] = Tr(X)

on G′(e). The Lie algebra of the group G = SLn(R) is therefore the set of matrices
with zero trace.

In all these examples of subgroups of GLn, the Jacobi bracket [X,Y ] is obviously
the matrix XY − Y X.

(vii) Invariant distributions and differential operators. For every manifold G of
class C∞, it is possible to define a Schwartz space D(G) ⊂ C∞(G) of C∞ functions
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with compact support and, for every compact set M ⊂ G, the subspace D(G;M)
of functions vanishing outside M . These subspaces are stable under all differential
operators101 defined in Chap. IX, n◦ 14. This enables us to equip each D(G;M)
with a locally convex topology using seminorms

pL(ϕ) = sup |Lϕ(g)| = ‖Lϕ‖∞ ,(25.26)

where L is such a differential operator. As L is a linear combination of products of
operators R(X) or L(X), whichever, we may only consider seminorms

‖R (X1) . . . R (Xp)ϕ(g)‖∞ ,

where the Xi are in G′(e), or even belong to a basis of G′(e). Likewise, the semi-
norms supg∈M |Lϕ(g)|, where M is an arbitrary compact subset, enable us to define
a topology on C∞(G), that of compact convergence of functions and all their deriva-
tives.

Based on this, the notion of a distribution on G becomes obvious: it is a linear
functional102

µ : ϕ 7−→ µ(ϕ) =

∫
ϕ(x)dµ(x) = 〈ϕ, µ〉

on D(G) whose restriction to each D(G;M) is continuous. This means that, for any
compact set M , there are finitely many differential operators Li such that

|µ(ϕ)| ≤
∑
‖Liϕ‖∞ for all ϕ ∈ D(G;M) .(25.27)

Here we will mostly use distributions with compact support, i.e. for which there is
a compact set M such that µ(ϕ) = 0 if ϕ = 0 in a neighbourhood103 of M . The
smallest possible M is the support of µ. µ(ϕ) can then be defined for all ϕ ∈ C∞(G)
by setting µ(ϕ) = µ(ϕ′) for all ϕ′ ∈ D(G) equal to ϕ in a neighbourhood of M , the
result being a continuous linear functional in C∞(G): inequality (27), where the
right hand side is computed in a fixed compact neighbourhood of µ, then holds for
all ϕ ∈ C∞(G). Such a distribution is of the form104

101 Linear, of arbitrary order and with C∞ coefficient will always be implied.
102 The integral notion is far more convenient than that of Schwartz, especially in the

context of Lie groups. The shortest presentation of distribution theory is prob-
ably that given by Lars Hormänder in the beginning of his Linear Differential
Operators.

103 If h ∈ G′(a), ϕ(a) = 0 does not imply dϕ(a;h) = 0. . .
104 Let M be a neighbourhood of of the support of µ and suppose there is an upper

bound |µ(ϕ)| ≤
∑

1≤i≤n ‖Liϕ‖M in D(G;M), where this the norm of uniform

convergence on M . Consider the product space H = L(M)n equipped with the
topology of uniform convergence, where L(M) is, as usual, the set of continuous
functions on M . µ can be considered a continuous linear functional on the sub-
space M ⊂ H of (Liϕ)1≤i≤n where ϕ ∈ D(G,M). The Hahn-Banach theorem
then proves the existence of a continuous linear functional on H extending µ.
Such a form is obviously given by

(ϕ1, . . . , ϕn) 7−→
∑

µi (ϕi)

where the µi are measures on M . Thus µ(f) =
∑
µi(Lif) for all f ∈ D(G;M).

Generalization to all of D(G) is immediate.
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µ(ϕ) =
∑

µi (Liϕ)(25.28)

where the µi are finitely manymeasures with compact support and the Li are finitely
many differential operators, which may be assumed to be invariant if G is a Lie
group. The converse in obvious.

Any tangent vector at t = 0 to a curve γ(t) with initial point a ∈ G is such a
distribution, namely ϕ 7−→ dϕ(a;h). This can be written as

dϕ(a;h) =

∫
ϕ(x)dh(x) = D0ϕ[γ(t)] .(25.29)

However strange this notation may seen – it is only a notation –, it makes it possible
to unify integral and infinitesimal methods in representation theory.

Like in measure theory, the product of two distributions λ and µ is defined by
the formula

ϕ 7−→
∫∫

ϕ(x, y)dλ(x)dµ(y) =

∫
dµ(y)

∫
ϕ(x, y)dλ(x) .

It is always well-defined if one of the two distributions has compact support,
because if ϕ and λ, for example, have compact support, so does the function
y 7−→

∫
ϕ(x, y)dλ(x) and it is also C∞. This can be seen using a generalization

to distributions of theorems on differentiation under the
∫

sign. The essential step
consists in showing that, if γ(t) is a C∞ curve, if ϕ ∈ D(G,M) and if M ′ is a
compact neighbourhood of M , then the function

ϕ [x, γ(t)]− ϕ [x, γ(0)]

t

converges to its limit in the topology of D(G,M ′) as t tends to 0.
The Lebesgue-Fubini formula applies for all ϕ ∈ C∞(G) if λ and µ have compact

supports; and (28) reduces the question to the case of measures.
Let us next suppose that G is a Lie group. Like in Chap. XI, n◦ 25, it is then

possible to associate to λ and µ their convolution product, namely the distribution

λ ∗ µ : ϕ 7−→
∫∫

ϕ(xy)dλ(x)dµ(y) ,(25.30)

at least if λ or µ has compact support. The product of three distributions is as-
sociative if two of them have compact support. It is even possible to associated
convolution operators in C∞(G) to every distribution µ with compact support,
namely

L(µ)f(x) =

∫
f
(
y−1x

)
dµ(y) = µ ∗ f(x) ,(25.31)

R(µ)f(x) =

∫
f(xy)dµ(y) = f ∗ µ′(x) ,(25.31’)

where dµ′(x) = dµ(x−1). Since any locally integrable function f defines a distribu-
tion ϕ 7−→

∫
ϕ(x)f(x)dx, µ ∗ f and f ∗µ can be defined for any distribution µ with

compact support. But the result may be a genuine distribution, not a function.
Operators L(µ) (resp. R(µ)) clearly commute with right (resp. left) translations.

If µ is the distribution with support {e} defined by some X = γ′(0) ∈ G′(e), then

X ∗ ϕ(g) =

∫
ϕ
(
x−1g

)
dX(x) = D0ϕ

[
γ(t)−1g

]
,
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whence

X ∗ ϕ(g) = −dϕ(g;Xg) = L(X)ϕ(g) .(25.32)

Similarly,

R(X)ϕ(g) = −ϕ ∗X(g) = dϕ(g; gX) .(25.32’)

This supposes ϕ ∈ C∞(G).
Since R(X)ϕ = −ϕ ∗X,

R(X)R(Y )ϕ−R(Y )R(X)ϕ = (ϕ ∗ Y ) ∗X − (ϕ ∗X) ∗ Y .

Hence, the left hand side being equal to R([X,Y ])ϕ = −ϕ ∗ [X,Y ], in terms of
distributions,

[X,Y ] = X ∗ Y − Y ∗X .(25.33)

Formulas (32) and (32’) suggest a generalization to distributions: for any dis-
tribution µ on G, we will set

L(X)µ = X ∗ µ , R(X)µ = −µ ∗X .(25.34)

By (30), X ∗ µ is the distribution

ϕ 7−→
∫∫

ϕ(xy)dX(x)dµ(y) =

∫
dµ(y)

∫
f(xy)dX(x) =

=

∫
D0ϕ [γ(t)y] dµ(y) = −

∫
L(X)ϕ(y)dµ(y) .

Hence, using Schwartz’s notation 〈ϕ, µ〉 = µ(ϕ), we get equivalent formulas

〈ϕ,L(X)µ〉+ 〈L(X)ϕ, µ〉 = 0 , 〈ϕ,X ∗ µ〉+ 〈X ∗ ϕ, µ〉 = 0(25.35)

similar (and for good reason. . . ) to the definition of the derivative of a distribution
of a variable [Chap. V, formula (35.3)]. It can similarly be shown that

〈ϕ,R(X)µ〉+ 〈R(X)ϕ, µ〉 = 0 , 〈ϕ, µ ∗X〉+ 〈ϕ ∗X,µ〉 = 0 .(25.35’)

This relation can in particular be applied if dµ(g) = f(g)drg where f is a locally
integrable function, i.e. if 〈ϕ, µ〉 =

∫
ϕ(x)f(x)drx for all ϕ ∈ D(G). Formula (17)

obtained by proving theorem 39 therefore shows that, if the function R(X)f(g) =
D0f [g. exp(tX)] exists and is continuous, then∫

R(X)f(g).ϕ(g)drg +

∫
f(g).R(X)ϕ(g)drg = 0(25.36)

for all ϕ ∈ D(G). This means that existence and continuity of the function R(X)f(g)
imply

R(X)f = −f ∗X in the sense of distributions .(25.36’)

The two possible interpretations of R(X)f are therefore compatible in this case. It
can similarly be shown that by identifying f with the distribution f(g)dlg, existence
and la continuity of L(X)f(g) = D0f [g. exp(−tX)] imply

L(X)f = X ∗ f in the sense of distributions .(25.36”)
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Incidentally, observe an important consequence of (36). Using the inner product
on the space L2(G) of the measure drg, (36) shows that (R(X)ϕ|ψ) = (ϕ|R(X)ψ)
for all ϕ,ψ ∈ D(G). Considered an operator in D(G), iR(X) is therefore symmetric.
Hence, if (Xi) is a basis of G′(e), the operator

∑
R(Xi)

2 is symmetric > 0. In the
language of PDE theory, this means that it is an elliptic differential order of the
second order, analogous to the usual Laplacian.

Linear combinations of distributions X1∗. . .∗Xp, with Xi in G′(e), are precisely
the distributions with support {e} or, equivalently in any manifold, those for which
µ(f) is a linear combination of partial derivatives of f at e, in every chart at e.
Definition (30) of a convolution product shows that if Xi = γ′i(0), then X1 ∗ . . .∗Xp
is a linear functional

ϕ 7−→ D1 . . . Dpϕ [γ1 (t1) . . . γp (tp)] ,

the derivatives Di with respect to ti being calculated at 0.
The set U(g) of these distributions is an infinite dimensional associative algebra

generated by X ∈ G′(e). It is the universal enveloping algebra of the complex
Lie algebra105 g, systematically used from the start by Harish-Chandra, who was
probably inspired by Chevalley. Associating the operator L(µ) (resp. R(µ)) defined
in (34) to each µ ∈ U(g) gives all the differential operators on G commuting with
the translations, because such an operator L defines a distribution ϕ 7−→ Lϕ(e)
with support {e} which it is fully determined by due to its invariance. So U(g) can
be identified with the algebra of left (resp. right) invariant differential operators,
which I will instead denote by U(G). For all p, the set Up(G) of operators of order
≤ p is finite-dimensional.

The definition of convolution products readily shows that, for all X ∈ G′(e)
and all a ∈ G,

aX = εa ∗X , Xa = X ∗ εa

provided tangent vectors aX and Xa to G at a are identified with distributions
having support {a}. This gives the formula

ad(a)X = εa ∗X ∗ εa−1 .

A similar formula allows ad(a)µ to be defined for all distributions on G. It is the
image of µ under the automorphism x 7−→ axa−1 of G. If µ is of the form f(x)dx,
ad(a)µ is defined by the function f(a−1xa) which we could denote by ad(a)f(x).

Central distributions, i.e. invariant under operators ad(a), are easily character-
ized: they must satisfy

X ∗ µ = µ ∗X

for all X ∈ G′(e), and this condition is sufficient if G is connected. To see this, we
compute the differential of the function

g 7−→ 〈ϕ, ad(g)µ〉 =

∫
ϕ
(
gxg−1) dµ(x)

105 To tell the truth, this how an “ abstract ” algebra associated to any Lie algebra
is called. But for Lie groups, it is isomorphic to the one in the text. On this
topic, see J. Dixmier’s book Algèbres enveloppantes (Gauthier-Villars, 1974), or
N. Bourbaki’s first volume, Groupes et algèbres de Lie (the chapter on Lie groups,
dedicated to infinite-dimensional analytic groups over more general fields than R
or C, is practically unreadable. The founding members, who had left the group
when it was written, would never have allowed such a monster. . . ).
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for ϕ ∈ D(G). It is possible to differentiate under the
∫

sign and to use the differ-
entiation formula of a product. So the result is

D0ϕ
[
γ(t)gxg−1γ(t)−1] = D0ϕ

[
γ(t)gxg−1]+D0ϕ

[
gxg−1γ(t)−1]

= −X ∗ ϕ
(
gxg−1)+ ϕ ∗X

(
gxg−1)

if X = γ′(0). Hence, if ad(g)µ = µ,

〈X ∗ ϕ, µ〉 = 〈ϕ ∗X,µ〉 .

So by (35) and (36), the condition is necessary. The converse follows from similar
computations.

The operators ad(g) are homomorphisms with respect to the convolution prod-
uct. On the other hand, they map Up(G) to Up(G) for all p, thus defining linear
representations of G on the spaces Up(G). Denoting them by adp(g), there are
operators

adp(X) = ad′p(e)X

corresponding to them. Previous calculations show that

adp(X)µ = X ∗ µ− µ ∗X

like in G′(e). Calculating adp(ν)µ for an arbitrary distribution ν ∈ U(G) is a dif-
ferent problem altogether, as the reader will convince himself easily.

If π is a linear representation of G on a finite-dimensional vector space H, as in
the case of the measure in Chap. XI, the operator

π(µ) =

∫
π(g)dµ(g)(25.37)

can be associated to every distribution µ with compact support. The formula is
well-defined since π(g) is C∞. The definition of convolution products shows that

π(λ ∗ µ) = π(λ)π(µ) .(25.38)

If µ is a vector X ∈ G′(e), we recover π(X) = π′(e)X.

26 – Lie Algebras in Infinite-Dimension

(i) The subspace H∞. It was shown above that every finite-dimensional representa-
tion (H, π) of G has an associated Lie algebra representation g obtained by setting

π(X)a = D0π [γ(t)] a = lim
π [γ(t)] a− a

t
(26.1)

for every tangent curve to X at t = 0. In infinite dimension, though the situation
is not intractable, it is considerably more complicated. It has given rise to some
difficult theorems106 and entails many pitfalls.

Let us consider a continuous representation π of G on a Banach space H and,
for a ∈ H, the function p(g) = π(g)a. Even if derivative (1) exists for all tangent

106 This section follows closely the more complete though older presentation of
G. Warner’s in Harmonic Analysis on Semisimple Lie Groups (Springer, 1972),
vol. I, pp. 252–304.
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curves γ(t) to a given X, it is not a priori obvious that the result only depends on
X. To avoid this ambiguity, we set

π(X)a = D0π [γX(t)] a(26.2)

each time this derivative exists. As

π [gγ(t)] a = π(g)π [γ(t)] a ,

the operator R(X) defined by (25.16) can be applied to the function π(g)a. The
result, namely

R(X)π(g)a = π(g)π(X)a ,(26.3)

proves that g 7−→ R(X)π(g)a is continuous. Theorem 39 then shows that the ex-
istence of derivative (2) for all X is necessary and sufficient107 for the function
π(g)a to be of class C1.

The set H∞ of a ∈ H such that the function π(g)a is C∞ is, therefore, the set
of vectors for which the expression

π (X1) . . . π (Xp) a(26.4)

is well-defined for all p and Xi. We will denote by π∞(X) the restriction of π(X)
to H∞ for all X. Generalization to distributions µ ∈ U(G) is obvious, with

π∞(µ ∗ ν) = π∞(µ)π∞(ν) .

The subspace H∞ is π(g)-invariant since

107 This point is not always properly justified. See for example A. Knapp, Represen-
tation theory of semisimple groups. . . (Princeton UP, 1986), proof of lemma 3.13,
p. 55: For each a the map g 7−→ π(g)π(X)a is continuous, and thus π(g)a has
continuous first partials everywhere and must be of class C1 (I have changed
Knapp’s notation) ; N. Wallach, Real Reductive Groups (Academic Press, 1988),
vol I, pp. 33, lemma 1.6.4, uses the same argument to show that H∞ is complete ;
Warner, Harmonic Analysis. . . , vol I, p. 252, Example, also uses it to show that,
in the regular representation of G on L2(G), the f ∈ D(G) are C∞ vectors
(true, but for other reasons). D. Bump’s arguments, Automorphic Forms and
Representations, lemma 2.4.2, p. 188 are hardly more convincing.

Knapp’s argument would be correct if the functions R(X)f(g) =
D0f [g exp(tX)] were, as he says, partials, i.e. partial derivatives of f at g with
respect to a local chart independent of g. However, as remarked above, they are
calculated in a chart which depends on it. The whole problem is showing that if
derivatives

D0f [exp(Y ) exp(tX)]

exist and are continuous functions of Y ∈ W , then the same is true for genuine
partials

D0f [exp(Y + tX)]

which Knapp does not write down.
By the way, note that F. Bruhat, Sur les représentations induites des groupes

de Lie (Bull. SMF, 84, 1956, pp. 97–205) is the first author to have systematically
used C∞ vectors, distribution theory and that of locally convex spaces to prove
theorems (irreducibility of “ almost all ” principal series representations).



478 XII – The Garden of Modular Delights

D0π [γ(t)]π(g)a = π(g)D0π
[
g−1γ(t)g

]
a = π(g)D0π [δ(t)] a ,

where δ′(0) = ad(g)−1γ′(0), whence the existence of

π(X)π(g)a = π(g)π
[
ad(g)−1X

]
a .

the result and the formula

π∞ [ad(g)X] = π(g)π∞(X)π(g)−1(26.5)

follow by iteration. We will see in the next section (ii) that operators π∞(µ) can
also be defined for every distribution with compact support.

Then, like in finite dimension,

π∞ ([X,Y ]) = [π∞(X), π∞(Y )] in H∞ ,(26.6)

because (3) shows first that R(Y )π(g)a = π(g)π∞(Y )a then, applied to π∞(Y )a,
that

R(X)R(Y )π(g)a = R(X)π(g)π∞(Y )a = π(g)π∞(X)π∞(Y )a .

This give (6) since R([X,Y ]) = [R(X), R(Y )] even when these differential operators
are applied to functions with values in a Banach space.

(ii) Weak differentiability and strong differentiability. In finite dimension, a func-
tion with values in H is checked to be Cp by verifying that so are its components
with respect to some basis. It is then a trivial result applicable to all C∞ manifolds.
This result can be generalized here, but less trivially.

Let H′ denote the topological dual of the Banach space H. It is the set of
continuous linear functionals on H equipped with the obvious norm. For x ∈ H
and y ∈ H′, we set 〈x|y〉 = y(x). If p is a C∞ map from G to H, for any x ∈ H′,
the function

px(g) = 〈p(g)|x〉(26.7)

is clearly in C∞(G) since it is the composition of p and a continuous linear map
from H to C.

To prove the converse, we first note that every a ∈ H defines a continuous
linear functional on H′, namely x 7−→ 〈a|x〉, which gives a canonical map from H
to H′′ = (H′)′. It is easily shown (Hahn-Banach) to be isometric. So H is a closed
subspace of H′′. Hence to show that a map with values in H is C∞, it suffices to
show that it is as a map in the dual of H′. Replacing H by H′ reduces the proof to
the next result whose author is unknown to me,:

Theorem 40. Let H be a Banach space, G a C∞ manifold and p a map from G to
the dual H′ of H. p is C∞ if and only if the function 〈x|p(g)〉 is C∞ for all x ∈ H.

The question being local, G may be assumed to be open in Rn. We first suppose
that n = 1 and set D = d/dt. By its very definition, the derivative D〈x|p(t)〉 is the
limit of a sequence of continuous linear functionals in x. Hence it is continuous.108

Thus there is a vector p′(t) ∈ H′ such that

108 The proof given in Chap. XI, n◦ 19, (v), lemma 6 for Hilbert spaces readily gener-
alizes. The Banach-Steinhaus theorem [Chap. XI, n◦ 15, (ii), note 52] can also be
used. It shows that if lim〈x|an〉 = f(x) exists for all x ∈ H, then sup ‖an‖ < +∞
and as a consequence |f(x)| ≤ M‖x‖. More generally if M is a subset of H′ on
which the function y 7−→ 〈x|y〉 is bounded for all x, then so is the function ‖y‖
(“ any weakly bounded subset is strongly bounded ”). These arguments extend
to more general spaces, for example Fréchet spaces. N. Bourbaki’s book, Espaces
vectoriels topologiques, is the unavoidable reference for maximum generality and,
almost always, for clearness and simplicity of proofs .
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D 〈x|p(t)〉 =
〈
x|p′(t)

〉
for all x .(26.8)

The left hand side being C∞(G), this result applies to p′. Thus there is a vector
p′′(t) ∈ H such that D2〈x|p(t)〉 = 〈x|p′′(t)〉, etc.

The left hand side of (8) being bounded on every compact subset of G for all
x, so is the right hand side, hence so is ‖p′(t)‖ (Banach-Steinhaus). In

〈x|p(t+ h)− p(t)〉 =

∫ h

0

〈
x|p′(u)

〉
du ,

the right hand side is thus bounded above by M |h|.‖x‖ for sufficiently small |h|.
Therefore,

‖p(t+ h)− p(t)‖ = O (|h|)

for sufficiently small |h|. Hence the functions p, p′, p′′, . . . are continuous.

〈
x|p(u+ h)− p(u)− p′(u)h

〉
=

∫ h

0

〈
x|p′(u+ t)− p′(u)

〉
dt

then likewise shows that∥∥p(u+ h)− p(u)− hp′(u)
∥∥ = o(h) .

As a result, p′ is the derivative of p in the strong topology, the function p is of class
C1, hence so are p′, p′′, . . ., proving the theorem for n = 1.

For arbitrary n, the previous result, applied to the function p(u+ tX) for given
u ∈ G and X ∈ Rn, first of all shows the existence of the derivative D0p(u + tX)
with respect to the strong topology. It depends linearly on X since, for all x, the
differential of 〈x|p(u)〉 is linear in X. Setting D0p(u + tX) = p′(u)X defines a
linear map p′(u) de Rn on H′. The function ‖p′(u)‖ is bounded on every compact
subset of G since so is the function 〈x|p′(u)X〉 = D0〈x|p(u+ tX)〉 for all X and x
(Banach-Steinhaus). For sufficiently small ‖h‖,

〈x|p(u+ h)− p(u)〉 =

∫ 1

0

〈
x|p′(u+ th)h

〉
dt ,

then shows that ‖p(u+ h)− p(u)‖ = O(‖h‖). Thus p is continuous with respect to
the strong topology of H′. However, for all X ∈ Rn and all x ∈ H, the function〈

x|p′(u)X
〉

= D0 〈x|p(u+ tX)〉

is in C∞(G) since 〈x|p(u)〉. Hence, like p, p′ is a continuous function with respect
to the strong topology and ‖p′(u)‖ is bounded on every compact set. Writing

〈
x|p(u+ h)− p(u)− p′(u)h

〉
=

∫ 1

0

〈
x|p′(u+ th)h− p′(u)h

〉
dt ,

we deduce that ∥∥p(u+ h)− p(u)− p′(u)h
∥∥ = o (‖h‖)(26.9)

This shows that p is differentiable at u and that p′(u) is the tangent linear map to
p at u. Since p′ is continuous, p is of class C1. Applying these arguments to p′, p′′,
etc., the existence and continuity of all partial derivatives of p follow, qed.
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Corollary 1. Let p be a map from a manifold G to a Banach space H. p is C∞ if
and only if 〈p(g)|x〉 is C∞ for all x ∈ H′.

The proof follows by regarding p as a map with values in the dual109 of H′.

Corollary 2. Let (H, π) be a continuous linear representation of a Lie group G
on a Banach space H. Then H∞ is the set of a ∈ H such that 〈π(g)a|x〉 is C∞ for
all x ∈ H′.

Apply corollary 1 to p(g) = π(g)a.

(iii) Convolution operators on H∞. Let us first show how for any manifold, C∞

functions with values in a Banach space H can be “ integrated ” with respect to a
distribution µ with compact support: it suffices to define µ(p) by the condition

〈µ(p)|x〉 =

∫
〈p(g)|x〉 dµ(g)(26.10)

for all x ∈ H′. To prove the existence of a vector µ(p) satisfying this condition, the
easiest is to write µ as (25.28). The right hand side of (10) then equals∑∫

〈Lip(g)|x〉 dµi(g) .

As the function Lip(g) is continuous, the proof reduces to integrating a continuous
function with values in H with respect to a genuine measure with compact support:
Chap. XI, n◦ 4, (i). Hence∫

p(g)dµ(g) =
∑∫

Lip(g).dµi(g) .

G denoting again a Lie group and (H, π) a continuous representation on a Banach
space, one can associate an operator π∞(µ) defined by

π∞(µ)a =

∫
π(g)a.dµ(g) for all a ∈ H∞ ,

i.e. by

109 At first glance, the theorem appears to follow from its corollary. It is not so:
applied to H′, the corollary would require that 〈x|p(g)〉 is C∞ for all x ∈ H′′,
which is impossible to check in general if H′′ 6= H. Incidentally, the following
mistake should be avoided. If π is a (continuous) representation from a group G
to H and if, for any continuous operator T : H 7−→ H, T ′ : H′ 7−→ H′ denotes the
transpose operator, the “ contragredient ” map g 7−→ π(g−1)′ is a representation
of G on H′. But in general, it is not continuous with respect to the strong
topology. Counterexample: G = R, H = L1(R), π being the representation by
translations. Denoting by ft the function x 7−→ f(x − t), strong continuity of
t 7−→ ft for some f ∈ L∞(G) means that ‖ft − f‖∞ tends to 0 as t tends to 0.
If f is continuous, this requires f to be uniformly continuous on R.

N. Bourbaki’s booklet, Variétés différentiables et analytiques, 2.6.2, mentions
in two lines the corollary for every almost complete locally convex space H,
i.e. in which every closed and bounded set is complete (a set B is bounded if
all continuous seminorms on B are bounded). This general result can easily be
deduced from the corollary by observing that every continuous seminorm on H
defines a continuous map from H to a Banach space.
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〈π∞(µ)a|x〉 =

∫
〈π(g)a|x〉 dµ(g) for all x ∈ H′(26.11)

to every distribution with compact support µ. For g ∈ G and x ∈ H′,

〈π(g)π∞(µ)a|x〉 =
〈
π∞(µ)a|π(g)′x

〉
=

=

∫ 〈
π(y)a|π(g)′x

〉
dµ(y) =

∫
〈π(gy)a|x〉 dµ(y) .

This is the convolution of a C∞ function and a distribution with compact support.
The result is C∞. So π∞(µ) maps H∞ to H∞. For all a ∈ H∞, π∞(µ)a belongs to
the closed subspace H(a) generated by the π(g)a, because every x ∈ H′ orthogonal
to these is orthogonal to π∞(µ)a by (11). If H is infinite-dimensional, the vectors
π∞(µ)a associated to µ ∈ U(G) are not necessarily everywhere dense in H(a).
Counterexample: take G = R, H = L2(G) and a function a ∈ D(G).

Calculations used for measures [Chap. XI, n◦ 25, (i)] also easily show that
π∞(λ)π∞(µ) = π∞(λ∗µ). Hence inH∞ we get all the noncommutative polynomials
in π∞(X) and π(µ) associated to measures with compact support. Generalizing
definition (25.31’) of R(µ) in an obvious manner to all functions with values in H,
relations (25.34) and (25.36) imply

R(µ)π(g)a = π(g)π∞(µ)a ,(26.12)

π∞ [ad(g)µ] = π(g)π∞(µ)π(g)−1 .(26.13)

H∞ can be equipped with a topology using seminorms

pµ(a) = ‖π∞(µ)a‖

where µ ∈ U(G), distributions with support {e}. Until further notice, we will only
consider these. We could even confine ourselves to measures µ such as

µ = X1 ∗ . . . ∗Xp

where all Xi belong to a given basis of G′(e). As the function ‖π(g)‖ is bounded
on every compact set, relation lim an = a means that the functions R(µ)π(g)an,
or the successive derivatives of π(g)an in any chart, converge uniformly on every
compact set. The topology of H∞ is thus identical to that of Schwartz on the space
C∞(G;H) of C∞ maps with values inH. Applying definitions, it is not very difficult
to show that (i) H∞ iscomplete (hence is a Fréchet space, because its topology is
defined by a countable family of seminorms; see Dieudonné, XII), (ii) for every
distribution µ with compact support, the operator π∞(µ) is continuous on H∞,
(iii) for all a ∈ H∞, the map g 7−→ π(g)a from G to H∞ is C∞ with respect to the
topology of H∞.

(iv) The Dixmier-Malliavin theorem. Let us first show that H∞ is everywhere
dense in H, otherwise previous considerations would be devoid of interest. The
proof is the same, slightly less trivial, than the one given above in finite dimension.
Indeed every ϕ ∈ D(G) defines a continuous operator

π(ϕ) =

∫
π(x)ϕ(x)dx

on H, and

π(g)π(ϕ)a =

∫
π(gx)a.ϕ(x)dx =

∫
π(x)a.ϕ

(
g−1x

)
dx .
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This convolution product is C∞ since it is the integral of a continuous function
with compact support which depends in a C∞ manner on the parameter g. The
fact that its values are in a Banach space is not a problem. Hence π(ϕ)a ∈ H∞,
and as ϕ ∈ D(G) enables us to construct Dirac sequences (ϕn), every a ∈ H is
the limit of vectors belonging to H∞, namely the vectors π(ϕn)a [Chap. XI, n◦ 25,
(v)], qed. Besides, clearly

π∞(µ)π(ϕ) = π(µ ∗ ϕ)

for every distribution µ with compact support.
This result, spectacular for its time but easy,110 has been greatly improved on:

Theorem 41. For any representation (π,H) of a Lie group G on a Banach space,
the G̊arding subspace is identical to the subspace H∞: every a ∈ H∞ is of the form

a = π (ϕ1) a1 + . . .+ π (ϕp) ap

with ai ∈ H∞ and ϕi ∈ D(G) for all i.

For all i, the supports of ϕi can also be required to be in a given arbitrary
neighbourhood of e. Inspired by methods from PDE theory, Dixmier’s and Malli-
avin’s very ingenious ten page proof requires little knowledge and even covers the
case of representations on Fréchet spaces. The first step consists in proving the next
result, starting with G = R:

Theorem 42. If G is a Lie group, any function p ∈ D(G) is a finite sum of
convolutions ϕ ∗ ψ where ϕ,ψ ∈ D(G).

G being assumed to be unimodular, we consider a discrete subgroup Γ of G
(possibly reduced to {e}) and the representation R of G on H = Lp(Γ\G) with
1 ≤ p < +∞, given by right translations.111 C∞ vectors are functions f for which
the inner product

(R(x)f |g) =

∫
Γ\G

f(yx)g(y)dy(26.14)

is C∞ for all g ∈ Lq(Γ\G). Hence D(Γ\G) ⊂ H∞. For ϕ ∈ D(G), R(ϕ)f = f ∗ ϕ′
where ϕ′(x) = ϕ(x−1). By the Dixmier-Malliavin theorem, H∞ is therefore the set
of sums of products f ∗ ϕ with ϕ ∈ D(G) and f ∈ Lp(Γ\G). Thus

D(Γ\G) ⊂ H∞ ⊂ C∞(Γ\G) .

If µ is a distribution with compact support, by (11), the operator R∞(µ) asso-
ciated to representation R is given by

(R∞(µ)f |g) =

∫
G

(R(x)f |g) dµ(x) =

∫
G

dµ(x)

∫
Γ\G

f(yx)g(y)dy

110 In Nancy, in 1947, Schwartz and I were rather surprised, not to say upset, when
Lars G̊arding published it. We could have proved it “ in less than fifteen minutes ”
if only we had thought of it. G̊arding’s reputation is based on far harder successes
in PDE theory. For the next two theorems see J. Dixmier and P. Malliavin,
Factorisations de fonctions et de vecteurs indéfiniment différentiables (Bull. Sc.
Math., 102, 1978, pp. 305–330).

111 The case p = +∞ needs to be excluded because the representation of G on L∞

is not continuous with respect to the strong topology.
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for all f ∈ H∞ and all g ∈ Lq(G). If g ∈ L(Γ\G), differentiation under the
∫

sign of the integral over Γ\G is possible since f is C∞. (25.28) then shows that
(R∞(µ)f |g) = (f ∗ µ′|g) where dµ′(g) = dµ(g−1). As a result,

R∞(µ)f = f ∗ µ′ for all f ∈ H∞ .(26.15)

These vectors belong to the closed subspace H(f) generated by all R(x)f .
Let us give an outline of the proof that conversely all f ∈ C∞(Γ\G) such that

f ∗ µ ∈ Lp(Γ\G) for all µ ∈ U(G) are in H∞. The proof resembles that of theorem
40. For given X ∈ G′(e), we set

R(t) = R [γX(t)]

to be the right translation operator by γX(t). For all ϕ ∈ D(Γ\G), clearly DR(t)ϕ =
−R(t)(ϕ ∗X) in the topology of H. Integrating, we deduce that

‖R(u)ϕ− ϕ‖q = ‖ϕ ∗X‖q .O(u)

However, (
R(t)f − f

t

∣∣∣ϕ) =

(
f
∣∣∣R (t−1

)
ϕ− ϕ
t

)
.

As t 7−→ R(t)ϕ is C∞, the right hand side tends to −(f |ϕ ∗X), which implies that
D0(R(t)f |ϕ) = −(f |ϕ∗X). But formula (25.35) for the distribution dµ(x) = f(x)dx
shows that (f |ϕ ∗ X) + (f ∗ X|ϕ) = 0. Hence D0(R(t)f |ϕ) = (f ∗ X|ϕ) for all
ϕ ∈ D(Γ\G) and more generally D(R(t)f |ϕ) = (R(t)f ∗ X|ϕ). Since f ∗ X ∈ Lp,
iterating is possible. Thus D2(R(t)f |ϕ) = (R(t)f ∗X ∗X|ϕ) is a continuous function
of t. As a result,

(R(t)f − f + t.f ∗X|ϕ) =

∫ t

0

du

∫ u

0

(R(v)f ∗X ∗X|ϕ) dv

for all ϕ ∈ D(Γ\G). The function being integrated being bounded above by ‖f ∗
X ∗X‖p‖ϕ‖q for all v, it follows that

‖R(t)f − f + t.f ∗X‖p = ‖f ∗X ∗X‖pO
(
t2
)
,

proving the existence of

D0R(t)f = −f ∗X

in the topology of Lp. The operator π(X) of the general theory, defined by (2) when
the relation is well-defined, is thus defined at f . But as f ∗µ ∈ Lp(Γ\G) is assumed
to hold for all µ ∈ U(G), all functions π(X1) . . . π(Xn)f are clearly defined, whence
f ∈ H∞. In conclusion:

Theorem 43. Let Γ be a discrete subgroup112 of a Lie group G and R the repre-
sentation of G on H = Lp(Γ\G), 1 ≤ p < +∞. Then H∞ is the set of functions
such that

f ∗ µ ∈ H for all µ ∈ U(G)

and then R∞(µ)f = f ∗ µ′.
112 This assumption is obviously far too restrictive.
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(v) Analytic vectors. Thanks to the exponential map, every Lie group G can be
equipped with an analytic structure. In a sufficiently small neighbourhood V of 0,
there is indeed a C∞ function H(X,Y ) ∈ G′(e) such that

exp(X) exp(Y ) = exp (H(X,Y )) .

The Campbell-Hausdorff formula

H(X,Y ) = X + Y + [X,Y ]/2 +

+[X, [X,Y ]]/12 + [Y, [Y,X]]/12−
−[X, [Y, [X,Y ]]]/24 + . . .

enables us to write H(X,Y ) as a series
∑
Hn(X,Y ) having homogeneous functions

of degree n in X and Y as its terms and obtained by applying products of n
operators of the form ad(X) or ad(Y ) to X or Y . The formula is the same for all
Lie groups and converges for sufficiently small X, Y . The analyticity of H(X,Y ) is
a consequence of this,113 and all C∞ (or even continuous) homomorphisms of Lie
groups are analytic.

This raises the question of whether in every representation (H, π) of G there
are vectors a ∈ H such that g 7−→ π(g)a is analytic.114 The answer is that the
set Hω of these vectors is everywhere dense in H. This difficult result obtained by
Harish-Chandra for semisimple groups was one of his first successes. P. Cartier and
J. Dixmier generalized it to almost all groups, but like HC using structure theorems.
The general case, due to E. Nelson, only uses techniques from partial differential
equations (heat equation) and has given rise to surprising theorems.115

The operator π∞(µ) preserves Hω if µ ∈ U(G) (but not if µ is a distribution
with an arbitrary compact support). Then letM be a closed invariant subspace of
H. Considering the restrictions of π(g) to M, we get a representation of G on M
for which Mω =M∩Hω. These subspace is stable under operators π(X).

Conversely, if E is a stable subspace of Hω under the operators π(X), the closure
M of E in H is π(g)-invariant if G is connected. It suffices (Hahn-Banach) to show
that every x ∈ H′ orthogonal to π∞(µ)a for all µ ∈ U(G) is also orthogonal to
all π(g)a. It is, however, obvious that this condition is equivalent to all derivatives
of the function 〈π(g)a,x〉 being zero at the origin. As the latter is analytic, it is
zero on the connected component of e, whence the result.116 In particular, for all
a ∈ Hω, the closed subspace generated by all π(g)a is the closure of the subspace
of π(µ)a, µ ∈ U(G).

When G is semisimple with finite centre, there are always compact subgroups
K in G (the pairwise conjugate, maximal compact subgroups) with the following
property:117 if (H, π) is a reasonable (for example unitary) irreducible representa-
tion of G, and if the restriction of π to K is decomposed [Chap. XI, n◦ 29, (iii)] into
subspaces H(χ) corresponding to the characters of the irreducible representations
of K, then dimH(χ) < +∞.

113 Detailed presentation in my Introduction à la théorie des groupes de Lie (Publ.
Math. Université Paris VII, 1982 or Springer, 2003), § 6.

114 Theorem 40 remains valid for analytic maps on a Banach space. See Browder,
Amer. J. Math., 84, 1962, beginning of pp. 666–710, or Serge Lang, SL2(R),
appendix 5, § 2.

115 P. Cartier and J. Dixmier, Amer. J. Math., 80, 1958, pp. 131–145 ; R. Nelson,
Annals of Math., 70, 1959, pp. 572–614. See also Lars G̊arding, Bull. SMF, 88,
1960, pp. 73–93. Warner’s book presents most of these results.

116 There is no analogous result for H∞.
117 For a fairly simple proof of this result of Harish-Chandra, see R. Godement,

A Theory of Spherical Functions (Trans. AMS, 73, 1952, pp. 496–556).
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Theorem 44. Let G be a Lie group, K a compact subgroup of G and (H, π) a con-
tinuous representation of G on a Banach space H. Suppose that, for some character
χ of K, the subspace H(χ) is finite-dimensional. Then all a ∈ H(χ) are analytic.

(a) Let us first show that a ∈ H(χ) is C∞. To this end, we consider the subspace
of π(ϕ)a where ϕ ∈ D(G). The operator

E(χ) = π (χ) =

∫
π(k)χ(k)dk

projectsH ontoH(χ) (at least if χ is normalized in such a way that χ∗χ = χ). Since
E(χ)a = a, a is the limit of vectors of type E(χ)π(ϕ)a = π(χ)π(ϕ)a = π(χ ∗ ϕ)a.
The set of these vectors is a vector subspace of H(χ). Hence, since dimH(χ) < +∞,
there exists ϕ ∈ D(G) such that a = π(χ ∗ ϕ)a. Thus a ∈ H∞.

(b) Let us show that there is a basis (Xi) of G′(e) such that the element ∆ =∑
X2
i of U(G) is ad2(k)-invariant for all k ∈ K. For this note that, K being

compact, there is an ad(k)-invariant positive definite quadratic form on G′(e). Every
orthonormal basis with respect to this quadratic form is suitable. Indeed there are
equalities ad(k)Xi =

∑
api (k)Xp where the matrix of api is orthogonal, whence

ad2(k)∆ =
∑
i a
p
i (k)aqi (k)XpXq = ∆.

(c) As π∞(∆) commutes with all π(k), π∞(∆)H(χ) ⊂ H(χ). Since H(χ) is
finite-dimensional, there is a basis for H(χ) all of whose elements satisfy a relation
of the form [π∞(∆) − λ]pa = 0 for some λ ∈ C and some integer p ≥ 1. For
all x ∈ H′, the function f(g) = 〈π(g)a,x〉 then satisfies the differential equation
[R(∆) − λ]pf = 0. However, in the previous n◦, using (25.35’), the differential
operator R(∆) was found to be elliptic (and obviously with analytic coefficients).
PDE specialists will explain that then the same is true for [R(∆) − λ]p and that
every solution (function or distribution) of an elliptic PDE with analytic coefficients
is an analytic function. The function 〈π(g)a,x〉 is therefore analytic for all x ∈ H,
hence so are a and as a result so are all vectors in H(χ), qed.

(vi) The case of unitary representations. All of the above applies to what is the
most important case, that of unitary representations. As H′ = H, corollary 2 of
theorem 40 immediately gives the characterization of C∞ vectors in H.

For a,a′ ∈ H∞ and any distribution µ with compact support,(
π∞(µ)a|a′

)
=
(
a|π∞(µ̃)a′

)
(26.16)

like in the case of measures and by the same calculations, and in particular(
π∞(X)a|a′

)
+
(
a|π∞(X)a′

)
= 0(26.16’)

for all X ∈ G′(e), generalizing (25.36). So the operator iπ∞(X) is symmetric on
H∞. The next result can then be deduced:

Theorem 45. Let (H, π) be an irreducible unitary representation of G and µ a
distribution with compact support. If µ is central, the operator π∞(µ) is a scalar.

For all scalars λ, the operator

S =
[
π∞(µ̃) + λ1

]
[π∞(µ) + λ1] : H∞ −→ H∞

is positive symmetric by (16) and commutes with all π(g), hence is a scalar
[Chap. XI, n◦ 23, (ii), Schur’s lemma II: use the self-adjoint canonical extension

of S]. As this is the case for λ = 0, the operator λπ∞(µ̃) + λπ∞(µ) is a scalar for
all λ, for example for λ = ±1, qed.
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Let us show that, in every unitary representation, the operator iπ(X), defined
by (2) and extending iπ∞(X), is self-adjoint. As π(X)a is the derivative of the
function π[γX(t)]a at t = 0 when it exists, it suffices to prove it for G = R.
Proposition (ii) of the next theorem will be sufficient.

Theorem 46 (M. H. Stone). Let t 7−→ U(t) be a unitary representation of R on
a Hilbert space H.

(i) There is a spectral measure M on R such that

U(t) =

∫
exp(iλt)dM(λ) for all t .(26.17)

(ii) D0U(t)a exists if and only if a belongs to the domain of definition of the
self-adjoint operator

H =

∫
λdM(λ) ;(26.18)

then

D0 [U(t)a] = iHa .(26.19)

(iii) The function U(t)a is C∞ if and only if

a ∈
⋂

Def (Hn) .

Proposition (i) holds for every commutative lcg. It can be obtained directly
from the spectral theory of u Chap. XI, n◦ 22 applied to the GN algebra generated
by operators U(f) =

∫
f(t)dt where f ∈ L1. Like F. Riesz for G = R, one can also

deduce Bochner’s theorem [Chap. XI, n◦ 30, (iii), exercise 4].
To prove point (ii), use spectral measures dµa,b(λ) associated to M . Hence

(U(t)a|b) =

∫
exp(iλt)dµa,b(λ) .

As was seen in n◦ 23 of Chap. XI, the subspace Def(H) is the set of a ∈ H such
that ∫

λ2dµa,a(λ) < +∞ .(26.20)

Then the value of the left hand side is ‖Ha‖2 and

(Ha|x) =

∫
λdµa,x(λ)

for all x ∈ H, the integral being convergent.
Calculation rules of Chap. XI, n◦ 22, (ii) then show that, for all a ∈ Def(H),∥∥∥∥U(t)− 1

t
a− iHa

∥∥∥∥2 =

∫ ∣∣∣∣exp(iλt)− 1

t
− iλ

∣∣∣∣2 dµa,a(λ) .(26.21)

But equality

exp(it)− 1− it = i

∫ t

0

[exp(iu)− 1] du
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shows that the function integrated in (21) is dominated by the integrable function
4λ2. Thus the left hand side tends to 0 as t tends to 0 if (20) holds. Therefore, the
derivative D0U(t)a = ia′ exists for all a ∈ Def(H), with a′ = Ha.

Conversely let us suppose it exists. For all x ∈ H,(
x|ia′

)
= lim (x| (U(t)a− a) /t) = lim ((U(−t)x− x) /t|a)

since U(t) is unitary. If x ∈ Def(H), the last term tends to (−iHx|a) by what has
been proved above. Hence(

x|ia′
)

= − (iHx|a) for all x ∈ Def(H) .

As a result, the adjoint H∗ of H is defined at a and H∗a = ia′. But iH is self-
adjoint. So a ∈ Def(H) and ia′ = Ha.

Finally, let us suppose that U(t)a soit C∞. Setting D = d/dt,

iU(t)Ha = U(t)D0U(t)a = DU(t)a .

This is a C∞ function of t. As a consequence, Ha ∈ Def(H) and a ∈ Def(H2).
Iterating the calculation gives a ∈ Def(Hn) for all n. Conversely, we suppose a ∈
Def(Hn) for all n. As a ∈ Def(H), the function U(t)a is differentiable and has
derivative iU(t)Ha. As Ha ∈ Def(H), the result can be applied to Ha. So

D2U(t)a = −U(t)H2a

exists, etc, proving point (iii) of Stone’s theorem.
Observe that conversely, any self-adjoint operator

H =

∫
λdM(λ)

arises from a unitary representation

U(t) =

∫
exp(itλ)dM(λ)

of R. We set U(t) = exp(itH), not to be confused with the series, which is not
well-defined.

Exercise 5. Suppose G = R. Show that, for the regular representation of G,

H∞ is the space of functions f whose Fourier transforms satisfy
∫
|f̂ (λ)|2λ2ndλ <

+∞ for all n. These functions are C∞. All their derivatives are in L2 and have
integrable Fourier transforms. Interpret the Dixmier-Malliavin theorem.

Exercise 6. Let U(t) =
∫

e(λt)dM(λ) be a unitary representation of R. Show
that, for any compact set ω ⊂ R, the elements of the spectral manifold H(ω) are
analytic and the infinitesimal generator H =

∫
λdM(λ) is defined and continuous

on H(ω). Show that the operator A=
∫

exp(−πλ2)dM(λ) maps H to the subspace
of analytic vectors of H.

Exercise 7. Consider the group, named after Heisenberg, of real matrices

g =

1 x z
0 1 y
0 0 1

 .

(i) Show that there is a basis (X,Y, Z) for G′(e) such that

[X,Z] = [Y,Z] = 0 , [X,Y ] = Z .
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(ii) In H = L2(R), consider operators

π(g)f(t) = e [a(z + ty)] f(t+ x) ,

where a ∈ R is given and non-zero. Show that π is an irreducible unitary repre-
sentation of G and that, for all ϕ ∈ L(G), π(ϕ) is a Hilbert-Schmidt operator.118

(iii) Show that H∞ = S(R), the Schwartz space (Chap. VII, n◦ 31) of rapidly
decreasing C∞ functions and of their successive derivatives.

Exercise 8. Let (H, π) be a unitary representation of a connected Lie group and
A : H∞ −→ H∞ a continuous operator with respect to the topology of H∞ defined
at the end of section (iii) (A is not assumed to be defined on all of H). Show that,
like in finite dimension,

Aπ(g) = π(g)A⇐⇒ Aπ∞(X) = π∞(X)A .(26.22)

27 – Differential Operators on SL2(R)

From now on, nr 15 and 16 of this chapter will be frequently used. Almost all of
this end of chapter is taken from a course I gave in Paris in 1971–1972.

(i) The Lie algebra of SL2(R). As the space of real matrices with zero trace
has dimension 3, for example the matrices

X =

(
0 1
0 0

)
, H =

(
1 0
0 −1

)
, Y =

(
0 0
1 0

)
(27.1)

form a basis for the Lie algebra G′(e) of G = SL2(R). X, H and Y are the tangent
vectors at t = 0 to the one-parameter subgroups

x(t) =

(
1 t
0 1

)
, h(t) =

(
et 0
0 e−t

)
, y(t) =

(
1 0
t 1

)
(27.2)

already extensively used with a different parametrization for h(t). Hence

x(t) = exp(tX) , h(t) = exp(tH) , y(t) = exp(tY ) .(27.3)

These subgroups act on the upper half-plane P by

x(t)z = z + t , h(t)z = e2tz , y(t)z = 1/(tz + 1) .(27.4)

The commutation formulas

[H,X] = 2X , [H,Y ] = −2Y , [X,Y ] = H(27.5)

occur in every semisimple groups.
The tangent vector to the one-parameter subgroup of orthogonal matrices at

the origin will also be needed. Differentiating the matrix

k(t) =

(
cos 2πt sin 2πt
− sin 2πt cos 2πt

)
,(27.6)

we get the matrix

118 Plancherel’s formula for this group will be found in my mémoire du Journal de
Liouville (XXX, 1951, pp. 92–101). All this was generalized to unipotent groups
by J. Dixmier, A. Kirillov, etc.
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A = 2π

(
0 1
−1 0

)
= 2πiW , where W =

(
0 −i
i 0

)
= i(Y −X) .(27.7)

W is in the complex Lie algebra g of G. Hence

k(t) = exp(tA) = exp(2πitW ) .

The operator R(W ) corresponding to W is defined by

2πiR(W )f(g) = D0f [gk(t)] .(27.8)

For every function f ∈ F∞r = Fr ∩C∞(G), i.e. every C∞ solution of the functional
equation

f [gk(t)] = f(g)χr(t) = f(g) exp(2πirt) ,

R(W )f = rf(27.9)

and this property characterizes f ∈ F∞r .
Together with W , the complex matrices

Z = 1
2

(
1 i
i −1

)
= 1

2
(H + 2iX +W ) ,

Z = 1
2

(
1 −i
−i −1

)
= 1

2
(H − 2iX −W ) ,(27.10)

form a basis for g and once again

[W,Z] = 2Z ,
[
W,Z

]
= −2Z ,

[
Z,Z

]
= W .(27.11)

These formulas being valid for all corresponding operators, if f ∈ F∞r , then

R(W )R(Z)f = 2R(Z)f +R(Z)R(W )f = (r + 2)R(Z)f ,(27.12’)

R(W )R
(
Z
)
f = −2R

(
Z
)
f +R

(
Z
)
R(W )f = (r − 2)R

(
Z
)
f .(27.12”)

Setting as we will generally do to simplify notations

Mf = R(M)f = −f ∗M , MNf = R(M)R(N)f , etc.(27.13)

for all M,N ∈ g and all function f on G, these results can be presented in a diagram

F∞r+2

↗
Z

�
F∞r

W
−−−−−→F∞r(27.14)

�
Z
↘
F∞r−2

which is going to play an important role.
Using convention (13) and commutation formulas, we get
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[
W 2, Z

]
= 2(WZ + ZW ) ;

[
W 2, Z

]
= −2

(
WZ + ZW

)
,[

ZZ,W
]

=
[
ZZ,W

]
= 0 ,[

ZZ,Z
]

= −WZ ,
[
ZZ,Z

]
= ZW ,[

ZZ,Z
]

= −ZW ,
[
ZZ,Z

]
= WZ .

These are calculations in U(G), and not of matrix products. Hence[
ZZ + ZZ,Z

]
= −1

2

[
W 2, Z

]
,
[
ZZ + ZZ,Z

]
= −1

2

[
W 2, Z

]
.

Thus the element

Ω =
1

2

(
ZZ + ZZ

)
+W 2/4 = ZZ +W 2/4−W/2(27.15)

of U(G) commutes with W , Z and Z. It is the Casimir operator119 of G. As it
belongs to the centre of U(G), the differential operator R(Ω) commutes with left
and right translations.

(ii) Differential operators on the half-plane. In n◦ 15, (ii), a function

fr(g) = (ci+ d)−rf(z) , z = gi

belonging to the space F∞r of functions of weight r on G was associated to every
C∞ function f(z) on the half plane P and to every r ∈ Z. Letting operators Z

and Z act on fr, we get functions in F∞r+2 and F∞r−2 to which functions on P are

therefore inversely associated. They will be denoted by Zrf and Zrf :

g = Zrf ⇐⇒ gr+2 = Zfr , g = Zrf ⇐⇒ gr−2 = Zfr .(27.16)

These operators arise from right translations on G, hence commute with left trans-
lations. However, these are the operators Lr(g) of n◦ 15, (ii) acting on the half-plane
P . Hence

ZrLr(g) = Lr+2(g)Zr+2 , ZrLr(g) = Lr−2(g)Zr−2 .

An immediate consequence of these relations is that, if Γ is a discrete subgroup of
G, the operator Zr (resp. Zr) transforms every generalized automorphic form120 of
weight r for Γ into a generalized automorphic form of weight r+ 2 (resp. r− 2) for
Γ .

To express these operators explicitly, we start from the relation

119 If g is a Lie algebra, the bilinear form K(X,Y ) = Tr[ad(X)ad(Y )] is invariant
under the adjoint representation. By definition, g (or G) is semisimple if K is

non-degenerate. If (Xi) and (Y i) are bases for g such that K(Xi, Y
j) = δji ,

the element Ω = XiY
i is in the centre of the enveloping algebra and does not

depend on the chosen basis. It the Casimir operator of g, invented in the 1930s
by a physicist who later became the technical director of Philips. H.B. Casimir
and B.L. van der Waerden used it at the time to prove purely algebraically
that all finite-dimensional representations of g are direct sums of irreducible
representations.

120 i.e., recall that these are the C∞ solutions of f(γz) = (cz + d)rf(z) and are not
necessarily holomorphic. But operators Zr do not preserve holomorphy.



§ 9. SL2(R) as a Lie Group 491

f(x+ iy) = y−r/2fr(g) if g =

(
y

1
2 y−

1
2 x

0 y−
1
2

)
∈ B(27.17)

of n◦ 15, (ii). Hence calculations for this value of g are sufficient. As the action is
on functions f(z) that actually are functions f(x, y), since they are not necessarily
holomorphic, in what follows we will set

D1 = d/dx , D2 = d/dy ,

D = D2 + iD1 = 2i∂/∂z , D = D2 − iD1 = −2i∂/∂z .(27.18)

So holomorphic functions are solutions of Df = 0.
This being so,

2Z = H +W + 2iX , 2Z = H −W − 2iX

and R(W ) = r in Fr. Computing the real operators R(X) and R(H) using the
general definition (25.9) is therefore sufficient.

As X = x′(0), differentiating the function t 7−→ fr[gx(t)] = yr/2f(x + ty + iy)
at t = 0, R(X)fr(g) = Xfr(g). Thus

Xfr(g) = y(r+2)/2D1f(z) .(27.19)

For H = h′(0), fr[gh(t)] = (e2ty)r/2f(x+ ie2ty), whence

Hfr(g) = ryr/2f(z) + 2y(r+2)/2D2f(z) .(27.20)

Finally, Wfr(g) = rfr(g) = ryr/2f(z). So

2Zfr(g) = 2ryr/2f(z) + 2y(r+2)/2Df(z) ,(27.21)

2Zfr(g) = 2y(r+2)/2Df(z) ,(27.21’)

and using (17) for r and r + 2, we finally get

Zrf(z) =
(
ry−1 +D

)
f(z) ,(27.22)

Zrf(z) = y2Df(z) .(27.22’)

The second relation proves that, for every function ϕ ∈ C∞(G),

ϕ ∈ Hr ⇐⇒Wϕ = rϕ & Zϕ = 0 .(27.23)

Operators (22) and (22’) were introduced by Maaß in 1953 in the context of
modular functions without any reference to Lie groups, but they already appeared
in Bargmann (1947) for the unit disc, which comes to the same.

Setting

∆ = y2DD = y2
(
d2/dx2 + d2/dy2

)
,(27.24)

easy calculations show that

Zr−2Zr = ∆+ ryD .(27.25)

Similarly, using (24) and [Z,Z] = W , we get
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Zr+2Zr = ∆+ ryD − r .(27.24’)

A differential operator of the second order Ω commuting with W , Z and Z
was introduced in (15). Since it in particular commutes with W , it acts on each
space F∞r (G), hence on functions f(z) on the upper half-plane. Since it commutes
with left translations, it also acts on F∞r (Γ\G). For given integer r, associating the
corresponding function fr(g) to a function f(z), Ω transforms it into a function
which, by the same formula, will define a function on the half–plane which we will
write Ωrf(z). Since Ω commutes with left translations, Ωr commutes with operators
Lr(g) of n◦ 15.

To compute Ωr explicitly, we write Ω as

Ω = ZZ +W 2/4−W/2 .(27.26)

Then, since W = r on F∞r ,

Ωrf(z) =
r

2

( r
2
− 1
)
f(z) + Zr−2Zrf(z) .(27.27)

Taking (24) into account, it follows that

Ωr =
r

2

( r
2
− 1
)

+ ryD +∆.(27.28)

In particular, Ω0 = ∆, the invariant Laplacian of the half-plane, which commutes
with operators L0(g)f(z) = f(g−1z). In conclusion:

Theorem 47. Let Γ be a discrete subgroup of G and f a generalized automorphic
form of weight r for Γ . Then the functions

Zrf(z) = rf(z)y−1 +Df(z) ,

Zrf(z) = y2Df(z) ,

Ωrf(z) = ∆f(z) + ryDf(z) +
r

2

( r
2
− 1
)
f(z)

are generalized automorphic form of weight r + 2, r − 2 and r for Γ .

Like Maaß in 1953, these results could be obtained by direct calculations. Half
a century of experience shows that “ elementary ” and “ explicit ” calculations gen-
erally become inextricable121 beyond groups of dimension 3 or 4 and that by dis-
regarding the impressive technique of semisimple groups, we become cut off from
fundamental ideas. Besides, even in the present case, checking “ without knowing
anything ” that operators Zr and Zr act on automorphic forms is an exercise in
which it is easy to get lost and which is omitted by all authors I am acquainted
with. So let us indicate how to proceed for Zr, the other case being left to the
reader.

Starting from the equality f(γz) = (cz + d)rf(z), we get

D [f(γz)] = (cz + d)rDf(z)

since (cz + d)r is holomorphic. As D is a differentiation operator, the chain rule
shows that122

121 This can be realized by reading H. Maaß, Lectures on Siegel’s modular functions
(Tata Institute, 1954–1955), § 15.

122 Recall that a notation such as Df(γz) denotes the value of the function Df(z)
at γz, whereas the notation D[f(γz)] denotes the effect of D on the function
z 7−→ f(γz).
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D [f(γz)] = D1f(γz).D [Re(γz)] +D2f(γz).D [Im(γz)] .

However, D(γz) = 0 and so D[Re(γz)] = −iD[Im(γz)], whence

D [f(γz)] = Df(γz).D [Im(γz)] = Df(γz).D (γz − γz) /2i =

= −Df(γz).D (γz) /2i = Df(γz). (cz + d)−2 .

Thus

Df(γz) = (cz + d)2 (cz + d)rDf(z) .

It follows that

Zrf(γz) = Im(γz)2Df(γz) = y2|cz + d|−4 (cz + d)2 (cz + d)rDf(z) =

= (cz + d)r−2Zrf(z)

as predicted.

The simplest eigenfunction of ∆ is f(z) = ys, which satisfies

∆ (ys) = s(s− 1)ys .(27.29)

Hence, for the corresponding function

f0(g) = α(g)s(27.30)

of weight 0,

Ωf0 = s(s− 1)f0 .(27.29’)

As the Casimir operator commutes with left and right translations, the Maaß series

M(z; s) =
∑

Im(γz)s(27.31)

also satisfies (29) when it converges and even, by analytic extension, when it does
not.

To get eigenfunctions of Ωr for any even r, it suffices to repeatedly apply op-
erators Z and Z on f0. Due to diagram (14), this amounts to applying operators

Z2k−2 . . . Z2Z0 and Z2k−2 . . . Z2Z0 on ys. We find

Z0f(z) = sys−1 , Z2Z0f(z) = s(s+ 1)ys−2 , . . .(27.32)

and

Z0f(z) = sys+1 , Z2Z0f(z) = s(s+ 1)ys+2 , . . . .(27.32’)

As we get the functions ys−k, up to a constant factor (sometimes zero. . . ), the
operators used transform the first series (31) of weight 0 into the series of weight
2k associated to ys−k, namely

M2k(z; s) =
∑

J(γ; z)−2k Im(γz)s−k (k ≥ 0) ,(27.33)

and the second one into the analogous series of weight −2k. The corresponding func-
tions on G are therefore all eigenfunctions of Ω. We will return to these calculations
in n◦ 29.

Exercise 1. How should the previous calculations be modified so as to obtain
eigenfunctions of odd weight?
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28 – The Representation of g Associated to a Holomorphic Function

(i) The g-module HCr(f) = HC(fr). For a given integer r, let us start from a non-
trivial holomorphic function on the half-plane and associate the function fr ∈ Hr
on G to it. Hence Zfr = 0, Wfr = rfr. We show that

ZZnfr = λnZ
n−1fr(28.1)

with scalars λn ∈ C. For n = 0, this is obvious, with λ0 = 0. For n > 0, we write

ZZn = ZZZn−1 =
[
Z,Z

]
Zn−1 + ZZZn−1 = −WZn−1 + ZZZn−1 .

Hence, supposing that (1) holds for n− 1, the induction relation λn = λn−1 − (r+
2n− 2) proves it for n. As λ0 = 0,

λn = −n(n+ r − 1) .

Therefore, setting

gr+2n = Znfr for n ≥ 0 ,(28.2)

we get the following formulas:

Zgr+2n = gr+2n+2

Wgr+2n = (r + 2n)gr+2n

Zgr+2n = −n(r + n− 1)gr+2n−2 .(28.3)

HC(fr) or HCr(f) will denote the set of finite linear combinations of the functions
gr+2n. It is stable under operators of g and so under R(µ), µ ∈ U(g).

Since

ZZgr+2n = −n(r + n− 1)gr+2n(28.4’)

ZZgr+2n = −(n+ 1)(r + n)gr+2n(28.4”)

follow from (3),

Ωgr+2n = s(s− 1)gr+2n with s = r/2 .(28.5)

So the Casimir operator reduces to a scalar in HCr(f).
For r > 0, these formulas can be simplified by setting

er = fr , er+2n = gr+2n

/
r(r + 1) . . . (r + n− 1) for n ≥ 1 .(28.6)

Then

Zem = (s+m/2)em+2 ,

Wem = mem ,

Zem = (s−m/2)em−2(28.7)

for m = r, r + 2, . . . The vectors em are all 6= 0, since the coefficients s −m/2 =
1
2
(r−m) being 6= 0 for m > r, the relation em = 0 would imply em−2 = . . . = er = 0.

For r > 0, the space HCr(f) is therefore infinite-dimensional, but ,as we will see,
not necessarily for r ≤ 0.

Furthermore, for r > 0, HCr(f) does not contain any non-trivial subspaces
stable under g. Being stable under W , such a subspace is indeed generated by
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the vectors em it contains. But formulas (7) with all coefficients 6= 0, show that
it then contains all em. The Lie algebra g of G therefore acts in an algebraically
irreducible manner on HCr(f). So HCr(f) is a simple U(g)-module, as one says in
Algebra. Since only r occurs in formulas (7), the structure of HCr(f) as a g-module
is independent of the choice of f . We thereby get the following result:

Theorem 48. Let Γ be a discrete subgroup of G, f(z) a holomorphic automorphic
form of weight r > 0 for Γ and

ϕ(g) = fr(g) = (ci+ d)−rf(gi)

the associated function on G. Let HC(ϕ) be the vector space generated by the func-
tions R(Z)nϕ. Then the spaces ψ ∈ HC(ϕ) are left Γ -invariant, HC(ϕ) is stable
under g and a simple g-module. For given r, all the simple g-modules thus obtained
are isomorphic.

For parabolic forms, i.e. such that ϕ ∈ L2(Γ\G), this result is the infinitesimal
analogue of theorem 27 of n◦ 20 which says that the representation ofG on the closed
invariant subspace H(ϕ) of L2(Γ\G) generated by ϕ is irreducible. By point (b) in
the proof of theorem 27, ϕ is the only element of weight r of H(ϕ), up to a constant
factor. So by theorem 43, it is an analytic element of the representation R of G on
H(ϕ) or L2(Γ\G). For all µ ∈ U(G), R∞(µ)ϕ = ϕ ∗ µ′ ∈ H(ϕ) by (26.15), whence
HC(ϕ) ⊂ H(ϕ). Moreover, HC(ϕ) is everywhere dense in H(ϕ), because if there
is some g ∈ H(ϕ) orthogonal to all ϕ ∗ µ, all derivatives of the analytic function
(R(x)ϕ|g) are zero at the origin. So g is orthogonal to all R(x)ϕ, hence zero.

For Γ = e and r ≥ 2, theorem 47 applies to ϕ ∈ H2
r(G) and in particular to

the kernel function ωr [n◦ 16, (iv)]. Transforming the latter by left (resp. right)
translations generates the closed subspaces H2

r(G) [resp. H(ωr)] of n◦ 16 and 20 in
L2(G). As in both cases ωr is an analytic vector (theorem 41), the former (resp.
latter) space is the closure in L2(G) of the set of functions µ∗ωr (resp. ωr ∗µ) where

µ ∈ U(G). Since (ωr ∗ µ) = µ̃ ∗ ωr, the map ϕ 7−→ ϕ̃ is a semilinear isomorphism
fromH(ωr) ontoH2

r(G) transforming the representation R of G on the former space
into the representation L on the latter one. The same conclusion follows concerning
representations of g on these spaces, defined by L(µ)f = µ ∗ f in the former case,
by R(µ)f = f ∗µ′ in the latter. Relation R(W )ωr = rωr satisfied by all f ∈ Hr(G)
becomes L(W )ωr = −rωr, so that H2

r(G) has a basis consisting of eigenfunctions
of L(W ), the eigenvalues being the integers −r − 2n (n ≥ 0).

(ii) The case r = −p ≤ 0. Formulas (3) become

Zg2n−p = g2(n+1)−p

Zg2n−p = n(p+ 1− n)g2(n−1)−p .(28.8)

There are then two possible cases.
If g2n−p 6= 0 for all n > 0, the space HC(fr) admits as basis the functions

g−p, g−p+2, . . . , gp, gp+2, . . . and is infinite-dimensional. But it is no longer a simple
g-module. Indeed Zgp+2 = 0 by (8). Thus the subspace F ′ = HC(gp+2) generated
by gp+2, gp+4, . . . is stable and corresponds to case (i) for r = p + 2. As the Lie
algebra acts both on HCr(f) and F ′, it also acts on the quotient space HCr(f)/F ′
which, as a g-module, is simple and of dimension p+ 1.

If on the other hand g2n−p = 0 for some n, then, applying Z, g2n+2−p = 0 as
well, so g2m−p = 0 for all m > n. Hence if n denotes the smallest integer such
that g2n+2−p = 0, whence g2n−p 6= 0, the second relation (8) applied to n + 1
shows that n = p. So, this case occurs if and only if gp+2 = Zp+1fr = 0. The
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p + 1 vectors g−p, g−p+2, . . . , gp then form a basis for the space HC(fr), which is
of dimension p + 1 and is again a simple g-module (same arguments as above). In
this case too, formulas (6) can be used since denominators are 6= 0 for 0 < n < p.
As s = r/2 = −p/2, we recover (7) in the form

Zem = −1

2
(p−m)em+2 ,

Wem = mem , (m = −p,−p+ 2, . . . , p)

Zem = −1

2
(p+m)em−2 .(28.9)

(iii) Finite-dimensional simple g-modules. Every simple g-module E of finite
dimension p+1 is easily expressible by formulas (9). For this, observe that W has at

least one eigenvector a in E and that the relationWa = λa impliesWZa = (λ−2)Za
because of commutation formulas. As W only has finitely many eigenvalues, there
exists a 6= 0 in E and r ∈ C such that Wa = ra, Za = 0. As above, the subspace
generated by the Zna is stable under g, hence equal to E . Thus the non-zero Zna =
ar+2n form a basis since they belong to eigenvalues r+2n of W . Formulas (3)and (4)
continue to hold since they are only based on commutation relations. Since E has
dimension p + 1, as above ar, ar+2, . . . , ar+2p are non-zero and form a basis for E .
Hence ZZar+2p = 0, and so r = −p, a negative integer etc.

The existence of a basis satisfying (9) is uniquely based on commutation rela-

tions satisfied by W , Z and Z. Hence the arguments could also be applied to the
operators associated to the matrices H, X and Y defined in (27.6). Hence, if E is
a simple g-module of dimension p+ 1, there is also a basis u−p, u−p+2, . . . , up in E
for which, instead of (9), we have

Xum = −1

2
(p−m)um+2 ,

Hum = mum ,

Y um = −1

2
(p+m)um−2 .(28.10)

Conversely, these formulas obviously always define a simple g-module of dimension
p+ 1.

(iv) Condition for dimHCr(f) < +∞. If we knew when the g-module HCr(f)
of a holomorphic function f has finite dimension p+1, then these calculations would
be complete. This supposes r = −p and is equivalent to Zp+1f−p = 0, hence to

ZpZp−2 . . . Z−pf(z) = 0 .(28.11)

Hence this product of differential operators has to be computed taking into account
definition Znf = ny−1f + Df , where D = d/dy + id/dx. We are going to do this
for all C∞ functions f .

First it is clear that Z0f = Df . Now let us calculate

Z1Z−1f =
(
y−1 +D

) (
−y−1f +Df

)
=

= −y−2f + y−1Df − y−1Df + y−2f +D2f = D2f .

Hence

ZpZp−2 . . . Z−p = Dp+1(28.12)
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for p = 0 or 1. We show by induction that this formula holds for all p. Since

ZpZp−2 . . . Z−p = Zp (Zp−2 . . . Z−p+2)Z−p = ZpD
p−1Z−p

we only need to prove that

ZpD
p−1Z−p = Dp+1 ,(28.13)

in other words that(
py−1 +D

)
Dp−1 (−py−1f +Df

)
= Dp+1f .

The left hand side being equal to(
py−1 +D

) [
Dpf − pDp−1 (y−1f

)]
= Dp+1f − pDp (y−1f

)
+

+ py−1Dpf − p2y−1Dp−1 (y−1f
)
,

the proof reduces to showing that

Dp (y−1f
)

= y−1Dpf − py−1Dp−1 (y−1f
)
,

or, replacing f by yf , that Dp(yf) = yDpf + pDp−1f , qed.
In conclusion, the space HCr(f) of a holomorphic function f(z) is a simple

p+ 1-dimensional g-module if and only if r = −p and

Dp+1f(z) = 0 ,(28.14)

in other words if and only if f is a polynomial of degree p (and not < p since
Zpfr 6= 0). The images L−p(g)f(z) = (cz + d)pf(gz) are then polynomials of
degree ≤ p.

(v) A theorem of Maaß. Applied to a holomorphic or even to a meromorphic
form, formula (12) leads to the function

Dp+1f(z) = ZpZp−2 . . . Z−pf(z) ,

proportional to f (p+1)(z). On the other hand, we know that, for every discrete
subgroup Γ of G, the operator Z transforms generalized automorphic forms of
weight r into generalized automorphic forms of weight r + 2. So, for r = −p > 0,
the operator Dp+1 transforms forms of weight −p into forms of weight p+ 2. As a
result:

Theorem 49 (Maaß). If f is a generalized (resp. meromorphic) automorphic
form of weight −r < 0 for a discrete subgroup Γ of G, then ∂r+1f/∂zr+1 is a
generalized (resp. meromorphic) automorphic form of weight r + 2 for Γ .

The reader will check that with the strict definition of meromorphic forms
(behaviour at parabolic fixed points) the theorem holds for Fuschian groups.

Theorem 49 leads to other strange identities. For example let us take Γ = G(Z)
and

f(z) = 1/∆(z) = e(−z) + b0 + b1e(z) + . . . ;

f is of weight −12, holomorphic on P and has a simple pole at infinity. The function

F (z) = f (13)(z) = (−2πi)13e(−z) + (2πi)13b1e(z) + . . .
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is, therefore, a modular form of weight 14, holomorphic everywhere on P and having
a simple pole at infinity. As a result, ∆(z)F (z) = (−2πi)13+. . . is an entire modular
form of weight 14 + 12 = 26. Thus (n◦ 18, theorem 21)

∆(z)
d13

dz13
∆(z)−1 = (−2πi)13E26(z) + c∆(z)E14(z)

with a constant c whose calculation we leave to the reader.
The case of inverses of Eisenstein series can also be dealt with in principle. Let

us for example choose f(z) = E4(z)−1 = 1 − 240e(z) + . . . [n◦ 17, (iii)], whence

F (z) = f (5)(z) = −240(2πi)5e(z) + . . .. This is a modular form of weight 6 whose
only singularity, modΓ , is at j, where vj(F ) = −6 since vj(1/E4) = −1. The
function F (z)E4(z)6 is, therefore, an entire modular form of weight 30. As a result,

E4(z)6
d5

dz5
E4(z)−1 = aE30(z) + b∆(z)E18(z) + c∆(z)2E6(z)

with constants a, b, c that can be calculated explicitly by investigating the first few
terms of the Fourier series of both sides.

29 – Irreducible Representations of g

(i) Classification. For all s ∈ C, formulas

Zem = (s+m/2)em+2 ,

Wem = mem ,

Zem = (s−m/2)em−2(29.1)

obtained above in (28.7) can be used to construct other g-modules different from
the modules HCr(f) associated to holomorphic functions to P . To this end, we

consider a vector space E admitting a basis (em), m ∈ Z, and define W , Z and Z
on E by these formulas. Trivial calculations show that indeed we get a g-module on
which the Casimir operator is given by

Ω = s(s− 1) .

This g-module Es is not simple: the subspace E+s (resp. E−s ) generated by vectors
of even (resp. odd) weight is invariant.

Since W is diagonalizable, every submodule of E+s is generated by the vectors
em it contains. If s /∈ Z, the coefficients s + m/2 of (1) are non-trivial, so that

applying the monomials ZpZ
q

to some em for m even, we get all the en with n
even. A similar conclusion holds for the vectors em, with m odd, if s− 1

2
/∈ Z. As a

result, the g-module E+s (resp. E−s ) is simple if s (resp. s− 1
2
) is not an integer.

If s = r/2 for some even integer r, then Zer = 0 and Ze−r = 0. The vectors
er+2m, m ≥ 0, generate a submodule F ′ in E+s isomorphic to the modules HC(fr)
of the preceding n◦. It is irreducible if and only r > 0. Similarly, the vectors e−r−2m,
m ≥ 0 generate a submodule F ′′, which is irreducible if and only if r > 0. In this
case, the quotient module E+s /(F ′ + F ′′) is irreducible and finite-dimensional. On
the other hand for r ≤ 0, the vectors er, . . . , e−r generate an irreducible submodule,
namely F ′ ∩F ′′. The same conclusions follow for E−s if s = r/2 for an odd integer.
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As will be seen without going into detailed easy calculations, all simple g-
modules simples are obtained in this way provided they are required to be ad-
missible: this means that W is diagonalization, with integer eigenvalues123 and
that, for all r, the subspace E(r) defined by Wf = rf is finite-dimensional.

Indeed let E be such a g-module and let us suppose it is simple. A first result
is that the Casimir operator is a scalar. Indeed let r be an eigenvalue of W and
E(r) the space of solutions of Wa = ra. Since Ω commutes with W , it acts on E(r),

hence has at least one eigenvector. Since Ω commutes with W , Z and Z, the set of
vectors of E associated to a given eigenvalue of Ω is g-invariant, whence the result.

This being settled, the formula

Ω = ZZ +W 2/4−W/2 = ZZ +W 2/4 +W/2

shows that, for any eigenvector a of W , ZZa and ZZa are proportional to a. The
subspace generated by vectors Zpa and Z

q
a is thus stable under Z and Z, hence

invariant. So, choosing a non-trivial ar such that War = rar and setting

ar+2p = Zpar , ar−2q = Z
q
ar ,

the vectors am 6= 0 form a basis for E . Setting Ω = s(s−1) and using commutation
formulas,

Zam = (s+m/2)(s−m/2− 1)am+2 if m < r ,(29.2)

Zam = (s−m/2)(s+m/2− 1)am+2 if m > r(29.2’)

easily follow. If all the coefficients occurring in these formulas are non-trivial, which
supposes that 2s is not an integer with the same parity as r, then the same is true
for all vectors ar±2n and the module is simple. The only possibilities are easily seen
to be as follows:

(a) m = . . . ,−4,−2, 0, 2, 4, . . . and non-integer s ;
(b) m = . . . ,−3,−1, 1, 3, . . . and non-integer s− 1

2
;

(c) m = r, r + 2, . . . and s = r/2, r ≥ 1 ;
(d) m = −r,−r − 2, . . . and s = −r/2, r ≥ 1 ;
(e) m = −p,−p+ 2, . . ., p− 2, p et s = −p/2 or 1 + p/2.

In cases (a) and (b), the vectors em of (1) are obtained by setting er = ar and

er+2n = (s+ r/2)−1 . . . (s+ r/2 + n− 1)−1ar+2n ,(29.3)

er−2n = (s− r/2)−1 . . . (s− r/2 + n− 1)−1ar+2n(29.3’)

for n ≥ 1. In case (c), the second formula is not well-defined and the expected basis
of E is provided by the first one, the second one being, however, suitable for case
(d). Note that the value of Ω is not sufficient for characterizing the representation
and that, in cases (a) and (b), nothing is changed by replacing s by 1− s. This is
more obvious for relations (2) and (2’) than for formulas (1).

123 This condition follows from the fact that, in any representation of the group G,
characters of the compact subgroup K which occur are functions

χr [exp(2πitW )] = exp(2πirt)

with r ∈ Z. In representations of the universal covering of G, where K is replaced
by a group isomorphic to R, the eigenvalues of W associated to C∞ vectors can be
real numbers. The following calculations continue to hold with obvious changes.
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Representations of type (a) (resp. (b)) constitute the even (resp. odd) principal
series. Types (c) (resp. (d)) cover the holomorphic (resp. antiholomorphic) discrete
series. Finally case (e) corresponds to finite-dimensional representations.

(ii) Function space models for representations of g. Whether a group or a Lie
algebra, one of the basic problems of representation theory consists in finding con-
crete realizations. One always tries to construct function space models, where the
space H of the representation is composed of functions (possibly with values in
Banach spaces) or even of distributions on G on which G acts by right (or left)
translations in the case of G, by differential operators R(X) [or L(X)] in the case
of g.

The case of SL2(R) is particularly simple. Observe first that any function space
model (on the right) of an irreducible representation of g has a base consisting of
distributions µ such that

R(W )µ = −µ ∗W = rµ , µ ∗Ω = s(s− 1)µ .

Operators iR(M) are symmetric on the subspace D(G) of L2(G), for all M ∈ G′(e).
Hence R(M)∗ = −R(M) for all M ∈ g. As a result, 2Ω = −(ZZ∗+Z∗Z)+W ∗W/2.
However, ZZ∗ + Z∗Z + W ∗W/2 is positive-definite symmetric on D(G) and thus
corresponds to a an elliptic differential operator on G with analytic coefficients.
Since any eigenfunction or distribution µ of W and Ω is clearly an eigenfunction
of this operator, the theory of PDEs enables us to conclude that µ is in fact an
analytic function on G. With a slightly less simple argument, this result can be
generalized to function space models of any admissible representation of g (or of
the Lie algebra of a general semisimple group).

The spaces HC(fr) associated to a holomorphic function on P are obviously
function space models of representations of the holomorphic discrete series (c).

To obtain series (d), it suffices to transform a model for series (c) by the map

f 7−→ f . As W = −W , relation f ∗W = −rf implies f ∗W = +rf .

Another method consists in transforming a right model for series (c) by f 7−→ f̃ .

This gives a left model for series (d). Indeed W̃ = −W = W , so that

R(W )f = −f ∗W = rf =⇒ L(W )f̃ = W ∗ f̃ =(f ∗W ) = −rf̃ .

For example let us choose the kernel function f = ωr of the space H2
r(G) [n◦ 16,

(iv), defined by (16.31)]. The g-module HC(ωr), i.e. the set of ωr∗µ where µ ∈ U(g),
belongs to series (c). As ω̃r = ωr, the functions µ ∗ ωr, therefore, form a model for
series (d).

For finite-dimensional representations, we make G act on R2 by (x, y) 7−→ (ax+
by, cx + dy) and use the obvious representation of g (or of G) on the space of
homogeneous polynomials of a given degree.

The construction of the function spaces H which are transformed in accordance
with the principal series by operators R(M),M ∈ g, is then immediate. In case (a),
H has a vector f0 satisfying

Wf0 = 0 , Ωf0 = s(s− 1)f0 .

In a function space model, f0 is, therefore, the function on P of weight 0 corre-
sponding to a function f(z) such that

y2∆f = s(s− 1)f .
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To satisfy these conditions, for f(z) it suffices to choose a solution of this PDE, for
example ys or y1−s, and to denote by f0 the weight 0 function corresponding to f ,
for example

f0(g) = Im(gi)s = α(g)s .

We then obtain a basis for HC(f0) by applying the powers of the differential oper-

ators Z and Z on f0, i.e. by applying operators Z2p . . . Z2Z0 and Z2q . . . Z2Z0 on
f(z). Formulas

Zrf(z) =
(
ry−1 +D

)
f(z) , Zrf(z) = y2Df(z)

show that, for f(z) = ys,

Z0f(z) = sys−1 , Z2Z0f(z) = s(s+ 1)ys−2, . . .(29.4)

and that

Z0f(z) = sys+1 , Z2Z0f(z) = s(s+ 1)ys+2, . . .(29.4’)

On G, the left hand sides of (3) and (3’) correspond to functions

Znf0(g) = s(s+ 1) . . . (s+ n− 1)(ci+ d)−2n|ci+ d|−2s+2n (n ≥ 0) ,

Z
n
f0(g) = s(s+ 1) . . . (s− n+ 1)(ci+ d)2n|ci+ d|−2s−2n (n ≥ 0) .

of weight 2n and −2n. Formulas (4) and (4′) for r = 0 then show that the functions

e2n(g) = (ci+ d)−2n|ci+ d|−2s+2n (n ∈ Z)(29.5)

satisfy relations (1) for non-integer s ∈ C.
For f0(g) = Im(gi)s, the functions ϕ ∈ HC(f0) are obviously right K-finite and

are transformed by the subgroup UH according to formula

ϕ(uhg) = |t|2sϕ(g) = α(h)sϕ(g)(29.6)

for u ∈ U , h = diag(t, t−1), t 6= 0. Conversely, any K-finite solution of this func-
tional equation satisfies ϕ(−g) = ϕ(g), hence is a linear combination of func-
tions (5). The space of these functions is, therefore, a function space model for
the even principal series of representations of g.

The odd principal series is obtained likewise by replacing f0 with the weight 1

function corresponding to ys−
1
2 , namely

f1(g) = (ci+ d)−1 Im(z)s−
1
2 = (ci+ d)−1|ci+ d|1−2s .

Then

ϕ(uhg) = sgn(t)|t|2sϕ(g)(29.7)

for all ϕ ∈ H.
There are also models composed of automorphic functions for a discrete group

Γ having a parabolic cusp at infinity. In case (c), any (holomorphic) automorphic
form of weight r is suitable. To realize case (a), it suffices to choose the Maaß series
M(z; s) associated to an arbitrary parabolic cusp of Γ . As it is obtained by making
a left translation of the above function α(g)s left Γ -invariant and as the Lie algebra
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acts on the right, the formulas are necessarily the same as before.124 This supposes
Re(s) > 1, but the analytic extension enables us to remove this restriction. From
the point of view of representation theory, these properties of Maaß series justify a
posteriori their introduction and allowed Langlands to generalize the theory to all
semisimple groups.

Lastly, let us note that, in Jacquet-Langlands theory,125 Whittaker models
composed of functions are used for the groups GL2 associated to algebraic num-
ber fields over Q. Instead of (6), these functions satisfy the equality W (ugk) =
e(u)W (g)χr(k). They must be eigenfunctions of Ωr (or of Ω for the corresponding
functions on G) and satisfy “ tempered increase ” conditions at infinity. The Fourier
series expansion of Maaß series reveal their origin. Presenting the theory would take
us too far.

30 – Irreducible Representations of G

To obtain representations of G corresponding to a simple g-module using right
translations, we must renounce K-finite functions and choose Banach spaces of
functions in which a model of the given g-module is everywhere dense.

(i) The multiplicity one theorem. Let us first state an important result that was
often announced:

Theorem 50. For any irreducible unitary representation (H, π) of G and any
character χ of K, the subspace H(χ) of solutions of

π(k)a = χ(k)a

has dimension ≤ 1.

Let us suppose that H(χ) is non-trivial and let a 6= 0 and b be two elements
of this space. The representation being irreducible, b is the limit of vectors π(f)a
where f ∈ L(G). If E(χ) =

∫
π(k)χ(k)−1dk is the orthogonal projection operator

on H(χ), π(f)a can be replaced by

E(χ)π(f)E(χ)a = π (χ ∗ f ∗ χ) a .

If L(G;χ) is the set of f ∈ L(G) such that

χ ∗ f ∗ χ = f , i.e. f
(
k′xk′′

)
= χ

(
k′k′′

)
f(x) ,

and if, π(f) is also made to abusively denote the operator defined on H(χ) byπ(f),
we get a homomorphism from the algebra L(G;χ) equipped with the convolution
product to the algebra of continuous operators on H(χ). The previous argument

124 In the case where Γ\G is compact, the representation of G on L2(Γ\G) is a dis-
crete direct sum of irreducible representations since convolutions by f ∈ L(G)
are Hilbert-Schmidt operators. They correspond either to holomorphic or anti-
holomorphic forms, or to invariant solutions of Ωf = s(1− s)f , which only exist
for a countably many values of s and cannot be obtained using Maaß series. Note
that, even when Γ has parabolic fixed points, Ωf = s(1 − s)f may well have
solutions in L2(Γ\G) that cannot be obtained from Maaß series either.

125 Automorphic Forms on GL(2) (Springer, 1972, Lecture Notes 278). See also
R. Godement, Notes on Jacquet-Langlands theory (Institute for Advanced Study,
Princeton, 1970) and Daniel Bump, Automorphic Forms and Representations
(Cambridge UP, 1996), 2.8, much less systematic on this point.
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shows that the only closed subspace of H(χ) invariant under the algebra A of π(f)
is the trivial one.

But as π is assumed to be unitary, A is self-adjoint. Von Neumann’s density
theorem [Chap. XI, n◦ 19, (vii)] then shows that A is everywhere dense in the
algebra of continuous operators on H(χ). Since the latter is commutative only if
dimH(χ) ≤ 1, it will, therefore, suffice to show that L(G;χ) is commutative with
respect to the convolution product and, more generally (?), that this is the case of
the algebra of continuous functions with compact support such that

f(xk) = f(kx) .(30.1)

To prove the commutativity of Hecke operators,126 the map σ : G 7−→ G given
by

σ

(
a b
c d

)
=

(
d b
c a

)
= ωg−1ω−1 where ω =

(
1 0
0 −1

)
(30.2)

has already been used in n◦ 24, (iii).
The operation transforming all functions f(x) into f [σ(x)] reverses the order of

every convolution product. Hence it is sufficient to show that f [σ(x)] = f(x) for
every solution of (1). To this end, let us write x = k′hk′′ with k′, k′′ ∈ K and h
diagonal. Clearly, σ(k) = k and σ(h) = h−1 for all k and h. Since K is commutative
and contains w, by (1),

f [σ(x)] = f
(
k′′h−1k′

)
= f

(
k′′whw−1k′

)
=

= f
(
w−1k′k′′wh

)
= f

(
k′′k′h

)
= f

(
k′hk′′

)
,

qed.127

The reader will probably think that there is a result similar to theorem 49 for
non-unitary representations. This is correct if all continuous operators T on H are
strong limits of operators π(f), f ∈ L(G), i.e. if, for all finitely many n elements
ai ∈ H and r > 0, there exists f such that ‖Tai − π(f)ai‖ ≤ r for all i. For n = 1,
this amounts to the non-existence of closed invariant subspaces. In finite dimension,
this property suffices to show that any operator T is a π(f) using a rather old result

126 On functions invariant under the modular group, Hecke operators, which are
sums of left translations, clearly commute with operators L(f) =

∫
L(g)f(g)dg.

So the operators T (p) and L(f) forf(kx) = f(xk) generate a self-adjoint com-
mutative algebra of continuous operators in L2(Γ\G). Its discrete spectrum is
of multiplicity 1. Jacquet-Langlands adelic theory explains this remarkable phe-
nomenon far better than can be done here.

127 A less miraculous proof of commutativity consists in checking the theorem for
every finite-dimensional irreducible representation π [obvious: case (e) of the clas-
sification], so that, for all functions (1), operators π(f) commute pairwise. The
result generalizes to finite-dimensional representations as they are direct sums
of irreducible representations (true but not obvious). However, the coefficients
of these representations form a function algebra which enables us to “ separate ”
the points of G (obvious: it is the algebra of polynomial functions on G). Hence
if, for some solution of (1), π(f) = 0 for all finite-dimensional representations,
then f = 0 (Stone-Weierstrass). As π(g ∗ g) = π(g ∗ f), it follows that functions
(1) commute, qed. This method generalizes to all semisimple linear groups; see
R. Godement, A theory of spherical functions (Trans. AMS, 73, 1952, pp. 496–
556).
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of Burnside. But, as far I know, there are no simple theorems covering the case of
general Banach spaces.

Following Harish-Chandra let us say that a representation (H, π) of G on a
Banach space is admissible if the subspaces H(χ) are finite-dimensional. Let HK
be their algebraic direct sum, everywhere dense in H. If (H, π), not necessarily uni-
tary, is topologically irreducible, the operators π(f) associated to functions (1) act
on each H(χ) in a topologically irreducible manner, hence algebraically irreducible
since dimH(χ) < +∞. As these operators commute, they have a common eigen-
value in H(χ), whence dimH(χ) ≤ 1. If (H, π) is only admissible, all a ∈ HK are
analytic [n◦ 26, (v), theorem 43]. Thus there is a representation of g on this sub-
space. For all a ∈ HK , the G-invariant closed subspace generated by a is, therefore,
the closure of the g-invariant subspace generated by a. As every G-invariant closed
subspace E is the closure of its intersection with HK , which is g-invariant, the cor-
respondence between G-invariant closed subspaces E and g-invariant subspaces of
HK must be bijective. Consequently, the representation of G on H is topologically
irreducible (no closed invariant subspaces) if and only if the representation of g
on HK is algebraically irreducible. This result was obtained very early on for all
semisimple groups by Harish-Chandra. As HK is obviously generated by eigenvec-
tors of π(k) and hence of π(W ), the representation of g on HK belongs to one of
the types obtained above.

(ii) Function space models for G: the discrete series. Consider the holomorphic
discrete series. Supposing r ≥ 2, theorem 27 of n◦ 20 shows that, for all ϕ ∈ H2

r(G),
the representation of G on the right invariant closed subspace H(ϕ) generated
by ϕ in L2(G) is unitary and irreducible. Choosing ϕ = ωr, ωr(kg) = ωr(gk) =
χr(k)ωr(g) and, in conformity with the previous theorem, ωr is the only f ∈ H(ϕ)
with this property, up to a constant factor. HC(ϕ) is everywhere dense in H(ϕ)
and it is the subspace H(ϕ)K .

If, instead of considering the closed subspace generated by all R(g)ωr, we con-
sider the subspace generated by all L(g)ωr, we get H2

r(G) and the irreducible uni-
tary representation of G on this space described in n◦ 16. H2

r(G) is therefore the
closure in L2(G) of the subspace of L(µ)ωr = µ ∗ ωr, µ ∈ U(g), which plays the
role of HC(ωr) for left translations. It is, however, the image of HC(ωr) under

f 7−→ f̃ . In consequence, the subspaces H(ωr) and H2
r(G) are mapped to each

other by f 7−→ f̃ or, equivalently, the representation of g on the K-finite vectors of
the representation (H2

r(G), L) of G belongs to the discrete series (d).
Condition r > 1 is compulsory because of theorem 14 of n◦ 16, (ii). If r = 1, the

space H = Hp1(G) is non-trivial for 2 < p ≤ +∞, and as the spaces H(χ) obviously
have dimension 1, it is easy to see that all topologically irreducible representations
of G corresponding to the representation r = 1 of the holomorphic discrete series
are obtained in this way. For p = +∞, in the half-plane, as already seen at the
start of n◦ 16, the space obtained corresponds to the set of holomorphic functions
such that

sup
∣∣∣y 1

2 f(z)
∣∣∣ < +∞ .

But it is not a Hilbert space. To obtain one, we build on theorem 15 of n◦ 16: for
r ≥ 2, the complex Fourier transform shows that H2

r(P ) is isomorphic to the L2

subspace of R∗+ with measure t1−rdt. Now, the complex Fourier transform applies
equally for r = 1 since, for Im(z) > 0, the function e(tz) decreases rapidly to +∞.
For any function ϕ(t), t ≥ 0, satisfying

∫
|ϕ(t)|2dt < +∞, the function

f(z) =

∫
ϕ(t)e(tz)dt =

∫
ϕ(t) exp(−2πty)e(tx)dt(30.3)
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satisfies ∫
|f(x+ iy)|2 dx =

∫
|ϕ(t)|2 exp(−4πty)dt ≤

∫
|ϕ(t)|2 dt .

So the functions obtained satisfy

sup
y>0

∫
|f(x+ iy)|2 dx = ‖ϕ‖22 < +∞ .(30.4)

The converse is “ the ” classical Paley-Wiener theorem proved in n◦ 16. Hence it is
possible to conjecture that, for r = 1, the discrete series (c) can be realized on this
space of holomorphic functions using operators

L1

(
g−1) : f(z) 7−→ (cz + d)−1f(gz)(30.5)

of n◦ 15, (ii). Condition (4) is obviously preserved if g ∈ B. To justify the construc-
tion, it is also necessary to check the theorem if g = w. I leave this “ detail ” to the
reader’s meditations; see exercise 4 of n◦ 16, (v).

Note also that the left hand side of (4) is in fact the limit of the integral as y
tends to 0, i.e. (Plancherel) the norm on L2(R) of the function

f(x) = l.i.m.2f(x+ iy) = ϕ̂(−x) ,

which is well-defined. This indeed gives a unitary representation U of G on L2(R)
by setting, as in (5),

U
(
g−1) f(x) = (cx+ d)−1f [(ax+ b)/(cx+ d)] .

That these operators preserve the subspace of functions whose Fourier transforms
are zero for t ≤ 0 remains to be checked. All this is related to another function
space model for the odd principal series for Re(s) = 1

2
, obtained using operators

Us
(
g−1) f(x) = (cx+ d)−1|cx+ d|s−

1
2 f [(ax+ b)/(cx+ d)] .(30.5’)

(iii) Function space models for G: the even principal series. Let us consider the
set V+(s) of solutions of

f(uhg) = α(h)sf(g)

which, instead of being K-finite, are continuous and let us make G act by right
translations R(g). Setting as above f0(g) = α(g)s, the function space model HC(f0)
for the representation of g is obviously everywhere dense in V+(s) (expand as a
Fourier series on K), and is the set of K-finite vectors of the representation R
of G on V+(s). It is therefore topologically irreducible if HC(f0) is algebraically
irreducible, i.e. if s /∈ Z.

As replacing s by 1 − s is known to leave the representation invariant, there
must be an isomorphism from V+(s) onto V+(1− s) commuting with all R(g). For
Re(s) > 1

2
, this is the intertwining operator128 M(s) which, associates the function

128 See some calculations in Daniel Bump, Automorphic Forms and Representations
(Cambridge UP, 1998), pp. 227–232. All this theory has been generalized, to start
with by A. Knapp and E. M. Stein, Intertwining operators for semi-simple groups
(Ann. Math., 93, 1971, pp. 489–578).
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M(s)ϕ(g) =

∫
ϕ(wug)du(30.6)

to every ϕ ∈ V+(s). Formally it is in V+(1−s). To check that the integral converges,
note that the weight 0 function α(g)s = Im(z)s is in V+(s). As ϕ(g)/α(g)s is
continuous and B-invariant, there is a uniform upper bound |ϕ(g)| ≤ M |α(g)s| =
M | Im(z)s|. Then a simple calculation enables us to deduce that

|ϕ(wug)| ≤M |α(wug)s| = O
(
|u|−2s) for large u .(30.7)

As the sign O is even an asymptotic equivalence if ϕ is never zero, we must have
Re(s) > 1

2
. Finally, (7) shows that integral (6) converges normally. So, like ϕ, it is

a continuous function of g, whence M(s)ϕ ∈ V+(1− s) for Re(s) > 1
2
.

If ϕ is K-finite, for example if

ϕ(uhk) = α(h)sχr(k) = ϕr,s(g) ,(30.8)

then M(s)ϕr,s(g) = cr(s)ϕr,1−s(g), where the function cr(s) is meromorphic on C
and can be computed using the Euler Γ function. The intertwining operator can
then be defined by analytic extension and it can be checked to be bijective at least
on K-finite vectors if s /∈ Z. Without any calculation, M(1 − s)M(s) can even be
presumed to reduce to a scalar . . . a computable one. We could make exercises out
of this, for example:

Exercise 1. Set

ϕ(g) =

∫
Φ [g (e1) t] |t|2sd∗t ,

where Φ ∈ S(R2) is the function

Φ(x, y) = (x± iy)r exp
[
−π
(
x2 + y2

)]
.

Calculate ϕ, M(s)ϕ and M(1− s)M(s).
Let us now indicate how to determine those, among these models for the prin-

cipal series, that could in some way be unitary. K-finite vectors of V+(s) form a
model for the series (a) of irreducible representations of g. Hence, on this space,
there must exist a positive Hermitian form ( | ) with respect to which functions of
weight r are pairwise orthogonal and operators iπ(X) symmetric for all X ∈ G′(e),
which amounts to saying that π(Z) is the adjoint of π(Z). Setting (er|er) = cr in
the notation of (29.1),

(s+ r/2− 1) cr = − (s− r/2) cr−2

and as it is necessary to be able to choose cr > 0, we must have

(s+ r/2− 1) (s− r/2) < 0

for all r occurring in the representation. For the even principal series and s /∈ Z,
this is equivalent to

Re(s) =
1

2
or s ∈ ]0, 1[ .

For the odd principal series and s− 1
2
/∈ Z, the condition is the same. In all cases,

the expected Hermitian form is unique up to a constant factor. But the essential
point is calculating the scalar products on the corresponding spaces V+(s). Let us
do it for the even principal series.
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First observe that, for ϕ ∈ V+(s) and ψ ∈ V+(1− s), ϕψ ∈ V+(1), the space of
solutions of

ϕ(bg) = α(b)ϕ(g) where α(huk) = α(h) .

On the other hand, every ϕ ∈ V+(s) is clearly of the form

ϕ(g) =

∫
f(bg)α(b)−sdrb ,

where f ∈ L(G). Let us now show that129 there exists a right invariant positive
linear functional µ on V+(1). The B-invariant measures are given by

b = uh =⇒ drb = dudh , b = hu =⇒ dlb = dhdu = α(h)−1drb ,

whence drb = α(b)dlb. Then let us associate the functions

fB(g) =

∫
f(bg)drb ,

fB(g) =

∫
f(bg)dlb =

∫
f(bg)α(b)−1drb(30.9)

to every f ∈ L(G). The former one is in V+(0) and the latter in V+(1). However,
an immediate calculation shows that∫

pB(g)f(g)dg =

∫
p(g)fB(g)dg

for all f, p ∈ L(G). As p can be chosen so that pB = 1, fB = 0 implies
∫
f(g)dg = 0.

The expected linear functional µ is then given by

µ (fB) =

∫
f(g)dg for all f ∈ L(G)(30.10)

in conformity with Chap. XI. Note that µ(ϕ) is well-defined if ϕ ∈ V+(1), but not
if ϕ ∈ V+(0).

To calculate µ more explicitly, we write that G = BK, whence

µ (fB) =

∫
f(g)dg =

∫∫
f(bk)dlbdk =

∫
fB(k)dk .(30.11)

One can also write G = BwU up to a null set. As U is unimodular, there is a left
invariant measure on G/U , which can only be dlb. Hence

µ (fB) =

∫∫
f(bwu)dlbdu =

∫
fB(wu)du = M(1)fB(e)(30.11’)

up to a constant factor. This is an integral of type (6) with s = 1, hence converges
if f is continuous. Besides, fB(g) = O[Im(z)], and so fB(wu) = O(u−2) at infinity.

Then for ϕ ∈ V+(s) and ψ ∈ V+(1− s), let us set

〈ϕ,ψ〉 = µ(ϕψ) =

∫
ϕ(k)ψ(k)dk =

∫
ϕ(wu)ψ(wu)du .(30.12)

We thereby get an invariant bilinear form under right translations. Similarly, setting

129 Here, I resume Chap. XI, n◦ 15, (iv).
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(ϕ|ψ) = µ
(
ϕψ
)

(30.13)

for ϕ ∈ V+(s) and ψ ∈ V+(1 − s), we get an invariant sesquilinear form. For
Re(s) = 1

2
, 1−s = s, whence an invariant positive-definite Hermitian form on V+(s).

As expected, the representations of the even principal series are therefore unitary
for Re(s) = 1

2
. To obtain a Hilbert model, we replace the continuity condition

imposed for convenience on f ∈ V+(s) by the condition that ϕ be square integrable
with respect to µ, i.e. that

∫
|ϕ(k)|2dk < +∞ or

∫
|ϕ(wu)|2du < +∞.

The case s ∈ ]0, 1[ is hard to tackle but more instructive. As we are in the
previous case if s = 1

2
, we may suppose that s > 1

2
because of the symmetry

s←→ 1− s. The intertwining operator M(s) maps V+(s) to V+(1− s), which, for
ϕ,ψ ∈ V+(s), makes the expression

〈ϕ,ψ〉 = µ [ϕ.M(s)ψ] =

∫∫
ϕ(k).M(s)ψ(k)dk =

=

∫
ϕ(wu).M(s)ψ(wu)du(30.14)

well-defined. It is an invariant bilinear form on V+(s), whence an invariant sesquilin-
ear form

(ϕ|ψ) =
〈
ϕ|ψ

〉
,

which is Hermitian if s is real. Let us show that it is positive-definite if 1
2
< s < 1.

Since ψ is even,

M(s)ψ(wu) =

∫
ψ

[
w

(
1 v
0 1

)
w−1

(
1 u
0 1

)]
dv =

∫
ψ

[(
1 0
v 1

)(
1 u
0 1

)]
dv .

On the other hand, obviously(
1 0
v 1

)
=

(
v−1 1
0 v

)
w

(
1 v−1

0 1

)
= bw

(
1 v−1

0 1

)
with α(b) = v−2 .

Hence, identifying v ∈ R with the matrix with parameter v in U ,

M(s)ψ(wu) =

∫
ψ

[
w

(
1 u+ v−1

0 1

)]
|v|−2sdv =

=

∫
ψ

[
w

(
1 u+ v
0 1

)]
|v|2s−2dv

and so

〈ϕ,ψ〉 =

∫∫
ϕ(wu)ψ(wvu)|v|2s−2dudv

for Re(s) > 1
2
. The double integral converges since Lebesgue-Fubini reduces it to

the latter integral in (14). Hence, if 1
2
< s < 1,

(ϕ|ϕ) =

∫∫
ϕ(wu)ϕ(wuv)|v|2s−2dudv =

∫∫
Φ(u)Φ(u+ v)|v|2s−2dudv =

=

∫
Φ ∗ Φ̃(v)|v|2s−2dv .
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The function Φ(u) = ϕ(wu) is continuous on R, bounded, and because of (7), in-
tegrable. The function |v|2s−2 is locally integrable. Finally, as mentioned above,
the latter integral converges. To prove the positivity of this expression, it is then
sufficient to show that the measure |v|2s−2dv is of positive type on R. This is indeed
the definition for Φ ∈ L(R) and the expected result will be obtained by approxi-
mating Φ by functions Φn ∈ L(R) bounded above by |Φ| (dominated convergence).
Showing that |v|2s−2dv = |v|2s−1d∗v is the Fourier transform of a positive measure
is therefore sufficient [Chap. XI, n◦ 30].

We have therefore returned to the entrance of the Garden of modular delights,
which will allow the author to come out of it. If the Mellin transform

Γ 0
f (s) =

∫
f(x)|x|sd∗x =

∫
f(x)dµs(x), Re(s) > 0

is associated to every reasonable function f , then, by (1.8),

π

∫
f̂(x)dµs(x) = (2π)1−s cos(πs/2)Γ (s)

∫
f(x)dµ1−s(x)

for 0 < Re(s) < 1. This means precisely that the Fourier transform of dµs(x)
is π−1(2π)1−s cos(πs/2)Γ (s)dµ1−s(x). For the measure |v|2s−2dv that concerns us
here, the parameter is 2s− 1. To conclude, I leave it to the reader to prove that

1

2
< s < 1 =⇒ 0 < 2s− 1 < 1 & cos [π(2s− 1)/2] > 0 .
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