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Preface to the Series

The subject of dynamical systems has matured over a period of more than a century.
It began with Poincare’s investigation into the motion of the celestial bodies, and he
pioneered a new direction by looking at the equations of motion from a qualitative
viewpoint. For different motivation, statistical physics was being developed and
had led to the idea of ergodic motion. Together, these presaged an area that was
to have significant impact on both pure and applied mathematics. This perspective
of dynamical systems was refined and developed in the second half of the twentieth
century and now provides a commonly accepted way of channeling mathematical
ideas into applications. These applications now reach from biology and social
behavior to optics and microphysics.

There is still a lot we do not understand and the mathematical area of dynamical
systems remains vibrant. This is particularly true as researchers come to grips
with spatially distributed systems and those affected by stochastic effects that
interact with complex deterministic dynamics. Much of current progress is being
driven by questions that come from the applications of dynamical systems. To truly
appreciate and engage in this work then requires us to understand more than just the
mathematical theory of the subject. But to invest the time it takes to learn a new sub-
area of applied dynamics without a guide is often impossible. This is especially true
if the reach of its novelty extends from new mathematical ideas to the motivating
questions and issues of the domain science.

It was from this challenge facing us that the idea for the Frontiers in Applied
Dynamics was born. Our hope is that through the editions of this series, both new
and seasoned dynamicists will be able to get into the applied areas that are defining
modern dynamical systems. Each article will expose an area of current interest and
excitement, and provide a portal for learning and entering the area. Occasionally
we will combine more than one paper in a volume if we see a related audience as
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vi Preface to the Series

we have done in the first few volumes. Any given paper may contain new ideas and
results. But more importantly, the papers will provide a survey of recent activity
and the necessary background to understand its significance, open questions and
mathematical challenges.

Editors-in-Chief
Christopher K R T Jones, Björn Sandstede, Lai-Sang Young



Preface

In the world of cell biology, there is a myriad of oscillatory processes, with
periods ranging from the day of a circadian rhythm to the milliseconds of a
neuronal action potential. To one extent or another they all interact, mostly in
ways that we do not understand at all, and for at least the past 70 years, they
have provided a fertile ground for the joint investigations of theoreticians and
experimentalists. Experimentalists study them because they are physiologically
important, while theoreticians tend to study them, not only for this reason, but also
because such complex dynamic processes provide an opportunity to use, as their
tools of investigation, the methods of mathematical analysis.

In this volume, we are concerned with two of these oscillatory processes: calcium
oscillations and bursting electrical oscillations. These two are not chosen at random.
Not only have they both been studied in depth by modellers and mathematicians,
but we also have a good understanding – although not a complete one – of how
they interact, and how one oscillatory process affects the other. They thus make an
excellent example of how multiple oscillatory processes interact within a cell, and
how mathematical methods can be used to understand such interactions better.

The theoretical study of electrical oscillations in cells began, to all intents and
purposes, with the classic work of Hodgkin and Huxley in the 1950s. In a famous
series of papers they showed how action potentials in neurons arose from the time-
dependent control of the conductance of NaC and KC channels. The model they
wrote down, a system of four coupled nonlinear ordinary differential equations,
became one of the most influential models in all of physiology. It was quickly taken
up by other modellers, who extended the model to study oscillations of electric
potential in neurons, and over the last few decades the theoretical study of neurons
and groups of neurons has expanded to become one of the largest and most active
areas in all of mathematical biology.

More traditional applied mathematicians were also strongly influenced, albeit at
one remove, by the Hodgkin-Huxley equations. The simplification by FitzHugh in
the 1960s led to the FitzHugh-Nagumo model of excitability (Nagumo, a Japanese
engineer, derived the same equation independently at the same time, from entirely

vii



viii Preface

different first principles) which formed the basis of more theoretical studies of
excitability across many different areas, both inside and outside cell biology.

Oscillations in the cytosolic concentration of free Ca2C (usually simply called
Ca2C oscillations) have a more recent history, not having been discovered until the
development of Ca2C fluorescent dyes in the 1980s allowed the measurement of
intracellular Ca2C concentrations with enough temporal precision. But since then,
the number of theoretical and experimental investigations of Ca2C oscillations has
expanded rapidly. Calcium oscillations are now known to control a wide variety
of cellular functions, including muscular contraction, water transport, gene differ-
entiation, enzyme and neurotransmitter secretion, and cell differentiation. Indeed,
the more we learn about intracellular Ca2C, the more we realize how important
it is for cellular function. Conversely, the intricate spatial and temporal behaviors
exhibited by the intracellular Ca2C concentration, including periodic plane waves,
spiral waves, complex whole-cell oscillations, phase waves, stochastic resonance,
and spiking, have encouraged theoreticians to use their skills, in collaboration with
the experimentalists, to try and understand the dynamics of this ubiquitous ion.

Many cell types, however, contain both a membrane oscillator and a Ca2C
oscillator. The best-known examples of this, and the most widely studied, are the
neuroendocrine cells of the hypothalamus and pituitary, as well as the endocrine
cells of the pancreas, the pancreatic ˇ cells. In these cell types, membrane oscillators
and calcium oscillators are indissolubly linked; fast oscillations of the membrane
potential open voltage-gated Ca2C channels which allow Ca2C to flow into the cell,
which in turn activates the exocytotic machinery to secrete insulin (in the case
of pancreatic ˇ cells) or a variety of hormones (in the case of hypothalamic and
pituitary cells). However, in each of these cell types, cytosolic Ca2C also controls
the conductance of membrane ion channels, particularly Ca2C-sensitive KC and
Cl� channels, which in turn affect the membrane potential oscillations. In these
endocrine cells, it is thus necessary to understand both types of cellular oscillator in
order to understand overall cellular behavior.

Thus, this current volume. In it we first see how the interaction of Ca2C cytosolic
with membrane ion channels can result in the complex patterns of electrical spiking
that we see in cells. We then discuss the basic theory of Ca2C oscillations (common
to almost all cell types), including spatio-temporal behaviors such as waves, and
then review some of the theory of mathematical models of electrical bursting
pituitary cells.

Although our understanding of how cellular oscillators interact remains rudimen-
tary at best, this coupled oscillator system has been instrumental in developing our
understanding of how the cytosol interacts with the membrane to form complex
electrical firing patterns. In addition, from the theoretical point of view it has pro-
vided the motivation for the development and use of a wide range of mathematical
methods, including geometric singular perturbation theory, nonlinear bifurcation
theory, and multiple-time-scale analysis.
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It is thus an excellent example of how mathematics and physiology can learn
from each other, and work jointly towards a better understanding of complex cellular
processes.

Tallahasse, FL, USA Richard Bertram
Auckland, New Zealand Vivien Kirk
Auckland, New Zealand James Sneyd
Tallahasse, FL, USA Joël Tabak
Indianapolis, IN, USA Wondimu Teka
Boston, MA, USA Theodore Vo
Sydney, NSW, Australia Martin Wechselberger
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Chapter 1
Geometric Singular Perturbation Analysis
of Bursting Oscillations in Pituitary Cells

Richard Bertram, Joël Tabak, Wondimu Teka, Theodore Vo,
and Martin Wechselberger

Abstract Dynamical systems theory provides a number of powerful tools for ana-
lyzing biological models, providing much more information than can be obtained
from numerical simulation alone. In this chapter, we demonstrate how geometric
singular perturbation analysis can be used to understand the dynamics of bursting in
endocrine pituitary cells. This analysis technique, often called “fast/slow analysis,”
takes advantage of the different time scales of the system of ordinary differential
equations and formally separates it into fast and slow subsystems. A standard
fast/slow analysis, with a single slow variable, is used to understand bursting in pitu-
itary gonadotrophs. The bursting produced by pituitary lactotrophs, somatotrophs,
and corticotrophs is more exotic, and requires a fast/slow analysis with two slow
variables. It makes use of concepts such as canards, folded singularities, and mixed-
mode oscillations. Although applied here to pituitary cells, the approach can and has
been used to study mixed-mode oscillations in other systems, including neurons,
intracellular calcium dynamics, and chemical systems. The electrical bursting
pattern produced in pituitary cells differs fundamentally from bursting oscillations
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2 R. Bertram et al.

in neurons, and an understanding of the dynamics requires very different tools from
those employed previously in the investigation of neuronal bursting. The chapter
thus serves both as a case study for the application of recently-developed tools in
geometric singular perturbation theory to an application in biology and a tutorial on
how to use the tools.

1 Introduction

Techniques from dynamical systems theory have long been utilized to understand
models of excitable systems, such as neurons, cardiac and other muscle cells,
and many endocrine cells. The seminal model for action potential generation
was published by Hodgkin and Huxley in 1952 and provided an understanding
of the biophysical basis of electrical excitability (Hodgkin and Huxley (1952)).
A mathematical understanding of the dynamic mechanism underlying excitability
was provided nearly a decade later by the work of Richard FitzHugh (FitzHugh
(1961)). He developed a planar model that exhibited excitability, and that could be
understood in terms of phase plane analysis. A subsequent planar model, published
in 1981 by Morris and Lecar, introduced biophysical aspects into the planar
framework by incorporating ionic currents into the model, making the Morris-Lecar
model a very useful hybrid of the four-dimensional biophysical Hodgkin-Huxley
model and the two-dimensional mathematical FitzHugh model (Morris and Lecar
(1981)). These planar models serve a very useful purpose: they allow one to use
powerful mathematical tools to understand the dynamics underlying a biological
phenomenon.

In this chapter, we use a similar approach to understand the dynamics underlying
a type of electrical pattern often seen in endocrine cells of the pituitary. This pattern
is more complex than the activity patterns studied by FitzHugh, and to understand
it we employ dynamical systems techniques that did not exist when FitzHugh
did his groundbreaking work. Indeed, the mathematical tools that we employ,
geometric singular perturbation analysis with a focus on folded singularities, are
still being developed (Brons et al. (2006), Desroches et al. (2008a), Fenichel
(1979), Guckenheimer and Haiduc (2005), Szmolyan and Wechselberger (2001;
2004), Wechselberger (2005; 2012)). The techniques are appealing from a purely
mathematical viewpoint (see Desroches et al. (2012) for review), but have also been
used in applications. In particular, they have been employed successfully in the field
of neuroscience (Erchova and McGonigle (2008), Rubin and Wechselberger (2007;
2008), Wechselberger and Weckesser (2009)), intracellular calcium dynamics (Har-
vey et al. (2010; 2011)), and chemical systems (Guckenheimer and Scheper (2011)).
As we demonstrate in this chapter, these tools are also very useful in the analysis of
the electrical activity of endocrine pituitary cells. We emphasize, however, that the
analysis techniques can and have been used in many other settings, so this chapter
can be considered a case study for biological application, as well as a tutorial on
how to perform a geometric singular perturbation analysis of a system with multiple
time scales.



1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells 3

The anterior region of the pituitary gland contains five types of endocrine
cells that secrete a variety of hormones, such as prolactin, growth hormone, and
luteinizing hormone, into the blood. These pituitary hormones are transported by the
vasculature to other regions of the body where they act on other endocrine glands,
which in turn secrete their hormones into the blood, and on other tissue including the
brain. The pituitary gland thus acts as a master gland. Yet the pituitary does not act
independently, but instead is controlled by neurohormones released from neurons of
the hypothalamus, which is located nearby.

Many endocrine cells, including anterior pituitary cells, release hormones
through a stimulus-secretion coupling mechanism. When the cell receives a
stimulatory message, there is an increase in the concentration of intracellular
Ca2C that triggers the hormone secretion. More often than not, the response to
the input is a rhythmic output due to oscillations in the Ca2C concentration. Here
we are interested in the dynamics of these Ca2C oscillations. There are actually
two possibilities, and both can be found in pituitary cells. First, Ca2C oscillations
can be due to the cell’s electrical activity. In this case, oscillations in electrical
activity bring Ca2C into the cell through ion channels in the plasma membrane.
This is called a plasma membrane oscillator, because the channels responsible
for electrical activity and letting in Ca2C are on the cell membrane. Another
mechanism for intracellular Ca2C oscillations is the periodic release of Ca2C from
intracellular stores, through channels on the membrane of these stores. The main
Ca2C-storing organelle is the endoplasmic reticulum (ER), so this mechanism is
called an ER oscillator. In both cases we get rhythmic Ca2C increases. Although
the two mechanisms can interact, we will not look deeply into their interactions
here and instead focus on each separately. This chapter describes work performed
to understand the dynamics underlying these two types of rhythmic Ca2C increase
that underlie hormone secretion from the endocrine cells of the anterior pituitary.

Like neurons and other excitable cells, pituitary cells can generate brief electrical
impulses (also called action potentials or spikes). Different ion concentrations across
the plasma membrane and ion channels specific for certain types of ions create a
difference in the electrical potential across the membrane (the membrane potential,
V). Electrical activity in the form of impulses is caused by the regenerative opening
of membrane ion channels, which allows ions through the membrane according to
their concentration gradient. The opening of channels is controlled by V , which
accounts for positive and negative feedback mechanisms. Usually channels open
when V increases (depolarizes), so channels permeable to NaC or Ca2C which flows
into the cell and thus creates inward currents that further depolarize the membrane,
will provide the positive feedback that underlies the rapid rise of V at the beginning
of a spike. Channels permeable to KC, which is more concentrated inside the cells,
produce an outward current that acts as negative feedback to decrease V and to
terminate a spike. There are many types of ion channels expressed in pituitary cells,
and the combination of ionic currents mediated by these channels determines the
pattern of spontaneous electrical activity exhibited by the cells (see Stojilković et al.
(2010) for review). In a physiological setting, this spontaneous activity is subject
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Fig. 1 Recordings of electrical bursting using the perforated patch method with amphotericin B.
(A) Bursting in an unstimulated cell from the GH4C1 lacto-somatotroph cell line. (B) Bursting in
a pituitary gonadotroph stimulated with GnRH (1 nM). Note the different time scale

to continuous adjustment by hypothalamic neuropeptides, by hormones from other
glands such as the testes or ovaries, and by other pituitary hormones (Freeman
(2006), Stojilković et al. (2010)).

One typical pattern of electrical activity in pituitary cells is bursting. This
consists of episodes of spiking followed by quiescent phases, repeated periodi-
cally. Such bursting oscillations have been observed in the spontaneous activity
of prolactin-secreting lactotrophs, growth hormone-secreting somatotrophs, and
ACTH-secreting corticotrophs (Van Goor et al. (2001a;b), Kuryshev et al. (1996),
Tsaneva-Atanasova et al. (2007)), as well as GH4C1 lacto-somatotroph tumor cells
(Tabak et al. (2011)). The bursting pattern has a short period and the spikes tend
to be very small compared with those of tonically spiking cells (Fig. 1A). In fact,
the spikes don’t look much like impulses at all, but instead appear more like small
oscillations. This type of bursting is often referred to as pseudo-plateau bursting
(Stern et al. (2008)). A very different form of bursting is common in gonadotrophs
that have been stimulated by gonadotropin releasing hormone (GnRH), their
primary activator (Li et al. (1995; 1994), Tse and Hille (1992)), as well as other
stimulating factors (Stojilković et al. (2010)). These bursts have much longer period
than the spontaneous pseudo-plateau bursts (Fig. 1B). Since the biophysical basis
for this bursting pattern is periodic release of Ca2C from an internal store, we
refer to it as store-generated bursting. Both forms of bursting elevate the Ca2C
concentration in the cytosol of the cell and evoke a higher level of hormone secretion
than do tonic spiking patterns (Van Goor et al. (2001b)). This is the main reason
that endocrinologists are interested in electrical bursting in pituitary cells, which in
turn motivates mathematicians to develop and analyze models of the cells’ electrical
activity.

Bursting patterns also occur in neurons (Crunelli et al. (1987), Del Negro et al.
(1998), Lyons et al. (2010), Nunemaker et al. (2001)) and in pancreatic ˇ-cells,
another type of endocrine cell that secretes the hormone insulin (Dean and Mathews
(1970), Bertram et al. (2010)). The ubiquity of the oscillatory pattern and its
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complexity has attracted a great deal of attention from mathematicians, who have
used various techniques to study the mechanism(s) underlying the bursting pattern.
The earliest models of bursting neurons were developed in the 1970s, and bursting
models have been published regularly ever since. Over the past decade several books
have described some of these models and the techniques used to analyze them
(Coombes and Bressloff (2005), Izhikevich (2007), Keener and Sneyd (2008)). The
primary analysis technique takes advantage of the difference in time scales between
variables that change quickly and those that change slowly. This “fast/slow analysis”
or “geometric singular perturbation analysis” was pioneered by John Rinzel in
the 1980s (Rinzel (1987)) and has been extended in subsequent years (Coombes
and Bressloff (2005)). While modeling and analysis of bursting in neurons and
pancreatic ˇ-cells has a long history and is now well developed, the construction
and analysis of models of bursting in pituitary cells is at a relatively early stage.
The burst patterns in pituitary cells are very different from those in cells studied
previously, and the fast/slow analysis technique used in neurons is of limited use for
studying pseudo-plateau bursting in pituitary cells (Toporikova et al. (2008), Teka
et al. (2011a)). Instead, a new fast/slow analysis technique has been developed for
pseudo-plateau bursting that relies on concepts such as folded singularities, canards,
and the theory of mixed-mode oscillations (Teka et al. (2011a), Vo et al. (2010)). In
the first part of this chapter we describe this technique and how it relates to the
original fast/slow analysis technique used to analyze other cell types.

One fundamental difference between the spontaneous bursting observed in many
lactotrophs and somatotrophs and that seen in stimulated gonadotrophs is that
in the former the periodic elevations of intracellular Ca2C are in phase with
the electrical activity, while in the latter they are 180o out of phase. This is
because the former is driven by electrical activity, which brings Ca2C into the
cell through plasma membrane ion channels, while the latter is driven by the ER
oscillator, which periodically releases a flood of Ca2C into the cytosol. This Ca2C
binds to Ca2C-activated KC channels and activates them, resulting in a lowering
(hyperpolarization) of the membrane potential and terminating the spiking activity.
Thus, each time that the Ca2C concentration is high it turns off the electrical activity.
In the second part of this chapter we describe a model for this store-operated
bursting and demonstrate how it can be understood in terms of coupled electrical
and Ca2C oscillators, again making use of fast/slow analysis.

2 The Lactotroph/Somatotroph Model

We use a model for the pituitary lactotroph developed in Tabak et al. (2007) and
recently used in Teka et al. (2011b), Teka et al. (2011a, 2012), and Tomaiuolo
et al. (2012). This model can also be thought of as a model for the pituitary
somatotroph, since lactotrophs and somatotrophs exhibit similar behaviors and the
level of detail in the model is insufficient to distinguish the two. This consists
of ordinary differential equations for the membrane potential or voltage (V), an
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activation variable describing the fraction of activated KC channels (n), and the
intracellular free Ca2C concentration (c):

Cm
dV

dt
D �ŒICa.V/ C IK.V; n/ C ISK.V; c/ C IBK.V/� (1.1)

dn

dt
D n1.V/ � n

�n
(1.2)

dc

dt
D �fc.˛ICa C kcc/: (1.3)

The parameter Cm in Eq. 1.1 is the membrane capacitance, and the right-hand side
is the sum of ionic currents. ICa is an inward current carried by Ca2C flowing
through Ca2C channels and is responsible for the upstroke of an action potential.
It is assumed to activate instantaneously, so no activation variable is needed. The
current is

ICa.V/ D gCam1.V/.V � VCa/ (1.4)

where gCa is the maximum conductance (a parameter) and the instantaneous
activation of the current is described by

m1.V/ D
�

1 C exp

�
vm � V

sm

���1

: (1.5)

The parameters vm and sm set the half-maximum location and the slope, respectively,
of the Boltzman curve. Since this is an increasing function of V , ICa becomes
activated as V increases from its low resting value toward vm. The driving force
for the current is .V � VCa/, where VCa is the Nernst potential for Ca2C.

IK is an outward delayed-rectifying KC current with activation that is slower than
that for ICa. This current, largely responsible for the downstroke of a spike, is

IK.V; n/ D gKn.V � VK/ (1.6)

where gK is the maximum conductance, VK is the KC Nernst potential, and the
activation of the current is described by Eq. 1.2. The steady state activation function
for n is

n1.V/ D
�

1 C exp

�
vn � V

sn

���1

(1.7)

and the rate of change of n is determined by the time constant �n.
Some KC channels are activated by intracellular Ca2C, rather than by voltage.

One type of Ca2C-activated KC channel is the SK channel (small conductance
K(Ca) channel). Because channel activation is due to the accumulation of Ca2C
in the cell (i.e., an increase in c), and this occurs more slowly than changes in V ,
the current through SK channels contributes little to the spike dynamics. Instead, it
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contributes to the patterning of spikes. The current through this channel is modeled
here by

ISK.V; c/ D gSKs1.c/.V � VK/ (1.8)

where gSK is the maximum conductance and the c-dependent activation function is

s1.c/ D c2

c2 C K2
d

(1.9)

where Kd is the Ca2C level of half activation.
The final current in the model reflects KC flow through other Ca2C-activated KC

channels called BK channels (large conductance K(Ca) channels). These channels
are located near Ca2C channels and are gated by V and by the high-concentration
Ca2C nanodomains that form at the mouth of the open channel. As has been pointed
out previously (Sherman et al. (1990)), the Ca2C seen by the BK channel reflects the
state of the Ca2C channel, which is determined by the membrane potential. Thus,
activation of the BK current can be modeled as a V-dependent process:

IBK.V/ D gBKb1.V/.V � VK/ (1.10)

where

b1.V/ D
�

1 C exp

�
vb � V

sb

���1

: (1.11)

Because this current activates rapidly with changes in voltage (due to the rapid
formation of Ca2C nanodomains), it limits the upstroke and contributes to the
downstroke of an action potential.

The differential equation for the free intracellular Ca2C concentration (Eq. 1.3)
describes the influx of Ca2C into the cell through Ca2C channels (˛ICa) and the
efflux through Ca2C pumps kcc. The parameter ˛ converts current to molar flux and
the parameter kc is the pump rate. Finally, parameter fc is the fraction of Ca2C in the
cell that is free, i.e., not bound to Ca2C buffers. Default values of all parameters are
listed in Table 1.

Table 1 Default parameter values for the lactotroph model

gCa D 2 nS gK D 4 nS gSK D 1:7 nS gBK D 0:4 nS

VCa D 50 mV VK D �75 mV Cm D 10 pF ˛ D 1:5� 10�3 pA�1�M

�n D 43 ms fc D 0:01 kc D 0:16 ms�1 Kd D 0:5 �M

vn D �5 mV sn D 10 mV vm D �20 mV sm D 12 mV

vb D �20 mV sb D 5:6 mV
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3 The Standard Fast/Slow Analysis

The three model variables change on different time scales. The time constant for the
membrane potential is the product of the capacitance and the input resistance: �V D
Cm=gtotal, where gtotal D gCa C gK C gSK C gBK is the total membrane conductance.
This varies with time as V changes, and during the burst shown in Fig. 2, gtotal ranges
from about 0.5 nS during the silent phase of the burst to about 3 nS during the active
phase of the burst, so 3:3 < �V < 20 mS. The variable n has a time constant of
�n D 43 ms. The time constant for c is 1

fckc
D 625 ms. Hence, �V < �n < �c and V

is the fastest variable, while c is the slowest.
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Fig. 2 Bursting produced by the lactotroph model. (A) Voltage V exhibits small spikes emerging
from a plateau. (B) The variable n is sufficiently fast to reliably follow V . (C) The variable c
changes on a much slower time scale, exhibiting a saw-tooth time course
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The time courses of the three variables shown in Fig. 2 confirm the differences
in time scales. The spikes that occur during each burst in V are reliably reflected in
n, but are dampened in c. Indeed, c is an accumulating variable, similar to what one
observes in the recovery variable during a relaxation oscillation. This observation
motivates the idea of analyzing the burst trajectory just as one would analyze a
relaxation oscillation with a fast variable V and a slow recovery variable c. That is,
the trajectory is examined in the c-V plane and the c and V nullclines are utilized.
However, since the system is 3-dimensional, one replaces the nullcline of the fast
variable (V) with the fast subsystem (V and n) bifurcation diagram, where the slow
variable c is treated as the bifurcation parameter. This is the fundamental idea of
the standard fast/slow analysis, which is illustrated in Fig. 3A. The fast-subsystem
bifurcation diagram, often called the z-curve, consists of a bottom branch of stable
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Fig. 3 2-fast/1-slow analysis of pseudo-plateau bursting. The 3-branched z-curve consists of
stable (solid) and unstable (dotted) equilibria and a branch of unstable periodic solutions (dashed).
Bifurcations include a lower saddle-node (LSN), upper saddle-node (USN), subcritical Hopf
(subHB), and homoclinic (HM) bifurcations. (A) With default parameter values, the burst trajectory
(thick black curve) only partially follows the z-curve. (B) When the slow variable is made slower
by reducing fc from 0.01 to 0.001 the full-system trajectory follows the z-curve much more closely
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steady states (solid curve), a middle branch of unstable saddle points (dotted curve),
and a top branch of stable and unstable steady states. The three branches are joined
by lower and upper saddle-node bifurcations (LSN and USN, respectively), and
the stability of the top branch changes at a subcritical Hopf bifurcation (subHB).
The Hopf bifurcation gives rise to a branch of unstable periodic solutions that
terminates at a homoclinic bifurcation (HM). Thus, we see that the fast subsystem
has an interval of c values where it is bistable between lower (hyperpolarized) and
upper (depolarized) steady states. This interval extends from LSN to subHB. The
c nullcline intersects the z-curve between subHB and USN. This intersection is an
unstable equilibrium of the full system of equations.

The next step in the fast/slow analysis is to superimpose the burst trajectory and
analyze the dynamics using a phase plane approach. Since the c variable is much
slower than V , the trajectory largely follows the z-curve, as it would follow the
nullcline of the fast variable during a relaxation oscillation. Below the c-nullcline
the flow is to the left, and above the nullcline it is to the right. Hence, during the
silent phase of the burst the trajectory moves leftward along the bottom branch of
the z-curve. When LSN is reached there is a fast jump up to the top branch of the
z-curve. The trajectory follows this rightward until subHB is reached, at which point
it jumps down to the bottom branch of the z-curve, restarting the cycle.

As is clear from Fig. 3A, the trajectory does not follow the z-curve very closely.
One explanation for this is that the equilibria on the top branch are weakly attracting
foci, and the “slow variable” c changes too quickly for the trajectory to ever get
close to the branch of foci. Thus, weakly damped oscillations are produced during
the active phase, and these damped oscillations are the spikes of the burst. This
interpretation is supported in Fig. 3B, where the slow variable is made 10-times
slower by decreasing fc from 0.01 to 0.001. Now the trajectory moves much more
closely along both branches of the z-curve. During the active phase there are a few
initial oscillations which quickly dampen. Once the trajectory passes through subHB
there is a slow passage effect (Baer et al. (1989), Baer and Gaekel (2008)) and a few
growing oscillations before the trajectory jumps down to the lower branch.

This analysis, which we will call a 2-fast/1-slow analysis, provides some useful
information about the bursting. For example, this approach was used to understand
the mechanism for active phase termination during a burst, by constructing the
2-dimensional stable manifold of the fast subsystem saddle point (Nowacki et al.
(2010)). This approach was also used to understand the complex burst resetting that
occurs in response to upward voltage perturbations (Stern et al. (2008)). We have
shown how the z-curve for this pseudo-plateau bursting relates to that for the plateau
bursting often observed in neurons (Teka et al. (2011a)). This is illustrated in Fig. 4,
using the Chay-Keizer model for bursting in pancreatic ˇ-cells (Chay and Keizer
(1983)). (The equations for this model are given in the Appendix.) The standard
z-curve for plateau bursting is shown in panel A. It is characterized by a branch of
stable periodic solutions that are the spikes of the burst. In this figure they emanate
from a supercritical Hopf bifurcation (supHB). With this stable periodic branch, the
spikes tend to be much larger than those produced during pseudo-plateau bursting
and they do not dampen as the active phase progresses. If the activation curve
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Fig. 4 The Chay-Keizer model is used to illustrate the transition between plateau and pseudo-
plateau bursting. (A) The z-curve for plateau bursting, using default parameter values given
in Appendix, is characterized by a branch of stable periodic spiking solutions arising from a
supercritical Hopf bifurcation (supHB). (B) Increasing the value of vn from �16 mV to �14

mV moves the Hopf bifurcation rightward and converts it to a subHB, with an associated saddle-
node of periodics (SNP) bifurcation. (C) Increasing vn further to �12 mV creates the z-curve that
characterizes pseudo-plateau bursting. From Teka et al. (2011b)

for the hyperpolarizing KC current is moved rightward by increasing vn, the cell
becomes more excitable. As a result, the Hopf bifurcation moves rightward and
becomes subcritical (Fig. 4B). Most importantly, the region of bistability between
a stable spiking solution and a stable hyperpolarized steady state has largely been
replaced by bistability between two stable steady states of the fast subsystem: one
hyperpolarized and one depolarized. When the activation curve is shifted further
to the right (Fig. 4C), the stable periodic branch has been entirely replaced by a
stable stationary branch and the z-curve is that for pseudo-plateau bursting. Other
maneuvers that make the cell more excitable, such as moving the activation curve
for the depolarizing ICa current leftward, increasing the conductance gCa for this
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current or decreasing the conductance gK for the hyperpolarizing IK current, have
the same effect on the z-curve (Teka et al. (2011b)). In addition to changing
the fast-subsystem bifurcation diagram, the speed of the slow variable must also
be modified to convert between plateau and pseudo-plateau bursting (it must be
faster for pseudo-plateau bursting, which is achieved by increasing the value of fc).
In a separate study, Osinga and colleagues demonstrated that the fast-subsystem
bifurcation structure of both plateau and pseudo-plateau bursting could be obtained
by unfolding a codimension-4 bifurcation (Osinga et al. (2012)). This explains why
the pseudo-plateau bifurcation structure was not seen in an earlier classification of
bursting that was based on the unfolding of a codimension-3 bifurcation (Bertram
et al. (1995)).

Although the 2-fast/1-slow analysis provides useful information about the
pseudo-plateau bursting, it has some major shortcomings. Most obviously, the burst
trajectory does not follow the z-curve very closely unless the slow variable is slowed
down to the point where spikes no longer occur during the active phase (Fig. 3).
Also, the explanation for the origin of the spikes is not totally convincing, since
it is based on a local analysis of the steady states of the top branch, while the
bursting trajectory is not near these steady states. It also provides no information
about how many spikes to expect during a burst. Finally, as illustrated in Fig. 5, it
fails to explain the transition that occurs from pseudo-plateau bursting to continuous
spiking when the c-nullcline is lowered. In this figure, reducing the kc parameter
lowers the nullclline without affecting the z-curve. In both panels B and D the
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Fig. 5 A 2-fast/1-slow analysis fails to explain the transition from pseudo-plateau bursting to
spiking in the lactotroph model when the c-nullcline is lowered. (A) Bursting produced using
default parameter values. (B) The standard fast/slow analysis of the bursting pattern. (C) The
bursting is converted to continuous spiking when kc is reduced from 0.16 ms�1 to 0.1 ms�1. (D)
It is not apparent from the fast/slow analysis why the transition took place. From Teka et al. (2012)
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nullcline intersects the z-curve to form an unstable full-system equilibrium (labeled
as “A”) as well as the unstable periodic branch, forming an unstable full-system
periodic solution. Yet, in one case the system bursts (panel A), while in the other
it spikes continuously (panel C). This is a clear indication that predictions made
regarding pseudo-plateau bursting with this type of analysis may not be reliable.

4 The 1-Fast/2-Slow Analysis

In the analysis above, the variable with the intermediate time scale (n) was associ-
ated with the fast subsystem, and the bursting dynamics analyzed by comparing the
full-system trajectory to what one would expect if the single slow variable (c) were
very slow. That is, by going to the singular limit fc ! 0 and constructing a fast-
subsystem bifurcation diagram with c as the bifurcation parameter. Alternatively,
one could associate n with the slow subsystem and then study the dynamics by
comparing the bursting to what one would expect if the single fast variable were
very fast. That is, by going to the singular limit Cm ! 0. We take this 1-fast/2-slow
analysis approach here, where the variable V forms the fast subsystem and n and
c form the slow subsystem. This is formalized using non-dimensional equations in
Teka et al. (2011a) and Vo et al. (2010), where more details and derivations can
also be found. A recent review of mixed-mode oscillations (Desroches et al. (2012))
gives more detail on the key dynamical structures described below.

4.1 Reduced, Desingularized, and Layer Systems

In the following, we assume that Cm is small, so that the V variable is in a pseudo-
equilibrium state. Define the function f as the right-hand side of Eq. 1.1:

f .V; n; c/ � �.ICa C IK C ISK C IBK/: (1.12)

and then

Qf .V; n; c/ � f .V; n; c/=gmax (1.13)

where gmax is a representative conductance value, for example, the maximum
conductance during an action potential. Then the dynamics of the fast subsystem
are, in the singular limit, given by the layer problem:

dV

dtf
D Qf .V; n; c/ (1.14)
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dn

dtf
D 0 (1.15)

dc

dtf
D 0 : (1.16)

where tf D .gmax=Cm/t is a dimensionless fast time variable. The equilibrium set of
this subsystem is called the critical manifold, which is a surface in R

3:

S � f.V; n; c/ 2 R
3 W f .V; n; c/ D 0g: (1.17)

Since f is linear in n, it is convenient to solve for n in terms of V and c:

n D n.V; c/ D � 1

gK
Œh.V/ C gSKs1.c/� (1.18)

where

h.V/ D gCam1.V/

�
V � VCa

V � VK

�
C gBKb1.V/: (1.19)

The critical manifold is a folded surface consisting of three sheets connected by two
fold curves (Fig. 6). The one-dimensional fast subsystem is bistable; for a range
of values of n and c there is a stable hyperpolarized steady state and a stable
depolarized steady state, separated by an unstable steady state. The stable steady
states form the attracting lower and upper sheets of the critical manifold (denoted as
SCa and S�a and where @f

@V < 0), while the separating unstable steady states form the

repelling middle sheet (denoted as Sr and where @f
@V > 0). The sheets are connected

by fold curves denoted by LC and L� that consist of points on the surface where

@f

@V
D 0: (1.20)

That is,

L˙ � f.V; n; c/ 2 R
3 W f .V; n; c/ D 0 and

@f

@V
.V; n; c/ D 0g: (1.21)

The projection of the top fold curve onto the lower sheet is denoted P.LC/, while
the projection of the lower fold curve onto the top sheet is denoted P.L�/. Both
projections are shown in Fig. 6.

The critical manifold is not only the equilibrium set of the fast subsystem, but
is also the phase space of the slow subsystem. This slow subsystem, also called the
reduced system, is described by

f .V; n; c/ D 0 (1.22)
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Fig. 6 The critical manifold is the set of points in R
3 for which the fast variable V is at equilibrium

(Eq. 1.17). The two fold curves are denoted by LC and L�. The projections along the fast fibers of
the fold curves are denoted by P.LC/ and P.L�/. Also shown is the folded node singularity (FN)
and the strong canard (SC) that enters the folded node. From Teka et al. (2011a)

dn

dt
D n1.V/ � n

�n
(1.23)

dc

dt
D �fc.˛ICa C kcc/: (1.24)

This differential-algebraic system describes the flow when the trajectory is on the
critical manifold, which is given as a graph in Eq. 1.18. We can thus present the
system in a single coordinate chart .V; c/ including the neighborhood of the two
folds. A condition is then needed to constrain the trajectories to the critical manifold.
It is the total time derivative of f D 0 that provides this condition. That is,

d

dt
f .V; n; c/ D d

dt
0 (1.25)

or

� @f

@V

dV

dt
D @f

@c

dc

dt
C @f

@n

dn

dt
: (1.26)

Using Eqs 1.23, 1.24,

� @f

@V

dV

dt
D �fc.˛ICa C kc c/

@f

@c
C
�

n1.V/ � n.V; c/

�n

�
@f

@n
: (1.27)

The reduced system then consists of the differential equations Eqs. 1.24 and 1.27
where n.V; c/ is given by Eq. 1.18.



16 R. Bertram et al.

The reduced system is singular at the fold curves (where @f
@V D 0), so the

speed of a trajectory approaches 1 as it approaches a fold curve. (This can be
seen by solving Eq. 1.27 for dV

dt and noting that the denominator approaches 0,
but the numerator does not, as a fold curve is approached.) The singularity can
be removed by introducing a rescaled time d� D �. @f

@V /�1dt. This produces a
system that behaves like the reduced system, except at the fold curves, which are
transformed into nullclines of the c variable. With this rescaled time, the following
desingularized system is formed:

dV

d�
D F.V; c/ (1.28)

dc

d�
D fc.˛ICa C kc c/

@f

@V
; (1.29)

where F.V; c/ is defined as

F.V; c/ � �fc.˛ICa C kc c/
@f

@c
C
�

n1.V/ � n.V; c/

�n

�
@f

@n
: (1.30)

Like the reduced system, Eqs. 1.28–1.30 along with Eq. 1.18 describe the flow
on the top and bottom sheets of the critical manifold. They also describe the flow
on the middle sheet, but in this case the flow is backwards in time due to the time
rescaling. The jump from one attracting sheet to another is described by the layer
problem, which was discussed above.

A singular periodic orbit can be constructed by gluing together trajectories from
the desingularized system and the layer system such that the resulting orbit returns
to its starting point. An example is shown in Fig. 6. Beginning from a point on
the singular periodic orbit that lies on SCa , the desingularized system is solved to
yield a trajectory that moves along SCa until it reaches LC (black curve with single
arrow). From here, it moves to the bottom sheet following a fast fiber (black curve
with double arrows). From a point on P.LC/ the desingularized equations are again
solved to yield a trajectory that moves along S�a until L� is reached. The trajectory
then moves along a fast fiber to a point on P.L�/ on the top sheet. From here
the desingularized equations are again solved and the trajectory continues until the
starting point is reached.

4.2 Folded Singularities and the Origin of Pseudo-Plateau
Bursting

There are two very different types of equilibria of the desingularized system:
ordinary and folded singularities. An ordinary singularity of the desingularized
system satisfies
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f .V; n; c/ D 0 (1.31)

n D n1.V/ (1.32)

c D c1.V/ D �f .˛ICa C kcc/ (1.33)

and is an equilibrium of the full system Eqs. 1.1–1.3 . A folded singularity lies on a
fold curve and satisfies

f .V; n; c/ D 0 (1.34)

F.V; c/ D 0 (1.35)

@f

@V
D 0: (1.36)

As previously noted, in the reduced system (Eqs. 1.24, 1.27, and 1.18), trajecto-
ries pass through a fold curve with infinite velocity. Folded singularities are an
exception: at these points both numerator and denominator approach 0, and hence
a trajectory passes through a folded singularity with finite speed. In the full system
near the singular limit, the trajectory can pass through the fold curve and move along
the middle sheet of the slow manifold for some time before jumping off.

A linear stability analysis of a folded singularity indicates whether it is a folded
node (two real eigenvalues of the same sign), folded saddle (real eigenvalues of
opposite sign), or folded focus (complex conjugate pair of eigenvalues). In the full
system, singular canards exist in the neighborhood of a folded node and a folded
saddle (Benoit (1983), Szmolyan and Wechselberger (2001)). These trajectories
enter the folded singularity, in our case along SCa , and move through it in finite time,
emerging on the repelling sheet Sr and traveling along this sheet for some time. For
the parameter values used in Fig. 6 there is a folded node (FN) on LC. In such a case,
there is a whole sector of singular canards, bounded by LC and the strong singular
canard (denoted by SC in Fig. 6) associated with the trajectory that is tangent to the
eigendirection of the strong eigenvalue of the FN. This sector is called the singular
funnel. A singular periodic orbit that enters the singular funnel will exhibit canard-
induced mixed-mode oscillations (MMOs) away from the singular limit (i.e., when
Cm > 0) (Brons et al. (2006)).

According to Fenichel theory (Fenichel (1979)), for Cm > 0 the critical manifold
perturbs smoothly to a slow manifold consisting of invariant attracting and repelling
manifolds. We denote the attracting manifolds as SCa;Cm

and S�a;Cm
, and the repelling

manifold as Sr;Cm . Since the critical manifold loses hyperbolicity at LC and L�,
Fenichel theory does not apply there. Indeed, the critical manifold near a folded
node perturbs to twisted sheets (Guckenheimer and Haiduc (2005), Wechselberger
(2005)). This is illustrated in Fig. 7, where SCa;Cm

(blue) and Sr;Cm (red) come together
near the FN. The numerical technique used to compute the twisted sheets utilizes
continuation of trajectories that satisfy boundary value problems, and was developed
in Desroches et al. (2008a) and Desroches et al. (2008b).
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Fig. 7 The twisted slow manifold near a folded node, calculated using Cm D 2 pF with default
parameter values. The primary strong canard (SC, green) flows from SC

a;Cm
to Sr;Cm with a half

rotation. The secondary canard �1 flows from SC

a;Cm
to Sr;Cm with a single rotation. The other

secondary canards (�2, �3) have two and three rotations, respectively. The full system has an
unstable equilibrium near Sr;Cm (cyan circle). The pseudo-plateau bursting trajectory (PPB) is
superimposed and has two rotations. From Teka et al. (2011a)

The singular strong canard perturbs to a primary strong canard that moves from
SCa;Cm

to Sr;Cm with only one twist, or one half rotation. In addition, there is a family
of secondary canards that move through the funnel and exhibit rotations as they
flow from SCa;Cm

to Sr;Cm . The maximum number of rotations produced, Smax, is
determined by the eigenvalue ratio of the linearization at the folded node. If �s and
�w are the strong and weak eigenvalues of the linearization at the FN, then define

� D �w

�s
: (1.37)

The maximum number of oscillations is then (Rubin and Wechselberger (2008),
Wechselberger (2005))

Smax D
�

� C 1

2�

�
(1.38)

which is the greatest integer less than or equal to �C1

2�
. For Cm > 0, but small, there

are Smax � 1 secondary canards that divide the funnel into Smax sectors (Brons et al.
(2006)). The first sector is bounded by SC and the first secondary canard �1 and



1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells 19

trajectories entering this sector have one rotation. The second sector is bounded by
�1 and �2 and trajectories entering here have two rotations, etc. Trajectories entering
the last sector, bounded by the last secondary canard and the fold curve LC, have
the maximal Smax number of rotations (Rubin and Wechselberger (2008), Vo et al.
(2010), Wechselberger (2005)). Many of these small oscillations are so small that
they would be practically invisible, particularly in an experimental voltage trace
where they would be obscured by noisy fluctuations.

Figure 7 shows a portion of the pseudo-plateau burst trajectory (PPB, black
curve) superimposed onto the twisted slow manifold. Since it enters the funnel
between the first and second secondary canards it exhibits two rotations as it moves
through the region near the FN. These rotations are the small spikes that occur
during the active phase of the burst. The full burst trajectory, then, consists of slow
flow along the lower and upper sheets of the slow manifold, followed by fast jumps
from one attracting sheet to another. The jump from SCa;Cm

down to S�a;Cm
is preceded

by a few small oscillations, which are the spikes of the burst. As Cm is made smaller,
the burst trajectory looks more and more like the singular periodic orbit, and indeed
the small oscillations disappear in the singular limit (Vo et al. (2010)).

4.3 Phase-Plane Analysis of the Desingularized System

Because the desingularized system is two-dimensional, one can apply phase-plane
analysis techniques to it (Rubin and Wechselberger (2007), Teka et al. (2011a)).
This is illustrated in Fig. 8, where the nullclines and equilibria are shown. The V-
nullcline satisfies F.V; c/ D 0 and is the single z-shaped curve in the figure. The
c-nullcline satisfies

fc.˛ICa C kc c/
@f

@V
D 0 (1.39)

and thus

˛ICa C kc c D 0 (1.40)

or

@f

@V
D 0: (1.41)

The first set of solutions forms the c-nullcline of the full system and is labelled
CN1 in Fig. 8. The second set of solutions forms the two fold curves LC and
L�. Intersections of the V-nullcline with CN1 produce ordinary singularities and
are equilibria of the full system (Eqs. 1.1–1.3). There is one such equilibrium in
Fig. 8A, labelled as point A, which is an unstable saddle point of the desingularized
system. Intersections of the V-nullcline with one of the fold curves produce folded
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Fig. 8 Nullclines of the desingularized system. (A) An ordinary singularity (point A) occurs
where the V-nullcline and the CN1 branch of the c-nullcline intersect. This equilibrium is a saddle
point of the desingularized system and a saddle-focus of the full system. Two folded equilibria
occur where the V-nullcline intersects the fold curves. One folded singularity is a stable folded
node (FN), while the other is a stable folded focus (FF). (B) When gBK is increased from 0.4 nS to
2.176 nS the saddle point and folded node coalesce at a transcritical bifurcation (TR). This is also
known as a folded saddle-node of type II. (C) When gBK D 4 nS the ordinary singularity, which
now occurs on the top sheet of the critical manifold, is stable. The folded node has become a folded
saddle and is unstable



1 Geometric Singular Perturbation Analysis of Bursting Oscillations in Pituitary Cells 21

singularities. In Fig. 8A there is a folded focus singularity on L� and a folded node
singularity on LC. The folded node is stable, and will generate canards. The folded
focus is also stable, but it produces no canards.

One advantage of having a planar system is that it facilitates understanding of the
effects of parameter changes. For example, increasing the parameter gBK changes
the shape of the V-nullcline and brings LC and L� closer together, but has no effect
on CN1. As this parameter is increased the FN and the equilibrium point A move
closer together, and eventually coalesce (Fig. 8B). When the parameter is increased
further the stability is transferred from the folded node to the full-system equilibrium
(Fig. 8C). Thus, the desingularized system undergoes a transcritical bifurcation as
gBK is increased. On the other side of the bifurcation, the folded node has become
a folded saddle and no longer attracts trajectories off of its one-dimensional stable
manifold. The intersection point A is now stable, and is a stable equilibrium of the
full system of equations. Thus, beyond the transcritical bifurcation the full system is
at rest at a high-voltage (depolarized) steady state. This transcritical bifurcation of
the desingularized system is also called a type II folded saddle-node bifurcation
(Krupa and Wechselberger (2010), Milik and Szmolyan (2001), Szmolyan and
Wechselberger (2001)). In contrast, a type I folded saddle-node bifurcation is the
coalescence of a folded saddle and a folded node singularity, and does not involve
full-system equilibria (Szmolyan and Wechselberger (2001)).

The transcritical bifurcation of the desingularized system is a signature of a
singular Hopf bifurcation of the full system (Desroches et al. (2012), Guckenheimer
(2008)). The ordinary saddle point of the desingularized system in Fig. 8A is a
saddle focus of the full system, and trajectories can approach the saddle focus
along its one-dimensional stable manifold and leave along the two-dimensional
unstable manifold with growing oscillations. In fact, with an appropriate global
return mechanism, this can be a mechanism for MMOs that is different from that
due to the folded node (which co-exists with the saddle focus). In this case, the
small oscillations are characterized by a monotonic increasing amplitude, which
may or may not be the case for canard-induced MMOs. Interestingly, these two
mechanisms for MMOs are not mutually exclusive; in Fig. 21 of Desroches et al.
(2012) an example is shown of an MMO whose first few small oscillations are due
to a twisted slow manifold induced by a folded node and whose remaining small
oscillations are due to growing oscillations away from a saddle focus.

4.4 Bursting Boundaries

One useful application of the 1-fast/2-slow analysis is the determination of the
region of parameter space for which bursting occurs. A change in a parameter
can convert bursting to spiking, as in Fig. 5, or can convert bursting to a stable
steady state, as would occur in Fig. 8. Since the pseudo-plateau bursting is closely
associated with the existence of a folded node singularity, one necessary condition
for this type of bursting is the existence of a folded node. We have seen that a folded
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node can be created/destroyed via a type II folded saddle-node bifurcation. That is,
when the weak eigenvalue crosses through the origin, and thus � D 0. A folded
node can also change to a folded focus, which has no canard solutions. This occurs
after the eigenvalues coalesce, i.e., when � D 1. Since a folded node singularity
exists only when 0 < � < 1, canard-induced mixed-mode oscillations only occur
for parameter values for which 0 < � < 1 at the folded singularity. This is predictive
for pseudo-plateau bursting, at least in the case where Cm is small. For larger values
of Cm the singular theory may not hold up, so bursting may occur for parameter
values at which the singular theory predicts a continuous spiking solution.

Another condition for canard-induced MMOs is that there is a global return
mechanism that periodically injects the trajectory into the funnel. When this
occurs, the trajectory moves through the twisted slow manifold and produces small
oscillations that are the spikes of pseudo-plateau bursting. If instead the trajectory
is injected outside of the funnel, on the other side of the strong canard, continuous
spiking will occur. To quantify this, a distance measure ı is used. This is defined
using the singular periodic orbit, and is best viewed in the c-V plane (Fig. 9). When
the orbit jumps from the bottom sheet of the critical manifold at L� it moves along
a fast fiber to a point on P.L�/ on the top sheet. The horizontal distance from this
point to the strong canard is defined as ı. If the point is on the strong canard, then

Fig. 9 Projection of the singular periodic orbit and key structures onto the c-V plane. The upper
fold curve (LC) and strong canard (SC) delimit the singular funnel. The singular periodic orbit
jumps from L� onto a point on P.L�/. The distance in the c direction from this point to the strong
canard is defined as ı, and by convention ı > 0 when the point is in the funnel. From Teka et al.
(2011a)
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Fig. 10 The singular analysis predicts whether the full system should be continuously spiking,
bursting, or in a depolarized steady state. The folded node becomes a folded saddle above the
� D 0 curve and the ordinary singularity of the desingularized system becomes stable. Between
the � D 0 and ı D 0 curves the two conditions are met for mixed-mode oscillations, and pseudo-
plateau bursting is predicted to occur. Below the ı D 0 curve the singular periodic orbit does
not enter the singular funnel, resulting in relaxation oscillations. Away from the singular limit (for
Cm > 0) these become a periodic spike train

ı D 0, while if it is in the funnel then ı > 0 by convention. Thus, a necessary
condition for the existence of canard-induced MMOs, and pseudo-plateau bursting,
is ı > 0.

With these constraints on ı and � one can construct a 2-parameter bifurcation
diagram characterizing the behavior of the full system. One such diagram is
illustrated in Fig. 10, where the maximum conductances of the delayed rectifier (gK)
and the large-conductance K(Ca) (gBK) currents are varied. In the diagram, the upper
curve (magenta) consists of type II folded saddle-node bifurcations that give rise to
a folded node, and thus is characterized by � D 0. Above this curve the full system
equilibrium is stable and the system goes to a depolarized steady state. Below this
curve � > 0. The lower curve (green) consists of points in which ı D 0. Above this
curve ı > 0, while below it ı < 0. Both conditions for MMOs are satisfied between
the two curves, so this is the parameter region where mixed-mode oscillations occur.

4.5 Spike-Adding Transitions

In the region of parameter space where MMOs occur, one can characterize the
number of small oscillations (spikes) that occur in different subregions. Such an
analysis was performed in Vo et al. (2012), using a variant of the lactotroph model
(described in the Appendix) that we have been using thus far. It was motivated by the
observation that, in a 4-variable lactotroph model containing an A-type KC current,
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pseudo-plateau bursting can occur even if one fixes the c variable at its average
value (Toporikova et al. (2008)). Thus, to simplify the analysis, c is clamped and
the model reduced to 3 dimensions. This 3-dimensional model is what we consider
now, where the major difference with the 3-dimensional lactotroph model discussed
previously is that the SK and BK currents are replaced by leakage and A-type KC
currents, and the calcium variable c is replaced by an inactivation variable e for
the A-type channels. The bursting boundaries were determined with this model in
the plane of the two parameters gK and gA. In this case, the left bursting boundary
occurs when � D 0 and the folded node becomes a folded saddle at a type II
folded saddle-node bifurcation. Unlike in Fig. 10, however, the right boundary for
mixed-mode oscillations occurs when � D 1 and the folded node becomes a folded
focus (Fig. 11). A third boundary occurs where ı D 0, and the fourth boundary
occurs where a stable equilibrium of the full system is born at a saddle-node on
invariant circle (SNIC) bifurcation. Both conditions for MMOs are satisfied within
the trapezoidal region bounded by these line segments (Fig. 11).
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Fig. 11 Bursting boundaries and the maximum number of spikes per burst in a variant of the
lactotroph model (described in Appendix). The left and right boundaries occur when the folded
node becomes a folded saddle (� D 0) or a folded focus (� D 1). The lower boundary occurs
when the periodic orbit jumps to the strong canard that delimits the singular funnel (ı D 0). The
upper boundary occurs when a stable equilibrium of the full system is born at an SNIC bifurcation.
The maximum number of spikes (Smax) is determined by �. From Vo et al. (2012)
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The maximum number of small oscillations that occur in the mixed-mode
oscillations (Smax) depends on �, the eigenvalue ratio, according to Eq. 1.38. In
this model, the eigenvalues depend only on gK , and only slightly on gA. Thus,
the subregions of constant Smax are separated by almost-vertical line segments (gK

values where the value of the greatest integer function changes). Near the right
boundary � � 1, so by Eq. 1.38 there is at most one small oscillation per burst.
(There will be an additional oscillation, due to the trajectory jumping from the lower
sheet to the upper sheet of the slow manifold; after the jump, the voltage is initially
large and then slowly declines, producing the first spike of the burst.) For gK � 5

nS, Smax increases to 2, and then to 3 for gK � 4:4 nS. The maximum number of
oscillations continues to increase as the left boundary is approached, where � D 0

and Smax ! 1.
While the eigenvalue ratio tells half of the story, the other half is determined by

where the periodic orbit lands when it jumps to the top sheet of the slow manifold
(i.e., it depends on the value of ı). If the orbit jumps to a point close to the primary
strong canard, then ı is near 0. In this sector, bounded on one side by the primary
strong canard and on the other by the first secondary canard, one small oscillation
will be produced, regardless of the eigenvalue ratio �. This is the case near the
bottom of the MMO region in the parameter plane. The distance measure ı becomes
larger for larger values of gA, and thus the number of small oscillations produced
during a burst increases as the trajectory jumps into sectors that are further from the
primary strong canard. In summary, the parameter gK controls the eigenvalue ratio �

and thus the maximum number of spikes per burst. It also determines the number of
secondary canards, which delimit sectors of the funnel. The parameter gA controls
the distance measure ı and thus which sector the orbit jumps into when it jumps
to the top sheet of the slow manifold. In the two-parameter diagram of Fig. 11, the
number of spikes per burst will increase as one moves to the left or upward in the
MMO region.

If ı is held constant by fixing gA, and � is varied by varying gK , what will the
bifurcation structure of the spike adding transitions look like? How are the MMO
solution branches connected to one another? That is, how does a bursting branch
with n spikes connect to a bursting branch with n C 1 spikes? These questions were
addressed in Vo et al. (2012), first by performing a bifurcation analysis with the
continuation program AUTO (Doedel (1981), Doedel et al. (2007)), and then by
using return maps of both the singular and non-singular systems to better understand
the spike adding behavior. Figure 12 shows the L2 norm of the solution over a
range of values of gK for gA D 4 nS. For gK below about 3.7 nS there is a
stable depolarized steady state (ED). This becomes unstable at a subcritical Hopf
bifurcation. The family of periodic solutions born at this bifurcation consists of
continuous spiking, labeled here as s D 0 (no small oscillations). The first family
of bursting solutions (s D 1 branch) connects to the spiking branch at a period
doubling bifurcation (at gK � 3:592 nS, shown in the left inset) and later at a
second period doubling bifurcation (at gK � 6:127 nS). This bursting pattern has
one spike induced by a folded node, in addition to the initial spike due to the jump
up to and initial motion down the top sheet. The next bursting branch, with s D 2, is
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Only the s D 1 bursting family is connected to the spiking branch (s D 0). All other families of
bursting solutions (e.g., the s D 2 family) form isolas. The lactotroph model variant is used. From
Vo et al. (2012)

connected to neither the spiking branch nor the s D 1 branch. Instead, it is an isola
formed by a pair of saddle-node of periodics bifurcations (right inset of Fig. 12).
This family of solutions extends over a smaller range of gK values than the s D 1

family, and the stable portion of the branch in particular is only about a quarter as
long as that of the s D 1 branch. Other bursting families are isolas similar to the
s D 2 family, and the range of each successive family is shorter than its predecessor.
There is an accumulation point as gK is decreased (toward the point where � D 0)
as the stable range of the bursting families approaches 0 and s ! 1.

4.6 Prediction Testing on Real Cells

Figures 10 and 11 provide predictions about how the number of spikes per burst vary
with parameter values and the boundaries between continuous spiking, bursting,
and stationary behavior. These predictions have proven to be quite good (Teka
et al. (2011a), Vo et al. (2010)) even in cases where the singular parameter Cm

is large, within the right range for pituitary cells (� 5 pF). Importantly, these
predictions also apply to real pituitary cells. For example, if a pituitary cell is
spiking continuously, then it should be possible to convert it to a bursting cell by
increasing the conductance of the BK-type or A-type KC currents, or by decreasing
the conductance of the delayed-rectifier KC current. Also, if the cell is bursting, then
the number of spikes in a burst should increase if gBK or gA is increased, or if gK is
decreased. These predictions were tested using the dynamic clamp technique, which
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records the voltage from a real cell using an electrode, then uses a mathematical
model to compute a current, which is injected into the cell in real time. Thus, the
dynamic clamp allows one to add a voltage-dependent current to a real cell, using
the cell’s membrane potential to calculate that current (Milescu et al. (2008), Sharp
et al. (1993)).

Figure 13 shows the result of adding a BK current to a GH4C1 cell (a lacto-
somatotroph cell line). With no added BK conductance the cell spikes continuously
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Fig. 13 Patch clamp recording from a GH4C1 lacto-somatotroph cell using dynamic clamp to add
a model BK-type current (Eq. 1.10). (A) With no added current the cell spikes continuously. (B)
When 0.5 nS of BK conductance is added the cell exhibits bursts intermingled with spikes. (C)
With a larger added BK conductance, 1 nS, the burstiness is increased, as is the number of spikes
per burst. (D) Quantification of the burstiness over the entire time course for the three values of the
added gBK . The burstiness increases with gBK . (E) Quantification of the mean event duration for
the three values of the added gBK . The event duration increases with gBK
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(Fig. 13A). However, once BK current is added with a sufficiently large conduc-
tance the cell exhibits a pseudo-plateau bursting pattern intermixed with spiking
(Fig. 13B). Adding more conductance increases the burstiness of the cell, that is, the
fraction of events that are bursts. Also, as predicted by the analysis, adding more gBK

increases the number of spikes in a burst (Fig. 13C). The change in burstiness with
added BK conductance is quantified in panel D, where the burstiness is calculated
over the entire time course for each value of the added gBK . Panel E shows the
quantification of the mean even duration, including both spikes and bursts. Both
the burstiness and the event duration increase with an increase in the added gBK , as
predicted by the analysis. The transition between spiking and bursting with addition
or subtraction of a BK current using the dynamic clamp was shown repeatedly in
GH4C1 cells and primary pituitary gonadotrophs (Tabak et al. (2011), Tomaiuolo
et al. (2012)).

It is also possible to use the dynamic clamp to add a negative conductance to
the cell, thereby subtracting an ionic current. One can, for example, develop a
model for the IK current that reflects the characteristics of this current in the real
cell. Then the dynamic clamp technique can be used to subtract off some of this
current from the cell, by adding a negative gK conductance. This can be superior
to using pharmacological agents to remove a current, since such agents are often
non-specific. Also, the dynamic clamp approach allows the investigator to subtract
off only a fraction of the current, in a controlled manner. We use this approach to
subtract off gK conductance, and thus reduce the effective gK value in the cell (the
native gK minus that subtracted off with dynamic clamp). The prediction is that a
spiking cell should become a burster when a sufficient amount of gK is subtracted,
and as more is subtracted the number of spikes in a burst should increase (Fig. 12).
The results of applying the dynamic clamp to a GH4C1 cell are shown in Fig. 14.
The top panel shows that the cell is mostly spiking, with a low degree of burstiness
and no more than 2 spikes per burst, prior to subtraction of gK . When some delayed
rectifier conductance is subtracted (�1 nS) the burstiness of the cell increases
(Fig. 14B). Subtracting off even more conductance (�2 nS) further increases the
burstiness and increases the number of spikes per burst (Fig. 14C). These effects are
quantified in panels D and E, where burstiness and mean even duration are computed
over the entire time course durations. As predicted by the singular analysis, reducing
gK in the cell increases the likelyhood that it wil burst, and increases the number of
spikes within a burst.

5 Relationship Between the Fast/Slow Analysis Structures

We began with a description of the standard fast/slow analysis technique applied to
bursting oscillations in which the full 3-dimensional system is decomposed into
a 2-dimensional fast subsystem and a 1-dimensional slow subsystem. We then
described an alternate decomposition, with a 1-dimensional fast subsystem and
a 2-dimensional slow subsystem. Each approach made use of key structures that
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Fig. 14 Patch clamp recording from a GH4C1 lacto-somatotroph cell using dynamic clamp to
subtract a delayed rectifier KC current (Eq. 1.6). (A) With no added current the cell has very low
burstiness, with at most two spikes per burst. (B) When 1 nS of delayed rectifier K conductance
is subtracted the burstiness of the cell increases. (C) When more delayed rectifier conductance is
subtracted, 2 nS, the burstiness increases further and the number of spikes per burst increases. (D)
Quantification of the burstiness over the entire time course for the three values of the subtracted
gK . The burstiness increases when more gK is subtracted. (E) Quantification of the mean event
duration for the three values of the subtracted gK . The event duration increases when more gK is
subtracted

organized the behavior of the system. In the case of the 2-fast/1-slow analysis
(Fig. 3), the z-curve (equilibria of the fast subsystem) and the subcritical Hopf
bifurcation point on the upper portion of the z-curve are two key structures. In
addition, the nullcline of the slow variable (the c-nullcline) is important since
it determines the direction of the slow flow. In the case of the 1-fast/2-slow
analysis, the critical manifold, the folded node singularity, and the nullclines of the
desingularized system are key organizational structures (Figs. 6, 8). In Teka et al.
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(2012) the lactotroph model (with SK and BK currents, and calcium variable c) was
used to investigate the relationship between these sets of structures. In this section
we discuss the key findings of this investigation.

5.1 The fc ! 0 Limit

The nullclines of the desingularized system shown in Fig. 8A are redrawn in
Fig. 15A. These were computed using fc D 0:01, which is the typical value for
this parameter (the ratio of free to bound Ca2C in the cell). Superimposed is the
z-curve obtained from the 2-fast/1-slow decomposition, computed using Cm D 10

pF. This z-curve is the stationary branch of the 2-variable fast subsystem, where c
is treated as a parameter, so it tacitly assumes that fc D 0. It is clear that the V-
nullcline and z-curve are very similar, and the CN1 nullcline of the desingularized
system is the c-nullcline of the 2-fast/1-slow system. The point A is the single
intersection of all three curves, and is both an equilibrium of the desingularized
system and an equilibrium of the full system. The subcritical Hopf bifurcation of
the 2-fast/1-slow system lies on the top branch of the z-curve, but below LC, which
means that it is located on the middle sheet of the critical manifold (Fig. 15B). In
addition, the two saddle-node bifurcations of the z-curve are on the middle sheet
of the critical manifold. The folded node of the desingularized system is located
close to the subcritical Hopf bifurcation point, but on the upper fold of the critical
manifold.

We now take the limit fc ! 0, so that the variable c becomes infinitesimally slow.
Taking this limit has no effect on the z-curve, which already assumes that fc D 0. It
also has no effect on LC, L�, or CN1, since fc divides out of the equations for these
curves. However, it does influence the V-nullcline of the desingularized system,

� fc.˛ICa C kc c/
@f

@c
C
�

n1.V/ � n

�n

�
@f

@n
D 0: (1.42)

When fc ! 0 the first term disappears, and for the second term to equal 0 either
n D n1.V/ or @f

@n D gk.V � VK/ D 0. Since V > VK , and gK ¤ 0, we must have
n D n1.V/, so that dn

dt D 0. Thus, the V-nullcline of the desingularized system
satisfies dV

dt D 0 and dn
dt D 0, which are the same equations defining the z-curve.

Although the V-nullcline and the z-curve superimpose in the fc ! 0 limit, the
folded node and the Hopf bifurcation do not (Fig. 16). Instead, in this limit, the Hopf
bifurcation remains on the middle sheet of the critical manifold.
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5.2 The Cm ! 0 Limit

While the limit fc ! 0 makes c infinitesimally slow, the limit Cm ! 0 makes
V infinitely fast. We now take this limit, returning fc to its default value of 0.01.
The desingularized system is formed from the limit Cm ! 0, so taking this limit
only affects the z-curve of the 2-fast/1-slow decomposition. This curve of fast-
subsystem equilibria is defined by f .V; n; c/ D 0 and n D n1.V/, and Cm appears
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in neither equation. Thus, the locations of the equilibria that comprise the z-curve
are unaffected by Cm. However, the stability of these points does change with Cm,
since Cm is in the ordinary differential equation for V (Eq. 1.1). In fact, as Cm ! 0

the Hopf bifurcation migrates toward the fold curve LC (Fig. 17).
To understand this convergence to LC, note that the Jacobian matrix of the 2-

dimensional fast subsystem (Eqs. 1.1, 1.2) is

J D
 

1
Cm

@f
@V

1
Cm

@f
@n

@g
@V

@g
@n

!
(1.43)

where g.V/ � n
1

.V/�n
�n

. The trace of J is

trace.J/ D 1

Cm

@f

@V
C @g

@n
(1.44)

and at a Hopf bifurcation trace.J/ D 0. Thus, at the Hopf,

@f

@V
C Cm

@g

@n
D 0 : (1.45)

In the Cm ! 0 limit the second term disappears, requiring that @f
@V D 0. This is the

equation for the fold curve.
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5.3 The Double Limit

In the Cm ! 0 limit the Hopf bifurcation point migrated to the upper fold curve,
but remained distinct from the folded node singularity since the V-nullcline of the
desingularized system does not overlay the z-curve. The two coalesce when, in
addition to taking Cm ! 0, one takes the fc ! 0 limit. In this double limit the
V-nullcline converges to the z-curve and the Hopf bifurcation is on the fold curve
LC, and thus the folded node singularity of the desingularized system and the Hopf
bifurcation of the 2-dimensional fast subsystem of the 2-fast/1-slow decomposition
are the same point.

It is interesting to see how the bursting orbit changes as the double limit is
approached from the fc direction and from the Cm direction. Fig. 18A shows the
bursting orbit computed with fc D 0:01 and Cm D 10 (within the range of values
for a pituitary lactotroph or somatotroph), superimposed with the V-nullcline of
the desingularized system and the z-curve. In this case, the system is far from any
singular limit, so the orbit is only somewhat close to the z-curve and the spikes are
large. When fc is reduced by a factor of 10 the bursting orbit (which is actually more
like a relaxation oscillation) is clearly organized by the z-curve (Fig. 18B). During
the silent phase it moves along the bottom branch, while during the active phase it
moves along the top branch. It passes through the subcritical Hopf bifurcation, and
follows the unstable branch for some time before moving away with oscillations of
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increasing size. Thus, it exhibits the slow passage effect that is well documented
for an orbit of a fast/slow system as it moves through a subcritical Hopf bifurcation
(Baer et al. (1989), Baer and Gaekel (2008)). If fc is returned to its original value
and Cm is reduced by a factor of 100, then the system is organized by the structures
of the desingularized system. Fig. 18C shows that in this case the burst trajectory
passes very close to the folded node singularity as it moves along the V-nullcline.
The spikes are small, and first decrease and then increase in amplitude as the orbit
moves along the twisted slow manifold, which is typical for passage near a folded
node singularity (Desroches et al. (2012)). If Cm is kept at this small value and fc
is now reduced by a factor of 10, then the bursting orbit again moves through the
folded node along the V-nullcline, but this time with more spikes and a much more
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extreme decrease in amplitude near the folded node. Also, since this is near the
double limit, the trajectory passes near the z-curve, and the folded node and Hopf
bifurcation are close together.

6 Store-Generated Bursting in Stimulated Gonadotrophs

The pseudo-plateau bursting that we have discussed so far is common in the sponta-
neous activity of pituitary somatotrophs and lactotrophs, and is sometimes observed
in the spontaneous activity of gonadotrophs (Stojilković et al. (2010)). More often,
though, gonadotrophs exhibit a tonic spiking pattern that yields little hormone
release (Van Goor et al. (2001b)). However, when stimulated by the physiological
stimulator gonadotropin-releasing hormone (GnRH) the gonadotrophs typically
produce a bursting pattern with period of roughly 4–15 sec that results in a much
higher level of luteinizing hormone release (Stojilković et al. (2010)). This was
first observed using Ca2C imaging, where a train of Ca2C spikes was observed in
the presence of GnRH (Shangold et al. (1988)). In a series of papers published
in the 1990s, it was shown that this bursting pattern is due to the interaction of
a Ca2C oscillator stimulated by GnRH and an electrical oscillator that produces
tonic spiking when the Ca2C oscillator is turned off (Kukuljan et al. (1994),
Stojilković et al. (1992, 1993), Stojilković and Tomić (1996), Tse and Hille (1992),
Tse et al. (1994, 1997)). A key element of this research was the development of
a mathematical model that helped with the interpretation of the data and guided
experiments (Li et al. (1994, 1995), Rinzel et al. (1996)). In this section we discuss
a simplified version of this model that retains the key biophysical and dynamic
elements (Sherman et al. (2002)).

6.1 Closed-Cell Dynamics

We begin with the Ca2C oscillator. Here, oscillations in the free cytosolic Ca2C
concentration (c) are due to the cycling of Ca2C into and out of the endoplasmic
reticulum (ER). Denote the ER Ca2C concentration as cER. In the closed-cell model
we analyze first, the total number of Ca2C ions in the cell is conserved; ions simply
move back and forth between the cytosolic compartment and the ER compartment.
Denote the total free Ca2C concentration in the cell as ctot. Then

ctot D c C �cER (1.46)

where � is the ratio of the “effective ER volume” NVER D VER
fER

(VER is the ER volume

and fER is the fraction of unbound Ca2C in the ER), to the “effective cytosol volume”
NVc D Vc

fc
. That is,
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� D VERfc
VcfER

: (1.47)

Rewriting,

cER D .ctot � c/=� (1.48)

where ctot is constant. The differential equation for the cytosolic Ca2C concentra-
tion is

dc

dt
D .JER�out � JER�in/= NVc (1.49)

where JER�in and JER�out are the calcium fluxes into and out of the ER, respectively
(Fig. 19A).

The flux of Ca2C into the ER is through pumps powered by the hydroly-
sis of adenosine triphosphate (ATP). These are called SERCA (Sarcoplasmic-
Endoplasmic Reticulum Calcium ATPase) pumps. The pump rate is an increasing
function of the cytosolic Ca2C concentration, and in some models includes a
dependence on the ER Ca2C concentration (Sneyd et al. (2003)). We use a simple
second-order Hill function of c to describe the flux through SERCA pumps,

JER�in D V1c2

K2
1 C c2

(1.50)

where K1 is the Ca2C concentration for the half-maximal pump rate and V1 is the
maximum pump rate.

The flux of Ca2C out of the ER has two components. First, there is leakage
that is assumed to be proportional to the difference in the ER and cytosolic Ca2C
concentrations,
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Jleak D L.cER � c/ : (1.51)

The Ca2C concentration in the ER is greater than that in the cytosol, so the
leakage is from the ER into the cytosol. The second component is only active
when GnRH binds to receptors in the cell’s plasma membrane, generating the
intracellular signaling molecule inositol 1,4,5-trisphosphate (IP3). This molecule
binds to IP3 receptors in the ER membrane and can activate them. Once activated,
the IP3 receptors behave like Ca2C channels, allowing Ca2C to flow out of the
ER and into the cytosol down the Ca2C gradient. Cytosolic Ca2C ions can also
bind to regulatory sites on the receptor, increasing its open probability. Thus, the
IP3 receptors are gated by both IP3 and cytosolic Ca2C. There is a third binding
site on each receptor subunit, for Ca2C-induced inactivation of the receptor. This
negative feedback operates on a slower time scale, so that in the presence of IP3,
Ca2C provides both fast positive feedback and slower negative feedback onto the
IP3 receptor. Thus, the IP3 receptor has dynamics that are very similar to those of
the voltage-gated NaC channel that is ubiquitous in neurons, as was demonstrated
by Li and Rinzel (1994). In the expression that we use for the probability that the
IP3 receptor/channel is open the kinetics of IP3 binding and Ca2C binding to the
activation site are instantaneous, while the Ca2C binding to the inactivation site
occurs with a time constant �h. The IP3 open probability is then multiplied by the
Ca2C gradient, which provides the driving force for Ca2C flux:

JIP3 D P

�
c3

.c C ka/3

��
IP3

3

.IP3 C ki/3

�
h3 .cER � c/ (1.52)

where P is a parameter representing the flux through an open channel, ka, ki are
parameters, IP3 is the intracellular IP3 concentration, and h is an inactivation
variable satisfying the differential equation

dh

dt
D .h1 � h/=�h (1.53)

where

h1.c/ D Kd

Kd C c
(1.54)

and

�h.c/ D A

Kd C c
: (1.55)

Here Kd is the dissociation constant for Ca2C binding to the inactivation site (i.e.,
the unbinding rate k� divided by the binding rate kC). Parameter A is the inverse of
kC and is convenient for setting the speed of the negative feedback. The exponent
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Table 2 Parameter values for the gonadotroph model. In the open-cell models ctot is not a
parameter, and in the bursting model Jin is not a parameter

� D 0:185 NVc D 400 pL ctot D 2 �M V1 D 400 aMol s�1

K1 D 0:2 �M L D 0:37 pL s�1 ka D 0:4 �M ki D 1:0 �M

Kd D 0:4 �M A D 2 �M s V2 D 2000 aMol s�1 K2 D 0:3 �M

� D 0:01 Jin D 1200 aMol s�1 gCa D 20 �S cm�2 gK D 20 �S cm�2

gSK D 8 �S cm�2 Cm D 1 �F cm�2 V3 D �3 mV V4 D �20 mV

s1 D �20 mV s2 D 30 mV 	 D 12 s�1 KSK D 0:5 �M

˛ D 0:2 (aMol � cm2/=nC P D 26; 640 pL s�1

of 3 in Eq. 1.52 reflects the fact that the IP3 receptor is a homotrimer, with three
identical subunits. Finally,

JER�out D Jleak C JIP3: (1.56)

Parameter values are given in Table 2.
Summarizing, the closed-cell model consists of the two differential equations

dc

dt
D .JER�out � JER�in/= NVc (1.57)

dh

dt
D .h1 � h/=�h (1.58)

where JER�out is given by Eq. 1.56, JER�in is given by Eq. 1.50, h1 is given by
Eq. 1.54, and �h is given by Eq. 1.55.

Figure 20 shows the dynamics of the closed-cell model in response to a pulse
of IP3. Initially the system is at rest with c near 0 and h near 1 (the IP3 receptors
are not inactivated). When IP3 is introduced the system produces periodic c spikes
(Fig. 20A, black curve). The upstroke of each spike is due to Ca2C activation of the
IP3 receptors and the subsequent release of Ca2C from the ER into the cytosol. The
downstroke of each spike is due to Ca2C inactivation of the IP3 receptors reflected
in a decline in h (Fig. 20A, red curve). Each spike causes release of Ca2C from the
ER (Fig. 20B, black curve) and the ER is subsequently replenished by flux through
SERCA pumps (Fig. 20B, red curve) that occurs between spikes. Thus, the total
flux from the ER to the cytosol (Jtot) is positive during the Ca2C spike and negative
during the refilling stage between spikes (Fig. 20C, black curve). If the total flux is
averaged over time, then one observes a rise in the time average (< Jtot >) during a
spike and a slower decline during the refilling stage (Fig. 20C, red curve). When <

Jtot > reaches 0 the system has been completely reset and another spike is produced.
The level of GnRH acting on the gonadotrophs is transduced into an IP3 level

via the G˛q signaling pathway, and this determines the Ca2C dynamics of the cell
(Stojilković et al. (1993)). This is demonstrated with the closed-cell bifurcation
diagram in Fig. 21. At low IP3 concentrations the system is at rest, represented
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by the lower stable stationary branch of the bifurcation diagram. The stationary
solution loses stability at an SNIC (Saddle-Node on Invariant Circle) bifurcation
and a stable periodic solution is born. The periodic oscillations resemble “spikes”
produced in neural system, and are often referred to as calcium spikes. As IP3 is
increased further the periodic spiking solution loses stability at a saddle-node of
periodics bifurcation, and the system is attracted to a stationary solution born at a
subcritical Hopf bifurcation. Thus, oscillations occur only for an intermediate range
of IP3 values. This is shown in Fig. 22 in terms of the c time courses. As IP3 is
increased in steps the system moves from a stationary, to an oscillatory, and back to
a stationary state, but now with an elevated level of c. Note also that the oscillation
frequency is greater at IP3 D 1:2 �M than at IP3 D 0:72 �M, as one would expect
since the spiking solution is born near IP3 D 0:7 �M at an infinite-period SNiC
bifurcation. The dynamics of a closed cell system was shown with a more detailed
model in Li and Rinzel (1994) and Li et al. (1994).
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Fig. 22 The closed-cell gonadotroph model exhibits frequency modulation in response to step
increases in the IP3 concentration. When the concentration is too low or too high the system has a
globally stable rest state

6.2 Open-Cell Dynamics

In the actual gonadotroph, Ca2C enters and leaves the cell through the plasma
membrane. We incorporate these fluxes next (Fig. 19B). For now we treat the Ca2C
influx as a parameter, Jin,

Jmem�in D Jin: (1.59)
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The removal of Ca2C from the cell is through plasma membrane pumps, which is
modeled as a second-order Hill function, as it was with flux through SERCA pumps:

Jmem�out D V2c2

K2
2 C c2

(1.60)

where V2 is the maximum pump rate and K2 is the Ca2C level for half maximal
pumping. Adding these additional Ca2C fluxes to the c equation we obtain

dc

dt
D ŒJER�out � JER�in C �.Jmem�in � Jmem�out/� = NVc (1.61)

where � is the ratio of the plasma membrane to ER surface area. There is also a new
differential equation, for the total Ca2C concentration in the cell:

dctot

dt
D �.Jmem�in � Jmem�out/= NVc: (1.62)

The open cell model with constant Ca2C influx then consists of the three differential
equations

dc

dt
D ŒJER�out � JER�in C �.Jmem�in � Jmem�out/� = NVc (1.63)

dh

dt
D .h1 � h/=�h (1.64)

dctot

dt
D �.Jmem�in � Jmem�out/= NVc (1.65)

where all functions other than those above are identical to those used in the closed-
cell model. Parameter values are given in Table 2.

The response of the open-cell model to a pulse of IP3 is shown in Fig. 23A. As
with the closed-cell model, a train of Ca2C spikes is produced (black curve) due
to the cycling of Ca2C between the cytosol and the ER. However, when the influx
of Ca2C into the cell is turned off, both the amplitude and the frequency of the
spike train decline over time as the total Ca2C concentration in the cell declines (red
curve). Eventually there is not enough Ca2C in the cell to sustain the oscillations and
the system comes to rest at a low level of c. This simulation replicates experimental
findings done in a Ca2C-deficient medium (Li et al. (1994)).

The influence of the Ca2C influx parameter can be described in terms of a 2-
fast/1-slow analysis. Here, c and h form the fast subsystem and ctot is the single slow
variable. When there is sufficient Ca2C flux into the cell ctot is elevated, and when
IP3 is present the fast system exhibits stable periodic motion. Thus, there is a stable
limit cycle in the h-c plane, the thick curve labeled with a green asterisk in Fig. 23B.
When Ca2C influx is terminated ctot slowly declines, with subsequent modification
of the fast-subsystem limit cycle. The limit cycle shifts slowly rightward and the
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Fig. 23 The open-cell gonadotroph model with Ca2C influx to the cell treated as a parameter,
Jin. (A) When Jin D 1200 aMol s�1 and the application of IP3 (0.7 �M) is simulated the system
produces a train of Ca2C pulses. These decline and become slower when Ca2C influx is terminated,
due to a slow decline in the total Ca2C concentration in the cell. (B) In the plane of the fast
variables, the decline of the slow variable ctot moves the system from stable periodic motion (green
asterisk) through a range of cycles of diminishing amplitude and period to a stable rest state (red
circle)

amplitude in the c variable becomes smaller. When ctot reaches � 2 �M the rest
state of the fast subsystem becomes stable (Fig. 23B, red circle). Thus, the dynamics
of this open-cell model are essentially the same as those of the closed-cell model,
where the parameter ctot is replaced by a slowly changing variable.

This is illustrated in another way in Fig. 24. In this bifurcation diagram, IP3

is held constant at 0.7 �M and ctot is treated as a bifurcation parameter. Periodic
spiking occurs for a large range of ctot values, and is replaced by stable stationary
solutions at low and high ctot values. The spiking branch is born at an SNIC
bifurcation, so for parameter values near here the spiking will be slow. For larger
ctot values the amplitude and frequency of the oscillation increase, and eventually
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Fig. 24 Bifurcation diagram for the open-cell gonadotroph model with IP3 D 0:7 �M and ctot

treated as the bifurcation parameter. The periodic spiking branch is born at an SNIC bifurcation
(ctot D 2:1 �M) and disappears at a saddle-node of periodics bifurcation (ctot D 6 �M). The
stationary branch regains stability at a subcritical Hopf bifurcation (ctot D 4:6 �M) and there is a
substantial interval of bistability between periodic and stationary solutions

the periodic solution terminates at a saddle-node of periodics bifurcation. There is a
fairly large interval in which the spiking and stationary solutions are both stable.

An alternate mechanism for IP3-induced Ca2C oscillations involves the feedback
of Ca2C onto IP3 production or degradation. In this case, the IP3 concentration
itself oscillates, evoking periodic release of Ca2C from the ER. While this is not
the mechanism for agonist-mediated Ca2C oscillations in gonadotrophs (Stojilković
et al. (1993)), it can be the mechanism in other cell types (Sneyd et al. (2006)). In this
report, Sneyd and colleagues describe an experimental method based on exogenous
pulses of IP3 for determining which type of the two feedback mechanisms for
agonist-induced Ca2C oscillations, called class 1 and class 2, is responsible for
the observed Ca2C oscillations in two cell types, pancreatic acinar cells and
airway smooth muscles. Both mechanisms, Ca2C-induced Ca2C release and Ca2C-
dependent changes in IP3 concentration, likely are present in a typical cell, so the
real question is which, if either, mechanism dominates the Ca2C dynamics.

In recent work (Harvey et al. (2010, 2011)), the authors used geometric singular
perturbation theory (GSPT) to study the underlying dynamic nature in many models
of Ca2C dynamics. Identifying the different time scales in a given Ca2C model
provides a first simple diagnostic tool to predict class 1 or class 2 dominated Ca2C
dynamics. Furthermore, GSPT is able to explain observed anomalous delays in the
Ca2C dynamics (Harvey et al. (2010)) that are usually not predicted by the IP3 pulse
protocol experiment (Sneyd et al. (2006)). Canard theory in arbitrary dimensions
(Wechselberger (2012)) is the key to explain this ‘anomalous’ phenomenon.

6.3 Store-Generated Bursting

We now add the final component to the model by replacing the constant Ca2C
influx parameter Jin with a term reflecting Ca2C influx through Ca2C ion channels
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(Fig. 19C). The channels are gated by the membrane potential V , which is itself
determined by ionic current through a number of ion channels. In our minimal
model only three ion channel types are included. Ionic current through L-type Ca2C
channels, ICa, is responsible for the upstroke of an electrical action potential and
also brings Ca2C into the cell. It is modeled as in the lactotroph model,

ICa.V/ D gCam1.V/.V � VCa/: (1.66)

The downstroke of an action potential is due to the slower-activating delayed-
rectifying KC current,

IK.V; n/ D gKn.V � VK/: (1.67)

Finally, there is an SK-type KC current that is gated by cytosolic Ca2C,

ISK.V; c/ D gSKs1.c/.V � VK/: (1.68)

The differential equations for the cell’s electrical activity are:

Cm
dV

dt
D � ŒICa.V/ C IK.V; n/ C ISK.V; c/� (1.69)

dn

dt
D n1.V/ � n

�n.V/
: (1.70)

Steady state and time constant functions are:

m1.V/ D 1

2

�
1 C tanh

�
V � V3

s1

��
(1.71)

n1.V/ D 1

2

�
1 C tanh

�
V � V4

s2

��
(1.72)

�n.V/ D
�

	 cosh

�
V � V4

2s2

���1

(1.73)

s1.c/ D c4

.K4
SK C c4/

: (1.74)

The ordinary differential equations for the cell’s electrical activity are coupled to
those for Ca2C handling, which again are

dc

dt
D ŒJER�out � JER�in C �.Jmem�in � Jmem�out/� = NVc (1.75)

dh

dt
D .h1 � h/=�h (1.76)
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dctot

dt
D �.Jmem�in � Jmem�out/= NVc (1.77)

All functions are identical to those defined previously, except that the Ca2C influx
to the cell is no longer constant, but is:

Jmem�in D �˛ICa.V/ (1.78)

where ˛ converts current into Ca2C ion flux. It is this term that provides the
coupling from the electrical activity to the Ca2C dynamics. Equation 1.68 provides
the feedback from the Ca2C dynamics to the electrical activity. Parameter values are
given in Table 2.

The time course of the full gonadotroph model is shown in Fig. 25. In the absence
of the agonist GnRH the model cell produces a tonic spiking pattern since the Ca2C
level in the cytosol is low, so there is very little activation of the hyperpolarizing
SK current. When IP3 is added to the model cell, simulating the effects of the
physiological activator GnRH, the Ca2C oscillator is activated. This is reflected in
the large Ca2C spikes in Fig. 25B. Each spike activates Ca2C-activated SK channels,
hyperpolarizing the cell for the duration of the Ca2C spike. The resulting electrical
bursting is then due to periodic interruptions in the tonic spiking pattern caused
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Fig. 25 The open-cell gonadotroph model with Ca2C influx through voltage-dependent Ca2C

channels. (A) The tonic spiking pattern is converted to bursting when IP3 (0.7 �M) is added to
the model cell. (B) The cytosolic Ca2C level is low until the Ca2C oscillator is activated by IP3,
producing spikes of Ca2C efflux from the ER into the cytosol
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by the Ca2C oscillator. Unlike the pseudo-plateau bursting in which c is highest
during the active phase of the burst, in this store-generated bursting the peaks in the
cytosolic Ca2C concentration occur during the silent phase of the burst.

7 Conclusion

In this chapter we have provided examples of how mathematical modeling can be
and has been used to better understand electrical and calcium dynamics in bursting
pituitary cells. The difference in the bursting mechanisms of the different cell types
parallels differences in secretion patterns. Lactotrophs and somatotrophs can secrete
their hormones spontaneously, due to their bursting pattern that facilitates Ca2C
entry. Gonadotrophs, on the other hand, usually exhibit spikes that are too brief
to allow much Ca2C entry. Significant luteinizing hormone release only occurs
when the cells are stimulated by GnRH to produce large rhythmic Ca2C releases
from the ER that drive secretion. Bursting oscillations also occur in some of the
hypothalamic neurons that modulate the activity of pituitary cells. For example,
bursting occurs in oxytocin neurons of the paraventrical nucleus during lactation,
and a potential mechanism for these oscillations has been demonstrated through
mathematical modeling (Rossoni et al. (2008)). Bursting also occurs in vasopressin
neurons that are responsible for osmoregulation, and this too has been modeled
(Clayton et al. (2010)). Bursting in hypothalamic GnRH neurons has been the focus
of several modeling studies (Duan et al. (2011), Fletcher and Li (2009), LeBeau
et al. (2000), Lee et al. (2010)). Yet, there is much work ahead in this field, both in
understanding the intrinsic dynamics of individual cell types, and in understanding
their interactions. It is likely that mathematical modeling and analysis will play a
key role.

8 Appendix

Computer codes for all models discussed in this chapter are available as freeware
from http://www.math.fsu.edu/~bertram/software/pituitary.

8.1 The Chay-Keizer Model

The Chay-Keizer model for bursting in the pancreatic ˇ-cell (Chay and Keizer
(1983)) was one of the first bursting models analyzed using a fast/slow analysis
technique (Rinzel and Lee (1985)). A modified form of the model was used in Teka
et al. (2011b) to analyze the transition between plateau and pseudo-plateau bursting,
and was used for this purpose in Fig. 4. The modified Chay-Keizer model is similar

http://www.math.fsu.edu/~bertram/software/pituitary
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in many ways to the lactotroph model used in most of this article. The differential
equations are:

Cm
dV

dt
D �ŒICa.V/ C IK.V; n/ C ISK.V; c/ C IK.ATP/.V/� (1.79)

dn

dt
D n1.V/ � n

�n
(1.80)

dc

dt
D �fc.˛ICa.V/ C kcc/: (1.81)

where in place of the V-dependent BK KC current there is a KC current whose
conductance is regulated by intracellular levels of ATP. If, as assumed here, the
ATP concentration is constant, then gK.ATP/ is a constant-conductance KC current
given by

IK.ATP/.V/ D gK.ATP/.V � VK/ : (1.82)

The form of the steady state activation curves m1.V/ and n1.V/ are the same as
for the lactotroph model (Eqs. 1.5, 1.7). The steady state activation function for the
SK current is a third-order Hill function, rather than second-order:

s1.c/ D c3

c3 C K3
d

: (1.83)

Parameter values for this model are given in Table 3.

8.2 The Lactotroph Model with an A-Type KC Current

An alternate lactotroph model was developed by Toporikova et al. (2008) and
analyzed in Vo et al. (2010) and Vo et al. (2012). In this model, the equation for
intracellular Ca2C concentration is removed, as are the SK and BK currents. Instead,
an A-type KC current is included that activates instantaneously and inactivates on a
slower time scale. The differential equations are:

Table 3 Parameter values for the simplified Chay-Keizer model

gCa D 1 nS gK D 2:7 nS gSK D 0:4 nS gK.ATP/ D 0:18 nS

VCa D 25 mV VK D �75 mV Cm D 5:3 pF ˛ D 4:5� 10�3 pA�1�M

�n D 18:7 ms fc D 0:00025 kc D 0:5 ms�1 Kd D 0:3 �M

vn D �16 mV sn D 5 mV vm D �20 mV sm D 12 mV
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Table 4 Parameter values for the lactotroph model with A-type KC

current

gCa D 2 nS gK D 0� 10 nS gL D 0:3 nS gA D 4 nS

VCa D 50 mV VK D �75 mV Cm D 2 pF �n D 40 ms

�e D 20 ms vn D �5 mV sn D 10 mV vm D �20 mV

sm D 12 mV va D �20 mV sa D 10 mV ve D �60 mV

se D 10 mV

Cm
dV

dt
D �ŒICa.V/ C IK.V; n/ C IA.V; e/ C IL.V/� (1.84)

dn

dt
D n1.V/ � n

�n
(1.85)

de

dt
D e1.V/ � e

�e
: (1.86)

where the ICa and IK currents are as before, IL is a constant-conductance leakage
current, and IA is the A-type KC current:

IL.V/ D gL.V � VK/ (1.87)

IA.V; e/ D gAa1e.V � VK/ : (1.88)

The activation function for IA is

a1.V/ D
�

1 C exp.
va � V

sa
/

��1

(1.89)

and the inactivation function is

e1.V/ D
�

1 C exp.
V � ve

se
/

��1

: (1.90)

Parameter values are given in Table 4.
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Chapter 2
The Nonlinear Dynamics of Calcium

Vivien Kirk and James Sneyd

Abstract Oscillations and travelling waves in the concentration of free cytosolic
calcium are complex dynamical phenomena that play vital roles in cellular function,
controlling such processes as contraction, secretion and differentiation. Although,
nowadays, these oscillations and waves may be observed experimentally with
relative ease, we still lack a rigorous understanding of, firstly, the mechanisms
underlying these waves and oscillations in different cell types, and, secondly, the
mathematical structures that underlie these complex dynamics. Thus, the study of
calcium waves and oscillations is one area in which modellers have, over the years,
played a major role. Here, we review our current understanding of the nonlinear
dynamics of calcium waves and oscillations, restricting our attention almost wholly
to deterministic models.

1 Introduction

In almost every cell type, the concentration of free cytosolic calcium, ŒCa2C�, plays a
major role in cellular function and regulation [5, 4]. In all muscle cells, for example,
a rise in ŒCa2C� is the signal that causes contraction [8, 40]. In cardiac and skeletal
muscle, this rise in ŒCa2C� comes about as Ca2C enters the cell through voltage-
gated channels in the cell membrane. The resultant high ŒCa2C� causes myosin
to bind to actin, thus exerting a contractile force. In synapses, where one neuron
communicates with another, the release of neurotransmitter is governed by the
ŒCa2C� in the presynaptic terminal [96, 99], while in a completely different cell
type, the parotid acinar cell (a type of epithelial cell), a rise in ŒCa2C� causes water
secretion and thus the production of saliva [1, 155].

In many cell types (hepatocytes, for example) the exact role played by Ca2C is
not well understood, although it seems clear that it is important for cell function,
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while in other cell types (such as neuroendocrine cells like gonadotropin-releasing
hormone neurons) a rise in ŒCa2C� is doubtless closely linked to the secretion of
hormone, but we do not understand exactly how this link works [71].

Over the last few decades highly sophisticated methods have been developed
to measure ŒCa2C� in cells (often still situated in living animals) both in space
and in time. The most important method is undoubtedly fluorescence microscopy.
Investigators have developed molecules that emit light when they bind Ca2C. By
loading cells with such Ca2C fluorescent dyes one is now able directly to observe
the Ca2C in the cell and show the results as a video, for example.

One of the first things that investigators noticed was that, in many cell types,
the Ca2C transients, far from being a simple rise and fall, have complex dynamic
behaviour. In some cells, ŒCa2C� oscillates with a period ranging from under a
second to many minutes. In other, larger, cells, these oscillations are organised into
periodic waves that travel at around 15 �m s�1. In even larger cells, such as Xenopus
oocytes, these periodic waves are organised into periodic spirals or target patterns.

According to current dogma, oscillations and periodic waves of Ca2C control
cellular functions in a frequency-dependent manner. Ca2C itself is toxic to cells —
prolonged high ŒCa2C� will kill a cell — and thus an amplitude-modulated signal is
of less use. However, by modulating the frequency of the oscillation, the signal can
be carried efficiently, without endangering the cell. Although this is a useful working
hypothesis, and is supported by a great deal of experimental evidence, in some cell
types the actual situation is considerably more complicated, with both amplitude
and frequency playing major roles, while in yet other cell types, the frequency of
the oscillation appears to play almost no role at all. Examples of these different
situations are discussed in more detail below, and in Fig. 1.

Three examples of Ca2C oscillations and waves, from three very different cell
types, are shown in Fig. 1. In the first example we believe we know what the Ca2C
oscillations are doing, and how their function is controlled by their frequency; in
the second example, we believe we know what the Ca2C oscillations are doing, but
it seems that the oscillation frequency is entirely unimportant; in the third example,
we think we know what the Ca2C transients are doing (at least in general terms), but
we don’t really know how they do it.

In part A of Fig. 1 we show Ca2C oscillations in airway smooth muscle cells,
in response to the agonist methylcholine. These Ca2C oscillations (indirectly, but
through a well-known pathway [73]) cause binding of the contractile proteins,
myosin and actin, and thus cause contraction of the muscle [113]. Since airway
smooth muscle surrounds the airways, its contraction causes contraction of the
airways and restriction of breathing. (Interestingly, there is no other known phys-
iological function of airway smooth muscle; it is the only known organ whose
sole function is pathological.) The extent of the muscle contraction is closely
correlated with the frequency of the Ca2C oscillation, and thus we believe we
understand the physiological function of these oscillations. Although we call them
Ca2C oscillations, they are, in fact, periodic waves, as can be seen from the more
detailed plot in part B. In this space-time diagram, a higher ŒCa2C� is denoted by a
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Fig. 1 Three examples of the complex behaviour of ŒCa2C�. A: Oscillations of ŒCa2C� in human
airway smooth muscle cells, in response to the agonist methylcholine (MCh). Figure modified
from [107]. B: Ca2C oscillations in airway smooth muscle cells, plotted in both space and time,
showing that the oscillations shown in A are in fact periodic waves. Figure modified from [104].
Responses to two different agonists – serotonin (5-HT) and acetylcholine (ACh) – are shown.
C: Ca2C oscillations in parotid acinar cells, in response to carbochol (CCh). Figure modified
from [53]. D: Ca2C transients in mouse gonadotropin-releasing hormone (GnRH) neurons. Figure
modified from [84]. The membrane current (upper trace) and the ŒCa2C� concentration (lower
trace) were measured simultaneously. It can be seen that each burst of electrical spikes corresponds
to a transient in ŒCa2C�

lighter shade; the fact that white bands extend across the domain at a slight angle
means that the Ca2C oscillations are propagating across the cell to form periodic
waves.

In part C of Fig. 1 we show Ca2C oscillations from parotid acinar cells. The
parotid gland is one of the saliva-producing glands, and parotid acinar cells are
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epithelial cells specialised for the transport of water. Each rise in ŒCa2C� causes
the opening of Ca2C-dependent KC channels at one end of the cell, the opening of
Ca2C-dependent Cl� channels at the other end of the cell, and thus transcellular ion
flow, with water following by osmosis. However, although it was thought for some
years that the rate of water flow was controlled by the frequency of the oscillation,
this is now thought not to be the case [101, 102]. In this cell type the rate of water
transport is governed almost entirely by the average ŒCa2C�, with the frequency of
the oscillation playing no important role that we can discern.

Our final example, in part D of Fig. 1, is from a gonadotropin-releasing hormone
neuron, a neuroendocrine cell in the hypothalamus that secretes gonadotropin-
releasing hormone, or GnRH. The upper trace is the membrane current, which shows
clear groups of electrical spikes, usually called electrical bursting. The lower trace
shows the associated Ca2C transient. Periodicity is not clear, so we do not call these
Ca2C oscillations. Although we know that these Ca2C transients are associated with
the secretion of GnRH, we do not understand exactly how. The secretion of GnRH
appears to be controlled on a time scale of hours, while these Ca2C transients occur
with much shorter period, on the order of tens of seconds. How the fast Ca2C
transients are connected to the slow control of GnRH secretion is one of the great
puzzles in the study of neuroendocrine cells.

It is clear from even this highly selective set of examples that the study of
Ca2C oscillations has a great deal to offer the mathematical modeller. Such com-
plex dynamic phenomena simply cannot be properly understood without detailed
quantitative models, and without a detailed understanding of the mechanisms that
can drive periodic behaviour. Because of this, mathematical modellers have often
played significant roles in the study of Ca2C dynamics [38, 39, 44, 114, 136].

1.1 Some background physiology

Although it is not the purpose of this article to present a detailed discussion of
Ca2C physiology, some details are necessary in order to understand how models are
constructed.

Because high ŒCa2C� is toxic, all cells spend a great deal of energy ensuring
that ŒCa2C� is kept low. This is not an easy job, energetically speaking. All cells
are bathed in a Ca2C-rich environment, with a concentration of approximately
1 mM, kept at this level by continual release from the bones. However, inside
the cell cytoplasm, energy-consuming pumps are continually removing Ca2C to
keep ŒCa2C� � 50 nM, about 20,000 times lower than outside the cell. There is
thus an enormous concentration gradient from the outside to the inside of the cell.
Hence, cells can raise ŒCa2C� quickly, merely by opening Ca2C channels in the
cell membrane, but must continually expend energy to maintain this concentration
gradient.
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Internal cellular compartments, such as the endoplasmic (or, in muscle cells, the
sarcoplasmic) reticulum (ER or SR) are also major Ca2C stores, with Ca2C pumps,
called SERCA pumps (Sarcoplasmic/Endoplasmic Reticulum Calcium ATPases)
continually pumping Ca2C from the cytoplasm into the ER or SR. Similarly, the
mitochondria constitute another major internal Ca2C store.

Thus a cell at rest is continually expending large amounts of energy, merely to
keep ŒCa2C� low, and there is a continual low-level cycling of Ca2C into and out of
the cytoplasm, as Ca2C leaks in, and is then removed by the pumps.

As an additional control for ŒCa2C�, of every 1000 Ca2C ions entering the
cytoplasm, approximately 999 are quickly bound to large proteins, called Ca2C
buffers, thus preventing the Ca2C from harming the cell. This so-called Ca2C
buffering can play a major role in quantitative models (although it can have less
effect on the qualitative dynamics) and often needs to be considered carefully.

To construct a model of Ca2C dynamics one writes down a conservation equation
that keeps track of all the Ca2C entering and leaving the cytoplasm. There are a
number of such Ca2C fluxes (some of which, but not all, are summarised in Fig. 2).

• Ca2C can flow into the cell from outside through a number of types of channel.

– Voltage-gated Ca2C channels open in response to an increase in the potential
difference across the cell membrane. The resultant influx of Ca2C will lead
to further depolarisation and possibly to an action potential if the cell is
electrically excitable.

– Receptor-operated channels open in response (possibly quite indirectly) to the
binding of agonist to a cell membrane receptor.

– Store-operated channels open in response to a severe depletion of the ER
or SR.

• Ca2C is moved from the cytoplasm to outside the cell by the action of Ca2C
ATPase pumps in the cell membrane. Other ways in which Ca2C is removed
from the cytoplasm — for example, by a Na/Ca exchanger — are important in
some cell types.

• Release of Ca2C from the ER or SR occurs through two major channels.

– When an agonist binds to a receptor on the cell membrane it initiates a series
of reactions that ends in the production of inositol trisphosphate (IP3), which
diffuses through the cytoplasm and binds to IP3 receptors (IPR) located on
the membrane of the ER or SR. IPR are also Ca2C channels, and when IP3

binds they open, and release Ca2C from the ER. Both Ca2C and IP3 modulate
the open probability of the IPR. IPR exhibit the important property of Ca2C-
induced Ca2C release, or CICR, whereupon a small increase in ŒCa2C� leads
to the opening of the IPR and the further release of Ca2C. Thus, CICR is
a positive feedback process in which Ca2C stimulates its own release. In
addition, a high ŒCa2C� will close the IPR.

– Ryanodine receptors (RyR) are similar to IPR, and are almost as ubiquitous.
They are not opened by IP3, but their open probability is modulated by Ca2C in
a manner similar to IPR. RyR also exhibit CICR, and indeed were the original
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Fig. 2 Diagram of the major fluxes involved in the control of ŒCa2C�. Binding of agonist to a
cell membrane receptor (R) leads to the activation of a G-protein (G), and subsequent activation
of phospholipase C (PLC). This cleaves phosphotidylinositol bisphosphate into diacylglycerol and
inositol trisphosphate (IP3), which is free to diffuse through the cell cytoplasm. When IP3 binds
to an IP3 receptor (IPR) on the endoplasmic reticulum (ER) membrane it causes the release of
Ca2C from the ER, and this Ca2C in turn modulates the open probability of the IPR and ryanodine
receptors (RyR). Calcium fluxes are denoted by solid arrows. Calcium can be released from the
ER through IPR (JIPR) or RyR (JRyR), can be pumped from the cytoplasm into the ER (Jserca) or to
the outside (Jpm), can be taken up into (Juni), or released from (Jmito), the mitochondria, and can
be bound to (Jon), or released from (Joff), Ca2C buffers. Entry from the outside (Jin) is controlled
by a variety of possible channels, including store-operated channels (SOC), voltage-gated calcium
channels (VGCC), and receptor-operated channels (ROC)

type of Ca2C channel in which this behaviour was discovered [41]. RyR are
the predominant Ca2C release channels in skeletal and cardiac muscle.

• Reuptake of Ca2C into the ER/SR is done by SERCA pumps, which use the
energy of ATP to pump Ca2C up its concentration gradient.

• There are also important Ca2C fluxes to and from the mitochondria. However,
we shall not be considering such fluxes in detail here, as they tend to play less
important roles in many current models of Ca2C dynamics. As always, there are
multiple exceptions to this rule [23, 24, 31, 45, 59, 91, 92, 95, 106].
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Given these fluxes, one possible mechanism of Ca2C oscillations becomes a little
clearer. When an agonist binds to its receptor it begins the process that results in the
production of IP3. This initiates an explosive release of Ca2C from the ER/SR, via a
process of CICR. Once ŒCa2C� is high enough the IPR shuts and Ca2C efflux from
the ER/SR is terminated. As long as the IPR enters a refractory state, thus preventing
immediate reopening, Ca2C pumps can remove Ca2C from the cytoplasm and the
cycle can repeat. A similar process occurs through the RyR also, and in many cases
both IPR and RyR collaborate to produce the oscillations [133, 146, 149].

It is important to note that there are some cell types, most notably skeletal
and cardiac muscle, in which CICR is crucial for cellular function, but does not
result in sustained Ca2C oscillations. In skeletal and cardiac muscle, the entry of
a small amount of Ca2C through voltage-gated channels (in response to electrical
depolarisation) initiates CICR through RyR, which releases a large amount of Ca2C
into the cytoplasm, activating the contractile machinery and leading to contraction
of the cell. However, each Ca2C transient is caused by an action potential which
is generated elsewhere – for cardiac cells this is the sino-atrial node – and thus
the muscle cell itself exhibits no intrinsic oscillatory behaviour, at least under
normal conditions. It is possible to force cardiac cells into a regime where the
ER is overloaded with Ca2C, and will thus generate spontaneous rhythmic Ca2C
transients, but this is pathological behaviour. For this reason we shall spend less time
here considering Ca2C dynamics in cardiac and skeletal muscle. Interested readers
are referred to the comprehensive reviews of [8, 40].

We have described above one possible mechanism that can cause Ca2C oscilla-
tions. However, there are many others [30, 44, 73, 114]. For example, Ca2C can
affect the production and the degradation of IP3, forming both positive and negative
feedback loops which are theoretically capable [37, 105] of generating oscillations
(Fig. 3).

It is very important to understand that, although Ca2C oscillations may look quite
similar in different cell types, with similar periods and shapes, such similarity in
appearance can be quite deceptive. Different cell types can, and in general do, have
quite different mechanisms generating their Ca2C oscillations, and it is unwise to
extrapolate mechanisms from one cell type to another, based solely on a desire for
simplicity and a fortuitous convergence of appearance. Thus, although the basic
toolbox (see section 2) is the same from one cell to another, the way in which those
tools are combined and used can be quite different, and each cell must be treated on
its own merits.

When Ca2C release occurs in a particular part of the cytoplasm, Ca2C can diffuse
to neighbouring release sites (either IPR or RyR) and initiate further release of Ca2C
there, thus propagating a travelling wave of increased ŒCa2C�. In such a way are
oscillations converted to periodic waves. These waves travel at approximately 10–
15 �ms�1 and, in larger cell types such as the Xenopus oocyte, can form spiral
waves and target patterns [83]. Calcium waves can also travel between cells, in
regions extending over many cells [85], although this review shall not discuss such
intercellular waves at all.
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Fig. 3 Schematic diagram of some of the interactions between Ca2C and IP3. Calcium can activate
PLC, leading to an increase in the rate of production of IP3, and it can also increase the rate at which
IP3 is phosphorylated by the 3-kinase. The end product of phosphorylation by the 3-kinase, IP4,
acts as a competitive inhibitor of dephosphorylation of IP3 by the 5-phosphatase. Not all of these
feedbacks are significant in every cell type

It is not the purpose of this review to enumerate and discuss all the possible ways
in which Ca2C oscillations and waves are thought to arise in different cell types, as
this would be a Herculean task. Instead we shall focus on a mathematical analysis
of a few of the major mechanisms. The techniques we discuss here will be equally
applicable to all the other oscillatory mechanisms and models.

The variety of mechanisms underlying Ca2C oscillations and waves is matched
by their variety of physiological function. We have already seen specific examples
of how Ca2C oscillations control the contraction of smooth muscle, the transport
of water by exocrine epithelia and the secretion of hormones. However, Ca2C
oscillations are also known to control fertilisation, proliferation, cell metabolism,
vesicle secretion, and even information processing in neurons. Again, we shall not
discuss such matters in this review, but refer instead to the many excellent reviews
on the topic [4, 5, 39, 44].
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1.2 Overview of calcium models

There are two major types of model of Ca2C dynamics: the spatially homogeneous
model, which assumes a well-mixed cell and uses ordinary differential equations,
and the spatially inhomogeneous model, which allows for spatial variation of ŒCa2C�

and uses partial differential equations (usually a reaction-diffusion equation). Within
each of these divisions, models can be deterministic or stochastic, and can be
essentially arbitrarily complex. PDE models, in particular, can become extremely
complex, with microdomains of Ca2C, i.e., small localised regions where, because
of geometric restrictions, the Ca2C concentration is orders of magnitude higher than
in other parts of the cell.

It is important to note that the type of model one constructs is not essentially
dependent on what is believed to be the “real” situation. For example, it is perfectly
well known that cells are not well mixed, and that ŒCa2C� is not even close to
homogeneous. Nevertheless, a well-mixed model can still be a useful tool, guiding
new experimental results and making testable predictions. Similarly, we know also
that, at the highest level of detail, the release of Ca2C through either IPR or RyR is
inherently a stochastic, not a deterministic process. In some situations this matters,
and stochastic models must be used. In other cases, stochastic aspects are less
important.

In other words, we construct models, not to be the most detailed and accurate
representation of what we believe is the true situation, but to be useful tools to guide
our understanding. Depending on what we wish to understand, we construct a model
to suit our needs. This is something that is worth emphasising. It is not uncommon
for models to be criticised for omitting aspects that exist in the real cell. Since it is
hardly possible for models to do otherwise, such criticisms are facile. What really
matters is whether or not the model contains the mechanisms that matter for the
particular question under investigation.

Conversely, modellers commonly make an analogous mistake; often they con-
struct a model, show that some solutions look the same as experiments, and claim
success. This is, of course, equally as facile as the criticisms mentioned above. A
similarity of appearance is rarely a guide to underlying mechanism. It is not until the
model is used as a predictive tool, and not until experiments are done to test these
model predictions, that a model is useful. It matters not whether the experiments
confirm or reject the model predictions. The important thing is that the model has
been used to advance our understanding.

Whether the model consists of ODEs or PDEs, the basic approach is similar.
There are certain cellular components which tend to be common across all cell
types, and have reasonably standard models. For instance, the SERCA pumps that
transport Ca2C from the cytoplasm, up its concentration gradient into the ER or SR,
are ubiquitous, and tend always to be modelled in similar ways. Similarly, there are
voltage-gated Ca2C channels, IPR and RyR, Ca2C buffers, and various other Ca2C
channels, pumps and exchangers, each of which tends to come with a relatively
well-accepted model.
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Thus, one useful concept is that of a Ca2C “toolbox” [6]. This toolbox contains
a variety of Ca2C transport mechanisms, or modules, from which we can select the
most appropriate to build a model in any particular situation. The question of model
construction then comes down, in essence, to selection of which modules are the
best to use (given the question under consideration), and which is the best model to
use for each module. Of course, since there are a very large number of modules in
our Ca2C toolbox, and many models for each module, one can obtain almost infinite
variety.

1.3 Stochastic versus deterministic models

One of the major current questions in the field of Ca2C modelling is whether to use
a stochastic or a deterministic model, and this is a question where the “reality” of
the cell’s behaviour is of less use than one might think.

High resolution measurements of Ca2C concentration have shown that, in many
cell types (most likely all relevant cell types), at low agonist concentrations Ca2C
release occurs as a series of small, punctate releases, either from a single IPR (a
Ca2C blip), a group of IPR (a puff) or a group of RyR (a spark) [12, 15, 17, 22, 60,
94, 135, 154]. These releases occur stochastically, due to the stochastic opening and
closing of the IPR or RyR. If release from one cluster of IPR is large enough, Ca2C
can spread to neighbouring clusters of IPR, initiating puffs there, and all the puffs
can combine into a global wave [120, 152].

One can now imagine a stochastic scenario for the generation of periodic Ca2C
waves. Every so often, just by random chance, one cluster will fire strongly enough
to initiate such a global wave. Once the Ca2C concentration returns to baseline after
the wave, there will be a random waiting time before the next cluster initiates the
next wave, and thus the waiting time between waves, i.e., the wave period, is set by
the waiting time between cluster firings, not by any deterministic limit cycle in the
dynamics of the cluster.

Such a stochastic mechanism is relatively easily identified experimentally. A
purely stochastic wave activation process will result in the wave initiation times
being distributed in a Poisson distribution, in which the mean is equal to the standard
deviation. Thus, if a plot of the mean wave period versus the standard deviation
(for a variety of waves of different periods, found, for example, by using different
agonist concentrations) sits close to the line y D x C b, for some b > 0, this is
a clear indication that the waves are being initiated by a Poisson process, with a
refractory period (presumably set by some other deterministic process) of b. Note,
of course, that if the waves are generated by a purely deterministic process, the
standard deviation of the period (for each fixed agonist concentration) is zero.

When one measures the ratio of the mean to the standard deviation (i.e., the
coefficient of variation, or CV) of the distribution of wave periods, in many cell
types the CV turns out to be close to 1. Even for oscillations like those shown in
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Fig. 1A, which look to the naked eye as if they are generated by a deterministic
process, more detailed studies show that, for a range of IP3 concentrations, the CV is
close to 1 (unpublished results), and thus these oscillations are initiated by a Poisson
process. Similar results are found in other cell types [120, 137]. Hence, the weight
of evidence suggests that most, and probably all, Ca2C waves are generated by a
stochastic, rather than a deterministic process.

However, although this might be the case in reality, the implications for
modelling are not clear. It might be tempting to discard all deterministic models
as being “wrong”, but this would be a poor solution to a difficult question. As is
already well established, all models are “wrong”, but many remain useful. In fact,
deterministic models, despite their lack of stochastic reality, do seem to abstract
and describe mechanisms that are crucial for oscillations. Deterministic models
have been used in a variety of cell types to make predictions about cell behaviour,
and these predictions have been confirmed experimentally, leading, for example, to
greatly increased understanding of the interplay between RyR and IPR in airway
smooth muscle [149], or the role of Ca2C influx [129].

Recently, a consensus has begun emerging in the Ca2C modelling community
that both stochastic and deterministic models are valuable, and that both are needed
for a complete understanding of how Ca2C oscillations are generated and controlled.
Both are, in essence, putting a face on the actual underlying mechanisms —
pumping of Ca2C into the ER, depletion of the ER, Ca2C fluxes through IPR and
RyR, and so on — and although the faces differ in detail, the machinery behind them
remains similar in many respects. Thus a deterministic model, although ignoring the
details of stochastic wave initiation, can remain a highly useful predictive tool, while
stochastic models can, in their turn, provide a more solid understanding of exactly
how and when each Ca2C spike occurs.

So, with the caveat that deterministic models of Ca2C oscillations and waves
must be approached with care, and one should never have too much faith in their
immediate physical reality, in the remainder of this article will shall restrict our
attention to just such models.

1.4 Excitability

One of the most important features of Ca2C dynamics is the property of Ca2C
excitability [74, 88], where a small amount of Ca2C release initiates the release
of a larger amount of Ca2C, in a positive feedback process. When first discovered in
skeletal muscle this property was called Ca2C-induced Ca2C release, or CICR [41].

CICR can arise in two different ways. Firstly, it can arise through modulation by
Ca2C of the IPR or RyR open probability; for example, the open probability curve
of the IPR is bell-shaped, increasing at low Ca2C concentrations, and decreasing
at high Ca2C concentrations. Thus, at low Ca2C concentrations, an increase in
Ca2C concentration leads to an increase in the open probability of the IPR, and
hence positive feedback. The details differ between IPR subtypes, but the qualitative
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behaviour is similar ([50] shows a wide selection of different steady-state curves
from various cell types and IPR subtypes, all showing the same fundamental bell
shape). At low Ca2C concentrations RyR exhibit a similar behaviour, in that an
increase in Ca2C concentration leads to a greater open probability of the RyR and
thus CICR. At high Ca2C concentrations the steady-state properties of the RyR
are less clear, and there remains controversy over whether the RyR closes again
at physiological Ca2C concentrations, and what role such closure might play in
excitation-contraction coupling [16, 47, 46, 58, 153].

The second way that CICR can arise is through a dynamic process, in which
the activation of the IPR by Ca2C is faster than its inactivation by Ca2C leading to
an initial large increase in Ca2C release followed by a slower decline to a lower
steady value [36, 48, 50, 66]. In this case, the CICR is a result of the differing time
scales of IPR activation and inactivation. If CICR arises from this dynamic process,
then it is largely independent of the shape of the steady-state open probability
curve. In reality, IPR have both a bell-shaped steady-state curve as well as a time
separation between Ca2C-induced activation and Ca2C-induced inactivation. It is
thus not necessarily obvious which of these mechanisms underlies any particular
experimental observation of CICR; most models, either deterministic or stochastic,
incorporate aspects of both mechanisms [2, 33, 43, 120, 126, 137].

As a result of CICR, Ca2C release through IPR and RyR is an autocatalytic,
or positive feedback, process, similar in many aspects to the excitability seen in
the membrane potential of a neuron [65]. In neurons, the positive feedback occurs
via voltage-dependence of the NaC channel, which causes a fast depolarisation
of the cell. (Excitability of the NaC channel arises from the fast activation and
slow inactivation of the channel by the membrane potential [73].) Thus, standard
excitable models, such as the FitzHugh-Nagumo model, have often been used in
models of Ca2C oscillations and waves [21, 127, 141, 142].

However, despite the similarities between the systems, models of Ca2C dynamics
differ in important ways from models of other excitable systems. We shall explore
some of these differences in this review.

2 ODE models

If a cell is assumed to be well mixed, a typical equation for the Ca2C concentration
expresses simply the conservation of Ca2C.

A simple example is shown in Fig. 4. There, the shaded area is the endoplasmic
reticulum (ER), and there are five fluxes into or out of the cytoplasm. Two of
those fluxes, Jin (a generic influx of Ca2C, possibly through store-operated channels,
agonist-operated channels, or voltage-dependent Ca2C channels) and Jpm (the flux
through the plasma membrane ATPase pumps), are across the plasma membrane,
while the other three, JRyR (the flux through RyR), JIPR (the flux through IPR)
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Ca2+

Jin

Jpm

Jserca

JIPR

JRyR

ER

Fig. 4 Schematic diagram of a simple spatially homogeneous Ca2C dynamics model, with five
fluxes. In this model, Ca2C is pumped into the ER from the cytoplasm by SERCA pumps (Jserca),
is pumped out of the cell by plasma membrane ATPase pumps (Jpm), enters the cytoplasm from
the outside through some unspecified entry pathway (Jin), and enters the cytoplasm from the ER
through two channels, the IPR and the RyR

and Jserca (the flux through the SERCA pumps) are across the ER membrane. (For
simplicity we ignore Ca2C buffering for now. This is dealt with in detail in the next
section.)

If we let c and ce denote the Ca2C concentration in the cytoplasm and ER,
respectively, with respective volumes V and Ve, then conservation of Ca2C gives

d

dt
.cV/ D Jin � Jpm C JIPR C JRyR � Jserca; (2.1)

d

dt
.ceVe/ D �JIPR � JRyR C Jserca; (2.2)

where each J is in units of moles per second.
As long as the volumes of the cytoplasm and ER remain constant, we can divide

out the volumes to get

dc

dt
D 1

V
.Jin � Jpm C JIPR C JRyR � Jserca/; (2.3)

dce

dt
D � 1

Ve
.�JIPR � JRyR C Jserca/: (2.4)

In simple models like this it is usual to rescale all the fluxes, so that they have units
of moles per time per cytoplasmic volume. Thus, we define, for example, a new
QJin D Jin=V , and rewrite both equations in these new units.

If we do this, and then (for notational convenience) drop the tildes, we get

dc

dt
D JIPR C JRyR � Jserca C Jin � Jpm; (2.5)
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dce

dt
D 
.�JIPR � JRyR C Jserca/; (2.6)

where 
 D V
Ve

. The factor of 
 appears since the flux of x moles from the cytoplasm
to the ER causes a different change in concentration in each compartment, due to
their different volumes. Each J is in units of moles per cytoplasmic volume per
second.

Now one selects whichever model one wishes for each of the individual fluxes
to complete the model construction. In general, each of these fluxes will involve
other dynamic variables, which increases the total number of differential equations.
Simpler models will have only two equations, more complex models typically have
as many as eight, or even more.

We emphasise that, although this simple model omits a vast amount of the
known complexity in Ca2C signalling (such as microdomains, the influence of the
mitochondria, and direct effects of the membrane potential), it is still (as we shall
see) a useful tool for the study of the mechanisms underlying Ca2C oscillations, in
some conditions.

2.1 Calcium buffering

Calcium is heavily buffered in all cells, with at least 99% (and often more) of the
available Ca2C bound to large Ca2C-binding proteins. For example, calsequestrin
and calreticulin are major Ca2C buffers in the ER and SR, while in the cytoplasm
Ca2C is bound to calbindin, calretinin and parvalbumin, among many others.
Calcium pumps and exchangers and the plasma membrane itself are also major
Ca2C buffers. In essence, a free Ca2C ion in solution in the cytoplasm cannot do
much, or go far, before it is bound to something.

The basic chemical reaction for Ca2C buffering can be represented by the
reaction

P C Ca2C
k
C�! �

k
�

B; (2.7)

where P is the buffering protein and B is buffered Ca2C. Letting b denote the
concentration of buffer with Ca2C bound, and c the concentration of free Ca2C,
a simple model of Ca2C buffering is

dc

dt
D f .c/ C k�b � kCc.bt � b/; (2.8)

db

dt
D �k�b C kCc.bt � b/; (2.9)
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where k� is the rate constant for Ca2C release from the buffer, kC is the rate constant
for Ca2C uptake by the buffer, bt is the total buffer concentration and f .c/ denotes
all the other reactions involving free Ca2C (release from the IP3 receptors, reuptake
by pumps, etc.). Note that, from conservation of buffer molecules, ŒP� C b D bt.

If the buffer has fast kinetics, its effect on the intracellular Ca2C dynamics can
be analysed simply [147]. If k� and kCc0, where c0 is some natural scale for the
Ca2C concentration (often around 1 �M), are large compared to the time constant
of Ca2C reaction (for example, the speed of release through the IPR or uptake by
SERCA pumps), we take b to be in the quasi-steady state

k�b � kCc.bt � b/ D 0; (2.10)

and so

b D btc

K C c
; (2.11)

where K D k�=kC. Adding (2.8) and (2.9), we find the “slow” equation

d

dt
.c C b/ D f .c/; (2.12)

which, after using (2.11) to eliminate b, becomes

dc

dt
D f .c/

1 C �.c/
; (2.13)

where

�.c/ D btK

.K C c/2
: (2.14)

Note that we assume that bt is a constant. Hence, fast Ca2C buffering simply adds a
Ca2C-dependent scaling factor to all the fluxes.

If the buffer is not only fast, but also of low affinity, so that K � c, it follows
that

� � bt

K
; (2.15)

a constant. Such a constant, multiplying all the fluxes in the model, can be simply
incorporated into the other rate constants, and ignored henceforth, with the proviso
that all fluxes must be interpreted as effective fluxes, i.e., that portion of the actual
flux that contributes to a change in free ŒCa2C�. Hence although it might appear at
first glance that equation (2.5) ignores Ca2C buffering, that is not the case. Rather,
it is just assuming that Ca2C buffering is fast and linear, and thus that all fluxes are
effective fluxes.
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There have been a number of studies of the effects of nonlinear buffers on the
dynamics of Ca2C oscillations (for example, see [52] or [42]), but these results
are beyond the scope of this review. In general, the qualitative effects of nonlinear
buffers are small, except in certain narrow parameter regimes. In this review we
shall mostly just assume that buffering is fast and linear, and thus does not appear
explicitly. An asymptotic analysis of Ca2C buffering was performed by [121]; other
important theoretical papers on Ca2C buffering are [98, 100, 122, 123, 128, 141].

2.2 Modelling the calcium fluxes

In order to construct a specific realisation of (2.5) and (2.6), we need first to decide
how to model each of the calcium fluxes in those equations. Since there is an
enormous range of possible choices, we shall focus only on a few selected models.

2.2.1 IPR fluxes

Probably the most important, and the most difficult to model, fluxes are those
through the IPR and RyR. IPR models have had a long and complicated history,
starting from the earliest models of [33] and [55], through to the most recent models
based on single-channel data [18, 118, 116]. Earlier models are reviewed in [126].

All these models share one crucial feature – that the steady-state open probability
of the IPR is a bell-shaped function of ŒCa2C� (Fig. 5), as has been shown

μ

μ

μ

μ

Fig. 5 Open probability (Po) of the IPR as a function of Ca2C is bell-shaped, increasing at lower
ŒCa2C� and decreasing at higher ŒCa2C�. Open squares are data from type I IPR, measured at 10
�M ŒIP3� [148], and the smooth curves are from the model of [18]
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experimentally many times [50]. However, there are many different ways of
attaining such a steady-state curve, and many different ways of modelling the
dynamic features of the IPR.

In earlier models [33, 2, 125], the most important basic dynamic property of IP3

receptors is that they respond in a time-dependent manner to step changes of Ca2C or
IP3. Thus, in response to a step increase of IP3 or Ca2C the receptor open probability
first increases to a peak and then declines to a lower plateau. This decline is called
adaptation of the receptor, since the open probability adapts to a maintained Ca2C
or IP3 concentration. If a further step is applied on top of the first, the receptor
responds with another peak, followed by a decline to a plateau. In this way the IPR
responds to changes in ŒCa2C� or ŒIP3�, rather than to absolute concentrations.

One popular model is one of the earliest, due to De Young and Keizer [33].
In this model, it is assumed that the IP3 receptor consists of three equivalent and
independent subunits, all of which must be in a conducting state for there to be Ca2C
flux. Each subunit has an IP3 binding site, an activating Ca2C binding site, and an
inactivating Ca2C binding site, each of which can be either occupied or unoccupied,
and thus each subunit can be in one of eight states.

Simplification by Li and Rinzel [86] of this eight-state model led to the model

Po D
�

pcr

.p C K1/.c C K5/

�3

; (2.16)

�r.c; p/
dr

dt
D r1.c; p/ � r; (2.17)

where Po is the open probability, p is ŒIP3�, K1 and K5 are constants, and r is the
fraction of receptors that have not been inactivated. The functions �r and r1 are
given in detail in [86]. Writing the model in this form emphasises the mathematical
similarities with the model of the NaC channel in the Hodgkin-Huxley model [65],
thus highlighting their common feature of excitability.

A similar model, that appeared at the same time as the De Young and Keizer
model, is due to Atri et al. [2] and takes a slightly simpler form. In the Atri model,
the open probability of the IPR is assumed to take the form

Po D kf

�
�0 C �1p

k� C p

��
b C .1 � b/c

k1 C c

�
r; (2.18)

�
dr

dt
D k2

2

k2
2 C c2

� r: (2.19)

Thus, Po is an increasing function of the IP3 concentration, and, over fast time
scales, an increasing function of c also. However, on the time scale set by � , r acts
as a Ca2C-dependent inactivation variable, and causes Ca2C-dependent and time-
dependent inactivation of the receptor. (As in the Li-Rinzel model, r denotes the
fraction of receptors that have not been inactivated by Ca2C). Overall, this model
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gives a bell-shaped steady-state open probability curve, as seen experimentally, but
has no satisfactory biophysical basis for the various terms.

Mathematical studies of Ca2C dynamics have tended to use early IPR models,
such as the ones described above. However, the most recent data have shown that
the details of these early IPR models are not correct. We now know that the IPR
exists in two (or possibly more) “modes” [18, 67, 93, 116, 118]. In one mode
(sometimes called the Park mode) the receptor is mostly closed, while in the other
mode (the Drive mode) the receptor is mostly open. Transitions between the two
modes are controlled by ŒCa2C�, ŒIP3� and [ATP], among other things, but transitions
within each mode are independent of these ligands. Such modal behaviour cannot
be reproduced by most early models, which have the incorrect Markov structure.
In addition, the early models do not usually give the open-time and closed-time
distributions (to choose two statistics in particular) that have been observed in the
most recent single-channel data from nuclear patch clamp studies.

Nevertheless, although the details of the early models are incorrect, the fun-
damental IPR properties remain the same. For example, [18] has shown that fast
Ca2C-induced activation followed by slow Ca2C-induced inactivation remain as
crucial ingredients in these recent modal models.

For this reason, we shall focus here on mathematical studies of Ca2C models
based on older IPR models. When the newer generation of IPR models come to
be incorporated into whole-cell models, the mathematical techniques (and dangers
thereof) will remain the same.

2.2.2 RyR fluxes

The selection of RyR models is similarly complex. Some models [51] are based
on simple and heuristic CICR, and fit data well, while a variety of other models,
mostly designed for use in cardiac cell models [57, 56, 132, 151], incorporate
multiple receptor states and stochastic behaviour. Because the literature on cardiac
cells, skeletal muscle, RyR models and excitation-contraction coupling is so vast,
we cannot even begin to do it justice in this review. Thus, we shall take the
opposite approach and simply not discuss these areas at all (except in some
restricted cases). The reviews of [8, 46] give excellent entries to the field, as do
[7, 17, 16, 56, 115, 132, 145, 151].

2.2.3 Calcium pumps

Experimental data indicate that SERCA pumps transfer two Ca2C ions across the
ER/SR membrane per cycle [14, 89, 97, 138]. Thus, the most common way to model
the Ca2C flux, Jserca, due to SERCA pumps, is to use a simple Hill equation, with
Hill coefficient of two. Thus,
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Jserca D Vmc2

K2
m C c2

:

The parameter Km we know to be approximately 0.27 �M, while Vm, which depends
on the density of SERCA pumps, can vary substantially depending on the cell type.

It is worth noting that this equation for Jserca contains within it a host of
simplifications. More detailed models of SERCA pumps [63, 77, 89, 138] involve
multiple states, with the pump protein moving between these states to pick up
Ca2C ions on one side of the ER membrane and release them on the other. More
accurate models of SERCA pumps would take these states into account, as well as
keeping track of all the Ca2C bound to the pump protein. ([73] gives an introductory
discussion of a range of SERCA models, ranging from the simplest, to more
complex versions.) Although such detailed models appear to cause little change
in dynamic behaviour [63] one should keep in mind that the simplifications used to
obtain Jserca (for example, quasi-steady-state approximations) are of the exact same
type as those used to simplify Ca2C models, as discussed in this review, and come
with all the same caveats and potential for complications.

2.2.4 Calcium influx

Over recent years it has become clear that the influx of Ca2C into the cell from
outside is no simple matter [112, 117, 124, 131]. It is controlled by a variety of
proteins that are themselves controlled by a variety of factors such as arachidonic
acid, or the concentration of Ca2C in the ER. For some of these influx pathways
geometrical factors, such as the close apposition of the ER and the plasma
membrane, play a significant role.

However, for the purposes of the discussion here, we can divide all Ca2C influx
pathways into three major types.

1. Voltage-dependent Ca2C channels, or VDCCs [19]. These open in response to
depolarisation of the cell membrane, and play a vital role in excitable cells such
as skeletal and cardiac muscle, in some smooth muscle cells, in neuroendocrine
cells, and in a variety of neuronal cell types.

2. Receptor-operated channels, or ROCs [70]. Some Ca2C influx pathways open
in response to agonist stimulation, often via the production of arachidonic
acid. Thus, Ca2C influx is usually modelled as an increasing function of
agonist concentration. The exact mechanisms of this dependency are, in general,
unknown, so detailed models of ROCs are not realistically possible at this stage.

3. Store-operated channels, or SOCs [103]. Severe depletion of the ER causes the
opening of Ca2C channels in the cell membrane, via a process involving ORAI
and STIM molecules. This is an important influx pathway under conditions of
high prolonged agonist concentration, but will play little role in our analysis here.



72 V. Kirk and J. Sneyd

2.3 Model classification

2.3.1 Open cell/Closed cell models

One common experimental technique is to remove Ca2C from outside the cell,
and observe how this affects the intracellular Ca2C oscillations. In many cases the
oscillations continue for a considerable time before finally running down (due to
the progressive loss of Ca2C from the cell), while in other cases the oscillations are
terminated immediately. This has motivated the detailed study of the effects of Ca2C
entry on oscillatory properties.

To study the effects of Ca2C entry, models are generally constructed in two
different classes.

• Open cell models are those in which Ca2C is allowed to enter and leave the
cell freely across the plasma membrane. Thus, such models include Ca2C influx
pathways and plasma membrane Ca2C pumps, and the total amount of Ca2C in
the cell is not conserved.

• Closed cell models are those in which all Ca2C transport across the plasma
membrane, both inward and outward, is blocked. Note that a closed cell model
does not correspond exactly to the experimental situation of low external
Ca2C concentration, but will approximate the situation at the beginning of the
experiment. It is possible experimentally to block the plasma membrane Ca2C
pumps also, using high concentrations of ions such as lanthanum, but these are
more difficult experiments to perform and more difficult to interpret, due to the
varied effects of lanthanum.

2.3.2 Class I/Class II models

The second way in which Ca2C oscillation models are typically classified is with
respect to the behaviour of IP3. In some cell types, Ca2C oscillations occur when
IP3 concentration is constant, and such oscillations are believed to be caused by the
intrinsic dynamics (i.e., the fast activation and slower inactivation by Ca2C) of the
IPR [130]. Models of such oscillations are called Class I models. In other cell types,
Ca2C oscillations are necessarily accompanied by IP3 oscillations, and if those IP3

oscillations are blocked, so are the Ca2C oscillations. In such cells, the feedback
loops illustrated in Fig. 3 are an integral part of the oscillation mechanism. Such
models are called Class II models. Models which partake both of Class I and Class
II properties are called hybrid models [35]. Although, realistically, every cell type
will have both Class I and Class II mechanisms to differing degrees, and thus should
be modelled by a hybrid model, it is useful to make this distinction, and to study the
behaviour of pure Class I and II models.

It is also important to note that Ca2C oscillations can also be generated by the
entry and exit of Ca2C from the cell. Such oscillations cease immediately upon
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removal of extracellular Ca2C, and thus require an open-cell model. However,
models of this type are neither Class I nor Class II. A simple example of this type
of model is discussed in Section 5.3.

2.4 A simple example: the combined model

All these concepts, and the various types of models, can be simply illustrated by a
single set of equations [35]. For convenience, we shall call this model the combined
model, as it combines both Class I and Class II mechanisms in such a way that it is
simple to switch from one class of model to the other.

As usual, we let c and ce denote, respectively, the concentrations of Ca2C in the
cytoplasm and the ER, we let p denote the IP3 concentration, and we let r denote
the fraction of IPR that have not been inactivated by Ca2C (as in the Atri model
described above).

dc

dt
D JIPR � Jserca C ı.Jinflux � Jpm/; (2.20)

dce

dt
D 
.�JIPR C Jserca/; (2.21)

dp

dt
D �

�
1 � ˛k4

c C k4

�
� ˇp; (2.22)

dr

dt
D 1

�

�
k2

2

k2
2 C c2

� r

�
; (2.23)

where

JIPR D
�

kflux

�
�0 C �1p

k� C p

��
b C V1c

k1 C c

�
r

�
.ce � c/; (2.24)

Jserca D Vec

Ke C c
; (2.25)

Jpm D Vpc2

k2
p C c2

; (2.26)

Jinflux D ˛1 C ˛2

�

ˇ
: (2.27)

We note a number of things about this model.

• It uses the Atri model of the IPR [2], and the IPR flux is multiplied by the term
ce � c, so that it depends on the Ca2C concentration gradient between the ER and
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the cytoplasm. It could, just as easily, have used one of the other IPR models in
the literature, and the results would, by and large, be qualitatively similar; our
choice of the Atri model is purely for simplicity.

• The SERCA pumps are modelled by a Hill function, with Hill coefficient 1. This
ignores cooperativity in the SERCA pumps, and thus is not the most accurate
assumption that can be made, but it simplifies the analysis somewhat, and has
little effect on the results we present here.

• The IP3 concentration, p, obeys its own differential equation, where the produc-
tion of p can be Ca2C-dependent, as long as ˛ ¤ 0. However, if ˛ D 0, the
equation for p essentially decouples. Hence, ˛ D 0 corresponds to a Class I
model.

• In the limit as � ! 0, r becomes an algebraic function of c. Thus, the case
� ! 0 and ˛ ¤ 0 corresponds to a Class II model, in which any oscillations are
governed by the interactions between c and p, not by the dynamics of the IPR.

• The parameter ı is introduced so that the rate of Ca2C transport across the plasma
membrane can be easily controlled. In many cell types ı is small compared to the
time scales of Ca2C transport and release through the IPR and SERCA pumps.

• The parameter � corresponds to the maximal rate of IP3 production, and is a
surrogate for the agonist concentration; as the agonist concentration increases,
both the rate of production of IP3 and the rate of Ca2C influx from the outside
increases. Thus, in this model, Ca2C influx is via receptor-operated channels.
Jinflux is a linear function of agonist concentration, an expression which has no
biophysical basis, but is merely the simplest possible way to make Ca2C influx
increase with agonist. As usual with models like this, many of the terms are
suggestive of what we believe are the actual mechanisms, but should not be
interpreted too literally.

A useful approach, that accentuates the difference between open cell models and
closed cell models, is to express the model in terms of a new variable, ct D cCce=
 ,
where 
 is the ratio of cytoplasmic to ER volume, as defined after eqn. (2.6). Thus, ct

is the total number of moles of Ca2C in the cell, divided by the cytoplasmic volume,
and is a measure of the Ca2C load of the cell, i.e., how much Ca2C the cell contains.
Using this new variable the first two model equations become

dc

dt
D JIPR � Jserca C ı.Jinflux � Jpm/; (2.28)

dct

dt
D ı.Jinflux � Jpm/: (2.29)

It is now clear that, as ı becomes smaller, ct becomes a slower variable than c,
and in the limit of ı D 0 we obtain a closed cell model.

Hence, by varying ˛, ı and � we can use this single set of equations to illustrate
both open and closed cell models, as well as Class I and Class II models.
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3 Bifurcation structure of ODE models

A natural first step towards understanding the dynamics of models such as the
combined model (i.e., equations (2.20)–(2.23)) is to construct a bifurcation diagram;
this allows us to locate parameter regimes in which behaviour of interest, such as
calcium oscillations, can occur. For most models, there are many possible choices
of bifurcation parameter, but it is common to choose as the main bifurcation
parameter a quantity that corresponds to something that is relatively easy to
manipulate experimentally. Doing so makes it easier to compare model output
to experimental results, and thus to validate the model or use model predictions
to inform experiments. For instance, in the combined model, we can choose � as the
primary bifurcation parameter; � corresponds to the maximal rate of IP3 production,
which is relatively easy to modify in an experiment since it is an increasing function
of the level of agonist applied to the cell.

Fig 6A shows a partial bifurcation diagram for the combined model, for the
choice ˛ D 1, � D 2 (i.e., a hybrid version of the model) and other parameters
as specified in Table 1 in the Appendix. Time series and phase portraits for two
choices of � are shown in the other panels. This bifurcation diagram is typical
of many models of intracellular calcium dynamics, in the sense that we see no
oscillations of ŒCa2C� for sufficiently small or sufficiently large �, but there is a
region of intermediate parameter values (between the points labelled HB1 and HB2)
in which there is a variety of different types of oscillation. This is what is seen
experimentally; at low agonist concentrations, there is not enough IP3 to open the
IPR, while at high agonist concentration, there is so much IP3 in the cell, and such a
high resting ŒCa2C�, that the IPR is again kept shut (remember that the steady-state
open probability curve of the IPR is bell-shaped, and so the IPR is closed at both
low and high ŒCa2C�).

One feature common to both the time series shown is that there are time
intervals in which there is very rapid increase or decrease of calcium concentration
interspersed with intervals of much slower change. These are typical solutions for
models with more than one time scale; in the case of the combined model, this
results in part from the choice ı D 0:01, which causes the variable ct to evolve
much more slowly than the variable c, at least for certain choices of the bifurcation
parameter, �, and in certain regions of the phase space. Methods for the analysis
of mathematical models with multiple time scales are well developed in general,
although only recently applied in a systematic way to models of calcium dynamics;
these methods are discussed further in section 3.1. For now, we note only that the
oscillation shown in panels B and C of Fig 6 is a relaxation oscillation, while that
shown in panels D and E is a mixed mode oscillation, and has a number of small,
subthreshold oscillations occurring between each pair of large spikes in calcium
concentration. Note that the subthreshold oscillations in panel D are of very small
amplitude, and are essentially invisible on the scale of the main panel. However,
the presence of these tiny oscillations can have a marked effect on the observed
dynamics, as will be discussed further in section 3.2. At values of � close to HB2, it
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Fig. 6 Partial bifurcation diagram and some time series and phase portraits for equations (2.20)–
(2.27), with ˛ D 1, � D 2 and other parameter values as in Table 1. Panel A shows the
bifurcation diagram, plotting the cytosolic calcium concentration, c, versus the maximal rate of
IP3 formation, �. The black curve shows the position of the steady state solution (dashed curve
when it is unstable, solid curve when it is stable). The red and blue curves indicate the maximum
amplitudes of stable and unstable periodic orbits, resp. Hopf bifurcations are labelled HB. The
inset shows the period of the branches of periodic orbit plotted in the main panel. Panels B and
D show time series for c for the attracting periodic solutions that occur at � D 2:0 and � D 0:4,
resp., with the insert to panel D showing an enlargement of part of the time series. Panels C and E
show the same solutions as in B and D, resp., projected onto the c-p plane
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is also possible to see attracting quasiperiodic oscillations, a feature quite commonly
seen in calcium models. Further detail about the bifurcations associated with this
and related models is contained in [35, 61] and [62].

Fig. 7A shows an analogous bifurcation diagram for the Class II version of
the same model, i.e., with ˛ D 1 and in the limit � ! 0. As can be seen, the
range of � values for which oscillations occur is much smaller than for the hybrid
model, and evidence in the time series for the existence of different time scales
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Fig. 7 Partial bifurcation diagram and a corresponding time series and phase portrait for the
combined model (equations (2.20)–(2.23)), with ˛ D 1 and in the limit � ! 0, and with other
parameter values as in Table 1. Panel A shows the bifurcation diagram, plotting the cytosolic
calcium concentration, c, versus the maximal rate of IP3 formation, �. The inset shows the period of
the branch of periodic orbits. Panel B shows a time series for c, for the attracting periodic solution
that occurs at � D 1:0, and panel C shows the same solution projected onto the c-p plane. Line
styles and labels are as in Fig 6
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is less pronounced. Similar time series (although with differing amplitudes of the
oscillations) occur for all values of � for which there are oscillations.

Note that Fig 6A is an incomplete bifurcation diagram for the associated model;
just the primary branches of periodic orbits are shown, and there are a number of
bifurcations along these branches that have not been identified here (e.g., at each
place where the stability of a periodic orbit branch changes). While a detailed
knowledge of the bifurcation structure of a model may be of interest from a
mathematical point of view, the details are frequently irrelevant from the point of
view of understanding the underlying physiology. Data from typical experiments
might consist of noisy time series of ŒCa2C� (or possibly both ŒCa2C� and ŒIP3�), from
which an approximate amplitude and frequency of the oscillation can be extracted,
but these may not be able to be directly compared with predictions from the model,
due to the large number of unknown parameters in the model. Furthermore, unstable
solutions will not be directly observed, and experimental time series may not have
enough precision or length to resolve other details, such as subthreshold oscillations.
We note, however, that an understanding of the mathematical details of model
dynamics, including unstable solutions, sometimes provides crucial insight into
physiological mechanisms that may underlie experimental observations; an example
of such a case is discussed in section 3.2.

3.1 Fast-slow reductions

ODE models of calcium dynamics frequently exhibit behaviour indicative of the
presence of different time scales in the problem, as discussed above, and a variety
of techniques that exploit the time scale separation may be helpful in the analysis
of these models. A first step in the process is identification of the time scales
present in the model. Sometimes, an understanding of the physiology underlying
the model assists this process. For instance, in many situations, the variation of the
total calcium (ct) in a cell is known to be slow relative to variations in cytoplasmic
or ER calcium concentrations (this was discussed above in the context of the
combined model) and ct can then be designated as a slow variable. There are good
physiological reasons for this; as discussed in Section 1.1, cells expend a great deal
of energy keeping cytoplasmic ŒCa2C� low, against a very large ŒCa2C� gradient. It
is thus desirable for cells to restrict severely the ability for Ca2C to cross the cell
membrane. Hence, background Ca2C influx into cells tends to be very slow, to be
matched by an equally slow background Ca2C removal from the cell.

However, beyond the designation of total calcium as a slow variable, the situation
can be quite complicated: there may be more than one slow variable or more
than two time scales, the relative speed of evolution of the variables may change
within the phase space, and intuition based on physiological considerations may be
misleading.

From a mathematical point of view, an approach that is frequently helpful
is to non-dimensionalise the model equations, then group variables according to
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their relative speed of evolution in the non-dimensional version of the model. For
instance, as discussed in [62], a non-dimensional form of equations (2.22), (2.23),
(2.28) and (2.29) can be obtained by introducing new dimensionless variables,
.C; Ct; P; t1/ with

c D Qc � C; ct D Qc � Ct; p D Qp � P; t D T � t1;

where Qc D 1 �M and Qp D 10 �M are typical concentration scales for calcium
and IP3, resp., and T D Qc=.ıVP/ D 100=24 s is a typical time scale for the
ct dynamics. (Note that the variable r was already dimensionless in the original
model.) This then leads to rescaled evolution equations:

ı
dC

dt1
D NJrelease � NJserca C ı.NJin � NJpm/;

dCt

dt1
D NJin � NJpm; (2.30)

dr

dt1
D 1

O�
�

k2
2

k2
2 C Q2

cC2
� r

�
;

dP

dt1
D O�

�
1 � k4˛

k4 C QcC

�
� ǑP;

with dimensionless parameters

O� D ı Vp

Qc
�; O� D Qc

Qp

�

ı Vp
; Ǒ D Qc

ıVp
ˇ; (2.31)

and corresponding dimensionless versions of the fluxes, NJrelease, NJserca, NJpm and
NJin. With the choice of parameters values given in Table 1, and for � values
corresponding to oscillatory solutions, we then find that the speeds of evolution
for the variables are O.102/ for C, O.1/ for Ct and P, and order O.1= O�/ for r. Thus,
if O� is O.1/, this system has one fast variable and three slow variables, while if O� is
O.ı/, there are two fast variables and two slow variables.

A common next step in the analysis of certain classes of model is to remove
fast variables using a quasi-steady state (QSS) approximation. The idea is that
certain variables may evolve so fast that their evolution equations can be replaced
by algebraic equations, thereby reducing the dimension of the model. For instance,
in equations (2.30), if O� is small enough (e.g., O.10�3/ or smaller), then r can be
regarded as the fastest variable of the model, and we might assume that dr=dt1 � 0

so that

r � k2
2

k2
2 C Q2

cC2
:
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The QSS approximation replaces r in the model by its QSS value, r1.C/:

r1 � k2
2

k2
2 C Q2

cC2
:

The model then reduces to three differential equations, and becomes a Class II
version of the model as discussed in section 2.4.

Although appealing from a modelling perspective, use of a QSS approximation
can lead to difficulties. As discussed in [157], QSS reduction can remove a Hopf
bifurcation from the dynamics or change the position or criticality of a Hopf
bifurcation. In such cases, the occurrence and/or nature of oscillations in the reduced
model may be significantly different to that for the original model, usually an
undesirable outcome. Further work on the effect of QSS reduction is underway,
but early results [157] suggest that singular Hopf bifurcations [13] (in which both
fast and slow variables are involved in the bifurcation, and which are common in
models of biophysical systems) may be relatively unaffected by QSS reduction.

A different reduction technique that has had some success in explaining the
dynamics of calcium models involves effectively removing one of the slow variables
by treating it as a parameter. This method was pioneered by Rinzel [108] in his
classic study of bursting electrical oscillations in pancreatic beta cells, and has since
been widely used in the study of a range of oscillating biophysical models. The
idea is that characteristics of an attracting solution occurring at a particular value
of the genuine bifurcation parameter can be understood by comparing it with the
bifurcation diagram obtained by fixing the genuine bifurcation parameter but using
the slowest variable as a parameter.

For instance, for the Class II version of the combined model expressed in .c; ct; p/

coordinates, i.e., equations (2.22), (2.28) and (2.29) with ˛ D 1 and r.c/ D k2
2

k2
2Cc2

,

the variable ct is slowest so long as ı is sufficiently small. One can then remove the
dct=dt equation and treat ct as a constant where it appears elsewhere in the model,
then construct a bifurcation diagram using ct as the bifurcation parameter. For the
choice � D 1:0, this method results in the bifurcation diagram shown in black in
Fig 8. After superimposing on this bifurcation diagram the attracting orbit of the
full problem, with ct allowed to vary but with � still fixed at the same value, and
with ı D 0:0001, it can be seen that the orbit (shown in red in Fig 8) moves slowly
near the stable branches of the bifurcation diagram, in a direction determined by the
true value of dct=dt, and makes fast jumps between branches when it reaches the
end of a stable section of the bifurcation diagram. In this way, the fast-slow nature
of the orbit of the original problem with ı D 0:0001 can be ‘understood’ in terms
of the bifurcation diagram of the system obtained by ‘freezing’ the slow variable ct.
By varying the value of the fixed (genuine) bifurcation parameter, one can then
explain transitions between different types of orbit in the full system.

There are a number of potential difficulties with the use of this ‘frozen’ system
approach. First of all, it presumes that a single globally valid slowest variable can
be identified; in reality, variables may have different relative speeds of evolution in
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Fig. 8 Bifurcation diagram of the ‘frozen’ Class II combined model, equations (2.22) and (2.28)

with r.c/ D k2
2

k2
2Cc2 and ct treated as the bifurcation parameter. Parameter values are � D 1:0,

˛ D 1 and other constants as in Table 1. The black curve indicates steady states of the frozen
system; the upper and lower branches are stable, the middle branch is unstable. The red (resp. blue
and green) curve shows a solution of the full Class II system for ı D 0:0001 (resp. 0.001 and 0.01)

different parts of the phase space and at different values of the bifurcation parameter.
Even if a slowest variable is identifiable, it may not be sufficiently slow for the
method to be useful. For instance, Fig 8 shows orbits of the Class II combined model
for the choices ı D 0:01; 0:001 and 0:0001. Without a proper time scale analysis, it
is not known in advance how small ı needs to be for the ‘frozen’ system approach to
be useful, but it is apparent from Fig 8 that ı D 0:01 is not small enough (the orbit
with this value of ı does not follow branches of the frozen bifurcation diagram) and
that ı D 0:001 is marginal.

Second, many systems have more than one variable evolving on the slowest time
scale; while it is possible to adapt the method to the case of two slow variables,
the method rapidly becomes cumbersome. Third, this method may not give accurate
information about the regions of transition from fast to slow sections of an orbit,
which occur when the distinction between ‘fast’ and ‘slow’ variables is lost; these
regions are often highly significant for distinguishing between different mechanisms
in the dynamics (for instance, the difference between the relaxation oscillations and
mixed mode oscillations shown in Fig. 6 occurs precisely at the point where the
oscillations change from fast to slow evolution, and these differences are crucial for
understanding some phenomena (see section 3.2)). Finally, limited information is
provided by the method about the robustness of orbits to changes in the genuine
bifurcation parameter.
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A more rigorous approach involves the use of geometric singular perturbation
theory (GSPT). The idea is to define one or more small parameters in the model.
By regarding the model system as a perturbation from a limiting case in which the
small parameter(s) tend to zero, it may be possible to extract useful information
about the mechanisms underlying complicated dynamics in the original model. For
instance, for system (2.30) in the case that O� is O.ı/, we can introduce a small
singular perturbation parameter , and rewrite the model as


dC

dt1
D NJrelease � NJserca C ı.NJin � NJpm/

dCt

dt1
D NJin � NJpm (2.32)

dr

dt1
D 1

O�
�

k2
2

k2
2 C Q2

cC2
� r

�

dP

dt1
D O�

�
1 � k4˛

k4 C QcC

�
� ǑP;

As  ! 0, system (2.32) tends to a singular limit, usually called the reduced system.
We can regard equations (2.30) as a perturbation of the singular limit, resulting from
the choice  D 0:01.D ı/ in equations (2.32). Alternatively, one can rewrite these
equations using a fast time scale, t D t1=, which yields

dC

dt
D NJrelease � NJserca C ı.NJin � NJpm/

dCt

dt
D  NJin � NJpm (2.33)

dr

dt
D 

1

O�
�

k2
2

k2
2 C Q2

cC2
� r

�

dP

dt
D  O�

�
1 � k4˛

k4 C QcC

�
� ǑP;

Equations (2.32) and (2.33) are equivalent for  ¤ 0, but taking the limit as  ! 0 of
equations (2.33) produce a different singular system, known as the fast subsystem.

In the case that a model has two well-separated time scales, GSPT allows one
to make predictions about the nature of oscillations occurring in the model, based
on knowledge of the dynamics of the reduced system and the fast subsystem. The
idea is to construct a singular periodic orbit consisting of alternating fast and slow
segments; fast segments are solutions to the fast subsystem and slow segments are
solutions of the reduced system. In the simplest cases (including the case where
there is just one slow variable) a singular periodic orbit perturbs in a straightforward
way when  ¤ 0 to produce a relaxation oscillation (RO) in the full system, with the
corresponding time series consisting of sections of slow change interspersed with
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sharp transitions as shown in Fig 6B. In other cases, the singular periodic orbit may
perturb to a more complicated orbit such as a mixed mode oscillation (MMO), where
the transition from slow to fast segments is via a series of subthreshold oscillations
as shown in Fig 6D. The pattern of subthreshold oscillations within an MMO can be
quite complicated but can often be predicted using GSPT [34]. A detailed study of
the utility of GSPT for the analysis of a variety of different models of intracellular
calcium dynamics is contained in [62].

An advantage of the GSPT approach is that the reduced system and the fast
subsystem are both effectively of lower dimension than the full system, and so their
analysis can be more straightforward than analysis of the full system directly. On the
other hand, while GSPT can result in mathematically rigorous results accompanied
by appropriate caveats about the regimes of validity of the results, this is not always
useful in terms of understanding the dynamics of a model. A common problem
is the lack of clear separation between time scales in the model. For instance, in
equations (2.30), if O� is O.10�1/ then the r variable is neither as fast as C nor as
slow as Ct and P, and there is not enough of a separation between the speeds of
evolution of r and the other variables to define a new intermediate time scale. In
such cases, the model might be regarded as being a large perturbation of a singular
limit, but then predictions based on a singular limit may be unhelpful. Even if there
is clear separation between time scales in a model, there may be more than two time
scales present, a situation about which there is little theory.

Some discussion of these kinds of difficulties in the context of calcium models
is contained in [62]. One pragmatic approach is to consider a variety of different
singular limits. For example to understand the dynamics of equations (2.30) in the
case that r is intermediate in speed, one might look at two different limiting cases:
one with two fast and two slow variables (with r treated as a fast variable) and
the other with one fast and three slow variables (with r treated as a slow variable).
One or other of these limiting cases might provide insight into the dynamics of the
model, even if neither is close enough to the original model for predictions to be
mathematically justified.

One final comment is in order about the use of singular limits in the analysis of
calcium models; care is necessary in the identification and analysis of singular limits
if misleading results are to be avoided. For instance, the closed cell version of the
combined model arises naturally by letting the variable ct get slower and slower.
It is tempting therefore to regard the closed cell model as a singular limit (fast
subsystem) of the open cell model, and, by analogy with the procedure followed
in GSPT, to assume that the dynamics of the open cell model will be a smooth
perturbation of the dynamics of the closed cell model. While some features of
the dynamics do perturb in this simple manner, there is a trap: the dynamics of
the limit system need not be the same as the limit of the dynamics of the full
system. For example, a Hopf bifurcation may be subcritical in the fast subsystem
but supercritical in the full system, no matter how close the full system is to the
limiting case. This issue is discussed in more detail in [157]. A second reason for
care in using the closed cell version of the combined model is implicit in the time
scale analysis discussed above: in the open cell model, ct appears to evolve on the
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same time scale as p (and, possibly, r) in the regime of interest, and so a singular
limit in which the speed of evolution of ct alone (not p or r) tends to zero may not
be helpful.

3.2 Pulse experiments and GSPT

An open question for many cell types is whether Ca2C oscillations are principally
due to Class I mechanisms (and occur when IP3 concentration is constant), or result
from Class II mechanisms (being caused by the intrinsic dynamics of the IPR).
One might be tempted to think that, since it is now possible to measure ŒIP3� and
ŒCa2C� simultaneously in some cell types [134], this question is easily answered.
However, this would not be true. For one thing, these are very difficult experiments
to perform, particularly in real cells as opposed to cell lines. Thus, there are still
few such measurements in the literature. Secondly, even when one measures ŒIP3�

and ŒCa2C� simultaneously not all such questions are immediately answered. For
instance, in some cell types, the relative timings of the peak ŒIP3� and ŒCa2C�

seem to indicate that a Class I mechanism is required, even though oscillations in
ŒIP3� are observed. In such cases, a peak of ŒIP3� will naturally follow a peak in
ŒCa2C� (as Ca2C stimulates the production of IP3) but is not actually necessary for
the oscillatory behaviour. For these reasons, it is important to develop additional
experimental methods that can be used to distinguish between Class I and Class II
mechanisms.

It was proposed in [130] that a simple experiment, involving applying a single
exogenous pulse of IP3 to a cell, could be used to determine which type of
mechanism was predominant in that cell. The proposal was based on the observation
that Class I and Class II models typically respond to a pulse of IP3 in different
ways. Specifically, after a pulse of IP3, a Class I model will typically respond with a
temporary increase in oscillation frequency while a Class II model will respond with
a phase lag, with the next peak in calcium concentration occurring after a delay.

Fig. 9 shows some responses of the rescaled combined model given by equa-
tions (2.32) to a pulse of IP3. As in [35] and [61], we model the pulsing process by
adding

S.t1/ D OM H.t1 � t0/ H.t0 C � � t1/ (2.34)

to the right-hand side of the equation for P in the combined model, where OM denotes
the pulse magnitude and H is the Heaviside function

H.x/ D
�

0 if x < 0;

1 if x � 0:
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Fig. 9 Responses of equations (2.32) with  D 0:01 to IP3 pulses. The IP3 pulse is applied at
the time indicated by the arrow, with the explicit form of the pulse given by equation (2.34) with
OM D 8:33P3, t0 D 12 and � D 0:72, assuming that any transients have died out before the time

trace is started. Each panel shows the time series of the concentrations C of calcium (red curve)
and P of IP3 (black curve). A. Class I: ˛ D 0, O� D 0:48 (� D 2 s) for O� D 0:40 (� D 0:96) and
other parameter values as in Table 1. B. Class I: as in panel A except with O� D 0:233 (� D 0:56).
C. Class II: ˛ D 1, O� D 0 (� D 0) for O� D 0:417 (� D 1:00). Figure modified from [35]

Panel A shows the Class I model response when O� D 0:40 and panel C shows
the Class II model response when O� D 0:417. In both cases, the response is the
typical case as described above. However, it turns out that there are situations in
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which a Class I model responds like a Class II model, with a small number of faster
oscillations followed by a long quiescent period before oscillations resume. Panel
B of Fig. 9 shows this type of response for the Class I version of the combined
model when O� D 0:233. The possibility of this anomalous type of response makes
interpretation of experimental data ambiguous.

Attempts to understand the anomalous response of some Class I models began
in [35], which considered pulse responses for the combined model of section 2.4.
The analysis started with the assumption that there was one slow variable in the
model, ct, and used ideas based on the “frozen system” approach, discussed above,
to explain the observed dynamics, but the explanation was somewhat ad hoc.
The model was re-examined in [61], where it was argued that a comprehensive
explanation of the phenomenon required methods from GSPT, and, in particular,
that it was necessary to treat the Class I version of the model as a system with three
slow variables.

More precisely, [61] worked with the non-dimensionalised Class I combined
model given by equations (2.32) with ˛ D 0 and O� D 0:48, and constructed
singular periodic orbits by combining information from the reduced system and the
fast subsystem, as described in section 3.1. Specifically, taking the limit  ! 0 of
equations (2.32) yields the reduced system, in which the variables evolve on a three-
dimensional surface (the critical manifold) defined by setting the right-hand side of
the dC=dt equation equal to zero. The critical manifold is plotted in Fig. 10 relative
to the C, Ct and r coordinates for the case O� D 0:317 and with fixed P D 0:95.
As can be seen, the critical manifold has two folds relative to the C coordinate.
These folds are denoted by blue curves in Fig. 10 and correspond to two-dimensional
subsets of the three-dimensional critical manifold in the full four-dimensional phase
space. A typical singular orbit of the Class I Atri model then might start on the upper
branch of the critical manifold (labelled SCa in Fig. 10), move (slowly) towards the

Fig. 10 The critical manifold of the Class I Atri model, equations (2.32) with ˛ D 0, O� D 0:48,
O� D 0:317 and with fixed P D 0:95. The surface is divided into three branches (labelled S˙

a and
Sr) by the folds L� and LC. Figure modified from [61]
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upper fold, make a fast jump to the lower branch of the critical manifold (S�a ), move
slowly towards the lower fold, and then make a second fast jump back to SCa . For
many parameter values, this singular orbit perturbs when  ¤ 0 to an RO or MMO,
just as discussed in section 3.1.

Up to this point, the GSPT analysis of the Class I Atri model is fairly standard,
but the story becomes more complicated when trying to explain the response of
the model to pulsing in IP3. It was shown in [61] that within the two-dimensional
surface of fold points there is a one-dimensional curve of distinguished fold points,
called folded singularities, that can strongly influence the pulse response of orbits. In
certain parameter regimes, pulsed orbits of the full system pass near to the position
in phase space at which folded singularities would lie in the singular system; if
these folded singularities are of folded saddle or folded node subtype, a delay in the
resumption of oscillations is seen, but if the pulsed orbit stays away from folded
saddles or nodes no such delay is observed. Further detail about the analysis of
the Class I model is contained in [61], with summary information about folded
singularities being given in the review article [34] and the extension of the theory
to the case of relevance here (i.e., a system with one fast and three slow variables)
being presented in [150].

The next step to understanding the pulse response of the combined model was
to look at the Class II model. GSPT methods were used in [61] to show that an
unrelated mechanism is responsible for the delay in the pulse response of the Class
II model. It was shown that pulsing the Class II model typically sends orbits into
a region of phase space where the critical manifold is not folded, meaning that
oscillations of the type seen in the Class II model without pulsing (i.e., ROs) are not
possible. The pulsed orbit has to spend some time, corresponding to the observed
phase lag, travelling back to the region of phase space where the critical manifold is
folded before oscillations can resume.

This example is a nice illustration of the power of GSPT in explaining the
dynamics of calcium models: the simplest approach, which assumed there is just
one slow variable, was not able to properly explain the observations, and a rigorous
approach using GSPT was needed. This example also provides an instance in
which physiological considerations (i.e., the desire to explain the pulse responses)
stimulated the development of new mathematics (e.g., the extension of GSPT to the
case of three or more slow variables [150]).

4 Merging calcium dynamics and membrane electrical
excitability

Many of the techniques used in the study of Ca2C oscillations were developed
in studies of the generation of oscillatory action potentials in neurons and other
excitable cells. The membrane potential is by far the best known, and most widely
studied, cellular oscillator, with most theoretical work based ultimately on the 1952
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model of Hodgkin and Huxley [65]. It is far beyond the scope of the present work to
discuss membrane potential models in detail; introductions to the theoretical study
of membrane oscillators can be found in [73, 76].

However, no discussion of Ca2C oscillations would be complete without at least
a brief mention of how they interact with membrane potential oscillators. As a
general rule, oscillations in the membrane potential (usually taking the form of
oscillatory spiking) are caused by oscillatory opening and closing of ion channels
(typically NaC, KC or Ca2C channels) in the cell membrane. Such oscillations in the
membrane potential typically occur on a millisecond time scale, orders of magnitude
faster than the Ca2C oscillations discussed here.

However, many cells have ion channels whose conductances are controlled by
ŒCa2C�. In this case, slow oscillations in ŒCa2C� can be used to modulate, over a
longer time scale, the properties of the fast electrical oscillation. For example, slow
oscillations in ŒCa2C� can move the membrane potential model in and out of the
oscillatory regime (by, say, slow modulation of the KC conductance), resulting in
bursts of action potentials, a phenomenon known as electrical bursting, and seen in a
wide variety of neurons and neuroendocrine cells. The paper by Bertram et al. in this
volume presents a detailed discussion of one such type of model. Other examples
can be found in [64, 68], while a basic introduction to the field can be found in [73].

Such systems, which couple a slower cytosolic Ca2C oscillator to a faster
membrane potential oscillator, have the potential for a wide range of complex
and interesting dynamical behaviours. From a mathematical point of view, the
complexity may arise, in part at least, from the multitude of time scales involved;
models of membrane potential oscillators typically have at least two time scales, and
calcium oscillator models also typically have at least two time scales, so combined
models will typically have three or more time scales, depending on the relative
speeds of the slower variable(s) in the membrane potential model and the faster
variable(s) in the calcium model. A comprehensive theory of dynamics in systems
with more than two time scales has yet to be developed, but early work indicates that
very complex phenomena can occur in this context [79, 80]. From a physiological
view point, models that couple a cytosolic Ca2C oscillator to a faster membrane
potential oscillator have particular importance in the study of neuroendocrine cells
[9, 10, 11, 49, 82, 84, 87, 110, 144, 143, 156], and thus in the study of hormonal
control, and are sure to be a major area of mathematical and experimental research
in the future.

5 Calcium diffusion and waves

5.1 Basic equations

To turn a simple spatially homogeneous model into a model that allows for a
spatially varying ŒCa2C� (as is, of course, the case in reality), the model equations
must be adapted to include the diffusion of Ca2C, and this requires, in practice, a
host of additional assumptions.



2 The Nonlinear Dynamics of Calcium 89

Firstly, rather than modelling the ER and the cytoplasm as two distinct spaces,
connected by Ca2C fluxes, it is sufficient for most applications to combine these
regions into a single homogenised domain, in which the ER and the cytoplasm co-
exist at every point in space, and Ca2C within each space has an effective diffusion
coefficient that depends on the exact geometry assumed in the homogenisation [54].
Thus, we get the following equations for evolution of c and ce:

@c

@t
D r � .Deff

c rc/ C �cf .c; ce/; (2.35)

@ce

@t
D r � .Deff

e rce/ C �eg.c; ce/; (2.36)

where Deff
c and Deff

e are effective diffusion coefficients for the cytoplasmic space
and the ER, respectively, �c and �e are the surface-to-volume ratios of these two
co-mingled spaces, and f .c; ce/ and g.c; ce/ denote all the other Ca2C fluxes and
reactions.

It is usually assumed that the cellular cytoplasm is isotropic and homogeneous.
It is not known, however, how Ca2C diffuses in the ER, or the extent to which the
tortuosity of the ER plays a role in determining the effective diffusion coefficient of
ER Ca2C. Thus, it is typical (and reasonable) to assume either that Ca2C does not
diffuse in the ER, or that it does so with a restricted diffusion coefficient, Deff

e �
Deff

c . Henceforth we delete the superscript eff.
In this case, the simplified equations for Ca2C diffusion are

@c

@t
D Dcr2c C f .c; ce/ C k�b � kCc.bt � b/; (2.37)

@ce

@t
D Der2ce C g.c; ce/; (2.38)

@b

@t
D Dbr2b � k�b C kCc.bt � b/; (2.39)

where �c and �e have been absorbed into the other model parameters, and where
cytoplasmic Ca2C buffering has been explicitly included, for reasons that will
become clear soon. ER Ca2C buffering is not included explicitly, purely for
simplicity. To do so makes no difference to the analysis, it merely makes the notation
more complex.

As in the absence of diffusion, when buffering is fast the model can be condensed
[122, 123, 147]. Assuming, as before, that

k�b � kCc.bt � b/ D 0; (2.40)

we get the “slow” equation

@

@t
.c C b/ D Dcr2c C Dbr2b C f .c; ce/; (2.41)
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which, after eliminating b, becomes

@c

@t
D 1

1 C �.c/

�
r2

�
Dcc C Dbbt

c

K C c

�
C f .c; ce/

�
(2.42)

D Dc C Db�.c/

1 C �.c/
r2c � 2Db�.c/

.K C c/.1 C �.c//
jrcj2 C f .c; ce/

1 C �.c/
; (2.43)

where, as before,

�.c/ D btK

.K C c/2
: (2.44)

Note that we assume that bt does not vary in either space or time. A similar equation
holds for ce.

Nonlinear buffering changes the model structure significantly, although it can
have surprisingly little qualitative effect on the resulting dynamics [52, 140].
In particular, Ca2C obeys a nonlinear diffusion–advection equation, where the
advection is the result of Ca2C transport by a mobile buffer. The effective diffusion
coefficient

Deff D Dc C Db�.c/

1 C �.c/
(2.45)

is a convex linear combination of the two diffusion coefficients Dc and Db, so
lies somewhere between the two. Since buffers are large molecules, Deff < Dc.
If the buffer is not mobile, i.e., Db D 0, then (2.43) reverts to a reaction–diffusion
equation. Also, when Ca2C gradients are small, the nonlinear advective term can be
ignored.

If the buffer is not only fast, but also of low affinity, so that K � c, then � is
constant, and Deff is constant also.

It is commonly assumed that the buffer has fast kinetics, is immobile, and has
a low affinity. With these assumptions we get the simplest possible model of Ca2C
buffers (short of not including them at all), in which

@c

@t
D K

K C bt
.Dcr2c C f .c//; (2.46)

wherein both the diffusion coefficient and the fluxes are scaled by the constant factor
K=.K C bt/; each flux in the model can then be interpreted as an effective flux, i.e.,
that fraction of the flux that contributes to a change in free Ca2C concentration.

5.2 Fire-diffuse-fire models

One particularly simple way in which calcium excitability can be used to model
waves is with the fire-diffuse-fire model [32, 75, 25, 28, 29], a direct analogue
of the spike-diffuse-spike model of action potential propagation [26, 27]. In this
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model, once ŒCa2C� reaches a threshold value, c�, at a release site, that site fires,
instantaneously releasing a fixed amount, � , of Ca2C. Thus, a Ca2C wave is
propagated by the sequential firing of release sites, each responding to the Ca2C
diffusing from neighbouring release sites. Hence the name fire–diffuse–fire.

In the fire-diffuse-fire model Ca2C obeys the reaction–diffusion equation

@c

@t
D Dc

@2c

@x2
C �

X
n

ı.x � nL/ı.t � tn/; (2.47)

where L is the spacing between release sites. Although this equation looks linear,
appearances are deceptive. Here, tn is the time at which c first reaches the threshold
value c� at the nth release site, and thus depends in a complicated way on c.

The Ca2C profile resulting from the firing of a single site, site i, say, is

ci.x; t/ D �
H.t � ti/p

4�Dc.t � ti/
exp

�
� .x � iL/2

4Dc.t � ti/

�
; (2.48)

where H is the Heaviside function. This is the fundamental solution of the diffusion
equation with a delta function input at x D i, t D ti. If we superimpose the solutions
from each site, we get

c.x; t/ D
X

i

ci.x; t/ D �
X

i

H.t � ti/p
4�Dc.t � ti/

exp

�
� .x � iL/2

4Dc.t � ti/

�
: (2.49)

Notice that because of the instantaneous release, c.x; t/ is not a continuous function
of time at any release site.

From this explicit expression it is possible to calculate an explicit expression for
the wave speed. For full details the reader is referred to the abbreviated discussion
in [73] or the more detailed presentations in the original articles referenced above.

This version of the fire-diffuse-fire model has no Ca2C removal, and thus the
concentration of Ca2C is always increasing. This can be remedied by the inclusion
of a Ca2C removal term [25], modelling the removal by SERCA pumps. However,
in order to preserve the analytical tractability of this approach, the removal term
must be linear.

5.3 Another simple example

To illustrate some of the main features of wave propagation in Ca2C models, we
use a model similar to the combined model of Section 2.4, but somewhat simpler.
Firstly, we include diffusion in one spatial dimension only. Even though Ca2C
waves propagate in three dimensions, a model in one spatial dimension is not
necessarily a bad approximation. Since the wavelength of a typical Ca2C wave is
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large compared to the dimensions of a typical cell, much (but not all) intracellular
wave propagation is essentially one-dimensional in nature. It is only when one
considers wave propagation in much larger cells, such as a Xenopus oocyte, that the
two and three dimensional properties of the waves become apparent, as the waves
form spirals and target patterns [83].

We make a number of additional simplifications. Firstly, we assume that the Ca2C
ATPase pumps are linearly dependent on ŒCa2C�. Since we know this to be untrue,
our simplified model will never be a good quantitative description of real Ca2C
waves. However, much of the underlying dynamical behaviour is preserved by this
assumption. Secondly, we assume that the flux through the IPR is a bell-shaped
function of ŒCa2C�, with no time delays. Hence, our simplified model here is neither
a Class I nor a Class II model. In this case, the oscillations in ŒCa2C� are entirely
dependent on Ca2C influx from the outside. Although this is the case in only some
cell types, the model still serves to illustrate the basic dynamical properties of Ca2C
models.

With these assumptions, our model equations are

@c

@t
D Dc

@2c

@x2
C JIPR � ksc C ".Jinflux � kpc/;

@ce

@t
D 
.�JIPR C ksc/; (2.50)

where

Jinflux D kinp; (2.51)

JIPR D
�

˛ C kf p

�
c2

c2 C '2
1

��
'2

'2 C c

��
.ce � c/: (2.52)

As before, p denotes ŒIP3�, and is treated as the principal bifurcation parameter.
The expression for Jinflux is merely a slightly simplified version of equation (2.27).
Because oscillations in this model depend on Ca2C entry and exit from the cell, it
is also possible to let Jinflux be a parameter, and use it as the principal bifurcation
parameter [142]. Typical values of the other model parameters are given in Table 2
in the Appendix.

5.4 CU systems

A convenient first step in investigating wave propagation in PDE models of calcium
dynamics is to switch to a moving frame. For a model with one spatial variable, x,
with solitary or periodic waves moving with a constant wave speed s, we can define
a new variable, z D x C st, and rewrite the model in the moving frame. For instance,
in terms of this new variable, the model given by equations (2.50) becomes:
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c0 D u;

u0 D 1

Dc

�
su � JIPR C ksc � ".Jinflux � kpc/

�
;

c0e D 


s
.�JIPR C ksc/; (2.53)

where the prime denotes differentiation with respect to z.
We are interested in both pulse-type travelling waves and periodic travelling

waves for the PDE model; in the moving frame ODEs, these correspond, respec-
tively, to homoclinic orbits and periodic solutions. Typically, we will be interested
in the existence of such solutions as both a bifurcation parameter of the PDE (e.g.,
p for the model above) and s, the wave speed, vary. In the PDE formulation, s is
a quantity selected by the dynamics, not a parameter of the equations, but in the
travelling wave ODEs we treat s as a bifurcation parameter.

A first step is to look for homoclinic and Hopf bifurcations of the moving frame
ODEs in the corresponding two-dimensional parameter space. For example, for the
parameter values specified in Table 2, equations (2.53) have a unique equilibrium
point, which is of saddle type with a one-dimensional unstable manifold and a two-
dimensional stable manifold for p and s values outside the U-shaped curve labeled
HB in Fig. 11. This equilibrium has a homoclinic bifurcation at .p; s/ values on the
C-shaped curve (labelled HC) in this figure.
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Fig. 11 Partial bifurcation set for equations (2.53) for parameter values given in Table 2, showing a
U-shaped curve of Hopf bifurcations (HB) and a C-shaped dotted curve of homoclinic bifurcations
(HC)
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The structure observed in Fig. 11, of a C-shaped homoclinic bifurcation curve
and a U-shaped Hopf locus, turns out to be common to many models of calcium
waves, as well as many other excitable systems such as the FitzHugh-Nagumo and
Hodgkin-Huxley models [20]. It is argued in [20] and [142] that the CU-structure
occurs as a consequence of the general shape of the nullclines in these models,
which in turn follows from the underlying physiology. Furthermore, Maginu [90]
showed that in the limit of s ! 1, the travelling wave equations reduce to the
model without diffusion (i.e., with Dc D 0); since the diffusion-free version of
a calcium model will typically have two Hopf bifurcations at finite values of the
bifurcation parameter (as discussed in section 3), this result suggests that the Hopf
locus really is U-shaped, i.e., the left and right arms of the Hopf locus will have
vertical asymptotes at finite values of the bifurcation parameter.

For each fixed value of the main bifurcation parameter between the vertical
asymptotes of the Hopf U there will typically be an interval of s values for which
periodic solutions exist. It is natural to ask which of these periodic solutions will
give stable periodic travelling waves in the PDE, i.e., to ask which wave speed
will be selected by the PDE dynamics. There is no known general answer to this
question; the answer is believed to depend on the precise boundary and initial
conditions for the PDE. It is known [119] that very complicated, seemingly chaotic,
travelling solutions can occur at values of the bifurcation parameter lying within the
Hopf U.

Analysis of the moving frame ODEs can tell us about the existence of travelling
waves in the associated PDE model, but does not give information about stability of
these solutions in the PDEs. Instead, stability of travelling waves can be determined
by direct computation (e.g., [109]) or by numerical computation on the PDEs (e.g.,
[119, 142]). In all the cases we have studied, it turns out that stable solitary travelling
waves have wave speeds corresponding to the upper ‘branch’ (higher s values)
of the C curve, although this branch may not be stable along its entire length.
More complicated travelling pulses (e.g., with two pulses within the wave packet,
corresponding to double-pulse homoclinic orbits in the travelling wave equations)
may also occur [20] and can be stable [109].

Just as for ODE models, PDE models of calcium dynamics typically have
processes occurring on two or more different time scales, and it is possible to exploit
this time scale separation to explain model dynamics. Such ideas have been very
successful in the analysis of the PDE version of the FitzHugh-Nagumo equations
(e.g., [3, 72, 78]), but have been applied less to calcium models. One approach has
been to look for the singular analogue of the CU structure, and to try to show that
features of the bifurcation set of the full (non-singular) problem, including the CU
structure, arise as perturbations of this singular structure. In [142], the existence
and stability of travelling waves in a closed-cell (singular) version of a calcium
model closely related to equations (2.53) was investigated theoretically, and the
results compared with numerical results for the (non-singular) open-cell model. It
was shown that the CU structure for the full system, found numerically, appears
to converge in the singular limit to a collection of fronts, pulses and waves that
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can be located analytically in the singular limit system and that form a singular
CU structure. Work is underway to show rigorously how the singular CU structure
perturbs to the nonsingular case.

Although the basic CU structure is common to many calcium models, other
features of the bifurcation set vary from model to model. For instance, different
models may exhibit a variety of different types of global bifurcations, including
homoclinic and heteroclinic bifurcations of equilibria and periodic orbits [158], and
give rise to a host of interesting issues from a bifurcation theory point of view,
but these are not our focus in this article. One aspect of the dynamics of particular
interest is how the C curve terminates near its apparent endpoints; this question has
implications for the ways in which there can be a transition from stable travelling
pulses to stable periodic travelling waves in the PDE and was discussed in [20, 119]
for some specific models.

5.5 Calcium excitability and comparison
to the FitzHugh-Nagumo equations

A crucially important feature of models of Ca2C waves is excitability; a small
amount of Ca2C release induces the release of a larger amount of Ca2C through
positive feedback in the model. The most studied excitable system is the FitzHugh-
Nagumo equations, and it has long been recognised that calcium waves propagate
by an excitable mechanism similar in many ways to that in the FitzHugh-Nagumo
model. Despite these similarities, however, there are important differences.

The FitzHugh-Nagumo equations can be written in the form

@u

@t
D D

@2u

@x2
C u.u � ˛/.1 � u/ � w C I;

@w

@t
D .u � 
w/; (2.54)

where the variable u represents the plasma membrane electric potential, w represents
the combined inactivation effects of the sodium and potassium channels, and I is the
applied current. The parameter  satisfies 0 	  � 1, and encodes the separation
of time scales in the model, ˛ 2 .0; 1

2
/, D is the diffusion constant and 
 is a small

positive constant [73]. Defining z D x C st in the usual way, where s is the wave
speed, yields the model equations in the moving frame:

du

dz
D v;

dv

dz
D 1

D
.sv � u.u � ˛/.1 � u/ C w � I/ ; (2.55)

dw

dz
D 

s
.u � 
w/:
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In the absence of diffusion the dynamics of the FitzHugh-Nagumo equations and
the dynamics of typical calcium models, such as equations (2.50), are qualitatively
very similar. Any difference in dimension of the models (if the calcium model
has three or more dependent variables) gives different possibilities for the detailed
dynamics, but structural similarities in the models, specifically a clearly defined
slow variable such as w for FitzHugh-Nagumo and ct for calcium models, and the
cubic shape of the nullcline for a fast variable (v for FitzHugh-Nagumo and c for
calcium models), results in the diffusion-free models having similar bifurcation
diagrams and time series. For instance, Fig. 12 shows bifurcation diagrams and
typical time series for equations (2.50) with Dc D 0 and for equations (2.54) with
D D 0; the similarities in the model dynamics are clear in these pictures.
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Fig. 12 Bifurcation diagrams and time series for the FitzHugh-Nagumo model, equations (2.54),
and a simple calcium model, equations (2.50) without diffusion. Panel A shows the bifurcation
diagram for equations (2.54) with D D 0, a D 0:1, 
 D 1:0,  D 0:1. The black curve shows
the position of the steady state solution and the blue curve indicates the maximum amplitudes
of periodic orbits. Hopf bifurcations are labelled HB. Panel B shows the time series for the
corresponding attracting periodic solution when I D 0:2. Panel C shows the bifurcation diagram
for equations (2.50) with Dc D 0 and other parameter values as in Table 1. Line styles and labels
as for panel A. Panel D shows the time series for the corresponding attracting periodic solution
when p D 0:7
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If diffusion is included, then there are still marked similarities between the
dynamics of the FitzHugh-Nagumo equations and a typical calcium model. Most
notably, the FitzHugh-Nagumo moving frame equations have a CU bifurcation
structure in the .I; s/ parameter plane very similar to that in calcium models
[20, 142]. However, structural differences in the models mean that the underlying
mechanisms can be quite different.

One important structural difference results from the way diffusion acts. In the
FitzHugh-Nagumo model, diffusion appears in the evolution equation for the fast
variable, u, only. This follows from a modelling assumption that the gating variable,
w, is uniformly distributed along the spatial direction. The situation is, typically,
different for calcium models, where diffusion affects both fast and slow variables
since diffusion in the cytoplasm influences the evolution of both c, the cytoplasmic
calcium concentration, and ct, the total cellular concentration.

To see this in the case of equations (2.50) we go to the moving frame by setting
z D x C st and u D dc=dz, then rewrite the model in standard fast-slow form
by replacing ce with ct D s.ce=
 C c/ � Dcu. This definition of ct is the PDE
analogue of the total calcium variable introduced in section 2.4. With these changes,
equations (2.53) become:

c0 D u;

u0 D 1

Dc

	
su � NJIPR

	


s
.ct C Dcu � sc/ � c



C ksc � ".Jinflux � kpc/



;

c0t D ".Jinflux � kpc/; (2.56)

where the prime indicates differentiation with respect to z and

NJIPR D ˛ C kf p

�
c2

c2 C '2
1

��
'2

'2 C c

�
:

When " is sufficiently small, c and u are fast variables and ct is slow. One effect of
the diffusion of calcium is, therefore, to introduce nonlinear coupling between the
fast variables, i.e., a term of the form of ug.c/ in the u0 equation, for g.c/ a nonlinear
function of c. By comparison, in equations (2.55) there are no comparable terms in
the differential equations for the fast variables.

A direct consequence of this difference is seen in the nature of the Hopf
bifurcations. In the FitzHugh-Nagumo equations, the simple coupling between the
fast variables means the Hopf bifurcations that occur on the vertical arms of the
Hopf U are degenerate in the singular limit, in the sense that the bifurcation is
neither supercritical or subcritical because the first Lyapunov coefficient is zero.
For more generic coupling, as found in calcium models such as equations (2.50),
this is not the case [142], and the Hopf bifurcations on the vertical arms will be
either super- or sub-critical as the singular limit is approached. Note that in both
types of model, the Hopf bifurcations are singular Hopf bifurcations in the singular
limit (so that the imaginary parts of the eigenvalues at the Hopf bifurcations tend to
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zero as  ! 0; see [13]), but this singularity is distinct from the degeneracy arising
from simple coupling in the FitzHugh-Nagumo equations. More work is needed to
uncover exactly how this difference between the singular versions of the models
influences the dynamics of the non-singular models.

A second important structural difference between the models occurs because
the FitzHugh-Nagumo equations have a symmetry: equations (2.55) are equivariant
with respect to the transformation

u ! 2

3
.1 C ˛/ � u; v ! �v; w ! 2

3

.1 C ˛/ � w;

I ! 2

3
.1 C ˛/

�
1



� .2 � ˛/.1 � 2˛/

9

�
� I:

As a consequence, some of the travelling pulses in the FitzHugh-Nagumo model
arise as a perturbation of two symmetry-related singular travelling front solutions,
corresponding in the moving frame to two symmetry-related heteroclinic orbits
[142]. (Other travelling pulses arise as a perturbation of a singular travelling pulse,
corresponding to a homoclinic orbit in the moving frame.) By contrast, calcium
models typically do not have such a symmetry, and travelling wave solutions are
unlikely to arise in this way. In a model closely related to equations (2.50) it
appears that the corresponding travelling pulses also arise from the singular limit
as a perturbation of travelling fronts [142], but the mechanism is more generic than
in the FitzHugh-Nagumo model since it does not require the presence of symmetry.
More work is necessary to establish whether this is the usual pattern in calcium
models.

In summary, there are important structural differences between the FitzHugh-
Nagumo equations and typical calcium models, which arise because of simplifying,
non-generic assumptions made in constructing the FitzHugh-Nagumo equations.
We conclude that models of calcium dynamics are excitable systems of a somewhat
different type to the FitzHugh-Nagumo equations.

5.6 The effects on wave propagation of calcium buffers

Another way in which Ca2C models differ from more widely studied models such
as the FitzHugh-Nagumo equations is the presence of buffers. As discussed in
Section 5.1, Ca2C buffers effectively disappear from the model equations only under
the rather restrictive assumptions of fast, linear, buffering. Since such assumptions
are unlikely to be accurate in most cells, it is important to understand the dynamics
of wave propagation in the presence of more general nonlinear or slow buffers. If the
buffer is fast, but nonlinear, then we still have a single transport equation (equation
(2.43)), but if the buffers are slow, then we are forced to deal with an additional
equation (equation (2.39)).
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The possible effects of buffers on waves are particularly interesting in the context
of Ca2C waves, as, experimentally, Ca2C waves are observed by adding Ca2C
fluorescent dyes to cells. However, since these dyes are necessarily also Ca2C
buffers (as they must bind Ca2C in order to emit light) questions have been raised
about how much of the observed behaviour is an artefact of the experimental
method. For example, is it possible for waves to exist only in the presence of the
additional buffer represented by the dye, or do they exist even when they are not
being measured?

There have been a number of studies, both numerical and analytic [69, 81, 99,
111, 122, 123, 121, 147], of the effects of Ca2C buffers. By far the most analytical
work on this question has been done by Je-Chiang Tsai [139, 140, 141, 142].
Almost all of this analytic work has been done on the FitzHugh-Nagumo model,
the prototypical excitable system, or on the bistable equation, which is merely the
FitzHugh-Nagumo model with no recovery variable. In the notation of this paper,
the buffered bistable equation is just equation (2.37), with f .c; ce/ D c.1�c/.c�˛/,
for some constant 0 < ˛ < 1=2; see [73] for an introductory discussion of
wave propagation in the bistable and FitzHugh-Nagumo equations. As yet, it is not
entirely clear how results from the buffered versions of the bistable or FitzHugh-
Nagumo equations carry over to models of Ca2C waves, but since these are the only
excitable systems for which any significant amount of analytical work has been
done, it is the best we can currently do. In addition, numerical solutions indicate
that these analytical results carry over, in most part, to Ca2C waves. Although this
is not a proof, of course, it offers some reassurance.

Tsai has shown that, when the buffers are fast, there is a unique, stable, travelling
wave solution to the buffered bistable equation, a result entirely analogous to the
result for the unbuffered bistable equation. If the buffers are slow and immobile
then, again, the same results holds; i.e., there exists a unique, stable, travelling
wave solution. It is important to note that these travelling waves, although their
existence, uniqueness and stability is guaranteed, may well have quite different
forms or profiles from waves in the unbuffered bistable equation.

When the buffers are slow and mobile, the situation is more complicated. It is
possible to eliminate waves by the addition of enough slow, mobile, buffer, but,
when the waves exist, they are still unique and stable.

The buffered FitzHugh-Nagumo equation is considerably more complicated,
having, as it does, an additional equation for the recovery variable, and presently
there are analytical results only for the case of fast buffering. In this case there is
a complex relationship between the binding constant of the buffer (i.e., the ratio
k�=kC, which determines how strong the buffer is), the excitability of the system
(˛), and the time scale separation ("). If there is too much buffer present, waves
will not exist. However, in some conditions, waves can be made to exist by the
addition of a small amount (but not too much) of weakly binding buffer. Our current
knowledge of the buffered FitzHugh-Nagumo equation is summarised in [141],
although many gaps remain.
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6 Conclusion

This review has focused on only a very restricted range of models of Ca2C dynamics,
but even this small range suffices to show how these models raise a host of important
mathematical questions. Not only are these questions proving to be vital for the
interpretation of some experimental data, they also have applicability well outside
the immediate area of Ca2C dynamics, particularly in the study of membrane
potential models, or models of chemical reactions with multiple time scales.
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Appendix

Table 1 Values of parameters for the combined model, equations (2.20)–
(2.23)

Parameter Value Parameter Value Parameter Value

b 0:111 k2 0.7 �M kflux 6 s�1

ı 0:01 k4 1.1 �M Vp 24.0 �M s�1


 5:405 kp 0.4 �M Ve 20.0 �M s�1

�0 0:567 ke 0.06 �M ˛1 1.0 �M s�1

�1 0:433 k1 1.1 �M ˛2 0.2 s�1

V1 0:889 k� 4.0 �M ˇ 0.08 s�1

Table 2 Values of parameters for the model defined by equations (2.50)

˛ ks kf kp '1 '2 " 
 kin Dc

0:05 s�1 20 s�1 20 s�1 20 s�1 2 �M 1 �M 0:1 5 10 s�1 20 �m2s�1
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