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Preface

Nowadays most of the systems are computer controlled among them we quote
mechatronic systems where the intelligence is implemented in microcontrollers. The
discipline that deals with such systems is mechatronics that we define as the syner-
gistic combination of mechanical engineering, electronic engineering, and software
engineering. The purpose of this interdisciplinary engineering field is to control
complex systems by providing hardware and software solutions. The engineers
working in this field must master concepts in electronics, control and programming.
Examples of such systems can be found in different industrial areas ranging from
aerospace to automobile industries.

In the mechanical part, the engineer must follow a rigorous procedure to design
the mechatronic system. He must build the mechanical part of the system and choose
the appropriate sensors and actuators that have to be used in the functioning of
the mechatronic system. At this phase we must think about the place where the
electronic circuit will be integrated.

In the electronics part, the engineer must design the electronic circuit around mi-
crocontrollers that will assure the functioning of the mechatronics systems. It covers
the integration of the required electronics components such as resistors, capacitors,
integrated circuits, sensors and the chosen microcontrollers. The required regulated
voltage for the different components is also part of this step.

In the control part, the engineer must analyze the system under study and design
the appropriate controller to get the desired performances. In the analysis part, we
should start by establishing an acceptable model that gives the relationship between
the inputs and the outputs. Once the dynamics is mastered a sampling period is
chosen and the model is converted to a discrete-time form and an appropriate con-
troller can be chosen among the classical proportional integral and derivative (PID)
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controller or the state feedback controller or any other controller that can give the
desired performances.

In the programming part, the engineer must develop the code of the appropriate
algorithms and then upload it in the memory of the chosen microcontroller. Many
languages can be used for this purpose. In the rest of this volume, the C language is
used to implement the developed algorithms.

The field of mechatronics is blooming and due to its interdisciplinarity many uni-
versities around the world have introduced complete programs on mechatronics in
their curriculum. Also the number of students that are attracted by this field is also
blooming and many research directions related to this have emerged recently. Huge
efforts have been done to structure research in this discipline and we have seen re-
cently many international conferences totally dedicated to this. Also some journals
have been created to report interesting results on the subject. Unfortunately the num-
ber of book dealing with such discipline is limited and sometimes inappropriate for
some courses in the different programs around the world.

This book provides some tools that engineers working on the mechatronics disci-
pline can use. It can be considered as a reference for a second course in mechatronics
curriculum where the students are supposed to have a prerequisite course in which
the structure and the different components on mechatronics systems have been
presented. It focuses only on the analysis, design and implementation of continuous-
time systems controlled by microcontrollers using advanced algorithms to get the
desired performances.

The hardware design of the mechatronic systems represents the hearth of the
mechatronics field. It consists of designing the different parts of the mechatronic
systems. Mainly beside the electronic circuit, we should select the appropriate sen-
sors and actuators that we can use for our mechatronic system. The choice of the
microcontroller is also important for the success of the desired system.

In the modeling part a model to describe the behavior of the system is developed
either using the transfer function or the state space representation. In the transfer
function approach part, the model of the continuous-time systems is converted to
a discrete-time system and different techniques for analysis and synthesis of con-
trollers to guarantee some desired performances are developed. In the state space
approach part, the model of the continuous-time systems is converted to a discrete-
time state space representation and different techniques for analysis and synthesis
of controllers to assure some desired performances are developed.

The part on implementation will focus on how we can implement the control
algorithm we developed either using the transfer function tools or the ones based on
state space. Both the hardware and software parts will be covered to give an idea for
the reader on how to deal with such problems. Mainly the selection of the sensors
and the actuators that may be used in the mechatronic system will be covered.

In the advance control part, a flavor of how to design controllers that handle un-
certainties and external disturbances in the dynamics is presented. This will give an
idea to the reader on robust control technique and get familiar with implementation
of these techniques. Stability and stabilization problems and their robustness are
covered. Different controllers (state feedback, static output feedback and dynamic
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output feedback) are used and linear matrix inequality (LMI) condition is developed
to design such controllers.

In the case studies part, a certain number of practical examples are presented to
show how the concepts we presented earlier are implemented to obtain a functional
mechatronics systems. More detail is given to help the reader to design his own
mechatronic system in the future.

The rest of this book is organized in seven parts and divided in eleven chap-
ters and one appendix. In the introduction, a general overview of the mechatronics
fields is given and the main concepts are recalled to make the book self-contained.
In Chapter 2, the structure of mechatronic systems are detailed and some examples
are given. Chapter 3 which is a part of the modeling part, deals with the model-
ing problem of the class of linear continuous-time systems. Both the physical laws
and identification approaches are covered. The concepts of transfer function and
state space representations are presented. Chapter 4 treats the 2 -transform and its
properties and how the transfer function is obtained from a model that is given in
a set of differential equations. Other techniques for analysis of such systems are
also covered. In Chapter 5, some design approaches based on transfer function
are developed. Chapter 6 deals with the state space approach for analyzing linear
discrete-time systems. The concepts of stability, controllability and observability
are covered. In Chapter 7, the state feedback, static output and dynamic output sta-
bilization techniques are tackled. Chapter 8 deals with the implementation problem
of the control algorithm we may develop for controlling a given continuous-time
system. The focus will be made on all the steps. Mainly the hardware and software
parts are covered in detail to help the reader to develop his own expertise. Chap-
ter 9 presents some ideas on robust control. Stability and stabilization problems for
systems with uncertainties and external disturbances are tackled. Chapter 10 covers
the guaranteed cost control problem. Different types of controllers are used for this
purpose. In Chapter 11 some selected systems are considered and all the concepts
we developed in this book are applied to give the whole picture for the reader. An
appendix that contains some relevant tools is also provided to try to make the book
self-contained.

EI1-Kébir Boukas
Fouad M. AL-Sunni
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Introduction

After reading this chapter the reader will:
1. have an idea on how we design mechatronic systems
2. know what are the phases of the design of such systems

3. have a clear idea on how to deal with each phase of the design of the
mechatronic systems

The progress and the miniaturization we have seen in electronics during the last
decades have allowed engineers to come up with new products and new engineering
disciplines. Early in the eighteens we have seen the introduction of new products
that combines mechanical parts with electronics parts. Another factor that gives
a booming to mechatronics applications is the continuously decreasing prices of
the electronic parts and the challenges to design very small systems. Today, for
instance microprocessors with high performances are becoming very cheap which
encourages their uses in computer controlled systems.

A microprocessor is an integrated circuit that contains the entire central process-
ing unit of a computer on a single chip. The microprocessor is the main part in our
nowadays computers. It does all the necessary computations and treats the data. The
microprocessors have the following components:
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e control unit

e arithmetic and logic unit

e input/output (I/O) data bus
e address bus

e internal registers

e clock

e ctc.

To construct the computers, other peripherals and components are added to the
main part which is the microprocessor. Screens, hard disk, floppies, memory, etc.
are examples of such peripherals that we can have in our computers. For the com-
puter controlled systems, we need appropriate cards known as data acquisition cards.
These devices come with analog to digital (ADC) and digital to analog (DAC) con-
verters and other necessary components real-time control applications. For some
mechatronic systems, the use of computers and data acquisition cards are not appro-
priate and more often we use instead electronic circuit built around microcontrollers
that can be considered as small microprocessor with their own peripherals.

A microcontroller is an integrated circuit as it is the case of the microprocessor
and consisting of:

o arelatively simple central processing unit (CPU)
e memory

e a crystal oscillator

e timers,

e watchdog,

e serial and analog I/O

e pulse-width modulation (PWM) modules

e ctc.

Microcontrollers are designed for small applications, while the microprocessors
are used in high performance applications and personal computers. The Intel mi-
croprocessors that run in our laptops are examples of these microprocessors and
the PICs of Microchilﬂ are examples of microcontrollers. These machines are used
in almost all the products that we use in our daily life. As examples that use
microcontrollers, we quote:

® cars

e airplanes

1 Microchip is a trademark, see www.microchip.com
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o cellular phones
o digital cameras
e ctc.

Nowadays most of the systems are computer controlled where the intelligence of
these mechatronic systems is implemented in microcontrollers. The discipline that
deals with such systems is mechatronics that we define as the synergistic combina-
tion of mechanical engineering, electronic engineering, and software engineering.
The purpose of this interdisciplinary engineering field is to build and control com-
plex systems by providing hardware and software solutions. The engineers working
in this field must master concepts in electronics, control and programming. Ex-
amples of such systems can be found in industrial areas ranging from aerospace
industry to car industry.

The design of mechatronic systems is a task that requires engineers from different
disciplines like mechanical engineering, electrical engineering, control engineering,
computer engineering, etc. The knowledge of these engineers are combined to pro-
duce the best mechatronic system. Most of these mechatronic systems are composed
of:

e a mechanical part including the actuators and sensrors

e an electronic circuit that is built around a microcontroller or a set of
microcontrollers

e areal-time implementation that represents the intelligence of the system

As example of mechatronic system, let us consider a laboratory setup for
real-time implementation of control algorithms. This setup must have all the
functionalities that allow learning real-time control. More specifically,

e the mechanical part must allow the user to check the output of the control
algorithm

e an electronic circuit must be simple and easy to reproduce by the user in case
e the implementation must be easy to do and well documented.

In the rest of this chapter we will describe briefly each phase of the design of the
whole mechatronic systems.

1.1 Mechanical Part Design

The mechanical part is a principle part in the mechatronic system. In the phase
design of this part, we will conceive and manufacture the parts that compose the
mechatronic system. We will also choose the actuators and the sensors we will use
for this mechatronic system. Either the design of the mechanical part or the choice of
the actuators and sensors are done by respecting some design rules that will be pre-
sented in a forthcoming chapter of the volume. It is also important to keep in mind
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that the recycling of the mechatronic system once it becomes obsolete to respect our
environment is an important matter that we must consider during the design phase.
The assembly and disassembly of the system either for maintenance or any other
purpose should be considered also during the design phase.

For the design of the mechanical part, the steps of the mechanical design such as
definition of the problem, research of solution using brainstorming or any equivalent
approach, practicability study, prototyping, etc. are used. The choice of the actuators
and the sensors are also done by following the guidelines and the norms that are in
use. As an example, if the mechatronic system is designed to operate in mines,
electrical actuators are avoided since they may cause fires, while for food industries
hydraulic actuators are excluded also.

For the setup of the real-time implementation that we are considering as example,
the mechanical part in this case is only a small graduated disk (in degree) that will
be attach solidly to the shaft of the actuators. This mechanical part is made from
aluminium. The actuator is a dc motor that is equipped with a gearbox and an en-
coder. The role of the gearbox is to reduce the velocity of the mechanical part and
also to apply a high torque. The encoder is used to measure the disk position and
therefore, use this information for feedback. The whole is mounted on a plexiglass
as it is shown in Fig. [[L.T] More details on the conception of this mechanical part
will be given in a forthcoming chapter of this volume.

1.2 Electronic Circuit Design

In the electronics part, the engineers must design the circuit that will assure the
functioning of the mechatronics systems. It covers the integration of the required
electronics parts such as resistors, capacitors, integrated circuits and the chosen mi-
crocontroller or microcontrollers. The required regulated voltages for the different
components are also part of this step. The main part of the electronic circuit is the
microcontroller or a set of microcontrollers. In this volume we decided to use one
type of microcontroller which is the dsPIC30F4011 manufactured by Microchip.
There is no real justification that we can give but only our desire is to adopt one
microcontroller for all the examples we will cover in this volume. This choice will
also make the real-time implementation easy for the reader since we will use the
same structure for all the examples.

The regulated voltages will depend on the components we will use beside the
microcontroller that requires following its datasheet a voltage between 2.5 V and
5 V. Since most of the examples use dc actuators and to drive them we need an
analog signal that we can get either using a DAC or just PWM and an integrated
circuit named L293D (a H-bridge). This integrated circuit needs a regulated voltage
of 5V and it will deliver a signal output that will feed the dc motor between 0V
and 24V. We are also using many sensors that need regulated voltages to operate
properly. Most of these devices need 5V exception made for the accelerometers and
gyroscopes that requires a less regulated voltages (see the two wheels robot). For the
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Fig. 1.1 Load driven by a dc motor kit

dc motor kit Figs. (LI)-(T.2) give an idea of the electronic circuit of the dc motor
kit that we will use in this volume.

To control the mechanical part two structures are possible. These structures are
illustrated by Figs. [1.3H].4]
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Fig. 1.2 Electronic circuit of the dc motor kit

Output
System >
Fig. 1.3 Signal conversion made in the forward path
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Fig. 1.4 Signal conversion made in the feedback path

If we compare these two structures, we remark that in the first one the references
are analog while in the second one, they are digital. The second structure has the
advantage that we can eliminate the noises. In the rest of this volume, we will adopt
this structure.

The functioning of this structure is simple and it can be explained as follows.
The microcontroller runs in indefinite loop and at each interrupt, the microcontroller
reads the value of the output using the sensor and the ADC, then using the control
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algorithm a control action is computed and sent to the system via the DAC. All
these steps are done inside the interrupt routine. To avoid error calculation and error
quantization the choice of number of bits either for the microcontroller or the ADC
is an important issue. For the micrcontroller, a choice of 16 bits is done and this
gives a good precision while for the ADC, a 10 bits will be used for all the examples
we are presenting. This will not give a good precision but the results are acceptable.

If we go back to our real-time implementation setup, its electronic circuit is built
around the dsPIC30F4011. The PWM module is used to deliver the voltage to the
L293D integrated circuit that is in turn delivers the necessary power to drive the
actuator. An encoder is used to measure the position of the small disk and also the
velocity by simple calculations.

1.3 Real-Time Implementation

In the control part, the engineer must analyzes the system under study and design
the appropriate controller to get the desired performances. In the analysis part, we
should start by establishing an acceptable model that gives the relationship between
the inputs and the outputs. Once the dynamics is mastered a sampling period is
chosen and the model is converted to a discrete-time form and an appropriate con-
troller can be chosen among the classical proportional integral and derivative (PID)
controller or the state feedback controller or any other controller that can give the
desired performances. To respond to the control specifications, a controller structure
and its parameters are computed, then a recurrent equation is established for the de-
termination of the control action that we must send at each sampling period to the
system.

In the programming part, the engineer enters the algorithms of the chosen al-
gorithm in the memory of the microcontroller. Many languages can be used for
this purpose. In the rest of this volume, the C language is used to implement the
developed algorithms.

Again if we go back to our real-time implementation setup and consider the case
of two simple algorithms the PID controller and the state feedback controller. For
these controllers the control action is computed using the measurement, the refer-
ences, etc. In all the cases, the expression of the control law is simple and should
not take a time that exceeds the sampling period (see Fig.[[.3). The implementation
is done using the interrupt concept. The following example shows how the position
of the load is controlled.

//
// A C program for the dsPic4011 for control the position of a
// dc motor driving a small disk

//

//

// Includes and defines
//

#include <p30f4011.h>
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#include <pwm.h>
#include <stdio.h>
#include <stdlib.h>
#include "xlcd.h"

#define ENABLETRIS TRISEbits.TRISE2
#define ENABLE LATEbits.LATE2

#define ENCODER_PRIORITY 7
#define CONTROLLER_PRIORITY 5
#define DISPLAY_PRIORITY 2

#define Ts 0.005; // 1.0/200;
#define Fs 200.0;

typedef struct {

float KP; // Proportional gain
float KI; // Integral gain
float KD; // Derivative gain

} PIDstruct;
PIDstruct thePID;

typedef struct {

long Position; // Shaft position

long error[3]; // the errors

long ref; // the reference

double u[2]; // control (actual and past)
}motorData;

motorData themotorData;

//

// dsPic configuration

//

_FOSC(CSW_FSCM_OFF & FRC_PLL16);;
_FWDT(WDT_OFF) ;

_FBORPOR (PBOR_OFF & MCLR_DIS);
_FGS(CODE_PROT_OFF) ;

_FICD( ICS_NONE );

//

// Variables

//

typedef enum _BOOL { FALSE = ®, TRUE } BOOL;

BOOL A;



BOOL B;
BOOL prevA;
BOOL prevB;

unsigned int dutycycle;
//
// Functions

//

// Initialization function
void Initialize(void);

// Interrupt functions

1.3. Real-Time Implementation

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void);
void __attribute__((__interrupt__)) _TlInterrupt(void);

//

// Main function

//

int main(void)

{
Initialize(Q);
themotorData.ref = 600;

while(1l);
}
//

// Initialize function

//
void Initialize(void)

{

// variables initialization

thePID.KA 70.14;
thePID.KI -128.62;
thePID.KD = 58.54;

themotorData.u[0] = 0.0;
0

themotorData.u[l] = 0.
themotorData.error[0]
themotorData.error([1]
themotorData.error([2]

// (90 deg)

// Activation of the interrupts priority

INTCON1bits.NSTDIS = 0;

9
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// Digital pins
ADPCFG = Ob11111111;

// 1/0
TRISEbits.TRISE® = 0; // PWMIH
TRISEbits.TRISEl = // PWMIL

TRISBbits.TRISB2 =
TRISBbits.TRISB3 =
ENABLETRIS = 0;

; // Encoder Chanal A : RB2 -- CN4
; // Encoder Chanal B : RB3 -- CN5

|
L — ]

/% start-up LCD */
OpenXLCD(FOUR_BIT & LINES_5X7);

//

// initialize variables for the encoder

//
prevA = PORTBbits.RB2;

prevB = PORTBbits.RB3;

//

// Initialize CN interrupts *

//
CNEN1bits.CNOIE=0; // CN® interrupt disable
CNEN1bits.CN1IE=0; // CN1 interrupt disable
CNEN1bits.CN2IE=0; // CN2 interrupt ENABLE
CNEN1bits.CN3IE=0; // CN3 interrupt ENABLE
CNEN1bits.CN4IE=1; // CN4 interrupt disable
CNEN1bits.CN5IE=1; // CN5 interrupt disable
CNEN1bits.CN6IE=0; // CN6 interrupt disable
CNEN1bits.CN7IE=0; // CN7 interrupt disable
CNEN2bits.CN17IE=0; // CN17 interrupt disable
CNEN2bits.CN18IE=0; // CN18 interrupt disable
IFSObits.CNIF = 0; // clear CN interrupt flag
IPC3bits.CNIP = ENCODER_PRIORITY; // CN interrupt max priority (7)
IECObits.CNIE = 1; // CN interrupt enable

//

// Configure PWM

//

ConfigIntMCPWM(PWM_INT_DIS & PWM_FLTA_DIS_INT);
SetDCMCPWM(1, 1024, 0);
OpenMCPWM (0x3FF, 0x0, PWM_EN & PWM_IDLE_CON & PWM_OP_SCALE1l

& PWM_IPCLK_SCALEl1 & PWM_MOD_FREE,
PWM_MOD1_COMP & PWM_PDIS3H & PWM_PDIS2H & PWM_PEN1H
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& PWM_PDIS3L & PWM_PDIS2L & PWM_PENIL,
PWM_SEVOPS1 & PWM_OSYNC_TCY & PWM_UEN);

//

// Initialize Timer 1 interrupt

//

T1CONbits.TON=1;
T1CONbits.TGATE=0;
T1CONbits.TSIDL=0;
T1CONbits.TCKPS=1;
T1CONbits.TCS=0;
PR1 = 18424;
IFSObits.T1IF

0;

// turn timer 1 on

// stop timer in idle mode (®=non)
// prescaler (0=1:1, 1=1:8, 2=1:64)
// clock source (0=FO0SC/4)

// 200Hz

// clear timer 1 interrupt flag

IPCObits.T1IP = CONTROLLER_PRIORITY;

IECObits.T1IE=1;

//
// Initialize Timer 2 interrupt

//

T2CONbits.TON=1;
T2CONbits.TGATE=0;
T2CONbits.TSIDL=1;
T2CONbits.TCKPS=2;
T2CONbits.TCS=0;

// enable timer 1 interrupt

// turn timer 2 on

// stop timer in idle mode (0=non)
// prescaler (0=1:1, 1=1:8, 2=1:64)
// clock source (0=F0SC/4)

PR2 = OxFFFF; // slower possible

IFSObits.T2IF = 0;

// clear timer 2 interrupt flag

IPClbits.T2IP = DISPLAY_PRIORITY;

IECObits.T2IE = 1;
}

//
// C N Interrupt routine

//

// Decode of the position
void __attribute__((interrupt,
{
if(IFSObits.CNIF)
{
CNLED = !CNLED;

// timer 2 interrupt enable

auto_psv)) _CNInterrupt(void)

// Get current Encoder signals
// Must read port before clearing flag!!

A
B

PORTBbits.RB2;
PORTBbits.RB3;

// Compare current signals with previous ones to see which
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// one has changed

// Change occurs on A
if(A != prevA){

if(A == B){

themotorData.Position++;
}else{

themotorData.Position--;
}

// Change occurs on B
}else if(B != prevB){

if(A == B){
themotorData.Position--;
}else{
themotorData.Position++;
}
}
// Save current signals for next time
prevA = A;
prevB = B;
IFSObits.CNIF=0; // clear interrupt flag

} //end of CN_interrupt function

//

// T 1 Interrupt service routine

//

// Sampling period
void __attribute__((__interrupt__)) _TlInterrupt(void)
{
if (IFSObits.T1IF)
{
// Error
themotorData.error[0] = themotorData.ref - themotorData.Position;

// Control equation

themotorData.u[®] = themotorData.u[l] + thePID.KA*themotorData.error[0];
themotorData.u[0] += thePID.KI*themotorData.error[1];

themotorData.u[®] += tthePID.KD*themotorData.error[2];

// send control
SetDCMCPWM(1, 1024 + (int) (themotorData.u[0]), 0);

// save the actual data
themotorData.u[l] = themotorData.u[0];
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themotorData.error[2] = themotorData.error[1];
themotorData.error[1] = themotorData.error[0];

IFSObits.T1IF = 0; // Clear Timer interrupt flag
}
}

//
// T2 INTERRUPT service routine

//

// LCD
void __attribute__((interrupt, auto_psv)) _T2Interrupt(void)
{
if (IFS®bits.T2IF)
{
while (BusyXLCD());
XLCDLinel();
printf("e: %1d", themotorData.error[0]);
while (BusyXLCD());
XLCDLine2();
printf("u: %8.3f ", themotorData.u[0]);

IFSObits.T2IF = 0;

Read Data Send Control
e o k+1)T
i i i i }—Time
| | ————
kT Comp. of the Control Law Wait

Fig. 1.5 Partition of the sampling period T

Example 1.3.1 As a second example of mechatronic system, let us consider the
design of a traffic light control system. We suppose that we have two streets, a main
one with 80 % of the traffic while the other one has 20 % of the traffic. Fig.
illustrates the traffic light system we are dealing with and for which we should design
the mechatronic system. Our goal is to design a mechatronic system that controls
the traffic flow for these two streets. More specifically, we must control the lights
(red, yellow and green) in each street. Most of the common traffic lights around the
world consists of three lights, red, yellow and green. Fig.[[.7 gives an idea of the
light used in our traffic system. In each corner of the traffic system we place a light
in order that the pedestrian and the driver can see the light and take the appropriate
action.
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e R el
Main
street

— —

Fig. 1.6 Traffic system

When the light turns to red, the drivers must stop their car, while when it turns
to green, the drivers have the right to move their car. The yellow light is used as a
cautious step indicating either that the light is about to turn to green or to red and
the drivers must take the appropriate actions either move or stop their cars. More
often the yellow is used when the light is about to switch from green to red as an
intermediate step that takes short time.

Each street is divided into two ways for two directions and each way has two
lanes. The cars can either go straight or turn left or right in each way. We have also
in each intersection to control the requests of the pedestrians. These requests are
random and must be taken into account in a short time with a certain priority.

The mechatronic system for the traffic light is a simple system and it is composed

of:

e lights that are located at each corner of the streets with some push buttons for
pedestrians to request permission to cross the street

e an electronic circuit built around a dsPIC30F4011
e an algorithm in C language for control

The lights that control the traffic are placed at each corner of the street. The type
of these lights is shown in Fig.[[LA The push bottoms are also placed to help the
pedestrians to cross the street when it is needed in safe way.

To simulate our traffic light we represent lights by colored light-emitting diode
(LED) using the same colors as in the traffic light control system. For pedestrian we
use the blue color.

The algorithm we will use for the control of the flow traffic is very simple and
it is executed in a sequential manner except for the requests of pedestrians that
are treated as interrupts routines. If we denote by Gmain, Ymain, Rmain, Gsec,
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Pedestrian Head

Signal Head

Push Button

for pedestrians

Walk

Don’t
Walk

Fig. 1.7 Type of light used in the traffic light system

Ysec, Rsec the light green, yellow and red respectively for the main street and the
secondary streets.The algorithm is as follows:

Begin loop

— put Gmain on, Ymain off, Rmain off, Gsec off, Ysec off and Rsec on, and

wait for a time tmain

— put Gmain off, Ymain on, Rmain off, Gsec off,

wait for a time tswitch

— put Gmain off, Ymain off, Rmain on, Gsec on,

wait for a time tsec

Ysec off and Rsec on, and

Ysec off and Rsec off, and

— put Gmain off, Ymain off, Rmain on, Gsec off, Ysec on and Rsec off, and

wait for a time tswitch

End loop

When an interrupt occurs, we identify on which corner the pedestrian pushed
the button and act in consequence by stopping the traffic of the cars to allow the

pedestrian to cross the street in a safe way.

The structure of the program used for the control light system is given by:

// Include here the headers
#include <dspic30f4011.h>

// Define variables

unsigned int i;

unsigned int Tmax = 65535;
unsigned int tmain = 8;
unsigned int tsec = 4;
unsigned int tswitch = 1;
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#define delaytmain() {for i=0;i<tmain*Tmax;i++) Nop(); }

#define delaytsec() {for i=0;i<tsec*Tmax;;i++) Nop(); }

#define delaytswitch() {for i=0;i<tswitch*Tmax;;i++) Nop(); }
#define greenMain REQ // green light of the main street

#define yellowMain RE1  // yellow light of the main street
#define redMain RE2 // red light of the main street

#define greenSecondary RE3 // green light of the secondary street
#define yellowSecondary RE4 // yellow light of the secondary street
#define redSecondary RE5 // red light of the secondary street
typedef enum _BOOL { FALSE = ®, TRUE } BOOL;

BOOL A;

BOOL prevA;

// Initialization of the streets

// Main

street

MainStreet.green = TRUE;
MainStreet.orange = FALSE;
MainStreet.rouge = FALSE;

// Secondary street
SecondaryStreet.green = FALSE;
SecondaryStreet.orange = FALSE;
SecondaryStreet.rouge = TRUE;

// Assign the dsPic ports to the lights

//

// Functions

//

void Initialize(void);

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void)

//

// main function
//

int main (void)
{

Initialize(Q);
while (1)

{

//

tmain



// Main Street during the tmain
greenMain = 1;

yellowMain = 0;

redMain = 0;

// Secondary street during the tmain
greenSecondary = 0;

yellowSecondary = 0;

redSecondary = 1;

delaytmin(Q);

// tswitch

// Main Street during the tswitch
greenMain = 0;

yellowMain = 1;

redMain = 0;

// Secondary street during the tswitch
greenSecondary = 0;

yellowSecondary = 0;

redSecondary = 1;

delaytswitch(Q);

// tsec

// Main Street during the tsec
greenMain = 0;

yellowMain = 0;

redMain = 1

// Secondary street during the tsec
greenSecondary = 1;

yellowSecondary = 0;

redSecondary = 0;

delaytsec();

// tswitch

// Main Street during the tswitch
greenMain = 0;

yellowMain = 0;

redMain = 1;

// Secondary street during the tswitch
greenSecondary = 0;

yellowSecondary = 1;

redSecondary = 0;

delaytswitchQ);

}

}

1.3. Real-Time Implementation
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void Initialize(void)

{

TRISE = 0x00 // configure the port E as output

//

// initialize variables for the encoder

//

prevA = PORTBbits.RB2;

//

// Initialize CN interrupts *

//

CNEN1bits.CNOIE=0; // CNO® interrupt disable
CNEN1bits.CN1IE=0; // CN1 interrupt disable
CNEN1bits.CN2IE=0; // CN2 interrupt ENABLE
CNEN1bits.CN3IE=0; // CN3 interrupt ENABLE
CNEN1bits.CN4IE=1; // CN4 interrupt disable
CNEN1bits.CN5IE=1; // CN5 interrupt disable
CNEN1bits.CN6IE=0; // CN6 interrupt disable
CNEN1bits.CN7IE=0; // CN7 interrupt disable
CNEN2bits.CN17IE=0; // CN17 interrupt disable
CNEN2bits.CN18IE=0; // CN18 interrupt disable
IFSObits.CNIF = 0; // clear CN interrupt flag
IPC3bits.CNIP = ENCODER_PRIORITY; // CN interrupt max priority (7)
IECObits.CNIE = 1; // CN interrupt enable

}

//

// C N Interrupt routine

//

// Pedestrian ask to cross

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void)
{

if(IFSObits.CNIF)

{
CNLED = ICNLED;

// Get the switch signal
// Must read port before clearing flag!!
A = PORTBbits.RB2;

// Compare the current signal with the previous signal to see the change

// Change occurs on A
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if(A !'= prevA){
// put all the red lights on

}

// Save current signal for next time

prevA = A;

IFSObits.CNIF=0; // clear interrupt flag
}

} //end of CN_interrupt function

The program starts by initializing all the variables and also configure the inputs
and outputs of the dsPIC30F4011. After this, the program enters in indefinite loop
in which we execute the sequence that controls the light for the intersections. If a
pedestrian asks for the permission to cross the street, we shorten the time for actual
activity since we can not stop abruptly the activity to prevent accidents. A given
time is allocated for the pedestrian to cross the street. Once this time is finished, the
sequence in the loop is resumed.

Remark 1.3.1 For pedestrians, there is also the possibility to include right to cross
the streets in the sequences that we have to execute in the program. Also late in the
night, we can eliminate the rights for pedestrians since there is a small probability
that a pedestrian will be at the corner and he will cross the street. But with the
interrupts solution, it is possible to keep the same algorithm for all the time and we
don’t have to change it.

We can improve our algorithm to make it more intelligent by adding appropriate
sensors that memorize the queues in each street and act appropriately by adjusting
the time of the lights in each street to reduce the waiting time of the drivers in the
traffic light.

These two examples give an idea on mechatronic systems and how they can be
difficult and complex to design. It is important to notice that the solution for a given
mechatronic system is not unique and it varies with the knowledge of the design
team. It is also important to keep in mind that the optimization should be used during
the phases to obtain a competitive system.

1.4 Organization of the Book

This book can be considered as second course in mechatronics curriculum where the
students are supposed to have a prerequisite course in which the structure and the
different components on mechatronic systems have been presented. It focuses only
on the analysis, design and implementation of continuous-time systems controlled
by microcontrollers using advanced algorithms to get the desired performances.

In the modeling part a model to describe the behavior of the systems is developed
either using the transfer function or the state space representation.
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In the transfer function approach part, the model of the continuous-time sys-
tems is converted to a discrete-time system and different techniques for analysis and
synthesize of controllers to guarantee some desired performances are developed.

In the state space approach part, the model of the continuous-time systems is
converted to a discrete-time state space representation and different techniques for
analysis and synthesize of controllers to guarantee some desired performances are
developed.

The part on implementation will focus on how we can implement the control
algorithms we developed either in the part on transfer function approach or the one
based on state space. Both the hardware and software parts will be covered to give
an idea on the reader on how to deal with such problems.

In the part of advance control, some algorithms that can be used to control sys-
tems with uncertainties and/or external disturbances are presented to give a flavor
to the reader on the robust control theory and introduce him to the research in this
field.

In the case studies part, a certain number of practical examples are presented to
show how the concepts we presented earlier are implemented to obtain a functional
mechatronic systems.



Part 1

Mechatronic Systems






2

Mechatronic Systems

After reading this chapter the reader will:
1. master the concepts of Mechatronics and Mechatronic systems
2. be able to execute each phase in the design of mechatronic systems

3. be capable to design the mechanical part, the electronic circuit and to
compute the control law and implement it in real time

4. be able to write a program in C language and how to insert it in the
dsPIC30F4011

2.1 Mechatronics

Let us examine the design of an autonomous car which may be used for navigating
in the floor of a building, and to move from different offices in the same floor. There
are two main approaches for achieving the design of this autonomous car. The first
design approach follows the classical design method. In this approach, the mechani-
cal design is done first. After getting a satisfactory mechanical design, the electronic
system is designed. In the final stage, the control system is designed.
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The second design approach is to design the AC while observing the effects of
each system on the overall design. In this approach, the design of the mechanical,
electronic and control systems of the autonomous car are designed while taking the
interaction of the design of each system and its effects on the other two systems.
So, the mechanical system is finalized only after studying the effects of such design
on the electronic design, and on the control system design. In this approach, the
interaction between the three systems (mechanical, electronic, and control) and their
effects on the final design and performance are taken into consideration at every
step of the design of each system. The benefits of the second design approach are
very obvious. One of the main benefits is the possibility for making the best design
of each system that will make the best overall performance. This is not possible
in the classical design approach because once a mechanical system is designed,
it will be the final mechanical design. Also, once a mechanical design (such as
the materials used, the size of the design) is decided, it will dictate and may limit
the available alternatives in the electronic system (the size of the motors used, the
location of the motors etc.) design which in its turn will also limit the alternatives
for the instrumentation and the control system used for the overall system. The
interactions between the design of the three systems (mechanical, electronics, and
control) is what mechatronics offers for a better design.

—» Design of the mechanical
system

A 4
Design of the electronic
system

13

A 4
Design of the control and
— instrumentation system

}

Fig. 2.1 Mechatronic design approach

Figure presents the mehcatronic design approach in a simple way. The one-
sided arrows indicates the flow of the design process, while the two-sided arrows
represent the interactions between the designs of the different systems of the final
product. The two-sided arrows represents the need to think about the overall design
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at any point in time in the design process and at any system being designed. They
mean that at any step, the design could impact the design of the other systems.

If the two-sided arrows are removed, we get the classical design approach where
no interactions exist.

In the literature, there exist many definitions that have been proposed for mecha-
tronics. These definitions depend mainly on the vision and the research interests on
the field by a person or a group of persons working in some directions of mecha-
tronics. In our vision mechatronics can be defined as an interdisciplinary field of
engineering that deals with the design of products whose function relies on the inte-
gration of mechanical, electrical, and electronic components connected by a control
scheme.

Nowadays, the word mechatronics is worldwide known and many mechatronic
systems where designed either for personal or commercial uses. All the gadgets we
are using in our daily life are in fact mechatronic systems. As an example of these
gadgets, we mention our laptop and our car where many mechatronic systems are
used.

A mechatronic system can be seen as a device that is able to perceive the sur-
rounding environment and take the appropriate decisions based on the collected
information. To perceive the surrounding environment sensors are needed and that
without these devices the mechatronic system can not perform their tasks for which
it was designed. Nowadays, cars possess many mechatronic systems to assist the
driver in a safe drive among then we quote:

e airbag

o ABS brake

e speed control
e ctc.

Also, to take the appropriate action, the mechatronic system needs a smart algo-
rithm that gives actions to some appropriate actuators which can be simple switches,
dc motors, stepper motors, ac motors, hydraulic motors or pneumatic motors to
position for instance the mechanical part that we would like to control.

The intelligence of the mechatronic system is programmed as an efficient algo-
rithm that coordinates all the task of the used devices. This algorithm runs in general
on a powerful microcontroller.

The design of a mechatronic system is a hard task that needs interdisciplinary
engineers that can understand the different elements of the system. The main
components of each mechatronic system are:

e the mechanical part
e the sensors

e the actuators
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e the electronic circuit
e and the program

As examples of mechatronic systems we quote

the position control of a dc motor

the balancing robot

the mobile robot

and the magnetic levitation

These systems will be used extensively in this volume to illustrate the important
concepts we will cover. Before presenting these examples, let us focus on the main
parts of the mechatronic systems and give some guidelines on how to design or to
select them.

2.2 Mechanical Part

The mechanical part represents the main component in the mechatronic system we
are trying to design. It can either be manufactured or built from existing components.
In the phase design of this part more care should be paid to the following points:

o the price

the shape

the weight

the size

e ctc.

It is also important to pay attention to the environment in which the mechatronic
system will operate. This will help us to select the appropriate material from which
the mechanical part should be made. The maintenance of the mechatronic system
is also a critical point, it is why we should pay attention during the design phase to
the accessibility of all critical parts of the system. It is also important at this stage
to think about the recycling of all the mechatronic system once it will be useless to
respect the environment that we need to protect for our new generations.

The mechanical part can be made from iron, aluminium, plastic, composite or
any other material. The choice of one of these materials or a combination of them
will depend on many factors such the environment in which the system will operate,
the weight, the task for which the mechanical part is designed for, etc.

During the design of this part care should paid also to the look of the pieces and to
the fact that other parts of the mechatronic system have to be integrated later such as
sensors, actuators, electronic circuit, etc. The assembly or the disassembly of all the
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system should be simplified such that everybody can assemble of the disassemble
the system when it is needed.

2.3  Sensors

The sensors are the key points in each mechatronic system. There are in some sense
the eyes of the system through which all the type of variations are detected and
the appropriate actions are taken. A sensor can be seen as a device that converts a
physical phenomena like position, velocity, acceleration, temperature, flow, etc. into
an electrical signal that can be easily measured or processed. A sensor is composed
of a transducer and a signal conditioning unit. Nowadays, for some phenomena
there exist many sensors that can be used to sense them which makes the choice
very hard. Selecting a sensor for an appropriate application is always a difficult task
even for experienced person in the field. The engineer must take into consideration
the following points during the choice of any sensor:

o the error/precision/resolution
e the range or span

o the nonlinearity

o the repeatability

o the hysteresis

o the stability/drift

o the bandwidth

o the reliability

o the cost

o the ease of utilization

Nowadays there are a lot of type of sensors that can be categorized based on
their applications or their theory of operations. Among the most used sensors in the
mechatronic systems we quote:

the encoders

the accelerometers

the gyroscopes
e and the cameras (image sensors)

An encoder can be defined as a device that assigns a code to represent some
data. More specifically, it can be seen as a sensor or a transducer for converting
rotary motion or angular position to series of electronic pulses that are appropriate
for computer use. The pulses are counted and the value of the measured input is
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deduced. The existing encoders in the market are either absolute or incremental.
They are used in many applications among them we quote:

o the position control

e robots

e CNC machines

¢ medical equipment such as MRI, CT-Scan and PET-Scan machines
e ctc.

The absolute encoder is mainly composed of an optical disk that has a number of
tracks that gives a digital word depending of the position of the shaft. As an example,
if we consider a disk with 8 tracks, in this case the encoder has 256 distinct positions,
which gives an angular resolution of 1.4 degrees. The Gray and the binary codes are
commonly used in the absolute encoder.

The incremental encoder is simpler compared to the absolute encoder and it con-
sists of two tracks and two sensors that give two channels A and B. When the shaft
of the sensor rotates pulse trains appear on the two channels that are quadrature sig-
nals. These signals can be used to determine the angular position and the rotation
sense. A third output channel referred to as Index that produces a pulse by revolution
and it is used to count the number of revolutions.

The accelerometer is a device that can be used to detect the acceleration and tilt.
Nowadays accelerometers are used in cars for passenger security. Their role is to
detect the impact and deploy the car airbag when it is necessary to save the life of
the passengers. These type of sensors found use in digital cameras where their role
is to guarantee the stability of the image.

Nowadays, the accelerometer comes in MEMS technology. The MEMS ac-
celerometer usually comes in the smallest surface mount package and can detect
acceleration in up to 3 axis. The data from this accelerometer can directly be used
by the microcontroller and therefore take the appropriate action when it is required.
The accelerometer can be used to measure the acceleration of the object or measure
the tilt of the object to which the sensor is attached to.

The gyroscope can be seen as a device consisting of a rotating wheel mounted
on a base so that its axis can turn freely in certain or all directions, and capable
of maintaining the same absolute direction in space regardless of any movement of
the base. This device is used in airplanes, satellites, robots, etc. Nowadays, the gyro-
scopes come in MEMS technology which facilitates their application in mechatronic
systems.

The cameras (image sensors) can be seen as complementary metal oxide semi-
conductor (CMOS) or charge-coupled device (CCD)-based chips that record the
intensities of light as variable charges. The cameras contains millions of pixels ar-
ranged in a matrix which catches and records light when a picture of an element
is taken. The cameras are used extensively in image processing for quality control,
supervision, etc.
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2.4 Actuators

Actuators are defined as devices that convert some kind of power, such as hydraulic
or electric power, into linear or rotary motion. They represent the arms of the mecha-
tronic systems. In practice different type of actuators are used, among them we
quote:

e clectric actuators
o hydraulic actuators
¢ and pneumatic actuators

An electric actuator is a device that convert electric power into a linear or a rotary
motion. They are used to position or to give the speed to the mechanical part of the
mechatronic system. The common electric actuators are:

o the dc motors
o the ac motors
o the stepper motors
o and the switches
These actuators own the following advantages:
o high speeds
o self contained
e low cost
e simple design
e reliable operation (less maintenance)
o high efficiency
o long life

The dc motors beside being cheap and simple are easy to control in speed, posi-
tion and torque. While their homolog ac motors are in general expensive in speed
control, show some instability in operating at low speeds and own poor positioning
control.

Electric actuators are in general precise and flexible. They are ideal to position
mechanical part precisely or to develop forces quickly when it is required. Their ma-
jor disadvantage is that they need cooling systems during their operation. When they
are well designed and well protected, their maintenance is reduced to the changes
of the sliding contacts or the commutators. Large load may burn the winding of the
electric actuators if the protection is not installed properly.

Stepper motors are more appropriate to control mechanical parts that don’t re-
quire feedback. Mostly these type of actuators are used in open loop control and to
position the mechanical part. For this purpose a certain number of pulses are sent
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by the microcontroller. These actuators are used in laser printers, faxes, and most of
the appliances for computers.

A hydraulic actuator can be defined as a cylinder or fluid motor that converts
hydraulic power provided by a pump into a useful mechanical work. The mechan-
ical motion that results may be linear, rotary, or oscillatory. This type of actuator
provides the following advantages:

e high dynamic response
o high force capability
o high power per unit weight and volume
e good mechanical stiffness
while the disadvantages are:
e leakage
e need more maintenance (filers)
¢ need external hydraulics pump

These features lead to wide use in precision control systems and in heavy-duty
machine tool, mobile, marine, and aerospace applications.

The pneumatic actuator is defined as a device that uses pressurized air to create
mechanical motion (linear or rotary). Similarly to the hydraulic actuator, this one
also requires a compressor for air to operate. It is also important to mention that the
efficiency of this kind of actuators is low. The pneumatic actuators are in general
inexpensive and their operations are not affected by difficult environmental factors
such as dust, etc. and they are easy to install and operate. They have less precision
compared to the other actuators due the compressibility of the air. Pneumatic actu-
ators are appropriate for use in potentially explosive environments. Contrary to the
electric actuators, the pneumatic ones can support large loads and don’t require the
cooling system.

Selecting an actuator for an appropriate application is always a difficult task even
for experienced engineers in the field, meanwhile main guidelines should be kept in
mind. In fact the power, the environment of operation are main points to be consid-
ered and can help in choosing the type of actuators. For instance, if the mechatronic
system is designed to operate in mining where sparks may cause fire, the electric
actuators are excluded and the hydraulic actuators are possible solutions. In food
industry, the hydraulic actuators are excluded and electric or pneumatic actuators
are the possible solutions.

2.5 Electronic Circuit
The electronic circuit is the brain of the mechatronic systems. It regroups passive

and active components beside integrated circuits. Its role is to manage and coordi-
nate in a desired way the functioning of all the components that compose the system.
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The passive components include resistors and capacitors, while the active ones can
be a simple diode or a transistor or any integrated circuit that performs the desired
task. The electronic circuit manages and orchestrates a variety of functions that the
mechatronic system allows beside providing the desired regulated voltage for the
different integrated circuit, the sensors, the actuators and the micrcocontroller.

When designing the electronic circuit we must keep in mind that the size of the
circuit and its consumption in power should be minimized. The safety of the circuit
and its cooling are also of importance. In case of manipulating high voltage security
rules should be followed seriously.

2.6 Real-Time Implementation

Once the hardware part of the mechatronic system is built, the next step is to de-
sign the control algorithm that we should implement to guarantee that the system
will perform properly the tasks for which it was designed for. The design of such
algorithm is done into two steps. The first one consists of establishing the mathe-
matical model that describes properly the relationship between the inputs and the
outputs of the system. This model can be determined either analytically with some
limited experiments to the values for some parameters, or experimentally using the
identification techniques. In the second step, the desired performances are fixed and
the controller is designed using the appropriate techniques. The results of this step
is the determination of the recurrent equation that will compute the decision at each
interrupt. This equation represents the algorithm that we have to implement in the
microcontroller.

The microcontroller is used to provide real time response to the different events
for which the system is designed for. In general is running in a loop and when an
event occurs, the associated interrupt system alerts the processor to suspend process-
ing of its current instruction and to start an interrupt service routine. This interrupt
routine executes the main steps of the control algorithm that we are using. Once the
task of the interrupt service routine is completed, the processor returns to the place
where the execution were suspended.

The implementation is done following the following structure:

//

// Put here title and comments

//

#include "p30F4011.h" // proc specific header
//

// Define gobal variables in RAM

//

float Reference; // simple variable

int variableO; // (16 bits)

char myVariable; // (8 bits)
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#define nl 10 /* sample constant definition */
#define n2 20;

int arrayl[nl] __attribute__((__space__(xmemory), __aligned__(32)));
// array with dsPIC30F attributes
int array5[n2]; // simple array

int variable3 __attribute__((__space__(xmemory)));
// variable with attributes

int arrayl[nl] __attribute__((__space__(xmemory), __aligned__(32)));
// array with dsPIC30F attributes
int array5[n2]; // simple array

int variable4 __attribute__((__space__(xmemory)));
// variable with attributes

//

// Define a struct

//

typedef struct {
// PID Gains

float KP; // Propotional gain
float KI; // Integral gain
float KD; // Derivative gain

//

// PID Constants

//

float Constl_pid; // KP + T KI + KD/T
float Const2_pid; // KP + 2KD/T

float Const3_pid; // Kd/T

float Const4_pid; // KP + KD/T

float Const5_pid; // T KI

//

// System variables

//

float y_c; // y_c[k] -> controlled output
float y_m; // y_m[k] -> measured output
float u_k; // ulk] -> control at time k
float e_k; // elk] -> error at time k

//

// System past variables

//

float u_kml; // ulk-1] -> output at time k-1
float e_kml; // e[k-1] -> error at time k-1
float e_km2; // e[k-2] -> error at time k-2

float y_mkml; // y_m[k-1] -> measured output at time k-1
float y_mkm2; // y_m[k-2] -> measured output at time k-2

}PIDStruct;
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PIDStruct thePID;

//
// Constants in ROM

//
const char Variable_Rom[] = {1,2,3,4};
const int myConstant = 100;

//

// Non memorized constants

//
#define varl 0x1234;
#define var2 "ma chaine";

//

// Functions

//
float my_Function(float a, float b)

{

int local_var;

local_var = a - b;
return local_var;

33

}
//
// Interrupt program here using Timer 1 (overflow of counter Timer 1)
//
void __ISR _TlInterrupt(void) // interrupt routine code
{
// Interrupt Service Routine code goes here
float Position_error;
// get the actual position from the encoder
// ThePID.y_m
Position_error = my_Function(Reference, ThePID.y_m);
IFSObits.T1IF=0; // Disable the interrupt
}
int main ( void ) // start of main application code
{

// Application code goes here
int 1i;
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// Initialize the variables Reference and ThePID.y_m
(it can be read from inputs) Reference = 0x8000; // Hexadecimal number
(®b... Binary number) ThePID = 0x8000;

// Initialize the registers
TRISC=0x9fff; // RC13 and RC14 (pins 15 and 16) are configured as
outputs IECObits.T1IE=1; // Enable the interrupt on Timer 1

// Infinite loop

while (1)
{

}

return 0
}

2.7 Examples of Mechatronic Systems

The aim of this section is to present some mechatronic systems that may be used in
the rest of this volume to show the different concepts we will develop. We will try
to present all the parts of these mechatronic systems to help the reader to make a
clear idea on the design of mechatronic systems and hope that this will help him to
design his own system in the future.

We will restrict ourself to mechatronic systems that use common components
like electric actuators, encoders, accelerometers, gyroscopes, etc.

2.7.1 Dc Motor Control

As a basic mechatronic system, let us design a setup that can be used either for
speed or position control. This system will be the basis of almost all the coming
mechatronic systems. The system we will present here consists of a dc motor that
drives via a gear a small disk. In order to control it properly either in speed or in
position an incremental encoder is used.

The mechanical part of this system is a small disk that is manufactured in our
mechatronics laboratory. Graduations are indicated on the disk to help us to position
it at any desired position we want. The disk is made from aluminium and attached
solidly to the motor shaft using a screw.

The actuator is a small dc motor that we bought from a surplus store. It has
already a gear (ratio is 1 : 6) and an incremental encoder (100 pulses/rev). The
electronic circuit of this system is too simple and it can be summarized to:

e a transformer

e two voltage regulators (T78012 and T7805)
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o resistors (2 resistors of 10 KQ, 2 resistor of 220 Q and a variable resistor of 20
KQ and capacitors (3 of 0.1 uF)

o diodes

e an H bridge

o aliquid crystal display (LCD)

e switch (to put the system on or off)
e a microcontroller

This setup is designed to operate in a fixed place. Therefore, we do not need to use
batteries to deliver the necessary power to the different components. The necessary
regulated voltages are obtained from the ac current. Firstly, the ac voltage (115 V)
is changed to a lower level 36V using a transformer in our case. A Graetz bridge is
combined with a low pass filter to rectify the voltage and smooth it for proper use
in the components.

To drive the dc motor, a 24 V is needed and therefore an integrated circuit (IC)
motor driver named L293D (dual H-bridge) is used. The presence of the letter “D”,
means that it is built in flyback diodes to minimize inductive voltage spikes. The
L293D chip gives the desired power to the dc motor to move the load to the desired
position if it is the case. This IC has an output current of 600 mA and a peak output
current of 1.2 A per channel. It is important to notice this limitation since if the
motor requires more current, the IC L293D will burn each time we exceed 1.2 A
and a protection such as a fuse is needed in this case.

For the speed or the position control, we use the Microchip dsPIC30F4011. The
intelligence that we will implement in the system is programmed in C language and
after compilation, it is downloaded in the memory of the microcontroller.

Fig. 2.2l gives an idea of the whole mechatronic systems. The dc motor we use in
this setup is manufactured by Maxon and it has a gear of 1: 6 ratio. An incremental
encoder attached to shaft of the motor is also used to measure the position of the
disk. With this setup we get 600 pulses per revolution. Our incremental encoder
uses two output channels (A and B) like most of the incremental encoders to sense
position. Based on the two code tracks on the disk of the encoder (positioned 90
degrees out of phase), the two output channels of the quadrature encoder indicate
both position and direction of rotation. Therefore, if A leads B, for example, the disk
is rotating in a clockwise direction, meanwhile if B leads A, then the disk is rotating
in a counterclockwise direction. Another benefit of the quadrature signal scheme is
its ability to electronically multiply the counts during one encoder cycle. Mostly the
following is used for this purpose:

e all counts are generated on the rising edges of channel A
e both the rising and falling edges of channel A are used to generate counts

o the rising and falling edges of channel A and the channel B are used to generate
counts



36 2. Mechatronic Systems

ants + B

"
i

Fig. 2.2 Real-time implementation setup

Using the second or the third options we can increase the resolution and conse-
quently improve the control precision. For instance, if the third option is used the
resolution is increased by a factor of four and therefore we get 2400 pulses/rev.

For the speed control if the controller is chosen as proportional controller with
a gain K, the system will work as follow. Firstly a speed reference is selected let
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Fig. 2.3 Electronic circuit of the dc motor kit

say 100 rev/s. At each interrupt, the microcontroller will read the speed of the disk,
compare it to the reference and compute the error. This error is multiplied by the gain
K, to generate the voltage to be delivered to the dc motor. Since the microcontroller
can deliver a voltage between 0 and 5 V, the integrated circuit motor driver L293D
will do the necessary to deliver only a voltage between 0 and 24 V with sufficient
power to move the motor. The pulse width modulation (PWM) technique is used in
this case. This technique is used to generate variable-width pulses to represent the
amplitude of an analog input voltage that we should deliver to the dc motor. The
PWM technique is characterized by its duty cycle which gives an indication of the
fraction of time when the signal is on. The control of the voltage or the speed of the
small disk is obtained by adjusting the duty cycle. The PWM works by making a
square wave with a variable on-to-off ratio, the average on time may be varied from
0 to 100 percent. Fig.2.3| gives an idea of the electronic circuit.

2.7.2 Two Wheels Robot

The idea of the two wheels robot has attracted a lot of researchers for the challenges
it offers either in the modeling or in control. Different types of robots have been
developed in research laboratories around the world. In our mechatronics laboratory,
we have designed an experimental one that we use in our research to experiment
our control algorithms. This robot has a compact structure and can be assembled
or disassembled easily and quickly. It is composed of a platform on which a rod is
attached at its middle. The whole is mounted on two wheels that are solidly attached
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to the platform and are driven by two independent dc motors of the same type we
used in the previous mechatronic system. The major parts of this robot are made
from aluminium to reduce the robot weight. The electronic circuit which is a little
bit more complicated compared to the previous system. This circuit is mounted on
a breadboard and fixed to the platform. A set of batteries to obtain 24 V is used to
deliver the different regulated voltages we need in this system. The batteries are put
between the electronics and the platform.

The electronic circuit of this system is in some sense similar to the previous
mechatronic system except for this system we need more components since we
have two dc motors. The electronic circuit is built around the dsPIC30F4011 that
orchestrates and manages all the tasks of the different parts of this system. For this
electronic circuit we need more voltages since the LCD and the L.293D need 5 V

Fig. 2.4 Balancing robot
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to operate, while dsPIC30F4011, the wireless, the accelerometer and the gyroscope
need 3.5 V.

Beside the two encoders that are used to measure the positions of the wheels and
therefore the one of the robot, an accelerometer and a gyroscope are used to measure
the tilt of the robot. The goal is to keep the robot in the vertical position while
moving along a desired trajectory. All this is done by controlling the dc motors. The
PWM technique is also used here to deliver the desired voltages that are generated
by the control algorithm we implement in the dsPIC.

The references to the robot can be either entered by program or sent wireless
using a telecommunication system. Different control algorithms are experimented
on this system. Some of these algorithms will be developed in the rest of this book.

Fig. 2.4 gives an idea of the whole mechatronic system, while the Fig. gives
an idea on the electronic circuit. The program is similar to the one of the dc motor
kit except that more complex and too long to be presented here.
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Fig. 2.5 Electronic circuit of the balancing robot
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2.7.3 Magnetic Levitation

Magnetic levitation is a technology that has a lot applications which attracted a lot of
researchers to this field. As an example where this technology is extensively used is
in fast magnetic levitation trains since it permits to reduce the friction and therefore
eliminates energy losses. In this section we will develop a system that used this
technology and show that the principle works. The mechatronic system developed
here is composed of two parts: a fixed one that represents the coil that generates
the electromagnetic force and a ferromagnetic object that we would like to place
at a certain position by acting on the electromagnetic force generated by the coil.
The objective of the system is to control the vertical position of the moving object
by adjusting the current in the electromagnet through the input voltage. The object
position is measured using a Hall effect sensor. An elecgronic circuit build around a
dsPIC30F4011 supplies the coil through an L.298, an integrate circuit, with a current
that is proportional to the command voltage of the actuator. Fig. gives an idea of
the whole mechatronic system.

2.8 Conclusions

In this chapter, we have presented the different components of mechatronic systems
and we gave some mechatronic systems that we will use here to show the concepts
developed in this volume. Some guidelines that can be used during the design phase
of mechatronic systems are developed to give an idea to the reader and help him to
design his own system.

2.9 Problems

1. In this problem we would like to design a one leg robot that can move using
one wheel while remaining in a vertical position. Provide the design of such
mechatronic system.

2. Solar energy is an alternate source of power that can be used. In this problem
we ask you to design a solar system that maximizes the energy generated by the
solar panel.

3. In this problem we ask you to design an insect with four legs that can walk and
at the same time avoid obstacles.

4. Make the design of a small car that may use magnetic levitation to move. Give
the different parts of such system.

5. In this problem we ask you to design a small airplane that may be used as a
drone to give information of a certain region when flying over such region.
Enumerate the different parts that may be used in such system.
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Fig. 2.6 Magnetic levitatios system
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6. Design a small boat that we move on a small lake using a joystick. Enumerate
the different components of this system.

7. In this problem we ask to design a hoover that can be controlled to seal on water
via a emitter and a receiver using a joystick.



Part 11

Modeling
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In this modeling part we will cover different representations that may be used to
describe a dynamical system that we would like to control in order to improve its
performances. As it was said earlier, the focus is made on the control of continuous-
time systems by microcontrollers that we can represent using one of the following
representation:

1. transfer function
2. state space representation

More often, the relationship between the inputs and the outputs is described by
differential equations that may be linear or nonlinear. For single input single output
linear time invariant system, the transfer function, G(s) is defined as follows:

Y
G(s) = Rig 2.1

where s is a complex variable that belongs to the set of complex number C, Y(s) and
R(s) represent respectively the Laplace transform/[] of the output, y(f) and the input,
r(t) respectively, i.e.:

Y(s) = Z[y@)]
R(s) = Z[r(].

The relation between the input and the output is then given by:
Y(s) = G(s)R(s) 2.2
For the multi-inputs multi-outputs case, we get similarly the following relation:
Y(s) = G(s)R(s) (2.3)
with
[ R1(s)
R(s) :

| Ru(s)
[ Y1(s)

Y(s) :
L Yp(s)

[ G11(s) -+ Giu(s)
G(s) : : :

,Gpl(s) ce Gpm(s)

where R;(s), Y;(s) and G ; represent respectively the ith input, the jth output and the
transfer function between them when the other inputs are fixed to zero.

! The Laplace transform of a function f(.) that satisfies the appropriate assumptions is defined by

F(s) = [; f0)dv
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Notice that the jth output is given by the following expression:
Yj(s) = Gji(9R1(5) + G p()R2(8) + - -+ + G jm($)R(5) 2.4)

which implies the dependence of the outputs on the different inputs.
Usually, we use also the block diagram of Fig. 27 to represent dynamical
systems.

R(s) =m Y (s=)
i

Fig. 2.7 Block diagram of continuous-time system

The state space representation is another way of representing the relationship
between the input u(f) € R™ and the output y(f) € R” of a given system and we
can obtain it by proceeding with some mathematical transformation either of the
differential equations or its corresponding transfer function. Its general structure is
given by:

(2.5)

Xx(t) = Ax(t) + Bu(t), x(0) = x¢
y(t) = Cx(t) + Du(t)

where A, B, C and D are constant real matrices with appropriate dimensions; and
x(t) € R" and x( represent respectively the state of the system and its initial
condition.

Usually the following block diagram (see Fig.[2.8)) is used to represent dynamical
systems in state space description:

» D
+
+ Xx(1) 1 x(7) + y
_»._, s 0>
u(®) B " Integrator ¢ ()
A |«

Fig. 2.8 Block diagram of continuous-time linear system

The goal of this part is to show to the reader how we can establish the mathemat-
ical model of a given dynamical system. The model can either be obtained through
experiment or using the physics law with some specific experiments that may be
used to determine the appropriate parameters that enter in the mathematical model
obtained by this approach.






3
Mathematical Modeling

After reading this chapter the reader will:

1. be able to establish a mathematical model for any mechatronic sys-
tem either analytically based on physics law or experimentally using the
identification techniques

2. be able to build mathematical models for the mechatronic system using
the transfer function concept

3. be able to build the state space representation for any given mechatronic
system

It is well known that the mathematical modeling is a hard problem in control
engineering. Most of the engineers working in this field agree on that. Any practi-
cal system has inputs and outputs. The outputs are variables that we would like to
control or keep at certain levels, while, some of the inputs are variables on which
we can act to change the outputs of the dynamical system. The rest of the inputs are
referred to as external disturbances that are beyond our control.

A mathematical model is a representation that uses mathematical language,
more often differential equations or difference equations, to describe the behavior
of a dynamical system. Mathematical models are extensively used in engineering
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disciplines to describe the relationship between inputs and outputs and the
dynamical system parameters.

Mathematical models of dynamical system can be split into two categories de-
pending on how the time variable is to be treated. A continuous-time mathematical
model is based on a set of differential equations that are valid for any value of the
time variable, whereas a discrete-time mathematical model provides information
about the state of the physics system only at a selected set of distinct times.

The development of an appropriate model to describe the behavior of a given
dynamical system can be done in different steps. At the first step, the inputs and the
outputs variables are chosen. Then, at a second one the appropriate assumptions
are made and the mathematical relationships between these variables are estab-
lished using physics laws. Some experiments are required to determine the system’s
parameters.

In some circumstances, this approach is too complex and an another alternate is
adopted to avoid this complexity. This approach consists of considering the dynam-
ical system as a black box and recourse to the identification techniques. In the rest
of this chapter we will cover these techniques and show to the reader how we can
handle the mathematical modeling of some dynamical systems. In both cases we
will be looking for the simplest accurate model we can get since this will facilitate
the analysis and the design phases.

3.1 Mathematical Modeling Based on Physics Laws

To show how this technique can be applied let us consider a certain number of
dynamical systems. As a first example let us consider a dc motor with a mechanical
load that we like to control either in speed or in position. The dc motor represents
the actuator that is mostly used in the position control servomechanism. It is the
means by which the electrical energy is converted to mechanical energy. The block
diagram of the dc motor driving the load of our example is illustrated by Fig. 3.1l If
we let u(t), i(r) and w(t) denote respectively the voltage of the armature, the current
in the armature and the speed of the shaft at time ¢, based on the basic electrical and
mechanics laws we have the following:

u(t) = Ri(t) + L, 41 (1) + K,yw(?) 3.1
I (1) = Kii(t) - bw() '
where R, L,,, K,,, K, represent respectively the electric resistor of the armature, the
inductance of the armature, the electromotive force constant, the torque constant (in
the international system (IS) these both constants are equal), J and b are defined by:

Je
J =Jn+ 2

be
b =by
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with J,, and J, are the moments of inertia of the rotor and the load respectively, and
b,, and b, are the damping ratios of the motor and the load, and » is the gear ratio.

&
_—
Tm.Om Rm

[ Er—E -
€] T bm Re f

17777777777 & be

Fig. 3.1 Block diagram of a dc motor

3.1.1 Concept of Transfer Function

If we use the Laplace transform with the initial conditions equal to zero, we get:

{U(s) = RI(s) + LysI(s) + K, Q(s) 32)

JsQ(s) = K I(s) — bQ(s)

where U(s), I(s), and Q(s) are respectively the Laplace transform of u(z), i(f) and
w(t).

Combining these relations and the definition of the transfer function between the
velocity Q(s) and the voltage U(s), we get:

Qs) K,

G = U9y = Us+b)(Lys + R) + KK,

(3.3)

If the armature inductance L,, can be neglected, the transfer function becomes:

K
G(s) = 3.4
() s+ 1 G4
with
K,
K =
Rb + KK,
JR
T =
Rb + KK,

Remark 3.1.1 When the armature inductance L,, can be neglected the mathemati-
cal model can be simplified to a first order system, otherwise we have a second order
one. It may happen in some applications that the dynamics of the driven load is too
slow compared to the actuator one and in this case, the dynamics of the actuator is
reduced to a simple gain.
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Remark 3.1.2 The parameters of the dc motor are in general available in its data
sheet. Once the inertia of the load and the gear ratio are known, all the data of the
model are then known. It is also important to mention that the data sheet contains the
average data for a sample that has been tested to get these parameters. Therefore,
it may happen that the considered actuator may have uncertainties in its model that
can be compensated by the choice of the appropriate controller.

Notice also that the position, 8(¢), of the dc motor is obtained from the velocity,
w(t), by using:

where O(s) = .Z [w(?)].

Using this and the simplified model between the voltage and the velocity, we get
the following relationship between the voltage and position:
O(s) K
U(s) s(s+1)
where K and 7 are defined previously.

Notice that the previous relations of the mathematical model between the voltage
and the velocity can be rewritten as follows:

{3;’(:):— i(t) = K wit) + | o)

G(s) =

, K 3.5
(D= i) - Ja)(t) 3-5

Now if we let x;(¢) = i(?), x2(¢) = w(?) and y(¥) = x,(¢) we get:

0| _{=f - 7”M(0} [L}

x1(0) .
= 01
o =| xz(t)]

that gives the following standard form:

{x(t) = Ax(f) + Bu(t)

3.7
y(1) = Cx(1) G-D

where

B =[%],c=[01].

This mathematical form of the system is known in the literature as the state space
representation.
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Remark 3.1.3 In this example we assumed that we have access only to the velocity
which implies that that C = [O l]. If we have access only access to the cur-

rent or to the two variables the corresponding output matrices become respectively
c=[10]c=[11]

For the state space representation that gives the position, notice that the previous
relations of the mathematical model between the voltage and the velocity and the
relation that links the velocity and position can be rewritten as follows:

doy ==L - Pwo+ L u@
W =i - b (3.8)
G0 = o)

Now if we let x () = i(r), x2(¢) = w(?), x3(f) = 6(r) and y(¢) = x3(¢) we get:

o] |=f - ol[ao] [4
@] = 5 =Lollxa®]|+| 0 |u@® (3.9)
x3(7) 0 1 0|lx® 0
x1(2)
Y0 =[001]|x0 (3.10)
x3(2)
that gives the standard form (3.7) with:
K,
A = Jt _J O il
0 1 0
1
Ly
B=|0[.Cc=[001].
| 0

To use these models, we need to know the different parameters in each one. This
may be in some circumstances difficult to measure and therefore another alternate is
required. In the next section, the situation will overcome by using the identification
techniques.

Remark 3.1.4 It is important to mention that the state space description is not
unique, which means that for a given system, we can find many state space
description. This matter will be explained later in this volume.

Remark 3.1.5 Notice that in general, the manufacturer of dc motors provides the
data sheet in which we can find all these parameters that correspond to a sample
that was chosen for test. These parameters may be not identical to those of the
dc motor we are using and this may cause some error in modeling. The feedback
control will cope with such errors.

As a second example, we consider the model of the Segway (see [6]]). The dy-
namics of this system is composed of two models that will be decoupled under some
appropriate assumptions. We assume that the Segway remains close to its vertical
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position when moving with small speed and the wheels remain in touch with the
ground and don’t slip.

Under these assumptions the dynamics of our Segway will be partitioned into two
parts. The first one gives the behavior of the tilt and linear displacement dynamics
while the second one governs the heading angle dynamics. Now if we define the
variables of the Table 3.1l

Table 3.1 Variables definition

Variable definition

W(t) tilt angle

x(1) linear position

0;(1) motors’ shaft angle

0,(1) gear box shaft angle

o(1) wheels’ angle

Ti(¢) torque delivered to a gear box by one of the dc motors

T(1) torque delivered to a wheel by one of the dc motors

F(t) resultant force between the ground and each of the wheels
u,(t)  motors’ voltage input controlling tilt and linear displacement

Iy wheels’ radius

M mass of the half robot including one wheel

mp mass of half the body of the robot

my, mass of one of the wheels

Jp moment of inertia of half the body of the robot
Jy moment of inertia of one of the wheels

d distance between motors’ shafts and center of gravity of the body
K, motors’ torque constant

K. motors’ back emf constant

Ty motors’ armature resistance

Ig gear boxes’ ratio

n gear boxes’ Efficiency

Cy rotational damping constant

and noticing that the following relations hold always:
M =my+m,
K, =K. =K
x(t) = n,0(1)
0i(1) = rgby()
Oo(1) = 6(2) + ¢(1)
F(t) = M)
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we have the following relations:
e motor’ dynamics

Ti(1) = K@)
ux(t) _ Kegi(t)

i) =
Ta Ta
Tﬁ):&rM”—Kfm] (3.11)
[
T
mpg v F; = mpgsiny

Tl = IM
J;,l;/} = m;,gdsint,b+ T - Cfl/‘/— Cf@

Fig. 3.2 Tilt dynamics free body diagram

J,6=3M

v

JWO=T—Fr,—Cr0—Cj

Fig. 3.3 Wheels and linear displacement free body diagram
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e torque applied to the wheels

T(t) = nrTi)
nreKu,(1) nrgK2

0]
r(l a
252 2
nr, K rsK- rzK .
T =" wm- 0 0= g
) 22
nr.K nroK= nro K<
=" um- " k- g (3.12)
a Yalw a
e robot tilt dynamics, referring to Fig. 3.2l we have:
T () = mpgd sin(y(t)) + T(t) — C (1) — C(6(t)
) r. K nr:k? rK?* . ot
= mygd sin(y (1)) + "rg ORI O ';[/([)_Cf‘//(t)_cfxr()

r. K
w0+ ()
raJh

g =

]b rarwjh

mygd sin(y(1)) [nr§K2 + Cfra] S - [nréKz ¥ Cfra]
rajb

If we assume that () is small we get sin(y()) ~ ¥(f) which implies in turn:

. nroK mpgd nr2K*+ Cyr, |
b0 ="+ - o)
radb Jp radp
nr§K2 +Cyry
- x(1) (3.13)
Talwdp
e robot wheels and linear displacement dynamics, referring to Fig. 3.3
J,0(t) =T(t) — F()r,, — Cs0(t) — Cry(t) (3.14)
2 12 252
nroK nre K= nr K= . Cr . ;
== a0 = 0 = M0 ~ 30 = Cpin)

which in turn gives:

[JW + Mrw]jé(t) - ’VrgKux(z) -

w a a a’'w

[’7’?1(2 *+Crra } () - [”r§K2 * Cfra} (1)

and finally, we obtain:
nryreK ( nrwrgK2 + Cyrryry o)
ro(Jy + Mr2) e ro(Jy + Mr2)

nrng + Cfra ]
T + MP2) )

X)) = [

(3.15)
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If we define x™(¢) = [¢(z) ¥(t) x(t) x(z)] and y' (1) = [a,lr(t) x(t)], we get the
following state space representation:

Xx(t) = Ax(t) + Bu,(1)

y(®) = Cx(1)
where
[ 0 1 0 0
mpgd _nr§K2+Cfra 0— nr§K2+Cfru
A =] & rqJp rarwdp
0 0 0 1
0 _nr,‘,r§K2+Cfrwr1, r]r§K2+CfrH
L ra(Jw+Mry,) ra(Jy+Mry;)
0
nreK
5| " | o_[r000
0 ’ 0010
nryrgK
L ra(Jy+Mry)

We will now establish the model representing the heading angle dynamics of the
robot taking into consideration that an equal but opposite torque has to be applied
by the two motors in order to induce a purely rotational motion on the robot without
affecting its tilt and linear position. Therefore, an equal but opposite voltage has to be
applied to the two motors and this voltage is taken as the input of this system. Here,
we are taking the assumption that the robot is staying in the vertical position and that
its moment of inertia around the vertical axis is not changing. If we introduce the
additional variables of the Table[3.2]and noticing again that the following hold:

Table 3.2 Variables definition

Variable definition

o(1) heading angle

x() linear position of the right wheel

xi(0) linear position of the left wheel

6,(1) right wheel angle

6,(1) left wheel angle

T.(t) torque delivered by the right dc motor
Ti(?) torque delivered by the left dc motor
F.(t)  driving force of right wheel

Fi() driving force of left wheel

u (1) right motor voltage input

u(t) left motor voltage input

up(f)  motors’ voltage input controlling heading
Jy moment of inertia of the robot around the vertical axis
S wheel span
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x(1) = r,0,.(1)
xi(1) = r,6(0)

5t) = [xl(t);xr(t)]

w(t) = —u(t) = up(t)
w(t) —u () = 2up(t)

we have the following relations:
e from (3.14), solving for F(z), we have:
T(r) = J,0(1) = C46(1) = C (1)

F@) =
Iy
2 2 2 12
nreK nreK=+Crry | nreK=+ Cprq | s
=" u(r)—[ ¢ o - () = "6

now making reference to left and right, we get:

22 212
nr K nreK*+ Cyrrg | . nreK=+Crrq | T s
Fi) = w(@) - [ ¢ G R ETO R 10
Fal'w al'w raly, Iy
nreK 77r§K2 +Cyrg | . nr§K2 +Cyry Jy
F.(t) = u,(f) — () - 5 30 - "800
alw a’w aly Iy

5 I Ji6 =EM
N S S
-F" -F,
" S
Jab = (F; - Fr)2
F,T F,
I S |

Fig. 3.4 Heading dynamics free body diagram
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e referring to Fig. 3.4 we get:

. S
1) = - F,0)
SrEK? + SCyr, J,S 1. .
m " ][xr<r)—x,<t)]+ Nl ZOR0)

nr.KS
[ (8) = (D] + oo
Fal?

2r,ry,
which in turn gives:
Ja + JZ”’:V;VZ] 5(n) = n:iKWS up(1) = Insz”;[;j;;chra]s(t)

and finally, we obtain:

S2riK* +S*Cyry | .
T f"}a(r) (3.16)

2nry,rgKS
up(t) — 2 2
ra(2Jgrs + J,uS?)

8 =

® [ra(ZJdrVZV +J,S2)
If we define x;(t) = [6(t) 5(t)] and y,(f) = 6(r), we get the following state space

representation:

X,(1) = Apxp(0) + By (1)

Yu() = Cpxn(?)

0 1
Ap = nSK+S7Cpr,

where
ra(2gr3+J,,8?) }

Bh = { 2nr,rgKS :|,Ch = [ 1 0]
ra(2Jare+J,,8%)
The last example is the magnetic levitation system. This system is represented by

the Fig. The data of this system are summarized in the Table

Table 3.3 Data of the magnetic levitation system

Variable value
R 62.7Q
L 60 mH
7.64 ¢

m (object mass)
diameter of the permanent magnet 9 mm



58 3. Mathematical Modeling

Let x(7) denote the position of the object at time f measured from the bottom of the
coil. The dynamics of the moving object is described by the following differential
equation:

mi(t)=mg—-F.—F, (3.17)

where g is the gravity, F. and F, are the magnetic forces generated respectively by
the coil and the permanent magnet.

Remark 3.1.6 It is important to notice that the direction of the magnetic force F.
is linked to the direction of the current in the coil.

If we denote by i(f) the current at time ¢ that give a force F, pointing down at
time ¢ with the following expression:

2(t
Rt =k )
The permanent force F, is given by the following expression:
Fy(t) =k, 21
x5(1)
Using these expressions we get:

(1) 1

om0 (3.18)

mi(t) = mg — k

From the other side, we have the following relation between the current i(¢) and
the applied voltage u(f):

u(®) = Ri(t) + Ld;(t)

t

If we neglect the effect of the coil, this relation becomes:
u(t) = Ri(t)
and the dynamics become:

W2 () 1

e e (3.19)

mi(t) = mg — k

For the output equation notice that we have a Hall effect sensor that generates a

voltage that is function of the position, x(¢) of the object and therefore it is function

of the magnetic field B (sum of the two fields (the one due to the coil and the one

due to permanent magnet)). If we denote by y(7) this voltage and using the data sheet
of this sensor, we get:

y(f) = 0.003125B + 2.5

where B is measured in Gauss ( 1 Telta = 1000 Gauss).
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This gives the following one:
y(@) =31.25B+2.5
where B is measured in Tesla.
It can be shown that the expression of the total magnetic field is given by:

1 .
B=C, 20) + Cpi(t) + C1 + Cy

where C), = —1.9446 1078, C;, = —0.1671, C; = —0.011027 and C, = 0.003568.
In conclusion the output of the sensor is then given by:
+Cpilt)y + C; + Cy

(1) = [ +2.5

1 1
C
0.032 [ PX3(1)

It can seen that the model is nonlinear and the theory we will present in this vol-
ume will not help. Therefore a linearization around an equilibrium point is required.
At the equilibrium point the speed and the acceleration of the object are equal to zero
and the current is constant in time and the total force is equal to the gravitational
force. Using this and the previous dynamics, we get:

(1) = sign(u(n), Sen (1) +
W) = [0_332 [c,, iy + CoilD) + Cy + Cz]] +2.5

Using these conditions and some appropriate experiments, we can determine the
values for k. and k, and these values are given by:

k. =5.9218 107
k, =4.0477107°.

At the equilibrium point, the object occupies a fixed position x, that corresponds
to the voltage u, (4, = Ri,). The corresponding voltage delivered by the sensor is y,.
In the neighborhood of this equilibrium point (x,, u., i, y.), the system has a linear
behavior. The linearized model is given by ([LL]]):

(1) = Ax(t) + Bu(r)
¥(t) = Cx(t) + Du(?)

where

x(1)

[ x1()(position)
| x2(t)(velocity)

[ 0 1
A = ofsigwkad R

mR2x}

0
B = —2sign(u, )k u,

L mR2x2
-3¢,
C = [0.032§§ 0]
C
D b

~ 0.032R
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3.2 Identification

From the previous example, it can be seen from that the establishment of the math-
ematical model that we can use for analysis and design is not an easy task and even
if we can get the model from physics laws, the value of the different parameters of
the model may be impossible to get and therefore the analytical model is useless.

System identification is a procedure by which a mathematical description of a
dynamical system is extracted from test data. The aim of the identification is to
construct an algorithm that will allow to build a mathematical model from observed
data. Mainly the system we would like to model is seen as black box with some
inputs and outputs that are collected at some finite instants of time.

The establishment of an appropriate model for a given linear time invariant sys-
tem can be done into two steps. Firstly, a structure of a model that may fit with the
collected data is chosen and then the parameter of this model are determined.

The identification problem can be stated as follows: given N samples of the pair
(u(k), y(k)) where u(k) and y(k) denote respectively the input and output collected
from experiments on the real system, we wish to determine the system’s parameters
of the chosen model such that it matches the real system sufficiently well.

3.2.1 Transfer Function Approach

One of the approaches that we may use to build a model with transfer function
description is the least-square system identification. To show how this algorithm
works, let us assume the structure of the chosen model is given by:

Y(z b1V 4 b+ by,
GQ) = @ _ b 2_]
U(Z) Zn_alzn —r—day

where Y(z) and U(z) are respectively 2 _transform] of the output y(k) and u(k),
ai, - ,ayand by, - -- , b, are the model parameters that we have to determine.
Using % -transform inverse we get following model:

k) =aiytk— 1) +axy(k —2) + -+ + ayy(k — n)
+biu(k— 1) + bou(k —2) + - - - + bu(k — n)

The objective of the identification procedure is to determine the model parame-
ters from measurements of the inputs, u(k),k = 0,1,---, N and the corresponding
outputs, y(k),k =0, 1,---, N. For this purpose let:

0:[a1a2-~-anb1b2~-~bn] (3.20)
Let us now assume that we collected N + 1 measurements pairs:

(1(0),y(0)), (1), ¥(1)), - - -, (u(N), y(N))
with N > n.

! The definition of the 2 -transform will be given later in this book
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By defining f(k) as follows:
FTR) = [k = 1) yk=2) - ylk=n) utk=1) u(k=2) - utk—n)]
then for the sample periods n,n + 1,--- , N we have:

y(n) = fT(n)0 + e(n)
yn+1)=fT(n+1)0+en+1)

(3.21)
Y(N) = fT(N)B + e(N)
where e(k) is the error estimation at period k7 .
If we define y(IV), (V) and e(NN) as follows:
y(n) fT(n) e(n)
y(n+1) fTn+1) em+1)
Yy =" L= L e =
Y(N) FT(V) e(N)
then the previous relation becomes:
y(N) = f(N)0 + e(N) (3.22)
where y(N) € RV "1 e(N) € RN+ f(N) e RV+1X21 apnd g € R™
Using now the least square algorithm with the following cost:
N
J(©) = e*(k) = e"(N)e(N) (3.23)
k=n
This implies the following:
J©) = [yN) —£)e]" [y(N) - £(N)6]
=y (NY(N) = 0" (N)y(N) =y (MEN)E + 0TET (NE(N)E
=y (N)y(N) = 20"t (N)y(N) + 8Tt (NE(N)9 (3.24)

To search for the optimal solution 6* that minimizes the cost J(6), we can use the
optimization conditions (see [3]]). By these optimality conditions, we get:

aJ©O)
9

that can be rewritten as:

=2fT(N)y(N) + 2f " (N)E(N)§* = 0

fT(NEN)T* = £T(N)y(N)
from which we obtain the optimal solution as follows:
6% = [fT VI 1Ty ()

provided that the matrix, [fT(N)f(N)], is not singular.
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Remark 3.2.1 The formula we just developed allows us to compute the parameters
off-line after collecting the data. But in some applications we may need to compute
these parameters on-line and therefore adapt the controller’s parameters as it is the
case for adaptive control. This can be done using the recursive form of the least
square algorithm.

To establish the recursive algorithm, we will use some forgetting factors.
Consequently, the cost is modified to:

JO) = pm)e*(n) +un + De*(m+ 1) + - - + u(N)e*(N)

N
= Z,u(k)ez(k) =e'(N)F(N)e(N) (3.25)
k=n

where F(N) is a diagonal matrix, F(N) = diag(u(1), - - - , u(N)).
Proceeding similarly as we did previously, we get:

0* = [FT(N)F(N)f(N)]_I tT(NF(N)y(N) (3.26)

Remark 3.2.2 The forgetting factors are used to give more weight for the recent
data.

Let (k) = o8N+, with 8 < 1. Based now on the expression of 6*, we get:

N+1
7N+ DEV + DEN + 1) = " ™™ £ £ (k)
k=n

N
= > BB ST K) + af (N + DTN + 1)
k=n

Let us now define W(k) as follows:
W(k) = [fT(k)F(k)f(k)]" (3.27)
Using this we get:
YIUN+ D) =Y N+ D +af(N+1DfT(N+1) (3.28)
Using now the following relation:
[A+BCDI" =A™ — A7 [c' + DA™'B| " DA™
the previous relation becomes:

(N + 1) =B W(N) - BH(N)FN + 1)
x|+ BTN + DPN)F(N + 1)]_1;3*1]”(1\/ + DY(N)
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For the second term in the expression of * we have:

aﬁNJrl—n y(n)
FTNEMN)Y(N) = [ () - f(N+ 1] :
Y(N)
YN +1)
= BET(NFN)Y(N) + af(N + Dy(N + 1)

Combining the previous relations and after some algebraic manipulations we get:

Y(N) = [fTVFMVEN)] ™
ON+1) =B NN+ D]+ fTV + DEN SN + D] B FT + DEW)
AN +1) =6(N)+ QN + D [y(N + 1) — FT(N + DON)]
YN +1) :,3‘1 [I- O + l)fT(N + D]Y(N)

which apply for N > n.

Example 3.2.1 To show how to use this technique to identify a given system, let us
consider the setup of the dc motor kit. It consists of a dc motor driving a mechanical
load. We know that the system a single input single output and its transfer function
between the speed of the shaft and the voltage is a first order of the following form:

G(S) — KITL
TS+ 1
where K, and T,, are the two parameters that we have to determine.

For this system we can use two ways to get the model. The first one consists of
getting the data ((u(k),y(k)) using an UART to communicate with a PC and then
use the least square method to build the model. The second one consists of using the
microcontroller and then take the system as a black box.

For the second method the gain K, is determined at the steady state regime as
the ratio between the output and the input voltage. While for the time constant, T,
we take it as the instant at which the output takes 63 % of the steady state value
of the output. This procedure can be programmed in our microcontroller and easily
the model is established. We use this approach in our mechatronics laboratory.

3.2.2  State Space Description Approach

Consider a dynamical system system described by the following state space
description:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

where x(k) € R" is the state and u(k) € R™ is the input and y(k) € R! be the output.
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It is important to notice that the state description is not unique and any trans-
formation: %(k) = T 'x(k), with T a nonsingular matrix, will give another
description:

%k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

where A= T7'AT,B=T"'B,C =CT and D = D.

To determine the model of this system we need to determine the matrices A, B,
C and D. If the system is single input single output, we can compute the trans-
fer function and proceed with the previous approach to establish the mathematical
model. In the state space description, we try to determine the state space description
(A, B, C, D) that matches the set of input-output data. In the literature there exist
many approaches to identify system in state space description. The reader is invited
to consult the literature for this topic. Here we will present a simple algorithm that
can be used to determine the state space description.

Before presenting this algorithm we will establish some relations that the algo-
rithm uses in its computation. If we denote by u(k), u(k + 1), ..., y(k), y(k + 1), ...
and x(k), x(k + 1),... the sequences of inputs, outputs and states, it can be shown
that the Hankel matrix, Y, can be given by:

Y, =T:X+HU,

where:

yk) — ylk+1) - ylk+j-1)
v yk+1) yk+2)---  yk+))
h = i . . .

y(k+-i—1) y(k.+i) y(k+j.+i—2)

U, is a Hankel block with the same block dimensions as Y, containing the
consecutive inputs

u(k) uk+1) -+ utk+j-1)
wk+1) uk+2)--- u(k + j)
U, = ) ) . .

utk+i—1) utk+i) - uk+j+i-2)
X contains the consecutive state vectors:

X =[x(k)x(k+1)--- x(k+j—1)]
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I'; as the extended observability matrix:

C
CA
I, = CA?
CAi—l
and H, is the block Toeplitz matrix:
D 0 0o - 0
CB D 0 - yk+)
H, = CAB CB D .- 0
CA™2BCA™3BCA™B--- D
Let H be the concatenation of the matrices H; and H,, i.e.:
_|H
n=[ia]
with
| Ym
=]
_| Yn
=]
where
yky  yk+1)--- yk+j-1)
yk+1) yk+2)---  ylk+j)
Yo = : : .. :
| yk+i—=1) y(k+1i) -+ yk+j+i-2)
yk+i) yk+i+1)--- yk+i+j—1)
yk+i+1) yk+i+2)--- yk+i+]))
Yip = : : - :
| y(k+2i—1) yk+2i) -+ ytk+j+2i—2)
u(k) uk+1)--+ uk+j-1)
uk+1) uk+2)--- u(k + j)
Un = : : . :
lutk+i—1) utk+i) - utk+j+i-2)
uk+1) uk+i+1)--- uk+i+j-1
wk+i+1) uk+i+2) -+ utk+i+}
Un = : : .. :
| utk +2i—1) wk+2i) - uk+j+2i-2)

65
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that satisfy:
Y =Xy + HUp,
Yio =T:Xs + HUp
with
X =[xk x(k+1) - x(k+j-1)]
Xo =[xtk xtk+i+ 1) xk+i+j-1)]

The following algorithm can be used to compute the matrices (A, B, C, D) in off-
line:

1. calculate U and S in the SVD of H:

_ + |UnUn||Su 0]+
H=USV _[UZI Uny 00 \%

2. calculate the SVD of U, U11S 11
S, 0|l vI
dsu=(o i 5
3. solve the following set of linear equations:

U;UITZU(m+l+ 1:(G+D(m+10),)S
Umi+li+m+1:m+D@GE+1),)S
A B U;UszU(l cmi+1i,)S
CD||Umi+li+1:mi+1li+m,:)S

This algorithm can be programmed to get the matrices (A, B, C, D) of the system.
Another version for on-line computation can be also obtained and for interested
reader we refer to the literature for more details.

3.3 Conclusions

In this chapter, we covered the mathematical modeling of dynamical systems. We
presented the technique that uses the physics laws to generate the model. We also
developed the identification technique that may be used in some circumstances to
establish a valid model that describes adequately the dynamical system under con-
sideration. Both of the techniques require experiment data to establish the desired
model.

3.4 Problems

1. In this problem, we ask to build the mathematical model for the dc motor kit
without neglecting L. We ask to establish:
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(a) the transfer function
(b) the state space description

. Establish the mathematical model of the two wheels robot
. Establish the mathematical model for the levitation system

. Consider a dynamical system with a transfer function that you can give. Write
a Matlab program that generates a sequence of data (u(k),y(k)). Using this
data, write a program in Matlab to identify the system and to establish the
mathematical model. Compare the two models and conclude.

. Consider a dynamical system in state space description. Write a Matlab prgram
to generate the appropriate data to identify the system using the state space
description approach. Using this data write a Matlab program to establish a
state space description and compare it with the original one.
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Mechatronic systems are in general a combination of hardware and software to
assure the desired tasks for which the system was designed for. The analysis and
design of such mechatronic systems can be done using different approaches. Among
these approaches we quote the ones based on transfer function and the ones using
the state space techniques.

This part deals with the analysis and synthesize of mechatronic systems using
the transfer function approach. Mainly, we will focus on the analysis of dynamical
systems controlled by microcontrollers. We will learn how to determine the perfor-
mances that the system has. The design of controllers is also tackled. Mainly, we
will see how to state the control design problem and how to solve it. The design part
focuses on the determination of the controller that gives the desired performances
to our dynamical system.

This part is divided into two chapters. The first one treats the analysis tools.
Particularly, we will see how we can transform a continuous-time model to a
discrete-time version by choosing appropriately the sampling period. Once this
period is chosen, a discrete-time version of the model of the system under con-
sideration is obtained that will be used for analysis and design of the dynamical
system under study. The first chapter in this part covers the different tools that we
may use to get the system’s performances. The second chapter presents the design
techniques that may be used to design the appropriate controller that will guaran-
tee the desired performances. The design approach is composed of two steps. The
first one, determines what will be the structure of the appropriate controller that can
guarantee the desired performances. The second one computes the controller’s pa-
rameters. Some simulations results are needed before implementing the developed
algorithm. Matlab and Simulink are used for this purpose.






4

Analysis Based on Transfer Function

After reading this chapter the reader will:

1.
2.

4.1

master the concept of the transfer function concept

be able to perform the analysis of any LTI system and determine the
specifications that the system has

be able to compute any time response of LTI system for a given input
be able to check the stability of any dynamical system

plot the root locus of any LTI system and use it for analysis and design
purpose

plot the Bode diagram of any LTI system and use it for analysis and
design purpose

Introduction

Nowadays the microcontrollers are more powerful and their prices are affordable
which makes their use attractive. In mechatronic systems they are used either for
On/Off or continuous-time controls. In both cases, the microcontroller is the hearth
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of the mechatronic system. In the On/Off case, it is used for security and control pur-
poses. The algorithm in this case is easy and doesn’t take time in general to compute
the action to be taken. While for the continuous-time case, the microcontroller re-
ceives the data at each sampling period and compute the desired action according
to a chosen algorithm. The computation in this case may take more time and more
care should be taken to prevent surprises. In both cases interrupts are used. The
microcontrollers we will use in this book must have a quite high processing speed.

In practice when controlling real processes using microcontrollers two structures
can be adopted. In the first one, the error between the output and the reference
is done in continuous-time and then sent to the microcontroller via analog-digital
converter (A/D) and the control action is computed following the chosen algorithm,
while in the second case, the output is converted to a digital value via a A/D. The
reference in this case is fed in a digital form. The control action is computed in a
similar way as for the first case. These two structures are illustrated respectively by
Figs.[d.1]and

Analog | Output

System »

Input

Digital !

Output
System >

Fig. 4.2 Signal conversion is made in the feedback path

The second structure is more often used in practice and therefore, it is the one
that we will use in the rest of the book.

Remark 4.1.1 In the structure of Fig. we have sampled signals that have the
following advantages:

1. easy modulated
2. easy to code
3. easy to transmit and to regenerate

and there are positive points.
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In the rest of this chapter we will present the tools that can be used for the analysis
of this type of system. Mainly we will show for a given practical system:

1. how to determine the sampling period

2. how to convert the continuous-time model to discrete-time one using the chosen
sampling period

3. how to determine the performances of such system such as the stability, the
overshoot, the settling time, etc.

4. how to use the root-locus and the Bode-plot techniques for discrete-time case

All these questions are addressed in the rest on this chapter. The rest of the chap-
ter is organized as follows. In Section 2, the sampling process is developed and the
relation between the continuous-time and the discrete-time is established. Mainly,
the relationship between the poles is established for the two domains (s-domain and
z-domain). Section 3 introduces the transfer function concept and the one of poles
and zeros. In Section 4, the time response for a given input is developed and the
approaches to compute it are presented. Section 5 covers the stability problem and
the system error. The techniques of root locus and the Bode plot are developed re-
spectively in Sections 6 and 7. These techniques are used in the analysis and design
phases.

4.2 Sampling Process

Real practical processes are more often continuous systems that evolve continuously
in time. Their analysis and design should be done carefully. In fact we will always
need to convert the dynamics of such systems to a discrete-time corresponding one
to analyze and proceed with the design of the controller that will be used to control
them using microcontrollers. The choice of the sampling period is a critical prob-
lem. In fact a small sampling period will result with huge amount of data that the
microcontroller will not be able to handle while a large one will give poor results
and may be the system will not be controlled properly. The sampling period must be
properly chosen to avoid such problems. It can be chosen smaller than the smallest
time constant in the dynamics of the process. The bandwidth is also used for the
choice of the sampling period.

The Shannon theorem is used for the choice of the sampling period. This
statement of the Shannon theorem is given by the following result:

Theorem 4.2.1 A signal y(t) which contains no frequency components greater than
fn is uniquely reconstructed by a set of sampled from y(t) spaced by 2}/ . A proper
choice for the sampling frequency should satisfy:

fs 2 2fn (4.1)
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Remark 4.2.1 In practice the factor two is not enough and generally we choose the
number more greater than two. A good choice consists of taking the sampling rate
greater than 30wy, where wy, is the bandwidth of the closed-loop system.

Remark 4.2.2 [t is important to notice that we have the following relations between
the period, T, the frequency, [ and the pulsation, w:

1
T =

f
w =2nf

which implies:

2n
w =

T

Example 4.2.1 To show how the sampling period can be chosen for a continuous-
time system, let us consider a dynamical system with the following transfer function:

G(s) = 10
s+ D(s+2)(s+9)
and determine the sampling period for this system.

First of all notice that there exist an infinite number of sampling of periods that
can be chosen for this system. In this example we define the sampling period using
two approaches.

From the transfer function of the system we conclude that the highest frequency
in the system is wy, = Sradys. This corresponds to faster dynamics in the system and
therefore when sampling we should use this information and sample faster than this.

Notice that we have w,T = 2m. Now if we sample thirty times of the highest
frequency in the system, we have wy = 30 X 5 = 150rad/sec. This gives:

2w
T = =0.021
150 0.021s

From the other side, the constant times of the system are respectively T1 = ls,
7y = 0.5s and 71 = 0.2s. This implies that fast dynamics in the system has a time
constant equal to 0.2s. A rule to select the sampling period consists of using the
following formula:

r=02 4.2)

a

where a is positive real number to be selected between 7 and 14. A proper choice
is 10.
Using this rule we get

T =0.02s

Once the sampling period is chosen the next step is to convert the continuous-
time dynamics to an equivalent discrete-time one. In fact, if the sampling period,
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T, is properly chosen the real output can be obtained from the sampled one for a
given input and therefore there is no lost of information.

The conversion from continuous-time system to sampled system passes through
two devices:

e sampler
e zero-order-hold (ZOH)

The role of the sampler is to convert the continuous-time signal to an equivalent
train of pulses while the ZOH blocks the values received from the sampler to make
them available to the microcontroller that reads them through the analog/digital
converter. The sampling process is illustrated in Fig.

y(®) Y@ =y

y(®) yi(®)
_0 O_

(D) y(?) —_ = -
Zero-Order Hold I

Fig. 4.3 Sampling process

The main objective of the sampling process of a signal y(¢) is to keep most of
its information in the sampled one. It is also important to notice that the number
of bits of the used microcontroller to process this signal has a significant effect
on the quantization and therefore on the result. The quantization is the process of
approximating the continuous range of values by a set of discrete integer values. It
is also referred to as the discretization of the amplitude values of the signal. If a
microcontroller with 16 bits is used, we will have 2'® = 65536 possible values per
sample.

Let y(f) be an analog signal whose maximum frequency that a sampler should
take into account is f;, (bandwidth). Assume y(¢) is sampled at frequency f;. Shan-
non theorem states that it is possible to reconstruct the signal y(¢) from y*(¢) = y(kT)
if and only if f; > 2 f,. Mathematically, the sampling process of an analog signal can
be seen as a mathematical product between the signal y(f) and a train of impulses.
This is given by the following expression:
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Y(KT) = Z Y (06t — kT) 4.3)
k=0

where 6(%) is the Dirac impulse and 7 is the sampling period.

Frequency Response

bad good
O O
A A
I

Is |
2 Ji 2

(0]

Fig. 4.4 Sampling period choice

For the continuous-time systems, the Laplace transform has been used to trans-
form the set of linear differential equations that describes the dynamics into an
algebraic one and the concepts of the transfer function or the transfer matrix function
have been defined. Then, the tools for analysis and design that have been developed
can be used for this purpose. For sampled systems we will use the same approach
since their dynamics are equivalent and the transformation used for the analysis and
design called the Z-transform is obtained from the Laplace transform. There exist
many similarities between the two transformations.

Let f*(¢) be a sampled signal, such as:

3UWH=W@=L,ﬁm”m

where f*(¢) is equal to zero everywhere except at instants ¢ = k7T, where k =
0,1,2,3,---
As an example of the signal f(¢) we give the step signal defined as follows:

ﬂ0=$ Vi >0

0 otherwise

Notice that the Laplace transform of f*(¢), yields:
f Frwe e =" f(T)e™ = 3" fUT)(eT)F = F*(s)
0 k=0 k=0

The 2 -transform of f(¢) is defined as equal to Laplace transform of f*(f):
Z[fo] =2Z[f 0]
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Now, if we define z = ¢*7, then we have:
F@@) = ) fU)*
k=0

This expression can be used to compute the Z -transform of any signal.

Example 4.2.2 Let us now give some examples to show how we use the % -
transform and its properties.

o 7 transform of the unit pulse function:

1 whenk=0
k) =
f® {O otherwise

Using the definition of % -transform, we get:
F@) =) fl*=120=1
k=0

o % -transform of the unit step function:

1 whenk>0

0 otherwise

flk) = {
Proceeding similarly we have:

F@) = if(k)z’k = i 7t = i(z*)k
k=0 k=0 k=0

This last expression is equivalent to the following series

(o)
2.
k=0

that will converge if la| < 1 and we get:

To get this relation notice that if we let:

S = a*
k=0
Computing S — aS implies the results.
Using this, we get:
1
F =
@=,_ -
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o Z-transform of the exponential function:

a whenk=0
0  otherwise

f(k)={

Using again the definition of % -transform, we get:

00

RS 1
Fo= Yt =Yt L
k=0

k=0
provided that |az™'| < 1.

The Table B.1] gives Z-transform table of some common signals. The com-
putation of the Z’-transform of these functions is left as exercises for the
reader.

From basic course on control system, the Laplace transform has interesting prop-
erties like linearity, homogeneity, etc. and since the Z’-transform is obtained from
this transform, the properties of the 2 -transform are directly obtained:

o Linearity - The 2 -transform is a linear operator:

Z[HM £ L] = Z 0]+ Z[L0] =Fi(2) £ Fa(2)
Zlaf®)] =aF(z)

where a is real number, f(¢), fi(f) and f>(¢) are given functions that admit
Laplace transform, F(z), F1(z) and F,(z) are the 2 -transform of the functions

f(0, f{(t) and £ (1) respectively.
o Initial value theorem
lim f(kT) = lim F(2)
o Final value theorem
lim f(T) = lim(1 -2"HF(2)
e Shift property:
Z[ft~kD)] =7 F(2)

e Back-shift property:

Zfe+nD)]=7"

n—1
F@) = ) fkn)*
k=0

then, fork =0, 1,2, - - -n, we have:

Zfa+T)) = Z[fl(k+ DT]] = zF(2) — zf(0)
Zft+2D)] = Z[fltk+2)T]] = °F(2) — 22 f(0) — zf(T)
Z[ft+nT)] = Z[fltk+mT]] ="F(z) - " f(0)

-7 AT == 2f((n = DT)
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Table 4.1 Z-transform table

F(s)  f@) or f(k) F(2)
1 5(t) 1
e KTs 8(t — kT) 7k
1
s 1(0) o1
1 ¢ Tz
52 (z-1)?
2 2 T2z(z+1)
s ! @1y
(k=1)! -1 . k—1 ok
sk tk hmaﬁO(_ 1) Bak-! [Z_ezfur ]
(k=1)! k ,—aT 1)k & [ z ]
(s+a)k e (-1) oak | z—e-aT
z[az+B]
) @ D-e 7
s(sia)z 1 - eim(l + at) a=1-e%—ale™
ﬁ — e—2al _ e—at + aTe—ul
1 —at z
s+a € z—e"‘T
a _ —at z(l—e’“T)
s(s+a) 1 e (z=D)(z—eT)
1 —at Tze T
(s+a)2 te (Z_efur)z
1 1 (e—at _ e—bt) 1 [ 7z _ oz ]
(s+a)(s+b) b—a bEa z—eT , z—e;;T]
(b-a)s -bt _ . —at z[z(b—a)—(be™"" —ae™"")
(s+a)(s+b) be ae (z—e’“T)(z(—e”’T)T)
a 1 _ —at Tz _ 2 I—e™
s2(s+a) t a (1 ae ) (z-1)? a(z—1)(z—eT)
—aT’
s _ —at z[z—e=T (1+aT)]
(Ha)z (1 at)e (Z—?_“TT)}
w . zsinw
$2+w? sinwt z2 7(22 cos w%;l
s Z(Z—COosw
s2+w? cos wt z2—2z7<;05 wT+1
w —at o; ze™ sinwT
(s+a)?+w? e sinwr zz—2z7e*"7 cos wT +e2aT
s+a —at z7—ze~ " coswT
(s+a)*+w? e coswr 72-2ze=4T cos wT+e~24T
k z
a z—a
drcoskn i

Example 4.2.3 Let us compute the % -transform of the ramp. This function is
defined mathematically as follows:

t whent>0

f@® =

0 otherwise
At sampling instants the function takes values as follows:
fT)=kT,k=0,1,2,---

where T is the sampling period.
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Using now the definition of the & -transform, we get:

F(z) = Z FT)Z*
k=0

(z—-1)?

Example 4.2.4 Let us compute the % -transform of the exponential function. This
function is defined mathematically as follows:

e whent>0
1) =
Fo {O otherwise

At sampling instants the function takes values as follows:
fkT) =e*T k=0,1,2,---

where T is the sampling period.
Using now the definition of the Z -transform, we get:

Fz) = ) fkT)*

k=0
[oe)

— Z e—kaT Z—k
0

k=
=1+ e—aTZ—l + e—2aTZ—2 +eeet e—kaTZ—k +oee
1
- 1- e—aTZ—l
_ Z
- 7 — e—aT

Example 4.2.5 Let us consider the computation of % -transform of the following
function:

0 otherwise

) = {cos(wt) fort >0
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At the sampling instants, we have:

cos(kwT) for k=0,1,2,---,

0 otherwise

J(T) ={

Using the definition of the % -transform, we get:
Fz) = ) fkT)*
k=0

= Z cos(kwT)z *
k=0

Notice that

6‘jkwT + e—jkwT
cos(kwT) = )

Using this we have:

F(z) = ;ff [ejkWT + e_jkWT]

1 1 N 1
- 211- efWTz‘l 1- €_jWTZ_1
Using now the fact that ™" = cos(wT) + jsin(wT), we get:

722 — zcos(wT)

F =
@ = 2 rcoswT)+1

83

Example 4.2.6 Let us compute the % -transform of a complex function. For this

purpose, let us consider the following function:

e~ cos(wt) + e “sin(wt) whent >0
S = .
0 otherwise

At sampling instants the function takes values as follows:

FkT) = e cos(wkT) + e~ %7 sin(wkT),k = 0,1,2,---

where T is the sampling period.

Using now the definition of the & -transform, we get:
FG) =) fkD):*

k=0
= Z [e_“kT cos(WkT) + e~ T sin(wkT)] *
=0
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Using now the facts that:
eIWKT 4 p=JWkT

2
ejWkT _ e—jwkT

2j

cos(kwT)

sin(kwT)

Using now the linearity property of the Z -transform we get:

e

F(z) = Z e cos(WkT)z ™" + Z e sin(wkT)z
k=0

=0
1< N
- Z o~ kT [ejwkT n e—jwkT] - Z —akT e/wkT —jwkT] 7k
=0 k=0
22— e Tzcos(wT) e T zsinwT)

22 =2eTzcos(wT) + e~2eT " 22 =2e T zcos(wT) + e~2eT
22— e TzcoswT) + e T zsin(wT)
22 —2eTzcos(wT) + e2eT
_ 2+ e Tz [sin(wT) — cos(wT)]
2 = 2e T zcos(wT) + e2eT

Previously we were able to compute the 2 -transform of a signal that may
represent the output system that corresponds to a given input. Sometimes we are
interested by knowing its expression in time. The inverse 2 -transform may be used
for this purpose. To perform the inverse Z-transform we can use the following
methods:

e expansion into partial fraction
e polynomial division
o residues method

The inverse 2°-transform consists of finding the expression of f(k) that corre-
sponds to a given function F(z). A very useful method to find the inverse transform
of the function F(z) is the expansion into partial fractions whose inverse transforms
can be found in the table. The idea behind this method is firstly write the expres-
sion of the function in term of z~!, then perform the expansion into partial fraction
as usually done for the continuous-time case. This technique is illustrated by the
following example.

Example 4.2.7 Let us consider the following function F(z)

272

F =
@= 0 341

and determine the expression of f(k).
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To answer this question, let us first of all divide the numerator and the
denominator simultaneously by 2z>. This gives:

1
F(z) =
e

It is not obvious how an inverse transform looks like, but if we factorize the
denominator of F(z), then partial expansion gives:

1 A B
= +
(I-zhH-3zhH d-z7H a-1zh
As for Laplace transform, the residues are :

1=z

F(z) =

A =lim -2
=l (1= -z
1= lz—l
B = lim (1=22)

L=z (-5
Finally, we obtain:
2 -1
F(z) = N )
(1-zD) " (1= 11
and its inverse transform is

1 k
floy = Z'[F@2)] =2—(2)

The second method that can be used to compute the inverse .2 -transform is the
polynomial division method. This technique consists of performing the polynomial
division of the numerator by the denominator of the function F(z). To illustrate this
method us consider the previous example.

Example 4.2.8 To show how the polynomial division works, let us continue the
same expression for F(z) as for the previous example.

1

1-3z71+ 1272

F(z) =

Dividing the numerator by the denominator, we obtain :
3 7 15
F@) =1+ 72+ 2724+ 7%+
(2) % 4% g *

Since % [6(t — kT)] = 77%, we then obtain:
3 7 15
FOT) =6+ J6(t=T) + 8t =21)+ 61 =3T)+ -

Example 4.2.9 In this example, we consider the following function:

0.3z 0.3z7!

F = =
@ = 17,4077 1-1721 40722
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Polynomial division gives :
F(z) =03z +0.51272+0.6577 + -+
According to the table of % -transform, we have :
fkT) =036(t—T)+0.56(t—2T)+0.6576(t = 3T) + - - -

As a third method to compute the inverse 2 -transform we can use the the method
of residues. It consists of using the following expression:

f(kT) = sum of residues of [zk_lF(z)] = Z T

n=1
ny is the number of singularities of F(z)

r, is the residue of (z — z,)F(2)Z""!
to the singularity z,

ry = lim,_, (2 — 2,)F(2)7!

corresponding

Example 4.2.10 Let us consider the following expression:

3 0.3z
F& = _1he-om

and compute the corresponding f(kT).
The inverse transform f(kT) of the function F(z) is:

FT) = sum of residues of |z (z- 1())(2Z_ 0.7) at z=1 and z=0.7
0.3z
kT) = = 1D)l=
J&T) (2 Dz 07)° (z=Dl=1 +
0.3z k—1
= 0.7)|;=
(- Dz 0.7)° (z Nz=07
0.3z 0.3z

f&kT) = =1 + =07 = 1= (0.7)*
z—1

z—0.7

Example 4.2.11 As another example of how to compute the residue for an
expression that contains multiple poles, let us consider the following expression:

0.52

F& = _1ee—os)

and compute the corresponding f(kT).
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The inverse transform f(kT) of the function F(z) is:

T = sum afresiducs of [Zk_l (z- 1())2?52_ 0.5) at z=1 and z=0.5
ki1
e _1 Hrt 51 [(z - (1);(12 _05)%” 1)2]
[(z - ?)gij—l 05" 0‘5)] le=05
FUT) = [0'5(" * 1)1(2(1_ . (;)52) -0
[(z - (1))2?—1 05" 0‘5)} le=05
ary < 0505 sy

1—05 o)y

In order to understand well the 2°-transform, let us see how the complex s-plane
is transformed. Based on the definition of the 2 -transform, the main relationship
between the s-plane and the z-plane is given by z = ¢*T. This expression gives the
mapping, called M of the s-plane into the z-plane. Therefore for any s in the s-plane
we get the following point in the z-plane:

M(s) = e'T = corresponding value in z

Let M~! be the inverse transform, such as s = } Inz. Usually, s = 0 + jw and
T = 3)” is the sampling period. Using these relations we get:

2r 0y 27w

M(s) = M(o + jw) = T = (T 0 = pur otV u
M(s) =|M|le**

M(s) = [magnitude] otlangle]

Example 4.2.12 Let us assume that o = 0, i.e. all the roots are on the imaginary
axis in the s-plane, and let us change w from 0 to ;. The corresponding roots in the
z-plane are given by:

;21w

i=e€

- 21w

Table 4.2 Poles in the z-plane using z = ¢’ s

w corresponding poles

0 z1=1

@z =eli =cos + jsin} =0.707 + j0.707
o z3=e/2 =cos? + jsin = jl

s 74 =€ =cosm+ jsinm= -1
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When o is fixed, o = 0, and making varying w from 0 to %’, we notice that the
corresponding variable follows a half-circle of radius 1. This is shown in Fig.

Re 0.)5/2 Re

Fig. 4.5 Transformation of the s-plane into z-plane

When o is fixed but not equal to zero, i.e.: o # 0, then the radius of the circle
is R = e°T. All the roots belong to the straight line w = 0 corresponding to an
aperiodic response or oscillatory response. For all the other roots on the circle, the
response is oscillatory.

A Im
D
# ¢
\607’
s line of
—~ w=0
R,

Fig. 4.6 Transformation of the s-plane when the real part is constant

For the resolution purposes, we will be interested to get the solution of a given
difference equation for a fixed input. To obtain such solution we proceed as follows:
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e we find the Z-transform
e we take the inverse 2 -transform to find y(kT)
To illustrate this we consider the following example.
Example 4.2.13 In this example, we consider the Fibonacci equation:
yk+2) =yk+1)+ y(k) with y(0) = y(1) = 1
The & -transform of the Fibonacci equation is:
2Y(2) = 22¥(0) = 2x(1) = 2¥(2) = 29(0) + Y (2)
that gives in turn:

Z2

-z z
Y@ = 0) + 1
@ =, "o+,
The roots of the characteristic equation are solution of the following equation:
F-z-1=0
which gives:

V5

V5
z1 =05+ 5 andz; =05 - 5

Using for example the method of residues, we find:

(14 VSR — (1 = 5y
- 2k+1 \/5

Each time, we introduce a sampling in analog operations, the transfer function
should be transformed in the 2°-domain by:

y(k)

which corresponds to

The transformation s = } Inz is exact, but it is also difficult to implement in
practice. That’s the reason why we use two approximation methods:

o Numerical Integration
e Poles/zeros transforms

For numerical integration method care should taken when using it since we may
get an unstable system after transformation. To illustrate the numerical integration
approach, let us consider the following transfer function that represents a first order
system:

Yl _ a

Gls) = Uis) s+a

a>0
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which gives in time domain:

dy(1)
dt

f dfl(f) _ f (—ay() + au(t)

Integrating between 2 consecutive samples, i.e. from (k — 1)T to kT, we obtain:

+ ay(t) = au(t)

that gives in turn:

kT

YKT) = y((k = DT) = f f(odr

(k-DT
where f(¢) = —ay(t) + au(?).
In this last equation, the major problem is how to integrate the right-hand term?

o First numerical integration method: The approximation of the integral is taken
equal to the one of the area shown in the Fig. 4.7

f
© f(t)

(k-DT kT

Fig. 4.7 Forward integration

Based on Fig.[4.7] we get:
Y(kT) =y((k = DT) + T [—ay((k = DT) + au((k = 1)T)]
that gives in turn:
ykT) =y((k—DT)[1 -aT]+aTu((k— DT)
Using now the Z’-transform, we obtain:
Y(z) =z 'Y(@) [l -aT]+aTz'U(z)

Finally we get:

Yo alz' a

Ul 1-z'-al) '+a
Now if we compare the two transfer functions (in the s-domain and in the z-

domain), we conclude that the expression in z-domain is obtained from the one
in the s-domain by using the following transformation:

STor
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e Second numerical integration method: The approximation of the integral is
taken equal to the one of the area shown in the Fig. 4.8

fi
® 1)

/

(k-DT kT

\/

Fig. 4.8 Backward integration

Following the same steps as before and using now Fig.[4.8] we obtain:
Y(kT) = y((k = DT) + T [—ay(kT) + au(kT)]
that gives in turn in the z-domain:
Y(@) =z'Y(2) - aTY() +aTU(2)

From which we have:
Y(2) aT a

U 1+aT-z' Zlia

Comparing again the two transfer functions as we did previously, we obtain the
following transformation:
z—1

s =
zT

e Third numerical integration method: In the two previous schemas, we have
either underestimate or overestimate the area of the curve. Another alternate
consists of computing the average of these two approaches. Referring now to
the Fig. we obtain the following for the approximation of the integral is
that of the area shown in the figure.

YT) = y((k = DT) +

T
5 FKT) + f(tk = D))

fi
© f(t)

(k-DT kT

Fig. 4.9 Trapezoidal integration
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From this expression we get:

T T
Y@ =Y@+  F@+ , 7 F@)
Using now the expression of F(z), we obtain:

Y(z) =7 'Y(@)+ g [-aY(2) + aU(2)] + gz*I [-aY(2) + aU(z)]

that gives finally
Y(2) a

U0 " 3 ()

Proceeding as before we get the following transformation:

2 (z-1
s =
T\z+1
Example 4.2.14 Consider the following transfer function:

Y(s) 1 1

UG)  s2+04s+04  (s+0.2+ j0.6)(s +0.2— j0.6)

Our objective is to see the effect of the transformation we will use of the poles
of the system. First of all, let us determine the sampling period. Since we have a
second order, we have:

w, = V0.4 = 0.6325rad/s
which gives wy, = w,, and a proper choice for the sampling period is given by:
2
30w

For this purpose let us compute the poles using the previous transformation for
this system:

T =0.33s

e Using s = Z;l, the corresponding transfer function is:

T2
Z2+(-2+04T)z+1-0.4T +0.4T?
The poles of the system in the z-plane are: 71, = 0.9338 + 0.1987

G(2) =

e Using s = ”T_Zl the corresponding transfer function is:

TZ
G(z) =
(14+04T +04T2) 2+ (-2-04T)z+ 1

The poles of the system in the z-plane are: 71, = 0.9064 + 0.1689

2 z-1

o Using s = Torl?

the corresponding transfer function is:

0.25T2(z + 1)?

G =
@ (1+02T +0.172) 22 + (-2 +0.2T2) z+ 1 — 0.2T +0.172
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The poles of the system in the z-plane are: z;, = 0.9182 + 0.1845
e Using the transformation s = } Inz (z = eT*), the poles are 0.9175 + 0.1847.

As it can be seen from this example that the trapezoidal approximation is the
more close to the exact transformation since it gives almost the same poles. The
other approximations give different results. Therefore the stability and precision
should be tested before choosing a particular method.

As another approach that can be used to approximate the transfer function in
% - domain is what it is always referred in the literature to as the poles/zeros

transformation. It consists of doing the following steps:
e make all the poles of G(s) correspond to z = ¢~*T. That is, if s = —a, is a pole

in the s-domain, then G(z) will have a pole in the z-domain at 7 = ¢™7
o do the same thing for the zeros of G(s)

e place all the poles of G(s) corresponding to s = oo at z = —1. This means
adding (z+ 1), (z + 1)2, - - - to the numerator of G(z) such that the degree of the
numerator will be equal to the one of the denominator.

e make the gain of G(s) correspond to the one of G(z). This means that we must
do the following for that:

[G(S)] s=0 = [G(Z)]Z=1

Example 4.2.15 To show how this procedure works, let us consider the following
transfer function:

10
G(s) = .
©= G Ds+2)
The poles of this transfer function are s; = —1 and s, = —2. Their corresponding
poles are respectively 71 = e T and 7o = e7?T. If we fix the sampling period to

T = 0.02s, then these poles becomes z; = 0.9802 and 7o = 0.9608.

Since the denominator is of degree 2, then the numerator also should be of degree
2. To do that, we add to the numerator the term (z + 1)

The gain is then calculated by:

10 [ @+ 1)
(s+D(s+2)] (z-0. 9802)(z 0.9608) |._,

=Ko. 285)(0 487)

which gives:
K =0.0019
Finally the transfer function in the % -domain is given by:

G o 001G+ 1)
9 = (2= 0.9802)(z - 0.9608)
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As another approach, it is possible to derive G(z) from G(s) = ggg when D(s)

has distinct roots. This can be computed using the following formula:

P
N(x,) z
G(z) =
() 24 () 2 - enT

with D’ (x,) = 9P|=y, forn =1,2,3,---,p

Example 4.2.16 To show the idea how to get a G(z) from a G(s) with a denominator
that has distinct roots, let us consider the following transfer function:

1 1
(s+a)s+b) s>+ (a+b)s+ab

G(s) =
The denominator and the numerator of this transfer function are given by:
D(s) =(s+a)s+D)
N(s) =1
The denominator derivative with respect to s is given by:
D'(s)=2s+(a+b)
The values of the derivatives at the two roots are:
D'(xy=-a)=b-a
D'(x» = -b) = —(b—-a)
Using this and the previous formula, we get:

GQ) = 1 z 1 z 1 [ z 0z
T b-—az—-eT b-az-etT  \b-—a)lz—eT z—¢tT

4.3 Transfer Function Concept

The concept of transfer function for sampled systems can be defined similarly as it
has been done for continuous-time one. To clarify this, let us refer to the Fig. [£.10]
where the upstream sampler is a real one while the downstream one is a fictitious
that we assume to be ideals and synchronized at the same sampling period. The
second sampler is introduced for the purpose to define Y(z) and therefore define
properly the pulse transfer function. Based on the Fig. we get:

Y(s) = G(s)U*(s)
Since the output is sampled by the fictitious sampler, we can then have:
Y*(s) = [Gs)U*(s)]|"
= G*(s)U*(s)
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U U Y Y*
(s) — (s) - (s) . (s)

U(z) =% Y (zi
[N

Fig. 4.10 Pulse transfer function definition

and if we apply the Z-transform, we obtain:
Y(2) =G@UR)
where Y(z) = Z[Y*(s)] and U(z) = Z [U*(s)].

95

This relation can be proved in an elegant way starting from the time domain. In

fact, we have:
W =27 [GHU*(9)]

Using now the convolution theorem, we get:

o = fo gt — o™ (o)do

From the other side we know that u* (o) can be written as follows:

00

u* (o) = Z u(kT)8(t — kT)

k=0

Using this, the expression of y(¢) becomes:

= - kT)o(t — kT)d
() Lﬂt®ZM)O dor

k=0

=Z f gt — OKkT)o(t — kT)dor
k=0 0

= Z g(t — kT)u(kT)
k=0

Using now the definition of the 2 -transform of the sampled signal y*(r) we have:

Y@ = ykDt
k=0

00 e}

- Z Z g(kT — IT)u(IT)

k=0 L =0

—k
Z




96 4. Analysis Based on Transfer Function

Performing the change of variable, m = k — [, we get:

Y(2) = i i [g(mT)ulT)] 2™

m=0 [=0

that can be rewritten as follows:

Y() =) gmT)"
m=0

=G(U(z)

Z u(T)z™
=0

Finally, the transfer function is given by:

Y
G(2) = U((ZZ))

which is the ratio between the 2 -transform of the output and 2 -transform of the
input .

When manipulating the block diagrams of sampled systems, care should be taken.
The following relations will help for this purpose.

o If Y(s) = G(s)U(s), then

Y(z) = Z[Y'(5)] = Z[I[GHU)]'] # Z[G*(5)U" ()] = G()U(2).
o If Y(s) = G(s)U*(s), then

Y(2) = Z[YV'(9)] = Z[[GHU (5)]'] = Z[G(9)U"(5)] = G()U(2).

Example 4.3.1 In this example we consider the system of the Fig. that repre-
sents two systems in serial with an ideal sampler between. The expression of the two
transfer functions are:

1
Gils) = s+a

a
Ga(s) = s(s+a)

Our goal is to compute the equivalent transfer function for this system.

U(s) - U*(s)- X(s) ] - X*(s) m. Y(s) ] _ Y*(s)
U X Y
(2) =W1 . (2) o e (z)=

Fig. 4.11 Cascade transfer functions with sampler between

A
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Based on this figure, we get:
Y(s) =G5(5)X"(s)
X*(s) =Gi()U(s)
which gives:
Y'(5) = G5()G(HU(s)

that implies in turn:

Y(z) _
UG - G1(2)G2(2)
Using the table of 2 -transform, we have:
Y(z) 3 z Z(1—e™T)
v RO ey - e
Z2(1 _ e—aT)

S @-DE-e Ty
Example 4.3.2 In this example we consider the situation where the sample is re-
moved between the two transfer function in serial. This situation is illustrated by

the Fig. The transfer function G((s) and G,(s) are given by the following
expression:

G _a

i) = s+a
a

Ga(s) = s(s+a)

where a is a positive scalar.

Our goal is to compute the equivalent transfer function and compare it with the
one obtained in the previous example.

U(s) _ U*(s) N X(s) . ol Y(s) ] Y*(s)

Fig. 4.12 Cascade transfer functions without sampler between

In this case we have:
Yi(s) _ .
UrGs) [G1(5)Ga(9)]

that gives in turn
Y*(s)
U*(s)
It is important to notice that the equivalent transfer function we obtain for this
case is different from the one we obtained for the system of the previous example.

= Z[G1(5)G2(s)] = G1G»(2)
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Using the expression of G1(s) and G,(s), we get:

2

G1(5)Ga(s) =

1()G2(s) SGs + a)?
Based on the table of % -transform, we have:

z z zaTe T

1—1 z—eaT (z—eaT)?

Example 4.3.3 In this example we consider the case where we have transfer func-
tions in feedback and we search to compute the equivalent one as we did in the
previous examples. The system is illustrated by the Fig. The transfer functions
are given by the following expression:

Z1G1(9)G2(s)] = G1Ga(2) =

UGs) _ U*(s)

Fig. 4.13 Transfer functions in feedback

Based on this figure we have:
A =H()Y(s)
B =[A]" = [H()Y'(9)]" = H'(5)Y"(s)
E =U(s)-B=U"(s)— H(s)Y"(s)
Y(s) =G(9)[U"(s) - H' ()Y ()]
that gives in turn:
Y*(s) = [Y()]" = [G(s) [U"(s) = H' ()Y (5)]]" = G"(5) [U"(5) = H"(5)Y"(5)]
From this we get:
Y(s) G*(s)
U*(s) 1+G*(s)H*(s)
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That gives the following pulse transfer function:

Y@ G()
Uz 1+G()H(2)
From the table of % -transform we get:

Z(l _ e—at)

G(z) =

@ = = e e)
HG) = °
z—1
Using this we obtain:
(1-e7)
Yo) G :

(z=1)(z—eT)
Uz 1+G@HGR dle )
(Z) (Z) (Z) 1+ (=1)(z—e~T) (Zfl)
(1-eTz(z - D)(z—e™T)

(z—=1?(z—e ) +22(1 —e™T)

Example 4.3.4 As a second example of the previous case let us consider the system

of the Fig. The question is how to compute the pulse transfer function F(z) =
ég; of this system.

Fig. 4.14 Transfer functions in feedback

Since (see the table for % -transform)

G(z) = ,@f[si 1] = and HQ)= ffm =7
we get the following expression for the closed-loop pulse transfer function:
Y(2) _ G(2) _ 2(z-1)
Uz 1+G@H@E@ @-eNz-1)+2?

Example 4.3.5 In this example the system represented by the Fig. i Idwhere a zero
order hold (ZOH) is used.

1. Find the open loop and closed loop pulse transfer functions [Y/((ZZ))
2. Find the unit-step response if K = 1 for T = 0.1
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U Y
(s) , T/ —_— (s)

Fig. 4.15 Transfer functions in feedback

The solution of this example can be obtained easily. In fact we have:
e Open loop:
Y(s) K 5T
=" (1=¢*
U(s) 52 (I=e™)
From which we have:
Yz = KTz z-1 KT

U@ -1? z  z-1
Finally we obtain:

KT
Y(z) = U(z)
z—1
e Closed loop:
KT/(z-1) KT b4
Y = =
@=" o VO= __kmy-i

z-1

Using the method of residues for zy = 1 and zo = 1 — KT, and the fact that
K =1, we find:

ykT) =1-(1-T) pour k=0,1,2,3,--
Ifwe use T = 0.1s, we get:
y(k) =1-0.9%

Example 4.3.6 Let us consider the system of the Fig.[d_ 16 and compute the transfer
function.

Using this figure, we have:
E(s) =R(s)—H(s)Y(s)
Y(s) = G()E™(s)
which gives in turn:
E*(s) =R*(s) - [H(9)Y(s)]"
Y*(s) = G*()E*(s)
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Y(2)

Fig. 4.16 Transfer functions in feedback

Using the % -transform, we obtain:
G(2)R(z)
Y =
@ =1 6H0)

Example 4.3.7 Let us consider the system of the Fig. d_17land compute the transfer
function.

Fig. 4.17 Transfer functions in feedback

Using this figure, we have:
E(s) =R(s)— H(s)Y*(s)
Y(s) = G(s)E*(s)
which gives in turn:
E*(s) = R*(s) — H*(s)Y*(s)
Y*(s) = G*(5)E*(s)
Using now the % -transform, we obtain:

_ G@)R(@©
Y@ =1 L eoHe

Example 4.3.8 Let us consider the dynamical system of the block diagram
illustrated by Fig.

_ RG()
Yo = 1+ HG(2)
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Y(@)

Fig. 4.18 Transfer functions in feedback

R(s) Y(2)

Fig. 4.19 Transfer functions in feedback

Example 4.3.9 Let us consider the system of the block diagram of the figure
and compute the transfer function.

G2(2)RG1(2)
Y(z) =
1+G1G2H(2)
Example 4.3.10 Let us consider the system of the block diagram of the figure .20
and compute the transfer function.

R(s) Y(s) Y(2)
o—>»

H(s
Fig. 4.20 Transfer functions in feedback
Using this figure, we have:

E(s) =R(s)—H(s)Y(s)
Y(s) =[G()E(s)]
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which gives in turn:

Y*(s) =[IR(s) - H®Y(5) Gi(s)]*]” Gals)
Using now the & -transform, we obtain:

YG) = G1(2)G2(2)R(z)
1+ G1(2)G2(2)H(2)

Based on these examples, we are always able to compute the transfer function of
the system and its expression is given by:

_ Y@

U2
where Y(z) and U(z) are respectively the 2 -transform of the output Y(s) and the
input U(s).

This transfer function is always in the following form:
_N®@

D(z)

bpZ" + by 12"+ -+ b1z + by

a1+ +aiz+ag

G(2)

G(2)

where a; and b; are real scalars and n is an integer representing the degree of the
system.

The roots of the polynomials N(z) and D(z), i.e.: the solutions of the following
equations:

N =0
D(z) =0

are called respectively zeros and poles of the system.

The poles play an important role in the system response. Their location is very
important and it related to the system performances like the stability, the transient
regime, etc. as it will be shown later on.

Example 4.3.11 Let us consider a dynamical system with the following transfer
function:

_ N@@

- D(2)

2 -z+0.02

T B3 -242+7-04

G(2)

Compute the poles and zeros of the system and plot them in the z-domain.
From the expression of the transfer function we have:

N@) =2 —z+0.02
D) =2 -247 +2-04=(:-2)( - 04z+02)
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The roots of this polynomials are 0.1 + 0.1 for the zeros and 2 and 0.2 + 0.4 j for
the poles. The zeros are all inside the unit circle. The complex poles are also inside
the unit circle while the real one is outside this circle.

We have introduced the concept of transfer function and we have learnt how to
manipulate the block diagrams. It is now time to compute the time response of the
system for given signal inputs. This is the subject of the next section.

4.4 Time Response and Its Computation

More often, the control system has to guarantee certain performances such as:
o the settling time at a given percentage
o the overshoot
o the damping ratio
e ctc.

For time definitions we ask the reader to look to the Fig.[£.2]l To have an idea
on the concept of the settling time, the overshoot, etc., let us consider a linear time
invariant system with an input (f) and an output y(¢). If we apply a step function at
the input, the output of this system will be as shown in Fig. E.21] From this figure,
it can be seen that the settling time is defined as the time for the system response,
y(#) to reach the error band (that is defined with a certain percentage, 2 %, 5 %, etc.)
and stay for the rest of the time. The lower the percentage is, the longer the settling
time will be.

The overshoot is another characteristic of the time response of a given system.
If we refer to the previous figure, the overshoot is defined as the maximum exceed
of the steady state value of the system output. More often, we use the percentage
overshoot, which is defined as the maximum value of the output minus the step value
divided by the step value.

The error is also another characteristic of the output behavior. It is defined as the
difference between the steady value taken by the output and the desired value. For a
closed-loop system with a unity feedback, the error, E(z), is defined mathematically
as:

E(@) =R(2)-Y()

where R(z) is the reference input and Y(z) is the output.

Previously we developed tools that can be used to compute the expression in
time of a given signal. Here we will use this to compute the time response of a given
system to a chosen input that may be one or a combination of the following signals:

e Dirac impulse
o step

e ramp
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Fig. 4.21 Behavior of the time response for a step input

To compute the time response let us consider a system which has a pulse transfer
function G(z) with a given input signal, U(z), and consider the computation of the
expression of y(kT'). The system is represented in Fig. This figure may repre-
sent either an open loop pulse transfer function or its equivalent closed-loop pulse
transfer function that we get after simplifying the system block diagram.

From this figure, we get:

Y(2) = GQU(~2)

The computation of time response, y(kT'), is brought to the computation of the
inverse 2 -transform that be can be determined using one of the following methods:
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U(z) =% Y(zi
[N

Fig. 4.22 Block diagram (BD)

e expansion into partial fraction
e polynomial division
e residues method
To illustrate how the time response, let us consider the following examples.

Example 4.4.1 In this example we consider the speed control of a dc motor driving
via a gear a given mechanical load. We assume that the system is controlled using
a microcontroller. The transfer function of the system is given by:

G(s) =
(s) s+ 1
withK =2 and 7t = 2.

The system is considered in open-loop. In this case since we have the presence of
a ZOH, we obtain:
2

G@) = (1 _Zl)g[s(2s+ 1)

Using the % -transform table, we get:

where T is the sampling period.
For our system, since the time constant is equal to 2sec, a proper choice for the
sampling period is T = 0.2sec. Using this, we get:

0.0952
G =
@ = 09048
If now we consider that the signal input is unit step, we get
0.0952¢
Y(2) =

(z—1)(z—0.9048)

To compute the time response either we can use the table or proceed with the
expansion into partial fraction.
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Using the % -transform table, we have:
y(kT) =1- e

With the expansion into partial fraction we obtain:

Y@ 0.0952
z (z=1)(z—0.9048)
_ K, N K>
z—1 " z-0.9048
1 -1

z—1 i z—0.9048
From this we get:

. -z
z—=1 z-0.9048

Using now the % -transform table, we get:

Y(z) =

ykT) =1—¢ M
since e %' = 0.9048.

Example 4.4.2 [n this example we consider the position control of a dc motor driv-
ing via a gear a given mechanical load. We assume that the system is controlled
using a microcontroller. The transfer function of the system is given by:

G(s) = K
() = s(ts+ 1)

with K =2andt = 2.
The system is considered in open-loop. In this case since we have the presence of
a ZOH, we obtain:
2
s2(2s+1)

Gy =(1-7") ff[
Using the % -transform table with T = 0.2second, we get:

Tz z (l —e2 ) }
z-17 05@:- l)(z— e‘g)
(0.40487 — 0.5476)
T 0.5z 1)(z - 0.9048)

If now we consider that the signal input is unit step, we get
7(z—1.3528)
@—1)° (z - 0.9048)

To compute the time response either we can use the % -transform table or proceed
with the method of expansion into partial fraction or with the method of residues.

Gk =(1-2")

Y(z) =0.8096
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Using the % -transform table, we get:
1
Y(T) = kT = [1- ™|
a
witha=05andT = 0.2

With the method expansion into partial fraction we have:

— K, K K;
o= (z- 1) * (z—-1 " (z—0.9048)

With the method of residues, we obtain:

—1.3528) !
YUT) = residues of 0.8096 2@ ) 3528)z
(z - 1)? (z - 0.9048)

at the poles 7 = 1 and z = 0.9048.
These residues are computed as follows:

e residue at pole z = 1

L , 7(z—1.3528) ¢! }
2= 1)20.8096

2-D!dz [( ) (z= 1% (z - 0.9048) Lot

_d (z-1.3528)F

= dz [08096 (z —0.9048) :|11

=119.0464 — 2.9568k

o residue at pole z = 0.9048

[0.8096
(z-1)7°

= —40.0198 (0.9048)"

(z— 1.3528)zk]
|2=0.9048

Using now the table we get:
y(kT) =1 - 0t
since ¢! = 0.9048.

From the time response we computed in the previous section, it can be seen that
for a given system the output can take either finite or infinite value for a given signal
signal input. The question is why this happen. The answer of this question is given
by the stability analysis and this will be covered in the next section.

4.5 Stability and Steady-State Error

For systems in the continuous-time domain, the stability implies that all the poles
must have negative real parts. With the transform z = e, with T is the sampling
period, we saw that the left half plane of the s-domain corresponds to the inside unit
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circle and therefore, in the z-domain, the system will be stable if all the poles are
inside this unit circle.

To analyze the stability of discrete-time systems, let us consider the system of the
Fig. The closed loop transfer function of this system is given by:
Y@ CG[R

R(z) 1+C@G{R)
where R(z) and Y(z) are respectively the input and the output.

The poles of the system are the solution of the following characteristic equation:

1+C()G(iz)=0

F(2)

The study of stability requires the computation of these roots. For small order
system we can always solve the characteristic equation by hand and then obtain the
poles and the conclusion on stability will be done based on the fact where the poles
are located. For high order this approach is not recommended and an alternate is
needed. Some criterions have been developed to study the stability. Among these
criterions we quote the one of Jury and the one of Raible.

+
R(z) W> G(2) T Y(2)

Fig. 4.23 Block diagram of the closed-loop

Let z = ¢*T with s = 0 + jw. Therefore,

if o < 0 then |z| < 1 and the system is stable
if o > 0 then [z] > 1 and the system is unstable
if o = 0 then |z] = 1 and the system is at the limit of stability

Example 4.5.1 Let us consider a dynamical system with the following characteris-
tic equation:

The roots of the characteristic equation are: 7 = é and 7 = }‘. These roots are
located inside the unit circle and therefore the system is stable.

Example 4.5.2 Let us consider a dynamical system with the following characteris-
tic equation:

5
1-277"+ 41_2 =0
or equivalently:

5
2
-2z+ =0
Z Tty
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The roots of the system are 71, = 1 + _]é and are both outside the unit circle which
implies that the system is unstable.

A direct approach to study the stability of discrete-time system is to convert it
to an equivalent continuous-time one, and then use the Routh-Hurwitz’s Criterion.
The idea is to find an adequate application that maps the inside of the unit circle
onto the left-hand half plane. Then, we can apply the Routh-Hurwitz criterion. The
transformation we’re looking for is:

1+w

= withw # 1
1-w

Z

Replacing z by this expression in the characteristic equation will give a new one
in w and we can apply the Routh-Hurwitz’s Criterion.

Example 4.5.3 To show how we use the Routh-Hurwitz’s Criterion, let us consider
the dynamical system with the following characteristic equation:

22472 4+7-04=0

It can be shown that the poles are 2 and 0.2 + 0.4]. Therefore the system is
unstable.

Let us now replace z by '*"

1-w

3

in the characteristic equation. This gives:

2

1+w 1+w 1+w

-04=0

1-w 1-w 1-w

which can be put in the following form:
4.8w* +32w* + 0.8w - 0.8 =0

The Routh-Hurwitz’s Criterion consists then of filling the following table:

w48 08 0
w?32 —080
wh2 0

w® —0.8

Based on the first column, we can see that there one change in the sign and
therefore the system is unstable. This confirm the results we has already remarked
earlier.

It is also important to notice that the roots of the characteristic equation in w are
given by:

wp =0.3333
wz3 = —0.5000 £ 0.5000;

z-1

These roots can also be obtained from the ones in z-domain using w = 7_|.

Example 4.5.4 Consider the characteristic equation:

2 +2(6.32K — 1.368) + 0.368 =0
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Applying the bilinear transform yields:

1 21
Y T ) 6.32K - 1.368) + 0.368 = 0
1-w 1-w

that gives in turn:
w2[2.736 — 6.32K] + 1.264w + (632K - 1) =0
Applying Routh-Hurwitz gives:

w? 2.736 — 6.32K 6.32K — 1
w! 1.264 0
wd  6.32K-1

To guarantee the stability we should determine the range of the parameter K
such that we don’t have sign change in the first column. For the row w°, we should
have 6.32K — 1 > 0, i.e. K > 6.132 = 0.158. For the row w?, we should also have
2.736 - 6.32K > 0, i.e. K < 26'73326 = 0.4329. If we look to these two conditions, we
conclude that the system is stable for 0.158 < K < 0.4349.

To check this, let us consider K = 0.2, which is inside the interval. Using this

value, we obtain the following characteristic equation:
22— 0.104z+0.368 = 0

that has as roots z; = 0.052 + j0.6044 and z; = 0.052 — j0.6044. The roots are
located inside the unit circle and therefore, the system is then stable. For K = 1, we
obtain:

7 +4.9527+0.368 =0

The roots are 71 = —0.076 and 7z = —4.876. The system is then unstable because
|lzo| > 1.

For discrete-time Jury has developed a criterion that gives an idea on stability of
any system without solving the characteristic equation. To show how this approach
works, let us consider the following characteristic polynomial with real coefficients:

PR =an?' +an 12"+ +aiz+ap=0

where a,, > 0 and g; is a real scalar.
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Jury’s stability criterion consists of building the following array of coefficients:

row 1 ap ap az - Aupf -+ Adp—1 Ay
row?2 da, du_| Quo--* Qp -+ di do
row 3 b() bl b2 s bn—k s bn—l
row 4 bn_] bn_z bn_3 s bk e bo

row 5 co ¢ € - Cn-2

row 6 Cpnn Cpn_3 Cp—g =" * co

row?2n-5 pp p1 p2 PpP3
row 2n-4 p3 p> p1 po
row?2n-3 g0 q1 @2

The Jury’s array coeflicients are computed as follows:

by = |40 -k _| bo bu1k
ap, ax |’ bu-1 by |’
dk — Co Cp-2-k ,
Cpn-2 Ck
_ |Po P3 _|Po P
D=\ ps pol’ 2=\ ps p

The necessary and sufficient conditions that the system described by P(z) is stable
are:

P(1)>0

P(=1) >(0 ifniseven
<0 ifnisodd

|a0| <ap |b0| > |bn—1|

. . col > |en—a| |do| > |d,-
with (n - 1) constraints Ieol _|_"2| ol ._l."3|

g0l > Iq2]

Example 4.5.5 Examine the stability of the system described by the following
polynomial:

PR =2 +3327+3z+08=0
We form the Jury’s array of coefficients:

rowl. 0.8 3 33 1
row2. 1 33 3 0.8
row3. —=0.36 —0.9 -0.36 0
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ap a3 ao az ao a1 ao do

as as

b(): ’ - ’ - > -

as ap as aj asz ap

Since n = 3, then the following conditions should apply:
e P(1) must be positive: 1 +3.3 +3 + 0.8 = 8.1 > 0 which is true

o P(—1) must be negative becausen = 3 =isodd: -1 +3.3-3+0.8=0.1 >0
and this is false

e |ag| < ay, i.e: |0.8] < 1 which is true
o |bg| < |by-1l, i.e: 1-0.36| = |-0.36| which is false
One false condition is enough to conclude that the system is unstable.

Example 4.5.6 Let us consider a dynamical system with the following characteris-
tic equation:

Z

T K -04) =0

where K is a parameter to determine such that the system is stable.
This characteristic equation can be rewritten as follows:

Z+(K-14)z+04=0
Applying Jury criterion gives:
e P(1) > 0, which gives K > 0
o P(—1)> 0 which gives K < 2.8
o |ag| < ay, i.e: 0.4 < 1 which is true

Therefore, our system will be stable if K € 10,2.8[. For instance, if we fix K to 2,
which gives the following characteristic equation:

Z+0.62+04=0
the roots are 71, = —0.3000+0.5568 j which are inside the unit circle since |71 2| < 1.

Another criterion to study the stability bas been developed by Raible. This sta-
bility Criterion consists also as for the Jury criterion to fill an array and then
conclude on stability. To show how this criterion works, let us consider the following
characteristic equation:

PR) =ay + @+ + ap1z + ay

where q; is a real scalar.
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row 1 ap ap
row 2 a,  d,-y
(n—-1) _(n—1)
row 3 ay, a .-
row 4 aﬁl":]l) a;"_;l) .
row 2n-1 agl) a(ll)
(1) ()
row 2n a ag
row 2n+1 aﬁ)o)

- a

- ap-1 a, multiplier

an

- ay ao ap = 4
1 ..

- a" Y 0 multiplier
n=1 (1)
(n-1) 0 _

Ap-1 = (-1
0 Clo
multiplier
) = a(ll)
1= a:)n

e The 15! row is formed by the polynomial coefficients

e The 2" row is formed by the same coefficients but in the opposite order

e The 3™ row is obtained by multiplying the 2" row by a, = o, then by

subtracting the result of the 15t row

o The 4 row is formed by coefficients of the 31d row placed in the opposite

order.

These procedures are repeated until the array gets 2n + 1 rows. The last row

contains only one number.

Raible’s Stability Criterion

When ay > 0, the roots of the polynomial are all inside the unit circle if and only if

ay >0,i=0,1,---,n—1

The coeflicients ag) >0,i=0,1,---,n— 1 appear in the Raible’s array .

Remark 4.5.1 The assumption ay > 0 is not restrictive. In fact, when ay < 0, it is
enough to change the signs of all coefficients of the polynomial P(z) to obtain —P(z),
which in turn is used for Raible’s criterion.

This procedure is correct since the roots of P(z) and of —P(z) are identical.

Example 4.5.7 To show how the Raible’s criterion works, let us consider the

following characteristic equation:

P(z) = -2 - 0772 -0.5z+0.3
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The coefficient ay must be positive, then we form the coefficient array of the
polynomial —P(z) = 2> + 0.7z + 0.5z - 0.3

1 07 05 -03
0305 07 1 a3=%=-03

0.91 0.85 0.71
0.71 0.85 0.91 @y =031 =078
0.36 0.19
0.19 0.36 ar = 030 =0.53
0.26

The system is stable because ag) >0,i=0,1,---,n—-1

We have presented some techniques to study the stability of discrete-time sys-
tems. It is also important to notice that we can also apply the criterions in the
frequency domain.

4.6 Root Locus Technique

The root locus technique is a powerful approach that is usually used for continuous-
time or discrete-time systems either for analysis or design. The technique gives an
idea on how the poles of the closed-loop dynamics behave when a gain or more (a
parameter or more) are changed. The direct conclusion is that we know immedi-
ately how the stability and the other performances of the system are affected by the
parameters changes.

Nowadays there exist many tools to plot the root loci of any dynamical system
some of them are available free for use. In the rest of this section, we will use Matlab
for our plotting but we will develop rules of how obtain a sketch of the root locus in
case we don’t have a computer at hand.

As for the continuous case, the root locus for the discrete system is described by
the characteristic equation that we write in the following form:

1+KG() =0
where K is the parameter that varies and

_(z=m)(z-n2)- - (z—nw)
6= z-z)z—21) (2 —2zn)

with z1, 2, -+, 2, are the poles and ny,ny,--- ,n, are the zeros of the open loop
transfer function.

When the parameter K varies from O to infinity (co). The same rules as we use
for the plotting of the root locus of the continuous-time systems in the s-plane apply
to the plotting of the one of discrete-time systems in the z-plane, except that the
interpretation of the results is different mainly in regard of stability.
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From the characteristic equation, we get the following conditions:

TR G
= " (4.4)
K II_, |z -zl
m n
Dlargz-n) - ) argz—z) = Qk+ Drk=0,1,2,-,  (45)

i=1 i=1

The first condition is referred to as the magnitude condition while the second
is referred to as angle condition. Any point in the z-plane that satisfies these two
conditions belongs to the root locus of the system. To this point corresponds a gain
K, . If this point is z, then we have:

1 7, lz0 — nyl
Kzo HLI lzo — zil

m

D arg(zo—n) - ) arg(zo — 1) = 6o
j=1

i=1 i

where 6 is the corresponding angle of this point.

A point of the z-plane will belong to the root locus, if it satisfies these two condi-
tions. In general plotting the exact root locus for a given system is a hard task unless
we have the appropriate tools for that. More often a sketch of this root locus can be
easily obtained using some simple rules. Some of these rules are:

1. the number of branches is equal to the order of the system, i.e.: n;

2. the root locus is symmetric with respect to the real axis. This is due to the fact
that the roots of the characteristic equation are either real or complex. And if
there is a complex root, we have automatically its conjugate.

3. The loci originate from the poles of the open loop transfer function and termi-
nate on the zeros of the this transfer function. To explain why the loci originate
from the poles, we can make K equal to zero, while why the loci terminate on
the zeros can be explained by letting K goes to co in Eq. (4.4).

4. the number of asymptotes is equal to the difference between the number of
poles, n, and the number of zeros, m, of the open loop transfer function. These
asymptotes are characterized by:

5 = >, poles — > zeros
B n—m

B =Ck+1) " k=0,1,2,---,
n—m

The parameter, 9, gives the intersections of the asymptotes with the real axis,
while B, gives the angle that make each asymptote with the real axis.
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for the breakpoints of the root locus, firstly we determine the expression of the
varying parameters K, i.e.:

Bz -zl
I |z —
The breakpoints are solution of the following equation:

dK
=0
dz
It is important to select from the roots of this equation those are feasible solution

for the breakpoints.

. the intersection of the imaginary axis in the z-plane can be determined by

replacing z by jv in the characteristic equation and write it as follows:
RK,v) + jO(K,v) =0
that gives in turn two equations:
R(K,v) =0
J(K,v) =0

The solution gives the frequency at which the intersection occurs and the
corresponding gain.

the angle of departure from a complex pole or the angle of arrival to a complex
zero is computed using the angle condition. If the point at which we want to
calculate the angle is zp, the condition angle becomes:

m n

Z arg(zo — n;) — Z arg(zo — z;) — 6o = 180

i=1 i=1

where 6 is the corresponding angle of this point.

Example 4.6.1 To show how the technique of root locus works, let us consider the
system of the Fig. where the plant is the double integrator and the controller
is a proportional action with a gain K, that we will assume to change between zero
and infinity for some physical reasons like heating, aging, efc.

Using the Z -transform table and the expression of the closed-loop transfer

function we get the following characteristic equation of this system.:

(z+ 1) . k
1+K =0,with K =
+ (2 192 Wi )
Number of branches: n = 2
Finite number of branches: m = 1

Infinite number of branches: n —m=2-1=1

m(2k+1) — m(2k+1) — ﬂ,k =0
n—m 2-1

Angle of asymptotes: B =
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kT?(z+1)
2(z—1)?

Y(s)

@+l _

Fig. 4.24 BD of the system with characteristic eqn: 1 + K i =

o [ntersection of the asymptote with the real axis: 6 = (1)+(21_)I(71) =3
o [ntersection of the locus with the real axis: ng = 27% + 47— 6 = 0, which gives
1 = -1 etz = =3.

The root locus is illustrated in Fig. All the roots are outside the unit circle in
blue. The system is unstable. THis means that a proportional controller is not able
to stabilize a double integrator.

stable R,
1 (double)

Fig. 4.25 RL of the system with characteristic eqn: 1 + K ((szll))z =0

Example 4.6.2 As a second example for the root locus technique let us consider the
system of the Fig.
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LY ISy o,
T=0.5 sec

Fig. 4.26 BD of the system with characteristic eqn: 1 + K __, 35 =0
The characteristic equation of this system is given by:
Z(1—eT) z
1+k =1+K =0
2(z—-1)(z—e2T) (z— 1)(z - 0.368)
with K = 0.316k
o Number of branches: n = 2.
o Finite Number of branches: m = 1.
o [nfinite Number of branchesn —m=2—-1= 1.
o Angle of asymptotes: B = "(3’_(;1) = "%’31) =
o [ntersection of the locus with the real axis: ddK = —72+0.368 = 0. The resolution

of this equations gives: 71 = —0.606 et z, = f|-0.606.

If we replace z by —1 in the characteristic equation, we find:
K ¢ =1+K =D =
(z—-1(z—-0.368) (-1 -=1)(-1-0.368)

which implies in turn:

1+

K =2.738
K =0.316k
which gives:
K 2.738
= 0316~ 0316~ >0

The root locus is drawn in Fig. All the the roots are inside the unit circle in
blue. Therefore, the system is stable for all gains k < 8.65.

4.7 Bode Plot Technique

The frequency response plays an important role in the analysis and design of
continuous-time and discrete-time systems. As for the time response, the frequency
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A

I m

instable instable

stable

unit circle

Fig. 4.27 RL of the system with characteristic eqn: 1 + K (fo_ 0368) = 0

response consists of exciting the system by a sinusoidal input. In the continuous-
time system, it was proven that for a sinusoidal input, the output of the a stable
linear system is sinusoidal with same frequency of the input, and the magnitude and
the phase of the output are function of this frequency. For discrete-time system, the
output is also sinusoidal with the same frequency as the input signal and the phase
and the magnitude are still function of this frequency. To show this, let us consider
a stable linear system with the following transfer function:

_ Y(Z) _ bmzm + anZ'"_l +o+ b1Z + bO

G(z) = =
@ R(2) '+ a2V 4 aiz+ ag
I (z = my)
H?:l(z _Zi)

Let the input r(¢) has the following expression:
r(t) = sin(wt)

where w is the frequency of the input. The magnitude is taken here equal to one.
The Z -transform of this signal is given by (see Z’-transform table):

z sin(wt) B zsin(wT)
2 = 2zcostwt) + 1~ (z— e M) (z — eMT)

R(z) =

Now if we consider that the system is excited by R(z) the corresponding output,
Y(z) is given by:

Y(2) = G(2R(2)

T2 @ = mi) zsin(wT)
H;’:I(Z - Zi) (Z - €_j‘VT) (Z — eij)
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To get the expression of the output, let us proceed with a partial fraction of Y(z).
This gives:

cz cz
+ terms due to G(z)

Y(z) = —_— .
(Z) 7 — e~ wT 7 — ewT

Let s now multiply both sides this equality by (Z—e;/’w’l')

sinwT ¢ (Z - e_]WT) (Z - e_']WT)
. =c .
(Z _ eij) 7 — ewT

to get the following:

G(2) } terms due to G(z)

Z

where

c = [G(Z)

(Z _ eij)

¢ = conjugate of ¢

sinwT) ]
[y

Notice that e "7 = cos —wT + jsin—wT = coswT — jsinwT, which implies that

(Z - ejWT) = =2 jsinwT
[~y
Using this we get:
_ G(e="T)
=
_ G
Cc =
2j

Using now the fact that for any complex number we have:
G(e") = M(w)e”™

where M and 6 represent respectively the magnitude and the phase at the frequency
w.
The steady state, the terms due to G(z) vanish and we have:

G(e T z N G(eMy 2

Y@ = -2j z—e M 2j z—eMl
_ M(w) e Wy Wz
- 21 _Z — e~ T 7 — ewT

The % -transform inverse of Y(z) at the steady state is given by:
y(kT) = M(w) [0 eT — =i~ ]
2j
= M(w) [ej(Q(w)+wT) e j(9(w)+wT)]

2j
= M(w)sin (wT + 6(w))
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Remark 4.7.1 It is important to mention that the magnitude and the phase of the
output for a sinusoid input are both functions of its frequency. Therefore, their values
will change when the frequency changes.

A certain parallel can be made with frequency response of continuous time. In
fact, for these system, the frequency response can be obtained from the transfer
function, G(s) that describes the system by doing the following:

o the magnitude M(w) is given by:
M(w) = 1G(jw)|
e the phase O(w) is given by:
0(w) = arg (G(jw))

This means that the magnitude and the phase of the output at frequency w are
obtained from the transfer function of the system by replacing firstly s by jw
and then compute the magnitude and the phase using the previous formulas.

For the discrete time, the same reasoning applies except that we have to replace
z by e™T and use the following formulas:

o the magnitude M(w) is given by:
M(w) = |G(e™)|
o the phase O(w) is given by:
o(w) = arg(G(e""))

Some precautions have to be taken for the frequency response of discrete time
system. In fact, the % -transform is obtained by replacing z by e*. Therefore,
the primary and the complementary strips of the left hand side of the s-domain
are mapped to the interior of the unit circle in the z-domain. If we replace in
turn z by e™7 to get the frequency response of the discrete time system, the
result we will get has no sense since it deals with the entire z-plane. To avoid
this the following transformation is usually used:

- 1+ gw
l-Sw
which implies:
w= 2z-1
Tz+1

Using the Z -transform and and the w-transform respectively, the primary trip
of the left half of the s-plane is then transformed into the unit circle which in
turn transformed to the entire left half of the w-plane. More specifically, the
range of frequencies in the s-plane —“; < w < 0 is firstly transformed into the
unit circle in the z-plane, which in turn transformed into the entire left half of
the w-plane.
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Finally, it is important to notice the relationship between the frequencies w and
v. In fact, w is defined by:

2z-1
Tz+1
_ 2 M — ]
T TeT 41

Wype = JV=

T

lee

Multiplying the numerator and the denominator by e~ 7, we get:

Wi = JV
_ jz tan ( wT)
T 2
which gives the following relationship between w and v:

= 2tan(WT)
=7 2

At low frequencies, we have equality between these frequencies. In fact, when

w is low, we have tan(wzr) = sz, which gives w = v.

Based on this remark, the frequency response of the discrete time consists then
of replacing w by jv, with v is a fictitious frequency, in the new expression of the

transfer function obtained after replacingzby z =

frequency response can be plotted, let us consider the following example.

1+7w .
7,,- To have an idea on how the
2

Example 4.7.1 As a first example of the frequency response, let us consider the
system of the Fig. It represents the speed control of a load driven by a dc
motor. The controller is a proportional. The transfer function of the system and the
controller is given by:

Kk K

Gls) = ts+1  71s+1

U(s) ’ - 3 N Y(s)

Fig. 4.28 Speed control of mechanical part driven by a dc motor
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Firstly, let us compute the open loop transfer function of the system in Fig.
Since we have a ZOH we get:
K
G =(1- —sT
() ( ¢ )s(‘rs+1)

where K = K,k =2, 7 = 1s and T is the sampling period used for our system and it
is equal to 0.1s.
Using the Z -transform table we get:

-1 z(1-¢7)
7z @Z-D(-e")

(1)

Gk =K

(z—e")
01903
T 2-0.9048
Replacing now z by t?w = 100 we get:
Tw .05w
0.1903
G@ = | 05w
Fooow —0.9048
B 0.1903 (1 — 0.05w)
~0.0952 + 0.0952w
_ 1.9989 (1 — 0.05w)
1+w

Using Matlab, we can get the bode diagram of this transfer function as illustrated
by Fig.

4.8 Conclusions

This chapter covers the analysis tools based on the transfer function concept.
Mainly, we developed the techniques of how to compute the time response and
determine the system performances. We also presented the root locus and bode plot
techniques.

4.9 Problems

1. Compute the Z’-transform of the following signals:

(a) the unit step

(b) the unit ramp

(c) the unit exponential
(d) r(t) =t + sinwt

() 1—coswt
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Bode Diagram

Magnitude (dB)

315 o

Phase (deg)
N
~
o
T
1

225 al

180 1 I L i
107 107" 10° 10'
Frequency (rad/sec)

Fig. 4.29 Bode diagram of '#89(1~005)

I+w

2. Compute the expression of the signal in time of the following ones in z:
p p g g
aTl
(a) Y(Z) = (ZZir)z ) a > 0

Z(l—e“T)
(b) Y(Z) = (Z_l)(z_eﬂ:T), a> 0

(©) Y(Z)=bia[ —Zfe'w],a>0,b>0anda¢b

z7—edT

3. For the dynamical systems with the input u(¢) and the output y(f) with the
following dynamics:

25, §
o DI L DO _

;1[2 dt
o d};” +4P0 1+ 4y(t) = du(t)
. ddﬁg’) + 6d>"’) + 8y(t) = 8u(?)
d d? d
o 013 d’fi’) +2D0 =y (r)

(a) determine the sampling period T

(b) using the approximation methods determine the relationship between the
input U(z) and the output Y(z)

(c) determine the pulse transfer function for each dynamics

(d) using Matlab compute the step response of each dynamics
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(e) using now the zero-order-hold, determine the corresponding transfer func-
tion and compute the step response. Compare this response to the one of
the previous question

4. In this problem we consider the system of the Fig. [4.30] where the transfer
function of the system is given by:

10
(s+ 1)(s+10)

G(s) =

U(s)

Fig. 4.30 Transfer functions in feedback

(a) determine the sampling period that we can use for this system
(b) using this sampling period determine the open loop transfer function and
the closed-loop one
(c) determine the step response of the system
(d) plot the behavior of the output with respect to time
5. Study the stability of the dynamical systems with the following characteristic
equation:
(a) 2 +0.82% +0.17z+ 0.01
(b) z* + 1.42° + 0.65z% + 0.112z + 0.006
(c) 22 +2.39z% +2.0362° + 0.7555z> + 0.1169z + 0.0059
(d) 22+ 11.4z* + 14.65z% + 6.6120z + 1.126z + 0.06

6. In this problem we consider the dynamical system show in the block diagram
illustrated by the Fig. .31l The transfer functions are given by:

c(1-e7)
(=D (z—eT)

witha =0.1and 7 = 0.01
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+
R(2) C(2) > G(2) T» Y(2)

Fig. 4.31 Block diagram of the closed-loop

(a) study the stability in function of the gain K
(b) plot the root locus of the system and conclude on the stability
7. Consider the system of the Fig. with the following expression for G(s):
K
G(s) =
() s(ts+ 1)

with K is the gain and 7 = 1s is the time constant of the system.

o determine the sampling period
e compute the transfer function G(z)
e plot the root locus the system when the gain K varies between 0 and co

8. Consider the system of the Fig. with the following expression for G(s):

K
Gls) = s(ts+ 1)

with K = 10 is the gain and 7 = 0.1s is the time constant of the system.

o determine the sampling period
e compute the transfer function G(z)
e plot the Bode diagram of the system
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Design Based on Transfer Function

After reading this chapter the reader will:

1. master the concept of the design of classical controllers based on the
transfer function of the system

2. be able to choose the structure of the classical controller that responds
to the desired performances and determine its parameters

3. be familiar with the design of the proportional, proportional and
integral, proportional integral and derivative controllers and their
approximations

4. be able to determine the recurrent equation for the control law that we
must implement in the microcontroller

5.1 Introduction

Tackling a control design problem is always a challenge even for more experienced
control engineers. The system for which the controller must be designed, may be an
existing one with some poor performances and that we would like to improve, or
a new system that we are building. In both cases, the design procedure starts, after
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getting the mathematical model for the system, by defining the desired performances
that will allow us to determine the structure of the controller and its parameters.

More often the control systems are designed to guarantee certain performances
to the closed-loop dynamics of the system under consideration. Such performances
can be summarized to the stability and the behaviors of the transient and the steady
state regimes. By respecting the limitations of the given system, it is always the
case that we search to improve the transient regime by searching for a compromise
between the overshoot that the system may have and its rapidity. For the steady
state, we search to guarantee that the error is less than a certain chosen tolerance.
The controllers we will consider in this chapter to respond to the design require-
ments are classical ones like the proportional, integral and derivative actions and
their approximations.

The rest of the chapter is organized as follows. In Section 2, the control design
problem is formulated. Section 3 presents the empirical methods to design classical
controllers. In Section 4, the design of classical controllers using the root locus
method is developed. Section 5 presents the Bode method. Section 6 presents a case
study which consists of designing different controllers for the dc motor kit.

5.2 Formulation of the Control Design Problem

In this chapter we will consider an existing system with poor performances that
we would like to improve. Our desire is to act simultaneously on the transient
and steady state regimes by introducing a controller in the closed-loop to force the
overall system to behave as it is desired.

The performances may be given either in time or frequency domains. In both
domains, the stability is the first requirement in the design procedure. Beside the
stability, we would like the transient and the steady state regimes to behave in a
desirable ways.

In the time domain for the transient regime, we should control the overshoot, the
rising time and the settling time for a chosen percentage that will depend on the
precision we would like to guarantee to our system. For the steady state regime, we
would like to assure that the system’s error is less than a certain specified value.

In the frequency domain, the situation is similar except that the performances are
given in function of the stability of the closed-loop dynamics, the gain phase and
the margin phase, the bandwith, etc. In general, it is hard to establish a link between
the performances in the time domain and the ones in the frequency domain.

More specifically, the system under study is described by a transfer function that
can be obtained using the identification approach for instance. Let us denote by G(s)
this transfer function. This model must be determined in the first stage of the control
design. Then, from the performances and the expertise of the control engineer design
we can choose the structure of the controller that may respond properly to the design
goal. Then using the appropriate approach we can determine the controller gains.
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Therefore, the control design problem consists of determining:
o the structure of the controller
e and its parameters

using the desired performances and some heuristics approaches to force the closed-
loop dynamics with the chosen controller to behave as it is desirable. This approach
may require some refinement in practice due to different phenomena like neglected
dynamics.

The controllers we will consider in this chapter are the classical controllers re-
ferred in the literature to as the combination of the proportional (P), integral (I) and
derivative (D) actions and their approximations referred also to as phase lag, phase
lead and phase lead-lag. The transfer function of the controller will be denoted by
C(2). Once the controller is determined, the corresponding difference equation is
obtained and implemented in real time using an appropriate microcontroller. For
more detail on this topic, we refer the reader to the implementation part where this

is detailed.
+
R(2) »&%—» G() Y(2)

Fig. 5.1 Block diagram of the closed-loop

More often, the system’s performances are given in continuous-time since
it is more natural to do so. The design procedure can be done either in the
continuous-time or the discrete-time. Generally speaking, the design approach uses
the following steps:

o the performances are converted to poles
o the structure of the desired controller is chosen
e the controller parameters are determined using the desired poles

e some tunings of the controller’s parameters are done to compensate for the
discrepancy between the desired and the real behaviors that may result from
system’s zeros that are not considered in the design procedure.

It is important to notice that determination of the controller parameters can be
done either in the continuous-time or the discrete-time. In the continuous-time
case, the controller parameters are determined and after that the controller trans-
fer function is converted to discrete-time domain to get the difference equation that
we should implement in real time. For the discrete-time, the difference equation is
directly obtained and implemented.
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The design approach can be one of the following methods:
e Design based on empirical methods
e Design based on root locus method
e Design based on Bode plot method

In the rest of this chapter we will cover these methods and present some examples
to show how these techniques apply for real systems. Simulations results will be
used to show their validity. The design of the controller is done in continuous-time
and then the corresponding discrete-time version of the controller is obtained. The
methods developed in Boukas (see [1]]) are used in this chapter.

5.3 Design Based on Empirical Methods

The empirical methods are based on the work of Ziegler-Nichols. These methods
have the advantage over the other methods since they permit the design of the de-
sired controller even in the absence of the mathematical model of the system. The
Ziegler-Nichols methods are mainly based on the response of the dynamical system.
Ziegler-Nichols proposed methods that use the time response and others using the
frequency response. In the rest of this section we will cover these methods.

Let us first of all concentrate on the time response methods. In these methods,
we can handle systems that are stable and unstable in open loop. The first method
considers the case of stable system with no poles at the origin neither dominant
complex pair of poles. In this case, the step response is given by the one in Fig.
from which the parameters 7, 7 and k are determined directly and the Tab. is
used to fix the controller parameters directly. The corresponding expression of G(s)
is given by the following:

—Ts

e
G(s) _kTs+ 1

where k is the gain of the system, 7 is the rise time and 7 is the delay time.
The general expression for the controllers used by the Tab. is given by:

C(S) = Kp

1
1+ + T
T[S DS]

where Kp, Ty and T, are the controller parameters to be fixed using Tab.

Remark 5.3.1 It is important to notice that the Ziegler-Nichols method is applica-
ble only when the following holds:

0.15< ' <06
T
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The following procedure can be used to fix the controller parameter:
1. obtain the step response of the open loop system
determine the values of the parameters 7 and 7 from this time response

compute the controller parameters using Tab. [5.1]

Eal

compute the closed-loop transfer function and check if the performances are
obtained

5. adjust the parameters of the controller if necessary to obtain the desired
performances

Remark 5.3.2 Mostly the time response we will obtain using the controllers fixed
by Tab. 3.1 has an overshoot between 10 % and 60 % and an adjustment of the
controller parameters is always necessary.

(1)
R(s) Y(s) \ LT
»  G(s) [
°© A
L (D) o k
- T >
1
o v [ t

0 -

Fig. 5.2 Ziegler-Nichols methods: stable case

Table 5.1 Ziegler-Nichols methods: controller parameters

Controllers Parameters

P Kp="

PI Kp ="
T; =337

PID Kp="2
T[ =27
TD =0.57

Remark 5.3.3 The values of the gains, Kp is computed using k = 1. If it is not the

case, the controller gain, Kp has be to corrected by dividing the value of Tab.[3 1l by

. : _1or _iar
k. As an example, the gain in case of PID is Kp = "' instead of Kp = "
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Example 5.3.1 To show how this method works, let us consider a dynamical stable
system with step response as illustrated in Fig. [5.31 From this figure we get the
following parameters:

k =2
T =02
T =1

From these data, we conclude that the condition of the Ziegler-Nichols is satisfied
and therefore, we can use the Tab.[3. 1l to fix the desired controller.

Step Response

Amplitude

1 1 1 1
1 2 3 4 5 6
Time (sec)

Fig. 5.3 Step response of a stable dynamical system

If we opt for a PID, the parameters of this controller are given by:

Ky - 127 _ |,
T

T, =2r=04

Tp =0.57=0.1

The closed-loop dynamics with this controller is given by:

2Kp(TiTps? + Tis + De™™

F =
) = (T, Ts+Ty) + 2Kp(TyTps® + Trs + 1e=s
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Using the Padé approximation, i.e.:

e—TS — 1 - ;S
I+7s
we get:
P ZKP(T[TDSZ +Tis+ 1)(1 - ;S)
S =
() azs? + ars? +a;s+ap
with ay = 3T, [T = 2KpTp), ay = Ty [T + 5 +2Kp(Tp = D], a1 = [T, +2Kp(T; - )| and
ap = 2Kp.
The step response of the closed-loop dynamics with this controller is illustrated
by Fig. From this figure we can see that the overshoot is approximatively 20 %

and the other performances are acceptable.

Step Response

Amplitude

04 I I I I I I I
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time (sec)

Fig. 5.4 Step response of the closed-loop dynamics with a PID controller

Let us now consider the case of unstable systems in open loop. For this class
of systems, the approach consists of mounting the system with a PID controller
with 77 = oo and Tp = 0 and by varying the gain Kp to bring the closed loop
dynamics to the limit of stability (periodic oscillations). Let denote by Kp and T,
the corresponding gain and the corresponding period. Fig. gives an idea of such
set-up. Once these two parameters are determined the ones for the controllers can
be obtained using Tab.[5.21
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R(s) +

Y
O “

(a)

- Tc >
(b)

Fig. 5.5 Ziegler-Nichols: unstable case (a) and determination of T (b)

Table 5.2 Ziegler-Nichols method: case of unstable systems

Controllers Parameters

P Kp = OSKP

PI Kp = 045KP
T, = 0.83T,

PID Kp = 0.6Kp
T; =0.5T,
Tp =0.125T,

The following procedure can be used to fix the controller parameter:

1. mount the system in closed loop with 7; = oo and Tp = 0 and vary the pro-
portional gain of the controller, Kp till the time response gives oscillations as in

Fig.
2. determine the values of the parameters Kp and T.. from this time response
3. compute the controller parameters using Tab.[5.2]

4. compute the closed-loop transfer function and check if the performances are
obtained

5. adjust the parameters of the controller if necessary to obtain the desired
performances
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Example 5.3.2 To show how the Ziegler-Nichols method in case of unstable system
works, let us consider the following dynamical system:

1
G = 015+ 1025+ 1)

It is important to notice that this transfer function has a pole at the origin and
therefore, the first method will not work.
Now if we mount this system with a proportional controller, we get the following
characteristic equation:
! =0
s(0.1s+1)(0.2s+ 1)

The corresponding Routh Hurwitz table is given by:

1+Kp

$1 50
s* 15 50Kp
§! ISXS?;SOKP 0
SO Kp 0

The critical gain, Kp is given by Kp = 15. The corresponding complex poles are
solution of the following equation:

15s* + 50Kp = 0
which gives:
s =+jV50 = £7.0711j
The period T, is equal to V50.

If we choose a PID controller its parameters are given by:
Kp =0.6Kp =9
T; =0.5T.=0.4443
Tp =0.125T. = 0.1111

The closed-loop dynamics with this controller is given by:

Kp (T,T,)s2 +Tys + 1)

F(s) = 4 3 2
0.02T;s* + 0.3T;s3 + (T1 + KpT Tp) s* + KpTys + Kp

The step response of the closed-loop dynamics is illustrated by Fig.

To close this section let us see how we can design PID controllers (P, PI, PID)
using the Ziegler-Nichols frequency methods (these methods are mainly based on
the idea to assure for the closed-loop dynamics a margin phase between 45° and 50°
and gain margin greater than 8 db). For this purpose, let us assume that the dynamics
of the system in open loop is described by:

|
G(s) =k
() I (s + 1)
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Step Response

Amplitude

0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time (sec)

Fig. 5.6 Step response of the closed-loop dynamics with a PID controller

where k is the gain of the system and 7;,i = 1, -- - , n are the different constant time
of the system.
By defining Kp as the gain in open loop that assures the gain margin and the
phase margin, and 7! and 7? as follows:
v = max{ry, -7,

= max{{r, -, 1) - (7))

the controller parameters are fixed by Tab.[S3]. The expression of the PID controller
is given by:

(tls+ D(?s + 1)

Cls) =Kr (! +12)s

It is important to notice that the open transfer function is given by:

T(s) =C(s)G(s) 5.1
Kp  _ K ; —
. I(T:v ) = I s for P controller, with K = kKp
=] KK(TistD o K(Tis+l) for PI controller, with K = *&r

T ) TusIE (ris+1) T SITE (is+1) T;

kKp(T;Tps*+Tys+1) _ K(T;Tps*+Tis+1) . _ kKp
TSIl (rist1) = SIT (rist1) for PID controller, with K = T,

The following procedure can be used to design the appropriate controller using
the following steps:
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Table 5.3 Ziegler Nichols method in frequency domain

Controllers Parameters

P Kp=5r

PI Kp="7
T1 = ‘['1

PID Kp=FKr
T, = T{(+ 72
Tp ="

1. determine the open loop transfer function with the compensator as in[5.1]

2. plot the bode diagram for K = 1 and determine the gain Kp that gives the desired
phase margin and a gain margin greater than 8 db

3. determine the gain, Kp of the controller using:

Ii” fpr P controller
Kp = K’;(T’ fpr PI controller, with T; = 7!
KpT; 122

"' fpr PID controller, with 7; = 7! + 7%, Tp = o

4. check if the performances of the system are satisfied. In case of negative answer,
adjust the controller parameters to get such performances.

Example 5.3.3 To show how this method work let us consider the following
dynamical system:

4
G(s) = (0.1s + 1)(0.2s + 1)(0.55 + 1)

Our goal is to design a PID controller that provides the following performances:
1. stable system
2. margin phase between 45° and 50°
3. margin gain greater than 8 db

First of all following the step of the previous, we have:

L =05
2 =02

which gives:

T, =7'+72=05+02=0.7
2 _ 0.2x0.5

T =
b= 0.7

=0.1429
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The gain, Kp that gives the desired phase margin and gain margin greater than
8 db is given by:
Kp =3.8019
which gives the following gain for the PID controller:

_ KpT; _ 3.8019x 0.7 — 0.6653

Ke= "4 4

The transfer function of the closed-loop dynamics with this controller is given by:

kKPTDSZ + kaS + k,II,(IP

F(s) = i«
0.01s* +0.17s3 + (0.8 + KKpTp) s2 + (1 + kKp) s + ol

The step response of the closed-loop dynamics is illustrated by Fig.

Step Response

0.8 : b

Amplitude

0.6 b

0.2 bl

0 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

Fig. 5.7 Step response of the closed-loop dynamics with a PID controller

Remark 5.3.4 For the expression of the controller in the discrete-time and its an-
alytical expression of the recurrent equation for real-time implementation, we will
cover this in the next section.
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5.4 Design Based on Root Locus

The root locus technique is a powerful tool for analysis and design of control sys-
tems. In this section, we will use it to design a controller that will guarantee the
desired performances. The model of the system is supposed to be given in term of a
transfer function.

The root locus technique can be used to design the classical controllers. The
technique behind this method consists of choosing the controller gains that make
the loci passes through given poles that come from the performances. In the rest of
this section we will assume that the transfer function G(s) is given by the following
expression:

I (s +2)

SO = m s+ o

where k, —z; and —p; are respectively the gain, the zero and the pole of the system.
Let us firstly concentrate on the design of the proportional controller. Let its
transfer function be given by:

C(S) = Kp

where Kp is the gain of the controller to be determined.

As it is well known from basic control course, the proportional controller acts si-
multaneously on the transient and the steady state regimes but its capacity is limited.
It can reduce the error but never makes it equal to zero.

To compute the gain of the controller we will use the following procedure (see
Boukas [[1]]):

1. compute the characteristic equation of the closed-loop dynamics, i.e.: 1+K,G(s)
and let K = kK,

2. draw the root locus for K varying from O to infinity

3. determine the intersection between the loci and the line corresponding to the
desired damping ratio &, (cos 8 = &) and get the dominant pair of poles. Let s,
be the one with the positive imaginary part.

4. compute the gain K that gives the pole sy, then obtain the desired gain for the
proportional controller by:

I, [(sa + pi)l
KILL |(sq + zi)

Kp =

The lines that we should include in the control loop during the implementation
part are:

compute the system’s error, e
compute the control law using u = Kp*e
send the control and wait for the next interrupt
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Example 5.4.1 To illustrate this design approach, let us consider a physical system
that consists of a dc motor that drives a mechanical load that we would like to
control in position.

The transfer function of this system is given by the following expression:

k

Gls) = s(ts+ 1)

withk =5, and v = 1s.

From basic control theory, we can see that the system is unstable. Our desire is
to make it stable in the closed-loop with an overshoot less or equal to 5 % and a
steady state error equal to zero.

From basic control theory, a proportional controller is enough to reach our goal.
To obtain the controller gain, let us follow the steps of the precedent procedure. The
characteristic equation is:

1+K >
+ =
Ps(s+1)
Root Locus
0.8 : ; : ; ;
0.84 0.72 0.58 0.44 03 0.14
0.6 .
0.92
0.4 1
2 o 10.98 |
<
>
g 1 0.8 0.6 0.4 0.2
= orr
©
E
020008
—0.4/F
0.92
-06/
0.84 0.72 0.58 044 03 0.14
08 ‘ ‘ ‘ : ‘
2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2
Real Axis

Fig. 5.8 Root locus of s(x1+1)

The root locus of the closed-loop dynamics is given by Fig. E.8land from which
we get:

s = —0.5+ jO.5
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and the corresponding gain is K = 0.5. This gives the following gain for the
controller:
KP = 5 = 01

The behavior of the closed-loop dynamics is illustrated in Fig. The simulation
results show the efficiency of the designed controller. The closed-loop dynamics is
stable and the overshoot is less than 5 % as it is expected.

Step Response

1.4

1.2 ul

0.8 4
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0.5

Fig. 5.9 Step response of s(s+ 10,5

Remark 5.4.1 It is important to notice that the best setting time at 2 % that we can
get with this type of controller

4 4
w, 05
where { and w,, are respectively the damping ratio and the natural frequency of the
closed-loop dynamics. This can be checked from the Fig.[5.9

ty = = 8 sec

For the design of a proportional and integral controller the same technique can
be used. If we let the transfer function of this controller be as follows:
K 1 s+2z KI

C(s) = Kp + =K ,Z=
(s) P PSZKP

where the gains Kp and K; have to be determined.
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This controller may be used to act simultaneously on the transient and the steady
state regimes and therefore overcomes what the proportional controller alone can
not perform. Most often the proportional and integral controller is used to make the
error equal to zero for a step input and fix the overshoot and the settling time. The
following procedure can be used (see Boukas [[1]]):

1. with the damping ratio and the settling time values, we can determine the
dominant pole with the positive imaginary part, s4

2. using this pole and the angle condition, we can determine the angle of the
controller’s zero, i.e.:

m n+l

a:n—Z[(sd+z,-)+Zl(Sd+pi)

i=1 i=1
The value of the zero is then given by:

_ I(sa)
Lot tan(a)

with o = 2 if the settling is fixed at 5 %

3. plot the loci of
s+z L (s +2)
s I, (s + pi)
and determine the gain K that gives the pole s, using
I (sa + po)l
74 (s + 22)]

4. the controller gains are given by:

K
Kp =
K; =zKp

To obtain the corresponding discrete-time transfer function we can use one of the
approaches presented earlier. The third approach (trapezoidal method) is used here
and it consists of replacing s by % ;} , where T is the chosen sampling period. Using
this we get:

(KéT +Kp)z+ KéT —Kp
C) = o

This gives the relationship that links the control and the error at sample k:
Uy = Up—1 + aey + bey_; (52)

where a = KéT + Kpand b = KéT - Kp
The lines that we should include during the implementation in the control loop
are:
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compute the system’s error, e

compute the control law using the controller expression
save the present error and the present control

send the control and wait for the next interrupt

Example 5.4.2 To illustrate this design approach, let us consider a physical system
that consists of a dc motor that drives a mechanical load that we would like to
control in speed.

The transfer function of this system is given by the following expression:

Gls) = Ts+ 1
withk =5, and T = 1s.

From basic control theory, we can see that the settling time of the open-loop
system with 5 % is t; = 3t = 3s. The system doesn’t have an overshoot and the
response is a little bit slow.

Our desire is to make the system faster with an overshoot less or equal to 5 %, a
settling time ty at 5% less or equal to 1s, and a steady state error for a step input
equal to zero.

To solve this design problem, let us proceed in continuous-time domain. For this
purpose, let us first of all mention that the type of the system is equal to zero and
therefore to guarantee that the error is equal to zero at the steady state for a step
input, we need at least a proportional and integral controller.

Following the procedure of the proportional integral controller we have:

1. the dominant pole with the positive imaginary value is given by:

—§wn+ja)n\/1 -2
-3+3j

Sd

This comes from the fact that we have:

- _ tog (o) =0.6901

e+ (1oa ()

W = O =43472
gt

2. using this pole, we get:
a =n—-0+2(=-3+3))+ £-2+3))

=180+ 135 + 123.6901
= 78.6901
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which gives the following value for the zero

e 3
tan(78.6901)
=-36

3. the loci of the controlled system is given by Fig.|5. 10 from which we conclude
that K = 4.73.

4. the controller gains are:

Kp =0.9460
K; =3.4056

The root locus of the system is illustrated in Fig.15. 10

Root Locus
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Fig. 5.10 Root locus of ”Zl), 7=-3.6

s(s+

The behavior of the closed-loop dynamics is illustrated in Fig. .11 The simula-
tion results show that the overshoot is over what we desire while the settling time is
acceptable. To reduce the overshoot, we can redo the design by pushing a little bit
the zero to the left and get new set of gains for the controller.

In some circumstances, we may have a system that has acceptable steady regime
but the transient one needs some improvements. In this case the proportional and
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Step Response
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s2+(1+5Kp)s+5K;

Fig. 5.11 Step response of
derivative controller can be used. The transfer function of this controller is given
by:

C(S) =Kp+ Kps

where Kp and Kp are the controller gains that we should compute in order to satisfy
the desired performances.

To design the proportional and derivative controller the following procedure can
be used (see [l1]):

1. with the damping ratio and the settling time values, we can determine the
dominant pole with the positive imaginary part, s4

2. using this pole and the angle condition, we can determine the angle of the con-
troller zero as it was done for the proportional and integral controller previously,
ie.:

m n
a:n—Zz(sd+z,-)+Zl(Sd+Pi)
= =

The value of the zero is then given by:

3 I(sq)
Lot tan(a)

with o =} if the settling fixed at 5 %
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3. plot the loci of
(s+ U, (s + z)

L, (s + pi)
and determine the gain K that gives the pole s; using

I IGsa + po)l
I (g + 20l

4. the controller gains are given by:

K
Kp = X
Kp =zKp

The corresponding discrete-time version of this controller, using the same
transformation as for the proportional and integral controller, is given by:

o &t 5+ (Kp =)
z+1
This gives the relationship that links the control and the error at sample k:
U = —Up_1 + aey + bex_q (5.3)
where a = Kp + 21;” and b = Kp — ZIT(D.

Remark 5.4.2 For this controller the backward approach is more appropriate for
the derivative action and the trapezoidal for the integral action. In tis case we get:

u(k) = ae(k) + be(k — 1)

Kp

witha:Kp+I;D andb = 7

The lines that we should include in the control loop are:

compute the system’s error, e

compute the control law using the controller expression
save the present error and the present control

send the control and wait for the next interrupt

Example 5.4.3 To illustrate this design approach, let us consider a physical system
that consists of a dc motor that drives a mechanical load that we would like to
control in position.

The transfer function of this system is given by the following expression:

k
G(s) =
() s(ts+ 1)

withk =5, and T = 1s.

The settling time of the system with 5 % is t; = 3t = 3s. The system is unstable.
Our desire is to make the system stable and faster with an overshoot less or equal
to 5 % and a settling time t; at 5% less or equal to 0.5s.
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To solve this design problem, let us proceed in continuous-time domain. For this
purpose, let us first of all mention that the type of the system is equal to one and
therefore the error is equal to zero at the steady state for a step input. For the tran-
sient to be improve we need at least a proportional controller but here we use a
proportional and derivative controller to get better settling time.

Following the previous procedure we have:

1. the dominant pole with the positive imaginary value is given by:

Sd :_é’wn"‘jwn\/l_{z
=—-6+6j

2. using this pole, we get:

@ =+ /(-6+6))+ /(-5 +6))
=180 + 135 + 129.8056
= 84.8056

which give the following value for the zero

6 3
tan(84.8056)
=-6.7273

 =-

3. the loci of the controlled system is given by Fig.|5.12] from which we conclude
that K = 10.8.

4. the controller gains are:

Kp =2.1600
Kp =14.5310

The simulation results illustrated in Fig. show that we have an overshoot
greater than the one we need but the settling time is acceptable. To reduce the
overshoot we can move the zero a little bit to left and get new set of gains for the
controller.

For some systems, we need to improve simultaneously the transient and the
steady regimes. In this case, the most appropriate choice is the proportional, integral
and derivative controller. Its transfer function is given by:

K
Cs) =Kp+ ' +Kps
S

~ K (s+a))(s+ar)
s
with Kp = Kp (a; + a;) and K; = Kpaas
To design the proportional, integral and derivative controller, the following
procedure can be used (see [[1]):
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Fig. 5.12 Root locus of ”Z) ,z=6.7273

s(s+1

to determine the parameter a; (that is related to the first zero), we choose the
slow pole and proceed with a zero-pole cancelation. If we denote by —p, the
slow pole, the parameter a; is then given by:

ay = ps
with the damping ratio value and the settling time, we can determine the
dominant pole with the positive imaginary part, sy
using this pole and the angle condition, we can determine the angle of the

controller zero that corresponds to s + ay, i.e.:

m n

a:ﬂ—ZA(sd+zi)+Zl(Sd+Pi)
i=1

i=1
Remark 5.4.3 It is important to notice that a pole has been cancelled by the
zero at position —a, and a new pole at 0 has been added to the equation.

The value of the second zero is then given by:

_ I(sa)
=0 tan(a)

with o =} if the settling fixed at 5 %
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Fig. 5.13 Step response of S(iffl), 7=16.7273
4. plot the loci of
(s + a)IT, (s + z)
sHj':‘ll(s + pi)
and determine the gain K that gives the pole s, using

11254 + pil
K=lsad ™! ‘
[sq + asllL2 |54 + zil
5. the controller gains are given by:
Ko = K
P Tk
Kp =Kp(a; +az)
K; = Kpaa,
The corresponding discrete-time version of this controller, using the same
transformation as for the proportional and integral controller, is given by:

KP22 + <KéT + 21;1))2 + ((KQT + 21;1)) - Kp)
C@x) =
@ (z=D+1)
This gives the relationship that links the control and the error at sample k:

Uy = Ui + aey + bey_1 + cex_n 5.4
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where a = Kp + KéT + 21;”, b=KT - 41;“ and ¢ = KéT + 2[;’) - Kp.

Remark 5.4.4 As we said regarding the schema for the discretization of the con-
troller we can use here also the trapezoidal schema for the integral action and the
backward schema for the derivative one. In this case we get:

u(k) = u(k — 1) + ae(k) + be(k — 1) + ce(k — 2)

. _ Kp KT, _ _~Kp KT, _ Kp.
Wll‘/’ld—Kp+TA+ L' b=—-Kp 2Ts+ hhe=s

The lines that we should include in the control loop are:

compute the system’s error, e

compute the control law using the controller expression
save the present error and the present control

send the control and wait for the next interrupt

Example 5.4.4 To show how this procedure can be used to design a proportional,
integral and derivative controller, let us consider the following system with:

3
G = s+ s +3)

For this system we would like to guarantee that the steady state error for a step
input is equal to zero with an overshoot less or equal to 5 % and a settling time
about 1s. Following the steps of the previous procedure we get:

1. the slow pole in this case is equal to —1 and therefore, the parameter is then
ay = 1.

2. the dominant pole with the positive imaginary value is given by:

sq = —Lw, + jwy, \/1 -
=-3+3j
3. using this pole, we get since the pole —1 has been cancelled with the zero at
—-a;.’
a =x+/(-3+3))++£3))
=180+ 135+90
=45

which give the following value for the zero

3+ 3
tan(45)
=-6

a) = —

4. the loci of the controlled system is given by Fig. from which we conclude
that K = 2.99 is the appropriate one that give the closest dominant poles and
the damping ratio (sq = —2.99 £2.99j, £ = 0.707, d = 4.51 % w, = 4.23).
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s(s+3

5. the controller gains are:

Kp =0.9967
Kp =6.9769
K; =5.9802

The closed-loop transfer function is given by:
kKDS2 + kaS + kK]
3 + (4 + kKp) s2 + (3 + kKp) s + kK;

The behavior of the closed-loop dynamics is illustrated in Fig.
The simulation results show the efficiency of the designed controller.

F(s) =

The phase lead controller can be used to approximate the proportional and
derivative one. The transfer function of this controller is given by:

aTls+ 1
Ts+1

where Kp, a and T are parameters to be computed with a > 1.

This controller offers the advantage to improve the transient regime. This can be
obtained if the placement of the pair pole/zero is well positioned since we can pull
the asymptotic branches to get a smaller settling time.

C(S) = KP
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Fig. 5.15 Step response of ) a2 = 6

The following procedure can be used to design such controller (see [11]):

1. with the damping ratio and the settling time values, we can determine the
dominant pole with the positive imaginary part, s4

2. by varying the system gain, try to get the desired dominant poles, if it is not pos-
sible, determine the contribution in angle of the pair pole/zero that the controller
has to add

3. place the pole and the zero of the phase lead controller in order to compensate
for this desired angle. Among the possibilities that can be used in this case, we
can place the zero at a value equal to the real part of the dominant poles and
then using the angle condition we can determine the pole position.

4. determine the value for the controller gain in order to satisfy the error

5. check if the desired specifications are obtained. In case of negative answer
replace the pair pole/zero of the controller and repeat the design procedure

Example 5.4.5 To show how the procedure of the phase lead controller can be ap-
plied, let us consider the position control for a dc motor driving a mechanical load
as it was considered before. Let the dynamics be given by:
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Our goal in this example is to guarantee that the closed-loop system is stable,
with a settling time at 5% equal to 0.5 s, an overshoot less or equal to 5% and
having a zero error for a step input.

First of all notice that the time constant of the system is equal to 0.5 s which
may give the best settling time at 5 % with a proportional controller equal to 6 s.
Our requirement in regard to the settling time is far from this value and therefore a
proportional controller is not sufficient for our case.

To respond to these specifications a phase lag controller can be used and its
design can be done using the previous procedure.

1. based on the settling time and the overshoot requirements we get the following
dominant pole with positive imaginary value:

Sg=—-6+06j

This desired poles can not be obtained by varying the gain of a proportional
controller and therefore a design of a phase lead controller is needed. From
this value for the dominant pole, we have:

LG(sq) = £(2)— L(—6 +6)) — L(-5 + 6))
=0-135-123.6901 = —258.6901

The controller can be designed to bring an angle 258.6901 — 180 = 78.6901.
This is obtained if /(aTs + 1) — £Ts+ 1 =78.6901

2. following the method we used in the procedure, we get aT = é and therefore
£(Ts+1) =90 —-78.6901 = 11.3099. This gives the location of the controller
pole. Using now the following trigonometric relation we get:

I(sq)

tan (11.3099) = | Rsy)
d

I
which gives T = 0.0278. This in turn implies that a = 61T = 5.9952.

3. The open-loop transfer function of the compensated system is then given by:

~ (s+6)
Ge(s) = Ks(s +2)(s +35.9712)

which gives the following gain, K that corresponds to the desired pole s;:

K= [sqlsqa + 2llsq +35.9712|

=311.7120
Isa + 6l

The corresponding controller gain is Kp = 5{ = 25.9968. The root locus of the
compensated system is illustrated by Fig.[5.16]
The closed-loop transfer function with this controller is given by:

2aKp(s+ )

o = S+ (24 )52+ (3 +2aKp) s+ 2
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Fig. 5.16 Root locus of """

S(s+2)(s+ 1)

The behavior of the closed-loop dynamics is illustrated in Fig.[S 12

The simulation results show the efficiency of the designed controller. It is clear
that the performances are a little bit far from the desired ones. This is due to the
place of the zero of the controller that we can from see from Fig. We can
play with this position by pushing it to the left and we will get what we want.

Remark 5.4.5 It is important to notice that phase lead controller or the phase lag
or the phase lead-lag controllers are not able to to make the error equal to zero
since they can’t improve the type the system. But they can improve it if it is constant.

The phase lag controller can be used to approximate the proportional and integral
one. Its task is to improve the steady state regime if it is well designed. The pair
pole/zero of the controller is put close to the origin.The transfer function of this
controller is given by:

als + 1

=K 1511

where Kp, a and T are parameters to be computed with a < 1.
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Fig. 5.17 Step response of F(s) =

To have an idea of the design approach let us assume that the system to be
controller is described by:

I (s + z;)
G(s) =k =100
IT., (s + p)
where k is the gain, —z;,i = 1,--- ,mand —p;,i = 1, - - , n are respectively the zeros

and the poles of the system.
In fact, if we write the transfer function of the controller as:

+z

Cis)=Kp " ©

s+p

with Kp = aK,, z = alT and p = }
With the gain of the controller only, the constant error is given by:
K = kKp 1Y
1 = kKp

L, pi

In order to improve the steady state error, we would get a constant error, K,
greater than K. By introducing the zero and the pole of the controller this constant
error is given by:
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Our desire is that the new pair of pole/zero of the controller doesn’t change the
transient regime which is acceptable for the designer and the main goal is to change
the steady state regime only by reducing the error.

Using the expressions of K| and K,, we get:

K, K>
I,z r ¢ Lz
I, pi p L, pi
This implies that:
K
P _M <1
z K

Therefore, if we choose T in a way that the pole and the zero are close each other
(to be cancelled in the open transfer function of the system), the open loop transfer
function of the controlled system becomes:

I (s +2)

C(s)G(s) =kKp I (s + py)

The idea we will use here is mainly based on the improvement of the steady state
error. The following procedure can be used to design such controller (see [1]):

1. with the damping ratio and the settling time values, we can determine the pole
dominant with the positive imaginary part, s; and determine the gain that gives
such poles. Compute the corresponding constant error.

2. determine the constant error, K;, with a proportional controller. Determine the
constant error, K, when the pole and the zero of the controller are considered.
The parameter a of the controller is given by:

K
a =
K>
This parameter, a is also given by:
p
a =
Z

3. the value for T is chosen in a way to make the pole and the zero of the controller
are close each other and at the same time close to the origin to improve the
steady error. This choice will imply that the angle contribution of the controller
is very small.

4. determine the gain, Kp, using the following relation:

= |lsa+ pl || L, lsa + pil
Isq + 2l | [ TT,Isq + zil
then detrmine the controller gain, Kp by:
j— KP

K
P ak
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5. check if the specifications are similar to the desired ones. In the case of negative
answer adjust the placement of the pole and the zero of the controller and repeat
the procedure

Example 5.4.6 To show how the procedure of the phase lag controller design can
be applied, let us consider the position control for a dc motor driving a mechanical
load as it was considered before. Let the dynamics be given by:

Our goal in this example is to guarantee that the closed-loop system is stable,
with a settling time at 5% equal to 3 s, an overshoot less or equal to 5% and having
an error for a ramp input less or equal to 0.01.

To respond to these specifications a phase lag controller can be used and its
design can be done using the previous procedure.

1. based on the settling time and the overshoot requirements we get the following
dominant pole with positive imaginary value:

sqg=—-1+1j

The root locus the system with a proportional controller is given by Fig.
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Fig. 5.18 Root locus of s(.rl+2)
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The gain that gives this pair of poles is given by:

K = Isallsa +2] _ 20
1
This correspond to an error equal:
e(00) = ! =0.5
2

which far from the desired one.

2. To get our error we need a constant K, equal to 100. This implies that the factor
a of the controller is given by:
K] 2 P
= = =0.02 =
“ T K100 z
3. since the pole and the zero of the controller have to be placed closed to each
other and close to the origin. If we place the zero at —0.3 which a pole for the
controller at —0.006 using the fact that a = ’; The value of T can be computed
using either the expression of the zero of the one of the pole. This gives T =
166.6667.

4. The open-loop transfer function of the compensated system is then given by:

B (s +0.3)
Ge9) =K (1 2)(s +0.006)

which gives the following gain, K that corresponds to the desired pole s;:

_ Isalsa + 2|lsa +0.01]|

=2.3102
lsqg + 0.5

The corresponding controller gain is Kp = 5{ = 57.7549. The root locus the
system with a proportional controller is given by Fig.
The closed-loop transfer function with this controller is given by:

2aKp (S + alT)

S+ (24 )2+ (2 +2aKp) s+ 75

F(s) =

The behavior of the closed-loop dynamics is illustrated in Fig.[3.20

The root locus of the compensated system unfortunately doesn’t pass through
the desired poles. The closed ones are s; = —0.8082 + 1.14 j that corresponds to
a gain K = 2.56, that gives a gain Kp = 64. With this gain we get an overshoot
approximately equal to 11 %.

The behavior of the closed-loop dynamics with this new setting is illustrated in

Fig.3.2]]

Remark 5.4.6 It is important to notice that the overshoot is a little bit far from the
desired one and it is the same for the settling time. This discrepancy is due to the
presence of the zero that he introduce high overshot once it is close to the origin.
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And also due to the fact the cancellation pole zero of the controller is not correct
since the pole is a little bit far from the zero.

The phase lead-lag controller is designed to approximate the PID controller. It
has the advantage as the PID has to act on both the transient and the steady regimes.
Previously we have seen how to design the phase lead controller and the phase lag
controller. The first one is used to act on the transient while the second acts of the
steady state regime.

The transfer function of this controller is given by:

sy - KPS * o 5t ar,
S+ s+ p
where Kp is the controller gain, a; with a; > 1 and T are the parameter of the lead
part, while a, with a; < 1 and T, are the parameter of the phase lag part.

To design such controller, we use the approaches used to design separately the
phase lead and the phase lag controller. First, without the phase lag controller, we
design the phase lead controller to improve the transient regime. After, we add the
phase lag controller to improve the steady state regime while keeping the transient
regime as it was improved by the phase lead controller.

The following procedure procedure can be used to design the phase lead-lag
controller:



162 5. Design Based on Transfer Function

Step Response

Amplitude

Il Il Il i i I I + +
0 1 2 3 4 5 6 7 8 9 10
Time (sec)

2aKp(s+ “]T )
(24 1 )s2+( 3 +2aKp) s+ ZI;P

Fig. 5.20 Step response of F(s) =

1. without the phase lead-lag controller, see if with a proportional controller, we
can guarantee the desired performances. Analyze the system with a proportional
controller and determine how much the transient regime has to be improved

2. design the phase lead controller (gain, pole and zero)

3. analyze the compensated system with a phase lead controller and determine
how much the steady state regime has to be improved

4. design the phase lag controller (gain, pole and zero)

5. check if the specifications are similar to the desired ones. In the case of negative
answer adjust the placement of the pole and the zero of the controller and repeat
the procedure

Example 5.4.7 To see how the procedure for the design of phase lead-lag controller
applies, let us consider the following dynamical system:

For this system with a proportional controller, the best settling time at 5 % we can
obtain is equal to 3 s. We can also get an overshot less or equal to 5 %. The steady
state error for a step input is equal to zero, while the one for a ramp is constant and
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Fig. 5.21 Step response of F(s) =

can be fixed by acting on the gain controller. A "trade-off 7 between the overshoot
and the steady state error has to be done. It is clear that the proportional controller
will not give the good trade-off. The phase lead-lag controller will give the better

one.
For this purpose let us assume that we desire the following specifications:

1. stable system in closed loop

2. an overshoot less or equal to 5 %

3. a settling time at 5 % about 2 s

4. a steady state error for a ramp input less or equal to 0.01

To design the phase lead-lag controller that provides the desired performances,
let us follow the previous procedure:

1. From Fig.[518 it is clear that the settling time requirement can be obtained
using a proportional controller. From the specifications, we get the dominant
pair of poles that gives what we are looking for:

s¢ =-15+15)
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This desired pair of poles can not be obtained by just varying the gain of the
proportional controller. A phase lead controller is needed for this purpose. The
phase of the transfer function at s; is given by:

£G(sq) = £(2) = £(0.5000 + 1.5000) — £(—1.5000 + 1.5000 )
=0-71.5651 - 135 = 206.5651

The controller phase lead controller can be used to bring the angle contribution
of 206.5651 — 180 = 26.5651. This can be obtained if we impose that /(sq +
a]'T] )= L(sq + Tl,) =26.5651.

Following the procedure of the phase lead controller design, if we impose that

the zero of the controller is place at the real part of the dominant poles, we get:

T, =
alr= 5

and therefore, we have:

1
L(sq + T) =90 —26.5651 = 63.4349
To get the position of the pole, i.e:, we use the following trigonometric relation:

bR+ D6

=2.2500
T, tan (11.3099)

which implies T1 = 0.4444. And from the relation a;T; = ]%5, we get a; =
1.5002.

2. for the design of the phase lag controller, notice that the compensated system
with a phase lead controller has the following open transfer function:

1
aTy

G = a1kK
1) =a ps(s+2)(s+Tll)

with k = 2.
The root locus of this transfer function is illustrated by Fig.
The gain K, that gives the poles that are close to the desired poles is given by:

K, =387

The corresponding poles are s; = —1.5 + 1.54 j with an overshoot approxima-
tively equal to 5 %.
The error constant with this controller is given by:

1
+ 1 T
K> =limsaikK, alt = akK, ' Kp
s—0 s(s+2) (s+ T].) aTy 2
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To get the desired error we need to fix K, to 100. This gives the following
parameter; ay for the phase lag controller:

K 387
_ R = 0.0387
“2 =k T 100

Since the procedure for the design of the phase lag controller requires that we
have to place the pole and the zero of the controller close each other and close
to the origin. A proper choice consists of placing the zero at —0.1. This implies
using the relation

a; =
4

that the pole is placed at p = —0.0039 and since the pole is equal to:

1
P—T2

we get Tr = 256.4103.
The open loop transfer function of the system with the phase lead-lag controller
is give by:

1
aT)

G = a1kK
) =a ps(s+2)(s+Tll)
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with k = 2.
The root locus of this transfer function is illustrated by Fig.
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From this figure we get the closest poles of the desired ones are:
s¢ =—-1.5+1.31j

that gives an damping ratio about 0.753 and an overshoot equal to 2.73 %.
The gain that gives this pair of poles is equal to:

Kp=3.35
From this data, we get the following gain for the controller:

R 3.35
T @k 2% 1.5002 % 0.0387

The expression of the designed controller is given by:

Kp = 28.8506

1 1
s+
T T:
Cs) =kp “7' ®°

1 1
S+T1 S+T2

with Kp = 28.8506, a; = 1.5002, T| = 0.4444, a; = 0.0387 and T, = 256.4103.
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The closed-loop transfer function with this controller is given by:
ka <01T102T2S2 + ((l]T] + (lsz)S + 1)
b4s4 + b3s3 + bzsz + bls + b()

with by = T\T>, bz = (Ty + T+ 2T1T»), by = (1+2(T,+T)+ kaCllTlasz),
b, = 2+ ka(alTl +arT?)) and by = kKp.
The behavior of the closed-loop dynamics is illustrated in Fig.|5.24]

F(s) =
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Fig. 5.24 Step response of F(s)

It seems that the settling time is a little bit far from the desired one. To overcome
this, we play with the positions of the poles and the zeros of the controller and repeat
the procedure.

5.5 Design Based on Bode Plot

The design methods we will develop in this section have the advantage over those
presented in the previous section by the fact they don’t need the knowledge of the
mathematical model of the system to be controlled as it required by the techniques
based on root locus method. The objective of this section is to cover the methods
that we can use for designing the controllers treated in the previous section by using
the frequency domain.
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The design procedures for the different controllers we will cover here are mainly
based on the fact to assure that the closed-loop dynamics of the system will have a
phase margin, A¢ satisfying:

45° < Ag < 50°

while the gain margin, AG satisfies AG > 8 db.
In the rest of this section we assume that the system is described by the following
transfer function:

aps" 4+ -+ 1

G = ksl(ans" +oo+ 1)

where [ is the type of the system, [ + n is the degree of the system and m < n + [ is
the degree of the numerator of the system that we suppose to be causal.

Our goal in this section consists of designing a controller that respond to some
given performances. The controllers we consider in this section are those treated in
the previous sections. It is important to notice that the idea used in the methods we
will cover is based on the deformation of the magnitude and phase curves locally to
satisfy the desired performances.

Remark 5.5.1 It is important to notice that this method doesn’t apply for unstable
system.

Let firstly consider the design of the proportional controller (C(s) = Kp).
This controller has limited actions and can only move vertically the magnitude
curve without affecting the phase curve. The open loop transfer function of the
compensated system is given by:

aps"™ 4+ -+ 1
st(aps™ +---+ 1)
aps™ +---+ 1

G.(s) =kKp
T s (apst e+ 1)
The following procedure can be used for the design of the proportional controller
that responds to the desired performances:
1. obtain the Bode plot for the compensated system, G.(s), with K = 1

2. determine the frequency, w., for which the phase margin is equal to 45°

3. determine the magnitude at this frequency and compute the gain, Kp that will
move the magnitude curve vertically to get the desired phase margin. A gain
greater than one will move the magnitude curve up while a gain less than one
will move it down. The controller gain is given by:

4. draw the Bode diagram of the compensated system, with the computed gain and
check that the gain margin is greater than 8 db
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Example 5.5.1 To show how the design procedure for the proportional controller
works, let us consider the following dynamical system:

2
G(s) = (0.1s + 1)(0.2s + 1)(0.55+ 1)

The performances we would like to have for this system are:
1. stable system in closed-loop
2. phase margin about 45°
3. gain margin greater than 10 db
To design our proportional controller, let us follow the previous procedure.

1. the open loop transfer function of the compensated system, T(s) is given by:

1
(0.01s + 1)(0.25 + 1)(0.55 + 1)

2. The Bode plot of this transfer function with K = 1 is illustrated in Fig.

T(s) =2Kp

Bode Diagram

Magnitude (dB)

-135

Phase (deg)

-180

—225[-

—270

Frequency (rad/sec)

Fig. 5.25 Bode plot of T'(s), with K = 1, and K = kKp

From this figure we conclude that at the frequency wy = 7.44 rd/s we have
A¢p = 45°. The corresponding magnitude is equal to |T(jw;)| = —16.8.
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3. The corresponding gain that allows us to move the magnitude curve by 16.8 db
to get the desired phase margin is given by:

Kp =16.8 db

which implies Kp = 102 =6.9183
Finally, we get the controller gain as follows:

Kr 69183

Kp = =3.4592

Pk 2 ?

The open loop transfer function of the compensated system is given by:
1

T(s) =2x33592 () 154 1)(0.25 + 1)0.55+ 1)

The Bode plot of this transfer function is reported in Fig. If we compute
the phase and the gain margins we get:

AG =10.8363
A¢p =44.9849

The corresponding frequencies are:

we = 26.65 rd/s, for the gain margin
w, =7T.44rd]/s, for the phase margin

4. The transfer function of the closed loop with this controller is given by:

kKp

F(s) =

0.001s3 +0.107s2 + 0.71s + 1 + kKp
with k = 2.
The behavior of the closed-loop dynamics is illustrated in Fig.
This response has a steady state error equal to 0.13. The proportional controller
is unable to make equal to zero but it can be reduced by increasing the gain. This
may degrade the transient regime.

Remark 5.5.2 It is important to notice that the system considered in the previous
example is of type zero and therefore, the error for a step input with a proportional
controller is constant and it is given by:

1

A0 = ik,

From this expression, it is impossible to make the error equal to zero by increas-
ing the gain of the controller. Incrementing the type of the system is a solution that
can be given by the PI controller.

Let us now focus on the design of the PI controller using the Bode method. As
we have seen previously increase the type of the system by one and therefore, it
may bring the steady state error to zero. Its disadvantage is that settling time may
increase.
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Step Response
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Fig. 5.26 Step response of F(s)

To design the PI controller, let us assume that its transfer function is described
by:

K,
C(s) =Kp+ '

1+71,s

Tis
with KP = “rr,, and K] = ‘r]
1

Using this, the open loop transfer function of the compensated system is given
by:
byus™ +---+bys+1

T(s) =C(s)G(s) = K1 +1,s) S (a5t 4 ags + 1)

with K = f
The following procedure can be used for the design of this controller:

1. determine the slowest pole that is not equal to those at the origin (pole that cor-
responds the highest time constant) and proceed with a zero/pole cancelation.
This will allow us to determine the parameter 7, by:

7, =max{ry, - ,7,}

where 7, j = 1,---, v are the time constant of the system to be controlled.
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2. determine the gain Kp that gives the desired phase margin using the Bode plot
and obtain:

k

T = _
Kp

3. determine the gains Kp and Kj of the controller using:

1
Kp =

Ti
K ="

Ti

4. determine the open loop transfer function of the compensated system and check
if the desired performances are obtained or not. In case of negative response
adjust 7, and repeat the procedure design.

Example 5.5.2 To show how this procedure works let us consider the following
dynamical system:

1

G = (4 s+ 5)s + 10)

and design a PI controller that gives a steady error equal to zero and a phase margin
about 45° and a gain margin greater than 8 db.
To answer these performances, let us follow the previous procedure:

1. the open transfer function of the system to be controller has 1, 0.2 and 0.1 as
time constants. The maximum one is equal to 1 and therefore by canceling the
corresponding pole by the controller’s zero, we get:

™, =1s
2. the open loop transfer function with the pole/zero cancellation is given by:

o) = 0.02K
VT 5025+ D015+ 1)

The Bode plot of this transfer function is shown at Fig.[5.27

At w = 2.8 rd/s, the phase margin is equal to 45° and at this frequency the
magnitude is equal to —10.5 db. To get such phase margin we need to translate
up the magnitude curve by 17.5 db which implies the use of a gain:

Kp =10% =3.3497
which implies in turn:

002 0.02

Ky 33497 0.0060

Ti
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Bode Diagram
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Fig. 5.27 Bode plot of T'(s), with K = 1

3. the controller gains are given by:

1 1

K = = =1 .
P T 0.0027 666667
Tn _ _
Ki = "= o027 = 166:6667

4. with this controller we can check that the phase margin is equal to 45.1° but
the gain margin is equal to 4.5 db. The closed loop transfer function with this
controller is given by:

Kp

F =
() s34+ 1552505 + Kp

If we accept the gain margin as it is now, the design is complete otherwise we
have to modify the value for t,, and repeat the design

The behavior of the closed-loop dynamics with the computed controller is
illustrated in Fig. [5.28

The settling time at 5 % is equal to 1.47 s which is acceptable and the error for
a step input is equal to zero.

Let us now focus on the design of the PD controller using the Bode method. This
controller improves the transient regime. The transfer function of this controller is
given by:
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Step Response
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Fig. 5.28 Step response of F(s)
C(S) :KP+KDS= KP(] +TDS)
with tp = ?’?

The open loop transfer function of the compensated system is given by:

(I +71ps)(bys™+--- ,bys+ 1)

T(s)=K
() s (aps" + -+ ,a1s+ 1)

where K = kKp
The design of the PD controller is brought to the determination of the two gains
Kp and Kp. The following procedure can be used for the design of this controller:

1. from the error specifications, determine the gain, Kp that gives the desired error

2. draw the Bode diagram of the system:

st bys+ 1
P
sl(aps"+ - ,a1s+ 1)

and determine the frequency, w,, at the which the magnitude is equal to —20 db

3. since the cut frequency of the PD controller is equal to Tln,

:g, the contribution of the PD controller to the magnitude and the phase are

respectively 20 db and 90°. If we select 7 such that:

at the frequency
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10
Tp =
W

the phase margin of the compensated system is given:
Ap. = A¢+90

where A¢ is the phase margin of the system without the controller at the
frequency wy,
If

Ad < 40° choose another controller
“1>50° reduce the parameter, Tp till Ag, = 45°

4. compute the controller’s gains using:

K
Kp = k”
KD ZKPTD

5. check if the desired specifications are obtained or not

Example 5.5.3 To show how the procedure of the design of the PD controller works,
let us consider the following dynamical system:

4
s(0.15 + D)(ds + 1)

As specifications we consider the following:

G(s) =

1. stable system

2. phase margin equal to 45°

3. steady state error equal to 0.1

To satisfy these specifications a PD controller has to be designed. For this

purpose let is follow the previous procedure:

1. from the error specification, we need to fix Kp to 10.

2. the Bode diagram of:

Kp
s(0.1s+ 1)(4s+ 1)

is illustrated by Fig. which shows that magnitude is equal to —20 db when
the frequency wy,, = 4.73 rd/s. The parameter Tp is then given by:

10 10
-9 =2.1142
™= T 473
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Bode Diagram
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Fig. 5.29 Bode plot of T'(s), with K = 10

the phase of the system with the controller at w,, = 4.73 rd/s is equal to —202°.
The phase margin of the compensated system is given by:

A¢. =180 — 202 + 90 = 68°

The phase margin is greater than 45° and we should decrease the parameter

Tp. Therefore if we select Tp = ;g = 1.09809, the phase margin in this case is

equal to 49°
. the controller gains are give by:
Kp 10
Kp = = =25
P= k"4

Kp = Kptp =2.4%x1.0989 = 2.7473

. the open loop transfer function of the compensated system is given by:

_ 4(Kp + KDS)
T = {015+ Dds+ 1)

This controller gives a phase margin about 61.5°. The closed-loop transfer
function is given by:
4K + Kp)
0.153+4.1s2 + (1 + 4Kp)s + 4Kp
The step response of the compensated system is represented in Fig. p-30,

F(s) =
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Step Response
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Fig. 5.30 Step response of F(s)

Let us now focus on the design of the PID controller using the Bode method.
This controller acts on the transient and steady state regimes. The transfer function
of this controller is given by:

K 1+7,9)(+71,s
C(S) =KPI+KDS=( n)( v)
s 7§
where Kp = ™™ K; = ! and Kp = "7
The open loop transfer function of the compensated system is given by:

(I +71,89)(1+718)(byps™ +---+bis+ 1)

T =K
) st (aps® + - +ars + 1)

with K = X,

To design such controller we use the ideas used to design separately the PI and
the PD controllers. The procedure to design such controller is based on the fact that
a pole is introduced at the origin, the gain, Kp that gives the steady error and the use
of the maximum phase, 90 (introduced by the PD controller) that corresponds to the
frequency when the magnitude is to —20 db (w,,7,, = 10). The following procedure
can be used for the design of this controller:
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1. determine the slowest pole of the system to controller except those at the origin
and proceed with a pole/zero cancellation. This will help to fix, 7,, i.e.:
Ty =max{ry, -, 7}
2. determine the gain Kp that gives the desired error
3. plot the Bode diagram of:
_ (1+1,8)(bps™ +---+bis+ 1)
T(s) =K
) P (aus 4+ ags + 1)
and determine the frequency w,, at which the magnitude is equal to —20 db.
Using this frequency we determine 7, by:
10
T, =
Wi
the phase margin of the compensated system is given:

Ape = A+ 90

where A¢ is the phase margin of the system without the controller at the
frequency wy,
If

Ad < 40° choose another controller
“1>50° reduce the parameter, 7p till Ag, = 45°

4. compute the controller’s gains using:

Tp+ Ty

Kp =
Ti

1
K] =

Ti

TnTv
KD =

Ti

5. check if the desired specifications are obtained or not

Example 5.5.4 To show how the design of the PID controller works, let us consider
the following dynamical system:

2
G(s) = (0.1s + 1)(0.2s + 1)(0.55 + 1)

A steady state error to a unit ramp equal 0.1 is needed.

This system is of type zero and has three time constant, 0.5, 0.2 and 0.1. The
maximum time constant is 0.5.

Following the procedure design, we get:

1. using the maximum time constant of the system we have:

7, =05
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2. using the error specification, we get:

_ 1
Kp = =10
P00

3. draw the Bode diagram of:

T(s) = Kr
)= 0.5+ 1025+ 1)

Bode Diagram
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Fig. 5.31 Bode plot of T'(s)

This diagram is illustrated by Fig. 5.32] The frequency at which the magnitude
is equal to =20 db is equal to wy,, = 15.9. The phase at this frequency is equal
to —220°. The phase margin at this frequency is given by:

A¢p =180 + ¢(wy,) +90 = 180 — 220 + 90 = 50

The second parameter, T, of the controller is determined by:

10

W

=0.6289

Ty
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4. compute the controller’s gains using:

2
i = = 02

R

Kp = "7 = 56447
1

K[ = = 5
Ti

Kp = "7 215723
Ti

5. The closed-loop transfer function with this controller is given:
12, (tys+1)

0.0252 +0.252 + (1 + *™)s + 2

i

F(s) =

The step response of the compensated system is represented in Fig.[53.32]

Step Response
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Fig. 5.32 Step response of F(s)

Let us now focus on the design of the phase-lead controller using the Bode
method. The transfer function of this controller is given by:
aTs+1

=K 1
S Rl
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It can be shown that this controller can be deliver a maximum of phase for each
value for a. The value of this maximum and the frequency at which this happens are
given by:

1
T \a

a—1

Wpn =

Sin(¢m) =

a+1
The second relation gives also:

_ 1 +sin(¢y)
1= sin($y)
These relations are of great importance in the design procedure of the phase-lead
controller.
The following procedure can be used for the design of this controller:

1. using the error specification, determine the gain Kp and compute the controller
gain by:

2. plot the Bode diagram of:
_ bpS"+ -+ bis+ 1
Kp
sl(ans" +---+aris+1)
and determine the phase and gain margins of the non-compensated system. Then
compute the phase margin missing. This value increased by a factor (5°) for
safety is considered as ¢,,, then compute the parameter a by:
1 + sin(¢,,)
a =
1 —sin(¢,,)
3. determine the frequency, w,, for which the magnitude of the non-compensated

system is equal to —20log va and consider it as the crossover of the
compensated system. The parameter 7' of the controller is determined using:

T = 1
W Va

4. check if the desired specifications are obtained or not

Example 5.5.5 Let us consider the following dynamical system:
_ 5(0.125s5+ 1)
T sQs+ DO0.1s+ 1)

Our objective in this example is to design a phase-lead controller satisfies the
following specifications:

G(s)

1. stable system

2. steady state error for a ramp input equal to 0.1



182 5. Design Based on Transfer Function

3. phase margin greater than 40°
4. gain margin greater than 6 db

The design of the phase-lead controller is brought to the determination of the
parameters a and T. To accomplish this, we follow the previous procedure.

1. since the system is of type one, therefore the error for a ramp input is given by:

1
e(0) = _
Kp
which gives in turn:
Kp =10
which gives:
K
Kp = k” =2
2. with this gain, the open loop transfer function of the system becomes:
10

T = a5+ D015+ 1)

The Bode diagram of this system is given by Fig.[5.33]
From this diagram we conclude that the system with a proportional controller
has a phase margin equal to 15.67° and a gain margin equal to oo db. To get
our desired phase margin we need to add 24.33°. If we take a 5° safety, the
controller should add a phase, ¢,, equal to 29.33°. This gives:

_ 1+5in(29.33)

- =2.9201
@ = in933) - 2020

3. with this value of a we have:
—20log Va = —4.6540

From[53.33] we remark that the magnitude curve takes —4.6540 at the frequency
Wy = 2.93 rd/s. This gives:

T = ! =0.1997
Wi Va

The controller is then given by:

als + 1 _ 0.5832s + 1
Ts+1 ~ 70.1997s+1

The open loop transfer function of the compensated system is given by:

I(s) = 10 0.5832s + 1
T s(2s+ D015+ 1)(0.1997s + 1)

C(s) =Kp
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Fig. 5.33 Bode plot of 7'(s)

4. with controller we get 42.8° and oo db as phase margin and gain margin
respectively.
The closed-loop transfer function is given by:

kKp (0.125aTs2 +(0.125 + aT)s + 1)
F =
(S) b4S4 + b3S3 + b2S2 + b1S + bo

with k = 5, by = 02T, by = 0.2+ 2.1T, b, = 2.1 + T + 0.125aTkKp, b; =
1+ akKp(0.125 + aT and by = kKp.

The behavior of the closed-loop dynamics with the computed controller is
illustrated in Fig. 534

The settling time at 5 % is equal to 1.68 s which is acceptable and the error for
a step input is equal to zero while the overshot is about 30 %.

Let us now focus on the design of the phase-lag controller using the Bode method.
The transfer function of this controller is given by:

als+ 1

1
Ts+1 4=

C(s) =Kp
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Step Response
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Fig. 5.34 Step response of F(s)

The following procedure can be used for the design of this controller:

1. using the error specification, determine the gain Kp and compute the controller
gain by:

2. plot the Bode diagram of:
_ buys"+-+bis+ 1
Ps’(ans” +--+as+1)

and determine the frequency, w,, of the non-compensated system at which we
have the desired phase margin. Then compute of how much decibels, m to bring
the magnitude to O db at w,,.The parameter a of the controller is given by:

a =10

3. To get an appreciable change the phase curve, we need to choose, the parameter,
T as follows:
10
T =

aw,,

4. check if the desired specifications are obtained or not
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Example 5.5.6 Let us consider the following dynamical system:
2
s(0.15 + 1)(0.05s + 1)

Our objective in this example is to design a phase-lag controller satisfies the
following specifications:

G(s) =

1. stable system

2. steady state error for a ramp input equal to 0.1
3. phase margin greater than 40°

4. gain margin greater than 4 db

The design of the phase-lag controller is brought to the determination of the
parameters a and T. To accomplish this, we follow the previous procedure.

1. the system to be controlled is of type one. The steady error to a unit ramp as
input is given by:

o(c0) = i<1,,
which implies:

Kp =10
From this we conclude that the gain of the controller is Kp = 5.

2. with this gain, the open loop transfer function of the system becomes:

10
~ 5(0.15 + 1)(0.055 + 1)
The Bode diagram of this system is given by Fig.[5.33
From this figure, we conclude, that at w,, = 5.59 rd/s, the phase margin is

equal to 45°. At this frequency the magnitude is equal to 3.52 db. Using this,
the parameter, a is given bY:

T(s)

a =10 =0.6668

Remark 5.5.3 The fact that we consider —3.52 db means that we want the
controller to introduce this amplitude at this frequency.

3. the choice of T is done by placing the frequency alT at a decade from w,, =
5.59rd/s, ie.:

10
Wy =
aT

which implies T = 2.6828.
The transfer function of our phase-lag controller is given by:
aTs + 1

Cs) =K
) =K riiq
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Fig. 5.35 Bode plot of T'(s)
with Kp = 5.
With this controller we get:
A¢p =43.13°
AG =4.37db

The closed-loop transfer function is given by:

F(s) = kKp (aTs+ 1)
= 0.005T s* + (0.005 + 0.157)s3 + (0.15 + T)s2 + (1 + kKpaT)s + kKp

with k = 2.

The behavior of the closed-loop dynamics with the computed controller is
illustrated in Fig.

The settling time at 5 % is equal to 0.78 s which is acceptable and the error for
a step input is equal to zero while the overshot is about 27 %.

Let us now focus on the design of the phase lead-lag controller using the Bode
method. The transfer function of the controller is given by:

aTis+1aTrs + 1
C =K ,ar > l,ar <1
©) =Kr psi1 Tyse1 L@

The following procedure can be used for the design of this controller:
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Fig. 5.36 Step response of F(s)

. using the error specification, determine the gain Kp and compute the controller

gain by:

draw the Bode diagram of:
_ bps"+ -+ bis+1
Pl (aps+ - +ais +1)
and determine the phase margin of the non-compensated system
determine the phase-lead controller’s parameters, a; and T

determine the phase-lag controller’s parameters, a, and T,

check if the desired specifications are obtained or not

Example 5.5.7 To show how to design a phase lead-lag controller let us consider
the following dynamical system:

1

401255+ 1)
G = {015+ D025+ 1)

As specifications we search to get the following ones:

. Stable system
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2. steady state error to a unit ramp equal to 0.05
3. a phase margin greater than 40°
4. a gain margin greater than 8 db

To design the phase lead-lag controller let us follow the steps of the previous
procedure.

1. to get the desired error a gain Kp equal to 20, which corresponds to Kp = 5.

2. The transfer function of the open loop of the non compensated system with this
gain is given by:
20(0.125s+ 1)
s(0.1s+ 1)(0.2s+ 1)

The Bode diagram of this system is given by Fig.[5.371

T(s) =

Bode Diagram
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Fig. 5.37 Bode plot of T'(s)

With this proportional controller the system has:
A¢p =32.7°
AG = oo db

3. to design the phase-lead controller can be done following the previous pro-
cedure for this purpose. Notice that to get the desired phase margin, the
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phase-lead controller must bring a phase of 45° —32.7° = 12.3°. Using this, we
have:

_ 1 +5in(12.3)
T 1—sin(12.3)
Using the value of a;, we get:

~201log va; = —1.8791

Now if we refer to the Fig. 337 the magnitude will have —1.8791 at the
frequency wy,, = 11.4 rd/s. This implies:

ai = 1.5414

1
T, = =0.0707
Wi Aai

The transfer function of the phase lead controller is given:
0.4231s+ 1
C(s) =
) = 007075 +1
The open loop transfer function of the system with controller is given by:
Tis+1
T(s) =20 aiis
5(0.2s + 1)(0.0ls + 1)(T1s + 1)

. the system compensated with the phase lead controller has:

A¢p = 10.9624°

AG =ocodb
To get a phase margin equal to 45° and if we report to the Fig. we have this
at the frequency w,, = 10 rd/s. Also at this frequency, the magnitude is equal to
1.76 db. using this we get the parameter a, for the phase lag controller:

a, =103 =0.8166
The choice of T, is given by:
10 10

wmay  9.07 % 0.4154
The transfer function of the phase lead controller is given:

1.1026s + 1
€)= 6542541
. The open loop transfer function of the compensated system is given by:
T(s) =20 (a1Ty1s + 1)(axTps + 1)(0.125s + 1)
5(0.2s + D)(O.1s+ 1)(Tys+ 1)(Tas + 1)

The Bode diagram of this transfer function is reported in Fig. [5.37 and from
which we get:

T, = =2.6542

Ap =44.1°
AG =oodb
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The closed-loop transfer function of the compensated system

(13S3 + a’2S2 + a5+ Qo
bjss + b4S4 + b3s3 + b2S2 + b1s + b()

with az = 0.125a1a,T1T>, ap = 0.125(aTy + a,T») + aya,Th1Th, ap =
0.125 +a,Ty +aT» and ap = 1; b5 = 0.02T1T2, b4 = 03T1T2 + 002(T1 + Tz),
by =0.02+T,T, + 03(T1 +T15) + 0.125kKpaia,T1Ty, by = 03+ T, + T +
ka(0.125(a1T1 +ary 1) + ara, T T), by=1+ ka(OlZS +a1T) + axT?) and
bo = kKp

F(s) = kKp

5.6 Case Study

The goal of this section is to make the design of different controllers for our dc
motor kit using the developed methods and show the reader how things apply in
practice. It was shown that the model of this system is given by:

KITL
G(s) = S(Tms + 1)
where K, = 48.5 is the gain and 7,,, = 0.060 s is the time constant.

Our objective is to design the proportional controller, the proportional and inte-
gral controller, the proportional and derivative controller, the proportional, integral
and derivative controller, the phase lead controller, the phase lag controller and the
phase lead-lag controller using the three methods and implement them in real-time
on our dc motor kit.

Regarding the specifications, we will not fix them but during the design of each
controller we will try to get the best specifications that may offer each controller.

5.6.1 Proportional Controller

Let us first of all consider the design of the proportional controller. This controller
is assumed to have the following transfer function:

C(s) =Kp

where Kp is the gain to be determined.

For the empirical methods, it is clear that the time domain methods will not apply
since the transfer function of the system has a pole at the origin and will never
provide a step response with periodic oscillations.

To compute the gain of the controller, we notice that we have to move up the
magnitude by 27.27 db, from Fig.[3.38] which gives a gain equal to:

— 27.27
Kp =10 0 =22.9087
The gain of the controller is given by:

Kp 229087

Kpr = =
Pk, 48.5

=0.4723
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Fig. 5.38 Bode plot of T(s) X with K =1, and K = K,,Kp

s(tms+1)?

We can check that with this gain, the closed loop system has a phase margin close
to 45° and gain margin equal to infinity. This responds to the general specifications.

For the root locus method, we know that the proportional controller is unable to
change the shape of the root locus and the only thing that we can do is to select
an appropriate gain for the controller to get best performances. The root locus of
the system is given by Fig. 539 From this figure with a gain K = 8.35 we get a
damping ratio equal to 0.707 and the complex poles are sy, = —8.33 + 8.35;. This
gives a settling time at 5 % equal to 0.3601 s. The controller’s gain in this case is:

K 835

Kpr = =
P =Kk, 485

=0.1722

The design of the proportional controller with the Bode method will give the same
result as we did for the empirical method. It is important to notice that the methods
(empirical method and Bode method and root locus method) give different gains.
The step response with the two controllers is plotted in Fig. 540l The two methods
(empirical and bode) give high value for the controller’s gain, which corresponds to
a smaller damping ratio and therefore an important overshoot.

As a comparative study of these methods we have the results of the Tab. 5.4l The
error for a step input in all the case is equal to zero.
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Imaginary Axis

5.6.2

Let us now focus on the design of the PI controller using the previous methods that
gives the best performances for our dc motor kit. As for the proportional controller,
the PI controller can not be designed using the time domain empirical method. While
the frequency method can be used. It is important in this case that we can not use
our procedure since we can not cancel the pole at the origin but placing the zero at

5. Design Based on Transfer Function

Root Locus
10 T T T
0.91 0.83 0.72 0.58 0.4 0.2
sk
6r0.96
4l
0.99
ol
ok 17.5 15 12.5 10 7.5 5 25
-2
0.99
4+
_gL0:96
-8+
0.91 ‘0.83 0.72 0.58 ‘ 0.4 0.2
-10 !
-20 -15 -10 -5 0
Real Axis

Fig. 5.39 Root locus of T'(s) = !

S(tms+1)
Table 5.4 Comparative study of the design of P controller
Method Kp ts Overshoot A¢p AG
Empirical 0.472303s 23% 45.6°

Rootlocus 0.1722 0.3 s 4 % 65.5% oo
Bode 0.472303s 23% 45.6° oo

Proportional and Integral Controller

—2 will give good performances. Using this, we get:

The bode diagram of the open-loop transfer function of the compensated system

Kp =0.0497, same computations as before
K; =0.0994

is illustrated at the Fig.[5.41]



5.6. Case Study 193

Step Response
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Fig. 5.40 Step response of F(s) =

With this controller we get a phase margin equal to 45° but the gain margin is
close to zero.

Remark 5.6.1 [t is important to notice the approach used here to design the PI
controller is a heuristic that I propose to overcome the problem with the previous
procedure.

If we place the zero at —3, the gain that gives the dominant poles s,, = =5.23 +
5.95jis Kp = 22.9, which gives Kp = Zé:g = 0.4722 . From this we conclude that
K] = KPZ = 14165

The Bode method will give the same results as for the Zigeler-Nichols method
and we don’t repeat the computation again.

The closed-loop transfer function with the PI controller is given by:

K, Kps + K,,K;

F(s) =
(s) Tus® + 52+ K, Kps + K, K;

The behavior of the system with this controller for a step input is illustrated at the
Fig.[5.43 As it can be seen that the two methods give two controllers that are almost
identical and the step response are also almost identical. The settling time for the
frequency methods is higher than that the one obtained by the root locus method.
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Bode Diagram
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5.6.3 Proportional and Derivative Controller

The PD controller can not be designed by any of the proposed Ziegler-Nichols meth-
ods. The only methods we can used for this controller are the root locus method and
the Bode method. Let us firstly design this controller by the first method. For this
controller, we can proceed by pole/zero cancellation or place the zero at the right of
the pole of the system. The first case is easy and gives a first order while the second
one gives an interesting case. It is important to notice that the damping ratio in this
case will be close 1. This doesn’t imply that there is no overshoot due the presence
of the zero. We will design two cases.

Let the zero be at the position —30, placed at the left of the system pole. The
first case case gives the dominant poles s;» = —16 + 14.2 which corresponds to
the gain Kp = 0.915. This gives the gain Kp = (23.155 = 0.0189. The second gain is
Kp = Kpz = 0.0189 x 30 = 0.5660.

The second case case gives the dominant poles s;, = —43.2 + 15 which corre-
sponds to the gain Kp = 4.19. This gives the gain Kp = i;g = 0.0864. The second

gain is Kp = Kpz = 0.0864 x 30 = 2.5918. As it will seen from the Fig. 5.4l this
case will gives good performances at least in simulation.

For the design of the PD controller, let us assume that we want to assure a steady
state error for a unit ramp input equal to 0.008. This corresponds to a gain Kp = 125.
The Bode diagram of T(s) = __ %7 ' is represented at the Fig. 5.44] The magnitude

(T s+1)
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Fig. 5.42 Root locus of T(s) = 0231

S2(Ts+1)

is equal to -20 db at the frequency w,, = 144 rd/s. The phase at this frequency is
equal to —173° which corresponds to a phase margin equal to 7° and it is far from
the desired phase margin.

The parameter 7p is determined by:

10
= =0.05
2= 200
The parameters of the PD controller are given by:

12
Kp = > =2.5773
K

m

Kp = Kptp =2.5773x0.05 =0.1289

The phase margin of the compensated system is almost equal to 90°.
The closed-loop transfer function with the PD controller is given by:

K,.Kps+ K,,Kp

F =
() = (1 + Ky Kp)s + Ko Kp

The behavior of the system with this controller for a step input is illustrated at
the Fig. As it can be seen that the two methods give two controllers that are
different and the step response are also different. The settling time for the frequency
methods is higher than that the one obtained by the root locus method.
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Step Response
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Fig. 5.43 Step of F(s) with two controllers for two design methods

5.6.4  Proportional Integral and Derivative Controller

None of the heuristic methods proposed by Ziegler-Nichols can be used to design the
PID controller. In the rest of this subsection we focus on the design of this controller
using the root locus and Bode methods. The procedures we proposed previous can
not be used here and we have to use another heuristic methods for this system.

For the root locus method, since the system has only one pole non equal to zero.
The case that consists of placing the zeros between the two poles of the system is
interesting since it can give short settling time.

If we place the two zeros of the controllers respectively at —13 and —15, the root
locus of the system in this case is represented by Fig.

From the root locus we see that for the gain Kp = 1.43, the dominant poles are:

S12 = -114+ 115]

If we refer to the procedure used for the design of the PID controller and the
expression of the controller, we have:
a) = 13
ar = 15
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Bode Diagram
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Fig. 5.44 Bode plot of T'(s) (compensated and non compensated system

From this we have:

1.43
Kp = = 0.0295

Kp = Kp(a; + ap) = 0.0295(13 + 15) = 0.8260
K[ = KDa1a2 =5.7525

For the design of the PID using the Bode method, we will use the same idea of
placing the zeros of the controller as we did for the root locus method. Also we
would like to have a steady state error to a unit ramp equal to 0.01. To get such error

a gain equal to Kp = 100 is necessary for this purpose.
Now, if we place the two zeros of the controller respectively at —12 and —15, i.e.:

= 0.0667

a
I

15

= 0.0833

™ T
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Step Response
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Fig. 5.45 Step of F(s) with two controllers for two design methods

Using these data, we get:
Kn 485

= e = o = 04850

K =T :r _ 0.06%?4; ;)(.)0833 03003
ki = ‘:,' = 0.4850 ~ 20019

K - TTT _ 0.06%7'42 50(.)0833 0oLl

The Bode diagram of the compensated system is represented at the Fig. [5.471
From this figure we conclude that the phase margin is equal 48°.
The closed loop transfer function of the compensated system is given by:
Fs) K(Kps* + Kps + K;)
s) =
Tms? + (1 + K, Kp)s? + K, Kps + K, K;

The step responses with the two controllers is illustrated by Fig.[5.48

5.6.5 Phase Lead Controller

Firstly, it is important to mention that this controller can not be designed with the
empirical methods. The two other methods are still valid for the design of this con-
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Fig. 5.46 Root locus of T(s) =

s

troller. Let us firstly focus on the design the phase lead-controller using the root
locus method. It is important to notice that the best settling time at 5 % with a
proportional controller is about 0.36 s. With the phase lead controller we want to
improve this time. Let the desired pole dominant with positive imaginary part be
sq = —11.3 + 11.3j which corresponds to a settling time equal to 0.2655 s and an
overshoot equal to 5 %. The phase of the system without the controller is given by:

o 48:5/0.06
B\ 5,054 + 16.6667)

) =0-90-64.9830 = —153.9931

The phase lead controller must increase the phase with 180—153.9931 = 26.0069
This implies:

B —a =26.0069
If we place the zero at -15, this implies that 8 = 72.17° and the pole at -20 gives

an angle of 52.89°. This gives a contribution of 19.27° by the controller and which
close to the desired one.
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From this, we have:

! =20
T
1

=15
al

this gives T = 0.05 and a = 1.3333.
The root locus of the system with the phase lead controller is presented in the

Fig.[5.49

The gain that gives the dominant poles is K» = 10.8, which gives a gain Kp =
0.2227 for the phase lead controller.

The closed-loop transfer function with the controller is given by:

KnKp(aTs+1)
F(s) =
Tt,83 + (1 + T)s> + (1 + aTK,,Kp)s + K,,Kp
The behavior of the step response of the system with this controller is illustrated

in Fig. |
Using the Bode method, we design a controller that provides the following

specifications:
1. stable system

2. steady state error to a unit ramp is less than 0.01
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Fig. 5.48 Step response of F(s) with the two controllers

3. phase margin greater than 40°
4. gain margin greater than 8 db

Using the error specification, a gain Kp equal to 100 is needed. This gives a gain
Kp = 2.0619 for the phase lead controller. The Bode diagram of the open loop
transfer of the system with this gain is illustrated in Fig. 550l From this figure we
have:

A¢p =23.1°
AG =
For the design of phase lead controller notice that this controller should bring
459 —23.1° = 22.9°, which gives:

_ 1 +5sin(22.9)

_ — 2.2740.
T ~sin(22.9)

Using this values the magnitude will take the value —20log(a) = —3.5679 at
the frequency w,, = 48.9 rd/s. This implies:

1
T = =0.0136

Wi Va
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The phase lead controller is then given by the following transfer function:

aTs+1
i) Ts+1
With this controller, the compensated system has:
Ap =41.8°
AG = o0

The behavior of the system with this controller for a step input is illustrated at
the Fig. 5511 As it can be seen that the two methods give two controllers that are
almost identical and the step response are also almost identical.

5.6.6 Phase Lag Controller

As it was the case for the phase lead controller, the empirical methods can not help
in the design of the phase lag controller. Here we will design this controller using
the two other methods. For the root locus technique, we will assume that we want
the following specifications:

1. stable system

2. a steady state error to a unit ramp input equal to 0.01
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3. an overshoot about 5 %
4. asettling time at 5 % equal to 0.36 s

Using the settling and the overshoot specifications, we conclude that the domi-

nant poles are 51, = —8.33 + 8.35; and from the root locus of the system, we get
that the gain K that gives these poles is K| = 8.35

Using now the steady state specifications, we conclude that K> is equal to 100.
From the values of these two gains, we get the parameter, a of the controller:

K, 835
K, 100

a =

= 0.0835

It is also important to notice that a = ’Z’ , where p and z are respectively the pole
and the zero of the controller. Now, if we place the zero at —1.5, we get:

p =az=0.1253

and since p = }, we get: T = 7.9808.
For the controller gain, it is given by:

100

Kp =
P 7485

=2.0619
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Fig. 5.51 Step of F(s) with two controllers for two design methods

Finally, the transfer function of the controller is given by:
aTs+1
Ts+1°¢

Using the Bode method, we design a controller that provides the following
specifications:

C(s) =Kp <1

1. stable system

2. steady state error to a unit ramp is less than 0.01
3. phase margin greater than 40°

4. gain margin greater than 8 db

Using the error specification, a gain Kp equal to 100 is needed. This gives a gain
Kp = 2.0619 for the phase lead-lag controller. The Bode diagram of the open loop
transfer of the system with this gain is illustrated in Fig. 5500 From this figure we

have:
A¢p =23.1°
AG =0
The open loop transfer of the system with this controller is illustrated at the

Fig. 5321 The system will have a phase margin equal to 45° at the frequency
w,, = 16.9 rd/s.
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For the design of the phase lag controller, notice that at w,, = 1

magnitude is equal to 12.4 db. Therefore,
a =10 %" =02399

The parameter T is given by:

T = 10 = 2.4667
awy,

100
mS+1)

The controller phase-lag is given by the following transfer function:

als + 1
Q) = ri

205

6.9 rd/s, the

Combining now the two controllers, the open loop transfer function is given by:

59.1716s + 100
5(0.1480s2 + 2.5267s + 1)

The Bode diagram of this transfer function is represented at the 552 The

T(s) =

specifications are:

A¢p = 40.3°
AG = oo

which are acceptable.
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The behavior of the system with this controller for a step input is illustrated at
the Fig.[3.33] As it can be seen that the two methods give two controllers that are
almost identical and the step response are also almost identical.
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Fig. 5.53 Step of F(s) with two controllers for two design methods

5.6.7 Phase Lead-Lag Controller

For this controller, we can use only the root-locus and the Bode methods to design
it. Let us first of start the design of the controller using the root-locus method. It is
important to notice that the best settling time at 5 % with a proportional controller
is about 0.36 s. With the phase lead controller we want to improve this time. Let the
desired pole dominant with positive imaginary part be s; = —11.5 + 11.6j which
corresponds to a settling time equal to 0.27 s and an overshoot equal to 5 %. The
phase of the system without the controller is given by:

( 48.5/0.06

=0-90-659917 = -155.9917
g sd(sd+16.6667)) 0-90-65.99 55.99

The phase lead controller must increase the phase with 180—155.9917 = 24.0083
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This implies:
B —a =24.0083

If we place the zero at -20, this implies that 8 = 53.7676° and the pole at -30
gives an angle of 52.89°. This gives a contribution of 21.6788° by the controller and
which close to the desired one.

From this, we have:

1

=30
T,
1
=20
a1T1

this gives T = 0.0333 and a; = 1.5.
For the phase lag controller design using the root locus technique, we will assume
that we want the following specifications:

1. stable system

2. asteady state error to a unit ramp input equal to 0.01
3. an overshoot about 5 %

4. asettling time at 5 % equal to 0.27 s

Using the settling and the overshoot specifications, we conclude that the domi-
nant poles are s;p = —11.5 + 11.5j and from the root locus of the system, we get
that the gain K that gives these poles is K| = 12.5

Using now the steady state specifications, we conclude that K, is equal to 100.

From the values of these two gains, we get the parameter, a;, of the controller:

K125

=0.125
K, 100

a; =

It is also important to notice that a, = ‘;’ , where p and z are respectively the pole
and the zero of the controller. Now, if we place the zero at 0.1, we get:

p =axz=0.0125
and since p = le , we get: T, = 80.
For the controller gain, it is given by:
_ 100
485
Finally, the transfer function of the controller is given by:
(a1T1s + 1)(612T2.§‘ + 1)
C(s) =K ,ar > lLay <1
& =K s e DT+ 1y 7 b

Using the Bode method, we design a controller that provides the following
specifications:

Kp =2.0619

1. stable system
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Bode Diagram
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Fig. 5.54 Root locus of T'(s) 5?::3, with K = 1, and K = K,,Kp
2. steady state error to a unit ramp is less than 0.01
3. phase margin greater than 40°
4. gain margin greater than 8 db

Using the error specification, a gain Kp equal to 100 is needed. This gives a gain
Kp = 2.0619 for the phase lead-lag controller. The Bode diagram of the open loop

transfer of the system with this gain is illustrated in Fig. 555! From this figure we
have:

A¢p =23.1°

AG =

For the design of phase lead controller notice that this controller should bring
45° — 23.1° = 22.9°, which gives:
_ 1 +5sin(22.9)
~ 1 -sin(22.9)
Using this values the magnitude will take the value —20log(+/a;) = —3.5679 at
the frequency w,, = 48.9 rd/s. This implies:

ai =2.2740.

1
T, = =0.0136
! Wi \/al
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Fig. 5.55 Bode plot of T(s) %>V with K = 1, and K = K,,Kp

S2(tms+1)?

The phase-lead controller is then given by the following transfer function:

Cils) = a1 Tis+1
Ts+1
With this controller, the compensated system has:
A¢p =41.8°
AG = oo

The open loop transfer of the system with this controller is illustrated at the Fig.
555 The system will have a phase margin equal to 45? at the frequency w,, =
41.3 rd/s.

For the design of the phase lag controller, notice that at w,, = 41.3 rd/s, the
magnitude is equal to 2.13 db. Therefore,

a, =10 % =0.7825
The parameter 75 is given by:
10
T, = = 0.3094
a2Wm

The controller phase-lag is given by the following transfer function:

ay T2S +1

CZ(S) - T2S+1
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Combining now the two controllers, the open loop transfer function is given by:
0.7467s% +27.2969s + 100
$(0.0003s3 + 0.0283052 + 0.3830s)

The Bode diagram of this transfer function is represented at the [S.53 The
specifications are:

T(s) =

A¢p =43.3°
AG =
which are acceptable.
The closed-loop transfer function of the system with this controller is given by:
K, Kp (a1a2T1 Tos*(a1 Ty + axTh)s + 1)
bas* + b3s3 + bys? + bys + by
with b4 = TmTsz, b3 = Tm(Tl + T2) + Tl T2, b2 =Ty + T1 + Tz + Kpra1a2T1 T2,
b] =1+ Kpr(a1T1 + ang) and bo = K, Kp.
The behavior of the system with this controller for a step input is illustrated at

the Fig. As it can be seen that the two methods give two controllers that are
almost identical and the step response are also almost identical.

F(s) =

Step Response

Amplitude

0 I I I I I I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

Fig. 5.56 Step of F(s) with two controllers for two design methods
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Remark 5.6.2 From this section, and the previous two ones, we can conclude for a
given system, the phase lead-lag controller can not be obtained by the multiplication
of the of the phase lead controller and the phase lag controller transfer function
designed separately.

The implementation of the different algorithms we developed in this case study
can be done as it will be done in the implementation part. Tab.|3.5gives the different
difference equations to program in each controller. To get these equations we have
used the trapezoidal schema and by denoting the sampling period by T';.

Table 5.5 Difference equations for the different controllers: dc motor kit

Controller Algorithm
P u(k) = Kpe(k)
PI u(k) = u(k — 1) + ae(k) + be(k — 1)
a=Kp+ 5 b=-Kp+ 5]
PD uk) = —u(k — 1) + ae(k) + be(k — 1)
a=Kp+ 3 b=Kp= 2"
PID u(k) = u(k —2) + ae(k) + be(k — 1)+ ce(k—2)

a=Kp+ " 4280 b= KT, -, c= M0 4280 —Kp

Lead u(k) = —aou(k — 1) + be(k) + ce(k — 1)
T2 g g, T2l g T2l

ao = 107> T,+2T ° T,+2T
Lag uk) = —aou(k -+ be(k) +ce(k—1)
Ts+2aT Ty—2aT
aop = T +2T’ b=Kpy Toor » € = Kp'p o
Lead-Lag u(k) = —apu(k — 1) — bu(k 2) + ce(k) + de(k — 1) + fe(k — 2)
4 (T =2T\)(T+2T) +(T42T1 (T, -2T2) 1 _ (T —2T\)(T,—2T5)
0= (Ts+2T1 (T, +2T5) > (Ts+2T\ )T +2T5)
K (Ts+2a T\ (Ts+2a,T>) d K (T, 2a1T1)(TV+2a7T7)+(T +2a, T )(Ty 2a2T2)
(Ts+2T ) )(T,+2T5) (T,+2T )(T+2T5)

_ (Ts=2a, T\ X(Ts—2a>T>)
f_KP (Ts+2T\ )(Ty+2T>)

5.7 Conclusion

Practical systems when designed need in general the design of a controller that
improves the performances of such systems. The performances give an idea on
the transient and transient regimes. Mostly, the overshoot, the settling time, the
steady state error are considered as for the design of controllers. This chapter covers
the design of the classical controllers like proportional, integral and derivative ac-
tions. Procedures using the empirical methods, root-locus technique and Bode plot
technique are proposed and illustrated by numerical examples.
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5.8 Problems

1. In this problem we consider the control of a small satellite. The mathematical
model of this dynamical system is given by:

where Q(s) is the angle to be controlled, U(s) is the force to apply to the satellite
and k = 2 is the gain of the satellite that depends on many parameters of the
system.

Using the three techniques developed in this chapter to design the controller that
gives the best performances and stabilizes the system.

2. Consider the following dynamical system:

4
G(s) =
) = 015+ Dis— 1)
Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

3. Consider the following dynamical system:

4

GO = 025+ 1)

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

4. Consider the following dynamical system:

5
G = 05+ 1025+ 1)

Design a controller that assures the following performances:

(a) stable system

(b) steady state error to a unit ramp equal to 0.1
(c) settling time at 5 % less than 1 s

(d) overshoot less than 5 %

5. A dynamical system is described by the following dynamics:

Gls) = 10

(s+ D(s+5)(s+10)
Using the Ziegler-Nichols methods design the different controllers that we can
design for this system and compare their performances
Using now the root locus and Bode methods design the controllers that
gives good performances for this system. Make a comparative study of these
controllers.
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6. Consider a dynamical system with the following dynamics:
3 5(s+2)
~s(s+ D(s+5)(s + 10)

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

G(s)

7. A dynamical system is described by the following transfer function:
0.4(0.25+ 1))
G(s) =
(0.1s + 1)(0.4s + 1)(0.55 + 1)(0.8s + 1)

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.
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State Space Approaches






6
Analysis Based on State Space

After reading this chapter the reader will:

1. master the concept of state space and its relationship with the transfer
function concept

2. be able to perform the analysis of any LTIl system and determine the
specifications that the system has

3. be able to compute the time response of any LTI system for a given
input

4. be able to check the stability, the controllability and the observability of
any dynamical system

6.1 Introduction

As it was seen before the state space representation is one of the ways to model
dynamical systems (see [, 4} [1]]). Previously, we showed for instance that the model
of the behavior of the position of a mechanical system driven by a dc motor can be
described by the following state space representation:
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{x(z) = Ax(f) + Bu(t), x(0) = xo 6.0

y(1) = Cx(1)

where x(¢) and u(f) are respectively the state vector and the control input and the
matrices A, B and C are given by:

[ _ R K,
_KLm_Ll;nO
A=| A ol
L0 10
rl
L,
B =|0 ,c=[001].
0

The control input u(?) is the voltage that we send to the dc motor and the state
vector x(t) is composed of:

e the current of the armature, i(t)
o the speed of the mechanical part, w(r)
o the position of the part, 6(t)

Before going further in the design of this simple system, we should examine what
are the actual specifications the system has and if they are not acceptable we must
improve them by using appropriate design tools that will be presented later at the
next chapter.

In this chapter we are interested to know what are the specifications that any sys-
tem under study has and how we can proceed to determine them. We are mainly
interested to know if the transient and the steady state regimes are acceptable or not
for the considered system and if this system is stable, controllable and observable.
The goal of this chapter is to show how we can check these properties and com-
pute other performances. Some numerical examples are provided to reinforce the
understanding of the different concepts developed in this chapter.

6.2 State Space Concept

Most of the systems that are computer controlled are in general considered to evolve
continuously in time. To perform their analysis and design, they are sampled and
converted to sampled data systems and then, the appropriate tools for analysis and
synthesis are used. To show how this is done, let us consider a system described by
the following state space equations:

{x(r) = Ax(f) + Bu(t) + Byv(d) 62

y(1) = Cx(1)
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where x(f), u(¢) and v(¢) represent respectively the state, the control input and the
disturbance of the system.

Remark 6.2.1 Notice that the dynamics (6.2) can be rewritten as the one in (6.1)
u(t)
V(1)

The solution of the state space equation is given by [[1]]:

by redefining the control as [ ] and the control matrix as [B By ]

! !
x(1) = Ot — tp)x(tp) + f O(t — o)Bu(o)do + f O(t — o)Bv(o)do  (6.3)
to fo

where 1 is the initial time and ®(¢) is the transition matrix (®(r) = £~ (sI — A)~!
with .Z is the Laplace transform).

Letfy = kT and t = (k+ 1)T, where T is the sampling period of the system. With
a zero-order-hold the control u(o) is supposed to be constant and equal to the value
taken at period kT, i.e. u(o) = u(kT), for kT < o < (k + 1)T. Defining ¥(T') and
W(KT) as:

(k+1D)T
W(T) = f @ ((k+ )T - o) Bdo (6.4)
kT
(k+D)T
W(kT) = f O (k+ DT — o) Biv(o)do (6.5)
kT
we obtain the following state space representation in the discrete-time domain:
x((k+ DT) = O(T)x(kT) + Y(T)u(kT) + W(kT) (6.6)
y(kT) = Cx(kT) (6.7)

After the choice of the sampling period, T, the matrices ®(7") and ¥(T') become
constant known matrices.

It is customary to use the representation x(k) in place of x(kT'). Therefore, x(k)
means the vector x(f) at time ¢ = k7. The state space representation of a linear time
invariant discrete system when the external disturbance is equal to zero for all k > 0
is given by:

{x(k +1) = Ox(k) + Yu(k) 6.8)

y(k) = Cx(k)

where x(k), u(k) and y(k) are respectively the state vector, the input vector and the
output vector at time ¢t = kT, k =0, 1,2,--- and T is the sampling period.

Remark 6.2.2 In Eq. (6.8) we omit to make the matrices ® and ¥ depend on the
sampling period T since it is fixed and these matrices are constant.

The more general form of the discrete-time state space representation is given by:

(6.9)

x(k+ 1) = Gx(k) + Hu(k)
y(k) = Cx(k) + Du(k)

where G = @, H =¥, C and D are constant matrices with appropriate dimensions.
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Y
W)

+ _ x(k+1 i x(k +
uo 4] H @ delay SR y()

G |=

Fig. 6.1 Block diagram of discrete-time linear system

The block diagram of this system is illustrated by Fig.[6.1] Notice that the state
at the time instant k7 is obtained from the one at kT + 1 by a delay of one period
time, 7.

Example 6.2.1 Consider a system with the following dynamics for the output y(t):

10 ]
Y= os+ YO sa0s+ 1)V

where
o u(?) is the reference input
e V(1) a unit-step disturbance

Find the the difference equation of this system.
The solution of this question can be obtained using the formulas presented
earlier. In fact, the corresponding differential equation of the system is:

109(2) + ¥y(t) = 10u(z) + v(?)
By choosing y(t) = x1(2), y(t) = X1(¢) = x2(¢) we get:
(1) = (1) = =0.1x2(8) + u(t) + 0.1v(¢)

The state space equations are:
x| |10 1 x1(%)
@ |0-0.1]|x(0

o =1 0][““)]

X2(1)

0

1

[u(®] +

o } o)

First of all notice that the fast dynamics in this system is linked to the pole —0.1,
which corresponds to a constant time T = 10s. Therefore an appropriate choice of
the sampling period T is equal 1s.
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The transition matrix, O(t) of this system is given by:

_ ool 1) L ool 1 s+0.1 10\ _
o) =27 (s1-4)") =2 (s(s+0.1) 0 s])_
1 1 )
110(1 — et
o) =] 5 sG+OD Z[O o0 )]
s+ 0.1

We also have:

w0 - oo [ 5
0 0

_ [ 107 = 100 + 1007011
- 10 — 10e701

Therefore:

__-0.1T
o) :[(1) IO(Ie*O-e‘T )]’

10T = 100 + 100¢™017
T(T)z[ 10 - 106017 ]

Since v(t) = 1 for t > 0, then we have :

t _ —0.1¢
w@) = f ®(I—U)Blda=[t ]10_21816; ]
0

T - 10+ 107017
W(T) = [ | = 01T }

If T = 1 second, then we obtain:

xk+D]  [1095][xk)]  [048 0.05
ok+1) | ~ 10091 || x| 095 "] 01 |*

It is well known that a physical system may have many state space represen-
tations. Most of the cases, we consider the canonical forms (controllable from,
observable form and the Jordan form). The one, we just presented, is the controllable
form. The other forms will be developed here.

For the Jordan form, remark that:

1 10 10
s(s+0.1) s (s+0.1)

which implies that:

Y(s) = [1;) ] [U(s) + 0.1V(s)]

01)
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Letting now:

Xi(s) = 1S0 [U(s) +0.1V(9)]
10
Xo(s) = (s +0.1) [U(s) +0.1V(s)]

which implies:

%16 = 10u(t) + v(D)
%) = —0.1x2() + 10u(t) + v(t)
Y@ = x1(8) — x2()

From this we get the following state space representation:

(1) = Ax() + Bu(t) + Byv(1)

y() = Cx(1)
with
4= _8—8.1]’
B = —1100}’
B, = ”,

C

[1-1]

For the observable canonical form notice that from:

Y(s) = s [10U(s) + V(s)]

(10s+ 1)
we get:

105%Y(s) + sY(s) = 10U(s) + V(s)

From this we obtain:

Y(s) = 1 -0.1Y(s) + l [U(s)+0.1V(s)]

By letting:
Y(s) =Xi(s)
Xo(s) = i [U(s) +0.1V(s)]
X](S) = ! [—O.IY(S)+X2(S)]

N
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that give in turn:
X1(8) = =0.1x1(¢) + x2(2)
Xo(t) = u(?) +0.1v(r)
(1) =x1()
Finally we get the following description for our system:
x(t) = Ax(t) + Bu(t) + Biv(t)
() =Cx(n)

where

0 0

5 -|2]
B =»0(.)1}’
C =[1o]

A - -0.1 1}’

Remark 6.2.3 Another description can be obtained by letting:

Y(s) =Xs(s)

1 [U(s) +0.1V(s)]

[=0.1Y(s) + X;1(s)]

N

Xi(s)

—

X>(s)

The computations of all the matrices for the discrete-time description can be done
in a similar way as we did for the controllable form.

Remark 6.2.4 In this example, for a given dynamical system, we developed a corre-
sponding discrete-time state space representation for a given continuous-time state
one. In some application we may have the recursive recurrent difference equation
or its equivalent transfer function and we would like to establish the corresponding
state space representation.

Sometimes the model of the system under study can be given in 2-transform
with its transfer function between the output Y(z) and the input U(z) as follows:

Yz) F+27+3z+4 z“(l 27243773 +4z’4)
U -1 51

To establish the state space representation of this system, let us first of all rewrite
the transfer function as follows:

G(2)

_ Y@ X2

@ =y U
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with
X@ _
U~z) -1
Y(2)
X(2)

From the first relation we get:

2X(2) - X)) = U@

=1+272+373+4774

that gives in turn:
x(tk+1) = x(k—4) + u(k)
An alternate choice for the state variable consists for instance to consider

x1(k) =x(k—4)
x2(k) = x(k—3)
x3(k) = x(k—2)
x4(k) =x(k-1)
xs5(k) = x(k)

From this we get:

xitk+1) = x(k-3) = x(k)
xpk+1) =x(k-2)= x3(k)
x3k+1) =xtk—1) = x4(k)

xa(k +1) = x(k) = xs5(k)
xs(k+1) =x(k+1)=x(k)+ u(k)
In matrix form we get:
x(k+1) = Ax(k) + Bu(k)

with
(01000
00100
A =[00010]{,

00001
110000

K

oy
I
—oc oo

From the other side, the second equation gives:

y(k) = x(k) + 2x(k — 2) + 3x(k — 3) + 4x(k — 4)
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Using now, the definition of the state variables, we get:
y(k) = Cx(k)
with
c =[43201].
This idea can be generalized and for this purpose let:
G = Y@ - b2 +bn_fz”‘2 + by

U(z) '+ ap 2+ +ag
! (bn—l +byoZ ! by A+ boz_("_l))

'+ a7+ +ag
This can be rewritten as follows:

_ Y@ _ X@ Y@

‘= e T v X
with
X@ !
UR) Z"+a12" '+ +ao

Y(2) 4 S ot
=byt +bpoz V +bp3zr o+ boz "D
X(2) 1 2 3 0

Using the first relation we get:

xtk+n)+a, i xtk+n—-1)+---+apxtk) =utk+n-1)

That we can rewrite as:

xtk+ 1)+ a,_1x(k) +---+ apx(k —n + 1) = u(k)
Let now:

xi1k) =xtk—n+1)
x(k) =xtk—n+2)
x3(k) =x(k—n+3)

Xu(k) = x(k)

which implies:

xitk+1) =x(k—n+2) = x(k)
xpk+1) =x(k—n+3) = x3(k)
x3(k+1) =xtk—n+4) = x4(k)

Xp(k+1) =x(k+1) = —agxi(k) — - - — ap_1x,(k) + u(k)

225
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The other relation implies:

y(k) = bp_1x(k) +byoxtk—1)+---+boxtk —n+ 1)
= box1(k) + -+ + by_1x,(k)

In matrix form we get for the two relations:

x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k)
where

0 1 0 0
0 0 1 0

A= i S
O 0 0 - 1
L —ap —ay -+ —ap—2 =Gy
[0

B =|:,
| 1

C =|bo bui].
When the degree of the numerator is equal to the one of the denominator of the
transfer function, i.e:

bo' + by 7N+ .+ bz + by

G =
@ a7+t aiz+ag
we can firstly rewrite the transfer function as follows:

bu_1zZ7 '+ ...+ Dbiz+ b

GG@) = by + *
+a, 177+ +aiz+ag

with

ol

-1 = bu_1 — by,

iyl

-2 = bp_o —bpa,_»

Eo = bo — b,,ao
Following the same steps as before, we get the following state space description:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k) + byu(k)
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where
o 1 0 0
0 0 1 0
A=l .
o o o .- 1
| —ap —ay -+ —an-2 —an-1
[0
B =|:],
11
C =[b0—a0bn bn_l—an_lbn].

For the observable canonical form, let us assume that the dynamics of the system
with input u(k) and output y(k) is given by:

bp?7 .+ bz + bo

6@ = ot =l +az+
Z any—12 Lot a17t+

To establish the observable canonical form, let us rewrite the dynamics as
follows:

Y@+ a, 127 Y@+ .+ aiZY (@) + @Y (@) = b1 27 U@ + ..+ bizUR) + byU(2)

where Y(z) and U(z) and the 2 -transform of y(k) and u(k) respectively.
This relation can be rewritten as:

Y(2) Zln [~a, 1271 Y(@) — .. = @12¥ () = Y (@) + by 27 U@ + ...+ bizUR) + b U(2))|

1 1
—a,1Y(2)+ b, 1U(z) + o+
z z

i LY+ b UG + i [aoY(2) + boU(znm

Define X;(k;), Xo(k), - - - , X1 (k), X,,(k) by:

1
Xu(k) = [-aoY(2) + byU(2)]
1

2\l

Xo1(k) = . [—a1Y(2) + D1U(2) + Xu(2)]
1
Xo(k) = . [—an-2Y(2) + by2U(2) + X3(2)]
1
Xi(k) = . [an-1Y(2) + by-1U(2) + X2(2)] = Y(2)
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which gives:

Xp(k + 1) = —agpx; (k) + bou(k)
Xu-1(k + 1) = —ax; (k) + byu(k) + x, (k)

Xk +1) = —ap_px1(k) + by_ou(k) + x3(k)
xitk+1) = —a,_1x1(k) + by_u(k) + x2(k)

In matrix form we get:

—dn—1 10 0 bn—l
—an_201-~ 0 bn—2
xtk+1) = N N L GO BB £7((.9)
-a; 00---1 by
—do 00---0 b()
Yy =[10--0]xtk)

Remark 6.2.5 It is important to notice that if we define X;(k;), Xo(k), - - -

X, (k) by:

Xk = i [a0¥(2) + boU()]
1

X = | Y@+ iU + X,(2)]
1

Xui) = | [ 2@+ by2U@ + X0

1

Xu(k) = . [—an-1Y(2) + b-1U(2) + X2(2)] = Y(2)

which gives:

)Cl(k + 1) = —aoxl(k) + b()u(k)
xk+1) =—-axi(k) + biuk) + x,(k)

X1tk + 1) = —a,_px1(k) + by_ou(k) + x3(k)
Xa(k+1) = —ay_1x1(k) + by_u(k) + x(k)

5 anl (k)’
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In matrix form we get:

00---0 —do b()
10---0 —da| b]
xk+1) =010 =@ 4| o fuk)
Dt bus
00--- l—an_l bn—l
Yk =00 1]x(k)

which gives another observable canonical form:
For more general transfer function with the following expression:

Y@ b+ b+ + bz + by
G(Z) = = n n—1
U(z) "+ a2+t aiz+ao

This transfer function can be rewritten as follows:

6@ = by + Y@ _py y Gut = @uab)2 4k (by = anby)z+ (bo = aobn)
U(2) a1+ taizt+ag

That gives the following state space description:

—a,110---0 b,1 — a,_1b,
—a,201---0 b,2 — a,2b,
X1y =| oot olat+ : u(k)
—da) 00---1 bl—alb,,
N 00---0 bo—aobn
Yy =[10--- 0]x(k) + byu(k)

For the Jordan canonical form, notice that we can have poles with multiplicity
equal to one or greater than one. Let us firstly treat the case of poles with multiplicity
equal to one. For this purpose, let us assume that the transfer function that describes
the system has z;,- - , z,

Y(@) by 4+ biz+ by
G(z) = =" .

U(z) +ad A+t ay

This transfer function can be rewritten as follows:

K K,
G(2) = +- 4
Z-2 7= 2Zn
where

K; = lim G()(z - 2)

Define X;(z) = X

, we get:

xi(k + 1) = Z,‘Xi(k) + K,M(k)
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which gives also:
yk) = x1 (k) + -+ - + x (k)

This gives the following state space description:

210---0 K
0 2 0 K2
xtk+1) = . . . |x()+] . [uk)
000 n K,
Yy =11 1]xth)
Remark 6.2.6 It is important to notice that the gain K;, i = 1,2,--- ,n, can also be

put in the C matrix of the state space description.
When the transfer function is given by:

an” + bn_lz”’l + -+ b]Z + bo

G(Z) T o n—-1 4, ...
"+ ap-12 + +aiz+ ap

we can firstly proceed with a polynomial division which will give the following:
Then proceeding in the same way as we did before, and ntoticing that

YG) = (b1 = an-1b)2" " + -+ + (b1 — a1by)z + (b — aoby,)
- a7+t aiz+ag
=X+ -+ X, +b,U(2)

U(x)+b,U(2)

This gives the following state space description:

210+ 0 K
OZZ"‘ 0 K2

xk+1) =| .0 |xR ] futk)
000 gz K,
Yy =[1 1 1] x(k) + byuk)

Example 6.2.2 In this example, we will show how to establish canonical forms for
a dynamical system described by a transfer function. For this purpose, let us assume
that we have a system with the following transfer function between the output y(k)
and the input u(k):
Y(z 7+2
G(z) = @ _ )
Uk z2-17z+0.72
e controllable canonical form: to establish this form, let us rewrite the transfer
function as follows:

Y@ _ W@ YR . z+2

CD= b T U W) T 21724072
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with
W@ b4
Uz  2-17z+0.72
Y
@ =1+27"!
W(2)
W) _ 4 .
From ;5 = 4y 7.00.700 We 8et:

wk +2) — 1.7w(k + 1) + 0.72w(k) = u(k + 1)
that we can rewrite as follows:
w(k + 1) — 1.7w(k) + 0.72w(k — 1) = u(k)
Let us now define:
x1(k) =wk-1)
x2(k) = w(k)
which implies in turn:
xi(k+1) = wlk) = x(k)
xk+1) =wk+1)=1.7Twk) - 0.72w(k — 1) + u(k)
= —0.72x1(k) + 1.7x2(k) + u(k)
In matrix form we have:

0 1
-0.72 1.7

Y(2)
W(z)

x(k) + u(k)

x(k+1):[ (1)

Using now the second relation
variables, we get:

y(k) = wik) + 2wk — 1) = 2x,(k) + x2(k) = [2 1 ] x(k)
Finally, we get the following description:

e+ 1) = [—0(.)72 1%7 ] x(k) +

k) =[21]xk)

Remark 6.2.7 It is important to notice that we can get another controllable
form with respect to the first raw.

= 1 + 277" and the definition of the state

(1) u(k)

Observable canonical form: from the transfer function we get:
2Y(2) - 1.72Y(z) + 0.72Y(2) = zU(z) + 2U(2)

that gives in turn:

Y(2)

& 1L72Y@) - 0.72¥(@) + U@ + 200

i 1.7Y(2) + U(2) + i [-0.72Y(2) + 2U(2)]
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Let us define X, (k) and X,(z) as follows:

Xo(z) = i [-0.72Y(z) + 2U(2)]
X = i [L7Y() + UG + X()] = Y(2)

which gives in turn:
xi(k+1) = 1.7x1(k) + x2(k) + u(k)
xo(k+ 1) =-0.72x,(k) + 2u(k)
y(k) = xi(k)
Finally, we get the following state space description:

xtk+1) = [_(1);2 é}x(k) +

k) =[10]x(k)

Remark 6.2.8 It is important to notice that we can get another observable form
with respect to the last column.

é] u(k)

e Jordan canonical form: from the transfer function it can be verified that we have
the following poles:

z1 =0.8
z =09

Based on this, the transfer function can be decomposed as follows:

(o] C,
G(z) = +
@ = 08 :-009
where C1 and C, are given by:
. 7+2
R P
. z+2
C, =1 =29
2 z—1>I(§.19 z—0.8
Now, let us define X(z) and X»(z) as follows:
C
X =
1(2) 208
()
X =
2(2) z—-09

The output Y(2) is given by:
Y(2) = X1(2) + X2(2)
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Using these relations, we get:

xi(k+1) = 0.8x;(k) — 28u(k)
xo(k+1) = 0.9x3(k) + 29u(k)
y(k) = xi(k) + xa(k)

which gives the following state space description:

xk+1) = [0(')8 Oog}x(k) +

iy =[11]xk)

2 |

Remark 6.2.9 It is important to notice that we can get different state space
descriptions either by putting the coefficient -28 and 29 at the C matrix and by
permuting the poles 0.8 and 0.9.

In some circumstances we need to compute the transfer function from the state
space description. In the next lines, we will show how to obtain it. For this purpose
consider the state space description (6.9). Applying the 2 -transform, we get:

72X(z) — 2x(0) = GX(2) + HU(2)
Y(z) =CX(z) + DU(z)

where X(z), U(z) and x(0) represent respectively the 2 -transform of x(k) and u(k)
and the initial condition of the state vector.
From these relations we get:

Y(2) = |Cld- G H+ D] U@) + 2L - GI™' x(0)
When the initial condition are equal to zero this condition becomes:
Y() =|Cl-GI™' H+D|U(2)

Example 6.2.3 To show how to compute the transfer function from a state space
description, let us consider the following dynamics:

x(k+1) = Gx(k) + Hu(k)

y(k) = Cx(k)
where
0 1
“ :[—0.1 0.2}’
0
n =[]
¢ =[10].
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Using the formula for the transfer function we get:

G(z) = Z(é)) —Cld-GI''H

ol [ aa]] |1

1 z—-021][0
z(z—0.2)+0.1[10][ -0.1 zHl]

1
T 72(z-02)+0.1
~ 1

T 2-027+0.1

Example 6.2.4 As another example, let us consider the different models in state
space description we developed for the dc motor driving the small disk presented
earlier and compute the corresponding transfer function. For this purpose, we as-
sume that the external disturbance is absent. For this system, we will consider the
output as the position, 0(t), and we should act on the voltage input, u(t), to move
the output. The mathematical model of this system is given by the following transfer
function:

K
Gls) = s(ts+ 1)

where K is the gain and T is the constant time.
From this transfer function we get:

, 1. K
0+ 6= u(®
T T
For the controllable form, we can choose:

x1(1) =0(@) = y@)
x (1) = 6(1)

From this, we get:

x1(1) = 0(1) = x2(1)
) . 1 K
) =00 =- xO+ _u)
T T
That gives in matrix form:

x(t) = Ax(t) + Bu(t)
) = Cx()



6.2. State Space Concept 235

with
[ xi0
X = »xz(t)],
a=[on]
B = 2],
c :{1 0].

To compute the corresponding discrete-time form, let us compute the transition
matrix ¢(s). Using the controllable description, we have
1 7_ 7
s T
= 1
0 s+!

s -1 |

1
0s+; -

s (s + i)
which gives using the Laplace transform table:

8() =[(1)T[1_6_;]}

t
T

T _T-o
W(T) =f [(l)l_e“’ H,‘i]d(r
0 e

T

le[T—T[l—e‘T”}

K[1-e]

s+ 11
T

¢(s)=(sI-A)" = 0" s

It is important to notice that the corresponding discrete-time description is not in
controllable form.

For the controllable form with respect to the first row, we can choose:

xi(1) = 0(1)
x(H) =0@) = y(@)

From this, we get:
. 1 K
@ =6(0)=—-_x@®O+ u®
T T

() =0 = x1(t)

that gives in matrix form:

x(t) = Ax(t) + Bu(t)
) = Cx()
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with
_>x1(t)
x(1) = »xz(t)],
o
A 1o }
[ K
B - 6}
c =[o1].

The corresponding discrete-time form of this controllable form, can be obtained
in a similar way.
For the observable form, notice that from the transfer function we have:

1| 1 11K
A(s) = [— A(s) + [ U(s)]]
s| 7 slt
Let us choose:

X1(s)

! [— Lo + Xz(S)} = ()
S T

11K

S [ T U(S)]

From this, we get the following matrix form:

Xa(s)

(1) = Ax(t) + Bu(r)

¥ =Cx(1)
with
|
x(t) - _xz(t):|9
g
4= o]’
B - 2],
c =[10].

To compute the corresponding discrete-time form, let us compute the transition
matrix ¢(s). Using the controllable description, we have

s+;—1]‘1_ 1
0 s _s(s+i)

s 1
0s+

¢(s) = (sSI-A)" =

1
T
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which gives using the Laplace transform table:

et t|l—er
M0=[0 [ 1 ”

w(T) :foT[e‘(;r” T[l —le‘TT"]Hg}do_
:[K[T—TJ;—e-f]]]

237

It is important to notice that the corresponding discrete-time description is not in

observable form.
For the observable form with respect to the last column, we can choose:

[foed

1L1&®+&uﬂ=wn
N T

Xi(s)

Xa(s)

From this, we get the following matrix form:

Xx(t) Ax(t) + Bu(t)

(1) =Cx(@)
with
REXG!
x(t) - »x2(t):|’
[0 0
A = 1_1:|’
—
o[

C

[o1].

For the Jordan form, notice that from the transfer function we have:
K -K
Os)= Us)+ L U(s)
s s+

Let us choose:

Xi(5) = " UGs)
-K

Xo(s) = U
S+ -

@) = x1(1) + x2(0)
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From this, we get the following matrix form:

x(t) = Ax(t) + Bu(t)

w0 =Cx(@®)
with
o =[]
a=[o5]
C :{11

To compute the corresponding discrete-time form, let us compute the transition
matrix ¢(s). Using the controllable description, we have
Lo
s+!

-1 1

(s )

which gives using the Laplace transform table:

s 0

S+10
0S+1
T

— —_ Ay =
B(s) = (s1- A" = 0" s

(1 0
é(0) 0 e‘i}

[l e

el

¥(T)

A second Jordan form can be obtained. In fact if we can choose:

-K
Xi(s) =, UGs)
S+T

Xo(s) =" UG
y(&) = x1(7) + x2()

From this, we get the following matrix form:

x(t) = Ax(t) + Bu(t)
) = Cx()
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with
w =)
[ 1
A =>_07 8]’
B =’_If},
C :[1 1.

In the next section, we will treat how we can compute the time response of the
sampled data system when the input is fixed.

6.3 Time Response and Its Computation

Previously, we presented a method based on the transfer function concept to com-
pute the time response of any system for a given input. In this section, we will
develop another method that uses the state space description.

Consider the state difference equation :

x(k + 1) = Gx(k) + Hu(k)
Before giving the solution of this difference equation, let us show that
$(KT) = G* = 27" |l - G) 7]

In fact, the z-transform of the transition matrix, ¢(k) = ¢(kT), is given by:
D) = Y kD)
k=0

Pre-multiplying both side of this relation by ¢(7T)z (G = ¢(T')) and subtracting
the result from this relation, we get:

[1- (Do) =T
which can be rewritten as:
-1 -1 -1
O@) = [I-¢(D| = [d-o(1)] 'z
Taking now the inverse z-transform on both sides of this relation, we get:
$(KT) = G* = 27" |l - G) 7]
Another approach can be used to show this. In fact, the 2 -transform of the
previous state decsription gives :
z2X(z) — zx(0) = GX(z) + HU(z)
Z-G)X(2) =zx(0)+ HU(2)
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Multiplying by (zI — G)™!, we get:

X(2) = (2l - G) ' 2x(0) + (zI - G)'HU(2)

Taking now the £ -inverse transform, we obtain:
k) = 27l - G| x(0) + 27 @l - 6 HU )]

Notice that G¥ = 27! [(z] - G)‘lz] is the transition matrix.
Finally, we get the following expression for the solution of the difference
equation:

k-1
x(k) = G*x(0) + Z G Hu(l)
=0

It is also important to note that the solution, can be obtained using a recursive
approach. In fact, for k = 0, we have:

x(T) = Gx(0) + Hu(0)
and for k = 1 we have:
x(2T) = Gx(T) + Hu(T)

=G [Gx(0) + Hu(0)] + Hu(T)

= G*x(0) + GHu(0) + Hu(T)
For k = (N — 1)T, we have

x(NT) = Gx((N — DT) + Hu((N — DT)
For k = 2, we have
x(3T) = Gx(2T) + Hu(2T)

Substituting the (N — 1) equations for x((N — )T, x((N —2)T) - - - , x(T), we get:

N-1
x(NT) =GV x(0) + Z GV Hu(l)
1=0

For N = k we get:

k-1
x(kT) = G*x(0) + Z GV Hu(l
=0

The characteristic equation is:
I -G]|=0

Recall that a discrete system is stable if and only if the roots of the characteristic
equation lie inside the unit circle centered at the origin.
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Example 6.3.1 Find the solution of the following discrete-time system when u(k) =
,k=0,1,2,---

x(k + 1) = Gx(k) + Hu(k)

o= r=hi] o)<
The transition matrix is defined by :
O(k) = G = 27 (2l - G)'7]
Calculate (zI — G)™!

z+1 1
R A (z+0.2)(z+0.8) (z+0.2)(z+0.8)
@@= =|0162+1 -0.16 z

(z+0.2)(z+0.8) (z+0.2)(z+0.8)

2o 3 lios) 30220 0s)
3\z+0.2 31z+0.8 3\z4+0.2 3\z+0.8

_0.8( z )+0.8( z )_l( z )+4( Z )
L 3 \z+0.2 3 \z+0.8/ 3\z+0.2 3\z+0.8

The transition matrix

k) =G =2 @l -Gy
s O;g(zfo 2) 1( Z0 ) §(z+z(z).2)_§4(z +ZO.8>

B (z+02) 03 (z+08) (z+0.2)+3(z+Z0.8)
*Coop-t J(-08) 3(—0.2)’<— 3(—0.8)"

—_

o6 = 08y 08 o a | A
y (02 + (08 — (<02 + (-0.8)

We know that.'
X(2) =zl - G) ' [zx(0) + HU(2)]

b4
Uiz) = 1
therefore
z e
z z—1 z—1
x(0)+HU(z) = +
(0) (2) [—z z R
Z_l Z_l
and finally

X(2) = (2 = G)' [zx(0) + HU(2)]
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17 22 25
(22+2)Z —6Z . _9Z . 18Z
X(z) = (z+02)(z+0.8)z—1) | _ Z3-|.-40.2 z+08 z-1

—72 17.6 7
(—z + 1.842)z _be, .

Z
(z+02)(z+0.8)(z—1) 6 n 9 + 18
z+402 z+08 z-1

Finally, we get the desired result:

| - 167(—0.2)k + 2208+ ?5
=2 X =30 1
p (-0.2)F - 9 (-0.8)" + 13

Most of the time the system under control evolves continuously in time and their
outputs take continuous values. Their specifications are defined in a similar way as
we did previously when using the transfer concepts. For more details on the specifi-
cations, we refer the reader to the appropriate chapter. The discrete-time description
is obtained in a similar was that we did for previous examples.

6.4 Stability

Previously we presented methods to check if a linear time-invariant given system
is stable or not. These methods are based on the transfer function concepts and due
to Jury and Raible and the methods are referred in the literature to as Jury’s criteria
and Raible’s criteria respectively. In this section we present another approach for the
stability analysis that was developed by Lyapunov. This method is powerful since it
can be applied to linear and nonlinear systems and it is referred in the literature to
as second method of Lyapunov.

For the analysis of stability in the sense of Lyapunov, we assume that the system
is unforced (u(#) = 0,Vt > 0) and responds only to initial conditions. The sec-
ond method of Lyapunov has the disadvantages that gives only sufficient condition
only and it relies of the choice of a Lyapunov function which is more complex for
nonlinear systems.

A linear discrete-time system x(k + 1) = Gx(k), with x(k) its solution at period k,
is stable if it exists a scalar function V(x(k)), called Lyapunov function, that satisfies
the following conditions:

1. V(x(k)) must be positive definite
2. and satisfying the following:

=0 forx=0,

V) {> 0 forx#0.
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The variation of V(x(k)) between two consecutive values (k + 1) and (k) of x(k)
must be negative definite, i.e.
AV(x(k)) = V(x(k + 1)) = V(x(k))
that must satisfy the following:
=0 f =0,
AV(x(k) o
<0 forx+0.

For the choice of the Lyapunov function V(x(k)), there exist several possibilities
to find an adequate function V(x(k)). For linear systems, we generally choose the
following form:

V(x(k)) = xT (k)Px(k)
where P is an appropriate matrix with appropriate dimension.

1. In order for V(x(k)) to be positive definite, it is sufficient that P is a symmetric
and positive-definite matrix.

2. Regarding the condition AV (x(k)), since x(k + 1) = Gx(k), we have :

AV(x(k) = xT(k + DPx(k + 1) — x™ (k) Px(k)
= x" (|G PG - P|x(k) = —x" (k) Qx(k)

—_———
Y

One solution for AV(x(k)) to be negative definite is that Q is symmetric and
positive-definite matrix.

Theorem 6.4.1 Consider a linear time-invariant system with the following
description:

x(k + 1) = Gx(k)

The equilibrium point X = 0 is asymptotically stable if and only if for any given sym-
metric and positive matrix Q, there exists a symmetric and positive-definite matrix
P solution of the following:

G'PG-G=-0Q (6.10)
Then V(x(k)) = x" (k)Px(k) is a Lyapunov, and AV (x(k)) = —x" (k) Ox(k).
Remark 6.4.1 It is important to notice that the stability of linear systems depends

only on the system itself and not on the inputs and this is shown by Eq. (6.10) since
the matrix G represents this system.

Proof: Let us prove the sufficiency only. For this purpose, let us assume the exis-
tence a symmetric and positive-definite matrix P > 0 that it is the unique solution of
ATPA - P =—Q, fora given Q > 0, and consider the following Lyapunov function:

V(x) = x" Px
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First of all notice that V(x) > 0 for all x # 0 and V(0) = 0.
The difference is given by:

AV(x(k) = V(x(k+ 1) = V(x) = x"(k + DPx(k + 1) + x™ (k) Px(k)
= x"(k) [ATPA - P] x(k) = —x" (k) Qx(k)

Since O > 0 is symmetric and positive-definite matrix, then AV(x) < 0 is
negative-definite, which implies that the system is stable.
For the proof of the necessity we refer the reader to [7]] O

We can show the stability of a given system doesn’t depend on the used descrip-
tion. Let us assume that we have a stable system and consider a transformation, 7',
that puts it in a Jordan form. For this purpose, notice that:

G=T"'GT

Since our system is stable, this means that for a given symmetric and positive-
definite matrix Q, there exists a symmetric and positive-definite matrix P solution
of the following Lyapunov equation:

G'PG-P=-0Q

The new description will be stable if for a given symmetric and positive-definite
matrix Q there exists a symmetric and positive definite matrix P such that the
following holds:

GTPG -G =-0
Using now the expression of G we have:
T'G'TPT'GT -T7'GT = -0
that gives
7' [GTPG-G|T =-0
From this we get:
G'PG-P=-T"'QT =-Q
which is equivalent to the stability of the initial description.
Example 6.4.1 Let us now consider a system with the following dynamics:
x(k + 1) = Gx(k)

with

G [0-768 ~0.416
“11.184 0.192

Let’s choose the simplest symmetric and positive-definite matrix:

o- 1)
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we calculate : Q=P-G'PG

10| _[pupiz| | 0768 1.184 || p11 p12 || 0.768 -0.416
01| |paup2 ~0.416 0.192 || pa1 p || 1.184 0.192

From this, we obtain :

0.410p1; — 0.909p1, — 0.909py; — 1.402p5 = 1
0.319p11 + 0.853p1p + 0.492py; — 0.227p2r = 0
0.319p11 + 0.492p 12 + 0.853p2; — 0.227p2r = 0
—0.173p11 + 0.080p12 + 0.080p2; + 0.963px = 1

which gives in turn:

p_| 5715 —0.978
= -0.978 2.227

The determinant of P is equal to 11.771. The matrix P is then symmetric and
positive-definite and therefore, the system is stable in the sense of Lyapunov.

Example 6.4.2 Let us consider the following system for this example:

) 2 Y@
@ = L 0e-02 " UG

where Y(2) and U(z) represent respectively the % -transform of the output and input.
The canonical forms for this system are:

e controllable form: Letting x,(k) and x,(k) be defined as follows:

xi(k) = y(k)
x(k) = y(k+1)

and noticing that we have:
vk +2) —0.3y(k + 1) + 0.02y(k) = 2u(k)

we get:

x(k +1) = Ax(k) + Bu(k)
y(k) = Cux(k)
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with
REAG!
x(k) - »)Q(k) ’
[0 1
A= —0.020.3]’
-2
c =[1o].

e observable form: Notice that we can write the following:

Y(z) = i [O.3Y(z) + 1 [-0.02Y(z) + ZU(Z)]}

Letting x1(k) and x(k) be defined as follows:

1
Xi(z) = ; [0.3Y(2) + X»(2)] = Y(2)
Xo(z) = i [-0.02Y(2) + 2U(2)]
we get:
x(k+ 1) = Ax(k) + Bu(k)
y(k) = Cx(k)
with
REXG
*k) = »xz(k)}’
[ 03 1
4 =1-002 0]’
[0
B - _2],
C = [1 0].

e Jordan form: Notice that we can write the following:

~20 20
Y@= 01 V@* 2"

Letting x1(k) and x,(k) be defined as follows:

1
s-017®

1
U
z—0.2 ()

Xi1(2) =

X2(2) =
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we get:
%(k) = Ax(k) + Bu(k)
y(k) = Cx(k)
with
[ xik)
= »xz(k)}’
(0.1 0
4=10 0.2}’
(1
5 -[1]
C = [—20 20].

Remark 6.4.2 Let us show that a transformation T of a system description will not
change the system stability. For this purpose, let the initial description be given by:

x(k + 1) = Ax(k) + Bu(k)

The characteristic equation for this system is given by:
A(z) = det [zl — A] = 0.

Now, if we use the transformation T, i.e.: x(k) = Tz(k) to get:
2(k + 1) = Az(k) + Bu(k)

with A= T 'AT and B=T"'B.
The corresponding characteristic equation is given:

A(s) = det [zI[ - A] =0.
Using now the expressions of A and B, we have:

A(s) = det|[T™' [Z1 - A] T|
=det[zl - A] = 0.

which is the same as for the original description. To get the last relation, we used
the fact that the transformation is nonsingular (det(T) and det(T~") are not equal
to zero)

In this example, we will consider the canonical description of the previous exam-
ple and show that the stability of the system is not affected. We will do the analysis
in the continuous-time.

e controllability form

Z -1

Az) =det[zl - A] = ‘[0.02 203

” =5(s-0.3)+0.02=0.
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o observability form

Ai) =det[d - A] =

[Z_?) %‘23 _Zl ” = s(s—0.3)+0.02 = 0.

e Jordan form

A(z) =det[zl - A] =

[Z—O.l 0

0 z—0.2” =(s=0.1)(s=0.2) = 0.

For these description we get the same poles and therefore, the stability is not
affected the transformation we consider.

6.5 Controllability and Observability

The concepts of controllability and observability are important issues in modern
control theory. These two concepts play an important role in the stabilization prob-
lem of any dynamical system. The controllability is in some sense related to the
possibility of driving the state of the system into a particular state, like the origin for
instance, by using an appropriate control signal in a finite time. Therefore, when a
state is not controllable, then no way to reach such goal, and consequently no signal
will be able to control the state. The fact that the state is not controllable will cause
a problem if the system is not stable. The concept of observability is related to the
possibility of observing, through output measurements, the state of a system that we
may use for control purpose for instance. Therefore, when a state is not observable,
the controller will never be able to determine the behavior of an unobservable state
and consequenlty can not use it to stabilize the system. In the rest of this section we
will show how to evaluate if a given system is controllable and observable or not.
Let us consider the following dynamics:

(6.11)

x((k + DT) = Gx(kT) + Hu(kT)
y(kT) = Cx(kT)

with x; € R™!, G € R™", H € R™! and C € R,

In the rest of this section we will see how to determine if a given dynamical
system is controllable or not and we do the same for the observability. Let us firstly
start by the controllability.

Definition 6.5.1 The system (6.11) is state controllable if there exists a piecewise-
constant control signal u(kT) defined over a finite sampling interval 0 < kT < nT
such that starting from any initial state, the state x(kT) can be made zero for kT >
nT.

Definition 6.5.2 If every state is controllable, then the system (6.11) is said to be
completely state controllable.
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Definition 6.5.3 A system
x(k+ 1) = Gx(k) + Hu(k), x(0) = xq

is controllable provided that there exists a sequence of inputs u(0),u(l),---,u(N)
with finite values that transfers the system from any initial state x(0) to any final
state x(N) with N finite.

In fact, notice that:

x(1) = Gx(0) + Hu(0)
x(2) = Gx(1) + Hu(l)

= G2 x(0) + GHu(0) + Hu(1)
x(3) = Gx(2) + Hu(2)

= G [G*x(0) + GHu(0) + Hu(1)| + Hu(2)
u(2)

u(1)
u(0)

= G?x(0) + [H GH G2H]

x(N) =GVx(0) + GN'Gu(0) + - - - + GHu(N — 2) + Hu(N — 1)

u(N -1)
u(N —2)
=G"x(0)+|H GH --- G""'H | _
u(0)
Therefore, for given x(0) and x(N), we get:
u(N - 1)

u(N - 2)
*(N) = GNx(0) = [H GH - GN-IH] ,

u(.O)

Since x(N) € R”, this algebraic equation will give a solution only if the rank of
the matrix

[HGH~-~ GN-IH]

is equal to n.
This matrix in known as the controllability matrix and it is defined by:

¢ = [HGH~-~ G'HH]

Theorem 6.5.1 The system (6.11) is completely controllable if € is of rank n.

Remark 6.5.1 The controllability of a given depends only the pair (G, H) and
doesn’t depend on the system description we use.
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Theorem 6.5.2 The system controllability is invariant under an equivalent trans-
formation of the system description.

Proof To prove this, let us firstly consider that the system is described by:
x(k + 1) = Gx(k) + Hu(k)
{y(k) = Cx(k)
The pair (G, H) is controllable if the rank of the controllability matrix:
¢ =[HGH--- G"'H|

is equal to n.
Let us consider a transformation, n7(k) = Px(k) that put that the system description
as follows:

n(k + 1) = Gn(k) + Hu(k)
y(k) = Cx(k)

withG = PGP™', H = PHand C = CP™'.
The pair (G, H) is controllable if the rank of the controllability matrix:
¢=|AGH - A
is equal to n.
Replacing G and H by their expression and noticing that (PGP‘I)n =
PGP~ 'PGP™'...PGP™' = PG"P™" , we get:
€ =|PH PGP™'PH --- PG"'P~'PH |
=P|HGH--- G"'H|
= P¥¢
Since P is nonsingular, its rank will not affect the results. Therefore the rank of

% is equal to the one of %, which implies that the controllability is not affected by
the equivalent transformation. O

Theorem 6.5.3 The following statements are equivalent:
1. the pair (A, B) is controllable;

2. the matrix of dimension n X n
k-1 ,
W.(k—1) = Z A'BBT (A7)
=0
is nonsingular;

3. the controllability matrix € = [B AB --- A”‘IB] has rank n;

4. the matrix [A—/U[ B] is full rank (raw) for every eigenvalue, A, of the
matrix A;
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5. moreover if all the eigenvalues of the matrix A are inside the unit circle, then
the unique solution W, — AW.AT = BB" is positive-definite and the solu-
tion is called the controllability gramian . The expression of the controllability
gramian is given by:

W, = iA’BBT (AT)I
=0

Let us focus on the observability of the system (&.11)). First of all using the dual
system, the observability of the original system can be seen as the controllabil-
ity of its dual. The dual system of the system (6.11)) is described by the following
dynamics:

ntk+1) = ATpk) + CTv(k) (6.12)
w(k) = B (k) (6.13)

The controllability of this system implies the observability of the system
(refdynamics) and vice versa.

Definition 6.5.4 The system (6.11) is said to be observable if every initial state
x(0) can be determined from the observation of the output over a finite k sampling
periods.

Definition 6.5.5 The system (6.11) is completely observable is every state is
observable.

For simplicity, let us consider that the input is equal to zero for all k£ > 0. In this
case, we have:

¥(0) = Cx(0)

y(1) = Cx(1) = CGx(0)

¥(2) =Cx(2) = CGx(1) = CG*x(0)
y(3) = Cx(3) = CG>x(0)

y(N-1) = Cx(N -1) = CG""'x(0)
Notice that:
y(0) C
y(1) CcG
) = . |x(0)

YN -1 |cGh!
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Since x(0) € R", this algebraic equation will have a solution only when the matrix

C
CG
CdN—l
has a rank equal to n.

Observability matrix is defined by:

C

CcG
O =
CG.N—l

Theorem 6.5.4 The system (6.11) is completely observable if O is of rank n.

Remark 6.5.2 The controllability of a given depends only the pair (C,G) and
doesn’t depend on the system description we use.

Theorem 6.5.5 The system observability is invariant under an equivalent transfor-
mation of the system description.

Proof: The proof of this theorem can be done either by using the dual system or
by following the same steps as for the controllability. O

Theorem 6.5.6 The following statements are equivalent:
1. the pair (A, C) is observable;

2. the matrix of dimension n X n

n—

I
Wo(n = 1)= > (AT) CTCA’
=0
is nonsingular;
C
CA
3. the observability matrix O = . has rank n;
CAn—l

4. the matrix [A E,/UI] has full rank (column) for every eigenvalue, A, of the

matrix A;

5. moreover if the all the eigenvalues of the matrix A are inside the unit circle, then
the unique solution of W, — ATW,A = CTC is positive-definite., that is called
the controllability gramien and its expression is given by:
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w,=S (A7) cma!
1=0

Example 6.5.1 In this example, we consider a system with the dynamics as in (6.11)
with

1 0.905 0.475
¢ = [0 0.819]’H - [0.905}’C =[10]

Let us study the controllability and the observability of this system.

o Controllability Matrix:

0.475 1.294
¢ = [HIGH] = [0.905 0.741}'
The determinant of this matrix, det% = —0.819, which means that its rank,

rank (€) = 2 therefore the system is completely controllable.

o Observability matrix:

7= éa] =1 os0s]

The determinant of this matrix, det & = 0.905, which means that its rank,
rank (%) = 2 therefore the system is completely observable

Example 6.5.2 In this example we consider a dynamical system with the following
dynamics between the input u(k) and output y(k):

623 +522 +4z+1
G(z) =
@ 2-6z22+11z-6

Our objective is to study the controllability and the observability of this system
and show that these properties are not affected by the state space description we
used. We will restrict ourselves to the case of canonical forms.

Following the same steps as we did earlier to establish the canonical forms, we
can establish the following:

x(k + 1) = Gx(k) + Hu(k)
y(k) = Cx(k) + Du(k)

where the matrices G, H, C and D are given in each form as:
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e controllable form:

[0 1 0
G =[0 0 1],
|16 -116
0
H =|0],
| 1
C =[37-6241],
D =6
e observable form:
[ 6 10
G =|-1101],
| 6 00
[ 41
H =|-62],
| 37
c =[100],
D =6
e Jordan form:
(100
G =|020],
1603
8
H =|-77],
| 110
c =[111],
D =6

The controllability matrix in each form is given

00 1
016],

1636

e controllable form:

¢ =

e observable form:

€ =|-62—-414 -1778

37 246 1104

41 184 690‘
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e controllable form:

&8 8 8
€ =|-77-154 =308 |,
110 330 990

The rank of the controllability matrix in each form is equal to 3 and therefore,
the system is controllable and as it can be seen, the chosen form will not affect the
controllability of the system.

The observability matrix in each form is given

e controllable form:

0 =| 246 -414 184

1104 —-1178 690

37 -62 41}

e observable form:

100
0 =610},
2561
e controllable form:
111
o =123/,
149

The rank of the observability matrix in each form is equal to 3 and therefore,
the system is observable and as it can be seen, the chosen form will not affect the
observability of the system.

Previously we presented the canonical forms for single input single output sys-
tems. In the rest of this section we will cover how we can establish the multi-input
multi-output case. For this purpose, let us assume that the system we consider is
described by the following:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)
where x(k) € R, u(k) € R™ and y(k) € R”; A € R™" B € R™" and C € RPX",

To establish the canonical forms, we need to determine a transformation P such
that:

x(k) = Pr(k)

where P is a nonsingular matrix.
For the Jordan form, this matrix can be obtained in the following manners:

e cigenvalues of the matrix A are distinct and with multiplicity equal to one: For
this case, assume that the eigenvalues of the matrix A are 4;,--- , 4, (i.e: they
are solution of the equation zI — A = 0), and their corresponding eigenvectors
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are vy, - ,V, (i.e: they are solution of Av; = A;v;,i = 1,---,n). For this case
the matrix P is given by:

P=[v1 vy e v,,]

The new state description is obtained as follows. In fact using the transformation
x(k) = Pn(k), we get:

ntk + 1) = PLAPy(k) + P~ Bu(k)
y(k) = CPn(k)

Since P is nonsingular, which means that P! exists, we get:

{n(k +1) = An(k) + Bu(k)

y(k) = Cn(k)
with
A =P'AP
Al -~ 0
0 - A,
B =P'B
C =cpP

e eigenvalues with multiplicity greater than one: For eigenvalues with multiplic-
ity greater than one, the method of determining the matrix P is similar to the
previous one, except the computation of the eigenvectors is different. To show
how this works, let us assume that we have eigenvalue with multiplicity equal
to n. The eigenvectors in this case are solution of the following:

AV1 = /1\11

Avy = Ava + vy

Av, = Av, + v,

where A is the eigenvector of multiplicity equal to n of the matrix A.
The matrix P in this case is given by:

P=[v1 vy - v,,]
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The new description is similar to the last case with the following structure
for A:

A =P 'AP
110 ---0
0A 1 -0
00--- 11
00--- 0 A

Example 6.5.3 To show how we establish the Jordan form in case of distinct eigen-
values with multiplicity equal to one. For this purpose, let us consider the following
state description:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

with
0 1
A‘[—0209}
10 11
32[01}C=[01]
The eigenvalues of the matrix A are 0.4 and 0.5. The corresponding eigenvectors
are:
RE
Vl - 2 ’

A

which are the solution of Avy = 0.4v| and Av, = 0.5v, respectively.
The corresponding matrix P is given by:

52
P = [2 1 ] |
Its inverse is given by:

If1 -2
-1 _
P _1[_25].

The corresponding Jordan form is given by:

n(k + 1) = An(k) + Bu(k)
y(k) = Cn(k)
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with

Example 6.5.4 To show how we establish the Jordan form in case of eigenvalues
with multiplicity greater than one, let us consider the following state description:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

with

0 1
A:[—o.251}’

r=lotl-e=oi]

The eigenvalue of the matrix A is 0.5 with multiplicity equal to two. The
corresponding eigenvectors are:
12
V] - 1 ’

.-

which are the solution of Avy = 0.5vy and Av, = 0.5v, + v, respectively.
The corresponding matrix P is given by:

p:[fg]

Its inverse is given by:

[ 057 05
d ‘[—0.25 05 |

The corresponding Jordan form is given by:

n(k + 1) = An(k) + Bu(k)
y(k) = Cn(k)
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with

0 0.5

- [075 -05
B“[—ozs 05 }

~ |35
aliH
Let us now focus on how we determine the matrix P of the transformation n(k) =
Px(k) that put the system description in the controllable canonical form. We will

firstly treat the case of single input, which means that B € R™!. Our objective is to
determine a transformation:

A:[O'S 1 }

n(k) = Px(k)

with P a nonsingular matrix.

Since P is nonsingular, this means that it has an inverse and PP~' = I. One way
to construct this matrix is to use the controllability matrix which is given for this
case by:

%:[BAB~-NHB]

If the system is controllable, then ¢ is nonsingular and %! exists. Let the
expression of this matrix be as follows:

q1
o = q2
qn
where g; is a row of €.

The matrix P of the transformation that gives the controllable canonical form can
be constructed as follows:

qn

gnA
P= .
ann—l

By this construction of the matrix P, it is important now to show that it is non-
singular, or to show that its rows are linearly independent which means that there
exists scalars ag, - - - , a,-1 such:

aoqn + a1q,A + - + an_lan”_l =0

withay=a;=---=a,.;1 =0
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To show this, let us use the following relationship between % and its inverse:

¢l =1
qi

= qf [BAB-~-A”‘1B]

dn

From which we get:

@1B ¢1AB --- 1A"'B 10---0
¢2B ¢;AB - -- qu"_lB 01---0
Co ) : o
gnB q,AB --- q,A"'B 00---1
Using this, we obtain for the last row:
g.B =q,AB=---=q,A"?B=0

¢ A"'B =1
Now if we multiply from the right the following relation:
aoqn + a1guA + -+ a4y, A" = 0
by B, we get:
aoqnB + ajq,AB+ - -- + an,lan’HB =0
From this, we obtain:
a,_.1 =0
since

g.B =q,AB=---= an"sz =0
¢.A"'B =1

Using now the fact that a,,_; = 0, we get:
A0 + A1GuA + -+ + Ay 2qnA" 2 =0

Repeating the same idea and by multiplying this relation by AB, and by using
this time the n — 2 row, we get:

ay-2 = 0
since
guB =g,AB=---=¢q,A">B=0
gnA"?AB =1

Proceeding similarly for the rest of the term we can prove thatag = a; = --- =
ap—3 = 0 and therefore the matrix P is nonsingular.
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Let P~! be given by:
P o= [vivy v

Notice that

qn
B qnA
PAP™ = : A[vlvz~-~vn]
[ gu A"
[ gnA
an2
[ gnA"
[ anvl anV2 anVn
QnAZVI an2V2 e anZVn
-annvl QnAnV2 e QnAnVn

Using now the fact that:

qn
o qnA
PP = X [vl vz-'-vn]
_ann—l
qnVi qnV2 e qnVn

QnAVl anVZ e QnAvn

»ann_lvl ann_IVZ e QnAn_lvn

10---0
01---0
100 --- 1

we remark that the first (n — 1) rows of the matrix PAP~! are identical to the last
(n— 1) last rows of the matrix PP~! and therefore equal to the identity matrix, while
the last row of PAP~! can be composed of any numbers. Therefore, the matrix
PAP! has the controllable canonical form with respect to the last row.
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To show that B has the following form:

0
0
B =
0
1
notice that:
qn
_ qnA
B =PB= )
gnA"™!
qnB
q.AB
ann—lB
Using now the fact that:
an :anB: :anrkZB:O
g A"'B =1
we get:
0
0
B =
0
1

Remark 6.5.3 We just present a procedure to determine the controllable canonical
form with respect to the last row. This form is obtained using the last row of the in-
verse of the controllability matrix. Here we will give another procedure that is based
on the observability matrix O. For this purpose, let us assume that the dynamics of
the system is described by: The system

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

where x(k) € R", y(k) € R and u(k) € R.
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Now if we let P, (n(k) = Px(k)) be given by: The system
C
CA
P = ﬁ = :
CAn—Z
CAn—l

and following the same idea as we did previously we can show that

010---0
001---0
A =PAP' =|: -
0001
XXX X
b
B =PB=|:
by

C=cP'=[10---00]
Using the transformation, the new one is given by:

nk + 1) = P[Ax(k) + Bu(k)] = PAP~'Px(k) + PBu(k) = An(k) + Bu(k)
y(k) = CP~'Px(k) = CP~'5(k)

with A = PAP™!, B= PBand C = CP™".

Example 6.5.5 To show how to get the controllable canonical description of
system, let us consider the following dynamics:

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
with
(1 001
0-101
A= 0011
1100
[ 1
-1
B = 0
| 1
(1 001
C__O—101
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The system is controllable and its controllability matrix is given by:

1226
-12-26
¢ = 0115
1040

and its inverse is:

1 -1 0 1
025 1 -15 075
-025 025 0 05

0 -0.250.25 -0.25

¢ =

From this we get:
gs =]0-025025-0.25]
and the matrix P is given by:
[ g4
qsA

[ g4A*

0 -0.250.5-0.25
-025 0 0.5 0.25
0 025 05 0.25
| 025 0 0.5 0.75

Its inverse is:

1 =31 1
1-13 -1

-1 _

PP=11 01 o

-1 1 -11

From this we get the following controllable canonical form:

nk +1) = An(k) + Bu(k)
y(k) = Cn(k)
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with

= PAP!

0100
0010
0001
[0-331

PB
[0
0
0
| 1

cp!
[0-2 0 2
(02 -42

b

o]
1l

o
Il

Let us now generalize this idea to the multi-input multi-output case. Before this,
we will introduce the concept of the controllability index. For this purpose, let us
first of all assume that the matrix has full column rank, which means that all the
columns in the matrix B € R"™™ are linearly independent. It is important to notice
that the presence of a linearly dependent column to another one, means that the
corresponding input is redundant and this column can be removed without affecting
the results.

Firstly let us write B as follows:

B:[blbz---bm]

where b; is the ith column that is assumed to be linearly independent of all the other
columns of B.
Notice also that the controllability matrix can be rewritten as follows using this:

¢ =|BAB--- A"'B|
z[bl < by Aby -+ Ab,, --- A" b, ---A”‘lbm]

To search for the number of columns that are linearly independent starting
from the left side, notice that when the column A”b; depends on the left hand
side columns, the columns A"*'b,,---A""1b; will also depend on the left hand
side columns. This means that once a column associated with b; becomes linearly
dependent, the rest of the columns associate with b; are also linearly dependent.

Let us again rewrite again the controllability matrix as follows:

73 :[blAbl...Al’l—lbl... by Abyy - - - An—lbm]

Let us denote by p; the number of columns associated with the column b; that are
linearly independent in the controllability matrix %, which means also that

i =[b1 Aby -+ Apl—lb[]
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are linearly independent and all the columns A?**b;, k = 0,1,--- ,n — 1 are linearly
dependent.
This is true forany [, [ = 1,2, - -- ,m and if the rank of ¥ is equal to n, we have:

prL+p2+--+pp=n
where p; is the controllability index associated with the column b;. The con-
trollability index of the controllability matrix (i.e: the pair (A, b)) is defined
by

p= maX(pl,Pz, e ,Pm)

It is important to notice that the controllability index , p, which is in some sense
the largest integer such that the corresponding controllability matrix,

|BAB--- A"'B]
has a rank equal to n, satisfies the following:
" <p<min(ng,n—m+1)
where ny4 represents the degree of the minimal polynomial of A.
Theorem 6.5.7 The system
x(k +1) = Ax(k) + Bu(k)
y(k) = Cux(k)

with x(k) € R", y(k) € R? and u(k) € R"™, is controllable (B is full column rank) if
and only if the rank of the following matrix:

%, =|BAB--- A"7B]
is equal to n or the n X n matrix €," 6, is nonsingular

Example 6.5.6 To show how to compute the controllability indices, let us consider
the following system:

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
where

1 0 01
0110

A=lo-101
11 001
(11
10

B = 00
101
(0110

“=lioto
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Firstly, it is important to notice that the two columns are independent. In this
case, we haven =4, m =2 and p = 2.
The controllability matrix of this system using the last theorem is given by:

¢ [b1 by Aby Aby A%b, A2b2]

111224
101001
00-1102
011224

This matrix is has a rank equal to 4. From this we extract:

%, [b1 by Ab, Abz]

1112
1010
00-11
0112

This implies that the controllability indices are respectively py = 2 and p; = 2,
and the controllability index of the system is:

p =max(2,2)=2

and satisfies:

n

4
= _ <p<min@dn-p+1)=3
p 2

Let us now focus on the transformation that gives the controllable canonical
form. This transformation is based on the controllability indices associated with
the columns, by, - -, b,,. Let us denote by %, the number of columns that are lin-
early independent that we can extract from the controllability matrix starting from
the left side. %, is defined by:

€, = [b] s AP by e APy by Apmflbm]

such that 3}’ | p; = n. Define g; by:

0 = zlzpz
=1
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Let us denote by g, i = 1, -+, m, the o;th row in %! that corresponds to the con-

trollability index p;, associated to b;, i = 1, - - - , m. The matrix of the transformation,
P, is given by:

q1
Q1A

qlA.PﬁI
q2
@A

6]2A}32_1

qm
qmA

[ et
Using this matrix, we get the following controllability canonical form:

nlk+1) = Ax(k) + Bu(k)
y(k) = Cn(n)

where A = PAP™!, B= PB,and C = CP!.
Using this transformation, the matrices A and B will have the following forms:

>1§11 %12 Alp
_ Ay Ay -++ Agp
A=
Apl APZ : App
B,
| B
B =1 .
| B,
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where for any i and any j # i:

(01 0--- 0]
001---0
Ai = EEEEREI
000---1
[ X X X «++ X]
(000 --- 0]
000---0
Aij: EEEEREI
000---0
[ X X X «++ X
(000 --- 0]
000---0
Bi=|::i i
000---0
|1 X X -+ X]|
(000 --- 0]
000---0
By =i
000---0
[ X1X -+ X|
(000 ---0]
000---0
By =| i
000---0
X X X -+ 1]

Example 6.5.7 To show how to determine the controllable canonical form, let us
consider the system of the previous example. It can be shown that 6, and €' are
given by:

1112
1100

% =10-101
0112
1 0 0 -1
11 0 1

-1 _

% =13 3.2
11 1 1
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From the matrix ‘50’1, we get:
g =[1100]
g =[0112]
The matrix P of the transformation is given by:
[ @1
q1A
q2
[ 2A

(-1101
0110
-1111
0 011

P =

Its inverse is given by:

1 1-21
11-10
-1010
1 0-11

P =

The controllable canonical form is given by:
n(k +1) = An(k) + Bu(k)
y(k) = Cn(k)
with

PAP™!
(01 00
000 1
000 1
120-33
PB

(00

10
00
101

cp!
(01 00
01-11

b
1l

o]
Il

9
1l

For the observable canonical form, the duality principe can be used. In fact, for a
dynamical system with the following dynamics:

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)
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its dual system is given by:

ntk+1) = ATntk) + CTu(k)
y(k) = Bn(k)

The system

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

is observable if the rank of the observability matrix &

C

CA
ﬁ:

CAn—l

is equal to n.
Since the transpose of the observability marix & will not change the rank, we
get:

o7 =[cTATCT . ATy CT|
which represents the controllability matrix of the system:

nk+1) = ATn(k) + CTu(k)
y(k) =B n(k)

Therefore, the observability canonical form can be obtained using the results on
controllable canonical form. We will present two example to show how we obtain
the observable canonical form for the single output and multiple outputs.

Remark 6.5.4 We just present a procedure to determine the observable canonical
Jform with respect to the first column. This form is obtained using the last row of
the inverse of the observability matrix. Here we will give another procedure that
is based on the controllability matrix €. For this purpose, let us assume that the
dynamics of the system is described by: The system

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

where x(k) € R", y(k) € R and u(k) € R.
Now ifwe let P, (x(k) = Pn(k)) be given by: The system

P=%=|pAB:A"2B A"'B
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and following the same idea as we did previously we can show that

(00 --- 0 X

10--- 0%
A :P—IA: OlOX

100 --- 1 X
B=pP'B=|"

0

10

C =CP=[><><><><><]
Using the transformation, the new one is given by:

ntk+1) = P~ [Ax(k) + Bu(k)] = P'APP~'x(k) + P' Bu(k) = An(k) + Bu(k)
y(k) = CPP 'x(k) = CPn(k)

with A = P"'AP, B= P"'Band C = CP.

Example 6.5.8 To show how to compute the controllability canonical form for the
single output case, let us consider the following system:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cux(k)

where

1 0 01
0110
0-101
|1 001
11
10
00
101

[0111]

c

The dual system of this one is given by:

vk +1) = ATv(k) + CTu(k)
y(k) = B v(k)
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where
1001
. lotto
A =lo-101
1001
0
1
T _
< =h
1
(1100
T
B ‘1001]

The controllability matrix of the dual system is given by:

% =[CTATCT (ATY CT (AT CT ]
013 7
10-1-1
110 -1
12 4 7

This matrix is has a rank equal to 4. Its inverse is given by:

-1 1 -1 1
1.6 -08 22 -14
-1.6-02-12 14
0.6 02 02 -04

¢ =

From this we get:
g =[060202-04]

The matrix P of the transformation is given by:

|7:9(AT):q (AT 1q (A7)
0.6 0.2 0.2 -04
0.2 04 -0.6 0.2
04-02-02 04
0.8-04 0.6 0.8

P

Its inverse is given by:

1010
02-31
00-21
-11-11

273
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Based on this we get the following observable canonical form that we obtain by
taking the dual:

nlk+1) = An(k) + Bu(k)
y(k) = Cn(k)
with
A=(PaTPt)
0.6 02 02 —0.4
02 04 —0.6 0.2
0.4-02-02 0.4
10.8-04 0.6 08
(B7P")
(10
21
20
[ 11
¢ =(pcT)’
= [0 00 1]

oo
Il

Example 6.5.9 To show how to compute the controllability canonical form for the
multiple outputs case, let us consider the following system:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)

where

(1 001
0110
0-101
|1 001
(11
10
00
101

(0111

“=lio11

It can be verified that this system is observable.
The dual system of this one is given by:

vik+1) = ATv(k) + CTu(k)
y(k) = B v(k)
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where
1 0 01
+ 10110
A “10-101
11 001
[0 1
+ |10
¢ = 11
111
T_71100
B __1001

The controllability matrix of the dual system using the last theorem is given by:

€

[cTaTCT (aTy 7]
0111 3 3
100-1-1-1
1110 0 -1
1022 4 3

From which we get:

SN
I

[clT ATel ) ATc;]
011 2
100-1
1110
121 3

where ¢ is the row i of the matrix CT.

The controllability indices of the dual system are respectively 2 and 2 and the
controllability index of the dual system is also equal to 2.

This matrix is has a rank equal to 4. Its inverse is given by:

1 2-10
-3-32 1
21 0 -1
1 1-10

¢ =

From this we get:

g =[-3-321]
g =[11-10]
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The matrix P of the transformation is given by:

[ a1
T
p=|N4
q2
[ gAT
[-3-3 2 1
|-2-14 =2
11 1-10
L1 0 -11
Its inverse is given by:
1010
02-31
-1 _
P~ =l0o0-
-11-11

Based on this we get the following observable canonical form that we obtain by
taking the dual:

ntk+1) = An(k) + Bu(k)
y(k) = Cn(k)

with

b

=(ﬂfp*f
0101
1-202
0404
0-915

(577"
(11
11

54
112

(pcT)

o100
o001

wo]]
1]

1]
1l

The controllable and observable canonical forms are of importance since they
will make easier the controller and the observer design respectively. This matter
will be covered in the next chapter.

It is important to notice that when dealing with the state space realization, i.e.:
(A, B, C) and when the transfer matrix or the transfer function in case of SISO,
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the dimension changes. The minimal realization is one that has the smallest-size A
matrix for all triples (A, B, C) satisfying

H(s)=C(z-A)"'B.

A realization (A, B, C) is minimal if and only if it is controllable and observable

(see [1I).

6.6 Case Study

Let us consider the position control of a mechanical part driven by a dc motor.
Previously the dynamics of the complete system was shown to be described by the
following state space representation:

x(t) = Ax(t) + Bu(t), x(0) = xo 6.14)

y(1) = Cx(1)
where x(¢) and u(r) are respectively the state vector and the control input and the
matrices A, B and C are given by:

01
A = |:0 _1 ]s

B _[*].c<[10]

where K,,, = 48.5 and 7,,, = 0.06 s.
The control input u(?) is the voltage that we send to the dc motor and the state
vector x(f) is composed of:

o the speed of the mechanical part, w(r)
e the position of the part, 6(t)

The modeling part of this system has been covered while the other concepts such
stability, controllability and observability has not been covered and it will be done
here. For the stability, we can either compute the transfer function of this system
and then use any technique that we employ when the model is in transfer function.
The other solution utilizes the Lyapunov. In fact if we consider a symmetric and
positive-definite matrix Q = I € R?, the system will be stable if there a symmetric
and positive-definite matrix, P € R? solution of the following Lyapunov equation:

A"P+PA=-Q
Let P be given by:
pP= [Pl Pz]
P2 p3
Using this and the Lyapunov equation we can show that we can find a symmetric
and positive-definite matrix P that satisfies the Lyapunov equation and therefore the
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system is unstable. If we compute the transfer function, we can see directly that we
have a pole at the origin which confirm the instability of the system.

For the controllability, this system will be controllable if the the rank of
controllability matrix is equal to 2. In fact,

¢ = [B AB]
0 K
= [Km _Tié,,‘

T Th

It is evident that the controllability matrix, % is of rank 2 which implies that our
system is controllable.

For the observability, this system will be observable if the the rank of
observability matrix is equal to 2. In fact,

7|a

“[o1

It is evident that the observability matrix, & is of rank 2 which implies that our
system is observable.

Since our system is unstable, the computation of the step response will give an
unbounded output and therefore we will not compute it it here.

6.7 Conclusion

This chapter covers the state space representation. It is shown how to transform a
continuous-time state space representation to an equivalent discrete-time one. The
time concept and its computation is developed. The concepts of stability, controlla-
bility and observability are presented and techniques how to check these concepts
are presented. Numerous examples are presented to show how each concept can be
checked.

6.8 Problems

1. For the dynamical systems with the input u(f) and the output y(f) with the
following dynamics develop the canonical forms:

a*y(t ay(t
g+ =

2y
o M0+ a® 1 ay(r) = du(r)

2y
o TN +6M 4 8y(1) = Bulr)

d®y(1) d2y(1) dy(t) _
® +3 dr? +2 dt = u(t)
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. For the dynamical systems of the Problem 1,

(a) determine the sampling period T
(b) establish the corresponding discrete time description

. Study the stability of the description of the Problems 1 & 2

. For the dynamical systems of the Problems 1 & 2,

(a) study the controllability of each description
(b) study the observability of each description

. For the dynamical systems of theProblems 1 & 2,

(a) determine the solution of each description

(b) determine the unit step response of each description for a chosen initial
conditions that you impose.

(c) plot the behavior of the states with respect to time ¢

(d) using the final theorem show that the obtained results are correct

. Consider a dynamical system with the following dynamics:

() = Ax(t) + Bu(r)

() = Cx(®)
with:
0 =
R
o=[1

c =[10]

(a) develop the different canonical forms

(b) establish their equivalent discrete time forms when the sampling period T
is fixed to 0.1

(c) study the stability, the controllability and the observability of each form

(d) establish the solution when the inputs are fixed to unit steps

(e) plot the phase diagram the behavior of the states

(f) compute the transfer matrix of the system

. Let the dynamics of a dynamical system be described by the following
difference equations:

yk+n)+a,_yk+n—-1)+ - +ayk+ 1)+ apy(k) = u(k)

where y(k) and u(k) represent respectively the output and the input of the system
and ao, - - - , a,— are know scalars.



280 6. Analysis Based on State Space

(a) define

xi(k) = y(k)
x(k) = y(k+1)

Xu(k) = y(k +n)

Based on this establish the corresponding state space description and
determine which form we have.
(b) define

x1(k) = y(k +n)
x(k) =yk+n-1)

xu(k) = y(k)

Based on this establish the corresponding state space description and
determine which form we have

8. Consider a dynamical system with the following dynamics:

x(t+1) = Ax(?) + Bu(f)

() =Cx(?)
with:
[ x1(2)
x(t) =|x(2)
| x3(1)
[0 1 0
A=]0 01
|-2-3-4
[2
B =|0
| 1
¢ =[120]

(a) develop the different canonical forms
(b) study the stability, the controllability and the observability of each form
(c) using Matlab, compute the step response



9. Consider a dynamical system with

x(t+1)
y(®)
with:

x(1)

C =

(a) develop the different canonical

(b) study the stability, the controllability and the observability of each form

6.8. Problems

the following dynamics:

= Ax(?) + Bu(f)
= Cx(f)

[ x1(2)

x2(0)

x3(1)

| x4(2)

o 1 0
1

(12 0 -1
0111

forms

(c) using Matlab, compute the step response

281






7

Design Based on State Space

After reading this chapter the reader will:
1. be able to formulate a control design problem for mechatronic systems
2. be able to solve the design control problem

3. be able to compute the state feedback controller using either the pole
placement technique or the optimal control approach

4. be able to use control tools to solve design control problems

7.1 Introduction

In the last chapters, we showed how to analysis and design linear time-invariant sys-
tems. The analysis has been done either using the state space or the transfer function
descriptions. We showed also how to compute the performances of the given sys-
tem. At the design phase we showed that using the transfer function description we
were able to design some controllers like, the PID, the phase-lag, phase-lead or the
phase lead-lag controllers. To compute the parameters of such controllers some pro-
cedures have been developed. We have also seen that the design can be done into
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two steps. The first one uses the specifications of the system to choose the appro-
priate structure of the controller. Once this is fixed, the parameters of this controller
are determined using the proposed procedures.

The aim of this chapter is to develop others techniques that can be used to de-
sign controllers based on the state space description. This approach requires more
assumption that we don’t have when using the transfer function approach. In this
case, we need that the system is controllable and the state vector is accessible. The
procedures that we developed for the transfer function description use mainly the
system’s output, meanwhile the ones of this chapter use the state vector.

Notice that if some of the states are not available for feedback, an estimator can
be built to compute an estimate of the whole state vector or part of the states and
therefore use this estimate for feedback instead of the state vector. This works fine
and it is known in the literature as the separation principle. It consists of designing
the controller and the estimator separately and when put together the results work
fine.

7.2 Formulation of the Control Design Problem

Most of the built systems are either unstable or don’t have the desired performances
like for instance the settling time is not acceptable or the steady-state error is larger
than a certain acceptable value. To overcome such situations and guarantee that
the behavior of the closed-loop dynamics will be acceptable a controller should be
added or improve the existing one.

In Chapter [5| we showed how to design classical controllers that are in general
put in the direct loop and are mainly PID controllers or their equivalent phase-lag,
phase-lead or phase lag-lead controllers. Meanwhile the one we will use here is put
in the feedback loop and it is referred to as the state feedback controller. It requires
extra assumptions that are summarized in:

e the complete access to the state vector,
¢ and the controllability (or stabilizable).

The condition of the accessibility to the state vector may be relaxed while the
second one can not be. If we have only partial access to the state vector an estimator
can be developed to estimate the state vector and therefore still continue to use
the state feedback control. Another alternate consists of using the output feedback
control.

To have an idea on the state feedback control, let us consider a dynamical linear
discrete-time system with the following dynamics:

x(k + 1) = Ax(k) + Bu(k), x(0) = xo 7.1

and suppose that we want that the closed-loop with a state feedback controller to
have a certain desired behavior.
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The structure of the state feedback controller is given by:
u(k) = —Kx(k) (7.2)

where K is the gain matrix that we need to compute.

The problem we will face in this chapter is how we can design the matrix gain
K in the single input single output and multi inputs multi outputs cases in order to
guarantee the desired performances.

In the rest of this chapter we will focus on two approaches. The first one is
known in the literature as pole assignment technique and the second one is the linear
quadratic regulator. This approach uses a cost function to choose the optimal state
feedback control.

7.3 State Feedback Controller Design

One of the methods that we can use to design the appropriate controller that will
guarantee the desired performances is the pole assignment technique. The idea of
this approach consists of designing the state feedback controller either for single
input single output or multi inputs multi outputs systems that makes the closed-
loop dynamics behave like the desired one with the acceptable performances. This
technique requires the complete accessibility to the state vector or the system is
observable that we can use an estimator to estimate the state vector otherwise the
control law can not be computed. The approach can be stated as follows: Given a
dynamical system with the following dynamics

x(k + 1) = Ax(k) + Bu(k), x(0) = xp
find a controller of the form:
u(k) = —Kx(k)

such that the closed-loop dynamics will give the desired performances.

The gain K in the controller expression needs to be determined. Its dimension
will depend on the nature of system we are dealing with, either single input single
output or multi inputs multi outputs.

The main idea behind this technique consists of transforming the desired per-
formances to a desired characteristic polynomial that will provide the desired
eigenvalues it is why we refer to it as pole assignment technique.

For single input single output case, if the system is of dimension n, then the gain
K has n scalar gains to be determined, i.e.:

K=k k] (7.3)

Remark 7.3.1 The pole placement technique consists first of all of obtaining the
poles of the closed-loop dynamics that give the desired performances, then using
these poles the controller gain K is computed.
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> D
u(k) x(k+1) it | x(k)
Ref A it | ol @ y(k)
4 elay
B <=

e

Fig. 7.1 Block diagram of discrete-time linear system

Let us assume that the desired poles that give the performances are:
Zl’ZZ" o ’Zn

and that we can get from the desired specifications.
The corresponding desired characteristic polynomial is given by:

Ai2) = (z—-z1)(z—22) (2= 20) (7.4)
Based on Chapter[6 the closed-loop characteristic polynomial is given by:
A(z) = |zI - A + BK| (7.5)

The design approach of pole assignment consists of equating the two character-
istic polynomials. Performing this we get:

lZI-A+BK|=(Gz-z2)(z-2) (-2 (7.6)

which represents an algebraic equation with n unknown variables, k;,i = 1,2,--- ,n
that have to be determined. The solution of this equation will give the appropriate
gains.

Remark 7.3.2 More often the specifications of the system are given in continuous-
time and can combine the stability with the overshoot, the settling time, the steady
error, etc. To get the desired poles in this case, the transformation is made in the
continuous-time to get the desired poles in the s-domain and with the transforma-
tion, z = €', where T is the sampling period of the system, we can compute the
corresponding poles in the z-domain that should be inside the unit circle.

Example 7.3.1 In order to show how the pole placement method works, let us as-
sume that we have a dynamical system with two states, xi(k) and x,(k) and suppose
that the dynamics of the system has been transformed to the following discrete-time

form:
nk+D] [0 1][x@] o1
[xz(k+l) _[—21Hx2(k)}+[0.1}u(k)
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This system has its poles outside the unit circle and therefore, it is unstable.
Firstly, we need to check the controllability of the system. This can be done by
computing

¢ =|BAB]
101 0.1
“10.1-0.1
which is of rank 2 and this means that the system is completely controllable and

therefore a state feedback controller exists.
Let us also assume that the poles that give the desired performances are by:

z1 =02+;0.2

22 =02-;0.2
The corresponding desired characteristic equation is given by:

Ai(z) = (z—0.2 - j0.2)(z - 0.2 + jO.2) = 2% — 0.4z + 0.08
Let the controller gain, K, i.e.:
K=k k]
The characteristic equation of the closed-loop dynamics is given by:
A(z) =1zl - A+ BK|
R EHR
z+0.1k; —1+0.1k ]

2+0.1k1 z=1+0.1k,
=22+ (=140.1k + 0.1k2)z + 2 — 0.2k

Equating the two characteristic equations gives:

—1+0.1k; + 0.1k, =-0.4

2-0.2k, =0.08
Solving these equations gives:
ki =-3.6
k, =9.6

We can easily compute the eigenvalues of the closed-loop dynamics and find out
that they are equals to the desired poles.

Matlab can be used to compute controller gain using the function place. The
following instructions are used for this purpose:

% Data
A=101; -2 1]
B=1[0.1; 0.1]
C=1[10]
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% Check the controllablity
CO=ctrb(A,B)
rank(ctrb(A,B))

% Controller gain computation
K=place(A,B,[0.2+0.2*i, 0.2-0.2*i])

% Check that the eigenvalues are equals to the desired poles
eig(A-B*K)

If the desired poles are located at 0.1 = 0.1 the controller gain is given by:
ki =-19
ky, =99
To understand the relationship between the pole location and the system response

let us consider the following cases obtained from the poles 0.1 + 0.1j by acting on
the real andfor imaginary parts :

desired poles located at 0.4 + 0.4
desired poles located at 0.025 + 0.025

desired poles located at 0.4 = 0.1

desired poles located at 0.025 £ 0.1

desired poles located at 0.1 = 0.4

desired poles located at 0.1 = 0.0.25j
The corresponding gains are given by:

e polesat0.4+0.4j

ki =-64
ky =84
e poles at 0.025 + 0.025;
ki =—-0.4937
ky =9.937
e polesat0.4 +0.1j
ki =-7.15
ky =9.15
e poles ar 0.025 + 0.1
ki =-0.4469

ky =9.9469
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e polesat0.1 +0.4j

ky =-1.15
k, =9.15

e poles at 0.1 +0.025;
ki =-1.9469
k, =9.9469

Using Matlab, the following program has been written to simulate the time
response for a step input of amplitude equal to one:

% Data
A=101; -2 1]
B=1[0.1; 0.1]
C=1[10]

d=0

% Check the controllablity
CO=ctrb(A,B)
rank(ctrb(A,B))

% chose the time span
t=0:0.001:0.1;

% fix the input as a step
u=ones(size(t));

% Controller gain computation when the poles are located at
[0.1+ 0.1 0.1-0.1j] K=place(A,B,[0.1+0.1%i, 0.1-0.1%i])

% Compute the step response of the closed-loop with this gain
[y0,x0]=dlsim(A-B*K,B,C,d,uw)

% Controller gain computation when the poles are located at
[0.4+ 0.4] 0.4-0.4j] K=place(A,B,[0.4+0.4%i, 0.4-0.4%i])

% Compute the step response of the closed-loop with this gain
[yl,x1]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

[0.025+ 0.025] 0.025-0.025j]
K=place(A,B, [0.025+0.025*i, 0.025-0.025%i])

% Compute the step response of the closed-loop with this gain
[y2,x2]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at
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[0.4+ 0.1j 0.4-0.1j] K=place(A,B,[0.4+0.1%i, 0.4-0.1*i])

% Compute the step response of the closed-loop with this gain
[y3,x3]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at
[0.025+ 0.1 0.025-0.1j] K=place(A,B,[0.025+0.1%i, 0.025-0.1%i])

% Compute the step response of the closed-loop with this gain
[y4,x4]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at
[0.1+ 0.4 0.1-0.4j] K=place(A,B,[0.1+0.4%i, 0.1-0.4%i])

% Compute the step response of the closed-loop with this gain
[y5,x5]=dlsim(A-B*K,B,C,d,uw)

% Controller gain computation when the poles are located at
[0.1+ 0.025] ©0.1-0.025j] K=place(A,B,[0.1+0.025%i, 0.1-0.025%i])

% Compute the step response of the closed-loop with this gain
[y6,x6]=dlsim(A-B*K,B,C,d,u)

stairs(t,x0(:,1),’b’)

xlabel(’time in sec’)

ylabel(’x(1) and x(2)’)

title(’Behavior of the states versus time’)

hold on
stairs(t,x0(:,2),’b’)

stairs(t,x1(:,1),’r’)
stairs(t,x1(:,2),’r’)

stairs(t,x2(:,1),’m’)
stairs(t,x2(:,2),’'m’)

stairs(t,x3(:,1),’c’)
stairs(t,x3(:,2),’c’)

stairs(t,x4(:,1),’g’)
stairs(t,x4(:,2),’g’)

stairs(t,x5(:,1))
stairs(t,x5(:,2))

stairs(t,x6(:,1))
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stairs(t,x6(:,2))
legend(’1’,727,73%,74",75",°6",°7")

print -deps chap5.fig.1

The behavior of the states versus time is illustrated by Fig. (Z.2).

Behavior of the states versus time

0.3 T T T T
14
—2
—3
0.2 —44
—5
—6
—7
0.1 L

g 0 1

x

: J

<

&

% —01f |
-0.2F 3
-0.3F bl
0.4 | | | | | | | | |

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time in sec

Fig. 7.2 Behavior of the output versus time with state feedback controller

When the state space description is put in the controllable form, the computation
of the controller’s gains becomes easier. In fact, referring to the previous chapter the
controllable form for the open dynamics is given by:

x(k+1) = Ax(k) + Bu(k)
y(k) = Cx(k)
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where
o 1 0 -+ 0
o o 1 -+ 0
A=l 0
o 0 0 --- 1
l—ao —a1 —az -+ —ap-
[0
B =|:],
| 1
C =[byy - by
Notice also that
0 0 --- 0
-BK=—|:|[ki - k] =| ¢ o
1 —ky - —ky

The corresponding characteristic polynomial of the closed-loop dynamics is:
ll—A+BK|=2"+ (@1 + k)" "+ + (a1 + k) 2+ (ao + kD (7.7)

The desired characteristic polynomial can also be put in the following form:
A2 =" +dp 1"+ + diz + do? (7.8)

By equating the characteristic polynomial with the desired characteristic polyno-
mial we get:

kivi=di—a;,i=0,1,2,--- ,n—1

Remark 7.3.3 In the previous chapter, we presented a transformation that put the
system description in the controllable canonical form, a question that comes is what
relationship exists between the controller gains of the original description, K and
the one of the controllable canonical form, K. To answer this this question, notice
that the characteristic equation for the closed-loop of the system in the controllable
canonical form is given by:

det(cI- A+ BK)=0

where A and B are the matrices of the controllable canonical from obtained after
the transformation n(k) = Px(k).
Using the fact that the matrix P is nonsingular and PP~' = I, we get

det(:PP™' = PAP™ + PBRPP™') = 0
that we can write as follows:

det(P(:L—A+BKP)P™') =0
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This gives in turn:

det(P) det (<1 — A + BKP)det(P™') = 0
Since det(P) # 0, det (P™!) # 0 and det(P) et (P™') = 1, we obtain:

det(cI-A+ Bf(P) =0

This characteristic equation will have the same poles as the characteristic
equation of original description:

det(zI-A+BK)=0
if we have the following relation between the controller gains:
K =KP
Example 7.3.2 In order to show how the pole placement method works when the
system dynamics is in canonical controllable form, let us assume that we have a

dynamical system with two states, x1(k) and x,(k) and suppose that the dynamics of
the system has been transformed to the following discrete-time form:

xitk+1)| | 0 1] x1(k) 0
[xz(k+ n|~ [—2 1Hx2(k) " [ 1]”(")
Firstly, we need to check the controllability of the system. This can be done by
computing

% =|BAB|

gl

which is of rank 2 and this means that the system is completely controllable and
therefore a state feedback controller exists.

It is important to notice that system in open-loop is unstable since its poles
are outside the unit circle. Let us also assume that the poles that give the desired
performances are given by:

z1 =0.2+0.2
22 =02-40.2
The corresponding desired characteristic equation is given by:
Ai(z) = (z—0.2 - j0.2)(z - 0.2 + jO.2) = 22 — 0.4z + 0.08
Let the controller gain, K, i.e.:
K=k k]
Using the relationship ki1 = d; — a1, when i =0, 1, we get:

ky =-1.92
k, =0.6
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We can easily compute the eigenvalues of the closed-loop dynamics and find out
that they are equals to the desired poles.

More often the computation for general state space description using the pole as-
signment technique is tedious and one of the used method to overcome this problem
is to use the Ackerman’s method. This method is based on the following relations:

Ai@2) =" +dp 1+ diz + do?

where A(z) is the desired characteristic polynomial.
For the closed-loop dynamics we have also:

Ag(A — BK) = (A — BK)" +dp_1(A — BK)"' + -+ + dy(A — BK) + dol = 0(7.9)

To use this relation we need firstly to expand the terms (A — BK)", (A — BK)""!,
.., (A — BK). For this purpose, notice that:

I =1
(A-BK) =A-BK
(A - BK)* = A?- ABK — BK(A - BK)
(A - BK)* =A>—-A’BK — ABK(A - BK) — BK(A — BK)?
(A-BK)* = A*- A®BK — A’BK(A - BK) - ABK(A — BK)> — BK(A — BK)®

(A-=BK)™! =A"™' - A"2BK - ... - BK(A — BK)"?
(A—BK)" =A"—A"'BK —...— BK(A - BK)""!

In order to use (7.9) multiply these relations respectively by dy, di, . .., d,—1 and
1 and sum them, we get:

d\K +d>K(A-BK) + ...+ K(A - BK)"!
K +d3K(A—-BK)+ ...+ K(A— BK)"?
Ag(A = BK) =Ay(A) =€ )
K
where % is the controllability matrix and A;(A) is given by:
A(A) = A" +dy AT+ + dA + doLL

Now if the system is controllable, which means that the inverse of the control-
lability exists, and the fact that A;(A — BK) = 0, this relation can be rewritten as
follows:

d\K + d,K(A—BK)+ ...+ K(A - BK)"™!
d>K +d;K(A-BK)+ ...+ K(A - BK)"?
) = ¢ Au(A)

K
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To extract the controller gain, K, from this relation we multiply both sides by
[00--+ 0 1], which gives in turn:
K=[00---01]%"Aya)
In summary the Ackerman’s method consists of the following steps:
1. compute the desired characteristic polynomial A;(z) as before, i.e.:
M@ =" +dyZ™ o+ diz 4 do?
2. use the Cayly-Hamilton theorem to compute A;4(A), i.e.:
Ag(A) = A" +dy AV + -+ dA + dol
3. use the following formula to compute the gain K:
K = [oo--- 0 1]‘5‘1Ad(A)
where % is the controllability matrix.

Remark 7.3.4 Notice that the presence of the inverse of the controllability matrix
€ in the computation of the controller gain, justifies why we need the controllability
assumption we made earlier for our system.

Remark 7.3.5 It is important to notice that the presence of the inverse of the con-
trollability matrix, €, may render the computation of the controller gain harder. To
avoid this, the following can be used.:

e Compute v' such that:
v =0 01]
vl =)
e Compute the controller gain K using the following:

K =v"Ay(A)

Example 7.3.3 In this example, we will show that the design of the state feedback
controller is affected by the canonical forms i.e. the controller gains are different.
For this purpose, let us consider a dynamical system with output y(k) and input u(k)
has the following dynamics:

z+1
22 —1.4z+0.48

Let us firstly establish the canonical forms:

G(z) =

e controllable canonical form: following the steps for establishing the control-
lable form as in Chapterl6] we have:

1
xtk+1) = [—0(?48 1.4]x(k) +

y(k) = [1 l]x(k)

(1) u(k)
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e observable canonical form: following the same steps for establishing the
observable form as in Chapterll we get:

x(k+1) = [_5'18 é}x(k) +

y(k) = [1 O]x(k)

e Jordan canonical form: following the same steps for establishing the observable
form as in Chapter|6] we get:

e

x(k+1) = [066 Oog]x(k) +

k) =[11]xk)

It can be shown easily that the system is controllable. Using the function place
(or acker) of Matlab when the desired poles are located at 0.2 = 0.2, we get the
controller gains for each canonical form as follows:

_98] u(k)

e controllable canonical form:
K=[-041]
e observable canonical form:
K =[05139 04861 |
e Jordan canonical form:

K= [0.1250 0.2222]

Simulation results for each canonical form with the corresponding controller
gain are illustrated by Fig. when the input is fixed to a step function. The Matlab
progran that gives us such simulation results is gven:

% Data for controllable form

A=1[01; -0.48 1.4]
B =1[0; 1]

C =11 1]

d=0

% Check the controllablity
CO=ctrb(A,B)
rank(ctrb(A,B))

% Controller gain computation
K=place(A,B,[0.2+0.2*%i, 0.2-0.2*i])

% Check that the eigenvalues are equals to the desired poles
eig(A-B*K)

t=0:0.01:0.2
u=ones(size(t))
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[y,x]=dlsim(A-B*K,B,C,d,u)
stairs(t,x(:,1),’r’)

hold on

stairs(t,x(:,2),’r’)

xlabel(’Time in seconds’)

ylabel(’States x1(k) and x2(k)’)
title(’states versus time for a step input’)

% Data for observable form
A=1[1.41; -0.48 0]

B = [1; 1]

C=1[10]

d=0

% Check the controllablity
CO=ctrb(A,B)
rank(ctrb(A,B))

% Controller gain computation
K=place(A,B,[0.2+0.2*%i, 0.2-0.2%i])
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% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

t=0:0.01:0.2

u=ones(size(t))

[y,x]=dlsim(A-B*K,B,C,d,u)
stairs(t,x(:,1),’b’)

stairs(t,x(:,2),’b’)

xlabel(’Time in seconds’)

ylabel (’Output y(k)’)

title(’States versus time for a step input’)

Data for Jordan form
[0.6 0; 0 0.8]

[-8; 9]

[1 1]

QN @k>E R
I

1l
|l

% Check the controllablity
CO=ctrb(A,B)
rank(ctrb(A,B))

% Controller gain computation
K=place(A,B, [0.2+0.2*%i, 0.2-0.2%i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)
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t=0:0.01:0.2

u=ones(size(t))

[y,x]=dlsim(A-B*K,B,C,d,u)
stairs(t,x(:,1),’g’)

stairs(t,x(:,2),’g’)

xlabel(’Time in seconds’)

ylabel(’States x1(k) and x2(k)’)
title(’States versus time for a step input’)
legend(’1’,’2°,737,747,’5°,°6")

States versus time for a step input
10 T T T

—1
—2

—5

A
L

States x1(k) and x2(k)

_4tb 4

61 i

1 1 1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Time in seconds

Fig. 7.3 Behavior of states vs time with state feedback controller

Example 7.3.4 To show how the state feedback controller design procedure works
for a practical system ( a dc motor driving a mechanical load), let us consider the
single-input single-output system with the following dynamics:

k
G =
() s(ts+ 1)
with k = 1 and v = 50ms represent respectively the gain and the time constant of
the system.
This system represents one wheel of the balancing robot that we have al-
ready presented. The system is unstable and has two poles located respectively at
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0 and - i Our aim in this example is to stabilize the closed-loop dynamics and im-
prove the settling time at 5% equal to S0ms while guaranteeing that the overshoot
is less than or equal to 5%.

Firstly, we need to choose the sampling period T. Since the time constant is equal

to 50 ms, a proper choice for T is 5 ms. This value will be used to get the different
canonical forms.

To solve this design problem, we will use all the canonical forms. Therefore we
have (see Chap. 8l for more details):

e the controllable form of this system is given by:

x(k+ 1) = Fx(k) + Gu(k), x(0) = xo
y(k) = Cx(k)

with

- =¢(T)=[(1)T[1;Ze-5]}:[10.0048]

0 0.9048

T T1—€T 00002
G =¥T)= g k[IL ’ ] [00952
c :[10]

o the observable form of this system is given by:

x(k +1) = Fx(k) + Gu(k), x(0) = xo
(k) = Cx(k)

with

1 0 1

T —Tk[lT— e-’é]]] _ [0.8'0]02]

F =¢(T)= [@ crfi-e -5]}: [0.9048 0.0048}

G =‘P(T)=[k[

c =[10]

o the Jordan form of this system is given by:

x(k+ 1) = Fx(k) + Gu(k), x(0) = xo
y(k) = Cx(k)

with

0 10
F=el)= [o -'}=[00.9048}

kT 20005 0
Gz\F(T)z[kr[l—e-f]}z[ 0 —0.0048]

c =[1-1]
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From the specifications, we get:

—¢n

d =100e V1-¢
3
t, = =0.05
Ewy

From these relations we obtain:

£ =0.707
wp = 84.8656rd/s

which gives the following poles:

s12 = &wy £ jwy \/l - & = -60.0000 = 60.0181;

Their corresponding poles in discrete-time domain when the sampling period T
is chosen equal to 0.1 are given by:

212 =T =0.7077 £ 0.2190;
The corresponding characteristic polynomial is given by
Ai(2) = (2 - 21)(z— 22) = 2 — 141547 + 0.5488
The closed-loop characteristic polynomial is given by:
A(z) = |zl - F + GK|

By equating the two characteristic polynomials we get the controller gain
depending on the considered representation as follows:

e controllable form
K =[280.3412 4.4304]
e observable form
K = [191.7330 4.4304
e Jordan form
K =[280.3412191.7330 |

For the state feedback design for multi-input multi-output dynamical systems,
the control law is still given by the following expression:

u(t) = —Kx(t)

where u(r) € R” and K € R™",

When the system in open loop is asymptotically stable an optimal state feed-
back can be designed using the Lyapunov approach. In fact, if our system is
asymptotically stable in open-loop, this implies that there exists a symmetric and
positive-definite matrix P such that the following holds:

ATPA-P=-Q
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for a given symmetric and positive-definite matrix Q.
Now if we consider the following Lyapunov function candidate:

V(xk) = x; Pxy
Based on Chap.[d the discrete-time rate change of V(xy) is given by:
AV = V(xg1) = V(x)
For the closed-loop dynamics, we have:
AV = V(xkr1) = V()

= [Ax; + Bug]" P[Axi + Bug] — x| Pxy

= x{ ATPAx; + 2u] B"PAxy + u] BT PBuy — x; Px;
To design the optimal state feedback controller, we will consider the following

performance index:

J=AV
Using now the optimality condition (see [3], we get:
aJ] oAV 0
auk B 6uk B

which implies:
2BTPAx; + 2B PBu;, = 0
that gives in turn:
uy = — [BTPBT] B"PAx;
The controller gain is then given by:
K =[B"PB| " BPA
where P is the solution of the following Lyapunov function:
ATPA-P=-Q
for a given Q.

Example 7.3.5 To show how this technique applies for asymptotically stable
system, let us consider the following one with the transfer function given by:

2
GO= s +2)

This system is asymptotically stable since its poles are respectively —1 and —2.

Let us firstly establish its corresponding discrete-time state space representation.
This can be done by the following procedure developed earlier.

In fact the continuous-time state space description of this system is given:

x(t) = Ax(t) + Bu(t), x(0) = xp
y(@® = Cx(?)
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A :[_01 —02]’
[
c =[2-2|

Let the sampling period T be equal to 0.05. The transition matrix ¢(s) is given
by:

¢(s) =[sI-A]"

1
— [ s+1 (1) ]
0 s+2

e’ 0
() =[ 0 e—zz]

which gives:

From this expression we get:

e’ 0 09512 0
o) :[ 0 e-ZT]:[ 0 0.9048]

T
W(T) = f #(T — 7)Bdr
0

T[e™D 0 1
= ) 0 E—Z(T—‘r) 1 dr
B 1-¢T ~10.0488
T10.5(1 =€) | T [ 0.0476
Finally we get the discrete-time description:
Xerr = P(T)xx + W (T )uy
i =Cxi

We can check easily that the system is controllable and observable and therefore
there is a state feedback control of the form u, = — [BTPB]_1 BT PAx;, where the
matrix P is the solution of the following Lyapunov equation:

ATPA-P=-Q
for a given symmetric and positive-definite matrix Q.

Using O =1, we get

105022 0
0 5.5146

The corresponding controller gain is given by:

K = [12.9981 6.3326]
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Remark 7.3.6 It is important to notice that the observability is not necessarily
invariant under a state feedback control. We can show this by the following example:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

where

0 1
A _[—06—0.7]

b
¢ =[o1]

It can be firstly checked that the system is controllable and observable. Since the
system is controllable, the poles of the system can be placed any where inside the
unit circle.

The controllability matrix is given by:

0 1
4 2[1—0.7]

0 1
¢ = [—0.6 —0.7}

If we select the controller gain K given by:
K =[-0.6-1]

The closed-loop poles are placed respectively at 0 and 0.3. For this gain the
observability matrix is given by:
01
o = [0 0.3]

which is of rank one and therefore the observability is lost by this state feedback
control law.

For the multi-input multi-output, we will cover two approaches that we can use to
design the state feedback controller. The first approach is simple is consist of writing
the matrix gain in way that the design problem can be solved using the single input
single output approach. In fact if the system has m inputs and 7 states, the gain K has
m X n scalar gains to be determined. Using the single input single output approach
this can not be done unless we make some transformation. In Fact, if we write the
gain K as follows:

=|: [kl kn]
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where ¢g;,i = 1,--- ,m are fixed scalars
Now if we replace this in the characteristic equation we get:

det[zI- A+ BgK|=0

Compare this with the single input single output characteristic equation, we
conclude that the gain K is determined by:

K :[O---Ol]%‘lA(A)

with ¢ = Bg ABg --- A"'Bq|.

For the second approach, notice that in the previous chapter we have seen how
to compute the transformation, 77(k) = Px(k) that put the system in the controllable
canonical form for multi-input multi output systems. This canonical form is obtained
using the controllability matrix. Once this form is obtained the computation of the
matrix gain becomes easy. An example showing how this method works is presented
later in this chapter.

7.4 Output Feedback Controller Design

It may happen in some circumstances that we don’t have complete access to the
state vector and therefore, the approach we used for the state feedback control can
not be used and an alternate is required for this case. In the rest of this section, we
will develop an approach that estimates the state vector and use this estimate as the
state vector for the actual control.

In the rest of this section we will firstly focus on the design of the observer that
can be used to estimate the state vector which can be used for feedback. Then, we
will see how to combine the controller and the observer designs.

Let us consider the following system:

{x(k + 1) = Ax(k) + Bu(k) (7.10)

y(k) = Cx(k)
where x(k) € R", u(k) € R™ and y(k) € R? represent respectively the state, the input
and the output of the system, A, B and C are known real matrices with appropriate
dimensions.

One easy way to build the estimate of the state x(k) is to use the following
structure for the estimator:
{fc(k + 1) = Ak(k) + Bu(k)

X . (7.11)
k) = Cx(k)

where X(k) € R" is the state estimate of the state vector x(k).
Using (Z10) and (Z.11)), we get:
etk+1) =xtk+1)—xk+1)=A[x(k) — x2(k)]
= Ae(k)
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with e(k) = x(k) — X(k) is the estimation error.

Notice that the error dynamics doesn’t depend on the control u(k) and therefore
the behavior of the error will depend on the stability of the matrix A and we have
no way to change the behavior to make it faster if it is necessary to guarantee the
convergence of the estimator by placing the pole of the matrix A at some appropriate
locations. To overcome this we should change the structure of the estimator and a
natural one is given by the following dynamics:

(7.12)

2(k + 1) = AR(k) + Bu(k) + L [y(k) — $(k)]
(k) = Cx(k)

where X(k) € R" is the state estimate of the state vector x(k) and L is a constant gain
matrix to be designed and that will be referred as the observer gain.

Using again (Z10) and (Z.12), we get:

ek + 1)

x(k+ 1) = 2k + 1) = A [x(k) — 2()] - LC [x(k) — £(K)]
[A = LC] e(k)

with e(k) = x(k) — X(k) is the estimation error.

The new dynamics for the estimation error depends on the choice of the gain
matrix, L, and therefore the behavior can be controlled by the choice of this observer
gain L.

It is important to notice that the eigenvalues of the matrix AT — CTLT are the
same as those of the matrix A — LC. Therefore, if we denote by z;, - - - , z,, the poles
that permit the design of the matrix L, the characteristic equation is given by:

det [zI[ —AT CTLT] = ]_[ (z+2) (7.13)
=1

Now if we compare this characteristic equation with the one of the design of
the state feedback controller, we can design the gain matrix L using the Ackerman
formula for the following dynamics

x(k +1) = ATx(k) + CTu(k)
with the control u(k) = —L" x(k).

Based on this and using the Ackerman formula, the observer gain for the single
output case is then given by:

L =[h ] =0, 0. 1](67) AT

CA°
with & = :
cA!
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u(k)

Ref B y(k)

(k)

-

Fig. 7.4 Block diagram of discrete-time linear system

Example 7.4.1 To show how to design the observer gain, let us consider the posi-
tion control of a dc motor that drives a mechanical load as discussed before. Let the
dynamics between the output 0(t) and the input u(t) be described by the following
dynamics:

k
Gl = s(ts+ 1)
with k = 1 and T = 20ms represent respectively the gain and the time constant of
the system. We also assume that we have only one sensor that measures the output
system 6(t).

The system is unstable and has two poles located respectively at 0 and —1. Our
aim in this example is to stabilize the closed-loop dynamics and improve the settling
time at 5% and to make it equal to 20ms while guaranteeing that the overshoot is
less than or equal to 5%.



7.4. Output Feedback Controller Design 307

To solve this design problem, we use the controllable canonical form. This form
is given by:
x(k+1) = Fx(k) + Gu(k), x(0) = xo
k) = Cx(k)

with
1z[1-er|]_[10.0021
F=¢0)= [ et }‘[00.9049]

k[T 1—67 ] [00019

T 0.0952

G =¥(T)= k[l—er

c =[10]

From the specifications, we get:
e

d = 100e Vi-¢

ty = ‘fj)n =0.02s
which gives in turn:

& =0.707

w, =212.1641rad/s
this gives the following poles:
S12 = —éw, t jw \/1 —& =-150+ j114.8434

Their corresponding poles in discrete-time domain when the sampling period T
is chosen equal to 2ms are given by:

212 =27 = -0.0003 + j0.0025

The corresponding characteristic polynomial is given by
Ai2) = (z-2)z—22) = 2° — (21 + 22)2 + 2122 = 2> — 0.00067 + 6.3400e — 06

Using the Ackerman formula, the observer gain L is given by:

L™ =, b|=[0,1]07'AFT)

with
ﬁT:[CFO]:[ 1 0 ]
CF 1.0000 —0.0021

N e [0.9994 ~0.0040
A(FT) = F* - 0.0006F + 6.3400¢ — 06 = [o.oooo 0.8182

The observer gain is:

L _| —0.0030
| -388.9831
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Sometimes, the computation of the observer gain becomes more easier when the
dynamics of the system is in observable canonical form. Referring to Chapter[@] it
can be shown easily that we have for single input single output system:

det[zI — A, + LC,] = 0,L e R™! C, e R

—(a,,_1+11)1... 00
—(a,,_2+12)0 1...0

A, —LC, = : Do
@440 01
—(ap+1,) 0...00
The characteristic equation of the system can be written as follows:
M@ ="+ (@ + )27+ (ar+ L) 2+ (a0 + 1)
Also, the desired characteristic equation can be written as follows:
A@) =2" +dpy 2?7+ +diz+do
Equating these two characteristic equations, we get:
L=d,_i—a,;,i=1,...,n

which gives directly the observer gains.

For the multiple outputs (i.e. C € R™P?), the design of the observer gain requires
the determination of n X p gains using n equations which is not possible without
using smart approaches that fix some of the gains. One possible way to overcome
this is to use the following expression for the gain L:

I8

L: [41,"',qp]=LqT
I

with g; is an arbitrary real number that has to be chosen by the designer to compute
the observer gain, L.

It is important to notice that this approach allows us to determine n-gains by
fixing the p-gains. Other approaches are also available and the reader is invited to
consult appropriate references for this purpose.

Using the same remark as for the single output case, we can design the gain
matrix L using the Ackerman formula for the following dynamics

x(k +1) = ATx(k) + CT qu(k)

with the control u(k) = —L" x(k).
The observer gain for this case is then given by:

Al :[ll,"',ln]Z[Oa"',O, 1](@‘)T)‘1A(AT)
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qTCAO
with & = : .
qT CAn—l
Most often, the state vector is divided into two parts, the first one has the same
size of the measured output, i.e. m, while the second has the dimension of n — m. If
we denote respectively these variables respectively by x,(k) € R™ and x,(k) € R,
i.e:

_ | xak)
) = [xb(k)}

which implies:

k) = [T 0] x(k)
= xa(k)

Using this the system dynamics can be rewritten as follows:

Xalk+1)|  [An A || xa(k) B
[xb(k+ | = [A21 Azz] [mk)} ¥ [32] u(k)
k) = [T 0] x()

= xq(k)
which gives respectively:
Xo(k+ 1) = Anxa(k) + Aiaxp(k) + Bru(k)
xp(k + 1) = Az xy(k) + A xp(k) + Bou(k)
(k) = xq(k)
Notice that the first relation can be rewritten as follows:

Xa(k +1) = Ay x4(k) — Biu(k) = Appxp(k)

Using now the relation y(k) = x,(k) for all k, we get:
yk + 1) = Apy(k) — Biu(k) = Ajpx,(k)

which implies that the left hand term can be measured, while the right hand term
contains the states x;,(k) that have to be estimated.
For the unmeasured part of the state vector, x,(k), we have
xp(k +1) = Az xa(k) + Apxp(k) + Bou(k)
= Ao xp(k) + Az1x4(k) + Bou(k)
Let us now denote by %,(k) the estimate of the state vector part, x;(k) and by L,

the observer gain to be designed. Referring to the design of the observer design of
full order, and comparing the state equations

x(k+ 1) = Ax(k) + Bu(k)
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with the dynamics of the unmeasured state parts, we remark that Ay, and Ay x,(k) +
Bru(k) correspond respectively to A and Bu(k)
Doing the same for the output equation:

y(k) = Cx(k)
with the measurement equation:
y(k+ 1) = Any(k) = Biu(k) = Appxp(k)

we remark also that C corresponds to Aj,.
Using now the results of the full order estimator, we get for the following for the
state part, Xp(k):

Xp(k+1) = [Axn — LyA12] Zp(k) + Az1x4(k) + Bau(k)
+Ly [y(k + 1) = Asy x4 (k) — Bru(k)]
that we can rewritten using the fact y(k) = x,(k):
Xtk +1) = [Axn — LyA12] £p(k) + Lyy(k + 1) + [A21 — LyAo1] xa(k)
+[B2 — LpB1] u(k)

It is important to notice that the presence of the term y(k + 1) in the expression of
Xp(k + 1) is not convenient and some changes are needed to overcome this. For this
purpose, let us rewrite the previous equation as follows:

Xk +1) = Lpy(k + 1) =[Axn — LpA1a] Zp(k) + [A21 — LpAs(] xa(k)
+[B2 — LpB ] u(k)

Adding and subtract the term [A; — LpA 2] Lpx,(k) to the right hand side of this
relation we get:

Xk + 1) = Lpy(k + 1) = [Axn — LpA12] [Xp(k) — Lpxa(k)]
+[[Axn — LpA1n] Ly + Ay — LpAq1] x4(k)
+[B2 — LpB1] u(k)

Let us now define the new variable p(k) and its estimate p(k) by:

pk) = xp(k) = Lyxa(k)
plk) = Zp(k) — Lpx,(k)
Using this we get:
plk+1) =[Ax — LyA12] p(k)
+[[A22 — LpA12] Ly + Azy — LyA 1] x4(k)
+[B2 — LyB1] u(k)

Let us now define, the estimation error, e(k):

e(k) = p(k) = p(k) = xp(k) = Xp(k)
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The dynamics of the reduced order estimator is given by:
etk +1) =xp(k+1)— Xk +1)
= A xp(k) + A1 x,(k) + Bau(k) — [Aza — LpA12] [X6(k) — Ly xa(k)]
+[[Ax — LyA12] Ly + A2y — LpA11] x4(k)
+[B2 — Ly B1] u(k)
= A [xp(k) — Xp(K)] + LpA12%p(k) — LyA12x5(k)
= [A22 — LpAr2] [xp (k) — Xp(k)]
= [A2 — LyA 2] e(k)
Remark 7.4.1 It is important to notice that the error expression of the reduced

order estimator is similar to the one of the full order estimator except that the size
of the matrices is less.

Example 7.4.2 In this example we consider a dynamical system with three states
with the following dynamics:

x(k+ 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
with
[0 1 0
A=l 0 0 1],
0.504 —1.91 2.4
K
B =|0],
1
c =[100]

It can be shown that this system is completely controllable and obersvable.

Let us design an observer for this system to estimate the state vector. Firstly let
us design a full order estimator. Let us assume that the poles we use for the design
of the observer gain are given:

z1 =0.1
22 =0.1+0.6j
73 =0.1-0.6j

The corresponding characteristic equation is given by:
2 =037 +0.392-0.037 =0

Using pole placement as we did before, it can be shown that the following
observer gain is the solution:
2.1
352 1.

L =
4.904
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For the reduced order observer, let us assume that we have access to the first
state. Based on the theory, we have:

An 