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Preface

We are not very pleased when we are forced to accept a mathematical truth by virtue of a
complicated chain of formal conclusions and computations, which we traverse blindly, link
by link, feeling our way by touch. We want first an overview of the aim and of the road; we
want to understand the idea of the proof, the deeper context.

—Hermann Weyl

Classical theory and methods for the analysis of data were established mainly
for engineering and scientific problems that arose five or six decades ago. In
these classical settings, engineers or scientists usually had full control of the data
acquisition process. As a result, the data to be processed and analyzed were typically
clean and complete: they contained only moderate amounts of noise and were often
adequately collected for the specific task or problem of interest. In that regime,
many data analysis methods were based on the assumption that most data sets have
fewer effective degrees of freedom than the dimension of the ambient space. For
example, the number of pixels in an image can be rather large, yet most computer
vision models used only a few parameters to describe the appearance, geometry,
and dynamics of a scene. This assumption motivated the development of a number
of techniques for identifying low-dimensional structures in high-dimensional data,
a problem that is important not only for understanding the data, but also for many
practical purposes such as data compression and transmission. A popular technique
for discovering low-dimensional structure in data is principal component analysis
(PCA), which assumes that the data are drawn from a single low-dimensional
affine subspace of a high-dimensional space (Jolliffe 1986, 2002). PCA is arguably
the simplest and most popular dimensionality reduction tool, and it has found
widespread applications in many fields such as computer vision (Turk and Pentland
1991).

However, in the past decade or so, there has been a fundamental regime shift
in data analysis. Currently, scientists and engineers often must deal with data
whose dimension, size, and complexity expand at an explosive rate. Moreover,
they have pretty much lost control of the data acquisition process. For instance,
in 2012, 350 million photos were uploaded to Facebook every day, and 100 hours
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of video were uploaded to YouTube each minute. Moreover, it is estimated that 3.8
trillion photos had been taken by 2012, 10% of them in the last 12 months.! This
and other forms of massive amounts of data on the Internet and mobile networks
are being produced by billions of independent consumers and businesses. How to
extract useful information from such massive amounts of data for numerous tasks
(such as search, advertisement, scientific analysis) has become one of the biggest
engineering endeavors of mankind. Many call it the era of Big Data. Obviously, such
aregime shift demands a fundamental paradigm shift in data analysis, since classical
theory and methods for data analysis were simply not designed to work under such
conditions. The website of Theoretical Foundations of Big Data Analysis®> puts
things into perspective:

The Big Data phenomenon presents opportunities and perils. On the optimistic side of the

coin, massive data may amplify the inferential power of algorithms that have been shown

to be successful on modest-sized data sets. The challenge is to develop the theoretical

principles needed to scale inference and learning algorithms to massive, even arbitrary,

scale. On the pessimistic side of the coin, massive data may amplify the error rates that are

part and parcel of any inferential algorithm. The challenge is to control such errors even in

the face of the heterogeneity and uncontrolled sampling processes underlying many massive
data sets.

Since the data acquisition process is no longer under the data gatherer’s control,
the structure of the data to be processed or analyzed can no longer be assumed to
be relatively simple or clean: very often, the data contain significant amounts of
noise, corrupted entries, and outliers; or the data could be incomplete or inadequate
for a task that arises only after the data have been collected; or the data could even
have some degree of unknown nonlinearity due to lack of calibration in the data
acquisition. In the past decade, these challenges have led to many revolutionary
discoveries and much progress in which many of the classical models and methods
for data analysis have been systematically generalized or improved to make them
robust to such bad nuisances in the data. In the context of identifying low-
dimensional structures in the data, classical PCA is generalized so that it can
robustly find the correct subspace structure of the data despite such nuisances. The
forms of progress include entirely new methods for low-rank matrix completion,
robust PCA, kernel PCA, and manifold learning.

Another challenge that arises in the new regime is that we can no longer assume
that the data lie on a single low-dimensional subspace or submanifold. This is
because many modern data sets are not collected for any specific task. Instead, the
data may have already been collected, and the task emerges only afterward. Hence
a data set can be mixed with multiple classes of data of different natures, and the
intrinsic structure of the data set may be inhomogeneous or hybrid. In this case,
the data set may be better represented or approximated by not one, but multiple
low-dimensional subspaces or manifolds. Figure 1 gives an example of face images

Thttp://www.buzzfeed.com/hunterschwarz/how-many-photos-have-been-taken-ever-6zgv.

2http://simons.berkeley.edu/programs/bigdata2013.
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Fig. 1 Face images from multiple individuals can be well approximated by multiple low-
dimensional subspaces.

under varying illumination conditions, where each affine subspace corresponds to
face images of a different individual. This leads to a general problem: Given a
set of data points from a mixture of affine subspaces, how does one automatically
learn or infer those subspaces from the data? A solution to this problem requires
one to cluster or segment the data into multiple groups, each belonging to one
subspace, and then identify the parameters of each subspace. To model data with
such mixed subspace structures, the classical PCA method needs to be generalized
so that it can simultaneously identify multiple subspaces from the data. This leads
to the so-called subspace clustering problem, which has received great attention in
the last decade and has found widespread applications in computer vision, image
processing, pattern recognition, and system identification.

Purpose of This Book
The purpose of this book is to provide a comprehensive introduction to the
latest advances in the mathematical theory and computational tools for modeling
high-dimensional data drawn from one or more low-dimensional subspaces (or
manifolds) and corrupted by noise, missing entries, corrupted entries, and outliers.
This will require the development of new algebraic, geometric, statistical, and
computational theory and methods for efficient and robust estimation of one or more
subspaces. To distinguish this theory and these methods from classical PCA, we call
all such advanced approaches as generalized principal component analysis or GPCA
for short.?

As we will see in this book, in order to generalize classical PCA to the case
of corrupted and mixed data, we need to resort to a body of more advanced
mathematical tools from estimation theory, algebraic geometry, high-dimensional

3In the literature, the word generalized is sometimes used to indicate any particular extension
to classical PCA (Jolliffe 1986, 2002). In our opinion, each of these extensions is a particular
generalization rather than the more systematic generalization that we present in this book. In
addition, for the case in which we want PCA to handle large amounts of corruptions or outliers, we
may use the special name robust PCA (RPCA); for the nonlinear case in which each component is
an algebraic variety of higher degree such as a quadratic surface or a more complicated manifold,
we may use the name nonlinear PCA or manifold learning; for the case of multiple subspaces or
manifolds, names such as mixtures of probabilistic PCA (MPPCA), subspace clustering (SC) and
hybrid component analysis (HCA) have been suggested and would also be appropriate.
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statistics, and convex optimization. In particular, in this book and its appendices,
we will give a systematic introduction to effective and scalable optimization
techniques tailored to estimating low-dimensional subspace structures from high-
dimensional data (see Appendix A), all the related statistical theory and methods
for robust estimation of mixture models (see Appendix B), as well as a complete
characterization of the algebraic properties of a union of multiple subspaces as
an algebraic set (see Appendix C). As we will see throughout this book, the
statistical, algebraic-geometric, and computational aspects of GPCA are highly
complementary to each other. Each of them leads to solutions and algorithms of
their own that hold certain conceptual or computational advantages against other
approaches under certain assumptions about the data and/or the subspaces.

There are several reasons why we feel that the time is now ripe to write a book
about GPCA:

1. The limitations of classical PCA have been well known to engineers and prac-
titioners of modern data analysis. However, PCA remains the method of choice
by many field engineers simply because they do not have a systematic body of
theory and methods for handling different types of nuisances in the data. In the
past few years, with advances in algebraic geometry, high-dimensional statistics,
and convex optimization, our understanding of the problem of estimating a low-
dimensional subspace has gone well beyond classical settings: we have not only
a better understanding of the geometric, statistical, and probabilistic nature of
PCA, but also computationally efficient algorithms for PCA with missing and
corrupted data that give provably correct solutions under broad conditions. In
addition, the field of estimating mixture models, in particular a mixture of
subspaces, has also gone through revolutionary developments in the past few
years. The statistical, algebraic, geometric, and computational properties of this
class of models have been reasonably well understood. As result, many effective
and efficient algorithms have been developed for this problem.

2. These new developments obviously come at a very good time, since both science
and engineering are entering the era of Big Data. Many of the new algorithms
and techniques have already demonstrated great success and potential in many
important practical problems of image processing and pattern analysis, as we
will demonstrate with some concrete applications and examples in this book.
We anticipate that these new theoretical results and the associated computational
methods will provide scientists and engineers with a new set of models,
principles, and tools that can be readily applied to a broad range of practical
problems and real-world data, far beyond the applications and data illustrated in
this book.

Intended Audience of This Book

We have written this book with the idea that it will have both research and
pedagogical value. From a research perspective, the topics covered in this book
are of great relevance and importance to both theoreticians and practitioners in
such areas as data science, machine learning, pattern recognition, computer vision,
signal and image processing, and system identification. The motivating examples
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and applications given in this book are purposely biased by our own research
interests in image processing and computer vision, because we believe that from
a pedagogical perspective, visual data and examples can best illustrate some of
the abstract models and properties introduced. Nevertheless, the basic theory and
algorithms are established in fairly general terms, and are obviously applicable to
many practical engineering and scientific problems well beyond those described in
this book.

We believe that the material of the book is ideal for an introductory graduate
course for students in data science, machine learning, and signal processing, or an
advanced course for students in computer vision, estimation theory, and systems
theory. Through arguably the simplest class of models, the low-dimensional linear
models, the book introduces to students some of the most fundamental principles
in data modeling, statistical inference, optimization, and computation. Knowledge
about these basic models and their properties is absolutely necessary for anyone
who strives to study more sophisticated classes of models in which low-dimensional
linear models are the key building blocks, such as the sparse models in compressive
sensing and the deep neural networks in machine learning (see Chapter 13 for further
discussion).

The book is written to be friendly to beginning graduate students and instructors.
At the end of each chapter, we have provided many basic exercises and programs
from which students may gain hands-on experience with the material covered in the
chapters as well as an extensive survey of related literature for research purposes.
Additional information, resources, and sample code for most of the examples,
algorithms, and applications featured in this book will be made available at the
book’s website: http://www.vision.jhu.edu/gpca.

We have used material from this book many times to teach a one-semester
graduate course at the Johns Hopkins University, the University of Illinois at
Urbana-Champaign, the University of California at Berkeley, and the ShanghaiTech
University in China. As the reader will see, GPCA is a very unique subject that
touches on many fundamental concepts, facts, and principles across engineering,
computation, statistics, and mathematics. Therefore, this is a great topic that can
shepherd researchers and students to systematically establish some of the most
fundamental and useful knowledge for modern data science and machine learning.
We also believe that the reader will learn to appreciate the complementary nature of
different perspectives and approaches presented in this book, and in the end develop
a deep and comprehensive understanding of the subject.

Organization of This Book
Chapter 1 gives a nontechnical introduction to the basic problems, ideas, and
principles studied in this book. The remainder of the book is organized into four
parts:

Part I covers classical and modern theory and methods for modeling data with
a single low-dimensional linear or affine subspace (or a nonlinear submanifold).
More specifically, Chapter 2 gives a review of classical PCA theory and methods
for subspace estimation, including its statistical, geometric, and rank minimization
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interpretations. The chapter also covers a simple generative model for PCA, called
probabilistic PCA, as well as model selection issues for PCA. Chapter 3 shows
how to estimate a subspace when the data are incomplete or corrupted. The
chapter discusses statistical and alternating minimization methods for robust PCA,
as well as some advanced tools from compressive sensing for sparse and low-
rank recovery. Since complete proofs for these results are beyond the scope of
this book, we will simply discuss their implications and show how to use them
to develop effective algorithms for robust PCA. Chapter 4 shows how to extend
the methods for learning linear subspaces to nonlinear submanifolds. In particular,
the chapter introduces both parametric and nonparametric methods for manifold
learning, including nonlinear PCA, kernel PCA, locally linear embedding, and
Laplacian eigenmaps. The chapter also introduces the basic K-means algorithm for
clustering data distributed around a few cluster centers, as well as the more advanced
spectral clustering algorithm, which combines manifold learning methods with K-
means to cluster mixed data that have more complex nonlinear structures.

Part II covers three complementary approaches and methods for modeling data
with a mixture of multiple subspaces. More specifically, Chapter S studies the
algebraic-geometric properties of a mixture of subspaces, also known in modern
algebra as a subspace arrangement. The chapter introduces a basic noniterative
algebraic method for estimating multiple subspaces, which works effectively and
efficiently when the data are relatively clean and the ambient dimension is low.
Chapter 6 introduces several statistical methods for estimating mixture subspace
models. They are based on different but related statistical principles, including the
minimax principle (the K-subspaces method), the maximum likelihood principle
(the EM algorithm), and the minimum description/coding length principle (the
compression-based agglomerative clustering method). Chapter 7 explores the
nonparametric spectral clustering method for subspace clustering and introduces
many different ways to establish affinity matrices for data points in a mixture of
subspaces, based on local, semilocal, and global geometric information. Chapter 8
develops principled ways to establish affinity matrices for subspace clustering via
self-expressive low-rank or sparse representations. It introduces modern convex
optimization techniques to find such representations. It also studies under what
conditions this approach gives provably correct solutions.

Part III demonstrates a few representative applications of the methods and
algorithms introduced in earlier chapters. More specifically, Chapter 9 shows how
to cluster image patches into multiple subspaces and learn a hybrid linear model
from them for the purpose of building highly compact and sparse representations
of natural images. Chapter 10 shows how to segment natural images into multiple
regions corresponding to different colors and textures based on data compression
and subspace clustering techniques introduced in this book. Chapter 11 shows
how to segment multiple moving objects in an image sequence using many
of the subspace clustering algorithms presented in this book. The chapter also
provides an empirical comparison of these methods on motion segmentation data,
and discusses their strengths and weaknesses. The chapter also shows how to
extend subspace clustering algorithms to a special class of nonlinear manifolds
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Fig. 2 Organization of the Book—logical dependency among all the chapters and the appendices.

arising in the motion segmentation problem. The chapter also shows how subspace
clustering algorithms can be used to segment video and time series into multiple
events or actions. Chapter 12 studies the temporal segmentation problem more
systematically. The algebraic subspace clustering method is modified and extended
to segment observations that are generated by a hybrid linear dynamical system and
to subsequently identify all the underlying dynamical models.

Part IV covers relevant concepts and results in optimization, mathematical
statistics, and algebraic geometry in order to make the book self-contained. More
specifically, Appendix A covers basics notions from optimization, such as first- and
second-order conditions for optimality, convexity, gradient descent methods, alter-
nating minimization methods, constrained optimization, duality, Lagrange methods,
augmented Lagrange methods, and the alternating direction method of multipliers.
Appendix B covers basic notions from statistics, such as sufficient statistics,
unbiased estimators, maximum likelihood estimation, expectation maximization,
mixture models, model selection, and robust statistics. Appendix C covers basic
notions from algebraic geometry, including polynomial rings, ideals, algebraic sets,
subspace arrangements, ideals of subspace arrangements, and Hilbert functions of
subspace arrangements. All these concepts and results may come in handy for
readers who are not so familiar with certain mathematical facts used in the book,
especially for the early chapters.
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Last but not least, Chapter 13 discusses some of the related open research topics
and future directions that are not covered by this book.

We have taught the material of Chapters 1-8 several times in a one-semester
course, and have covered the entire book with some of the additional proofs for the
material in Chapters 3-8 and applications in Part III in a two-semester sequence.
We invite instructors to experiment with alternative ways of covering this material.
To help instructors design their courses, we have outlined in Figure 2 the overall
book organization and logical dependency among all the chapters and appendices.
We would be delighted to hear of your experiences in this regard.

Baltimore, MD, USA René Vidal
Shanghai, China Yi Ma
Berkeley, CA, USA S. Shankar Sastry

August 2015



Acknowledgments

As we express our gratitude, we must never forget that the highest appreciation is not to
utter words, but to live by them.

—John F. Kennedy

Our initial motivation for trying to generalize principal component analysis to
multiple subspaces can be traced back to early 2001, when René, Shankar, and
colleagues were developing methods for having a team of robots pursue another
team of robots using visual information. For this purpose, we needed to develop
methods for estimating the pose of multiple moving objects in a video taken by a
moving camera. At the time, methods for estimating the pose of an object relative to
a moving camera were well understood, including many methods developed by Yi
in his PhD thesis. However, the problem of estimating the pose of multiple moving
objects in a video was not as well understood. In particular, the main challenge was
that we often do not know which pieces of the video correspond to the same moving
object; hence we needed both to segment the video and to estimate the pose of each
object, i.e., we needed to solve the motion segmentation problem.

To address these issues, René and Yi began to work on a polynomial-based
method for solving the motion segmentation problem. The approach was based on
fitting a high-order polynomial to the image data and factorizing it into multiple
bilinear factors, each one encoding the pose of each one of the moving objects.
Interestingly, we observed that the bilinear factorization problem could be reduced
to the problem of factorizing a polynomial into a product of linear factors, which
in turn provided a solution to the problem of clustering data drawn from a union
of planes in three-dimensional space, i.e., the plane clustering problem. We soon
realized that this polynomial-based method for solving the plane clustering problem
could be extended to subspaces of arbitrary dimensions, a problem that was common
and fundamental to many data modeling, clustering, and classification problems in
pattern recognition, computer vision, signal/image processing, and systems theory.
However, at the time there was a serious lack of systematic study and understanding
of this very important class of models and problems, and many algorithms at the
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Glossary of Notation

Frequently used mathematical symbols are defined and listed according to the

following categories:

Nk v e=o

Set theory and logic symbols
Sets and linear spaces
Transformation groups
Vector and matrix operations
Geometric primitives in space
Probability and statistics
Graph theory

Image formation

Throughout the book, every vector is a column vector unless stated otherwise!

°c I

> <

—
=

Set theory and logic symbols

S1 N S, is the intersection of two sets

S1 U S, is the union of two sets

Definition of a symbol

ds € S, P(s) means there exists an element s of set S such
that proposition P(s) is true

Vs € S, P(s) means for every element s of set S, proposition
P(s) is true

s € S means s is an element of set S

The number of elements in set S

Sy \ 83 is the difference of set S; minus set S

S1 C S, means §; is a proper subset of S

A set consists of elements like s

f : D — R means a map f from domain D to range R

f ¢ x — y means f maps an element x in the domain to an
element y in the range

f o g means composition of map f with map g

‘P v Q is true if either proposition P or proposition Q is true
P A Q is true if both proposition P and proposition Q are
true

P == ( means proposition P implies proposition O

P <= (Q means propositions P and Q imply each other
P | O means proposition P holds given the condition Q

1. Sets and linear spaces

C

The set of all complex numbers
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The n-dimensional complex linear space

The n-dimensional real projective space

The set of all real numbers

The n-dimensional real linear space

The set of all nonnegative real numbers

The set of all integers

The set of all nonnegative integers

A generic 1-D line in space

Typically represents a generic linear or affine subspace
A generic 2-D plane in space

2. Geometric primitives in space

xeR
x e RP

x; €RP
X CRP
XE]RDXN

X, CX
X;

A lower-case letter normally represents a scalar

A bold lower-case letter represents a vector or a random
vector

The jth sample vector in a data set

Represents a set of data points: X' = {x1,x3,...,xy}

A capital letter represents a matrix, very often representing
the data matrix with the data points as its columns: X =
[xl,xz, . ,xN]

The ith subset or cluster of the dataset X’

The submatrix of X associated with the ith cluster A;

3. Vector and matrix operations

[x[|2
[/
[1x[lo
(x,y) eR
x~y

xxyeR?
xQy
span(M)

rank(M)
null(M)
det(M)

MT e RM™m
trace(M)

M=UxXVT"
[|M]]

1Mo

The 2-norm of a vector x € R": \/x% +5 4+ X2

The 1-norm of a vector x € R": |x1| + |xz| + -+ - + [xn]

The 0-norm of a vectorx € R”": the number of nonzero values
The inner product of two vectors: (x,y) = x 'y
Homogeneous equality: two vectors or matrices x and y are
equal up to a nonzero scalar factor

The cross product of two 3-D vectors: x X y = Xy

The Kronecker (tensor) product of x and y

The range or subspace spanned by the columns of a matrix
M

The rank of a matrix M

The null space or kernel of a matrix M

The determinant of a square matrix M

Transpose of a matrix M € R™" (or a vector)

The trace of a square matrix M, i.e., the sum of all its
diagonal entries, sometimes shorthand as tr(M)

The singular value decomposition of a matrix M

The nuclear norm of a matrix M: the sum of all its singular
values

The 0-norm of a matrix M: the number of nonzero values
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The Frobenius norm of a matrix M: the square root of the
sum of the square of its entries

The direct sum of two linear subspaces S; and S»

The orthogonal complement of a subspace S

Projecting a vector x onto the subspace S

4. Transformation groups

GL(n) = GL(n,R)
SL(n) = SL(n,R)

A(n) = A(n,R)

O(n) = O0(n,R)
SO(n) = SO(n, R)

SE(n) = SE(n,R)

The real general linear group on R”; it can be identified as
the set of n x n invertible real matrices

The real special linear group on R”; it can be identified as the
set of n x n real matrices of determinant 1

The real affine group on R”; an element in A(n) is a pair
(A,b) with A € GL(n) and b € R”" and it acts on a point
xeR"asAx + b

The real orthogonal group on R”; if U € O(n), then U U =
1

The real special orthogonal group on R”; if R € SO(n), then
RTR =TI and det(R) = 1

The real special Euclidean group on R”; an element in SE(n)
is a pair (R,f) with R € SO(n) and ¢t € R" and it acts on a
pointx € R" as Rx + ¢

5. Probability and statistics

Po(x)

p(y | x)

P()

r = Efx]
X, = Cov(x)
N(p, X)

6. Graph theory
G={v.&
V={1,...,N}

=10y}

wij € R4

The probability density function of the random variable or
vector x with 6 as parameters of the distribution, sometimes
also written as p(x, 0)

The conditional probability density function of the random
variable y given x

The probability of a random event

The expectation (or mean) of a random variable or vector x
The covariance matrix of a random vector x

The normal (Gaussian) distribution with mean g and covari-
ance X

An (undirected) graph consisting of a set of vertices }V and
(weighted) edges £

The set of N vertices of a graph G, where in this book a vertex
typically represents one data point

The set of (weighted) edges of a graph G, where in this book
an edge typically represents two data points belonging to the
same cluster

A weight associated with the edge (i,j) € £, where in this
book the weight value represents the affinity between two
data points
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w Weight matrix of a graph G, with wy; as its entries

D Degree matrix of a graph G, a diagonal matrix whose
diagonal entries are the degree d;; = Zj w;; of each vertex
ieVy

L Laplacian matrix of a graph G, definedas L =D — W

7. Image formation

(R, T)) Relative motion (rotation and translation) from the ith cam-
era frame to the (default) first camera frame: X; = R X + T;

(Ry, Ty) Relative motion (rotation and translation) from the ith cam-
era frame to the jth camera frame: X; = R;X; + T;;

H e R¥3 The homography matrix, and it usually represents an element

in the general linear group GL(3)



Chapter 1
Introduction

The sciences do not try to explain, they hardly even try to interpret, they mainly make
models. By a model is meant a mathematical construct which, with the addition of
certain verbal interpretations, describes observed phenomena. The justification of such a
mathematical construct is solely and precisely that it is expected to work.

—John von Neumann

The primary goal of this book is to study theory and methods for modeling high-
dimensional data with one or more low-dimensional subspaces or manifolds. To
a large extent, the methods presented in this book aim to generalize the classical
principal component analysis (PCA) method (Jolliffe 1986, 2002) to address two
major challenges presented by current applications.

One challenge is to generalize the classical PCA method to data with significant
amounts of missing entries, errors, outliers, or even a certain level of nonlinearity.
Since the very beginning of PCA nearly a century ago (Pearson 1901; Hotelling
1933), researchers have been aware of PCA’s vulnerability to missing data and
corruption. Strictly speaking, estimating a subspace from incomplete or corrupted
data is an inherently difficult problem, which is generally NP-hard. Nevertheless,
due to the practical importance of this problem, many extensions to PCA have been
proposed throughout the years in different practical domains to handle imperfect
data, even though many of these methods have been largely heuristic, greedy, or even
ad hoc. Recent advances in high-dimensional statistics and convex optimization
have begun to provide provably correct! and efficient methods for finding the
optimal subspace from highly incomplete or corrupted data.

Another challenge is to generalize the classical PCA method to a data set that
consists of multiple subsets, each subset belonging to a different subspace. In
various contexts, such a data set is referred to as “mixed,” “multimodal,” “piecewise
linear,” “heterogeneous,” or “hybrid.” In this book, to be more consistent, we will

'Under fairly broad conditions that we will elaborate in this book.

© Springer-Verlag New York 2016 1
R. Vidal et al., Generalized Principal Component Analysis, Interdisciplinary
Applied Mathematics 40, DOI 10.1007/978-0-387-87811-9_1



2 1 Introduction

typically refer to such data as “mixed data” and the model used to fit the data
as a “mixture model.” However, we will not completely exclude other names
that have been conventionally used in different application domains.> A mixture
model typically consists of multiple constituent primitive models (say subspaces).
Modeling mixed data with a mixture model implies partitioning the data into
multiple (mainly disjoint) subsets and fitting each subset with one of the constituent
models. In the literature, the words “cluster,” “group,” “partition,” “segment,” and
“decompose” are often used interchangeably. In this book, for consistency, we will
primarily use the word “cluster,” but again, in special application domains, we will
use words that have been conventionally used in the literature. For instance, for
images, we typically say “image segmentation.”

In this chapter, we give a brief introduction to some fundamental concepts and
problems involved in modeling incomplete, corrupted, or mixed data. First, we
discuss some basic concepts associated with data modeling in general, such as the
choice of model class. Next, we motivate the problem of modeling mixed data with
mixture models using several examples from computer vision, image processing,
pattern recognition, system identification, and system biology. We then give a brief
account of geometric, statistical, and algebraic methods for estimating mixture
models from data, with an emphasis on the particular case of modeling data with
a union of subspaces,® also known as hybrid linear models in systems theory. We
finish the chapter with some discussion about how noise and outliers make the
estimation problem extremely challenging, especially when the complexity of the
model to be estimated is not known.

99 <

1.1 Modeling Data with a Parametric Model

In science and engineering, one is frequently called upon to infer (or learn) a
quantitative model M for a given set of sample points X = {x1,x5,...,xy} C RP.
For instance, Figure 1.1 shows a simple example in which one is given a set of
four sample points in a two-dimensional plane. Obviously, these points can be
fit perfectly by a (one-dimensional) straight line L. The line can then be called
a “model” for the given points. The reason for inferring such a model is that it
serves many useful purposes. On the one hand, the model can reveal information
encoded in the data or underlying mechanisms from which the data were generated.
In addition, it can simplify the representation of the given data set and help

’In the statistical learning literature, the most commonly used term is “mixture model.” In systems
theory, the typical term is “hybrid model.” In algebraic geometry, for the case of subspaces, the
typical term is a “subspace arrangement.”

<« ”

3In this book, we will use interchangeably “mixture,” “collection,” “union,” and “arrangement”
of subspaces or models. But be aware that in the case of subspaces, the formal terminology in
algebraic geometry is a “subspace arrangement.”
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Fig. 1.1 Four sample points on a plane are fit by a straight line. However, they can also be fit by
many other smooth curves, for example the one indicated by the dashed curve.

predict future samples. In the case of the four points shown in Figure 1.1, the line
model gives a more compact one-dimensional representation than the original two-
dimensional plane P. It also suggests that any new point (if generated with a similar
mechanism as the existing points) will likely fall on the same line.

1.1.1 The Choice of a Model Class

A first important consideration to keep in mind is that inferring the “correct” model
for a given data set is an elusive, if not impossible, task. The fundamental difficulty
is that if we are not specific about what we mean by a “correct” model, there
could easily be many different models that fit the given data set “equally well.”
For instance, in the example shown in Figure 1.1, any smooth curve that passes
through the sample points would seem to be as valid a model as the straight
line. Furthermore, if there were noise in the given sample points, then any curve,
including the line, passing through the points exactly would unlikely be the “true
model.”

The question now is this: in what sense can we say that a model is correct or
optimal for a given data set? To make the model inference problem well posed, i.e.,
to guarantee that there is a unique optimal model for the given data, we need to
impose additional assumptions or restrictions on the class of models considered. To
this end, we should not be looking for just any model that can describe the data.
Instead, we should look for a model M* that is the best among a restricted class
of models M.* In addition, to make the model inference problem computationally
tractable, we need to specify how restricted the class of models needs to be. A
common strategy, known as the principle of Occam’s razor,’ is to try to get away

40r equivalently, we may impose a nonuniform prior distribution over all models.

3Occam’s (or Ockham’s) razor is a principle attributed to the fourteenth-century logician and
Franciscan friar William of Occam: “Pluralitas non est ponenda sine neccesitate,” which translates
literally as “entities should not be multiplied unnecessarily.” In science, this principle is often
interpreted thus: “when you have two competing theories that make exactly the same predictions,
the simpler one is better.”
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with the simplest possible class of models that is just necessary to describe the data
or solve the problem at hand. More precisely, the model class should be rich enough
to contain at least one model that can fit the data to a desired accuracy and yet be
restricted enough that it is relatively simple to find the best model for the given data.

Thus, in engineering practice, the most popular strategy is to start from the
simplest class of models and increase the complexity of the models only when the
simpler models become inadequate. For instance, to fit a set of sample points, one
may first try the simplest class of models, namely linear models, followed by the
class of hybrid (piecewise) linear models (subspaces), and then followed by the
class of (piecewise) nonlinear models (submanifolds). One of the goals of this book
is to demonstrate that among them, piecewise linear models can already achieve
an excellent balance between expressiveness and simplicity for many important
practical data sets and problems.

1.1.2 Statistical Models versus Geometric Models

There are essentially two main categories of models and approaches for modeling
a data set. Methods of the first category model the data as random samples from
a probability distribution and try to learn this distribution from the data. We call
such models statistical models. Models of the second category model the overall
geometric shape of the data set with deterministic models such as subspaces, smooth
manifolds, or topological spaces.® We call such models geometric models.

Statistical Learning

In the statistical paradigm, one typically assumes that each data point x; in the data
set X is drawn independently from a common probability distribution p(x). Such
a probability distribution gives a generative description of the samples and can be
used to generate new samples or predict the outcome of new observations. Within
this context, the task of learning a model from the data becomes one of inferring
the most likely probability distribution within a family of distributions of interest
(for example, the Gaussian distributions). Normally, the family of distributions is
parameterized and denoted by M = {p(x | 6) : 6 € O}, where p(x | 9) is
a probability density function parameterized by 6 € ©, and © is the space of
parameters. Consequently, one popular criterion for choosing a statistical model
p(x | 0%) is the maximum likelihood (ML) estimate given by’

SRoughly speaking, a smooth manifold is a special topological space that is locally homeomorphic
to a Euclidean space and has the same dimension everywhere. A general topological space may
have singularities and consist of components of different dimensions.

7If the true distribution from which the data are drawn is g(x), then the maximum likelihood
estimate p(x | *) minimizes the Kullback-Leibler (KL) divergence KL(g|lp) = [ g(x) log ; g; dx
among the given class of distributions (see Appendix B.)
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N
O = argmaxl—[p(xj | 6). (1.1)
o

Jj=1

If a prior distribution (density) p(0) of the parameter 6 is also given, then, following
the Bayesian rule, the maximum a posteriori (MAP) estimate is given by

N
Oriap = argmax | [ px; | 0)p(6). (1.2)
6e®

J=1

Many effective methods and algorithms have been developed in the statistics and
machine learning literature to find the optimal distribution p(x | 6*) or a good
approximation of it if the exact solution is computationally prohibitive. A brief
review is given in Appendix B.

Geometric Modeling

In many practical scenarios, we may not know a priori the statistical process that
generated the data. Also, the amount of data may not be sufficient to determine a
unique optimal distribution within a large class of possible distributions. In such
cases, we may exploit the fact that the data points are often subject to topological
or geometric constraints, e.g., they must lie in a low-dimensional subspace or
submanifold. This implies that the data can be represented only with a probability
distribution that is close to being singular.?

In general, it is very ineffective to learn such a singular or approximately
singular distribution via statistical means (Vapnik 1995). Thus, an alternative data-
modeling paradigm is to learn the overall geometric shape of the given data set
directly. Typical methods include fitting one or more geometric primitives such as
points9, lines, subspaces, and submanifolds to the data set. For instance, the classical
principal component analysis (PCA) method is essentially equivalent to fitting a
low-dimensional subspace, say S = span{u;,u;,...,u,}, to a data set in a high-
dimensional space, say S C R?. That is, we try to represent the data points as

xj = yljul +y2ju2 —+ .- +ydjud + Sjv ij € X’ (13)

where d < D, y; € Rwithi = 1,...d, and uj,uy,...,uq € RP are unknown
model parameters that need to be determined, playing the role of the parameters 6
in the foregoing statistical model. The line model in Figure 1.1 can be viewed as an
example of applying PCA to the four points in the plane. In the above equation, the
term &; € RP denotes the error between the jth sample and the model. As we will

8Singular distributions are probability distributions concentrated on a set of Lebesgue measure
zero. Such distributions are not absolutely continuous with respect to the Lebesgue measure. The
Cantor distribution is one example of a singular distribution.

9 As the cluster centers.
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see in Chapter 2, PCA finds a set of model parameters {u;} and {y;} that minimize
the error Zi |l&;]| in (1.3). When the errors ¢; are independent samples drawn from
a zero-mean Gaussian distribution, the geometric formulation of PCA is equivalent
to the classical statistical formulation (Jolliffe 1986, 2002). In general, a geometric
model gives an intuitive description of the samples, and it is often preferred to a
statistical one as a “first-cut” description of the given data set. Its main purpose is
to capture global geometric, topological, or algebraic characteristics of the data set,
such as the number of clusters and their dimensions. Geometric models can also
provide more compact representations of the original data set, making them useful
for data compression and dimensionality reduction.

As two competing data-modeling paradigms, the statistical modeling techniques
in general are more effective in the high-noise regime when the generating
distribution is nonsingular, while the geometric techniques are more effective in the
low-noise regime when the underlying geometric space is (at least locally) smooth.
The two paradigms thus complement each other in many ways. On the one hand,
once the overall geometric shape, the clusters, and their dimensions are obtained
from geometric modeling, one can choose the class of probability distributions more
properly for further statistical inference. On the other hand, since samples are often
corrupted by noise and sometimes contaminated by outliers, in order to robustly
estimate the optimal geometric model, one often resorts to statistical techniques.
Thus, this book will provide thorough coverage of both geometric and statistical
modeling techniques.

1.2 Modeling Mixed Data with a Mixture Model

As we alluded to earlier, many data sets X' cannot be modeled well by a single
primitive model M in a pre-chosen or preferred model class M. Nevertheless, it is
often the case that if we group such a data set X into multiple disjoint subsets,

X=Xux,uU---Uax,, withXinNnAX,=40, forl+#m, (1.4)

then each subset X; can be modeled sufficiently well by a model in the chosen model
class:

M! = argmin Error(X;, M), i=1,2,...,n, (1.5)
MeM

where Error(X;, M) represents some measure of the error incurred by using the
model M to fit the data set &;. Each model M} is called a primitive or a component
model. Precisely in this sense, we call the data set X mixed (with respect to the
chosen model class M) and call the collection of primitive models {M}}!_, a
mixture model for X. For instance, suppose we are given a set of sample points

as shown in Figure 1.2. These points obviously cannot be fit well by any single
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Fig. 1.2 A set of sample points in R? are well fit by a mixture model with two straight lines and a
plane.

line, plane, or smooth surface in R3:; however, once they are grouped into three
subsets, each subset can be fit well by a line or a plane. Note that in this example,
the topology of the data is “hybrid”: two of the subspaces are of dimension one, and
the other is of dimension two.

1.2.1 Examples of Mixed Data Modeling

The problem of modeling mixed data is quite representative of many data sets that
one often encounters in practical applications. To further motivate the importance of
modeling mixed data, we give below a few real-world problems that arise in image
processing and computer vision. Most of these problems will be revisited later in
this book, and more detailed and principled solutions will be given.

Face Clustering under Varying Illumination

The first example arises in the context of image-based face clustering. Given
a collection of unlabeled images {Ij}j\;1 of several different faces taken under
varying illumination, we would like to cluster the images corresponding to the
face of the same person. For a Lambertian object,'® it has been shown that the
set of all images taken under all lighting conditions forms a cone in the image
space, which can be well approximated by a low-dimensional subspace called the
“illumination subspace” (Belhumeur and Kriegman 1998; Basri and Jacobs 2003).!!
For example, if /; is the jth image of a face and d is the dimension of the illumination
subspace associated with that face, then there exists a mean face p and d eigenfaces
up,uy, ..., ugsuchthatl; ~ p +uiyij +uzys + - - - +ugyq;. Now, since the images

10An object is called Lambertian if its apparent brightness is the same from any viewpoint.

Depending on the illumination model, the illumination space can be approximately three- or
nine-dimensional.
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the first three principal components three different faces

Fig. 1.3 Clustering a subset of the Yale Face Database B consisting of 64 frontal views under
varying lighting conditions for subjects 5, 8 and 10.

of different faces will live in different “illumination subspaces,” we can cluster the
collection of images by estimating a basis for each one of those subspaces. As we
will see later, this is a special case of the subspace clustering problem addressed in
Part II of this book. In the example shown in Figure 1.3, we use a subset of the Yale
Face Database B consisting of n = 64 x 3 frontal views of three faces (subjects
5, 8 and 10) under 64 varying lighting conditions. For computational efficiency, we
first down-sample each image to a size of 30 x 40 pixels. We then project the data
onto their first three principal components using PCA, as shown in Figure 1.3(a).!?
By modeling the projected data with a mixture model of linear subspaces in R?,
we obtain three affine subspaces of dimension 2, 1, and 1, respectively. Despite the
series of down-sampling and projection, the subspaces lead to a perfect clustering
of the face images, as shown in Figure 1.3(b).

Since face images are rather intuitive real data and have good subspace structures,
we will use them to produce many running examples in the book to help demonstrate
certain abstract concepts or to evaluate certain methods.

Image Representation and Segmentation

The next set of examples arises in the context of image processing, especially image
representation and segmentation. It is commonplace that in an image, pixels in
different regions have significantly different local color/texture profiles (normally in
an N x N window around a pixel). Conventional image representation/compression
schemes, such as JPEG and JPEG2000, often ignore such differences and use the
same linear filters or bases (for example the Fourier transform, discrete cosine
transform, wavelets, or curvelets) to represent the entire set of local profiles. For
example, if /; is the jth image patch and uy, u,, ..., u, are the basis elements, then

12The legitimacy of the projection process will be addressed in Chapter 5.
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(a) Input image (b) First segment (c) Second segment (d) Third segment

Fig. 1.4 Image segmentation based on fitting different linear subspaces (and bases) to regions of
different textures. The three segments (or subspaces) correspond to the ground, the clouds, and the
sky.

all image patches are approximated as a linear combination of these basis elements
as I; ~ u1yyj + uzys; + - -+ + ugyq;. Nevertheless, modeling the set of local profiles
as a mixed data set allows us to segment the image into different regions and
represent each region differently. Each region consists of only those pixels whose
local profiles span the same low-dimensional linear subspace.'? Specifically, if the
jth image patch belongs to the ith region, then I; &~ u|yi; + ubyy + -+ + ulyg,
where the subspace basis {u;};il can be viewed as a bank of adaptive filters
for the ith image region. Figure 1.4 shows regions of an image segmented by
such a mixed representation. The obtained subspaces (and their bases) normally
provide a very compact representation of the image, often more compact than
any of the aforementioned fixed-basis schemes.!* Hence they are very useful for
applications such as image compression, classification, and retrieval. More details
on the application of subspace clustering to image representation and segmentation
can be found in Chapters 9 and 10, respectively.

Segmentation of Moving Objects in Video

The next example is the motion segmentation problem that arises in the field of
computer vision: given a sequence (or sometimes only a pair) of images of multiple
moving objects in a scene, how does one segment the images so that each segment
corresponds to only one moving object? This is a very important problem in
applications such as motion capture, vision-based navigation, target tracking, and
surveillance.

One way of solving this problem is to extract a set of feature points in the
first image and track these points through the video sequence. As a result, one
obtains a set of point trajectories such that each trajectory corresponds to one
of the moving objects in the video. It is well known from the computer vision
literature (Hartley and Zisserman 2004; Ma et al. 2003) that feature points from

3In contrast to the previous face example, there is no rigorous mathematical justification for
why local profiles from a region of similar texture must span a low-dimensional linear subspace.
However, there is strong empirical evidence that a linear subspace normally gives a very good
approximation.

4That is, the number d; of basis elements needed to represent the ith region is typically much
smaller than the number d of basis elements needed to represent the whole image.
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(a) One frame of a video with (b) One frame of a video with  (c) Displacement of the feature
feature points superimposed feature points superimposed points between the two frames

Fig. 1.5 Clustering the relative motion of a collection of feature points between two views of a
scene where both the camera and the car are moving, hence there are two different 3-dimensional
motions in the scene.

two corresponding views of the same object are related by either linear or quadratic
constraints depending on the type of motions and camera projection models (see
Chapter 11). Therefore, mathematically, the problem of motion segmentation is
equivalent to clustering point trajectories into different linear subspaces (in a certain
high-dimensional feature space). Figure 1.5 shows two frames of a video sequence
of a moving car. Feature points on both the car and the background are detected
and tracked through the sequence. These points undergo different three-dimensional
(3D) motions in space as both the car and the camera move; in this sequence, the
camera is mainly panning and zooming. The image on the left shows the starting
positions of the car and the camera view, and the image in the middle shows the final
positions. The image on the right shows the displacement of these feature points
from the first to the second image as well as the segmentation of these displacement
vectors using a mixture model of two linear subspaces. We will describe in detail
the motion segmentation method used to achieve this result in Chapter 11.

Temporal Video Segmentation and Event Detection

Another example arises in the context of detecting events from video sequences. A
typical video sequence contains multiple activities or events separated in time. For
instance, Figure 1.6(a) shows a news sequence in which the host is interviewing a
guest and the camera is switching between the frames containing the host, the guest,
or both the host and the guest. The problem is to separate the video sequence into
subsequences, so that each subsequence corresponds to one of the three events. For
this purpose, we assume that all the frames associated with the same event live in a
low-dimensional subspace of the space spanned by all the images in the video, and
that different events correspond to different subspaces. The problem of segmenting
the video into multiple events is then equivalent to a subspace clustering problem.
Since the image data live in a very high-dimensional space (~ 10°, the number of
pixels), we first project the image data onto a low-dimensional subspace (~ 10)
using principal component analysis (PCA) and then fit a mixture model of multiple
subspaces to the projected data to identify the different events. Figure 1.6 shows the
segmentation results for two video sequences. In both cases, a perfect segmentation
is obtained. We will describe in detail the segmentation method used to achieve
these results in Chapter 11.
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(a) Thirty frames of a video sequence of a tele-
vision show clustered into three groups: host,
guest, and both of them

(b) Sixty frames of a news video sequence
clustered into three groups: car with a burning
wheel, burnt car with people, and burning car

Fig. 1.6 Clustering frames of a news video sequence into groups of scenes by modeling each
group with a linear subspace.

Identification of Hybrid Dynamical Models
The last, somewhat more abstract, example arises in the context of modeling time
series data with linear dynamical models. A popular dynamical model used to
analyze a time series {y, € R},ez is the linear autoregressive (AR) model

Vi = QY1 + @y + -+ apyi—n + &, VtEZ, (1.6)
where {a;} are the parameters of the AR model and ¢, € R represents the modeling
error or noise, which is often assumed to be a white-noise random process. In order
to capture more complex dynamics in the data, one can assume that y, is the output
of a piecewise AR model, where the output at each time instant is drawn from
one out of finitely many AR models. Notice that at each time instant, the vector
X = [V yi—1, - .. ,y,_n]T lies on an n-dimensional hyperplane in R"*+!. Therefore,
the vectors x, for all ¢ lie in a collection of hyperplanes. As a consequence, the
identification of the parameters of a piecewise AR model can be viewed as another
subspace clustering problem. We will discuss this and more general classes of hybrid
dynamical models, together with algorithms for identifying the parameters of such
models, in Chapter 12.

As we can see from the foregoing examples, there are many practical applications
whereby one can rigorously show that a given data set belongs to a collection of
linear or quadratic surfaces of the same or possibly different dimensions (motion
segmentation example). In many other cases, one can use piecewise linear structures
to approximate the data set and obtain a more compact and meaningful geometric
representation of the data, including segments, dimensions, and bases (image
representation, face classification, and video segmentation examples). As we will
see in Part II of this book, subspace (or surface) clustering is a natural abstraction
of all these problems and thus merits systematic investigation. From a practical
standpoint, the analysis of such problems has led to many general and powerful
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modeling tools that are applicable to a wide variety of data types, including image,
video, audio, time series, genomic, and proteomic data.

1.2.2 Mathematical Representations of Mixture Models

The examples presented in the previous subsection argue forcefully for the devel-
opment of modeling and estimation techniques for mixture models. Obviously,
whether the model associated with a given data set is mixed depends on the class of
primitive models considered. In this book, the primitives are normally chosen to be
simple classes of geometric models or probabilistic distributions.

For instance, one may choose the primitive models to be linear subspaces. Then
one can use an arrangement of linear subspaces {S;}’_, C RP,

Z=8SUSU---US,, (1.7)

also called a piecewise linear model, to approximate many nonlinear manifolds
or piecewise smooth topological spaces. This is the standard model considered in
geometric approaches to generalized principal component analysis (GPCA), which
will be studied in Part II of this book.

The statistical counterpart to the geometric model in (1.7) is to assume instead
that the sample points are drawn independently from a mixture of (near singular)
Gaussian distributions {pg,(x)}’_,, where x € RP but each distribution has mass
concentrated near a subspace. The overall probability density function can be
expressed as a sum:

go(x) = mpg, (X) + mope,(x) + -+ 4+ mupe, (%), (1.8)

where 6 = (0y,...,60,,m,...,m,) are the model parameters and 7; > 0 are
mixing weights with 7y + m» 4+ --- 4+ m, = 1. This is the typical model studied in
mixtures of probabilistic principal component analysis (PPCA) (Tipping and Bishop
1999a), where each component distribution pg,(x) is a nearly degenerate Gaussian
distribution. A classical way of estimating such a mixture model is the expectation
maximization (EM) algorithm, where the membership of each sample is represented
as a hidden random variable. Appendix B reviews the general EM method, and
Chapter 6 shows how to apply it to the case of multiple subspaces.

In the special case that there is only one subspace or one component distribution
(i.e., n = 1), the model reduces to the classical (probabilistic) PCA, and we will
see that the geometric and statistical formulations are equivalent in the sense that
they both give very much the same solution (see Chapter 2). However, in the case
of incomplete or corrupted data, or in the general case of a mixture of multiple
components, the two formulations can be very different, and their optimal solutions
need to be found by very different techniques. In this book, we will study and clarify
the similarities and differences between these geometric models and statistical
models in Chapters 5 and 6.
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Difficulties with Conventional Data-Modeling Methods

The reader may have been wondering why we should not simply enlarge the
class of primitive models to include mixture models so that we can deal with
them by the conventional single-model estimation paradigm to be reviewed in
Appendix B. While this is an appealing idea in principle, conventional model
estimation methods are applicable mostly to data sampled from smooth manifolds
and/or nonsingular distributions. As shown by the examples above, many practical
data sets are better modeled by nonsmooth manifolds or singular distributions. As
we will see, the underlying topological space of a mixed data set may contain
multiple (likely intersecting) manifolds of different dimensions, and conventional
manifold learning techniques such as (Tenenbaum et al. 2000; Roweis and Saul
2000) do not apply to such mixtures of smooth manifolds. Also, if one tries to model
mixed data sets with a single probability distribution, then the distribution will
typically have singularities, and conventional statistical techniques become rather
tricky or ineffective in inferring such singular distributions (Vapnik 1995).

An alternative approach to modeling mixed data is to first cluster the data set into
coherent subsets and then model each subset using classical single-model methods.
This is a popular approach adopted by many practitioners in the field. However, a
fundamental difficulty with this approach is that without knowing which subset of
sample points belongs to which constituent model, there is seemingly a “chicken-
and-egg” relationship between data clustering and model estimation: If the partition
of the data were known, one could fit a model to each subset of samples using
classical model estimation techniques; and conversely, if the constituent models
were known, one could easily find the subset of samples that best fits each model.
This relationship has been the rationale behind many alternating minimization
techniques for mixed data, such as the well-known EM and K-means algorithms
widely used in machine learning (see Appendix B) as well as their counterparts
for multiple subspaces (see Chapter 6). These alternating methods, however, share
several drawbacks:

* The iteration needs to start with a good initial guess of the solution; otherwise,
the iteration is likely to converge to a local minimum.

*  Without knowing a priori the number of models and the dimension of each model,
the algorithm may diverge if it starts with a wrong guess for these key model
parameters.

» There are cases or applications in which we may care about only the joint model
rather than the individual clusters; or at the opposite end of the spectrum, we
may care more about the clusters of the data than their parametric models. In
such cases, it might be more efficient to look for a direct solution to what is
needed.

In this book, we will see a few representative approaches that lead to effective
and efficient solutions without resorting to such alternating schemes. These new
methods are global, noniterative, and in many cases provably optimal for the
clustering and modeling problem.
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Mixture Models as Algebraic Sets

In this book, in addition to manifolds or distributions, we will also view mixed data
as algebraic sets, study their algebraic properties, and seek solutions via algebraic-
geometric means. Roughly speaking, an algebraic set is the common zero-level set
of a family of polynomial equations (see Appendix C). To see the merit of such a
representation for a mixture model, let us consider a simple example in which the
data corresponding to the ith constituent model belong to a hyperplane of R” of the
form

Zi={x:blx=0} for i=12,...,n (1.9)

In other words, the set Z; is the zero-level set of the polynomial p;(x) = b;rx.
Therefore, we can interpret a mixed data set drawn from a union of n hyperplanes
as the zero-level set of the polynomial p(x) = (b;rx) (b;r X).-- (b;lrx), ie.,

Z=Z1UZLU---UZ, = {x p1(x)pa(x) - pulx) = O}. (1.10)

This polynomial can be determined from a number of (random) sample points on
the algebraic set X = {x; € Z} using techniques analogous to those used for fitting
a circle to three points in R?. Given the polynomial p(x), we can use polynomial
factorization techniques to obtain the factors p;(x) = bl-Tx, and hence the parameters
for each constituent model, namely the vector b; normal to the hyperplane.

This simple example of modeling the data with a union of hyperplanes can be
immediately generalized to modeling the data with a union of algebraic varieties.'
More specifically, let us suppose that the data corresponding to the ith constituent
model can be described as the zero-level set of some polynomials in a prime
ideal p;,'°

Zi={x:px)=0,pep} Cc R°, i=1,2,....n (1.11)

The (mixed) data from a union of n such models then belong to an algebraic set:!’

Z=Z1UZ,U.--UZ,
(1.12)
= {x:p1@X)p2(x)---pa(x) =0, Vpjep;, i=1,2,....n}.

From a number of (random) sample points on the algebraic set X = {x; € Z}, one
can determine the (radical) ideal of polynomials that vanish on the set Z:'8

X - q(@) ={q:q(x) =0, Vx;€Z}. (1.13)

15An algebraic variety is an irreducible algebraic set. An algebraic set is called irreducible if it
cannot be written as the union of two proper algebraic subsets. A subspace is one such example.

16A prime ideal is an ideal that cannot be decomposed further as the intersection of two other
ideals (see Appendix C). The zero-level set of a prime ideal is an irreducible algebraic set, i.e., an
algebraic variety.

7Notice the correspondence between a “union” of algebraic varieties and the “multiplication” of
the polynomials associated with the varieties.

'8 According to Hilbert’s Nullstellensatz (see Appendix C), there is a one-to-one correspondence
between algebraic sets and radical ideals (Eisenbud 1996).
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While the ideal q is no longer a prime ideal, once q has been obtained, the constituent
models p; (or Z;) can be subsequently retrieved by decomposing the ideal q into
irreducible prime ideals via algebraic means, i.e.,"”

q — q=piNpaN---Np,. (1.14)

Clearly, the above representation establishes a natural correspondence between
terminologies developed in algebraic geometry and the heuristic languages used
in modeling mixed data: the constituent models become algebraic varieties, the
mixture model becomes an algebraic set, the mixed data become samples from an
algebraic set, and the estimation of mixture models becomes the estimation and
decomposition of a radical ideal. Although this nomenclature may seem abstract
and challenging at first, we will see in Chapter 5 how to make this very concrete for
the case of a subspace arrangement.

Despite its purely algebraic nature, the above algebraic representation is closely
related to and complements well the two aforementioned geometric and statistical
data modeling paradigms.

From the geometric viewpoint, unlike a smooth manifold M that sometimes can
be implicitly represented as the level set of a single function, an algebraic set Z is
the zero-level set of a family of polynomials. As a result, an algebraic set Z allows
components with different dimensions as well as singularities that the zero-level set
of a single smooth function cannot describe.

From the statistical viewpoint, one can also view the irreducible components {Z;}
of Z as the “means” of a collection of probability distributions {p;(-)} and the overall
set Z as the “skeleton” of their mixture distribution g(-). For instance, a piecewise
linear structure can be viewed as the skeleton of a mixture of Gaussian distributions
(see Figure 1.7). Therefore, mixture models represented by algebraic sets can be
interpreted as a special class of generative models such that the random variables
have small variance outside the algebraic sets, but large variance inside.

Manifold Distribution Algebraic Set

Fig. 1.7 Comparison of three representations of the same data set: a (nonlinear) manifold, a
(mixed Gaussian) distribution, or a (piecewise linear) algebraic set.

19For the special case in which the ideal is generated by a single polynomial, the decomposition is
equivalent to factoring the polynomial into factors.
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As we will show in this book, if the primitive models are simple models
such as linear subspaces (or quadratic surfaces), then in principle, the problem of
segmenting mixed data and estimating a mixture model can be solved noniteratively
(see Chapter 5). Moreover, the correct number of models and their dimensions can
also be correctly determined via purely algebraic means, at least in the noise-free
case (see Chapter 5).

1.3 Clustering via Discriminative or Nonparametric Methods

The previous section argued for the importance of identifying a mixture model for
clustering mixed data. As a result, we often obtain a parametric (either geometric
or statistical) model that best describes how the given sample data are generated.
However, there are applications for which there might be no need to obtain
parametric and generative models behind the given data. We might be interested
only in seeking a more compact representation of the samples themselves as long
as certain important information or structure (such as topology) of the data is
preserved.

Clustering as a Compression Problem

For instance, for the image segmentation problem, we might be interested only
in grouping the pixels into several homogeneous segments, but not necessarily
in a generative model that best describes the texture in each segment. Hence, it
suffices for our purpose to have a method that directly gives rules (or classifiers)
that separate a collection of data points into different segments or clusters. Such
methods are often referred to as “discriminative” methods, popular in areas such as
object classification and pattern recognition.

However, this does not mean that for discriminative methods one does not
need to understand intrinsic structures of the data. In this book, we will see that
in order to arrive at an effective discriminative method for classifying subspace-
like data, it is very crucial to have precise information about intrinsic geometric
properties of the clusters, such as its dimension and volume. The compression-based
clustering method described in Chapter 6 and its application to image segmentation
in Chapter 10 clearly support this point of view. To be more illustrative, a rather
pragmatic reason why we may want to partition a data set X’ into multiple subsets
X =X UAX U--- U X, might be because the total “volume of space” we need to
store the data set as a whole is more than the sum of the volumes of the individual
subsets. So, suppose we could measure the volume of a data set as L(X'). Then, it
makes sense to partition the data set if

L(X) > L(X) + L(Xs) + -+ + L(X,). (1.15)

For the data set shown in Figure 1.2, the whole data set spans a nontrivial volume
in 3D space, yet each of the three subsets (on the two lines and in the plane) spans
a nearly zero-volume set in three dimensions. In this sense, the data set is separable
because it has “compressible” low-dimensional parts.
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Clustering as a Graph-Partitioning Problem
In many modern data-driven machine learning tasks, we are very often interested
not in each sample data point as a signal defined over space and time, but in a
certain high-level semantic label that the signal shares with other similar signals in
the same class—say sounds of the same word, or images of the same object. Since
the original data could contain a large quantity of irrelevant information or nuisance
factors, we often need to find a much more compact representation of the data that
extracts and highlights what is relevant but suppresses what is irrelevant.

More formally, we could consider mapping the given sample data X’ to another
domain (typically of much lower dimension):

f: XCRP - Y cR?, (1.16)
xeRP >y eRY (1.17)

The image ) = f(X) of X under such a mapping can be considered a nonparamet-
ric representation for X, and ideally, such a Y should preserve some key structural
information about X, such as its intrinsic dimension, topology, and neighborhood
(e.g., in the manifold learning problem studied in Chapter 4). Although ) is not
a parametric model in the conventional sense that we have discussed in previous
sections, it could better serve the task at hand (whether it is to cluster the data or
to infer some high-level semantic information). In the computer vision or pattern
recognition literature, such a representation is loosely called a “feature.” More
formally, features serve the same role as “sufficient statistics” for the inference tasks
of interest (see Appendix B for a definition).

In this book, we will see a representative example of these methods in the context
of manifold learning and data clustering. As we will describe in Chapters 4 and 7,
if we are interested only in clustering (not modeling) the mixed data, then spectral
embedding serves as a great example for such a feature map f(-). The basic idea is
rather simple: instead of seeking a parametric model for the data set, we view each
data point x; of X = {x;,...,xy} as a vertex of a graph G in which each pair of
vertices x;, x; are connected by an edge e; with a weight

wi = exp (— dist(x;, x;)), (1.18)

where d(x;,x;) is a “distance” between the points according to some norm. Ideally,
we hope that the weight will be 1 when the two points belong to the same cluster
(subspace) and 0 when they do not. Such a weight is often referred to as an affinity
measure between pairs of data points. With such an affinity measure, the problem
of clustering the data set X becomes one of identifying the connected components
of such a graph. As we will see in Chapter 4, the null space of the Laplacian matrix
L € RV*N of the affinity graph G,

LY =0, YeRV (1.19)
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reveals how the data set should be clustered. More precisely, two rows y;, y; € R? of
Y are the same if and only if the two vertices x;, x; are connected in the graph. Hence,
the null space of the Laplacian can be viewed as a nonparametric representation )
that captures the clustering information of &x'. For subspace-like clusters, we will
see many different ways of defining the graph affinity in Chapter 7.

Clustering as a Sparse Representation Problem

However, again, taking the nonparametric approach for a problem does not mean
that one could largely ignore the intrinsic structures of the data. Quite to the contrary,
as we will see in Chapter 7 and Chapter 8, for the subspace clustering problem, in
order to build an effective and correct affinity measure for application of the spectral
method, we need to exploit the local or global low-dimensional structures of the
subspaces to their fullest extent.

From the graph-partitioning perspective, we hope to establish an affinity measure
such that data points are connected only to points that belong to the same subspace.
As we will see in Chapter 8, one effective way to obtain such an affinity is to make
use of an important property of subspace-like data: Each point can be represented
as a linear combination of other points in the same subspace; and in general, this
representation, though not necessarily unique, is the most compact one in the sense
that it represents each point with the minimum number of points. For instance, in
Figure 1.2, a point in R? typically can be written as a linear combination of three
other points, but for a point on one of the lines, it can be represented as a scaled
version of any other point on the same line.

Hence, we could represent all points in the data set X as linear combinations of
other points in the same data set. More specifically, let X be the matrix with the data
points as columns X = [x,x7,...,xy]. We have

X = XC, (1.20)

where C € RY*V is the matrix of coefficients with zeros on its diagonal so as to
exclude the trivial representation C = [ in which each point equals itself. Among
all possible representations of this kind for X, if we can find the one that contains the
fewest nonzero coefficients, the matrix C may help us to construct an affinity matrix
that has the desired graph-connectivity property. In Chapter 8, we will see that
under rather broad conditions, such a sparse representation can be found effectively
and efficiently, and the resulting affinity graph indeed respects all the subspace
structures.

1.4 Noise, Errors, Outliers, and Model Selection

In many real-world applications, the given data samples may be corrupted by noise
or gross errors, or contaminated by outliers. Figure 1.8 shows one such example. In
contrast to the noiseless or high signal-to-noise ratio (SNR) scenario, the problem
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Sa S3 7 =51US2US3

S1 0

a) sample points b) noisy samples ¢) noisy samples with outliers

Fig. 1.8 Inferring a mixture model of multiple subspaces Z, consisting of one plane (S;) and two
lines (S,, S3), from a set of mixed data, which can be (a) noiseless samples from the plane and
lines, (b) noisy samples, (c) noisy samples with outliers.

of finding the “correct” model becomes much more challenging in the presence of a
significant amount of noise, errors, or outliers. Proper statistical and robust statistical
techniques therefore need to be developed for model estimation and data clustering.
These issues will be carefully treated in Chapter 3 for the single-subspace case and
Chapter 6 and Chapter 8 for the multiple-subspace case.

Another important observation is that the class of piecewise linear models is
very expressive. In the presence of noise and outliers, a mixture model of linear
subspaces is not necessarily the best even if it achieves the highest fidelity to the
given data. This is especially the case when the number of subspaces and their
dimensions are not known a priori. In fact, for every point in the data set, one
can fit a separate line to it, which results in no modeling error at all. But such a
model is not very appealing, since it has exactly the same complexity as the original
data.

In general, the higher the model complexity, the smaller the modeling error.?’ In
statistics, this is known as “overfitting.” A good (statistical or geometric) model M
should strike a good balance between the complexity of the model and its fidelity
to the data X'.>' Many general model selection criteria have been proposed in
the statistics and machine learning literatures, including the Akaike information
criterion (AIC), the Bayesian information criterion (BIC), the minimum description
length (MDL), and the minimum message length (MML). (See Appendix B for
a brief review.) Despite some small differences, these criteria all make a tradeoff

20For example, every function can be approximated arbitrarily well by a piecewise linear function
with a sufficient number of pieces.

2IFor instance, the complexity of a model can be measured as the minimum number of bits needed
to fully describe the model, and the data fidelity can be measured by the distance from the sample
points to the model.
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Prediction Error
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Fig. 1.9 Modeling and prediction error versus model complexity. The optimal model that
minimizes prediction error, represented by the black dot, can be different from the optimal model
that trades off modeling error and model complexity, represented by the circle.

between modeling error and model complexity and minimize an objective of the
following form:

A}jlél/{l/l [J(M) = o - Complexity(M) + B - Error(X, M)]. (1.21)

In this book, we will introduce a model complexity measure that is specially
designed for an arrangement of linear subspaces of arbitrary dimensions, namely the
effective dimension (see Chapter 5). In Chapter 6, we show how to measure model
complexity and data fidelity based on the minimum description length principle,
which leads to a compression-based data clustering algorithm. We will also see
how such a principle can be effectively applied to the image compression and
segmentation problems in Chapter 9 and Chapter 10, respectively.

There is yet another fundamental tradeoff, known as the bias versus variance
tradeoff in statistics, which is often exploited for model selection. When the model
complexity is too high, the model tends to overfit the given data, including the
noise in it. Such a model does not generalize well in the sense that it is unlikely
to predict well the outcome of new samples. When the model complexity is too low,
the model underfits the data, which results in a large prediction error. Therefore, a
good model should minimize the prediction error. The typical relationship between
modeling error and prediction error as a function of model complexity is plotted in
Figure 1.9. Unfortunately, the “optimal” models obtained by trading off modeling
error and prediction error can be different, as illustrated in the figure. In such a case,
a choice between the two objectives has to be made. In the unsupervised learning
setting, it is often difficult to obtain the prediction error curve unless one does cross-



1.4 Noise, Errors, Outliers, and Model Selection 21

validation within the given data set itself. For purposes such as data compression,
the prediction error is of less concern than the modeling error. Hence in these cases,
we often choose a tradeoff between the modeling error and the model complexity
(see Chapter 6 and Chapter 10). However, if the purpose of data modeling is to
correctly classify future new samples, e.g., in face recognition, the typical model
selection criterion is to minimize prediction error solely.

In the remainder of this book, we will show with great technical detail and
depth how to apply many of the mathematical modeling principles discussed in this
chapter to two classes of models that are central to many applications: subspace
models and union of subspaces models. As we will see, although most of the
book will study problems that generalize principal component analysis well beyond
its classical setting, the fundamental mathematical, statistical, and computational
principles that lead us to good solutions to those generalized settings remain very
much the same as those already being utilized in the classical theory.



Part I
Modeling Data with a Single Subspace



Chapter 2
Principal Component Analysis

Principal component analysis is probably the oldest and best known of the techniques of
multivariate analysis.

—Ian T. Jolliffe

Principal component analysis (PCA) is the problem of fitting a low-dimensional
affine subspace to a set of data points in a high-dimensional space. PCA is, by now,
well established in the literature, and has become one of the most useful tools for
data modeling, compression, and visualization.

In this chapter, we will give a brief review of the classical theory of PCA, but
with some modern twists and enrichment. When the dimension of the subspace
is known, we will introduce both the statistical and geometric formulations of the
PCA problem and establish their mathematical equivalence. Specifically, we will
show that the singular value decomposition provides an optimal solution to the PCA
problem and provides an interpretation of it as a rank minimization problem. We
will also establish the similarities and differences between PCA and a probabilistic
generative subspace model called probabilistic PCA. Finally, when the dimension of
the subspace is unknown, we will introduce some conventional and modern model
selection methods to determine the number of principal components.

2.1 Classical Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S of dimension d <« D to a set of points
{x1,x2,...,xy} in a high-dimensional space RP. Mathematically, this problem
can be formulated as either a statistical problem or a geometric one. In this section,
we will discuss both formulations and show that they lead to the same solution. We
will also formulate PCA as a low-rank matrix approximation problem.

© Springer-Verlag New York 2016 25
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2.1.1 A Statistical View of PCA

Historically, PCA was first formulated in a statistical setting to estimate the principal
components of a multivariate random variable x (Pearson 1901; Hotelling 1933).
Specifically, given a zero-mean multivariate random variable x € R? and an integer
d < D, the d “principal components” of x,y € R?, are defined as the d uncorrelated
linear components of x,

vi=u/x €eR, w;eRP, i=1.2,....d, 2.1

such that the variance of y; is maximized subject to

uiTu,- =1 and Var(y;) > Var(y;) > --- > Var(y,;) > 0. (2.2)
For example, to find the first principal component y;, we seek a vector u} € R?
such that

ul = argmax Var(u x) st w u = 1. (2.3)
uleRD

The following theorem shows that the principal components of x can be computed
from the eigenvectors of its covariance matrix X, = E[xx].

Theorem 2.1 (Principal Components of a Random Variable). Assume that
rank(Xy) > d. Then the first d principal components of a zero-mean multivariate
random variable x, denoted by y; fori = 1,2, ...,d, are given by

yi = u]x, (2.4)

where {u,-}f;l are d orthonormal eigenvectors of Sy = E[xx ] associated with its
d largest eigenvalues {/\,-}f;l. Moreover, A; = Var(y;) fori =1,2,....,d.

Proof. For the sake of simplicity, let us first assume that X, does not have repeated
eigenvalues. In this case, since the matrix X, is real and symmetric, its eigenvalues
are real and its eigenvectors form a basis of R”. Moreover, the eigenvectors are
unique (up to sign), and the eigenvectors corresponding to different eigenvalues are
orthogonal to each other (see Exercise 2.1).

Now notice that for every u € RP, we have that

Var(u'x) = E[(u'x)?] = E[u"xx"u] = u" =,u. (2.5)
Therefore, the optimization problem in (2.3) is equivalent to

max uIrExul S.t. u}rul =1. (2.6)
uleRD
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To solve the above constrained optimization problem, we use the method of
Lagrange multipliers (see Appendix A). The Lagrangian function is given by

L = ulTExul + A (1 — ulTul), 2.7)

where A; € R is the Lagrange multiplier. From computing the derivatives of .Z
with respect to (u1, A1) and setting them to zero, we obtain the following necessary
conditions for (#;, A1) to be an extremum of .Z":

Soup =Au; and wlu; = 1. (2.8)

This means that u; is an eigenvector of X, with associated eigenvalue 1. Since the
extremum value is uIerul = Alu?—ul = A1, the optimal solution for u; is given
by the eigenvector of X, associated with its largest eigenvalue A; = Var(y;) > 0.
To find the second principal component, u,, we use the fact that uIrx and u;rx
need to be uncorrelated. This implies that u, is orthogonal to u;. Indeed, from

]E[(u?_x)(u;rx)] = E[uTxxTug] = uIrExuz = )Llu?_uz =0 (2.9)

and A; # 0, we have u;'—uz = 0. Thus, to find u,, we need to solve the following
optimization problem:

max u;eruz s.t. u;ruz =1 and uiruz =0. (2.10)
quRD

As before, with an abuse of notation, we define the Lagrangian
L =u) Sauy + (1 —u) uy) + yul us. (2.11)

The necessary conditions for (u;, A, ) to be an extremum are
Yo + )2/111 = Aouy, u;ruz =1 and uiruz =0, (2.12)

from which it follows that u;rExuz + ’z’u]—ul = Alu;ruz +7 = Azu?—uz, and so
y =2(A, — Al)u?—uz = 0. This implies that X u, = A,u; and that the extremum
value is u;r Yy = Ay = Var(y). Therefore, u, is the leading eigenvector
of X, restricted to the orthogonal complement of u;.! Since the eigenvalues of
Y, are distinct, u, is the eigenvector of X, associated with its second-largest
eigenvalue.

I'The reason for this is that both #; and its orthogonal complement uf‘ are invariant subspaces
of X,.
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To find the remaining principal components, we use that fact that for all for i # j,
yi= u;rx and y; = u]Tx need to be uncorrelated, whence
Var(y;y;) = E[u;rxxTuj] = uiT Yup = 0.

Using induction, assume that u,...,u,;— are the unit-length eigenvectors of X,
associated with its top i — 1 eigenvalues, and let u; be the vector deﬁning the ith
principal component, y;. Then, X,u; = Aju;forj =1,...,i— 1 and u, Exu] =
Aulu; = Oforallj=1,...,i— 1. Since A; > 0, we have that u u; = 0 for all
j=1,...,i—1.To compute u;, we build the Lagranglan

i—1
Z = u;erui + Ai(1 — u;rui) + Z yju;ruj. (2.13)
j=1

The necessary conditions for (u;, A;, y1, ..., ¥j—1) to be an extremum are

i—1
Seui + Y yzfuj = wlw=landuu;=0j=1,....i—1,  (2.14)
=1

from which it follows that forallj = 1,...,i—1, we haveu DIM/AES y’ = /\,u u;+

);’ = ,-ujTu,-, andso y; = 2()Lj—)k,-)ujTu,- = O. Since the assoc1ated extremum value

is ul.T Seu; = A; = Var(y;), u; is the leading eigenvector of X, restricted to the
orthogonal complement of the span of u;,...,u;—;. Since the eigenvalues of X,
are distinct, u; is the eigenvector of X, associated with the ith-largest eigenvalue.
Therefore, when the eigenvalues of X, are distinct, each eigenvector u; is unique
(up to sign), and hence so are the principal components of x.

Let us now consider the case in which X, has repeated eigenvalues. In this case,
3, still admits a basis of orthonormal eigenvectors. Specifically, the eigenvectors of
3, associated with different eigenvalues are still orthogonal, while the eigenvectors
associated with a repeated eigenvalue form an eigensubspace, and every orthonor-
mal basis for this eigensubspace gives a valid set of eigenvectors (see Exercise 2.1).
As a consequence, the principal directions {u,-}fl=1 are not uniquely defined. For
example, if A; is repeated, every eigenvector associated with A; can be chosen as
u; and any other eigenvector associated with A; and orthogonal to u; can be chosen
as u,. Nonetheless, the principal components can still be obtained from any set of
the top d eigenvectors of X, as claimed. O

The solution to PCA provided by Theorem 2.1 suggests that we may find the
d principal components of x simultaneously, rather than one by one. Specifically,
if we define a random vector y = [y1,ys,...,v4]" € R? and a matrix U =
[ui,us, ... ug] € RP*? then, since y = U'x, we have that

2, =Ey'|=UExx"|U =UTZ,U. (2.15)
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From the definition of principal components, the entries of y are uncorrelated. As
a result, the matrix ¥, must be diagonal, and from the proof of Theorem 2.1, we
showed that the matrix U must be orthonormal, i.e., UT U = 1.

Recall that every diagonalizable matrix A can be transformed into a diagonal
matrix A = V7 !AV, where the columns of V are the eigenvectors of A and the
diagonal entries of A are the corresponding eigenvalues. Recall also that if A is real,
symmetric and positive semi-definite, its eigenvalues are real and nonnegative, i.e.,
A; > 0, and its eigenvectors can be chosen to be orthonormal, so that vyl =vyT
(see Exercise 2.1). Since the matrix X is real, symmetric, and positive semidefinite,
one solution to the equation ¥, = U T3, U is obtained by choosing the columns of
U as d eigenvectors of X, and the diagonal entries of X, as the corresponding d
eigenvalues. Moreover, since our goal is to maximize the variance of each y; and
A; = Var(y;), we conclude that the columns of U are the top d eigenvectors of X,
and the entries of X, are the corresponding top d eigenvalues.

Principal Components of a Nonzero-Mean Random Variable
When x does not have zero mean, then the d principal components of x are defined
as the d uncorrelated affine components

vi=u'x+a €R, weRP, i=1.2,....4d, (2.16)
of x such that the variance of y; is maximized subject to

ulu; =1 and Var(y) > Var(y;) > --- > Var(ys) > 0. (2.17)
As shown in Exercise 2.6, the principal directions {ui}flzl are the d eigenvectors of
Yy = E[(x—p)(x—p) "], where . = E(x), associated with its d largest eigenvalues
{/\,-}f.’:l. Moreover, A; = Var(y;) and a; = —u;ru fori=1,2,...,d.

Sample Principal Components of a Zero-Mean Random Variable

In practice, we may not know the population covariance matrix X,. Instead, we
may be given N i.i.d. samples of the zero-mean random variable x, {xj}é\,:l, which
we collect into a data matrix X = [x1,x,,...,xy]. It is well known from statistics
(see Exercise B.1) that the maximum likelihood estimate of %, is given by

N
& .1 T L —
Yy = N i:E l xXx; = NXX . (2.18)

We define the d “sample principal components” of x as

Si=ax, i=1,2,....d, (2.19)

where {fti}j;l are the top d eigenvectors of Sy, or equivalently those of XX .
Notice that when the dimension D of the data is very high, we can avoid

computing the eigenvectors of a large matrix XX by exploiting the fact that the
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top eigenvectors of XX are the same as the top singular vectors of X. Therefore,
the sample principal components of x may be computed from the singular value
decomposition (SVD) of X = Uy EXV; asy = U'x, where the columns of U are
the first d columns of Uy.

Remark 2.2 (Relationship between principal components and sample principal
components). Even though the principal components of x and the sample principal
components of x are different notions, under certain assumptions on the distribution
of x, they can be related to each other. Specifically, one can show that if x is
Gaussian, then every eigenvector it of Sy is an asymptotically consistent unbiased
estimate (see Appendix B) for the corresponding eigenvector u of . Interested
readers may find a more detailed proof in (Jolliffe 1986, 2002).

2.1.2 A Geometric View of PCA

An alternative geometric view of PCA, which is very much related to the SVD
(Beltrami 1873; Jordan 1874), assumes that we are given a set of points {xj}g.\’zl in
R? and seeks to find an (affine) subspace S C R” of dimension d that best fits these
points. Each pointx; € S can be represented as

x;=p+Uy, j=12,....N, (2.20)

where u € S is a point in the subspace, U is a D x d matrix whose columns form a
basis for the subspace, and y; € R is simply the vector of new coordinates of X; in
the subspace.

Notice that there is some redundancy in the above representation due to the
arbitrariness in the choice of u and U. More precisely, for every y, € RY, we
can re-represent x; as x; = (p + Uyy) + U(y; — yo). We call this ambiguity
the translational ambiguity. Also, for every invertible A € R4 we can re-represent
xjasx; = j + (UA)(A_lyj). We call this ambiguity the change of basis ambiguity.
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace for the data.

A common constraint used to resolve the translational ambiguity is to require
that the average of the Yy be zero,2 i.e.,

N

1

vV =0. 221)
j=1

2In the statistical setting, x; and y; will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to zero.



2.1 Classical Principal Component Analysis (PCA) 31

where 0 € R? is the vector of all zeros, while a common constraint used to resolve
the change of basis ambiguity is to require that the columns of U be orthonormal,
i.e., UTU = I. This last constraint eliminates the change of basis ambiguity only up
to a rotation, because we can still re-represent x; as x; = p + (UR)(RTyj) for some
rotation R in RY. However, this rotational ambiguity can easily be dealt with during
optimization, as we shall soon see.

The model in (2.20) now assumes that each point x; lies perfectly in an affine
subspace S. In practice, the given points are imperfect and have noise. For example,
if point x; is contaminated by additive noise ¢;, we have

xj=u+ij+£j, j=12,...,N. (2.22)

In this case, we define the “optimal” affine subspace to be the one that minimizes
the sum of squared errors, i.e.,

N

N
min x;i—u — Uy; 2, st. UTU =1, and y, =0. (2.23)
> I il j

ILsUs{yj} =1 =1

In order to solve this optimization problem, we define the Lagrangian function
N , N
L= |x—n-Uy| +y" Y y +trace (s — UTU)A). (2.24)
J=1 Jj=1

where y € R and A = AT € R? are, respectively, a vector and a matrix of
Lagrange multipliers. A necessary condition for g to be an extremum is

N N
|
—ZZ(xj—;L—in):0 == ;L:;LN:Nij. (2.25)
Jj=1 j=1
A necessary condition for y; to be an extremum is
—2UT(x;—p—Uy) +y =0. (2.26)

Summing over j yields y = 0, from which we obtain

A~ T ~

Y =U (xj—fiy). (2.27)
The vector y; € RY is simply the coordinates of the projection of x; € R” onto the
subspace S. We may call such a y the “geometric principal components” of x.

Before optimizing over U, we can replace the optimal values for p and y; in the
objective function. This leads to the following optimization problem:
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N
mUinXI: | — ) —UUT (= )| st UTU =1 (2.28)
p=

Note that this is a restatement of the original problem with the mean fi , subtracted
from each of the sample points. Therefore, from now on, we will consider only the
case in which the data points have zero mean. If such is not the case, simply subtract
the mean from each point before computing U.

The following theorem gives a constructive solution for finding an optimal U.

Theorem 2.3 (PCA via SVD). Let X = [x1,X2,...,xn] € RPN be the matrix
formed by stacking the (zero-mean) data points as its column vectors. Let X =
Ux EXV; be the SVD of the matrix X. Then for a given d < D, an optimal solution
Jor U is given by the first d columns of U, an optimal solution for y; is given by the
jth column of the top d x N submatrix of £xV, , and the optimal objective value is
given by le:dH criz, where o; is the ith singular value of X.

Proof. Since UTU = I, wehave (I—UUT)(I-UU") = (I-UU ). Then, recalling
that x " Ax = trace(Axx "), we can rewrite the least-squares error

N N
3w = vUTx P = % Uy — UU T (2.29)
j=1

J=1

as trace((Ip — UUT)XXT). The first term trace(XX ") does not depend on U.
Therefore, we can transform the minimization of (2.29) to

max trace(UU ' XX") st. U'U=1,. (2.30)

Since trace(AB) = trace(BA), the Lagrangian for this problem can be written as
& = trace(U XX " U) + trace((I; — UT U)A), (2.31)
where A = AT € R, The conditions for an extremum are given by
XXTU = UA. (2.32)

Therefore, A = U XX U, and the objective function reduces to trace(A). Recall
now that U is defined only up to a rotation, i.e., U" = UR is also a valid solution,
hence so is A’ = RART. Since A is symmetric, it has an orthogonal matrix of
eigenvectors. Thus, if we choose R to be the matrix of eigenvectors of A, then A’ is
a diagonal matrix. As a consequence, we can choose A to be diagonal without loss
of generality. It follows from (2.32) that the columns of U must be d eigenvectors
of XX T with the corresponding eigenvalues in the diagonal entries of A. Since the
goal is to maximize trace(A), an optimal solution is given by the top d eigenvectors
of XXT, ie., the top d singular vectors of X = UXEXV; , which are the first d
columns of Uy. It then follows from (2.27) that ¥ = [y,.y,.....y5] = U'X =
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U’ UXEXV; = XV, where X is a diagonal matrix whose diagonal entries are the
top d singular values of X and V a matrix whose columns are the top d right singular
vectors of X. Finally, since A = UT UxX% U; U = X2, the optimal least-squares
error is given by trace(X%) — trace(X?) = Z,D: a1 o7, where o; is the ith singular
value of X. O

According to the theorem, the SVD gives an optimal solution to the PCA
problem. The resulting matrix U, together with the mean g if the data do not have
zero mean, provides a geometric description of the dominant subspace structure for
all the points;> and the columns of the matrix XV = [j;,5,.....5y] € RV,
i.e., the principal components, give a more compact representation for the points
X = [x1,%2,...,xy] € RP¥ since d is typically much smaller than D.

Theorem 2.4 (Equivalence of Geometric and Sample Principal Components). Let
X = [x1,x2,...,x5] € RPN be the mean-subtracted data matrix. The vectors
Wy, i, ... 04 € RP associated with the d sample principal components of X are
exactly the columns of the matrix U € RP*? that minimizes the least-squares
error (2.29).

Proof. The proof is simple. Notice that if X has the singular value decomposition
X = UxZyVy, then XXT = Uy E%U; is the eigenvalue decomposition of XX 7. If
3x is ordered, then the first d columns of Uy are exactly the leading d eigenvectors
of XX T, which give the d sample principal components. O

The above theorem shows that both the geometric and statistical formulations of
PCA lead to exactly the same solution/estimate of the sample principal components.
This equivalence is part of the reason why PCA has become the tool of choice for
dimensionality reduction, since the optimality of the solution can be interpreted
either statistically or geometrically in different application contexts.

Figure 2.1 gives an example of a two-dimensional data set and its two principal
components.

Fig. 2.1 Example showing a two-dimensional data set and its two principal components.

3From a statistical standpoint, the column vectors of U give the directions in which the data X has
the largest variance, whence the name “principal components.”
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2.1.3 A Rank Minimization View of PCA

Notice that the geometric PCA problem in (2.23) can be rewritten as

2, st UTU=1; and Y1 =0, (2.33)

. T
,Enl}r}/ HX—;LI —UY|

where X = [xl, ... ,xN], Y = [yl, ... ,yN], 1 € RY is the vector of all ones, and
IX||2 = Zu X; is the Frobenius norm of X. Therefore, another interpretation of
PCA is to see it as the problem of finding a vector s and rank-d matrix that best
approximate the data matrix X. This problem can be formulated as

min X — plT —A|%2 st rank(A) =d and Al = 0. (2.34)
I,

Notice that this formulation is identical to that in (2.23), except that we have now
replaced the subspace basis U and the matrix of principal components Y by their
product A = UY. The constraint A1 = 0 comes from the requirement that the
principal components be centered, i.e., Y Y = 0; hence Y1 = 0.

Since the problem in (2.34) is the same as that in (2.23), we already know that
the optimal solution for u is 1{, Z,’ x; = Zi,X 1. Therefore, after we have centered the
data matrix by subtracting g from each column, the optimization problem in (2.34)
can be reduced to

min || X —A|% st rank(A) =d. (2.35)

Notice that we have dropped the constraint A1 = 0. This is because this constraint
is not needed when the data matrix is centered, i.e., when X1 = 0. To see this, let
A* be the optimal solution to (2.35), i.e., the optimal solution without the constraint
Al = 0. Suppose a = ;,A*l is not zero, and let A = A* — a1 Notice that

rank(A) < d and A1 = 0. So A satisfies the constraints of the program (2.34).
However,

IX —All} = IX —A* +al |} (2.36)
= | X—A*2 +2(X —A*.al") + |lalT|? (2.37)
= |X —A*|% +2a" (X — A*)1 + N|la|3 (2.38)
= |IX —A*|F = Nlall; < |X —A*|7, (2.39)

which contradicts the optimality of A* to the program (2.35) without the constraint
Al =0.

To solve the problem in (2.35), let X = UXEXV; and A = UAEAV; be the
SVDs of X and A, respectively. Then, letting U = U; Ujand V = V;(r V4, we have
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IX — A2 = [|UxExVy — UsZaVi |3 = [|Zx — USAVT |2 (2.40)
= |Zx|2 = 2(Sx. USAVT) + || Zall2. (2.41)

Therefore, minimizing || X — A||% with respect to A is equivalent to minimizing the
above expression with respect to U, V, and ¥,4. We will solve this problem in two
steps.

In the first step, we will minimize with respect to U and V only. Notice that this
is equivalent to

max(Zy. UsavT), (2.42)

where U and V are orthonormal. The solution to this problem can be found from
Von Neumann’s inequality, which is stated next.

Lemma 2.5 (Von Neumann’s Inequality). For any m x n real-valued matrices F
and G, let 01(F) > 03(F) > --- > 0 and 01(G) > 02(G) > --- > 0 be the
descending singular values of F and G respectively. Then

(F,G) = trace(F'G) < Z 0:1(F)oi(G). (2.43)

i=1

The case of equality occurs if and only if it is possible to find orthonormal matrices
Ur and VF that simultaneously singular value decompose F and G in the sense that

F=UrSpV) and G=UpZgVy, (2.44)
where X and X denote the m X n diagonal matrices with the singular values of F
and G, respectively, down the diagonal.

Proof. See (Mirsky 1975). O
Applying this lemmato F = Xy and G = UX,4 V", we obtain

d
(Zx. USAVT) <> 0i(X)0i(A), (2.45)

i=1

because 0;(A) = 0 for i > d. Notice also that equality can be achieved by taking
U=TIandV =I;hence Uy = Uy and V4, = Vy.

In the second step, we will substitute the above solutions for U and V into the
objective function || X — A||% and optimize over {;(A) };lz - This gives the following
optimization problem:

d d
min Y 0i(A)* =2 0i(X)oi(A). (2.46)

{Ui(A)};j=1 i=1 i=1
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Taking the derivatives with respect to 0;(A) and setting them to zero gives us 0;(4) =
0;(X) fori = 1,...,d. The value of the objective function is — Z?=1 ai(X)z, which
reaches the minimum when the d singular values are the largest. We thus have the
following result.

Theorem 2.6 (PCA via Rank Minimization). Let X = UxX XV; be the singular
value decomposition of the mean-subtracted data matrix. An optimal solution for
the optimization problem

min || X —A|%2 st rank(A) =d (2.47)

is given by A = USVT, where U € RP* 5 € R and V e R¥*? are matrices
corresponding to the top d singular vectors and singular values in Uy, Zx and Vy,
respectively.

Notice that this theorem is essentially equivalent to Theorem 2.3 and that the
above derivation based on Von Neumann’s inequality provides an alternative proof
for the theorem.

In summary, we can view the PCA problem as a statistical problem, a geometric
problem, or a rank minimization problem; and all three interpretations lead to the
same solution.

Example 2.7 (PCA for Modeling Face Images under Varying Illumination)
Face recognition is an area of computer vision in which low-dimensional linear
models such as PCA and its variations have been extremely popular tools for
capturing the variability of face images. In particular, it has been shown that under
certain idealized circumstances (such as Lambertian reflectance), images of the
same face under varying illumination lie near an approximately nine-dimensional
linear subspace known as the harmonic plane (Basri and Jacobs 2003). The principal
bases U estimated by PCA are also known as the eigenfaces in the computer
vision literature (Turk and Pentland 1991), and they capture the principal modes
of variation in the face images. The principal components Y estimated by PCA are
often less dependent on illumination variations and are hence used for recognition
purposes.

In this example, we show how PCA can be used to capture the illumination
variations in a data set of face images of a person taken under different lighting
conditions. The extended Yale B data set (Georghiades et al. 2001) is a popular
data set used to study face recognition under varying lighting conditions. From this
data set, we take as input for PCA N = 10 frontal face images of one individual
(subject 20), shown in Figure 2.2. Each image is of size D = 192 x 168 pixels.
We apply PCA to the ten input images and compute the first d = 2 principal
components and the first two eigenvectors u#; and u», i.e., the first two eigenfaces.
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Fig. 2.2 Face images of subject 20 under 10 different illumination conditions in the extended Yale
B data set. All images are frontal faces cropped to size 192 x 168.

v |1

(a) mean face (b) first eigenface (¢) second eigenface

Fig. 2.3 Mean face and the first two eigenfaces by applying PCA to the ten images in Figure 2.2.

Figure 2.3 shows the obtained mean face g and the first two eigenfaces u; and u,.*
Figure 2.3 demonstrates that the first two eigenfaces capture lighting from the right
and up directions, respectively. This is visualized more clearly in Figure 2.4. The
first row plots how the appearance of the face changes along the direction of the
first eigenface: u + yu; for yy = —o ‘gl : 01; and the second row plots
variations along the second eigenface: u + y,u, for y, = —o : 'T,f : 03, in which
o1 and o0, are the standard deviations of the first and second principal components,
respectively. Now it is clear from this experiment that for this data set, the first two
eigenfaces mainly encode how the appearance of the face varies along the horizontal

and vertical lighting directions, respectively.

“In Section 1.2.1, we have seen an example in which a similar process can be applied to an
ensemble of face images from multiple subspaces, where the first d = 3 principal components
are calculated and visualized.
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KRS

(a) Variation along the first eigenface
sEmEFEH SRS
ol e bemd b

(b) Variation along the second eigenface
Fig. 2.4 Variation of the face images along the two eigenfaces given by PCA. Each row plots
B+ yu; fory, = —o; : ‘;’ 1 0;,1 = 1,2, where o; is the standard deviation of the first or second

principal component.

2.2 Probabilistic Principal Component Analysis (PPCA)

The PCA model described so far allows us to find a low-dimensional representation
y € R} of a set of sample points {x; € R}, where d < D is the desired number
of principal components. However, the PCA model is not a proper generative model,
because the low-dimensional representation {y;} and the error {¢;} are not treated as
random variables. As a consequence, the PCA model cannot be used to generate
new samples of the random variable x.

To address this issue, we assume that the low-dimensional representation y and
the error ¢ are independent random variables with probability density functions p(y)
and p(¢), respectively. This allows us to generate a new sample of x from samples
of y and ¢ as

x=pm+ By +e, (2.48)

where u € RP and B € RP*? represent a point and a basis for affine subspace
S, respectively. Let the mean and covariance of y be denoted by p, and %,
respectively. If we assume that ¢ has zero mean and covariance X, then the mean
and covariance of the observations are given by

Me=p+Bp, and I, =BI,B' + X, (2.49)

Notice that in contrast to the PCA problem studied in the previous section, here
we assume only that B is a rank-d matrix, but we no longer need to assume that B is
orthonormal. This is because if we enforce a specific type of probability distribution
for y, we can then estimate an optimal model from the observations x without any
additional constraints on the matrix B via the maximum likelihood (ML) principle
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(see Appendix B.1.4). The remainder of this section discusses two methods for
estimating the parameters of this model, p, B, Ky, Yy, and X, from the mean
and covariance of the population, u, and X, and alternatively from i.i.d. samples
{x;}iL, of x.

2.2.1 PPCA from Population Mean and Covariance

Observe that in general, we cannot uniquely recover the model parameters from p,
and X by solving the equations in (2.49). For instance, notice that g and g, cannot
be uniquely recovered from . Similarly to what we did in the case of PCA, this
issue can be easily resolved by assuming that g, = 0. This leads to the following
estimate of w:

B=py, (2.50)

which is the same estimate as that of PCA (see Exercise 2.6). Another ambiguity
that cannot be resolved in a straightforward manner is that X, and X, cannot be
uniquely recovered from X,. For instance, ¥, = 0 and X, = 3, is a valid solution.
However, this solution is not meaningful, because it assigns all the information in
3, to the error, rather than to the low-dimensional representation.

To resolve this ambiguity, we need to make some additional assumptions.
Intuitively, we would like BEyBT to capture as much information about X, as
possible. Thus it makes sense for ¥, to be of full rank and for X, to be as close
to zero as possible. More specifically, the assumptions made in PPCA are the
following:

1. The low-dimensional representation has unit covariance, i.e., £, = I; € R4*d
2. The noise covariance matrix X, € RP*? is isotropic, i.e., &, = 0%Ip.

Under these assumptions, the covariance of the observations must be of the form
Y. = BB + o’Ip. (2.51)

It follows from this relationship that the eigenvalues of X, must be equal to the
eigenvalues of BBT plus o2. Since BB has rank d and is positive semidefinite, D—d
eigenvalues of BBT must be equal to zero. Therefore, the smallest D —d eigenvalues
of ¥, must be equal to each other and equal to 2. In addition, the off-diagonal
entries of X, are equal to the off-diagonal entries of BB . As a consequence, even
though both PPCA and PCA try to capture as much information as possible from
Y, into X, the information they attempt to capture is not the same. On the one
hand, PPCA tries to find a matrix B such that the covariances are preserved, i.e., the
off-diagonal entries of 2. On the other hand, PCA tries to preserve the variances,
i.e., the diagonal entries of X.
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As it turns out, the parameters B and o of the PPCA model can be computed
in closed form from the SVD of the population covariance X, as stated by the
following theorem. Again, we emphasize that in the PPCA model, the matrix B can
be an arbitrary matrix and does not need to be orthonormal.

Theorem 2.8 (PPCA from Population Mean and Covariance). The parameters .,
B and o of the PPCA model can be estimated from the population mean and
covariance, L, and Xy, respectively, as

fi=p,. B=UNA=-6D"R 6*=rqp1=Agpa="-=2Ap.  (252)

where U is the matrix with the top d eigenvectors of Xy, A is the diagonal matrix in
R4 of the corresponding top d eigenvalues, R € R is an arbitrary orthogonal
matrix, and A; is the ith eigenvalue of X,.

Proof. We have already shown in (2.50) that i = u,. We have also shown that o2
is equal to the smallest D — d eigenvalues of 2. To find B, let

e =[UV] [’;‘ - 12, _d} [vv]' (2.53)

be the eigenvalue decomposition of X, where the columns of U are the top d
eigenvectors of X, and the entries of A are the corresponding eigenvalues. Then,

)
BBT =%, —0o%lp = [U V] [A 0“ la g} [vv]' (2.54)

=U(A —0?1)U". (2.55)

Since both B and U are of rank d, all the solutions for B must be of the form B =
U(A — 0%1;)'/?R, where R is an arbitrary orthogonal matrix. O

2.2.2 PPCA by Maximum Likelihood

In practice, we may not know the population mean and covariance, g, and ;.
Instead, we are given N i.i.d. samples, {xj}ﬁvzl, from which we wish to estimate the
PPCA model parameters p, B, and o. In this section, we show that the ML estimates
(see Appendix B.1.4) of these parameters can be computed in closed form from the
ML estimates of the mean and covariance.

To that end, assume that y and ¢ are zero-mean Gaussian random variables with
covariances I; and o%Ip, respectively, i.e., y ~ N(0,1) and ¢ ~ N(0,0>I). Then
x ~ N(u,, =), where u,, = p and T, = BB + o2Ip. Therefore, the log-
likelihood of x is given by



2.2 Probabilistic Principal Component Analysis (PPCA) 41

N 1 =) T2 - py)
¥ = ;log((Zﬂ’)D/z det(S,)1/2 exp (_ J ; j ))
~ (2.56)

N
ND N 1 _
=~ log2m) = logdet(e) — , Y (5—p) ' =7 (x—p).
=1

We obtain the ML estimate for g from the derivatives of .Z with respect to u as

0.7

N N
1
=) S =0 = p=fy= X;. (2.57)
BIL Z ] N N; ]

j=1

After replacing fi in the log-likelihood, we obtain
ND N N A
L= 5 log(27) — 5 log det(Z,) — 5 trace(Z; ' 2y), (2.58)

where

A 1Y . R
Sv= D= i) — )T (2.59)

j=1

The answer to the question whether B and ¢ can be estimated as in Theorem 2.8
after replacing X, by Xy is given by the following theorem.

Theorem 2.9 (PPCA by Maximum Likelihood). The ML estimates for the param-
eters of the PPCA model ., B, and o can be obtained from the ML estimates of the
mean and covariance of the data, fL and Xy, respectively, as

D
- 1
A A _ _A2pl/2 52 — .
fi=py, B=U( —6D"*R and 6*= D_dlgdHAL, (2.60)

where U, is the matrix with the top d eigenvectors of v, Ay is the matrix with the
corresponding top d eigenvalues, R € R is an arbitrary orthogonal matrix, and
A; is the ith-largest eigenvalue of Xy.

Proof. We have already shown that i = fiy. To find B, we need to
compute the derivatives of .Z with respect to B. It follows from Exercise 2.4
that J log(|det(X))) = (X7H)T, 5 traceAX~'B) = —(X"'BAX™")T and
zg( trace(XBX ") = XB" + XB. Therefore,

0L

B = ~NS'B+NS['EyS'B=0 = Iy3.'B=B. (2.61)



42 2 Principal Component Analysis

One possible solution is B = 0, which leads to a minimum of the log-likelihood
and violates our assumption that B should be of full rank d. Another possible
solution is X, = by ~» Where the covariance model is exact. This corresponds to the
case discussed in the previous section, after replacing X, by $v. Thus, the model
parameters can be computed as in Theorem 2.8, since equation (2.60) reduces to
equation (2.52). A third solution is obtained when B # 0 and X, # Sv. In this
case, let B = ZI'VT be the compact SVD of B, where Z € RP*? is a matrix with
orthonormal columns, I' € R%*“ is an invertible diagonal matrix, and V € R%*¢
is an orthogonal matrix. Let Z+ € RP*(®=9 be an orthonormal matrix such that
Z7Z1+ = 0, so that the matrix [Z Z* ] is orthonormal and ZZT + Z+Z+T = I. Then

Sy = 202727 + 6%y = Z(T? 4+ 021)Z" + 022+ 71T, (2.62)

Combining this with (2.61) gives

SNECB = SN + 0%y) ' 2T + 072z 2t Tzry T (2.63)
= SNZ(T2 + 6~ 'rvT = zrvT, (2.64)

whence
SNZ = Z(T? + o1y). (2.65)

Letting Z = [z1,...,24] and I = diag{y\, ..., y4}, we obtain
Syzi= (2 +0dz Vi=1,....d (2.66)

Hence, Z is a matrix containing d eigenvectors of Sy with corresponding eigenval-
ues y? +02. Let Syv=UAUT = (U, Us]diag{ A1, A2}[U;, Us] T be the eigenvalue
decomposition of v, where we partition U and A so that the d chosen eigenvectors
and eigenvalues are in U; and A, respectively. Then all optimal solutions for B are
of the form

B=ZI'V' = U(A, —o?I)"/?VT. (2.67)

To determine o, we replace the solution for B in the likelihood in (2.58). Noticing
that

det(Z,) = det (BB' + 0’Ip) (2.68)
= det (U1(A1 — o* LU + o> (U U] + U,U,)) (2.69)
= det(U, A U] + 0*UsU) ) = det(A)o*P~9 (2.70)
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and that

trace(S; ' Sy) =trace (U AT U +0720,U) ) (UL AU+ U AU ) (2.71)
=trace(U, U] + 02U A2U; ) = d + o % trace (A2), (2.72)

we obtain

N
L= ) (Dlog(2m) +logdet(A 1)+ (D—d)logo? +d+o* trace(Az)) . (2.73)
The condition for an extremum in o is given by

, _ trace(Az)
do2 2 N '

D d (2.74)

0.7 N (D—d trace(Ay)
o2 ot

)=0=>0

Therefore, o is the average of the discarded eigenvalues of Sy

To determine which d eigenvectors and eigenvalues of Sy should be discarded,
notice that det(A ) = (f:[t((f\\;). Hence, after substituting the optimal o2 in (2.74) into
Z, we can see that the maximization of . is equivalent to the minimization of

Z'D—d+1 Axi Zp—d+l log A
M =lo ( = ) _ = , 2.75
&8\ p_u4 D—d (2.73)
with respect to a permutation 7 of all the eigenvalues such that A,y ..., Ay[g are
the chosen eigenvalues and Ax[s41]. . . ., Ax[p] are the discarded ones. Since the log

function is concave, by Jensen’s inequality, M is nonnegative, and the reader can

verify (see Exercise 2.13) that M is minimized when the discarded eigenvalues are

contiguous within the spectrum of the ordered eigenvalues of . Further, since the

chosen eigenvalues must be such that A, > o2 fori = 1,...,d, the discarded

eigenvalues must be the D — d smallest eigenvalues. Indeed, if such were not the

case, then Apip = nllinD A; would be one of the chosen eigenvalues, and we would
1

have Amin < o2, which would be a contradiction to equation (2.66). Therefore, the
optimal solutions for B and ¢ are given by (2.60). Finally, the optimal log-likelihood
is given by

7= (prog d1 A+ (D—d)l Yzt b D 2.76
== (D1og2m) + Y togdi+ (0= dlog (T ) + D). 276)

i=1
O

Once the parameters of the PPCA model have been identified, one question that
arises is how to find the principal components of a specific data point, say x. Recall
that in both statistical and geometric PCA, the principal components y of x are
found asy = U'(x — p), where (g, U) are the parameters of the PCA model.
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The fundamental difference in PPCA is that we have a proper generative model for
the joint distribution of x and y. As a consequence, it doesn’t make sense to ask for
a specific vector y associated with x. Instead, we can ask for the entire distribution
of y given x.

It is easy to show (see Exercise 2.14) that the conditional distribution of y given
x is Gaussian, i.e.,y | X ~ N(fty,, Zy|x), Where

Iy = (B"B+0’D)7'BT (x—p) and X, = o*(B'B+o?1)". (2.77)

Therefore, given x, we can sample from this distribution in order to obtain its
principal components. In practice, however, if the goal is dimensionality reduction,
we may be interested in finding only one set of principal components. In this case,
we can choose, for example, the mean of the distribution and define the probabilistic
principal components of x as

y=B'B+o)'BT(x — p). (2.78)
Now, using the maximum likelihood estimates given in Theorem 2.9, we have

B'B+ 0% =R (A —a*D)"2U] Uy(A) — 0 )'?R + 01 (2.79)
=RT(A, —0’)R+ 0% = RTAR. (2.80)

Thus, y = RTAI_I(AI — azl)l/zUIr(x — ). Therefore, we can see that the
main difference between the principal components and the probabilistic principal
components is that the latter are a scaled and rotated version of the former, where
the scales are given by the diagonal entries of the diagonal matrix A7!(A4 —oN'/?,
and the rotation is given by R.

Example 2.10 (PPCA for Modeling Faces Images under Varying Illumination)
In this example, we apply the PPCA algorithm with d = 2 to the same ten face
images used in Example 2.7, as shown in Figure 2.2. The obtained mean face and
eigenfaces are shown in Figure 2.5. Notice that if we compare to the results in
Figure 2.3, the mean face and the first two eigenfaces computed from PCA and
PPCA are rather similar: the mean should be the same by construction; and the
eigenfaces differ only by a scale factor but appear the same when plotted as images.
We also plot the variation along the two eigenfaces by computing u + y;u; for
yi=-—1: ; : 1,7 =1, 2. The results are shown in Figure 2.6. Observe that the first
principal component captures variations in illumination in the horizontal direction,
while the second principal component captures variations in brightness (from dark
to bright images). In Exercise 2.17, we ask the reader to implement PCA and PPCA
and compare the results of the two methods on other data sets.
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Fig. 2.5 Mean face and the first two eigenfaces by applying PPCA to the ten images in Figure 2.2.

(a) Variation along the first eigenface

EAEALelve

(b) Variation along the second eigenface

Fig. 2.6 Variation of the face images along the two eigenfaces given by PPCA. Each row plots
w4y fory,=—1:3:1,i=1.2

2.3 Model Selection for Principal Component Analysis

One of the main goals of both PCA and PPCA is to reduce the data to a small
number of principal components that capture as much information about the data as
possible. So far, we have assumed that the number d of principal components or the
dimension d of the subspace S is known. In practice, however, we may not know the
intrinsic dimension of the data. In this section, we review a few methods (several of
them heuristic) for estimating the number of principal components. Some of them
are based on the model selection criteria described in Appendix B, while others
rely on more modern rank minimization techniques. However, we would like to
emphasize that model selection is in general a difficult problem, especially when
the amount of noise in the data is unknown.
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2.3.1 Model Selection by Information-Theoretic Criteria

Let X = [x1,X2,...,xy] € RP*V be the mean-subtracted data matrix. When the
data points are noise-free, they lie exactly in a subspace of dimension d. Hence,
we can estimate d as the rank of X, i.e., d = rank(X). However, when the data are
contaminated by noise, the matrix X will be of full rank in general; hence we cannot
use its rank to estimate d. Nonetheless, notice that the SVD of the noisy data matrix
X gives a solution to PCA not only for a particular dimension d of the subspace, but
also foralld = 1,2,...,D. This has an important side benefit: if the dimension of
the subspace S is not known or specified a priori, rather than optimizing for both
d and § simultaneously, we can easily look at the entire spectrum of solutions for
different values of d to decide on the “best” estimate d for the dimension of the
subspace d given the data X.

One possible criterion is to chose d as the dimension that minimizes the least-
squares error between the given data X and its projection X4 = [fcf,ifg, e JQXI,]
onto the subspace S of dimension d. As shown in the proof of Theorem 2.3, the
least-squares error is given by the sum of the squares of the remaining singular
values of X, i.e.,

N D
Jd) = IX =X ="l —%17= ) o (2.81)
j=1 i=d+1

However, this is not a good criterion, because J(d) is a nonincreasing function of d.
In fact, the best solution is obtained when d = rank(X), because J(d) = 0.

The problem of determining the optimal dimension d is in fact a “model selec-
tion” problem. As we discussed in the introduction of the book, the conventional
wisdom is to strike a good balance between the complexity of the chosen model and
the fidelity of the data to the model. The dimension d of the subspace S is a natural
measure of model complexity, while the least-squares error [X—X?||2 = 32 .| o?
or its leading term, o7 1, are natural measures of the data fidelity. Perhaps the
simplest model selection criterion is to minimize the complexity subject to a bound
on the fidelity. For example, we can choose d as the smallest number such that the
fidelity is less than a threshold t > 0, i.e.,

D
o R . 2 s I L2
d—mdln{d.';rloi <t} or d=min{d: o}, <7}. (2.82)

The second criterion in (2.82) is illustrated in Figure 2.7.

In practice, however, it is very hard to choose an appropriate t, because the
singular values of X are not invariant with respect to transformations of the data,
such as scaling. One possible solution is to normalize the singular values by

X% = Z?:l o7 and estimate d as
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Squared Singular Values

Subspace Dimension

Fig. 2.7 Singular value as a function of the dimension of the subspace. Two model selection
criteria are illustrated in this picture: choosing a subspace dimension based on a threshold and
choosing a subspace dimension that trades off the model complexity (x-axis) and fidelity (y-axis),
both linearly weighted.

D 2 2
N ol . N o
d = min {d : Li=i+10] < r} or d = min {d . a+l , < t}. (2.83)

The first criterion in (2.83) is widely used, because it has an intuitive interpretation:
the number of principal components is chosen as the smallest number such that the
fraction of information being discarded is less than a threshold t. Typical values for
T are in the range 10%-20%.

Yet another model selection criterion seeks a balance between d and aj 1 by
minimizing an objective function of the form

d=argminJ(d) = a-02,, +B-d (2.84)

for some proper weights «, B > 0. In general, the graph of the ordered squared
singular values of the data matrix X versus the dimension d of the subspace
resembles a plot similar to that shown in Figure 2.7. In the statistics literature, this
is known as the “scree graph,” which was discussed and named by (Cattell 1966).
Note that we should expect to see a significant drop in the singular values right after
the “correct” dimension 2, which is sometimes called the “knee” or “elbow” point
of the plot. Such a point is a stable minimum, since it optimizes the above objective
function (2.84) for a range of values for & and B.

A more principled approach to finding the optimal dimension d of the subspace
is to use some of the model selection criteria described in Appendix B. Such criteria
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rely on a different choice of the model complexity term and provide an automatic
way of choosing the parameters « and . Specifically, the complexity of the model
is measured by the number of parameters needed to describe the data distribution.
In the case of a degenerate Gaussian distribution in a d-dimensional subspace of
RP, the number of parameters needed is approximately Dd.> Therefore, assuming
that the noise has variance o2 with known o, the Bayesian information criterion
(BIC) (Rissanen 1978) is given by

D
BIC(d) = ) o7 + (logN)(Dd)o”, (2.85)
i=d+1

while the Akaike information criterion (AIC) (Akaike 1977) is given by

D
AIC(d) = ) o7 +2(Dd)o”. (2.86)
i=d+1

More recently, a geometric version of the Akaike information criterion has been
proposed by (Kanatani 1998). The geometric AIC is given by

D
G-AIC(d) = ) o7 + 2(Dd + Nd)o”. (2.87)
i=d+1

where the extra term Nd accounts for the number of coordinates needed to represent
(the closest projection of) the given N data points in the estimated d-dimensional
subspace. From an information-theoretic viewpoint, the additional Nd coordinates
are necessary if we are interested in encoding not only the model but also the data
themselves. This is often the case when we use PCA for purposes such as data
compression and dimension reduction.

All the above criteria can be loosely referred to as information-theoretic model
selection criteria, in the sense that most of these criteria can be interpreted as
variations to minimizing the optimal code length for both the model and the data
with respect to certain classes of distributions and coding schemes (Hansen and
Yu 2001).% There are many other methods for determining the number of principal

SWe leave as an exercise to the reader to calculate the number of parameters needed to specify a
d-dimensional subspace in R? and then the additional parameters needed to specify a Gaussian
distribution inside the subspace.

%Even if one chooses to compare models by their algorithmic complexity, such as the minimum
message length (MML) criterion (Wallace and Boulton 1968) (an extension of the Kolmogrov
complexity to model selection), a strong connection with the above information-theoretic criteria,
such as minimum description length (MDL), can be readily established via Shannon’s optimal
coding theory (see (Wallace and Dowe 1999)).
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Fig. 2.8 Model selection for the ten face images in Figure 2.2.

components. The interested reader may find more references in (Jolliffe 1986,
2002). We note here that a more recent treatment of the automatic dimension
selection for PCA was given through a Bayesian approach (Minka 2000), which
assuming a basic noise model, derives an accurate approximation to the probability
p(X|d) from which the optimal dimension d* can be determined.

Example 2.11 (Model Selection for Face Images) As an example, we apply the
model selection criteria to the same face data set used in our previous experiments
with PCA (Example 2.7) and PPCA (Example 2.10). More specifically, we apply
the first dimension selection criterion in (2.83) to ten frontal face images of subject
20 from the extended Yale B data set. We vary the threshold 7 in the range (0, 1)
and compute the corresponding dimension d. The result is shown in Figure 2.8. As
we can see, the first three principal components already capture roughly 90% of the
energy in the data.

2.3.2 Model Selection by Rank Minimization

In this section, we present an alternative view of model selection based on the rank
minimization approach to PCA introduced in Section 2.1.3. In this approach, the
PCA problem is posed as one of finding a rank-d matrix A that best approximates
the mean-subtracted data matrix X, i.e.,

min [|X —Al% s.t. rank(A) = d. (2.88)
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Although this problem is nonconvex due to the rank constraint, as we showed in
Section 2.1.3, its optimal solution can be computed in closed form as

A= UHq, (D)VT, (2.89)

where X = UZVT is the SVD of X, oy is the kth singular value of X, and H,(x) is
the hard thresholding operator:

x |x|>e

He(x) = (2.90)

0 else

However, this closed-form solution requires d to be known.
When d is unknown, the problem of finding a low-rank approximation can be
formulated as

min X — A||% 4 trank(A), (2.91)

where t > 0 is a parameter. Since the optimal solution of (2.88) for a fixed rank
d = rank(A) is A = UH,,, (Z)VT, the problem in (2.91) reduces to

Od+1

: 2
min Z o; +td. (2.92)
k>d

The optimal solution is the smallest d such that 07, , < 7. Notice that this model
selection criterion is the same as that in (2.82). Therefore, the optimization problem
in (2.91) provides a justification for the criterion in (2.82). Under this criterion, and
with the notation introduced in this section, the optimal A is given by

A=UH ,(Z)VT. (2.93)

Therefore, the optimal A can still be computed in closed form from the SVD of X,
in spite of the fact that the optimization problem in (2.91) is nonconvex.

Most rank minimization problems are, however, NP-hard and cannot be solved
as easily as the one in (2.91). This has motivated the development of convex
relaxations, which lead to more efficient solutions. A commonly used relaxation
(see, e.g., (Cai et al. 2008; Recht et al. 2010)) is to replace the rank of A by its
nuclear norm [|A||« = Y 0x(A), i.e., the sum of its singular values.” As it turns out,
this relaxation leads to a slightly different model selection criterion for PCA. More
specifically, the relaxation of (2.91) (modulo the 1/2 factor) is given by

. 1
min - IX = Al7 + zl|A].. (2.94)

7It can be shown that the nuclear norm is a convex envelope of the rank function for matrices.
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While this function is not differentiable, one can use the convex hull of all direc-
tional derivatives of the function, referred to as the subgradient for optimization.
The subgradient of this function with respect to A is given by A — X + 9||A||«, where
d||A||« is the subgradient of the nuclear norm of A (see Exercise 2.16). Therefore,
as shown in (Cai et al. 2008) (see also Exercise 2.16), the optimal solution for A is
given by

A =D, (X)=US(2)V', (2.95)

where D, is the singular value thresholding operator and S; is the soft thresholding
operator, which is defined as

xX—¢& x>¢
Se(x) = sign(x) max(|x| —&,0) = 3x+¢ x<—¢. (2.96)

0 else

Notice that the latter solution does not coincide with the one given by PCA, which
performs hard-thresholding of the singular values of X without shrinking them by
7. However, the model selection criterion is the same as before: choose d as the
smallest integer such that 67, | < T.

2.3.3 Model Selection by Asymptotic Mean Square Error

From the above two sections, we see that by following different model selection
criteria or objectives, we essentially have three different types of estimators X for
a low-rank matrix Xy from its noisy measurements: X = X, + oE. If we denote
the SVD of X by X = UXVT, the three estimators are of the following forms,
respectively:

1. If the rank d is known, the optimal estimate X subject to rank(}f) = d is the
truncated SVD solution:

X1 = UHgy,  (D)VT. (2.97)

Alternatively, if the rank d is not known and one uses one of the information-
theoretic criteria given in Section 2.3.1 to estimate the dimension ZZ, then we
have only to replace the d in the above solution with the estimated d.

2. If we try to balance the mean squared error and the dimension as in equa-
tion (2.91), the optimal estimate is given by the SVD hard thresholding:

X, =UH 4 (Z)VT (2.98)

for some threshold T > 0.
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3. If we try to balance the mean squared error and the nuclear norm as in
equation (2.94), then the optimal estimate is given by the SVD soft thresholding:

X3 =US(2)V'. (2.99)

for some threshold T > 0.

Naturally, this may lead to a certain degree of confusion for practitioners: Which
estimate is “the best”? What is the optimal threshold t* to use in case we need to
threshold the singular values? Which thresholding is better, hard or soft? The short
answer to these questions is that none of the above estimators is always better than
the others, since each is optimal in its own way and thus useful under different
conditions. However, if we all agree on a common objective based on a common
noise model, it might be meaningful and even insightful to examine which estimator
is better than others.

One such setting was recently proposed by (Donoho and Gavish 2014) to study
the different estimators in terms of their mean square errors (MSE) in an asymptotic
setting as the size of the matrix X € RP*N becomes large. For simplicity, we first
assume that the matrix X is a square matrix of size N = D. In the asymptotic setting
(as N — 00), we assume the following noise model:

X =X, + oE, (2.100)

where E is a matrix whose entries are i.i.d. drawn from a probability (say Gaussian)
distribution with zero mean and variance 1/+/N. It is easy to see that the noise
level in the singular values of X is 0. Among all estimates of X, obtained by a hard
thresholding of the singular values of X, we are interested in finding the one that
minimizes the asymptotic mean square error:

AMSE = lim [|X — Xo|2. (2.101)
N—>o0

The work of (Donoho and Gavish 2014) gives the following answer to this question.

Proposition 2.12 (Optimal Hard Thresholding for Minimizing AMSE). Given a
low-rank matrix Xy € RP*N and noisy measurements X = Xy + oE with E zero
mean and variance l/\/N, if the matrix is square, i.e., D = N, then the optimal
hard threshold estimate X = UH.» (2)VT that minimizes the asymptotic mean
square error | X — Xol|% is given by

™ = 4/4/30 ~ 2.309. (2.102)

In the more general case of a nonsquare matrix with D/N — B, the optimal
threshold is given by
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The proof of this statement is beyond the scope of this book. However, it is useful
to discuss its implications in our context.

In can be shown that under the same noise model, the distribution of the singular
values of the matrix X = Xy + oE forms a quarter-circle bulk, whose radius lies
approximately at (1 + \/ B)o. This is the place where we would normally expect to
see a “knee point” in the distribution of singular values (as shown in Figure 2.7). The
information-theoretic criteria or the rank-minimization objectives are most likely to
choose this value to threshold the singular values. For a square matrix, this gives the
threshold = 20, which is close to but not quite at the optimal value 2.3090°. As
shown in the work of (Donoho and Gavish 2014), this small difference in the choice
of the threshold can result in a 5/3-fold increase in AMSE.

Interestingly, even if we knew the correct rank d of the matrix X, and took the
truncated SVD solution X = UH, 1 (X)VT, the resulting AMSE would also be
5/3 the size of the optimal hard thresholding solution given above. In general,
soft thresholding does not work as well as hard thresholding in the high signal-
to-noise ratio regime, and the AMSE for the optimal soft thresholding solution
X3 = US+ (XZ)VT is twice as large as that of hard thresholding. In fact, even if one
is allowed to use any singular value shrinkage function instead of merely a hard or
soft thresholding, compared to the above optimal hard thresholding solution (2.102),
one can at best reduce the AMSE by another 1/3 (see the work of (Shabalin and
Nobel 2010) for more details).

2.4 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from
PCA in the numerical linear algebra literature, also known as the Eckart and Young
decomposition (Eckart and Young 1936; Hubert et al. 2000). The result regarding
the least-squares optimality of SVD given in Theorem 2.3 can be traced back to
(Householder and Young 1938; Gabriel 1978). While principal components were
initially defined exclusively in a statistical sense (Pearson 1901; Hotelling 1933),
one can show that the algebraic solution given by SVD gives asymptotically unbi-
ased estimates of the true parameters in the case of Gaussian distributions. A more
detailed analysis of the statistical properties of PCA can be found in (Jolliffe 2002).

Note that PCA infers only the principal subspace (or components), but not
a probabilistic distribution of the data in the subspace. Probabilistic PCA was
developed to infer an explicit probabilistic distribution from the data (Tipping and
Bishop 1999b). The data are assumed to be independent samples drawn from an
unknown distribution, and the problem becomes one of identifying the subspace
and the parameters of the distribution in a maximum likelihood or maximum a
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posteriori sense. When the underlying noise distribution is Gaussian, the geometric
and probabilistic interpretations of PCA coincide (Collins et al. 2001). However,
when the underlying distribution is non-Gaussian, the optimal solution to PPCA
may no longer be linear. For example, in (Collins et al. 2001), PCA is generalized
to arbitrary distributions in the exponential family.

2.5 Exercises

Exercise 2.1 (Properties of Symmetric Matrices). Let S € R™" be a real
symmetric matrix. Prove the following:

1. All the eigenvalues of S are real, i.e., 6(S) C R.
2. Let (A,u) be an eigenvalue—eigenvector pair. If A; # A;, then u; L uj; ie.,
eigenvectors corresponding to distinct eigenvalues are orthogonal.
. There always exist n orthonormal eigenvectors of S, which form a basis of R”".
4. The matrix S is positive definite (positive semidefinite) if and only if all of its
eigenvalues are positive (nonnegative), i.e., S > 0 (S > 0)iff Vi = 1,2,...,n,
Ai >0 (A, > 0).

5.1f Ay = A, > --- > A, are the sorted eigenvalues of S, then ”nﬁax xS = )y
X 2=l

W

and min x'Sx = A,.
llxll2=1

Exercise 2.2 (Pseudoinverse of a Matrix).

1. Let A = U,E,V;'— be the compact SVD of a matrix A of rank r. Show that a
pseudoinverse of A is given by AT = v, ¥ U;r .

2. Consider the linear system of equations Ax = b, where the matrix A € R™" is of
rank r = rank(A) = min{m, n}. Show thatx* = Ab minimizes |Ax—b||?, where
AT is a pseudoinverse of A defined in part 1. When is x* the unique solution?

Exercise 2.3 (Convex Sets and Functions). Show the following:

1. The intersection of two convex sets is convex.

2. Letf : X — R be a convex function defined over a convex domain X C R”".
Show that for every ¢ € R, the set {x € X" : f(x) < ¢} is convex.

3. A convex function is pseudoconvex and quasiconvex.

Exercise 2.4 (Derivatives of Traces and Logarithms). Show that

ai}( trace(AXB) = ATBT

» trace(AX™'B) = —(X~'BAX)T.
ai}( trace(A ® X) = trace(A)l.

» trace(XTBX) = BX + BTX.

» trace(XBX ") = XBT + XB.

H log|det(X)| = (x~1HT.

SANRANE ol e
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Exercise 2.5 (Maximum Likelihood Estimates of the Parameters of a Gaus-
sian). Let x € RP be a random vector. Let u, = E(x) € RP and =, =
E@x — p)(x — p)T € RP*P be, respectively, the mean and the covariance of x.
Given N i.i.d. samples {xj}j\,:l, show that the maximum likelihood estimates of g,
and X, are, respectively, given by

N N
| ~ 1 . .
iy = Yo% and Sy = 00— )@ — ) (2.104)

Jj=1 j=1

Exercise 2.6 (Statistical PCA for Nonzero-Mean Random Variables). Letx €
R” be a random vector. Let o, = E(x) e RP and B, = E(x —p)(x —p) " € RP*P
be, respectively, the mean and the covariance of x. Define the principal components
of x as the random variables y; = u,-Tx—i-a,- eR,i=1,...,d <D,whereu; € RP is
aunit-norm vector, a; € R, and {y;}'_, are zero-mean uncorrelated random variables
whose variances are such that Var(y;) > Var(y;) > --- > Var(y;). Assuming that
the eigenvalues of X, are distinct, show that

lLa=-ulp,i=1,....4d

2. u is the eigenvector of 3, corresponding to its largest eigenvalue.

3. u;rul = 0, and u, is the eigenvector of X corresponding to its second-largest
eigenvalue.

4. uiTuj = 0 for all i # j and u; is the eigenvector of X, corresponding to its

ith-largest eigenvalue.

Exercise 2.7 (Properties of PCA). Letx € R” be a random vector with covariance
matrix ¥, € RP*P, Consider a linear transformation

y=1U"x, (2.105)

of x, wherey € R? and U € RP*? has orthonormal columns. Let X, =U Ty, Ube
the covariance matrix for y. Show that

1. The trace of ¥, is maximized by a matrix U whose columns are the first d unit
eigenvectors of X,.

2. The trace of X, is minimized by a matrix U whose columns are the last d unit
eigenvectors of X,.

Exercise 2.8 (Principal Angles between Two Subspaces). Given two subspaces
S1 and S, of R? with d = dim(S;) < dim(S,), the principal angles between the

subspaces are defined recursively form = 1,...,d as
cos(') = max max {(ul,uz) Cuy|| = |lwel| = 1} = Z(uj,uj) (2.106)
uj €S| ur€S,
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cos(6™) = max max {(ul,uz) a ) = uzl = 1wy Lul,uy, L,  (2.107)
U1ES| urESH

Vie{l,...,m—l}} = Z@"ul).

Let U; € RP*? be an orthogonal matrix whose columns form a basis for S| and
similarly U, for S,. Show that

cos(0™) =o,, m=1,....d, (2.108)

where 0, is the mth-largest singular value of the matrix W = U Ir U,. Show also that
the number of angles equal to zero is equal to dim(S; N S3).

Hint: Following the derivation of statistical PCA, find first the smallest angle
(largest cosine = largest variance) and then find the second-smallest angle all the way
to the largest angle (smallest variance). As you proceed, the vectors that achieve the
second-smallest angle need to be chosen to be orthogonal to the vectors that achieve
the smallest angle, and so forth, as we did in statistical PCA. Also, let u; = Ujc¢;
and u, = Ujycy. Show that you need to optimize cos(f) = cI'— UI'— U,c, subject to
llei|l = llez]l = 1. Show (using Lagrange multipliers) that a necessary condition for

optimality is
0 UII—UZ (4] C]
= . 2.109
|:U;—U1 0 :| I:Cz C) ( )

Deduce that 0 = A? is a singular value of U Ir U, with ¢, as singular vector.

Exercise 2.9 (Fixed-Rank Approximation of a Matrix). Let A = UZVT be the
SVD of A. Let B = UX,V', where ¥, denotes the matrix obtained from ¥ by
setting to zero its elements on the diagonal after the pth entry. Show that [|[A—B||2 =
05 T R o o2, where | - || indicates the Frobenius norm. Furthermore, show that
such a norm is the minimum achievable over all matrices B € R™*" of rank p, i.e.,

i A—B|% =02 v 402 2.110
B:ralr};ghp [ 7 Op+1 + + o, ( )

Exercise 2.10 (Identification of Autoregressive (AR) Systems). A popular model
that is often used to analyze a time series {y,},ez is the linear autoregressive model

Vi=ay—1 +ay2+ -+ ayn+&, Viy €R, (2.111)

where ¢, € R models the modeling error or noise and is often assumed to be a
white-noise random process. Now suppose that you are given the values of y, for a
sufficiently long period of time.

1. Show that in the noise-free case, i.e., &, = 0, regardless of the initial conditions,
the vectors x; = [y, Vi1, ... ,yr_,,]T for all # lie on an n-dimensional hyperplane
in R"*!. What is the normal vector to this hyperplane?
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2. Now consider the case with noise. Describe how you may use PCA to identify
the unknown model parameters (a;, az, . . . , a,).

Exercise 2.11 (Basis for an Image). Given a gray-level image I, consider all of its
b x b blocks, denoted by {B; € R¥*"}. We would like to approximate each block as
a superposition of d base blocks, say {B; € R”"}__ . That s,

d
B; = Zaijé,JrEi, (2.112)
j=1

where E; € R is the possible residual from the approximation. Describe how
you can use PCA to identify an optimal set of d base blocks so that the residual is
minimized.

Exercise 2.12 (Ranking of Webpages). PCA is actually used to rank webpages
on the Internet by many popular search engines. One way to see this is to view the
Internet as a directed graph G = (V, £), where the ith webpage, denoted by p;, is a
node in V, and every hyperlink from p; to p;, denoted by ey, is a directed edge in £.
We can assign each webpage p; an “authority” score x; and a “hub” score y;. The
“authority” score x; is a scaled sum of the “hub” scores of other webpages pointing
to webpage p;. The “hub” score is the scaled sum of the “authority” scores of other
webpages to which webpage p; is pointing. Let x and y be the vectors of authority
scores and hub scores, respectively. Also, let A be the adjacent matrix of the graph G,
ie.,Aj = life; € £ and A;; = 0 otherwise, and consider the following algorithm:
Answer the following questions.

1. Given the definitions of hubs and authorities, justify the “ranking webpages”
Algorithm 2.1.

2. Show that unit-norm eigenvectors of AAT (for y) and ATA (for x) give fixed
points of Algorithm 2.1.

3. Show that in general, y and x converge to the unit-norm eigenvectors associated
with the maximum eigenvalues of AAT and AT A, respectively. Explain why no
other eigenvector is possible and why the normalization steps in the algorithm
are necessary.

Algorithm 2.1 (Ranking Webpages)

Input: A matrix A and a random vector x
1: while ( x not converged) do
2: Yy <« Ax,y < Ili’ll
3 X< ATy x < ”i:“
4: end while

Output: x
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4. Explain how y and x can be computed from the singular value decomposition
of A. Under what circumstances would the given algorithm be preferable to using
the SVD?

In the literature, this is known as the hypertext-induced topic-selection (HITS)
algorithm (Kleinberg 1999; Ding et al. 2004). The same algorithm can also be used
to rank competitive sports such as football teams and chess players.

Exercise 2.13 (PPCA by Maximum Likelihood). Study the proof of Theorem
2.8 in great detail and show the missing piece that is left as an exercise to the
reader. More specifically, let Ay, ..., Ap be the eigenvalues of a covariance matrix
L eRP*P Letw : {1,....,D} — {l,....D} be a permutation of the first D
integers. We would like to choose d eigenvalues Ay, ..., Ax[q such that the
discarded ones Ay g41], . . ., Ax[p) Minimize

D D
D oimd Kn[i]> _ Xiza+1102 A5 ) (2.113)

M(”)zlog( D—d D—d

Use Jensen’s inequality to show that M is nonnegative and use the concavity of the
log function to prove that M is minimized by choosing A, i =d +1,...,D to
be contiguous in magnitude.

Exercise 2.14 Show that for the PPCA model, x = u + By + ¢, where u € RP,
B € RP* y ~ N(0,1;) and e ~ N(0, 0*Ip), the conditional distribution of y given
x is given by y | x ~ N (f ;. Zy|x), where

ye = BTB+0’I) 'BT(x — ) and By, = 0*(B'B+0%p)"".  (2.114)

Exercise 2.15 (An EM Algorithm for PPCA). In Section 2.2.2, we showed that
the ML estimate of the parameter 8 = (i, B, o) of the PPCA modelx = u +By+¢,
where p € RP?, B € RP*? y ~ N(0,1;) and ¢ ~ N(0,0°Ip), can be found
in closed form, as shown in Theorem 2.9. An alternative approach, which can be
advantageous for large D, is to view y as a hidden variable and use the EM algorithm
described in Appendix B.2.1 to find the ML estimate. In this exercise, you will
derive an EM algorithm for PPCA.

1. Let wj’.‘ () = per(y | x;) be the posterior distribution of the hidden variables with
parameters 0 = (u*, BX, o) at iteration k of the EM algorithm. Show that the
expected complete log-likelihood Q(8 | %) = Ex[logpe({x; 3, ;)72 ))] is
given by ‘ ‘

N

D
- Z ( 5 log(2mo?) +

J

1
2o (I = I =205 = )T By
I (2.115)

1
+ trace BTB(yjy;r)k) + ) trace (yjy;r)k),
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where

o) = [wowdy = BT+ F G- ph @16
y

T / Aoy Tdy = 692 BTE + 02~ + () )T

y

Hint: See Exercise 2.14.
2. Show that the parameters 6 = (i, B, o) that maximize Q(6 | 6%) are given by

-1

N N
N N Z@jij>k Z(Yj)k
[Bu]= [Z x; ()T ij] *’:Nl = . @117)
J=1 i=1 Z@j}kT N
=
L
o’= ND Z llxj — > =2(x; — ) T B(y;) +trace BT B(yy, ). (2.118)
=1

3. In practice, we know that the ML estimator for g is ft = ]{, IZ.V=1 x;. Therefore,

a more efficient approach is to maximize Q(6 | 6*) only over the parameters
(B, o). Show that the optimal parameters are given by

N N _
B =3 - i) (o)) @119)

J=1 Jj=1

N

1 N A
okt = ND Z llj— 12 —2(x6j— 1) T B¥+1 )+ trace B*-+1T Bt 1 (yjy;'>k)’
Jj=1

where (yj)k is computed with u* = fi. Show also that the above iterations can
be rewritten as

B = $yB (01, + =4 BT ENB (2.120)

1 ~ = _
okt = \/D trace(Sy — SyBETk T BRHIT), (2.121)

where Sy = § 2L (6 — ) — )T
Exercise 2.16 (Properties of the Nuclear Norm). Let X be a matrix of rank r.

1. Show that the nuclear norm f(X) = [ X[« = Y '_, 0;(X) of X is a convex
function of X.
2. Show that the subgradient of the nuclear norm is given by
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ANX|l« =UV"T +W, (2.122)

where X = UZV7 is the compact (rank ) SVD of X, and W is a matrix such
that UTW = 0, WV = 0, and | W], < 1.
3. Show that the optimal solution of

. 1
min X — Az + <llA]. (2.123)

is given by A = D, (X) = US,(Z)VT, where D, is called the singular-value
thresholding operator.

Exercise 2.17 (Face Recognition with Varying Illumination).

1. Implementation of PCA, PPCA and model selection techniques. Implement
the following functions using at most five lines of MATLAB code per function.

Function [mu, U, Y] =pca(X,d)
Parameters
X D x N data matrix.
d  Number of principal components.
Returned values
mu  Mean of the data.
U  Orthonormal basis for the subspace.
Y Low-dimensional representation (or principal components).
Description
Finds the d principal components of a set of points from the SVD of the data
matrix X.

Function [mu, W, sigma] =ppca (X, d)
Parameters

X D x N data matrix.

d Number of principal components.
Returned values

mu  Mean of the data.

W Basis for the subspace (does not need to be orthonormal).
sigma Standard deviation of the noise.
Description
Finds the parameters of the PPCA model g and ¥ = WW T + o2
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Function d=pca_model selection (X, tau)
Parameters
X D x N data matrix.
tau Threshold
Returned values
d Number of principal components.
Description
Finds the number of principal components for PCA as d=miny {d : aj < ‘C}.

Function d=ppca_model selection (X,method)
Parameters
X D x N data matrix.
method BIC, AIC, G-AIC
Returned values
d Number of principal components.
Description
Finds the number of principal components using different model selection
methods.

2. Face recognition using PCA and PPCA. In this exercise you will use a small
subset of the Yale B data set®, that contains photos of ten individuals under
various illumination conditions. Specifically, you will use only images from the
first three individuals under ten different illumination conditions.

Download the file YaleB-Dataset.zip. This file contains the image database
along with the MATLAB function 1oadimage . m. Decompress the file and type
help loadimage atthe MATLAB prompt to see how to use this function. The
function operates as follows:

Function img=1loadimage (individual, condition)
Parameters
individual Number of the individual.

condition Number of the image for that individual.
Returned values

img The pixel image loaded from the database.

Description
Read and resize an image from the data set. The database (directory images)
must be in the same directory as this file.

(a) Apply PCA with d = 2 to all 10 images from individual 1. Plot the mean face
J and the first two eigenfaces u; and u,. What do you observe? Plot u + yju;
for y; = —o7 : 0.207 : 07 and u + y,u, for y, = —o, : 0.10, : 0. What do
the first two principal components capture? Repeat for individuals 2 and 3.

8http://cve.yale.edu/projects/yalefacesB/yalefacesB.html.


http://www.vision.jhu.edu/teaching/learning/data/YaleB-Dataset.zip
http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html

62

(b)
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Apply PPCA with d = 2 to all 10 images from individual 1. Plot the mean
face p and the first two eigenfaces u; and u,. What differences do you observe
between the eigenfaces of PCA and those of PPCA? Plot u + y u; fory; =
—1:0.2:1and p + yup fory, = —1 : 0.2 : 1. What differences do
you observe between the principal components of PCA and those of PPCA?
Repeat for individuals 2 and 3.

Divide all the images into two sets: Training Set (images from individuals 1 to
3 and images 1 to 5) and Test Set (images from individuals 1 to 3 and images
6 to 10). Apply PCA to the Training Set using d = 10. Plot the mean face and
the eigenfaces. Plot also the singular values of the data matrix. Project the Test
Set onto the face subspace given by PCA, i.e., Y. = WT Xres: — [LIT). Plot
the projected faces, i.e., Proj(X,s) = p 17+ WY, Classify these faces using
1-nearest-neighbor, that is, label an image x as corresponding to individual i if
its projected image y is closest to a projected image y; of individual i. Report
the percentage of correctly classified face images for d = 1,..., 10. Which
value of d gives the best recognition performance? Compare this result with
the those obtained using model selection to determine the number of principal
components for some threshold 7 as well as with the estimates of BIC, AIC,
and G-AIC for PPCA.



Chapter 3
Robust Principal Component Analysis

...any statistical procedure ...should be robust in the sense that small deviations from
the model assumptions should impair its performance only slightly ... Somewhat larger
deviations from the model should not cause a catastrophe.

—Peter J. Huber

In the previous chapter, we considered the PCA problem under the assumption
that all the sample points are drawn from the same statistical or geometric model:
a low-dimensional subspace. In practical applications, it is often the case that
some entries of the data points can be missing or incomplete. For example, the
2-dimensional trajectories of an object moving in a video may become incomplete
when the object becomes occluded. Sometimes, it could be the case that some
entries of the data points are corrupted by gross errors and we do not know a priori
which entries are corrupted. For instance, the intensities of some pixels of the face
image of a person can be corrupted when the person is wearing glasses. Sometimes it
could also be the case that a small subset of the data points are outliers. For instance,
if we are trying to distinguish face images from non-face images, then we can model
all face images as samples from a low-dimensional subspace, but non-face images
will not follow the same model. Such data points that do not follow the model of
interest are often called sample outliers and should be distinguished from the case
of samples with some corrupted entries, also referred to as intrasample outliers.
The main distinction to be made is that in the latter case, we do not want to discard
the entire data point, but only the atypical entries.

In this chapter, we will introduce several techniques for recovering a low-
dimensional subspace from missing or corrupted data. We will first consider the
PCA problem with missing entries, also known as incomplete PCA or low-rank
matrix completion (for linear subspaces). In Section 3.1, we will describe several
representative methods for solving this problem based on maximum likelihood esti-
mation, convex optimization, and alternating minimization. Such methods are fea-
tured due to their simplicity, optimality, or scalability, respectively. In Section 3.2,
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we will consider the PCA problem with corrupted entries, also known as the
robust PCA (RPCA) problem. We will introduce classical alternating minimization
methods for addressing this problem as well as convex optimization methods
that offer theoretical guarantees of correctness. Finally, in Section 3.3, we will
consider the PCA problem with sample outliers and describe methods for solving
this problem based on classical robust statistical estimation techniques as well as
techniques based on convex relaxations. Face images will be used as examples to
demonstrate the effectiveness of these algorithms.

3.1 PCA with Robustness to Missing Entries

Recall from Section 2.1.2 that in the PCA problem, we are given N data points
X ={x; € RP }jN=1 drawn (approximately) from a d-dimensional affine subspace
S = {x = u + Uy}, where p € RP? is an arbitrary point in S, U € RP*? is a basis
for §,and Y = {y; € RY}/L, are the principal components.

In this section, we consider the PCA problem in the case that some of the
given data points are incomplete. A data point x = [x1,xa,... ,xD]T is said to be
incomplete when some of its entries are missing or unspecified. For instance, if
the ith entry x;, of x is missing, then x is known only up to a line in RP, ie.,

. T
x € L= {[xl,...,x,-_l,x,-,x,-+1,...,xp] ,X; € R} )

= {x_; + xie;. x; € R},
where x_; = [x1,....%-1,0,%41,....xp]" € RP is the vector x with its ith
entry zeroed out and ¢; = [0,...,0,1,0,... ,O]T € RP is the ith basis vector.

More generally, if the point x has M missing entries, without loss of generality

. x .
we can partition it as [ Ui|, where x; € RY denotes the unobserved entries and
Xo

xo € RP~™ denotes the observed entries. Thus, x is known only up to the following
M-dimensional affine subspace:

x € Li%[o}—i—[lM}xU,erRM}. (3.2)

X0 0

Incomplete PCA When the Subspace Is Known

Let us first consider the simplest case, in which the subspace S is known. Then we
know that the point x belongs to both L and S. Therefore, given the parameters p and
U of the subspace S, we can compute the principal components y and the missing
entries xy by intersecting L and S. In the case of one missing entry (illustrated in
Figure 3.1), the intersection point can be computed from
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X

Fig. 3.1 Given a point x € R? with one unknown entry x;, the point x is known only up to a line
L. However, if we also know that x belongs to a subspace S, we can find the unknown entry by
intersecting L and S, provided that L is not parallel to S.

x=x_;+xe,=p+Uy = [U —ei] [§:| =X_i—[L. 3.3)

Note that a necessary condition for this linear system to have a unique solution is
that the line L is not parallel to the principal subspace, i.e., ; € span(U).

In the case of M missing entries, we can partition the point p = |:M Ui| and the
Ro

subspace basis U = [ZU:I according tox = |:xU:|. Then, the intersection of L and
0 Xo
S can be computed from

i o A R VR | A P B
X0 Mo Uo Uo 0 ]|xu Xo— Ko

A necessary condition for the linear system in (3.4) to have a unique solution is that
the matrix on the left-hand side be of full column rank d + M < D. This implies
that e; & span(U) for each missing entry i. This also implies that M < D — d; hence
we need to have at least d observed entries in order to complete a data point. When

the data point x is not precise and has some noise, we can compute y and xy as the
solution to the following optimization problem:

min ||x — u — Uy|>. (3.5)
yXu

It is easy to derive that the closed-form solution to the unknownsy and x is given by

y == UjUn)™'U§ o = io) = (Ug Uo) ™ Up (x0 = o).

(3.6)
xu = py+Upy = py + Up(USUo) T UG (xo — o).
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We leave the derivation to the reader as an exercise (see Exercise 3.1). Notice that
this solution is simply the least squares solution to (3.4), and that in order for
Uo to be of full rank (so that Ug Uo is invertible), we need to know at least d
entries. Interestingly, the solution for y is obtained from the observed entries (x¢)
and the part of the model corresponding to the observed entries (i, and Up). Then
the missing entries (xy) are obtained from the part of the model corresponding to
the unobserved entries (p;; and Uy) and y.

Incomplete PCA as a Well-Posed Problem

In practice, however, we do not know the subspace S (neither u nor U) a priori.
Instead, we are given only N incomplete samples, which we can arrange as the
columns of an incomplete data matrix X = [x;,x,,...,xy] € RPN Let W € RPN
be the matrix whose entries {w;;} encode the locations of the missing entries, i.e.,

1 if x;; is known,
wy= {1 g sk @
0 if x; is missing,

and let W © X denote the Hadamard product of two matrices, which is defined
as the entrywise product (W © X); = wyx;;. The goal of PCA with missing data,
also known as matrix completion, is to find the missing entries (117 — W) © X,
the point u, the basis U, and the matrix of low-dimensional coordinates ¥ =
V1Y, .., yy] € RN from the known entries W © X.

Obviously, we cannot expect to always be able to find the correct solution to this
problem. Whether the correct complete matrix X can be recovered depends on:

1. Which entries are missing or observed;
2. How many entries are missing or observed.

To see why the location of missing entries matters, suppose the first entry of
all data points is missing. Then we cannot hope to be able to recover the first row
of X at all. Likewise, suppose that all the entries of one data point are missing.
While in this case we can hope to find the subspace from the other data points,
we cannot recover the low-dimensional representation of the missing point. These
two examples suggest that the location of missing entries should not have any
conspicuous patterns.

Now suppose that the matrix X is

X—eer =200 3.8
- lel_ : .. ’ ()
000

which is a rank-one matrix. In this case, we cannot hope to recover X even if a
relatively large percentage of its entries are given, because most entries are equal
to zero, and we will not be able to distinguish X from the zero matrix from many
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observed entries. This suggests that if we want to recover a low-rank data matrix
from a small portion of its entries, the matrix itself should not be too sparse.

Thus, to avoid ambiguous solutions due to the above situations, we must require
that the locations of the missing entries be random enough so that the chance that
they form a conspicuous pattern is very low; and in addition, we must restrict our
low-rank matrices to those that are not particularly sparse. The following definition
gives a set of technical conditions to impose on a matrix so that its singular vectors
are not too spiky, and hence the matrix itself is not too sparse.

Definition 3.1 (Matrix Incoherence with Respect to Sparse Matrices). A matrix

X € RP*N is said to be v-incoherent with respect to the set of sparse matrices if

max ], < va/d v/d v/d
; 2 = \/D’ \/N’ \/DN’

where d is the rank of X, X = UXV" is the compact SVD of X, and u;, and v; are
the ith row of U and jth row V, respectively.

max o> = 1OV |0 < (3.9)

Notice that since U is orthonormal, the largest absolute value of the entries of
U € RP*? js equal to 1, which happens when a column of U is 1-sparse, i.e.,
when a column of U has only one nonzero entry. On the other hand, if each column
of U is so dense that all its entries are equal to each other up to sign, then each
entry is equal to £1/ +/D, and the norm of each row is \/d/D. Therefore, when
v < 1, the first condition above controls the level of sparsity of U. Similarly, the
other two conditions control the levels of sparsity of V and UV'T, respectively. From
a probabilistic perspective, these conditions are rather mild in the sense that they
hold for almost all generic matrices—a random (say Gaussian) matrix satisfies these
conditions with high probability when the dimension of the matrix is large enough.
As we will see, incoherence is indeed a very useful technical condition to ensure
that low-rank matrix completion is a meaningful problem.

Regarding the number of entries required, notice that in order to specify a
d-dimensional subspace S in R? together with N points on it, we need to specify
D+ dD + dN — d? independent entries in u, U, and Y.! That is, it is necessary to
observe at least this number of entries of X in order to have a unique solution for X.
However, the sufficient conditions for ensuring a unique and correct solution highly
depend on the approach and method one uses to recover X.

Incomplete PCA Algorithms
In what follows, we discuss a few approaches for solving the PCA problem with
missing entries. The first approach (described in Section 3.1.1) is a simple extension

'If U € RP*4 and V € RM*?, then U and V have dD + dN degrees of freedom in general.
However, to specify the subspace, it suffices to specify UV T, which is equal to UAA='VT for
every invertible matrix A € R?*?; hence the matrix UV | has dD + dN — d? degrees of freedom.
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of geometric PCA (see Section 2.1) in which the sample mean and covariance are
directly computed from the incomplete data matrix. However, this approach has
a number of disadvantages, as we shall see. The second approach (described in
Section 3.1.2) is a direct extension of probabilistic PCA (see Section 2.2) and uses
the expectation maximization (EM) algorithm (see Appendix B.2.1) to complete
the missing entries. While this approach is guaranteed to converge, the solution
it finds is not always guaranteed to be the global optimum, and hence it is not
necessarily the correct solution. The third approach (described in Section 3.1.3)
uses convex relaxation and optimization techniques to find the missing entries of
the low-rank data matrix X. Under the above incoherent conditions and with almost
minimal observations, this approach is guaranteed to return a perfect completion of
the low-rank matrix. However, this approach may not be scalable to large matrices,
since it requires solving for as many variables as the number of entries in the data
matrix. The fourth and final approach (described in Section 3.1.4) alternates between
solving for u, U, and Y given a completion of X, and solving for the missing entries
of X given p, U, and Y. Since this method uses a minimal parameterization of the
unknowns, it is more scalable. While in general, this approach is not guaranteed
to converge to the correct solution, we present a variant of this method that is
guaranteed to recover the missing entries correctly under conditions similar to those
for the convex relaxation method.

3.1.1 Incomplete PCA by Mean and Covariance Completion

Recall from Section 2.1.2 that the optimization problem associated with geometric
PCA is

N N
. 2 T

min xi—p—Uy;|” st. U U=1; and y. =0. (3.10)

i Dl -] Y

We already know that the solution to this problem can be obtained from the mean

and covariance of the data points,

N N
. 1 o 1 N N
Ly = N E x; and Xy = N E (xj — L) (xj — ;LN)T, (3.11)
j=1 j=1

respectively. Specifically, p is given by the sample mean fi, U is given by the top
d eigenvectors of the covariance matrix Sy, and y=U T (x; — p). Alternatively,
an optimal solution can be found from the rank-d SVD of the mean-subtracted data
matrix [x; — fty,...,Xy — fLy], as shown in Theorem 2.3.

When some entries of each x; are missing, we cannot directly compute ft, or
Sy as in (3.11). A straightforward method for dealing with missing entries was
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introduced in (Jolliffe 2002). It basically proposes to compute the sample mean and
covariance from the known entries of X. Specifically, the entries of the incomplete
mean and covariance can be computed as

N N
> Wi > wiwii (i — i) (xig — L)
= -
=" and 0y = N , (3.12)
> Wi > WiW
j=1 j=1

where i,k = 1,...,D. However, as discussed in (Jolliffe 2002), this simple
approach has several disadvantages. First, the estimated covariance matrix need not
be positive semidefinite. Second, these estimates are not obtained by optimizing
any statistically or geometrically meaningful objective function (least squares,
maximum likelihood, etc.) Nonetheless, estimates fi, and fJN obtained from the
naive approach in (3.12) may be used to initialize the methods discussed in
the next two sections, which are iterative in nature. For example, we may initialize
the columns of U as the eigenvectors of Sy associated with its d largest eigenvalues.
Then given fty and U, we can complete each missing entry as described in (3.6).

3.1.2 Incomplete PPCA by Expectation Maximization

In this section, we derive an EM algorithm (see Appendix B.2.1) for solving the
PPCA problem with missing data. Recall from Section 2.2 that in the PPCA model,
each data point is drawn as x ~ N'(p,, Xy), where g, = p and ¥, = BBT + o’Ip,
where 1 € RP, B € RP*? and o > 0. Recall also from (2.56) that the log-likelihood
of the PPCA model is given by

ND N e
L =— ) log(ZJr)—2 log det(Ex)—2 Ztrace(Z;l(xj—u)(xj—u)T), (3.13)
j=1

where {xj}jvz1 are N i.i.d. samples of x. Since the samples are incomplete, we can
partition each point x and the parameters i, and X, as

[xU} = Px, [MU} =Py, and [ZUU EUO} = P3P, (3.14)
X0 Ho You oo

Here x¢ is the observed part of x, xy is the unobserved part of x, and P is any
permutation matrix that reorders the entries of x so that the unobserved entries
appear first. Notice that P is not unique, but we can use any such P. Notice also
that the above partition of x, u,, and X, could be different for each data point,
because the missing entries could be different for different data points. When strictly
necessary, we will use x;;y and x;o to denote the unobserved and observed parts of
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point x;, respectively, and P; to denote the permutation matrix. Otherwise, we will
avoid using the index j in referring to a generic point.

In what follows, we derive two variants of the EM algorithm for learning the
parameters 6 = (u, B, o) of the PPCA model from incomplete samples {xj}j\,:l. The
first variant, called Maximum a Posteriori Expectation Maximization (MAP-EM),
is an approximate EM method whereby the unobserved variables are given by their
MAP estimates (see Appendix B.2.2). The second variant is the exact EM algorithm
(see Appendix B.2.1), where we take the conditional expectation of .Z over the
incomplete entries. Interestingly, both variants lead to the same estimate for u,.,
though the estimates for X, are slightly different. In our derivations, we will use the
fact that the conditional distribution of xy; given x¢ is Gaussian. More specifically,
xu | X0 ~ N(Ry|0. Zujo), where

”’U\O =Ny + Zyoz(_)(l)(xO — ”’O) and EUIO = ZUU — Zyoz(_)(l)ZOU.

We leave this fact as an exercise to the reader (see Exercise 3.2).

Maximum a Posteriori Expectation Maximization (MAP-EM)
The MAP-EM algorithm (see Appendix B.2.2) is a simplified version of the EM
algorithm (see Appendix B.2.1) that alternates between the following two steps:

MAP-step: Complete each data point x by replacing the unobserved variables xy
with their MAP estimates, arg max,, pgt(xy | xo), where 6k is an estimate for
the model parameters at iteration k.

M-step: Maximize the complete log-likelihood with respect to 8, with xy; given
as in the MAP-step.

During the MAP step, the MAP estimate of the unobserved variables can be
computed in closed form as

arg max pgt (Xu | X0) = Mo = By + So(Too) ' (Fo — 1p).- (3.15)

XU

k
Therefore, we can complete each data point as x = PT Fupo . Letting xj’.‘ be the
Xo

completion of x; at iteration k, we obtain the complete log-likelihood as

N
ND N 1 _
L =— 5 log(2m)— 5 logdet(Ex)—2 Z(xj’.‘—u)TEx 1(xj"‘—pc). (3.16)

Jj=1

During the M-step, we need to maximize .Z with respect to 8. Since the
data are already complete, we can update the model parameters as described in
Theorem 2.9, i.e.,

D
By /2 %:1/%

k+1_ k k+1_ k21 k2_i=+
I —Nj;xj, B = 0y(A1 = @’)R. and (0 ="
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where U; € RP*? is the matrix whose columns are the top d eigenvectors of the
complete sample covariance matrix

Shk+1
2N

N
1
= 0 = -t (3.17)
=1

Ay € R s a diagonal matrix with the top d eigenvalues of 5!, R € R is

an arbitrary orthogonal matrix, and A; is the ith-largest eigenvalue of EAJfVH. We can

then update the covariance matrix as XXt! = BB T 4 (o5)2).

Expectation Maximization (EM)
The EM algorithm (see Appendix B.2.1) alternates between the following steps:

E-step: Compute the expectation Q(6 | 0X) = E,,[.Z | x0, 0] of the complete
log-likelihood .Z with respect to the missing entries x; given the observed
entries xo and an estimate 6% of the parameters at iteration k.

M-step: Maximize the expected completed log-likelihood E,,[.Z | x0, 6] with
respect to 6.

Observe from (3.13) that to compute the expectation of .Z, it suffices to compute
the following matrix for each incomplete data point x:

sk sk
S = Byl = )= ) 10,84 = P71 50 . G.18)
ouU Y00

Each block of this matrix can be computed as

SHo =El(xo—po)xo—po) | X0, 0= (xo—ph) (xo—pf) ",
Sto =Elxu—ny)®o—po) | X0, 61 = (1l o—nt) @o—pt) T =(SH) T,
Shy=El(cv—py)cv—py) | xo. 6]
=E[(xy—pl0) Cu—p0) " x0, 041+
2E[(py — o) v — i) T 1 %0, 0"+ (B0 —mo) (G0 —my) T

:E];j\o + (I'LI((]|0_I'LU)(I'LI((]|0_ILU)T-

Let S¥ denote the matrix S* associated with point x; and let 3 = \ 3L 5% Then
the expected complete log-likelihood is given by
. ND N
010 =— 5 log(27) — log det(Xy) — trace(E I3k N (3.19)

In the M-step, we need to maximize this quantity with respect to 6. Notice that
this quantity is almost identical to that in (2.56), except that the sample covariance
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matrix Sy is replaced by by 5‘\, Thus, if & 5‘\, did not depend on the unknown parameter
[, we could immediately compute B and ¢ from Theorem 2.9. Therefore, all we
need to do is to show how to compute u. To this end, notice that

) trace(z7159 = Bl w) TS @ — ) | %0, 0] (3.20)
o ap

= —22;1]E[x —p | x0,0" = —2E;l(xk — 1), (3.21)

k
where x* = PT |:MU0:| is the complete data point. Therefore,
Xo

9 19 & N
066" =— > trace(Z;'8H) =Y =M —p) =0, (3.22)
o 20p = J J

Jj=1

and so the optimal u is

pt= N ks (3.23)

Notice that this solution is the same as that of the MAP-EM algorithm. That is, the
optimal solution for u is the average of the complete data. We can then form the
matrix fif‘v and compute B¥*! and o**! as before. Notice, however, that f)’;\, is not
the covariance of the complete data. The key difference is in the term S%,,, which
contains an additional term E’z,‘ o

The EM algorithm for PPCA with missing data is summarized in Algorithm 3.1.
In step 2 of the algorithm, the missing entries of X are filled in with zeros, and an
initial estimate of u and X, is obtained from the zero-filled X. Alternatively, one
may use other initialization methods, such as the mean and covariance completion
method described in Section 3.1.1. In step 7, the missing entries of each x; are filled
in according to the initial estimates of mean and covariance in step 2, while the
observed entries are kept intact. This corresponds to the MAP step of the MAP-EM
algorithm, and is an intermediate calculation for the E-step of the EM algorithm.
Next, steps 9 and 10 update the mean and covariance of the PPCA model. Step 9
is common to both the MAP-EM and EM algorithms, while step 10 is slightly
different: the MAP-EM algorithm uses only the first term on the right-hand side of
step 10, while the EM algorithm uses both terms. Steps 11-14 update the parameters
of the PPCA model and correspond to the M-step of both the MAP-EM and
EM algorithms. Finally, step 16 computes the probabilistic principal components.
Recall from Section 2.2, equation (2.78), that given the parameters of the PPCA
model (p, B, o), the probabilistic principal components of a vector x are given by
y=B"B+*)7'BT(x — ).
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Algorithm 3.1 (Incomplete PPCA by Expectation Maximization)

Input: Entries x; of a matrix X € RPN for (i, j) € Q and dimension d.
1: initialize
N N
2 x5« 0for (i) Qp <\ Yxpand T« \ Y —p)x;—p) '
j=1 j=1
3: P; < any permutation matrix that sorts the entries of the jth column of X, x;, so that its
unobserved entries (as specified in 2) appear first.

; i : .
4: x]U <« Pix;j, ’LJU <« Pjp, and EIUU EIVO <« PJEPJT_
xp Ko Zou oo

5: repeat
6: forallj=1,..., N do
x < PT Wy + ZJU()(EJ()())il(x/() - ILJ()):|

J J x] .

0

~

8: end for

N N
9: <~ 1{, ‘lej and X <« 1{, _Zl(xj —p)(x — [L)T.
j= j=

0 0
11: U, < top d eigenvectors of S.
12: Ay < top d eigenvalues of S.
130 o2« )L, Y7 ).
14: B < U;(A| —02])'/?R, where R € R?*“ is an arbitrary orthogonal matrix.
15: until convergence of p and S.
16: Y < BB+ o2 'BT (X —pl").

10: S« 3 +P1T ZjUU - ZjU()(Ej()())ilEj()U 0:| Pj~

Output: p,B,and Y.

3.1.3 Matrix Completion by Convex Optimization

The EM-based approaches to incomplete PPCA discussed in the previous section
rely on (a) explicit parameterizations of the low-rank factors and (b) minimization of
a nonconvex cost function in an alternating minimization fashion. Specifically, such
approaches alternate between completing the missing entries given the parameters
of a PPCA model for the data and estimating the parameters of the model
from complete data. While simple and intuitive, such approaches suffer from two
important disadvantages. First, the desired rank of the matrix needs to be known
in advance. Second, due to the greedy nature of the EM algorithm, it is difficult to
ensure convergence to the globally optimal solution. Therefore, a good initialization
of the EM-based algorithm is critical for converging to a good solution.

In this section, we introduce an alternative approach that solves the low-rank
matrix completion problem via a convex relaxation. As we will see, this approach
allows us to complete a low-rank matrix by minimizing a convex objective function,
which is guaranteed to have a globally optimal minimizer. Moreover, under rather
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benign conditions on the missing entries, the global minimizer is guaranteed to be
the correct low-rank matrix, even without knowing the rank of the matrix in advance.

A rigorous justification for the correctness of the convex relaxation approach
requires a deep knowledge of high-dimensional statistics and geometry that is
beyond the scope of this book. However, this does not prevent us from introducing
and summarizing here the main ideas and results, as well as the basic algorithms
offered by this approach. Practitioners can apply the useful algorithm to their data
and problems, whereas researchers who are more interested in the advanced theory
behind the algorithm may find further details in (Cai et al. 2008; Candes and Recht
2009; Candes and Tao 2010; Gross 2011; Keshavan et al. 2010a; Zhou et al. 2010a).

Compressive Sensing of Low-Rank Matrices

The matrix completion problem can be considered a special case of the more general
class of problems of recovering a high-dimensional low-rank matrix X from highly
compressive linear measurements B = P(X), where P is a linear operator that
returns a set of linear measurements B of the matrix X. It is known from high-
dimensional statistics that if the linear operator P satisfies certain conditions, then
the rank minimization problem

ni‘in rank(A) st. P(A) =B (3.24)

is well defined, and its solution is unique (Candes and Recht 2009). However, it is
also known that under general conditions, the task of finding such a minimal-rank
solution is in general an NP-hard problem.

To alleviate the computational difficulty, instead of directly minimizing the
discontinuous rank function, we could try to relax the objective and minimize its
convex surrogate instead. More precisely, we could try to solve the following relaxed
convex optimization problem

min Al st P@A) =B, (3.25)

where ||A||x is the nuclear norm of the matrix A (i.e., the sum of all singular
values of A). The theory of high-dimensional statistics (Candés and Recht 2009;
Gross 2011) shows that when X is high-dimensional and the measurement operator
P(-) satisfies certain benign conditions,? the solution to the convex optimization
problem (3.25) coincides with that of the rank minimization problem in (3.24).

In what follows, we illustrate how to apply this general approach to the low-rank
matrix completion problem, derive a simple algorithm, and give precise conditions
under which the algorithm gives the correct solution.

Exact Low-Rank Matrix Completion with Minimum Number of Measurements

2Such conditions typically require that the linear measurements and the matrix X be in some sense
incoherent.
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Let X € RP*N be a matrix whose columns are drawn from a low-dimensional
subspace of R? of dimension d < D. Assume that we observe only a subset of
the entries of X indexed by a set €2, i.e.,

Q = {(i,)) : x; is observed}. (3.26)

Let Pg : RP*N — RP*N be the orthogonal projector onto the span of all matrices
vanishing outside of € so that the (i, /)th component of Pq(X) is equal to x; if
(i,j) € Q and zero otherwise. As proposed in (Candeés and Recht 2009), we may
complete the missing entries in X by searching for a complete matrix A € RP*V that
is of low rank and coincides with X in €2. This leads to the following optimization
problem:

n}jn rank(A) s.t. Pq(A) = Po(X). (3.27)

As we have discussed before in Section 3.1, in order for this problem to have
a unique solution, we must require that the matrix X be nonsparse, or incoherent
according to Definition 3.1. In addition, the missing entries should be random
enough and should not fall into any special pattern.

Regarding the minimal number of entries needed, let us assume D = N for
simplicity. An N xN matrix X of rank d has 2Nd—d* degrees of freedom.? Therefore,
one should not expect to complete or recover a rank-d matrix uniquely with fewer
than O(dN) entries, since in general, there will be infinitely many rank-d matrices
that have the same given entries.

The question is how many more entries are needed in order for the above
problem to have a unique solution and, even more importantly, for the solution to
be found efficiently. Since the above rank-minimization problem is NP-hard (even
if the solution exists and is unique), inspired by the compressive sensing story, we
consider the following convex relaxation:

min Al st Pa(d) = Pa(X), (3.28)

where ||A|l« = )_ 0i(A) is the sum of the singular values of A, which is the convex
envelope of the rank function rank(A).

The seminal work of (Candes and Recht 2009; Candes and Tao 2010; Gross
2011) has established that when the low-rank matrix X is incoherent and the
locations of the known entries are sampled uniformly at random, the minimizer to
the problem (3.28) is unique and equal to the correct matrix X even if the number of
given entries is barely above the minimum. More specifically, the minimum number
of measurements that are needed in order for the convex optimization to give the

3X can be factorized as X = UAA~'VT, where U, V € R4 have Nd entries each, and A € R4<4
is an invertible matrix.
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correct solution with high probability is very close to the number of degrees of
freedom of the unknowns. The following theorem summarizes the results.

Theorem 3.2 (Low-Rank Matrix Completion by Convex Optimization). Let X be
a D x N matrix of rank d, with N > D. Assume that X is v-incoherent with respect to
the set of sparse matrices according to Definition 3.1. Let M be the expected number
of observed entries, whose locations are sampled independently and uniformly at
random.* Then there is a numerical constant c such that if

M > cv*d N(log(N))?, (3.29)

then X is the unique solution to the problem in (3.28) with probability at least 1 —
N73; that is, the program (3.28) recovers all the entries of X with no error.

Notice that for a general rank-d matrix, this bound is already very tight. To see
this, recall from our previous discussion that the minimum number of required
measurements is O(d N). In essence, the theorem states that with only a polylog
factor’ of extra measurements, i.e., O(d N polylog(N)), we can obtain the unique
correct solution via convex optimization. This bound can be strengthened under
additional assumptions. For instance, if d = O(1) (i.e., if X is a matrix whose rank
does not increase with its dimension), then the minimum number of entries needed
to guarantee the exact completion of X reduces to M > N log(N) (Keshavan et al.
2010a). It is worth mentioning that the above statement is not limited to matrix
completion. As shown in (Gross 2011), the same bound and statement hold for the
compressive sensing of low-rank matrices with general linear observations P(X),
i.e., for the problem (3.25), as long as the linear operator P is “incoherent” with the
matrix X.

Low-Rank Matrix Completion via Proximal Gradient
The work of (Cai et al. 2008) proposes to find the solution to the optimization
problem in (3.28) by solving the following problem:

, 1
min z||A||*+2||A||§ s.t. Pa(A) = Pa(X), (3.30)

“Previously, we have used M to denote the number of observed entries in a specific matrix X.
Notice that here, M is the expected number of observed entries under a random model in which the
locations are sampled independently and uniformly at random. Thus, if p is the probability that an
entry is observed, then the expected number of observed entries is pDN. Therefore, one can state
the result either in terms of p or in terms of the expected number of observed entries, as we have
done. For ease of exposition, we will continue to refer to M as the number of observed entries in
the main text, but the reader is reminded that all the theoretical results refer to the expected number
of observed entries, because the model for the observed entries is random.

5 A polylog factor means a polynomial in the log function, i.e., O(polylog(N)) means O(log(N)¥)
for some integer k.
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in which the nuclear norm is augmented with a quadratic penalty term on A. As we
will see, the additional quadratic term leads to a very simple algorithm. Furthermore,
one can show that as the weight 7 > 0 increases, the solution of this regularized
program converges to that of (3.28) (Cai et al. 2008).

More specifically, using the method of Lagrange multipliers described in
Appendix A, we can write the Lagrangian function of (3.30) as

1
Z(A,Z) = t|All« + 2||A||12r + (2. Pa(X) = Pa(4)), (3.31)

where Z € RP*N is a matrix of Lagrange multipliers. The optimal solution is
given by the saddle point of the Lagrangian, i.e., the solution to the problem
maxz ming -2 (A, Z), which can be found by iterating the following two steps:

A = argminy, L (A, Zr—1),

(3.32)
Zv =Ziei + B (Aw. Zim),

where B > 0 is the step size. It is very easy to see that ng Ak, Zk—1) = Pa(X) —

Pq(Ay). To compute the optimal A given Z;_, notice that (Z, Pq(X) — Po(A)) =

(Pa(Z),X — A), and by completing squares, we have

1
argmin.Z(A,Z) = argmin t||A||« + ) |A —Po(2)|%. (3.33)
A A

The minimizer to this problem is given by the so-called proximal operator of the
nuclear norm: A* = D.(Pq(Z)), where D, is the singular value thresholding
operator defined in (2.95). We have left the derivation as Exercise 2.16.

Hence, starting from Z; = 0, the Lagrangian objective maxz miny -Z (A, Z)
can be optimized via Algorithm 3.2. This is also known as the proximal gradient
descent method. Even though the objective function (3.31) is not smooth, this
method is known to converge as fast as the regular gradient descent method for
smooth functions, with a rate of O(1/k). If one wants to obtain the solution to the
problem (3.28), one can repeat the algorithm with an increasing sequence of 7’s and
at each run, initialize A with the value previously obtained.

Algorithm 3.2 (Low-Rank Matrix Completion by Proximal Gradient)

Input: Entries x; of a matrix X € RP*N for (i, j) € Q and parameter t > 0.
1: Initialize Z <= 0.
2: repeat
3: A< D.(Pa(2).
4 Z<Z+ f(Pa(X) —PalA)).
5: until convergence of Z.
Output: Matrix A.
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Example 3.3 (Completing Face Images with Missing Pixels by Convex Opti-
mization) As we have seen in Chapter 2, under certain idealized circumstances
(such as Lambertian reflectance), images of the same object taken under different
illumination conditions lie near an approximately nine-dimensional linear subspace
known as the harmonic plane (Basri and Jacobs 2003). In this example, we exploit
such a low-dimensional structure to recover face images from the extended Yale
B data set that have been corrupted so that the intensity values of some pixels are
missing. The data matrix is formed by taking frontal face images of subject 20 under
all 64 different illumination conditions. Each image is down-sampled to size 96 x 84.
To synthesize a matrix with missing entries, a fraction of pixels from each image is
randomly selected as the missing entries. We apply the proximal gradient algorithm
described in Algorithm 3.2 to complete such “missing” entries. Figure 3.2 shows the
results of image completion for different parameters 7 for varying levels of missing
entries (from 30% missing entries to 90%). Notice that with a proper choice of the
parameter 7 (around T = 4 x 10° in this case), the convex optimization method is
able to recover up to 80% of missing entries.

3.1.4 Incomplete PCA by Alternating Minimization

Although the convex-optimization-based approach can ensure correctness of the
low-rank solution for the matrix completion problem, it requires solving a convex
program of the same size as the matrix. When the data matrix X is very large,
parameterizing the low-rank solution A and Lagrange multipliers Z with two
matrices of the same size as X seems rather demanding, actually redundant. At least
the low-rank solution A could be parameterized more economically with its low-
rank factors. Hence, if scalability of the algorithm is a serious concern, it makes
sense to look for the low-rank factors of the solution matrix directly.

To this end, we introduce in this section an alternating minimization algorithm
for solving the geometric PCA problem with missing data. The main idea behind
this approach, which was probably first proposed in (Wiberg 1976), is to find u, U,
and Y that minimize the error | X — 1T —UY ||% considering only the known entries
of X in the set Q = {(i,j) : w; = 1}, e,

[Pa(X — p1T —UY)|7 = |W O (X — plT - UY)|%

D N
=)0 wilry — i —u]y)?,

i=1 j=1

(3.34)

where x;; is the (i, j)th entry of X, u; is the ith entry of u, ulT is the ith row of U, and
Y, is the jth column of Y. Notice that this cost function is the same as that in (3.10),
except that the errors ;; = x;; — u;'—yj associated with the missing entries (w; = 0)
are removed.
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(c) Face images reconstructed by convex optimization with 7

qRangE

(d) Face images reconstructed by convex optimization with 7 = 4 x 107

(e) Face images reconstructed by convex optimization with 7 = 8 x 106

79

Fig. 3.2 Matrix completion via convex optimization for face image completion. We take frontal
face images (size 96 X 84) of subject 20 from the extended Yale B data set and randomly select a
fraction of pixels as missing entries. Each column corresponds to input or result under a different
percentage of missing entries. The first row is the input images, and other rows show the completion
results by convex optimization with different values of t for the algorithm. Each image shows one

typical example of the recovered 64 images.
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In what follows, we will derive an alternating minimization algorithm for
minimizing the cost function in (3.34). For the sake of simplicity, we will first
derive the algorithm in the case of zero-mean and complete data. In this case, the
problem in (3.34) reduces to a low-rank matrix approximation problem, which can
be solved using the SVD, as described in Theorem 2.3. The alternating minimization
algorithm to be derived provides an alternative to the SVD solution, which, however,
can be more easily extended to the case of incomplete data, as we will see. Moreover,
the algorithm can also be extended to the more challenging PCA problem with
missing entries, as we will see.

Matrix Factorization by Alternating Minimization

In the case of complete, zero-mean data, the optimization problem in (3.34) reduces
to the low-rank matrix approximation problem based on explicit factorization
mingyy | X — UY|%. As we have seen in Chapter 2, this problem can be solved
from the SVD of X. Here, we consider an alternative method based on the
orthogonal power iteration method (Golub and Loan 1996) for computing the top d
eigenvectors of a square matrix.

Suppose that A € RV*V is a symmetric positive semidefinite matrix with
eigenvectors {u;}Y_, and eigenvalues {1;}_, sorted in decreasing order. Suppose
that A; > A, and let u® € R be an arbitrary vector such that ;| u® # 0. One can
show (see Exercise 3.3) that the sequence of vectors

1 Aut
lAu¥| (3.35)

converges to the top eigenvector of A up to sign, i.e., u* — +uy, and that the rate
of convergence is if . This method for computing the top eigenvector of a matrix is
called the power method.

More generally, assume that 1y > A, and let U° € RY*? be an arbitrary matrix
whose column space is not orthogonal to the subspace {u,-}fl=1 spanned by the top d
eigenvectors. One can show (see Exercise 3.3) that the sequence of matrices

Ut = AUMRM™!, (3.36)

where Q¥R = AUF is the QR decomposition of AU*, converges to a matrix U
whose columns are the top d eigenvectors of A and that the rate of convergence is
A‘g‘ . This method for computing the top d eigenvectors of a matrix is called the
orthogonal power iteration method or Lanczos method (Lanczos 1950).

Power Factorization (PF) (Hartley and Schaffalitzky 2003) is a generalization
of the orthogonal power iteration approach for computing the top d singular
vectors of a (possibly) nonsquare matrix X. The main idea behind PF is that
given Y € R an optimal solution for U € RP*? that minimizes || X — UY|%

is given by XYT(YYT)~!. As before, such a matrix can be made orthogonal by
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Algorithm 3.3 (Complete Matrix Factorization by Power Factorization)

Input: Matrices X € RP>*N and Y° € R4V,
1: initialize ¥ < Y°.
2: repeat
3: Given Y, find U < Q, where QR = XY T (YYT)~\.
4:  GivenU, findY < UTX.
5: until convergence of the product UY.

Output: Matrices U and Y.

replacing U by the Q factor of the QR decomposition of XY T (YYT)~!. Then, given
an orthogonal U, the optimal Y that minimizes |X — UY||% is UTX. The PF
algorithm (see Algorithm 3.3) then iterates between these two steps till convergence
is achieved. The method is guaranteed to converge to the rank-d approximation of
X, as stated in the following theorem, whose proof is left as an exercise to the reader
(see Exercise 3.4).

Theorem 3.4 (Power Factorization). Let X; be the best rank-d approximation of X
according to the Frobenius norm. Let 0; be the ith singular value of X. If 64 > 0441,
then there exists a constant ¢ > 0 such that for all k > 0,

2k
X0 = U < (%) (3.37)
0a

where U* and Y* are the values at iteration k of the matrices U and Y in
Algorithm 3.3.

Matrix Completion by Alternating Minimization

Let us now consider the matrix factorization problem with incomplete, zero-mean
data, i.e., the problem in (3.34) with g = 0. Taking the derivatives of the cost
function in (3.34) with respect to u; and y; and setting them to zero leads to

N N

(D wir) Y = 3w i=1,....D, (3.38)
j=1 j=1
D D

(Zwiju,-u;r)yj = Zwijx,-ju,-, ] = 1, e ,N. (339)
i=1 i=1

Therefore, given Y, the optimal U can be computed linearly from (3.38). As before,
the constraint U U = I can be enforced by replacing U by the Q factor of the QR
decomposition of U = QR. Then, given U, the optimal Y can be computed linearly
from (3.39). This leads to the PF algorithm for matrix factorization with missing
entries summarized in Algorithm 3.4.
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Algorithm 3.4 (Matrix Completion by Power Factorization)

Input: Matrices W ® X € RP*N and Y° € RV,

1: initialize Y < Y°.
2: repeat
3:  GivenY =[y,...,yy], solve m[}n WO X —UY)|? as

u,

N N

N T .

U= I T ( E Wiy ¥, ) E WXy, = 1,...,D.

T =1 =1
up

4:  Normalize U <= UR™!, where QR = U.

T
u;

GivenU = | : |, solve myin W X—Uur)|?as

ug

bt

D oD
Y=[J’1~-~J’N]ayj‘<—(Zwijlliu,-—r) Zw,jx,-,'ui,j=l,...,N.

i=1 i=1
6: until convergence of the sequence UY.

Output: U and Y.

Incomplete PCA by Alternating Minimization
Let us now consider the PCA problem in the case of incomplete data, i.e., the
problemin (3.34), where we want to recover both the mean p and the subspace basis
U. As in the case of complete data, the solution to this problem need not be unique,
because if (w, U, Y) is an optimal solution, then so is (@ — Ub, UA,A™'Y) for all
b € RY and A € R¥“, To handle this issue, we usually enforce the constraints
UTU = Iand Y1 = 0. For the sake of simplicity, we will forgo these constraints
for a moment, derive an algorithm for solving the unconstrained problem, and then
find a solution that satisfies the constraints.

To solve the unconstrained problem, let us take the derivatives of the cost function
in (3.34) with respect to u;, u;, and Y and set them to zero. This leads to

N
( w,;i) wo= wyley —uly)). i=1,....D, (3.40)
=1 =1
N N
(Zwijyjyf)ui = 3wyl — i)y, i=1,....D, (3.41)
j=1 j=1

D D
( > wi,-uiu,-T)yj = iy — pous, j=1,...,N. (3.42)

i=1 i=1
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Algorithm 3.5 (Incomplete PCA by Power Factorization)

Input: Matrix W, entries x;; of (i, /) such that w; = 1, and dimension d.

u
1: initialize | © | < U’ € RP*and [y,,...,yy] < ¥° € RN,

T
Up

2: repeat
SN wi C—uy))
Zivzl Wij ’
N

N -1
4 u; < (Zl Wijyjyj—r) > wilxy — Ky
=

3: Wi <

u ul
5 U=| ! |« UR™!, where QR = .
up uy

D 1D
6 Y=[y..... yy] where y; < ( > Wijui”iT) 2wyl — pou;.
i=1 i=1

7: until convergence of u1' + UY.

Output: p + ) UYL, Uand Y(I — }117).

Therefore, given U and Y, the optimal g can be computed from (3.40). Likewise,
given pu and Y, the optimal U can be computed linearly from (3.41). Also, given u
and U, the optimal Y can be computed linearly from (3.42).

As before, we can enforce the constraint U U = I by replacing U by the Q
factor of the compact QR decomposition of U = QR. Also, we can enforce the
constraint Y1 = 0 by replacing u by p + IbUYl, and Y by Y(I — IbllT). This leads
to the alternating minimization approach for PCA with missing entries summarized
in Algorithm 3.5.

A similar alternating minimization approach was proposed in (Shum et al. 1995),
in which the steps in (3.40) and (3.41) are combined into a single step

N y y T u N y
Zw,[d[d [J:Ewm[d i=1,....D. (3.43)

j=1
This leads to an alternating minimization scheme whereby given Y, one solves for
p and U from (3.43), and given p and U, one solves for Y from (3.42).

Ensuring Global Optimality of Alternating Minimization for Matrix Completion

According to Theorem 3.4, when the data matrix X € RPXN g complete,
the alternating minimization method in Algorithm 3.3 is guaranteed to converge
exponentially to the optimal rank-d approximation of X as long as oy41/04 < 1.
In the case of incomplete data, the alternating procedure in Algorithm 3.4 is
perhaps the simplest and most natural extension of Algorithm 3.3. However, since
the objective function is nonconvex, there is no guarantee that the algorithm will
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converge. Thus, a natural question is whether there are conditions on the rank of
X and the number of observed entries M under which the alternating minimization
approach is guaranteed to converge. Now, even if the algorithm were to converge,
there is no guarantee that it would converge to the globally optimal low-rank factors,
or that the product of the factors would give the optimal rank-d approximation of X.
Thus, another natural question is whether there are conditions on the rank of X
and the number of observed entries M under which the alternating minimization
approach is guaranteed to converge to the globally optimal rank-d approximation of
X, and hence perfectly complete X when it has rank d. According to Theorem 3.2,
the nuclear norm minimization approach in (3.28) is able to complete most rank-
d matrices from M > O(d Nlog(N)?) entries. Thus, a natural conjecture is that
the alternating minimization approach should be able to complete a rank-d matrix
from a number of entries that depends on d, Npolylog(N), and some ratio of
the singular values of X. However, while alternating minimization methods for
matrix completion have been used for many years, theoretical guarantees for the
convergence and optimality of such methods have remained elusive.

Nonetheless, recent progress in low-rank matrix factorization (Burer and Mon-
teiro 2005; Bach 2013; Haeffele et al. 2014) has shown that under certain conditions,
local minimizers for certain classes of matrix factorization problems are global
minimizers. Moreover, recent progress in low-rank matrix completion (Jain et al.
2012; Keshavan 2012; Hardt 2014; Jain and Netrapalli 2014) has shown that under
certain benign conditions, certain alternating minimization methods do converge to
the globally optimal solution with high probability when the matrix is of sufficiently
high dimension. While a detailed explanation of such results is far beyond the scope
of this book, we provide here a brief introduction with two purposes in mind. First,
the analytical conditions required for optimality provide good intuition as to when
we should expect low-rank matrix completion to work well in general. Second, some
of the proposed algorithms introduce some modifications to the above alternating
minimization methods, which may inspire readers to develop even better algorithms
in the future.

As before, we are interested in finding a rank-d factorization UY, with factors
U € RP* and Y € R™N, that best approximates the data matrix X € RP*VN given
the observed entries W ® X specified by the matrix W € {0, 1}?*V ie.,

min | W © (X — Uy)|z. (3.44)

The alternating minimization algorithm for solving this problem (Algorithm 3.4)
uses all of the observed entries of X at each iteration in order to update the factors. In
contrast, the work of (Jain et al. 2012) proposes a modified alternating minimization
algorithm (see Algorithm 3.6) that uses only a partition of the observed entries at
each iteration, whence the name partition alternating minimization. Specifically, the
set of observed entries W is partitioned into 2K 4 1 randomly chosen nonoverlapping
and equally sized subsets, denoted by Wy, Wi,..., Wok. Then the updates of
the original alternating minimization algorithm, Algorithm 3.4, are applied using
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Algorithm 3.6 (Matrix Completion by Partition Alternating Minimization)

Input: Observed matrix W © X and partition matrices Wi, ..., Wg.
1: initialization
2: U < top d left singular vectors of the matrix ;WO ©X.
3: U® < Q, where QR = Uy — H yq (Up).
N
4: end initialization v
5. fork=0,1,..., K—1do
6:  YH! <« argminy |[Wiy, © (UFY — X) |12,
7 UM < argming ||Wg4i41 © (UYF = X) |12
8: end for
Output: Matrix UKYX,

the observed entries specified by W;4; to update Y and the observed entries
specified by Wk to update U, for each k = 0,...,K — 1, instead of those
specified by W. The second main difference between Algorithm 3.6 and the original
alternating minimization algorithm, Algorithm 3.4, is the way in which the factor
U is initialized. While in Algorithm 3.4, U is typically initialized at random, in
Algorithm 3.6, the factor U is initialized using the observed entries. Specifically, let
p be the probability that an entry is observed, and let M = pDN be the expected
number of observed entries. Let U be the top d singular vectors of })Wo © X, and
v > 0 the incoherence parameter for X according to Definition 3.1. We clip entries

of U that have magnitude greater than 2”“1/\,‘1 to be zero and let the initial U° be the

orthonormalized version of such U obtained via QR decomposition.

In short, there are two major differences between Algorithm 3.6 and Algo-
rithm 3.4: the initialization based on the singular vectors of Il) Wy © X and the update
in each iteration using only a subset of the observations. It is surprising that these
small modifications to the basic alternating minimization method can ensure that
the new procedure approximates the globally optimal solution as described by the
following theorem. A complete proof and explanation of this theorem is beyond the
scope of this book. We refer interested readers to (Jain et al. 2012).

Theorem 3.5 (Partition Alternating Minimization for Matrix Completion). Let X
be a D x N matrix of rank d, with N > D. Assume that X is v-incoherent with
respect to the set of sparse matrices according to Definition 3.1. Let M be the
expected number of observed entries, whose locations are sampled independently
and uniformly at random. If there exists a constant ¢ > 0 such that

”X”F)

4 d
M=>c 1)2(;;) d*3N1log(N) 10g< ). (3.45)

then with high probability, for K = C'log(||X||r/¢) with some constant C' > 0, the
outputs of Algorithm 3.6 satisfy | X — UKYK|r < e.
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In words, the alternating minimization procedure guarantees to recover X up to
precision ¢ in O(log(1/¢)) steps given that the number of observations is of order
O(d*>Nlog(N) log(d)). This result is in perfect agreement with our conjecture that
the sample complexity of alternating minimization for matrix completion should
depend on d, Npolylog(N), and some ratio of the singular values of X. However,
by comparing this result with the one for the convex optimization approach, M >
O(v2dN1og(N)?), we see that this comes at the cost of an increase of the sample
complexity as a function of d from linear to polynomial. This has motivated the
development of modified versions of Algorithm 3.6 that are guaranteed to recover
X up to precision ¢ under either incomparable or weaker conditions. For example,
the method proposed in (Keshavan 2012) requires the expected number of observed
entries to satisfy (for some constant c)

M> cv(Z;)Sleog (IZ) (3.46)

which is superior when the matrix has a small condition number, while the method
in (Hardt 2014) requires the expected number of observed entries to satisfy (for
some constant ¢)

M>c v(gi)ch(d +log (]Z))N, (3.47)

which reduces the exponent of both the ratio of the singular values as well as the
subspace dimension.

Observe also that the results of (Jain et al. 2012; Hardt 2014) are of a slightly
different flavor from that of results for convex optimization-based methods, since
the minimum number of observed entries depends not only on the dimension of the
subspace d, but also on the condition number o} /0,4, which could be arbitrarily large,
and the desired accuracy ¢. In particular, to achieve perfect completion (¢ = 0), we
would need to observe the whole matrix. To address this issue, the work of (Jain
and Netrapalli 2014) proposes a factorized version of the singular value projection
algorithm of (Jain et al. 2010), called stagewise singular value projection, which
is guaranteed to complete a rank-d matrix X exactly, provided that the expected
number of observed entries satisfies (for some constant c¢)

M > cv*d®N(log(N))>. (3.48)

Evidently, this result is worse than that for the nuclear norm minimization approach,
which has sample complexity O(v2dN log(N)?). But this comes at the advantage of
improving the computational complexity from O(N? log(i)) for the nuclear norm
minimization approach to O(v*d’N log* (N) log( ; )) for the stagewise singular value
projection.

In summary, there is currently great interest in trying to develop alternating
minimization algorithms for matrix completion with theoretical guarantees of
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convergence to the optimal rank-d matrix. Such algorithms are computationally less
expensive that the nuclear minimization approach, but this comes at the cost of
tolerating a smaller number of missing entries. However, as of the writing of this
book, existing results do not directly apply to the basic alternating minimization
procedure given in Algorithm 3.4. We conjecture that this procedure should be able
to correctly complete a matrix under conditions similar to those presented in this
section. Having such a result would be important, because in practice, it may be
preferable to use Algorithm 3.4 because it is simpler and easier to implement.

Example 3.6 (Completing Face Images with Missing Pixels by Power Factor-
ization) In Example 3.3, we applied the convex optimization approach (Algo-
rithm 3.2) to complete face images in the extended Yale B data set with missing
pixels. In this example, we apply the PF method for incomplete PCA (Algo-
rithm 3.5) to the same images. Figure 3.3 shows the results for different values
of the subspace dimension d. We see that for a proper choice of d (in this case from
2 to 9), the PF method works rather well up to 70% of random missing entries.
However, PF fails completely for higher percentages of missing entries. This is
because PF can become numerically unstable when some of the matrices are not
invertible. Specifically, since there are only N = 64 face images, it is likely that
for some rows of the data matrix, the number of observed entries is less than d;
thus the matrix ZJN=1 w,;iyjy;'— in line 4 of Algorithm 3.5 becomes rank-deficient. We
also observed that as expected, PF is faster than the convex approach. Specifically,
in this example, PF took 1.48 seconds in MATLAB, while the convex optimization
approach took 10.15 seconds.

3.2 PCA with Robustness to Corrupted Entries

In the previous section, we considered the PCA problem in the case that some entries
of the data points are missing. In this section, we consider the PCA problem in the
case that some of the entries of the data points have been corrupted by gross errors,
known as intrasample outliers. The additional challenge is that we do not know
which entries have been corrupted. Thus, the problem is to simultaneously detect
which entries have been corrupted and replace them by their uncorrupted values. In
some literature, this problem is referred to as the robust PCA problem (De la Torre
and Black 2004; Candes et al. 2011).

Let us first recall the PCA problem (see Section 2.1.2) in which we are given N
data points X = {x; € R? }§V=1 drawn (approximately) from a d-dimensional affine
subspace § = {x = p + Uy}, where u € RP is an arbitrary point in §, U € RP*¢
is a basis for S, and {y; € R¢ }§V=1 are the principal components. In the robust PCA
problem, we assume that the ith entry x;; of a data point x; is obtained by corrupting
the ith entry £;; of a point £; lying perfectly on the subspace S by an error ¢;;, i.e.,

XU=€U+€U, or xj=€j+ej7 or X=L+E, (349)
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(b) Face images reconstructed by Power Factorization with d = 2

LilE

(¢) Face images reconstructed by Power Factorization with d = 4

LIk

(d) Face images reconstructed by Power Factorization with d = 6

(e) Face images reconstructed by Power Factorization with d = 9

Fig. 3.3 Power factorization for recovering face images. We take frontal face images (size 96 X 84)
of subject 20 from the extended Yale B data set and randomly select a fraction of pixels as missing
entries. Each column corresponds to input or result under a different percentage of missing entries.
The first row is the input images, and other rows are the results obtained by power factorization
with different values of d used. Each image shows one typical example of the recovered 64 images.
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where X, L, E € RP*V are matrices with entries x;, £ij, and ej;, respectively. Such
errors can have a huge impact on the estimation of the subspace. Thus it is very
important to be able to detect the locations of those errors,

Q = {(i.j) : e5 # 0}, (3.50)

as well as correct the erroneous entries before applying PCA to the given data.

As discussed before, a key difference between the robust PCA problem and the
incomplete PCA problem is that we do not know the location of the corrupted
entries. This makes the robust PCA problem harder, since we need to simultaneously
detect and correct the errors. Nonetheless, when the number of corrupted entries is
a small enough fraction of the total number of entries, i.e., when |Q2| < p - DN for
some p < 1, we may still hope to be able to detect and correct such errors. In the
remainder of this section, we describe methods from robust statistics and convex
optimization for addressing this problem.

3.2.1 Robust PCA by Iteratively Reweighted Least Squares

One of the simplest algorithms for dealing with corrupted entries is the iteratively
reweighted least squares (IRLS) approach proposed in (De la Torre and Black 2004).
In this approach, a subspace is fit to the corrupted data points using standard PCA.
The corrupted entries are detected as those that have a large residual with respect to
the identified subspace. A new subspace is estimated with the detected corruptions
down-weighted. This process is then repeated until the estimated model stabilizes.

The first step is to apply standard PCA to the given data. Recall from Section
2.1.2 that when the data points {x; € RP }jN=1 have no gross corruptions, an optimal
solution to PCA can be obtained as

N
1 e
L= N Z;xj and y, =U" (x;—p), (3.51)
j=
where U is a D x d matrix whose columns are the top d eigenvectors of
| N
Sv= D (=)= )T (3.52)

J=1

When the data points are corrupted by gross errors, we may improve the
estimation of the subspace by recomputing the model parameters after down-
weighting samples that have large residuals. More specifically, let w;; € [0, 1] be
a weight assigned to the ith entry of x; such that w; ~ 1 if x;; is not corrupted,
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and w; ~ 0 otherwise. Then a new estimate of the subspace can be obtained by
minimizing the weighted sum of the least-squares errors between a point x; and its
projection p + Uy; onto the subspace S, i.e.,

D N
DY wily — i —uly)?, (3.53)
i=1 j=1

where u; is the ith entry of pu, ulT is the ith row of U, and y; is the vector of
coordinates of the point x; in the subspace S.

Notice that the above objective function is identical to the objective function
in (3.34), which we used for incomplete PCA. The only difference is that in
incomplete PCA, wy; € {0, 1} denotes whether x;; is observed or unobserved, while
here w;; € [0, 1] denotes whether x;; is corrupted or uncorrupted. Other than that, the
iterative procedure for computing ., U, and Y given W is the same as that outlined
in Algorithm 3.5.

Given u, U, and Y, the main question is how to update the weights. A simple
approach is to set the weights depending on the residual &; = x; — ; — u;'—yj. Our
expectation is that when the residual is small, x;; is not corrupted, and so we should
set w;; ~ 1. Conversely, when the residual is large, x;; is corrupted, and so we should
set wy ~ 0. Maximum-likelihood-type estimators (M-Estimators) define the weights
to be

wij = p(eij)/s%j (3.54)

for some robust loss function p(-). The objective function then becomes

D N
Y pley). (3.55)
i=1 j=1

Many loss functions p(-) have been proposed in the statistics literature (Huber 1981;
Barnett and Lewis 1983). When p(¢) = €2, all weights are equal to 1, and we obtain
the standard least-squares solution, which is not robust. Other robust loss functions
include the following:

1. Ly loss: p(e) = |e|;
2. Cauchy loss: p(e) = e2log(1 + &2/&2);
2 .
f ’
3. Huber loss (Huber 1981): p(¢) = ¢ it el <o
2¢e0le| — &) otherwise;

4. Geman—McClure loss (Geman and McClure 1987): p(e) =

52
e24e3’
where g9 > 0 is a parameter. Following the work of (De la Torre and Black 2004),
we use the Geman—McClure loss scaled by 8(2), which gives
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Algorithm 3.7 (Robust PCA by Iteratively Reweighted Least Squares)

Input: Data matrix X, dimension d, and parameter &y > 0.

1: initialize [u, U, Y] = PCA(X) using PCA from Chapter 2.

2: repeat
. T
3: i <= Xjj — i —U; Y
2
. . €0
4: wij <— 24
S wiiC—uy)
5: i< T Ei
M’ Z,‘V=1 Wij
N Y
6:  w< ( 2wy, ) Zl Wi (X5 — pi)y).
j=1 =
u u u
7. U=| . | < | : |R" where QR =
T T T
Up Up Up

D oL
8 Y =[y.....yy] wherey, < (; Wil ) 2wy — ;.

9: until convergence of [,l,lT + UY.

10: p < p+ JUYLY < Y(I— L11T), L« UY,and E < X — L.
Output: p,U,Y,Land E.

2
€0

. 3.56
sfj + &2 (3-56)

W,’j:

The overall algorithm for PCA with corruptions is summarized in Algorithm 3.7.
This algorithm initializes all the weights to w; = 1. This gives an initial estimate
for the subspace, which is the same as that given by PCA. Given this initial estimate
of the subspace, the weights w;; are computed from the residuals as in (3.56). Given
these weights, one can reestimate the subspace using the steps of Algorithm 3.5. One
can then iterate between computing the weights given the subspace and computing
the subspace given the weights.

Example 3.7 (Face Shadow Removal by Iteratively Reweighted Least Squares)
As we have seen in Chapter 2, the set of images of a convex Lambertian
object obtained under different lighting conditions lies close to a nine-dimensional
linear subspace known as the harmonic plane (Basri and Jacobs 2003). However,
since faces are neither perfectly convex nor Lambertian, face images taken under
different illuminations often suffer from several nuances such as self-shadowing,
specularities, and saturations in brightness. Under the assumption that the images of
a person’s face are aligned, the above robust PCA algorithm offers a principled way
of removing the shadows and specularities, because such artifacts are concentrated
on small portions of the face images, i.e., they are sparse in the image domain.
In this example, we use the frontal face images of subject 20 under 64 different
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Bk 3
k * ‘

(a) Input images of a face under different illuminations

(b) Low rank and sparse components by IRLS

Fig. 3.4 Removing shadows and specularities from face images using IRLS for PCA with
corrupted data. We apply Algorithm 3.7 to 64 frontal face images of subject 20 from the extended
Yale B data set. Each image is of size 96 X 84. (a) Four out of 64 representative input face images.
(b) Recovered images from the low-rank component L (first row) and sparse errors E (second row).

illumination conditions. Each image is down-sampled to size 96 x 84. We then apply
the IRLS method (Algorithm 3.7) with &g = 1 and d = 4 to remove the shadows
and specularities in the face images. The results in Figure 3.4 show that the IRLS
method is able to do a reasonably good job of removing some of the shadows and
specularities around the nose and eyes area. However, the error image in the third
column shows that the recovered errors are not very sparse, and the method could
confuse valid image signal due to darkness with true errors (caused by shadows,
etc.)

3.2.2 Robust PCA by Convex Optimization

Although the IRLS scheme for robust PCA is very simple and efficient to imple-
ment, and widely used in practice, there is no immediate guarantee that the method
converges. Moreover, even if the method were to converge, there is no guarantee that
the solution to which it converges corresponds to the correct low-rank matrix. As we
have seen in the low-rank matrix completion problem, we should not even expect
the problem to have a meaningful solution unless proper conditions are imposed on
the low-rank matrix and the matrix of errors.
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In this section, we will derive conditions under which the robust PCA problem
is well posed and admits an efficient solution. To this end, we will formulate
the robust PCA problem as a (nonconvex and nonsmooth) rank minimization
problem in which we seek to decompose the data matrix X as the sum of a low-
rank matrix L and a matrix of errors E. Similar to the matrix completion case,
we will study convex relaxations of the rank minimization problem and resort
to advanced tools from high-dimensional statistics to show that under certain
conditions, the convex relaxations can effectively and efficiently recover a low-rank
matrix with intrasample outliers as long as the outliers are sparse enough. Although
the mathematical theory that supports the correctness of these methods is far beyond
the scope of this book, we will introduce the key ideas and results of this approach
to PCA with intrasample outliers.

More specifically, we assume that the given data matrix X is generated as the sum
of two matrices

X =Ly + Ey. (3.57)

The matrix Ly represents the ideal low-rank data matrix, while the matrix Ey
represents the intrasample outliers. Since many entries of X are not corrupted
(otherwise, the problem would not be well posed), many entries of Ey should
be zero. As a consequence, we can pose the robust PCA problem as one of
decomposing a given matrix X as the sum of two matrices L + E, where L is of
low rank and E is sparse. This problem can be formulated as

nLnEn rank(L) + A||Elo st. X=L+E, (3.58)

where ||E||o is the number of nonzero entries in E, and A > 0 is a tradeoff parameter.

Robust PCA as a Well-Posed Problem

At first sight, it may seem that solving the problem in (3.58) is impossible. First of
all, we have an underdetermined system of DN linear equations in 2DN unknowns.
Among the many possible solutions, we are searching for a solution (L, E)) such that
L is of low rank and E is sparse. However, such a solution may not be unique. For
instance, if x;; = 1 and x;; = 0 for all (i,j) # (1, 1), then the matrix X is both of
rank 1 and sparse. Thus, if A = 1, we can choose (L, E) = (X,0) or (L, E) = (0,X)
as valid solutions. To avoid such an ambiguity, as suggested by the results for matrix
completion, the low-rank matrix Ly should be in some sense “incoherent” with the
sparse corruption matrix Ey. That is, the low-rank matrix L itself should not be
sparse. To capture this, we will assume that L is an incoherent matrix according to
Definition 3.1. Second of all, as suggested also by results for matrix completion, if
we want to recover the low-rank matrix Ly correctly, the locations of the corrupted
entries should not fall into any conspicuous pattern. Therefore, as in the matrix
completion problem, we will assume that the locations of the corrupted entries are
distributed uniformly at random so that the chance that they form any conspicuous
pattern is very low.
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As we will see, under the above condition of incoherence and random corrup-
tions, the problem in (3.58) will become well posed for most matrices X. However,
to be able to state the precise conditions under which the solution to (3.58) coincides
with (Ly, Ey), we first need to study the question of how to efficiently solve the
problem in (3.58).

Recovering a Low-Rank Matrix or a Sparse Vector by Convex Relaxation

Observe that even if the conditions above could guarantee that the problem in (3.58)
has a unique globally optimal solution, another challenge is that the cost function
to be minimized is nonconvex and nondifferentiable. In fact, it is well known that
the problem of recovering either a low-rank matrix C or a sparse signal ¢ from
undersampled linear measurements B or b, i.e.,

rncin rank(C) s.t. P(C) =B, or min |c|o s.t. Ac =b, (3.59)

is in general NP-hard (Amaldi and Kann 1998).

As we have seen for the low-rank matrix completion problem, the difficulty of
solving the rank minimization on the left-hand side of (3.59) can be alleviated by
minimizing the convex envelope of the rank function, which is given by the matrix
nuclear norm ||C||« and gives rise to the following optimization problem:

mcin IC]l« s.t. P(C)=B. (3.60)

As it turns out, convex relaxation works equally well for finding the sparsest
solution to a highly underdetermined system of linear equations Ac = b, which
is the problem on the right-hand side of (3.59). This class of problems is known
in the literature as compressed or compressive sensing (Candes 2006). Since this
linear system is underdetermined, in general there could be many solutions ¢ to the
equation Ac = b. This mimics the matrix completion problem, where the number
of given measurements is much less than the number of variables to be estimated
or recovered (all the entries of the matrix). Hence we want to know under what
conditions the sparsest solution to Ac = b is unique and can be found efficiently.

To this end, we briefly survey results from the compressive sensing literature
(see (Candes and Tao 2005; Candes 2008) and others). Without loss of generality,
let us assume that A is an m X n matrix with m < n whose columns have unit
norm. Let b = Acy, where ¢ is k-sparse, i.e., ¢y has at most k nonzero entries. Our
goal is to recover ¢y by solving the optimization problem on the right-hand side
of (3.59). Notice that if A has two identical columns, say columns 1 and 2, then
¢ =1[1,-1,0,... ,O]T satisfies A¢y = 0. Thus, if ¢ is a sparse solution to Ac = b,
then so is ¢p + €o. More generally, if A has very sparse vectors in its (right) null
space, then sparse solutions to Ac = b are less likely to be unique. Hence, to ensure
the uniqueness of the sparsest solution, we typically need the measurement matrix
A to be mutually incoherent, as defined next.
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Definition 3.8 (Mutual Coherence). The mutual coherence of a matrix A € R™"
is defined as

v(A) = _max la]a;). (3.61)
i#j=1

i#j=1,...n

A matrix is said to be mutually incoherent with parameter v if v(A) < v.

This definition of incoherence is not to be confused with that in Definition 3.1.
Definition 3.8 tries to capture whether each column of A is incoherent with other
columns so that no sparse number of columns can be linearly independent, whence
the name mutual coherence. This notion is useful for finding a sparse solution to a set
of linear equations, as we will see in Theorem 3.10. On the other hand, Definition 3.1
tries to capture whether the matrix as a whole is incoherent with respect to sparse
missing entries or sparse corruptions, whence the name incoherence with respect
to sparse matrices. This notion of incoherence is useful for solving the matrix
completion problem, as we saw in Theorem 3.2, and will be useful for solving the
robust PCA problem, as we will see in Theorem 3.66.

Another property of a matrix that is typically used to characterize the conditions
under which it is possible to solve a linear system is the notion of restricted isometry,
as defined next.

Definition 3.9. Given an integer k, the restricted isometry constant of a matrix A
is the smallest number 8;,(A) such that for all ¢ with ||c|lo < k, we have

(1 =8 A)llell3 < llAcll3 < (1 + 8(A))llell3. (3.62)

The remarkable results from compressive sensing have shown that if the mea-
surement matrix A is sufficiently incoherent or the restricted isometry constant is
small enough, then to find the correct sparsest solution to Ac = b, we can replace
the £y norm in (3.59) by its convex envelope, the £; norm, which gives rise to the
following optimization problem:

min [le|l; s.t. b= Ac. (3.63)
c

More precisely, we have the following result:

Theorem 3.10 (Sparse Recovery under Incoherence or Restricted Isometry). Ifthe
matrix A is incoherent, i.e., if v(A) < 2k1— \» or if it satisfies the restricted isometry
property (RIP) $::(A) < ~/2—1, then the optimal solution c* to the £|-minimization
problem in (3.63) is the correct sparsest solution, i.e., ¢* = ¢y.

In other words, when the matrix A is incoherent enough, the sparsest solution to the
linear system Ac = b can be obtained by solving a convex £;-minimization problem
as opposed to an NP-hard £y-minimization problem.
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Robust PCA by Convex Relaxation

Inspired by the above convex relaxation techniques, for the robust PCA problem
in (3.58) we would expect that under certain conditions on Ly and Ej, we can
decompose X as Ly 4+ Ey by solving the following convex optimization problem:

min [[L]. + A|E], st X=L+E, (3.64)

where ||L||« = ), 0:(L) is the nuclear norm of L, i.e., the sum of its singular values,
and |E| = ), ; lei| is the £; norm of E viewed as a vector. This convex program
is known as principal component pursuit (PCP).

The following theorem gives precise conditions on the rank of the matrix and
the percentage of outliers under which the optimal solution of the above convex
program is exactly (Ly, Ep) with overwhelming probability.

Theorem 3.11 (Robust PCA by Principal Component Pursuit (Candes et al. 2011)).
Let X = Ly + Ey. Assume that Ly = UXVT is v-incoherent with respect to the set
of sparse matrices according to Definition 3.1. Assume also that the support of Ey
is uniformly distributed among all the sets of cardinality D x N. If

pqgmin{D, N}

rank(Ly) <
(o) < p2log” (max{D,N})

and | Eollo < psND (3.65)

for some constant py, ps > 0, then there is a constant ¢ such that with probabzltty
at least 1 — cmax{N, D}~'°, the solution (L*, E*) to (3.64) with . =

exact, i.e.,

Jmax{N D}

*=Ly and E* =E,. (3.66)

A complete proof and explanation for this theorem is beyond the scope of this
book; interested readers are referred to (Candes et al. 2011). But this does not
prevent us from understanding its implications and using it to develop practical
solutions for real problems. The theorem essentially says that as long as the low-rank
matrix is incoherent and its rank is bounded almost linearly from its dimension, the
PCP program can correctly recover the low-rank matrix even if a constant fraction
of its entries are corrupted. Other results show that under some additional benign
conditions, say the signs of the entries of E, are random, the convex optimization
can correct an arbitrarily high percentage of errors if the matrix is sufficiently large
(Ganesh et al. 2010).

Alternating Direction Method of Multipliers for Principal Component Pursuit
Assuming that the conditions of Theorem 3.66 are satisfied, the next question is how
to find the global minimum of the convex optimization problem in (3.64). Although
in principle, many convex optimization solvers can be used, we introduce here an
algorithm based on the augmented Lagrange multiplier (ALM) method suggested
by (Candes et al. 2011; Lin et al. 2011).
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The ALM method operates on the augmented Lagrangian

B

L(LE,AN) =|L|l« +AlEli + (A, X—L—E) + 5

IX—L—E|;.  (3.67)
A generic Lagrange multiplier algorithm (Bertsekas 1999) would solve PCP
by repeatedly setting (Ly, Ey) = argmin; p Z(L,E, A;) and then updating the
Lagrange multiplier matrix by Ay = Ax + B(X — Ly — Ex). This is also known as
the exact ALM method.

For our low-rank and sparse decomposition problem, we can avoid having to
solve a sequence of convex programs by recognizing that min, Z(L,E, A) and
ming Z(L, E, A) both have very simple and efficient solutions. In particular, it is
easy to show that

argmin.Z(L,E,A) = Sjp—1 (X — L+ B7'A), (3.68)
E

where S; (X) is the soft-thresholding operator defined in (2.96) applied to each entry
x of the matrix X as S;(x) = sign(x) max(|x| — z,0). Similarly, it is not difficult to
show that (see Exercise 2.16)

argmin.Z (L, E,A) = Dg—1 (X —E + '), (3.69)
L

where D, (X) is the singular value thresholding operator defined in (2.95) as
D.(X) = US,(2)V*, where UXV* is any singular value decomposition of X.

Thus, a more practical strategy is first to minimize . with respect to L (fixing E),
then minimize . with respect to E (fixing L), and then finally update the Lagrange
multiplier matrix A based on the residual X — L — E, a strategy that is summarized
as Algorithm 3.8 below.

Algorithm 3.8 is a special case of a general class of algorithms known as
alternating direction method of multipliers (ADMM), described in Appendix A.
The convergence of these algorithms has been well studied and established (see
e.g., (Lions and Mercier 1979; Kontogiorgis and Meyer 1989) and the many
references therein, as well as discussion in (Lin et al. 2011; Yuan and Yang 2009)).
Algorithm 3.8 performs excellently on a wide range of problems: relatively small
numbers of iterations suffice to achieve good relative accuracy. The dominant cost
of each iteration is computing L, by singular value thresholding. This requires us
to compute the singular vectors of X — E; + 87! A, whose corresponding singular
values exceed the threshold 8~!. Empirically, the number of such large singular
values is often bounded by rank(Ly), allowing the next iterate to be computed
efficiently by a partial SVD.% The most important implementation details for this

SFurther performance gains might be possible by replacing this partial SVD with an approximate
SVD, as suggested in (Goldfarb and Ma 2009) for nuclear norm minimization.
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Algorithm 3.8 (Principal Component Pursuit by ADMM (Lin et al. 2011))

1: initialize: E) = Ao = 0,8 > 0.

2: while not converged do

3 compute Ly = Dg—1 (X — Ex + BTAY).

4: compute Ey | = S)L/g—l(X — Ly + ﬁ_l/\k).
5 compute Ak+1 == Ak + ﬂ(X _Lk+l — Ek+1)-
6: end while
7: output: L, E.

algorithm are the choice of B and the stopping criterion. In this work, we simply
choose B = ND/4||X||1, as suggested in (Yuan and Yang 2009).

Some Extensions to PCP

In most practical applications, there is also small dense noise in the data. So a more
realistic model for robust PCA can be X = L+ E + Z, where Z is a Gaussian matrix
that models small Gaussian noise in the given data. In this case, we can no longer
expect to recover the exact solution to the low-rank matrix (which is impossible
even if there are no outliers). Nevertheless, one can show that the natural convex
extension

min L]l +A|E[ st X —L—E|} <&, (3.70)

where ¢ is the known noise variance, gives a stable estimate to the low-rank and
sparse components L and E, subject to a small residual proportional to the noise
variance (Zhou et al. 2010b).

Another extension is to recover a low-rank matrix from both corrupted and
compressive measurements. In other words, we try to recover the low-rank and
sparse components (L, E) of X = L+ E from only some of its linear measurements:
Po(X), where Py(-) could be a general linear operator. The special case in which
the operator represents a subset of the entries has been covered in the original work
of principal component pursuit (Candes et al. 2011). It has been shown that under
similar conditions as in Theorem 3.66, one can correctly recover the low-rank and
sparse components by the following optimization:

min [Lls +AE] st PaX) =Pa(L + E). 3.71)

where as in matrix completion, Pq(-) represents projection onto the observed
entries.

The case of a more general linear operator Py (-) for projecting onto an arbitrary
subspace Q has also been studied in (Wright et al. 2013) and is known as
compressive principal component pursuit (CPCP). It has been shown that under
fairly broad conditions (so that Q is in some sense “incoherent” to L and E), the
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low-rank and sparse components can be correctly recovered by the following convex
program:

min Ll +AE]1 st Po(X) = Po(L + E). (3.72)

We leave as an exercise for the reader (see Exercise 3.8) to derive an algorithm for
solving the above problems using ideas from Lagrangian methods and alternating
direction minimization methods (please refer to Appendix A).

Example 3.12 (Face Shadow Removal by PCP) As we have seen in Example 3.7,
robust PCA can be used to remove shadows and specularities in face images that are
typically sparse in the image domain. In this example, we apply the PCP method
to the same face images in Example 3.7, which correspond to frontal face images
of subject 20 under 64 different illuminations (see Figure 3.5). As before, each
image is down-sampled to size 96 x 84. We solve the PCP problem using both
the exact ALM method and the inexact method via ADMM (Algorithm 3.8). We
set the parameter A according to Theorem 3.66. The exact and the inexact ALM
methods give almost identical results, but the latter is much faster than the former:
2.68 seconds for inexact ALM versus 42.0 seconds for exact ALM in MATLAB
on a typical desktop computer. As a comparison, the IRLS method in Example 3.7
takes 2.68 seconds on average. Comparing with the results in Figure 3.4 obtained
by the IRLS method, the results given by PCP are qualitatively better in the sense
that the recovered errors are indeed sparse and correspond better to true corruptions
in the face images due to shadows and specularities. In particular, we can appreciate
a significant improvement in the third image. This technique is potentially useful
for preprocessing training images in face recognition systems to remove such
deviations from the linear model. We leave the implementation of the algorithms
as a programming exercise to the reader (see Exercise 3.10).

3.3 PCA with Robustness to Outliers

Another issue that we often encounter in practice is that a small portion of the data
points does not fit the subspace as well as the rest of the data. Such points are called
outliers or outlying samples, and their presence can lead to a completely wrong
estimate of the underlying subspace. Therefore, it is very important to develop
methods for detecting and eliminating outliers from the given data.

The true nature of outliers can be very elusive. In fact, there is really no
unanimous definition for what an outlier is.” Outliers could be atypical samples that
have an unusually large influence on the estimated model parameters. Outliers could

"For a more thorough exposition of outliers in statistics, we recommend the books of (Barnett and
Lewis 1983; Huber 1981).
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(a) Input images of a face under different illuminations
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(b) Low rank and sparse components by PCP via exact ALM

AHER
i

(¢) Low rank and sparse components by PCP via ADMM

Fig. 3.5 Removing shadows and specularities from face images by principal component pursuit.
We apply Algorithm 3.7 to 64 frontal face images of subject 20 from the extended Yale B database.
Each image is of size 96 X 84. (a) Four out of 64 representative input face images. (b)-(c) Recovered
images from the low-rank component L (first row) and sparse errors E (second row).

also be perfectly valid samples from the same distribution as the rest of the data that
happen to be small-probability instances. Alternatively, outliers could be samples
drawn from a different model, and therefore they will likely not be consistent with
the model derived from the rest of the data. In principle, however, there is no way to
tell which is the case for a particular “outlying” sample point.

In this section, we will discuss two families of methods for dealing with outliers
in the context of PCA. The first family will include classical methods based on the
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robust statistics literature described in Appendix B. The second family will include
modern convex optimization techniques similar to those we have described in the
previous two sections for incomplete PCA and robust PCA.

3.3.1 Outlier Detection by Robust Statistics

We begin by discussing three classical approaches from robust statistics for dealing
with outliers in the context of PCA. The first method, called an influence-based
method, detects outliers as points that have a large influence in the estimated
subspace. The second method detects outliers as points whose probability of
belonging to the subspace is very low or whose distance to the subspace is very high.
Interestingly, this latter method leads to an IRLS approach to detecting outliers. The
third method detects outliers by random sample consensus techniques.

Influence-Based Outlier Detection

This approach relies on the assumption that an outlier is an atypical sample that
has an unusually large influence on the estimated subspace. This leads to an outlier
detection scheme whereby the influence of a sample is determined by comparing
the subspace S = (n, U) estimated with all the samples, and the subspace S(_]) =
([,l,(_]), U (—j) estimated without the jth sample. For instance, one may use a sample

influence function based on some distance between Sand §(_j) such as
dist(S, $—j) = Z(span(U), span(U(—;)) or (3.73)

dist(S. i) = I — OOyl + 10U = T O el (3.74)

The first quantity is the largest subspace angle (see Exercise 2.8) between the linear
subspace spanned by U and the linear subspace spanned by U (—j)- Such a distance
measures the influence based on comparing only the linear part of the subspaces,
which is appropriate only when the subspaces are linear but may fail otherwise. On
the other hand, the second quantity is based on the orthogonal distance from point
p in § to the subspace ﬁ(_j), plus the orthogonal distance from point ;) in ﬁ(_j)

to the subspace S. This distance is more appropriate for comparing the affine part
of the subspaces and can be combined with the distance between the linear parts to
form a distance between affine subspaces. Given any such distance, the larger the
value of the distance, the larger the influence of x; on the estimate, and the more
likely it is that x; is an outlier. Thus, we may detect sample x; as an outlier if its
influence is above some threshold t > 0, i.e.,

dist(S,S) > ©. (3.75)
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However, this method does not come without extra cost. We need to compute
the principal components (and hence perform SVD) N + 1 times: once with all
the samples together and another N times with one sample eliminated. There have
been many studies that aim to give a formula that can accurately approximate the
sample influence without performing SVD N + 1 times. Such a formula is called
a theoretical influence function (see Appendix B). For a more detailed discussion
about influence-based outlier rejection for PCA, we refer the interested reader to
(Jolliffe 2002).

Probability-Based Outlier Detection: Multivariate Trimming, M-Estimators, and
Iteratively Weighted Recursive Least Squares
In this approach, a subspace is fit to all sample points, including potential outliers.
Outliers are then detected as the points that correspond to small-probability events or
that have large fitting errors with respect to the identified subspace. A new subspace
is then estimated with the detected outliers removed or down-weighted. This process
is then repeated until the estimated subspace stabilizes.

More specifically, recall that in PCA, the goal is to find a low-dimensional
subspace that best fits a given set of data points X = {x; € R” }§V=1 by minimizing
the least-squares error

N
D ol — = Uyl (3.76)
j=1

between each point x; and its projection onto the subspace u + Uy;, where pu € RP
is any point in the subspace, U € RP*? is a basis for the subspace, and Yy € R4
are the coordinates of the point in the subspace. If there are no outliers, an optimal
solution to PCA can be obtained as described in Section 2.1.2, i.e.,

N
. 1 P .
v= Zx,' and y; = UT(xj— fuy), 3.77)

j=1

where U is a D x d matrix whose columns are the top d eigenvectors of

. 1Y . .
S = D — ) — fey) T (3.78)

J=1

If we adopt the guideline that outliers are samples that do not fit the model well
or have a small probability with respect to the estimated model, then the outliers are
exactly those samples that have a relatively large residual

b — iy — U517 or &= 0 —p) TEN @) — ). J= 120N
(3.79)
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The first error is simply the distance to the subspace, while the second error is the
Mahalanobis distance,® which is obtained when we approximate the probability that
a sample x; comes from this model by a multivariate Gaussian

1

Xi; ,fl )= . e
POG: Py Zv (27)P/2 det($y) /2

xp (- ;(xf — 1) TN — ).

(3.80)
In principle, we could use p(x;, i, fJN) or either residual ¢; to determine whether
x; is an outlier. However, the above estimate of the subspace is obtained using all
the samples, including the outliers themselves. Therefore, the estimated subspace
could be completely wrong, and hence the outliers could be incorrectly detected.
In order to improve the estimate of the subspace, one can recompute the model
parameters after discarding or down-weighting samples that have large residuals.
More specifically, let w; € [0, 1] be a weight assigned to the jth point such that
w; ~ 1if x;is an inlier and w; ~ 0 if x; is an outlier. Then, similarly to (2.23), a new
estimate of the subspace can be obtained by minimizing a reweighted least-squares
error:

N N
. 2 Trr — -
E&gz;wjﬂxj —p—=Uy||" st. U U=1; and Z;ijj =0. (3.81)
j= j=
It can be shown (see Exercise 3.12) that the optimal solution to this problem is of

the form

Ay = N and j}j = 0T(xj — ﬁ’N) VJ S.t. wj > 0, (382)

where U is a D x d matrix whose columns are the top d eigenvectors of

Z;v=1 w;(xj — fLy)(x; — fiy) T
N .
Zj=1 wj

As a consequence, under the reweighted least-squares criterion, finding a robust
solution to PCA reduces to finding a robust estimate of the sample mean and the
sample covariance of the data by properly setting the weights.

In what follows, we discuss two main approaches for estimating the weights.

Ty = (3.83)

8In fact, it can be shown that (Ferguson 1961), if the outliers have a Gaussian distribution of
a different covariance matrix aX, then ¢; is a sufficient statistic for the test that maximizes the
probability of correct decision about the outlier (in the class of tests that are invariant under linear
transformations). Interested readers may want to find out how this distance is equivalent (or related)

to the sample influence f)x) — Sy or the approximate sample influence given in (B.91).
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1. Multivariate Trimming (MVT) is a popular robust method for estimating the
sample mean and covariance of a set of points. This method assumes discrete
weights

W = 1 if x; is an inlier, (3.84)
’ 0 if x;j is an outlier,

and chooses the outliers as a certain percentage of the samples (say 10%) that
have relatively large residual. This can be done by simply sorting the residuals
{¢;} from the lowest to the highest and then choosing as outliers the desired
percentage of samples with the highest residuals. Once the outliers are trimmed
out, one can use the remaining samples to reestimate the subspace as in (3.82)—
(3.83). Each time we have a new estimate of the subspace, we can recalculate
the residual of every sample and reselect samples that need to be trimmed. We
can repeat the above process until a stable estimate of the subspace is obtained.
When the percentage of outliers is somewhat known, it usually takes only a
few iterations for MTV to converge, and the resulting estimate is in general
more robust. However, if the percentage is wrongfully specified, MVT may not
converge, or it may converge to a wrong estimate of the subspace. In general,
the “breakdown point” of MTYV, i.e., the proportion of outliers that it can tolerate
before giving a completely wrong estimate, depends only on the chosen trimming
percentage.

2. Maximum-Likelihood-Type Estimators (M-Estimators) is another popular robust
method for estimating the sample mean and covariance of a set of points. As we
saw in the case of PCA with corrupted entries, this method assumes continuous
weights

W = pe))/e] (3:5)

for some robust loss function p(-). The objective function then becomes

N
3 pte). (50
j=1

Many loss functions p(-) have been proposed in the statistics literature (Huber
1981; Barnett and Lewis 1983). When p(g) = g2, all weights are equal to 1, and
we obtain the standard least-squares solution, which is not robust. Other robust
loss functions include

(a) Ly loss: p(e) = |e;
(b) Cauchy loss: p(e) = &2log(1 + &%/&3);
2 if
(c) Huber loss (Huber 1981): p(e) = ¢ it el <o,
2¢0le| — €2 otherwise;

(d) Geman—McClure loss (Geman and McClure 1987): p(e) =

&2
e24¢3’
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Algorithm 3.9 (Iteratively Reweighted Least Squares for PCA with Outliers)

Input: Data matrix X, dimension d, and parameter &y > 0.

1: initialize [u, U, Y] = PCA(X) using PCA from Chapter 2.
2: repeat

w

2
ot
& < ”xj - UJ’,'||2, wj <— 8/2££(2)~
T wit—Uy)) S Wi — i) a—in) T
Y« .
S Tiliw
U < top d eigenvectors of .
Y< U ' X—pl1").
until convergence of [,l,lT + UY.

n <

® X0

L« UYandE<~X—L—pl".
Output: p,U,Y,Land E.

where g9 > 0 is a parameter. Given any choice for the weights, one way of
minimizing (3.86) with respect to the subspace parameters is to initialize all the
weights tow; = 1,j = 1,...,N. This will give an initial estimate for the subspace
that is the same as that given by PCA. Given this initial estimate of the subspace, one
may compute the weights as w; = p(gj)/ sz using any of the aforementioned robust
cost functions. Given these weights, one can reestimate the subspace from (3.82)—
(3.83). One can then iterate between computing the weights given the subspace and
computing the subspace given the weights. This iterative process is called iteratively
reweighted least squares (IRLS), as in the case of PCA with corrupted entries, and is
summarized in Algorithm 3.9 for the Geman-McClure loss function. An alternative
method for minimizing (3.86) is simply to do gradient descent. This method may be
preferable for loss functions p that are differentiable, e.g., the Geman—McClure loss
function. One drawback of M-estimators is that their breakdown point is inversely
proportional to the dimension of the space. Thus, M-estimators become much less
robust when the dimension is high.

Consensus-Based Outlier Detection

This approach assumes that the outliers are not drawn from the same subspace as
the rest of the data. Hence it makes sense to try to avoid the outliers when we infer
the subspace in the first place. However, without knowing which points are outliers
beforehand, how can we avoid them?

One idea is to fit a subspace to a subset of the data instead of to all the data points.
This is possible when the number of data points required to fit a subspace (k = d for
linear subspace or k = d 4+ 1 for affine subspaces) is much smaller than the size N
of the given data set. Of course, we should not expect that a randomly chosen subset
will have no outliers and always lead to a good estimate of the subspace. Thus, we
should try many different subsets:

XX, Xy C X, (3.87)

where each subset & is independently drawn and contains k << N samples.
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If the number of subsets is large enough, one of the trials should contain few
or no outliers and hence give a “good” estimate of the subspace. Indeed, if p is
the fraction of valid samples (the “inliers”), one can show that (see Exercise B.8)
with probability ¢ = 1 — (1 — p*)™, one of the above subsets will contain only
valid samples. In other words, if g is the probability that one of the selected subsets
contains only valid samples, we need to randomly sample at least

. log(1—9q)

L (3.88)

subsets of k samples.

Now, given multiple subspaces estimated from multiple subsets, the next question
is how to select a “good” subspace among them. Let S; be the subspace fit to the set
of points in &;. If the set A} is contaminated by outliers, then .§i should be a “bad”
estimate of the true subspace S, and hence few points in X should be well fit by S;.
Conversely, if the set &; contains only inliers, then .§i should be a “good” estimate
of the true subspace S, and many points should be well fit by S;. Thus, to determine
whether S; is a good estimate of S, we need some criterion to determine when a point
is well fit by S; and another criterion to determine when the number of points that
are well fit by S; is sufficiently large. We declare that the subset X; gives a “good”
estimate S; of the subspace S if

#lx € X 1 dist(x,5) < T} > Nusin, (3.89)

where # is the cardinality of the set, ¢ > 0 is the threshold on the distance
from any point x € X to the estimated subspace S used to determine whether
a point is an inlier to 5’, and N, is a threshold on the minimum number of
inliers needed to declare that the estimated subspace is “good.” If the number
of inliers to the subspace estimated from a given subset of the data points is
too small, then the process is repeated for another sample of points until a good
subspace is found or the maximum number of iterations has been exhausted. Upon
termination, PCA is reapplied to all inliers in order to improve the robustness of the
estimated subspace to noise. This approach to PCA with outliers is called random
sample consensus (RANSAC) (Fischler and Bolles 1981) and is summarized in
Algorithm 3.10.

One of the main advantages of RANSAC is that in theory, it can tolerate more
than 50% outliers; hence it is extremely popular for practitioners who handle grossly
contaminated data sets. Nevertheless, the computational cost of this scheme is
proportional to the number of candidate subsets needed to ensure that the probability
of choosing an outlier-free subset is large enough. This number typically grows
exponentially with the subspace dimension and the number of samples. Hence,
RANSAC is used mostly in situations in which the subspace dimension is low;
in most of the cases we have seen, the subspace dimension does not exceed 10.
Another challenge is that in order to design a successful RANSAC algorithm, one
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Algorithm 3.10 (Random Sample Consensus for PCA with Outliers)

Input: Data points X, subspace dimension d, maximum number of iterations k, threshold on
fitting error t, threshold on minimum number of inliers Npy,.
1: initialization i = 0.
2: while i < k do
3:  A; < d + 1| randomly chosen data points from X.

4§ < PCA(X)).

5 Kintiers < {x EX: dist(x, S:) < -[}_
6: if |/Yin[im:r| 2 Nmin then

7: i<k

8: else

9: i<—i+1.

10: end if

11: end while R
Output: Estimated subspace S <— PCA(Xuiers) and set of inliers X ies-

needs to choose a few key parameters carefully, such as the size of every subset (or
the subspace dimension), the distance dist and the parameter 7 to determine whether
a point is an inlier or outlier, and the threshold Ny, on the minimum number of
inliers to the estimated subspace.

There is a vast amount of literature on RANSAC-type algorithms, especially in
computer vision (Steward 1999). For more details on RANSAC and other related
random sampling techniques, the reader is referred to Appendix B.

3.3.2 Outlier Detection by Convex Optimization

So far, we have presented classical techniques from the robust statistics literature
and shown how they can be used for dealing with outliers in the context of PCA. The
techniques presented so far are generally simple and intuitive. However, they do not
provide clear conditions under which they can guarantee the correctness or global
optimality of their solutions. To address this issue, in what follows we will present
alternative approaches based on convex optimization for dealing with outliers in
the context of PCA. As we will see, when the dimension of the subspace is small
enough and the percentage of outliers is small enough, it is possible to perfectly
recover which data points are inliers and which ones are outliers.

Outlier Detection by £ Minimization

Let X = {xj}jvzl be a collection of points in RP. Assume that N;, < N points are
drawn from a linear subspace S C R? of dimension d < D and that the remaining
Now = N — N;, data points do not belong to S. We thus have N = Nj;, + Nyu,
data points, where N;, points are inliers and N,,, points are outliers. Assume also
that there are d linearly independent data points among the inliers. Then every point
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x € S can be written as a linear combination of the inliers. In fact, every pointx € S
can be written as a linear combination of at most d inliers. More generally, we can
write x € S as a linear combination of all N data points as

N
x = ijcj =Xc where X =[x, x,...,xy] € RPN, (3.90)
=1

and set ¢; = 0 whenever x; is an outlier. Hence, there exists a solution ¢ of x =
Xc with at most d nonzero entries, which correspond to any d inliers that span S.
Therefore, an optimal solution ¢* to the following optimization problem

min fcflo st x=Xc (3.91)

should be d-sparse, i.e., it should have at most d nonzero entries, i.e., ||¢*|jo < d.

Assume now that there are D linearly independent data points among both the
inliers and outliers. Assume also that x does not belong to the subspace S. Then we
can still express x as a linear combination of all data points as x = Xc¢. However,
when x is an arbitrary point in R?, we no longer expect ¢ to be d-sparse. In fact, in
general, we expect at least D entries of ¢ to be nonzero, i.e., ||c||p > D. Of course,
in some rare circumstances it could be the case that x is a linear combination of two
outliers in the data, in which case we can choose ¢ such that ||c]lo = 2. However,
such cases occur with extremely low probability.

The above discussion suggests a simple procedure to determine whether a point
x is an inlier: we try to express x as a linear combination of the data points in
X with the sparsest possible coefficients ¢, as in (3.91). If the optimal solution
¢* is d-sparse, then x is an inlier; otherwise, x is an outlier. In practice, however,
we face a couple of challenges that prevent us from implementing this simple
strategy.

1. The optimization problem in (3.91) is NP-hard (Amaldi and Kann 1998).
Intuitively this is because there are numerous choices of d out of N nonzero
entries in ¢, and for each such choice, we need to check whether a linear system
has a solution or not.

2. While in general we expect that ||c||o > d when x is an outlier, this may not
always be the case. Thus, we may be interested in characterizing whether for
some distribution of the outliers we can guarantee that ||c||p > d with high
probability. Moreover, since the subspace dimension d may not be known a
priori, we may want to declare x an outlier if |c[lo > AD for some A < 1.
This may require some mechanism for determining A.

3. In practice, we are not trying to determine whether a generic data point x is an
inlier or an outlier, but rather whether one of the given data points, say x;, is an
inlier or an outlier. Trivially, x; has a 1-sparse representation with respect to X,
i.e., x;=x;. Thus, we need a mechanism to prevent this trivial solution.
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To address the first issue, as we have learned from the brief survey of compressive
sensing in Section 3.2.2, an effective technique to obtain a sparse solution is to
replace the £y-minimization problem in (3.91) by the £;-minimization problem

min|lc]; st x = Xc. (3.92)

c
In particular, it follows from Theorem 3.10 that if X = [x,x,...,xy] € RPN
is an arbitrary matrix whose columns are of unit norm, i.e., [|x;[» = 1 forall j =
l,...,Nandcy € RV isa d-sparse vector, then given x = Xc¢(, we can recover ¢

by solving the optimization problem in (3.92) when the matrix X is incoherent or
satisfies the RIP. In other words, the sparsest solution to the linear system X¢ = x
can be obtained by solving the convex £;-minimization problem in (3.92) as opposed
to the NP-hard £;-minimization problem in (3.91).

The fundamental question is whether the conditions under which the solution
to (3.92) coincides with that of (3.91) are satisfied by a data matrix X with N,
data points in a linear subspace of dimension d and N,,, points not in the subspace.
Unfortunately, this is not the case: the matrix of inliers X;, cannot be incoherent
according to Definition 3.8, because it is not of full column rank. For instance, if
rank(X;,) = 1, then X has maximum coherence v(X;,) = 1.

Does this mean that we cannot use £;-minimization? As it turns out, we can
still use £; minimization to recover a sparse representation of a point x € S. The
reason is that the conditions in Theorem 3.10 aim to guarantee that we can recover
a unique sparse solution, while here the solution for ¢ is not always unique, and thus
we cannot hope for the £;-minimization problem to give us a unique sparse solution
to begin with. Indeed, if x € S and N;,, > d, then there may be many ways in which
we may express a point in S as a linear combination of d inliers. Therefore, our
goal is not to find a unique representation of x in terms of d inliers, but rather to
find any representation of x in terms of any d inliers. As a consequence, we do not
need the matrix of inliers to be incoherent. All we need is for the set of inliers to be
incoherent with the set of outliers. More precisely, if Z;, is the set of inliers and Z,,,
is the set of outliers, all we need is that

max max |xTxk| < (3.93)

JE€Lin k€Lous J 2d — 1 '

This is in contrast to the classical condition on the mutual coherence of X in
Definition 3.8, which is given by max;«; |x;'—xk| <, dl_ 1

To address the second issue, we assume from now on that all N points are of
unit norm, i.e., they lie in the D — 1 dimensional sphere S?~!. We assume also that
the outliers are drawn uniformly at random from SP~!. Moreover, since we will
be solving an £; minimization problem, we may want to use the £; norm of ¢ to
determine whether x is an inlier or outlier. More specifically, when x is an inlier,

we expect |lc|lo = d; hence we expect ||c|; = +/d. Likewise, when x is an outlier,
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we expect |lc|lo = D, and then we expect |c||; = ~/D. Therefore, we may want to
declare x an outlier if ||c||; > A+/D for some A.

The third issue is relatively easy to address. When we find the sparse solution
for the point x; with respect to X, we need to enforce only that the jth entry of ¢
is zero, so that x; is not represented by itself. This leads to the following convex
optimization problem:

min [lc|; st x;=Xc¢ and ¢ =0, (3.94)

which can be solved easily using existing £;-minimization techniques.

The following result, which follows as a direct corollary of (Soltanolkotabi
and Candes 2013, Theorem 1.3) (see also Theorem 8.27), shows how the optimal
solution to (3.94) can be used to distinguish inliers from outliers.

Theorem 3.13. Let S be a randomly chosen subspace of RP of dimension d.
Suppose there are N;, = pd + 1 inlier points chosen independently and uniformly
at random in S N SP~', where p > 1. Suppose there are N, points chosen
independently and uniformly at random in SP~". Let x; € SP=1 be the jth data point
and let ¢ € RN be the solution to the £,-minimization problem in (3.94). Declare X;
to be an outlier if ||c||; > A(y)~/D, where y = N[_)l, N = Nj, + Nyu;, and

21
. I=sy<e
Ay =1V (3.95)
re Jlogy® V=€
If the number of outliers is such that
1
Nou < exp(civ/D) — Ny (3.96)

for some constant ¢y > 0, then the method above detects all the outliers with
probability at least 1 — N,y,; exp(—c2D/ 10g(Niy, + Nour)) for some constant ¢y > 0.
Moreover, if the number of outliers is such that

Now < Dp®d — N; (3.97)

for some constant c3 > 0, then the method above does not detect any point in
S as an outlier with probability at least 1 — N,,; exp(—c4D/ 10g(Niyy + Nour)) —
Nin exp(—./pd) for some constant c4 > 0.

Outlier Detection by £, Minimization

An alternative approach to outlier detection in PCA is based on the observation that
the data matrix X can be seen as a low-rank matrix with sparsely corrupted columns
that correspond to the outliers. More specifically, the matrix X can be decomposed as

X =Ly + Ey. (3.98)
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The jth column of L is equal to x; if it is an inlier to the subspace and is equal to
0 otherwise. Therefore, Ly is of rank d and spans the same subspace as the inliers.
Conversely, the jth column of Ej is equal to x; if it is an outlier to the subspace and
is equal to 0 otherwise. Therefore, the nonzero columns of E, contain the outliers.
If we assume that the fraction y of outliers is small, then the matrix Ey is column
sparse.

Obviously, such a decomposition is ill posed (at least ambiguous) if the matrix X
or Ly is also column sparse. Therefore, in order for the decomposition to be unique,
the matrix Ly cannot be column sparse on the (1 — y)N columns on which it can be
nonzero. To ensure that this is the case, we need to introduce a column incoherence
condition:

Definition 3.14 (Matrix Incoherence with Respect to Column Sparse Matrices).
A rank-d matrix L € RP*N with compact SVD L = UXVT and (1 — y)N
nonzero columns is said to be v-incoherent with respect to the set of column sparse
matrices if

d
e (3.99)

2
max ||[v;||” <
ax o’ < |y

where v; is the jth row of V.

Following the discussion after Definition 3.1, notice that since V € RN¥d g
orthonormal, the largest absolute value of the entries of V is equal to 1, which
happens when a column of V is 1-sparse. On the other hand, if all columns of V
are so dense that all their (I — y)N nonzero entries are equal to each other up
to sign, then each entry is equal to +1/ \/ (1 — y)N, and the norm of each row is
\/d/ (1 — y)N. Therefore, when v < 1, the condition above controls the level of
sparsity of V. As argued before, from a probabilistic perspective, this condition is
rather mild in the sense that it holds for almost all generic matrices: a random (say
Gaussian) matrix satisfies this condition with high probability when the dimension
of the matrix is large enough. As we will see, incoherence with respect to column
sparse matrices is a very useful technical condition to ensure that outlier detection
is a meaningful problem.

Now, even though the incoherence condition may ensure that the above low-rank
plus column-sparse decomposition problem is well posed, there is no guarantee that
one can find the correct decomposition efficiently. As before, we may formulate the
problem of recovering Ly and E as a rank minimization problem:

nLnEn rank(L) + A||E|>0 st. X=L+E, (3.100)
where | El|l20 = j.v:l 1(llej]l> # 0) is the number of nonzero columns in the matrix
of outliers E = [ey,...,ey]. However, since this problem is NP-hard, we need to

resort to a proper relaxation. For this purpose, we can use a norm that promotes
columnwise sparsity, such as the £, ; norm of E:
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N
IEl21 =) llejlla: (3.101)
j=1
which is the sum of the £, norms of all the columns of E. Notice that if we collect
all the £, norms of the columns of E as a vector e = [|le1]|2,....|lex|2] ", then the
above norm is essentially the £; norm of the vector, ||e||;; hence it measures how
sparse the columns are. Notice also that ||E|2.0 = ||e]|o-

Similar to the PCP optimization problem in (3.64) for PCA with robustness to
intrasample outliers, we can use the convex optimization

min L]« +A[El21 st X=L+E (3.102)

to decompose sparse column outliers in the data matrix X from the low-rank
component. This convex program is called outlier pursuit.

One can rigorously show that under certain benign conditions, the outlier pursuit
program can correctly identify the set of sparse (column) outliers.

Theorem 3.15 (Robust PCA by Outlier Pursuit (Xu et al. 2010)). Let X = Ly +
Ey be a given D x N matrix. Assume that Ly is v-incoherent with respect to the
set of column-sparse matrices according to Definition 3.14. Assume also that Ey is
supported on at most yN columns. If

rank(ze) < 1077, (3.103)

yv

9
1217

with A set to be ; ij recovers the low-dimensional column space of Ly exactly and

where ¢y = then the solution (L*, E*) to the outlier pursuit program (3.102)

identifies exactly the indices of columns corresponding to outliers not lying in the
column space.

If the data also contain small noise X = Ly + Ey + Z, where Z is a random
Gaussian matrix that models small noise in the data, then we can modify the outlier
pursuit program as

min - Lfls +A|E[21 st X - L—E|3 <€, (3.104)

where ¢ is the noise variance. It can be shown that under conditions similar to those
in the above theorem, this program gives a stable estimate of the correct solution.
For more details, we refer the reader to (Xu et al. 2010).

Using optimization techniques introduced in Appendix A, one can easily develop
ALM- or ADMM-based algorithms to solve the above convex optimization prob-
lems. We leave that to the reader as an exercise (see Exercise 3.8).
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Fig. 3.6 Example images taken from the Caltech 101 data set. These images are then resized to
96 x 84 and used as outliers for the experiments below.

Example 3.16 (Outlier Detection among Face Images) Sometimes a face image
data set can be contaminated by images of irrelevant objects, like many imperfectly
sorted data sets in the Internet. In this case, it would be desirable to detect and
remove such irrelevant outliers from the data set. In this example, we illustrate how
to do this with the outlier detection methods introduced in this section.

As in previous experiments, we take as inliers the frontal face images of subject
20 under 64 different illumination conditions in the extended Yale B data set. For
outlier images, we randomly select some pictures from the Caltech 101 data set
(Fei-Fei et al. 2004) and merge them into the face image data set. Some typical
examples of such pictures are shown in Figure 3.6. All the inlier and outlier images
are normalized to size 96 x 84.

We use the outlier pursuit method, which is based on solving (3.102), to
decompose the data matrix into a low-rank part L and a sparse-column term E.
In this experiment, we set the parameter of the method according to Theorem 3.15
with a multiplication factor of 3, i.e., we set A = 3 x Ay where Ag = 7ij.

Ideally, columns of E with large magnitude correspond to outliers. To show how
the method performs, we apply it to data sets with increasing percentages of outliers.
We compute for each column of E its £, norm to measure whether it is an outlier.
True outliers are marked in red. The results for varying percentages of outliers are
shown in Figure 3.7. As we can see from the results, up to nearly 50% outliers, the
outliers have significantly larger norm than the inliers.

3.4 Bibliographic Notes

PCA with Robustness to Missing Entries
The problem of completing a low-rank matrix with missing entries has a very long
and rich history. Starting with the original work of (Wiberg 1976), one can refer to
(Johnson 1990) for a survey on some of the early developments on this topic.

Since then, this problem has drawn tremendous interest, particularly in computer
vision and pattern recognition, where researchers needed to complete data with
missing entries due to occlusions. For instance, many algorithms were proposed
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Fig. 3.7 Outlier detection among face images. In each experiment, we use 64 images, in which
a certain percentage of images are selected randomly from the Caltech 101 data set as outliers,
and the rest are taken randomly from the 64 illuminations of frontal face images of subject 20 in
extended Yale B. We plot the column £, norm of the matrix E given by the convex optimization
method, with ground truth outliers marked as red.

to solve matrix completion problems in the late 1990s and early 2000s, including
(Shum et al. 1995; Jacobs 2001; H.Aanaes et al. 2002; Brandt 2002) for the purpose
of reconstructing a 3D scene from a collection of images. The power factorization
method featured in this chapter was proposed in (Hartley and Schaffalitzky 2003)
for the same purpose, while a variant of the EM algorithm we described appeared
in (Gruber and Weiss 2004). Also, the work of (Ke and Kanade 2005) proposed the
use of the £; norm for matrix completion and recovery, which extends the original
Wiberg method(Wiberg 1976) from the £, to the £; norm. A survey and evaluation
of state-of-the-art methods for solving the matrix completion problem can be found
in (Buchanan and Fitzgibbon 2005).

However, all of the work described so far has focused primarily on developing
algorithms for completing a matrix, without any guarantees of correctly recovering
the original low-rank matrix. The seminal work of (Recht et al. 2010; Candes and
Recht 2009) has shown that under broad conditions, one can correctly recover
a low-rank matrix with a significant percentage of missing entries using convex
optimization (i.e., minimizing the nuclear norm of the matrix). This has inspired a
host of work on developing ever stronger conditions and more efficient algorithms
for low-rank matrix completion (Cai et al. 2008; Candes and Tao 2010; Keshavan
et al. 2010b; Gross 2011; Keshavan et al. 2010a; Zhou et al. 2010a), including work
that extends to the case of noisy data (Candes and Plan 2010).
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PCA with Robustness to Corrupted Entries and Outliers

Regarding the robust recovery of a low-rank matrix, it was first proposed by (Wright
et al. 2009a; Chandrasekaran et al. 2009) to use the convex relaxation (3.64) to solve
the robust PCA problem. This formulation was soon followed by a rather strong
theoretical justification (Candes et al. 2011) and efficient algorithms (Lin et al.
2011). This has made convex relaxation a very successful and popular technique
for robust low-rank matrix recovery or outlier rejection, leading to extensions to
many different settings and more scalable convex optimization algorithms.

Revival of the Factorization Approach

Due to the advent of large data sets and large-scale problems, there has been
a revival of factorization (alternating minimization) approaches with theoretical
guarantees of correctness for low-rank matrix completion and recovery, including
the very interesting work of (Jain et al. 2012; Keshavan 2012; Hardt 2014; Jain and
Netrapalli 2014). The more recent work of (Udell et al. 2015) further generalizes
the factorization framework to situations in which the factors are allowed to have
additional structures; and (Haeffele and Vidal 2015) combines factorization with
certain nonlinear mappings typically used in a deep learning framework.

3.5 Exercises

Exercise 3.1 (Data Completion with the Subspace Known). Show that the solu-
tion to the problem (3.5) is given by the formula in (3.6).

Exercise 3.2. For the PPCA model with missing data discussed in Section 3.1.2,
show that the conditional distribution of xy; given x¢ is Gaussian with the following
mean vector and covariance matrix:

Rujo = Iy + ZuoZ0Xo — o) and Tyjo = Zyy — SvoZopZou-

Exercise 3.3 (Orthogonal Power Iteration Method). Let A € RV be a
symmetric positive semidefinite matrix with eigenvectors {u;}_, and eigenvalues
{/\,-}f.\’zl sorted in descending order. Assume that A; > A, and let #° be an arbitrary
vector not orthogonal to u, i.e., uI'—u0 = 0. Consider the sequence of vectors

Auk

. (3.105)
[[Au|

U1 =

1. Show that there exist {;}"_, with @; # 0 such that

N
u' =A'u =" adlu;. (3.106)
i=1
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2. Use this expression to show that u* converges to gi u; with rate if . That is, show
that there exists a constant C > 0 such that for all £ > 0,

ol Az \k

Hu - u1H < c( ) . (3.107)
loty | Al

3. Assume that A; > A4+ and let U 0 ¢ RV pe an arbitrary matrix whose column

space is not orthogonal to the subspace {ui}?;l spanned by the top d eigenvectors
of A. Consider the sequence of matrices

U = AUMRM ™!, (3.108)

where QR¥ = AU* is the QR decomposition of AU*. Show that U* converges to
a matrix U whose columns are the top d eigenvectors of A. Moreover, show that

A
the rate of convergence is ‘i:' .

Exercise 3.4 (Convergence of Orthogonal Power Iteration). Prove Theo-
rem 3.4.

Exercise 3.5 (Properties of the £; Norm). LetX be a matrix.
1. Show that the £; norm f(X) = || X||; = Zii |X;;| of X is a convex function of X.
2. Show that the subgradient of the £; norm is given by

I X[l1 = sign(X) + W, (3.109)

where W is a matrix such that max;; [W;| < 1.
3. Show that the optimal solution of

. 1
min X — Az + zlAll (3.110)

is given by A = S;(X), where S;(x) = sign(x) max(|x| — 7,0) is the soft-
thresholding operator applied entrywise to X.

Exercise 3.6 (Properties of the Weighted Nuclear Norm). Consider the follow-
ing optimization problem:

1
min - [IX — AJ7 + 7g(4), (3.111)
where ¢(A) = > |_, wio;(A) is the weighted sum of singular values of A with
w; > 0. Show that

1. ¢ (A) is convex when w; is monotonically decreasing. Please derive the optimal
solution under this condition.
2. Is ¢ (A) still convex if w; is an increasing sequence of weights? Why?



3.5 Exercises 117

Exercise 3.7 (Properties of the £, | Norm).

1. Let x be a vector. Show that the subgradient of the £, norm is given by

x if 0,
x> = { S 7 (3.112)

w:|wl. <1} ifx=0.

2. Let X be a matrix. Show that the £, norm f(X) = || X[ = Zj Xl =

> \/lei of X is a convex function of X.
3. Show that the subgradient of the £, ; norm is given by

X;
' X #0
@IXl2.1)5 = { 15112 i (3.113)
Wi Wyl <1 X;=0.
4. Show that the optimal solution of
. 1 5
min X = AJ} + el (3.114)

is given by A = XS, (diag(x))diag(x)~!, where x is a vector whose jth entry is
given by x; = ||X.;[|», and diag(x) is a diagonal matrix with the entries of x along
its diagonal. By convention, if x; = 0, then the jth entry of diag(x) ™" is also zero.

Exercise 3.8. Let X = Ly + Ej be a matrix formed as the sum of a low-rank matrix
Ly and a matrix of corruptions Ej, where the corruptions can be either outlying
entries (gross errors) or outlying data points (outliers).

1. (PCA with robustness to outliers). Assuming that the matrix X is fully observed
and that the matrix Ey is a matrix of outliers, propose an algorithm for solving
the outlier pursuit problem (3.102):

nLliEn ILIl« + AlE|l21 st. X=L+E. (3.115)

2. (PCA with robustness to missing entries and gross errors). Assuming that
you observe only a fraction of the entries of X as indicated by a set €2 and that
the matrix Ey is a matrix of gross errors, propose an algorithm for solving the
following optimization problem:

nLnEn IL|l« + AlE|l; st Pa(X) = Pao(L + E). (3.116)

Exercise 3.9 (Implementation of Power Factorization (PF), Expectation Maxi-
mization (EM), and Low-Rank Matrix Completion (LRMC)). Implement the
functions below using as few lines of MATLAB code as possible. Compare the
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performance of these methods: which method works better and which regime is best
(e.g., depending on the percentage of missing entries, subspace dimension d/D)?

Function [mu,U,Y]=pf (X,d,W)
Parameters

X D x N data matrix.

d  Number of principal components.

W D x N binary matrix denoting known (1) or missing (0) entries
Returned values
mu  Mean of the data.

U  Orthonormal basis for the subspace.

Y Low-dimensional representation (or principal components).
Description
Finds the d principal components of a set of points from the data X
with incomplete entries as specified in W using the power factorization
algorithm.

Function [mu, U, sigma] =emppca (X,d, W)
Parameters

X D x N data matrix.

d Number of principal components.

W D x N binary matrix denoting known (1) or missing (0) entries
Returned values

mu  Mean of the data.

U Basis for the subspace (does not need to be orthonormal).
sigma Standard deviation of the noise.
Description
Finds the parameters of the PPCA model u and ¥ = UU' + ¢ from
the data X with incomplete entries as specified in W using the expectation
maximization algorithm.

Function A=1rmc (X, tau, W)

Parameters

X D x N data matrix.

7 Parameter of the augmented Lagrangian.

W D x N binary matrix denoting known (1) or missing (0) entries
Returned values

A Low-rank completion of the matrix X.

Description

Finds the low-rank approximation of a matrix X with incomplete entries as
specified in W using the low-rank matrix completion algorithm based on
the augmented Lagrangian method.
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Exercise 3.10 (Implementation of IRLS and ADMM Methods for Robust
PCA). Implement Algorithms 3.7 and 3.8 for the functions below using as few
lines of MATLAB code as possible. Compare the performance of these methods:
which method works better and which regime is best (e.g., depending on percentage
of corrupted entries (or corrupted data points), subspace dimension d/D)?

Function [mu,U,Y]=rpca irls(X,d,sigma)
Parameters
X D x N data matrix.
d  Number of principal components.
Returned values
mu  Mean of the data.
U Basis for the subspace.
Description

Finds the parameters of the PCA model g and U and the low-dimensional
2

representation using reweighted least squares with weights w(e) = ezi_az.

Function [L, E] =rpca_ admm (X, tau, ‘method’)
Parameters
X D x N data matrix.
T Parameter of the augmented Lagrangian.
method °L1’ for gross errors or ’L21’ for outliers
Returned values
L Low-rank completion of the matrix X.
E Matrix of errors.
Description
Solves the optimization problem nLnEn IL|l« + A|lE]l¢ subjectto X = L+ E

where £ = £, or £ = £, using the ADMM algorithm.

Exercise 3.11 (Robust Face Recognition with Varying Illumination). In this
exercise, you will use a small subset of the Yale B data set’® that contains photos of
ten individuals under various illumination conditions. Specifically, you will use only
images from the first three individuals under ten different illumination conditions.
Divide these images into two sets: Training Set (images 1-5 from individuals 1
to 3) and Test Set (images 6—10 from individuals 1-3). Notice also that there are
five nonface images (accessible as images 1-5 from individual 4). We will refer to
these as the Outlier Set. Download the file YaleB-Dataset.zip. This file contains the
images along with the MATLAB function 1oadimage . m. Decompress the file and
type help loadimage at the MATLAB prompt to see how to use this function.
The function operates as follows.

http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html.


http://www.vision.jhu.edu/teaching/learning/data/YaleB-Dataset.zip
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Function img=loadimage (individual, condition)
Parameters
individual Number of the individual.

condition Number of the image for that individual.
Returned values

img The pixel image loaded from the database.

Description
Read and resize an image from the data set. The database (directory images)
must be in the same directory as this file.

1. Face completion. Remove uniformly at random 0%, 10%, 20%, 30%, and 40%
of the entries of all images of individual 1. Apply the low-rank matrix completion
(LRMC) algorithm in Exercise 3.9 to these images to compute the mean face and
the eigenfaces as well as to fill in the missing entries. Note that LRMC does
not compute the mean face, so you will need to modify the algorithm slightly.
Plot the mean face and the top three eigenfaces and compare them to what you
obtained with PCA in Chapter 2. Plot also the completed faces and comment on
the quality of completion as a function of the percentage of missing entries by
visually comparing the original images (before removing the missing entries) to
the completed ones. Plot also the error (Frobenius norm) between the original
images and the completed ones as a function of the percentage of missing entries
and comment on your results. Repeat for individuals 2 and 3.

2. Face recognition with missing entries. Remove uniformly at random 0%,
10%, 20%, 30%, and 40% of the entries of all images in the Training Set and
Test Set. Apply the low-rank matrix completion (LRMC) algorithm that you
implemented in part (a) to the images in the Training Set. Plot the projected
training images y € R for d = 2 and d = 3 using different colors for the
different classes. Do faces of different individuals naturally cluster in different
regions of the low-dimensional space? Classify the faces in the Test Set using
1-nearest-neighbor. That is, label an image x as corresponding to individual i if
its projected image y is closest to a projected image y; of individual i. Notice that
you will need to develop new code to project an image with missing entries x
onto the face subspace you already estimated from the Training Set, which you
can do as described in Section 3.1 of this book. Report the percentage of correctly
classified face images for d = 1,...,10 and the percentage of missing entries
{0, 10, 20, 30, 40} %.

3. Face correction. Remove uniformly at random 0%, 10%, 20%, 30%, and 40%
of the entries of all images of individual 1 and replace them by arbitrary
values chosen uniformly at random from [0,255]. Apply the PCP algorithm,
Algorithm 3.8, for corrupted entries that you implemented in Exercise 3.10 to
these images to compute the mean face and the eigenfaces as well as correct the
corrupted entries. Note that RPCA does not compute the mean face, so you will
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need to modify the algorithm accordingly. Plot the mean face and the top three
eigenfaces and compare them to what you obtained with PCA from Chapter 2.
Plot also the corrected faces and comment on the quality of correction as a
function of the percentage of corrupted entries by visually comparing the original
images (before removing the missing entries) to the completed ones. Plot also the
error (Frobenius norm) between the original images and the corrected ones as a
function of the percentage of corrupted entries and comment on your results.
Repeat for individuals 2 and 3.

4. Face recognition with corrupted entries. Remove uniformly at random 0%,
10%, 20%, 30%, and 40% of the entries of all images of individual 1 and replace
them by arbitrary values chosen uniformly at random from [0, 255]. Apply the
RPCA algorithm for corrupted entries that you implemented in part (a) to the
images in the Training Set. Plot the projected training images y € R? for d = 2
or d = 3 using different colors for the different classes. Do faces of different
individuals naturally cluster in different regions of the low-dimensional space?
Classify the faces in the Test Set using 1-nearest-neighbor. That is, label an image
x as corresponding to individual i if its projected image y is closest to a projected
image y; of individual i. Notice that you will need to develop new code to project
an image with corrupted entries x onto the face subspace you already estimated
from the Training Set. Report the percentage of correctly classified face images
ford =1, ..., 10 and the percentage of missing entries {0, 10, 20, 30, 40} %.

5. Outlier detection. Augment the images of individual 1 with those from an
Outlier Set. Apply the RPCA algorithm for data corrupted by outliers that you
implemented in Exercise 3.10 to these images to compute the mean face and the
eigenfaces as well as detect the outliers. Note that RPCA does not compute the
mean face, so you will need to modify your code accordingly. Plot the mean face
and the top three eigenfaces and compare them to what you obtained with PCA.
Report the percentage of correctly detected outliers.

6. Face recognition with corrupted entries. Apply the RPCA algorithm for data
corrupted by outliers that you implemented in part (e) to the images in Training
Set U Outlier Set. Plot the projected training imagesy € RY ford = 2ord = 3
using different colors for the different classes. Do faces of different individuals
naturally cluster in different regions of the low-dimensional space? Classify the
faces in the Test Set using l-nearest-neighbor. That is, label an image x as
corresponding to individual i if its projected image y is closest to a projected
image y; of individual i. Report the percentage of correctly detected outliers and
the percentage of correctly classified face images ford = 1, ..., 10 and compare
your results to those using PCA in Chapter 2.

Exercise 3.12 Show that the optimal solution to the PCA problem with robustness
to outliers

N N
. 2 Trr V. =
;n&r} E 1 willx; —p — Uyl|~ st. U'U=1; and E 1 wy; =0, (3.117)
j= j=
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where w; € [0, 1] is large when point x; is an inlier and small otherwise, is given by

N
D1 WiX;j

= and ;= U"(x;— fiy) Vj st w; >0, (3.118)
j=1"j

iy =
where U is a D x d matrix whose columns are the top d eigenvectors of

ZJILI wi — ) (5 — fy) T
N .
Zi:l Wi

Sy = (3.119)



Chapter 4
Nonlinear and Nonparametric Extensions

One geometry cannot be more true than another; it can only be more convenient.

—Henri Poincaré

In the previous chapters, we studied the problem of fitting a low-dimensional
linear or affine subspace to a collection of points. In practical applications, however,
a linear or affine subspace may not be able to capture nonlinear structures in the
data. For instance, consider the set of all images of a face obtained by rotating it
about its main axis of symmetry. While all such images live in a high-dimensional
space whose dimension is the number of pixels, there is only one degree of freedom
in the data, namely the angle of rotation. In fact, the space of all such images is a
one-dimensional circle embedded in a high-dimensional space, whose structure is
not well captured by a one-dimensional line. More generally, a collection of face
images observed from different viewpoints is not well approximated by a single
linear or affine subspace, as illustrated in the following example.

Example 4.1 (PCA for Embedding Face Images under Varying Pose). To
visualize the limitations of PCA on face images with pose variations, we apply PCA
to a subset of the images in the extended Yale B data set. This data set consists of
face images from 28 human subjects under 9 poses and 64 illumination conditions.
Figures 4.1(a)-4.1(i) show the face images for subject 20 for one illumination
condition and each of the nine poses, and Figure 4.1(j) shows an illustration of the
geometric relationships among these nine poses. In this example, we apply PCA to
the images of subject 20 from poses 5, 6, 7, and 8, and all 64 illumination conditions;
thus our data set consists of N = 256 points. The size of each image is 192 x 168;
thus the dimension of the data is D = 32,256. Figure 4.1(k) shows the mean face,
and Figures 4.1(1)—4.1(m) show the first two eigenfaces computed by PCA. Visually,
all three images are rather blurry due to the misalignment caused by pose variations.

In Figure 4.2, we represent the two principal components of each face image as a
point in R2. The points are painted with four different colors corresponding to each

© Springer-Verlag New York 2016 123
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Fig. 4.1 Applying PCA to face images under varying pose. (a)-(i) Sample images from nine
different poses, with pose O representing the frontal faces that we have used in all previous
experiments in the preceding two chapters. (j) Illustration of the different poses in the extended Yale
B data set, with pose 0 representing the frontal faces that we have used in all previous experiments
in the preceding two chapters, and poses 1 to 8 representing nonfrontal poses relative to pose 0.
(k), (1), and (m) are, respectively, the mean face and the first two eigenfaces obtained by applying
PCA to face images under varying pose.

Fig. 4.2 Two-dimensional embedding obtained by applying PCA to a subset of the extended Yale
B data set consisting of face images of subject 20 under 4 poses and 64 illumination conditions.
Points of the same color represent images associated with the same pose but different illumination.
Some images are shown next to some of the points.
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one of the four poses. Images associated with some of the points are also shown
in the figure. Similar to the results of previous experiments of PCA on face images
in Chapter 2, we observe that the first two principal components mainly capture
variations in illumination of the face images. Specifically, points on the left are face
images lit from the left, points on the right are images lit from the right, points on
the top are images with mainly frontal illuminations, while points on the bottom
are images taken with extremely low illumination. Notice also that the variability in
poses is not captured at all by the first two principal components, and images from
different poses are all mixed together. This is in sharp contrast to the methods to be
studied in this chapter, as we will see.

When a single low-dimensional subspace fails to describe data that have obvious
nonlinear structures, as in Example 4.1, we need to go beyond linear models and
consider a broader class of nonlinear models. In this chapter, we consider the
problem of fitting a low-dimensional manifold to a collection of points. Specifically,
let X = {;e R }]’."=l be a set of N points drawn from a d-dimensional manifold M
embedded in R?, where d < D (see e.g., Figure 4.3). The goal is to find a set
of N points J = {y; € Rd}j.il whose geometry resembles that of X'. To address
this problem, in Section 4.1 we will present an extension of PCA, called nonlinear
PCA, which is based on embedding the data into a high-dimensional space via a
nonlinear mapping and then fitting a linear or affine space to the embedded data. As
we will see, under certain conditions it is possible to compute the low-dimensional
embedding ) without explicitly computing the embedded data via the so-called
kernel trick. This will lead to a method called kernel PCA. In Section 4.2, we will
present other extensions of PCA, generically called manifold learning, which aim
to approximate the local geometry of the manifold and build a low-dimensional

Fig. 4.3 A set of points drawn from the two-dimensional surface in R?, x; = x2 — x3. The goal is

to find a two-dimensional embedding of this manifold.
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nonparametric embedding of the data directly from these local approximations.
Such extensions are useful for applications in which we are interested not so much in
a parametric model of the manifold as in the low-dimensional points ) themselves.
Finally, in Section 4.3, we show that manifold learning methods can also be applied
to data drawn from one manifold with multiple connected components. In this case,
the low-dimensional embedding ) can be used to cluster the data into multiple
groups. Data sets that cannot be modeled by a single subspace or manifold and are
instead clustered into multiple subspaces will be studied in Part II.

4.1 Nonlinear and Kernel PCA

In this section, we present a nonlinear extension of PCA called nonlinear PCA
(NLPCA). The key idea behind NLPCA is that while the given data may not lie in
a linear or affine subspace of R”, there exists a nonlinear embedding ¢ : R? — H
into a higher-dimensional space H such that the embedded data lie (approximately)
in a linear or affine subspace of H. Therefore, instead of applying PCA to the given
data, we apply it to the embedded data. In practice, however, the dimension of H
may be too high to be able to compute the nonlinear principal components from
the eigenvectors of the embedded covariance matrix. To address this issue, we also
present a method called kernel PCA (KPCA). This method computes the nonlinear
principal components from the eigenvectors of the so-called kernel matrix, which
can be computed directly from the given data.

4.1.1 Nonlinear Principal Component Analysis (NLPCA)

As discussed before, the main idea behind NLPCA is that we may be able to find an
embedding of the data into a high-dimensional space such that the structure of the
embedded data becomes (approximately) linear. To see why this may be possible,
consider a set of points (x;,x;) € R? lying in a conic of the form

clx% + cox1x2 + 63x§ +c4 =0. 4.1
Notice that if we define the map ¢ : R?> — R3 as

(z1,22,23) = P (x1,x2) = (x%, \/2x1x2,x§), 4.2)

then the conic in R? transforms into the following affine subspace in R*:

C
i+ L+ tes=0. 4.3)
V2
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Fig. 4.4 A circle in R? is embedded into a plane in R? by the mapping in (4.2).

Therefore, instead of learning a nonlinear manifold in R?, we can simply learn an
affine manifold in R?. This example is illustrated in Figure 4.4.
More generally, we seek a nonlinear transformation (usually an embedding)

¢(): RP - RM, 4.4)
X = ¢(x), 4.5)

such that the structure of the embedded data {¢(x;) ;Vzl becomes approximately

linear. In machine learning, ¢ (x) € R is called the feature of the data pointx € R?,
and the space RM is called the feature space.

Let ¢ = 1}, ;Vzl ¢(x;) be the sample mean in the feature space and define the
mean-subtracted (centered) embedded data matrix as

D= [p(x1) —.p(x2) — @, ....d(xy) — p] € RV, (4.6)

It follows from the results in Chapter 2 that the principal components in the feature
space can be obtained from the eigenvectors of the sample covariance matrix'

N
o1 - - 1
Sgw = D (#0) — () —$)T = | bT e RW. (4.7)
j=1
Specifically, let u; € RM i=1,...,M,bethe M eigenvectors of Xy (y), i.€.,

E¢(x)u,- = )L,-u,-, i= 1,2,...,M. (48)

'In principle, we should use the notation f]¢(x) to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use ). The
same goes for the eigenvectors and the principal components.
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Then the d nonlinear principal components of every data point x are given by
yi=u'(p(x)—9) €R, i=1,2,....d (4.9)

Unfortunately, the map ¢ (-) is generally not known beforehand, and searching
for the map that makes the embedded data approximately linear is a difficult task. In
such cases, the use of nonlinear PCA becomes limited. However, in some practical
applications, good candidates for the map ¢(-) can be found from the nature of
the problem. In such cases, the map, together with PCA, can be very effective in
extracting the overall geometric structure of the data.

Example 4.2 (Veronese Map for an Arrangement of Subspaces). As we will
see later in this book, if the data points belong to a union of multiple subspaces,
then a natural choice of the transformation ¢ (-) is the Veronese map (also known as
the polynomial embedding)

va() 1 x> (), (4.10)
(X1 xp) = (L g, L), (4.11)

where the monomials are ordered in degree-lexicographic order. Under such a
mapping, the multiple low-dimensional subspaces are mapped into a single subspace
in the feature space, which can then be identified via PCA. We will discuss this
embedding in detail in Chapter 5.

4.1.2 NLPCA in a High-dimensional Feature Space

A potential difficulty associated with NLPCA is that the dimension M of the feature
space can be very high. Thus, computing the principal components in the feature
space may become computationally prohibitive. For instance, if we use a Veronese
map of degree n, the dimension of the feature space is M = ("+f _1), which grows
exponentially fast. When M exceeds N, the eigenvalue decomposition of ®®T e
RM*M becomes more costly than that of ®T® € RV although the two matrices
have the same eigenvalues.

This motivates us to examine whether the computation of PCA in the feature
space can be reduced to a computation with the lower-dimensional matrix ® T ®. The
answer is actually yes. The key is to notice that despite the dimension of the feature
space, every eigenvectoru € R of ®® T associated with a nonzero eigenvalue is
always in the span of the matrix ®.> That is,

P0Tu=Au < u=>dA'®Tu) € range(P). (4.12)

2The remaining M — N eigenvectors of ®® T are associated with the eigenvalue zero.
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Thus, if we let w = A7'®Tu € R, we have |w|?> = 2724 ®dTu = 17",
Moreover, since ®Tdw = A 1®Tdd Ty = ®Tu = Aw, the vector w is an
eigenvector of ® T ® with the same eigenvalue A. Once such a w has been computed
from ® T ®, we can recover the corresponding  in the feature space as

u = dw, (4.13)
and compute the d nonlinear principal components of x under the map ¢ (-) as
=T N — W TeT = C_
V= GE) - ) =w] T (p) P R, i=1.....d (4.14)

where w; € RY is the ith leading eigenvector of ®T® € RVV,

4.1.3 Kernel PCA (KPCA)

A very interesting property of the above NLPCA method is that the computation
of the nonlinear principal components involves only inner products of the features.
More specifically, in order to compute the nonlinear principal components y;, we
simply need to compute the entries of the matrix ® T ® and the entries of the vectors
®Tp(x)and ®T¢p = 1{, Zf’:l CDTqb(xj). In what follows, we show that all of these

quantities can be obtained from inner products of the form ¢ (x) "¢ (y).
Before proceeding further, we will first give some definitions.

Definition 4.3. The space of all square integrable functions is defined as
L*(RP) = {f : R — R such that / f(x)%dx < oo}. (4.15)

Definition 4.4. A function k : RP x RP? — R is symmetric if for all x,y € RP,
we have k(x,y) = k(y,x). A symmetric function k is positive semidefinite if for all
f € L*(RP), we have

/ FOCe.y)f () dedy > 0. 4.16)

RDxRD

Definition 4.5. Let ¢ : R? — RM™ be an embedding function. The kernel function
k : RP x R? — R of two vectors x,y € RP is defined to be the inner product of
their features

K(x,y) = ¢x) p(y) € R. (4.17)
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One can show that k is a symmetric positive semidefinite function in x and y (see
Exercise 4.1). Let us also define the centered kernel® as

R(x.y) = (¢@x) - ) (90) — ) €R, (4.18)
where ¢ = 1{, j.v:l ¢ (x;) is the mean feature. We may compute k from « as

N

1
R(ry) = k(ey)— > K(rx)- Zx(xl,y>+ e Z Zux,,y, (4.19)

j=1 i=1 j=1

We can use these functions to compute the nonlinear principal components as
follows. Define a kernel matrix K = [k;] € RNV as k; = k(x;,x;). The centered
kernel matrix K = ®T ® can be computed from K as

. 1 1 1K1
K=K- Kuu'— 117K+ 1’ (4.20)
N N N?
1 1
=(- 1UHKI- 11T)=JKJ, 4.21
(- unHKE— 117 (421)
where J = [ — ]bllT is called the centering matrix.* Let us also define the vector
e = DT (p(x) — @) = [k(x1,x), £ (x2.%), ..., K(xn.x)]T € RY. This vector can be
computed from k, = [k (x1,X), k(X2,%), ...,k (xy,x)]" € RN as

1

3 1 17K1
Ry = ky — NICl — N11T;cx + 1.

o (4.22)

With this notation, we may compute the nonlinear principal components of x as
yi=w O (p(x) — @) =w'ke, i=1,....d, (4.23)

where w; is the eigenvector of K associated with its ith-largest eigenvalue A;, and
normalized so that |w;[| = A;2. That is, [wl, .. wN] = VdA_l/z, where V,
and A, are obtained from the top d eigenvectors and eigenvalues in the EVD of
K = VeAg VT Since K = [Ryys ..., Ry, it follows that we can compute the
low- d1mens1ona1 coordinates of the entire data set as

Y =A"VIK = APV VieAeVE = APVT (4.24)

3In PCA, we center the data by subtracting its mean. Here, we first subtract the mean of the
embedded data and then compute the kernel, whence the name centered kernel.

4In PCA, if X is the data matrix, then X/J is the centered (mean-subtracted) data matrix.
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In other words, the low-dimensional coordinates can be obtained from the top d
eigenvectors and eigenvalues of the centered kernel matrix.

Example 4.6 (PCA as a particular case of KPCA) For the linear kernel
k(x,y) = x "y, we have ¢ (x) = x; hence KPCA reduces to PCA.

Example 4.7 For the polynomial embedding of degree 2 in (4.2), we have
k(@) = I, V20, B0, V2 nl T = a4 o)’ = 6Ty (4.29)

which can be computed directly in R? without the necessity of computing the
embedding into R3.

In summary, we have shown that the nonlinear principal components can be
computed directly from the kernel function k(x,y) = ¢(x) ¢ (y) without the
necessity of computing ¢ (x). Nonetheless, given any (positive definite) kernel
function, according to a fundamental result in functional analysis, one can in
principle decompose the kernel and recover the associated map ¢ (-) if one wishes to.

Theorem 4.8 (Mercer’s Theorem). Suppose k : RP? x R? — R is a symmetric
real-valued function such that for some C > 0 and almost every (x,y)> we have
|k (x,y)| < C. Suppose that the linear operator L : L*(RP) — L*(RP), where

216 = [ o)y 4.26)

is positive semidefinite. Let \r; be the normalized orthogonal eigenfunctions of L
associated with the eigenvalues A; > 0, sorted in nonincreasing order, and let M be
the number of nonzero eigenvalues. Then:

o The sequence of eigenvalues is absolutely convergent, i.e., Z?il |Ai] < oo.

e The kernel k can be expanded as k(x,y) = Z?il Aii(x)¥i(y) for almost all
(x,y). If M = oo, the series is absolutely and uniformly convergent for almost
all (x,y).

The interested reader may refer to (Mercer 1909) for a proof of the theorem. It
follows from the theorem that given a positive semidefinite kernel x, we can always
associate with it an embedding function ¢ as

dix) = VAvix) i=1,...,M. (4.27)

Notice that the dimension M of the embedding could be rather large, sometimes even
infinite. Nevertheless, an important reason for computing the principal components
with the kernel function is that we do not need to compute the embedding function
or the features. Instead, we simply evaluate the dot products « (x,y) in the original
space RP.

S“Almost every” means except for a set of measure zero.
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Algorithm 4.1 (Nonlinear Kernel PCA)

Input: A set of points X = {x,x5,...,xy} C RP, and amap ¢ : R? — RM or a symmetric
positive definite kernel function k : R? x R? — R.
1: Compute q_ﬁ = 1{, > ¢ (x;) and the centered embedded data matrix @ as in (4.6) or the centered
kernel K as in (4.19).
2: Compute the centered kernel matrix

K=oT® or (K(x;,x)) € RN, (4.28)
3: Compute the eigenvectors w; € RY of K:
Kw; = Aw;, (4.29)

and normalize so that [|w,||> = A;7L.
4: For every data point x, its ith nonlinear principal component is given by

yi = w @ (p(x) — @) or w! [K(x1.x)..... K@y x)] ", (4.30)

fori=1,2,...,d.
Output: A set of points {yj jvzl lying in R, where ;j is the ith nonlinear principal component of
xjfori=1,...,dandj=1,...,N.

We summarize our discussion in this section with Algorithm 4.1.

Example 4.9 (Examples of Kernels). There are several popular choices for the
nonlinear kernel function, such as the polynomial kernel and the Gaussian kernel,
respectively

e —yI?
)-

I 4.31)

T

kp(x,y) = (x'y)" and kG(x,y) = exp (-
Evaluation of such functions involves only the inner product or the distance between
two vectors in the original space R”. This is much more efficient than evaluating the
inner product in the associated feature space, whose dimension grows exponentially
with n and D for the first kernel and is infinite for the second kernel.

Example 4.10 (KPCA for Embedding Face Images under Varying Pose). In
this example, we use the KPCA algorithm, Algorithm 4.1, to find a two-dimensional
embedding of the same subset of the extended Yale B data set that we used in
Example 4.1. Figure 4.5 shows the results using a Gaussian kernel with o = 0.1.
Notice that the embedding given by KPCA clearly improves on that given by PCA,
which is shown in Figure 4.2. In particular, images associated with the four poses
are mapped into four clearly separated (roughly straight) lines. The only part of the
embedding where images from different poses are intermingled is near the origin,
as shown in (b).
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Fig. 4.5 Two-dimensional embedding obtained by applying KPCA to a subset of the extended
Yale B data set consisting of face images of subject 20 under 4 poses and 64 illumination
conditions. Points of the same color represent images associated with the same pose but different
illumination. Some images are shown next to some of the points.

4.2 Nonparametric Manifold Learning

In the previous section, we described NLPCA, a nonlinear extension of PCA
based on embedding a set of data points X = {x; € RP }§V=1 into a high-
dimensional space H and applying PCA in the embedded space to obtain the
low-dimensional representation ) = {yj e RY ;":1 with d < D. In this section,
we present a family of manifold learning methods that search directly for the
low-dimensional representation ) without first embedding the data into a high-
dimensional space. Such methods are based on approximating the geometry of
the manifold (pairwise distances, local neighborhoods, local linear relationships,
etc.) and using these approximations to find a global low-dimensional embedding.
For instance, Figure 4.6 shows two typical examples of submanifolds in R3 that
can clearly be embedded in R? while preserving their intrinsic geometry. Different
methods differ on how certain geometric properties of X are intended to be
preserved or approximated. In what follows, we discuss three representative popular
manifold learning methods, namely multidimensional scaling (MDS), locally linear
embedding (LLE), and Laplacian eigenmaps (LE). For a more comprehensive
review of other manifold learning methods, we refer the reader to (Burges 2005;
Lee and Verleysen 2007; Burges 2010).
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(a) Swiss roll (b) S-curve

Fig. 4.6 Two examples of manifolds typically used in manifold learning.

4.2.1 Multidimensional Scaling (MDS)

One of the oldest manifold learning methods is multidimensional scaling (MDS)
(Torgerson 1958; Kruskal 1964; Gower 1966; Cox and Cox 1994). This approach
aims to capture the geometry of the manifold by finding a representation ) whose
pairwise distances approximate the pairwise distances in X as well as possible. To
capture nonlinear structures in the data, the distance §;; between points x; and x; in
A is chosen to be any distance other than the Euclidean distance §;; = |lx;—x;|, e.g.,
a geodesic distance. More generally, §;; can be any dissimilarity measure between
pairs of points. Given a matrix of dissimilarities A = [§;] € RV*V, the goal of MDS
is to find a matrix Y = [y,,...,yy] € R®" that minimizes the following objective:

N N
min > (s —y,ll = 8 (4.32)

i=1 j=1

Notice that unlike PCA, MDS operates directly on the dissimilarities; hence it
does not require us to have the matrix of data points X = [xy,...,xy] € RPV.
However, in general, the minimization over Y cannot be carried out in closed form,
and gradient descent methods (see Appendix A.1.4) are typically used.®

Now, if instead of trying to approximate dissimilarities, we try to approximate
similarities or affinities obtained from a dot product, then the solution to MDS can
be obtained in closed form from the SVD of the affinity matrix. More specifically, let
A = [a;] € RYN be a symmetric positive semidefinite matrix of pairwise affinities.
For example, A can be defined as

a; = (x; — IL)T(xj -,

6See (Davison 1983) for alternative optimization methods for minimizing the objective in (4.32).
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where u = Zi,X 1 is the mean of the data.” More generally, A can be obtained after
embedding the data into a high-dimensional space, as in NLPCA. In fact, we can
think of A as a centered kernel matrix, which can be obtained as in (4.20).

Given A, our goal is to find a low-dimensional representation Y such that the dot
products between pairs of points best approximate the given affinities, i.e., we wish
to minimize

N N
Y3 0Ty —ap)? = YTy — Al (4.33)

i=1 j=1

Letting Z = Y'Y and noticing that rank(Z) = rank(Y) = d, we arrive at the
following optimization problem:

min |2 —A|%> suchthat rank(Z)=d, Z=Z', Z>0. (4.34)

Notice that except for the symmetric positive semidefiniteness constraint on Z,
this problem is identical to the low-rank matrix approximation problem in (2.35).
However, since A is symmetric positive semidefinite, this additional constraint is
unnecessary. To see this, notice that if we use Theorem 2.6 to find the optimal
solution, we obtain the optimal Z from the SVD of A = Uy X4 U/;r asZ=UxUT,
where U consists of the top d columns of Uy and X consists of the top d xd subblock
of X4. Notice that this solution automatically satisfies the symmetric positive
semidefiniteness constraint. Given Z = USX U, we can obtain Y as Y = REY/2UT
for any orthogonal matrix R € O(d).

In summary, when the affinity matrix A is a centered kernel matrix, MDS gives
the same low-dimensional representation as KPCA, up to an arbitrary orthogonal
transformation R. For further connections between MDS, PCA, and KPCA, we refer
the reader to (Williams 2002).

4.2.2 Locally Linear Embedding (LLE)

Another popular manifold learning approach is locally linear embedding (LLE)
(Roweis and Saul 2000, 2003). This approach aims to capture the geometry of a
manifold M by exploiting the fact that the local neighborhood of a point x € M
can be well approximated by the affine subspace spanned by x and its K nearest
neighbors (K-NNs). These locally linear approximations are then used to find a
low-dimensional embedding that gives a small reconstruction error with respect to
such approximations.

"Notice that A = JX T XJ, where J = I — ]LIIT is the centering matrix.
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The first step of LLE is to approximate each data point x; as an affine combination
of its K-NNss. Intuitively, this step is analogous to approximating the tangent space
of the manifold at the point x; by the affine subspace spanned by x; and its K-NNs.
For a manifold of dimension d, the tangent space at each point is a d-dimensional
affine subspace. Therefore, we need at least d NN to reconstruct this subspace, i.e.,
we need to choose K > d. On the other hand, K cannot be chosen to be too large.
Otherwise, each data point would be written as an affine combination of too many
points, and the affine coefficients would not be unique. Since different solutions for
the affine coefficients correspond to different approximations of the tangent space,
the estimated local affine subspace may be inaccurate. Therefore, LLE typically
requires a good knowledge of d in order to define K. Given K, the K-NNs {x;, }&_,
of each data point x; are typically found using the Euclidean distance. However,
other distances can be used as well.

To approximate each data point x; as an affine combination of its K-NNs, we
search for a matrix C = [c;] € RN*N that minimizes the reconstruction error

E(C) = ZHx, 4 - (4.35)

i=1

subject to (i) ¢; = 0 if x; is not a K-NN of x; and (ii) Zf’zl ¢j = 1. The first
constraint expresses point x; as an affine combination of only its K-NNs, while the
second constraint ensures that the combination of the K-NNss is affine.

Letji,...,jk denote the indices of the K-NN of x;. Since ¢;; = 0 when x; is not a
K-NN of x;, we need to keep track of only K affine coefficients for each point x;. Let
= [cjjs-- s Cjg J] € R be the vector of such coefficients and let G; = [g};] €

RK %K be the local Gram matrix at x;, which is defined as ¢, = (x; —x))T (x; — x;)
for i, [ such that x; and x; are K-NNs of x;. With this notation, the jth term of (4.35)
can be written as

N 2 N 2
- Sam| = | L] = Devertoi =T -3
i=1 i=1 il

= cicigy = ¢ Gie;. (4.36)
il

Therefore, the optimization problem in (4.35) is equivalent to

I?m Zc Gicj st 1T¢j=1. (4.37)
E/ _1

The Lagrangian function for (4.37) is & = , Z, 1€ 1G; ici + Aj(1 — 1" ¢;). Thus,
the first-order conditions for optimality are Gj¢; = A;1 and 17 ¢; = 1. Therefore, if
G is of full rank K, then¢; = ;G 'Tand 2! = lTGj_ll, so that
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—1
G 1

= [ RK, 438
1TGj—11 (43%)

Cj

Notice that the affine coefficients ¢;; are invariant with respect to rotations,
translations, and scalings of all the data points. The invariance with respect to
rotations and translations follows from the invariance properties of the Gram
matrix G;. Specifically, notice that if each x; is transformed to Rx; + ¢, where
R € SO(3) and ¢t € R then x; — x; is transformed to R(x; — x;), and so G; is
not affected. The invariance with respect to scalings follows from the fact that the
Gram matrix appears in both the numerator and denominator of (4.38). Therefore,
the affine coefficients characterize the intrinsic geometric properties of each local
neighborhood of the data in R?.

The second step of LLE is to find a representation ¥ = [y, ...,yy] € R that
minimizes

N

p) =)

Jj=1

v - XN: s H2 (4.39)
i=1

Notice that the objective in (4.39) is the same as the reconstruction error in (4.35),
but obtained with respect to the low-dimensional representation Y rather than with
respect to the original data X. Notice also that the global minimum is obtained
when Y = 0; thus we need to impose additional constraints on the low-dimensional
representation in order to avoid trivial solutions. LLE requires the low-dimensional
representation Y to satisfy the following constraints:

N 1 N
— T _
;yj =0 and N;yjyj =1 (4.40)

The first constraint requires the low-dimensional representation to be centered at the
origin, as in the case of PCA (see Chapter 2). The second constraint forces the low-
dimensional representation to have unit covariance and is an arbitrary constraint to
ensure that rank(Y) = d.

To find the optimal Y, notice that the optimization problem can be written as

1
min |Y —YC|%> st. Y1=0 and NYYT:I. (4.41)

Proposition 4.11 (Locally Linear Embedding). The solution to the optimization
problem (4.41) is given by the matrix Y whose rows are the d eigenvectors of the
matrix L = (I — C)(I — C)T associated with its second- to (d + 1)st-smallest
eigenvalues.

Proof. Notice that ||Y — YC||2 = trace(Y(I — C)(I — C)TYT). Therefore, the
optimization problem (4.41) is a special case of a more general problem in (4.48),



138 4 Nonlinear and Nonparametric Extensions

Algorithm 4.2 (Locally Linear Embedding)

Input: A set of points {xJ , lying in a manifold M and integers K and d.

1: Find the K-nearest nelghbors (K-NN) of each data point x;,j = 1,..., N, according to some
distance in M.

2: Approximate each point x; &~ Y_ c;x; as an affine combination of its K-NN with coefficients
the c;; obtained as in (4.38).

3: Let the rows of the matrix ¥ = [y,,..., yyl € RV be the d eigenvectors of the matrix

= (I— C)(I — C) T associated with its second- to (d + 1)st-smallest eigenvalues.
Output A set of points {y; } ", lying in RY.

with £ replaced by (I — C)(I — C)T and D replaced by y I Therefore, the result
follows by direct application of Proposition 4.14, which we w111 prove later.
0

In summary, LLE is a manifold learning algorithm that uses the data matrix
X to construct a matrix of affine coefficients C that captures the local geometry
of the manifold. The low-dimensional representation is then obtained from the
eigenvectors of the matrix £ = (I—C)(I—C) T associated to its second- to (d+ 1)st-
smallest eigenvalues. The LLE algorithm is summarized in Algorithm 4.2.

Example 4.12 (LLE for Embedding Face Images under Varying Pose). In this
example, we use the LLE algorithm, Algorithm 4.2, to find a two-dimensional
embedding of the same face image data set we used in Example 4.1. Figure 4.7
shows the results using K = 13 nearest neighbors. We see that the embedding given
by LLE also improves on that given by PCA, which is shown in Figure 4.2, but
in a different way from that given by KPCA, which is shown in Figure 4.5: one
direction (the x-axis) mainly captures the variations in illumination, whereas the
other direction (the y-axis) spreads out the four different poses.

4.2.3 Laplacian Eigenmaps (LE)

Another popular manifold learning algorithm is Laplacian eigenmaps (LE) (Belkin
and Niyogi 2002). This approach aims to capture the geometry of the manifold by
finding a low-dimensional representation such that nearby points in the manifold are
mapped to nearby points in the low-dimensional embedding.

More specifically, if X = [xl, o ,xN] is the data matrix, LE finds a low-

dimensional embedding ¥ = [y Lseens yN] € RN guch that if x; and x; are close to
each other, then so are y; and y;. This is done by minimizing the objective

N N
() =Y > wily—yI% (4.42)

i=1 j=1

subject to appropriate constraints on Y that prevent the trivial solution ¥ = 0.
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Fig. 4.7 Two-dimensional embedding obtained by applying LLE to a subset of the extended Yale
B data set consisting of face images of subject 20 under 4 poses and 64 illumination conditions.
Points of the same color represent images associated with the same pose but different illumination.
Some images are shown next to some of the points.

The weights w;; > 0 are designed so that a small penalty is paid when x; and
x; are far, so that y; and y; are allowed to be far, and a large penalty is paid when
x; and x; are close, but y; and y; are far. For this purpose, a local neighborhood of
each point x; is defined using the K-NN rule with some distance dist on M, and the
weights are chosen as

dist(x; .Jc]')2

Wy = e 202 if x; is a K-NN of x; or vice versa, (4.43)

0 else,

where o0 > 0 is a parameter.
Letting D € RV*N be a diagonal matrix with diagonal entries d; = Y, w;;, and
W € R¥*N the matrix of weights, we may rewrite the objective function as

(V) = wy(lyil® + Iy, I* —2/y) (4.44)
ij
=2 diyy,—2) wiyly, (4.45)
J ij

=2 trace(YDYT) — 2trace(YWY ") = 2 trace(YLY "), (4.46)
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where the symmetric matrix £ = D — W € R¥¥ is called the Laplacian matrix.
The definition of the Laplacian and the above derivation lead to some important
properties of £ below.

Proposition 4.13 (Basic Properties of the Laplacian Matrix). The Laplacian
matrix £ € RYN has the following properties:

o Forally =[yi,....yn]" € RN, we havey' Ly = ; Zu wii(yi —;)? = 0. Hence
the matrix L is positive semidefinite.

e The vector of all ones is in the null space of L, i.e., L1 = 0, hence the smallest
eigenvalue of L is zero.

It follows from the above discussion that a trivial solution to the problem
miny ¢ (Y) is Y = 0, in which case all the points are mapped to the origin. It also
follows from the proposition that ¥ = y1T is another trivial solution, in which
case all data points x; are mapped to the same low-dimensional embedding y € R?.
Notice that both solutions are such that ¢(Y) = 0.

To prevent these trivial solutions, LE requires the low-dimensional representation
Y to satisfy the following additional constraints:

YD1 =0 and YDY' =1. (4.47)

The first constraint requires the scaled low-dimensional representation® YD to
be orthogonal to the constant vector 1 so as to avoid the constant embedding
Y = le. The second constraint ensures that rank(Y) = d and helps remove an
arbitrary scaling factor in the embedding. In fact, the above two constraints result
from properly discretizing the solution to a continuous Laplacian embedding of a
continuous manifold. Not to disturb the flow, we leave a brief introduction of the
continuous Laplacian embedding to Appendix 4.A of this chapter. As one would see,
the two constraints in equation (4.47) are discretized versions of their corresponding
continuous counterparts in equation (4.95).

Therefore, LE finds the low-dimensional representation by solving the following
minimization problem:

m}n trace(YLYT) st. YD1=0 and YDY' =1. (4.48)

The solution to this optimization problem is given by the next result.

Proposition 4.14 (Laplacian Eigenmaps). The solution to the optimization prob-
lem (4.48) is given by the matrix Y whose rows are the d generalized eigenvectors
of the pair (L, D) associated with its second- to (d + 1)st-smallest generalized
eigenvalues.

8By scaled low-dimensional representation we mean replacing y; by djyy;.
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Proof. Notice that the Lagrangian function for this problem can be written as
LY, A, A) = trace(YLY ") + A TYD1 + trace(A(I — YDY ")), (4.49)

where A € R and A = AT e R? are, respectively, a vector and matrix of
Lagrange multipliers. Computing the derivative of .Z with respect to Y and setting
it to zero yields 2YL + A1TD — 2AYD = 0. Multiplying on the right by 1 and
using the constraints £1 = 0 and YD1 = 0, we obtain A = 0. As a consequence,

YL =AYD — LY =DYTA. (4.50)

Following the same argument as in the proof of Theorem 2.3, one can show that
A is diagonal. Therefore, the rows of Y are generalized eigenvectors of (L, D)
with generalized eigenvalues in the diagonal entries of A. Moreover, YLY T =
AYDYT = A, and so the objective value is trace(YLY ") = trace(A). Therefore,
we must choose the smallest generalized eigenvalues of (£, D). Since 1 is an
eigenvector of £ with zero eigenvalue, and the eigenvectors of £ must be orthogonal
to D1 (because YD1 = 0), the rows of the optimal Y are the d generalized
eigenvectors of (£, D) associated with its second- to (d + 1)st-smallest eigenvalues,
as claimed. O

The LE algorithm is summarized in Algorithm 4.3.
The reader has probably noticed that the low-dimensional embeddings given by
LLE and LE are, at a high level, rather similar in several aspects:

1. They both map the original data points x; € M C R to a new set of data points
y;in R? with the goal of preserving local geometric properties of the original data,
rather than providing any parametric representation of x; in its original space (as
done by PCA).

Algorithm 4.3 (Laplacian Eigenmaps)

Input: A set of points {xj}jvzl in a manifold M, integers K and d, and o > 0.
1: Find the K nearest neighbors (K-NN) of each data point x;,j = 1,..., N, according to some
distance dist in M.
2: Define a matrix of weights W € RV*¥ whose entries w;; measure the affinity between two
points x; and x; and are computed as

dist(x; .x,)2

i oo : - .
Wi = e 2 if x; is a K-NN of x; or vice versa, 4.51)

0 else.

3: Let D be a diagonal matrix with entries dj = Y_; wy, and let £L = D — W. Find a matrix
Y = [y,....yy] € RN whose rows are the d generalized eigenvectors of the pair (£, D)
associated with its second- to (d + 1)st-smallest generalized eigenvalues. That is, solve for Y
from Y£ = AYD, where A is a diagonal matrix with the generalized eigenvalues along its
diagonal.

Output: A set of points {yj}};1 lying in R?.
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Fig. 4.8 Two-dimensional embedding obtained by applying LE to a subset of the extended Yale
B data set consisting of face images of subject 20 under 4 poses and 64 illumination conditions.
Points of the same color represent images associated with the same pose but different illumination.
Some images are shown next to some of the points.

2. They both start by computing a weight w;; between any pair of points that reflects
the desired geometric properties to be preserved. A weight with larger magnitude
indicates that the two points are “similar” with respect to such properties.

Example 4.15 (LE for Embedding Face Images under Varying Pose). In this
example, we use the LE algorithm, Algorithm 4.3, to find a two-dimensional
embedding of the same face image data set we used in Example 4.1. Figure 4.8
shows the results using K = 5 nearest neighbors and ¢ = 5. We see that the
embedding given by LE also improves on that given by PCA, which is shown in
Figure 4.2, but differently from that given by KPCA, which is shown in Figure 4.5,
and from that given by LLE, which is shown in Figure 4.7: images from two of the
poses are clearly separated by LE, but the other two poses remain clustered together.

Example 4.16 (PCA, KPCA, LE, and LLE for Embedding Face Images of
Two Different Subjects). In this example, we apply various linear and nonlinear
embedding methods to a data set that contains frontal face images of two subjects:
subject 20 and subject 21 in the extended Yale B data set. The resulting embeddings
by PCA, KPCA, LE, and LLE are shown in Figure 4.9. In each figure, the two colors
correspond to images associated with the two different subjects. For KPCA, we use
a Gaussian kernel with 0 = 0.1. For LLE, we use K = 6 neighbors. Finally, LE
uses K = 5 neighbors and 0 = 5. Observe that except for PCA, all the nonlinear
embedding methods are able to clearly separate the images from the two individuals.
Observe also that in the case of KPCA, images from the two individuals are each
mapped to roughly two lines. Overall, this experiment illustrates how nonlinear
manifold learning techniques are better suited for data sets whose underlying low-
dimensional representation is nonlinear.
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Fig. 4.9 Two-dimensional embedding obtained by PCA, KPCA, LLE, and LE for face images
(frontal pose, all 64 illuminations) of two individuals (subjects 20 and 21) in the extended Yale
B data set. Points of the same color correspond to frontal face images of the same subject under
different illumination conditions. Sample images are shown beside some of the points.

4.3 K-Means and Spectral Clustering

As we have seen in the previous experiments with face images, when the data set
contains images mixed from multiple subjects with multiple poses, it might no
longer be possible to model the whole data set by a single subspace or a single
nonlinear manifold. Nonetheless, after suitable nonlinear mappings, images from
the same pose or from the same subject tend to form a cluster in space that is
separated from those for other poses or subjects. This suggests that these nonlinear
mappings may not only be useful for finding a low-dimensional representation of
the data, but also simplify clustering the data if the data are mixed.
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Since clustering mixed data will be a central theme for the rest of the book,’
in this section we give a brief overview of two fundamental clustering methods
that will be used throughout the book. In Section 4.3.1, we discuss the K-means
algorithm, which is designed to cluster data distributed around a collection of
centers, as illustrated in Figure 4.10(a). In Section 4.3.2, we discuss the spectral
clustering algorithm, which uses an embedding similar to LE to map the original
mixed data to a set of low-dimensional points distributed around cluster centers, as
illustrated in Figure 4.10(b). As we will see, the spectral clustering algorithm is very
much related to the above manifold learning methods, especially to LE.
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(b) 2-D data sampled around two circles is mapped to 2-D data sampled around two cluster centers
Fig. 4.10 Clustering 2D data distributed around cluster centers or around two circles. In (b), a

suitable (spectral) embedding maps the original data to an embedding where the data points are
clustered around two centers.

As we will see in Chapters 7 and 8, spectral clustering methods will play a crucial role in many
approaches to subspace clustering.
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4.3.1 K-Means Clustering

The K-means algorithm is arguably one of the simplest and most widely used
clustering methods. It is based on the assumption that the data points {xj}j\’=1 are
distributed around a collection of n cluster centers {j,}_,. Assuming that n is
known, the K-means algorithm aims to estimate the cluster centers by minimizing
the sum of squared distances from the data points to their closest cluster centers, i.e.,

N
min. ]; min ;= g3 (4.52)

An important challenge in solving the above minimization problem is that the
objective function!® is not differentiable for all u,. Nonetheless, one can derive a
simple alternating minimization algorithm by introducing a set of auxiliary variables
that denote the assignments of points to cluster centers. More specifically, let w;; €
{0, 1} be such that w;; = 1 if point j is assigned to cluster i and w; = 0 otherwise.
Then the optimization problem in (4.52) can be rewritten as

n N
min >N Syl — il
{3 Awi} =1 =1
(4.53)
st. w;e{0.1} and Y wy=1, j=1....N.

i=1

The application of the alternating minimization algorithm in Appendix A.1.5 to this

problem allows us to estimate the cluster centers {g;}"_, and the segmentation of

the data {w,;j}’l:z}::::ﬁ in a straightforward manner by alternating between solving for

the segmentation given the cluster centers and vice versa. Specifically:

1. If the cluster centers are known, so are the distances |lx; — u;||. Thus, the
optimization problem over {w;} with {g;} held fixed involves minimizing a
weighted sum of the w;;, subject to the constraint that for each j, there is only
one i such that w; = 1. Therefore, to minimize the objective, for each j we must
set w; = 1 for the i that gives the smallest distance ||x; — u;||. This is equivalent
to assigning x; to its closest cluster center.

2. If the segmentation is known, the constraints in (4.53) are redundant, and the
optimal solution for p; can be obtained from

10Notice that the above objective is very much related to the MAP-EM algorithm for a mixture of
isotropic Gaussians discussed in Appendix B.3.2.
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N ZN X
1 WiiX;
— E Qwixj—p) =0 = p, =

. (4.54)
N
j=1 Zj:l Wi

We observe that N; = ZJN=1 w;; is the number of points assigned to the ith cluster
center. Thus, we can see that the above expression for u; is simply the average
of the points assigned to the ith cluster center.

In other words, the K-means algorithm alternates between computing the cluster
centers given the segmentation and computing the segmentation given the cluster
centers, as detailed in Algorithm 4.4. Notice that at each iteration of the algorithm,
the objective function in (4.52) either decreases or stays the same (see Exercise 4.10
for a proof). Notice also that since the variables w;; are binary, the number of
possible segmentations is finite. Since for each segmentation there is a unique
solution for the cluster centers, the number of possible solutions for {u;} is also
finite. Therefore, after a finite number of iterations, the value of the objective
function in (4.52) will stop decreasing, and the algorithm will converge.

Notice also that except for the case in which two or more points are at equal
distance from two or more distinct cluster centers, a small perturbation of the cluster
centers p; does not change the assignment of points to cluster centers. Therefore, the
K-means algorithm converges to a local minimum of the objective function in (4.52)
in a finite number of steps.

We refer the reader to (Bottou and Bengio 1995) for a similar convergence argu-
ment, and to (Selim and Ismail 1984) for a more rigorous analysis of convergence of
a generalized K-means algorithm, including cases in which the generalized method
fails to converge to a local minimum. Now, even if the algorithm converges to a
local minimum, in general it will not converge to a global minimum. Therefore,
initialization is critical in order to obtain a good solution. A common strategy is
to initialize the algorithm with n randomly chosen data points as candidate cluster
centers, repeat the algorithm for multiple random initializations, and then choose
the one that gives the best objective value.

Example 4.17 (K-means Clustering of Face Images under Varying Pose). In
this example, we apply the K-means algorithm, Algorithm 4.4, to a subset of the
AT&T face data set!! (previously known as ORL). This data set contains photos of
40 individuals, with 10 poses for each individual. In this experiment, we use only
the images for individuals 1 to 20. We first apply PCA to the images to reduce the
dimension of the data from 92x112 to D = 50. We then cluster the PCA coefficients
using K-means with 20 cluster centers. We reconstruct the 20 centroids found by
K-means back to the face space by averaging the images associated with each cluster
center, as shown in Figure 4.11(a). Notice that most of the centroids correspond
to blurry face images. This is due to the fact that face images under varying pose

AT&T Laboratories, Cambridge,
http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.
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Algorithm 4.4 (K-means)

Input: A set of points {xj}f;l and the number of groups n.

1: Initialization: Select n distinct data points as initial cluster centers [,L(lo) seees ;Li,o) .
2: while (the clusters and their centers do not converge) do

3:  Assign each data point x; to its closest cluster center p.,(»k) ,i.e.,

W;jf‘“) < t=1... (4.55)
0 else.
4:  Update the cluster centers ;L,(-H_l) to be the mean of all points x; that belong to cluster i,
N (k+D
) =1 X
i < W GtD (4.56)
Zj:l Wi

If more than one cluster achieves the minimum, assign the point to one of them.
5: end while
Output: The n cluster centers {gt;} and the segmentation {w;}.

2F

o 2‘0 4‘0 E‘O E‘O 160 1 éﬂ |JQO 1‘60 1 QQ 2(‘)0
(a) 20 centroids found by K-means for the 100 (b) Clustering results obtained by K-means versus the
training face images of the 20 individuals index of each face image (10 images per class)

Fig. 4.11 Face clustering results given by the K-means algorithm on AT&T data set.

get averaged by K-means. Out of the 20 centroids, 19 correspond (approximately)
to 19 different individuals, while one centroid is repeated twice. This is due
to the fact that K-means, as a greedy method, has failed to converge to the globally
optimal solution. As a result, the clustering error is 20%. The clustering results
versus the index of the face images (which are sorted by individual with 10 images
per class) are plotted in Figure 4.11(b). Overall, we can see that K-means works
reasonably well for clustering face images of different individuals under varying
pose, but similar illumination conditions.
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Example 4.18 (K-means Clustering of Face Images under Varying Illumina-
tion) In this example, we apply the K-means algorithm, Algorithm 4.4, to a subset
of the extended Yale B face data set. Specifically, we take images of two subjects
(20 and 21, or 37 and 38) each under 64 different illumination conditions. We first
apply PCA to the images to reduce the dimension of data to D = 20 and then
normalize the PCA coefficients to unit £,. We then apply K-means with n = 2
clusters to the normalized data. The clustering errors are 50% for subjects 20 and
21, and 47.7% for subjects 37 and 38. These errors are very high, which suggests
that K-means is not suitable for clustering face images under varying illumination.
This is because K-means uses the Euclidean distance between two face images as a
measure of similarity. Such a distance is not suitable for capturing large variations
of illumination, because two face images of different individuals under the same
lighting could be closer to each other than two face images of the same individual
under very different lightings. This can also be explained by looking at Figure 4.9(a),
which shows a two-dimensional PCA embedding for individuals 20 and 21. While
we are using a 20-dimensional embedding for K-means, Figure 4.9(a) already
suggests that it is very difficult to cluster the data into two groups. At the same
time, Figures 4.9(b)-(d) suggest that K-means might be able to do a little better if
we apply it to a KPCA, LLE, or LE embedding instead of to a PCA embedding.
This will be the subject of the next subsection.

4.3.2 Spectral Clustering

The face clustering example discussed in the previous section suggests that the
distribution of a mixed data set can be more complicated than simply clustering
around a few cluster centers. In this case, the K-means algorithm may fail to group
the data correctly. Nonetheless, as we have suggested in the example shown in
Figure 4.10(b), one way to remedy the situation is to seek a suitable nonlinear
embedding of the data, such as LE, so that the embedded data set can be easily
clustered by K-means. But why is the phenomenon illustrated in Figure 4.10(b)
possible? In other words, why is it the case that after a suitable embedding, the data
points cluster around a collection of cluster centers?

In this section, we aim to answer this question by introducing a graph-theoretic
approach to data clustering. In this approach, data points become vertices of a graph,
and similar data points are connected by edges in the graph. Ideally, different clus-
ters correspond to different connected components of the graph, which can be found
by analyzing the null space of the graph Laplacian. In practice, however, there may
not be a one-to-one correspondence between clusters and connected components
of the graph. In this case, we will use results from matrix perturbation theory to
show that some eigenvectors of the graph Laplacian provide an embedding for the
data from which the clustering can be obtained more easily, thereby establishing
an intimate connection between clustering and manifold learning. Finally, we will
formulate the clustering problem directly as a graph partitioning problem, and show
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that a continuous relaxation of the associated discrete optimization problem leads to
the same type of generalized eigenvalue problem solved in manifold learning.

Ideal Case Given a set of data points xy,...,xy € RP, we associate with it a
weighted undirected graph G = (V,&, W), where V = {1,...,N} is a set of N
vertices and £ C V x V is a set of edges, which captures the “affinity” between pairs
of points. For example, in a K-NN graph, each data point is connected to its K-NNs,
and in an e-neighborhood graph, each data point is connected to other points at a
distance less than or equal to & > 0. The (i, j)th entry w;; = wj; > 0 of the matrix
W e RMV is a weight associated with the edge (i, ) € €. If w; = 0, the two vertices
are not connected. Otherwise, the weight w;; is used to describe the affinity between
points x; and x; in terms of their properties in the original space R”. For instance,
w;j can be chosen as in LE as w;; o exp(— dist(x;, x;)>/20%), so that w; &~ 1 when
points x; and x; are close to each other, and w;; ~ 0 when points x; and x; are far
from each other. Alternatively, we can set w;; = 1 if and only if x; is connected to x;.
Since the graph is undirected, the matrix W is symmetric, i.e., W = WT. We further
define the degree of vertex i as d;; = Zj wjj. Note that when wy; € {0, 1}, dj; is the
number of points connected to x;. Thus, the degree of vertex i is a measure of how
connected point x; is to other points. We define the degree matrix D € RV as a
diagonal matrix whose diagonal entries are the degrees d;; of the vertices. Finally,
we define the Laplacian of the graph G as the matrix £L =D — W.

Recall from Proposition 4.13 that the matrix £ is symmetric positive semidefinite
and that the vector of all ones is in its nullspace, i.e., L1 = 0. Recall also
from Proposition 4.14 that the LE algorithm obtains a low-dimensional embedding
Y € RN from the generalized eigenvectors of (£, D) corresponding to the
second- to (d + 1)st-smallest generalized eigenvalues of (L, D). Hence, the LE
method can be viewed as a special case of a very general data mapping method
known as spectral embedding, which uses the spectrum of graph Laplacians to
provide new representations for data. Now, an important assumption that we did
not highlight when we introduced the LE algorithm is that we need the second-
smallest generalized eigenvalue of (£, D) to be nonzero. Under this assumption,
there is only one eigenvector of £ associated with the zero eigenvalue, namely the
vector 1. Moreover, one can show that the second eigenvalue of £ is nonzero if
and only if the graph is connected. Therefore, the reason for LE to require that the
second eigenvalue of £ be nonzero is precisely so that the graph G is connected.!?

But what if the graph is not connected? As we will see, when G is not
connected, there are multiple eigenvectors associated with the zero eigenvalue,
each one corresponding to one of the connected components of the graph G. This
seemingly simple fact has significant implications in using spectral embedding to
extract important topological properties of a graph such as whether the graph is
connected, or equivalently, whether the data set has a single cluster or multiple

12A graph is connected when there is a path between every pair of vertices.
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clusters. Moreover, the eigenvectors of £ corresponding to the zero eigenvalues can
be used to cluster the data into the connected component of the graph.
To motivate why this is the case, let us consider a simple example.

Example 4.19 Suppose the graph G has n connected subgraphs G = GiUG, U---U
G, with G; N G; = @. Let the number of vertices in each subgraph be N, N, ..., Ny,
respectively. Consider a special weighted graph G where the weights are such that
w;; = 1if and only if the two vertices i and j belong to the same connected subgraph,
and otherwise w;; = 0. Let J,, be an m X m matrix full of 1’s, and I, the m X m
identity matrix. Then, if the data points are sorted according to their membership in
the n connected components, the weight matrix W is a block-diagonal matrix with n
diagonal submatrices Jy;, and the degree matrix D is a block-diagonal matrix with
diagonal submatrices N; - Iy;:

Jv 00 NIy, O 0
W: O '.. O s D: 0 '.' 0 . (4.57)
0 0 Jy, 0 0 N,-ly,

Let 1g, € RN denote the indicator vector for subgraph G;. That is, its entries are
1 for vertices in G; and O otherwise. Then it is easy to verify that such indicator
vectors are eigenvectors of the weight matrix W with the number of vertices in each
subgraph N; as the eigenvalues:

Wlg, = Nilg,. (4.58)

By the definition of the degree matrix D, these indicator vectors must be in the null
space of the Laplacian of the graph £ = D — W. That is,

L1 =0, Yi=1,....n. (4.59)

This simple example illustrates that the null space of the Laplacian of a specific
graph encodes the membership of its vertices in different connected subgraphs. The
following result shows that this property of the null space of the Laplacian is also
true for more general graphs.

Proposition 4.20 (Number of Connected Subgraphs). Given an undirected graph
G with N vertices and n < N connected subgraphs, i.e., G = GiU G, U---U G,
with Gi N G; = @ for i # j, and a nonnegative weight matrix W, the number of
zero eigenvalues of its Laplacian matrix L is equal to the number of connected
components of the graph. Moreover, the null space null(L) is exactly spanned by
the indicator vectors of these disconnected subgraphs:

null(L) = span{lg,, 1g,,...,1g,}. (4.60)
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Proof. Suppose u € RY is an eigenvector of £ associated with a zero eigenvalue.
Then we have

1
u' Lu = 5 %:wij(u,- —uj)> =0. (4.61)

Since w; > 0, for the above equality to hold, we must have u; = u; whenever
w;; > 0. Therefore, if two vertices i and j belong to the same connected component,
the corresponding values of the eigenvector must be equal. It follows that every
vector u in the null space of £ can be written as a linear combination of the vectors
{1g,}i—,, i.e, null(£) = span{lg,,1g,,...,1g,}. Since these n vectors are linearly
independent for N > n, we conclude that the dimension of the null space of L is
equal to the number of connected components. O

The above property of the Laplacian matrix implies that the null space of
the Laplacian matrix encodes precise information about the membership of the
vertices in the n connected components. However, we cannot yet directly use this
information for clustering, because we can identify the indicator vectors only up to
a change of basis.

Proposition 4.21 (Null Space of Laplacian). Every n linearly independent vectors
ui,...u, €RY inthe null space of L can be written as

[wi, ... u,] =[1g,,1g,,...,1g,]A € RV" (4.62)

for some nonsingular matrix A € R™",

We leave the proof of this fact as an exercise for the reader. Now, if we view
the columns of the matrix ¥ = [u1,....u,]" = [y.....yy] € R as a new
embedding of the points in R", then Y has a very simple but important property:
y; = y; if and only if the two vertices i and j belong to the same connected
component. That is, there are n distinct columns in Y, which means that all N points
{x;} are mapped exactly to n points in R". Hence, if we are interested only in the
topology of the graph, we care only about the eigenvectors associated with the zero
eigenvalue, whereas LE in Section 4.2.3 uses other eigenvectors associated with
nonzero eigenvalues to find a low-dimensional embedding.

General Case

So far, we have assumed that the graph has n connected components and that there
is an edge connecting every two components. In practice, the data may be corrupted,
and the affinity matrix W may not be such that w;; = 0 when points 7 and j are in
different connected components. In this case, even if the ideal graph has n connected
components, the graph obtained from a corrupted matrix W may be fully connected.
As result, the eigensubspace associated with the n smallest eigenvalues of £ will be
a perturbed version of the ideal eigensubspace associated with the zero eigenvalue,
which is spanned by the n indicator vectors. Therefore, the embedded points {yj}jvz !
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will no longer coincide with n points in R". Ideally, we would like these points to
cluster around n cluster centers in R”, as predicted in Figure 4.10(b). The following
result, which follows from a perturbation theorem in (Davis and Cahan 1970), shows
that if the perturbation to W is small enough, the N points {yj}f’:l do cluster around
n cluster centers in R".

Theorem 4.22 (Stability of the Null Space of Laplacian). Let §~ be the Laplacian
of a graph with n connected components and let 0 = A; = Ay = -+ = 4, <
A1 < Apga < --+ < Ay be its N eigenvalues. Let L be a perturbed graph
Laplacian and let 0 = Ay < Ay < --- < Ay be its eigenvalues. Let Y € RPN pe a
matrix whose orthonormal rows are the indicator vectors (with length normalized to
one) and let Y € R™N be a matrix whose orthonormal rows are the n eigenvectors
of L corresponding to its n smallest eigenvalues. Then

~ 2 -
min Y —RY|)> < v 1£ = Lll2. (4.63)
ReO(n) An-l—l

In other words, if the perturbation is small enough, as measured by ||£ — L],
and A, is large enough, then the perturbed low-dimensional embedding Y is close
to the ideal low-dimensional embedding Y (up to an orthogonal matrix R € R™"),
One can show that 4,41 > A4 — ||£~ — L] (see Exercise 4.12) . Therefore, the
requirement that A, be large enough can be translated into requiring that A, be
large enough relative to the size of the perturbation. Since A,+1 would have been
zero had the number of clusters been n + 1 rather than n, the requirement that A4
be large enough can be interpreted as requiring that each one of the n clusters be
sufficiently well connected.

Theorem 4.22 establishes that under certain conditions, the columns of the
matrix ¥ = [y,,....yy] = [u1.....u,]" obtained from the n eigenvectors
{u;}?_, of L corresponding to its n smallest eigenvalues will cluster around n
“ideal” cluster centers given by the n distinct columns of Y. However, notice that
the ideal cluster centers are not obtained from the true indicator vectors, as in
Proposition 4.62, but from a normalized version of these indicator vectors. This
is because in Theorem 4.22, the rows of the ideal embedding Y are the indicator
vectors normalized to be of unit norm. Specifically, the ith row of Yis given by

hi=1g,/V|Gl. i=1,....n, (4.64)

where |G;| is the number of vertices in the ith subgraph. This introduces an
interesting “normalization” to the ideal low-dimensional embedding Y in which the
distance from the ith ideal cluster center to the origin is scaled down by 1/ \/ |Gil.
Thus, the larger the subgraph G;, the closer its ideal cluster center is to the origin.

Given the low-dimensional embedding ¥ = [uy,... ,u,,]T, we can cluster
the original data {xj}f’: , by clustering the low-dimensional points {yi}jvz | using,
for example, the K-means algorithm, Algorithm 4.4. This leads to a popular
data clustering algorithm, known as spectral clustering, which we summarize in
Algorithm 4.5.
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Algorithm 4.5 (Spectral Clustering)

Input: Number of clusters n and affinity matrix W € RY*¥ for points {x;}¥ i

1: Construct an affinity graph G with weight matrix W.

2: Compute the degree matrix D = diag(W1) and the Laplacian £L = D — W.

3: Compute the n eigenvectors of £ associated with its n smallest eigenvalues.

4: Let y;,...,yy be the columns of ¥ = [uy,...,u,]’ € R™N, where {u;}'_, are the

eigenvectors in step 3 normalized to unit Euclidean norm.

5: Cluster the points {y } i—, into n groups using the K-means algorithm, Algorithm 4.4.

Output: The segmentation of the data into n groups.

Observe that Algorithm 4.5 is based on computing a low-dimensional embedding
of the data from the eigenvectors of £ and then clustering this low-dimensional
embedding using K-means, as we suggested in Figure 4.10(b). However, the low-
dimensional embedding used in Algorithm 4.5 does not coincide with any of
the low-dimensional embeddings discussed in Section 4.2. The most similar low-
dimensional embedding is that of LE, which uses the generalized eigenvectors of
(L£,D) in lieu of the eigenvectors of L. Next, we discuss some variants to the
basic spectral clustering algorithm that are very close to LE. As we shall see, such
variants provide some form of normalization of the low-dimensional embedding that
is beneficial from the clustering point of view.

Connections between Spectral Clustering, Mincut and Ratiocut

So far, we have assumed that the graph either has n connected components or can
be approximated by a graph with n connected components via a small perturbation
of the affinity. In practice, we may want to find a clustering of the data even when
the perturbation from the ideal case is large. In this case, it makes sense to formulate
the clustering problem as a graph partitioning problem in which we aim to divide
the graph into multiple subgraphs by “cutting the weakest links.” Interestingly, this
approach leads to a discrete optimization problem whose continuous relaxation
results in a generalized eigenvalue problem.

More specifically, let A and B be two subgraphs of G. We define the quantity

wA.B) = 3wy (4.65)

i€ AjeB

as the sum of the weights of all edges connecting the two subgraphs. Then if we
cut the graph G into n disjoint subgraphs, i.e., {G;}/_, such that G = U!_,G; and
Gi U G; = 0, we may measure the cost of such a cut as the sum of the weights of all
the edges connecting one group to all other groups, i.e.,

1 n
Cut(G. G- Ga) = ) D w(Gi. ). (4.66)

i=1
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where G is the complement of G;. One can then formulate the clustering problem as
the problem of finding the cut that minimizes the above cost. This problem is known
in the literature as the mincut problem. Notice that if the graph has n connected
components, there are no edges across different subgraphs, and the optimal value of
the mincut is zero.

To minimize the cut, let U = [ul, . ,un] be the matrix whose columns are the
indicator vectors for each one of the n groups as defined in (4.62). Since u; = 1
when point x; belongs to subgraph G; and u;; = 0 otherwise, we have

n n n N N
1 X 1 1
5 > w(Gi.Gf) = 5 YooY wk= ) DD (i — w)wie
i=1 i=1 jeGi keG¢ i=1 j=1 k=1
(4.67)
= Zu;rﬁui = trace(U T LU).
i=1
Therefore, we can formulate the mincut problem as
min trace(U' LU) st Ul =1, (4.68)

Ue{0,1}Nxn

where the constraint enforces that each data point is assigned to one cluster.'?
However, directly minimizing the cut often results in clusters that consist of a
single vertex that has no or few connections with the rest of the graph. To avoid
such trivial small clusters, we can instead minimize the so-called “ratiocut” cost
n . n +
w(Gi, G; cut(Gi, G;
o WG G _ g eut(Gn 6 (4.69)

ratiocut(Gi, Gz, ..., G,) = ; |G| G|

i=1 i=1

which discounts groups with a small number of vertices. We leave it as an exercise
to the reader (see Exercise 4.13) to check that if we normalize the indicator vector
of each group by its group size as h; = 1g,./\/|g,-|, i=1,...,n, then we have

ratiocut(G1. Ga..... Go) = »_ b Lh; = trace(H LH). (4.70)

i=1

where H = [hy, h,, ..., h,]. Now notice that the constraint Ul = 1 used in (4.68)
to prevent the trivial solution U = 0 becomes Hlg, = 1g,/+/|Gi|. However, this
constraint is hard to enforce, because we do not know |G;|. Instead, to prevent the
trivial solution H = 0, we enforce the constraint H' H = I, which can be easily
verified. Therefore, the objective of ratiocut can be rewritten as

min trace(H' CH) st H' H=1I, (4.71)
HeH

3This constraint is needed to prevent the trivial solution U = 0. Alternatively, we could enforce
UTU = diag(|Gi], 1G], . . .. |Gal). However, this is impossible, because we do not know |G;]|.
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where H is the space of N x n matrices whose entries are either 0 or 1/ \/ |Gil.
However, optimizing over the space H is also impossible, because we do not know
|Gi|. Thus, a commonly used approximation is to relax the requirement that the
columns of H be normalized indicator vectors and instead allow H to be any
orthogonal matrix. The optimization problem then becomes

min trace(HTﬁH) st. H'H=1. 4.72)
HE]RNX”

We leave it as an exercise to the reader to show that the columns of the optimal
H* are exactly the n eigenvectors of £ associated with the n smallest eigenvalues.
Once H* is known, one can further apply the K-means algorithm to cluster the row
vectors of H* to find the n clusters. This leads exactly to the spectral clustering
algorithm 4.5 with ¥ = H*T.

Normalized Cut and Normalized Spectral Clustering
Instead of normalizing an indicator vector of a subgraph A by its size |.A|, we may
also normalize it by its volume, which is defined to be

Vol(A) =) " d;i. (4.73)
i€ A

where dj; is the ith diagonal entry of the degree matrix D. Similar to ratiocut, we
may seek a partition of the graph into n components by minimizing the cost:

! Z wGi. G5 _ Z cut(Gi. )

Neut(Gr, Ga, ..., Gn) = 2 Vol(G)) Vol(G))

, (4.74)

i=1

which discounts groups that have small volume. This objective function is also
known as the “normalized cut.”

Directly solving the Ncut problem is highly combinatorial. To simplify the

expression and the problem, we may scale the indicator vectors by the volume of
each subgraph and define

fi=1g,/y/Vol(G), i=1,....n (4.75)

Let F = [fl S .fn]. We leave it to the reader (see Exercise 4.13) to show that

Necut(Gy, Gs, ..., G,) = trace(F' LF) and F'DF =1. (4.76)
Therefore, the objective of Ncut can be rewritten as

min trace(F' LF) st F'DF =1, (4.77)
FeF

where F is the space of N x n matrices whose entries are either 0 or 1/ \/ Vol(G)).
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Notice that optimizing over the space F is impossible, because we do not know
Vol(G;). However, if we relax the requirement that F' consist of scaled indicator
vectors and instead allow it to be any real matrix, then we can approximate the
solution to the Ncut problem by solving the following optimization problem:

min trace(F' LF) st F'DF =1. (4.78)

FERN>n

Notice that this is almost the same as the optimization problem (4.48) that we
have solved for LE,. The only difference is that in LE, we have the additional
constraint F'D1 = 0. Recall that the optimal solution for LE is given by the
generalized eigenvectors of (£, D) corresponding to the second- to (n + 1)st-
smallest eigenvalues:

cf = ADf. (4.79)

We leave it as an exercise to the reader to show that the optimal solution F* to (4.78)
consists of the first n generalized eigenvectors of (£, D), or equivalently, the first n
eigenvectors of the matrix D=L, since DT'LF = Af. Alternatively, if we define
T = D'/F, the optimization problem in (4.78) can be rewritten as

min trace(T ' D~V2LD7V?T) st T'T=1 (4.80)
TeRN>n

This is almost exactly the same optimization problem as we see in ratiocut (4.72),
except that we need to replace £ with D~/2£D~1/2, Unlike D' L, the matrix
D~1/2£D~1/? is a symmetrically normalized version of the Laplacian. The optimal
solution T* to the above program obviously consists of the first n eigenvectors of
D~1/2LD~1/2, Then we have F* = D~1/2T*,

Given the low-dimensional embedding ¥ = F*T, we can cluster the data into
n groups by applying K-means to the columns of Y. This algorithm is known as
the normalized cut (Ncut) method in the literature (Shi and Malik 2000), and is
summarized in Algorithm 4.6. Notice that the only difference between this algorithm
and Algorithm 4.5 is in step 3, where generalized eigenvectors are used instead of
eigenvectors.

Algorithm 4.6 (Normalized Cut)

Input: Number of clusters n and affinity matrix W € RV for points {xj}J_1
1: Construct an affinity graph G with weight matrix W.
2: Compute the degree matrix D = diag(W1) and the Laplacian £ = D — W.
3: Compute the n generalized eigenvectors of (£, D) associated with its n smallest generalized
eigenvalues.
4: Let y;,...,yy be the columns of ¥ = [uy,...,u,]’ € R™N, where {u;}'_, are the
eigenvectors in step 3 normalized to unit Euclidean norm.
5: Cluster the points {y; }jv | into n groups using the K-means algorithm, Algorithm 4.4.
Output: The segmentation of the data into n groups.
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Algorithm 4.7 (Normalized Spectral Clustering)

Input: Number of clusters n and affinity matrix W € RY*¥ for points {x;}¥ i
1: Construct an affinity graph G with weight matrix W.
2: Compute the degree matrix D = diag(W1) and the Laplacian £L = D — W.
3: Compute the n eigenvectors of D~!/2£D~1/2 associated with its n smallest eigenvalues and
normalize so that each row of [uy, ..., u,,] has unit norm.
4: Let y,,...,yy be the columns of ¥ = [uy,... ,u,,]—r € R™N_ where {u;}—, are the
eigenvectors in step 3 normalized to unit Euclidean norm.
5: Cluster the points {y j};":1 into n groups using the K-means algorithm, Algorithm 4.4.
Output: The segmentation of the data into n groups.

Sometimes Algorithm 4.5 is referred to as unnormalized spectral clustering,
while Algorithm 4.6 is referred to as normalized spectral clustering to emphasize
the fact that the former uses the unnormalized Laplacian £, while the latter uses the
normalized Laplacian D~/2L£D~1/2 (see, e.g., (von Luxburg 2007)). In this book,
we will reserve the name normalized spectral clustering to refer to yet another form
of normalization that has been proposed in the spectral clustering literature. Observe
from the relationship 7% = D!/2F* that each row of T* is that of F* scaled by
the square root of the degree of the corresponding vertex. As a result, the rows
associated with vertices in the same group do not necessarily have the same scale.
It has been proposed in the literature (Ng et al. 2001) that one may normalize the
rows of T* to be of unit length and then cluster the normalized rows by K-means
to find the n subgraphs. One of the benefits of such a normalization is to make the
cluster centers well separated on the unit sphere: the cluster centers are all mutually
orthogonal to each other (as shown in (Ng et al. 2001)). We summarize this method
in Algorithm 4.7. This algorithm will be the default spectral clustering algorithm
used in most examples in this book. Readers who are interested in a more thorough
exposition and comparison of different variants of spectral clustering and want to
know more about their relationships are referred the survey paper (von Luxburg
2007).

In summary, the role of the Laplacian £ is to map, through its null space, the
original data points {x;} C R” into a new set of points {y;} C R" embedded in a low-
dimensional space. The original data may have complex mixed structures and deny
a simple clustering solution; but the structures of the low-dimensional embedded
data become much simpler, clustered around a few cluster centers. Hence they can
be grouped by a simple clustering method. Of course, there is no free lunch. The
difficulty in clustering the original data needs to be alleviated through the design
of a good affinity measure W = [w;]. As can be expected, the performance of the
spectral clustering method highly depends on the design of W, as we will see in
the example below. In general, there is no theory that characterizes precisely how
the choice of the affinity measure influences the resulting clusters. Nevertheless, in
Chapter 8 we will see that when the clusters correspond to different low-dimensional
subspaces, one can design affinity measures in a principled manner and with good
theoretical guarantees.
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Fig. 4.12 Face clustering results given by K-means and spectral clustering with different affinity
graphs. The data contains 200 face images of 20 individuals from the AT&T data set, and is
projected to dimension 50 using PCA. The clustering results given by the algorithms versus the
index of the face images (10 images per class) are plotted, and the clustering errors are reported in
the captions.

Example 4.23 (Spectral Clustering of Face Images under Varying Pose). In
this example, we apply the normalized spectral clustering algorithm, Algorithm 4.7,
to the same subset of the AT&T face data set we used in Example 4.17, which
consisted of face images of 20 individuals, with 10 poses for each individual. We
first apply PCA to the images to reduce the dimension of the data to D = 50. We
then apply spectral clustering to the PCA coefficients. We test three popular ways
of building the affinity matrix for spectral clustering. The first one uses a K-NN
affinity in which w; = 1 if point x; is a K-NN of point x; and w; = 0 otherwise.
In the experiments, we set K = 8. The second one uses a Gaussian affinity w; =
exp(—|lx; —x;||3/20?). In order for the parameter o to be invariant to the scale of the
data, data points x; and x; are normalized to be of unit £, norm. In the experiments,
we set 0 = 1.0. For the third one, we use an e-neighborhood affinity in which
wi = Lif ||lx; —x;||» < ¢ and w;; = 0 otherwise. Again, we use the normalized data,
and choose ¢ = 1.0. The clustering results of different clustering methods are given
in Figure 4.12. For ease of comparison, we also include the results for K-means
from Figure 4.11(b). Observe how all variants of the spectral clustering algorithm
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Table 4.1 Clustering errors obtained by applying K-means and spectral clustering
to subjects (20 and 21, or 37 and 38) from the extended Yale B data set.

Methods Subjects 20, 21  Subjects 37, 38
K-means 50.0% 47.7%
Spectral clustering with KNN graph 10.2% 42.2%
Spectral clustering with Gaussian graph 48.4% 49.2%
Spectral clustering with neighborhood graph  47.7% 48.4%

improve over the K-means algorithm. In particular, spectral clustering with the K-
NN affinity is able to reduce the error from 20.0% to 7.5%. As argued before, this
is expected, since spectral clustering is able to discover nonlinear structures in the
data and use them to produce a low-dimensional embedding where the clusters can
be found more easily.

Example 4.24 (Spectral Clustering of Face Images under Varying Illumina-
tion) In this example, we apply the normalized spectral clustering algorithm,
Algorithm 4.7, to the same subset of the extended Yale B data set we used in
Example 4.18, which consisted of face images of two subjects (20 and 21, or
37 and 38), with 64 different illumination conditions per subject. We first apply
PCA to the images to reduce the dimension of data to D = 20 and normalize
the PCA coefficients to have unit £, norm. We then apply spectral clustering to
the normalized coefficients. We test the three popular ways of building the affinity
matrix for spectral clustering. The first one uses a K-NN affinity in which w; = 1
if point x; is a K-NN of point x; and w; = 0 otherwise. In the experiments, we set
K = 4. The second one uses a Gaussian affinity w;; = exp(—||x; —x;||3/202). In the
experiments, we set ¢ = 0.3. For the third one, we use an e-neighborhood affinity
in which w; = Lif ||x; —x;||» < & and w; = 0 otherwise. We choose ¢ = 1.2.

The clustering errors are shown in Table 4.1. For ease of comparison, we also
include the results for K-means from Example 4.18. We can see that spectral
clustering improves with respect to K-means, since the spectral embedding is able to
better capture the geometry of the data. However, the results are still unsatisfactory.
This is because face images of one individual under varying illumination live in a
subspace. While local Euclidean distances are better at capturing the structure of
the data than Euclidean distances, local distances can still fail near the intersections
of the subspaces. For example, two points near the intersection could be very close
to each other, but be in different subspaces. This happens typically for underlit face
images, which are all dark for all individuals and hence close to each other. This
suggests the need for better methods to cluster data in multiple subspaces. This will
be the subject of Part II of this book.
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4.4 Bibliographic Notes

Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a
low-dimensional representation for a set of points lying in a nonlinear manifold
embedded in a high-dimensional space. This question of how to detect and
represent low-dimensional structure in high-dimensional data is fundamental to
many disciplines, and several attempts have been made in different areas to address
this question. For example, the number of pixels in an image can be rather large, yet
most computer vision models use only a few parameters to describe the geometry,
photometry, and dynamics of the scene. Since most data sets often have fewer
degrees of freedom than the dimension of the ambient space, NLDR is fundamental
to many problems in computer vision, machine learning, and pattern recognition.

When the data live in a low-dimensional linear subspace of a high-dimensional
space, simple linear methods such as principal component analysis (PCA)
(Hotelling 1933) and metric multidimensional scaling (MDS) (Cox and Cox
1994) can be used to learn the subspace and its dimension. However, when
the data lie in a low-dimensional submanifold, their structure may be highly
nonlinear; hence linear dimensionality reduction methods are likely to fail. This
has motivated extensive efforts toward developing NLDR algorithms for computing
low-dimensional embeddings. One of the first generalizations of PCA to nonlinear
manifolds is the work of (Hastie 1984) and (Hastie and Stuetzle 1989) on principal
curves and surfaces. The principal curve of a data set, which generalizes the notion
of a principal component, is a curve that passes through the middle of the data
points and minimizes the sum of squared distances from the data points to the
curve. A more general approach, however, is to find a nonlinear embedding map,
or equivalently a kernel function, such that the embedded data lie on a linear
subspace. Such methods are referred to as nonlinear kernel PCA (Scholkopf et al.
1998; Scholkopf and Smola 2002). A huge family of such algorithms computes a
low-dimensional representation from the eigenvectors of a matrix constructed from
the local geometry of the manifold. Such algorithms include ISOMAP (Tenenbaum
et al. 2000), locally linear embedding (LLE) (Roweis and Saul 2000, 2003), and its
variants such as Laplacian eigenmaps (LE) (Belkin and Niyogi 2002), Hessian LLE
(Donoho and Grimes 2003), local tangent space alignment (LTSA) (Zhang and Zha
2005), maximum variance unfolding (Weinberger and Saul 2004), and conformal
eigenmaps (Sha and Saul 2005). For a survey of many of these algorithms, we refer
the reader to (Burges 2005; Lee and Verleysen 2007; Burges 2010).

When the data points are not drawn from a single subspace or submanifold, but
from a mixture of multiple low-dimensional structures, the aforementioned methods
may fail. The K-means algorithm, which goes back to (Lloyd 1957; Forgy 1965;
Jancey 1966; MacQueen 1967), addresses this problem by assuming arguably the
simplest model for each cluster: data points in each cluster are distributed around a
central point. The K-means algorithm then treats the estimation of multiple models
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as a “chicken-and-egg” problem, which is solved iteratively by alternating between
assigning points to clusters and estimating a center for each cluster.

If each cluster has a more sophisticated structure, more advanced methods are
needed. In particular, there exists a very long history and rich literature about
the connections between data clustering and graph partitioning methods. The
relationships between connectivity of a graph and its Laplacian has been well known
as spectral graph theory. A standard reference on this topic is (Chung 1997). There
are also several normalized spectral clustering methods that aim to give more stable
clusters for real data, such as Shi and Malik (Shi and Malik 2000) and Ng, Weiss,
and Jordan (Ng et al. 2001). The survey paper of von Luxburg (von Luxburg 2007)
gives a more thorough review and comparison of all these methods. A more rigorous
statistical justification of the spectral clustering method is given by (Shi et al. 2008),
where a more thorough analysis reveals which eigenvectors of the affinity matrix
should be used and under what conditions the clustering information can be fully
recovered from the data. In Chapter 7 and Chapter 8, we will systematically study
how to introduce good affinity matrices so that the spectral method can correctly
cluster data that belong to multiple subspaces.

4.5 Exercises

Exercise 4.1 Show that the following functions are positive semidefinite kernels:

1. k(x,y) = ¢(x) T ¢ (y) for some embedding function ¢ : R? — RM.
2. kp(x,y) = (x"y)" for fixed n € N.
3. kg(x,y) = exp(— ||x2;yz||2) for fixed o > 0.

Exercise 4.2 Consider the polynomial kernel in [—1,1]> x [—1,1]* defined as
k(x,y) = (x"Ty)? = (x1y1 + x2y2)>. Define the operator

L)) = / ) )dy. “381)

Show that the eigenfunctions of £ corresponding to nonzero eigenvalues are of the
form ¥ (x) = clx% + coxpxp + C3x§. Show that there are three such eigenfunctions,
where (c1, ¢z, ¢3) and A are obtained from

4/5 0 4/9 Cl Cl
0 890 ||aa]|=A|e]. (4.82)
4/9 0 4/5 C3 C3

Exercise 4.3 (Karhunen-Loéve Transform) The Karhunen-Loéve transform
(KLT) can be thought of as a generalization of PCA from a (finite-dimensional)
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random vector x € RP to an (infinite-dimensional) random process x(f),t € R,
where x(f) is a square-integrable, zero-mean, second-order stationary random
process whose auto correlation function is defined as x(t,7) = E[x(t)x(t)] for
all r,7 € R. Assume that for some C > 0 and almost every (¢,7), we have
l(z.7)] < C.

1. Show that «(¢,t) is a positive definite kernel, i.e., show that for all y(z),
N ¥k (. T)y(z)didt > 0.

2. Show that x (¢, T) has a family of orthonormal eigenfunctions {¢;(¢)}2, that are
defined as

/K(t, ‘L')(ﬁi(‘[) dt = Aiqﬁi(l), i=1,2,.... (4.83)

3. Show that with respect to the eigenfunctions, the original random process can be
decomposed as

x(1) =) xii(0), (4.84)

i=1

where {x;}2, is a set of uncorrelated random variables.

Exercise 4.4 (Full Rank of Gaussian RBF Gram Matrices) Suppose that you are
given N distinct points {x;}/_,. If o # 0, then the matrix K € RV given by

.
K = exp (— i =il ) (4.85)

202

has full rank.

Exercise 4.5 Let {x; € R” }jN=1 be a set of points that you believe live in a manifold
of dimension d. Imagine you have applied PCA, KPCA with kernel «, and LLE with
K-NN to the data. Assume now that you are given a new pointx € R” and you wish
to find its corresponding point y € R? according to each of the three methods. How
would you compute y € R¢ without applying PCA, KPCA, or LLE from scratch to
the N + 1 points? Under what conditions is the solution you propose equivalent to
applying PCA, KPCA, or LLE to the N + 1 points?

Exercise 4.6 Implement the KPCA algorithm, Algorithm 4.1, for an arbitrary
kernel function kernel . m. The format of your function should be as follows.
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Function [y]=kpca(x,d, kernel,params)
Parameters
x D x N matrix whose columns are the data points
d dimension of the low-dimensional embedding
kernel name of the MATLAB function that computes the kernel k =
kernel (x1,x2,params)
params parameters needed by the kernel function, such as the degree in the
polynomial kernel or the standard deviation in the Gaussian kernel
Returned values
y d x N matrix containing the projected coordinates
Description
Computes the kernel principal components of a set of points

Also implement the functions k = poly kernel (x1,x2,n) for the poly-
nomial kernel x (x;,x;) = (xI'—xz)” andk = gauss_kernel (x1,x2,sigma)
for the Gaussian kernel k(x1,x2) = exp(—|x; — x2?>/0?), where k € RV*V and
x1,x2 € RP*N, Apply your function to the synthetic data generated using the code
available at http://www.kernel-machines.org/code/kpca_toy.m.

Exercise 4.7 Implement the LLE algorithm, Algorithm 4.2. The format of your
function should be as follows.

Function [y]l=1le(x,d,K)

Parameters

x D x N matrix whose columns are the data points
d dimension of the low-dimensional embedding

K number of nearest neighbors

Returned values

y d x N matrix containing the projected coordinates
Description

Computes the LLE embedding of a set of points

Apply your function to the S-curve and Swiss roll data sets generated using the
code available at http://www.cs.nyu.edu/~roweis/lle/code/scurve.m and http://www.
cs.nyu.edu/~roweis/lle/code/swissroll.m. Compare your results to those obtained
using the authors’ code of the LLE algorithm, which is available at http://www.
cs.nyu.edu/~roweis/lle/code/lle.m.

Exercise 4.8 Implement the LE algorithm, Algorithm 4.3. The format of your
function should be as follows.


http://www.kernel-machines.org/code/kpca_toy.m
http://www.cs.nyu.edu/~roweis/lle/code/scurve.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/lle.m
http://www.cs.nyu.edu/~roweis/lle/code/lle.m
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Function [y]l=1le(x,d,K,sigma)
Parameters
x D x N matrix whose columns are the data points
d dimension of the low-dimensional embedding
K number of nearest neighbors
sigma standard deviation of the Gaussian kernel
Returned values
y d x N matrix containing the projected coordinates
Description
Computes the LE embedding of a set of points

Apply your function to the S-curve and Swiss roll data sets generated using the
code available at http://www.cs.nyu.edu/~roweis/lle/code/scurve.m and http://www.
cs.nyu.edu/~roweis/lle/code/swissroll.m

Exercise 4.9 Apply PCA, KPCA, LE, and LLE to the frontal face images of
subjects 20 and 21 in the extended Yale B data set to obtain a two-dimensional
embedding such as the one shown in Figure 4.9. In each figure, use two different
colors to distinguish the images associated with the two different subjects. For
KPCA, vary the parameter o and comment on the effect of this parameter on the
resulting embedding. For LLE, vary the parameter K and comment on the effect of
this parameter on the resulting embedding. For LE, vary both K and o and comment
on the effect of this parameter on the resulting embedding.

Exercise 4.10 Letf(p,, ..., u,) be the objective function in (4.52). Show that the
iterations of Algorithm 4.4 are such thatf(;L(lkH), e, [L,(lk+l)) < f([,L(lk), e, [L,(lk)).

Exercise 4.11 [K-Means for Image Segmentation] Apply the K-means algorithm
to the segmentation of color (RGB) images. Play with the number of segments and
the choice of the window size (i.e., instead of using only the RGB values at the
pixel, use also the RGB values in a window of surrounding pixels concatenated as a
feature vector).

Exercise 4.12 Let £ be the Laplacian of a graph with n connected components. Let
L be a perturbed graph Laplacian. Show that

At = At — £ = L], (4.86)

where )Nk,H_l and A, 4 are the (n + 1)st eigenvalues of L and L, respectively.

Exercise 4.13 Let G be an undirected weighted graph with vertex set V =
{1,2,...,N}, edge set £ = {(i,j) : i,j € V}, and weights w; = w;; > 0. Let
W € RV*N be the weighted adjacency matrix, D € R¥*V the (diagonal) degree
matrix with entries d; = ZJN=1 wij, and L = D — W € RVV the Laplacian matrix.
Let Gi,...,G, be a partition of G, thatis G = G, U---UG,, and G; N G; = 0,

Vi£j=1,...,n


http://www.cs.nyu.edu/~roweis/lle/code/scurve.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
http://www.cs.nyu.edu/~roweis/lle/code/swissroll.m
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1. Let H € RV be defined as in (4.64). Show that k| Ch; = C“t‘(gg,;’gf ) and

ratiocut(Gy, -+ ,G,) = Z CUt(éL:i g/)

i=1

= trace(H ' LH). (4.87)

2. Show that the optimal solution to the relaxed ratiocut problem (4.72) consists of
the first n eigenvectors of L.
3. Let F € RY*" be defined as in (4.75). Show that FTDF = I and

. " C t giv gC
Neut(Gy, -+, Gy) = Z li’(()l(g')l)

i=1

= trace(F ' LF). (4.88)

4. Show that the optimal solution to the relaxed Ncut problem (4.78) consists of the
first n eigenvectors of D! L.
5. Lety = [y1,...,yn]" € RV. Show that

N N
T o172 172y _ | (Y Y
yplzﬁplzy_zg:;w,j(\/dﬁ g

j
i=1 j=1 i

)2. (4.89)

6. Show that D~'/2£D~1/2 is symmetric positive semidefinite.

Exercise 4.14 Implement the spectral clustering, normalized cut, and normalized
spectral clustering algorithms, Algorithms 4.5, 4.6, 4.7. The format of your function
should be as follows.

Function [segment] =spectral clustering(x,n,K,sigma,method)
Parameters
x D x N matrix whose columns are the data points
n  number of groups
K number of nearest neighbors
sigma standard deviation of the Gaussian kernel
method “unnormalized,” “Ncut,” or “normalized”
Returned values
segment 1 x N vector containing the group number associated with each data
point
Description
Clusters the data using the spectral clustering algorithm

Compare the three variants of spectral clustering on the two circles data set in

Figure 4.10(b) for different choices of the parameter. Comment on the effect of K
and 0.

Exercise 4.15 Apply the K-means, spectral clustering, normalized cut, and nor-
malized spectral clustering algorithms to the images for individuals 1 and 20 in the
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AT&T face data set used in Examples 4.17 and 4.23. Apply PCA to the images to
reduce the dimension of the data to d = 50 and then apply each algorithm to the
PCA coefficients. For each spectral clustering algorithm, use three affinity graphs:
K-NN affinity, e-neighborhood affinity, and Gaussian affinity. Vary the parameters
of each method K, ¢, and 0 and comment on the effect of these parameters on the
quality of the clustering results.

4.A Laplacian Eigenmaps: Continuous Formulation

Laplacian eigenmaps (LE) (Belkin and Niyogi 2002) is a popular dimensionality
reduction method that aims to capture the geometry of a manifold by finding a low-
dimensional representation such that nearby points in the manifold are mapped to
nearby points in the low-dimensional embedding. In this chapter, we have seen
how such a goal can be achieved for a collection of sample points drawn from
the manifold. Nevertheless, the original derivation of LE draws inspiration from
a similar goal for embedding a continuous manifold into a (low-dimensional)
Euclidean space. To complement the discrete LE method described in this chapter,
we describe LE in the continuous setting in this appendix.

In the continuous setting, the goal of LE is to find d functions from a compact
manifold M to the real line R that preserve locality, i.e., functions that map nearby
points in the manifold to nearby points on the real line. When M = R, we have
that

[f@) —fWI = [{VFx). (x =) + o(lx =y
= IVf@)lllx =yl + o(llx = yID.

Therefore, the function f preserves locality when ||Vf(x)| is small for all x. This
suggests choosing [ [|Vf (x)||>dx as a measure of whether locality is preserved on
average.

More generally, let f : M — R be a map from a compact manifold M to the
real line and assume that it is twice differentiable, i.e., f € C>(M). We can find a
function that maps nearby points in the manifold to nearby points on the real line by
solving the following optimization problem:

min / IVF@)? dx st |f]> = / fx)dx =1, (4.90)
M M

feci(M)

where Vf € T, M is the gradient of f, and the constraint ||f|| = 1 is added to prevent
the trivial solution f = 0. We can solve the above optimization problem using the
method of Lagrange multipliers. The Lagrangian function is given by
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L(f, 1) =/ (IVF@ 1> + A(F2(x) — 1))dx. (4.91)

M
Using calculus of variations, we can compute the gradient of . with respect to f as
Vil = =2Af + 2Mf, (4.92)

where A is the Laplace—Beltrami operator on M, which can be expressed in tangent

. 2 . . .
coordinates z; as Af = ), gZJ; . Setting the gradient to zero, we obtain

Af = Af; (4.93)

hence f is an eigenfunction of the linear operator A with associated eigenvalue A.
Notice that the optimal value of the problem in (4.90) is the associated eigenvalue:

[ IVF)IP dx = [ AF) () dx = A / P ) dx = 2. (4.94)
M M M

Therefore, we conclude that the function f that solves the optimization problem
in (4.90) is the eigenfunction of A associated with its smallest eigenvalue. It is
easy to see that such an eigenfunction is the constant function f(x) = c¢, which is
associated with the zero eigenvalue. This function maps all points in the manifold
M to a single point on the real line R, which is a trivial embedding.

To find a nontrivial embedding, we need to find eigenfunctions associated with
nonzero eigenvalues. These eigenfunctions must be orthogonal to the constant
function, i.e., their integral must be zero. Therefore, such eigenfunctions must
satisfy

Af = A, /M f(x) dx =0, /M fx)dx = 1. (4.95)

Following ideas similar to those of the proof of the PCA theorem in Chapter 2,
but adapted to functional spaces, one can show that the optimal d-dimensional
embedding is given by the d eigenfunctions of the Laplace—Beltrami operator A
corresponding to the second- to (d + 1)st-smallest eigenvalues.

Notice that the Laplacian embedding that we introduced in this chapter is
essentially a discrete version of the above continuous Laplacian embedding. In
particular, if {xj}jvz1 is a set of points sampled from the manifold M and y; = f(x;)
forj = 1,..., N, then for appropriately chosen weights wy;, the objective function
and the constraints can be discretized as

1 1 N N
[ IR xS0 S = =7y (4.96)

i=1 j=1
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N
[ s~ Yty =y7o1 (4.97)
M =1
N
| sras 305ty =yToy. (4.98)
j=1

where L = D — W is the discrete graph Laplacian and D = diag{dj;} is
the diagonal weight matrix D with dj = ) ,wj. Thus, one can see that the
constraints we introduced in equation (4.47) are essentially discretized versions of
the last two constraints in (4.95), and that the diagonal weight matrix D in (4.47)
precisely corresponds to the density of samples on the manifold according to the
measure dx.



Part I1
Modeling Data with Multiple Subspaces



Chapter 5
Algebraic-Geometric Methods

As long as algebra and geometry have been separated, their progress has been slow and
their uses limited; but when these two sciences have been united, they have lent each mutual
forces, and have marched together towards perfection.

—Joseph Louis Lagrange

In this chapter, we consider a generalization of PCA in which the given sample
points are drawn from an unknown arrangement of subspaces of unknown and
possibly different dimensions. We first present a series of simple examples that
demonstrate that the subspace clustering problem can be solved noniteratively via
certain algebraic methods. These solutions lead to a general-purpose algebrogeo-
metric algorithm for subspace clustering. We conveniently refer to the algorithm as
algebraic subspace clustering (ASC). To better isolate the difficulties in the general
problem, we will develop the algorithm in two steps. The first step is to develop
a basic algebraic clustering algorithm by assuming a known number of subspaces;
and in the second step, we deal with an unknown number of subspaces and develop
a recursive version of the algebraic subspace clustering algorithm. The algorithms
in this chapter will be derived under ideal noise-free conditions and assume no
probabilistic model. Nevertheless, the algebraic techniques involved are numerically
well conditioned, and the algorithms are designed to tolerate moderate amounts of
noise. Dealing with large amounts of noise or even outliers will be the subject of
Chapter 6 and Chapter 8.

In order to make the material accessible to a larger audience, in this chapter we
focus primarily on the development of a (conceptual) algorithm. We leave a more
formal study of subspace arrangements and rigorous derivation of all their algebraic
properties that support the algorithms of this chapter to Appendix C.
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5.1 Problem Formulation of Subspace Clustering

In mathematics (especially in algebraic geometry), a collection of subspaces is
formally known as a subspace arrangement:

Definition 5.1 (Subspace Arrangement). A subspace arrangement is defined as a
finite collection of n linear subspaces in RP: A = {Sy,...,S,}. The union of the
subspaces is denoted by Z4 = S1 U S, U ---US,,.

For simplicity, we will use the term “subspace arrangement” to refer to both A
and Z 4.

Imagine that we are given a set of sample points drawn from an arrangement
of an unknown number of subspaces that have unknown and possibly different
dimensions. Our goal is to simultaneously estimate these subspaces and cluster the
points into their corresponding subspaces. Versions of this problem are known in
the literature as subspace clustering, multiple eigenspaces (Leonardis et al. 2002),
and mixtures of principal component analyzers (Tipping and Bishop 1999a), among
others. To be precise, we will first state the problem that we will study in this
chapter, which we refer to as “multiple-subspace clustering,” or simply as “subspace
clustering,” to be suggestive of the problem of fitting multiple subspaces to the data.

Notice that in the foregoing problem statement, we have not yet specified the
objective for the optimality of the solution. We will leave the interpretation of
that open for now and will delay the definition until the context is more specific.
Although the problem seems to be stated in a purely geometric fashion, it is easy
to reformulate it in a statistical fashion. For instance, we have assumed here that
the subspaces do not have to be orthogonal to each other. In a statistical setting,
this is essentially equivalent to assuming that these subspaces are not necessarily
uncorrelated. Within each subspace, one can also relate all the geometric and
statistical notions associated with “principal components” in the classical PCA: the
orthonormal basis chosen for each subspace usually corresponds to a decomposition
of the random variable into uncorrelated principal components conditioned on the
subspace.

5.1.1 Projectivization of Affine Subspaces

Note that a linear subspace always passes through the origin, but an affine subspace
does not. So, would the above problem statement lose any generality by restricting
it to linear subspaces? The answer to this question is no. In fact, every proper affine
subspace in R can be converted to a proper linear subspace in R°*! by lifting every
point of it through the so-called homogeneous coordinates:

Definition 5.2 (Homogeneous Coordinates). The homogeneous coordinates of a
pointx = [x1,x2, ... ,xD]T € RP are defined as [x1,x2, . .., xp, I]T.
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Given a set of points in an affine subspace, it is easy to prove that their
homogeneous coordinates span a linear subspace. More precisely:

Fact 5.3 (Homogeneous Representation of Affine Subspaces) The homogeneous
coordinates of points on a d-dimensional affine subspace in RP span a (d + 1)-
dimensional linear subspace in RP¥!, This representation is one-to-one.

Figure 5.1 shows an example of the homogeneous representation of three lines
in R2. The points on these lines span three linear planes in R? that pass through the
origin.

Definition 5.4 (Central Subspace Arrangements). We say that an arrangement of
subspaces is central if every subspace passes through the origin, i.e., every subspace
is a linear subspace.

According to this definition, the homogeneous representation of an (affine) sub-
space arrangement in R gives a central subspace arrangement in R°*!. Therefore,
Problem 5.1 does not lose any generality. From now on, we may assume that our
data set is drawn from a central subspace arrangement, in which all subspaces are
linear, not affine, subspaces, unless otherwise stated. In a statistical setting, this is
equivalent to assuming that each subset of samples has zero mean.

RB

R2 Lo * L3

Fig. 5.1 Lifting of three (affine) lines in R? to three linear subspaces in R? via the homogeneous
representation.

Problem 5.1 (Multiple-Subspace Clustering).

Given a set of sample points X = {x; € RP }j-v= | drawn from n > 1 distinct linear subspaces
S; C RP of dimensions d; < D, i = 1,2,...,n, identify each subspace S; without knowing which
sample points belong to which subspace. More specifically, by identifying the subspaces, we mean
the following:

1. Identifying the number of subspaces n and their dimensions d; = dim(S;);

2. Identifying an orthonormal basis for each subspace S; (or equivalently a basis for its orthogonal
complement S7-);

3. Clustering the N points into the subspaces to which they belong.
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5.1.2 Subspace Projection and Minimum Representation

The are many cases in which the given data points live in a space of very high
dimension. For instance, in many computer vision problems, the dimension of the
ambient space D is the number of pixels in an image, which is normally in the range
10°. In such cases, the complexity of any subspace clustering solution becomes
computationally prohibitive. It is therefore important for us to seek situations in
which the dimension of the ambient space can be significantly reduced.

Fortunately, in most practical applications, we are interested in modeling the data
by subspaces of relatively small dimensions (d < D). Thus one can avoid dealing
with high-dimensional data sets by first projecting them onto a lower-dimensional
(sub)space. An example is shown in Figure 5.2, where two lines L; and L, in R?
are projected onto a plane P. In this case, clustering the two lines in the three-
dimensional space R? is equivalent to clustering the two projected lines in the two-
dimensional plane P.

In general, we will distinguish between two different kinds of “projections.”
The first kind corresponds to the case in which the span of all the subspaces is a
proper subspace of the ambient space, i.e., span(U_,S;) C RP. In this case, one
may simply apply PCA (Chapter 2) to eliminate the redundant dimensions. The
second kind corresponds to the case in which the largest dimension of the subspaces,
denoted by dpax, is strictly less than D — 1. When dpx is known,! one may choose
a (dmax +1)-dimensional subspace P such that by projecting R? onto this subspace,

ap: xeRP — X =mnpx) P, (5.1

Fig. 5.2 Samples on two 1-dimensional subspaces L;, L, in R® projected onto a 2-dimensional
plane P. The number and separation of the lines is preserved by the projection.

!For example, in 3D motion segmentation from affine cameras, it is known that the subspaces have
dimension at most four (Costeira and Kanade 1998; Kanatani 2001; Vidal and Hartley 2004).
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the dimension of each original subspace S; is preserved,’ and there is a one-to-
one correspondence between S; and its projection—no reduction in the number of
subspaces 7,3 as stated in the following theorem.

Theorem 5.5 (Segmentation-Preserving Projections). If a set of vectors {x;} all lie
in n linear subspaces of dimensions {d;}"_, in RP, and if wp represents a linear
projection onto a subspace P of dimension D/, then the points {mp(x;)} lie in at most
n linear subspaces of P of dimensions {d/(< d;)}'_,. Furthermore, if D > D' >
dmax, then there is an open and dense set of projections that preserve the number
and dimensions of the subspaces.

Thanks to Theorem 5.5, if we are given a data set X drawn from an arrangement
of low-dimensional subspaces in a high-dimensional space, we can first project X
onto a generic subspace of dimension D' = d,, + 1 and then model the data with
a subspace arrangement in the projected subspace, as illustrated by the following
sequence of steps:

—1

X c RP ™y CP— UL, mp(S) L’ Ui=1Si.

(5.2)

However, even though the set of (dyax + 1)-dimensional subspaces P C RP that
preserve the separation and dimension of the subspaces is an open and dense set, it
remains unclear as to what a “good” choice for P is, especially when there is noise
in the data. For simplicity, one may randomly select a few projections and choose
the one that results in the smallest fitting error. Another alternative is to apply PCA
regardless and project the data onto the (dmax + 1)-dimensional principal subspace.

One solution for choosing P is attributed to (Broomhead and Kirby 2000).
The technique was originally designed for dimension reduction of differential
manifolds.* We here adopt it for subspace arrangements. Instead of directly using
the original data matrix X = [x;,Xx3,...,Xy], we gather the vectors (also called
“secants”) defined by every pair of points x;, x; € X,

yj=xi—x; €R" (5.3)

and construct a matrix consisting of y;; as columns:

Y=y Y- € RPY, (5.4)

2This requires that P be transversal to each S,-L, i.e., span{P, S,L} = R? for everyi = 1,2,..., n.
Since n is finite, this transversality condition can be easily satisfied. Furthermore, the set of
positions for P that violate the transversality condition is only a zero-measure closed set (Hirsch
1976).

3This requires that all 7p(S;) be transversal to each other in P, which is guaranteed if we require P
to be transversal to S,-L N Si,L fori,i’ =1,2,..., n. All P’s that violate this condition form again
only a zero-measure set.

“Tt is essentially based on Whitney’s classical proof of the fact that every differential manifold can
be embedded in a Euclidean space.
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where M = (N — 1)N/2. Then the principal components of Y span the subspace in
which the distance (and hence the separateness) between the projected points is pre-
served the most. Therefore, the optimal subspace that maximizes the separateness
of the projected points is given by the dmax + 1 principal components of Y. More
precisely, if ¥ = UZ VT is the SVD of Y, then the optimal subspace P is given by
the first dyp.x + 1 columns of U.

5.2 Introductory Cases of Subspace Clustering

Notice that to apply the K-subspaces and EM algorithms, we need to know
three things in advance: the number of subspaces, their dimensions, and initial
estimates of the bases of the subspaces. In practice, this may not be the situation,
and many difficulties may arise. The optimizing process in both algorithms is
essentially a local iterative descent scheme. If the initial estimates of the bases
of the subspaces are far off from the global optimum, the process is likely to
converge to a local minimum. More seriously, if the number of subspaces and
their dimensions were wrong, the process might never converge or might converge
to meaningless solutions. Furthermore, when the number and dimensions of the
subspaces are unknown and the samples are noisy (or contaminated by outliers),
model selection becomes a much more elusive problem, as we have alluded to earlier
in the introductory chapter.

In this and the next few chapters, we will systematically address these difficulties
and aim to arrive at global noniterative solutions to subspace clustering that require
less or none of the above initial information. Before we delve into the most general
case, we first examine, in this section, a few important special cases. The reason
is twofold: firstly, many practical problems fall into these cases already and the
simplified solutions can be directly applied; and secondly, the analysis of these
special cases offers some insights into a solution to the general case.

5.2.1 Clustering Points on a Line

Let us begin with an extremely simple clustering problem: clustering a collection
of points {xi, x2,...,xy} on the real line R around a collection of cluster centers
{1, 2, ..., u}. In spite of its simplicity, this problem shows up in various
clustering problems. For instance, in intensity-based image segmentation, one
wants to separate the pixels of an image into different regions, with each region
corresponding to a significantly different level of intensity (a one-dimensional
quantity). More generally, the point clustering problem is very much at the heart of
popular clustering techniques such as K-means and spectral clustering for clustering
data in spaces of any dimension (which we have discussed at the end of Chapter 4).
Furthermore, as we will see throughout this chapter (and the book), the same basic
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ideas introduced through this simple example can also be applied to clustering
points from arrangements of more complex structures such as lines, hyperplanes,
subspaces, and even surfaces.

In the sequel, we introduce a not so conventional solution to the point clustering
problem. The new formulation on which the solution is based is neither geometric
(like K-subspaces) nor statistical (like EM). Instead, the solution is purely algebraic.

Let x € R be any of the data points. In an ideal situation in which each data point
perfectly matches one of the cluster centers, we know that there exists a constant y;
such that x = ;. This means that

(x=p)VEx=p) Ve VI(x= ). (5.5)

The Vv in the preceding equation stands for the logical connective “or.” This is
equivalent to that x satisfies the following polynomial equation of degree n in x:

n

Pa) = (= ) (6 = ) - (v = ) = ) e =0, (5.6)
k=0

Since the polynomial equation p,(x) = 0 must be satisfied by every data point, we
have that

Kt xg 1 1

xgxg_l---le c1
V,cn = . . .. . =0, (57)

Xy 1 Len

where V,, € R+ is a matrix of embedded data points, and ¢, € R"*! is the
vector of coefficients of p,(x).

In order to determine the number of groups n and then the vector of coefficients ¢,
from (5.7), notice that for n groups, there is a unique polynomial of degree n whose
roots are the n cluster centers. Since the coefficients of this polynomial must satisfy
equation (5.7), in order to have a unique solution we must have that rank(V,) = n.
This rank constraint on V,, € R¥*"*+1 enables us to determine the number of groups

n EIS5

n = min{i : rank(V;) = i}. (5.8)

Example 5.6 (Two Clusters of Points). The intuition behind this formula
is as follows. Consider, for simplicity, the case of n = 2 groups, so that

5Notice that the minimum number of points needed is N > n, which is linear in the number of
groups. We will see in future chapters that this is no longer the case for more general clustering
problems.
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Algorithm 5.1 (Algebraic Point Clustering Algorithm).

Let X = {xj}j-v= 1 C R be a given collection of N > n points clustering around an unknown
number 7 of cluster centers {u;}'—,. The number of clusters, the cluster centers, and the clustering
of the data can be determined as follows:

1. Number of Clusters. Let V; € RV*<(+1 be a matrix containing the last i + 1 columns of V,,.
Determine the number of clusters as

n = min{i : rank(V;) = i}.

2. Cluster Centers. Solve for ¢, from V,c, = 0. Set p,(x) = ZZ=O cxX . Find the cluster
centers [; as the n roots of p, (x).
3. Clustering. Assign point x; to cluster i = arg min—,,__,(x; — ).

Pn(x) = pa(x) = (x — 1) (x — u2), with ; # po. Then it is clear that there is
no polynomial equation p;(x) = x — u of degree one that is satisfied by all the
points. Similarly, there are infinitely many polynomial equations of degree 3 or
more that are satisfied by all the points, namely any multiple of p,(x). Thus the
degree n = 2 is the only one for which there is a unique polynomial that fits all the
points.

Once the minimum polynomial p,(x) that fits all the data points is found, we
can solve the equation p,(x) = 0 for its n roots. These roots, by definition, are the
centers of the clusters. We summarize the overall solution as Algorithm 5.1.

Notice that the above algorithm is described in a purely algebraic fashion and is
more of a conceptual than practical algorithm. It does not minimize any geometric
errors or maximize any probabilistic likelihood functions. In the presence of noise
in the data, one has to implement each step of the algorithm in a numerically more
stable and statistically more robust way. For example, with noisy data, the matrix
V,, will most likely be of full rank. In this case, the vector of coefficients ¢,, should
be solved in a least-squares sense as the singular vector of V,, associated with the
smallest singular value. It is also possible that the p,(x) obtained from ¢, may have
some complex roots, because the constraint that the polynomial must have real
roots is never enforced in solving for the coefficients in the least-squares sense.®
In practice, for well-separated clusters with moderate noise, the roots normally give
decent estimates of the cluster centers.

Although clustering points on a line may seem a rather simple problem, it can be
easily generalized to the problem of clustering points in a plane (see Exercise 5.1).
Furthermore, it is also a key step of a very popular data clustering algorithm:
spectral clustering. See Exercise 5.2.

SHowever, in some special cases, one can show that this will never occur. For example, when
n = 2, the least-squares solution for ¢, is ¢c; = Var|x], c; = E[x*]E[x]—E[x*] and ¢y = E[x*|E[x]—
E[x*]? < 0; hence cf —4cocy > 0, and the two roots of the polynomial cox® + ¢1x + ¢, are always
real.
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Fig. 5.3 A polynomial in two variables whose zero set is three lines in R2.

5.2.2 Clustering Lines in a Plane

Let us now consider the case of clustering data points to a collection of n lines in
R? passing through the origin, as illustrated in Figure 5.3. Each of the lines can be
represented as

Li={x=[xy]" :bux+bpoy=0}, i=12,...,n. (5.9)
Given a pointx = [x,y]" on one of the lines, we must have that
(b11x +bpy=0)V---V (byx+ bpy = 0). (5.10)

Therefore, even though each individual line is described with one polynomial
equation of degree one (a linear equation), an arrangement of n lines can be
described with a polynomial of degree n, namely

Pn(x) = (b11x + b12y) - - - (bix + by2y) = chﬂ’_kyk =0. (5.11)
k=0

An example is shown in Figure 5.3.

The polynomial p,(x) allows us to algebraically eliminate the clustering of the
data at the beginning of the model estimation, because the equation p,(x) = 0 is
satisfied by every data point regardless of whether it belongs to L;, Lo, ..., or L.
Furthermore, even though p, (x) is nonlinear in each data point x = [x,y]T, p.(x)
is actually linear in the vector of coefficients ¢ = [cg, ¢y, ..., c,,]T. Therefore, given
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enough data points {x; = [x;, yj]T};V:l, one can linearly fit this polynomial to the
data. Indeed, if n is known, we can obtain the coefficients of p,(x) by solving the
equation

Xy xa i ] [eo

Xy o s | | a
1 R 272 =o. (5.12)
Xyt -xynt vid Len

Similar to the case of points in a line, the above linear system has a unique solution
if and only if rank(V,) = n; hence the number of lines is given by

n = min{i : rank(V;) = i}. (5.13)

Given the vector of coefficients ¢,, we are now interested in estimating the
equations of each line from the associated polynomial p,(x). We know that each
line is determined by its normal vector b; = [b;1, b,-z]T, i=1,2,...,n. For the sake
of simplicity, let us consider the case n = 2. A simple calculation shows that the
derivative of p,(x) is given by

Vp2(x) = (ba1x + b2ay)by + (b11x + b12y)bs. (5.14)

Therefore, if the point x belongs to L;, then (b;;x + bjpy) = 0, and hence
Vpa(x) ~ by. Similarly, if x belongs to L,, then Vp,(x) ~ b,. This means that
given any point x, without knowing which line contains the point, we can obtain the
equation of the line passing through the point by simply evaluating the derivative of
p2(x) atx. This fact should come as no surprise and is valid for any number of lines
n. Therefore, if we are given one point {y; € L;} on each line,” we can determine the
normal vectors as b; ~ Vp,(y;). We summarize the overall solution for clustering
points to multiple lines as Algorithm 5.2.

The reader may have realized that the problem of clustering points on a line is
very much related to the problem of clustering lines in the plane. In point clustering,
for each data point x there exists a cluster center j; such that x—pu; = 0. By working
in homogeneous coordinates, one can convert it into a line clustering problem: for
each data point x = [x,1]T, there is a line b; = [1,—pu;]" passing through the
point. Figure 5.4 shows an example of how three cluster centers are converted into
three lines via homogeneous coordinates. Indeed, notice that if we let y = 1 in the
matrix V, in (5.12), we obtain exactly the matrix V,, in (5.7). Therefore, the vector of
coefficients ¢, is the same for both algorithms, and the two polynomials are related
by p.(x,¥) = y'pn(x/y). Therefore, the point clustering problem can be solved
either by polynomial factorization (Algorithm 5.1) or by polynomial differentiation
(Algorithm 5.2).

7We will discuss in the next subsection how to automatically obtain one point per subspace from
the data when we generalize this problem to clustering points on hyperplanes.
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Algorithm 5.2 (Algebraic Line Clustering Algorithm).

Let X = {x; N_| be a collection of N > n points in R? clustering around an unknown number 7 of

j=1
lines whose normal vectors are {b;}/_,. The number of lines, the normal vectors, and the clustering

of the data can be determined as follows:

1. Number of Lines. Let V; be defined as in (5.12). Determine the number of clusters as
n = min{i : rank(V;) = i}.

2. Normal Vectors. Solve for ¢, from V,c, = 0 and set p,(x,y) = > ;_, cxX"*y*. Determine
the normal vectors as

Vp,(y;
b= YPOD g iy
V. )l
where y; is a point in the ith line.
3. Clustering. Assign point x; to line i = arg miny—,, ,,(bz—xj)z
(0, 0)
R2
Ly L
R
51 M2 0 3

Fig. 5.4 Using homogeneous coordinates to convert the point clustering problem into the line
clustering problem.

5.2.3 Clustering Hyperplanes

In this section, we consider another particular case of Problem 5.1 in which all the
subspaces are hyperplanes of equal dimensiond;, = - = d, = d = D — 1.
This case shows up in a wide variety of clustering and segmentation problems in
computer vision, including vanishing point detection and motion segmentation. We
will discuss these applications in greater detail in later chapters.

We start by noticing that every (D — 1)-dimensional subspace S; C RP can be
defined in terms of a nonzero normal vector b; € RP as follows:?

Si = {x € RP b x = buxi + bpxz + -+ + bipxp = 0}. (5.15)

8Since the subspaces S; are all different from each other, we assume that the normal vectors {b:i}i—,
are pairwise linearly independent.
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Therefore, a pointx € R? lying in one of the hyperplanes S; must satisfy the formula
Blx=0) Vv bjx=0) v---v (b x =0), (5.16)

which is equivalent to the following homogeneous polynomial of degree n in x with
real coefficients:

n
T T
panx)= l_[(bi x)= Z Cni oo X) X52 o+ Xp) =Vu(x) '€, =0, (5.17)
i=1
where ¢y, .., € R represents the coefficient of the monomial x|'x}? - - - X}, ¢, is the

vector of all coefficients, and v, (x) is the stack of all possible monomials, known
as the Veronese map of x (see Appendix C for a more formal introduction). The
number of linearly independent monomials is M,, = (D+,;"1 ); hence ¢, and v, (x)
are vectors in R,

After applying (5.17) to the given collection of N sample points {xj}f’: 1> We
obtain the following system of linear equations on the vector of coefficients: ¢,

Vn(xl)T

Vn(xZ)T
V,cn = ] ¢, =0 eRV (5.18)

Vn (*‘;N)T

We now study under what conditions we can solve for n and ¢, from equa-
tion (5.18). To this end, notice that if the number of hyperplanes n was known,
we could immediately recover ¢, as the eigenvector of V;rVn associated with
its smallest eigenvalue. However, since the above linear system (5.18) depends
explicitly on the number of hyperplanes n, we cannot estimate ¢, directly without
knowing n in advance. Recall from Example C.30 that the vanishing ideal I of a
hyperplane arrangement is always principal, i.e., generated by a single polynomial
of degree n. The number of hyperplanes n then coincides with the degree of the
first nontrivial homogeneous component [, of the vanishing ideal. This leads to the
following theorem.

Theorem 5.7 (Number of Hyperplanes). Assume that a collection of N > M,, — 1
sample points {xj}jN=1 on n different (D — 1)-dimensional subspaces of R is given.
Let Vi € RVMi pe the matrix defined as in (5.18), but computed with polynomials
of degree i. If the sample points are in general position and at least D — 1 points
correspond to each hyperplane, then

=M, i <n,
rank(V;)) s =M;,—1 i=n, (5.19)
<M;—1 i>n.
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Therefore, the number n of hyperplanes is given by
n = min{i : rank(V;) = M; — 1}. (5.20)

In the presence of noise, one cannot directly estimate n from (5.20), because the
matrix V; is always of full rank. In this case, one can use the model selection criteria
introduced in Chapter 2 to determine the rank.

Theorem 5.7 and the linear system in equation (5.18) allow us to determine the
number of hyperplanes n and the vector of coefficients c,,, respectively, from sample
points {xj}jil. The rest of the problem now becomes how to recover the normal
vectors {b;}"_, from c,. Imagine, for the time being, that we were given a set of n
points {y;}_,, each one lying in only one of the n hyperplanes, thatis, y; € S; fori =

1,2,...,n. Now let us consider the derivative of p,(x) evaluated at each y;. We have
pax) 9 .
V)= "0 7 = [0 0 =3 @) [/ x). (521)
i=1 i=1 (i

Because [ | #m(bz_y,-) = 0 for i # m, one can obtain each of the normal vectors as

Vpu(y:
b= VPOD (5.22)

B A/ACHT
Therefore, if we know one point in each one of the hyperplanes, the hyperplane
clustering problem can be solved analytically by simply evaluating the partial
derivatives of p,(x) at each of the points with known labels.

Consider now the case in which we do not know the membership of any of
the data points. We now show that one can obtain one point per hyperplane by
intersecting a random line with each of the hyperplanes. To this end, consider a
random line L = {tv 4+ x,, t € R} with direction v and base point x,. We can obtain
one point in each hyperplane by intersecting L with the union of all the hyperplanes.’
Since at the intersection points we must have p,(tv 4 x9) = 0, the n points {y;}/_,
can be obtained as

yi=tv+xy, i=12,...,n (5.23)

where {f;}’_, are the roots of the followin univariate polynomial of degree n:

n

(1) = pa(tv +x0) = [ [ (v + b x0) = 0. (5.24)

i=1

We summarize our discussion so far as Algorithm 5.3 for clustering hyperplanes.

“Except when the chosen line is parallel to one of the hyperplanes, which corresponds to a zero-
measure set of lines.
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Algorithm 5.3 (Algebraic Hyperplane Clustering Algorithm).

Let X = {x; ,N=1 C R? be a given collection of points clustered around an unknown number 1 of

hyperplanes with normals {b;}/_,. The number of planes, the normal vectors, and the clustering of
the data can be determined as follows:

1. Number of Hyperplanes. Let V; be defined as in (5.18). Determine the number of clusters as
n = min{i : rank(V;) = M; — 1}.

2. Normal Vectors. Solve for ¢, from V,c, = 0 and set p,(x) = c,Tv,,(x). Choose x( and v

at random and compute the n roots f1,%,...,t, € R of the univariate polynomial g,(r) =
Pu(tv + x¢). Determine the normal vectors as
Vo, (v.
= YPOD o
V. 0ol

where y; = x¢ + ;v is a point in the ith hyperplane.

5.3 Subspace Clustering Knowing the Number of Subspaces

In this section, we derive a general solution to the subspace clustering problem
(Problem 5.1) in the case in which the number of subspaces n is known. However,
in contrast to the special cases we saw in the previous section, the dimensions of
the subspaces can be different from one another. In Section 5.3.1, we illustrate the
basic ideas of dealing with subspaces of different dimensions via a simple example.
Through Sections 5.3.2-5.3.4, we give a detailed derivation and proof for the general
case. The final algorithm is summarized in Section 5.3.5.

5.3.1 An Introductory Example

To motivate and highlight the key ideas, in this section we study a simple example
of clustering data points lying in subspaces of different dimensions in R*: a line
S1 = {x:x; =x, =0} and a plane S, = {x : x3 = 0}, as shown in Figure 5.5.

We can describe the union of these two subspaces as

SIUSs={x:(xp=x=0Vx=0)}={x:(xx3=0)A (x2x3 = 0)}.

Therefore, even though each individual subspace is described with polynomials of
degree one (linear equations), the union of two subspaces is described with two
polynomials of degree two, namely py;(x) = x1x3 and py(x) = xpx3. In general,
we can represent any two subspaces of R? as the set of points satisfying a set of
homogeneous polynomials of the form
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Fig. 5.5 Data samples drawn from a union of one plane and one line (through the origin o) in R3.
The derivatives of the two vanishing polynomials p,; (x) = x1x; and py,(x) = x x5 evaluated at a
point y, on the line give two normal vectors to the line. Similarly, the derivatives at a point y, in
the plane give the normal vector to the plane.

2 2 2
c1xy + cax1x + c3x1x3 + c4x; + c5x2x3 + cex; = 0. (5.25)

Although these polynomials are nonlinear in each data point [x;, x5, x3] T, they are
actually linear in the vector of coefficients ¢ = [c},c2, ..., C6]T. Therefore, given
enough data points, one can linearly fif these polynomials to the data.

Given the collection of polynomials that vanish on the data points, we are now
interested in estimating a basis for each subspace. In our example, let P,(x) =
[p21(x), p22(x)] and consider the derivatives of P,(x) at two representative points of
the two subspaces y, = [0,0,1]T € S; andy, = [1,1,0]" € S,:

x3 0 10 00
VPz(x) =10x3 - VPz(yl) =|01]| and VPz(yz) =1(00]. (526)
X1 X2 00 11

Then the columns of VP, (y,) span the orthogonal complement to the first subspace
Si, and the columns of VP,(y,) span the orthogonal complement to the second
subspace Sj' (see Figure 5.5). Thus the dimension of the line is given by d; =
3 — rank(VP2(y;)) = 1, and the dimension of the plane is given by d, =
3 —rank(VP,(y,)) = 2. Therefore, if we are given one point in each subspace,
we can obtain the subspace bases and their dimensions from the derivatives of the
polynomials at the given points.

The final question is how to choose one representative point per subspace. With
perfect data, we may choose a first point as any of the points in the data set. With
noisy data, we may first define a distance from each point in R? to the union of the
subspaces,'® and then choose a point in the data set that minimizes this distance.
Say we pick y, € S as such a point. We can then compute the normal vector
b, = [0,0,1]" to S, from VP(y,) as above. How do we now pick a second point

10For example, the squared algebraic distance to §; U Sy is pp1 (¥)2 + pao(x)> = (2 + x3)x2.
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in S; but not in S»? As it turns out, this can be done by polynomial division. We
can divide the original polynomials by b;rx to obtain new polynomials of degree
n—1=1:

P21(x) _

p2n(x) —
= X2
b, x

x1 and ppx) = pTx
2

pii(x) =

Since these new polynomials vanish on S; but not on S, we can use them to define
a new distance to S; only,'! and then find a point y, in S; but not in S as the point
in the data set that minimizes this distance.

The next sections show how this simple example can be systematically gen-
eralized to multiple subspaces of unknown and possibly different dimensions
by polynomial fitting (Section 5.3.2), differentiation (Section 5.3.3), and division
(Section 5.3.4).

5.3.2 Fitting Polynomials to Subspaces

Now consider a subspace arrangement A = {5}, S2, ..., S,} with dim(S;) = d;,i =
1,2,...,n.Let X = {x1,x,,...,xy} be asufficiently large number of sample points
in general position drawn fromZ4 = S; U S, U --- U §,,. As we may know from
Appendix C, the vanishing ideal 1(Z4), i.e., the set of all polynomials that vanish
on Z 4, is much more complicated than those in the special cases we studied earlier
in this chapter.

Nevertheless, since we assume that we know the number of subspaces n, we
have only to consider the set of polynomials of degree n that vanish on Z 4, i.e.,
the homogeneous component I, of 1(Z4). As we know from Appendix C, these
polynomials uniquely determine Z 4. Furthermore, as the result of Corollary C.38,
we know that if the subspace arrangement is transversal, then I, is generated by
the products of n linear forms that vanish on the n subspaces, respectively. More
precisely, suppose the subspace S; is of dimension d; and let k;, = D — d;. Let

B; = [b1.b,.....b;] € RP*®

be a set of base vectors for the orthogonal complement Sf- of S;. The vanishing ideal
I(S;) of S; is generated by the set of linear forms

{i(x) =b"x, b eB,}.

For example, the squared algebraic distance to S; is py; (x)? + p12(x)? = x% + x%.
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Then every polynomial p,(x) € I, can be written as a summation of products of the
linear forms

Pa®) =Y L®)bx)--- (),

where [; € I(S)).
Using the Veronese map (defined by C.1 in Appendix C), each polynomial in 7,
can also be written as

Pa(®) =€, 0n(X) = Y Copmy.mpX] K57 X = 0, (5.27)
where ¢y, n,....n, € R represents the coefficient of the monomial x" = x|'x}> - - - x}.
Although the polynomial equation is nonlinear in each data point x, it is linear in
the vector of coefficients c,. Indeed, since each polynomial p,(x) = c;lr v, (x) must
be satisfied by every data point, we have c;l'—vn(xj) = O0foralj = 1,2,...,N.
Therefore, the vector of coefficients ¢, must satisfy the system of linear equations

vn(xl)T

Va(x2) T
2 e, =0 eRY, (5.28)

Va(D) ¢n =
Vn (x.N)T

where V,,(D) € RVM:(D) is called the embedded data matrix.

Clearly, the coefficient vector of every polynomial in 7, is in the null space of the
data matrix V, (D). For every polynomial obtained from the null space of V(D) to
be in /,, we need to have

dim(Null(V,(D))) = dim(,) = hy(n),

where h;(n) is the Hilbert function of the ideal I(Z4) (see Appendix C). Or
equivalently, the rank of the data matrix V(D) needs to satisfy

rank(V, (D)) = M,(D) — hy(n) (5.29)
in order that /, can be exactly recovered from the null space of V(D). As a result of
the algebraic sampling theory in Appendix C, the above rank condition is typically

satisfied with N > (M,,(D) — 1) data points in general position.'> A basis of ,,,

I, = span{p,(x), £ =1,2,..., hi(n)}, (5.30)

12In particular, it requires at least d; points from each subspace S;.
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can be computed from the set of /;(n) singular vectors of V(D) associated with its
hy(n) zero singular values. In the presence of moderate noise, we can still estimate
the coefficients of the polynomials in a least-squares sense from the singular vectors
associated with the /;(n) smallest singular values.

As discussed in Sections 4.1.1 and 4.1.3, the basic modeling assumption in
NLPCA and KPCA is that there exists an embedding of the data into a higher-
dimensional feature space F such that the features live in a linear subspace of F.
However, there is no general methodology for finding the correct embedding for
an arbitrary problem. Equation (5.28) shows that the commonly used polynomial
embedding v,() is the right one to use when the data live in an arrangement of
subspaces, because the embedded data points {v,(x;) }§V=1 indeed live in a subspace

of RM:(®) Notice that each vector ¢, is simply a normal vector to the embedded
subspace, as illustrated in Figure 5.6.

5.3.3 Subspaces from Polynomial Differentiation

Given a basis for the set of polynomials representing an arrangement of subspaces,
we are now interested in determining a basis and the dimension of each subspace.
In this section, we show that one can estimate the dimensions and the bases
by differentiating all the polynomials {p,,} obtained from the null space of the
embedded data matrix V(D).

Let p,(x) be any polynomial in 1,. Since p, € I(Z4) C I(S;), where I(S;) is
generated by linear forms I(x) = b"x withb € SI.J-, P is of the form

pn=hg1 +hg+ -+ Ign (5.31)

RD ¢ = Sym(b1®@bo®b3)
s, Veronese map RMn(D)

= bl'/ i ]R’U = R-‘"Jrn(”) M (D) = ( n+D-1 )

L= b3 n

Fig. 5.6 The polynomial embedding maps a union of subspaces of R” into a single subspace
of RM:(® whose normal vectors {c,} are the coefficients of the polynomials {p,} defining the
subspaces. The normal vectors to the embedded subspace {c,} are related to the normal vectors to
the original subspaces {b;} via the symmetric tensor product.
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for I1, by, ..., I, € I(S;) and some polynomials g, g2, . .. ,gki.n The derivative of
DPn 18
k,‘ ki
Vo =Y &Vl +1Vg) =Y (gibj + Vg)). (5.32)
j=1 j=1

Let y; be a point in the subspace S; but not in any other subspaces in the
arrangement Z4. Then [i(y;) = 0,j = 1,2,... k. Thus, the derivative of p,
evaluated at y; is a superposition of the vectors b;:

ki
Vo) = > giy)bj €S (5.33)

J=1

This fact should come as no surprise. The zero set of each polynomial p, is just a
surface in RP. Therefore, its derivative Vp,(y;) at a nonsingular point y; € S; gives
a vector orthogonal to the surface. Since an arrangement of subspaces is locally flat,
i.e., in a neighborhood of y; the surface is merely the subspace S;, it follows that
the derivative at y; lives in the orthogonal complement Sf- of S;. By evaluating the
derivatives of all the polynomials in /,, at the same point y;, we obtain a set of normal
vectors that span the orthogonal complement of S;. We summarize the above facts
as Theorem 5.8. Figure 5.5 illustrates the theorem for the case of a plane and a line
described in Section 5.3.1.

Theorem 5.8 (Subspace Bases and Dimensions by Polynomial Differentiation). If
the data set X is such that dim(Null(V,(D))) = dim(l,) = h;(n) and one generic
pointy; is given for each subspace S;, then we have

St = span{aic;rvn(x) , Ve, € Null(Vn(D))}. (5.34)

X=Y;

Therefore, the dimensions of the subspaces are given by

d; = D —rank(VP,(y))) for i=12,....n, (5.35)

where Py(x) = [pu1(X), ..., Punyny®)] € R>*M® s a row of linearly independent
polynomials in I,,, and VP,(x) = [Vpnl(x), R Vpnhl(n)(x)] € RPxhi(n)_

Proof. (Sketch only). The fact that the derivatives span the entire normal space is
the consequence of the general dimension theory for algebraic varieties (Bochnak
et al. 1998; Harris 1992; Eisenbud 1996). For a (transversal) subspace arrangement,
one can also prove the theorem using the fact that polynomials in 7, are generated
by the products of n linear forms that vanish on the n subspaces, respectively. O

BIn fact, from discussions in the preceding subsection, we know that the polynomials g;,j =
I..., k; are products of linear forms that vanish on the remaining n — 1 subspaces.
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Given ¢,, the computation of the derivative of p,(x) = c;,r v,(x) can be done
algebraically:

Vpn(x) = c;lrvvn(x) = chE,,u,,_l(x),

where E, € RM(P>*M:—1(D) g 3 constant matrix containing only the exponents of
the Veronese map v,(x). Thus, the computation does not involve taking derivatives
of the (possibly noisy) data.

5.3.4 Point Selection via Polynomial Division

Theorem 5.8 suggests that one can obtain a basis for each Sf- directly from the
derivatives of the polynomials representing the union of the subspaces. However,
in order to proceed, we need to have one point per subspace, i.e., we need to know
the vectors {y,,¥,,...,y,}. In this section, we show how to select these n points in
the unsupervised learning scenario in which we do not know the label for any of
the data points.

In Section 5.2.3, we showed that in the case of hyperplanes, one can obtain
one point per hyperplane by intersecting a random line L with the union of all
hyperplanes.'* This solution, however, does not generalize to subspaces of arbitrary
dimensions. For instance, in the case of data lying on a line and in a plane shown
in Figure 5.5, a randomly chosen line L may not intersect the line. Furthermore,
because polynomials in the null space of V,(D) are no longer factorizable, their
zero set is no longer a union of hyperplanes; hence the points of intersection with L
may not lie in any of the subspaces.

In this section, we propose an alternative algorithm for choosing one point per
subspace. The idea is that we can always choose a point y, lying in one of the
subspaces, say S,, by checking that P,(y,) = 0. Since we are given a set of data
points X = {x,x2,...,xy} lying in the subspaces, in principle we can choose y, to
be any of the data points. However, in the presence of noise and outliers, a random
choice of y, may be far from the true subspaces. One may be tempted to choose
a point in the data set X' that minimizes ||P,(x)||, as we did in our introductory
example in Section 5.3.1. However, such a choice has the following problems:

1. The value ||P,(x)| is merely an algebraic error, i.e., it does not really represent
the geometric distance from x to its closest subspace. In principle, finding the
geometric distance from x to its closest subspace is a hard problem, because we
do not know the normal bases {By, By, ..., By}.

4This can always be done, except when the chosen line is parallel to one of the subspaces, which
corresponds to a zero-measure set of lines.
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2. Points x lying close to the intersection of two or more subspaces are more likely
to be chosen, because two or more factors in p,(x) = (blTx)(bzT x)--- (b;lrx) are
approximately zero, which yields a smaller value for |p,(x)|. In fact, we can see
from (5.33) that for an arbitrary x in the intersection, the vector Vp,(x) needs to
be a common normal vector to two or more subspaces. If the subspaces have no
common normal vector, then ||Vp,(x)|| = 0. Thus, one should avoid choosing
points close to the intersection, because they typically give very noisy estimates
of the normal vectors.

We could avoid these two problems if we could compute the distance from
each point to the subspace passing through it. However, we cannot compute such
a distance yet, because we do not know the subspaces’ bases. The following lemma
shows that we can compute a first-order approximation to such a distance from P,
and its derivatives.

Lemma 5.9. Let & be the projection of x € RP onto its closest subspace. The
Euclidean distance from x to X is given by

lx — x| = n\/Pn(x)(VPn(x)TVPn(x))TPn(x)T + O(|lx — 2]1%),
where Py(x) = [pn1(®), ..., Puiyy®)] € R>M® s q row vector with all the

polynomials, VP,(x) = [Vpnl(x),...,Vpnh,(n)(x)] e RP*MM and A is the
Moore—Penrose inverse of A.

Proof. The projection X of a point x onto the zero set of the polynomials {png}Z’z(’i)

can be obtained as the solution to the following constrained optimization problem:
min & —x|>, st pu®) =0, £=1,2,... hn). (5.36)

Using Lagrange multipliers A € R we can convert this problem into the
unconstrained optimization problem

n}ixn % —x|? 4 P,(®)A. (5.37)

From the first-order conditions with respect to X, we have
2(x —x) + VP,(x)A = 0. (5.38)
After multiplying on the left by (VP,(%)) " and (¥ —x) T, respectively, we obtain

1
A= 2(VPn(x)TVPn(fc))TVPn(fc)Tx, % —x|> = 2xTVPn(fc)A, (5.39)

where we have used the fact that (VP,(X)) "% = 0. After substituting the first
equation into the second, we obtain that the squared distance from x to its closest
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subspace can be expressed as
1% —x|? = xTVP,@)(VP.®) VP, ®) VP, (%) x. (5.40)

After expanding in Taylor series about x and noticing that VP, (x) 'x = nP,(x)T,
we obtain

1% — x[> & 2P (x) (VP (x) VP, (x)) ' Pu(x)T, (5.41)

which completes the proof. O

Thanks to Lemma 5.9, we can immediately choose a candidate y, lying in (close
to) one of the subspaces and not in the intersection as

yo= argmin  P,(x)(VP,(x) VP,x)) Pux)T (5.42)
x€X:VP,(x)#0

and compute a basis B, € RP*(P=4) for S:- by applying PCA to VP, (y,,).

In order to find a point y,_; lying in (close to) one of the remaining (n — 1)
subspaces but not in (far from) S,, we could in principle choose y,_; as in (5.42)
after removing the points in S, from the data set X'. With noisy data, however, this
depends on a threshold and is not very robust. Alternatively, we can find a new
set of polynomials {p(,—1)¢(x)} defining the algebraic set Ul’.’;llSi. In the case of
hyperplanes, there is only one such polynomial, namely

Pt = )63+ 00 = "1 = el @)

n

Therefore, we can obtain p,—; (x) by polynomial division. Notice that dividing p,, (x)
by b x is a linear problem of the form

R.(by)cu—1 = ¢y, (5.43)

where R,(b,) € RM(P)>M:—1(D) This is because solving for the coefficients of
Pn—1(x) is equivalent to solving the equations (b;lrx)(c;l'—_lvn_l(x)) = c;l'—v,,(x) for
all x € RP. These equations are obtained by equating the coefficients, and they are
linear in ¢,,—;, because b, and ¢, are already known.

Example 5.10 If n = 2 and b, = [by, b, b3] ", then the matrix R, (b,) is given by
bibyby 00 07"
Ry(by) =| 0 b 0 byby 0 | RS,
0 0 by 0 bybs



5.3 Subspace Clustering Knowing the Number of Subspaces 193

In the case of subspaces of arbitrary dimensions, we cannot directly divide the
entries of the polynomial vector P, (x) by bnTx for any column b,, of B,,, because the
polynomials {p,¢(x)} may not be factorizable. Furthermore, they do not necessarily
have the common factor b,—lrx. The following theorem resolves this difficulty by
showing how to compute the polynomials associated with the remaining subspaces
UrZLS:.

Theorem 5.11 (Choosing One Point per Subspace by Polynomial Division). Ifthe
data set X is such that dim(null(V,(D))) = dim(1,), then the set of homogeneous
polynomials of degree (n — 1) associated with the algebraic set U:.’:_ll S; is given by
{c;lr_ | Vn—1(x)}, where the vectors of coefficients ¢, € RM—1(D) st satisfy

V,(D)Ry(b,)co—1 =0, Vb, eSt. (5.44)

Proof. We first prove the necessity. That is, every polynomial c;r_l Vp—1(x) of degree
n — 1, that vanishes on U"Z!S; satisfies the above equation. Since a point x in the
original algebraic set U, S; belongs to either U"Z1S; or S,,, we have ¢ v,—;(x) =
0 or b,—lrx = 0 for all b, € Sj-. Hence p,(x) = (c;l'—_ 1 Vn—1 (x))(bnTx) = 0, and
pn(x) must be a linear combination of polynomials in P,(x). If we denote p,(x) by
c;,r v, (x), then the vector of coefficients ¢, must be in the null space of V,, (D). From
c;,r vu(x) = (c;l'—_l Vp—1 (x))(b;lrx), the relationship between ¢, and ¢,—; can be written
as R, (b,)c,—1 = c,. Since V,(D)c, = 0, ¢,—; needs to satisfy the linear system of
equations V,(D)R,(b,)c,— = 0.

We now prove the sufficiency. That is, if ¢,—; is a solution to (5.44), then
¢, vu—1(x) is ahomogeneous polynomial of degree (n— 1) that vanishes on U"Z1S;.
Since ¢,,—; is a solution to (5.44), then for all b,, € Sj-, we have that¢,, = R,,(b,)c,—
is in the null space of V,,(D). Now, from the construction of R, (b,,), we also have that
c;,r vu(x) = (c;l'—_l Vp—1 (x))(b;lrx). Hence, for every x € U:.’;ll S; but not in S,,, we have
ch_l v,—1 (x) = 0, because there is a b, such that bnTx # 0. Therefore, c;l'—_ Wn—1(x)
is a homogeneous polynomial of degree (n — 1) that vanishes on U"_|;. O

Thanks to Theorem 5.11, we can obtain a basis {pu—1)e(x). £ =1,2,..., h(n —
1)} for the polynomials vanishing on Ul’.’;ll S; from the intersection of the null spaces
of V,(D)R,(b,) € RV™—1D) for all b, € Si. By evaluating the derivatives
of the polynomials p(,—1y¢, we can obtain normal vectors to S,—; and so on. By
repeating this process, we can find a basis for each of the remaining subspaces.
The overall subspace clustering and estimation process involves polynomial fitting,
differentiation, and division.

5.3.5 The Basic Algebraic Subspace Clustering Algorithm

In practice, we may avoid computing P; for i < n by using a heuristic distance
function to choose the points {y,y,,...,y,} as follows. Since a point in Uj_.S,
must satisfy ||Bl.Tx|| ||B;';rlx|| ‘e ||B;l'—x|| = 0, we can choose a pointy;_; on U’[_:lng as
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Algorithm 5.4 (ASC: Algebraic Subspace Clustering).

Given a set of samples X = {x,x3,...,xy} in RP, fit n linear subspaces with dimensions

dl,dz,...,dni

1: Set V(D) = [v,(x1), a(x2), ..., v, (xp)] T € RV¥Mu(D),

2: foralli=n:1do )

3:  Solve V;(D)c = 0 to obtain a basis {C,{}Z’i)l of null(V;(D)), where the number of
polynomials /; (i) is obtained as in Appendix C.

4 Set Pi(x) = [pu(®),pa®),....pun®)] € RO, where py(x) = ¢, vi(x) for £ =

1,2, .. ().
5: Compute
yi = argmin  Pix)(VPx) T VPx) Pix) T
x€XVP;i(x)F0
B; = [bu,bp, ..., bip—ay] = PCA(VP(y))),

Vier(D) = ViD) [RT (i), R (Ba), ..., R Bio—a)] " -

6: end for
7: forallj=1:Ndo
8:  Assign point x; to subspace S; if i = argming—;, ||B;rxj||2.
9: end for
 VPu@) (VP (0)TVP,(x) Py (x)T + 6
Yio1 = ; (5.45)

arg min
xeX:VP,0#£0  |BIx||BL x|l - BT x| + 8

where § > 0 is a small number chosen to avoid cases in which both the numerator
and the denominator are zero (e.g., with perfect data).

We 