
Interdisciplinary Applied Mathematics 40

Generalized
Principal
Component
Analysis

René Vidal
Yi Ma
S. Shankar Sastry

Generalized Principal Component Analysis

More information about this series at http://www.springer.com/series/1390

Interdisciplinary Applied Mathematics

Volume 40

Editors
S.S. Antman L. Greengard
P. Holmes

Series Advisors
Leon Glass Robert Kohn
P.S. Krishnaprasad James D. Murray
Shankar Sastry James Sneyd

Problems in engineering, computational science, and the physical and biological
sciences are using increasingly sophisticated mathematical techniques. Thus, the
bridge between the mathematical sciences and other disciplines is heavily traveled.
The correspondingly increased dialog between the disciplines has led to the
establishment of the series: Interdisciplinary Applied Mathematics.

The purpose of this series is to meet the current and future needs for the interaction
between various science and technology areas on the one hand and mathematics on
the other. This is done, firstly, by encouraging the ways that mathematics may be
applied in traditional areas, as well as point towards new and innovative areas of
applications; and, secondly, by encouraging other scientific disciplines to engage in
a dialog with mathematicians outlining their problems to both access new methods
and suggest innovative developments within mathematics itself.

The series will consist of monographs and high-level texts from researchersworking
on the interplay between mathematics and other fields of science and technology.

http://www.springer.com/series/1390

René Vidal • Yi Ma • S. Shankar Sastry

Generalized Principal
Component Analysis

123

René Vidal
Center for Imaging Science
Department of Biomedical Engineering
Johns Hopkins University
Baltimore, MD, USA

S. Shankar Sastry
Department of Electrical Engineering

and Computer Science
University of California Berkeley
Berkeley, CA, USA

Yi Ma
School of Information Science

and Technology
ShanghaiTech University
Shanghai, China

ISSN 0939-6047 ISSN 2196-9973 (electronic)
Interdisciplinary Applied Mathematics
ISBN 978-0-387-87810-2 ISBN 978-0-387-87811-9 (eBook)
DOI 10.1007/978-0-387-87811-9

Library of Congress Control Number: 2015958763

Mathematics Subject Classification (2010): 30C10, 30C40, 62-XX, 62-07, 62-08, 62B10, 62Fxx, 62H12,
62H25, 62H35, 62Jxx, 62J05, 62J07, 14-XX, 14N20, 15-XX

Springer New York Heidelberg Dordrecht London
© Springer-Verlag New York 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com

To Camille, Margot, and Romeo Vidal (R. V.)
To Diana Xiaoyuan Zhu, Barron, and Henry Ma (Y. M.)

To Claire Tomlin, Samuel, and Lucy Sastry (S. S.)

Preface

We are not very pleased when we are forced to accept a mathematical truth by virtue of a
complicated chain of formal conclusions and computations, which we traverse blindly, link
by link, feeling our way by touch. We want first an overview of the aim and of the road; we
want to understand the idea of the proof, the deeper context.

—Hermann Weyl

Classical theory and methods for the analysis of data were established mainly
for engineering and scientific problems that arose five or six decades ago. In
these classical settings, engineers or scientists usually had full control of the data
acquisition process. As a result, the data to be processed and analyzed were typically
clean and complete: they contained only moderate amounts of noise and were often
adequately collected for the specific task or problem of interest. In that regime,
many data analysis methods were based on the assumption that most data sets have
fewer effective degrees of freedom than the dimension of the ambient space. For
example, the number of pixels in an image can be rather large, yet most computer
vision models used only a few parameters to describe the appearance, geometry,
and dynamics of a scene. This assumption motivated the development of a number
of techniques for identifying low-dimensional structures in high-dimensional data,
a problem that is important not only for understanding the data, but also for many
practical purposes such as data compression and transmission. A popular technique
for discovering low-dimensional structure in data is principal component analysis
(PCA), which assumes that the data are drawn from a single low-dimensional
affine subspace of a high-dimensional space (Jolliffe 1986, 2002). PCA is arguably
the simplest and most popular dimensionality reduction tool, and it has found
widespread applications in many fields such as computer vision (Turk and Pentland
1991).

However, in the past decade or so, there has been a fundamental regime shift
in data analysis. Currently, scientists and engineers often must deal with data
whose dimension, size, and complexity expand at an explosive rate. Moreover,
they have pretty much lost control of the data acquisition process. For instance,
in 2012, 350 million photos were uploaded to Facebook every day, and 100 hours

vii

viii Preface

of video were uploaded to YouTube each minute. Moreover, it is estimated that 3.8
trillion photos had been taken by 2012, 10% of them in the last 12 months.1 This
and other forms of massive amounts of data on the Internet and mobile networks
are being produced by billions of independent consumers and businesses. How to
extract useful information from such massive amounts of data for numerous tasks
(such as search, advertisement, scientific analysis) has become one of the biggest
engineering endeavors of mankind. Many call it the era of Big Data. Obviously, such
a regime shift demands a fundamental paradigm shift in data analysis, since classical
theory and methods for data analysis were simply not designed to work under such
conditions. The website of Theoretical Foundations of Big Data Analysis2 puts
things into perspective:

The Big Data phenomenon presents opportunities and perils. On the optimistic side of the
coin, massive data may amplify the inferential power of algorithms that have been shown
to be successful on modest-sized data sets. The challenge is to develop the theoretical
principles needed to scale inference and learning algorithms to massive, even arbitrary,
scale. On the pessimistic side of the coin, massive data may amplify the error rates that are
part and parcel of any inferential algorithm. The challenge is to control such errors even in
the face of the heterogeneity and uncontrolled sampling processes underlying many massive
data sets.

Since the data acquisition process is no longer under the data gatherer’s control,
the structure of the data to be processed or analyzed can no longer be assumed to
be relatively simple or clean: very often, the data contain significant amounts of
noise, corrupted entries, and outliers; or the data could be incomplete or inadequate
for a task that arises only after the data have been collected; or the data could even
have some degree of unknown nonlinearity due to lack of calibration in the data
acquisition. In the past decade, these challenges have led to many revolutionary
discoveries and much progress in which many of the classical models and methods
for data analysis have been systematically generalized or improved to make them
robust to such bad nuisances in the data. In the context of identifying low-
dimensional structures in the data, classical PCA is generalized so that it can
robustly find the correct subspace structure of the data despite such nuisances. The
forms of progress include entirely new methods for low-rank matrix completion,
robust PCA, kernel PCA, and manifold learning.

Another challenge that arises in the new regime is that we can no longer assume
that the data lie on a single low-dimensional subspace or submanifold. This is
because many modern data sets are not collected for any specific task. Instead, the
data may have already been collected, and the task emerges only afterward. Hence
a data set can be mixed with multiple classes of data of different natures, and the
intrinsic structure of the data set may be inhomogeneous or hybrid. In this case,
the data set may be better represented or approximated by not one, but multiple
low-dimensional subspaces or manifolds. Figure 1 gives an example of face images

1http://www.buzzfeed.com/hunterschwarz/how-many-photos-have-been-taken-ever-6zgv.
2http://simons.berkeley.edu/programs/bigdata2013.

http://www.buzzfeed.com/hunterschwarz/how-many-photos-have-been-taken-ever-6zgv
http://simons.berkeley.edu/programs/bigdata2013

Preface ix

Fig. 1 Face images from multiple individuals can be well approximated by multiple low-
dimensional subspaces.

under varying illumination conditions, where each affine subspace corresponds to
face images of a different individual. This leads to a general problem: Given a
set of data points from a mixture of affine subspaces, how does one automatically
learn or infer those subspaces from the data? A solution to this problem requires
one to cluster or segment the data into multiple groups, each belonging to one
subspace, and then identify the parameters of each subspace. To model data with
such mixed subspace structures, the classical PCA method needs to be generalized
so that it can simultaneously identify multiple subspaces from the data. This leads
to the so-called subspace clustering problem, which has received great attention in
the last decade and has found widespread applications in computer vision, image
processing, pattern recognition, and system identification.

Purpose of This Book
The purpose of this book is to provide a comprehensive introduction to the
latest advances in the mathematical theory and computational tools for modeling
high-dimensional data drawn from one or more low-dimensional subspaces (or
manifolds) and corrupted by noise, missing entries, corrupted entries, and outliers.
This will require the development of new algebraic, geometric, statistical, and
computational theory and methods for efficient and robust estimation of one or more
subspaces. To distinguish this theory and these methods from classical PCA, we call
all such advanced approaches as generalized principal component analysis or GPCA
for short.3

As we will see in this book, in order to generalize classical PCA to the case
of corrupted and mixed data, we need to resort to a body of more advanced
mathematical tools from estimation theory, algebraic geometry, high-dimensional

3In the literature, the word generalized is sometimes used to indicate any particular extension
to classical PCA (Jolliffe 1986, 2002). In our opinion, each of these extensions is a particular
generalization rather than the more systematic generalization that we present in this book. In
addition, for the case in which we want PCA to handle large amounts of corruptions or outliers, we
may use the special name robust PCA (RPCA); for the nonlinear case in which each component is
an algebraic variety of higher degree such as a quadratic surface or a more complicated manifold,
we may use the name nonlinear PCA or manifold learning; for the case of multiple subspaces or
manifolds, names such as mixtures of probabilistic PCA (MPPCA), subspace clustering (SC) and
hybrid component analysis (HCA) have been suggested and would also be appropriate.

x Preface

statistics, and convex optimization. In particular, in this book and its appendices,
we will give a systematic introduction to effective and scalable optimization
techniques tailored to estimating low-dimensional subspace structures from high-
dimensional data (see Appendix A), all the related statistical theory and methods
for robust estimation of mixture models (see Appendix B), as well as a complete
characterization of the algebraic properties of a union of multiple subspaces as
an algebraic set (see Appendix C). As we will see throughout this book, the
statistical, algebraic-geometric, and computational aspects of GPCA are highly
complementary to each other. Each of them leads to solutions and algorithms of
their own that hold certain conceptual or computational advantages against other
approaches under certain assumptions about the data and/or the subspaces.

There are several reasons why we feel that the time is now ripe to write a book
about GPCA:

1. The limitations of classical PCA have been well known to engineers and prac-
titioners of modern data analysis. However, PCA remains the method of choice
by many field engineers simply because they do not have a systematic body of
theory and methods for handling different types of nuisances in the data. In the
past few years, with advances in algebraic geometry, high-dimensional statistics,
and convex optimization, our understanding of the problem of estimating a low-
dimensional subspace has gone well beyond classical settings: we have not only
a better understanding of the geometric, statistical, and probabilistic nature of
PCA, but also computationally efficient algorithms for PCA with missing and
corrupted data that give provably correct solutions under broad conditions. In
addition, the field of estimating mixture models, in particular a mixture of
subspaces, has also gone through revolutionary developments in the past few
years. The statistical, algebraic, geometric, and computational properties of this
class of models have been reasonably well understood. As result, many effective
and efficient algorithms have been developed for this problem.

2. These new developments obviously come at a very good time, since both science
and engineering are entering the era of Big Data. Many of the new algorithms
and techniques have already demonstrated great success and potential in many
important practical problems of image processing and pattern analysis, as we
will demonstrate with some concrete applications and examples in this book.
We anticipate that these new theoretical results and the associated computational
methods will provide scientists and engineers with a new set of models,
principles, and tools that can be readily applied to a broad range of practical
problems and real-world data, far beyond the applications and data illustrated in
this book.

Intended Audience of This Book
We have written this book with the idea that it will have both research and
pedagogical value. From a research perspective, the topics covered in this book
are of great relevance and importance to both theoreticians and practitioners in
such areas as data science, machine learning, pattern recognition, computer vision,
signal and image processing, and system identification. The motivating examples

Preface xi

and applications given in this book are purposely biased by our own research
interests in image processing and computer vision, because we believe that from
a pedagogical perspective, visual data and examples can best illustrate some of
the abstract models and properties introduced. Nevertheless, the basic theory and
algorithms are established in fairly general terms, and are obviously applicable to
many practical engineering and scientific problems well beyond those described in
this book.

We believe that the material of the book is ideal for an introductory graduate
course for students in data science, machine learning, and signal processing, or an
advanced course for students in computer vision, estimation theory, and systems
theory. Through arguably the simplest class of models, the low-dimensional linear
models, the book introduces to students some of the most fundamental principles
in data modeling, statistical inference, optimization, and computation. Knowledge
about these basic models and their properties is absolutely necessary for anyone
who strives to study more sophisticated classes of models in which low-dimensional
linear models are the key building blocks, such as the sparse models in compressive
sensing and the deep neural networks in machine learning (see Chapter 13 for further
discussion).

The book is written to be friendly to beginning graduate students and instructors.
At the end of each chapter, we have provided many basic exercises and programs
from which students may gain hands-on experience with the material covered in the
chapters as well as an extensive survey of related literature for research purposes.
Additional information, resources, and sample code for most of the examples,
algorithms, and applications featured in this book will be made available at the
book’s website: http://www.vision.jhu.edu/gpca.

We have used material from this book many times to teach a one-semester
graduate course at the Johns Hopkins University, the University of Illinois at
Urbana-Champaign, the University of California at Berkeley, and the ShanghaiTech
University in China. As the reader will see, GPCA is a very unique subject that
touches on many fundamental concepts, facts, and principles across engineering,
computation, statistics, and mathematics. Therefore, this is a great topic that can
shepherd researchers and students to systematically establish some of the most
fundamental and useful knowledge for modern data science and machine learning.
We also believe that the reader will learn to appreciate the complementary nature of
different perspectives and approaches presented in this book, and in the end develop
a deep and comprehensive understanding of the subject.

Organization of This Book
Chapter 1 gives a nontechnical introduction to the basic problems, ideas, and
principles studied in this book. The remainder of the book is organized into four
parts:

Part I covers classical and modern theory and methods for modeling data with
a single low-dimensional linear or affine subspace (or a nonlinear submanifold).
More specifically, Chapter 2 gives a review of classical PCA theory and methods
for subspace estimation, including its statistical, geometric, and rank minimization

http://www.vision.jhu.edu/gpca

xii Preface

interpretations. The chapter also covers a simple generative model for PCA, called
probabilistic PCA, as well as model selection issues for PCA. Chapter 3 shows
how to estimate a subspace when the data are incomplete or corrupted. The
chapter discusses statistical and alternating minimization methods for robust PCA,
as well as some advanced tools from compressive sensing for sparse and low-
rank recovery. Since complete proofs for these results are beyond the scope of
this book, we will simply discuss their implications and show how to use them
to develop effective algorithms for robust PCA. Chapter 4 shows how to extend
the methods for learning linear subspaces to nonlinear submanifolds. In particular,
the chapter introduces both parametric and nonparametric methods for manifold
learning, including nonlinear PCA, kernel PCA, locally linear embedding, and
Laplacian eigenmaps. The chapter also introduces the basic K-means algorithm for
clustering data distributed around a few cluster centers, as well as the more advanced
spectral clustering algorithm, which combines manifold learning methods with K-
means to cluster mixed data that have more complex nonlinear structures.

Part II covers three complementary approaches and methods for modeling data
with a mixture of multiple subspaces. More specifically, Chapter 5 studies the
algebraic-geometric properties of a mixture of subspaces, also known in modern
algebra as a subspace arrangement. The chapter introduces a basic noniterative
algebraic method for estimating multiple subspaces, which works effectively and
efficiently when the data are relatively clean and the ambient dimension is low.
Chapter 6 introduces several statistical methods for estimating mixture subspace
models. They are based on different but related statistical principles, including the
minimax principle (the K-subspaces method), the maximum likelihood principle
(the EM algorithm), and the minimum description/coding length principle (the
compression-based agglomerative clustering method). Chapter 7 explores the
nonparametric spectral clustering method for subspace clustering and introduces
many different ways to establish affinity matrices for data points in a mixture of
subspaces, based on local, semilocal, and global geometric information. Chapter 8
develops principled ways to establish affinity matrices for subspace clustering via
self-expressive low-rank or sparse representations. It introduces modern convex
optimization techniques to find such representations. It also studies under what
conditions this approach gives provably correct solutions.

Part III demonstrates a few representative applications of the methods and
algorithms introduced in earlier chapters. More specifically, Chapter 9 shows how
to cluster image patches into multiple subspaces and learn a hybrid linear model
from them for the purpose of building highly compact and sparse representations
of natural images. Chapter 10 shows how to segment natural images into multiple
regions corresponding to different colors and textures based on data compression
and subspace clustering techniques introduced in this book. Chapter 11 shows
how to segment multiple moving objects in an image sequence using many
of the subspace clustering algorithms presented in this book. The chapter also
provides an empirical comparison of these methods on motion segmentation data,
and discusses their strengths and weaknesses. The chapter also shows how to
extend subspace clustering algorithms to a special class of nonlinear manifolds

Preface xiii

Fig. 2 Organization of the Book—logical dependency among all the chapters and the appendices.

arising in the motion segmentation problem. The chapter also shows how subspace
clustering algorithms can be used to segment video and time series into multiple
events or actions. Chapter 12 studies the temporal segmentation problem more
systematically. The algebraic subspace clustering method is modified and extended
to segment observations that are generated by a hybrid linear dynamical system and
to subsequently identify all the underlying dynamical models.

Part IV covers relevant concepts and results in optimization, mathematical
statistics, and algebraic geometry in order to make the book self-contained. More
specifically, Appendix A covers basics notions from optimization, such as first- and
second-order conditions for optimality, convexity, gradient descent methods, alter-
nating minimization methods, constrained optimization, duality, Lagrange methods,
augmented Lagrange methods, and the alternating direction method of multipliers.
Appendix B covers basic notions from statistics, such as sufficient statistics,
unbiased estimators, maximum likelihood estimation, expectation maximization,
mixture models, model selection, and robust statistics. Appendix C covers basic
notions from algebraic geometry, including polynomial rings, ideals, algebraic sets,
subspace arrangements, ideals of subspace arrangements, and Hilbert functions of
subspace arrangements. All these concepts and results may come in handy for
readers who are not so familiar with certain mathematical facts used in the book,
especially for the early chapters.

xiv Preface

Last but not least, Chapter 13 discusses some of the related open research topics
and future directions that are not covered by this book.

We have taught the material of Chapters 1–8 several times in a one-semester
course, and have covered the entire book with some of the additional proofs for the
material in Chapters 3–8 and applications in Part III in a two-semester sequence.
We invite instructors to experiment with alternative ways of covering this material.
To help instructors design their courses, we have outlined in Figure 2 the overall
book organization and logical dependency among all the chapters and appendices.
We would be delighted to hear of your experiences in this regard.

Baltimore, MD, USA René Vidal
Shanghai, China Yi Ma
Berkeley, CA, USA S. Shankar Sastry
August 2015

Acknowledgments

As we express our gratitude, we must never forget that the highest appreciation is not to
utter words, but to live by them.

—John F. Kennedy

Our initial motivation for trying to generalize principal component analysis to
multiple subspaces can be traced back to early 2001, when René, Shankar, and
colleagues were developing methods for having a team of robots pursue another
team of robots using visual information. For this purpose, we needed to develop
methods for estimating the pose of multiple moving objects in a video taken by a
moving camera. At the time, methods for estimating the pose of an object relative to
a moving camera were well understood, including many methods developed by Yi
in his PhD thesis. However, the problem of estimating the pose of multiple moving
objects in a video was not as well understood. In particular, the main challenge was
that we often do not know which pieces of the video correspond to the same moving
object; hence we needed both to segment the video and to estimate the pose of each
object, i.e., we needed to solve the motion segmentation problem.

To address these issues, René and Yi began to work on a polynomial-based
method for solving the motion segmentation problem. The approach was based on
fitting a high-order polynomial to the image data and factorizing it into multiple
bilinear factors, each one encoding the pose of each one of the moving objects.
Interestingly, we observed that the bilinear factorization problem could be reduced
to the problem of factorizing a polynomial into a product of linear factors, which
in turn provided a solution to the problem of clustering data drawn from a union
of planes in three-dimensional space, i.e., the plane clustering problem. We soon
realized that this polynomial-based method for solving the plane clustering problem
could be extended to subspaces of arbitrary dimensions, a problem that was common
and fundamental to many data modeling, clustering, and classification problems in
pattern recognition, computer vision, signal/image processing, and systems theory.
However, at the time there was a serious lack of systematic study and understanding
of this very important class of models and problems, and many algorithms at the
time were heuristic or ad hoc. This inspired us to work very actively during the next

xv

xvi Acknowledgments

few years to develop a more complete theoretical and algorithmic foundation for this
class of models. As of August 2003, René had summarized much of the algebraic-
geometric method in his PhD dissertation at Berkeley (see Chapter 5), including
some initial applications to motion segmentation.

In early 2004, on the day after Yi’s wedding reception, we decided to formalize
our findings with a manuscript and sketched an early outline of this book at
Café Kopi in downtown Champaign, Illinois. Our initial plan was to extend the
algebraic-geometric approach by developing more efficient and robust techniques
for estimating low-dimensional subspace structures from imperfect mixed high-
dimensional data, and to apply these techniques to a broad class of engineering
and scientific problems. Following René’s PhD dissertation and some of our
earlier papers, many of our graduate students, postdocs, and colleagues enriched
and extended the theory, algorithms, and applications of the algebraic-geometric
approach to many new settings and problems in computer vision, image processing,
and system identification. We especially thank our former students Laurent Bako,
Yasmin Hashambhoy, Wei Hong, Kun Huang, Jacopo Piazzi, Dheeraj Singaraju,
Roberto Tron, Allen Yang, and John Wright for their development of robust
algebraic-geometric approaches to subspace clustering and their applications to
image compression, image segmentation, motion segmentation and hybrid system
identification, which are featured in Chapters 6, 9, 10, 11, and 12. We are also
greatly indebted to Professor Robert Fossum and Professor Harm Derksen. They
painstakingly taught Yi algebraic geometry and have helped develop a rather
complete characterization of the algebraic properties of subspace arrangements.
Their work has helped to provide a rigorous mathematical foundation for the
algebraic subspace clustering algorithms developed in this book (Chapter 5 and
Appendix C). Professor Harm Derksen was also the first to suggest to Yi the use
of compression for subspace clustering. He and John Wright helped develop the
compression-based subspace clustering work (featured in Chapter 6), which is very
complementary to other existing methods. We also thank Professor Richard Hartley
and Professor Brian Anderson for their contributions to the applications of the
algebraic-geometric methods to motion segmentation (featured in Chapter 11) and
hybrid system identification (featured in Chapter 12), respectively.

As it turned out, around 2007 we realized that our initial plan based on extending
the algebraic-geometric approach to subspace clustering was a little premature:
We did not fully realize at the time how much and how fast this topic was to
evolve in years to come. In fact, during the next few years, even classical PCA for
learning a single subspace went through unprecedented development with many new
algorithms based on more solid statistical and mathematical principles that are much
more effective and robust than classical techniques. We especially thank our former
students Arvind Ganesh, Hossein Mobahi, Shankar Rao, Allen Yang, Andrew
Wagner, and John Wright of UIUC for their development of robust approaches to
classical PCA based on sparse and low-rank minimization, and their applications to
face recognition. We are also extremely grateful to Professor Emmanuel Candès for
his pioneering and inspiring work in this area. His collaboration with Yi on robust

Acknowledgments xvii

PCA is featured in Chapter 3 together with his elegant treatment of the low-rank
matrix completion problem.

Such exciting developments in the theory of classical PCA led us to revisit
the subspace clustering problem with much more advanced mathematical tools
and entirely new perspectives. In particular, we are greatly indebted to our former
students Ehsan Elhamifar, Alvina Goh, Shankar Rao, Guangcan Liu, and Roberto
Tron for the development of manifold learning and spectral clustering approaches
to subspace clustering, which we have featured in Chapter 7 and Chapter 8. Special
thanks go to Ehsan Elhamifar, who was a key contributor to the development of
subspace clustering methods based on sparse representation, and to Guangcan Liu
and Professor Paolo Favaro for the development of subspace clustering methods
based on low-rank representation, both featured in Chapter 8. Their work extended
not only the theory of subspace clustering, but also their applicability to midsize
data sets, including face and digit clustering. We also thank Mahdi Soltanolkotabi
and Professor Emmanuel Candès for their recent elegant theoretical analysis of the
sparse subspace clustering algorithm, which is also featured in Chapter 8.

While we were witnessing such exciting developments, our book plan had been
delayed repeatedly. Only very recently did we all become convinced that this topic
had become stable and mature enough for us to fulfill our ten-year-old commitment.
The final version of this book would have not been completed without the help of
René’s students Chong You and Manolis Tsakiris. Chong was kind enough to help
generate most of the wonderful running examples for the algorithms presented this
book, especially those on face images and motion capture, while Manolis generated
many of the synthetic examples, especially those based on algebraic methods. In
return, this book has inspired their own PhD work: Chong is currently developing
theory and algorithms to scale up sparse and low-rank subspace clustering methods
to the big data domain, while Manolis is revisiting the algebraic-geometric approach
to make it robust. Overall, it looks like this book has come full circle, and we may
have robust algebraic-geometric algorithms in the near future thanks to Manolis’s
work. We also thank Chong, Manolis, and Ben Haeffele for proofreading the final
version of this book and giving us fantastic comments on how to improve the
presentation of the material.

We thank Professor Martin Vetterli of École Polytechnique Fédérale de Lau-
sanne, Professor David Donoho of Stanford University, and Professor Guillermo
Sapiro of Duke University for their encouragement for us to apply generalized
PCA models to sparse image representation. Yi would like to thank Professor David
Donoho in particular for making the early suggestion about the strong connection
between subspace arrangements and sparse representation. One could say that the
story of GPCA would never be so profound and complete without the advanced
theory and computational tools from compressive sensing and sparse representation.

xviii Acknowledgments

We thank many of our colleagues for valuable collaborations, discussions,
suggestions, and moral support. They are Professor Stefano Soatto of the University
of California at Los Angeles, Professor Jana Kosecka of George Mason University,
Professor Richard Hartley of the Australian National University, Professors Jitendra
Malik and Ruzena Bajcsy of the University of California at Berkeley, Dr. Harry
Shum, Dr. Yasuyuki Matsushita, and Dr. David Wipf of Microsoft, Professor
Zhouchen Lin of Peking University (or Microsoft Research at the time of collab-
oration), Professor Shuicheng Yan of National University of Singapore, Professors
Robert Fossum, Minh Do, Thomas Huang, Narendra Ahuja, Daniel Liberzon, and
Yizhou Yu of the University of Illinois at Urbana-Champaign, Professor Rama
Chellapa from the University of Maryland at College Park, and Professors Don
Geman, Gregory Hager, Michael Miller, Daniel Robinson, Laurent Younes, of
The Johns Hopkins University. In particular, Professor Robert Fossum helped with
proofreading an early version of the manuscript (containing essentially Chapters 1–
6), which Yi used to teach an earlier course on GPCA at UIUC in 2006. We also
thank Professors Alvaro Soto and Domingo Mery from the Catholic University
of Chile, Professors Jean Ponce and Francis Bach from INRIA, and Professor
Emmanuel Candès from Stanford University for hosting René during his sabbatical
in 2012, when many chapters of this book were written.

We are obviously grateful for all the funding agencies and institutes that
have supported us through all these years. In particular, we would like to thank
our funders and program managers, Dr. Daniel DeMenthon, Dr. Helen Gill,
Dr. Haesun Park, Dr. John Cozzens, and Dr. Jie Yang of the National Science
Foundation, and Dr. Behzad Kamgar-Parsi of the Office of Naval Research.
They have generously supported our research in this direction even when much
of the theory and results were still in their infancy. Without their vision and
trust, the area of GPCA let alone this book, would not have been possible.
We would like to acknowledge the research funding of NSF under grants IIS-
0347456, CAREER-IIS-0447739, CNS-EHS-0509101, CRS-EHS-0509151, CCF-
TF-0514955, ECCS-0701676, IIS-0703756, CNS-0834470, CCF-0964215, ECCS-
0941463, CSN-0931805, OIA-0941362, IIS-0964416, IIS-1116012, IIS-1218709,
IIS-1335035, and IIS-1447822, ONR under grants N00014-00-10621, N00014-
05-10633, N00014-05-10836, N00014-09-10084, N00014-09-10230, N00014-09-
10839, and N00014-13-10116, and DARPA under grants F33615-98-C-3614 and
KECoM 10036-100471 for their support of our work. René would like to thank the
Sloan Research Fellowship for partially supporting his sabbatical. Yi would like to
pay special thanks to the generous startup support from ShanghaiTech and moral
support from Dean Cher Wang and President Mianheng Jiang. Their vision and
determination to reform Chinese higher education and research has encouraged
Yi to focus on writing this book till its completion over the past two years at
ShanghaiTech. GPCA has now become part of the regular curricula for the areas of
data science, signal processing, and machine learning for the School of Information
Science and Technology of ShanghaiTech.

Acknowledgments xix

Finally and most importantly, our families, including the six little ones who were
born during the gestation of this book, have provided us with a huge amount of love,
encouragement, and support in the writing of this book.

Baltimore, MD, USA René Vidal
Shanghai, China Yi Ma
Berkeley, CA, USA S. Shankar Sastry
August 2015

Contents

1 Introduction . 1
1.1 Modeling Data with a Parametric Model. 2

1.1.1 The Choice of a Model Class . 3
1.1.2 Statistical Models versus Geometric Models 4

1.2 Modeling Mixed Data with a Mixture Model . 6
1.2.1 Examples of Mixed Data Modeling . 7
1.2.2 Mathematical Representations of Mixture Models 12

1.3 Clustering via Discriminative or Nonparametric Methods 16
1.4 Noise, Errors, Outliers, and Model Selection . 18

Part I Modeling Data with a Single Subspace

2 Principal Component Analysis . 25
2.1 Classical Principal Component Analysis (PCA) . 25

2.1.1 A Statistical View of PCA. 26
2.1.2 A Geometric View of PCA . 30
2.1.3 A Rank Minimization View of PCA . 34

2.2 Probabilistic Principal Component Analysis (PPCA) 38
2.2.1 PPCA from Population Mean and Covariance 39
2.2.2 PPCA by Maximum Likelihood . 40

2.3 Model Selection for Principal Component Analysis. 45
2.3.1 Model Selection by Information-Theoretic Criteria 46
2.3.2 Model Selection by Rank Minimization 49
2.3.3 Model Selection by Asymptotic Mean Square Error 51

2.4 Bibliographic Notes . 53
2.5 Exercises . 54

3 Robust Principal Component Analysis . 63
3.1 PCA with Robustness to Missing Entries . 64

3.1.1 Incomplete PCA by Mean and Covariance Completion . . 68
3.1.2 Incomplete PPCA by Expectation Maximization 69

xxi

xxii Contents

3.1.3 Matrix Completion by Convex Optimization 73
3.1.4 Incomplete PCA by Alternating Minimization.. 78

3.2 PCA with Robustness to Corrupted Entries . 87
3.2.1 Robust PCA by Iteratively Reweighted Least Squares . . . 89
3.2.2 Robust PCA by Convex Optimization .. 92

3.3 PCA with Robustness to Outliers . 99
3.3.1 Outlier Detection by Robust Statistics . 101
3.3.2 Outlier Detection by Convex Optimization 107

3.4 Bibliographic Notes . 113
3.5 Exercises . 115

4 Nonlinear and Nonparametric Extensions . 123
4.1 Nonlinear and Kernel PCA . 126

4.1.1 Nonlinear Principal Component Analysis (NLPCA) 126
4.1.2 NLPCA in a High-dimensional Feature Space 128
4.1.3 Kernel PCA (KPCA) . 129

4.2 Nonparametric Manifold Learning . 133
4.2.1 Multidimensional Scaling (MDS) . 134
4.2.2 Locally Linear Embedding (LLE) . 135
4.2.3 Laplacian Eigenmaps (LE) . 138

4.3 K-Means and Spectral Clustering . 143
4.3.1 K-Means Clustering . 145
4.3.2 Spectral Clustering . 148

4.4 Bibliographic Notes . 160
4.5 Exercises . 161
4.A Laplacian Eigenmaps: Continuous Formulation 166

Part II Modeling Data with Multiple Subspaces

5 Algebraic-Geometric Methods . 171
5.1 Problem Formulation of Subspace Clustering . 172

5.1.1 Projectivization of Affine Subspaces . 172
5.1.2 Subspace Projection and Minimum Representation 174

5.2 Introductory Cases of Subspace Clustering . 176
5.2.1 Clustering Points on a Line . 176
5.2.2 Clustering Lines in a Plane . 179
5.2.3 Clustering Hyperplanes . 181

5.3 Subspace Clustering Knowing the Number of Subspaces 184
5.3.1 An Introductory Example . 184
5.3.2 Fitting Polynomials to Subspaces . 186
5.3.3 Subspaces from Polynomial Differentiation 188
5.3.4 Point Selection via Polynomial Division 190
5.3.5 The Basic Algebraic Subspace Clustering Algorithm 193

5.4 Subspace Clustering not Knowing the Number of Subspaces 196
5.4.1 Introductory Examples . 196

Contents xxiii

5.4.2 Clustering Subspaces of Equal Dimension 198
5.4.3 Clustering Subspaces of Different Dimensions 200

5.5 Model Selection for Multiple Subspaces . 201
5.5.1 Effective Dimension of Samples of Multiple Subspaces . 202
5.5.2 Minimum Effective Dimension of Noisy Samples 204
5.5.3 Recursive Algebraic Subspace Clustering 205

5.6 Bibliographic Notes . 207
5.7 Exercises . 210

6 Statistical Methods . 217
6.1 K-Subspaces .. 219

6.1.1 K-Subspaces Model . 219
6.1.2 K-Subspaces Algorithm . 220
6.1.3 Convergence of the K-Subspaces Algorithm 221
6.1.4 Advantages and Disadvantages of K-Subspaces 222

6.2 Mixture of Probabilistic PCA (MPPCA) . 222
6.2.1 MPPCA Model . 223
6.2.2 Maximum Likelihood Estimation for MPPCA. 223
6.2.3 Maximum a Posteriori (MAP) Estimation for MPPCA . . 226
6.2.4 Relationship between K-Subspaces and MPPCA 228

6.3 Compression-Based Subspace Clustering . 231
6.3.1 Model Estimation and Data Compression 231
6.3.2 Minimium Coding Length via Agglomerative Clustering 233
6.3.3 Lossy Coding of Multivariate Data . 238
6.3.4 Coding Length of Mixed Gaussian Data 242

6.4 Simulations and Applications. 247
6.4.1 Statistical Methods on Synthetic Data . 247
6.4.2 Statistical Methods on Gene Expression

Clustering, Image Segmentation, and Face Clustering . . . 254
6.5 Bibliographic Notes . 258
6.6 Exercises . 261
6.A Lossy Coding Length for Subspace-like Data . 263

7 Spectral Methods . 267
7.1 Spectral Subspace Clustering . 268
7.2 Local Subspace Affinity (LSA) and Spectral Local

Best-Fit Flats (SLBF) . 270
7.3 Locally Linear Manifold Clustering (LLMC). 274
7.4 Spectral Curvature Clustering (SCC). 276
7.5 Spectral Algebraic Subspace Clustering (SASC) 279
7.6 Simulations and Applications. 281

7.6.1 Spectral Methods on Synthetic Data . 281
7.6.2 Spectral Methods on Face Clustering . 285

7.7 Exercises . 289

xxiv Contents

8 Sparse and Low-Rank Methods . 291
8.1 Self-Expressiveness and Subspace-Preserving Representations . . . 294

8.1.1 Self-Expressiveness Property . 294
8.1.2 Subspace-Preserving Representation . 296

8.2 Low-Rank Subspace Clustering (LRSC) . 297
8.2.1 LRSC with Uncorrupted Data. 297
8.2.2 LRSC with Robustness to Noise . 302
8.2.3 LRSC with Robustness to Corruptions . 308

8.3 Sparse Subspace Clustering (SSC) . 310
8.3.1 SSC with Uncorrupted Data. 310
8.3.2 SSC with Robustness to Outliers . 324
8.3.3 SSC with Robustness to Noise . 326
8.3.4 SSC with Robustness to Corrupted Entries. 330
8.3.5 SSC for Affine Subspaces . 332

8.4 Simulations and Applications. 333
8.4.1 Low-Rank and Sparse Methods on Synthetic Data 333
8.4.2 Low-Rank and Sparse Methods on Face Clustering 336

8.5 Bibliographic Notes . 344
8.6 Exercises . 345

Part III Applications

9 Image Representation . 349
9.1 Seeking Compact and Sparse Image Representations 349

9.1.1 Prefixed Linear Transformations .. 350
9.1.2 Adaptive, Overcomplete, and Hybrid Representations . . . 351
9.1.3 Hierarchical Models for Multiscale Structures. 353

9.2 Image Representation with Multiscale Hybrid Linear Models 354
9.2.1 Linear versus Hybrid Linear Models . 354
9.2.2 Multiscale Hybrid Linear Models. 361
9.2.3 Experiments and Comparisons .. 365

9.3 Multiscale Hybrid Linear Models in Wavelet Domain 369
9.3.1 Imagery Data Vectors in the Wavelet Domain 369
9.3.2 Hybrid Linear Models in the Wavelet Domain 371
9.3.3 Comparison with Other Lossy Representations 372

9.4 Bibliographic Notes . 376

10 Image Segmentation . 377
10.1 Basic Models and Principles . 378

10.1.1 Problem Formulation .. 378
10.1.2 Image Segmentation as Subspace Clustering 380
10.1.3 Minimum Coding Length Principle . 381

10.2 Encoding Image Textures and Boundaries . 382
10.2.1 Construction of Texture Features . 382
10.2.2 Texture Encoding . 383
10.2.3 Boundary Encoding . 384

Contents xxv

10.3 Compression-Based Image Segmentation.. 386
10.3.1 Minimizing Total Coding Length . 386
10.3.2 Hierarchical Implementation .. 387
10.3.3 Choosing the Proper Distortion Level . 389

10.4 Experimental Evaluation .. 392
10.4.1 Color Spaces and Compressibility . 392
10.4.2 Experimental Setup . 394
10.4.3 Results and Discussions . 395

10.5 Bibliographic Notes . 399

11 Motion Segmentation. 401
11.1 The 3D Motion Segmentation Problem . 402
11.2 Motion Segmentation from Multiple Affine Views 405

11.2.1 Affine Projection of a Rigid-Body Motion 405
11.2.2 Motion Subspace of a Rigid-Body Motion 406
11.2.3 Segmentation of Multiple Rigid-Body Motions. 406
11.2.4 Experiments on Multiview Motion Segmentation 407

11.3 Motion Segmentation from Two Perspective Views 413
11.3.1 Perspective Projection of a Rigid-Body Motion 414
11.3.2 Segmentation of 3D Translational Motions 415
11.3.3 Segmentation of Rigid-Body Motions .. 416
11.3.4 Segmentation of Rotational Motions or Planar Scenes . . . 417
11.3.5 Experiments on Two-View Motion Segmentation 418

11.4 Temporal Motion Segmentation . 421
11.4.1 Dynamical Models of Time-Series Data 422
11.4.2 Experiments on Temporal Video Segmentation 423
11.4.3 Experiments on Segmentation of Human

Motion Data. 425
11.5 Bibliographical Notes . 428

12 Hybrid System Identification . 431
12.1 Problem Statement . 433
12.2 Identification of a Single ARX System. 434
12.3 Identification of Hybrid ARX Systems. 438

12.3.1 The Hybrid Decoupling Polynomial . 439
12.3.2 Identifying the Hybrid Decoupling Polynomial 440
12.3.3 Identifying System Parameters and Discrete States 443
12.3.4 The Basic Algorithm and Its Extensions 445

12.4 Simulations and Experiments . 446
12.4.1 Error in the Estimation of the Model Parameters 447
12.4.2 Error as a Function of the Model Orders 447
12.4.3 Error as a Function of Noise . 448
12.4.4 Experimental Results on Test Data Sets 449

12.5 Bibliographic Notes . 450

xxvi Contents

13 Final Words . 453
13.1 Unbalanced and Multimodal Data . 454
13.2 Unsupervised and Semisupervised Learning.. 454
13.3 Data Acquisition and Online Data Analysis . 455
13.4 Other Low-Dimensional Models . 456
13.5 Computability and Scalability . 457
13.6 Theory, Algorithms, Systems, and Applications 459

A Basic Facts from Optimization . 461
A.1 Unconstrained Optimization .. 461

A.1.1 Optimality Conditions . 462
A.1.2 Convex Set and Convex Function .. 462
A.1.3 Subgradient . 464
A.1.4 Gradient Descent Algorithm . 465
A.1.5 Alternating Direction Minimization . 466

A.2 Constrained Optimization .. 468
A.2.1 Optimality Conditions and Lagrangian Multipliers 468
A.2.2 Augmented Lagrange Multipler Methods 470
A.2.3 Alternating Direction Method of Multipliers. 471

A.3 Exercises . 474

B Basic Facts from Mathematical Statistics . 475
B.1 Estimation of Parametric Models . 475

B.1.1 Sufficient Statistics . 476
B.1.2 Mean Square Error, Efficiency, and Fisher Information . . 477
B.1.3 The Rao–Blackwell Theorem and Uniformly

Minimum-Variance Unbiased Estimator 479
B.1.4 Maximum Likelihood (ML) Estimator . 480
B.1.5 Consistency and Asymptotic Efficiency of the

ML Estimator . 481
B.2 ML Estimation for Models with Latent Variables 485

B.2.1 Expectation Maximization (EM). 486
B.2.2 Maximum a Posteriori Expectation

Maximization (MAP-EM). 488
B.3 Estimation of Mixture Models . 490

B.3.1 EM for Mixture Models . 490
B.3.2 MAP-EM for Mixture Models . 492
B.3.3 A Case in Which EM Fails . 494

B.4 Model-Selection Criteria . 496
B.4.1 Akaike Information Criterion . 497
B.4.2 Bayesian Information Criterion . 498

B.5 Robust Statistical Methods.. 498
B.5.1 Influence-Based Outlier Detection . 499
B.5.2 Probability-Based Outlier Detection . 501
B.5.3 Random-Sampling-Based Outlier Detection 503

B.6 Exercises . 506

Contents xxvii

C Basic Facts from Algebraic Geometry . 509
C.1 Abstract Algebra Basics . 509

C.1.1 Polynomial Rings . 509
C.1.2 Ideals and Algebraic Sets . 511
C.1.3 Algebra and Geometry: Hilbert’s Nullstellensatz 513
C.1.4 Algebraic Sampling Theory .. 514
C.1.5 Decomposition of Ideals and Algebraic Sets 516
C.1.6 Hilbert Function, Polynomial, and Series 517

C.2 Ideals of Subspace Arrangements . 519
C.3 Subspace Embedding and PL-Generated Ideals . 522
C.4 Hilbert Functions of Subspace Arrangements . 524

C.4.1 Hilbert Function and Algebraic Subspace Clustering. 525
C.4.2 Special Cases of the Hilbert Function . 528
C.4.3 Formulas for the Hilbert Function . 530

C.5 Bibliographic Notes . 534

References . 535

Index . 553

Glossary of Notation

Frequently used mathematical symbols are defined and listed according to the
following categories:

0. Set theory and logic symbols
1. Sets and linear spaces
2. Transformation groups
3. Vector and matrix operations
4. Geometric primitives in space
5. Probability and statistics
6. Graph theory
7. Image formation

Throughout the book, every vector is a column vector unless stated otherwise!

0. Set theory and logic symbols
\ S1 \ S2 is the intersection of two sets
[S1 [S2 is the union of two sets
:D Definition of a symbol
9 9s 2 S;P.s/ means there exists an element s of set S such

that proposition P.s/ is true
8 8s 2 S;P.s/ means for every element s of set S, proposition

P.s/ is true
2 s 2 S means s is an element of set S
jSj The number of elements in set S
n S1 n S2 is the difference of set S1 minus set S2
� S1 � S2 means S1 is a proper subset of S2
fsg A set consists of elements like s
! f W D! R means a map f from domain D to range R
7! f W x 7! y means f maps an element x in the domain to an

element y in the range
ı f ı g means composition of map f with map g
_ P _Q is true if either proposition P or proposition Q is true
^ P ^ Q is true if both proposition P and proposition Q are

true
H) P H) Q means proposition P implies proposition Q
” P ” Q means propositions P and Q imply each other
j P j Q means proposition P holds given the condition Q

1. Sets and linear spaces
C The set of all complex numbers

xxix

xxx Glossary of Notation

Cn The n-dimensional complex linear space
Pn D RPn The n-dimensional real projective space
R The set of all real numbers
Rn The n-dimensional real linear space
RC The set of all nonnegative real numbers
Z The set of all integers
ZC The set of all nonnegative integers
L A generic 1-D line in space
S Typically represents a generic linear or affine subspace
P A generic 2-D plane in space

2. Geometric primitives in space
x 2 R A lower-case letter normally represents a scalar
x 2 R

D A bold lower-case letter represents a vector or a random
vector

xj 2 R
D The jth sample vector in a data set

X � R
D Represents a set of data points: X D fx1; x2; : : : ; xNg

X 2 R
D�N A capital letter represents a matrix, very often representing

the data matrix with the data points as its columns: X D
Œx1; x2; : : : ; xN �

Xi � X The ith subset or cluster of the dataset X
Xi The submatrix of X associated with the ith cluster Xi

3. Vector and matrix operations

jjxjj2 The 2-norm of a vector x 2 Rn:
q

x21 C x22 C � � � C x2n
jjxjj1 The 1-norm of a vector x 2 R

n: jx1j C jx2j C � � � C jxnj
jjxjj0 The 0-norm of a vector x 2 R

n: the number of nonzero values
hx; yi 2 R The inner product of two vectors: hx; yi D x>y
x � y Homogeneous equality: two vectors or matrices x and y are

equal up to a nonzero scalar factor
x � y 2 R

3 The cross product of two 3-D vectors: x � y Dbxy
x˝ y The Kronecker (tensor) product of x and y
span.M/ The range or subspace spanned by the columns of a matrix

M
rank.M/ The rank of a matrix M
null.M/ The null space or kernel of a matrix M
det.M/ The determinant of a square matrix M
M> 2 R

n�m Transpose of a matrix M 2 R
m�n (or a vector)

trace.M/ The trace of a square matrix M, i.e., the sum of all its
diagonal entries, sometimes shorthand as tr.M/

M D U˙V> The singular value decomposition of a matrix M
jjMjj� The nuclear norm of a matrix M: the sum of all its singular

values
jjMjj0 The 0-norm of a matrix M: the number of nonzero values

Glossary of Notation xxxi

kMkF The Frobenius norm of a matrix M: the square root of the
sum of the square of its entries

S1 ˚ S2 The direct sum of two linear subspaces S1 and S2
S? The orthogonal complement of a subspace S
PS.x/ Projecting a vector x onto the subspace S

4. Transformation groups
GL.n/ D GL.n;R/ The real general linear group on Rn; it can be identified as

the set of n � n invertible real matrices
SL.n/ D SL.n;R/ The real special linear group on Rn; it can be identified as the

set of n � n real matrices of determinant 1
A.n/ D A.n;R/ The real affine group on Rn; an element in A.n/ is a pair

.A; b/ with A 2 GL.n/ and b 2 Rn and it acts on a point
x 2 Rn as AxC b

O.n/ D O.n;R/ The real orthogonal group on Rn; if U 2 O.n/, then U>U D
I

SO.n/ D SO.n;R/ The real special orthogonal group on Rn; if R 2 SO.n/, then
R>R D I and det.R/ D 1

SE.n/ D SE.n;R/ The real special Euclidean group on Rn; an element in SE.n/
is a pair .R; t/ with R 2 SO.n/ and t 2 Rn and it acts on a
point x 2 Rn as RxC t

5. Probability and statistics
p� .x/ The probability density function of the random variable or

vector x with � as parameters of the distribution, sometimes
also written as p.x; �/

p.y j x/ The conditional probability density function of the random
variable y given x

P.�/ The probability of a random event
� D EŒx� The expectation (or mean) of a random variable or vector x
˙x D Cov.x/ The covariance matrix of a random vector x
N .�; ˙/ The normal (Gaussian) distribution with mean � and covari-

ance ˙

6. Graph theory
G D fV ; Eg An (undirected) graph consisting of a set of vertices V and

(weighted) edges E
V D f1; : : : ;Ng The set of N vertices of a graphG, where in this book a vertex

typically represents one data point
E D f.i; j/g The set of (weighted) edges of a graph G, where in this book

an edge typically represents two data points belonging to the
same cluster

wij 2 RC A weight associated with the edge .i; j/ 2 E , where in this
book the weight value represents the affinity between two
data points

xxxii Glossary of Notation

W Weight matrix of a graph G, with wij as its entries
D Degree matrix of a graph G, a diagonal matrix whose

diagonal entries are the degree dii D P
j wij of each vertex

i 2 V
L Laplacian matrix of a graph G, defined as L D D �W

7. Image formation
.Ri;Ti/ Relative motion (rotation and translation) from the ith cam-

era frame to the (default) first camera frame: Xi D RiX C Ti

.Rij;Tij/ Relative motion (rotation and translation) from the ith cam-
era frame to the jth camera frame: Xi D RijXj C Tij

H 2 R
3�3 The homography matrix, and it usually represents an element

in the general linear group GL.3/

Chapter 1
Introduction

The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations, describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work.

—John von Neumann

The primary goal of this book is to study theory and methods for modeling high-
dimensional data with one or more low-dimensional subspaces or manifolds. To
a large extent, the methods presented in this book aim to generalize the classical
principal component analysis (PCA) method (Jolliffe 1986, 2002) to address two
major challenges presented by current applications.

One challenge is to generalize the classical PCA method to data with significant
amounts of missing entries, errors, outliers, or even a certain level of nonlinearity.
Since the very beginning of PCA nearly a century ago (Pearson 1901; Hotelling
1933), researchers have been aware of PCA’s vulnerability to missing data and
corruption. Strictly speaking, estimating a subspace from incomplete or corrupted
data is an inherently difficult problem, which is generally NP-hard. Nevertheless,
due to the practical importance of this problem, many extensions to PCA have been
proposed throughout the years in different practical domains to handle imperfect
data, even though many of these methods have been largely heuristic, greedy, or even
ad hoc. Recent advances in high-dimensional statistics and convex optimization
have begun to provide provably correct1 and efficient methods for finding the
optimal subspace from highly incomplete or corrupted data.

Another challenge is to generalize the classical PCA method to a data set that
consists of multiple subsets, each subset belonging to a different subspace. In
various contexts, such a data set is referred to as “mixed,” “multimodal,” “piecewise
linear,” “heterogeneous,” or “hybrid.” In this book, to be more consistent, we will

1Under fairly broad conditions that we will elaborate in this book.

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_1

1

2 1 Introduction

typically refer to such data as “mixed data” and the model used to fit the data
as a “mixture model.” However, we will not completely exclude other names
that have been conventionally used in different application domains.2 A mixture
model typically consists of multiple constituent primitive models (say subspaces).
Modeling mixed data with a mixture model implies partitioning the data into
multiple (mainly disjoint) subsets and fitting each subset with one of the constituent
models. In the literature, the words “cluster,” “group,” “partition,” “segment,” and
“decompose” are often used interchangeably. In this book, for consistency, we will
primarily use the word “cluster,” but again, in special application domains, we will
use words that have been conventionally used in the literature. For instance, for
images, we typically say “image segmentation.”

In this chapter, we give a brief introduction to some fundamental concepts and
problems involved in modeling incomplete, corrupted, or mixed data. First, we
discuss some basic concepts associated with data modeling in general, such as the
choice of model class. Next, we motivate the problem of modeling mixed data with
mixture models using several examples from computer vision, image processing,
pattern recognition, system identification, and system biology. We then give a brief
account of geometric, statistical, and algebraic methods for estimating mixture
models from data, with an emphasis on the particular case of modeling data with
a union of subspaces,3 also known as hybrid linear models in systems theory. We
finish the chapter with some discussion about how noise and outliers make the
estimation problem extremely challenging, especially when the complexity of the
model to be estimated is not known.

1.1 Modeling Data with a Parametric Model

In science and engineering, one is frequently called upon to infer (or learn) a
quantitative model M for a given set of sample points X D fx1; x2; : : : ; xNg � R

D.
For instance, Figure 1.1 shows a simple example in which one is given a set of
four sample points in a two-dimensional plane. Obviously, these points can be
fit perfectly by a (one-dimensional) straight line L. The line can then be called
a “model” for the given points. The reason for inferring such a model is that it
serves many useful purposes. On the one hand, the model can reveal information
encoded in the data or underlying mechanisms from which the data were generated.
In addition, it can simplify the representation of the given data set and help

2In the statistical learning literature, the most commonly used term is “mixture model.” In systems
theory, the typical term is “hybrid model.” In algebraic geometry, for the case of subspaces, the
typical term is a “subspace arrangement.”
3In this book, we will use interchangeably “mixture,” “collection,” “union,” and “arrangement”
of subspaces or models. But be aware that in the case of subspaces, the formal terminology in
algebraic geometry is a “subspace arrangement.”

1.1 Modeling Data with a Parametric Model 3

P

L

x1
x2

x3

x4

Fig. 1.1 Four sample points on a plane are fit by a straight line. However, they can also be fit by
many other smooth curves, for example the one indicated by the dashed curve.

predict future samples. In the case of the four points shown in Figure 1.1, the line
model gives a more compact one-dimensional representation than the original two-
dimensional plane P. It also suggests that any new point (if generated with a similar
mechanism as the existing points) will likely fall on the same line.

1.1.1 The Choice of a Model Class

A first important consideration to keep in mind is that inferring the “correct” model
for a given data set is an elusive, if not impossible, task. The fundamental difficulty
is that if we are not specific about what we mean by a “correct” model, there
could easily be many different models that fit the given data set “equally well.”
For instance, in the example shown in Figure 1.1, any smooth curve that passes
through the sample points would seem to be as valid a model as the straight
line. Furthermore, if there were noise in the given sample points, then any curve,
including the line, passing through the points exactly would unlikely be the “true
model.”

The question now is this: in what sense can we say that a model is correct or
optimal for a given data set? To make the model inference problem well posed, i.e.,
to guarantee that there is a unique optimal model for the given data, we need to
impose additional assumptions or restrictions on the class of models considered. To
this end, we should not be looking for just any model that can describe the data.
Instead, we should look for a model M� that is the best among a restricted class
of models M.4 In addition, to make the model inference problem computationally
tractable, we need to specify how restricted the class of models needs to be. A
common strategy, known as the principle of Occam’s razor,5 is to try to get away

4Or equivalently, we may impose a nonuniform prior distribution over all models.
5Occam’s (or Ockham’s) razor is a principle attributed to the fourteenth-century logician and
Franciscan friar William of Occam: “Pluralitas non est ponenda sine neccesitate,” which translates
literally as “entities should not be multiplied unnecessarily.” In science, this principle is often
interpreted thus: “when you have two competing theories that make exactly the same predictions,
the simpler one is better.”

4 1 Introduction

with the simplest possible class of models that is just necessary to describe the data
or solve the problem at hand. More precisely, the model class should be rich enough
to contain at least one model that can fit the data to a desired accuracy and yet be
restricted enough that it is relatively simple to find the best model for the given data.

Thus, in engineering practice, the most popular strategy is to start from the
simplest class of models and increase the complexity of the models only when the
simpler models become inadequate. For instance, to fit a set of sample points, one
may first try the simplest class of models, namely linear models, followed by the
class of hybrid (piecewise) linear models (subspaces), and then followed by the
class of (piecewise) nonlinear models (submanifolds). One of the goals of this book
is to demonstrate that among them, piecewise linear models can already achieve
an excellent balance between expressiveness and simplicity for many important
practical data sets and problems.

1.1.2 Statistical Models versus Geometric Models

There are essentially two main categories of models and approaches for modeling
a data set. Methods of the first category model the data as random samples from
a probability distribution and try to learn this distribution from the data. We call
such models statistical models. Models of the second category model the overall
geometric shape of the data set with deterministic models such as subspaces, smooth
manifolds, or topological spaces.6 We call such models geometric models.

Statistical Learning
In the statistical paradigm, one typically assumes that each data point xj in the data
set X is drawn independently from a common probability distribution p.x/. Such
a probability distribution gives a generative description of the samples and can be
used to generate new samples or predict the outcome of new observations. Within
this context, the task of learning a model from the data becomes one of inferring
the most likely probability distribution within a family of distributions of interest
(for example, the Gaussian distributions). Normally, the family of distributions is
parameterized and denoted by M :D fp.x j �/ W � 2 ‚g, where p.x j �/ is
a probability density function parameterized by � 2 ‚, and ‚ is the space of
parameters. Consequently, one popular criterion for choosing a statistical model
p.x j ��/ is the maximum likelihood (ML) estimate given by7

6Roughly speaking, a smooth manifold is a special topological space that is locally homeomorphic
to a Euclidean space and has the same dimension everywhere. A general topological space may
have singularities and consist of components of different dimensions.
7If the true distribution from which the data are drawn is q.x/, then the maximum likelihood
estimate p.x j ��/minimizes the Kullback–Leibler (KL) divergence KL.qkp/ D R

q.x/ log q.x/
p.x/ dx

among the given class of distributions (see Appendix B.)

1.1 Modeling Data with a Parametric Model 5

��ML
:D arg max

�2‚

NY
jD1

p.xj j �/: (1.1)

If a prior distribution (density) p.�/ of the parameter � is also given, then, following
the Bayesian rule, the maximum a posteriori (MAP) estimate is given by

��MAP
:D arg max

�2‚

NY
jD1

p.xj j �/p.�/: (1.2)

Many effective methods and algorithms have been developed in the statistics and
machine learning literature to find the optimal distribution p.x j ��/ or a good
approximation of it if the exact solution is computationally prohibitive. A brief
review is given in Appendix B.

Geometric Modeling
In many practical scenarios, we may not know a priori the statistical process that
generated the data. Also, the amount of data may not be sufficient to determine a
unique optimal distribution within a large class of possible distributions. In such
cases, we may exploit the fact that the data points are often subject to topological
or geometric constraints, e.g., they must lie in a low-dimensional subspace or
submanifold. This implies that the data can be represented only with a probability
distribution that is close to being singular.8

In general, it is very ineffective to learn such a singular or approximately
singular distribution via statistical means (Vapnik 1995). Thus, an alternative data-
modeling paradigm is to learn the overall geometric shape of the given data set
directly. Typical methods include fitting one or more geometric primitives such as
points9, lines, subspaces, and submanifolds to the data set. For instance, the classical
principal component analysis (PCA) method is essentially equivalent to fitting a
low-dimensional subspace, say S

:D spanfu1;u2; : : : ;udg, to a data set in a high-
dimensional space, say S � RD. That is, we try to represent the data points as

xj D y1ju1 C y2ju2 C � � � C ydjud C "j; 8 xj 2 X ; (1.3)

where d < D, yij 2 R with i D 1; : : : d, and u1;u2; : : : ;ud 2 RD are unknown
model parameters that need to be determined, playing the role of the parameters �
in the foregoing statistical model. The line model in Figure 1.1 can be viewed as an
example of applying PCA to the four points in the plane. In the above equation, the
term "j 2 RD denotes the error between the jth sample and the model. As we will

8Singular distributions are probability distributions concentrated on a set of Lebesgue measure
zero. Such distributions are not absolutely continuous with respect to the Lebesgue measure. The
Cantor distribution is one example of a singular distribution.
9As the cluster centers.

6 1 Introduction

see in Chapter 2, PCA finds a set of model parameters fuig and fyijg that minimize
the error

P
j k"jk2 in (1.3). When the errors "j are independent samples drawn from

a zero-mean Gaussian distribution, the geometric formulation of PCA is equivalent
to the classical statistical formulation (Jolliffe 1986, 2002). In general, a geometric
model gives an intuitive description of the samples, and it is often preferred to a
statistical one as a “first-cut” description of the given data set. Its main purpose is
to capture global geometric, topological, or algebraic characteristics of the data set,
such as the number of clusters and their dimensions. Geometric models can also
provide more compact representations of the original data set, making them useful
for data compression and dimensionality reduction.

As two competing data-modeling paradigms, the statistical modeling techniques
in general are more effective in the high-noise regime when the generating
distribution is nonsingular, while the geometric techniques are more effective in the
low-noise regime when the underlying geometric space is (at least locally) smooth.
The two paradigms thus complement each other in many ways. On the one hand,
once the overall geometric shape, the clusters, and their dimensions are obtained
from geometric modeling, one can choose the class of probability distributions more
properly for further statistical inference. On the other hand, since samples are often
corrupted by noise and sometimes contaminated by outliers, in order to robustly
estimate the optimal geometric model, one often resorts to statistical techniques.
Thus, this book will provide thorough coverage of both geometric and statistical
modeling techniques.

1.2 Modeling Mixed Data with a Mixture Model

As we alluded to earlier, many data sets X cannot be modeled well by a single
primitive model M in a pre-chosen or preferred model class M. Nevertheless, it is
often the case that if we group such a data set X into multiple disjoint subsets,

X D X1 [X2 [� � � [Xn; with Xl \ Xm D ;; for l 6D m; (1.4)

then each subset Xi can be modeled sufficiently well by a model in the chosen model
class:

M�i D arg min
M2M

Error.Xi;M/; i D 1; 2; : : : ; n; (1.5)

where Error.Xi;M/ represents some measure of the error incurred by using the
model M to fit the data set Xi. Each model M�i is called a primitive or a component
model. Precisely in this sense, we call the data set X mixed (with respect to the
chosen model class M) and call the collection of primitive models fM�i gniD1 a
mixture model for X . For instance, suppose we are given a set of sample points
as shown in Figure 1.2. These points obviously cannot be fit well by any single

1.2 Modeling Mixed Data with a Mixture Model 7

P

L1 L2

R
3

Fig. 1.2 A set of sample points in R3 are well fit by a mixture model with two straight lines and a
plane.

line, plane, or smooth surface in R3; however, once they are grouped into three
subsets, each subset can be fit well by a line or a plane. Note that in this example,
the topology of the data is “hybrid”: two of the subspaces are of dimension one, and
the other is of dimension two.

1.2.1 Examples of Mixed Data Modeling

The problem of modeling mixed data is quite representative of many data sets that
one often encounters in practical applications. To further motivate the importance of
modeling mixed data, we give below a few real-world problems that arise in image
processing and computer vision. Most of these problems will be revisited later in
this book, and more detailed and principled solutions will be given.

Face Clustering under Varying Illumination
The first example arises in the context of image-based face clustering. Given
a collection of unlabeled images fIjgNjD1 of several different faces taken under
varying illumination, we would like to cluster the images corresponding to the
face of the same person. For a Lambertian object,10 it has been shown that the
set of all images taken under all lighting conditions forms a cone in the image
space, which can be well approximated by a low-dimensional subspace called the
“illumination subspace” (Belhumeur and Kriegman 1998; Basri and Jacobs 2003).11

For example, if Ij is the jth image of a face and d is the dimension of the illumination
subspace associated with that face, then there exists a mean face � and d eigenfaces
u1;u2; : : : ;ud such that Ij � �Cu1y1jCu2y2jC� � �Cudydj. Now, since the images

10An object is called Lambertian if its apparent brightness is the same from any viewpoint.
11Depending on the illumination model, the illumination space can be approximately three- or
nine-dimensional.

8 1 Introduction

Fig. 1.3 Clustering a subset of the Yale Face Database B consisting of 64 frontal views under
varying lighting conditions for subjects 5, 8 and 10.

of different faces will live in different “illumination subspaces,” we can cluster the
collection of images by estimating a basis for each one of those subspaces. As we
will see later, this is a special case of the subspace clustering problem addressed in
Part II of this book. In the example shown in Figure 1.3, we use a subset of the Yale
Face Database B consisting of n D 64 � 3 frontal views of three faces (subjects
5, 8 and 10) under 64 varying lighting conditions. For computational efficiency, we
first down-sample each image to a size of 30 � 40 pixels. We then project the data
onto their first three principal components using PCA, as shown in Figure 1.3(a).12

By modeling the projected data with a mixture model of linear subspaces in R3,
we obtain three affine subspaces of dimension 2, 1, and 1, respectively. Despite the
series of down-sampling and projection, the subspaces lead to a perfect clustering
of the face images, as shown in Figure 1.3(b).

Since face images are rather intuitive real data and have good subspace structures,
we will use them to produce many running examples in the book to help demonstrate
certain abstract concepts or to evaluate certain methods.

Image Representation and Segmentation
The next set of examples arises in the context of image processing, especially image
representation and segmentation. It is commonplace that in an image, pixels in
different regions have significantly different local color/texture profiles (normally in
an N � N window around a pixel). Conventional image representation/compression
schemes, such as JPEG and JPEG2000, often ignore such differences and use the
same linear filters or bases (for example the Fourier transform, discrete cosine
transform, wavelets, or curvelets) to represent the entire set of local profiles. For
example, if Ij is the jth image patch and u1;u2; : : : ;ud are the basis elements, then

12The legitimacy of the projection process will be addressed in Chapter 5.

0
-0.05

-0.15

-0.15

-0.05

0.05

0.15

0

0.1

-0.1

-0.5 -0.1

50 100 150 200

Face 10

Face 5

Face 8

0

0.5

(a) Several images of three faces projected onto
the first three principal components

(b) Classification of the images according to the
three different faces

1.2 Modeling Mixed Data with a Mixture Model 9

Fig. 1.4 Image segmentation based on fitting different linear subspaces (and bases) to regions of
different textures. The three segments (or subspaces) correspond to the ground, the clouds, and the
sky.

all image patches are approximated as a linear combination of these basis elements
as Ij � u1y1j C u2y2j C � � � C udydj. Nevertheless, modeling the set of local profiles
as a mixed data set allows us to segment the image into different regions and
represent each region differently. Each region consists of only those pixels whose
local profiles span the same low-dimensional linear subspace.13 Specifically, if the
jth image patch belongs to the ith region, then Ij � ui

1y1j C ui
2y2j C � � � C ui

dydj,
where the subspace basis fui

jgdi
jD1 can be viewed as a bank of adaptive filters

for the ith image region. Figure 1.4 shows regions of an image segmented by
such a mixed representation. The obtained subspaces (and their bases) normally
provide a very compact representation of the image, often more compact than
any of the aforementioned fixed-basis schemes.14 Hence they are very useful for
applications such as image compression, classification, and retrieval. More details
on the application of subspace clustering to image representation and segmentation
can be found in Chapters 9 and 10, respectively.

Segmentation of Moving Objects in Video
The next example is the motion segmentation problem that arises in the field of
computer vision: given a sequence (or sometimes only a pair) of images of multiple
moving objects in a scene, how does one segment the images so that each segment
corresponds to only one moving object? This is a very important problem in
applications such as motion capture, vision-based navigation, target tracking, and
surveillance.

One way of solving this problem is to extract a set of feature points in the
first image and track these points through the video sequence. As a result, one
obtains a set of point trajectories such that each trajectory corresponds to one
of the moving objects in the video. It is well known from the computer vision
literature (Hartley and Zisserman 2004; Ma et al. 2003) that feature points from

13In contrast to the previous face example, there is no rigorous mathematical justification for
why local profiles from a region of similar texture must span a low-dimensional linear subspace.
However, there is strong empirical evidence that a linear subspace normally gives a very good
approximation.
14That is, the number di of basis elements needed to represent the ith region is typically much
smaller than the number d of basis elements needed to represent the whole image.

10 1 Introduction

Fig. 1.5 Clustering the relative motion of a collection of feature points between two views of a
scene where both the camera and the car are moving, hence there are two different 3-dimensional
motions in the scene.

two corresponding views of the same object are related by either linear or quadratic
constraints depending on the type of motions and camera projection models (see
Chapter 11). Therefore, mathematically, the problem of motion segmentation is
equivalent to clustering point trajectories into different linear subspaces (in a certain
high-dimensional feature space). Figure 1.5 shows two frames of a video sequence
of a moving car. Feature points on both the car and the background are detected
and tracked through the sequence. These points undergo different three-dimensional
(3D) motions in space as both the car and the camera move; in this sequence, the
camera is mainly panning and zooming. The image on the left shows the starting
positions of the car and the camera view, and the image in the middle shows the final
positions. The image on the right shows the displacement of these feature points
from the first to the second image as well as the segmentation of these displacement
vectors using a mixture model of two linear subspaces. We will describe in detail
the motion segmentation method used to achieve this result in Chapter 11.

Temporal Video Segmentation and Event Detection
Another example arises in the context of detecting events from video sequences. A
typical video sequence contains multiple activities or events separated in time. For
instance, Figure 1.6(a) shows a news sequence in which the host is interviewing a
guest and the camera is switching between the frames containing the host, the guest,
or both the host and the guest. The problem is to separate the video sequence into
subsequences, so that each subsequence corresponds to one of the three events. For
this purpose, we assume that all the frames associated with the same event live in a
low-dimensional subspace of the space spanned by all the images in the video, and
that different events correspond to different subspaces. The problem of segmenting
the video into multiple events is then equivalent to a subspace clustering problem.
Since the image data live in a very high-dimensional space (� 105, the number of
pixels), we first project the image data onto a low-dimensional subspace (� 10)
using principal component analysis (PCA) and then fit a mixture model of multiple
subspaces to the projected data to identify the different events. Figure 1.6 shows the
segmentation results for two video sequences. In both cases, a perfect segmentation
is obtained. We will describe in detail the segmentation method used to achieve
these results in Chapter 11.

1.2 Modeling Mixed Data with a Mixture Model 11

0 5 10 15 20 25 30

1

2

3

0 10 20 30 40 6050

1

2

3

(a) Thirty frames of a video sequence of a tele-
vision show clustered into three groups: host,
guest, and both of them

(b) Sixty frames of a news video sequence
clustered into three groups: car with a burning
wheel, burnt car with people, and burning car

Fig. 1.6 Clustering frames of a news video sequence into groups of scenes by modeling each
group with a linear subspace.

Identification of Hybrid Dynamical Models
The last, somewhat more abstract, example arises in the context of modeling time
series data with linear dynamical models. A popular dynamical model used to
analyze a time series fyt 2 Rgt2Z is the linear autoregressive (AR) model

yt D a1yt�1 C a2yt�2 C � � � C anyt�n C "t; 8t 2 Z; (1.6)

where faig are the parameters of the AR model and "t 2 R represents the modeling
error or noise, which is often assumed to be a white-noise random process. In order
to capture more complex dynamics in the data, one can assume that yt is the output
of a piecewise AR model, where the output at each time instant is drawn from
one out of finitely many AR models. Notice that at each time instant, the vector
xt D Œyt; yt�1; : : : ; yt�n�

> lies on an n-dimensional hyperplane in RnC1. Therefore,
the vectors xt for all t lie in a collection of hyperplanes. As a consequence, the
identification of the parameters of a piecewise AR model can be viewed as another
subspace clustering problem. We will discuss this and more general classes of hybrid
dynamical models, together with algorithms for identifying the parameters of such
models, in Chapter 12.

As we can see from the foregoing examples, there are many practical applications
whereby one can rigorously show that a given data set belongs to a collection of
linear or quadratic surfaces of the same or possibly different dimensions (motion
segmentation example). In many other cases, one can use piecewise linear structures
to approximate the data set and obtain a more compact and meaningful geometric
representation of the data, including segments, dimensions, and bases (image
representation, face classification, and video segmentation examples). As we will
see in Part II of this book, subspace (or surface) clustering is a natural abstraction
of all these problems and thus merits systematic investigation. From a practical
standpoint, the analysis of such problems has led to many general and powerful

12 1 Introduction

modeling tools that are applicable to a wide variety of data types, including image,
video, audio, time series, genomic, and proteomic data.

1.2.2 Mathematical Representations of Mixture Models

The examples presented in the previous subsection argue forcefully for the devel-
opment of modeling and estimation techniques for mixture models. Obviously,
whether the model associated with a given data set is mixed depends on the class of
primitive models considered. In this book, the primitives are normally chosen to be
simple classes of geometric models or probabilistic distributions.

For instance, one may choose the primitive models to be linear subspaces. Then
one can use an arrangement of linear subspaces fSigniD1 � R

D,

Z
:D S1 [S2 [� � � [Sn; (1.7)

also called a piecewise linear model, to approximate many nonlinear manifolds
or piecewise smooth topological spaces. This is the standard model considered in
geometric approaches to generalized principal component analysis (GPCA), which
will be studied in Part II of this book.

The statistical counterpart to the geometric model in (1.7) is to assume instead
that the sample points are drawn independently from a mixture of (near singular)
Gaussian distributions fp�i.x/gniD1, where x 2 RD but each distribution has mass
concentrated near a subspace. The overall probability density function can be
expressed as a sum:

q� .x/
:D �1p�1.x/C �2p�2.x/C � � � C �np�n.x/; (1.8)

where � D .�1; : : : ; �n; �1; : : : ; �n/ are the model parameters and �i > 0 are
mixing weights with �1 C �2 C � � � C �n D 1. This is the typical model studied in
mixtures of probabilistic principal component analysis (PPCA) (Tipping and Bishop
1999a), where each component distribution p�i.x/ is a nearly degenerate Gaussian
distribution. A classical way of estimating such a mixture model is the expectation
maximization (EM) algorithm, where the membership of each sample is represented
as a hidden random variable. Appendix B reviews the general EM method, and
Chapter 6 shows how to apply it to the case of multiple subspaces.

In the special case that there is only one subspace or one component distribution
(i.e., n D 1), the model reduces to the classical (probabilistic) PCA, and we will
see that the geometric and statistical formulations are equivalent in the sense that
they both give very much the same solution (see Chapter 2). However, in the case
of incomplete or corrupted data, or in the general case of a mixture of multiple
components, the two formulations can be very different, and their optimal solutions
need to be found by very different techniques. In this book, we will study and clarify
the similarities and differences between these geometric models and statistical
models in Chapters 5 and 6.

1.2 Modeling Mixed Data with a Mixture Model 13

Difficulties with Conventional Data-Modeling Methods
The reader may have been wondering why we should not simply enlarge the
class of primitive models to include mixture models so that we can deal with
them by the conventional single-model estimation paradigm to be reviewed in
Appendix B. While this is an appealing idea in principle, conventional model
estimation methods are applicable mostly to data sampled from smooth manifolds
and/or nonsingular distributions. As shown by the examples above, many practical
data sets are better modeled by nonsmooth manifolds or singular distributions. As
we will see, the underlying topological space of a mixed data set may contain
multiple (likely intersecting) manifolds of different dimensions, and conventional
manifold learning techniques such as (Tenenbaum et al. 2000; Roweis and Saul
2000) do not apply to such mixtures of smooth manifolds. Also, if one tries to model
mixed data sets with a single probability distribution, then the distribution will
typically have singularities, and conventional statistical techniques become rather
tricky or ineffective in inferring such singular distributions (Vapnik 1995).

An alternative approach to modeling mixed data is to first cluster the data set into
coherent subsets and then model each subset using classical single-model methods.
This is a popular approach adopted by many practitioners in the field. However, a
fundamental difficulty with this approach is that without knowing which subset of
sample points belongs to which constituent model, there is seemingly a “chicken-
and-egg” relationship between data clustering and model estimation: If the partition
of the data were known, one could fit a model to each subset of samples using
classical model estimation techniques; and conversely, if the constituent models
were known, one could easily find the subset of samples that best fits each model.
This relationship has been the rationale behind many alternating minimization
techniques for mixed data, such as the well-known EM and K-means algorithms
widely used in machine learning (see Appendix B) as well as their counterparts
for multiple subspaces (see Chapter 6). These alternating methods, however, share
several drawbacks:

• The iteration needs to start with a good initial guess of the solution; otherwise,
the iteration is likely to converge to a local minimum.

• Without knowing a priori the number of models and the dimension of each model,
the algorithm may diverge if it starts with a wrong guess for these key model
parameters.

• There are cases or applications in which we may care about only the joint model
rather than the individual clusters; or at the opposite end of the spectrum, we
may care more about the clusters of the data than their parametric models. In
such cases, it might be more efficient to look for a direct solution to what is
needed.

In this book, we will see a few representative approaches that lead to effective
and efficient solutions without resorting to such alternating schemes. These new
methods are global, noniterative, and in many cases provably optimal for the
clustering and modeling problem.

14 1 Introduction

Mixture Models as Algebraic Sets
In this book, in addition to manifolds or distributions, we will also view mixed data
as algebraic sets, study their algebraic properties, and seek solutions via algebraic-
geometric means. Roughly speaking, an algebraic set is the common zero-level set
of a family of polynomial equations (see Appendix C). To see the merit of such a
representation for a mixture model, let us consider a simple example in which the
data corresponding to the ith constituent model belong to a hyperplane of RD of the
form

Zi D fx W b>i x D 0g for i D 1; 2; : : : ; n: (1.9)

In other words, the set Zi is the zero-level set of the polynomial pi.x/ D b>i x.
Therefore, we can interpret a mixed data set drawn from a union of n hyperplanes
as the zero-level set of the polynomial p.x/ D .b>1 x/.b>2 x/ � � � .b>n x/, i.e.,

Z
:D Z1 [Z2 [� � � [Zn D

˚
x W p1.x/p2.x/ � � � pn.x/ D 0

�
: (1.10)

This polynomial can be determined from a number of (random) sample points on
the algebraic set X :D fxj 2 Zg using techniques analogous to those used for fitting
a circle to three points in R2. Given the polynomial p.x/, we can use polynomial
factorization techniques to obtain the factors pi.x/ D b>i x, and hence the parameters
for each constituent model, namely the vector bi normal to the hyperplane.

This simple example of modeling the data with a union of hyperplanes can be
immediately generalized to modeling the data with a union of algebraic varieties.15

More specifically, let us suppose that the data corresponding to the ith constituent
model can be described as the zero-level set of some polynomials in a prime
ideal pi,16

Zi
:D fx W p.x/ D 0; p 2 pig � R

D; i D 1; 2; : : : ; n: (1.11)

The (mixed) data from a union of n such models then belong to an algebraic set:17

Z
:D Z1 [Z2 [� � � [Zn

D ˚x W p1.x/p2.x/ � � � pn.x/ D 0; 8pi 2 pi; i D 1; 2; : : : ; n�:
(1.12)

From a number of (random) sample points on the algebraic set X :D fxj 2 Zg, one
can determine the (radical) ideal of polynomials that vanish on the set Z:18

X ! q.Z/
:D ˚q W q.xj/ D 0; 8xj 2 Z

�
: (1.13)

15An algebraic variety is an irreducible algebraic set. An algebraic set is called irreducible if it
cannot be written as the union of two proper algebraic subsets. A subspace is one such example.
16A prime ideal is an ideal that cannot be decomposed further as the intersection of two other
ideals (see Appendix C). The zero-level set of a prime ideal is an irreducible algebraic set, i.e., an
algebraic variety.
17Notice the correspondence between a “union” of algebraic varieties and the “multiplication” of
the polynomials associated with the varieties.
18According to Hilbert’s Nullstellensatz (see Appendix C), there is a one-to-one correspondence
between algebraic sets and radical ideals (Eisenbud 1996).

1.2 Modeling Mixed Data with a Mixture Model 15

While the ideal q is no longer a prime ideal, once q has been obtained, the constituent
models pi (or Zi) can be subsequently retrieved by decomposing the ideal q into
irreducible prime ideals via algebraic means, i.e.,19

q ! q D p1 \ p2 \ � � � \ pn: (1.14)

Clearly, the above representation establishes a natural correspondence between
terminologies developed in algebraic geometry and the heuristic languages used
in modeling mixed data: the constituent models become algebraic varieties, the
mixture model becomes an algebraic set, the mixed data become samples from an
algebraic set, and the estimation of mixture models becomes the estimation and
decomposition of a radical ideal. Although this nomenclature may seem abstract
and challenging at first, we will see in Chapter 5 how to make this very concrete for
the case of a subspace arrangement.

Despite its purely algebraic nature, the above algebraic representation is closely
related to and complements well the two aforementioned geometric and statistical
data modeling paradigms.

From the geometric viewpoint, unlike a smooth manifold M that sometimes can
be implicitly represented as the level set of a single function, an algebraic set Z is
the zero-level set of a family of polynomials. As a result, an algebraic set Z allows
components with different dimensions as well as singularities that the zero-level set
of a single smooth function cannot describe.

From the statistical viewpoint, one can also view the irreducible components fZig
of Z as the “means” of a collection of probability distributions fpi.�/g and the overall
set Z as the “skeleton” of their mixture distribution q.�/. For instance, a piecewise
linear structure can be viewed as the skeleton of a mixture of Gaussian distributions
(see Figure 1.7). Therefore, mixture models represented by algebraic sets can be
interpreted as a special class of generative models such that the random variables
have small variance outside the algebraic sets, but large variance inside.

Fig. 1.7 Comparison of three representations of the same data set: a (nonlinear) manifold, a
(mixed Gaussian) distribution, or a (piecewise linear) algebraic set.

19For the special case in which the ideal is generated by a single polynomial, the decomposition is
equivalent to factoring the polynomial into factors.

Algebraic SetnoitubirtsiDdlofinaM

16 1 Introduction

As we will show in this book, if the primitive models are simple models
such as linear subspaces (or quadratic surfaces), then in principle, the problem of
segmenting mixed data and estimating a mixture model can be solved noniteratively
(see Chapter 5). Moreover, the correct number of models and their dimensions can
also be correctly determined via purely algebraic means, at least in the noise-free
case (see Chapter 5).

1.3 Clustering via Discriminative or Nonparametric Methods

The previous section argued for the importance of identifying a mixture model for
clustering mixed data. As a result, we often obtain a parametric (either geometric
or statistical) model that best describes how the given sample data are generated.
However, there are applications for which there might be no need to obtain
parametric and generative models behind the given data. We might be interested
only in seeking a more compact representation of the samples themselves as long
as certain important information or structure (such as topology) of the data is
preserved.

Clustering as a Compression Problem
For instance, for the image segmentation problem, we might be interested only
in grouping the pixels into several homogeneous segments, but not necessarily
in a generative model that best describes the texture in each segment. Hence, it
suffices for our purpose to have a method that directly gives rules (or classifiers)
that separate a collection of data points into different segments or clusters. Such
methods are often referred to as “discriminative” methods, popular in areas such as
object classification and pattern recognition.

However, this does not mean that for discriminative methods one does not
need to understand intrinsic structures of the data. In this book, we will see that
in order to arrive at an effective discriminative method for classifying subspace-
like data, it is very crucial to have precise information about intrinsic geometric
properties of the clusters, such as its dimension and volume. The compression-based
clustering method described in Chapter 6 and its application to image segmentation
in Chapter 10 clearly support this point of view. To be more illustrative, a rather
pragmatic reason why we may want to partition a data set X into multiple subsets
X D X1 [X2 [� � � [Xn might be because the total “volume of space” we need to
store the data set as a whole is more than the sum of the volumes of the individual
subsets. So, suppose we could measure the volume of a data set as L.X /. Then, it
makes sense to partition the data set if

L.X / > L.X1/C L.X2/C � � � C L.Xn/: (1.15)

For the data set shown in Figure 1.2, the whole data set spans a nontrivial volume
in 3D space, yet each of the three subsets (on the two lines and in the plane) spans
a nearly zero-volume set in three dimensions. In this sense, the data set is separable
because it has “compressible” low-dimensional parts.

1.3 Clustering via Discriminative or Nonparametric Methods 17

Clustering as a Graph-Partitioning Problem
In many modern data-driven machine learning tasks, we are very often interested
not in each sample data point as a signal defined over space and time, but in a
certain high-level semantic label that the signal shares with other similar signals in
the same class—say sounds of the same word, or images of the same object. Since
the original data could contain a large quantity of irrelevant information or nuisance
factors, we often need to find a much more compact representation of the data that
extracts and highlights what is relevant but suppresses what is irrelevant.

More formally, we could consider mapping the given sample data X to another
domain (typically of much lower dimension):

f W X � R
D ! Y � R

d; (1.16)

x 2 R
D 7! y 2 R

d: (1.17)

The image Y D f .X / of X under such a mapping can be considered a nonparamet-
ric representation for X , and ideally, such a Y should preserve some key structural
information about X , such as its intrinsic dimension, topology, and neighborhood
(e.g., in the manifold learning problem studied in Chapter 4). Although Y is not
a parametric model in the conventional sense that we have discussed in previous
sections, it could better serve the task at hand (whether it is to cluster the data or
to infer some high-level semantic information). In the computer vision or pattern
recognition literature, such a representation is loosely called a “feature.” More
formally, features serve the same role as “sufficient statistics” for the inference tasks
of interest (see Appendix B for a definition).

In this book, we will see a representative example of these methods in the context
of manifold learning and data clustering. As we will describe in Chapters 4 and 7,
if we are interested only in clustering (not modeling) the mixed data, then spectral
embedding serves as a great example for such a feature map f .�/. The basic idea is
rather simple: instead of seeking a parametric model for the data set, we view each
data point xi of X D fx1; : : : ; xNg as a vertex of a graph G in which each pair of
vertices xi; xj are connected by an edge eij with a weight

wij D exp
� � dist.xi; xj/

�
; (1.18)

where d.xi; xj/ is a “distance” between the points according to some norm. Ideally,
we hope that the weight will be 1 when the two points belong to the same cluster
(subspace) and 0 when they do not. Such a weight is often referred to as an affinity
measure between pairs of data points. With such an affinity measure, the problem
of clustering the data set X becomes one of identifying the connected components
of such a graph. As we will see in Chapter 4, the null space of the Laplacian matrix
L 2 RN�N of the affinity graph G,

LY D 0; Y 2 R
N�d; (1.19)

18 1 Introduction

reveals how the data set should be clustered. More precisely, two rows yi; yj 2 Rd of
Y are the same if and only if the two vertices xi; xj are connected in the graph. Hence,
the null space of the Laplacian can be viewed as a nonparametric representation Y
that captures the clustering information of X . For subspace-like clusters, we will
see many different ways of defining the graph affinity in Chapter 7.

Clustering as a Sparse Representation Problem
However, again, taking the nonparametric approach for a problem does not mean
that one could largely ignore the intrinsic structures of the data. Quite to the contrary,
as we will see in Chapter 7 and Chapter 8, for the subspace clustering problem, in
order to build an effective and correct affinity measure for application of the spectral
method, we need to exploit the local or global low-dimensional structures of the
subspaces to their fullest extent.

From the graph-partitioning perspective, we hope to establish an affinity measure
such that data points are connected only to points that belong to the same subspace.
As we will see in Chapter 8, one effective way to obtain such an affinity is to make
use of an important property of subspace-like data: Each point can be represented
as a linear combination of other points in the same subspace; and in general, this
representation, though not necessarily unique, is the most compact one in the sense
that it represents each point with the minimum number of points. For instance, in
Figure 1.2, a point in R

3 typically can be written as a linear combination of three
other points, but for a point on one of the lines, it can be represented as a scaled
version of any other point on the same line.

Hence, we could represent all points in the data set X as linear combinations of
other points in the same data set. More specifically, let X be the matrix with the data
points as columns X D Œx1; x2; : : : ; xN �. We have

X D XC; (1.20)

where C 2 RN�N is the matrix of coefficients with zeros on its diagonal so as to
exclude the trivial representation C D I in which each point equals itself. Among
all possible representations of this kind for X, if we can find the one that contains the
fewest nonzero coefficients, the matrix C may help us to construct an affinity matrix
that has the desired graph-connectivity property. In Chapter 8, we will see that
under rather broad conditions, such a sparse representation can be found effectively
and efficiently, and the resulting affinity graph indeed respects all the subspace
structures.

1.4 Noise, Errors, Outliers, and Model Selection

In many real-world applications, the given data samples may be corrupted by noise
or gross errors, or contaminated by outliers. Figure 1.8 shows one such example. In
contrast to the noiseless or high signal-to-noise ratio (SNR) scenario, the problem

1.4 Noise, Errors, Outliers, and Model Selection 19

sreiltuohtiwselpmasysion)cselpmasysion)ba) sample points

oS1

S2 S3 Z = S1 ∪ S2 ∪ S3

Fig. 1.8 Inferring a mixture model of multiple subspaces Z, consisting of one plane (S1) and two
lines (S2; S3), from a set of mixed data, which can be (a) noiseless samples from the plane and
lines, (b) noisy samples, (c) noisy samples with outliers.

of finding the “correct” model becomes much more challenging in the presence of a
significant amount of noise, errors, or outliers. Proper statistical and robust statistical
techniques therefore need to be developed for model estimation and data clustering.
These issues will be carefully treated in Chapter 3 for the single-subspace case and
Chapter 6 and Chapter 8 for the multiple-subspace case.

Another important observation is that the class of piecewise linear models is
very expressive. In the presence of noise and outliers, a mixture model of linear
subspaces is not necessarily the best even if it achieves the highest fidelity to the
given data. This is especially the case when the number of subspaces and their
dimensions are not known a priori. In fact, for every point in the data set, one
can fit a separate line to it, which results in no modeling error at all. But such a
model is not very appealing, since it has exactly the same complexity as the original
data.

In general, the higher the model complexity, the smaller the modeling error.20 In
statistics, this is known as “overfitting.” A good (statistical or geometric) model M
should strike a good balance between the complexity of the model and its fidelity
to the data X .21 Many general model selection criteria have been proposed in
the statistics and machine learning literatures, including the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), the minimum description
length (MDL), and the minimum message length (MML). (See Appendix B for
a brief review.) Despite some small differences, these criteria all make a tradeoff

20For example, every function can be approximated arbitrarily well by a piecewise linear function
with a sufficient number of pieces.
21For instance, the complexity of a model can be measured as the minimum number of bits needed
to fully describe the model, and the data fidelity can be measured by the distance from the sample
points to the model.

20 1 Introduction

Er
ro

r

Model Complexity

Modeling Error

Prediction Error

min(αx + βy)

Fig. 1.9 Modeling and prediction error versus model complexity. The optimal model that
minimizes prediction error, represented by the black dot, can be different from the optimal model
that trades off modeling error and model complexity, represented by the circle.

between modeling error and model complexity and minimize an objective of the
following form:

min
M2M ŒJ.M/

:D ˛ � Complexity.M/C ˇ � Error.X ;M/�: (1.21)

In this book, we will introduce a model complexity measure that is specially
designed for an arrangement of linear subspaces of arbitrary dimensions, namely the
effective dimension (see Chapter 5). In Chapter 6, we show how to measure model
complexity and data fidelity based on the minimum description length principle,
which leads to a compression-based data clustering algorithm. We will also see
how such a principle can be effectively applied to the image compression and
segmentation problems in Chapter 9 and Chapter 10, respectively.

There is yet another fundamental tradeoff, known as the bias versus variance
tradeoff in statistics, which is often exploited for model selection. When the model
complexity is too high, the model tends to overfit the given data, including the
noise in it. Such a model does not generalize well in the sense that it is unlikely
to predict well the outcome of new samples. When the model complexity is too low,
the model underfits the data, which results in a large prediction error. Therefore, a
good model should minimize the prediction error. The typical relationship between
modeling error and prediction error as a function of model complexity is plotted in
Figure 1.9. Unfortunately, the “optimal” models obtained by trading off modeling
error and prediction error can be different, as illustrated in the figure. In such a case,
a choice between the two objectives has to be made. In the unsupervised learning
setting, it is often difficult to obtain the prediction error curve unless one does cross-

1.4 Noise, Errors, Outliers, and Model Selection 21

validation within the given data set itself. For purposes such as data compression,
the prediction error is of less concern than the modeling error. Hence in these cases,
we often choose a tradeoff between the modeling error and the model complexity
(see Chapter 6 and Chapter 10). However, if the purpose of data modeling is to
correctly classify future new samples, e.g., in face recognition, the typical model
selection criterion is to minimize prediction error solely.

In the remainder of this book, we will show with great technical detail and
depth how to apply many of the mathematical modeling principles discussed in this
chapter to two classes of models that are central to many applications: subspace
models and union of subspaces models. As we will see, although most of the
book will study problems that generalize principal component analysis well beyond
its classical setting, the fundamental mathematical, statistical, and computational
principles that lead us to good solutions to those generalized settings remain very
much the same as those already being utilized in the classical theory.

Part I
Modeling Data with a Single Subspace

Chapter 2
Principal Component Analysis

Principal component analysis is probably the oldest and best known of the techniques of
multivariate analysis.

—Ian T. Jolliffe

Principal component analysis (PCA) is the problem of fitting a low-dimensional
affine subspace to a set of data points in a high-dimensional space. PCA is, by now,
well established in the literature, and has become one of the most useful tools for
data modeling, compression, and visualization.

In this chapter, we will give a brief review of the classical theory of PCA, but
with some modern twists and enrichment. When the dimension of the subspace
is known, we will introduce both the statistical and geometric formulations of the
PCA problem and establish their mathematical equivalence. Specifically, we will
show that the singular value decomposition provides an optimal solution to the PCA
problem and provides an interpretation of it as a rank minimization problem. We
will also establish the similarities and differences between PCA and a probabilistic
generative subspace model called probabilistic PCA. Finally, when the dimension of
the subspace is unknown, we will introduce some conventional and modern model
selection methods to determine the number of principal components.

2.1 Classical Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S of dimension d � D to a set of points
fx1; x2; : : : ; xNg in a high-dimensional space R

D. Mathematically, this problem
can be formulated as either a statistical problem or a geometric one. In this section,
we will discuss both formulations and show that they lead to the same solution. We
will also formulate PCA as a low-rank matrix approximation problem.

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_2

25

26 2 Principal Component Analysis

2.1.1 A Statistical View of PCA

Historically, PCA was first formulated in a statistical setting to estimate the principal
components of a multivariate random variable x (Pearson 1901; Hotelling 1933).
Specifically, given a zero-mean multivariate random variable x 2 RD and an integer
d < D, the d “principal components” of x, y 2 Rd, are defined as the d uncorrelated
linear components of x,

yi D u>i x 2 R; ui 2 R
D; i D 1; 2; : : : ; d; (2.1)

such that the variance of yi is maximized subject to

u>i ui D 1 and Var.y1/ 	 Var.y2/ 	 � � � 	 Var.yd/ > 0: (2.2)

For example, to find the first principal component y1, we seek a vector u�1 2 RD

such that

u�1 D arg max
u12RD

Var.u>1 x/ s.t. u>1 u1 D 1: (2.3)

The following theorem shows that the principal components of x can be computed
from the eigenvectors of its covariance matrix †x

:D EŒxx>�.

Theorem 2.1 (Principal Components of a Random Variable). Assume that
rank.†x/ 	 d. Then the first d principal components of a zero-mean multivariate
random variable x, denoted by yi for i D 1; 2; : : : ; d, are given by

yi D u>i x; (2.4)

where fuigdiD1 are d orthonormal eigenvectors of †x
:D EŒxx>� associated with its

d largest eigenvalues f�igdiD1. Moreover, �i D Var.yi/ for i D 1; 2; : : : ; d.

Proof. For the sake of simplicity, let us first assume that †x does not have repeated
eigenvalues. In this case, since the matrix †x is real and symmetric, its eigenvalues
are real and its eigenvectors form a basis of RD. Moreover, the eigenvectors are
unique (up to sign), and the eigenvectors corresponding to different eigenvalues are
orthogonal to each other (see Exercise 2.1).

Now notice that for every u 2 RD, we have that

Var.u>x/ D EŒ.u>x/2� D EŒu>xx>u� D u>†xu: (2.5)

Therefore, the optimization problem in (2.3) is equivalent to

max
u12RD

u>1 †xu1 s.t. u>1 u1 D 1: (2.6)

2.1 Classical Principal Component Analysis (PCA) 27

To solve the above constrained optimization problem, we use the method of
Lagrange multipliers (see Appendix A). The Lagrangian function is given by

L D u>1 †xu1 C �1.1 � u>1 u1/; (2.7)

where �1 2 R is the Lagrange multiplier. From computing the derivatives of L
with respect to .u1; �1/ and setting them to zero, we obtain the following necessary
conditions for .u1; �1/ to be an extremum of L :

†xu1 D �1u1 and u>1 u1 D 1: (2.8)

This means that u1 is an eigenvector of †x with associated eigenvalue �1. Since the
extremum value is u>1 †xu1 D �1u>1 u1 D �1, the optimal solution for u1 is given
by the eigenvector of †x associated with its largest eigenvalue �1 D Var.y1/ > 0.

To find the second principal component, u2, we use the fact that u>1 x and u>2 x
need to be uncorrelated. This implies that u2 is orthogonal to u1. Indeed, from

EŒ.u>1 x/.u>2 x/� D EŒu>1 xx>u2� D u>1 †xu2 D �1u>1 u2 D 0 (2.9)

and �1 ¤ 0, we have u>1 u2 D 0. Thus, to find u2, we need to solve the following
optimization problem:

max
u22RD

u>2 †xu2 s.t. u>2 u2 D 1 and u>1 u2 D 0: (2.10)

As before, with an abuse of notation, we define the Lagrangian

L D u>2 †xu2 C �2.1 � u>2 u2/C �u>1 u2: (2.11)

The necessary conditions for .u2; �2; �/ to be an extremum are

†xu2 C �

2
u1 D �2u2; u>2 u2 D 1 and u>1 u2 D 0; (2.12)

from which it follows that u>1 †xu2 C �

2
u>1 u1 D �1u>1 u2 C �

2
D �2u>1 u2, and so

� D 2.�2 � �1/u>1 u2 D 0. This implies that †xu2 D �2u2 and that the extremum
value is u>2 †xu2 D �2 D Var.y2/. Therefore, u2 is the leading eigenvector
of †x restricted to the orthogonal complement of u1.1 Since the eigenvalues of
†x are distinct, u2 is the eigenvector of †x associated with its second-largest
eigenvalue.

1The reason for this is that both u1 and its orthogonal complement u?

1 are invariant subspaces
of †x.

28 2 Principal Component Analysis

To find the remaining principal components, we use that fact that for all for i ¤ j,
yi D u>i x and yj D u>j x need to be uncorrelated, whence

Var.yiyj/ D EŒu>i xx>uj� D u>i †xuj D 0:

Using induction, assume that u1; : : : ;ui�1 are the unit-length eigenvectors of †x

associated with its top i � 1 eigenvalues, and let ui be the vector defining the ith
principal component, yi. Then, †xuj D �juj for j D 1; : : : ; i � 1 and u>i †xuj D
�ju>i uj D 0 for all j D 1; : : : ; i � 1. Since �j > 0, we have that u>i uj D 0 for all
j D 1; : : : ; i � 1. To compute ui, we build the Lagrangian

L D u>i †xui C �i.1 � u>i ui/C
i�1X
jD1

�ju>i uj: (2.13)

The necessary conditions for .ui; �i; �1; : : : ; �j�1/ to be an extremum are

†xui C
i�1X
jD1

�j

2
uj D �iui; u>i ui D 1 and u>i uj D 0; j D 1; : : : ; i� 1; (2.14)

from which it follows that for all j D 1; : : : ; i�1, we have u>j †xuiC �j

2
D �ju>j uiC

�j

2
D �iu>j ui, and so �j D 2.�j��i/u>j ui D 0. Since the associated extremum value

is u>i †xui D �i D Var.yi/, ui is the leading eigenvector of †x restricted to the
orthogonal complement of the span of u1; : : : ;ui�1. Since the eigenvalues of †x

are distinct, ui is the eigenvector of †x associated with the ith-largest eigenvalue.
Therefore, when the eigenvalues of †x are distinct, each eigenvector ui is unique
(up to sign), and hence so are the principal components of x.

Let us now consider the case in which †x has repeated eigenvalues. In this case,
†x still admits a basis of orthonormal eigenvectors. Specifically, the eigenvectors of
†x associated with different eigenvalues are still orthogonal, while the eigenvectors
associated with a repeated eigenvalue form an eigensubspace, and every orthonor-
mal basis for this eigensubspace gives a valid set of eigenvectors (see Exercise 2.1).
As a consequence, the principal directions fuigdiD1 are not uniquely defined. For
example, if �1 is repeated, every eigenvector associated with �1 can be chosen as
u1 and any other eigenvector associated with �1 and orthogonal to u1 can be chosen
as u2. Nonetheless, the principal components can still be obtained from any set of
the top d eigenvectors of †x, as claimed. ut

The solution to PCA provided by Theorem 2.1 suggests that we may find the
d principal components of x simultaneously, rather than one by one. Specifically,
if we define a random vector y D Œy1; y2; : : : ; yd�

> 2 Rd and a matrix U D
Œu1;u2; : : : ;ud� 2 RD�d, then, since y D U>x, we have that

†y
:D EŒyy>� D U>EŒxx>�U D U>†xU: (2.15)

2.1 Classical Principal Component Analysis (PCA) 29

From the definition of principal components, the entries of y are uncorrelated. As
a result, the matrix †y must be diagonal, and from the proof of Theorem 2.1, we
showed that the matrix U must be orthonormal, i.e., U>U D Id.

Recall that every diagonalizable matrix A can be transformed into a diagonal
matrix ƒ D V�1AV , where the columns of V are the eigenvectors of A and the
diagonal entries ofƒ are the corresponding eigenvalues. Recall also that if A is real,
symmetric and positive semi-definite, its eigenvalues are real and nonnegative, i.e.,
�i 	 0, and its eigenvectors can be chosen to be orthonormal, so that V�1 D V>
(see Exercise 2.1). Since the matrix†x is real, symmetric, and positive semidefinite,
one solution to the equation†y D U>†xU is obtained by choosing the columns of
U as d eigenvectors of †x and the diagonal entries of †y as the corresponding d
eigenvalues. Moreover, since our goal is to maximize the variance of each yi and
�i D Var.yi/, we conclude that the columns of U are the top d eigenvectors of †x

and the entries of †y are the corresponding top d eigenvalues.

Principal Components of a Nonzero-Mean Random Variable
When x does not have zero mean, then the d principal components of x are defined
as the d uncorrelated affine components

yi D u>i xC ai 2 R; ui 2 R
D; i D 1; 2; : : : ; d; (2.16)

of x such that the variance of yi is maximized subject to

u>i ui D 1 and Var.y1/ 	 Var.y2/ 	 � � � 	 Var.yd/ > 0: (2.17)

As shown in Exercise 2.6, the principal directions fuigdiD1 are the d eigenvectors of
†x

:D EŒ.x��/.x��/>�, where � D E.x/, associated with its d largest eigenvalues
f�igdiD1. Moreover, �i D Var.yi/ and ai D �u>i � for i D 1; 2; : : : ; d.

Sample Principal Components of a Zero-Mean Random Variable
In practice, we may not know the population covariance matrix †x. Instead, we
may be given N i.i.d. samples of the zero-mean random variable x, fxjgNjD1, which
we collect into a data matrix X D Œx1; x2; : : : ; xN �. It is well known from statistics
(see Exercise B.1) that the maximum likelihood estimate of †x is given by

O†N
:D 1

N

NX
jD1

xjx>j D
1

N
XX>: (2.18)

We define the d “sample principal components” of x as

Oyi D Ou>i x; i D 1; 2; : : : ; d; (2.19)

where f OuigdiD1 are the top d eigenvectors of O†N , or equivalently those of XX>.
Notice that when the dimension D of the data is very high, we can avoid

computing the eigenvectors of a large matrix XX> by exploiting the fact that the

30 2 Principal Component Analysis

top eigenvectors of XX> are the same as the top singular vectors of X. Therefore,
the sample principal components of x may be computed from the singular value
decomposition (SVD) of X D UX†XV>X as y D U>x, where the columns of U are
the first d columns of UX .

Remark 2.2 (Relationship between principal components and sample principal
components). Even though the principal components of x and the sample principal
components of x are different notions, under certain assumptions on the distribution
of x, they can be related to each other. Specifically, one can show that if x is
Gaussian, then every eigenvector Ou of O†N is an asymptotically consistent unbiased
estimate (see Appendix B) for the corresponding eigenvector u of †x. Interested
readers may find a more detailed proof in (Jolliffe 1986, 2002).

2.1.2 A Geometric View of PCA

An alternative geometric view of PCA, which is very much related to the SVD
(Beltrami 1873; Jordan 1874), assumes that we are given a set of points fxjgNjD1 in
R

D and seeks to find an (affine) subspace S � R
D of dimension d that best fits these

points. Each point xj 2 S can be represented as

xj D �CUyj; j D 1; 2; : : : ;N; (2.20)

where � 2 S is a point in the subspace, U is a D � d matrix whose columns form a
basis for the subspace, and yj 2 Rd is simply the vector of new coordinates of xj in
the subspace.

Notice that there is some redundancy in the above representation due to the
arbitrariness in the choice of � and U. More precisely, for every y0 2 Rd, we
can re-represent xj as xj D .� C Uy0/ C U.yj � y0/. We call this ambiguity
the translational ambiguity. Also, for every invertible A 2 Rd�d, we can re-represent
xj as xj D �C .UA/.A�1yj/. We call this ambiguity the change of basis ambiguity.
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace for the data.

A common constraint used to resolve the translational ambiguity is to require
that the average of the yj be zero,2 i.e.,

1

N

NX
jD1

yj D 0; (2.21)

2In the statistical setting, xj and yj will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to zero.

2.1 Classical Principal Component Analysis (PCA) 31

where 0 2 Rd is the vector of all zeros, while a common constraint used to resolve
the change of basis ambiguity is to require that the columns of U be orthonormal,
i.e., U>U D I. This last constraint eliminates the change of basis ambiguity only up
to a rotation, because we can still re-represent xj as xj D �C .UR/.R>yj/ for some
rotation R in Rd. However, this rotational ambiguity can easily be dealt with during
optimization, as we shall soon see.

The model in (2.20) now assumes that each point xj lies perfectly in an affine
subspace S. In practice, the given points are imperfect and have noise. For example,
if point xj is contaminated by additive noise "j, we have

xj D �C Uyj C "j; j D 1; 2; : : : ;N: (2.22)

In this case, we define the “optimal” affine subspace to be the one that minimizes
the sum of squared errors, i.e.,

min
�;U;fyjg

NX
jD1

��xj �� � Uyj

��2; s.t. U>U D Id and
NX

jD1
yj D 0: (2.23)

In order to solve this optimization problem, we define the Lagrangian function

L D
NX

jD1

��xj � �� Uyj

��2 C �>
NX

jD1
yj C trace

�
.Id � U>U/ƒ

�
; (2.24)

where � 2 Rd and ƒ D ƒ> 2 Rd�d are, respectively, a vector and a matrix of
Lagrange multipliers. A necessary condition for � to be an extremum is

� 2
NX

jD1
.xj � � �Uyj/ D 0 H) O� D O�N

:D 1

N

NX
jD1

xj: (2.25)

A necessary condition for yj to be an extremum is

� 2U>.xj � �� Uyj/C � D 0: (2.26)

Summing over j yields � D 0, from which we obtain

Oyj D U>.xj � O�N/: (2.27)

The vector Oyj 2 Rd is simply the coordinates of the projection of xj 2 RD onto the
subspace S. We may call such a Oy the “geometric principal components” of x.

Before optimizing over U, we can replace the optimal values for � and yj in the
objective function. This leads to the following optimization problem:

32 2 Principal Component Analysis

min
U

NX
jD1

��.xj � O�N/ �UU>.xj � O�N/
��2 s.t. U>U D Id: (2.28)

Note that this is a restatement of the original problem with the mean O�N subtracted
from each of the sample points. Therefore, from now on, we will consider only the
case in which the data points have zero mean. If such is not the case, simply subtract
the mean from each point before computing U.

The following theorem gives a constructive solution for finding an optimal U.

Theorem 2.3 (PCA via SVD). Let X D Œx1; x2; : : : ; xN � 2 RD�N be the matrix
formed by stacking the (zero-mean) data points as its column vectors. Let X D
UX†XV>X be the SVD of the matrix X. Then for a given d < D, an optimal solution
for U is given by the first d columns of UX, an optimal solution for yj is given by the
jth column of the top d � N submatrix of †XV>X , and the optimal objective value is
given by

PD
iDdC1 �2i , where �i is the ith singular value of X.

Proof. Since U>U D I, we have .I�UU>/.I�UU>/ D .I�UU>/. Then, recalling
that x>Ax D trace.Axx>/, we can rewrite the least-squares error

NX
jD1

��xj �UU>xj

��2 D
NX

jD1
x>j .ID � UU>/xj (2.29)

as trace..ID � UU>/XX>/. The first term trace.XX>/ does not depend on U.
Therefore, we can transform the minimization of (2.29) to

max
U

trace.UU>XX>/ s.t. U>U D Id: (2.30)

Since trace.AB/ D trace.BA/, the Lagrangian for this problem can be written as

L D trace.U>XX>U/C trace..Id � U>U/ƒ/; (2.31)

whereƒ D ƒ> 2 Rd�d. The conditions for an extremum are given by

XX>U D Uƒ: (2.32)

Therefore, ƒ D U>XX>U, and the objective function reduces to trace.ƒ/. Recall
now that U is defined only up to a rotation, i.e., U0 D UR is also a valid solution,
hence so is ƒ0 D RƒR>. Since ƒ is symmetric, it has an orthogonal matrix of
eigenvectors. Thus, if we choose R to be the matrix of eigenvectors of ƒ, thenƒ0 is
a diagonal matrix. As a consequence, we can choose ƒ to be diagonal without loss
of generality. It follows from (2.32) that the columns of U must be d eigenvectors
of XX> with the corresponding eigenvalues in the diagonal entries of ƒ. Since the
goal is to maximize trace.ƒ/, an optimal solution is given by the top d eigenvectors
of XX>, i.e., the top d singular vectors of X D UX†XV>X , which are the first d
columns of UX . It then follows from (2.27) that Y D Œy1; y2; : : : ; yN � D U>X D

2.1 Classical Principal Component Analysis (PCA) 33

U>UX†XV>X D †V>, where† is a diagonal matrix whose diagonal entries are the
top d singular values of X and V a matrix whose columns are the top d right singular
vectors of X. Finally, since ƒ D U>UX†

2
XU>X U D †2, the optimal least-squares

error is given by trace.†2X/ � trace.†2/ D PD
iDdC1 �2i , where �i is the ith singular

value of X. ut
According to the theorem, the SVD gives an optimal solution to the PCA

problem. The resulting matrix U, together with the mean � if the data do not have
zero mean, provides a geometric description of the dominant subspace structure for
all the points;3 and the columns of the matrix †V> D ŒOy1; Oy2; : : : ; OyN � 2 Rd�N ,
i.e., the principal components, give a more compact representation for the points
X D Œx1; x2; : : : ; xN � 2 RD�N , since d is typically much smaller than D.

Theorem 2.4 (Equivalence of Geometric and Sample Principal Components). Let
X D Œx1; x2; : : : ; xN � 2 RD�N be the mean-subtracted data matrix. The vectors
Ou1; Ou2; : : : ; Oud 2 RD associated with the d sample principal components of X are
exactly the columns of the matrix U 2 RD�d that minimizes the least-squares
error (2.29).

Proof. The proof is simple. Notice that if X has the singular value decomposition
X D UX†XV>X , then XX> D UX†

2
XU>X is the eigenvalue decomposition of XX>. If

†X is ordered, then the first d columns of UX are exactly the leading d eigenvectors
of XX>, which give the d sample principal components. ut

The above theorem shows that both the geometric and statistical formulations of
PCA lead to exactly the same solution/estimate of the sample principal components.
This equivalence is part of the reason why PCA has become the tool of choice for
dimensionality reduction, since the optimality of the solution can be interpreted
either statistically or geometrically in different application contexts.

Figure 2.1 gives an example of a two-dimensional data set and its two principal
components.

x

y

u1u2

◦
◦◦
◦◦

◦
◦◦
◦◦

◦
◦◦
◦◦

◦
◦◦
◦◦

◦
◦◦
◦◦

◦
◦◦
◦◦

◦◦◦◦
◦
◦◦

◦

◦
◦◦

◦
◦
◦

◦
◦◦

◦
◦
◦

◦
◦◦◦

◦◦
◦◦◦

◦
◦◦◦

◦◦◦
◦

◦◦◦

◦
◦

◦
◦
◦
◦◦◦◦

◦

◦
◦
◦
◦
◦◦
◦
◦◦◦

◦◦

◦◦

◦◦◦◦◦◦

Fig. 2.1 Example showing a two-dimensional data set and its two principal components.

3From a statistical standpoint, the column vectors of U give the directions in which the data X has
the largest variance, whence the name “principal components.”

34 2 Principal Component Analysis

2.1.3 A Rank Minimization View of PCA

Notice that the geometric PCA problem in (2.23) can be rewritten as

min
�;U;Y

��X ��1> �UY
��2

F
; s.t. U>U D Id and Y1 D 0; (2.33)

where X D �
x1; : : : ; xN

�
, Y D �

y1; : : : ; yN

�
, 1 2 RN is the vector of all ones, and

kXk2F D
P

ij X2ij is the Frobenius norm of X. Therefore, another interpretation of
PCA is to see it as the problem of finding a vector � and rank-d matrix that best
approximate the data matrix X. This problem can be formulated as

min
�;A
kX � �1> � Ak2F s.t. rank.A/ D d and A1 D 0: (2.34)

Notice that this formulation is identical to that in (2.23), except that we have now
replaced the subspace basis U and the matrix of principal components Y by their
product A D UY. The constraint A1 D 0 comes from the requirement that the
principal components be centered, i.e.,

P
yj D 0; hence Y1 D 0.

Since the problem in (2.34) is the same as that in (2.23), we already know that
the optimal solution for � is 1

N

P
j xj D 1

N X1. Therefore, after we have centered the
data matrix by subtracting � from each column, the optimization problem in (2.34)
can be reduced to

min
A
kX � Ak2F s.t. rank.A/ D d: (2.35)

Notice that we have dropped the constraint A1 D 0. This is because this constraint
is not needed when the data matrix is centered, i.e., when X1 D 0. To see this, let
A� be the optimal solution to (2.35), i.e., the optimal solution without the constraint
A1 D 0. Suppose a D 1

N A�1 is not zero, and let OA D A� � a1>. Notice that

rank. OA/
 d and OA1 D 0. So OA satisfies the constraints of the program (2.34).
However,

kX � OAk2F D kX � A� C a1>k2F (2.36)

D kX � A�k2F C 2hX � A�; a1>i C ka1>k2F (2.37)

D kX � A�k2F C 2a>.X � A�/1C Nkak22 (2.38)

D kX � A�k2F � Nkak22 < kX � A�k2F; (2.39)

which contradicts the optimality of A� to the program (2.35) without the constraint
A1 D 0.

To solve the problem in (2.35), let X D UX†XV>X and A D UA†AV>A be the
SVDs of X and A, respectively. Then, letting U D U>X UA and V D V>X VA, we have

2.1 Classical Principal Component Analysis (PCA) 35

kX � Ak2F D kUX†XV>X � UA†AV>A k2F D k†X � U†AV>k2F (2.40)

D k†Xk2F � 2h†X;U†AV>i C k†Ak2F: (2.41)

Therefore, minimizing kX � Ak2F with respect to A is equivalent to minimizing the
above expression with respect to U, V , and †A. We will solve this problem in two
steps.

In the first step, we will minimize with respect to U and V only. Notice that this
is equivalent to

max
U;V
h†X;U†AV>i; (2.42)

where U and V are orthonormal. The solution to this problem can be found from
Von Neumann’s inequality, which is stated next.

Lemma 2.5 (Von Neumann’s Inequality). For any m � n real-valued matrices F
and G, let �1.F/ 	 �2.F/ 	 � � � 	 0 and �1.G/ 	 �2.G/ 	 � � � 	 0 be the
descending singular values of F and G respectively. Then

hF;Gi D trace.F>G/

nX

iD1
�i.F/�i.G/: (2.43)

The case of equality occurs if and only if it is possible to find orthonormal matrices
UF and VF that simultaneously singular value decompose F and G in the sense that

F D UF†FV>F and G D UF†GV>F ; (2.44)

where †F and†G denote the m� n diagonal matrices with the singular values of F
and G, respectively, down the diagonal.

Proof. See (Mirsky 1975). ut
Applying this lemma to F D †X and G D U†AV>, we obtain

h†X;U†AV>i

dX

iD1
�i.X/�i.A/; (2.45)

because �i.A/ D 0 for i > d. Notice also that equality can be achieved by taking
U D I and V D I; hence UA D UX and VA D VX .

In the second step, we will substitute the above solutions for U and V into the
objective function kX � Ak2F and optimize over f�i.A/gdiD1. This gives the following
optimization problem:

min
f�i.A/gdiD1

dX
iD1

�i.A/
2 � 2

dX
iD1

�i.X/�i.A/: (2.46)

36 2 Principal Component Analysis

Taking the derivatives with respect to �i.A/ and setting them to zero gives us �i.A/ D
�i.X/ for i D 1; : : : ; d. The value of the objective function is �Pd

iD1 �i.X/2, which
reaches the minimum when the d singular values are the largest. We thus have the
following result.

Theorem 2.6 (PCA via Rank Minimization). Let X D UX†XV>X be the singular
value decomposition of the mean-subtracted data matrix. An optimal solution for
the optimization problem

min
A
kX � Ak2F s.t. rank.A/ D d (2.47)

is given by A D U†V>, where U 2 R
D�d, † 2 R

d�d and V 2 R
N�d are matrices

corresponding to the top d singular vectors and singular values in UX, †X and VX,
respectively.

Notice that this theorem is essentially equivalent to Theorem 2.3 and that the
above derivation based on Von Neumann’s inequality provides an alternative proof
for the theorem.

In summary, we can view the PCA problem as a statistical problem, a geometric
problem, or a rank minimization problem; and all three interpretations lead to the
same solution.

Example 2.7 (PCA for Modeling Face Images under Varying Illumination)
Face recognition is an area of computer vision in which low-dimensional linear
models such as PCA and its variations have been extremely popular tools for
capturing the variability of face images. In particular, it has been shown that under
certain idealized circumstances (such as Lambertian reflectance), images of the
same face under varying illumination lie near an approximately nine-dimensional
linear subspace known as the harmonic plane (Basri and Jacobs 2003). The principal
bases U estimated by PCA are also known as the eigenfaces in the computer
vision literature (Turk and Pentland 1991), and they capture the principal modes
of variation in the face images. The principal components Y estimated by PCA are
often less dependent on illumination variations and are hence used for recognition
purposes.

In this example, we show how PCA can be used to capture the illumination
variations in a data set of face images of a person taken under different lighting
conditions. The extended Yale B data set (Georghiades et al. 2001) is a popular
data set used to study face recognition under varying lighting conditions. From this
data set, we take as input for PCA N D 10 frontal face images of one individual
(subject 20), shown in Figure 2.2. Each image is of size D D 192 � 168 pixels.
We apply PCA to the ten input images and compute the first d D 2 principal
components and the first two eigenvectors u1 and u2, i.e., the first two eigenfaces.

2.1 Classical Principal Component Analysis (PCA) 37

Fig. 2.2 Face images of subject 20 under 10 different illumination conditions in the extended Yale
B data set. All images are frontal faces cropped to size 192 � 168.

Fig. 2.3 Mean face and the first two eigenfaces by applying PCA to the ten images in Figure 2.2.

Figure 2.3 shows the obtained mean face � and the first two eigenfaces u1 and u2.4

Figure 2.3 demonstrates that the first two eigenfaces capture lighting from the right
and up directions, respectively. This is visualized more clearly in Figure 2.4. The
first row plots how the appearance of the face changes along the direction of the
first eigenface: � C y1u1 for y1 D ��1 W �1

3
W �1; and the second row plots

variations along the second eigenface: �C y2u2 for y2 D ��2 W �23 W �2, in which
�1 and �2 are the standard deviations of the first and second principal components,
respectively. Now it is clear from this experiment that for this data set, the first two
eigenfaces mainly encode how the appearance of the face varies along the horizontal
and vertical lighting directions, respectively.

4In Section 1.2.1, we have seen an example in which a similar process can be applied to an
ensemble of face images from multiple subspaces, where the first d D 3 principal components
are calculated and visualized.

38 2 Principal Component Analysis

Fig. 2.4 Variation of the face images along the two eigenfaces given by PCA. Each row plots
�C yiui for yi D ��i W �i

3
W �i; i D 1; 2, where �i is the standard deviation of the first or second

principal component.

2.2 Probabilistic Principal Component Analysis (PPCA)

The PCA model described so far allows us to find a low-dimensional representation
fyj 2 Rdg of a set of sample points fxj 2 RDg, where d � D is the desired number
of principal components. However, the PCA model is not a proper generative model,
because the low-dimensional representation fyjg and the error f"jg are not treated as
random variables. As a consequence, the PCA model cannot be used to generate
new samples of the random variable x.

To address this issue, we assume that the low-dimensional representation y and
the error " are independent random variables with probability density functions p.y/
and p."/, respectively. This allows us to generate a new sample of x from samples
of y and " as

x D �C ByC "; (2.48)

where � 2 RD and B 2 RD�d represent a point and a basis for affine subspace
S, respectively. Let the mean and covariance of y be denoted by �y and †y,
respectively. If we assume that " has zero mean and covariance †", then the mean
and covariance of the observations are given by

�x D �C B�y and †x D B†yB> C†": (2.49)

Notice that in contrast to the PCA problem studied in the previous section, here
we assume only that B is a rank-d matrix, but we no longer need to assume that B is
orthonormal. This is because if we enforce a specific type of probability distribution
for y, we can then estimate an optimal model from the observations x without any
additional constraints on the matrix B via the maximum likelihood (ML) principle

2.2 Probabilistic Principal Component Analysis (PPCA) 39

(see Appendix B.1.4). The remainder of this section discusses two methods for
estimating the parameters of this model, �, B, �y, †y, and †", from the mean
and covariance of the population, �x and †x, and alternatively from i.i.d. samples
fxjgNjD1 of x.

2.2.1 PPCA from Population Mean and Covariance

Observe that in general, we cannot uniquely recover the model parameters from �x
and†x by solving the equations in (2.49). For instance, notice that � and �y cannot
be uniquely recovered from �x. Similarly to what we did in the case of PCA, this
issue can be easily resolved by assuming that �y D 0. This leads to the following
estimate of �:

O� D �x; (2.50)

which is the same estimate as that of PCA (see Exercise 2.6). Another ambiguity
that cannot be resolved in a straightforward manner is that †y and †" cannot be
uniquely recovered from†x. For instance,†y D 0 and†" D †x is a valid solution.
However, this solution is not meaningful, because it assigns all the information in
†x to the error, rather than to the low-dimensional representation.

To resolve this ambiguity, we need to make some additional assumptions.
Intuitively, we would like B†yB> to capture as much information about †x as
possible. Thus it makes sense for †y to be of full rank and for †" to be as close
to zero as possible. More specifically, the assumptions made in PPCA are the
following:

1. The low-dimensional representation has unit covariance, i.e., †y D Id 2 R
d�d.

2. The noise covariance matrix †" 2 R
D�D is isotropic, i.e., †" D �2ID.

Under these assumptions, the covariance of the observations must be of the form

†x D BB> C �2ID: (2.51)

It follows from this relationship that the eigenvalues of †x must be equal to the
eigenvalues of BB> plus �2. Since BB> has rank d and is positive semidefinite, D�d
eigenvalues of BB> must be equal to zero. Therefore, the smallest D�d eigenvalues
of †x must be equal to each other and equal to �2. In addition, the off-diagonal
entries of †x are equal to the off-diagonal entries of BB>. As a consequence, even
though both PPCA and PCA try to capture as much information as possible from
†x into †y, the information they attempt to capture is not the same. On the one
hand, PPCA tries to find a matrix B such that the covariances are preserved, i.e., the
off-diagonal entries of †x. On the other hand, PCA tries to preserve the variances,
i.e., the diagonal entries of †x.

40 2 Principal Component Analysis

As it turns out, the parameters B and � of the PPCA model can be computed
in closed form from the SVD of the population covariance †x, as stated by the
following theorem. Again, we emphasize that in the PPCA model, the matrix B can
be an arbitrary matrix and does not need to be orthonormal.

Theorem 2.8 (PPCA from Population Mean and Covariance). The parameters �,
B and � of the PPCA model can be estimated from the population mean and
covariance, �x and †x, respectively, as

O� D �x; bB D U.ƒ� O�2I/1=2R; O�2 D �dC1 D �dC2 D � � � D �D; (2.52)

where U is the matrix with the top d eigenvectors of †x,ƒ is the diagonal matrix in
Rd�d of the corresponding top d eigenvalues, R 2 Rd�d is an arbitrary orthogonal
matrix, and �i is the ith eigenvalue of †x.

Proof. We have already shown in (2.50) that O� D �x. We have also shown that �2

is equal to the smallest D � d eigenvalues of †x. To find B, let

†x D
�
U V

� �ƒ1 0

0 �2ID�d

	 �
U V

�>
(2.53)

be the eigenvalue decomposition of †x, where the columns of U are the top d
eigenvectors of †x and the entries of ƒ are the corresponding eigenvalues. Then,

BB> D †x � �2ID D
�
U V

� �ƒ� �2Id 0

0 0

	 �
U V

�>
(2.54)

D U.ƒ� �2Id/U
>: (2.55)

Since both B and U are of rank d, all the solutions for B must be of the form B D
U.ƒ� �2Id/

1=2R, where R is an arbitrary orthogonal matrix. ut

2.2.2 PPCA by Maximum Likelihood

In practice, we may not know the population mean and covariance, �x and †x.
Instead, we are given N i.i.d. samples, fxjgNjD1, from which we wish to estimate the
PPCA model parameters �, B, and � . In this section, we show that the ML estimates
(see Appendix B.1.4) of these parameters can be computed in closed form from the
ML estimates of the mean and covariance.

To that end, assume that y and " are zero-mean Gaussian random variables with
covariances Id and �2ID, respectively, i.e., y � N .0; I/ and " � N .0; �2I/. Then
x � N .�x; †x/, where �x D � and †x D BB> C �2ID. Therefore, the log-
likelihood of x is given by

2.2 Probabilistic Principal Component Analysis (PPCA) 41

L D
NX

jD1
log

 1

.2�/D=2 det.†x/1=2
exp

�� .xj��x/
>†�1x .xj��x/

2

��

D �ND

2
log.2�/ � N

2
log det.†x/� 1

2

NX
jD1
.xj��/>†�1x .xj��/:

(2.56)

We obtain the ML estimate for � from the derivatives of L with respect to � as

@L

@�
D �

NX
jD1

†�1x .xj ��/ D 0 H) O� D O�N
:D 1

N

NX
jD1

xj: (2.57)

After replacing O� in the log-likelihood, we obtain

L D �ND

2
log.2�/� N

2
log det.†x/ � N

2
trace.†�1x

O†N/; (2.58)

where

O†N
:D 1

N

NX
jD1
.xj � O�N/.xj � O�N/

>: (2.59)

The answer to the question whether B and � can be estimated as in Theorem 2.8
after replacing†x by O†N is given by the following theorem.

Theorem 2.9 (PPCA by Maximum Likelihood). The ML estimates for the param-
eters of the PPCA model �, B, and � can be obtained from the ML estimates of the
mean and covariance of the data, O�N and O†N, respectively, as

O� D O�N ; bB D U1.ƒ1 � O�2I/1=2R and O�2 D 1

D � d

DX
iDdC1

�i; (2.60)

where U1 is the matrix with the top d eigenvectors of O†N, ƒ1 is the matrix with the
corresponding top d eigenvalues, R 2 Rd�d is an arbitrary orthogonal matrix, and
�i is the ith-largest eigenvalue of O†N.

Proof. We have already shown that O� D O�N . To find B, we need to
compute the derivatives of L with respect to B. It follows from Exercise 2.4
that @

@X log.j det.X/j/ D .X�1/>, @
@X trace.AX�1B/ D �.X�1BAX�1/> and

@
@X trace.XBX>/ D XB> C XB. Therefore,

@L

@B
D �N†�1x BC N†�1x

O†N†
�1
x B D 0 H) O†N†

�1
x B D B: (2.61)

42 2 Principal Component Analysis

One possible solution is B D 0, which leads to a minimum of the log-likelihood
and violates our assumption that B should be of full rank d. Another possible
solution is †x D O†N , where the covariance model is exact. This corresponds to the
case discussed in the previous section, after replacing †x by O†N . Thus, the model
parameters can be computed as in Theorem 2.8, since equation (2.60) reduces to
equation (2.52). A third solution is obtained when B ¤ 0 and †x ¤ O†N . In this
case, let B D Z�V> be the compact SVD of B, where Z 2 RD�d is a matrix with
orthonormal columns, � 2 Rd�d is an invertible diagonal matrix, and V 2 Rd�d

is an orthogonal matrix. Let Z? 2 RD�.D�d/ be an orthonormal matrix such that
Z>Z? D 0, so that the matrix

�
Z Z?

�
is orthonormal and ZZ>CZ?Z?> D I. Then

†x D Z�2Z> C �2ID D Z.�2 C �2Id/Z
> C �2Z?Z?>: (2.62)

Combining this with (2.61) gives

O†N†
�1
x B D O†N.Z.�

2 C �2Id/
�1Z> C ��2Z?Z?>/Z�V> (2.63)

D O†NZ.�2 C �2Id/
�1�V> D Z�V>; (2.64)

whence

O†NZ D Z.�2 C �2Id/: (2.65)

Letting Z D Œz1; : : : ; zd� and � D diagf�1; : : : ; �dg, we obtain

O†Nzi D .�2i C �2/zi 8i D 1; : : : ; d: (2.66)

Hence, Z is a matrix containing d eigenvectors of O†N with corresponding eigenval-
ues �2i C�2. Let O†N D UƒU> D ŒU1;U2�diagfƒ1;ƒ2gŒU1;U2�

> be the eigenvalue
decomposition of O†N , where we partition U andƒ so that the d chosen eigenvectors
and eigenvalues are in U1 andƒ1, respectively. Then all optimal solutions for B are
of the form

B D Z�V> D U1.ƒ1 � �2Id/
1=2V>: (2.67)

To determine � , we replace the solution for B in the likelihood in (2.58). Noticing
that

det.†x/ D det
�
BB> C �2ID

�
(2.68)

D det
�
U1.ƒ1 � �2Id/U

>
1 C �2.U1U

>
1 C U2U

>
2 /
�

(2.69)

D det.U1ƒ1U
>
1 C �2U2U

>
2 / D det.ƒ1/�

2.D�d/ (2.70)

2.2 Probabilistic Principal Component Analysis (PPCA) 43

and that

trace.†�1x
O†N/D trace

�
.U1ƒ

�1
1 U>1C��2U2U

>
2 /.U1ƒ1U

>
1CU2ƒ2U

>
2 /
�

(2.71)

D trace
�
U1U

>
1 C ��2U2ƒ2U

>
2

� D dC ��2 trace
�
ƒ2

�
; (2.72)

we obtain

L D�N

2

�
D log.2�/Clog det.ƒ1/C.D�d/ log�2CdC��2 trace.ƒ2/

�
: (2.73)

The condition for an extremum in �2 is given by

@L

@�2
D �N

2

�
D � d

�2
� trace.ƒ2/

�4

D 0 H) �2 D trace.ƒ2/

D � d
: (2.74)

Therefore, �2 is the average of the discarded eigenvalues of O†N .
To determine which d eigenvectors and eigenvalues of O†N should be discarded,

notice that det.ƒ1/ D det.ƒ/
det.ƒ2/

. Hence, after substituting the optimal �2 in (2.74) into
L , we can see that the maximization of L is equivalent to the minimization of

M D log

PD

iDdC1 ��Œi�
D � d

�
�
PD

iDdC1 log��Œi�
D � d

; (2.75)

with respect to a permutation � of all the eigenvalues such that ��Œ1�; : : : ; ��Œd� are
the chosen eigenvalues and ��ŒdC1�; : : : ; ��ŒD� are the discarded ones. Since the log
function is concave, by Jensen’s inequality, M is nonnegative, and the reader can
verify (see Exercise 2.13) that M is minimized when the discarded eigenvalues are
contiguous within the spectrum of the ordered eigenvalues of O†N . Further, since the
chosen eigenvalues must be such that ��Œi� 	 �2 for i D 1; : : : ; d, the discarded
eigenvalues must be the D � d smallest eigenvalues. Indeed, if such were not the
case, then �min D min

iD1;:::;D�i would be one of the chosen eigenvalues, and we would

have �min < �2, which would be a contradiction to equation (2.66). Therefore, the
optimal solutions for B and � are given by (2.60). Finally, the optimal log-likelihood
is given by

L D �N

2

D log.2�/C

dX
iD1

log�i C .D � d/ log

PD

iDdC1 �i

D � d

�
C D

�
: (2.76)

ut
Once the parameters of the PPCA model have been identified, one question that

arises is how to find the principal components of a specific data point, say x. Recall
that in both statistical and geometric PCA, the principal components y of x are
found as y D U>.x � �/, where .�;U/ are the parameters of the PCA model.

44 2 Principal Component Analysis

The fundamental difference in PPCA is that we have a proper generative model for
the joint distribution of x and y. As a consequence, it doesn’t make sense to ask for
a specific vector y associated with x. Instead, we can ask for the entire distribution
of y given x.

It is easy to show (see Exercise 2.14) that the conditional distribution of y given
x is Gaussian, i.e., y j x � N .�yjx; †yjx/, where

�yjx D .B>BC�2I/�1B>.x��/ and †yjx D �2.B>BC�2I/�1: (2.77)

Therefore, given x, we can sample from this distribution in order to obtain its
principal components. In practice, however, if the goal is dimensionality reduction,
we may be interested in finding only one set of principal components. In this case,
we can choose, for example, the mean of the distribution and define the probabilistic
principal components of x as

y D .B>BC �2I/�1B>.x � �/: (2.78)

Now, using the maximum likelihood estimates given in Theorem 2.9, we have

B>BC �2I D R>.ƒ1 � �2I/1=2U>1 U1.ƒ1 � �2I/1=2RC �2I (2.79)

D R>.ƒ1 � �2I/RC �2I D R>ƒ1R: (2.80)

Thus, y D R>ƒ�11 .ƒ1 � �2I/1=2U>1 .x � �/. Therefore, we can see that the
main difference between the principal components and the probabilistic principal
components is that the latter are a scaled and rotated version of the former, where
the scales are given by the diagonal entries of the diagonal matrixƒ�11 .ƒ1��2I/1=2,
and the rotation is given by R.

Example 2.10 (PPCA for Modeling Faces Images under Varying Illumination)
In this example, we apply the PPCA algorithm with d D 2 to the same ten face
images used in Example 2.7, as shown in Figure 2.2. The obtained mean face and
eigenfaces are shown in Figure 2.5. Notice that if we compare to the results in
Figure 2.3, the mean face and the first two eigenfaces computed from PCA and
PPCA are rather similar: the mean should be the same by construction; and the
eigenfaces differ only by a scale factor but appear the same when plotted as images.
We also plot the variation along the two eigenfaces by computing � C yiui for
y1 D �1 W 13 W 1, i D 1; 2. The results are shown in Figure 2.6. Observe that the first
principal component captures variations in illumination in the horizontal direction,
while the second principal component captures variations in brightness (from dark
to bright images). In Exercise 2.17, we ask the reader to implement PCA and PPCA
and compare the results of the two methods on other data sets.

2.3 Model Selection for Principal Component Analysis 45

Fig. 2.5 Mean face and the first two eigenfaces by applying PPCA to the ten images in Figure 2.2.

Fig. 2.6 Variation of the face images along the two eigenfaces given by PPCA. Each row plots
�C yiui for yi D �1 W 13 W 1, i D 1; 2.

2.3 Model Selection for Principal Component Analysis

One of the main goals of both PCA and PPCA is to reduce the data to a small
number of principal components that capture as much information about the data as
possible. So far, we have assumed that the number d of principal components or the
dimension d of the subspace S is known. In practice, however, we may not know the
intrinsic dimension of the data. In this section, we review a few methods (several of
them heuristic) for estimating the number of principal components. Some of them
are based on the model selection criteria described in Appendix B, while others
rely on more modern rank minimization techniques. However, we would like to
emphasize that model selection is in general a difficult problem, especially when
the amount of noise in the data is unknown.

46 2 Principal Component Analysis

2.3.1 Model Selection by Information-Theoretic Criteria

Let X D Œx1; x2; : : : ; xN � 2 RD�N be the mean-subtracted data matrix. When the
data points are noise-free, they lie exactly in a subspace of dimension d. Hence,
we can estimate d as the rank of X, i.e., d D rank.X/. However, when the data are
contaminated by noise, the matrix X will be of full rank in general; hence we cannot
use its rank to estimate d. Nonetheless, notice that the SVD of the noisy data matrix
X gives a solution to PCA not only for a particular dimension d of the subspace, but
also for all d D 1; 2; : : : ;D. This has an important side benefit: if the dimension of
the subspace S is not known or specified a priori, rather than optimizing for both
d and S simultaneously, we can easily look at the entire spectrum of solutions for
different values of d to decide on the “best” estimate Od for the dimension of the
subspace d given the data X.

One possible criterion is to chose d as the dimension that minimizes the least-
squares error between the given data X and its projection bXd D �Oxd

1; Oxd
2; : : : ; Oxd

N

�
onto the subspace S of dimension d. As shown in the proof of Theorem 2.3, the
least-squares error is given by the sum of the squares of the remaining singular
values of X, i.e.,

J.d/
:D kX �bXdk2F D

NX
jD1
kxj � Oxd

j k2 D
DX

iDdC1
�2i : (2.81)

However, this is not a good criterion, because J.d/ is a nonincreasing function of d.
In fact, the best solution is obtained when d D rank.X/, because J.d/ D 0.

The problem of determining the optimal dimension Od is in fact a “model selec-
tion” problem. As we discussed in the introduction of the book, the conventional
wisdom is to strike a good balance between the complexity of the chosen model and
the fidelity of the data to the model. The dimension d of the subspace S is a natural
measure of model complexity, while the least-squares error kX�bXdk2F D

PD
iDdC1 �2i

or its leading term, �2dC1, are natural measures of the data fidelity. Perhaps the
simplest model selection criterion is to minimize the complexity subject to a bound
on the fidelity. For example, we can choose d as the smallest number such that the
fidelity is less than a threshold 	 > 0, i.e.,

Od D min
d

n
d W

DX
iDdC1

�2i < 	
o

or Od D min
d

˚
d W �2dC1 < 	

�
: (2.82)

The second criterion in (2.82) is illustrated in Figure 2.7.
In practice, however, it is very hard to choose an appropriate 	 , because the

singular values of X are not invariant with respect to transformations of the data,
such as scaling. One possible solution is to normalize the singular values by
kXk2F D

PD
iD1 �2i and estimate d as

2.3 Model Selection for Principal Component Analysis 47

1 ̂d D

τ

Subspace Dimension

Sq
ua

re
d

Si
ng

ul
ar

V
al

ue
s

σ2
d

knee point

min(αx + βy)

Fig. 2.7 Singular value as a function of the dimension of the subspace. Two model selection
criteria are illustrated in this picture: choosing a subspace dimension based on a threshold and
choosing a subspace dimension that trades off the model complexity (x-axis) and fidelity (y-axis),
both linearly weighted.

Od D min
d

n
d W

PD
iDdC1 �2iPD

iD1 �2i
< 	

o
or Od D min

d

n
d W �2dC1PD

iD1 �2i
< 	

o
: (2.83)

The first criterion in (2.83) is widely used, because it has an intuitive interpretation:
the number of principal components is chosen as the smallest number such that the
fraction of information being discarded is less than a threshold 	 . Typical values for
	 are in the range 10%–20%.

Yet another model selection criterion seeks a balance between d and �2dC1 by
minimizing an objective function of the form

Od D arg min QJ.d/ :D ˛ � �2dC1 C ˇ � d (2.84)

for some proper weights ˛; ˇ > 0. In general, the graph of the ordered squared
singular values of the data matrix X versus the dimension d of the subspace
resembles a plot similar to that shown in Figure 2.7. In the statistics literature, this
is known as the “scree graph,” which was discussed and named by (Cattell 1966).
Note that we should expect to see a significant drop in the singular values right after
the “correct” dimensionbd, which is sometimes called the “knee” or “elbow” point
of the plot. Such a point is a stable minimum, since it optimizes the above objective
function (2.84) for a range of values for ˛ and ˇ.

A more principled approach to finding the optimal dimensionbd of the subspace
is to use some of the model selection criteria described in Appendix B. Such criteria

48 2 Principal Component Analysis

rely on a different choice of the model complexity term and provide an automatic
way of choosing the parameters ˛ and ˇ. Specifically, the complexity of the model
is measured by the number of parameters needed to describe the data distribution.
In the case of a degenerate Gaussian distribution in a d-dimensional subspace of
RD, the number of parameters needed is approximately Dd.5 Therefore, assuming
that the noise has variance �2ID with known � , the Bayesian information criterion
(BIC) (Rissanen 1978) is given by

BIC.d/
:D

DX
iDdC1

�2i C .log N/.Dd/�2; (2.85)

while the Akaike information criterion (AIC) (Akaike 1977) is given by

AIC.d/
:D

DX
iDdC1

�2i C 2.Dd/�2: (2.86)

More recently, a geometric version of the Akaike information criterion has been
proposed by (Kanatani 1998). The geometric AIC is given by

G-AIC.d/
:D

DX
iDdC1

�2i C 2.DdC Nd/�2; (2.87)

where the extra term Nd accounts for the number of coordinates needed to represent
(the closest projection of) the given N data points in the estimated d-dimensional
subspace. From an information-theoretic viewpoint, the additional Nd coordinates
are necessary if we are interested in encoding not only the model but also the data
themselves. This is often the case when we use PCA for purposes such as data
compression and dimension reduction.

All the above criteria can be loosely referred to as information-theoretic model
selection criteria, in the sense that most of these criteria can be interpreted as
variations to minimizing the optimal code length for both the model and the data
with respect to certain classes of distributions and coding schemes (Hansen and
Yu 2001).6 There are many other methods for determining the number of principal

5We leave as an exercise to the reader to calculate the number of parameters needed to specify a
d-dimensional subspace in RD and then the additional parameters needed to specify a Gaussian
distribution inside the subspace.
6Even if one chooses to compare models by their algorithmic complexity, such as the minimum
message length (MML) criterion (Wallace and Boulton 1968) (an extension of the Kolmogrov
complexity to model selection), a strong connection with the above information-theoretic criteria,
such as minimum description length (MDL), can be readily established via Shannon’s optimal
coding theory (see (Wallace and Dowe 1999)).

2.3 Model Selection for Principal Component Analysis 49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

τ

d

Fig. 2.8 Model selection for the ten face images in Figure 2.2.

components. The interested reader may find more references in (Jolliffe 1986,
2002). We note here that a more recent treatment of the automatic dimension
selection for PCA was given through a Bayesian approach (Minka 2000), which
assuming a basic noise model, derives an accurate approximation to the probability
p.Xjd/ from which the optimal dimension d� can be determined.

Example 2.11 (Model Selection for Face Images) As an example, we apply the
model selection criteria to the same face data set used in our previous experiments
with PCA (Example 2.7) and PPCA (Example 2.10). More specifically, we apply
the first dimension selection criterion in (2.83) to ten frontal face images of subject
20 from the extended Yale B data set. We vary the threshold 	 in the range .0; 1/
and compute the corresponding dimension d. The result is shown in Figure 2.8. As
we can see, the first three principal components already capture roughly 90% of the
energy in the data.

2.3.2 Model Selection by Rank Minimization

In this section, we present an alternative view of model selection based on the rank
minimization approach to PCA introduced in Section 2.1.3. In this approach, the
PCA problem is posed as one of finding a rank-d matrix A that best approximates
the mean-subtracted data matrix X, i.e.,

min
A
kX � Ak2F s.t. rank.A/ D d: (2.88)

50 2 Principal Component Analysis

Although this problem is nonconvex due to the rank constraint, as we showed in
Section 2.1.3, its optimal solution can be computed in closed form as

A D UH�dC1
.†/V>; (2.89)

where X D U†V> is the SVD of X, �k is the kth singular value of X, and H".x/ is
the hard thresholding operator:

H".x/ D
(

x jxj > "
0 else

: (2.90)

However, this closed-form solution requires d to be known.
When d is unknown, the problem of finding a low-rank approximation can be

formulated as

min
A

kX � Ak2F C 	 rank.A/; (2.91)

where 	 > 0 is a parameter. Since the optimal solution of (2.88) for a fixed rank
d D rank.A/ is A D UH�dC1

.†/V>, the problem in (2.91) reduces to

min
d

X
k>d

�2k C 	d: (2.92)

The optimal solution is the smallest d such that �2dC1
 	 . Notice that this model
selection criterion is the same as that in (2.82). Therefore, the optimization problem
in (2.91) provides a justification for the criterion in (2.82). Under this criterion, and
with the notation introduced in this section, the optimal A is given by

A D UHp	 .†/V>: (2.93)

Therefore, the optimal A can still be computed in closed form from the SVD of X,
in spite of the fact that the optimization problem in (2.91) is nonconvex.

Most rank minimization problems are, however, NP-hard and cannot be solved
as easily as the one in (2.91). This has motivated the development of convex
relaxations, which lead to more efficient solutions. A commonly used relaxation
(see, e.g., (Cai et al. 2008; Recht et al. 2010)) is to replace the rank of A by its
nuclear norm kAk� DP�k.A/, i.e., the sum of its singular values.7 As it turns out,
this relaxation leads to a slightly different model selection criterion for PCA. More
specifically, the relaxation of (2.91) (modulo the 1=2 factor) is given by

min
A

1

2
kX � Ak2F C 	kAk�: (2.94)

7It can be shown that the nuclear norm is a convex envelope of the rank function for matrices.

2.3 Model Selection for Principal Component Analysis 51

While this function is not differentiable, one can use the convex hull of all direc-
tional derivatives of the function, referred to as the subgradient for optimization.
The subgradient of this function with respect to A is given by A�XC@kAk�, where
@kAk� is the subgradient of the nuclear norm of A (see Exercise 2.16). Therefore,
as shown in (Cai et al. 2008) (see also Exercise 2.16), the optimal solution for A is
given by

A D D	 .X/ D US	 .†/V>; (2.95)

where D" is the singular value thresholding operator and S" is the soft thresholding
operator, which is defined as

S".x/ D sign.x/max.jxj � "; 0/ D

8̂
<̂
ˆ̂:

x � " x > "

xC " x < �"
0 else

: (2.96)

Notice that the latter solution does not coincide with the one given by PCA, which
performs hard-thresholding of the singular values of X without shrinking them by
	 . However, the model selection criterion is the same as before: choose d as the
smallest integer such that �2dC1
 	 .

2.3.3 Model Selection by Asymptotic Mean Square Error

From the above two sections, we see that by following different model selection
criteria or objectives, we essentially have three different types of estimators OX for
a low-rank matrix X0 from its noisy measurements: X D X0 C �E. If we denote
the SVD of X by X D U†V>, the three estimators are of the following forms,
respectively:

1. If the rank d is known, the optimal estimate OX subject to rank. OX/ D d is the
truncated SVD solution:

OX1 D UH�dC1
.†/V>: (2.97)

Alternatively, if the rank d is not known and one uses one of the information-
theoretic criteria given in Section 2.3.1 to estimate the dimension Od, then we
have only to replace the d in the above solution with the estimated Od.

2. If we try to balance the mean squared error and the dimension as in equa-
tion (2.91), the optimal estimate is given by the SVD hard thresholding:

OX2 D UHp	 .†/V> (2.98)

for some threshold 	 > 0.

52 2 Principal Component Analysis

3. If we try to balance the mean squared error and the nuclear norm as in
equation (2.94), then the optimal estimate is given by the SVD soft thresholding:

OX3 D US	 .†/V>: (2.99)

for some threshold 	 > 0.

Naturally, this may lead to a certain degree of confusion for practitioners: Which
estimate is “the best”? What is the optimal threshold 	� to use in case we need to
threshold the singular values? Which thresholding is better, hard or soft? The short
answer to these questions is that none of the above estimators is always better than
the others, since each is optimal in its own way and thus useful under different
conditions. However, if we all agree on a common objective based on a common
noise model, it might be meaningful and even insightful to examine which estimator
is better than others.

One such setting was recently proposed by (Donoho and Gavish 2014) to study
the different estimators in terms of their mean square errors (MSE) in an asymptotic
setting as the size of the matrix X 2 RD�N becomes large. For simplicity, we first
assume that the matrix X is a square matrix of size N D D. In the asymptotic setting
(as N !1), we assume the following noise model:

X D X0 C �E; (2.100)

where E is a matrix whose entries are i.i.d. drawn from a probability (say Gaussian)
distribution with zero mean and variance 1=

p
N. It is easy to see that the noise

level in the singular values of X is � . Among all estimates of X0 obtained by a hard
thresholding of the singular values of X, we are interested in finding the one that
minimizes the asymptotic mean square error:

AMSE D lim
N!1 k OX � X0k2F: (2.101)

The work of (Donoho and Gavish 2014) gives the following answer to this question.

Proposition 2.12 (Optimal Hard Thresholding for Minimizing AMSE). Given a
low-rank matrix X0 2 RD�N and noisy measurements X D X0 C �E with E zero
mean and variance 1=

p
N, if the matrix is square, i.e., D D N, then the optimal

hard threshold estimate OX D UH	�.†/V> that minimizes the asymptotic mean
square error k OX � X0k2F is given by

	� D 4=p3� � 2:309�: (2.102)

In the more general case of a nonsquare matrix with D=N ! ˇ, the optimal
threshold is given by

2.4 Bibliographic Notes 53

	�.ˇ/ D �
s
2.ˇ C 1/C 8ˇ

.ˇ C 1/Cpˇ2 C 14ˇC 1 : (2.103)

The proof of this statement is beyond the scope of this book. However, it is useful
to discuss its implications in our context.

In can be shown that under the same noise model, the distribution of the singular
values of the matrix X D X0 C �E forms a quarter-circle bulk, whose radius lies
approximately at .1Cpˇ/� . This is the place where we would normally expect to
see a “knee point” in the distribution of singular values (as shown in Figure 2.7). The
information-theoretic criteria or the rank-minimization objectives are most likely to
choose this value to threshold the singular values. For a square matrix, this gives the
threshold 	 D 2� , which is close to but not quite at the optimal value 2:309� . As
shown in the work of (Donoho and Gavish 2014), this small difference in the choice
of the threshold can result in a 5=3-fold increase in AMSE.

Interestingly, even if we knew the correct rank d of the matrix X0 and took the
truncated SVD solution OX D UH�dC1

.†/V>, the resulting AMSE would also be
5=3 the size of the optimal hard thresholding solution given above. In general,
soft thresholding does not work as well as hard thresholding in the high signal-
to-noise ratio regime, and the AMSE for the optimal soft thresholding solution
OX3 D US	�.†/V> is twice as large as that of hard thresholding. In fact, even if one

is allowed to use any singular value shrinkage function instead of merely a hard or
soft thresholding, compared to the above optimal hard thresholding solution (2.102),
one can at best reduce the AMSE by another 1=3 (see the work of (Shabalin and
Nobel 2010) for more details).

2.4 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from
PCA in the numerical linear algebra literature, also known as the Eckart and Young
decomposition (Eckart and Young 1936; Hubert et al. 2000). The result regarding
the least-squares optimality of SVD given in Theorem 2.3 can be traced back to
(Householder and Young 1938; Gabriel 1978). While principal components were
initially defined exclusively in a statistical sense (Pearson 1901; Hotelling 1933),
one can show that the algebraic solution given by SVD gives asymptotically unbi-
ased estimates of the true parameters in the case of Gaussian distributions. A more
detailed analysis of the statistical properties of PCA can be found in (Jolliffe 2002).

Note that PCA infers only the principal subspace (or components), but not
a probabilistic distribution of the data in the subspace. Probabilistic PCA was
developed to infer an explicit probabilistic distribution from the data (Tipping and
Bishop 1999b). The data are assumed to be independent samples drawn from an
unknown distribution, and the problem becomes one of identifying the subspace
and the parameters of the distribution in a maximum likelihood or maximum a

54 2 Principal Component Analysis

posteriori sense. When the underlying noise distribution is Gaussian, the geometric
and probabilistic interpretations of PCA coincide (Collins et al. 2001). However,
when the underlying distribution is non-Gaussian, the optimal solution to PPCA
may no longer be linear. For example, in (Collins et al. 2001), PCA is generalized
to arbitrary distributions in the exponential family.

2.5 Exercises

Exercise 2.1 (Properties of Symmetric Matrices). Let S 2 R
n�n be a real

symmetric matrix. Prove the following:

1. All the eigenvalues of S are real, i.e., �.S/ � R.
2. Let .�;u/ be an eigenvalue–eigenvector pair. If �i ¤ �j, then ui ? uj; i.e.,

eigenvectors corresponding to distinct eigenvalues are orthogonal.
3. There always exist n orthonormal eigenvectors of S, which form a basis of Rn.
4. The matrix S is positive definite (positive semidefinite) if and only if all of its

eigenvalues are positive (nonnegative), i.e., S � 0 (S � 0) iff 8i D 1; 2; : : : ; n,
�i > 0 (�i 	 0).

5. If �1 	 �2 	 � � � 	 �n are the sorted eigenvalues of S, then max
kxk2D1

x>Sx D �1

and min
kxk2D1

x>Sx D �n.

Exercise 2.2 (Pseudoinverse of a Matrix).

1. Let A D Ur†rV>r be the compact SVD of a matrix A of rank r. Show that a
pseudoinverse of A is given by A
 D Vr†

�1
r U>r .

2. Consider the linear system of equations Ax D b, where the matrix A 2 R
m�n is of

rank r D rank.A/ D minfm; ng. Show that x� D A
b minimizes kAx�bk22, where
A
 is a pseudoinverse of A defined in part 1. When is x� the unique solution?

Exercise 2.3 (Convex Sets and Functions). Show the following:

1. The intersection of two convex sets is convex.
2. Let f W X ! R be a convex function defined over a convex domain X
 Rn.

Show that for every c 2 R, the set fx 2 X W f .x/
 cg is convex.
3. A convex function is pseudoconvex and quasiconvex.

Exercise 2.4 (Derivatives of Traces and Logarithms). Show that

1. @
@X trace.AXB/ D A>B>

2. @
@X trace.AX�1B/ D �.X�1BAX�1/>.

3. @
@X trace.A˝ X/ D trace.A/I.

4. @
@X trace.X>BX/ D BX C B>X.

5. @
@X trace.XBX>/ D XB> C XB.

6. @
@X log j det.X/j D .X�1/>.

2.5 Exercises 55

Exercise 2.5 (Maximum Likelihood Estimates of the Parameters of a Gaus-
sian). Let x 2 RD be a random vector. Let �x D E.x/ 2 RD and †x D
E.x � �/.x � �/> 2 RD�D be, respectively, the mean and the covariance of x.
Given N i.i.d. samples fxjgNjD1, show that the maximum likelihood estimates of �x
and †x are, respectively, given by

O�N
:D 1

N

NX
jD1

xj and O†N
:D 1

N

NX
jD1
.xj � O�N/.xj � O�N/

>: (2.104)

Exercise 2.6 (Statistical PCA for Nonzero-Mean Random Variables). Let x 2
RD be a random vector. Let �x D E.x/ 2 RD and†x D E.x��/.x��/> 2 RD�D

be, respectively, the mean and the covariance of x. Define the principal components
of x as the random variables yi D u>i xCai 2 R, i D 1; : : : ; d
 D, where ui 2 RD is
a unit-norm vector, ai 2 R, and fyigniD1 are zero-mean uncorrelated random variables
whose variances are such that Var.y1/ 	 Var.y2/ 	 � � � 	 Var.yd/. Assuming that
the eigenvalues of †x are distinct, show that

1. ai D �u>i �x, i D 1; : : : ; d.
2. u1 is the eigenvector of †x corresponding to its largest eigenvalue.
3. u>2 u1 D 0, and u2 is the eigenvector of † corresponding to its second-largest

eigenvalue.
4. u>i uj D 0 for all i ¤ j and ui is the eigenvector of †x corresponding to its

ith-largest eigenvalue.

Exercise 2.7 (Properties of PCA). Let x 2 RD be a random vector with covariance
matrix †x 2 RD�D. Consider a linear transformation

y D U>x; (2.105)

of x, where y 2 Rd and U 2 RD�d has orthonormal columns. Let †y D U>†xU be
the covariance matrix for y. Show that

1. The trace of †y is maximized by a matrix U whose columns are the first d unit
eigenvectors of †x.

2. The trace of †y is minimized by a matrix U whose columns are the last d unit
eigenvectors of †x.

Exercise 2.8 (Principal Angles between Two Subspaces). Given two subspaces
S1 and S2 of RD with d D dim.S1/
 dim.S2/, the principal angles between the
subspaces are defined recursively for m D 1; : : : ; d as

cos.�1/ D max
u12S1

max
u22S2

n
hu1;u2i W ku1k D ku2k D 1

o
D †.u11;u12/ (2.106)

56 2 Principal Component Analysis

cos.�m/ D max
u12S1

max
u22S2

n
hu1;u2i W ku1k D ku2k D 1;u1 ? ui

1;u2 ? ui
2;

8i 2 f1; : : : ;m � 1g
o
D †.um

1 ;u
m
2 /:

(2.107)

Let U1 2 RD�d be an orthogonal matrix whose columns form a basis for S1 and
similarly U2 for S2. Show that

cos.�m/ D �m; m D 1; : : : ; d; (2.108)

where �m is the mth-largest singular value of the matrix W D U>1 U2. Show also that
the number of angles equal to zero is equal to dim.S1 \ S2/.

Hint: Following the derivation of statistical PCA, find first the smallest angle
(largest cosine = largest variance) and then find the second-smallest angle all the way
to the largest angle (smallest variance). As you proceed, the vectors that achieve the
second-smallest angle need to be chosen to be orthogonal to the vectors that achieve
the smallest angle, and so forth, as we did in statistical PCA. Also, let u1 D U1c1
and u2 D U2c2. Show that you need to optimize cos.�/ D c>1 U>1 U2c2 subject to
kc1k D kc2k D 1. Show (using Lagrange multipliers) that a necessary condition for
optimality is

�
0 U>1 U2

U>2 U1 0

	 �
c1
c2

	
D �

�
c1
c2

	
: (2.109)

Deduce that � D �2 is a singular value of U>1 U2 with c2 as singular vector.

Exercise 2.9 (Fixed-Rank Approximation of a Matrix). Let A D U†V> be the
SVD of A. Let B D U†pV>, where †p denotes the matrix obtained from † by
setting to zero its elements on the diagonal after the pth entry. Show that kA�Bk2F D
�2pC1C � � � C �2r , where k � kF indicates the Frobenius norm. Furthermore, show that
such a norm is the minimum achievable over all matrices B 2 Rm�n of rank p, i.e.,

min
BWrank.B/Dp

kA � Bk2F D �2pC1 C � � � C �2r : (2.110)

Exercise 2.10 (Identification of Autoregressive (AR) Systems). A popular model
that is often used to analyze a time series fytgt2Z is the linear autoregressive model

yt D a1yt�1 C a2yt�2 C � � � C anyt�n C "t; 8t; yt 2 R; (2.111)

where "t 2 R models the modeling error or noise and is often assumed to be a
white-noise random process. Now suppose that you are given the values of yt for a
sufficiently long period of time.

1. Show that in the noise-free case, i.e., "t � 0, regardless of the initial conditions,
the vectors xt D Œyt; yt�1; : : : ; yt�n�

> for all t lie on an n-dimensional hyperplane
in RnC1. What is the normal vector to this hyperplane?

2.5 Exercises 57

2. Now consider the case with noise. Describe how you may use PCA to identify
the unknown model parameters .a1; a2; : : : ; an/.

Exercise 2.11 (Basis for an Image). Given a gray-level image I, consider all of its
b � b blocks, denoted by fBi 2 Rb�bg. We would like to approximate each block as
a superposition of d base blocks, say f OBj 2 Rb�bgdjD1. That is,

Bi D
dX

jD1
aij OBj C Ei; (2.112)

where Ei 2 Rb�b is the possible residual from the approximation. Describe how
you can use PCA to identify an optimal set of d base blocks so that the residual is
minimized.

Exercise 2.12 (Ranking of Webpages). PCA is actually used to rank webpages
on the Internet by many popular search engines. One way to see this is to view the
Internet as a directed graph G D .V ; E/, where the ith webpage, denoted by pi, is a
node in V , and every hyperlink from pi to pj, denoted by eij, is a directed edge in E .
We can assign each webpage pi an “authority” score xi and a “hub” score yi. The
“authority” score xi is a scaled sum of the “hub” scores of other webpages pointing
to webpage pi. The “hub” score is the scaled sum of the “authority” scores of other
webpages to which webpage pi is pointing. Let x and y be the vectors of authority
scores and hub scores, respectively. Also, let A be the adjacent matrix of the graph G,
i.e., Aij D 1 if eij 2 E and Aij D 0 otherwise, and consider the following algorithm:

Answer the following questions.

1. Given the definitions of hubs and authorities, justify the “ranking webpages”
Algorithm 2.1.

2. Show that unit-norm eigenvectors of AA> (for y) and A>A (for x) give fixed
points of Algorithm 2.1.

3. Show that in general, y and x converge to the unit-norm eigenvectors associated
with the maximum eigenvalues of AA> and A>A, respectively. Explain why no
other eigenvector is possible and why the normalization steps in the algorithm
are necessary.

Algorithm 2.1 (Ranking Webpages)

Input: A matrix A and a random vector x
1: while (x not converged) do
2: y0 Ax, y y0

ky0
k

3: x0 A>y, x x0

kx0
k

4: end while
Output: x

58 2 Principal Component Analysis

4. Explain how y and x can be computed from the singular value decomposition
of A. Under what circumstances would the given algorithm be preferable to using
the SVD?

In the literature, this is known as the hypertext-induced topic-selection (HITS)
algorithm (Kleinberg 1999; Ding et al. 2004). The same algorithm can also be used
to rank competitive sports such as football teams and chess players.

Exercise 2.13 (PPCA by Maximum Likelihood). Study the proof of Theorem
2.8 in great detail and show the missing piece that is left as an exercise to the
reader. More specifically, let �1; : : : ; �D be the eigenvalues of a covariance matrix
† 2 R

D�D. Let � W f1; : : : ;Dg ! f1; : : : ;Dg be a permutation of the first D
integers. We would like to choose d eigenvalues ��Œ1�; : : : ; ��Œd� such that the
discarded ones ��ŒdC1�; : : : ; ��ŒD� minimize

M.�/ D log

PD

iDdC1 ��Œi�
D � d

�
�
PD

iDdC1 log��Œi�
D � d

: (2.113)

Use Jensen’s inequality to show that M is nonnegative and use the concavity of the
log function to prove that M is minimized by choosing ��Œi�, i D d C 1; : : : ;D to
be contiguous in magnitude.

Exercise 2.14 Show that for the PPCA model, x D � C ByC ", where � 2 RD,
B 2 RD�d, y � N .0; Id/ and " � N .0; �2ID/, the conditional distribution of y given
x is given by y j x � N .�yjx; †yjx/, where

�yjx D .B>BC �2Id/
�1B>.x � �/ and †yjx D �2.B>BC �2ID/

�1: (2.114)

Exercise 2.15 (An EM Algorithm for PPCA). In Section 2.2.2, we showed that
the ML estimate of the parameter � D .�;B; �/ of the PPCA model x D �CByC",
where � 2 RD, B 2 RD�d, y � N .0; Id/ and " � N .0; �2ID/, can be found
in closed form, as shown in Theorem 2.9. An alternative approach, which can be
advantageous for large D, is to view y as a hidden variable and use the EM algorithm
described in Appendix B.2.1 to find the ML estimate. In this exercise, you will
derive an EM algorithm for PPCA.

1. Let wk
j .y/ D p� k.y j xj/ be the posterior distribution of the hidden variables with

parameters � k D .�k;Bk; �k/ at iteration k of the EM algorithm. Show that the
expected complete log-likelihood Q.� j � k/ D Ewk Œlog p� .fxjgNjD1; fyjgNjD1/� is
given by

�
NX

jD1

D

2
log.2��2/C 1

2�2

�kxj � �k2 � 2.xj ��/>Bhyjik

C trace B>Bhyjy
>
j ik

�C 1

2
trace hyjy

>
j ik

�
;

(2.115)

2.5 Exercises 59

where

hyjik D
Z

y
wk

j .y/y dy D .Bk>Bk C �2Id/
�1Bk>.xj � �k/; (2.116)

hyjy
>
j ik D

Z

y
wk

j .y/yy>dy D .�k/2.Bk>Bk C �2Id/
�1 C hyjikhyjik>:

Hint: See Exercise 2.14.
2. Show that the parameters � D .�;B; �/ that maximize Q.� j � k/ are given by

�
B �

� D
"

NP
jD1

xjhyjik>
NP

iD1
xj

#
2
6664

NP
jD1
hyjy
>
j ik

NP
jD1
hyjik

NP
jD1
hyjik> N

3
7775

�1

; (2.117)

�2D 1

ND

NX
jD1
kxj ��k2�2.xj ��/>BhyjikCtrace B>Bhyjy

>
j ik: (2.118)

3. In practice, we know that the ML estimator for � is O� D 1
N

PN
jD1 xj. Therefore,

a more efficient approach is to maximize Q.� j � k/ only over the parameters
.B; �/. Show that the optimal parameters are given by

BkC1D
NX

jD1
.xj � O�/hyjik>

 NX
jD1
hyjy
>
j ik

��1
; (2.119)

�kC1D
vuut 1

ND

NX
jD1
kxj� O�k2�2.xj� O�/>BkC1hyjikCtrace B.kC1>BkC1hyjy

>
j ik/;

where hyjik is computed with �k D O�. Show also that the above iterations can
be rewritten as

BkC1 D O†NBk
�
.�k/2Id C†k

x
�1

Bk> O†NBk
��1
; (2.120)

�kC1 D
r
1

D
trace.b†N � b†NBk†k

x
�1BkC1>/; (2.121)

where O†N D 1
N

PN
jD1.xj � O�/.xj � O�/>.

Exercise 2.16 (Properties of the Nuclear Norm). Let X be a matrix of rank r.

1. Show that the nuclear norm f .X/ D kXk� D Pr
iD1 �i.X/ of X is a convex

function of X.
2. Show that the subgradient of the nuclear norm is given by

60 2 Principal Component Analysis

@kXk� D UV> CW; (2.122)

where X D U†V> is the compact (rank r) SVD of X, and W is a matrix such
that U>W D 0, WV D 0, and kWk2
 1.

3. Show that the optimal solution of

min
A

1

2
kX � Ak2F C 	kAk� (2.123)

is given by A D D	 .X/ D US	 .†/V>, where D	 is called the singular-value
thresholding operator.

Exercise 2.17 (Face Recognition with Varying Illumination).

1. Implementation of PCA, PPCA and model selection techniques. Implement
the following functions using at most five lines of MATLAB code per function.

Function [mu,U,Y]=pca(X,d)
Parameters
X D � N data matrix.
d Number of principal components.

Returned values
mu Mean of the data.
U Orthonormal basis for the subspace.
Y Low-dimensional representation (or principal components).

Description
Finds the d principal components of a set of points from the SVD of the data
matrix X.

Function [mu,W,sigma]=ppca(X,d)
Parameters

X D � N data matrix.
d Number of principal components.

Returned values
mu Mean of the data.
W Basis for the subspace (does not need to be orthonormal).

sigma Standard deviation of the noise.
Description
Finds the parameters of the PPCA model � and † D WW> C �2I.

2.5 Exercises 61

Function d=pca_model_selection(X,tau)
Parameters

X D � N data matrix.
tau Threshold
Returned values

d Number of principal components.
Description
Finds the number of principal components for PCA as OdDmind

˚
d W �2dC1<	

�
.

Function d=ppca_model_selection(X,method)
Parameters

X D � N data matrix.
method BIC, AIC, G-AIC
Returned values

d Number of principal components.
Description
Finds the number of principal components using different model selection
methods.

2. Face recognition using PCA and PPCA. In this exercise you will use a small
subset of the Yale B data set8, that contains photos of ten individuals under
various illumination conditions. Specifically, you will use only images from the
first three individuals under ten different illumination conditions.

Download the file YaleB-Dataset.zip. This file contains the image database
along with the MATLAB functionloadimage.m. Decompress the file and type
help loadimage at the MATLAB prompt to see how to use this function. The
function operates as follows:

Function img=loadimage(individual,condition)
Parameters
individual Number of the individual.
condition Number of the image for that individual.

Returned values
img The pixel image loaded from the database.

Description
Read and resize an image from the data set. The database (directory images)
must be in the same directory as this file.

(a) Apply PCA with d D 2 to all 10 images from individual 1. Plot the mean face
� and the first two eigenfaces u1 and u2. What do you observe? Plot �Cy1u1
for y1 D ��1 W 0:2�1 W �1 and �C y2u2 for y2 D ��2 W 0:1�2 W �2. What do
the first two principal components capture? Repeat for individuals 2 and 3.

8http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

http://www.vision.jhu.edu/teaching/learning/data/YaleB-Dataset.zip
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

62 2 Principal Component Analysis

(b) Apply PPCA with d D 2 to all 10 images from individual 1. Plot the mean
face � and the first two eigenfaces u1 and u2. What differences do you observe
between the eigenfaces of PCA and those of PPCA? Plot �C y1u1 for y1 D
�1 W 0:2 W 1 and � C y2u2 for y2 D �1 W 0:2 W 1. What differences do
you observe between the principal components of PCA and those of PPCA?
Repeat for individuals 2 and 3.

(c) Divide all the images into two sets: Training Set (images from individuals 1 to
3 and images 1 to 5) and Test Set (images from individuals 1 to 3 and images
6 to 10). Apply PCA to the Training Set using d D 10. Plot the mean face and
the eigenfaces. Plot also the singular values of the data matrix. Project the Test
Set onto the face subspace given by PCA, i.e., Ytest D W>.Xtest � �1>/. Plot
the projected faces, i.e., Proj.Xtest/ D �1>CWYtest. Classify these faces using
1-nearest-neighbor, that is, label an image x as corresponding to individual i if
its projected image y is closest to a projected image yj of individual i. Report
the percentage of correctly classified face images for d D 1; : : : ; 10. Which
value of d gives the best recognition performance? Compare this result with
the those obtained using model selection to determine the number of principal
components for some threshold 	 as well as with the estimates of BIC, AIC,
and G-AIC for PPCA.

Chapter 3
Robust Principal Component Analysis

. . . any statistical procedure . . . should be robust in the sense that small deviations from
the model assumptions should impair its performance only slightly . . . Somewhat larger
deviations from the model should not cause a catastrophe.

—Peter J. Huber

In the previous chapter, we considered the PCA problem under the assumption
that all the sample points are drawn from the same statistical or geometric model:
a low-dimensional subspace. In practical applications, it is often the case that
some entries of the data points can be missing or incomplete. For example, the
2-dimensional trajectories of an object moving in a video may become incomplete
when the object becomes occluded. Sometimes, it could be the case that some
entries of the data points are corrupted by gross errors and we do not know a priori
which entries are corrupted. For instance, the intensities of some pixels of the face
image of a person can be corrupted when the person is wearing glasses. Sometimes it
could also be the case that a small subset of the data points are outliers. For instance,
if we are trying to distinguish face images from non-face images, then we can model
all face images as samples from a low-dimensional subspace, but non-face images
will not follow the same model. Such data points that do not follow the model of
interest are often called sample outliers and should be distinguished from the case
of samples with some corrupted entries, also referred to as intrasample outliers.
The main distinction to be made is that in the latter case, we do not want to discard
the entire data point, but only the atypical entries.

In this chapter, we will introduce several techniques for recovering a low-
dimensional subspace from missing or corrupted data. We will first consider the
PCA problem with missing entries, also known as incomplete PCA or low-rank
matrix completion (for linear subspaces). In Section 3.1, we will describe several
representative methods for solving this problem based on maximum likelihood esti-
mation, convex optimization, and alternating minimization. Such methods are fea-
tured due to their simplicity, optimality, or scalability, respectively. In Section 3.2,

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_3

63

64 3 Robust Principal Component Analysis

we will consider the PCA problem with corrupted entries, also known as the
robust PCA (RPCA) problem. We will introduce classical alternating minimization
methods for addressing this problem as well as convex optimization methods
that offer theoretical guarantees of correctness. Finally, in Section 3.3, we will
consider the PCA problem with sample outliers and describe methods for solving
this problem based on classical robust statistical estimation techniques as well as
techniques based on convex relaxations. Face images will be used as examples to
demonstrate the effectiveness of these algorithms.

3.1 PCA with Robustness to Missing Entries

Recall from Section 2.1.2 that in the PCA problem, we are given N data points
X :D fxj 2 R

DgNjD1 drawn (approximately) from a d-dimensional affine subspace
S
:D fx D �C Uyg, where � 2 RD is an arbitrary point in S, U 2 RD�d is a basis

for S, and Y D fyj 2 RdgNjD1 are the principal components.
In this section, we consider the PCA problem in the case that some of the

given data points are incomplete. A data point x D Œx1; x2; : : : ; xD�
> is said to be

incomplete when some of its entries are missing or unspecified. For instance, if
the ith entry xi, of x is missing, then x is known only up to a line in RD, i.e.,

x 2 L
:D ˚Œx1; : : : ; xi�1; xi; xiC1; : : : ; xD�

>; xi 2 R
�

D ˚x�i C xiei; xi 2 R
�
;

(3.1)

where x�i D Œx1; : : : ; xi�1; 0; xiC1; : : : ; xD�
> 2 RD is the vector x with its ith

entry zeroed out and ei D Œ0; : : : ; 0; 1; 0; : : : ; 0�> 2 RD is the ith basis vector.
More generally, if the point x has M missing entries, without loss of generality

we can partition it as

�
xU

xO

	
, where xU 2 RM denotes the unobserved entries and

xO 2 RD�M denotes the observed entries. Thus, x is known only up to the following
M-dimensional affine subspace:

x 2 L
:D
��

0

xO

	
C
�

IM

0

	
xU ; xU 2 R

M

�
: (3.2)

Incomplete PCA When the Subspace Is Known
Let us first consider the simplest case, in which the subspace S is known. Then we
know that the point x belongs to both L and S. Therefore, given the parameters � and
U of the subspace S, we can compute the principal components y and the missing
entries xU by intersecting L and S. In the case of one missing entry (illustrated in
Figure 3.1), the intersection point can be computed from

3.1 PCA with Robustness to Missing Entries 65

x
y

z

S

L

•
x

Fig. 3.1 Given a point x 2 R
D with one unknown entry xi, the point x is known only up to a line

L. However, if we also know that x belongs to a subspace S, we can find the unknown entry by
intersecting L and S, provided that L is not parallel to S.

x D x�i C xiei D �C Uy H) �
U �ei

� �y
xi

	
D x�i ��: (3.3)

Note that a necessary condition for this linear system to have a unique solution is
that the line L is not parallel to the principal subspace, i.e., ei 62 span.U/.

In the case of M missing entries, we can partition the point � D
�
�U

�O

	
and the

subspace basis U D
�

UU

UO

	
according to x D

�
xU

xO

	
. Then, the intersection of L and

S can be computed from

�
xU

xO

	
D
�
�U

�O

	
C
�

UU

UO

	
y H)

�
UU �IM

UO 0

	 �
y

xU

	
D
� ��U

xO � �O

	
: (3.4)

A necessary condition for the linear system in (3.4) to have a unique solution is that
the matrix on the left-hand side be of full column rank d C M
 D. This implies
that ei 62 span.U/ for each missing entry i. This also implies that M
 D� d; hence
we need to have at least d observed entries in order to complete a data point. When
the data point x is not precise and has some noise, we can compute y and xU as the
solution to the following optimization problem:

min
y;xU
kx �� � Uyk2: (3.5)

It is easy to derive that the closed-form solution to the unknowns y and xU is given by

y D .I � U>U UU/
�1U>O .xO ��O/ D .U>O UO/

�1U>O .xO ��O/;

xU D �U C UUy D �U C UU.U
>
O UO/

�1U>O .xO � �O/:
(3.6)

66 3 Robust Principal Component Analysis

We leave the derivation to the reader as an exercise (see Exercise 3.1). Notice that
this solution is simply the least squares solution to (3.4), and that in order for
UO to be of full rank (so that U>O UO is invertible), we need to know at least d
entries. Interestingly, the solution for y is obtained from the observed entries (xO)
and the part of the model corresponding to the observed entries (�O and UO). Then
the missing entries (xU) are obtained from the part of the model corresponding to
the unobserved entries (�U and UU) and y.

Incomplete PCA as a Well-Posed Problem
In practice, however, we do not know the subspace S (neither � nor U) a priori.
Instead, we are given only N incomplete samples, which we can arrange as the
columns of an incomplete data matrix X D Œx1; x2; : : : ; xN � 2 RD�N . Let W 2 RD�N

be the matrix whose entries fwijg encode the locations of the missing entries, i.e.,

wij D
(
1 if xij is known;

0 if xij is missing;
(3.7)

and let W ˇ X denote the Hadamard product of two matrices, which is defined
as the entrywise product .W ˇ X/ij D wijxij. The goal of PCA with missing data,
also known as matrix completion, is to find the missing entries .11> � W/ ˇ X,
the point �, the basis U, and the matrix of low-dimensional coordinates Y D
Œy1; y2; : : : ; yN � 2 Rd�N from the known entries W ˇ X.

Obviously, we cannot expect to always be able to find the correct solution to this
problem. Whether the correct complete matrix X can be recovered depends on:

1. Which entries are missing or observed;
2. How many entries are missing or observed.

To see why the location of missing entries matters, suppose the first entry of
all data points is missing. Then we cannot hope to be able to recover the first row
of X at all. Likewise, suppose that all the entries of one data point are missing.
While in this case we can hope to find the subspace from the other data points,
we cannot recover the low-dimensional representation of the missing point. These
two examples suggest that the location of missing entries should not have any
conspicuous patterns.

Now suppose that the matrix X is

X D e1e>1 D

2
6664

1 0 � � � 0
0 0 � � � 0
:::

: : :

0 0 � � � 0

3
7775 ; (3.8)

which is a rank-one matrix. In this case, we cannot hope to recover X even if a
relatively large percentage of its entries are given, because most entries are equal
to zero, and we will not be able to distinguish X from the zero matrix from many

3.1 PCA with Robustness to Missing Entries 67

observed entries. This suggests that if we want to recover a low-rank data matrix
from a small portion of its entries, the matrix itself should not be too sparse.

Thus, to avoid ambiguous solutions due to the above situations, we must require
that the locations of the missing entries be random enough so that the chance that
they form a conspicuous pattern is very low; and in addition, we must restrict our
low-rank matrices to those that are not particularly sparse. The following definition
gives a set of technical conditions to impose on a matrix so that its singular vectors
are not too spiky, and hence the matrix itself is not too sparse.

Definition 3.1 (Matrix Incoherence with Respect to Sparse Matrices). A matrix
X 2 RD�N is said to be �-incoherent with respect to the set of sparse matrices if

max
i
kuik2
 �

p
dp

D
; max

j
kvjk2
 �

p
dp

N
; kUV>k1
 �

p
dp

DN
; (3.9)

where d is the rank of X, X D U†V> is the compact SVD of X, and ui, and vj are
the ith row of U and jth row V, respectively.

Notice that since U is orthonormal, the largest absolute value of the entries of
U 2 RD�d is equal to 1, which happens when a column of U is 1-sparse, i.e.,
when a column of U has only one nonzero entry. On the other hand, if each column
of U is so dense that all its entries are equal to each other up to sign, then each
entry is equal to ˙1=pD, and the norm of each row is

p
d=D. Therefore, when

� < 1, the first condition above controls the level of sparsity of U. Similarly, the
other two conditions control the levels of sparsity of V and UV>, respectively. From
a probabilistic perspective, these conditions are rather mild in the sense that they
hold for almost all generic matrices—a random (say Gaussian) matrix satisfies these
conditions with high probability when the dimension of the matrix is large enough.
As we will see, incoherence is indeed a very useful technical condition to ensure
that low-rank matrix completion is a meaningful problem.

Regarding the number of entries required, notice that in order to specify a
d-dimensional subspace S in RD together with N points on it, we need to specify
DC dDC dN � d2 independent entries in �, U, and Y.1 That is, it is necessary to
observe at least this number of entries of X in order to have a unique solution for X.
However, the sufficient conditions for ensuring a unique and correct solution highly
depend on the approach and method one uses to recover X.

Incomplete PCA Algorithms
In what follows, we discuss a few approaches for solving the PCA problem with
missing entries. The first approach (described in Section 3.1.1) is a simple extension

1If U 2 RD�d and V 2 RN�d , then U and V have dD C dN degrees of freedom in general.
However, to specify the subspace, it suffices to specify UV>, which is equal to UAA�1V> for
every invertible matrix A 2 R

d�d; hence the matrix UV> has dDC dN � d2 degrees of freedom.

68 3 Robust Principal Component Analysis

of geometric PCA (see Section 2.1) in which the sample mean and covariance are
directly computed from the incomplete data matrix. However, this approach has
a number of disadvantages, as we shall see. The second approach (described in
Section 3.1.2) is a direct extension of probabilistic PCA (see Section 2.2) and uses
the expectation maximization (EM) algorithm (see Appendix B.2.1) to complete
the missing entries. While this approach is guaranteed to converge, the solution
it finds is not always guaranteed to be the global optimum, and hence it is not
necessarily the correct solution. The third approach (described in Section 3.1.3)
uses convex relaxation and optimization techniques to find the missing entries of
the low-rank data matrix X. Under the above incoherent conditions and with almost
minimal observations, this approach is guaranteed to return a perfect completion of
the low-rank matrix. However, this approach may not be scalable to large matrices,
since it requires solving for as many variables as the number of entries in the data
matrix. The fourth and final approach (described in Section 3.1.4) alternates between
solving for �, U, and Y given a completion of X, and solving for the missing entries
of X given �, U, and Y. Since this method uses a minimal parameterization of the
unknowns, it is more scalable. While in general, this approach is not guaranteed
to converge to the correct solution, we present a variant of this method that is
guaranteed to recover the missing entries correctly under conditions similar to those
for the convex relaxation method.

3.1.1 Incomplete PCA by Mean and Covariance Completion

Recall from Section 2.1.2 that the optimization problem associated with geometric
PCA is

min
�;U;fyjg

NX
jD1

��xj � � �Uyj

��2 s.t. U>U D Id and
NX

jD1
yj D 0: (3.10)

We already know that the solution to this problem can be obtained from the mean
and covariance of the data points,

O�N D
1

N

NX
jD1

xj and O†N D 1

N

NX
jD1
.xj � O�N/.xj � O�N/

>; (3.11)

respectively. Specifically, � is given by the sample mean O�N , U is given by the top
d eigenvectors of the covariance matrix O†N , and yj D U>.xj � �/. Alternatively,
an optimal solution can be found from the rank-d SVD of the mean-subtracted data
matrix Œx1 � O�N ; : : : ; xN � O�N �, as shown in Theorem 2.3.

When some entries of each xj are missing, we cannot directly compute O�N or
O†N as in (3.11). A straightforward method for dealing with missing entries was

3.1 PCA with Robustness to Missing Entries 69

introduced in (Jolliffe 2002). It basically proposes to compute the sample mean and
covariance from the known entries of X. Specifically, the entries of the incomplete
mean and covariance can be computed as

O�i D

NP
jD1

wijxij

NP
jD1

wij

and O�ik D

NP
jD1

wijwkj.xij � O�i/.xkj � O�k/

NP
jD1

wijwkj

; (3.12)

where i; k D 1; : : : ;D. However, as discussed in (Jolliffe 2002), this simple
approach has several disadvantages. First, the estimated covariance matrix need not
be positive semidefinite. Second, these estimates are not obtained by optimizing
any statistically or geometrically meaningful objective function (least squares,
maximum likelihood, etc.) Nonetheless, estimates O�N and O†N obtained from the
naive approach in (3.12) may be used to initialize the methods discussed in
the next two sections, which are iterative in nature. For example, we may initialize
the columns of U as the eigenvectors of O†N associated with its d largest eigenvalues.
Then given O�N and OU, we can complete each missing entry as described in (3.6).

3.1.2 Incomplete PPCA by Expectation Maximization

In this section, we derive an EM algorithm (see Appendix B.2.1) for solving the
PPCA problem with missing data. Recall from Section 2.2 that in the PPCA model,
each data point is drawn as x � N .�x; †x/, where �x D � and†x D BB>C�2ID,
where � 2 R

D, B 2 R
D�d, and � > 0. Recall also from (2.56) that the log-likelihood

of the PPCA model is given by

L D �ND

2
log.2�/�N

2
log det.†x/�1

2

NX
jD1

trace.†�1x .xj��/.xj��/>/; (3.13)

where fxjgNjD1 are N i.i.d. samples of x. Since the samples are incomplete, we can
partition each point x and the parameters �x and †x as

�
xU

xO

	
D Px;

�
�U

�O

	
D P�; and

�
†UU †UO

†OU †OO

	
D P†xP>: (3.14)

Here xO is the observed part of x, xU is the unobserved part of x, and P is any
permutation matrix that reorders the entries of x so that the unobserved entries
appear first. Notice that P is not unique, but we can use any such P. Notice also
that the above partition of x, �x, and †x could be different for each data point,
because the missing entries could be different for different data points. When strictly
necessary, we will use xjU and xjO to denote the unobserved and observed parts of

70 3 Robust Principal Component Analysis

point xj, respectively, and Pj to denote the permutation matrix. Otherwise, we will
avoid using the index j in referring to a generic point.

MAP estimates (see Appendix B.2.2). The second variant is the exact EM algorithm
(see Appendix B.2.1), where we take the conditional expectation of L over the
incomplete entries. Interestingly, both variants lead to the same estimate for �x,
though the estimates for†x are slightly different. In our derivations, we will use the
fact that the conditional distribution of xU given xO is Gaussian. More specifically,
xU j xO � N .�UjO; †UjO/, where

�UjO D �U C†UO†
�1
OO.xO � �O/ and †UjO D †UU �†UO†

�1
OO†OU :

We leave this fact as an exercise to the reader (see Exercise 3.2).

Maximum a Posteriori Expectation Maximization (MAP-EM)
The MAP-EM algorithm (see Appendix B.2.2) is a simplified version of the EM
algorithm (see Appendix B.2.1) that alternates between the following two steps:

MAP-step: Complete each data point x by replacing the unobserved variables xU

with their MAP estimates, arg maxxU
p� k.xU j xO/, where � k is an estimate for

the model parameters at iteration k.
M-step: Maximize the complete log-likelihood with respect to � , with xU given

as in the MAP-step.

During the MAP step, the MAP estimate of the unobserved variables can be
computed in closed form as

arg max
xU

p� k.xU j xO/ D �k
UjO D �k

U C†k
UO.†

k
OO/
�1.xO � �k

O/: (3.15)

Therefore, we can complete each data point as xkD P>
"

�k
UjO

xO

#
. Letting xk

j be the

completion of xj at iteration k, we obtain the complete log-likelihood as

L D �ND

2
log.2�/�N

2
log det.†x/� 1

2

NX
jD1
.xk

j ��/>†�1x .xk
j ��/: (3.16)

During the M-step, we need to maximize L with respect to � . Since the
data are already complete, we can update the model parameters as described in
Theorem 2.9, i.e.,

�kC1 D 1

N

NX
jD1

xk
j ; BkC1 D U1

�
ƒ1 � .�k/2I

�1=2
R; and .�k/2 D

DP
iDdC1

�i

D � d
;

In what follows, we derive two variants of the EM algorithm for learning the
parameters � D .�; B; �/ of the PPCA model from incomplete samples fxjgN

jD1. The
first variant, called Maximum a Posteriori Expectation Maximization (MAP-EM),
is an approximate EM method whereby the unobserved variables are given by their

3.1 PCA with Robustness to Missing Entries 71

where U1 2 RD�d is the matrix whose columns are the top d eigenvectors of the
complete sample covariance matrix

O†kC1
N D 1

N

NX
jD1
.xk

j ��kC1/.xk
j � �kC1/>; (3.17)

ƒ1 2 Rd�d is a diagonal matrix with the top d eigenvalues of O†kC1
N , R 2 Rd�d is

an arbitrary orthogonal matrix, and �i is the ith-largest eigenvalue of O†kC1
N . We can

then update the covariance matrix as †kC1
x D BkC1.BkC1/> C .�k/2I.

Expectation Maximization (EM)
The EM algorithm (see Appendix B.2.1) alternates between the following steps:

E-step: Compute the expectation Q.� j � k/
:D ExU ŒL j xO; �

k� of the complete
log-likelihood L with respect to the missing entries xU given the observed
entries xO and an estimate � k of the parameters at iteration k.

M-step: Maximize the expected completed log-likelihood ExU ŒL j xO; �
k� with

respect to � .

Observe from (3.13) that to compute the expectation of L , it suffices to compute
the following matrix for each incomplete data point x:

Sk D ExU Œ.x � �/.x � �/> j xO; �
k� D P>

�
Sk

UU Sk
UO

Sk
OU Sk

OO

	
P: (3.18)

Each block of this matrix can be computed as

Sk
OODEŒ.xO��O/.xO��O/

>j xO; �
k�D.xO��k

O/.xO��k
O/
>;

Sk
UODEŒ.xU��U/.xO��O/

>j xO; �
k�D.�k

UjO��k
U/.xO��k

O/
>D.Sk

OU/
>;

Sk
UUDEŒ.xU��U/.xU��U/

>j xO; �
k�

DEŒ.xU��k
UjO/.xU��k

UjO/
>j xO; �

k�C
2EŒ.�k

UjO � �U/.xU � �k
UjO/

> j xO; �
k�C .�k

UjO��U/.�
k
UjO��U/

>

D†k
UjO C .�k

UjO��U/.�
k
UjO��U/

>:

Let Sk
j denote the matrix Sk associated with point xj and let O†k

N D 1
N

PN
jD1 Sk

j . Then
the expected complete log-likelihood is given by

Q.� j � k/ D �ND

2
log.2�/ � N

2
log det.†x/� N

2
trace.†�1x

O†k
N/: (3.19)

In the M-step, we need to maximize this quantity with respect to � . Notice that
this quantity is almost identical to that in (2.56), except that the sample covariance

72 3 Robust Principal Component Analysis

matrix O†N is replaced by O†k
N . Thus, if O†k

N did not depend on the unknown parameter
�, we could immediately compute B and � from Theorem 2.9. Therefore, all we
need to do is to show how to compute �. To this end, notice that

@

@�
trace.†�1x Sk/ D @

@�
EŒ.x � �/>†�1x .x � �/ j xO; �

k� (3.20)

D �2†�1x EŒx � � j xO; �
k� D �2†�1x .xk ��/; (3.21)

where xk D P>
"

�k
UjO

xO

#
is the complete data point. Therefore,

@

@�
Q.� j � k/ D �1

2

@

@�

NX
jD1

trace.†�1x Sk
j / D

NX
jD1

†�1x .xk
j � �/ D 0; (3.22)

and so the optimal � is

�kC1 D 1

N

NX
jD1

xk
j : (3.23)

Notice that this solution is the same as that of the MAP-EM algorithm. That is, the
optimal solution for � is the average of the complete data. We can then form the
matrix O†k

N and compute BkC1 and �kC1 as before. Notice, however, that O†k
N is not

the covariance of the complete data. The key difference is in the term Sk
UU, which

contains an additional term †k
UjO.

The EM algorithm for PPCA with missing data is summarized in Algorithm 3.1.
In step 2 of the algorithm, the missing entries of X are filled in with zeros, and an
initial estimate of � and †x is obtained from the zero-filled X. Alternatively, one
may use other initialization methods, such as the mean and covariance completion
method described in Section 3.1.1. In step 7, the missing entries of each xj are filled
in according to the initial estimates of mean and covariance in step 2, while the
observed entries are kept intact. This corresponds to the MAP step of the MAP-EM
algorithm, and is an intermediate calculation for the E-step of the EM algorithm.
Next, steps 9 and 10 update the mean and covariance of the PPCA model. Step 9
is common to both the MAP-EM and EM algorithms, while step 10 is slightly
different: the MAP-EM algorithm uses only the first term on the right-hand side of
step 10, while the EM algorithm uses both terms. Steps 11–14 update the parameters
of the PPCA model and correspond to the M-step of both the MAP-EM and
EM algorithms. Finally, step 16 computes the probabilistic principal components.
Recall from Section 2.2, equation (2.78), that given the parameters of the PPCA
model .�;B; �/, the probabilistic principal components of a vector x are given by
y D .B>BC �2I/�1B>.x ��/.

3.1 PCA with Robustness to Missing Entries 73

Algorithm 3.1 (Incomplete PPCA by Expectation Maximization)

Input: Entries xij of a matrix X 2 R
D�N for .i; j/ 2
 and dimension d.

1: initialize

2: xij 0 for .i; j/ 62
, � 1
N

NP
jD1

xj, and † 1
N

NP
jD1

.xj � �/.xj � �/>.

3: Pj any permutation matrix that sorts the entries of the jth column of X, xj, so that its
unobserved entries (as specified in
) appear first.

4:

"
xj

U

xj
O

#
 Pjxj,

"
�

j
U

�
j
O

#
 Pj�, and

"
†

j
UU †

j
UO

†
j
OU †

j
OO

#
 Pj†P>

j .

5: repeat
6: for all j D 1; : : : ;N do

7: xj P>

j

"
�

j
U C†j

UO.†
j
OO/

�1.xj
O ��

j
O/

xj
O

#
.

8: end for

9: � 1
N

NP
jD1

xj and † 1
N

NP
jD1

.xj � �/.xj ��/>.

10: S †C P>

j

"
†

j
UU �†j

UO.†
j
OO/

�1†
j
OU 0

0 0

#
Pj.

11: U1 top d eigenvectors of S.
12: ƒ1 top d eigenvalues of S.
13: �2 1

D�d

PD
iDdC1 �i.S/.

14: B U1.ƒ1 � �2I/1=2R, where R 2 Rd�d is an arbitrary orthogonal matrix.
15: until convergence of � and S.
16: Y .B>BC �2I/�1B>.X � �1>/.

Output: �, B, and Y.

3.1.3 Matrix Completion by Convex Optimization

The EM-based approaches to incomplete PPCA discussed in the previous section
rely on (a) explicit parameterizations of the low-rank factors and (b) minimization of
a nonconvex cost function in an alternating minimization fashion. Specifically, such
approaches alternate between completing the missing entries given the parameters
of a PPCA model for the data and estimating the parameters of the model
from complete data. While simple and intuitive, such approaches suffer from two
important disadvantages. First, the desired rank of the matrix needs to be known
in advance. Second, due to the greedy nature of the EM algorithm, it is difficult to
ensure convergence to the globally optimal solution. Therefore, a good initialization
of the EM-based algorithm is critical for converging to a good solution.

In this section, we introduce an alternative approach that solves the low-rank
matrix completion problem via a convex relaxation. As we will see, this approach
allows us to complete a low-rank matrix by minimizing a convex objective function,
which is guaranteed to have a globally optimal minimizer. Moreover, under rather

74 3 Robust Principal Component Analysis

benign conditions on the missing entries, the global minimizer is guaranteed to be
the correct low-rank matrix, even without knowing the rank of the matrix in advance.

A rigorous justification for the correctness of the convex relaxation approach
requires a deep knowledge of high-dimensional statistics and geometry that is
beyond the scope of this book. However, this does not prevent us from introducing
and summarizing here the main ideas and results, as well as the basic algorithms
offered by this approach. Practitioners can apply the useful algorithm to their data
and problems, whereas researchers who are more interested in the advanced theory
behind the algorithm may find further details in (Cai et al. 2008; Candès and Recht
2009; Candès and Tao 2010; Gross 2011; Keshavan et al. 2010a; Zhou et al. 2010a).

Compressive Sensing of Low-Rank Matrices
The matrix completion problem can be considered a special case of the more general
class of problems of recovering a high-dimensional low-rank matrix X from highly
compressive linear measurements B D P.X/, where P is a linear operator that
returns a set of linear measurements B of the matrix X. It is known from high-
dimensional statistics that if the linear operator P satisfies certain conditions, then
the rank minimization problem

min
A

rank.A/ s.t. P.A/ D B (3.24)

is well defined, and its solution is unique (Candès and Recht 2009). However, it is
also known that under general conditions, the task of finding such a minimal-rank
solution is in general an NP-hard problem.

To alleviate the computational difficulty, instead of directly minimizing the
discontinuous rank function, we could try to relax the objective and minimize its
convex surrogate instead. More precisely, we could try to solve the following relaxed
convex optimization problem

min
A
kAk� s.t. P.A/ D B; (3.25)

where kAk� is the nuclear norm of the matrix A (i.e., the sum of all singular
values of A). The theory of high-dimensional statistics (Candès and Recht 2009;
Gross 2011) shows that when X is high-dimensional and the measurement operator
P.�/ satisfies certain benign conditions,2 the solution to the convex optimization
problem (3.25) coincides with that of the rank minimization problem in (3.24).

In what follows, we illustrate how to apply this general approach to the low-rank
matrix completion problem, derive a simple algorithm, and give precise conditions
under which the algorithm gives the correct solution.

Exact Low-Rank Matrix Completion with Minimum Number of Measurements

2Such conditions typically require that the linear measurements and the matrix X be in some sense
incoherent.

3.1 PCA with Robustness to Missing Entries 75

Let X 2 RD�N be a matrix whose columns are drawn from a low-dimensional
subspace of RD of dimension d � D. Assume that we observe only a subset of
the entries of X indexed by a set
, i.e.,

 D f.i; j/ W xij is observedg: (3.26)

Let P
 W RD�N ! RD�N be the orthogonal projector onto the span of all matrices
vanishing outside of
 so that the .i; j/th component of P
.X/ is equal to xij if
.i; j/ 2
 and zero otherwise. As proposed in (Candès and Recht 2009), we may
complete the missing entries in X by searching for a complete matrix A 2 RD�N that
is of low rank and coincides with X in
. This leads to the following optimization
problem:

min
A

rank.A/ s.t. P
.A/ D P
.X/: (3.27)

As we have discussed before in Section 3.1, in order for this problem to have
a unique solution, we must require that the matrix X be nonsparse, or incoherent
according to Definition 3.1. In addition, the missing entries should be random
enough and should not fall into any special pattern.

Regarding the minimal number of entries needed, let us assume D D N for
simplicity. An N�N matrix X of rank d has 2Nd�d2 degrees of freedom.3 Therefore,
one should not expect to complete or recover a rank-d matrix uniquely with fewer
than O.dN/ entries, since in general, there will be infinitely many rank-d matrices
that have the same given entries.

The question is how many more entries are needed in order for the above
problem to have a unique solution and, even more importantly, for the solution to
be found efficiently. Since the above rank-minimization problem is NP-hard (even
if the solution exists and is unique), inspired by the compressive sensing story, we
consider the following convex relaxation:

min
A

kAk� s.t. P
.A/ D P
.X/; (3.28)

where kAk� DP
�i.A/ is the sum of the singular values of A, which is the convex

envelope of the rank function rank.A/.
The seminal work of (Candès and Recht 2009; Candès and Tao 2010; Gross

2011) has established that when the low-rank matrix X is incoherent and the
locations of the known entries are sampled uniformly at random, the minimizer to
the problem (3.28) is unique and equal to the correct matrix X even if the number of
given entries is barely above the minimum. More specifically, the minimum number
of measurements that are needed in order for the convex optimization to give the

3X can be factorized as X D UAA�1V>, where U;V 2 RN�d have Nd entries each, and A 2 Rd�d

is an invertible matrix.

76 3 Robust Principal Component Analysis

correct solution with high probability is very close to the number of degrees of
freedom of the unknowns. The following theorem summarizes the results.

Theorem 3.2 (Low-Rank Matrix Completion by Convex Optimization). Let X be
a D�N matrix of rank d, with N 	 D. Assume that X is �-incoherent with respect to
the set of sparse matrices according to Definition 3.1. Let M be the expected number
of observed entries, whose locations are sampled independently and uniformly at
random.4 Then there is a numerical constant c such that if

M 	 c �4d N.log.N//2; (3.29)

then X is the unique solution to the problem in (3.28) with probability at least 1 �
N�3; that is, the program (3.28) recovers all the entries of X with no error.

Notice that for a general rank-d matrix, this bound is already very tight. To see
this, recall from our previous discussion that the minimum number of required
measurements is O.d N/. In essence, the theorem states that with only a polylog
factor5 of extra measurements, i.e., O.d N polylog.N//, we can obtain the unique
correct solution via convex optimization. This bound can be strengthened under
additional assumptions. For instance, if d D O.1/ (i.e., if X is a matrix whose rank
does not increase with its dimension), then the minimum number of entries needed
to guarantee the exact completion of X reduces to M 	 N log.N/ (Keshavan et al.
2010a). It is worth mentioning that the above statement is not limited to matrix
completion. As shown in (Gross 2011), the same bound and statement hold for the
compressive sensing of low-rank matrices with general linear observations P.X/,
i.e., for the problem (3.25), as long as the linear operator P is “incoherent” with the
matrix X.

Low-Rank Matrix Completion via Proximal Gradient
The work of (Cai et al. 2008) proposes to find the solution to the optimization
problem in (3.28) by solving the following problem:

min
A

	kAk� C 1

2
kAk2F s.t. P
.A/ D P
.X/; (3.30)

4Previously, we have used M to denote the number of observed entries in a specific matrix X.
Notice that here, M is the expected number of observed entries under a random model in which the
locations are sampled independently and uniformly at random. Thus, if p is the probability that an
entry is observed, then the expected number of observed entries is pDN. Therefore, one can state
the result either in terms of p or in terms of the expected number of observed entries, as we have
done. For ease of exposition, we will continue to refer to M as the number of observed entries in
the main text, but the reader is reminded that all the theoretical results refer to the expected number
of observed entries, because the model for the observed entries is random.
5A polylog factor means a polynomial in the log function, i.e., O.polylog.N// means O.log.N/k/
for some integer k.

3.1 PCA with Robustness to Missing Entries 77

in which the nuclear norm is augmented with a quadratic penalty term on A. As we
will see, the additional quadratic term leads to a very simple algorithm. Furthermore,
one can show that as the weight 	 > 0 increases, the solution of this regularized
program converges to that of (3.28) (Cai et al. 2008).

More specifically, using the method of Lagrange multipliers described in
Appendix A, we can write the Lagrangian function of (3.30) as

L .A;Z/ D 	kAk� C 1

2
kAk2F C hZ;P
.X/� P
.A/i; (3.31)

where Z 2 RD�N is a matrix of Lagrange multipliers. The optimal solution is
given by the saddle point of the Lagrangian, i.e., the solution to the problem
maxZ minA L .A;Z/, which can be found by iterating the following two steps:

(
Ak D arg minA L .A;Zk�1/;
Zk D Zk�1 C ˇ @L@Z .Ak;Zk�1/;

(3.32)

where ˇ > 0 is the step size. It is very easy to see that @L
@Z .Ak;Zk�1/ D P
.X/ �

P
.Ak/. To compute the optimal A given Zk�1, notice that hZ;P
.X/ � P
.A/i D
hP
.Z/;X � Ai, and by completing squares, we have

arg min
A

L .A;Z/ D arg min
A

	kAk� C 1

2
kA � P
.Z/k2F: (3.33)

The minimizer to this problem is given by the so-called proximal operator of the
nuclear norm: A� D D	 .P
.Z//, where D	 is the singular value thresholding
operator defined in (2.95). We have left the derivation as Exercise 2.16.

Hence, starting from Z0 D 0, the Lagrangian objective maxZ minA L .A;Z/
can be optimized via Algorithm 3.2. This is also known as the proximal gradient
descent method. Even though the objective function (3.31) is not smooth, this
method is known to converge as fast as the regular gradient descent method for
smooth functions, with a rate of O.1=k/. If one wants to obtain the solution to the
problem (3.28), one can repeat the algorithm with an increasing sequence of 	’s and
at each run, initialize A with the value previously obtained.

Algorithm 3.2 (Low-Rank Matrix Completion by Proximal Gradient)

Input: Entries xij of a matrix X 2 RD�N for .i; j/ 2
 and parameter 	 > 0.

1: Initialize Z 0.
2: repeat
3: A D	 .P
.Z//:
4: Z ZC ˇ.P
.X/� P
.A//:
5: until convergence of Z.

Output: Matrix A.

78 3 Robust Principal Component Analysis

Example 3.3 (Completing Face Images with Missing Pixels by Convex Opti-
mization) As we have seen in Chapter 2, under certain idealized circumstances
(such as Lambertian reflectance), images of the same object taken under different
illumination conditions lie near an approximately nine-dimensional linear subspace
known as the harmonic plane (Basri and Jacobs 2003). In this example, we exploit
such a low-dimensional structure to recover face images from the extended Yale
B data set that have been corrupted so that the intensity values of some pixels are
missing. The data matrix is formed by taking frontal face images of subject 20 under
all 64 different illumination conditions. Each image is down-sampled to size 96�84.
To synthesize a matrix with missing entries, a fraction of pixels from each image is
randomly selected as the missing entries. We apply the proximal gradient algorithm
described in Algorithm 3.2 to complete such “missing” entries. Figure 3.2 shows the
results of image completion for different parameters 	 for varying levels of missing
entries (from 30% missing entries to 90%). Notice that with a proper choice of the
parameter 	 (around 	 D 4 � 105 in this case), the convex optimization method is
able to recover up to 80% of missing entries.

3.1.4 Incomplete PCA by Alternating Minimization

Although the convex-optimization-based approach can ensure correctness of the
low-rank solution for the matrix completion problem, it requires solving a convex
program of the same size as the matrix. When the data matrix X is very large,
parameterizing the low-rank solution A and Lagrange multipliers Z with two
matrices of the same size as X seems rather demanding, actually redundant. At least
the low-rank solution A could be parameterized more economically with its low-
rank factors. Hence, if scalability of the algorithm is a serious concern, it makes
sense to look for the low-rank factors of the solution matrix directly.

To this end, we introduce in this section an alternating minimization algorithm
for solving the geometric PCA problem with missing data. The main idea behind
this approach, which was probably first proposed in (Wiberg 1976), is to find �, U,
and Y that minimize the error kX��1>�UYk2F considering only the known entries
of X in the set
 D f.i; j/ W wij D 1g, i.e.,

kP
.X � �1> � UY/k2F D kW ˇ .X � �1> � UY/k2F

D
DX

iD1

NX
jD1

wij.xij � �i � u>i yj/
2;

(3.34)

where xij is the .i; j/th entry of X, �i is the ith entry of �, u>i is the ith row of U, and
yj is the jth column of Y. Notice that this cost function is the same as that in (3.10),
except that the errors "ij D xij � u>i yj associated with the missing entries (wij D 0)
are removed.

3.1 PCA with Robustness to Missing Entries 79

Fig. 3.2 Matrix completion via convex optimization for face image completion. We take frontal
face images (size 96 � 84) of subject 20 from the extended Yale B data set and randomly select a
fraction of pixels as missing entries. Each column corresponds to input or result under a different
percentage of missing entries. The first row is the input images, and other rows show the completion
results by convex optimization with different values of 	 for the algorithm. Each image shows one
typical example of the recovered 64 images.

80 3 Robust Principal Component Analysis

In what follows, we will derive an alternating minimization algorithm for
minimizing the cost function in (3.34). For the sake of simplicity, we will first
derive the algorithm in the case of zero-mean and complete data. In this case, the
problem in (3.34) reduces to a low-rank matrix approximation problem, which can
be solved using the SVD, as described in Theorem 2.3. The alternating minimization
algorithm to be derived provides an alternative to the SVD solution, which, however,
can be more easily extended to the case of incomplete data, as we will see. Moreover,
the algorithm can also be extended to the more challenging PCA problem with
missing entries, as we will see.

Matrix Factorization by Alternating Minimization
In the case of complete, zero-mean data, the optimization problem in (3.34) reduces
to the low-rank matrix approximation problem based on explicit factorization
minU;Y kX � UYk2F . As we have seen in Chapter 2, this problem can be solved
from the SVD of X. Here, we consider an alternative method based on the
orthogonal power iteration method (Golub and Loan 1996) for computing the top d
eigenvectors of a square matrix.

Suppose that A 2 RN�N is a symmetric positive semidefinite matrix with
eigenvectors fuigNiD1 and eigenvalues f�igNiD1 sorted in decreasing order. Suppose
that �1 > �2 and let u0 2 RN be an arbitrary vector such that u>1 u0 ¤ 0. One can
show (see Exercise 3.3) that the sequence of vectors

ukC1 D Auk

kAukk (3.35)

converges to the top eigenvector of A up to sign, i.e., uk ! ˙u1, and that the rate
of convergence is �2

�1
. This method for computing the top eigenvector of a matrix is

called the power method.
More generally, assume that �d > �dC1 and let U0 2 RN�d be an arbitrary matrix

whose column space is not orthogonal to the subspace fuigdiD1 spanned by the top d
eigenvectors. One can show (see Exercise 3.3) that the sequence of matrices

UkC1 D AUk.Rk/�1; (3.36)

where QkRk D AUk is the QR decomposition of AUk, converges to a matrix U
whose columns are the top d eigenvectors of A and that the rate of convergence is
�dC1

�d
. This method for computing the top d eigenvectors of a matrix is called the

orthogonal power iteration method or Lanczos method (Lanczos 1950).
Power Factorization (PF) (Hartley and Schaffalitzky 2003) is a generalization

of the orthogonal power iteration approach for computing the top d singular
vectors of a (possibly) nonsquare matrix X. The main idea behind PF is that
given Y 2 Rd�N , an optimal solution for U 2 RD�d that minimizes kX � UYk2F
is given by XY>.YY>/�1. As before, such a matrix can be made orthogonal by

3.1 PCA with Robustness to Missing Entries 81

Algorithm 3.3 (Complete Matrix Factorization by Power Factorization)

Input: Matrices X 2 R
D�N and Y0 2 R

d�N .

1: initialize Y Y0.
2: repeat
3: Given Y, find U Q, where QR D XY>.YY>/�1.
4: Given U, find Y U>X.
5: until convergence of the product UY.

Output: Matrices U and Y.

replacing U by the Q factor of the QR decomposition of XY>.YY>/�1. Then, given
an orthogonal U, the optimal Y that minimizes kX � UYk2F is U>X. The PF
algorithm (see Algorithm 3.3) then iterates between these two steps till convergence
is achieved. The method is guaranteed to converge to the rank-d approximation of
X, as stated in the following theorem, whose proof is left as an exercise to the reader
(see Exercise 3.4).

Theorem 3.4 (Power Factorization). Let Xd be the best rank-d approximation of X
according to the Frobenius norm. Let �i be the ith singular value of X. If �d > �dC1,
then there exists a constant c > 0 such that for all k 	 0,

kXd �UkYkk2F
 c

�dC1
�d

�2k
; (3.37)

where Uk and Yk are the values at iteration k of the matrices U and Y in
Algorithm 3.3.

Matrix Completion by Alternating Minimization
Let us now consider the matrix factorization problem with incomplete, zero-mean
data, i.e., the problem in (3.34) with � D 0. Taking the derivatives of the cost
function in (3.34) with respect to ui and yj and setting them to zero leads to

 NX
jD1

wijyjy
>
j

�
ui D

NX
jD1

wijxijyj; i D 1; : : : ;D; (3.38)

 DX
iD1

wijuiu>i
�

yj D
DX

iD1
wijxijui; j D 1; : : : ;N: (3.39)

Therefore, given Y, the optimal U can be computed linearly from (3.38). As before,
the constraint U>U D I can be enforced by replacing U by the Q factor of the QR
decomposition of U D QR. Then, given U, the optimal Y can be computed linearly
from (3.39). This leads to the PF algorithm for matrix factorization with missing
entries summarized in Algorithm 3.4.

82 3 Robust Principal Component Analysis

Algorithm 3.4 (Matrix Completion by Power Factorization)

Input: Matrices W ˇ X 2 R
D�N and Y0 2 R

d�N .

1: initialize Y Y0.
2: repeat
3: Given Y D �

y1; : : : ; yN

�
, solve min

U
kW ˇ .X � UY/k2F as

U D

2
664

u>

1

:
:
:

u>

D

3
775 ; ui

 NX
jD1

wijyjy
>

j

�
�1

NX
jD1

wijxijyj; i D 1; : : : ;D:

4: Normalize U UR�1, where QR D U.

5: Given U D

2
664

u>

1

:
:
:

u>

D

3
775, solve min

Y
kW ˇ .X � UY/k2F as

YD�y1; : : : ; yN

�
; yj

 DX
iD1

wijuiu>

i

�
�1

DX
iD1

wijxijui; j D 1; : : : ;N:

6: until convergence of the sequence UY.

Output: U and Y.

Incomplete PCA by Alternating Minimization
Let us now consider the PCA problem in the case of incomplete data, i.e., the
problem in (3.34), where we want to recover both the mean � and the subspace basis
U. As in the case of complete data, the solution to this problem need not be unique,
because if .�;U;Y/ is an optimal solution, then so is .� � Ub;UA;A�1Y/ for all
b 2 Rd and A 2 Rd�d. To handle this issue, we usually enforce the constraints
U>U D I and Y1 D 0. For the sake of simplicity, we will forgo these constraints
for a moment, derive an algorithm for solving the unconstrained problem, and then
find a solution that satisfies the constraints.

To solve the unconstrained problem, let us take the derivatives of the cost function
in (3.34) with respect to �i, ui, and yj and set them to zero. This leads to

 NX
jD1

wij

�
�i D

NX
jD1

wij.xij � u>i yj/; i D 1; : : : ;D; (3.40)

 NX
jD1

wijyjy
>
j

�
ui D

NX
jD1

wij.xij � �i/yj; i D 1; : : : ;D; (3.41)

 DX
iD1

wijuiu>i
�

yj D
DX

iD1
wij.xij � �i/ui; j D 1; : : : ;N: (3.42)

3.1 PCA with Robustness to Missing Entries 83

Algorithm 3.5 (Incomplete PCA by Power Factorization)

Input: Matrix W, entries xij of .i; j/ such that wij D 1, and dimension d.

1: initialize

2
664

u>

1

:
:
:

u>

D

3
775 U0 2 RD�d and

�
y1; : : : ; yN

� Y0 2 Rd�N .

2: repeat

3: �i
PN

jD1 wij.xij�u>

i yj/PN
jD1 wij

.

4: ui

 NP

jD1

wijyjy
>

j

�
�1 NP

jD1

wij.xij � �i/yj.

5: U D

2
664

u>

1

:
:
:

u>

D

3
775 UR�1, where QR D

2
664

u>

1

:
:
:

u>

D

3
775.

6: Y D �
y1; : : : ; yN

�
where yj

 DP
iD1

wijuiu>

i

�
�1 DP

iD1

wij.xij � �i/ui.

7: until convergence of �1> C UY.

Output: �C 1
N UY1, U and Y.I � 1

N 11>/.

Therefore, given U and Y, the optimal � can be computed from (3.40). Likewise,
given � and Y, the optimal U can be computed linearly from (3.41). Also, given �

and U, the optimal Y can be computed linearly from (3.42).
As before, we can enforce the constraint U>U D I by replacing U by the Q

factor of the compact QR decomposition of U D QR. Also, we can enforce the
constraint Y1 D 0 by replacing � by �C 1

N UY1, and Y by Y.I� 1
N 11>/. This leads

to the alternating minimization approach for PCA with missing entries summarized
in Algorithm 3.5.

A similar alternating minimization approach was proposed in (Shum et al. 1995),
in which the steps in (3.40) and (3.41) are combined into a single step

NX
jD1

wij

�
yj

1

	 �
yj

1

	> �
ui

�i

	
D

NX
jD1

wijxij

�
yj

1

	
; i D 1; : : : ;D: (3.43)

This leads to an alternating minimization scheme whereby given Y, one solves for
� and U from (3.43), and given � and U, one solves for Y from (3.42).

Ensuring Global Optimality of Alternating Minimization for Matrix Completion
According to Theorem 3.4, when the data matrix X 2 RD�N is complete,
the alternating minimization method in Algorithm 3.3 is guaranteed to converge
exponentially to the optimal rank-d approximation of X as long as �dC1=�d < 1.
In the case of incomplete data, the alternating procedure in Algorithm 3.4 is
perhaps the simplest and most natural extension of Algorithm 3.3. However, since
the objective function is nonconvex, there is no guarantee that the algorithm will

84 3 Robust Principal Component Analysis

converge. Thus, a natural question is whether there are conditions on the rank of
X and the number of observed entries M under which the alternating minimization
approach is guaranteed to converge. Now, even if the algorithm were to converge,
there is no guarantee that it would converge to the globally optimal low-rank factors,
or that the product of the factors would give the optimal rank-d approximation of X.
Thus, another natural question is whether there are conditions on the rank of X
and the number of observed entries M under which the alternating minimization
approach is guaranteed to converge to the globally optimal rank-d approximation of
X, and hence perfectly complete X when it has rank d. According to Theorem 3.2,
the nuclear norm minimization approach in (3.28) is able to complete most rank-
d matrices from M 	 O.d N log.N/2/ entries. Thus, a natural conjecture is that
the alternating minimization approach should be able to complete a rank-d matrix
from a number of entries that depends on d, Npolylog.N/, and some ratio of
the singular values of X. However, while alternating minimization methods for
matrix completion have been used for many years, theoretical guarantees for the
convergence and optimality of such methods have remained elusive.

Nonetheless, recent progress in low-rank matrix factorization (Burer and Mon-
teiro 2005; Bach 2013; Haeffele et al. 2014) has shown that under certain conditions,
local minimizers for certain classes of matrix factorization problems are global
minimizers. Moreover, recent progress in low-rank matrix completion (Jain et al.
2012; Keshavan 2012; Hardt 2014; Jain and Netrapalli 2014) has shown that under
certain benign conditions, certain alternating minimization methods do converge to
the globally optimal solution with high probability when the matrix is of sufficiently
high dimension. While a detailed explanation of such results is far beyond the scope
of this book, we provide here a brief introduction with two purposes in mind. First,
the analytical conditions required for optimality provide good intuition as to when
we should expect low-rank matrix completion to work well in general. Second, some
of the proposed algorithms introduce some modifications to the above alternating
minimization methods, which may inspire readers to develop even better algorithms
in the future.

As before, we are interested in finding a rank-d factorization UY, with factors
U 2 RD�d and Y 2 Rd�N , that best approximates the data matrix X 2 RD�N given
the observed entries W ˇ X specified by the matrix W 2 f0; 1gD�N , i.e.,

min
U;Y
kW ˇ .X �UY/k2F : (3.44)

The alternating minimization algorithm for solving this problem (Algorithm 3.4)
uses all of the observed entries of X at each iteration in order to update the factors. In
contrast, the work of (Jain et al. 2012) proposes a modified alternating minimization
algorithm (see Algorithm 3.6) that uses only a partition of the observed entries at
each iteration, whence the name partition alternating minimization. Specifically, the
set of observed entries W is partitioned into 2KC1 randomly chosen nonoverlapping
and equally sized subsets, denoted by W0;W1; : : : ;W2K . Then the updates of
the original alternating minimization algorithm, Algorithm 3.4, are applied using

3.1 PCA with Robustness to Missing Entries 85

Algorithm 3.6 (Matrix Completion by Partition Alternating Minimization)

Input: Observed matrix W ˇ X and partition matrices W1; : : : ;W2K .
1: initialization
2: U0 top d left singular vectors of the matrix 1

p W0 ˇ X.

3: U0 Q, where QRD U0 �H 2�
p

d
p

N

.U0/.

4: end initialization
5: for k D 0; 1; : : : ;K � 1 do
6: YkC1 arg minY jjWkC1 ˇ .UkY � X/k2F .
7: UkC1 arg minU jjWKCkC1 ˇ .UYkC1 � X/k2F .
8: end for

Output: Matrix UKYK .

the observed entries specified by WkC1 to update Y and the observed entries
specified by WKCkC1 to update U, for each k D 0; : : : ;K � 1, instead of those
specified by W. The second main difference between Algorithm 3.6 and the original
alternating minimization algorithm, Algorithm 3.4, is the way in which the factor
U is initialized. While in Algorithm 3.4, U is typically initialized at random, in
Algorithm 3.6, the factor U is initialized using the observed entries. Specifically, let
p be the probability that an entry is observed, and let M D pDN be the expected
number of observed entries. Let U be the top d singular vectors of 1

p W0 ˇ X, and
� > 0 the incoherence parameter for X according to Definition 3.1. We clip entries

of U that have magnitude greater than 2�
p

dp
N

to be zero and let the initial U0 be the
orthonormalized version of such U obtained via QR decomposition.

In short, there are two major differences between Algorithm 3.6 and Algo-
rithm 3.4: the initialization based on the singular vectors of 1p W0ˇX and the update
in each iteration using only a subset of the observations. It is surprising that these
small modifications to the basic alternating minimization method can ensure that
the new procedure approximates the globally optimal solution as described by the
following theorem. A complete proof and explanation of this theorem is beyond the
scope of this book. We refer interested readers to (Jain et al. 2012).

Theorem 3.5 (Partition Alternating Minimization for Matrix Completion). Let X
be a D � N matrix of rank d, with N 	 D. Assume that X is �-incoherent with
respect to the set of sparse matrices according to Definition 3.1. Let M be the
expected number of observed entries, whose locations are sampled independently
and uniformly at random. If there exists a constant c > 0 such that

M 	 c �2

�1
�d

�4
d4:5N log.N/ log

dkXkF

"

�
; (3.45)

then with high probability, for K D C0 log.kXkF="/ with some constant C0 > 0, the
outputs of Algorithm 3.6 satisfy kX �UKYKkF
 ".

86 3 Robust Principal Component Analysis

In words, the alternating minimization procedure guarantees to recover X up to
precision " in O.log.1="// steps given that the number of observations is of order
O.d4:5N log.N/ log.d//. This result is in perfect agreement with our conjecture that
the sample complexity of alternating minimization for matrix completion should
depend on d, Npolylog.N/, and some ratio of the singular values of X. However,
by comparing this result with the one for the convex optimization approach, M 	
O.�2dN log.N/2/, we see that this comes at the cost of an increase of the sample
complexity as a function of d from linear to polynomial. This has motivated the
development of modified versions of Algorithm 3.6 that are guaranteed to recover
X up to precision " under either incomparable or weaker conditions. For example,
the method proposed in (Keshavan 2012) requires the expected number of observed
entries to satisfy (for some constant c)

M 	 c �

�1
�d

�8
dN log

N

"

�
; (3.46)

which is superior when the matrix has a small condition number, while the method
in (Hardt 2014) requires the expected number of observed entries to satisfy (for
some constant c)

M 	 c �

�1
�d

�2
d2

dC log
�N

"

��
N; (3.47)

which reduces the exponent of both the ratio of the singular values as well as the
subspace dimension.

Observe also that the results of (Jain et al. 2012; Hardt 2014) are of a slightly
different flavor from that of results for convex optimization-based methods, since
the minimum number of observed entries depends not only on the dimension of the
subspace d, but also on the condition number �1=�d, which could be arbitrarily large,
and the desired accuracy ". In particular, to achieve perfect completion (" D 0), we
would need to observe the whole matrix. To address this issue, the work of (Jain
and Netrapalli 2014) proposes a factorized version of the singular value projection
algorithm of (Jain et al. 2010), called stagewise singular value projection, which
is guaranteed to complete a rank-d matrix X exactly, provided that the expected
number of observed entries satisfies (for some constant c)

M 	 c �4d5N.log.N//3: (3.48)

Evidently, this result is worse than that for the nuclear norm minimization approach,
which has sample complexity O.�2dN log.N/2/. But this comes at the advantage of
improving the computational complexity from O.N3 log. 1

"
// for the nuclear norm

minimization approach to O.�4d7N log3.N/ log. 1
"
// for the stagewise singular value

projection.
In summary, there is currently great interest in trying to develop alternating

minimization algorithms for matrix completion with theoretical guarantees of

3.2 PCA with Robustness to Corrupted Entries 87

convergence to the optimal rank-d matrix. Such algorithms are computationally less
expensive that the nuclear minimization approach, but this comes at the cost of
tolerating a smaller number of missing entries. However, as of the writing of this
book, existing results do not directly apply to the basic alternating minimization
procedure given in Algorithm 3.4. We conjecture that this procedure should be able
to correctly complete a matrix under conditions similar to those presented in this
section. Having such a result would be important, because in practice, it may be
preferable to use Algorithm 3.4 because it is simpler and easier to implement.

Example 3.6 (Completing Face Images with Missing Pixels by Power Factor-
ization) In Example 3.3, we applied the convex optimization approach (Algo-
rithm 3.2) to complete face images in the extended Yale B data set with missing
pixels. In this example, we apply the PF method for incomplete PCA (Algo-
rithm 3.5) to the same images. Figure 3.3 shows the results for different values
of the subspace dimension d. We see that for a proper choice of d (in this case from
2 to 9), the PF method works rather well up to 70% of random missing entries.
However, PF fails completely for higher percentages of missing entries. This is
because PF can become numerically unstable when some of the matrices are not
invertible. Specifically, since there are only N D 64 face images, it is likely that
for some rows of the data matrix, the number of observed entries is less than d;
thus the matrix

PN
jD1 wijyjy

>
j in line 4 of Algorithm 3.5 becomes rank-deficient. We

also observed that as expected, PF is faster than the convex approach. Specifically,
in this example, PF took 1.48 seconds in MATLAB, while the convex optimization
approach took 10.15 seconds.

3.2 PCA with Robustness to Corrupted Entries

In the previous section, we considered the PCA problem in the case that some entries
of the data points are missing. In this section, we consider the PCA problem in the
case that some of the entries of the data points have been corrupted by gross errors,
known as intrasample outliers. The additional challenge is that we do not know
which entries have been corrupted. Thus, the problem is to simultaneously detect
which entries have been corrupted and replace them by their uncorrupted values. In
some literature, this problem is referred to as the robust PCA problem (De la Torre
and Black 2004; Candès et al. 2011).

Let us first recall the PCA problem (see Section 2.1.2) in which we are given N
data points X D fxj 2 RDgNjD1 drawn (approximately) from a d-dimensional affine
subspace S D fx D �C Uyg, where � 2 R

D is an arbitrary point in S, U 2 R
D�d

is a basis for S, and fyj 2 R
dgNjD1 are the principal components. In the robust PCA

problem, we assume that the ith entry xij of a data point xj is obtained by corrupting
the ith entry `ij of a point `j lying perfectly on the subspace S by an error eij, i.e.,

xij D `ij C eij; or xj D `j C ej; or X D LC E; (3.49)

88 3 Robust Principal Component Analysis

Fig. 3.3 Power factorization for recovering face images. We take frontal face images (size 96�84)
of subject 20 from the extended Yale B data set and randomly select a fraction of pixels as missing
entries. Each column corresponds to input or result under a different percentage of missing entries.
The first row is the input images, and other rows are the results obtained by power factorization
with different values of d used. Each image shows one typical example of the recovered 64 images.

3.2 PCA with Robustness to Corrupted Entries 89

where X;L;E 2 RD�N are matrices with entries xij, `ij, and eij, respectively. Such
errors can have a huge impact on the estimation of the subspace. Thus it is very
important to be able to detect the locations of those errors,

 D f.i; j/ W eij ¤ 0g; (3.50)

as well as correct the erroneous entries before applying PCA to the given data.
As discussed before, a key difference between the robust PCA problem and the

incomplete PCA problem is that we do not know the location of the corrupted
entries. This makes the robust PCA problem harder, since we need to simultaneously
detect and correct the errors. Nonetheless, when the number of corrupted entries is
a small enough fraction of the total number of entries, i.e., when j
j < � � DN for
some � < 1, we may still hope to be able to detect and correct such errors. In the
remainder of this section, we describe methods from robust statistics and convex
optimization for addressing this problem.

3.2.1 Robust PCA by Iteratively Reweighted Least Squares

One of the simplest algorithms for dealing with corrupted entries is the iteratively
reweighted least squares (IRLS) approach proposed in (De la Torre and Black 2004).
In this approach, a subspace is fit to the corrupted data points using standard PCA.
The corrupted entries are detected as those that have a large residual with respect to
the identified subspace. A new subspace is estimated with the detected corruptions
down-weighted. This process is then repeated until the estimated model stabilizes.

The first step is to apply standard PCA to the given data. Recall from Section
2.1.2 that when the data points fxj 2 R

DgNjD1 have no gross corruptions, an optimal
solution to PCA can be obtained as

O� D 1

N

NX
jD1

xj and Oyj D OU>.xj � �/; (3.51)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D 1

N

NX
jD1
.xj � O�/.xj � O�/>: (3.52)

When the data points are corrupted by gross errors, we may improve the
estimation of the subspace by recomputing the model parameters after down-
weighting samples that have large residuals. More specifically, let wij 2 Œ0; 1� be
a weight assigned to the ith entry of xj such that wij � 1 if xij is not corrupted,

90 3 Robust Principal Component Analysis

and wij � 0 otherwise. Then a new estimate of the subspace can be obtained by
minimizing the weighted sum of the least-squares errors between a point xj and its
projection �C Uyj onto the subspace S, i.e.,

DX
iD1

NX
jD1

wij.xij � �i � u>i yj/
2; (3.53)

where �i is the ith entry of �, u>i is the ith row of U, and yj is the vector of
coordinates of the point xj in the subspace S.

Notice that the above objective function is identical to the objective function
in (3.34), which we used for incomplete PCA. The only difference is that in
incomplete PCA, wij 2 f0; 1g denotes whether xij is observed or unobserved, while
here wij 2 Œ0; 1� denotes whether xij is corrupted or uncorrupted. Other than that, the
iterative procedure for computing �, U, and Y given W is the same as that outlined
in Algorithm 3.5.

Given �, U, and Y, the main question is how to update the weights. A simple
approach is to set the weights depending on the residual "ij D xij � �i � u>i yj. Our
expectation is that when the residual is small, xij is not corrupted, and so we should
set wij � 1. Conversely, when the residual is large, xij is corrupted, and so we should
set wij � 0. Maximum-likelihood-type estimators (M-Estimators) define the weights
to be

wij D �."ij/="
2
ij (3.54)

for some robust loss function �.�/. The objective function then becomes

DX
iD1

NX
jD1

�."ij/: (3.55)

Many loss functions �.�/ have been proposed in the statistics literature (Huber 1981;
Barnett and Lewis 1983). When �."/ D "2, all weights are equal to 1, and we obtain
the standard least-squares solution, which is not robust. Other robust loss functions
include the following:

1. L1 loss: �."/ D j"j;
2. Cauchy loss: �."/ D "20 log.1C "2="20/;
3. Huber loss (Huber 1981): �."/ D

(
"2 if j"j < "0;
2"0j"j � "20 otherwiseI

4. Geman–McClure loss (Geman and McClure 1987): �."/ D "2

"2C"20 ,

where "0 > 0 is a parameter. Following the work of (De la Torre and Black 2004),
we use the Geman–McClure loss scaled by "20, which gives

3.2 PCA with Robustness to Corrupted Entries 91

Algorithm 3.7 (Robust PCA by Iteratively Reweighted Least Squares)

Input: Data matrix X, dimension d, and parameter "0 > 0.

1: initialize Œ�;U; Y� D PCA.X/ using PCA from Chapter 2.
2: repeat
3: "ij xij � �i � u>

i yj.

4: wij "20
"2ijC"20

.

5: �i
PN

jD1 wij.xij�u>

i yj/PN
jD1 wij

.

6: ui

 NP

jD1

wijyjy
>

j

�
�1 NP

jD1

wij.xij � �i/yj.

7: U D

2
664

u>

1

:
:
:

u>

D

3
775

2
664

u>

1

:
:
:

u>

D

3
775R�1, where QR D

2
664

u>

1

:
:
:

u>

D

3
775.

8: Y D �
y1; : : : ; yN

�
where yj

 DP
iD1

wijuiu>

i

�
�1 DP

iD1

wij.xij � �i/ui.

9: until convergence of �1> C UY.

10: � �C 1
N UY1, Y Y.I � 1

N 11>/, L UY, and E X � L.
Output: �, U, Y, L and E.

wij D "20

"2ij C "20
: (3.56)

The overall algorithm for PCA with corruptions is summarized in Algorithm 3.7.
This algorithm initializes all the weights to wij D 1. This gives an initial estimate
for the subspace, which is the same as that given by PCA. Given this initial estimate
of the subspace, the weights wij are computed from the residuals as in (3.56). Given
these weights, one can reestimate the subspace using the steps of Algorithm 3.5. One
can then iterate between computing the weights given the subspace and computing
the subspace given the weights.

Example 3.7 (Face Shadow Removal by Iteratively Reweighted Least Squares)
As we have seen in Chapter 2, the set of images of a convex Lambertian
object obtained under different lighting conditions lies close to a nine-dimensional
linear subspace known as the harmonic plane (Basri and Jacobs 2003). However,
since faces are neither perfectly convex nor Lambertian, face images taken under
different illuminations often suffer from several nuances such as self-shadowing,
specularities, and saturations in brightness. Under the assumption that the images of
a person’s face are aligned, the above robust PCA algorithm offers a principled way
of removing the shadows and specularities, because such artifacts are concentrated
on small portions of the face images, i.e., they are sparse in the image domain.
In this example, we use the frontal face images of subject 20 under 64 different

92 3 Robust Principal Component Analysis

Fig. 3.4 Removing shadows and specularities from face images using IRLS for PCA with
corrupted data. We apply Algorithm 3.7 to 64 frontal face images of subject 20 from the extended
Yale B data set. Each image is of size 96� 84. (a) Four out of 64 representative input face images.
(b) Recovered images from the low-rank component L (first row) and sparse errors E (second row).

illumination conditions. Each image is down-sampled to size 96�84. We then apply
the IRLS method (Algorithm 3.7) with "0 D 1 and d D 4 to remove the shadows
and specularities in the face images. The results in Figure 3.4 show that the IRLS
method is able to do a reasonably good job of removing some of the shadows and
specularities around the nose and eyes area. However, the error image in the third
column shows that the recovered errors are not very sparse, and the method could
confuse valid image signal due to darkness with true errors (caused by shadows,
etc.)

3.2.2 Robust PCA by Convex Optimization

Although the IRLS scheme for robust PCA is very simple and efficient to imple-
ment, and widely used in practice, there is no immediate guarantee that the method
converges. Moreover, even if the method were to converge, there is no guarantee that
the solution to which it converges corresponds to the correct low-rank matrix. As we
have seen in the low-rank matrix completion problem, we should not even expect
the problem to have a meaningful solution unless proper conditions are imposed on
the low-rank matrix and the matrix of errors.

3.2 PCA with Robustness to Corrupted Entries 93

In this section, we will derive conditions under which the robust PCA problem
is well posed and admits an efficient solution. To this end, we will formulate
the robust PCA problem as a (nonconvex and nonsmooth) rank minimization
problem in which we seek to decompose the data matrix X as the sum of a low-
rank matrix L and a matrix of errors E. Similar to the matrix completion case,
we will study convex relaxations of the rank minimization problem and resort
to advanced tools from high-dimensional statistics to show that under certain
conditions, the convex relaxations can effectively and efficiently recover a low-rank
matrix with intrasample outliers as long as the outliers are sparse enough. Although
the mathematical theory that supports the correctness of these methods is far beyond
the scope of this book, we will introduce the key ideas and results of this approach
to PCA with intrasample outliers.

More specifically, we assume that the given data matrix X is generated as the sum
of two matrices

X D L0 C E0: (3.57)

The matrix L0 represents the ideal low-rank data matrix, while the matrix E0
represents the intrasample outliers. Since many entries of X are not corrupted
(otherwise, the problem would not be well posed), many entries of E0 should
be zero. As a consequence, we can pose the robust PCA problem as one of
decomposing a given matrix X as the sum of two matrices L C E, where L is of
low rank and E is sparse. This problem can be formulated as

min
L;E

rank.L/C �kEk0 s.t. X D LC E; (3.58)

where kEk0 is the number of nonzero entries in E, and � > 0 is a tradeoff parameter.

Robust PCA as a Well-Posed Problem
At first sight, it may seem that solving the problem in (3.58) is impossible. First of
all, we have an underdetermined system of DN linear equations in 2DN unknowns.
Among the many possible solutions, we are searching for a solution .L;E/ such that
L is of low rank and E is sparse. However, such a solution may not be unique. For
instance, if x11 D 1 and xij D 0 for all .i; j/ ¤ .1; 1/, then the matrix X is both of
rank 1 and sparse. Thus, if � D 1, we can choose .L;E/ D .X; 0/ or .L;E/ D .0;X/
as valid solutions. To avoid such an ambiguity, as suggested by the results for matrix
completion, the low-rank matrix L0 should be in some sense “incoherent” with the
sparse corruption matrix E0. That is, the low-rank matrix L0 itself should not be
sparse. To capture this, we will assume that L0 is an incoherent matrix according to
Definition 3.1. Second of all, as suggested also by results for matrix completion, if
we want to recover the low-rank matrix L0 correctly, the locations of the corrupted
entries should not fall into any conspicuous pattern. Therefore, as in the matrix
completion problem, we will assume that the locations of the corrupted entries are
distributed uniformly at random so that the chance that they form any conspicuous
pattern is very low.

94 3 Robust Principal Component Analysis

As we will see, under the above condition of incoherence and random corrup-
tions, the problem in (3.58) will become well posed for most matrices X. However,
to be able to state the precise conditions under which the solution to (3.58) coincides
with .L0;E0/, we first need to study the question of how to efficiently solve the
problem in (3.58).

Recovering a Low-Rank Matrix or a Sparse Vector by Convex Relaxation
Observe that even if the conditions above could guarantee that the problem in (3.58)
has a unique globally optimal solution, another challenge is that the cost function
to be minimized is nonconvex and nondifferentiable. In fact, it is well known that
the problem of recovering either a low-rank matrix C or a sparse signal c from
undersampled linear measurements B or b, i.e.,

min
C

rank.C/ s.t. P.C/ D B; or min
c
kck0 s.t. Ac D b; (3.59)

is in general NP-hard (Amaldi and Kann 1998).
As we have seen for the low-rank matrix completion problem, the difficulty of

solving the rank minimization on the left-hand side of (3.59) can be alleviated by
minimizing the convex envelope of the rank function, which is given by the matrix
nuclear norm kCk� and gives rise to the following optimization problem:

min
C
kCk� s.t. P.C/ D B: (3.60)

As it turns out, convex relaxation works equally well for finding the sparsest
solution to a highly underdetermined system of linear equations Ac D b, which
is the problem on the right-hand side of (3.59). This class of problems is known
in the literature as compressed or compressive sensing (Candès 2006). Since this
linear system is underdetermined, in general there could be many solutions c to the
equation Ac D b. This mimics the matrix completion problem, where the number
of given measurements is much less than the number of variables to be estimated
or recovered (all the entries of the matrix). Hence we want to know under what
conditions the sparsest solution to Ac D b is unique and can be found efficiently.

To this end, we briefly survey results from the compressive sensing literature
(see (Candès and Tao 2005; Candès 2008) and others). Without loss of generality,
let us assume that A is an m � n matrix with m � n whose columns have unit
norm. Let b D Ac0, where c0 is k-sparse, i.e., c0 has at most k nonzero entries. Our
goal is to recover c0 by solving the optimization problem on the right-hand side
of (3.59). Notice that if A has two identical columns, say columns 1 and 2, then
Qc0 D Œ1;�1; 0; : : : ; 0�> satisfies AQc0 D 0. Thus, if c0 is a sparse solution to Ac D b,
then so is c0 C Qc0. More generally, if A has very sparse vectors in its (right) null
space, then sparse solutions to Ac D b are less likely to be unique. Hence, to ensure
the uniqueness of the sparsest solution, we typically need the measurement matrix
A to be mutually incoherent, as defined next.

3.2 PCA with Robustness to Corrupted Entries 95

Definition 3.8 (Mutual Coherence). The mutual coherence of a matrix A 2 Rm�n

is defined as

�.A/ D max
i¤jD1;:::;n

ja>i ajj: (3.61)

A matrix is said to be mutually incoherent with parameter � if �.A/ < �.

This definition of incoherence is not to be confused with that in Definition 3.1.
Definition 3.8 tries to capture whether each column of A is incoherent with other
columns so that no sparse number of columns can be linearly independent, whence
the name mutual coherence. This notion is useful for finding a sparse solution to a set
of linear equations, as we will see in Theorem 3.10. On the other hand, Definition 3.1
tries to capture whether the matrix as a whole is incoherent with respect to sparse
missing entries or sparse corruptions, whence the name incoherence with respect
to sparse matrices. This notion of incoherence is useful for solving the matrix
completion problem, as we saw in Theorem 3.2, and will be useful for solving the
robust PCA problem, as we will see in Theorem 3.66.

Another property of a matrix that is typically used to characterize the conditions
under which it is possible to solve a linear system is the notion of restricted isometry,
as defined next.

Definition 3.9. Given an integer k, the restricted isometry constant of a matrix A
is the smallest number ık.A/ such that for all c with kck0
 k, we have

.1 � ık.A//kck22
 kAck22
 .1C ık.A//kck22: (3.62)

The remarkable results from compressive sensing have shown that if the mea-
surement matrix A is sufficiently incoherent or the restricted isometry constant is
small enough, then to find the correct sparsest solution to Ac D b, we can replace
the `0 norm in (3.59) by its convex envelope, the `1 norm, which gives rise to the
following optimization problem:

min
c
kck1 s.t. b D Ac: (3.63)

More precisely, we have the following result:

Theorem 3.10 (Sparse Recovery under Incoherence or Restricted Isometry). If the
matrix A is incoherent, i.e., if �.A/ < 1

2k�1 , or if it satisfies the restricted isometry

property (RIP) ı2k.A/ <
p
2�1, then the optimal solution c� to the `1-minimization

problem in (3.63) is the correct sparsest solution, i.e., c� D c0.

In other words, when the matrix A is incoherent enough, the sparsest solution to the
linear system Ac D b can be obtained by solving a convex `1-minimization problem
as opposed to an NP-hard `0-minimization problem.

96 3 Robust Principal Component Analysis

Robust PCA by Convex Relaxation
Inspired by the above convex relaxation techniques, for the robust PCA problem
in (3.58) we would expect that under certain conditions on L0 and E0, we can
decompose X as L0 C E0 by solving the following convex optimization problem:

min
L;E

kLk� C �kEk1 s.t. X D LC E; (3.64)

where kLk� DPi �i.L/ is the nuclear norm of L, i.e., the sum of its singular values,
and kEk1 D P

i;j jeijj is the `1 norm of E viewed as a vector. This convex program
is known as principal component pursuit (PCP).

The following theorem gives precise conditions on the rank of the matrix and
the percentage of outliers under which the optimal solution of the above convex
program is exactly .L0;E0/ with overwhelming probability.

Theorem 3.11 (Robust PCA by Principal Component Pursuit (Candès et al. 2011)).
Let X D L0 C E0. Assume that L0 D U†V> is �-incoherent with respect to the set
of sparse matrices according to Definition 3.1. Assume also that the support of E0
is uniformly distributed among all the sets of cardinality D � N. If

rank.L0/
 �d minfD;Ng
�2 log2

�
maxfD;Ng� and kE0k0
 �sND (3.65)

for some constant �d; �s > 0, then there is a constant c such that with probability
at least 1 � c maxfN;Dg�10, the solution .L�;E�/ to (3.64) with � D 1p

maxfN;Dg is
exact, i.e.,

L� D L0 and E� D E0: (3.66)

A complete proof and explanation for this theorem is beyond the scope of this
book; interested readers are referred to (Candès et al. 2011). But this does not
prevent us from understanding its implications and using it to develop practical
solutions for real problems. The theorem essentially says that as long as the low-rank
matrix is incoherent and its rank is bounded almost linearly from its dimension, the
PCP program can correctly recover the low-rank matrix even if a constant fraction
of its entries are corrupted. Other results show that under some additional benign
conditions, say the signs of the entries of E0 are random, the convex optimization
can correct an arbitrarily high percentage of errors if the matrix is sufficiently large
(Ganesh et al. 2010).

Alternating Direction Method of Multipliers for Principal Component Pursuit
Assuming that the conditions of Theorem 3.66 are satisfied, the next question is how
to find the global minimum of the convex optimization problem in (3.64). Although
in principle, many convex optimization solvers can be used, we introduce here an
algorithm based on the augmented Lagrange multiplier (ALM) method suggested
by (Candès et al. 2011; Lin et al. 2011).

3.2 PCA with Robustness to Corrupted Entries 97

The ALM method operates on the augmented Lagrangian

L .L;E; ƒ/ D kLk� C �kEk1 C hƒ;X � L � Ei C ˇ

2
kX � L � Ek2F: (3.67)

A generic Lagrange multiplier algorithm (Bertsekas 1999) would solve PCP
by repeatedly setting .Lk;Ek/ D arg minL;E L .L;E; ƒk/ and then updating the
Lagrange multiplier matrix byƒkC1 D ƒkCˇ.X � Lk �Ek/. This is also known as
the exact ALM method.

For our low-rank and sparse decomposition problem, we can avoid having to
solve a sequence of convex programs by recognizing that minL L .L;E; ƒ/ and
minE L .L;E; ƒ/ both have very simple and efficient solutions. In particular, it is
easy to show that

arg min
E

L .L;E; ƒ/ D S�ˇ�1 .X � LC ˇ�1ƒ/; (3.68)

where S	 .X/ is the soft-thresholding operator defined in (2.96) applied to each entry
x of the matrix X as S	 .x/ D sign.x/max.jxj � 	; 0/. Similarly, it is not difficult to
show that (see Exercise 2.16)

arg min
L

L .L;E; ƒ/ D Dˇ�1 .X � EC ˇ�1ƒ/; (3.69)

where D	 .X/ is the singular value thresholding operator defined in (2.95) as
D	 .X/ D US	 .†/V�, where U†V� is any singular value decomposition of X.

Thus, a more practical strategy is first to minimize L with respect to L (fixing E),
then minimize L with respect to E (fixing L), and then finally update the Lagrange
multiplier matrix ƒ based on the residual X � L � E, a strategy that is summarized
as Algorithm 3.8 below.

Algorithm 3.8 is a special case of a general class of algorithms known as
alternating direction method of multipliers (ADMM), described in Appendix A.
The convergence of these algorithms has been well studied and established (see
e.g., (Lions and Mercier 1979; Kontogiorgis and Meyer 1989) and the many
references therein, as well as discussion in (Lin et al. 2011; Yuan and Yang 2009)).
Algorithm 3.8 performs excellently on a wide range of problems: relatively small
numbers of iterations suffice to achieve good relative accuracy. The dominant cost
of each iteration is computing LkC1 by singular value thresholding. This requires us
to compute the singular vectors of X � Ek C ˇ�1�k whose corresponding singular
values exceed the threshold ˇ�1. Empirically, the number of such large singular
values is often bounded by rank.L0/, allowing the next iterate to be computed
efficiently by a partial SVD.6 The most important implementation details for this

6Further performance gains might be possible by replacing this partial SVD with an approximate
SVD, as suggested in (Goldfarb and Ma 2009) for nuclear norm minimization.

98 3 Robust Principal Component Analysis

Algorithm 3.8 (Principal Component Pursuit by ADMM (Lin et al. 2011))

1: initialize: E0 D ƒ0 D 0; ˇ > 0.
2: while not converged do
3: compute LkC1 D Dˇ�1 .X � Ek C ˇ�1ƒk/.
4: compute EkC1 D S�ˇ�1.X � LkC1 C ˇ�1ƒk/.
5: compute ƒkC1 D ƒk C ˇ.X � LkC1 � EkC1/.
6: end while
7: output: L;E.

algorithm are the choice of ˇ and the stopping criterion. In this work, we simply
choose ˇ D ND=4kXk1, as suggested in (Yuan and Yang 2009).

Some Extensions to PCP
In most practical applications, there is also small dense noise in the data. So a more
realistic model for robust PCA can be X D LCECZ, where Z is a Gaussian matrix
that models small Gaussian noise in the given data. In this case, we can no longer
expect to recover the exact solution to the low-rank matrix (which is impossible
even if there are no outliers). Nevertheless, one can show that the natural convex
extension

min
L;E

kLk� C �kEk1 s.t. kX � L � Ek22
 "2; (3.70)

where " is the known noise variance, gives a stable estimate to the low-rank and
sparse components L and E, subject to a small residual proportional to the noise
variance (Zhou et al. 2010b).

Another extension is to recover a low-rank matrix from both corrupted and
compressive measurements. In other words, we try to recover the low-rank and
sparse components .L;E/ of X D LCE from only some of its linear measurements:
PQ.X/, where PQ.�/ could be a general linear operator. The special case in which
the operator represents a subset of the entries has been covered in the original work
of principal component pursuit (Candès et al. 2011). It has been shown that under
similar conditions as in Theorem 3.66, one can correctly recover the low-rank and
sparse components by the following optimization:

min
L;E

kLk� C �kEk1 s.t. P
.X/ D P
.LC E/; (3.71)

where as in matrix completion, P
.�/ represents projection onto the observed
entries.

The case of a more general linear operator PQ.�/ for projecting onto an arbitrary
subspace Q has also been studied in (Wright et al. 2013) and is known as
compressive principal component pursuit (CPCP). It has been shown that under
fairly broad conditions (so that Q is in some sense “incoherent” to L and E), the

3.3 PCA with Robustness to Outliers 99

low-rank and sparse components can be correctly recovered by the following convex
program:

min
L;E

kLk� C �kEk1 s.t. PQ.X/ D PQ.LC E/: (3.72)

We leave as an exercise for the reader (see Exercise 3.8) to derive an algorithm for
solving the above problems using ideas from Lagrangian methods and alternating
direction minimization methods (please refer to Appendix A).

Example 3.12 (Face Shadow Removal by PCP) As we have seen in Example 3.7,
robust PCA can be used to remove shadows and specularities in face images that are
typically sparse in the image domain. In this example, we apply the PCP method
to the same face images in Example 3.7, which correspond to frontal face images
of subject 20 under 64 different illuminations (see Figure 3.5). As before, each
image is down-sampled to size 96 � 84. We solve the PCP problem using both
the exact ALM method and the inexact method via ADMM (Algorithm 3.8). We
set the parameter � according to Theorem 3.66. The exact and the inexact ALM
methods give almost identical results, but the latter is much faster than the former:
2.68 seconds for inexact ALM versus 42.0 seconds for exact ALM in MATLAB
on a typical desktop computer. As a comparison, the IRLS method in Example 3.7
takes 2.68 seconds on average. Comparing with the results in Figure 3.4 obtained
by the IRLS method, the results given by PCP are qualitatively better in the sense
that the recovered errors are indeed sparse and correspond better to true corruptions
in the face images due to shadows and specularities. In particular, we can appreciate
a significant improvement in the third image. This technique is potentially useful
for preprocessing training images in face recognition systems to remove such
deviations from the linear model. We leave the implementation of the algorithms
as a programming exercise to the reader (see Exercise 3.10).

3.3 PCA with Robustness to Outliers

Another issue that we often encounter in practice is that a small portion of the data
points does not fit the subspace as well as the rest of the data. Such points are called
outliers or outlying samples, and their presence can lead to a completely wrong
estimate of the underlying subspace. Therefore, it is very important to develop
methods for detecting and eliminating outliers from the given data.

The true nature of outliers can be very elusive. In fact, there is really no
unanimous definition for what an outlier is.7 Outliers could be atypical samples that
have an unusually large influence on the estimated model parameters. Outliers could

7For a more thorough exposition of outliers in statistics, we recommend the books of (Barnett and
Lewis 1983; Huber 1981).

100 3 Robust Principal Component Analysis

Fig. 3.5 Removing shadows and specularities from face images by principal component pursuit.
We apply Algorithm 3.7 to 64 frontal face images of subject 20 from the extended Yale B database.
Each image is of size 96�84. (a) Four out of 64 representative input face images. (b)-(c) Recovered
images from the low-rank component L (first row) and sparse errors E (second row).

also be perfectly valid samples from the same distribution as the rest of the data that
happen to be small-probability instances. Alternatively, outliers could be samples
drawn from a different model, and therefore they will likely not be consistent with
the model derived from the rest of the data. In principle, however, there is no way to
tell which is the case for a particular “outlying” sample point.

In this section, we will discuss two families of methods for dealing with outliers
in the context of PCA. The first family will include classical methods based on the

3.3 PCA with Robustness to Outliers 101

robust statistics literature described in Appendix B. The second family will include
modern convex optimization techniques similar to those we have described in the
previous two sections for incomplete PCA and robust PCA.

3.3.1 Outlier Detection by Robust Statistics

We begin by discussing three classical approaches from robust statistics for dealing
with outliers in the context of PCA. The first method, called an influence-based
method, detects outliers as points that have a large influence in the estimated
subspace. The second method detects outliers as points whose probability of
belonging to the subspace is very low or whose distance to the subspace is very high.
Interestingly, this latter method leads to an IRLS approach to detecting outliers. The
third method detects outliers by random sample consensus techniques.

Influence-Based Outlier Detection
This approach relies on the assumption that an outlier is an atypical sample that
has an unusually large influence on the estimated subspace. This leads to an outlier
detection scheme whereby the influence of a sample is determined by comparing
the subspace OS D . O�; OU/ estimated with all the samples, and the subspace OS.�j/ D
. O�.�j/; OU.�j// estimated without the jth sample. For instance, one may use a sample

influence function based on some distance between OS and OS.�j/ such as

dist. OS; OS.�j// D †
�
span. OU/; span. OU.�j//

�
or (3.73)

dist. OS; OS.�j// D k.I � OU OU>/�.�j/k C k.I � OU.�j/ OU>.�j//�k: (3.74)

The first quantity is the largest subspace angle (see Exercise 2.8) between the linear
subspace spanned by OU and the linear subspace spanned by OU.�j/. Such a distance
measures the influence based on comparing only the linear part of the subspaces,
which is appropriate only when the subspaces are linear but may fail otherwise. On
the other hand, the second quantity is based on the orthogonal distance from point
� in OS to the subspace OS.�j/, plus the orthogonal distance from point �.�j/ in OS.�j/

to the subspace OS. This distance is more appropriate for comparing the affine part
of the subspaces and can be combined with the distance between the linear parts to
form a distance between affine subspaces. Given any such distance, the larger the
value of the distance, the larger the influence of xj on the estimate, and the more
likely it is that xj is an outlier. Thus, we may detect sample xj as an outlier if its
influence is above some threshold 	 > 0, i.e.,

dist.OS; OS.�j// 	 	: (3.75)

102 3 Robust Principal Component Analysis

However, this method does not come without extra cost. We need to compute
the principal components (and hence perform SVD) N C 1 times: once with all
the samples together and another N times with one sample eliminated. There have
been many studies that aim to give a formula that can accurately approximate the
sample influence without performing SVD N C 1 times. Such a formula is called
a theoretical influence function (see Appendix B). For a more detailed discussion
about influence-based outlier rejection for PCA, we refer the interested reader to
(Jolliffe 2002).

Probability-Based Outlier Detection: Multivariate Trimming, M-Estimators, and
Iteratively Weighted Recursive Least Squares
In this approach, a subspace is fit to all sample points, including potential outliers.
Outliers are then detected as the points that correspond to small-probability events or
that have large fitting errors with respect to the identified subspace. A new subspace
is then estimated with the detected outliers removed or down-weighted. This process
is then repeated until the estimated subspace stabilizes.

More specifically, recall that in PCA, the goal is to find a low-dimensional
subspace that best fits a given set of data points X :D fxj 2 RDgNjD1 by minimizing
the least-squares error

NX
jD1
kxj � � �Uyjk2; (3.76)

between each point xj and its projection onto the subspace �CUyj, where � 2 RD

is any point in the subspace, U 2 RD�d is a basis for the subspace, and yj 2 Rd

are the coordinates of the point in the subspace. If there are no outliers, an optimal
solution to PCA can be obtained as described in Section 2.1.2, i.e.,

O�N D
1

N

NX
jD1

xj and Oyj D OU>.xj � O�N/; (3.77)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D 1

N

NX
jD1
.xj � O�N/.xj � O�N/

>: (3.78)

If we adopt the guideline that outliers are samples that do not fit the model well
or have a small probability with respect to the estimated model, then the outliers are
exactly those samples that have a relatively large residual

kxj � O�N � OU Oyjk2 or "2j D .x>j � �N/
>†�1N .x>j � �N/; j D 1; 2; : : : ;N:

(3.79)

3.3 PCA with Robustness to Outliers 103

8In fact, it can be shown that (Ferguson 1961), if the outliers have a Gaussian distribution of
a different covariance matrix a†, then "i is a sufficient statistic for the test that maximizes the
probability of correct decision about the outlier (in the class of tests that are invariant under linear
transformations). Interested readers may want to find out how this distance is equivalent (or related)
to the sample influence O†.i/N � O†N or the approximate sample influence given in (B.91).

The first error is simply the distance to the subspace, while the second error is the
Mahalanobis distance,8 which is obtained when we approximate the probability that
a sample xj comes from this model by a multivariate Gaussian

p.xjI �N ; O†N/ D 1

.2�/D=2 det. O†N/1=2
exp

 � 1

2
.x>j � �N/>†�1

N .x>
j � �N//:

(3.80)
In principle, we could use p.xj; �N ; O†N/ or either residual "j to determine whether
xj is an outlier. However, the above estimate of the subspace is obtained using all
the samples, including the outliers themselves. Therefore, the estimated subspace
could be completely wrong, and hence the outliers could be incorrectly detected.
In order to improve the estimate of the subspace, one can recompute the model
parameters after discarding or down-weighting samples that have large residuals.
More specifically, let wj 2 Œ0; 1� be a weight assigned to the jth point such that
wj 	 1 if xj is an inlier and wj 	 0 if xj is an outlier. Then, similarly to (2.23), a new
estimate of the subspace can be obtained by minimizing a reweighted least-squares
error:

min
�;U;Y

NX

jD1

wjkxj � � � Uyjk2 s.t. U>U D Id and
NX

jD1

wjyj D 0: (3.81)

It can be shown (see Exercise 3.12) that the optimal solution to this problem is of
the form

O�N D
PN

jD1 wjxj
PN

jD1 wj

and Oyj D OU>.xj � O�N/ 8j s.t. wj > 0; (3.82)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D
PN

jD1 wj.xj � O�N/.xj � O�N/>
PN

jD1 wj

: (3.83)

As a consequence, under the reweighted least-squares criterion, finding a robust
solution to PCA reduces to finding a robust estimate of the sample mean and the
sample covariance of the data by properly setting the weights.

In what follows, we discuss two main approaches for estimating the weights.

104 3 Robust Principal Component Analysis

1. Multivariate Trimming (MVT) is a popular robust method for estimating the
sample mean and covariance of a set of points. This method assumes discrete
weights

wj D
(
1 if xj is an inlier;

0 if xj is an outlier;
(3.84)

and chooses the outliers as a certain percentage of the samples (say 10%) that
have relatively large residual. This can be done by simply sorting the residuals
f"jg from the lowest to the highest and then choosing as outliers the desired
percentage of samples with the highest residuals. Once the outliers are trimmed
out, one can use the remaining samples to reestimate the subspace as in (3.82)–
(3.83). Each time we have a new estimate of the subspace, we can recalculate
the residual of every sample and reselect samples that need to be trimmed. We
can repeat the above process until a stable estimate of the subspace is obtained.
When the percentage of outliers is somewhat known, it usually takes only a
few iterations for MTV to converge, and the resulting estimate is in general
more robust. However, if the percentage is wrongfully specified, MVT may not
converge, or it may converge to a wrong estimate of the subspace. In general,
the “breakdown point” of MTV, i.e., the proportion of outliers that it can tolerate
before giving a completely wrong estimate, depends only on the chosen trimming
percentage.

2. Maximum-Likelihood-Type Estimators (M-Estimators) is another popular robust
method for estimating the sample mean and covariance of a set of points. As we
saw in the case of PCA with corrupted entries, this method assumes continuous
weights

wj D �."j/="
2
j (3.85)

for some robust loss function �.�/. The objective function then becomes

NX
jD1

�."j/: (3.86)

Many loss functions �.�/ have been proposed in the statistics literature (Huber
1981; Barnett and Lewis 1983). When �."/ D "2, all weights are equal to 1, and
we obtain the standard least-squares solution, which is not robust. Other robust
loss functions include

(a) L1 loss: �."/ D j"j;
(b) Cauchy loss: �."/ D "20 log.1C "2="20/;
(c) Huber loss (Huber 1981): �."/ D

(
"2 if j"j < "0;
2"0j"j � "20 otherwiseI

(d) Geman–McClure loss (Geman and McClure 1987): �."/ D "2

"2C"20 ,

3.3 PCA with Robustness to Outliers 105

Algorithm 3.9 (Iteratively Reweighted Least Squares for PCA with Outliers)

Input: Data matrix X, dimension d, and parameter "0 > 0.

1: initialize Œ�;U; Y� D PCA.X/ using PCA from Chapter 2.
2: repeat

3: "j kxj � ��Uyjk2; wj "20
"2j C"20

.

4: �
PN

jD1 wj.xj�Uyj/PN
jD1 wj

; †
PN

jD1 wj.xj� O�N /.xj� O�N /
>

PN
jD1 wj

.

5: U top d eigenvectors of †.
6: Y U>.X � �1>/.
7: until convergence of �1> C UY.

8: L UY and E X � L� �1>.
Output: �, U, Y, L and E.

where "0 > 0 is a parameter. Given any choice for the weights, one way of
minimizing (3.86) with respect to the subspace parameters is to initialize all the
weights to wj D 1, j D 1; : : : ;N. This will give an initial estimate for the subspace
that is the same as that given by PCA. Given this initial estimate of the subspace, one
may compute the weights as wj D �."j/="

2
j using any of the aforementioned robust

cost functions. Given these weights, one can reestimate the subspace from (3.82)–
(3.83). One can then iterate between computing the weights given the subspace and
computing the subspace given the weights. This iterative process is called iteratively
reweighted least squares (IRLS), as in the case of PCA with corrupted entries, and is
summarized in Algorithm 3.9 for the Geman-McClure loss function. An alternative
method for minimizing (3.86) is simply to do gradient descent. This method may be
preferable for loss functions � that are differentiable, e.g., the Geman–McClure loss
function. One drawback of M-estimators is that their breakdown point is inversely
proportional to the dimension of the space. Thus, M-estimators become much less
robust when the dimension is high.

Consensus-Based Outlier Detection
This approach assumes that the outliers are not drawn from the same subspace as
the rest of the data. Hence it makes sense to try to avoid the outliers when we infer
the subspace in the first place. However, without knowing which points are outliers
beforehand, how can we avoid them?

One idea is to fit a subspace to a subset of the data instead of to all the data points.
This is possible when the number of data points required to fit a subspace (k D d for
linear subspace or k D d C 1 for affine subspaces) is much smaller than the size N
of the given data set. Of course, we should not expect that a randomly chosen subset
will have no outliers and always lead to a good estimate of the subspace. Thus, we
should try many different subsets:

X1;X2; : : : ;Xm � X ; (3.87)

where each subset Xi is independently drawn and contains k� N samples.

106 3 Robust Principal Component Analysis

If the number of subsets is large enough, one of the trials should contain few
or no outliers and hence give a “good” estimate of the subspace. Indeed, if p is
the fraction of valid samples (the “inliers”), one can show that (see Exercise B.8)
with probability q D 1 � .1 � pk/m, one of the above subsets will contain only
valid samples. In other words, if q is the probability that one of the selected subsets
contains only valid samples, we need to randomly sample at least

m 	 log.1 � q/

log.1 � pk/
(3.88)

subsets of k samples.
Now, given multiple subspaces estimated from multiple subsets, the next question

is how to select a “good” subspace among them. Let OSi be the subspace fit to the set
of points in Xi. If the set Xi is contaminated by outliers, then OSi should be a “bad”
estimate of the true subspace S, and hence few points in X should be well fit by OSi.
Conversely, if the set Xi contains only inliers, then OSi should be a “good” estimate
of the true subspace S, and many points should be well fit by OSi. Thus, to determine
whether OSi is a good estimate of S, we need some criterion to determine when a point
is well fit by OSi and another criterion to determine when the number of points that
are well fit by OSi is sufficiently large. We declare that the subset Xi gives a “good”
estimate OSi of the subspace S if

#
˚
x 2 X W dist.x; OSi/
 	

� 	 Nmin; (3.89)

where # is the cardinality of the set, 	 > 0 is the threshold on the distance
from any point x 2 X to the estimated subspace OS used to determine whether
a point is an inlier to OS, and Nmin is a threshold on the minimum number of
inliers needed to declare that the estimated subspace is “good.” If the number
of inliers to the subspace estimated from a given subset of the data points is
too small, then the process is repeated for another sample of points until a good
subspace is found or the maximum number of iterations has been exhausted. Upon
termination, PCA is reapplied to all inliers in order to improve the robustness of the
estimated subspace to noise. This approach to PCA with outliers is called random
sample consensus (RANSAC) (Fischler and Bolles 1981) and is summarized in
Algorithm 3.10.

One of the main advantages of RANSAC is that in theory, it can tolerate more
than 50% outliers; hence it is extremely popular for practitioners who handle grossly
contaminated data sets. Nevertheless, the computational cost of this scheme is
proportional to the number of candidate subsets needed to ensure that the probability
of choosing an outlier-free subset is large enough. This number typically grows
exponentially with the subspace dimension and the number of samples. Hence,
RANSAC is used mostly in situations in which the subspace dimension is low;
in most of the cases we have seen, the subspace dimension does not exceed 10.
Another challenge is that in order to design a successful RANSAC algorithm, one

3.3 PCA with Robustness to Outliers 107

Algorithm 3.10 (Random Sample Consensus for PCA with Outliers)

Input: Data points X , subspace dimension d, maximum number of iterations k, threshold on
fitting error 	 , threshold on minimum number of inliers Nmin.

1: initialization i D 0.
2: while i < k do
3: Xi dC 1 randomly chosen data points from X .
4: OSi PCA.Xi/.
5: Xinliers

˚
x 2 X W dist.x; OSi/ � 	

�
.

6: if jXinliersj � Nmin then
7: i k.
8: else
9: i iC 1.

10: end if
11: end while
Output: Estimated subspace OS PCA.Xinliers/ and set of inliers Xinliers.

needs to choose a few key parameters carefully, such as the size of every subset (or
the subspace dimension), the distance dist and the parameter 	 to determine whether
a point is an inlier or outlier, and the threshold Nmin on the minimum number of
inliers to the estimated subspace.

There is a vast amount of literature on RANSAC-type algorithms, especially in
computer vision (Steward 1999). For more details on RANSAC and other related
random sampling techniques, the reader is referred to Appendix B.

3.3.2 Outlier Detection by Convex Optimization

So far, we have presented classical techniques from the robust statistics literature
and shown how they can be used for dealing with outliers in the context of PCA. The
techniques presented so far are generally simple and intuitive. However, they do not
provide clear conditions under which they can guarantee the correctness or global
optimality of their solutions. To address this issue, in what follows we will present
alternative approaches based on convex optimization for dealing with outliers in
the context of PCA. As we will see, when the dimension of the subspace is small
enough and the percentage of outliers is small enough, it is possible to perfectly
recover which data points are inliers and which ones are outliers.

Outlier Detection by `1 Minimization
Let X D fxjgNjD1 be a collection of points in RD. Assume that Nin
 N points are
drawn from a linear subspace S � RD of dimension d � D and that the remaining
Nout D N � Nin data points do not belong to S. We thus have N D Nin C Nout

data points, where Nin points are inliers and Nout points are outliers. Assume also
that there are d linearly independent data points among the inliers. Then every point

108 3 Robust Principal Component Analysis

x 2 S can be written as a linear combination of the inliers. In fact, every point x 2 S
can be written as a linear combination of at most d inliers. More generally, we can
write x 2 S as a linear combination of all N data points as

x D
NX

jD1
xjcj D Xc where X D �x1; x2; : : : ; xN

� 2 R
D�N ; (3.90)

and set cj D 0 whenever xj is an outlier. Hence, there exists a solution c of x D
Xc with at most d nonzero entries, which correspond to any d inliers that span S.
Therefore, an optimal solution c� to the following optimization problem

min
c
kck0 s.t. x D Xc (3.91)

should be d-sparse, i.e., it should have at most d nonzero entries, i.e., kc�k0
 d.
Assume now that there are D linearly independent data points among both the

inliers and outliers. Assume also that x does not belong to the subspace S. Then we
can still express x as a linear combination of all data points as x D Xc. However,
when x is an arbitrary point in R

D, we no longer expect c to be d-sparse. In fact, in
general, we expect at least D entries of c to be nonzero, i.e., kck0 	 D. Of course,
in some rare circumstances it could be the case that x is a linear combination of two
outliers in the data, in which case we can choose c such that kck0 D 2. However,
such cases occur with extremely low probability.

The above discussion suggests a simple procedure to determine whether a point
x is an inlier: we try to express x as a linear combination of the data points in
X with the sparsest possible coefficients c, as in (3.91). If the optimal solution
c� is d-sparse, then x is an inlier; otherwise, x is an outlier. In practice, however,
we face a couple of challenges that prevent us from implementing this simple
strategy.

1. The optimization problem in (3.91) is NP-hard (Amaldi and Kann 1998).
Intuitively this is because there are numerous choices of d out of N nonzero
entries in c, and for each such choice, we need to check whether a linear system
has a solution or not.

2. While in general we expect that kck0 � d when x is an outlier, this may not
always be the case. Thus, we may be interested in characterizing whether for
some distribution of the outliers we can guarantee that kck0 � d with high
probability. Moreover, since the subspace dimension d may not be known a
priori, we may want to declare x an outlier if kck0 > �D for some � < 1.
This may require some mechanism for determining �.

3. In practice, we are not trying to determine whether a generic data point x is an
inlier or an outlier, but rather whether one of the given data points, say xj, is an
inlier or an outlier. Trivially, xj has a 1-sparse representation with respect to X,
i.e., xjDxj. Thus, we need a mechanism to prevent this trivial solution.

3.3 PCA with Robustness to Outliers 109

To address the first issue, as we have learned from the brief survey of compressive
sensing in Section 3.2.2, an effective technique to obtain a sparse solution is to
replace the `0-minimization problem in (3.91) by the `1-minimization problem

min
c
kck1 s.t. x D Xc: (3.92)

In particular, it follows from Theorem 3.10 that if X D �
x1; x2; : : : ; xN

� 2 RD�N

is an arbitrary matrix whose columns are of unit norm, i.e., kxjk2 D 1 for all j D
1; : : : ;N and c0 2 RN is a d-sparse vector, then given x D Xc0, we can recover c0
by solving the optimization problem in (3.92) when the matrix X is incoherent or
satisfies the RIP. In other words, the sparsest solution to the linear system Xc D x
can be obtained by solving the convex `1-minimization problem in (3.92) as opposed
to the NP-hard `0-minimization problem in (3.91).

The fundamental question is whether the conditions under which the solution
to (3.92) coincides with that of (3.91) are satisfied by a data matrix X with Nin

data points in a linear subspace of dimension d and Nout points not in the subspace.
Unfortunately, this is not the case: the matrix of inliers Xin cannot be incoherent
according to Definition 3.8, because it is not of full column rank. For instance, if
rank.Xin/ D 1, then X has maximum coherence �.Xin/ D 1.

Does this mean that we cannot use `1-minimization? As it turns out, we can
still use `1 minimization to recover a sparse representation of a point x 2 S. The
reason is that the conditions in Theorem 3.10 aim to guarantee that we can recover
a unique sparse solution, while here the solution for c is not always unique, and thus
we cannot hope for the `1-minimization problem to give us a unique sparse solution
to begin with. Indeed, if x 2 S and Nin > d, then there may be many ways in which
we may express a point in S as a linear combination of d inliers. Therefore, our
goal is not to find a unique representation of x in terms of d inliers, but rather to
find any representation of x in terms of any d inliers. As a consequence, we do not
need the matrix of inliers to be incoherent. All we need is for the set of inliers to be
incoherent with the set of outliers. More precisely, if Iin is the set of inliers and Iout

is the set of outliers, all we need is that

max
j2Iin

max
k2Iout

jx>j xkj < 1

2d � 1: (3.93)

This is in contrast to the classical condition on the mutual coherence of X in
Definition 3.8, which is given by maxj¤k jx>j xkj < 1

2d�1 .
To address the second issue, we assume from now on that all N points are of

unit norm, i.e., they lie in the D � 1 dimensional sphere SD�1. We assume also that
the outliers are drawn uniformly at random from SD�1. Moreover, since we will
be solving an `1 minimization problem, we may want to use the `1 norm of c to
determine whether x is an inlier or outlier. More specifically, when x is an inlier,
we expect kck0 D d; hence we expect kck1 D

p
d. Likewise, when x is an outlier,

110 3 Robust Principal Component Analysis

we expect kck0 D D, and then we expect kck1 D
p

D. Therefore, we may want to
declare x an outlier if kck1 > �

p
D for some �.

The third issue is relatively easy to address. When we find the sparse solution
for the point xj with respect to X, we need to enforce only that the jth entry of c
is zero, so that xj is not represented by itself. This leads to the following convex
optimization problem:

min
c
kck1 s.t. xj D Xc and cj D 0; (3.94)

which can be solved easily using existing `1-minimization techniques.
The following result, which follows as a direct corollary of (Soltanolkotabi

and Candès 2013, Theorem 1.3) (see also Theorem 8.27), shows how the optimal
solution to (3.94) can be used to distinguish inliers from outliers.

Theorem 3.13. Let S be a randomly chosen subspace of RD of dimension d.
Suppose there are Nin D �d C 1 inlier points chosen independently and uniformly
at random in S \ SD�1, where � > 1. Suppose there are Nout points chosen
independently and uniformly at random in SD�1. Let xj 2 SD�1 be the jth data point
and let c 2 RN be the solution to the `1-minimization problem in (3.94). Declare xj

to be an outlier if kck1 > �.�/
p

D, where � D N�1
D , N D Nin C Nout, and

�.�/ D
8
<
:

q
2
�

1p
�
; 1
 �
 eq

2
�e

1p
log �

; � 	 e:
(3.95)

If the number of outliers is such that

Nout <
1

D
exp.c1

p
D/� Nin (3.96)

for some constant c1 > 0, then the method above detects all the outliers with
probability at least 1 � Nout exp.�c2D= log.Nin C Nout// for some constant c2 > 0.
Moreover, if the number of outliers is such that

Nout < D�c3
D
d � Nin (3.97)

for some constant c3 > 0, then the method above does not detect any point in
S as an outlier with probability at least 1 � Nout exp.�c4D= log.Nin C Nout// �
Nin exp.�p�d/ for some constant c4 > 0.

Outlier Detection by `2;1 Minimization
An alternative approach to outlier detection in PCA is based on the observation that
the data matrix X can be seen as a low-rank matrix with sparsely corrupted columns
that correspond to the outliers. More specifically, the matrix X can be decomposed as

X D L0 C E0: (3.98)

3.3 PCA with Robustness to Outliers 111

The jth column of L0 is equal to xj if it is an inlier to the subspace and is equal to
0 otherwise. Therefore, L0 is of rank d and spans the same subspace as the inliers.
Conversely, the jth column of E0 is equal to xj if it is an outlier to the subspace and
is equal to 0 otherwise. Therefore, the nonzero columns of E0 contain the outliers.
If we assume that the fraction � of outliers is small, then the matrix E0 is column
sparse.

Obviously, such a decomposition is ill posed (at least ambiguous) if the matrix X
or L0 is also column sparse. Therefore, in order for the decomposition to be unique,
the matrix L0 cannot be column sparse on the .1 � �/N columns on which it can be
nonzero. To ensure that this is the case, we need to introduce a column incoherence
condition:

Definition 3.14 (Matrix Incoherence with Respect to Column Sparse Matrices).
A rank-d matrix L 2 RD�N with compact SVD L D U†V> and .1 � �/N
nonzero columns is said to be �-incoherent with respect to the set of column sparse
matrices if

max
j
kvjk2
 �d

.1 � �/N ; (3.99)

where vj is the jth row of V.

Following the discussion after Definition 3.1, notice that since V 2 RN�d is
orthonormal, the largest absolute value of the entries of V is equal to 1, which
happens when a column of V is 1-sparse. On the other hand, if all columns of V
are so dense that all their .1 � �/N nonzero entries are equal to each other up
to sign, then each entry is equal to ˙1=p.1 � �/N, and the norm of each row isp

d=.1� �/N. Therefore, when � < 1, the condition above controls the level of
sparsity of V . As argued before, from a probabilistic perspective, this condition is
rather mild in the sense that it holds for almost all generic matrices: a random (say
Gaussian) matrix satisfies this condition with high probability when the dimension
of the matrix is large enough. As we will see, incoherence with respect to column
sparse matrices is a very useful technical condition to ensure that outlier detection
is a meaningful problem.

Now, even though the incoherence condition may ensure that the above low-rank
plus column-sparse decomposition problem is well posed, there is no guarantee that
one can find the correct decomposition efficiently. As before, we may formulate the
problem of recovering L0 and E0 as a rank minimization problem:

min
L;E

rank.L/C �kEk2;0 s.t. X D LC E; (3.100)

where kEk2;0 DPN
jD1 1.kejk2 ¤ 0/ is the number of nonzero columns in the matrix

of outliers E D Œe1; : : : ; eN �. However, since this problem is NP-hard, we need to
resort to a proper relaxation. For this purpose, we can use a norm that promotes
columnwise sparsity, such as the `2;1 norm of E:

112 3 Robust Principal Component Analysis

kEk2;1 D
NX

jD1
kejk2; (3.101)

which is the sum of the `2 norms of all the columns of E. Notice that if we collect
all the `2 norms of the columns of E as a vector e D Œke1k2; : : : ; keNk2�>, then the
above norm is essentially the `1 norm of the vector, kek1; hence it measures how
sparse the columns are. Notice also that kEk2;0 D kek0.

Similar to the PCP optimization problem in (3.64) for PCA with robustness to
intrasample outliers, we can use the convex optimization

min
L;E

kLk� C �kEk2;1 s.t. X D LC E (3.102)

to decompose sparse column outliers in the data matrix X from the low-rank
component. This convex program is called outlier pursuit.

One can rigorously show that under certain benign conditions, the outlier pursuit
program can correctly identify the set of sparse (column) outliers.

Theorem 3.15 (Robust PCA by Outlier Pursuit (Xu et al. 2010)). Let X D L0 C
E0 be a given D � N matrix. Assume that L0 is �-incoherent with respect to the
set of column-sparse matrices according to Definition 3.14. Assume also that E0 is
supported on at most �N columns. If

rank.L0/
 c1.1 � �/
��

; (3.103)

where c1 D 9
121

, then the solution .L�;E�/ to the outlier pursuit program (3.102)
with � set to be 3

7
p
�N

recovers the low-dimensional column space of L0 exactly and
identifies exactly the indices of columns corresponding to outliers not lying in the
column space.

If the data also contain small noise X D L0 C E0 C Z, where Z is a random
Gaussian matrix that models small noise in the data, then we can modify the outlier
pursuit program as

min
L;E

kLk� C �kEk2;1 s.t. kX � L � Ek22
 "2; (3.104)

where " is the noise variance. It can be shown that under conditions similar to those
in the above theorem, this program gives a stable estimate of the correct solution.
For more details, we refer the reader to (Xu et al. 2010).

Using optimization techniques introduced in Appendix A, one can easily develop
ALM- or ADMM-based algorithms to solve the above convex optimization prob-
lems. We leave that to the reader as an exercise (see Exercise 3.8).

3.4 Bibliographic Notes 113

Fig. 3.6 Example images taken from the Caltech 101 data set. These images are then resized to
96� 84 and used as outliers for the experiments below.

Example 3.16 (Outlier Detection among Face Images) Sometimes a face image
data set can be contaminated by images of irrelevant objects, like many imperfectly
sorted data sets in the Internet. In this case, it would be desirable to detect and
remove such irrelevant outliers from the data set. In this example, we illustrate how
to do this with the outlier detection methods introduced in this section.

As in previous experiments, we take as inliers the frontal face images of subject
20 under 64 different illumination conditions in the extended Yale B data set. For
outlier images, we randomly select some pictures from the Caltech 101 data set
(Fei-Fei et al. 2004) and merge them into the face image data set. Some typical
examples of such pictures are shown in Figure 3.6. All the inlier and outlier images
are normalized to size 96 � 84.

We use the outlier pursuit method, which is based on solving (3.102), to
decompose the data matrix into a low-rank part L and a sparse-column term E.
In this experiment, we set the parameter of the method according to Theorem 3.15
with a multiplication factor of 3, i.e., we set � D 3 � �0 where �0 D 3

7
p
�N

.
Ideally, columns of E with large magnitude correspond to outliers. To show how

the method performs, we apply it to data sets with increasing percentages of outliers.
We compute for each column of E its `2 norm to measure whether it is an outlier.
True outliers are marked in red. The results for varying percentages of outliers are
shown in Figure 3.7. As we can see from the results, up to nearly 50% outliers, the
outliers have significantly larger norm than the inliers.

3.4 Bibliographic Notes

PCA with Robustness to Missing Entries
The problem of completing a low-rank matrix with missing entries has a very long
and rich history. Starting with the original work of (Wiberg 1976), one can refer to
(Johnson 1990) for a survey on some of the early developments on this topic.

Since then, this problem has drawn tremendous interest, particularly in computer
vision and pattern recognition, where researchers needed to complete data with
missing entries due to occlusions. For instance, many algorithms were proposed

114 3 Robust Principal Component Analysis

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000
Inliers
Outliers

5% outliers

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000
Inliers
Outliers

10% outliers

0 10 20 30 40 50 60 70
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Inliers
Outliers

20% outliers

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000
Inliers
Outliers

35% outliers

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000
Inliers
Outliers

50% outliers

0 10 20 30 40 50 60 70
0

2000

4000

6000

8000

10000

12000
Inliers
Outliers

70% outliers

(a) (b) (c)

(d) (e) (f)

Fig. 3.7 Outlier detection among face images. In each experiment, we use 64 images, in which
a certain percentage of images are selected randomly from the Caltech 101 data set as outliers,
and the rest are taken randomly from the 64 illuminations of frontal face images of subject 20 in
extended Yale B. We plot the column `2 norm of the matrix E given by the convex optimization
method, with ground truth outliers marked as red.

to solve matrix completion problems in the late 1990s and early 2000s, including
(Shum et al. 1995; Jacobs 2001; H.Aanaes et al. 2002; Brandt 2002) for the purpose
of reconstructing a 3D scene from a collection of images. The power factorization
method featured in this chapter was proposed in (Hartley and Schaffalitzky 2003)
for the same purpose, while a variant of the EM algorithm we described appeared
in (Gruber and Weiss 2004). Also, the work of (Ke and Kanade 2005) proposed the
use of the `1 norm for matrix completion and recovery, which extends the original
Wiberg method(Wiberg 1976) from the `2 to the `1 norm. A survey and evaluation
of state-of-the-art methods for solving the matrix completion problem can be found
in (Buchanan and Fitzgibbon 2005).

However, all of the work described so far has focused primarily on developing
algorithms for completing a matrix, without any guarantees of correctly recovering
the original low-rank matrix. The seminal work of (Recht et al. 2010; Candès and
Recht 2009) has shown that under broad conditions, one can correctly recover
a low-rank matrix with a significant percentage of missing entries using convex
optimization (i.e., minimizing the nuclear norm of the matrix). This has inspired a
host of work on developing ever stronger conditions and more efficient algorithms
for low-rank matrix completion (Cai et al. 2008; Candès and Tao 2010; Keshavan
et al. 2010b; Gross 2011; Keshavan et al. 2010a; Zhou et al. 2010a), including work
that extends to the case of noisy data (Candès and Plan 2010).

3.5 Exercises 115

PCA with Robustness to Corrupted Entries and Outliers
Regarding the robust recovery of a low-rank matrix, it was first proposed by (Wright
et al. 2009a; Chandrasekaran et al. 2009) to use the convex relaxation (3.64) to solve
the robust PCA problem. This formulation was soon followed by a rather strong
theoretical justification (Candès et al. 2011) and efficient algorithms (Lin et al.
2011). This has made convex relaxation a very successful and popular technique
for robust low-rank matrix recovery or outlier rejection, leading to extensions to
many different settings and more scalable convex optimization algorithms.

Revival of the Factorization Approach
Due to the advent of large data sets and large-scale problems, there has been
a revival of factorization (alternating minimization) approaches with theoretical
guarantees of correctness for low-rank matrix completion and recovery, including
the very interesting work of (Jain et al. 2012; Keshavan 2012; Hardt 2014; Jain and
Netrapalli 2014). The more recent work of (Udell et al. 2015) further generalizes
the factorization framework to situations in which the factors are allowed to have
additional structures; and (Haeffele and Vidal 2015) combines factorization with
certain nonlinear mappings typically used in a deep learning framework.

3.5 Exercises

Exercise 3.1 (Data Completion with the Subspace Known). Show that the solu-
tion to the problem (3.5) is given by the formula in (3.6).

Exercise 3.2. For the PPCA model with missing data discussed in Section 3.1.2,
show that the conditional distribution of xU given xO is Gaussian with the following
mean vector and covariance matrix:

�UjO D �U C†UO†
�1
OO.xO � �O/ and †UjO D †UU �†UO†

�1
OO†OU :

Exercise 3.3 (Orthogonal Power Iteration Method). Let A 2 RN�N be a
symmetric positive semidefinite matrix with eigenvectors fuigNiD1 and eigenvalues
f�igNiD1 sorted in descending order. Assume that �1 > �2 and let u0 be an arbitrary
vector not orthogonal to u1, i.e., u>1 u0 ¤ 0. Consider the sequence of vectors

ukC1 D Auk

kAukk : (3.105)

1. Show that there exist f˛igNiD1 with ˛1 ¤ 0 such that

uk D Aku0 D
NX

iD1
˛i�

k
i ui: (3.106)

116 3 Robust Principal Component Analysis

2. Use this expression to show that uk converges to ˛1j˛1ju1 with rate �2
�1

. That is, show
that there exists a constant C > 0 such that for all k 	 0,

���uk � ˛1

j˛1ju1
���
 C

�2
�1

�k
: (3.107)

3. Assume that �d > �dC1 and let U0 2 R
N�d be an arbitrary matrix whose column

space is not orthogonal to the subspace fuigdiD1 spanned by the top d eigenvectors
of A. Consider the sequence of matrices

UkC1 D AUk.Rk/�1; (3.108)

where QkRk D AUk is the QR decomposition of AUk. Show that Uk converges to
a matrix U whose columns are the top d eigenvectors of A. Moreover, show that
the rate of convergence is �dC1

�d
.

Exercise 3.4 (Convergence of Orthogonal Power Iteration). Prove Theo-
rem 3.4.

Exercise 3.5 (Properties of the `1 Norm). Let X be a matrix.

1. Show that the `1 norm f .X/ D kXk1 DPij jXijj of X is a convex function of X.
2. Show that the subgradient of the `1 norm is given by

@kXk1 D sign.X/CW; (3.109)

where W is a matrix such that maxij jWijj
 1.
3. Show that the optimal solution of

min
A

1

2
kX � Ak2F C 	kAk1 (3.110)

is given by A D S	 .X/, where S	 .x/ D sign.x/max.jxj � 	; 0/ is the soft-
thresholding operator applied entrywise to X.

Exercise 3.6 (Properties of the Weighted Nuclear Norm). Consider the follow-
ing optimization problem:

min
A

1

2
kX � Ak2F C 	�.A/; (3.111)

where �.A/ D Pr
iD1 wi�i.A/ is the weighted sum of singular values of A with

wi 	 0. Show that

1. �.A/ is convex when wi is monotonically decreasing. Please derive the optimal
solution under this condition.

2. Is �.A/ still convex if wi is an increasing sequence of weights? Why?

3.5 Exercises 117

Exercise 3.7 (Properties of the `2;1 Norm).

1. Let x be a vector. Show that the subgradient of the `2 norm is given by

@kxk2 D
(

x
kxk2 if x ¤ 0;

w W kwk2
 1g if x D 0:
(3.112)

2. Let X be a matrix. Show that the `2;1 norm f .X/ D kXk2;1 D P
j kX�;jk2 DP

j

qP
i X2ij of X is a convex function of X.

3. Show that the subgradient of the `2;1 norm is given by

.@kXk2;1/ij D
(

Xij

kX�;jk2 X�;j ¤ 0

Wij W kW�;jk2
 1 X�;j D 0:
(3.113)

4. Show that the optimal solution of

min
A

1

2
kX � Ak2F C 	kAk2;1 (3.114)

is given by A D XS	 .diag.x//diag.x/�1, where x is a vector whose jth entry is
given by xj D kX�;jk2, and diag.x/ is a diagonal matrix with the entries of x along
its diagonal. By convention, if xj D 0, then the jth entry of diag.x/�1 is also zero.

Exercise 3.8. Let X D L0CE0 be a matrix formed as the sum of a low-rank matrix
L0 and a matrix of corruptions E0, where the corruptions can be either outlying
entries (gross errors) or outlying data points (outliers).

1. (PCA with robustness to outliers). Assuming that the matrix X is fully observed
and that the matrix E0 is a matrix of outliers, propose an algorithm for solving
the outlier pursuit problem (3.102):

min
L;E

kLk� C �kEk2;1 s.t. X D LC E: (3.115)

2. (PCA with robustness to missing entries and gross errors). Assuming that
you observe only a fraction of the entries of X as indicated by a set
 and that
the matrix E0 is a matrix of gross errors, propose an algorithm for solving the
following optimization problem:

min
L;E

kLk� C �kEk1 s.t. P
.X/ D P
.LC E/: (3.116)

Exercise 3.9 (Implementation of Power Factorization (PF), Expectation Maxi-
mization (EM), and Low-Rank Matrix Completion (LRMC)). Implement the
functions below using as few lines of MATLAB code as possible. Compare the

118 3 Robust Principal Component Analysis

performance of these methods: which method works better and which regime is best
(e.g., depending on the percentage of missing entries, subspace dimension d=D)?

Function [mu,U,Y]=pf(X,d,W)
Parameters
X D � N data matrix.
d Number of principal components.
W D � N binary matrix denoting known (1) or missing (0) entries

Returned values
mu Mean of the data.
U Orthonormal basis for the subspace.
Y Low-dimensional representation (or principal components).

Description
Finds the d principal components of a set of points from the data X
with incomplete entries as specified in W using the power factorization
algorithm.

Function [mu,U,sigma]=emppca(X,d,W)
Parameters

X D � N data matrix.
d Number of principal components.
W D � N binary matrix denoting known (1) or missing (0) entries

Returned values
mu Mean of the data.
U Basis for the subspace (does not need to be orthonormal).

sigma Standard deviation of the noise.
Description
Finds the parameters of the PPCA model � and † D UU> C �2I from
the data X with incomplete entries as specified in W using the expectation
maximization algorithm.

Function A=lrmc(X,tau,W)
Parameters
X D � N data matrix.
	 Parameter of the augmented Lagrangian.
W D � N binary matrix denoting known (1) or missing (0) entries
Returned values
A Low-rank completion of the matrix X.
Description
Finds the low-rank approximation of a matrix X with incomplete entries as
specified in W using the low-rank matrix completion algorithm based on
the augmented Lagrangian method.

3.5 Exercises 119

Exercise 3.10 (Implementation of IRLS and ADMM Methods for Robust
PCA). Implement Algorithms 3.7 and 3.8 for the functions below using as few
lines of MATLAB code as possible. Compare the performance of these methods:
which method works better and which regime is best (e.g., depending on percentage
of corrupted entries (or corrupted data points), subspace dimension d=D)?

Function [mu,U,Y]=rpca_irls(X,d,sigma)
Parameters
X D � N data matrix.
d Number of principal components.

Returned values
mu Mean of the data.
U Basis for the subspace.

Description
Finds the parameters of the PCA model � and U and the low-dimensional
representation using reweighted least squares with weights w.e/ D �2

e2C�2 .

Function [L,E]=rpca_admm(X,tau,’method’)
Parameters

X D � N data matrix.
	 Parameter of the augmented Lagrangian.

method ’L1’ for gross errors or ’L21’ for outliers
Returned values

L Low-rank completion of the matrix X.
E Matrix of errors.

Description
Solves the optimization problem min

L;E
kLk� C �kEk` subject to X D LC E

where ` D `1 or ` D `2;1 using the ADMM algorithm.

Exercise 3.11 (Robust Face Recognition with Varying Illumination). In this
exercise, you will use a small subset of the Yale B data set9 that contains photos of
ten individuals under various illumination conditions. Specifically, you will use only
images from the first three individuals under ten different illumination conditions.
Divide these images into two sets: Training Set (images 1–5 from individuals 1
to 3) and Test Set (images 6–10 from individuals 1–3). Notice also that there are
five nonface images (accessible as images 1–5 from individual 4). We will refer to
these as the Outlier Set. Download the file YaleB-Dataset.zip. This file contains the
images along with the MATLAB function loadimage.m. Decompress the file and
type help loadimage at the MATLAB prompt to see how to use this function.
The function operates as follows.

9http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.

http://www.vision.jhu.edu/teaching/learning/data/YaleB-Dataset.zip
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

120 3 Robust Principal Component Analysis

Function img=loadimage(individual,condition)
Parameters
individual Number of the individual.
condition Number of the image for that individual.

Returned values
img The pixel image loaded from the database.

Description
Read and resize an image from the data set. The database (directory images)
must be in the same directory as this file.

1. Face completion. Remove uniformly at random 0%, 10%, 20%, 30%, and 40%
of the entries of all images of individual 1. Apply the low-rank matrix completion
(LRMC) algorithm in Exercise 3.9 to these images to compute the mean face and
the eigenfaces as well as to fill in the missing entries. Note that LRMC does
not compute the mean face, so you will need to modify the algorithm slightly.
Plot the mean face and the top three eigenfaces and compare them to what you
obtained with PCA in Chapter 2. Plot also the completed faces and comment on
the quality of completion as a function of the percentage of missing entries by
visually comparing the original images (before removing the missing entries) to
the completed ones. Plot also the error (Frobenius norm) between the original
images and the completed ones as a function of the percentage of missing entries
and comment on your results. Repeat for individuals 2 and 3.

2. Face recognition with missing entries. Remove uniformly at random 0%,
10%, 20%, 30%, and 40% of the entries of all images in the Training Set and
Test Set. Apply the low-rank matrix completion (LRMC) algorithm that you
implemented in part (a) to the images in the Training Set. Plot the projected
training images y 2 Rd for d D 2 and d D 3 using different colors for the
different classes. Do faces of different individuals naturally cluster in different
regions of the low-dimensional space? Classify the faces in the Test Set using
1-nearest-neighbor. That is, label an image x as corresponding to individual i if
its projected image y is closest to a projected image yj of individual i. Notice that
you will need to develop new code to project an image with missing entries x
onto the face subspace you already estimated from the Training Set, which you
can do as described in Section 3.1 of this book. Report the percentage of correctly
classified face images for d D 1; : : : ; 10 and the percentage of missing entries
f0; 10; 20; 30; 40g%.

3. Face correction. Remove uniformly at random 0%, 10%, 20%, 30%, and 40%
of the entries of all images of individual 1 and replace them by arbitrary
values chosen uniformly at random from Œ0; 255�. Apply the PCP algorithm,
Algorithm 3.8, for corrupted entries that you implemented in Exercise 3.10 to
these images to compute the mean face and the eigenfaces as well as correct the
corrupted entries. Note that RPCA does not compute the mean face, so you will

3.5 Exercises 121

need to modify the algorithm accordingly. Plot the mean face and the top three
eigenfaces and compare them to what you obtained with PCA from Chapter 2.
Plot also the corrected faces and comment on the quality of correction as a
function of the percentage of corrupted entries by visually comparing the original
images (before removing the missing entries) to the completed ones. Plot also the
error (Frobenius norm) between the original images and the corrected ones as a
function of the percentage of corrupted entries and comment on your results.
Repeat for individuals 2 and 3.

4. Face recognition with corrupted entries. Remove uniformly at random 0%,
10%, 20%, 30%, and 40% of the entries of all images of individual 1 and replace
them by arbitrary values chosen uniformly at random from Œ0; 255�. Apply the
RPCA algorithm for corrupted entries that you implemented in part (a) to the
images in the Training Set. Plot the projected training images y 2 Rd for d D 2

or d D 3 using different colors for the different classes. Do faces of different
individuals naturally cluster in different regions of the low-dimensional space?
Classify the faces in the Test Set using 1-nearest-neighbor. That is, label an image
x as corresponding to individual i if its projected image y is closest to a projected
image yj of individual i. Notice that you will need to develop new code to project
an image with corrupted entries x onto the face subspace you already estimated
from the Training Set. Report the percentage of correctly classified face images
for d D 1; : : : ; 10 and the percentage of missing entries f0; 10; 20; 30; 40g%.

5. Outlier detection. Augment the images of individual 1 with those from an
Outlier Set. Apply the RPCA algorithm for data corrupted by outliers that you
implemented in Exercise 3.10 to these images to compute the mean face and the
eigenfaces as well as detect the outliers. Note that RPCA does not compute the
mean face, so you will need to modify your code accordingly. Plot the mean face
and the top three eigenfaces and compare them to what you obtained with PCA.
Report the percentage of correctly detected outliers.

6. Face recognition with corrupted entries. Apply the RPCA algorithm for data
corrupted by outliers that you implemented in part (e) to the images in Training
Set [Outlier Set. Plot the projected training images y 2 Rd for d D 2 or d D 3
using different colors for the different classes. Do faces of different individuals
naturally cluster in different regions of the low-dimensional space? Classify the
faces in the Test Set using 1-nearest-neighbor. That is, label an image x as
corresponding to individual i if its projected image y is closest to a projected
image yj of individual i. Report the percentage of correctly detected outliers and
the percentage of correctly classified face images for d D 1; : : : ; 10 and compare
your results to those using PCA in Chapter 2.

Exercise 3.12 Show that the optimal solution to the PCA problem with robustness
to outliers

min
�;U;Y

NX
jD1

wjkxj �� �Uyjk2 s.t. U>U D Id and
NX

jD1
wjyj D 0; (3.117)

122 3 Robust Principal Component Analysis

where wj 2 Œ0; 1� is large when point xj is an inlier and small otherwise, is given by

O�N D
PN

jD1 wjxjPN
jD1 wj

and Oyj D OU>.xj � O�N/ 8j s.t. wj > 0; (3.118)

where OU is a D � d matrix whose columns are the top d eigenvectors of

O†N D
PN

jD1 wj.xj � O�N/.xj � O�N/
>

PN
jD1 wj

: (3.119)

Chapter 4
Nonlinear and Nonparametric Extensions

One geometry cannot be more true than another; it can only be more convenient.

—Henri Poincaré

In the previous chapters, we studied the problem of fitting a low-dimensional
linear or affine subspace to a collection of points. In practical applications, however,
a linear or affine subspace may not be able to capture nonlinear structures in the
data. For instance, consider the set of all images of a face obtained by rotating it
about its main axis of symmetry. While all such images live in a high-dimensional
space whose dimension is the number of pixels, there is only one degree of freedom
in the data, namely the angle of rotation. In fact, the space of all such images is a
one-dimensional circle embedded in a high-dimensional space, whose structure is
not well captured by a one-dimensional line. More generally, a collection of face
images observed from different viewpoints is not well approximated by a single
linear or affine subspace, as illustrated in the following example.

Example 4.1 (PCA for Embedding Face Images under Varying Pose). To
visualize the limitations of PCA on face images with pose variations, we apply PCA
to a subset of the images in the extended Yale B data set. This data set consists of
face images from 28 human subjects under 9 poses and 64 illumination conditions.
Figures 4.1(a)–4.1(i) show the face images for subject 20 for one illumination
condition and each of the nine poses, and Figure 4.1(j) shows an illustration of the
geometric relationships among these nine poses. In this example, we apply PCA to
the images of subject 20 from poses 5, 6, 7, and 8, and all 64 illumination conditions;
thus our data set consists of N D 256 points. The size of each image is 192 � 168;
thus the dimension of the data is D D 32;256. Figure 4.1(k) shows the mean face,
and Figures 4.1(l)–4.1(m) show the first two eigenfaces computed by PCA. Visually,
all three images are rather blurry due to the misalignment caused by pose variations.

In Figure 4.2, we represent the two principal components of each face image as a
point in R2. The points are painted with four different colors corresponding to each

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_4

123

124 4 Nonlinear and Nonparametric Extensions

Fig. 4.1 Applying PCA to face images under varying pose. (a)-(i) Sample images from nine
different poses, with pose 0 representing the frontal faces that we have used in all previous
experiments in the preceding two chapters. (j) Illustration of the different poses in the extended Yale
B data set, with pose 0 representing the frontal faces that we have used in all previous experiments
in the preceding two chapters, and poses 1 to 8 representing nonfrontal poses relative to pose 0.
(k), (l), and (m) are, respectively, the mean face and the first two eigenfaces obtained by applying
PCA to face images under varying pose.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Pose 5
Pose 6
Pose 7
Pose 8

Fig. 4.2 Two-dimensional embedding obtained by applying PCA to a subset of the extended Yale
B data set consisting of face images of subject 20 under 4 poses and 64 illumination conditions.
Points of the same color represent images associated with the same pose but different illumination.
Some images are shown next to some of the points.

4 Nonlinear and Nonparametric Extensions 125

one of the four poses. Images associated with some of the points are also shown
in the figure. Similar to the results of previous experiments of PCA on face images
in Chapter 2, we observe that the first two principal components mainly capture
variations in illumination of the face images. Specifically, points on the left are face
images lit from the left, points on the right are images lit from the right, points on
the top are images with mainly frontal illuminations, while points on the bottom
are images taken with extremely low illumination. Notice also that the variability in
poses is not captured at all by the first two principal components, and images from
different poses are all mixed together. This is in sharp contrast to the methods to be
studied in this chapter, as we will see.

When a single low-dimensional subspace fails to describe data that have obvious
nonlinear structures, as in Example 4.1, we need to go beyond linear models and
consider a broader class of nonlinear models. In this chapter, we consider the
problem of fitting a low-dimensional manifold to a collection of points. Specifically,
let X D fj2 RDgNjD1 be a set of N points drawn from a d-dimensional manifold M
embedded in RD, where d < D (see e.g., Figure 4.3). The goal is to find a set
of N points Y D fyj 2 RdgNjD1 whose geometry resembles that of X . To address
this problem, in Section 4.1 we will present an extension of PCA, called nonlinear
PCA, which is based on embedding the data into a high-dimensional space via a
nonlinear mapping and then fitting a linear or affine space to the embedded data. As
we will see, under certain conditions it is possible to compute the low-dimensional
embedding Y without explicitly computing the embedded data via the so-called
kernel trick. This will lead to a method called kernel PCA. In Section 4.2, we will
present other extensions of PCA, generically called manifold learning, which aim
to approximate the local geometry of the manifold and build a low-dimensional

−4 −2 0
2

4 −4
−2

0
2

4−20

0

20

Fig. 4.3 A set of points drawn from the two-dimensional surface in R
3, x3 D x21 � x22. The goal is

to find a two-dimensional embedding of this manifold.

126 4 Nonlinear and Nonparametric Extensions

nonparametric embedding of the data directly from these local approximations.
Such extensions are useful for applications in which we are interested not so much in
a parametric model of the manifold as in the low-dimensional points Y themselves.
Finally, in Section 4.3, we show that manifold learning methods can also be applied
to data drawn from one manifold with multiple connected components. In this case,
the low-dimensional embedding Y can be used to cluster the data into multiple
groups. Data sets that cannot be modeled by a single subspace or manifold and are
instead clustered into multiple subspaces will be studied in Part II.

4.1 Nonlinear and Kernel PCA

In this section, we present a nonlinear extension of PCA called nonlinear PCA
(NLPCA). The key idea behind NLPCA is that while the given data may not lie in
a linear or affine subspace of RD, there exists a nonlinear embedding � W RD ! H
into a higher-dimensional space H such that the embedded data lie (approximately)
in a linear or affine subspace of H. Therefore, instead of applying PCA to the given
data, we apply it to the embedded data. In practice, however, the dimension of H
may be too high to be able to compute the nonlinear principal components from
the eigenvectors of the embedded covariance matrix. To address this issue, we also
present a method called kernel PCA (KPCA). This method computes the nonlinear
principal components from the eigenvectors of the so-called kernel matrix, which
can be computed directly from the given data.

4.1.1 Nonlinear Principal Component Analysis (NLPCA)

As discussed before, the main idea behind NLPCA is that we may be able to find an
embedding of the data into a high-dimensional space such that the structure of the
embedded data becomes (approximately) linear. To see why this may be possible,
consider a set of points .x1; x2/ 2 R2 lying in a conic of the form

c1x
2
1 C c2x1x2 C c3x

2
2 C c4 D 0: (4.1)

Notice that if we define the map � W R2 ! R3 as

.z1; z2; z3/ D �.x1; x2/ D .x21;
p
2x1x2; x

2
2/; (4.2)

then the conic in R2 transforms into the following affine subspace in R3:

c1z1 C c2p
2

z2 C c3z3 C c4 D 0: (4.3)

4.1 Nonlinear and Kernel PCA 127

−0.5 0 0.5 1
−1

−0.5

0

0.5

1

x2
1 + x2

2 − 1 = 0

0 0.2 0.4 0.6 0.8 −0.5

0
0.5

0

0.5

1

z1 + z3 − 1 = 0(a) (b)

Fig. 4.4 A circle in R
2 is embedded into a plane in R

3 by the mapping in (4.2).

Therefore, instead of learning a nonlinear manifold in R2, we can simply learn an
affine manifold in R3. This example is illustrated in Figure 4.4.

More generally, we seek a nonlinear transformation (usually an embedding)

�.�/ W RD ! R
M; (4.4)

x 7! �.x/; (4.5)

such that the structure of the embedded data f�.xj/gNjD1 becomes approximately
linear. In machine learning,�.x/ 2 RM is called the feature of the data point x 2 RD,
and the space RM is called the feature space.

Let N� D 1
N

PN
jD1 �.xj/ be the sample mean in the feature space and define the

mean-subtracted (centered) embedded data matrix as

ˆ
:D Œ�.x1/ � N�; �.x2/ � N�; : : : ; �.xN/ � N�� 2 R

M�N : (4.6)

It follows from the results in Chapter 2 that the principal components in the feature
space can be obtained from the eigenvectors of the sample covariance matrix1

†�.x/
:D 1

N

NX
jD1
.�.xj/ � N�/.�.xj/� N�/> D 1

N
ˆˆ> 2 R

M�M : (4.7)

Specifically, let ui 2 RM, i D 1; : : : ;M, be the M eigenvectors of†�.x/, i.e.,

†�.x/ui D �iui; i D 1; 2; : : : ;M: (4.8)

1In principle, we should use the notation O†�.x/ to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use †�.x/. The
same goes for the eigenvectors and the principal components.

128 4 Nonlinear and Nonparametric Extensions

Then the d nonlinear principal components of every data point x are given by

yi
:D u>i .�.x/ � N�/ 2 R; i D 1; 2; : : : ; d: (4.9)

Unfortunately, the map �.�/ is generally not known beforehand, and searching
for the map that makes the embedded data approximately linear is a difficult task. In
such cases, the use of nonlinear PCA becomes limited. However, in some practical
applications, good candidates for the map �.�/ can be found from the nature of
the problem. In such cases, the map, together with PCA, can be very effective in
extracting the overall geometric structure of the data.

Example 4.2 (Veronese Map for an Arrangement of Subspaces). As we will
see later in this book, if the data points belong to a union of multiple subspaces,
then a natural choice of the transformation �.�/ is the Veronese map (also known as
the polynomial embedding)

�n.�/ W x 7! �n.x/; (4.10)

.x1; : : : ; xD/ 7! .xn
1; x

n�1
1 x2; : : : ; x

n
D/; (4.11)

where the monomials are ordered in degree-lexicographic order. Under such a
mapping, the multiple low-dimensional subspaces are mapped into a single subspace
in the feature space, which can then be identified via PCA. We will discuss this
embedding in detail in Chapter 5.

4.1.2 NLPCA in a High-dimensional Feature Space

A potential difficulty associated with NLPCA is that the dimension M of the feature
space can be very high. Thus, computing the principal components in the feature
space may become computationally prohibitive. For instance, if we use a Veronese
map of degree n, the dimension of the feature space is M D �nCD�1

n

�
, which grows

exponentially fast. When M exceeds N, the eigenvalue decomposition of ˆˆ> 2
RM�M becomes more costly than that of ˆ>ˆ 2 RN�N , although the two matrices
have the same eigenvalues.

This motivates us to examine whether the computation of PCA in the feature
space can be reduced to a computation with the lower-dimensional matrixˆ>ˆ. The
answer is actually yes. The key is to notice that despite the dimension of the feature
space, every eigenvector u 2 RM of ˆˆ> associated with a nonzero eigenvalue is
always in the span of the matrix ˆ.2 That is,

ˆˆ>u D �u ” u D ˆ.��1ˆ>u/ 2 range.ˆ/: (4.12)

2The remaining M � N eigenvectors of ˆˆ> are associated with the eigenvalue zero.

4.1 Nonlinear and Kernel PCA 129

Thus, if we let w
:D ��1ˆ>u 2 RN , we have kwk2 D ��2u>ˆˆ>u D ��1.

Moreover, since ˆ>ˆw D ��1ˆ>ˆˆ>u D ˆ>u D �w, the vector w is an
eigenvector ofˆ>ˆ with the same eigenvalue �. Once such a w has been computed
from ˆ>ˆ, we can recover the corresponding u in the feature space as

u D ˆw; (4.13)

and compute the d nonlinear principal components of x under the map �.�/ as

yi
:D u>i .�.x/� N�/ D w>i ˆ>.�.x/ � N�/ 2 R; i D 1; : : : ; d; (4.14)

where wi 2 RN is the ith leading eigenvector of ˆ>ˆ 2 RN�N .

4.1.3 Kernel PCA (KPCA)

A very interesting property of the above NLPCA method is that the computation
of the nonlinear principal components involves only inner products of the features.
More specifically, in order to compute the nonlinear principal components yi, we
simply need to compute the entries of the matrixˆ>ˆ and the entries of the vectors
ˆ>�.x/ and ˆ> N� D 1

N

PN
jD1 ˆ>�.xj/. In what follows, we show that all of these

quantities can be obtained from inner products of the form �.x/>�.y/.
Before proceeding further, we will first give some definitions.

Definition 4.3. The space of all square integrable functions is defined as

L2.RD/ D ff W RD ! R such that
Z

f .x/2dx <1g: (4.15)

Definition 4.4. A function � W RD � RD ! R is symmetric if for all x; y 2 RD,
we have �.x; y/ D �.y; x/. A symmetric function � is positive semidefinite if for all
f 2 L2.RD/, we have

“

RD�RD

f .x/�.x; y/f .y/ dxdy 	 0: (4.16)

Definition 4.5. Let � W RD ! RM be an embedding function. The kernel function
� W RD � RD ! R of two vectors x; y 2 RD is defined to be the inner product of
their features

�.x; y/
:D �.x/>�.y/ 2 R: (4.17)

130 4 Nonlinear and Nonparametric Extensions

One can show that � is a symmetric positive semidefinite function in x and y (see
Exercise 4.1). Let us also define the centered kernel3 as

Q�.x; y/ :D .�.x/� N�/>.�.y/� N�/ 2 R; (4.18)

where N� D 1
N

PN
jD1 �.xj/ is the mean feature. We may compute Q� from � as

Q�.x; y/ D �.x; y/� 1
N

NX
jD1

�.x; xj/� 1
N

NX
iD1

�.xi; y/C 1

N2

NX
iD1

NX
jD1

�.xi; yj/: (4.19)

We can use these functions to compute the nonlinear principal components as
follows. Define a kernel matrix K D Œ�ij� 2 RN�N as �ij D �.xi; xj/. The centered
kernel matrix QK D ˆ>ˆ can be computed from K as

QK D K � 1

N
K11> � 1

N
11>KC 1>K1

N2
11> (4.20)

D .I � 1

N
11>/K.I � 1

N
11>/ D JKJ; (4.21)

where J D I � 1
N 11> is called the centering matrix.4 Let us also define the vector

Q�x D ˆ>.�.x/� N�/ D Œ Q�.x1; x/; Q�.x2; x/; : : : ; Q�.xN ; x/�> 2 R
N . This vector can be

computed from �x D Œ�.x1; x/; �.x2; x/; : : : ; �.xN ; x/�> 2 R
N as

Q�x D �x � 1

N
K1 � 1

N
11>�x C 1>K1

N2
1: (4.22)

With this notation, we may compute the nonlinear principal components of x as

yi D w>i ˆ>.�.x/� N�/ D w>i Q�x; i D 1; : : : ; d; (4.23)

where wi is the eigenvector of QK associated with its ith-largest eigenvalue �i, and
normalized so that kwik D ��2i . That is,

�
w1; : : : ;wN

� D Vdƒ
�1=2
d , where Vd

and ƒd are obtained from the top d eigenvectors and eigenvalues in the EVD of
QK D V QKƒ QKV>QK . Since QK D �Q�x1 ; : : : ; Q�xN

�
, it follows that we can compute the

low-dimensional coordinates of the entire data set as

Y D ƒ�1=2d V>d QK D ƒ�1=2d V>d VKƒKV>K D ƒ1=2
d V>d : (4.24)

3In PCA, we center the data by subtracting its mean. Here, we first subtract the mean of the
embedded data and then compute the kernel, whence the name centered kernel.
4In PCA, if X is the data matrix, then XJ is the centered (mean-subtracted) data matrix.

4.1 Nonlinear and Kernel PCA 131

In other words, the low-dimensional coordinates can be obtained from the top d
eigenvectors and eigenvalues of the centered kernel matrix.

Example 4.6 (PCA as a particular case of KPCA) For the linear kernel
�.x; y/ D x>y, we have �.x/ D x; hence KPCA reduces to PCA.

Example 4.7 For the polynomial embedding of degree 2 in (4.2), we have

�.x; y/ D Œx21;
p
2x1x2; x

2
2�Œy

2
1;
p
2y1y2; y

2
2�
> D .x1y1 C x2y2/

2 D .x>y/2; (4.25)

which can be computed directly in R2 without the necessity of computing the
embedding into R3.

In summary, we have shown that the nonlinear principal components can be
computed directly from the kernel function �.x; y/ D �.x/>�.y/ without the
necessity of computing �.x/. Nonetheless, given any (positive definite) kernel
function, according to a fundamental result in functional analysis, one can in
principle decompose the kernel and recover the associated map �.�/ if one wishes to.

Theorem 4.8 (Mercer’s Theorem). Suppose � W RD � R
D ! R is a symmetric

real-valued function such that for some C > 0 and almost every .x; y/5 we have
j�.x; y/j
 C. Suppose that the linear operator L W L2.RD/! L2.RD/, where

L.f /.x/ :D
Z

RD
�.x; y/f .y/dy; (4.26)

is positive semidefinite. Let i be the normalized orthogonal eigenfunctions of L
associated with the eigenvalues �i > 0, sorted in nonincreasing order, and let M be
the number of nonzero eigenvalues. Then:

• The sequence of eigenvalues is absolutely convergent, i.e.,
PM

iD1 j�ij <1.
• The kernel � can be expanded as �.x; y/ D PM

iD1 �i i.x/ i.y/ for almost all
.x; y/. If M D 1, the series is absolutely and uniformly convergent for almost
all .x; y/.

The interested reader may refer to (Mercer 1909) for a proof of the theorem. It
follows from the theorem that given a positive semidefinite kernel �, we can always
associate with it an embedding function � as

�i.x/ D
p
�i i.x/ i D 1; : : : ;M: (4.27)

Notice that the dimension M of the embedding could be rather large, sometimes even
infinite. Nevertheless, an important reason for computing the principal components
with the kernel function is that we do not need to compute the embedding function
or the features. Instead, we simply evaluate the dot products �.x; y/ in the original
space RD.

5“Almost every” means except for a set of measure zero.

132 4 Nonlinear and Nonparametric Extensions

Algorithm 4.1 (Nonlinear Kernel PCA)

Input: A set of points X D fx1; x2; : : : ; xNg � R
D, and a map � W RD ! R

M or a symmetric
positive definite kernel function � W RD � R

D ! R.
1: Compute N� D 1

N

P
�.xj/ and the centered embedded data matrixˆ as in (4.6) or the centered

kernel Q� as in (4.19).
2: Compute the centered kernel matrix

QK D ˆ>ˆ or
�Q�.xi; xj/

� 2 R
N�N : (4.28)

3: Compute the eigenvectors wi 2 R
N of QK:

QKwi D �iwi; (4.29)

and normalize so that kwik2 D ��1
i .

4: For every data point x, its ith nonlinear principal component is given by

yi D w>

i ˆ
>.�.x/� N�/ or w>

i ŒQ�.x1; x/; : : : ; Q�.xN ; x/�>; (4.30)

for i D 1; 2; : : : ; d.
Output: A set of points fyjgNjD1 lying in R

d , where yij is the ith nonlinear principal component of
xj for i D 1; : : : ; d and j D 1; : : : ;N.

We summarize our discussion in this section with Algorithm 4.1.

Example 4.9 (Examples of Kernels). There are several popular choices for the
nonlinear kernel function, such as the polynomial kernel and the Gaussian kernel,
respectively

�P.x; y/ D .x>y/n and �G.x; y/ D exp
� � kx � yk2

�2

�
: (4.31)

Evaluation of such functions involves only the inner product or the distance between
two vectors in the original space RD. This is much more efficient than evaluating the
inner product in the associated feature space, whose dimension grows exponentially
with n and D for the first kernel and is infinite for the second kernel.

Example 4.10 (KPCA for Embedding Face Images under Varying Pose). In
this example, we use the KPCA algorithm, Algorithm 4.1, to find a two-dimensional
embedding of the same subset of the extended Yale B data set that we used in
Example 4.1. Figure 4.5 shows the results using a Gaussian kernel with � D 0:1.
Notice that the embedding given by KPCA clearly improves on that given by PCA,
which is shown in Figure 4.2. In particular, images associated with the four poses
are mapped into four clearly separated (roughly straight) lines. The only part of the
embedding where images from different poses are intermingled is near the origin,
as shown in (b).

4.2 Nonparametric Manifold Learning 133

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Pose 5
Pose 6
Pose 7
Pose 8

(a) Embedding of all face images

−0.029 −0.028 −0.027 −0.026 −0.025 −0.024 −0.023 −0.022 −0.021 −0.02

−9

−8

−7

−6

−5

−4

−3
x 10

−3

Pose 5
Pose 6
Pose 7
Pose 8

(b) Zoomed in version of (a) near the origin

Fig. 4.5 Two-dimensional embedding obtained by applying KPCA to a subset of the extended
Yale B data set consisting of face images of subject 20 under 4 poses and 64 illumination
conditions. Points of the same color represent images associated with the same pose but different
illumination. Some images are shown next to some of the points.

4.2 Nonparametric Manifold Learning

In the previous section, we described NLPCA, a nonlinear extension of PCA
based on embedding a set of data points X D fxj 2 RDgNjD1 into a high-
dimensional space H and applying PCA in the embedded space to obtain the
low-dimensional representation Y D fyj 2 RdgNjD1 with d < D. In this section,
we present a family of manifold learning methods that search directly for the
low-dimensional representation Y without first embedding the data into a high-
dimensional space. Such methods are based on approximating the geometry of
the manifold (pairwise distances, local neighborhoods, local linear relationships,
etc.) and using these approximations to find a global low-dimensional embedding.
For instance, Figure 4.6 shows two typical examples of submanifolds in R3 that
can clearly be embedded in R2 while preserving their intrinsic geometry. Different
methods differ on how certain geometric properties of X are intended to be
preserved or approximated. In what follows, we discuss three representative popular
manifold learning methods, namely multidimensional scaling (MDS), locally linear
embedding (LLE), and Laplacian eigenmaps (LE). For a more comprehensive
review of other manifold learning methods, we refer the reader to (Burges 2005;
Lee and Verleysen 2007; Burges 2010).

134 4 Nonlinear and Nonparametric Extensions

0 10 0

20−10

0

10

(a) Swiss roll

−1 0 1 0
2

4
0

2

(b) S-curve

Fig. 4.6 Two examples of manifolds typically used in manifold learning.

4.2.1 Multidimensional Scaling (MDS)

One of the oldest manifold learning methods is multidimensional scaling (MDS)
(Torgerson 1958; Kruskal 1964; Gower 1966; Cox and Cox 1994). This approach
aims to capture the geometry of the manifold by finding a representation Y whose
pairwise distances approximate the pairwise distances in X as well as possible. To
capture nonlinear structures in the data, the distance ıij between points xi and xj in
X is chosen to be any distance other than the Euclidean distance ıij D kxi�xjk, e.g.,
a geodesic distance. More generally, ıij can be any dissimilarity measure between
pairs of points. Given a matrix of dissimilarities� D Œıij� 2 RN�N , the goal of MDS
is to find a matrix Y D �y1; : : : ; yN

� 2 Rd�N that minimizes the following objective:

min
Y

NX
iD1

NX
jD1
.kyi � yjk � ıij/

2: (4.32)

Notice that unlike PCA, MDS operates directly on the dissimilarities; hence it
does not require us to have the matrix of data points X D �

x1; : : : ; xN

� 2 RD�N .
However, in general, the minimization over Y cannot be carried out in closed form,
and gradient descent methods (see Appendix A.1.4) are typically used.6

Now, if instead of trying to approximate dissimilarities, we try to approximate
similarities or affinities obtained from a dot product, then the solution to MDS can
be obtained in closed form from the SVD of the affinity matrix. More specifically, let
A D Œaij� 2 RN�N be a symmetric positive semidefinite matrix of pairwise affinities.
For example, A can be defined as

aij D .xi � �/>.xj � �/;

6See (Davison 1983) for alternative optimization methods for minimizing the objective in (4.32).

4.2 Nonparametric Manifold Learning 135

where � D 1
N X1 is the mean of the data.7 More generally, A can be obtained after

embedding the data into a high-dimensional space, as in NLPCA. In fact, we can
think of A as a centered kernel matrix, which can be obtained as in (4.20).

Given A, our goal is to find a low-dimensional representation Y such that the dot
products between pairs of points best approximate the given affinities, i.e., we wish
to minimize

NX
iD1

NX
jD1
.y>i yj � aij/

2 D kY>Y � Ak2F: (4.33)

Letting Z D Y>Y and noticing that rank.Z/ D rank.Y/ D d, we arrive at the
following optimization problem:

min
Z
kZ � Ak2F such that rank.Z/ D d; Z D Z>; Z � 0: (4.34)

Notice that except for the symmetric positive semidefiniteness constraint on Z,
this problem is identical to the low-rank matrix approximation problem in (2.35).
However, since A is symmetric positive semidefinite, this additional constraint is
unnecessary. To see this, notice that if we use Theorem 2.6 to find the optimal
solution, we obtain the optimal Z from the SVD of A D UA†AU>A as Z D U†U>,
where U consists of the top d columns of UA and† consists of the top d�d subblock
of †A. Notice that this solution automatically satisfies the symmetric positive
semidefiniteness constraint. Given Z D U†U>, we can obtain Y as Y D R†1=2U>
for any orthogonal matrix R 2 O.d/.

In summary, when the affinity matrix A is a centered kernel matrix, MDS gives
the same low-dimensional representation as KPCA, up to an arbitrary orthogonal
transformation R. For further connections between MDS, PCA, and KPCA, we refer
the reader to (Williams 2002).

4.2.2 Locally Linear Embedding (LLE)

Another popular manifold learning approach is locally linear embedding (LLE)
(Roweis and Saul 2000, 2003). This approach aims to capture the geometry of a
manifold M by exploiting the fact that the local neighborhood of a point x 2 M
can be well approximated by the affine subspace spanned by x and its K nearest
neighbors (K-NNs). These locally linear approximations are then used to find a
low-dimensional embedding that gives a small reconstruction error with respect to
such approximations.

7Notice that A D JX>XJ, where J D I � 1
N 11> is the centering matrix.

136 4 Nonlinear and Nonparametric Extensions

The first step of LLE is to approximate each data point xj as an affine combination
of its K-NNs. Intuitively, this step is analogous to approximating the tangent space
of the manifold at the point xj by the affine subspace spanned by xj and its K-NNs.
For a manifold of dimension d, the tangent space at each point is a d-dimensional
affine subspace. Therefore, we need at least d NNs to reconstruct this subspace, i.e.,
we need to choose K 	 d. On the other hand, K cannot be chosen to be too large.
Otherwise, each data point would be written as an affine combination of too many
points, and the affine coefficients would not be unique. Since different solutions for
the affine coefficients correspond to different approximations of the tangent space,
the estimated local affine subspace may be inaccurate. Therefore, LLE typically
requires a good knowledge of d in order to define K. Given K, the K-NNs fxjkgKkD1
of each data point xj are typically found using the Euclidean distance. However,
other distances can be used as well.

To approximate each data point xj as an affine combination of its K-NNs, we
search for a matrix C D Œcij� 2 RN�N that minimizes the reconstruction error

E.C/ D 1

2

NX
jD1

���xj �
NX

iD1
cijxi

���
2

; (4.35)

subject to (i) cij D 0 if xi is not a K-NN of xj and (ii)
PN

iD1 cij D 1. The first
constraint expresses point xj as an affine combination of only its K-NNs, while the
second constraint ensures that the combination of the K-NNs is affine.

Let j1; : : : ; jK denote the indices of the K-NN of xj. Since cij D 0 when xi is not a
K-NN of xj, we need to keep track of only K affine coefficients for each point xj. Let
cj D Œcj1;j; : : : ; cjK ;j�

> 2 RK be the vector of such coefficients and let Gj D Œgj
il� 2

R
K�K be the local Gram matrix at xj, which is defined as gj

il D .xi � xj/
>.xl � xj/

for i; l such that xi and xl are K-NNs of xj. With this notation, the jth term of (4.35)
can be written as

���xj �
NX

iD1
cijxi

���
2 D

���
NX

iD1
cij.xi � xj/

���
2 D

X
il

cijclj.xi � xj/
>.xl � xj/

D
X

il

cijcljg
j
il D c>j Gjcj: (4.36)

Therefore, the optimization problem in (4.35) is equivalent to

min
fcjg

1

2

NX
jD1

c>j Gjcj s.t. 1>cj D 1: (4.37)

The Lagrangian function for (4.37) is L D 1
2

PN
jD1 c>j Gjcj C �j.1 � 1>cj/. Thus,

the first-order conditions for optimality are Gjcj D �j1 and 1>cj D 1. Therefore, if
Gj is of full rank K, then cj D �jG�1j 1 and ��1j D 1>G�1j 1, so that

4.2 Nonparametric Manifold Learning 137

cj D
G�1j 1

1>G�1j 1
2 R

K : (4.38)

Notice that the affine coefficients cij are invariant with respect to rotations,
translations, and scalings of all the data points. The invariance with respect to
rotations and translations follows from the invariance properties of the Gram
matrix Gj. Specifically, notice that if each xj is transformed to Rxj C t, where
R 2 SO.3/ and t 2 R3, then xj � xi is transformed to R.xj � xi/, and so Gj is
not affected. The invariance with respect to scalings follows from the fact that the
Gram matrix appears in both the numerator and denominator of (4.38). Therefore,
the affine coefficients characterize the intrinsic geometric properties of each local
neighborhood of the data in RD.

The second step of LLE is to find a representation Y D Œy1; : : : ; yN � 2 Rd�N that
minimizes

�.Y/ D
NX

jD1

���yj �
NX

iD1
cijyi

���
2

: (4.39)

Notice that the objective in (4.39) is the same as the reconstruction error in (4.35),
but obtained with respect to the low-dimensional representation Y rather than with
respect to the original data X. Notice also that the global minimum is obtained
when Y D 0; thus we need to impose additional constraints on the low-dimensional
representation in order to avoid trivial solutions. LLE requires the low-dimensional
representation Y to satisfy the following constraints:

NX
jD1

yj D 0 and
1

N

NX
jD1

yjy
>
j D I: (4.40)

The first constraint requires the low-dimensional representation to be centered at the
origin, as in the case of PCA (see Chapter 2). The second constraint forces the low-
dimensional representation to have unit covariance and is an arbitrary constraint to
ensure that rank.Y/ D d.

To find the optimal Y, notice that the optimization problem can be written as

min
Y
kY � YCk2F s.t. Y1 D 0 and

1

N
YY> D I: (4.41)

Proposition 4.11 (Locally Linear Embedding). The solution to the optimization
problem (4.41) is given by the matrix Y whose rows are the d eigenvectors of the
matrix L D .I � C/.I � C/> associated with its second- to .d C 1/st-smallest
eigenvalues.

Proof. Notice that kY � YCk2F D trace.Y.I � C/.I � C/>Y>/. Therefore, the
optimization problem (4.41) is a special case of a more general problem in (4.48),

138 4 Nonlinear and Nonparametric Extensions

Algorithm 4.2 (Locally Linear Embedding)

Input: A set of points fxjgNjD1 lying in a manifold M and integers K and d.
1: Find the K-nearest neighbors (K-NN) of each data point xj; j D 1; : : : ;N, according to some

distance in M.
2: Approximate each point xj 	 P

cijxi as an affine combination of its K-NN with coefficients
the cij obtained as in (4.38).

3: Let the rows of the matrix Y D Œy1; : : : ; yN � 2 R
d�N be the d eigenvectors of the matrix

L D .I � C/.I � C/> associated with its second- to .dC 1/st-smallest eigenvalues.
Output: A set of points fyjgNjD1 lying in R

d .

with L replaced by .I � C/.I � C/> and D replaced by I
N . Therefore, the result

follows by direct application of Proposition 4.14, which we will prove later.
ut

In summary, LLE is a manifold learning algorithm that uses the data matrix
X to construct a matrix of affine coefficients C that captures the local geometry
of the manifold. The low-dimensional representation is then obtained from the
eigenvectors of the matrix L D .I�C/.I�C/> associated to its second- to .dC1/st-
smallest eigenvalues. The LLE algorithm is summarized in Algorithm 4.2.

Example 4.12 (LLE for Embedding Face Images under Varying Pose). In this
example, we use the LLE algorithm, Algorithm 4.2, to find a two-dimensional
embedding of the same face image data set we used in Example 4.1. Figure 4.7
shows the results using K D 13 nearest neighbors. We see that the embedding given
by LLE also improves on that given by PCA, which is shown in Figure 4.2, but
in a different way from that given by KPCA, which is shown in Figure 4.5: one
direction (the x-axis) mainly captures the variations in illumination, whereas the
other direction (the y-axis) spreads out the four different poses.

4.2.3 Laplacian Eigenmaps (LE)

Another popular manifold learning algorithm is Laplacian eigenmaps (LE) (Belkin
and Niyogi 2002). This approach aims to capture the geometry of the manifold by
finding a low-dimensional representation such that nearby points in the manifold are
mapped to nearby points in the low-dimensional embedding.

More specifically, if X D �
x1; : : : ; xN

�
is the data matrix, LE finds a low-

dimensional embedding Y D �y1; : : : ; yN

� 2 Rd�N such that if xi and xj are close to
each other, then so are yi and yj. This is done by minimizing the objective

�.Y/ D
NX

iD1

NX
jD1

wijkyi � yjk2; (4.42)

subject to appropriate constraints on Y that prevent the trivial solution Y D 0.

4.2 Nonparametric Manifold Learning 139

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Pose 5
Pose 6
Pose 7
Pose 8

Fig. 4.7 Two-dimensional embedding obtained by applying LLE to a subset of the extended Yale
B data set consisting of face images of subject 20 under 4 poses and 64 illumination conditions.
Points of the same color represent images associated with the same pose but different illumination.
Some images are shown next to some of the points.

The weights wij 	 0 are designed so that a small penalty is paid when xi and
xj are far, so that yi and yj are allowed to be far, and a large penalty is paid when
xi and xj are close, but yi and yj are far. For this purpose, a local neighborhood of
each point xj is defined using the K-NN rule with some distance dist on M, and the
weights are chosen as

wij D
8<
:

e�
dist.xi ;xj/

2

2�2 if xi is a K-NN of xj or vice versa;

0 else;
(4.43)

where � > 0 is a parameter.
Letting D 2 R

N�N be a diagonal matrix with diagonal entries djj D P
i wij, and

W 2 R
N�N the matrix of weights, we may rewrite the objective function as

�.Y/ D
X

ij

wij
�kyik2 C kyjk2 � 2y>i yj

�
(4.44)

D 2
X

j

djjy>j yj � 2
X

ij

wijy>i yj (4.45)

D 2 trace.YDY>/� 2 trace.YWY>/ D 2 trace.YLY>/; (4.46)

140 4 Nonlinear and Nonparametric Extensions

where the symmetric matrix L D D � W 2 RN�N is called the Laplacian matrix.
The definition of the Laplacian and the above derivation lead to some important
properties of L below.

Proposition 4.13 (Basic Properties of the Laplacian Matrix). The Laplacian
matrix L 2 R

N�N has the following properties:

• For all y D Œy1; : : : ; yN �
> 2 RN, we have y>Ly D 1

2

P
i;j wij.yi� yj/

2 	 0. Hence
the matrix L is positive semidefinite.

• The vector of all ones is in the null space of L, i.e., L1 D 0; hence the smallest
eigenvalue of L is zero.

It follows from the above discussion that a trivial solution to the problem
minY �.Y/ is Y D 0, in which case all the points are mapped to the origin. It also
follows from the proposition that Y D y1> is another trivial solution, in which
case all data points xj are mapped to the same low-dimensional embedding y 2 Rd.
Notice that both solutions are such that �.Y/ D 0.

To prevent these trivial solutions, LE requires the low-dimensional representation
Y to satisfy the following additional constraints:

YD1 D 0 and YDY> D I: (4.47)

The first constraint requires the scaled low-dimensional representation8 YD to
be orthogonal to the constant vector 1 so as to avoid the constant embedding
Y D y1>. The second constraint ensures that rank.Y/ D d and helps remove an
arbitrary scaling factor in the embedding. In fact, the above two constraints result
from properly discretizing the solution to a continuous Laplacian embedding of a
continuous manifold. Not to disturb the flow, we leave a brief introduction of the
continuous Laplacian embedding to Appendix 4.A of this chapter. As one would see,
the two constraints in equation (4.47) are discretized versions of their corresponding
continuous counterparts in equation (4.95).

Therefore, LE finds the low-dimensional representation by solving the following
minimization problem:

min
Y

trace.YLY>/ s.t. YD1 D 0 and YDY> D I: (4.48)

The solution to this optimization problem is given by the next result.

Proposition 4.14 (Laplacian Eigenmaps). The solution to the optimization prob-
lem (4.48) is given by the matrix Y whose rows are the d generalized eigenvectors
of the pair .L;D/ associated with its second- to .d C 1/st-smallest generalized
eigenvalues.

8By scaled low-dimensional representation we mean replacing yj by djjyj.

4.2 Nonparametric Manifold Learning 141

Proof. Notice that the Lagrangian function for this problem can be written as

L .Y;�; ƒ/ D trace.YLY>/C �>YD1C trace.ƒ.I � YDY>//; (4.49)

where � 2 Rd and ƒ D ƒ> 2 Rd�d are, respectively, a vector and matrix of
Lagrange multipliers. Computing the derivative of L with respect to Y and setting
it to zero yields 2YL C �1>D � 2ƒYD D 0. Multiplying on the right by 1 and
using the constraints L1 D 0 and YD1 D 0, we obtain � D 0. As a consequence,

YL D ƒYD H) LY> D DY>ƒ: (4.50)

Following the same argument as in the proof of Theorem 2.3, one can show that
ƒ is diagonal. Therefore, the rows of Y are generalized eigenvectors of .L;D/
with generalized eigenvalues in the diagonal entries of ƒ. Moreover, YLY> D
ƒYDY> D ƒ, and so the objective value is trace.YLY>/ D trace.ƒ/. Therefore,
we must choose the smallest generalized eigenvalues of .L;D/. Since 1 is an
eigenvector of L with zero eigenvalue, and the eigenvectors of L must be orthogonal
to D1 (because YD1 D 0), the rows of the optimal Y are the d generalized
eigenvectors of .L;D/ associated with its second- to .dC1/st-smallest eigenvalues,
as claimed. ut

The LE algorithm is summarized in Algorithm 4.3.
The reader has probably noticed that the low-dimensional embeddings given by

LLE and LE are, at a high level, rather similar in several aspects:

1. They both map the original data points xj 2M � R
D to a new set of data points

yj inRd with the goal of preserving local geometric properties of the original data,
rather than providing any parametric representation of xj in its original space (as
done by PCA).

Algorithm 4.3 (Laplacian Eigenmaps)

Input: A set of points fxjgNjD1 in a manifold M, integers K and d, and � > 0.
1: Find the K nearest neighbors (K-NN) of each data point xj; j D 1; : : : ;N, according to some

distance dist in M.
2: Define a matrix of weights W 2 RN�N whose entries wij measure the affinity between two

points xi and xj and are computed as

wij D
8
<
:

e�

dist.xi ;xj/
2

2�2 if xi is a K-NN of xj or vice versa;

0 else:
(4.51)

3: Let D be a diagonal matrix with entries djj D P
i wij, and let L D D � W. Find a matrix

Y D Œy1; : : : ; yN � 2 Rd�N whose rows are the d generalized eigenvectors of the pair .L;D/
associated with its second- to .dC 1/st-smallest generalized eigenvalues. That is, solve for Y
from YL D ƒYD, where ƒ is a diagonal matrix with the generalized eigenvalues along its
diagonal.

Output: A set of points fyjgNjD1 lying in Rd .

142 4 Nonlinear and Nonparametric Extensions

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Pose 5
Pose 6
Pose 7
Pose 8

(a) Embedding of all face images

0.007 0.008 0.009 0.01 0.011 0.012 0.013 0.014 0.015 0.016 0.017

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Pose 5
Pose 6
Pose 7
Pose 8

(b) Zoomed in version of (a) near the origin

Fig. 4.8 Two-dimensional embedding obtained by applying LE to a subset of the extended Yale
B data set consisting of face images of subject 20 under 4 poses and 64 illumination conditions.
Points of the same color represent images associated with the same pose but different illumination.
Some images are shown next to some of the points.

2. They both start by computing a weight wij between any pair of points that reflects
the desired geometric properties to be preserved. A weight with larger magnitude
indicates that the two points are “similar” with respect to such properties.

Example 4.15 (LE for Embedding Face Images under Varying Pose). In this
example, we use the LE algorithm, Algorithm 4.3, to find a two-dimensional
embedding of the same face image data set we used in Example 4.1. Figure 4.8
shows the results using K D 5 nearest neighbors and � D 5. We see that the
embedding given by LE also improves on that given by PCA, which is shown in
Figure 4.2, but differently from that given by KPCA, which is shown in Figure 4.5,
and from that given by LLE, which is shown in Figure 4.7: images from two of the
poses are clearly separated by LE, but the other two poses remain clustered together.

Example 4.16 (PCA, KPCA, LE, and LLE for Embedding Face Images of
Two Different Subjects). In this example, we apply various linear and nonlinear
embedding methods to a data set that contains frontal face images of two subjects:
subject 20 and subject 21 in the extended Yale B data set. The resulting embeddings
by PCA, KPCA, LE, and LLE are shown in Figure 4.9. In each figure, the two colors
correspond to images associated with the two different subjects. For KPCA, we use
a Gaussian kernel with � D 0:1. For LLE, we use K D 6 neighbors. Finally, LE
uses K D 5 neighbors and � D 5. Observe that except for PCA, all the nonlinear
embedding methods are able to clearly separate the images from the two individuals.
Observe also that in the case of KPCA, images from the two individuals are each
mapped to roughly two lines. Overall, this experiment illustrates how nonlinear
manifold learning techniques are better suited for data sets whose underlying low-
dimensional representation is nonlinear.

4.3 K-Means and Spectral Clustering 143

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(a) PCA

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) KPCA

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

(c) LLE

−0.05 0 0.05
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

(d) LE

Fig. 4.9 Two-dimensional embedding obtained by PCA, KPCA, LLE, and LE for face images
(frontal pose, all 64 illuminations) of two individuals (subjects 20 and 21) in the extended Yale
B data set. Points of the same color correspond to frontal face images of the same subject under
different illumination conditions. Sample images are shown beside some of the points.

4.3 K-Means and Spectral Clustering

As we have seen in the previous experiments with face images, when the data set
contains images mixed from multiple subjects with multiple poses, it might no
longer be possible to model the whole data set by a single subspace or a single
nonlinear manifold. Nonetheless, after suitable nonlinear mappings, images from
the same pose or from the same subject tend to form a cluster in space that is
separated from those for other poses or subjects. This suggests that these nonlinear
mappings may not only be useful for finding a low-dimensional representation of
the data, but also simplify clustering the data if the data are mixed.

144 4 Nonlinear and Nonparametric Extensions

Since clustering mixed data will be a central theme for the rest of the book,9

in this section we give a brief overview of two fundamental clustering methods
that will be used throughout the book. In Section 4.3.1, we discuss the K-means
algorithm, which is designed to cluster data distributed around a collection of
centers, as illustrated in Figure 4.10(a). In Section 4.3.2, we discuss the spectral
clustering algorithm, which uses an embedding similar to LE to map the original
mixed data to a set of low-dimensional points distributed around cluster centers, as
illustrated in Figure 4.10(b). As we will see, the spectral clustering algorithm is very
much related to the above manifold learning methods, especially to LE.

(a) 2-D data sampled around two cluster centers

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

43

3

2

2

4

1

1

0

0

−1

−1

−2

−2

−3

−3

−4
−4

2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

=⇒

−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(b) 2-D data sampled around two circles is mapped to 2-D data sampled around two cluster centers

Fig. 4.10 Clustering 2D data distributed around cluster centers or around two circles. In (b), a
suitable (spectral) embedding maps the original data to an embedding where the data points are
clustered around two centers.

9As we will see in Chapters 7 and 8, spectral clustering methods will play a crucial role in many
approaches to subspace clustering.

4.3 K-Means and Spectral Clustering 145

4.3.1 K-Means Clustering

The K-means algorithm is arguably one of the simplest and most widely used
clustering methods. It is based on the assumption that the data points fxjgNjD1 are
distributed around a collection of n cluster centers f�igniD1. Assuming that n is
known, the K-means algorithm aims to estimate the cluster centers by minimizing
the sum of squared distances from the data points to their closest cluster centers, i.e.,

min
�1;:::;�n

NX
jD1

min
iD1;:::;n kxj ��ik22: (4.52)

An important challenge in solving the above minimization problem is that the
objective function10 is not differentiable for all �i. Nonetheless, one can derive a
simple alternating minimization algorithm by introducing a set of auxiliary variables
that denote the assignments of points to cluster centers. More specifically, let wij 2
f0; 1g be such that wij D 1 if point j is assigned to cluster i and wij D 0 otherwise.
Then the optimization problem in (4.52) can be rewritten as

min
f�ig;fwijg

nX
iD1

NX
jD1

wijkxj ��ik2

s.t. wij 2 f0; 1g and
nX

iD1
wij D 1; j D 1; : : : ;N:

(4.53)

The application of the alternating minimization algorithm in Appendix A.1.5 to this
problem allows us to estimate the cluster centers f�igniD1 and the segmentation of
the data fwijgjD1;:::;NiD1;:::;n in a straightforward manner by alternating between solving for
the segmentation given the cluster centers and vice versa. Specifically:

1. If the cluster centers are known, so are the distances kxj � �ik. Thus, the
optimization problem over fwijg with f�ig held fixed involves minimizing a
weighted sum of the wij, subject to the constraint that for each j, there is only
one i such that wij D 1. Therefore, to minimize the objective, for each j we must
set wij D 1 for the i that gives the smallest distance kxj � �ik. This is equivalent
to assigning xj to its closest cluster center.

2. If the segmentation is known, the constraints in (4.53) are redundant, and the
optimal solution for �i can be obtained from

10Notice that the above objective is very much related to the MAP-EM algorithm for a mixture of
isotropic Gaussians discussed in Appendix B.3.2.

146 4 Nonlinear and Nonparametric Extensions

�
NX

jD1
2wij.xj ��i/ D 0 H) �i D

PN
jD1 wijxjPN

jD1 wij

: (4.54)

We observe that Ni DPN
jD1 wij is the number of points assigned to the ith cluster

center. Thus, we can see that the above expression for �i is simply the average
of the points assigned to the ith cluster center.

In other words, the K-means algorithm alternates between computing the cluster
centers given the segmentation and computing the segmentation given the cluster
centers, as detailed in Algorithm 4.4. Notice that at each iteration of the algorithm,
the objective function in (4.52) either decreases or stays the same (see Exercise 4.10
for a proof). Notice also that since the variables wij are binary, the number of
possible segmentations is finite. Since for each segmentation there is a unique
solution for the cluster centers, the number of possible solutions for f�ig is also
finite. Therefore, after a finite number of iterations, the value of the objective
function in (4.52) will stop decreasing, and the algorithm will converge.

Notice also that except for the case in which two or more points are at equal
distance from two or more distinct cluster centers, a small perturbation of the cluster
centers �i does not change the assignment of points to cluster centers. Therefore, the
K-means algorithm converges to a local minimum of the objective function in (4.52)
in a finite number of steps.

We refer the reader to (Bottou and Bengio 1995) for a similar convergence argu-
ment, and to (Selim and Ismail 1984) for a more rigorous analysis of convergence of
a generalized K-means algorithm, including cases in which the generalized method
fails to converge to a local minimum. Now, even if the algorithm converges to a
local minimum, in general it will not converge to a global minimum. Therefore,
initialization is critical in order to obtain a good solution. A common strategy is
to initialize the algorithm with n randomly chosen data points as candidate cluster
centers, repeat the algorithm for multiple random initializations, and then choose
the one that gives the best objective value.

Example 4.17 (K-means Clustering of Face Images under Varying Pose). In
this example, we apply the K-means algorithm, Algorithm 4.4, to a subset of the
AT&T face data set11 (previously known as ORL). This data set contains photos of
40 individuals, with 10 poses for each individual. In this experiment, we use only
the images for individuals 1 to 20. We first apply PCA to the images to reduce the
dimension of the data from 92�112 to D D 50. We then cluster the PCA coefficients
using K-means with 20 cluster centers. We reconstruct the 20 centroids found by
K-means back to the face space by averaging the images associated with each cluster
center, as shown in Figure 4.11(a). Notice that most of the centroids correspond
to blurry face images. This is due to the fact that face images under varying pose

11AT&T Laboratories, Cambridge,
http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.

http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html

4.3 K-Means and Spectral Clustering 147

Algorithm 4.4 (K-means)

Input: A set of points fxjgNjD1 and the number of groups n.

1: Initialization: Select n distinct data points as initial cluster centers �
.0/
1 ; : : : ;�

.0/
n .

2: while (the clusters and their centers do not converge) do
3: Assign each data point xj to its closest cluster center �

.k/
i , i.e.,

w
.kC1/
ij

8
<
:
1 if i D arg min

`D1;:::;n
kxj � �

.k/
` k22;

0 else:
(4.55)

4: Update the cluster centers �
.kC1/
i to be the mean of all points xj that belong to cluster i,

�
.kC1/
i

PN
jD1 w

.kC1/
ij xjPN

jD1 w.kC1/
ij

: (4.56)

If more than one cluster achieves the minimum, assign the point to one of them.
5: end while

Output: The n cluster centers f�ig and the segmentation fwijg.

(a) 20 centroids found by K-means for the 100
training face images of the 20 individuals

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

(b) Clustering results obtained by K-means versus the
index of each face image (10 images per class)

Fig. 4.11 Face clustering results given by the K-means algorithm on AT&T data set.

get averaged by K-means. Out of the 20 centroids, 19 correspond (approximately)
to 19 different individuals, while one centroid is repeated twice. This is due
to the fact that K-means, as a greedy method, has failed to converge to the globally
optimal solution. As a result, the clustering error is 20%. The clustering results
versus the index of the face images (which are sorted by individual with 10 images
per class) are plotted in Figure 4.11(b). Overall, we can see that K-means works
reasonably well for clustering face images of different individuals under varying
pose, but similar illumination conditions.

148 4 Nonlinear and Nonparametric Extensions

Example 4.18 (K-means Clustering of Face Images under Varying Illumina-
tion) In this example, we apply the K-means algorithm, Algorithm 4.4, to a subset
of the extended Yale B face data set. Specifically, we take images of two subjects
(20 and 21, or 37 and 38) each under 64 different illumination conditions. We first
apply PCA to the images to reduce the dimension of data to D D 20 and then
normalize the PCA coefficients to unit `2. We then apply K-means with n D 2

clusters to the normalized data. The clustering errors are 50% for subjects 20 and
21, and 47.7% for subjects 37 and 38. These errors are very high, which suggests
that K-means is not suitable for clustering face images under varying illumination.
This is because K-means uses the Euclidean distance between two face images as a
measure of similarity. Such a distance is not suitable for capturing large variations
of illumination, because two face images of different individuals under the same
lighting could be closer to each other than two face images of the same individual
under very different lightings. This can also be explained by looking at Figure 4.9(a),
which shows a two-dimensional PCA embedding for individuals 20 and 21. While
we are using a 20-dimensional embedding for K-means, Figure 4.9(a) already
suggests that it is very difficult to cluster the data into two groups. At the same
time, Figures 4.9(b)-(d) suggest that K-means might be able to do a little better if
we apply it to a KPCA, LLE, or LE embedding instead of to a PCA embedding.
This will be the subject of the next subsection.

4.3.2 Spectral Clustering

The face clustering example discussed in the previous section suggests that the
distribution of a mixed data set can be more complicated than simply clustering
around a few cluster centers. In this case, the K-means algorithm may fail to group
the data correctly. Nonetheless, as we have suggested in the example shown in
Figure 4.10(b), one way to remedy the situation is to seek a suitable nonlinear
embedding of the data, such as LE, so that the embedded data set can be easily
clustered by K-means. But why is the phenomenon illustrated in Figure 4.10(b)
possible? In other words, why is it the case that after a suitable embedding, the data
points cluster around a collection of cluster centers?

In this section, we aim to answer this question by introducing a graph-theoretic
approach to data clustering. In this approach, data points become vertices of a graph,
and similar data points are connected by edges in the graph. Ideally, different clus-
ters correspond to different connected components of the graph, which can be found
by analyzing the null space of the graph Laplacian. In practice, however, there may
not be a one-to-one correspondence between clusters and connected components
of the graph. In this case, we will use results from matrix perturbation theory to
show that some eigenvectors of the graph Laplacian provide an embedding for the
data from which the clustering can be obtained more easily, thereby establishing
an intimate connection between clustering and manifold learning. Finally, we will
formulate the clustering problem directly as a graph partitioning problem, and show

4.3 K-Means and Spectral Clustering 149

that a continuous relaxation of the associated discrete optimization problem leads to
the same type of generalized eigenvalue problem solved in manifold learning.

Ideal Case Given a set of data points x1; : : : ; xN 2 RD, we associate with it a
weighted undirected graph G D .V ; E ;W/, where V D f1; : : : ;Ng is a set of N
vertices and E � V�V is a set of edges, which captures the “affinity” between pairs
of points. For example, in a K-NN graph, each data point is connected to its K-NNs,
and in an "-neighborhood graph, each data point is connected to other points at a
distance less than or equal to " > 0. The .i; j/th entry wij D wji 	 0 of the matrix
W 2 RN�N is a weight associated with the edge .i; j/ 2 E . If wij D 0, the two vertices
are not connected. Otherwise, the weight wij is used to describe the affinity between
points xi and xj in terms of their properties in the original space RD. For instance,
wij can be chosen as in LE as wij / exp.� dist.xi; xj/

2=2�2/, so that wij � 1 when
points xi and xj are close to each other, and wij � 0 when points xi and xj are far
from each other. Alternatively, we can set wij D 1 if and only if xi is connected to xj.
Since the graph is undirected, the matrix W is symmetric, i.e., W D W>. We further
define the degree of vertex i as dii D P

j wij. Note that when wij 2 f0; 1g, dii is the
number of points connected to xi. Thus, the degree of vertex i is a measure of how
connected point xi is to other points. We define the degree matrix D 2 RN�N as a
diagonal matrix whose diagonal entries are the degrees dii of the vertices. Finally,
we define the Laplacian of the graph G as the matrix L :D D �W.

Recall from Proposition 4.13 that the matrix L is symmetric positive semidefinite
and that the vector of all ones is in its nullspace, i.e., L1 D 0. Recall also
from Proposition 4.14 that the LE algorithm obtains a low-dimensional embedding
Y 2 Rd�N from the generalized eigenvectors of .L;D/ corresponding to the
second- to .d C 1/st-smallest generalized eigenvalues of .L;D/. Hence, the LE
method can be viewed as a special case of a very general data mapping method
known as spectral embedding, which uses the spectrum of graph Laplacians to
provide new representations for data. Now, an important assumption that we did
not highlight when we introduced the LE algorithm is that we need the second-
smallest generalized eigenvalue of .L;D/ to be nonzero. Under this assumption,
there is only one eigenvector of L associated with the zero eigenvalue, namely the
vector 1. Moreover, one can show that the second eigenvalue of L is nonzero if
and only if the graph is connected. Therefore, the reason for LE to require that the
second eigenvalue of L be nonzero is precisely so that the graph G is connected.12

But what if the graph is not connected? As we will see, when G is not
connected, there are multiple eigenvectors associated with the zero eigenvalue,
each one corresponding to one of the connected components of the graph G. This
seemingly simple fact has significant implications in using spectral embedding to
extract important topological properties of a graph such as whether the graph is
connected, or equivalently, whether the data set has a single cluster or multiple

12A graph is connected when there is a path between every pair of vertices.

150 4 Nonlinear and Nonparametric Extensions

clusters. Moreover, the eigenvectors of L corresponding to the zero eigenvalues can
be used to cluster the data into the connected component of the graph.

To motivate why this is the case, let us consider a simple example.

Example 4.19 Suppose the graph G has n connected subgraphs G D G1[G2[� � �[
Gn with Gi\Gj D ;. Let the number of vertices in each subgraph be N1;N2; : : : ;Nn,
respectively. Consider a special weighted graph G where the weights are such that
wij D 1 if and only if the two vertices i and j belong to the same connected subgraph,
and otherwise wij D 0. Let Jm be an m � m matrix full of 1’s, and Im the m � m
identity matrix. Then, if the data points are sorted according to their membership in
the n connected components, the weight matrix W is a block-diagonal matrix with n
diagonal submatrices JNi , and the degree matrix D is a block-diagonal matrix with
diagonal submatrices Ni � INi :

W D

2
64

JN1 0 0

0
: : : 0

0 0 JNn

3
75 ; D D

2
64

N1 � IN1 0 0

0
: : : 0

0 0 Nn � INn

3
75 : (4.57)

Let 1Gi 2 RN denote the indicator vector for subgraph Gi. That is, its entries are
1 for vertices in Gi and 0 otherwise. Then it is easy to verify that such indicator
vectors are eigenvectors of the weight matrix W with the number of vertices in each
subgraph Ni as the eigenvalues:

W1Gi D Ni1Gi : (4.58)

By the definition of the degree matrix D, these indicator vectors must be in the null
space of the Laplacian of the graph L D D �W. That is,

L1Gi D 0; 8i D 1; : : : ; n: (4.59)

This simple example illustrates that the null space of the Laplacian of a specific
graph encodes the membership of its vertices in different connected subgraphs. The
following result shows that this property of the null space of the Laplacian is also
true for more general graphs.

Proposition 4.20 (Number of Connected Subgraphs). Given an undirected graph
G with N vertices and n
 N connected subgraphs, i.e., G D G1 [G2 [� � � [Gn

with Gi \ Gj D ; for i ¤ j, and a nonnegative weight matrix W, the number of
zero eigenvalues of its Laplacian matrix L is equal to the number of connected
components of the graph. Moreover, the null space null.L/ is exactly spanned by
the indicator vectors of these disconnected subgraphs:

null.L/ D spanf1G1 ; 1G2 ; : : : ; 1Gng: (4.60)

4.3 K-Means and Spectral Clustering 151

Proof. Suppose u 2 RN is an eigenvector of L associated with a zero eigenvalue.
Then we have

u>Lu D 1

2

X
i;j

wij.ui � uj/
2 D 0: (4.61)

Since wij 	 0, for the above equality to hold, we must have ui D uj whenever
wij > 0. Therefore, if two vertices i and j belong to the same connected component,
the corresponding values of the eigenvector must be equal. It follows that every
vector u in the null space of L can be written as a linear combination of the vectors
f1GigniD1, i.e., null.L/ D spanf1G1 ; 1G2 ; : : : ; 1Gng. Since these n vectors are linearly
independent for N 	 n, we conclude that the dimension of the null space of L is
equal to the number of connected components. ut

The above property of the Laplacian matrix implies that the null space of
the Laplacian matrix encodes precise information about the membership of the
vertices in the n connected components. However, we cannot yet directly use this
information for clustering, because we can identify the indicator vectors only up to
a change of basis.

Proposition 4.21 (Null Space of Laplacian). Every n linearly independent vectors
u1; : : : un 2 RN in the null space of L can be written as

�
u1; : : : ;un

� D �1G1 ; 1G2 ; : : : ; 1Gn

�
A 2 R

N�n (4.62)

for some nonsingular matrix A 2 Rn�n.

We leave the proof of this fact as an exercise for the reader. Now, if we view
the columns of the matrix Y

:D Œu1; : : : ;un�
> D Œy1; : : : ; yN � 2 R

n�N as a new
embedding of the points in R

n, then Y has a very simple but important property:
yi D yj if and only if the two vertices i and j belong to the same connected
component. That is, there are n distinct columns in Y, which means that all N points
fxjg are mapped exactly to n points in R

n. Hence, if we are interested only in the
topology of the graph, we care only about the eigenvectors associated with the zero
eigenvalue, whereas LE in Section 4.2.3 uses other eigenvectors associated with
nonzero eigenvalues to find a low-dimensional embedding.

General Case
So far, we have assumed that the graph has n connected components and that there
is an edge connecting every two components. In practice, the data may be corrupted,
and the affinity matrix W may not be such that wij D 0 when points i and j are in
different connected components. In this case, even if the ideal graph has n connected
components, the graph obtained from a corrupted matrix W may be fully connected.
As result, the eigensubspace associated with the n smallest eigenvalues of L will be
a perturbed version of the ideal eigensubspace associated with the zero eigenvalue,
which is spanned by the n indicator vectors. Therefore, the embedded points fyjgNjD1

152 4 Nonlinear and Nonparametric Extensions

will no longer coincide with n points in Rn. Ideally, we would like these points to
cluster around n cluster centers in Rn, as predicted in Figure 4.10(b). The following
result, which follows from a perturbation theorem in (Davis and Cahan 1970), shows
that if the perturbation to W is small enough, the N points fyjgNjD1 do cluster around
n cluster centers in Rn.

Theorem 4.22 (Stability of the Null Space of Laplacian). Let QL be the Laplacian
of a graph with n connected components and let 0 D Q�1 D Q�2 D � � � D Q�n <Q�nC1
 Q�nC2
 � � �
 Q�N be its N eigenvalues. Let L be a perturbed graph
Laplacian and let 0 D �1
 �2
 � � �
 �N be its eigenvalues. Let QY 2 Rn�N be a
matrix whose orthonormal rows are the indicator vectors (with length normalized to
one) and let Y 2 Rn�N be a matrix whose orthonormal rows are the n eigenvectors
of L corresponding to its n smallest eigenvalues. Then

min
R2O.n/

k QY � RYk2

p
2

�nC1
k QL � Lk2: (4.63)

In other words, if the perturbation is small enough, as measured by k QL � Lk2,
and �nC1 is large enough, then the perturbed low-dimensional embedding Y is close
to the ideal low-dimensional embedding QY (up to an orthogonal matrix R 2 R

n�n).
One can show that �nC1 	 Q�nC1 � k QL � Lk2 (see Exercise 4.12) . Therefore, the
requirement that �nC1 be large enough can be translated into requiring that Q�nC1 be
large enough relative to the size of the perturbation. Since Q�nC1 would have been
zero had the number of clusters been nC 1 rather than n, the requirement that Q�nC1
be large enough can be interpreted as requiring that each one of the n clusters be
sufficiently well connected.

Theorem 4.22 establishes that under certain conditions, the columns of the
matrix Y D Œy1; : : : ; yN � D Œu1; : : : ;un�

> obtained from the n eigenvectors
fuigniD1 of L corresponding to its n smallest eigenvalues will cluster around n
“ideal” cluster centers given by the n distinct columns of QY . However, notice that
the ideal cluster centers are not obtained from the true indicator vectors, as in
Proposition 4.62, but from a normalized version of these indicator vectors. This
is because in Theorem 4.22, the rows of the ideal embedding QY are the indicator
vectors normalized to be of unit norm. Specifically, the ith row of QY is given by

hi
:D 1Gi=

p
jGij; i D 1; : : : ; n; (4.64)

where jGij is the number of vertices in the ith subgraph. This introduces an
interesting “normalization” to the ideal low-dimensional embedding QY in which the
distance from the ith ideal cluster center to the origin is scaled down by 1=

pjGij.
Thus, the larger the subgraph Gi, the closer its ideal cluster center is to the origin.

Given the low-dimensional embedding Y D Œu1; : : : ;un�
>, we can cluster

the original data fxjgNjD1 by clustering the low-dimensional points fyjgNjD1 using,
for example, the K-means algorithm, Algorithm 4.4. This leads to a popular
data clustering algorithm, known as spectral clustering, which we summarize in
Algorithm 4.5.

4.3 K-Means and Spectral Clustering 153

Algorithm 4.5 (Spectral Clustering)

Input: Number of clusters n and affinity matrix W2RN�N for points fxjgNjD1.
1: Construct an affinity graph G with weight matrix W.
2: Compute the degree matrix D D diag.W1/ and the Laplacian L D D �W.
3: Compute the n eigenvectors of L associated with its n smallest eigenvalues.
4: Let y1; : : : ; yN be the columns of Y

:D Œu1; : : : ; un�
> 2 R

n�N , where fuigniD1 are the
eigenvectors in step 3 normalized to unit Euclidean norm.

5: Cluster the points fyjgNjD1 into n groups using the K-means algorithm, Algorithm 4.4.
Output: The segmentation of the data into n groups.

Observe that Algorithm 4.5 is based on computing a low-dimensional embedding
of the data from the eigenvectors of L and then clustering this low-dimensional
embedding using K-means, as we suggested in Figure 4.10(b). However, the low-
dimensional embedding used in Algorithm 4.5 does not coincide with any of
the low-dimensional embeddings discussed in Section 4.2. The most similar low-
dimensional embedding is that of LE, which uses the generalized eigenvectors of
.L;D/ in lieu of the eigenvectors of L. Next, we discuss some variants to the
basic spectral clustering algorithm that are very close to LE. As we shall see, such
variants provide some form of normalization of the low-dimensional embedding that
is beneficial from the clustering point of view.

Connections between Spectral Clustering, Mincut and Ratiocut
So far, we have assumed that the graph either has n connected components or can
be approximated by a graph with n connected components via a small perturbation
of the affinity. In practice, we may want to find a clustering of the data even when
the perturbation from the ideal case is large. In this case, it makes sense to formulate
the clustering problem as a graph partitioning problem in which we aim to divide
the graph into multiple subgraphs by “cutting the weakest links.” Interestingly, this
approach leads to a discrete optimization problem whose continuous relaxation
results in a generalized eigenvalue problem.

More specifically, let A and B be two subgraphs of G. We define the quantity

w.A;B/ :D
X

i2A;j2B
wij (4.65)

as the sum of the weights of all edges connecting the two subgraphs. Then if we
cut the graph G into n disjoint subgraphs, i.e., fGigniD1 such that G D [n

iD1Gi and
Gi [Gj D ;, we may measure the cost of such a cut as the sum of the weights of all
the edges connecting one group to all other groups, i.e.,

Cut.G1;G2; : : : ;Gn/
:D 1

2

nX
iD1

w.Gi;Gc
i /; (4.66)

154 4 Nonlinear and Nonparametric Extensions

where Gc
i is the complement of Gi. One can then formulate the clustering problem as

the problem of finding the cut that minimizes the above cost. This problem is known
in the literature as the mincut problem. Notice that if the graph has n connected
components, there are no edges across different subgraphs, and the optimal value of
the mincut is zero.

To minimize the cut, let U D �
u1; : : : ;un

�
be the matrix whose columns are the

indicator vectors for each one of the n groups as defined in (4.62). Since uji D 1

when point xj belongs to subgraph Gi and uji D 0 otherwise, we have

1

2

nX
iD1

w.Gi;Gc
i / D

1

2

nX
iD1

X
j2Gi;k2Gc

i

wjk D 1

2

nX
iD1

NX
jD1

NX
kD1
.uji � uki/

2wjk

D
nX

iD1
u>i Lui D trace.U>LU/:

(4.67)

Therefore, we can formulate the mincut problem as

min
U2f0;1gN�n

trace.U>LU/ s.t. U1 D 1; (4.68)

where the constraint enforces that each data point is assigned to one cluster.13

However, directly minimizing the cut often results in clusters that consist of a
single vertex that has no or few connections with the rest of the graph. To avoid
such trivial small clusters, we can instead minimize the so-called “ratiocut” cost

ratiocut.G1;G2; : : : ;Gn/
:D 1

2

nX
iD1

w.Gi;Gc
i /

jGij D
nX

iD1

cut.Gi;Gc
i /

jGij ; (4.69)

which discounts groups with a small number of vertices. We leave it as an exercise
to the reader (see Exercise 4.13) to check that if we normalize the indicator vector
of each group by its group size as hi D 1Gi=

pjGij; i D 1; : : : ; n, then we have

ratiocut.G1;G2; : : : ;Gn/ D
nX

iD1
h>i Lhi D trace.H>LH/; (4.70)

where H D Œh1;h2; : : : ;hn�. Now notice that the constraint U1 D 1 used in (4.68)
to prevent the trivial solution U D 0 becomes H1Gi D 1Gi=

pjGij. However, this
constraint is hard to enforce, because we do not know jGij. Instead, to prevent the
trivial solution H D 0, we enforce the constraint H>H D I, which can be easily
verified. Therefore, the objective of ratiocut can be rewritten as

min
H2H trace.H>LH/ s.t. H>H D I; (4.71)

13This constraint is needed to prevent the trivial solution U D 0. Alternatively, we could enforce
U>U D diag.jG1j; jG2j; : : : ; jGnj/. However, this is impossible, because we do not know jGij.

4.3 K-Means and Spectral Clustering 155

where H is the space of N � n matrices whose entries are either 0 or 1=
pjGij.

However, optimizing over the space H is also impossible, because we do not know
jGij. Thus, a commonly used approximation is to relax the requirement that the
columns of H be normalized indicator vectors and instead allow H to be any
orthogonal matrix. The optimization problem then becomes

min
H2RN�n

trace.H>LH/ s.t. H>H D I: (4.72)

We leave it as an exercise to the reader to show that the columns of the optimal
H� are exactly the n eigenvectors of L associated with the n smallest eigenvalues.
Once H� is known, one can further apply the K-means algorithm to cluster the row
vectors of H� to find the n clusters. This leads exactly to the spectral clustering
algorithm 4.5 with Y D H�>.

Normalized Cut and Normalized Spectral Clustering
Instead of normalizing an indicator vector of a subgraph A by its size jAj, we may
also normalize it by its volume, which is defined to be

Vol.A/ :D
X
i2A

dii; (4.73)

where dii is the ith diagonal entry of the degree matrix D. Similar to ratiocut, we
may seek a partition of the graph into n components by minimizing the cost:

Ncut.G1;G2; : : : ;Gn/
:D 1

2

nX
iD1

w.Gi;Gc
i /

Vol.Gi/
D

nX
iD1

cut.Gi;Gc
i /

Vol.Gi/
; (4.74)

which discounts groups that have small volume. This objective function is also
known as the “normalized cut.”

Directly solving the Ncut problem is highly combinatorial. To simplify the
expression and the problem, we may scale the indicator vectors by the volume of
each subgraph and define

f i D 1Gi=
p

Vol.Gi/; i D 1; : : : ; n: (4.75)

Let F D �f 1; f 2; : : : f n

�
. We leave it to the reader (see Exercise 4.13) to show that

Ncut.G1;G2; : : : ;Gn/ D trace.F>LF/ and F>DF D I: (4.76)

Therefore, the objective of Ncut can be rewritten as

min
F2F trace.F>LF/ s.t. F>DF D I; (4.77)

where F is the space of N � n matrices whose entries are either 0 or 1=
p

Vol.Gi/.

156 4 Nonlinear and Nonparametric Extensions

Notice that optimizing over the space F is impossible, because we do not know
Vol.Gi/. However, if we relax the requirement that F consist of scaled indicator
vectors and instead allow it to be any real matrix, then we can approximate the
solution to the Ncut problem by solving the following optimization problem:

min
F2RN�n

trace.F>LF/ s.t. F>DF D I: (4.78)

Notice that this is almost the same as the optimization problem (4.48) that we
have solved for LE,. The only difference is that in LE, we have the additional
constraint F>D1 D 0. Recall that the optimal solution for LE is given by the
generalized eigenvectors of .L;D/ corresponding to the second- to .n C 1/st-
smallest eigenvalues:

Lf D �Df : (4.79)

We leave it as an exercise to the reader to show that the optimal solution F� to (4.78)
consists of the first n generalized eigenvectors of .L;D/, or equivalently, the first n
eigenvectors of the matrix D�1L, since D�1Lf D �f . Alternatively, if we define
T D D1=2F, the optimization problem in (4.78) can be rewritten as

min
T2RN�n

trace.T>D�1=2LD�1=2T/ s.t. T>T D I: (4.80)

This is almost exactly the same optimization problem as we see in ratiocut (4.72),
except that we need to replace L with D�1=2LD�1=2. Unlike D�1L, the matrix
D�1=2LD�1=2 is a symmetrically normalized version of the Laplacian. The optimal
solution T� to the above program obviously consists of the first n eigenvectors of
D�1=2LD�1=2. Then we have F� D D�1=2T�.

Given the low-dimensional embedding Y D F�>, we can cluster the data into
n groups by applying K-means to the columns of Y. This algorithm is known as
the normalized cut (Ncut) method in the literature (Shi and Malik 2000), and is
summarized in Algorithm 4.6. Notice that the only difference between this algorithm
and Algorithm 4.5 is in step 3, where generalized eigenvectors are used instead of
eigenvectors.

Algorithm 4.6 (Normalized Cut)

Input: Number of clusters n and affinity matrix W2RN�N for points fxjgNjD1.
1: Construct an affinity graph G with weight matrix W.
2: Compute the degree matrix D D diag.W1/ and the Laplacian L D D �W.
3: Compute the n generalized eigenvectors of .L;D/ associated with its n smallest generalized

eigenvalues.
4: Let y1; : : : ; yN be the columns of Y

:D Œu1; : : : ; un�
> 2 R

n�N , where fuigniD1 are the
eigenvectors in step 3 normalized to unit Euclidean norm.

5: Cluster the points fyjgNjD1 into n groups using the K-means algorithm, Algorithm 4.4.
Output: The segmentation of the data into n groups.

4.3 K-Means and Spectral Clustering 157

Algorithm 4.7 (Normalized Spectral Clustering)

Input: Number of clusters n and affinity matrix W2RN�N for points fxjgNjD1.
1: Construct an affinity graph G with weight matrix W.
2: Compute the degree matrix D D diag.W1/ and the Laplacian L D D �W.
3: Compute the n eigenvectors of D�1=2LD�1=2 associated with its n smallest eigenvalues and

normalize so that each row of Œu1; : : : ; un� has unit norm.
4: Let y1; : : : ; yN be the columns of Y

:D Œu1; : : : ; un�
> 2 R

n�N , where fuigniD1 are the
eigenvectors in step 3 normalized to unit Euclidean norm.

5: Cluster the points fyjgNjD1 into n groups using the K-means algorithm, Algorithm 4.4.
Output: The segmentation of the data into n groups.

Sometimes Algorithm 4.5 is referred to as unnormalized spectral clustering,
while Algorithm 4.6 is referred to as normalized spectral clustering to emphasize
the fact that the former uses the unnormalized Laplacian L, while the latter uses the
normalized Laplacian D�1=2LD�1=2 (see, e.g., (von Luxburg 2007)). In this book,
we will reserve the name normalized spectral clustering to refer to yet another form
of normalization that has been proposed in the spectral clustering literature. Observe
from the relationship T� D D1=2F� that each row of T� is that of F� scaled by
the square root of the degree of the corresponding vertex. As a result, the rows
associated with vertices in the same group do not necessarily have the same scale.
It has been proposed in the literature (Ng et al. 2001) that one may normalize the
rows of T� to be of unit length and then cluster the normalized rows by K-means
to find the n subgraphs. One of the benefits of such a normalization is to make the
cluster centers well separated on the unit sphere: the cluster centers are all mutually
orthogonal to each other (as shown in (Ng et al. 2001)). We summarize this method
in Algorithm 4.7. This algorithm will be the default spectral clustering algorithm
used in most examples in this book. Readers who are interested in a more thorough
exposition and comparison of different variants of spectral clustering and want to
know more about their relationships are referred the survey paper (von Luxburg
2007).

In summary, the role of the Laplacian L is to map, through its null space, the
original data points fxjg � RD into a new set of points fyjg � Rn embedded in a low-
dimensional space. The original data may have complex mixed structures and deny
a simple clustering solution; but the structures of the low-dimensional embedded
data become much simpler, clustered around a few cluster centers. Hence they can
be grouped by a simple clustering method. Of course, there is no free lunch. The
difficulty in clustering the original data needs to be alleviated through the design
of a good affinity measure W D Œwij�. As can be expected, the performance of the
spectral clustering method highly depends on the design of W, as we will see in
the example below. In general, there is no theory that characterizes precisely how
the choice of the affinity measure influences the resulting clusters. Nevertheless, in
Chapter 8 we will see that when the clusters correspond to different low-dimensional
subspaces, one can design affinity measures in a principled manner and with good
theoretical guarantees.

158 4 Nonlinear and Nonparametric Extensions

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

(a) K-means: 20.0% clustering error
0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

12

14

16

18

20

(b) Spectral Clustering with K-NN affinity:
7.5% clustering error

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

(c) Spectral Clustering with Gaussian affin-
ity: 9.0% clustering error

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20

(d) Spectral Clustering with ε-neighborhood
affinity: 13.5% clustering error

Fig. 4.12 Face clustering results given by K-means and spectral clustering with different affinity
graphs. The data contains 200 face images of 20 individuals from the AT&T data set, and is
projected to dimension 50 using PCA. The clustering results given by the algorithms versus the
index of the face images (10 images per class) are plotted, and the clustering errors are reported in
the captions.

Example 4.23 (Spectral Clustering of Face Images under Varying Pose). In
this example, we apply the normalized spectral clustering algorithm, Algorithm 4.7,
to the same subset of the AT&T face data set we used in Example 4.17, which
consisted of face images of 20 individuals, with 10 poses for each individual. We
first apply PCA to the images to reduce the dimension of the data to D D 50. We
then apply spectral clustering to the PCA coefficients. We test three popular ways
of building the affinity matrix for spectral clustering. The first one uses a K-NN
affinity in which wij D 1 if point xi is a K-NN of point xj and wij D 0 otherwise.
In the experiments, we set K D 8. The second one uses a Gaussian affinity wij D
exp.�kxi�xjk22=2�2/. In order for the parameter � to be invariant to the scale of the
data, data points xi and xj are normalized to be of unit `2 norm. In the experiments,
we set � D 1:0. For the third one, we use an "-neighborhood affinity in which
wij D 1 if kxi� xjk2
 " and wij D 0 otherwise. Again, we use the normalized data,
and choose " D 1:0. The clustering results of different clustering methods are given
in Figure 4.12. For ease of comparison, we also include the results for K-means
from Figure 4.11(b). Observe how all variants of the spectral clustering algorithm

4.3 K-Means and Spectral Clustering 159

Table 4.1 Clustering errors obtained by applying K-means and spectral clustering
to subjects (20 and 21, or 37 and 38) from the extended Yale B data set.

Methods Subjects 20, 21 Subjects 37, 38

K-means 50.0% 47.7%

Spectral clustering with kNN graph 10.2% 42.2%

Spectral clustering with Gaussian graph 48.4% 49.2%

Spectral clustering with neighborhood graph 47.7% 48.4%

improve over the K-means algorithm. In particular, spectral clustering with the K-
NN affinity is able to reduce the error from 20.0% to 7.5%. As argued before, this
is expected, since spectral clustering is able to discover nonlinear structures in the
data and use them to produce a low-dimensional embedding where the clusters can
be found more easily.

Example 4.24 (Spectral Clustering of Face Images under Varying Illumina-
tion) In this example, we apply the normalized spectral clustering algorithm,
Algorithm 4.7, to the same subset of the extended Yale B data set we used in
Example 4.18, which consisted of face images of two subjects (20 and 21, or
37 and 38), with 64 different illumination conditions per subject. We first apply
PCA to the images to reduce the dimension of data to D D 20 and normalize
the PCA coefficients to have unit `2 norm. We then apply spectral clustering to
the normalized coefficients. We test the three popular ways of building the affinity
matrix for spectral clustering. The first one uses a K-NN affinity in which wij D 1

if point xi is a K-NN of point xj and wij D 0 otherwise. In the experiments, we set
K D 4. The second one uses a Gaussian affinity wij D exp.�kxi�xjk22=2�2/. In the
experiments, we set � D 0:3. For the third one, we use an "-neighborhood affinity
in which wij D 1 if kxi � xjk2
 " and wij D 0 otherwise. We choose " D 1:2.

The clustering errors are shown in Table 4.1. For ease of comparison, we also
include the results for K-means from Example 4.18. We can see that spectral
clustering improves with respect to K-means, since the spectral embedding is able to
better capture the geometry of the data. However, the results are still unsatisfactory.
This is because face images of one individual under varying illumination live in a
subspace. While local Euclidean distances are better at capturing the structure of
the data than Euclidean distances, local distances can still fail near the intersections
of the subspaces. For example, two points near the intersection could be very close
to each other, but be in different subspaces. This happens typically for underlit face
images, which are all dark for all individuals and hence close to each other. This
suggests the need for better methods to cluster data in multiple subspaces. This will
be the subject of Part II of this book.

160 4 Nonlinear and Nonparametric Extensions

4.4 Bibliographic Notes

Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a
low-dimensional representation for a set of points lying in a nonlinear manifold
embedded in a high-dimensional space. This question of how to detect and
represent low-dimensional structure in high-dimensional data is fundamental to
many disciplines, and several attempts have been made in different areas to address
this question. For example, the number of pixels in an image can be rather large, yet
most computer vision models use only a few parameters to describe the geometry,
photometry, and dynamics of the scene. Since most data sets often have fewer
degrees of freedom than the dimension of the ambient space, NLDR is fundamental
to many problems in computer vision, machine learning, and pattern recognition.

When the data live in a low-dimensional linear subspace of a high-dimensional
space, simple linear methods such as principal component analysis (PCA)
(Hotelling 1933) and metric multidimensional scaling (MDS) (Cox and Cox
1994) can be used to learn the subspace and its dimension. However, when
the data lie in a low-dimensional submanifold, their structure may be highly
nonlinear; hence linear dimensionality reduction methods are likely to fail. This
has motivated extensive efforts toward developing NLDR algorithms for computing
low-dimensional embeddings. One of the first generalizations of PCA to nonlinear
manifolds is the work of (Hastie 1984) and (Hastie and Stuetzle 1989) on principal
curves and surfaces. The principal curve of a data set, which generalizes the notion
of a principal component, is a curve that passes through the middle of the data
points and minimizes the sum of squared distances from the data points to the
curve. A more general approach, however, is to find a nonlinear embedding map,
or equivalently a kernel function, such that the embedded data lie on a linear
subspace. Such methods are referred to as nonlinear kernel PCA (Schölkopf et al.
1998; Schölkopf and Smola 2002). A huge family of such algorithms computes a
low-dimensional representation from the eigenvectors of a matrix constructed from
the local geometry of the manifold. Such algorithms include ISOMAP (Tenenbaum
et al. 2000), locally linear embedding (LLE) (Roweis and Saul 2000, 2003), and its
variants such as Laplacian eigenmaps (LE) (Belkin and Niyogi 2002), Hessian LLE
(Donoho and Grimes 2003), local tangent space alignment (LTSA) (Zhang and Zha
2005), maximum variance unfolding (Weinberger and Saul 2004), and conformal
eigenmaps (Sha and Saul 2005). For a survey of many of these algorithms, we refer
the reader to (Burges 2005; Lee and Verleysen 2007; Burges 2010).

When the data points are not drawn from a single subspace or submanifold, but
from a mixture of multiple low-dimensional structures, the aforementioned methods
may fail. The K-means algorithm, which goes back to (Lloyd 1957; Forgy 1965;
Jancey 1966; MacQueen 1967), addresses this problem by assuming arguably the
simplest model for each cluster: data points in each cluster are distributed around a
central point. The K-means algorithm then treats the estimation of multiple models

4.5 Exercises 161

as a “chicken-and-egg” problem, which is solved iteratively by alternating between
assigning points to clusters and estimating a center for each cluster.

If each cluster has a more sophisticated structure, more advanced methods are
needed. In particular, there exists a very long history and rich literature about
the connections between data clustering and graph partitioning methods. The
relationships between connectivity of a graph and its Laplacian has been well known
as spectral graph theory. A standard reference on this topic is (Chung 1997). There
are also several normalized spectral clustering methods that aim to give more stable
clusters for real data, such as Shi and Malik (Shi and Malik 2000) and Ng, Weiss,
and Jordan (Ng et al. 2001). The survey paper of von Luxburg (von Luxburg 2007)
gives a more thorough review and comparison of all these methods. A more rigorous
statistical justification of the spectral clustering method is given by (Shi et al. 2008),
where a more thorough analysis reveals which eigenvectors of the affinity matrix
should be used and under what conditions the clustering information can be fully
recovered from the data. In Chapter 7 and Chapter 8, we will systematically study
how to introduce good affinity matrices so that the spectral method can correctly
cluster data that belong to multiple subspaces.

4.5 Exercises

Exercise 4.1 Show that the following functions are positive semidefinite kernels:

1. �.x; y/ D �.x/>�.y/ for some embedding function � W RD ! RM .
2. �P.x; y/ D .x>y/n for fixed n 2 N.

3. �G.x; y/ D exp
� � kx�yk2

2�2

�
for fixed � > 0.

Exercise 4.2 Consider the polynomial kernel in Œ�1; 1�2 � Œ�1; 1�2 defined as
�.x; y/ D .x>y/2 D .x1y1 C x2y2/2. Define the operator

L.f /.x/ D
Z
�.x; y/f .y/dy: (4.81)

Show that the eigenfunctions of L corresponding to nonzero eigenvalues are of the
form .x/ D c1x21 C c2x1x2 C c3x22. Show that there are three such eigenfunctions,
where .c1; c2; c3/ and � are obtained from

2
4
4=5 0 4=9

0 8=9 0

4=9 0 4=5

3
5
2
4

c1
c2
c3

3
5 D �

2
4

c1
c2
c3

3
5 : (4.82)

Exercise 4.3 (Karhunen–Loève Transform) The Karhunen–Loève transform
(KLT) can be thought of as a generalization of PCA from a (finite-dimensional)

162 4 Nonlinear and Nonparametric Extensions

random vector x 2 RD to an (infinite-dimensional) random process x.t/; t 2 R,
where x.t/ is a square-integrable, zero-mean, second-order stationary random
process whose auto correlation function is defined as �.t; 	/

:D EŒx.t/x.	/� for
all t; 	 2 R. Assume that for some C > 0 and almost every .t; 	/, we have
j�.t; 	/j
 C.

1. Show that �.t; 	/ is a positive definite kernel, i.e., show that for all y.t/,’
y.t/�.t; 	/y.	/dtd	 	 0.

2. Show that �.t; 	/ has a family of orthonormal eigenfunctions f�i.t/g1iD1 that are
defined as

Z
�.t; 	/�i.	/ d	 D �i�i.t/; i D 1; 2; : : : : (4.83)

3. Show that with respect to the eigenfunctions, the original random process can be
decomposed as

x.t/ D
1X

iD1
xi�i.t/; (4.84)

where fxig1iD1 is a set of uncorrelated random variables.

Exercise 4.4 (Full Rank of Gaussian RBF Gram Matrices) Suppose that you are
given N distinct points fxjgNjD1. If � ¤ 0, then the matrix K 2 RN�N given by

Kij D exp

�
�kxi � xjk2

2�2

(4.85)

has full rank.

Exercise 4.5 Let fxj 2 RDgNjD1 be a set of points that you believe live in a manifold
of dimension d. Imagine you have applied PCA, KPCA with kernel �, and LLE with
K-NN to the data. Assume now that you are given a new point x 2 RD and you wish
to find its corresponding point y 2 Rd according to each of the three methods. How
would you compute y 2 Rd without applying PCA, KPCA, or LLE from scratch to
the N C 1 points? Under what conditions is the solution you propose equivalent to
applying PCA, KPCA, or LLE to the N C 1 points?

Exercise 4.6 Implement the KPCA algorithm, Algorithm 4.1, for an arbitrary
kernel function kernel.m. The format of your function should be as follows.

4.5 Exercises 163

Function [y]=kpca(x,d,kernel,params)

Parameters
x D � N matrix whose columns are the data points
d dimension of the low-dimensional embedding

kernel name of the MATLAB function that computes the kernel k =
kernel(x1,x2,params)

params parameters needed by the kernel function, such as the degree in the
polynomial kernel or the standard deviation in the Gaussian kernel

Returned values
y d � N matrix containing the projected coordinates

Description
Computes the kernel principal components of a set of points

Also implement the functions k = poly_kernel(x1,x2,n) for the poly-
nomial kernel �.x1; x2/ D .x>1 x2/n and k = gauss_kernel(x1,x2,sigma)
for the Gaussian kernel �.x1; x2/ D exp.�kx1 � x2k2=�2/, where k 2 RN�N and
x1;x2 2 RD�N . Apply your function to the synthetic data generated using the code
available at http://www.kernel-machines.org/code/kpca_toy.m.

Exercise 4.7 Implement the LLE algorithm, Algorithm 4.2. The format of your
function should be as follows.

Function [y]=lle(x,d,K)

Parameters
x D � N matrix whose columns are the data points
d dimension of the low-dimensional embedding
K number of nearest neighbors
Returned values
y d � N matrix containing the projected coordinates
Description
Computes the LLE embedding of a set of points

Apply your function to the S-curve and Swiss roll data sets generated using the
code available at http://www.cs.nyu.edu/~roweis/lle/code/scurve.m and http://www.
cs.nyu.edu/~roweis/lle/code/swissroll.m. Compare your results to those obtained
using the authors’ code of the LLE algorithm, which is available at http://www.
cs.nyu.edu/~roweis/lle/code/lle.m.

Exercise 4.8 Implement the LE algorithm, Algorithm 4.3. The format of your
function should be as follows.

http://www.kernel-machines.org/code/kpca_toy.m
http://www.cs.nyu.edu/~roweis/lle/code/scurve.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/lle.m
http://www.cs.nyu.edu/~roweis/lle/code/lle.m

164 4 Nonlinear and Nonparametric Extensions

Function [y]=le(x,d,K,sigma)

Parameters
x D � N matrix whose columns are the data points
d dimension of the low-dimensional embedding
K number of nearest neighbors

sigma standard deviation of the Gaussian kernel
Returned values

y d � N matrix containing the projected coordinates
Description
Computes the LE embedding of a set of points

Apply your function to the S-curve and Swiss roll data sets generated using the
code available at http://www.cs.nyu.edu/~roweis/lle/code/scurve.m and http://www.
cs.nyu.edu/~roweis/lle/code/swissroll.m

Exercise 4.9 Apply PCA, KPCA, LE, and LLE to the frontal face images of
subjects 20 and 21 in the extended Yale B data set to obtain a two-dimensional
embedding such as the one shown in Figure 4.9. In each figure, use two different
colors to distinguish the images associated with the two different subjects. For
KPCA, vary the parameter � and comment on the effect of this parameter on the
resulting embedding. For LLE, vary the parameter K and comment on the effect of
this parameter on the resulting embedding. For LE, vary both K and � and comment
on the effect of this parameter on the resulting embedding.

Exercise 4.10 Let f .�1; : : : ;�n/ be the objective function in (4.52). Show that the
iterations of Algorithm 4.4 are such that f .�.kC1/

1 ; : : : ;�
.kC1/
n /
 f .�.k/

1 ; : : : ;�
.k/
n /.

Exercise 4.11 [K-Means for Image Segmentation] Apply the K-means algorithm
to the segmentation of color (RGB) images. Play with the number of segments and
the choice of the window size (i.e., instead of using only the RGB values at the
pixel, use also the RGB values in a window of surrounding pixels concatenated as a
feature vector).

Exercise 4.12 Let QL be the Laplacian of a graph with n connected components. Let
L be a perturbed graph Laplacian. Show that

�nC1 	 Q�nC1 � kL � QLk2; (4.86)

where Q�nC1 and �nC1 are the .nC 1/st eigenvalues of QL and L, respectively.

Exercise 4.13 Let G be an undirected weighted graph with vertex set V D
f1; 2; : : : ;Ng, edge set E D f.i; j/ W i; j 2 Vg, and weights wij D wji 	 0. Let
W 2 RN�N be the weighted adjacency matrix, D 2 RN�N the (diagonal) degree
matrix with entries di DPN

jD1 wij, and L D D �W 2 RN�N the Laplacian matrix.
Let G1; : : : ;Gn be a partition of G, that is G D G1 [� � � [Gn, and Gi \ Gj D ;,
8i ¤ j D 1; : : : ; n.

http://www.cs.nyu.edu/~roweis/lle/code/scurve.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m

4.5 Exercises 165

1. Let H 2 RN�n be defined as in (4.64). Show that h>i Lhi D Cut.Gi;Gc
i /jGij and

ratiocut.G1; � � � ;Gn/
:D

nX
iD1

Cut.Gi;Gc
i /

jGij D trace.H>LH/: (4.87)

2. Show that the optimal solution to the relaxed ratiocut problem (4.72) consists of
the first n eigenvectors of L.

3. Let F 2 R
N�n be defined as in (4.75). Show that F>DF D I and

Ncut.G1; � � � ;Gn/
:D

nX
iD1

Cut.Gi;Gc
i /

Vol.Gi/
D trace.F>LF/: (4.88)

4. Show that the optimal solution to the relaxed Ncut problem (4.78) consists of the
first n eigenvectors of D�1L.

5. Let y D Œy1; : : : ; yN �
> 2 RN . Show that

y>D�1=2LD�1=2y D 1

2

NX
iD1

NX
jD1

wij

 yip
dii
� yjp

djj

�2
: (4.89)

6. Show that D�1=2LD�1=2 is symmetric positive semidefinite.

Exercise 4.14 Implement the spectral clustering, normalized cut, and normalized
spectral clustering algorithms, Algorithms 4.5, 4.6, 4.7. The format of your function
should be as follows.

Function [segment]=spectral_clustering(x,n,K,sigma,method)
Parameters

x D � N matrix whose columns are the data points
n number of groups
K number of nearest neighbors

sigma standard deviation of the Gaussian kernel
method “unnormalized,” “Ncut,” or “normalized”

Returned values
segment 1 � N vector containing the group number associated with each data

point
Description
Clusters the data using the spectral clustering algorithm

Compare the three variants of spectral clustering on the two circles data set in
Figure 4.10(b) for different choices of the parameter. Comment on the effect of K
and � .

Exercise 4.15 Apply the K-means, spectral clustering, normalized cut, and nor-
malized spectral clustering algorithms to the images for individuals 1 and 20 in the

166 4 Nonlinear and Nonparametric Extensions

AT&T face data set used in Examples 4.17 and 4.23. Apply PCA to the images to
reduce the dimension of the data to d D 50 and then apply each algorithm to the
PCA coefficients. For each spectral clustering algorithm, use three affinity graphs:
K-NN affinity, "-neighborhood affinity, and Gaussian affinity. Vary the parameters
of each method K, ", and � and comment on the effect of these parameters on the
quality of the clustering results.

4.A Laplacian Eigenmaps: Continuous Formulation

Laplacian eigenmaps (LE) (Belkin and Niyogi 2002) is a popular dimensionality
reduction method that aims to capture the geometry of a manifold by finding a low-
dimensional representation such that nearby points in the manifold are mapped to
nearby points in the low-dimensional embedding. In this chapter, we have seen
how such a goal can be achieved for a collection of sample points drawn from
the manifold. Nevertheless, the original derivation of LE draws inspiration from
a similar goal for embedding a continuous manifold into a (low-dimensional)
Euclidean space. To complement the discrete LE method described in this chapter,
we describe LE in the continuous setting in this appendix.

In the continuous setting, the goal of LE is to find d functions from a compact
manifold M to the real line R that preserve locality, i.e., functions that map nearby
points in the manifold to nearby points on the real line. When M D R

D, we have
that

jf .x/ � f .y/j D jhrf .x/; .x � y/i C o.kx � yk/j

 krf .x/kkx � yk C o.kx � yk/:

Therefore, the function f preserves locality when krf .x/k is small for all x. This
suggests choosing

R krf .x/k2dx as a measure of whether locality is preserved on
average.

More generally, let f W M ! R be a map from a compact manifold M to the
real line and assume that it is twice differentiable, i.e., f 2 C2.M/. We can find a
function that maps nearby points in the manifold to nearby points on the real line by
solving the following optimization problem:

min
f2C2.M/

Z

M
krf .x/k2 dx s.t. kfk2 D

Z

M
f .x/2dx D 1; (4.90)

whererf 2 TxM is the gradient of f , and the constraint kfk D 1 is added to prevent
the trivial solution f � 0. We can solve the above optimization problem using the
method of Lagrange multipliers. The Lagrangian function is given by

4.A Laplacian Eigenmaps: Continuous Formulation 167

L .f ; �/ D
Z

M

�krf .x/k2 C �.f 2.x/� 1/�dx: (4.91)

Using calculus of variations, we can compute the gradient of L with respect to f as

rfL D �2�f C 2�f ; (4.92)

where� is the Laplace–Beltrami operator on M, which can be expressed in tangent

coordinates zi as �f DPi
@2f
@z2i

. Setting the gradient to zero, we obtain

�f D �f I (4.93)

hence f is an eigenfunction of the linear operator � with associated eigenvalue �.
Notice that the optimal value of the problem in (4.90) is the associated eigenvalue:

Z

M
krf .x/k2 dx D

Z

M
�f .x/f .x/ dx D �

Z

M
f 2.x/ dx D �: (4.94)

Therefore, we conclude that the function f that solves the optimization problem
in (4.90) is the eigenfunction of � associated with its smallest eigenvalue. It is
easy to see that such an eigenfunction is the constant function f .x/ � c, which is
associated with the zero eigenvalue. This function maps all points in the manifold
M to a single point on the real line R, which is a trivial embedding.

To find a nontrivial embedding, we need to find eigenfunctions associated with
nonzero eigenvalues. These eigenfunctions must be orthogonal to the constant
function, i.e., their integral must be zero. Therefore, such eigenfunctions must
satisfy

�f D �f ;
Z

M
f .x/ dx D 0;

Z

M
f .x/2dx D 1: (4.95)

Following ideas similar to those of the proof of the PCA theorem in Chapter 2,
but adapted to functional spaces, one can show that the optimal d-dimensional
embedding is given by the d eigenfunctions of the Laplace–Beltrami operator �
corresponding to the second- to .d C 1/st-smallest eigenvalues.

Notice that the Laplacian embedding that we introduced in this chapter is
essentially a discrete version of the above continuous Laplacian embedding. In
particular, if fxjgNjD1 is a set of points sampled from the manifold M and yj D f .xj/

for j D 1; : : : ;N, then for appropriately chosen weights wij, the objective function
and the constraints can be discretized as

1

2

Z

M
krf .x/k2 dx � 1

2

NX
iD1

NX
jD1

wij.yi � yj/
2 D y>Ly (4.96)

168 4 Nonlinear and Nonparametric Extensions

Z

M
f .x/dx �

NX
jD1

yjdjj D y>D1 (4.97)

Z

M
f .x/2dx �

NX
jD1

y2j djj D y>Dy; (4.98)

where L D D � W is the discrete graph Laplacian and D D diagfdjjg is
the diagonal weight matrix D with djj D P

i wij. Thus, one can see that the
constraints we introduced in equation (4.47) are essentially discretized versions of
the last two constraints in (4.95), and that the diagonal weight matrix D in (4.47)
precisely corresponds to the density of samples on the manifold according to the
measure dx.

Part II
Modeling Data with Multiple Subspaces

Chapter 5
Algebraic-Geometric Methods

As long as algebra and geometry have been separated, their progress has been slow and
their uses limited; but when these two sciences have been united, they have lent each mutual
forces, and have marched together towards perfection.

—Joseph Louis Lagrange

In this chapter, we consider a generalization of PCA in which the given sample
points are drawn from an unknown arrangement of subspaces of unknown and
possibly different dimensions. We first present a series of simple examples that
demonstrate that the subspace clustering problem can be solved noniteratively via
certain algebraic methods. These solutions lead to a general-purpose algebrogeo-
metric algorithm for subspace clustering. We conveniently refer to the algorithm as
algebraic subspace clustering (ASC). To better isolate the difficulties in the general
problem, we will develop the algorithm in two steps. The first step is to develop
a basic algebraic clustering algorithm by assuming a known number of subspaces;
and in the second step, we deal with an unknown number of subspaces and develop
a recursive version of the algebraic subspace clustering algorithm. The algorithms
in this chapter will be derived under ideal noise-free conditions and assume no
probabilistic model. Nevertheless, the algebraic techniques involved are numerically
well conditioned, and the algorithms are designed to tolerate moderate amounts of
noise. Dealing with large amounts of noise or even outliers will be the subject of
Chapter 6 and Chapter 8.

In order to make the material accessible to a larger audience, in this chapter we
focus primarily on the development of a (conceptual) algorithm. We leave a more
formal study of subspace arrangements and rigorous derivation of all their algebraic
properties that support the algorithms of this chapter to Appendix C.

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_5

171

172 5 Algebraic-Geometric Methods

5.1 Problem Formulation of Subspace Clustering

In mathematics (especially in algebraic geometry), a collection of subspaces is
formally known as a subspace arrangement:

Definition 5.1 (Subspace Arrangement). A subspace arrangement is defined as a
finite collection of n linear subspaces in RD: A :D fS1; : : : ; Sng. The union of the
subspaces is denoted by ZA

:D S1 [S2 [� � � [Sn.

For simplicity, we will use the term “subspace arrangement” to refer to both A
and ZA.

Imagine that we are given a set of sample points drawn from an arrangement
of an unknown number of subspaces that have unknown and possibly different
dimensions. Our goal is to simultaneously estimate these subspaces and cluster the
points into their corresponding subspaces. Versions of this problem are known in
the literature as subspace clustering, multiple eigenspaces (Leonardis et al. 2002),
and mixtures of principal component analyzers (Tipping and Bishop 1999a), among
others. To be precise, we will first state the problem that we will study in this
chapter, which we refer to as “multiple-subspace clustering,” or simply as “subspace
clustering,” to be suggestive of the problem of fitting multiple subspaces to the data.

Notice that in the foregoing problem statement, we have not yet specified the
objective for the optimality of the solution. We will leave the interpretation of
that open for now and will delay the definition until the context is more specific.
Although the problem seems to be stated in a purely geometric fashion, it is easy
to reformulate it in a statistical fashion. For instance, we have assumed here that
the subspaces do not have to be orthogonal to each other. In a statistical setting,
this is essentially equivalent to assuming that these subspaces are not necessarily
uncorrelated. Within each subspace, one can also relate all the geometric and
statistical notions associated with “principal components” in the classical PCA: the
orthonormal basis chosen for each subspace usually corresponds to a decomposition
of the random variable into uncorrelated principal components conditioned on the
subspace.

5.1.1 Projectivization of Affine Subspaces

Note that a linear subspace always passes through the origin, but an affine subspace
does not. So, would the above problem statement lose any generality by restricting
it to linear subspaces? The answer to this question is no. In fact, every proper affine
subspace in RD can be converted to a proper linear subspace in RDC1 by lifting every
point of it through the so-called homogeneous coordinates:

Definition 5.2 (Homogeneous Coordinates). The homogeneous coordinates of a
point x D Œx1; x2; : : : ; xD�

> 2 R
D are defined as Œx1; x2; : : : ; xD; 1�

>.

5.1 Problem Formulation of Subspace Clustering 173

Given a set of points in an affine subspace, it is easy to prove that their
homogeneous coordinates span a linear subspace. More precisely:

Fact 5.3 (Homogeneous Representation of Affine Subspaces) The homogeneous
coordinates of points on a d-dimensional affine subspace in RD span a .d C 1/-
dimensional linear subspace in RDC1. This representation is one-to-one.

Figure 5.1 shows an example of the homogeneous representation of three lines
in R2. The points on these lines span three linear planes in R3 that pass through the
origin.

Definition 5.4 (Central Subspace Arrangements). We say that an arrangement of
subspaces is central if every subspace passes through the origin, i.e., every subspace
is a linear subspace.

According to this definition, the homogeneous representation of an (affine) sub-
space arrangement in R

D gives a central subspace arrangement in R
DC1. Therefore,

Problem 5.1 does not lose any generality. From now on, we may assume that our
data set is drawn from a central subspace arrangement, in which all subspaces are
linear, not affine, subspaces, unless otherwise stated. In a statistical setting, this is
equivalent to assuming that each subset of samples has zero mean.

R
2

R
3 0

L1

L2
L3

Fig. 5.1 Lifting of three (affine) lines in R
2 to three linear subspaces in R

3 via the homogeneous
representation.

Problem 5.1 (Multiple-Subspace Clustering).

Given a set of sample points X D fxj 2 RDgNjD1 drawn from n � 1 distinct linear subspaces
Si � R

D of dimensions di < D, i D 1; 2; : : : ; n, identify each subspace Si without knowing which
sample points belong to which subspace. More specifically, by identifying the subspaces, we mean
the following:

1. Identifying the number of subspaces n and their dimensions di D dim.Si/;
2. Identifying an orthonormal basis for each subspace Si (or equivalently a basis for its orthogonal

complement S?

i);
3. Clustering the N points into the subspaces to which they belong.

174 5 Algebraic-Geometric Methods

5.1.2 Subspace Projection and Minimum Representation

The are many cases in which the given data points live in a space of very high
dimension. For instance, in many computer vision problems, the dimension of the
ambient space D is the number of pixels in an image, which is normally in the range
106. In such cases, the complexity of any subspace clustering solution becomes
computationally prohibitive. It is therefore important for us to seek situations in
which the dimension of the ambient space can be significantly reduced.

Fortunately, in most practical applications, we are interested in modeling the data
by subspaces of relatively small dimensions .d � D/. Thus one can avoid dealing
with high-dimensional data sets by first projecting them onto a lower-dimensional
(sub)space. An example is shown in Figure 5.2, where two lines L1 and L2 in R3

are projected onto a plane P. In this case, clustering the two lines in the three-
dimensional space R3 is equivalent to clustering the two projected lines in the two-
dimensional plane P.

In general, we will distinguish between two different kinds of “projections.”
The first kind corresponds to the case in which the span of all the subspaces is a
proper subspace of the ambient space, i.e., span.[n

iD1Si/ � RD. In this case, one
may simply apply PCA (Chapter 2) to eliminate the redundant dimensions. The
second kind corresponds to the case in which the largest dimension of the subspaces,
denoted by dmax, is strictly less than D � 1. When dmax is known,1 one may choose
a .dmaxC1/-dimensional subspace P such that by projecting RD onto this subspace,

�P W x 2 R
D 7! x0 D �P.x/ 2 P; (5.1)

+

+

+

+ +

+

+

+

+ +
++ + + ++

P

R
3

L1 L2

l1

l2

o

Fig. 5.2 Samples on two 1-dimensional subspaces L1; L2 in R3 projected onto a 2-dimensional
plane P. The number and separation of the lines is preserved by the projection.

1For example, in 3D motion segmentation from affine cameras, it is known that the subspaces have
dimension at most four (Costeira and Kanade 1998; Kanatani 2001; Vidal and Hartley 2004).

5.1 Problem Formulation of Subspace Clustering 175

the dimension of each original subspace Si is preserved,2 and there is a one-to-
one correspondence between Si and its projection—no reduction in the number of
subspaces n,3 as stated in the following theorem.

Theorem 5.5 (Segmentation-Preserving Projections). If a set of vectors fxjg all lie
in n linear subspaces of dimensions fdigniD1 in RD, and if �P represents a linear
projection onto a subspace P of dimension D0, then the points f�P.xj/g lie in at most
n linear subspaces of P of dimensions fd0i.
 di/gniD1. Furthermore, if D > D0 >
dmax, then there is an open and dense set of projections that preserve the number
and dimensions of the subspaces.

Thanks to Theorem 5.5, if we are given a data set X drawn from an arrangement
of low-dimensional subspaces in a high-dimensional space, we can first project X
onto a generic subspace of dimension D0 D dmax C 1 and then model the data with
a subspace arrangement in the projected subspace, as illustrated by the following
sequence of steps:

X � RD �P�����! X0 � P �! [n
iD1�P.Si/

��1
P�����! [n

iD1Si:
(5.2)

However, even though the set of .dmaxC1/-dimensional subspaces P � R
D that

preserve the separation and dimension of the subspaces is an open and dense set, it
remains unclear as to what a “good” choice for P is, especially when there is noise
in the data. For simplicity, one may randomly select a few projections and choose
the one that results in the smallest fitting error. Another alternative is to apply PCA
regardless and project the data onto the .dmaxC1/-dimensional principal subspace.

One solution for choosing P is attributed to (Broomhead and Kirby 2000).
The technique was originally designed for dimension reduction of differential
manifolds.4 We here adopt it for subspace arrangements. Instead of directly using
the original data matrix X D Œx1; x2; : : : ; xN �, we gather the vectors (also called
“secants”) defined by every pair of points xi; xj 2 X,

yij
:D xi � xj 2 R

D; (5.3)

and construct a matrix consisting of yij as columns:

Y
:D Œy12; y13; : : : ; y.N�1/N � 2 R

D�M; (5.4)

2This requires that P be transversal to each S?

i , i.e., spanfP; S?

i g D RD for every i D 1; 2; : : : ; n.
Since n is finite, this transversality condition can be easily satisfied. Furthermore, the set of
positions for P that violate the transversality condition is only a zero-measure closed set (Hirsch
1976).
3This requires that all �P.Si/ be transversal to each other in P, which is guaranteed if we require P
to be transversal to S?

i \ S?

i0 for i; i0 D 1; 2; : : : ; n. All P’s that violate this condition form again
only a zero-measure set.
4It is essentially based on Whitney’s classical proof of the fact that every differential manifold can
be embedded in a Euclidean space.

176 5 Algebraic-Geometric Methods

where M D .N � 1/N=2. Then the principal components of Y span the subspace in
which the distance (and hence the separateness) between the projected points is pre-
served the most. Therefore, the optimal subspace that maximizes the separateness
of the projected points is given by the dmaxC1 principal components of Y. More
precisely, if Y D U†V> is the SVD of Y, then the optimal subspace P is given by
the first dmaxC1 columns of U.

5.2 Introductory Cases of Subspace Clustering

Notice that to apply the K-subspaces and EM algorithms, we need to know
three things in advance: the number of subspaces, their dimensions, and initial
estimates of the bases of the subspaces. In practice, this may not be the situation,
and many difficulties may arise. The optimizing process in both algorithms is
essentially a local iterative descent scheme. If the initial estimates of the bases
of the subspaces are far off from the global optimum, the process is likely to
converge to a local minimum. More seriously, if the number of subspaces and
their dimensions were wrong, the process might never converge or might converge
to meaningless solutions. Furthermore, when the number and dimensions of the
subspaces are unknown and the samples are noisy (or contaminated by outliers),
model selection becomes a much more elusive problem, as we have alluded to earlier
in the introductory chapter.

In this and the next few chapters, we will systematically address these difficulties
and aim to arrive at global noniterative solutions to subspace clustering that require
less or none of the above initial information. Before we delve into the most general
case, we first examine, in this section, a few important special cases. The reason
is twofold: firstly, many practical problems fall into these cases already and the
simplified solutions can be directly applied; and secondly, the analysis of these
special cases offers some insights into a solution to the general case.

5.2.1 Clustering Points on a Line

Let us begin with an extremely simple clustering problem: clustering a collection
of points fx1; x2; : : : ; xNg on the real line R around a collection of cluster centers
f�1; �2; : : : ; �ng. In spite of its simplicity, this problem shows up in various
clustering problems. For instance, in intensity-based image segmentation, one
wants to separate the pixels of an image into different regions, with each region
corresponding to a significantly different level of intensity (a one-dimensional
quantity). More generally, the point clustering problem is very much at the heart of
popular clustering techniques such as K-means and spectral clustering for clustering
data in spaces of any dimension (which we have discussed at the end of Chapter 4).
Furthermore, as we will see throughout this chapter (and the book), the same basic

5.2 Introductory Cases of Subspace Clustering 177

ideas introduced through this simple example can also be applied to clustering
points from arrangements of more complex structures such as lines, hyperplanes,
subspaces, and even surfaces.

In the sequel, we introduce a not so conventional solution to the point clustering
problem. The new formulation on which the solution is based is neither geometric
(like K-subspaces) nor statistical (like EM). Instead, the solution is purely algebraic.

Let x 2 R be any of the data points. In an ideal situation in which each data point
perfectly matches one of the cluster centers, we know that there exists a constant �i

such that x D �i. This means that

.x D �1/ _ .x D �2/ _ � � � _ .x D �n/: (5.5)

The _ in the preceding equation stands for the logical connective “or.” This is
equivalent to that x satisfies the following polynomial equation of degree n in x:

pn.x/
:D .x � �1/.x � �2/ � � � .x � �n/ D

nX
kD0

ckxn�k D 0: (5.6)

Since the polynomial equation pn.x/ D 0 must be satisfied by every data point, we
have that

Vn cn
:D

2
6664

xn
1 xn�1

1 � � � x1 1
xn
2 xn�1

2 � � � x2 1
:::

:::
:::
:::

xn
N xn�1

N � � � xN 1

3
7775

2
6664

1

c1
:::

cn

3
7775 D 0; (5.7)

where Vn 2 RN�.nC1/ is a matrix of embedded data points, and cn 2 RnC1 is the
vector of coefficients of pn.x/.

In order to determine the number of groups n and then the vector of coefficients cn

from (5.7), notice that for n groups, there is a unique polynomial of degree n whose
roots are the n cluster centers. Since the coefficients of this polynomial must satisfy
equation (5.7), in order to have a unique solution we must have that rank.Vn/ D n.
This rank constraint on Vn 2 RN�.nC1/ enables us to determine the number of groups
n as5

n
:D minfi W rank.Vi/ D ig: (5.8)

Example 5.6 (Two Clusters of Points). The intuition behind this formula
is as follows. Consider, for simplicity, the case of n D 2 groups, so that

5Notice that the minimum number of points needed is N � n, which is linear in the number of
groups. We will see in future chapters that this is no longer the case for more general clustering
problems.

178 5 Algebraic-Geometric Methods

Algorithm 5.1 (Algebraic Point Clustering Algorithm).
Let X D fxjgNjD1 � R be a given collection of N � n points clustering around an unknown
number n of cluster centers f�igniD1. The number of clusters, the cluster centers, and the clustering
of the data can be determined as follows:

1. Number of Clusters. Let Vi 2 R
N�.iC1/ be a matrix containing the last iC 1 columns of Vn.

Determine the number of clusters as

n
:D minfi W rank.Vi/ D ig:

2. Cluster Centers. Solve for cn from Vncn D 0. Set pn.x/ D Pn
kD0 ckxn�k. Find the cluster

centers �i as the n roots of pn.x/.
3. Clustering. Assign point xj to cluster i D arg minlD1;:::;n.xj � �l/

2:

pn.x/ D p2.x/ D .x � �1/.x � �2/, with �1 ¤ �2. Then it is clear that there is
no polynomial equation p1.x/ D x � � of degree one that is satisfied by all the
points. Similarly, there are infinitely many polynomial equations of degree 3 or
more that are satisfied by all the points, namely any multiple of p2.x/. Thus the
degree n D 2 is the only one for which there is a unique polynomial that fits all the
points.

Once the minimum polynomial pn.x/ that fits all the data points is found, we
can solve the equation pn.x/ D 0 for its n roots. These roots, by definition, are the
centers of the clusters. We summarize the overall solution as Algorithm 5.1.

Notice that the above algorithm is described in a purely algebraic fashion and is
more of a conceptual than practical algorithm. It does not minimize any geometric
errors or maximize any probabilistic likelihood functions. In the presence of noise
in the data, one has to implement each step of the algorithm in a numerically more
stable and statistically more robust way. For example, with noisy data, the matrix
Vn will most likely be of full rank. In this case, the vector of coefficients cn should
be solved in a least-squares sense as the singular vector of Vn associated with the
smallest singular value. It is also possible that the pn.x/ obtained from cn may have
some complex roots, because the constraint that the polynomial must have real
roots is never enforced in solving for the coefficients in the least-squares sense.6

In practice, for well-separated clusters with moderate noise, the roots normally give
decent estimates of the cluster centers.

Although clustering points on a line may seem a rather simple problem, it can be
easily generalized to the problem of clustering points in a plane (see Exercise 5.1).
Furthermore, it is also a key step of a very popular data clustering algorithm:
spectral clustering. See Exercise 5.2.

6However, in some special cases, one can show that this will never occur. For example, when
n D 2, the least-squares solution for cn is c2 D VarŒx�, c1 D EŒx2�EŒx��EŒx3� and c0 D EŒx3�EŒx��
EŒx2�2 � 0; hence c21� 4c0c2 � 0, and the two roots of the polynomial c0x2C c1xC c2 are always
real.

5.2 Introductory Cases of Subspace Clustering 179

0.015

0.01

0.005

−0.005

−0.015

−0.01

0

0.2

0.1

−0.1

−0.2
−0.2

0

0.2

0.4

−0.4

0

Fig. 5.3 A polynomial in two variables whose zero set is three lines in R
2.

5.2.2 Clustering Lines in a Plane

Let us now consider the case of clustering data points to a collection of n lines in
R
2 passing through the origin, as illustrated in Figure 5.3. Each of the lines can be

represented as

Li
:D fx D Œx; y�> W bi1xC bi2y D 0g; i D 1; 2; : : : ; n: (5.9)

Given a point x D Œx; y�> on one of the lines, we must have that

.b11xC b12y D 0/ _ � � � _ .bn1xC bn2y D 0/: (5.10)

Therefore, even though each individual line is described with one polynomial
equation of degree one (a linear equation), an arrangement of n lines can be
described with a polynomial of degree n, namely

pn.x/ D .b11xC b12y/ � � � .bn1xC bn2y/ D
nX

kD0
ckxn�kyk D 0: (5.11)

An example is shown in Figure 5.3.
The polynomial pn.x/ allows us to algebraically eliminate the clustering of the

data at the beginning of the model estimation, because the equation pn.x/ D 0 is
satisfied by every data point regardless of whether it belongs to L1, L2, : : :, or Ln.
Furthermore, even though pn.x/ is nonlinear in each data point x D Œx; y�>, pn.x/
is actually linear in the vector of coefficients c D Œc0; c1; : : : ; cn�

>. Therefore, given

180 5 Algebraic-Geometric Methods

enough data points fxj D Œxj; yj�
>gNjD1, one can linearly fit this polynomial to the

data. Indeed, if n is known, we can obtain the coefficients of pn.x/ by solving the
equation

Vncn D

2
6664

xn
1 xn�1

1 y1 � � � x1yn�1
1 yn

1

xn
2 xn�1

2 y2 � � � x2yn�1
2 yn

2
:::

:::
:::

:::

xn
N xn�1

N yN � � � xNyn�1
N yn

N

3
7775

2
6664

c0
c1
:::

cn

3
7775 D 0: (5.12)

Similar to the case of points in a line, the above linear system has a unique solution
if and only if rank.Vn/ D n; hence the number of lines is given by

n
:D minfi W rank.Vi/ D ig: (5.13)

Given the vector of coefficients cn, we are now interested in estimating the
equations of each line from the associated polynomial pn.x/. We know that each
line is determined by its normal vector bi D Œbi1; bi2�

>, i D 1; 2; : : : ; n. For the sake
of simplicity, let us consider the case n D 2. A simple calculation shows that the
derivative of p2.x/ is given by

rp2.x/ D .b21xC b22y/b1 C .b11xC b12y/b2: (5.14)

Therefore, if the point x belongs to L1, then .b11x C b12y/ D 0, and hence
rp2.x/ � b1. Similarly, if x belongs to L2, then rp2.x/ � b2. This means that
given any point x, without knowing which line contains the point, we can obtain the
equation of the line passing through the point by simply evaluating the derivative of
p2.x/ at x. This fact should come as no surprise and is valid for any number of lines
n. Therefore, if we are given one point fyi 2 Lig on each line,7 we can determine the
normal vectors as bi � rpn.yi/. We summarize the overall solution for clustering
points to multiple lines as Algorithm 5.2.

The reader may have realized that the problem of clustering points on a line is
very much related to the problem of clustering lines in the plane. In point clustering,
for each data point x there exists a cluster center�j such that x��i D 0. By working
in homogeneous coordinates, one can convert it into a line clustering problem: for
each data point x D Œx; 1�>, there is a line bi D Œ1;��i�

> passing through the
point. Figure 5.4 shows an example of how three cluster centers are converted into
three lines via homogeneous coordinates. Indeed, notice that if we let y D 1 in the
matrix Vn in (5.12), we obtain exactly the matrix Vn in (5.7). Therefore, the vector of
coefficients cn is the same for both algorithms, and the two polynomials are related
by pn.x; y/ D ynpn.x=y/. Therefore, the point clustering problem can be solved
either by polynomial factorization (Algorithm 5.1) or by polynomial differentiation
(Algorithm 5.2).

7We will discuss in the next subsection how to automatically obtain one point per subspace from
the data when we generalize this problem to clustering points on hyperplanes.

5.2 Introductory Cases of Subspace Clustering 181

Algorithm 5.2 (Algebraic Line Clustering Algorithm).
Let X D fxjgNjD1 be a collection of N � n points in R

2 clustering around an unknown number n of
lines whose normal vectors are fbigniD1. The number of lines, the normal vectors, and the clustering
of the data can be determined as follows:

1. Number of Lines. Let Vi be defined as in (5.12). Determine the number of clusters as

n
:D minfi W rank.Vi/ D ig:

2. Normal Vectors. Solve for cn from Vncn D 0 and set pn.x; y/ D Pn
kD0 ckxn�kyk. Determine

the normal vectors as

bi D rpn.yi/

krpn.yi/k 2 R
2; i D 1; 2; : : : ; n;

where yi is a point in the ith line.
3. Clustering. Assign point xj to line i D arg min`D1;:::;n.b>

` xj/
2:

(0, 0)

μ1 μ2 μ3

L1 L2 L3

0

R
2

R

Fig. 5.4 Using homogeneous coordinates to convert the point clustering problem into the line
clustering problem.

5.2.3 Clustering Hyperplanes

In this section, we consider another particular case of Problem 5.1 in which all the
subspaces are hyperplanes of equal dimension d1 D � � � D dn D d D D � 1.
This case shows up in a wide variety of clustering and segmentation problems in
computer vision, including vanishing point detection and motion segmentation. We
will discuss these applications in greater detail in later chapters.

We start by noticing that every .D�1/-dimensional subspace Si � R
D can be

defined in terms of a nonzero normal vector bi 2 R
D as follows:8

Si
:D ˚x 2 R

D W b>i x
:D bi1x1 C bi2x2 C � � � C biDxD D 0

�
: (5.15)

8Since the subspaces Si are all different from each other, we assume that the normal vectors fbigniD1

are pairwise linearly independent.

182 5 Algebraic-Geometric Methods

Therefore, a point x 2 RD lying in one of the hyperplanes Si must satisfy the formula

.b>1 x D 0/ _ .b>2 x D 0/ _ � � � _ .b>n x D 0/; (5.16)

which is equivalent to the following homogeneous polynomial of degree n in x with
real coefficients:

pn.x/D
nY

iD1
.b>i x/D

X
cn1;n2;:::;nDxn1

1 xn2
2 � � � xnD

D D�n.x/>cnD0; (5.17)

where cn1;:::;nD 2 R represents the coefficient of the monomial xn1
1 xn2

2 � � � xnD
D , cn is the

vector of all coefficients, and �n.x/ is the stack of all possible monomials, known
as the Veronese map of x (see Appendix C for a more formal introduction). The
number of linearly independent monomials is Mn

:D �
DCn�1

n

�
; hence cn and �n.x/

are vectors in RMn .
After applying (5.17) to the given collection of N sample points fxjgNjD1, we

obtain the following system of linear equations on the vector of coefficients: cn

Vn cn
:D

2
6664

�n.x1/>
�n.x2/>

:::

�n.xN/
>

3
7775 cn D 0 2 R

N : (5.18)

We now study under what conditions we can solve for n and cn from equa-
tion (5.18). To this end, notice that if the number of hyperplanes n was known,
we could immediately recover cn as the eigenvector of V>n Vn associated with
its smallest eigenvalue. However, since the above linear system (5.18) depends
explicitly on the number of hyperplanes n, we cannot estimate cn directly without
knowing n in advance. Recall from Example C.30 that the vanishing ideal I of a
hyperplane arrangement is always principal, i.e., generated by a single polynomial
of degree n. The number of hyperplanes n then coincides with the degree of the
first nontrivial homogeneous component In of the vanishing ideal. This leads to the
following theorem.

Theorem 5.7 (Number of Hyperplanes). Assume that a collection of N 	 Mn � 1
sample points fxjgNjD1 on n different .D � 1/-dimensional subspaces of RD is given.
Let Vi 2 RN�Mi be the matrix defined as in (5.18), but computed with polynomials
of degree i. If the sample points are in general position and at least D � 1 points
correspond to each hyperplane, then

rank.Vi/

8
<
:
D Mi i < n;
D Mi � 1 i D n;
< Mi � 1 i > n:

(5.19)

5.2 Introductory Cases of Subspace Clustering 183

Therefore, the number n of hyperplanes is given by

n D minfi W rank.Vi/ D Mi � 1g: (5.20)

In the presence of noise, one cannot directly estimate n from (5.20), because the
matrix Vi is always of full rank. In this case, one can use the model selection criteria
introduced in Chapter 2 to determine the rank.

Theorem 5.7 and the linear system in equation (5.18) allow us to determine the
number of hyperplanes n and the vector of coefficients cn, respectively, from sample
points fxjgNjD1. The rest of the problem now becomes how to recover the normal
vectors fbigniD1 from cn. Imagine, for the time being, that we were given a set of n
points fyigniD1, each one lying in only one of the n hyperplanes, that is, yi 2 Si for i D
1; 2; : : : ; n. Now let us consider the derivative of pn.x/ evaluated at each yi. We have

rpn.x/ D @pn.x/
@x

D @

@x

nY
iD1
.b>i x/ D

nX
iD1
.bi/

Y
`¤i

.b>̀x/: (5.21)

Because
Q
`¤m.b

>̀yi/ D 0 for i ¤ m, one can obtain each of the normal vectors as

bi D rpn.yi/

krpn.yi/k
; i D 1; 2; : : : ; n: (5.22)

Therefore, if we know one point in each one of the hyperplanes, the hyperplane
clustering problem can be solved analytically by simply evaluating the partial
derivatives of pn.x/ at each of the points with known labels.

Consider now the case in which we do not know the membership of any of
the data points. We now show that one can obtain one point per hyperplane by
intersecting a random line with each of the hyperplanes. To this end, consider a
random line L

:D ftvCx0; t 2 Rg with direction v and base point x0. We can obtain
one point in each hyperplane by intersecting L with the union of all the hyperplanes.9

Since at the intersection points we must have pn.tv C x0/ D 0, the n points fyigniD1
can be obtained as

yi D tivC x0; i D 1; 2; : : : ; n; (5.23)

where ftigniD1 are the roots of the followin univariate polynomial of degree n:

qn.t/ D pn.tv C x0/ D
nY

iD1

�
tb>i vC b>i x0

� D 0: (5.24)

We summarize our discussion so far as Algorithm 5.3 for clustering hyperplanes.

9Except when the chosen line is parallel to one of the hyperplanes, which corresponds to a zero-
measure set of lines.

184 5 Algebraic-Geometric Methods

Algorithm 5.3 (Algebraic Hyperplane Clustering Algorithm).
Let X D fxjgNjD1 � R

D be a given collection of points clustered around an unknown number n of
hyperplanes with normals fbigniD1. The number of planes, the normal vectors, and the clustering of
the data can be determined as follows:

1. Number of Hyperplanes. Let Vi be defined as in (5.18). Determine the number of clusters as

n
:D minfi W rank.Vi/ D Mi � 1g:

2. Normal Vectors. Solve for cn from Vncn D 0 and set pn.x/ D c>

n �n.x/. Choose x0 and v

at random and compute the n roots t1; t2; : : : ; tn 2 R of the univariate polynomial qn.t/ D
pn.tvC x0/. Determine the normal vectors as

bi D rpn.yi/

krpn.yi/k ; i D 1; 2; : : : ; n;

where yi D x0 C tiv is a point in the ith hyperplane.
3. Clustering. Assign point xj to hyperplane i D arg minlD1;:::;n.b

>

l xj/
2 .

5.3 Subspace Clustering Knowing the Number of Subspaces

In this section, we derive a general solution to the subspace clustering problem
(Problem 5.1) in the case in which the number of subspaces n is known. However,
in contrast to the special cases we saw in the previous section, the dimensions of
the subspaces can be different from one another. In Section 5.3.1, we illustrate the
basic ideas of dealing with subspaces of different dimensions via a simple example.
Through Sections 5.3.2–5.3.4, we give a detailed derivation and proof for the general
case. The final algorithm is summarized in Section 5.3.5.

5.3.1 An Introductory Example

To motivate and highlight the key ideas, in this section we study a simple example
of clustering data points lying in subspaces of different dimensions in R

3: a line
S1 D fx W x1 D x2 D 0g and a plane S2 D fx W x3 D 0g, as shown in Figure 5.5.

We can describe the union of these two subspaces as

S1 [S2 D fx W .x1 D x2 D 0/ _ .x3 D 0/g D fx W .x1x3 D 0/ ^ .x2x3 D 0/g:

Therefore, even though each individual subspace is described with polynomials of
degree one (linear equations), the union of two subspaces is described with two
polynomials of degree two, namely p21.x/ D x1x3 and p22.x/ D x2x3. In general,
we can represent any two subspaces of R3 as the set of points satisfying a set of
homogeneous polynomials of the form

5.3 Subspace Clustering Knowing the Number of Subspaces 185

S1

S2

y1

y2
x

b11 = ∇p21(y1)

b12 = ∇p22(y1)
b2 = ∇p21(y2) = ∇p22(y2)

o

R
3

Fig. 5.5 Data samples drawn from a union of one plane and one line (through the origin o) in R3.
The derivatives of the two vanishing polynomials p21.x/ D x1x2 and p22.x/ D x1x3 evaluated at a
point y1 on the line give two normal vectors to the line. Similarly, the derivatives at a point y2 in
the plane give the normal vector to the plane.

c1x
2
1 C c2x1x2 C c3x1x3 C c4x

2
2 C c5x2x3 C c6x

2
3 D 0: (5.25)

Although these polynomials are nonlinear in each data point Œx1; x2; x3�>, they are
actually linear in the vector of coefficients c D Œc1; c2; : : : ; c6�>. Therefore, given
enough data points, one can linearly fit these polynomials to the data.

Given the collection of polynomials that vanish on the data points, we are now
interested in estimating a basis for each subspace. In our example, let P2.x/ D
Œp21.x/; p22.x/� and consider the derivatives of P2.x/ at two representative points of
the two subspaces y1 D Œ0; 0; 1�> 2 S1 and y2 D Œ1; 1; 0�> 2 S2:

rP2.x/ D
2
4

x3 0
0 x3
x1 x2

3
5 H) rP2.y1/ D

2
4
1 0

0 1

0 0

3
5 and rP2.y2/ D

2
4
0 0

0 0

1 1

3
5 : (5.26)

Then the columns of rP2.y1/ span the orthogonal complement to the first subspace
S?1 , and the columns of rP2.y2/ span the orthogonal complement to the second
subspace S?2 (see Figure 5.5). Thus the dimension of the line is given by d1 D
3 � rank.rP2.y1// D 1, and the dimension of the plane is given by d2 D
3 � rank.rP2.y2// D 2. Therefore, if we are given one point in each subspace,
we can obtain the subspace bases and their dimensions from the derivatives of the
polynomials at the given points.

The final question is how to choose one representative point per subspace. With
perfect data, we may choose a first point as any of the points in the data set. With
noisy data, we may first define a distance from each point in R

3 to the union of the
subspaces,10 and then choose a point in the data set that minimizes this distance.
Say we pick y2 2 S2 as such a point. We can then compute the normal vector
b2 D Œ0; 0; 1�> to S2 from rP.y2/ as above. How do we now pick a second point

10For example, the squared algebraic distance to S1 [S2 is p21.x/2 C p22.x/2 D .x21 C x22/x
2
3 .

186 5 Algebraic-Geometric Methods

in S1 but not in S2? As it turns out, this can be done by polynomial division. We
can divide the original polynomials by b>2 x to obtain new polynomials of degree
n � 1 D 1:

p11.x/ D p21.x/

b>2 x
D x1 and p12.x/ D p22.x/

b>2 x
D x2:

Since these new polynomials vanish on S1 but not on S2, we can use them to define
a new distance to S1 only,11 and then find a point y1 in S1 but not in S2 as the point
in the data set that minimizes this distance.

The next sections show how this simple example can be systematically gen-
eralized to multiple subspaces of unknown and possibly different dimensions
by polynomial fitting (Section 5.3.2), differentiation (Section 5.3.3), and division
(Section 5.3.4).

5.3.2 Fitting Polynomials to Subspaces

Now consider a subspace arrangement A D fS1; S2; : : : ; Sng with dim.Si/ D di; i D
1; 2; : : : ; n. LetX D fx1; x2; : : : ; xNg be a sufficiently large number of sample points
in general position drawn from ZA D S1 [S2 [� � � [Sn. As we may know from
Appendix C, the vanishing ideal I.ZA/, i.e., the set of all polynomials that vanish
on ZA, is much more complicated than those in the special cases we studied earlier
in this chapter.

Nevertheless, since we assume that we know the number of subspaces n, we
have only to consider the set of polynomials of degree n that vanish on ZA, i.e.,
the homogeneous component In of I.ZA/. As we know from Appendix C, these
polynomials uniquely determine ZA. Furthermore, as the result of Corollary C.38,
we know that if the subspace arrangement is transversal, then In is generated by
the products of n linear forms that vanish on the n subspaces, respectively. More
precisely, suppose the subspace Si is of dimension di and let ki D D � di. Let

Bi
:D Œb1; b2; : : : ; bki � 2 R

D�.ki/

be a set of base vectors for the orthogonal complement S?i of Si. The vanishing ideal
I.Si/ of Si is generated by the set of linear forms

fl.x/ :D b>x; b 2 Big:

11For example, the squared algebraic distance to S1 is p11.x/2 C p12.x/2 D x21 C x22 .

5.3 Subspace Clustering Knowing the Number of Subspaces 187

Then every polynomial pn.x/ 2 In can be written as a summation of products of the
linear forms

pn.x/ D
X

l1.x/l2.x/ � � � ln.x/;

where li 2 I.Si/.
Using the Veronese map (defined by C.1 in Appendix C), each polynomial in In

can also be written as

pn.x/ D c>n �n.x/ D
X

cn1;n2;:::;nD xn1
1 xn2

2 � � � xnD
D D 0; (5.27)

where cn1;n2;:::;nD 2 R represents the coefficient of the monomial xn D xn1
1 xn2

2 � � � xnD
D .

Although the polynomial equation is nonlinear in each data point x, it is linear in
the vector of coefficients cn. Indeed, since each polynomial pn.x/ D c>n �n.x/ must
be satisfied by every data point, we have c>n �n.xj/ D 0 for all j D 1; 2; : : : ;N.
Therefore, the vector of coefficients cn must satisfy the system of linear equations

Vn.D/ cn
:D

2
6664

�n.x1/>
�n.x2/>

:::

�n.xN/
>

3
7775 cn D 0 2 R

N ; (5.28)

where Vn.D/ 2 RN�Mn.D/ is called the embedded data matrix.
Clearly, the coefficient vector of every polynomial in In is in the null space of the

data matrix Vn.D/. For every polynomial obtained from the null space of Vn.D/ to
be in In, we need to have

dim.Null.Vn.D/// D dim.In/
:D hI.n/;

where hI.n/ is the Hilbert function of the ideal I.ZA/ (see Appendix C). Or
equivalently, the rank of the data matrix Vn.D/ needs to satisfy

rank.Vn.D// D Mn.D/ � hI.n/ (5.29)

in order that In can be exactly recovered from the null space of Vn.D/. As a result of
the algebraic sampling theory in Appendix C, the above rank condition is typically
satisfied with N 	 .Mn.D/� 1/ data points in general position.12 A basis of In,

In D spanfpn`.x/; ` D 1; 2; : : : ; hI.n/g; (5.30)

12In particular, it requires at least di points from each subspace Si.

188 5 Algebraic-Geometric Methods

can be computed from the set of hI.n/ singular vectors of Vn.D/ associated with its
hI.n/ zero singular values. In the presence of moderate noise, we can still estimate
the coefficients of the polynomials in a least-squares sense from the singular vectors
associated with the hI.n/ smallest singular values.

As discussed in Sections 4.1.1 and 4.1.3, the basic modeling assumption in
NLPCA and KPCA is that there exists an embedding of the data into a higher-
dimensional feature space F such that the features live in a linear subspace of F.
However, there is no general methodology for finding the correct embedding for
an arbitrary problem. Equation (5.28) shows that the commonly used polynomial
embedding �n.�/ is the right one to use when the data live in an arrangement of
subspaces, because the embedded data points f�n.xj/gNjD1 indeed live in a subspace

of RMn.D/. Notice that each vector cn is simply a normal vector to the embedded
subspace, as illustrated in Figure 5.6.

5.3.3 Subspaces from Polynomial Differentiation

Given a basis for the set of polynomials representing an arrangement of subspaces,
we are now interested in determining a basis and the dimension of each subspace.
In this section, we show that one can estimate the dimensions and the bases
by differentiating all the polynomials fpn`g obtained from the null space of the
embedded data matrix Vn.D/.

Let pn.x/ be any polynomial in In. Since pn 2 I.ZA/ � I.Si/, where I.Si/ is
generated by linear forms l.x/ D b>x with b 2 S?i , pn is of the form

pn D l1g1 C l2g2 C � � � C lki gki (5.31)

Fig. 5.6 The polynomial embedding maps a union of subspaces of R
D into a single subspace

of R
Mn.D/ whose normal vectors fcng are the coefficients of the polynomials fpng defining the

subspaces. The normal vectors to the embedded subspace fcng are related to the normal vectors to
the original subspaces fbig via the symmetric tensor product.

5.3 Subspace Clustering Knowing the Number of Subspaces 189

for l1; l2; : : : ; lki 2 I.Si/ and some polynomials g1; g2; : : : ; gki .
13 The derivative of

pn is

rpn D
kiX

jD1
.gjrlj C ljrgj/ D

kiX
jD1
.gjbj C ljrgj/: (5.32)

Let yi be a point in the subspace Si but not in any other subspaces in the
arrangement ZA. Then lj.yi/ D 0; j D 1; 2; : : : ; ki. Thus, the derivative of pn

evaluated at yi is a superposition of the vectors bj:

rpn.yi/ D
kiX

jD1
gj.yi/bj 2 S?i : (5.33)

This fact should come as no surprise. The zero set of each polynomial pn is just a
surface in R

D. Therefore, its derivative rpn.yi/ at a nonsingular point yi 2 Si gives
a vector orthogonal to the surface. Since an arrangement of subspaces is locally flat,
i.e., in a neighborhood of yi the surface is merely the subspace Si, it follows that
the derivative at yi lives in the orthogonal complement S?i of Si. By evaluating the
derivatives of all the polynomials in In at the same point yi, we obtain a set of normal
vectors that span the orthogonal complement of Si. We summarize the above facts
as Theorem 5.8. Figure 5.5 illustrates the theorem for the case of a plane and a line
described in Section 5.3.1.

Theorem 5.8 (Subspace Bases and Dimensions by Polynomial Differentiation). If
the data set X is such that dim.Null.Vn.D/// D dim.In/ D hI.n/ and one generic
point yi is given for each subspace Si, then we have

S?i D span
n @
@x

c>n �n.x/
ˇ̌
ˇ
xDyi

; 8cn 2 Null.Vn.D//
o
: (5.34)

Therefore, the dimensions of the subspaces are given by

di D D � rank
�rPn.yi/

�
for i D 1; 2; : : : ; n; (5.35)

where Pn.x/
:D Œpn1.x/; : : : ; pnhI .n/.x/� 2 R1�hI .n/ is a row of linearly independent

polynomials in In, and rPn.x/
:D �rpn1.x/; : : : ;rpnhI .n/.x/

� 2 RD�hI .n/.

Proof. (Sketch only). The fact that the derivatives span the entire normal space is
the consequence of the general dimension theory for algebraic varieties (Bochnak
et al. 1998; Harris 1992; Eisenbud 1996). For a (transversal) subspace arrangement,
one can also prove the theorem using the fact that polynomials in In are generated
by the products of n linear forms that vanish on the n subspaces, respectively. ut

13In fact, from discussions in the preceding subsection, we know that the polynomials gj; j D
1; : : : ; ki are products of linear forms that vanish on the remaining n� 1 subspaces.

190 5 Algebraic-Geometric Methods

Given cn, the computation of the derivative of pn.x/ D c>n �n.x/ can be done
algebraically:

rpn.x/ D c>n r�n.x/ D c>n En�n�1.x/;

where En 2 RMn.D/�Mn�1.D/ is a constant matrix containing only the exponents of
the Veronese map �n.x/. Thus, the computation does not involve taking derivatives
of the (possibly noisy) data.

5.3.4 Point Selection via Polynomial Division

Theorem 5.8 suggests that one can obtain a basis for each S?i directly from the
derivatives of the polynomials representing the union of the subspaces. However,
in order to proceed, we need to have one point per subspace, i.e., we need to know
the vectors fy1; y2; : : : ; yng. In this section, we show how to select these n points in
the unsupervised learning scenario in which we do not know the label for any of
the data points.

In Section 5.2.3, we showed that in the case of hyperplanes, one can obtain
one point per hyperplane by intersecting a random line L with the union of all
hyperplanes.14 This solution, however, does not generalize to subspaces of arbitrary
dimensions. For instance, in the case of data lying on a line and in a plane shown
in Figure 5.5, a randomly chosen line L may not intersect the line. Furthermore,
because polynomials in the null space of Vn.D/ are no longer factorizable, their
zero set is no longer a union of hyperplanes; hence the points of intersection with L
may not lie in any of the subspaces.

In this section, we propose an alternative algorithm for choosing one point per
subspace. The idea is that we can always choose a point yn lying in one of the
subspaces, say Sn, by checking that Pn.yn/ D 0. Since we are given a set of data
points X D fx1; x2; : : : ; xNg lying in the subspaces, in principle we can choose yn to
be any of the data points. However, in the presence of noise and outliers, a random
choice of yn may be far from the true subspaces. One may be tempted to choose
a point in the data set X that minimizes kPn.x/k, as we did in our introductory
example in Section 5.3.1. However, such a choice has the following problems:

1. The value kPn.x/k is merely an algebraic error, i.e., it does not really represent
the geometric distance from x to its closest subspace. In principle, finding the
geometric distance from x to its closest subspace is a hard problem, because we
do not know the normal bases fB1;B2; : : : ;Bng.

14This can always be done, except when the chosen line is parallel to one of the subspaces, which
corresponds to a zero-measure set of lines.

5.3 Subspace Clustering Knowing the Number of Subspaces 191

2. Points x lying close to the intersection of two or more subspaces are more likely
to be chosen, because two or more factors in pn.x/ D .b>1 x/.b>2 x/ � � � .b>n x/ are
approximately zero, which yields a smaller value for jpn.x/j. In fact, we can see
from (5.33) that for an arbitrary x in the intersection, the vector rpn.x/ needs to
be a common normal vector to two or more subspaces. If the subspaces have no
common normal vector, then krpn.x/k D 0. Thus, one should avoid choosing
points close to the intersection, because they typically give very noisy estimates
of the normal vectors.

We could avoid these two problems if we could compute the distance from
each point to the subspace passing through it. However, we cannot compute such
a distance yet, because we do not know the subspaces’ bases. The following lemma
shows that we can compute a first-order approximation to such a distance from Pn

and its derivatives.

Lemma 5.9. Let Ox be the projection of x 2 R
D onto its closest subspace. The

Euclidean distance from x to Ox is given by

kx � Oxk D n
q

Pn.x/
�rPn.x/>rPn.x/

�

Pn.x/> CO

�kx � Oxk2�;

where Pn.x/ D Œpn1.x/; : : : ; pnhI .n/.x/� 2 R
1�hI .n/ is a row vector with all the

polynomials, rPn.x/ D
�rpn1.x/; : : : ;rpnhI .n/.x/

� 2 R
D�hI .n/, and A
 is the

Moore–Penrose inverse of A.

Proof. The projection Ox of a point x onto the zero set of the polynomials fpn`ghI.n/
`D1

can be obtained as the solution to the following constrained optimization problem:

min kOx � xk2; s.t. pn`.Ox/ D 0; ` D 1; 2; : : : ; hI.n/: (5.36)

Using Lagrange multipliers � 2 RhI .n/, we can convert this problem into the
unconstrained optimization problem

min
Ox;�
kOx � xk2 C Pn.Ox/�: (5.37)

From the first-order conditions with respect to Ox, we have

2.Ox� x/CrPn.Ox/� D 0: (5.38)

After multiplying on the left by .rPn.Ox//> and .Ox � x/>, respectively, we obtain

� D 2�rPn.Ox/>rPn.Ox/
�
rPn.Ox/>x; kOx � xk2 D 1

2
x>rPn.Ox/�; (5.39)

where we have used the fact that .rPn.Ox//> Ox D 0. After substituting the first
equation into the second, we obtain that the squared distance from x to its closest

192 5 Algebraic-Geometric Methods

subspace can be expressed as

kOx � xk2 D x>rPn.Ox/
�rPn.Ox/>rPn.Ox/

�
rPn.Ox/>x: (5.40)

After expanding in Taylor series about x and noticing thatrPn.x/>x D nPn.x/>,
we obtain

kOx � xk2 � n2Pn.x/
�rPn.x/>rPn.x/

�

Pn.x/>; (5.41)

which completes the proof. ut
Thanks to Lemma 5.9, we can immediately choose a candidate yn lying in (close

to) one of the subspaces and not in the intersection as

yn D argmin
x2X WrPn.x/¤0

Pn.x/
�rPn.x/>rPn.x/

�

Pn.x/> (5.42)

and compute a basis Bn 2 RD�.D�dn/ for S?n by applying PCA to rPn.yn/.
In order to find a point yn�1 lying in (close to) one of the remaining .n � 1/

subspaces but not in (far from) Sn, we could in principle choose yn�1 as in (5.42)
after removing the points in Sn from the data set X . With noisy data, however, this
depends on a threshold and is not very robust. Alternatively, we can find a new
set of polynomials fp.n�1/`.x/g defining the algebraic set [n�1

iD1Si. In the case of
hyperplanes, there is only one such polynomial, namely

pn�1.x/
:D .b1x/.b2x/ � � � .b>n�1x/ D

pn.x/

b>n x
D c>n�1�n�1.x/:

Therefore, we can obtain pn�1.x/ by polynomial division. Notice that dividing pn.x/
by b>n x is a linear problem of the form

Rn.bn/cn�1 D cn; (5.43)

where Rn.bn/ 2 RMn.D/�Mn�1.D/. This is because solving for the coefficients of
pn�1.x/ is equivalent to solving the equations .b>n x/.c>n�1�n�1.x// D c>n �n.x/ for
all x 2 RD. These equations are obtained by equating the coefficients, and they are
linear in cn�1, because bn and cn are already known.

Example 5.10 If n D 2 and b2 D Œb1; b2; b3�>, then the matrix R2.b2/ is given by

R2.b2/ D
2
4

b1 b2 b3 0 0 0

0 b1 0 b2 b3 0
0 0 b1 0 b2 b3

3
5
>

2 R
6�3:

5.3 Subspace Clustering Knowing the Number of Subspaces 193

In the case of subspaces of arbitrary dimensions, we cannot directly divide the
entries of the polynomial vector Pn.x/ by b>n x for any column bn of Bn, because the
polynomials fpn`.x/g may not be factorizable. Furthermore, they do not necessarily
have the common factor b>n x. The following theorem resolves this difficulty by
showing how to compute the polynomials associated with the remaining subspaces
[n�1

iD1Si.

Theorem 5.11 (Choosing One Point per Subspace by Polynomial Division). If the
data set X is such that dim.null.Vn.D/// D dim.In/, then the set of homogeneous
polynomials of degree .n � 1/ associated with the algebraic set [n�1

iD1Si is given by
fc>n�1�n�1.x/g, where the vectors of coefficients cn�1 2 RMn�1.D/ must satisfy

Vn.D/Rn.bn/cn�1 D 0; 8 bn 2 S?n : (5.44)

Proof. We first prove the necessity. That is, every polynomial c>n�1�n�1.x/ of degree
n � 1, that vanishes on [n�1

iD1Si satisfies the above equation. Since a point x in the
original algebraic set [n

iD1Si belongs to either [n�1
iD1Si or Sn, we have c>n�1�n�1.x/ D

0 or b>n x D 0 for all bn 2 S?n . Hence pn.x/
:D .c>n�1�n�1.x//.b>n x/ D 0, and

pn.x/ must be a linear combination of polynomials in Pn.x/. If we denote pn.x/ by
c>n �n.x/, then the vector of coefficients cn must be in the null space of Vn.D/. From
c>n �n.x/ D .c>n�1�n�1.x//.b>n x/, the relationship between cn and cn�1 can be written
as Rn.bn/cn�1 D cn. Since Vn.D/cn D 0, cn�1 needs to satisfy the linear system of
equations Vn.D/Rn.bn/cn�1 D 0.

We now prove the sufficiency. That is, if cn�1 is a solution to (5.44), then
c>n�1�n�1.x/ is a homogeneous polynomial of degree .n�1/ that vanishes on[n�1

iD1Si.
Since cn�1 is a solution to (5.44), then for all bn 2 S?n , we have that cn D Rn.bn/cn�1
is in the null space of Vn.D/. Now, from the construction of Rn.bn/, we also have that
c>n �n.x/ D .c>n�1�n�1.x//.b>n x/. Hence, for every x 2 [n�1

iD1Si but not in Sn, we have
c>n�1�n�1.x/ D 0, because there is a bn such that b>n x 6D 0. Therefore, c>n�1�n�1.x/
is a homogeneous polynomial of degree .n � 1/ that vanishes on [n�1

iD1Si. ut
Thanks to Theorem 5.11, we can obtain a basis fp.n�1/`.x/; ` D 1; 2; : : : ; hI.n �

1/g for the polynomials vanishing on [n�1
iD1Si from the intersection of the null spaces

of Vn.D/Rn.bn/ 2 R
N�Mn�1.D/ for all bn 2 S?i . By evaluating the derivatives

of the polynomials p.n�1/`, we can obtain normal vectors to Sn�1 and so on. By
repeating this process, we can find a basis for each of the remaining subspaces.
The overall subspace clustering and estimation process involves polynomial fitting,
differentiation, and division.

5.3.5 The Basic Algebraic Subspace Clustering Algorithm

In practice, we may avoid computing Pi for i < n by using a heuristic distance
function to choose the points fy1; y2; : : : ; yng as follows. Since a point in [n

`DiS`
must satisfy kB>i xkkB>iC1xk � � � kB>n xk D 0, we can choose a point yi�1 on[i�1

`D1S` as

194 5 Algebraic-Geometric Methods

Algorithm 5.4 (ASC: Algebraic Subspace Clustering).
Given a set of samples X D fx1; x2; : : : ; xNg in R

D, fit n linear subspaces with dimensions
d1; d2; : : : ; dn:
1: Set Vn.D/

:D Œ�n.x1/; �n.x2/; : : : ; �n.xN/�
> 2 RN�Mn.D/.

2: for all i D n W 1 do
3: Solve Vi.D/c D 0 to obtain a basis fci`ghI .i/

`D1 of null.Vi.D//, where the number of
polynomials hI.i/ is obtained as in Appendix C.

4: Set Pi.x/ D Œpi1.x/; pi2.x/; : : : ; pihI.i/.x/� 2 R1�hI.i/, where pi`.x/ D c>

i` �i.x/ for ` D
1; 2; : : : ; hI.i/.

5: Compute

yi D arg min
x2X WrPi.x/¤0

Pi.x/
�rPi.x/

>rPi.x/
�

Pi.x/
>;

Bi
:D Œbi1; bj2; : : : ; bi.D�di/�D PCA

�rPi.yi/
�
;

Vi�1.D/ D Vi.D/
�
R>

i .bi1/;R
>

i .bi2/; : : : ;R
>

i .bi.D�di//
�

>

:

6: end for
7: for all j D 1 W N do
8: Assign point xj to subspace Si if i D arg min`D1;2;:::;n kB>

` xjk2.
9: end for

yi�1 D arg min
x2XWrPn.x/¤0

p
Pn.x/.rPn.x/>rPn.x//
Pn.x/> C ı
kB>i xkkB>iC1xk � � � kB>n xk C ı ; (5.45)

where ı > 0 is a small number chosen to avoid cases in which both the numerator
and the denominator are zero (e.g., with perfect data).

We summarize the results of this section as the following algebraic subspace
clustering (ASC) algorithm, Algorithm 5.4, for clustering a known number of
subspaces of unknown and possibly different dimensions from sample data points
X D fx1; x2; : : : ; xNg.
Example 5.12 (Algebraic Subspace Clustering on Synthetic Data) In this exper-
iment, we evaluate on synthetic data the performance of two variants of the
algebraic subspace clustering algorithm: one is to use the heuristic distance measure
introduced above (5.45) for selecting a point closest to each subspace, referred to
as the minimum distance method; the other is to fit a hyperplane to each subspace
as a superset and select a point on each hyperplane by intersecting it with a random
line as done in Algorithm 5.3, referred to as the line-intersection method. In this
experiment, we set ı D 10�5 in (5.45).

We randomly generate three subspaces S1; S2; S3 in R4 of dimensions d1; d2; d3.
From each subspace we randomly sample 100 points, corrupted by zero-mean
Gaussian noise of standard deviation � in the orthogonal complement of the
subspaces. Figures 5.7(a)–5.7(d) show the clustering error rate of these algebraic
algorithms for various levels of noise and for various values of d1; d2; d3, averaged
over 300 independent trials.

5.3 Subspace Clustering Knowing the Number of Subspaces 195

0 0.01 0.02 0.03 0.04 0.05

0

0.05

0.1

0.15

0.2

0.25
m

is
sr

at
es

σ

ASC−MinimumDistance
ASC−LineIntersection

d1 = d2 = d3 = 3

0 0.01 0.02 0.03 0.04 0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m
is

sr
at

es

σ

ASC−MinimumDistance
ASC−LineIntersection

d1 = d2 = d3 = 2

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m
is

sr
at

es

σ

ASC−MinimumDistance
ASC−LineIntersection

d1 = d2 = d3 = 1

0 0.01 0.02 0.03 0.04 0.05
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m
is

sr
at

es

σ

ASC−MinimumDistance
ASC−LineIntersection

d1 = 1, d2 = 2, d3 = 3

(a) (b)

(c) (d)

Fig. 5.7 Misclustering rates versus noise level for the two algebraic hyperplane/subspace cluster-
ing algorithms for three subspaces of various dimensions in R

4.

In particular, in Figure 5.7(a) we have the case of three hyperplanes in R4. As
expected, both algorithms work correctly when there is no noise, and their perfor-
mance degrades as the noise increases. The line-intersection method is obviously
more sensitive to noise. However, for subspaces in R4 with dimension lower than 2
(Figures 5.7(b)–5.7(d)), we see that the line-intersection method produces errors
even in the noiseless case. The reason is evident: a random line almost surely
does not intersect a 2-dimensional linear subspace in R4. Hence the points found
almost surely do not lie on any of the subspaces. In contrast, the minimum-distance
method performs well for subspaces of lower dimensions in the noiseless case.
Both methods are very sensitive to noise. This suggests that there is need to further
improve their clustering accuracy in the presence of noise, which we will do through
other techniques in later chapters of the book.

196 5 Algebraic-Geometric Methods

5.4 Subspace Clustering not Knowing the Number
of Subspaces

The solution to the subspace clustering problem proposed in Section 5.3.5 assumes
prior knowledge of the number of subspaces n. In practice, however, the number
of subspaces n may not be known beforehand; hence we cannot estimate the
polynomials representing the subspaces directly, because the linear system in (5.28)
depends explicitly on n.

Earlier, in Section 5.2, we presented some special cases (e.g., arrangements of
hyperplanes) for which one can recover the number of subspaces from data. In this
section, we show that by exploiting the algebraic structure of the vanishing ideals of
subspace arrangements, it is possible to recover the number of subspaces, together
with their dimensions and their bases. As usual, we first examine some subtlety
with determining the number of subspaces via two simple examples in Section 5.4.1
and illustrate the key ideas. Section 5.4.2 considers the case of perfect subspace
arrangements in which all subspaces are of equal dimension d D d1 D � � � D
dn. We derive a set of rank constraints on the data from which one can estimate
n and d. Section 5.4.3 considers the most general case of subspaces of different
dimensions and shows that n and d can be computed in a recursive fashion by first
fitting subspaces of larger dimensions and then further clustering these subspaces
into subspaces of smaller dimensions.

5.4.1 Introductory Examples

Imagine that we are given a set of points X D fx1; x2; : : : ; xNg lying on two lines in
R3, say

S1 D fx W x2 D x3 D 0g and S2 D fx W x1 D x3 D 0g: (5.46)

If we form the matrix of embedded data points Vn.D/ for n D 1 and n D 2,
respectively,

V1.3/ D

2
664

:::
:::

x1 x2 x3
:::

:::

3
775 and V2.3/ D

2
664

:::
:::

x21 x1x2 x1x3 x22 x2x3 x23
:::

:::

3
775 ;

5.4 Subspace Clustering not Knowing the Number of Subspaces 197

we obtain rank.V1.3// D 2 < 3 and rank.V2.3// D 2 < 6.15 Therefore, we cannot
determine the number of subspaces as the degree n such that the matrix Vn.D/ drops
rank (as we did in Section 5.2.3 for the case of hyperplanes), because we would
obtain n D 1, which is not the correct number of subspaces.

How do we determine the correct number of subspaces in this case? As discussed
in Section 5.1.2, a linear projection onto a low-dimensional subspace preserves the
number and dimensions of the subspaces. In our example, if we project the data onto
the plane P D fx W x1 C x2 C x3 D 0g and then embed the projected data, we obtain

V1.2/ D

2
664

:::
:::

x1 x2
:::
:::

3
775 and V2.2/ D

2
664

:::
:::

x21 x1x2 x22
:::

:::

3
775 :

In this case, rank.V1.2// D 2 6< 2, but rank.V2.2// D 2 < 3. Therefore, the first
time the matrix Vn.dC1/ drops rank is when n D 2 and d D 1. This suggests, as we
will formally show in Section 5.4.2, that when the subspaces are of equal dimension,
one can determine d and n as the minimum values for which there is a projection
onto a .dC 1/-dimensional subspace such that the matrix Vn.dC 1/ drops rank.

Unfortunately, the situation is not so simple for subspaces of different dimen-
sions. Imagine now that in addition to the two lines S1 and S2, we are also given
data points in a plane S3 D fx W x1 C x2 D 0g (so that the overall configuration is
similar to that shown in Figure 1.2). In this case, we have rank.V1.3// D 3 6< 3,
rank.V2.3// D 5 < 6, and rank.V3.3// D 6 < 10. Therefore, if we try to determine
the number of subspaces as the degree of the embedding for which the embedded
data matrix drops rank, we will obtain n D 2, which is incorrect again. The reason
for this is clear: we can either fit the data with one polynomial of degree n D 2,
which corresponds to the plane S3 and the plane P spanned by the two lines, or we
can fit the data with four polynomials of degree n D 3, which vanish precisely on
the two lines S1, S2, and the plane S3.

In cases like this, one needs to resort to a more sophisticated algebraic process
to identify the correct number of subspaces. As in the previous example, we can
first search for the minimum degree n and dimension d such that Vn.d C 1/ drops
rank. In our example, we obtain n D 2 and d D 2. By applying the algebraic
subspace clustering algorithm to this data set, we will partition it into two planes
P and S3. Once the two planes have been estimated, we can reapply the same
process to each plane. The plane P will be separated into two lines S1 and S2, as
described in the previous example, while the plane S3 will remain unchanged. This
recursive process stops when every subspace obtained can no longer be separated
into lower-dimensional subspaces. We will give a more detailed description of this
in Section 5.4.3.

15The reader is encouraged to verify these facts numerically and do the same for the examples in
the rest of this section.

198 5 Algebraic-Geometric Methods

5.4.2 Clustering Subspaces of Equal Dimension

In this section, we derive explicit formulas for the number of subspaces n and
their dimensions fdig in the case of subspaces of equal dimension d D d1 D
d2 D � � � D dn. Notice that this is a generalized version of the two-lines
example that we discussed in the previous section. In the literature, arrangements
of subspaces of equal dimensions are called pure arrangements. This type of
arrangement is important for a wide range of applications in computer vision
(Costeira and Kanade 1998; Kanatani 2002; Vidal and Ma 2004), pattern recog-
nition (Belhumeur et al. 1997; Vasilescu and Terzopoulos 2002), as well as
identification of hybrid linear systems (Overschee and Moor 1993; Ma and Vidal
2005).

Theorem 5.13 (Subspaces of Equal Dimension). Let fxjgNjD1 be a given collection
of N 	 Mn.dC 1/� 1 sample points lying in n different d-dimensional subspaces of
RD. Let Vi.`C 1/ 2 RN�Mi.`C1/ be the embedded data matrix defined in (5.28), but
computed with the Veronese map �i of degree i applied to the data projected onto
a generic .`C 1/-dimensional subspace of RD. If the sample points are in general
position and at least d points are drawn from each subspace, then the dimension of
the subspaces is given by

d D minf` W 9 i 	 1 such that rank.Vi.`C 1// < Mi.`C 1/g; (5.47)

and the number of subspaces can be obtained as

n D minfi W rank.Vi.d C 1// D Mi.dC 1/� 1g: (5.48)

Proof. For simplicity, we divide the proof into the following three cases:

Case 1: d known
Imagine for a moment that d was known, and that we wanted to compute n only.
Since d is known, following our analysis in Section 5.1.2, we can first project the
data onto a .dC1/-dimensional space P � RD so that they become n d-dimensional
hyperplanes in P (see Theorem 5.5). Now compute the matrix Vi.dC1/ as in (5.28)
by applying the Veronese map of degree i D 1; 2; : : : to the projected data. From
our analysis in Section 5.2.3, there is a unique polynomial of degree n representing
the union of the projected subspaces, and the coefficients of this polynomial must
lie in the null space of Vn.dC 1/. Thus, given N 	 Mn.dC 1/� 1 points in general
position, with at least d points in each subspace, we have that rank.Vn.d C 1// D
Mn.d C 1/ � 1. Furthermore, there cannot be a polynomial of degree less than n
that is satisfied by all the data,16 whence rank.Vi.d C 1// D Mi.d C 1/ for i < n.

16This is guaranteed by the algebraic sampling theorem in Appendix C.

5.4 Subspace Clustering not Knowing the Number of Subspaces 199

Consequently, if d is known, we can compute n by first projecting the data onto a
.dC 1/-dimensional space and then obtaining

n D minfi W rank.Vi.dC 1// D Mi.dC 1/� 1g: (5.49)

Case 2: n known
Consider now the opposite case in which n is known, but d is unknown. Let
Vn.`C 1/ be defined as in (5.28), but computed from the data projected onto a
generic .`C 1/-dimensional subspace of RD. When ` < d, we have a collection of
.`C 1/-dimensional subspaces in an .`C 1/-dimensional space, which implies that
Vn.` C 1/ must be of full rank. If ` D d, then from equation (5.49), we have that
rank.Vn.`C 1// D Mn.`C 1/� 1. When ` > d, then equation (5.28) has more than
one solution, and thus rank.Vn.`C 1// < Mn.`C 1/� 1. Therefore, if n is known,
we can compute d as

d D minf` W rank.Vn.`C 1// D Mn.`C 1/� 1g: (5.50)

Case 3: n and d unknown
We are left with the case in which both n and d are unknown. As before, if ` < d,
then Vi.`C1/ is of full rank for all i. When ` D d, Vi.`C1/ is of full rank for i < n,
drops rank by one if i D n, and drops rank by more than one if i > n. Thus one can
set d to be the smallest integer ` for which there exists an i such that Vi.`C1/ drops
rank, that is,

d D minf` W 9i 	 1 such that rank.Vi.`C 1// < Mi.`C 1/g:

Given d, one can compute n as in equation (5.49). ut
Therefore, in principle, both n and d can be retrieved if sufficient data points are

drawn from the subspaces. The subspace clustering problem can be subsequently
solved by first projecting the data onto a .d C 1/-dimensional subspace and
then applying the algebraic subspace clustering algorithm (Algorithm 5.4) to the
projected data points.

In the presence of noise, one may not be able to estimate d and n from
equations (5.47) and (5.48), respectively, because the matrix Vi.` C 1/ may be of
full rank for all i and `. As before, we can use the criteria introduced in Section 2.3
of Chapter 2 to determine the rank of Vi.`C 1/. However, in practice this requires a
search for up to possibly .D � 1/ values for d and dN=.D � 1/e values for n. In our
experience, the rank conditions work well when either d or n is known. There are
still many open issues in the problem of finding a good search strategy and model
selection criterion for n and k when both of them are unknown. Some of these issues
will be addressed by other methods to be introduced in Chapter 6 and Chapter 8.

200 5 Algebraic-Geometric Methods

5.4.3 Clustering Subspaces of Different Dimensions

In this section, we consider the problem of clustering an unknown number of
subspaces of unknown and possibly different dimensions from sample points.

First of all, we notice that the simultaneous recovery of the number and
dimensions of the subspaces may be an ill-conditioned problem if we are not clear
about what we are looking for. For example, in the extreme cases, one may interpret
the sample set X as N 1-dimensional subspaces, with each subspace spanned by
each of the sample points x 2 X ; or one may view the whole X as belonging to one
D-dimensional subspace, i.e., RD itself.

Although the above two trivial solutions can be easily rejected by imposing some
conditions on the solutions,17 other more difficult ambiguities may also arise in
cases such as that of Figure 1.2 in which two lines and a plane can also be interpreted
as two planes. More generally, when the subspaces are of different dimensions, one
may not be able to determine the number of subspaces directly from the degree of
the polynomials fitting the data, because the degree of the polynomial of minimum
degree that fits a collection of subspaces is always less than or equal to the number
of subspaces.

To resolve the difficulty in determining the number and dimension of subspaces,
notice that the algebraic set ZA D [n

iD1Si can be decomposed into irreducible
subsets Si; an irreducible algebraic set is also called a variety. The decomposition
of ZA into fS1; S2; : : : ; Sng is always unique. Therefore, as long as we are able to
correctly determine from the given sample points the underlying algebraic set ZA or
the associated (radical) ideal I.ZA/, in principle the number of subspaces n and their
dimensions fd1; d2; : : : ; dng can always be uniquely determined in a purely algebraic
fashion. In Figure 1.2, for instance, the first interpretation (two lines and one plane)
would be the right one, and the second one (two planes) would be incorrect, because
the two lines, which span one of the planes, do not form an irreducible algebraic set.

Having established that the problem of subspace clustering is equivalent to
decomposing the algebraic ideal associated with the subspaces, we are left with
deriving a computable scheme to achieve the goal.

From every homogeneous component Ik of

I.ZA/ D Im ˚ ImC1 ˚ � � � ˚ In ˚ � � � ;

we may compute a subspace arrangement Zk such that ZA
 Zk is a subspace
embedding (see Section C.3). For each k 	 m, we can evaluate the derivatives of
polynomials in Ik on subspace Si and denote the collection of derivatives by

Dk;i
:D [x2Sifrf jx; 8f 2 Ikg; i D 1; 2; : : : ; n: (5.51)

17To reject the N-lines solution, one can put a cap on the maximum number of groups nmax; and to
reject RD as the solution, one can simply require that the maximum dimension of every subspace
be strictly less than D.

5.5 Model Selection for Multiple Subspaces 201

Obviously, we have the following relationship:

Dk;i
 DkC1;i
 S?i ; 8k 	 m: (5.52)

Then for each Ik, we can define a new subspace arrangement as

Zk
:D D?k;1 [D?k;2 [� � � [D?k;n: (5.53)

Notice that it is possible that Dk;i D Dk;i0 for different i and i0, and Zk contains fewer
than n subspaces. We summarize the above derivation as the following theorem.

Theorem 5.14 (A Filtration of Subspace Arrangements). Let I.ZA/ D Im˚ ImC1˚
� � � ˚ In ˚ � � � be the ideal of a subspace arrangement ZA. Let Zk be the subspace
arrangement defined by the derivatives of Ik; k 	 m as above. Then we obtain a
filtration of subspace arrangements

Zm � ZmC1 � � � � � Zn D ZA;

and each subspace of ZA is embedded in one of the subspaces of Zk.

The above theorem naturally leads to a recursive scheme that allows us to
determine the correct number and dimensions of the subspaces in ZA. Specifically,
we start with n D 1 and increase n until there is at least one polynomial of degree
n fitting all the data, i.e., until the matrix Vn.D/ drops rank for the first time. For
such an n, we can use Algorithm 5.4 to separate the data into n subspaces. Then we
can further separate each one of these n groups of points using the same procedure.
The stopping criterion for the recursion is when all the groups cannot be further
separated or the number of groups n reaches some nmax.18

5.5 Model Selection for Multiple Subspaces

However, if the data points in the sample set X are corrupted by random noise,
the above recursive scheme may fail to return a meaningful solution. In fact, up till
now, we have been purposely avoiding a fundamental difficulty in our problem: it is
inherently ambiguous in fitting multiple subspaces for any given data set, especially
if the number of subspaces and their dimensions are not given a priori. When the
sample points in X are noisy or are in fact drawn from a nonlinear manifold, any
multisubspace model will unlikely fit the data perfectly except for the pathological
cases: 1. All points are viewed as in one D-dimensional subspace, the ambient
space. 2. Every point is viewed as lying in an individual one-dimensional subspace.

18For example, the inequality Mn.D/ � N imposes a constraint on the maximum possible number
of groups nmax.

202 5 Algebraic-Geometric Methods

In general, the greater the number of planes we use, the higher accuracy we may
achieve in fitting any given data set. Thus, a fundamental question we like to address
in this section is the following:

Among a class of subspace arrangements, what is the “optimal” model that fits a given data
set?

From a practical viewpoint, we also need to know under what conditions the
optimal model exists and is unique, and more importantly, how to compute it
efficiently.

In Appendix B, we have seen that in general, any model selection criterion aims
to strike a balance between the complexity of the resulting model and the fidelity
of the model to the given data. However, its exact form often depends on the class
of models of interest as well as how much information is given about the model in
advance. If we are to apply any of the model-selection criteria (or their concepts) to
subspace arrangements, at least two issues need to be addressed:

1. We need to know how to measure the model complexity of arrangements of
subspaces (possibly of different dimensions).

2. Since the choice of a subspace arrangement involves both continuous parameters
(the subspace bases) and discrete parameters (the number of subspaces and their
dimensions), we need to know how to properly balance the model complexity
and the modeling error for subspace arrangements.

In the rest of this section, we provide a specific model selection criterion for
subspace arrangements. The most fundamental idea behind the proposed criterion
is that the optimal model should lead to the most compact or sparse representation
for the data set.

5.5.1 Effective Dimension of Samples of Multiple Subspaces

Definition 5.15 (Effective Dimension). Given an arrangement of n subspaces
ZA

:D [n
iD1Si in RD of dimension di < D, and Ni sample points Xi drawn from each

subspace Si, the effective dimension of the entire set X D [n
iD1Xi of N DPn

iD1 Ni

sample points is defined to be

ED.X ;ZA/
:D 1

N

 nX
iD1

di.D � di/C
nX

iD1
Nidi

�
: (5.54)

We contend that ED.X ;ZA/ is the “average” number of (unquantized) real
numbers that one needs to assign to X per sample point in order to specify the
configurations of the n subspaces and the relative locations of the sample points in
the subspaces. In the first term of equation (5.54), di.D � di/ is the total number

5.5 Model Selection for Multiple Subspaces 203

of real numbers (known as the Grassmannian coordinates)19 needed to specify a di-
dimensional subspace Si in RD; in the second term of (5.54), Nidi is the total number
of real numbers needed to specify the di coordinates of the Ni sample points in the
subspace Si. In general, if there is more than one subspaces in ZA, ED.X ; thenZA/
can be a rational number instead of an integer for the conventional dimension.

Notice that we choose here real numbers as the basic “units” for measuring
complexity of the model in a manner similar to that in the theory of sparse
representation. Indeed, if the set of basis vectors of the subspaces is given, the
second term of the effective dimension is essentially the sum of the `0 norm of
the data points each represented as a linear combination of the bases. In general,
the existence of a sparse linear representation always relies on the fact that the
underlying model is an arrangement of a large number of subspaces. Of course, the
compactness of the model can potentially be measured by more accurate units than
real numbers. Binary numbers, or “bits,” have traditionally been used in information
theory for measuring the complexity of a data set. We will thoroughly examine that
direction in the next chapter and will subsequently reveal the relationships among
different measures such as the `0 norm, `1 norm, and (binary) coding length.

In the above definition, the effective dimension of X depends on the subspace
arrangement ZA. This is because in general, there could be many subspace structures
that can fit X . For example, we could interpret the whole data set as lying in one D-
dimensional subspace, and we would obtain an effective dimension D. On the other
hand, we could interpret every point in X as lying in a one-dimensional subspace
spanned by itself. Then there will be N such one-dimensional subspaces in total, and
the effective dimension, according to the above formula, will also be D. In general,
such interpretations are obviously somewhat redundant. Therefore, we define the
effective dimension of a given sample set X to be the minimum among all possible
models that can fit the data set:20

ED.X / :D min
ZAWX�ZA

ED.X ;ZA/: (5.55)

Example 5.16 (Effective Dimension of One Plane and Two Lines). Figure 1.2
shows data points drawn from one plane and two lines in R3. Obviously, the points in
the two lines can also be viewed as lying in the plane that is spanned by the two lines.
However, that interpretation would result in an increase of the effective dimension,
since one would need two coordinates to specify a point in a plane, as opposed to one
on a line. For instance, suppose there are fifteen points on each line and thirty points

19Notice that to represent a d-dimensional subspace in a D-dimensional space, we need only
specify a basis of d linearly independent vectors for the subspace. We may stack these vectors
as rows of a d�D matrix. Every nonsingular linear transformation of these vectors spans the same
subspace. Thus, without loss of generality, we may assume that the matrix is of the normal form
ŒId�d;G� where G is a d � .D� d/ matrix consisting of the so-called Grassmannian coordinates.
20The space of subspace arrangements is topologically compact and closed; hence the minimum
effective dimension is always achievable and hence well defined.

204 5 Algebraic-Geometric Methods

in the plane. When we use two planes to represent the data, the effective dimension
is 1

60
.2� 2� 3� 2� 22C 60� 2/ D 2:07; when we use one plane and two lines, the

effective dimension is reduced to 1
60
.2�2�3�22�2�1C30�1C30�2/ D 1:6.

In general, if the number of points N is arbitrarily large (say approaching infinity),
then depending on the distributions of points on the lines or the plane, the effective
dimension can be anything between 1 and 2, the true dimensions of the subspaces.

As suggested by the above example, the arrangement of subspaces that leads to
the minimum effective dimension normally corresponds to a “natural” and hence
compact representation of the data in the sense that it achieves the best compression
(or dimension reduction) among all possible multiple-subspace models.

5.5.2 Minimum Effective Dimension of Noisy Samples

In practice, real data are corrupted by noise; hence we do not expect that the optimal
model will fit the data perfectly. The conventional wisdom is to strike a good balance
between the complexity of the chosen model and the data fidelity (to the model).
See Appendix B.4 for a more detailed discussion about numerous model selection
criteria. To measure the data fidelity, let us denote the projection of each data point
xj 2 X to the closest subspace by Oxj and let OX D fOxjgNjD1. Then the total error
residual can be measured by

kX � OXk2 D
NX

jD1
kxj � Oxjk2: (5.56)

Since all model selection criteria exercise the same rationale as above, we here
adopt the geometric-AIC (G-AIC) criterion (2.87),21 which leads to the following
objective for selecting the optimal multiple-subspace model:

Z�A D arg min
ZAW OX�ZA

1

N
kX � OXk2 C 2�2ED. OX ;ZA/; (5.57)

where �2 is the noise variance of the data. However, this optimization problem can
be very difficult to solve: The variance �2 might not be known a priori, and we
need to search for the global minimum in the configuration space of all subspace
arrangements, which is not a smooth manifold and has very complicated topological
and geometric structures. The required computation is typically prohibitive.

21We here adopt the G-AIC criterion only to illustrate the basic ideas. In practice, depending on the
problem and application, it is possible that other model selection criteria may be more appropriate.

5.5 Model Selection for Multiple Subspaces 205

To alleviate some of the difficulty, we may in practice instead minimize the
effective dimension subject to a maximum allowable error tolerance. That is, among
all the multiple-subspace models that fit the data within a given error bound, we
choose the one with the smallest effective dimension. To this end, we define the
minimum effective dimension subject to an error tolerance 	 as

MED.X ; 	/ :D min
ZA

ED. OX ;ZA/ s.t. kX � OXk1
 	; (5.58)

where OX is the projection of X onto the subspaces in ZA, and the error norm k � k1
indicates the maximum norm: kX � OXk1 D max1�j�N kxj � Oxjk. Based on the
above definition, the effective dimension of a data set is then a notion that depends
on the error tolerance. In the extreme, if the error tolerance is arbitrarily large, the
“optimal” subspace model for any data set can simply be the (zero-dimensional)
origin; if the error tolerance is zero instead, for data with random noise, each sample
point needs to be treated as a one-dimensional subspace in R

D of its own, and that
brings the effective dimension up close to D.

In many applications, the notion of maximum allowable error tolerance is
particularly relevant. For instance, in image representation and compression, the
task is often to find a linear or hybrid linear model to fit the imagery data
subject to a given peak signal-to-noise ratio (PSNR).22 The resulting effective
dimension directly corresponds to the number of coefficients needed to store the
resulting representation. The smaller the effective dimension, the more compact
or compressed the final representation. In Chapter 9, we will see exactly how the
minimum effective dimension principle is applied to image representation. The
same principle can be applied to any situation in which one tries to fit a piecewise
linear model to a data set whose structure is nonlinear or unknown.

5.5.3 Recursive Algebraic Subspace Clustering

Unlike the geometric AIC (5.57), the MED objective (5.58) is relatively easy to
achieve. For instance, the recursive ASC scheme that we discussed earlier at the
end of Section 5.4.3 can be easily modified to minimize the effective dimension
subject to an error tolerance: we allow the recursion to proceed only if the effective
dimension would decrease while the resulting subspaces still fits the data with the
given error bound.

22In this context, the noise is the difference between the original image and the approximate image
(the signal).

206 5 Algebraic-Geometric Methods

To summarize the above discussions, in principle we can use the following
algorithm to recursively identify subspaces in an arrangement ZA from a set of
noisy samples X D fx1; x2; : : : ; xNg.

Be aware that when the data are noisy, it sometimes can be very difficult to
determine the correct dimension of the null space of the matrix Vn.D/ from its
singular-value spectrum. If the dimension is determined incorrectly, it may result
in either underestimating or overestimating the number of fitting polynomials. In
general, if the number of polynomials were underestimated, the resulting subspaces
would overfit the data;23 and if the number of polynomials were overestimated, the
resulting subspaces would underfit the data.

Obviously, both overfitting and underfitting result in incorrect estimates of
the subspaces. However, do they necessarily result in equally bad clustering of
the data? The answer is no. Between overfitting and underfitting, we actually
would favor overfitting. The reason is that though overfitting results in subspaces
that are larger than the original subspaces, it is a zero-measure event that an
overestimated subspace contains simultaneously more than one original subspace.
Thus, the grouping of the data points may still be correct. For instance, consider
the extreme case that we choose only one polynomial that fits the data. Then
the derivatives of the polynomial, evaluated at one point per subspace, lead to n
hyperplanes. Nevertheless, these overfitting hyperplanes will in general result in
a correct grouping of the data points. One can verify this with the introductory
example we discussed in Section 5.3.1. Either of the two polynomials p21.x/ D x1x3
and p22.x/ D x2x3 leads to two hyperplanes that cluster the line and the plane
correctly.

Example 5.17 (Recursive ASC on Synthetic Data) Figure 5.8 demonstrates an
example of applying the recursive ASC algorithm, Algorithm 5.5, to cluster
synthetic data points drawn from two lines (100 points each) and one plane (400
points) in R3 corrupted by 5% uniform noise (Figure 5.8 topleft). Given a reasonable
error tolerance, the algorithm stops after two levels of recursion (Figure 5.8 top
right). Note that the pink line (top right) or group 4 (bottom left) is a “ghost”
line at the intersection of the original plane and the plane spanned by the two
lines.24 Figure 5.8 bottom right is the plot of MED of the same data set subject
to different levels of error tolerance. As we see, the effective dimension decreases
monotonically with the increase in error tolerance.

23That is, the dimensions of some of the subspaces estimated could be larger than the true ones.
24This is exactly what we would have expected, since the recursive ASC first clusters the data into
two planes. Points on the intersection of the two planes get assigned to either plane depending on
the random noise. If needed, the points on the ghost line can be merged with the plane by some
simple postprocessing.

5.6 Bibliographic Notes 207

ED=3

ED=2.0067

−3

−4

5

5

−5 −5

0
0

−2

−1

0

1

2

3

4

5

−5 −5

−5

−1

−2

−3

−4

5

0
0

0

1

2

3

4

5

−5 −5

5

−1

−2

−3

−4

5

0 0

0

1

2

3

4

5

5

5

−5−5

0
5

0

0

5

−5 −5

0

5

0

−5 −5

0

5

0

−5 −5

0

−4

−3

−2

−1

0

1

2

3

4

5

−4

−3

−2

−1

0

1

2

3

4

5

5

−4

−3

−2

−1

0

1

2

3

4

5

5

−4

−3

−2

−1

0

1

2

3

4

5

N=600

N1=395 N2=205

N4=12N3=93N2=100N1=395

ED=1.6717

0 100 200 300 400 500 600

1

1.5

2

2.5

3

3.5

4

Point Indices

G
ro

up
 N

um
be

r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

0

0.5

1

1.5

2

2.5

3

Error Tolerance τ

M
E

D

Fig. 5.8 Simulation results. Top left: sample points drawn from two lines and a plane in R
3 with

5% uniform noise; top right: the process of recursive clustering by the recursive ASC algorithm,
Algorithm 5.5, with the error tolerance 	 D 0:05; bottom left: group assignment for the points;
bottom right: plot of MED versus error tolerance.

5.6 Bibliographic Notes

Algebraic Clustering Algorithms and Extensions
The difficulty with initialization for the iterative clustering algorithms that we have
presented in the previous chapter has motivated the recent development of alge-
brogeometric approaches to subspace clustering that do not require initialization.
(Kanatani 2001; Boult and Brown 1991; Costeira and Kanade 1998) demonstrated
that when the subspaces are orthogonal, of equal dimensions, and with trivial
intersection, one can use the SVD of the data to define a similarity matrix from
which the clustering of the data can be obtained using spectral clustering techniques.
Unfortunately, this method is sensitive to noise in the data, as pointed out in
(Kanatani 2001; Wu et al. 2001), where various improvements are proposed. When
the intersection of the subspaces is nontrivial, the clustering of the data is usually
obtained in an ad hoc fashion, again using clustering algorithms such as K-means.
A basis for each subspace is then obtained by applying PCA to each group. For the

208 5 Algebraic-Geometric Methods

Algorithm 5.5 (Recursive Algebraic Subspace Clustering).
Given a set of samples X D fx1; x2; : : : ; xNg in the ambient space R

D, find a set of subspaces that
fit X subject to an error 	 > 0:
1: for all k D 1 W nmax do
2: Set Vk.D/

:D Œ�k.x1/; �k.x2/; : : : ; �k.xN/�
> 2 RMk.D/�N .

3: if rank.Vk.D// < Mk.D/ then
4: Use the ASC algorithm, Algorithm 5.4, to partition X into k subsets X1; : : : ;Xk.
5: Apply PCA and fit each Xi with a subspace Si of dimension di, subject to the error 	 . Let

Z D S1 [� � � [Sk.
6: if ED.X ; Z/ < D then
7: for i D 1 W k do
8: Apply recursive ASC for Xi (with Si as the ambient space).
9: end for

10: else
11: Break.
12: end if
13: else
14: k kC 1.
15: end if
16: end for

special case of two planes in R3, a geometric solution was developed in (Shizawa
and Mase 1991) in the context of segmentation of 2D transparent motions. In the
case of subspaces of codimension one, i.e., hyperplanes, an algebraic solution was
developed in (Vidal et al. 2003b), where the hyperplane clustering problem is shown
to be equivalent to homogeneous polynomial factorization.

The algebraic subspace clustering algorithm for the most general case25 was later
developed in (Vidal et al. 2004); and the decomposition of the polynomial(s) was
based on differentiation, a numerically better conditioned operation. The algebraic
clustering algorithm was successfully applied to solve the motion segmentation
problem in computer vision (Vidal and Ma 2004). The generalization to arrange-
ments of both linear and quadratic surfaces was first studied in (Rao et al. 2005).

Algebraic Properties of Subspace Arrangements
The importance of using subspace arrangements to model real-world high-
dimensional data and the early success of the basic ASC algorithms had
motivated mathematicians to provide a more thorough characterization of subspace
arrangements in terms of their vanishing ideals. A complete characterization of the
Hilbert functions of the ideals for subspace arrangements was given in (Derksen
2007), which serves as the theoretical foundation for this chapter. In Appendix C, we
have sketched the basic algebraic concepts, results, and additional references about
subspace arrangements. One may also refer to (Ma et al. 2008) for a comprehensive
review of recent developments of this topic.

25That is, an arbitrary number of subspaces of arbitrary dimensions.

5.6 Bibliographic Notes 209

Effective Dimension, Sparsity, and Compression
The notion of minimum effective dimension was first introduced in the context of the
recursive algebraic subspace clustering method studied in (Huang et al. 2004). We
now understand that effective dimension is essentially a sparsity measure in terms of
the `0-norm. In future chapters, we will examine other surrogate measures of model
compactness for subspace arrangements, including coding length in Chapter 6 and
the convex `1-norm in Chapter 8.

Robustness and Outlier Rejection
There has been much work on the estimation of polynomials that best fit a given set
of noisy samples. In Exercise 5.10, we will study one such approach that works well
in the context of algebraic subspace clustering. The approach essentially follows that
of (Taubin 1991).

If there are also outliers in the given sample set, the problem becomes a
more difficult robust model estimation problem. There is vast body of literature
on robust statistics; see Appendix B.5 for a brief review. Sample influence is
always believed to be an important index for detecting outliers. Certain first-order
approximations of the influence value were developed at roughly the same time as
the sample influence function was proposed (Campbell 1978; Critchley 1985), when
computational resources were scarcer than they are today. In the literature, formulas
that approximate an influence function are referred to as theoretical influence
functions. Usually, the percentage of outliers can be determined by the influence
of the candidate outliers on the model estimated (Hampel et al. 1986).

In the basic ASC algorithm, Algorithm 5.4, we see that the key is to be
able to robustly estimate the covariance of the samples in the lifted space, i.e.
the matrix Vn.D/>Vn.D/. Among the class of robust covariance estimators (see
Appendix B.5), the multivariate trimming (MVT) method (Gnanadesikan and
Kettenring 1972) has always been one of the most popular for practitioners,
probably because of its computational efficiency for high-dimensional data as well
as its tolerance of a large percentage of outliers. Its application to ASC is posed as
Exercise 5.12.

Random sampling techniques such as the least median estimate (LME) (Hampel
1974; Rousseeuw 1984) and random sample consensus (RANSAC) (Fischler and
Bolles 1981) have been widely used in many engineering areas, especially in pattern
recognition and computer vision (Steward 1999). They are very effective when the
model is relatively simple. For instance, RANSAC is known to be very effective
in making the classic PCA robust, i.e., in estimating a single subspace in the
presence of outliers. However, if there are multiple subspaces, RANSAC is known
to work well when the dimensions of all the subspaces are the same (Torr 1998).
If the subspaces have different dimensions, a Monte Carlo scheme can be used
to estimate one subspace at a time (Torr and Davidson 2003; Schindler and Suter
2005). However, the performance degrades very quickly with the increase in the
number of subspaces and the percentage of outliers. This has been observed in the
careful experimental comparison done in (Yang et al. 2006). ASC combined with
MVT has been shown to perform generally better on most of the simulated data sets.

210 5 Algebraic-Geometric Methods

In the next chapter, we are going to see an entirely new approach to clustering
data from multiple subspaces. Rather than fitting a global model to the arrangement
or one model for each subspace, the new method forms subspace-like clusters by
merging one sample point at a time. As we will see, one distinctive feature of such an
agglomerative approach is its striking ability to handle a high percentage of outliers,
far more robust than the methods we have discussed or exercised so far.

5.7 Exercises

Exercise 5.1 (Clustering Points in a Plane). Describe how Algorithm 5.1 can also
be applied to a set of points in the plane fxj 2 R

2gNjD1 that are distributed around
a collection of cluster centers f�i 2 R2gniD1 by interpreting the data points as
complex numbers: fz :D x C y

p�1 2 Cg. In particular, discuss what happens to
the coefficients and roots of the fitting polynomial pn.z/.

Exercise 5.2 (Connection of Algebraic Clustering with Spectral Clustering).
Spectral clustering is a very popular data clustering method. In spectral clustering,
one is given a set of N data points (usually in a multidimensional space) and an N�N
pairwise similarity matrix S D .sij/. The entries sij of S measure the likelihood of
two points belonging to the same cluster: sij ! 1when points i and j likely belong to
the same group and sij ! 0 when points i and j likely belong to different groups.

1. First examine the special case in which the N data points have two clusters and
the similarity matrix S is ideal; that is, sij D 1 if and only if points i and j belong
to the same cluster and sij D 0 otherwise. What do the eigenvectors of S look
like, especially the one(s) that correspond to nonzero eigenvalue(s)? Argue how
the entries of the eigenvectors encode information about the membership of the
points.

2. Show how Algorithm 5.1 can be used to cluster the points based on the
eigenvector of the similarity matrix. Based on Exercise 5.1, show how to cluster
the points by using two eigenvectors simultaneously.

3. Generalize your analysis and conclusions to the case of n clusters.

Since many popular image segmentation algorithms are based on spectral clustering
(on certain similarity measure between pixels), you may use the above algorithm to
improve the segmentation results.

Exercise 5.3 (Level Sets and Normal Vectors). Let f .x/ W RD ! R be a smooth
function. For a constant c 2 R, the set Sc

:D fx 2 RDjf .x/ D cg is called a level
set of the function f ; Sc is in general a .D� 1/-dimensional submanifold. Show that
if krf .x/k is nonzero at a point x0 2 Sc, then the gradient rf .x0/ 2 RD at x0 is
orthogonal to all tangent vectors of the level set Sc.

Exercise 5.4 (Hyperplane Embedding from a Single Polynomial). Consider a
subspace arrangement ZA D S1 [S2 [� � � [Sn � RD; f .x/ is a polynomial that

5.7 Exercises 211

vanishes on ZA. Show that if we differentiate f .x/ at points on ZA, we always obtain
an arrangement of hyperplanes that contain ZA.

Exercise 5.5 (Multiple Algebraic Subspace Clustering). For each f D
1; 2; : : : ;F, let fxfj 2 RDgNjD1 be a collection of N points lying in n hyperplanes
with normal vectors fbfigniD1. For each j D 1; 2; : : : ;N, the sequence fxfj 2 RDgFfD1
represents the trajectory of the jth data point. Assume that each sequence of data
points fxfj 2 RDgFfD1 is associated with one sequence of hyperplanes with normal
vectors fbfigFfD1. That is, for each j D 1; 2; : : : ;N, there is an i D 1; 2; : : : ; n such

that for all f D 1; 2; : : : ;F, we have b>fi x1j D 0. Propose an extension of the
ASC algorithm that computes the normal vectors in such a way that b1i; b2i; : : : bFi

correspond to each other.
Hint: If pfn.x/ D c>f �n.x/ D .b>f1x/.b>f2x/ � � � .b>fnx/ and the jth set of points

x1j; x2j; : : : ; xFj corresponds to the ith group of hyperplanes, then bfi � rpfn.xfj/.

Exercise 5.6 (Properties of the Veronese map). Consider the Veronese map �n W
Œx1; : : : ; xD�

> 7! Œ: : : ; xn; : : :�>, where xn D xn1
1 xn2

2 : : : x
nD
D ranges over all monomials

of degree n D
DP

iD1
ni in the variables x1; x2; : : : ; xD, sorted in degree-lexicographic

order, and let x; y 2 RD.

1. Inner product invariance: Show that the polynomial kernel k.x; y/ D .y>x/n

can be written in terms of the Veronese map as k.x; y/ D �n.y/>M�n.x/,
where M 2 R

Mn.D/�Mn.D/ is a diagonal matrix, and its .n1; n2; : : : ; nD/th entry
is nŠ

n1Šn2Š:::nDŠ
with

PD
iD1 ni D n.

Hint: Use the multinomial theorem.
2. Linear invariance:

(a) Show that �n.˛x C y/ D Pn
iD0 ˛ifi.x; y/, where fi.x; y/ 2 RMn.D/ is a

bihomogeneous polynomial of degree i in x and .n� i/ in y for i D 0; : : : ; n.
(b) Let Sn be the space of homogeneous polynomials of degree n in D variables.

Define the transformation T W Sn ! Sn such that T.pn.x// D pn.Ax/, where
A 2 RD�D. Show that the transformation T is linear.

(c) Show that for all A 2 RD�D, there exists an QA 2 RMn.D/�Mn.D/ such that for
all x; �n.Ax/ D QA�n.x/.

3. Rotation invariance: Show that for D D 3 and all R 2 SO.3/, there exists
QR 2 SO.Mn.D// such that for all x; �n.Rx/ D QR�n.x/.

Exercise 5.7 (Two Subspaces in General Position). Consider two linear sub-
spaces of dimension d1 and d2 respectively in RD. We say that they are in general
position if an arbitrarily small perturbation of the position of the subspaces does not
change the dimension of their intersection. Show that two subspaces are in general
position if and only if

dim.S1 \ S2/ D minfd1 C d2 � DI 0g: (5.59)

212 5 Algebraic-Geometric Methods

Exercise 5.8. Implement the basic algebraic subspace clustering algorithm, Algo-
rithm 5.4, and test the algorithm for different subspace arrangements with different
levels of noise.

Exercise 5.9. Consider a collection of points fxj 2 R3gPjD1 lying in three subspaces
of R3,

S1 D fx W x3 D 0g; (5.60)

S2 D fx W x1 D 0 ^ x2 C x3 D 0g; (5.61)

S3 D fx W x1 D 0 ^ x2 � x3 D 0g: (5.62)

1. Show that the data can be fit with a set of m homogeneous polynomials of
degree n D 2 in three variables. Determine the value of m. Write down the
m polynomials explicitly. What is the minimum number of points P, and how
should such points be distributed in S1, S2, and S3 so that the m polynomials
can be uniquely determined? Show how to determine m and the polynomials
from data. Compute the gradient of each of the m polynomials at a data point
y1 2 S1, y2 2 S2 and y3 2 S3. Is it possible to segment the data into the three
subspaces using these gradients? If so, say how. If not, say what segmentation
can be obtained from the gradients.

2. Answer questions in part 1 with n D 3.
3. Answer all questions in part 1 with n D 4. If your answer to the last question in

part 1 is yes, then explain why the data can be segmented correctly into the three
subspaces, even though the degree of the polynomials is greater than the number
of subspaces.

Exercise 5.10 (Estimating Vanishing Polynomials). In the next two exercises, we
study two ways of estimating the vanishing polynomials of a subspace arrangement
from noisy samples. Since the data are noisy, a sample point x is only close to the
zero set of the fitting polynomials P.x/ D Œp1.x/; p2.x/; : : : ; pm.x/�>. Let Ox be the
closest point to x on the zero set of P.x/.

1. Show that the approximate square distance from x to Ox is given by

kx � Oxk2 � P.x/>
�rP.x/rP.x/>

�

P.x/: (5.63)

This distance is known as the Sampson distance. From this, conclude that given
a set of sample points X D fx1; : : : ; xNg, in order to minimize the mean square
fitting error 1

N

PN
jD1 kxj � Oxjk22, we can approximately minimize the average

Sampson distance

1

N

NX
jD1

P.xj/
>�rP.xj/rP.xj/

>�
P.xj/: (5.64)

5.7 Exercises 213

2. However, for every nonsingular matrix M 2 Rm�m, the values QP.x/ D MP.x/
define the same zero set. Show that in order to reduce this redundancy, we can
normalize the following matrix to an identity:

1

N

NX
jD1
rP.xj/rP.xj/

> D Im�m: (5.65)

Thus, the problem of minimizing the average Sampson distance now becomes a
constrained optimization problem:

P� D arg minP
1
N

PN
jD1 P.xj/

>�rP.xj/rP.xj/
>�
P.xj/;

subject to 1
N

PN
jD1 rP.xj/rP.xj/

> D Im�m:
(5.66)

3. Since the average of rP.xj/rP.xj/
> is an identity, we can approximate each by

an identity too. Then the above problem becomes

P� D arg minP
1
N

PN
jD1 kP.xj/k2;

subject to 1
N

PN
jD1 rP.xj/rP.xj/

> D Im�m:
(5.67)

Now show that the vector of coefficients of each polynomial in P� is a
generalized eigenvector for a properly defined pair of matrices W and B. That
is, they are solutions c�i to the following equation:

Wc�i D �iBc�i ; i D 1; 2; : : : ;m: (5.68)

Exercise 5.11 (Fisher Discriminant Analysis for Subspaces). We now illustrate
how concepts from discriminant analysis can be adopted to estimate better-fitting
polynomials. We use an arrangement of hyperplanes to demonstrate the basic ideas.
In this case, the fitting polynomial has the form

p.x/ D
nY

iD1

�
b>i x

� D c>�n.x/ D 0 (5.69)

with n the number of (different) hyperplanes and bi the normal vector to the ith
plane. In this case, it is very easy to find the coefficient vector c, since the kernel of
the data matrix Vn.D/ is only one-dimensional.

1. In the presence of noise, it is likely that p.x/ ¤ 0, but we would like to find
the coefficient vector c that minimizes the following average least-squares fitting
error 1

N

PN
jD1 jp.xj/j2. Show that the solution c� is the eigenvector associated

with the smallest eigenvalue of the matrix:

214 5 Algebraic-Geometric Methods

W
:D

 1

N
Vn.D/

>Vn.D/
�
: (5.70)

In the spirit of discriminant analysis, the matrix W will be called the within-
subspace scatter matrix.

2. Let us examine the derivative of the polynomial at each of the data samples. Let
x1 2 S1. Show that the norm of the derivative rp.x1/ is

��rp.x1/
��2 D

ˇ̌
ˇ

 nY

iD2
b>i x1

�ˇ̌
ˇ
2

: (5.71)

Thus, the average of the quantity krp.x1/k2 over all x1 in S1 gives a good
measure of “distance” from S1 to

Sn
iD2 Si, the union of the other subspaces.

For the purpose of clustering, we would like to find the coefficient vector c that
maximizes the following quantity:

max
1

N

NX
jD1

��rp.xj/
��2 D c>

 1
N

NX
jD1
r�n.xj/r�n.xj/

>�c
:D c>Bc: (5.72)

In the spirit of discriminant analysis, we will call B the between-subspace scatter
matrix.

3. Therefore, we would like to seek a fitting polynomial that simultaneously
minimizes the polynomial evaluated at each of the samples while maximizing
the norm of the derivative at each point. This can be achieved by minimizing the
ratio of these two metrics:

c� D arg min
c

c>Wc
c>Bc

: (5.73)

Show that the solution to this problem is given by the generalized eigenvector c
that is associated with the smallest generalized eigenvalue � of .W;B/:

Wc D �Bc: (5.74)

When B is nonsingular, c is simply the eigenvector of B�1W associated with the
smallest eigenvalue.

Exercise 5.12 (Robust Estimation of Fitting Polynomials). We know that sam-
ples from an arrangement of n subspaces, their Veronese lifting, all lie on a single
subspace span.Vn.D//. The coefficients of the fitting polynomials are simply the
null space of Vn.D/. If there is noise, the lifted samples approximately span a
subspace, and the coefficients of the fitting polynomials are eigenvectors associated
with the small eigenvalues of Vn.D/>Vn.D/. However, if there are outliers, the lifted
samples together no longer span a subspace. Notice that this is the same situation
that robust statistical techniques such as multivariate trimming (MVT) are designed

5.7 Exercises 215

to deal with. See Appendix B.5 for more details. In this exercise, show how to
combine MVT with ASC so that the resulting algorithm will be robust to outliers.
Implement your scheme and find out the highest percentage of outliers that the
algorithm can handle (for various subspace arrangements).

Chapter 6
Statistical Methods

Statistics in the hands of an engineer are like a lamppost to a drunk—they’re used more for
support than illumination.

—A.E. Housman

The algebraic-geometric approach to subspace clustering described in the
previous chapter provides a fairly complete characterization of the algebra and
geometry of multiple subspaces, which leads to simple and elegant subspace
clustering algorithms. However, while these methods can handle some noise in
the data, they do not make explicit assumptions about the distribution of the noise
or the data inside the subspaces. Therefore, the estimated subspaces need not be
optimal from a statistical perspective, e.g., in a maximum likelihood (ML) sense.

In this chapter, we study the subspace clustering problem from a statistical
estimation perspective. We assume that the data points are noisy (or contaminated)
samples drawn from a model based on the union of low-dimensional subspaces
and develop algorithms for estimating that model from data. As we have seen in
the study of (probabilistic) PCA in Chapter 2, noisy data points that belong to a
single subspace can be modeled as samples from a (nearly degenerate) Gaussian.
Therefore, a natural approach is to model data from multiple subspaces as samples
from a mixture of (nearly degenerate) Gaussians. However, the associated model
estimation problem is very challenging due to the following chicken-and-egg
problem: To estimate the models for the subspaces (say by PPCA), we need to know
which data points belong to which cluster; and to cluster the data points according
to their respective subspaces, we need to know the model for each subspace.

In the first part of this chapter, we will present an extremely simple and intuitive
approach to subspace clustering called K-subspaces, which alternates between
assigning each data point to its closest subspace and estimating a subspace for
each group of points using PCA. The K-subspaces algorithm can be seen as a

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_6

217

218 6 Statistical Methods

generalization of the K-means algorithm described in Section 4.3.1 from clustering
data around cluster centers (0-dimensional subspaces) to clustering data in a union
of subspaces. Thus, similar to K-means, one of the disadvantages of K-subspaces is
that its performance depends on having a good initialization for either the subspaces
or the segmentation. The K-subspaces algorithm can also be seen as a generalization
of the geometric PCA algorithm described in Section 2.1.2 from one to multiple
subspaces. As such, another disadvantage of K-subspaces is that it does not provide
a proper generative model for the data.

In the second part of this chapter, we will approach the subspace clustering
problem using conventional statistical methods for the estimation of mixture
models. We will first introduce a generative model for data in a union of subspaces
called mixtures of probabilistic principal component analysis (MPPCA), which
generalizes the PPCA model described in Section 2.2 from one to multiple
subspaces. We will show that the parameters of the MPPCA model can be estimated
using the EM and MAP-EM methods described in Appendix B. However, since the
distribution associated with a subspace is nearly degenerate, these general methods
need to be properly customized to work for subspaces. As we will see, both the EM
and MAP-EM algorithms rely on a very simple and intuitive iterative optimization
procedure that alternates between estimating the subspaces (model estimation) and
assigning data points to their subspaces (data clustering). As such, they can be seen
as probabilistic versions of the K-subspaces algorithm. As before, one disadvantage
of these methods is that their performance depends strongly on having a good
initialization for either the subspaces or the segmentation of the data. Moreover,
the model class (number of subspaces and their dimensions) needs to be known
beforehand.

In the third part of the chapter, we will approach the subspace clustering and
model selection problems using techniques from data compression. We will show
that the problem of finding a model that maximizes the likelihood function, as done
by the EM method, is essentially equivalent to minimizing the coding length of
the data. We will also show that it is possible to accurately estimate the coding
length for any subspace-like subset and that we can minimize the overall coding
length (hence maximize the likelihood) by clustering the data in an agglomerative
fashion. Unlike the EM method, the coding approach does not require any prior
knowledge about the model class, nor does it conduct any intermediate model
estimation during its optimization process. Moreover, the agglomerative process
naturally separates outliers, since encoding them together would significantly
increase the coding length. Since agglomerative methods have been widely used
in the knowledge discovery literature, the framework presented in this chapter will
show how such agglomerative methods can be naturally derived and justified from a
data compression perspective. If properly designed, they are equivalent to principled
statistical estimation methods for mixture models and yet have many computational
and practical advantages.

6.1 K-Subspaces 219

6.1 K-Subspaces

A very simple way of improving the performance of algebraic algorithms in the case
of noisy data is to use iterative refinement. Intuitively, given an initial segmentation,
we can fit a subspace to each group using geometric PCA. Then, given a PCA
model for each subspace, we can assign each data point to its closest subspace.
By iterating these two steps, we can obtain a refined estimate of the subspaces
and of the segmentation. This is the basic idea behind the K-planes (Bradley and
Mangasarian 2000) and K-subspaces (Tseng 2000; Agarwal and Mustafa 2004)
algorithms, which generalize the K-means algorithm (Lloyd 1957; Forgy 1965;
Jancey 1966; MacQueen 1967) from data distributed around multiple cluster centers
to data drawn, respectively, from multiple hyperplanes or from multiple affine
subspaces of any dimensions.

6.1.1 K-Subspaces Model

Let X D fx1; x2; : : : ; xNg be a set of points drawn approximately from n affine
subspaces of RD,

Si D fx W x D UiyC �ig; i D 1; : : : ; n; (6.1)

where Ui 2 RD�di is an orthonormal basis for the subspace, y 2 Rdi is a low-
dimensional representation of point x in subspace Si, and �i 2 RD is an arbitrary
point in the subspace. Let wij 2 f0; 1g be such that wij D 1 if point j belongs
to subspace i and wij D 0 otherwise. Assuming that the number of subspaces n
and their dimensions fdigniD1 are known, K-subspaces aims to estimate the points
f�igniD1, the subspace bases fUigniD1, and the segmentation of the data fwijgjD1;:::;NiD1;:::;n
by solving the following optimization problem:

min
f�ig;fUig;fwijg

nX
iD1

NX
jD1

wij dist.xj; Si/
2

s.t. U>i Ui D I;

wij 2 f0; 1g and
nX

iD1
wij D 1; j D 1; : : : ;N:

(6.2)

Here dist.xj; Si/ D miny2Rdi kxj��i�Uiyk D k.I�UiU>i /.xj��i/k is the distance
from point xj to subspace Si.

220 6 Statistical Methods

Since wij D 1 when point xj belongs to subspace Si and wij D 0 otherwise,
the objective function in (6.2) is simply the sum of the squared distances from
each data point to its own subspace. The first constraint in (6.2) requires that the
subspace basis be orthonormal. This constraint is also enforced by geometric PCA
in (2.23). The last two constraints in (6.2) ensure that each point is assigned to
only one subspace. These are the same constraints enforced by K-means in (4.53).
Moreover, notice that when n D 1, we have wij D 1, and so the optimization
problem solved by K-subspaces in (6.2) is equivalent to that solved by geometric
PCA in (2.23). Also, when d D 0, all terms involving Ui and yj disappear, and
so the optimization problem solved by K-subspaces in (6.2) reduces to that solved
by K-means in (4.53). Therefore, K-subspaces is a natural generalization of both
geometric PCA and K-means.

6.1.2 K-Subspaces Algorithm

The K-subspaces algorithm solves the optimization problem in (6.2) using an
alternating minimization approach. Given an assignment of data points to subspaces,
i.e., given fwijg, the optimization problem in (6.2) decouples into n optimization
problems of the form

min
�i;Ui

NX
jD1

wijk.I � UiU
>
i /.xj � �i/k2 s.t. U>i Ui D I; i D 1; : : : ; n: (6.3)

Since wij 2 f0; 1g, each problem is equivalent to the geometric PCA problem
in (2.23) but restricted to the data points xj assigned to the ith subspace, i.e., the
points such that wij D 1. Therefore, the optimal solution for the subspace parameters
is given by

�i D
PN

jD1 wijxjPN
jD1 wij

; i D 1; : : : ; n; (6.4)

Ui D top di eigenvectors of

 NX

jD1
wij.xj � �i/.xj ��i/

>�; i D 1; : : : ; n; (6.5)

yj D U>i .xj � �i/ for all j such that wij D 1: (6.6)

Given f�ig, fUig, fyjg, the optimal value for wij is obtained by assigning each data
point to its closest subspace, i.e.,

wij D
8<
:
1 if i D arg min

`D1;:::;n
kxj � �` �U`yjk2;

0 otherwise.
(6.7)

6.1 K-Subspaces 221

Algorithm 6.1 (K-Subspaces).

Input: Data fxjgNjD1, number of subspaces n, and subspace dimensions fdigniD1.
1: Initialize subspace parameters with a set of mean vectors �i 2 R

D and orthogonal matrices
Ui 2 RD�di .

2: while not converged do
3: Segmentation: For each j D 1; : : : ;N, assign point xj to subspace Si as:

wij D
8<
:
1 if i D arg min

`D1;:::;n
k.I � U`U

>

` /.xj � �`/k2;
0 else.

(6.8)

If more than one subspace achieves the minimum, assign the point arbitrarily to one of the
subspaces that achieves the minimum.

4: Estimation: For each i D 1; : : : ; n, estimate the parameters of Si by applying PCA to the
set of points xj such that wij D 1, which gives

�i D
PN

jD1 wijxjPN
jD1 wij

; (6.9)

Ui D top di eigenvectors of

 NX

jD1

wij.xj � �i/.xj � �i/
>

�
; (6.10)

yj D U>

i .xj � �i/ for all j such that wij D 1: (6.11)

5: end while
Output: Subspace parameters fUi;�igniD1, low-dimensional representations fyjgNjD1, and segmen-

tation of the data fwijgjD1;:::;N
iD1;:::;n .

The K-subspaces algorithm then proceeds by alternating between applying PCA
to each group of points and assigning each data point to its closest subspace, as
detailed in Algorithm 6.1.

6.1.3 Convergence of the K-Subspaces Algorithm

Observe that at each step of the K-subspaces algorithm, the objective function
either decreases or stays the same (see Exercise 6.2). Also, the objective function is
nonnegative, and hence bounded below. Moreover, since the number of possible
assignments of points to subspaces is finite, there is an open neighborhood of
subspace parameters that produce the same assignments. Therefore, after a finite
number of iterations, the objective function will stop decreasing, the assignments
will not change, and the subspace estimates will not change. Notice also that except
for the case that two or more points are at an equal distance from two or more
distinct subspaces, a small perturbation of the subspaces Si does not change the

222 6 Statistical Methods

assignment of points to subspaces. Therefore, the K-subspaces algorithm is, in
general, guaranteed to converge to a local minimum of the objective function in
a finite number of iterations. We refer the reader to (Selim and Ismail 1984) for a
more rigorous analysis of convergence of a generalized K-means algorithm (which
includes K-subspaces as a particular case), including cases in which the generalized
method fails to converge to a local minimum.

Now, even if the algorithm converges to a local minimum, in general it will not
converge to a global minimum. Therefore, initialization is critical in order to obtain
a good solution. One can initialize K-subspaces with an initial assignment of points
to subspaces. Alternatively, one can initialize the K-subspaces algorithm with a set
of subspace parameters. A common strategy is to start the algorithm from multiple
random initializations, and then choose the one that gives the best objective value.

6.1.4 Advantages and Disadvantages of K-Subspaces

The main advantage of K-subspaces is its simplicity, since it alternates between
assigning points to subspaces and estimating the subspaces via PCA. Another
advantage is that it can handle both linear and affine subspaces explicitly. The third
advantage is that it converges in a finite number of iterations. However, K-subspaces
suffers from a number of drawbacks. First, its convergence to the global optimum
depends on a good initialization. If a random initialization is used, several restarts
are often needed to find the global optimum. Alternatively, we may use the ASC
algorithm described in Chapter 5 for initialization. We refer the reader to (Aldroubi
and Zaringhalam 2009; Zhang et al. 2010) for two additional initialization methods.
Second, K-subspaces is sensitive to outliers, partly due to the use of the `2-norm.
This issue can be addressed by using a robust norm, such as the `1-norm, as done
by the median K-flats algorithm (Zhang et al. 2009). However, this results in a
more complex algorithm, which requires solving a robust PCA problem at each
iteration. Alternatively, one can resort to nonlinear minimization techniques, which
are guaranteed to converge only to a local minimum. Third, K-subspaces requires n
and fdigniD1 to be known beforehand. One possible avenue to be explored is to use the
model selection criteria for mixtures of subspaces proposed in (Huang et al. 2004).
We refer the reader to (Aldroubi and Zaringhalam 2009; Aldroubi et al. 2008) for a
more detailed analysis of some of the aforementioned issues.

6.2 Mixture of Probabilistic PCA (MPPCA)

As discussed before, the geometric models do not explicitly model noise from a
probabilistic perspective. In this section, we present a generalization of the PPCA
model introduced in Section 2.2 from one to multiple subspaces and show how the
parameters of the mixture model can be estimated using the EM algorithm.

6.2 Mixture of Probabilistic PCA (MPPCA) 223

6.2.1 MPPCA Model

Let X D fx1; x2; : : : ; xNg � RD be a set of points that are drawn independently
from a “noisy union” of n subspaces fSigniD1 of dimensions fdigniD1 according to
the following probabilistic generative model. First, we draw a random variable z 2
f1; 2; : : : ; ng from a multinomial distribution with parameters f�igniD1, where �i D
P.z D i/ 2 .0; 1/ is such that

Pn
iD1 �i D 1 and denotes the prior probability

of selecting subspace Si. Second, given that z D i, we generate a point x 2 RD

according to the PPCA model introduced in Section 2.2. That is,

x D �i C BiyC "i; (6.12)

where �i 2 RD and Bi 2 RD�di are model parameters that represent, respectively, a
point in subspace Si and a (not necessarily orthonormal) basis for subspace Si. On
the other hand, y and "i are independent zero-mean random (Gaussian) variables
with covariances †y D Idi and †"i D �2i ID that represent, respectively, a low-
dimensional representation of x in Si and a noise vector. Therefore, the distribution
of x given that it belongs to subspace Si is Gaussian with mean �i and covariance
†i D BiB>i C �2i ID. That is,

p�i.x j z D i/ D 1

.2�/D=2 det.†i/1=2
exp

� .x��i/

>†�1i .x��i/

2

�
; (6.13)

where �i D .�i;Bi; �i/ denotes the parameters of the ith PPCA model. The
distribution of a point drawn from a mixture of n PPCA models is then given by

p� .x/ D
nX

iD1
p�i.x j z D i/P.z D i/ D

nX
iD1

p�i.x j z D i/�i; (6.14)

where � D .�1; : : : ; �n; �1; : : : ; �n/ denotes the MPPCA model parameters.

6.2.2 Maximum Likelihood Estimation for MPPCA

Our goal is twofold: (1) We would like to cluster (or group) all the sample points
into their respective subspaces; (2) we would like to obtain a good estimate of the
parameters of each subspace. As we have discussed in Appendix B, the “goodness”
of a statistical estimate can be measured in different ways. For mixture models,
a conventional approach is the ML estimate, reviewed in Appendix B.2. The ML
estimator aims to find the parameters � that maximize the likelihood function for
the given data. That is,

max
�2‚

NY
jD1

p� .xj/ or equivalently min
�2‚

NX
jD1
� log p� .xj/: (6.15)

224 6 Statistical Methods

In Appendix B.2.1, we derived the EM algorithm for solving this problem. Starting
from an initial guess �0 for the model parameters, the EM algorithm alternates
between the following two steps until convergence (see Algorithm B.1):

E-step: For fixed � D � k D .� k
1 ; : : : ; �

k
n ; �

k
1 ; : : : ; �

k
n/, compute

wk
ij
:D p� k.z D i j xj/ D

p� k
i
.xj j z D i/�k

iPn
iD1 p� k

i
.xj j z D i/�k

i

: (6.16)

M-step: For fixed wk
ij, solve for � by maximizing the expected log-likelihood

� kC1 D arg max
�2‚

NX
jD1

nX
iD1

wk
ij log p� .xj; z D i/

D arg max
�2‚

NX
jD1

nX
iD1

wk
ij log

�
p�i.xj j z D i/�i

�
:

(6.17)

Observe that the E-step can be computed in closed form by direct substitution
of (6.13) in (6.16). Thus, the main question is how to solve for � in the M-step.

A Naive EM Algorithm for MPPCA
In Appendix B.3.1, we derived a closed-form solution for the optimal update of �
for a mixture of Gaussians. Since the MPPCA model is a mixture of Gaussians, it
seems rather tempting to directly apply the results in B.3.1 to the above model. In
particular, if we maximize the expected log-likelihood with respect to .�i;�i; †i/,
we obtain

�kC1
i D

PN
jD1 wk

ijPN
jD1

Pn
iD1 wk

ij

; �kC1
i D

PN
jD1 wk

ijxjPN
jD1 wk

ij

; (6.18)

†kC1
i D

PN
jD1 wk

ij.xj � �kC1
i /.xj ��kC1

i />
PN

jD1 wk
ij

: (6.19)

The naive EM algorithm then alternates between the E- and M-steps, both of which
can be computed in closed form.

Let O†i be the covariance matrix to which the naive EM algorithm converges. We
may find a basis Bi for subspace Si and the standard deviation �i of the noise "i by
applying Theorem 2.9 to O†i. Specifically,

bBi D U.ƒ� O�2i I/1=2R; and O�2i D
1

D � di

DX
jDdiC1

�j; (6.20)

6.2 Mixture of Probabilistic PCA (MPPCA) 225

where U 2 RD�di is a matrix whose columns are the top di eigenvectors of O†i,
ƒ 2 Rdi�di is a diagonal matrix whose diagonal entries are the corresponding top di

eigenvalues, and �j is the jth eigenvalue of O†i.
Finally, if one needs to get a partition of the data into their respective subspaces,

each point xj is assigned to cluster Xcj with

cj D arg max
i
Owij; (6.21)

where Owij is the converged a posteriori distribution of z given xj.

EM Algorithm for MPPCA
The naive EM algorithm estimates the mixture of subspaces as a mixture of generic
Gaussian distributions. While this algorithm is extremely simple,1 its derivation
is not correct. The reason is that by treating the PPCA components as generic
Gaussians, we are treating all entries of the covariance matrix †i as independent
parameters.2 In reality, the covariance matrix for each component of the MPPCA
model has a special form†i D BiB>i C�2i I. Thus, the true number of free parameters
in .Bi; �i/ can be much smaller than the number of parameters in†i, especially when
the dimensions of the subspaces are much lower than the dimension of the ambient
space, which is often the case for many of the problems we are concerned with in
this book. Therefore, in the M-step, we should not treat the entries of †i as free
parameters. Instead, we should optimize over .Bi; �i/.

Specifically, after substituting (6.13) into (6.17), we can see that the M-step
reduces to

.� kC1
i ; �kC1

i /Darg min
�i;�i

NX
jD1

wk
ij

 .xj��i/
>†�1i .xj��i/C log det.†i/

2
� log�i

�
:

(6.22)

The optimal solution for �i, subject to
Pn

iD1 �i D 1, is the same as that in (6.18).
To obtain the optimal solution for �i D .�i;Bi; �i/, notice that since †i D
BiB>i C�2i I, the problem above is almost identical the PPCA problem we studied in
Section 2.2.2. In particular, the above objective function is the same as the likelihood
function (2.56), except for the weights wk

ij. Hence a similar derivation to that in
Theorem 2.9 gives us the following optimal solutions for �i (we leave the detailed
derivation as an exercise to the reader):

1The reader is encouraged to implement it and test it with simulated data.
2If the dimension of the ambient space D is high, the degrees of freedom in the model are very large
and the extrema of the likelihood function may not be so salient when the number of samples is not
significantly larger than the dimension. Therefore, the optimization algorithm may converge very
slowly to an extremum, since so many parameters are not properly regularized. There has been
a rich literature in statistics about how to properly regularize the estimates of high-dimensional
Gaussians, especially when the number of samples is limited.

226 6 Statistical Methods

�kC1
i D

NP
jD1

wk
ijxj

NP
jD1

wk
ij

; BkC1
i D U.ƒ�.�kC1

i /2I/1=2R; .�kC1
i /2 D

DP
jDdiC1

�j

D � di
; (6.23)

where U is the matrix with the top di eigenvectors of †kC1
i given in (6.19), ƒ1 is

the matrix with the corresponding top di eigenvalues, R 2 Rdi�di is an arbitrary
orthogonal matrix, and �j is the jth-largest eigenvalue of†kC1

i . Hence, as discussed
in the proof of Theorem 2.9, the correct optimal estimate for the covariance†i that
maximizes the likelihood function in the M-step is

†kC1
i D BkC1

i .BkC1
i /> C .�kC1

i /2I: (6.24)

Notice that this estimate (by the EM algorithm for MPPCA) does not coincide
with the one in (6.19) (by the EM algorithm for mixtures of Gaussians). The key
difference is that the estimate in (6.24) essentially “regularizes” the covariance
estimate in (6.19) to be a low-rank matrix. This is because the update in (6.23)
essentially conducts a soft thresholding of the singular values of the “unregularized”
empirical estimate of the covariance matrix given by (6.19). As we saw in Chapters 2
and 3, this kind of soft (or hard) thresholding arises very commonly in situations in
which we try to enforce a matrix estimate to be of low rank.

Finally, if one needs to get a partition of the data into their respective subspaces,
each point xj is assigned to cluster Xcj with

cj D arg max
i
Owij; (6.25)

where Owij is the converged a posteriori distribution of z given xj.
For completeness, we have summarized the EM algorithm for a Mmixture of

subspaces (or MPPCAs) as Algorithm 6.2.

6.2.3 Maximum a Posteriori (MAP) Estimation for MPPCA

The EM algorithm for MPPCA is based on alternating between computing the
expected log-likelihood (E-step), which involves taking the expectation with respect
to the latent variables, and maximizing the expected log-likelihood (M-step). An
alternative approach to taking the expectation is to directly maximize over the
latent variables. As we will see in this section, this results in an approximate EM
algorithm in which, in the E-step, each data point is assigned to the PPCA model
that maximizes the posterior of the latent variables, whence the name MAP-EM.

More specifically, let zj 2 f1; 2; : : : ; ng be the latent variable denoting the PPCA
model that generated xj. The MAP-EM algorithm aims to find the model parameters
and latent variables that maximize the complete log likelihood, i.e.,

6.2 Mixture of Probabilistic PCA (MPPCA) 227

Algorithm 6.2 (EM for MPPCA).

Input: Sample points X D fxjgNjD1, number of subspaces n, their dimensions fdigniD1, and initial
estimates for the prior probabilities �0i (often to be 1=n), the subspace bases B0i , the mean
vectors �0

i , and noise variance .�0i /
2 .

1: Initialization: k 0 and †0i B0i B0>i C .�0i /2I for i D 1; : : : ; n.
2: while not converged do
3: E-step: Update the a posteriori distribution of z given xj as

wk
ij

p� k
i
.xj j z D i/�k

iPn
iD1 p� k

i
.xj j z D i/�k

i

; (6.26)

where p� k
i
.xj j z D i/ is a Gaussian with mean �k

i and covariance †k
i .

4: M-step: Update the estimates for f�i;�i; †igniD1 as

�
kC1
i

PN
jD1 wk

ijPN
jD1

Pn
iD1 wk

ij

; �
kC1
i

PN
jD1 wk

ijxjPN
jD1 wk

ij

; (6.27)

†
kC1
i

PN
jD1 wk

ij.xj ��
kC1
i /.xj � �

kC1
i />

PN
jD1 wk

ij

: (6.28)

Let the columns of U and the diagonal entries of ƒ be, respectively, the top di eigenvectors
and eigenvalues of†kC1

i . Update the subspace basis Bi and the noise variance �2i , and reset
the data covariance †i as

BkC1
i U.ƒ� .� kC1

i /2I/1=2R; .�
kC1
i /2 D 1

D� di

DX
iDdiC1

�i;

†
kC1
i BkC1

i .BkC1
i /> C .� kC1

i /2I:

(6.29)

5: Set k kC 1.
6: end while
7: Assign data point xj to the class cj D arg maxi Owij.

Output: MPPCA parameters f�i;�i;Bi; �
2
i ; †igniD1 and segmentation c.

max
�2‚ max

fzjg

NY
jD1

p� .xj; zj/ or equivalently min
�2‚ min

fzjg

NX
jD1
� log p� .xj; zj/: (6.30)

This problem is equivalent to

min
�2‚

NX
jD1

min
zj

� � log p� .xj; zj/
� � min

�2‚

NX
jD1

min
iD1;:::;n

� � log.p�i.xjjz D i/�i/
�

� min
�2‚ min

fwijg

NX
jD1

nX
iD1

wij dist.xj; Si/
2; (6.31)

228 6 Statistical Methods

where

dist.xj; Si/
2 D � log

�
p�i.xj j z D i/�i

�
(6.32)

D

1
2

�
.xj � �i/

>†�1i .xj ��i/C log..2�/D det.†i//
� � log�i

�

is a “probabilistic distance”3 from point xj to subspace Si, which is parameterized
by .�i; �i/, and wij 2 f0; 1g is defined as

wij D
8
<
:
1 if i D arg min

`D1;:::;n
dist.xj; S`/2 D arg max

`D1;:::;n
p�`.xj j z D `/�`

0 otherwise:
(6.33)

Observe the striking similarly between the objective of MAP-EM in (6.31)
and that of K-subspaces in (6.2). Thus, following the optimization strategy for
K-subspaces, we can solve the problem in (6.31) using alternating minimization:

E-step: Given � , solve for wij such that
Pn

iD1 wij D 1. The optimal solution is
given by (6.33). Therefore, when f.�i; �i/g are known, wij assigns point xj to the
PPCA model that maximizes the posterior probability of z given x, whence the
name MAP-EM.

M-step: Given wij, solve for � 2 ‚. This problem is identical to the M-step
in (6.22), whose solution is given by (6.18) and (6.23).

For completeness, we have summarized the MAP-EM algorithm for a mixture of
subspaces (or MPPCAs) as Algorithm 6.3.

6.2.4 Relationship between K-Subspaces and MPPCA

Notice that the MAP-EM algorithm is essentially the same as the EM algorithm
for MPPCA, except for the computation of wij: in EM, wij 2 Œ0; 1� denotes the
probability that point xj belongs to subspace Si, while in MAP-EM, wij 2 f0; 1g
indicates whether xj is assigned to Si. This is the reason why sometimes the former
method is known as soft EM, while the latter is known as hard EM.

Notice also that because wij 2 f0; 1g, the M-step of the MAP-EM algorithm does
not require using all the data points to solve for �i. Indeed, if we look at the solutions
in (6.23), we see that we can solve for �i using only the data points that are assigned
to subspace Si. Thus, the MAP-EM algorithm can be restated as follows:

3While the quantity is not an actual distance, notice that it is nonnegative because it is minus the
logarithm of a probability.

6.2 Mixture of Probabilistic PCA (MPPCA) 229

Algorithm 6.3 (MAP-EM for MPPCA).

Input: Sample points X D fxjgNjD1, number of subspaces n, their dimensions fdigniD1, and initial
estimates for the prior probabilities �0i (often to be 1=n), the subspace bases B0i , the mean
vectors �0

i , and noise variance .�0i /
2 .

1: Initialization: k 0 and †0i B0i B0>i C .�0i /2I for i D 1; : : : ; n.
2: while not converged do
3: E-step: Assign data points to PPCAs as

wkC1
ij D

8
<
:
1 if i D arg max

`D1;:::;n
p� k

`
.xj j z D `/�`

0 otherwise;
(6.34)

where p� k
i
.xj j z D i/ is a Gaussian with mean �k

i and covariance †k
i .

4: M-step: Update the estimates for f�i;�i; †igniD1 as

�
kC1
i

PN
jD1 wk

ijPN
jD1

Pn
iD1 wk

ij

; �
kC1
i

PN
jD1 wk

ijxjPN
jD1 wk

ij

; (6.35)

†
kC1
i

PN
jD1 wk

ij.xj ��
kC1
i /.xj � �

kC1
i />

PN
jD1 wk

ij

: (6.36)

Let the columns of U and the diagonal entries of ƒ be, respectively, the top di eigenvectors
and eigenvalues of†kC1

i . Update the subspace basis Bi and the noise variance �2i , and reset
the data covariance †i as

BkC1
i U.ƒ� .� kC1

i /2I/1=2R; .�
kC1
i /2 D 1

D� di

DX
iDdiC1

�i;

†
kC1
i BkC1

i .BkC1
i /> C .� kC1

i /2I:

(6.37)

5: Set k kC 1.
6: end while
7: Assign data point xj to the class cj D arg maxi Owij.

Output: MPPCA parameters f�i;�i;Bi; �
2
i ; †igniD1 and segmentation c.

E-step: Given the subspace parameters .�i; �i/, assign each data point to its
closest subspace as in (6.33).

M-step: Given the assignments of points to subspaces, wij, solve for �i by
applying PPCA to all the data points assigned to subspace Si. In addition, solve
also for �i by counting the proportion of data points assigned to Si.

Therefore, the MAP-EM algorithm for MPPCA is identical to K-subspaces, except
for two key differences: the distance used for assigning points to subspaces is differ-
ent (K-subspaces uses a geometric distance, while MAP-EM uses a “probabilistic
distance”), and the method for fitting the subspace to the data in each group is

230 6 Statistical Methods

different (K-subspaces uses PCA, while MAP-EM uses PPCA). It is hence natural to
ask whether there exist some conditions under which MAP-EM for MPPCA reduces
to K-subspaces, in the same way as MAP-EM for mixtures of Gaussians reduces to
K-means.

A sufficient condition for the MAP-EM algorithm for PPCA to reduce
to K-subspaces is that the “probabilistic distance” reduce to the Euclidean
distance, i.e.,

1
2

�
.xj � �i/

>†�1i .xj � �i/C log.det.†i//
� � log�i

�
/

k.I � UiU
>
i /.xj ��i/k22; (6.38)

where / means equality up to scale or up to a constant term. If we assume that the
prior probabilities of choosing any subspace are all equal, i.e., �i D 1

n , then the third
term of the “probabilistic distance” becomes a constant. Moreover, let UiƒiU>i be
the compact SVD of BiB>i and recall that†i D BiB>i C�2i ID. It follows from (2.70)

that det.†i/ D det.ƒi C �2i Idi/�
2.D�di/
i . Therefore, if we assume that all subspaces

are of equal dimensions d1 D � � � D dn D d, the variances of the noises are the
same for all subspaces, i.e., �1 D � � � D �n D � , and the distribution of the data
inside the subspaces are the same for all subspaces,4 i.e.,ƒ1 D � � � D ƒn D ƒ, then
the second term of the “probabilistic distance” is a constant.

Now notice that †i D .BiB>i C �2ID/ D .Ui.ƒ C �2Id/U>i C �2.I � UiU>i //.
Thus

†�1i D Ui.ƒC �2Id/
�1U>i C ��2.I �UiU

>
i /: (6.39)

Therefore, if we assume that �2 is much smaller than each of the diagonal entries
of ƒ, i.e., if we assume that the signal-to-noise ratio (SNR) is high, then †�1i �
��2.I � UiU>i /, and so

.xj � �i/
>†�1i .xj � �i/ �

1

�2
k.I � UiU

>
i /.xj ��i/k22: (6.40)

In summary, we have shown that when the prior probabilities of selecting a subspace
are the same, the dimensions of the subspaces are the same, the distribution of
the data inside the subspaces is the same across all subspaces, and the variance of the
noise is the same across all subspaces and is small compared to the variance of the
data, then the MAP-EM algorithm produces approximately the same assignments
as the K-subspaces algorithm.

4Notice that this means that while the subspaces are allowed to have different orientations (different
Ui), the distribution of the data points inside the subspaces is the same.

6.3 Compression-Based Subspace Clustering 231

6.3 Compression-Based Subspace Clustering

So far, we have introduced several methods for estimating and clustering multi-
ple subspaces, utilizing algebraic, iterative, or statistical techniques. A common
assumption behind all these approaches is that a good estimate of the underlying
subspace model (parameters) is necessary for clustering the data. Such parametric
methods often require knowing the number of subspaces and their dimensions
in advance. In practice, however, it is very desirable to have a method that can
automatically determine such information from a given data set itself.

As discussed in Section 5.5, the estimation of the number of subspaces and their
dimensions is a very difficult problem that is generally ill posed. In particular, we
noted that one can fit N data points drawn from a union of multiple subspaces in
R

D with a single subspace of dimension D, or with N subspaces of dimension
1. However, neither of these two pathological cases might correspond to the true
union of subspaces from which the data were sampled. To address this problem,
in Section 5.5 we studied the effective dimension (ED) of a data set as a means
to measure the “compactness” of a representation of the data. The ED measures
the “average” number of (unquantized) real numbers needed to encode each of the
data points and is a function of the number of subspaces, their dimensions, and
the number of data points in each subspace. We showed how the ED can be used
in conjunction with classical model selection criteria discussed in Appendix B.4
to estimate the number of subspaces and their dimensions. We also showed that a
“compact” representation of the data can be obtained by minimizing the ED while
approximating the given data to within a certain error tolerance.

In this section, we present an alternative approach to finding the “most compact”
representation of data drawn from a union of subspaces. In this approach, the
compactness of a representation is measured in terms of the number of bits needed
to encode each of the data points, i.e., its coding length. A compact representation
is then found as the one that minimizes the coding length while approximating the
given data to within a certain error tolerance. By varying the tolerance, we obtain
models of different complexity, among which we can choose the one that remains
the most stable for large ranges of the tolerance parameter.

6.3.1 Model Estimation and Data Compression

When the number of subspaces and their dimensions are unknown, one can view the
subspace modeling and clustering process as one of seeking a model that gives the
“most compact” representation for the data. This simple idea is actually the most
fundamental principle behind almost all model selection methods (Rissanen 1978;
Hansen and Yu 2001). In principle, by a compact model we mean a model with
the smallest possible number of subspaces, each of the smallest possible dimension.
In practice, however, the aforementioned pathological cases tell us that we cannot

232 6 Statistical Methods

simply minimize one quantity, say the number of subspaces, while leaving the other
one free to vary. Therefore, defining an appropriate measure of “compactness” is
critical.

Dimensionality is an abstract measure for compactness that is in many ways
rather rough: two data sets that span the same dimension could have drastically
different variances and volumes. In practice, a much more accurate measure for data
compactness is its physical storage: the number of binary bits needed to represent
the data set. Interestingly, this measure is closely related to the ML estimate that we
have studied in previous methods. To see this, consider a set of data points X D
fx1; x2; : : : ; xNg drawn from a mixture of distributions: p� .x/

:D Pn
iD1 �ip�i.x/,

where � D .�1; : : : ; �n; �1; : : : ; �n/. The ML estimate of � is given by

O� D arg max
�2‚

NX
jD1

log p� .xj/: (6.41)

The ML criterion is equivalent to minimizing the negative log-likelihood:PN
jD1� log p� .xj/. At the optimal estimate O� , the value of the negative log-

probability � log p O� .xj/ is the coding length required to store the data point xj

using the optimal Shannon coding scheme for the distribution p� .x/ (Cover and
Thomas 1991). Therefore, the expected coding length for the entire data set X is

lN.X / D 1

N

NX
jD1
� log p O� .xj/: (6.42)

Since the samples xj are i.i.d. samples from p� .x/, by the law of large numbers, as
N !1, the coding length lN.X / converges to the quantity

OH.x/ D
Z
�p� .x/ log p O� .x/ dx: (6.43)

Notice that H.x/ D R �p� .x/ log p� .x/ dx is the entropy of the random variable x.
The difference OH.x/� H.x/ is the so-called KL divergence in (B.30):

KL
�
p� .x/ jj p O� .x/

� D
Z

p� .x/ log

p� .x/

p O� .x/

�
dx: (6.44)

This quantity is always nonnegative and is zero only when p� .x/ D p O� .x/. In other
words, H.x/ is the lowest possible expected coding length for data drawn from the
distribution p� .x/, and every other incorrect estimate of the distribution will lead to
a higher coding length.

However, achieving the minimum coding length, or entropy, requires precise
knowledge of the distribution p� .x/, while in reality, only a finite number of samples
of the distribution are given. As we have seen in the case of K-subspaces and EM,
inferring the (mixture) distribution parameters from the samples can be a rather

6.3 Compression-Based Subspace Clustering 233

difficult nonlinear or even nonsmooth optimization problem itself. Thus, the goal of
this chapter is to seek a good “surrogate” for the coding length for the given data
set. By minimizing such a surrogate, we can indirectly approximate the entropy of
the data set.

This leads to the question of what constitutes a good surrogate. Clearly, a good
surrogate should be easily and directly computable from the given sample data. The
coding length given by the surrogate should be a close approximation (say a tight
upper bound) to the minimum coding length required for the given sample data
and should converge asymptotically to the optimal coding length as the number of
samples goes to infinity. Many nonparametric approximations of the distribution
from the samples can be used to construct such a surrogate. Since in our case, we
are dealing with a mixture of subspace-like Gaussians, not a generic distribution, we
can do much better. As we will see, in our case we can obtain a closed-form formula
that gives an accurate upper bound for the coding length.

Once we are able to accurately evaluate the coding length of a data set (against
a hypothesized model), we can decide whether a particular clustering of the data
set leads to a shorter coding length. The optimal clustering of the data is naturally
the one that minimizes the overall coding length. In this way, we establish an
equivalence between data clustering and data compression. As we will see in this
section, one distinguished character of such a compression-based clustering method
is that the principle of model selection is naturally implemented in the process of
optimization. Hence the method does not require any prior knowledge about the
number and dimensions of the subspaces for modeling the data. In addition, outliers
will be handled in an easy and unified way: they will simply be assigned to special
clusters that are less compressible than the rest of data, which can be well fit by
low-dimensional subspaces.

In the remainder of this section, we will show how the overall coding length
can be minimized in a simple agglomerative fashion, which leads to an extremely
efficient and robust algorithm for clustering data drawn from a mixture of linear
subspaces or Gaussians. Although we will conduct extensive simulations and give
some illustrative examples on real data to validate this method, we will wait till
Chapter 10 to see how well the compression-based clustering method works on
extensive real-world imagery data. In the data mining or information retrieval litera-
ture, agglomerative clustering methods are very popular nonparametric methods for
clustering mixed data (Kamvar et al. 2002). The analysis and results in this chapter
help provide a solid statistical justification for such methods, at least for a mixture
of Gaussian distributions.

6.3.2 Minimium Coding Length via Agglomerative Clustering

In this section, we give a self-contained summary of the main ideas behind
the compression-based approach to subspace clustering and the agglomerative
algorithm. We leave more detailed mathematical analysis and justification to

234 6 Statistical Methods

Sections 6.3.3 and 6.3.4. Readers who are interested only in the algorithm and
experiments may skip those sections and go directly to Section 6.4 without much
loss of continuity.

Lossy Coding of Multivariate Gaussian Data
Given a set of data vectors X D fx1; x2; : : : ; xNg � RD, we use X to denote the
matrix whose columns are the data points, i.e., X D Œx1; x2; : : : ; xN � 2 RD�N . An
encoding scheme maps each xj 2 X to a sequence of binary bits, from which the
original vector can be recovered as Oxj using a decoding scheme. A coding scheme is
said to be lossless if Oxj D xj for all data. Here we consider a lossy coding scheme.
That is, the original vector is recovered up to (on average) an allowable distortion:
EŒkxj � Oxjk2�
 "2.

The total length of the encoded sequences of all the vectors in X is denoted by
L.X/ 2 RC. To achieve good compression, we want to choose a coding scheme
and an associated coding length function L.�/ that are optimal for the family
of distributions of interest. In information theory (Cover and Thomas 1991), the
optimal number of binary bits needed to encode a random vector x of distribution
p.x/ subject to the distortion "2 is given by the so-called rate-distortion function
of the distribution p.x/. When the data points X are i.i.d. samples from a zero-
mean5 multivariate Gaussian distribution N .0;†/, it is known that the function
R D 1

2
log2 det.I C D

"2
†/ gives a good approximation to the optimal rate-distortion

function (Cover and Thomas 1991).6 Since O† D 1
N XX> is an estimate of the

covariance†, the average number of bits needed per vector in X is

R.X/
:D 1

2
log2 det

�
I C D

"2N
XX>

�
: (6.45)

For readers who are less familiar with information theory, we will give an intuitive
derivation of this formula in Section 6.3.3. Furthermore, we will give a constructive
proof in Appendix 6.A that the same formula gives a (tight) upper bound on
the average coding length for any finite number of samples from the Gaussian
distribution.

To represent the N data vectors in X , we will need N � R.X/ bits. In addition,
since the optimal codes are associated with the distribution of data in R

D (and the
decoder will need that information to recover the data), to represent this distribution

5For simplicity, in the main text, we will derive and present the main results with the zero-mean
assumption. However, all the formulas, results, and algorithms can be readily extended to the
nonzero-mean case, as shown in Appendix 6.A.
6Strictly speaking, the rate-distortion function for the Gaussian distribution N .0; †/ is R D
1
2

log2 det
�

D
"2
†
�

when "2

D is smaller than the smallest eigenvalue of †. Thus the above formula

is a good approximation when the distortion " is relatively small. However, when "2

D is larger
than some eigenvalues of †, the rate-distortion function becomes more complicated (Cover and
Thomas 1991). Nevertheless, the approximate formula R D 1

2
log2 det.IC D

"2
†/ can be viewed as

the rate-distortion function of the “regularized” distribution that works for all ranges of ".

6.3 Compression-Based Subspace Clustering 235

we will also need D �R.X/ additional bits,7 yielding an overall coding length for the
data set X of

L.X/
:D .N C D/ � R.X/ D N C D

2
log2 det

�
I C D

"2N
XX>

�
: (6.46)

A more detailed derivation and explanation of the expression for L.X/ is given in
Section 6.3.3, in which we will also study various good properties of this function.
For the purpose of data clustering, though, it suffices to note that in addition to
being (approximately) optimal for data drawn from a Gaussian distribution, the
same formula L.X/ also provides a good upper bound on the total number of bits
needed to code a finite number of sample vectors drawn from a Gaussian distribution
(see Appendix 6.A for a proof).

Clustering via Data Compression
Given a set of samples X D fxj 2 RDgNjD1, one can always view them as drawn from
a single Gaussian distribution and encode the data matrix X subject to distortion "2

using L.X/ bits. However, if the samples are drawn from a mixture of Gaussian
distributions or subspaces, it may be more efficient to encode X as the union of
multiple (disjoint) clusters: X D X1 [X2 [� � � [Xn. If each cluster is coded
separately, the total number of bits needed is

Ls.X1;X2; : : : ;Xn/
:D

nX
iD1

L.Xi/C jXij
� � log2.jXij=N/

�
; (6.47)

where jXij indicates the number of column vectors (i.e., the cardinality of the cluster
Xi). In the above expression, the term

Pn
iD1 jXij

� � log2.jXij=N/
�

is the number of
bits needed to code (losslessly) the membership of the N samples in the n clusters
(e.g., using Huffman coding (Cover and Thomas 1991)).8

Given a fixed coding scheme with its associated coding length function L.�/, the
optimal clustering is the one that minimizes the mixed coding length Ls.�/ over all
possible partitions of X . Due to the properties of the rate-distortion function (6.45)
for Gaussian data, we will see that softening the objective function (6.47) by
allowing a probabilistic (or soft) membership does not further reduce the (expected)
overall coding length (see Theorem 6.5 in Section 6.3.4). Notice also that the
objective in (6.47) is a function of the distortion ". In principle, one may add a
“penalty” term, such as ND � log ", to the overall coding length9 Ls so as to determine

7This can be viewed as the cost of coding the D principal axes of the data covariance 1
N XX>.

8Here we assume that the ordering of the samples is random and entropy coding is the best we
can do to code the membership. However, if the samples are ordered such that nearby samples are
more likely to belong to the same cluster (e.g., in segmenting pixels of an image), the second term
can and should be replaced by a tighter estimate.
9This particular penalty term is justified by noticing that ND � log " is (within an additive constant)
the number of bits required to code the residual x� Ox up to (very small) distortion ı
 ".

236 6 Statistical Methods

Algorithm 6.4 (Agglomerative Lossy Compression for Subspace Clustering).

Input: Data points X D fxj 2 R
Dg and distortion parameter "2 > 0.

1: Initialize S D fXj D fxjg W xj 2 X g.
2: while jSj > 1 do
3: choose two distinct sets Xi;Xj 2 S such that L.ŒXi;Xj�/� Ls.Xi;Xj/ is minimal.
4: if L.ŒXi;Xj�/� Ls.Xi;Xj/ � 0 then
5: break
6: else
7: S �

S n fXi;Xjg
�[fXi [Xjg.

8: end if
9: end while

Output: S .

the optimal distortion "�. The resulting objective min" Ls C ND � log " will then
correspond to an optimal coding length that depends only on the data. Nevertheless,
very often we leave " as a free parameter to be set by the user. In practice, this
allows the user to potentially obtain hierarchical clustering of the data at different
scales of quantization. We will thoroughly examine how the value of " affects the
final clustering through experiments in Section 6.4.

Minimizing the Coding Length
Finding the global minimum of the overall coding length Ls over all partitions of
the data set is a daunting combinatorial optimization problem, which is intractable
for large data sets. Nevertheless, the coding length can be effectively minimized in
a steepest descent fashion, as outlined in Algorithm 6.4. The minimization proceeds
in a “bottom-up” fashion: initially, every sample is treated as its own cluster. At
each iteration, two clusters Xi and Xj are chosen so that merging them results in the
greatest decrease in the coding length. We use ŒXi;Xj� to denote the concatenation of
the two data matrices Xi and Xj. The algorithm terminates when the coding length
cannot be further reduced by merging any pair of clusters. This method is known
as the agglomerative lossy compression (ALC) method in the literature (Ma et al.
2007).

As we will see later, in Section 6.4, extensive simulations and experiments
demonstrate that the ALC algorithm is very effective in clustering data drawn
from a mixture of Gaussians or subspaces. ALC tolerates significant numbers of
outliers, and automatically determines the optimal number of clusters for any given
distortion: the smaller the value of ", the larger the number of clusters. However, as a
greedy descent scheme, the algorithm is not guaranteed always to find the globally
optimal clustering for any given .X ; "/.10 In our experience, we have found that
the main factor affecting the global convergence of the algorithm seems to be the

10However, it may be possible to improve the convergence using more complicated split-and-
merge strategies (Ueda et al. 2000). In addition, due to Theorem 6.5 of Section 6.3.4, the globally
(asymptotically) optimal clustering can also be computed via concave optimization (Benson 1994),
at the cost of potentially exponential computation time.

6.3 Compression-Based Subspace Clustering 237

density of the samples relative to the distortion "2. In Section 6.4, we will give strong
empirical evidence for the convergence of the algorithm over a wide range of ".

A naive implementation of Algorithm 6.4 maintains a table containing L.ŒXi;Xj�/

for all i; j and requires O.N3 C N2D3/ time, where N is the number of samples and
D the dimension of the space. However, there are many possible ways to further
improve the efficiency or convergence of the ALC algorithm. For instance, one may
adopt more advanced split-and-merge strategies (such as those in (Ueda et al. 2000))
or random techniques (such as (Fischler and Bolles 1981)) to improve the speed and
effectiveness of the algorithm. Nonetheless, it is possible that in the future, one could
even develop more efficient and effective algorithms to minimize the coding length
function that are entirely different from the agglomerative approach presented here.

Notice also that the greedy merging process in Algorithm 6.4 is similar in spirit to
classical agglomerative clustering methods, especially the so-called Ward’s method
(Ward 1963). However, whereas Ward’s method assumes isotropic Gaussians, the
above compression-based approach is capable of clustering Gaussians with arbi-
trary covariance, including nearly degenerate distributions. Classical agglomerative
approaches have been shown to be inappropriate for such situations (Kamvar
et al. 2002). In this sense, the change in coding length provides a principled
means of measuring similarity between arbitrary Gaussians. This approach also
demonstrates significant robustness to uniform outliers, another situation in which
linkage algorithms (Hastie et al. 2001) fail.

Remark 6.1. As discussed in (Wright et al. 2009b), the good performance of
ALC can be partly justified from a classification perspective. More specifically,
suppose that at some step of Algorithm 6.4 we have already determined n clusters
X1; : : : ;Xn. Suppose also that x is a data point that has not yet been merged with
any of the n clusters. Then, if we restrict line 3 of Algorithm 6.4 to comparing only
the sets fxg and Xi for all i D 1; : : : ; n, then we can understand the optimal choice
in line 3 as trying to classify data point x to one of the current n clusters. The way
in which point x is classified is by comparing how many additional bits are needed
to encode it with each one of the clusters. This is measured as

ıL.x; i/ D L.ŒXi; x�/ � L.Xi/C L.i/; i D 1; : : : ; n; (6.48)

where the last term is the cost of losslessly coding the label y for x as y D i.
Thus, step 3 of the ALC algorithm simply assigns x to the cluster that minimizes
the number of additional bits needed to code .x; Oy/. This is exactly the minimum
incremental coding length (MICL) classification criterion introduced in (Wright
et al. 2009b), which can be written as

Oy.x/ :D arg min
yD1;:::;n

ıL.x; y/: (6.49)

238 6 Statistical Methods

Somewhat surprisingly, this seemingly naive rule of deciding which cluster to merge
for x is in fact nearly optimal when the size of the clusters is large enough. Or more
precisely, classification based on the MICL criterion is, asymptotically, equivalent
to a regularized version of the optimal maximum a posteriori (MAP) classifier. The
interested reader is referred to (Wright et al. 2009b) for a rigorous justification.

6.3.3 Lossy Coding of Multivariate Data

In this section, we give a more detailed justification of the coding rate and length
functions introduced in the previous section. In the next section, we provide a
more thorough analysis of the compression-based approach to subspace clustering.
Readers who are less concerned with technical details may skip these two sections
without much loss of continuity.

The optimal coding scheme and the optimal coding rate of a random vector x
with known probability distribution p.x/ have been well studied in information
theory (see (Cover and Thomas 1991) and references therein). However, here we are
dealing with a finite set of i.i.d. samples X D fxj 2 R

DgNjD1 of x. Such a data set can
be viewed as a nonparametric distribution itself—each vector xj in X occurs with
equal probability 1=N. In this case, the optimal coding scheme for the distribution
p.x/ is no longer optimal for X , and the formula for the coding length no longer
accurate. Nevertheless, some of the basic ideas for deriving the optimal coding rate
can still be extended to the nonparametric setting.

In this section, borrowing ideas from information theory, we derive a tight bound
on the coding length or rate for the given data X . In Appendix 6.A, we give an
alternative derivation of the bound. Although both approaches essentially arrive
at the same estimate, they together reveal that the derived coding rate and length
functions hold under different conditions:

1. The derivation in this section shows that for small ", the formula for R.X/ gives
a good approximation to the (asymptotically) optimal rate-distortion function of
a Gaussian distribution.

2. The derivation in Appendix 6.A shows that the same coding rate and length
formulas work for every finite set of vectors X that span a subspace.

The Rate-Distortion Function
For simplicity, we assume here that the given data have zero mean, i.e.,

P
j xj D 0.

The reader may refer to Appendix 6.A for the case in which the mean is not zero.
Let "2 be the squared error allowable for encoding every vector xj. That is, if Oxj is
an approximation of xj, we allow EŒkxj � Oxjk2�
 "2. In other words, on average,
the allowable squared error for each entry of xj is "2=D.

The solution to coding the vectors in X , subject to the mean squared error "2, can
be explained by sphere packing, which is normally adopted in information theory
(Cover and Thomas 1991). Here we are allowed to perturb each vector xj 2 X
within a sphere of radius " in RD. In other words, we are allowed to distort each

6.3 Compression-Based Subspace Clustering 239

entry of xj with an (independent) random variable of variance "2=D. Without loss of
generality, we may model the error as an independent additive Gaussian noise:

Oxj D xj C zj; with xj � N .0; †/ and zj � N

0;
"2

D
I
�
: (6.50)

Then the covariance matrix of the vectors fOxjg can be approximated as

E

h 1
N

NX
jD1
Oxj Ox>j

i
D "2

D
I C† � "2

D
I C 1

N
XX> 2 R

D�D; (6.51)

where 1
N XX> is the ML estimate of †. As a consequence, the volume of the region

spanned by the column vectors of OX D ŒOx1; : : : ; OxN � is proportional to (the square
root of the determinant of the covariance matrix)

vol. OX/ /
s

det

"2

D
I C 1

N
XX>

�
: (6.52)

Similarly, the volume spanned by each random vector zj is proportional to

vol.z/ /
r

det

"2

D
I
�
: (6.53)

In order to encode each vector, we can partition the region spanned by all the
vectors into nonoverlapping spheres of radius ". When the volume vol. OX/ of the
region is significantly larger than the volume of the sphere, the total number of
spheres that we can pack into the region is approximately equal to

of spheres D vol. OX/=vol.z/: (6.54)

Thus, to know each vector xj with an accuracy up to "2, we need only specify the
sphere containing the vector xj (see Figure 6.1). If we use binary numbers to label
all the spheres in the region of interest, the number of bits needed is

R.X/
:D log2.#of spheres/ D log2

�
vol. OX/=vol.z/

�

D 1

2
log2 det

�
I C D

N"2
XX>

�
; (6.55)

where the last equality uses the fact det.A/= det.B/ D det.B�1A/.

Remark 6.2 (Relationships to the rate-distortion function of a Gaussian). If the
samples xj are drawn from a Gaussian distribution N .0; †/, then 1

N XX> converges

240 6 Statistical Methods

σ2e2 σ1e1

xi

2ε

vol(X̂)

Fig. 6.1 Encoding of a set of vectors in a region in R
D with an accuracy up to "2. To know the

vector xj, we need only know the label of the corresponding sphere. Here e1; e2 2 R
D represent

the singular vectors of the matrix OX, and �1; �2 2 R the singular values.

to the covariance matrix†. Thus, we have R.X/! 1
2

log2 det
�
IC D

"2
†
�

as N !1.

When "2

D
 �min.†/, the optimal rate distortion for i.i.d. samples from N .0;†/
is 1

2
log2 det

�
D
"2
†
�
, to which (6.55) provides a good approximation. In general,

the optimal rate distortion is a complicated formula given by reverse-waterfilling
on the eigenvalues of † (see Theorem 13.3.3 of (Cover and Thomas 1991)). The
approximation (6.55) provides an upper bound that holds for all " and is tight when
" is small relative to the eigenvalues of the covariance.

The formula for R.X/ can also be viewed as the rate-distortion function of the
data X regularized by a noise of variance "2

D as in equation (6.50). The covariance
O† of the perturbed vectors Oxj always satisfies "2

D
 �min. O†/, allowing for a simple
analytic expression for the rate distortion for all ". This regularized rate distortion
has the further advantage of agreeing with the bound for the coding length of finitely
many vectors that span a subspace, derived in Appendix 6.A.

Notice that the formula for R.X/ is accurate only in the asymptotic sense, i.e.,
when we are dealing with a large number of samples and the error " is small (relative
to the magnitude of the data X). We want to emphasize that the above derivation of
the coding rate does not give an actual coding scheme. The construction of efficient
coding schemes that achieve the optimal rate-distortion bound is itself a difficult
problem (see, for example, (Hamkins and Zeger 2002) and references therein).
However, for the purpose of measuring the quality of clustering and compression,
all that matters is that in principle, a scheme attaining the optimal rate R.X/ exists.

The Coding Length Function
Given the coding rate R.X/, the total number of bits needed to encode the N vectors
in X is

N � R.X/ D N

2
log2 det

�
I C D

N"2
XX>

�
: (6.56)

6.3 Compression-Based Subspace Clustering 241

From a data communication point of view, N � R.X/ bits are already sufficient, since
both the transmitter and the receiver share the same code book, that is, they both
know the region spanned by X in RD. However, from the data representation or
compression point of view, we need more bits to represent the code book itself. This
is equivalent to specifying all the principal axes of the region spanned by the data,
i.e., the singular values/vectors of X; see Figure 6.1. Since the number of principal
axes is D, we need D � R.X/ additional bits to encode them. Therefore, the total
number of bits needed to encode the N vectors in X � RD subject to the squared
error "2 is11

L.X/
:D .N C D/R.X/ D N C D

2
log2 det

�
I C D

N"2
XX>

�
: (6.57)

Appendix 6.A provides an alternative derivation of the same coding length
function L.X/ as an upper bound for a finite number of samples. If the data X have
nonzero mean, we need more bits to encode the mean, too. See in Appendix 6.A
how the coding length function should be properly modified in that case.

Properties of the Coding Length Function

Commutative Property. Since XX> 2 RD�D and X>X 2 RN�N have the same
nonzero eigenvalues, the coding length function can also be expressed as

L.X/ D N C D

2
log2 det

�
I C D

N"2
XX>

�
(6.58)

D N C D

2
log2 det

�
I C D

N"2
X>X

�
: (6.59)

Thus if D � N, the second expression will be less costly for computing the
coding length. As we saw in Section 4.1.3, the matrix X>X, which depends only
on the inner products between pairs of data vectors, is known in the statistical
learning literature as the kernel matrix. This property suggests that the ideas and
the algorithm presented in Section 6.3.2 can be readily extended to cluster data
sets that have nonlinear structures, by choosing a proper kernel function.

Invariant Property. Notice that in the zero-mean case, the coding length func-
tion L.X/ is invariant under an orthogonal transformation of the data X . That is,
for every orthogonal matrix U 2 O.D/ or V 2 O.N/, we have

L.UX/ D L.X/ D L.XV/: (6.60)

In other words, the length function depends only on the singular values of
X (or eigenvalues of XX>). This equality suggests that one may choose any

11Compared to the MDL criterion (2.85), if the term N � R.X/ corresponds to the coding length for
the data, the term D � R.X/ then corresponds to the coding length for the model parameter � .

242 6 Statistical Methods

orthonormal basis (e.g., Fourier, wavelets) to represent and encode the data, and
the number of bits needed should always be the same. This agrees with the fact
that the chosen coding length (or rate) is optimal for a Gaussian distribution.
However, if the data are non-Gaussian or nonlinear, a proper transformation
can still be useful for compressing the data.12 Here we are essentially seeking a
partition, rather than a transformation, of the non-Gaussian (or nonlinear) data set
such that each subset is sufficiently Gaussian (or subspace-like) and hence cannot
be compressed any further, either by (orthogonal) transformation or clustering.

6.3.4 Coding Length of Mixed Gaussian Data

Now suppose we have partitioned the set of N vectors X D fx1; x2; : : : ; xNg into n
nonoverlapping clusters X D X1 [X2 [� � � [Xn. The corresponding data matrix
has the form X D ŒX1;X2; : : : ;Xn�, where Xi is a submatrix associated with Xi. Then
the total number of bits needed to encode the clustered data is Ls.X1;X2; : : : ;Xn/ DPn

iD1 L.Xi/ C jXij
� � log2.jXij=N/

�
. Here the superscript s is used to indicate the

coding length after clustering.
Clustering and Compression
To better understand under what conditions a data set should or should not be
partitioned in order to reduce the overall coding rate or length, in what follows
we provide two representative examples. To simplify the analysis, we assume that
the data set can be partitioned into two subsets of an equal number of vectors,
i.e., X1;X2 2 R

D�N . We also assume that N � D, so that we can ignore the
asymptotically insignificant terms in the coding rate and length functions.

Example 6.3 (Uncorrelated Subsets). Notice that in general, we have

L.X1/C L.X2/ D N

2
log2 det

�
I C D

N"2
X1X

>
1

�C N

2
log2 det

�
I C D

N"2
X2X

>
2

�

 2N

2
log2 det

�
I C D

2N"2
.X1X

>
1 C X2X

>
2 /
� D L.ŒX1;X2�/;

where the inequality follows from the concavity of the function log2 det.�/ (see
Theorem 7.6.7 of (Horn and Johnson 1985)). Thus, if the difference L.ŒX1;X2�/ ��
L.X1/ C L.X2/

�
is large, the overhead needed to encode the membership of the

clustered data (here one bit per vector) becomes insignificant. If we further assume
that X2 is a rotated version of X1, i.e., X2 D UX1 for some U 2 O.D/, one can show
that the difference L.ŒX1;X2�/ �

�
L.X1/ C L.X2/

�
is (approximately) maximized

when X2 becomes orthogonal to X1. We call two clusters X1;X2 uncorrelated if

12For a more thorough discussion on why some transformations (such as wavelets) are useful for
data compression, the reader may refer to (Donoho et al. 1998).

6.3 Compression-Based Subspace Clustering 243

x2x2

x1x1

2ε

Fig. 6.2 The number of spheres (code words) of two different schemes for coding two orthogonal
vectors. Left: encoding the two vectors separately. Right: encoding the two vectors together.

X>1 X2 D 0. Thus, segmenting the data into uncorrelated clusters typically reduces
the overall coding length. From the viewpoint of sphere packing, Figure 6.2 explains
the reason.

Example 6.4 (Strongly Correlated Subsets). We say that two clusters X1;X2 are
strongly correlated if they span the same subspace in RD. Or somewhat equivalently,
we may assume that X1 and X2 have approximately the same sample covariance, that
is, X2X>2 � X1X>1 . Under this assumption, we have

L.X1/C L.X2/ D N

2
log2 det

�
I C D

N"2
X1X

>
1

�C N

2
log2 det

�
I C D

N"2
X2X

>
2

�

� 2N

2
log2 det

�
I C D

2N"2
.X1X

>
1 C X2X

>
2 /
� D L.ŒX1;X2�/:

Since Ls.X1;X2/ D L.X1/C L.X2/C H.jX1j; jX2j/, the overhead needed to encode
the membership becomes significant, and the segmented data require more bits than
the unsegmented data. In other words, when two clusters have approximately the
same covariance, it is better to encode them together.

Optimality of Deterministic Clustering
So far, we have considered only partitioning the data X into n nonoverlapping
clusters. That is, each vector is assigned to a cluster with probability either 0 or 1.
We call such a clustering “deterministic.” In this section, we examine an important
question: is there a probabilistic partitioning of the data that can achieve an even
lower coding rate? By a probabilistic partitioning, we mean a more general class of
partitions in which we assign each vector xj to the cluster i according to a probability
�ij 2 Œ0; 1�, with

Pn
iD1 �ij D 1 for all j D 1; 2; : : : ;N.

To facilitate counting the coding length of such (probabilistically) partitioned
data, for each point xj we introduce a random variable yij 2 f0; 1g with multinomial
distribution p.yij D 1/ D �ij. For convenience, we define two matrices

Yi
:D

2
66664

yi1 0 � � � 0
0 yi2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 yiN

3
77775
; …i

:D

2
66664

�i1 0 � � � 0
0 �i2

: : :
:::

:::
: : :

: : : 0

0 � � � 0 �iN

3
77775
2 R

N�N ; (6.61)

244 6 Statistical Methods

where Yi collects the observed memberships of the N data points in cluster i, and…i

collects the probabilities of the N data points in cluster i. These matrices satisfy the
conditions EŒYi� D …i and

Pn
iD1 Yi DPn

iD1 …i D IN�N ;…i � 0.
Obviously, for each observed instance, the size of the ith cluster is trace .Yi/, and

the covariance of the ith cluster †i can be estimated as O†i D 1
trace .Yi/

XYiX>. Thus,

the coding rate of the ith cluster (if viewed as a Gaussian distribution N .0; O†i/) is
given by

R.Xi/
:D 1

2
log2 det

�
I C D

trace .Yi/"2
XYiX

>�: (6.62)

Substituting the above covariance and cluster size into the segmented coding
length function (6.47) yields that the total number of bits required to encode the
data X clustered according to the (random) assignment Y D fYigniD1 is

Ls.X;Y/
:D

nX
iD1

trace .Yi/C D

2
log2 det

�
I C D

trace .Yi/"2
XYiX

>�

C trace .Yi/

� log2

trace .Yi/

N

�
: (6.63)

As we will see in Theorem 6.5, Ls.X;Y/ is a concave function of the assignment
Y. We have Ls.X;EŒY�/ 	 EŒLs.X;Y/� (using that f .EŒx�/ 	 EŒf .x/� for concave
functions). Since EŒY� D …, we have that Ls.X;…/, defined as

Ls.X;…/
:D

nX
iD1

trace .…i/C D

2
log2 det

�
I C D

trace .…i/"2
X…iX

>�

C trace .…i/

� log2

trace .…i/

N

�
; (6.64)

gives an upper bound for the expected coding length for such probabilistic clus-
tering. Similarly, the expected number of bits needed to encode each vector is
bounded by

Rs.X;…/
:D 1

N
Ls.X;…/

D
nX

iD1

trace .…i/

N

R.Xi/� log2

trace .…i/

N

�
C D

N
R.Xi/: (6.65)

Thus, one may consider that the optimal partition …� is the global minimum of
the expected overall coding length Ls.X;…/, or equivalently the average coding rate
Rs.X;…/. To some extent, one can view the minimum value of Rs.X;…/ as a good
approximation to the actual entropy of the given data set X .13

13Especially when the data X indeed consist of a mixture of subsets and each cluster is a typical
set of samples from an (almost degenerate) Gaussian distribution.

6.3 Compression-Based Subspace Clustering 245

Notice that the second term, D
N R.Xi/, in the expression of Rs.X;…/ is insignif-

icant when the number of samples is large, N � D. It roughly corresponds
to how many extra bits are needed to encode the basis of the subspace, and it
becomes significant only when the number of samples is small. The first term in
the expression of Rs.X;…/ is the only part that matters asymptotically (i.e., as the
number of vectors in each cluster goes to infinity) and we denote it by

Rs;1.X;…/ :D
nX

iD1

trace .…i/

2N
log2 det

�
I C D

"2 trace .…i/
X…iX

>�

� trace .…i/

N
log2

 trace .…i/

N

�
:

(6.66)

Thus, the global minimum of Rs;1.X;…/ determines the optimal clustering when
the sample size is large.

Theorem 6.5 (Concavity of Asymptotic Coding Length). The asymptotic part
Rs;1.X;…/ of the rate-distortion function Rs.X;…/ is a concave function of … in
the convex domain

:D f… WPn
iD1 …i D I;…i � 0g.

Proof. Let S be the set of all N � N nonnegative definite symmetric matrices. We
will show that Rs;1.X;…/ is concave as a function from Sn ! R, and also when
restricted to the domain of interest,
 � Sn.

First consider the second term of Rs;1.X;…/. Notice that
Pn

iD1 trace .…i/ D
N is a constant. So we must show the concavity of the function g.P/

:D
� trace .P/ log2 trace .P/ only for P 2 S. To see this, notice that the function
f .x/ D �x log2 x is concave and that g.P/ D f .trace .P// is the composition of f
with the trace (a linear function of P). Thus, g.P/ is concave in P.

Now consider the first term of Rs;1.X;…/. Let

h.…i/
:D trace .…i/ log2 det

�
I C D

"2 trace .…i/
X…iX

>�: (6.67)

It is well known in information theory that the function q.P/
:D log2 det.P/ is

concave for P 2 S and P � 0 (see Theorem 7.6.7 of (Horn and Johnson 1985)).
Now define r W S ! R to be

r.…i/
:D log2 det.I C ˛X…iX

>/ D q.I C ˛X…iX
>/: (6.68)

Since r is just the concave function q composed with an affine transformation…i 7!
I C ˛X…iX>, r is concave (see Section 3.2.3 of (Boyd and Vandenberghe 2004)).
Let W S �RC ! R be defined as

 .…i; t/
:D t � log2 det

�
I C N

"2t
X…iX

>� D t � r�1
t
…i
�
: (6.69)

246 6 Statistical Methods

Ω

Π∗

Rs,∞(Π)

Fig. 6.3 The function Rs;1.X;…/ is a concave function of … over a convex domain
, which is
in fact a polytope in the space RnN . The minimal coding length is achieved at a vertex …� of the
polytope.

According to Theorem 3.2.6 of (Boyd and Vandenberghe 2004), is concave.
Notice that H

:D f.…i; t/ W t D trace .…i/g is a linear subspace in the product
space of R and the space of all symmetric matrices. So H \ .S � RC/ is a convex
set, and the desired function, h.…i/ D .…i; trace .…i//, is just the restriction of
to this convex set. Thus, h is concave.

Since Rs;1.X;…/ is a sum of concave functions in…i, it is concave as a function
from Sn to R, and so is its restriction to the convex set
 in Sn. ut

Since Rs;1.X;…/ is concave, its global minimum …� is always reached at the
boundary, or more likely, at a vertex of the convex domain
, as shown in Figure 6.3.
At the vertex of
, the entries �ij of …� are either 0’s or 1’s. This means that
even if we allow soft assignment of each point to the n clusters according to some
probabilistic distribution, the optimal solution with the minimal coding length can
always be approximately achieved by assigning each point to one of the clusters
with probability one. This is why Algorithm 6.4 does not consider any probabilistic
clustering.

Another implication of the above theorem is that the problem of minimizing
the coding length is essentially a concave optimization problem. Many effective
concave optimization algorithms can be adopted to find the globally optimal cluster-
ing, such as the simplex algorithm (Benson 1994). However, such generic concave
optimization algorithms typically have high (potentially exponential) complexity. In
the next section, we will show with extensive simulations and experiments that the
greedy algorithm proposed in Section 6.3.2 (Algorithm 6.4) is already effective in
minimizing the coding length.

Remark 6.6. Interestingly, in multiple-channel communications, the goal is
instead to maximize the channel capacity, which has very much the same formula
as the coding rate function (Tse and Viswanath 2005). The above theorem suggests

6.4 Simulations and Applications 247

that a higher channel capacity may be achieved inside the convex domain
, i.e., by
probabilistically assigning the transmitters to a certain number of clusters. Since
the coding rate function is concave, the maximal channel capacity can be very
easily computed via convex optimization (Boyd and Vandenberghe 2004).

6.4 Simulations and Applications

In this section, we will conduct simulations on synthetic data to examine the
effectiveness of the coding length function described in Section 6.3 and evaluate
the performance of the ALC algorithm, Algorithm 6.4. We will also demonstrate
the ALC algorithm on a few real examples of clustering gene expression data,
segmenting natural images, and clustering face images. In the face clustering
example, we will also compare the ALC algorithm with the K-subspaces and
MPPCA algorithms discussed in Sections 6.1 and 6.2, respectively. The reader is
referred to Chapter 10 and Chapter 11 for more extensive applications of these
methods to real data.

6.4.1 Statistical Methods on Synthetic Data

Clustering Linear Subspaces of Different Dimensions
We first demonstrate the ability of the ALC algorithm, Algorithm 6.4, to cluster
noisy samples drawn from a mixture of linear subspaces of different dimensions
d 2 f1; 2; : : : ; 7g in RD with D 2 f3; 5; 7; 8g. For every d-dimensional subspace,
100d samples are drawn uniformly from a ball of diameter 1 lying in the subspace.
Each sample is corrupted by independent Gaussian noise of standard deviation "0 D
0:04.14

We compare the results of the ALC algorithm with parameter " D "0 to those
of the EM algorithm of (Ghahramani and Hinton 1996) for a mixture of factor
analyzers (FA).15 Since the EM-FA algorithm gives a probabilistic assignment,
we use an ML classification step16 to obtain hard assignments. We modified the
EM-FA algorithm of (Ghahramani and Hinton 1996) slightly to allow it to work

14Notice that the data are not drawn from a mixture of Gaussians. As we have mentioned before,
although we have derived the coding length function largely based on the mixture of Gaussians
model, the coding length function actually gives a good estimate of the coding length for any
subspace-like data; see Appendix 6.A for more details. Hence this experiment tests how well the
coding length works when we deviate from the basic mixture of Gaussians model.
15Factor analysis is a probabilistic model for a subspace that generalizes the PPCA model discussed
in Section 2.2: in FA, the noise covariance is diagonal, while in PPCA, it is a scaled identity matrix.
16That is, each sample is assigned to its cluster according to the maximum likelihood rule among
all subspaces estimated by the EM algorithm.

248 6 Statistical Methods

−0.4 −0.4

−0.4

−0.2 −0.2

−0.2

0
0

0

0.2
0.2

0.4

0.2

0.4

0.4

−0.4 −0.4

−0.4

−0.2 −0.2

−0.2

0 0

0

0.2
0.2

0.4

0.2

0.4

0.4

axis 2 axis 1axis 2

ax
is

 3

ax
is

 3

axis 1

Fig. 6.4 Result of applying the ALC algorithm, Algorithm 6.4, to data drawn approximately from
a union of three subspaces of dimensions .2; 1; 1/ in R

3. Left: noisy input data. Right: output
clusters.

Table 6.1 Simulation results for data drawn from mixtures of noisy
linear subspaces. Clustering error percentages are averaged over 25
trials. The ALC algorithm correctly identifies the number and dimen-
sion of the subspaces in all 25 trials, for all configurations. Far right
column: results using EM for a mixture of subspaces with different
dimensions (Ghahramani and Hinton 1996) with random initialization.

True subspace Identified Clustering(%) Clustering (%)

dimensions dimensions error (ALC) error (EM-FA)

.2; 1; 1/ in R
3 2; 1; 1 3:38 60:67

.2; 2; 1/ in R
3 2; 2; 1 10:00 31:02

.4; 2; 2; 1/ in R5 4; 2; 2; 1 1:47 56:64

.6; 3; 1/ in R
7 6; 3; 1 0:23 33:84

.7; 5; 2; 1; 1/ in R
8 7; 5; 2; 1; 1 1:96 57:71

for a mixture of subspaces with different dimensions. To avoid the model selection
issue, we provided the EM-FA algorithm with the correct number of subspaces and
their dimensions. However, there is no need to provide such information for the
ALC algorithm.

Figure 6.4 shows one representative result of the ALC algorithm, while Table 6.1
summarizes the average clustering accuracy for several configurations tested. In
each case, the algorithm stops at the correct number of clusters, and the dimensions
of the clusters Xi match those of the generating subspaces.17 For all five configura-
tions, the average percentage of samples assigned to the correct cluster was at least
90.0%. The main cause of clustering error is points that lie near the intersection of
multiple subspaces. Due to noise, it may actually be more efficient to code such
points to one of the other subspaces. Notice also that in all cases, ALC dramatically
outperforms EM-FA, despite requiring no knowledge of the subspace dimensions.

17The dimension of each cluster Xi is identified using principal component analysis (PCA) by
thresholding the singular values of the data matrix Xi with respect to ".

6.4 Simulations and Applications 249

Table 6.2 Size of the range of log " for which the ALC algorithm con-
verges to the correct number and dimension of clusters, for each of the
arrangements considered in Figure 6.4.

Subspace .2; 1; 1/ .2; 2; 1/ .4; 2; 2; 1/ .6; 3; 1/ .7; 5; 2; 1; 1/

dimensions in R3 in R3 in R5 in R7 in R8

log10
"max
"min

2.5 1.75 2.0 2.0 .75

Since in practice, "0 is unknown, it is important to investigate the sensitivity of
the results to the choice of ". Table 6.2 gives, for each of the examples in Table 6.1,
the range of " for which ALC converges to the true number of subspaces and true
subspace dimensions. Notice that for each of the configurations considered, there
exists a significant range of " for which the greedy algorithm converges.

Global Convergence
Empirically, we find that the ALC algorithm does not suffer from many of the
difficulties with local minima that plague iterative clustering algorithms such
as K-subspaces, or statistical parameter estimation algorithms such as EM. The
convergence appears to depend mostly on the density of the samples relative to the
distortion ". For example, if the number of samples is fixed at N D 1200, and
the data are drawn from three dD

2
e-dimensional subspaces in R

D, the algorithm
converges to the correct solution for D D 2 up to D D 56. Here, we choose
" D "0 D 0:008. Beyond D D 56, the algorithm fails to converge to the three true
subspaces, because the samples have become too sparse. For D > 56, the computed
clustering gives a higher coding length than the ground truth clustering, suggesting
that the algorithm converged to a local minimum.

The same observation occurs for subspaces with different dimensions. For
example, we randomly draw 800 samples from four subspaces of dimensions 20,
15, 15, and 10 in R

40, and added noise with "0 D 0:14. The results of ALC on these
data for different values of the distortion parameter " are shown in Figure 6.5. It
can be observed that when the distortion " is very small, ALC does not necessarily
converge to the optimal coding length. Nevertheless, the number of clusters, 4, is
still identified correctly by the algorithm when " becomes relatively large.

Recall also that as described in Section 6.3.2, " can potentially be chosen
automatically by minimizing Ls C ND � log ", where the second term approximates
(up to a constant) the number of bits needed to code the residual. The green curve in
Figure 6.5 shows the value of this penalized coding length. Notice that its minimum
falls very near the true value of log ". We observe similar results for other simulated
examples: the penalty term is generally effective in selecting a relevant ".

Robustness to Outliers
We test the robustness of the ALC algorithm to outliers on the example of two lines
and a plane in R3, illustrated in Figure 6.6. In this example, 158 samples are drawn
uniformly from a 2D disk of diameter 1, and 100 samples are drawn uniformly from
each of the two line segments of length 1. The additive noise level is "0 D 0:03.

250 6 Statistical Methods

Fig. 6.5 Left: the coding length found by the greedy algorithm (the red curve) compared to the
ground truth (the blue curve labeled “a priori segmentation”) for data drawn from four linear
subspaces of dimensions 20, 15, 15, 10 in R40. The green curve shows the penalized coding length
Ls C ND � log ". Right: the number of clusters found by the greedy algorithm; it converges to the
correct number, 4, when the distortion is relatively large.

Fig. 6.6 Clustering results for data drawn from three linear subspaces, corrupted by No outliers.
(a) No D 300 (45.6% outliers). (b) No D 400 (52.8% outliers). (c) No D 1100 (75.4% outliers).
(d) No D 1200 (77.0% outliers).

The data set is contaminated by No outliers, whose three coordinates are uniformly
distributed on Œ�0:5; 0:5�.

As the number of outliers increases, the clustering results of ALC exhibit several
distinct phases. For No
 300 (45.6% outliers), ALC always finds the correct
clustering, and the outliers are merged into a single (three-dimensional) cluster.
From No D 400 (52.8% outliers) up to No D 1100 (75.4% outliers), the two lines
are correctly identified, but samples in the plane are merged with the outliers. For
No D 1200 (77.4% outliers) and higher, all of the data samples are merged into one
cluster, as the distribution of the data becomes essentially random in the ambient
space. Figure 6.6 shows the results for No D 300; 400; 1100; 1200. Notice that the
effect of adding the outliers resembles the effect of ice (the lines and the plane)
being melted away by warm water. This suggests a similarity between the artificial
process of data clustering and the physical process of phase transition.

Number of Clusters versus Distortion Level
Figure 6.7 shows how the number of clusters changes as " varies. In this experiment,
N D 358 points are drawn from two lines and a plane and then perturbed by noise

6.4 Simulations and Applications 251

Fig. 6.7 Estimated number of clusters n as a function of the distortion level " when the noise level
is "0 D 0:05.

with standard deviation "0 D 0:05. Notice that the number of clusters experiences
distinct phases, with abrupt transitions around several critical values of ". For
sufficiently small ", each data point forms its own cluster. However, as " increases,
the cost of coding the cluster membership begins to dominate, and all the points
are clustered together in a single three-dimensional subspace (the ambient space).
Around the true noise level, "0, there is another stable phase, corresponding to the
three true subspaces. Finally, as " becomes large, the number of clusters reverts
to 1, since it becomes most efficient to represent the points using a single zero-
dimensional subspace (the origin).

This behavior contrasts with the phase transition discussed in (Rose 1998). There,
the number of clusters increases monotonically throughout the simulated annealing
process. Because the formulation in this chapter allows the dimension of the clusters
to vary, the number of clusters does not decrease monotonically with ". Notice,
however, that the phase corresponding to the correct clustering is stable over several
orders of magnitude of the parameter ". This is important, since in practice, the true
noise level "0 is usually unknown.

Another interesting thing to notice is that the coding rate Rs.X/ in many regions
is mostly a linear function of � log10 ": Rs.X/ � �ˇ log10 " C ˛, for some
constants ˛; ˇ > 0, which is a typical characteristic of the rate-distortion function
of Gaussians.

Clustering of Affine Subspaces
Appendix 6.A shows how the coding length function should be properly modified
when the data are not of zero mean. Here, we show how the modified ALC algorithm
works for affine subspaces. In this example, N D 358 samples are drawn from
three linear subspaces in R3, and their centers are translated to Œ2:1; 2:2; 2�>,
Œ2:4; 1:9; 2:1�>, Œ1:9; 2:5; 1:9�>. The data are then corrupted by noise with "0 D
0:01; 0:03; 0:05; 0:08. Figure 6.8 shows the clustering results for different noise
levels. Although not shown in the figure, we found that experimentally when
10�7 < " < 0:1, the algorithm always identifies the correct number of subspaces
with " D "0. However, when "
 10�7, the density of the samples within the
subspace becomes more important than the distortion orthogonal to the subspace,

252 6 Statistical Methods

Fig. 6.8 Clustering results for data drawn from three affine subspaces for different levels of noise
"0 D 0:01; 0:03; 0:05; 0:08. The parameter " in the algorithm is chosen to be "D "0.

Fig. 6.9 Clustering results for data drawn from three affine subspaces with No outliers. The
parameter " in the algorithm is " D "0 D 0:02. (a) No D 200 (35.8% outliers), (b) No D 300

(45.6% outliers), (c) NoD700 (66.2% outliers), (d) NoD800 (69.1% outliers).

and the algorithm no longer converges. However, for such small distortion, there
always exists a large stable phase (with respect to changing ") that gives rise to the
correct number of subspaces, n D 3. When "0 > 0:1, the algorithm starts to fail and
merges the data samples into one or two clusters.

We now fix the level of noise at "0 D 0:02 and add No outliers whose three
coordinates are uniformly distributed in the range of Œ1:5; 2:5�, which is the same as
the range of the inliers. When the number of outliers is No D 200 (35.8% outliers),
the ALC algorithm finds the correct clustering, and all the outliers are clustered into
one cluster. From No D 300 (45.6% outliers) to No D 700 (66.2% outliers), the ALC
algorithm still identifies the two lines and one plane. However, the outliers above and
below the plane are clustered into two separate clusters. For more than No D 800

(69.1% outliers), the algorithm identifies the two lines, but samples from the plane
are merged with the outliers into one cluster. Figure 6.9 shows the clustering results
for No D 200; 300; 700; 800.

Model Selection for Affine Subspaces and Nonzero-Mean Gaussians
We compare the ALC algorithm to the algorithms of (Figueiredo and Jain 2002)
and (Ghahramani and Beal 2000) on three examples of mixed data drawn from
affine subspaces and nonzero-mean Gaussians. The first example consists of outlier-
free data samples drawn from three affine subspaces (two lines and one plane) and
corrupted by noise with "0 D 0:01. Samples are drawn as in the previous examples.
The means of the three clusters are fixed (as in the previous examples), but the

6.4 Simulations and Applications 253

Fig. 6.10 Frequency of estimated number of subspaces n in 50 trials. The left and center columns
show results for randomly generated arrangements of affine subspaces. The right column shows
results for data sets generated from three full-rank Gaussians, as in (Figueiredo and Jain 2002).
For all cases, the correct number of clusters is n = 3.

orientations of the two lines are chosen randomly. The second example uses data
drawn from three affine subspaces (two planes and one line), with 158 points drawn
from each plane and 100 from the line, again with "0 D 0:01. The orientations of one
plane and of the line are chosen randomly. The final distribution tested is a mixture
of n D 3 full-rank Gaussians in R2, with means Œ2; 0�, Œ0; 0�, Œ0; 2� and covariance
diag.2; 0:2/ (this is Figure 3 of (Figueiredo and Jain 2002)). Here N D 900 points
are sampled (with equal probability) from the three Gaussians.

For the first two examples, we run the ALC algorithm with " D "0 D 0:01.
For the third example, we set " D 0:2. We repeat each trial 50 times. Figure 6.10
shows a histogram of the number of clusters arrived at by the three algorithms. For
all algorithms, all clustering results with n D 3 are essentially correct (clustering
error < 4%). However, for degenerate, or subspace-like, data (Figure 6.10(a)
and Figure 6.10(b)), the ALC algorithm was the most likely to converge to the
correct cluster number. For full-rank Gaussians (Figure 6.10(c)), the ALC algorithm
performs quite well, but is outperformed by (Figueiredo and Jain 2002), which finds
the correct clustering in all 50 trials. The failures of ALC occur because the greedy
descent converges to a local minimum of the coding length rather than the global
minimum.

Please note that (Figueiredo and Jain 2002) was not explicitly designed for
degenerate distributions, whereas (Ghahramani and Beal 2000) was not designed
for full-rank distributions. Also note that the samples in this experiment were drawn

254 6 Statistical Methods

from a uniform distribution. The performance of all three algorithms improves
when the generating distribution is indeed Gaussian. The main implication of the
comparison is therefore that ALC succeeds under a wide range of conditions and
requires one to make fewer assumptions on the underlying data distribution.

6.4.2 Statistical Methods on Gene Expression Clustering,
Image Segmentation, and Face Clustering

In this section, we apply some of the algorithms described in this chapter to real data,
such as gene expression data and natural images. The goal is to demonstrate that
the subspace clustering algorithms described in this chapter are capable of finding
visually appealing structures in real data. However, we emphasize that they do not
provide a complete solution to either of these practical problems. Such a solution
usually entails a significant amount of domain-specific knowledge and engineering.
Nevertheless, these preliminary results with gene expression data and natural images
suggest that the subspace clustering methods presented in this chapter provide a
generic solution for clustering mixed data that is simple and effective enough to be
easily customized for a broad range of practical problems.

Clustering Gene Expression Data
In this example, we show the results of applying Algorithm 6.4 to gene expression
data. The data set18 consists of 13,872 vectors in R19, each of which describes the
expression level of a single gene at different time points during an experiment on
anthrax sporulation. A random subset of 600 vectors is visualized in Figure 6.11

Fig. 6.11 Results of applying the compression-based subspace clustering algorithm to clustering
of microarray data set GDS930.

18GDS930, available at http://www.ncbi.nlm.nih.gov/projects/geo.

http://www.ncbi.nlm.nih.gov/projects/geo

6.4 Simulations and Applications 255

Fig. 6.12 Results of applying the compression-based subspace clustering algorithm to clustering
two microarray data sets: a yeast data set (a)–(b) and a leukemia data set (c)–(d).

(left). Here, rows correspond to genes and columns to time points. We cluster these
vectors without any preprocessing, using Algorithm 6.4 with " D 1. The algorithm
finds three distinct clusters, which are displayed in Figure 6.11 (right) by reordering
the rows.

Figure 6.12 shows clustering results on two additional gene expression data
sets. The first data set19 consists of 8448 vectors in R5, describing the expression
levels of yeast genes at five different time points during a heat shock experiment.
Figure 6.12 (a) shows expression levels for a randomly selected subset of 1200
genes. We cluster these vectors using the ALC algorithm, Algorithm 6.4, with " D
0:1. ALC discovers a number of visually coherent clusters, shown in Figure 6.12 (b).
The second data set20 consists of 45,101 vectors in R10, each of which corresponds
to the expression level of a single gene under varying experimental conditions (this
experiment investigated Down syndrome-related leukemias). We run Algorithm 6.4
with " D 1 on a subset of 800 of these vectors (shown in Figure 6.12 (c)). Three
large, distinct clusters emerge, visualized in Figure 6.12 (d) by reordering the rows
of the data.

Segmentation of Natural Images
In this example, we consider the problem of segmenting an image into multiple
regions corresponding to different intensity, color, texture, or appearance patterns.
We assume that we are able to extract an appearance descriptor at each pixel
in the image and that all the descriptors associated with one region can be well
approximated by a low-dimensional subspace of the space of descriptors. Under
these assumptions, we may cast the image segmentation problem as a subspace

19GDS34, available at http://www.ncbi.nlm.nih.gov/projects/geo.
20GDS1316, available at http://www.ncbi.nlm.nih.gov/projects/geo.

http://www.ncbi.nlm.nih.gov/projects/geo
http://www.ncbi.nlm.nih.gov/projects/geo

256 6 Statistical Methods

Fig. 6.13 Results of applying the ALC subspace clustering algorithm to the image segmentation
problem for various values of the distortion parameter ".

clustering problem in which each subspace corresponds to one region in the image.
This approach to image segmentation will be discussed in great detail in Chapter 10.
As we will see, the ALC algorithm obtains good (unsupervised) image segmentation
results even using features as simple as a (Gaussian) window of raw pixel intensities
as an appearance descriptor for each pixel. In Figure 6.13, we show one example in
which we use the ALC algorithm with different levels of distortion " to segment
the set of all 5 � 5 windows around all pixels. As we can see from the results,
when " is too small, the image is oversegmented, and as " increases, so does the
size of each region. Therefore, the larger the distortion allowed, the larger the
granularity of the resulting segments. Readers who are interested in the subject
of image segmentation please see Chapter 10 for a more careful treatment of this
problem and more extensive experimental evaluation and justification.

Clustering Face Images under Varying Illumination
In this example, we illustrate the performance of the K-subspaces, MPPCA, and
ALC algorithms on a subset of the extended Yale B data set consisting of frontal
face images of two subjects (20 and 21, or 37 and 38) viewed under 64 different
illumination conditions. The cropped and aligned images are of size 192 � 168
pixels. To reduce the computational complexity and memory requirements, these
images are down-sampled to 48 � 42 pixels, and then PCA is further applied to
reduce the dimension of the data to D D 18.

First, we apply the K-subspaces algorithm. The dimension of each subspace is
set to d D 5. For the initialization of the mean vectors �i 2 R

D and subspace bases
Ui 2 R

D�d for each of the two subspaces i D 1; 2, we take all 128 images, compute
their mean face and the first d D 5 eigenfaces, and then add random perturbations.
The K-subspaces algorithm is then run with 10 random initializations, and the result
that gives the smallest value for the K-subspaces objective function is chosen as
the final output. Figure 6.14 provides an example of the convergence procedure for

6.4 Simulations and Applications 257

0 20 40 60 80 100 120

(a) 43.75%

0 20 40 60 80 100 120

(b) 32.81%

0 20 40 60 80 100 120

(c) 21.88%

0 20 40 60 80 100 120

(d) 14.84%

0 20 40 60 80 100 120

(e) 9.38%

0 20 40 60 80 100 120

(f) 8.59%

0 20 40 60 80 100 120

(g) 6.25%

0 20 40 60 80 100 120

(h) 3.91%

Fig. 6.14 Clustering faces under varying illumination using the K-subspaces algorithm. Figure (a)
illustrates the segmentation at the initialization, with red points on each sides of the blue dotted
line representing face images from different subjects. The following figures show the clustering
results given by the successive iterations. Figure (h) is the final clustering output. Clustering errors
are reported in the captions.

clustering images of subjects 20 and 21. Observe that as the iterations proceed, the
clustering error reduces from 43.75% to 3.91%.

Next, we test the MPPCA algorithms (EM and MAP-EM) on the same data.
As before, the dimension of the subspaces is set to d D 5, and the mean vectors
�i and subspace bases Ui are initialized as random perturbations of the mean and
principal basis of the entire data set. The MPPCA algorithms are run with 10 random
initializations, and the result that gives the smallest objective is chosen as the final
output. We also test the ALC algorithm with " D 400 and use the ALC algorithm to
initialize MPPCA.

Table 6.3 shows the clustering errors of all methods. Observe that K-subspaces
with random initialization does better than either version of MPPCA with random
initialization. This is because the MPPCA model has more parameters than the
K-subspaces model, and hence it is more difficult to initialize. Indeed, we can

258 6 Statistical Methods

Table 6.3 Clustering errors obtained by applying K-subspaces, MPPCA and ALC to
subjects 20 and 21, or 37 and 38 from the extended Yale B data set.

Methods Subjects 20, 21 Subjects 37, 38

K-subspaces with random initialization 3.9% 8.6%

MPPCA-EM with random initialization 15.6% 21.9%

MPPCA-EM initialized by K-subspaces 3.1% 7.8%

MPPCA-EM initialized by ALC 2.3% 10.2%

MPPCA-MAP-EM with random initialization 13.3% 20.3%

MPPCA-MAP-EM initialized by K-subspaces 3.9% 7.8%

MPPCA-MAP-EM initialized by ALC 2.3% 10.2%

ALC 3.1% 10.2%

see that when MPPCA is initialized by K-subspaces, MPPCA generally improves
the results of K-subspaces. Notice also that the performance of the EM version of
MPPCA is similar to that of the MAP-EM version, showing that MAP-EM provides
a good approximation to the EM algorithm. Finally, notice that ALC provides results
that are better than those of K-subspaces for subjects 20 and 21, and worse than
those of K-subspaces for subject 37 and 38. Moreover, using ALC to initialize
MPPCA improves the results of MPPCA for subjects 20 and 21, but makes them
worse for subjects 37 and 38. Overall, all methods perform similarly, but MPPCA
needs to be properly initialized to perform well. Readers who are interested in the
subject of face clustering segmentation are referred to Chapters 7 and 8 for a more
extensive experimental evaluation with other subspace clustering methods.

6.5 Bibliographic Notes

Iterative Methods
As discussed in Chapter 4, the K-means algorithm (Lloyd 1957; Forgy 1965;
Jancey 1966; MacQueen 1967) was originally developed to cluster data distributed
around multiple cluster centers. This is done by alternating between computing
a cluster center for each group of points and assigning points to their closest
cluster centers. The K-means algorithm was generalized to the case of hyperplanes
in (Bradley and Mangasarian 2000), which proposed the K-planes algorithm in
which one alternates between fitting a hyperplane to each group of points and
assigning points to their closest hyperplane. The K-subspaces algorithm (Tseng
2000; Agarwal and Mustafa 2004) featured in this chapter further generalized
K-planes from multiple hyperplanes to multiple affine subspaces of any dimensions.
The K-subspaces algorithm alternates between fitting a subspace to each group of
points using geometric PCA and assigning each point to its closest subspace. The
original K-means algorithm is hence a particular case of K-subspaces in which each
affine subspace has dimension zero.

6.5 Bibliographic Notes 259

Extensions of K-subspaces that we have not covered in this book include utilizing
norms other than the squared Euclidean distance to fit multiple subspaces to the
data. For example, the median K-flats algorithm (Zhang et al. 2009) uses the `1-
norm. Also, the work of (Aldroubi et al. 2008; Aldroubi and Zaringhalam 2009)
allows for various distances between points and subspaces, and considers not only
finite-dimensional subspaces, but also subspaces of a Hilbert space. More generally,
all these algorithms can be viewed as particular cases of a family of generalized
K-means algorithms, which had been studied earlier by (Selim and Ismail 1984).
In generalized K-means, the aim is to fit multiple geometric models to data by
minimizing the sum of squared distances from data points to models. As such, in
principle, any distance and any model can be used. The K-means algorithm is simply
a particular case in which the distance is the Euclidean distance and the model is a
cluster center. Likewise, K-subspaces is a particular case in which the model is an
affine subspace and the distance is the distance from the point to the subspace. An
important difference among different generalized K-means methods is whether a
model can be easily estimated given the segmentation: this is the case for K-means,
K-planes, and K-subspaces. The other main difference is whether the algorithm still
converges. As we have seen in this chapter, this is the case for K-means, K-planes,
and K-subspaces, but this need not be the case in general, as shown in (Selim and
Ismail 1984).

Regarding applications, the K-subspaces algorithm was used in solving the face
clustering problem (Ho et al. 2003), where face images associated with each subject
are assumed to lie on a single subspace. From then on, the K-subspaces algorithm
has been used as a baseline algorithm for segmenting videos with multiple moving
objects. We will discuss this problem in great detail in Chapter 11.

Mixtures of Subspaces, Mixtures of Probabilistic Principal Components Analyzers,
and Mixtures of Factor Analyzers
As discussed in Appendix B, the EM algorithm was originally developed in
(Dempster et al. 1977) to find the ML parameters of a general class of statistical
models. When the statistical model is a mixture model, the EM algorithm alternates
between soft assignment of points to models and estimating the parameters for
each model. While the application EM to find the parameters of a mixture of
Gaussians had been known for a while, the PPCA model described in Section 2.2
is a particular case of a Gaussian model in which the covariance matrix has a
“subspace-like” structure. The work of (Tipping and Bishop 1999a) was the first to
show how the EM algorithm can be applied to this special mixture of PPCA model,
while the work of (Ghahramani and Beal 2000) showed how the EM algorithm
can be applied to a mixture of factor analyzers (FA), which are a generalization of
PPCA. As we have seen in this chapter, the resulting algorithm alternates between
soft assignment of points to subspace models (PPCA or FA) and estimating the
parameters of each (PPCA or FA) model. We refer the reader to Appendix B for a
more general review of the EM algorithm and to (Wu 1983) for a rigorous analysis
of its convergence. For a more thorough and complete exposition of EM, one may
refer to (Neal and Hinton 1998) or the book (McLanchlan and Krishnan 1997).

260 6 Statistical Methods

Regarding applications, the EM algorithm for mixtures of FA was used in (Frey
et al. 1998) for face classification and in (Yang et al. 2000) for face detection. The
EM algorithm for mixtures of PPCA has also been used as a baseline algorithm for
segmenting videos with multiple moving objects, and we will discuss this problem
in great detail in Chapter 11.

Compression-Based Clustering
Unfortunately, as we have alluded to above, iterative methods such as K-subspaces
and EM are sensitive to initialization; hence they may not converge to the global
optimum. In addition, they often assume that the number of the subspaces and their
dimensions are known in advance, and the data are assumed to be drawn from such
models without any outliers. These issues have severely limited the performance
and generality of such methods in solving practical problems in computer vision
and image processing (Shi and Malik 1998; Torr et al. 2001). That is why we sought
alternative methods for clustering data from a mixture of subspaces, including the
compression-based method introduced in this chapter and many other methods to
be introduced in the next few chapters.

The analysis in this chapter has revealed strong connections between data
clustering and data compression: the correct clustering is associated with the actual
entropy of the data. Compression as a principle has been proposed for data clustering
before, e.g., (Cilibrasi and Vitányi 2005), introducing an interpoint normalized
compression distance that works for various data types. However, here the coding
length gives a measure of distance between different subsets of the data. The
agglomerative approach to minimizing the lossy coding length of mixed Gaussians
was introduced in the work of (Ma et al. 2007). The method was known as the
agglomerative lossy compression (ALC) method.

The simulations and experiments have suggested potential connections with
certain phase transition phenomena that often appear in statistical physics. From
a theoretical standpoint, it would be highly desirable to obtain analytical conditions
on the critical values of the distortion and the outlier density that can explain and
predict the phase transition behaviors. So far, only the case with zero-dimensional
subspaces, i.e., vector quantization (VQ), has been well characterized (Rose 1998).

Relations to Other Metrics
It has been shown that computing the lossy ML estimate is approximately (up to first
order, asymptotically) equivalent to minimizing the coding rate of the data subject
to a distortion " (Madiman et al. 2004):

O�LML D arg min
�;�

R.Op.X/; �; "/; (6.70)

where Op.X/ is the empirical estimate of the probabilistic distribution from a set of
sample data X D fxjgNjD1. From the dimension-reduction perspective, one would
attempt to directly minimize the dimension, or rank.Xi/, of each subset Xi. It is
well known that the "-regularized log det.�/ is a good continuous surrogate for
the discrete-valued rank function (Fazel et al. 2003). Techniques from compressed

6.6 Exercises 261

sensing have recently shown that when the rank is sufficiently low, the minimum of
such surrogates coincides with the minimum-rank solution (Recht et al. 2010). In
Chapter 8, we will explore other convex surrogates for measuring compactness of
high-dimensional data. Although such convex surrogates may seem to be a grossly
relaxed measure of data dimension, the surprise is that they lead to a provably
correct solution to the subspace clustering problem under fairly general conditions.
From the data-compression viewpoint, however, one might be more interested in an
accurate estimate of the total volume of the data set. Notice that det.XiX>i C "2I/ is
an "-regularized volume of the subset Xi, which is well defined even if the points in
Xi lie on a proper subspace. Thus, minimizing the lossy coding length function Ls

indeed unifies and generalizes other statistical or geometric metrics popular for data
compression and clustering.

6.6 Exercises

Exercise 6.1 (K-subspaces and K-means). Let fxj 2 R
DgNjD1 be a collection of

points lying in n affine subspaces

Si D fx W x D �i C Uiyg i D 1; : : : ; n (6.71)

of dimensions di, where �i 2 RD, Ui 2 RD�di has orthonormal columns, and y 2
Rdi . Assume that within each subspace Si the data are distributed around mi cluster
centers f�ik 2 RDgkD1:::mi

iD1:::n .

1. Assume that n, di, and mi are known and propose a clustering algorithm similar
to K-means and K-subspaces to estimate the model parameters �i, Ui, yi

j, and
�ik, and the segmentation of the data according to the

Pn
iD1 mi groups. More

specifically, write down the cost function to be minimized and the constraints
among the model parameters (if any), and use the method of Lagrange multipliers
to find the optimal model parameters given the segmentation.

2. Assume that n, di, and mi are unknown. How would you modify the cost function
in item 1?

Exercise 6.2. Consider the objective function of the K-subspaces algorithm:

f .f�igniD1; fUigniD1/ D min
f�ig

n
iD1

fUiWU>

i UiDIgniD1

NX
jD1

min
iD1;:::;n k.I � UiU

>
i /.xj � �i/k2: (6.72)

Show that the iterations of Algorithm 6.1 are such that

f .f�.kC1/
i gniD1; fU.kC1/

i gniD1/
 f .f�.k/
i gniD1; fU.k/

i gniD1/: (6.73)

262 6 Statistical Methods

Exercise 6.3 (EM for Isotropic Gaussians). Based on Section B.2.1 or
Section B.3.1 in Appendix B, derive a simplified EM algorithm for a mixture
of isotropic Gaussians. That is, all the component Gaussians are of the form
N .�i; �

2
i I/.

Exercise 6.4 (EM for Mixture of PPCAs). Based on Theorem 2.9 in Chapter 2,
show that in the maximization step of the EM algorithm for mixture of subspaces,
the optimal estimates are updated through the equations given in Algorithm 6.2. In
particular, the maximization against the subspace parameters .Ui; �i/ are given by
the equations (6.23) and (6.24).

Exercise 6.5 (Clustering Three Planes in R
3). Implement (in MATLAB) the

K-subspaces algorithm, Algorithm 6.1, and the EM algorithm, Algorithm 6.2.
Randomly generate three planes in R

3 and draw a number of sample points in the
planes with small noise. Use the algorithms to cluster the samples. Play with the
level of noise (added to the samples) and the number of random initializations of
the algorithm. Report the average clustering error as a function of noise.

Exercise 6.6 (RANSAC for Multiple Subspaces). For the same data sets gen-
erated for the above exercise, add a fixed percentage of outliers (say 5%–20%)
uniformly drawn around the region that the subspaces occupy. Apply the robust
statistical methods, in particular RANSAC, described in Appendix B.5.3 to detect
the planes. Try two different strategies:

1. Try to use RANSAC to extract one plane at a time (meaning points on the two
other planes also become outliers.)

2. Try to use RANSAC to extract points close to all three planes together (Hint: find
a parametric representation for all three planes).

Compare the performance of RANSAC, K-subspaces, and EM on the same data
sets. Discuss what you need to do when the dimension of the (sub)spaces and the
number of subspaces becomes large, and assess the computational complexity of the
RANSAC method.

Exercise 6.7 (Compression-Based Agglomerative Clustering for Multiple Sub-
spaces). Implement the ALC algorithm, Algorithm 6.4, and test it on the same data
sets you have generated for the previous exercises. Compare the performance with
RANSAC for data sets in different dimensions, of different numbers of subspaces,
and with different levels of outliers.

Exercise 6.8 (Large Quantization Error). Show that when " ! 1, the coding
length function Ls reaches a minimum when all sample points are merged into one
cluster.

Exercise 6.9 (Small Quantization Error: Zero-Mean Case). Now we character-
ize what happens when "! 0. Here we assume that all clusters have zero mean and
consider the coding length function (6.46).

6.A Lossy Coding Length for Subspace-like Data 263

1. Show that for two sample points x1; x2 that are linearly independent, as " ! 0,
L.Œx1; x2�/ > Ls.Œx1�; Œx2�/.

2. Now for an arbitrary set X D fx1; : : : ; xNg, suppose N > D2. Then as " ! 0,
clustering all points together will result in a shorter coding length than leaving
each point as its own cluster.

3. Show that under the same conditions as in the previous question, if the data are
drawn from some nonsingular distribution, then for sufficiently small ", with
probability 1, the minimum coding length is achieved by merging all samples
into one cluster.

The first two facts show that for extremely small ", the agglomerative Algorithm 6.4
will mostly likely get stuck in a local minimum, since it does not merge any pair
of points at all. This is what we have seen in the simulations. The third fact shows
that for a generic distribution, with the sample size fixed, for an extremely small
", assigning all samples into one cluster is actually the optimal solution. Notice
that none of this invalidates the proposed algorithm, since it is expected to work
in the regime whereby the sample density is comparable to ". But these facts do
suggest that when the data are rather undersampled, one should modify (6.46) to
better impose the global subspace structures.

Exercise 6.10 (Small Quantization Error: Affine Case). Show that if we use the
coding length for the nonzero mean (affine) case (6.90), given in Appendix 6.A, then
as "! 0, keeping each point separate gives a smaller coding length than clustering
all points together. This is opposite to the zero-mean case.

6.A Lossy Coding Length for Subspace-like Data

In Section 6.3.3, we have shown that in principle, one can construct a coding scheme
for a given set of data vectors X D Œx1; : : : ; xN � 2 RD�N such that the average
number of bits needed to encode each vector is bounded by

R.X/ D 1

2
log2 det

�
I C D

N"2
XX>

�
; (6.74)

as if X were drawn from a zero-mean multivariate Gaussian distribution with
estimated covariance† D 1

N XX>. However, in the nonparametric setting (i.e., with
a finite number of samples), we do not know whether the above coding length is still
any good.

In this appendix, we provide a constructive proof that L.X/ D .N C D/R.X/
indeed gives a tight upper bound on the number of bits needed to encode X. One
interesting feature of the construction is that the coding scheme apparently relies
on coding the subspace spanned by the vectors (i.e., the singular vectors) and
the coordinates of the vectors with respect to the subspace. Thus geometrically,
minimizing the coding length (via clustering) is essential to reducing the dimension
of each subset of the data and the variance of each subset within each subspace.

264 6 Statistical Methods

The Zero-Mean Case: Linear Subspaces
For simplicity, we first assume that the given vectors X D Œx1; : : : ; xN � have zero
mean, and we will study the non-zero-mean case later. Consider the singular value
decomposition (SVD) of the data matrix X D U†V>. Let B D Œbij� D †V>. The
column vectors of U D Œuij� form a basis for the subspace spanned by vectors in X,
and the column vectors of B are the coordinates of the vectors with respect to this
basis.

For coding purposes, we store the approximated matrices U C ıU and B C ıB.
The matrix X can be recovered as

X C ıX :D .U C ıU/.BC ıB/ D UBC ıUBC UıBC ıUıB: (6.75)

Then ıX � ıUB C UıB, since entries of ıUıB are negligible when " is small
(relative to the data X). The squared error introduced to the entries of X are

X
i;j

ıx2ij D trace
�
ıXıX>

�

� trace
�
UıBıB>U>CıUBB>ıU>CıUBıB>U>CUıBB>ıU>

�
:

We may further assume that the coding errors ıU and ıB are zero-mean independent
random variables. Using the fact that trace.AB/ D trace.BA/, the expected squared
error becomes

E
�

trace.ıXıX>/
� D E

�
trace.ıBıB>/

�C E
�

trace.†2ıU>ıU/
�
: (6.76)

Now let us encode each entry bij with a precision "0 D "p
D

and uij with a

precision "00j D "
p

Np
�jD

, where �j is the jth eigenvalue of XX>.21 This is equivalent to

assuming that the error ıbij is uniformly distributed in the interval
�� "p

D
; "p

D

�
and

ıuij is uniformly distributed in the interval
� � "

p
Np
�jD
; "
p

Np
�jD

�
. Under such a coding

precision, it is easy to verify that

E
�
trace.ıXıX>/

�
 2"2N

3
< "2N: (6.77)

Then the mean squared error per vector in X is

1

N
E
�
trace.ıXıX>/

�
< "2: (6.78)

21Notice that "00

j normally does not increase with the number of vectors N, because �j increases
proportionally to N.

6.A Lossy Coding Length for Subspace-like Data 265

The number of bits needed to store the coordinates bij with precision "0 D "p
D

is

DX
iD1

NX
jD1

1

2
log2

1C �bij

"0
�2� D 1

2

DX
iD1

NX
jD1

log2

1C b2ijD

"2

�
(6.79)

 N

2

DX
iD1

log2

1C D

PN
jD1 b2ij

N"2

�
D N

2

DX
iD1

log2

1C D�i

N"2

�
: (6.80)

In the above inequality, we have used the concavity of the log function:

log.1C a1/C � � � C log.1C an/

n

 log

1C a1 C � � � C an

n

�
(6.81)

for nonnegative real numbers a1; a2; : : : ; an 	 0.
Similarly, the number of bits needed to store the entries of the singular vectors

uij with precision "00 D "
p

Np
�iD

is

DX
iD1

DX
jD1

1

2
log2

1C �uij

"00
�2� D 1

2

DX
iD1

DX
jD1

log2

1C u2ijD

2�j

N"2

�
(6.82)

 D

2

DX
jD1

log2

1C D2�j

PD
iD1 u2ij

N"2

�
D D

2

DX
jD1

log2

1C D�j

N"2

�
: (6.83)

Thus for U and B together, we need a total of

L.X/D NCD

2

DX
iD1

log2

1CD�i

N"2

�
D NCD

2
log2 det

�
IC D

N"2
XX>

�
: (6.84)

We thus have proved the statement given at the beginning of this section: L.X/ D
.NCD/ �R.X/ gives a good upper bound on the number of bits needed to encode X.

The Non-Zero-Mean Case: Affine Subspaces
In the above analysis, we have assumed that the data in the matrix X D Œx1; : : : ; xN �

have zero mean. In general, these vectors may have a nonzero mean. In other words,
the points represented by these vectors may lie in an affine subspace instead of a
linear subspace.

If the data are not of zero mean, let �
:D 1

N

PN
jD1 xj 2 RD and define the matrix

V
:D � � 11�N D Œ�;�; : : : ;�� 2 R

D�N : (6.85)

Then NX :D X � V is a matrix whose column vectors have zero mean. We may apply
the same coding scheme in the previous section to NX.

266 6 Statistical Methods

Let NX D U†V> :D UB be the singular value decomposition of NX. Let ıU; ıB; ı�
be the error in coding U;B;�, respectively. Then the error induced on the matrix
X is

ıX D ı� � 11�N C UıBC ıUB: (6.86)

Assuming that ıU; ıB; ı� are zero-mean independent random variables, the
expected total squared error is

E trace.ıXıX>//DNE.ı�>ı�/C E.trace.ıBıB>//C E.trace.†ıU>ıU//:

We encode entries of B and U with the same precision as before. We encode each
entry �i; i D 1; : : : ;D of the mean vector � with the precision "0 D "p

D
and assume

that the error ı�i is a uniform distribution in the interval
� � "p

D
; "p

D

�
. Then we

have NE.ı�>ı�/ D N"2

3
. Using equation (6.77) for the zero-mean case, the total

squared error satisfies

E
�
trace.ıXıX>/

�
 N"2

3
C 2N"2

3
D N"2: (6.87)

Then the mean squared error per vector in X is still bounded by "2:

1

N
E
�
trace.ıXıX>/

�
 "2: (6.88)

Now, in addition to the L. NX/ bits needed to encode U and B, the number of bits
needed to encode the mean vector � with precision "0 D "p

D
is

DX
iD1

1

2
log2

1C��i

"0
�2�D 1

2

DX
iD1

log2

1C D�2i

"2

�

 D

2
log2

1C �>�

"2

�
; (6.89)

where the last inequality follows from the inequality (6.81).
Thus, the total number bits needed to store X is

L.X/ D N C D

2
log2 det

�
I C D

N"2
NX NX>�C D

2
log2

1C �>�

"2

�
: (6.90)

Notice that if X is actually of zero mean, we have � D 0, NX D X, and the above
expression for L.X/ is exactly the same as before.

Chapter 7
Spectral Methods

The art of doing mathematics consists in finding that special case which contains all the
germs of generality.

—David Hilbert

The preceding two chapters studied the subspace clustering problem using
algebraic-geometric and statistical techniques, respectively. Under the assumption
that the data are not corrupted, we saw in Chapter 5 that algebraic-geometric
methods are able to solve the subspace clustering problem in full generality,
allowing for an arbitrary union of different subspaces of any dimensions and in any
orientations, as long as sufficiently many data points in general configuration are
drawn from the union of subspaces. However, while algebraic-geometric methods
are able to deal with moderate amounts of noise, they are unable to deal with
outliers. Moreover, even in the noise-free setting, the computational complexity
of linear-algebraic methods for fitting polynomials grows exponentially with the
number of subspaces and their dimensions. As a consequence, algebraic-geometric
methods are most effective for low-dimensional problems with moderate amounts
of noise.

On the other hand, the statistical methods described in Chapter 6 are able to deal
with noise and to a certain extent with outliers. However, they generally require
the number of subspaces and their dimensions to be known beforehand. Moreover,
they are based on solving nonconvex optimization problems, and so one cannot
guarantee that an optimal solution has been obtained. Thus, statistical methods are
most effective for problems for which we have a good knowledge of the number and
dimensions of the subspaces and the distribution of noise and outliers.

Despite their differences, algebraic-geometric and statistical approaches to sub-
space clustering both aim to directly identify a parametric model for each of
the subspaces in the original space where the data are distributed. As such,
these methods can be seen as generalizations of the geometric and statistical
interpretations of PCA discussed in Chapter 2. In many practical applications,

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_7

267

268 7 Spectral Methods

however, it is not always necessary to identify a parametric model for the subspaces.
In face clustering, for example, it often suffices to find a partition of the data into
multiple groups. For such purposes, any nonparametric representation of the data
that preserves the topological connectivity of the original data can be used. This was
the main motivation behind many of the manifold learning methods discussed in
Chapter 4, which aim to find a low-dimensional representation of the data that best
preserves some affinity among the original data points. In particular, the spectral
clustering method discussed in Section 4.3.2 is based on constructing an affinity
matrix that captures whether two points belong to the same group. This affinity is
then used to map the data to a low-dimensional space in which certain clustering
algorithms such as K-means can be used to cluster the data.

In this chapter, we will study nonparametric approaches to subspace clustering
based on spectral clustering. As we will see, the main difficulty in applying
spectral clustering to the subspace clustering problem lies in constructing a good
affinity matrix, which captures whether two points belong to the same subspace.
Therefore, this chapter will concentrate on the problem of building an affinity
matrix for subspace clustering. We will present various approaches to building the
affinity matrix. Some methods are guaranteed to provide the correct affinity when
the data are perfect or the dimensions of the subspaces are known, but they are
computationally expensive. Other methods are computationally more efficient, but
they do not provide an affinity that is guaranteed to be correct.

7.1 Spectral Subspace Clustering

Before proceeding any further, let us briefly review the spectral clustering method
introduced in Section 4.3.2 for clustering N data points fxjgNjD1 into n groups.
Spectral clustering is based on constructing a weighted graph G D .V ; E ;W/, where
V D f1; : : : ;Ng is the set of nodes, E � V � V is the set of edges, and W 2 R

N�N

is a symmetric nonnegative affinity matrix whose .j; k/th entry, wjk, measures the
affinity between points xj and xk. Ideally, wjk D 1 if points j and k are in the same
group and wjk D 0 if points j and k are in different groups. In practice, a typical
affinity is

wjk D exp
� � 1

2�2
dist.xj; xk/

2
�
; (7.1)

where dist.xj; xk/ is some distance between points j and k and � > 0 is a parameter.
Let D D diag.W1/ be a diagonal matrix whose jth diagonal entry gives the degree
djj DPk wjk of node j, and let L D D�W 2 RN�N be the graph’s Laplacian matrix.
Spectral clustering obtains a clustering of the data by applying the K-means algo-
rithm to the columns of the matrix Y D Œu1;u2; : : : ;un�

> 2 Rn�N , where fuigniD1 are
the eigenvectors of L associated with its n smallest eigenvalues. Figure 7.1 gives an
example of applying spectral clustering to a 2D data set. Notice that the original data

7.1 Spectral Subspace Clustering 269

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) 2-D data sampled from two circles
−0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(b) First vs. second eigenvector of L

Fig. 7.1 Applying spectral clustering to data drawn from two concentric circles in R
2. The affinity

is computed as wjk D exp
�

�kxj�xkk
2
2

2�2

�
, where � D 0:1. The figure on the right plots the second

eigenvector of the Laplacian L (y-axis) versus the first (x-axis).

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a) 2-D data sampled from two crossing lines

0.0707 0.0707 0.0707 0.0707 0.0707 0.0707 0.0707 0.0707

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

(b) First vs. second eigenvector of L

Fig. 7.2 Applying spectral clustering to data drawn from two lines. The affinity is computed as

wjk D exp.
�dist.xj ;xk/

2

2�2
/, where � D 0:1. The figure on the right plots the second eigenvector of the

Laplacian L (y-axis) versus the first (x-axis).

are not linearly separable and that central clustering algorithms such as K-means
would fail on this data set. Spectral clustering, on the other hand, transforms the
original problem into a central clustering problem that is easy to solve by K-means.

One of the main challenges in directly applying spectral clustering to the
subspace clustering problem is defining a good affinity matrix. As illustrated in
Figure 7.2, two points could be very close to each other but lie in different subspaces
(e.g., near the intersection of two subspaces). Conversely, two points could be far
from each other but belong to the same subspace. Therefore, the distance-based
affinity in (7.1) is not appropriate for subspace clustering. Moreover, notice that
one cannot define an affinity measure for subspace clustering by looking at pairs
of points alone, as done in the case of the distance-based affinity in (7.1). Indeed,
notice that two points in the plane always lie on a line containing the two points.

270 7 Spectral Methods

Thus, we cannot determine whether two points in the data set belong to the same
line by looking at the coordinates of the two points in isolation. Instead, we need to
look at three points in the plane at least and check whether they are collinear. More
generally, we need to consider geometric relationships among multiple (if not all)
points in order to construct an effective affinity measure for subspace clustering.

In this chapter, we review a few representative methods for designing an affinity
matrix for subspace clustering and discuss their advantages and limitations. Broadly
speaking, these methods can be categorized as follows:

1. Local methods: These methods compute an affinity between two points that
depends only on the data points in a local neighborhood of each of the two points.
Examples include the local subspace affinity and local best fit flat methods (see
Section 7.2), which compute an affinity by comparing the subspaces estimated
from a neighborhood of each data point, and the locally linear manifold clustering
method (see Section 7.3), which computes an affinity from the locally linear
relationships among a point and its nearest neighbors obtained using the LLE
algorithm described in Section 4.2.2.

2. Global methods: These methods compute an affinity between two points that
depends on all the data points. Examples include the spectral curvature affinity
(see Section 7.4), which is computed from the affinities between a point and all
subsets of O.d/ points in the data set, where d is the subspace dimension, and the
algebraic subspace affinity (see Section 7.5), which is computed by comparing
the subspaces estimated at each data point by the ASC algorithm described in
Chapter 5.

7.2 Local Subspace Affinity (LSA) and Spectral Local
Best-Fit Flats (SLBF)

As we alluded to earlier, we cannot define an affinity for subspace clustering using
information from pairs of points alone. For a subspace of dimension d, we need at
least d C 1 points to determine whether they lie in the same linear subspace and
d C 2 points to determine whether they lie in the same affine subspace. Now, if for
each data point xj we knew d or dC1 other data points that are in the same subspace
as xj, then we could estimate a local subspace Sj from xj and the other d or d C 1
points in the same global subspace as xj. Then, if two points xj and xk are in the
same global subspace, their local subspaces Sj and Sk should be the same, while
if they are in different global subspaces, their local subspaces should be different.
Therefore, we could define an affinity between two points by defining an affinity
wjk D aff.Sj; Sk/ between their local subspaces. The challenge is that we do not
know a priori which points belong to which subspace; hence we do not know which
points are most likely to belong to the same subspace.

Local methods for building a subspace clustering affinity, such as local subspace
affinity (LSA) (Yan and Pollefeys 2006) and spectral local best-fit flats (SLBF)

7.2 Local Subspace Affinity (LSA) and Spectral Local Best-Fit Flats (SLBF) 271

(Zhang et al. 2010), overcome this difficulty by relying on the observation that a
point and its nearest neighbors typically belong to the same subspace. Under this
assumption, we can use any of the techniques introduced in the first part of the book
(e.g., PCA) to fit a affine subspace to each point and its nearest neighbors. If xj

belongs to a subspace of dimension dj, we need at least dj C 1 points in general
position to fit a dj-dimensional affine subspace (also known as a flat). In practice,
we can choose K > dj neighbors; hence dj does not need to be known exactly: we
need only an upper bound. Given K, we can fit a subspace Sj D .�j;Uj/ to each
point xj and its K-NN, xj1 ; : : : ; xjK , where �j 2 RD is a point in the subspace and
Uj 2 R

D�dj is a basis for the subspace. In practice, since the subspace should pass
through xj, we can let �j D xj; hence Uj is a basis for the linear subspace spanned
by the vectors fxj1 � xj; : : : ; xjK � xjg. When dj is unknown, we can estimate it using
the model selection techniques described in Section 2.3.

Once the local subspaces fSjgNjD1 have been estimated, we can use them to define
a subspace clustering affinity wjk D aff.Sj; Sk/ between xj and xk. In what follows,
we describe a few methods for building such an affinity.

Affinities Based on Principal Angles
A simple approach to defining a distance between two linear subspaces is to use
the notion of principal angles introduced in Exercise 2.8. In the case of data lying
in a union of hyperplanes, the idea is to exploit the fact that two points in the
same hyperplane share the same normal vector to the hyperplane. Therefore, if bj

is the normal to the hyperplane passing through point xj, and similarly for xk, then
the angle �jk D †.bj; bk/ between bj and bk is zero when points xj and xk are in the
same hyperplane, and nonzero otherwise. Hence, we can define the affinity as

wjk D cosq.�jk/ or wjk D exp.� sinq.�jk//; (7.2)

where q > 0 is a user-defined parameter. Note that if xj and xk are in the same
hyperplane, then wjk D 1; otherwise, wjk < 1.

We can extend the above affinity to linear subspaces of any dimensions using the
notion of principal angles between subspaces.

Definition 7.1 (Principal Angles). Let Sj and Sk be two linear subspaces of RD of
dimensions dj and dk, respectively. The principal angles between subspaces Sj and

Sk, ‚.Sj; Sk/ D f�m
jk gminfdj;dkg

mD1 , where �m
jk 2 Œ0; �=2�, are defined recursively for

m D 1; : : : ;minfdj; dkg, as

cos.�1jk/D max
uj2Sj

max
uk2Sk

n
huj;uki W kujk D kukk D 1

o
D †.u1j ;u1k/ (7.3)

cos.�m
jk /D max

uj2Sj

max
uk2Sk

n
huj;uki W kujkDkukk D 1;uj?ui

j;uk?ui
k;

8i 2 f1; : : : ;m�1g
o
D†.um

j ;u
m
k /:

(7.4)

272 7 Spectral Methods

Algorithm 7.1 (Local Subspace Affinity)

Input: A set of points fxj 2 R
DgNjD1 lying in a union of n subspaces fSigniD1, and the integers K

and n.
1: Find the K-NN xj1 ; : : : ; xjK of each data point xj; j D 1; : : : ;N, according to some distance dist

in R
D.

2: Fit a local subspace Sj to xj; xj1 ; : : : ; xjK and estimate its dimension dj.
3: Compute an affinity matrix W as defined on the right-hand side of (7.5).
4: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: The segmentation of the data into n groups.

Remark 7.2. As shown in Exercise 2.8, if Uj is an orthogonal basis for Sj and
similarly for Sk, then cos.�m

jk / is equal to the mth-largest singular value of U>j Uk.
This gives an efficient way of computing the principal angles directly from the
subspace bases.

Now let Sj be the subspace passing through xj, let dj D dim.Sj/, and similarly
for xk. Observe that when xj and xk belong to the same subspace, Sj � Sk, or Sk � Sj,
we have �m

jk D 0 for all m D 1; : : : ; djk. Otherwise, there is an m such that �m
jk ¤ 0.

Therefore, we can use the principal angles to define an affinity matrix as

wjk D
minfdj;dkgY

mD1
cos2.�m

jk / or wjk D exp

�

minfdj;dkgX
mD1

sin2.�m
jk /
�
: (7.5)

The former was introduced in (Wolf and Shashua 2003) as a kernel for subspaces,
while the latter was introduced in (Yan and Pollefeys 2006) and is known as local
subspace affinity (LSA). In either case, notice that if points xj and xk belong to the
same subspace, Sj � Sk or Sk � Sj, we have wjk D 1; otherwise, wjk < 1.

Algorithm 7.1 summarizes the LSA algorithm of (Yan and Pollefeys 2006).
Notice that the actual algorithm in (Yan and Pollefeys 2006) includes an additional
preprocessing step, whereby the data are projected onto a lower-dimensional space
using PCA and then normalized to have unit norm. Since this additional step is not
essential, we have omitted it from the algorithm description.

Affinities Based on Geometric Distances
One disadvantage of the affinities in (7.5) is that they are applicable only to linear
subspaces, because the principal angles depend only on the subspace basis. To see
this, notice, for example, that when two affine subspaces are parallel to each other,
all their principal angles are equal to zero; hence wjk is equal to 1 not only for points
j and k in the same subspace, but also for points j and k in two different subspaces.
Therefore, in the case of data drawn from affine subspaces, wjk needs to be modified
to incorporate an appropriate distance between points xj and xk.

7.2 Local Subspace Affinity (LSA) and Spectral Local Best-Fit Flats (SLBF) 273

One approach to building an affinity for data lying in a union of subspaces that is
applicable to both linear and affine subspaces is to incorporate the distance between
points xj and xj to the affinity as

wjk D exp.�kxj � xkk22/ exp

�

minfdj;dkgX
mD1

sin2.�m
jk /
�
: (7.6)

Another approach is to use some distance from xj to the subspace passing through
xk, e.g., the Euclidean distance dist.xj; Sk/ D k.I � UkU>k /xjk. Since this quantity
is not symmetric, i.e., d.xj; Sk/ ¤ d.xk; Sj/, the spectral local best-fit flats (SLBF)
algorithm (Zhang et al. 2010) considers their geometric mean

djk D
q

dist.xj; Sk/dist.xk; Sj/; (7.7)

and defines the affinity as

wjk D exp

� djk

2�2j

�
C exp

� djk

2�2k

�
; (7.8)

where �j measures how well point j and its neighbors are fit by Sj, and similarly
for �k. We refer the reader to (Zhang et al. 2010) for details on how to compute �j.

Algorithm 7.2 summarizes the SLBF algorithm of (Zhang et al. 2010). Notice
that the actual algorithm in (Zhang et al. 2010) does not require one to specify
the parameter K. Instead, multiple neighborhoods are considered around each data
point, and the neighborhood that gives the best local fit is selected. For the sake of
simplicity, we have omitted this additional step and assumed that K is given.

The main advantage of local algorithms for building a subspace clustering
affinity, such as LSA and SLBF, is that they are conceptually simple. Indeed,
they are natural generalizations of classical spectral clustering methods, where
instead of comparing two data points, one compares two data points and their local
neighborhoods. Therefore, from a computational perspective, the additional costs
relative to standard spectral clustering are to (1) find the nearest neighbors for each
data point and (2) fit a localsubspace to each data point. Another advantage of local

Algorithm 7.2 (Spectral Local Best-Fit Flats)

Input: A set of points fxj 2 R
DgNjD1 lying in a union of n subspaces fSigniD1, and the integers K

and n.
1: Find the K-NN xj1 ; : : : ; xjK of each data point xj; j D 1; : : : ;N, according to some distance dist

in R
D.

2: Fit a local subspace Sj to xj; xj1 ; : : : ; xjK and estimate the dimension dj.
3: Compute an affinity matrix W as defined in (7.8).
4: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: The segmentation of the data into n groups.

274 7 Spectral Methods

methods is that outliers are likely to be rejected, because they are far from all the
points, and so they are not considered neighbors of the inliers.

On the other hand, local methods have two main drawbacks. First, the neighbors
of a point could contain points in different subspaces, especially near the intersection
of two subspaces. Points with contaminated neighborhoods will lead to erroneous
estimates of the local subspaces, which can cause errors in the affinities, hence in
the clustering. This problem could be partially ameliorated by reducing the number
of nearest neighbors. However, this could lead to unreliable estimates of the local
subspaces in the presence of noise, or worse, the selected neighbors may not span
the underlying subspace. Therefore, a fundamental challenge with local methods
is how to select the proper size of the neighborhood: the neighborhood should be
small enough that only points in the same subspace are chosen and large enough that
the neighbors span the local subspace. SLBF tries to remedy some of these issues
by choosing the size of the neighborhood automatically. However, this increases
computational complexity, because one needs to perform local PCA multiple times,
once for each neighborhood size, in order to select the best neighborhood size for
each data point. This issue is one of the motivations for the sparse and low-rank
methods to be described in Chapter 8.

7.3 Locally Linear Manifold Clustering (LLMC)

Local methods, such as LSA and LSBF, perform subspace clustering by applying
the spectral clustering algorithm to an affinity matrix obtained by comparing local
subspaces estimated from each data point and its nearest neighbors. Therefore,
these algorithms can be seen as generalizations of the Laplacian eigenmaps (LE)
algorithm (see Section 4.2.3, Algorithm 4.3) from manifold embedding to subspace
clustering.

In this section, we describe a variant of the locally linear manifold clustering
(LLMC) method proposed in (Goh and Vidal 2007), which performs subspace
clustering by applying spectral clustering to an affinity obtained from the locally
linear representations computed by the LLE algorithm (see Section 4.2.2, Algo-
rithm 4.2). Therefore, the LLMC algorithm can be seen as a generalization of the
LLE algorithm from manifold embedding to subspace clustering.

Let us first recall that the first step of LLE is to represent each point xj as an
affine combination of its K-NN. The coefficients cjk of these linear combinations
are found by minimizing the sum of the reconstruction errors for all the data points

NX
jD1
kxj �

X
k¤j

ckjxkk2 D kX � XCk2F; (7.9)

subject to
P

k¤j ckj D 1 and ckj D 0 if xk is not a K-NN of xj. The optimal
coefficients can be found in closed form, as shown in (4.38).

7.3 Locally Linear Manifold Clustering (LLMC) 275

Let us now recall that the second step of LLE is to find a low-dimensional
representation Y D Œy1; : : : ; yN � 2 Rd�N that solves the following problem:

min
Y

NX
jD1

���yj �
NX

kD1
ckjyk

���
2

s.t.
NX

jD1
yj D 0 and

1

N

NX
jD1

yjy
>
j D I; (7.10)

which is equivalent to

min
Y

trace.YLY>/ s.t. Y1 D 0 and
1

N
YY> D I; (7.11)

where

L D .I � C/.I � C/>: (7.12)

As shown in Proposition 4.11, the optimization problem in (7.11) is given by the
eigenvectors of L corresponding to the second- to the .dC1/th-smallest eigenvalues.

Now observe that the optimization problem in (7.11) is very similar to that solved
by the spectral clustering algorithm, which can be written as

min
Y

trace.YLY>/ s.t. YY> D I: (7.13)

The main difference is that the centering constraint Y1 D 0 is dropped, since our
goal is clustering rather than embedding. Therefore, we may be tempted to think
that (7.13) is a spectral clustering problem with affinity matrix

W D CC C> � CC>; (7.14)

and hence the eigenvectors of L give the segmentation of the data into a union
of subspaces as in Proposition 4.14. However, this need not be the case, because
the matrix W in (7.14) need not be nonnegative; hence the matrix L need not
be a graph’s Laplacian (see Exercise 7.1). Therefore, while the solution of (7.13)
continues to be the eigenvectors of L associated with the smallest eigenvalues,
we can no longer use Proposition 4.14 to assert that the null space of L gives the
segmentation of the data.

It is shown in (Goh and Vidal 2007) that when every point and its K-NNs are
always in the same subspace, then there are n vectors fvigniD1 in the null space of L
that give the segmentation of the data, i.e., vij D 1 if point j belongs to subspace i,
and vij D 0 otherwise (see Exercise 7.2). Therefore, the null space of L still gives
the segmentation of the data in this case. However, it is also shown in (Goh and
Vidal 2007) that these vectors are not the only vectors in the null space of L (see
Exercise 7.3). Therefore, a procedure for selecting the segmentation eigenvectors
fvigniD1 from the null space of L is needed before spectral clustering can be applied.

276 7 Spectral Methods

Algorithm 7.3 (Locally Linear Manifold Clustering)

Input: A set of points fxj 2 R
DgNjD1 lying in a union of n subspaces fSigniD1, and the integers K

and n.
1: Find the K-NN xj1 ; : : : ; xjK of each data point xj; j D 1; : : : ;N, according to some distance dist

in R
D.

2: Approximate each point xj 	 P
cijxi as an affine combination of its K-NN with coefficients

the cij obtained as in (4.38).
3: Compute an affinity matrix W as defined in (7.15).
4: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: The segmentation of the data into n groups.

Nonetheless, we can avoid the aforementioned difficulties by replacing the
second step of the LLE algorithm by a spectral clustering step. In particular, if every
point and its K-NNs are always in the same subspace, by construction the matrix C
is such that ckj D 0 if points xj and xk are in different subspaces. Therefore, we can
use the matrix C directly to build an affinity. Since the matrix C is not necessarily
symmetric or nonnegative, we define the following affinity matrix:

W D jCj C jC>j: (7.15)

Algorithm 7.3 summarizes the LLMC algorithm of (Goh and Vidal 2007),
modified to use the affinity in (7.15) rather than the one in (7.14).

A first advantage of LLMC is its robustness to outliers. This is because, as in the
case of LSA and SLBF, outliers are often far from the inliers; hence it is unlikely
that they are chosen as neighbors of the inliers. Another important advantage of
LLMC is that it is also applicable to nonlinear subspaces, while all the other methods
discussed so far are applicable only to linear (or affine) subspaces. This is because
the LLMC algorithm is effectively looking for locally linear relationships among
neighboring points, without enforcing a global subspace structure. However, LLMC
suffers from the same disadvantage of LSA, namely that it has problems with
points near the intersections, because it is not always the case that a point and its
K-NNs are in the same subspace. Also, properly choosing the number of nearest
neighbors is a challenge. Nonetheless, these issues could be resolved by choosing
the neighborhood automatically, as done by SLBF.

7.4 Spectral Curvature Clustering (SCC)

The local methods discussed so far, such as LSA, SLBF, LLMC, construct an affinity
between two data points by looking only at the nearest neighbors of each data point.
However, if the neighborhood of a point contains points from different subspaces,
these local methods could fail. To remedy this issue, this and the next sections
describe global methods for building a subspace clustering affinity.

7.4 Spectral Curvature Clustering (SCC) 277

The approach we describe in this section is based on multiway clustering
(Agarwal et al. 2005; Govindu 2005; Chen and Lerman 2009b), which is a
generalization of spectral clustering from pairwise affinities to multiway affinities.
As the name suggests, an M-way affinity is an affinity among M points that tries to
capture whether these points belong to the same group. In the case of data lying in
a union of subspaces of the same dimension d, the idea is to consider an arbitrary
neighborhood of any d C 1 points for each data point, measure how likely these
dC 2 points are to belong to the same subspace, and use this .dC 2/-way affinity to
construct a pairwise affinity between two points, so that spectral clustering can be
applied to it.

For the sake of simplicity, let us first consider the case of data lying in a union
of lines in the plane. In this case, we can select any three points and check whether
they are collinear. If the coordinates of the points are x1 D .x1; y1/, x2 D .x2; y2/,
x3 D .x3; y3/, we can determine whether they are collinear by checking whether the
area of the triangle formed by the three points is zero. We can compute this area as

area.x1; x2; x3/ D
ˇ̌
ˇ̌
ˇ̌
x1 y1 1
x2 y2 1
x3 y3 1

ˇ̌
ˇ̌
ˇ̌ : (7.16)

Alternatively, we can fit a circle to the three points and use the radius of this circle
to compute the Menger curvature, which is defined as the reciprocal of the radius.
Then, if the points are collinear, the Menger curvature is zero. Interestingly, the
Menger curvature is a function of the area and of the sides of the triangle formed by
the three points and can be computed as

�M.x1; x2; x3/ D 4area.x1; x2; x3/
kx1 � x2kkx2 � x3kkx3 � x1k : (7.17)

Yet another alternative is to use the polar curvature, which is simply the Menger
curvature multiplied by half the square of the diameter of the three points,
diam.x1; x2; x3/2 D kx1 � x2k2 C kx2 � x3k2 C kx3 � x1k2, which gives

�p.x1; x2; x3/ D 1

2
diam.x1; x2; x3/2�M.x1; x2; x3/ (7.18)

D 2diam.x1; x2; x3/

vuut
3X

jD1

area.x1; x2; x3/2Q
i¤j kxi � xjk2 : (7.19)

More generally, let XdC2 D fxjgdC2jD1 be d C 2 points in RD, and let vol.XdC2/ be
the volume of the .d C 1/-simplex formed by these points. This volume should be
zero if the dC 2 points are in the same affine subspace of dimension d. We can also
compute the polar curvature of XdC2, which is defined as

278 7 Spectral Methods

�p.XdC2/ D diam.XdC2/
dC2X
jD1

vuut .dC 1/Š2vol2.XdC2/Q
1�i�dC2

i¤j
kxi � xjk2 : (7.20)

As before, if the dC 2 points lie in the same subspace, we have �p D 0.
The spectral curvature clustering (SCC) method introduced in (Chen and Lerman

2009b) constructs an affinity for subspace clustering based on the concept of polar
curvature described above. In particular, given N data points fxjgNjD1, let XdC2 D
fxj`gdC2`D1 be any random choice of dC 2 data points. For each such choice, the SCC
method defines a multiway affinity as

Aj1;j2;:::;jdC2
D exp

� 1

2�2
diam2.XdC2/

dC2X
`D1

.d C 1/Š2vol2.XdC2/Q
1�m�dC2

m¤`
kxjm�xj`k2

�
(7.21)

if j1; j2; : : : ; jdC2 are distinct, and zero otherwise, where � > 0 is a parameter. Given
this multiway affinity, we can define an affinity between any pair of points as

wjk D
X

j2;:::;jdC12f1;:::;Ng
Aj;j2;:::;jdC2

Ak;j2;:::;jdC2
: (7.22)

Algorithm 7.4 summarizes the SCC algorithm of (Chen and Lerman 2009b).
Notice that the actual algorithm in (Chen and Lerman 2009b) uses a procedure for
initializing K-means within the spectral clustering step. For the sake of simplicity,
we have omitted this additional step.

The main advantage of SCC over LSA, SLBF, and LLMC is that it uses points
from the entire data set to define the affinity between two points, while LSA, SLBF,
and LLMC restrict themselves to the nearest neighbors of each point. This ultimately
results in a better similarity measure. Also, SCC is better justified theoretically.
In particular, when the data points are sampled from a mixture of distributions
concentrated around multiple affine subspaces, SCC can perform better than the
above local methods, as shown in (Chen and Lerman 2009a). In addition, SCC can
be extended to nonlinear manifolds using kernel methods, as shown in (Chen et al.
2009).

Algorithm 7.4 (Spectral Curvature Clustering)

Input: A set of points fxj 2 R
DgNjD1 lying in a union of n subspaces fSigniD1, and the integers d

and n.
1: For each choice of dC 2 data points, compute the multiway affinity in (7.21).
2: Compute the pairwise affinity matrix W as defined in (7.22).
3: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: The segmentation of the data into n groups.

7.5 Spectral Algebraic Subspace Clustering (SASC) 279

On the other hand, one of the main disadvantages of the SCC algorithm is that
it requires computing O.NdC2/ entries of A and summing over O.NdC1/ elements
of A. Therefore, the computational complexity of SCC grows exponentially with the
dimension of the subspaces. A practical implementation of SCC uses a fixed number
c of .d C 1/-tuples (c � NdC1) for each point to build the similarity W. A choice
of c � c0ndC2 is suggested in (Chen and Lerman 2009b), which is much smaller,
but still exponential in d. In practice, the method appears to be not too sensitive to
the choice of c but more to how the d C 1 points are chosen. In (Chen and Lerman
2009b), it is argued that a uniform sampling strategy does not perform well, because
many samples could contain subspaces of different dimensions. To avoid this, two
stages of sampling are performed. The first stage is to obtain an initial clustering of
the data. In the second stage, the initial clusters are used to guide the sampling and
thus obtain a better affinity.

Another drawback of SCC is that it requires the subspaces to be of known and
equal dimension d. In practice, the algorithm can still be applied to subspaces of
different dimensions by choosing d D dmax, but it becomes unclear how the notion
of “volume” should be properly modified in the spectral curvature formula.

7.5 Spectral Algebraic Subspace Clustering (SASC)

In this subsection, we present another global approach to building a subspace
clustering affinity based on the ASC algorithm described in Chapter 5. Recall that
ASC is based on fitting a set of polynomials to the data and computing the normals
to each subspace from the gradients of these polynomials at n data points, one per
subspace. As it turns out, we can use the normal vectors computed by ASC to define
a subspace clustering affinity. The key idea is that instead of computing the normal
vectors at n points only, we can compute them at each of the N data points. In this
way, we assign to each data point a set of normal vectors. Then, we can define an
affinity between two points using any affinity between the two subspaces spanned
by the two sets of normal vectors.

Let us begin with the simple case of data lying in a union of hyperplanes. As
discussed in Chapter 5, in this case there is a single polynomial p.x/ that vanishes
in the union of hyperplanes. Moreover, we can use p.x/ to estimate the normal to
the hyperplane passing through xj as (see Algorithm 5.3)

bj D rp.xj/

krp.xj/k ; 8 j D 1; : : : ;N: (7.23)

Given the normal vectors bj and bk to the hyperplanes passing through xj and xk,
respectively, we can use them to compute the angle �jk D †.bj; bk/ between the
hyperplanes. This angle should be zero if the two points are in the same hyperplane.
Therefore, the we can define an affinity for data points in a union of hyperplanes as

280 7 Spectral Methods

wjk D cosq.�jk/ D jhrp.xj/;rp.xk/ijq
krp.xj/kqkrp.xk/kq

; (7.24)

where q > 0 is a user-defined parameter. Notice that this is the same affinity used
by LSA and SLBF in (7.2). The main difference is that LSA and LSBF compute
this affinity from local estimates of the normal vectors, while in (7.24), this affinity
is computed from global estimates of these normals obtained from the polynomial
p.x/, which is fit globally to all the data points.

A second approach to defining an affinity from the normals to the hyperplane is
to use the distance from a point to a hyperplane. In particular, note that if point
xj belongs to the hyperplane passing through xk, we must have b>k xj D 0 or
hrp.xk/; xji D 0. In fact, notice that if bk is a unit vector, then jb>k xjj is simply
the distance from point xj to the hyperplane passing through xk. Therefore, we can
define an affinity for points in a union of hyperplanes as

wjk D 1 � jhxj;rp.xk/ijq
kxjkkrp.xk/kq

; (7.25)

where q > 0 is a user-defined parameter, or alternatively as its symmetric version

wjk D 1 � 1
2

jhxj;rp.xk/ijq
kxjkkrp.xk/kq

� 1
2

jhxk;rp.xj/ijq
kxkkkrp.xj/kq

: (7.26)

Let us now consider the case of arbitrary subspaces of any dimensions. Let Sj

be the subspace passing through xj, let S?j be its orthogonal complement, and let

dj D dim.Sj/. As described in Theorem 5.8, we can estimate S?j as the span of the
derivatives of all the polynomials pn` that vanish on the union of subspaces, i.e.,

S?j D span
n
rpn`.xj/

o
: (7.27)

Then the principal angles f�m
jk gminfD�dj;D�dkg

mD1 between S?j and S?k can be used to
define an affinity matrix as

wjk D
minfD�dj;D�dkgY

mD1
cos2.�m

jk /: (7.28)

Notice that the affinity in (7.28) is very similar to that on the left-hand side of (7.5).
However, there are two key differences. First, the affinity in (7.5) is computed from
the principal angles between the subspaces Sj and Sk, while the affinity in (7.28) is
computed from the principal angles between their orthogonal complements, S?j and

S?k , respectively. Second, the affinity in (7.5) is computed from the principal angles
between locally estimated subspaces, while the affinity in (7.28) is computed from
the principal angles between globally estimated subspaces.

7.6 Simulations and Applications 281

7.6 Simulations and Applications

7.6.1 Spectral Methods on Synthetic Data

In this subsection we illustrate the performance of various spectral subspace
clustering methods using synthetically generated data. We randomly generate n D 3
subspaces in RD of varying dimensions fdigniD1. We consider two different settings.
In the first one, the ambient dimension is low (D D 4), and the subspace dimensions
are high relative to the ambient dimension (di 2 f1; 2; 3g). In the second one,
the ambient dimension is high (D D 100), and the subspace dimensions are low
relative to the ambient dimensions (di 2 f5; 7; 9g). For each setting, we randomly
sample Ni D 100 or Ni D 150 points from each subspace, respectively, and
add zero-mean Gaussian noise with covariance �2.I � UiU>i /, where Ui is an
orthonormal basis for the subspace and � 2 Œ0; 0:05�. Subsequently, the noisy points
are normalized to have unit Euclidean norm. Given these N data points, the task is
to cluster them into their respective subspaces using spectral clustering. For this
purpose, we use many of the methods described in this chapter for constructing the
subspace clustering affinity. In addition, since many of the methods described in this
chapter are related to the single-manifold learning methods discussed in Chapter 4,
we also use some manifold learning methods to generate the affinity matrices. In
particular, we compare the following methods:

1. KPCA-linear, i.e., we use the polynomial kernel of degree one in (4.31) as an
affinity.

2. KPCA-Gaussian, i.e., we use the Gaussian kernel of spread � D 0:1 in (4.31) as
an affinity.

3. LE, i.e., we use the weight matrix W in (4.43) as an affinity. The number of
nearest neighbors is set to K D 12, and the spread parameter is set to � D 0:5

in (4.43).
4. LSA, i.e., we use the affinity on the right-hand side of (7.5). When D D 4, the

number of nearest neighbors is set to K D 3 and the subspace dimension to
d D 3. When D D 100, the number of nearest neighbors is set to K D 12 and
the subspace dimension to d D 9.

5. LSA-GT is the same as LSA, except that the subspace dimension is set to
the ground truth dimension in the case of equidimensional subspaces, and to
the maximum dimension in the case of subspaces of different dimensions.

6. LLMC, i.e., we use the matrix W in (7.15) obtained from the coefficient matrix
C in (4.38) as an affinity. The number of nearest neighbors is set to K D 12.

7. SCC, i.e., we use the affinity in (7.22) with the subspace dimensions set to d D 3
if D D 4, and d D 9 if D D 100.

8. SCC-GT is the same as SCC, except that the subspace dimension is set to
the ground truth dimension in the case of equidimensional subspaces, and to
the maximum dimension in the case of subspaces of different dimensions.

9. SASC-angle, i.e., we use the affinity in (7.24) with q D 1.
10. SASC-distance, i.e., we use the affinity in (7.26) with q D 1.

282 7 Spectral Methods

Each of these methods produces an N � N matrix that if needed, we convert to a
valid affinity matrix by taking the absolute value of its entries and symmetrizing it.
This affinity is then given as input to the spectral clustering method in Algorithm 4.7
to produce n D 3 clusters from the generalized eigenvectors of .L;D/, where L is
the Laplacian and D is the degree matrix associated with the affinity.

High-Dimensional Subspaces of a Low-Dimensional Ambient Space
Figure 7.3 shows the clustering error rates of different methods as a function of the
noise level for data drawn from three subspaces of R4 of dimensions di 2 f1; 2; 3g.
By looking at the results, we can draw the following conclusions.

1. The affinities obtained by manifold learning methods such as KPCA and LE
fail in all cases even for zero noise. This is expected, because manifold learning
methods are designed for a single manifold, not for multiple subspaces. The only
manifold learning method that shows good performance is KPCA-linear for d1 D
d2 D d3 D 1. This is because in this case, the kernel is simply the cosine of

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

noise standard deviation

cl
us

te
rin

g
er

ro
r

d1 = d2 = d3 = 3

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

noise standard deviation

cl
us

te
rin

g
er

ro
r

KPCA−linear

KPCA−gaussian

LLE

LE

LSA

LSA−GT

SCC

SCC−GT

SASC−angle

SASC−distance

d1 = d2 = d3 = 2

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

noise standard deviation

cl
us

te
rin

g
er

ro
r

d1 = d2 = d3 = 1

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

noise standard deviation

cl
us

te
rin

g
er

ro
r

d1 = 1, d2 = 2, d3 = 3

(a) (b)

(c) (d)

Fig. 7.3 Clustering errors for spectral subspace clustering algorithms applied to three randomly
generated subspaces inR4 of dimensions 1 � di � 3. The errors are averages over 100 independent
experiments.

7.6 Simulations and Applications 283

the angle between data points, which coincides with the angle between the lines
and hence encodes information about the underlying segmentation into multiple
subspaces.

2. The performance of LSA and LLMC is comparable to that of manifold learning
methods, except for LSA when d1 D d2 D d3 D 3. This shows that LSA
is sensitive to having data points near the intersection of the subspaces, which
affects the selection of the nearest neighbors, as well as to proper knowledge of
the dimensions of the subspaces. The latter can also be seen by noticing that LSA-
GT, which uses the true subspaces dimensions, consistently outperforms LSA,
which uses only an upper bound on the subspace dimensions. Moreover, notice
that the performance of LSA-GT improves as the dimension of the subspaces is
reduced. This is arguably because there are fewer data points near the intersection
of the subspaces.

3. SCC seems to be less sensitive to its dimension parameter. For example, in
the case of equidimensional subspaces of dimension 2, using the ground truth
dimension d D 2 or the upper bound dmax D 3 does not affect the results.
However, for the case of lines, SCC-GT behaves poorly, while SCC with the
upper bound dmax D 3 becomes numerically unstable.

4. Finally, both algebraic methods SASC-angle and SASC-distance perform sim-
ilarly for the case of hyperplanes. However, for lower-dimensional spaces,
the performance of SASC-angle degrades significantly, while SASC-distance
remains robust. Interestingly, SASC-distance is the only method that gives zero
error in the absence of noise for the more intricate case of subspaces of different
dimensions.

Low-Dimensional Subspaces of a High-Dimensional Ambient Space
Here, we perform a similar experiment, except that the ambient dimension is
D D 100 and the subspace dimensions are di 2 f5; 7; 9g. In this case, neither
SASC-angle nor SASC-distance can be applied directly, because the Veronese
map of degree 3 embeds R100 into R171700, which implies that we would need
at least 171;700 data points to compute a vanishing polynomial. To alleviate this
difficulty, we project the 100-dimensional (noisy) points onto their first 10 principal
components and subsequently normalize them to have unit norm. We use these latter
points to run SASC-angle and SASC-distance. Figure 7.4 shows the clustering error
rates (in logarithmic scale) of different methods as a function of the noise level. By
looking at the results, we can draw the following conclusions.

1. First, in sharp contrast with the case of high-dimensional subspaces of a low-
dimensional space, KPCA-linear, LLMC, and LSA perform perfectly across all
dimension configurations and all considered levels of noise. For LLMC and LSA,
the explanation is straightforward: the low dimensionality of the subspaces leads
to correct choices for nearest neighbors. For KPCA-linear, we notice that the
low dimensionality of the subspaces leads to high values of the entries of the
intracluster submatrices of the kernel matrix (recall that these entries are just
cosines of angles between points).

2. Second, notice that the method that performs the worst is SASC-angle. This is
expected in all dimension configurations except .9; 9; 9/, in which the underlying

284 7 Spectral Methods

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

noise standard deviation

cl
us

te
rin

g
er

ro
r

pe
rc

en
ta

ge

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

noise standard deviation

cl
us

te
rin

g
er

ro
r

pe
rc

en
ta

ge

KPCA−linear

KPCA−gaussian

LLE

LE

LSA

LSA−GT

SCC

SCC−GT

SASC−angle

SASC−distance

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

noise standard deviation

cl
us

te
rin

g
er

ro
r

pe
rc

en
ta

ge

d1 = d2 = d3 = 9

d1 = d2 = d3 = 5 d1 = d2 = d3 = 7

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

noise standard deviation

cl
us

te
rin

g
er

ro
r

pe
rc

en
ta

ge

d1 = 5, d2 = 7, d3 = 9

(a) (b)

(c) (d)

Fig. 7.4 Clustering errors for spectral-based algorithms applied to three randomly generated
subspaces of dimensions di 2 f5; 7; 9g in R

100. The errors are averages over 100 independent
experiments.

subspaces are effectively hyperplanes of R10. Indeed, in this case, SASC-angle
gives zero error for zero noise. However, as soon as the points become noisy,
its performance degrades. This is consistent with its behavior in the experiments
for D D 4, except that here the degradation in the performance is much more
rapid. This is because the effect of the projection is to reduce the angle between
the orthogonal complements of the subspaces.1 In this case, the orthogonal
complements after the projection are just the lines defined by the normals to
the 9-dimensional hyperplanes.

1As a simple illustration of this phenomenon, consider two lines in R
3 and their projection onto

some plane of R3 that is not orthogonal to any of the lines: the angle between the lines is reduced
after the projection. As the angles between the normals become smaller, the ability of SASC-angle
to distinguish between the different hyperplanes is reduced.

7.6 Simulations and Applications 285

3. Third, SASC-distance performs satisfactorily, indicating that it is much more
robust to variations of the subspace dimensions than SASC-angle. As expected,
KPCA-Gaussian is significantly less accurate. This is because the Gaussian
kernel promotes similarities between points that lie close to each other in the
Euclidean sense, which need not be the case for points lying in the same
subspace. Interestingly, LE, which also uses the Gaussian kernel, performs
much better than KPCA-Gaussian. The reason is that LE builds the affinity
by applying the Gaussian kernel only among nearest neighbors, which by the
low dimensionality are expected to be more accurate. Finally, SCC performs
quite well even when the subspace dimensions are different, indicating that SCC
becomes more robust to subspace dimension variations in the low-rank regime.

7.6.2 Spectral Methods on Face Clustering

In this subsection, we consider the problem of clustering face images of multiple
individuals acquired with a fixed pose and varying illumination. Figure 7.5 gives an
example of face images of multiple individuals that are clustered into three groups.
As discussed in Chapter 2, it has been shown that under the Lambertian reflectance
assumption, images of a subject with a fixed pose and varying illumination lie close
to a linear subspace of dimension 9 (Basri and Jacobs 2003). Therefore, a collection
of face images of multiple subjects lie close to a union of 9-dimensional subspaces,
and we may use any of the methods described in this chapter to cluster a given set
of face images.

We illustrate the performance of various spectral subspace clustering methods
on the problem of clustering frontal face images of two subjects (20 and 21,
or 37 and 38) from the extended Yale B data set under 64 varying illumination
conditions. Each image is cropped to 192 � 168 pixels, which cover the face of
the individual only. To reduce the computational cost and the memory requirements
of all algorithms, we down-sample the images to 48 � 42 pixels and treat each
2;016-dimensional vectorized image as a data point. In Chapter 4, we used a similar
data set to illustrate the performance of different manifold learning techniques for
building low-dimensional representations of data in a union of subspaces. In this
experiment, we use the data set mainly to illustrate the different affinities obtained

Fig. 7.5 Face clustering: given face images of multiple subjects (top), the goal is to find images
that belong to the same subject (bottom).

286 7 Spectral Methods

Algorithm 7.5 (Spectral Algebraic Subspace Clustering)

Input: A set of points fxj 2 R
DgNjD1 lying in a union of n subspaces fSigniD1, and the parameter

q > 0.
1: Fit set of polynomials fpn`g of degree n to the data.
2: Find a basis for the subspace spanned by the vectors frpn`.xj/g, i.e., a basis for the orthogonal

complement of the subspace Sj passing through xj.
3: For each pair of points, compute the angle-based affinity in (7.24) or (7.28), or the distance-

based affinity in (7.26).
4: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: The segmentation of the data into n groups.

by the different methods and see how effective they are in terms of clustering the
two subjects using spectral clustering. For comparison, we also show the affinities
obtained by manifold learning methods such as KPCA, LLMC, and LE, as described
in the previous subsection. The parameters of the different methods are set as
follows.

1. KPCA, i.e., we use the polynomial kernel of degree one (KPCA-linear) or a
Gaussian kernel with spread � D 0:15 (KPCA-Gaussian) in (4.31) as an affinity.

2. LE, i.e., we use the weight matrix W in (4.43) as an affinity with the number of
nearest neighbors chosen as K D 6 and the spread chosen as � D 0:15.

3. LSA, i.e., Algorithm 7.1 with the number of nearest neighbors chosen as K D 9
and the dimension of the subspaces chosen as d D 9.

4. LLMC, i.e., Algorithm 7.3 with the number of nearest neighbors chosen as
K D 6.

5. SCC, i.e., Algorithm 7.4 with the subspace dimension chosen as d D 9.
6. SASC, i.e., Algorithm 7.5 with the angle-based affinity with parameter q D 10

(SASC-angle), or with the distance-based affinity with parameter q D 1 (SASC-
distance).

Figure 7.6 shows the affinity matrices of different methods as well as the
clustering error percentage for face images from subjects 20 and 21 (Figures 7.6 (a)–
7.6 (h)) and subjects 37 and 38 (Figures 7.6 (i)–7.6 (p)). By looking at the figures,
we can draw the following conclusions.

1. KPCA-linear does not capture the two-subspace structure in the data. This is to
be expected, since KPCA with the polynomial kernel of degree one is effectively
equivalent to applying classical PCA to the data and then computing the dot
products between data points in the projected space.

2. The nonlinear manifold learning methods produce a sparse affinity where the
image of one individual is connected to very few other images of the same
individual and occasionally also to images of the other individual. This is because
KPCA-Gaussian, LLMC, and LE are all based on pairwise distances, either
for constructing the affinity or for selecting nearest neighbors. Since for each
individual, the images are ordered in a fixed illumination pattern where, e.g., the

7.6 Simulations and Applications 287

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) KPCA-linear: 48.4%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) KPCA-gauss: 49.2%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) LE: 46.1%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) LLMC: 1.6%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) LSA: 28.9%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) SCC: 1.6%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) SASC-ang.: 13.3%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) SASC-dist.: 8.6%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i) KPCA-linear: 47.7%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(j) KPCA-gauss: 49.2%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k) LE: 49.2%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(l) LLMC: 47.7%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(m) LSA: 48.4%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(n) SCC: 47.7%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(o) SASC-ang.: 13.3%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(p) SASC-dist.: 7.8%

Fig. 7.6 Affinity matrices of face images produced by different methods. We take frontal face
images of subjects 20 and 21 (Figures 7.6 (a)–7.6 (h)) and subjects 37 and 38 (Figures 7.6 (i)–
7.6 (p)) under 64 different illumination conditions from extended Yale B. For spectral ASC, the
images are projected to dimension 9 using PCA. For all other methods, the images are down-
sampled to 48 � 42. The affinity is obtained by taking absolute value, symmetrizing, normalizing
to the range .0; 1/, then setting the diagonal to zero. The ground truth clustering is given as
the horizontal and vertical black lines in each figure, so that points 1–64 correspond to the first
individual, and points 65–128 correspond to the second individual. Clustering error percentages
for each method are reported in the captions.

first few (1–13) and the last few (58–64) are bright frontal lighting patterns, a
cross pattern is formed in the two diagonal blocks of the affinity matrix, because
images of the same individual under similar lighting directions are close to each
other. A similar, albeit less pronounced, effect is visible in the affinities between
two individuals viewed from similar lighting directions (see cross pattens in
off-diagonal blocks, especially for individuals 37 and 38). This means that

288 7 Spectral Methods

KPCA-Gaussian, LLMC, and LE are expected to produce a good affinity when
the pairwise distances do capture the two-subspace structure (as is the case for
individuals 20 and 21), but they are expected to produce a bad affinity otherwise.
Interestingly, spectral clustering produces very bad results for KPCA-Gaussian,
LE, and LLMC, except for LLMC with subjects 20 and 21. We observed that
this is because the generalized eigenvectors failed to capture the grouping in the
affinities. In particular, by observing the two-dimensional embeddings obtained
by each method in Figure 4.9, we can see that while the data are well grouped
according to the two subjects, it is very hard to obtain the correct clustering by
applying K-means to the low-dimensional embeddings.

3. The LSA affinity is similar to that obtained by manifold learning methods. This
can be explained by the fact that LSA also uses a nearest neighbor approach to
construct the affinity. However, there are differences between the case of subjects
20 and 21, which have few large interclass affinities, and the case of subjects 37
and 28, where there are many large interclass affinities. This is because there are
many points near the intersection of both subspaces, which correspond to faces
with low illumination.

4. The SCC affinity does not seem to capture the two-subspace structure. Most data
points have high affinities with all other data points, while a few data points
(image faces near faces 40 and 104 that correspond to faces with very low
illumination conditions) have low affinities with all other data points, showing
that points near the intersection are difficult to handle. Interestingly, SCC gives a
nearly perfect result for subjects 20 and 21, and a very bad result for subjects 37
and 38, showing again the lack of robustness of spectral clustering.

5. SASC produces very different affinities depending on whether angles or dis-
tances are used. The angle-based affinity is relatively sparse and captures the
two-subspace structure relatively well. Indeed, observe that the affinities in the
off-diagonal blocks do not have a cross pattern. Instead, they have an axis aligned
pattern. This reduces the clustering error, because a point in one subspace is now
connected to many other points in the same subspace, and very few in the other
subspace. This is reflected in the clustering results, which are now more stable
between one pair of subjects and the other. The distance-based affinity, on the
other hand, gives high pairwise affinities across the board. But still, the intraclass
affinities are generally higher than the interclass affinities, and this method gives
the smallest clustering error.

Overall, while some of the methods described in this chapter seem to work well
for low-dimensional data, none of these methods seems to work well on the face
clustering problem. This suggests the need for developing better affinities for high-
dimensional data sets, which we will do in the next chapter.

7.7 Exercises 289

7.7 Exercises

Exercise 7.1. Consider the affinity matrix used by the LLMC algorithm as defined
in (7.14):

W D CC C> � CC>: (7.29)

Show that this matrix need not be nonnegative; hence it is not a valid affinity for
subspace clustering. Can you derive conditions on C under which W is guaranteed
to be nonnegative?

Exercise 7.2. Let L D .I � C/.I � C/> be the matrix in (7.12), which is obtained
by applying the LLE algorithm to a data matrix X whose columns are drawn from
a union of n subspaces. Assume that for all j D 1; : : : ;N, the K-NN of xj lie in the
same subspace as xj. Show that there are n vectors fvigniD1 in the null space of L that
give the segmentation of the data, i.e., for all j D 1; : : : ;N, vij D 1 if point j belongs
to subspace i, and vij D 0 otherwise.

Exercise 7.3. Let L D .I � C/.I � C/> be the matrix in (7.12), which is obtained
by applying the LLE algorithm to a data matrix X whose columns are drawn from a
union of n subspaces. Let Xi, for i D 1; : : : ; n, be the submatrix of X whose columns
contain the data points in the ith subspace. Show that

LXi D 0 8 i D 1; : : : ; n: (7.30)

Chapter 8
Sparse and Low-Rank Methods

A mathematical theory is not to be considered complete until you have made it so clear that
you can explain it to the first man whom you meet on the street.

—David Hilbert

The previous chapter studies a family of subspace clustering methods based on
spectral clustering. In particular, we have studied both local and global methods for
defining a subspace clustering affinity, and have noticed that we seem to be facing
an important dilemma. On the one hand, local methods compute an affinity that
depends only on the data points in a local neighborhood of each data point. Local
methods can be rather efficient and somewhat robust to outliers, but they cannot
deal well with intersecting subspaces. On the other hand, global methods utilize
geometric information derived from the entire data set (or a large portion of it) to
construct the affinity. Global methods might be immune to local mistakes, but they
come with a big price: their computational complexity is often exponential in the
dimension and number of subspaces. Moreover, none of the methods comes with a
theoretical analysis that guarantees the correctness of clustering. Therefore, a natural
question that arises is whether we can construct a subspace clustering affinity that
utilizes global geometric relationships among all the data points, is computationally
tractable when the dimension and number of subspaces are large, and is guaranteed
to provide the correct clustering under certain conditions.

In this chapter, we will present a family of methods for constructing a subspace
clustering affinity that satisfies the above requirements. These methods will capture
global geometric relationships among all data points by expressing each data point
as a linear combination of all other data points and then enforcing a prior on
the matrix of coefficients, such as it being of low rank or sparse. Using convex
relaxations of these priors, these methods will lead to computationally efficient
ways of computing these global affinity matrices. We will characterize conditions

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_8

291

292 8 Sparse and Low-Rank Methods

S1

S2

S3

•
xi• •• •• • •• • •

••
•••

•
•

••
•••

••
•

•

•••
•

Fig. 8.1 Data drawn from three subspaces in R3.

under which these convex relaxation methods are guaranteed to provide the correct
clustering. We will also extend these methods and their theoretical results to the case
of data contaminated by noise and outliers.

Self-Expressiveness and Subspace-Preserving Representations
The approaches described in this chapter are based on two important properties of
data points lying in a union of linear subspaces. The first property is called self-
expressiveness. This property states that each data point in a union of subspaces can
be expressed as a linear combination of all other data points, i.e.,

xj D
X
k¤j

ckjxk; or X D XC and diag.C/ D 0; (8.1)

where X D �
x1; : : : ; xN

� 2 RD�N is the data matrix and C D Œckj� 2 RN�N is
the matrix of coefficients. This property is illustrated in Figure 8.1, which shows
a collection of data points drawn from a union of one plane and two lines in R3.
Clearly, each data point can be expressed as a linear combination of other data
points, e.g., any other three data points in general configuration.

The second property is called subspace-preserving. This property states that each
data point in a union of subspaces can be expressed as a linear combination of other
data points in the same subspace, i.e., point xj 2 Si can be expressed as

xj D
X

k¤jWxk2Si

ckjxk: (8.2)

Such a representation ckj preserves the clustering of the data according to the mul-
tiple subspaces, whence the name subspace-preserving. This property is illustrated
in Figure 8.1, where we can see that each point in a line is a scalar multiple of any
other point in the same line, and every point in the plane is a linear combination of
any other two linearly independent points in the same plane. More generally, this
example suggests that some subspace-preserving representations could be sparse,
the nonzero coefficients could correspond to other points in the same subspace, and
the number of nonzero coefficients could be equal to the dimension of the subspace.

8 Sparse and Low-Rank Methods 293

Therefore, we could find a subspace-preserving representation of each data point by
enforcing a sparsity prior on the columns of the matrix C. While we have motivated
our analysis with a sparse prior in mind, we will see that other priors on C are also
possible, such as it being of low rank.

Low-Rank and Sparse Representations
The above discussion suggests that we can find a subspace-preserving matrix C by
solving an optimization problem of the form

min
C
kCkC s.t. X D XC and diag.C/ D 0; (8.3)

where k � kC is a regularizer on the matrix C, such as it being of low rank or
sparse. Since the above problem is NP-hard for many regularizers k � kC , e.g.,
rank.C/ or kCk0, we will use convex relaxations of these regularizers, e.g., kCk�
or kCk1. An important observation is that under certain conditions, the solution
of the relaxed problem is still subspace-preserving. Such conditions typically
require the subspaces to be sufficiently separated and the data to be well distributed
inside the subspaces. These conditions are stronger than those required by algebraic-
geometric methods, which make no assumption on the relative orientation of the
subspaces. However, the complexity of solving the associated convex optimization
problems is polynomial in the problem dimensions, rather than exponential, and
furthermore, under such conditions, the globally optimal solution for the convex
program can be shown to be subspace-preserving. Thus, the additional conditions
are a small price to pay.

Robustness to Noise, Corruptions, and Outliers
Another feature of the methods that will be described in this chapter is that they
can be extended to handle errors (noise, corruptions, or outliers) by solving an
optimization problem of the form

min
C;E
kCkC C �kEkE s.t. X D XCC E and diag.C/ D 0; (8.4)

where E D Œeij� 2 RD�N is the matrix of errors, and k � kC and k � kE are suitable
norms or regularizers. While the regularizers can be chosen to be nonconvex, e.g.,
the number of corrupted data points, we will see that under certain conditions on the
arrangement of the subspaces, the distribution of the data, and the distribution of the
errors, it is still possible to guarantee that the matrix C is subspace-preserving.

Chapter Organization
The remainder of this chapter is organized as follows. Section 8.1 introduces the
self-expressiveness property and the subspace-preserving property more formally.
Section 8.2 introduces the low-rank subspace clustering (LRSC) algorithm, which
solves the subspace clustering problem using a low-rank prior. Section 8.2.1
investigates theoretical conditions for its correctness in the case of uncorrupted
data, and Sections 8.2.2 and 8.2.3 extend the algorithm to data corrupted by noise,

294 8 Sparse and Low-Rank Methods

corrupted entries, and outliers. Section 8.3 introduces the sparse subspace clustering
(SSC) algorithm, which solves the subspace clustering problem using a sparse prior.
Section 8.3.1 investigates theoretical conditions for its correctness in the case of
uncorrupted data and describes optimization algorithms for solving the associated
optimization problems. Sections 8.3.2, 8.3.3, and 8.3.4 generalize the SSC algorithm
to deal with outliers, noise, and corrupted entries in the data. Section 8.3.5 shows
how to extend the SSC algorithm to the more general class of affine subspaces.
Section 8.4 verifies the theoretical analysis through experiments on synthetic data
and evaluates LRSC and SSC on the face clustering problem.

8.1 Self-Expressiveness and Subspace-Preserving
Representations

This section introduces two properties that will be at the heart of the low-rank
and sparse subspace clustering algorithms to be presented in the next sections. The
first one is the self-expressiveness property, which states that a point in a union of
subspaces can always be expressed as a linear combination of other points in the
union of subspaces. The second one is the subspace-preserving property, which
states that a point in a union of subspaces can always be expressed as a linear
combination of other points in its own subspace. This last property will be necessary
for ensuring the correctness of low-rank and sparse subspace clustering algorithms.

8.1.1 Self-Expressiveness Property

Let fxjgNjD1 be a set of points drawn from a union of n different linear subspaces
fSigniD1 of dimensions fdigniD1. Denote the matrix containing all data points by

X ,
�
x1; : : : ; xN

� D �X1; : : : ;Xn

�
�>; (8.5)

where Xi 2 R
D�Ni is a matrix containing the Ni > di points that lie in subspace Si,

and � 2 R
N�N is an unknown permutation matrix, which sorts the columns of X

according to which subspace they belong to. The expressiveness property of the set
of points is defined as follows.

Definition 8.1 (Expressiveness Property). A set of points fxjgNjD1 drawn from a
union of subspaces [n

iD1Si is said to be expressive if every point x 2 [n
iD1Si can

be expressed as a linear combination of the data points fxjgNjD1. That is, for each
x 2 [n

iD1Si, there exists a vector of coefficients c 2 R
N such that

x D Xc; (8.6)

where X D �
x1; : : : ; xN

� 2 RD�N is the data matrix. We call any such c a
representation of x with respect to X.

8.1 Self-Expressiveness and Subspace-Preserving Representations 295

Evidently, if rank.X/ D D, the data set can be used to represent any point in RD.
However, we are interested only in representing points in x 2 [n

iD1Si. Thus we
would like to have a weaker condition that guarantees expressiveness. It is easy to
see that a set of points drawn from a union of linear subspaces is expressive if for all
i D 1; : : : ; n, we have rank.Xi/ D di. For each x 2 Si can be expressed as a linear
combination of di linearly independent columns in Xi, hence in X. Since we have
assumed that this is true for all i D 1; : : : ; n, we conclude that each x 2 [n

iD1Si can
be expressed as a linear combination of the columns of X. Now, since the assumption
that rank.Xi/ D di is easily satisfied by a set of points in general position within Si,
we will assume from now on that the given data points are in general position in
[n

iD1Si, so that the data set is always expressive.
Let us now consider the particular case that x is one of the data points, say xj.

Obviously, we can express xj in terms of itself. However, this representation would
not be very useful for clustering. A more interesting case is to express a data point
in terms of other data points. This leads to the self-expressiveness property of data
points in a union of linear subspaces, which is defined as follows.

Definition 8.2 (Self-Expressiveness Property). A set of points fxjgNjD1 drawn from
a union of subspaces [n

iD1Si is said to satisfy the self-expressiveness property if
each data point can be expressed as a linear combination of all the other data
points. That is, for each j D 1; : : : ;N, there exists a vector of coefficients cj ,�
c1j; c2j; : : : ; cNj

�> 2 R
N such that

xj D
X
k¤j

ckjxk ” xj D Xcj and cjj D 0; (8.7)

where X D �x1; : : : ; xN

� 2 RD�N is the data matrix. Equivalently, the data matrix X
is said to satisfy the self-expressiveness property if

9 C 2 R
N�N s.t. X D XC and diag.C/ D 0; (8.8)

where C D Œckj� 2 RN�N is the matrix of coefficients.

In order for a data set to be self-expressive, we simply need the set of all data
points minus one point to be expressive. More specifically, let X�j

i 2 RD�.Ni�1/
be the data matrix Xi from subspace Si with its jth column removed. We have the
following result, whose proof we leave as an exercise (see Exercise 8.2).

Lemma 8.3. A set of points drawn from a union of subspaces satisfies the self-
expressiveness property if for all i D 1; : : : ; n and j D 1; : : : ;Ni, we have
rank.X�j

i / D di.

Intuitively, the above lemma states that data drawn from a union of subspaces
satisfy the self-expressiveness property if sufficiently many data points in general
configuration are drawn from each of the subspaces. Since this condition for self-
expressiveness is extremely mild, we will assume from now on that it holds.

296 8 Sparse and Low-Rank Methods

8.1.2 Subspace-Preserving Representation

An expressive data set can be seen as an overcomplete dictionary that can be used to
represent every point in [n

iD1Si as in (8.6). However, notice that the representation
of a point x 2 [n

iD1Si with respect to X need not be unique. Indeed, if x 2 Si and
Ni > di, there are many choices of di or more columns of X that can be used to
generate x. More generally, we could use data points from subspaces other than Si

to generate x 2 Si. Since our goal is to determine the subspace containing the point
x, we are interested in a representation of x that involves columns of Xi only. We
call such a representation subspace-preserving, since it preserves the clustering of
the data points.

Definition 8.4 (Subspace-Preserving Representation). A representation c 2 RN of
a point x 2 Si in terms of a self-expressive dictionary X D �

x1; : : : ; xN

�
is called

subspace-preserving if the nonzero entries of c correspond to points in Si, i.e.,

8j D 1; : : : ;N; cj ¤ 0 H) xj 2 Si: (8.9)

A representation C 2 RN�N of a self-expressive matrix X in terms of itself is called
subspace-preserving if each column of C is subspace-preserving, i.e., if

cjk D 0 when points j and k are in different subspaces: (8.10)

It follows that a subspace-preserving representation has the following structure:

C D �

2
6664

C1 0 � � � 0

0 C2 � � � 0
:::
:::
: : :

:::

0 0 � � � Cn

3
7775�

>; (8.11)

where � is a permutation matrix. Therefore, in principle we may use any subspace-
preserving representation to directly cluster the data into multiple subspaces. In
practice, however, we may not be able to construct a representation that is perfectly
subspace-preserving. That is, it may be the case that jcjkj is small but not necessarily
zero when points j and k are in different subspaces. In this case, its better to use the
spectral clustering algorithm described in Chapter 4 to cluster the data. In a nutshell,
we build a similarity graph whose nodes are the data points and whose edges connect
two points according to an affinity measure. Ideally, each connected component
of the graph corresponds to points in the same subspace. Hence, the segmentation
of the data into the subspaces can be obtained by separating the components of
the graph. Since the affinity matrix needs to be symmetric and nonnegative, an
immediate choice of the similarity matrix is W D jCj C jCj>. In other words, each
node j connects itself to a node k by an edge whose weight is equal to jcjkj C jckjj.
The reason for the symmetrization is that in general, a data point xj can be written as

8.2 Low-Rank Subspace Clustering (LRSC) 297

a linear combination of other points including xk. However, xk may not necessarily
choose xj in its representation. By this particular choice of the weight, we make sure
that nodes j and k get connected to each other if either xj or xk is in the representation
of the other.

8.2 Low-Rank Subspace Clustering (LRSC)

In this section, we introduce the low-rank subspace clustering (LRSC) algorithm
for clustering a set of points drawn from a union of subspaces. This algorithm
addresses the subspace clustering problem in two steps. In the first step, it finds
a low-rank representation of the data subject to the self-expressiveness constraint.
In the second step, it uses the low-rank representation to build an affinity matrix for
spectral clustering. We first introduce the LRSC algorithm in the case of uncorrupted
data. We show that the low-rank representation can be computed in closed form
from the SVD of the data matrix, and that this representation is subspace-preserving
under the assumption that the subspaces are independent. We then extend LRSC
to data corrupted by noise. We show that the low-rank representation can still be
computed in closed form from the SVD of the data, but the representation is no
longer guaranteed to be subspace-preserving. We then extend LRSC to the case of
data corrupted by outliers or gross errors and show that under certain conditions,
one can compute the low-rank representation from a clean data matrix obtained by
applying a robust PCA algorithm to the corrupted data matrix.

8.2.1 LRSC with Uncorrupted Data

The LRSC algorithm aims to find a subspace-preserving representation C of the data
matrix X such that the coefficient matrix C is of low rank. In other words, it tries to
solve the following low-rank minimization problem:

min
C

rank.C/ s.t. X D XC: (8.12)

Notice that this problem is essentially the same as that in (8.3) with the regularizer
chosen as kCkC D rank.C/. The main difference is that we have dropped the
constraint diag.C/ D 0, which is used to prevent a point from being expressed in
terms of itself. We can drop this constraint because here we are trying to minimize
the rank of C, and diagonally dominant matrices have high rank. Therefore, the
optimization problem in (8.12) automatically prevents the trivial solution C D I.

At first sight, we may wonder why we are searching for a low-rank representation
to begin with. In particular, we may ask whether a low-rank representation exists,
and if it does, whether it is subspace-preserving. In what follows, we show that

298 8 Sparse and Low-Rank Methods

under certain conditions, a low-rank representation does exist and can be computed
in closed form from the SVD of X. We also show that this low-rank representation
is a solution to the following relaxed convex optimization problem:

min
C
kCk� s.t. X D XC; (8.13)

where we replace the rank by the nuclear norm. We also derive conditions on the
subspaces under which the low-rank representation is subspace-preserving.

Closed-Form Solution to the Low-Rank Minimization Problem
Observe that the self-expressiveness constraint X D XC implies that

r , rank.X/
 rank.C/: (8.14)

Therefore, a necessary condition for a low-rank solution C of X D XC to exist is
that X be of low rank, i.e., r < minfD;Ng. Notice that this need not be the case in
general. For example, data points sampled from 10 subspaces of dimension 10 in
R100 could span the whole ambient space. Therefore, in order for problem (8.12) to
be well posed, we will assume throughout this section that r < minfD;Ng.

Now let X D U1†1V>1 be the rank-r SVD of X and let C� D V1V>1 . Then

rank.C�/ D rank.X/ and XC� D U1†1V
>
1 V1V

>
1 D U1†1V

>
1 D X: (8.15)

In other words, C� is a matrix of the smallest possible rank such that X D XC.
Hence, C� is an optimal solution to (8.12). However, it is not the unique optimal
solution, since we have the following result.

Theorem 8.5. Let X D UƒV> be the SVD of X. Let V D ŒV1 V2�, where the
columns of V1 are the singular vectors of X corresponding to its nonzero singular
values. The optimal solutions to the program (8.12) are given by

C� D V1V
>
1 C V2BV>1 ; (8.16)

where B 2 R.N�r/�r. Moreover, the optimal value is exactly r D rank.X/.

Proof. We have already shown that V1V>1 is a particular solution to the linear system
of equations XC D X. Since V2 2 RN�.N�r/ gives a basis for the null space of X, the
general solution to XC D X is given by C D V1V>1 C V2A, where A 2 R.N�r/�N is
an arbitrary matrix. We have already shown that the optimal value of (8.12) is r D
rank.X/. Therefore, the matrix A must be constrained so that rank.V1V>1 CV2A/ D r.

Noticing that V1V>1 C V2A D
�
V1 V2

� �V>1
A

	
, where

�
V1 V2

�
is of full rank, we

conclude that rank
� �V>1

A

	 � D r, and so A D BV>1 for some B 2 R.N�r/�r. ut

8.2 Low-Rank Subspace Clustering (LRSC) 299

Among this family of solutions, we are going to be primarily interested in the
particular solution C� D V1V>1 . This matrix was introduced in (Costeira and Kanade
1998) in the context of the motion segmentation problem in computer vision under
the name shape interaction matrix. This matrix is symmetric; hence it is also a
solution to the following optimization problem:

min
C

rank.C/ s.t. X D XC; and C D C>: (8.17)

Since our ultimate goal is to build a symmetric affinity matrix from C, it seems
natural to add the constraint C D C> to the optimization problem in (8.12),
especially sinvr this does not make the problem more difficult to solve.

Convex Relaxation of the Low-Rank Minimization Problem
As we will soon see, there is much advantage to be gained from a reformulation
of (8.17) in terms of a convex program, since its variations will be computationally
more tractable when we begin to incorporate additional structures into the basic
self-expressive model. For example, we can relax (8.17) as

min
C
kCk� subject to X D XC and C D C>: (8.18)

Notice that the relaxed program is convex on C, but not strictly convex. Therefore,
we do not know a priori whether this problem has a unique minimum. The following
theorem shows that C� D V1V>1 is the unique minimum.

Theorem 8.6 (LRSC for Uncorrupted Data (Vidal and Favaro 2014)). Let X D
UƒV> be the SVD of X, where the diagonal entries of ƒ D diagf�ig are the
singular values of X in decreasing order. The optimal solution to the program (8.18)
is given by

C� D V1V
>
1 ; (8.19)

where V D ŒV1 V2� is partitioned according to the sets I1 D fi W �i > 0g and
I2 D fi W �i D 0g. Moreover, the optimal value is exactly r D rank.X/.

Proof. Let C D UC�U>C be the eigenvalue decomposition (EVD) of C. Then X D
XC can be rewritten as U1ƒ1V>1 D U1ƒ1V>1 UC�U>C , which reduces to

V>1 UC D V>1 UC�; (8.20)

since U>1 U1 D I and U>C UC D I. Let W D V>UCD
�
w1; : : : ;wN

�
. Then wj D wjıj

for all j D 1; : : : ;N. This means that ıj D 1 if wj ¤ 0 and ıj is arbitrary otherwise.
Since our goal is to minimize kCk� D k�k� D PN

jD1 jıjj, we need to set as many
ıj to zero as possible. Since X D XC implies that rank.X/
 rank.C/, we can set at
most N� r of the ıj to zero, and the remaining r of the ıj must be equal to one. Now,
if ıj D 0, then wj D V>1 UCej D 0, where ej is the jth column of the identity matrix.

300 8 Sparse and Low-Rank Methods

This means that the columns of UC associated to ıj D 0 must be orthogonal to the
columns of V1, and hence the columns of UC associated with ıj D 1 must be in the
range of V1. Thus, UC D

�
V1R1 V2R2

�
… for some orthogonal matrices R1 and R2

and permutation matrix …. Therefore, the optimal C� is

C� D UC�U>C D
�
V1R1 V2R2

� �I 0

0 0

	 �
V1R1 V2R2

�> D V1V
>
1 ; (8.21)

as claimed. ut
Interestingly, C D V1V>1 is also the optimal solution to the following convex

program, without explicitly enforcing the symmetry on C (Wei and Lin 2010):

min kCk� subject to X D XC: (8.22)

We leave the derivation as an exercise to the reader (see Exercise 8.1).

Subspace-Preserving Property of LRSC for Independent Subspaces
Now we see that the matrix C� D V1V>1 arises repeatedly as the optimal solution
to the above low-rank formulations. The next question is under what conditions
this low-rank representation is subspace-preserving, so that we can use it to build a
similarity for subspace clustering. Theorem 8.9 below shows that C� is subspace-
preserving if the subspaces are independent, as defined next.

Definition 8.7. A collection of subspaces fSigniD1 is said to be independent if
the dimension of their sum is equal to the sum of their dimensions, i.e., if
dim.

Ln
iD1 Si/ D Pn

iD1 dim.Si/, where ˚ denotes the sum operator for subspaces,
which is defined as S1 ˚ S2 D fx D x1 C x2; x1 2 S1; x2 2 S2g.
Example 8.8. As an example, the three 1-dimensional subspaces shown in Fig-
ure 8.2 (left) are independent, since they span a 3-dimensional space and the sum
of their dimensions is also 3. On the other hand, the subspaces shown in Figure 8.2
(right) are not independent, since they span a 2-dimensional space, while the sum of
their dimensions is 3.

Theorem 8.9 ((Vidal et al. 2008)). Let X D ŒX1; : : : ;Xn��
> be a matrix whose

columns are drawn from a union of n independent subspaces, where Xi is a rank-
di matrix containing Ni > di points from subspace i of dimension di, and � is a
permutation matrix. Let X D U1ƒV>1 be its compact SVD and let C D V1V>1 . Then
the matrix C is subspace-preserving, i.e., its entries cjk have the following property:

cjk D 0 if points j and k are in different subspaces: (8.23)

Proof. To see this, let Ai 2 RNi�.Ni�di/ be a matrix whose columns form an
orthonormal basis for the null space of Xi, that is, XiAi D 0 and A>i Ai D I. Consider
now the matrix

8.2 Low-Rank Subspace Clustering (LRSC) 301

S1

•••••••

S2 •• • ••• •

S3 ••
•••

•
•

••
•

S1

•••••••

S2 •• • ••• •
S3 •• • •• • •

Fig. 8.2 Left: the three 1-dimensional subspaces are independent, since they span the 3-
dimensional space and the sum of their dimensions is also 3. Right: the three 1-dimensional are
disjoint, since any two subspaces intersect at the origin.

A D �>

2
66664

A1 0 � � � 0
0 A2

:::
:::

: : : 0

0 � � � 0 An

3
77775
2 R

N�.N�d/; (8.24)

where d DPn
iD1 di. It is clear that the N � d columns of A are orthonormal and lie

in the null space of X. On the other hand, the columns of the matrix V2 2 RN�.N�r/

defined before in the proof of Theorem 8.5 form a basis for the right null space of X.
Since the subspaces are independent, we have that d D r; hence V2 and A have the
same dimension, and so the columns of A also form a basis for the right null space
of X. Thus, there exists an orthogonal matrix B such that V2 D AB. Combining this
with the fact that VV> D I, we have

VV> D V1V
>
1 C V2V

>
2 D CC AA> D I: (8.25)

From this, it follows that

�C�> D I � .�A/.�A/>; (8.26)

which is block-diagonal. This means that cjk D 0 if points j and k are in different
subspaces, as desired. ut
Low-Rank Subspace Clustering Affinity
In conclusion, when the subspaces are independent and sufficiently many points in
general configuration are drawn from each subspace, the low-rank representation
matrix C D V1V>1 is subspace-preserving; hence it can be used to build a subspace
clustering affinity. Since the matrix C is symmetric, we may use jCj directly as an
affinity. More generally, we can define an affinity matrix W as

wjk D jCjkjq; (8.27)

302 8 Sparse and Low-Rank Methods

Algorithm 8.1 (Low-Rank Subspace Clustering for Uncorrupted Data)
Input: A set of points fxjgNjD1 lying in a union of n linear subspaces fSigniD1.
1: Solve the low-rank optimization program in (8.18) to obtain a matrix C 2 RN�N as in the

closed-form expression in (8.19).
2: Compute an affinity matrix W as defined in (8.27).
3: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: Segmentation of the data into n groups: X1;X2; : : : ;Xn.

where q > 0 is a user-defined parameter. The segmentation of the data is obtained
by applying spectral clustering to this affinity matrix.

Summary of the LRSC Algorithm
In summary, the LRSC algorithm for data points that lie perfectly in a union of linear
subspaces proceeds as shown in Algorithm 8.1.

8.2.2 LRSC with Robustness to Noise

In the previous subsection, we considered the low-rank subspace clustering problem
under the assumption that the N data points are drawn perfectly from a union of low-
dimensional subspaces. In practice, the data matrix may be contaminated by noise,
corrupted entries, or outliers; hence the self-expressiveness constraint X D XC may
not hold exactly.

A simple way of modeling errors proposed in (Rao et al. 2008, 2010) and further
developed in (Elhamifar and Vidal 2009, 2013) is to relax the self-expressiveness
constraint to

X D XCC E; (8.28)

where E is the matrix of errors. This model has the advantage of maintaining the
linearity of the self-expressive constraint, which will lead to convex optimization
problems on C and E, as we shall see. However, a shortcoming of this model is that
it does not directly model the errors in the original data.

An alternative error model proposed in (Wei and Lin 2010) and further developed
in (Favaro et al. 2011; Vidal and Favaro 2014) assumes that there is an unknown data
matrix A whose columns lie perfectly in a union of subspaces. The corrupted data
are then generated by adding the error matrix E directly to A subject to the self-
expressiveness constraint on A, i.e.,

X D AC E; A D AC: (8.29)

This model has the advantage of being more natural, in the sense of modeling the
errors directly in the original data. However, the main disadvantage is that the model
is nonlinear due to the product of A and C, which are both unknown.

8.2 Low-Rank Subspace Clustering (LRSC) 303

In spite of their differences, an interesting observation is that both error models
can be related. In fact, starting from the nonconvex model in (8.29), notice that we
may eliminate the clean data matrix A to arrive at

.X � E/ D .X � E/C H) X D XCC E � EC H) X D XCC QE; (8.30)

where QE D E � EC. Therefore, the convex model in (8.29) can be seen as a special
case of the nonconvex model in (8.29) in which the nonlinear part EC is neglected.
This might be appropriate when E represents small noise, but it might be inadequate
when E represents large corruptions.

In this section, we discuss both models in more detail in the case that E
corresponds to noise or small errors. In spite of their differences, we show that both
models lead to closed-form solutions for C, which are very much related.

Convex Error Model
To find a low-rank representation C that is robust to noise under the model (8.28),
we can penalize the sum of the squared errors kEk2F , which leads to the following
convex program:

min
C
kCk� C 	

2
kX � XCk2F s.t. C D C>; (8.31)

where 	 > 0 is a tradeoff parameter. Notice that this program is convex in C, but not
strictly convex. Therefore, we do not know a priori whether the minimizer is unique.
The following theorem shows that the minimizer is unique and can be computed in
closed form from the SVD of X.

Theorem 8.10 (LRSC for Noisy Data). Let X D UƒV> be the SVD of X, where
the diagonal entries of ƒ D diag.f�ig/ are the singular values of X in decreasing
order. The optimal solution to the convex program (8.31) is given by

C D VP 1
p

	
.ƒ/V> D V1

�
I � 1

	
ƒ�21

V>1 ; (8.32)

where the operator P" acts on the diagonal entries of ƒ as

P".x/ :D
(
1 � "2

x2
x > "

0 x
 " (8.33)

and U D ŒU1 U2�, ƒ D diag.ƒ1;ƒ2/, and V D ŒV1 V2� are partitioned according
to the sets I1 D fi W �i >

1p
	
g and I2 D fi W �i
 1p

	
g. Moreover, the optimal value

of the program (8.31) is

ˆ	.X/
:D
X
i2I1

�
1 � 1

2	
��2i

C 	

2

X
i2I2

�2i : (8.34)

304 8 Sparse and Low-Rank Methods

Proof. Let C D UC�U>C be the eigenvalue decomposition (EVD) of C. The cost
function of the convex program (8.31) can be rewritten as

kUC�U>C k� C
	

2
kUƒV>.I � UC�U>C /k2F D (8.35)

k�k� C 	

2
kƒV>UC.I ��/U>C k2F D k�k� C

	

2
kƒW.I ��/k2F;

where W D V>UC. To minimize this cost with respect to W, we need to consider
only the last term of the cost function, i.e.,

kƒW.I ��/k2F D trace
�
.I ��/2W>ƒ2W

�
: (8.36)

Let �i.A/ be the ith-largest singular value of an arbitrary matrix A. Applying a von
Neumann-type singular value inequality to (8.36) (see Lemma 2.5 as well as (Vidal
and Favaro 2014)), we obtain that for all orthonormal matrices W,

min
W

trace
�
.I ��/2W>ƒ2W

� D
NX

iD1
�i
�
.I ��/2��n�iC1.ƒ2/; (8.37)

where the minimum is achieved by a permutation matrix W D …> such that the
diagonal entries of…ƒ2…> are in ascending order. Let the ith-largest entry of .I �
�/2 and ƒ2 be, respectively, .1 � ıi/

2 D �i
�
.I ��/2� and �2n�iC1 D �2i D �i.ƒ

2/.
Then the optimal value of (8.31) after minimizing W is

min
W
k�k� C 	

2
kƒW.I ��/k2F D

NX
iD1
jıij C 	

2

NX
iD1

�2i .1 � ıi/
2: (8.38)

To find the optimal �, we can solve for each ıi independently as ıi D
arg minı jıj C 	

2
�2i .1 � ı/2. The solution to this problem can be found in closed

form using the soft-thresholding operator, which gives

ıi D S 1

	�2i

.1/ D
8
<
:
1 � 1

	�2i
�i > 1=

p
	

0 �i
 1=p	
: (8.39)

Then ıi D P 1
p

	
.�n�iC1/, which can be compactly written as � D …P 1

p

	
.ƒ/…>.

Therefore,

…>�… D P 1
p

	
.ƒ/ D

�
I � 1

	
ƒ�21 0

0 0

	
; (8.40)

8.2 Low-Rank Subspace Clustering (LRSC) 305

where ƒ D diag.ƒ1;ƒ2/ is partitioned according to the sets I1 D fi W �i > 1=
p
	g

and I2 D fi W �i
 1=p	g.
To find the optimal W, notice from Lemma 2 of (Vidal and Favaro 2014) that the

equality trace
�
.I ��/2W>ƒ2W

� DPN
iD1.1� ıi/

2�2n�iC1 is achieved if and only if
there exists an orthonormal matrix UX such that

.I ��/2 D UX.I ��/2U>X and W>ƒ2W D UX…ƒ
2…>U>X : (8.41)

Since the SVD of a matrix is unique up to the sign of the singular vectors associated
with different singular values and up to a rotation and sign of the singular vectors
associated with repeated singular values, we conclude that UX D I up to the
aforementioned ambiguities of the SVD of .I � �/2. Likewise, we have that
W> D UX… up to the aforementioned ambiguities of the SVD of ƒ2. Now, if
ƒ2 has repeated singular values, then .I ��/2 has repeated eigenvalues at the same
locations. Therefore, W> D UX… D … up to a block-diagonal transformation,
where each block is an orthonormal matrix that corresponds to a repeated singular
value of �.

Nonetheless, even though W may not be unique, the optimal matrix C� is always
unique and equal to

C D UC�U>C D VW�W>V> D V…>�…V>

D �V1 V2
� �I � 1

	
ƒ�21 0

0 0

	 �
V1 V2

�> D V1.I � 1
	
ƒ�21 /V>1 :

(8.42)

Finally, the optimal C� is such that XC D U1.ƒ1 � 1
	
ƒ�11 /V>1 and X � XC D

U2ƒ2V>2 C 1
	
U1ƒ1V>1 . This shows (8.34), because

kCk� C 	

2
kX � XCk2F D

X
i2I1

�
1 � 1

	
��2i

C 	

2

0
@X

i2I1

��2i

	2
C
X
i2I2

�2i

1
A ;

as claimed. ut
Notice that the optimal solution for C is obtained by applying a nonlinear

thresholding P 1
p

	
to the singular values of X: the singular values smaller than 1p

	

are mapped to zero, while larger singular values are mapped closer to one. Notice
also that as 	 !1, we recover the solution for uncorrupted data.

In addition, notice that the optimal value of the convex program is a decompos-
able function of the singular values of X, as are the Frobenius norm kXk2F D

P
�2i

and nuclear norm kXk� D P
�i of X. However, unlike kXk2F or kXk�, ˆ	.X/ is

not a convex function of X, because ˆ	.�/ is quadratic near zero and saturates as �
increases, as illustrated in Figure 8.3. Interestingly, as 	 ! 1, ˆ	.X/ approaches
rank.X/. Therefore, we may view ˆ	.X/ as a nonconvex continuous relaxation of
rank.X/.

306 8 Sparse and Low-Rank Methods

λ

Φτ (λ)

1√
τ

0.5

1

τ
2λ2

1 − 1
2τ λ−2

Fig. 8.3 Plot of ˆ	.�/.

Overall, the main advantage of the error model in (8.28) is that the low-rank
representation C can be computed in closed form, similar to the case of uncorrupted
data. However, one disadvantage is that the solution depends on the parameter 	 ,
which needs to be tuned. Also, we are not aware of an extension of Theorem 8.9
to the case of noisy data. Therefore, we have no guarantees for the correctness of
clustering. Yet another shortcoming of the model in (8.28) is that it does not directly
model the noise in the original data, as discussed before.

Nonconvex Error Model
To find a low-rank representation C that is robust to noise under the model in (8.29),
we can penalize the sum of the squared errors kEk2F , as before, which leads to the
following program:

min
A;C;E

kCk� C 	

2
kEk2F s.t. X D AC E; A D AC; C> D C: (8.43)

However, notice that while the objective function is convex and most of the
constraints are linear, the self-expressiveness constraint A D AC is no longer linear,
and hence the program in (8.43) is no longer convex. Nonetheless, we can still solve
for C in closed form as stated in the following theorem.

Theorem 8.11 (LRSC with Nonconvex Error Model (Vidal and Favaro 2014)). Let
X D UƒV> be the SVD of X, where the diagonal entries of ƒ D diagf�ig are the
singular values of X in decreasing order. The optimal solution to the program (8.43)
is given by

A� D U1ƒ1V
>
1 ; C� D V1V

>
1 ; and E� D U2ƒ2V

>
2 ; (8.44)

8.2 Low-Rank Subspace Clustering (LRSC) 307

where U D ŒU1 U2�,ƒ D diag.ƒ1;ƒ2/, and V D ŒV1 V2� are partitioned according
to the sets I1 D fi W �i >

p
2=	g and I2 D fi W �i

p
2=	g. Moreover, the optimal

value of the program (8.31) is

kC�k� C 	

2
kE�k2F D jI1j C

	

2

X
i2I2

�2i : (8.45)

Proof. Thanks to Theorem 8.5, we can solve for C given A as C� D V1V>1 , and the
optimal value of the optimization problem with respect to C is rank.A/, i.e.,

rank.A/ D min
C
fkCk� W X D AC E; A D AC; C> D Cg: (8.46)

Substituting this back into (8.43), we arrive at

min
A;E

rank.A/C 	

2
kEk2F s.t. X D AC E: (8.47)

This last problem is exactly the PCA problem discussed in (2.91), whose optimal
solution can be obtained in closed form from the SVD of X D UƒV> as

A� D UHp 2
	

.ƒ/V> D U1ƒ1V
>
1 ; (8.48)

where H" is the hard thresholding operator defined in (2.90). Finally, since X D
U1ƒ1V>1 C U2ƒ2V>2 , we obtain the desired expression for E�. The optimal value
of the program (8.31) follows by direct substitution. ut

Notice that the optimal solution for .A;C/ is effectively obtained in two steps:

1. Obtain the clean data matrix A form the noisy data matrix X via hard singular
value thresholding with a threshold

p
2=	 .

2. Obtain the low-rank representation C from the clean data matrix A using the
result in Theorem 8.6 for uncorrupted data.

The combination of these two steps yields an optimal solution for C that is obtained
by applying a nonlinear thresholding to the singular values of X: the singular values
smaller than

p
2=	 are mapped to zero, while larger singular values are mapped to

one. Notice also that as 	 !1, we recover the solution for uncorrupted data.
In addition, notice the striking similarity between the two solutions for C

in (8.32) and (8.44) under the two noise models in (8.28) and (8.29), respectively.
Under the convex model in (8.28), we map the singular values of X above a threshold
of 1=

p
	 to a number below one, while under the nonconvex model in (8.29), we

map the singular values of X above a threshold of
p
2=	 to one.

Finally, notice that the solution C for the nonconvex model is self-expressive,
provided that the clean data matrix is equal to the true noise-free data matrix.
Therefore, the question of correctness of clustering reduces to a question of how
well the clean data matrix A can be recovered from the noisy data matrix X. We
leave this as an open question.

308 8 Sparse and Low-Rank Methods

8.2.3 LRSC with Robustness to Corruptions

Let us now consider the case in which the given data might contain some corrupted
entries or outliers. In this case, we would like to find a low-rank self-expressive
representation that is robust to such corruptions. As in the case of noisy data, we
will consider two models for the corruptions.

Convex Error Model
In this case, the self-expressive constraint is written as X D XCC E, where C is the
low-rank representation, and E is the matrix of corruptions or outliers. Therefore,
we can find a low-rank representation C that is robust to corrupted entries or outliers
by solving the following convex program:

min
C;E
kCk� C �kEkE s.t. X D XCC E; C D C>; (8.49)

where k � kE is a penalty on the error. In the case of sparse corrupted entries, E is a
sparse matrix; hence we can penalize the error with the `1 norm kEk1. In the case of
outliers, a few columns of E are corrupted; hence we can penalize this error with the
`2;1 norm kEk2;1. This latter model was originally proposed in (Liu et al. 2010)
under the name low-rank representation (LRR). However, this name is perhaps
too generic, since there are many low-rank representations that are not necessarily
designed for subspace clustering purposes, e.g., those discussed in Chapter 3. For
this reason, we adopt the name LRSC, which is more suggestive of the fact that a
low-rank representation is being used for subspace clustering. With this in mind,
a more appropriate name for the method in (Liu et al. 2010) might be LRSC with
robustness to outliers, or simply robust LRSC.

Now, returning to problem (8.49), notice that this problem is convex, but not
strictly convex. Hence, we do not know a priori whether it has a unique solution. In
the case of noisy data, where kEkE D kEk2F , we were able to show that the problem
admits a unique closed-form solution as in Theorem 8.10. However, in the case of
the `1 or `2;1 norm, we are not aware of a closed-form solution, and the issue of
whether (8.49) has a unique solution remains an open question in the literature.

Now, since the problem is convex, one can find a solution by applying the
ADMM algorithm in Appendix A. We leave this as an exercise to the reader.

Nonconvex Error Model
In this case, the self-expressiveness constraint is written as X D ACE and A D AC,
as in (8.29). Therefore, we can find a low-rank representation C that is robust to
corrupted entries or outliers by solving the following convex program:

min
A;C;E

kCk� C �kEkE s.t. X D AC E; A D AC; C> D C: (8.50)

Following the derivation in the proof of Theorem 8.11, we can use Theorem 8.5 to
first minimize with respect to C given A, which gives

8.2 Low-Rank Subspace Clustering (LRSC) 309

rank.A/ D min
C
fkCk� W X D AC E; A D AC; C> D Cg: (8.51)

Substituting this back into (8.43), we arrive at

min
A;E

rank.A/C �kEkE s.t. X D AC E: (8.52)

Notice that this problem is very much related to the RPCA problem discussed in
Chapter 3. In particular, when kEkE D kEk0, the problem in (8.52) reduces to
the problem in (3.58), and when kEkE D kEk0;1, the problem in (8.52) reduces
to the problem in (3.100). However, as discussed in Chapter 3, both problems are
NP-hard, and under certain conditions, we can resort to the following relaxation:

min
A;E
kAk� C �kEkE s.t. X D AC E; (8.53)

where k � kE is either the `1 or the `2;1 norm. Therefore, we may use the algorithms
discussed in Chapter 3 (e.g., Algorithm 3.8) to solve this problem.

Similar to the case of noisy data, in the above approach, an optimal solution for
.A;C/ is obtained in two steps:

1. Obtain the clean data matrix A from the noisy data matrix X by applying an
RPCA algorithm to X.

2. Obtain the low-rank representation C from the clean data matrix A using the
result in Theorem 8.6 for uncorrupted data.

The combination of these two steps is very appealing, since it allows us to
solve the nonconvex problem in (8.50) by solving the two convex problems
in (8.53) and (8.18), respectively. This is possible under the assumption that the
relaxation from (8.52) to (8.53) is valid. This requires the conditions established
in Theorem 3.66 or Theorem 3.15 to hold. Intuitively, such conditions require the
clean data matrix to be incoherent, the rank of the clean data matrix A to be small
enough, and the percentage of corruptions or outliers to be small enough. The main
problem is that those conditions were derived under the assumption that the columns
of A are drawn from a single low-dimensional subspace, while here the columns of A
are drawn from a union of low-dimensional subspaces. Therefore, we do not know
whether these conditions are directly applicable. In particular, one case in which
these conditions fail occurs when A is of high rank, which can happen even if each
of the subspaces is of low rank (e.g., 10 subspaces of dimension 10 in R100 could
produce a high-rank matrix A).

In summary, the main advantages of the LRSC algorithm are its computational
simplicity and the fact that one can find a low-rank representation in closed form
in the case of uncorrupted data or in the case of data corrupted by noise. On the
other hand, the main disadvantages of the LRSC algorithm are that it requires
the union of subspaces to be of low rank, that it is guaranteed to produce a
subspace-preserving representation under a strong assumption of uncorrupted data
drawn from independent subspaces, and that while it can be extended to corrupted

310 8 Sparse and Low-Rank Methods

data, there are very few theoretical results that justify its correctness under those
circumstances. In the next section, we present an alternative algorithm that addresses
many of these issues by searching for a sparse representation instead of a low-rank
representation.

8.3 Sparse Subspace Clustering (SSC)

In this section, we introduce the sparse subspace clustering (SSC) algorithm
for clustering a set of points drawn from a union of subspaces using sparse
representation techniques. The SSC algorithm addresses the subspace clustering
problem in two steps. In the first step, for each data point, we find a few other points
that belong to the same subspace. To do so, we solve a global sparse optimization
program whose solution encodes information about the memberships of data points
to the underlying subspace of each point. In the second step, we use this information
in a spectral clustering framework to infer the clustering of the data.

We first introduce SSC in the case of uncorrupted data and derive conditions
under which the sparse representation is subspace-preserving. One such condition
is that the subspaces be independent, which is the same condition required by
LRSC. However, we will show that SSC is able to recover a subspace-preserving
representation under much broader conditions, which do not require independence.
These conditions require the subspaces to be sufficiently separated and the data to
be well distributed inside the subspaces. Moreover, when the subspaces are drawn at
random and the data points are drawn at random inside the subspaces, we show that
SSC gives a subspace-preserving representation with overwhelming probability. We
then extend SSC to data corrupted by noise, outliers, or gross errors, and show that
similar theoretical conditions for the correctness of SSC can be derived. Overall,
we will see that SSC can be applied under broader conditions than LRSC, but the
drawback is that the solutions can no longer be computed in closed form.

8.3.1 SSC with Uncorrupted Data

The SSC algorithm aims to find a subspace-preserving representation of the data
such that the coefficient vector cj associated with each data point xj is sparse. In
other words, SSC tries to solve the following sparse representation problem:

min
cj
kcjk0 s.t. xj D Xcj; cjj D 0; j D 1; : : : ;N: (8.54)

Letting X D Œx1; : : : ; xN �, C D Œc1; : : : ; cN �, and kCk0;1 D P
j kcjk0, we see that

these N optimization problems are equivalent to the following problem:

min
C
kCk0;1 s.t. X D XC; diag.C/ D 0; (8.55)

8.3 Sparse Subspace Clustering (SSC) 311

which is a particular case of (8.3) with the regularizer chosen as kCkC D kCk0;1.
In what follows, we show that a sparse representation exists and can be computed

by solving the following relaxed convex optimization problem:

min
C
kCk1 s.t. X D XC; diag.C/ D 0; (8.56)

where we replace the number of nonzero entries in C by its `1 norm. We also derive
conditions on the subspaces and the data points under which the solution to the
above optimization problem is subspace-preserving.

Sparse Representation in a Union of Subspaces
As discussed in the introduction to this chapter, the main motivation for solving the
sparse optimization problem in (8.54) is that every point x 2 Si in a subspace of
dimension di can be expressed as a linear combination of di other points in Si, i.e.,
x D Xc with kck0 D di. Since we assume that di is much smaller than the dimension
of the ambient space D, the vector c will be sparse if di � Ni, where Ni is the
number of data points in subspace i. Now, even under the additional requirement that
the number of nonzero entries of c be equal to di, we notice that such a subspace-
preserving representation is still not unique, because every choice of di linearly
independent columns of Xi will generate every point in Si. Nonetheless, since our
goal is to cluster the data into multiple subspaces, it does not matter which subset
of di columns we select as long as the chosen di columns belong to Si. In other
words, all that matters for clustering purposes is that the sparse representation c be
subspace-preserving.

To find a subspace-preserving representation of a point x 2 [n
iD1Si, we need to

restrict the set of solutions of x D Xc by enforcing the desired subspace-preserving
pattern on the entries of c. However, since we do not know the subspace to which x
belongs, we do not know which sparsity pattern to enforce. That is why our approach
to finding a subspace-preserving c is to minimize its number of nonzero entries, i.e.,

min
c
kck0 s.t. x D Xc: (8.57)

This approach makes intuitive sense, because a subspace-preserving solution is also
sparse. However, a sparse solution need not be subspace-preserving. To see this, let
us consider the data points in Figure 8.1 and suppose we wish to express the point
x 2 S1 as a sparse linear combination of all the other data points. Clearly, the point
can be written as a linear combination of any two points in the plane. Hence, we can
construct a solution with two nonzero coefficients. However, notice that we may
also write x as a linear combination of one point in S2 and one point in S3. In this
case, the sparsity level is still two, but the nonzero coefficients correspond to points
in different subspaces. This motivates the following question:

Under what conditions on the subspaces and/or the data is a solution of (8.57) guaranteed
to be subspace-preserving?

312 8 Sparse and Low-Rank Methods

Now, even if we could guarantee that a sparse solution is always subspace-
preserving, the problem of finding a sparse solution to a linear system of equations
is in general NP-hard (Amaldi and Kann 1998). Since we are interested in efficiently
finding a subspace-preserving representation of x in the dictionary X, we consider
minimizing the tightest convex relaxation of the `0 seminorm, i.e.,

min
c
kck1 s.t. x D Xc: (8.58)

This problem can be solved efficiently using convex programming tools (Boyd and
Vandenberghe 2004; Kim et al. 2007; Boyd et al. 2010) and is known to prefer sparse
solutions (Donoho 2006; Candès and Tao 2005; Tibshirani 1996). However, the
standard conditions for sparse recovery1 discussed in Chapter 3 (e.g., incoherence of
X) may not apply here, due to the special structure of the dictionary X, whose atoms
are drawn from a union of low-dimensional subspaces. Moreover, the standard
conditions for sparse recovery assume that the solution for c is unique, which is not
the case here, as discussed before. Thus, while we cannot hope to find conditions
under which (8.57) and (8.58) are equivalent, we can still ask for conditions under
which the `1 solution is subspace-preserving. This motivates the following question:

Under what conditions on the subspaces and/or the data is a solution of (8.58) guaranteed
to be subspace-preserving?

In the remainder of this section, we study sufficient conditions on the subspaces
and/or the data points under which every solution of (8.57) or (8.58) is guaranteed to
be subspace-preserving. We investigate such conditions for two classes of subspace
arrangements: independent (Definition 8.7) and disjoint (Definition 8.15). We then
extend the results to the case of arbitrary subspace arrangements. Finally, we extend
the results to the case of random subspace arrangements, where both the subspaces
and the data are drawn uniformly at random.

Subspace-Preserving Property of SSC for a Union of Independent Subspaces
Let us first consider data points that lie in a union of independent subspaces, which
is the underlying model of many subspace clustering algorithms. The next theorem
shows that in the case of expressive data drawn from independent subspaces, the `0-
minimization program in (8.57), the `1-minimization program in (8.58), and more
generally the `q-minimization in (8.59) for q < 1 always recover a subspace-
preserving representation of the data points.

Theorem 8.12 ((Elhamifar and Vidal 2013)). Consider a collection of N distinct
data points drawn from n independent subspaces fSigniD1 of dimensions fdigniD1. Let
Xi denote Ni data points in Si, where rank.Xi/ D di, and let X�i denote data points
in all subspaces except Si. Then, for each q <1, for every Si, and for every nonzero
x in Si, the `q-minimization program

1That is, for the equivalence between (8.57) and (8.58).

8.3 Sparse Subspace Clustering (SSC) 313

�
c�C
c��

	
D arg min

����
�

cC
c�

	����
q

s.t. x D ŒXi X�i�

�
cC
c�

	
; (8.59)

recovers a subspace-preserving representation, i.e., c�C ¤ 0 and c�� D 0.

Proof. It follows from (8.59) that

x � Xic�C D X�ic��: (8.60)

Notice that the left-hand side of this equation corresponds to a point in the subspace
Si, while the right-hand side corresponds to a point in the sum of the other subspacesL

j¤i Sj. Since the subspaces fSigniD1 are assumed to be independent, so are the two
subspaces Si and

L
j¤i Sj; hence they intersect only at the origin. Therefore, x D

Xic�C and X�ic�� D 0, and so
�
c�>C 0>

�>
is a feasible solution of the optimization

problem in (8.59). For the sake of contradiction assume that c�� ¤ 0. We have

����
�

c�C
0

	����
q

<

����
�

c�C
c��

	����
q

; (8.61)

for all q <1, which contradicts the optimality of
�
c�>C c�>�

�>
. Therefore, we must

have c�C ¤ 0 and c�� D 0, whereby we obtain the desired result. ut
Interestingly, the `q-solution is subspace-preserving for every q < 1, not just

for q D 0 or q D 1. Moreover, the `q-solution is subspace-preserving without any
assumption on the distribution of the data points within each subspace, other than
rank.Xi/ D di. However, this comes at the price of having a more restrictive model
for the union of subspaces, which must be composed of independent subspaces.
Now, while the `q-solution is subspace-preserving for every q <1, notice that not
all norms will produce a solution where the number of nonzero coefficients is equal
to the dimension of the subspace to which the point x belongs. For example, q D 2
promotes a solution that typically has many nonzero elements corresponding to a
minimum-energy representation of the given vector. Overall, by decreasing the value
of q from infinity toward zero, we expect the sparsity of the solution to increase, as
illustrated in Figure 8.4. The extreme case of q D 0 corresponds to finding the
sparsest representation of the given point, since the `0 seminorm counts the number
of nonzero elements of the solution.

The following two lemmas show that for a generic point x 2 [n
iD1Si, the solutions

of the `0 and `1 minimization problems are each such that the number of nonzero
coefficients is less than or equal to the dimension of the subspace to which the point
x belongs. That is, if x 2 Si, then the solutions are di-sparse.

314 8 Sparse and Low-Rank Methods

S1

S2

S3

•
xi• •• •• • •• • •

••
•••

•
•

••
•••

••
•

•

•••
•

0 5 10 15 20 25 30

−0.05

0

0.05

0.1
q = ∞

0 5 10 15 20 25 30

−0.1

−0.05

0

0.05

0.1

0.15
q = 2

0 5 10 15 20 25 30

−0.2

0

0.2

0.4

q = 1

Fig. 8.4 Three subspaces in R
3 with 10 data points in each subspace, ordered such that the fist and

the last 10 points belong to S1 and S3, respectively. The solution of the `q-minimization program
minci kcikq s.t. xi D Xci and cii D 0, where xi lies in S1 and q D 1; 2;1, is shown. Note that as
the value of q decreases, the sparsity of the solution increases. For q D 1, the solution corresponds
to choosing two other points lying in S1.

Lemma 8.13. Let x 2 Si, where dim.Si/ D di. Under the assumptions of
Theorem 8.12, every solution of the `0-minimization program in (8.57) is di-sparse.

Proof. Since x 2 Si, there exist ci 2 Rdi such that x D Xici, where Xi is a rank-di

matrix whose di columns are data points in Si. Let the columns of X�i denote the
remaining data points and rewrite the `0-minimization program in (8.57) as

min

����
�

cC
c�

	����
0

s.t. x D ŒXi X�i�

�
cC
c�

	
: (8.62)

Since
�
c>i 0>

�>
is a feasible solution to the above optimization program with

at most di nonzero entries, we conclude that every optimal solution to the `0-
minimization program in (8.57) must be di-sparse. ut
Lemma 8.14. Let x 2 Si, where dim.Si/ D di. Under the assumptions of
Theorem 8.12, every solution of the `1-minimization program in (8.58) is di-sparse.

Proof. Recall the relationship between the `1-norm of the optimal solution of (8.58)
and the symmetrized convex hull of the columns of X (Donoho 2005):

P.X/ , conv.˙x1;˙x2; � � � ;˙xN/: (8.63)

8.3 Sparse Subspace Clustering (SSC) 315

More precisely, the `1-norm of the optimal solution of (8.58) corresponds to the
smallest ˛ > 0 such that the scaled polytope ˛P reaches x (Donoho 2005). Since
each face of this polytope corresponds to the convex hull of at most di data points
(up to sign), the optimal c will have at most di nonzero entries. ut

The preceding two lemmas guarantee that the solution to either the `0 or `1
optimization problem will have at most di nonzero entries. However, they do not
guarantee that it will have exactly di nonzero entries. While it is possible for x to
be generated by fewer than di data points, e.g., if x is one of the data points or lies
in one of the faces of the polytope of dimension less than di, such cases represent
a zero-measure set in [n

iD1Si. Thus, the generic situation will be that the number
of nonzero coefficients will be equal to di. Of course, we prefer to use the convex
optimization problem, which can be solved more efficiently.

In summary, we have shown that when the subspaces are independent and the
data set is expressive, the solution to the `1-minimization program in (8.58) for a
generic point x 2 [n

iD1Si is such that the number of nonzero coefficients is equal
to the dimension of the subspace to which x belongs, and the nonzero coefficients
correspond to data points in the same subspace as x. This theoretical result will be
the basis for the SSC algorithm, to be discussed at the end of this subsection.

Subspace-Preserving Property of SSC for a Union of Disjoint Subspaces
We consider now the more general class of disjoint subspaces and investigate
conditions under which the optimization program in (8.58) recovers a subspace-
preserving representation of each data point.

Definition 8.15. A collection of subspaces fSigniD1 is said to be disjoint if every pair
of subspaces intersect only at the origin. In other words, for every pair of subspaces,
we have dim.Si ˚ Sj/ D dim.Si/C dim.Sj/.

Example 8.16 As an example, both subspace arrangements shown in Figure 8.2
are disjoint, since each pair of subspaces intersect at the origin.

Notice that based on the above definitions, the notion of disjointness is weaker
than the notion of independence, because an independent subspace model is also
disjoint, but the converse is not necessarily true. As a simple example, note that no
n 	 3 distinct lines in R2 are independent because the dimension of their sum is
2, which is smaller than the sum of their dimensions n. However, they are disjoint,
because every pair of distinct lines intersect only at the origin.2

In what follows, we show that when the smallest angle between any two
subspaces is greater than a bound determined by the distribution of the data points
across all the subspaces, a subspace-preserving representation can be found using `1
minimization. The smallest principal angle is defined as follows (see Definition 7.1
for the definition of all principal angles).

2Notice that both independent and disjoint subspace arrangements are transversal, according to the
definition in Appendix C.

316 8 Sparse and Low-Rank Methods

Definition 8.17. The smallest principal angle between two subspaces Si and Sj,
denoted by �ij, is defined as

cos.�ij/ , max
v2Si

max
z2Sj

fhv; zi W kvk2 D kzk2 D 1g: (8.64)

Note that two disjoint subspaces intersect only at the origin; hence their smallest
principal angle is greater than zero, and cos.�ij/ 2 Œ0; 1/.

The next theorem shows that in the case of expressive data drawn from disjoint
subspaces, the `1-minimization program in (8.58) always recovers a subspace-
preserving representation of the data points.

Theorem 8.18 (SSC for Disjoint Subspaces (Elhamifar and Vidal 2013)). Con-
sider a collection of data points drawn from n disjoint subspaces fSigniD1 of
dimensions fdigniD1. Let Wi be the set of all full-rank submatrices QXi 2 RD�di of
Xi, where rank.Xi/ D di. If the condition

p
di max

j¤i
cos.�ij/ <

1

kX�ik1;2 max
QXi2Wi

�di. QXi/ (8.65)

holds, then for every nonzero x in Si, the `1-minimization program

�
c�C
c��

	
D arg min

����
�

cC
c�

	����
1

s.t. x D �Xi X�i

� �cC
c�

	
; (8.66)

recovers a subspace-preserving solution, i.e., c�C ¤ 0 and c�� D 0.3

The condition in (8.65) has a very intuitive interpretation.

• The left-hand side depends exclusively on the geometry of the subspaces
and their relative arrangements and not on the data points sampled from the
subspaces. One factor is the dimension of the subspaces, which is constrained
to be sufficiently small. The other factor is the cosine of the smallest principal
angle between Si and any other subspace, which is also constrained to be small
enough; hence the smallest angle between subspaces should be large enough.

• The right-hand side depends exclusively on the distribution of the data points
sampled from the subspaces and not on the geometry of the subspaces. The
numerator depends on the distribution of the data in Si. Specifically, it depends
on �di.

QXi/, which is the dith singular value of QXi. This number is zero if the data
are degenerate, i.e., rank.Xi/ < di. Now, since QXi is a full-rank submatrix of
Xi and the maximum over all possible choices is taken, we simply need di data
points in Si to be sufficiently well distributed so that �di.

QXi/ is large enough. The
denominator depends on the distribution of the data points in other subspaces,

3kY�ik1;2 is the maximum `2-norm of the columns of Y�i.

8.3 Sparse Subspace Clustering (SSC) 317

especially their `2 norm. Thus, the value of the right-hand side can be rather
high when the norms of the data points are oddly distributed, e.g., when the
maximum norm of data points in Si is much smaller than the maximum norm of
data points in all other subspaces. Since the segmentation of data in a union of
linear subspaces does not change when data points are scaled, we can apply the
`1 minimization program after normalizing the data points to have unit Euclidean
norms. In this case, the sufficient condition in (8.65) reduces to

p
di max

j¤i
cos.�ij/ < max

QXi2Wi

�di. QXi/; (8.67)

and the right-hand side measures how well distributed the data are inside Si.

In summary, the condition in (8.65) requires the subspaces to be sufficiently well
separated and the data to be sufficiently well distributed inside the subspaces. We
illustrate this result with the following example.

Example 8.19. Consider the example of three subspaces in R3, the plane and two
lines shown in Figure 8.5, where the data points in the subspaces are normalized to
have unit Euclidean norm. Assume that x 2 S1 also lives in the sum of S2 and S3.
Note that x can be written as a linear combination of x1 and x2 as

x D c1x1 C c2x2; c1 D sin.� � �0/
sin.�/

; c2 D sin.�0/
sin.�/

: (8.68)

When � becomes small, hence x1 and x2 get close to a line in S1, and x is along the
direction orthogonal to x1 and x2, for instance, �0 D �=2C �, then we have

c1 D �1
sin.�/

; c2 � 1

sin.�/
H) jc1j C jc2j � 2

sin.�/
: (8.69)

S1

•x
•x1 •x2

S2

•x3
S3

•
x4

•x1

•x2

•x

ν

ν′

S1

•x
•
x3

S2

•
x4

S3

θ13

θ12

Fig. 8.5 Left: Three subspaces in R3. Middle: The `1 norm of reconstructing x from fx1; x2g 2 S1
increases as x1 and x2 get close together and x gets close to the orthogonal direction to x1 and
x2. Right: The `1 norm of reconstructing x from fx3; x4g decreases as the smallest principal angle
between S1 and the other two subspaces, S2 and S3, increases.

318 8 Sparse and Low-Rank Methods

It is easy to verify that for QX1 D Œx1 x2�, we have �2. QX1/ D sin.�/. Thus, when �
decreases, i.e., when the distribution of the points in S1 becomes nearly degenerate,
QX1 decreases, and the `1 norm of the reconstruction of x in terms of points from

the same subspace S1 increases. On the other hand, x can also be written as a linear
combination of x3 and x4 from S2 and S3, respectively, as

x D c3x3 C c4x4; c3 D sin.�13/

sin.�12 C �13/ ; c4 D sin.�12/

sin.�12 C �13/ ; (8.70)

where �12 and �13 indicate the principal angles for .S1; S2/ and .S1; S3/, respectively.
Assuming �12 D �13 D � , we have

c3 D c4 D 1

2 cos.�/
H) jc3j C jc4j D 1

cos.�/
; (8.71)

which decreases to 1 as � decreases to 0.

Example 8.20. In this example, we present simulation results that illustrate the
theoretical conditions under which a sparse representation is subspace-preserving.
We consider three disjoint subspaces fSig3iD1 of equal dimension d D 4 embedded
in an ambient space of dimension D D 50. To ensure that the subspaces are not
independent, we generate subspace bases fUi 2 RD�dg3iD1 such that each subspace
lies in the sum of the other two subspaces, i.e., rank.

�
U1 U2 U3

�
/ D 2d, and such

that the smallest principal angles �12 and �23 are equal to � 2 Œ6; 60�. Thus, we can
verify the effect of the smallest principal angle in the subspace-preserving property
by changing the value of � . To investigate the effect of the data distribution on
the subspace-preserving property, we randomly generate the same number of data
points Ng 2 Œd C 1; 32d� in each subspace. Typically, as the number of data points
in a subspace increases, the probability of the data being close to a degenerate
subspace decreases.4 For each pair .�;Ng/, we generate a set of points on the three
d-dimensional subspaces. For each point, we solve the `1-minimization program
in (8.80). Let wjk denote the ground truth affinity, i.e., wjk D 1 if points i and j are in
the same subspace, and wjk D 0 otherwise. We evaluate the quality of the matrix C
by measuring the subspace-preserving property error

spp error D 1 �
P

jk wjkjcjkjP
jk jcjkj D 1 �

kW ı Ck1
kCk1 ; (8.72)

where each term inside the sum indicates the fraction of the `1-norm that comes
from points in the correct subspace. The subspace-preserving property error is zero
when xj chooses points in its own subspace only, while the error is equal to one

4To remove the effect of different scalings of data points, i.e., to consider only the effect of the
principal angle and number of points, we normalize the data points.

8.3 Sparse Subspace Clustering (SSC) 319

Ng

θ
(d

eg
re

e)

Subspace−Sparse Recovery Error

12 25 38 51 64 77 89 102 115

57

51

45

40

34

29

23

17

12

6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Fig. 8.6 Subspace-preserving property error for three disjoint subspaces. Increasing the number
of points or smallest principal angle decreases the errors.

when xj chooses points from other subspaces. The average results for 100 trials are
shown in Figure 8.6. Note that when either � or Ng is small, the error is large, as
predicted by the theoretical analysis. On the other hand, as � or Ng increases, the
error decreases, and for .�;Ng/ sufficiently large, we obtain zero error.

Subspace-Preserving Property of SSC for a Union of Arbitrary Subspaces
We will now consider a more general class of subspaces, which need not be
independent or disjoint, and investigate conditions under which the optimization
program in (8.58) recovers a subspace-preserving representation of each data point.
Interestingly, the conditions we will present are weaker than the one in (8.67), which
guarantees that we can recover a subspace-preserving representation for any point
in a union of disjoint subspaces. In practice, since our goal is to cluster a given set
of data points, we need to guarantee a subspace-preserving representation only for
the given data points. Therefore, rather than computing the smallest principal angle
from the dot products between an arbitrary point in one subspace and an arbitrary
point in other subspaces as in (8.64), we can restrict our attention to a few dot
products between the so-called dual directions of a data point in one subspace and
the data points in other subspaces. Before defining dual directions and deriving the
new conditions, we will need some additional notation.

As before, let X D Œx1; : : : ; xN � D ŒX1; : : : ;Xn��> 2 RD�N denote the data
matrix, where Xi 2 RD�Ni denotes the data in the ith subspace,5 and let Xi�j be
the matrix Xi with the jth column removed. We will assume that each data point is
normalized to be of unit norm, so that kxjk2 D 1 for all j D 1; : : : ;N. Let Xi D UiYi

be a factorization of Xi such that Ui 2 R
D�di is an orthonormal basis of the subspace,

while Yi D Œyi
1; : : : ; y

i
Ni
� 2 R

di�Ni is a matrix of coordinates whose columns are of

5So far, we have used subscripts to indicate both data points and subspaces. In this part, to avoid
confusion between the indices for data points and the indices for subspaces, we will use subscripts
to indicate data points and superscripts to indicate subspaces.

320 8 Sparse and Low-Rank Methods

unit norm. Let P.X/ D conv.˙x1;˙x2; : : : ;˙xN/ be the symmetrized convex hull
of the columns of X, and let P i�j D P.Xi�j/.

Definition 8.21 (Dual Points). Consider a vector y 2 Rd and a matrix Y 2 Rd�N,
and let ƒ� be the set of optimal solutions to

max
�2Rd
hy;�i s.t. kY>�k1
 1: (8.73)

The dual point �.y;Y/ is defined as a point in ƒ� with minimum Euclidean norm.

Definition 8.22 (Dual Directions). The dual direction vi
j 2 Si corresponding to the

dual point �i
j D �.yi

j;Y
i�j/ is defined as

vi
j D Ui

�i
j

k�i
jk2
; i D 1; : : : ; n; j D 1; : : : ;Ni: (8.74)

Notice that the dual point �i
j 2 Rd depends on yi

j 2 Rd, which in turn depends on
xi

j 2 Si. Hence, the dual direction vi
j 2 Si effectively depends on xi

j. Thus, we will
also refer to vi

j as the dual direction corresponding to the point xi
j 2 Si.

Definition 8.23 (Subspace Incoherence). The subspace incoherence of the points
in the ith subspace with respect to the points in all other subspaces is defined by

�i D max
kWxk 62Si

kVi>xkk1 D max
jWxj2Si

max
kWxk 62Si

jhvi
j; xkij; (8.75)

where Vi D Œvi
1; : : : ; v

i
Ni
� 2 RD�Ni is the matrix of dual directions.

Observe that the optimization problem in (8.73) is the dual problem to
minc kck1 s.t. y D Yc (see Exercise 8.4). Observe also that if both x and the
columns of X belong to a subspace of dimension d, then there exist y and Y such
that x D Uy and X D UY, where U is an orthonormal basis for the subspace.
Then U�.y;Y/ is equal to the dual point �.x;X/ associated to the primal problem
minc kck1 s.t. x D Xc. Therefore, the dual direction vi

j is simply an optimal
solution to the dual of the problem minc kck1 s.t. xi

j D Xi�jc, which expresses the
jth point in the ith subspace as a linear combination of the remaining points in the
same subspace.

Definition 8.24 (Inradius). The inradius of a convex body P , denoted by r.P/, is
defined as the radius of the largest Euclidean ball inscribed in P .

Theorem 8.25 (SSC for Arbitrary Subspaces (Soltanolkotabi and Candès 2013)).
Consider a collection of data points fxjgNjD1 drawn from n subspaces fSigniD1 of
dimensions fdigniD1. Assume that each data point is normalized so that kxjk2 D 1. If
the condition

8.3 Sparse Subspace Clustering (SSC) 321

max
jWxj2Si

max
kWxk 62Si

jhvi
j; xkij < min

jWxj2Si
r.P i�j/ (8.76)

holds, then the `1-minimization program in (8.56) recovers a subspace-preserving
representation C.

Notice that the condition in (8.76) is weaker than that in (8.67), because

max
jWxj2Si

max
kWxk 62Si

jhvi
j; xkij
 max

v2Si

max
j¤i

max
z2Sj

fhv; zi W kvk2 D kzk2 D 1g

D max
j¤i

cos.�ij/; (8.77)

and

1p
di

max
QXi2Wi

�di.
QXi/ < min

jWxj2Si
r.P i�j/; (8.78)

where the last inequality follows from Exercise 8.6.

Subspace-Preserving Property of SSC for a Union of Random Subspaces
So far, we have considered models in which the subspaces are fixed and the data
points inside the subspaces are fixed. As it turns out, if we allow the subspaces to
be drawn uniformly at random and the data points to be drawn uniformly at random
inside the subspaces, the `1-minimization program succeeds in finding a subspace-
preserving representation as long as the dimensions of the subspaces are within at
most a logarithmic factor from the ambient dimension. More specifically, we have
the following result.

Theorem 8.26 (SSC for Random Subspaces (Soltanolkotabi and Candès 2013)).
Assume that there are n subspaces, each of dimension d, chosen independently
and uniformly at random. Furthermore, suppose there are �d C 1 points chosen
independently and uniformly at random on each subspace, so that the total number
of points is N D n.�d C 1/. Assume further that the points are normalized to be of
unit norm. Then there exists a constant c.�/ > 1 such that the solution of (8.58) is
subspace-preserving with probability at least 1 � 2=N � Ne�

p
�d if

d <
c2.�/ log.�/

12 log.N/
D: (8.79)

Solution to the Sparse Minimization Problem
So far, we have discussed theoretical conditions under which a sparse representation
is subspace-preserving. Here, we concentrate on the problem of finding such a
sparse representation and using it to cluster the data.

The first step of the SSC algorithm is to express each data point as a sparse linear
combination of all other data points. More specifically, for each data point xj, the
following `1-minimization program is solved:

min
cj
kcjk1 s.t. xj D Xcj and cjj D 0: (8.80)

322 8 Sparse and Low-Rank Methods

We first notice that this program can be reduced to that in (8.58) by removing the
jth column of X and the jth entry of cj from the optimization. Thus, we can find
the sparse representations of all data points by solving a standard `1-minimization
program for each point independently. However, notice that such an optimization
problem is convex, but not smooth, due to the `1 norm. Therefore, conventional
interior-point or subgradient methods are relatively slow. This has motivated an
increasing interest in efficiently solving `1 minimization programs, which has led to
numerous efficient algorithms, such as homotopy continuation, proximal-gradient,
gradient projection, iterative thresholding and shrinkage. We refer the reader to
(Boyd and Vandenberghe 2004; Kim et al. 2007; Boyd et al. 2010) for details.

While efficient methods for solving an `1-minimization program exist, such
methods may not be the most appropriate for solving the N programs in (8.80).
This is because the N programs use almost the same dictionary, and hence they
share some common structure. This inspired the work of (Elhamifar and Vidal
2013), which proposes to solve all N optimization programs simultaneously. More
specifically, let C ,

�
c1; : : : ; cN

� 2 RN�N be the matrix whose jth column cj

corresponds to the sparse representation of xj, and let diag.C/ 2 RN be the vector
containing the diagonal elements of C. We can rewrite the optimization program
in (8.80) for all data points j D 1; : : : ;N in matrix form as in (8.56), i.e.,

min
C
kCk1 s.t. X D XC; diag.C/ D 0; (8.81)

where min kCk1 D PN
jD1 kcjk1 D PN

i;jD1 jcijj is the `1-norm of C. While many
convex optimization algorithms can be used to solve this problem, we use the
alternating direction method of multipliers (ADMM), described in Appendix A.

We begin by introducing an auxiliary matrix variable Z as follows:

min
C;Z
kCk1 s.t. X D XZ; Z D C � diag.C/: (8.82)

The augmented Lagrangian of the above optimization problem is given by

L .C;Z; ƒ1;ƒ2/ D kCk1 C hƒ1;X � XZi C hƒ2;Z � .C � diag.C//i
C�1
2
kX � XZk2F C

�2

2
kZ � .C � diag.C//k2F (8.83)

D kCk1 C �1

2

���X � XZ C ƒ1

�1

���
2

F
C �2

2

���Z � .C � diag.C//C ƒ2

�2

���
2

F
C �;

whereƒ1 2 RD�N andƒ2 2 RN�N are matrices of Lagrange multipliers,�1; �2 > 0
are parameters, and � is a term that does not depend on C or Z.

8.3 Sparse Subspace Clustering (SSC) 323

Algorithm 8.2 (Matrix `1 Minimization by ADMM)
Input: Data matrix X
1: initialize: C0 D 0; ƒ0

1 D 0; ƒ0
2 D 0; �1 > 0; �2 > 0.

2: while not converged do

3: compute ZkC1 D .�1X>XC �2I/�1

�1X>

�
XC ƒk

1

�1

�C �2
�
Ck � ƒk

2

�2

��
;

4: compute CkC1 D S 1
�2

ZkC1 C ƒk

2

�2

�
;

5: compute CkC1 D CkC1 � diag.CkC1/;
6: compute ƒkC1

1 D ƒk
1 C �1.X � XZkC1/;

7: compute ƒkC1
2 D ƒk

2 C �2.ZkC1 � CkC1/;
8: end while

Output: Sparse representation C.

A generic Lagrange multiplier algorithm (Bertsekas 1999) would solve the
problem maxƒ1;ƒ2 minC;Z L .C;Z; ƒ1;ƒ2/ by iterating the following two steps:

.Ck;Zk/ D arg min
C;Z

L
�
C;Z; ƒk�1

1 ;ƒk�1
2

�
;

.ƒk
1;ƒ

k
2/ D .ƒk�1

1 ;ƒk�1
2 /C ��1.X � XZk/; �2.Z

k � Ck/
�
:

(8.84)

For our problem, we can avoid having to solve a sequence of convex programs by
recognizing that minC L .C;Z; ƒ1;ƒ2/ and minZ L .C;Z; ƒ1;ƒ2/ both have very
simple and efficient solutions. Thus, a more practical strategy is to first minimize L
with respect to Z (fixing C), then minimize L with respect to C (fixing Z), and then
finally update the Lagrange multiplier matrices ƒ1 and ƒ2 based on the residuals
X�XZ and Z�C, a strategy that is summarized as Algorithm 8.2 below. The optimal
Z given C, ƒ1, and ƒ2 is given by

Z D .�1X>X C �2I/�1

�1X

>�X C ƒ1

�1

�C �2
�
C � ƒ2

�2

��
: (8.85)

To compute the optimal C D Œcij� given Z D Œzij� and ƒ2 D Œ�ij�, we need to
minimize

X
i

jciij C
X
i¤j

jcijj C 1

�2

�
cij � .zij C �ij

�2
/
�2
; (8.86)

which gives

cij D
8<
:
0 if i D j;

S 1
�2

�
zij C �ij

�2

�
otherwise;

(8.87)

324 8 Sparse and Low-Rank Methods

where S" is the shrinkage-thresholding operator defined in (2.96). The above
solution for C can be written in matrix form as

C D QC � diag. QC/; where QC D S 1
�2

Z C ƒ2

�2

�
; (8.88)

and S" is extended to matrices by applying it to each element. Given the new C
and Z, the update of the Lagrange multipliers is done as described before. The
convergence of this kind of algorithm has been well studied and established (see,
e.g., (Lions and Mercier 1979; Kontogiorgis and Meyer 1989) and the references
therein, as well as discussion in (Lin et al. 2011; Yuan and Yang 2009)).

Sparse Subspace Clustering Affinity
After solving the optimization program in (8.81), we obtain a sparse representation
for each data point whose nonzero elements ideally correspond to points from the
same subspace. The next step of the algorithm is to infer the segmentation of the data
into different subspaces using the sparse coefficients. To address this problem, we
use the spectral clustering algorithm described in Chapter 4. This algorithm needs
a symmetric nonnegative affinity matrix as an input. While a subspace-preserving
matrix C does have the property that cjk D 0 when points j and k are in different
subspaces, the matrix C is not necessarily symmetric or nonnegative. However, we
can easily build a nonnegative and symmetric affinity as follows:

W D jCj C jCj>: (8.89)

Summary of the SSC Algorithm with Uncorrupted Data
In summary, the SSC algorithm for data points that lie perfectly in a union of linear
subspaces proceeds as shown in Algorithm 8.3.

8.3.2 SSC with Robustness to Outliers

In the previous subsection, we considered the sparse subspace clustering problem
under the assumption that the N data points are drawn perfectly from a union of low-
dimensional subspaces. Here, we consider the case that Nd data points are drawn
perfectly from a union of subspaces while N0 data points are outliers to the union of
subspaces. That is, we are given a corrupted dictionary X composed of N D NdCN0

Algorithm 8.3 (Sparse Subspace Clustering for Uncorrupted Data)
Input: A set of points fxjgNjD1 lying in a union of n linear subspaces fSigniD1.
1: Solve the sparse optimization program (8.81) to obtain a matrix C 2 R

N�N .
2: Compute an affinity matrix W as W D jCj C jCj>.
3: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: Segmentation of the data into n groups: X1;X2; : : : ;Xn.

8.3 Sparse Subspace Clustering (SSC) 325

data points. As usual, for the inliers we do not know which points belong to which
subspace. Moreover, we do not know which points are inliers and which points are
outliers. Therefore, given a point x, our first goal is to determine whether the point
is an inlier or an outlier. Then, if it is an inlier, our goal is to find other points in
the data set that are in the same subspace as x, i.e., to find a subspace-preserving
representation of x in terms of the dictionary X as before.

The work of (Soltanolkotabi and Candès 2013) proposes a very simple approach
to answer these questions. The main idea is to solve the `1-minimization program
in (8.58) as usual. Then, if the point x is an inlier, we expect the solution c to be
sparse, while if the point is an outlier, we expect the solution to be less sparse. The
point x is declared to be an outlier if the `1 norm of its representation c is above a
threshold. More specifically, a point is declared to be an outlier if

kck1 > �.�/
p

D; (8.90)

where � D N�1
D is the density of the data points, and � is a threshold ratio function

�.�/ D
8<
:

q
2
�

1p
�

1
 �
 eq
2
�e

1p
log �

� 	 e:
(8.91)

The following result shows that this very simple procedure can reliably detect
all outliers without making any assumption about the orientation of the subspaces
or the distribution of the points within each subspace. Furthermore, if the points on
each subspace are uniformly distributed, this scheme will not wrongfully detect a
subspace point as an outlier.

Theorem 8.27 (SSC with Outliers (Soltanolkotabi and Candès 2013)). Assume
that there are Nd points to be clustered together with N0 outliers sampled uniformly
at random on the .D � 1/-dimensional unit sphere (N D N0 C Nd). The scheme
in (8.90) detects all of the outliers with high probability as long as

N0 <
1

D
ec
p

D � Nd; (8.92)

where c is a numerical constant. Furthermore, suppose the subspaces are d-
dimensional and of arbitrary orientation, and that each contains �d C 1 points
sampled independently and uniformly at random. Then with high probability, the
scheme in (8.90) does not detect any subspace point as an outlier, provided that

N0 < D�c2D=d � Nd; (8.93)

where c2 D c2.�/=.2e2�/.

Since this theorem guarantees that we can perfectly detect both the inliers and
the outliers with overwhelming probability, we can perform subspace clustering

326 8 Sparse and Low-Rank Methods

Algorithm 8.4 (Sparse Subspace Clustering with Outliers)
Input: A set of points fxjgNjD1 lying in a union of n linear subspaces fSigniD1.
1: Solve the sparse optimization program (8.81) to obtain a matrix C 2 RN�N .
2: For each j D 1; : : : ;N declare xj to be an outlier iff kcjk1 > �.�/

p
D. Let X0 2 RD�N0 be the

matrix of outliers.
3: Solve the sparse optimization program (8.81) for the remaining Nd points to obtain a matrix

C 2 RNd�Nd .
4: Compute an affinity matrix W as W D jCj C jCj>.
5: Cluster the data into n groups X1;X2; : : : ;Xn by applying Algorithm 4.7 to W.

Output: Segmentation of the data into nC 1 groups: X0;X1;X2; : : : ;Xn.

by applying the SSC algorithm for uncorrupted data to the inliers. In summary,
the SSC algorithm for data points contaminated by outliers proceeds as shown in
Algorithm 8.4.

8.3.3 SSC with Robustness to Noise

Let us now consider the sparse subspace clustering problem under the assumption
that the data points are contaminated by noise or small errors. Following the model
in (8.28), we model the errors directly in the self-expressiveness constraint as

X D XCC E; (8.94)

where E is the matrix of errors. Under this model, we can find a sparse representation
C that is robust to noise or small errors by penalizing the sum of squared errors
kEk2F . This leads to the following program:

min
C

kCk1 C 	

2
kX � XCk2F s.t. diag.C/ D 0; (8.95)

where 	 > 0 is a parameter. Notice that this problem is a particular case of (8.4)
with kCkC D kCk1 and kEkE D 	

2
kEk2F .

Subspace-Preserving Property of SSC for Deterministic Noise
As before, we are interested in understanding the conditions under which the
solution to the above program is subspace-preserving, i.e., cjk D 0 when points
j and k are in different subspaces. However, notice that there is an important
difference between solving the SSC problem for noisy data in (8.95) and solving
the SSC problem for uncorrupted data in (8.56). In the uncorrupted case, the
self-expressiveness constraint X D XC implies that cj ¤ 0 whenever xj ¤ 0.
This, together with the subspace-preserving property, implies that point xj will be
connected to another point in its own subspace. However, this need not be the case
for problem (8.95), because the optimal solution could be C D 0 when 	 is small

8.3 Sparse Subspace Clustering (SSC) 327

enough. To guarantee that each column of C is different from zero, the parameter 	
needs to exceed a certain threshold, as stated in the following lemma.

Lemma 8.28. Consider the optimization program (8.95). If

	
 	min;2 ,
1

min
jD1;:::;N max

k¤j
jx>j xkj

; (8.96)

then there exists at least one data point xj for which the optimal solution is cj D 0.

Proof. Consider the optimization program in (8.80). If cj D 0 is an optimal solution,
then the zero vector must be contained in the subgradient of the objective function
kcjk1 C 	

2
kxj �Pk¤j xkcjkk22 at cj D 0. That is, 0 2 wj � 	x>j xk for all k ¤ j,

where jwjj
 1. This implies that 	 jx>j xkj
 1 for all k ¤ j. Therefore, in order for

cj D 0 to be an optimal solution, we need 	
 1=maxk¤j jx>j xkj. Consider now the
optimization program (8.95). It follows that in order for one of the columns of C to
be zero, we need 	
 1=minjD1;:::;N maxk¤j jx>j xkj. ut

It follows that the conditions for correctness of clustering must depend not only
on the separation between subspaces and the distribution of the data inside the
subspaces (as in the case of uncorrupted data), but also on properly choosing 	 . In
addition, we expect that the separation between subspaces and/or the spread of the
data points inside each subspace should increase as the amount of noise increases.
Therefore, we expect that sufficient conditions for the correctness of clustering
are that the subspaces be sufficiently separated, the data be well distributed in the
subspaces, the noise be small enough, and the parameter 	 be properly chosen.

Before stating these conditions more precisely, we need to extend the notions
of dual points (Definition 8.21), dual directions (Definition 8.22), and subspace
incoherence (Definition 8.23) to the case in which the data are contaminated by
noise. To that end, let A D Œa1; : : : ; aN � 2 R

D�N be a matrix whose columns are
drawn from a union of n subspaces of RD, fSigniD1, of dimensions fdigniD1. Assume
that the columns of A are of unit Euclidean norm, and let Ai 2 R

D�Ni be the
submatrix of A containing the Ni points in Si, and Ai�j the submatrix of Ai with its
jth column removed. Let X D Œx1; : : : ; xN � 2 RD�N denote a noisy version of A, and
denote the columns of X corresponding to Ai and Ai�j by Xi and Xi�j, respectively.
We have the following definitions.

Definition 8.29 (Dual Points). The dual point �.x;X; 	/ 2 RD of a point x 2 RD

with respect to a matrix X 2 RD�N is defined as the optimal solution to

max
�2RD
hx;�i � 1

2	
k�k22 s.t. kX>�k1
 1: (8.97)

Definition 8.30 (Projected Dual Directions). The dual direction corresponding to
a dual point �.x;X; 	/ and projected onto a d-dimensional subspace S � RD is
defined as

328 8 Sparse and Low-Rank Methods

v.x;X; S; 	/ D PS�

kPS�k2 : (8.98)

Definition 8.31 (Projected Subspace Incoherence). Let vi
j D v.xi

j;X
i�j; Si; 	/ be

the dual direction of the jth column xi
j of Xi with respect to Xi�j and projected onto

Si. The subspace incoherence between the (noisy) points in the ith subspace and the
(clean) points in all other subspaces is defined by

�i D max
kWak 62Si

kVi>akk1 D max
jWxj2Si

max
kWak 62Si

jhvi
j; akij; (8.99)

where Vi D Œvi
1; : : : ; v

i
Ni
� 2 RD�Ni is the matrix of projected dual directions.

Recall the definition of inradius r.P/ of a convex polytope P (Definition 8.24).
Let P i�j be the convex polytope formed by the columns of the clean matrix Ai�j. Let
r D min

iD1;:::;n ri, where ri D min
jD1;:::;Ni

r.P i�j/. We have the following result.

Theorem 8.32 (SSC for Deterministic Noise (Wang and Xu 2013)). Let �i be
the ith projected subspace incoherence. Let ı D kX � Ak2;1 be an upper bound
on the noise, and ı1 D maxi kU>i .X � A/k2;1 an upper bound on the projection of
the noise onto the subspaces, where Ui is an orthonormal basis for the ith subspace.
If for all i D 1; : : : ; n, we have that

�i < ri; ı
 min
iD1;:::;n

r.ri � �i/

7ri C 2 and (8.100)

1

r � 2ı � ı2 < 	 < min
iD1;:::;n

ri � �i � 2ı1
ı.1C ı/.2C ri � ı1/ ; (8.101)

then the solution to problem (8.95) is subspace-preserving, and its columns are
nonzero.

Notice that when ı D 0, the condition in (8.100) reduces to �i < ri, which is the
condition of Theorem 8.25. The main difference is that in the uncorrupted case, we
solve for C subject to the self-expressiveness constraint X D XC, which corresponds
to problem (8.95) with 	 D 1, while in Theorem 8.32, we solve the matrix LASSO
problem with 1

r < 	 . Therefore, Theorem 8.32 generalizes Theorem 8.25, since
it allows us to obtain a subspace-preserving representation from a more general
optimization problem. Notice also that the bound ı on the noise level requires ri to
be larger than �i by a certain margin that depends on ı. Therefore, as ı increases,
the condition is harder to satisfy. Likewise, as ı increases, the upper bound on 	
reduces. In summary, the theorem captures our intuition that the clustering problem
becomes harder as the noise increases.

Solving the Sparse Optimization Problem with Noise
Notice that the problem in (8.95) is equivalent to N LASSO problems (Tibshirani
1996), one for each column of C. However, as in the case of uncorrupted data, it is

8.3 Sparse Subspace Clustering (SSC) 329

more convenient to solve all N problems simultaneously. The reader can show that
the optimization problem in (8.95) is equivalent to (see Exercise 8.3)

min
C;Z

kCk1 C 	

2
kX � XZk2F s.t. Z D C � diag.C/: (8.102)

As before, we can solve this problem using ADMM. More specifically, the
augmented Lagrangian of the above optimization problem is given by

L .C;Z; ƒ2/ DkCk1 C 	

2
kX � XZk2FC (8.103)

hƒ2;Z � .C � diag.C//i C �2

2
kZ � .C � diag.C//k2F

DkCk1 C 	

2
kX � XZk2F C

�2

2

���Z � .C � diag.C//C ƒ2

�2

���
2

F
C �;

where ƒ2 2 RN�N is a matrix of Lagrange multipliers, �2 > 0 is a parameter, and
� is a term that does not depend on C or Z. It is easy to see that this augmented
Lagrangian is a particular case of that in (8.83); hence the optimization problem can
be solved using Algorithm 8.5, which is a particular case of Algorithm 8.2.

Summary of the SSC Algorithm with Noisy Data
In summary, the SSC algorithm for data points contaminated by noise proceeds as
shown in Algorithm 8.6.

Algorithm 8.5 (Matrix LASSO Minimization by ADMM)
Input: Data matrix X
1: initialize: C0 D 0; ƒ0

2 D 0; �2 > 0.
2: while not converged do

3: compute ZkC1 D .	X>XC �2I/�1

	X>XC �2

�
Ck � ƒk

2

�2

��
;

4: compute CkC1 D S 1
�2

ZkC1 C ƒk

2

�2

�
;

5: compute CkC1 D CkC1 � diag.CkC1/;
6: compute ƒkC1

2 D ƒk
2 C �2.ZkC1 � CkC1/;

7: end while
Output: Sparse representation C.

Algorithm 8.6 (Sparse Subspace Clustering for Noisy Data)
Input: A set of points fxjgNjD1 lying in a union of n linear subspaces fSigniD1.
1: Solve the sparse optimization program (8.95) to obtain a matrix C 2 R

N�N .
2: Compute an affinity matrix W as W D jCj C jCj>.
3: Cluster the data into n groups by applying Algorithm 4.7 to W.

Output: Segmentation of the data into n groups: X1;X2; : : : ;Xn.

330 8 Sparse and Low-Rank Methods

8.3.4 SSC with Robustness to Corrupted Entries

Let us now consider the case in which the data points are sampled from a union
of subspaces and corrupted by outlying entries. Following the model in (8.28), we
model the errors directly in the self-expressiveness constraint as

X D XCC E: (8.104)

Under this model, we can find a sparse representation C that is robust to sparse
corrupted entries by penalizing the `1 norm of the errors kEk1. This leads to the
following program:

min
C;E
kCk1 C 	kEk1; s.t. X D XCC E; diag.C/ D 0; (8.105)

where 	 > 0 is a parameter. Notice that this problem is a particular case of (8.4)
with kCkC D kCk1 and kEkE D 	kEk1.

As in the case of noisy data, it is possible for the optimal solution of (8.105)
to be C D 0 and X D E. To avoid this trivial solution, we need to choose the
regularization parameter above a certain threshold, as stated in the following lemma.

Lemma 8.33. Consider the optimization program (8.105). If

	
 	min;1 ,
1

minjD1;:::;N maxk¤j kxkk1 ; (8.106)

then there exists at least one data point xj for which the optimal solution is .cj; ej/ D
.0; xj/.

Proof. Consider the optimization program min kcjk1C	kxj�Pk¤j xkcjkk1. If cj D 0

is an optimal solution, then the zero vector must be contained in the subgradient of
the objective function at cj D 0. That is, 0 2 wj � 	x>k sign.xj/ for all k ¤ j,
where jwjj
 1. This implies that 	kxkk1
 1 for all k ¤ j. Therefore, in order for
cj D 0 to be an optimal solution, we need 	
 1=maxk¤j kxkk1. Consider now the
optimization program (8.105). It follows that in order for one of the columns of C
to be zero, we need 	
 1=minjD1;:::;N maxk¤j kxkk1. ut

Having established conditions to avoid a trivial solution, we will now describe
an ADMM algorithm for solving the optimization problem in (8.105). We begin by
introducing an auxiliary matrix variable Z as follows:

min
C;Z;E
kCk1 C 	kEk1 s.t. X D XZ C E; Z D C � diag.C/: (8.107)

8.3 Sparse Subspace Clustering (SSC) 331

The augmented Lagrangian of the above optimization problem is given by

L .C;Z;E; ƒ1;ƒ2/ D kCk1 C hƒ1;X � XZ � Ei C hƒ2;Z � .C � diag.C//i
C 	kEk1C�1

2
kX�XZ�Ek2FC

�2

2
kZ�.C�diag.C//k2F

D kCk1C	kEk1C�1
2

���X�XZ�ECƒ1

�1

���
2

F
C�2
2

���Z�.C�diag.C//Cƒ2

�2

���
2

F
C�;

where ƒ1 2 RD�N and ƒ2 2 RN�N are matrices of Lagrange multipliers, �1 > 0,
�2 > 0 are parameters, and � is a term that does not depend on C, Z, or E.

The optimal Z given C, E, ƒ1, and ƒ2 is given by

Z D .�1X>X C �2I/�1

�1X

>�X � EC ƒ1

�1

�C �2
�
C � ƒ2

�2

��
: (8.108)

Then, as shown in (8.88), the optimal C given Z, E, and ƒ2, is given by

C D QC � diag. QC/; where QC D S 1
�2

Z C ƒ2

�2

�
: (8.109)

Then, the optimal E given Z and ƒ1 is given by

E D S 	
�1

X � XZ C ƒ1

�1

�
: (8.110)

Given the new C, Z, and E, the update of the Lagrange multipliers is done as ƒ1
ƒ1C�1.X � XZ � E/ andƒ2 ƒ2C�2.Z �C/. This leads to Algorithm 8.7 for
clustering data corrupted by outliers in a union of subspaces.

Algorithm 8.7 (Sparse Subspace Clustering with Corrupted Entries)
Input: Data matrix X
1: initialize: C0 D 0;E0 D 0; ƒ0

1 D 0; ƒ0
2 D 0; �1 > 0; �2 > 0.

2: while not converged do

3: set ZkC1 D .�1X>XC �2I/�1

�1X>

�
X � Ek C ƒk

1

�1

�C �2
�
Ck � ƒk

2

�2

��
;

4: compute CkC1 D S 1
�2

ZkC1 C ƒk

2

�2

�
;

5: compute CkC1 D CkC1 � diag.CkC1/;

6: compute EkC1 D S 	
�2

X � XZkC1 C ƒk

1

�1

�
;

7: compute ƒkC1
1 D ƒk

1 C �1.X � XZkC1 � EkC1/;
8: compute ƒkC1

2 D ƒk
2 C �2.ZkC1 � CkC1/;

9: end while
Output: Sparse representation C.

332 8 Sparse and Low-Rank Methods

8.3.5 SSC for Affine Subspaces

In the previous subsections, we considered the sparse subspace clustering problem
under the assumption that the data points are drawn from a union of n linear
subspaces. In practice, however, we may need to cluster data lying in a union of
affine rather than linear subspaces. A simple way to deal with affine subspaces is
to use the projectivization technique discussed in Section 5.1.1, where each data
point in x 2 RD is embedded into RDC1 by augmenting it with a one as .x>; 1/>. In
this way, each di-dimensional affine subspace Si is considered a subset of a .diC1/-
dimensional linear subspace that includes Si and the origin. Thus, a union of n affine
subspaces of RD of dimensions fdigniD1 is considered a subset of a union of n linear
subspaces of RDC1 of dimensions fdiC1gniD1. This suggests that any linear subspace
clustering algorithm can be applied to the embedded data. However, this approach
has the drawback of possibly increasing the dimension of the intersection of two
subspaces, which in some cases can result in indistinguishability of subspaces from
each other. For example, two different lines x D �1 and x D C1 in the x-y plane
form the same 2-dimensional linear subspace after including the origin; hence they
become indistinguishable.

To directly deal with affine subspaces, we use the fact that every point x in an
affine subspace S � RD of dimension d < D can be written as an affine combination
of dC 1 other points, fxjgdjD0, also in S, i.e.,

x D c1x1 C c2x2 C � � � C cdxd;

dX
jD0

cj D 1; (8.111)

where the points fxjgdjD0 are affinely independent.6 Therefore, if the columns of

X D �
x1; : : : ; xN

�
lie in a union of n affine subspaces of RD, fSigniD1, then each

xj 2 Si can be written as an affine combination of diC1 other points in Si. Following
Definition 8.2, we assume that the data matrix is affinely self-expressive, i.e.,

8j 9cj 2 R
N s.t. xj D Xcj; 1>cj D 1; cjj D 0; (8.112)

or equivalently, in matrix form,

9C 2 R
N�N s.t. X D XC; 1>C D 1; diag.C/ D 0; (8.113)

where C D �c1; c2; : : : ; cN

� 2 RN�N .
Observe that cj 2 RN has at most diC1 nonzero entries that correspond to diC1

other data points in Si. Observe also that the property in (8.113) is nearly identical

6A set of points fxjgdjD0 is said to be affinely dependent if there exist scalars c0; : : : ; cd not all zero

such that
Pd

jD0 cjxj D 0 and
Pd

jD1 cj D 1.

8.4 Simulations and Applications 333

to the self-expressiveness property in (8.8), except that we have the additional
constraint that all coefficients must add up to one, i.e., 1>C D 1>. Therefore, the
SSC algorithms discussed in the previous subsections remain identical, except that
we need to add this additional constraint to the optimization problems they solve.
For example, in the case of noiseless data, we need to solve

min
C
kCk1 s.t. X D XC; 1>C D 1>; diag.C/ D 0I (8.114)

in the case of noisy data, we need to solve

min
C
kCk1 C 	

2
kX � XCk2F s.t. 1>C D 1>; diag.C/ D 0I (8.115)

and in the case of data with corrupted entries, we need to solve

min
C
kCk1 C 	kX � XCk1; s.t. 1>C D 1>; diag.C/ D 0: (8.116)

8.4 Simulations and Applications

8.4.1 Low-Rank and Sparse Methods on Synthetic Data

In this subsection, we compare the performance of low-rank and sparse subspace
clustering methods to that of other spectral subspace clustering methods using
synthetically generated data. In particular, we investigate the effect of the kind
of subspaces (independent or disjoint) as well as the effect of the number and
dimensions of the subspaces on the clustering performance of different methods.

We randomly generate n 2 f3; 5g subspaces in R30 of varying dimensions 2

di
 5. For each trial, we randomly sample Ni D 10di points from each subspace,
respectively, and add zero-mean Gaussian noise with covariance �2.I � UiU>i /,
where Ui is an orthonormal basis for the subspace and � 2 Œ0; 0:35�. Subsequently,
the noisy points are normalized to have unit Euclidean norm. Given these N data
points, we cluster them into their respective subspaces using different subspace
clustering methods and compute the average and median clustering errors for each
algorithm over 100 random trials.

Tables 8.1 and 8.2 show the clustering errors for the noise-free and noisy data
points, respectively, with � D 0:1. From the results, we can draw the following
conclusions:

1. The performance of LRSC depends on the subspace model. For independent
subspaces, it yields very small clustering errors, which is expected, since this
algorithm has theoretical guarantees for independent subspaces. On the other
hand, for disjoint subspaces, LRSC gives large errors, suggesting that it cannot
work well beyond the independent subspace model.

334 8 Sparse and Low-Rank Methods

Table 8.1 Clustering error (%) of different algorithms on syn-
thetic noise-free data for different subspace dimensions d D
.d1; d2; : : : ; dn/, number of subspaces n, and subspace models (inde-
pendent or disjoint). For LRSC, LRSC2;1 and LRSC1 mean that
either the `2;1 or the `1 norm is used to penalize the errors, i.e.,
kEkE D kEk2;1 or kEkE D kEk1, respectively. Also, the LRSC
affinity matrix is constructed as in (8.27) with q D 1 or q D 4.

LRSC2;1 LRSC2;1 LRSC1
Algorithm LSA SCC q D 1 q D 4 q D 1 SSC

independent subspaces
d D .3; 3; 3/

Mean 2.23 0.00 0.00 0.04 0.00 0.00

Median 2.22 0.00 0.00 0.00 0.00 0.00

d D .2; 3; 5/

Mean 2.17 0.81 0.10 0.00 0.00 0.00

Median 2.00 1.00 0.00 0.00 0.00 0.00

d D .4; 4; 4; 4; 4/

Mean 0.63 0.00 0.00 0.04 0.00 0.00

Median 0.50 0.00 0.00 0.00 0.00 0.00

d D .1; 2; 3; 4; 5/

Mean 5.57 3.78 0.83 0.00 0.17 0.00

Median 2.00 2.00 0.67 0.00 0.00 0.00

disjoint subspaces
d D .3; 3; 3/

Mean 9.77 0.00 15.09 7.38 11.41 0.97

Median 8.89 0.00 13.33 5.56 8.89 0.00

d D .2; 3; 5/

Mean 5.98 0.88 7.13 1.21 4.64 0.11

Median 6.00 1.00 4.50 0.00 4.00 0.00

d D .4; 4; 4; 4; 4/

Mean 18.98 0.00 42.73 32.03 39.46 2.46

Median 18.50 0.00 43.00 32.50 40.50 2.00

d D .1; 2; 3; 4; 5/

Mean 5.23 6.97 27.15 5.84 22.49 0.95

Median 4.67 4.33 28.33 4.67 24.33 0.00

2. For independent subspaces, SSC yields very small clustering errors, which is
expected, since SSC always works under the independent subspace model, as we
showed in the theoretical analysis. For disjoint subspaces, the clustering errors
of SSC slightly increase but are still small. This is expected, since for disjoint
subspaces, SSC works under some conditions on the subspace angles and the
data distribution, which can be violated for some data points or subspaces.

3. The clustering performance of SCC does not depend on the subspace models
(independent or disjoint). However, it depends on whether subspaces have the

8.4 Simulations and Applications 335

Table 8.2 Clustering error (%) of different algorithms on synthetic
noisy data for different subspace dimensions d D .d1; d2; : : : ; dn/,
number of subspaces n, and subspace models (independent or disjoint).
For LRSC, LRSC2;1 and LRSC1 mean that either the `2;1 or the `1
norm is used to penalize the errors, i.e., kEkE D kEk2;1 or kEkE D
kEk1 , respectively. Also, the LRSC affinity matrix is constructed as
in (8.27) with q D 1 or q D 4.

LRSC2;1 LRSC2;1 LRSC1
Algorithm LSA SCC q D 1 qD 4 q D 1 SSC

independent subspaces
d D .3; 3; 3/

Mean 2.48 0.00 0.00 0.04 0.00 0.00

Median 2.22 0.00 0.00 0.00 0.00 0.00

d D .2; 3; 5/

Mean 1.76 0.21 0.36 0.00 0.03 0.02

Median 1.00 0.00 0.00 0.00 0.00 0.00

d D .4; 4; 4; 4; 4/

Mean 0.70 0.00 0.00 0.04 0.00 0.00

Median 0.50 0.00 0.00 0.00 0.00 0.00

d D .1; 2; 3; 4; 5/

Mean 0.85 27.86 1.45 0.02 0.67 0.02

Median 0.67 29.00 0.67 0.00 0.00 0.00

disjoint subspaces
d D .3; 3; 3/

Mean 9.92 0.00 13.79 7.76 9.70 0.81

Median 8.89 0.00 12.22 5.56 7.78 0.00

d D .2; 3; 5/

Mean 6.69 0.28 6.15 1.34 3.92 0.12

Median 5.00 0.00 4.00 0.00 2.00 0.00

d D .4; 4; 4; 4; 4/

Mean 19.25 0.00 42.50 31.68 38.15 5.71

Median 19.50 0.00 43.25 31.50 38.50 3.00

d D .1; 2; 3; 4; 5/

Mean 5.51 30.85 24.35 5.57 21.93 3.19

Median 5.31 33.67 24.67 4.00 22.00 0.67

same or different dimensions. More specifically, SCC obtains very low clustering
errors when the subspaces have the same or very close dimensions for both
independent and disjoint subspaces. On the other hand, the clustering error of
SCC is large when the subspaces have very different dimensions. This comes
from the fact that SCC uses the maximum dimension, dmax, of the subspaces to
compute the affinity among dmax C 2 data points. As a result, it is possible that
points in different subspaces of small dimensions obtain a large affinity, i.e., that
they are considered by the algorithm to be from the same subspace.

336 8 Sparse and Low-Rank Methods

Fig. 8.7 Average clustering errors of different subspace clustering algorithms as a function of the
noise level � for independent subspace model (left) and disjoint subspace model (right).

4. Unlike other algorithms that obtain nearly zero clustering errors for independent
subspaces, LSA obtains larger clustering errors for both independent and disjoint
subspaces. This comes from the fact that LSA computes the affinity between
pairs of points by first fitting a local subspace to each data point and its
nearest neighbors. Since the neighborhood of a data point may contain points
from different subspaces, the locally fitted subspace may not be close to the
true underlying subspace at the point, hence degrading the performance of the
algorithm. Moreover, for disjoint subspaces, the probability of having points on
other subspaces that are close to the given point increases, thereby increasing
the clustering error of LSA. Figure 8.7 shows the average clustering errors of
different algorithms as a function of the noise level � for independent and disjoint
subspace models for d1 D d2 D d3 D 3. As the results show, all algorithms
except LSA obtain very low clustering errors for small and moderate amounts
of noise for independent subspaces (the performance of SCC degrades when the
noise level is above � D 0:25). On the other hand, for disjoint subspaces, only
SSC and SCC obtain low clustering errors for small and moderate amounts of
noise, while other algorithms obtain large errors for all levels of noise.

8.4.2 Low-Rank and Sparse Methods on Face Clustering

In this subsection, we will apply low-rank and sparse subspace clustering methods
to the face clustering problem. As discussed in Chapter 2, under the Lambertian
reflectance model, face images of a single individual from a fixed viewpoint and
varying illumination lie approximately in a 9-dimensional subspace of the ambient
space whose dimension is the number of pixels in the image. In practice, as
discussed in Chapter 3, a few pixels deviate from the Lambertian model due to
cast shadows and specularities, which can be modeled as sparse outlying entries.

8.4 Simulations and Applications 337

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4 Extended Yale B Dataset

Si
ng

ul
ar

 v
al

ue
s

of
 s

ev
er

al
 s

ub
je

ct
s

Fig. 8.8 Singular values of five data matrices corresponding to the face images of five different
individuals in the extended Yale B data set. The face images of each individual span a subspace of
dimension around 9.

Therefore, the face clustering problem reduces to the problem of clustering a set of
images according to multiple subspaces and corrupted by sparse gross errors.

We will compare low-rank and sparse subspace clustering methods to the
statistical and spectral methods described in Chapters 4, 6, and 7 on the extended
Yale B data set (Lee et al. 2005). Figure 7.5 shows sample images from the database,
which includes 64 frontal face images of 38 individuals acquired under 64 different
lighting conditions. Each image is cropped to 192 � 168 pixels, which cover the
face of the individual only. To reduce the computational cost and the memory
requirements of all algorithms, we down-sample the images to 48 � 42 pixels and
treat each 2016-dimensional vectorized image as a data point. Figure 8.8 shows
the singular values of five data matrices corresponding to the face images of five
different individuals in the data set. Note that the singular value curve has a knee
around 9, corroborating the approximate 9-dimensionality of the face data in each
subject. In addition, the singular values gradually decay to zero, showing that the
data are corrupted by errors. Thus, the face images of n subjects can be modeled as
corrupted data points lying close to a union of 9-dimensional subspaces.

Face Clustering Affinities for Two Subjects from the Extended Yale B Data Set
First, we compare the affinity matrices provided by different methods. For this
purpose, we follow the same experimental setup as in Section 7.6.2, where we used
several methods to compute a subspace clustering affinity among face images of two
subjects (20 and 21, or 37 and 38) in the extended Yale B data set. Here, we simply
add the results for LRSC and SSC on the same data. For LRSC, we use the model for
noisy data in (8.31), with the parameter set to 	 D 60. For SSC, we use the model
with sparse outlying entries in (8.105) with the parameter set to 	 D 20	min;1, where
	min;1 is defined in (8.106). The results are shown in Figure 8.9, which includes some
of the results in Figure 7.6 for LSA, SCC, and SASC.

Observe that LRSC and SSC both produce a cross pattern for the intraclass
affinities, which is similar to that of other techniques such as LSA, LLMC, and

338 8 Sparse and Low-Rank Methods

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) LE: 46.1%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) LLMC: 1.6%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) LSA: 28.9%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) SCC: 1.6%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) SASC-angle: 13.3%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) SASC-dist.: 8.6%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) LRSC: 2.3%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) SSC: 0.0%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i) LE: 49.2%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(j) LLMC: 47.7%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k) LSA: 48.4%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(l) SCC: 47.7%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(m) SASC-angle: 13.3%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(n) SASC-dist.: 7.8%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(o) LRSC: 10.2%

20 40 60 80 100 120

20

40

60

80

100

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(p) SSC: 0.8%

Fig. 8.9 Affinity matrices of face images produced by different methods. We take frontal face
images of subjects 20 and 21 (Figures 8.9(a)–8.9(h)) and subjects 37 and 38 (Figures 8.9(i)–
8.9(p)) under 64 different illumination conditions from extended Yale B. For SASC, the images
are projected to dimension 9 using PCA. For all other methods, the images are down-sampled
to 48 � 42. The affinity is obtained by taking absolute value, symmetrizing, normalizing to the
range .0; 1/, then setting diagonal to be zero. The ground truth clustering is given as the horizontal
and vertical black lines in each figure, so that points 1–64 correspond to the first individual, and
points 65–128 correspond to the second individual. Clustering error percentages for each method
are reported in the captions.

LE. The main difference is that the intraclass similarities of LRSC and SSC are
generally higher that those of other methods. Moreover, observe that the affinity of
SSC is sparser than that of LRSC, as expected. Also, notice the similarities between
the affinities of LLMC and SSC. This is expected, since both methods rely on the
self-expressiveness constraint, with LLMC restricting the nonzero coefficients to
correspond to nearest neighbors and SSC searching for the best nonzero coefficients.

8.4 Simulations and Applications 339

The main difference is that SSC produces higher intraclass affinities and lower
interclass affinities than other methods, which ultimately results in better clustering.
Overall, we observe that SASC-distance, LRSC, and SSC produce clustering results
that are more accurate and more stable across individuals. Also, by comparing to the
results of K-means and spectral clustering with simple distance-based affinity (see
Examples 4.18 and 4.24 and Table 4.1), we can see the advantage of exploiting
the multisubspace structure in the data to construct affinities that are specifically
designed for the subspace clustering problem.

Face Clustering Errors on a Few Subjects from the Extended Yale B Data Set
Next, we present a more detailed evaluation of the clustering performance of
different algorithms on 2–10 subjects from the extended Yale B database. Following
the experimental setup of (Elhamifar and Vidal 2013), we divide the 38 subjects into
4 groups, where the first three groups correspond to subjects 1–10, 11–20 and 21–
30, and the fourth group corresponds to subjects 31–38. For each of the first three
groups, we consider all choices of n 2 f2; 3; 5; 8; 10g subjects, and for the last group,
we consider all choices of n 2 f2; 3; 5; 8g subjects. Finally, we apply all subspace
clustering algorithms for each trial, i.e., for each set of n subjects. The parameters
for the different methods are set as follows.

1. LSA, i.e., Algorithm 7.1 with the number of nearest neighbors chosen as K D 7
and the dimension of the subspaces chosen as d D 5.

2. SCC, i.e., Algorithm 7.4 with the dimension of the subspaces chosen as d D 9.
3. LRSC. We evaluate two versions of this method. One of them, which we denote

by LRSC2;1 and is also known as LRR, is the low-rank method with robustness to
outliers that is based on solving the optimization problem in (8.49) with kEkE D
�kEk2;1 and � D 0:18. Given the solution to (8.49), we construct the affinity as
in (8.27) with q D 1 or q D 4. The other one, which we denote by LRSC1, is the
low-rank method with robustness to outlying entries, which is based on solving
the optimization problem in (8.50) with kEkE D �kEk1 and � D 0:008 using
ADMM.

4. SSC. We evaluate the model with robustness to sparse outlying entries, which is
based on solving the optimization problem in (8.105) with the parameter set to
	 D 20	min;1, where 	min;1 is defined in (8.106).

In Table 8.3, we report the results in Table 3 of (Elhamifar and Vidal 2013),
which shows the average and median subspace clustering errors of different
algorithms. The results are obtained by first applying the RPCA-ADMM algorithm,
Algorithm 3.8, to the face images of each subject and then applying different
subspace clustering algorithms to the low-rank component of the data obtained by
RPCA-ADMM. While this cannot be done in practice, because the clustering of the
data is not known beforehand, the purpose of this experiment is to show that when
the data are uncorrupted, LRSC and SSC correctly identify the subspaces. As we
can see, LSA and SCC do not perform well, even with decorrupted data. Notice
also that LRSC2;1 with q D 4 does not perform well for more than eight subjects,
showing that using higher-order powers on the obtained low-rank coefficient matrix

340 8 Sparse and Low-Rank Methods

Table 8.3 Clustering error (%) of different algorithms on a few
subjects from the extended Yale B database after applying RPCA-
ADMM separately to the images from each subject.

LRSC2;1 LRSC2;1 LRSC1
Algorithm LSA SCC q D 1 q D 4 q D 1 SSC

2 Subjects

Mean 6:15 1:29 0:09 0:05 0.00 0:06

Median 0.00 0.00 0.00 0.00 0.00 0.00
3 Subjects

Mean 11:67 19:33 0:12 0:10 0.00 0:08

Median 2:60 8:59 0.00 0.00 0.00 0.00
5 Subjects

Mean 21:08 47:53 0:16 0:15 0.00 0:07

Median 19:21 47:19 0.00 0.00 0.00 0.00
8 Subjects

Mean 30:04 64:20 4:50 11:57 0.00 0:06

Median 29:00 63:77 0:20 15:43 0.00 0.00
10 Subjects

Mean 35:31 63:80 0:15 13:02 0.00 0:89

Median 30:16 64:84 0.00 13:13 0.00 0:31

does not always improve the result of LRSC2;1. SSC and LRSC1, on the other hand,
perform very well, with LRSC1 achieving perfect performance.

In Table 8.4, we report the results in Table 4 of (Elhamifar and Vidal 2013),
which shows the average and median subspace clustering errors of different
algorithms. The results are obtained by first applying the RPCA-ADMM algorithm,
Algorithm 3.8, to all face images and then applying different subspace clustering
algorithms to the low-rank component of the data obtained by RPCA-ADMM.
Observe that applying RPCA-ADMM to all data points simultaneously may not
be as effective as applying RPCA-ADMM to data points in each subject separately.
This comes from the fact that RPCA-ADMM tends to bring the data points into
a common low-rank subspace, which can result in decreasing the principal angles
between subspaces and decreasing the distances between data points in different
subjects. This can explain the increase in the clustering error of all clustering
algorithms with respect to the results in Table 8.3. Still, notice that the clustering
error for SSC is low for all different numbers of subjects. Specifically, SSC obtains
2:09% and 11:46% for clustering of data points in 2 and 10 subjects, respectively.

Table 8.5 shows the results of applying different clustering algorithms to the
original data without first applying RPCA-ADMM to each group. Notice that the
performance of LSA and SCC deteriorates dramatically, showing that these methods
are very sensitive to gross errors. The performance of LRSC2;1 with q D 1 is better,
but the errors are still very high, especially as the number of subjects increases.
In this case, changing q to q D 4 does help to significantly reduce the clustering
error. SSC, on the other hand, performs very well, achieving a clustering error

8.4 Simulations and Applications 341

Table 8.4 Clustering error (%) of different algorithms on a few sub-
jects from the extended Yale B data set after applying RPCA-ADMM
simultaneously to all the data in each trial.

LRSC2;1 LRSC2;1 LRSC1
Algorithm LSA SCC q D 1 q D 4 q D 1 SSC

2 Subjects

Mean 32:53 9:29 7:27 5:72 5:67 2.09
Median 47:66 7:03 6:25 3:91 4:69 0.78
3 Subjects

Mean 53:02 32:00 12:29 10:01 8:72 3.77
Median 51:04 37:50 11:98 9:38 8:33 2.60
5 Subjects

Mean 58:76 53:05 19:92 15:33 10:99 6.79
Median 56:87 51:25 19:38 15:94 10:94 5.31
8 Subjects

Mean 62:32 66:27 31:39 28:67 16:14 10.28
Median 62:50 64:84 33:30 31:05 14:65 9.57
10 Subjects

Mean 62:40 63:07 35:89 32:55 21:82 11.46
Median 62:50 60:31 34:06 30:00 25:00 11.09

Table 8.5 Clustering error (%) of different algorithms on a few sub-
jects from the extended Yale B data set without pre-processing the data.

LRSC2;1 LRSC2;1 LRSC1
Algorithm LSA SCC q D 1 q D 4 q D 1 SSC

2 Subjects

Mean 32:80 16:62 9:52 2:54 5:32 1.86
Median 47:66 7:82 5:47 0:78 4:69 0.00
3 Subjects

Mean 52:29 38:16 19:52 4:21 8:47 3.10
Median 50:00 39:06 14:58 2:60 7:81 1.04
5 Subjects

Mean 58:02 58:90 34:16 6:90 12:24 4.31
Median 56:87 59:38 35:00 5:63 11:25 2.50
8 Subjects

Mean 59:19 66:11 41:19 14:34 23:72 5.85
Median 58:59 64:65 43:75 10:06 28:03 4.49
10 Subjects

Mean 60:42 73:02 38:85 22:92 30:36 10.94
Median 57:50 75:78 41:09 23:59 28:75 5.63

342 8 Sparse and Low-Rank Methods

2 3 5 8 10
10

0

10
1

10
2

10
3

10
4

Number of subjects

C
om

pu
ta

ti
on

al
 t

im
e

(s
ec

)

LSA

SCC

LRR

LRSC

SSC

Fig. 8.10 Average computing time (seconds) of the algorithms on the extended Yale B database
as a function of the number of subjects.

of about 10% for 10 subjects. Notice that this error is smaller than that obtained
by applying RPCA-ADMM to all data points. This is due to the fact that SSC
directly incorporates the corruption model of the data by sparse outlying entries
into the sparse optimization program, giving it the ability to perform clustering on
the corrupted data.

Figure 8.10 shows the average computing time of each algorithm as a function
of the number of subjects (or equivalently the number of data points). Note that the
computing time of SCC is drastically higher than that of other algorithms. This
comes from the fact that the complexity of SCC increases exponentially in the
dimension of the subspaces, which in this case is d D 9. On the other hand, SSC,
LRR, and LRSC use fast and efficient convex optimization techniques that keep
their computing time lower than that of other algorithms. Overall, LRR and LRSC
are the fastest methods.

Face Clustering Errors on All Subjects from the Extended Yale B Data Set
Next, we present a more detailed evaluation of the clustering performance of
different algorithms on a varying number of subjects from the extended Yale B
database. In each experiment, we randomly pick n subjects out of all 38 subjects
and cluster all images from these n subjects. Table 8.6 reports the average subspace
clustering errors for n 2 f2; 5; 10; 20; 30; 38g, where all results are averaged over
100 random choices of subjects except for the case of n D 38, where there is only
one possible choice. The tested methods are the following:

1. K-means and spectral clustering algorithms described in Chapter 4, i.e., Algo-
rithms 4.4 and 4.5, respectively. For spectral clustering, we evaluate the K-NN
affinity with the number of neighbors set to K D 5, the Gaussian affinity with
standard deviation � D 0:3, and the "-neighborhood affinity with " D 1:5.

8.4 Simulations and Applications 343

Table 8.6 Clustering error (%) of different algorithms on all
subjects from the extended Yale B data set. The data set consists
of face images of n 2 f2; 10; 20; 30; 38g randomly chosen
individuals under 64 different illumination conditions. Images
are down-sampled to size 48 � 42 as features. NA denotes
running error in the process of the code.

No. subjects 2 5 10 20 30 38

K-means 48.7 77.1 86.8 90.5 92.1 92.6

SC: kNN 21.7 40.0 48.1 50.2 54.4 56.8

SC: Gauss 48.5 77.2 87.0 92.0 93.7 94.5

SC: neighborhood 44.0 65.3 78.6 83.9 86.4 88.9

K-subspaces 7.3 33.8 48.0 57.2 60.9 64.5

EM-MPPCA 16.1 47.4 56.5 62.2 65.0 67.1

LSA 34.0 58.9 64.8 65.2 68.6 68.7

SCC 15.1 NA NA NA NA 90.9

SASC-angle 24.8 66.5 78.7 NA NA NA

SASC-distance 19.1 66.1 73.0 NA NA NA

SSC 0.8 2.0 6.8 13.5 17.9 22.8

LRSC 6.8 11.2 18.4 31.1 31.4 32.1

2. K-subspaces and MPPCA-EM algorithms described in Chapter 6, i.e., Algo-
rithms 6.1 and 6.2, respectively. For all methods, we use random initializations
for the parameters and set the subspace dimension to d D 5. To reduce
computational complexity of these methods, we use PCA to project the original
data to dimension D D 9n.

3. LSA, SCC, and SASC algorithms described in Chapter 7, i.e., Algorithms 7.1,
7.4, and 7.5, respectively. For LSA, we set the subspace dimension to d D 5 and
the number of neighbors as K D 7. For SCC, we also set the subspace dimension
to d D 9. For SASC, we use the angle-based affinity with q D 10 and the
distance-based affinity with q D 1.

4. LRSC and SSC algorithms described in Chapter 8. For LRSC, we use the model
for noisy data in (8.31), with the parameter set to 	 D 150. For SSC, we use
the model with sparse outlying entries in (8.105) with the parameter set to 	 D
30	min;1, where 	min;1 is defined in (8.106).

Table 8.6 reports the average subspace clustering errors of these algorithms. We
have the following observations.

1. First, notice that the K-means and spectral clustering methods are not designed
for subspace clustering, so they generally show much higher clustering errors
than the subspace clustering methods.

2. Second, when comparing the three groups of subspace clustering methods, we
can see that LRSC and SSC give the best performance, followed by the iterative
and statistical methods, K-subspaces, and EM-MPPCA, respectively. Notice also

344 8 Sparse and Low-Rank Methods

that in general, the spectral clustering methods do not perform well, except for
the case n D 2.

3. Third, notice that while the K-subspaces method works fairly well for the case
n D 2, its performance deteriorates very fast as the number of groups increases.
This might be because the initialization of the algorithm is more difficult when
there are many groups.

4. The LSA method is built on the observation that a point and its nearest neighbors
are usually from the same subspace. Intuitively, this assumption is more realistic
if subspaces are densely sampled. But for the extended Yale B database, there are
only 64 samples for each subspace, which may explain why the method does not
work well even for the case of two subjects.

5. As discussed in Chapter 3, a few pixels from the face images may deviate from
the subspace model due to cast shadows and specularities. Since SASC does
not have an explicit way of dealing with such corruptions, this may explain
why the SASC-angle and SASC-distance methods do not give good results. In
contrast, LRSC and SSC can regularize their objective functions to account for
corruptions, so their performance is much better.

6. The theoretical conditions for correctness of LRSC require the subspaces to be
independent (see Theorem 8.9). In contrast, the results for SSC show that it
can recover subspace-preserving representations under much broader conditions,
e.g., in Theorem 8.25 it is shown that the subspaces can even intersect, which
may explain why SSC outperforms LRSC in the experiments.

8.5 Bibliographic Notes

Low-Rank Subspace Clustering
The optimization problem solved by LRSC was originally introduced in (Liu et al.
2010; Wei and Lin 2010; Liu et al. 2013), although the subspace clustering affinity
matrix used by LRSC had been proposed much earlier by (Costeira and Kanade
1998) outside the context of spectral clustering, and the theoretical correctness of
this affinity had already been studied in (Kanatani 2001; Vidal et al. 2008). The
closed-form solution in the case of uncorrupted data is due to (Wei and Lin 2010),
the closed-form solution in the case of noisy data is due to (Favaro et al. 2011; Vidal
and Favaro 2014), the nonconvex methods for dealing with noise corruptions are
due to (Wei and Lin 2010; Favaro et al. 2011; Vidal and Favaro 2014), while the
method for dealing with outliers was proposed in the original paper (Liu et al. 2010,
2013).

Sparse Subspace Clustering
The origins of SSC can be traced back to a conversation between René Vidal and
Robert Azencott at the Johns Hopkins University library in 2007. At the time,
René was trying to explain the algebraic subspace clustering techniques described
in Chapter 5, when Robert wondered whether techniques from sparsity could be

8.6 Exercises 345

applied to the problem. At the time, René was looking into ways of making algebraic
techniques robust to noise and outliers, but it wasn’t clear how techniques from
sparsity could be applied. Because of that, René had been working with Alvina
Goh on methods based on locality rather than sparsity, which led to the initial
development of LRMC in (Goh and Vidal 2007). Here, the idea of writing a
point as a linear combination of neighboring points and using the coefficients for
clustering was already present. However, the idea of using sparse representation
theory was not. After the presentation of this work at CVPR07 (Computer Vision
and Pattern Recognition 2007), René Vidal and Yi Ma started talking about sparse
representation theory and how it could be used to address the issue of outliers
in motion segmentation. These interactions led to the work of (Rao et al. 2008),
which uses `1-minimization together with the self-expressiveness constraint for
detecting outlier entries. However, in that work the sparse coefficients are not used
for segmentation: once the data have been cleaned, the ALC algorithm described
in Chapter 6 was used for clustering. The idea of using the sparse coefficients for
clustering was in the air at an IMA workshop on “Multi-Manifold Data Modeling
and Its Applications” that Ehsan Elhamifar, Yi Ma, and René Vidal attended.
However, it was not until the work of (Elhamifar and Vidal 2009) that these ideas
were rigorously formalized, and their theoretical correctness was demonstrated in
the case of independent subspaces. Ehsan then extended the theoretical analysis to
disjoint subspaces in (Elhamifar and Vidal 2010). These ideas were also presented at
a tutorial in CVPR10, which Emannuel Candès attended. This motivated Emmanuel
and Mahdi Soltanolkotabi to study more general conditions for correctness that
ultimately appeared in (Soltanolkotabi and Candès 2013). In particular, a major
stepping-stone was the development of theoretical conditions for handling outliers.
Finally, the theoretical analysis for the conditions of correctness of SSC in the
presence of noise appeared in (Wang and Xu 2013; Soltanolkotabi et al. 2014).

8.6 Exercises

Exercise 8.1. Let X D U1†1V>1 be the compact SVD of X. Show that the optimal
solution to

min
C
kCk� s.t. X D XC (8.117)

is given by C D V1V>1 .

Exercise 8.2. Prove Lemma 8.3.

Exercise 8.3. Show that the optimization problem in (8.95) is equivalent to

min
C;Z

kCk1 C 	

2
kX � XZk2F s.t. Z D C � diag.C/: (8.118)

346 8 Sparse and Low-Rank Methods

Exercise 8.4. Show that the dual of the optimization problem

min
c
kck1 s.t. Xc D x (8.119)

is given by

max
�
hx;�i s.t. kX>�k1
 1: (8.120)

Exercise 8.5. Show that the dual of the optimization problem

min
c
kck1 C 	

2
kXc � xk22 (8.121)

is given by

max
�2RD
hx;�i � 1

2	
k�k22 s.t. kX>�k1
 1: (8.122)

Exercise 8.6. Let X D �
x1; : : : ; xN

�
, let P.X/ D conv.˙x1;˙x2; : : : ;˙xN/ be the

symmetrized convex hull of the columns of X, and let r.P.X// be the inradius of
P.X/, i.e., the radius of the smallest ball contained in P.X/. Show that

min
c
fkck1 W Xc D xg
 kxk2

r.P.X// : (8.123)

Further assume that the columns of X are drawn from a union of n subspaces fSigniD1
of dimensions fdigniD1. Let Xi 2 RD�Ni be the submatrix of X containing the points
in the ith subspace and assume that rank.Xi/ D di. Let Xi�j 2 RD�.Ni�1/ is the
submatrix of Xi with the jth column removed. Show that

1p
di

max
QXi2Wi

�di. QXi/ < min
jWxj2Si

r.P i�j/; (8.124)

where Wi is the set of all full-rank submatrices QXi 2 RD�di of Xi.

Part III
Applications

Chapter 9
Image Representation

Everything should be made as simple as possible, but not simpler.

—Albert Einstein

In this and the following chapters, we demonstrate why multiple subspaces
can be a very useful class of models for image processing and how the subspace
clustering techniques may facilitate many important image processing tasks, such as
image representation, compression, image segmentation, and video segmentation.

9.1 Seeking Compact and Sparse Image Representations

Since smart phones and electronic cameras become popular, the quantity of images
being captured and transmitted daily has been increasing at an explosive rate. It
has become a pressing problem to find more efficient and compact representations
of images for many purposes, including storage, transmitting, enhancing, and
understanding. In this chapter, we will not be able to provide a complete solution
to the image compression problem. Nevertheless, we will try to illustrate some of
the basic concepts behind image compression and show how the multiple-subspace
models that we have studied in this book should be able to shed some new light on
the developing future, arguably more efficient, image compression methods.

Except for a few image representations such as fractal-based approaches (Fisher
1995), most existing image representations apply certain linear transformations to
the image so that the energy of the (transformed) image will be concentrated in the
coefficients of a small set of bases of the transformation, also known as a sparse
representation. To be more precise, if we view an image (or patches of an image) as
a signal x 2 Rn, we seek a linear representation of x as

x D ˆ˛;

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_9

349

350 9 Image Representation

for some ˆ D Œ�1; �2; : : : ; �m� 2 Rn�m; ˛ 2 Rm. The columns of the matrix ˆ are
sometimes called base vectors or atoms. In classical image compression schemes
such as JPEG, it is typical to choose m D n and let ˆ be a full-rank matrix
representing an invertible linear transform such as the Fourier transform, discrete
cosine transform (JPEG), or wavelet transform (JPEG-2000). The essential goal of
such a linear transform is to ensure that in the transformed domain, ˛ 2 Rm has only
very sparse nonzero entries and hence is much more compressible than the original
image signal x.

Finding such a sparser representation is typically the first step in subsequent
(lossy) compression and transmission of images or videos.1 The result can also
be used for other purposes such as image segmentation,2 classification, and object
recognition.

Most of the popular methods for obtaining a sparse representation of images
can be classified into several categories. We give here a brief overview of some
representative methods.

9.1.1 Prefixed Linear Transformations

Methods in this category seek to transform all images (or patches) using a pre-
fixed linear transformation. That is, we apply the same linear transform ˆ 2 Rn�n

regardless of the input image or image patch x:

x D ˆ˛; or ˛ D ˆ�1x: (9.1)

Each image is then represented as a superposition of a fixed set of base vectors
(as columns of the transformation matrix ˆ). All these methods evolved essentially
from the classical Fourier transform. One variation of the (discrete) Fourier trans-
form, the discrete cosine transform (DCT), serves as the core of the JPEG standard
(Wallace 1991).

Due to the Gibbs phenomenon, DCT is poor at approximating discontinuities in
the imagery signal. Wavelets (DeVore et al. 1992; Donoho et al. 1998; Mallat 1999;
Shapiro 1993) were developed to remedy this problem, and they have been shown
to be very effective for representing 1-dimensional piecewise smooth signals with
discontinuities. JPEG-2000 adopted wavelets as its standard.

However, because wavelet transforms deal only with 1D discontinuities, they are
not well-suited to represent 2D singularities along edges or contours. Anisotropic
bases such as wedgelets (Donoho 1999), curvelets (Candès and Donoho 2002),
countourlets (Do and Vetterli 2002), and bandlets (LePennec and Mallat 2005) have
been proposed explicitly to capture different 2D discontinuities. These x-lets have

1Which involves further quantization and entropy coding of the so-obtained sparse signals ˛.
2A topic we will study in more detail from the compression perspective in the next section.

9.1 Seeking Compact and Sparse Image Representations 351

been shown to be (approximately) optimal for representing objects with singularities
along C2-smooth edges.3 Nevertheless, natural images, especially images that have
complex textures and patterns, do not consist solely of discontinuities along C2-
smooth edges. This is probably the reason why in practice, these edge-based
methods do not seem to outperform (separable) wavelets on complex images.

More generally, one should not expect that a (fixed) “gold-standard” invertible
transformation would work optimally for all images (and signals) in the world.
Furthermore, conventional image (or signal) processing methods were developed
primarily for grayscale images. For color images or other multiple-valued images,
one has to apply them to each value separately (e.g., one color channel at a time).
The strong correlation that is normally present among the multiple values or colors
is unfortunately ignored by this class of methods.

9.1.2 Adaptive, Overcomplete, and Hybrid Representations

To remedy limitations of a pre-fixed transform, another category of methods aims
to identify the optimal (in some sense) representation that is adaptive to specific
statistics or structures of each image or a special class of images.4

For instance, suppose we are working with a set of images or image patches
as columns of a data matrix X D Œx1; x2; : : : ; xN �. If these images or patches are
highly correlated, then these columns, viewed as vectors lying in a high-dimensional
space, span a rather low-dimensional subspace. Then we can identify a basis for this
subspace via the Karhunen–Loève transform (KLT) or principal component analysis
(PCA) (Effros and Chou 1995):

X � U†V> D UA;

where .U; †;V/ is a compact singular value decomposition of the data: U 2
Rn�d;V 2 Rd�N , and † 2 Rd�d is a diagonal matrix of all significant singular
values. As we see, if d � n, then each n-dimensional image xj can be represented
with a d-dimensional vector ˛j. Of course, for any other image x belonging to this
category, we can use the learned basis ˆ D U to (approximately) represent it with
a signal of much lower dimension:

x � ˆ˛ D U˛; ˛ 2 R
d: (9.2)

3Here, “optimality” means that the transformation achieves the optimal asymptotic for approxi-
mating the class of functions considered (DeVore 1998).
4Here, in contrast to the case of pre-fixed transformations, “optimality” means the representation
obtained is the optimal one within the class of models considered, in the sense that it minimizes
certain discrepancies between the model and the data.

352 9 Image Representation

Notice that here U is a very tall matrix; hence the representation is naturally more
compact than the original signal.

In theory, the basis identified via PCA provides the optimal linear representation,
assuming that the imagery data satisfy a unimodal (subspace-like) distribution.
However, in reality, this assumption is rarely true. Different classes of images
may have rather different statistical characteristics; hence the basis learned from
one class may not apply well to other types of images. In fact, even within a
single image, patches typically exhibit multimodal statistics, since the image usually
contains many heterogeneous regions with significantly different statistical charac-
teristics (e.g., Figure 9.2). As we have seen in previous chapters, heterogeneous
data can be better represented using a mixture of parametric models, one for each
homogeneous subset. Such a mixture of models is often referred to as a hybrid
model.

Vector quantization (VQ) (Gersho and Gray 1992) is a popular method in image
processing and compression that assumes that the imagery data (say patches) are
clustered around many different centers. The centers of those clusters can be found
only via algorithms such as K-means. From the dimension-reduction point of view,
VQ represents the imagery data with many 1-dimensional subspaces. Or more
precisely, in VQ, one tries to represent an image or image patch as

x D ˆ˛ D Œ�1; �2; : : : ; �m�˛; k˛k0 D 1; (9.3)

where �i are the cluster centers and ˛ is a vector that is required to have only one
nonzero coefficient.5 This model typically leads to an excessive number of clusters
if we want to accurately represent very complicated textures.6

To make the above models more effective, one could relax the requirement
that the vector ˛ can have only one nonzero coefficient. An increasingly popular
model allows the image (or patch) to be represented as a sparse superposition of the
columns of a matrix ˆ:

x D ˆ˛ D Œ�1; �2; : : : ; �m�˛; k˛k0
 k; (9.4)

where, in contrast to the VQ model (9.3), here ˛ can have multiple nonzero entries
but be sparse enough. To alleviate the limitations of the linear transformation
model (9.1) and the PCA model (9.2), the matrix ˆ does not need to be a square or
tall matrix. In fact, it is often chosen to be overcomplete or redundant (Bruckstein
et al. 2009; Elad et al. 2010), i.e., m 	 n. Notice that the set of all k-sparse signals
with respect to ˆ lies on the union of k-dimensional subspaces, each spanned by a
set of k linearly independent columns ofˆ. Notice that such a sparse model contains

5In fact, in the VQ model, the coefficients are assumed to be binary.
6Be aware that compared to methods in the first category, representations in this category typically
need additional memory to store the information about the resulting model itself, e.g., the basis of
the subspace in PCA, the cluster means in VQ.

9.1 Seeking Compact and Sparse Image Representations 353

a total of
�m

k

�
subspaces. Given an overcomplete basis, also known as a dictionary in

the literature, many methods and theories have been developed in the past few years
for effectively and efficiently computing a sparse representation ˛ for a given input
signal x (Donoho and Elad 2003; Candès 2006; Candès and Wakin 2008).

One opening issue with the sparse representation approach is how to determine
the dictionaryˆ 2 R

n�m? Also, even if we identify such a dictionary, would all the�m
k

�
subspaces be necessary for representing the images? We know that a real image

often naturally partitions into multiple regions of color and textures, say K regions
R1; : : : ;RK . It is reasonable to represent image patches in each region Ri by a low-
dimensional subspace with a basis Ui. If we concatenate bases of all the subspaces
together, then any patch x in the image can be represented in the form

x D ˆ˛ D ŒU1;U2; : : : ;UK �˛; (9.5)

regardless of the subspace to which it belongs. Here ˛ is naturally sparse if x belongs
to one of the subspaces, since it will have at most di D dim.Ui/ nonzero coefficients.
However, this model is different from the above sparse model (9.4) in that we do
not need arbitrary sparse combinations of the columns of ˆ: ˛ has nonzero entries
associated with only one of the blocks Ui. We say that such an ˛ is block-sparse.
Therefore, the model essentially describes a union of only K subspaces. Since each
component model represents a linear subspace, we often refer to such a model as
a hybrid linear model. In some sense, such a model remedies limitations of the
PCA model (9.2), the VQ model (9.3), and the sparse model (9.4). It strikes a good
balance between simplicity and expressiveness for representing natural images.

The remaining issue is how to effectively identify a best hybrid linear model for
any given image set and evaluate how much more effective such a hybrid linear
model actually is compared to conventional image representations discussed above.
Obviously, the techniques that we have introduced in earlier chapters of this book
can be applied to identify these subspaces, including the number of subspaces, their
dimensions, and bases. Nevertheless, in this chapter, we will see how to determine
which subspace clustering and estimation algorithm is the one most suitable for a
given application and how the algorithm needs to be properly customized and used
in the special setting of the application.

9.1.3 Hierarchical Models for Multiscale Structures.

One important characteristic of natural images is that their statistical characteristics
are typically self-similar across different spatial scales. Sometimes, this is also
referred to as scale-invariance of natural image statistics. This is a very important
property: it essentially suggests that if one class of models applies well to an image,
one should expect that it should apply equally well to down-sampled versions of the
image as well.

354 9 Image Representation

Many existing frequency-domain techniques harness this characteristic (Burt and
Adelson 1983). For instance, wavelets, curvelets, and fractals have all demonstrated
effectiveness in decomposing the original imagery signal into multiple scales (or
subbands). As the result of such a multiscale decomposition, the low-dimensional
structures of the image at different scales can be modeled in a multiresolution
fashion. As we will see, this significantly reduces the dimension of the signals to
which we need to apply the models and hence reduces the overall computational
complexity.

In this chapter, we will show how to apply the above hybrid linear model (9.5) in
a multiscale fashion so as to obtain even more compact image representations. The
resulting scheme is a multiscale hybrid linear model, which can be simply described
as follows:

Given an image, at each scale level of its down-sampled pyramid, fit the (residual) image
by a (multiple-subspace) hybrid linear model.

Compared to a hybrid linear model at a single scale, the multiscale scheme can
reduce not only the complexity of the resulting representation but also the overall
computational cost. Surprisingly, as we will demonstrate, such a simple scheme is
able to generate representations for natural images that are more compact, even with
the overhead needed to store the model, than most state-of-the-art representations,
including DCT, PCA, and wavelets.

9.2 Image Representation with Multiscale Hybrid
Linear Models

9.2.1 Linear versus Hybrid Linear Models

In this section, we introduce and examine the hybrid linear model for image
representation. The relationship between hybrid linear models across different
spatial scales will be discussed in Section 9.2.2.

An image I with width W, height H, and c color channels resides in a very
high-dimensional space RW�H�c. We may first reduce the dimension by dividing
the image into a set of nonoverlapping b � b blocks.7 Each b � b block is then
stacked into a vector x 2 RD, where D D b2c is the dimension of the ambient space.
For example, if c D 3 and b D 2, then D D 12. In this way, the image I is converted
to a set of vectors X D fxj 2 RDgNjD1, where N D WH=b2 is the total number of
vectors.

The most commonly adopted distance measure for image compression is the
mean square error (MSE) between the original image I and (compressed) approxi-
mate image OI:

7Therefore, b needs to be a common divisor of W and H.

9.2 Image Representation with Multiscale Hybrid Linear Models 355

"2I D
1

WHc
k OI � Ik2: (9.6)

Since in the following derivation we will be approximating the (block) vectors
fxjgNjD1 rather than individual image pixels, it is more convenient for us to define the
mean square error (MSE) per vector, which is different from "2I by a scale factor,

"2 D 1

N

NX
jD1
kOxj � xjk2 D b2

WH

NX
jD1
kOxj � xjk2 D b2

WH
k OI � Ik2 D .b2c/"2I :

(9.7)

The peak signal-to-noise ratio (PSNR) of the approximate image is defined
to be8

PSNR
:D �10 log "2I D �10 log

"2

b2c
: (9.8)

Linear Models.
If we assume that the vectors x are drawn from a (nearly degenerate) Gaussian
distribution or a linear subspace, the optimal model subject to a given PSNR can be
inferred by principal component analysis (PCA) (Pearson 1901; Hotelling 1933;
Jolliffe 2002) or equivalently the Karhunen–Loève transform (KLT) (Effros and
Chou 1995). The effectiveness of such a linear model relies on the assumption that
although D can be large, all the vectors x may lie on a subspace of a much lower
dimension in the ambient space RD. Figure 9.1 illustrates this assumption.

Let Nx D 1
N

PN
jD1 xi be the mean of the imagery data vectors, and let X

:D
Œx1 � Nx; x2 � Nx; : : : ; xN � Nx� D U†V> be the SVD of the mean-subtracted

R
D

I

x

x

R

G

B

S

Fig. 9.1 In a linear model, the imagery data vectors fxj 2 RDg reside in an (affine) subspace S of
dimension d
 D.

8Here by default, the peak value of the imagery data is normalized to 1.

356 9 Image Representation

data matrix X. Then all the vectors xj can be represented as a linear superposition:
xj D Nx C PD

kD1 ˛k
j �k; j D 1; : : : ;N, where f�kgDkD1 are just the columns of the

matrix U.
The matrix † D diag.�1; �2; : : : ; �D/ contains the ordered singular values

�1 	 �2 	 � � � 	 �D. It is well known that the optimal linear representation of xj

subject to the MSE "2 is obtained by keeping the first d (principal) components

Oxj
:D NxC

dX
kD1

˛k
j �k; j D 1; : : : ;N; (9.9)

where d is chosen to be

d D min.k/; s.t.
1

N

DX
iDkC1

�2i
 "2: (9.10)

The model complexity of the linear model, denoted by
, is the total number of
coefficients needed for representing the model f˛k

j ; �k; Nxg and subsequently a lossy

approximation OI of the image I. It is given by

.N; d/
:D NdC d.D � dC 1/; (9.11)

where the first term is the number of coefficients f˛k
j g to represent fOxj � NxgNjD1

with respect to the basis ˆ D f�kgdkD1, and the second term is the number of
Grassmannian coordinates9 needed for representing the basis ˆ and the mean
vector Nx. The second term is often called overhead.10 Notice that the original
set of vectors fxjg contains ND coordinate entries. If
 � ND, then the new
representation, although lossy, is more compact. The search for such a compact
representation is at the heart of every (lossy) image compression method. When
the image I is large and the block size b is small, N will be much larger than D,
so that the overhead will be much smaller than the first term. However, in order
to compare this method fairly with other methods, in the subsequent discussions
and experiments, we always count the total number of coefficients needed for the
representation, including the overhead.

Hybrid Linear Models
The linear model is very efficient when the distribution of the data fxjg is indeed
unimodal. However, if the image I contains several heterogeneous textural regions

9Notice that to represent a d-dimensional subspace in a D-dimensional space, we need only specify
a basis of d linearly independent vectors for the subspace. We may stack these vectors as rows of
a d � D matrix. Any nonsingular linear transformation of these vectors span the same subspace.
Thus, without loss of generality, we may assume that the matrix is of the normal form ŒId�d ;G�,
where G is a d � .D� d/ matrix consisting of the so-called Grassmannian coordinates.
10Notice that if one uses a preselected basis, such as discrete Fourier transform, discrete cosine
transform (JPEG), or wavelets (JPEG-2000), there is no such overhead.

9.2 Image Representation with Multiscale Hybrid Linear Models 357

fIigniD1, the data vectors fxjg can no longer be modeled well as samples from a
single subspace. It is more natural to assume that they come from a number of
subspaces, with one subspace corresponding to one homogeneous textural region.
Since complexity of texture can be different in different regions, the dimensions
of the subspaces can also be different. Figure 9.2 displays the first three principal
components of the data vector xj (as dots in R3) of an image. Note the clear
multimodal characteristic in the data.

Suppose that a natural image I can be segmented into n disjoint regions I D
[n

iD1Ii with Ii\Ii0 D ; for i 6D i0. In each region Ii, we may assume that the linear
model (9.9) is valid for the subset of vectors fxi;jgNi

jD1 in Ii:

Oxi;j D Nxi C
diX

kD1
˛k

j �i;k; j D 1; : : : ;Ni: (9.12)

Intuitively, the hybrid linear model can be illustrated by Figure 9.3.

4

2

−2

−4

−4 −3 −2 −1 −3

−2

−1

0

0

1

1

2

2

3

3

4

0

Fig. 9.2 Left: The baboon image. Right: The coordinates of each dot are the first three principal
components of the patch vectors xj. There is a clear multimodal structure in the data.

R
D

I

x

x

R

G

B

S1

S2

S3

S4

Fig. 9.3 In hybrid linear models, the imagery data vectors fxjg reside in multiple (affine)
subspaces, which may have different dimensions.

358 9 Image Representation

As in the linear model, the dimension dj of each subspace is determined by a
common desired MSE "2 using equation (9.10). The model complexity, i.e., the total
number of coefficients needed to represent the hybrid linear model f�i;k; Oxi;jg, is11

 D
.N1; d1/C � � � C
.Nn; dn/ D
nX

iD1

�
Nidi C di.D � di C 1/

�
: (9.13)

Notice that
 is similar to the effective dimension (ED) of a subspace arrangement
model defined in Chapter 5. Thus, finding a representation that minimizes
 is the
same as minimizing the effective dimension of the imagery data set.12

Instead, if we model the union of all the vectors [n
iD1fxi;jgNi

jD1 with a single
subspace (subject to the same MSE), then the dimension of the subspace in general
needs to be d D minfd1C� � �C dn;Dg. It is easy to verify from the definition (9.11)
that under reasonable conditions (e.g., n is bounded from being too large), we have

.N; d/ >
.N1; d1/C � � � C
.Nn; dn/: (9.14)

Thus, if a hybrid linear model can be identified for an image, the resulting
representation will in general be much more compressed than that with a single
linear or affine subspace. This will also be verified by experiments on real images
in Section 9.2.3.

However, such a hybrid linear model alone is not able to generate a representation
that is as compact as that generated by other competitive methods such as wavelets.
There are at least two aspects in which the above model can be further improved.
Firstly, we need to further reduce the negative effect of overhead by incorporating
a pre-projection of the data onto a lower-dimensional space. Secondly, we need
to implement the hybrid linear model in a multiscale fashion. We will discuss the
former aspect in the remainder of this section and leave the issues of multiscale
implementation to the next section.

Dimension Reduction via Projection
In the complexity of the hybrid linear model (9.13), the first term is always smaller
than that of the linear model (9.11), because di
 d for all i and

Pn
iD1 Ni D N. The

second overhead term, however, can be larger than in that of the linear model (9.11),
because the bases of multiple subspaces now must be stored. We here propose a
method to further reduce the overhead by separating the estimation of the hybrid
model into two steps.

In the first step, we may project the data vectors X D fxjg onto a lower-
dimensional subspace (e.g., via PCA) so as to reduce the dimension of the ambient

11We also need a very small number of binary bits to store the membership of the vectors. But
those extra bits are insignificant compared to
 and often can be ignored.
12In fact, the minimal
 can also be associated with the Kolmogorov entropy or with the minimum
description length (MDL) of the imagery data.

9.2 Image Representation with Multiscale Hybrid Linear Models 359

space from D to D0. The justification for such a subspace projection has been
discussed earlier in Section 5.1.2. Here, the dimension D0 is chosen to achieve
an MSE 1

2
"2. The data vectors in the lower ambient space RD0

are denoted by
X 0 D fx0jg. In the second step, we identify a hybrid linear model for fx0jg within

the lower-dimensional ambient space RD0

. In each subspace, we determine the
dimension di subject to the MSE 1

2
"2. The two steps combined achieve an overall

MSE "2, but they can actually reduce the total model complexity to

 D
nX

iD1

�
Nidi C di.D

0 � di C 1/
�C D.D0 C 1/: (9.15)

This
 will be smaller than the
 in equation (9.13), because D0 is smaller than D.
The reduction of the ambient space will also make the identification of the hybrid
linear model (say via the algebraic subspace clustering algorithm) much faster.

If the number n of subspaces is given, algorithms like the algebraic subspace
clustering algorithm introduced in Chapter 5 and the statistical EM algorithm in
Chapter 6 can always find a segmentation. The basis f�i;kg and dimension di of each
subspace are determined by the desired MSE "2. As n increases, the dimension of the
subspaces may decrease, but the overhead required to store the bases may increase.
The optimal n� can therefore be found recursively by minimizing
 for different
n’s, as shown in Figure 9.4.

In our experience, we have found that n is typically in the range from 2 to 6 for
natural images, especially in the multiscale implementation that we will introduce
next.

Algorithm 9.1 describes the pseudocode for estimating the hybrid linear model
of an image I, in which the SubspaceSegmentation.�/ function is implemented (for
the experiments in this chapter) using the algebraic subspace clustering algorithm
given in Chapter 5.

n

Ω

optimal n∗

Fig. 9.4 The optimal n� can be found by minimizing
 with respect to n.

360 9 Image Representation

Algorithm 9.1 (Hybrid Linear Model Estimation).

1: function OI D HybridLinearModel(I; "2)
2: fxjg D StackImageIntoVectors(I);
3: fx0

jg; f�kg; f˛k
j g D PCA(fxj � Nxg; 12 "2);

4: for each possible n do
5: fx0

i;jg D SubspaceSegmentation.fx0

jg; n/;
6: f Ox0

i;jg; f�i;kg; f˛k
i;jg D PCA(fx0

i;j � Nx0

ig; 12 "2);
7: compute
n;
8: end for
9:
opt D min.
n);

10: OI D UnstackVectorsIntoImage(f Ox 0

i;jg with
opt);
11: output f˛k

j g; f�kg; Nx; f˛k
i;jg; f�i;kg; fNx0

ig with
opt;

12: return OI.

Fig. 9.5 The segmentation of the 4096 image blocks from the Barbara image. The image (left)
is segmented into three groups (right three). Roughly speaking, the first subspace contains mostly
image blocks with homogeneous textures; the second and third subspaces contain blocks with
textures of different spatial orientations and frequencies.

Fig. 9.6 The three sets of bases for the three subspaces (of blocks) shown in Figure 9.5,
respectively. One row for one subspace and the number of base vectors (blocks) is the dimension
of the subspace.

Example 9.1 (A Hybrid Linear Model for the Grayscale Barbara Image).
Figure 9.5 and Figure 9.6 show intuitively a hybrid linear model identified for
the 8 � 8 blocks of the standard 512 � 512 grayscale Barbara image. The total
number of blocks is N D 4096. The algebraic subspace clustering algorithm
identifies three subspaces for these blocks (for a given error tolerance), as shown
in Figure 9.5. Figure 9.6 displays the three sets of bases for the three subspaces

9.2 Image Representation with Multiscale Hybrid Linear Models 361

identified, respectively. It is worth noting that these bases are very consistent with
the textures of the image blocks in the respective groups.

For this application, there are several good reasons why the algebraic subspace
clustering algorithm is chosen over the statistical and the sparse subspace clustering
algorithms:

• The dimension of the vectors is in the range that can be handled efficiently by the
algebraic method, whereas the sparse clustering method is less effective, since
the dimension is low and yet the number of samples is very large.

• To evaluate the complexity of the resulting model for compression purposes, we
need to know explicitly the model parameters (number, dimensions, and bases
of subspaces) through the identification process, which makes the nonparametric
lossy-compression-based method less convenient to use.

• We normally do not know the number and dimensions of the subspaces in
advance, nor we are given any reasonable initial guess of those subspaces, which
makes the use of other parametric statistical methods such as K-subspace and
EM difficult.

Nevertheless, be aware that the choice of the algebraic method here is primarily
for simplicity and convenience (and it does serve the purpose well already). We
do not rule out the possibility that one could modify other subspace clustering and
estimation algorithms and obtain even better results for image compression in the
future.

9.2.2 Multiscale Hybrid Linear Models

There are at least several reasons why the above hybrid linear model needs further
improvement. Firstly, the hybrid linear model treats low-frequency/low-entropy
regions of the image in the same way as the high-frequency/high-entropy regions,
which is inefficient. Secondly, by treating all blocks the same, the hybrid linear
model fails to exploit stronger correlations that typically exist among adjacent image
blocks.13 Finally, estimating the hybrid linear model is computationally expensive
when the image is large. For example, if we use 2 � 2 blocks, a 512 � 512 color
image will have M D 65;536 data vectors in R12. Estimating a hybrid linear model
for such a huge number of vectors can be difficult (if not impossible) on a regular
PC. In this section, we introduce a multiscale hybrid linear representation that is
able to resolve the above issues.

The basic ideas of multiscale representations such as the Laplacian pyramid
(Burt and Adelson 1983) have been exploited for image compression for decades

13For instance, if we take all the b � b blocks and scramble them arbitrarily, the scrambled image
would be fit equally well by the same hybrid linear model for the original image.

362 9 Image Representation

(e.g., wavelets, subband coding). A multiscale method will give a more com-
pact representation because it encodes low-frequency/low-entropy parts and high-
frequency/high-entropy parts separately. The low-frequency/low-entropy parts are
invariant after low-pass filtering and down-sampling, and can therefore be extracted
from the much smaller down-sampled image. Only the high-frequency/high-entropy
parts need to be represented at a level of higher resolution. Furthermore, the stronger
correlations among adjacent image blocks will be captured in the down-sampled
images, because every four image blocks are merged into one block in the down-
sampled image. At each level, the number of imagery data vectors is one-fourth of
that at one level above. Thus, the computational cost can also be reduced.

We now introduce a multiscale implementation of the hybrid linear model. We
use the subscript l to indicate the level in the pyramid of down-sampled images Il.14

The finest level (the original image) is indicated by l D 0. The larger the value of l,
the coarser the down-sampled image. We define the highest level to be l D L.

Pyramid of Down-Sampled Images
First, the level-l image Il passes a low-pass filter F1 (averaging or Gaussian filter,
etc.) and is down-sampled by 2 to get a coarser version image IlC1:

IlC1
:D F1.Il/ # 2; l D 0; : : : ;L � 1: (9.16)

The coarsest level-L image IL is approximated by OIL using a hybrid linear model
with the MSE "2L. The number of coefficients needed for the approximation is
L.

Pyramid of Residual Images
At all other levels l, l D 0; : : : ;L � 1, we do not need to approximate the down-
sampled image Il, because it has been roughly approximated by the image at level-
.l C 1/ upsampled by 2. We only need to approximate the residual of this level,
denoted by I 0l :

I 0l :D Il � F2. OI lC1/ " 2; l D 0; : : : ;L � 1; (9.17)

where F2 is an interpolation filter. Each of these residual images I 0l ; l D 0; : : : ;L�1
is approximated by OI 0l using a hybrid linear model with the MSE "2l . The number of
coefficients needed for the approximation is
l, for each l D 0; : : : ;L� 1.

Pyramid of Approximated Images
The approximated image at the level l is denoted by OI l:

OI l
:D OI 0l C F2. OI lC1/ " 2; l D 0; : : : ;L � 1: (9.18)

Figure 9.7 shows the structure of a three-level (L D 2) approximation of the
image I. Only the hybrid linear models for OI2, OI 01, and OI 00, which are approximations

14This is not to be confused with the subscript i used to indicate different segments Ii of an image.

9.2 Image Representation with Multiscale Hybrid Linear Models 363

_

_

F1

F1

F2

F2

I0
Î0

Î′0I′
0

I′
1

I1

Î′1

Î1

I2 Î2
Hybrid Linear

Hybrid Linear

Hybrid Linear

Model Estimation

Model Estimation

Model Estimation

Ω0 coefficients

Ω1 coefficients

Ω2 coefficients

++

++

↓ 2

↓ 2

↑ 2

↑ 2

Fig. 9.7 Laplacian pyramid of the multiscale hybrid linear model.

Fig. 9.8 Multiscale representation of the baboon image. Left: The coarsest level image I2. Middle:
The residual image I0

1. Right: The residual image I0

0. The data at each level are modeled by the
hybrid linear models. The contrast of the middle and right images has been adjusted so that they
are visible.

for I2, I 01, and I 00, respectively, are needed for the final representation of the image.
Figure 9.8 shows I2, I 01, and I 00 for the baboon image.

The total number of coefficients needed for the representation will be

 D
LX

lD0

l: (9.19)

364 9 Image Representation

MSE Threshold at Different Scale Levels
The MSE thresholds at different levels should be different but related, because the
up-sampling by 2 will enlarge one pixel at level-.l C 1/ into four pixels at level-l.
If the MSE of the level .lC 1/ is "2lC1, the MSE of the level l after the up-sampling
will become 4"2lC1. So the MSE thresholds of level .lC 1/ and level l are related by

"2lC1 D
1

4
"2l ; l D 0; : : : ;L � 1: (9.20)

Usually, the user will give only the desired MSE for the approximation of the
original image, which is "2. So we have

"2l D
1

4l
"2; l D 0; : : : ;L: (9.21)

Vector Energy Constraint at Each Level
At each level-l, l D 0; : : : ;L � 1, not all the vectors of the residual need to be
approximated. We need to approximate only the (block) vectors fxjg of the residual
image I 0l that satisfy the following constraint:

kx0jk2 > "2l : (9.22)

In practice, the energy of most of the residual vectors is close to zero. Only a
small portion of the vectors at each level l need to be modeled (e.g., Figure 9.9).
This property of the multiscale scheme not only significantly reduces the overall
representation complexity
 but also reduces the overall computational cost, since
the number of data vectors processed at each level is much less than that of the
original image. In addition, for a single hybrid linear model, when the image

Fig. 9.9 The segmentation of (residual) vectors at the three levels—different subspaces are
denoted by different colors. The black regions correspond to data vectors whose energy is below
the MSE threshold "2l in equation (9.22).

9.2 Image Representation with Multiscale Hybrid Linear Models 365

Algorithm 9.2 (Multiscale Hybrid Linear Model Estimation).

1: function OI DMultiscaleModel(I; level; "2)
2: if level < MAXLEVEL then
3: Idown D Downsample.F1.I//;
4: OInextlevel DMultiscaleModel(Idown; levelC 1; 1

4
"2);

5: end if
6: if level DMAXLEVEL then
7: I0 D I;
8: else
9: Iup D F2.Upsample. OInextlevel//;

10: I0 D I � Iup;
11: end if
12: OI0 D HybridLinearModel(I0; "2);
13: return Iup C I0.

Fig. 9.10 Testing images: the hill image (480 � 320) and the baboon image (512 � 512).

size increases, the computational cost will increase in proportion to the square
of the image size. In the multiscale model, if the image size increases, we can
correspondingly increase the number of levels, and the complexity increases only
linearly in proportion to the image size.

The overall process of estimating the multiscale hybrid linear model can be
written as the recursive pseudocode in Algorithm 9.2.

9.2.3 Experiments and Comparisons

Comparison of Different Lossy Representations
The first experiment is conducted on two standard images commonly used to
compare image compression schemes: the 480 � 320 hill image and the 512 � 512
baboon image shown in Figure 9.10. We choose these two images because they
are representative of two different types of images. The hill image contains large
low-frequency/low-entropy regions, and the baboon image contains mostly high-

366 9 Image Representation

0 2 4 6 8 10 12 14 16 18
19

20

20

22

24

26

28

30

32

34

36

38

21

22

23

24

25

26

27

Ratio of Coefficients Kept (%)

0 2 4 6 8 10 12 14 16

Ratio of Coefficients Kept (%)

P
S

N
R

 (
dB

)

P
S

N
R

 (
dB

)

DCT
PCA/KLT
Level-3 Bior-4.4 Wavelets

Level-3 Multiscale Hybrid Linear Model
Hybrid Linear Model

DCT
PCA/KLT
Level-3 Bior-4.4 Wavelets

Level-3 Multiscale Hybrid Linear Model
Hybrid Linear Model

Fig. 9.11 Left: Comparison of several image representations for the hill image. Right: Compari-
son for the baboon image. The multiscale hybrid linear model achieves the best PSNR among all
the methods for both images.

frequency/high-entropy regions. The size of the blocks b is chosen to be 2, and the
level of the pyramid is 3; we will test the effect of changing these parameters in sub-
sequent experiments. In Figure 9.11, the results of the multiscale hybrid linear model
are compared with several other commonly used image representations including
DCT, PCA/KLT, single-scale hybrid linear model, and Level-3 (Daubechies) bi-
orthogonal 4.4 wavelets (adopted by JPEG-2000). The x-axis of the figures is the
ratio of coefficients (including the overhead) kept for the representation, which is
defined as

� D

WHc
: (9.23)

The y-axis is the PSNR of the approximated image defined in equation (9.8). The
multiscale hybrid linear model achieves the best PSNR among all the methods for
both images. Figure 9.12 shows the two recovered images using the same number
of coefficients for the hybrid linear model and the wavelets. Notice that in the area
around the whiskers of the baboon, the hybrid linear model preserves the detail
of the textures better than the wavelets. But the multiscale hybrid linear model
produces a slight block effect in the smooth regions.

Effect of the Number of Scale Levels
The second experiment shown in Figure 9.13 compares the multiscale hybrid linear
representation with wavelets for different numbers of levels. It is conducted on the
hill and baboon images with 2 � 2 blocks. The performance increases while the
number of levels is increased from 3 to 4. But if we keep increasing the number of
levels to 5, the level-5 curves of both wavelets and our method (which are not shown
in the figures) coincide with the level-4 curves. The performance cannot improve
any more, because the down-sampled images in the fifth level are so small that it is
hard for them to be further compressed. Only when the image is large can we use
more levels of down-sampling to achieve a more compressed representation.

9.2 Image Representation with Multiscale Hybrid Linear Models 367

Fig. 9.12 Left: The baboon image recovered from the multiscale hybrid linear model using 7:5%
coefficients of the original image. (PSNR=24.64). Right: The baboon image recovered from
wavelets using the same percentage of coefficients. (PSNR=23.94).

24

26

28

30

32

34

36

38

P
S

N
R

 (
dB

)

19

20

21

22

23

24

25

26

P
S

N
R

 (
dB

)

00 5 2 4 6 8 1010 15 12

Ratio of Coefficients Kept (%)Ratio of Coefficients Kept (%)

Level-3 Bior-4.4 Wavelets
Level-4 Bior-4.4 Wavelets
Level-3 Multiscale Hybrid Linear Model
Level-4 Multiscale Hybrid Linear Model

Level-3 Bior-4.4 Wavelets
Level-4 Bior-4.4 Wavelets
Level-3 Multiscale Hybrid Linear Model
Level-4 Multiscale Hybrid Linear Model

Fig. 9.13 Top: Comparison of the multiscale hybrid linear model with wavelets for level 3 and
level 4 for the hill image. Bottom: The same comparison for the baboon image. The performance
increases while the number of levels increases from 3 to 4.

Effect of the Block Size
The third experiment shown in Figure 9.14 compares the multiscale hybrid linear
models with different block sizes from 2 � 2 to 16 � 16. The dimension of the
ambient space of the data vectors x ranges from 12 to 192 accordingly. The testing
image is the baboon image, and the number of down-sampling levels is 3. For large
blocks, the number of data vectors is small, but the dimension of the subspaces is
large. So the overhead will be large and seriously degrade the performance. Also
the block effect will be more obvious when the block size is large. This experiment
shows that 2 is the optimal block size, which also happens to be compatible with the
simplest down-sampling scheme.

We have tested the multiscale hybrid linear model on a wide range of images,
with some representative ones shown in Figure 9.15. From our experiments and

368 9 Image Representation

Ratio of Coefficients Kept (%)

19

18

20

21

22

23

24

25
block size 2x2
block size 4x4
block size 8x8
block size 16x16

P
S

N
R

 (
dB

)

1 2 3 4 5 6 7 8 9

Fig. 9.14 Comparison of the multiscale hybrid linear model with different block sizes: 16, 8, 4, 2.
The performance increases as the size of blocks decreases.

Fig. 9.15 A few standard testing images. From the top left to the bottom right: monarch (768 �
512), sail (768� 512), canyon (752� 512), tiger (480� 320), street (480� 320), tree (512� 768),
tissue (microscopic) (1408� 1664), Lena (512� 512), earth (satellite) (512� 512), urban (aerial)
(512 � 512), bricks (696 � 648). The multiscale hybrid linear model outperforms wavelets except
for the Lena and monarch images.

9.3 Multiscale Hybrid Linear Models in Wavelet Domain 369

experience, we observe that the multiscale hybrid linear model is more suitable
than wavelets for representing images with multiple high-frequency/high-entropy
regions, such as those with sharp 2D edges and rich textures. Wavelets are prone
to blur sharp 2D edges but are better at representing low-frequency/low-entropy
regions. This probably explains why the hybrid linear model performs slightly worse
than wavelets for the Lena and the monarch images: the backgrounds of those two
images are out of focus, so that they do not contain much high-frequency/high-
entropy content.

Another limitation of the hybrid linear model is that it does not perform well on
grayscale images (e.g., the Barbara image, Figure 9.5). For a grayscale image, the
dimension D of a 2 � 2 block is only 4. Such a low dimension is inadequate for any
further dimensional reduction. If we use a larger block size, say 8 � 8, the block
effect will also degrade the performance.

Unlike pre-fixed transformations such as wavelets, our method involves iden-
tifying the subspaces and their bases. Computationally, it is more costly. With
unoptimized MATLAB codes, the overall model estimation takes 30 seconds to 3
minutes on a Pentium 4 1.8-GHz PC depending on the image size and the desired
PSNR. The smaller the PSNR, the shorter the running time, because the number of
blocks needed to be coded in higher levels will be less.

9.3 Multiscale Hybrid Linear Models in Wavelet Domain

From the discussion in the previous section, we have noticed that wavelets can
achieve a better representation for smooth regions and avoid the block artifacts.
Therefore, in this section, we will combine the hybrid linear model with the wavelet
approach to build multiscale hybrid linear models in the wavelet domain. For readers
who are not familiar with wavelets, we recommend the books of (Vetterli and
Kovacevic 1995).

9.3.1 Imagery Data Vectors in the Wavelet Domain

In the wavelet domain, an image is typically transformed into an octave tree of
subbands by certain separable wavelets. At each level, the LH, HL, HH subbands
contain the information about high-frequency edges, and the LL subband is further
decomposed into subbands at the next level. Figure 9.16 shows the octave tree
structure of a level-2 wavelet decomposition. As shown in Figure 9.17, the vectors
fxj 2 RDgNjD1 are constructed by stacking the corresponding wavelet coefficients in
the LH, HL, HH subbands. The dimension of the vectors is D D 3c, because there
are c color channels. One of the reasons for this choice of vectors is that for edges
along the same direction, these coefficients are linearly related and reside in a lower-
dimensional subspace. To see this, let us first assume that the color along an edge is

370 9 Image Representation

LL LL LL LH

LL HL

LH

HHHL

LL HH

Fig. 9.16 The subbands of a level-2 wavelet decomposition.

R
D

I

x

x

R

G

B

S1

S2

S3

S4

HHHL

LHLL

Fig. 9.17 The construction of imagery data vectors in the wavelet domain. These data vectors are
assumed to reside in multiple (affine) subspaces that may have different dimensions.

constant. If the edge is along the horizontal, vertical, or diagonal direction, there will
be an edge in the coefficients in the LH, HL, or HH subband, respectively. The other
two subbands will be zero. So the dimension of the imagery data vectors associated
with such an edge will be 1. If the edge is not exactly in one of these three directions,
there will be an edge in the coefficients of all three subbands. For example, if the
direction of the edge is between the horizontal and diagonal, the amplitude of the
coefficients in the LH and HH subbands will be large. The coefficients in the HL
subband will be insignificant relative to the coefficients in the other two subbands.
So the dimension of the data vectors associated with this edge is approximately 2
(subject to a small error "2). If the color along an edge is changing, the dimension
of the subspace will be higher, but generally lower than the ambient dimension
D D 3c. Notice that the above scheme is only one of many possible ways in which
one may construct the imagery data vector in the wavelet domain. For instance,
one may construct the vector using coefficients across different scales. It remains

9.3 Multiscale Hybrid Linear Models in Wavelet Domain 371

Fig. 9.18 The subbands of level-3 bior-4.4 wavelet decomposition of the baboon image.

an open question whether such new constructions may lead to even more efficient
representations than the one presented here.

9.3.2 Hybrid Linear Models in the Wavelet Domain

In the wavelet domain, there is no need to build a down-sampling pyramid. The
multilevel wavelet decomposition already gives a multiscale structure in the wavelet
domain. For example, Figure 9.18 shows the octave tree structure of a level-3 bior-
4.4 wavelet transformation of the baboon image. At each level, we may construct
the imagery data vectors in the wavelet domain according to the previous section.
A hybrid linear model will be identified for the so-obtained vectors at each level.
Figure 9.19 shows the segmentation results using the hybrid linear model at three
scale levels for the baboon image.

In the nonlinear wavelet approximation, the coefficients that are below an error
threshold will be ignored. Similarly, in our model, not all the vectors of the imagery
data vectors need to be modeled and approximated. We need to approximate only
the (coefficient) vectors fxjg that satisfy the following constraint:

kxjk2 > "2: (9.24)

Notice that here we do not need to scale the error tolerance at different levels,
because the wavelet basis is orthonormal by construction. In practice, the energy
of most of the vectors is close to zero. Only a small portion of the vectors at each
level need to be modeled (e.g., Figure 9.19).

The overall process of estimating the multiscale hybrid linear model in the
wavelet domain can be summarized as the pseudocode in Algorithm 9.3.

372 9 Image Representation

Fig. 9.19 The segmentation of data vectors constructed from the three subbands at each level—
different subspaces are denoted by different colors. The black regions correspond to data vectors
whose energy is below the MSE threshold "2 in equation (9.24).

Algorithm 9.3 (Multiscale Hybrid Linear Model: Wavelet Domain).

1: function OI DMultiscaleModel.I; level; "2/
2: QI DWaveletTransform.I; level/;
3: for each level do
4: OQIlevel D HybridLinearModel.QIlevel ; "

2/;
5: end for
6: OI D InverseWaveletTransform. OQI; level/;
7: return OI.

9.3.3 Comparison with Other Lossy Representations

In this section, in order to obtain a fair comparison, the experimental setting is
the same as that of the spatial domain in the previous section. The experiment
is conducted on the same two standard images: the 480 � 320 hill image and the
512 � 512 baboon image shown in Figure 9.10.

The number of levels of the model is also chosen to be 3. In Figure 9.20,
the results are compared with several other commonly used image representations
including DCT, PCA/KLT, single-scale hybrid linear model, and Level-3 bi-
orthogonal 4.4 wavelets (JPEG 2000) as well as the multiscale hybrid linear model
in the spatial domain. The multiscale hybrid linear model in the wavelet domain
achieves better PSNR than that in the spatial domain. Figure 9.21 shows the three
recovered images using the same number of coefficients for wavelets, the hybrid
linear model in the spatial domain, and that in the wavelet domain, respectively.
Figure 9.22 shows a visual comparison with the enlarged bottom-right corners of
the images in Figure 9.21.

Notice that in the area around the baboon’s whiskers, the wavelets blur both
the whiskers and the subtle details in the background. The multiscale hybrid linear

9.3 Multiscale Hybrid Linear Models in Wavelet Domain 373

Ratio of Coefficients Kept (%)

24

22

20

26

28

30

32

34

36

38

P
S

N
R

 (
dB

)

0 2 4 6 8 10 12 14 16 18

Ratio of Coefficients Kept (%)

0 2 4 6 8 10 12 14 16
19

20

21

22

23

24

25

26

27

P
S

N
R

 (
dB

)

DCT
PCA/KLT
Level-3 Bior-4.4 Wavelets

Level-3 Multiscale Hybrid Linear Model in Spatial Domain
Level-3 Multi-scale Hybrid Linear Model in Wavelet Domain

Hybrid Linear Model

DCT
PCA/KLT
Level-3 Bior-4.4 Wavelets

Level-3 Multiscale Hybrid Linear Model in Spatial Domain
Level-3 Multi-scale Hybrid Linear Model in Wavelet Domain

Hybrid Linear Model

Fig. 9.20 Top: Comparison of several image representations for the hill image. Bottom: Compar-
ison for the baboon image. The multiscale hybrid linear model in the wavelet domain achieves
better PSNR than that in the spatial domain.

Fig. 9.21 Visual comparison of three representations for the baboon image approximated with
7:5% coefficients. Top left: The original image. Top right: The level-3 biorthogonal 4.4 wavelets
(PSNR=23.94). Bottom left: The level-3 multiscale hybrid linear model in the spatial domain
(PSNR=24.64). Bottom right: The level-3 multi scale hybrid linear model in the wavelet domain
(PSNR=24.88).

374 9 Image Representation

Fig. 9.22 Enlarged bottom-right corner of the images in Figure 9.21. Top left: The original image.
Top right: The level-3 biorthogonal 4.4 wavelets. Bottom left: The level-3 multiscale hybrid linear
model in the spatial domain. Bottom right: the level-3 multiscale hybrid linear model in the wavelet
domain.

model (in the spatial domain) preserves the sharp edges around the whiskers but
generates slight block artifacts in the relatively smooth background area. The
multiscale hybrid linear model in the wavelet domain successfully eliminates
the block artifacts, keeps the sharp edges around the whiskers, and preserves
more details than the wavelets in the background. Among the three methods, the
multiscale hybrid linear model in the wavelet domain achieves not only the highest
PSNR, but also produces the best visual effect.

As we know from the previous section, the multiscale hybrid linear model in the
spatial domain performs slightly worse than the wavelets for the Lena and monarch
images (Figure 9.15). Nevertheless, in the wavelet domain, the multiscale hybrid
linear model can generate very competitive results, as shown in Figure 9.23. The
multiscale hybrid linear model in the wavelet domain achieves better PSNR than
the wavelets for the monarch image. For the Lena image, the comparison is mixed
and merits further investigation.

9.3 Multiscale Hybrid Linear Models in Wavelet Domain 375

30

30

32

34

36

38

40

42

28

26

24
0 2 4

Level-4 Bio-4.4 Wavelets
Level-4 Multi-scale Hybrid Linear Model in Wavelet Domain

6 8 10 12 14

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

31

32

33

34

35

36

37

P
S

N
R

 (
dB

)
P

S
N

R
 (

dB
)

Ratio of Coefficients Kept (%)

Ratio of Coefficients Kept (%)

Level-4 Bio-4.4 Wavelets
Level-4 Multi-scale Hybrid Linear Model in Wavelet Domain

Fig. 9.23 Top: Comparison of multiscale hybrid linear model in the wavelet domain with wavelets
for the Lena image. Bottom: Comparison of the multiscale hybrid linear model in the wavelet
domain with wavelets for the monarch image. The multiscale hybrid linear model in the wavelet
domain achieves better PSNR than wavelets for a wide range of PSNR for these two images.

The above hybrid linear model (in the wavelet domain) does not produce very
competitive results for grayscale images, since the dimension of the vector is
merely 3, and there is little room for further dimensional reduction. For grayscale
images, one may have to choose a slightly larger window in the wavelet domain or
construct the vector using wavelet coefficients across different scales. A thorough
investigation of all the possible cases is beyond the scope of this book. The purpose
here is simply to demonstrate (using arguably the simplest cases) the great potential
of a new spectrum of image representations suggested by combining multisubspace
methods with conventional image representation/approximation schemes. The quest
for more efficient and more compact representations for natural images without
doubt will continue as long as these new models and tools allow us to discover
and exploit rich new structures in the imagery data.

376 9 Image Representation

9.4 Bibliographic Notes

There is a vast amount of literature on finding adaptive bases (or transforms) for
more compact representations of signals. Adaptive wavelet transforms and adapted
wavelet packets have been extensively studied (Coifman and Wickerhauser 1992;
Ramchandran et al. 1996; Meyer 2002, 2000; Ramchandran and Vetterli 1993;
Delsarte et al. 1992; Pavlovic et al. 1998). The idea is to search for an optimal
transform (in terms of certain criteria) among a limited (although large) set of
possible transforms. Another approach is to find some universal optimal transform
based on the given signals (Effros and Chou 1995; Rabiee et al. 1996; Delsarte et al.
1992; Pavlovic et al. 1998). Spatially adapted bases have also been developed in
work such as (Chen et al. 2003; Sikora and Makai 1995; Muresan and Parks 2003).

The material of this chapter is mainly based on the work of (Hong et al. 2006),
and the reader may be able to find more details from the original paper. The same
class of multiple-subspace (or multiple-PCA) models have also been explored and
developed more extensively in later work of (Yu et al. 2010, 2012) for many other
image processing tasks such as image inpainting and denoising.

As we have discussed in the chapter, the multisubspace hybrid linear model
is also closely related to the more general and expressive sparse representation
models. In (Olshausen and D.J.Field 1996), the authors have identified a set of
nonorthogonal base vectors for natural images such that the representation of the
image is sparse (i.e., only a few base vectors or atoms are needed to represent
each image block). In the work of (Donoho 1995, 1998; Chen et al. 1998; Elad and
Bruckstein 2002; Feuer and Nemirovski 2003; Donoho and Elad 2003; Starck et al.
2003; Elad and Bruckstein 2001), a systematic body of theory and algorithms has
been developed for effectively and efficiently computing the sparsest representation
for a signal with respect to a given (incoherent) dictionary.

This work have inspired many researchers to seek ever more compact and
sparse representations through the identification of better, possibly overcomplete,
dictionaries (Spielman et al. 2012; Sun et al. 2015), as well as to develop ever more
scalable and efficient optimization techniques for computing sparse representations.
Within this more powerful framework, researchers have significantly advanced
the state of the art of many important image processing tasks such as image
compression, image denoising, image deblurring, image inpainting, and image
superresolution (Yang et al. 2010). It is well beyond the scope of this book to
give complete and comprehensive coverage of all these wonderful applications.
Nevertheless, we hope that through the simple and basic example introduced in
this chapter, the reader will already be able to grasp the main ideas behind such new
classes of models and methods for image (and data) processing.

Chapter 10
Image Segmentation

The whole is more than the sum of its parts.

—Aristotle

Image segmentation is the task of partitioning a natural image into multiple
contiguous regions, also known as segments, whereby adjacent regions are separated
by salient edges or contours, and each region consists of pixels with homogeneous
color or texture. In computer vision, this is widely accepted as a crucial step for
any high-level vision tasks such as object recognition and understanding image
semantics.

To be precise, given an image I defined on a 2D grid of pixels
 D fu D .i; j/ j
1
 i
 m; 1
 j
 ng, image segmentation seeks to assign each pixel u 2
 to one
of a number of segments R D fR1; : : : ;RKg with
 D [k

iD1Ri. This is equivalent to
assigning a label to each pixel:

l W u 7! l.u/ 2 f1; : : : ;Kg;

where the label l.u/ indicates to which segment pixel u belongs. For a segmentation
to be useful, we often prefer that two pixels, say u; v 2
, that belong to the same
segment l.u/ D l.v/ should have similar color or texture in their neighborhoods
I.u/ � I.v/; in addition, spatially close pixels u and v tend to have the same
label unless separated by a clear edge. In other words, the label function l.u/
is a piecewise constant function on
. One benefit from segmentation is that it
essentially establishes an “equivalence” relationship among pixels that belong to
the same segment. Hence any higher-level vision tasks need to deal with only the
K segments, which is dramatically smaller in number than the number of pixels
N D m � n.

Strictly speaking, natural image segmentation is an inherently ambiguous prob-
lem: it is difficult, if not impossible, to define what the “optimal” segmentation is

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_10

377

378 10 Image Segmentation

for any given image. Generally speaking, one desires that the resulting segments
be highly correlated to objects in the image. That is, they should be “semantically
meaningful”: Ideally, each segment should correspond to an integral part of an
object, and each object should consist of very few segments. Since most high-level
vision tasks (such as object recognition) aim to emulate functionalities of human
visual systems, evaluation of segmentation results is often based on qualitative and
quantitative comparisons with segmentation results done by humans.1

10.1 Basic Models and Principles

Since it is nearly impossible to accurately model the human visual system, most
practical image segmentation methods rely on a few tractable principles and models.
Despite diverse goals for middle- or higher-level vision tasks, it is widely accepted
that a good segmentation should group image pixels into regions whose statistical
characteristics (of color, texture, or other feature) are homogeneous or stationary,
and whose boundaries are “simple” and “spatially accurate” with respect to image
edges (Haralick and Shapiro 1985). How can we translate such simple principles
into a computable form?

10.1.1 Problem Formulation

The image segmentation problem, as stated above, is essentially to assign a segment
label l.u/ to each pixel u based on its color, texture, and relationships with other
(nearby) pixels. Let us represent the color or texture at a pixel u to be a feature vector
x.u/ 2 Rm. We may assume that the feature vectors satisfy certain a distribution
x � p.xI �/ that encodes statistics of natural images. For simplicity, we assume
for now that this distribution (and its parameter �) has already been learned or is
known to us. In a probabilistic inference setting, given the field of feature vectors
fx.u/; u 2
g for all pixels of the image I, we are interested in inferring the label
values fl.u/; u 2
g through maximizing the a posteriori probability:

max
l

p.l j xI �/ / p.l/p.x j lI �/: (10.1)

Obviously, what form this a posteriori takes affects not only what kind of
segmentation we get but also whether it allows trackable algorithms to compute
the globally optimal segmentation l�.

1Note that there is even ambiguity in segmentation done by different humans. In later sections, we
will see how we could make such human-based evaluation somewhat meaningful.

10.1 Basic Models and Principles 379

Let us examine the above distributions more closely. It is natural to assume that
the feature vector x.u/ is conditionally independent given its label l.u/ and the prior
distribution parameters � . Hence the conditional probability p.x j lI �/ factorizes:

p.x j lI �/ D
Y
u2

p.x.u/jl.u/I �/ :D exp
h
�
X

u

�1.u/
i
: (10.2)

Here we use �1.�/ to denote an energy function that depends on only a single pixel.
For the case that p.xI �/ is a mixture of Gaussian models and the feature vectors x
associated with the kth segment follow a Gaussian distribution N .�k; †k/, we have

p.x.u/jl.u/I �/ D exp
h
� 1

Z
.x.u/� �k/

>†�1k .x.u/� �k/
i
: (10.3)

The distribution p.l/ is in general not factorable, since the labels of pixels are not
independent of each other: labels are more likely to be spatially contiguous, since
adjacent pixels likely belong to the same segment. In addition, p.l/ could encode
other (global or semiglobal) prior information about pixel labels that are not encoded
in the features. For instance, if we can precompute the set of edges for the image,
then two pixels are unlikely to have the same label if they are separated by a strong
edge. More generally, this distribution could encode information about even higher
orders of label dependencies among more than two pixels. In other words, we could
assume that p.l/ is of the form

p.l/ D p2.l/p3.l/ � � � ; (10.4)

where pi.l/ encodes label dependency among i-tuples of pixels. In most applications,
it suffices to consider dependency among pairwise pixels, and the probability p.l/
takes the form

p.l/ D p2.l/ D exp
h
�
X
u;v

�2.u; v/
i
; (10.5)

where �2.�; �/ is an energy function that depends on pairs of pixels. A very popular
choice for �2.u; v/ is

�2.u; v/ D wu;vjl.u/� l.v/jp; (10.6)

where wu;v is a weight that indicates dependency of labels between two pixels. For
example, in the simple Ising model, we have wu;v 6D 0 only when u; v are adjacent
pixels. The weight could also encode any pairwise “similarity” between two pixels:
whether their features are similar to each other; or whether they are separated by an
edge in between.

380 10 Image Segmentation

Given the above forms for p.x j lI �/ and p.l/, to infer the labels from the
maximum a posteriori estimate (10.1) is to optimize an objective function of the
form

arg max
l

p.l j xI �/ D arg max
l

exp
� � E.u/

�
; (10.7)

where the energy function E.u/ takes the special form

E.u/
:D
X

u

�1.u/C
X
u;v

�2.u; v/: (10.8)

There has been extensive study in the computer vision literature in the past three
years about how to effectively and efficiently minimize an energy function of this
form. In fact, it is known that if K D 2, then the global optimal solution to the above
problem can be found via the graph cut algorithm. There has been much work that
generalizes to the case with more than two segments and even to energy functions
that consist of higher-order dependency terms.

10.1.2 Image Segmentation as Subspace Clustering

In this chapter, however, we are not so interested in the general image segmentation
problem per se. We want to study how the image segmentation problem is closely
related to the mixture of subspaces (or degenerate Gaussians) model that we
have studied in this book. In addition, we will see how some of the optimization
techniques that we have learned from this book for subspace clustering could offer
a rather effective solution to the segmentation problem, at least certain parts of it.

To simplify the problem, we assume that the energy function contains only the
unary term �1.u/.2 Then the image segmentation problem naturally reduces to a data
clustering problem with respect to a given mixture model p.xI �/: for any feature
vector y D x.u/ with k D l.u/, it is of distribution p.yI �k/.

The simplest distributions for features of each segment include that x.u/ is
constant and that x.u/ is an isotropic Gaussian distribution. However, such simple
models have many limitations. The constant distribution essentially assumes that
the image is piecewise constant. That does not capture the variabilities that we
often see in natural image segments: change of color intensity, illumination, etc.
In addition, in a region with a somewhat complex texture, windows centered at
different pixels in the region may have different appearances although they are
statistically similar. The isotropic Gaussian distribution is also problematic: features

2We will see how to incorporate pairwise information such as edges into such a simplified
framework later. In particular, as we will see, such information can be incorporated through a
special initialization to the segmentation algorithm.

10.1 Basic Models and Principles 381

from different textural regions differ not only in their means, but also in the shapes
of their distributions. When we extract high-dimensional features from a large
neighborhood around each pixel, the features of each segment normally do not span
the whole feature space and more likely lie on a lower-dimensional manifold. As we
have seen in previous chapters, strong empirical evidence has shown that it is more
reasonable to assume that features or patches of an image segment (approximately)
span a low-dimensional subspace in the feature space, and all features of the whole
image then lie in a mixture of subspaces (or degenerate Gaussians).

Therefore, with the unary assumption for the energy function E.u/ and the
additional subspace assumption for the distribution of features for each segment,
the image segmentation problem is largely equivalent to the problem of subspace
clustering. Notice that in the above formulation, we have assumed that the model of
the feature distribution p.xI �/ is known. Obviously, the model parameters � need
to be estimated for the image before segmentation can be computed. In real image
segmentation algorithms, this is often done by minimizing the energy function
E.u; �/ with respect to the segmentation l.u/ and the model parameters � in an
alternating fashion, just as in the EM algorithm.

10.1.3 Minimum Coding Length Principle

In this chapter, we will show that the compression-based subspace clustering method
studied in Chapter 6 is very pertinent to the image segmentation problem and offers
a very effective and useful solution, for the following reasons:

• In image segmentation, we are mostly interested in the clustering result itself and
do not care so much about the precise parameters for the mixture model. The
compression-based method does not explicitly estimate the mixture model, and
it does not need to know in advance how many segments there are.

• The agglomerative nature of the compression-based clustering algorithm can be
easily modified to exploit the spatial adjacency between image pixels and regions,
which not only improves efficiency through reduced search space but also can
generate segments that respect spatial continuity.

• By controlling the level of quantization error, we can directly control the level
of variability in the segments obtained. If we change the quantization error from
small to large, we naturally obtain a hierarchy of image segmentation results of
different levels of granularity (see Figure 10.5).

• In the end, as a byproduct, compression-based image segmentation gives an
accurate upper bound of the image complexity in terms of binary coding length.
Such a quantity can be used for other useful purposes such as image compression.

As we have mentioned above, by casting the image segmentation problem as a
subspace clustering problem, we are unable to model and exploit higher-order label
dependencies among pixels. As we will see, this can be naturally remedied in the

382 10 Image Segmentation

compressed-based approach in two ways: we can initialize the compression-based
algorithm with initial super-pixel segments that respect the local edges; and within
the same compression framework, we can encodes the boundary information of each
homogeneous texture region by counting the number of bits needed to encode the
boundary (with an adaptive chain code).

Based on the minimum description length (MDL) principle (which is popular for
model selection in statistics), the optimal segmentation of an image is defined to
be the one that minimizes its total coding length, including codes needed for both
the segments and their boundaries. At any fixed quantization level, the final coding
length gives a purely objective measure for how good the segmentation is in terms of
how compactly one can represent the resulting segmented image with binary codes.

We conduct extensive experiments to compare the results with human seg-
mentation using the Berkeley segmentation data set (BSD) ((Martin et al. 2001)).
Although the method is conceptually simple and the quantity optimized is purely
objective, the segmentation results match extremely well those made by humans,
exceeding or competing with the best segmentation algorithms.

10.2 Encoding Image Textures and Boundaries

10.2.1 Construction of Texture Features

We first introduce how to construct texture vectors that represent homogeneous
textures in image segments. In order to capture the variation of texture, one can
directly apply a w�w cutoff window around a pixel across the three color channels
and stack the color values inside the window in a vector form as in (Yang et al.
2008).3

Figure 10.1 illustrates the process of constructing texture features. Let the
w-neighborhoodWw.u/ be the set of all pixels in a w�w window across three color
channels (e.g., RGB or L�a�b�) centered at pixel u. Define the set of features X by
taking the w-neighborhood around each pixel in I, and then stacking the window as
a column vector of the data matrix:

X
:D Œx.u/ 2 R

3w2 W x.u/ DWw.u/
S for u 2 I�: (10.9)

For ease of computation, we further reduce the dimensionality of these features by
projecting the set of all features in X onto their first D principal components. We
denote the set of features with reduced dimensionality by OX. We have observed that

3Another popular approach for constructing texture vectors is to use multivariate responses of a
fixed 2D texture filter bank. A previous study by (Varma and Zisserman 2003) has argued that
the difference in segmentation results between the two approaches is small, and yet it is more
expensive to compute 2D filter bank responses.

10.2 Encoding Image Textures and Boundaries 383

Fig. 10.1 Texture features are constructed by stacking the w � w windows around all pixels of a
color image I into a data matrix X and then projecting to a low-dimensional space via principal
component analysis (PCA).

for many natural images, the first eight principal components of X contain over 99%
of the energy. In this chapter, we choose to assign D D 8.

Over all distributions with the same variance, it is known that the Gaussian
distribution has the highest rate distortion, and is in this sense the worst-case distri-
bution for compression. Thus using the rate-distortion for a Gaussian distribution,
we obtain an upper bound for the coding length of the true distribution.

10.2.2 Texture Encoding

To describe encoding texture vectors, we first consider a single region R with N
pixels. From Chapter 6, for a fixed quantization error ", the expected number of bits
needed to code the set of N feature windows OX up to distortion "2 is given by

L". OX/ :D D
2

log2 det.I C D
"2
†/„ ƒ‚ …

codebook

C N
2

log2 det.I C D
"2
†/„ ƒ‚ …

data

C D
2

log2.1C k�k
2

"2
/„ ƒ‚ …

mean

;

where � and † are the mean and covariance of the vectors in OX. The coding
length function L". OX/ is the sum of three terms, for the D principal vectors as the
codebook, the N vectors with respect to that codebook, and the mean of the Gaussian
distribution, respectively.

The coding length function above is uniquely determined by the mean and
covariance .�; †/. To estimate them empirically, we need to exclude the windows
that cross the boundary of R (as shown in Figure 10.2(a)). Such windows contain
textures from the adjacent regions, which cannot be well modeled by a single
Gaussian as the interior windows. Hence, the empirical mean O�w and covariance
O†w of R are estimated only from the interior of R:

Iw.R/
:D fu 2 R W 8v 2Ww.u/; v 2 Rg: (10.10)

384 10 Image Segmentation

(a) (b)

Fig. 10.2 (a) Only windows from the interior of a region are used to compute the empirical mean
O�w and covariance O†w. (b) Only nonoverlapping windows that can tile R as a grid are encoded.

The coding length function L". OX/ encodes all texture vectors in OX to represent
region R.4 This is highly redundant, because the N windows in the region overlap
with each other. Thus, to obtain a more accurate code of R that closely approximates
its true entropy, we need to code only the nonoverlapping windows that can tile R
as a grid, as in Figure 10.2 (b).

Ideally, if R is a rectangular region of size mw � nw, where m and n are positive
integers, then clearly we can tile R with exactly mn D N

w2
windows. So for coding

the region R, a more proper coding length measure is given by

Lw;".R/
:D .D

2
C N

2w2
/ log2 det.I C D

"2
O†w/C D

2
log2.1C k O�wk2

"2
/: (10.11)

Real regions in natural images normally do not have such nice rectangular shapes.
However, (10.11) remains a good approximation to the actual coding length of a
region R with relatively smooth boundaries.5

10.2.3 Boundary Encoding

To code windows from multiple regions in an image, one must know to which
region each window belongs, so that each window can be decoded with respect to
the correct codebook. For generic samples from multiple classes, one can estimate
the distribution of each class label and then code the membership of the samples
using a scheme that is asymptotically optimal for that class distribution (such as

4The image segmentation example shown in Section 6.4.2 in Chapter 6 was done using such a
coding length function.
5For a large region with a sufficiently smooth boundary, the number of boundary-crossing windows
is significantly smaller than the number of those in the interior. For boundary-crossing windows,
their average coding length is roughly proportional to the number of pixels inside the region if the
Gaussian distribution is sufficiently isotropic.

10.2 Encoding Image Textures and Boundaries 385

3 2 1
↖↑↗

4 ←•→ 0
↙↓↘

5 6 7

Fig. 10.3 Left: The Freeman chain code of an edge orientation along eight possible directions.
Middle: Representation of the boundary of a region in an image with respect to the Freeman chain
code. Right: Representation with respect to the difference chain code.

the Huffman code used in (Yang et al. 2008)). Such coding schemes are highly
inefficient for natural image segmentation, since they do not leverage the spatial
continuity of pixels in the same region. In fact, for this application, pixels from the
same region form a connected component. Thus, the most efficient way of coding
group membership for regions in images is to code the boundary of the region
containing the pixels.

A well-known scheme for representing boundaries of image regions is the
Freeman chain code. In this coding scheme, the orientation of an edge element is
quantized along eight discrete directions, shown in Figure 10.3. Let fotgTtD1 denote
the orientations of the T boundary pixels of R. Since each chain code can be encoded
using three bits, the coding length of the boundary of R is

B.R/ D 3
7X

iD0
#.ot D i/: (10.12)

The coding length B.R/ can be further improved by using an adaptive Huffman
code that leverages the prior distribution of the chain codes. Though the distribution
of the chain codes is essentially uniform in most images, for regions with smooth
boundaries, we expect that the orientations of consecutive edges are similar, and
so consecutive chain codes will not differ by much. Given an initial orientation
(expressed in chain code) ot, the difference chain code of the following orientation
otC1 is �ot

:D mod .ot � otC1; 8/. Figure 10.3 compares the original Freeman
chain code with the difference chain code for representing the boundary of a region.
Notice that for this region, the difference encoding uses only half of the possible
codes, with most being zeros, while the Freeman encoding uses all eight chain
codes. Given the prior distribution PŒ�o� of difference chain codes, B.R/ can be
encoded more efficiently using a lossless Huffman coding scheme:

B.R/ D �
7X

iD0
#.�ot D i/ log2.PŒ�o D i�/: (10.13)

For natural images, we estimate PŒ�o� using images from the BSD that were
manually segmented by humans. We compare the distribution with the one estimated

386 10 Image Segmentation

Table 10.1 The prior probability of the difference chain codes estimated from the BSD
and by (Liu and Zalik 2005).

Difference Code 0 1 2 3 4 5 6 7

Angle change 0ı 45ı 90ı 135ı 180ı �135ı �90ı �45ı

Prob. (BSD) 0.585 0.190 0.020 0.000 0.002 0.003 0.031 0.169

Prob. (Liu-Zalik) 0.453 0.244 0.022 0.006 0.003 0.006 0.022 0.244

by (Liu and Zalik 2005), which used 1000 images of curves, contour patterns, and
shapes obtained from the web. As the results in Table 10.1 show, the regions of
natural images tend to have smoother boundaries when segmented by humans.

10.3 Compression-Based Image Segmentation

In this section, we discuss how to use the coding length functions to construct a
better compression-based image segmentation algorithm. We first describe a basic
approach. Then we propose a hierarchical scheme to deal with small regions using
multiscale texture windows. Finally, we investigate a simple yet effective regression
scheme to adaptively choose a proper distortion parameter " based on a set of
manually labeled segmentation examples.

10.3.1 Minimizing Total Coding Length

Suppose an image I can be segmented into nonoverlapping regions R D
fR1; : : : ;Rkg; [k

iD1Ri D I. The total coding length of the image I is

Ls
w;".R/ :D

kX
iD1

Lw;".Ri/C 1
2
B.Ri/: (10.14)

Here, the boundary term is scaled by a half, because we need to represent the
boundary between any two regions only once. The optimal segmentation of I is
the one that minimizes (10.14). Finding this optimal segmentation is, in general, a
combinatorial task, but we can often do so using an agglomerative approximation
similar to that introduced in Chapter 6.

To initialize the optimization process, one can assume that each image pixel (and
its windowed texture vector) belongs to an individual group of its own. However,
this presents a problem that the maximal size of the texture window can be one only
without intersecting with other adjacent regions (i.e., other neighboring pixels). In
this chapter, similar to (Yang et al. 2008), we utilize an oversegmentation step to
initialize the optimization by superpixels. A superpixel is a small region in the
image that does not contain strong edges in its interior. Superpixels provide a coarser

10.3 Compression-Based Image Segmentation 387

quantization of an image than the underlying pixels while respecting strong edges
between the adjacent homogeneous regions. There are several methods that can
be used to obtain a superpixel initialization, including those of (Mori et al. 2004;
Felzenszwalb and Huttenlocher 2004) and (Ren et al. 2005). We have found that
(Mori et al. 2004)6 works well for our purposes here.

Given an oversegmentation of the image, at each iteration we find the pair of
regions Ri and Rj that will maximally decrease (10.14) if merged:

.R�i ;R�j / D arg max Ri;Rj 2 R�Lw;".Ri;Rj/; where

�Lw;".Ri;Rj/
:D Ls

w;".R/� Ls
w;"..RnfRi;Rjg/[fRi [Rjg/

D Lw;".Ri/C Lw;".Rj/ � Lw;".Ri [Rj/

C 1
2
.B.Ri/C B.Rj/� B.Ri [Rj//: (10.15)

Here �Lw;".Ri;Rj/ essentially captures the difference in the lossy coding lengths of
the texture regions Ri and Rj and their boundaries before and after the merging. If
�L.R�i ;R�j / > 0, we merge R�i and R�j into one region and repeat the process until
the coding length Ls

w;".R/ cannot be further reduced.
To model the spatial locality of textures, we further construct a region adjacency

graph (RAG) G D .V ; E/. Each vertex vi 2 V corresponds to region Ri 2 R,
and an edge eij 2 E indicates that regions Ri and Rj are adjacent in the image.
To perform image segmentation, we simply apply a constrained version of the
above agglomerative procedure, merging only regions that are adjacent in the
image. The proposed region-merging method has been widely used by other image
segmentation algorithms ((Haralick and Shapiro 1985; Tremeau and Borel 1997;
Deng and Manjunath 2001)).

In terms of the computational complexity, one can show that the agglomerative
clustering process that iteratively minimizes (10.14) is a polynomial-time algorithm.
More specifically, let w be the window size, n the image size, and k the number
of initial superpixel segments. One can show that the computational complexity
of agglomerative clustering is bounded by O.kw6 C n2w2/. Also note that the
complexity bound has ignored the cost to sort and maintain the ordering of the
coding length difference (10.15), since the algorithm can use a heap structure to
efficiently implement the sorting and resorting algorithms ((Kurita 1995)).

10.3.2 Hierarchical Implementation

The above region-merging scheme is based on the assumption of a fixed texture
window size, and clearly cannot effectively deal with regions or superpixels that are
very small. In such cases, the majority of the texture windows will intersect with

6We use the publicly available code for this method available at http://www.cs.sfu.ca/~mori/
research/superpixels/ with parameter N_sp D 200.

http://www.cs.sfu.ca/~mori/research/superpixels/
http://www.cs.sfu.ca/~mori/research/superpixels/

388 10 Image Segmentation

the boundary of the regions. We say that a region R is degenerate with respect
to window size w if Iw.R/ D ;. For such regions, the w-neighborhoods of all
pixels will contain pixels from other regions, and so O� and O† cannot be reliably
estimated. These regions are degenerate precisely because of the window size; for
any w-degenerate region R, there is 1
 w0 < w such that Iw0.R/ ¤ ;. We say that
R is marginally nondegenerate with respect to window size w if Iw.R/ ¤ ; and
IwC2.R/ D ;. To deal with these degenerate regions, we propose to use a hierarchy
of window sizes. Starting from the largest window size, we recursively apply the
above scheme with ever smaller window sizes till all degenerate regions have been
merged with their adjacent ones. In particular, we start from 7 � 7 and reduce to
5�5, 3�3, and 1�1. Please refer to Figure 10.4 for an example of this hierarchical
scheme.

Notice that at a fixed window size, the region-merging process is similar to the
compression-based texture merging (CTM) approach proposed in (Yang et al. 2008).
Nevertheless, the new coding length function and the hierarchical implementation
give a much more accurate approximation to the true image entropy and hence
lead to much better segmentation results. We summarize the overall algorithm for
image segmentation in Algorithm 10.1, which we refer to as texture and boundary
encoding-based segmentation (TBES).

Fig. 10.4 An example illustrates the scheme for hierarchical image segmentation. (a) Initial set of
regions. Note that regions 3 and 4 are degenerate with respect to the window size w. (b) In the first
stage, only nondegenerate regions 1, 2, and 5 are considered for merging. (c) In the next stage, w
is reduced, causing region 4 to be marginally nondegenerate. We consider merging region 4 with
its nondegenerate neighbors. (d) In the last stage, w is reduced enough so that region 3 becomes
nondegenerate. These stages are repeated until the overall coding length can no longer be reduced.

10.3 Compression-Based Image Segmentation 389

Algorithm 10.1 Texture and Boundary Encoding-based Segmentation (TBES)
Given image I, distortion ", max window size wM , superpixels R D

fR1; : : : ;Rkg,
1: for wD 1 W 2 W wM do
2: Construct OXw by stacking the w � w windows around each u 2 I as column vectors and

applying PCA.
3: end for
4: Construct RAG G D .V ; E/, where V � R and eij 2 E only if Ri and Rj are adjacent in I.
5: wD wM

6: repeat
7: if wD wM then
8: Find Ri and Rj such that eij 2 E , Iw.Ri/¤ ;, Iw.Rj/ ¤ ;, and�Lw;".Ri;Rj/ is maximal.
9: else

10: Find Ri and Rj such that eij 2 E , Iw.Ri/ ¤ ;, Iw.Rj/ ¤ ; , IwC2.Ri/ D ; or
IwC2.Rj/ D ; and �Lw;".Ri;Rj/ is maximal.

11: end if
12: if �Lw;".Ri;Rj/ > 0 then
13: R WD �

R n fRi;Rjg�[fRi [Rjg:
14: Update G based on the newly merged region.
15: w D wM

16: else if w ¤ 1 then
17: w D w� 2
18: end if
19: until IwM .R/ ¤ ;; 8R 2 R and �LwM ;".Ri;Rj/ � 0; 8Ri;Rj 2 R
20: Output: The set of regions R.

10.3.3 Choosing the Proper Distortion Level

Algorithm 10.1 requires a single parameter, the distortion level ", which determines
the granularity of the segmentation. The optimality of " is measured by the
segmentation that best matches with human perception. As shown in Figure 10.5,
since natural images have different scales of resolution, no single choice of "
is optimal for all images. In this section, we propose a solution to adaptively
selecting a proper distortion parameter such that the segmentation result better
approximates human perception. The method assumes that a set of training images
I D fI1; � � � ; IKg has been manually segmented by human users as the ground truth
set Sg D fRg.I1/; � � � ;Rg.IK/g.

To objectively quantify how well a given segmentation matches with human
perception, we first need a measure for the discrepancy between two segmentations
R1 and R2, denoted by d.R1;R2/. Intuitively, the discrepancy measure should be
small when R1 and R2 are similar in some specific sense.7 Given a measure d, the
best " for Ii, denoted by "�i , can be obtained by

7We will discuss several discrepancy measures in Section 10.4.2, such as the probabilistic Rand
index (PRI) and variation of information (VOI).

390 10 Image Segmentation

Fig. 10.5 A comparison of segmentation results with respect to different distortion levels. The
low distortion generates better segmentations for the left two images, while the high distortion
generates better results for the right two images.

"�i D arg min
"

d.R".Ii/;Rg.Ii//; for each Ii 2 I: (10.16)

An example of the relationship between " and a discrepancy measure d is shown in
Figure 10.6.

Since ground truth segmentations are not available for nontraining images, we
shall use the training images Sg D fRg.Ii/g to infer " for a test image. A classical
technique for estimating a continuous parameter, such as ", from training data is
linear regression ((Duda et al. 2000)). The method requires a pair ."i; f i/ per training
image Ii, where "i is the “optimal” distortion for image Ii and f i is a set of features
extracted from Ii. Then the regression parameters w can be estimated by solving the
following objective function:

w� D arg min w
X

i

.w>f i � "�i /2: (10.17)

The distortion level " with respect to a new test image I with its feature vector f is
given by ".f/

:D w�>f .
The features f i in (10.17) should be chosen to effectively model the statistics of

the image, so that the relationship between " and f i is well approximated by the
linear function "i � w>f i. A simple idea to define f i could consider how contrastive
the regions in Ii are. Intuitively, when the textures in Ii are similar, such as in
camouflage images, stronger sensitivity to contrast in patterns is required. Since

10.3 Compression-Based Image Segmentation 391

Fig. 10.6 The effect of distortion " on the discrepancy d.R".Ii/;Rg.Ii// on an example image.
The discrepancy shown in the plot is the probability that an arbitrary pair of pixels do not have
consistent labels in R".Ii/ and Rg.Ii/, namely, PRIC (please refer to Section 10.4.2).

computing the standard deviation of pixel intensities gives a measure of pattern
contrast, we resize each Ii with multiple scales, and define the features f i as the
standard deviations of the pixel intensities at the multiple image resolutions.

Another issue in linear regression is that the classical model (10.17) is insufficient
to accurately predict the distortion level for Algorithm 10.1. In particular, the
discrepancy measure d is used only to determine the optimal "� for a training
image. Segmentation results for other choices of " are not used in the regression.
However, it is possible to better estimate the distortion " by taking into account
the segmentation results around a neighborhood of the optimal distortion "� in the
training set.

For agglomerative image segmentation, the discrepancy measures that we use in
this chapter exhibit a simple behavior. Specifically, as " deviates from "� in either
direction, the discrepancy between the segmentation and the ground truth almost
increases monotonically. This is because as " deviates from "�, it leads to overseg-
mentation or undersegmentation, both of which have larger discrepancies from the
ground truth (see Figure 10.6). Motivated by this observation, we approximate the
discrepancy function d by a convex quadratic form:

d.R".Ii/;Rg.Ii// � ai"
2 C bi"C ci; where ai > 0: (10.18)

The parameters .ai; bi; ci/ are then estimated by least squares fitting with respect to
the pairs .d; "/. The latter is attained by sampling the function d.R".Ii/;Rg.Ii// at
different "’s.

Once we substitute (10.18) in (10.16) in combination with the linear model
" D w>f i, the objective function to recover the linear regression parameter w� is

392 10 Image Segmentation

given by

w� D arg min w
X

i

ai.w>fi/
2 C bi.w>fi/C ci: (10.19)

Since ai > 0 for all training images Ik, (10.19) is an unconstrained convex program.
Thus it has a closed-form solution:

w� D �1
2
.
X

i

aif if
>
i /
�1.
X

i

bif i/: (10.20)

Once w� is learned from the training data, the optimal distortion of the test
image I with its feature vector f is predicted by ".f/ D w�>f . We caution that
based on w�, the prediction of the distortion parameter ".f i/ for each training image
Ii may not necessarily be the same as "�i selected from the ground truth Rg.Ii/.
Nevertheless, the proposed solution ensures that the linear model minimizes the
average discrepancy over the training data.

10.4 Experimental Evaluation

In this section, we conduct extensive evaluations to validate the performance of
the TBES algorithm. The experiment is based on the publicly available Berkeley
segmentation data set (BSD) ((Martin et al. 2001)). BSD consists of 300 natural
images, which cover a variety of natural scene categories, such as portraits, animals,
landscapes, and beaches. The database is partitioned into a training set of 200
images and a testing set of 100 images. It also provides ground-truth segmentation
results of all the images obtained by several human subjects. On average, five
segmentation maps are available per image. Multiple ground truth allows us to
investigate how human subjects agree with each other.

The implementation of the TBES algorithm and the benchmark scripts are
available online at http://perception.csl.illinois.edu/coding/image_segmentation/ or
on request.

10.4.1 Color Spaces and Compressibility

The optimal coding length of textured regions of an image depends in part on the
color space. We seek to determine the color space in which natural images are
most compressible based on the proposed lossy compression scheme (10.14). It
has been noted in the literature that the Lab color space (also known as L�a�b�)
better approximates the perceptually uniform color metric (Jain 1989). This has
motivated some of the previous work (Yang et al. 2008; Rao et al. 2009) to utilize

http://perception.csl.illinois.edu/coding/image_segmentation/

10.4 Experimental Evaluation 393

such a representation in methods for natural image segmentation. In order to check
the validity of this assumption, particularly for the compression-based segmentation
scheme, we perform a study on five color spaces that have been widely used in the
literature, namely, Lab, YUV, RGB, XYZ, and HSV.

We use the manually segmented training images in the Berkeley data set to rank
the compressibility of the five color spaces. Given a color space, for any image
and corresponding segmentation, the number of bits required to encode texture
information is computed as L". OX/, with features constructed as in Section 10.2.1.
The average coding length of an image is computed as the one over all ground-truth
segmentation maps for that image. Finally, the average coding length of the data set
is computed over all the images in the data set.

We note that the volume of the pixel distribution (and thus the coding length) can
change if the pixel values are rescaled. This means that one color space can look
more compressible by merely producing numbers in a smaller range, say Œ0; 1� as
opposed to another that is in the range Œ0; 255�. In order to achieve a fair comparison,
we normalize the feature vectors by a scale factor c, which is constant across features
from the same color space:

c D 1=
q
N�max; (10.21)

where N�max is the average of the maximum eigenvalues of the feature covariance
matrix over all regions and all images in the data set.

The average (normalized) coding lengths of five representative color spaces are
shown in Figure 10.7. Among all five color spaces examined, Lab has the shortest
coding length. Therefore, in experiments for the rest of the chapter, input images are
first converted to the Lab color space.

Fig. 10.7 Average coding length of an image in five representative color spaces.

394 10 Image Segmentation

10.4.2 Experimental Setup

To quantitatively evaluate the performance of this method, we use four metrics for
comparing pairs of image segmentation: the probabilistic Rand index (PRI) ((Rand
1971)), variation of information (VOI) ((Meila 2005)), boundary displacement error
(BDE) ((Freixenet et al. 2002)), and the global F-measure ((Arbelaez 2006)):

1. The probabilistic Rand index (PRI) is a classical metric that measures the
probability that an arbitrary pair of samples have consistent labels in the two
partitions. The PRI metric is in the range Œ0; 1�, with higher values indicating
greater similarity between two partitions. When used to adaptively choose " as
described in Section 10.3.3, we use PRIC :D .1 � PRI/.

2. The variation of information (VOI) measures the sum of information loss and
information gain between the two clusterings, and thus it roughly measures
the extent to which one clustering can explain the other. The VOI metric is
nonnegative, with lower values indicating greater similarity.

3. The boundary displacement error (BDE) measures the average displacement
error of boundary pixels between two segmented images. Particularly, it defines
the error of one boundary pixel as the distance between the pixel and the closest
pixel in the other boundary image.

4. The global F-measure (GFM) is the harmonic mean of precision and recall, a
pair of complementary metrics for measuring the accuracy of the boundaries in
an image segmentation given the ground-truth boundaries. Precision measures
the fraction of true boundary pixels in the test segmentation. Recall measures the
fraction of ground-truth boundary pixels in the test segmentation. When used to
adaptively choose ", we use GFMC :D .1 �GFM/.

In cases in which we have multiple ground-truth segmentations, to compute the
PRI, VOI, or BDE measure for a test segmentation, we simply average the results of
the metrics between the test segmentation and each ground-truth segmentation. To
compute the GFM measure from multiple ground-truth segmentations, we apply
the same techniques used in (Arbelaez et al. 2009), which roughly aggregate
the boundary precision and recall over all ground-truth images as an ensemble.
With multiple ground-truth segmentations for an image, we can also estimate the
human performance with respect to these metrics by treating each ground-truth
segmentation as a test segmentation and computing the metrics with respect to the
other ground-truth segmentations.

The adaptive " scheme relies on the feature vector f used in (10.19) as follows.
The image I is converted to grayscale, and its size is rescaled by a set of specific
factors. The standard deviation of pixel intensity of each rescaled image constitutes
a component of the feature vector. Empirically, we have observed that using four
scale factors, i.e., f 2 R4, produces good segmentation results for the algorithm on
the BSD database.

The parameters .ak; bk; ck/ in the quadratic form in (10.18) are estimated as
follows. We sample 25
 "
 400 uniformly, in steps of 25, and compute the

10.4 Experimental Evaluation 395

corresponding d.S".Ik/; Sg.Ik// for each sample. This gives a set f.dk;n; "k;n/g16nD1 for
an image Ik. We use this set to estimate .ak; bk; ck/ by the least squares method.

10.4.3 Results and Discussions

We quantitatively compare the performance of the TBES method with seven
publicly available image segmentation methods, namely, mean shift (MS) by
(Comanicu and Meer 2002), Markov Chain Monte Carlo (MCMC) by (Tu and Zhu
2002), F&H by (Felzenszwalb and Huttenlocher 2004), multiscale NCut (MNC)
by (Cour et al. 2005), compression-based texture merging (CTM) by (Yang et al.
2008), ultrametric contour maps (UCM) by (Arbelaez et al. 2009), and saliency
driven total variation (SDTV) by (Donoser et al. 2009), respectively. The user-
defined parameters of these methods have been tuned by the training subset of each
data set to achieve the best performance with respect to each segmentation index.
Then the performance of each method is evaluated based on the test subset.

Table 10.2 shows the segmentation accuracy of TBES compared to the human
ground truth and the other seven algorithms.8 In addition to the evaluation of the
algorithms, multiple ground-truth segmentations in BSD allow us to estimate the
human performance with respect to these metrics. This was achieved by treating
each ground-truth segmentation as a test segmentation and computing the metrics
with respect to the other ground-truth segmentations. To qualitatively inspect the
segmentation, Figure 10.8 illustrates some representative results.

Among all the algorithms in Table 10.2, TBES achieves the best performance
with respect to PRI and VOI. It is also worth noting that there seems to be a large gap
in terms of VOI between all the algorithm indices and the human index (e.g., 1.705
for TBES versus 1.163 for human). With respect to BDE and GFM, UCM achieves
the best performance, which is mainly due to the fact that UCM was designed to
construct texture regions from the hierarchies of (strong) image contours and edges.
In this category, TBES still achieves the second-best performance, largely exceeding
the indices posted by the rest of the algorithms in the literature.

Note that in Table 10.2, TBES consistently outperforms CTM, on which the
fundamental lossy-coding framework of TBES is based. To clarify the contribution
of each new TBES component, we further provide an analysis of the efficacy
of the components of TBES in a “leave-one-out” comparison. In Table 10.3, the
performance of TBES with certain functions individually disabled is shown. The
variations of the code include disabling adaptive choice of epsilon, discounting over-
lapping windows, hierarchical window sizes, and boundary coding, respectively.

8The quantitative performance of several existing algorithms was also evaluated in a recent work
((Arbelaez et al. 2009)), which was published roughly at the same time as this work. The reported
results therein generally agree with our findings.

396 10 Image Segmentation

Table 10.2 Comparison on the BSD using
the PRI, VOI, BDE, and GFM indices. For
PRI and GFM, higher values indicate better
segmentation; for VOI and BDE, lower val-
ues indicate better segmentation.

BSD PRI VOI BDE GFM

Human 0.868 1.163 7.983 0.787

TBES 0.807 1.705 12.681 0.647

MS 0.772 2.004 13.976 0.600

MCMC 0.768 2.261 13.897 0.467

F&H 0.770 2.188 14.057 0.579

MNC 0.742 2.651 13.461 0.590

CTM 0.755 1.897 14.066 0.595

UCM 0.796 1.715 10.954 0.706
SDTV 0.801 1.790 15.513 0.593

Fig. 10.8 Representative segmentation results (in color) of the TBES algorithm on various image
categories from BSD. For each image pair, the top is the original input image, and the bottom is
the segmentation result, where each texture region is rendered by its mean color. The distortion "
was chosen adaptively to optimize PRI.

10.4 Experimental Evaluation 397

Table 10.3 A comparison of the efficacy of
the individual components of the TBES algo-
rithm. The first row shows the performance of
TBES, and each following row corresponds to
disabling one component of TBES. TBES."/,
TBSE.w/ , TBSE.h/, and TBSE.b/ correspond
to disabling the code for adaptive choice
of epsilon, discounting overlapping windows,
hierarchical window sizes, and boundary cod-
ing, respectively. For TBES."/ , a fixed " D
150 is chosen. For TBES.h/ that disables hier-
archical resolutions, a fixed window size w D
7 is chosen. The best performance values are
highlighted in boldface.

BSD PRI VOI BDE GFM

TBES 0.807 1.705 12.681 0.647
TBES."/ 0.793 1.792 15.020 0.545

TBES.w/ 0.790 1.788 13.972 0.597

TBES.h/ 0.794 1.743 13.335 0.613

TBES.b/ 0.796 1.775 13.659 0.638

Clearly, since TBES retains the best performance over all four segmentation
metrics in Table 10.3, it shows that disabling any segmentation criterion would
worsen its performance. Since TBES."/ gives the overall worst performance in
Table 10.3, one can conclude that adaptively choosing the distortion level " is
the single most important heuristic in TBES, which justifies our argument in
Section 10.3.3 that since natural images represent different scene categories with
different scales of resolution, no single choice of " is optimal for all images.
Furthermore, it is interesting to observe that all the variations of TBES in Table 10.3
still achieve better segmentation metrics than the original CTM algorithm in
Table 10.2.

Finally, we briefly discuss a few images on which this method fails to achieve a
good segmentation. The examples are shown in Figure 10.9. The main causes for
visually inferior segmentation are camouflage, shadows, non-Gaussian textures, and
thin regions:

1. It is easy to see that the texture of animal camouflages is deliberately chosen to
be similar to the background texture. The algorithm falls behind humans in this
situation, arguably because human vision can recognize the holistic shape and
texture of the animals based on experience.

2. Since shades of the same texture may appear very different in images, TBES may
break up the regions into more or less the same level of shade.

3. Some patterns in natural images do not follow the Gaussian texture assumption.
Examples include geometric patterns such as lines or curves.

4. Thin regions, such as spiders’ legs, are problematic for TBES for two rea-
sons. First, it has trouble to properly form low-level superpixels used as the

398 10 Image Segmentation

Fig. 10.9 Examples from BSD (in color) where the TBES algorithm failed to obtain a reasonable
segmentation. Top: Original input images. Middle: Segmentation with respect to PRI. Bottom:
Segmentation w.r.t VOI.

initialization. Second, large enough windows that can better capture the statistics
of the texture can barely fit into such thin regions. Consequently, texture
estimation at these regions is ill conditioned and unstable.

To realize whether these problems are unique to the TBES method or are more
universal, we have investigated similar problematic cases with the other methods
reported here ((Comanicu and Meer 2002; Tu and Zhu 2002; Felzenszwalb and
Huttenlocher 2004; Cour et al. 2005; Yang et al. 2008; Arbelaez et al. 2009;
Donoser et al. 2009)). None of the methods were able to handle camouflage very
well. Shadows are challenging for these methods as well. However, we observe
that UCM performs relatively better in this case. For geometric patterns, CTM
seems to be slightly better than others, but still is an oversegmentation. In the
category of thin regions, all algorithms performed very poorly, but mean-shift is
better by, for example, roughly picking up some of the spider’s legs. It is further
worth pointing out an interesting observation about PRI versus VOI that the former
prefers oversegmentation and the latter prefers undersegmentation (as shown in
Figure 10.9).

To summarize, in this chapter, we have studied natural image segmentation
as a subspace clustering problem. The proposed segmentation algorithm is based
on the information-theoretic approach introduced in Chapter 6. We have shown
how to customize that method to take into account boundary information that is
special and important in image segmentation. In particular, the texture and boundary
information of each texture region is encoded using a Gaussian distribution and
adaptive chain code, respectively. The partitioning of an image is achieved by an
agglomerative clustering process applied to a hierarchy of decreasing window sizes.
Based on the MDL principle, the optimal segmentation of the image is defined
as the one that minimizes its total coding length. Since the lossy coding length
function also depends on a distortion parameter that determines the granularity
of the segmentation, one can use a simple linear regression to learn the optimal

10.5 Bibliographic Notes 399

distortion parameter from a set of training images when it is provided by the user.
Our experiments have validated that this simple method outperforms other existing
methods in terms of region-based segmentation indices (i.e., PRI and VOI), and is
among the top solutions in terms of contour-based segmentation indices (i.e., BDE
and GFM).

10.5 Bibliographic Notes

Image segmentation has been a very active research area in computer vision over the
past 20 years, and there has been a vast amount of literature on this topic. Since it is
impossible to give a comprehensive survey, we list here only some recent work that
is related to the ideas and assumptions behind the method introduced in this chapter.

Mixture Models for Image Segmentation
It has been widely accepted in the image segmentation community that one should
use a mixture model to model texture (features) of different regions. For example,
normalized cuts (NC) by (Shi and Malik 2000), multiscale normalized cuts (MNC)
by (Cour et al. 2005), F&H by (Felzenszwalb and Huttenlocher 2004), normalized
tree partitioning by (Wang et al. 2008a), and multilayer spectral segmentation
by (Kim et al. 2010) formulate the segmentation of a mixture model as a graph
minimum-cut problem, while mean shift (MS) by (Comanicu and Meer 2002) seeks
a partition of a color image based on different modes within the estimated empirical
distribution.

Statistical Models for Texture
Over the years, there have been many proposed methods to model the representation
of image textures in natural images. One model that has been shown to be successful
in encoding textures both empirically and theoretically is the Gaussian mesh Markov
model (MMM) (Levina and Bickel 2006). Particularly in texture synthesis, the
Gaussian MMM can provide consistent estimates of the joint distribution of the
pixels in a window, which then can be used to fill in missing texture patches via a
simple nonparametric scheme (Efros and Leung 1999). Independent image patches
that are sampled from such a Gaussian mesh model follow a Gaussian distribution.
This to some extent justifies the (degenerate) Gaussian model that we have assumed
in this chapter for the window-based feature vectors for each image segment.

Edges and Contours for Image Segmentation.
Region contours/edges convey important information about the saliency of the
objects in the image and their shapes (see (Elder and Zucker 1996; Gevers and
Smeulders 1997; Arbelaez 2006; Zhu et al. 2007; Ren et al. 2008)). Several recent
methods have been proposed to combine the cues of homogeneous color and texture
with the cue of contours in the segmentation process, including (Malik et al. 2001;
Tu and Zhu 2002; Kim et al. 2005).

400 10 Image Segmentation

Hierarchical Image Segmentation.
The properties of local features (including texture and edges) usually do not share
the same level of homogeneity at the same spatial scale. Thus, salient image regions
can only be extracted from a hierarchy of image features under multiple scales (see
(Yu 2005; Ren et al. 2005; Yang et al. 2008; Donoser et al. 2009)). The method
introduced in this chapter utilizes the notion of hierarchy in two places; one is in the
construction of feature vectors (in Section 10.3.2), and one is through varying the
level of quantization error (in Section 10.3.3).

Compression-Based Image Segmentation.
As we have discussed in Chapter 6, the notion of lossy minimum description length
(MDL) has been shown to be very effective for evaluating clustering results of
general mixed data ((Ma et al. 2007)). The MDL principle and the compression-
based clustering method were first applied to the segmentation of natural images
by (Yang et al. 2008). The method is known as compression-based texture merging
(CTM). The method presented in this chapter is based on the work of (Rao et al.
2009; Mobahi et al. 2011), which can be considered a greatly improved version
of CTM. It remedies the issue of redundant encoding of the overlapping image
windows and replaces the simple Huffman coding of the membership with a more
accurate boundary coding scheme. As result, not only is the overall coding length
more accurate, but also the segmentation results are much better.

Chapter 11
Motion Segmentation

I can calculate the motion of heavenly bodies, but not the madness of people.
—Isaac Newton

The previous two chapters have shown how to use a mixture of subspaces to
represent and segment static images. In those cases, different subspaces were used
to account for multiple characteristics of natural images, e.g., different textures.
In this chapter, we will show how to use a mixture of subspaces to represent and
segment time series, e.g., video and motion capture data. In particular, we will use
different subspaces to account for multiple characteristics of the dynamics of a time
series, such as multiple moving objects or multiple temporal events.

The first few sections of this chapter will focus on the problem of segmenting
a video into multiple regions corresponding to different moving objects, i.e.,
the motion segmentation problem. Depending on whether one is interested in
segmenting the 2D motion field in the image plane (optical flow) or the 3D motion
(rotation and translation) of multiple objects in 3D space, the motion segmentation
problem can be divided into two main categories: 2D motion segmentation and
3D motion segmentation, respectively. Moreover, depending on the type of image
measurements (image derivatives, optical flows, feature point trajectories) and
camera projection models (orthographic, spherical, perspective), different types of
motion models can be used to describe each moving object. In this chapter, we will
focus on the 3D motion segmentation problem from 2D point trajectories. We will
first study the problem of segmenting multiple motions from consecutive multiple
orthographic views. This problem corresponds to the very important practical setting
of a surveillance camera that is monitoring moving vehicles or pedestrians from a
far distance. We show that this problem is equivalent to clustering point trajectories
into multiple affine subspaces of dimension one to three. We will then study how to
segment multiple motions from two separate perspective views. While in this case

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_11

401

402 11 Motion Segmentation

the point trajectories do not live in a linear or affine subspace, we will show that
by using a nonlinear embedding, the problem can still be reduced to the problem of
clustering multiple subspaces in R9.

The last section of this chapter will focus on the problem of segmenting a video
into multiple temporal segments corresponding to different temporal events, i.e.,
the temporal segmentation problem. For example, segmenting a news video into
multiple video shots, segmenting motion capture data of humans into a sequence
of actions (walking, running), or segmenting robotic surgery data of a certain task
(suturing) into a sequence of surgical gestures (grabbing the needle, inserting the
needle, etc.). By assuming that the data within each segment are the output of a
linear autoregressive dynamical model, we show that the data points within each
segment live in a low-dimensional subspace; hence the temporal segmentation
problem can be tackled using the subspace clustering algorithms discussed in Part II.

11.1 The 3D Motion Segmentation Problem

Consider a video sequence taken by a moving camera observing n rigidly moving
objects. For example, Figure 11.1(a) shows the first frame of a video of a moving
car taken by a moving camera. In this case, there are two motions in the scene: the
motion of the red car and the motion of the background induced by the camera.
Notice that from image measurements alone, it is impossible to distinguish the case
in which the camera is stationary from that in which the camera itself is moving: all
that can be inferred from image measurement is the relative motion of the objects
in the scene with respect to the camera. Therefore, we assume for simplicity that
the camera is stationary. Under this assumption, the static background becomes one
of the moving objects, and its hypothetical motion is induced by the motion of the
camera.

To formulate the motion segmentation problem, we first need to describe the
motion of objects relative to a camera and the geometry of the camera. In this
book, we largely follow the convention and terminology of (Ma et al. 2003). We
describe the pose of each object by an element of the special Euclidean group
SE.3/, g D .R;T/ 2 SE.3/, where R 2 SO.3/ is a rotation matrix and T 2 R

3

is a translation vector.1 The pose will be expressed relative to a world coordinate
system W, which we assume to coincide with the camera coordinate system, as
illustrated in Figure 11.2. More specifically, let the pose of object i D 1; : : : ; n at
frame f D 1; : : : ;F be denoted by gfi 2 SE.3/. The motion of the ith object between
the first and the f th frames is given by .Rfi;Tfi/ D gfig�11i 2 SE.3/.2

1The special Euclidean group is defined as SE.3/ D f.R;T/ W R 2 SO.3/;T 2 R3g, where
SO.3/ D fR 2 R3�3 W R>R D I and det.R/ D 1g is the special orthogonal group.
2The inverse of g 2 SE.3/ is g�1 D .R>;�R>T/ 2 SE.3/, and the product of two transformations
g1 D .R1;T1/ and g2 D .R2;T2/ is defined as g1g2 D .R1R2;R1T1 C T2/.

11.1 The 3D Motion Segmentation Problem 403

Fig. 11.1 An image with multiple moving objects.

Let us now consider a collection of Pi 3D points lying on the ith object and let
fXp 2 R3gp2Gi be the coordinates of these points relative to the world frame, where
Gi � f1; : : : ;Pg is the set of points corresponding to the ith motion. As illustrated
in Figure 11.2, the coordinates Xfp of point p relative to the f th camera frame are
obtained by applying the rigid-body transformation .Rfi;Tfi/ to Xp:

Xfp D RfiXp C Tfi 2 R
3 8p 2 Gi: (11.1)

The projection of Xfp onto the camera plane is thus given by

xfp D �f .RfiXp C Tfi/ 8p 2 Gi; (11.2)

where �f W R3 7! R2 is the camera projection model. We will discuss the specific
form of the map � (orthographic, perspective, etc.) in a moment. As an example,
Figure 11.1(b) illustrates the set of image points fx1p 2 R2gPpD1 extracted for the
first frame of the video shown in Figure 11.1(a).

With the above notation, the 3D motion segmentation problem can be formulated
as the problem of segmenting the point trajectories fxfpgfD1;:::;FpD1;:::;P into n groups
corresponding to the n different motions in the video. Figure 11.1 provides an
example, where Figure 11.1(c) shows the first frame of the point trajectories to be

404 11 Motion Segmentation

T f

g = (Rf ,T f)
o

o

X

Y

Z

x

y

z

W

O

p

Xfp

Xp

Fig. 11.2 A rigid-body motion between a moving object frame O and a world (camera) frame W.

Problem 11.1 (3D Motion Segmentation from Point Correspondences)

Given P image point trajectories fxfpgfD1;:::;FpD1;:::;P taken from F views of a motion
sequence related by a collection of n 3D motion models fMigniD1, estimate the
number of motion models n, the model parameters fMigniD1, and the segmentation
of the image point trajectories, i.e., the motion model i that corresponds to the pth
trajectory fxfpgfD1;:::;F .

segmented, while Figure 11.1(d) shows the same point trajectories segmented into
two groups corresponding to the red car and the background, respectively. More
formally, we state our goal as Problem 11.1.

As we will see in the remainder of this chapter, in some cases the camera model is
such that the 3D motions impose linear constraints on the image measurements; thus
Problem 11.1 is a direct application of the subspace clustering algorithms discussed
earlier. In other cases, the motion models are more complex, e.g., bilinear in the
image measurements, and the subspace clustering algorithms need to be extended
to deal with such classes of motion segmentation problems.

In practice, the motion segmentation problem is more challenging than what
is stated in Problem 11.1, because the point trajectories may be corrupted. For
example, objects may appear and disappear from the field of view, or parts of
the object may become occluded. In such cases, the feature point trajectories will
be incomplete, and we will need to resort to subspace clustering algorithms that
can handle missing entries. Moreover, the feature point trajectories need to be
extracted using some tracking or matching algorithm, and such algorithms could
make mistakes that may lead to erroneous trajectories. In such cases, we will need
to resort to subspace clustering algorithms that can handle corrupted entries.

11.2 Motion Segmentation from Multiple Affine Views 405

The next two sections show how to solve important special cases of the motion
segmentation problem in Problem 11.1 using the tools from Part II of this book.

11.2 Motion Segmentation from Multiple Affine Views

In this section, we study a special but important case of the 3D motion segmentation
problem in which the camera project is affine. We will first review the geometry of
this problem and show that it is equivalent to clustering multiple low-dimensional
affine subspaces of a high-dimensional space. We will then show how different
subspace clustering algorithms can be used to solve this problem.

11.2.1 Affine Projection of a Rigid-Body Motion

Consider a video consisting of a single rigid-body motion first. Let the pose of the
objet relative to the camera at frame f D 1; : : : ;F be denoted by .Rf ;Tf / 2 SE.3/.
Let Xp be the coordinates of a point in 3D space, let Xfp D Rf Xp C Tf be its
coordinates at frame f D 1; : : : ;F, and let xfp D �f .Rf XpCTf / be its projection onto
the camera plane at frame f (see Section 11.1 for details). Adopting the orthographic
projection model, we obtain

xfp
:D
�
1 0 0

0 1 0

	
Xfp D

�
1 0 0

0 1 0

	 �
Rf Tf

� �Xp

1

	
: (11.3)

This projection equation is specified relative to a very particular reference frame
centered at the optical center with one axis aligned with the optical axis. In
practice, when one captures digital images, the measurements are obtained in pixel
coordinates, which are related to the image coordinates by the transformation

Qxfp
:D
�

sx s�
0 sy

	
xfp C

�
ox

oy

	
D
�

sx s� ox

0 sy oy

	

„ ƒ‚ …
Kf

�
xfp

1

	
; (11.4)

where Kf 2 R2�3 is the camera calibration matrix, sx and sy are scale factors in the
x and y coordinates of the image, s� is a skew factor, and .ox; oy/ is a translation
of the image coordinates that moves the origin from the center of the image to its
upper-left corner.

Combining the motion model (11.1), the orthographic projection model (11.3),
and the calibration model (11.4) leads to the following affine camera model:

Qxfp D Kf

2
4
1 0 0 0

0 1 0 0

0 0 0 1

3
5
�

Rf Tf

0> 1

	 �
Xp

1

	
D �Mf tf

�
„ ƒ‚ …

Af

�
Xp

1

	
; (11.5)

406 11 Motion Segmentation

where Af 2 R2�4 is the affine camera matrix at frame f , which depends on the
camera calibration parameters Kf 2 R2�3 and the object pose relative to the camera
.Rf ;Tf / 2 SE.3/. Notice that the rows of each Af involve linear combinations of
the first two rows of the rotation matrix Rf ; hence Af is of rank 2. With an abuse of
notation, we will drop the tilde from Qxfp and write it as xfp.

11.2.2 Motion Subspace of a Rigid-Body Motion

Let wp 2 R2F be the 2D trajectory of point p. Then

wp
:D

2
64

x1p
:::

xFp

3
75 D

2
64

M1

:::

MF

3
75Xp C

2
64

t1
:::

tF

3
75 D MXp C t; (11.6)

where M 2 R2F�3 and t 2 R2F . It follows that the matrix of all 2D trajectories
W

:D �w1 � � � wP

� 2 R2F�P can be decomposed as

W D MSC t1>; (11.7)

where S D �
X1 � � � XP

� 2 R
3�P. Therefore, the 2D trajectories associated with a

single rigid-body motion observed by an affine camera live in an affine subspace
of R2F spanned by the columns of M. This affine subspace is of dimension at most
three, and we call it the motion subspace of the rigid-body motion.

In the motion segmentation literature, this affine motion subspace is usually
interpreted as a linear subspace. Specifically, notice that we can rewrite (11.7) as

W D �M t
� � S

1>
	
: (11.8)

Since
�
M t

� 2 R2F�4, we have rank.W/
 4; hence the span of the columns
of W can be interpreted as a linear subspace of R2F of dimension at most four.
This observation is important, since it will enable us to apply subspace clustering
algorithms designed for linear subspaces to the motion segmentation problem.

11.2.3 Segmentation of Multiple Rigid-Body Motions

Let us now consider a stationary camera observing n different rigid-body motions.
The ith rigid-body motion is represented by the transformation

�
Rif Tif

0> 1

	
; (11.9)

11.2 Motion Segmentation from Multiple Affine Views 407

which defines the pose of the ith body during frame f . The 2 � 4 projection matrix
associated with the ith body is then given by

Aif D Kf

2
4
1 0 0 0

0 1 0 0

0 0 0 1

3
5
�

Rif Tif

0> 1

	
: (11.10)

A point Xp belonging to the ith body is projected to the point

xfp D Aif

�
Xp

1

	
: (11.11)

Let Wi 2 R2F�Pi denote the matrix of 2D trajectories associated with the ith body,

where Pi is the number of points belonging to the ith moving object and P D
nP

iD1
Pi

is the total number of trajectories. Then the data matrix consisting of the trajectories
of all points can be written as

W D �W1;W2; : : : ;Wn

�
� 2 R

2F�P; (11.12)

where � 2 RP�P is an unknown permutation matrix that specifies the segmentation
of the points according to different rigid-body motions.

The 3D motion segmentation problem is the task of clustering these P trajectories
according to the n rigid-body motions. Since the trajectories associated with each
object live in an affine subspace of R2F of dimension di 2 f1; 2; 3g, i D 1; : : : ; n,
the 3D motion segmentation problem is equivalent to clustering a set of points into
n affine subspaces of R2F of unknown dimensions di 2 f1; 2; 3g. Therefore, we can
apply any of the existing subspace clustering algorithms for affine subspaces, e.g.,
the SLBF and SCC algorithms in Chapter 7 and the SSC algorithm in Chapter 8,
to the columns of W to solve the 3D motion segmentation problem. Alternatively,
since each affine subspace of dimension d can be interpreted as a linear subspace
of dimension d C 1, we can also apply any of the existing subspace clustering
algorithms for linear subspaces, e.g., the ASC, ALC, LSA, LLMC, SCC, SSC, and
LRSC algorithms described in Chapters 5–8.

11.2.4 Experiments on Multiview Motion Segmentation

The Hopkins 155 Motion Segmentation Data Set
We evaluate a number of subspace clustering algorithms on the Hopkins 155
motion segmentation database (Tron and Vidal 2007), which is available online at
http://www.vision.jhu.edu/data/hopkins155.The database consists of 155 sequences
of two and three motions, which can be divided into three main categories:
checkerboard, traffic, and articulated sequences.

http://www.vision.jhu.edu/data/hopkins155

408 11 Motion Segmentation

1. The checkerboard sequences contain multiple objects moving independently and
arbitrarily in 3D space; hence the motion trajectories are expected to lie in
independent affine subspaces of dimension three.

2. The traffic sequences contain cars moving independently on the ground plane;
hence the motion trajectories are expected to lie in independent affine subspaces
of dimension two.

3. The articulated sequences contain motions of people, cranes, etc., where object
parts do not move independently, and so the motion subspaces are expected to be
dependent.

For each sequence, the trajectories are extracted automatically with a tracker, and
outliers are manually removed. Therefore, the trajectories are corrupted by noise,
but do not have missing entries or outliers. Figure 11.3 shows sample images from
videos in the database with the feature points superimposed.

Figure 11.4 shows the singular values of the matrix of feature point trajectories
of a single motion for several videos in the data set. Note that the singular value
curve has a knee around 4, corroborating the approximate 4-dimensionality of the
motion data in each video.

Experimental Setup
In order to make the experimental results comparable to those in the existing
literature, for each method we apply the same preprocessing steps described in
their respective papers. Specifically, we project the trajectories onto a subspace of
dimension r
 2F using PCA. Historically, there have been two choices for the

Fig. 11.3 Sample images from some sequences of the Hopkins 155 database with tracked points
superimposed. Figures (a) and (b) correspond to checkerboard sequences, figures (c) and (d) to
traffic sequences, and figures (e) and (f) to articulated sequences.

11.2 Motion Segmentation from Multiple Affine Views 409

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50
Hopkins 155 Dataset

Si
ng

ul
ar

 v
al

ue
s

of
 s

ev
er

al
 m

ot
io

ns

Fig. 11.4 Singular values of several motions in the Hopkins 155 data set. Each motion corresponds
to a subspace of dimension at most 4.

dimension of the projection: r D 5 and r D 4n. The choice of r D 5 is motivated
by the ASC algorithm, which models 3D affine subspaces as 4D linear subspaces.
Since dmax D 4, ASC chooses r D dmaxC1 D 5. The choice of d D 4n is motivated
by factorization methods, which use the fact that for independent subspaces, r D
rank.X/ D 4n. In our experiments, we use r D 5 for ASC and RANSAC and
r D 4n for ASC, LLMC, LSA, SCC, and SSC. For LRSC, we use r D 2F, since the
method searches for the low-rank representation. For ALC, r is chosen automatically
for each sequence as the minimum r such that r 	 8 log.2F=r/. We will refer to this
choice as the sparsity-preserving (sp) projection. Also, for the algorithms that make
use of K-means, either a single restart is used when the algorithm is initialized by
another algorithm (LLMC, SCC), or 10 restarts are used when it is initialized at
random (ASC, LLMC, LSA). SSC uses 20 restarts.

Clustering Errors
For each algorithm and each sequence, we record the clustering error, defined as

Clustering error D # of misclassified points

total # of points
� 100%: (11.13)

Table 11.1 reports the average and median clustering errors, and Figure 11.5
shows the percentage of sequences for which the clustering error is below a given
percentage. More detailed statistics with the clustering errors of each algorithm
on each of the 155 sequences can be found at http://www.vision.jhu.edu/data/
hopkins155/.

Comparison and Conclusions
Examining the experimental results, we can draw the following conclusions about
the performance of the algorithms tested.

http://www.vision.jhu.edu/data/hopkins155/
http://www.vision.jhu.edu/data/hopkins155/

410 11 Motion Segmentation

T
ab

le
11

.1
C

la
ss

ifi
ca

ti
on

er
ro

rs
of

se
ve

ra
l

su
bs

pa
ce

cl
us

te
ri

ng
al

go
ri

th
m

s
on

th
e

H
op

ki
ns

15
5

m
ot

io
n

se
gm

en
ta

ti
on

da
ta

ba
se

.
A

ll
al

go
ri

th
m

s
us

e
tw

o
pa

ra
m

et
er

s
.d
;r
/,

w
he

re
d

is
th

e
di

m
en

si
on

of
th

e
su

bs
pa

ce
s

an
d

r
is

th
e

di
m

en
si

on
of

th
e

pr
oj

ec
ti

on
.A

ffi
ne

su
bs

pa
ce

cl
us

te
ri

ng
al

go
ri

th
m

s
tr

ea
ts

ub
sp

ac
es

as
3-

di
m

en
si

on
al

af
fin

e
su

bs
pa

ce
s,

i.e
.,

d
D
3
,w

hi
le

li
ne

ar
su

bs
pa

ce
cl

us
te

ri
ng

al
go

ri
th

m
s

tr
ea

t
su

bs
pa

ce
s

as
4-

di
m

en
si

on
al

li
ne

ar
su

bs
pa

ce
s,

i.e
.,

d
D
4
.

T
he

di
m

en
si

on
s

of
th

e
pr

oj
ec

ti
on

s
ar

e
r
D
5
,

r
D
4
n,

w
he

re
n

is
th

e
nu

m
be

r
of

m
ot

io
ns

,
an

d
r
D
2
F

,
w

he
re

F
is

th
e

nu
m

be
r

of
fr

am
es

.
A

L
C

us
es

a
sp

ar
si

ty
-

pr
es

er
vi

ng
(s

p)
di

m
en

si
on

fo
r

th
e

pr
oj

ec
ti

on
.A

ll
al

go
ri

th
m

s
us

e
PC

A
to

pe
rf

or
m

th
e

pr
oj

ec
ti

on
,e

xc
ep

t
fo

r
SS

C
,w

hi
ch

us
es

a
ra

nd
om

pr
oj

ec
ti

on
w

it
h

en
tr

ie
s

dr
aw

n
fr

om
a

B
er

no
ul

li
(S

SC
-B

)
or

no
rm

al
(S

SC
-N

)
di

st
ri

bu
ti

on
.T

he
re

su
lt

s
fo

r
A

SC
co

rr
es

po
nd

to
th

e
sp

ec
tr

al
cl

us
te

ri
ng

-b
as

ed
A

SC
al

go
ri

th
m

.L
L

M
C

-A
SC

de
no

te
s

L
L

M
C

in
it

ia
li

ze
d

by
th

e
A

SC
al

go
ri

th
m

.

Tw
o

m
ot

io
ns

T
hr

ee
m

ot
io

ns
A

ll

C
he

ck
.(

78
)

T
ra

ffi
c

(3
1)

A
rt

ic
ul

.(
11

)
A

ll
(1

20
)

C
he

ck
.(

26
)

T
ra

ffi
c

(7
)

A
rt

ic
ul

.(
2)

A
ll

(3
5)

(1
55

)

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
M

ea
n

M
ed

ia
n

M
ea

n
M

ed
ia

n
A

SC
(4

,5
)

6.
09

1.
03

1.
41

0.
00

2.
88

0.
00

4.
59

0.
38

31
.9

5
32

.9
3

19
.8

3
19

.5
5

16
.8

5
16

.8
5

28
.6

6
28

.2
6

10
.3

4
2.

54

A
SC

(4
n-

1,
4n

)
4.

78
0.

51
1.

63
0.

00
6.

18
3.

20
4.

10
0.

44
36

.9
9

36
.2

6
39

.6
8

40
.9

2
29

.6
2

29
.6

2
37

.1
1

37
.1

8
11

.5
5

1.
36

R
A

N
SA

C
(4

,5
)

6.
52

1.
75

2.
55

0.
21

7.
25

2.
64

5.
56

1.
18

25
.7

8
26

.0
0

12
.8

3
11

.4
5

21
.3

8
21

.3
8

22
.9

4
22

.0
3

9.
76

3.
21

L
SA

(4
,5

)
8.

84
3.

43
2.

15
1.

00
4.

66
1.

28
6.

73
1.

99
30

.3
7

31
.9

8
27

.0
2

34
.0

1
23

.1
1

23
.1

1
29

.2
8

31
.6

3
11

.8
2

4.
00

L
SA

(4
,4

n)
2.

57
0.

27
5.

43
1.

48
4.

10
1.

22
3.

45
0.

59
5.

80
1.

77
25

.0
7

23
.7

9
7.

25
7.

25
9.

73
2.

33
4.

94
0.

90

L
L

M
C

(4
,5

)
4.

85
0.

00
1.

96
0.

00
6.

16
1.

37
4.

22
0.

00
9.

06
7.

09
6.

45
0.

00
5.

26
5.

26
8.

33
3.

19
5.

15
0.

00

L
L

M
C

(4
,4

n)
3.

96
0.

23
3.

53
0.

33
6.

48
1.

30
4.

08
0.

24
8.

48
5.

80
6.

04
4.

09
9.

38
9.

38
8.

04
4.

93
4.

97
0.

87

M
SL

4.
46

0.
00

2.
23

0.
00

7.
23

0.
00

4.
14

0.
00

10
.3

8
4.

61
1.

80
0.

00
2.

71
2.

71
8.

23
1.

76
5.

03
0.

00

A
L

C
(4

,5
)

2.
56

0.
00

2.
83

0.
30

6.
90

0.
89

3.
03

0.
00

6.
78

0.
92

4.
01

1.
35

7.
25

7.
25

6.
26

1.
02

3.
76

0.
26

A
L

C
(4

,s
p)

1.
49

0.
27

1.
75

1.
51

10
.7

0
0.

95
2.

40
0.

43
5.

00
0.

66
8.

86
0.

51
21

.0
8

21
.0

8
6.

69
0.

67
3.

37
0.

49

SC
C

(4
,4

n)
1.

30
0.

04
1.

07
0.

44
3.

68
0.

67
1.

46
0.

16
5.

68
2.

96
2.

35
2.

07
10

.9
4

10
.9

4
5.

31
2.

40
2.

33

SC
C

(4
,2

F)
1.

31
0.

06
1.

02
0.

26
3.

21
0.

76
1.

41
0.

10
6.

31
1.

97
3.

31
3.

31
9.

58
9.

58
5.

90
1.

99
2.

42

SL
B

F
(3

,2
F)

1.
59

0.
00

0.
20

0.
00

0.
80

0.
00

1.
16

0.
00

4.
57

0.
94

0.
38

0.
00

2.
66

2.
66

3.
63

0.
64

1.
66

L
R

SC
(4

,4
n)

2.
58

0.
00

6.
68

1.
76

3.
49

0.
09

SS
C

-B
(4

,4
n)

0.
83

0.
00

0.
23

0.
00

1.
63

0.
00

0.
75

0.
00

4.
49

0.
54

0.
61

0.
00

1.
60

1.
60

3.
55

0.
25

1.
45

0.
00

SS
C

-N
(4

,4
n)

1.
12

0.
00

0.
02

0.
00

0.
62

0.
00

0.
82

0.
00

2.
97

0.
27

0.
58

0.
00

1.
42

0.
00

2.
45

0.
20

1.
24

0.
00

11.2 Motion Segmentation from Multiple Affine Views 411

Fig. 11.5 Percentage of sequences for which the clustering error is less than or equal to a given
percentage of error. The algorithms tested are ASC(4,5), RANSAC(4,5), LSA(4,4n), LLMC(4,4n),
MSL, ALC(4,sp), SCC(4,4n), SSC-N(4,4n).

ASC (Algebraic Subspace Clustering): To avoid using multiple polynomials,
we use an implementation of ASC based on hyperplanes in which the data are
interpreted as a subspace of dimension r � 1 in Rr, where r D 5 or r D 4n.
For two motions, ASC achieves a classification error of 4.59% for r D 5 and
4.10% for r D 4n. Notice that ASC is among the most accurate methods for the
traffic and articulated sequences, which are sequences with dependent motion
subspaces. However, ASC has higher errors on the checkerboard sequences,
which constitute the majority of the database. This result is expected, because
ASC is best designed for dependent subspaces. Notice also that increasing r
from 5 to 4n improves the results for checkerboard sequences, but not for the
traffic and articulated sequences. This is also expected, because the rank of the
data matrix should be high for sequences with full-dimensional and independent
motions (checkerboard), and low for sequences with degenerate (traffic) and
dependent (articulated) motions. This suggests that using model selection to
determine a different value of r for each sequence should improve the results.
For three motions, the results are completely different, with a clustering error
of 29%–37%. This is expected, because the number of coefficients fitted by
ASC grows exponentially with the number of motions, while the number of
feature points remains of the same order. Furthermore, ASC uses a least-squares
method for fitting the polynomial, which neglects nonlinear constraints among
the coefficients. The number of nonlinear constraints neglected also increases
with the number of subspaces.

RANSAC (RANdom SAmple Consensus): The results for this purely statistical
algorithm are similar to what we found for ASC. In the case of two motions,
the results are a bit worse than those of ASC. In the case of three motions,
the results are better than those of ASC, but still quite far from those of the
best-performing algorithms. This is expected, because as the number of motions
increases, the probability of drawing a set of points from the same group
decreases significantly. Another drawback of RANSAC is that its performance

412 11 Motion Segmentation

varies between two runs on the same data. Our experiments report the average
performance over 1000 trials for each sequence.

LSA (Local Subspace Affinity): When the dimension for the projection is cho-
sen as r D 5, this algorithm performs worse than ASC. This is because points
in different subspaces are closer to each other when r D 5, and so a point from
a different subspace is more likely to be chosen as a nearest neighbor. ASC, on
the other hand, is not affected by points near the intersection of the subspaces.
The situation is completely different when r D 4n. In this case, LSA clearly
outperforms ASC and RANSAC, achieving an error of 3.45% for two groups and
9.73% for three groups. These errors could be further reduced by using model
selection to determine the dimension of each subspace. Another important thing
to observe is that LSA performs better on the checkerboard sequences, but has
larger errors than ASC on the traffic and articulated sequences. This confirms
that LSA has difficulties with dependent subspaces.

LLMC (Locally Linear Manifold Clustering): The results of this algorithm
also represent a clear improvement over ASC and RANSAC, especially for three
motions. The only cases in which ASC outperforms LLMC are for traffic and
articulated sequences. This is expected, because LLMC is not designed to handle
dependent subspaces. Unlike LSA, LLMC is not significantly affected by the
choice of r, with a clustering error of 5:15% for r D 5 and 4:97% for r D 4n.
Notice also that the performance of LLMC improves when initialized with ASC
to 4:87% for r D 5 and 4:37% for r D 4n. However, there are a few sequences
for which LLMC performs worse than ASC even when LLMC is initialized by
ASC. This happens for sequences with dependent motions, which are not well
handled by LLMC.

MSL (Multistage Learning (Kanatani 2001)): By looking at the average clus-
tering error, we can see that MSL, LSA, and LLMC have a similar accuracy.
Furthermore, their segmentation results remain consistent in going from two
to three motions. However, sometimes the MSL method gets stuck in a local
minimum. This is reflected by high clustering errors for some sequences, as can
be seen by the long tails in Figure 11.5.

ALC (Agglomerative Lossy Compression): The ALC algorithm represents a
significant increase in performance with respect to all previous algorithms,
especially for the checkerboard sequences, which constitute the majority of
the database. However, ALC does not perform very well on the articulated
sequences. This is because ALC typically needs the samples from a group to
cover the subspace with sufficient density, while many of the articulated scenes
have very few feature point trajectories. With regard to the projection dimension,
the results indicate that overall, ALC performs better with an automatic choice
of the projection, rather than with a fixed choice of r D 5. One drawback of
ALC is that it needs to be run about 100 times for different choices of the
distortion parameter " in order to obtain the right number of motions and the
best segmentation results.

SCC (Spectral Curvature Clustering): This algorithm performs even better
than ALC in almost all motion categories. The only exception is for the

11.3 Motion Segmentation from Two Perspective Views 413

articulated sequences with three motions. This is because these sequences contain
few trajectories for the sampling strategy to operate correctly. Another advantage
of SCC with respect to ALC is that it is not very sensitive to the choice of the
parameter c (number of sampled subsets), while ALC needs to be run for several
choices of the distortion parameter ". Notice also that the performance of SCC
is not significantly affected by the dimension of the projection r D 5, r D 4n, or
r D 2F.

SSC (Sparse Subspace Clustering): This algorithm performs extremely well,
not only for checkerboard sequences, which have independent and fully dimen-
sional motion subspaces, but also for traffic and articulated sequences, which are
the bottleneck of almost all existing methods, because they contain degenerate
and dependent motion subspaces. Overall, SSC is not sensitive to the dimension
of the projection (r D 5 vs. r D 4n vs. r D 2F) or the parameter �.

SLBF (Spectral Local Best-Fit Flats): This algorithm performs extremely well
for all motion sequences. Its performance is essentially on a par with that of SSC.
We refer the reader to (Zhang et al. 2010) for additional experiments.

LRSC (Low-Rank Subspace Clustering): Overall, LRSC compares favorably
against LSA and SCC. However, LRSC does not perform as well as SSC. Also,
the performance of LRSC depends on the choice of the parameters. In particular,
notice that choosing 	 that depends on the number of motions and size of each
sequence gives better results than using a fixed 	 . We also notice that LRSC has
almost the same performance with or without projection.

The reader should be aware that the above comparison of all the algorithms is
merely on the motion segmentation data set. The conclusions drawn above should
not be blindly generalized to all other types of data or problems the user may
encounter in practice. As we have discussed extensively in the previous chapters, the
choice of the most suitable clustering algorithm for an application often depends on
the particular settings and conditions. Each of the subspace clustering algorithms has
its own strengths and limitations, and the user should exercise discretion carefully
based on the special nature of the data and tasks at hand.

11.3 Motion Segmentation from Two Perspective Views

In this section, we consider the 3D motion segmentation problem in cases in which
the projection model is the more general perspective projection. As a result, the
resulting 3D motion model will be bilinear in the image measurements. In particu-
lar, we consider the segmentation of rigid-body motions from point correspondences
in two perspective views of nonplanar (Section 11.3.3) and planar (Section 11.3.4)
scenes. In both cases, we show that the motion segmentation problem can be solved
using extensions of the subspace clustering algorithms presented earlier to certain
classes of bilinear surfaces.

414 11 Motion Segmentation

11.3.1 Perspective Projection of a Rigid-Body Motion

As before, we consider a video consisting of a single rigid-body motion and denote
its pose at frame f D 1; : : : ;F by .Rf ;Tf / 2 SE.3/. Let Xp be the coordinates of
a point p in 3D space. At frame f D 1; : : : ;F, the coordinates of this point are
transformed to Xfp D Rf Xp C Tf . Let xfp D �f .Rf Xp C Tf / be the projection of
Xfp onto the camera plane at frame f (see Section 11.1 for details). Adopting the
perspective projection model shown in Figure 11.6, we obtain

xfp
:D
2
4

xfp

yfp

1

3
5 D 1

Zfp

2
4
� 0 0

0 � 0

0 0 1

3
5
2
4

Xfp

Yfp

Zfp

3
5 D 1

Zfp

2
4
� 0 0

0 � 0

0 0 1

3
5Xfp; (11.14)

where � is the camera’s focal length and Zfp is the depth of the point.
Notice that we have written the image point xfp in homogeneous coordinates by

appending a one as its third coordinate. This allows us to rewrite the calibration
model in (11.4) as a matrix multiplication

Qxfp D
2
4

sx s� ox

0 sy oy

0 0 1

3
5 xfp: (11.15)

Combining the motion model (11.1), the projection model (11.14), and the calibra-
tion model (11.4) leads to the following perspective camera model:

Zfp Qxfp D
2
4

sx s� ox

0 sy oy

0 0 1

3
5
2
4
� 0 0

0 � 0

0 0 1

3
5

„ ƒ‚ …
Kf2R3�3

�
Rf Tf

� �Xp

1

	
; (11.16)

image plane

o

φ−1

p

z

x

x

y
y

x

Fig. 11.6 Frontal pinhole imaging model: the image of a 3D point p is the point x at the
intersection of the ray going through the optical center o and the image plane at a distance ��1 in
front of the optical center.

11.3 Motion Segmentation from Two Perspective Views 415

where Kf 2 R3�3 is called the camera calibration matrix in the f th frame. When
Kf D I, we say that the camera is calibrated.

If we also use homogeneous coordinates to represent Xp as QXp D
�

Xp

1

	
, then we

can write the projection model as a matrix multiplication

Zfp Qxfp D …f QXp; (11.17)

where …f D Kf
�
Rf Tf

� 2 R3�4 is called the perspective projection matrix. Finally,

notice that if we define QRf D Kf Rf and QTf D Kf Tf , we can rewrite the projection
equation as Zfp Qxfp D QRf Xp C QTf . For the sake of simplicity, we will drop the tildes
from the notation and write the projection model simply as

Zfpxfp D Rf Xp C Tf : (11.18)

11.3.2 Segmentation of 3D Translational Motions

In this subsection, we consider the problem of segmenting n 3D translational
motions from multiple point correspondences in two perspective views. We assume
that the 3D scene is nonplanar and that the translation of each object between
the two views is nonzero. As we shall see, in this case the image measurements
are related by a bilinear constraint. However, we will show that this bilinear
constraint can be converted into a linear constraint on a nonlinear embedding of
the point correspondences. As a result, the motion segmentation problem from two
perspective views will be reduced to a problem of clustering planes in R3.

Let us first consider the case of a single 3D translational object. Let x1 and x2 be
images of point X in the first and second frames of a video sequence consisting of
F D 2 frames. Then the projection equation reduces to

Z2x2 D XC T2 D Z1x1 C T2: (11.19)

As illustrated in Figure 11.7, the vectors x2, T2 and x1 must be coplanar; hence their
triple product must be zero, i.e.,

.x1 � x2/ � T2 D 0: (11.20)

While this equation is nonlinear in .x1; x2/, it is linear in

y D x1 � x2: (11.21)

Indeed, T>2 y D 0 is simply the equation of a plane in y with normal vector T2.

416 11 Motion Segmentation

Consider now the case of n moving objects and let Ti2, i D 1; : : : ; n, denote
their translations between the two views. Let f.x1p; x2p/gPpD1 denote P point
correspondences between the two views (in homogeneous coordinates). Then the
set of points fyp D x1p � x2pgPpD1 lies in a union of n planes in R3, and we can
cluster the point correspondences using a subspace clustering algorithm for linear
subspaces.

11.3.3 Segmentation of Rigid-Body Motions

In this subsection, we consider the problem of segmenting n 3D rigid-body motions
from point correspondences in two perspective views. We assume that the 3D
scene is nonplanar and that the translation of each object between the two views
is nonzero. As we shall see, in this case the image measurements are related by
a bilinear constraint. However, we will show that this bilinear constraint can be
converted into a linear constraint on a nonlinear embedding of the point correspon-
dences. As a result, the motion segmentation problem from two perspective views
will be reduced to a problem of clustering 8-dimensional subspaces of R9.

Let us first consider the case of a single 3D rigid-body motion. Let x1 and x2 be,
respectively, images of a point X in the first and second frames of a video sequence
consisting of F D 2 frames. Then the projection equation reduces to

Z2x2 D R2XC T2 D Z1R2x1 C T2: (11.22)

As illustrated in Figure 11.7, the vectors x2, T2, and Rx1 must be coplanar; hence
their triple product must be zero, i.e.,

x2 � .T2 � R2x1/ D 0 ” x>2 bT2R2x1 D 0; (11.23)

e1 e2

1 2

o1
o2

(R,T)

x1 x2

X

x
x

y
yz

z

Fig. 11.7 Epipolar geometry: Two projections x1; x2 2 R3 of a 3D point X from two vantage
points. The relative Euclidean transformation between the two vantage points is given by .R;T/ 2
SE.3/. The intersections of the line .o1; o2/ with each image plane are called epipoles and are
denoted by e1 and e2. The intersections of the plane .o1; o2;X/ with the two image planes are
called epipolar lines and are denoted by `1 and `2.

11.3 Motion Segmentation from Two Perspective Views 417

where for a vector T D .T1;T2;T3/> 2 R3, the matrix bT is a skew-symmetric matrix
generating the cross product by T, i.e., bTx D T � x, and is defined as

bT D
2
4
0 �T3 T2
T3 0 �T1
�T2 T1 0

3
5 : (11.24)

Let E D bT2R2 2 R3�3. This matrix is known in the computer vision literature as
the fundamental matrix. With this notation, (11.23) becomes

x>2 Ex1 D 0: (11.25)

This equation is known as the epipolar constraint and establishes a fundamental
relationship between two perspective images of a rigid-body motion. While this
equation is nonlinear in .x1; x2/, notice that it is linear in the Kronecker product of
x1 and x2, y D x1 ˝ x2 2 R9. Specifically, we have

x>2 Ex1 D
X

ij

x2ieijx1j D e>y D 0; (11.26)

where

e D �e11; e21; e31; e12; e22; e32; e13; e23; e33
�>
; (11.27)

y D �x11x21; x11x22; x11x23; x12x21; x12x22; x12x23; : : : ; x13x23
�>
: (11.28)

This is simply the equation of a hyperplane in y with normal vector e 2 R9.
Consider now the case of n moving objects and let fEigniD1 denote their

fundamental matrices between the two views. Let f.x1p; x2p/gPpD1 denote P point
correspondences between the two views (in homogeneous coordinates). Then the
set of points yp D x1p ˝ x2p lies in a union of n hyperplanes in R9, and we can
cluster the point correspondences using a subspace clustering algorithm for linear
subspaces.

11.3.4 Segmentation of Rotational Motions or Planar Scenes

The motion segmentation scheme described in the previous subsection assumes that
the displacement of each object between the two views relative to the camera is
nonzero, i.e., T ¤ 0, for otherwise, the individual fundamental matrices E D bTR
would be zero. Furthermore, it also requires that the 3D points be in general

418 11 Motion Segmentation

configuration; otherwise, one could not uniquely recover each fundamental matrix
from its epipolar constraint. The latter case occurs, for example, in the case of planar
objects.

Both in the case of a purely rotating object (relative to the camera) and in the
case of a planar object, the motion .R;T/ between the two views x1 and x2 can be
described by a homography matrix H 2 R3�3 as

x2 � Hx1 D
2
4

h11 h12 h13
h21 h22 h23
h31 h32 h33

3
5 x1; (11.29)

where � means equality up to a scale factor. In the case of a purely rotating object,
we have H D R2, because the motion equations in (11.22) reduce to

Z2x2 D Z1R2x1 ” x2 � R2x1: (11.30)

In the case of a planar object, we have n>X D d, where n 2 S2 is the normal to the
plane and d is the distance from the plane to the origin of the first view. It follows
from the motion equations in (11.22) that

Z2x2 D R2XC T2
n>X

d
D Z1.R2 C 1

d
T2n>/x1: (11.31)

Therefore, x2 � Hx1 with H D R2 C 1
d T2n>, as claimed.

The equation x2 � Hx1 is known as the homographic constraint. While this
equation is nonlinear in .x1; x2/, notice that it is linear in the Kronecker product of
x1 and x2, y D x1 ˝ x2 2 R9. Specifically, we have

�
0 h31 �h21 0 h32 �h22 0 h33 �h23
�h31 0 h11 �h32 0 h12 �h33 0 h13

	
y D 0: (11.32)

This is simply the equation of a linear subspace of dimension seven in R
9.

Consider now the case of n moving objects and let fHigniD1 denote their homo-
graphs between the two views. Let f.x1p; x2p/gPpD1 denote P point correspondences
between the two views (in homogeneous coordinates). Then the set of points
yp D x1p ˝ x2p lies in a union of n seven-dimensional subspaces in R

9, and we can
cluster the point correspondences using a subspace clustering algorithm for linear
subspaces.

11.3.5 Experiments on Two-View Motion Segmentation

In this subsection we evaluate the performance of the motion segmentation algo-
rithms from two perspective views on the Hopkins 155 data set.

11.3 Motion Segmentation from Two Perspective Views 419

Experimental Setup
Since this data set provides trajectories of data points over several frames, we use
the following three settings to form the data points to be clustered:

Setting 1: Use corresponding feature points between the first and the last frames
to form the embedded vector y in R3 or R9, as in (11.21) or (11.28).

Setting 2: Use corresponding features between the first and the middle frames,
and those between the middle and the last frames. For example, if there are 10
frames, we use frame pairs .1; 5/ and .6; 10/. A data point is then formed by
simply concatenating the two embedded vectors as in (11.21) or (11.28). Thus,
data points in this setting have dimension 6 or 18.

Setting 3: Use corresponding features from multiple pairs of frames that have
the same frame interval (which is to be half of the total number of frames).
For instance, for a sequence of 10 frames, we use feature points from the pairs
.1; 6/; .2; 7/; : : : ; .5; 10/. Again, all the embedded vectors formed as in (11.21)
or (11.28) are concatenated as a single data point.

The so-obtained data points are then clustered using the ASC algorithm described
in Chapter 5, the SASC algorithm described in Chapter 7, and the SSC algorithm
described in Chapter 8. For the ASC algorithm, we consider the following two
variants:

1. ASC by line intersection (ASC-LI), i.e., Algorithm 5.3 with a fixed number of
groups (n D 2 or n D 3) and the best out of 10 randomly chosen lines.

2. ASC by minimum distance (ASC-MD), i.e., Algorithm 5.4 with the heuristic
distance in (5.45) being used to select a point closest to each subspace with ı D
10�5.

For the SASC algorithm, we consider the following two variants:

1. SASC with the angle-based affinity (SASC-angle), i.e., Algorithm 7.5 with the
affinity in (7.24) with parameter q D 20 for the 3D translational motion model
and q D 1 for the 3D rigid-body motion model.

2. SASC with the distance-based affinity (SASC-distance), i.e., Algorithm 7.5 with
the affinity in (7.26) with parameter q D 20 for the 3D translational motion
model and q D 1 for the 3D rigid-body motion model.

For the SSC algorithm, we solve the optimization problem in (8.95) with parameter
	 D ˛	min;2, where ˛ D 104 for settings 1 and 2 and ˛ D 105 for setting 3, and
	min;2 is defined in (8.96).

The resulting affinity matrix C is postprocessed columnwise in two steps. In the
first step, the absolute value of the entries of each column are sorted in descending
order, and the top k entries are preserved with others set to zero, where k is the
smallest number such that the `1 norm of the top k entries is larger than 0:7 times
the `1 norm of the entire vector. Then in the second step, the columns are normalized
to unit `1-norm.

420 11 Motion Segmentation

Table 11.2 Clustering error (%) of various subspace clustering methods on the
Hopkins 155 data set using two-view 3D translational and two-view 3D rigid-body
motion models for each one of the three settings. The methods tested are: ASC by
Line Intersection (ASC-LI), ASC by Minimum Distance (ASC-MD), SASC with
angle affinity (SASC-angle), SASC with distance affinity (SASC-distance), and SSC.
For the sake of comparison, we also report the motion segmentation results using the
multiview affine motion model from Table 11.1.

Model Method
2 motions 3 motions All

Mean Median Mean Median Mean Median
Trans 1 ASC-LI 26.95 29.79 41.73 44.56 30.29 33.09

ASC-MD 27.50 28.99 39.82 43.29 30.28 33.60

SASC-angle 27.21 30.88 45.47 49.90 31.33 33.33

SASC-distance 32.95 35.76 44.35 44.05 35.52 37.19

SSC 18.19 16.00 33.99 35.04 21.76 20.52
Trans 2 ASC-LI 30.30 31.62 43.44 44.33 33.27 34.76

ASC-MD 18.19 16.21 31.78 32.98 21.26 19.05

SASC-angle 27.52 28.31 43.33 44.66 31.09 34.11

SASC-distance 34.96 38.00 47.36 47.33 37.76 39.88

SSC 9.79 0.80 21.04 19.82 12.33 1.59
Trans 3 SSC 8.26 0.91 12.07 0.67 9.12 0.89
Rigid 1 ASC-LI 32.52 34.19 44.89 47.10 35.31 36.51

ASC-MD 28.04 30.88 38.79 39.16 30.47 32.14

SASC-angle 21.09 20.66 33.30 32.99 23.85 23.11

SASC-distance 21.28 20.17 33.31 34.21 23.99 22.94

SSC 3.30 0.00 14.58 10.34 5.84 0.39
Rigid 2 ASC-LI 31.25 33.81 43.24 42.20 33.96 35.76

ASC-MD 26.48 31.30 43.91 45.96 30.42 34.06

SASC-angle 23.18 23.20 39.72 43.15 26.91 28.45

SASC-distance 23.80 24.39 33.95 37.02 26.10 27.46

SSC 2.06 0.00 5.56 1.49 2.85 0.00
Rigid 3 SSC 1.69 0.00 4.61 0.44 2.35 0.00
Affine ASC(4,5) 4.59 0.38 28.66 28.26 10.34 2.54

ASC(4n-1,4n) 4.10 0.44 37.11 37.18 11.55 1.36

SSC-B 0.75 0.00 3.55 0.25 1.45 0.00

SSC-N 0.82 0.00 2.45 0.20 1.24 0.00

Results and Conclusions
For each algorithm and each sequence, we record the clustering error as defined in
(11.13). Table 11.2 reports the average and median clustering errors of ASC, SASC,
and SSC for different settings. Comparing all the experimental results, we can draw
the following conclusions:

Number of Views. Notice that most methods perform the worst when using only
two views (Setting 1), and that performance generally improves as more frames

11.4 Temporal Motion Segmentation 421

are used. In particular, the best results are obtained by the multiview affine motion
model, which uses all the frames.

Translational Motion Model. Notice that none of the methods performs well
when using the 3D translational motion model. This is to be expected, since
one of the motions in each video (the background motion) is due to the camera
motion, which cannot be well approximated by a purely translational motion.
Nonetheless, it is interesting to see that SSC is the only method that performs
reasonably well, in spite of the simplicity of the motion model.

Rigid-Body Motion Model. Notice also that with the exception of SSC, none of
the methods performs well when using the 3D rigid-body motion model. This is
to be expected for settings 1 and 2, which use only a few frames, but setting 3 uses
sufficiently many frames, and hence we would have expected the performance of
perspective algorithms to match that of affine algorithms. This is indeed the case
for SSC. However, notice that affine algorithms still do better. This is expected,
since the data in the Hopkins 155 database can be well approximated by the affine
model, as reported in (Tron and Vidal 2007).

Clustering Methods. Observe that the spectral ASC methods perform generally
better than the purely algebraic ASC methods. This is expected, since spectral
methods are more robust to noise than purely algebraic methods. Observe also
that in general, SSC gives the best results for all motion models and settings.
This is surprising, because most of the two-view models represent the motion of
each object with a hyperplane, which is the case for which algebraic methods are
best suited. SSC, on the other hand, is best suited for low-dimensional subspaces
of a higher-dimensional space, which is the case for the affine motion model.
Nonetheless, we see that SSC performs reasonably well already with the rigid-
body motion model for setting 1, which involves only two views.

11.4 Temporal Motion Segmentation

The previous two sections showed how a mixture of subspaces model can be used
to segment time-series data in the spatial domain. In particular, given a video
sequence, we focused on the problem of segmenting it into multiple spatial regions
corresponding to different rigid-body motions. In this section, we will show that
the mixture of subspaces model can also be used to segment time-series data in the
temporal domain. In particular, we will study the problem of segmenting a time
series into multiple temporal segments of homogeneous dynamics. We will also
present applications to the segmentation of a video sequence into multiple video
shots corresponding to different events, and the segmentation of human motion data
into multiple actions or gestures.

422 11 Motion Segmentation

11.4.1 Dynamical Models of Time-Series Data

Let fxt 2 RDgTtD0 be a time series, e.g., a video sequence. We assume that this
time series can be decomposed into multiple temporal segments Œti; tiC1� for i D
1; : : : ; n, where 0 D t0 < t1 < � � � < tn D T, each of homogeneous dynamics. In
particular, we assume that the dynamics of the time series within each segment can
be described by a linear autoregressive (AR) dynamical model

xt D a1xt�1 C a2xt�2 C � � � C adxt�d C wt; xt;wt 2 R
D; (11.33)

where wt is i.i.d. zero-mean Gaussian noise with covariance �2I.
Given a time series fxtgTtD0, the temporal segmentation problem is the problem of

finding the number of segments n and the switching times ftig. In addition, we may
also be interested in finding the model parameters for each segment.

Linear dynamical models such as (11.33) have been used extensively for
modeling and recognition of dynamic visual phenomena, including the recognition
of human gestures, actions, and activities from motion capture and video data,
and the recognition of surgical gestures from robotic surgery and video data (see
Section 11.5 for a brief overview). In such applications, the dimension D of the data
at each time instance is much higher than the order d of the dynamical system. In
this case, it is easy to show that all the data points fxtg associated with the same
dynamical system belong to a d-dimensional subspace of RD. In particular, notice
that when wt D 0, we have that xdC1 is a linear combination of x1; : : : ; xd, and
xdC2 is a linear combination of x2; : : : ; xdC1, hence of x1; : : : ; xd. By induction, it
follows that xt is a linear combination of x1; : : : ; xd for all t 	 dC 1. Assuming that
x1; : : : ; xd are linearly independent, we can see that there exist a full-rank matrix
U 2 RD�d and a vector yt 2 Rd such that xt D Uyt for all t 	 1. More generally,
when wt ¤ 0, we have

xt D Uyt C Qwt; (11.34)

where Qwt D Pt
iD1 ˇiwi is zero-mean Gaussian noise. Therefore, when � is small,

the set of fxtg lies approximately in a linear subspace of RD of dimension d.
Consider now a time series with multiple segments, each one modeled with an

AR model. In this case, we assume that the time series follows a switched linear
autoregressive (SAR) dynamical model

xt D a1.�t/xt�1 C a2.�t/xt�2 C � � � C adi.�t/xt�d�t
C wt; (11.35)

where �t 2 f1; 2; : : : ; ng determines which of the n AR models is active at time t. We
assume that �t is unknown. In fact, our goal is to determine which data point comes
from which model (segmentation problem) without knowing the model parameters
faj.i/gjD1;:::;diD1;:::;n. To that end, let Gi D ft W �t D ig be the set of time instants associated
with the ith model. It follows that the data points fxtgt2Gi live approximately in a

11.4 Temporal Motion Segmentation 423

subspace of dimension di. Therefore, the set of all data points fxtg lives in a union of
n subspaces of dimensions fdigniD1. As a consequence, we can use any of the generic
subspace clustering algorithms described in Part II to segment the time series into
multiple temporal segments.

In some applications, such as dynamical system identification, we are required
not only to cluster the temporal observations, but also to identify the orders and
the parameters of all ARX models. In such cases, we need to understand more
precisely the conditions under which the systems are identifiable and how to recover
such parameters accordingly. We leave a more careful study of such conditions to
Chapter 12, and concentrate here only on the clustering problem.

11.4.2 Experiments on Temporal Video Segmentation

In this section, we consider the problem of segmenting a video sequence into
multiple temporal segments. In this case, a data point xt 2 RD at time t corresponds
to a video frame (an image) that has been reshaped into a D-dimensional vector,
where D is the number of pixels. Since D is too large for most of the subspace
clustering algorithms discussed in this book, we usually reduce the dimension of
the data either by downsampling each image or by applying PCA to the collection
of all frames. In this experiment, we first use PCA to project the frames to a space of
lower dimension 6. The projected data are then modeled as the output of a switched
AR model as above.

We test two subspace clustering algorithms, namely SASC and SSC, on two
videos of news. The first video (CNNObamaHillary) contains F D 402 frames, and
each frame is an RGB image of size 215� 321. The second video (CNNWorldCup)
contains F D 118 frames of RGB images of size 325 � 577. Sample frames of the
two test videos with ground truth segmentation are shown in Figure 11.8.

For SASC, we test its two variants described in Section 11.3.5. The first one is
SASC-angle, where we use the angle-based affinity with q D 5. The second one is
SASC-distance, where we use the distance-based affinity with q D 0:5. For SSC,
we use the same model as in Section 11.3.5, with parameter 	 D ˛	min;2, where
˛ D 106 and 	min;2 is defined in (8.96).

Table 11.3 gives the clustering errors, defined in equation (11.13), by applying
spectral clustering to the affinity matrices produced by these methods, which are
plotted in Figure 11.9. Observe that SASC-angle fails to capture the multiple events
in the video and gives large clustering errors. In contrast, SASC-distance gives a
much better affinity with reasonably good clustering errors. Nonetheless, the off-
diagonal entries in the affinity are still high. Overall, SSC gives a much better affinity
matrix, which subsequently leads to a perfect segmentation of the video.

Now, it is important to note that in our model, each segment is assumed to be
the output from a (linear) dynamical system. As such, it need not correspond to a

424 11 Motion Segmentation

Fig. 11.8 An illustration of the two videos we use in the experiments. Different colors represent
different segments of the videos.

Table 11.3 Clustering error (%) of SSC and SASC for video
segmentation obtained by applying spectral clustering to the
affinity matrices in Figure 11.9.

Video /Method SSC SASC-angle SASC-distance

CNNObamaHillary 0.00 64.94 0.00

CNNWorldCup 0.00 49.15 5.08

semantically cohesive event in a video. Moreover, as discussed before, our model
does not enforce any temporal coherence, and so the segmentation need not to be
continuous in time. Nonetheless, we observe in the experiments that such a grossly
simplified model is able to capture temporally coherent and semantically meaningful
events in simple videos.

11.4 Temporal Motion Segmentation 425

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) SSC

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) SASC-angle

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) SASC-distance

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) SSC

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) SASC-angle

10 20 30 40 50 60 70 80 90 100 110

10

20

30

40

50

60

70

80

90

100

110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) SASC-distance

Fig. 11.9 Affinity matrices given by SSC and SASC for two news videos. Top row:
CNNObamaHillary video. Bottom row: World cup video. The color bar beneath each subplot
is the ground truth segmentation. The affinity matrix is obtained by taking the absolute value,
symmetrizing, normalizing to .0; 1/, and then setting diagonal entries to zero.

11.4.3 Experiments on Segmentation of Human Motion Data

In this section, we consider the problem of segmenting human motion data into
multiple segments corresponding to different actions or gestures. Human motion
data typically consist of time series data for the position, velocity, or acceleration of
a collection of 3D points on a moving human body. Such data could be obtained by
a motion capture system, by accelerometers installed in the human body, or using
the Microsoft R�Kinect sensor. When the points in 3D space coincide with human
joints, the time series data could also include joint angles. Figure 11.10 shows an
example from the Berkeley Multimodal Human Action Database (MHAD) taken
from (Ofli et al. 2013), which illustrates multiple points tracked in the human body
as well as 3D reconstructions obtained from the Kinect sensor for different human
actions.

Given time series data xt 2 RD, where xt corresponds to motion information
(position, velocity, acceleration, joint angles) from all points in the human body, the
task is to segment this time series into a collection of segments corresponding to
different actions. Since in this case, the dimension of the data D is typically in the
range 10–100, we can apply most subspace clustering methods in this book without
the need for reducing the dimension of the data.

In this experiment, we apply two subspace clustering algorithms introduced
earlier in Chapter 8, namely SSC and LRSC, to segment human motion data from

426 11 Motion Segmentation

Fig. 11.10 Snapshots from all the actions available in the Berkeley Multimodal Human Action
Database (MHAD) are displayed together with the corresponding point clouds obtained from the
Kinect depth data. Actions (from left to right): jumping, jumping jacks, bending, punching, waving
two hands, waving one hand, clapping, throwing, sit down/stand up, sit down, stand up. Image
taken from (Ofli et al. 2013).

the Carnegie Mellon University Motion Capture (MOCAP) database (CMU 2003).
Following the experimental setup in (Barbic et al. 2004; Zhou et al. 2008), we

use 14 sequences from subject 86. Each sequence consists of approximately 8000
frames of about 10 human actions, such as walk, squat, run, stand, jump, drink,
punch. We apply SSC and LRSC to every other frame from each sequence. For
SSC, we use the noisy model in (8.95) and set the parameter 	 D ˛	min;2, where
˛ D 30 and 	min;2 is defined in (8.96). For LRSC, we use the noisy model in
(8.31) with parameter 	 D 10;000. Then the same postprocessing steps described
in Section 11.3.5 are applied to the affinity matrices obtained by both methods. In
addition, given that the segments are expected to be temporally continuous, we can
improve the results by conducting a certain temporal smoothing. To be more precise,
if a motion segment given by the algorithm has length less than a threshold, then
we divide the segment into two halves and merge each into its adjacent segment.
Methods with this postprocessing step are denoted by “-H.”

Table 11.4 shows the average clustering performance on the 14 sequences, while
Figure 11.11 visualizes segmentation results on one representative sequence. The
metric for evaluating the performance is the average per cluster accuracy, which is
given by

Segmentation error (%) D 1

n

nX
iD1

of misclassified points for group i

total # of points in group i
: (11.36)

As we see from the results, SSC generally does a better job than LRSC in
segmenting the motion data sequences. In addition, the simple temporal postpro-
cessing seems to be able to further improve the segmentation results, especially

11.4 Temporal Motion Segmentation 427

Table 11.4 Segmentation error (%) of applying
SSC/LRSC to 14 sequences of subject 86 from the
MOCAP data set

Seq. ACA SSC SSC-H LRSC LRSC-H

1 26:82 6:54 6:54 14:59 3:67

2 25:19 6:09 3:55 26:84 4:59

3 7:74 4:69 2:18 35:83 31:69

4 9:88 42:57 41:27 46:19 29:86

5 28:92 8:16 3:88 49:77 38:58

6 14:85 8:98 3:92 51:49 31:61

7 13:04 22:01 24:96 19:45 21:31

8 5:07 20:73 18:74 37:41 34:82

9 13:91 6:68 6:68 11:90 9:84

10 4:07 1:45 1:33 43:30 28:48

11 7:20 5:24 3:19 41:87 35:73

12 8:99 23:15 30:65 48:18 34:86

13 41:99 33:76 33:76 47:50 38:76

14 9:35 63:48 54:78 43:98 16:37

Avg. 15:50 18:11 16:82 37:02 25:73

Fig. 11.11 Comparison of different clustering methods on the sequence 2 of subject 86 from the
motion capture data. The first row illustrates the ground truth segmentation of the sequence. The
following rows are results given by different algorithms. Different colors correspond to different
actions.

428 11 Motion Segmentation

effective for LRSC. For comparison, in both the table and figure, we have also
shown the results of the state-of-the-art human motion segmentation method aligned
cluster analysis (ACA) (Zhou et al. 2008). The ACA method relies on using
hidden Markov models to explicitly incorporate dynamical and temporal constraints
for segmentation, whereas SSC and LRSC here treat each frame independently.
Therefore, the performance of ACA is understandably better.

11.5 Bibliographical Notes

Bibliographical Notes on 3D Motion Segmentation
Three-dimensional motion estimation and segmentation has been an active topic
of research in the computer vision community over the past few years. Earlier
work (Feng and Perona 1998) solves this problem by first clustering the features
corresponding to the same motion using, e.g., K-means or spectral clustering, and
then estimating a single motion model for each group. This can also be done in
a probabilistic framework (Torr 1998) in which a maximum-likelihood estimate
of the parameters of each motion model is sought by alternating between feature
clustering and single-body motion estimation using the expectation maximization
(EM) algorithm. However, the convergence of EM to the global maximum depends
strongly on initialization (Torr et al. 2001).

In order to deal with the initialization problem of EM-like approaches, recent
work has concentrated on the study of the geometry of dynamic scenes, including
the analysis of multiple points moving linearly with constant speed (Han and
Kanade 2000; Shashua and Levin 2001) or in a conic section (Avidan and Shashua
2000), multiple points moving in a plane (Sturm 2002), multiple translating planes
(Wolf and Shashua 2001a), self-calibration from multiple motions (Fitzgibbon and
Zisserman 2000; Han and Kanade 2001), multiple moving objects seen by an affine
camera (Boult and Brown 1991; Costeira and Kanade 1998; Kanatani 2001; Wu
et al. 2001; Kanatani and Matsunaga 2002; Zelnik-Manor and Irani 2003; Kanatani
and Sugaya 2003; Vidal and Hartley 2004), and two-object segmentation from two
perspective views (Wolf and Shashua 2001b). The case of multiple moving objects
seen by two perspective views was studied in (Vidal et al. 2002b; Vidal and Sastry
2003; Vidal and Ma 2004; Vidal et al. 2006; Ma et al. 2003), and has been extended
to three perspective views via the so-called multibody trifocal tensor (Hartley and
Vidal 2004). Such works have been the basis for the material presented in this
chapter. Extensions to omnidirectional cameras can be found in (Shakernia et al.
2003; Vidal 2005).

11.5 Bibliographical Notes 429

Bibliographical Notes on Time Series Analysis
Over the past decade, there has been an increasing interest in the application of
system-theoretic techniques to the modeling of high-dimensional time-series data
using linear dynamical systems (LDSs) such as (11.33) and their extensions. For
instance, (Béjar et al. 2012) uses LDSs to model surgical gestures in kinematic
and video data from the DaVinci robot; (Ravichandran et al. 2006; Ghoreyshi
and Vidal 2007) use LDSs to model the appearance of a deforming heart in a
magnetic resonance image sequence; (Doretto et al. 2003; Yuan et al. 2004; Vidal
and Ravichandran 2005; Woolfe and Fitzgibbon 2006; Doretto and Soatto 2006;
Hyndman et al. 2007; Ravichandran and Vidal 2008; Ravichandran et al. 2009;
Ravichandran and Vidal 2011; Ravichandran et al. 2013) use LDSs to model
the appearance of dynamic textures, such as water and fire, in a video sequence;
the same idea is exploited in (Chan and Vasconcelos 2005a,b) but for different
applications such as classification and retrieval of traffic video scenes and for motion
segmentation; (Nunez and Cipriano 2009) uses ARMA models to characterize
different froth types in the flotation process (mineral processing); (Bissacco et al.
2001; Chaudhry et al. 2009; Li et al. 2011) use LDSs to model human gaits,
such as walking and running, in motion capture and video data; (Kim et al. 2009)
uses LDSs to detect salient motions in video by detecting mode changes in video
patches; (Aggarwal et al. 2004) uses LDSs to model the appearance of moving faces;
(Saisan et al. 2004) uses LDSs to model audio-visual lip articulations; (Rahimi et al.
2005) presents a semisupervised regression model that can be used for rigid pose
estimation and tracking problems even in case of articulated or nonrigid (such as
lips) objects; (Xiong et al. 2011, 2012) use dynamical systems to perform different
computer vision tasks including tracking in the presence of occlusions; continuing
in the tracking domain, (Ayazoglu et al. 2011) uses dynamical systems to perform
multicamera tracking; LDSs have been extensively used also for action recognition.
A few of the most recents publications are (Nascimento et al. 2005; Ali et al. 2007;
Wang et al. 2008b; Li et al. 2011; Turaga et al. 2011). Given a high-dimensional
time series, one can use standard system identification techniques, e.g., subspace
identification (Overschee and Moor 1993), to learn the parameters of an LDS
model. Given a model, novel time series can be synthesized by simulating the
model forward. For example, impressive synthesis of dynamic textures has been
demonstrated by a number of papers (Doretto et al. 2003; Doretto and Soatto 2003;
Yuan et al. 2004; Szummer and Picard 1996). The same ideas have also been used
for the synthesis of lip articulations using speech as the driving input (Saisan et al.
2004).

Chapter 12
Hybrid System Identification

From the earliest traceable cosmical changes down to the latest results of civilization, we
shall find that the transformation of the homogeneous into the heterogeneous is that in which
Progress essentially consists.

—Herbert Spencer

Hybrid systems are mathematical models that are used to describe continuous
processes that occasionally exhibit discontinuous behaviors due to sudden changes
of dynamics. For instance, the continuous trajectory of a bouncing ball results from
alternating between free fall and elastic contact with the ground. However, hybrid
systems can also be used to describe a complex process or time series that does
not itself exhibit discontinuous behaviors, by approximating the process or series
with a simpler class of dynamical models. For example, a nonlinear dynamical
system can be approximated by switching among a set of linear systems, each
approximating the nonlinear system in a subset of its state space. As another
example, a video sequence can be segmented to different scenes by fitting a
piecewise linear dynamical model to the entire sequence.

In recent years, there has been significant interest and progress in the study of the
analysis, stability, and control of hybrid systems. When the system parameters are
known, many successful theories have been developed to characterize the behaviors
of hybrid systems under different switching mechanisms. However, in practice, the
parameters and the switching mechanism of a hybrid system are often not known or
derivable from first principles. We are faced with the task of identifying the system
from its input and output measurements.

In this chapter, we show how to apply the algebraic subspace clustering (ASC)
method (see Chapter 5) to the problem of identifying a class of discrete-time hybrid

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_12

431

432 12 Hybrid System Identification

System 1

System n

System 2
ut ytλt

Fig. 12.1 The input/output diagram of a hybrid system switching among n constituent systems.
The identification problem requires inferring what is in the black box (including the n systems and
the switching mechanism �t) from its input ut and output yt .

systems known as hybrid auto regressive exogenous (ARX) systems.1 We know
from classic identification theory of linear systems that the configuration space of
the input/output data generated by a single ARX system, say

yt D
naX

jD1
ajyt�j C

ncX
jD1

cjut�j C wt; yt; ut;wt 2 R; (12.1)

is a linear subspace. The problem of identifying the system is equivalent to
identifying this subspace from a finite number of (noisy) samples on the subspace
(as we will review briefly in Section 12.2). Unfortunately, for a hybrid system that
switches among multiple ARX systems, as shown in Figure 12.1, when the orders
of the constituent systems are different, depending on the switching sequence �t, the
configuration space of the hybrid ARX system might not simply be a union of the
configuration spaces of the constituent ARX systems. Therefore, the problem of
identifying the hybrid ARX system is not a trivial subspace segmentation problem.

In this chapter, we show how to incorporate some special (algebraic and
dynamical) structures of a hybrid ARX system so that the identification problem
can still be solved by a special version of the algebraic subspace clustering method.
In particular, we will show that a hybrid ARX system can still be correctly identified
from a special polynomial p that fits the input/output data of the hybrid ARX system;
the last nonzero term of p has the lowest degree-lexicographic order in the ideal
a of polynomials. This polynomial is unique, factorable, and independent of the
switching sequence. The nonrepeated factors of this polynomial correspond to the
constituent ARX systems; hence the number of systems is given by the number of
nonrepeated factors (Section 12.3).

1ARX systems are an extremely popular class of dynamical models that are widely used in control,
signal processing, communications, and economics. In image/video processing, they can be used
to model videos of dynamical scenes.

12.1 Problem Statement 433

Although the analysis and algorithm will be developed primarily in a noise-free
algebraic setting, the algebraic subspace clustering and identification algorithm is
numerically stable and works with moderate noise. Simulation and experimental
results show that the algorithm performs extremely well for both synthetic and
real data, in comparison with the existing iterative (e.g., EM-based) identification
algorithms (Section 12.4).

12.1 Problem Statement

Now let us consider a hybrid ARX system—a system that switches among multiple,
say n, ARX systems of the type (12.1). Mathematically, such a system can be
described as

yt D
na.�t/X
jD1

aj.�t/yt�j C
nc.�t/X
jD1

cj.�t/ut�j . C wt/; (12.2)

where ut 2 R is the input, yt 2 R is the output, �t 2 f1; 2; : : : ; ng is the discrete
state, and na.i/, nc.i/, faj.i/gna.i/

jD1 and fcj.i/gnc.i/
jD1 are, respectively, the orders and

the system parameters of the ith ARX system for i D 1; : : : ; n. The last term wt

is zero for a deterministic ARX system and a white-noise random process for a
stochastic system. The purpose of this chapter is to provide an analytic solution to
the deterministic case, which approximates the stochastic case when wt is small.

The discrete state �t, also called the mode of the system, can evolve due to
a variety of mechanisms. In the least-restrictive case, f�tg is a deterministic but
unknown sequence that can take a finite number of possible values, which we can
assume to coincide with a collection of integers:

� W t 2 Z 7! �t 2 f1; 2; : : : ; ng:

One can further restrict the set of switching sequences by assuming that �t is a
realization of an irreducible Markov chain, governed by transition probabilities

�.i; j/
:D P.�tC1 D jj�t D i/:

In this case, the system (12.2) is often called a “jump-Markov linear system”
(JMLS). Alternatively, one can assume that �t is a piecewise constant function of
the “continuous states” of the system (12.2),

� W .yt�1; : : : ; yt�na/ 2 R
na 7! �t 2 f1; 2; : : : ; ng:

In this case, the system (12.2) is often called a “piecewise ARX” (PWARX) system.

434 12 Hybrid System Identification

Problem 12.1 (Identification of Hybrid Auto Regressive eXogenous Systems).

Given input/output data fut; ytgTtD0 generated by a hybrid ARX system such as (12.2), identify
the number of constituent systems n, the orders of each ARX system fna.i/; nc.i/gniD1, the system

parameters faj.i/gna.i/
jD1 and fcj.i/gnc.i/

jD1 , and the discrete states f�tg.

In this chapter, we will consider the first scenario, so that our results also apply
to other switching mechanisms if that information becomes available. Therefore,
our method does not depend on any particular switching mechanism. Once the
switching sequence has been identified, the switching mechanism can be further
retrieved.

The following problem summarizes the goal of this chapter. In the sequel, we
characterize a set of (sufficient) conditions that allow one to solve the above problem
as well as develop an efficient algorithm for it.

12.2 Identification of a Single ARX System

For the sake of completeness and comparison, let us first review some classical
results for the identification of a single discrete-time ARX system

yt D a1yt�1 C � � � C anayt�na C c1ut�1 C � � � C cnc ut�nc : (12.3)

From the theory of signals and systems, given the infinite sequences of the input fytg
and the output futg, we can compute their Z-transforms Oy.z/ and Ou.z/, respectively.
The transfer function OH.z/ :D Oy.z/=Ou.z/ of the system (12.3) is given by

OH.z/ D zmax.na�nc;0/ QH.z/

D zmax.na�nc;0/.znc�1c1 C znc�2c2 C � � � C cnc/

zmax.nc�na;0/.zna � zna�1a1 � zna�2a2 � � � � � ana/
: (12.4)

Then we can identify the parameters of the ARX model by directly computing OH.z/
as Oy.z/=Ou.z/.2 This requires the ARX model to be identifiable, i.e., QH.z/ must have
no pole-zero cancellation,3 and Ou.z/ to have no zero in common with a pole of OH.z/
and vice versa.

2Notice that this scheme is impractical, since it requires one to obtain the typically infinitely long
output sequence fytg.
3That is, the polynomials zmax.nc�na;0/.zna�zna�1a1�zna�2a2�� � ��ana / and znc�1c1Cznc�2c2C
� � � C cnc are coprime.

12.2 Identification of a Single ARX System 435

Alternatively, we may identify the system via the identification of a subspace
associated with the input/output data. Let us define D

:D naC ncC 1 and the vector
of regressors to be

xt
:D �yt; yt�1; : : : ; yt�na ; ut�1; ut�2; : : : ; ut�nc

�> 2 R
D: (12.5)

Thus, for all time t, the so-defined xt is orthogonal to the vector that consists of the
parameters of the ARX system:

b
:D �1;�a1;�a2; : : : ;�ana ;�c1;�c2; : : : ;�cnc

�> 2 R
D: (12.6)

That is, 8t, xt and b satisfy the equation b>xt D 0: In other words, b is the normal
vector to the hyperplane spanned by (the rows of) the following data matrix:

L.na; nc/
:D Œxmax.na;nc/; : : : ; xt�1; xt; xtC1; : : :�> 2 R

1�D: (12.7)

When the model orders na; nc are known, we can readily solve for the model
parameters b from the null space of L.na; nc/ via SVD.

In practice, however, the model orders may be unknown, and only upper bounds
Nna and Nnc may be available. Thus, the vector of regressors xt can be defined as

xt
:D �yt; yt�1; yt�2; : : : ; yt�Nna ; ut�1; ut�2; : : : ; ut�Nnc

�> 2 R
D; (12.8)

where D D Nna C Nnc C 1. Obviously, the vector

b
:D �1;�a1; : : : ;�ana ; 01�.Nna�na/;�c1; : : : ;�cnc ; 01�.Nnc�nc/

�>
(12.9)

satisfies the equation x>t b D 0 for all t. Notice that here the vector b is the one
in (12.6) with additional Nna � na and Nnc � nc zeros filled in after the terms �ana and
�cnc , respectively.

Let us define the data matrix L.Nna; Nnc/ in the same way as in equation (12.7).
Because of the possibly redundant embedding (12.8), the vector b is no longer the
only one in the null space of L. It is easy to verify that all the following vectors are
also in the null space of L:

b1D�01; 1;�a1; : : : ;�ana ; 0Nna�na�1; 01;�c1; : : : ;�cnc ; 0Nnc�nc�1
�>
;

b2D�02; 1;�a1; : : : ;�ana ; 0Nna�na�2; 02;�c1; : : : ;�cnc ; 0Nnc�nc�2
�>
;

:::
::: (12.10)

Therefore, the data fxtg span a low-dimensional linear subspace S in the ambient
space RD.4 Each of the vectors defined above uniquely determines the original

4Only when the initial conditions fyt0�1; : : : ; yt0�Nnag are arbitrary do the data span a hyperplane in
R

D with b as the only normal vector.

436 12 Hybrid System Identification

system (12.3), including its order and coefficients. However, a vector in the null
space of L is in general a linear combination of all such vectors, and it is not
necessarily one of the above. Thus, in order to identify the original system from
the data matrix L, we need to seek a vector in its null space that has certain desired
structure.

Notice that the last Nnc � nc entries of b in (12.9) are zero; hence the last nonzero
entry of b has the lowest order—in terms of the ordering of the entries of xt—among
all vectors that are in the null space of L. Therefore, we can obtain the first NnaCncC1
entries of b from the null space of the submatrix of L defined by its first NnaC ncC 1
columns. Since nc is unknown, we can incrementally take the first j D 1; 2; : : :

columns of the matrix L from left to right:

L1
:D L. W ; 1 W 1/; L2

:D L. W ; 1 W 2/; : : : ; Lj :D L. W ; 1 W j/; (12.11)

until the rank of the submatrix Lj stops increasing for the first time for some j D m.5

Remark 12.1 (Identifying b and m in the Stochastic Case). In the stochastic case
(i.e., wt 6D 0), the ultimate goal is to minimize the (squared) modeling errorP

t w2t D
P

t.b
>xt/

2, which corresponds to the maximum-likelihood estimate when
wt is white noise. Then the optimal solution b� can be found in a least-squares
sense as the singular vector that corresponds to the smallest singular value of Lm.
However, in the noisy case, we cannot directly estimate m from the rank of Lj, since
it might be of full rank for all j. Based on model selection techniques, m can be
estimated from a noisy Lj as

m D argmin
jD1;:::;D

n �2j .L
j/

Pj�1
kD1 �2k .Lj/

C � � j
o
; (12.12)

where �k.Lj/ is the kth singular value of Lj, and � 2 R is a parameter weighting
the two terms. The above criterion minimizes a cost function that consists of a data
fitting term and a model complexity term. The data fitting term measures how well
the data are approximated by the model, in this case how close the matrix Lj is
to dropping rank. The model complexity term penalizes choosing models of high
complexity, in this case choosing a large rank.

There is, however, a much more direct way of dealing with the case of unknown
orders. The following lemma shows that the system orders na and nc together with
the system parameters b can all be simultaneously and uniquely computed from the
data.

Lemma 12.2 (Identifying the Orders of an ARX System). Suppose we are given
data generated by an identifiable ARX model whose input Ou.z/ shares no poles or
zeros with the zeros or poles, respectively, of the model transfer function OH.z/. If
Nna C Nnc C 1
 na C nc C 1, then

5If nc was known, then we would have m D Nna C nc C 1.

12.2 Identification of a Single ARX System 437

rank
�
L.Nna; Nnc/

� D
(
Nna C Nnc if and only if Nna D na and Nnc D nc;

Nna C Nnc C 1 otherwise.
(12.13)

Therefore, the systems’ orders can be computed uniquely as

.na; nc/ D argmin
.Nna;Nnc/2Z2

fNna C Nnc W rank.L.Nna; Nnc// D Nna C Nncg: (12.14)

The parameter vector b is the unique vector in the null space of L.na; nc/.

Proof. Suppose rank
�
L.Nna; Nnc/

�
 Nna C Nnc and b0 D Œ1; b01; b02; : : : ; b0NnaCNnc
� 2

RNnaCNncC1 is a nonzero vector such that Lb0 D 0. Consider the Z-transform of
Lb0 D 0:

Oy.z/C b01z�1 Oy.z/C � � � C b0Nna
z�Nna Oy.z/

C b0NnaC1z
�1 Ou.z/C � � � C b0NnaCNnc

z�Nna�Nnc Ou.z/ D 0:

Since Ou.z/ does not have any of the poles or zeros of the transfer function OH.z/
in (12.4), the ratio Oy.z/=Ou.z/ derived from the above equation should be a rational
function whose numerator and denominator contain those of OH.z/ as factors,
respectively. Since NnaC Nnc
 naC nc, this happens only if Nna D na and Nnc D nc and
the vector b0 is exactly the same as b in (12.6). ut
Remark 12.3 (Identifying na; nc in the Stochastic Case). In the stochastic case
(i.e., wt 6D 0), we cannot directly estimate na; nc from the rank of L.Nna; Nnc/, since
it might be of full rank for all Nna; Nnc. From model selection methods, na; nc can be
estimated from a noisy L as

.na; nc/ D argmin
.Nna;Nnc/2Z2

n �2NnaCNncC1.L.Nna; Nnc//PNnaCNnc
kD1 �2k .L.Nna; Nnc//

C � � .Nna C Nnc/
o
; (12.15)

where �k.L/ is the kth singular value of L, and � 2 R is a parameter weighting
the two terms, the first for the model fitting error and the second for the model
complexity.

In principle, the above lemma allows us to identify the precise orders na; nc and
the vector b of the ARX system from the (infinite) sequences of input futg and output
fytg. In practice, we are usually given a finite input/output sequence. In such cases,
we need to assume that the sequence of regressors is sufficiently exciting, i.e., the
T � .na C nc C 1/ submatrix

L
:D Œxmax.na;nc/; : : : ; xmax.na;nc/CT�1�>

438 12 Hybrid System Identification

has the same rank na C nc as the “full” L matrix defined in (12.7). Then the
maximum-likelihood estimate for b 2 RnaCncC1 can be identified as the singular
vector that corresponds to the smallest singular value of L.

This condition for sufficient exciting for finite data can also be expressed in
terms of only the input sequence. As shown in (Anderson and Johnson 1982),
the regressors are sufficiently exciting if the input sequence futg is, i.e., if the
vectors

ut
:D Œut; ut�1; : : : ; ut�na�ncC1�> 2 R

naCnc ; na C nc � 1
 t
 T;

span an .na C nc/-dimensional subspace.

12.3 Identification of Hybrid ARX Systems

From our discussion in the previous section, we know that the regressors generated
by an identifiable ARX system with sufficiently exciting input live in a linear
subspace in RD, where D D Nna C Nnc C 1 and Nna; Nnc are upper bounds on the orders
of the system. The problem of identifying the ARX system becomes one of seeking
a vector in the orthogonal complement to this subspace that has a certain desired
structure. We show in this section how to generalize these concepts to the more
challenging problem of identifying a hybrid ARX system (Problem 12.1). Most
of our development will focus on the case of single-input single-output (SISO)
systems.

Consider an input/output sequence fut; ytg generated by a hybrid ARX system
switching among a set of n ARX systems with parameters fbigniD1 and possibly
different orders fna.i/; nc.i/gniD1. We assume that the hybrid ARX system is
identifiable, i.e., for all i D 1; : : : ; n, the rational function QHi.z/ associated with
the ith ARX model has no zero-pole cancellation, and the configuration subspaces
of all the ARX models do not contain one another.6 In general, we also assume that
we do not know the exact orders of the systems but know only certain upper bounds
on them, i.e.,

Nna 	 maxfna.1/; : : : ; na.n/g; Nnc 	 maxfnc.1/; : : : ; nc.n/g:

6One way to ensure this is to assume that for all i ¤ j D 1; : : : ; n, QHi.z/ and QHj.z/ do not have all
their zeros and poles in common. That is, there is no ARX system that can simulate another ARX
system with a smaller order. However, this is unnecessary, because two ARX systems can have
different configuration spaces even if one system’s zeros and poles are a subset of the other’s.

12.3 Identification of Hybrid ARX Systems 439

Very often, we do not know the exact number of systems involved either, but know
only an upper bound on it, i.e., Nn 	 n.7 In this section, we study how to identify the
hybrid ARX system despite these uncertainties.

12.3.1 The Hybrid Decoupling Polynomial

One of the difficulties in identifying hybrid ARX systems is that we do not know the
switching sequence �t; hence we cannot directly apply the subspace identification
technique described in the previous section to each of the n ARX systems. As we
will soon see, in fact both the number of subspaces and their dimensions depend not
only on the number of systems and their orders but also on the switching sequence.
This motivates us to look for relationships between the data fxt 2 R

Dg and the
system parameters fbi 2 R

Dg that do not depend on the switching sequence. To
this end, recall that for every t, there exists a state �t D i 2 f1; 2; : : : ; ng such
that b>i xt D 0. Therefore, the following polynomial equation must be satisfied by
the system parameters and the input/output data for any switching sequence and
mechanism (JMLS or PWARX):

pn.xt/
:D

nY
iD1

�
b>i xt

� D 0: (12.16)

We call this polynomial equation the hybrid decoupling polynomial (HDP). In the
absence of knowledge about the switching mechanism, the HDP encodes all the
information about the system parameters that we can obtain from the input/output
data.

The HDP eliminates the discrete state by taking the product of the equations
defining each of the ARX systems. While taking the product is not the only way of
algebraically eliminating the discrete state, this leads to an algebraic equation with
a very nice algebraic structure. The HDP is simply a homogeneous multivariate
polynomial of degree n in D variables:

pn.z/
:D

nY
iD1

�
b>i z

� D 0; (12.17)

which can be written linearly in terms of its coefficients as

pn.z/
:D
X

hn1;:::;nD zn1
1 � � � znD

D D h>n �n.z/ D 0: (12.18)

7This is the case when a particular switching sequence visits only a subset of all the discrete states.

440 12 Hybrid System Identification

In equation (12.18), hn1;:::;nD 2 R is the coefficient of the monomial zn1
1 zn2

2 � � � znD
D .

Obviously, the vector hn D .hn1;:::;nD/ encodes the parameters of all the constituent
ARX systems. We will show in the sequel how this vector can be correctly recovered
from the data and how the parameters of each individual ARX system can be further
retrieved from it.

12.3.2 Identifying the Hybrid Decoupling Polynomial

Let us assume for now that we know the number of systems n. We will show later
how to relax this assumption. Since the HDP (12.16)–(12.18) is satisfied by all
the data points fxtgTtD1, we can use it to derive the following linear system on the
vector hn:

Ln.Nna; Nnc/ hn
:D

2
6664

�n.xmaxfNna;Nncg/>
�n.xmaxfNna;NncgC1/>

:::

�n.xmaxfNna;NncgCT�1/>

3
7775hn D 0T�1; (12.19)

where Ln.Nna; Nnc/ 2 RT�Mn.D/ is the matrix of the input/output data embedded via the
Veronese map.

Definition 12.4 (Sufficiently Exciting Switching and Input Sequences). A switch-
ing and input sequence f�t; utg is called sufficiently exciting for a hybrid ARX
system if the data points fxtg generated by f�t; utg are sufficient to determine the
union of the subspaces associated with the constituent ARX systems as an algebraic
variety, in the sense of Theorem C.10 of Appendix C.

Given the data matrix Ln.Nna; Nnc/ from a sufficiently exciting switching and input
sequence, we would like to retrieve the coefficient vector hn from its null space.
There are two potential difficulties. First, since the maximum orders Nna; Nnc may not
be tight for every constituent ARX system, the null space of Ln.Nna; Nnc/may be more
than one-dimensional, as we have known from a single ARX system. Second, even
if we know the discrete state for each time, the structure of the data associated with
each state is not exactly the same as that of the ARX system itself: Suppose we
switch to the ith system at time t0. Then we have b>i xt0 D 0. However, the vectors
b given in equation (12.10) are no longer orthogonal to xt0 even if the embedding
is redundant for the ith system. In a sense, the regressor at a switching time usually
lives in a subspace whose dimension is higher than that of the subspace associated
with the ARX model generating the regressor. Therefore, the configuration space
of the data fxtg of a hybrid ARX system will not be exactly the union of all the
subspaces associated with the constituent ARX systems. Let us denote the former
by an algebraic variety Z0 and the latter by Z. Then in general, we have Z0 � Z.

12.3 Identification of Hybrid ARX Systems 441

In order to retrieve hn uniquely from the data matrix Ln, we need to utilize its
additional structure.

Lemma 12.5 (Structure of the Hybrid Decoupling Polynomial). The monomial
associated with the last nonzero entry of the coefficient vector hn of the hybrid
decoupling polynomial pn.z/ D h>n �n.z/ has the lowest degree-lexicographic order
in all the polynomials in a.Z/\ Rn.8

Proof. Every polynomial of degree n in the ideal a.Z/ is a superposition of the
polynomials

Qn
iD1.b

>
�.i/z/, where b�.i/ is a normal vector to the subspace associated

with the ith ARX system.9 Notice that hn is the symmetric tensor of b1; b2; : : : ; bn

defined in (12.9). For the ith ARX system, the last nonzero entry of the vector
bi always has the lowest degree-lexicographic order among all normal vectors
that are orthogonal to the regressors z D xt associated with the ith system.
Therefore, the last nonzero entry of hn must have the lowest degree-lexicographic
order. ut
Theorem 12.6 (Identifying the Hybrid Decoupling Polynomial). Suppose that
fut; ytgTtD0 are the input/output data generated by an identifiable hybrid ARX system.
Let Lj

n 2 RT�j be the first j columns of the embedded data matrix Ln.Nna; Nnc/,
and let

m
:D min

˚
j W rank

�
Lj

n

� D j � 1�: (12.20)

If T is sufficiently large and the input and switching sequences are sufficiently
exciting, then the coefficient vector hn of the hybrid decoupling polynomial is
given by

hn D
��

hm
n

�>
; 01�.Mn.D/�m/

�> 2 R
Mn.D/; (12.21)

where hm
n 2 Rm is the unique vector that satisfies

Lm
n hm

n D 0 and hm
n .1/ D 1: (12.22)

Proof. Let Z be the union of the subspaces associated with the n constituent ARX
systems. Since the input and switching sequence are sufficiently exciting in the sense
of Definition 12.4, according to Theorem C.10 of Appendix C, every polynomial of
degree less than or equal to n that vanishes on all the data points must be in the set
a.Z/\ R�n.10

8Rn is the set of homogeneous polynomials of degree n; see Appendix C.
9This is easily verifiable from the fact that the derivatives of the polynomials in a.Z/ are exactly
the normal vectors of the subspaces.
10R�n is the set of polynomials of degree up to n; see Appendix C.

442 12 Hybrid System Identification

From our discussion before the theorem, the configuration space Z0 of the data
fxtg associated with the hybrid ARX system is in general a superset of Z. The ideal
a0.Z0/ of polynomials that vanish on the configuration space Z0 is then a subideal of
the ideal a.Z/ associated with the union of the subspaces. Furthermore, regardless
of the switching sequence, the hybrid decoupling polynomial pn.z/ is always in
a0 \ Rn
 a \ Rn. According to Lemma 12.5, the last nonzero term of pn.z/ has
the lowest degree-lexicographic order among all polynomials of degree n in a, and
so it has the lowest degree-lexicographic order among all polynomials of degree

n in a0. Since every solution Ln Qh D 0 gives a polynomial Qpn.z/ D Qh>n �n.z/ 2
a\Rn of degree n that vanishes on all data points, the last nonzero entry of hn given
by (12.21) has the lowest degree-lexicographic order. Therefore, we have pn.z/ D
h>n �n.z/.

ut
In fact, to compute the coefficients hn of the hybrid decoupling polynomial, we

can do better than checking the rank of the submatrix Lj
n for every j D 1; 2; : : :. The

following corollary provides one alternative scheme.

Corollary 12.7 (Zero Coefficients of the Decoupling Polynomial). Consider a set
of vectors bi 2 RD; i D 1; : : : ; n. Suppose that one of the bi has a maximal number
of zeros on its right, and without loss of generality, assume that it is

b1 D Œb11; b12; : : : ; b1n1 ; 0; : : : ; 0�
>; with b1n1 6D 0:

The multivariate polynomial pn.z/
:D .b>1 z/.b>2 z/ � � � .b>n z/ has zero coefficients for

all the monomials of �n
�
Œzn1C1; zn1C2; : : : ; zD�

�
; but the coefficients cannot all be

zeros for the monomials of �n
�
Œzn1 ; zn1C1; : : : ; zD�

�
.

This corollary allows us to narrow down the range for m (where Lj
n first drops

rank) because m must fall between two consecutive values of the following:

1; Mn.D/ �Mn.D�1/; Mn.D/�Mn.D�2/; : : : ; Mn.D/ � 1:

Remark 12.8 (Suboptimality in the Stochastic Case). In the stochastic case (i.e.,
wt 6D 0), we can still solve for hm

n in (12.22) in a least-squares sense as the singular
vector of Lm

n associated with its smallest singular value, using a similar model
selection criterion for m as in Remark 12.1. However, in contrast to the single-
system case, the so-found hn no longer minimizes the sum of least-square errorsP

t w2t D
P

t.b
>
�t

xt/
2. Instead, it minimizes (in a least-squares sense) a “weighted

version” of this objective:

X
t

˛t.b>�t
xt/

2 :D
X

t

Y
i6D�t

.b>i xt/
2.b>�t

xt/
2; (12.23)

12.3 Identification of Hybrid ARX Systems 443

where the weight ˛t is conveniently chosen to be
Q

i6D�t
.b>i xt/

2. Such a “softening”
of the objective function allows a global algebraic solution. It offers a suboptimal
approximation to the original stochastic objective when the variance of wt is small.
One can use the solution as the initialization for any other (local) nonlinear
optimization scheme (such as expectation maximization) to further minimize the
original stochastic objective.

Notice that in the above theorem, we have assumed that the switching sequence
is such that all the ARX systems are sufficiently visited. What if only a subset of
the n systems are sufficiently visited? Furthermore, in practice, we sometimes do
not even know the correct number of systems involved and know only an upper
bound for it. The question is whether the above theorem still applies when the
degree n we choose for the Veronese embedding is strictly larger than the actual
number of systems. This is answered by the following corollary, whose proof is
straightforward.

Corollary 12.9 (Identifying the Number of ARX Systems). Let fut; ytgTtD0 be the
input/output data generated by a hybrid ARX system with n < Nn discrete states. If T
is sufficiently large and the input and switching sequences are sufficiently exciting,
then the vector hNn found by Theorem 12.6 is the symmetric tensor product

hNn D Sym
�
b1 ˝ b2 � � � ˝ bn ˝ e1 ˝ � � � ˝ e1„ ƒ‚ …

Nn�n

�
; (12.24)

where e1
:D Œ1; 0; : : : ; 0�> 2 RD, i.e., hNn is the coefficients of the polynomial

pNn.z/ D h>Nn �Nn.z/ D
�
b>1 z

��
b>2 z

� � � � �b>n z
�
zNn�n
1 : (12.25)

Therefore, even if we may overestimate the number of constituent systems
or the switching sequence does not visit all the systems, the solution given by
Theorem 12.6 will simply treat the nonexistent (or not visited) systems as if they had
zero order,11 and the information about the rest of the systems will be conveniently
recovered.

12.3.3 Identifying System Parameters and Discrete States

Theorem 12.6 allows us to determine the hybrid decoupling polynomial pn.z/ D
h>n �n.z/ from input/output data fut; ytgTtD0. The rest of the problem is to recover the

11That is, the coefficient vector b D e1 corresponds to the “system” yt D 0 with na D nc D 0,
which is a trivial ARX system.

444 12 Hybrid System Identification

system parameters fbigniD1 from hn. To this end, recall from Chapter 5 that given hn,
one can recover the model parameters by looking at the partial derivative of pn.z/
given in (12.17),

rpn.z/
:D @pn.z/

@z
D

nX
iD1

Y
`¤i

.b>̀z/bi: (12.26)

If z belongs to the hyperplane Hi D fz W b>i z D 0g, then since the first entry of bi by
definition is equal to one, after replacing b>i z D 0 in (12.26), we obtain

bi D rpn.z/

e>1 rpn.z/

ˇ̌
ˇ̌
z2Hi

2 R
D; (12.27)

where e1 D Œ1; 0; : : : ; 0�> 2 RD. Therefore, we can estimate the system parameters
directly from the derivatives of pn.z/ at a collection of n points fzi 2 HigniD1 lying in
the n hyperplanes, respectively.

In order to find the set of points fzi 2 HigniD1, let us consider a line with base
point z0 and direction v, L D fz0 C ˛v; ˛ 2 Rg. If z0 ¤ 0, z0 is not parallel to v,
and b>i v ¤ 0, then the line L in general intersects the n hyperplanes[n

iD1Hi D fz W
pn.z/ D 0g at n distinct points

zi D z0 C ˛iv 2 Hi \ L; i D 1; : : : ; n; (12.28)

where f˛ig are the roots of the univariate polynomial

qn.˛/ D pn.z0 C ˛v/: (12.29)

We are left with choosing the parameters x0 and v for the line L. The base point
x0 can be chosen as any nonzero vector in RD. Given z0, the direction v must be
chosen not parallel to z0 and such that b>i v ¤ 0, for all i D 1; : : : ; n. Since the latter
constraint is equivalent to pn.v/ ¤ 0, and pn is known, we can immediately choose
v even though we do not know the system parameters fbigniD1.

Be aware that if we have chosen for the Veronese embedding a number
Nn that is strictly larger than n, the polynomial pNn.z/ will be of the form�
b>1 z

��
b>2 z

� � � � �b>n z
�
zNn�n
1 . Then the line L will have only n C 1 intersections with

the n hyperplanes H1; : : : ;Hn and the hyperplane H0
:D fz W e>1 z D z1 D 0g. The

intersection z0 D H0 \L has a multiplicity of Nn� n; and rpNn.z0/ � e1 if Nn� n D 1
or rpNn.z0/ D 0 if Nn � n > 1. We have essentially proven the following theorem.

Theorem 12.10 (Identifying the Constituent System Parameters). Given the
input/output data fut; ytgTtD0 generated by a hybrid ARX system with n discrete
states, the system parameters fbigniD1 can be computed from the hybrid decoupling
polynomial pNn.z/ D h>Nn �Nn.z/ for any Nn 	 n as follows:

12.3 Identification of Hybrid ARX Systems 445

1. Choose z0¤0 and v such that v¤�z0 and pNn.v/¤0.
2. Solve for the Nn roots f˛igNniD1 of qNn.˛/ D pNn.z0 C ˛v/ D 0.
3. For all the roots zi D z0 C ˛iv with z1 6D 0, compute the system parameters
fbigniD1 as

bi D rpNn.zi/

e>1 rpNn.zi/
2 R

D; i D 1; 2; : : : ; n: (12.30)

Remark 12.11 (Alternative Ways of Identifying fbigniD1 from Noisy Data). In
the presence of noise, we can still estimate the normal vectors fbigniD1 as in
Theorem 12.10. However, the quality of the estimates will depend on the choice
of the parameters z0 and v. In this case, one can choose multiple .z0; v/ satisfying
the above conditions, obtain the system parameters for each choice, and let fbigniD1
be the parameters that better reconstruct hn. Alternatively, one can directly choose
fzigniD1 from points in the data set that fit the decoupling polynomial in a certain
optimal way, as discussed Chapter 5. That allows us to bypass the problem of solving
for the (real) roots of the real polynomial qNn.˛/.

Once the system parameters fbigniD1 are recovered, we can then reconstruct the
orders na.i/; nc.i/ of each constituent ARX system as well as the discrete state
trajectory f�tg from the input/output data fxtgTtD0. Notice that for each time t, there
exists a generally unique i such that b>i xt D 0. Therefore, the discrete state �t can
be easily identified as

�t D argmin
iD1;:::;n

�
b>i xt

�2
: (12.31)

There will be ambiguity in the value of �t only if xt happens to be at (or close
to) the intersection of more than one subspace associated to the constituent ARX
systems. However, the set of all such points is a zero-measure set of the variety
Z
 fz W pn.z/ D 0g.

12.3.4 The Basic Algorithm and Its Extensions

Based on the results that we have derived so far, we summarize the main steps
for solving the identification of a hybrid ARX system (Problem 12.1) as the
following Algorithm 12.1. Notice that the algorithm is different from the general-
purpose ASC algorithm given in Chapter 5. By utilizing the structure in the
system parameters fbig and subsequently in their symmetric tensor product hn,
the algorithm guarantees that the so-found polynomial pn is the desired hybrid
decoupling polynomial.

446 12 Hybrid System Identification

Algorithm 12.1 (Identification of an SISO Hybrid ARX System).
Given the input/output data fyt ; utg from a sufficiently excited hybrid ARX system, and the upper

bound on the number Nn and maximum orders .Nna; Nnc/ of its constituent ARX systems:

1. Veronese Embedding. Construct the data matrix LNn.Nna; Nnc/ via the Veronese map based on the
given number Nn of systems and the maximum orders .Nna; Nnc/.

2. Hybrid Decoupling Polynomial. Compute the coefficients of the polynomial pNn.z/
:D

h>

Nn �Nn.z/ D Qn
iD1

�
b>

i z
�
zNn�n
1 D 0 from the data matrix LNn according to Theorem 12.6 and

Corollary 12.9. In the stochastic case, comply with Remarks 12.1 and 12.8.
3. Constituent System Parameters. Retrieve the parameters fbigniD1 of each constituent ARX

system from pNn.z/ according to Theorem 12.10. In the noisy case, comply with Remark 12.11.
4. Key System Parameters. The correct number of system n is the number of bi ¤ e1; The correct

orders na.i/; nc.i/ are determined from such bi according to their definition (12.9). The discrete
state �t for each time t is given by equation (12.31).

Different Embedding Orders
The order of stacking fytg and futg in the vector xt in (12.8) is more efficient for the
algorithm when the values of na.i/ are approximately the same for all the constituent
systems and the nc.i/ are much smaller than na.i/. However, if the na.i/ are rather
different for different systems and the nc.i/ and na.i/ are roughly the same, the
following ordering in time t,

xt
:D �yt; yt�1; ut�1; yt�2; ut�2; : : : ; yt�Nna ; ut�Nna

�> 2 R
D; (12.32)

results in fewer nonzero leading coefficients in hn. Thus the above algorithm
becomes more efficient. Nevertheless, if all the systems have the same na D nc,
then both embeddings have the same efficiency.

Inferring the Switching Mechanisms
Once the system parameters and the discrete state have been identified, the problem
of estimating the switching mechanisms, e.g., the partition of the state space for
PWARX or the parameters of the jump Markov process for JMLS, becomes simpler.
We refer the interested reader to (Bemporad et al. 2003; Ferrari-Trecate et al. 2003)
for specific algorithms.

12.4 Simulations and Experiments

In this section, we evaluate the performance of the proposed algorithm with respect
to the model orders and the amount of noise. We also present experiments on real
data from a component placement process in a pick-and-place machine.

12.4 Simulations and Experiments 447

12.4.1 Error in the Estimation of the Model Parameters

Consider the following PWARX system taken from (Niessen and A.Juloski 2004):

yt D
(
0:5ut�1 C 0:5C wt�1 if ut�1 2 Œ�2:5; 0�;
�ut�1 C 2C wt�1 if ut�1 2 .0; 2:5�:

(12.33)

The input sequence ut consists of 100 points, 80% uniformly distributed in

Œ�2:5; 2:5� and 20% uniformly distributed in Œ0:85; 1:15�. The noise is wt
i.i.d.�

N .0; 0:005/. The error between the estimated parameters Ob and the true parameters
b is defined as

error D max
iD1;:::;m: min

jD1;:::;n:

��Obi � bj

��
��Œ0.D�1/�1 ID�1�bj

�� :

We applied our algorithm with known parameters n D 2, na D 0, and nc D 1.
Our algorithm gives an estimate for the ARX model parameters of Œ0:5047; 0:5102�>
and Œ�0:9646; 1:9496�>, which corresponds to an error of 0:0276. Table 12.1
compares our results with those reported in (Niessen and A.Juloski 2004) for the
algorithms of (Ferrari-Trecate et al. 2003) and (Bemporad et al. 2003). Notice that
our algorithm provides a purely algebraic solution to the problem that does not
perform iterative refinement. Nevertheless, it provides an error comparable to the
errors of the other algorithms that are based on iterative refinement.

12.4.2 Error as a Function of the Model Orders

Consider the following PWAR system taken from (Niessen and A.Juloski 2004):

yt D
(
2yt�1 C 0ut�1 C 10C wt if yt�1 2 Œ�10; 0�;
�1:5yt�1 C 0ut�1 C 10C wt if yt�1 2 .0; 10�;

(12.34)

with initial condition y0 D �10, input ut
i.i.d.� U.�10; 10/, and noise wt

i.i.d.�
N .0; 0:01/.

Table 12.1 Comparison of error
in the estimation of the model
parameters.

Algorithms Errors
Ferrari-Trecate et. al. 0.0045

Bemporad et. al. 0.0334

Algorithm 12.1 0.0276

448 12 Hybrid System Identification

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

n
b

M
ea

n
su

m
 o

f s
qu

ar
es

 e
rr

or

na=1

na=2

na=3

nc=4

Fig. 12.2 Mean sum of squares error for various orders of the ARX models.

We applied our algorithm12 with known number of models n D 2, but unknown
model orders .na; nc/. We evaluated the performance of our algorithm as a function
of the orders .na; nc/. We used a fixed value for .na; nc/ and searched for the
polynomial in the null space of Ln.na; nc/ with the smallest degree-lexicographic
order. We repeated the experiment for multiple values of na D 1; : : : ; 4 and
nc D 1; : : : ; 10, to evaluate the effectiveness of equation (12.12) at finding the
“correct” null space of Ln.na; nc/. Figure 12.2 shows the results for � D 10�5.
Notice that for the entire range of values of na and nc, the algorithm gives an error
that is very close to the theoretical bound of 0.01 (the noise variance).

For the correct system orders na D 1 and nc D 0, the estimates of
the ARX model parameters from our algorithm are Œ1:9878; 0; 10:0161�> and
Œ�1:4810; 0; 10:0052�>, which have an error of 0:0020. These results are
significantly better than those reported in (Niessen and A.Juloski 2004) for the
Ferrari-Trecate and Bemporad algorithms.

12.4.3 Error as a Function of Noise

Consider the following PWAR model taken from (Niessen and A.Juloski 2004):

yt D
(
2ut�1 C 10C wt if ut�1 2 Œ�10; 0�;
�1:5ut�1 C 10C wt if ut�1 2 .0; 10�;

(12.35)

with input ut
i.i.d.� U.�10; 10/ and noise wt

i.i.d.� N .0; �2� /. We run our algorithm
with n D 2, na D 0, and nc D 1 for 10 different values of �� and compute the
mean and the variance of the error in the estimated model parameters, as shown in

12Since here the system is an affine ARX model with a constant input, we need to slightly modify
our algorithm by using the homogeneous representation for the regressor xt, i.e., appending an
entry of “1.”

12.4 Simulations and Experiments 449

Fig. 12.3 Means (left) and variances (right) of the error in the estimation of the model parameters
for different levels of noise. Blue curves are for the purely algebraic Algorithm 12.1; Green curves
are for the EM algorithm initialized with the solutions from Algorithm 12.1.

Figure 12.3. The algorithm estimates the parameters with an error of less than 3:7%
for the levels of noise considered. Again, the errors provided by the purely algebraic
algorithm (Algorithm 12.1) without any iterative refinement are comparable to those
of the Ferrari-Trecate and Bemporad algorithms reported in (Niessen and A.Juloski
2004), which are about 2 � 3%. Furthermore, if we use the solutions offered
by our algebraic algorithm to initialize other iterative refinement algorithms such
as the expectation and maximization (EM) algorithm, then the error is reduced
significantly to about 1% (see Figure 12.3 left).

12.4.4 Experimental Results on Test Data Sets

We applied our algorithm with n D na D nc D 2 to four data sets of T D 60;000

measurements from a component placement process in a pick-and-place machine
(Juloski et al. 2004).13

Since the methods of (Ferrari-Trecate et al. 2003) and (Bemporad et al. 2003)
cannot handle large data sets, for comparison purposes we first report results on
a down-sampled data set of 750 points.14 The 750 points are separated into two
overlapping groups of points. The first 500 points are used for identification, and the
last 500 points are used for validation. Table 12.2 shows the average sum of squared
residuals (SSR): one-step-ahead prediction errors, and the average sum of squared
simulation errors (SSE) obtained by our method for all four data sets, as well as the
SSE of the Ferrari-Trecate and Bemporad algorithms for the first data set as reported
in (Niessen and A.Juloski 2004). Figure 12.4 shows the true and simulated outputs
for data set 1.

13We thank Prof. A. Juloski for providing us with the data sets.
14We take one out of every 80 samples.

450 12 Hybrid System Identification

Table 12.2 Training and simulation errors for down-sampled data sets.

Data Set n na nc ASC SSR SSE F-T SSE Bem. SSE
1 2 2 2 0.0803 0.1195 1.98 2.15

2 2 2 2 0.4765 0.4678 N/A N/A

3 2 2 2 0.6692 0.7368 N/A N/A

4 2 2 2 3.1004 3.8430 N/A N/A

Fig. 12.4 Training and simulation sequences for down-sampled data set 1.

Table 12.3 Training and simulation errors for complete data sets.

Data Set n na nc SSR SSE

1 with all points 2 2 2 4:9696 � 10�6 5:3426 � 10�6

2 with all points 2 2 2 9:2464 � 10�6 7:9081 � 10�6

3 with all points 2 2 2 2:3010 � 10�5 2:5290 � 10�5

4 with all points 2 2 2 7:5906 � 10�6 9:6362 � 10�6

We now report the results of our algorithm tested on the entire data sets. We split
the 60,000 measurements into two groups of 30,000 points each. The first 30,000
are used for identification and the last 30,000 for simulation. Table 12.3 shows
the average sum of squared residual error (SSR) and the average sum of squared
simulation error (SSE) obtained by our method for all four data sets. Figure 12.5
shows the true and simulated outputs for data set 1.

Overall, the algorithm demonstrates a very good performance in all four data sets.
The running time of a MATLAB implementation of our algorithm is 0:15 seconds
for the 500 data points and 0:841 seconds for 30;000 data points.

12.5 Bibliographic Notes

Work on identification (and filtering) of hybrid systems first appeared in the 1970s;
a review of the state of the art as of 1982 can be found in (Tugnait 1982). After
a decade-long hiatus, the problem has recently been enjoying considerable interest

12.5 Bibliographic Notes 451

Fig. 12.5 Training and simulation sequences for complete data sets: the simulated and the
identified sequences overlap almost exactly.

(Bemporad et al. 2000; Ezzine and Haddad 1989; Sun et al. 2002; Szigeti 1992;
Vidal et al. 2002a, 2003a). Much related work has also appeared in the machine-
learning community (Billio et al. 1999; Blake et al. 1999; Doucet et al. 2000;
Ghahramani and Hinton 1998; Murphy 1998; Pavlovic et al. 1999).

When the model parameters and the switching mechanism are known, the identi-
fication problem reduces to the design of observers for the hybrid state (Alessandri
and Coletta 2001; Balluchi et al. 2002; Ferrari-Trecate et al. 2002; Vecchio and
Murray 2004), together with the study of observability conditions under which
hybrid observers operate correctly (Babaali and Egerstedt 2004; Bemporad et al.
2000; Collins and Schuppen 2004; Vidal et al. 2002a, 2003a; Hwang et al. 2003;
Santis et al. 2003).

When the model parameters and the switching mechanism are both unknown,
the identification problem becomes much more challenging. Existing work has
concentrated on the class of piecewise affine and piecewise ARX systems, i.e.,
models in which the regressor space is partitioned into polyhedra with affine or ARX
submodels for each polyhedron. For instance, (Ferrari-Trecate et al. 2003) assumes
that the number of systems is known, and it proposes an identification algorithm
that combines clustering, regression, and classification techniques; (Bemporad et al.
2001) solves for the model parameters and the partition of the state space using
mixed-integer linear and quadratic programming; (Bemporad et al. 2003) uses a
greedy approach for partitioning a set of infeasible inequalities into a minimum
number of feasible subsystems, and then iterates between assigning data points to
models and computing the model parameters.

The connection between algebraic subspace clustering and identification of
hybrid ARX systems was first noticed in (Vidal et al. 2003c; Vidal 2004). Material
presented in this chapter follows that in (Ma and Vidal 2005).

Chapter 13
Final Words

Regarding the fundamental investigations of mathematics, there is no final ending . . . no
first beginning.

—Felix Klein

As we have stated from the very beginning of this book, the ultimate goal
of our quest is to be able to effectively and efficiently extract low-dimensional
structures in high-dimensional data. Our intention is for this book to serve as an
introductory textbook for readers who are interested in modern data science and
engineering, including both its mathematical and computational foundations as well
as its applications. By using what is arguably the most basic and useful class of
structures, i.e., linear subspaces, this book introduces some of the most fundamental
geometrical, statistical, and optimization principles for data analysis. While these
mathematical models and principles are classical and timeless, the problems and
results presented in this book are rather modern and timely. Compared with classical
methods for learning low-dimensional subspaces (such as PCA (Jolliffe 1986)),
the methods discussed in this book significantly enrich our data analysis arsenal
with modern methods that are robust to imperfect data (due to uncontrolled data
acquisition processes) and can handle mixed heterogenous structures in the data.

In this final chapter, we discuss a few related topics that are not explicitly
covered in this book because many of them are still open and active research
areas. Nonetheless, we believe that these topics are all very crucial for the future
development of modern data science and engineering, and the topics covered in this
book serve as a good foundation for readers to venture into these more advanced
topics.

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_13

453

454 13 Final Words

13.1 Unbalanced and Multimodal Data

In practical applications, data are often highly imbalanced across classes. In the face
clustering example we have used throughout the book, the number of face images
from each individual may vary from individual to individual. As a result, when
subspace clustering methods are applied to such imbalanced data, they may intro-
duce a bias toward the class that has more samples and may have low performance
on the minority class. Resampling methods—whereby underrepresented classes are
oversampled and overrepresented classes are undersampled (He and Garcia 2009;
He and Ma 2013)—can be applied to make the samples balanced. However, these
methods can fail, because they completely ignore low-dimensional structures that
are common in multiclass data. A promising approach to handling this issue is to
automatically select a small subset of representatives for a large data set using sparse
representation techniques (Elhamifar et al. 2012b,a). Interestingly, such methods
are able to exploit multisubspace structures and guarantee that sufficiently many
samples from each subspace are selected as representatives.

Another limitation of the techniques described in this book is that they require
the data to come from the same modality. In practice, the desired information is
often buried in various complementary types of data, say a combination of texts,
audios, and images. How can we convert these different types of data into a common
representation so that we can apply some of the methods in this book? So far, most
of the techniques for handling multimodal data (say those popular in the multimedia
literature) first extract features from each data type and then simply concatenate the
features for analysis. It seems that there is increasing need to put information fusion
from different data types on a firm theoretical and algorithmic foundation. Recent
work in the area of domain adaptation aims to address this challenge (Patel et al.
2014; Jhuo et al. 2012; Qiu et al. 2012; Shekhar et al. 2013).

13.2 Unsupervised and Semisupervised Learning

According to the ontology of machine learning, all methods introduced in this book
belong to the category of unsupervised learning. That is, they try to automatically
learn the subspace structures of the data set without any manual labeling of the
data classes1 or manual setting of the model parameters. The reason for favoring
unsupervised learning in the modern era of Big Data era is obvious: it is cost- and
time-prohibitive to manually label massive data sets.

Nevertheless, in many practical situations and tasks, it is reasonable to assume
that a small portion of the data set can be properly labeled in advance. Mathemat-
ically, the difficulty of the learning task can be dramatically alleviated even if a

1For instance, label whether a data point is an outlier; or label which subspace a data point belongs
to in advance.

13.3 Data Acquisition and Online Data Analysis 455

tiny subset of the data are labeled. We have seen some concrete examples in this
book that support this view. In the algebraic subspace clustering method described
in Chapter 5, we saw that although identifying individual subspaces through
factorizing the vanishing polynomials (the vanishing ideal) is computationally
intractable, the task can be significantly simplified once we are able to identify a
sample point that belongs to one of the subspaces. Similar situations may naturally
arise in many practical tasks. For instance, each Facebook user may have a few of
the photos in his or her album labeled properly, yet it is desirable to use all the
images in the Facebook repository (labeled or unlabeled) to build an effective face
recognition or face labeling system.

Naturally, improving the effectiveness and efficiency of the subspace learning
algorithms described in this book in the semisupervised learning setting will be a
very meaningful and useful direction for future investigation. In particular, there
is a need to develop principles that provide good guidelines for data sampling and
labeling in such new settings, which, to the best of our knowledge, is still lacking.

13.3 Data Acquisition and Online Data Analysis

In this book, we have assumed that the data have all been collected in advance and
have already been converted to a vector or matrix form ready for analysis. This may
not be the case in many practical situations. For many demands of data analysis on
the Internet or sensor networks, new data are accumulated on a daily basis and
need to be stored, processed, and analyzed together with all the data that have
been collected before. One natural example is how to analyze video streams from
a network of cameras in a metropolitan area, either for traffic violations, security
surveillance, or crime investigations. There is an obvious need for developing a
real-time or online version of all the data analysis algorithms so that we can learn
structures of the data adaptively as new data arrive and as the data structures evolve
in time.

Toward the end of the book, in Chapters 11 and 12, we touched on applications
of analyzing dynamical data such as videos and hybrid linear dynamical systems.
However, to apply the methods in this book, we typically have to process such data
in a batch fashion. To our knowledge, in the literature, there have already been good
progress made toward developing online versions of some of the algorithms featured
in this book, e.g., robust principal component analysis (Feng et al. 2013). There
has also been good success in applying sparse representation and data clustering
to real-time tasks such as object tracking in videos (Zhang et al. 2014). There has
also been good progress on developing online versions of the algebraic subspace
clustering algorithm for applications in online hybrid system identification (Vidal
2008). Nevertheless, how to develop online data analysis methods in a systematic
and principled fashion remains an active research area.

One important issue associated with online data processing is how to control the
data acquisition process so that we can more effectively collect the most informative

456 13 Final Words

samples for the task at hand. If we could have some control over what data to collect
and how to collect them, the subsequent data analysis tasks could potentially be
dramatically simplified. This is one of the main messages advocated and supported
by compressive sensing theory (Candès 2006; Baraniuk 2007).

13.4 Other Low-Dimensional Models

The class of models studied in this book, although very fundamental, can become
inadequate for practical data sets that exhibit more sophisticated structures. As we
have studied in Chapter 4, linear subspaces are no longer effective for data sets that
have significant nonlinear structures. In such cases, the linear subspace model of
PCA needs to be replaced with a low-dimensional surface or submanifold. However,
although we have seen in Chapter 4 how such a nonlinear manifold can be learned
through parametric or nonparametric techniques, we never dealt with data that may
lie on a mixture of nonlinear manifolds.

Union of Manifolds
Note that a union of manifolds is a much more general (and expressive) class of
models, which is also known in the literature as stratifications (Haro et al. 2008,
2006). Learning manifolds and stratifications remains an active research area, and
many effective algorithms have been proposed so far. However, the theory and
algorithms for manifold and stratification learning are still far from having reached
the same level of maturity as those for subspace models covered in this book.
Existing methods for clustering data in a union of manifolds include generalizations
of the manifold learning algorithms discussed in Chapter 4, such as (Souvenir and
Pless 2005), which is based on alternating minimization, and the locally linear
manifold clustering (LLMC) algorithm (Polito and Perona 2002; Goh and Vidal
2007), which we discussed in Chapter 7 in the context of affine subspaces, but
which generalizes to nonlinear manifolds. Another algorithm is sparse manifold
clustering and embedding (SMCE) (Elhamifar and Vidal 2011), which generalizes
the sparse subspace clustering algorithm discussed in Chapter 8. However, as stated
before, a theoretical analysis of the conditions under which these methods give the
correct clustering is still missing. Finally, there are also extensions of both LLMC
and SSC to Riemannian manifolds, which have appeared in (Goh and Vidal 2008)
and (Cetingül et al. 2014), respectively.

Compressive Sensing and Decomposable Structures
The rise of compressive sensing (Candès 2006; Baraniuk 2007) has brought to
our attention a large family of low-dimensional structures in high-dimensional
spaces, the so-called decomposable structures (Negahban et al. 2010; Candès
and Recht 2011). In a sense, sparse signals, low-rank matrices (low-dimensional
subspaces), and mixture of subspaces are all special cases of such structures, as
we have seen in Chapters 3 and 8. All decomposable structures have similarly
nice geometric and statistical properties as sparse signals and low-rank matrices:

13.5 Computability and Scalability 457

they all can be recovered from nearly minimum samples via tractable means (say
convex optimization). In addition, those structures can be arbitrarily combined (sum,
union, and intersection) to generate an even broader family of low-dimensional
structures. Nevertheless, beyond sparse and low-rank models, our understanding of
and practice with structures in this broad family remains rather limited to this day.
There is already evidence indicating that many such low-dimensional models and
structures will play important roles in future data analysis.

Deep Learning and Deep Neural Networks
If the rise of compressive sensing is due to a series of mathematical breakthroughs,
the revival of deep learning (Hinton et al. 2006) is largely attributed to some
empirical successes of deep neural networks in classifying practical data such as
speeches and images (Jarret et al. 2009). Since low-dimensional linear maps (such
as the auto-encoders or the convolutional neural networks) are the key building
blocks for each layer of a deep neural network, knowledge given in this book
about low-dimensional linear models serves as a good foundation for thoroughly
studying properties of hierarchical linear models such as deep neural networks and
the treelike graphical models we used in Chapter 9. Recent theoretical advances in
the analysis of deep neural networks have indicated strong connections of learning
deep neural networks with dictionary learning (Spielman et al. 2012; Sun et al.
2015), sparse regularization (Arora et al. 2014), and matrix/tensor factorization
(Haeffele et al. 2014; Haeffele and Vidal 2015). There are good reasons to believe
that such advances will eventually lead to a rigorous and profound mathematical
theory for deep networks and deep learning, similar to what has been established
for sparse models in compressive sensing.

13.5 Computability and Scalability

According to the 2014 Big Data report from the White House, “We are only in
the very nascent stage of the so-called ‘Internet of Things’.” Our government,
society, industry, and scientific community have been suddenly inundated with
unprecedentedly massive data sets from the Internet (texts, audios, images, and
videos, etc.) that contain important information about our daily lives and businesses.
This has presented tremendous opportunities and challenges for the information
technology industry and community, which require correct mathematical algo-
rithms and computing technologies to effectively and efficiently analyze those
massive data sets and extract useful information from them.

From Intractable to Tractable
While this book has taken only a few baby steps toward meeting the grand challenge
of big data analysis, we have touched on a number of of promising and significant
areas of progress in that direction. As we may recall, the problem of generalizing
PCA to data with incomplete or corrupted entries or to data from multiple subspaces

458 13 Final Words

is in general a highly combinatorial problem that is computationally intractable.2

For instance, we saw in Chapter 5 and Appendix C that a precise characterization
of the geometric structures of general subspace arrangements requires sophisticated
(algebraic) geometric techniques whose computational complexity explodes as the
dimension or the size of the data set increases. Now, there has been a very long
history of research attempting to tackle instances of the GPCA problem with greedy,
heuristic, brute force, or ad hoc algorithms. Although some of these algorithms
have produced good results for many practical instances of the problem, one must
realize that such algorithms do not provide any strong guarantee of success for
general cases.3 Because of this, at the beginning phase of our study of GPCA,
we were wondering ourselves whether we would have to live with the fact that
there will never be tractable algorithms for solving these GPCA problems with
both correctness and efficiency guarantees. Fortunately, this did not turn out to be
the case. With the help of more advanced statistical and computational tools from
compressive sensing and convex optimization, researchers were able to develop
tractable and efficient algorithms that provide provably correct solutions to the
GPCA problems under broad conditions (see Chapters 3 and 8). Along the way,
we have begun to realize how limited our understanding of high-dimensional data
sets was and how surprisingly optimistic the situation has turned out to be.

From Tractable to Practical
However, having tractable solutions does not mean that the existing algorithms can
already meet the modern challenge of big data analysis. Most of the algorithms
introduced in this book are capable of handling data size or dimension up to the
order of 104–105 on a typical computer. There has been tremendous effort in the
computational community to speed and scale up core computational components
heavily utilized by algorithms introduced in this book, including SVD for robust
PCA or spectral clustering and `1 minimization for SSC. Many of the Internet-
size data sets and problems require the scaling up of those algorithms by at least a
few orders of magnitude. Hence, it is extremely important to investigate alternative
optimization techniques that are more suitable for parallel and distributed computing
and require less communication and memory. The drive for ever more scalable
methods has become the source of inspiration for many ingenious new results
in modern high-dimensional statistics and parallel optimization. For instance, the
new factorization method mentioned in Chapter 3 has resulted from the effort
to try to scale up the matrix completion or matrix recovery problem, instead of
relying on the relatively expensive SVD. Recent promising generalizations of this
approach have appeared in (Bach et al. 2008; Bach 2013; Haeffele et al. 2014;
Udell et al. 2015). The search for ever more efficient and scalable sparse recovery
algorithms has revolutionized optimization in the past few years with many new

2Strictly speaking, both problems are NP-hard in their general cases.
3One must be aware that success on instances can never be used as justification for the correctness
of a proposed method.

13.6 Theory, Algorithms, Systems, and Applications 459

parallel and distributed algorithms that are able to be implemented on commercial
cloud computing platforms (Deng et al. 2013; Peng et al. 2013). Hence, we have
sufficient reasons to be optimistic that for most methods and algorithms introduced
in this book, researchers will be able to implement them and make them available
to everyone on typical cloud computing platforms (such as the Hadoop MapReduce
and the Spark systems) in the near future.

13.6 Theory, Algorithms, Systems, and Applications

As the demand for big data analysis is driven by many Internet-scale or world-scale
applications, the ever more popular and powerful cloud computing platforms can be
viewed as necessary technological infrastructures to support such tasks. However,
big data and cloud computing would not have generated so much excitement in the
scientific and research communities if they had required nothing more than scaling
up what we used to do in the past. As this book has demonstrated, the challenges
of analyzing massive high-dimensional data sets under uncontrolled engineering
conditions has pushed researchers into the new realm of high-dimensional geometry,
statistics, and optimization. We have begun to understand phenomena that were
never imagined in classical low-dimensional settings or for tasks with small data
sets.

The rise of compressive sensing and sparse representation has begun to provide
researchers with a solid theoretical foundation for understanding the geometric
and statistical properties of large high-dimensional data sets, whereas the revival
of deep learning has begun to provide researchers with efficient computational
platforms for handling practical (reinforced) learning tasks with large-scale, high-
dimensional input data sets. Almost around the same time, the quest to seek tractable
and efficient algorithms is revolutionizing optimization tools needed to learn such
complex models and analyze such massive data sets. As we have mentioned before,
many such optimization and learning algorithms can be easily implemented on
modern cloud computing platforms, and hence can be scaled up to arbitrary sizes.

All these exciting developments make us believe that we are witnessing a perfect
storm that takes place only occasionally in the history of science and engineering,
whereby fundamental mathematical theories and significant engineering endeavors
are fueling each other’s explosive development. Never before have we seen long-
isolated research fields in mathematics, statistics, optimization algorithms, computer
systems, and industrial applications work so closely together on a common set of
challenges. As a result, every field is making progress at an unprecedented rate,
feeding on or fueling the progress and success of other fields. We anticipate that
this trend will continue for quite some time, until a new body of scientific and
engineering knowledge is fully developed. We hope that this book helps scientists
and researchers move one step closer toward that grand goal.

Appendix A
Basic Facts from Optimization

Since the fabric of the universe is most perfect and the work of a most wise Creator, nothing
at all takes place in the universe in which some rule of maximum or minimum does not
appear.

—L. Euler

In engineering practice, there are often many possible or feasible solutions to a
given problem. For instance, there might be multiple models that can explain the
same observed data. In such situations, it is desirable to find a solution that is better
than others in the sense that it optimizes certain objective function, e.g., it maximizes
a likelihood function. To make this book more self-contained, we review in this
appendix some of the key facts and tools from optimization. This appendix is by
no means meant to be a complete tutorial in optimization. The reader is referred to
(Bertsekas 1999; Boyd and Vandenberghe 2004) for details.

A.1 Unconstrained Optimization

The goal of unconstrained optimization is to find the minimum value of a function
f W Rn ! R as well as the point x� 2 arg minx f .x/ at which the function achieves
its minimum value, i.e., a point x� such that f .x�/
 f .x/;8x 2 Rn. Notice that
in general, the minimum value or optimal solution of a function may not exist, and
even if it does exist, it may not be unique. For simplicity and convenience, unless
otherwise stated, we will always assume that the function f is twice differentiable.
We denote the gradient and Hessian of the function f by rf and r2f , respectively.
Notice that rf .x/ is an n-dimensional vector and r2f .x/ is an n � n matrix. More
precisely, they are defined to be

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9

461

462 A Basic Facts from Optimization

rf .x/
:D

2
66664

@f .x/
@x1
@f .x/
@x2
:::

@f .x/
@xn

3
77775
; r2f .x/ :D

2
666664

@2f .x/
@x1@x1

@2f .x/
@x1@x2

� � � @2f .x/
@x1@xn

@2f .x/
@x2@x1

@2f .x/
@x2@x2

� � � @2f .x/
@x2@xn

:::
:::

: : :
:::

@2f .x/
@xn@x1

@2f .x/
@xn@x2

� � � @2f .x/
@xn@xn

3
777775
; (A.1)

where x D �x1; : : : ; xn

�>
. Sometimes, we use rxf .x; y/ to indicate the gradient with

respect to x only, and similarly for the Hessian.

A.1.1 Optimality Conditions

We use N.x; "/ to denote an "-ball around the point x. We say that a point x� is
a local minimum of f if there exists an " > 0 such that f .x�/
 f .x/ for all x 2
N.x�; "/. We say that x� is a strict minimum if equality holds only if x D x�. If
the size of the neighborhood can be arbitrarily large, we say that x� is the global
minimum of the function.

It is not difficult to prove by contradiction (see Exercise A.1) that a necessary
condition for a point x� to be a local minimum is that the gradient rf .x/ vanish at
x�, or more precisely,

rf .x�/ D 0: (A.2)

The following proposition gives sufficient conditions for a point x� to be a local
minimum in terms of its gradient and Hessian.

Proposition A.1 (Second-Order Sufficient Optimality Conditions). If a point x� 2
Rn satisfies the conditions

rf .x�/ D 0; r2f .x�/ � 0; (A.3)

then x� is a (strict) local minimum of f .x/.

In practice, the above conditions can be used to find all possible local minima
of a given function. Of course, in general, local minima of a function are often not
unique and do not have to be the global minimum. However, if f is convex defined
on a convex domain, then every local minimum must be the global minimum.

A.1.2 Convex Set and Convex Function

Definition A.2 (Convex Set). A set X
 R
n is said to be convex if for every x; y 2

X and � 2 Œ0; 1�, we have �xC .1 � �/y 2 X .

A Basic Facts from Optimization 463

For convenience, the empty set is considered a special convex set. In most
optimization problems that we consider in this book, we are searching for the
minimum of a function over a convex domain. It is easy to verify many useful
properties of convex sets. For example, the intersection of any two convex sets is
also a convex set (see Exercise A.2).

Given any set (convex or not), we can associate with it a convex set as follows:

Definition A.3 (Convex Hull). Given a set X D fxig
 Rn, we define its convex
hull, denoted by conv.X /, to be

conv.X / :D
(

y W y D
kX

iD1
�ixi;where k 2 N; �i 	 0 and

kX
iD1

�i D 1
)
: (A.4)

It is easy to show that a convex hull must be a convex set and that the convex hull of
a convex set is the convex set itself (see Exercise A.2).

Definition A.4 (Convex Function). A function f W X ! R defined on a convex
domain X
 R

n is said to be convex if for all x; y 2 X and � 2 Œ0; 1�, we have

f .�xC .1 � �/y/
 �f .x/C .1 � �/f .y/: (A.5)

We say that f is strictly convex if the inequality is strict for x 6D y and � 2 .0; 1/.
Convex functions are extremely important for optimization largely because their

minima and maxima have some very useful properties.

Theorem A.5 (Minima of Convex Function). If a convex function f defined over a
convex domain X
 Rn has a minimum, then it has the following properties:

1. Every local minimum of f is also a global minimum.
2. The set of all minima of f is a convex set.
3. If the function f is strictly convex, it has a unique minimum x�.

Proof. Let f � denote the global minimum value of f over X , and choose a point x�
where f reaches the global minimum value, i.e., f .x�/ D f �.

1. To prove the first statement, let us assume for the sake of contradiction that f
has a local minimum at y�. Then, due to the convexity of f , we have that for all
� 2 Œ0; 1�,

f .�x� C .1 � �/y�/ D f .y� C �.x� � y�//
 �f .x�/C .1 � �/f .y�/:

If f .x�/ < f .y�/, then �f .x�/ C .1 � �/f .y�/ < f .y�/ for every � 2 .0; 1�.
Therefore, we have f .y�C�.x��y�// < f .y�/ for all � 2 .0; 1�. This contradicts
the assumption that y� is a local minimum of f .

2. To prove the second statement, we need to show that for every c 2 R, the set fx W
f .x/
 cg is convex. We leave this as an exercise to the reader (see Exercise A.3).
The claim then follows by choosing c D f �.

464 A Basic Facts from Optimization

3. To prove the third statement, let us assume for the sake of contradiction that f has
two different local minima x� and y� 6D x�. Due to the first statement, we have
f .x�/ D f .y�/. Since f is strictly convex, we further have

f .�x� C .1� �/y�/ < �f .x�/C .1 � �/f .y�/ D f .x�/

for all � 2 .0; 1/. Since the domain X is convex, �x� C .1 � �/y� 2 X . This
contradicts that x� is the global minimum of f over X . Therefore, the minimum
x� must be unique.

ut
Sometimes, we are also interested in the maximum value of a convex function f

over a convex set X . We have the following statement.

Theorem A.6 (Maxima of Convex Function over Compact Convex Domain). Let
f be a convex function defined on a compact convex domain X . Then f reaches its
maximum value at the boundary of X . More precisely, we have

max
x2X f .x/ D max

x2@X f .x/;

where @X denotes the boundary of the set X .

We leave the proof as an exercise for the reader to become familiar with the
properties of convex functions (see Exercise A.3).

Besides the above notion of (strict) convexity, the following two relaxed notions
of convexity are also often used.

Definition A.7 (Quasiconvex). A function f W X ! R defined on a convex domain
X
 Rn is said to be quasiconvex if for all x; y 2 X and � 2 Œ0; 1�, we have

f .�xC .1 � �/y/
 maxff .x/; f .y/g:

Definition A.8 (Pseudoconvex). A function f W X ! R defined on a convex
domain X
 Rn is said to be pseudoconvex if for all y 2 Rn such that
rf .x/>.y � x/ 	 0, we have

f .x/
 f .y/:

A.1.3 Subgradient

Sometimes, the function we are trying to minimize is not necessarily smooth
everywhere. In this case, the “gradient” of the function cannot be evaluated at every
point. This leads to a generalized notion of the gradient called a subgradient.

A Basic Facts from Optimization 465

Definition A.9 (Subgradient of a Convex Function). The subgradient of a convex
function f W X ! R at a point x 2 X , where X is convex, is defined to be the set

@f .x/
:D fv 2 R

n W f .y/ 	 f .x/C v>.y � x/; 8y 2 X g: (A.6)

Most conditions and results for minimizing a smooth convex function generalize
to a nonsmooth convex function if one replaces gradient with subgradient. For
instance, a point x� is a minimum of a convex function f if and only if 0 2 @f .x�/.

A.1.4 Gradient Descent Algorithm

There is an extremely rich history and literature on how to optimize a function. For
many of the problems in this book, we are mostly interested in a simple method that
can be easily implemented to obtain the optimal solution. Hence, in this section, we
introduce a few simple methods that are pertinent to these problems, even though
they do not necessarily represent the most advanced optimization techniques.

Almost all methods for minimizing a function f are based on a very simple idea.
We begin with an initial guess x D x0, and successively update x to x1; x2; : : :, such
that the value f .x/ decreases at each iteration; that is, f .xiC1/
 f .xi/. Of course,
the safest way to ensure a decrease of the value of the objective function is to follow
the “direction of descent,” which in our case would be the opposite direction to the
gradient vector rf .xi/. This idea gives rise to the classic steepest descent method
for searching for the minimum. At each iteration, the variables are updated as

xiC1 D xi � ˛irf .xi/; (A.7)

for some scalar ˛i > 0, called the step size.
There exist many different choices for the step size ˛i, and the simplest one is of

course to set it to be a small constant, but that does not always result in a decrease
in the value of f .x/ at each iteration. Instead, ˛i is often chosen to be the value ˛�
that is given by solving a one-dimensional minimization problem:

˛� D arg min
˛�0

f .xi � ˛rf .xi//: (A.8)

This is called the minimization rule.
Although the vector �rf .xi/ points to the steepest descent direction locally

around xi, it is not necessarily the best choice for searching for the minimum at
a larger scale. For instance, if f .x/ can be approximated by a quadratic function
f .x/ � 1

2
.x�x�/>K.x�x�/Cc and the matrix K has very large condition number,1

1That is, the ratio cond.K/ D �max
�min

between the largest and smallest eigenvalues of K is large.

466 A Basic Facts from Optimization

then the simple gradient descent method typically has very poor convergence. In
general, it is easy to establish that the error f .xi/� f .x�/ of gradient-based methods
necessarily drops on the order of o.i�1/. Further, for a general class of objective
functions, one can show that the optimal rate of convergence for gradient-based
methods does not exceed o.i�2/ (Nemirovskii and Yudin 1979).

To improve the convergence of the gradient descent method, one can generalize
the variable update equation to the form

xiC1 D xi � ˛iDirf .xi/; (A.9)

where Di 2 Rn�n is a positive definite symmetric matrix to be determined in each
particular algorithm. The steepest descent method in (A.7) becomes a particular
case of (A.9), where Di � I. In general, Di can be viewed as a weight matrix
that adjusts the descent direction according to more sophisticated local information
about the function f than the gradient alone. A simple choice for Di would be a
diagonal matrix that scales the descent speed differently in each axial direction. A
more principled choice for Di would be the inverse of the Hessian Di D Œr2f .xi/��1,
which gives the classical Newton’s method. This method typically has a much faster
convergence rate than simple gradient-based methods. For example, it finds the
minimum of a quadratic function in one step. In general, it can also be established
that under fairly general conditions, optimization schemes based on Newton-type
iterations often have a linear convergence rate, that is, the error f .xi/� f .x�/ reduces
on the order of o.�i/ for some � 2 .0; 1/.

Despite the fast convergence of Newton’s method, in many modern high-
dimensional optimization problems that we encounter in this book, this choice is
not very practical, because it is extremely costly to compute and store the Hessian
matrix and its inverse. Hence, most modern optimization methods for large-scale
optimization rely on smart modifications to the classical gradient descent method
that are based on only first-order derivatives of the objective function. For interested
readers, we point to the seminal work of (Nesterov 1983; Beck and Teboulle 2009)
on accelerated proximal gradient algorithms that achieve a convergence rate of
o.i�2/ for a large class of convex objective functions.

A.1.5 Alternating Direction Minimization

In many optimization problems that we encounter in this book, we are required to
minimize an objective function f that has special structures. For example, if we
partition the variables x 2 Rn into, say, N blocks x D .x1; : : : ; xN/, it may be very
convenient to minimize f with respect to one block of variables at a time.

Such methods are also known in the optimization literature as block coordinate
descent (BCD) methods (Tseng 2001) or alternating direction minimization (ADM)
methods, especially when N D 2. For example, in the matrix factorization problem

A Basic Facts from Optimization 467

discussed in Section 2.1.2, our goal is to obtain a factorization .U;V/ that best
approximates a given matrix M by minimizing the objective function

kM � UV>k2F: (A.10)

If we fix one factor, say U, then finding the best V that minimizes the error is a
simple quadratic problem and has a closed-form solution. Hence, it is rather natural
to minimize such an objective function by iteratively minimizing with respect one
factor at a time. As another example, in some of the convex optimization problems
that we utilize for recovering low-rank matrices or sparse vectors, the objective
function is often of the special form

f .x/ D f0.x/C
NX

iD1
fi.xi/; (A.11)

where fi.�/ is a component that depends only on the ith block variables xi, and f0.x/
typically is a simple function with nice properties. Such a function is said to have
a separable form. Again, it is natural to minimize such a function in a (block)
coordinate descent fashion especially if f0.x/ C fi.xi/ is much easier to minimize
with respect to each coordinate block xi.

Below, we formally describe the block coordinate descent (BCD) method, as a
special version of what was described in (Tseng 2001):

• Initialization. Choose any x0 D .x01; : : : ; x0N/ 2 Rn.
• For the .iC 1/th iteration, i 	 0, given xi D .xi

1; : : : ; x
i
N/ 2 Rn from the previous

iteration, choose s D i .mod N/ and compute

– xiC1
s D arg minxs

f .xi
1; : : : ; x

i
s�1; xs; xi

sC1; : : : ; xi
N/;

– xiC1
j D xi

j; 8j 6D s.

• Repeat the process till convergence or the maximum number of iterations has
been reached.

Although the above alternating minimization scheme is very widely used in engi-
neering solutions for real-world optimization problems, theoretically it is important
to know about when it is guaranteed to converge, at least to a local minimum of
the objective function f . There has been a vast amount of classical literature that
characterizes the convergence of the BCD method for various classes of objective
functions. We here summarize some of the well-known convergence results, which
are helpful in justifying the optimization techniques used for problems in this book.
For detailed and rigorous proofs of these results, we refer the reader to the references
given below.

Proposition A.10 (Convergence of Block Coordinate Descent). Given a function
f W Rn ! R bounded from below, the BCD method converges to a stationary point
of f under each of the following conditions:

468 A Basic Facts from Optimization

• The function f is strictly convex (Warga 1963).
• The function f is pseudoconvex (Zadeh 1970).
• The function f is quadratic (Luo and Tseng 1993).
• The function f is pseudoconvex in each pair of blocks .xj; xk/ for every j; k 2
f1; : : :Ng (Tseng 2001).

• The function f has unique minimum in each coordinate block (Luenberger 1973).

In fact, if the function f is not pseudoconvex, a counterexample (Powell 1973)
exists in which the method may cycle without approaching any stationary point of
f . The last result suggests that the alternating minimization scheme for the matrix
factorization problem is guaranteed to converge to a stationary point.

A.2 Constrained Optimization

In this section, we consider the problem of minimizing a function f W Rn ! R

subject to equality constraints on the variable x 2 Rn, i.e.,

x� D arg min f .x/ subject to h.x/ D 0; (A.12)

where h D Œh1; h2; : : : ; hm�
> is a smooth (multidimensional) function (or map)

from R
n to R

m. For each constraint hi.x/ D 0 to be independently effective at the
minimum x�, we often assume that their gradients

rh1.x�/; rh2.x�/; : : : ; rhm.x�/ 2 R
n (A.13)

are linearly independent. If so, the constraints are called regular.

A.2.1 Optimality Conditions and Lagrangian Multipliers

For simplicity, we always assume that the functions f and h are at least twice
continuously differentiable. Then the main theorem of Lagrange is as follows.

Theorem A.11 (Lagrange multiplier theorem; necessary conditions). Let x� be a
local minimum of a function f subject to regular constraints h.x�/ D 0. Then there
exists a unique vector �� D Œ��1 ; ��2 ; : : : ; ��m�> 2 Rm, called Lagrange multipliers,
such that

rf .x�/C
mX

iD1
��i rhi.x�/ D 0: (A.14)

Furthermore, we have

A Basic Facts from Optimization 469

v>

r2f .x�/C

mX
iD1

��i r2hi.x�/
�
v 	 0 (A.15)

for all vectors v 2 R
n that satisfy rhi.x�/>v D 0, for i D 1; 2; : : : ;m.

Theorem A.12 (Lagrange multiplier theorem; sufficient conditions). Assume that
x� 2 Rn and �� D Œ��1 ; ��2 ; : : : ; ��m�> 2 Rm satisfy

rf .x�/C
mX

iD1
��i rhi.x�/ D 0; hi.x�/ D 0; i D 1; 2; : : : ;m; (A.16)

and furthermore, we have

v>

r2f .x�/C

mX
iD1

��i r2hi.x�/
�
v 	 0; (A.17)

for all vectors v 2 Rn that satisfy rhi.x�/>v D 0, for i D 1; 2; : : : ;m. Then x� is a
strict local minimum of f subject to h.x/ D 0.

The Lagrangian function
If we define for convenience the Lagrangian function L W RnCm ! R as

L .x; �/
:D f .x/C �>h.x/; (A.18)

then the necessary conditions in Theorem A.11 can be written as

rxL .x�; ��/ D 0; r�L .x�; ��/ D 0; (A.19)

v>r2xL .x�; ��/v 	 0; 8v W v>rh.x�/ D 0: (A.20)

The conditions (A.19) give a system of n C m equations with n C m unknowns:
the entries of x� and ��. If the constraint h.x/ D 0 is regular, then in principle,
this system of equations is independent, and we should be able to solve for x� and
��. The solutions will contain all the (local) minima, but it is possible that some of
them need not be minima at all. Nevertheless, whether we are able to solve these
equations or not, they usually provide rich information about the minima of the
constrained optimization. We illustrate how we can utilize the necessary conditions
for Lagrange multipliers to find the optimal solution to a constrained optimization
problem with the following example.

Example A.13 [Matrix Lagrange Multipliers] Consider the problem of project-
ing a given matrix M 2 Rn�n onto the space of orthogonal matrices O.n/ D fU 2
Rn�n W U>U D Ig. That is, we want to find a matrix U 2 Rn�n that minimizes

470 A Basic Facts from Optimization

min
U
kM � Uk2F subject to U>U D I: (A.21)

Notice that there are n2 constraints in U>U D I. This suggests using n2 Lagrange
multipliers, which can be conveniently represented as the entries of a matrix
ƒ 2 Rn�n. However, since the matrix U>U is symmetric, there are only n.n C
1/=2 independent constraints. Therefore, the matrix ƒ needs to be chosen to be
symmetric. Now, since the inner product between the two matrices A and B can
be conveniently written as hA;Bi D trace.A>B/, the Lagrangian function can be
written as

L .U; ƒ/ D kM �Uk2F C trace.ƒ.U>U � I//: (A.22)

The necessary condition @L
@U D 0 in Theorem A.11 gives

.U �M/C Uƒ D 0: (A.23)

This gives ƒ D U>M � I. Since ƒ is symmetric, so is U>M. Let M D W†V> be
the singular value decomposition of M. Both W;V are orthogonal matrices. If the
singular values of M are all different, then in order for U>M D U>W†V> to be
symmetric, we must have U>W D V; hence U D WV>.

As we see from the above example, for some constrained optimization problems,
the necessary conditions of the Lagrangian alone allow us to solve for the optimal
solution. In general, of course, this is not always possible, and we have to resort to
numerical solutions to find the optimal solution.

A.2.2 Augmented Lagrange Multipler Methods

If we are not able to solve for the minima from the equations given by the necessary
conditions, we must resort to a numerical optimization scheme. The basic idea is
to try to convert the original constrained optimization to an unconstrained one by
introducing extra penalty terms to the objective function. A typical choice is the
augmented Lagrangian function Lc W RnCm ! R, defined as

Lc.x; �/
:D f .x/C �>h.x/C c

2
kh.x/k2; (A.24)

where c > 0 is a positive penalty parameter. It is reasonable to expect that for very
large c, the location x� of the global minimum of the unconstrained minimization

.x�; ��/ D arg max
�

min
x

Lc.x�/ (A.25)

should be very close to the global minimum of the original constrained
minimization.

A Basic Facts from Optimization 471

Proposition A.14 (Convergence of ALM (Bertsekas 1999)). For i D 0; 1; : : :, let
xi be a global minimum of the unconstrained optimization problem

min
x

Lci.x; �i/; (A.26)

where f�ig is bounded, 0 < ci < ciC1 for all i, and ci ! 1. Then the limit of the
sequence fxig is a global minimum of the original constrained optimization problem.

This result leads to the classical augmented Lagrangian algorithm for solving the
constrained optimization problem (A.12) via the following iteration:

xiC1 D arg min
x

Lci.x; �
i/;

�iC1 D �i C ciC1h.xiC1/:
(A.27)

It is easy to see that if f�ig is a bounded sequence and ci ! 1, then we must
have h.xi/ ! 0; hence the constraint will be enforced at the point x� to which the
algorithm converges. Moreover, the limit point �� of the bounded sequence f�ig
will be the desired Lagrange multiplier in Theorem A.11.

A.2.3 Alternating Direction Method of Multipliers

A very common class of optimization problems that one encounters in practice is to
optimize some convex objective function subject to a set of linear constraints. Very
often, including some cases we have encountered in this book, the objective function
f has a separable form that makes it amenable to simpler optimization schemes such
as alternating minimization, discussed earlier. For example, consider the following
optimization problem:

min
x

f .x/ D
NX

iD1
fi.xi/; subject to

NX
iD1

Aixi D b; (A.28)

where each fi is a convex function. In some cases, the component functions fi need
not be smooth. For instance, in the robust PCA problem discussed in Section 3.2,
we aim to solve

min
L;S
kLk� C �kSk1; subject to D D LC S; (A.29)

where the nuclear norm k � k� and the `1-norm k � k1 are not smooth.
In this subsection, we show how to use the augmented Lagrangian method

to solve this class of optimization problems in an effective and efficient way.
Notice that the augmented Lagrangian function for this class of problems precisely

472 A Basic Facts from Optimization

resembles the separable form (A.11) studied earlier. We are particularly interested
in simple and scalable algorithms that utilize only first-order information of the
objective function and do not involve any expensive computations.

Most of the cases in which we are interested in this book involve (or can be
reduced to) only two terms, say

min
x;y

f .x/C g.y/ subject to AxC By D b; (A.30)

where f W Rn ! R and g W Rp ! R are two convex functions, and A 2 Rm�n,
B 2 Rm�p, and b 2 Rm together specify m linear constraints. For simplicity, we will
first illustrate the basic algorithm and results using the two-term problem, and we
will later discuss how to generalize to multiple terms.

Let us define the augmented Lagrangian function for problem (A.30):

L�.x; yI�/ :D f .x/C g.y/C h�;AxC By � bi C 1

2�
kAxC By � bk22; (A.31)

where � > 0 is a penalty parameter. According to the augmented Lagrangian
method, � should be a decreasing sequence converging to 0. Then, following
the classical augmented Lagrangian method (Bertsekas 1999), we can solve prob-
lem (A.30) via the following iteration:

.xiC1; yiC1/ D arg min
x;y

L�.x; yI�i/;

�iC1 D �i C .AxiC1 C ByiC1 � b/=�:
(A.32)

However, the joint minimization over both x and y can be very difficult. Fortunately,
as in the case of the robust PCA problem, the minimization over x or y with the
other variables fixed is often much simpler. This leads to the alternating direction
method of multipliers (ADMM), which follows the following iteration scheme:

xiC1 D arg min
x

L�.x; yiI�i/;

yiC1 D arg min
y

L�.xiC1; yI�i/;

�iC1 D �i C .AxiC1 C ByiC1 � b/=�:

(A.33)

This alternating direction technique is known as the Douglas–Rachford operator
splitting method and is known to converge to the global optimal solution (see (Ma
2012) and references therein).

In the robust PCA problem, both A and B are identity operators, and the
associated optimization problems for the two alternating minimizations are both
very simple to solve. For instance, the minimization with respect to the sparse term
is minS kSk1 C ˛kS �Mk for some fixed matrix M and constant ˛. The solution is

A Basic Facts from Optimization 473

given by a simple entrywise soft thresholding. The minimization with respect to the
low-rank term is a simple singular-value soft thresholding.

However, in many other problems, the operators A and B are not necessarily the
identities, and the problem of minimizing each component may no longer be so
simple, even for a case such as the `1-norm. Note that by completing the squares,
we can write the iteration scheme (A.33) explicitly as

xiC1 D arg min
x

f .x/C 1

2�
kAxC Byi � bC ��ik22;

yiC1 D arg min
y

g.y/C 1

2�
kAxiC1 C By � bC ��ik22;

�iC1 D �i C .AxiC1 C ByiC1 � b/=�:

(A.34)

Although one can always resort to some iterative scheme to find the minimum
solutions to the above two subproblems, the computational cost can be very high.
One technique proposed to simplify the above minimization approximates the
quadratic penalty term 1

2
kAx C Byi � b C ��kk22 with another proximal quadratic

term

1

2	1
kx � .xi � 	1A>.Axi C Byi � bC ��i//k22

D hx� xi;A>.Axi C Byi � bC ��ii C 1

2	1
kx � xik22 C c;

(A.35)

where c is a constant. Notice that this term can be interpreted to approximate the
original quadratic term with its Taylor expansion at the previous iteration point xi

up to the second-order term, where A>.Axi C Byi � bC ��i/ is the gradient of the
quadratic term at xi, but the Hessian A>A is approximated with a constant 1=	1.
To ensure that the approximation is an upper bound of the original function, we
want 	1 < 1=�max.A>A/. If we do the same for the subproblem for updating y, then
the ADMM iteration scheme can be replaced by the so-called alternating proximal
gradient minimization (APGM) scheme:

xiC1 D arg min
x

f .x/C 1

2�	1
kx � .xi � 	1A>.Axi C Byi � bC ��i//k22;

yiC1 D arg min
y

g.y/C 1

2�	2
ky � .yi � 	2B>.AxiC1 C Byi � bC ��i//k22;

�iC1 D �i C .AxiC1 C ByiC1 � b/=�:
(A.36)

Could the approximation affect the convergence of the ADMM method? The
following result ensures that the global convergence remains intact if ADMM is
replaced with APGM.

474 A Basic Facts from Optimization

Proposition A.15 (Convergence of ADMM with Proximal Gradient (Ma 2012)).
For 	1 < 1=�max.A>A/ and 	2 < 1=�max.B>B/, the sequence f.xi; yi; �i/g produced
by the above APGM scheme (A.36) converges to the global optimal solution of
problem (A.30).

This result is very useful. Although it is established only for the two-term
problem, it essentially offers an effective solution for the multiterm problem (A.28):
we can always partition the N terms into two blocks and apply the APGM scheme.
The convergence is ensured. Of course, in practice, the speed of convergence could
be different for different partitions.

A.3 Exercises

Exercise A.1 Show that a necessary condition for a point x� to be a local minimum
of a differentiable function f is that the gradientrf .x/ vanish at x�, i.e.,rf .x�/ D 0.

Exercise A.2 Show that:

1. The intersection of two convex sets is convex.
2. The convex hull of a set is convex.
3. The convex hull of a convex set is the set itself.

Exercise A.3 Let f W X ! R be a convex function defined over a convex domain
X
 Rn. Show that:

1. For every c 2 R, the set fx 2 X W f .x/
 cg is convex.
2. If X is compact, then f reaches its maximum value at the boundary of X , i.e.,

maxx2X f .x/ D maxx2@X f .x/.
3. f is pseudoconvex.
4. f is quasiconvex.

Appendix B
Basic Facts from Mathematical Statistics

A knowledge of statistics is like a knowledge of foreign languages or of algebra; it may
prove of use at any time under any circumstances.

—A.L. Bowley

In the practice of science and engineering, data are often modeled as samples
of a random variable (or vector) drawn from a certain probability distribution.
Mathematical statistics deals with the problem of inferring the underlying
distribution from the given samples. To render the problem tractable, we typically
assume that the unknown distribution belongs to some parametric family (e.g.,
Gaussian), and formulate the problem as one of estimating the parameters of the
distribution from the samples.

In this appendix, we provide a brief review of some of the most relevant concepts
and results from mathematical statistics used in this book. The review is not meant
to be exhaustive, but rather to make the book self-contained for readers who already
have some basic knowledge in probability theory and statistics. For a more formal
and thorough introduction to mathematical statistics, we refer the reader to the
classic books (Wilks 1962) and (Bickel and Doksum 2000).

B.1 Estimation of Parametric Models

Assume that you are given independent and identically distributed (i.i.d.) samples
from an unknown parametric distribution from which you wish to estimate some
properties of the distribution. In this section, we show how to estimate the param-
eters of the distribution, such as the mean and variance, from the i.i.d. samples.

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9

475

476 B Basic Facts from Mathematical Statistics

We study different types of estimators, such as minimum variance and maximum
likelihood estimators, and their properties, such as unbiasedness, efficiency, and
consistency.

B.1.1 Sufficient Statistics

Let x be a random variable or vector. For simplicity, we assume that the distribution
of x has a density p� .x/, where the parameter vector � D Œ�1; �2; : : : ; �d�

> 2 ‚ �
Rd, once known, uniquely determines the density function p� .�/. Now suppose that
X D fxjgNjD1 is a set of i.i.d. samples of x drawn according to the density p� .x/.
Then X has the density

p� .X / D
NY

jD1
p� .xj/: (B.1)

We call any real or vector-valued function ofX a statistic and denote it by T.X /. The
goal is to choose a function T.�/ that gives a “good” estimate of the true parameter � .
To that end, we introduce the concept of sufficient statistics.

Definition B.1 (Sufficient Statistic). A statistic T.X / is said to be sufficient for �
if the conditional distribution of X given T.X /, p� .X j T.X // is not a function of � .

Intuitively, a sufficient statistic T.X / with respect to � is a statistic that contains
all the information that is useful to estimate � . In other words, we can throw away
the given samples and estimate � from T.X / without any loss of information.
Unfortunately, the above definition is not very useful for finding sufficient statistics.
Instead, one typically resorts to the following factorization theorem.

Theorem B.2 (Fisher–Neyman). A statistic T.X / is sufficient for � if and only if
there exist a function g.t; �/ and a function h.X / such that

p� .X / D g.T.X /; �/h.X /: (B.2)

Example B.3 (Sufficient Statistic of a Gaussian Random Variable). For Gaus-
sian data xj � N .�; †/, where xj 2 RD, � 2 RD and † 2 RD�D, the statistic
T.X / D .PN

jD1 xj;
PN

jD1 xjx>j / is a sufficient statistic for � D .�; †/, because

p� .X / D
NY

jD1

1

.2�/D=2 det.†/1=2
exp.� .xj � �/>†�1.xj ��/

2
/ (B.3)

D exp
� � 1

2
.trace

�
†�1

PN
jD1 xjx>j

� � 2�>†�1PN
jD1 xj C �>�/

�

.2�/ND=2 det.†/N=2

D g.T.X /; �/ � 1:

B Basic Facts from Mathematical Statistics 477

B.1.2 Mean Square Error, Efficiency, and Fisher Information

Notice that sufficient statistics are not unique. For instance, T.X / D X is a sufficient
statistic, and every one-to-one function of a sufficient statistic is also a sufficient
statistic. Therefore, it is important to devise some criteria for choosing a “good”
sufficient statistic.

A popular measure of “goodness” of a statistic T.X / 2 Rd as an estimate of
� 2 Rd is the mean squared error (MSE) between T.X / and � :

R.�;T/ D E� ŒkT.X / � �k2�: (B.4)

In some literature, such a function is also referred to as the “risk function,” whence
the capital letter R. Notice that the expression R.�;T/ can be rewritten as

R.�;T/ D E� ŒkT.X / � E� ŒT.X /�C E� ŒT.X /� � �k2�
D E� ŒkT.X / � E� ŒT.X /�k2�C kE� ŒT.X /� � �k2
:D Var� .T.X //C kb� .T.X //k2;

(B.5)

where b� .T.X // D E� ŒT.X /� � � is called the bias of the estimate T.X /, and
Var� .T.X // 2 R is the trace of the covariance matrix

Cov� .T.X // :D E� Œ.T.X / � E� ŒT.X /�/.T.X / � E� ŒT.X /�/>� 2 R
d�d: (B.6)

We refer to Var� .T.X // as the “variance” of T.X /. Thus, a good estimate is one that
has both small bias and small variance.

Example B.4 For Gaussian data xj � N .�; †/, where xj 2 RD, � 2 RD and
† 2 RD�D, the statistic T.X / D 1

N

PN
jD1 xj is an unbiased estimator of �, because

E� ŒT.X /� D 1

N

NX
jD1

E� Œxj� D 1

N
N� D �: (B.7)

We can use the MSE to compare two estimators. We define the relative efficiency
of two estimators T1 and T2 as the ratio

�1;2.�/
:D R.�;T2/

R.�;T1/
: (B.8)

The larger the relative efficiency �12, the smaller the MSE of T1 relative to that of
T2. Thus, T1 gives a more accurate, or “sharper,” estimate for � .

Notice that in general, the relative efficiency is a function of � . Therefore, one
estimator could have lower MSE for some values of � , and another estimator could
have lower MSE for other values of � . In fact, there is no such thing as a universally

478 B Basic Facts from Mathematical Statistics

optimal estimator that gives an error smaller than that of any other estimator for
all � . For instance, if the true parameter is �0, the estimator S.X / D �0 achieves
the smallest possible error R.�; S/ D 0. Thus, the universally optimal estimate, say
T, would need to have R.�0;T/ D 0, too. Since �0 can be arbitrary, T would need
to estimate every potential parameter � perfectly, which is impossible except for
trivial cases. One can view this as a manifestation of the so-called no free lunch
theorem known in learning theory: without any prior knowledge about � , we can
expect a statistical estimate to be better than others most of the time, but we can
never expect it to be the best all the time. Thus, in the future, whenever we claim
that some estimate is “optimal,” the claim will be in the restricted sense that it is
optimal within a special class of estimates considered (e.g., unbiased estimates).

In the case of unbiased estimators, the MSE reduces to the variance. Therefore,
we can compare two estimators by comparing their variances. Theorem B.5 gives
a lower bound on the variance of an estimator, which allows us to evaluate the
efficiency of an estimator by comparing its variance to this lower bound (see
Definition B.6). Before stating the theorem, we need to introduce some notation.

Assume that p� .x/ is differentiable with respect to � and define the Fisher
information matrix as

I.�/
:D E�

h� @
@�

log p� .X /
�� @
@�

log p� .X /
�>i 2 R

d�d: (B.9)

Also, assume that the function .�/
:D E� ŒT.X /� D Œ 1.�/; 2.�/; : : : ; d.�/�

> is
differentiable with respect to � and define

@ .�/

@�

:D

2
66664

@ 1.�/

@�1

@ 1.�/

@�2
� � � @ 1.�/

@�d
@ 2.�/

@�1

@ 2.�/

@�2
� � � @ 2.�/

@�d
:::

:::
: : :

:::
@ d.�/

@�1

@ d.�/

@�2
� � � @ d.�/

@�d

3
77775
2 R

d�d: (B.10)

We have the following result.

Theorem B.5 (Cramér–Rao Lower Bound). Let T.X / be an estimator for � and
assume that the following regularity conditions on the density p� and the estimator
T.X / hold:

1. The information matrix is well defined. That is, for all X such that p� .X / > 0,
@
@�

ln p� .X / exists and is finite.
2. The operations of integration with respect to X and differentiation with respect

to � commute, i.e.,

@

@�

Z
T.X /p� .X /dX D

Z
T.X / @

@�
p� .X /dX : (B.11)

3. For all � , .�/ is differentiable.

B Basic Facts from Mathematical Statistics 479

We have that for all � ,

Cov� .T.X // 	 @ .�/

@�
I.�/�1

@ .�/
@�

�>
; (B.12)

where the inequality is between positive semidefinite symmetric matrices.

In the case of an unbiased estimator we have .�/ D � and 0.�/ D I.
Therefore, the information inequality gives the following lower bound for the
variance of an unbiased estimate: Cov.T.X // 	 I.�/�1. This bound is often referred
to as the Cramér–Rao lower bound. Since X D fxjgNjD1 are i.i.d. samples from p� .x/,

if we define I1.�/
:D E�

�
@
@�

log p� .x1/. @@� log p� .x1//>
� 2 R

d�d, we obtain

I.�/ D NI1.�/: (B.13)

Thus, the Cramér–Rao lower bound can be rewritten as Cov� .T.X //	 1
N I1.�/�1.

Definition B.6 (Efficiency). We define the efficiency of an unbiased estimator
T.X / as

�.�/ D trace
�
I�1.�/

�

Var� .T.X // D
1

N

trace
�
I�11 .�/

�

Var� .T.X // : (B.14)

An unbiased estimator T.X / is called efficient if it achieves the Cramér–Rao lower
bound, i.e., if �.�/ D 1 for all � .

Next, we describe a procedure for finding an efficient estimator whenever
possible.

B.1.3 The Rao–Blackwell Theorem and Uniformly
Minimum-Variance Unbiased Estimator

To find a good estimate for � in the MSE sense, we can resort to the Rao–Blackwell
theorem. This theorem allows us to take an arbitrary estimate S.X / of � and produce
a new estimate S�.X / whose MSE is at least as good as that of S.X /.
Theorem B.7 (Rao–Blackwell). If T.X / is a sufficient statistic for � and S.X / is
any estimate of � , then QS.X / D E� ŒS.X / j T.X /� is such that

8� R.�; QS/
 R.�; S/: (B.15)

The above procedure for transforming an estimator using the Rao–Blackwell
theorem is often called Rao–Blackwellization. This procedure can significantly
improve the estimate of � . However, it is not guaranteed to produce an optimal
estimate of � in the MSE sense.

480 B Basic Facts from Mathematical Statistics

As we mentioned earlier, to make the estimation problem well conditioned, we
must restrict the class of estimates. For instance, we may require the estimate S.X /
to be unbiased, i.e., b� .S.X // D 0. Then the problem of finding the best unbiased
estimate becomes

min
S.�/ R.�; S/ D Var� .S.X // s.t. E� ŒS.X /� D �: (B.16)

The optimal S�.X /, if it exists, is called the uniformly minimum variance unbiased
(UMVU) estimate. In general, an unbiased estimator of � need not exist, and so
S�.X / is not always well defined. However, if an unbiased estimator of � does
exist, then so does S�.X /. Moreover, if the sufficient statistic T.X / is complete, as
defined next, then S�.X / is unique and can be found by Rao–Blackwellization.

Definition B.8 (Complete Statistic). A statistic T is said to be complete if for
every real-valued function g.�/ such that E� Œg.T.X //� D 0 for all � , we have that
p� .g.T.X // D 0/ D 1 for all � .

Starting with an unbiased estimate S.X / and a sufficient and complete statistic
T.X /, the following theorem simplifies the computation of the UMVU estimate.

Theorem B.9 (Lehmann–Scheffé). If T.X / is a complete sufficient statistic and
S.X / is any unbiased estimate of � , then S�.X / D E� ŒS.X / j T.X /� is an UMVU
estimate of � . If further, Var� .S�.X // < 1 for all � , then S�.X / is the unique
UMVU estimator.

While the above procedure gives us an optimal unbiased estimate in the MSE
sense, the UMVU estimate is often too difficult to compute in practice. Furthermore,
the property of unbiasedness is not invariant under functional transformation: if
T.X / is an unbiased estimate for � , then g.T.X // is in general not an unbiased
estimate for g.�/. To have the functional invariant property, we often resort to the
so-called maximum likelihood estimator, as described next.

B.1.4 Maximum Likelihood (ML) Estimator

Recall that the joint distribution of the N i.i.d. samples fxjgNjD1 has the density

p� .X / D QN
jD1 p� .xj/, and consider this density a function of � with X fixed. We

call this function the likelihood function and denote it by L.�;X / D p� .X /. The
maximum likelihood (ML) estimate of � , it if exists, is given by the solution to the
following optimization problem:

O�N D arg max
�2‚

L.�;X / D p� .X / D

NY
jD1

p� .xj/
�
; (B.17)

B Basic Facts from Mathematical Statistics 481

where ‚ is the space of parameters. Since the logarithmic function is monotonic,
we may choose to maximize the log-likelihood function instead:

O�N D arg max
�2‚

`.�;X / D log.L.�;X // D

NX
jD1

log p� .xj/
�
; (B.18)

which often turns out to be more convenient to use in practice. Thus, a necessary
condition for the optimality of O�N is that

@`.�;X /
@�

ˇ̌
ˇ O�N

D 0: (B.19)

The ML estimate is a more popular choice than the UMVU estimate, because its
existence is easier to establish, and it is usually easier to compute than the UMVU
estimate. Moreover, the ML estimate is invariant under functional transformations.
That is, if O�N is an ML estimate of � , then g. O�N/ is an ML estimate of g.�/.
Furthermore, when the sample size is large, the ML estimate is asymptotically
optimal for a wide variety of parametric models. Thus, both UMVU and ML
estimates give essentially the same answer, as explained next in more detail.

B.1.5 Consistency and Asymptotic Efficiency of the ML
Estimator

In general, we would like an estimate O�N obtained from N samples fxjgNjD1 to perform
better and better as the number of samples increases. In this section, we characterize
the asymptotic properties of an estimator. To do so, we need to make a number of
technical assumptions.

Assumption B.10 Assume that the space of parameters ‚ is compact and that the
density p� .x/ is continuous and twice differentiable in � for all x and identifiable,
i.e., p� � p�0 ” � D �0. Assume also that there exists a function K.x/ such that
E�0 ŒK.x/� <1 and log p� .x/� log p�0.x/
 K.x/ for all x and � .

Given these assumptions, a first approach to characterizing the asymptotic
behavior of an estimator is through the notion of consistency.

Definition B.11 (Consistency). An estimate O�N of � is said to be consistent if it
converges in probability to � (O�N ! �), i.e.,

lim
N!1P

�k O�N � �k 	 "
� D 0; 8" > 0: (B.20)

The following classical result from statistics characterizes the consistency of the
ML estimator.

482 B Basic Facts from Mathematical Statistics

Proposition B.12. Let fxjgNjD1 be i.i.d. samples from p�0.x/. Under the regularity

assumptions in B.10, every sequence of ML estimates O�N converges to �0 in
probability. In other words, every maximum likelihood estimate is consistent.

A second approach to characterizing the asymptotic behavior of an estimator is
through the notion of asymptotic unbiasedness.

Definition B.13 (Asymptotic Unbiasedness). Let �N D E� Œ O�N � 2 Rd and †N D
Cov� . O�N/ 2 Rd�d. We say that an estimate O�N of � is asymptotically unbiased if

lim
N!1

p
N.�N � �/ D 0; and lim

N!1N†N D † > 0 (B.21)

for some positive definite symmetric matrix † 2 Rd�d.

It is easy to see that asymptotic unbiasedness is a stronger property than consis-
tency. That is, an estimate can be consistent but asymptotically biased. In addition,
most “reasonable” estimates O�N (e.g., the ML estimate) are often asymptotically
normally distributed with mean �N and covariance matrix †N due to the central
limit theorem. Therefore, the asymptotic distribution of an asymptotically unbiased
estimate is uniquely characterized by the parameters � and †.

A third way to characterize the asymptotic behavior of an estimator is through
the notion of asymptotic efficiency. Given two asymptotically unbiased estimates,
say O�.1/N and O�.2/N , their relative asymptotic efficiency is defined as the ratio

�1;2.�/
:D det.†.2//

det.†.1//
; (B.22)

where †.i/ D limN!1 NCov�
� O�.i/N

�
, for i D 1; 2. The larger the efficiency ratio

�1;2, the smaller the asymptotic variance of O�.1/, relative to that of O�.2/. Thus, O�.1/
gives a more accurate or “sharper” estimate for � , although both O�.1/ and O�.2/
are asymptotically unbiased. Nevertheless, according to Theorem B.5, an estimate
cannot be arbitrarily more efficient than others. That is, for every asymptotically
unbiased estimate O�N , using (B.13) and (B.21), its covariance matrix is bounded
asymptotically from below by the Cramér–Rao bound:

lim
N!1N†N D † 	 I1.�/

�1: (B.23)

Definition B.14 (Asymptotic Efficiency). An estimate O�N is said to be asymptoti-
cally efficient if it is asymptotically normal and achieves equality in the Cramér–Rao
bound (B.23).

Asymptotic efficiency is a desirable property for an estimate, and it is sometimes
referred to as asymptotic optimality. It often can be shown that UMVU estimates
are asymptotically efficient. We also have the following result.

B Basic Facts from Mathematical Statistics 483

Proposition B.15. Let fxjgNjD1 be i.i.d. samples from p�0.x/. Assume that the
regularity conditions in B.10 hold and that the Fisher information matrix I1.�0/
is positive definite. Then there is a consistent sequence of ML estimators O�N such
that
p

N. O�N � �0/ converges in distribution to N .0; I1.�0/�1/. In other words, the
sequence O�N is asymptotically unbiased and asymptotically efficient.

Proof. We here outline the basic ideas for a “proof,” which can also be used to
establish for other estimates their asymptotic unbiasedness or efficiency with respect
to the ML estimate. Define the function

 .x; �/
:D @

@�
log p� .x/ 2 R

d: (B.24)

If the maximum likelihood estimate O�N exists, it must satisfy the equation

@`.�;X /
@�

ˇ̌
ˇ O�N

D
NX

jD1
 .xj; O�N/ D 0: (B.25)

By the mean value theorem, we have

NX
jD1

 .xj; O�N/�
NX

jD1
 .xj; �/ D

h NX
jD1

@ .xj; �
�
N /

@�

i
 O�N � �
�
; (B.26)

where ��N is a point between � and O�N . Using (B.25), we obtain

p
N
� O�N � �

� D
h 1

N

NX
jD1

@ .xj; �
�
N /

@�

i�1
 � N� 12
NX

jD1
 .xj; �/

�
: (B.27)

Now, it follows from Proposition B.12 that O�N is consistent. This implies that

limN!1 1
N

PN
jD1

@ .xj;�
�

N /

@�
D limN!1 1

N

PN
jD1

@ .xj;�/

@�
. By the law of large numbers,

the last limit is equal to

E�

h@ .x1; �/
@�

i
D E�

h @2
@�2

log p� .x1/
i
D
Z

@

@�

 @
@�

p� .x1/

p� .x1/

�
p� .x1/

D
Z

p� .x1/ @
2

@�2
p� .x1/� @

@�
p� .x1/. @@� p� .x1//>

p� .x1/2
p� .x1/

D @2

@�2

Z
p� .x1/�

Z
@

@�
log p� .x1/.

@

@�
log p� .x1//>p� .x1/

D �E�
h @
@�

log p� .x1/
� @
@�

log p� .x1/
�>i D �I1.�/:

484 B Basic Facts from Mathematical Statistics

The remaining term in (B.27) involves the sum of the random vectors @
@�

log p� .xj/.
These vectors are i.i.d. with mean E� Œ

@
@�

log p� .xj/� D
R

@
@�

p� .xj/ D 0 and
covariance E� Œ

@
@�

log p� .xj/.
@
@�

log p� .xj//
>� D I1.�/. Thus, by the central limit

theorem, the right-hand side of (B.27) converges in distribution to N .0; I1.�/�1/.
That is, the ML estimate is asymptotically unbiased, and its asymptotic variance
reaches the Cramér–Rao lower bound. ut

When the sample size is large, one can appeal to the law of large numbers to
derive an information-theoretic justification for the ML estimate, which can be
somewhat more revealing. Notice that maximizing the log-likelihood function is
equivalent to minimizing the following objective function:

min
�2‚

H.�;N/

:D 1

N

NX
jD1

� � log p� .xj/
��
: (B.28)

In information theory, the quantity � log p� .x/ is associated with the number of bits
required to represent a random event x that has the probability p� .x/ (Cover and
Thomas 1991). When the sample size N is large, due to the law of large numbers,
the quantity H.�;N/ converges to

lim
N!1H.�;N/DH.�/DE�0 Œ� log p� .x/�D

Z ��log p� .x/
�
p�0.x/ dx; (B.29)

where p�0.x/ is the true distribution. Notice that the above quantity is a measure
similar to the notion of “entropy”: H.�/ is asymptotically the average code length
of the sample set fxjg when we assume that it is of the distribution p� .x/, while x is
actually drawn according to p�0.x/. Thus, the goal of ML estimation is to find the
O� that minimizes the empirical entropy of the given sample set. This is obviously a
smart thing to do, since such an estimate O� gives the most compact representation of
the given sample data if an optimal coding scheme is adopted (Cover and Thomas
1991). We refer to this as the “minimum entropy principle.”

Notice also that the O� that minimizes
R �� log p� .x/

�
p�0.x/ dx is the same as that

which minimizes the so-called Kullback–Leibler (KL) divergence between the two
distributions p�0.x/ and p� .x/, i.e.,

KL
�
p�0.x/ jj p� .x/

� :D
Z

log

p�0.x/

p� .x/

�
p�0.x/ dx: (B.30)

One may show that under general conditions, the KL divergence is always nonneg-
ative and becomes zero if and only if � D �0. In essence, when the sample size is
large, the ML objective is equivalent to minimizing the KL divergence.

However, the ML estimate is known to have very bad performance in some
models even with a large number of samples. This is particularly the case when
the models have many redundant parameters or the distributions are degenerate.
Furthermore, both UMVU and ML estimates are not the optimal estimates in a

B Basic Facts from Mathematical Statistics 485

Bayesian1 or minimax2 sense. For instance, the ML estimate can be viewed as a
special Bayesian estimate only when the parameter � is uniformly distributed.

B.2 ML Estimation for Models with Latent Variables

In many practical situations, we need to estimate a statistical model in which only
part of the random variables or vectors are observed, and the rest are “missing,”
or “hidden,” or “latent,” or “unobserved.” For instance, suppose that two random
vectors .x; z/ have a joint distribution with density p� .x; z/, but only samples of x,
X D fxjgNjD1, are observed, while the corresponding samples of z, Z D fzjgNjD1,
are not available. As before, we wish to find an optimal estimate O� for � from the
observations.

Since samples of z are not available, there is no way one can find the maximum
likelihood estimate of � from the complete log-likelihood function:

`c.�;X ;Z/ D
NX

jD1
log p� .xj; zj/: (B.31)

Instead, it makes sense to use the marginal distribution of x, p� .x/, and find the
maximum likelihood estimate from the incomplete log-likelihood function3

`.�;X / D
NX

jD1
log.p� .xj// D

NX
jD1

log
� Z

p� .xj; z/dz
�
: (B.32)

The problem is now reduced to a standard ML estimation problem, and one can
adopt any appropriate optimization method (say conjugate gradient) to find the
maximum. Thus, it seems that there is no need to involve z at all.

In practice, however, there are several reasons why marginalizing over z may not
be the best approach. First, for some models p� .x; z/, computing the marginal p� .x/
can be intractable (e.g., summing over a combinatorial number of values for z), or
it can destroy good structures in the models. Second, directly maximizing `.�;X /
may turn out to be a very difficult optimization problem (e.g., high-dimensional,
having many local minima). Third, in some applications, it is desirable to obtain an
estimate of the unobservables z from the observables x.

1A Bayesian estimate T� is the solution to the problem minT

R
R.�; T/�.�/ d� for a given prior

distribution �.�/ of � . That is, T� is the best estimate in terms of its average risk.
2A minimax estimate T� is the solution to the problem minT max� R.�; T/. That is, T� is the best
estimate according to its worst performance. Of course, such a T� does not have to always exist or
be easier to compute than the ML estimate.
3In this section, we assume that z is a continuous variable. Whenever z is discrete, we can simply
replace the integrals by sums, as we will do in the next section when we cover mixture models.

486 B Basic Facts from Mathematical Statistics

B.2.1 Expectation Maximization (EM)

An alternative approach to marginalizing over the hidden variables is to take the
expectation over the hidden variables. More specifically, instead of maximizing the
incomplete log-likelihood `.�;X /, we can estimate the conditional density of the
hidden variables given the observations X and an estimate � k for the parameters,
i.e., p� k.Z j X /, and maximize the expected value of the complete log-likelihood
`c.�;X ;Z/ with respect to the distribution p� k.Z j X /.

This alternative approach has several potential advantages. First, it provides
an estimate for the density of z j x, if needed. Second, the computation of the
expected complete log-likelihood is often much simpler than the computation of the
incomplete log-likelihood, as we will see. Third, the maximization of the expected
log-likelihood is often much simpler than the maximization of the incomplete log-
likelihood, as we will see.

In order to derive this alternative approach, let us recall the following identities:

8z p� .x/ D p� .x; z/
p� .z j x/ and 8x

Z
p� .z j x/ dz D 1: (B.33)

Using these identities, we can rewrite the incomplete log-likelihood as

`.�;X / D
NX

jD1
log p� .xj/ D

NX
jD1

Z
p� .z j xj/ log

 p� .xj; z/
p� .z j xj/

�
dz (B.34)

D max
wj

NX
jD1

Z
wj.z/ log

p� .xj; z/
wj.z/

�
dz; (B.35)

where wj.z/ is a density, i.e., wj.z/ 	 0 8z and
R

wj.z/dz D 1 8j D 1; : : : ;N. To see
the last step, we use the method of Lagrange multipliers. The Lagrangian function is

L .wj; �/ D
Z

wj.z/ log

p� .xj; z/

wj.z/

�
dzC �.1 �

Z
wj.z/dz/: (B.36)

Setting the variation of L with respect to wj to zero, we obtain4

@L

@wj
D log

p� .xj; z/
wj.z/

�
� 1 � � D 0 H) w�j .z/ D p� .xj; z/e���1: (B.37)

4Here wj is a function of z, which is in general a continuous random variable. Therefore, we use the
variation with respect to wj in lieu of the derivative with respect to wj. We can use the derivative,
instead, whenever z is a discrete random variable.

B Basic Facts from Mathematical Statistics 487

Enforcing
R

w�j .z/dz D 1, we obtain

w�j .z/ D
p� .xj; z/R
p� .xj; z/dz

D p� .xj; z/
p� .xj/

D p� .z j xj/: (B.38)

Thus, it follows from (B.34)–(B.35) that the maximization of `.�;X / is equivalent
to the following optimization problem:

max
�2‚

`.�;X / D max
�2‚

max
fwjg

NX
jD1

Z
wj.z/ log

p� .xj; z/
wj.z/

�
dz: (B.39)

We solve the optimization problem on the right-hand side using an alternating
maximization strategy (see Appendix A.1.5). Given � , the optimal density wj.z/ is
given by w�j .z/

:D p� .z j xj/, which is the a posteriori density of z given xj and � .
Given wj.z/, the optimal parameter � is given by

�� D arg max
�2‚

NX
jD1

Z
wj.zj/ log p� .xj; zj/dzj (B.40)

D arg max
�2‚

NX
jD1

Ewj Œlog.p� .xj; zj/ j xj/� D arg max
�2‚

EwŒ`c.�;X ;Z/ j X �;

where the last expectation is taken with respect to the density w.Z/ DQN
jD1 wj.zj/ D p� .Z j X /. Therefore, �� maximizes the expected complete log-

likelihood taken with respect to the a posteriori density of the hidden variables
given the observed ones. By alternating between these two steps, we obtain the
well-known expectation maximization (EM) algorithm (Dempster et al. 1977)
for maximizing the incomplete log-likelihood `.�;X /, which we summarize in
Algorithm B.1.

Each iteration of this coordinate ascent algorithm does not decrease the value
of the objective function in (B.39). Moreover, each iteration does not decrease the
value of the incomplete log-likelihood because

`.� kC1;X / D
NX

jD1

Z
p� kC1.z j xj/ log

p� kC1 .xj; z/
p� kC1 .z j xj/

dz (B.43)

	
NX

jD1

Z
p� k.z j xj/ log

p� kC1 .xj; z/
p� k.z j xj/

dz (B.44)

	
NX

jD1

Z
p� k.z j xj/ log

p� k.xj; z/
p� k.z j xj/

dz D `.� k;X /: (B.45)

488 B Basic Facts from Mathematical Statistics

Algorithm B.1 (Expectation Maximization)

Input: Data points fxjgNjD1 and initial parameter vector �0.
1: k 0.
2: while not converged do
3: E-step: For fixed � D � k, solve for each wj.z/, j D 1; : : : ;N, as

wk
j .z/ D p� k .z j xj/: (B.41)

4: M-step: For fixed wk
j , solve for � as

� kC1 D arg max
�2‚

NX
jD1

Z
wk

j .z/ log.p� .xj; z// dz: (B.42)

5: end while
6: k kC 1.

Output: Converged parameter O� .

The first equality follows from (B.34), while the first inequality follows from (B.35)
after replacing the optimal w�j .z/ D p� kC1.z j xj/ by p� k.z j xj/. The second
inequality follows from (B.42) by replacing the optimal � kC1 by � k, while the
second equality follows from (B.34). When the cost function no longer increases,
the process reaches a (local) extremum �� of the function `.�;X /.

The following result establishes the convergence of the EM algorithm.

Proposition B.16. The expectation maximization process converges to one of the
stationary points (extrema) of the log-likelihood function `.�;X /.

For a more thorough exposition and complete proof of the convergence of the
EM algorithm, one may refer to the paper (Wu 1983) and the book (McLanchlan and
Krishnan 1997). See also Appendix A.1.5 for a discussion on the convergence of the
alternating maximization approach. However, for the EM algorithm to converge to
the maximum likelihood estimate (usually the global maximum) of L.�;X /, a good
initialization is crucial.

Notice also that each step of the EM algorithm is in general a much simpler opti-
mization problem than directly maximizing the incomplete log-likelihood `.�;X /.
For many popular models (e.g., mixtures of Gaussians), one might even be able to
find closed-form formulas for both steps, as shown next.

B.2.2 Maximum a Posteriori Expectation Maximization
(MAP-EM)

Another alternative approach to marginalizing over the hidden variables is to take
the maximum over the hidden variables. More specifically, instead of maximizing

B Basic Facts from Mathematical Statistics 489

the incomplete log-likelihood `.�;X / with respect to � , we maximize the complete
log-likelihood `c.�;X ;Z/ with respect to both � and Z , i.e.,

max
�2‚ max

fzjg

NY
jD1

p� .xj; zj/ � max
�2‚ max

fzjg

NX
jD1

log p� .xj; zj/: (B.46)

Observe that this problem is equivalent to

max
�2‚

NX
jD1

max
zj

log p� .xj; zj/ � max
�2‚

NX
jD1

log p� .xj; Ozj/; (B.47)

where

Ozj D arg max
z

p� .xj; z/ D arg max
z

p� .z j xj/; (B.48)

is the maximum a posteriori (MAP) estimate of the latent variable zj given xj.
Therefore, when � is fixed, we can solve for each zj independently. This observation
motivates us to consider an alternating maximization strategy (see Appendix A.1.5)
for estimating � . Specifically, given � D � k, we solve for each hidden variable as
Ozk

j D arg maxz p� k.z j xj/. Then, given Z , we find the parameter � that maximizes
the complete log-likelihood with the hidden variables replaced by their MAP values,
i.e., we estimate � as O� kC1 D arg max�

PN
jD1 log p� .xj; Ozk

j /.
For the sake of completeness, Algorithm B.2 summarizes this MAP-EM strategy.

Notice that there is a clear connection with the EM algorithm: if in the EM algorithm
wereplace wk

j .z/ by the Dirac delta ı.z � Ozk
j /, then the M-step of EM reduces to the

Algorithm B.2 (Maximum a Posteriori Expectation Maximization)

Input: Data points fxjgNjD1 and initial parameter vector �0.
1: k 0.
2: while not converged do
3: MAP-step: For fixed � D � k, solve for each zj, j D 1; : : : ;N, as

zk
j D arg max

z
p� k .z j xj/: (B.49)

4: M-step: For fixed zk
j , solve for � as

� kC1 D arg max
�2‚

NX
jD1

log p� .xj; zk
j /: (B.50)

5: end while
6: k kC 1.

Output: Converged parameter O� .

490 B Basic Facts from Mathematical Statistics

M-step of MAP-EM. Thus, we can view the MAP-EM algorithm pretty much as an
EM algorithm in which the E-step is replaced by a MAP-step. This, of course, results
in an approximation, and the resulting MAP-EM algorithm no longer provides an
ML estimator for � . In spite of this drawback, the MAP-EM algorithm is used as
an approximate EM method, especially for mixture models, as discussed in the next
section.

B.3 Estimation of Mixture Models

Mixture models are an important class of probabilistic models in which the data
fxjgNjD1 are sampled from a distribution p� .x/ that is a superposition of multiple
distributions fp�i.x/gniD1. Specifically, the mixture distribution is given by

p� .x/ D �1p�1.x/C �2p�2.x/C � � � C �np�n.x/; (B.51)

where �i denotes the parameters of the ith distribution, �i > 0 denotes the prior
probability of drawing a point from the ith model and is such that

Pn
iD1 �i D 1,

and � D .�1; : : : ; �n; �1; : : : ; �n/ denotes the parameters of the mixture model.
Such a distribution can be interpreted as the marginal distribution of a model with a
latent random variable z 2 f1; 2; : : : ; ng that indicates the model from which x was
sampled. To see this, notice that the marginal distribution can be written as

p� .x/ D
X

z

p� .x; z/ D
X

z

p� .x j z/p� .z/

D
nX

iD1
p� .x j z D i/p� .z D i/ D

nX
iD1

p�i.x/�i;

(B.52)

where p�i.x/
:D p� .x j z D i/ and �i

:D p� .z D i/ > 0, i D 1; 2; : : : ; n. The variables
f�igniD1 are often called the mixing proportions.

B.3.1 EM for Mixture Models

The EM algorithm is often used to estimate the parameters of a mixture model.
Unlike the general EM algorithm, where the latent variable z is real-valued, in
the case of a mixture model the latent variable z is discrete. Specifically, let
zj 2 f1; : : : ; ng be the latent variable associated with data point xj. In the E-step, we
assume that we know the parameters � k D .� k

1 ; : : : ; �
k
n ; �

k
1 ; : : : ; �

k
n / of the mixture

model and use them to compute the a posteriori distribution of zj j xj, i.e.,

B Basic Facts from Mathematical Statistics 491

wk
ijDp� k.zjD i j xj/D p� k.xj j zjD i/p� k .zjD i/

p� k.xj/
D

p� k
i
.xj/�

k
iPn

iD1 p� k
i
.xj/�

k
i

: (B.53)

In the M-step, we maximize the expected log-likelihood in (B.42),

NX
jD1

nX
iD1

wk
ij log.p� .xj; zj D i// D

NX
jD1

nX
iD1

wk
ij log.p�i.xj/�i/; (B.54)

with respect to � , and we obtain (see Exercise B.3)

�kC1
i D arg max

�i

NX
jD1

wk
ij log.�i/ D

PN
jD1 wk

ijPN
jD1

Pn
iD1 wk

ij

; (B.55)

� kC1
i D arg max

�i

NX
jD1

wk
ij log.p�i.xj//: (B.56)

Therefore, the parameters f�ig can be obtained in closed form. Whether the
parameters f�ig can also be obtained in closed form will depend on the specific
form of p�i.x/. Example B.17 shows that this is so for a mixture of Gaussians.

Once the model parameters are estimated from the EM algorithm, the “member-
ship” cj 2 f1; 2; : : : ; ng for a given sample point xj, i.e., the component distribution
from which xj is most likely drawn, can be determined by the Bayesian rule from
its a posteriori probability:

cj D arg max
iD1;:::;n

p� .zj D i j xj/ D arg max
iD1;:::;n

Owij: (B.57)

Example B.17 (EM for a Mixture of Gaussians). In the case that each mixture
component is a Gaussian model with parameter �i D .�i; †i/, we have

p�i.x/ D
1

.2�/D=2 det.†i/1=2
exp

� .x ��i/

>†�1i .x � �i/

2

�
: (B.58)

In the E-step, wk
ij can be computed in closed form from (B.53) as

wk
ij D

p� k
i
.xj/�

k
iPn

iD1 p� k
i
.xj/�

k
i

: (B.59)

Then the M-step is given by

�kC1
i D arg max

�i

NX
jD1

wk
ij log�i D

PN
jD1 wk

ijPN
jD1

Pn
iD1 wk

ij

; (B.60)

492 B Basic Facts from Mathematical Statistics

� kC1
i D arg max

�i

NX
jD1

wk
ij

� 1
2
.xj��i/

>†�1i .xj��i/�
1

2
det.†i/

�
: (B.61)

The above solution for the mixing proportions �kC1
i follows from Exercise B.3,

while the solution for � kC1
i D .�kC1

i ; †kC1
i / follows from Exercise B.4 and is given

by

�kC1
i D

NP
jD1

wk
ijxj

NP
jD1

wk
ij

and †kC1
i D

NP
jD1

wk
ij.xj � �kC1

i /.xj ��kC1
i />

NP
jD1

wk
ij

: (B.62)

B.3.2 MAP-EM for Mixture Models

The EM algorithm for mixture models is based on alternating between computing
the expected log-likelihood (E-step), which involves taking the expectation with
respect to the latent variables, and maximizing the expected log-likelihood (M-step).
As discussed in Appendix B.2.2, the MAP-EM algorithm is an alternative approach
in which instead of taking the expectation, we directly maximize over the latent
variables. As we will see in this section, this results in an approximate EM algorithm
in which, in the E-step, each data point is assigned to the model that maximizes the
posterior of the latent variables, whence the name MAP-EM.

To see this, let zj 2 f1; 2; : : : ; ng be the latent variable denoting the model
that generated xj. The MAP-EM algorithm finds the model parameters and latent
variables that maximize the complete log likelihood, i.e.,

max
�2‚

NX
jD1

max
zj

log p� .xj; zj/ � max
�2‚

NX
jD1

max
iD1;:::;n log.p� .xjjzj D i/�i/: (B.63)

Observe that this problem can be rewritten as5

max
�2‚

max
fwijg

NX
jD1

nX
iD1

wij log.p�i.xj/�i/; (B.64)

5One may interpret this objective as follows. For each sample, we find the component distribution
that maximizes the posterior. Once we have decided to “assign” xj to the distribution p�i .x/, it takes
� log p�i .xj/ bits to encode xj. Thus, the above objective function is equivalent to minimizing the
sum of the coding lengths given the membership of all the samples.

B Basic Facts from Mathematical Statistics 493

where wij 2 f0; 1g is an auxiliary variable encoding the assignment of points to
models, which is defined as

wij D
8
<
:
1 if i D arg max

`D1;:::;n
p�`.xj j z D `/�`

0 otherwise;
(B.65)

and is such that for all j D 1; : : : ;N,
Pn

iD1 wij D 1.
Notice the striking connection between the hard assignment of points to models

in (B.65) and the soft assignment done in the E-step of the EM algorithm for mixture
models in (B.53). Notice also that when wij is fixed, the objective function in (B.64)
is the same as that in the M-step of the EM algorithm for mixture models in (B.54).
Thus, if we apply an alternating maximization strategy (see Appendix A.1.5) to the
problem in (B.64), we obtain an algorithm that alternates between the following two
steps:

MAP-step: Given � , solve for wij such that
Pn

iD1 wij D 1. The optimal solution
is given by (B.65) and involves assigning each data point to the model that
maximizes the posterior probability, whence the name MAP-EM.

M-step: Given wij, solve for � 2 ‚. This problem is identical to the M-step
in (B.54), whose solution is given by (B.55) and (B.56).

Notice that this MAP-EM algorithm for mixture models is a particular case of
the MAP-EM algorithm described in Appendix B.2.2. Notice also that this MAP-
EM algorithm for mixture models is very similar to the EM algorithm for mixture
models, except that the soft assignments in the E-step in (B.53) are replaced by
the hard assignments in (B.65). Thus, the MAP-EM algorithm is effectively an
approximate EM algorithm.

Example B.18 (MAP-EM for a Mixture of Gaussians and the K-means Algo-
rithm). In the case that each mixture component is a Gaussian model with
parameter �i D .�i; †i/, we have

p�i.x/ D
1

.2�/D=2 det.†i/1=2
exp

� .x ��i/

>†�1i .x � �i/

2

�
: (B.66)

In the E-step, given � k D .� k
1 ; : : : �

k
n ; �

k
1 ; : : : ; �

k
n/, wk

ij can be computed in closed
form as

wk
ij D

8<
:
1 if i D arg max

`D1;:::;n
p� k

`
.xj/�

k
`

0 otherwise:
(B.67)

Then, in the M-step, given wk
ij, the mixing proportions �i and the Gaussian

parameters �i are given by

494 B Basic Facts from Mathematical Statistics

�kC1
i D

PN
jD1 wk

ijPN
jD1

Pn
iD1 wk

ij

; (B.68)

�kC1
i D

NP
jD1

wk
ijxj

NP
jD1

wk
ij

and †kC1
i D

NP
jD1

wk
ij.xj � �kC1

i /.xj ��kC1
i />

NP
jD1

wk
ij

: (B.69)

Therefore, the MAP-EM algorithm alternates between assigning points to models
using the MAP rule and recomputing the model parameters for each cluster.

Assume further that the mixture of Gaussians model is such that all mixing
proportions are equal, i.e., �i D 1=n for all i D 1; : : : ; n, and all covariance matrices
are equal to the identity matrix, i.e., †i D I for all i D 1; : : : ; n. In this case, the
quantity .x � �i/

>†�1i .x � �i/ reduces to the Euclidean distance kx � �ik2 from
point x to the mean for the ith cluster �i. Therefore, the MAP-EM algorithm for
a mixture of isotropic Gaussians with equal mixing proportions alternates between
the following two steps:

MAP-step Given � k D .�k
1; : : :�

k
n/, assign each point to its closest cluster center,

i.e.,

wk
ij D

8<
:
1 if i D arg min

`D1;:::;n
kxj � �`k22;

0 otherwise:
(B.70)

M-step Given wk
ij, update each cluster center as the average of the points assigned

to that cluster, i.e.,

�kC1
i D

NP
jD1

wk
ijxj

NP
jD1

wk
ij

: (B.71)

This particular case of the MAP-EM algorithm gives rise to a very popular
clustering algorithm called K-means (see (Lloyd 1957; Forgy 1965; Jancey 1966;
MacQueen 1967)), where � log p�i.x/ reduces to the simple Euclidean distance to a
cluster center. This algorithm is discussed in more detail in Section 4.3.1.

B.3.3 A Case in Which EM Fails

One difficulty with the EM algorithm is that a stationary value �� to which
the algorithm converges is not necessarily the global maximum. Furthermore,

B Basic Facts from Mathematical Statistics 495

for distributions as simple as a mixture of Gaussians, the global maximum of a
likelihood function may not even exist, especially when some component distri-
butions may become nearly singular. We illustrate this caution via the following
example.

Example B.19 (ML Estimate of Two Mixed Gaussians (Vapnik 1995)). Con-
sider a distribution p.x/, x 2 R, that is a mixture of two Gaussian (normal)
distributions:

p.x; �; �/ D 1

2�
p
2�

exp

�
� .x � �/

2

2�2

�
C 1

2
p
2�

exp

�
�x2

2

�
; (B.72)

where � D .�; �/ are unknown. Then for given data X D fx1; x2; : : : ; xNg and
constant A > 0, there exists a small �0 such that for � D x1, the log-likelihood will
exceed A (regardless of the true �; �):

l.X ; �/ˇ̌
�Dx1;�D�0 D

NX
jD1

ln p.xi j � D x1; � D �0/ (B.73)

> ln

�
1

2�0
p
2�

C

NX
jD2

ln

1

2
p
2�

exp

(
�x2j
2

)!
(B.74)

D � ln �0 �
NX

jD2

x2j
2
� N ln 2

p
2� > A: (B.75)

Therefore, the maximum of the log-likelihood does not even exist, and the ML
objective would not provide a valid solution to estimating the unknown parameters.
In fact, in this case, the true parameter corresponds to the largest (finite) local
maximum of the log-likelihood.

From this simple example, we can see that the ML method does not apply
to all probability densities.6 If we insist on using it for mixtures of Gaussians,
we should try to avoid the situation in which the variance can be arbitrarily
small, i.e., � ! 0. Unfortunately, this is often the case with random variables in
high-dimensional spaces, where their distributions typically concentrate on low-
dimensional subspaces or manifolds.

6It generally applies well to a class of density functions that are bounded by a common finite value
from above. Hence EM would work well for generic Gaussians.

496 B Basic Facts from Mathematical Statistics

B.4 Model-Selection Criteria

So far, we have studied the following problem: given N independent samples fxjgNjD1
drawn from a distribution p� .x/, where p� .x/ belongs to a family of distributions
indexed by the model parameter � , obtain an estimate �� of � . In doing so, we have
assumed that the parameter � 2 R

d is of fixed dimension d.
In practice, however, we may not know exactly the family of distributions to

which the model belongs. Instead, we might know only that the model belongs to
one of several possible families of distributions p�.m/.x/, where m is a (discrete)
index for the model families, �.m/ 2 R

d.m/ is the vector of parameters for model
family m, and d.m/ is the number of independent model parameters for that family.
For instance, in the mixture model (B.51), the number of mixture components n
could be unknown and would need to be estimated together with the mixture model
parameters. In this case, for each value of n we can define a parameter vector �.n/ D
.�1; : : : ; �n; �1; : : : ; �n/ of dimension7 d.n/ D ndC n� 1. Therefore, the challenge
is to choose among different models of different dimensions.

The problem of determining both the model type m and its parameter �.m/ is
conventionally referred to as a model selection problem (as opposed to parameter
estimation). Many important model-selection criteria have been developed in the
statistics community and the algorithmic complexity community for general classes
of models. These criteria include:

• The Akaike information criterion (AIC) (Akaike 1977) (also known as the Cp

statistics (Mallows 1973)) and geometric AIC (G-AIC) (Kanatani 2003);
• The Bayesian information criterion (BIC) (also known as the Schwartz criterion);

and
• Minimum description length (MDL) (Rissanen 1978) and minimum message

length (MML) (Wallace and Boulton 1968).

Although these criteria were originally motivated and derived from different view-
points (or in different contexts), they all share a common characteristic: the optimal
model should be one that strikes a good balance between the model complexity,
which typically depends on the dimension of the parameter space, and the data
fidelity to the chosen model, which is typically measured as the sum of squared
errors from the data points to the model. In fact, some of the criteria are essentially
equivalent to each other despite their different origins. For instance, to a large extent,
the AIC is equivalent to the Cp statistics, and the BIC is equivalent to the MDL.

In what follows, we give a brief review of the AIC and the BIC to illustrate
the key ideas behind model selection. However, we emphasize here that in general,
no model-selection criterion is always better than others under all circumstances,
and the best criterion depends on the purpose of the model. For a more detailed
exposition of these and many other model-selection criteria, we refer the reader to
(Burnham and Anderson 2002).

7We subtract one parameter because
Pn

iD1 �i D 1.

B Basic Facts from Mathematical Statistics 497

B.4.1 Akaike Information Criterion

Given N independent sample points X D fxjgNjD1 drawn from a distribution p�0.x/,

recall that the maximum-likelihood estimate O�N of the parameter � is the one that
maximizes the log-likelihood function `.�;X / DPN

jD1 log p� .xj/.
The Akaike information criterion (AIC) for model selection is motivated from an

information-theoretic viewpoint. In this approach, the quality of the obtained model
is measured by the average code length used by the optimal coding scheme of p O�N

.x/
for a random variable with actual distribution p�0.x/, i.e.,

E�0 Œ� log p O�N
.x/� D

Z
� log

�
p O�N
.x/
�
p�0.x/ dx: (B.76)

The AIC relies on an approximation to the above expected log-likelihood loss that
holds asymptotically as N !1:

2E�0 Œ� log p O�N
.x/� � �2`. O�N ;X /C 2d

:D AIC; (B.77)

where d is the number of free parameters for the class of models of interest.
For Gaussian noise models with variance �2, we have

`. O�N ;X / D � 1

2�2

NX
jD1
kxj � Oxjk2; (B.78)

where Oxj D E O�N
Œxj� is the best estimate of xj given the model p O�N

.x/. Thus, if �2 is
known (or approximated by the empirical sample variance), minimizing the AIC is
equivalent to minimizing the so-called Cp statistic:

Cp
:D 1

�2

NX
jD1
kxj � Oxjk2 C 2d � N; (B.79)

where the first term is obviously the mean squared error (a measure of data fidelity),
and the second term is an affine function of the dimension of the parameter space (a
measure of the complexity of the model).

Now consider multiple classes of models whose parameter spaces are of different
dimensions and denote the dimension of model class m by d.m/. Then the AIC
selects the model class m� that minimizes the following objective function:

AIC.m/ D 1

�2

NX
jD1
kxj � Oxj.m/k2 C 2d.m/; (B.80)

498 B Basic Facts from Mathematical Statistics

where Oxj.m/ D E O�N .m/
Œxj� is the best estimate of xj given the model p O�N .m/

.x/, and
O�N.m/ is the maximum-likelihood estimate of � for model family m.

B.4.2 Bayesian Information Criterion

The Bayesian information criterion (BIC) for model selection is motivated from
a Bayesian inference viewpoint. In this approach, we assume a prior distribution
of the model p.� j m/ and wish to choose the model class m� that maximizes
the posterior probability p.m j X /. Using the Bayesian rule, this is equivalent to
maximizing

p.m j X / / p.m/p.X j m/ D p.m/
Z

p.X j �;m/p.� j m/ d�: (B.81)

If we assume that each model class is equally probable, this further reduces
to maximizing the likelihood p.X j m/ among all the model classes. This is
equivalent to minimizing the negative log-likelihood �2 log p.X j m/. With
certain approximations, one can show that for general distributions, the following
relationship holds asymptotically as N !1:

BIC.m/
:D �2 log p.X j m/ D �2`. O�N.m/;X /C log.N/d.m/ (B.82)

D 1

�2

NX
jD1
kxj � Oxj.m/k2 C log.N/d.m/: (B.83)

As before, O�N.m/ is the maximum-likelihood estimate of � given m, d.m/ is the
number of parameters for class m, and �2 is the variance of a Gaussian noise model.
Notice that when N and � are known, the BIC is very similar to the AIC, except that
the factor 2 in front of the second term in the AIC is replaced by log.N/ in the BIC.
Because we normally have N � e2, the BIC penalizes complex models much more
than the AIC does. Thus, the BIC tends to choose simpler models.

B.5 Robust Statistical Methods

For all the model-estimation and selection techniques discussed above, we have
always assumed that the given data samples fxjgNjD1 are independent samples drawn
from the same distribution p�0.x/. By an appeal to the law of large numbers, the
asymptotic optimality of the estimate normally does not depend the particular set
of samples given.8 However, in many practical situations, the validity of the given

8The fact that almost all sets of i.i.d. samples are “typical” or “representative” of the given
distribution has been at the heart of the development of Shannon’s information theory.

B Basic Facts from Mathematical Statistics 499

data as independent samples of the model becomes questionable. Sometimes, the
given data can be corrupted by or mixed with samples of a different (probabilistic)
nature; or it can simply be the case that the given data are not a typical set of i.i.d.
samples from the distribution in question. For the purpose of model estimation, these
seemingly different interpretations are actually equivalent: we need to somehow
infer the correct model while accommodating an atypical set of samples of the
distribution (or the model). Obviously, this is an impossible task unless we impose
some restrictions on how atypical the samples are. It is customary to assume that
only a portion of the samples are different from or inconsistent with the rest of the
data. Those samples are often referred to as outliers, and they may have a significant
effect on the model inferred from data.

Unfortunately, despite centuries of interest and study,9 there is no universally
agreed definition of what an outlier is, especially for multivariate data. Roughly
speaking, most definitions (or tests) for an outlier are based on one of the following
guidelines:

1. The outliers are a set of samples that have relatively large influence on the
estimated model parameters. A measure of influence is normally the difference
between the model estimated with or without the sample in question.

2. The outliers are a set of small-probability samples with respect to the distribution
in question. The given data set is therefore an atypical set if such small-
probability samples constitute a significant portion of the data.

3. The outliers are a set of samples that are not consistent with (the model inferred
from) the remainder of the data. A measure of inconsistency is normally the error
residual of the sample in question with respect to the model.

Nevertheless, as we will soon see, for popular distributions such as the Gaussian,
they all lead to more or less equivalent ways of detecting or accommodating outliers.
However, under different conditions, different approaches that follow each of the
above guidelines may give rise to solutions that can be more convenient and efficient
than others.

B.5.1 Influence-Based Outlier Detection

When we try to estimate the parameter of the distribution p� .x/ from a set of samples
fxjgNjD1, every sample xj might have an uneven effect on the estimated parameter O�N .
The samples that have a relatively large effect are called influential samples, and
they can be regarded as outliers.

9The earliest documented discussions among astronomers about outliers or “erroneous observa-
tions” date back to the mid-eighteenth century. See (Barnett and Lewis 1983; Huber 1981; Bickel
1976) for a more thorough exposition of the studies of outliers in statistics.

500 B Basic Facts from Mathematical Statistics

To measure the influence of a particular sample xj, we may compare the
difference between the parameter O�N estimated from all the N samples and the
parameter O�.j/N estimated from all but the jth sample. Without loss of generality,
we here consider the maximum-likelihood estimate of the model:

O�N D arg max
�2‚

NX
iD1

log p� .xi/; (B.84)

O�.j/N D arg max
�2‚

X
i6Dj

log p� .xi/; (B.85)

and measure the influence of xj on the estimation of � by the difference

O�N � O�.j/N : (B.86)

Assume that p� .x/ is analytic in � and define the gradients of the above objective
functions as

f .�/
:D

NX
iD1

1

p� .xi/

@p� .xi/

@�
(B.87)

f .j/.�/
:D
X
i6Dj

1

p� .xi/

@p� .xi/

@�
: (B.88)

If we now evaluate the function f .�/ at � D O�.j/N using the Taylor series of f .�/ at
� D O�N , we obtain

f . O�.j/N / D f . O�N/C f 0. O�N/. O�.j/N � O�N/C o.k O�N � O�.j/N k/: (B.89)

Since we have f . O�N/ D 0 and f .j/. O�.j/N / D 0, the difference in the estimate caused by
the jth sample is

O�.j/N � O�N �
�
f 0. O�N/

�
h 1

p O�.j/N
.xj/

@p O�.j/N
.xj/

@�

i
: (B.90)

Notice that in the expression on the right-hand side, the factor
�
f 0. O�N/

�

is common

for all samples.

Proposition B.20 (Approximate Sample Influence). The difference between the
ML estimate O�N from N samples and the ML estimate O�.j/N without the jth sample
xj depends approximately linearly on the quantity

B Basic Facts from Mathematical Statistics 501

1

p O�.j/N
.xj/

@p O�.j/N
.xj/

@�
: (B.91)

In the special case that p� .x/ is the Gaussian distribution N .�; �2I/ with �2

known, the above equation gives the influence of the jth sample on the estimate
of �:

O�.j/
N � O�N � ˛.xj � O�.j/

N /; (B.92)

where ˛ is some constant depending on � . That is, the sample influence can be
measured by the distance between the sample and the mean estimated without the
sample; or equivalently, the smaller the probability of a sample with respect to the
estimated (Gaussian) distribution, the larger its influence on the estimated mean.
Therefore, the three guidelines for defining outliers become very much equivalent
for a Gaussian distribution.

In general, to evaluate the influence of all the samples, one needs to estimate
the model N C 1 times, which is reasonable only if each estimate is not too
costly to compute. In light of this drawback, some first-order approximations of
the influence values were developed in roughly the same period during which the
sample influence function was proposed (Campbell 1978; Critchley 1985), when
computational resources were scarcer than they are today. In robust statistics,
formulas that approximate an influence function are referred to as theoretical
influence functions.

B.5.2 Probability-Based Outlier Detection

Assume that the data are drawn from a zero-mean10 multivariate Gaussian distribu-
tion N .0; †x/. If there were no outliers, the maximum likelihood estimate of †x

would be given by O†N D 1
N

PN
jD1 xjx>j 2 RD�D. Therefore, we could approximate

the probability that a sample xj comes from this Gaussian model by

p.xjI O†N/ D 1

.2�/D=2 det. O†N/1=2
exp

� � 1
2

x>j O†�1N xj
�
: (B.93)

If we adopt the guideline that outliers are samples that have a small probability with
respect to the estimated model, then the outliers are exactly those samples that have
a relatively large residual:

10We here are interested only in how to robustly estimate the covariance, or “scale,” of the
distribution. In case the mean, or “location,” of the distribution is not known, a separate robust
procedure can be employed to determine the mean before the covariance; see (Barnett and Lewis
1983).

502 B Basic Facts from Mathematical Statistics

"j D x>j O†�1N xj; j D 1; 2; : : : ;N; (B.94)

also known as the Mahalanobis distance.11

In principle, we could use p.xj; O†N/ or "j to determine whether xj is an outlier.
However, the above estimate of the covariance matrix †x is obtained using all the
samples, including the outliers themselves. Therefore, if O†N is very different from
†x, the outliers could be incorrectly detected. In order to improve the estimate of
†x, one can recompute O†N by discarding or downweighting samples that have low
probability or large Mahalanobis distance. Let wj 2 Œ0; 1� be a weight assigned to
the jth point such that wj � 1 if xj is an inlier and wj � 0 if xj is an outlier. Then a
new estimate of †x can be obtained as

O†N D
PN

jD1 wjxjx>jPN
jD1 wj

: (B.95)

Maximum-Likelihood-Type Estimators (M-Estimators)
If we choose w."/ � ", the above expression gives the original estimate of the
covariance matrix O†N D 1

N

PN
jD1 xjx>j . Alternatively, if we simply want to discard

all samples with a Mahalanobis distance larger than a certain threshold "0 > 0, we
can choose the following weight function:

w."/ D
�
"; for "
 "0;
0; for " > "0:

(B.96)

Nevertheless, under the assumption that the distribution is elliptically symmetric and
is contaminated by an associated normal distribution, the following weight function
gives a more robust estimate of the covariance matrix (Hampel 1974; Campbell
1980):

w."/ D
�

"; for "
 "0;
"0 expŒ� 1

2a ." � "0/2� for " > "0;
(B.97)

with "0 D
p

DC b for some suitable choice of positive values for a and b, and D
denotes the dimension of the space. Many other weight functions have also been
proposed in the statistics literature. They serve as the basis for a class of robust
estimators, known as M-estimators (maximum-likelihood-type estimators) (Huber
1981; Barnett and Lewis 1983). Nevertheless, most M-estimators differ only in how
the samples are downweighted, but no one of them seems to dominate the others in
terms of performance in all circumstances.

11In fact, it can be shown (Ferguson 1961) that if the outliers have a Gaussian distribution of
a different covariance matrix a†, then "j is a sufficient statistic for the test that maximizes the
probability of correct decision about the outlier (in the class of tests that are invariant under linear
transformations). The interested reader may want to find out how this distance is equivalent (or
related) to the sample influence O†.j/N � O†N or the approximate sample influence given in (B.91).

B Basic Facts from Mathematical Statistics 503

Notice that calculating the robust estimate O†N as in (B.95) is not easy, because
the weights wj also depend on the resulting O†N . There is no surprise that many
known algorithms are based on Monte Carlo (Maronna 1976; Campbell 1980).

Multivariate Trimming (MVT)
One drawback of the M-estimators is that their “breakdown point” is inversely
proportional to the dimension of the data space. The breakdown point is an
important measure of robustness of any estimator. Roughly speaking, it is the
largest proportion of contamination that the estimator can tolerate. Thus, the
M-estimators become much less robust when the dimension of the data is
high.

One way to resolve this problem is to modify the M-estimators by simply
trimming out a percentage of the samples with relatively large Mahalanobis distance
and then using the remaining samples to reestimate the covariance matrix. Then
each time we have a new estimate of the covariance matrix, we can recalculate the
Mahalanobis distance of every sample and reselect samples that need to be trimmed.
We can repeat the above process until a stable estimate of the covariance matrix is
obtained. This iterative scheme is known as multivariate trimming (MVT), another
popular robust estimator. By construction, the breakdown point of MVT does not
depend on the dimension of the problem and depends only on the chosen trimming
percentage.

When the percentage of outliers is somehow known, it is relatively easy to
determine how many samples need to be trimmed, and it usually takes only a few
iterations for MTV to converge. However, if the percentage is wrongfully specified,
MVT is known to have trouble converging, or it may converge to a wrong estimate
of the covariance matrix.

B.5.3 Random-Sampling-Based Outlier Detection

When the outliers constitute a large portion (up to 50% or even more) of the
data set, the (ML) estimate O�N obtained from all the samples can be so severely
corrupted that the sample influence and the Mahalanobis distance computed based
on it become useless in discriminating between outliers and valid samples.12 This
motivates estimating the model parameter � using only a (randomly sampled) small
subset of the samples to begin with. In this section, we describe two such methods:
least median of squares (LMS) and random sample consensus (RANSAC).

12Thus, the iterative process is likely to converge to a local minimum other than the true model
parameter. Sometimes, it can even be the case that the roles of inliers and outliers are exchanged
with respect to the converged estimate.

504 B Basic Facts from Mathematical Statistics

Least Median Estimation
If we knew that fewer than half of the samples are potential outliers, we could use
only half of the samples to estimate the model parameter. But which half of the
samples should we use? We know that the maximum-likelihood estimate minimizes
the sum of negative log-likelihoods:

O�N D arg min
�2‚

NX
jD1

� log.p� .xj//

�
: (B.98)

Since outliers should have small probability, hence large negative log-likelihood,
we can order the values of the negative log-likelihood and eliminate from the above
objective half of the samples that have relatively larger values:

O�N=2 D arg min
�2‚

X
j

� � log.p� .xj//
�
; (B.99)

where the sum is over the points xj such that

� log.p� .xj//
 median
x`2X

� � log.p� .x`//
�
: (B.100)

A popular approximation to the above objective is simply to minimize the median
value of the negative log-likelihood:

O�M
:D arg min

�2‚
median

xj2X
� � log� .p.xj//

�
: (B.101)

We call O�M the least median estimate. In the case of a Gaussian noise model,
� log p.xj; �/ is proportional to the squared error:

� log.p� .xj// / kxj � Oxjk2: (B.102)

For this reason, the estimate O�M is often known as the least median of squares (LMS)
estimate.13

However, without knowing � , it is impossible to order the log-likelihoods or
the squared errors, let alone compute the median. A typical method to resolve this
difficulty is to randomly sample a number of small subsets of the data:

X1;X2; : : : ;Xm � X ; (B.103)

13The importance of the median for robust estimation was pointed out first in the article (Hampel
1974).

B Basic Facts from Mathematical Statistics 505

where each subset Xi is independently drawn and contains k � N samples. If p is
the fraction of valid samples (the “inliers”), one can show (see Exercise B.8) that
with probability q D 1 � .1 � pk/m, one of the above subsets will contain only
valid samples. In other words, if q is the probability that one of the selected subsets
contains only valid samples, we need to randomly sample at least

m 	 log.1 � q/

log.1 � pk/
(B.104)

subsets of k samples.
Using each subset Xi, we can compute an estimate O�i of the model and use the

estimate to compute the median for the remaining N � k samples in X n Xi:

OMi
:D median

xj2X nXi

� � log.p O�i
.xj//

�
: (B.105)

Then the least median estimate O�M is approximated by the O�i� that gives the smallest
median OMi� D mini OMi.

In the case of a Gaussian noise model, based on the order statistics of squared
errors, we can use the median statistic to obtain an (asymptotically unbiased)
estimate of the variance, or scale, of the error as follows:

O� D N C 5
Nˆ�1.0:5C p=2/

r
median

xj2X
kxj � Oxjk2; (B.106)

where p D 0:5 for the median statistic. Then one can use O� to find “good” samples
in X whose squared errors are less than ��2 for some chosen constant � (normally
less than 5). Using such good samples, we can recompute a more efficient (ML)
estimate O� of the model.

Random Sample Consensus (RANSAC)
In theory, the breakdown point of the least median estimate is up to 50% outliers. In
many practical situations, however, outlying samples may constitute more than half
of the data. Random sample consensus (RANSAC) (Fischler and Bolles 1981) is a
method that is designed to work for such highly contaminated data.

In many respects, RANSAC is actually very similar to LMS. The main dif-
ference is that instead of looking at the median statistic,14 RANSAC tries to
find, among all the estimates f O�ig obtained from the subsets fXig, the one that
maximizes the number of samples that have an error residual (measured either by
the negative log-likelihood or the squared error) smaller than a prespecified error
tolerance:

14Which becomes meaningless when the fraction of outliers is over 50%.

506 B Basic Facts from Mathematical Statistics

O�i�
:D arg max

O�i

#fxj 2 X W � log.xj; O�i/
 	g: (B.107)

In other words, O�i� achieves the highest “consensus” among all the random sample
estimates f O�ig, whence the name “random sample consensus” (RANSAC). To
improve the efficiency of the estimate, we can recompute an ML estimate O� of the
model from all the samples that are consistent with O�i� .

Notice that for RANSAC, one needs to specify the error tolerance 	 a priori.
In other words, RANSAC requires knowing the variance �2 of the error a priori,
while LMS normally does not. There have been a few variations of RANSAC in
the literature that relax this requirement. We here do not elaborate on them, and
interested readers may refer to (Steward 1999) and references therein.

However, when the dimension of the model is large or the model has a large
number of mixture components, random sampling techniques have not been very
effective. The reason is largely that in this case, the number of subsets needed
in (B.104) grows prohibitively large. The reader may refer to (Yang et al. 2006)
for an empirical study that extends RANSAC-type ideas to the case of a mixture of
subspaces.

B.6 Exercises

Exercise B.1 (ML Estimates of the Parameters of a Gaussian) Let x 2 RD

be a random vector with distribution N .�x; †x/, where �x D E.x/ 2 RD and
†x D E.x � �/.x � �/> 2 RD�D are, respectively, the mean and the covariance
of x. Show that the maximum likelihood estimates of �x and †x are, respectively,
given by

O�N
:D 1

N

NX
jD1

xj and O†N
:D 1

N

NX
jD1
.xj � O�N/.xj � O�N/

>: (B.108)

Exercise B.2 (Invariance of ML Estimator) Let O�N be the maximum likelihood
(ML) estimate of � obtained from N i.i.d. samples fxjgNjD1 from the distribution

p� .x/. Show that g. O�N/ is an ML estimate of g.�/. What are the conditions that
need to be imposed on g.�/ in order for g. O�N/ to be an ML estimate of g.�/?

Exercise B.3 (ML Estimates of the Mixing Proportions) Let W D Œwij� 2 Rn�N

be a left stochastic matrix, i.e., wij 	 0 and
Pn

iD1 wij D 1 for all j D 1; : : : ;N. Let
� be a stochastic vector, i.e., � 2 … D f.�1; : : : ; �n/ W �i 	 0, and

Pn
iD1 �i D 1g.

Show that

B Basic Facts from Mathematical Statistics 507

arg max
�2…

NX
jD1

wij log.�i/ D
PN

jD1 wijPn
iD1

PN
jD1 wij

: (B.109)

Exercise B.4 (ML Estimates of the Parameters of a Mixture of Gaussians) Let
W D Œwij� 2 Rn�N be a left stochastic matrix, i.e., wij 	 0 and

Pn
iD1 wij D 1 for all

j D 1; : : : ;N. Show that the solution to the optimization problem

max
�i;†i

NX
jD1

wij

� 1
2
.xj��i/

>†�1i .xj��i/�
1

2
det.†i/

�
(B.110)

is

�i D

NP
jD1

wijxj

NP
jD1

wij

and †i D

NP
jD1

wij.xj � �i/.xj ��i/
>

NP
jD1

wij

: (B.111)

Exercise B.5 Study MATLAB’s gmdistribution class, which is described at
http://www.mathworks.com/help/stats/gmdistribution-class.html, and reproduce the
example on clustering using Gaussian mixture models described at http://www.
mathworks.com/help/stats/gaussian-mixture-models.html. That is, use the function
mvnrnd to generate data sampled from a mixture of two Gaussians and the function
fitgmdist to estimate the parameters of the mixture model from the data. Then
plot the isocontours of the estimated distribution, the clustering of the data, and the
soft assignment weights.

Exercise B.6 Reproduce three of the examples described at http://www.
mathworks.com/help/stats/fitgmdist.html. Specifically, reproduce the examples
entitled Cluster Data Using a Gaussian Mixture Model, Regularize Gaussian
Mixture Model Estimation, and Determine the Best Gaussian Mixture Fit Using
AIC. In addition, add a new example called Determine the Best Gaussian Mixture
Fit Using BIC and compare it to AIC.

Exercise B.7 Implement the EM and MAP-EM algorithms for a mixture of
Gaussians. The format of your function should be as follows.

http://www.mathworks.com/help/stats/gmdistribution-class.html
http://www.mathworks.com/help/stats/gaussian-mixture-models.html
http://www.mathworks.com/help/stats/gaussian-mixture-models.html
http://www.mathworks.com/help/stats/fitgmdist.html
http://www.mathworks.com/help/stats/fitgmdist.html

508 B Basic Facts from Mathematical Statistics

Function [group,mu,Sigma,pi]=GMM(x,n,method,group0,
restarts)

Parameters
x D � N matrix whose columns are the data points
n number of groups

method ‘EM’, ‘MAPEM’
group0 1 � N vector containing an initial soft or hard assignment of points

to groups
Returned values
group 1 � N vector containing the soft or hard assignments of points to

groups
mu D � n matrix whose ith column is the mean for the ith group

Sigma D � D � n tensor whose ith slice is the covariance matrix of the ith
group

pi n � 1 vector whose entries are the mixing proportions
Estimates the parameters of a Gaussian mixture model

Generate data from a mixture of two Gaussians in R2 with means .�1;�1/ and
.1; 1/, equal covariance matrices �2I, and equal mixing proportions �1 D �2 D
1=2. Increase � from 0:1 to 1 and plot the clustering error as a function of � . Plot
also the error in the estimated parameters as a function of � . Compare your results
with those produced by the MATLAB function fitgmdist.

Exercise B.8 (RANSAC) Suppose you are given N data points such that p% are
inliers and .1 � p/% are outliers. Suppose you wish to fit a model to the inliers and
that k� N is the minimum number of points needed to estimate the model.

1. Suppose that you sample k out of N data points with replacement. What is the
probability that all k points are inliers?

2. Suppose that not all k points are inliers, and so you keep sampling k points m
times. Show that the probability that after m trials all k points are inliers for the
first time is 1 � .1 � pk/m.

3. Show that the number of trials needed so that the probability that all k points are
inliers is at least q is given by

m 	 log.1 � q/

log.1 � pk/
: (B.112)

Appendix C
Basic Facts from Algebraic Geometry

Algebra is but written geometry; geometry is but drawn algebra.

—Sophie Germain

A centuries-old practice in science and engineering it to fit polynomials to a
given set of data points. In this book, we often use the set of zeros of (multivariate)
polynomials to model a given data set. In mathematics, polynomials and their zero
sets are studied in algebraic geometry, with Hilbert’s Nullstellensatz establishing the
basic link between algebra (polynomials) and geometry (the zero set of polynomials,
a geometric object). In order to make this book self-contained, we review in
this appendix some of the basic algebraic notions and facts that are used in
this book, especially in Chapter 5. In particular, we will introduce the special
algebraic properties of multiple subspaces as algebraic sets. For a more systematic
introduction to abstract algebra and algebraic geometry, the reader may refer to the
classic texts of Lang (Lang 1993) and Eisenbud (Eisenbud 1996).

C.1 Abstract Algebra Basics

C.1.1 Polynomial Rings

Consider a D-dimensional vector space over a field R (of characteristic 0), denoted
by RD, where R is usually the field of real numbers R or the field of complex
numbers C.

Let RŒx� D Œx1; x2; : : : ; xD� be the set of all polynomials in D variables
x1; x2; : : : ; xD. Then RŒx� is a commutative ring with two basic operations: “sum-
mation” and “multiplication” of polynomials. The elements of R are called scalars
or constants. A monomial is a product of the variables; its degree is the number

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9

509

510 C Basic Facts from Algebraic Geometry

of the variables (counting repeats). A monomial of degree n is of the form xn D
xn1
1 xn2

2 � � � xnD
D with 0
 nj
 n and n1 C n2 C � � � C nD D n. Altogether, there are

Mn.D/
:D � DCn�1

n

� D � DCn�1
D�1

�

different degree-n monomials.

Definition C.1 (Veronese Map). For given n and D, the Veronese map of degree n,
denoted by �n W RD ! RMn.D/, is defined as

�n W Œx1; : : : ; xD�
> 7! Œ: : : ; xn; : : :�>; (C.1)

where xn are degree-n monomials of the form xn1
1 xn2

2 � � � xnD
D with n D .n1; n2; : : : ; nD/

chosen in the degree-lexicographic order.

Example C.2 (The Veronese Map of Degree 2 in Three Variables). If x D
Œx1; x2; x3�> 2 R3, the Veronese map of degree 2 is given by

�2.x/ D Œx21; x1x2; x1x3; x22; x2x3; x23�> 2 R6:

In the context of kernel methods (Chapter 4), the Veronese map is usually referred
to as the polynomial embedding, and the ambient space RMn.D/ is called the feature
space.

A term is a scalar multiplying a monomial. A polynomial p.x/ is said to be
homogeneous if all its terms have the same degree. Sometimes, the word form is
used to mean a homogeneous polynomial. Every homogeneous polynomial p.x/ of
degree n can be written as

p.x/ D c>n �n.x/ D
X

cn1;:::;nD xn1
1 � � � xnD

D ; (C.2)

where cn1;:::;nD 2 R are the coefficients associated with the monomials xn D
xn1
1 � � � xnD

D .
In this book, we are primarily interested in the algebra of homogeneous

polynomials in D variables.1 Because of that, we view RD as a projective
space—the set of one-dimensional subspaces (meaning lines through the origin).
Every one-dimensional subspace, say a line L, can be represented by a point
Œa1; a2; : : : ; aD�

> 6D Œ0; 0; : : : ; 0�> on the line. The result is a projective .D�1/-
space over R that can be regarded as the D-tuples Œa1; a2; : : : ; aD�

> of elements of
R, modulo the equivalence relation Œa1; a2; : : : ; aD�

> � Œba1; ba2; : : : ; baD�
> for all

b 6D 0 in R.
If p.x1; x2; : : : ; xD/ is a homogeneous polynomial of degree n, then for b 2 R, we

have

p.ba1; ba2; : : : ; baD/ D bnp.a1; a2; : : : ; aD/: (C.3)

1For algebra of polynomials defined on RD as an affine space, the reader may refer to (Lang 1993).

C Basic Facts from Algebraic Geometry 511

Therefore, whether p.a1; a2; : : : ; aD/ D 0 on a line L does not depend on the
representative point chosen on the line L.

We may view RŒx� as a graded ring, which can be decomposed as

RŒx� D
1M

iD0
Ri D R0 ˚ R1 ˚ � � � ˚ Rn ˚ � � � ; (C.4)

where Ri consists of all polynomials of degree i. In particular, R0 D R is the set
of nonzero scalars (or constants). It is convention (and convenient) to define the
degree of the zero element 0 in R to be infinite or �1. The set R1 consists of all
homogeneous polynomials of degree one, i.e., the set of 1-forms,

R1
:D ˚b1x1 C b2x2 C � � � C bDxD W Œb1; b2; : : : ; bD�

> 2 RD
�
: (C.5)

Obviously, the dimension of R1 as a vector space is also D; R1 can also be viewed as
the dual space .RD/� of RD. For convenience, we also define the following two sets:

R�m
:D

mM
iD0

Ri D R0 ˚ R1 ˚ � � � ˚ Rm;

R�m
:D
1M

iDm

Ri D Rm ˚ RmC1 ˚ � � � ;

which are the set of polynomials of degree less than or equal to m and those of
degree greater than or equal to m, respectively.

C.1.2 Ideals and Algebraic Sets

Definition C.3 (Ideal). An ideal in the (commutative) polynomial ring RŒx� is an
additive subgroup I (with respect to the summation of polynomials) such that if
p.x/ 2 I and q.x/ 2 RŒx�, then p.x/q.x/ 2 I.

From the definition, one can verify that if I; J are two ideals of RŒx�, their
intersection K D I \ J is also an ideal. The previously defined set R�m is an ideal
for every m. In particular, R�1 is the so-called irrelevant ideal, sometimes denoted
by RC.

An ideal is said to be generated by a subset G � I if every element p.x/ 2 I can
be written in the form

p.x/ D
kX

iD1
qi.x/gi.x/; with qi.x/ 2 RŒx� and gi.x/ 2 G: (C.6)

512 C Basic Facts from Algebraic Geometry

We write .G/ for the ideal generated by a subset G � RŒx�; if G contains only a finite
number of elements fg1; : : : ; gkg, we usually write .g1; : : : ; gk/ in place of .G/. An
ideal I is principal if it can be generated by one element (i.e., I D p.x/RŒx� for some
polynomial p.x/). Given two ideals I and J, the ideal that is generated by the product
of elements in I and J,

ff .x/g.x/; f .x/ 2 I; g.x/ 2 Jg

is called the product ideal, denoted by IJ.
An ideal I of the polynomial ring RŒx� is prime if I 6D RŒx� and if p.x/; q.x/ 2 RŒx�

and p.x/q.x/ 2 I implies that p.x/ 2 I or q.x/ 2 I. If I is prime, then for any ideals
J;K with JK
 I, we have J
 I or K
 I.

A polynomial p.x/ is said to be prime or irreducible if p.x/ generates a prime
ideal. Equivalently, p.x/ is irreducible if p.x/ is not a nonzero scalar and whenever
p.x/ D f .x/g.x/, then one of f .x/ and g.x/ is a nonzero scalar.

Definition C.4 (Homogeneous Ideal). A homogeneous ideal of RŒx� is an ideal that
is generated by homogeneous polynomials.

Note that the sum of two homogeneous polynomials of different degrees
is no longer a homogeneous polynomial. Thus, a homogeneous ideal contains
inhomogeneous polynomials too.

Definition C.5 (Algebraic Set). Given a set of homogeneous polynomials J �
RŒx�, we may define a corresponding (projective) algebraic set Z.J/ as a subset
of RD to be

Z.J/
:D fŒa1; a2; : : : ; aD�

> 2 RDjf .a1; a2; : : : ; aD/ D 0;8f 2 Jg: (C.7)

If we view algebraic sets as the closed sets of RD, this assigns a topology to the
space RD, which is called the Zariski topology.2

If X D Z.J/ is an algebraic set, an algebraic subset Y � X is a set of the form
Y D Z.K/ (where K is a set of homogeneous polynomials) that happens to be
contained in X. A nonempty algebraic set is said to be irreducible if it is not the
union of two nonempty smaller algebraic subsets. We call irreducible algebraic sets
algebraic varieties. For instance, every subspace of RD is an irreducible algebraic
variety.

There is an inverse construction of algebraic sets. Given any subset X
 RD, we
define the vanishing ideal of X to be the set of all polynomials that vanish on X:

I.X/
:D ff .x/ 2 RŒx�jf .a1; a2; : : : ; an/ D 0;8Œa1; a2; : : : ; an�

> 2 Xg: (C.8)

2This is because the intersection of any algebraic sets is an algebraic set; and the union of finitely
many algebraic sets is also an algebraic set.

C Basic Facts from Algebraic Geometry 513

One can verify that I.X/ is an ideal. Treating two polynomials as equivalent if they
agree at all the points of X, we get the coordinate ring A.X/ of X as the quotient
RŒx�=I.X/ (see (Eisenbud 1996) for details).

Now let us consider a set of homogeneous polynomials J � RŒx� (which is not
necessarily an ideal) and a subset X � RD (which is not necessarily an algebraic
set).

Proposition C.6. The following assertions are true:

1. I.Z.J// is an ideal that contains J;
2. Z.I.X// is an algebraic set that contains X.

Proposition C.7. If X is an algebraic set and I.X/ is the vanishing ideal of X, then
X is irreducible if and only if I is a prime ideal.

Proof. If X is irreducible and f .x/g.x/ 2 I, since Z.fI; f .x/g/ [Z.fI; g.x/g/ D
X, then either X D Z.fI; f .x/g/ or X D Z.fI; g.x/g/. That is, either f .x/ or g.x/
vanishes on X and is in I. Conversely, suppose X D X1 [X2. If both X1 and X2 are
algebraic sets strictly smaller than X, then there exist polynomials f1.x/ and f2.x/
that vanish on X1 and X2 respectively, but not on X. Since the product f1.x/f2.x/
vanishes on X, we have f1.x/f2.x/ 2 I, but neither f1.x/ nor f2.x/ is in I. So I is not
prime. ut

C.1.3 Algebra and Geometry: Hilbert’s Nullstellensatz

In practice, we often use an algebraic set to model a given set of data points, and
the (ideal of) polynomials that vanish on the set provides a natural parametric model
for the data. One question that is of particular importance in this context is whether
there is a one-to-one correspondence between ideals and algebraic sets. This is in
general not true, since the ideals I D .f 2.x// and J D .f .x// both vanish on the
same algebraic set as the zero set of the polynomial f .x/. Fortunately, this turns out
to be essentially the only case that prevents the one-to-one correspondence between
ideals and algebraic sets.

Definition C.8 (Radical Ideal). Given a (homogeneous) ideal I of RŒx�, the (homo-
geneous) radical ideal of I is defined to be

rad.I/
:D ff .x/ 2 RŒx�jf .x/m 2 I for some integer mg: (C.9)

We leave it to the reader to verify that rad.I/ is indeed an ideal and furthermore,
that if I is homogeneous, then so is rad.I/.

Hilbert proved in 1893 the following important theorem that establishes one of
the fundamental results in algebraic geometry:

Theorem C.9 (Nullstellensatz). Let R be an algebraically closed field (e.g., R D
C). If I � RŒx� is a (homogeneous) ideal, then

514 C Basic Facts from Algebraic Geometry

I.Z.I// D rad.I/: (C.10)

Thus, the maps I 7! Z.I/ and X 7! I.X/ induce a one-to-one correspondence
between the collection of (projective) algebraic sets of RD and (homogeneous)
radical ideals of RŒx�.

One may find up to five different proofs for this theorem in (Eisenbud 1996).3 The
importance of the Nullstellensatz cannot be exaggerated. It is a natural extension
of Gauss’s fundamental theorem of algebra4 to multivariate polynomials. One of
the remarkable consequences of the Nullstellensatz is that it identifies a geometric
object (algebraic sets) with an algebraic object (radical ideals).

In our context, we often assume that our data points are drawn from an algebraic
set and use the set of vanishing polynomials as a parametric model for the data.
Hilbert’s Nullstellensatz guarantees that such a model for the data is well defined
and unique. To some extent, when we fit vanishing polynomials to the data, we are
essentially inferring the underlying algebraic set. In the next section, we will discuss
how to extend Hilbert’s Nullstellensatz to the practical situation in which we have
only finitely many sample points from an algebraic set.

C.1.4 Algebraic Sampling Theory

We often face a common mathematical problem: how to identify a (projective)
algebraic set Z
 RD from a finite, though perhaps very large, number of sample
points in Z. In general, the algebraic set Z is not necessarily irreducible,5 and the
ideal I.Z/ is not necessarily prime.

From an algebraic viewpoint, it is impossible to recover a continuous algebraic
set Z from a finite number of discrete sample points. To see this, note that the set
of all polynomials that vanish on one (projective) point z is a submaximal ideal6 m
in the (homogeneous) polynomial ring RŒz�. The set of polynomials that vanish on a
set of sample points fz1; z2; : : : ; zig
 Z is the intersection

ai
:D m1 \m2 \ � � � \mi; (C.11)

which is a radical ideal that is typically much larger than I.Z/.

3Strictly speaking, for homogeneous ideals, for the one-to-one correspondence to be exact, one
should consider only proper radical ideals.
4Every degree-n polynomial in one variable has exactly n roots in an algebraically closed field such
as C (counting repeats).
5For instance, it is often the case that Z is the union of many subspaces or algebraic surfaces.
6The ideal of a point in the affine space is a maximal ideal; and the ideal of a point in the projective
space is called a submaximal ideal. They both are “maximal” in the sense that they cannot be a
subideal of any other homogeneous ideal of the polynomial ring.

C Basic Facts from Algebraic Geometry 515

Thus, some additional assumptions must be imposed on the algebraic set in order
to make the problem of inferring I.Z/ from the samples well defined. Typically, we
assume that the ideal I.Z/ of the algebraic set Z in question is generated by a set
of (homogeneous) polynomials whose degrees are bounded by a relatively small n.
That is,

I.Z/
:D �

f1; f2; : : : ; fs
�

s.t. deg.fj/
 n;

Z.I/
:D ˚

z 2 RD j fi.z/ D 0; i D 1; 2; : : : ; s
�
:

We are interested in retrieving I.Z/ uniquely from a set of sample points
fz1; z2; : : : ; zig
 Z. In general, I.Z/ is always a proper subideal of ai, regardless of
how large i is. However, the information about I.Z/ can still be retrieved from ai in
the following sense.

Theorem C.10 (Sampling of an Algebraic Set). Consider a nonempty set Z
 RD

whose vanishing ideal I.Z/ is generated by polynomials in R�n. Then there is a finite
sequence FN D fz1; : : : ; zNg such that the subspace I.FN/\ R�n generates I.Z/.

Proof. Let I�n D I.Z/ \ R�n. This vector space generates I.Z/. Let a0 D RŒx� D
I.;/. Let b0 D a0 \ R�n and let A0 D .b0/, the ideal generated by polynomials in
a0 of degree less than or equal to n. Since 1 2 RŒx� \ R�n is the generator of this
ideal, we have A0 D RŒx�. Since Z ¤ ;, then A0 6D I.Z/. Set N D 1 and pick a point
z1 2 Z. Then 1.z1/ ¤ 0 (1 is the function that assigns 1 to every point of Z). Let a1
be the ideal that vanishes on fz1g and define b1 D a1\R�n. Further, let A1 D .b1/.7
Since I.Z/
 a1, it follows that I�n
 b1. If A1 D I.Z/, then we are done. Suppose
then that I.Z/ � A1.

Let us do the induction at this point. Suppose we have found a finite sequence
FN D fz1; z2; : : : ; zNg � Z with

I.FN/ D aN (C.12)

bN D aN \ R�n (C.13)

AN D .bN/ (C.14)

b0 � b1 � � � � � bN � I�n: (C.15)

It follows that I�n
 bN and that I.Z/
 AN . If equality holds here, then we
are done. If not, then there exist a function g 2 bN not in I.Z/ and an element
zNC1 2 Z for which g.zNC1/ ¤ 0. Set FNC1 D fz1; : : : ; zN ; zNC1g. Then one gets
aNC1; bNC1;ANC1 as before with

b0 � b1 � � � � � bN � bNC1 � I�n: (C.16)

7Here we are using the convention that .S/ is the ideal generated by the set S. Recall also that
the ring RŒx� is Noetherian by the Hilbert basis theorem, and so all ideals in the ring are finitely
generated (Lang 1993).

516 C Basic Facts from Algebraic Geometry

We obtain a descending chain of subspaces of the vector space R�n. This chain must
stabilize, since the vector space is finite-dimensional. Hence there is an N for which
bN D I�n, and we are done. ut

We point out that in the above proof, no clear bound on the total number
N of points needed is given.8 Nevertheless, from the proof of the theorem, the
set of finite sequences of samples that satisfy the theorem is an open set. This
is of great practical importance: with probability one, the vanishing ideal of an
algebraic set can be correctly determined from a randomly chosen sequence of
samples.

Example C.11 (A Hyperplane in R
3). Consider a plane P D fz 2 R3 W f .z/ D

az1 C bz2 C cz3 D 0g. Given any two points in general position in the plane P,
f .x/ D ax1 C bx2 C cx3 will be the only (homogeneous) polynomial of degree 1
that fits the two points. In terms of the notation introduced earlier, we have I.P/ D�
a2 \ R�1

�
.

Example C.12 (Zero Polynomial). When Z D RD, the only polynomial that
vanishes on Z is the zero polynomial, i.e., I.Z/ D .0/. Since the zero polynomial is
considered to be of degree �1, we have .aN \ R�n/ D ; for any given n (and large
enough N).

The above theorem can be viewed as a first step toward an algebraic analogy
to the well-known Nyquist–Shannon sampling theorem in signal processing, which
stipulates that a continuous signal with a limited frequency bandwidth
 can be
uniquely determined from a sequence of discrete samples with a sampling rate
higher than 2
. Here a signal is replaced by an algebraic set, and the frequency
bandwidth is replaced by the bound on the degree of polynomials. It has been widely
practiced in engineering that a curve or surface described by polynomial equations
can be recovered from a sufficient number of sample points in general configuration,
a procedure often loosely referred to as “polynomial fitting.” However, the algebraic
basis for this is often not clarified, and the conditions for the uniqueness of the
solution are usually not well characterized or specified. This problem certainly
merits further investigation.

C.1.5 Decomposition of Ideals and Algebraic Sets

Modeling a data set as an algebraic set does not stop at obtaining its vanishing
ideal (and polynomials). The ultimate goal is to extract all the internal geometric or
algebraic structures of the algebraic set. For instance, if an algebraic set consists of

8However, loose bounds can be obtained from the dimension of R�n as a vector space. In fact, in
the algorithm, we implicitly used the dimension of R�n as a bound for N.

C Basic Facts from Algebraic Geometry 517

multiple subspaces, called a subspace arrangement, we need to know how to derive
from its vanishing ideal the number of subspaces, their dimensions, and a basis of
each subspace.

Thus, given an algebraic set X or equivalently its vanishing ideal I.X/, we want
to decompose or segment it into a union of subsets each of which can no longer
be further decomposed. As we mentioned earlier, an algebraic set that cannot
be decomposed into smaller algebraic sets is called irreducible. As one of the
fundamental finiteness theorems of algebraic geometry, we have the following.

Theorem C.13. An algebraic set can have only finitely many irreducible compo-
nents. That is, for some n,

X D X1 [X2 [� � � [Xn; (C.17)

where X1;X2; : : : ;Xn are irreducible algebraic varieties.

Proof. The proof is essentially based on the fact that the polynomial ring RŒx� is
Noetherian (i.e., finitely generated), and there are only finitely many prime ideals
containing I.X/ that are minimal with respect to inclusion (See (Eisenbud 1996)).

ut
The vanishing ideal I.Xi/ of each irreducible algebraic variety Xi must be a prime

ideal that is minimal over the radical ideal I.X/ – there is no prime subideal of I.Xi/

that includes I.X/. The ideal I.X/ is precisely the intersection of all the minimal
prime ideals:

I.X/ D I.X1/\ I.X2/\ � � � \ I.Xn/: (C.18)

This intersection is called a minimal primary decomposition of the radical ideal
I.X/. Thus the primary decomposition of a radical ideal is closely related to the
notion of “segmenting” or “decomposing” an algebraic set into multiple irreducible
algebraic varieties: if we know how to decompose the ideal, we can find the
irreducible algebraic variety corresponding to each primary component.

We are particularly interested in a special class of algebraic sets known as
subspace arrangements. One of the goals of subspace clustering and modeling
is to decompose a subspace arrangement into individual (irreducible) subspaces
(see Chapter 5). In later sections, we will further study the algebraic properties of
subspace arrangements.

C.1.6 Hilbert Function, Polynomial, and Series

Finally, we introduce an important invariant of algebraic sets, given by the Hilbert
function. Knowing the values of the Hilbert function can be very useful in the
identification of subspace arrangements, especially the number of subspaces and
their dimensions.

518 C Basic Facts from Algebraic Geometry

Given a (projective) algebraic set Z and its vanishing ideal I.Z/, we can grade
the ideal by degree as

I.Z/ D I0.Z/˚ I1.Z/˚ � � � ˚ Ii.Z/˚ � � � : (C.19)

The Hilbert function of Z is defined to be

hI.i/
:D dim.Ii.Z//: (C.20)

Notice that hI.i/ is exactly the number of linearly independent polynomials of
degree i that vanish on Z. In this book, we also refer to hI as the Hilbert function of
the algebraic set Z.9

The Hilbert series, also known as the Poincaré series, of the ideal I is defined to
be the power series10

H.I; t/ :D
1X

iD0
hI.i/t

i D hI.0/C hI.1/tC hI.2/t
2 C � � � : (C.21)

Thus, given H.I; t/, we know all the values of the Hilbert function hI from its
coefficients.

Example C.14 (Hilbert Series of a Polynomial Ring). The Hilbert series of the
polynomial ring RŒx� D RŒx1; x2; : : : ; xD� is

H.RŒx�; t/ D
1X

iD0
dim.Ri/t

i D
1X

iD0

�
DCi�1

i

�
ti D 1

.1 � t/D
: (C.22)

One can verify the correctness of the formula with the special case D D 1.
Obviously, the coefficients of the Hilbert series of any ideal (as a subset of RŒx�)
are bounded by those of H.RŒx�; t/, and hence the Hilbert series converges.

Example C.15 (Hilbert Series of a Subspace). The above formula can be gen-
eralized to the vanishing ideal of a subspace S of dimension d in RD. Let the
codimension of the subspace be c D D � d. We have

H.I.S/; t/ D
�

1

.1 � t/c
� 1

�
�

1

.1 � t/D�c

D 1 � .1 � t/c

.1 � t/D
: (C.23)

9In the literature, however, the Hilbert function of an algebraic set Z is sometimes defined to be the
dimension of the homogeneous components of the coordinate ring A.Z/

:D RŒx�=I.Z/ of Z, which
is the codimension of Ii.Z/ as a subspace in Ri.
10In general, the Hilbert series can be defined for any finitely generated graded module E DL

1

iD1 Ei using any Euler–Poincaré Z-valued function hE.�/ as H.E; t/ :D P
1

iD0 hE.i/ti (Lang
1993). Here, for E D I, we choose hI.i/ D dim.Ii/.

C Basic Facts from Algebraic Geometry 519

The following theorem, also due to Hilbert, reveals that the values of the Hilbert
function of an ideal have some remarkable properties:

Theorem C.16 (Hilbert Polynomial). Let I.Z/ be the vanishing ideal of an
algebraic set Z over RŒx1; : : : ; xD�. Then the values of its Hilbert function hI.i/ agree,
for large i, with those of a polynomial of degree
 D. This polynomial, denoted by
HI.i/, is called the Hilbert polynomial of I.Z/.

Then in the above example, for the polynomial ring, the Hilbert function itself is
a polynomial in i:

HR.i/ D hR.i/ D
�

DCi�1
i

� D 1

.D � 1/Š.DC i � 1/.DC i � 2/ � � � .iC 1/:

However, for a general ideal I (of an algebraic set), it is not necessarily true
that all values of its Hilbert function hI agree with those of its Hilbert polynomial
HI . They might agree only when i is large enough. Thus, for a given algebraic
set (or ideal), it would be interesting to know how large i needs to be in order
for the Hilbert function to coincide with a polynomial. As we will soon see, for
subspace arrangements, there is a very elegant answer to this question. One can
even derive closed-form formulas for the Hilbert polynomials. These results are
very important and useful for the subspace clustering problem, both conceptually
and computationally.

C.2 Ideals of Subspace Arrangements

In this book, the main problem that we study is how to cluster a collection of
data points drawn from a subspace arrangement A D fS1; S2; : : : ; Sng, formally
introduced in Chapter 5;11 ZA D S1[S2[� � �[Sn is the union of all the subspaces,
and ZA can be naturally described as the zero set of a set of polynomials, which
makes it an algebraic set. The solution to the above problem typically relies on
inferring the subspace arrangement ZA from the data points. Thus, knowing the
algebraic properties of ZA may significantly facilitate this task.

Although subspace arrangements seem to be a very simple class of algebraic sets,
a full characterization of their algebraic properties is a surprisingly difficult, if not
impossible, task. Subspace arrangements have been a centuries-old subject that still
actively interweaves many mathematical fields: algebraic geometry and topology,
combinatorics, and complexity theory, graph and lattice theory, etc. Although the
results are extremely rich and deep, in fact only a few special classes of subspace
arrangements have been well characterized.

11Unless stated otherwise, the subspace arrangement considered will always be a central arrange-
ment, as in Definition 5.4.

520 C Basic Facts from Algebraic Geometry

In the remaining sections of this appendix, we examine some important concepts
and properties of subspace arrangements that are closely related to the subspace-
clustering problem. The purpose of these sections is twofold: 1. to provide a rigorous
justification for the algebraic subspace clustering algorithms derived in Chapter 5;
2. to summarize some important in-depth properties of subspace arrangements,
which may suggest potential improvements of the algorithms. For readers who are
interested only in the basic subspace clustering algorithms and their applications,
these sections can be skipped on a first reading.

Vanishing Ideal of a Subspace.
A d-dimensional subspace S can be defined by k D D�d linearly independent linear
forms fl1; l2; : : : ; lkg:

S
:D fx 2 RD W li.x/ D 0; i D 1; 2; : : : ; k D D � dg; (C.24)

where li is of the form li.x/ D ai1x1 C ai2x2 C � � � aiDxD with aij 2 R. Let S� denote
the space of all linear forms that vanish on S. Then dim.S�/ :D k D D � d. The
subspace S is also called the zero set of S�, i.e., points in the ambient space that
vanish on all polynomials in S�, which is denoted by Z.S�/. We define

I.S/
:D fp 2 RŒx� W p.x/ D 0;8x 2 Sg: (C.25)

Clearly, I.S/ is an ideal generated by linear forms in S�, and it contains polynomials
of all degrees that vanish on the subspace S. Every polynomial p.x/ in I.S/ can be
written as a superposition:

p D l1h1 C l2h2 C � � � C lkhk (C.26)

for some polynomials h1; h2; : : : ; hk 2 RŒx�. Furthermore, I.S/ is a prime ideal.12

Vanishing Ideal of a Subspace Arrangement
Given a subspace arrangement ZA D S1 [S2 [� � � [Sn, its vanishing ideal is

I.ZA/ D I.S1/ \ I.S2/\ � � � \ I.Sn/: (C.27)

The ideal I.ZA/ can be graded by the degree of its polynomials

I.ZA/ D Im.ZA/˚ ImC1.ZA/˚ � � � ˚ Ii.ZA/˚ � � � : (C.28)

Each Ii.ZA/ is a vector space that consists of forms of degree i in I.ZA/, and m 	 1
is the least degree of the polynomials in I.ZA/. Notice that forms that vanish on
ZA may have degrees strictly less than n. One example is an arrangement of two
lines and one plane in R3. Since any two lines lie on a plane, the arrangement can

12It is a prime ideal because for every product p1p2 2 I.S/, either p1 2 I.S/ or p2 2 I.S/.

C Basic Facts from Algebraic Geometry 521

be embedded into a hyperplane arrangement of two planes, and there exist forms
of second degree that vanish on the union of the three subspaces. The dimension of
Ii.ZA/ is known as the Hilbert function hI.i/ of ZA.

Example C.17 (Boolean Arrangement). The Boolean arrangement is the collec-
tion of coordinate hyperplanes Hj

:D fx W xj D 0g; 1
 j
 D. The vanishing ideal
of the Boolean arrangement is generated by a single polynomial p.x/ D x1x2 � � � xD

of degree D.

Example C.18 (Braid Arrangement). The braid arrangement is the collection
of hyperplanes Hjk

:D fx W xj � xk D 0g; 1
 j 6D k
 D. Similarly, the
vanishing ideal of the Braid arrangement is generated by a single polynomial
p.x/ DQ1�j<k�D.xj � xk/.

Theorem C.19 (Regularity of Subspace Arrangements). The vanishing ideal
I.ZA/ of a subspace arrangement ZA D S1[S2[� � �[Sn is n-regular. This implies
that I.Z/ has a set of generators with degree
 n.

Proof. For the concept of n-regularity and the proof of the above statement, please
refer to (Derksen 2007) and references therein. ut

Due to the above theorem, the subspace arrangement ZA is uniquely determined
as the zero set of all polynomials of degree up to n in its vanishing ideal, i.e., as the
zero set of polynomials in

ZA D Z.I�n/;

where I�n
:D I0 ˚ I1 ˚ � � � ˚ In:

Product Ideal of a Subspace Arrangement
Let J.ZA/ be the ideal generated by the products of linear forms

fl1 � l2 � � � ln; 8lj 2 S�j ; j D 1; : : : ; ng:

Or equivalently, we can define J.ZA/ to be the product of the n ideals
I.S1/; I.S2/; : : : ; I.Sn/:

J.ZA/
:D I.S1/ � I.S2/ � � � I.Sn/:

Then the product ideal J.ZA/ is a subideal of I.ZA/. Nevertheless, the two ideals
share the same zero set:

ZA D Z.J/ D Z.I/: (C.29)

By definition, I is the largest ideal that vanishes on ZA. In fact, I is the radical ideal
of the product ideal J, i.e., I D rad.J/. We may also grade the ideal J.ZA/ by the
degree

522 C Basic Facts from Algebraic Geometry

J.ZA/ D Jn.ZA/˚ JnC1.ZA/˚ � � � ˚ Ji.ZA/˚ � � � : (C.30)

Notice that unlike I, the lowest degree of polynomials in J always starts from n, the
number of subspaces. The Hilbert function of J is denoted by hJ.i/ D dim.Ji.ZA//.
As we will soon see, the Hilbert functions (or polynomials, or series) of the product
ideal J and the vanishing ideal I have very interesting and important relationships.

C.3 Subspace Embedding and PL-Generated Ideals

Let ZA be a central subspace arrangement ZA D S1 [S2 [� � � [Sn. Let ZA0 D
S01[S02[� � �[S0n0 be another (central) subspace arrangement. If we have ZA
 ZA0 ,
then it is necessary that for all Sj � ZA, there exist S0j0 � ZA0 such that Sj
 S0j0 . If
so, we call

ZA
 ZA0

a subspace embedding. Beware that it is possible that n0 < n for a subspace
embedding, since more than one subspace Sj of ZA may belong to the same subspace
Sj0 of ZA0 . The subspace arrangements in Theorem 5.14 are examples of subspace
embeddings. If ZA0 happens to be a hyperplane arrangement, we call the embedding
a hyperplane embedding.

Is the zero-set of each homogeneous component of I.ZA/, in particular Im.ZA/,
a subspace embedding of ZA? Unfortunately, this is not true, since counterexamples
can be constructed.

Example C.20 (Five Lines in R3). Consider five points in P2 (or equivalently, five
lines in R3). The Veronese embedding of order two of a point x D Œx1; x2; x3� 2 R3

is Œx21; x1x2; x1x3; x
2
2; x2x3; x

2
3� 2 R6. For five points in general position, the matrix

V2 D Œ�2.x1/; �2.x2/; : : : �2.x5/� is of rank 5. Let c> be the only vector in the
left null space of V2 such that c>V2 D 0. Then p.x/ D c>�2.x/ is in general
an irreducible quadratic polynomial. Thus, the zero set of I2.ZA/ D p.x/ is not a
subspace arrangement but an (irreducible) cone in R3.

Nevertheless, the following statement allows us to retrieve a subspace embedding
from any polynomials in the vanishing ideal I.ZA/.

Theorem C.21 (Hyperplane Embedding via Differentiation). For every polyno-
mial p in the vanishing ideal I.ZA/ of a subspace arrangement ZA D S1[S2[� � �[Sn

and n points fxi 2 SigniD1 in general position, the union of the hyperplanes[n
iD1Hi D

fx W rp.xi/
>x D 0g is a hyperplane embedding of the subspace arrangement.

Proof. The proof is based on the simple fact that the derivative (gradient) rf .x/
of any smooth function f .x/ is orthogonal to (the tangent space of) its level set
f .x/ D c. ut

C Basic Facts from Algebraic Geometry 523

In the above statement, if we replace p with a collection of polynomials in the
vanishing ideal, their derivatives give a subspace embedding in a similar fashion
as the hyperplane embedding. When the collection contains all the generators of
the vanishing ideal, the subspace embedding becomes tight: the resulting subspace
arrangement coincides with the original one. This property has been used in the
development of algebraic subspace clustering algorithms in Chapter 5.

Another concept that is closely related to subspace embedding is a pl-generated
ideal.

Definition C.22 (pl-Generated Ideals). An ideal is said to be pl-generated if it is
generated by products of linear forms.

If the ideal of a subspace arrangement ZA is pl-generated, then the zero set of
every generator gives a hyperplane embedding of ZA.

Example C.23 (Hyperplane Arrangements). If ZA is a hyperplane arrangement,
then I.ZA/ is always pl-generated, since it is generated by a single polynomial of
the form13

p.x/ D .b>1 x/.b>2 x/ � � � .b>n x/; (C.31)

where bi 2 RD are the normal vectors to the hyperplanes.

Obviously, the vanishing ideal I.S/ of a single subspace S is always pl-generated.
The following example shows that this is also true for an arrangement of two
subspaces.

Example C.24 (Two Subspaces). Let us show that for an arrangement ZA of two
subspaces, I.ZA/ is always pl-generated. Let ZA D S1 [S2 and define U� :D S�1 \
S�2 and V� :D S�1 n U�;W� :D S�2 n U�. Let .u1; u2; : : : ; uk/ be a basis for U�,
.v1; v2; : : : ; vl/ a basis for V�, and .w1;w2; : : : ;wm/ a basis for W�. Then I.ZA/ D
I.S1/ \ I.S2/ is generated by .u1; : : : ; uk; v1w1; v1w2; : : : ; vlwm/.

Now consider an arrangement of n subspaces ZA D S1 [S2 [� � � [Sn. By its
definition, the product ideal J.ZA/ is always pl-generated. Now, is the vanishing
ideal I.ZA/ always pl-generated? Unfortunately, this is not true. Below are some
counterexamples.

Example C.25 (Lines in R3 (Björner et al. 2005)). For a central arrangement ZA
of r lines in general position in R3, I.ZA/ is not pl-generated when r D 5 or r > 6.
Example C.20 gives a proof for the case with r D 5.

Example C.26 (Planes in R4 (Björner et al. 2005)). For a central arrangement ZA
of r planes in general position in R4, I.ZA/ is not pl-generated for all r > 2.

13In algebra, an ideal that is generated by a single generator is called a principal ideal.

524 C Basic Facts from Algebraic Geometry

However, can each homogeneous component Ii.ZA/ be “pl-generated” when i is
large enough? For instance, can it be that In D Jn D S�1 � S�2 � � � S�n ? This is in general
not true for an arbitrary arrangement. Below is a counterexample.

Example C.27 (Three Subspaces in R5; due to R. Fossum). Consider RŒx� D
RŒx1; : : : ; x5� and an arrangement ZA of three three-dimensional subspaces in R5

whose vanishing ideals are given by, respectively,

I.S1/ D .x1; x2/; I.S2/ D .x3; x4/; I.S3/ D ..x1 C x3/; .x2 C x4//:

Denote their intersection by I D I.S1/\ I.S2/\ I.S3/. The intersection contains the
element

x1x4 � x2x3 D .x1 C x3/x4 � .x2 C x4/x3 D x1.x2 C x4/ � x2.x1 C x3/:

Then every element .x1x4 � x2x3/l.x1; : : : ; x5/ with l a linear form is in I3.ZA/, the
homogeneous component of elements of degree three. In particular, .x1x4 � x2x3/x5
is in I3.ZA/. However, one can check that this element cannot be written in the form

X
i

.aix1 C bix2/.cix2 C dix4/.ei.x1 C x3/C fi.x2 C x4//

for any ai; bi; ci; di; ei; fi 2 R. Thus, I3.ZA/ is not spanned by S�1 � S�2 � S�3 .

However, notice that the subspaces in the above example are not in “general
position”: their intersections are not of the minimum possible dimension. Could
In D Jn D S�1 � S�2 � � � S�n be instead true for n subspaces if they are in general
position? The answer is yes. In fact, we can say more than that. As we will see in
the next section, from the Hilbert functions of I and J, we actually have

Ii D Ji; 8i 	 n

if S1; S2; : : : ; Sn are “transversal” (i.e., all intersections are of minimum possible
dimension). In other words, Ji could differ from Ii only for i < n.

C.4 Hilbert Functions of Subspace Arrangements

In this section, we study the Hilbert functions of subspace arrangements defined
in Section C.1.6. We first discuss a few reasons why in the context of generalized
principal component analysis, it is very important to know the values of the Hilbert
function for the vanishing ideal I or the product ideal J of a subspace arrangement.
We then examine the values of the Hilbert function for a few special examples.
Finally, we give a complete characterization of the Hilbert function, the Hilbert
polynomial, and the Hilbert series of a general subspace arrangement. In particular,

C Basic Facts from Algebraic Geometry 525

we give a closed-form formula for the Hilbert polynomial of the vanishing ideal and
the product ideal of the subspace arrangement.

C.4.1 Hilbert Function and Algebraic Subspace Clustering

In general, for a subspace arrangement ZA D S1 [S2 [� � � [Sn in general position,
the values of the Hilbert function hI.i/ of its vanishing ideal I.ZA/ are invariant
under a continuous change of the positions of the subspaces. They depend only on
the dimensions of the subspaces d1; d2; : : : ; dn or their codimensions ci D D�di; i D
1; 2; : : : ; n. Thus, the Hilbert function gives a rich set of invariants of subspace
arrangements. In the context of subspace clustering, such invariants can help to
determine the type of the subspace arrangement, such as the number of subspaces
and their individual dimensions from a given set of (possibly noisy) sample points.

To see this, consider a sufficiently large number of sample points in general
position X D fx1; x2; : : : ; xNg � ZA that are drawn from the subspaces, and let
the embedded data matrix (via the Veronese map of degree i) be

Vi
:D Œ�i.x1/; �i.x2/; : : : ; �i.xN/�

>: (C.32)

According to the algebraic sampling theorem of Appendix C.1.4, the dimension of
Null.Vi/ is exactly the number of linearly independent polynomials of degree i that
vanish on ZA. That is, the following relation holds:

dim.Null.Vi// D hI.i/; (C.33)

or equivalently,

rank.Vi/ D dim.Ri/� hI.i/: (C.34)

Thus, if we know the Hilbert function for different subspace arrangements in
advance, we can determine from the rank of the data matrix from which subspace
arrangement the sample data points are drawn. The following example illustrates
the basic idea.

Example C.28 (Three Subspaces in R3). Suppose that we know only that our
data are drawn from an arrangement of three subspaces in R3. There are in total
four different types of such arrangements, shown in Figure C.1. The values of their
corresponding Hilbert functions are listed in Table C.1. Given a sufficiently large
number N of sample points from one of the above subspace arrangements, the rank
of the embedded data matrix V3 2 RN�10 can be, instead of any value between 1
and 10, only 10 � hI.3/ D 9; 8; 6; 3, which correspond to the only four possible
configurations of three subspaces in R3: three planes, two planes and one line, one
plane and two lines, or three lines, respectively, as shown in Figure C.1.

526 C Basic Facts from Algebraic Geometry

(1, 1, 1) (1, 1, 2) (1, 2, 2) (2, 2, 2)(a) (b) (c) (d)

Fig. C.1 Four configurations of three subspaces in R
3: The numbers are the codimensions

.c1; c2; c3/ of the subspaces.

Table C.1 Values of the Hilbert functions of the
four arrangements (assuming the subspaces are in
general position).

c1 c2 c3 hI.ZA /.1/ hI.ZA/.2/ hI.ZA /.3/

1 1 1 0 0 1

1 1 2 0 0 2

1 2 2 0 1 4

2 2 2 0 3 7

This suggests that given the dimensions of individual subspaces, we may know
the rank of the embedded data matrix. Conversely, given the rank of the embedded
data matrix, we can determine to a large extent the possible dimensions of the
individual subspaces. Therefore, knowing the values of the Hilbert function will
help us to at least rule out in advance impossible rank values for the embedded data
matrix or the impossible subspace dimensions. This is particularly useful when the
data are corrupted by noise, so that there is ambiguity in determining the rank of the
embedded data matrix or the dimensions of the subspaces.

The next example illustrates how the values of the Hilbert function can help
determine the correct number of subspaces.

Example C.29 (Overfit Hyperplane Arrangements in R5). Consider a data set
sampled from a number of hyperplanes in general position in R5. Suppose we know
only that the number of hyperplanes is at most 4, and we embed the data via the
degree-4 Veronese map anyway. Table C.2 gives the possible values of the Hilbert
function for an arrangement of 4, 3, 2, 1 hyperplanes in R5, respectively. Here we
use the convention that the empty set has codimension 5 in R5.

The first row shows that if the number of hyperplanes is exactly equal to the
degree of the Veronese map, then hI.4/ D 1, i.e., the data matrix V4 has a rank-
1 null space. The following rows show the values of hI.4/ when the number of
hyperplanes is n D 3; 2; 1, respectively. If the rank of the matrix V4 matches any
of these values, we know exactly the number of hyperplanes in the arrangement.
Figure C.2 shows a superimposed plot of the singular values of V4 for sample points
drawn from n D 1; 2; 3; 4 hyperplanes in R5, respectively.

C Basic Facts from Algebraic Geometry 527

Table C.2 Values of the Hilbert function
of (codimension-1) hyperplane arrange-
ments in R

5.

c1 c2 c3 c4 hI.ZA /.4/ rank.V4/

1 1 1 1 1 69

1 1 1 5 5 65

1 1 5 5 15 55

1 5 5 5 35 35

706050403020100
10−100

10−80

10−60

10−40

10−20

100

1020

1040

Fig. C.2 A superimposed semilog plot of the singular values of the embedded data matrix V4 for
n D 1; 2; 3; 4 hyperplanes in R

5, respectively. The rank drops at 35; 55; 65; 69, which confirms the
theoretical values of the Hilbert function.

Thus, in general, knowing the values of hI.i/ even for i > n may significantly
help determine the correct number of subspaces in case the degree i of the Veronese
map used for constructing the data matrix Vi is strictly higher than the number n of
nontrivial subspaces in the arrangement.

The above examples show merely a few cases in which the values of the
Hilbert function may facilitate solving the subspace clustering and modeling
problem in Chapter 5, in particular the model-selection issue. It now remains as
a question how to compute the values of the Hilbert function for arbitrary subspace
arrangements.

Mathematically, we are interested in finding closed-form formulas, if they exist
at all, for the Hilbert function (or the Hilbert polynomial, or the Hilbert series) of
the subspace arrangements. As we will soon show, if the subspace arrangements
are transversal (i.e., every intersection of subsets of the subspaces has the smallest
possible dimension), we are able to show that the Hilbert function (of both I and J)
agrees with the Hilbert polynomial (of both I and J) with i 	 n; and a closed-form
formula for the Hilbert polynomial is known (and will be given later). However, no

528 C Basic Facts from Algebraic Geometry

general formula is known for the Hilbert function (or series) of I, especially for the
values hI.i/ with i < n. For those values, one can still compute them in advance
numerically based on the identity

hI.i/ D dim.Null.Vi// (C.35)

from a sufficient set of samples on the subspace arrangements. The values for each
type of arrangement needs to be computed only once, and the results can be stored
in a table such as Table C.1 for each ambient space dimension D and number
of subspaces n. We may later query these tables to retrieve information about
the subspace arrangements and exploit relations among these values for different
practical purposes.

However, computing the values of hI numerically can be very expensive,
especially when the dimension of the space (or the subspaces) is high. In order
to densely sample the high-dimensional subspaces, the number of samples grows
exponentially with the number of subspaces and their dimensions. Indeed, the
MATLAB package that we are using runs out of the memory limit of 2 GB for
computing the table for the case D D 12 and n D 6.

Fortunately, for most applications in image processing, computer vision, or
systems identification, it is typically sufficient to know the values of hI.i/ up to
n D 10 and D D 12. For instance, for most images, the first D D 12 principal
components already keep up to 99% of the total energy of the image, which is
more than sufficient for any subsequent representation or compression purposes.
Furthermore, if one chooses to use 2 � 2 blocks to represent a color image, then
each block becomes one data point of dimension 2 � 2 � 3 D 12. The number of
segments sought for an image is typically less than ten. In system identification, the
dimensions of the subspaces correspond to the orders of the systems, and they are
typically less than 10.

C.4.2 Special Cases of the Hilbert Function

Before we study the Hilbert function for general subspace arrangements in the next
section, we here give a few special cases for which we have computed certain values
of the Hilbert function.

Example C.30 (Hyperplane Arrangements). Consider ZA D S1 [S2 [: : : [
Sn � R

D with each Si a hyperplane. The subspaces Si are of codimension 1, i.e.,
c1 D c2 D � � � D cn D 1. Then we have hI.n/ D 1, which is consistent with the fact
that there is exactly one (factorable) polynomial of degree n that fits n hyperplanes.
Furthermore, hI.i/ D 0 for all i < n, and

hI.nC i/ D � DCi�1
i

�
; 8i 	 1:

C Basic Facts from Algebraic Geometry 529

We can generalize the case of hyperplanes to the following example.

Example C.31 (Subspaces Whose Duals Have No Intersection). Consider a
subspace arrangement ZA D S1 [S2 [: : : [Sn � RD with S�i \ S�j D 0 for
all i 6D j. In other words, if the codimensions of S1; S2; : : : ; Sn are c1; c2; : : : ; cn,
respectively, we have c1 C c2 C � � � C cn
 D. Notice that hyperplane arrangements
are a special case here. Generalizing the result in Example C.15, one can show that
the Hilbert series of I.ZA/ (and J.ZA/) is

H.I.ZA/; t/ D H.J.ZA/; t/ D f .t/
:D
Qn

iD1
�
1 � .1 � t/ci

�

.1 � t/D
: (C.36)

The values of the Hilbert function hI.i/ can be computed from the coefficients of the
function f .t/ associated with ti.

However, if the dual subspaces S�i have nontrivial intersections, the computation
of Hilbert series and function becomes much more complicated. Below we give
some special examples and leave the general study to the next section.

Example C.32 (Hilbert Function of Two Subspaces). We here derive a closed-
form formula of hI.2/ for an arrangement of n D 2 subspaces ZA D S1 [S2 in
general position (see also Example C.24). Suppose their codimensions are c1 and
c2, respectively. In R1 � RD, the intersection of their dual subspaces S�1 and S�2 has
the dimension

c
:D maxfc1 C c2 �D; 0g: (C.37)

Then we have

hI.2/ D c � .cC 1/=2C c � .c1 � c/C c � .c2 � c/C .c1 � c/ � .c2 � c/

D c1 � c2 � c � .c � 1/=2: (C.38)

Example C.33 (Three Subspaces in R5). Consider an arrangement of three sub-
spaces ZA D S1 [S2 [S3 � R5 in general position. After a change of
coordinates, we may assume S�1 D spanfx1; x2; x3g; S�2 D spanfx1; x4; x5g, and
S�3 D spanfx2; x3; x4; x5g. The value of hI.3/ in this case is equal to dim.S�1 � S�2 � S�3 /.
Firstly, we compute S�1 � S�2 and obtain a basis for it:

S�1 � S�2 D spanfx21; x1x4; x1x5; x2x1; x2x4; x2x5; x3x1; x3x4; x3x5g:

From this, one can compute the basis for S�1 � S�2 � S�3 :

S�1 � S�2 � S�3 D spanfx21x2; x1x2x4; x1x2x5; x1x22; x22x4; x22x5; x1x2x3; x2x3x4;
x2x3x5; x

2
1x3; x1x3x4; x1x3x5; x1x

2
3; x

2
3x4; x

2
3x5; x

2
1x4; x1x

2
4;

x1x4x5; x2x
2
4; x2x4x5; x3x

2
4; x3x4x5; x

2
1x5; x1x

2
5; x2x

2
5; x3x

2
5g:

Thus, we have hI.3/ D 26.

530 C Basic Facts from Algebraic Geometry

Table C.3 Values of the Hilbert
function hI.5/ for arrangements
of five subspaces in R

3.

c1 c2 c3 c4 c5 hI.5/

1 1 1 1 1 1

1 1 1 1 2 2

1 1 1 2 2 4

1 1 2 2 2 7

1 2 2 2 2 11

2 2 2 2 2 16

Example C.34 (Five Subspaces in R3). Consider an arrangement of five sub-
spaces S1; S2; : : : ; S5 in R3 of codimensions c1; c2; : : : ; c5, respectively. We want
to compute the value of hI.5/, i.e., the dimension of homogeneous polynomials of
degree five that vanish on the five subspaces ZA D S1 [S2 [� � � [S5. For all the
possible values of 1
 c1
 c2
 � � �
 c5 < 3, we have computed the values
of D3

5 and listed them in Table C.3. Notice that the values of hI.3/ in the earlier
Table C.1 form a subset of those of hI.5/ in Table C.3. In fact, many relationships
like this one exist among the values of the Hilbert function. If properly harnessed,
they can significantly reduce the amount of work in computing the values of the
Hilbert function.

Example C.35 (Five Subspaces in R4). Similar to the above example, we have
computed the values of hI.5/ for arrangements of five linear subspaces in R4. The
results are given in Table C.4. In fact, using the numerical method described earlier,
we have computed the values of hI.5/ up to five subspaces in R12.

C.4.3 Formulas for the Hilbert Function

In this section, we give a general formula for the Hilbert polynomial of the subspace
arrangement ZA D S1[S2[� � � [Sn. However, due to limitations of space, we will
not be able to give a detailed proof for all the results given here. Interested readers
may refer to (Derksen 2007).

Let U be any subset of the set of indices n
:D f1; 2; : : : ; ng. We define the

following ideals:

IU
:D
\
u2U

I.Su/; JU
:D
Y
u2U

I.Su/: (C.39)

If U is empty, we use the convention I; D J; D R. We further define VU DT
u2U Su, dU D dim.VU/, and cU D D � dU.
Let us define polynomials pU.t/ recursively as follows. First we define

C Basic Facts from Algebraic Geometry 531

Table C.4 Values of the Hilbert
function hI.5/ for arrangements
of five subspaces in R

4.

c1 c2 c3 c4 c5 hI.5/

1 1 1 1 1 1

1 1 1 1 2 2

1 1 1 1 3 3

1 1 1 2 2 4

1 1 1 2 3 6

1 1 1 3 3 8

1 1 2 2 2 8

1 1 2 2 3 11

1 1 2 3 3 14

1 1 3 3 3 17

1 2 2 2 2 15

1 2 2 2 3 19

1 2 2 3 3 23

1 2 3 3 3 27

1 3 3 3 3 31

2 2 2 2 2 26

2 2 2 2 3 31

2 2 2 3 3 36

2 2 3 3 3 41

2 3 3 3 3 46

3 3 3 3 3 51

p;.t/ D 1:

For U 6D ; and if pW.t/ is already defined for all proper subsets W of U, then pU.t/
is uniquely determined by the following equation:

X
W�U

.�t/jWjpW.t/ � 0 mod .1 � t/cU ; deg.pU.t// < cU : (C.40)

Here jWj is the number of indices in the set W.
With the above definitions, the Hilbert series of the product ideal J is given by

H.J; t/ D pn.t/tn

.1 � t/D
: (C.41)

That is, the Hilbert series of the product ideal J depends only on the numbers
cU;U
 n. Thus, the values of the Hilbert function hJ.i/ are all combinatorial
invariants—invariants that depend only on the values fcUg but not the particular
position of the subspaces.

532 C Basic Facts from Algebraic Geometry

Definition C.36 (Transversal Subspaces). The subspaces S1; S2; : : : ; Sn are called
transversal if cU D min

�
D;
P

u2U cu
�

for all U
 n. In other words, the intersection
of any subset of the subspaces has the smallest possible dimension.

Notice that the notion of “transversality” defined here is less strong than the
typical notion of “general position.” For instance, according to the above definition,
three coplanar lines (through the origin) in R3 are transversal. However, they are not
“in general position.”

Theorem C.37 (Hilbert Function of a Transversal Subspace Arrangement). Sup-
pose that S1; S2; : : : ; Sn are transversal. Then H.I; t/ � f .t/ and H.J; t/ � f .t/ are

polynomials in t, where f .t/ D
Qn

iD1

�
1�.1�t/ci

�
.1�t/D

:

Thus, the difference between H.I; t/ and H.J; t/ is also a polynomial. We have
the following corollary to the above theorem.

Corollary C.38. If S1; S2; : : : ; Sn are transversal, then hI.i/ D HI.i/ D hJ.i/ D
HJ.i/ for all i 	 n. That is, the Hilbert polynomials of both the vanishing ideal I
and the product ideal J are the same, and the values of their Hilbert functions agree
with the polynomial with i 	 n.

One of the consequences of this corollary is that for transversal subspace
arrangements, we must have Ii D Ji for all i 	 n. This is a result that we have
mentioned earlier, in Section C.3.

Example C.39 (Hilbert Series of Three Lines in R
3). For example, suppose that

ZA is the union of three distinct lines (through the origin) in R
3. Regardless of

whether the three lines are coplanar, they are transversal. We have

H.J.ZA/; t/ D 7t3 � 9t4 C 3t5

.1 � t/3
D 7t3 C 12t4 C 18t5 C � � � :

However, one has

H.I.ZA/; t/ D tC t3 � t4

.1 � t/3
D tC 3t2 C 7t3 C 12t4 C 18t5 C � � �

if the lines are coplanar, and

H.I.ZA/; t/ D 3t2 � 2t3

.1 � t/3
D 3t2 C 7t3 C 12t4 C 18t5 C � � �

if the three lines are not coplanar. Notice that the coefficients of these Hilbert series
become the same starting from the term t3.

Then, using the recursive formula (C.41) of the Hilbert series H.J; t/, we can
derive a closed-form formula for the values of the Hilbert function hI.i/ with i 	 n:

C Basic Facts from Algebraic Geometry 533

Corollary C.40 (A Closed-Form Formula for Hilbert Function). If S1; S2; : : : ; Sn

are transversal, then

hI.i/ D hJ.i/ D
X

U

.�1/jUj
�

DC i� 1 � cU

D � 1 � cU

; i 	 n; (C.42)

where cU DPm2U cm and the sum is over all index subsets U of n for which cU < D.

Example C.41 (Three Subspaces in R4). Suppose that ZA D S1 [S2 [S3
is a transversal arrangement in R4. Let d1; d2; d3 (respectively c1; c2; c3) be the
dimensions (respectively codimensions) of S1; S2; S3. We make a table of hI.n/ for
n D 3; 4; 5:

c1; c2; c3 d1; d2; d3 hI.3/ hI.4/ hI.5/

1; 1; 1 3; 3; 3 1 4 10

1; 1; 2 3; 3; 2 2 7 16

1; 1; 3 3; 3; 1 3 9 19

1; 2; 2 3; 2; 2 4 12 25

1; 2; 3 3; 2; 1 6 15 29

1; 3; 3 3; 1; 1 8 18 33

2; 2; 2 2; 2; 2 8 20 38

2; 2; 3 2; 2; 1 11 24 43

2; 3; 3 2; 1; 1 14 28 48

3; 3; 3 1; 1; 1 17 32 53

Note that the codimensions c1; c2; c3 are almost determined by hI.3/. They are
uniquely determined by hI.3/ and hI.4/.

The corollary below is a general result that explains why the codimensions of the
subspaces c1; c2; c3 can be uniquely determined by hI.3/; hI.4/; hI.5/ in the above
example. The corollary also reveals a strong theoretical connection between the
Hilbert function and the algebraic subspace clustering problem.

Corollary C.42 (Subspace Dimensions from the Hilbert Function). Consider
a transversal arrangement of n subspaces. The codimensions c1; c2; : : : ; cn

are uniquely determined by the values of the Hilbert function hI.i/ for i D
n; nC 1; : : : ; nC D � 1.

As we have alluded to earlier, in the context of algebraic subspace clustering,
these values of the Hilbert function are closely related to the ranks of the embedded
data matrix Vi for i D n; nC1; : : : ; nCD�1. Thus, knowing these ranks, we should
in principle be able to uniquely determine the (co)dimensions of all the individual
subspaces. These results suggest that knowing the values of the Hilbert function,
one can potentially develop better algorithms for determining the correct subspace
arrangement from a given set of data.

534 C Basic Facts from Algebraic Geometry

C.5 Bibliographic Notes

Subspace arrangements constitute a very special but important class of algebraic sets
that have been studied in mathematics for centuries (Björner et al. 2005; Björner
1994; Orlik 1989). The importance as well as the difficulty of studying subspace
arrangements can hardly be exaggerated. Different aspects of their properties have
been and are still being investigated and exploited in many mathematical fields,
including algebraic geometry and topology, combinatorics and complexity theory,
and graph and lattice theory. See (Björner 1994) for a general review. Although the
results about subspace arrangements are extremely rich and deep, only a few special
classes of subspace arrangements have been fully characterized. Nevertheless,
thanks to the work of (Derksen 2007), the Hilbert function, Hilbert polynomial, and
Hilbert series of the vanishing ideal (and the product ideal) of transversal subspace
arrangements have recently become well understood. This appendix gives a brief
summary of these theoretical developments. These results have provided a sound
theoretical foundation for many of the methods developed in this book for clustering
and modeling multiple subspaces.

References

Agarwal, P., & Mustafa, N. (2004). k-means projective clustering. In ACM Symposium on
Principles of Database Systems.

Agarwal, S., Lim, J., Zelnik-Manor, L., Perona, P., Kriegman, D., & Belongie, S. (2005). Beyond
pairwise clustering. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2,
pp. 838–845).

Aggarwal, G., Roy-Chowdhury, A., & Chellappa, R. (2004). A system identification approach
for video-based face recognition. In Proceedings of International Conference on Pattern
Recognition (pp. 23–26).

Akaike, H. (1977). A new look at the statistical model selection. IEEE Transactions on Automatic
Control, 16(6), 716–723.

Aldroubi, A., Cabrelli, C., & Molter, U. (2008). Optimal non-linear models for sparsity and
sampling. Journal of Fourier Analysis and Applications, 14(5–6), 793–812.

Aldroubi, A., & Zaringhalam, K. (2009). Nonlinear least squares in R
N . Acta Applicandae

Mathematicae, 107(1–3), 325–337.
Alessandri, A., & Coletta, P. (2001). Design of Luenberger observers for a class of hybrid linear

systems. In Proceedings of Hybrid Systems: Computation and Control (pp. 7–18). New York:
Springer.

Ali, S., Basharat, A., & Shah, M. (2007). Chaotic invariants for human action recognition. In
Proceedings of International Conference on Computer Vision.

Amaldi, E., & Kann, V. (1998). On the approximability of minimizing nonzero variables or
unsatisfied relations in linear systems. Theoretical Computer Science, 209, 237–260.

Anderson, B., & Johnson, R. (1982). Exponential convergence of adaptive identification and
control algorithms. Automatica, 18(1), 1–13.

Arbelaez, P. (2006). Boundary extraction in natural images using ultrametric contour maps. In
Workshop on Perceptual Organization in Computer Vision.

Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2009). From contours to regions: An empirical
evaluation. In IEEE Conference on Computer Vision and Pattern Recognition.

Arora, S., Bhaskara, A., Ge, R., & Ma, T. (2014). Provable bounds for learning some deep
representations. In Proceedings of International Conference on Machine Learning.

Avidan, S., & Shashua, A. (2000). Trajectory triangulation: 3D reconstruction of moving points
from a monocular image sequence. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(4), 348–357.

Ayazoglu, M., Li, B., Dicle, C., Sznaier, M., & Camps, O. (2011). Dynamic subspace-based
coordinated multicamera tracking. In IEEE International Conference on Computer Vision
(pp. 2462–2469)

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9

535

536 References

Babaali, M., & Egerstedt, M. (2004). Observability of switched linear systems. In Proceedings of
Hybrid Systems: Computation and Control. New York: Springer.

Bach, F. (2013). Convex relaxations of structured matrix factorizations. arXiv:1309.3117v1.
Bach, F., Mairal, J., & Ponce, J. (2008). Convex sparse matrix factorizations. http://arxiv.org/abs/

0812.1869
Balluchi, A., Benvenuti, L., Benedetto, M. D., & Sangiovanni-Vincentelli, A. (2002). Design of

observers for hybrid systems. In Proceedings of Hybrid Systems: Computation and Control
(Vol. 2289, pp. 76–89). New York: Springer.

Baraniuk, R. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.
Barbic, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins, J. K., & Pollar, N. S. (2004).

Segmenting motion capture data into distinct behaviors. In Graphics Interface.
Barnett, V., & Lewis, T. (1983). Outliers in statistical data (2nd ed.). New York: Wiley.
Basri, R., & Jacobs, D. (2003). Lambertian reflection and linear subspaces. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 25(2), 218–233.
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.
Béjar, B., Zappella, L., & Vidal, R. (2012). Surgical gesture classification from video data. In

Medical Image Computing and Computer Assisted Intervention (pp. 34–41).
Belhumeur, P., Hespanda, J., & Kriegeman, D. (1997). Eigenfaces vs. Fisherfaces: Recognition

using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7), 711–720.

Belhumeur, P., & Kriegman, D. (1998). What is the set of images of an object under all possible
illumination conditions? International Journal of Computer Vision, 28(3), 1–16.

Belkin, M., & Niyogi, P. (2002). Laplacian eigenmaps and spectral techniques for embedding and
clustering. In Proceedings of Neural Information Processing Systems (NIPS) (pp. 585–591).

Beltrami, E. (1873). Sulle funzioni bilineari. Giornale di Mathematiche di Battaglini, 11, 98–106.
Bemporad, A., Ferrari, G., & Morari, M. (2000). Observability and controllability of piecewise

affine and hybrid systems. IEEE Transactions on Automatic Control, 45(10), 1864–1876.
Bemporad, A., Garulli, A., Paoletti, S., & Vicino, A. (2003). A greedy approach to identification

of piecewise affine models. In Hybrid systems: Computation and control. Lecture notes in
computer science (pp. 97–112). New York: Springer.

Bemporad, A., Roll, J., & Ljung, L. (2001). Identification of hybrid systems via mixed-integer
programming. In Proceedings of IEEE Conference on Decision & Control (pp. 786–792).

Benson, H. (1994). Concave minimization: Theory, applications and algorithms. In R. Horst &
P. M. Pardalos (Eds.), Handbook of global optimization (vol. 2, pp. 43–148), Springer Verlag.

Bertsekas, D. P. (1999). Nonlinear programming (2nd ed.). Optimization and computation (Vol. 2)
Belmont: Athena Scientific.

Bickel, P. J. (1976). Another look at robustness: A review of reviews and some new developments.
Scandinavian Journal of Statistics, 3(28), 145–168.

Bickel, P. J., & Doksum, K. A. (2000). Mathematical statistics: Basic ideas and selected topics
(2nd ed.). Upper Saddle River: Prentice Hall.

Billio, M., Monfort, A., & Robert, C. (1999). Bayesian estimation of switching ARMA models.
Journal of Econometrics, 93(2), 229–255.

Bissacco, A., Chiuso, A., Ma, Y., & Soatto, S. (2001). Recognition of human gaits. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 52–58).

Björner, A. (1994). Subspace arrangements. In First European Congress of Mathematics, Vol. I
(Paris, 1992). Progress in mathematics (Vol. 119, pp. 321–370). Basel: Birkhäuser.

Björner, A., Peeva, I., & Sidman, J. (2005). Subspace arrangements defined by products of linear
forms. Journal of the London Mathematical Society, 71(2), 273–288.

Blake, A., North, B., & Isard, M. (1999). Learning multi-class dynamics. Advances in Neural
Information Processing Systems, 11, 389–395. Cambridge: MIT Press.

Bochnak, J., Coste, M., & Roy, M. F. (1998). Real Algebraic Geometry. New York: Springer.
Bottou, L., & Bengio, J. (1995). Convergence properties of the k-means algorithms. In Neural

Information Processing and Systems.

http://arxiv.org/abs/0812.1869
http://arxiv.org/abs/0812.1869

References 537

Boult, T., & Brown, L. (1991). Factorization-based segmentation of motions. In IEEE Workshop
on Motion Understanding (pp. 179–186).

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and Trends
in Machine Learning, 3(1), 1–122.

Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University
Press.

Bradley, P. S., & Mangasarian, O. L. (2000). k-plane clustering. Journal of Global Optimization,
16(1), 23–32.

Brandt, S. (2002). Closed-form solutions for affine reconstruction under missing data. In In
Proceedings Statistical Methods for Video Processing (ECCV’02 Workshop).

Broomhead, D. S., & Kirby, M. (2000). A new approach to dimensionality reduction theory and
algorithms. SIAM Journal of Applied Mathematics, 60(6), 2114–2142.

Bruckstein, A., Donoho, D., & Elad, M. (2009). From sparse solutions of systems of equations to
sparse modeling of signals and images. SIAM Review, 51(1), 34–81.

Buchanan, A., & Fitzgibbon, A. (2005). Damped Newton algorithms for matrix factorization with
missing data. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 316–322).

Burer, S., & Monteiro, R. D. C. (2005). Local minima and convergence in low-rank semidefinite
programming. Mathematical Programming, Series A, 103(3), 427–444.

Burges, C. (2005). Geometric methods for feature extraction and dimensional reduction - a guided
tour. In The data mining and knowledge discovery handbook (pp. 59–92). Boston: Kluwer
Academic.

Burges, C. J. C. (2010). Dimension reduction: A guided tour. Foundations and Trends in Machine
Learning, 2(4), 275–365.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical
information-theoretic approach. New York: Springer.

Burt, P. J., & Adelson, E. H. (1983). The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications, 31(4), 532–540.

Cai, J.-F., Candés, E. J., & Shen, Z. (2008). A singular value thresholding algorithm for matrix
completion. SIAM Journal of Optimization, 20(4), 1956–1982.

Campbell, N. (1978). The influence function as an aid in outlier detection in discriminant analysis.
Applied Statistics, 27(3), 251–258.

Campbell, R. J. (1980). Robust procedures in multivariate analysis I: Robust covariance analysis.
Applied Statistics, 29, 231–237.

Candès, E. (2006). Compressive sampling. In Proceedings of the International Congress of
Mathematics.

Candès, E. (2008). The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique, 346(9–10), 589–592.

Candès, E., & Donoho, D. (2002). New tight frames of curvelets and optimal representations of
objects with smooth singularities. Technical Report. Stanford University.

Candès, E., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of
the ACM, 58(3).

Candès, E., & Plan, Y. (2010). Matrix completion with noise. Proceedings of the IEEE, 98(6),
925–936.

Candès, E., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of
Computational Mathematics, 9, 717–772.

Candès, E., & Recht, B. (2011). Simple bounds for low-complexity model reconstruction.
Mathematical Programming Series A, 141(1–2), 577–589.

Candès, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information
Theory, 51(12), 4203–4215.

Candès, E., & Tao, T. (2010). The power of convex relaxation: Near-optimal matrix completion.
IEEE Transactions on Information Theory, 56(5), 2053–2080.

Candès, E., & Wakin, M. (2008). An introduction to compressive sampling. IEEE Signal
Processing Magazine, 25(2), 21–30.

538 References

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research,
1, 245–276.

Cetingül, H. E., Wright, M., Thompson, P., & Vidal, R. (2014). Segmentation of high angular
resolution diffusion MRI using sparse riemannian manifold clustering. IEEE Transactions on
Medical Imaging, 33(2), 301–317.

Chan, A., & Vasconcelos, N. (2005a). Classification and retrieval of traffic video using auto-
regressive stochastic processes. In Proceedings of 2005 IEEE Intelligent Vehicles Symposium
(pp. 771–776).

Chan, A., & Vasconcelos, N. (2005b). Mixtures of dynamic textures. In IEEE International
Conference on Computer Vision (Vol. 1, pp. 641–647).

Chandrasekaran, V., Sanghavi, S., Parrilo, P., & Willsky, A. (2009). Sparse and low-rank matrix
decompositions. In IFAC Symposium on System Identification.

Chaudhry, R., Ravichandran, A., Hager, G., & Vidal, R. (2009). Histograms of oriented optical
flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human
actions. In IEEE Conference on Computer Vision and Pattern Recognition.

Chen, G., Atev, S., & Lerman, G. (2009). Kernel spectral curvature clustering (KSCC). In
Workshop on Dynamical Vision.

Chen, G., & Lerman, G. (2009a). Foundations of a multi-way spectral clustering framework for
hybrid linear modeling. Foundations of Computational Mathematics, 9(5), 517–558.

Chen, G., & Lerman, G. (2009b). Spectral curvature clustering (SCC). International Journal of
Computer Vision, 81(3), 317–330.

Chen, J.-Q., Pappas, T. N., Mojsilovic, A., & Rogowitz, B. E. (2003). Image segmentation by
spatially adaptive color and texture features. In IEEE International Conference on Image
Processing.

Chen, S., Donoho, D., & Saunders, M. (1998). Atomic decomposition by basis pursuit. SIAM
Journal of Scientific Computing, 20(1), 33–61.

Chung, F. (1997). Spectral graph theory. Washington: Conference Board of the Mathematical
Sciences.

Cilibrasi, R., & Vitányi, P. M. (2005). Clustering by compression. IEEE Transactions on
Information Theory, 51(4), 1523–1545.

CMU (2003). MOCAP database. http://mocap.cs.cmu.edu.
Coifman, R., & Wickerhauser, M. (1992). Entropy-based algorithms for best bases selection. IEEE

Transactions on Information Theory, 38(2), 713–718.
Collins, M., Dasgupta, S., & Schapire, R. (2001). A generalization of principal component analysis

to the exponential family. In Neural Information Processing Systems (Vol. 14)
Collins, P., & Schuppen, J. V. (2004). Observability of piecewise-affine hybrid systems. In

Proceedings of Hybrid Systems: Computation and Control. New York: Springer.
Comanicu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24, 603–619.
Costeira, J., & Kanade, T. (1998). A multibody factorization method for independently moving

objects. International Journal of Computer Vision, 29(3), 159–179.
Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Cover, T., & Thomas, J. (1991). Elements of information theory. Wiley.
Cox, T. F., & Cox, M. A. A. (1994). Multidimensional scaling. London: Chapman and Hall.
Critchley, F. (1985). Influence in principal components analysis. Biometrika, 72(3), 627–636.
Davis, C., & Cahan, W. (1970). The rotation of eigenvectors by a pertubation. SIAM Journal on

Numerical Analysis, 7(1), 1–46.
Davison, M. (1983). Multidimensional Scaling. New York: Wiley.
De la Torre, F., & Black, M. J. (2004). A framework for robust subspace learning. International

Journal of Computer Vision, 54(1), 117–142.
Delsarte, P., Macq, B., & Slock, D. (1992). Signal-adapted multiresolution transform for image

coding. IEEE Transactions on Information Theory, 38, 897–903.

http://mocap.cs.cmu.edu

References 539

Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society B, 39(1), 1–38.

Deng, W., Lai, M.-J., Peng, Z., & Yin, W. (2013). Parallel multi-block admm with o(1/k)
convergence. UCLA CAM.

Deng, Y., & Manjunath, B. (2001). Unsupervised segmentation of color-texture regions in images
and video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(8), 800–810.

Derksen, H. (2007). Hilbert series of subspace arrangements. Journal of Pure and Applied Algebra,
209(1), 91–98.

DeVore, R. (1998). Nonlinear approximation. Acta Numerica, 7, 51–150.
DeVore, R., Jawerth, B., & Lucier, B. (1992). Image compression through wavelet transform

coding. IEEE Transactions on Information Theory, 38(2), 719–746.
Ding, C., Zha, H., He, X., Husbands, P., & Simon, H. D. (2004). Link analysis: Hubs and

authoraties on the world wide web. SIAM Review, 46(2), 256–268.
Do, M. N., & Vetterli, M. (2002). Contourlets: A directional multiresolution image representation.

In IEEE International Conference on Image Processing.
Donoho, D. (1995). Cart and best-ortho-basis: A connection. Manuscript.
Donoho, D. (1998). Sparse components analysis and optimal atomic decomposition. Technical

Report, Department of Statistics, Stanford University.
Donoho, D., & Gavish, M. (2014). The optimal hard threshold for singular values is 4=

p
3. IEEE

Transactions on Information Theory, 60(8), 5040–5053.
Donoho, D., & Grimes, C. (2003). Hessian eigenmaps: Locally linear embedding techniques for

high-dimensional data. National Academy of Sciences, 100(10), 5591–5596.
Donoho, D. L. (1999). Wedgelets: Nearly-minimax estimation of edges. Annals of Statistics, 27,

859–897.
Donoho, D. L. (2005). Neighborly polytopes and sparse solution of underdetermined linear

equations. Technical Report. Stanford University.
Donoho, D. L. (2006). For most large underdetermined systems of linear equations the minimal `1-

norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics,
59(6), 797–829.

Donoho, D. L., & Elad, M. (2003). Optimally sparse representation in general (nonorthogonal)
dictionaries via `1 minimization. Proceedings of National Academy of Sciences, 100(5),
2197–2202.

Donoho, D. L., Vetterli, M., DeVore, R., & Daubechies, I. (1998). Data compression and harmonic
analysis. IEEE Transactions on Information Theory, 44(6), 2435–2476.

Donoser, M., Urschler, M., Hirzer, M., & Bischof, H. (2009). Saliency driven total variation
segmentation. In Proceedings of the International Conference on Computer Vision (ICCV).

Doretto, G., Chiuso, A., Wu, Y., & Soatto, S. (2003). Dynamic textures. International Journal of
Computer Vision, 51(2), 91–109.

Doretto, G., & Soatto, S. (2003). Editable dynamic textures. In IEEE Conference on Computer
Vision and Pattern Recognition (Vol. II, pp. 137–142).

Doretto, G., & Soatto, S. (2006). Dynamic shape and appearance models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(12), 2006–2019.

Doucet, A., Logothetis, A., & Krishnamurthy, V. (2000). Stochastic sampling algorithms for state
estimation of jump Markov linear systems. IEEE Transactions on Automatic Control, 45(1),
188–202.

Duda, R., Hart, P., & Stork, D. (2000). Pattern Classification (2nd ed.). Wiley, New York.
Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.

Psychometrika, 1, 211–218.
Effros, M., & Chou, P. (1995). Weighted universal transform coding: Universal image compression

with the Karhunen-Loéve transform. In IEEE International Conference on Image Processing
(Vol. 2, pp. 61–64).

Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In IEEE
International Conference on Computer Vision (pp. 1033–1038). Corfu, Greece.

540 References

Eisenbud, D. (1996). Commutative algebra: With a view towards algebraic geometry. Graduate
texts in mathematics. New York: Springer.

Elad, M., & Bruckstein, A. (2001). On sparse signal representations. In IEEE International
Conference on Image Processing.

Elad, M., & Bruckstein, A. (2002). A generalized uncertainty principle and sparse representation
in pairs of bases. IEEE Transactions on Information Theory, 48(9), 2558–2567.

Elad, M., Figueiredo, M. A. T., & Ma, Y. (2010). On the role of sparse and redundant
representations in image processing. Proceedings of the IEEE, 98(6), 972–982.

Elder, J., & Zucker, S. (1996). Computing contour closures. In Proceedings of the European
Conference on Computer Vision (ECCV).

Elhamifar, E., Sapiro, G., & Vidal, R. (2012a). Finding exemplars from pairwise dissimilarities via
simultaneous sparse recovery. In Neural Information Processing and Systems.

Elhamifar, E., Sapiro, G., & Vidal, R. (2012b). See all by looking at a few: Sparse modeling
for finding representative objects. In IEEE Conference on Computer Vision and Pattern
Recognition.

Elhamifar, E., & Vidal, R. (2009). Sparse subspace clustering. In IEEE Conference on Computer
Vision and Pattern Recognition.

Elhamifar, E., & Vidal, R. (2010). Clustering disjoint subspaces via sparse representation. In IEEE
International Conference on Acoustics, Speech, and Signal Processing.

Elhamifar, E., & Vidal, R. (2011). Sparse manifold clustering and embedding. In Neural
Information Processing and Systems.

Elhamifar, E., & Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory, and applications.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2765–2781.

Ezzine, J., & Haddad, A. H. (1989). Controllability and observability of hybrid systems.
International Journal of Control, 49(6), 2045–2055.

Favaro, P., Vidal, R., & Ravichandran, A. (2011). A closed form solution to robust subspace
estimation and clustering. In IEEE Conference on Computer Vision and Pattern Recognition.

Fazel, M., Hindi, H., & Boyd, S. (2003). Log-det heuristic for matrix rank minimization with
applications to Hankel and Euclidean distance matrices. In Proceedings of the American
Control Conference (pp. 2156–2162).

Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories. In Workshop on
Generative Model Based Vision.

Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation.
International Journal of Computer Vision (IJCV), 59(2), 167–181.

Feng, J., Xu, H., Mannor, S., & Yang, S. (2013). Online PCA for contaminated data. In NIPS.
Feng, X., & Perona, P. (1998). Scene segmentation from 3D motion. In IEEE Conference on

Computer Vision and Pattern Recognition (pp. 225–231).
Ferguson, T. (1961). On the rejection of outliers. In Proceedings of the Fourth Berkeley Symposium

on Mathematical Statistics and Probability.
Ferrari-Trecate, G., Mignone, D., & Morari, M. (2002). Moving horizon estimation for hybrid

systems. IEEE Transactions on Automatic Control, 47(10), 1663–1676.
Ferrari-Trecate, G., Muselli, M., Liberati, D., & Morari, M. (2003). A clustering technique for the

identification of piecewise affine systems. Automatica, 39(2), 205–217.
Feuer, A., Nemirovski, A. (2003). On sparse representation in pairs of bases. IEEE Transactions

on Information Theory, 49(6), 1579–1581.
Figueiredo, M. A. T., & Jain, A. K. (2002). Unsupervised learning of finite mixture models. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 24(3), 381–396.
Fischler, M. A., & Bolles, R. C. (1981). RANSAC random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography. Communications
of the ACM, 26, 381–395.

Fisher, Y. (1995). Fractal Image Compression: Theory and Application. Springer-Verlag Telos.
Fitzgibbon, A., & Zisserman, A. (2000). Multibody structure and motion: 3D reconstruction of

independently moving objects. In European Conference on Computer Vision (pp. 891–906).

References 541

Forgy, E. (1965). Cluster analysis of multivariate data: Efficiency vs. interpretability of classifica-
tions (abstract). Biometrics, 21, 768–769.

Freixenet, J., Munoz, X., Raba, D., Marti, J., & Cuff, X. (2002). Yet another survey on image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV).

Frey, B., Colmenarez, A., & Huang, T. (1998). Mixtures of local linear subspaces for face
recognition. In IEEE Conference on Computer Vision and Pattern Recognition.

Gabriel, K. R. (1978). Least squares approximation of matrices by additive and multiplicative
models. Journal of the Royal Statistical Society B, 40, 186–196.

Ganesh, A., Wright, J., Li, X., Candès, E., & Ma, Y. (2010). Dense error correction for low-rank
matrices via principal component pursuit. In International Symposium on Information Theory.

Geman, S., & McClure, D. (1987). Statistical methods for tomographic image reconstruction. In
Proceedings of the 46th Session of the ISI, Bulletin of the ISI (Vol. 52, pp. 5–21).

Georghiades, A., Belhumeur, P., & Kriegman, D. (2001). From few to many: Illumination cone
models for face recognition under variable lighting and pose. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 23(6), 643–660.

Gersho, A., & Gray, R. M. (1992). Vector Quantization and Signal Compression. Boston: Kluwer
Academic.

Gevers, T., & Smeulders, A. (1997). Combining region splitting and edge detection through guided
Delaunay image subdivision. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Ghahramani, Z., & Beal, M. (2000). Variational inference for Bayesian mixtures of factor
analysers. Advances in Neural Information Processing Systems, 12, 449–455.

Ghahramani, Z., & Hinton, G. (1996). The EM algorithm for mixtures of factor analyzers.
Technical Report CRG-TR-96-1, University of Toronto, Canada.

Ghahramani, Z., & Hinton, G. E. (1998). Variational learning for switching state-space models.
Neural Computation, 12(4), 963–996.

Ghoreyshi, A., & Vidal, R. (2007). Epicardial segmentation in dynamic cardiac MR sequences
using priors on shape, intensity, and dynamics, in a level set framework. In IEEE International
Symposium on Biomedical Imaging (pp. 860–863).

Gnanadesikan, R., & Kettenring, J. (1972). Robust estimates, residuals, and outlier detection with
multiresponse data. Biometrics, 28(1), 81–124.

Goh, A., & Vidal, R. (2007). Segmenting motions of different types by unsupervised manifold
clustering. In IEEE Conference on Computer Vision and Pattern Recognition.

Goh, A., & Vidal, R. (2008). Unsupervised Riemannian clustering of probability density functions.
In European Conference on Machine Learning.

Goldfarb, D., & Ma, S. (2009). Convergence of fixed point continuation algorithms for matrix rank
minimization. Preprint.

Golub, H., & Loan, C. V. (1996). Matrix Computations (2nd ed.). Baltimore: Johns Hopkins
University Press.

Govindu, V. (2005). A tensor decomposition for geometric grouping and segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1150–1157).

Gower, J. (1966). Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika, 53, 325–338.

Gross, D. (2011). Recovering low-rank matrices from few coefficients in any basis. IEEE Trans
on Information Theory, 57(3), 1548–1566.

Gruber, A., & Weiss, Y. (2004). Multibody factorization with uncertainty and missing data using
the EM algorithm. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. I,
pp. 707–714).

H.Aanaes, Fisker, R., Astrom, K., & Carstensen, J. M. (2002). Robust factorization. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1215–1225.

Haeffele, B., & Vidal, R. (2015). Global optimality in tensor factorization, deep learning, and
beyond. Preprint, http://arxiv.org/abs/1506.07540.

http://arxiv.org/abs/1506.07540

542 References

Haeffele, B., Young, E., & Vidal, R. (2014). Structured low-rank matrix factorization: Optimality,
algorithm, and applications to image processing. In International Conference on Machine
Learning.

Hamkins, J., & Zeger, K. (2002). Gaussian source coding with spherical codes. IEEE Transactions
on Information Theory, 48(11), 2980–2989.

Hampel, F., Ronchetti, E., Rousseeuw, P., & Stahel, W. (1986). Robust statistics: The approach
based on influence functions. New York: Wiley.

Hampel, F. R. (1974). The influence curve and its role in robust estiamtion. Journal of the American
Statistical Association, 69, 383–393.

Han, M., & Kanade, T. (2000). Reconstruction of a scene with multiple linearly moving objects.
In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2, pp.
542–549).

Han, M., & Kanade, T. (2001). Multiple motion scene reconstruction from uncalibrated views. In
Proceedings of IEEE International Conference on Computer Vision (Vol. 1, pp. 163–170).

Hansen, M., & Yu, B. (2001). Model selection and the principle of minimum description length.
Journal of American Statistical Association, 96, 746–774.

Haralick, R., & Shapiro, L. (1985). Image segmentation techniques. Computer Vision, Graphics,
and Image Processing, 29(1), 100–132.

Hardt, M. (2014). Understanding alternating minimization for matrix completion. In Symposium
on Foundations of Computer Science.

Haro, G., Randall, G., & Sapiro, G. (2006). Stratification learning: Detecting mixed density
and dimensionality in high dimensional point clouds. In Neural Information Processing and
Systems.

Haro, G., Randall, G., & Sapiro, G. (2008). Translated poisson mixture model for stratification
learning. International Journal of Computer Vision, 80(3), 358–374.

Harris, J. (1992). Algebraic Geometry: A First Course. New York: Springer.
Hartley, R., & Schaffalitzky, F. (2003). Powerfactorization: An approach to affine reconstruction

with missing and uncertain data. In Proceedings of Australia-Japan Advanced Workshop on
Computer Vision.

Hartley, R., & Vidal, R. (2004). The multibody trifocal tensor: Motion segmentation from 3
perspective views. In IEEE Conference on Computer Vision and Pattern Recognition (Vol.
I, pp. 769–775).

Hartley, R., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd ed.).
Cambridge: Cambridge University Press.

Hastie, T. (1984). Principal curves and surfaces. Technical Report, Stanford University.
Hastie, T., & Stuetzle, W. (1989). Principal curves. Journal of the American Statistical Association,

84(406), 502–516.
Hastie, T., Tibshirani, R., & Friedman, J. (2001). The Elements of Statistical Learning. New York:

Springer.
He, H., & Garcia, E. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge

and Data Engineering, 21(9), 1263–1284.
He, H., & Ma, Y. (2013). Imbalanced Learning: Foundations, Algorithms, and Applications. New

York: Wiley.
Hinton, G., Osindero, S., & Teh, Y.-W. (2006). A fast learning algorithm for deep belief nets.

Neural Computation, 18(7), 1527–1554.
Hirsch, M. (1976). Differential Topology. New York: Springer.
Ho, J., Yang, M., Lim, J., Lee, K., & Kriegman, D. (2003). Clustering appearances of objects under

varying illumination conditions. In Proceedings of International Conference on Computer
Vision and Pattern Recognition.

Hong, W., Wright, J., Huang, K., & Ma, Y. (2006). Multi-scale hybrid linear models for lossy
image representation. IEEE Transactions on Image Processing, 15(12), 3655–3671.

Horn, R. A., & Johnson, C. R. (1985). Matrix Analysis. Cambridge: Cambridge University Press.
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.

Journal of Educational Psychology, 24, 417–441.

References 543

Householder, A. S., & Young, G. (1938). Matrix approximation and latent roots. American
Mathematical Monthly, 45, 165–171.

Huang, K., Ma, Y., & Vidal, R. (2004). Minimum effective dimension for mixtures of subspaces:
A robust GPCA algorithm and its applications. In IEEE Conference on Computer Vision and
Pattern Recognition (Vol. II, pp. 631–638).

Huber, P. (1981). Robust Statistics. New York: Wiley.
Hubert, L., Meulman, J., & Heiser, W. (2000). Two purposes for matrix factorization: A historical

appraisal. SIAM Review, 42(1), 68–82.
Hwang, I., Balakrishnan, H., & Tomlin, C. (2003). Observability criteria and estimator design for

stochastic linear hybrid systems. In Proceedings of European Control Conference.
Hyndman, M., Jepson, A., & Fleet, D. J. (2007). Higher-order autoregressive models for dynamic

textures. In British Machine Vision Conference (pp. 76.1–76.10). doi:10.5244/C.21.76.
Jacobs, D. (2001). Linear fitting with missing data: Applications to structure-from-motion.

Computer Vision and Image Understanding, 82, 57–81.
Jain, A. (1989). Fundamentals of Digital Image Processing. Upper Saddle River: Prentice Hall.
Jain, P., Meka, R., & Dhillon, I. (2010). Guaranteed rank minimization via singular value

projection. In Neural Information Processing Systems (pp. 937–945).
Jain, P., & Netrapalli, P. (2014). Fast exact matrix completion with finite samples. In http://arxiv.

org/pdf/1411.1087v1.pdf.
Jain, P., Netrapalli, P., & Sanghavi, S. (2012). Low-rank matrix completion using alternating

minimization. In http://arxiv.org/pdf/1411.1087v1.pdf.
Jancey, R. (1966). Multidimensional group analysis. Australian Journal of Botany, 14, 127–130.
Jarret, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage

architecture for object recognition. In International Conference on Computer Vision.
Jhuo, I.-H., Liu, D., Lee, D., & Chang, S.-F. (2012). Robust visual domain adaptation with

low-rank reconstruction. In IEEE Conference on Computer Vision and Pattern Recognition
(pp. 2168–2175).

Johnson, C. (1990). Matrix completion problems: A survey. In Proceedings of Symposia in Applied
Mathematics.

Jolliffe, I. (1986). Principal Component Analysis. New York: Springer.
Jolliffe, I. (2002). Principal Component Analysis (2nd ed.). New York: Springer.
Jordan, M. (1874). Mémoire sur les formes bilinéaires. Journal de Mathématiques Pures et

Appliqués, 19, 35–54.
Juloski, A., Heemels, W., & Ferrari-Trecate, G. (2004). Data-based hybrid modelling of the

component placement process in pick-and-place machines. In Control Engineering Practice.
Amsterdam: Elsevier.

Kamvar, S., Klein, D., & Manning, C. (2002). Interpreting and extending classical agglomerative
clustering methods using a model-based approach. Technical Report 2002-11, Stanford
University Department of Computer Science.

Kanatani, K. (1998). Geometric information criterion for model selection. International Journal
of Computer Vision (pp. 171–189).

Kanatani, K. (2001). Motion segmentation by subspace separation and model selection. In IEEE
International Conference on Computer Vision (Vol. 2, pp. 586–591).

Kanatani, K. (2002). Evaluation and selection of models for motion segmentation. In Asian
Conference on Computer Vision (pp. 7–12).

Kanatani, K. (2003). How are statistical methods for geometric inference justified? In Workshop on
Statistical and Computational Theories of Vision, IEEE International Conference on Computer
Vision.

Kanatani, K., & Matsunaga, C. (2002). Estimating the number of independent motions for
multibody motion segmentation. In European Conference on Computer Vision (pp. 25–31).

Kanatani, K., & Sugaya, Y. (2003). Multi-stage optimization for multi-body motion segmentation.
In Australia-Japan Advanced Workshop on Computer Vision (pp. 335–349).

Ke, Q., & Kanade, T. (2005). Robust `1-norm factorization in the presence of outliers and missing
data. In IEEE Conference on Computer Vision and Pattern Recognition.

doi:10.5244/C.21.76
http://arxiv.org/pdf/1411.1087v1.pdf
http://arxiv.org/pdf/1411.1087v1.pdf
http://arxiv.org/pdf/1411.1087v1.pdf

544 References

Keshavan, R., Montanari, A., & Oh, S. (2010a). Matrix completion from a few entries. IEEE
Transactions on Information Theory.

Keshavan, R., Montanari, A., & Oh, S. (2010b). Matrix completion from noisy entries. Journal of
Machine Learning Research, 11, 2057–2078.

Keshavan, R. H. (2012). Efficient algorithms for collaborative filtering. Ph.D. Thesis. Stanford
University.

Kim, J., Fisher, J., Yezzi, A., Cetin, M., & Willsky, A. (2005). A nonparametric statistical method
for image segmentation using information theory and curve evolution. PAMI, 14(10), 1486–
1502.

Kim, S. J., Doretto, G., Rittscher, J., Tu, P., Krahnstoever, N., & Pollefeys, M. (2009). A model
change detection approach to dynamic scene modeling. In Sixth IEEE International Conference
on Advanced Video and Signal Based Surveillance, 2009 (AVSS ’09) (pp. 490–495).

Kim, S. J., Koh, K., Lustig, M., Boyd, S., & Gorinevsky, D. (2007). An interior-point method for
large-scale l1-regularized least squares. IEEE Journal on Selected Topics in Signal Processing,
1(4), 606–617.

Kim, T., Lee, K., & Lee, S. (2010). Learning full pairwise affinities for spectral segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Kleinberg, J. M. (1999). Authorative sources in a hyberlinked environment. Journal of the ACM,
48, 604–632.

Kontogiorgis, S., & Meyer, R. (1989). A variable-penalty alternating direction method for convex
optimization. Mathematical Programming, 83, 29–53.

Kruskal, J. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika.
Kurita, T. (1995). An efficient clustering algorithm for region merging. IEICE Transactions of

Information and Systems, E78-D(12), 1546–1551.
Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. Journal of Research of the National Bureau of Standards,
45, 255–282.

Lang, S. (1993). Algebra (3rd ed.). Reading: Addison-Wesley.
Lee, J. A., & Verleysen, M. (2007). Nonlinear Dimensionality Reduction (1st ed.). New York:

Springer.
Lee, K.-C., Ho, J., & Kriegman, D. (2005). Acquiring linear subspaces for face recognition under

variable lighting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5),
684–698.

Leonardis, A., Bischof, H., & Maver, J. (2002). Multiple eigenspaces. Pattern Recognition, 35(11),
2613–2627.

LePennec, E., & Mallat, S. (2005). Sparse geometric image representation with bandelets. IEEE
Transactions on Image Processing, 14(4), 423–438.

Levina, E., & Bickel, P. J. (2006). Texture synthesis and non-parametric resampling of random
fields. Annals of Statistics, 34(4), 1751–1773.

Li, B., Ayazoglu, M., Mao, T., Camps, O. I., & Sznaier, M. (2011). Activity recognition using
dynamic subspace angles. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (pp. 3193–3200). New York: IEEE.

Lin, Z., Chen, M., Wu, L., & Ma, Y. (2011). The augmented Lagrange multiplier method for exact
recovery of corrupted low-rank matrices. arXiv:1009.5055v2.

Lions, P., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators. SIAM
Journal on Numerical Analysis, 16(6), 964–979.

Liu, G., Lin, Z., Yan, S., Sun, J., & Ma, Y. (2013). Robust recovery of subspace structures by low-
rank representation. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(1), 171–184.

Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In
International Conference on Machine Learning.

Liu, Y. K., & Zalik, B. (2005). Efficient chain code with Huffman coding. Pattern Recognition,
38(4), 553–557.

Lloyd, S. (1957). Least squares quantization in PCM. Technical Report. Bell Laboratories.
Published in 1982 in IEEE Transactions on Information Theory, 28, 128–137.

References 545

Luenberger, D. G. (1973). Linear and Nonlinear Programming. Reading: Addison-Wesley.
Luo, Z. Q., & Tseng, P. (1993). One the convergence rate of dual ascent methods for strictly convex

minimization. Mathematics of Operations Research, 18, 846–867.
Ma, S. (2012). Alternating proximal gradient method for convex minimization. Technical Report.
Ma, Y., Derksen, H., Hong, W., & Wright, J. (2007). Segmentation of multivariate mixed data

via lossy coding and compression. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(9), 1546–1562.

Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. (2003). An Invitation to 3D Vision: From Images to
Geometric Models. New York: Springer.

Ma, Y., & Vidal, R. (2005). Identification of deterministic switched ARX systems via identification
of algebraic varieties. In Hybrid Systems: Computation and Control (pp. 449–465). New York:
Springer.

Ma, Y., Yang, A. Y., Derksen, H., & Fossum, R. (2008). Estimation of subspace arrangements with
applications in modeling and segmenting mixed data. SIAM Review, 50(3), 413–458.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
(pp. 281–297).

Madiman, M., Harrison, M., & Kontoyiannis, I. (2004). Minimum description length vs.
maximum likelihood in lossy data compression. In Proceedings of the 2004 IEEE International
Symposium on Information Theory.

Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image
segmentation. International Journal of Computer Vision, 43(1), 7–27.

Mallat, S. (1999). A Wavelet Tour of Signal Processing (2nd ed.). London: Academic.
Mallows, C. (1973). Some comments on Cp. Technometrics, 15, 661–675.
Maronna, R. A. (1976). Robust M-estimators of multivariate location and scatter. Annals of

Statistics, 4, 51–67.
Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A Database of Human Segmented Natural

Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological
Statistics. In IEEE International Conference on Computer Vision.

McLanchlan, G. J., & Krishnan, T. (1997). The EM Algorithms and Extentions. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc.

Meila, M. (2005). Comparing clusterings: An axiomatic view. In Proceedings of the International
Conference on Machine Learning.

Mercer, J. (1909). Functions of positive and negative types and their connection with the theory of
integral equations. Philosophical Transactions, Royal Society London, A, 209(1909), 415–446.

Meyer, F. (2000). Fast adaptive wavelet packet image compression. IEEE Transactions on Image
Processing, 9(5), 792–800.

Meyer, F. (2002). Image compression with adaptive local cosines. IEEE Transactions on Image
Processing, 11(6), 616–629.

Minka, T. (2000). Automatic choice of dimensionality for PCA. In Neural Information Processing
Systems (Vol. 13, pp. 598–604).

Mirsky, L. (1975). A trace inequality of John von Neumann. Monatshefte für Mathematic, 79,
303–306.

Mobahi, H., Rao, S., Yang, A., & Sastry, S. (2011). Segmentation of natural images by texture and
boundary compression. International Journal of Computer Vision, 95(1), 86–98.

Mori, G., Ren, X., Efros, A., & Malik, J. (2004). Recovering human body configurations:
Combining segmentation and recognition. In IEEE Conference on Computer Vision and Pattern
Recognition.

Muresan, D., & Parks, T. (2003). Adaptive principal components and image denoising. In IEEE
International Conference on Image Processing.

Murphy, K. (1998). Switching Kalman filters. Technical Report. U.C. Berkeley.
Nascimento, J. C., Figueiredo, M. A. T., & Marques, J. S. (2005). Recognition of human activities

using space dependent switched dynamical models. In IEEE International Conference on
Image Processing (pp. 852–855).

546 References

Neal, R., & Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse,
and other variants. In M. Jordan (Ed.), Learning in graphical models (pp. 355–368). Boston:
Kluwer Academic.

Negahban, S., Ravikumar, P., Wainwright, M., & Yu, B. (2010). A unified framework for analyzing
m-estimators with decomposible regularizers. Available at http://arxiv.org/abs/1010.2731v1.

Nemirovskii, A. S., & Yudin, D. B. (1979). Complexity of problems and efficiency of optimization
methods (in Russian). Moscow: Nauka.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate
O.1=k2/. Soviet Mathematics Doklady, 27(2), 372–376.

Ng, A., Weiss, Y., & Jordan, M. (2001). On spectral clustering: Analysis and an algorithm. In
Proceedings of Neural Information Processing Systems (NIPS) (pp. 849–856).

Niessen, H., & A.Juloski (2004). Comparison of three procedures for identification of hybrid
systems. In Conference on Control Applications.

Nunez, F., & Cipriano, A. (2009). Visual information model based predictor for froth speed control
in flotation process. Minerals Engineering, 22(4), 366–371.

Ofli, F., Chaudhry, R., Kurillo, G., Vidal, R., & Bajcsy, R. (2013). Berkeley MHAD: A
comprehensive multimodal human action database. In IEEE Workshop on Applications of
Computer Vision.

Olshausen, B., & D.J.Field (1996). Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583), 607–609.

Orlik, P. (1989). Introduction to Arrangements. Conference Board of the Mathematical Sciences
Regional Conference Series in Mathematics (Vol. 72). Providence: American Mathematics
Society.

Overschee, P. V., & Moor, B. D. (1993). Subspace algorithms for the stochastic identification
problem. Automatica, 29(3), 649–660.

Patel, V. M., Gopalan, R., Li, R., & Chellappa, R. (2014). Visual domain adaptation: A survey of
recent advances. IEEE Signal Processing Magazine, 32(3), 53–69.

Pavlovic, V., Moulin, P., & Ramchandran, K. (1998). An integrated framework for adaptive
subband image coding. IEEE Transactions on Signal Processing, 47(4), 1024–1038.

Pavlovic, V., Rehg, J. M., Cham, T. J., & Murphy, K. P. (1999). A dynamic Bayesian network
approach to figure tracking using learned dynamic models. In Proceedings of the International
Conference on Computer Vision (pp. 94–101).

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The London,
Edinburgh and Dublin Philosphical Magazine and Journal of Science, 2, 559–572.

Peng, Z., Yan, M., & Yin, W. (2013). Parallel and distributed sparse optimization. In Asilomar.
Polito, M., & Perona, P. (2002). Grouping and dimensionality reduction by locally linear

embedding. In Proceedings of Neural Information Processing Systems (NIPS).
Powell, M. J. D. (1973). On search directions for minimization algorithms. Mathematical

Programming, 4, 193–201.
Qiu, Q., Patel, V. M., Turaga, P., & Chellappa, R. (2012). Domain adaptive dictionary learning. In

European Conference on Computer Vision (Vol. 7575, pp. 631–645).
Rabiee, H., Kashyap, R., & Safavian, S. (1996). Adaptive multiresolution image coding with

matching and basis pursuits. In IEEE International Conference on Image Processing.
Rahimi, A., Darrell, T., & Recht, B. (2005). Learning appearance manifolds from video. In IEEE

Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. 868–875).
Ramchandran, K., & Vetterli, M. (1993). Best wavelet packets bases in a rate-distortion sense.

IEEE Transactions on Image Processing, 2, 160–175.
Ramchandran, K., Vetterli, M., & Herley, C. (1996). Wavelets, subband coding, and best basis.

Proceedings of the IEEE, 84(4), 541–560.
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical Association, 66(336), 846–850.
Rao, S., Mobahi, H., Yang, A., & Sastry, S. (2009). Natural image segmentation with adaptive

texture and boundary encoding. In Asian Conference on Computer Vision, 1 (pp. 135–146).

http://arxiv.org/abs/1010.2731v1

References 547

Rao, S., Tron, R., Ma, Y., & Vidal, R. (2008). Motion segmentation via robust subspace separation
in the presence of outlying, incomplete, or corrupted trajectories. In IEEE Conference on
Computer Vision and Pattern Recognition.

Rao, S., Tron, R., Vidal, R., & Ma, Y. (2010). Motion segmentation in the presence of outlying,
incomplete, or corrupted trajectories. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(10), 1832–1845.

Rao, S., Yang, A. Y., Wagner, A., & Ma, Y. (2005). Segmentation of hybrid motions via hybrid
quadratic surface analysis. In IEEE International Conference on Computer Vision (pp. 2–9).

Ravichandran, A., Chaudhry, R., & Vidal, R. (2009). View-invariant dynamic texture recognition
using a bag of dynamical systems. In IEEE Conference on Computer Vision and Pattern
Recognition.

Ravichandran, A., Chaudhry, R., & Vidal, R. (2013). Categorizing dynamic textures using a bag of
dynamical systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2),
342–353.

Ravichandran, A., & Vidal, R. (2008). Video registration using dynamic textures. In European
Conference on Computer Vision.

Ravichandran, A., & Vidal, R. (2011). Video registration using dynamic textures. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33(1), 158–171.

Ravichandran, A., Vidal, R., & Halperin, H. (2006). Segmenting a beating heart using polysegment
and spatial GPCA. In IEEE International Symposium on Biomedical Imaging (pp. 634–637).

Recht, B., Fazel, M., & Parrilo, P. (2010). Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review, 52(3), 471–501.

Ren, X., Fowlkes, C., & Malik, J. (2005). Scale-invariant contour completion using condition
random fields. In IEEE International Conference on Computer Vision.

Ren, X., Fowlkes, C., & Malik, J. (2008). Learning probabilistic models for contour completion in
natural images. International Journal of Computer Vision, 77, 47–63.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465–471.
Rose, K. (1998). Deterministic annealing for clustering, compression, classification, regression,

and related optimization problems. Proceedings of the IEEE, 86(11), 2210–2239.
Rousseeuw, P. (1984). Least median of squares regression. Journal of American Statistics

Association, 79, 871–880.
Roweis, S., & Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding.

Science, 290(5500), 2323–2326.
Roweis, S., & Saul, L. (2003). Think globally, fit locally: Unsupervised learning of low

dimensional manifolds. Journal of Machine Learning Research, 4, 119–155.
Saisan, P., Bissacco, A., Chiuso, A., & Soatto, S. (2004). Modeling and synthesis of facial motion

driven by speech. In European Conference on Computer Vision (Vol. 3, pp. 456–467).
Santis, E., Benedetto, M. D., & Giordano, P. (2003). On observability and detectability of

continuous-time linear switching systems. In Proceedings of IEEE Conference on Decision
& Control (pp. 5777–5782).

Schindler, K., & Suter, D. (2005). Two-view multibody structure-and-motion with outliers. In
IEEE Conference on Computer Vision and Pattern Recognition.

Schölkopf, B., & Smola, A. (2002). Learning with kernels. Cambridge: MIT Press.
Schölkopf, B., Smola, A., & Muller, K. R. (1998). Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation, 10, 1299–1319.
Selim, S., & Ismail, M. A. (1984). K-means-type algorithms: A generalized convergence theorem

and characterization of local optimality. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 6(1), 81–87.

Sha, F., & Saul, L. (2005). Analysis and extension of spectral methods for nonlinear dimensionality
reduction. In Proceedings of International Conference on Machine Learning (pp. 784–791).

Shabalin, A., & Nobel, A. (2010). Reconstruction of a low-rank matrix in the presence of gaussian
noise (pp. 1–34). arXiv preprint 1007.4148

548 References

Shakernia, O., Vidal, R., & Sastry, S. (2003). Multi-body motion estimation and segmentation
from multiple central panoramic views. In IEEE International Conference on Robotics and
Automation (Vol. 1, pp. 571–576).

Shapiro, J. M. (1993). Embedded image coding using zerotrees of wavelet coefficients. IEEE
Transactions on Signal Processing, 41(12), 3445–3463.

Shashua, A., & Levin, A. (2001). Multi-frame infinitesimal motion model for the reconstruction of
(dynamic) scenes with multiple linearly moving objects. In Proceedings of IEEE International
Conference on Computer Vision (Vol. 2, pp. 592–599).

Shekhar, S., Patel, V. M., Nguyen, H. V., & Chellappa, R. (2013). Generalized domain-adaptive
dictionaries. In IEEE Conference on Computer Vision and Pattern Recognition.

Shi, J., & Malik, J. (1998). Motion segmentation and tracking using normalized cuts. In IEEE
International Conference on Computer Vision (pp. 1154–1160).

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8), 888–905.

Shi, T., Belkin, M., & Yin, B. (2008). Data spectroscopy: Eigenspace of convolution operators and
clustering. arXiv:0807.3719v1.

Shizawa, M., & Mase, K. (1991). A unified computational theory for motion transparency and
motion boundaries based on eigenenergy analysis. In IEEE Conference on Computer Vision
and Pattern Recognition (pp. 289–295).

Shum, H.-Y., Ikeuchi, K., & Reddy, R. (1995). Principal component analysis with missing data
and its application to polyhedral object modeling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(9), 854–867.

Sikora, T., & Makai, B. (1995). Shape-adaptive DCT for generic coding of video. IEEE
Transactions on Circuits and Systems For Video Technology, 5, 59–62.

Soltanolkotabi, M., & Candès, E. J. (2013). A geometric analysis of subspace clustering with
outliers. Annals of Statistics, 40(4), 2195–2238.

Soltanolkotabi, M., Elhamifar, E., & Candès, E. J. (2014). Robust subspace clustering. Annals of
Statistics, 42(2), 669–699.

Souvenir, R., & Pless, R. (2005). Manifold clustering. In Proceedings of International Conference
on Computer Vision (Vol. I, pp. 648–653).

Spielman, D., Wang, H., & Wright, J. (2012). Exact recovery of sparsity-used dictionaries.
Conference on Learning Theory (COLT).

Starck, J.-L., Elad, M., & Donoho, D. (2003). Image decomposition: Separation of texture from
piecewise smooth content. In Proceedings of the SPIE (Vol. 5207, pp. 571–582).

Steward, C. V. (1999). Robust parameter estimation in computer vision. SIAM Review, 41(3),
513–537.

Sturm, P. (2002). Structure and motion for dynamic scenes - the case of points moving in planes.
In Proceedings of European Conference on Computer Vision (pp. 867–882).

Sun, A., Ge, S. S., & Lee, T. H. (2002). Controllability and reachability criteria for switched linear
systems. Automatica, 38, 775–786.

Sun, J., Qu, Q., & Wright, J. (2015). Complete dictionary recovery over the sphere. Preprint. http://
arxiv.org/abs/1504.06785

Szigeti, F. (1992). A differential algebraic condition for controllability and observability of
time varying linear systems. In Proceedings of IEEE Conference on Decision and Control
(pp. 3088–3090).

Szummer, M., & Picard, R. W. (1996). Temporal texture modeling. In IEEE International
Conference on Image Processing (Vol. 3, pp. 823–826).

Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar space curves defined by
implicit equations with applications to edge and range image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(11), 1115–1138.

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for
nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

Tibshirani, R. (1996). Regression shrinkage and selection via the LASSO. Journal of the Royal
Statistical Society B, 58(1), 267–288.

http://arxiv.org/abs/1504.06785
http://arxiv.org/abs/1504.06785

References 549

Tipping, M., & Bishop, C. (1999a). Mixtures of probabilistic principal component analyzers.
Neural Computation, 11(2), 443–482.

Tipping, M., & Bishop, C. (1999b). Probabilistic principal component analysis. Journal of the
Royal Statistical Society, 61(3), 611–622.

Torgerson, W. (1958). Theory and Methods of Scaling. New York: Wiley.
Torr, P., & Davidson, C. (2003). IMPSAC: Synthesis of importance sampling and random sample

consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(3), 354–364.
Torr, P., Szeliski, R., & Anandan, P. (2001). An integrated Bayesian approach to layer extraction

from image sequences. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(3), 297–303.

Torr, P. H. S. (1998). Geometric motion segmentation and model selection. Philosophical
Transactions of the Royal Society of London, 356(1740), 1321–1340.

Tremeau, A., & Borel, N. (1997). A region growing and merging algorithm to color segmentation.
Pattern Recognition, 30(7), 1191–1204.

Tron, R., & Vidal, R. (2007). A benchmark for the comparison of 3-D motion segmentation
algorithms. In IEEE Conference on Computer Vision and Pattern Recognition.

Tse, D., & Viswanath, P. (2005). Fundamentals of Wireless Communications. Cambridge:
Cambridge University Press.

Tseng, P. (2000). Nearest q-flat to m points. Journal of Optimization Theory and Applications,
105(1), 249–252.

Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of Optimization Theory and Applications, 109(3), 475–494.

Tu, Z., & Zhu, S. (2002). Image segmentation by data-driven Markov Chain Monte Carlo. PAMI,
24(5), 657–673.

Tugnait, J. K. (1982). Detection and estimation for abruptly changing systems. Automatica, 18(5),
607–615.

Turaga, P., Veeraraghavan, A., Srivastava, A., & Chellappa, R. (2011). Statistical computations
on special manifolds for image and video-based recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(11), 2273–2286.

Turk, M., & Pentland, A. (1991). Face recognition using eigenfaces. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (pp. 586–591).

Udell, M., Horn, C., Zadeh, R., & Boyd, S. (2015). Generalized low rank models. Working
manuscript.

Ueda, N., Nakan, R., & Ghahramani, Z. (2000). SMEM algorithm for mixture models. Neural
Computation, 12, 2109–2128.

Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.
Varma, M., & Zisserman, A. (2003). Texture classification: Are filter banks necessary? In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
Vasilescu, M., & Terzopoulos, D. (2002). Multilinear analysis of image ensembles: Tensorfaces.

In Proceedings of European Conference on Computer Vision (pp. 447–460).
Vecchio, D. D., & Murray, R. (2004). Observers for a class of hybrid systems on a lattice. In

Proceedings of Hybrid Systems: Computation and Control. New York: Springer.
Vetterli, M., & Kovacevic, J. (1995). Wavelets and subband coding. Upper Saddle River: Prentice-

Hall.
Vidal, R. (2004). Identification of PWARX hybrid models with unknown and possibly different

orders. In American Control Conference (pp. 547–552).
Vidal, R. (2005). Multi-subspace methods for motion segmentation from affine, perspective and

central panoramic cameras. In IEEE Conference on Robotics and Automation (pp. 1753–1758).
Vidal, R. (2008). Recursive identification of switched ARX systems. Automatica, 44(9), 2274–

2287.
Vidal, R., Chiuso, A., & Soatto, S. (2002a). Observability and identifiability of jump linear

systems. In IEEE Conference on Decision and Control (pp. 3614–3619).
Vidal, R., Chiuso, A., Soatto, S., & Sastry, S. (2003a). Observability of linear hybrid systems. In

Hybrid Systems: Computation and Control (pp. 526–539). New York: Springer.

550 References

Vidal, R., & Favaro, P. (2014). Low rank subspace clustering (LRSC). Pattern Recognition Letters,
43, 47–61.

Vidal, R., & Hartley, R. (2004). Motion segmentation with missing data by PowerFactorization
and Generalized PCA. In IEEE Conference on Computer Vision and Pattern Recognition (Vol.
II, pp. 310–316).

Vidal, R., & Ma, Y. (2004). A unified algebraic approach to 2-D and 3-D motion segmentation. In
European Conference on Computer Vision (pp. 1–15).

Vidal, R., Ma, Y., & Piazzi, J. (2004). A new GPCA algorithm for clustering subspaces by fitting,
differentiating and dividing polynomials. In IEEE Conference on Computer Vision and Pattern
Recognition (Vol. I, pp. 510–517).

Vidal, R., Ma, Y., & Sastry, S. (2003b). Generalized Principal Component Analysis (GPCA). In
IEEE Conference on Computer Vision and Pattern Recognition (Vol. I, pp. 621–628).

Vidal, R., Ma, Y., Soatto, S., & Sastry, S. (2006). Two-view multibody structure from motion.
International Journal of Computer Vision, 68(1), 7–25.

Vidal, R., & Ravichandran, A. (2005). Optical flow estimation and segmentation of multiple
moving dynamic textures. In IEEE Conference on Computer Vision and Pattern Recognition
(Vol. II, pp. 516–521).

Vidal, R., & Sastry, S. (2003). Optimal segmentation of dynamic scenes from two perspective
views. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 281–286).

Vidal, R., Soatto, S., Ma, Y., & Sastry, S. (2002b). Segmentation of dynamic scenes from the
multibody fundamental matrix. In ECCV Workshop on Visual Modeling of Dynamic Scenes.

Vidal, R., Soatto, S., Ma, Y., & Sastry, S. (2003c). An algebraic geometric approach to the
identification of a class of linear hybrid systems. In IEEE Conference on Decision and Control
(pp. 167–172).

Vidal, R., Tron, R., & Hartley, R. (2008). Multiframe motion segmentation with missing data using
PowerFactorization and GPCA. International Journal of Computer Vision, 79(1), 85–105.

von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–
416.

Wallace, C., & Boulton, D. (1968). An information measure for classification. The Computer
Journal, 11, 185–194.

Wallace, C., & Dowe, D. (1999). Minimum message length and Kolmogrov complexity. The
Computer Journal, 42(4), 270–283.

Wallace, G. K. (1991). The JPEG still picture compression standard. Communications of the ACM.
Special issue on digital multimedia systems, 34(4), 30–44.

Wang, J., Jia, Y., Hua, X., Zhang, C., & Quan, L. (2008a). Normalized tree partitioning for image
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition.

Wang, J. M., Fleet, D. J., & Hertzmann, A. (2008b). Gaussian process dynamical models for human
motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 283–298.

Wang, Y.-X., & Xu, H. (2013). Noisy sparse subspace clustering. In International Conference on
Machine learning.

Ward, J. (1963). Hierarchical grouping to optimize and objective function. Journal of the American
Statistical Association, 58, 236–244.

Warga, J. (1963). Minimizing certain convex functions. SIAM Journal on Applied Mathematics,
11, 588–593.

Wei, S., & Lin, Z. (2010). Analysis and improvement of low rank representation for subspace
segmentation. Technical Report MSR-TR-2010-177, Microsoft Research Asia.

Weinberger, K. Q., & Saul, L. (2004). Unsupervised learning of image manifolds by semidefinite
programming. In Proceedings of IEEE Conference on Computer Vision and Pattern Recogni-
tion (pp. 988–955).

Wiberg, T. (1976). Computation of principal components when data are missing. In Symposium
on Computational Statistics (pp. 229–326).

Wilks, S. S. (1962). Mathematical Staistics. New York: Wiley.
Williams, C. (2002). On a connection between kernel PCA and metric multidimensional scaling.

Machine Learning, 46, 11–19.

References 551

Wolf, L., & Shashua, A. (2001a). Affine 3-D reconstruction from two projective images
of independently translating planes. In Proceedings of IEEE International Conference on
Computer Vision (pp. 238–244).

Wolf, L., & Shashua, A. (2001b). Two-body segmentation from two perspective views. In IEEE
Conference on Computer Vision and Pattern Recognition (pp. 263–270).

Wolf, L., & Shashua, A. (2003). Learning over sets using kernel principal angles. Journal of
Machine Learning Research, 4(10), 913–931.

Woolfe, F., & Fitzgibbon, A. (2006). Shift-invariant dynamic texture recognition. In Proceedings
of European Conference on Computer Vision, pages II: 549–562.

Wright, J., Ganesh, A., Kerui, M., & Ma, Y. (2013). Compressive principal component analysis.
IMA Journal on Information and Inference, 2(1), 32–68.

Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. (2009a). Robust principal component analysis:
Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS.

Wright, J., Ma, Y., Tao, Y., Lin, Z., & Shum, H.-Y. (2009b). Classification via minimum
incremental coding length (MICL). SIAM Journal on Imahing Sciences, 2(2), 367–395.

Wu, J. (1983). On the convergence properties of the EM algorithm. Annals of Statistics, 11(1),
95–103.

Wu, Y., Zhang, Z., Huang, T., & Lin, J. (2001). Multibody grouping via orthogonal subspace
decomposition. In IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2,
pp. 252–257).

Xiong, F., Camps, O., & Sznaier, M. (2011). Low order dynamics embedding for high dimensional
time series. In IEEE International Conference on Computer Vision (pp. 2368–2374).

Xiong, F., Camps, O., & Sznaier, M. (2012). Dynamic context for tracking behind occlusions.
In European Conference on Computer Vision. Lecture notes in computer science (Vol. 7576,
pp. 580–593). Berlin/Heidelberg: Springer.

Xu, H., Caramanis, C., & Sanghavi, S. (2010). Robust pca via outlier pursuit. In Neural
Information Processing Systems (NIPS).

Yan, J., & Pollefeys, M. (2006). A general framework for motion segmentation: Independent,
articulated, rigid, non-rigid, degenerate and non-degenerate. In European Conference on
Computer Vision (pp. 94–106).

Yang, A., Wright, J., Ma, Y., & Sastry, S. (2008). Unsupervised segmentation of natural images
via lossy data compression. Computer Vision and Image Understanding, 110(2), 212–225.

Yang, A. Y., Rao, S. R., & Ma, Y. (2006). Robust statistical estimation and segmentation of multiple
subspaces. In CVPR workshop on 25 years of RANSAC.

Yang, J., Wright, J., Huang, T., & Ma, Y. (2010). Image super-resolution via sparse representation.
IEEE Transactions on Image Processing, 19(11), 2861–2873.

Yang, M. H., Ahuja, N., & Kriegman, D. (2000). Face detection using mixtures of linear subspaces.
In IEEE International Conference on Automatic Face and Gesture Recognition.

Yu, G., Sapiro, G., & Mallat, S. (2010). Image modeling and enhancement via structured sparse
model selection. In International Conference on Image Processing.

Yu, G., Sapiro, G., & Mallat, S. (2012). Solving inverse problems with piecewise linear estimators:
From gaussian mixture models to structured sparsity. IEEE Transactions on Image Processing,
21(5), 2481–2499.

Yu, S. (2005). Segmentation induced by scale invariance. In IEEE Conference on Computer Vision
and Pattern Recognition.

Yuan, L., Wen, F., Liu, C., & Shum, H. (2004). Synthesizing dynamic texture with closed-loop
linear dynamic system. In European Conference on Computer Vision (pp. 603–616).

Yuan, X., & Yang, J. (2009). Sparse and low-rank matrix decomposition via alternating direction
methods. Preprint.

Zadeh, N. (1970). A note on the cyclic coordinate ascent method. Management Science, 16,
642–644.

Zelnik-Manor, L., & Irani, M. (2003). Degeneracies, dependencies and their implications in multi-
body and multi-sequence factorization. In IEEE Conference on Computer Vision and Pattern
Recognition (Vol. 2, pp. 287–293).

552 References

Zhang, K., Zhang, L., & Yang, M. (2014). Fast compressive tracking. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36(10).

Zhang, T., Szlam, A., & Lerman, G. (2009). Median k-flats for hybrid linear modeling with many
outliers. In Workshop on Subspace Methods.

Zhang, T., Szlam, A., Wang, Y., & Lerman, G. (2010). Randomized hybrid linear modeling via
local best-fit flats. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1927–
1934).

Zhang, Z., & Zha, H. (2005). Principal manifolds and nonlinear dimensionality reduction via
tangent space alignment. SIAM Journal on Scientific Computing, 26(1), 313–338.

Zhou, F., la Torre, F. D., & Hodgins, J. K. (2008). Aligned cluster analysis for temporal
segmentation of human motion. In International Conference on Automatic Face and Gesture
Recognition.

Zhou, M., Wang, C., Chen, M., Paisley, J., Dunson, D., & Carin, L. (2010a). Nonparametric
bayesian matrix completion. In Sensor Array and Multichannel Signal Processing Workshop.

Zhou, Z., Wright, J., Li, X., Candès, E., & Ma, Y. (2010b). Stable principal component pursuit. In
International Symposium on Information Theory.

Zhu, Q., Song, G., & Shi, J. (2007). Untangling cycles for contour grouping. In Proceedings of
the International Conference on Computer Vision (ICCV).

Index

Symbols
`0 minimization, 311, 314
`1 minimization, 312, 314–316, 458
`1 norm, 308

properties, 116
`2;1 norm, 111, 308

properties, 117

A
ACA (aligned cluster analysis), 428
accelerated proximal gradient, 466
ADM (alternating direction minimization), 466
ADMM, 96
ADMM (alternating direction method of

multipliers), 308, 322, 329, 330, 471,
472

for PCP, 97, 98
proximal gradient, 473

affine camera matrix, 406
affine projection, 405
affinity matrix, 268

distance based, 268
global methods, 270
LLMC, 275
local methods, 270
LSA, 272
principal angles, 271
SASC, 280
SCC, 278
SLBF, 273

agglomerative clustering, 233
linkage algorithms, 237
mixture of Gaussians, 236

subspaces, 236
Ward’s method, 237

AIC (Akaike information criterion), 48, 496
Akaike information criterion

see AIC, 48
ALC (agglomerative lossy compression), 236,

260
algorithm, 236
motion segmentation, 412
subspace clustering, 236, 260

algebraic set, 512
decomposition, 516, 517
irreducible, 512

algebraic subspace clustering
see ASC, 171

algebraic varieties, 512
algorithm

agglomerative lossy compression for
subspace clustering, 236

algebraic hyperplane clustering algorithm,
184

algebraic line clustering algorithm, 181
algebraic point clustering algorithm, 178
ASC: algebraic subspace clustering, 194
EM for MPPCA, 227
EM for subspace clustering, 227
expectation maximization, 488, 489
hybrid linear model estimation, 360
identification of an SISO hybrid ARX

system, 446
incomplete PCA by power factorization,

83
incomplete PPCA by expectation

maximization, 73

© Springer-Verlag New York 2016
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9

553

554 Index

algorithm (cont.)
iteratively reweighted least squares for

PCA with outliers, 105
K-means for mixture of isotropic

Gaussians, 147
K-subspaces for subspace clustering, 221
local subspace affinity, 272
locally linear embedding, 138
locally linear manifold clustering, 276
low-rank matrix completion via proximal

gradient, 77
low-rank subspace clustering for

uncorrupted data, 302
MAP-EM for MPPCA, 229
MAP-EM for subspace clustering, 229
matrix `1 minimization by ADMM, 323
matrix completion by partition alternating

minimization, 85
matrix completion by power factorization,

82
matrix LASSO minimization by ADMM,

329
multiscale hybrid linear model estimation,

365
multiscale hybrid linear model: wavelet

domain, 372
nonlinear kernel PCA, 132
normalized cut, 156
normalized spectral clustering, 157
power factorization for complete matrix

factorization, 81
principal component pursuit by ADMM, 98
random sample consensus for PCA with

outliers, 107
recursive algebraic subspace clustering,

208
robust PCA by iteratively reweighted least

squares, 91
sparse subspace clustering for noisy data,

329
sparse subspace clustering for uncorrupted

data, 324
sparse subspace clustering with corrupted

entries, 331
sparse subspace clustering with outliers,

326
spectral algebraic subspace clustering, 286
spectral clustering, 153
spectral curvature clustering, 278
spectral local best-fit flats, 273
texture and boundary encoding-based

segmentation (TBES), 389

ALM (augmented Lagrange multiplier
method), 96, 470

exact, 97
alternating direction method of multipliers

see ADMM, 97, 471
alternating direction minimization

see ADM, 466
alternating proximal gradient minimization

see APGM, 473
AMSE (asymptotic mean square error), 51, 52

hard thresholding, 53
minimizing AMSE, 52
optimal singular value shrinkage, 53
optimal soft thresholding, 53
truncated SVD, 53

APGM (alternating proximal gradient
minimization), 473

convergence, 474
AR (autoregressive) models, 422
arrangement of subspaces, 128
ARX (auto regressive exogenous) system,

432
ARX (autoregressive exogenous) system, 56

hybrid, 432
ASC (algebraic subspace clustering), 171, 360,

423, 431
by line intersection, 419
by minimum distance, 419
exercise, 212
motion segmentation, 411
recursive ASC, 205, 208
spectral ASC, 419

asymptotic efficiency
of an estimator, 482

asymptotic mean square error
see AMSE, 51

asymptotic unbiasedness, 482
AT&T face data set, 146
augmented Lagrange multiplier method

see ALM, 96, 470
augmented Lagrangian, 97
augmented Lagrangian function, 470, 472
autoregressive exogenous

see ARX, 432

B
Bayesian information criterion

see BIC, 48
BCD (block coordinate descent), 467

convergence, 467
BDE (boundary displacement error), 394

Index 555

Berkeley Multimodal Human Action Database,
425

Berkeley segmentation data set
see BSD, 382

bias of an estimator, 477
BIC (Bayesian information criterion), 48, 496,

498
big data, 457, 459
block coordinate descent

see BCD, 467
Boolean arrangement, 521
boundary displacement error

see BDE, 394
braid arrangement, 521
BSD (Berkeley segmentation data set), 382,

392

C
Caltech 101 data set, 113
camera calibration matrix, 415
camera models, 403

affine projection, 405
orthographic projection, 405
perspective projection, 414

centering matrix, 130
cloud computing, 459
clustering

compression-based, 242
deterministic, 243
phase transition, 251
probabilistic assignment, 246
via data compression, 235

coding length, 383
affine subspaces, 265
expected, 232
image, 386
linear subspaces, 264
minimization, 236
multivariate Gaussian, 234, 238
optimal, 236
region boundary, 385
samples on subspaces, 263
texture region, 384

coding length function, 240
concavity, 245
mixed Gaussians, 242
properties, 241

coherence, 95
column incoherence, 111
mutual coherence, 95

color space
HSV, 393
lab, 393
RGB, 393
XYZ, 393
YUV, 393

column incoherence, 111
column sparse matrix, 111
complete statistics, 480
compression-based classification, 238
compression-based clustering, 231,

260
gene expression data, 254
image segmentation, 255
mixed Gaussians, 235, 236
model selection, 252
phase transition, 250
robustness to outliers, 249
simulations, 247
subspaces, 235, 236

compressive sensing, 74, 94, 456, 458
decomposable structures, 456

concave optimization, 246
simplex algorithm, 246

conformal eigenmaps, 160
consistency

of an estimate, 481
convex

pseudoconvex, 464
quasiconvex, 464

convex function, 462, 463
exercises, 54
minima, 463
subgraident, 465

convex hull, 463
convex optimization

for matrix completion, 73
convex set, 462

exercises, 54
corollary

a closed-form formula for Hilbert function,
533

identifying the number of ARX systems,
443

subspace dimensions from the Hilbert
function, 533

zero coefficients of the decoupling
polynomial, 442

Cramér–Rao lower bound, 478
CTM (compression-based texture merging),

395

556 Index

curvature
Menger curvature, 277
polar curvature, 277

D
data compression, 231
data set

AT&T face data set, 146
Berkeley Multimodal Human Action

Database, 425
Berkeley segmentation data set, 382, 392
Caltech 101, 113
extended Yale B, 36
Hopkins 155 motion data set, 407, 418
MOCAP, 426
Yale B, 61

DCT (discrete cosine transform), 350, 354,
366, 372

decomposable function, 305
decomposable structures, 456
deep learning, 457

dictionary learning, 457
matrix factorization, 457
sparsity, 457

deep neural networks, 457
definition

algebraic set, 512
asymptotic efficiency, 482
asymptotic unbiasedness, 482
complete statistics, 480
consistency, 481
convex function, 463
convex hull, 463
convex set, 462
dual directions, 320
dual points, 320, 327
effective dimension, 202
expressiveness property, 294
homogeneous ideal, 512
ideal, 511
incoherent matrix with respect to sparse

matrices, 67
independent subspaces, 300
matrix incoherence with respect to column

sparse matrices, 111
mutual coherence, 95
pl-generated ideals, 523
principal angle, 315
projected dual directions, 327
projected subspace incoherence, 328
pseudoconvex, 464
quasiconvex, 464
self-expressiveness property, 295

subgradient of a convex function, 465
subspace arrangement, 172
subspace incoherence, 320
subspace-preserving representation, 296
sufficient statistics, 476
sufficiently exciting switching and input

sequences, 440
transversal subspaces, 532
Veronese map, 510

dictionary learning, 457
difference chain code, 385
dimension reduction, 358
discrete cosine transform

see DCT, 350
disjoint subspaces, 315
Douglas–Rachford operator splitting method,

472
dual direction, 320
dual point, 320, 327
dynamical models

linear autoregressive model, 422

E
ED (effective dimension), 202, 358

example, 203
minimum effective dimension, 204

effective dimension
see ED, 202

efficiency of an unbiased estimator, 479
eigenfaces, 36

by PPCA, 44
eigenfunctions, 162, 167
eigensubspace, 151
eigenvalues, 137, 167

generalized, 140
eigenvectors, 137, 167

generalized, 140
power method, 80
segmentation eigenvectors, 275

EM (expectation maximization), 68, 69, 73,
218, 248, 359, 428, 443, 487

a failure case, 494
algorithm, 488
convergence, 488
exercise, 117
for multiple subspaces, 228
for PPCA, 58
incomplete PCA, 69, 71
incomplete PPCA, 73
MAP-EM, 70
matrix completion, 69, 71, 73
mixture of PPCAs, 225
subspace clustering, 227, 259

Index 557

embedded data matrix, 187
entropy

of a random variable, 232
epipolar constraint, 417, 418
epipolar geometry, 416
estimators

asymptotic efficient, 482
asymptotically unbiased, 482
bias, 477
consistency, 481
efficient, 479
ML estimators, 480
relative efficiency, 477
unbiased, 477, 480

exact ALM, 97
Example

clustering of gene expression data, 254
example

a hybrid linear model for the grayscale
Barbara image, 360

ALC for clustering face images under
varying illumination, 256

algebraic subspace clustering on synthetic
data, 194

completing face images with missing pixels
by convex optimization, 78

completing face images with missing pixels
by power factorization, 87

effective dimension of one plane and two
lines, 203

embeddings for face images of two
different subjects, 142

face shadow removal by iteratively
reweighted least squares, 91

face shadow removal by PCP, 99
K-means clustering of face images under

varying illumination, 148
K-means clustering of face images under

varying pose, 146
K-subspaces for clustering face images

under varying illumination, 256
KPCA for face images under varying pose,

132
LE for face images under varying pose, 142
LLE for face images under varying pose,

138
matrix Lagrange multipliers, 469
ML estimate of two mixed Gaussians, 495
model selection for face images, 49
MPPCA for clustering face images under

varying illumination, 256
outlier detection among face images,

113
PCA as a particular case of KPCA, 131

PCA for face images under varying pose,
123

PCA for modeling face images under
varying illumination, 36

PPCA for modeling face images under
varying illumination, 44

recursive ASD on synthetic data, 206
segmentation of natural images, 255
spectral clustering of face images under

varying illumination, 159
spectral clustering of face images under

varying pose, 158
strongly correlated subsets, 243
uncorrelated subsets, 242
Veronese map for an arrangement of

subspaces, 128
expectation maximization (EM)

mixture of PPCAs, 224
expressiveness property, 294
extended Yale B data set, 36, 49, 78, 79, 88, 92,

100, 113, 114, 337

F
face recognition, 60

robust face recognition, 119
feature

texture features, 382
feature space, 127

high-dimensional, 128
Fisher discriminant analysis

for subspaces, 213
Fisher information matrix, 478
Freeman encoding, 385
Frobenius norm, 56, 305

of a matrix, 34
function

augmented Lagrangian function, 470
convex function, 462, 463
gradient of a function, 461
Hessian of a function, 461
Hilbert function, 518
kernel function, 129
Lagrangian function, 469
positive semidefinite functions, 129
square integrable function, 129
subgradient of a function, 464
symmetric functions, 129

fundamental matrix, 417

G
G-AIC (geometric AIC), 48, 204, 205, 496

effective dimension, 204

558 Index

Gaussian distribution, 379
coding length, 234
rate-distortion function, 234

Gaussian MMM, 399
gene expression data clustering, 254
generalized eigenvalues, 140
generalized eigenvectors, 140
geometric AIC

see G-AIC, 48
GFM (global F-measure), 394
global F-measure

see GFM, 394
GPCA (generalized PCA), 458
gradient, 461

subgradient, 464
gradient descent, 465
graph, 268

connected subgraphs, 150
Laplacian, 149, 268
minimum cut, 154, 155, 399
Ncut, 155
normalized cut, 155
ratiocut, 154, 155
region adjacency graph, 387
undirected, 149
weight, 149

graph cut, 153, 164
Ncut, 155, 165
normalized cut, 155
ratiocut, 153, 165

Grassmannian coordinates, 203, 356

H
Hadamard product

of matrices, 66
HDP (hybrid decoupling polynomial), 439

identification, 440, 441
structure, 441
zero coefficients, 442

Hessian, 461
hidden Markov models, 428
hierarchical model, 353
Hilbert function

closed-form formula for subspace
arrangements, 533

of a subspace arrangement, 208, 530, 533
of an algebraic set, 518
special cases, 528

Hilbert polynomial, 519
Hilbert series, 518
Hilbert’s Nullstellensatz, 509, 513
HITS (hypertext-induced topic-selection), 58
homogeneous coordinates, 414, 418

homogeneous representation
affine subspace, 173
homogeneous coordinates, 414

homographic constraint, 418
homography matrix, 418
Hopkins 155 motion data set, 407, 418
Huffman code, 385
Huffman coding, 235
hybrid ARX system, 432

discrete state identification, 445
HDP structure, 441
hybrid decoupling polynomial, 439
identification, 438
identification problem, 434
identifying HDP, 440, 441
JMLS, 433, 439, 446
number of ARX systems, 443
PWARX, 433, 439, 446
system parameter identification, 444

hybrid decoupling polynomial
see HDP, 439

hybrid linear model, 353, 354, 356
multiple-PCA, 376
multiscale, 354, 361, 369
wavelet domain, 369, 371

hybrid model, 352
hyperplane, 181
hyperplane arrangement, 523

I
ideal

decomposition, 516
homogeneous ideal, 512
in a ring, 511
irrelevant ideal, 511
maximal ideal, 514
of subspace arrangements, 519
pl-generated, 522, 523
prime ideal, 512
principal ideal, 512
product ideal, 512
radical ideal, 513, 517
submaximal ideal, 514
vanishing ideal, 512, 514

image denoising, 376
image inpainting, 376
image representations

comparison, 372
experiments, 365

image segmentation
compression-based, 255, 377, 386, 400
contour cue, 399
CTM, 395

Index 559

edge cue, 399
F&H, 399
hierarchical, 389, 400
MCMC, 395
mean shift, 395, 399
mixture models, 399
multilayer spectral segmentation, 399
multiscale normalized cut, 395, 399
normalized cut, 399
normalized tree partitioning, 399
problem formulation, 378
saliency driven total variation, 395
TBES, 388
ultrametric contour maps, 395
versus distortion level, 389

incoherent matrix, 67
incomplete PCA, 68, 69, 78

by complete mean and covariance, 68
by convex optimization, 73
by EM, 69
by matrix factorization, 78
by power factorization, 81, 83
global optimality, 83

independent subspaces, 300, 313
inliers, 106, 505
inradius, 320
Internet of things, 457
IRLS (iteratively reweighted least squares), 91,

105
exercise, 119
face images, 91

Ising model, 379
ISOMAP, 160
iteratively reweighted least squares

see IRLS, 91, 105

J
JMLS (jump-Markov linear system), 433
JPEG, 350
JPEG-2000, 350

K
K nearest neighbors

see K-NN, 139
K-means, 145, 164, 207, 493

algorithm, 147
exercise, 164, 261
face images, 146, 148
image patches, 352
MAP-EM, 493
spectral clustering, 268

K-NN (K nearest neighbors), 135, 136, 139

K-subspaces, 217, 219, 228, 258, 259, 261
algorithm, 221
exercise, 261

Karhunen–Loève transform
see KLT, 161

kernel
example, 132
polynomial kernels, 161
positive semidefinite, 131, 161

kernel function, 129
kernel matrix, 130, 135, 241
kernel PCA

see KPCA, 126, 129
Kinect sensors, 425
KL (Kullback–Leibler) divergence, 232, 484
KLT (Karhunen–Loève transform), 161, 351,

355
Kolmogorov entropy, 358
KPCA (kernel PCA), 126, 129, 132, 135, 160,

188, 281, 286
example, 131
exercise, 162
face images under varying pose, 132

Kronecker product, 417
Kullback–Leibler divergence

see KL divergence, 484

L
Lagrange multiplier, 323
Lagrange multiplier theorem

necessary conditions, 468
sufficient conditions, 469

Lagrange multipliers, 27, 31, 56, 77, 141, 166,
191, 322, 468, 486

matrix, 469
Lagrangian function, 27, 31, 77, 136, 141, 166,

469
augmented, 470, 472

Lagrangian method, 468
augmented ALM, 470

Lambertian, 7, 78, 91, 285, 336
Lanczos method, 80
Laplace–Beltrami operator, 167
Laplacian

null space, 151
of a graph, 149
stability, 152
with noise, 152

Laplacian eigenmaps
see LE, 133

Laplacian matrix, 149
Laplacian pyramid, 361
LASSO, 328

560 Index

LDS (linear dynamical system), 429
LE (Laplacian eigenmaps), 133, 138, 140, 156,

160, 281, 286
algorithm, 141
continuous formulation, 140, 166
discrete formulation, 140
face images under varying pose, 142
subspace clustering, 274

Lehmann–Scheffé theorem, 480
lemma

identifying the orders of an ARX system,
436

structure of the hybrid decoupling
polynomial, 441

Von Neumann’s inequality, 35
linear AR model, 422

switched linear AR model, 422
linear model, 355
linear regression, 390
linkage algorithms, 237
LLE (locally linear embedding), 133, 135, 137

affinity matrix, 289
algorithm, 138
face images under varying pose, 138
Hessian LLE, 160
subspace clustering, 274

LLMC (locally linear manifold clustering),
274, 281, 286

algorithm, 276
motion segmentation, 412

LME (least median estimate), 209, 504
LMS (least median of squares), 503
locally linear embedding

see LLE, 133, 135
log-likelihood function

complete log-likelihood function, 485
expected log-likelihood function, 486
incomplete log-likelihood function, 485

low-rank matrix, 74, 93, 94, 291, 297
subspace clustering, 300

low-rank matrix completion
see LRMC, 63

LRMC (low-rank matrix completion), 63
exercise, 117
LRMC, 63

LRR (low-rank representation), 308
LRSC (Low-Rank Subspace clustering)

subspace-preserving, 300
LRSC (low-rank subspace clustering), 297,

425
affinity, 301
algorithm, 302
bibliographic notes, 344
closed-form solution, 298

corrupted data, 308
face images, 336
motion segmentation, 413
noisy data, 302, 303
nonconvex error model, 306, 308
robust, 308
simulations, 333
uncorrupted case, 299

LSA (local subspace affinity), 270, 272, 281,
286

algorithm, 272
motion segmentation, 412

LTSA (local tangent space alignment), 160

M
M-estimators, 502
Mahalanobis distance, 103, 502
manifold learning, 133
MAP (maximum a posteriori), 238, 378
MAP-EM

a mixture model, 492
a mixture of Gaussians, 493
K-means, 493
subspace clustering, 219, 229

MAP-EM (maximum a posteriori expectation
maximization), 70, 492

algorithm, 489
for incomplete PCA, 70
for matrix completion, 70

MAP-EM estimate
of a mixture model, 492

matrix
affine camera matrix, 406
affinity matrix, 149, 157, 268
camera calibration matrix, 415
centering matrix, 130
embedded data matrix, 187
Fisher information matrix, 478
Frobenius norm, 34, 56
fundamental matrix, 417
Gram matrices, 162
homography, 418
kernel matrix, 126, 130, 135, 241
Laplacian matrix, 149
logarithm, 54
Moore–Penrose inverse, 191
nuclear norm, 50
perspective projection matrix, 415
positive definite, 482
positive semidefinite, 140
pseudoinverse, 54
shape interaction, 299
skew-symmetric matrix, 417

Index 561

symmetric matrix, 54
trace, 54

matrix completion, 66, 74
by convex optimization, 73, 77
by partition alternating minimization, 85
by power factorization, 82
minimum number of measurements, 74
via proximal gradient, 77

matrix factorization, 78, 457
alternating minimization, 80

maximum likelihood
see ML, 480

MCMC (Markov chain Monte Carlo), 395
MDL (minimum description length), 241, 358,

496
image segmentation, 382, 400

MDS (multidimensional scaling), 133, 134,
160

mean shift, 395, 399
mean square error, 477

see MSE, 52
MED (minimum effective dimension), 205

simulation, 206
Menger curvature, 277
MICL (minimum incremental coding length),

237
minimal primary decomposition

of a radical ideal, 517
minimization rule, 465
minimum coding length, 236
minimum cut, 154
minimum effective dimension

see MED, 205
minimum entropy principle, 484
minimum incremental coding length

see MICL, 237
mixture models, 399

expected log-likelihood, 491
MAP-EM estimate, 492
ML estimate via EM, 490

mixtures of principal component analyzers,
172

ML (maximum likelihood), 38, 480
asymptotic efficiency, 481
asymptotically efficient, 483
asymptotically unbiased, 483
consistency, 481, 482
Gaussian covariance, 29
mixture of distributions, 232
of a Gaussian, 55
probabilistic PCA, 41, 58
via EM, 488

MML (minimum message length), 496
MMM (mesh Markov model), 399
MOCAP (Carnegie Mellon University Motion

Capture) database, 426
model selection

by AIC, 48
by AMSE, 51
by BIC, 48
by geometric AIC, 48
by information-theoretic criteria, 46
by minimum description length, 48
by minimum message length, 48
by rank minimization, 49
face images, 49
for multiple subspaces, 201
for PCA, 45
for subspace clustering, 252
Kolmogrov complexity, 48
via compression, 231

model-selection
criteria, 496

Moore–Penrose inverse, 191
motion segmentation

2D motion, 401
3D motion, 401, 407, 428
experiments, 418
multiple affine views, 405
planar scenes, 417
problem formulation, 404
rotational motion, 417
temporal motion segmentation, 421
translational motion, 415
two perspective views, 413

motion subspace, 406
MPPCA (mixture of probabilistic PCAs), 222

EM algorithm, 224
MAP estimate, 226
ML estimation, 223

MSE (mean square error), 52, 354, 358, 359,
477

MSL
motion segmentation, 412

multibody trifocal tensor, 428
multidimensional scaling

see MDS, 133
multiple eigenspaces, 172
multiple-subspace clustering, 173
multiscale structures, 353
multivariate trimming

see MVT, 104
MVT (multivariate trimming), 104, 209, 214,

503

562 Index

N
Newton’s method, 466
NLPCA (nonlinear PCA), 126, 128, 132, 135,

188
nonlinear PCA

see NLPCA, 126
nonlinear principal components, 128
norm
`1 norm, 116
`2;1 norm, 111, 117
Frobenius norm, 34, 56
nuclear norm, 59
nuclear norm of a matrix, 50
weighted nuclear norm, 116

normalized cut, 155, 156, 399
algorithm, 156
multiscale, 395, 399
relaxed, 156, 165
symmetric normalization, 156

normalized spectral clustering
algorithm, 157

nuclear norm, 50, 74, 94, 298, 305
properties, 59
weighted, 116

Nyquist–Shannon sampling theorem, 516

O
optimality conditions

constrained optimization, 468
necessary, 462
sufficient, 462

optimization
accelerated proximal gradient, 466
ADM, 466
BCD, 467
constrained, 468, 471
gradient descent, 465
Newton’s method, 466
optimality conditions, 462, 468
steepest descent method, 465
the minimization rule, 465
unconstrained, 461

orthogonal power iteration, 80, 115
convergence, 116

orthographic projection, 405
outlier detection, 101, 113, 249, 325

by `1 minimization, 107, 110
by `2;1 minimization, 110
by convex optimization, 107
consensus-based, 105
influence-based, 101, 499

outlier pursuit, 112
probability-based, 102, 501
random-sampling-based, 503

outlier pursuit, 112
exercise, 117
face images, 113

outliers, 499
overcomplete representation, 351

P
PCA (principal component analysis), 25, 351,

354, 366, 372, 453
robust PCA, 64
a geometric view, 30
a rank minimization view, 34
a statistical view, 26
an example, 33
eigenfaces, 36
face images, 36, 60
face images under varying pose, 123
geometric PCA, 68
incomplete data, 64
model selection, 45
motion segmentation, 423
nonlinear PCA, 126
principal components, 26
probabilistic PCA, 38, 68
rotational ambiguity, 31
statistical, 55
translational ambiguity, 30
via rank minimization, 36
via SVD, 32
with corrupted entries, 87
with missing entries, 64, 68, 69, 73, 78
with outliers, 99

PCP (principal component pursuit), 96
alternating direction method of multipliers,

96
extensions, 98

peak signal-to-noise ratio
see PSNR, 205

perfect subspace arrangement, 196
perspective projection, 414
perspective projection matrix, 415
polar curvature, 277
polynomial

Hilbert polynomial, 519
homogeneous polynomials, 510
vanishing polynomials, 185

polynomial rings, 509
positive definite, 482

Index 563

positive semidefinite, 135
function, 129
kernel, 131
Laplacian matrix, 140
matrix, 140, 479

power factorization, 80, 81
exercise, 117
global optimality, 83, 85
incomplete matrix, 81, 82
incomplete PCA, 81
orthogonal power iteration, 80

power method, 80
PPCA (probabilistic PCA), 38, 218

by EM, 58
by maximum likelihood, 40, 41
by ML, 58
face images, 44, 60
from population mean and covariance, 40
mixture of PPCAs, 225
with incomplete data, 73

PPCA (robabilistic PCA)
log-likelihood, 69

PRI (probabilistic Rand index), 389, 394
principal angle, 316, 319

between subspaces, 55
smallest principal angle, 315

principal angles, 271
principal component analysis

see PCA, 25
principal component pursuit

see PCP, 96
principal components

an example, 33
nonlinear, 128
of a nonzero-mean random variable, 29
of a random variable, 26
of face images, 36
of samples, 29, 33

probabilistic PCA
see PPCA, 38

probabilistic Rand index
see PRI, 389

problem
motion segmentation, 404
multiple-subspace clustering, 173

projected dual direction, 327
projected subspace incoherence, 328
projectivization of subspace, 172
proposition

approximate sample influence, 500
basic properties of the Laplacian matrix,

140
convergence of ADMM with proximal

gradient, 474

convergence of ALM, 471
convergence of block coordinate descent,

467
Laplacian eigenmaps, 140
locally linear embedding, 137
number of connected subgraphs, 150
optimal hard thresholding for minimizing

AMSE, 52
second-order sufficient optimality

conditions, 462
proximal gradient, 76

for matrix completion, 76
pseudoconvex, 464
PSNR (peak signal-to-noise ratio), 205,

355
PWARX (piecewise ARX), 433

Q
quasiconvex, 464

R
RAG (region adjacency graph), 387
random sample consensus

see RANSAC, 106
random variable, 476
random vector, 476

covariance, 477
variance, 477

rank minimization, 34, 49, 74, 94
by convex relaxation, 74
model selection for PCA, 49
NP-hardness, 74, 94
PCA, 34

ranking webpages, 57
authorities, 57
HITS algorithm, 58
hubs, 57

RANSAC (random sample consensus), 106,
503, 505

motion segmentation, 411
multiple subspaces, 209
with outliers, 107

Rao–Blackwell theorem, 479
rate-distortion function, 238, 240

Gaussian distribution, 235
multivariate Gaussian, 234

ratiocut, 153, 154
relaxed, 155, 165

recursive ASC, 205
algorithm, 208
simulation, 206

relative efficiency of estimators, 477

564 Index

representation
low-rank, 298
sparse, 310, 311
subspace-preserving, 292, 296, 311

restricted isometry, 95
restricted isometry constant, 95
rigid-body motion, 414
rigid-body transformation, 403
rings

commutative rings, 509
coordinate rings, 513
graded rings, 511
polynomial rings, 509

robust LRSC, 308
robust PCA

see RPCA, 64
RPCA (robust PCA), 64, 87, 309, 458

ADMM, 471
by convex optimization, 92
by convex relaxation, 94, 96
by iteratively reweighted least squares, 89
by PCP, 96
face images, 99
online RPCA, 455
outlier pursuit, 112
with outliers, 99

S
sample influence, 500
sample principal components, 29, 33
SASC (spectral algebraic subspace clustering),

279, 281, 286
algorithm, 286

SCC (spectral curvature clustering), 276, 278,
281, 286

algorithm, 278
motion segmentation, 412

Schwartz criterion
see BIC, 496

self-expressiveness, 292, 295, 345
semisupervised learning, 455
Shannon coding scheme, 232
shape interaction matrix, 299
signal-to-noise ratio

see SNR, 230
single-input single-output

see SISO, 438
singular value decomposition

see SVD, 30
singular value shrinkage, 53
singular value thresholding

hard thresholding, 51, 53, 307
nonlinear thresholding, 305

optimal hard thresholding for minimizing
AMSE, 52

soft thresholding, 52, 53
truncated, 51

SISO (single-input single-output) system, 438
skew-symmetric matrix, 417
SLBF (spectral local best-fit flats), 270, 273

algorithm, 273
motion segmentation, 413

SNR (signal-to-noise ratio), 230
sparse matrix, 93, 94

column sparse, 111
sparse representation, 310, 311, 349, 353, 376

of images, 349
subspace-preserving, 311

special Euclidean group, 402
spectral clustering, 148, 152, 458

algorithm, 153
face images, 158, 159
faces, 285
normalized cut, 156
normalized spectral clustering, 157
relations to ratiocut, 153
spectral subspace clustering, 268
two circles, 269
variations, 155

spectral embedding, 149
sphere packing, 238
square integrable function, 129
SSC (sparse subspace clustering), 310, 419,

423, 425
arbitrary subspaces, 319
bibliographic notes, 344
disjoint subspaces, 315
face images, 336
for deterministic noise, 326
motion segmentation, 413
random subspaces, 321
simulations, 333
uncorrupted data, 310
with noise, 328
with noisy data, 326
with outliers, 324, 326
with outlying entries, 330

stagewise singular value projection, 86
steepest descent method, 465
stratifications, 456
subgradient, 464
subspace

homogeneous representation, 173
hyperplanes, 181
minimum representation, 174
projectivization, 172
vanishing ideal, 520

Index 565

subspace arrangement, 172
disjoint subspaces, 315
effective dimension, 202
filtration, 201
Hilbert function, 524, 530
hyperplane arrangement, 523
model selection, 201
perfect subspace arrangement, 196
product ideal, 521
regularity, 521
special cases, 528
vanishing ideal, 186, 519, 520
vanishing polynomials, 186

subspace arrangements
disjoint subspaces, 312
independent subspaces, 312

Subspace clustering
EM, 225

subspace clustering, 172
agglomerative algorithm, 236
agglomerative clustering, 233
ALC, 236, 260
ALC (agglomerative lossy compression),

236
algebraic subspace clustering, 455
by minimum coding length, 233
compression-based, 231, 235, 236
EM, 227
K-subspaces, 219
low-rank subspace clustering, 297
LRSC, 297
MAP-EM, 229
model selection, 252
probabilistic model, 223
sparse subspace clustering, 310, 458
spectral subspace clustering, 268
SSC, 310

subspace embedding
of subspace arrangements, 522

subspace incoherence, 320
subspace-preserving representation, 296, 312,

315, 316
sufficient statistics, 476

Fisher–Neyman theorem, 476
superpixel, 386
SVD (singular value decomposition), 30, 32,

80, 134, 176, 458
approximate, 97
binary quantization, 264
hard thresholding, 51, 53
singular value shrinkage, 53
soft thresholding, 52, 53
truncated, 51, 53

switched linear AR model, 422

symmetric function, 129
symmetric matrix, 54
system identification, 423

ARX system, 434
discrete states, 445
hybrid ARX systems, 438
number of ARX systems, 443
orders of an ARX system, 436
SISO hybrid ARX systems, 446
system parameters, 444

T
TBES (texture and boundary encoding-based

segmentation), 388
temporal segmentation, 402
tensor

multibody trifocal tensor, 428
symmetric tensor product, 441, 443, 445

texture
statistical models, 399

theorem
a filtration of subspace arrangements, 201
choosing one point per subspace by

polynomial division, 193
concavity of asymptotic coding length, 245
Cramér–Rao lower bound, 478
equivalence of geometric and sample

principal components, 33
Fisher–Neyman, 476
Hilbert function of a transversal subspace

arrangement, 532
Hilbert polynomial, 519
hyperplane embedding via differentiation,

522
identifying the constituent system

parameters, 444
identifying the hybrid decoupling

polynomial, 441
Lagrange multiplier theorem; necessary

conditions, 468
Lagrange multiplier theorem; sufficient

conditions, 469
Lehmann–Scheffé, 480
low-rank matrix completion via convex

optimization, 76
LRSC for noisy data, 303
LRSC for uncorrupted data, 299
LRSC with nonconvex error model, 306
maxima of convex function over compact

convex domain, 464
Mercer’s theorem, 131
minima of convex function, 463
Nullstellensatz, 513

566 Index

theorem (cont.)
number of hyperplanes, 182
partition alternating minimization for

matrix completion, 85
PCA via rank minimization, 36
PCA via SVD, 32
power factorization, 81
PPCA by maximum likelihood, 41
PPCA from population mean and

covariance, 40
principal components of a random variable,

26
Rao–Blackwell, 479
regularity of subspace arrangements,

521
robust PCA by outlier pursuit, 112
robust PCA by principal component

pursuit, 96
sampling of an algebraic set, 515
segmentation-preserving projection,

175
sparse recovery under restricted isometry,

95
SSC for arbitrary subspaces, 320
SSC for deterministic noise, 328
SSC for disjoint subspaces, 316
SSC for random subspaces, 321
SSC with outliers, 325
subspace bases and dimensions by

polynomial differentiation, 189
subspaces of equal dimension,

198
thresholding operators

hard thresholding operator, 50
singular value thresholding, 51
soft thresholding operator, 51

transversal subspaces, 532

U
UMVU (uniformly minimum variance

unbiased) estimate, 480
uniqueness, 480

uniformly minimum variance unbiased
see UMVU, 480

unsupervised learning, 190, 454

V
vanishing ideal, 186, 512

of subspace arrangement, 186
vanishing polynomials, 185

differentiation, 186, 188
division, 186, 190
estimation, 212
of hyperplanes, 182
of subspaces, 186

variation of information
see VOI, 389

vector quantization
see VQ, 260

Veronese map, 128, 187, 510
properties, 211

video segmentation, 423
VOI (variation of information), 389, 394
Von Neumann’s inequality, 35, 36
VQ (vector quantization), 260

image patches, 352

W
Ward’s method, 237
wavelet transform, 350, 354

bi-orthogonal 4.4, 366, 371, 372
countourlets, 350
curvelets, 350
wedgelets, 350

Y
Yale B data set, 61

extended, 36

Z
Zariski topology, 512

	Preface
	Acknowledgments
	Contents
	Glossary of Notation
	1 Introduction
	1.1 Modeling Data with a Parametric Model
	1.1.1 The Choice of a Model Class
	1.1.2 Statistical Models versus Geometric Models

	1.2 Modeling Mixed Data with a Mixture Model
	1.2.1 Examples of Mixed Data Modeling
	1.2.2 Mathematical Representations of Mixture Models

	1.3 Clustering via Discriminative or Nonparametric Methods
	1.4 Noise, Errors, Outliers, and Model Selection

	Part I Modeling Data with a Single Subspace
	2 Principal Component Analysis
	2.1 Classical Principal Component Analysis (PCA)
	2.1.1 A Statistical View of PCA
	2.1.2 A Geometric View of PCA
	2.1.3 A Rank Minimization View of PCA

	2.2 Probabilistic Principal Component Analysis (PPCA)
	2.2.1 PPCA from Population Mean and Covariance
	2.2.2 PPCA by Maximum Likelihood

	2.3 Model Selection for Principal Component Analysis
	2.3.1 Model Selection by Information-Theoretic Criteria
	2.3.2 Model Selection by Rank Minimization
	2.3.3 Model Selection by Asymptotic Mean Square Error

	2.4 Bibliographic Notes
	2.5 Exercises

	3 Robust Principal Component Analysis
	3.1 PCA with Robustness to Missing Entries
	3.1.1 Incomplete PCA by Mean and Covariance Completion
	3.1.2 Incomplete PPCA by Expectation Maximization
	3.1.3 Matrix Completion by Convex Optimization
	3.1.4 Incomplete PCA by Alternating Minimization

	3.2 PCA with Robustness to Corrupted Entries
	3.2.1 Robust PCA by Iteratively Reweighted Least Squares
	3.2.2 Robust PCA by Convex Optimization

	3.3 PCA with Robustness to Outliers
	3.3.1 Outlier Detection by Robust Statistics
	3.3.2 Outlier Detection by Convex Optimization

	3.4 Bibliographic Notes
	3.5 Exercises

	4 Nonlinear and Nonparametric Extensions
	4.1 Nonlinear and Kernel PCA
	4.1.1 Nonlinear Principal Component Analysis (NLPCA)
	4.1.2 NLPCA in a High-dimensional Feature Space
	4.1.3 Kernel PCA (KPCA)

	4.2 Nonparametric Manifold Learning
	4.2.1 Multidimensional Scaling (MDS)
	4.2.2 Locally Linear Embedding (LLE)
	4.2.3 Laplacian Eigenmaps (LE)

	4.3 K-Means and Spectral Clustering
	4.3.1 K-Means Clustering
	4.3.2 Spectral Clustering

	4.4 Bibliographic Notes
	4.5 Exercises
	4.A Laplacian Eigenmaps: Continuous Formulation

	Part II Modeling Data with Multiple Subspaces
	5 Algebraic-Geometric Methods
	5.1 Problem Formulation of Subspace Clustering
	5.1.1 Projectivization of Affine Subspaces
	5.1.2 Subspace Projection and Minimum Representation

	5.2 Introductory Cases of Subspace Clustering
	5.2.1 Clustering Points on a Line
	5.2.2 Clustering Lines in a Plane
	5.2.3 Clustering Hyperplanes

	5.3 Subspace Clustering Knowing the Number of Subspaces
	5.3.1 An Introductory Example
	5.3.2 Fitting Polynomials to Subspaces
	5.3.3 Subspaces from Polynomial Differentiation
	5.3.4 Point Selection via Polynomial Division
	5.3.5 The Basic Algebraic Subspace Clustering Algorithm

	5.4 Subspace Clustering not Knowing the Number of Subspaces
	5.4.1 Introductory Examples
	5.4.2 Clustering Subspaces of Equal Dimension
	5.4.3 Clustering Subspaces of Different Dimensions

	5.5 Model Selection for Multiple Subspaces
	5.5.1 Effective Dimension of Samples of Multiple Subspaces
	5.5.2 Minimum Effective Dimension of Noisy Samples
	5.5.3 Recursive Algebraic Subspace Clustering

	5.6 Bibliographic Notes
	5.7 Exercises

	6 Statistical Methods
	6.1 K-Subspaces
	6.1.1 K-Subspaces Model
	6.1.2 K-Subspaces Algorithm
	6.1.3 Convergence of the K-Subspaces Algorithm
	6.1.4 Advantages and Disadvantages of K-Subspaces

	6.2 Mixture of Probabilistic PCA (MPPCA)
	6.2.1 MPPCA Model
	6.2.2 Maximum Likelihood Estimation for MPPCA
	6.2.3 Maximum a Posteriori (MAP) Estimation for MPPCA
	6.2.4 Relationship between K-Subspaces and MPPCA

	6.3 Compression-Based Subspace Clustering
	6.3.1 Model Estimation and Data Compression
	6.3.2 Minimium Coding Length via Agglomerative Clustering
	6.3.3 Lossy Coding of Multivariate Data
	6.3.4 Coding Length of Mixed Gaussian Data

	6.4 Simulations and Applications
	6.4.1 Statistical Methods on Synthetic Data
	6.4.2 Statistical Methods on Gene Expression Clustering, Image Segmentation, and Face Clustering

	6.5 Bibliographic Notes
	6.6 Exercises
	6.A Lossy Coding Length for Subspace-like Data

	7 Spectral Methods
	7.1 Spectral Subspace Clustering
	7.2 Local Subspace Affinity (LSA) and Spectral Local Best-Fit Flats (SLBF)
	7.3 Locally Linear Manifold Clustering (LLMC)
	7.4 Spectral Curvature Clustering (SCC)
	7.5 Spectral Algebraic Subspace Clustering (SASC)
	7.6 Simulations and Applications
	7.6.1 Spectral Methods on Synthetic Data
	7.6.2 Spectral Methods on Face Clustering

	7.7 Exercises

	8 Sparse and Low-Rank Methods
	8.1 Self-Expressiveness and Subspace-Preserving Representations
	8.1.1 Self-Expressiveness Property
	8.1.2 Subspace-Preserving Representation

	8.2 Low-Rank Subspace Clustering (LRSC)
	8.2.1 LRSC with Uncorrupted Data
	8.2.2 LRSC with Robustness to Noise
	8.2.3 LRSC with Robustness to Corruptions

	8.3 Sparse Subspace Clustering (SSC)
	8.3.1 SSC with Uncorrupted Data
	8.3.2 SSC with Robustness to Outliers
	8.3.3 SSC with Robustness to Noise
	8.3.4 SSC with Robustness to Corrupted Entries
	8.3.5 SSC for Affine Subspaces

	8.4 Simulations and Applications
	8.4.1 Low-Rank and Sparse Methods on Synthetic Data
	8.4.2 Low-Rank and Sparse Methods on Face Clustering

	8.5 Bibliographic Notes
	8.6 Exercises

	Part III Applications
	9 Image Representation
	9.1 Seeking Compact and Sparse Image Representations
	9.1.1 Prefixed Linear Transformations
	9.1.2 Adaptive, Overcomplete, and Hybrid Representations
	9.1.3 Hierarchical Models for Multiscale Structures.

	9.2 Image Representation with Multiscale Hybrid Linear Models
	9.2.1 Linear versus Hybrid Linear Models
	9.2.2 Multiscale Hybrid Linear Models
	9.2.3 Experiments and Comparisons

	9.3 Multiscale Hybrid Linear Models in Wavelet Domain
	9.3.1 Imagery Data Vectors in the Wavelet Domain
	9.3.2 Hybrid Linear Models in the Wavelet Domain
	9.3.3 Comparison with Other Lossy Representations

	9.4 Bibliographic Notes

	10 Image Segmentation
	10.1 Basic Models and Principles
	10.1.1 Problem Formulation
	10.1.2 Image Segmentation as Subspace Clustering
	10.1.3 Minimum Coding Length Principle

	10.2 Encoding Image Textures and Boundaries
	10.2.1 Construction of Texture Features
	10.2.2 Texture Encoding
	10.2.3 Boundary Encoding

	10.3 Compression-Based Image Segmentation
	10.3.1 Minimizing Total Coding Length
	10.3.2 Hierarchical Implementation
	10.3.3 Choosing the Proper Distortion Level

	10.4 Experimental Evaluation
	10.4.1 Color Spaces and Compressibility
	10.4.2 Experimental Setup
	10.4.3 Results and Discussions

	10.5 Bibliographic Notes

	11 Motion Segmentation
	11.1 The 3D Motion Segmentation Problem
	11.2 Motion Segmentation from Multiple Affine Views
	11.2.1 Affine Projection of a Rigid-Body Motion
	11.2.2 Motion Subspace of a Rigid-Body Motion
	11.2.3 Segmentation of Multiple Rigid-Body Motions
	11.2.4 Experiments on Multiview Motion Segmentation

	11.3 Motion Segmentation from Two Perspective Views
	11.3.1 Perspective Projection of a Rigid-Body Motion
	11.3.2 Segmentation of 3D Translational Motions
	11.3.3 Segmentation of Rigid-Body Motions
	11.3.4 Segmentation of Rotational Motions or Planar Scenes
	11.3.5 Experiments on Two-View Motion Segmentation

	11.4 Temporal Motion Segmentation
	11.4.1 Dynamical Models of Time-Series Data
	11.4.2 Experiments on Temporal Video Segmentation
	11.4.3 Experiments on Segmentation of Human Motion Data

	11.5 Bibliographical Notes

	12 Hybrid System Identification
	12.1 Problem Statement
	12.2 Identification of a Single ARX System
	12.3 Identification of Hybrid ARX Systems
	12.3.1 The Hybrid Decoupling Polynomial
	12.3.2 Identifying the Hybrid Decoupling Polynomial
	12.3.3 Identifying System Parameters and Discrete States
	12.3.4 The Basic Algorithm and Its Extensions

	12.4 Simulations and Experiments
	12.4.1 Error in the Estimation of the Model Parameters
	12.4.2 Error as a Function of the Model Orders
	12.4.3 Error as a Function of Noise
	12.4.4 Experimental Results on Test Data Sets

	12.5 Bibliographic Notes

	13 Final Words
	13.1 Unbalanced and Multimodal Data
	13.2 Unsupervised and Semisupervised Learning
	13.3 Data Acquisition and Online Data Analysis
	13.4 Other Low-Dimensional Models
	13.5 Computability and Scalability
	13.6 Theory, Algorithms, Systems, and Applications

	A Basic Facts from Optimization
	A.1 Unconstrained Optimization
	A.1.1 Optimality Conditions
	A.1.2 Convex Set and Convex Function
	A.1.3 Subgradient
	A.1.4 Gradient Descent Algorithm
	A.1.5 Alternating Direction Minimization

	A.2 Constrained Optimization
	A.2.1 Optimality Conditions and Lagrangian Multipliers
	A.2.2 Augmented Lagrange Multipler Methods
	A.2.3 Alternating Direction Method of Multipliers

	A.3 Exercises

	B Basic Facts from Mathematical Statistics
	B.1 Estimation of Parametric Models
	B.1.1 Sufficient Statistics
	B.1.2 Mean Square Error, Efficiency, and Fisher Information
	B.1.3 The Rao–Blackwell Theorem and Uniformly Minimum-Variance Unbiased Estimator
	B.1.4 Maximum Likelihood (ML) Estimator
	B.1.5 Consistency and Asymptotic Efficiency of the ML Estimator

	B.2 ML Estimation for Models with Latent Variables
	B.2.1 Expectation Maximization (EM)
	B.2.2 Maximum a Posteriori Expectation Maximization (MAP-EM)

	B.3 Estimation of Mixture Models
	B.3.1 EM for Mixture Models
	B.3.2 MAP-EM for Mixture Models
	B.3.3 A Case in Which EM Fails

	B.4 Model-Selection Criteria
	B.4.1 Akaike Information Criterion
	B.4.2 Bayesian Information Criterion

	B.5 Robust Statistical Methods
	B.5.1 Influence-Based Outlier Detection
	B.5.2 Probability-Based Outlier Detection
	B.5.3 Random-Sampling-Based Outlier Detection

	B.6 Exercises

	C Basic Facts from Algebraic Geometry
	C.1 Abstract Algebra Basics
	C.1.1 Polynomial Rings
	C.1.2 Ideals and Algebraic Sets
	C.1.3 Algebra and Geometry: Hilbert's Nullstellensatz
	C.1.4 Algebraic Sampling Theory
	C.1.5 Decomposition of Ideals and Algebraic Sets
	C.1.6 Hilbert Function, Polynomial, and Series

	C.2 Ideals of Subspace Arrangements
	C.3 Subspace Embedding and PL-Generated Ideals
	C.4 Hilbert Functions of Subspace Arrangements
	C.4.1 Hilbert Function and Algebraic Subspace Clustering
	C.4.2 Special Cases of the Hilbert Function
	C.4.3 Formulas for the Hilbert Function

	C.5 Bibliographic Notes

	References
	Index

