

Mechatronic Systems

El-Kébir Boukas and Fouad M. AL-Sunni

Mechatronic Systems
Analysis, Design and Implementation

ABC

Authors

Prof. El-Kébir Boukas
Mechanical Engineering Department
Ecole Polytechnique de Montreal
P.O. Box 6079, Station “centre-ville"
Montreal, Quebec, H3C 3A7
Canada
Email: el-kebir.boukas@polymtl.ca

Prof. Fouad M. AL-Sunni
Department of Systems Engineering
King Fahd University of Petroleum
and Minerals
Dhahran, 31261
Saudi Arabia
E-mail: alsunni@kfupm.edu.sa

ISBN 978-3-642-22323-5 e-ISBN 978-3-642-22324-2

DOI 10.1007/978-3-642-22324-2

Library of Congress Control Number: 2011931791

c© 2011 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Nowadays most of the systems are computer controlled among them we quote
mechatronic systems where the intelligence is implemented in microcontrollers. The
discipline that deals with such systems is mechatronics that we define as the syner-
gistic combination of mechanical engineering, electronic engineering, and software
engineering. The purpose of this interdisciplinary engineering field is to control
complex systems by providing hardware and software solutions. The engineers
working in this field must master concepts in electronics, control and programming.
Examples of such systems can be found in different industrial areas ranging from
aerospace to automobile industries.

In the mechanical part, the engineer must follow a rigorous procedure to design
the mechatronic system. He must build the mechanical part of the system and choose
the appropriate sensors and actuators that have to be used in the functioning of
the mechatronic system. At this phase we must think about the place where the
electronic circuit will be integrated.

In the electronics part, the engineer must design the electronic circuit around mi-
crocontrollers that will assure the functioning of the mechatronics systems. It covers
the integration of the required electronics components such as resistors, capacitors,
integrated circuits, sensors and the chosen microcontrollers. The required regulated
voltage for the different components is also part of this step.

In the control part, the engineer must analyze the system under study and design
the appropriate controller to get the desired performances. In the analysis part, we
should start by establishing an acceptable model that gives the relationship between
the inputs and the outputs. Once the dynamics is mastered a sampling period is
chosen and the model is converted to a discrete-time form and an appropriate con-
troller can be chosen among the classical proportional integral and derivative (PID)

VI

controller or the state feedback controller or any other controller that can give the
desired performances.

In the programming part, the engineer must develop the code of the appropriate
algorithms and then upload it in the memory of the chosen microcontroller. Many
languages can be used for this purpose. In the rest of this volume, the C language is
used to implement the developed algorithms.

The field of mechatronics is blooming and due to its interdisciplinarity many uni-
versities around the world have introduced complete programs on mechatronics in
their curriculum. Also the number of students that are attracted by this field is also
blooming and many research directions related to this have emerged recently. Huge
efforts have been done to structure research in this discipline and we have seen re-
cently many international conferences totally dedicated to this. Also some journals
have been created to report interesting results on the subject. Unfortunately the num-
ber of book dealing with such discipline is limited and sometimes inappropriate for
some courses in the different programs around the world.

This book provides some tools that engineers working on the mechatronics disci-
pline can use. It can be considered as a reference for a second course in mechatronics
curriculum where the students are supposed to have a prerequisite course in which
the structure and the different components on mechatronics systems have been
presented. It focuses only on the analysis, design and implementation of continuous-
time systems controlled by microcontrollers using advanced algorithms to get the
desired performances.

The hardware design of the mechatronic systems represents the hearth of the
mechatronics field. It consists of designing the different parts of the mechatronic
systems. Mainly beside the electronic circuit, we should select the appropriate sen-
sors and actuators that we can use for our mechatronic system. The choice of the
microcontroller is also important for the success of the desired system.

In the modeling part a model to describe the behavior of the system is developed
either using the transfer function or the state space representation. In the transfer
function approach part, the model of the continuous-time systems is converted to
a discrete-time system and different techniques for analysis and synthesis of con-
trollers to guarantee some desired performances are developed. In the state space
approach part, the model of the continuous-time systems is converted to a discrete-
time state space representation and different techniques for analysis and synthesis
of controllers to assure some desired performances are developed.

The part on implementation will focus on how we can implement the control
algorithm we developed either using the transfer function tools or the ones based on
state space. Both the hardware and software parts will be covered to give an idea for
the reader on how to deal with such problems. Mainly the selection of the sensors
and the actuators that may be used in the mechatronic system will be covered.

In the advance control part, a flavor of how to design controllers that handle un-
certainties and external disturbances in the dynamics is presented. This will give an
idea to the reader on robust control technique and get familiar with implementation
of these techniques. Stability and stabilization problems and their robustness are
covered. Different controllers (state feedback, static output feedback and dynamic

VII

output feedback) are used and linear matrix inequality (LMI) condition is developed
to design such controllers.

In the case studies part, a certain number of practical examples are presented to
show how the concepts we presented earlier are implemented to obtain a functional
mechatronics systems. More detail is given to help the reader to design his own
mechatronic system in the future.

The rest of this book is organized in seven parts and divided in eleven chap-
ters and one appendix. In the introduction, a general overview of the mechatronics
fields is given and the main concepts are recalled to make the book self-contained.
In Chapter 2, the structure of mechatronic systems are detailed and some examples
are given. Chapter 3 which is a part of the modeling part, deals with the model-
ing problem of the class of linear continuous-time systems. Both the physical laws
and identification approaches are covered. The concepts of transfer function and
state space representations are presented. Chapter 4 treats the Z -transform and its
properties and how the transfer function is obtained from a model that is given in
a set of differential equations. Other techniques for analysis of such systems are
also covered. In Chapter 5, some design approaches based on transfer function
are developed. Chapter 6 deals with the state space approach for analyzing linear
discrete-time systems. The concepts of stability, controllability and observability
are covered. In Chapter 7, the state feedback, static output and dynamic output sta-
bilization techniques are tackled. Chapter 8 deals with the implementation problem
of the control algorithm we may develop for controlling a given continuous-time
system. The focus will be made on all the steps. Mainly the hardware and software
parts are covered in detail to help the reader to develop his own expertise. Chap-
ter 9 presents some ideas on robust control. Stability and stabilization problems for
systems with uncertainties and external disturbances are tackled. Chapter 10 covers
the guaranteed cost control problem. Different types of controllers are used for this
purpose. In Chapter 11 some selected systems are considered and all the concepts
we developed in this book are applied to give the whole picture for the reader. An
appendix that contains some relevant tools is also provided to try to make the book
self-contained.

El-Kébir Boukas
Fouad M. AL-Sunni

In Memory of Prof. El-Kébir Boukas

Missing a very dear friend

Born in Morocco in 1954, Prof. Boukas obtained his BS Electrical Engineering
degree from Ecole Mohammadia des Ingenieurs with excellent standing and with
an early focus on control and application on large scale systems. Since then, he was
fascinated by the area of control and its application. To fulfil his design of knowing
more about it, he moved to Canada to pursue his higher studies. A decision which
proved rewarding, he finished his MS and PhD in Electrical Engineering from Ecole
Polytechnique of Montreal, and established himself as an authority in his area of
specialization of control and automation with specialization in the use of control
tools in manufacturing , maintenance and inventory control.

In his mid- fifties, he left us while still active in his research and very productive.
In fact, the manuscript of this book was with him while in hospital during the last
few weeks of his life. He left behind an excellent profile of accomplishments in the
form of 167 High caliper International Journals, more than 8 books and many educa-
tional software and materials, and very visible presence in international conferences
with more than 125 papers and presentations in conferences and involvements in
organizations, and international technical committee of several of conferences over
the years.

After fighting for his life, he passed away peacefully and he left behind his loyal
wife , two daughters (A dentist, and an MD) and one son (soon to-be physical
therapist).

I have known him since 1996, and since his visit to us in King Fahd University
of Petroleum and Minerals, I have known him to be a kind, nice, helpful, and dear
friend to all. He has been one of my best friends that I will always remember. He left
me with the job of completing this manuscripts and then to translate it to Arabic to
be the first textbook on the subject. The English version is now out, and the Arabic
version is being scheduled at a later time.

Fouad M. AL-Sunni

Contents

1 Introduction 1
1.1 Mechanical Part Design . 3
1.2 Electronic Circuit Design . 4
1.3 Real-Time Implementation . 7
1.4 Organization of the Book . 19

I Mechatronic Systems 21

2 Mechatronic Systems 23
2.1 Mechatronics . 23
2.2 Mechanical Part . 26
2.3 Sensors . 27
2.4 Actuators . 29
2.5 Electronic Circuit . 30
2.6 Real-Time Implementation . 31
2.7 Examples of Mechatronic Systems . 34

2.7.1 Dc Motor Control . 34
2.7.2 Two Wheels Robot . 37
2.7.3 Magnetic Levitation . 40

2.8 Conclusions . 40
2.9 Problems . 40

XII Contents

II Modeling 43

3 Mathematical Modeling 47
3.1 Mathematical Modeling Based on Physics Laws 48

3.1.1 Concept of Transfer Function . 49
3.1.2 State Space Description . 50

3.2 Identification . 60
3.2.1 Transfer Function Approach . 60
3.2.2 State Space Description Approach. 63

3.3 Conclusions . 66
3.4 Problems . 66

III Transfer Function Approaches 69

4 Analysis Based on Transfer Function 73
4.1 Introduction . 73
4.2 Sampling Process . 75
4.3 Transfer Function Concept . 94
4.4 Time Response and Its Computation. 104
4.5 Stability and Steady-State Error . 108
4.6 Root Locus Technique . 115
4.7 Bode Plot Technique . 119
4.8 Conclusions . 124
4.9 Problems . 124

5 Design Based on Transfer Function 129
5.1 Introduction . 129
5.2 Formulation of the Control Design Problem 130
5.3 Design Based on Empirical Methods . 132
5.4 Design Based on Root Locus . 141
5.5 Design Based on Bode Plot . 167
5.6 Case Study . 190

5.6.1 Proportional Controller . 190
5.6.2 Proportional and Integral Controller 192
5.6.3 Proportional and Derivative Controller 194
5.6.4 Proportional Integral and Derivative Controller 196
5.6.5 Phase Lead Controller . 198
5.6.6 Phase Lag Controller . 202
5.6.7 Phase Lead-Lag Controller . 206

5.7 Conclusion . 211
5.8 Problems . 212

Contents XIII

IV State Space Approaches 215

6 Analysis Based on State Space 217
6.1 Introduction . 217
6.2 State Space Concept . 218
6.3 Time Response and Its Computation. 239
6.4 Stability . 242
6.5 Controllability and Observability . 248
6.6 Case Study . 277
6.7 Conclusion . 278
6.8 Problems . 278

7 Design Based on State Space 283
7.1 Introduction . 283
7.2 Formulation of the Control Design Problem 284
7.3 State Feedback Controller Design . 285
7.4 Output Feedback Controller Design . 304
7.5 Linear Quadratic Regulator . 324
7.6 Case Study . 333
7.7 Conclusions . 336
7.8 Problems . 336

V Implementation 341

8 Design and Implementation of Mechatronic System 343
8.1 Introduction . 343
8.2 Design Phase . 344
8.3 Electronic Design . 348
8.4 Software Design and Real-Time Implementation 348

8.4.1 dsPIC30F4011 . 348
8.4.2 Pusle Width Modulation . 353
8.4.3 Interrupts . 361

8.5 Design and Implementation Based of Transfer Function 365
8.6 Design and Implementation Based on State Space 371
8.7 Conclusions . 376
8.8 Problems . 377

VI Advanced Control 379

9 Robust Control 383
9.1 Stability Problem. 385
9.2 Stabilization . 392
9.3 H∞ Stabilization . 412

XIV Contents

9.3.1 State-Feedback Control . 416
9.3.2 Static Output Feedback H∞ Control 420
9.3.3 Output-Feedback Control . 422

9.4 Conclusion . 425
9.5 Problems . 426

10 Guaranteed Cost Control Problem 431
10.1 Introduction . 431
10.2 Problem Statement . 432
10.3 State Feedback Control Design . 433
10.4 Output Feedback Control . 438
10.5 Conclusion . 444
10.6 Problems . 444

VII Case Studies 447

11 Case Studies 449
11.1 Introduction . 449
11.2 Velocity Control of the dc Motor Kit . 450
11.3 Position Control of the dc Motor Kit . 457
11.4 Balancing Robot Control . 467
11.5 Magnetic Levitation System . 474
11.6 Conclusion . 484
11.7 Problems . 484

A C Language Tutorial 487

References 495

Index 497

List of Figures

1.1 Load driven by a dc motor kit . 5
1.2 Electronic circuit of the dc motor kit . 6
1.3 Signal conversion made in the forward path . 6
1.4 Signal conversion made in the feedback path . 6
1.5 Partition of the sampling period T . 13
1.6 Traffic system . 14
1.7 Type of light used in the traffic light system . 15

2.1 Mechatronic design approach . 24
2.2 Real-time implementation setup . 36
2.3 Electronic circuit of the dc motor kit . 37
2.4 Balancing robot . 38
2.5 Electronic circuit of the balancing robot . 39
2.6 Magnetic levitatios system . 41
2.7 Block diagram of continuous-time system . 46
2.8 Block diagram of continuous-time linear system 46

3.1 Block diagram of a dc motor . 49
3.2 Tilt dynamics free body diagram . 53
3.3 Wheels and linear displacement free body diagram 53
3.4 Heading dynamics free body diagram . 56

4.1 Signal conversion is made in the forward path 74
4.2 Signal conversion is made in the feedback path 74
4.3 Sampling process . 77

XVI List of Figures

4.4 Sampling period choice . 78
4.5 Transformation of the s-plane into z-plane . 88
4.6 Transformation of the s-plane when the real part is constant 88
4.7 Forward integration . 90
4.8 Backward integration . 91
4.9 Trapezoidal integration . 91
4.10 Pulse transfer function definition . 95
4.11 Cascade transfer functions with sampler between 96
4.12 Cascade transfer functions without sampler between 97
4.13 Transfer functions in feedback . 98
4.14 Transfer functions in feedback . 99
4.15 Transfer functions in feedback . 100
4.16 Transfer functions in feedback . 101
4.17 Transfer functions in feedback . 101
4.18 Transfer functions in feedback . 102
4.19 Transfer functions in feedback . 102
4.20 Transfer functions in feedback . 102
4.21 Behavior of the time response for a step input 105
4.22 Block diagram (BD) . 106
4.23 Block diagram of the closed-loop . 109
4.24 BD of the system with characteristic eqn: 1 + K (z+1)

(z−1)2 = 0 118

4.25 RL of the system with characteristic eqn: 1 + K (z+1)
(z−1)2 = 0 118

4.26 BD of the system with characteristic eqn: 1 + K z
(z−1)(z−0.368) = 0 119

4.27 RL of the system with characteristic eqn: 1 + K z
(z−1)(z−0.368) = 0 120

4.28 Speed control of mechanical part driven by a dc motor 123
4.29 Bode diagram of 1.9989(1−0.05w)

1+w . 125
4.30 Transfer functions in feedback . 126
4.31 Block diagram of the closed-loop . 127

5.1 Block diagram of the closed-loop . 131
5.2 Ziegler-Nichols methods: stable case . 133
5.3 Step response of a stable dynamical system . 134
5.4 Step response of the closed-loop dynamics with a PID controller . . . 135
5.5 Ziegler-Nichols: unstable case (a) and determination of Tc (b) 136
5.6 Step response of the closed-loop dynamics with a PID controller . . . 138
5.7 Step response of the closed-loop dynamics with a PID controller . . . 140
5.8 Root locus of 1

s(s+1) . 142

5.9 Step response of 0.5
s(s+1)+0.5 . 143

5.10 Root locus of s+z
s(s+1) , z = −3.6 . 146

5.11 Step response of 5KP s+5KI

s2+(1+5KP)s+5KI
. 147

5.12 Root locus of s+z
s(s+1) , z = 6.7273 . 150

5.13 Step response of s+z
s(s+1) , z = 6.7273 . 151

5.14 Root locus of s+a2
s(s+3) , a2 = 6 . 153

5.15 Step response of s+a2
s(s+3) , a2 = 6 . 154

List of Figures XVII

5.16 Root locus of
s+ 1

aT

s(s+2)(s+ 1
T)

. 156

5.17 Step response of F(s) =
2aKP(s+ 1

aT)
s3+(2+ 1

T)s2+(2
T +2aKP)s+

2KP
T

. 157

5.18 Root locus of 1
s(s+2) . 159

5.19 Root locus of s+0.3
s(s+2)(s+0.06) . 161

5.20 Step response of F(s) =
2aKP(s+ 1

aT)
s3+(2+ 1

T)s2+(2
T +2aKP)s+

2KP
T

. 162

5.21 Step response of F(s) =
2aKP(s+ 1

aT)
s3+(2+ 1

T)s2+(2
T +2aKP)s+

2KP
T

. 163

5.22 Root locus of
s+ 1

a1T1

s(s+2)
(
s+ 1

T1

) . 165

5.23 Root locus of

(
s+ 1

a1T1

)(
s+ 1

a2T2

)

s(s+2)
(
s+ 1

T1

)(
s+ 1

T2

) . 166

5.24 Step response of F(s) . 167
5.25 Bode plot of T (s), with K = 1, and K = kKP . 169
5.26 Step response of F(s) . 171
5.27 Bode plot of T (s), with K = 1 . 173
5.28 Step response of F(s) . 174
5.29 Bode plot of T (s), with K = 10 . 176
5.30 Step response of F(s) . 177
5.31 Bode plot of T (s) . 179
5.32 Step response of F(s) . 180
5.33 Bode plot of T (s) . 183
5.34 Step response of F(s) . 184
5.35 Bode plot of T (s) . 186
5.36 Step response of F(s) . 187
5.37 Bode plot of T (s) . 188
5.38 Bode plot of T (s) K

s(τm s+1) , with K = 1, and K = KmKP 191

5.39 Root locus of T (s) = 1
s(τm s+1) . 192

5.40 Step response of F(s) = KmKP

τm s2+s+KmKP
. 193

5.41 Bode plot of T (s) K(0.5s+1)
s2(τm s+1) , with K = 1, and K = KmKP 194

5.42 Root locus of T (s) = 0.25s+1
s2(τm s+1) . 195

5.43 Step of F(s) with two controllers for two design methods 196
5.44 Bode plot of T (s) (compensated and non compensated system 197
5.45 Step of F(s) with two controllers for two design methods 198

5.46 Root locus of T (s) =
(1

13 s+1)(1
15 s+1)

s2(τm s+1) , . 199

5.47 Bode plot of T (s) =
100(1

12 s+1)(1
15 s+1)

s2(τm s+1) . 200
5.48 Step response of F(s) with the two controllers 201
5.49 Root locus of T (s) = aT s+1

s(τm s+1)(T s+1) . 202

5.50 Bode plot of T (s) 100
s(τm s+1) . 203

XVIII List of Figures

5.51 Step of F(s) with two controllers for two design methods 204
5.52 Bode plot of T (s) 100

(τm s+1) . 205
5.53 Step of F(s) with two controllers for two design methods 206
5.54 Root locus of T (s) K(0.5s+1)

s2(τm s+1) , with K = 1, and K = KmKP 208

5.55 Bode plot of T (s) K(0.5s+1)
s2(τm s+1) , with K = 1, and K = KmKP 209

5.56 Step of F(s) with two controllers for two design methods 210

6.1 Block diagram of discrete-time linear system 220

7.1 Block diagram of discrete-time linear system 286
7.2 Behavior of the output versus time with state feedback controller . . . 291
7.3 Behavior of states vs time with state feedback controller 298
7.4 Block diagram of discrete-time linear system 306
7.5 Behavior of the output vs time with state fdk controller 316
7.6 Behavior of the output vs time with state fdk controller 321
7.7 Behavior of the controller gains versus iteration 329
7.8 Behavior of the output vs time with state fdk controller 330
7.9 Behavior of the output vs time with state fdk controller 333
7.10 Behavior of the states vs time with state fdk controller 334
7.11 Behavior of the states vs time with state fdk controller 335
7.12 Behavior of the states vs time with state fdk controller 336

8.1 Two wheels robot . 347
8.2 dsPIC30F4011 pins description . 350
8.3 Example of PWM signal . 353
8.4 Block diagram of the closed-loop . 365
8.5 Root locus of the dc motor with a proportional controller 369
8.6 Output of the load driven by a dc motor vs time with ’p’ controller . 369
8.7 Time response for a step function with 1 as amplitude 371
8.8 Time response for a step function with 1 as amplitude 373
8.9 Behavior of the output for a non null initial conditions 374
8.10 Behavior of the system’s states . 375
8.11 Behavior of the observer’s states . 376

11.1 Electronic circuit of dc motor kit . 451
11.2 Real-time implementation setup . 452
11.3 Root locus of the dc motor with a proportional controller 459
11.4 Time response for a step function with 30 degrees as amplitude . . . 460
11.5 Time response for a step function with 30 degrees as amplitude . . . 462
11.6 Time response for a step function with 30 degrees as amplitude . . . 464
11.7 Output versus time . 466
11.8 System’s states versus time . 467
11.9 Observer’s states versus time . 468
11.10 Balancing robot . 469
11.11 Electronic circuit of the balancing robot . 470

List of Figures XIX

11.12 Outputs versus time . 471
11.13 States versus time . 472
11.14 Magnetic levitatios system . 476
11.15 Time response for moving object . 478

List of Tables

3.1 Variables definition . 52
3.2 Variables definition . 55
3.3 Data of the magnetic levitation system . 57

4.1 Z-transform table . 81
4.2 Poles in the z-plane using z = e j 2πω

ωs . 87

5.1 Ziegler-Nichols methods: controller parameters 133
5.2 Ziegler-Nichols method: case of unstable systems 136
5.3 Ziegler Nichols method in frequency domain 139
5.4 Comparative study of the design of P controller 192
5.5 Difference equations for the different controllers: dc motor kit 211

8.1 Convention for dc motor movement . 363

11.1 Data of the magnetic levitation system . 477

A.1 List of C language keywords . 489
A.2 Number representations . 489
A.3 Integer representations . 489
A.4 Decimal representations . 490
A.5 Arithmetic operations . 491
A.6 Logic operations . 491
A.7 Logic operations . 492
A.8 Logic operations . 493

1
Introduction

After reading this chapter the reader will:

1. have an idea on how we design mechatronic systems

2. know what are the phases of the design of such systems

3. have a clear idea on how to deal with each phase of the design of the
mechatronic systems

The progress and the miniaturization we have seen in electronics during the last
decades have allowed engineers to come up with new products and new engineering
disciplines. Early in the eighteens we have seen the introduction of new products
that combines mechanical parts with electronics parts. Another factor that gives
a booming to mechatronics applications is the continuously decreasing prices of
the electronic parts and the challenges to design very small systems. Today, for
instance microprocessors with high performances are becoming very cheap which
encourages their uses in computer controlled systems.

A microprocessor is an integrated circuit that contains the entire central process-
ing unit of a computer on a single chip. The microprocessor is the main part in our
nowadays computers. It does all the necessary computations and treats the data. The
microprocessors have the following components:

2 1. Introduction

• control unit

• arithmetic and logic unit

• input/output (I/O) data bus

• address bus

• internal registers

• clock

• etc.

To construct the computers, other peripherals and components are added to the
main part which is the microprocessor. Screens, hard disk, floppies, memory, etc.
are examples of such peripherals that we can have in our computers. For the com-
puter controlled systems, we need appropriate cards known as data acquisition cards.
These devices come with analog to digital (ADC) and digital to analog (DAC) con-
verters and other necessary components real-time control applications. For some
mechatronic systems, the use of computers and data acquisition cards are not appro-
priate and more often we use instead electronic circuit built around microcontrollers
that can be considered as small microprocessor with their own peripherals.

A microcontroller is an integrated circuit as it is the case of the microprocessor
and consisting of:

• a relatively simple central processing unit (CPU)

• memory

• a crystal oscillator

• timers,

• watchdog,

• serial and analog I/O

• pulse-width modulation (PWM) modules

• etc.

Microcontrollers are designed for small applications, while the microprocessors
are used in high performance applications and personal computers. The Intel mi-
croprocessors that run in our laptops are examples of these microprocessors and
the PICs of Microchip1 are examples of microcontrollers. These machines are used
in almost all the products that we use in our daily life. As examples that use
microcontrollers, we quote:

• cars

• airplanes

1 Microchip is a trademark, see www.microchip.com

1.1. Mechanical Part Design 3

• cellular phones

• digital cameras

• etc.

Nowadays most of the systems are computer controlled where the intelligence of
these mechatronic systems is implemented in microcontrollers. The discipline that
deals with such systems is mechatronics that we define as the synergistic combina-
tion of mechanical engineering, electronic engineering, and software engineering.
The purpose of this interdisciplinary engineering field is to build and control com-
plex systems by providing hardware and software solutions. The engineers working
in this field must master concepts in electronics, control and programming. Ex-
amples of such systems can be found in industrial areas ranging from aerospace
industry to car industry.

The design of mechatronic systems is a task that requires engineers from different
disciplines like mechanical engineering, electrical engineering, control engineering,
computer engineering, etc. The knowledge of these engineers are combined to pro-
duce the best mechatronic system. Most of these mechatronic systems are composed
of:

• a mechanical part including the actuators and sensrors

• an electronic circuit that is built around a microcontroller or a set of
microcontrollers

• a real-time implementation that represents the intelligence of the system

As example of mechatronic system, let us consider a laboratory setup for
real-time implementation of control algorithms. This setup must have all the
functionalities that allow learning real-time control. More specifically,

• the mechanical part must allow the user to check the output of the control
algorithm

• an electronic circuit must be simple and easy to reproduce by the user in case

• the implementation must be easy to do and well documented.

In the rest of this chapter we will describe briefly each phase of the design of the
whole mechatronic systems.

1.1 Mechanical Part Design

The mechanical part is a principle part in the mechatronic system. In the phase
design of this part, we will conceive and manufacture the parts that compose the
mechatronic system. We will also choose the actuators and the sensors we will use
for this mechatronic system. Either the design of the mechanical part or the choice of
the actuators and sensors are done by respecting some design rules that will be pre-
sented in a forthcoming chapter of the volume. It is also important to keep in mind

4 1. Introduction

that the recycling of the mechatronic system once it becomes obsolete to respect our
environment is an important matter that we must consider during the design phase.
The assembly and disassembly of the system either for maintenance or any other
purpose should be considered also during the design phase.

For the design of the mechanical part, the steps of the mechanical design such as
definition of the problem, research of solution using brainstorming or any equivalent
approach, practicability study, prototyping, etc. are used. The choice of the actuators
and the sensors are also done by following the guidelines and the norms that are in
use. As an example, if the mechatronic system is designed to operate in mines,
electrical actuators are avoided since they may cause fires, while for food industries
hydraulic actuators are excluded also.

For the setup of the real-time implementation that we are considering as example,
the mechanical part in this case is only a small graduated disk (in degree) that will
be attach solidly to the shaft of the actuators. This mechanical part is made from
aluminium. The actuator is a dc motor that is equipped with a gearbox and an en-
coder. The role of the gearbox is to reduce the velocity of the mechanical part and
also to apply a high torque. The encoder is used to measure the disk position and
therefore, use this information for feedback. The whole is mounted on a plexiglass
as it is shown in Fig. 1.1. More details on the conception of this mechanical part
will be given in a forthcoming chapter of this volume.

1.2 Electronic Circuit Design

In the electronics part, the engineers must design the circuit that will assure the
functioning of the mechatronics systems. It covers the integration of the required
electronics parts such as resistors, capacitors, integrated circuits and the chosen mi-
crocontroller or microcontrollers. The required regulated voltages for the different
components are also part of this step. The main part of the electronic circuit is the
microcontroller or a set of microcontrollers. In this volume we decided to use one
type of microcontroller which is the dsPIC30F4011 manufactured by Microchip.
There is no real justification that we can give but only our desire is to adopt one
microcontroller for all the examples we will cover in this volume. This choice will
also make the real-time implementation easy for the reader since we will use the
same structure for all the examples.

The regulated voltages will depend on the components we will use beside the
microcontroller that requires following its datasheet a voltage between 2.5 V and
5 V. Since most of the examples use dc actuators and to drive them we need an
analog signal that we can get either using a DAC or just PWM and an integrated
circuit named L293D (a H-bridge). This integrated circuit needs a regulated voltage
of 5 V and it will deliver a signal output that will feed the dc motor between 0V
and 24V. We are also using many sensors that need regulated voltages to operate
properly. Most of these devices need 5V exception made for the accelerometers and
gyroscopes that requires a less regulated voltages (see the two wheels robot). For the

1.2. Electronic Circuit Design 5

Fig. 1.1 Load driven by a dc motor kit

dc motor kit Figs. (1.1)-(1.2) give an idea of the electronic circuit of the dc motor
kit that we will use in this volume.

To control the mechanical part two structures are possible. These structures are
illustrated by Figs. 1.3-1.4.

6 1. Introduction

C1,C2,C3 are
equal to 0.1μF

C4,C5 are equal
to 100μF/16V

Battery
voltage

regulator

ds
P

ic
30

F
40

11

D
C

M
ot

or
Se

ns
or

1
2
3
4
5
6
7
8 9

10
11
12
13
14
15
16

C5

C4

C3

C2

C1

L
2

9
3

D

Fig. 1.2 Electronic circuit of the dc motor kit

+

−
A/D μC D/A System

Analog

Input

Output

Fig. 1.3 Signal conversion made in the forward path

A/D

D/AμC System
Digital

Input

Output

Fig. 1.4 Signal conversion made in the feedback path

If we compare these two structures, we remark that in the first one the references
are analog while in the second one, they are digital. The second structure has the
advantage that we can eliminate the noises. In the rest of this volume, we will adopt
this structure.

The functioning of this structure is simple and it can be explained as follows.
The microcontroller runs in indefinite loop and at each interrupt, the microcontroller
reads the value of the output using the sensor and the ADC, then using the control

1.3. Real-Time Implementation 7

algorithm a control action is computed and sent to the system via the DAC. All
these steps are done inside the interrupt routine. To avoid error calculation and error
quantization the choice of number of bits either for the microcontroller or the ADC
is an important issue. For the micrcontroller, a choice of 16 bits is done and this
gives a good precision while for the ADC, a 10 bits will be used for all the examples
we are presenting. This will not give a good precision but the results are acceptable.

If we go back to our real-time implementation setup, its electronic circuit is built
around the dsPIC30F4011. The PWM module is used to deliver the voltage to the
L293D integrated circuit that is in turn delivers the necessary power to drive the
actuator. An encoder is used to measure the position of the small disk and also the
velocity by simple calculations.

1.3 Real-Time Implementation

In the control part, the engineer must analyzes the system under study and design
the appropriate controller to get the desired performances. In the analysis part, we
should start by establishing an acceptable model that gives the relationship between
the inputs and the outputs. Once the dynamics is mastered a sampling period is
chosen and the model is converted to a discrete-time form and an appropriate con-
troller can be chosen among the classical proportional integral and derivative (PID)
controller or the state feedback controller or any other controller that can give the
desired performances. To respond to the control specifications, a controller structure
and its parameters are computed, then a recurrent equation is established for the de-
termination of the control action that we must send at each sampling period to the
system.

In the programming part, the engineer enters the algorithms of the chosen al-
gorithm in the memory of the microcontroller. Many languages can be used for
this purpose. In the rest of this volume, the C language is used to implement the
developed algorithms.

Again if we go back to our real-time implementation setup and consider the case
of two simple algorithms the PID controller and the state feedback controller. For
these controllers the control action is computed using the measurement, the refer-
ences, etc. In all the cases, the expression of the control law is simple and should
not take a time that exceeds the sampling period (see Fig. 1.5). The implementation
is done using the interrupt concept. The following example shows how the position
of the load is controlled.

//

// A C program for the dsPic4011 for control the position of a

// dc motor driving a small disk

//

//

// Includes and defines

//

#include <p30f4011.h>

8 1. Introduction

#include <pwm.h>

#include <stdio.h>

#include <stdlib.h>

#include "xlcd.h"

#define ENABLETRIS TRISEbits.TRISE2

#define ENABLE LATEbits.LATE2

#define ENCODER_PRIORITY 7

#define CONTROLLER_PRIORITY 5

#define DISPLAY_PRIORITY 2

#define Ts 0.005; // 1.0/200;

#define Fs 200.0;

typedef struct {

float KP; // Proportional gain

float KI; // Integral gain

float KD; // Derivative gain

} PIDstruct;

PIDstruct thePID;

typedef struct {

long Position; // Shaft position

long error[3]; // the errors

long ref; // the reference

double u[2]; // control (actual and past)

}motorData;

motorData themotorData;

//

// dsPic configuration

//

_FOSC(CSW_FSCM_OFF & FRC_PLL16);;

_FWDT(WDT_OFF);

_FBORPOR(PBOR_OFF & MCLR_DIS);

_FGS(CODE_PROT_OFF);

_FICD(ICS_NONE);

//

// Variables

//

typedef enum _BOOL { FALSE = 0, TRUE } BOOL;

BOOL A;

1.3. Real-Time Implementation 9

BOOL B;

BOOL prevA;

BOOL prevB;

unsigned int dutycycle;

//

// Functions

//

// Initialization function

void Initialize(void);

// Interrupt functions

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void);

void __attribute__((__interrupt__)) _T1Interrupt(void);

//

// Main function

//

int main(void)

{

Initialize();

themotorData.ref = 600; // (90 deg)

while(1);

}

//

// Initialize function

//

void Initialize(void)

{

// variables initialization

thePID.KA = 70.14;

thePID.KI = -128.62;

thePID.KD = 58.54;

themotorData.u[0] = 0.0;

themotorData.u[1] = 0.0;

themotorData.error[0] = 0;

themotorData.error[1] = 0;

themotorData.error[2] = 0;

// Activation of the interrupts priority

INTCON1bits.NSTDIS = 0;

10 1. Introduction

// Digital pins

ADPCFG = 0b11111111;

// I/O

TRISEbits.TRISE0 = 0; // PWM1H

TRISEbits.TRISE1 = 0; // PWM1L

TRISBbits.TRISB2 = 1; // Encoder Chanal A : RB2 -- CN4

TRISBbits.TRISB3 = 1; // Encoder Chanal B : RB3 -- CN5

ENABLETRIS = 0;

/* start-up LCD */

OpenXLCD(FOUR_BIT & LINES_5X7);

//

// initialize variables for the encoder

//

prevA = PORTBbits.RB2;

prevB = PORTBbits.RB3;

//

// Initialize CN interrupts *

//

CNEN1bits.CN0IE=0; // CN0 interrupt disable

CNEN1bits.CN1IE=0; // CN1 interrupt disable

CNEN1bits.CN2IE=0; // CN2 interrupt ENABLE

CNEN1bits.CN3IE=0; // CN3 interrupt ENABLE

CNEN1bits.CN4IE=1; // CN4 interrupt disable

CNEN1bits.CN5IE=1; // CN5 interrupt disable

CNEN1bits.CN6IE=0; // CN6 interrupt disable

CNEN1bits.CN7IE=0; // CN7 interrupt disable

CNEN2bits.CN17IE=0; // CN17 interrupt disable

CNEN2bits.CN18IE=0; // CN18 interrupt disable

IFS0bits.CNIF = 0; // clear CN interrupt flag

IPC3bits.CNIP = ENCODER_PRIORITY; // CN interrupt max priority (7)

IEC0bits.CNIE = 1; // CN interrupt enable

//

// Configure PWM

//

ConfigIntMCPWM(PWM_INT_DIS & PWM_FLTA_DIS_INT);

SetDCMCPWM(1, 1024, 0);

OpenMCPWM (0x3FF, 0x0, PWM_EN & PWM_IDLE_CON & PWM_OP_SCALE1

& PWM_IPCLK_SCALE1 & PWM_MOD_FREE,

PWM_MOD1_COMP & PWM_PDIS3H & PWM_PDIS2H & PWM_PEN1H

1.3. Real-Time Implementation 11

& PWM_PDIS3L & PWM_PDIS2L & PWM_PEN1L,

PWM_SEVOPS1 & PWM_OSYNC_TCY & PWM_UEN);

//

// Initialize Timer 1 interrupt

//

T1CONbits.TON=1; // turn timer 1 on

T1CONbits.TGATE=0;

T1CONbits.TSIDL=0; // stop timer in idle mode (0=non)

T1CONbits.TCKPS=1; // prescaler (0=1:1, 1=1:8, 2=1:64)

T1CONbits.TCS=0; // clock source (0=FOSC/4)

PR1 = 18424; // 200Hz

IFS0bits.T1IF = 0; // clear timer 1 interrupt flag

IPC0bits.T1IP = CONTROLLER_PRIORITY;

IEC0bits.T1IE=1; // enable timer 1 interrupt

//

// Initialize Timer 2 interrupt

//

T2CONbits.TON=1; // turn timer 2 on

T2CONbits.TGATE=0;

T2CONbits.TSIDL=1; // stop timer in idle mode (0=non)

T2CONbits.TCKPS=2; // prescaler (0=1:1, 1=1:8, 2=1:64)

T2CONbits.TCS=0; // clock source (0=FOSC/4)

PR2 = 0xFFFF; // slower possible

IFS0bits.T2IF = 0; // clear timer 2 interrupt flag

IPC1bits.T2IP = DISPLAY_PRIORITY;

IEC0bits.T2IE = 1; // timer 2 interrupt enable

}

//

// C N Interrupt routine

//

// Decode of the position

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void)

{

if(IFS0bits.CNIF)

{

CNLED = !CNLED;

// Get current Encoder signals

// Must read port before clearing flag!!

A = PORTBbits.RB2;

B = PORTBbits.RB3;

// Compare current signals with previous ones to see which

12 1. Introduction

// one has changed

// Change occurs on A

if(A != prevA){

if(A == B){

themotorData.Position++;

}else{

themotorData.Position--;

}

// Change occurs on B

}else if(B != prevB){

if(A == B){

themotorData.Position--;

}else{

themotorData.Position++;

}

}

// Save current signals for next time

prevA = A;

prevB = B;

IFS0bits.CNIF=0; // clear interrupt flag

}

} //end of CN_interrupt function

//

// T 1 Interrupt service routine

//

// Sampling period

void __attribute__((__interrupt__)) _T1Interrupt(void)

{

if (IFS0bits.T1IF)

{

// Error

themotorData.error[0] = themotorData.ref - themotorData.Position;

// Control equation

themotorData.u[0] = themotorData.u[1] + thePID.KA*themotorData.error[0];

themotorData.u[0] += thePID.KI*themotorData.error[1];

themotorData.u[0] += tthePID.KD*themotorData.error[2];

// send control

SetDCMCPWM(1, 1024 + (int)(themotorData.u[0]), 0);

// save the actual data

themotorData.u[1] = themotorData.u[0];

1.3. Real-Time Implementation 13

themotorData.error[2] = themotorData.error[1];

themotorData.error[1] = themotorData.error[0];

IFS0bits.T1IF = 0; // Clear Timer interrupt flag

}

}

//

// T 2 I N T E R R U P T service routine

//

// LCD

void __attribute__((interrupt, auto_psv)) _T2Interrupt(void)

{

if (IFS0bits.T2IF)

{

while(BusyXLCD());

XLCDLine1();

printf("e: %ld", themotorData.error[0]);

while(BusyXLCD());

XLCDLine2();

printf("u: %8.3f ", themotorData.u[0]);

IFS0bits.T2IF = 0;

}

}

Comp. of the Control Law

Read Data Send Control

Wait
kT

(k+1)T
Time

Fig. 1.5 Partition of the sampling period T

Example 1.3.1 As a second example of mechatronic system, let us consider the
design of a traffic light control system. We suppose that we have two streets, a main
one with 80 % of the traffic while the other one has 20 % of the traffic. Fig. 1.6
illustrates the traffic light system we are dealing with and for which we should design
the mechatronic system. Our goal is to design a mechatronic system that controls
the traffic flow for these two streets. More specifically, we must control the lights
(red, yellow and green) in each street. Most of the common traffic lights around the
world consists of three lights, red, yellow and green. Fig. 1.7 gives an idea of the
light used in our traffic system. In each corner of the traffic system we place a light
in order that the pedestrian and the driver can see the light and take the appropriate
action.

14 1. Introduction

Main
street

Fig. 1.6 Traffic system

When the light turns to red, the drivers must stop their car, while when it turns
to green, the drivers have the right to move their car. The yellow light is used as a
cautious step indicating either that the light is about to turn to green or to red and
the drivers must take the appropriate actions either move or stop their cars. More
often the yellow is used when the light is about to switch from green to red as an
intermediate step that takes short time.

Each street is divided into two ways for two directions and each way has two
lanes. The cars can either go straight or turn left or right in each way. We have also
in each intersection to control the requests of the pedestrians. These requests are
random and must be taken into account in a short time with a certain priority.

The mechatronic system for the traffic light is a simple system and it is composed
of:

• lights that are located at each corner of the streets with some push buttons for
pedestrians to request permission to cross the street

• an electronic circuit built around a dsPIC30F4011

• an algorithm in C language for control

The lights that control the traffic are placed at each corner of the street. The type
of these lights is shown in Fig. 1.7. The push bottoms are also placed to help the
pedestrians to cross the street when it is needed in safe way.

To simulate our traffic light we represent lights by colored light-emitting diode
(LED) using the same colors as in the traffic light control system. For pedestrian we
use the blue color.

The algorithm we will use for the control of the flow traffic is very simple and
it is executed in a sequential manner except for the requests of pedestrians that
are treated as interrupts routines. If we denote by Gmain, Ymain, Rmain, Gsec,

1.3. Real-Time Implementation 15

Si
gn

al
H

ea
d

W
al

k
D

on
’t

W
al

k

P
us

h
B

ut
to

n
fo

r
pe

de
st

ri
an

s

Pedestrian Head

Fig. 1.7 Type of light used in the traffic light system

Ysec, Rsec the light green, yellow and red respectively for the main street and the
secondary streets.The algorithm is as follows:

Begin loop

– put Gmain on, Ymain off, Rmain off, Gsec off, Ysec off and Rsec on, and
wait for a time tmain

– put Gmain off, Ymain on, Rmain off, Gsec off, Ysec off and Rsec on, and
wait for a time tswitch

– put Gmain off, Ymain off, Rmain on, Gsec on, Ysec off and Rsec off, and
wait for a time tsec

– put Gmain off, Ymain off, Rmain on, Gsec off, Ysec on and Rsec off, and
wait for a time tswitch

End loop

When an interrupt occurs, we identify on which corner the pedestrian pushed
the button and act in consequence by stopping the traffic of the cars to allow the
pedestrian to cross the street in a safe way.

The structure of the program used for the control light system is given by:

// Include here the headers

#include <dspic30f4011.h>

// Define variables

unsigned int i;

unsigned int Tmax = 65535;

unsigned int tmain = 8;

unsigned int tsec = 4;

unsigned int tswitch = 1;

16 1. Introduction

#define delaytmain() {for i=0;i<tmain*Tmax;i++) Nop(); }

#define delaytsec() {for i=0;i<tsec*Tmax;;i++) Nop(); }

#define delaytswitch() {for i=0;i<tswitch*Tmax;;i++) Nop(); }

#define greenMain RE0 // green light of the main street

#define yellowMain RE1 // yellow light of the main street

#define redMain RE2 // red light of the main street

#define greenSecondary RE3 // green light of the secondary street

#define yellowSecondary RE4 // yellow light of the secondary street

#define redSecondary RE5 // red light of the secondary street

typedef enum _BOOL { FALSE = 0, TRUE } BOOL;

BOOL A;

BOOL prevA;

// Initialization of the streets

// Main street

MainStreet.green = TRUE;

MainStreet.orange = FALSE;

MainStreet.rouge = FALSE;

// Secondary street

SecondaryStreet.green = FALSE;

SecondaryStreet.orange = FALSE;

SecondaryStreet.rouge = TRUE;

// Assign the dsPic ports to the lights

//

// Functions

//

void Initialize(void);

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void)

//

// main function

//

int main (void)

{

Initialize();

while (1)

{

// tmain

1.3. Real-Time Implementation 17

// Main Street during the tmain

greenMain = 1;

yellowMain = 0;

redMain = 0;

// Secondary street during the tmain

greenSecondary = 0;

yellowSecondary = 0;

redSecondary = 1;

delaytmin();

// tswitch

// Main Street during the tswitch

greenMain = 0;

yellowMain = 1;

redMain = 0;

// Secondary street during the tswitch

greenSecondary = 0;

yellowSecondary = 0;

redSecondary = 1;

delaytswitch();

// tsec

// Main Street during the tsec

greenMain = 0;

yellowMain = 0;

redMain = 1

;

// Secondary street during the tsec

greenSecondary = 1;

yellowSecondary = 0;

redSecondary = 0;

delaytsec();

// tswitch

// Main Street during the tswitch

greenMain = 0;

yellowMain = 0;

redMain = 1;

// Secondary street during the tswitch

greenSecondary = 0;

yellowSecondary = 1;

redSecondary = 0;

delaytswitch();

}

}

18 1. Introduction

void Initialize(void)

{

TRISE = 0x00 // configure the port E as output

//

// initialize variables for the encoder

//

prevA = PORTBbits.RB2;

//

// Initialize CN interrupts *

//

CNEN1bits.CN0IE=0; // CN0 interrupt disable

CNEN1bits.CN1IE=0; // CN1 interrupt disable

CNEN1bits.CN2IE=0; // CN2 interrupt ENABLE

CNEN1bits.CN3IE=0; // CN3 interrupt ENABLE

CNEN1bits.CN4IE=1; // CN4 interrupt disable

CNEN1bits.CN5IE=1; // CN5 interrupt disable

CNEN1bits.CN6IE=0; // CN6 interrupt disable

CNEN1bits.CN7IE=0; // CN7 interrupt disable

CNEN2bits.CN17IE=0; // CN17 interrupt disable

CNEN2bits.CN18IE=0; // CN18 interrupt disable

IFS0bits.CNIF = 0; // clear CN interrupt flag

IPC3bits.CNIP = ENCODER_PRIORITY; // CN interrupt max priority (7)

IEC0bits.CNIE = 1; // CN interrupt enable

}

//

// C N Interrupt routine

//

// Pedestrian ask to cross

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void)

{

if(IFS0bits.CNIF)

{

CNLED = !CNLED;

// Get the switch signal

// Must read port before clearing flag!!

A = PORTBbits.RB2;

// Compare the current signal with the previous signal to see the change

// Change occurs on A

1.4. Organization of the Book 19

if(A != prevA){

// put all the red lights on

}

// Save current signal for next time

prevA = A;

IFS0bits.CNIF=0; // clear interrupt flag

}

} //end of CN_interrupt function

The program starts by initializing all the variables and also configure the inputs
and outputs of the dsPIC30F4011. After this, the program enters in indefinite loop
in which we execute the sequence that controls the light for the intersections. If a
pedestrian asks for the permission to cross the street, we shorten the time for actual
activity since we can not stop abruptly the activity to prevent accidents. A given
time is allocated for the pedestrian to cross the street. Once this time is finished, the
sequence in the loop is resumed.

Remark 1.3.1 For pedestrians, there is also the possibility to include right to cross
the streets in the sequences that we have to execute in the program. Also late in the
night, we can eliminate the rights for pedestrians since there is a small probability
that a pedestrian will be at the corner and he will cross the street. But with the
interrupts solution, it is possible to keep the same algorithm for all the time and we
don’t have to change it.

We can improve our algorithm to make it more intelligent by adding appropriate
sensors that memorize the queues in each street and act appropriately by adjusting
the time of the lights in each street to reduce the waiting time of the drivers in the
traffic light.

These two examples give an idea on mechatronic systems and how they can be
difficult and complex to design. It is important to notice that the solution for a given
mechatronic system is not unique and it varies with the knowledge of the design
team. It is also important to keep in mind that the optimization should be used during
the phases to obtain a competitive system.

1.4 Organization of the Book

This book can be considered as second course in mechatronics curriculum where the
students are supposed to have a prerequisite course in which the structure and the
different components on mechatronic systems have been presented. It focuses only
on the analysis, design and implementation of continuous-time systems controlled
by microcontrollers using advanced algorithms to get the desired performances.

In the modeling part a model to describe the behavior of the systems is developed
either using the transfer function or the state space representation.

20 1. Introduction

In the transfer function approach part, the model of the continuous-time sys-
tems is converted to a discrete-time system and different techniques for analysis and
synthesize of controllers to guarantee some desired performances are developed.

In the state space approach part, the model of the continuous-time systems is
converted to a discrete-time state space representation and different techniques for
analysis and synthesize of controllers to guarantee some desired performances are
developed.

The part on implementation will focus on how we can implement the control
algorithms we developed either in the part on transfer function approach or the one
based on state space. Both the hardware and software parts will be covered to give
an idea on the reader on how to deal with such problems.

In the part of advance control, some algorithms that can be used to control sys-
tems with uncertainties and/or external disturbances are presented to give a flavor
to the reader on the robust control theory and introduce him to the research in this
field.

In the case studies part, a certain number of practical examples are presented to
show how the concepts we presented earlier are implemented to obtain a functional
mechatronic systems.

Part I

Mechatronic Systems

2
Mechatronic Systems

After reading this chapter the reader will:

1. master the concepts of Mechatronics and Mechatronic systems

2. be able to execute each phase in the design of mechatronic systems

3. be capable to design the mechanical part, the electronic circuit and to
compute the control law and implement it in real time

4. be able to write a program in C language and how to insert it in the
dsPIC30F4011

2.1 Mechatronics

Let us examine the design of an autonomous car which may be used for navigating
in the floor of a building, and to move from different offices in the same floor. There
are two main approaches for achieving the design of this autonomous car. The first
design approach follows the classical design method. In this approach, the mechani-
cal design is done first. After getting a satisfactory mechanical design, the electronic
system is designed. In the final stage, the control system is designed.

24 2. Mechatronic Systems

The second design approach is to design the AC while observing the effects of
each system on the overall design. In this approach, the design of the mechanical,
electronic and control systems of the autonomous car are designed while taking the
interaction of the design of each system and its effects on the other two systems.
So, the mechanical system is finalized only after studying the effects of such design
on the electronic design, and on the control system design. In this approach, the
interaction between the three systems (mechanical, electronic, and control) and their
effects on the final design and performance are taken into consideration at every
step of the design of each system. The benefits of the second design approach are
very obvious. One of the main benefits is the possibility for making the best design
of each system that will make the best overall performance. This is not possible
in the classical design approach because once a mechanical system is designed,
it will be the final mechanical design. Also, once a mechanical design (such as
the materials used, the size of the design) is decided, it will dictate and may limit
the available alternatives in the electronic system (the size of the motors used, the
location of the motors etc.) design which in its turn will also limit the alternatives
for the instrumentation and the control system used for the overall system. The
interactions between the design of the three systems (mechanical, electronics, and
control) is what mechatronics offers for a better design.

Design of the mechanical
system

Design of the electronic
system

Design of the control and
instrumentation system

Fig. 2.1 Mechatronic design approach

Figure 2.1 presents the mehcatronic design approach in a simple way. The one-
sided arrows indicates the flow of the design process, while the two-sided arrows
represent the interactions between the designs of the different systems of the final
product. The two-sided arrows represents the need to think about the overall design

2.1. Mechatronics 25

at any point in time in the design process and at any system being designed. They
mean that at any step, the design could impact the design of the other systems.

If the two-sided arrows are removed, we get the classical design approach where
no interactions exist.

In the literature, there exist many definitions that have been proposed for mecha-
tronics. These definitions depend mainly on the vision and the research interests on
the field by a person or a group of persons working in some directions of mecha-
tronics. In our vision mechatronics can be defined as an interdisciplinary field of
engineering that deals with the design of products whose function relies on the inte-
gration of mechanical, electrical, and electronic components connected by a control
scheme.

Nowadays, the word mechatronics is worldwide known and many mechatronic
systems where designed either for personal or commercial uses. All the gadgets we
are using in our daily life are in fact mechatronic systems. As an example of these
gadgets, we mention our laptop and our car where many mechatronic systems are
used.

A mechatronic system can be seen as a device that is able to perceive the sur-
rounding environment and take the appropriate decisions based on the collected
information. To perceive the surrounding environment sensors are needed and that
without these devices the mechatronic system can not perform their tasks for which
it was designed. Nowadays, cars possess many mechatronic systems to assist the
driver in a safe drive among then we quote:

• airbag

• ABS brake

• speed control

• etc.

Also, to take the appropriate action, the mechatronic system needs a smart algo-
rithm that gives actions to some appropriate actuators which can be simple switches,
dc motors, stepper motors, ac motors, hydraulic motors or pneumatic motors to
position for instance the mechanical part that we would like to control.

The intelligence of the mechatronic system is programmed as an efficient algo-
rithm that coordinates all the task of the used devices. This algorithm runs in general
on a powerful microcontroller.

The design of a mechatronic system is a hard task that needs interdisciplinary
engineers that can understand the different elements of the system. The main
components of each mechatronic system are:

• the mechanical part

• the sensors

• the actuators

26 2. Mechatronic Systems

• the electronic circuit

• and the program

As examples of mechatronic systems we quote

• the position control of a dc motor

• the balancing robot

• the mobile robot

• and the magnetic levitation

These systems will be used extensively in this volume to illustrate the important
concepts we will cover. Before presenting these examples, let us focus on the main
parts of the mechatronic systems and give some guidelines on how to design or to
select them.

2.2 Mechanical Part

The mechanical part represents the main component in the mechatronic system we
are trying to design. It can either be manufactured or built from existing components.
In the phase design of this part more care should be paid to the following points:

• the price

• the shape

• the weight

• the size

• etc.

It is also important to pay attention to the environment in which the mechatronic
system will operate. This will help us to select the appropriate material from which
the mechanical part should be made. The maintenance of the mechatronic system
is also a critical point, it is why we should pay attention during the design phase to
the accessibility of all critical parts of the system. It is also important at this stage
to think about the recycling of all the mechatronic system once it will be useless to
respect the environment that we need to protect for our new generations.

The mechanical part can be made from iron, aluminium, plastic, composite or
any other material. The choice of one of these materials or a combination of them
will depend on many factors such the environment in which the system will operate,
the weight, the task for which the mechanical part is designed for, etc.

During the design of this part care should paid also to the look of the pieces and to
the fact that other parts of the mechatronic system have to be integrated later such as
sensors, actuators, electronic circuit, etc. The assembly or the disassembly of all the

2.3. Sensors 27

system should be simplified such that everybody can assemble of the disassemble
the system when it is needed.

2.3 Sensors

The sensors are the key points in each mechatronic system. There are in some sense
the eyes of the system through which all the type of variations are detected and
the appropriate actions are taken. A sensor can be seen as a device that converts a
physical phenomena like position, velocity, acceleration, temperature, flow, etc. into
an electrical signal that can be easily measured or processed. A sensor is composed
of a transducer and a signal conditioning unit. Nowadays, for some phenomena
there exist many sensors that can be used to sense them which makes the choice
very hard. Selecting a sensor for an appropriate application is always a difficult task
even for experienced person in the field. The engineer must take into consideration
the following points during the choice of any sensor:

• the error/precision/resolution

• the range or span

• the nonlinearity

• the repeatability

• the hysteresis

• the stability/drift

• the bandwidth

• the reliability

• the cost

• the ease of utilization

Nowadays there are a lot of type of sensors that can be categorized based on
their applications or their theory of operations. Among the most used sensors in the
mechatronic systems we quote:

• the encoders

• the accelerometers

• the gyroscopes

• and the cameras (image sensors)

An encoder can be defined as a device that assigns a code to represent some
data. More specifically, it can be seen as a sensor or a transducer for converting
rotary motion or angular position to series of electronic pulses that are appropriate
for computer use. The pulses are counted and the value of the measured input is

28 2. Mechatronic Systems

deduced. The existing encoders in the market are either absolute or incremental.
They are used in many applications among them we quote:

• the position control

• robots

• CNC machines

• medical equipment such as MRI, CT-Scan and PET-Scan machines

• etc.

The absolute encoder is mainly composed of an optical disk that has a number of
tracks that gives a digital word depending of the position of the shaft. As an example,
if we consider a disk with 8 tracks, in this case the encoder has 256 distinct positions,
which gives an angular resolution of 1.4 degrees. The Gray and the binary codes are
commonly used in the absolute encoder.

The incremental encoder is simpler compared to the absolute encoder and it con-
sists of two tracks and two sensors that give two channels A and B. When the shaft
of the sensor rotates pulse trains appear on the two channels that are quadrature sig-
nals. These signals can be used to determine the angular position and the rotation
sense. A third output channel referred to as Index that produces a pulse by revolution
and it is used to count the number of revolutions.

The accelerometer is a device that can be used to detect the acceleration and tilt.
Nowadays accelerometers are used in cars for passenger security. Their role is to
detect the impact and deploy the car airbag when it is necessary to save the life of
the passengers. These type of sensors found use in digital cameras where their role
is to guarantee the stability of the image.

Nowadays, the accelerometer comes in MEMS technology. The MEMS ac-
celerometer usually comes in the smallest surface mount package and can detect
acceleration in up to 3 axis. The data from this accelerometer can directly be used
by the microcontroller and therefore take the appropriate action when it is required.
The accelerometer can be used to measure the acceleration of the object or measure
the tilt of the object to which the sensor is attached to.

The gyroscope can be seen as a device consisting of a rotating wheel mounted
on a base so that its axis can turn freely in certain or all directions, and capable
of maintaining the same absolute direction in space regardless of any movement of
the base. This device is used in airplanes, satellites, robots, etc. Nowadays, the gyro-
scopes come in MEMS technology which facilitates their application in mechatronic
systems.

The cameras (image sensors) can be seen as complementary metal oxide semi-
conductor (CMOS) or charge-coupled device (CCD)-based chips that record the
intensities of light as variable charges. The cameras contains millions of pixels ar-
ranged in a matrix which catches and records light when a picture of an element
is taken. The cameras are used extensively in image processing for quality control,
supervision, etc.

2.4. Actuators 29

2.4 Actuators

Actuators are defined as devices that convert some kind of power, such as hydraulic
or electric power, into linear or rotary motion. They represent the arms of the mecha-
tronic systems. In practice different type of actuators are used, among them we
quote:

• electric actuators

• hydraulic actuators

• and pneumatic actuators

An electric actuator is a device that convert electric power into a linear or a rotary
motion. They are used to position or to give the speed to the mechanical part of the
mechatronic system. The common electric actuators are:

• the dc motors

• the ac motors

• the stepper motors

• and the switches

These actuators own the following advantages:

• high speeds

• self contained

• low cost

• simple design

• reliable operation (less maintenance)

• high efficiency

• long life

The dc motors beside being cheap and simple are easy to control in speed, posi-
tion and torque. While their homolog ac motors are in general expensive in speed
control, show some instability in operating at low speeds and own poor positioning
control.

Electric actuators are in general precise and flexible. They are ideal to position
mechanical part precisely or to develop forces quickly when it is required. Their ma-
jor disadvantage is that they need cooling systems during their operation. When they
are well designed and well protected, their maintenance is reduced to the changes
of the sliding contacts or the commutators. Large load may burn the winding of the
electric actuators if the protection is not installed properly.

Stepper motors are more appropriate to control mechanical parts that don’t re-
quire feedback. Mostly these type of actuators are used in open loop control and to
position the mechanical part. For this purpose a certain number of pulses are sent

30 2. Mechatronic Systems

by the microcontroller. These actuators are used in laser printers, faxes, and most of
the appliances for computers.

A hydraulic actuator can be defined as a cylinder or fluid motor that converts
hydraulic power provided by a pump into a useful mechanical work. The mechan-
ical motion that results may be linear, rotary, or oscillatory. This type of actuator
provides the following advantages:

• high dynamic response

• high force capability

• high power per unit weight and volume

• good mechanical stiffness

while the disadvantages are:

• leakage

• need more maintenance (filers)

• need external hydraulics pump

These features lead to wide use in precision control systems and in heavy-duty
machine tool, mobile, marine, and aerospace applications.

The pneumatic actuator is defined as a device that uses pressurized air to create
mechanical motion (linear or rotary). Similarly to the hydraulic actuator, this one
also requires a compressor for air to operate. It is also important to mention that the
efficiency of this kind of actuators is low. The pneumatic actuators are in general
inexpensive and their operations are not affected by difficult environmental factors
such as dust, etc. and they are easy to install and operate. They have less precision
compared to the other actuators due the compressibility of the air. Pneumatic actu-
ators are appropriate for use in potentially explosive environments. Contrary to the
electric actuators, the pneumatic ones can support large loads and don’t require the
cooling system.

Selecting an actuator for an appropriate application is always a difficult task even
for experienced engineers in the field, meanwhile main guidelines should be kept in
mind. In fact the power, the environment of operation are main points to be consid-
ered and can help in choosing the type of actuators. For instance, if the mechatronic
system is designed to operate in mining where sparks may cause fire, the electric
actuators are excluded and the hydraulic actuators are possible solutions. In food
industry, the hydraulic actuators are excluded and electric or pneumatic actuators
are the possible solutions.

2.5 Electronic Circuit

The electronic circuit is the brain of the mechatronic systems. It regroups passive
and active components beside integrated circuits. Its role is to manage and coordi-
nate in a desired way the functioning of all the components that compose the system.

2.6. Real-Time Implementation 31

The passive components include resistors and capacitors, while the active ones can
be a simple diode or a transistor or any integrated circuit that performs the desired
task. The electronic circuit manages and orchestrates a variety of functions that the
mechatronic system allows beside providing the desired regulated voltage for the
different integrated circuit, the sensors, the actuators and the micrcocontroller.

When designing the electronic circuit we must keep in mind that the size of the
circuit and its consumption in power should be minimized. The safety of the circuit
and its cooling are also of importance. In case of manipulating high voltage security
rules should be followed seriously.

2.6 Real-Time Implementation

Once the hardware part of the mechatronic system is built, the next step is to de-
sign the control algorithm that we should implement to guarantee that the system
will perform properly the tasks for which it was designed for. The design of such
algorithm is done into two steps. The first one consists of establishing the mathe-
matical model that describes properly the relationship between the inputs and the
outputs of the system. This model can be determined either analytically with some
limited experiments to the values for some parameters, or experimentally using the
identification techniques. In the second step, the desired performances are fixed and
the controller is designed using the appropriate techniques. The results of this step
is the determination of the recurrent equation that will compute the decision at each
interrupt. This equation represents the algorithm that we have to implement in the
microcontroller.

The microcontroller is used to provide real time response to the different events
for which the system is designed for. In general is running in a loop and when an
event occurs, the associated interrupt system alerts the processor to suspend process-
ing of its current instruction and to start an interrupt service routine. This interrupt
routine executes the main steps of the control algorithm that we are using. Once the
task of the interrupt service routine is completed, the processor returns to the place
where the execution were suspended.

The implementation is done following the following structure:

//

// Put here title and comments

//

#include "p30F4011.h" // proc specific header

//

// Define gobal variables in RAM

//

float Reference; // simple variable

int variable0; // (16 bits)

char myVariable; // (8 bits)

32 2. Mechatronic Systems

#define n1 10 /* sample constant definition */

#define n2 20;

int array1[n1] __attribute__((__space__(xmemory), __aligned__(32)));

// array with dsPIC30F attributes

int array5[n2]; // simple array

int variable3 __attribute__((__space__(xmemory)));

// variable with attributes

int array1[n1] __attribute__((__space__(xmemory), __aligned__(32)));

// array with dsPIC30F attributes

int array5[n2]; // simple array

int variable4 __attribute__((__space__(xmemory)));

// variable with attributes

//

// Define a struct

//

typedef struct {

// PID Gains

float KP; // Propotional gain

float KI; // Integral gain

float KD; // Derivative gain

//

// PID Constants

//

float Const1_pid; // KP + T KI + KD/T

float Const2_pid; // KP + 2KD/T

float Const3_pid; // Kd/T

float Const4_pid; // KP + KD/T

float Const5_pid; // T KI

//

// System variables

//

float y_c; // y_c[k] -> controlled output

float y_m; // y_m[k] -> measured output

float u_k; // u[k] -> control at time k

float e_k; // e[k] -> error at time k

//

// System past variables

//

float u_km1; // u[k-1] -> output at time k-1

float e_km1; // e[k-1] -> error at time k-1

float e_km2; // e[k-2] -> error at time k-2

float y_mkm1; // y_m[k-1] -> measured output at time k-1

float y_mkm2; // y_m[k-2] -> measured output at time k-2

}PIDStruct;

2.6. Real-Time Implementation 33

PIDStruct thePID;

//

// Constants in ROM

//

const char Variable_Rom[] = {1,2,3,4};

const int myConstant = 100;

//

// Non memorized constants

//

#define var1 0x1234;

#define var2 "ma chaine";

//

// Functions

//

float my_Function(float a, float b)

{

int local_var;

local_var = a - b;

return local_var;

}

//

// Interrupt program here using Timer 1 (overflow of counter Timer 1)

//

void __ISR _T1Interrupt(void) // interrupt routine code

{

// Interrupt Service Routine code goes here

float Position_error;

// get the actual position from the encoder

// ThePID.y_m

Position_error = my_Function(Reference, ThePID.y_m);

.......

IFS0bits.T1IF=0; // Disable the interrupt

}

int main (void) // start of main application code

{

// Application code goes here

int i;

34 2. Mechatronic Systems

// Initialize the variables Reference and ThePID.y_m

(it can be read from inputs) Reference = 0x8000; // Hexadecimal number

(0b... Binary number) ThePID = 0x8000;

// Initialize the registers

TRISC=0x9fff; // RC13 and RC14 (pins 15 and 16) are configured as

outputs IEC0bits.T1IE=1; // Enable the interrupt on Timer 1

// Infinite loop

while (1)

{

}

return 0

}

2.7 Examples of Mechatronic Systems

The aim of this section is to present some mechatronic systems that may be used in
the rest of this volume to show the different concepts we will develop. We will try
to present all the parts of these mechatronic systems to help the reader to make a
clear idea on the design of mechatronic systems and hope that this will help him to
design his own system in the future.

We will restrict ourself to mechatronic systems that use common components
like electric actuators, encoders, accelerometers, gyroscopes, etc.

2.7.1 Dc Motor Control

As a basic mechatronic system, let us design a setup that can be used either for
speed or position control. This system will be the basis of almost all the coming
mechatronic systems. The system we will present here consists of a dc motor that
drives via a gear a small disk. In order to control it properly either in speed or in
position an incremental encoder is used.

The mechanical part of this system is a small disk that is manufactured in our
mechatronics laboratory. Graduations are indicated on the disk to help us to position
it at any desired position we want. The disk is made from aluminium and attached
solidly to the motor shaft using a screw.

The actuator is a small dc motor that we bought from a surplus store. It has
already a gear (ratio is 1 : 6) and an incremental encoder (100 pulses/rev). The
electronic circuit of this system is too simple and it can be summarized to:

• a transformer

• two voltage regulators (T78012 and T7805)

2.7. Examples of Mechatronic Systems 35

• resistors (2 resistors of 10 KΩ, 2 resistor of 220 Ω and a variable resistor of 20
KΩ and capacitors (3 of 0.1 μF)

• diodes

• an H bridge

• a liquid crystal display (LCD)

• switch (to put the system on or off)

• a microcontroller

This setup is designed to operate in a fixed place. Therefore, we do not need to use
batteries to deliver the necessary power to the different components. The necessary
regulated voltages are obtained from the ac current. Firstly, the ac voltage (115 V)
is changed to a lower level 36V using a transformer in our case. A Graetz bridge is
combined with a low pass filter to rectify the voltage and smooth it for proper use
in the components.

To drive the dc motor, a 24 V is needed and therefore an integrated circuit (IC)
motor driver named L293D (dual H-bridge) is used. The presence of the letter “D”,
means that it is built in flyback diodes to minimize inductive voltage spikes. The
L293D chip gives the desired power to the dc motor to move the load to the desired
position if it is the case. This IC has an output current of 600 mA and a peak output
current of 1.2 A per channel. It is important to notice this limitation since if the
motor requires more current, the IC L293D will burn each time we exceed 1.2 A
and a protection such as a fuse is needed in this case.

For the speed or the position control, we use the Microchip dsPIC30F4011. The
intelligence that we will implement in the system is programmed in C language and
after compilation, it is downloaded in the memory of the microcontroller.

Fig. 2.2 gives an idea of the whole mechatronic systems. The dc motor we use in
this setup is manufactured by Maxon and it has a gear of 1: 6 ratio. An incremental
encoder attached to shaft of the motor is also used to measure the position of the
disk. With this setup we get 600 pulses per revolution. Our incremental encoder
uses two output channels (A and B) like most of the incremental encoders to sense
position. Based on the two code tracks on the disk of the encoder (positioned 90
degrees out of phase), the two output channels of the quadrature encoder indicate
both position and direction of rotation. Therefore, if A leads B, for example, the disk
is rotating in a clockwise direction, meanwhile if B leads A, then the disk is rotating
in a counterclockwise direction. Another benefit of the quadrature signal scheme is
its ability to electronically multiply the counts during one encoder cycle. Mostly the
following is used for this purpose:

• all counts are generated on the rising edges of channel A

• both the rising and falling edges of channel A are used to generate counts

• the rising and falling edges of channel A and the channel B are used to generate
counts

36 2. Mechatronic Systems

Fig. 2.2 Real-time implementation setup

Using the second or the third options we can increase the resolution and conse-
quently improve the control precision. For instance, if the third option is used the
resolution is increased by a factor of four and therefore we get 2400 pulses/rev.

For the speed control if the controller is chosen as proportional controller with
a gain Kp, the system will work as follow. Firstly a speed reference is selected let

2.7. Examples of Mechatronic Systems 37

C1,C2,C3 are
equal to 0.1μF

C4,C5 are equal
to 100μF/16V

Battery
voltage

regulator

ds
P

ic
30

F
40

11

D
C

M
ot

or
Se

ns
or

9
10
11
12
13
14
15
16 17

18
19
20
21
22
23
24

C5

C4

C3

C2

C1

L
2

9
3

D

Fig. 2.3 Electronic circuit of the dc motor kit

say 100 rev/s. At each interrupt, the microcontroller will read the speed of the disk,
compare it to the reference and compute the error. This error is multiplied by the gain
Kp to generate the voltage to be delivered to the dc motor. Since the microcontroller
can deliver a voltage between 0 and 5 V, the integrated circuit motor driver L293D
will do the necessary to deliver only a voltage between 0 and 24 V with sufficient
power to move the motor. The pulse width modulation (PWM) technique is used in
this case. This technique is used to generate variable-width pulses to represent the
amplitude of an analog input voltage that we should deliver to the dc motor. The
PWM technique is characterized by its duty cycle which gives an indication of the
fraction of time when the signal is on. The control of the voltage or the speed of the
small disk is obtained by adjusting the duty cycle. The PWM works by making a
square wave with a variable on-to-off ratio, the average on time may be varied from
0 to 100 percent. Fig. 2.3 gives an idea of the electronic circuit.

2.7.2 Two Wheels Robot

The idea of the two wheels robot has attracted a lot of researchers for the challenges
it offers either in the modeling or in control. Different types of robots have been
developed in research laboratories around the world. In our mechatronics laboratory,
we have designed an experimental one that we use in our research to experiment
our control algorithms. This robot has a compact structure and can be assembled
or disassembled easily and quickly. It is composed of a platform on which a rod is
attached at its middle. The whole is mounted on two wheels that are solidly attached

38 2. Mechatronic Systems

to the platform and are driven by two independent dc motors of the same type we
used in the previous mechatronic system. The major parts of this robot are made
from aluminium to reduce the robot weight. The electronic circuit which is a little
bit more complicated compared to the previous system. This circuit is mounted on
a breadboard and fixed to the platform. A set of batteries to obtain 24 V is used to
deliver the different regulated voltages we need in this system. The batteries are put
between the electronics and the platform.

The electronic circuit of this system is in some sense similar to the previous
mechatronic system except for this system we need more components since we
have two dc motors. The electronic circuit is built around the dsPIC30F4011 that
orchestrates and manages all the tasks of the different parts of this system. For this
electronic circuit we need more voltages since the LCD and the L293D need 5 V

Fig. 2.4 Balancing robot

2.7. Examples of Mechatronic Systems 39

to operate, while dsPIC30F4011, the wireless, the accelerometer and the gyroscope
need 3.5 V.

Beside the two encoders that are used to measure the positions of the wheels and
therefore the one of the robot, an accelerometer and a gyroscope are used to measure
the tilt of the robot. The goal is to keep the robot in the vertical position while
moving along a desired trajectory. All this is done by controlling the dc motors. The
PWM technique is also used here to deliver the desired voltages that are generated
by the control algorithm we implement in the dsPIC.

The references to the robot can be either entered by program or sent wireless
using a telecommunication system. Different control algorithms are experimented
on this system. Some of these algorithms will be developed in the rest of this book.

Fig. 2.4 gives an idea of the whole mechatronic system, while the Fig. 2.5 gives
an idea on the electronic circuit. The program is similar to the one of the dc motor
kit except that more complex and too long to be presented here.

C1,C2,C3

C4,C5 are
equal to
0.1μF

C6,C7 are
equal to

100μF/16V

Battery
voltage

regulator

ds
P

IC
30

F
40

11

dc
m

ot
or

dc
m

ot
or

Se
ns

or

Se
ns

or

L
2

9
3

D

C6 C5

C7

C3

C4 C2

C1

Fig. 2.5 Electronic circuit of the balancing robot

40 2. Mechatronic Systems

2.7.3 Magnetic Levitation

Magnetic levitation is a technology that has a lot applications which attracted a lot of
researchers to this field. As an example where this technology is extensively used is
in fast magnetic levitation trains since it permits to reduce the friction and therefore
eliminates energy losses. In this section we will develop a system that used this
technology and show that the principle works. The mechatronic system developed
here is composed of two parts: a fixed one that represents the coil that generates
the electromagnetic force and a ferromagnetic object that we would like to place
at a certain position by acting on the electromagnetic force generated by the coil.
The objective of the system is to control the vertical position of the moving object
by adjusting the current in the electromagnet through the input voltage. The object
position is measured using a Hall effect sensor. An elecgronic circuit build around a
dsPIC30F4011 supplies the coil through an L298, an integrate circuit, with a current
that is proportional to the command voltage of the actuator. Fig. 2.6 gives an idea of
the whole mechatronic system.

2.8 Conclusions

In this chapter, we have presented the different components of mechatronic systems
and we gave some mechatronic systems that we will use here to show the concepts
developed in this volume. Some guidelines that can be used during the design phase
of mechatronic systems are developed to give an idea to the reader and help him to
design his own system.

2.9 Problems

1. In this problem we would like to design a one leg robot that can move using
one wheel while remaining in a vertical position. Provide the design of such
mechatronic system.

2. Solar energy is an alternate source of power that can be used. In this problem
we ask you to design a solar system that maximizes the energy generated by the
solar panel.

3. In this problem we ask you to design an insect with four legs that can walk and
at the same time avoid obstacles.

4. Make the design of a small car that may use magnetic levitation to move. Give
the different parts of such system.

5. In this problem we ask you to design a small airplane that may be used as a
drone to give information of a certain region when flying over such region.
Enumerate the different parts that may be used in such system.

2.9. Problems 41

i(t)

u(t)

po
upée russe magnétique

Fig. 2.6 Magnetic levitatios system

42 2. Mechatronic Systems

6. Design a small boat that we move on a small lake using a joystick. Enumerate
the different components of this system.

7. In this problem we ask to design a hoover that can be controlled to seal on water
via a emitter and a receiver using a joystick.

Part II

Modeling

Modeling 45

In this modeling part we will cover different representations that may be used to
describe a dynamical system that we would like to control in order to improve its
performances. As it was said earlier, the focus is made on the control of continuous-
time systems by microcontrollers that we can represent using one of the following
representation:

1. transfer function

2. state space representation

More often, the relationship between the inputs and the outputs is described by
differential equations that may be linear or nonlinear. For single input single output
linear time invariant system, the transfer function, G(s) is defined as follows:

G(s) =
Y(s)
R(s)

(2.1)

where s is a complex variable that belongs to the set of complex numberC, Y(s) and
R(s) represent respectively the Laplace transform 1 of the output, y(t) and the input,
r(t) respectively, i.e.:

Y(s) = L
[
y(t)
]

R(s) = L [r(t)] .

The relation between the input and the output is then given by:

Y(s) = G(s)R(s) (2.2)

For the multi-inputs multi-outputs case, we get similarly the following relation:

Y(s) = G(s)R(s) (2.3)

with

R(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
R1(s)
...

Rm(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Y1(s)
...

Yp(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
G11(s) · · · G1m(s)
...

. . .
...

Gp1(s) · · · Gpm(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Ri(s), Y j(s) and G ji represent respectively the ith input, the jth output and the
transfer function between them when the other inputs are fixed to zero.

1 The Laplace transform of a function f (.) that satisfies the appropriate assumptions is defined by
F(s) =

∫ ∞
0 f (ν)dν

46 Modeling

Notice that the jth output is given by the following expression:

Y j(s) = G j1(s)R1(s) +G j2(s)R2(s) + · · · +G jm(s)Rm(s) (2.4)

which implies the dependence of the outputs on the different inputs.
Usually, we use also the block diagram of Fig. 2.7 to represent dynamical

systems.

R(s) Y(s)
G(s)

Fig. 2.7 Block diagram of continuous-time system

The state space representation is another way of representing the relationship
between the input u(t) ∈ Rm and the output y(t) ∈ Rp of a given system and we
can obtain it by proceeding with some mathematical transformation either of the
differential equations or its corresponding transfer function. Its general structure is
given by: ⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t) + Du(t)
(2.5)

where A, B, C and D are constant real matrices with appropriate dimensions; and
x(t) ∈ Rn and x0 represent respectively the state of the system and its initial
condition.

Usually the following block diagram (see Fig. 2.8) is used to represent dynamical
systems in state space description:

u(t) B

A

D

C y(t)
ẋ(t) x(t)1

s
Integrator

+

+

+
+

Fig. 2.8 Block diagram of continuous-time linear system

The goal of this part is to show to the reader how we can establish the mathemat-
ical model of a given dynamical system. The model can either be obtained through
experiment or using the physics law with some specific experiments that may be
used to determine the appropriate parameters that enter in the mathematical model
obtained by this approach.

3
Mathematical Modeling

After reading this chapter the reader will:

1. be able to establish a mathematical model for any mechatronic sys-
tem either analytically based on physics law or experimentally using the
identification techniques

2. be able to build mathematical models for the mechatronic system using
the transfer function concept

3. be able to build the state space representation for any given mechatronic
system

It is well known that the mathematical modeling is a hard problem in control
engineering. Most of the engineers working in this field agree on that. Any practi-
cal system has inputs and outputs. The outputs are variables that we would like to
control or keep at certain levels, while, some of the inputs are variables on which
we can act to change the outputs of the dynamical system. The rest of the inputs are
referred to as external disturbances that are beyond our control.

A mathematical model is a representation that uses mathematical language,
more often differential equations or difference equations, to describe the behavior
of a dynamical system. Mathematical models are extensively used in engineering

48 3. Mathematical Modeling

disciplines to describe the relationship between inputs and outputs and the
dynamical system parameters.

Mathematical models of dynamical system can be split into two categories de-
pending on how the time variable is to be treated. A continuous-time mathematical
model is based on a set of differential equations that are valid for any value of the
time variable, whereas a discrete-time mathematical model provides information
about the state of the physics system only at a selected set of distinct times.

The development of an appropriate model to describe the behavior of a given
dynamical system can be done in different steps. At the first step, the inputs and the
outputs variables are chosen. Then, at a second one the appropriate assumptions
are made and the mathematical relationships between these variables are estab-
lished using physics laws. Some experiments are required to determine the system’s
parameters.

In some circumstances, this approach is too complex and an another alternate is
adopted to avoid this complexity. This approach consists of considering the dynam-
ical system as a black box and recourse to the identification techniques. In the rest
of this chapter we will cover these techniques and show to the reader how we can
handle the mathematical modeling of some dynamical systems. In both cases we
will be looking for the simplest accurate model we can get since this will facilitate
the analysis and the design phases.

3.1 Mathematical Modeling Based on Physics Laws

To show how this technique can be applied let us consider a certain number of
dynamical systems. As a first example let us consider a dc motor with a mechanical
load that we like to control either in speed or in position. The dc motor represents
the actuator that is mostly used in the position control servomechanism. It is the
means by which the electrical energy is converted to mechanical energy. The block
diagram of the dc motor driving the load of our example is illustrated by Fig. 3.1. If
we let u(t), i(t) and ω(t) denote respectively the voltage of the armature, the current
in the armature and the speed of the shaft at time t, based on the basic electrical and
mechanics laws we have the following:

⎧⎪⎪⎨⎪⎪⎩
u(t) = Ri(t) + Lm

di
dt (t) + Kww(t)

J dw
dt (t) = Kti(t) − bω(t)

(3.1)

where R, Lm, Kw, Kt represent respectively the electric resistor of the armature, the
inductance of the armature, the electromotive force constant, the torque constant (in
the international system (IS) these both constants are equal), J and b are defined by:

J = Jm +
Jc

n2

b = bm +
bc

n2

3.1. Mathematical Modeling Based on Physics Laws 49

with Jm and Jc are the moments of inertia of the rotor and the load respectively, and
bm and bc are the damping ratios of the motor and the load, and n is the gear ratio.

ex
cit

ati
on

Ω

u(t)

i
em

Lm R

Jm

bm

Tm , θm

Jc

Rc

Rm

bc

Fig. 3.1 Block diagram of a dc motor

3.1.1 Concept of Transfer Function

If we use the Laplace transform with the initial conditions equal to zero, we get:
⎧⎪⎪⎨⎪⎪⎩

U(s) = RI(s) + LmsI(s) + KwΩ(s)

JsΩ(s) = KtI(s) − bΩ(s)
(3.2)

where U(s), I(s), and Ω(s) are respectively the Laplace transform of u(t), i(t) and
ω(t).

Combining these relations and the definition of the transfer function between the
velocity Ω(s) and the voltage U(s), we get:

G(s) =
Ω(s)
U(s)

=
Kt

(Js + b) (Lm s + R) + KtKw
(3.3)

If the armature inductance Lm can be neglected, the transfer function becomes:

G(s) =
K

τs + 1
(3.4)

with

K =
Kt

Rb + KtKw

τ =
JR

Rb + KtKw

Remark 3.1.1 When the armature inductance Lm can be neglected the mathemati-
cal model can be simplified to a first order system, otherwise we have a second order
one. It may happen in some applications that the dynamics of the driven load is too
slow compared to the actuator one and in this case, the dynamics of the actuator is
reduced to a simple gain.

50 3. Mathematical Modeling

Remark 3.1.2 The parameters of the dc motor are in general available in its data
sheet. Once the inertia of the load and the gear ratio are known, all the data of the
model are then known. It is also important to mention that the data sheet contains the
average data for a sample that has been tested to get these parameters. Therefore,
it may happen that the considered actuator may have uncertainties in its model that
can be compensated by the choice of the appropriate controller.

Notice also that the position, θ(t), of the dc motor is obtained from the velocity,
ω(t), by using:

Θ(s) =
Ω(s)

s

where Θ(s) = L [ω(t)].
Using this and the simplified model between the voltage and the velocity, we get

the following relationship between the voltage and position:

G(s) =
Θ(s)
U(s)

=
K

s (τs + 1)

where K and τ are defined previously.
Notice that the previous relations of the mathematical model between the voltage

and the velocity can be rewritten as follows:
⎧⎪⎪⎨⎪⎪⎩

di
dt (t) = − R

Lm
i(t) − Kw

Lm
w(t) + 1

Lm
u(t)

dw
dt (t) = Kt

J i(t) − b
Jω(t)

(3.5)

3.1.2 State Space Description

Now if we let x1(t) = i(t), x2(t) = ω(t) and y(t) = x2(t) we get:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ ẋ1(t)

ẋ2(t)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣−

R
Lm
−Kw

Lm
Kt
J − b

J

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ x1(t)

x2(t)

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣

1
Lm

0

⎤⎥⎥⎥⎥⎥⎦ u(t)

y(t) =
[
0 1
] ⎡⎢⎢⎢⎢⎢⎣ x1(t)

x2(t)

⎤⎥⎥⎥⎥⎥⎦
(3.6)

that gives the following standard form:
⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(3.7)

where

A =

[− R
Lm
−Kw

Lm
Kt
J − b

J

]
,

B =

[1
Lm

0

]
,C =

[
0 1
]
.

This mathematical form of the system is known in the literature as the state space
representation.

3.1. Mathematical Modeling Based on Physics Laws 51

Remark 3.1.3 In this example we assumed that we have access only to the velocity
which implies that that C =

[
0 1
]
. If we have access only access to the cur-

rent or to the two variables the corresponding output matrices become respectively
C =

[
1 0
]
, C =

[
1 1
]
.

For the state space representation that gives the position, notice that the previous
relations of the mathematical model between the voltage and the velocity and the
relation that links the velocity and position can be rewritten as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

di
dt (t) = − R

Lm
i(t) − Kw

Lm
w(t) + 1

Lm
u(t)

dw
dt (t) = Kt

J i(t) − b
Jω(t)

dθ
dt (t) = ω(t)

(3.8)

Now if we let x1(t) = i(t), x2(t) = ω(t), x3(t) = θ(t) and y(t) = x3(t) we get:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ1(t)
ẋ2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− R

Lm
−Kw

Lm
0

Kt
J − b

J 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Lm

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ u(t) (3.9)

y(t) =
[
0 0 1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3.10)

that gives the standard form (3.7) with:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− R

Lm
−Kw

Lm
0

Kt
J − b

J 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

Lm

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,C =
[

0 0 1
]
.

To use these models, we need to know the different parameters in each one. This
may be in some circumstances difficult to measure and therefore another alternate is
required. In the next section, the situation will overcome by using the identification
techniques.

Remark 3.1.4 It is important to mention that the state space description is not
unique, which means that for a given system, we can find many state space
description. This matter will be explained later in this volume.

Remark 3.1.5 Notice that in general, the manufacturer of dc motors provides the
data sheet in which we can find all these parameters that correspond to a sample
that was chosen for test. These parameters may be not identical to those of the
dc motor we are using and this may cause some error in modeling. The feedback
control will cope with such errors.

As a second example, we consider the model of the Segway (see [6]). The dy-
namics of this system is composed of two models that will be decoupled under some
appropriate assumptions. We assume that the Segway remains close to its vertical

52 3. Mathematical Modeling

position when moving with small speed and the wheels remain in touch with the
ground and don’t slip.

Under these assumptions the dynamics of our Segway will be partitioned into two
parts. The first one gives the behavior of the tilt and linear displacement dynamics
while the second one governs the heading angle dynamics. Now if we define the
variables of the Table 3.1.

Table 3.1 Variables definition

Variable definition

ψ(t) tilt angle
x(t) linear position
θi(t) motors’ shaft angle
θo(t) gear box shaft angle
θ(t) wheels’ angle
Ti(t) torque delivered to a gear box by one of the dc motors
T (t) torque delivered to a wheel by one of the dc motors
F(t) resultant force between the ground and each of the wheels
ux(t) motors’ voltage input controlling tilt and linear displacement
rw wheels’ radius
M mass of the half robot including one wheel
mb mass of half the body of the robot
mw mass of one of the wheels
Jb moment of inertia of half the body of the robot
Jw moment of inertia of one of the wheels
d distance between motors’ shafts and center of gravity of the body
Kt motors’ torque constant
Ke motors’ back emf constant
ra motors’ armature resistance
rg gear boxes’ ratio
η gear boxes’ Efficiency
C f rotational damping constant

and noticing that the following relations hold always:

M = mb + mw

Kt = Ke = K

x(t) = rwθ(t)

θi(t) = rgθo(t)

θo(t) = θ(t) + ψ(t)

F(t) = Mẍ(t)

3.1. Mathematical Modeling Based on Physics Laws 53

we have the following relations:

• motor’ dynamics

Ti(t) = Kti(t)

i(t) =
ux(t)

ra
− Keθ̇i(t)

ra

Ti(t) = Kt

[
ux(t)

ra
− Keθ̇i(t)

ra

]
(3.11)

d

C f

ψ

T

mbg

Jb
ψ

mbg Ft = mbg sinψ

Jbψ̈ = ΣM

Jbψ̈ = mbgd sinψ + T − C f ψ̇ −C f θ̇

Fig. 3.2 Tilt dynamics free body diagram

rw

θ

Jw

F

X

T

Jwθ̈ = ΣM

Jwθ̈ = T − Frw − C f θ̇ −C f ψ̇
C f

Fig. 3.3 Wheels and linear displacement free body diagram

54 3. Mathematical Modeling

• torque applied to the wheels

T (t) = ηrgTi(t)

=
ηrgKux(t)

ra
− ηrgK2

ra
θ̇i(t)

T (t) =
ηrgK

ra
ux(t) −

ηr2
gK2

ra
θ̇(t) − ηr2

gK2

ra
ψ̇(t)

=
ηrgK

ra
ux(t) −

ηr2
gK2

rarw
ẋ(t) − ηr2

gK2

ra
ψ̇(t) (3.12)

• robot tilt dynamics, referring to Fig. 3.2 we have:

Jbψ̈(t) = mbgd sin(ψ(t)) + T (t) −C f ψ̇(t) −C f θ̇(t)

= mbgd sin(ψ(t)) +
ηrgK

ra
ux(t) − ηr2

g K2

rarw
ẋ(t) − ηr2

g K2

ra
ψ̇(t) − C f ψ̇(t) − C f

ẋ(t)
rw

ψ̈(t) =
mbgd sin(ψ(t))

Jb
−
⎡⎢⎢⎢⎢⎣
ηr2

gK2 +C f ra

ra Jb

⎤⎥⎥⎥⎥⎦ ψ̇(t) −
⎡⎢⎢⎢⎢⎣
ηr2

g K2 +C f ra

rarwJb

⎤⎥⎥⎥⎥⎦ ẋ(t) +
ηrgK

ra Jb
ux(t)

If we assume that ψ(t) is small we get sin(ψ(t)) ≈ ψ(t) which implies in turn:

ψ̈(t) =
ηrgK

raJb
ux(t) +

mbgd
Jb

ψ(t) −
⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 + C f ra

ra Jb

⎤⎥⎥⎥⎥⎥⎦ ψ̇(t)

−
⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 + C f ra

rarwJb

⎤⎥⎥⎥⎥⎥⎦ ẋ(t) (3.13)

• robot wheels and linear displacement dynamics, referring to Fig. 3.3

Jwθ̈(t) = T (t) − F(t)rw −C f θ̇(t) −C f ψ̇(t) (3.14)

=
ηrgK

ra
ux(t) − ηr2

g K2

rarw
ẋ(t) − ηr2

gK2

ra
ψ̇(t) − rwMẍ(t) − C f

rw
ẋ(t) −C f ψ̇(t)

which in turn gives:

[
Jw

rw
+ Mrw

]
ẍ(t) =

ηrgK

ra
ux(t) −

⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 +C f ra

ra

⎤⎥⎥⎥⎥⎥⎦ ψ̇(t) −
⎡⎢⎢⎢⎢⎢⎣
ηr2

gK2 +C f ra

rarw

⎤⎥⎥⎥⎥⎥⎦ ẋ(t)

and finally, we obtain:

ẍ(t) =

[
ηrwrgK

ra(Jw + Mr2
w)

]
ux(t) −

⎡⎢⎢⎢⎢⎢⎣
ηrwr2

gK2 +C f rwra

ra(Jw + Mr2
w)

⎤⎥⎥⎥⎥⎥⎦ ψ̇(t)

−
⎡⎢⎢⎢⎢⎢⎣
ηr2

gK2 +C f ra

ra(Jw + Mr2
w)

⎤⎥⎥⎥⎥⎥⎦ ẋ(t) (3.15)

3.1. Mathematical Modeling Based on Physics Laws 55

If we define x�(t) =
[
ψ(t) ψ̇(t) x(t) ẋ(t)

]
and y�(t) =

[
ψ(t) x(t)

]
, we get the

following state space representation:

ẋ(t) = Ax(t) + Bux(t)

y(t) = Cx(t)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
mbgd

Jb
− ηr2

gK2+C f ra

raJb
0 − ηr2

gK2+C f ra

rarw Jb

0 0 0 1

0 − ηrwr2
gK2+C f rwra

ra(Jw+Mr2
w)

0
ηr2

gK2+C f ra

ra(Jw+Mr2
w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
ηrgK
ra Jb

0
ηrwrgK

ra(Jw+Mr2
w)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,C =

[
1 0 0 0
0 0 1 0

]

We will now establish the model representing the heading angle dynamics of the
robot taking into consideration that an equal but opposite torque has to be applied
by the two motors in order to induce a purely rotational motion on the robot without
affecting its tilt and linear position. Therefore, an equal but opposite voltage has to be
applied to the two motors and this voltage is taken as the input of this system. Here,
we are taking the assumption that the robot is staying in the vertical position and that
its moment of inertia around the vertical axis is not changing. If we introduce the
additional variables of the Table 3.2 and noticing again that the following hold:

Table 3.2 Variables definition

Variable definition

δ(t) heading angle
xr(t) linear position of the right wheel
xl(t) linear position of the left wheel
θr(t) right wheel angle
θl(t) left wheel angle
Tr(t) torque delivered by the right dc motor
Tl(t) torque delivered by the left dc motor
Fr(t) driving force of right wheel
Fl(t) driving force of left wheel
ur(t) right motor voltage input
ul(t) left motor voltage input
uh(t) motors’ voltage input controlling heading
Jd moment of inertia of the robot around the vertical axis
S wheel span

56 3. Mathematical Modeling

xr(t) = rwθr(t)

xl(t) = rwθl(t)

δ(t) =

[
xl(t) − xr(t)

S

]

ul(t) = −ur(t) = uh(t)

ul(t) −ur(t) = 2uh(t)

we have the following relations:

• from (3.14), solving for F(t), we have:

F(t) =
T (t) − Jwθ̈(t) −C f θ̇(t) −C f ψ̇(t)

rw

=
ηrgK

rarw
u(t) −

⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 +C f ra

rarw

⎤⎥⎥⎥⎥⎥⎦ ψ̇(t) −
⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 + C f ra

rar2
w

⎤⎥⎥⎥⎥⎥⎦ ẋ(t) − Jw

rw
θ̈(t)

now making reference to left and right, we get:

Fl(t) =
ηrgK

rarw
ul(t) −

⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 +C f ra

rarw

⎤⎥⎥⎥⎥⎥⎦ ψ̇(t) −
⎡⎢⎢⎢⎢⎢⎣
ηr2

gK2 +C f ra

rar2
w

⎤⎥⎥⎥⎥⎥⎦ ẋl(t) − Jw

rw
θ̈l(t)

Fr(t) =
ηrgK

rarw
ur(t) −

⎡⎢⎢⎢⎢⎢⎣
ηr2

gK2 +C f ra

rarw

⎤⎥⎥⎥⎥⎥⎦ ψ̇(t) −
⎡⎢⎢⎢⎢⎢⎣
ηr2

g K2 +C f ra

rar2
w

⎤⎥⎥⎥⎥⎥⎦ ẋr(t) − Jw

rw
θ̈r(t)

S

Fl Fr

δ
Jd

Jd δ̈ = ΣM

Jd δ̈ = Fl
S
2
− Fr

S
2

Jd δ̈ = (Fl − Fr)
S
2

Fig. 3.4 Heading dynamics free body diagram

3.1. Mathematical Modeling Based on Physics Laws 57

• referring to Fig. 3.4 we get:

Jdδ̈(t) = [Fl(t) − Fr(t)]
S
2

=
ηrgKS

2rarw
[ul(t) − ur(t)] +

⎡⎢⎢⎢⎢⎣
ηS r2

gK2 + S C f ra

2rar2
w

⎤⎥⎥⎥⎥⎦ [ẋr(t) − ẋl(t)] +
JwS
2rw

[
θ̈r(t) − θ̈l(t)

]

=
ηrgKS

rarw
uh(t) −

⎡⎢⎢⎢⎢⎣
ηS 2r2

g K2 + S 2C f ra

2rar2
w

⎤⎥⎥⎥⎥⎦ δ̇(t) − JwS 2

2r2
w

δ̈(t)

which in turn gives:
[
Jd +

JwS 2

2r2
w

]
δ̈(t) =

ηrgKS

rarw
uh(t) −

⎡⎢⎢⎢⎢⎢⎣
ηS 2r2

gK2 + S 2C f ra

2rar2
w

⎤⎥⎥⎥⎥⎥⎦ δ̇(t)

and finally, we obtain:

δ̈(t) =

[
2ηrwrgKS

ra(2Jdr2
w + JwS 2)

]
uh(t) −

⎡⎢⎢⎢⎢⎢⎣
ηS 2r2

gK2 + S 2C f ra

ra(2Jdr2
w + JwS 2)

⎤⎥⎥⎥⎥⎥⎦ δ̇(t) (3.16)

If we define x�h (t) =
[
δ(t) δ̇(t)

]
and yh(t) = δ(t), we get the following state space

representation:

ẋh(t) = Ahxh(t) + Bhuh(t)

yh(t) = Chxh(t)

where

Ah =

⎡⎢⎢⎢⎢⎢⎣
0 1

0 − ηS 2r2
g K2+S 2C f ra

ra(2Jdr2
w+JwS 2)

⎤⎥⎥⎥⎥⎥⎦

Bh =

⎡⎢⎢⎢⎢⎣ 0
2ηrwrgKS

ra(2Jdr2
w+JwS 2)

⎤⎥⎥⎥⎥⎦ ,Ch =
[

1 0
]

The last example is the magnetic levitation system. This system is represented by
the Fig. 4.10. The data of this system are summarized in the Table 3.3.

Table 3.3 Data of the magnetic levitation system

Variable value
R 62.7 Ω
L 60 mH

m (object mass) 7.64 g
diameter of the permanent magnet 9 mm

58 3. Mathematical Modeling

Let x(t) denote the position of the object at time t measured from the bottom of the
coil. The dynamics of the moving object is described by the following differential
equation:

mẍ(t) = mg − Fc − Fp (3.17)

where g is the gravity, Fc and Fp are the magnetic forces generated respectively by
the coil and the permanent magnet.

Remark 3.1.6 It is important to notice that the direction of the magnetic force Fc

is linked to the direction of the current in the coil.

If we denote by i(t) the current at time t that give a force Fc pointing down at
time t with the following expression:

Fc(t) = kc
i2(t)
x2(t)

The permanent force Fp is given by the following expression:

Fp(t) = kp
1

x2(t)

Using these expressions we get:

mẍ(t) = mg − kc
i2(t)
x2(t)

− kp
1

x2(t)
(3.18)

From the other side, we have the following relation between the current i(t) and
the applied voltage u(t):

u(t) = Ri(t) + L
di(t)
dt

If we neglect the effect of the coil, this relation becomes:

u(t) = Ri(t)

and the dynamics become:

mẍ(t) = mg − kc
u2(t)
x2(t)

− kp
1

x2(t)
(3.19)

For the output equation notice that we have a Hall effect sensor that generates a
voltage that is function of the position, x(t) of the object and therefore it is function
of the magnetic field B (sum of the two fields (the one due to the coil and the one
due to permanent magnet)). If we denote by y(t) this voltage and using the data sheet
of this sensor, we get:

y(t) = 0.003125B+ 2.5

where B is measured in Gauss (1 Telta = 1000 Gauss).

3.1. Mathematical Modeling Based on Physics Laws 59

This gives the following one:

y(t) = 31.25B+ 2.5

where B is measured in Tesla.
It can be shown that the expression of the total magnetic field is given by:

B = Cp
1

x3(t)
+Cbi(t) + C1 +C2

where Cp = −1.9446 10−8, Cb = −0.1671, C1 = −0.011027 and C2 = 0.003568.
In conclusion the output of the sensor is then given by:

y(t) =

[
1

0.032

[
Cp

1
x3(t)

+Cbi(t) +C1 +C2

]]
+ 2.5

It can seen that the model is nonlinear and the theory we will present in this vol-
ume will not help. Therefore a linearization around an equilibrium point is required.
At the equilibrium point the speed and the acceleration of the object are equal to zero
and the current is constant in time and the total force is equal to the gravitational
force. Using this and the previous dynamics, we get:

⎧⎪⎪⎨⎪⎪⎩
x2(t) = sign(u(t)) kc

mgR2 u2(t) + kp

mg

y(t) =
[

1
0.032

[
Cp

1
x3(t) +Cbi(t) +C1 + C2

]]
+ 2.5

Using these conditions and some appropriate experiments, we can determine the
values for kc and kp and these values are given by:

kc = 5.9218 10−4

kp = 4.0477 10−6.

At the equilibrium point, the object occupies a fixed position xe that corresponds
to the voltage ue (ue = Rie). The corresponding voltage delivered by the sensor is ye.
In the neighborhood of this equilibrium point (xe, ue, ie, ye), the system has a linear
behavior. The linearized model is given by ([1]):⎧⎪⎪⎨⎪⎪⎩

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where

x(t) =

[
x1(t)(position)
x2(t)(velocity)

]

A =

⎡⎢⎢⎢⎢⎢⎣
0 1

2[sign(ue)kcu2
e+kpR2]

mR2 x3
e

0

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣ 0
−2sign(ue)kcue

mR2x2
e

⎤⎥⎥⎥⎥⎦
C =

[−3Cp

0.032x4
e

0
]

D =
Cb

0.032R

60 3. Mathematical Modeling

3.2 Identification

From the previous example, it can be seen from that the establishment of the math-
ematical model that we can use for analysis and design is not an easy task and even
if we can get the model from physics laws, the value of the different parameters of
the model may be impossible to get and therefore the analytical model is useless.

System identification is a procedure by which a mathematical description of a
dynamical system is extracted from test data. The aim of the identification is to
construct an algorithm that will allow to build a mathematical model from observed
data. Mainly the system we would like to model is seen as black box with some
inputs and outputs that are collected at some finite instants of time.

The establishment of an appropriate model for a given linear time invariant sys-
tem can be done into two steps. Firstly, a structure of a model that may fit with the
collected data is chosen and then the parameter of this model are determined.

The identification problem can be stated as follows: given N samples of the pair
(u(k), y(k)) where u(k) and y(k) denote respectively the input and output collected
from experiments on the real system, we wish to determine the system’s parameters
of the chosen model such that it matches the real system sufficiently well.

3.2.1 Transfer Function Approach

One of the approaches that we may use to build a model with transfer function
description is the least-square system identification. To show how this algorithm
works, let us assume the structure of the chosen model is given by:

G(z) =
Y(z)
U(z)

=
b1zn−1 + b2zn−2 + · · · + bn

zn − a1zn−1 − · · · − an

where Y(z) and U(z) are respectively Z -transform1 of the output y(k) and u(k),
a1, · · · , an and b1, · · · , bn are the model parameters that we have to determine.

Using Z -transform inverse we get following model:

y(k) = a1y(k − 1) + a2y(k − 2) + · · · + any(k − n)

+b1u(k − 1) + b2u(k − 2) + · · · + bnu(k − n)

The objective of the identification procedure is to determine the model parame-
ters from measurements of the inputs, u(k), k = 0, 1, · · · ,N and the corresponding
outputs, y(k), k = 0, 1, · · · ,N. For this purpose let:

θ =
[
a1 a2 · · · an b1 b2 · · · bn

]
(3.20)

Let us now assume that we collected N + 1 measurements pairs:

(u(0), y(0)) , (u(1), y(1)) , · · · , (u(N), y(N))

with N > n.

1 The definition of the Z -transform will be given later in this book

3.2. Identification 61

By defining f (k) as follows:

f�(k) =
[

y(k − 1) y(k − 2) · · · y(k − n) u(k − 1) u(k − 2) · · · u(k − n)
]

then for the sample periods n, n + 1, · · · , N we have:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(n) = f�(n)θ + e(n)

y(n + 1) = f�(n + 1)θ + e(n + 1)
...

y(N) = f�(N)θ + e(N)

(3.21)

where e(k) is the error estimation at period kT .
If we define y(N), f(N) and e(N) as follows:

y(N) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(n)
y(n + 1)

...
y(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f(N) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f�(n)
f�(n + 1)

...
f�(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, e(N) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e(n)
e(n + 1)

...
e(N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

then the previous relation becomes:

y(N) = f(N)θ + e(N) (3.22)

where y(N) ∈ RN−n+1, e(N) ∈ RN−n+1, f(N) ∈ R(N−n+1)×2n and θ ∈ R2n

Using now the least square algorithm with the following cost:

J(θ) =
N∑

k=n

e2(k) = e�(N)e(N) (3.23)

This implies the following:

J(θ) =
[
y(N) − f(N)θ

]� [y(N) − f(N)θ
]

= y�(N)y(N) − θ�f�(N)y(N) − y�(N)f(N)θ + θ�f�(N)f(N)θ

= y�(N)y(N) − 2θ�f�(N)y(N) + θ�f�(N)f(N)θ (3.24)

To search for the optimal solution θ
 that minimizes the cost J(θ), we can use the
optimization conditions (see [3]). By these optimality conditions, we get:

∂J(θ)
∂θ
= −2f�(N)y(N) + 2f�(N)f(N)θ
 = 0

that can be rewritten as:

f�(N)f(N)θ
 = f�(N)y(N)

from which we obtain the optimal solution as follows:

θ
 =
[
f�(N)f(N)

]−1
f�(N)y(N)

provided that the matrix,
[
f�(N)f(N)

]
, is not singular.

62 3. Mathematical Modeling

Remark 3.2.1 The formula we just developed allows us to compute the parameters
off-line after collecting the data. But in some applications we may need to compute
these parameters on-line and therefore adapt the controller’s parameters as it is the
case for adaptive control. This can be done using the recursive form of the least
square algorithm.

To establish the recursive algorithm, we will use some forgetting factors.
Consequently, the cost is modified to:

J(θ) = μ(n)e2(n) + μ(n + 1)e2(n + 1) + · · · + μ(N)e2(N)

=

N∑
k=n

μ(k)e2(k) = e�(N)F(N)e(N) (3.25)

where F(N) is a diagonal matrix, F(N) = diag(μ(1), · · · , μ(N)).
Proceeding similarly as we did previously, we get:

θ
 =
[
F�(N)F(N)f(N)

]−1
f�(N)F(N)y(N) (3.26)

Remark 3.2.2 The forgetting factors are used to give more weight for the recent
data.

Let μ(k) = αβN+1−k, with β ≤ 1. Based now on the expression of θ
, we get:

f�(N + 1)F(N + 1)f(N + 1) =
N+1∑
k=n

αβN+1−k f (k) f �(k)

=

N∑
k=n

αββN−k f (k) f�(k) + α f (N + 1) f�(N + 1)

Let us now define Ψ(k) as follows:

Ψ(k) =
[
f�(k)F(k)f(k)

]−1
(3.27)

Using this we get:

Ψ−1(N + 1) = βΨ−1(N + 1) + α f (N + 1) f�(N + 1) (3.28)

Using now the following relation:

[A + BCD]−1 = A−1 − A−1
[
C−1 + DA−1B

]−1
DA−1

the previous relation becomes:

Ψ(N + 1) = β−1Ψ(N) − β−1Ψ(N) f (N + 1)

×
[
α−1 + β−1 f�(N + 1)Ψ(N) f (N + 1)

]−1
β−1 f�(N + 1)Ψ(N)

3.2. Identification 63

For the second term in the expression of θ
 we have:

f�(N)F(N)y(N) =
[

f (n) · · · f (N + 1)
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
αβN+1−n

. . .

α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(n)
...

y(N)
y(N + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= βf�(N)F(N)y(N) + α f (N + 1)y(N + 1)

Combining the previous relations and after some algebraic manipulations we get:

Ψ(N) =
[
f�(N)F(N)f(N)

]−1

Q(N + 1) = β−1Ψ(N) f (N + 1)
[
α−1 + β−1 f �(N + 1)Ψ(N) f (N + 1)

]−1
β−1 f �(N + 1)Ψ(N)

θ(N + 1) = θ(N) + Q(N + 1)
[
y(N + 1) − f �(N + 1)θ(N)

]
Ψ(N + 1) = β−1 [

I − Q(N + 1) f �(N + 1)
]
Ψ(N)

which apply for N ≥ n.

Example 3.2.1 To show how to use this technique to identify a given system, let us
consider the setup of the dc motor kit. It consists of a dc motor driving a mechanical
load. We know that the system a single input single output and its transfer function
between the speed of the shaft and the voltage is a first order of the following form:

G(s) =
Km

τms + 1

where Km and τm are the two parameters that we have to determine.
For this system we can use two ways to get the model. The first one consists of

getting the data ((u(k), y(k)) using an UART to communicate with a PC and then
use the least square method to build the model. The second one consists of using the
microcontroller and then take the system as a black box.

For the second method the gain Km is determined at the steady state regime as
the ratio between the output and the input voltage. While for the time constant, τm,
we take it as the instant at which the output takes 63 % of the steady state value
of the output. This procedure can be programmed in our microcontroller and easily
the model is established. We use this approach in our mechatronics laboratory.

3.2.2 State Space Description Approach

Consider a dynamical system system described by the following state space
description:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the input and y(k) ∈ Rl be the output.

64 3. Mathematical Modeling

It is important to notice that the state description is not unique and any trans-
formation: x̃(k) = T−1x(k), with T a nonsingular matrix, will give another
description:

⎧⎪⎪⎨⎪⎪⎩
x̃(k + 1) = Ãx̃(k) + B̃u(k)

y(k) = C̃ x̃(k) + D̃u(k)

where Ã = T−1AT , B̃ = T−1B, C̃ = CT and D̃ = D.
To determine the model of this system we need to determine the matrices A, B,

C and D. If the system is single input single output, we can compute the trans-
fer function and proceed with the previous approach to establish the mathematical
model. In the state space description, we try to determine the state space description
(A, B,C,D) that matches the set of input-output data. In the literature there exist
many approaches to identify system in state space description. The reader is invited
to consult the literature for this topic. Here we will present a simple algorithm that
can be used to determine the state space description.

Before presenting this algorithm we will establish some relations that the algo-
rithm uses in its computation. If we denote by u(k), u(k + 1), . . . , y(k), y(k + 1), . . .
and x(k), x(k + 1), . . . the sequences of inputs, outputs and states, it can be shown
that the Hankel matrix, Yh can be given by:

Yh = ΓiX + HtUh

where:

Yh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k) y(k + 1) · · · y(k + j − 1)
y(k + 1) y(k + 2) · · · y(k + j)

...
...

. . .
...

y(k + i − 1) y(k + i) · · · y(k + j + i − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Uh is a Hankel block with the same block dimensions as Yh containing the
consecutive inputs

Uh =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k) u(k + 1) · · · u(k + j − 1)
u(k + 1) u(k + 2) · · · u(k + j)

...
...

. . .
...

u(k + i − 1) u(k + i) · · · u(k + j + i − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

X contains the consecutive state vectors:

X =
[

x(k) x(k + 1) · · · x(k + j − 1)
]

3.2. Identification 65

Γi as the extended observability matrix:

Γi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
CA2

...
CAi−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Ht is the block Toeplitz matrix:

Ht =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 0 · · · 0
CB D 0 · · · y(k + j)

CAB CB D · · · 0
...

...
...

. . .
...

CAi−2B CAi−3B CAi−4B · · · D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let H be the concatenation of the matrices H1 and H2, i.e.:

H =

[
H1

H2

]

with

H1 =

[
Yh1

Uh1

]

H2 =

[
Yh2

Uh2

]

where

Yh1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k) y(k + 1) · · · y(k + j − 1)
y(k + 1) y(k + 2) · · · y(k + j)

...
...

. . .
...

y(k + i − 1) y(k + i) · · · y(k + j + i − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Yh2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k + i) y(k + i + 1) · · · y(k + i + j − 1)
y(k + i + 1) y(k + i + 2) · · · y(k + i + j)

...
...

. . .
...

y(k + 2i − 1) y(k + 2i) · · · y(k + j + 2i − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Uh1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k) u(k + 1) · · · u(k + j − 1)
u(k + 1) u(k + 2) · · · u(k + j)

...
...

. . .
...

u(k + i − 1) u(k + i) · · · u(k + j + i − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Uh2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(k + i) u(k + i + 1) · · · u(k + i + j − 1)
u(k + i + 1) u(k + i + 2) · · · u(k + i + j)

...
...

. . .
...

u(k + 2i − 1) u(k + 2i) · · · u(k + j + 2i − 2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

66 3. Mathematical Modeling

that satisfy:

Yh1 = ΓiX1 + HtUh1

Yh2 = ΓiX2 + HtUh2

with

X1 =
[

x(k) x(k + 1) · · · x(k + j − 1)
]

X2 =
[

x(k + i) x(k + i + 1) · · · x(k + i + j − 1)
]

The following algorithm can be used to compute the matrices (A, B,C,D) in off-
line:

1. calculate U and S in the SVD of H:

H = US V� =
[

U11 U12

U21 U22

] [
S 11 0
0 0

]
V�

2. calculate the SVD of U�12U11S 11

U�12U11S 11 =
[
Uq U⊥q

] [S q 0
0 0

] [
V�q
V⊥�q

]

3. solve the following set of linear equations:
[

U�q U�12U(m + l + 1 : (i + 1)(m + l), :)S
U(mi + li + m + 1 : (m + l)(i + 1), :)S

]
=

[
A B
C D

] [
U�q U�12U(1 : mi + li, :)S

U(mi + li + 1 : mi + li + m, :)S

]

This algorithm can be programmed to get the matrices (A, B,C,D) of the system.
Another version for on-line computation can be also obtained and for interested
reader we refer to the literature for more details.

3.3 Conclusions

In this chapter, we covered the mathematical modeling of dynamical systems. We
presented the technique that uses the physics laws to generate the model. We also
developed the identification technique that may be used in some circumstances to
establish a valid model that describes adequately the dynamical system under con-
sideration. Both of the techniques require experiment data to establish the desired
model.

3.4 Problems

1. In this problem, we ask to build the mathematical model for the dc motor kit
without neglecting L. We ask to establish:

3.4. Problems 67

(a) the transfer function
(b) the state space description

2. Establish the mathematical model of the two wheels robot

3. Establish the mathematical model for the levitation system

4. Consider a dynamical system with a transfer function that you can give. Write
a Matlab program that generates a sequence of data (u(k), y(k)). Using this
data, write a program in Matlab to identify the system and to establish the
mathematical model. Compare the two models and conclude.

5. Consider a dynamical system in state space description. Write a Matlab prgram
to generate the appropriate data to identify the system using the state space
description approach. Using this data write a Matlab program to establish a
state space description and compare it with the original one.

Part III

Transfer Function Approaches

Transfer Function Approaches 71

Mechatronic systems are in general a combination of hardware and software to
assure the desired tasks for which the system was designed for. The analysis and
design of such mechatronic systems can be done using different approaches. Among
these approaches we quote the ones based on transfer function and the ones using
the state space techniques.

This part deals with the analysis and synthesize of mechatronic systems using
the transfer function approach. Mainly, we will focus on the analysis of dynamical
systems controlled by microcontrollers. We will learn how to determine the perfor-
mances that the system has. The design of controllers is also tackled. Mainly, we
will see how to state the control design problem and how to solve it. The design part
focuses on the determination of the controller that gives the desired performances
to our dynamical system.

This part is divided into two chapters. The first one treats the analysis tools.
Particularly, we will see how we can transform a continuous-time model to a
discrete-time version by choosing appropriately the sampling period. Once this
period is chosen, a discrete-time version of the model of the system under con-
sideration is obtained that will be used for analysis and design of the dynamical
system under study. The first chapter in this part covers the different tools that we
may use to get the system’s performances. The second chapter presents the design
techniques that may be used to design the appropriate controller that will guaran-
tee the desired performances. The design approach is composed of two steps. The
first one, determines what will be the structure of the appropriate controller that can
guarantee the desired performances. The second one computes the controller’s pa-
rameters. Some simulations results are needed before implementing the developed
algorithm. Matlab and Simulink are used for this purpose.

4
Analysis Based on Transfer Function

After reading this chapter the reader will:

1. master the concept of the transfer function concept

2. be able to perform the analysis of any LTI system and determine the
specifications that the system has

3. be able to compute any time response of LTI system for a given input

4. be able to check the stability of any dynamical system

5. plot the root locus of any LTI system and use it for analysis and design
purpose

6. plot the Bode diagram of any LTI system and use it for analysis and
design purpose

4.1 Introduction

Nowadays the microcontrollers are more powerful and their prices are affordable
which makes their use attractive. In mechatronic systems they are used either for
On/Off or continuous-time controls. In both cases, the microcontroller is the hearth

74 4. Analysis Based on Transfer Function

of the mechatronic system. In the On/Off case, it is used for security and control pur-
poses. The algorithm in this case is easy and doesn’t take time in general to compute
the action to be taken. While for the continuous-time case, the microcontroller re-
ceives the data at each sampling period and compute the desired action according
to a chosen algorithm. The computation in this case may take more time and more
care should be taken to prevent surprises. In both cases interrupts are used. The
microcontrollers we will use in this book must have a quite high processing speed.

In practice when controlling real processes using microcontrollers two structures
can be adopted. In the first one, the error between the output and the reference
is done in continuous-time and then sent to the microcontroller via analog-digital
converter (A/D) and the control action is computed following the chosen algorithm,
while in the second case, the output is converted to a digital value via a A/D. The
reference in this case is fed in a digital form. The control action is computed in a
similar way as for the first case. These two structures are illustrated respectively by
Figs. 4.1 and 4.2.

+

−
A/D μC D/A System

Analog

Input

Output

Fig. 4.1 Signal conversion is made in the forward path

A/D

D/AμC System
Digital

Input

Output

Fig. 4.2 Signal conversion is made in the feedback path

The second structure is more often used in practice and therefore, it is the one
that we will use in the rest of the book.

Remark 4.1.1 In the structure of Fig. 4.2, we have sampled signals that have the
following advantages:

1. easy modulated

2. easy to code

3. easy to transmit and to regenerate

and there are positive points.

4.2. Sampling Process 75

In the rest of this chapter we will present the tools that can be used for the analysis
of this type of system. Mainly we will show for a given practical system:

1. how to determine the sampling period

2. how to convert the continuous-time model to discrete-time one using the chosen
sampling period

3. how to determine the performances of such system such as the stability, the
overshoot, the settling time, etc.

4. how to use the root-locus and the Bode-plot techniques for discrete-time case

All these questions are addressed in the rest on this chapter. The rest of the chap-
ter is organized as follows. In Section 2, the sampling process is developed and the
relation between the continuous-time and the discrete-time is established. Mainly,
the relationship between the poles is established for the two domains (s-domain and
z-domain). Section 3 introduces the transfer function concept and the one of poles
and zeros. In Section 4, the time response for a given input is developed and the
approaches to compute it are presented. Section 5 covers the stability problem and
the system error. The techniques of root locus and the Bode plot are developed re-
spectively in Sections 6 and 7. These techniques are used in the analysis and design
phases.

4.2 Sampling Process

Real practical processes are more often continuous systems that evolve continuously
in time. Their analysis and design should be done carefully. In fact we will always
need to convert the dynamics of such systems to a discrete-time corresponding one
to analyze and proceed with the design of the controller that will be used to control
them using microcontrollers. The choice of the sampling period is a critical prob-
lem. In fact a small sampling period will result with huge amount of data that the
microcontroller will not be able to handle while a large one will give poor results
and may be the system will not be controlled properly. The sampling period must be
properly chosen to avoid such problems. It can be chosen smaller than the smallest
time constant in the dynamics of the process. The bandwidth is also used for the
choice of the sampling period.

The Shannon theorem is used for the choice of the sampling period. This
statement of the Shannon theorem is given by the following result:

Theorem 4.2.1 A signal y(t) which contains no frequency components greater than
fh is uniquely reconstructed by a set of sampled from y(t) spaced by 1

2 fh
. A proper

choice for the sampling frequency should satisfy:

fs ≥ 2 fh (4.1)

76 4. Analysis Based on Transfer Function

Remark 4.2.1 In practice the factor two is not enough and generally we choose the
number more greater than two. A good choice consists of taking the sampling rate
greater than 30wb, where wb is the bandwidth of the closed-loop system.

Remark 4.2.2 It is important to notice that we have the following relations between
the period, T , the frequency, f and the pulsation, w:

T =
1
f

w = 2π f

which implies:

w =
2π
T

Example 4.2.1 To show how the sampling period can be chosen for a continuous-
time system, let us consider a dynamical system with the following transfer function:

G(s) =
10

(s + 1)(s + 2)(s + 5)

and determine the sampling period for this system.
First of all notice that there exist an infinite number of sampling of periods that

can be chosen for this system. In this example we define the sampling period using
two approaches.

From the transfer function of the system we conclude that the highest frequency
in the system is wb = 5rad/s. This corresponds to faster dynamics in the system and
therefore when sampling we should use this information and sample faster than this.

Notice that we have wsT = 2π. Now if we sample thirty times of the highest
frequency in the system, we have ws = 30 × 5 = 150rad/sec. This gives:

T =
2π
150
= 0.021s

From the other side, the constant times of the system are respectively τ1 = 1s,
τ2 = 0.5s and τ1 = 0.2s. This implies that fast dynamics in the system has a time
constant equal to 0.2s. A rule to select the sampling period consists of using the
following formula:

T =
0.2
a

(4.2)

where a is positive real number to be selected between 7 and 14. A proper choice
is 10.

Using this rule we get

T = 0.02s

Once the sampling period is chosen the next step is to convert the continuous-
time dynamics to an equivalent discrete-time one. In fact, if the sampling period,

4.2. Sampling Process 77

T , is properly chosen the real output can be obtained from the sampled one for a
given input and therefore there is no lost of information.

The conversion from continuous-time system to sampled system passes through
two devices:

• sampler

• zero-order-hold (ZOH)

The role of the sampler is to convert the continuous-time signal to an equivalent
train of pulses while the ZOH blocks the values received from the sampler to make
them available to the microcontroller that reads them through the analog/digital
converter. The sampling process is illustrated in Fig. 4.3.

y(t) y∗(t) = y(t)

t t

y(t) y∗(t)

Zero-Order Hold
y∗(t) y(t)

t

y(t)

Fig. 4.3 Sampling process

The main objective of the sampling process of a signal y(t) is to keep most of
its information in the sampled one. It is also important to notice that the number
of bits of the used microcontroller to process this signal has a significant effect
on the quantization and therefore on the result. The quantization is the process of
approximating the continuous range of values by a set of discrete integer values. It
is also referred to as the discretization of the amplitude values of the signal. If a
microcontroller with 16 bits is used, we will have 216 = 65536 possible values per
sample.

Let y(t) be an analog signal whose maximum frequency that a sampler should
take into account is fh (bandwidth). Assume y(t) is sampled at frequency fs. Shan-
non theorem states that it is possible to reconstruct the signal y(t) from y∗(t) = y(kT)
if and only if fs ≥ 2 fh. Mathematically, the sampling process of an analog signal can
be seen as a mathematical product between the signal y(t) and a train of impulses.
This is given by the following expression:

78 4. Analysis Based on Transfer Function

y(kT) =
∞∑

k=0

y
(t)δ(t − kT) (4.3)

where δ(t) is the Dirac impulse and T is the sampling period.

Frequency Response

f

fs

2
fs

2
fh

goodbad

Fig. 4.4 Sampling period choice

For the continuous-time systems, the Laplace transform has been used to trans-
form the set of linear differential equations that describes the dynamics into an
algebraic one and the concepts of the transfer function or the transfer matrix function
have been defined. Then, the tools for analysis and design that have been developed
can be used for this purpose. For sampled systems we will use the same approach
since their dynamics are equivalent and the transformation used for the analysis and
design called the Z -transform is obtained from the Laplace transform. There exist
many similarities between the two transformations.

Let f ∗(t) be a sampled signal, such as:

L
[
f ∗(t)

]
= F∗(s) =

∫ ∞

0
f ∗(t)e−stdt

where f ∗(t) is equal to zero everywhere except at instants t = kT , where k =
0, 1, 2, 3, · · ·

As an example of the signal f (t) we give the step signal defined as follows:

f (t) =

⎧⎪⎪⎨⎪⎪⎩
1 ∀t ≥ 0

0 otherwise

Notice that the Laplace transform of f ∗(t), yields:
∫ ∞

0
f ∗(t)e−stdt =

∞∑
k=0

f (kT)e−skT =

∞∑
k=0

f (kT)(esT)−k = F∗(s)

The Z -transform of f (t) is defined as equal to Laplace transform of f ∗(t):

Z
[
f (t)
]
= L

[
f ∗(t)

]

4.2. Sampling Process 79

Now, if we define z = esT , then we have:

F(z) =
∞∑

k=0

f (kT)z−k

This expression can be used to compute the Z -transform of any signal.

Example 4.2.2 Let us now give some examples to show how we use the Z -
transform and its properties.

• Z transform of the unit pulse function:

f (k) =

⎧⎪⎪⎨⎪⎪⎩
1 when k = 0

0 otherwise

Using the definition of Z -transform, we get:

F(z) =
∞∑

k=0

f (k)z−k = 1.z−0 = 1

• Z -transform of the unit step function:

f (k) =

⎧⎪⎪⎨⎪⎪⎩
1 when k ≥ 0

0 otherwise

Proceeding similarly we have:

F(z) =
∞∑

k=0

f (k)z−k =

∞∑
k=0

z−k =

∞∑
k=0

(z−1)k

This last expression is equivalent to the following series

∞∑
k=0

ak

that will converge if |a| < 1 and we get:

∞∑
k=0

ak =
1

1 − a

To get this relation notice that if we let:

S =
∞∑

k=0

ak

Computing S − aS implies the results.
Using this, we get:

F(z) =
1

1 − z−1

80 4. Analysis Based on Transfer Function

• Z -transform of the exponential function:

f (k) =

⎧⎪⎪⎨⎪⎪⎩
ak when k = 0

0 otherwise

Using again the definition of Z -transform, we get:

F(z) =
∞∑

k=0

akz−k =

∞∑
k=0

(az−1)k =
1

1 − az−1

provided that |az−1| < 1.

The Table 4.1 gives Z -transform table of some common signals. The com-
putation of the Z -transform of these functions is left as exercises for the
reader.

From basic course on control system, the Laplace transform has interesting prop-
erties like linearity, homogeneity, etc. and since the Z -transform is obtained from
this transform, the properties of the Z -transform are directly obtained:

• Linearity - The Z -transform is a linear operator:

Z
[
f1(t) ± f2(t)

]
= Z

[
f1(t)

] ±Z
[
f2(t)

]
= F1(z) ± F2(z)

Z
[
a f (t)

]
= aF(z)

where a is real number, f (t), f1(t) and f2(t) are given functions that admit
Laplace transform, F(z), F1(z) and F2(z) are the Z -transform of the functions
f
(t), f
1 (t) and f
2 (t) respectively.

• Initial value theorem

lim
k→0

f (kT) = lim
z→∞ F(z)

• Final value theorem

lim
k→∞

f (kT) = lim
z→1

(1 − z−1)F(z)

• Shift property:

Z
[
f (t − kT)

]
= z−kF(z)

• Back-shift property:

Z
[
f (t + nT)

]
= zn

⎡⎢⎢⎢⎢⎢⎢⎣F(z) −
n−1∑
k=0

f (kT)z−k

⎤⎥⎥⎥⎥⎥⎥⎦
then, for k = 0, 1, 2, · · ·n, we have:

Z
[
f (t + T)

]
= Z

[
f [(k + 1)T]

]
= zF(z) − z f (0)

Z
[
f (t + 2T)

]
= Z

[
f [(k + 2)T]

]
= z2F(z) − z2 f (0) − z f (T)

Z
[
f (t + nT)

]
= Z

[
f [(k + n)T]

]
= znF(z) − zn f (0)

−zn−1 f (T) − · · · − z f ((n − 1)T)

4.2. Sampling Process 81

Table 4.1 Z-transform table

F(s) f (t) or f (k) F(z)
1 δ(t) 1

e−kT s δ(t − kT) z−k

1
s 1(t) z

z−1
1
s2 t Tz

(z−1)2

2
s3 t2 T 2z(z+1)

(z−1)3

(k−1)!
sk tk−1 lima→0(−1)k−1 ∂k−1

∂ak−1

[
z

z−e−aT

]

(k−1)!
(s+a)k tke−aT (−1)k ∂k

∂ak

[
z

z−e−aT

]

z[αz+β]
(z−1)(z−e−aT)2

a2

s(s+a)2 1 − e−at(1 + at) α = 1 − e−at − aTe−at

β = e−2at − e−at + aTe−at

1
s+a e−at z

z−e−aT

a
s(s+a) 1 − e−at z(1−e−aT)

(z−1)(z−e−aT)

1
(s+a)2 te−at Tze−aT

(z−e−aT)2

1
(s+a)(s+b)

1
b−a

(
e−at − e−bt

)
1

b−a

[
z

z−e−aT − z
z−e−bT

]
(b−a)s

(s+a)(s+b) be−bt − ae−at z[z(b−a)−(be−aT−ae−bT)]
(z−e−aT)(z−e−bT)

a
s2(s+a) t − 1

a

(
1 − ae−at) Tz

(z−1)2 − z(1−e−aT)
a(z−1)(z−e−aT)

s
(s+a)2 (1 − at)e−at z[z−e−aT (1+aT)]

(z−e−aT)2

ω
s2+ω2 sinωt z sinωT

z2−2z cosωT+1
s

s2+ω2 cosωt z(z−cosωT)
z2−2z cosωT+1

ω
(s+a)2+ω2 e−at sinωt ze−aT sinωT

z2−2ze−aT cosωT+e−2aT

s+a
(s+a)2+ω2 e−at cosωt z2−ze−aT cosωT

z2−2ze−aT cosωT+e−2aT

ak z
z−a

akcoskπ z
z+a

Example 4.2.3 Let us compute the Z -transform of the ramp. This function is
defined mathematically as follows:

f (t) =

⎧⎪⎪⎨⎪⎪⎩
t when t ≥ 0

0 otherwise

At sampling instants the function takes values as follows:

f (kT) = kT, k = 0, 1, 2, · · ·
where T is the sampling period.

82 4. Analysis Based on Transfer Function

Using now the definition of the Z -transform, we get:

F(z) =
∞∑

k=0

f (kT)z−k

=

∞∑
k=0

kTz−k

= T
∞∑

k=0

kz−k

= T
(
0 + z−1 + 2z−2 + · · · + kz−k + · · ·

)

= T
z−1

(
1 − z−1

)2

=
Tz

(z − 1)2

Example 4.2.4 Let us compute the Z -transform of the exponential function. This
function is defined mathematically as follows:

f (t) =

⎧⎪⎪⎨⎪⎪⎩
e−αt when t ≥ 0

0 otherwise

At sampling instants the function takes values as follows:

f (kT) = e−kαT , k = 0, 1, 2, · · ·
where T is the sampling period.

Using now the definition of the Z -transform, we get:

F(z) =
∞∑

k=0

f (kT)z−k

=

∞∑
k=0

e−kαT z−k

= 1 + e−αT z−1 + e−2αT z−2 + · · · + e−kαT z−k + · · ·
=

1
1 − e−αT z−1

=
z

z − e−αT

Example 4.2.5 Let us consider the computation of Z -transform of the following
function:

f (t) =

⎧⎪⎪⎨⎪⎪⎩
cos(wt) for t ≥ 0

0 otherwise

4.2. Sampling Process 83

At the sampling instants, we have:

f (kT) =

⎧⎪⎪⎨⎪⎪⎩
cos(kwT) for k = 0, 1, 2, · · · ,
0 otherwise

Using the definition of the Z -transform, we get:

F(z) =
∞∑

k=0

f (kT)z−k

=

∞∑
k=0

cos(kwT)z−k

Notice that

cos(kwT) =
e jkwT + e− jkwT

2

Using this we have:

F(z) =
1
2
Z
[
e jkwT + e− jkwT

]

=
1
2

[
1

1 − e jwT z−1
+

1
1 − e− jwT z−1

]

Using now the fact that e jwT = cos(wT) + j sin(wT), we get:

F(z) =
z2 − z cos(wT)

z2 − 2z cos(wT) + 1

Example 4.2.6 Let us compute the Z -transform of a complex function. For this
purpose, let us consider the following function:

f (t) =

⎧⎪⎪⎨⎪⎪⎩
e−αt cos(wt) + e−αt sin(wt) when t ≥ 0

0 otherwise

At sampling instants the function takes values as follows:

f (kT) = e−αkT cos(wkT) + e−αkT sin(wkT), k = 0, 1, 2, · · ·
where T is the sampling period.

Using now the definition of the Z -transform, we get:

F(z) =
∞∑

k=0

f (kT)z−k

=

∞∑
k=0

[
e−αkT cos(wkT) + e−αkT sin(wkT)

]
z−k

84 4. Analysis Based on Transfer Function

Using now the facts that:

cos(kwT) =
e jwkT + e− jwkT

2

sin(kwT) =
e jwkT − e− jwkT

2 j

Using now the linearity property of the Z -transform we get:

F(z) =
∞∑

k=0

e−αkT cos(wkT)z−k +

∞∑
k=0

e−αkT sin(wkT)z−k

=
1
2

∞∑
k=0

e−αkT
[
e jwkT + e− jwkT

]
z−k +

1
2 j

∞∑
k=0

e−αkT
[
e jwkT − e− jwkT

]
z−k

=
z2 − e−αT z cos(wT)

z2 − 2e−αT z cos(wT) + e−2αT
+

e−αT z sin(wT)
z2 − 2e−αT z cos(wT) + e−2αT

=
z2 − e−αT z cos(wT) + e−αT z sin(wT)

z2 − 2e−αT z cos(wT) + e−2αT

=
z2 + e−αT z [sin(wT) − cos(wT)]

z2 − 2e−αT z cos(wT) + e−2αT

Previously we were able to compute the Z -transform of a signal that may
represent the output system that corresponds to a given input. Sometimes we are
interested by knowing its expression in time. The inverse Z -transform may be used
for this purpose. To perform the inverse Z -transform we can use the following
methods:

• expansion into partial fraction

• polynomial division

• residues method

The inverse Z -transform consists of finding the expression of f (k) that corre-
sponds to a given function F(z). A very useful method to find the inverse transform
of the function F(z) is the expansion into partial fractions whose inverse transforms
can be found in the table. The idea behind this method is firstly write the expres-
sion of the function in term of z−1, then perform the expansion into partial fraction
as usually done for the continuous-time case. This technique is illustrated by the
following example.

Example 4.2.7 Let us consider the following function F(z)

F(z) =
2z2

2z2 − 3z + 1

and determine the expression of f (k).

4.2. Sampling Process 85

To answer this question, let us first of all divide the numerator and the
denominator simultaneously by 2z2. This gives:

F(z) =
1

1 − 3
2 z−1 + 1

2 z−2

It is not obvious how an inverse transform looks like, but if we factorize the
denominator of F(z), then partial expansion gives:

F(z) =
1

(1 − z−1)(1 − 1
2 z−1)

=
A

(1 − z−1)
+

B

(1 − 1
2 z−1)

As for Laplace transform, the residues are :

A = lim
z→1

(1 − z−1)

(1 − z−1)(1 − 1
2 z−1)

= 2

B = lim
z→ 1

2

(1 − 1
2 z−1)

(1 − z−1)(1 − 1
2 z−1)

= −1

Finally, we obtain:

F(z) =
2

(1 − z−1)
+

−1

(1 − 1
2 z−1)

and its inverse transform is

f (k) = Z −1 [F(z)] = 2 −
(
1
2

)k

The second method that can be used to compute the inverse Z -transform is the
polynomial division method. This technique consists of performing the polynomial
division of the numerator by the denominator of the function F(z). To illustrate this
method us consider the previous example.

Example 4.2.8 To show how the polynomial division works, let us continue the
same expression for F(z) as for the previous example.

F(z) =
1

1 − 3
2 z−1 + 1

2 z−2

Dividing the numerator by the denominator, we obtain :

F(z) = 1 +
3
2

z−1 +
7
4

z−2 +
15
8

z−3 + · · ·

Since Z [δ(t − kT)] = z−k, we then obtain:

f (kT) = δ(t) +
3
2
δ(t − T) +

7
4
δ(t − 2T) +

15
8
δ(t − 3T) + · · ·

Example 4.2.9 In this example, we consider the following function:

F(z) =
0.3z

z2 − 1.7z + 0.7
=

0.3z−1

1 − 1.7z−1 + 0.7z−2

86 4. Analysis Based on Transfer Function

Polynomial division gives :

F(z) = 0.3z−1 + 0.51z−2 + 0.657z−3 + · · ·

According to the table of Z -transform, we have :

f (kT) = 0.3δ(t − T) + 0.5δ(t − 2T) + 0.657δ(t − 3T) + · · ·

As a third method to compute the inverse Z -transform we can use the the method
of residues. It consists of using the following expression:

f (kT) = sum of residues of
[
zk−1F(z)

]
=

ns∑
n=1

rn

ns is the number of singularities of F(z)

rn is the residue of (z − zn)F(z)zk−1 corresponding
to the singularity zn

rn = limz→zn(z − zn)F(z)zk−1

Example 4.2.10 Let us consider the following expression:

F(z) =
0.3z

(z − 1)(z − 0.7)

and compute the corresponding f (kT).
The inverse transform f (kT) of the function F(z) is:

f (kT) = sum of residues of

[
zk−1 0.3z

(z − 1)(z − 0.7)

]
at z=1 and z=0.7

f (kT) =
0.3z

(z − 1)(z − 0.7)
zk−1(z − 1)|z=1 +

0.3z

(z − 1)(z − 0.7)
zk−1(z − 0.7)|z=0.7

f (kT) =
0.3zk

z − 0.7
|z=1 +

0.3zk

z − 1
|z=0.7 = 1 − (0.7)k

Example 4.2.11 As another example of how to compute the residue for an
expression that contains multiple poles, let us consider the following expression:

F(z) =
0.5z2

(z − 1)2(z − 0.5)

and compute the corresponding f (kT).

4.2. Sampling Process 87

The inverse transform f (kT) of the function F(z) is:

f (kT) = sum of residues of

[
zk−1 0.5z2

(z − 1)2(z − 0.5)

]
at z=1 and z=0.5

=
1

(2 − 1)!
lim
z→1

d
dz

[
0.5zk+1

(z − 1)2(z − 0.5)
(z − 1)2

]

+

[
0.5zk+1

(z − 1)2(z − 0.5)
(z − 0.5)

]
|z=0.5

f (kT) =

[
0.5(k + 1)zk(z − 0.5) − 0.5zk+1

(z − 0.5)2
zk−1

]
|z=1 +

[
0.5zk+1

(z − 1)2(z − 0.5)
(z − 0.5)

]
|z=0.5

f (kT) =
0.5zk+1

z − 0.5
|z=1 +

0.5zk+1

(z − 1)2
|z=0.5 = 1 − (0.5)k

In order to understand well the Z -transform, let us see how the complex s-plane
is transformed. Based on the definition of the Z -transform, the main relationship
between the s-plane and the z-plane is given by z = esT . This expression gives the
mapping, called M of the s-plane into the z-plane. Therefore for any s in the s-plane
we get the following point in the z-plane:

M(s) = esT = corresponding value in z

Let M−1 be the inverse transform, such as s = 1
T ln z. Usually, s = σ ± jω and

T = 2π
ωs

is the sampling period. Using these relations we get:

M(s) = M(σ ± jω) = e(σ± jω)T = e(σ± jω) 2π
ωs = e

2πσ
ωs .e± j 2πω

ωs

M(s) = ‖M‖e± jθ

M(s) = [magnitude] e±[angle]

Example 4.2.12 Let us assume that σ = 0, i.e. all the roots are on the imaginary
axis in the s-plane, and let us changeω from 0 to ωs

2 . The corresponding roots in the
z-plane are given by:

z = e j 2πω
ωs

Table 4.2 Poles in the z-plane using z = ej 2πω
ωs

ω corresponding poles
0 z1 = 1
ωs

8 z2 = e j π4 = cos π
4 + j sin π

4 = 0.707 + j0.707
ωs

4 z3 = e j π2 = cos π
2 + j sin π

2 = j1
ωs
2 z4 = e jπ = cos π + j sin π = −1

88 4. Analysis Based on Transfer Function

When σ is fixed, σ = 0, and making varying ω from 0 to ωs

2 , we notice that the
corresponding variable follows a half-circle of radius 1. This is shown in Fig. 4.5.

ω = 0

ω = ωs/8

ω = ωs/4

ω = ωs/2

ω = 0

ωs/8

ωs/4

ωs/2

Im Im

π/4

Re Re

R=
1

0

∞

-1 1

Fig. 4.5 Transformation of the s-plane into z-plane

When σ is fixed but not equal to zero, i.e.: σ � 0 , then the radius of the circle
is R = eσT . All the roots belong to the straight line ω = 0 corresponding to an
aperiodic response or oscillatory response. For all the other roots on the circle, the
response is oscillatory.

R
=

1
R = e σT

line of
ω = 0

Im

Re

ω = 0

Fig. 4.6 Transformation of the s-plane when the real part is constant

For the resolution purposes, we will be interested to get the solution of a given
difference equation for a fixed input. To obtain such solution we proceed as follows:

4.2. Sampling Process 89

• we find the Z -transform

• we take the inverse Z -transform to find y(kT)

To illustrate this we consider the following example.

Example 4.2.13 In this example, we consider the Fibonacci equation:

y(k + 2) = y(k + 1) + y(k) with y(0) = y(1) = 1

The Z -transform of the Fibonacci equation is:

z2Y(z) − z2y(0) − zy(1) = zY(z) − zy(0) + Y(z)

that gives in turn:

Y(z) =
z2 − z

z2 − z − 1
y(0) +

z

z2 − z − 1
y(1)

The roots of the characteristic equation are solution of the following equation:

z2 − z − 1 = 0

which gives:

z1 = 0.5 +

√
5

2
and z2 = 0.5 −

√
5

2

Using for example the method of residues, we find:

y(k) =
(1 +

√
5)k+1 − (1 − √5)k+1

2k+1
√

5

Each time, we introduce a sampling in analog operations, the transfer function
should be transformed in the Z -domain by:

z = esT

which corresponds to

s =
1
T

ln z

The transformation s = 1
T ln z is exact, but it is also difficult to implement in

practice. That’s the reason why we use two approximation methods:

• Numerical Integration

• Poles/zeros transforms

For numerical integration method care should taken when using it since we may
get an unstable system after transformation. To illustrate the numerical integration
approach, let us consider the following transfer function that represents a first order
system:

G(s) =
Y(s)
U(s)

=
a

s + a
, a > 0

90 4. Analysis Based on Transfer Function

which gives in time domain:

dy(t)
dt
+ ay(t) = au(t)

that gives in turn: ∫
dy(t)

dt
=

∫
(−ay(t) + au(t))

Integrating between 2 consecutive samples, i.e. from (k − 1)T to kT , we obtain:

y(kT) − y((k − 1)T) =
∫ kT

(k−1)T
f (t)dt

where f (t) = −ay(t) + au(t).
In this last equation, the major problem is how to integrate the right-hand term?

• First numerical integration method: The approximation of the integral is taken
equal to the one of the area shown in the Fig. 4.7.

f(t)
f(t)

t
(k-1)T kT

Fig. 4.7 Forward integration

Based on Fig. 4.7, we get:

y(kT) = y((k − 1)T) + T
[−ay((k − 1)T) + au((k − 1)T)

]
that gives in turn:

y(kT) = y((k − 1)T) [1 − aT] + aTu((k − 1)T)

Using now the Z -transform, we obtain:

Y(z) = z−1Y(z) [1 − aT] + aTz−1U(z)

Finally we get:

Y(z)
U(z)

=
aTz−1

1 − z−1(1 − aT)
=

a
z−1
T + a

Now if we compare the two transfer functions (in the s-domain and in the z-
domain), we conclude that the expression in z-domain is obtained from the one
in the s-domain by using the following transformation:

s =
z − 1

T

4.2. Sampling Process 91

• Second numerical integration method: The approximation of the integral is
taken equal to the one of the area shown in the Fig. 4.8.

f(t)
f(t)

t
(k-1)T kT

Fig. 4.8 Backward integration

Following the same steps as before and using now Fig. 4.8, we obtain:

y(kT) = y((k − 1)T) + T
[−ay(kT) + au(kT)

]

that gives in turn in the z-domain:

Y(z) = z−1Y(z) − aTY(z) + aTU(z)

From which we have:
Y(z)
U(z)

=
aT

1 + aT − z−1
=

a
z−1
zT + a

Comparing again the two transfer functions as we did previously, we obtain the
following transformation:

s =
z − 1
zT

• Third numerical integration method: In the two previous schemas, we have
either underestimate or overestimate the area of the curve. Another alternate
consists of computing the average of these two approaches. Referring now to
the Fig. 4.9, we obtain the following for the approximation of the integral is
that of the area shown in the figure.

y(kT) = y((k − 1)T) +
T
2
[
f (kT) + f ((k − 1)T)

]

f(t)
f(t)

t
(k-1)T kT

Fig. 4.9 Trapezoidal integration

92 4. Analysis Based on Transfer Function

From this expression we get:

Y(z) = z−1Y(z) +
T
2

F(z) +
T
2

z−1F(z)

Using now the expression of F(z), we obtain:

Y(z) = z−1Y(z) +
T

2
[−aY(z) + aU(z)] +

T

2
z−1 [−aY(z) + aU(z)]

that gives finally

Y(z)
U(z)

=
a

2
T

(
z−1
z+1

)
+ a

Proceeding as before we get the following transformation:

s =
2
T

(
z − 1
z + 1

)

Example 4.2.14 Consider the following transfer function:

Y(s)
U(s)

=
1

s2 + 0.4s + 0.4
=

1
(s + 0.2 + j0.6)(s + 0.2 − j0.6)

Our objective is to see the effect of the transformation we will use of the poles
of the system. First of all, let us determine the sampling period. Since we have a
second order, we have:

wn =
√

0.4 = 0.6325rad/s

which gives wb = wn and a proper choice for the sampling period is given by:

T =
2π

30wb
= 0.33s

For this purpose let us compute the poles using the previous transformation for
this system:

• Using s = z−1
T , the corresponding transfer function is:

G(z) =
T 2

z2 + (−2 + 0.4T) z + 1 − 0.4T + 0.4T 2

The poles of the system in the z-plane are: z1,2 = 0.9338 ± 0.1987 j

• Using s = z−1
Tz , the corresponding transfer function is:

G(z) =
T 2

(
1 + 0.4T + 0.4T 2

)
z2 + (−2 − 0.4T) z + 1

The poles of the system in the z-plane are: z1,2 = 0.9064 ± 0.1689 j

• Using s = 2
T

z−1
z+1 , the corresponding transfer function is:

G(z) =
0.25T 2 (z + 1)2

(
1 + 0.2T + 0.1T 2

)
z2 +

(−2 + 0.2T 2
)

z + 1 − 0.2T + 0.1T 2

4.2. Sampling Process 93

The poles of the system in the z-plane are: z1,2 = 0.9182 ± 0.1845 j

• Using the transformation s = 1
T ln z (z = eT s), the poles are 0.9175± 0.1847 j.

As it can be seen from this example that the trapezoidal approximation is the
more close to the exact transformation since it gives almost the same poles. The
other approximations give different results. Therefore the stability and precision
should be tested before choosing a particular method.

As another approach that can be used to approximate the transfer function in
Z - domain is what it is always referred in the literature to as the poles/zeros
transformation. It consists of doing the following steps:

• make all the poles of G(s) correspond to z = e−sT . That is, if s = −a, is a pole
in the s-domain, then G(z) will have a pole in the z-domain at z = e−aT

• do the same thing for the zeros of G(s)

• place all the poles of G(s) corresponding to s = ∞ at z = −1. This means
adding (z + 1), (z + 1)2, · · · to the numerator of G(z) such that the degree of the
numerator will be equal to the one of the denominator.

• make the gain of G(s) correspond to the one of G(z). This means that we must
do the following for that:

[G(s)]s=0 = [G(z)]z=1

Example 4.2.15 To show how this procedure works, let us consider the following
transfer function:

G(s) =
10

(s + 1)(s + 2)
.

The poles of this transfer function are s1 = −1 and s2 = −2. Their corresponding
poles are respectively z1 = e−T and z2 = e−2T . If we fix the sampling period to
T = 0.02s, then these poles becomes z1 = 0.9802 and z2 = 0.9608.

Since the denominator is of degree 2, then the numerator also should be of degree
2. To do that, we add to the numerator the term (z + 1)2.

The gain is then calculated by:
[

10
(s + 1)(s + 2)

]
s=0

=

[
K

(z + 1)2

(z − 0.9802)(z − 0.9608)

]
z=1

1 = K
4

(0.285)(0.487)

which gives:

K = 0.0019

Finally the transfer function in the Z -domain is given by:

G(z) =
0.0019(z+ 1)2

(z − 0.9802)(z − 0.9608)

94 4. Analysis Based on Transfer Function

As another approach, it is possible to derive G(z) from G(s) = N(s)
D(s) when D(s)

has distinct roots. This can be computed using the following formula:

G(z) =
p∑

n=1

N(xn)
D′(xn)

z
z − exnT

with D′(xn) = ∂D
∂s |s=xn for n = 1, 2, 3, · · · , p

Example 4.2.16 To show the idea how to get a G(z) from a G(s) with a denominator
that has distinct roots, let us consider the following transfer function:

G(s) =
1

(s + a)(s + b)
=

1
s2 + (a + b)s + ab

The denominator and the numerator of this transfer function are given by:

D(s) = (s + a)(s + b)

N(s) = 1

The denominator derivative with respect to s is given by:

D′(s) = 2s + (a + b)

The values of the derivatives at the two roots are:

D′(x1 = −a) = b − a

D′(x2 = −b) = −(b − a)

Using this and the previous formula, we get:

G(z) =
1

b − a
z

z − e−aT
− 1

b − a
z

z − e−bT
=

(
1

b − a

) [z
z − e−aT

− z

z − e−bT

]

4.3 Transfer Function Concept

The concept of transfer function for sampled systems can be defined similarly as it
has been done for continuous-time one. To clarify this, let us refer to the Fig. 4.10
where the upstream sampler is a real one while the downstream one is a fictitious
that we assume to be ideals and synchronized at the same sampling period. The
second sampler is introduced for the purpose to define Y(z) and therefore define
properly the pulse transfer function. Based on the Fig. 4.10, we get:

Y(s) = G(s)U
(s)

Since the output is sampled by the fictitious sampler, we can then have:

Y
(s) =
[
G(s)U
(s)

]

= G
(s)U
(s)

4.3. Transfer Function Concept 95

U(s)

U(z)

U∗(s)

Y(z)

Y(s) Y∗(s)
G(s)

G(z)

Fig. 4.10 Pulse transfer function definition

and if we apply the Z -transform, we obtain:

Y(z) = G(z)U(z)

where Y(z) = Z
[
Y
(s)

]
and U(z) = Z

[
U
(s)

]
.

This relation can be proved in an elegant way starting from the time domain. In
fact, we have:

y(t) = L −1
[
G(s)U
(s)

]

Using now the convolution theorem, we get:

y(t) =
∫ t

0
g(t − σ)u
(σ)dσ

From the other side we know that u
(σ) can be written as follows:

u
(σ) =
∞∑

k=0

u(kT)δ(t − kT)

Using this, the expression of y(t) becomes:

y(t) =
∫ t

0
g(t − σ)

∞∑
k=0

u(kT)δ(t − kT)dσ

=

∞∑
k=0

∫ t

0
g(t − σ)u(kT)δ(t − kT)dσ

=

∞∑
k=0

g(t − kT)u(kT)

Using now the definition of the Z -transform of the sampled signal y
(t) we have:

Y(z) =
∞∑

k=0

y(kT)z−k

=

∞∑
k=0

⎡⎢⎢⎢⎢⎢⎣
∞∑

l=0

g(kT − lT)u(lT)

⎤⎥⎥⎥⎥⎥⎦ z−k

96 4. Analysis Based on Transfer Function

Performing the change of variable, m = k − l, we get:

Y(z) =
∞∑

m=0

∞∑
l=0

[
g(mT)u(lT)

]
z−m−l

that can be rewritten as follows:

Y(z) =

⎡⎢⎢⎢⎢⎢⎣
∞∑

m=0

g(mT)z−m

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∞∑

l=0

u(lT)z−l

⎤⎥⎥⎥⎥⎥⎦
= G(z)U(z)

Finally, the transfer function is given by:

G(z) =
Y(z)
U(z)

which is the ratio between the Z -transform of the output and Z -transform of the
input .

When manipulating the block diagrams of sampled systems, care should be taken.
The following relations will help for this purpose.

• If Y(s) = G(s)U(s), then

Y(z) = Z
[
Y∗(s)

]
= Z

[
[G(s)U(s)]∗

]
� Z

[
G∗(s)U∗(s)

]
= G(z)U(z).

• If Y(s) = G(s)U∗(s), then

Y(z) = Z
[
Y∗(s)

]
= Z

[[
G(s)U∗(s)

]∗]
= Z

[
G∗(s)U∗(s)

]
= G(z)U(z).

Example 4.3.1 In this example we consider the system of the Fig. 4.11 that repre-
sents two systems in serial with an ideal sampler between. The expression of the two
transfer functions are:

G1(s) =
1

s + a

G2(s) =
a

s(s + a)

Our goal is to compute the equivalent transfer function for this system.

U(s)

U(z)

U∗(s)

X(z)

X(s) X∗(s)
G1(s)

G1(z)

Y(s) Y∗(s)

Y(z)

G2(s)

G2(z)

Fig. 4.11 Cascade transfer functions with sampler between

4.3. Transfer Function Concept 97

Based on this figure, we get:

Y∗(s) = G∗2(s)X∗(s)

X∗(s) = G∗1(s)U∗(s)

which gives:

Y∗(s) = G∗2(s)G∗1(s)U∗(s)

that implies in turn:

Y(z)
U(z)

= G1(z)G2(z)

Using the table of Z -transform, we have:

Y(z)
U(z)

= G1(z)G2(z) =
z

(z − e−aT)
z(1 − e−aT)

(z − 1)(z − e−aT)

=
z2(1 − e−aT)

(z − 1)(z − e−aT)2

Example 4.3.2 In this example we consider the situation where the sample is re-
moved between the two transfer function in serial. This situation is illustrated by
the Fig. 4.12. The transfer function G1(s) and G2(s) are given by the following
expression:

G1(s) =
a

s + a

G2(s) =
a

s(s + a)

where a is a positive scalar.
Our goal is to compute the equivalent transfer function and compare it with the

one obtained in the previous example.

U(s) U∗(s) X(s)
G1(s) G2(s)

Y(s) Y∗(s)

Fig. 4.12 Cascade transfer functions without sampler between

In this case we have:

Y∗(s)
U∗(s)

= [G1(s)G2(s)]∗

that gives in turn

Y∗(s)
U∗(s)

= Z [G1(s)G2(s)] = G1G2(z)

It is important to notice that the equivalent transfer function we obtain for this
case is different from the one we obtained for the system of the previous example.

98 4. Analysis Based on Transfer Function

Using the expression of G1(s) and G2(s), we get:

G1(s)G2(s) =
a2

s(s + a)2

Based on the table of Z -transform, we have:

Z [G1(s)G2(s)] = G1G2(z) =
z

z − 1
− z

z − e−aT

zaTe−aT

(z − e−aT)2

Example 4.3.3 In this example we consider the case where we have transfer func-
tions in feedback and we search to compute the equivalent one as we did in the
previous examples. The system is illustrated by the Fig. 4.13. The transfer functions
are given by the following expression:

G(s) =
a

s(s + a)

H(s) =
1
s

U(s) U∗(s) E
G(s)

H(s)

Y(s) Y∗(s)

−
B A

U(z) Y(z)
G(z)

H(z)
−

Fig. 4.13 Transfer functions in feedback

Based on this figure we have:

A = H(s)Y∗(s)

B = [A]∗ =
[
H(s)Y∗(s)

]∗
= H∗(s)Y∗(s)

E = U∗(s) − B = U∗(s) − H∗(s)Y∗(s)

Y(s) = G(s)
[
U∗(s) − H∗(s)Y∗(s)

]

that gives in turn:

Y∗(s) = [Y(s)]∗ =
[
G(s)

[
U∗(s) − H∗(s)Y∗(s)

]]∗
= G∗(s)

[
U∗(s) − H∗(s)Y∗(s)

]

From this we get:

Y∗(s)
U∗(s)

=
G∗(s)

1 +G∗(s)H∗(s)

4.3. Transfer Function Concept 99

That gives the following pulse transfer function:

Y(z)
U(z)

=
G(z)

1 +G(z)H(z)

From the table of Z -transform we get:

G(z) =
z(1 − e−at)

(z − 1)(z − e−aT)

H(z) =
z

z − 1

Using this we obtain:

Y(z)
U(z)

=
G(z)

1 +G(z)H(z)
=

z(1−e−at)
(z−1)(z−e−aT)

1 + z(1−e−aT)
(z−1)(z−e−aT)

z
(z−1)

=
(1 − e−aT)z(z − 1)(z − e−aT)

(z − 1)2(z − e−aT) + z2(1 − e−aT)

Example 4.3.4 As a second example of the previous case let us consider the system
of the Fig. 4.14. The question is how to compute the pulse transfer function F(z) =
Y(z)
G(z) of this system.

U(s) U∗(s) E 1
s+1

1
s

Y(s) Y∗(s)

−
B A

Fig. 4.14 Transfer functions in feedback

Since (see the table for Z -transform)

G(z) = Z

[
1

s + 1

]
=

z

z − e−T
and H(z) = Z

[
1
s

]
=

z

z − 1

we get the following expression for the closed-loop pulse transfer function:

Y(z)
U(z)

=
G(z)

1 +G(z)H(z)
=

z(z − 1)
(z − e−T)(z − 1) + z2

Example 4.3.5 In this example the system represented by the Fig. 4.15 where a zero
order hold (ZOH) is used.

1. Find the open loop and closed loop pulse transfer functions Y(z)
U(z)

2. Find the unit-step response if K = 1 for T = 0.1

100 4. Analysis Based on Transfer Function

U(s)
ZOH

K
s

Y(s)

− T

U(s) 1−e−sT

s
K
s

Y(s)

−

Fig. 4.15 Transfer functions in feedback

The solution of this example can be obtained easily. In fact we have:

• Open loop:

Y(s)
U(s)

=
K

s2
(1 − e−sT)

From which we have:

Y(z)
U(z)

=
KTz

(z − 1)2

z − 1
z
=

KT
z − 1

Finally we obtain:

Y(z) =
KT

z − 1
U(z)

• Closed loop:

Y(z) =
KT/(z − 1)

1 + KT
z−1

U(z) =
KT

z − (1 − KT)
z

z − 1

Using the method of residues for z1 = 1 and z2 = 1 − KT, and the fact that
K = 1, we find:

y(kT) = 1 − (1 − T)k pour k = 0, 1, 2, 3, · · ·
If we use T = 0.1s, we get:

y(k) = 1 − 0.9k

Example 4.3.6 Let us consider the system of the Fig. 4.16 and compute the transfer
function.

Using this figure, we have:

E(s) = R(s) − H(s)Y(s)

Y(s) = G(s)E
(s)

which gives in turn:

E
(s) = R
(s) − [H(s)Y(s)]

Y
(s) = G
(s)E
(s)

4.3. Transfer Function Concept 101

R(s)
G(s)

H(s)

Y(s) Y(z)

−

Fig. 4.16 Transfer functions in feedback

Using the Z -transform, we obtain:

Y(z) =
G(z)R(z)

1 +GH(z)

Example 4.3.7 Let us consider the system of the Fig. 4.17 and compute the transfer
function.

R(s)
G(s)

H(s)

Y(s) Y(z)

−

Fig. 4.17 Transfer functions in feedback

Using this figure, we have:

E(s) = R(s) − H(s)Y
(s)

Y(s) = G(s)E
(s)

which gives in turn:

E
(s) = R
(s) − H
(s)Y
(s)

Y
(s) = G
(s)E
(s)

Using now the Z -transform, we obtain:

Y(z) =
G(z)R(z)

1 +G(z)H(z)

Example 4.3.8 Let us consider the dynamical system of the block diagram
illustrated by Fig. 4.18

Y(z) =
RG(z)

1 + HG(z)

102 4. Analysis Based on Transfer Function

R(s)
G(s)

H(s)

Y(s) Y(z)

−

Fig. 4.18 Transfer functions in feedback

R(s)
G1(s) G2(s)

H(s)

Y(s) Y(z)

−

Fig. 4.19 Transfer functions in feedback

Example 4.3.9 Let us consider the system of the block diagram of the figure 4.19
and compute the transfer function.

Y(z) =
G2(z)RG1(z)

1 +G1G2H(z)

Example 4.3.10 Let us consider the system of the block diagram of the figure 4.20
and compute the transfer function.

R(s)
G1(s) G2(s)

H(s)

Y(s) Y(z)

−

Fig. 4.20 Transfer functions in feedback

Using this figure, we have:

E(s) = R(s) − H(s)Y(s)

Y(s) = [G(s)E(s)]

4.3. Transfer Function Concept 103

which gives in turn:

Y
(s) =
[
[(R(s) − H(s)Y(s)) G1(s)]

]

G2(s)

Using now the Z -transform, we obtain:

Y(z) =
G1(z)G2(z)R(z)

1 +G1(z)G2(z)H(z)

Based on these examples, we are always able to compute the transfer function of
the system and its expression is given by:

G(z) =
Y(z)
U(z)

where Y(z) and U(z) are respectively the Z -transform of the output Y(s) and the
input U(s).

This transfer function is always in the following form:

G(z) =
N(z)
D(z)

=
bnzn + bn−1zn−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0

where ai and bi are real scalars and n is an integer representing the degree of the
system.

The roots of the polynomials N(z) and D(z), i.e.: the solutions of the following
equations:

N(z) = 0

D(z) = 0

are called respectively zeros and poles of the system.
The poles play an important role in the system response. Their location is very

important and it related to the system performances like the stability, the transient
regime, etc. as it will be shown later on.

Example 4.3.11 Let us consider a dynamical system with the following transfer
function:

G(z) =
N(z)
D(z)

=
z2 − z + 0.02

z3 − 2.4z2 + z − 0.4

Compute the poles and zeros of the system and plot them in the z-domain.
From the expression of the transfer function we have:

N(z) = z2 − z + 0.02

D(z) = z3 − 2.4z2 + z − 0.4 = (z − 2)
(
z2 − 0.4z + 0.2

)

104 4. Analysis Based on Transfer Function

The roots of this polynomials are 0.1± 0.1 j for the zeros and 2 and 0.2± 0.4 j for
the poles. The zeros are all inside the unit circle. The complex poles are also inside
the unit circle while the real one is outside this circle.

We have introduced the concept of transfer function and we have learnt how to
manipulate the block diagrams. It is now time to compute the time response of the
system for given signal inputs. This is the subject of the next section.

4.4 Time Response and Its Computation

More often, the control system has to guarantee certain performances such as:

• the settling time at a given percentage

• the overshoot

• the damping ratio

• etc.

For time definitions we ask the reader to look to the Fig. 4.21. To have an idea
on the concept of the settling time, the overshoot, etc., let us consider a linear time
invariant system with an input r(t) and an output y(t). If we apply a step function at
the input, the output of this system will be as shown in Fig. 4.21. From this figure,
it can be seen that the settling time is defined as the time for the system response,
y(t) to reach the error band (that is defined with a certain percentage, 2 %, 5 %, etc.)
and stay for the rest of the time. The lower the percentage is, the longer the settling
time will be.

The overshoot is another characteristic of the time response of a given system.
If we refer to the previous figure, the overshoot is defined as the maximum exceed
of the steady state value of the system output. More often, we use the percentage
overshoot, which is defined as the maximum value of the output minus the step value
divided by the step value.

The error is also another characteristic of the output behavior. It is defined as the
difference between the steady value taken by the output and the desired value. For a
closed-loop system with a unity feedback, the error, E(z), is defined mathematically
as:

E(z) = R(z) − Y(z)

where R(z) is the reference input and Y(z) is the output.
Previously we developed tools that can be used to compute the expression in

time of a given signal. Here we will use this to compute the time response of a given
system to a chosen input that may be one or a combination of the following signals:

• Dirac impulse

• step

• ramp

4.4. Time Response and Its Computation 105

Mp

ts

τd

desired
output 1

actual
output

actual
output + 2%

actual
output - 2%

y(t)

tp

tr

System

r(t)

r(t)

t

unit step

y(t)
1

Fig. 4.21 Behavior of the time response for a step input

To compute the time response let us consider a system which has a pulse transfer
function G(z) with a given input signal, U(z), and consider the computation of the
expression of y(kT). The system is represented in Fig. 4.22. This figure may repre-
sent either an open loop pulse transfer function or its equivalent closed-loop pulse
transfer function that we get after simplifying the system block diagram.

From this figure, we get:

Y(z) = G(z)U(z)

The computation of time response, y(kT), is brought to the computation of the
inverse Z -transform that be can be determined using one of the following methods:

106 4. Analysis Based on Transfer Function

U(z) Y(z)
G(z)

Fig. 4.22 Block diagram (BD)

• expansion into partial fraction

• polynomial division

• residues method

To illustrate how the time response, let us consider the following examples.

Example 4.4.1 In this example we consider the speed control of a dc motor driving
via a gear a given mechanical load. We assume that the system is controlled using
a microcontroller. The transfer function of the system is given by:

G(s) =
K

τs + 1

with K = 2 and τ = 2.
The system is considered in open-loop. In this case since we have the presence of

a ZOH, we obtain:

G(z) =
(
1 − z−1

)
Z

[
2

s (2s + 1)

]

Using the Z -transform table, we get:

G(z) =
(
1 − z−1

) ⎡⎢⎢⎢⎢⎢⎢⎣
z
(
1 − e− T

2

)

(z − 1)
(
z − e− T

2

)
⎤⎥⎥⎥⎥⎥⎥⎦

=

(
1 − e−

T
2

)
(
z − e− T

2

)

where T is the sampling period.
For our system, since the time constant is equal to 2sec, a proper choice for the

sampling period is T = 0.2sec. Using this, we get:

G(z) =
0.0952

z − 0.9048

If now we consider that the signal input is unit step, we get

Y(z) =
0.0952z

(z − 1) (z − 0.9048)

To compute the time response either we can use the table or proceed with the
expansion into partial fraction.

4.4. Time Response and Its Computation 107

Using the Z -transform table, we have:

y(kT) = 1 − e−0.1k

With the expansion into partial fraction we obtain:

Y(z)
z
=

0.0952
(z − 1) (z − 0.9048)

=
K1

z − 1
+

K2

z − 0.9048

=
1

z − 1
+

−1
z − 0.9048

From this we get:

Y(z) =
z

z − 1
+

−z
z − 0.9048

Using now the Z -transform table, we get:

y(kT) = 1 − e−0.1k

since e−0.1 = 0.9048.

Example 4.4.2 In this example we consider the position control of a dc motor driv-
ing via a gear a given mechanical load. We assume that the system is controlled
using a microcontroller. The transfer function of the system is given by:

G(s) =
K

s (τs + 1)

with K = 2 and τ = 2.
The system is considered in open-loop. In this case since we have the presence of

a ZOH, we obtain:

G(z) =
(
1 − z−1

)
Z

[
2

s2 (2s + 1)

]

Using the Z -transform table with T = 0.2second, we get:

G(z) =
(
1 − z−1

) ⎡⎢⎢⎢⎢⎢⎢⎣
Tz

(z − 1)2
−

z
(
1 − e−

T
2

)

0.5 (z − 1)
(
z − e−

T
2

)
⎤⎥⎥⎥⎥⎥⎥⎦

=
(0.4048z− 0.5476)

0.5 (z − 1) (z − 0.9048)

If now we consider that the signal input is unit step, we get

Y(z) = 0.8096
z (z − 1.3528)

(z − 1)2 (z − 0.9048)

To compute the time response either we can use the Z -transform table or proceed
with the method of expansion into partial fraction or with the method of residues.

108 4. Analysis Based on Transfer Function

Using the Z -transform table, we get:

y(kT) = kT − 1
a

[
1 − eakT

]

with a = 0.5 and T = 0.2
With the method expansion into partial fraction we have:

Y(z) =
K1

(z − 1)2
+

K2

(z − 1)
+

K3

(z − 0.9048)

With the method of residues, we obtain:

y(kT) =
∑

residues of 0.8096
z (z − 1.3528) zk−1

(z − 1)2 (z − 0.9048)

at the poles z = 1 and z = 0.9048.
These residues are computed as follows:

• residue at pole z = 1

1
(2 − 1)!

d
dz

[
(z − 1)20.8096

z (z − 1.3528) zk−1

(z − 1)2 (z − 0.9048)

]

|z=1

=
d
dz

[
0.8096

(z − 1.3528) zk

(z − 0.9048)

]
|z=1

= 119.0464− 2.9568k

• residue at pole z = 0.9048
[
0.8096

(z − 1.3528) zk

(z − 1)2

]

|zr=0.9048

= −40.0198 (0.9048)k

Using now the table we get:

y(kT) = 1 − e−0.1k

since e−0.1 = 0.9048.

From the time response we computed in the previous section, it can be seen that
for a given system the output can take either finite or infinite value for a given signal
signal input. The question is why this happen. The answer of this question is given
by the stability analysis and this will be covered in the next section.

4.5 Stability and Steady-State Error

For systems in the continuous-time domain, the stability implies that all the poles
must have negative real parts. With the transform z = eT s, with T is the sampling
period, we saw that the left half plane of the s-domain corresponds to the inside unit

4.5. Stability and Steady-State Error 109

circle and therefore, in the z-domain, the system will be stable if all the poles are
inside this unit circle.

To analyze the stability of discrete-time systems, let us consider the system of the
Fig. 4.23. The closed loop transfer function of this system is given by:

F(z) =
Y(z)
R(z)

=
C(z)G(z)

1 +C(z)G(z)

where R(z) and Y(z) are respectively the input and the output.
The poles of the system are the solution of the following characteristic equation:

1 +C(z)G(z) = 0

The study of stability requires the computation of these roots. For small order
system we can always solve the characteristic equation by hand and then obtain the
poles and the conclusion on stability will be done based on the fact where the poles
are located. For high order this approach is not recommended and an alternate is
needed. Some criterions have been developed to study the stability. Among these
criterions we quote the one of Jury and the one of Raible.

R(z) Y(z)C(z) G(z)

Fig. 4.23 Block diagram of the closed-loop

Let z = esT with s = σ ± jω. Therefore,

if σ < 0 then |z| < 1 and the system is stable
if σ > 0 then |z| > 1 and the system is unstable
if σ = 0 then |z| = 1 and the system is at the limit of stability

Example 4.5.1 Let us consider a dynamical system with the following characteris-
tic equation:

1 − 3
4

z−1 +
1
8

z−2 = 0

The roots of the characteristic equation are: z = 1
2 and z = 1

4 . These roots are
located inside the unit circle and therefore the system is stable.

Example 4.5.2 Let us consider a dynamical system with the following characteris-
tic equation:

1 − 2z−1 +
5
4

z−2 = 0

or equivalently:

z2 − 2z +
5
4
= 0

110 4. Analysis Based on Transfer Function

The roots of the system are z1,2 = 1 ± j 1
2 and are both outside the unit circle which

implies that the system is unstable.

A direct approach to study the stability of discrete-time system is to convert it
to an equivalent continuous-time one, and then use the Routh-Hurwitz’s Criterion.
The idea is to find an adequate application that maps the inside of the unit circle
onto the left-hand half plane. Then, we can apply the Routh-Hurwitz criterion. The
transformation we’re looking for is:

z =
1 + w
1 − w

with w � 1

Replacing z by this expression in the characteristic equation will give a new one
in w and we can apply the Routh-Hurwitz’s Criterion.

Example 4.5.3 To show how we use the Routh-Hurwitz’s Criterion, let us consider
the dynamical system with the following characteristic equation:

z3 − 2.4z2 + z − 0.4 = 0

It can be shown that the poles are 2 and 0.2 ± 0.4 j. Therefore the system is
unstable.

Let us now replace z by 1+w
1−w in the characteristic equation. This gives:

[
1 + w
1 − w

]3
− 2.4

[
1 + w
1 − w

]2
+

[
1 + w
1 − w

]
− 0.4 = 0

which can be put in the following form:

4.8w3 + 3.2w2 + 0.8w − 0.8 = 0

The Routh-Hurwitz’s Criterion consists then of filling the following table:

w3 4.8 0.8 0
w2 3.2 −0.8 0
w1 2 0
w0 −0.8

Based on the first column, we can see that there one change in the sign and
therefore the system is unstable. This confirm the results we has already remarked
earlier.

It is also important to notice that the roots of the characteristic equation in w are
given by:

w1 = 0.3333

w2,3 = −0.5000 ± 0.5000 j

These roots can also be obtained from the ones in z-domain using w = z−1
z+1 .

Example 4.5.4 Consider the characteristic equation:

z2 + z(6.32K − 1.368) + 0.368 = 0

4.5. Stability and Steady-State Error 111

Applying the bilinear transform yields:

(
1 + w
1 − w

)2
+

(
1 + w
1 − w

)
(6.32K − 1.368) + 0.368 = 0

that gives in turn:

w2[2.736 − 6.32K]+ 1.264w + (6.32K − 1) = 0

Applying Routh-Hurwitz gives:

w2 2.736 − 6.32K 6.32K − 1
w1 1.264 0
w0 6.32K − 1

To guarantee the stability we should determine the range of the parameter K
such that we don’t have sign change in the first column. For the row w0, we should
have 6.32K − 1 > 0, i.e. K > 1

6.32 = 0.158. For the row w2, we should also have
2.736 − 6.32K > 0, i.e. K < 2.736

6.32 = 0.4329. If we look to these two conditions, we
conclude that the system is stable for 0.158 < K < 0.4349.

To check this, let us consider K = 0.2, which is inside the interval. Using this
value, we obtain the following characteristic equation:

z2 − 0.104z + 0.368 = 0

that has as roots z1 = 0.052 + j0.6044 and z2 = 0.052 − j0.6044. The roots are
located inside the unit circle and therefore, the system is then stable. For K = 1, we
obtain:

z2 + 4.952z + 0.368 = 0

The roots are z1 = −0.076 and z2 = −4.876. The system is then unstable because
|z2| > 1.

For discrete-time Jury has developed a criterion that gives an idea on stability of
any system without solving the characteristic equation. To show how this approach
works, let us consider the following characteristic polynomial with real coefficients:

P(z) = anzn + an−1zn−1 + · · · + a1z + a0 = 0

where an > 0 and ai is a real scalar.

112 4. Analysis Based on Transfer Function

Jury’s stability criterion consists of building the following array of coefficients:

row 1 a0 a1 a2 · · · an−k · · · an−1 an

row 2 an an−1 an−2 · · · ak · · · a1 a0

row 3 b0 b1 b2 · · · bn−k · · · bn−1

row 4 bn−1 bn−2 bn−3 · · · bk · · · b0

row 5 c0 c1 c2 · · · cn−2

row 6 cn−2 cn−3 cn−4 · · · c0
...

...
...

... · · ·
row 2n-5 p0 p1 p2 p3

row 2n-4 p3 p2 p1 p0

row 2n-3 q0 q1 q2

The Jury’s array coefficients are computed as follows:

bk =

∣∣∣∣∣∣
a0 an−k

an ak

∣∣∣∣∣∣ , ck =

∣∣∣∣∣∣
b0 bn−1−k

bn−1 bk

∣∣∣∣∣∣ ,

dk =

∣∣∣∣∣∣
c0 cn−2−k

cn−2 ck

∣∣∣∣∣∣ , · · ·

q0 =

∣∣∣∣∣∣
p0 p3

p3 p0

∣∣∣∣∣∣ , q2 =

∣∣∣∣∣∣
p0 p1

p3 p2

∣∣∣∣∣∣
The necessary and sufficient conditions that the system described by P(z) is stable

are:

P(1) > 0

P(−1)

⎧⎪⎪⎨⎪⎪⎩
> 0 if n is even

< 0 if n is odd

with (n - 1) constraints

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

|a0| < an |b0| > |bn−1|
|c0| > |cn−2| |d0| > |dn−3|
· · · · · ·

|q0| > |q2|
Example 4.5.5 Examine the stability of the system described by the following
polynomial:

P(z) = z3 + 3.3z2 + 3z + 0.8 = 0

We form the Jury’s array of coefficients:

row1. 0.8 3 3.3 1
row2. 1 3.3 3 0.8
row3. −0.36 −0.9 −0.36 0

4.5. Stability and Steady-State Error 113

b0 =

∣∣∣∣∣∣
a0 a3

a3 a0

∣∣∣∣∣∣ , b1 =

∣∣∣∣∣∣
a0 a2

a3 a1

∣∣∣∣∣∣ , b2 =

∣∣∣∣∣∣
a0 a1

a3 a2

∣∣∣∣∣∣ , b3 =

∣∣∣∣∣∣
a0 a0

a3 a3

∣∣∣∣∣∣
Since n = 3, then the following conditions should apply:

• P(1) must be positive: 1 + 3.3 + 3 + 0.8 = 8.1 > 0 which is true

• P(−1) must be negative because n = 3 = is odd: −1 + 3.3 − 3 + 0.8 = 0.1 > 0
and this is false

• |a0| < an, i.e: |0.8| < 1 which is true

• |b0| < |bn−1|, i.e: |−0.36| = |−0.36| which is false

One false condition is enough to conclude that the system is unstable.

Example 4.5.6 Let us consider a dynamical system with the following characteris-
tic equation:

1 + K
z

(z − 1)(z − 0.4)
= 0

where K is a parameter to determine such that the system is stable.
This characteristic equation can be rewritten as follows:

z2 + (K − 1.4) z + 0.4 = 0

Applying Jury criterion gives:

• P(1) > 0, which gives K > 0

• P(−1) > 0 which gives K < 2.8

• |a0| < an, i.e: 0.4 < 1 which is true

Therefore, our system will be stable if K ∈]0, 2.8[. For instance, if we fix K to 2,
which gives the following characteristic equation:

z2 + 0.6z + 0.4 = 0

the roots are z1,2 = −0.3000±0.5568 j which are inside the unit circle since |z1,2| < 1.

Another criterion to study the stability bas been developed by Raible. This sta-
bility Criterion consists also as for the Jury criterion to fill an array and then
conclude on stability. To show how this criterion works, let us consider the following
characteristic equation:

P(z) = a0zn + a1zn−1 + · · · + an−1z + an

where ai is a real scalar.

114 4. Analysis Based on Transfer Function

row 1 a0 a1 · · · an−1 an multiplier
row 2 an an−1 · · · a1 a0 αn =

an

a0

row 3 a(n−1)
0 a(n−1)

1 · · · a(n−1)
n−1 0 multiplier

row 4 a(n−1)
n−1 a(n−1)

n−2 · · · a(n−1)
0 0 αn−1 =

a(n−1)
n−1

a(n−1)
0

...
...

...
...

row 2n-1 a(1)
0 a(1)

1 multiplier

row 2n a(1)
1 a(1)

0 α1 =
a(1)

1

a(1)
0

row 2n+1 a(0)
0

• The 1st row is formed by the polynomial coefficients

• The 2nd row is formed by the same coefficients but in the opposite order

• The 3rd row is obtained by multiplying the 2nd row by αn =
an

a0
, then by

subtracting the result of the 1st row

• The 4th row is formed by coefficients of the 3rd row placed in the opposite
order.

These procedures are repeated until the array gets 2n + 1 rows. The last row
contains only one number.

Raible’s Stability Criterion
When a0 > 0, the roots of the polynomial are all inside the unit circle if and only if
a(i)

0 > 0, i = 0, 1, · · · , n − 1

The coefficients a(i)
0 > 0, i = 0, 1, · · · , n − 1 appear in the Raible’s array .

Remark 4.5.1 The assumption a0 > 0 is not restrictive. In fact, when a0 < 0, it is
enough to change the signs of all coefficients of the polynomial P(z) to obtain −P(z),
which in turn is used for Raible’s criterion.

This procedure is correct since the roots of P(z) and of −P(z) are identical.

Example 4.5.7 To show how the Raible’s criterion works, let us consider the
following characteristic equation:

P(z) = −z3 − 0.7z2 − 0.5z + 0.3

4.6. Root Locus Technique 115

The coefficient a0 must be positive, then we form the coefficient array of the
polynomial −P(z) = z3 + 0.7z2 + 0.5z − 0.3

1 0.7 0.5 −0.3
−0.3 0.5 0.7 1 α3 =

0.3
−1 = −0.3

0.91 0.85 0.71
0.71 0.85 0.91 α2 =

0.71
0.91 = 0.78

0.36 0.19
0.19 0.36 α1 =

0.19
0.36 = 0.53

0.26

The system is stable because a(i)
0 > 0, i = 0, 1, · · · , n − 1

We have presented some techniques to study the stability of discrete-time sys-
tems. It is also important to notice that we can also apply the criterions in the
frequency domain.

4.6 Root Locus Technique

The root locus technique is a powerful approach that is usually used for continuous-
time or discrete-time systems either for analysis or design. The technique gives an
idea on how the poles of the closed-loop dynamics behave when a gain or more (a
parameter or more) are changed. The direct conclusion is that we know immedi-
ately how the stability and the other performances of the system are affected by the
parameters changes.

Nowadays there exist many tools to plot the root loci of any dynamical system
some of them are available free for use. In the rest of this section, we will use Matlab
for our plotting but we will develop rules of how obtain a sketch of the root locus in
case we don’t have a computer at hand.

As for the continuous case, the root locus for the discrete system is described by
the characteristic equation that we write in the following form:

1 + KG(z) = 0

where K is the parameter that varies and

G(z) =
(z − n1)(z − n2) · · · (z − nm)
(z − z1)(z − z1) · · · (z − zn)

with z1, z2, · · · , zn are the poles and n1, n2, · · · , nm are the zeros of the open loop
transfer function.

When the parameter K varies from 0 to infinity (∞). The same rules as we use
for the plotting of the root locus of the continuous-time systems in the s-plane apply
to the plotting of the one of discrete-time systems in the z-plane, except that the
interpretation of the results is different mainly in regard of stability.

116 4. Analysis Based on Transfer Function

From the characteristic equation, we get the following conditions:

1
K
=
Πm

i=1|z − ni|
Πn

i=1|z − zi| (4.4)

m∑
i=1

arg(z − ni) −
n∑

i=1

arg(z − zi) = (2k + 1) π, k = 0, 1, 2, · · · , (4.5)

The first condition is referred to as the magnitude condition while the second
is referred to as angle condition. Any point in the z-plane that satisfies these two
conditions belongs to the root locus of the system. To this point corresponds a gain
Kz0 . If this point is z0, then we have:

1
Kz0

=
Πm

i=1|z0 − ni|
Πn

i=1|z0 − zi|
m∑

i=1

arg(z0 − ni) −
n∑

i=1

arg(z0 − zi) = θ0

where θ0 is the corresponding angle of this point.
A point of the z-plane will belong to the root locus, if it satisfies these two condi-

tions. In general plotting the exact root locus for a given system is a hard task unless
we have the appropriate tools for that. More often a sketch of this root locus can be
easily obtained using some simple rules. Some of these rules are:

1. the number of branches is equal to the order of the system, i.e.: n;

2. the root locus is symmetric with respect to the real axis. This is due to the fact
that the roots of the characteristic equation are either real or complex. And if
there is a complex root, we have automatically its conjugate.

3. The loci originate from the poles of the open loop transfer function and termi-
nate on the zeros of the this transfer function. To explain why the loci originate
from the poles, we can make K equal to zero, while why the loci terminate on
the zeros can be explained by letting K goes to∞ in Eq. (4.4).

4. the number of asymptotes is equal to the difference between the number of
poles, n, and the number of zeros, m, of the open loop transfer function. These
asymptotes are characterized by:

δ =

∑
poles −∑ zeros

n − m

βk = (2k + 1)
π

n − m
, k = 0, 1, 2, · · · ,

The parameter, δ, gives the intersections of the asymptotes with the real axis,
while βk gives the angle that make each asymptote with the real axis.

4.6. Root Locus Technique 117

5. for the breakpoints of the root locus, firstly we determine the expression of the
varying parameters K, i.e.:

K =
Πn

i=1|z − zi|
Πm

i=1|z − ni|
The breakpoints are solution of the following equation:

dK

dz
= 0

It is important to select from the roots of this equation those are feasible solution
for the breakpoints.

6. the intersection of the imaginary axis in the z-plane can be determined by
replacing z by jν in the characteristic equation and write it as follows:

�(K, ν) + j�(K, ν) = 0

that gives in turn two equations:

�(K, ν) = 0

�(K, ν) = 0

The solution gives the frequency at which the intersection occurs and the
corresponding gain.

7. the angle of departure from a complex pole or the angle of arrival to a complex
zero is computed using the angle condition. If the point at which we want to
calculate the angle is z0, the condition angle becomes:

m∑
i=1

arg(z0 − ni) −
n∑

i=1

arg(z0 − zi) − θ0 = 180

where θ0 is the corresponding angle of this point.

Example 4.6.1 To show how the technique of root locus works, let us consider the
system of the Fig. 4.24 where the plant is the double integrator and the controller
is a proportional action with a gain K, that we will assume to change between zero
and infinity for some physical reasons like heating, aging, etc.

Using the Z -transform table and the expression of the closed-loop transfer
function we get the following characteristic equation of this system:

1 + K
(z + 1)
(z − 1)2

= 0,with K =
k
2

• Number of branches: n = 2

• Finite number of branches: m = 1

• Infinite number of branches: n − m = 2 − 1 = 1

• Angle of asymptotes: β = π(2k+1)
n−m =

π(2k+1)
2−1 = π, k = 0

118 4. Analysis Based on Transfer Function

R(s)
B.O.Z.

k
s2

Y(s)

−
T=1 sec

E E∗

R(s) kT 2(z+1)
2(z−1)2

Y(s)

−

Fig. 4.24 BD of the system with characteristic eqn: 1 + K (z+1)
(z−1)2 = 0

• Intersection of the asymptote with the real axis: δ = (1)+(1)−(−1)
2−1 = 3

• Intersection of the locus with the real axis: dK
dz = 2z2 + 4z − 6 = 0, which gives

z1 = −1 et z2 = −3.

The root locus is illustrated in Fig. 4.25. All the roots are outside the unit circle in
blue. The system is unstable. THis means that a proportional controller is not able
to stabilize a double integrator.

♣stable
un

sta
ble

1 (double)-1-3 0

Im

Re

Fig. 4.25 RL of the system with characteristic eqn: 1 + K (z+1)
(z−1)2 = 0

Example 4.6.2 As a second example for the root locus technique let us consider the
system of the Fig. 4.26.

4.7. Bode Plot Technique 119

R(s) k 1
s(s+2)

Y(s)

− T=0.5 sec

E E∗

R(s) kz(1−e−2T)
2(z−1)(z−e−2T)

Y(s)

−
Fig. 4.26 BD of the system with characteristic eqn: 1 + K z

(z−1)(z−0.368) = 0

The characteristic equation of this system is given by:

1 + k
z(1 − e−2T)

2(z − 1)(z − e−2T)
= 1 + K

z
(z − 1)(z − 0.368)

= 0

with K = 0.316k

• Number of branches: n = 2.

• Finite Number of branches: m = 1.

• Infinite Number of branches n − m = 2 − 1 = 1.

• Angle of asymptotes: β = π(2k+1)
n−m =

π(2k+1)
2−1 = π.

• Intersection of the locus with the real axis: dK
dz = −z2+0.368 = 0. The resolution

of this equations gives: z1 = −0.606 et z2 = +0.606.

If we replace z by −1 in the characteristic equation, we find:

1 + K
z

(z − 1)(z − 0.368)
= 1 + K

(−1)
(−1 − 1)(−1 − 0.368)

= 0

which implies in turn:

K = 2.738

K = 0.316k

which gives:

k =
K

0.316
=

2.738
0.316

= 8.65

The root locus is drawn in Fig. 4.27. All the the roots are inside the unit circle in
blue. Therefore, the system is stable for all gains k < 8.65.

4.7 Bode Plot Technique

The frequency response plays an important role in the analysis and design of
continuous-time and discrete-time systems. As for the time response, the frequency

120 4. Analysis Based on Transfer Function

♣ ♣stable

stable

instable instable

+10.37-1 0

Im

Re

k=8.65

unit circle

Fig. 4.27 RL of the system with characteristic eqn: 1 + K z
(z−1)(z−0.368) = 0

response consists of exciting the system by a sinusoidal input. In the continuous-
time system, it was proven that for a sinusoidal input, the output of the a stable
linear system is sinusoidal with same frequency of the input, and the magnitude and
the phase of the output are function of this frequency. For discrete-time system, the
output is also sinusoidal with the same frequency as the input signal and the phase
and the magnitude are still function of this frequency. To show this, let us consider
a stable linear system with the following transfer function:

G(z) =
Y(z)
R(z)

=
bmzm + bm−1zm−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0

= K
Πm

i=1(z − ni)

Πn
i=1(z − zi)

Let the input r(t) has the following expression:

r(t) = sin(wt)

where w is the frequency of the input. The magnitude is taken here equal to one.
The Z -transform of this signal is given by (see Z -transform table):

R(z) =
z sin(wt)

z2 − 2zcost(wt) + 1
=

zsin(wT)(
z − e− jwT

) (
z − e jwT

)

Now if we consider that the system is excited by R(z) the corresponding output,
Y(z) is given by:

Y(z) = G(z)R(z)

= K
Πm

i=1(z − ni)

Πn
i=1(z − zi)

zsin(wT)(
z − e− jwT

) (
z − e jwT

)

4.7. Bode Plot Technique 121

To get the expression of the output, let us proceed with a partial fraction of Y(z).
This gives:

Y(z) =
cz

z − e− jwT
+

c̄z
z − e jwT

+ terms due to G(z)

Let s now multiply both sides this equality by (z−e− jwT)
z to get the following:

G(z)
sinwT(

z − e jwT
) = c +

c̄
(
z − e− jwT

)

z − e jwT
+

⎡⎢⎢⎢⎢⎢⎢⎣
(
z − e− jwT

)

z

⎤⎥⎥⎥⎥⎥⎥⎦ terms due to G(z)

where

c =

[
G(z)

sin(wT)(
z − e jwT

)
]
|z=e− jwT

c̄ = conjugate of c

Notice that e− jwT = cos−wT + jsin−wT = coswT − jsinwT , which implies that
(
z − e jwT

)
|z=e− jwT

= −2 jsinwT

Using this we get:

c =
G(e− jwT)
−2 j

c̄ =
G(e jwT)

2 j

Using now the fact that for any complex number we have:

G(e jwT) = M(w)e jθ(w)

where M and θ represent respectively the magnitude and the phase at the frequency
w.

The steady state, the terms due to G(z) vanish and we have:

Y(z) =
G(e− jwT)
−2 j

z
z − e− jwT

+
G(e jwT)

2 j
z

z − e jwT

=
M(w)

2 j

[
− e−θ(w)z

z − e− jwT
+

eθ(w)z
z − e jwT

]

The Z -transform inverse of Y(z) at the steady state is given by:

y(kT) =
M(w)

2 j

[
e jθ(w)e jwT − e− jθ(w)e− jwT

]

=
M(w)

2 j

[
e j(θ(w)+wT) − e− j(θ(w)+wT)

]

= M(w)sin (wT + θ(w))

122 4. Analysis Based on Transfer Function

Remark 4.7.1 It is important to mention that the magnitude and the phase of the
output for a sinusoid input are both functions of its frequency. Therefore, their values
will change when the frequency changes.

A certain parallel can be made with frequency response of continuous time. In
fact, for these system, the frequency response can be obtained from the transfer
function, G(s) that describes the system by doing the following:

• the magnitude M(w) is given by:

M(w) = |G(jw)|
• the phase θ(w) is given by:

θ(w) = arg (G(jw))

This means that the magnitude and the phase of the output at frequency w are
obtained from the transfer function of the system by replacing firstly s by jw
and then compute the magnitude and the phase using the previous formulas.

For the discrete time, the same reasoning applies except that we have to replace
z by e jwT and use the following formulas:

• the magnitude M(w) is given by:

M(w) =
∣∣∣G(e jwT)

∣∣∣
• the phase θ(w) is given by:

θ(w) = arg
(
G(e jwT)

)

Some precautions have to be taken for the frequency response of discrete time
system. In fact, the Z -transform is obtained by replacing z by esT . Therefore,
the primary and the complementary strips of the left hand side of the s-domain
are mapped to the interior of the unit circle in the z-domain. If we replace in
turn z by e jwT to get the frequency response of the discrete time system, the
result we will get has no sense since it deals with the entire z-plane. To avoid
this the following transformation is usually used:

z =
1 + T

2ω

1 − T
2ω

which implies:

ω =
2
T

z − 1
z + 1

Using the Z -transform and and the w-transform respectively, the primary trip
of the left half of the s-plane is then transformed into the unit circle which in
turn transformed to the entire left half of the w-plane. More specifically, the
range of frequencies in the s-plane −ωs

2 ≤ w ≤ ω2
2 is firstly transformed into the

unit circle in the z-plane, which in turn transformed into the entire left half of
the w-plane.

4.7. Bode Plot Technique 123

Finally, it is important to notice the relationship between the frequencies ω and
ν. In fact, ω is defined by:

ω|ω=iν = jν =

[
2
T

z − 1
z + 1

]
|z=e jwT

=
2
T

e jwT − 1
e jwT + 1

Multiplying the numerator and the denominator by e− jwT , we get:

w|w=iν = jν

= j
2
T

tan
(wT

2

)

which gives the following relationship between w and ν:

w =
2
T

tan
(wT

2

)

At low frequencies, we have equality between these frequencies. In fact, when
w is low, we have tan

(
wT
2

)
= wT

2 , which gives w = ν.

Based on this remark, the frequency response of the discrete time consists then
of replacing w by jν, with ν is a fictitious frequency, in the new expression of the

transfer function obtained after replacing z by z =
1+ T

2 w

1− T
2 w

. To have an idea on how the

frequency response can be plotted, let us consider the following example.

Example 4.7.1 As a first example of the frequency response, let us consider the
system of the Fig. 4.28. It represents the speed control of a load driven by a dc
motor. The controller is a proportional. The transfer function of the system and the
controller is given by:

Ḡ(s) =
Kpk

τs + 1
=

K
τs + 1

U(s)
ZOH Ḡ(s) Y(s)

− T

U(s) 1−e−sT

s Ḡ(s) Y(s)

−

Fig. 4.28 Speed control of mechanical part driven by a dc motor

124 4. Analysis Based on Transfer Function

Firstly, let us compute the open loop transfer function of the system in Fig. 4.26.
Since we have a ZOH we get:

G(s) =
(
1 − e−sT

) K
s (τs + 1)

where K = Kpk = 2, τ = 1s and T is the sampling period used for our system and it
is equal to 0.1s.

Using the Z -transform table we get:

G(z) = K
(z − 1)

z

z
(
1 − e−T

)

(z − 1)
(
z − eT

)

= K

(
1 − e−T

)
(
z − eT

)

=
0.1903

z − 0.9048

Replacing now z by
1+ T

2 w

1− T
2 w
= 1+0.05w

1−0.05w, we get:

G(z) =
0.1903

1+0.05w
1−0.05w − 0.9048

=
0.1903 (1 − 0.05w)
0.0952+ 0.0952w

=
1.9989 (1 − 0.05w)

1 + w

Using Matlab, we can get the bode diagram of this transfer function as illustrated
by Fig. 4.29.

4.8 Conclusions

This chapter covers the analysis tools based on the transfer function concept.
Mainly, we developed the techniques of how to compute the time response and
determine the system performances. We also presented the root locus and bode plot
techniques.

4.9 Problems

1. Compute the Z -transform of the following signals:

(a) the unit step
(b) the unit ramp
(c) the unit exponential
(d) r(t) = t + sinwt
(e) 1 − coswt

4.9. Problems 125

−25

−20

−15

−10

−5

0

5

10
M

ag
ni

tu
de

 (
dB

)

10
−2

10
−1

10
0

10
1

10
2

10
3

180

225

270

315

360

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fig. 4.29 Bode diagram of 1.9989(1−0.05w)
1+w

2. Compute the expression of the signal in time of the following ones in z:

(a) Y(z) = TzeaT

(z−e−aT)2 , a > 0

(b) Y(z) =
z(1−eaT)

(z−1)(z−e−aT) , a > 0

(c) Y(z) = 1
b−a

[
z

z−eaT − z
z−ebT

]
, a > 0, b > 0 and a � b

3. For the dynamical systems with the input u(t) and the output y(t) with the
following dynamics:

• d2y(t)
dt2 +

dy(t)
dt = u(t)

• d2y(t)
dt2 + 4 dy(t)

dt + 4y(t) = 4u(t)

• d2y(t)
dt2 + 6 dy(t)

dt + 8y(t) = 8u(t)

• d3y(t)
dt3 + 3 d2y(t)

dt2 + 2 dy(t)
dt = u(t)

(a) determine the sampling period T
(b) using the approximation methods determine the relationship between the

input U(z) and the output Y(z)
(c) determine the pulse transfer function for each dynamics
(d) using Matlab compute the step response of each dynamics

126 4. Analysis Based on Transfer Function

(e) using now the zero-order-hold, determine the corresponding transfer func-
tion and compute the step response. Compare this response to the one of
the previous question

4. In this problem we consider the system of the Fig. 4.30 where the transfer
function of the system is given by:

G(s) =
10

(s + 1)(s + 10)

U(s)
ZOH

G(s) Y(s)

− T

U(s) 1−e−sT

s
K
s

Y(s)

−

Fig. 4.30 Transfer functions in feedback

(a) determine the sampling period that we can use for this system
(b) using this sampling period determine the open loop transfer function and

the closed-loop one
(c) determine the step response of the system
(d) plot the behavior of the output with respect to time

5. Study the stability of the dynamical systems with the following characteristic
equation:

(a) z3 + 0.8z2 + 0.17z + 0.01
(b) z4 + 1.4z3 + 0.65z2 + 0.112z + 0.006
(c) z5 + 2.39z4 + 2.036z3 + 0.7555z2 + 0.1169z + 0.0059
(d) z5 + 11.4z4 + 14.65z3 + 6.6120z2 + 1.126z + 0.06

6. In this problem we consider the dynamical system show in the block diagram
illustrated by the Fig. 4.31. The transfer functions are given by:

G(z) =
z
(
1 − eaT

)

(z − 1)
(
z − e−aT

)
C(z) = K

with a = 0.1 and T = 0.01

4.9. Problems 127

R(z) Y(z)C(z) G(z)

Fig. 4.31 Block diagram of the closed-loop

(a) study the stability in function of the gain K
(b) plot the root locus of the system and conclude on the stability

7. Consider the system of the Fig. 4.30 with the following expression for G(s):

G(s) =
K

s(τs + 1)

with K is the gain and τ = 1s is the time constant of the system.

• determine the sampling period
• compute the transfer function G(z)
• plot the root locus the system when the gain K varies between 0 and∞

8. Consider the system of the Fig. 4.30 with the following expression for G(s):

G(s) =
K

s(τs + 1)

with K = 10 is the gain and τ = 0.1s is the time constant of the system.

• determine the sampling period
• compute the transfer function G(z)
• plot the Bode diagram of the system

5
Design Based on Transfer Function

After reading this chapter the reader will:

1. master the concept of the design of classical controllers based on the
transfer function of the system

2. be able to choose the structure of the classical controller that responds
to the desired performances and determine its parameters

3. be familiar with the design of the proportional, proportional and
integral, proportional integral and derivative controllers and their
approximations

4. be able to determine the recurrent equation for the control law that we
must implement in the microcontroller

5.1 Introduction

Tackling a control design problem is always a challenge even for more experienced
control engineers. The system for which the controller must be designed, may be an
existing one with some poor performances and that we would like to improve, or
a new system that we are building. In both cases, the design procedure starts, after

130 5. Design Based on Transfer Function

getting the mathematical model for the system, by defining the desired performances
that will allow us to determine the structure of the controller and its parameters.

More often the control systems are designed to guarantee certain performances
to the closed-loop dynamics of the system under consideration. Such performances
can be summarized to the stability and the behaviors of the transient and the steady
state regimes. By respecting the limitations of the given system, it is always the
case that we search to improve the transient regime by searching for a compromise
between the overshoot that the system may have and its rapidity. For the steady
state, we search to guarantee that the error is less than a certain chosen tolerance.
The controllers we will consider in this chapter to respond to the design require-
ments are classical ones like the proportional, integral and derivative actions and
their approximations.

The rest of the chapter is organized as follows. In Section 2, the control design
problem is formulated. Section 3 presents the empirical methods to design classical
controllers. In Section 4, the design of classical controllers using the root locus
method is developed. Section 5 presents the Bode method. Section 6 presents a case
study which consists of designing different controllers for the dc motor kit.

5.2 Formulation of the Control Design Problem

In this chapter we will consider an existing system with poor performances that
we would like to improve. Our desire is to act simultaneously on the transient
and steady state regimes by introducing a controller in the closed-loop to force the
overall system to behave as it is desired.

The performances may be given either in time or frequency domains. In both
domains, the stability is the first requirement in the design procedure. Beside the
stability, we would like the transient and the steady state regimes to behave in a
desirable ways.

In the time domain for the transient regime, we should control the overshoot, the
rising time and the settling time for a chosen percentage that will depend on the
precision we would like to guarantee to our system. For the steady state regime, we
would like to assure that the system’s error is less than a certain specified value.

In the frequency domain, the situation is similar except that the performances are
given in function of the stability of the closed-loop dynamics, the gain phase and
the margin phase, the bandwith, etc. In general, it is hard to establish a link between
the performances in the time domain and the ones in the frequency domain.

More specifically, the system under study is described by a transfer function that
can be obtained using the identification approach for instance. Let us denote by G(s)
this transfer function. This model must be determined in the first stage of the control
design. Then, from the performances and the expertise of the control engineer design
we can choose the structure of the controller that may respond properly to the design
goal. Then using the appropriate approach we can determine the controller gains.

5.2. Formulation of the Control Design Problem 131

Therefore, the control design problem consists of determining:

• the structure of the controller

• and its parameters

using the desired performances and some heuristics approaches to force the closed-
loop dynamics with the chosen controller to behave as it is desirable. This approach
may require some refinement in practice due to different phenomena like neglected
dynamics.

The controllers we will consider in this chapter are the classical controllers re-
ferred in the literature to as the combination of the proportional (P), integral (I) and
derivative (D) actions and their approximations referred also to as phase lag, phase
lead and phase lead-lag. The transfer function of the controller will be denoted by
C(z). Once the controller is determined, the corresponding difference equation is
obtained and implemented in real time using an appropriate microcontroller. For
more detail on this topic, we refer the reader to the implementation part where this
is detailed.

R(z) Y(z)C(z) G(z)

Fig. 5.1 Block diagram of the closed-loop

More often, the system’s performances are given in continuous-time since
it is more natural to do so. The design procedure can be done either in the
continuous-time or the discrete-time. Generally speaking, the design approach uses
the following steps:

• the performances are converted to poles

• the structure of the desired controller is chosen

• the controller parameters are determined using the desired poles

• some tunings of the controller’s parameters are done to compensate for the
discrepancy between the desired and the real behaviors that may result from
system’s zeros that are not considered in the design procedure.

It is important to notice that determination of the controller parameters can be
done either in the continuous-time or the discrete-time. In the continuous-time
case, the controller parameters are determined and after that the controller trans-
fer function is converted to discrete-time domain to get the difference equation that
we should implement in real time. For the discrete-time, the difference equation is
directly obtained and implemented.

132 5. Design Based on Transfer Function

The design approach can be one of the following methods:

• Design based on empirical methods

• Design based on root locus method

• Design based on Bode plot method

In the rest of this chapter we will cover these methods and present some examples
to show how these techniques apply for real systems. Simulations results will be
used to show their validity. The design of the controller is done in continuous-time
and then the corresponding discrete-time version of the controller is obtained. The
methods developed in Boukas (see [1]) are used in this chapter.

5.3 Design Based on Empirical Methods

The empirical methods are based on the work of Ziegler-Nichols. These methods
have the advantage over the other methods since they permit the design of the de-
sired controller even in the absence of the mathematical model of the system. The
Ziegler-Nichols methods are mainly based on the response of the dynamical system.
Ziegler-Nichols proposed methods that use the time response and others using the
frequency response. In the rest of this section we will cover these methods.

Let us first of all concentrate on the time response methods. In these methods,
we can handle systems that are stable and unstable in open loop. The first method
considers the case of stable system with no poles at the origin neither dominant
complex pair of poles. In this case, the step response is given by the one in Fig. 5.1,
from which the parameters T , τ and k are determined directly and the Tab. 5.1 is
used to fix the controller parameters directly. The corresponding expression of G(s)
is given by the following:

G(s) = k
e−τs

T s + 1

where k is the gain of the system, τ is the rise time and T is the delay time.
The general expression for the controllers used by the Tab. 5.1 is given by:

C(s) = KP

[
1 +

1
TI s
+ TDs

]

where KP, TI and TD are the controller parameters to be fixed using Tab. 5.1.

Remark 5.3.1 It is important to notice that the Ziegler-Nichols method is applica-
ble only when the following holds:

0.15 ≤ τ

T
≤ 0.6

5.3. Design Based on Empirical Methods 133

The following procedure can be used to fix the controller parameter:

1. obtain the step response of the open loop system

2. determine the values of the parameters τ and T from this time response

3. compute the controller parameters using Tab. 5.1

4. compute the closed-loop transfer function and check if the performances are
obtained

5. adjust the parameters of the controller if necessary to obtain the desired
performances

Remark 5.3.2 Mostly the time response we will obtain using the controllers fixed
by Tab. 5.1 has an overshoot between 10 % and 60 % and an adjustment of the
controller parameters is always necessary.

�

��

�

�

��

��

�

�

y(t)

t

T

k
τ�

�

r(t)

t0

1

� �G(s)
R(s) Y(s)

Fig. 5.2 Ziegler-Nichols methods: stable case

Table 5.1 Ziegler-Nichols methods: controller parameters

Controllers Parameters
P KP =

T
τ

PI KP =
0.9T
τ

TI = 3.3τ
PID KP =

1.2T
τ

TI = 2τ
TD = 0.5τ

Remark 5.3.3 The values of the gains, KP is computed using k = 1. If it is not the
case, the controller gain, KP has be to corrected by dividing the value of Tab. 5.1 by
k. As an example, the gain in case of PID is KP =

1.2T
kτ instead of KP =

1.2T
τ .

134 5. Design Based on Transfer Function

Example 5.3.1 To show how this method works, let us consider a dynamical stable
system with step response as illustrated in Fig. 5.3. From this figure we get the
following parameters:

k = 2

τ = 0.2

T = 1

From these data, we conclude that the condition of the Ziegler-Nichols is satisfied
and therefore, we can use the Tab. 5.1 to fix the desired controller.

Step Response

Time (sec)

A
m

pl
itu

de

0 1 2 3 4 5 6
−0.5

0

0.5

1

1.5

2

Fig. 5.3 Step response of a stable dynamical system

If we opt for a PID, the parameters of this controller are given by:

KP =
1.2T
τ
= 1.2

TI = 2τ = 0.4

TD = 0.5τ = 0.1

The closed-loop dynamics with this controller is given by:

F(s) =
2KP(TITDs2 + TI s + 1)e−τs

s(TIT s + TI) + 2KP(TITDs2 + TI s + 1)e−τs

5.3. Design Based on Empirical Methods 135

Using the Padé approximation, i.e.:

e−τs =
1 − τ

2 s

1 + τ
2 s

we get:

F(s) =
2KP(TITDs2 + TI s + 1)(1 − τ

2 s)

a3s3 + a2s2 + a1s + a0

with a3 =
τ
2 TI [T − 2KPTD], a2 = TI

[
T + τ

2 + 2KP(TD − τ
2)
]
, a1 =

[
TI + 2KP(TI − τ

2)
]

and
a0 = 2KP.

The step response of the closed-loop dynamics with this controller is illustrated
by Fig. 5.4. From this figure we can see that the overshoot is approximatively 20 %
and the other performances are acceptable.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.4 Step response of the closed-loop dynamics with a PID controller
.

Let us now consider the case of unstable systems in open loop. For this class
of systems, the approach consists of mounting the system with a PID controller
with TI = ∞ and TD = 0 and by varying the gain KP to bring the closed loop
dynamics to the limit of stability (periodic oscillations). Let denote by K̄P and Tc

the corresponding gain and the corresponding period. Fig. 5.5 gives an idea of such
set-up. Once these two parameters are determined the ones for the controllers can
be obtained using Tab. 5.2.

136 5. Design Based on Transfer Function

R(s) � � � K � G(s) �
���

��
�

Y(s)+

−

�

�y(t)

t

Tc� �

(a)

(b)

Fig. 5.5 Ziegler-Nichols: unstable case (a) and determination of Tc (b)

Table 5.2 Ziegler-Nichols method: case of unstable systems

Controllers Parameters

P KP = 0.5K̄P

PI KP = 0.45K̄P

TI = 0.83Tc

PID KP = 0.6K̄P

TI = 0.5Tc

TD = 0.125Tc

The following procedure can be used to fix the controller parameter:

1. mount the system in closed loop with TI = ∞ and TD = 0 and vary the pro-
portional gain of the controller, KP till the time response gives oscillations as in
Fig. 5.5

2. determine the values of the parameters K̄P and Tc from this time response

3. compute the controller parameters using Tab. 5.2

4. compute the closed-loop transfer function and check if the performances are
obtained

5. adjust the parameters of the controller if necessary to obtain the desired
performances

5.3. Design Based on Empirical Methods 137

Example 5.3.2 To show how the Ziegler-Nichols method in case of unstable system
works, let us consider the following dynamical system:

G(s) =
1

s (0.1s + 1) (0.2s + 1)

It is important to notice that this transfer function has a pole at the origin and
therefore, the first method will not work.

Now if we mount this system with a proportional controller, we get the following
characteristic equation:

1 + KP
1

s (0.1s + 1) (0.2s + 1)
= 0

The corresponding Routh Hurwitz table is given by:

s3 1 50
s2 15 50KP

s1 15×50−50KP

15 0
s0 KP 0

The critical gain, K̄P is given by K̄P = 15. The corresponding complex poles are
solution of the following equation:

15s2 + 50K̄P = 0

which gives:

s = ± j
√

50 = ±7.0711 j

The period Tc is equal to
√

50.
If we choose a PID controller its parameters are given by:

KP = 0.6K̄P = 9

TI = 0.5Tc = 0.4443

TD = 0.125Tc = 0.1111

The closed-loop dynamics with this controller is given by:

F(s) =
KP

(
TITD s2 + TI s + 1

)

0.02TI s4 + 0.3TI s3 + (TI + KPTITD) s2 + KPTI s + KP

The step response of the closed-loop dynamics is illustrated by Fig. 5.6.

To close this section let us see how we can design PID controllers (P, PI, PID)
using the Ziegler-Nichols frequency methods (these methods are mainly based on
the idea to assure for the closed-loop dynamics a margin phase between 45o and 50o

and gain margin greater than 8 db). For this purpose, let us assume that the dynamics
of the system in open loop is described by:

G(s) = k
1

Πn
i=1(τi s + 1)

138 5. Design Based on Transfer Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.6 Step response of the closed-loop dynamics with a PID controller

where k is the gain of the system and τi, i = 1, · · · , n are the different constant time
of the system.

By defining K̄P as the gain in open loop that assures the gain margin and the
phase margin, and τ1 and τ2 as follows:

τ1 = max{τ1, · · · , τn}
τ2 = max{{τ1, · · · , τn} − {τ1}}

the controller parameters are fixed by Tab. 5.3 . The expression of the PID controller
is given by:

C(s) = KP
(τ1s + 1)(τ2s + 1)

(τ1 + τ2)s

It is important to notice that the open transfer function is given by:

T (s) = C(s)G(s) (5.1)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

kKP
Πn

i=1(τi s+1) =
K

Πn
i=1(τi s+1) for P controller, with K = kKP

kK(TI s+1)
TI sΠn

i=1(τi s+1) =
K(TI s+1)

sΠn
i=1(τi s+1) for PI controller, with K = kKP

TI

kKP(TI TDs2+TI s+1)
TI sΠn

i=1(τi s+1) =
K(TI TD s2+TI s+1)

sΠn
i=1(τi s+1) for PID controller, with K = kKP

TI

The following procedure can be used to design the appropriate controller using
the following steps:

5.3. Design Based on Empirical Methods 139

Table 5.3 Ziegler Nichols method in frequency domain

Controllers Parameters

P KP =
K̄P
k

PI KP =
KP

k
TI = τ

1

PID KP =
K̄P
k

TI = τ
1 + τ2

TD =
τ1τ2

TI

1. determine the open loop transfer function with the compensator as in 5.1

2. plot the bode diagram for K = 1 and determine the gain K̄P that gives the desired
phase margin and a gain margin greater than 8 db

3. determine the gain, KP of the controller using:

KP =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

K̄P

k fpr P controller
K̄PTI

k fpr PI controller, with TI = τ
1

K̄PTI
k fpr PID controller, with TI = τ

1 + τ2, TD =
τ1τ2

TI

4. check if the performances of the system are satisfied. In case of negative answer,
adjust the controller parameters to get such performances.

Example 5.3.3 To show how this method work let us consider the following
dynamical system:

G(s) =
4

(0.1s + 1)(0.2s + 1)(0.5s+ 1)

Our goal is to design a PID controller that provides the following performances:

1. stable system

2. margin phase between 45o and 50o

3. margin gain greater than 8 db

First of all following the step of the previous, we have:

τ1 = 0.5

τ2 = 0.2

which gives:

TI = τ
1 + τ2 = 0.5 + 0.2 = 0.7

TD =
τ1τ2

TI
=

0.2 × 0.5
0.7

= 0.1429

140 5. Design Based on Transfer Function

The gain, K̄P that gives the desired phase margin and gain margin greater than
8 db is given by:

K̄P = 3.8019

which gives the following gain for the PID controller:

KP =
K̄PTI

k
=

3.8019 × 0.7
4

= 0.6653

The transfer function of the closed-loop dynamics with this controller is given by:

F(s) =
kKPTDs2 + kKP s + kKP

TI

0.01s4 + 0.17s3 + (0.8 + KKPTD) s2 + (1 + kKP) s + kKP
TI

The step response of the closed-loop dynamics is illustrated by Fig. 5.7.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.7 Step response of the closed-loop dynamics with a PID controller

Remark 5.3.4 For the expression of the controller in the discrete-time and its an-
alytical expression of the recurrent equation for real-time implementation, we will
cover this in the next section.

5.4. Design Based on Root Locus 141

5.4 Design Based on Root Locus

The root locus technique is a powerful tool for analysis and design of control sys-
tems. In this section, we will use it to design a controller that will guarantee the
desired performances. The model of the system is supposed to be given in term of a
transfer function.

The root locus technique can be used to design the classical controllers. The
technique behind this method consists of choosing the controller gains that make
the loci passes through given poles that come from the performances. In the rest of
this section we will assume that the transfer function G(s) is given by the following
expression:

G(s) = k
Πn

i=1(s + zi)

Πn
i=1(s + pi)

where k, −zi and −pi are respectively the gain, the zero and the pole of the system.
Let us firstly concentrate on the design of the proportional controller. Let its

transfer function be given by:

C(s) = KP

where KP is the gain of the controller to be determined.
As it is well known from basic control course, the proportional controller acts si-

multaneously on the transient and the steady state regimes but its capacity is limited.
It can reduce the error but never makes it equal to zero.

To compute the gain of the controller we will use the following procedure (see
Boukas [1]):

1. compute the characteristic equation of the closed-loop dynamics, i.e.: 1+KpG(s)
and let K = kKp

2. draw the root locus for K varying from 0 to infinity

3. determine the intersection between the loci and the line corresponding to the
desired damping ratio ξ, (cos θ = ξ) and get the dominant pair of poles. Let sd

be the one with the positive imaginary part.

4. compute the gain K that gives the pole sd, then obtain the desired gain for the
proportional controller by:

KP =
Πn

i=1|(sd + pi)|
KΠm

i=1 |(sd + zi)|
The lines that we should include in the control loop during the implementation

part are:

compute the system’s error, e

compute the control law using u = Kp*e

send the control and wait for the next interrupt

142 5. Design Based on Transfer Function

Example 5.4.1 To illustrate this design approach, let us consider a physical system
that consists of a dc motor that drives a mechanical load that we would like to
control in position.

The transfer function of this system is given by the following expression:

G(s) =
k

s(τs + 1)

with k = 5, and τ = 1s.
From basic control theory, we can see that the system is unstable. Our desire is

to make it stable in the closed-loop with an overshoot less or equal to 5 % and a
steady state error equal to zero.

From basic control theory, a proportional controller is enough to reach our goal.
To obtain the controller gain, let us follow the steps of the precedent procedure. The
characteristic equation is:

1 + Kp
5

s(s + 1)
= 0

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.92

0.98

0.140.30.440.580.720.84

0.92

0.98

0.20.40.60.81

0.140.30.440.580.720.84

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.8 Root locus of 1
s(s+1)

The root locus of the closed-loop dynamics is given by Fig. 5.8 and from which
we get:

sd = −0.5 + j0.5

5.4. Design Based on Root Locus 143

and the corresponding gain is K = 0.5. This gives the following gain for the
controller:

KP =
K
5
= 0.1

The behavior of the closed-loop dynamics is illustrated in Fig. 5.9. The simulation
results show the efficiency of the designed controller. The closed-loop dynamics is
stable and the overshoot is less than 5 % as it is expected.

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.9 Step response of 0.5
s(s+1)+0.5

Remark 5.4.1 It is important to notice that the best setting time at 2 % that we can
get with this type of controller

ts =
4
ζwn
=

4
0.5
= 8 sec

where ζ and wn are respectively the damping ratio and the natural frequency of the
closed-loop dynamics. This can be checked from the Fig. 5.9.

For the design of a proportional and integral controller the same technique can
be used. If we let the transfer function of this controller be as follows:

C(s) = KP +
KI

s
= KP

s + z
s

, z =
KI

KP

where the gains KP and KI have to be determined.

144 5. Design Based on Transfer Function

This controller may be used to act simultaneously on the transient and the steady
state regimes and therefore overcomes what the proportional controller alone can
not perform. Most often the proportional and integral controller is used to make the
error equal to zero for a step input and fix the overshoot and the settling time. The
following procedure can be used (see Boukas [1]):

1. with the damping ratio and the settling time values, we can determine the
dominant pole with the positive imaginary part, sd

2. using this pole and the angle condition, we can determine the angle of the
controller’s zero, i.e.:

α = π −
m∑

i=1

∠(sd + zi) +
n+1∑
i=1

∠(sd + pi)

The value of the zero is then given by:

z = σ +
�(sd)
tan(α)

with σ = 3
ζωn

if the settling is fixed at 5 %

3. plot the loci of

K
s + z

s

Πm
i=1(s + zi)

Πn
i=1(s + pi)

and determine the gain K that gives the pole sd using

K =
Πn+1

i=1 |(sd + pi)|
Πm+1

i=1 |(sd + zi)|
4. the controller gains are given by:

KP =
K
k

KI = zKP

To obtain the corresponding discrete-time transfer function we can use one of the
approaches presented earlier. The third approach (trapezoidal method) is used here
and it consists of replacing s by 2

T
z−1
z+1 , where T is the chosen sampling period. Using

this we get:

C(z) =

(
KI T

2 + KP

)
z + KI T

2 − KP

z − 1

This gives the relationship that links the control and the error at sample k:

uk = uk−1 + aek + bek−1 (5.2)

where a = KIT
2 + KP and b = KI T

2 − KP
The lines that we should include during the implementation in the control loop

are:

5.4. Design Based on Root Locus 145

compute the system’s error, e

compute the control law using the controller expression

save the present error and the present control

send the control and wait for the next interrupt

Example 5.4.2 To illustrate this design approach, let us consider a physical system
that consists of a dc motor that drives a mechanical load that we would like to
control in speed.

The transfer function of this system is given by the following expression:

G(s) =
k

τs + 1

with k = 5, and τ = 1s.
From basic control theory, we can see that the settling time of the open-loop

system with 5 % is ts = 3τ = 3s. The system doesn’t have an overshoot and the
response is a little bit slow.

Our desire is to make the system faster with an overshoot less or equal to 5 %, a
settling time ts at 5% less or equal to 1s, and a steady state error for a step input
equal to zero.

To solve this design problem, let us proceed in continuous-time domain. For this
purpose, let us first of all mention that the type of the system is equal to zero and
therefore to guarantee that the error is equal to zero at the steady state for a step
input, we need at least a proportional and integral controller.

Following the procedure of the proportional integral controller we have:

1. the dominant pole with the positive imaginary value is given by:

sd = −ζωn + jωn

√
1 − ζ2

= −3 + 3 j

This comes from the fact that we have:

ζ = −
log
(

d
100

)
√
π2 +

(
log
(

d
100

))2 = 0.6901

ωn =
3
ζts
= 4.3472

2. using this pole, we get:

α = π − 0 + ∠(−3 + 3 j) + ∠(−2 + 3 j)

= 180 + 135 + 123.6901

= 78.6901

146 5. Design Based on Transfer Function

which gives the following value for the zero

z = −3 − 3
tan(78.6901)

= −3.6

3. the loci of the controlled system is given by Fig. 5.10, from which we conclude
that K = 4.73.

4. the controller gains are:

KP = 0.9460

KI = 3.4056

The root locus of the system is illustrated in Fig. 5.10.

−12 −10 −8 −6 −4 −2 0 2
−4

−3

−2

−1

0

1

2

3

4

0.978

0.994

0.30.520.70.820.90.95

0.978

0.994

246810

0.30.520.70.820.90.95

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.10 Root locus of s+z
s(s+1) , z = −3.6

The behavior of the closed-loop dynamics is illustrated in Fig. 5.11. The simula-
tion results show that the overshoot is over what we desire while the settling time is
acceptable. To reduce the overshoot, we can redo the design by pushing a little bit
the zero to the left and get new set of gains for the controller.

In some circumstances, we may have a system that has acceptable steady regime
but the transient one needs some improvements. In this case the proportional and

5.4. Design Based on Root Locus 147

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.11 Step response of 5KP s+5KI
s2+(1+5KP)s+5KI

derivative controller can be used. The transfer function of this controller is given
by:

C(s) = KP + KD s

where KP and KD are the controller gains that we should compute in order to satisfy
the desired performances.

To design the proportional and derivative controller the following procedure can
be used (see [1]):

1. with the damping ratio and the settling time values, we can determine the
dominant pole with the positive imaginary part, sd

2. using this pole and the angle condition, we can determine the angle of the con-
troller zero as it was done for the proportional and integral controller previously,
i.e.:

α = π −
m∑

i=1

∠(sd + zi) +
n∑

i=1

∠(sd + pi)

The value of the zero is then given by:

z = σ +
�(sd)
tan(α)

with σ = 3
ζωn

if the settling fixed at 5 %

148 5. Design Based on Transfer Function

3. plot the loci of

K
(s + z)Πm

i=1(s + zi)

Πn
i=1(s + pi)

and determine the gain K that gives the pole sd using

K =
Πn

i=1|(sd + pi)|
Πm+1

i=1 |(sd + zi)|
4. the controller gains are given by:

KD =
K
k

KP = zKD

The corresponding discrete-time version of this controller, using the same
transformation as for the proportional and integral controller, is given by:

C(z) =
(KP +

2KD
T)z + (KP − 2KD

T)

z + 1

This gives the relationship that links the control and the error at sample k:

uk = −uk−1 + aek + bek−1 (5.3)

where a = KP +
2KD

T and b = KP − 2KD
T .

Remark 5.4.2 For this controller the backward approach is more appropriate for
the derivative action and the trapezoidal for the integral action. In tis case we get:

u(k) = ae(k) + be(k − 1)

with a = KP +
KD
Ts

and b = −KD
Ts

.

The lines that we should include in the control loop are:

compute the system’s error, e

compute the control law using the controller expression

save the present error and the present control

send the control and wait for the next interrupt

Example 5.4.3 To illustrate this design approach, let us consider a physical system
that consists of a dc motor that drives a mechanical load that we would like to
control in position.

The transfer function of this system is given by the following expression:

G(s) =
k

s(τs + 1)

with k = 5, and τ = 1s.
The settling time of the system with 5 % is ts = 3τ = 3s. The system is unstable.

Our desire is to make the system stable and faster with an overshoot less or equal
to 5 % and a settling time ts at 5% less or equal to 0.5s.

5.4. Design Based on Root Locus 149

To solve this design problem, let us proceed in continuous-time domain. For this
purpose, let us first of all mention that the type of the system is equal to one and
therefore the error is equal to zero at the steady state for a step input. For the tran-
sient to be improve we need at least a proportional controller but here we use a
proportional and derivative controller to get better settling time.

Following the previous procedure we have:

1. the dominant pole with the positive imaginary value is given by:

sd = −ζωn + jωn

√
1 − ζ2

= −6 + 6 j

2. using this pole, we get:

α = π + ∠(−6 + 6 j) + ∠(−5 + 6 j)

= 180 + 135 + 129.8056

= 84.8056

which give the following value for the zero

z = −6 − 3
tan(84.8056)

= −6.7273

3. the loci of the controlled system is given by Fig. 5.12, from which we conclude
that K = 10.8.

4. the controller gains are:

KD = 2.1600

KP = 14.5310

The simulation results illustrated in Fig. 5.13 show that we have an overshoot
greater than the one we need but the settling time is acceptable. To reduce the
overshoot we can move the zero a little bit to left and get new set of gains for the
controller.

For some systems, we need to improve simultaneously the transient and the
steady regimes. In this case, the most appropriate choice is the proportional, integral
and derivative controller. Its transfer function is given by:

C(s) = KP +
KI

s
+ KD s

= KD
(s + a1)(s + a2)

s

with KP = KD (a1 + a2) and KI = KDa1a2

To design the proportional, integral and derivative controller, the following
procedure can be used (see [1]):

150 5. Design Based on Transfer Function

−25 −20 −15 −10 −5 0 5
−8

−6

−4

−2

0

2

4

6

8
0.30.560.740.840.910.955

0.98

0.995

0.30.560.740.840.910.955

0.98

0.995

5101520

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.12 Root locus of s+z
s(s+1) , z = 6.7273

1. to determine the parameter a1 (that is related to the first zero), we choose the
slow pole and proceed with a zero-pole cancelation. If we denote by −ps the
slow pole, the parameter a1 is then given by:

a1 = ps

2. with the damping ratio value and the settling time, we can determine the
dominant pole with the positive imaginary part, sd

3. using this pole and the angle condition, we can determine the angle of the
controller zero that corresponds to s + a2, i.e.:

α = π −
m∑

i=1

∠(sd + zi) +
n∑

i=1

∠(sd + pi)

Remark 5.4.3 It is important to notice that a pole has been cancelled by the
zero at position −a1 and a new pole at 0 has been added to the equation.

The value of the second zero is then given by:

a2 = σ +
�(sd)
tan(α)

with σ = 3
ζωn

if the settling fixed at 5 %

5.4. Design Based on Root Locus 151

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.13 Step response of s+z
s(s+1) , z = 6.7273

4. plot the loci of

K
(s + a2)Πm

i=1(s + zi)

sΠn−1
i=1 (s + pi)

and determine the gain K that gives the pole sd using

K = |sd |
Πn−1

i=1 |sd + pi|
|sd + a2|Πm

i=1|sd + zi|
5. the controller gains are given by:

KD =
K
k

KP = KD (a1 + a2)

KI = KDa1a2

The corresponding discrete-time version of this controller, using the same
transformation as for the proportional and integral controller, is given by:

C(z) =
KPz2 +

(
KI T

2 +
2KD

T

)
z +
((

KI T
2 +

2KD
T

)
− KP

)

(z − 1)(z + 1)

This gives the relationship that links the control and the error at sample k:

uk = uk−2 + aek + bek−1 + cek−2 (5.4)

152 5. Design Based on Transfer Function

where a = KP +
KI T

2 +
2KD

T , b = KIT − 4KD
T and c = KI T

2 +
2KD

T − KP.

Remark 5.4.4 As we said regarding the schema for the discretization of the con-
troller we can use here also the trapezoidal schema for the integral action and the
backward schema for the derivative one. In this case we get:

u(k) = u(k − 1) + ae(k) + be(k − 1) + ce(k − 2)

with a = KP +
KD
Ts
+ KI Ts

2 , b = −KP − 2 KD
Ts
+ KI Ts

2 , c = KD
Ts

;

The lines that we should include in the control loop are:

compute the system’s error, e

compute the control law using the controller expression

save the present error and the present control

send the control and wait for the next interrupt

Example 5.4.4 To show how this procedure can be used to design a proportional,
integral and derivative controller, let us consider the following system with:

G(s) =
3

(s + 1)(s + 3)

For this system we would like to guarantee that the steady state error for a step
input is equal to zero with an overshoot less or equal to 5 % and a settling time
about 1s. Following the steps of the previous procedure we get:

1. the slow pole in this case is equal to −1 and therefore, the parameter is then
a1 = 1.

2. the dominant pole with the positive imaginary value is given by:

sd = −ζωn + jωn

√
1 − ζ2

= −3 + 3 j

3. using this pole, we get since the pole −1 has been cancelled with the zero at
−a1:

α = π + ∠(−3 + 3 j) + ∠(3 j)

= 180 + 135 + 90

= 45

which give the following value for the zero

a2 = −3 +
3

tan(45)
= −6

4. the loci of the controlled system is given by Fig. 5.14, from which we conclude
that K = 2.99 is the appropriate one that give the closest dominant poles and
the damping ratio (sd = −2.99 ± 2.99 j, ζ = 0.707, d = 4.51 % wn = 4.23).

5.4. Design Based on Root Locus 153

−20 −15 −10 −5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

0.997

0.40.660.820.90.9450.974

0.99

0.997

2.557.51012.51517.5

0.40.660.820.90.9450.974

0.99

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.14 Root locus of s+a2
s(s+3) , a2 = 6

5. the controller gains are:

KD = 0.9967

KP = 6.9769

KI = 5.9802

The closed-loop transfer function is given by:

F(s) =
kKD s2 + kKP s + kKI

s3 + (4 + kKD) s2 + (3 + kKP) s + kKI

The behavior of the closed-loop dynamics is illustrated in Fig. 5.15
The simulation results show the efficiency of the designed controller.

The phase lead controller can be used to approximate the proportional and
derivative one. The transfer function of this controller is given by:

C(s) = KP
aT s + 1
T s + 1

where KP, a and T are parameters to be computed with a > 1.
This controller offers the advantage to improve the transient regime. This can be

obtained if the placement of the pair pole/zero is well positioned since we can pull
the asymptotic branches to get a smaller settling time.

154 5. Design Based on Transfer Function

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.15 Step response of s+a2
s(s+3) , a2 = 6

The following procedure can be used to design such controller (see [1]):

1. with the damping ratio and the settling time values, we can determine the
dominant pole with the positive imaginary part, sd

2. by varying the system gain, try to get the desired dominant poles, if it is not pos-
sible, determine the contribution in angle of the pair pole/zero that the controller
has to add

3. place the pole and the zero of the phase lead controller in order to compensate
for this desired angle. Among the possibilities that can be used in this case, we
can place the zero at a value equal to the real part of the dominant poles and
then using the angle condition we can determine the pole position.

4. determine the value for the controller gain in order to satisfy the error

5. check if the desired specifications are obtained. In case of negative answer
replace the pair pole/zero of the controller and repeat the design procedure

Example 5.4.5 To show how the procedure of the phase lead controller can be ap-
plied, let us consider the position control for a dc motor driving a mechanical load
as it was considered before. Let the dynamics be given by:

G(s) =
2

s (s + 2)
.

5.4. Design Based on Root Locus 155

Our goal in this example is to guarantee that the closed-loop system is stable,
with a settling time at 5% equal to 0.5 s, an overshoot less or equal to 5% and
having a zero error for a step input.

First of all notice that the time constant of the system is equal to 0.5 s which
may give the best settling time at 5 % with a proportional controller equal to 6 s.
Our requirement in regard to the settling time is far from this value and therefore a
proportional controller is not sufficient for our case.

To respond to these specifications a phase lag controller can be used and its
design can be done using the previous procedure.

1. based on the settling time and the overshoot requirements we get the following
dominant pole with positive imaginary value:

sd = −6 + 6 j

This desired poles can not be obtained by varying the gain of a proportional
controller and therefore a design of a phase lead controller is needed. From
this value for the dominant pole, we have:

∠G(sd) = ∠(2) − ∠(−6 + 6 j) − ∠(−5 + 6 j)

= 0 − 135 − 123.6901 = −258.6901

The controller can be designed to bring an angle 258.6901 − 180 = 78.6901.
This is obtained if ∠(aT s + 1) − ∠T s + 1 = 78.6901

2. following the method we used in the procedure, we get aT = 1
6 and therefore

∠(T s + 1) = 90 − 78.6901 = 11.3099. This gives the location of the controller
pole. Using now the following trigonometric relation we get:

tan (11.3099) =
�(sd)

1
T − |�(sd)|

which gives T = 0.0278. This in turn implies that a = 1
6T = 5.9952.

3. The open-loop transfer function of the compensated system is then given by:

Gc(s) = K
(s + 6)

s(s + 2)(s + 35.9712)

which gives the following gain, K that corresponds to the desired pole sd:

K =
|sd |sd + 2||sd + 35.9712||

|sd + 6| = 311.7120

The corresponding controller gain is KP =
K
ak = 25.9968. The root locus of the

compensated system is illustrated by Fig. 5.16.
The closed-loop transfer function with this controller is given by:

F(s) =
2aKP

(
s + 1

aT

)

s3 +
(
2 + 1

T

)
s2 +

(
2
T + 2aKP

)
s + 2KP

T

156 5. Design Based on Transfer Function

−40 −35 −30 −25 −20 −15 −10 −5 0 5 10
−60

−40

−20

0

20

40

60
0.070.150.230.320.440.58

0.74

0.92

0.070.150.230.320.440.58

0.74

0.92

10

20

30

40

50

10

20

30

40

50

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.16 Root locus of
s+ 1

aT

s(s+2)(s+ 1
T)

The behavior of the closed-loop dynamics is illustrated in Fig. 5.17
The simulation results show the efficiency of the designed controller. It is clear
that the performances are a little bit far from the desired ones. This is due to the
place of the zero of the controller that we can from see from Fig. 5.16. We can
play with this position by pushing it to the left and we will get what we want.

Remark 5.4.5 It is important to notice that phase lead controller or the phase lag
or the phase lead-lag controllers are not able to to make the error equal to zero
since they can’t improve the type the system. But they can improve it if it is constant.

The phase lag controller can be used to approximate the proportional and integral
one. Its task is to improve the steady state regime if it is well designed. The pair
pole/zero of the controller is put close to the origin.The transfer function of this
controller is given by:

C(s) = Kp
aT s + 1
T s + 1

where KP, a and T are parameters to be computed with a < 1.

5.4. Design Based on Root Locus 157

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.17 Step response of F(s) =
2aKP(s+ 1

aT)
s3+(2+ 1

T)s2+(2
T +2aKP)s+

2KP
T

To have an idea of the design approach let us assume that the system to be
controller is described by:

G(s) = k
Πm

i=1(s + zi)

Πn
i=1(s + pi)

where k is the gain, −zi, i = 1, · · · ,m and −pi, i = 1, · · · , n are respectively the zeros
and the poles of the system.

In fact, if we write the transfer function of the controller as:

C(s) = KP
s + z
s + p

with KP = aKp, z = 1
aT and p = 1

T .
With the gain of the controller only, the constant error is given by:

K1 = kKP
Πm

i=1zi

Πn
i=1 pi

In order to improve the steady state error, we would get a constant error, K2,
greater than K1. By introducing the zero and the pole of the controller this constant
error is given by:

K2 = kKP
z

p

Πm
i=1zi

Πn
i=1 pi

158 5. Design Based on Transfer Function

Our desire is that the new pair of pole/zero of the controller doesn’t change the
transient regime which is acceptable for the designer and the main goal is to change
the steady state regime only by reducing the error.

Using the expressions of K1 and K2, we get:

K1
Πm

i=1zi

Πn
i=1 pi

= kKP =
K2

z
p
Πm

i=1zi

Πn
i=1 pi

This implies that:

a =
p
z
=

K1

K2
< 1

Therefore, if we choose T in a way that the pole and the zero are close each other
(to be cancelled in the open transfer function of the system), the open loop transfer
function of the controlled system becomes:

C(s)G(s) = kKP
Πm

i=1(s + zi)

Πn
i=1(s + pi)

The idea we will use here is mainly based on the improvement of the steady state
error. The following procedure can be used to design such controller (see [1]):

1. with the damping ratio and the settling time values, we can determine the pole
dominant with the positive imaginary part, sd and determine the gain that gives
such poles. Compute the corresponding constant error.

2. determine the constant error, K1, with a proportional controller. Determine the
constant error, K2 when the pole and the zero of the controller are considered.
The parameter a of the controller is given by:

a =
K1

K2

This parameter, a is also given by:

a =
p
z

3. the value for T is chosen in a way to make the pole and the zero of the controller
are close each other and at the same time close to the origin to improve the
steady error. This choice will imply that the angle contribution of the controller
is very small.

4. determine the gain, K̄P, using the following relation:

K̄P =

[|sd + p|
|sd + z|

] [
Πn

i=1|sd + pi|
Πn

i=1|sd + zi|
]

then detrmine the controller gain, KP by:

KP =
K̄P

ak

5.4. Design Based on Root Locus 159

5. check if the specifications are similar to the desired ones. In the case of negative
answer adjust the placement of the pole and the zero of the controller and repeat
the procedure

Example 5.4.6 To show how the procedure of the phase lag controller design can
be applied, let us consider the position control for a dc motor driving a mechanical
load as it was considered before. Let the dynamics be given by:

G(s) =
2

s (s + 2)
.

Our goal in this example is to guarantee that the closed-loop system is stable,
with a settling time at 5% equal to 3 s, an overshoot less or equal to 5% and having
an error for a ramp input less or equal to 0.01.

To respond to these specifications a phase lag controller can be used and its
design can be done using the previous procedure.

1. based on the settling time and the overshoot requirements we get the following
dominant pole with positive imaginary value:

sd = −1 + 1 j

The root locus the system with a proportional controller is given by Fig. 5.18.

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
0.76

0.86

0.94

0.985

0.160.340.50.640.76
0.86

0.94

0.985

0.511.52

0.160.340.50.64

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.18 Root locus of 1
s(s+2)

160 5. Design Based on Transfer Function

The gain that gives this pair of poles is given by:

K1 =
|sd ||sd + 2|

1
= 2.0

This correspond to an error equal:

e(∞) =
1
2
= 0.5

which far from the desired one.

2. To get our error we need a constant K2 equal to 100. This implies that the factor
a of the controller is given by:

a =
K1

K2
=

2
100
= 0.02 =

p

z

3. since the pole and the zero of the controller have to be placed closed to each
other and close to the origin. If we place the zero at −0.3 which a pole for the
controller at −0.006 using the fact that a = p

z . The value of T can be computed
using either the expression of the zero of the one of the pole. This gives T =
166.6667.

4. The open-loop transfer function of the compensated system is then given by:

Gc(s) = K
(s + 0.3)

s(s + 2)(s + 0.006)

which gives the following gain, K that corresponds to the desired pole sd:

K =
|sd |sd + 2||sd + 0.01||

|sd + 0.5| = 2.3102

The corresponding controller gain is KP =
K
ak = 57.7549. The root locus the

system with a proportional controller is given by Fig. 5.19.
The closed-loop transfer function with this controller is given by:

F(s) =
2aKP

(
s + 1

aT

)

s3 +
(
2 + 1

T

)
s2 +

(
2
T + 2aKP

)
s + 2KP

T

The behavior of the closed-loop dynamics is illustrated in Fig. 5.20
The root locus of the compensated system unfortunately doesn’t pass through
the desired poles. The closed ones are sd = −0.8082±1.14 j that corresponds to
a gain K = 2.56, that gives a gain KP = 64. With this gain we get an overshoot
approximately equal to 11 %.
The behavior of the closed-loop dynamics with this new setting is illustrated in
Fig. 5.21

Remark 5.4.6 It is important to notice that the overshoot is a little bit far from the
desired one and it is the same for the settling time. This discrepancy is due to the
presence of the zero that he introduce high overshot once it is close to the origin.

5.4. Design Based on Root Locus 161

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−2.5 −2 −1.5 −1 −0.5 0 0.5
−3

−2

−1

0

1

2

3
0.080.170.280.380.50.64

0.8

0.94

0.080.170.280.380.50.64

0.8

0.94

0.5

1

1.5

2

2.5

0.5

1

1.5

2

2.5

Fig. 5.19 Root locus of s+0.3
s(s+2)(s+0.06)

And also due to the fact the cancellation pole zero of the controller is not correct
since the pole is a little bit far from the zero.

The phase lead-lag controller is designed to approximate the PID controller. It
has the advantage as the PID has to act on both the transient and the steady regimes.
Previously we have seen how to design the phase lead controller and the phase lag
controller. The first one is used to act on the transient while the second acts of the
steady state regime.

The transfer function of this controller is given by:

C(s) = KP

s + 1
a1T1

s + 1
T1

s + 1
a2T2

s + 1
T2

where KP is the controller gain, a1 with a1 > 1 and T1 are the parameter of the lead
part, while a2 with a2 < 1 and T2 are the parameter of the phase lag part.

To design such controller, we use the approaches used to design separately the
phase lead and the phase lag controller. First, without the phase lag controller, we
design the phase lead controller to improve the transient regime. After, we add the
phase lag controller to improve the steady state regime while keeping the transient
regime as it was improved by the phase lead controller.

The following procedure procedure can be used to design the phase lead-lag
controller:

162 5. Design Based on Transfer Function

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.20 Step response of F(s) =
2aKP(s+ 1

aT)
s3+(2+ 1

T)s2+(2
T +2aKP)s+

2KP
T

1. without the phase lead-lag controller, see if with a proportional controller, we
can guarantee the desired performances. Analyze the system with a proportional
controller and determine how much the transient regime has to be improved

2. design the phase lead controller (gain, pole and zero)

3. analyze the compensated system with a phase lead controller and determine
how much the steady state regime has to be improved

4. design the phase lag controller (gain, pole and zero)

5. check if the specifications are similar to the desired ones. In the case of negative
answer adjust the placement of the pole and the zero of the controller and repeat
the procedure

Example 5.4.7 To see how the procedure for the design of phase lead-lag controller
applies, let us consider the following dynamical system:

G(s) =
2

s(s + 2)

For this system with a proportional controller, the best settling time at 5 % we can
obtain is equal to 3 s. We can also get an overshot less or equal to 5 %. The steady
state error for a step input is equal to zero, while the one for a ramp is constant and

5.4. Design Based on Root Locus 163

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.21 Step response of F(s) =
2aKP(s+ 1

aT)
s3+(2+ 1

T)s2+(2
T +2aKP)s+

2KP
T

can be fixed by acting on the gain controller. A ”trade-off ” between the overshoot
and the steady state error has to be done. It is clear that the proportional controller
will not give the good trade-off. The phase lead-lag controller will give the better
one.

For this purpose let us assume that we desire the following specifications:

1. stable system in closed loop

2. an overshoot less or equal to 5 %

3. a settling time at 5 % about 2 s

4. a steady state error for a ramp input less or equal to 0.01

To design the phase lead-lag controller that provides the desired performances,
let us follow the previous procedure:

1. From Fig. 5.18, it is clear that the settling time requirement can be obtained
using a proportional controller. From the specifications, we get the dominant
pair of poles that gives what we are looking for:

sd = −1.5 + 1.5 j

164 5. Design Based on Transfer Function

This desired pair of poles can not be obtained by just varying the gain of the
proportional controller. A phase lead controller is needed for this purpose. The
phase of the transfer function at sd is given by:

∠G(sd) = ∠(2) − ∠(0.5000 + 1.5000 j)− ∠(−1.5000 + 1.5000 j)

= 0 − 71.5651− 135 = 206.5651

The controller phase lead controller can be used to bring the angle contribution
of 206.5651 − 180 = 26.5651. This can be obtained if we impose that ∠(sd +

1
a1T1

) − ∠(sd +
1

T1
) = 26.5651.

Following the procedure of the phase lead controller design, if we impose that
the zero of the controller is place at the real part of the dominant poles, we get:

a1T1 =
1

1.5

and therefore, we have:

∠(sd +
1
T

) = 90 − 26.5651 = 63.4349

To get the position of the pole, i.e:, we use the following trigonometric relation:

1
T1
= |�(sd)| + �(sd)

tan (11.3099)
= 2.2500

which implies T1 = 0.4444. And from the relation a1T1 =
1

1.5 , we get a1 =

1.5002.

2. for the design of the phase lag controller, notice that the compensated system
with a phase lead controller has the following open transfer function:

G1(s) = a1kKp

s + 1
a1T1

s(s + 2)
(
s + 1

T1

)

with k = 2.
The root locus of this transfer function is illustrated by Fig. 5.22
The gain K1 that gives the poles that are close to the desired poles is given by:

K1 = 3.87

The corresponding poles are sd = −1.5 ± 1.54 j with an overshoot approxima-
tively equal to 5 %.
The error constant with this controller is given by:

K2 = lim
s→0

sa1kKp

s + 1
a1T1

s(s + 2)
(
s + 1

T1

) = a1kKp
1

a1T1

T1

2
= KP

5.4. Design Based on Root Locus 165

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−2.5 −2 −1.5 −1 −0.5 0 0.5
−6

−4

−2

0

2

4

6
0.040.090.140.20.280.4

0.56

0.8

0.040.090.140.20.280.4

0.56

0.8

1

2

3

4

5

1

2

3

4

5

Fig. 5.22 Root locus of
s+ 1

a1T1

s(s+2)
(
s+ 1

T1

)

To get the desired error we need to fix Kp to 100. This gives the following
parameter, a2 for the phase lag controller:

a2 =
K1

K2
=

3.87
100

= 0.0387

Since the procedure for the design of the phase lag controller requires that we
have to place the pole and the zero of the controller close each other and close
to the origin. A proper choice consists of placing the zero at −0.1. This implies
using the relation

a2 =
p
z

that the pole is placed at p = −0.0039 and since the pole is equal to:

p = − 1
T2

we get T2 = 256.4103.
The open loop transfer function of the system with the phase lead-lag controller
is give by:

G2(s) = a1kKp

s + 1
a1T1

s(s + 2)
(
s + 1

T1

)

166 5. Design Based on Transfer Function

with k = 2.
The root locus of this transfer function is illustrated by Fig. 5.23

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−2.5 −2 −1.5 −1 −0.5 0 0.5
−6

−4

−2

0

2

4

6
0.040.090.140.20.280.4

0.56

0.8

0.040.090.140.20.280.4

0.56

0.8

1

2

3

4

5

1

2

3

4

5

Fig. 5.23 Root locus of

(
s+ 1

a1T1

)(
s+ 1

a2T2

)

s(s+2)
(
s+ 1

T1

)(
s+ 1

T2

)

From this figure we get the closest poles of the desired ones are:

sd = −1.5 ± 1.31 j

that gives an damping ratio about 0.753 and an overshoot equal to 2.73 %.
The gain that gives this pair of poles is equal to:

K̄P = 3.35

From this data, we get the following gain for the controller:

KP =
K̄P

a1a2k
=

3.35
2 × 1.5002 × 0.0387

= 28.8506

The expression of the designed controller is given by:

C(s) = KP

s + 1
a1T1

s + 1
T1

s + 1
a2T2

s + 1
T2

with KP = 28.8506, a1 = 1.5002, T1 = 0.4444, a2 = 0.0387 and T2 = 256.4103.

5.5. Design Based on Bode Plot 167

The closed-loop transfer function with this controller is given by:

F(s) =
kKP

(
a1T1a2T2s2 + (a1T1 + a2T2)s + 1

)

b4s4 + b3s3 + b2s2 + b1s + b0

with b4 = T1T2, b3 = (T1 + T2 + 2T1T2), b2 = (1 + 2(T1 + T2) + kKPa1T1a2T2),
b1 = (2 + kKP(a1T1 + a2T2)) and b0 = kKP.
The behavior of the closed-loop dynamics is illustrated in Fig. 5.24

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.24 Step response of F(s)

It seems that the settling time is a little bit far from the desired one. To overcome
this, we play with the positions of the poles and the zeros of the controller and repeat
the procedure.

5.5 Design Based on Bode Plot

The design methods we will develop in this section have the advantage over those
presented in the previous section by the fact they don’t need the knowledge of the
mathematical model of the system to be controlled as it required by the techniques
based on root locus method. The objective of this section is to cover the methods
that we can use for designing the controllers treated in the previous section by using
the frequency domain.

168 5. Design Based on Transfer Function

The design procedures for the different controllers we will cover here are mainly
based on the fact to assure that the closed-loop dynamics of the system will have a
phase margin, Δφ satisfying:

45o ≤ Δφ ≤ 50o

while the gain margin, ΔG satisfies ΔG ≥ 8 db.
In the rest of this section we assume that the system is described by the following

transfer function:

G(s) = k
amsm + · · · + 1

sl (ansn + · · · + 1)

where l is the type of the system, l + n is the degree of the system and m < n + l is
the degree of the numerator of the system that we suppose to be causal.

Our goal in this section consists of designing a controller that respond to some
given performances. The controllers we consider in this section are those treated in
the previous sections. It is important to notice that the idea used in the methods we
will cover is based on the deformation of the magnitude and phase curves locally to
satisfy the desired performances.

Remark 5.5.1 It is important to notice that this method doesn’t apply for unstable
system.

Let firstly consider the design of the proportional controller (C(s) = KP).
This controller has limited actions and can only move vertically the magnitude
curve without affecting the phase curve. The open loop transfer function of the
compensated system is given by:

Gc(s) = kKP
amsm + · · · + 1

sl (ansn + · · · + 1)

= K
amsm + · · · + 1

sl (ansn + · · · + 1)

The following procedure can be used for the design of the proportional controller
that responds to the desired performances:

1. obtain the Bode plot for the compensated system, Gc(s), with K = 1

2. determine the frequency, wc, for which the phase margin is equal to 45o

3. determine the magnitude at this frequency and compute the gain, K̄P that will
move the magnitude curve vertically to get the desired phase margin. A gain
greater than one will move the magnitude curve up while a gain less than one
will move it down. The controller gain is given by:

KP =
K̄P

k

4. draw the Bode diagram of the compensated system, with the computed gain and
check that the gain margin is greater than 8 db

5.5. Design Based on Bode Plot 169

Example 5.5.1 To show how the design procedure for the proportional controller
works, let us consider the following dynamical system:

G(s) =
2

(0.1s + 1)(0.2s + 1)(0.5s+ 1)

The performances we would like to have for this system are:

1. stable system in closed-loop

2. phase margin about 45o

3. gain margin greater than 10 db

To design our proportional controller, let us follow the previous procedure.

1. the open loop transfer function of the compensated system, T (s) is given by:

T (s) = 2KP
1

(0.01s + 1)(0.2s + 1)(0.5s + 1)

2. The Bode plot of this transfer function with K = 1 is illustrated in Fig. 5.25.

Bode Diagram

Frequency (rad/sec)
10

−2 10
−1 10

0 10
1 10

2 10
3 10

4
−270

−225

−180

−135

−90

−45

0

P
ha

se
 (

de
g)

−200

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

Fig. 5.25 Bode plot of T (s), with K = 1, and K = kKP

From this figure we conclude that at the frequency w1 = 7.44 rd/s we have
Δφ = 45o. The corresponding magnitude is equal to |T (jw1)| = −16.8.

170 5. Design Based on Transfer Function

3. The corresponding gain that allows us to move the magnitude curve by 16.8 db
to get the desired phase margin is given by:

K̄P = 16.8 db

which implies K̄P = 10
16.8
20 = 6.9183

Finally, we get the controller gain as follows:

KP =
K̄P

k
=

6.9183
2

= 3.4592

The open loop transfer function of the compensated system is given by:

T (s) = 2 × 3.4592
1

(0.01s+ 1)(0.2s + 1)(0.5s + 1)

The Bode plot of this transfer function is reported in Fig. 5.25. If we compute
the phase and the gain margins we get:

ΔG = 10.8363

Δφ = 44.9849

The corresponding frequencies are:

wg = 26.65 rd/s, for the gain margin

wp = 7.44 rd/s, for the phase margin

4. The transfer function of the closed loop with this controller is given by:

F(s) =
kKP

0.001s3 + 0.107s2 + 0.71s + 1 + kKP

with k = 2.
The behavior of the closed-loop dynamics is illustrated in Fig. 5.26
This response has a steady state error equal to 0.13. The proportional controller
is unable to make equal to zero but it can be reduced by increasing the gain. This
may degrade the transient regime.

Remark 5.5.2 It is important to notice that the system considered in the previous
example is of type zero and therefore, the error for a step input with a proportional
controller is constant and it is given by:

e(∞) =
1

1 + kKp
.

From this expression, it is impossible to make the error equal to zero by increas-
ing the gain of the controller. Incrementing the type of the system is a solution that
can be given by the PI controller.

Let us now focus on the design of the PI controller using the Bode method. As
we have seen previously increase the type of the system by one and therefore, it
may bring the steady state error to zero. Its disadvantage is that settling time may
increase.

5.5. Design Based on Bode Plot 171

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.26 Step response of F(s)

To design the PI controller, let us assume that its transfer function is described
by:

C(s) = KP +
KI

s

=
1 + τns

τi s

with KP =
τn

τi
and KI =

1
τi

.
Using this, the open loop transfer function of the compensated system is given

by:

T (s) = C(s)G(s) = K (1 + τn s)
bmsm + · · · + b1s + 1

sl+1 (ansn + · · · + a1s + 1)

with K = k
τi

The following procedure can be used for the design of this controller:

1. determine the slowest pole that is not equal to those at the origin (pole that cor-
responds the highest time constant) and proceed with a zero/pole cancelation.
This will allow us to determine the parameter τn by:

τn = max{τ1, · · · , τν}
where τ j, j = 1, · · · , ν are the time constant of the system to be controlled.

172 5. Design Based on Transfer Function

2. determine the gain K̄P that gives the desired phase margin using the Bode plot
and obtain:

τi =
k

K̄P

3. determine the gains KP and KI of the controller using:

KP =
1
τi

KI =
τn

τi

4. determine the open loop transfer function of the compensated system and check
if the desired performances are obtained or not. In case of negative response
adjust τn and repeat the procedure design.

Example 5.5.2 To show how this procedure works let us consider the following
dynamical system:

G(s) =
1

(s + 1)(s + 5)(s + 10)

and design a PI controller that gives a steady error equal to zero and a phase margin
about 45o and a gain margin greater than 8 db.

To answer these performances, let us follow the previous procedure:

1. the open transfer function of the system to be controller has 1, 0.2 and 0.1 as
time constants. The maximum one is equal to 1 and therefore by canceling the
corresponding pole by the controller’s zero, we get:

τn = 1 s

2. the open loop transfer function with the pole/zero cancellation is given by:

T (s) =
0.02K

s(0.2s + 1)(0.1s + 1)

The Bode plot of this transfer function is shown at Fig. 5.27
At w = 2.8 rd/s, the phase margin is equal to 45o and at this frequency the
magnitude is equal to −10.5 db. To get such phase margin we need to translate
up the magnitude curve by 17.5 db which implies the use of a gain:

K̄P = 10
10.5
20 = 3.3497

which implies in turn:

τi =
0.02

K̄P
=

0.02
3.3497

= 0.0060

5.5. Design Based on Bode Plot 173

Bode Diagram

Frequency (rad/sec)
10

−1
10

0
10

1
10

2
10

3
−270

−225

−180

−135

−90

P
ha

se
 (

de
g)

−150

−100

−50

0

50
M

ag
ni

tu
de

 (
dB

)

Fig. 5.27 Bode plot of T (s), with K = 1

3. the controller gains are given by:

KP =
1
τi
=

1
0.0027

= 166.6667

KI =
τn

τi
=

1
0.0027

= 166.6667

4. with this controller we can check that the phase margin is equal to 45.1o but
the gain margin is equal to 4.5 db. The closed loop transfer function with this
controller is given by:

F(s) =
KP

s3 + 15s250s + KP

If we accept the gain margin as it is now, the design is complete otherwise we
have to modify the value for τn and repeat the design
The behavior of the closed-loop dynamics with the computed controller is
illustrated in Fig. 5.28
The settling time at 5 % is equal to 1.47 s which is acceptable and the error for
a step input is equal to zero.

Let us now focus on the design of the PD controller using the Bode method. This
controller improves the transient regime. The transfer function of this controller is
given by:

174 5. Design Based on Transfer Function

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5.28 Step response of F(s)

C(s) = KP + KD s = KP (1 + τD s)

with τD =
KD
KP

.
The open loop transfer function of the compensated system is given by:

T (s) = K
(1 + τDs) (bmsm + · · · , b1s + 1)

sl (ansn + · · · , a1s + 1)

where K = kKP

The design of the PD controller is brought to the determination of the two gains
KP and KD. The following procedure can be used for the design of this controller:

1. from the error specifications, determine the gain, K̄P that gives the desired error

2. draw the Bode diagram of the system:

K̄P
bmsm + · · · , b1s + 1

sl (ansn + · · · , a1s + 1)

and determine the frequency, wm at the which the magnitude is equal to −20 db

3. since the cut frequency of the PD controller is equal to 1
τD

, at the frequency
10
τD

, the contribution of the PD controller to the magnitude and the phase are
respectively 20 db and 90o. If we select τD such that:

5.5. Design Based on Bode Plot 175

τD =
10
wm

the phase margin of the compensated system is given:

Δφc = Δφ + 90

where Δφ is the phase margin of the system without the controller at the
frequency wm

If

Δφc

⎧⎪⎪⎨⎪⎪⎩
< 40o choose another controller

> 50o reduce the parameter, τD till Δφc = 45o

4. compute the controller’s gains using:

KP =
K̄P

k
KD = K̄PτD

5. check if the desired specifications are obtained or not

Example 5.5.3 To show how the procedure of the design of the PD controller works,
let us consider the following dynamical system:

G(s) =
4

s(0.1s + 1)(4s + 1)

As specifications we consider the following:

1. stable system

2. phase margin equal to 45o

3. steady state error equal to 0.1

To satisfy these specifications a PD controller has to be designed. For this
purpose let is follow the previous procedure:

1. from the error specification, we need to fix K̄P to 10.

2. the Bode diagram of:

K̄P

s(0.1s + 1)(4s + 1)

is illustrated by Fig. 5.29 which shows that magnitude is equal to −20 db when
the frequency wm = 4.73 rd/s. The parameter τD is then given by:

τD =
10
wm
=

10
4.73

= 2.1142

176 5. Design Based on Transfer Function

−150

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

10
−2 10

−1 10
0 10

1 10
2 10

3
−270

−225

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fig. 5.29 Bode plot of T (s), with K = 10

3. the phase of the system with the controller at wm = 4.73 rd/s is equal to −202o.
The phase margin of the compensated system is given by:

Δφc = 180 − 202 + 90 = 68o

The phase margin is greater than 45o and we should decrease the parameter
τD. Therefore if we select τD =

10
9.1 = 1.0989, the phase margin in this case is

equal to 49o

4. the controller gains are give by:

KP =
K̄P

k
=

10
4
= 2.5

KD = K̄PτD = 2.4 × 1.0989 = 2.7473

5. the open loop transfer function of the compensated system is given by:

T (s) =
4 (KP + KD s)

s(0.1s + 1)(4s + 1)

This controller gives a phase margin about 61.5o. The closed-loop transfer
function is given by:

F(s) =
4(Ks + Kp)

0.1s3 + 4.1s2 + (1 + 4KD)s + 4KP

The step response of the compensated system is represented in Fig. 5.30.

5.5. Design Based on Bode Plot 177

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.30 Step response of F(s)

Let us now focus on the design of the PID controller using the Bode method.
This controller acts on the transient and steady state regimes. The transfer function
of this controller is given by:

C(s) = KP
KI

s
+ KD s =

(1 + τn s)(1 + τv s)
τi s

where KP =
τn+τv

τi
, KI =

1
τi

and KD =
τnτv

τi
.

The open loop transfer function of the compensated system is given by:

T (s) = K
(1 + τns)(1 + τi s) (bmsm + · · · + b1s + 1)

sl+1 (ansn + · · · + a1s + 1)

with K = k
τi

.
To design such controller we use the ideas used to design separately the PI and

the PD controllers. The procedure to design such controller is based on the fact that
a pole is introduced at the origin, the gain, K̄P that gives the steady error and the use
of the maximum phase, 90o (introduced by the PD controller) that corresponds to the
frequency when the magnitude is to −20 db (wmτv = 10). The following procedure
can be used for the design of this controller:

178 5. Design Based on Transfer Function

1. determine the slowest pole of the system to controller except those at the origin
and proceed with a pole/zero cancellation. This will help to fix, τn, i.e.:

τn = max{τ1, · · · , τν}
2. determine the gain K̄P that gives the desired error

3. plot the Bode diagram of:

T (s) = K̄P
(1 + τns) (bmsm + · · · + b1s + 1)

sl+1 (ansn + · · · + a1s + 1)

and determine the frequency wm at which the magnitude is equal to −20 db.

Using this frequency we determine τv by:

τv =
10
wm

the phase margin of the compensated system is given:

Δφc = Δφ + 90

where Δφ is the phase margin of the system without the controller at the
frequency wm

If

Δφc

⎧⎪⎪⎨⎪⎪⎩
< 40o choose another controller

> 50o reduce the parameter, τD till Δφc = 45o

4. compute the controller’s gains using:

KP =
τn + τv

τi

KI =
1
τi

KD =
τnτv

τi

5. check if the desired specifications are obtained or not

Example 5.5.4 To show how the design of the PID controller works, let us consider
the following dynamical system:

G(s) =
2

(0.1s + 1)(0.2s + 1)(0.5s+ 1)

A steady state error to a unit ramp equal 0.1 is needed.
This system is of type zero and has three time constant, 0.5, 0.2 and 0.1. The

maximum time constant is 0.5.
Following the procedure design, we get:

1. using the maximum time constant of the system we have:

τn = 0.5

5.5. Design Based on Bode Plot 179

2. using the error specification, we get:

K̄P =
1

0.1
= 10

3. draw the Bode diagram of:

T (s) =
K̄P

s(0.1s + 1)(0.2s + 1)

10
−1

10
0

10
1

10
2

10
3

−270

−225

−180

−135

−90

−45

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

−150

−100

−50

0

50

M
ag

ni
tu

de
 (

dB
)

Fig. 5.31 Bode plot of T (s)

This diagram is illustrated by Fig. 5.31. The frequency at which the magnitude
is equal to −20 db is equal to wm = 15.9. The phase at this frequency is equal
to −220o. The phase margin at this frequency is given by:

Δφ = 180 + φ(wm) + 90 = 180 − 220 + 90 = 50

The second parameter, τv of the controller is determined by:

τv =
10
wm
= 0.6289

180 5. Design Based on Transfer Function

4. compute the controller’s gains using:

τi =
2

10
= 0.2

KP =
τn + τv

τi
= 5.6447

KI =
1
τi
= 5

KD =
τnτv

τi
= 1.5723

5. The closed-loop transfer function with this controller is given:

F(s) =
2
τi

(τvs + 1)

0.02s2 + 0.2s2 + (1 + 2τv

τi
)s + 2

τi

The step response of the compensated system is represented in Fig. 5.32.

Step Response

Time (sec)

A
m

pl
itu

de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5.32 Step response of F(s)

Let us now focus on the design of the phase-lead controller using the Bode
method. The transfer function of this controller is given by:

C(s) = KP
aT s + 1
T s + 1

, a > 1

5.5. Design Based on Bode Plot 181

It can be shown that this controller can be deliver a maximum of phase for each
value for a. The value of this maximum and the frequency at which this happens are
given by:

wm =
1

T
√

a

sin(φm) =
a − 1
a + 1

The second relation gives also:

a =
1 + sin(φm)
1 − sin(φm)

These relations are of great importance in the design procedure of the phase-lead
controller.

The following procedure can be used for the design of this controller:

1. using the error specification, determine the gain K̄P and compute the controller
gain by:

K̄P =
K̄P

k

2. plot the Bode diagram of:

K̄P
bmsm + · · · + b1s + 1

sl (ansn + · · · + a1s + 1)

and determine the phase and gain margins of the non-compensated system. Then
compute the phase margin missing. This value increased by a factor (5o) for
safety is considered as φm, then compute the parameter a by:

a =
1 + sin(φm)
1 − sin(φm)

3. determine the frequency, wm for which the magnitude of the non-compensated
system is equal to −20 log

√
a and consider it as the crossover of the

compensated system. The parameter T of the controller is determined using:

T =
1

wm
√

a

4. check if the desired specifications are obtained or not

Example 5.5.5 Let us consider the following dynamical system:

G(s) =
5(0.125s+ 1)

s(2s + 1)(0.1s + 1)

Our objective in this example is to design a phase-lead controller satisfies the
following specifications:

1. stable system

2. steady state error for a ramp input equal to 0.1

182 5. Design Based on Transfer Function

3. phase margin greater than 40o

4. gain margin greater than 6 db

The design of the phase-lead controller is brought to the determination of the
parameters a and T . To accomplish this, we follow the previous procedure.

1. since the system is of type one, therefore the error for a ramp input is given by:

e(∞) =
1

K̄P

which gives in turn:

K̄P = 10

which gives:

KP =
K̄P

k
= 2

2. with this gain, the open loop transfer function of the system becomes:

T (s) =
10

s(2s + 1)(0.1s + 1)

The Bode diagram of this system is given by Fig. 5.33.
From this diagram we conclude that the system with a proportional controller
has a phase margin equal to 15.67o and a gain margin equal to ∞ db. To get
our desired phase margin we need to add 24.33o. If we take a 5o safety, the
controller should add a phase, φm equal to 29.33o. This gives:

a =
1 + sin(29.33)
1 − sin(29.33)

= 2.9201

3. with this value of a we have:

−20log
√

a = −4.6540

From 5.33, we remark that the magnitude curve takes −4.6540 at the frequency
wm = 2.93 rd/s. This gives:

T =
1

wm
√

a
= 0.1997

The controller is then given by:

C(s) = KP
aT s + 1
T s + 1

= 2
0.5832s + 1
0.1997s + 1

The open loop transfer function of the compensated system is given by:

T (s) = 10
0.5832s + 1

s(2s + 1)(0.1s + 1)(0.1997s+ 1)

5.5. Design Based on Bode Plot 183

10
−2 10

−1 10
0 10

1 10
2 10

3
−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

Fig. 5.33 Bode plot of T (s)

4. with controller we get 42.8o and ∞ db as phase margin and gain margin
respectively.
The closed-loop transfer function is given by:

F(s) =
kKP

(
0.125aT s2 + (0.125+ aT)s + 1

)

b4s4 + b3s3 + b2s2 + b1s + b0

with k = 5, b4 = 0.2T, b3 = 0.2 + 2.1T, b2 = 2.1 + T + 0.125aTkKP, b1 =

1 + akKP(0.125 + aT and b0 = kKP.
The behavior of the closed-loop dynamics with the computed controller is
illustrated in Fig. 5.34
The settling time at 5 % is equal to 1.68 s which is acceptable and the error for
a step input is equal to zero while the overshot is about 30 %.

Let us now focus on the design of the phase-lag controller using the Bode method.
The transfer function of this controller is given by:

C(s) = KP
aT s + 1
T s + 1

, a < 1

184 5. Design Based on Transfer Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.34 Step response of F(s)

The following procedure can be used for the design of this controller:

1. using the error specification, determine the gain K̄P and compute the controller
gain by:

K̄P =
K̄P

k

2. plot the Bode diagram of:

K̄P
bmsm + · · · + b1s + 1

sl (ansn + · · · + a1s + 1)

and determine the frequency, wm of the non-compensated system at which we
have the desired phase margin. Then compute of how much decibels, m to bring
the magnitude to 0 db at wm.The parameter a of the controller is given by:

a = 10
m
20

3. To get an appreciable change the phase curve, we need to choose, the parameter,
T as follows:

T =
10

awm

4. check if the desired specifications are obtained or not

5.5. Design Based on Bode Plot 185

Example 5.5.6 Let us consider the following dynamical system:

G(s) =
2

s(0.1s + 1)(0.05s+ 1)

Our objective in this example is to design a phase-lag controller satisfies the
following specifications:

1. stable system

2. steady state error for a ramp input equal to 0.1

3. phase margin greater than 40o

4. gain margin greater than 4 db

The design of the phase-lag controller is brought to the determination of the
parameters a and T . To accomplish this, we follow the previous procedure.

1. the system to be controlled is of type one. The steady error to a unit ramp as
input is given by:

e(∞) =
1

K̄P

which implies:

K̄P = 10

From this we conclude that the gain of the controller is KP = 5.

2. with this gain, the open loop transfer function of the system becomes:

T (s) =
10

s(0.1s + 1)(0.05s + 1)

The Bode diagram of this system is given by Fig. 5.35.
From this figure, we conclude, that at wm = 5.59 rd/s, the phase margin is
equal to 45o. At this frequency the magnitude is equal to 3.52 db. Using this,
the parameter, a is given bY:

a = 10
−3.52

20 = 0.6668

Remark 5.5.3 The fact that we consider −3.52 db means that we want the
controller to introduce this amplitude at this frequency.

3. the choice of T is done by placing the frequency 1
aT at a decade from wm =

5.59 rd/s, i.e.:

wm =
10
aT

which implies T = 2.6828.
The transfer function of our phase-lag controller is given by:

C(s) = KP
aT s + 1
T s + 1

186 5. Design Based on Transfer Function

Bode Diagram

Frequency (rad/sec)
10

−2
10

−1
10

0
10

1
10

2
10

3
−270

−225

−180

−135

−90

P
ha

se
 (

de
g)

−150

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

Fig. 5.35 Bode plot of T (s)

with KP = 5.
With this controller we get:

Δφ = 43.13o

ΔG = 4.37 db

The closed-loop transfer function is given by:

F(s) =
kKP (aT s + 1)

0.005T s4 + (0.005 + 0.15T)s3 + (0.15 + T)s2 + (1 + kKPaT)s + kKP

with k = 2.
The behavior of the closed-loop dynamics with the computed controller is
illustrated in Fig. 5.36
The settling time at 5 % is equal to 0.78 s which is acceptable and the error for
a step input is equal to zero while the overshot is about 27 %.

Let us now focus on the design of the phase lead-lag controller using the Bode
method. The transfer function of the controller is given by:

C(s) = KP
a1T1s + 1
T1s + 1

a2T2s + 1
T2s + 1

, a1 > 1, a2 < 1

The following procedure can be used for the design of this controller:

5.5. Design Based on Bode Plot 187

Step Response

Time (sec)

A
m

pl
itu

de

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 5.36 Step response of F(s)

1. using the error specification, determine the gain K̄P and compute the controller
gain by:

K̄P =
K̄P

k

2. draw the Bode diagram of:

K̄P
bmsm + · · · + b1s + 1

sl (ansn + · · · + a1s + 1)

and determine the phase margin of the non-compensated system

3. determine the phase-lead controller’s parameters, a1 and T1

4. determine the phase-lag controller’s parameters, a2 and T2

5. check if the desired specifications are obtained or not

Example 5.5.7 To show how to design a phase lead-lag controller let us consider
the following dynamical system:

G(s) =
4(0.125s+ 1)

s(0.1s + 1)(0.2s + 1)

As specifications we search to get the following ones:

1. stable system

188 5. Design Based on Transfer Function

2. steady state error to a unit ramp equal to 0.05

3. a phase margin greater than 40o

4. a gain margin greater than 8 db

To design the phase lead-lag controller let us follow the steps of the previous
procedure.

1. to get the desired error a gain K̄P equal to 20, which corresponds to KP = 5.

2. The transfer function of the open loop of the non compensated system with this
gain is given by:

T (s) =
20(0.125s+ 1)

s(0.1s + 1)(0.2s + 1)

The Bode diagram of this system is given by Fig. 5.37.

Bode Diagram

Frequency (rad/sec)
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
−270

−225

−180

−135

−90

−45

P
ha

se
 (

de
g)

−200

−150

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

Fig. 5.37 Bode plot of T (s)

With this proportional controller the system has:

Δφ = 32.7o

ΔG = ∞ db

3. to design the phase-lead controller can be done following the previous pro-
cedure for this purpose. Notice that to get the desired phase margin, the

5.5. Design Based on Bode Plot 189

phase-lead controller must bring a phase of 45o −32.7o = 12.3o. Using this, we
have:

a1 =
1 + sin(12.3)
1 − sin(12.3)

= 1.5414

Using the value of a1, we get:

−20 log
√

a1 = −1.8791

Now if we refer to the Fig. 5.37, the magnitude will have −1.8791 at the
frequency wm = 11.4 rd/s. This implies:

T1 =
1

wm
√

a1
= 0.0707

The transfer function of the phase lead controller is given:

C(s) =
0.4231s+ 1
0.0707s+ 1

The open loop transfer function of the system with controller is given by:

T (s) = 20
a1T1s + 1

s(0.2s + 1)(0.01s + 1)(T1s + 1)

4. the system compensated with the phase lead controller has:

Δφ = 10.9624o

ΔG = ∞ db

To get a phase margin equal to 45o and if we report to the Fig. 5.37, we have this
at the frequency wm = 10 rd/s. Also at this frequency, the magnitude is equal to
1.76 db. using this we get the parameter a2 for the phase lag controller:

a2 = 10
−1.76

20 = 0.8166

The choice of T2 is given by:

T2 =
10

wma2
=

10
9.07 × 0.4154

= 2.6542

The transfer function of the phase lead controller is given:

C(s) =
1.1026s+ 1
2.6542s+ 1

5. The open loop transfer function of the compensated system is given by:

T (s) = 20
(a1T1s + 1)(a2T2s + 1)(0.125s+ 1)

s(0.2s + 1)(0.1s + 1)(T1s + 1)(T2s + 1)

The Bode diagram of this transfer function is reported in Fig. 5.37 and from
which we get:

Δφ = 44.1o

ΔG = ∞ db

190 5. Design Based on Transfer Function

The closed-loop transfer function of the compensated system

F(s) = kKP
α3s3 + α2s2 + α1s + α0

b5s5 + b4s4 + b3s3 + b2s2 + b1s + b0

with α3 = 0.125a1a2T1T2, α2 = 0.125(a1T1 + a2T2) + a1a2T1T2, α1 =

0.125+ a1T1 + a2T2 and α0 = 1; b5 = 0.02T1T2, b4 = 0.3T1T2 + 0.02(T1 + T2),
b3 = 0.02 + T1T2 + 0.3(T1 + T2) + 0.125kKPa1a2T1T2, b2 = 0.3 + T1 + T2 +

kKP(0.125(a1T1 + a2T2) + a1a2T1T2), b1 = 1 + kKP(0.125 + a1T1 + a2T2) and
b0 = kKP

5.6 Case Study

The goal of this section is to make the design of different controllers for our dc
motor kit using the developed methods and show the reader how things apply in
practice. It was shown that the model of this system is given by:

G(s) =
Km

s(τm s + 1)

where Km = 48.5 is the gain and τm = 0.060 s is the time constant.
Our objective is to design the proportional controller, the proportional and inte-

gral controller, the proportional and derivative controller, the proportional, integral
and derivative controller, the phase lead controller, the phase lag controller and the
phase lead-lag controller using the three methods and implement them in real-time
on our dc motor kit.

Regarding the specifications, we will not fix them but during the design of each
controller we will try to get the best specifications that may offer each controller.

5.6.1 Proportional Controller

Let us first of all consider the design of the proportional controller. This controller
is assumed to have the following transfer function:

C(s) = KP

where KP is the gain to be determined.
For the empirical methods, it is clear that the time domain methods will not apply

since the transfer function of the system has a pole at the origin and will never
provide a step response with periodic oscillations.

To compute the gain of the controller, we notice that we have to move up the
magnitude by 27.27 db, from Fig. 5.38, which gives a gain equal to:

K̄P = 10
27.27

20 = 22.9087

The gain of the controller is given by:

KP =
K̄P

Km
=

22.9087
48.5

= 0.4723

5.6. Case Study 191

Bode Diagram

Frequency (rad/sec)
10

0
10

1
10

2
10

3
−180

−135

−90

P
ha

se
 (

de
g)

−100

−50

0

50
M

ag
ni

tu
de

 (
dB

)

Fig. 5.38 Bode plot of T (s) K
s(τm s+1) , with K = 1, and K = KmKP

We can check that with this gain, the closed loop system has a phase margin close
to 45o and gain margin equal to infinity. This responds to the general specifications.

For the root locus method, we know that the proportional controller is unable to
change the shape of the root locus and the only thing that we can do is to select
an appropriate gain for the controller to get best performances. The root locus of
the system is given by Fig. 5.39. From this figure with a gain K = 8.35 we get a
damping ratio equal to 0.707 and the complex poles are s1,2 = −8.33 ± 8.35 j. This
gives a settling time at 5 % equal to 0.3601 s. The controller’s gain in this case is:

KP =
K

Km
=

8.35
48.5

= 0.1722

The design of the proportional controller with the Bode method will give the same
result as we did for the empirical method. It is important to notice that the methods
(empirical method and Bode method and root locus method) give different gains.
The step response with the two controllers is plotted in Fig. 5.40. The two methods
(empirical and bode) give high value for the controller’s gain, which corresponds to
a smaller damping ratio and therefore an important overshoot.

As a comparative study of these methods we have the results of the Tab. 5.4. The
error for a step input in all the case is equal to zero.

192 5. Design Based on Transfer Function

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−20 −15 −10 −5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

0.99

0.20.40.580.720.83
0.91

0.96

0.99

2.557.51012.51517.5

0.20.40.580.720.83
0.91

0.96

Fig. 5.39 Root locus of T (s) = 1
s(τm s+1)

Table 5.4 Comparative study of the design of P controller

Method KP ts Overshoot Δφ ΔG
Empirical 0.4723 0.3 s 23 % 45.6o ∞
Root locus 0.1722 0.3 s 4 % 65.5o ∞

Bode 0.4723 0.3 s 23 % 45.6o ∞

5.6.2 Proportional and Integral Controller

Let us now focus on the design of the PI controller using the previous methods that
gives the best performances for our dc motor kit. As for the proportional controller,
the PI controller can not be designed using the time domain empirical method. While
the frequency method can be used. It is important in this case that we can not use
our procedure since we can not cancel the pole at the origin but placing the zero at
−2 will give good performances. Using this, we get:

KP = 0.0497, same computations as before

KI = 0.0994

The bode diagram of the open-loop transfer function of the compensated system
is illustrated at the Fig. 5.41.

5.6. Case Study 193

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.40 Step response of F(s) = KmKP
τm s2+s+Km KP

With this controller we get a phase margin equal to 45o but the gain margin is
close to zero.

Remark 5.6.1 It is important to notice the approach used here to design the PI
controller is a heuristic that I propose to overcome the problem with the previous
procedure.

If we place the zero at −3, the gain that gives the dominant poles s1,2 = −5.23 ±
5.95 j is K̄P = 22.9, which gives KP =

22.9
48.5 = 0.4722 . From this we conclude that

KI = KPz = 1.4165
The Bode method will give the same results as for the Zigeler-Nichols method

and we don’t repeat the computation again.
The closed-loop transfer function with the PI controller is given by:

F(s) =
KmKP s + KmKI

τms3 + s2 + KmKP s + KmKI

The behavior of the system with this controller for a step input is illustrated at the
Fig. 5.43. As it can be seen that the two methods give two controllers that are almost
identical and the step response are also almost identical. The settling time for the
frequency methods is higher than that the one obtained by the root locus method.

194 5. Design Based on Transfer Function

Bode Diagram

Frequency (rad/sec)

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

10
−1

10
0

10
1

10
2

10
3

−180

−150

−120

P
ha

se
 (

de
g)

Fig. 5.41 Bode plot of T (s) K(0.5s+1)
s2(τm s+1)

, with K = 1, and K = KmKP

5.6.3 Proportional and Derivative Controller

The PD controller can not be designed by any of the proposed Ziegler-Nichols meth-
ods. The only methods we can used for this controller are the root locus method and
the Bode method. Let us firstly design this controller by the first method. For this
controller, we can proceed by pole/zero cancellation or place the zero at the right of
the pole of the system. The first case is easy and gives a first order while the second
one gives an interesting case. It is important to notice that the damping ratio in this
case will be close 1. This doesn’t imply that there is no overshoot due the presence
of the zero. We will design two cases.

Let the zero be at the position −30, placed at the left of the system pole. The
first case case gives the dominant poles s1,2 = −16 ± 14.2 j which corresponds to
the gain K̄P = 0.915. This gives the gain KD =

0.915
48.5 = 0.0189. The second gain is

KP = KDz = 0.0189× 30 = 0.5660.
The second case case gives the dominant poles s1,2 = −43.2 ± 15 j which corre-

sponds to the gain K̄P = 4.19. This gives the gain KD =
4.19
48.5 = 0.0864. The second

gain is KP = KDz = 0.0864 × 30 = 2.5918. As it will seen from the Fig. 5.45 this
case will gives good performances at least in simulation.

For the design of the PD controller, let us assume that we want to assure a steady
state error for a unit ramp input equal to 0.008. This corresponds to a gain K̄P = 125.
The Bode diagram of T (s) = K̄P

s(τm s+1) is represented at the Fig. 5.44. The magnitude

5.6. Case Study 195

−20 −15 −10 −5 0 5
−30

−20

−10

0

10

20

30
0.070.150.230.320.440.58

0.74

0.92

0.070.150.230.320.440.58

0.74

0.92

5

10

15

20

25

5

10

15

20

25

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5.42 Root locus of T (s) = 0.25s+1
s2(τms+1)

is equal to -20 db at the frequency wm = 144 rd/s. The phase at this frequency is
equal to −173o which corresponds to a phase margin equal to 7o and it is far from
the desired phase margin.

The parameter τD is determined by:

τD =
10
200
= 0.05

The parameters of the PD controller are given by:

KP =
125
Km
= 2.5773

KD = KPτD = 2.5773× 0.05 = 0.1289

The phase margin of the compensated system is almost equal to 90o.
The closed-loop transfer function with the PD controller is given by:

F(s) =
KmKD s + KmKP

τm s2 + (1 + KmKD)s + KmKP

The behavior of the system with this controller for a step input is illustrated at
the Fig. 5.45. As it can be seen that the two methods give two controllers that are
different and the step response are also different. The settling time for the frequency
methods is higher than that the one obtained by the root locus method.

196 5. Design Based on Transfer Function

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.5

1

1.5

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.43 Step of F(s) with two controllers for two design methods

5.6.4 Proportional Integral and Derivative Controller

None of the heuristic methods proposed by Ziegler-Nichols can be used to design the
PID controller. In the rest of this subsection we focus on the design of this controller
using the root locus and Bode methods. The procedures we proposed previous can
not be used here and we have to use another heuristic methods for this system.

For the root locus method, since the system has only one pole non equal to zero.
The case that consists of placing the zeros between the two poles of the system is
interesting since it can give short settling time.

If we place the two zeros of the controllers respectively at −13 and −15, the root
locus of the system in this case is represented by Fig. 5.46

From the root locus we see that for the gain K̄P = 1.43, the dominant poles are:

s1,2 = −11.4 ± 11.5 j

If we refer to the procedure used for the design of the PID controller and the
expression of the controller, we have:

a1 = 13

a2 = 15

5.6. Case Study 197

−60

−40

−20

0

20

40

60
M

ag
ni

tu
de

 (
dB

)

10
0

10
1

10
2

10
3

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fig. 5.44 Bode plot of T (s) (compensated and non compensated system

From this we have:

KD =
1.43
Km
= 0.0295

KP = KD(a1 + a2) = 0.0295(13+ 15) = 0.8260

KI = KDa1a2 = 5.7525

For the design of the PID using the Bode method, we will use the same idea of
placing the zeros of the controller as we did for the root locus method. Also we
would like to have a steady state error to a unit ramp equal to 0.01. To get such error
a gain equal to K̄P = 100 is necessary for this purpose.

Now, if we place the two zeros of the controller respectively at −12 and −15, i.e.:

τn =
1
15
= 0.0667

τv =
1
12
= 0.0833

198 5. Design Based on Transfer Function

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.45 Step of F(s) with two controllers for two design methods

Using these data, we get:

τi =
Km

K̄P
=

48.5
100

= 0.4850

KP =
τn + τv

τi
=

0.0667 + 0.0833
0.4850

= 0.3093

KI =
1
τi
=

1
0.4850

= 2.0619

KD =
τnτv

τi
=

0.0667 × 0.0833
0.4850

= 0.0115

The Bode diagram of the compensated system is represented at the Fig. 5.47.
From this figure we conclude that the phase margin is equal 48o.

The closed loop transfer function of the compensated system is given by:

F(s) =
K(KD s2 + KP s + KI)

τms3 + (1 + KmKD)s2 + KmKPs + KmKI

The step responses with the two controllers is illustrated by Fig. 5.48

5.6.5 Phase Lead Controller

Firstly, it is important to mention that this controller can not be designed with the
empirical methods. The two other methods are still valid for the design of this con-

5.6. Case Study 199

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−35 −30 −25 −20 −15 −10 −5 0 5
−15

−10

−5

0

5

10

15

0.965

0.99

0.220.420.60.740.84
0.92

0.965

0.99

51015202530

0.220.420.60.740.84
0.92

Fig. 5.46 Root locus of T (s) =
(1

13 s+1)(1
15 s+1)

s2 (τms+1)
,

troller. Let us firstly focus on the design the phase lead-controller using the root
locus method. It is important to notice that the best settling time at 5 % with a
proportional controller is about 0.36 s. With the phase lead controller we want to
improve this time. Let the desired pole dominant with positive imaginary part be
sd = −11.3 + 11.3 j which corresponds to a settling time equal to 0.2655 s and an
overshoot equal to 5 %. The phase of the system without the controller is given by:

arg

(
48.5/0.06

sd(sd + 16.6667)

)
= 0 − 90 − 64.9830 = −153.9931

The phase lead controller must increase the phase with 180−153.9931 = 26.0069
This implies:

β − α = 26.0069

If we place the zero at -15, this implies that β = 72.17o and the pole at -20 gives
an angle of 52.89o. This gives a contribution of 19.27o by the controller and which
close to the desired one.

200 5. Design Based on Transfer Function

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

10
−1

10
0

10
1

10
2

10
3

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fig. 5.47 Bode plot of T (s) =
100(1

12 s+1)(1
15 s+1)

s2(τm s+1)

From this, we have:

1
T
= 20

1
aT
= 15

this gives T = 0.05 and a = 1.3333.
The root locus of the system with the phase lead controller is presented in the

Fig. 5.49
The gain that gives the dominant poles is K̄P = 10.8, which gives a gain KP =

0.2227 for the phase lead controller.
The closed-loop transfer function with the controller is given by:

F(s) =
KmKP(aT s + 1)

Tτms3 + (τm + T)s2 + (1 + aT KmKP)s + KmKP

The behavior of the step response of the system with this controller is illustrated
in Fig. 5.51.

Using the Bode method, we design a controller that provides the following
specifications:

1. stable system

2. steady state error to a unit ramp is less than 0.01

5.6. Case Study 201

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.48 Step response of F(s) with the two controllers

3. phase margin greater than 40o

4. gain margin greater than 8 db

Using the error specification, a gain K̄P equal to 100 is needed. This gives a gain
KP = 2.0619 for the phase lead controller. The Bode diagram of the open loop
transfer of the system with this gain is illustrated in Fig. 5.50. From this figure we
have:

Δφ = 23.1o

ΔG = ∞
For the design of phase lead controller notice that this controller should bring

45o − 23.1o = 22.9o, which gives:

a =
1 + sin(22.9)
1 − sin(22.9)

= 2.2740.

Using this values the magnitude will take the value −20log(
√

a) = −3.5679 at
the frequency wm = 48.9 rd/s. This implies:

T =
1

wm
√

a
= 0.0136

202 5. Design Based on Transfer Function

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

−25 −20 −15 −10 −5 0 5
−30

−20

−10

0

10

20

30
0.080.170.280.380.50.64

0.8

0.94

0.080.170.280.380.50.64

0.8

0.94

5

10

15

20

25

5

10

15

20

25

Fig. 5.49 Root locus of T (s) = aT s+1
s(τm s+1)(T s+1)

The phase lead controller is then given by the following transfer function:

C1(s) =
aT s + 1
T s + 1

With this controller, the compensated system has:

Δφ = 41.8o

ΔG = ∞
The behavior of the system with this controller for a step input is illustrated at

the Fig. 5.51. As it can be seen that the two methods give two controllers that are
almost identical and the step response are also almost identical.

5.6.6 Phase Lag Controller

As it was the case for the phase lead controller, the empirical methods can not help
in the design of the phase lag controller. Here we will design this controller using
the two other methods. For the root locus technique, we will assume that we want
the following specifications:

1. stable system

2. a steady state error to a unit ramp input equal to 0.01

5.6. Case Study 203

−60

−40

−20

0

20

40

60
M

ag
ni

tu
de

 (
dB

)

10
0 10

1 10
2 10

3
−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Fig. 5.50 Bode plot of T (s) 100
s(τm s+1)

3. an overshoot about 5 %

4. a settling time at 5 % equal to 0.36 s

Using the settling and the overshoot specifications, we conclude that the domi-
nant poles are s1,2 = −8.33 ± 8.35 j and from the root locus of the system, we get
that the gain K1 that gives these poles is K1 = 8.35

Using now the steady state specifications, we conclude that K2 is equal to 100.
From the values of these two gains, we get the parameter, a of the controller:

a =
K1

K2
=

8.35
100

= 0.0835

It is also important to notice that a = p
z , where p and z are respectively the pole

and the zero of the controller. Now, if we place the zero at −1.5, we get:

p = az = 0.1253

and since p = 1
T , we get: T = 7.9808.

For the controller gain, it is given by:

KP =
100
48.5

= 2.0619

204 5. Design Based on Transfer Function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.51 Step of F(s) with two controllers for two design methods

Finally, the transfer function of the controller is given by:

C(s) = KP
aT s + 1
T s + 1

, a < 1

Using the Bode method, we design a controller that provides the following
specifications:

1. stable system

2. steady state error to a unit ramp is less than 0.01

3. phase margin greater than 40o

4. gain margin greater than 8 db

Using the error specification, a gain K̄P equal to 100 is needed. This gives a gain
KP = 2.0619 for the phase lead-lag controller. The Bode diagram of the open loop
transfer of the system with this gain is illustrated in Fig. 5.50. From this figure we
have:

Δφ = 23.1o

ΔG = ∞
The open loop transfer of the system with this controller is illustrated at the

Fig. 5.52. The system will have a phase margin equal to 45o at the frequency
wm = 16.9 rd/s.

5.6. Case Study 205

Bode Diagram

Frequency (rad/sec)
10

−2
10

−1
10

0
10

1
10

2
10

3
−180

−135

−90

System: sys
Frequency (rad/sec): 16.9
Phase (deg): −135

P
ha

se
 (

de
g)

−100

−50

0

50

100

System: sys
Frequency (rad/sec): 16.9
Magnitude (dB): 12.4

M
ag

ni
tu

de
 (

dB
)

Fig. 5.52 Bode plot of T (s) 100
(τms+1)

For the design of the phase lag controller, notice that at wm = 16.9 rd/s, the
magnitude is equal to 12.4 db. Therefore,

a = 10
−12.4

20 = 0.2399

The parameter T is given by:

T =
10

awm
= 2.4667

The controller phase-lag is given by the following transfer function:

C2(s) =
aT s + 1
T s + 1

Combining now the two controllers, the open loop transfer function is given by:

T (s) =
59.1716s + 100

s(0.1480s2 + 2.5267s + 1)

The Bode diagram of this transfer function is represented at the 5.52. The
specifications are:

Δφ = 40.3o

ΔG = ∞
which are acceptable.

206 5. Design Based on Transfer Function

The behavior of the system with this controller for a step input is illustrated at
the Fig. 5.53. As it can be seen that the two methods give two controllers that are
almost identical and the step response are also almost identical.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 5.53 Step of F(s) with two controllers for two design methods

5.6.7 Phase Lead-Lag Controller

For this controller, we can use only the root-locus and the Bode methods to design
it. Let us first of start the design of the controller using the root-locus method. It is
important to notice that the best settling time at 5 % with a proportional controller
is about 0.36 s. With the phase lead controller we want to improve this time. Let the
desired pole dominant with positive imaginary part be sd = −11.5 + 11.6 j which
corresponds to a settling time equal to 0.27 s and an overshoot equal to 5 %. The
phase of the system without the controller is given by:

arg

(
48.5/0.06

sd(sd + 16.6667)

)
= 0 − 90 − 65.9917 = −155.9917

The phase lead controller must increase the phase with 180−155.9917 = 24.0083

5.6. Case Study 207

This implies:

β − α = 24.0083

If we place the zero at -20, this implies that β = 53.7676o and the pole at -30
gives an angle of 52.89o. This gives a contribution of 21.6788o by the controller and
which close to the desired one.

From this, we have:

1
T1
= 30

1
a1T1

= 20

this gives T1 = 0.0333 and a1 = 1.5.
For the phase lag controller design using the root locus technique, we will assume

that we want the following specifications:

1. stable system

2. a steady state error to a unit ramp input equal to 0.01

3. an overshoot about 5 %

4. a settling time at 5 % equal to 0.27 s

Using the settling and the overshoot specifications, we conclude that the domi-
nant poles are s1,2 = −11.5 ± 11.5 j and from the root locus of the system, we get
that the gain K1 that gives these poles is K1 = 12.5

Using now the steady state specifications, we conclude that K2 is equal to 100.
From the values of these two gains, we get the parameter, a2 of the controller:

a2 =
K1

K2
=

12.5
100

= 0.125

It is also important to notice that a2 =
p
z , where p and z are respectively the pole

and the zero of the controller. Now, if we place the zero at −0.1, we get:

p = a2z = 0.0125

and since p = 1
T2

, we get: T2 = 80.
For the controller gain, it is given by:

KP =
100
48.5

= 2.0619

Finally, the transfer function of the controller is given by:

C(s) = KP
(a1T1s + 1)(a2T2s + 1)

(T1s + 1)(T2s + 1)
, a1 > 1, a2 < 1

Using the Bode method, we design a controller that provides the following
specifications:

1. stable system

208 5. Design Based on Transfer Function

10
−1

10
0

10
1

10
2

10
3

10
4

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

Fig. 5.54 Root locus of T (s) K(0.5s+1)
s2 (τms+1)

, with K = 1, and K = KmKP

2. steady state error to a unit ramp is less than 0.01

3. phase margin greater than 40o

4. gain margin greater than 8 db

Using the error specification, a gain K̄P equal to 100 is needed. This gives a gain
KP = 2.0619 for the phase lead-lag controller. The Bode diagram of the open loop
transfer of the system with this gain is illustrated in Fig. 5.55. From this figure we
have:

Δφ = 23.1o

ΔG = ∞
For the design of phase lead controller notice that this controller should bring

45o − 23.1o = 22.9o, which gives:

a1 =
1 + sin(22.9)
1 − sin(22.9)

= 2.2740.

Using this values the magnitude will take the value −20log(
√

a1) = −3.5679 at
the frequency wm = 48.9 rd/s. This implies:

T1 =
1

wm
√

a1
= 0.0136

5.6. Case Study 209

10
−1

10
0

10
1

10
2

10
3

10
4

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

−100

−50

0

50

100
M

ag
ni

tu
de

 (
dB

)

Fig. 5.55 Bode plot of T (s) K(0.5s+1)
s2(τm s+1)

, with K = 1, and K = KmKP

The phase-lead controller is then given by the following transfer function:

C1(s) =
a1T1s + 1
T1s + 1

With this controller, the compensated system has:

Δφ = 41.8o

ΔG = ∞
The open loop transfer of the system with this controller is illustrated at the Fig.

5.55. The system will have a phase margin equal to 45o at the frequency wm =

41.3 rd/s.
For the design of the phase lag controller, notice that at wm = 41.3 rd/s, the

magnitude is equal to 2.13 db. Therefore,

a2 = 10
−2.13

20 = 0.7825

The parameter T2 is given by:

T2 =
10

a2wm
= 0.3094

The controller phase-lag is given by the following transfer function:

C2(s) =
a2T2s + 1
T2s + 1

210 5. Design Based on Transfer Function

Combining now the two controllers, the open loop transfer function is given by:

T (s) =
0.7467s2 + 27.2969s + 100

s(0.0003s3 + 0.02830s2 + 0.3830s)

The Bode diagram of this transfer function is represented at the 5.55. The
specifications are:

Δφ = 43.3o

ΔG = ∞
which are acceptable.

The closed-loop transfer function of the system with this controller is given by:

F(s) =
KmKP

(
a1a2T1T2s2(a1T1 + a2T2)s + 1

)

b4s4 + b3s3 + b2s2 + b1s + b0

with b4 = τmT1T2, b3 = τm(T1 + T2) + T1T2, b2 = τm + T1 + T2 + KmKPa1a2T1T2,
b1 = 1 + KmKP(a1T1 + a2T2) and b0 = KmKP.

The behavior of the system with this controller for a step input is illustrated at
the Fig. 5.56. As it can be seen that the two methods give two controllers that are
almost identical and the step response are also almost identical.

Step Response

Time (sec)

A
m

pl
itu

de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 5.56 Step of F(s) with two controllers for two design methods

5.7. Conclusion 211

Remark 5.6.2 From this section, and the previous two ones, we can conclude for a
given system, the phase lead-lag controller can not be obtained by the multiplication
of the of the phase lead controller and the phase lag controller transfer function
designed separately.

The implementation of the different algorithms we developed in this case study
can be done as it will be done in the implementation part. Tab. 5.5 gives the different
difference equations to program in each controller. To get these equations we have
used the trapezoidal schema and by denoting the sampling period by Ts.

Table 5.5 Difference equations for the different controllers: dc motor kit

Controller Algorithm
P u(k) = KPe(k)
PI u(k) = u(k − 1) + ae(k) + be(k − 1)

a = KP +
KI Ts

2 , b = −KP +
KITs

2
PD u(k) = −u(k − 1) + ae(k) + be(k − 1)

a = KP +
2KD
Ts

, b = KP − 2KD
Ts

PID u(k) = u(k − 2) + ae(k) + be(k − 1) + ce(k − 2)
a = KP +

KI Ts
2 + 2 KD

Ts
, b = KITs − 4KD

Ts
, c = KITs

2 +
2KD
Ts
− KP

Lead u(k) = −a0u(k − 1) + be(k) + ce(k − 1)
a0 =

Ts−2T
Ts+2T , b = KP

Ts+2aT
Ts+2T , c = KP

Ts−2aT
Ts+2T

Lag u(k) = −a0u(k − 1) + be(k) + ce(k − 1)
a0 =

Ts−2T
Ts+2T , b = KP

Ts+2aT
Ts+2T , c = KP

Ts−2aT
Ts+2T

Lead-Lag u(k) = −a0u(k − 1) − bu(k − 2) + ce(k) + de(k − 1) + f e(k − 2)
a0 =

(Ts−2T1)(Ts+2T2)+(Ts+2T1)(Ts−2T2)
(Ts+2T1)(Ts+2T2) , b = (Ts−2T1)(Ts−2T2)

(Ts+2T1)(Ts+2T2) ,

c = KP
(Ts+2a1T1)(Ts+2a2T2)

(Ts+2T1)(Ts+2T2) , d = KP
(Ts−2a1T1)(Ts+2a2T2)+(Ts+2a1T1)(Ts−2a2T2)

(Ts+2T1)(Ts+2T2) ,

f = KP
(Ts−2a1T1)(Ts−2a2T2)

(Ts+2T1)(Ts+2T2)

5.7 Conclusion

Practical systems when designed need in general the design of a controller that
improves the performances of such systems. The performances give an idea on
the transient and transient regimes. Mostly, the overshoot, the settling time, the
steady state error are considered as for the design of controllers. This chapter covers
the design of the classical controllers like proportional, integral and derivative ac-
tions. Procedures using the empirical methods, root-locus technique and Bode plot
technique are proposed and illustrated by numerical examples.

212 5. Design Based on Transfer Function

5.8 Problems

1. In this problem we consider the control of a small satellite. The mathematical
model of this dynamical system is given by:

G(s) =
Θ(s)
U(s)

=
k

s2

whereΘ(s) is the angle to be controlled, U(s) is the force to apply to the satellite
and k = 2 is the gain of the satellite that depends on many parameters of the
system.
Using the three techniques developed in this chapter to design the controller that
gives the best performances and stabilizes the system.

2. Consider the following dynamical system:

G(s) =
4

s(0.1s + 1)(s − 1)

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

3. Consider the following dynamical system:

G(s) =
4

s(0.2s + 1)2

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

4. Consider the following dynamical system:

G(s) =
5

s(0.1s + 1)(0.2s+ 1)

Design a controller that assures the following performances:

(a) stable system
(b) steady state error to a unit ramp equal to 0.1
(c) settling time at 5 % less than 1 s
(d) overshoot less than 5 %

5. A dynamical system is described by the following dynamics:

G(s) =
10

(s + 1)(s + 5)(s + 10)

Using the Ziegler-Nichols methods design the different controllers that we can
design for this system and compare their performances
Using now the root locus and Bode methods design the controllers that
gives good performances for this system. Make a comparative study of these
controllers.

5.8. Problems 213

6. Consider a dynamical system with the following dynamics:

G(s) =
5(s + 2)

s(s + 1)(s + 5)(s + 10)

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

7. A dynamical system is described by the following transfer function:

G(s) =
0.4(0.2s + 1))

(0.1s + 1)(0.4s + 1)(0.5s + 1)(0.8s + 1)

Determine the appropriate technique developed in this chapter to design the
controller that gives the best performances and stabilizes the system.

Part IV

State Space Approaches

6
Analysis Based on State Space

After reading this chapter the reader will:

1. master the concept of state space and its relationship with the transfer
function concept

2. be able to perform the analysis of any LTI system and determine the
specifications that the system has

3. be able to compute the time response of any LTI system for a given
input

4. be able to check the stability, the controllability and the observability of
any dynamical system

6.1 Introduction

As it was seen before the state space representation is one of the ways to model
dynamical systems (see [5, 4, 1]). Previously, we showed for instance that the model
of the behavior of the position of a mechanical system driven by a dc motor can be
described by the following state space representation:

218 6. Analysis Based on State Space

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
(6.1)

where x(t) and u(t) are respectively the state vector and the control input and the
matrices A, B and C are given by:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
− R

Lm
−Kw

Lm
0

Kt

J − b
J 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

Lm

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,C =
[

0 0 1
]
.

The control input u(t) is the voltage that we send to the dc motor and the state
vector x(t) is composed of:

• the current of the armature, i(t)

• the speed of the mechanical part, w(t)

• the position of the part, θ(t)

Before going further in the design of this simple system, we should examine what
are the actual specifications the system has and if they are not acceptable we must
improve them by using appropriate design tools that will be presented later at the
next chapter.

In this chapter we are interested to know what are the specifications that any sys-
tem under study has and how we can proceed to determine them. We are mainly
interested to know if the transient and the steady state regimes are acceptable or not
for the considered system and if this system is stable, controllable and observable.
The goal of this chapter is to show how we can check these properties and com-
pute other performances. Some numerical examples are provided to reinforce the
understanding of the different concepts developed in this chapter.

6.2 State Space Concept

Most of the systems that are computer controlled are in general considered to evolve
continuously in time. To perform their analysis and design, they are sampled and
converted to sampled data systems and then, the appropriate tools for analysis and
synthesis are used. To show how this is done, let us consider a system described by
the following state space equations:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Bu(t) + B1v(t)

y(t) = Cx(t)
(6.2)

6.2. State Space Concept 219

where x(t), u(t) and v(t) represent respectively the state, the control input and the
disturbance of the system.

Remark 6.2.1 Notice that the dynamics (6.2) can be rewritten as the one in (6.1)

by redefining the control as

[
u(t)
v(t)

]
and the control matrix as

[
B B1

]

The solution of the state space equation is given by [1]:

x(t) = Φ(t − t0)x(t0) +
∫ t

t0

Φ(t − σ)Bu(σ)dσ +
∫ t

t0

Φ(t − σ)B1v(σ)dσ (6.3)

where t0 is the initial time and Φ(t) is the transition matrix (Φ(t) = L −1 (sI − A)−1

with L is the Laplace transform).
Let t0 = kT and t = (k+ 1)T , where T is the sampling period of the system. With

a zero-order-hold the control u(σ) is supposed to be constant and equal to the value
taken at period kT , i.e. u(σ) = u(kT), for kT < σ < (k + 1)T . Defining Ψ(T) and
W(kT) as:

Ψ(T) =
∫ (k+1)T

kT
Φ ((k + 1)T − σ) Bdσ (6.4)

W(kT) =
∫ (k+1)T

kT
Φ ((k + 1)T − σ) B1v(σ)dσ (6.5)

we obtain the following state space representation in the discrete-time domain:

x((k + 1)T) = Φ(T)x(kT) + Ψ(T)u(kT) +W(kT) (6.6)

y(kT) = Cx(kT) (6.7)

After the choice of the sampling period, T , the matrices Φ(T) and Ψ(T) become
constant known matrices.

It is customary to use the representation x(k) in place of x(kT). Therefore, x(k)
means the vector x(t) at time t = kT . The state space representation of a linear time
invariant discrete system when the external disturbance is equal to zero for all k ≥ 0
is given by:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Φx(k) + Ψu(k)

y(k) = Cx(k)
(6.8)

where x(k), u(k) and y(k) are respectively the state vector, the input vector and the
output vector at time t = kT , k = 0, 1, 2, · · · and T is the sampling period.

Remark 6.2.2 In Eq. (6.8) we omit to make the matrices Φ and Ψ depend on the
sampling period T since it is fixed and these matrices are constant.

The more general form of the discrete-time state space representation is given by:
⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k) + Du(k)
(6.9)

where G = Φ, H = Ψ, C and D are constant matrices with appropriate dimensions.

220 6. Analysis Based on State Space

u(k) H

G

D

C y(k)
x(k+1) x(k)unit

delay
+

+

+
+

Fig. 6.1 Block diagram of discrete-time linear system

The block diagram of this system is illustrated by Fig. 6.1. Notice that the state
at the time instant kT is obtained from the one at kT + 1 by a delay of one period
time, T .

Example 6.2.1 Consider a system with the following dynamics for the output y(t):

Y(s) =
10

s(10s + 1)
U(s) +

1
s(10s + 1)

V(s)

where

• u(t) is the reference input

• v(t) a unit-step disturbance

Find the the difference equation of this system.
The solution of this question can be obtained using the formulas presented

earlier. In fact, the corresponding differential equation of the system is:

10ÿ(t) + ẏ(t) = 10u(t) + v(t)

By choosing y(t) = x1(t), ẏ(t) = ẋ1(t) = x2(t) we get:

ÿ(t) = ẋ2(t) = −0.1x2(t) + u(t) + 0.1v(t)

The state space equations are:
[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 −0.1

] [
x1(t)
x2(t)

]
+

[
0
1

]
[u(t)] +

[
0

0.1

]
[v(t)]

y(t) =
[

1 0
] [x1(t)

x2(t)

]

First of all notice that the fast dynamics in this system is linked to the pole −0.1,
which corresponds to a constant time τ = 10s. Therefore an appropriate choice of
the sampling period T is equal 1s.

6.2. State Space Concept 221

The transition matrix, Φ(t) of this system is given by:

Φ(t) = L −1
(
(sI − A)−1

)
= L −1

(
1

s(s + 0.1)

[
s + 0.1 1

0 s

])
=

Φ(t) = L −1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
s

1
s(s + 0.1)

0
1

s + 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
[

1 10(1 − e−0.1t)
0 e−0.1t

]

We also have:

Ψ(t) =
∫ t

0
Φ(t − σ)Bdσ =

∫ t

0

[
10(1 − e−0.1(t−σ))

e−0.1(t−σ)

]
dσ

=

[
10t − 100 + 100e−0.1t

10 − 10e−0.1t

]

Therefore:

Φ(T) =

[
1 10(1 − e−0.1T)
0 e−0.1T

]
,

Ψ(T) =

[
10T − 100 + 100e−0.1T

10 − 10e−0.1T

]
.

Since v(t) = 1 for t ≥ 0, then we have :

W(t) =
∫ t

0
Φ(t − σ)B1dσ =

[
t − 10 + 10e−0.1t

1 − e−0.1t

]

W(T) =

[
T − 10 + 10e−0.1T

1 − e−0.1T

]

If T = 1 second, then we obtain:
[

x1(k + 1)
x2(k + 1)

]
=

[
1 0.95
0 0.91

] [
x1(k)
x2(k)

]
+

[
0.48
0.95

]
uk +

[
0.05
0.1

]
vk

It is well known that a physical system may have many state space represen-
tations. Most of the cases, we consider the canonical forms (controllable from,
observable form and the Jordan form). The one, we just presented, is the controllable
form. The other forms will be developed here.

For the Jordan form, remark that:

1
s (s + 0.1)

=
10
s
− 10

(s + 0.1)

which implies that:

Y(s) =

[
10
s
− 10

(s + 0.1)

]
[U(s) + 0.1V(s)]

222 6. Analysis Based on State Space

Letting now:

X1(s) =
10
s

[U(s) + 0.1V(s)]

X2(s) =
10

(s + 0.1)
[U(s) + 0.1V(s)]

which implies:

ẋ1(t) = 10u(t) + v(t)

ẋ2(t) = −0.1x2(t) + 10u(t) + v(t)

y(t) = x1(t) − x2(t)

From this we get the following state space representation:

ẋ(t) = Ax(t) + Bu(t)+ B1v(t)

y(t) = Cx(t)

with

A =

[
0 0
0 −0.1

]
,

B =

[
10
−10

]
,

B1 =

[
1
1

]
,

C =
[

1 −1
]

For the observable canonical form notice that from:

Y(s) =
1

s (10s + 1)
[10U(s) + V(s)]

we get:

10s2Y(s) + sY(s) = 10U(s) + V(s)

From this we obtain:

Y(s) =
1
s

[
−0.1Y(s) +

1
s

[U(s) + 0.1V(s)]

]

By letting:

Y(s) = X1(s)

X2(s) =
1
s

[U(s) + 0.1V(s)]

X1(s) =
1
s

[−0.1Y(s) + X2(s)]

6.2. State Space Concept 223

that give in turn:

ẋ1(t) = −0.1x1(t) + x2(t)

ẋ2(t) = u(t) + 0.1v(t)

y(t) = x1(t)

Finally we get the following description for our system:

ẋ(t) = Ax(t) + Bu(t)+ B1v(t)

y(t) = Cx(t)

where

A =

[−0.1 1
0 0

]
,

B =

[
0
1

]
,

B1 =

[
0

0.1

]
,

C =
[

1 0
]

Remark 6.2.3 Another description can be obtained by letting:

Y(s) = X2(s)

X1(s) =
1
s

[U(s) + 0.1V(s)]

X2(s) =
1
s

[−0.1Y(s) + X1(s)]

The computations of all the matrices for the discrete-time description can be done
in a similar way as we did for the controllable form.

Remark 6.2.4 In this example, for a given dynamical system, we developed a corre-
sponding discrete-time state space representation for a given continuous-time state
one. In some application we may have the recursive recurrent difference equation
or its equivalent transfer function and we would like to establish the corresponding
state space representation.

Sometimes the model of the system under study can be given in Z -transform
with its transfer function between the output Y(z) and the input U(z) as follows:

G(z) =
Y(z)
U(z)

=
z4 + 2z2 + 3z + 4

z5 − 1
=

z4
(
1 + 2z−2 + 3z−3 + 4z−4

)

z5 − 1

To establish the state space representation of this system, let us first of all rewrite
the transfer function as follows:

G(z) =
Y(z)
X(z)

X(z)
U(z)

224 6. Analysis Based on State Space

with

X(z)
U(z)

=
z4

z5 − 1
Y(z)
X(z)

= 1 + 2z−2 + 3z−3 + 4z−4

From the first relation we get:

z5X(z) − X(z) = z4U(z)

that gives in turn:

x(k + 1) = x(k − 4) + u(k)

An alternate choice for the state variable consists for instance to consider

x1(k) = x(k − 4)

x2(k) = x(k − 3)

x3(k) = x(k − 2)

x4(k) = x(k − 1)

x5(k) = x(k)

From this we get:

x1(k + 1) = x(k − 3) = x2(k)

x2(k + 1) = x(k − 2) = x3(k)

x3(k + 1) = x(k − 1) = x4(k)

x4(k + 1) = x(k) = x5(k)

x5(k + 1) = x(k + 1) = x1(k) + u(k)

In matrix form we get:

x(k + 1) = Ax(k) + Bu(k)

with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From the other side, the second equation gives:

y(k) = x(k) + 2x(k − 2) + 3x(k − 3) + 4x(k − 4)

6.2. State Space Concept 225

Using now, the definition of the state variables, we get:

y(k) = Cx(k)

with

C =
[

4 3 2 0 1
]
.

This idea can be generalized and for this purpose let:

G(z) =
Y(z)
U(z)

=
bn−1zn−1 + bn−2zn−2 + · · · + b0

zn + an−1zn−1 + · · · + a0

=
zn−1

(
bn−1 + bn−2z−1 + bn−3z−2 + · · · + b0z−(n−1)

)

zn + an−1zn−1 + · · · + a0

This can be rewritten as follows:

G(z) =
Y(z)
U(z)

=
X(z)
U(z)

Y(z)
X(z)

with

X(z)
U(z)

=
zn−1

zn + an−1zn−1 + · · · + a0

Y(z)
X(z)

= bn−1 + bn−2z−1 + bn−3z−2 + · · · + b0z−(n−1)

Using the first relation we get:

x(k + n) + an−1x(k + n − 1) + · · · + a0x(k) = u(k + n − 1)

That we can rewrite as:

x(k + 1) + an−1x(k) + · · · + a0x(k − n + 1) = u(k)

Let now:

x1(k) = x(k − n + 1)

x2(k) = x(k − n + 2)

x3(k) = x(k − n + 3)
...

xn(k) = x(k)

which implies:

x1(k + 1) = x(k − n + 2) = x2(k)

x2(k + 1) = x(k − n + 3) = x3(k)

x3(k + 1) = x(k − n + 4) = x4(k)
...

xn(k + 1) = x(k + 1) = −a0x1(k) − · · · − an−1xn(k) + u(k)

226 6. Analysis Based on State Space

The other relation implies:

y(k) = bn−1x(k) + bn−2x(k − 1) + · · · + b0x(k − n + 1)

= b0x1(k) + · · · + bn−1xn(k)

In matrix form we get for the two relations:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 · · · −an−2 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[

b0 · · · bn−1

]
.

When the degree of the numerator is equal to the one of the denominator of the
transfer function, i.e:

G(z) =
bnzn + bn−1zn−1 + . . . + b1z + b0

zn + an−1zn−1 + . . . + a1z + a0

we can firstly rewrite the transfer function as follows:

G(z) = bn +
b̄n−1zn−1 + . . . + b̄1z + b̄0

zn + an−1zn−1 + . . . + a1z + a0

with

b̄n−1 = bn−1 − bnan−1

b̄n−2 = bn−2 − bnan−2

...

b̄0 = b0 − bna0

Following the same steps as before, we get the following state space description:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + bnu(k)

6.2. State Space Concept 227

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 · · · −an−2 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
b0 − a0bn · · · bn−1 − an−1bn

]
.

For the observable canonical form, let us assume that the dynamics of the system
with input u(k) and output y(k) is given by:

G(z) =
bn−1zn−1 + . . . + b1z + b0

zn + an−1zn−1 + . . . + a1z + a0

To establish the observable canonical form, let us rewrite the dynamics as
follows:

znY(z) + an−1zn−1Y(z) + . . . + a1zY(z) + a0Y(z) = bn−1zn−1U(z) + . . . + b1zU(z) + b0U(z)

where Y(z) and U(z) and the Z -transform of y(k) and u(k) respectively.
This relation can be rewritten as:

Y(z) =
1
zn

[
−an−1zn−1Y(z) − . . . − a1zY(z) − a0Y(z) + bn−1zn−1U(z) + . . . + b1zU(z) + b0U(z)

]

=
1
z

[
−an−1Y(z) + bn−1U(z) +

1
z

[
. . . +

1
z

[
−a1Y(z) + b1U(z) +

1
z

[−a0Y(z) + b0U(z)]

]]]

Define X1(k1), X2(k), · · · , Xn−1(k), Xn(k) by:

Xn(k) =
1
z

[−a0Y(z) + b0U(z)]

Xn−1(k) =
1
z

[−a1Y(z) + b1U(z) + Xn(z)]

...

X2(k) =
1
z

[−an−2Y(z) + bn−2U(z) + X3(z)]

X1(k) =
1
z

[−an−1Y(z) + bn−1U(z) + X2(z)] = Y(z)

228 6. Analysis Based on State Space

which gives:

xn(k + 1) = −a0x1(k) + b0u(k)

xn−1(k + 1) = −a1x1(k) + b1u(k) + xn(k)
...

x2(k + 1) = −an−2x1(k) + bn−2u(k) + x3(k)

x1(k + 1) = −an−1x1(k) + bn−1u(k) + x2(k)

In matrix form we get:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1 1 0 · · · 0
−an−2 0 1 · · · 0
...

...
...
. . . 0

−a1 0 0 · · · 1
−a0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−1

bn−2
...

b1

b0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

y(k) =
[
1 0 · · · 0

]
x(k)

Remark 6.2.5 It is important to notice that if we define X1(k1), X2(k), · · · , Xn−1(k),
Xn(k) by:

X1(k) =
1
z

[−a0Y(z) + b0U(z)]

X2(k) =
1
z

[−a1Y(z) + b1U(z) + Xn(z)]

...

Xn−1(k) =
1
z

[−an−2Y(z) + bn−2U(z) + X3(z)]

Xn(k) =
1
z

[−an−1Y(z) + bn−1U(z) + X2(z)] = Y(z)

which gives:

x1(k + 1) = −a0x1(k) + b0u(k)

x2(k + 1) = −a1x1(k) + b1u(k) + xn(k)
...

xn−1(k + 1) = −an−2x1(k) + bn−2u(k) + x3(k)

xn(k + 1) = −an−1x1(k) + bn−1u(k) + x2(k)

6.2. State Space Concept 229

In matrix form we get:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2
...
...
. . .

...
...

0 0 · · · 1 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0

b1
...

bn−2

bn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

y(k) =
[
0 0 · · · 1

]
x(k)

which gives another observable canonical form:

For more general transfer function with the following expression:

G(z) =
Y(z)
U(z)

=
bnzn + bn−1zn−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0

This transfer function can be rewritten as follows:

G(z) = bn +
Y(z)
U(z)

= bn +
(bn−1 − an−1bn)zn−1 + · · · + (b1 − a1bn)z + (b0 − a0bn)

zn + an−1zn−1 + · · · + a1z + a0

That gives the following state space description:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−an−1 1 0 · · · 0
−an−2 0 1 · · · 0
...

...
...
. . . 0

−a1 0 0 · · · 1
−a0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bn−1 − an−1bn

bn−2 − an−2bn
...

b1 − a1bn

b0 − a0bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

y(k) =
[
1 0 · · · 0

]
x(k) + bnu(k)

For the Jordan canonical form, notice that we can have poles with multiplicity
equal to one or greater than one. Let us firstly treat the case of poles with multiplicity
equal to one. For this purpose, let us assume that the transfer function that describes
the system has z1, · · · , zn

G(z) =
Y(z)
U(z)

=
bn−1zn−1 + · · · + b1z + b0

zn + a1zn−1 + · · · + an

This transfer function can be rewritten as follows:

G(z) =
K1

z − z1
+ · · · + Kn

z − zn

where

Ki = lim
z→zi

G(z)(z − zi)

Define Xi(z) = Ki
z−zi

, we get:

xi(k + 1) = zixi(k) + Kiu(k)

230 6. Analysis Based on State Space

which gives also:

y(k) = x1(k) + · · · + xn(k)

This gives the following state space description:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 0 · · · 0
0 z2 · · · 0
...
...
. . .

...
0 0 0 zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1

K2
...

Kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

y(k) =
[
1 1 · · · 1

]
x(k)

Remark 6.2.6 It is important to notice that the gain Ki, i = 1, 2, · · · , n, can also be
put in the C matrix of the state space description.

When the transfer function is given by:

G(z) =
bnzn + bn−1zn−1 + · · · + b1z + b0

zn + an−1zn−1 + · · · + a1z + a0

we can firstly proceed with a polynomial division which will give the following:
Then proceeding in the same way as we did before, and ntoticing that

Y(z) =
(bn−1 − an−1bn)zn−1 + · · · + (b1 − a1bn)z + (b0 − a0bn)

zn + an−1zn−1 + · · · + a1z + a0
U(z) + bnU(z)

= X1(z) + · · · + Xn(z) + bnU(z)

This gives the following state space description:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1 0 · · · 0
0 z2 · · · 0
...
...
. . .

...
0 0 0 zn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K1

K2
...

Kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

y(k) =
[
1 1 · · · 1

]
x(k) + bnu(k)

Example 6.2.2 In this example, we will show how to establish canonical forms for
a dynamical system described by a transfer function. For this purpose, let us assume
that we have a system with the following transfer function between the output y(k)
and the input u(k):

G(z) =
Y(z)
U(z)

=
z + 2

z2 − 1.7z + 0.72

• controllable canonical form: to establish this form, let us rewrite the transfer
function as follows:

G(z) =
Y(z)
U(z)

=
W(z)
U(z)

Y(z)
W(z)

=
z + 2

z2 − 1.7z + 0.72

6.2. State Space Concept 231

with
W(z)
U(z)

=
z

z2 − 1.7z + 0.72
Y(z)
W(z)

= 1 + 2z−1

From W(z)
U(z) =

z
z2−1.7z+0.72 , we get:

w(k + 2) − 1.7w(k + 1) + 0.72w(k) = u(k + 1)

that we can rewrite as follows:

w(k + 1) − 1.7w(k) + 0.72w(k − 1) = u(k)

Let us now define:

x1(k) = w(k − 1)

x2(k) = w(k)

which implies in turn:

x1(k + 1) = w(k) = x2(k)

x2(k + 1) = w(k + 1) = 1.7w(k) − 0.72w(k − 1) + u(k)

= −0.72x1(k) + 1.7x2(k) + u(k)

In matrix form we have:

x(k + 1) =

[
0 1
−0.72 1.7

]
x(k) +

[
0
1

]
u(k)

Using now the second relation Y(z)
W(z) = 1 + 2z−1 and the definition of the state

variables, we get:

y(k) = w(k) + 2w(k − 1) = 2x1(k) + x2(k) =
[
2 1
]

x(k)

Finally, we get the following description:

x(k + 1) =

[
0 1
−0.72 1.7

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
2 1
]

x(k)

Remark 6.2.7 It is important to notice that we can get another controllable
form with respect to the first raw.

• Observable canonical form: from the transfer function we get:

z2Y(z) − 1.7zY(z) + 0.72Y(z) = zU(z) + 2U(z)

that gives in turn:

Y(z) =
1
z2

[1.7zY(z) − 0.72Y(z) + zU(z) + 2U(z)]

=
1
z

[
1.7Y(z) + U(z) +

1
z

[−0.72Y(z) + 2U(z)]

]

232 6. Analysis Based on State Space

Let us define X1(k) and X2(z) as follows:

X2(z) =
1
z

[−0.72Y(z) + 2U(z)]

X1(z) =
1
z

[1.7Y(z) + U(z) + X2(z)] = Y(z)

which gives in turn:

x1(k + 1) = 1.7x1(k) + x2(k) + u(k)

x2(k + 1) = −0.72x1(k) + 2u(k)

y(k) = x1(k)

Finally, we get the following state space description:

x(k + 1) =

[
1.7 1
−0.72 0

]
x(k) +

[
1
2

]
u(k)

y(k) =
[
1 0
]

x(k)

Remark 6.2.8 It is important to notice that we can get another observable form
with respect to the last column.

• Jordan canonical form: from the transfer function it can be verified that we have
the following poles:

z1 = 0.8

z2 = 0.9

Based on this, the transfer function can be decomposed as follows:

G(z) =
C1

z − 0.8
+

C2

z − 0.9

where C1 and C2 are given by:

C1 = lim
z→0.8

z + 2
z − 0.9

= −28

C2 = lim
z→0.9

z + 2
z − 0.8

= 29

Now, let us define X1(z) and X2(z) as follows:

X1(z) =
C1

z − 0.8

X2(z) =
C2

z − 0.9

The output Y(z) is given by:

Y(z) = X1(z) + X2(z)

6.2. State Space Concept 233

Using these relations, we get:

x1(k + 1) = 0.8x1(k) − 28u(k)

x2(k + 1) = 0.9x2(k) + 29u(k)

y(k) = x1(k) + x2(k)

which gives the following state space description:

x(k + 1) =

[
0.8 0
0 0.9

]
x(k) +

[−28
29

]
u(k)

y(k) =
[
1 1
]

x(k)

Remark 6.2.9 It is important to notice that we can get different state space
descriptions either by putting the coefficient -28 and 29 at the C matrix and by
permuting the poles 0.8 and 0.9.

In some circumstances we need to compute the transfer function from the state
space description. In the next lines, we will show how to obtain it. For this purpose
consider the state space description (6.9). Applying the Z -transform, we get:

zX(z) − zx(0) = GX(z) + HU(z)

Y(z) = CX(z) + DU(z)

where X(z), U(z) and x(0) represent respectively the Z -transform of x(k) and u(k)
and the initial condition of the state vector.

From these relations we get:

Y(z) =
[
C [zI −G]−1 H + D

]
U(z) + z [zI −G]−1 x(0)

When the initial condition are equal to zero this condition becomes:

Y(z) =
[
C [zI −G]−1 H + D

]
U(z)

Example 6.2.3 To show how to compute the transfer function from a state space
description, let us consider the following dynamics:

x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k)

where

G =

[
0 1
−0.1 0.2

]
,

H =

[
0
1

]
,

C =
[
1 0
]
.

234 6. Analysis Based on State Space

Using the formula for the transfer function we get:

G(z) =
Y(z)
U(z)

= C [zI −G]−1 H

=
[

1 0
] [

z

[
1 0
0 1

]
−
[

0 1
−0.1 0.2

]]−1 [
0
1

]

=
1

z (z − 0.2) + 0.1

[
1 0
] [z − 0.2 1
−0.1 z

] [
0
1

]

=
1

z (z − 0.2) + 0.1

=
1

z2 − 0.2z + 0.1

Example 6.2.4 As another example, let us consider the different models in state
space description we developed for the dc motor driving the small disk presented
earlier and compute the corresponding transfer function. For this purpose, we as-
sume that the external disturbance is absent. For this system, we will consider the
output as the position, θ(t), and we should act on the voltage input, u(t), to move
the output. The mathematical model of this system is given by the following transfer
function:

G(s) =
K

s (τs + 1)

where K is the gain and τ is the constant time.
From this transfer function we get:

θ̈(t) +
1
τ
θ̇(t) =

K
τ

u(t)

For the controllable form, we can choose:

x1(t) = θ(t) = y(t)

x2(t) = θ̇(t)

From this, we get:

ẋ1(t) = θ̇(t) = x2(t)

ẋ2(t) = θ̈(t) = −1
τ

x2(t) +
K
τ

u(t)

That gives in matrix form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

6.2. State Space Concept 235

with

x(t) =

[
x1(t)
x2(t)

]
,

A =

[
0 1
0 − 1

τ

]
,

B =

[
0
K
τ

]
,

C =
[

1 0
]
.

To compute the corresponding discrete-time form, let us compute the transition
matrix φ(s). Using the controllable description, we have

φ(s) = (sI − A)−1 =

[
s −1
0 s + 1

τ

]−1

=
1

s
(
s + 1

τ

)
[

s + 1
τ

1
0 s

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1
s
τ
s − τ

s+ 1
τ

0 1
s+ 1

τ

⎤⎥⎥⎥⎥⎥⎥⎦

which gives using the Laplace transform table:

φ(t) =

⎡⎢⎢⎢⎢⎣ 1 τ
[
1 − e−

t
τ

]
0 e−

t
τ

⎤⎥⎥⎥⎥⎦

Ψ(T) =
∫ T

0

[
1 1 − e− T−σ

τ

0 e− T−σ
τ

] [
0
K
τ

]
dσ

=

⎡⎢⎢⎢⎢⎢⎣
K
[
T − τ

[
1 − e− T

τ

]]
K
[
1 − e− T

τ

]
⎤⎥⎥⎥⎥⎥⎦

It is important to notice that the corresponding discrete-time description is not in
controllable form.

For the controllable form with respect to the first row, we can choose:

x1(t) = θ̇(t)

x2(t) = θ(t) = y(t)

From this, we get:

ẋ1(t) = θ̈(t) = −1
τ

x2(t) +
K
τ

u(t)

ẋ2(t) = θ̇(t) = x1(t)

that gives in matrix form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

236 6. Analysis Based on State Space

with

x(t) =

[
x1(t)
x2(t)

]
,

A =

[
0 − 1

τ

1 0

]
,

B =

[
K
τ

0

]
,

C =
[

0 1
]
.

The corresponding discrete-time form of this controllable form, can be obtained
in a similar way.

For the observable form, notice that from the transfer function we have:

Θ(s) =
1
s

[
−1
τ
Θ(s) +

1
s

[K
τ

U(s)
]]

Let us choose:

X1(s) =
1
s

[
−1
τ
Θ(s) + X2(s)

]
= y(t)

X2(s) =
1
s

[K
τ

U(s)
]

From this, we get the following matrix form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

with

x(t) =

[
x1(t)
x2(t)

]
,

A =

[− 1
τ

1
0 0

]
,

B =

[
0
K
τ

]
,

C =
[

1 0
]
.

To compute the corresponding discrete-time form, let us compute the transition
matrix φ(s). Using the controllable description, we have

φ(s) = (sI − A)−1 =

[
s + 1

τ
−1

0 s

]−1

=
1

s
(
s + 1

τ

)
[

s 1
0 s + 1

τ

]
=

⎡⎢⎢⎢⎢⎣
1

s+ 1
τ

τ
s − τ

s+ 1
τ

0 1
s

⎤⎥⎥⎥⎥⎦

6.2. State Space Concept 237

which gives using the Laplace transform table:

φ(t) =

[
e− t

τ τ
[
1 − e− t

τ

]
0 1

]

Ψ(T) =
∫ T

0

[
e−

T−σ
τ τ

[
1 − e−

T−σ
τ

]
0 1

] [
0
K
τ

]
dσ

=

[
K
[
T − τ

[
1 − e−

T
τ

]]
K
τ

T

]

It is important to notice that the corresponding discrete-time description is not in
observable form.

For the observable form with respect to the last column, we can choose:

X1(s) =
1
s

[K
τ

U(s)
]

X2(s) =
1
s

[
−1
τ
Θ(s) + X2(s)

]
= y(t)

From this, we get the following matrix form:

ẋ(t) Ax(t) + Bu(t)

y(t) = Cx(t)

with

x(t) =

[
x1(t)
x2(t)

]
,

A =

[
0 0
1 − 1

τ

]
,

B =

[
K
τ
0

]
,

C =
[

0 1
]
.

For the Jordan form, notice that from the transfer function we have:

Θ(s) =
K
s

U(s) +
−K

s + 1
τ

U(s)

Let us choose:

X1(s) =
K

s
U(s)

X2(s) =
−K

s + 1
τ

U(s)

y(t) = x1(t) + x2(t)

238 6. Analysis Based on State Space

From this, we get the following matrix form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

with

x(t) =

[
x1(t)
x2(t)

]
,

A =

[
0 0
0 − 1

τ

]
,

B =

[
K
−K

]
,

C =
[

1 1
]
.

To compute the corresponding discrete-time form, let us compute the transition
matrix φ(s). Using the controllable description, we have

φ(s) = (sI − A)−1 =

[
s 0
0 s + 1

τ

]−1

=
1

s
(
s + 1

τ

)
[

s + 1
τ

0
0 s

]
=

⎡⎢⎢⎢⎢⎣
1
s 0
0 1

s+ 1
τ

⎤⎥⎥⎥⎥⎦

which gives using the Laplace transform table:

φ(t) =

[
1 0
0 e−

t
τ

]

Ψ(T) =
∫ T

0

[
1 0
0 e− T−σ

τ

] [
K
−K

]
dσ

=

[
KT

−Kτ
[
1 − e− T

τ

]
]

A second Jordan form can be obtained. In fact if we can choose:

X1(s) =
−K

s + 1
τ

U(s)

X2(s) =
K
s

U(s)

y(t) = x1(t) + x2(t)

From this, we get the following matrix form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

6.3. Time Response and Its Computation 239

with

x(t) =

[
x1(t)
x2(t)

]
,

A =

[− 1
τ 0

0 0

]
,

B =

[−K
K

]
,

C =
[

1 1
]
.

In the next section, we will treat how we can compute the time response of the
sampled data system when the input is fixed.

6.3 Time Response and Its Computation

Previously, we presented a method based on the transfer function concept to com-
pute the time response of any system for a given input. In this section, we will
develop another method that uses the state space description.

Consider the state difference equation :

x(k + 1) = Gx(k) + Hu(k)

Before giving the solution of this difference equation, let us show that

φ(kT) = Gk = Z −1
[
(zI −G)−1z

]

In fact, the z-transform of the transition matrix, φ(k) = φ(kT), is given by:

Φ(z) =
∞∑

k=0

φ(kT)z−k

Pre-multiplying both side of this relation by φ(T)z (G = φ(T)) and subtracting
the result from this relation, we get:

[
I − φ(T)z−1

]
Φ(z) = I

which can be rewritten as:

Φ(z) =
[
I − φ(T)z−1

]−1
=
[
zI − φ(T)

]−1 z

Taking now the inverse z-transform on both sides of this relation, we get:

φ(kT) = Gk = Z −1
[
(zI −G)−1z

]

Another approach can be used to show this. In fact, the Z -transform of the
previous state decsription gives :

zX(z) − zx(0) = GX(z) + HU(z)

(zI −G) X(z) = zx(0) + HU(z)

240 6. Analysis Based on State Space

Multiplying by (zI −G)−1, we get:

X(z) = (zI −G)−1zx(0) + (zI −G)−1HU(z)

Taking now the Z -inverse transform, we obtain:

x(k) = Z −1
[
(zI −G)−1z

]
x(0) +Z −1

[
(zI −G)−1HU(z)

]

Notice that Gk = Z −1
[
(zI −G)−1z

]
is the transition matrix.

Finally, we get the following expression for the solution of the difference
equation:

x(k) = Gk x(0) +
k−1∑
l=0

Gk−l−1Hu(l)

It is also important to note that the solution, can be obtained using a recursive
approach. In fact, for k = 0, we have:

x(T) = Gx(0) + Hu(0)

and for k = 1 we have:

x(2T) = Gx(T) + Hu(T)

= G [Gx(0) + Hu(0)] + Hu(T)

= G2x(0) +GHu(0) + Hu(T)

For k = (N − 1)T , we have

x(NT) = Gx((N − 1)T) + Hu((N − 1)T)

For k = 2, we have

x(3T) = Gx(2T) + Hu(2T)

Substituting the (N − 1) equations for x((N − 1)T), x((N − 2)T) · · · , x(T), we get:

x(NT) = GN x(0) +
N−1∑
l=0

GN−l−1Hu(l)

For N = k we get:

x(kT) = Gk x(0) +
k−1∑
l=0

Gk−l−1Hu(l)

The characteristic equation is:

|zI −G| = 0

Recall that a discrete system is stable if and only if the roots of the characteristic
equation lie inside the unit circle centered at the origin.

6.3. Time Response and Its Computation 241

Example 6.3.1 Find the solution of the following discrete-time system when u(k) =
1, k = 0, 1, 2, · · ·

x(k + 1) = Gx(k) + Hu(k)

G =

[
0 1
−0.16 −1

]
, H =

[
1
1

]
, x(0) =

[
x1(0)
x2(0)

]
=

[
1
−1

]

The transition matrix is defined by :

Φ(k) = Gk = Z −1
[
(zI −G)−1z

]

Calculate (zI −G)−1

(zI −G)−1 =

[
z −1

0.16 z + 1

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z + 1
(z + 0.2)(z + 0.8)

1
(z + 0.2)(z + 0.8)−0.16

(z + 0.2)(z + 0.8)
z

(z + 0.2)(z + 0.8)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3

(z
z + 0.2

)
− 1

3

(z
z + 0.8

) 5
3

(z
z + 0.2

)
− 5

3

(z
z + 0.8

)

−0.8
3

(z
z + 0.2

)
+

0.8
3

(z
z + 0.8

)
−1

3

(z
z + 0.2

)
+

4
3

(z
z + 0.8

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The transition matrix

Φ(k) = Gk = Z −1
[
(zI −G)−1z

]

= Z −1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3

(z
z + 0.2

)
− 1

3

(z
z + 0.8

) 5
3

(z
z + 0.2

)
− 5

3

(z
z + 0.8

)

−0.8
3

(z
z + 0.2

)
+

0.8
3

(z
z + 0.8

)
−1

3

(z
z + 0.2

)
+

4
3

(z
z + 0.8

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
3

(−0.2)k − 1
3

(−0.8)k 5
3

(−0.2)k − 5
3

(−0.8)k

−0.8
3

(−0.2)k +
0.8
3

(−0.8)k −1
3

(−0.2)k +
4
3

(−0.8)k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We know that:

X(z) = (zI −G)−1 [zx(0) + HU(z)]

U(z) =
z

z − 1

therefore

zx(0) + HU(z) =

[
z
−z

]
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
z − 1

z
z − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2

z − 1
−z2 + 2z

z − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and finally

X(z) = (zI −G)−1 [zx(0) + HU(z)]

242 6. Analysis Based on State Space

X(z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(z2 + 2)z
(z + 0.2)(z + 0.8)(z − 1)

(−z2 + 1.84z)z
(z + 0.2)(z + 0.8)(z − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−17
6

z

z + 0.2
+

−22
9

z

z + 0.8
+

25
18

z

z − 1
3.4
6

z

z + 0.2
+

−17.6
9

z

z + 0.8
+

7
18

z

z − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Finally, we get the desired result:

x(k) = Z −1 {X(z)} =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−17

6
(−0.2)k +

22
9

(−0.8)k +
25
18

3.4
6

(−0.2)k − 17.6
9

(−0.8)k +
7
18

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Most of the time the system under control evolves continuously in time and their
outputs take continuous values. Their specifications are defined in a similar way as
we did previously when using the transfer concepts. For more details on the specifi-
cations, we refer the reader to the appropriate chapter. The discrete-time description
is obtained in a similar was that we did for previous examples.

6.4 Stability

Previously we presented methods to check if a linear time-invariant given system
is stable or not. These methods are based on the transfer function concepts and due
to Jury and Raible and the methods are referred in the literature to as Jury’s criteria
and Raible’s criteria respectively. In this section we present another approach for the
stability analysis that was developed by Lyapunov. This method is powerful since it
can be applied to linear and nonlinear systems and it is referred in the literature to
as second method of Lyapunov.

For the analysis of stability in the sense of Lyapunov, we assume that the system
is unforced (u(t) = 0,∀t ≥ 0) and responds only to initial conditions. The sec-
ond method of Lyapunov has the disadvantages that gives only sufficient condition
only and it relies of the choice of a Lyapunov function which is more complex for
nonlinear systems.

A linear discrete-time system x(k + 1) = Gx(k), with x(k) its solution at period k,
is stable if it exists a scalar function V(x(k)), called Lyapunov function, that satisfies
the following conditions:

1. V(x(k)) must be positive definite

2. and satisfying the following:

V(x(k))

⎧⎪⎪⎨⎪⎪⎩
= 0 for x = 0,

> 0 for x � 0.

6.4. Stability 243

The variation of V(x(k)) between two consecutive values (k + 1) and (k) of x(k)
must be negative definite, i.e.

ΔV(x(k)) = V(x(k + 1)) − V(x(k))

that must satisfy the following:

ΔV(x(k))

⎧⎪⎪⎨⎪⎪⎩
= 0 for x = 0,

< 0 for x � 0.

For the choice of the Lyapunov function V(x(k)), there exist several possibilities
to find an adequate function V(x(k)). For linear systems, we generally choose the
following form:

V(x(k)) = x�(k)Px(k)

where P is an appropriate matrix with appropriate dimension.

1. In order for V(x(k)) to be positive definite, it is sufficient that P is a symmetric
and positive-definite matrix.

2. Regarding the condition ΔV(x(k)), since x(k + 1) = Gx(k), we have :

ΔV(x(k)) = x�(k + 1)Px(k + 1) − x�(k)Px(k)

= x�(k)
[
G�PG − P

]
︸���������︷︷���������︸

−Q

x(k) = −x�(k)Qx(k)

One solution for ΔV(x(k)) to be negative definite is that Q is symmetric and
positive-definite matrix.

Theorem 6.4.1 Consider a linear time-invariant system with the following
description:

x(k + 1) = Gx(k)

The equilibrium point x̃ = 0 is asymptotically stable if and only if for any given sym-
metric and positive matrix Q, there exists a symmetric and positive-definite matrix
P solution of the following:

G�PG −G = −Q (6.10)

Then V(x(k)) = x�(k)Px(k) is a Lyapunov, and ΔV(x(k)) = −x�(k)Qx(k).

Remark 6.4.1 It is important to notice that the stability of linear systems depends
only on the system itself and not on the inputs and this is shown by Eq. (6.10) since
the matrix G represents this system.

Proof: Let us prove the sufficiency only. For this purpose, let us assume the exis-
tence a symmetric and positive-definite matrix P > 0 that it is the unique solution of
A�PA− P = −Q, for a given Q > 0, and consider the following Lyapunov function:

V(x) = x�Px

244 6. Analysis Based on State Space

First of all notice that V(x) > 0 for all x � 0 and V(0) = 0.
The difference is given by:

ΔV(x(k)) = V(x(k + 1)) − V(xk) = x�(k + 1)Px(k + 1) + x�(k)Px(k)

= x�(k)
[
A�PA − P

]
x(k) = −x�(k)Qx(k)

Since Q > 0 is symmetric and positive-definite matrix, then ΔV(x) < 0 is
negative-definite, which implies that the system is stable.

For the proof of the necessity we refer the reader to [7] �

We can show the stability of a given system doesn’t depend on the used descrip-
tion. Let us assume that we have a stable system and consider a transformation, T ,
that puts it in a Jordan form. For this purpose, notice that:

Ḡ = T−1GT

Since our system is stable, this means that for a given symmetric and positive-
definite matrix Q, there exists a symmetric and positive-definite matrix P solution
of the following Lyapunov equation:

G�PG − P = −Q

The new description will be stable if for a given symmetric and positive-definite
matrix Q̄ there exists a symmetric and positive definite matrix P̄ such that the
following holds:

Ḡ�P̄Ḡ − Ḡ = −Q̄

Using now the expression of Ḡ we have:

T�G�T−�P̄T̄ 1GT − T−1GT = −Q̄

that gives

T−1
[
G�PG −G

]
T = −Q̄

From this we get:

G�PG − P = −T−1Q̄T = −Q

which is equivalent to the stability of the initial description.

Example 6.4.1 Let us now consider a system with the following dynamics:

x(k + 1) = Gx(k)

with

G =

[
0.768 −0.416
1.184 0.192

]

Let’s choose the simplest symmetric and positive-definite matrix:

Q =

[
1 0
0 1

]

6.4. Stability 245

we calculate : Q = P −G�PG

[
1 0
0 1

]
=

[
p11 p12

p21 p22

]
−
[

0.768 1.184
−0.416 0.192

] [
p11 p12

p21 p22

] [
0.768 −0.416
1.184 0.192

]

From this, we obtain :

0.410p11 − 0.909p12 − 0.909p21 − 1.402p22 = 1

0.319p11 + 0.853p12 + 0.492p21 − 0.227p22 = 0

0.319p11 + 0.492p12 + 0.853p21 − 0.227p22 = 0

−0.173p11 + 0.080p12 + 0.080p21 + 0.963p22 = 1

which gives in turn:

P =

[
5.715 −0.978
−0.978 2.227

]

The determinant of P is equal to 11.771. The matrix P is then symmetric and
positive-definite and therefore, the system is stable in the sense of Lyapunov.

Example 6.4.2 Let us consider the following system for this example:

G(z) =
2

(z − 0.1) (z − 0.2)
=

Y(z)
U(z)

where Y(z) and U(z) represent respectively the Z -transform of the output and input.
The canonical forms for this system are:

• controllable form: Letting x1(k) and x2(k) be defined as follows:

x1(k) = y(k)

x2(k) = y(k + 1)

and noticing that we have:

y(k + 2) − 0.3y(k + 1) + 0.02y(k) = 2u(k)

we get:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

246 6. Analysis Based on State Space

with

x(k) =

[
x1(k)
x2(k)

]
,

A =

[
0 1
−0.02 0.3

]
,

B =

[
0
2

]
,

C =
[

1 0
]
.

• observable form: Notice that we can write the following:

Y(z) =
1
z

[
0.3Y(z) +

1
z

[−0.02Y(z) + 2U(z)]

]

Letting x1(k) and x2(k) be defined as follows:

X1(z) =
1
z

[0.3Y(z) + X2(z)] = Y(z)

X2(z) =
1
z

[−0.02Y(z) + 2U(z)]

we get:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with

x(k) =

[
x1(k)
x2(k)

]
,

A =

[
0.3 1
−0.02 0

]
,

B =

[
0
2

]
,

C =
[
1 0
]
.

• Jordan form: Notice that we can write the following:

Y(z) =
−20

z − 0.1
U(z) +

20
z − 0.2

U(z)

Letting x1(k) and x2(k) be defined as follows:

X1(z) =
1

s − 0.1
U(s)

X2(z) =
1

z − 0.2
U(s)

6.4. Stability 247

we get:

ẋ(k) = Ax(k) + Bu(k)

y(k) = Cx(k)

with

x(k) =

[
x1(k)
x2(k)

]
,

A =

[
0.1 0
0 0.2

]
,

B =

[
1
1

]
,

C =
[
−20 20

]
.

Remark 6.4.2 Let us show that a transformation T of a system description will not
change the system stability. For this purpose, let the initial description be given by:

x(k + 1) = Ax(k) + Bu(k)

The characteristic equation for this system is given by:

Δ(z) = det [zI − A] = 0.

Now, if we use the transformation T , i.e.: x(k) = Tz(k) to get:

z(k + 1) = Āz(k) + B̄u(k)

with Ā = T−1AT and B̄ = T−1B.
The corresponding characteristic equation is given:

Δ̄(s) = det
[
zI − Ā

]
= 0.

Using now the expressions of Ā and B̄, we have:

Δ̄(s) = det
[
T−1 [zI − A] T

]

= det [zI − A] = 0.

which is the same as for the original description. To get the last relation, we used
the fact that the transformation is nonsingular (det(T) and det(T−1) are not equal
to zero)

In this example, we will consider the canonical description of the previous exam-
ple and show that the stability of the system is not affected. We will do the analysis
in the continuous-time.

• controllability form

Δ(z) = det [zI − A] =

∣∣∣∣∣∣
[

z −1
0.02 z − 0.3

]∣∣∣∣∣∣ = s(s − 0.3) + 0.02 = 0.

248 6. Analysis Based on State Space

• observability form

Δ(z) = det [zI − A] =

∣∣∣∣∣∣
[

z − 0.3 −1
−0.02 z

]∣∣∣∣∣∣ = s(s − 0.3) + 0.02 = 0.

• Jordan form

Δ(z) = det [zI − A] =

∣∣∣∣∣∣
[

z − 0.1 0
0 z − 0.2

]∣∣∣∣∣∣ = (s − 0.1)(s − 0.2) = 0.

For these description we get the same poles and therefore, the stability is not
affected the transformation we consider.

6.5 Controllability and Observability

The concepts of controllability and observability are important issues in modern
control theory. These two concepts play an important role in the stabilization prob-
lem of any dynamical system. The controllability is in some sense related to the
possibility of driving the state of the system into a particular state, like the origin for
instance, by using an appropriate control signal in a finite time. Therefore, when a
state is not controllable, then no way to reach such goal, and consequently no signal
will be able to control the state. The fact that the state is not controllable will cause
a problem if the system is not stable. The concept of observability is related to the
possibility of observing, through output measurements, the state of a system that we
may use for control purpose for instance. Therefore, when a state is not observable,
the controller will never be able to determine the behavior of an unobservable state
and consequenlty can not use it to stabilize the system. In the rest of this section we
will show how to evaluate if a given system is controllable and observable or not.

Let us consider the following dynamics:
⎧⎪⎪⎨⎪⎪⎩

x((k + 1)T) = Gx(kT) + Hu(kT)

y(kT) = Cx(kT)
(6.11)

with xk ∈ Rn×1, G ∈ Rn×n, H ∈ Rn×1 and C ∈ R1×n.
In the rest of this section we will see how to determine if a given dynamical

system is controllable or not and we do the same for the observability. Let us firstly
start by the controllability.

Definition 6.5.1 The system (6.11) is state controllable if there exists a piecewise-
constant control signal u(kT) defined over a finite sampling interval 0 ≤ kT < nT
such that starting from any initial state, the state x(kT) can be made zero for kT ≥
nT .

Definition 6.5.2 If every state is controllable, then the system (6.11) is said to be
completely state controllable.

6.5. Controllability and Observability 249

Definition 6.5.3 A system

x(k + 1) = Gx(k) + Hu(k), x(0) = x0

is controllable provided that there exists a sequence of inputs u(0), u(1), · · · , u(N)
with finite values that transfers the system from any initial state x(0) to any final
state x(N) with N finite.

In fact, notice that:

x(1) = Gx(0) + Hu(0)

x(2) = Gx(1) + Hu(1)

= G2x(0) +GHu(0) + Hu(1)

x(3) = Gx(2) + Hu(2)

= G
[
G2x(0) +GHu(0) + Hu(1)

]
+ Hu(2)

= G3x(0) +
[

H GH G2H
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(2)
u(1)
u(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
...

x(N) = GN x(0) +GN−1Gu(0) + · · · +GHu(N − 2) + Hu(N − 1)

= GN x(0) +
[

H GH · · · GN−1H
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(N − 1)
u(N − 2)

...
u(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Therefore, for given x(0) and x(N), we get:

x(N) −GN x(0) =
[

H GH · · · GN−1H
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(N − 1)
u(N − 2)

...
u(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since x(N) ∈ Rn, this algebraic equation will give a solution only if the rank of
the matrix [

H GH · · · GN−1H
]

is equal to n.
This matrix in known as the controllability matrix and it is defined by:

C =
[

H GH · · · Gn−1H
]

Theorem 6.5.1 The system (6.11) is completely controllable if C is of rank n.

Remark 6.5.1 The controllability of a given depends only the pair (G,H) and
doesn’t depend on the system description we use.

250 6. Analysis Based on State Space

Theorem 6.5.2 The system controllability is invariant under an equivalent trans-
formation of the system description.

Proof To prove this, let us firstly consider that the system is described by:
⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k)

The pair (G,H) is controllable if the rank of the controllability matrix:

C =
[

H GH · · · Gn−1H
]

is equal to n.
Let us consider a transformation, η(k) = Px(k) that put that the system description

as follows: ⎧⎪⎪⎨⎪⎪⎩
η(k + 1) = Ḡη(k) + H̄u(k)

y(k) = C̄x(k)

with Ḡ = PGP−1, H̄ = PH and C̄ = CP−1.
The pair (Ḡ, H̄) is controllable if the rank of the controllability matrix:

C =
[

H̄ ḠH̄ · · · Ḡn−1H̄
]

is equal to n.
Replacing Ḡ and H̄ by their expression and noticing that

(
PGP−1

)n
=

PGP−1PGP−1 · · · PGP−1 = PGnP−1 , we get:

C̄ =
[

PH PGP−1PH · · · PGn−1P−1PH
]

= P
[

H GH · · · Gn−1H
]

= PC

Since P is nonsingular, its rank will not affect the results. Therefore the rank of
C̄ is equal to the one of C , which implies that the controllability is not affected by
the equivalent transformation. �

Theorem 6.5.3 The following statements are equivalent:

1. the pair (A, B) is controllable;

2. the matrix of dimension n × n

Wc(k − 1) =
k−1∑
l=0

AlBB�
(
A�
)l

is nonsingular;

3. the controllability matrix C =
[

B AB · · · An−1B
]

has rank n;

4. the matrix
[

A − λI B
]

is full rank (raw) for every eigenvalue, λ, of the
matrix A;

6.5. Controllability and Observability 251

5. moreover if all the eigenvalues of the matrix A are inside the unit circle, then
the unique solution Wc − AWcA� = BB� is positive-definite and the solu-
tion is called the controllability gramian . The expression of the controllability
gramian is given by:

Wc =

∞∑
l=0

AlBB�
(
A�
)l

Let us focus on the observability of the system (6.11). First of all using the dual
system, the observability of the original system can be seen as the controllabil-
ity of its dual. The dual system of the system (6.11) is described by the following
dynamics:

η(k + 1) = A�η(k) +C�v(k) (6.12)

w(k) = B�η(k) (6.13)

The controllability of this system implies the observability of the system
(refdynamics) and vice versa.

Definition 6.5.4 The system (6.11) is said to be observable if every initial state
x(0) can be determined from the observation of the output over a finite k sampling
periods.

Definition 6.5.5 The system (6.11) is completely observable is every state is
observable.

For simplicity, let us consider that the input is equal to zero for all k ≥ 0. In this
case, we have:

y(0) = Cx(0)

y(1) = Cx(1) = CGx(0)

y(2) = Cx(2) = CGx(1) = CG2 x(0)

y(3) = Cx(3) = CG3 x(0)
...

y(N − 1) = Cx(N − 1) = CGN−1x(0)

Notice that:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(0)
y(1)
...

y(N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CG
...

CGN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(0)

252 6. Analysis Based on State Space

Since x(0) ∈ Rn, this algebraic equation will have a solution only when the matrix
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CG
...

CGN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

has a rank equal to n.
Observability matrix is defined by:

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CG
...

CGN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Theorem 6.5.4 The system (6.11) is completely observable if O is of rank n.

Remark 6.5.2 The controllability of a given depends only the pair (C,G) and
doesn’t depend on the system description we use.

Theorem 6.5.5 The system observability is invariant under an equivalent transfor-
mation of the system description.

Proof: The proof of this theorem can be done either by using the dual system or
by following the same steps as for the controllability. �

Theorem 6.5.6 The following statements are equivalent:

1. the pair (A,C) is observable;

2. the matrix of dimension n × n

Wo(n − 1) =
n−1∑
l=0

(
A�
)l

C�CAl

is nonsingular;

3. the observability matrix O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
...

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
has rank n;

4. the matrix

[
A − λI

C

]
has full rank (column) for every eigenvalue, λ, of the

matrix A;

5. moreover if the all the eigenvalues of the matrix A are inside the unit circle, then
the unique solution of Wo − A�WoA = C�C is positive-definite., that is called
the controllability gramien and its expression is given by:

6.5. Controllability and Observability 253

Wo =

∞∑
l=0

(
A�
)l

C�Al

Example 6.5.1 In this example, we consider a system with the dynamics as in (6.11)
with

G =

[
1 0.905
0 0.819

]
,H =

[
0.475
0.905

]
,C =

[
1 0
]

Let us study the controllability and the observability of this system.

• Controllability Matrix:

C = [H|GH] =

[
0.475 1.294
0.905 0.741

]
.

The determinant of this matrix, det C = −0.819, which means that its rank,
rank (C) = 2 therefore the system is completely controllable.

• Observability matrix:

O =

[
C

CG

]
=

[
1 0
1 0.905

]

The determinant of this matrix, det O = 0.905, which means that its rank,
rank (C) = 2 therefore the system is completely observable

Example 6.5.2 In this example we consider a dynamical system with the following
dynamics between the input u(k) and output y(k):

G(z) =
6z3 + 5z2 + 4z + 1
z3 − 6z2 + 11z − 6

Our objective is to study the controllability and the observability of this system
and show that these properties are not affected by the state space description we
used. We will restrict ourselves to the case of canonical forms.

Following the same steps as we did earlier to establish the canonical forms, we
can establish the following:

x(k + 1) = Gx(k) + Hu(k)

y(k) = Cx(k) + Du(k)

where the matrices G, H, C and D are given in each form as:

254 6. Analysis Based on State Space

• controllable form:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
6 −11 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
37 −62 41

]
,

D = 6

• observable form:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
6 1 0
−11 0 1

6 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
41
−62
37

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
1 0 0

]
,

D = 6

• Jordan form:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 2 0
6 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
8
−77
110

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
1 1 1

]
,

D = 6

The controllability matrix in each form is given

• controllable form:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 1 6
1 6 36

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

• observable form:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
41 184 690
−62 −414 −1778
37 246 1104

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

6.5. Controllability and Observability 255

• controllable form:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
8 8 8
−77 −154 −308
110 330 990

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

The rank of the controllability matrix in each form is equal to 3 and therefore,
the system is controllable and as it can be seen, the chosen form will not affect the
controllability of the system.

The observability matrix in each form is given

• controllable form:

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
37 −62 41

246 −414 184
1104 −1178 690

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

• observable form:

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
6 1 0

25 6 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

• controllable form:

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
1 2 3
1 4 9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

The rank of the observability matrix in each form is equal to 3 and therefore,
the system is observable and as it can be seen, the chosen form will not affect the
observability of the system.

Previously we presented the canonical forms for single input single output sys-
tems. In the rest of this section we will cover how we can establish the multi-input
multi-output case. For this purpose, let us assume that the system we consider is
described by the following:⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp; A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n,
To establish the canonical forms, we need to determine a transformation P such

that:

x(k) = Pη(k)

where P is a nonsingular matrix.
For the Jordan form, this matrix can be obtained in the following manners:

• eigenvalues of the matrix A are distinct and with multiplicity equal to one: For
this case, assume that the eigenvalues of the matrix A are λ1, · · · , λn (i.e: they
are solution of the equation zI − A = 0), and their corresponding eigenvectors

256 6. Analysis Based on State Space

are v1, · · · , vn (i.e: they are solution of Avi = λivi, i = 1, · · · , n). For this case
the matrix P is given by:

P =
[
v1 v2 · · · vn

]

The new state description is obtained as follows. In fact using the transformation
x(k) = Pη(k), we get:

⎧⎪⎪⎨⎪⎪⎩
η(k + 1) = P−1APη(k) + P−1Bu(k)

y(k) = CPη(k)

Since P is nonsingular, which means that P−1 exists, we get:

⎧⎪⎪⎨⎪⎪⎩
η(k + 1) = Āη(k) + B̄u(k)

y(k) = C̄η(k)

with

Ā = P−1AP

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
λ1 · · · 0
...
. . .

...
0 · · · λn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B̄ = P−1B

C̄ = CP

• eigenvalues with multiplicity greater than one: For eigenvalues with multiplic-
ity greater than one, the method of determining the matrix P is similar to the
previous one, except the computation of the eigenvectors is different. To show
how this works, let us assume that we have eigenvalue with multiplicity equal
to n. The eigenvectors in this case are solution of the following:

Av1 = λv1

Av2 = λv2 + v1

...

Avn = λvn + vn−1

where λ is the eigenvector of multiplicity equal to n of the matrix A.
The matrix P in this case is given by:

P =
[
v1 v2 · · · vn

]

6.5. Controllability and Observability 257

The new description is similar to the last case with the following structure
for Ā:

Ā = P−1AP

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 1 0 · · · 0
0 λ 1 · · · 0
...
...
. . .

. . .
...

0 0 · · · λ 1
0 0 · · · 0 λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 6.5.3 To show how we establish the Jordan form in case of distinct eigen-
values with multiplicity equal to one. For this purpose, let us consider the following
state description:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with

A =

[
0 1
−0.2 0.9

]
,

B =

[
1 0
0 1

]
,C =

[
1 1
0 1

]

The eigenvalues of the matrix A are 0.4 and 0.5. The corresponding eigenvectors
are:

v1 =

[
5
2

]
,

v2 =

[
2
1

]
,

which are the solution of Av1 = 0.4v1 and Av2 = 0.5v2 respectively.
The corresponding matrix P is given by:

P =

[
5 2
2 1

]
.

Its inverse is given by:

P−1 =
1
1

[
1 −2
−2 5

]
.

The corresponding Jordan form is given by:
⎧⎪⎪⎨⎪⎪⎩
η(k + 1) = Āη(k) + B̄u(k)

y(k) = C̄η(k)

258 6. Analysis Based on State Space

with

Ā =

[
0.4 0
0 0.5

]
,

B̄ =

[
1 −2
−2 5

]
,

C̄ =

[
7 3
2 1

]

Example 6.5.4 To show how we establish the Jordan form in case of eigenvalues
with multiplicity greater than one, let us consider the following state description:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with

A =

[
0 1
−0.25 1

]
,

B =

[
1 0
0 1

]
,C =

[
1 1
0 1

]

The eigenvalue of the matrix A is 0.5 with multiplicity equal to two. The
corresponding eigenvectors are:

v1 =

[
2
1

]
,

v2 =

[
2
3

]
,

which are the solution of Av1 = 0.5v1 and Av2 = 0.5v2 + v1 respectively.
The corresponding matrix P is given by:

P =

[
2 2
1 3

]
.

Its inverse is given by:

P−1 =

[
0.57 −0.5
−0.25 0.5

]
.

The corresponding Jordan form is given by:

⎧⎪⎪⎨⎪⎪⎩
η(k + 1) = Āη(k) + B̄u(k)

y(k) = C̄η(k)

6.5. Controllability and Observability 259

with

Ā =

[
0.5 1
0 0.5

]
,

B̄ =

[
0.75 −0.5
−0.25 0.5

]
,

C̄ =

[
3 5
1 3

]

Let us now focus on how we determine the matrix P of the transformation η(k) =
Px(k) that put the system description in the controllable canonical form. We will
firstly treat the case of single input, which means that B ∈ Rn×1. Our objective is to
determine a transformation:

η(k) = Px(k)

with P a nonsingular matrix.
Since P is nonsingular, this means that it has an inverse and PP−1 = I. One way

to construct this matrix is to use the controllability matrix which is given for this
case by:

C =
[

B AB · · · An−1B
]
.

If the system is controllable, then C is nonsingular and C −1 exists. Let the
expression of this matrix be as follows:

C −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2
...

qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

where qi is a row of C −1.
The matrix P of the transformation that gives the controllable canonical form can

be constructed as follows:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qn

qnA
...

qnAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By this construction of the matrix P, it is important now to show that it is non-
singular, or to show that its rows are linearly independent which means that there
exists scalars a0, · · · , an−1 such:

a0qn + a1qnA + · · · + an−1qnAn−1 = 0

with a0 = a1 = · · · = an−1 = 0

260 6. Analysis Based on State Space

To show this, let us use the following relationship between C and its inverse:

C −1C = I

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2
...

qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

B AB · · · An−1B
]

From which we get:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1B q1AB · · · q1An−1B
q2B q2AB · · · q2An−1B
...

...
. . .

...
qnB qnAB · · · qnAn−1B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...
...
. . . 0

0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using this, we obtain for the last row:

qnB = qnAB = · · · = qnAn−2B = 0

qnAn−1B = 1

Now if we multiply from the right the following relation:

a0qn + a1qnA + · · · + an−1qnAn−1 = 0

by B, we get:

a0qnB + a1qnAB + · · · + an−1qnAn−1B = 0

From this, we obtain:

an−1 = 0

since

qnB = qnAB = · · · = qnAn−2B = 0

qnAn−1B = 1

Using now the fact that an−1 = 0, we get:

a0qn + a1qnA + · · · + an−2qnAn−2 = 0

Repeating the same idea and by multiplying this relation by AB, and by using
this time the n − 2 row, we get:

an−2 = 0

since

qnB = qnAB = · · · = qnAn−3B = 0

qnAn−2AB = 1

Proceeding similarly for the rest of the term we can prove that a0 = a1 = · · · =
an−3 = 0 and therefore the matrix P is nonsingular.

6.5. Controllability and Observability 261

Let P−1 be given by:

P−1 =
[
v1 v2 · · · vn

]

Notice that

PAP−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qn

qnA
...

qnAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A
[
v1 v2 · · · vn

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qnA
qnA2

...
qnAn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
v1 v2 · · · vn

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qnAv1 qnAv2 · · · qnAvn

qnA2v1 qnA2v2 · · · qnA2vn
...

...
. . .

...
qnAnv1 qnAnv2 · · · qnAnvn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using now the fact that:

PP−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qn

qnA
...

qnAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

v1 v2 · · · vn

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qnv1 qnv2 · · · qnvn

qnAv1 qnAv2 · · · qnAvn
...

...
. . .

...
qnAn−1v1 qnAn−1v2 · · · qnAn−1vn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

we remark that the first (n − 1) rows of the matrix PAP−1 are identical to the last
(n− 1) last rows of the matrix PP−1 and therefore equal to the identity matrix, while
the last row of PAP−1 can be composed of any numbers. Therefore, the matrix
PAP−1 has the controllable canonical form with respect to the last row.

262 6. Analysis Based on State Space

To show that B̄ has the following form:

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

notice that:

B̄ = PB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qn

qnA
...

qnAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qnB
qnAB
...

qnAn−1B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using now the fact that:

qnB = qnAB = · · · = qnAn−2B = 0

qnAn−1B = 1

we get:

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remark 6.5.3 We just present a procedure to determine the controllable canonical
form with respect to the last row. This form is obtained using the last row of the in-
verse of the controllability matrix. Here we will give another procedure that is based
on the observability matrix O . For this purpose, let us assume that the dynamics of
the system is described by: The system

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where x(k) ∈ Rn, y(k) ∈ R and u(k) ∈ R.

6.5. Controllability and Observability 263

Now if we let P, (η(k) = Px(k)) be given by: The system

P = O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
...

CAn−2

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and following the same idea as we did previously we can show that

Ā = PAP−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
× × × · · · ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄ = PB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C̄ = CP−1 =

[
1 0 · · · 0 0

]

Using the transformation, the new one is given by:

η(k + 1) = P [Ax(k) + Bu(k)] = PAP−1Px(k) + PBu(k) = Āη(k) + B̄u(k)

y(k) = CP−1Px(k) = CP−1η(k)

with Ā = PAP−1, B̄ = PB and C̄ = CP−1.

Example 6.5.5 To show how to get the controllable canonical description of
system, let us consider the following dynamics:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 −1 0 1
0 0 1 1
1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
1 0 0 1
0 −1 0 1

]

264 6. Analysis Based on State Space

The system is controllable and its controllability matrix is given by:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 6
−1 2 −2 6
0 1 1 5
1 0 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and its inverse is:

C −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1
0.25 1 −1.5 0.75
−0.25 0.25 0 0.5

0 −0.25 0.25 −0.25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we get:

q4 =
[

0 −0.25 0.25 −0.25
]

and the matrix P is given by:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q4

q4A
...

q4A3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.25 0.5 −0.25
−0.25 0 0.5 0.25

0 0.25 0.5 0.25
0.25 0 0.5 0.75

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is:

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −3 1 1
−1 −1 3 −1
1 0 1 0
−1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we get the following controllable canonical form:

η(k + 1) = Aη(k) + Bu(k)

y(k) = Cη(k)

6.5. Controllability and Observability 265

with

Ā = PAP−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 −3 3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B̄ = PB

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C̄ = CP−1

=

[
0 −2 0 2
0 2 −4 2

]

Let us now generalize this idea to the multi-input multi-output case. Before this,
we will introduce the concept of the controllability index. For this purpose, let us
first of all assume that the matrix has full column rank, which means that all the
columns in the matrix B ∈ Rn×m are linearly independent. It is important to notice
that the presence of a linearly dependent column to another one, means that the
corresponding input is redundant and this column can be removed without affecting
the results.

Firstly let us write B as follows:

B =
[
b1 b2 · · · bm

]

where bi is the ith column that is assumed to be linearly independent of all the other
columns of B.

Notice also that the controllability matrix can be rewritten as follows using this:

C =
[

B AB · · · An−1B
]

=
[
b1 · · ·bm Ab1 · · · Abm · · · An−1b1 · · · An−1bm

]

To search for the number of columns that are linearly independent starting
from the left side, notice that when the column Aνbl depends on the left hand
side columns, the columns Aν+1bl, · · ·An−1bl will also depend on the left hand
side columns. This means that once a column associated with bl becomes linearly
dependent, the rest of the columns associate with bl are also linearly dependent.

Let us again rewrite again the controllability matrix as follows:

C =
[
b1 Ab1 · · · An−1b1 · · · bm Abm · · · An−1bm

]

Let us denote by ρl the number of columns associated with the column bl that are
linearly independent in the controllability matrix Cρ which means also that

Cρl =
[
bl Abl · · · Aρl−1bl

]

266 6. Analysis Based on State Space

are linearly independent and all the columns Aρl+kbl, k = 0, 1, · · · , n − 1 are linearly
dependent.

This is true for any l, l = 1, 2, · · · ,m and if the rank of C is equal to n, we have:

ρ1 + ρ2 + · · · + ρm = n

where ρl is the controllability index associated with the column bl. The con-
trollability index of the controllability matrix (i.e: the pair (A, b)) is defined
by

ρ = max (ρ1, ρ2, · · · , ρm)

It is important to notice that the controllability index , ρ, which is in some sense
the largest integer such that the corresponding controllability matrix,[

B AB · · · Aρ−1B
]

has a rank equal to n, satisfies the following:
n

m
≤ ρ ≤ min (nA, n − m + 1)

where nA represents the degree of the minimal polynomial of A.

Theorem 6.5.7 The system

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with x(k) ∈ Rn, y(k) ∈ Rp and u(k) ∈ Rm, is controllable (B is full column rank) if
and only if the rank of the following matrix:

Cr =
[

B AB · · · An−pB
]

is equal to n or the n × n matrix C �r Cr is nonsingular

Example 6.5.6 To show how to compute the controllability indices, let us consider
the following system:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 1 0
0 −1 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
0 1 1 0
1 0 1 0

]

6.5. Controllability and Observability 267

Firstly, it is important to notice that the two columns are independent. In this
case, we have n = 4, m = 2 and p = 2.

The controllability matrix of this system using the last theorem is given by:

C =
[
b1 b2 Ab1 Ab2 A2b1 A2b2

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 2 2 4
1 0 1 0 0 1
0 0 −1 1 0 2
0 1 1 2 2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This matrix is has a rank equal to 4. From this we extract:

Co =
[
b1 b2 Ab1 Ab2

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 2
1 0 1 0
0 0 −1 1
0 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This implies that the controllability indices are respectively ρ1 = 2 and ρ2 = 2,
and the controllability index of the system is:

ρ = max(2, 2) = 2

and satisfies:

n
p
=

4
2
≤ ρ ≤ min(4, n − p + 1) = 3

Let us now focus on the transformation that gives the controllable canonical
form. This transformation is based on the controllability indices associated with
the columns, b1, · · · , bm. Let us denote by Co the number of columns that are lin-
early independent that we can extract from the controllability matrix starting from
the left side. Co is defined by:

Co =
[

b1 · · · Aρ1−1b1 b2 · · · Aρ2−1b2 · · · bm · · · Aρm−1bm

]

such that
∑m

l=1 ρl = n. Define �i by:

�i =

i∑
l=1

ρl

268 6. Analysis Based on State Space

Let us denote by qi, i = 1, · · · ,m, the �ith row in C −1
o that corresponds to the con-

trollability index ρi, associated to bi, i = 1, · · · ,m. The matrix of the transformation,
P, is given by:

P =

⎡⎢⎢⎢⎣

q1

q1A
...

q1Aρ1−1

q2

q2A
...

q2Aρ2−1

...
qm

qmA
...

qmAρm−1

⎤⎥⎥⎥⎦

Using this matrix, we get the following controllability canonical form:

η(k + 1) = Āx(k) + B̄u(k)

y(k) = C̄η(n)

where Ā = PAP−1, B̄ = PB, and C̄ = CP−1.
Using this transformation, the matrices Ā and B̄ will have the following forms:

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ā11 Ā12 · · · Ā1ρ

Ā21 Ā22 · · · Ā2ρ
...

...
. . .

...
Āρ1 Āρ2 · · · Āρρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̄1

B̄2
...

B̄ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.5. Controllability and Observability 269

where for any i and any j � i:

Āii =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
× × × · · · ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Āi j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 0 0 · · · 0
...
...
...
. . .

...
0 0 0 · · · 0
× × × · · · ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 0 0 · · · 0
...
...
...
. . .

...
0 0 0 · · · 0
1 × × · · · ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 0 0 · · · 0
...
...
...
. . .

...
0 0 0 · · · 0
× 1 × · · · ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
...

B̄ρ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
0 0 0 · · · 0
...
...
...
. . .

...
0 0 0 · · · 0
× × × · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Example 6.5.7 To show how to determine the controllable canonical form, let us
consider the system of the previous example. It can be shown that Co and C −1

o are
given by:

Co =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 2
1 1 0 0
0 −1 0 1
0 1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C −1
o =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1
−1 1 0 1
3 −3 −2 −2
−1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

270 6. Analysis Based on State Space

From the matrix C −1
o , we get:

q1 =
[
1 1 0 0

]

q2 =
[
0 1 1 2

]

The matrix P of the transformation is given by:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q1A
q2

q2A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 1
0 1 1 0
−1 1 1 1
0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is given by:

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −2 1
1 1 −1 0
−1 0 1 0
1 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The controllable canonical form is given by:

η(k + 1) = Āη(k) + B̄u(k)

y(k) = C̄η(k)

with

Ā = PAP−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
0 0 0 1
0 0 0 1
2 0 −3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B̄ = PB

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C̄ = CP−1

=

[
0 1 0 0
0 1 −1 1

]

For the observable canonical form, the duality principe can be used. In fact, for a
dynamical system with the following dynamics:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

6.5. Controllability and Observability 271

its dual system is given by:

η(k + 1) = A�η(k) +C�u(k)

y(k) = B�η(k)

The system

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

is observable if the rank of the observability matrix O

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
CA
...

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is equal to n.
Since the transpose of the observability marix O will not change the rank, we

get:

O� =
[
C� A�C� · · · (A�)n−1 C�

]

which represents the controllability matrix of the system:

η(k + 1) = A�η(k) +C�u(k)

y(k) = B�η(k)

Therefore, the observability canonical form can be obtained using the results on
controllable canonical form. We will present two example to show how we obtain
the observable canonical form for the single output and multiple outputs.

Remark 6.5.4 We just present a procedure to determine the observable canonical
form with respect to the first column. This form is obtained using the last row of
the inverse of the observability matrix. Here we will give another procedure that
is based on the controllability matrix C . For this purpose, let us assume that the
dynamics of the system is described by: The system

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where x(k) ∈ Rn, y(k) ∈ R and u(k) ∈ R.
Now if we let P, (x(k) = Pη(k)) be given by: The system

P = C =
[

B AB
... An−2B An−1B

]

272 6. Analysis Based on State Space

and following the same idea as we did previously we can show that

Ā = P−1A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 ×
1 0 · · · 0 ×
0 1 · · · 0 ×
...
...
. . .

...
...

0 0 · · · 1 ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄ = P−1B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
...
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C̄ = CP =
[
× × × × ×

]

Using the transformation, the new one is given by:

η(k + 1) = P−1 [Ax(k) + Bu(k)] = P−1APP−1x(k) + P−1Bu(k) = Āη(k) + B̄u(k)

y(k) = CPP−1x(k) = CPη(k)

with Ā = P−1AP, B̄ = P−1B and C̄ = CP.

Example 6.5.8 To show how to compute the controllability canonical form for the
single output case, let us consider the following system:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 1 0
0 −1 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =
[

0 1 1 1
]

The dual system of this one is given by:

ν(k + 1) = A�ν(k) +C�u(k)

y(k) = B�ν(k)

6.5. Controllability and Observability 273

where

A� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 1 0
0 −1 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B� =
[

1 1 0 0
1 0 0 1

]

The controllability matrix of the dual system is given by:

C =
[
C� A�C�

(
A�
)2 C�

(
A�
)3 C�

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 3 7
1 0 −1 −1
1 1 0 −1
1 2 4 7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This matrix is has a rank equal to 4. Its inverse is given by:

C −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 −1 1
1.6 −0.8 2.2 −1.4
−1.6 −0.2 −1.2 1.4
0.6 0.2 0.2 −0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we get:

q =
[

0.6 0.2 0.2 −0.4
]

The matrix P of the transformation is given by:

P =
[
q; q

(
A�
)

; q
(
A�
)2 ; q

(
A�
)3]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6 0.2 0.2 −0.4
0.2 0.4 −0.6 0.2
0.4 −0.2 −0.2 0.4
0.8 −0.4 0.6 0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is given by:

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 2 −3 1
0 0 −2 1
−1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

274 6. Analysis Based on State Space

Based on this we get the following observable canonical form that we obtain by
taking the dual:

η(k + 1) = Āη(k) + B̄u(k)

y(k) = C̄η(k)

with

Ā =
(
PA�P−1

)�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6 0.2 0.2 −0.4
0.2 0.4 −0.6 0.2
0.4 −0.2 −0.2 0.4
0.8 −0.4 0.6 0.8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄ =
(
B�P−1

)�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
2 1
−2 0
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C̄ =
(
PC�

)�

=
[
0 0 0 1

]

Example 6.5.9 To show how to compute the controllability canonical form for the
multiple outputs case, let us consider the following system:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 1 0
0 −1 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
0 1 1 1
1 0 1 1

]

It can be verified that this system is observable.
The dual system of this one is given by:

ν(k + 1) = A�ν(k) +C�u(k)

y(k) = B�ν(k)

6.5. Controllability and Observability 275

where

A� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
0 1 1 0
0 −1 0 1
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0
1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B� =
[

1 1 0 0
1 0 0 1

]

The controllability matrix of the dual system using the last theorem is given by:

C =
[
C� A�C�

(
A�
)2 C�

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 3 3
1 0 0 −1 −1 −1
1 1 1 0 0 −1
1 0 2 2 4 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From which we get:

C =
[

c�1 A�c�1 c�2 A�c�2
]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2
1 0 0 −1
1 1 1 0
1 2 1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where c�i is the row i of the matrix C�.
The controllability indices of the dual system are respectively 2 and 2 and the

controllability index of the dual system is also equal to 2.
This matrix is has a rank equal to 4. Its inverse is given by:

C −1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 −1 0
−3 −3 2 1
2 1 0 −1
1 1 −1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we get:

q1 =
[
−3 −3 2 1

]

q2 =
[

1 1 −1 0
]

276 6. Analysis Based on State Space

The matrix P of the transformation is given by:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q1A�
q2

qA�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 −3 2 1
−2 −1 4 −2
1 1 −1 0
1 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is given by:

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 2 −3 1
0 0 −2 1
−1 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Based on this we get the following observable canonical form that we obtain by
taking the dual:

η(k + 1) = Āη(k) + B̄u(k)

y(k) = C̄η(k)

with

Ā =
(
PA�P−1

)�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
1 −2 0 2
0 4 0 4
0 −9 1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄ =
(
B�P−1

)�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1
1 1
5 4
1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C̄ =
(
PC�

)�

=

[
0 1 0 0
0 0 0 1

]

The controllable and observable canonical forms are of importance since they
will make easier the controller and the observer design respectively. This matter
will be covered in the next chapter.

It is important to notice that when dealing with the state space realization, i.e.:
(A, B,C) and when the transfer matrix or the transfer function in case of SISO,

6.6. Case Study 277

the dimension changes. The minimal realization is one that has the smallest-size A
matrix for all triples (A, B,C) satisfying

H(s) = C (zI − A)−1 B.

A realization (A, B,C) is minimal if and only if it is controllable and observable
(see [1]).

6.6 Case Study

Let us consider the position control of a mechanical part driven by a dc motor.
Previously the dynamics of the complete system was shown to be described by the
following state space representation:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
(6.14)

where x(t) and u(t) are respectively the state vector and the control input and the
matrices A, B and C are given by:

A =

[
0 1
0 − 1

τm

]
,

B =
[

Km
τm

]
,C =

[
1 0
]
.

where Km = 48.5 and τm = 0.06 s.
The control input u(t) is the voltage that we send to the dc motor and the state

vector x(t) is composed of:

• the speed of the mechanical part, w(t)

• the position of the part, θ(t)

The modeling part of this system has been covered while the other concepts such
stability, controllability and observability has not been covered and it will be done
here. For the stability, we can either compute the transfer function of this system
and then use any technique that we employ when the model is in transfer function.
The other solution utilizes the Lyapunov. In fact if we consider a symmetric and
positive-definite matrix Q = I ∈ R2, the system will be stable if there a symmetric
and positive-definite matrix, P ∈ R2 solution of the following Lyapunov equation:

A�P + PA = −Q

Let P be given by:

P =

[
p1 p2

p2 p3

]

Using this and the Lyapunov equation we can show that we can find a symmetric
and positive-definite matrix P that satisfies the Lyapunov equation and therefore the

278 6. Analysis Based on State Space

system is unstable. If we compute the transfer function, we can see directly that we
have a pole at the origin which confirm the instability of the system.

For the controllability, this system will be controllable if the the rank of
controllability matrix is equal to 2. In fact,

C =
[

B AB
]

=

⎡⎢⎢⎢⎢⎢⎣
0 Km

τm
Km

τm
−Km

τ2
m

⎤⎥⎥⎥⎥⎥⎦
It is evident that the controllability matrix, C is of rank 2 which implies that our

system is controllable.
For the observability, this system will be observable if the the rank of

observability matrix is equal to 2. In fact,

O =

[
C

CA

]

=

[
1 0
0 1

]

It is evident that the observability matrix, O is of rank 2 which implies that our
system is observable.

Since our system is unstable, the computation of the step response will give an
unbounded output and therefore we will not compute it it here.

6.7 Conclusion

This chapter covers the state space representation. It is shown how to transform a
continuous-time state space representation to an equivalent discrete-time one. The
time concept and its computation is developed. The concepts of stability, controlla-
bility and observability are presented and techniques how to check these concepts
are presented. Numerous examples are presented to show how each concept can be
checked.

6.8 Problems

1. For the dynamical systems with the input u(t) and the output y(t) with the
following dynamics develop the canonical forms:

• d2y(t)
dt2 +

dy(t)
dt = u(t)

• d2y(t)
dt2 + 4 dy(t)

dt + 4y(t) = 4u(t)

• d2y(t)
dt2 + 6 dy(t)

dt + 8y(t) = 8u(t)

• d3y(t)
dt3 + 3 d2y(t)

dt2 + 2 dy(t)
dt = u(t)

6.8. Problems 279

2. For the dynamical systems of the Problem 1,

(a) determine the sampling period T
(b) establish the corresponding discrete time description

3. Study the stability of the description of the Problems 1 & 2

4. For the dynamical systems of the Problems 1 & 2,

(a) study the controllability of each description
(b) study the observability of each description

5. For the dynamical systems of theProblems 1 & 2,

(a) determine the solution of each description
(b) determine the unit step response of each description for a chosen initial

conditions that you impose.
(c) plot the behavior of the states with respect to time t
(d) using the final theorem show that the obtained results are correct

6. Consider a dynamical system with the following dynamics:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

with:

x(t) =

[
x1(t)
x2(t)

]

A =

[
0 1
−2 −3

]

B =

[
0 0
1 1

]

C =
[
1 0
]

(a) develop the different canonical forms
(b) establish their equivalent discrete time forms when the sampling period T

is fixed to 0.1
(c) study the stability, the controllability and the observability of each form
(d) establish the solution when the inputs are fixed to unit steps
(e) plot the phase diagram the behavior of the states
(f) compute the transfer matrix of the system

7. Let the dynamics of a dynamical system be described by the following
difference equations:

y(k + n) + an−1y(k + n − 1) + · · · + a1y(k + 1) + a0y(k) = u(k)

where y(k) and u(k) represent respectively the output and the input of the system
and a0, · · · , an−1 are know scalars.

280 6. Analysis Based on State Space

(a) define

x1(k) = y(k)

x2(k) = y(k + 1)
...

xn(k) = y(k + n)

Based on this establish the corresponding state space description and
determine which form we have.

(b) define

x1(k) = y(k + n)

x2(k) = y(k + n − 1)
...

xn(k) = y(k)

Based on this establish the corresponding state space description and
determine which form we have

8. Consider a dynamical system with the following dynamics:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

with:

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−2 −3 −4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
1 2 0

]

(a) develop the different canonical forms
(b) study the stability, the controllability and the observability of each form
(c) using Matlab, compute the step response

6.8. Problems 281

9. Consider a dynamical system with the following dynamics:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

with:

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1
0 0 1 1
−2 −2 −4 0
1 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0
0 1
1 −1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
1 2 0 −1
0 1 −1 1

]

(a) develop the different canonical forms
(b) study the stability, the controllability and the observability of each form
(c) using Matlab, compute the step response

7
Design Based on State Space

After reading this chapter the reader will:

1. be able to formulate a control design problem for mechatronic systems

2. be able to solve the design control problem

3. be able to compute the state feedback controller using either the pole
placement technique or the optimal control approach

4. be able to use control tools to solve design control problems

7.1 Introduction

In the last chapters, we showed how to analysis and design linear time-invariant sys-
tems. The analysis has been done either using the state space or the transfer function
descriptions. We showed also how to compute the performances of the given sys-
tem. At the design phase we showed that using the transfer function description we
were able to design some controllers like, the PID, the phase-lag, phase-lead or the
phase lead-lag controllers. To compute the parameters of such controllers some pro-
cedures have been developed. We have also seen that the design can be done into

284 7. Design Based on State Space

two steps. The first one uses the specifications of the system to choose the appro-
priate structure of the controller. Once this is fixed, the parameters of this controller
are determined using the proposed procedures.

The aim of this chapter is to develop others techniques that can be used to de-
sign controllers based on the state space description. This approach requires more
assumption that we don’t have when using the transfer function approach. In this
case, we need that the system is controllable and the state vector is accessible. The
procedures that we developed for the transfer function description use mainly the
system’s output, meanwhile the ones of this chapter use the state vector.

Notice that if some of the states are not available for feedback, an estimator can
be built to compute an estimate of the whole state vector or part of the states and
therefore use this estimate for feedback instead of the state vector. This works fine
and it is known in the literature as the separation principle. It consists of designing
the controller and the estimator separately and when put together the results work
fine.

7.2 Formulation of the Control Design Problem

Most of the built systems are either unstable or don’t have the desired performances
like for instance the settling time is not acceptable or the steady-state error is larger
than a certain acceptable value. To overcome such situations and guarantee that
the behavior of the closed-loop dynamics will be acceptable a controller should be
added or improve the existing one.

In Chapter 5, we showed how to design classical controllers that are in general
put in the direct loop and are mainly PID controllers or their equivalent phase-lag,
phase-lead or phase lag-lead controllers. Meanwhile the one we will use here is put
in the feedback loop and it is referred to as the state feedback controller. It requires
extra assumptions that are summarized in:

• the complete access to the state vector,

• and the controllability (or stabilizable).

The condition of the accessibility to the state vector may be relaxed while the
second one can not be. If we have only partial access to the state vector an estimator
can be developed to estimate the state vector and therefore still continue to use
the state feedback control. Another alternate consists of using the output feedback
control.

To have an idea on the state feedback control, let us consider a dynamical linear
discrete-time system with the following dynamics:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0 (7.1)

and suppose that we want that the closed-loop with a state feedback controller to
have a certain desired behavior.

7.3. State Feedback Controller Design 285

The structure of the state feedback controller is given by:

u(k) = −Kx(k) (7.2)

where K is the gain matrix that we need to compute.
The problem we will face in this chapter is how we can design the matrix gain

K in the single input single output and multi inputs multi outputs cases in order to
guarantee the desired performances.

In the rest of this chapter we will focus on two approaches. The first one is
known in the literature as pole assignment technique and the second one is the linear
quadratic regulator. This approach uses a cost function to choose the optimal state
feedback control.

7.3 State Feedback Controller Design

One of the methods that we can use to design the appropriate controller that will
guarantee the desired performances is the pole assignment technique. The idea of
this approach consists of designing the state feedback controller either for single
input single output or multi inputs multi outputs systems that makes the closed-
loop dynamics behave like the desired one with the acceptable performances. This
technique requires the complete accessibility to the state vector or the system is
observable that we can use an estimator to estimate the state vector otherwise the
control law can not be computed. The approach can be stated as follows: Given a
dynamical system with the following dynamics

x(k + 1) = Ax(k) + Bu(k), x(0) = x0

find a controller of the form:

u(k) = −Kx(k)

such that the closed-loop dynamics will give the desired performances.
The gain K in the controller expression needs to be determined. Its dimension

will depend on the nature of system we are dealing with, either single input single
output or multi inputs multi outputs.

The main idea behind this technique consists of transforming the desired per-
formances to a desired characteristic polynomial that will provide the desired
eigenvalues it is why we refer to it as pole assignment technique.

For single input single output case, if the system is of dimension n, then the gain
K has n scalar gains to be determined, i.e.:

K =
[
k1 · · · kn

]
(7.3)

Remark 7.3.1 The pole placement technique consists first of all of obtaining the
poles of the closed-loop dynamics that give the desired performances, then using
these poles the controller gain K is computed.

286 7. Design Based on State Space

+ +N A

K

B

unit
delay

D

C
u(k)

y(k)
x(k + 1) x(k)

Ref
−

Fig. 7.1 Block diagram of discrete-time linear system

Let us assume that the desired poles that give the performances are:

z1, z2, · · · , zn

and that we can get from the desired specifications.
The corresponding desired characteristic polynomial is given by:

Δd(z) = (z − z1) (z − z2) · · · (z − zn) (7.4)

Based on Chapter 6, the closed-loop characteristic polynomial is given by:

Δ(z) = |zI − A + BK| (7.5)

The design approach of pole assignment consists of equating the two character-
istic polynomials. Performing this we get:

|zI − A + BK| = (z − z1) (z − z2) · · · (z − zn) (7.6)

which represents an algebraic equation with n unknown variables, ki, i = 1, 2, · · · , n
that have to be determined. The solution of this equation will give the appropriate
gains.

Remark 7.3.2 More often the specifications of the system are given in continuous-
time and can combine the stability with the overshoot, the settling time, the steady
error, etc. To get the desired poles in this case, the transformation is made in the
continuous-time to get the desired poles in the s-domain and with the transforma-
tion, z = esT , where T is the sampling period of the system, we can compute the
corresponding poles in the z-domain that should be inside the unit circle.

Example 7.3.1 In order to show how the pole placement method works, let us as-
sume that we have a dynamical system with two states, x1(k) and x2(k) and suppose
that the dynamics of the system has been transformed to the following discrete-time
form: [

x1(k + 1)
x2(k + 1)

]
=

[
0 1
−2 1

] [
x1(k)
x2(k)

]
+

[
0.1
0.1

]
u(k)

7.3. State Feedback Controller Design 287

This system has its poles outside the unit circle and therefore, it is unstable.
Firstly, we need to check the controllability of the system. This can be done by

computing

C =
[

B AB
]

=

[
0.1 0.1
0.1 −0.1

]

which is of rank 2 and this means that the system is completely controllable and
therefore a state feedback controller exists.

Let us also assume that the poles that give the desired performances are by:

z1 = 0.2 + j0.2

z2 = 0.2 − j0.2

The corresponding desired characteristic equation is given by:

Δd(z) = (z − 0.2 − j0.2)(z − 0.2 + j0.2) = z2 − 0.4z + 0.08

Let the controller gain, K, i.e.:

K =
[

k1 k2

]

The characteristic equation of the closed-loop dynamics is given by:

Δ(z) = |zI − A + BK|
=

∣∣∣∣∣∣
[

z 0
0 z

]
−
[

0 1
−2 1

]
+

[
0.1
0.1

] [
k1 k2

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
[

z + 0.1k1 −1 + 0.1k2

2 + 0.1k1 z − 1 + 0.1k2

]∣∣∣∣∣∣
= z2 + (−1 + 0.1k1 + 0.1k2)z + 2 − 0.2k2

Equating the two characteristic equations gives:

−1 + 0.1k1 + 0.1k2 = −0.4

2 − 0.2k2 = 0.08

Solving these equations gives:

k1 = −3.6

k2 = 9.6

We can easily compute the eigenvalues of the closed-loop dynamics and find out
that they are equals to the desired poles.

Matlab can be used to compute controller gain using the function place. The
following instructions are used for this purpose:

% Data

A = [0 1; -2 1]

B = [0.1; 0.1]

C = [1 0]

288 7. Design Based on State Space

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K=place(A,B,[0.2+0.2*i, 0.2-0.2*i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

If the desired poles are located at 0.1 ± 0.1 j the controller gain is given by:

k1 = −1.9

k2 = 9.9

To understand the relationship between the pole location and the system response
let us consider the following cases obtained from the poles 0.1 ± 0.1 j by acting on
the real and/or imaginary parts :

• desired poles located at 0.4 ± 0.4 j

• desired poles located at 0.025 ± 0.025 j

• desired poles located at 0.4 ± 0.1 j

• desired poles located at 0.025 ± 0.1 j

• desired poles located at 0.1 ± 0.4 j

• desired poles located at 0.1 ± 0.0.25 j

The corresponding gains are given by:

• poles at 0.4 ± 0.4 j

k1 = −6.4

k2 = 8.4

• poles at 0.025 ± 0.025 j

k1 = −0.4937

k2 = 9.937

• poles at 0.4 ± 0.1 j

k1 = −7.15

k2 = 9.15

• poles at 0.025 ± 0.1 j

k1 = −0.4469

k2 = 9.9469

7.3. State Feedback Controller Design 289

• poles at 0.1 ± 0.4 j

k1 = −1.15

k2 = 9.15

• poles at 0.1 ± 0.025 j

k1 = −1.9469

k2 = 9.9469

Using Matlab, the following program has been written to simulate the time
response for a step input of amplitude equal to one:

% Data

A = [0 1; -2 1]

B = [0.1; 0.1]

C = [1 0]

d=0

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% chose the time span

t=0:0.001:0.1;

% fix the input as a step

u=ones(size(t));

% Controller gain computation when the poles are located at

[0.1+ 0.1j 0.1-0.1j] K=place(A,B,[0.1+0.1*i, 0.1-0.1*i])

% Compute the step response of the closed-loop with this gain

[y0,x0]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

[0.4+ 0.4j 0.4-0.4j] K=place(A,B,[0.4+0.4*i, 0.4-0.4*i])

% Compute the step response of the closed-loop with this gain

[y1,x1]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

[0.025+ 0.025j 0.025-0.025j]

K=place(A,B,[0.025+0.025*i, 0.025-0.025*i])

% Compute the step response of the closed-loop with this gain

[y2,x2]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

290 7. Design Based on State Space

[0.4+ 0.1j 0.4-0.1j] K=place(A,B,[0.4+0.1*i, 0.4-0.1*i])

% Compute the step response of the closed-loop with this gain

[y3,x3]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

[0.025+ 0.1j 0.025-0.1j] K=place(A,B,[0.025+0.1*i, 0.025-0.1*i])

% Compute the step response of the closed-loop with this gain

[y4,x4]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

[0.1+ 0.4j 0.1-0.4j] K=place(A,B,[0.1+0.4*i, 0.1-0.4*i])

% Compute the step response of the closed-loop with this gain

[y5,x5]=dlsim(A-B*K,B,C,d,u)

% Controller gain computation when the poles are located at

[0.1+ 0.025j 0.1-0.025j] K=place(A,B,[0.1+0.025*i, 0.1-0.025*i])

% Compute the step response of the closed-loop with this gain

[y6,x6]=dlsim(A-B*K,B,C,d,u)

stairs(t,x0(:,1),’b’)

xlabel(’time in sec’)

ylabel(’x(1) and x(2)’)

title(’Behavior of the states versus time’)

hold on

stairs(t,x0(:,2),’b’)

stairs(t,x1(:,1),’r’)

stairs(t,x1(:,2),’r’)

stairs(t,x2(:,1),’m’)

stairs(t,x2(:,2),’m’)

stairs(t,x3(:,1),’c’)

stairs(t,x3(:,2),’c’)

stairs(t,x4(:,1),’g’)

stairs(t,x4(:,2),’g’)

stairs(t,x5(:,1))

stairs(t,x5(:,2))

stairs(t,x6(:,1))

7.3. State Feedback Controller Design 291

stairs(t,x6(:,2))

legend(’1’,’2’,’3’,’4’,’5’,’6’,’7’)

print -deps chap5.fig.1

The behavior of the states versus time is illustrated by Fig. (7.2).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time in sec

x(
1)

 a
nd

 x
(2

)

Behavior of the states versus time

1
2
3
4
5
6
7

Fig. 7.2 Behavior of the output versus time with state feedback controller

When the state space description is put in the controllable form, the computation
of the controller’s gains becomes easier. In fact, referring to the previous chapter the
controllable form for the open dynamics is given by:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

292 7. Design Based on State Space

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
bn−1 · · · b1

]
.

Notice also that

−BK = −
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

k1 · · · kn

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 · · · 0
...

. . .
...

−k1 · · · −kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The corresponding characteristic polynomial of the closed-loop dynamics is:

|zI − A + BK| = zn + (an−1 + kn) zn−1 + · · · + (a1 + k2) z + (a0 + k1) z0 (7.7)

The desired characteristic polynomial can also be put in the following form:

Δd(z) = zn + dn−1zn−1 + · · · + d1z + d0z0 (7.8)

By equating the characteristic polynomial with the desired characteristic polyno-
mial we get:

ki+1 = di − ai, i = 0, 1, 2, · · · , n − 1

Remark 7.3.3 In the previous chapter, we presented a transformation that put the
system description in the controllable canonical form, a question that comes is what
relationship exists between the controller gains of the original description, K and
the one of the controllable canonical form, K̄. To answer this this question, notice
that the characteristic equation for the closed-loop of the system in the controllable
canonical form is given by:

det
(
zI − Ā + B̄K̄

)
= 0

where Ā and B̄ are the matrices of the controllable canonical from obtained after
the transformation η(k) = Px(k).

Using the fact that the matrix P is nonsingular and PP−1 = I, we get

det
(
zPP−1 − PAP−1 + PBK̄PP−1

)
= 0

that we can write as follows:

det
(
P
(
zI − A + BK̄P

)
P−1
)
= 0

7.3. State Feedback Controller Design 293

This gives in turn:

det(P) det
(
zI − A + BK̄P

)
det
(
P−1
)
= 0

Since det(P) � 0, det
(
P−1
)
� 0 and det(P) det

(
P−1
)
= 1, we obtain:

det
(
zI − A + BK̄P

)
= 0

This characteristic equation will have the same poles as the characteristic
equation of original description:

det (zI − A + BK) = 0

if we have the following relation between the controller gains:

K = K̄P

Example 7.3.2 In order to show how the pole placement method works when the
system dynamics is in canonical controllable form, let us assume that we have a
dynamical system with two states, x1(k) and x2(k) and suppose that the dynamics of
the system has been transformed to the following discrete-time form:

[
x1(k + 1)
x2(k + 1)

]
=

[
0 1
−2 1

] [
x1(k)
x2(k)

]
+

[
0
1

]
u(k)

Firstly, we need to check the controllability of the system. This can be done by
computing

C =
[

B AB
]

=

[
0 1
1 1

]

which is of rank 2 and this means that the system is completely controllable and
therefore a state feedback controller exists.

It is important to notice that system in open-loop is unstable since its poles
are outside the unit circle. Let us also assume that the poles that give the desired
performances are given by:

z1 = 0.2 + j0.2

z2 = 0.2 − j0.2

The corresponding desired characteristic equation is given by:

Δd(z) = (z − 0.2 − j0.2)(z − 0.2 + j0.2) = z2 − 0.4z + 0.08

Let the controller gain, K, i.e.:

K =
[

k1 k2

]

Using the relationship ki+1 = di − a1,when i = 0, 1, we get:

k1 = −1.92

k2 = 0.6

294 7. Design Based on State Space

We can easily compute the eigenvalues of the closed-loop dynamics and find out
that they are equals to the desired poles.

More often the computation for general state space description using the pole as-
signment technique is tedious and one of the used method to overcome this problem
is to use the Ackerman’s method. This method is based on the following relations:

Δd(z) = zn + dn−1zn−1 + · · · + d1z + d0z0

where Δ(z) is the desired characteristic polynomial.
For the closed-loop dynamics we have also:

Δd(A − BK) = (A − BK)n + dn−1(A − BK)n−1 + · · · + d1(A − BK) + d0I = 0 (7.9)

To use this relation we need firstly to expand the terms (A − BK)n, (A − BK)n−1,
. . ., (A − BK). For this purpose, notice that:

I = I

(A − BK) = A − BK

(A − BK)2 = A2 − ABK − BK(A − BK)

(A − BK)3 = A3 − A2BK − ABK(A − BK) − BK(A − BK)2

(A − BK)4 = A4 − A3BK − A2BK(A − BK) − ABK(A − BK)2 − BK(A − BK)3

...

(A − BK)n−1 = An−1 − An−2BK − . . . − BK(A − BK)n−2

(A − BK)n = An − An−1BK − . . . − BK(A − BK)n−1

In order to use (7.9) multiply these relations respectively by d0, d1, . . ., dn−1 and
1 and sum them, we get:

Δd(A − BK) = Δd(A) − C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1K + d2K(A − BK) + . . . + K(A − BK)n−1

d2K + d3K(A − BK) + . . . + K(A − BK)n−2

...
K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C is the controllability matrix and Δd(A) is given by:

Δd(A) = An + dn−1An−1 + · · · + d1A + d0I.

Now if the system is controllable, which means that the inverse of the control-
lability exists, and the fact that Δd(A − BK) = 0, this relation can be rewritten as
follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1K + d2K(A − BK) + . . . + K(A − BK)n−1

d2K + d3K(A − BK) + . . . + K(A − BK)n−2

...
K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= C −1Δd(A)

7.3. State Feedback Controller Design 295

To extract the controller gain, K, from this relation we multiply both sides by[
0 0 · · · 0 1

]
, which gives in turn:

K =
[
0 0 · · · 0 1

]
C −1Δd(A)

In summary the Ackerman’s method consists of the following steps:

1. compute the desired characteristic polynomial Δd(z) as before, i.e.:

Δd(z) = zn + dn−1zn−1 + · · · + d1z + d0z0

2. use the Cayly-Hamilton theorem to compute Δd(A), i.e.:

Δd(A) = An + dn−1An−1 + · · · + d1A + d0I

3. use the following formula to compute the gain K:

K =
[
0 0 · · · 0 1

]
C −1Δd(A)

where C is the controllability matrix.

Remark 7.3.4 Notice that the presence of the inverse of the controllability matrix
C in the computation of the controller gain, justifies why we need the controllability
assumption we made earlier for our system.

Remark 7.3.5 It is important to notice that the presence of the inverse of the con-
trollability matrix, C , may render the computation of the controller gain harder. To
avoid this, the following can be used:

• Compute ν� such that:

ν�C =
[

0 · · · 0 1
]

ν� = (ν1, · · · , νn)

• Compute the controller gain K using the following:

K = ν�Δd(A)

Example 7.3.3 In this example, we will show that the design of the state feedback
controller is affected by the canonical forms i.e. the controller gains are different.
For this purpose, let us consider a dynamical system with output y(k) and input u(k)
has the following dynamics:

G(z) =
z + 1

z2 − 1.4z + 0.48

Let us firstly establish the canonical forms:

• controllable canonical form: following the steps for establishing the control-
lable form as in Chapter 6, we have:

x(k + 1) =

[
0 1
−0.48 1.4

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
1 1
]

x(k)

296 7. Design Based on State Space

• observable canonical form: following the same steps for establishing the
observable form as in Chapter 6, we get:

x(k + 1) =

[
1.4 1
−0.48 0

]
x(k) +

[
1
1

]
u(k)

y(k) =
[
1 0
]

x(k)

• Jordan canonical form: following the same steps for establishing the observable
form as in Chapter 6, we get:

x(k + 1) =

[
0.6 0
0 0.8

]
x(k) +

[−8
9

]
u(k)

y(k) =
[
1 1
]

x(k)

It can be shown easily that the system is controllable. Using the function place
(or acker) of Matlab when the desired poles are located at 0.2 ± 0.2 j, we get the
controller gains for each canonical form as follows:

• controllable canonical form:

K =
[
−0.4 1

]

• observable canonical form:

K =
[
0.5139 0.4861

]

• Jordan canonical form:

K =
[
0.1250 0.2222

]

Simulation results for each canonical form with the corresponding controller
gain are illustrated by Fig. 7.3 when the input is fixed to a step function. The Matlab
progran that gives us such simulation results is gven:

% Data for controllable form

A = [0 1; -0.48 1.4]

B = [0; 1]

C = [1 1]

d=0

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K=place(A,B,[0.2+0.2*i, 0.2-0.2*i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

t=0:0.01:0.2

u=ones(size(t))

7.3. State Feedback Controller Design 297

[y,x]=dlsim(A-B*K,B,C,d,u)

stairs(t,x(:,1),’r’)

hold on

stairs(t,x(:,2),’r’)

xlabel(’Time in seconds’)

ylabel(’States x1(k) and x2(k)’)

title(’states versus time for a step input’)

% Data for observable form

A = [1.4 1; -0.48 0]

B = [1; 1]

C = [1 0]

d=0

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K=place(A,B,[0.2+0.2*i, 0.2-0.2*i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

t=0:0.01:0.2

u=ones(size(t))

[y,x]=dlsim(A-B*K,B,C,d,u)

stairs(t,x(:,1),’b’)

stairs(t,x(:,2),’b’)

xlabel(’Time in seconds’)

ylabel(’Output y(k)’)

title(’States versus time for a step input’)

% Data for Jordan form

A = [0.6 0; 0 0.8]

B = [-8; 9]

C = [1 1]

d=0

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K=place(A,B,[0.2+0.2*i, 0.2-0.2*i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

298 7. Design Based on State Space

t=0:0.01:0.2

u=ones(size(t))

[y,x]=dlsim(A-B*K,B,C,d,u)

stairs(t,x(:,1),’g’)

stairs(t,x(:,2),’g’)

xlabel(’Time in seconds’)

ylabel(’States x1(k) and x2(k)’)

title(’States versus time for a step input’)

legend(’1’,’2’,’3’,’4’,’5’,’6’)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−8

−6

−4

−2

0

2

4

6

8

10

Time in seconds

S
ta

te
s

x1
(k

)
an

d
x2

(k
)

States versus time for a step input

1
2
3
4
5
6

Fig. 7.3 Behavior of states vs time with state feedback controller

Example 7.3.4 To show how the state feedback controller design procedure works
for a practical system (a dc motor driving a mechanical load), let us consider the
single-input single-output system with the following dynamics:

G(s) =
k

s(τs + 1)

with k = 1 and τ = 50ms represent respectively the gain and the time constant of
the system.

This system represents one wheel of the balancing robot that we have al-
ready presented. The system is unstable and has two poles located respectively at

7.3. State Feedback Controller Design 299

0 and − 1
τ
. Our aim in this example is to stabilize the closed-loop dynamics and im-

prove the settling time at 5% equal to 50ms while guaranteeing that the overshoot
is less than or equal to 5%.

Firstly, we need to choose the sampling period T . Since the time constant is equal
to 50 ms, a proper choice for T is 5 ms. This value will be used to get the different
canonical forms.

To solve this design problem, we will use all the canonical forms. Therefore we
have (see Chap. 6 for more details):

• the controllable form of this system is given by:

x(k + 1) = Fx(k) +Gu(k), x(0) = x0

y(k) = Cx(k)

with

F = φ(T) =

⎡⎢⎢⎢⎢⎣1 τ
[
1 − e−

T
τ

]
0 e−

T
τ

⎤⎥⎥⎥⎥⎦ =
[

1 0.0048
0 0.9048

]

G = Ψ(T) =

⎡⎢⎢⎢⎢⎢⎣
k
[
T − τ

[
1 − e−

T
τ

]]
k
[
1 − e−

T
τ

]
⎤⎥⎥⎥⎥⎥⎦ =
[

0.0002
0.0952

]

C =
[
1 0
]

• the observable form of this system is given by:

x(k + 1) = Fx(k) +Gu(k), x(0) = x0

y(k) = Cx(k)

with

F = φ(T) =

[
e−

T
τ τ
[
1 − e−−

T
τ

]
0 1

]
=

[
0.9048 0.0048

0 1

]

G = Ψ(T) =

[
k
[
T − τ

[
1 − e−

T
τ

]]
k
τT

]
=

[
0.0002

0.1

]

C =
[

1 0
]

• the Jordan form of this system is given by:

x(k + 1) = Fx(k) +Gu(k), x(0) = x0

y(k) = Cx(k)

with

F = φ(T) =

[
1 0
0 e− T

τ

]
=

[
1 0
0 0.9048

]

G = Ψ(T) =

[
kT

kτ
[
1 − e− T

τ

]
]
=

[−0.005 0
0 −0.0048

]

C =
[

1 −1
]

300 7. Design Based on State Space

From the specifications, we get:

d = 100e
−ξπ√
1−ξ2

ts =
3
ξωn
= 0.05

From these relations we obtain:

ξ = 0.707

ωn = 84.8656rd/s

which gives the following poles:

s1,2 = ξωn ± jωn

√
1 − ξ2 = −60.0000± 60.0181 j

Their corresponding poles in discrete-time domain when the sampling period T
is chosen equal to 0.1 are given by:

z1,2 = es1,2T = 0.7077 ± 0.2190 j

The corresponding characteristic polynomial is given by

Δd(z) = (z − z1)(z − z2) = z2 − 1.4154z + 0.5488

The closed-loop characteristic polynomial is given by:

Δ(z) = |zI − F +GK|
By equating the two characteristic polynomials we get the controller gain

depending on the considered representation as follows:

• controllable form

K =
[
280.3412 4.4304

]

• observable form

K =
[
191.7330 4.4304

]

• Jordan form

K =
[

280.3412 191.7330
]

For the state feedback design for multi-input multi-output dynamical systems,
the control law is still given by the following expression:

u(t) = −Kx(t)

where u(t) ∈ Rm and K ∈ Rn×m.
When the system in open loop is asymptotically stable an optimal state feed-

back can be designed using the Lyapunov approach. In fact, if our system is
asymptotically stable in open-loop, this implies that there exists a symmetric and
positive-definite matrix P such that the following holds:

A�PA − P = −Q

7.3. State Feedback Controller Design 301

for a given symmetric and positive-definite matrix Q.
Now if we consider the following Lyapunov function candidate:

V(xk) = x�k Pxk

Based on Chap. 6, the discrete-time rate change of V(xk) is given by:

ΔV = V(xk+1) − V(xk)

For the closed-loop dynamics, we have:

ΔV = V(xk+1) − V(xk)

= [Axk + Buk]� P [Axk + Buk] − x�k Pxk

= x�k A�PAxk + 2u�k B�PAxk + u�k B�PBuk − x�k Pxk

To design the optimal state feedback controller, we will consider the following
performance index:

J = ΔV

Using now the optimality condition (see [3], we get:

∂J
∂uk
=
∂ΔV
∂uk

= 0

which implies:

2B�PAxk + 2B�PBuk = 0

that gives in turn:

uk = −
[
B�PB

]−1
B�PAxk

The controller gain is then given by:

K =
[
B�PB

]−1
B�PA

where P is the solution of the following Lyapunov function:

A�PA − P = −Q

for a given Q.

Example 7.3.5 To show how this technique applies for asymptotically stable
system, let us consider the following one with the transfer function given by:

G(s) =
2

(s + 1)(s + 2)

This system is asymptotically stable since its poles are respectively −1 and −2.
Let us firstly establish its corresponding discrete-time state space representation.

This can be done by the following procedure developed earlier.
In fact the continuous-time state space description of this system is given:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)

302 7. Design Based on State Space

with

A =

[−1 0
0 −2

]
,

B =

[
1
1

]
,

C =
[
2 −2

]

Let the sampling period T be equal to 0.05. The transition matrix φ(s) is given
by:

φ(s) = [sI − A]−1

=

[
1

s+1 0
0 1

s+2

]

which gives:

φ(t) =

[
e−t 0
0 e−2t

]

From this expression we get:

φ(T) =

[
e−T 0
0 e−2T

]
=

[
0.9512 0

0 0.9048

]

Ψ(T) =
∫ T

0
φ(T − τ)Bdτ

=

∫ T

0

[
e−(T−τ) 0

0 e−2(T−τ)

] [
1
1

]
dτ

=

[
1 − e−T

0.5(1 − e−2T)

]
=

[
0.0488
0.0476

]

Finally we get the discrete-time description:

xk+1 = φ(T)xk + Ψ(T)uk

yk = Cxk

We can check easily that the system is controllable and observable and therefore
there is a state feedback control of the form uk = − [B�PB

]−1 B�PAxk where the
matrix P is the solution of the following Lyapunov equation:

A�PA − P = −Q

for a given symmetric and positive-definite matrix Q.
Using Q = I, we get

P =

[
10.5022 0

0 5.5146

]

The corresponding controller gain is given by:

K =
[

12.9981 6.3326
]

7.3. State Feedback Controller Design 303

Remark 7.3.6 It is important to notice that the observability is not necessarily
invariant under a state feedback control. We can show this by the following example:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where

A =

[
0 1
−0.6 −0.7

]

B =

[
0
1

]
,

C =
[
0 1
]

It can be firstly checked that the system is controllable and observable. Since the
system is controllable, the poles of the system can be placed any where inside the
unit circle.

The controllability matrix is given by:

C =

[
0 1
1 −0.7

]

O =

[
0 1
−0.6 −0.7

]

If we select the controller gain K given by:

K =
[
−0.6 −1

]

The closed-loop poles are placed respectively at 0 and 0.3. For this gain the
observability matrix is given by:

O =

[
0 1
0 0.3

]

which is of rank one and therefore the observability is lost by this state feedback
control law.

For the multi-input multi-output, we will cover two approaches that we can use to
design the state feedback controller. The first approach is simple is consist of writing
the matrix gain in way that the design problem can be solved using the single input
single output approach. In fact if the system has m inputs and n states, the gain K has
m × n scalar gains to be determined. Using the single input single output approach
this can not be done unless we make some transformation. In Fact, if we write the
gain K as follows:

K = qK̃

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q1
...

qm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[

k1 · · · kn

]

304 7. Design Based on State Space

where qi, i = 1, · · · ,m are fixed scalars
Now if we replace this in the characteristic equation we get:

det
[
zI − A + BqK̃

]
= 0

Compare this with the single input single output characteristic equation, we
conclude that the gain K̃ is determined by:

K̃ =
[
0 · · · 0 1

]
C −1Δ(A)

with C =
[

Bq ABq · · · An−1Bq
]
.

For the second approach, notice that in the previous chapter we have seen how
to compute the transformation, η(k) = Px(k) that put the system in the controllable
canonical form for multi-input multi output systems. This canonical form is obtained
using the controllability matrix. Once this form is obtained the computation of the
matrix gain becomes easy. An example showing how this method works is presented
later in this chapter.

7.4 Output Feedback Controller Design

It may happen in some circumstances that we don’t have complete access to the
state vector and therefore, the approach we used for the state feedback control can
not be used and an alternate is required for this case. In the rest of this section, we
will develop an approach that estimates the state vector and use this estimate as the
state vector for the actual control.

In the rest of this section we will firstly focus on the design of the observer that
can be used to estimate the state vector which can be used for feedback. Then, we
will see how to combine the controller and the observer designs.

Let us consider the following system:
⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(7.10)

where x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp represent respectively the state, the input
and the output of the system, A, B and C are known real matrices with appropriate
dimensions.

One easy way to build the estimate of the state x(k) is to use the following
structure for the estimator:⎧⎪⎪⎨⎪⎪⎩

x̂(k + 1) = Ax̂(k) + Bu(k)

ŷ(k) = Cx̂(k)
(7.11)

where x̂(k) ∈ Rn is the state estimate of the state vector x(k).
Using (7.10) and (7.11), we get:

e(k + 1) = x(k + 1) − x̂(k + 1) = A [x(k) − x̂(k)]

= Ae(k)

7.4. Output Feedback Controller Design 305

with e(k) = x(k) − x̂(k) is the estimation error.
Notice that the error dynamics doesn’t depend on the control u(k) and therefore

the behavior of the error will depend on the stability of the matrix A and we have
no way to change the behavior to make it faster if it is necessary to guarantee the
convergence of the estimator by placing the pole of the matrix A at some appropriate
locations. To overcome this we should change the structure of the estimator and a
natural one is given by the following dynamics:

⎧⎪⎪⎨⎪⎪⎩
x̂(k + 1) = Ax̂(k) + Bu(k) + L

[
y(k) − ŷ(k)

]
ŷ(k) = Cx̂(k)

(7.12)

where x̂(k) ∈ Rn is the state estimate of the state vector x(k) and L is a constant gain
matrix to be designed and that will be referred as the observer gain.

Using again (7.10) and (7.12), we get:

e(k + 1) = x(k + 1) − x̂(k + 1) = A [x(k) − x̂(k)] − LC [x(k) − x̂(k)]

= [A − LC] e(k)

with e(k) = x(k) − x̂(k) is the estimation error.
The new dynamics for the estimation error depends on the choice of the gain

matrix, L, and therefore the behavior can be controlled by the choice of this observer
gain L.

It is important to notice that the eigenvalues of the matrix A� − C�L� are the
same as those of the matrix A − LC. Therefore, if we denote by z1, · · · , zn, the poles
that permit the design of the matrix L, the characteristic equation is given by:

det
[
zI − A� + C�L�

]
=

n∏
l=1

(z + zl) (7.13)

Now if we compare this characteristic equation with the one of the design of
the state feedback controller, we can design the gain matrix L using the Ackerman
formula for the following dynamics

x(k + 1) = A�x(k) +C�u(k)

with the control u(k) = −L�x(k).
Based on this and using the Ackerman formula, the observer gain for the single

output case is then given by:

L� =
[

l1, · · · , ln
]
=
[
0, · · · , 0, 1

] (
O�
)−1
Δ(A�)

with O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
CA0

...
CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

306 7. Design Based on State Space

+ +N B

A

unit
delay

D

C
u(k)

y(k)
x(k + 1) x(k)

Ref
−

+ +B

K

A

unit
delay

D

C ŷ(k)
x̂(k + 1) x̂(k)

L
−

+

Fig. 7.4 Block diagram of discrete-time linear system

Example 7.4.1 To show how to design the observer gain, let us consider the posi-
tion control of a dc motor that drives a mechanical load as discussed before. Let the
dynamics between the output θ(t) and the input u(t) be described by the following
dynamics:

G(s) =
k

s(τs + 1)

with k = 1 and τ = 20ms represent respectively the gain and the time constant of
the system. We also assume that we have only one sensor that measures the output
system θ(t).

The system is unstable and has two poles located respectively at 0 and − 1
τ . Our

aim in this example is to stabilize the closed-loop dynamics and improve the settling
time at 5% and to make it equal to 20ms while guaranteeing that the overshoot is
less than or equal to 5%.

7.4. Output Feedback Controller Design 307

To solve this design problem, we use the controllable canonical form. This form
is given by:

x(k + 1) = Fx(k) +Gu(k), x(0) = x0

y(k) = Cx(k)

with

F = φ(T) =

⎡⎢⎢⎢⎢⎣1 τ
[
1 − e−

T
τ

]
0 e−

T
τ

⎤⎥⎥⎥⎥⎦ =
[

1 0.0021
0 0.9049

]

G = Ψ(T) =

⎡⎢⎢⎢⎢⎢⎣
k
[
T − τ

[
1 − e−

T
τ

]]
k
[
1 − e−

T
τ

]
⎤⎥⎥⎥⎥⎥⎦ =
[

0.0019
0.0952

]

C =
[

1 0
]

From the specifications, we get:

d = 100e
−ξπ√
1−ξ2

ts =
3
ξωn
= 0.02s

which gives in turn:

ξ = 0.707

ωn = 212.1641rad/s

this gives the following poles:

s1,2 = −ξωn ± jω
√

1 − ξ2 = −150 ± j114.8434

Their corresponding poles in discrete-time domain when the sampling period T
is chosen equal to 2ms are given by:

z1,2 = es1,2T = −0.0003 ± j0.0025

The corresponding characteristic polynomial is given by

Δd(z) = (z − z1)(z − z2) = z2 − (z1 + z2)z + z1z2 = z2 − 0.0006z + 6.3400e − 06

Using the Ackerman formula, the observer gain L is given by:

L� =
[

l1, l2
]
=
[
0, 1

]
O−1Δ(F�)

with

O� =
[
CF0

CF

]
=

[
1 0

1.0000 −0.0021

]

Δ(F�) = F2 − 0.0006F + 6.3400e− 06 =

[
0.9994 −0.0040
0.0000 0.8182

]

The observer gain is:

L =

[−0.0030
−388.9831

]

308 7. Design Based on State Space

Sometimes, the computation of the observer gain becomes more easier when the
dynamics of the system is in observable canonical form. Referring to Chapter 6, it
can be shown easily that we have for single input single output system:

det [zI − Ao + LCo] = 0, L ∈ Rn×1,Co ∈ R1×n

Ao − LCo =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(an−1 + l1) 1 . . . 0 0
−(an−2 + l2) 0 1 . . . 0

...
... . . .

...
...

−(a1 + ln−1) 0 . . . 0 1
−(a0 + ln) 0 . . . 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The characteristic equation of the system can be written as follows:

Δo(z) = zn + (an−1 + l1) zn−1 + . . . + (a1 + ln−1) z + (a0 + ln)

Also, the desired characteristic equation can be written as follows:

Δd(z) = zn + dn−1zn−1 + . . . + d1z + d0

Equating these two characteristic equations, we get:

li = dn−i − an−i, i =, 1, . . . , n

which gives directly the observer gains.
For the multiple outputs (i.e. C ∈ Rn×p), the design of the observer gain requires

the determination of n × p gains using n equations which is not possible without
using smart approaches that fix some of the gains. One possible way to overcome
this is to use the following expression for the gain L:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
l1
...
ln

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
q1, · · · , qp

]
= L̃q�

with qi is an arbitrary real number that has to be chosen by the designer to compute
the observer gain, L̃.

It is important to notice that this approach allows us to determine n-gains by
fixing the p-gains. Other approaches are also available and the reader is invited to
consult appropriate references for this purpose.

Using the same remark as for the single output case, we can design the gain
matrix L̃ using the Ackerman formula for the following dynamics

x(k + 1) = A�x(k) +C�qu(k)

with the control u(k) = −L̃�x(k).
The observer gain for this case is then given by:

L̃� =
[

l1, · · · , ln
]
=
[
0, · · · , 0, 1

] (
O�
)−1
Δ(A�)

7.4. Output Feedback Controller Design 309

with O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
q�CA0

...
q�CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

Most often, the state vector is divided into two parts, the first one has the same
size of the measured output, i.e. m, while the second has the dimension of n − m. If
we denote respectively these variables respectively by xa(k) ∈ Rm and xb(k) ∈ Rn−m,
i.e:

x(k) =

[
xa(k)
xb(k)

]

which implies:

y(k) =
[
In−m 0

]
x(k)

= xa(k)

Using this the system dynamics can be rewritten as follows:
[

xa(k + 1)
xb(k + 1)

]
=

[
A11 A12

A21 A22

] [
xa(k)
xb(k)

]
+

[
B1

B2

]
u(k)

y(k) =
[
In−m 0

]
x(k)

= xa(k)

which gives respectively:

xa(k + 1) = A11xa(k) + A12 xb(k) + B1u(k)

xb(k + 1) = A21xa(k) + A22 xb(k) + B2u(k)

y(k) = xa(k)

Notice that the first relation can be rewritten as follows:

xa(k + 1) − A11xa(k) − B1u(k) = A12xb(k)

Using now the relation y(k) = xa(k) for all k, we get:

y(k + 1) − A11y(k) − B1u(k) = A12xb(k)

which implies that the left hand term can be measured, while the right hand term
contains the states xb(k) that have to be estimated.

For the unmeasured part of the state vector, xb(k), we have

xb(k + 1) = A21xa(k) + A22 xb(k) + B2u(k)

= A22xb(k) + A21 xa(k) + B2u(k)

Let us now denote by x̂b(k) the estimate of the state vector part, xb(k) and by Lb

the observer gain to be designed. Referring to the design of the observer design of
full order, and comparing the state equations

x(k + 1) = Ax(k) + Bu(k)

310 7. Design Based on State Space

with the dynamics of the unmeasured state parts, we remark that A22 and A21xa(k)+
B2u(k) correspond respectively to A and Bu(k)

Doing the same for the output equation:

y(k) = Cx(k)

with the measurement equation:

y(k + 1) − A11y(k) − B1u(k) = A12xb(k)

we remark also that C corresponds to A12.
Using now the results of the full order estimator, we get for the following for the

state part, x̂b(k):

x̂b(k + 1) = [A22 − LbA12] x̂b(k) + A21xa(k) + B2u(k)

+Lb
[
y(k + 1) − A21xa(k) − B1u(k)

]

that we can rewritten using the fact y(k) = xa(k):

x̂b(k + 1) = [A22 − LbA12] x̂b(k) + Lby(k + 1) + [A21 − LbA21] xa(k)

+ [B2 − LbB1] u(k)

It is important to notice that the presence of the term y(k+ 1) in the expression of
x̂b(k + 1) is not convenient and some changes are needed to overcome this. For this
purpose, let us rewrite the previous equation as follows:

x̂b(k + 1) − Lby(k + 1) = [A22 − LbA12] x̂b(k) + [A21 − LbA21] xa(k)

+ [B2 − LbB1] u(k)

Adding and subtract the term [A22 − LbA12] Lb xa(k) to the right hand side of this
relation we get:

x̂b(k + 1) − Lby(k + 1) = [A22 − LbA12] [x̂b(k) − Lbxa(k)]

+ [[A22 − LbA12] Lb + A21 − LbA11] xa(k)

+ [B2 − LbB1] u(k)

Let us now define the new variable ρ(k) and its estimate ρ̂(k) by:

ρ(k) = xb(k) − Lbxa(k)

ρ̂(k) = x̂b(k) − Lbxa(k)

Using this we get:

ρ̂(k + 1) = [A22 − LbA12] ρ̂(k)

+ [[A22 − LbA12] Lb + A21 − LbA11] xa(k)

+ [B2 − LbB1] u(k)

Let us now define, the estimation error, e(k):

e(k) = ρ(k) − ρ̂(k) = xb(k) − x̂b(k)

7.4. Output Feedback Controller Design 311

The dynamics of the reduced order estimator is given by:

e(k + 1) = xb(k + 1) − x̂b(k + 1)

= A22xb(k) + A21xa(k) + B2u(k) − [A22 − LbA12] [x̂b(k) − Lbxa(k)]

+ [[A22 − LbA12] Lb + A21 − LbA11] xa(k)

+ [B2 − LbB1] u(k)

= A22 [xb(k) − x̂b(k)] + LbA12 x̂b(k) − LbA12xb(k)

= [A22 − LbA12] [xb(k) − x̂b(k)]

= [A22 − LbA12] e(k)

Remark 7.4.1 It is important to notice that the error expression of the reduced
order estimator is similar to the one of the full order estimator except that the size
of the matrices is less.

Example 7.4.2 In this example we consider a dynamical system with three states
with the following dynamics:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1

0.504 −1.91 2.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
1 0 0

]

It can be shown that this system is completely controllable and obersvable.
Let us design an observer for this system to estimate the state vector. Firstly let

us design a full order estimator. Let us assume that the poles we use for the design
of the observer gain are given:

z1 = 0.1

z2 = 0.1 + 0.6 j

z3 = 0.1 − 0.6 j

The corresponding characteristic equation is given by:

z3 − 0.3z2 + 0.39z − 0.037 = 0

Using pole placement as we did before, it can be shown that the following
observer gain is the solution:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2.1

3.52
4.904

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

312 7. Design Based on State Space

For the reduced order observer, let us assume that we have access to the first
state. Based on the theory, we have:

A11 =
[

0
]
, A12 =

[
1 0
]
, A21 =

[
0

0.504

]
, A22 =

[
0 1
−1.91 2.4

]
,

B1 =
[

0
]
, B2 =

[
0
1

]
,

C =
[

1 0 0
]

Let the poles used for the design of the reduced order observer are:

z2 = 0.1 + 0.6 j

z3 = 0.1 − 0.6 j

The corresponding characteristic equation is given by:

z2 − 0.2z + 0.37 = 0

Using pole placement as we did before, it can be shown that the following
observer gain is the solution:

L =

[
2.2

3.75

]
.

Now if we consider simultaneously, the design of the gain observer and the gain
controller in order to control the states of the system to have some desire behavior.
The control law in this case will use the estimate delivered by the estimator at period
k and its expression is given by:

u(k) = −Kx̂(k) + Nr(k)

where r(k) is the reference signal and N a matrix to be designed also.
More frequently the design specifications are given for the controller design only.

From these design specifications we extract some poles that are used in the design
of the controller gain. For the observer gain, we usually choose some fast poles
compared the one used for the design of the controller gain. In general the set of
poles used either for the controller gain or the observer gain designs are divided
into two parts, the dominant ones and the dominated ones. The dominant poles are
in general a pair of complex poles that are extracted from the data related to the
overshoot and the settling time.

Now if we combine the system dynamics and the observer one, we get the
following augmented dynamics:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ x(k + 1)

x̂(k + 1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣ A −BK

LC A − LC + BK

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ x(k)

x̂(k)

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣ BN

BN

⎤⎥⎥⎥⎥⎥⎦ r(k)

y(k) =
[
C 0

] ⎡⎢⎢⎢⎢⎢⎣ x(k)

x̂(k)

⎤⎥⎥⎥⎥⎥⎦

7.4. Output Feedback Controller Design 313

Notice that:
[

x(k)
e(k)

]
=

[
x(k)

x(k) − x̂(k)

]
=

[
I 0
I −I

] [
x(k)
x̂(k)

]
= Ĩ

[
x(k)
x̂(k)

]

It is easy to verify that Ĩ−1 is equal to Ĩ, and we have:
[

x(k)
x̂(k)

]
=

[
I 0
I −I

] [
x(k)
e(k)

]

Combining this with the augmented dynamics, we get:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣ x(k + 1)

e(k + 1)

⎤⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣A − BK BK

0 A − LC

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ x(k)

e(k)

⎤⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎣ BN

0

⎤⎥⎥⎥⎥⎥⎦ r(k)

y(k) =
[
C 0

] ⎡⎢⎢⎢⎢⎢⎣ x(k)

e(k)

⎤⎥⎥⎥⎥⎥⎦

From this, we see that the matrix
[

A − BK BK
0 A − LC

]

is triangular and based on algebra theory, the eigenvalues of this matrix correspond
to the union of the matrix A − BK and those of the matrix A − LC. Consequently
it can be concluded that the eigenvalues of the closed-loop dynamics with the state
feedback are not affected by the fact that we add the estimator. As a direct conclusion
of this, we can design the controller and the estimator separately and this is known
in the literature as the separation principle.

Example 7.4.3 To show how we design simultaneously the controller and the
observer gains, let us consider the following dynamical system:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1
0 1 0
0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ u(k)

y(k) =
[
1 0 1

]
x(k)

The objective is to design a state feedback that assures the following perfor-
mances:

• stable

• an overshoot less than 5 %

• a settling time at 5 % of 3 s

First of it is important to notice that the system is unstable since all the poles are
at the unit circle.

314 7. Design Based on State Space

The controllability and observability matrices are given by:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 2 4
1 1 1
1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 1
1 1 2
1 3 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
which are both full rank. The system is then controllable and observable. Therefore it
is possible to place the poles where we want to guarantee the desired performances.

Let us now convert the performances to desired poles. As we did previously, we
have:

d = 100e
−ξπ√
1−ξ2

ts =
3
ξωn
= 3s

From these relations we obtain:

ξ = 0.707

ωn = 1.4144

which gives the following poles:

s1,2 = −ξωn ± jω
√

1 − ξ2 = −1 ± j

Since the order of the system is equal to 3, a third pole can be chosen equal to
s3 = −5.

Their corresponding poles in discrete-time domain when the sampling period T
is chosen equal to 0.1 s are given by:

z1,2 = es1,2T = 0.9003 ± j0.0903

z3 = 0.6065

The corresponding characteristic polynomial is given by

Δd(z) = (z − z1)(z − z2) = z2 − (z1 + z2)z + z1z2 = z3 − 2.4072z2 + 1.9109z − 0.4966

The controller gain can be computed either using the Ackerman formula or the
function place of Matlab. The controller gain is given:

K =
[

0.0071 0.4963 0.0894
]

Since we don’t have access to all the states, we need to apply the state feedback
control to estimate the state. In the rest of this example, we will design an observer
for this purpose. The poles we will consider for the observer design are derived
from those of the specifications. As we said earlier, these poles can chosen faster

7.4. Output Feedback Controller Design 315

compared the ones used in the controller design. We will consider them four times
faster. Based on this, the poles can be chosen as:

s1,2 = −4 ± j

s3 = −20

Their corresponding poles using the same sampling period T are given by:

z1,2 = es1,2T = 0.6670 ± j0.0669

z3 = 0.1353

The corresponding characteristic polynomial is given by

Δd(z) = (z − z1)(z − z2) = z2 − (z1 + z2)z + z1z2 = z3 − 1.4693z2 + 0.6299z− 0.0608

The controller gain can be computed either using the Ackerman formula or the
function place of Matlab. The observer gain is given:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.9392
0.0998
0.5915

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
% Data

A=[1 0 1; 0 1 0; 0 1 1]

B=[1; 1; 1]

C = [1 0 1]

d=0

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K=place(A,B,[0.6065, 0.9003+0.0903*i, 0.9003-0.0903*i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

t=0:0.01:1

u=ones(size(t))

[y,x]=dlsim(A-B*K,B,C,d,u)

stairs(t,x(:,1),’r’)

hold on

stairs(t,x(:,2),’b’)

stairs(t,x(:,3),’g’)

xlabel(’Time in seconds’)

ylabel(’States x1(k), x2(k) and x3(k)’)

title(’states versus time for a step input’)

legend(’1’,’2’,’3’)

316 7. Design Based on State Space

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−20

0

20

40

60

80

100

120

140

160

Time in seconds

S
ta

te
s

x1
(k

),
 x

2(
k)

 a
nd

 x
3(

k)

states versus time for a step input

1
2
3

Fig. 7.5 Behavior of the output vs time with state fdk controller

The behavior of the states versus time is illustrated by Fig. (7.5).

Example 7.4.4 Let us now consider the case on multi input multi output case. For
this purpose, we consider the following dynamical system:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 −1
1 1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
u(k)

y(k) =

[
1 0 1 0
0 1 1 1

]
x(k)

First of all it is important to notice that this system is unstable. Our goal in this
example is to design a state feedback controller that stabilizes the system and place
the poles of the closed-loop of this system at 0.2, 0.1 and 0.2 ± 0.2 j.

To design the state feedback controller, we will search for the transformation
η(k) = Px(k) that gives the controllable canonical form and then use the procedure
we presented earlier to design the controller gain.

It is important to notice that we don’t have access to all the states and therefore
an observer is required to estimate the state for feedback. To design the con-
troller and the observer gains, the system must be controllable and observable. The

7.4. Output Feedback Controller Design 317

system is of order 4 and has two inputs and two outputs. The controllability and the
observability matrices are given by:

C =
[

B AB A4−2B
]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 2 −1
1 −1 2 −2 4 −3
1 1 2 0 4 −2
1 −1 2 −1 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
C

CA
CA4−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
0 1 1 1
−1 1 2 0
1 2 1 2
1 3 3 1
3 3 2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The ranks of these matrices are equal to four and therefore the system is

controllable and observable.
Let us firstly focus on the design of the state feedback controller. For this pur-

pose since the system in multi-input multi-output, we need to transform the actual
description to a controllable canonical form. To determine the controllability in-
dices, notice that by inspection of the fourth columns are linearly independent and
therefore the matrix

Co =
[
b1 Ab1 b2 Ab2

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1
1 2 −1 −2
1 2 1 0
1 2 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we conclude that the controllability indices associated to the first and
the second columns of the matrix B are equal to 2 and therefore controllablity index
of the system is equal to 2.

The inverse of this matrix is given by:

C −1
o =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 −1
−0.5 −0.75 0.25 1

0 0.5 0.5 −1
0 −1 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we get:

q1 =
[
−0.5 −0.75 0.25 1

]

q2 =
[

0 −1 0 1
]

318 7. Design Based on State Space

The matrix P of the transformation, η(k) = Px(k) is given by:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q1A
q2

q2A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.5 −0.75 0.25 1
1.5 −0.5 −0.25 0.25
0 −1 0 1
1 −1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is given by:

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1.25 0
1 1 −1.25 −1
5 1 −5.25 1
1 1 −0.25 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The new description is given by:

η(k + 1) = Āη(k) + B̄u(k)

y(k) C̄η(k)

with

Ā = PAP−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
4 −1 −4 2.25
0 0 0 1
2 −2 −2.5 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B̄ = PB

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C̄ = CP−1

=

[
6 2 −6.5 1
7 3 −6.75 −1

]

We are now ready to design the controller gain. First of all notice that the system
has four states and two inputs. Therefore, the controller gain has 2× 4 components:

K̄ =

[
k̄11 k̄12 k̄13 k̄14

k̄21 −k̄22 k̄23 k̄24

]

7.4. Output Feedback Controller Design 319

Notice that B̄K̄ is given by:

B̄K̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
k̄11 k̄12 k̄13 k̄14

0 0 0 0
k̄21 k̄22 k̄23 k̄24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using this we get:

Ā − B̄K̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
4 − k̄11 −1 − k̄12 −4 − k̄13 2.25 − k̄14

0 0 0 1
2 − k̄21 −2 − k̄22 −2.5 − k̄23 3 − k̄24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From the other side notice that we can have the two separate following
characteristic polynomials:

(z − 0.1)(z− 0.2) = z2 − 0.3z + 0.02

(z − 0.2 − 0.2 j)(z − 0.2 − 0.2 j) = z2 − 0.4z + 0.08

From which we can construct the following matrix that will have the same desired
poles:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−0.02 0.3 0 0

0 0 0 1
0 0 −0.08 0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Equating these two matrices gives the following gain:

K̄ =

[
4.02 −1.3 −4 2.25
2.0 −2.0 −2.42 2.6

]

It can be checked that the closed-loop dynamics Ā − B̄K̄ has the desired poles.
To get now the gain, K, that goes with the original description, we use the

following relation:

K = K̄P

which gives:

K̄ =

[−1.7100 −0.6150 1.3300 −0.3050
−1.4000 −0.6800 1.0000 −0.9200

]

It can be checked that the closed-loop dynamics A − BK has the desired poles.

% Data

A=[1 0 1; 0 1 0; 0 1 1]

B=[1; 1; 1]

C = [1 0 1]

d=0

320 7. Design Based on State Space

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K=place(A,B,[0.6065, 0.9003+0.0903*i, 0.9003-0.0903*i])

% Check that the eigenvalues are equals to the desired poles

eig(A-B*K)

t=0:0.01:1

u=[ones(size(t)); ones(size(t))]

[y,x]=dlsim(A-B*K,B,C,d,u)

stairs(t,x(:,1),’r’)

hold on

stairs(t,x(:,2),’b’)

stairs(t,x(:,3),’g’)

stairs(t,x(:,4),’g’)

xlabel(’Time in seconds’)

ylabel(’States x1(k), x2(k), x3(k) and x4(k)’)

title(’states versus time for a step input’)

legend(’1’,’2’,’3’,’4’)

If we assume that we complete access to the states, the simulation results under
controller gain are illustrated in Fig. (7.6).

Let us now focus on the design of the observer. For this purpose we consider
poles for the design of the observer gain faster than those used for the design of the
controller gains. Le us select the followins ones:

z1 = 0.01

z2 = 0.02

z3,4 = 0.1 ± 0.1 j

To design the observer gain, we need to search for the transformation that gives
the observable canonical form. For this purpose, we use the dual principle. The dual
system is

x(k + 1) = A�x(k) +C�u(k)

y(k) = B�x(k)

7.4. Output Feedback Controller Design 321

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

2

2.5

Time in seconds

S
ta

te
s

x1
(k

),
 x

2(
k)

, x
3(

k)
 a

nd
 x

4(
k)

states versus time for a step input

1
2
3
4

Fig. 7.6 Behavior of the output vs time with state fdk controller

If we let c1 and c2 denote respectively the two columns of the matrix C�, the
controllability matrix is given by:

C =
[
c1 A�c1 c2 A�c2

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 1
0 1 1 2
1 2 1 1
0 0 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is given by:

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 −0.5 0.5 0
0 1 0 −1
−1 −3 1 3
0.5 1.5 −0.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From this we get:

q1 =
[
0 1 0 −1

]

q2 =
[
0.5 1.5 −0.5 −1

]

322 7. Design Based on State Space

The matrix P of the transformation, η(k) = Px(k) is given by:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q1A�
q2

q2A�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 −1
0 0 1 −1

0.5 1.5 −0.5 −1
−1 0.5 1 −0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Its inverse is given by:

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 1 2 0
−2.5 0 2 1
−3.5 1 2 1
−3.5 0 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The new description is given by:

η(k + 1) = Ā�η(k) + C̄�u(k)

y(k) B̄�η(k)

with

Ā� = PA�P−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
−0.5 2 0 −1

0 0 0 1
−6 3.5 4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C̄� = PC�

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B̄ = BP−1

=

[−12.5 2 8 3
2.5 1 −2 −1

]

Using the dual principle we get the observable canonical form:

η(k + 1) = Āη(k) + B̄u(k)

y(k) C̄η(k)

7.4. Output Feedback Controller Design 323

with

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.5 0 −6
1 2 0 3.5
0 0 0 4
0 −1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12.5 2.5
2.0 1.0
8.0 −20
3.0 −1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C̄ =

[
0 1 0 0
0 0 0 1

]

We are now ready to design the observer gain, L. First of all notice that the system
has four states and two inputs. Therefore, the controller gain has 4× 2 components:

L̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l̄11 l̄12

l̄21 l̄22

l̄31 −l̄32

l̄41 l̄42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notice that L̄C̄ is given by:

L̄C̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 l̄11 0 l̄12

0 l̄21 0 l̄22

0 l̄31 0 l̄32

0 l̄41 0 l̄42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Using this we get:

Ā − L̄C̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.5 − l̄11 0 −6 − l̄12

1 2 − l̄21 0 3.5 − l̄22

0 −l̄31 0 4 − l̄32

0 −1 − l̄41 1 −l̄42

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From the other side notice that we can have the two separate following
characteristic polynomials:

(z − 0.01)(z− 0.02) = z2 − 0.03z + 0.0002

(z − 0.1 − 0.1 j)(z − 0.1 − 0.1 j) = z2 − 0.2z + 0.02

From which we can construct the following matrix that will have the same desired
poles:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −0.0002 0 0
1 0.03 0 0
0 0 0 −0.02
0 0 1 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

324 7. Design Based on State Space

Equating these two matrices gives the following gain:

L̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.4998 −6
1.97 3.5
0.0 4.02
−1.0 −0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can be checked that the closed-loop dynamics Ā − L̄C̄ has the desired poles.
Notice that the poles are solution of det

(
P−�AP� − L̄CP�

)
= 0. This relation

can be transformed as:

det
(
P−�AP� − L̄CP�

)
= det

(
P−�

(
A − P�L̄C

)
P�
)
= det (A − LC)

To get now the gain, L, that goes with the original description, we use the
following relation:

L = P�L̄

which gives:

L̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 2.2100
−0.9998 −0.0700
0.9700 1.2900
−0.9702 −1.4200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It can be checked that the closed-loop dynamics A − LC has the desired poles.

7.5 Linear Quadratic Regulator

In the previous section we presented techniques that allowed us to design state feed-
back controllers to guarantee some desired specifications without fixing a criteria
for this choice. In this section we will try to design the optimal state feedback that
respects a certain fixed criteria.

Let us focus first of all on the finite horizon optimal control problem. The cost
function is given by:

J =
N−1∑
k=0

[
x�(k)Qx(k) + u�(k)Ru(k)

]
+ x�(N)S x(N), (7.14)

where the matrices Q, S and R are respectively symmetric and semi-positive-
definite, and symmetric and positive definite.

Remark 7.5.1 The matrix R is supposed to be symmetric and positive-definite be-
cause as we will see at the design phase of the optimal controller, we need to
compute the inverse of this matrix. The first term in the cost is used to penalize
the state and the second one for the control. The last term is used to penalize the
final state. For general matrices Q and R it is difficult to give an explanation, but for
diagonal matrices the highest coefficient in the diagonal of the appropriate matrix
will give the smallest either state or control.

7.5. Linear Quadratic Regulator 325

The linear regulator problem can be stated: given a linear time-invariant system
with the following dynamics:

x(k + 1) = Ax(k) + Bu(k), x(0) = x0

find a control law:

u
(k) = Kx
(k)

that minimizes the cost function (7.14).
To solve this optimization problem three approaches can be used among them

we quote the dynamic programming approach known in the literature also as the
Bellman principle [3].

To establish the optimality conditions that will give us the optimal solution we
proceed recursively. For this purpose, if the initial state is x(N − 1) and we want to
drive it to the final state x(N). In this case, the cost becomes:

JN−1,N = x�(N − 1)Qx(N − 1) + u�(N − 1)Ru(N − 1) + x�(N)S x(N)

Using the system dynamics, we can rewritten this as follows:

JN−1,N = x�(N − 1)Qx(N − 1) + u�(N − 1)Ru(N − 1)

+ [Ax(N − 1) + Bu(N − 1)]� S [Ax(N − 1) + Bu(N − 1)] (7.15)

where the variable decision is u(N − 1) and that we would like to determine and that
makes the criteria smaller.

Using the fact that the cost is continuous in the decision variable and the
necessary condition for optimality (see [3]), i.e:

∂JN−1,N

∂u(N − 1)
= 0

we get:

Ru(N − 1) + B�S [Ax(N − 1) + Bu(N − 1)] = 0

which gives in turn the optimal control, u
(N − 1), to drive the state from x(N − 1)
to x(N):

u
(N − 1) = −
[
R + B�S B

]−1
B�S Ax(N − 1) (7.16)

It is well known from optimization theory that this solution will be the
minimizing one if the following holds:

∂2JN−1,N

∂u2(N − 1)
= R + B�S B > 0

From Eq. (7.16), we can see that the control is well a state feedback one that we
can rewrite as:

u
(N − 1) = K(N − 1)x(N − 1)

with K(N − 1) = − [R + B�S B
]

B�S A.

326 7. Design Based on State Space

The corresponding cost, J
N−1,N is given by:

J
N−1,N = x�(N − 1)Qx(N − 1) + x�(N − 1)K�(N − 1)RK(N − 1)x(N − 1)

+ [Ax(N − 1) + BK(N − 1)x(N − 1)]� S [Ax(N − 1) + BK(N − 1)x(N − 1)]

= x�(N − 1)
[
[A + BK(N − 1)]� S [A + BK(N − 1)] + Q

+K�(N − 1)RK(N − 1)
]

x(N − 1)

that we can rewrite as follows:

J
N−1,N = x�(N − 1)S N−1x(N − 1)

with S N−1 = [A + BK(N − 1)]� S [A + BK(N − 1)] + Q + K�(N − 1)RK(N − 1)
Notice that by this choice we have:

JN,N = J
N,N = x�(N)S x(N)

and therefore we have S N = S .
If now we consider another step backward and using the principle of optimality,

we have:

J
N−2,N = JN−2,N−1 + J
N−1,N

The expression of JN−2,N is given by:

J
N−2,N =
[
[Ax(N − 2) + Bu(N − 2)]� S [Ax(N − 2) + Bu(N − 2)]

+Bu(N − 2) + x�(N − 2)Qx(N − 2) + u�(N − 2)Ru(N − 2)
]

Proceeding similarly as before we get:

u
(N − 2) = K(N − 2)x(N − 2)

with K(N − 2) = − [R + B�S N−1B
]−1 B�S N−1A.

In a similar manner if we would like to drive the state from x(k) to x(N), we get:

u
(k) = K(k)x(k)

with K(k) = − [R + B�S k+1B
]−1 B�S k+1A, and

S k = [A + BK(k)]� S k+1 [A + BK(k)] + Q + K�(k)RK(k)

To get the solution of this optimization problem we should solve backward the
following equation:

S k = [A + BK(k)]� S k+1 [A + BK(k)] + Q + K�(k)RK(k) (7.17)

with the following initial condition

S N = S

The corresponding optimal control at each step is given by:

u
(k) = K(k)x(k) (7.18)

with K(k) = − [R + B�S k+1B
]−1 B�S k+1A

7.5. Linear Quadratic Regulator 327

Example 7.5.1 To show how to solve the optimal control problem for a finite
horizon, let us consider the following dynamical system:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

with:

x(t) =

[
x1(t)
x2(t)

]

A =

[
0 1
2 3

]

B =

[
0
1

]

C =
[
1 0
]

Let the weighting matrices Q, R and S be given by:

Q =

[
1 0
0 2

]

R =
[

10
]

S =

[
5 0
0 4

]

It is important to notice that the system has two states and therefore the gain K
has 1 × 2 components. First of all notice that it is difficult to solve this optimization
by hand. We will use Matlab to solve the optimality condition. For this purpose, we
write a Matlab program.

First of all, it is important to notice that the system in unstable since one of its
poles is outside the unit circle. Our objective is then to search for a stabilizing con-
troller. For this purpose, we will use the optimal control approach. The optimization
problem is a finite horizon with N = 10. To get the gain of the controller we use the
Matlab program below. This gain is obtained after a certain number of iterations.
As it is shown by Fig. (7.7), the two components of the gain converge to finite values.
These values are then used for simulation. It can be verified that the closed-loop dy-
namics has all its poles inside the unit circle and therefore, we stabilize the system
using the optimal control. The steady state gain is given by:

K =
[
−1.8465 −3.2720

]
.

% Data

A=[0 1; 2 3]

B=[0; 1]

C=[1 0]

d=[0]

n=size(A,1);

m=size(B,2);

328 7. Design Based on State Space

Q=[1 0; 0 2]

R=[10]

S=[5 0; 0 4]

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

S = S

K = -inv(R+B’*S*B)*B’*S*A

M=[S]

N=[K]

for i=9:-1:1,

Sa = (A+B*K)’*S*(A+B*K)+Q+K’*R*K

K=-inv(R+B’*Sa*B)*B’*Sa*A

S=Sa

M=[M; S]

N=[N; K]

end

% Plot

k=10:-1:1

stairs(k,N(:,1),’r’)

hold on

stairs(k,N(:,2),’b’)

xlabel(’Iterations’)

ylabel(’Gains k(1) and k(2)’)

title(’Gains versus iterations (Backward)’)

legend(’1’,’2’)

print -deps chap5-fig.8.eps

pause

t=0:0.01:0.5

u=ones(size(t))

[y,x]=dlsim(A+B*K,B,C,d,u)

stairs(t,x(:,1),’r’)

hold on

stairs(t,x(:,2),’b’)

xlabel(’Time in seconds’)

ylabel(’States x1(k) and x2(k)’)

title(’states versus time for a step input’)

7.5. Linear Quadratic Regulator 329

legend(’1’,’2’)

print -deps chap5-fig.9.eps

The behavior of the controller gains versus iteration is illustrated by Fig. 7.7.

1 2 3 4 5 6 7 8 9 10
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Iterations

G
ai

ns
 k

(1
)

an
d

k(
2)

Gains versus iterations (Backward)

1
2

Fig. 7.7 Behavior of the controller gains versus iteration

The behavior of the states versus time is illustrated by Fig. 7.8.

For the infinite horizon case, the cost function becomes:

J =
∞∑

k=0

[
x�(k)Qx(k) + u�(k)Ru(k)

]
, (7.19)

Now if we assume the optimal cost is given by:

J
(xk) = x�k Pxk

where P is an unknown matrix.
Notice that the cost can be rewritten as follows:

x�k Pxk = x�(k)Qx(k) + u�(k)Ru(k) +
∞∑

l=k+1

[
x�(l)Qx(l) + u�(l)Ru(l)

]

= x�(k)Qx(k) + u�(k)Ru(k) + x�k+1Pxk+1

330 7. Design Based on State Space

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in seconds

S
ta

te
s

x1
(k

)
an

d
x2

(k
)

states versus time for a step input

1
2

Fig. 7.8 Behavior of the output vs time with state fdk controller

Using now the expression of the control and the system dynamics, we get:

J(xk) = x�(k)Qx(k) + u�(k)Ru(k) + [Axk + Buk]� P [Axk + Buk]

Based on optimality conditions we get:

0 =
∂J

∂uk
(xk) = Ru(k) + B�P [Axk + Buk]

that gives the optimal control law:

u
(k) = −
[
R + B�PB

]−1
B�PAx(k)

= −Kx(k)

with K =
[
R + B�PB

]−1 B�PA.
Using this expression for the control law and the previous one for the cost

function J(x(k), we get the following that must holds for all x(k):

x�(k)
[
(A − BK)� P (A − BK) − P + Q + KRK

]
x(k) = 0

This implies in turn the following:

(A − BK)� P (A − BK) − P + Q + KRK = 0

7.5. Linear Quadratic Regulator 331

Replacing K by its expression we obtain the following Ricatti equation:

A�PA − P + Q − A�PB
(
R + B�PB

)−1
B�PA = 0

Example 7.5.2 To show how to solve the optimal control problem for a finite
horizon, let us consider the following dynamical system:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with:

x(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(k)
x2(k)
x3(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0
0 0 1
−5 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1 0
1 −1
1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
1 0 1
1 1 1

]

D =

[
0 0
0 0

]

Let the weighting matrices Q, R and S be given by:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 2 0
0 0 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

[
5 0
0 8

]

It is important to notice that the system has two inputs and therefore the gain K
has 2 × 3 components. First of all notice that it is difficult to solve this optimization
by hand. We will use Matlab to solve. For this purpose, we write a Matlab program.

% Data

A=[1 1 0; 0 0 1; -5 -1 -1]

B=[-1 0; 1 -1; 1 2]

C=[1 0 1; 1 1 1]

n=size(A,1);

m=size(B,2);

D=zeros(2)

332 7. Design Based on State Space

Q=[1 0 0; 0 2 0; 0 0 3]

R=[5 0 ; 0 10]

% Check the controllablity

CO=ctrb(A,B)

rank(ctrb(A,B))

% Controller gain computation

K = dlqr(A,B,Q,R)

Ac = [(A-B*K)];

Bc = [B];

Cc = [C];

Dc = [D];

t=0:0.01:2;

u=[ones(size(t)); ones(size(t))];

[y,x]=dlsim(Ac,Bc,Cc,Dc,u);

% plot the outputs

stairs(t,y(:,1),’r’)

hold on

stairs(t,y(:,2),’b’)

xlabel(’Time in seconds’)

ylabel(’Outputs y1(k) and y2(k)’)

title(’Outputs versus time for a step input’)

legend(’1’,’2’)

print -deps chap5-fig.10.eps

pause

% Plot the states

stairs(t,x(:,1),’r’)

hold on

stairs(t,x(:,2),’b’)

stairs(t,x(:,3),’g’)

xlabel(’Time in seconds’)

ylabel(’States x1(k), x2(k) and x3(k)’)

title(’states versus time for a step input’)

legend(’1’,’2’,’3’)

print -deps chap5-fig.11.eps

The behavior of the ouputs and the states versus time is illustrated by Figs. 7.9-
7.10.

7.6. Case Study 333

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time in seconds

O
ut

pu
ts

 y
1(

k)
 a

nd
 y

2(
k)

Outputs versus time for a step input

1
2

Fig. 7.9 Behavior of the output vs time with state fdk controller

7.6 Case Study

In this case study we present the design of controllers for our dc motor kit. The
mathematical model for this system is described by the following transfer function:

G(s) =
Km

s(τm s + 1)

where Km = 48.5 and τm = 0.06 s.
It can be shown that canonical controllable form is given by:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Bu(t), x(0) = x0

y(t) = Cx(t)
(7.20)

where x(t) and u(t) are respectively the state vector and the control input and the
matrices A, B and C are given by:

A =

[
0 1
0 − 1

τm

]
,

B =
[

Km
τm

]
,C =

[
1 0
]
.

Previously, it was shown that this system is controllable and observable. For the
design of the state feedback controller, we will present the pole placement technique
and the optimal control technique. The design will be done in the continuous-time.

334 7. Design Based on State Space

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Time in seconds

S
ta

te
s

x1
(k

),
 x

2(
k)

 a
nd

 x
3(

k)

states versus time for a step input

1
2
3

Fig. 7.10 Behavior of the states vs time with state fdk controller

Let us first of all focus on the pole placement technique and design the controller
that assures the following performances:

1. system stable

2. overshoot less or equal to 5 %

3. settling time at 5 % less or equal to 0.05 s.

If we assume the complete access to the states, the controller is then given by:

u(t) = −Kx(t)

where the gain K is to be determined.
From these performances, it can be shown that the pair of complex dominant

poles is given by:

s1,2 = −60 ± 60 j

If we denote by Δd(s) the desired characteristic equation, the gain K is the
solution of the following equation:

det [sI − A + BK] = Δd(s)

7.6. Case Study 335

We can either solve analytically this equation or use the Matlab function acker.
If the desired poles are denoted by p, the following syntax will give us the solution:

K = acker(A,B,p)

If we use the data for our system, we get:

K =
[
8.9813 0.1289

]

If we simulate the system with this gain, we get the results illustrated by Fig. 7.11
shows that the controller gives the desired performances.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

time in sec

st
at

es

Fig. 7.11 Behavior of the states vs time with state fdk controller

The case of partially known states can be done similarly and we refer the reader
to the case study part for this purpose. Let us now design the optimal controller that
stabilizes our system. The matrices Q and R are chosen as:

Q =

[
1 0
0 5

]
,

R =
[
1
]

Using the lqr, we get:

K =
[
1.0000 2.2159

]

336 7. Design Based on State Space

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

st
at

es

time in sec

Fig. 7.12 Behavior of the states vs time with state fdk controller

The simulation results for the system with this gain are illustrated by Fig. 7.12:
It is important to remark that the choice of the matrix Q and R will affect the

solution. We let this to the reader to investigate this matter.

7.7 Conclusions

This chapter covers the control design problem for mechatronic systems. Mainly we
focused on the design of the state feedback controller. In case of complete access
to the sate vector two approaches, pole placement and optimal control, were pre-
sented to deal with the design of the state feedback controller gain. Many numerical
example were given to show how the different techniques work.

7.8 Problems

1. Consider a dynamical system with the following dynamics:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

7.8. Problems 337

with:

x(t) =

[
x1(t)
x2(t)

]

A =

[
0 1
−2 −3

]

B =

[
0 0
1 1

]

C =
[
1 0
]

(a) develop the different canonical forms
(b) study the stability, the controllability and the observability of each form
(c) establish their equivalent discrete time forms when the sampling period T

is fixed to 0.1
(d) design a state feedback that gives an overshoot about 5 % and a settling

time at 5 % about one second
(e) establish the solution of the closed-loop when the inputs are fixed to unit

steps
(f) plot the phase diagram the behavior of the states
(g) compute the transfer matrix of the system

2. For the system of the Problem 1,

(a) establish the Riccati equation for the discrete-time and continuous-time
cases

(b) using the function lqr of Matlab, determine the controller gain for the
following weighting matrices:

Q =

[
1 0
0 2

]
,

R =

[
1 0
0 10

]
,

and plot the state behavior with respect of time t
(c) study the impact of the matrices Q and R on the controller gain and the

states.

3. Let us consider the following dynamics system:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

338 7. Design Based on State Space

with:

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−2 −3 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
1 0 1

]

(a) check the controllability and the observability of this system
(b) establish the controllable and the observable canonical forms
(c) assume that we have complete access to the state vector, design a state

feedback controller that place the poles of the closed-loop dynamics at 0.01
and 0.1 ± 0.1 j

(d) design simultaneously the controller and the observer that give the same
poles for the closed-loop dynamics.

(e) write a Matlab program that simulate the step response of this system and
plot the states.

4. Let us consider the following dynamics system:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

with:

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−2 −3 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
1 1
1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
1 0 1
1 1 1

]

(a) check the controllability and the observability of this system
(b) establish the controllable and the observable canonical forms
(c) assume that we have complete access to the state vector, design a state

feedback controller that place the poles of the closed-loop dynamics at 0.01
and 0.1 ± 0.1 j

7.8. Problems 339

(d) design simultaneously the controller and the observer that give the same
poles for the closed-loop dynamics.

(e) write a Matlab program that simulate the step response of this system and
plot the states.

5. Let us consider the following dynamics system:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

with:

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−6 −3 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
2 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =

[
1 0 1
1 0.1 1

]

(a) check the controllability and the observability of this system
(b) establish the controllable and the observable canonical forms
(c) assume that we have complete access to the state vector, design a state

feedback controller that place the poles of the closed-loop dynamics at 0.01
and 0.1 ± 0.1 j

(d) design simultaneously the controller and the observer that give the same
poles for the closed-loop dynamics.

(e) write a Matlab program that simulate the step response of this system and
plot the states.

(f) choose the appropriate matrices Q and R that we can use to solve the LQR
regulator problem and study the effect of each matrix on the performances.

(g) for a given choice of couple matrices Q and R, determine the time response
of the corresponding gain when the initial conditions are not equal to zero.

Part V

Implementation

8
Design and Implementation of
Mechatronic System

After reading this chapter the reader will:

1. master the design and real time implementation of mechatronic
systems

2. be able to perform the different phases of the design of mechatronic
system

3. be able to solve the control problem and establish the control law that
we have to implement in real time

4. be able to write programs in C language using the interrupt concept for
real time implementation

8.1 Introduction

In the last chapters we developed theoretical concepts and it is now time to pass
to action and show how these concepts apply for real systems and how we can
implement them in real time. This chapter deals with the design and the real-time
implementation of algorithms for mechatronic systems. The design process consists

344 8. Design and Implementation of Mechatronic System

of creating the physical mechatronic system and once this system is designed the
next step consists of implementing the intelligence we want to give the system. The
two phases are not independent and care should be paid during the execution of
these two phases. In either the design or the implementation, specifications must be
stated first and the request task is done in order to satisfy these restrictions.

The design consists in some sense of creating the mechatronic system with all
its components, mechanical part, sensors, actuators, electronic circuit, etc. The me-
chanical part can either be manufactured in house or assembled from existing parts
in the marketplace, meanwhile the other components, actuators, sensors, electronic
parts are selected with precaution and assembled in an electronic circuit that will be
the brain of the mechatronic system once the control algorithm is implemented.

The implementation consists of building a real-time control system which re-
quires itself two stages that are the controller design and its digital implementation.
At controller design stage, some specifications are firstly formulated and a controller
that can satisfy these performances is designed. The controller can be designed
using one of the methods developed earlier. At the implementation phase, the re-
current equation of the controller is implemented in real-time. Care should be paid
during the implementation to minimize computation errors and delays that may
cause instability of the whole system. The implementation is mainly based on in-
terrupts and uses information from the used sensors to generate the actions that the
microcontroller should send to the different actuators.

In the rest of this chapter we will cover these concepts and give an idea to the
reader on how these concepts work in practice. In Section 2, the design phase is de-
veloped and some design techniques are presented. Section 3 covers the electronic
design. In Section 4, the software design and real-time implementation are tack-
led. Section 5 treats the design and implementation based on the transfer function
while the Section 6 covers the one based on state space representation. Numerical
examples are used in all the chapter to give an idea to the reader.

8.2 Design Phase

As we said earlier the design is the philosophy by which the mechatronic system
is created. This phase starts in general from a vague idea that can be improved to
produce the desired system. The design can start by a desire to build a system that
can perform a task. In general, the design phase is done by a group of persons that
own some experience in the field. The success of the project requires that the group
of persons follows a certain number of steps to attain the goal. Most of the steps that
are mostly used are:

• define the project and its planning

• identify customers and their needs

8.2. Design Phase 345

• evaluate existing similar products if there exist

• generate the engineering specifications and target values

• perform conceptual design

• perform concept evaluations

• develop product/prototype

• evaluate product for performance and cost

For more details on these steps we recommend the reader to consult specialized
references on the subject.

More specifically the design phase itself is divided in the following steps:

• understanding of the design problem

• decomposition of the design problem

• generation of solutions

• analysis of the chosen solutions

• practicability of the solutions

The brainstorming technique is a crucial step in the success of the project and it is
consists of an unstructured way of generating ideas by the chosen group of persons
working in the group and those invited for this purpose. These persons are selected
for their knowledge and creativity to seek solution to design problems. During the
brainstorming session, a leader to direct the discussion and a secretary to collect the
generated ideas are nominated. Before the brainstorming session starts, the leader
may want to brief the members of the group on what they are brainstorming about.
He has also to remind them of the goal of the project, factors that affect the project,
resources available, and constraints they face, etc. During all the brainstorming ses-
sion, the members of the group are encouraged to generate solutions and all the
ideas are accepted. It is important that during the brainstorming step, the problem is
identified and the goals and the objectives of the problem are characterized. Then,
the leader has to encourage everyone in the group to participate actively in generat-
ing ideas, and to keep the ideas flowing as long as possible by restating the problem
and pushing the members to be more active. Sometimes, by going through the col-
lected ideas and reviewing them can help to generate new ones. After suspension
of the session, the leader invites the members of the group to rank the generated
ideas using some acceptability criteria. The members are also invited to select the
top ideas for further analysis and to prepare a final report that should contain more
details such as diagrams, tables, charts, etc.

In the design phase, we should also concentrate on the design of the electronic
circuit of the system we would like to build. Once this is done, we pass to the
design of the algorithms we would like to implement in the system. This phase
as we said earlier is done in two steps. The first one fixes the performances we
would like to give the system and then we try to design the controller that can assure

346 8. Design and Implementation of Mechatronic System

such requirements. Once this is done and tested by simulation for performances
and efficiency, the second phase starts and it consists of implementing the designed
algorithms to work in real-time. More often interrupts are used for this purpose and
code optimization is done to satisfy the requirements of real time implementation.

As an example of idea for mechatronic systems, we mention the one that gave the
Segway. This system beside the challenges that pose for researchers in mechatronic
laboratories, can be used as a transportation system in places like airports or down-
towns where cars can not be used. If we take this example and show how the design
steps apply for this system. The main goal for this system is to transport human
being in a given environment. As constraints, the weight of the system and its au-
tonomy are of great importance. Also, the weight of the transported person is also of
great importance and should be taken during the design phase. Vaguely, the design
problem can be formulated as we desire to design a machine with two wheels that
can transport human being safely indoor and outdoor. The idea of this mechatronic
system is the same as the one of the two wheels robot developed earlier. The design
of such machine should be ergonomic with an attractive shape and minimum cost to
increase the competition. It is also important that during the design phase to think
about the environment and solve the recycling problem of the different components
of the Segway.

The whole vehicle can be divided into the following components:

• mechanical part

• choice of the sensors

• choice of the actuators

• electronic circuit

• batteries selection

The mechanical part comprises of:

• the platform on which the person to be transported should stand,

• the two wheels that are solidly attached to the platform

• the handlebar which is used to help the rider to turn either left or right

These parts are designed in the same manner as for the two wheels robot ex-
cept in this case, we are transporting human beings and more care should paid for
security and we should eliminate all the causes of injuries that may result from
malfunctioning of any part of this system.

Once the mechanical part is designed, intelligence must be implemented to make
the system works as it is desired. The principle of how the Segway works is in some
sense based of the human being balancing. To have an idea on this, imagine that
a person stands up and leans forward or backward far from the vertical position,
as a consequence, he will be out of balance, and probably he will not fall on his
face or his back since the brain of this person knows that he is out of balance based
on a complicated mechanism that human beings have built since his young age,

8.2. Design Phase 347

therefore, his brain will order him to put his leg forward or backward to stop the fall.
If the person keeps leaning forward for instance, his brain will keep putting his legs
forward to keep him upright. Instead of falling, he walks forward, one step at a time.
From this we can see that the Segway works following the same principle as human
being, except it has wheels instead of two legs, a set of actuators instead of muscles,
a collection of microcontrollers instead of a brain and a set of sophisticated tilt
sensors (accelerometers, gyroscopes, etc.) instead of an inner-ear balancing system.
If you are taking a ride on this machine, like the human brain, the Segway knows
when you are leaning forward by measuring the angle you are making with respect
to the vertical axis and to maintain you in balance, it turns the wheels at the just time
with the right speed, so you move forward.

The brain of the Segway is the electronic circuit that is built around one or many
microcontrollers that run the intelligence we implement for this system. Based on
information from the different sensors, controls are computed and transmitted to
the different actuators at the just moments to take the necessary actions. To work
properly, the Segway must be equipped with batteries that give the required energy.
These batteries must provide more autonomy and be included in the design to make
the shape of the whole system attractive and safe. Fig. 8.1 gives an idea on the
electronic circuit of the mobile robot.

C1,C2,C3

C4,C5 are
equal to
0.1μF

C6,C7 are
equal to

100μF/16V

Battery
voltage

regulator

ds
P

IC
30

F
40

11

D
C

M
ot

or

D
C

M
ot

or

Se
ns

or

Se
ns

or

L
2

9
3

D

C6 C5

C7

C3

C4 C2

C1

Fig. 8.1 Two wheels robot

348 8. Design and Implementation of Mechatronic System

8.3 Electronic Design

The electronic design consists in some sense to built the electronic circuit around
the dsPIC30F4011. The electronic components like resistors, capacitors and inte-
grated circuits must be appropriately chosen to guarantee a good precision in the
real-time implementation. Protection should be implemented to protect either the
electronic components and the users. When the voltage can harm the users, security
rules have to be followed rigorously. Since most of the mechatronic systems com-
bine analog and digital signals and the conversion from one type to another. In case
of converting analog signal to digital one, a analog-digital converter (ADC) is used
and for precision purpose, a 10 bits one can be used, but if the budget of the project
allows that, a 16 bits can be used instead. From digital to analog, we will use in gen-
eral PWM otherwise the digital-analog converter (DAC) can be used. To guarantee
the functioning of the whole system energy is needed and most of the case since
the mechatronic systems are designed to be autonomous, batteries are used for this
purpose

The dc motor kit or the two wheels robot are examples that we will cover in more
detail later in this book and where all these concepts are treated.

8.4 Software Design and Real-Time Implementation

The software design consists of building the intelligence we should give to our
mechatronic system. It is this part that will constitute the brain of the system.
Here we will develop the code that makes the dsPIC30F4011 interacts with all the
electronic components and makes the system executes the task for which it was de-
signed. This part in our case is written in C and uses mainly the interrupts that the
dsPIC30F4011 offers. It also uses PWM to deliver the appropriate voltage to the
different actuators used in the examples we are treating in this volume.

To make this volume self contained and before giving the structure we will use
in this volume, let us present the dsPIC30F4011 and give some examples of how to
use the PWM and the interrupts and how to program such functions.

8.4.1 dsPIC30F4011

The dsPIC30F4011 is a 16 bits microcontroller produced by Microchip. It is a dsPIC
digital signal controller and it is capable of performing very fast mathematical op-
erations. Referring to its datasheet we can notice the following features that our
microcontroller has:

8.4. Software Design and Real-Time Implementation 349

• a processing speed that can reach a maximum of 30 MIPS (which means that
the internal clock runs at 120 MHz)

• a modified Harvard architecture that requires four clock ticks to increment the
Instruction pointer (IP) like almost all the microcontrollers of Microchip

• 48 Kbytes Flash Memory

• 1 Kbytes EEPROM

• a 2048 bytes SRAM

• an internal oscillator of 7.37 MHz, 512 KHz

• a supply voltage that ranges from 2.5 V up to 5 V (need to be regulated voltage)

• nine pins are connected to the 10 bits analog to digital converter (ADC) module,
working at 500 Ksps (Kilo samples per second)

• one quadrature encoder interface (QEI)

• an instructions register (IR) with 24 bits, where 16 bits are used for the data,
and 8 bits for commands

• thirty interrupt sources

• thirty I/O (General Input/Output) pins capable of sourcing or sinking up to 25
mA each

• five 16 bits timers (5 × 16 bits) that may be paired into 32 bits timers (2 × 32
bits) if it is necessary

• two UART (Universal Asynchronous Receiver Transmitter) that can be used
for for communications, one SPI (Serial to Peripheral Interface), one I2C (Inter
Integrated Circuit), and one CAN (Controller Area Network).

• 4 standard PWM and six motor control PWM (Pulse Width Modulation)
channels

The dsPIC30F4011 controller we will use in this volume is a 40 pins PDIP. It
comes also in other forms but we will not use these forms. For more details on the
other forms, we refer the reader to the datasheet of this dsPIC that can be found
in the webpage of Microchip (www.mircichip.com). It is also important to mention
that using the dsPIC30F4011 at high frequency may produce heat and can cause its
damage. Fig. 8.2 gives an idea of the pins description.

In general the following structure is used when programming the dsPIC30F4011:

//

// Put here title and comments

//

#include "p30F4011.h" // proc specific header

350 8. Design and Implementation of Mechatronic System

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40MCLR

EMUD3/AN0/VREF+/CN2/RB0

EMUC3/AN1/VREF-/CN3/RB1

AN2/SS1/CN4/RB2

AN3/INDX/CN5/RB3

AN4/QEA/IC7/CN6/RB4

AN5/QEB/IC8/CN7/RB5

AN6/OCFA/RB6

AN7/RB7

AN8/RB8

VDD

VSS

OSC1/CLKIN

OSC2/CLKo/RC15

EMUD1/SOSCI/T2CK/U1ATX/CN1/RC13

EMUC1/SOSC0/T1CK/U1ARX/CN0/RC14

FLA/INT0/RF8

EMUD2/OC2/IC2/INT2/RD1

OC4/RD3

VSS VDD

OC3/RD2

EMUC2/OC1/IC1/INT1/RD0

SCK1/RF6

PGD/EMUD/U1TX/SD01/SCL/RF3

PGC/EMUC/U1RX/SDI1/SDA/RF2

U2TX/CN18/RF5

U2RX/CN17/RF4

C1TX/RF1

C1RX/RF0

VSS

VDD

PWM3H/RE5

PWM3L/RE4

PWM2H/RE3

PWM2L/RE2

PWM1H/RE1

PWM1L/RE0

AVSS

AVDD

Fig. 8.2 dsPIC30F4011 pins description

//

// Define gobal variables in RAM

//

float Reference; // simple variable

int variable0; // (16 bits)

char myVariable; // (8 bits)

#define n1 10 /* sample constant definition */

#define n2 20;

int array1[n1] __attribute__((__space__(xmemory), __aligned__(32)));

// array with dsPIC30F attributes

int array5[n2]; // simple array

int variable3 __attribute__((__space__(xmemory)));

// variable with attributes

int array1[n1] __attribute__((__space__(xmemory), __aligned__(32)));

// array with dsPIC30F attributes

int array5[n2]; // simple array

int variable4 __attribute__((__space__(xmemory)));

// variable with attributes

8.4. Software Design and Real-Time Implementation 351

//

// Define a struct

//

typedef struct {

// PID Gains

float KP; // Propotional gain

float KI; // Integral gain

float KD; // Derivative gain

//

// PID Constants

//

float Const1_pid; // KP + T KI + KD/T

float Const2_pid; // KP + 2KD/T

float Const3_pid; // Kd/T

float Const4_pid; // KP + KD/T

float Const5_pid; // T KI

//

// System variables

//

float y_c; // y_c[k] -> controlled output

float y_m; // y_m[k] -> measured output

float u_k; // u[k] -> control at time k

float e_k; // e[k] -> error at time k

//

// System past variables

//

float u_km1; // u[k-1] -> output at time k-1

float e_km1; // e[k-1] -> error at time k-1

float e_km2; // e[k-2] -> error at time k-2

float y_mkm1; // y_m[k-1] -> measured output at time k-1

float y_mkm2; // y_m[k-2] -> measured output at time k-2

}PIDStruct;

PIDStruct thePID;

//

// Constants in ROM

//

const char Variable_Rom[] = {1,2,3,4};

const int myConstant = 100;

//

// Non memorized constants

//

#define var1 0x1234;

352 8. Design and Implementation of Mechatronic System

#define var2 "ma chaine";

//

// Functions

//

float my_Function(float a, float b)

{

int local_var;

local_var = a - b;

return local_var;

}

//

// Interrupt program here using Timer 1 (overflow of counter Timer 1)

//

void __ISR _T1Interrupt(void) // interrupt routine code

{

// Interrupt Service Routine code goes here

float Position_error;

// get the actual position from the encoder

// ThePID.y_m

Position_error = my_Function(Reference, ThePID.y_m);

.......

IFS0bits.T1IF=0; // Disable the interrupt

}

int main (void) // start of main application code

{

// Application code goes here

int i;

// Initialize the variables Reference and ThePID.y_m

(it can be read from inputs) Reference = 0x8000; // Hexadecimal number

(0b... Binary number) ThePID = 0x8000;

// Initialize the registers

TRISC=0x9fff; // RC13 and RC14 (pins 15 and 16) are configured as outputs

IEC0bits.T1IE=1; // Enable the interrupt on Timer 1

// Infinite loop

while (1)

{

}

8.4. Software Design and Real-Time Implementation 353

return 0

}

This structure is a starting point and we will improve it in the coming pages to
make it a good program that can serve as example for future development. Since the
PWM technique and interrupts are mostly used in the real-time implementation, let
us now present these two concepts to make the reader familiar with them.

8.4.2 Pusle Width Modulation

The pulse width modulation (PWM) is a modulation technique that generates
variable-width pulses to represent the amplitude of an analog input signal. It is also
seen as a method that uses width to encode or modulate an analog signal. In PWM
technique, by switching the delivered voltage to the actuator for instance with the
appropriate duty cycle (the fraction between the time when the input is on and the
period of the signal), the output will approximate a voltage at the desired level we
would like to deliver to this actuator. It is important to keep in mind that maximum
voltage of the delivered voltage is always the same and we only act on the duration
when the voltage is at its maximum. Mathematically, if we consider an analog sig-
nal, e(t) that varies between two bounds, ē and e, as shown in Fig. 8.3, the average
value of this input is given by:

v =
1
T

∫ T

0
e(t)dt

ē

e

Fig. 8.3 Example of PWM signal

Since the input signal, e(t), is a square signal that takes the following values:

e(t) =

⎧⎪⎪⎨⎪⎪⎩
ē 0 ≤ t ≤ T1

e T1 ≤ t ≤ T

354 8. Design and Implementation of Mechatronic System

we have:

v =
1
T

[∫ T1

0
e(t)dt +

∫ T

T1

e(t)dt

]

=
1
T

[
ēT1 + e(T − T1)

]

Now if we define, the ratio between the time during which the signal is at its
maximum value and the one when the signal is at its minimum as the duty cycle and
we denote it by dutyCycle and noting that:

T = T1 + T2

with T2 − T1 is the interval of time when the signal is equal to e, we have:

dutyCycle =
T1

T

The average value of the signal becomes then:

v =
1
T

[
ē dutyCycleT + e (T − dutyCycleT)

]

= ē dutyCycle + e (1 − dutyCycle)

As an example, let e = 0, ē = V and the analog signal is 75% of the period is on
and the rest of time is off. If the amplitude of the analog signal is V, mathematically
we have:

u =
∫ T

0
e(t)dt =

∫ T1

0
e(t)dt +

∫ T2

T1

e(t)dt + (T − T1)V

Since T2 − T1 = 0.75T where T is the period of the analog signal, we have:

u = 0.75V

Based on this discussion, we conclude that wider pulses will give higher average
voltage. Therefore, the maximum voltage is obtained when the duty cycle is 100%
and the zero voltage is obtained when the duty cycle is 0 %. It is also important
to notice that the choice of the period (frequency) of the square signal is very im-
portant. In fact, in case of dc motor control, a choice of a very low frequency will
make the motor jerks, however the choice of a too high frequency can reduce the
efficiency.

The PWM value that we can send to the chosen device is computed as follows:

PWM = dutyCycleV

where V is the maximum voltage of the square signal with a period T .
Controlling the voltage to send to the dc motor is brought to the control of the

dutyCycle for a given period, T , of the square signal.
The PWM technique can be used to digitally create:

• analog output voltage level for control functions and power supplies;

• analog signals for arbitrary waveforms, music, speech and sounds

8.4. Software Design and Real-Time Implementation 355

In this book we will mainly use this technique to deliver the required voltage to
drive the desired actuator through the L293D.

To see how the PWM is implemented in real-time applications, let us consider
the position control of a dc motor.

#include "p30f4011.h"

#include "pwm.h"

#define ENABLETRIS TRISEbits.TRISE2

#define ENABLE LATEbits.LATE2

#define ENCODER_PRIORITY 7

#define CONTROLLER_PRIORITY 5

#define DISPLAY_PRIORITY 2

//Discrete-time PID:

typedef struct {

// PID Gains

float KP; // Propotional gain

float KI; // Integral gain

float KD; // Derivative gain

//

// PID Constants

//

float Const1_pid; // KP + T KI + KD/T

float Const2_pid; // KP + 2KD/T

float Const3_pid; // Kd/T

float Const4_pid; // KP + KD/T

float Const5_pid; // T KI

//

// System variables

//

float y_c; // y_c[k] -> y commanded

float y_m; // y_m[k] -> y measured

float u_k; // u[k] -> output at time k

float e_k; // e[k] -> error at time k

//

// System past variables

//

float u_km1; // u[k-1] -> output at time k-1

float e_km1; // e[k-1] -> error at time k-1

float e_km2; // e[k-2] -> error at time k-2

float y_mkm1; // y_m[k-1] -> y measured at time k-1

float y_mkm2; // y_m[k-2] -> y measured at time k-2

356 8. Design and Implementation of Mechatronic System

}PIDStruct;

PIDStruct thePID;

#define Ka 70

#define Kb -129

#define Kc 59

#define Ts 0.005; // 1.0/200;

#define Fs 200.0;

//

// dsPIC4011configuration

//

_FOSC(CSW_FSCM_OFF & FRC_PLL16);// Primary oscillator = Fast RC @ PLLx16

_FWDT(WDT_OFF); // Watch dog off

_FBORPOR(PBOR_OFF & MCLR_DIS); // Enable MCLR reset pin and tun off

the power-up timers

_FGS(CODE_PROT_OFF); // Disable code protection

_FICD(ICS_NONE); //

//

// Global variables

//

typedef enum _BOOL { FALSE = 0, TRUE } BOOL;

BOOL A;

BOOL B;

BOOL prevA;

BOOL prevB;

//

// PID variables

//

long Pos;

long e[3];

long ref;

double u[2];

unsigned int dutyCycle;

//

// Functions

//

void InitFunction(void); // InitFunction

8.4. Software Design and Real-Time Implementation 357

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void);

// Interrupt function

void __attribute__((__interrupt__)) _T1Interrupt(void);

// Interrupt function

//

// Main function

//

int main(void)

{

init();

ref = 600; // (90 deg) since we have 2400 pusles/revolution

while(1)

{

}

return 0

}

//

// CN interrupt to get the position of the dc motor

//

void __attribute__((interrupt, auto_psv)) _CNInterrupt(void)

{

if(IFS0bits.CNIF)

{

CNLED = !CNLED;

// Get current Encoder signals

// Must read port before clearing flag!!

A = PORTBbits.RB2;

B = PORTBbits.RB3;

// Compare current signals with previous signals to see which

channel changed

// Change on A

if(A != prevA){

if(A == B){

Pos++;

}else{

Pos--;

}

// Change on B

}else if(B != prevB){

if(A == B){

Pos--;

358 8. Design and Implementation of Mechatronic System

}else{

Pos++;

}

}

// Save current signals for next time

prevA = A;

prevB = B;

IFS0bits.CNIF=0;

}

}//end of CN_interrupt function

//

// Interrupt function that goes with Timer 1 (to fix the sampling

period)

//

void __attribute__((__interrupt__)) _T1Interrupt(void)

{

if (IFS0bits.T1IF)

{

//

// Compute the error

//

e[0] = ref - Pos;

//

// Compute the control action

//

u[0] = u[1] + Ka*e[0] + Kb*e[1] + Kc*e[2];

//

// Send the control action

//

SetDCMCPWM(1, 1024 + (int)(u[0]), 0);

//

// Keep the actual error and control action for next compuation

//

u[1] = u[0];

e[2] = e[1];

e[1] = e[0];

IFS0bits.T1IF = 0; // Clear timer interrupt flag

}

}

8.4. Software Design and Real-Time Implementation 359

//

// InitFunction

//

void InitFunction(void)

{

//

// Initilize variables

//

u[0] = 0.0;

u[1] = 0.0;

e[0] = 0;

e[1] = 0;

e[2] = 0;

//

// Activate the interrupt priorities

//

INTCON1bits.NSTDIS = 0;

//

// Initialize the AD

//

ADPCFG = 0b11111111;

//

// Configure the I/O

//

TRISEbits.TRISE0 = 0; // PWM1H

TRISEbits.TRISE1 = 0; // PWM1L

TRISBbits.TRISB2 = 1; // Channel A of the eoncoder: RB2 (pin 2)

TRISBbits.TRISB3 = 1; // Channel B of the encoder: RB3 (pin 5)

ENABLETRIS = 0;

//

// initialize the encoder variables

//

prevA = PORTBbits.RB2;

prevB = PORTBbits.RB3;

//

// CN interrupt

//

CNEN1bits.CN0IE=0; // CN0 interrupt disable

CNEN1bits.CN1IE=0; // CN1 interrupt disable

CNEN1bits.CN2IE=0; // CN2 interrupt ENABLE

CNEN1bits.CN3IE=0; // CN3 interrupt ENABLE

CNEN1bits.CN4IE=1; // CN4 interrupt disable

CNEN1bits.CN5IE=1; // CN5 interrupt disable

CNEN1bits.CN6IE=0; // CN6 interrupt disable

360 8. Design and Implementation of Mechatronic System

CNEN1bits.CN7IE=0; // CN7 interrupt disable

CNEN2bits.CN17IE=0; // CN17 interrupt disable

CNEN2bits.CN18IE=0; // CN18 interrupt disable

IFS0bits.CNIF = 0; // clear CN interrupt flag

IPC3bits.CNIP = ENCODER_PRIORITY; // CN interrupt max priority (7)

IEC0bits.CNIE = 1; // CN interrupt enable

//

// Configure PWM

//

ConfigIntMCPWM(PWM_INT_DIS & PWM_FLTA_DIS_INT);

SetDCMCPWM(1, 1024, 0);

OpenMCPWM (0x3FF, 0x0, PWM_EN

& PWM_IDLE_CON & PWM_OP_SCALE1 & PWM_IPCLK_SCALE1 & PWM_MOD_FREE,

PWM_MOD1_COMP & PWM_PDIS3H & PWM_PDIS2H & PWM_PEN1H & PWM_PDIS3L

& PWM_PDIS2L & PWM_PEN1L, PWM_SEVOPS1 & PWM_OSYNC_TCY & PWM_UEN);

//

// Timer 1 interrupt

//

T1CONbits.TON=1; // turn timer 1 on

T1CONbits.TGATE=0;

T1CONbits.TSIDL=0; // stop timer in idle mode (0=non)

T1CONbits.TCKPS=1; // prescaler (0=1:1, 1=1:8, 2=1:64

T1CONbits.TCS=0; // clock source (0=FOSC/4)

PR1 = 18424; // 200Hz

IFS0bits.T1IF = 0; // clear timer 1 interrupt flag

IPC0bits.T1IP = CONTROLLER_PRIORITY;

IEC0bits.T1IE=1; // enable timer 1 interrupt

}

When the voltage to send to a device varies between ū and −ū, which corresponds
to:

u(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ū DutyCycle = 100 %

0 DutyCycle = 50 %

−ū DutyCycle = 0 %

The evolution of the voltage is given by:

DutyCycle = 50 + 50
u(t)
ū

The following function can be used to initiate the dsPIC PWM function as an
example.

8.4. Software Design and Real-Time Implementation 361

void init_PWM (void){

Val_reg = 1023; // PWM signal frequency : 30000 Hz

PTCONbits.PTEN = 1; // Activation of the time base

PTCONbits.PTSIDL = 1; // Configuration in Idle Mode

PTCONbits.PTCKPS = 0; // Prescaler equal to 1

PTCONbits.PTMOD = 0; // Slection of the free running mode

PTMRbits.PTDIR = 0; // Increment of the time base

PTMRbits.PTMR = Val_reg; // Valeur du Registre du Time base

PTPER = Val_reg; // Valeur de la priode du signal

PWMCON1bits.PMOD1 = 0; // Slection du mode PWM complmentaire

PWMCON1bits.PEN1H = 1; // Activation des pins en mode PWM

PWMCON1bits.PEN1L = 1; // Activation des pins en mode PWM

DTCON1bits.DTAPS = 0; // Time base unit is 1TCY

DTCON1bits.DTA = 0; // Valeur du DT pour l’unit A

PDC1 = 0; // Mise zro du registre pour la largeur dimpulsion

}

8.4.3 Interrupts

Interrupts play an important role in real-time control, it is why we reserve a whole
section to this concept in order to make it easy for the reader to follow our imple-
mentations. If we look to the dictionary for the word “interrupt”, we found that this
means “stop the continuous progress of an activity. From our perspective, a interrupt
can be defined as a signal emanating from a device that stops immediately the run-
ning program and forces the execution of another one, i.e: the one of the interrupt.
This is done without waiting for the running program to finish. Once the interrupt
service routine (ISR) finishes, the program execution returns to the halted program
and continues exactly from where it was interrupted when the interrupt occurs.

Using hardware interrupts has some advantages among them we quote that:

• the processor is used properly

• the processor can use a wake-from-sleep interrupt which allows the processor
when the interrupt is active to go into a lower mode to save energy

It is recommended to keep the interrupt function small compared to the process-
ing time of the other functions in the program of the application you are working
on.

The following listing gives a templates for an interrupt:

#include "p30F4011.h" /* proc specific header */

#define CONSTANT1 10 /* sample constant definition */

int array1[CONSTANT1] __attribute__((__space__(xmemory), __aligned__(32)));

/* array with dsPIC30F attributes */

int array5[CONSTANT2]; /* simple array */

int variable1 __attribute__((__space__(xmemory)));

/* variable with attributes */

362 8. Design and Implementation of Mechatronic System

int variable3; /* simple variable */

int main (void) /* start of main application code */

{

/* Application code goes here */

}

void __attribute__((__interrupt__(__save__(variable1,variable2)))) _INT0Interrupt(void)

/* interrupt routine code */

{

/* Interrupt Service Routine code goes here */

}

The structure of the code should be as follows:

#include "p30F4011.h" // proc specific header

#include " myData.c" // here goes all the declaration of global variables

#include "InitFunction.c" // here goes all the initialization function

#include "timers.c" // here goes the code for the used timers

#include "usefulFunction.c" // here goes other useful functions

#include "interrupts.c" // here goes the codes for all the interrupts of the system

int main (void) // start of main application code

{

// call to the different functions

myData();

InitFunctions();

while(1);

}

The function main starts by initializing the global variables we us use in the
program. It also initialize the timers for interrupts.

The structure of the implementation includes:

• the files headers. It always starts with the inclusion of ”p30F4011.h”

• the file myData.c that contains all the declaration of the useful variables that we
need in the program

• the file InitFunction.c that allows the initialization of the dsPIC30F4011 and its
inputs/outputs. In this stage it is important to introduce a certain delay to allow
that the voltage of the dsPIC30F4011 is stabilized to avoid surprises

• the file usefulFunction.c that gives the other function that we may use like
functions for LCD etc.

• the file interrupts.c that give the body of the used interrupts and link to the
timers. The body of the interrupts should simple and short.

8.4. Software Design and Real-Time Implementation 363

• finally, we have the main.c function that calls all the previous functions in logi-
cal ways. After the declaration phase and the initialization process, we enter in
an infinite loop that only the interrupts can halt to execute the desired tasks.

As a simple exmaple to this structure let us consider the the control of the speed
of a mechanical part that is driven by a dc motor via gearbox with the characteristics
are we presented earlier. For this purpose we connect the motor as follows:

• the pin 1 of the L293D is connected to Enable

• the pins 2 and 7 of the L293D are connected respectively to the pins A and B of
the dsPIC30F4011

• the pin 3 of the L293D is connected to the positive connector of the dc motor

• the pin 6 of the L293D is connected to the negative connector of the dc motor

• the pins 4, 5, 12 and 13 of the L293D are connected to the ground

• the pins 8 and 16 of the L293D are connected respectively to 12V and 5V

The following convention is used:

Table 8.1 Convention for dc motor movement

A B Description

0 0 the dc motor is sptopped
0 1 the dc motor turns anticlockwise
1 0 the dc motor turns clockwise
1 1 the dc motor is stopped

#include "p30F4011.h"

// myData.c

#define IntMax 65535 // maximum unsigned integer limit

#define L293D_A P2_0 // Positive of motor

#define L293D_B P2_1 // Negative of motor

#define L293D_E P2_2 // Enable of L293D

#define nop2() {nop();nop();} // define a macro function

unsigned int i; // local variable

#define myDelay() {for(i=0;i<IntMax;i++) nop2();} // first delay macro

// usefulFunctions.c

364 8. Design and Implementation of Mechatronic System

void rotateAntiClockwise(void); // turn AntiClockwise

void rotateClockwise(void); // turn Clockwise

void break(void); // Stop the dc motor

void main() // main function

{

while(1)

{

rotateAntiClockwise(); // turn the dc motor AntiClockwise

delay(); // introduce a delay

break(); // break the dc motor

MyDelay(); //Some delay

// change the direction of rotation of the dc motor

rotateClockwise(); // turn the dc motor Clockwise

delay(); // introduc a delay

break(); // break the dc motor

MyDelay(); //Some delay

}

}

void rotateAntiClockwise()

{

L293D_A = 1; //Make positive of motor 1

L293D_B = 0; //Make negative of motor 0

L293D_E = 1; //Enable L293D

}

void rotateClockwise()

{

L293D_A = 0; //Make positive of motor 0

L293D_B = 1; //Make negative of motor 1

L293D_E = 1; //Enable L293D

}

void break()

{

L293D_A = 0; //Make positive of motor 0

L293D_B = 0; //Make negative of motor 0

L293D_E = 0; //Disable L293D

}

8.5. Design and Implementation Based of Transfer Function 365

8.5 Design and Implementation Based of Transfer
Function

This section covers the software design and its implementation in real-time using
the transfer function model. For this purpose, we assume that the mechanical and
the electronic designs are already done and the model of the whole mechatronic
system is known. As it was said earlier, PID controller or equivalent controller can
be used to reach the specifications of the control design. We have already presented
techniques that can be used to compute the controller parameters. Depending on
the method we use, the result is always the same and it consists of establishing the
recurrent equation for the control law that has to be implemented in real-time. More
specifically, if we denote the transfer function of the system by G(z) and the one
of the controller by C(z). The block diagram in Fig. 8.4 gives the structure of the
closed-loop of the system.

R(z) Y(z)C(z) G(z)

Fig. 8.4 Block diagram of the closed-loop

The transfer function of the controller, C(z) is given by:

C(z) =
U(z)
E(z)

where E(z) is the error and U(z) is the control action that we have to send to the
system.

The determination of the the transfer function C(z) is in general done into two
steps. The first one determines the structure of the controller that can be chosen
from the following list:

• proportional controller (P)

• proportional and integral controller (PI)

• proportional and derivative controller (PD)

• proportional, integral and derivative controller (PID)

• phase lead controller

• phase lag controller

• phase lead-lag controller

Once the structure is fixed in the first step, the second one consists of determining
the controller parameters. For instance, if the specifications require a PID controller,
we need to compute the three gains:

366 8. Design and Implementation of Mechatronic System

• KP (proportional gain)

• KI (integral gain)

• KD (derivative gain)

Remark 8.5.1 When the output signal, y(t), is noisy the derivative action has to
be avoided unless an appropriate filter is implemented to make the feedback signal
more smooth.

The implementation in real-time of the PID controller requires a discretization of
the following equation of the PID:

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ + KDė(t)

where e(t) is the error of the system at time t.
Based of what it was presented earlier many possibilities can be used to get

the discrete-time version of the PID controller. The following ones are some
possibilities:

• if we approximate the integral and the derivative by:

∫ t

0
e(τ)dτ) = T

k∑
i=0

e(i)

ė(t) =
e(k) − e(k − 1)

T

we get:

u(k) = KPe(k) + T KI

k∑
i=0

e(i) +
KD

T
(e(k) − e(k − 1))

Now if we replace k by k − 1, we get:

u(k − 1) = KPe(k − 1) + T KI

k−1∑
i=0

e(i) +
KD

T
(e(k − 1) − e(k − 2))

Subtracting this equation from the previous one gives:

u(k) = u(k − 1) +
(
KP + T KI +

KD

T

)
e(k) −

(
KP + 2

KD

T

)
e(k − 1) +

KD

T
e(k − 2)

• using backward method

C(z) =
U(z)
E(z)

= KP + KI
Tz

z − 1
+ KD

z − 1
Tz

=

(
KP + T KI +

KD

T

)
z2 +

(
−KP − 2 KD

T

)
z +
(

KD

T

)

z2 − z

8.5. Design and Implementation Based of Transfer Function 367

Dividing the numerator and the denominator by z2 and going back to time,
we get:

u(k) = u(k − 1) +
(
KP + T KI +

KD

T

)
e(k) +

(
−KP − 2

KD

T

)
e(k − 1) +

(KD

T

)
e(k − 2)

• using bilinear transformation (trapezoidal method):

C(z) =
U(z)
E(z)

= KP + KI
T
2

z + 1
z − 1

+ KD
2
T

z − 1
z + 1

=

(
KP +

T KI
2 +

2KD
T

)
z2 +

(
T KI − 4KD

T

)
z +
(
−KP +

T KI
2 +

2KD
T

)

z2 − 1

Dividing the numerator and the denominator by z2 and going back to time, we
get:

u(k) = u(k − 2) +

(
KP +

T KI

2
+

2KD

T

)
e(k) +

(
T KI − 4KD

T

)
e(k − 1)

+

(
−KP +

T KI

2
+

2KD

T

)
e(k − 2)

When the structure and the gains of the controller are fixed using one of the
previous expression for the discrete-time PID to approximate the transfer function,
C(z), is adopted and the expression converted to a recurrent equation that we should
implement in real-time using the interrupts as it was said before.

Remark 8.5.2 It is important to mention that the PID is the controller that is used
in most of the actual industrial control systems that are in service around the world.
It is a famous controller that has attracted the interest of many control engineers.
We would like also to draw the attention of the reader on the presence of the integral
action that may cause windup and that we can prevent during the implementation
by using some well known anti-windup techniques.

Remark 8.5.3 As we said regarding the schema for the discretization of the con-
troller we can can use here also the trapezoidal schema for the integral action and
the backward schema for the derivative one. In this case we get:

u(k) = u(k − 1) + ae(k) + be(k − 1) + ce(k − 2)

with a = KP +
KD
Ts
+

KI Ts
2 , b = −KP − 2 KD

Ts
+

KI Ts
2 , c = KD

Ts
;

To give an idea on the design and implementation based on transfer function,
let us consider the position control of a mechanical load driven by a dc motor. As
specifications, we would like to guarantee the following:

• an error to a step input equal to zero

• an overshoot less or equal to 5 %

• a settling time at 5 % less or equal to 3s

368 8. Design and Implementation of Mechatronic System

Following what we presented earlier a proportional controller is enough to re-
spond to the performances. If we let the transfer function of the system and the
controller be given by:

G(s) =
Km

s (τms + 1)
C(s) = KP

where Km = 2 and τm = 0.5 s are known while KP is to be determined to satisfy the
performances.

The closed-loop transfer function is given by:

F(s) =
KPKm
τm

s2 + 1
τm

s + KP Km
τm

From the specifications, we have:

ζ = 0.707

ts =
3
ζωn
= 3 s

which gives:

ωn = 1.4144 rad/s

The corresponding poles of the desired closed-loop characteristic equation are
given by:

s1,2 = −ζωn ± jωn

√
ζ2 − 1

= −1 ± 1 j

The loci of the system is illustrated in Fig. 8.5. Using the fact we would like the
closed-loop transfer to own a ζ equal to 0.707, we get:

KP = 0.5

With this gain, if we simulate the closed-loop dynamics we get the behavior of
Fig. 8.6 which shows that the behavior is the one we would like to have.

For the implementation in real-time, we obtain different results. The cause of
this discrepancy comes from the neglected nonlinear dynamics in the systems. One
of these nonlinearities is the backlash in the used gears. To improve the closed-
loop behavior we use a proportional and derivative controller. If we let the transfer
function of the controller be given by:

C(s) = KP + KD s

the closed-loop transfer function is given by:

F(s) =
KmKD

τm

(
s + KP

KD

)

s2 +
(1+KmKD)

τm
s + KmKP

τm

8.5. Design and Implementation Based of Transfer Function 369

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5
0.160.340.50.640.76

0.86

0.94

0.985

0.160.340.50.640.76
0.86

0.94

0.985

0.511.52

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 8.5 Root locus of the dc motor with a proportional controller

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 8.6 Output of the load driven by a dc motor vs time with ’p’ controller

370 8. Design and Implementation of Mechatronic System

To determine the controller gains KP and KD we use the performances. By equat-
ing the desired characteristic equation and the one of the closed-loop dynamics some
precautions have to be taken since this process doesn’t take into consideration the
presence of the zero introduced by the controller. This zero should be placed in the
left of the dominant poles that will give the desired behavior.

As before two complex poles are used for the design of the controller. If we
equate the two characteristic equations we get:

2ζwn =
1 + KmKD

τm

w2
n =

KmKP

τm
.

In this case we have two unknown variables KP and KD and two algebraic
equations which determines uniquely the gains. Their expressions are given by:

KP =
τmw2

n

Km

KD =
2τmζwn

Km

Using now the desired performances, we conclude similarly as before that the
steady error to an input equal to step function of amplitude equal to 1 for instance
is equal to zero and the damping ratio ζ corresponding to an overshoot equal to %5
is equal to 0.707. The settling time, ts at % 5, that we may fix as a proportion of the
time constant of the system, gives:

wn =
3
ζts

.

Now if we fix the settling time at 3τ (which shorter than the one obtained by the
proportional controller), we get:

wn = 2.8289.

Using these values we get the following ones for the controller gains:

KP = 2.0006

KD = 1.0000.

which gives the following complex poles:

s1,2 = −2 ± 2 j.

and the zero at:

z = −20.8618.

Using this controller the time response for an input with an amplitude equal to 1
is represented in Fig. 8.7. As it can seen from this figure that the overshoot and the
settling time are less those obtained using the proportional controller.

8.6. Design and Implementation Based on State Space 371

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Step Response

Time (sec)

A
m

pl
itu

de

Fig. 8.7 Time response for a step function with 1 as amplitude

For the implementation of these two controllers, the recurrent equation is easy to
obtain. For the proportional controller, it is given by:

uk = KPek

where KP is the gain we computed and uk and ek represent respectively the control
to send and the error between the reference and the output at instant kT , (T is the
sampling period).

For the proportional and derivative controller, the trapezoidal method can be used
and we get:

uk = −uk−1 + aek + bek−1

where a = KP +
2KD

T and b = KP − 2KD

T .

8.6 Design and Implementation Based on State Space

This section covers the design and implementation using the state space model. In
this section we will assume that the mechanical part and the electronic circuit have
already been built and a mathematical model in the state space form is given. Our
goal is to focus on the design of the state feedback controller that guarantees the
specifications we were fixed for the control design. Referring to what it has been

372 8. Design and Implementation of Mechatronic System

developed earlier we can say that we have two approaches to design such controller.
These two methods are:

• the pole placement (or pole location) technique

• the linear quadratic regulator

These two techniques are not equivalent since the design of the state feedback
controller requires:

• for the pole placement techniques to convert the design control specifications to
poles and then get the gain controller

• for the linear quadratic control, two matrices, Q and R are first fixed to form
the cost function, then the controller gain is obtained by solving the Ricatti
equation.

In both cases, we end up with the controller gain, K and the structure of the
controller is the same for the two methods and it is given by:

u(k) = −Kx(k)

where x(k) is the state of the system that we assume to be measurable and u(k) is the
control action at period kT , with T is the sampling period.

It is important to mention that when the state vector is not measurable due to the
fact that we don’t have enough sensors to measure them, an estimator either full
or partial order can be built to compute an estimate for this state vector, x̂(k), and
that we can use for feedback instead of x(k). Based on the separation principle, the
controller and estimator can be done separately, the only restriction that we should
keep in mind is that the poles that will be used for the design of the estimator gain
must be faster than those used for the computation controller gain.

To illustrate the design and the implementation using the state space model, let
us again consider the position control a mechanical part driven by a dc motor and
consider the same specifications as in the previous section. Let also assume that all
the states are available for feedback.

The state space representation of this system is given by:

ẋ(t) =

[
0 1
0 − 1

τ

]
x(t) +

[
0
k
τ

]
u(t)

y(t) =
[

1 0
]

x(t)

where x(t) =

[
x1(t)
x2(t)

]
and u(t) is the voltage we should send to the dc motor, k = 2

and τ = 0.5 s are the gain and the constant time of the dc motor.
As specifications, let us consider the following ones:

1. the system is stable in closed-loop;

2. the overshoot is less or equal to 5%;

3. the settling time at 5% is less or equal to 1 s

8.6. Design and Implementation Based on State Space 373

0 0.5 1 1.5 2 2.5
0

0.05

0.1

0.15

0.2

0.25

Time in sec

P
os

iti
on

Fig. 8.8 Time response for a step function with 1 as amplitude

Let us assume that we have complete access to the states. From the data, it can
verified that the system is controllable and therefore, there exists a state feedback
controller. From the control specifications, we get the following poles:

s1 = −3.0000 + 3.0009 j

s2 = −3.0000 − 3.0009 j.

Using the pole placement technique, we get the following gain:

K =
[
4.5014 1.0000

]
.

With this controller, the simulation results for a reference equal to 1 is illustrated
in Fig. 8.8. From this figure, we can see that the steady error is not equal to zero and
therefore an integral action is needed

Let us now assume that we don’t have access to the states and try to design a
full order observer. Following what it was developed in the previous chapter and the
following Matlab program:

clear all

%data

tau=0.5

k=2

A = [0 1;0 -1/tau];

374 8. Design and Implementation of Mechatronic System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
output

O
ut

pu
t o

f t
he

 s
ys

te
m

Time in sec

Fig. 8.9 Behavior of the output for a non null initial conditions

B = [0 ; k/tau];

C = [1 0];

D = 0;

% controller design

K = acker(A,B,[-3+3*j -3-3*j]);

L = acker(A’,C’,[-12+3*j -12-3*j])’;

% Simualation data

Ts = 0.01; % step time

Tf = 2; % final time

x0 = [1 ; 1];

z0 = [1.1 ; 0.9];

%augmented system

Ah = [A -B*K;

L*C A-B*K-L*C];

Bh = zeros(size(Ah,1),1);

Ch = [C D*K];

Dh = zeros(size(Ch,1),1);

xh0 = [x0 ; z0];

t=0:Ts:Tf;

u = zeros(size(t));

8.6. Design and Implementation Based on State Space 375

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5
states of the system

Time in sec

S
ta

te
s

of
 th

e
sy

st
em

Fig. 8.10 Behavior of the system’s states

m = ss(Ah,Bh,Ch,Dh);

%simulation

[y,t,x] = lsim(m,u,t,xh0)

%plotting

figure;

plot(t,y);

title(’output’);

figure;

plot(t,x(:,1:size(A,1)));

title(’states of the system’);

figure;

plot(t,x(:,size(A,1)+1:end));

title(’states of the observer’);

we get the results of the Figs. 8.9-8.11 that show that the states of the observer
converge to those of the system and the output reaches zero.

376 8. Design and Implementation of Mechatronic System

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5
states of the observer

Time in sec

S
ta

te
s

of
 th

e
ob

se
rv

er

Fig. 8.11 Behavior of the observer’s states

8.7 Conclusions

This chapter presents the design of mechatronic systems. Some techniques of how
to built such systems are presented with a certain details that can be used by the
reader to build his own mechatronic system in the future. The design consists of

• manufacturing the mechanical part of the system

• building the electronic circuit around the dsPIC30F4011 chip

• designing the controller that responds to the desired specifications of the control
system design using the appropriate method

• writing the code that will make the different parts of the electronic circuit
interact once the implementation in real-time is done.

Methods of how to deal with all these steps were developed. Also, the design and
implementation in real time have been covered and illustrated by real system. This
has been done for the two cases:

• using the transfer function model

• using the state space model

Some guidelines for the real-time implementation are provided to avoid surprises.

8.8. Problems 377

8.8 Problems

1. In this problem, we ask for the design of a vacuum cleaner. This device should
be automatic and avoid obstacle in its environment. It is also important to design
a cheap one that can communicate wireless via an emitter and receiver.

2. In this problem it is asked to fabricate a small plane that can be controlled wire-
less via a emitter and a receiver. We would like that this machine can transmit
image of the space it ”survol”

3. In this problem we ask to design a hoover that can be controlled to seal on water
via a emitter and a receiver.

4. In this problem we ask for the design of an insect with four pattes that can walk
in a smooth and irregular floor.

5. A dynamical system that we would like to control is described by the following
transfer function:

G(s) =
5

(s + 1)(s + 5)

(a) choose the desired performances and design the controller that gives such
performances;

(b) establish the recurrent equation that we would implement in real time
(c) give the structure of the program that we would write to assure such control

in real-time

6. A dynamical system that we would like to control is described by the following
transfer function:

G(s) =
5

(s + 1)(s + 2)(s + 5)

(a) establish the canonical controllable form
(b) choose the desired performances and design the controller that gives such

performances in the case of full access to the states and partially access to
the states;

(c) establish the recurrent equation that we would implement in real time
(d) give the structure of the program that we would write to assure such control

in real-time

Part VI

Advanced Control

Advanced Control 381

In the last chapters we covered many control concepts that belongs to classic
control that were used to build most all the airplanes we are using nowadays.

The aim of this part is to introduce the reader to advanced control theory. It is
also important to show the reader that these new concepts are also useful and can be
implemented for practical systems.

9
Robust Control

After reading this chapter the reader will:

1. understand some concepts on robust control

2. be able to resolve the robust stability problem

3. be able to solve the robust stabilization problem and know how to
compute the controller gain

4. manipulate linear matrix inequalities

5. be able to use commercial tools to solve convex optimization problem

Previously we showed that any dynamical system can be described by the
following state space description:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Acx(t) + Bcu(t)

y(t) = Cc x(t) + Dcu(t)
(9.1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp design respectively the state, the input and the
output of the system, and Ac, Bc, Cc, and Dc, are known matrices with appropriate
dimensions.

384 9. Robust Control

We also seen that using a ZOH and an appropriate choice of the sampling period
T , we can transform this continuous-time state space description to a discrete-time
one with the following structure:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(9.2)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp represent the values of the state, the input and
the output at the instant kT and A, B, C, and D, are known matrices with appropriate
dimensions that we obtain from the original matrices Ac, Bc, Cc, and Dc.

Most of the time, the matrices Ac, Bc, Cc, and Dc, and therefore those of the
discrete-time description can not be known exactly for many reasons like for in-
stance the dynamics we neglect when building the model or the nonlinearity effects.
The model (9.1) or (9.2) can be corrected by adding uncertainties. The new state
space description becomes for instance in the discrete-time case as follows:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = [A + ΔA(t)] x(k) + [B + ΔB(t)] u(k)

y(k) = [C + ΔC(t)] x(k) + [D + ΔD(t)] u(k)
(9.3)

The uncertainties ΔA(k), ΔB(k), ΔC(k) and ΔD(k) are assumed to have the
following forms:

ΔA(k) = DAΔFA(k)EA

ΔB(k) = DBΔFA(k)EB

ΔC(k) = DCΔFA(k)EC

ΔD(k) = DDΔFD(k)ED

DA, EA, DB, EB, DC , EC , DD, and ED are known real matrices, and the termsΔFA(k),
ΔFB(k), ΔFC(k), and ΔFD(k) satisfy the following conditions

ΔA�(k)ΔA(k) ≤ I
ΔB�(k)ΔB(k) ≤ I
ΔC�(k)ΔC(k) ≤ I
ΔD�(k)ΔD(k) ≤ I

with I is the identity matrix with appropriate dimension.

Remark 9.0.1 The uncertainties that satisfy the previous conditions are referred
in the literature to as norm bounded uncertainties. It is important to mention that
there exist other types of uncertainties and for more details on this topic we refer
the reader to [2].

Remark 9.0.2 The uncertainties are called admissible if the imposed conditions on
these uncertainties are satisfied.

Remark 9.0.3 When the uncertainties are equal to zero we refer to the system as
nominal otherwise the system is uncertain. When the term of the input is omitted
from the dynamics, we refer to this respectively free nominal system (when the

9.1. Stability Problem 385

uncertainties are equal to zero) and free uncertain system (uncertainties are not
equal to zero).

When the uncertainties are equal to zero we learned previously how to check the
stability of the system of the form (9.2) by solving the Lyapunov equation given by
the following result.

Theorem 9.0.1 Let Q be a given symmetric and positive-definite matrix. The free
nominal system (9.2) is stable iff there exists a symmetric and positive matrix P
unique solution of the following Lyapunov equation:

A�PA − P = −Q (9.4)

In this chapter we will extend this result and establish sufficient condition to
check the stability of the system when the uncertainties are not equal to zero. We
will refer to this as robust stability.

We will also consider the stabilization problem either for nominal or uncertain
system using different type of controllers. Among these controllers, we quote:

• the state feedback controller

• the static output feedback controller

• and the output feedback control

The rest of this chapter is organized as follows. In Section 1, the stability prob-
lem is tackled, while in Section 2, the stabilization problem is covered and linear
matrix inequality (LMI) conditions are developed in both cases. In case of uncertain
systems, the LMIs we will develop are only sufficient conditions and if we are not
able to find a solution to these LMIs, we can not conclude that the system is not
stable or not stabilizable depending on the problem we are considering.

9.1 Stability Problem

Firstly, let us consider the free nominal system and see under which condition the
system will be stable. If we refer to the previous chapters, the system (9.2) is stable,
if we can find a Lyapunov function V(xk) such that

ΔV = V(xk+1) − V(xk) < 0 (9.5)

In fact, we used previously the same reasoning to establish the Lyapunov stability
condition. Now, if we consider a Lyapunov function, V(xk), with the following form:

V(xk) = x�k Pxk

where P is a symmetric and positive-definite matrix with appropriate dimension.
Let us compute ΔV = V(xk+1) − V(xk). This gives:

ΔV = V(xk+1) − V(xk) = x�k+1Pxk+1 − x�k Pxk

386 9. Robust Control

Using now the dynamics of the free nominal system, since the stability doesn’t
depend on the input for linear time invariant systems, we get:

ΔV = [Axk]� P [Axk] − x�k Pxk

= x�k A�PAxk − x�k Pxk

Rearranging the terms we get:

ΔV = x�k
[
A�PA − P

]
xk

Now if we impose that
[
A�PA − P

]
< 0, we get ΔV < 0 and therefore the system

is stable.

Remark 9.1.1 Caution has to be made for the notation we made regarding the re-
lation,

[
A�PA − P

]
< 0. A scalar can be negative but a matrix cannot be. By this

notation we mean that the matrix has all its eigenvalues negative, or it is symmetric
and negative-definite.

This gives us the following results.

Theorem 9.1.1 The free nominal linear system 9.2 is stable iff there exists a
symmetric and positive-definite matrix, P, solution of the following LMI:

A�PA − P < 0 (9.6)

The following lemma will be used extensively in this chapter.

Lemma 9.1.1 (Schur Complement) Let the symmetric matrix M be partitioned as

M =

[
X Y

Y� Z

]
,

with X and Z being symmetric matrices. We have

(i) M is nonnegative-definite if and only if either
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z ≥ 0,

Y = L1Z

X − L1ZL�1 ≥ 0

(9.7)

or ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ≥ 0

Y = XL2

Z − L�2 XL2 ≥ 0

(9.8)

holds, where L1, L2 are some (nonunique) matrices of compatible dimensions;

(ii) M is positive-definite if and only if either
⎧⎪⎪⎨⎪⎪⎩

Z > 0,

X − YZ−1Y� > 0,
(9.9)

9.1. Stability Problem 387

or ⎧⎪⎪⎨⎪⎪⎩
X > 0

Z − Y�X−1Y > 0
(9.10)

The matrix X − YZ−1Y� is called the Schur complement X(Z) in M.

Remark 9.1.2 It is important to notice that the LMI of this theorem is equivalent to
the following one:

[−P A�P
PA −P

]
< 0

To get this LMI we used, the fact that PP−1 = I (i.e.: A�PP−1PA − P) and the
Schur complement.

Remark 9.1.3 It is important to notice that the condition of the previous theorem
are obtained directly from the Lyapunov equation. In fact we have the matrix Q
which is symmetric and positive-definite, i.e: all its eigenvalues are positive. This
implies that the matrix −Q is symmetric and negative-definite, i.e: all its eigenvalues
are negative. And using the notation, the result follows.

It is well known that the poles of the system may move for many reasons among
them we quote the changes of the system’s parameters. This may cause instability
and degradation of performances. One way to overcome this is to take precaution
by using the concept of degree of stability. This may prevent instability for instance
in case of change of parameters. The following result may be used to determine if
the system under study has or not a degree of stability equal to α > 0.

Corollary 9.1.1 The free nominal linear system 9.2 has a degree of stability equal
to α > 0, iff there exists a symmetric and positive-definite matrix, P, solution of the
following LMI:

[A + αI]� P [A + αI] − P < 0 (9.11)

Remark 9.1.4 Similarly as we did in the previous remark, we can transform the
LMI of this Corollary to the equivalent following one:

[−P [A + αI]� P
P [A + αI] −P

]
< 0

Let us now focus on the robust stability problem of the free uncertain system
9.2. To establish the required sufficient condition for robust stability we need the
following lemma.

Lemma 9.1.2 Let JA, DA and EA be real matrices of appropriate dimensions and
JA is a symmetric matrix, then:

JA + DAFA(k)EA(t) + [DAFA(k)EA(t)]� < 0

388 9. Robust Control

for any FA(k) that satisfies F�A (t)FA(k) ≤ I if and only if there exists a scalar εA > 0
such that:

JA + εADAD�A (t) + ε−1
A E�A EA(t) < 0

For the free uncertain system, the stability condition implies that the following
must hold for all admissible uncertainties:

[A + DAFA(k)EA]� P [A + DAFA(k)EA] − P < 0

Using now the Schur complement and the fact that PP−1 = I, we get:
[−P

PA + PDAFA(k)EA −P

]
< 0

which can be rewritten as follows:[−P

PA −P

]
+

[
0 0

PDAFA(k)EA 0

]
+

[
0 0

PDAFA(k)EA 0

]�
< 0

where
 is the transpose of PA.
Notice that: [

0 0
PDAFA(k)EA 0

]
=

[
0

PDA

]
FA(k)

[
EA 0

]

Using this we get:
[−P

PA −P

]
+

[
0

PDA

]
FA(k)

[
EA 0

]
+

[[
0

PDA

]
FA(k)

[
EA 0

]]�
< 0

Based on Lemma 9.1.2, this condition will hold if the following one holds:
[−P

PA −P

]
+ ε−1

A

[
0

PDA

] [
0 D�A P

]
+ εA

[
E�A
0

] [
EA 0

]
< 0

for εA > 0.
This condition gives in turn after using the Schur complement:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−P + εAE�A EA A�P 0

PA −P PDA

0 D�A P −εAI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0

Based on this development we get the following results:

Theorem 9.1.2 The free unceratin linear system 9.2 is stable if there exist a
symmetric and positive-definite matrix and a positive scalar, εA, solution of the
following LMI:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−P + εAE�A EA A�P 0

PA −P PDA

0 D�A P −εAI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0 (9.12)

Remark 9.1.5 The condition of this theorem is only sufficient and therefore, if the
LMI is not satisfied this doesn’t imply that the system is not stable.

9.1. Stability Problem 389

The study of stability is brought to the resolution of an LMI. In the marketplace,
there are many tools that can be used to solve such LMI. Among these tools we
mention:

• LMI toolbox of Matlab (not free software)

• Scilab (free software)

• Yalmip and Sedumi (free softwares that are based on Matlab)

In order to show how the stability problem is solved let us consider a numerical
example.

Example 9.1.1 To show how to solve the stability problem, let us consider a
dynamical free nominal system with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−0.2 0.3 −0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can either solve the Lyapunov equation for this system or use Matlab to

compute the eigenvalues of the matrix A. Using Matlab, the eigenvalues of A are:

s1 = −0.7945

s2,3 = 0.3472 ± 0.3622 j

that are all inside the unit circle and therefore, the system is stable.
To use the result of the previous theorem, the following program can be used to

solve the robust stability problem for our system.

%%%

% Stability of linear systems %

%%%

% Nominal case

clear all;

yalmip(’clear’)

% Data

A=[0 1 0; 0 0 1;-0.2 0.3 -0.1];

n=size(A,1)

% Variables

P=sdpvar(n,n,’symmetric’); % declaration

% LMI

F=set(P>0) % Initialization

F=F+set([-P A’*P;

P*A -P] < 0)

% Solve

390 9. Robust Control

Sol=solvesdp(F)

% Extract data from the solution

P=double(P)

eig(P) % check if the eigenvalues are positive

checkset(F)

If we run this program the LMI is feasible and we get:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.7397 −0.0036 −0.1857
−0.0036 1.0708 0.0857
−0.1857 0.0857 1.6233

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The eigenvalues of this matrix are:

s1 = 0.7017

s2 = 1.0594

s3 = 1.6727

that are all positive and therefore, the system is stable.

Example 9.1.2 To show how to solve the robust stability problem, let us consider a
dynamical free uncertain system with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 0
−0.2 0.3 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0.2
0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

EA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3
0.2
0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

It can be checked that the system is unstable using Matlab for the computation of
the eigenvalues.

To use the result on the robust stability, the following program can be used to
solve the robust stability problem for our system.

%%%%%%%%%%%%%%%%%%

% Robust stability of linear system %

%%%%%%%%%%%%%%%%%%

% Uncertain system

clear all;

yalmip(’clear’)

% Data

A=[0 1 0; 0 0 1;-0.2 0.3 0.1]

Da=[0.1; 0.2; 0.3]

Ea=[0.3 0.2 0.1]

9.1. Stability Problem 391

n=size(A,1)

% Variables

P=sdpvar(n,n,’symmetric’);

eps=sdpvar(1,1,’full’);

% LMI

F=set(P>0) % Initilization

F=F+set(eps>0)

F=F+set([-P + eps*Ea’*Ea A’*P zeros(n,1);

P*A -P P*Da;

zeros(1,n) Da’*P -eps*eye(1,1)] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

P=double(P)

eps=double(eps)

eig(P)

checkset(F)

If we run this program the LMI is feasible and we get:

εA = 0.8911

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.5335 −0.0144 −0.1331
−0.0144 0.7360 −0.0442
−0.1331 −0.0442 1.1060

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

The eigenvalues of this matrix are:

s1 = 0.5017

s2 = 0.7344

s3 = 1.1394

that are all positive and therefore, the system is robustly stable for all admissible
uncertainties.

We considered in the previous example two stable systems and therefore, we
don’t need a controller to stabilize them unless we would like to improve the perfor-
mances such as the reduction of the settling time and the overshoot of the outputs. In
this case a controller is needed and its design must be done. In the previous chapters,
we learned how to design state feedback controller either using poles placement or
linear quadratic regulator. In these two approaches, we need to have some expertise
to convert the performances to some equations and then get the gain of the con-

392 9. Robust Control

troller. In the next section, we will present another approach that doesn’t require
this and we will cover only the stabilization problem.

9.2 Stabilization

The stabilization problem is one of the most important control problem. It consists
of designing a controller that renders the closed-loop dynamics of the system stable.
The stabilizability can be used for the following purposes:

• stabilize an unstable system

• improve the performances of a given system

A nominal system is said to be stabilizable if there is a controller that makes
the closed-loop dynamics of the system stable. For uncertain system, we said that
the system is robustly stabilizable if there is a controller that makes the closed-loop
dynamics of the system stable.

The controller that we can design to stabilize the system under study can be one
of the following controllers:

• state feedback

• static output feedback

• dynamic output feedback

The choice among these controllers is based on the availability or the nonavail-
ability of the states of the system. Therefore, if we have access to the states we
recourse to the use of the state feedback controller otherwise, the states are estimated
and this estimate is used for feedback.

Definition 9.2.1 The nominal system is stabilizable if there exists a control law that
makes the closed-loop stable.

Definition 9.2.2 The uncertain system is stabilizable if there exists a control law
that makes the closed-loop stable for all admissible uncertainties.

Let us assume that we have complete access to the states of the system and design
a state feedback controller of the previous forms that stabilizes the nominal system:

uk = Kxk

where K is gain matrix that we have to determine.
Combining the nominal system dynamics and the controller expression we get

the following closed-loop system:

xk+1 = [A + BK] xk

= Aclxk

with Acl = A + BK

9.2. Stabilization 393

Our objective is to design the state feedback controller of the previous form and
compute its gain matrix K in order to make the closed-loop system stable. Using the
results on stability of the nominal system, the closed-loop system will be stable if
there exists a symmetric and positive-definite matrix P > 0 such that the following
LMI holds: [−P A�clP

PAcl −P

]
< 0

Using the expression of Acl we get:[−P [A + BK]� P
P [A + BK] −P

]
< 0

where P and K are design parameters.
This inequality is nonlinear in the design parameters P and K. To overcome

this, we let X = P−1, and pre- and post-multiply the left hand side respectively
by diag(X, X), we get: [−X X [A + BK]�

[A + BK] X −X

]
< 0

Letting now Y = KX implies in turn:
[−X XA� + Y�B�

AX + BY −X

]
< 0

Based on this development, we get the following result.

Theorem 9.2.1 There exists a state feedback controller that stabilizes the nominal
system if there exist a symmetric and positive-definite matrix X > 0 and a matrix Y
that satisfy the the following LMIs:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X > 0⎡⎢⎢⎢⎢⎢⎣ −X XA� + Y�B�

AX + BY −X

⎤⎥⎥⎥⎥⎥⎦ < 0

The controller gain is given by K = YX−1

As we made for the stability, we can also design a state feedback controller that
stabilizes the system with a certain degree of stability α > 0. This controller can be
designed using the results of the following corollary.

Corollary 9.2.1 Let α be a given positive scalar. There exists a state feed-
back controller that stabilizes the nominal system if there exist a symmetric and
positive-definite matrix X > 0 and a matrix Y that satisfy the the following LMIs:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X > 0⎡⎢⎢⎢⎢⎢⎣ −X X [A + αI]� + Y�B�

[A + αI] X + BY −X

⎤⎥⎥⎥⎥⎥⎦ < 0

The controller gain is given by K = YX−1

394 9. Robust Control

Example 9.2.1 To show how we can design the state feedback controller that
stabilizes the nominal system let us consider the following unstable nominal system:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 −1
0 −2 1
2 −1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1
2 0
1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Our goal is to design the gain, K of the state feedback controller that stabilizes
our system. For this purpose, we write the following program.

%%%

% Stabilizability of linear systems %

%%%

% Nominal case

clear all;

yalmip(’clear’)

% Data

A=[1 0 -1; 0 -2 1; 2 -1 -2];

B=[0 1; 2 0; 1 1];

n=size(A,1);

m=size(B,2);

% Variables

X=sdpvar(n,n,’symmetric’); % declaration

Y=sdpvar(m,n,’full’);

% LMI

F=set(X>0) % Initialization

F=F+set([-X X*A’+Y’*B’ ;

A*X+B*Y -X] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

X=double(X)

Y=double(Y)

eig(X) % check if the eigenvalues are positive

% compute the controller gain

K=Y*inv(X)

checkset(F)

9.2. Stabilization 395

If we run this program the LMI is feasible and we get:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
416.9192 109.9989 106.7370
109.9989 532.7776 −46.9652
106.7370 −46.9652 207.6739

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =

[−23.2314 498.6871 −88.5828
−444.8524 −252.1721 207.7342

]

The eigenvalues of the matrix X are:

s1 = 142.7975

s2 = 414.7446

s3 = 599.8286

that are all positive and therefore, the matrix, X, is symmetric and positive definite.
The corresponding controller is given by:

K =

[−0.3073 0.9956 −0.0435
−1.5229 −0.0018 1.7826

]
.

Let us now consider the uncertain system and see how we can design a state feed-
back controller that stabilizes the system for all admissible uncertainties. Combining
the uncertain system dynamics and the controller expression we get the following
closed-loop system:

xk+1 = [A + BK + ΔA + ΔBK] xk

= [Acl + ΔA + ΔBK] xk

with Acl = A + BK
The design of the state feedback controller is brought to the computation of the

controller gain matrix K that makes the closed-loop system stable for all admissible
uncertainties. Based on the results on stability of uncertain system, the closed-loop
system will be stable if there exist a symmetric and positive-definite matrix P > 0
such that the following holds:

[−P (Acl + ΔA + ΔBK)� P

 −P

]
< 0

that can be rewritten as follows:
[−P A�clP

 −P

]
+

[
0 (DAFA(k)EA)� P

 0

]
+

[
0 (DBFB(k)EBK)� P

 0

]
< 0

Notice that we have:
[

0 0
PDAFA(k)EA 0

]
=

[
0

PDA

]
FA(k)

[
EA 0

]

396 9. Robust Control

and
[

0 0
PDBFB(k)EBK 0

]
=

[
0

PDB

]
FB(k)

[
EAK 0

]

Using now Lemma 9.1.2 we get:

[−P A�clP

 −P

]
+ εA

[
0

PDA

] [
0 (PDA)�

]
+ ε−1

A

[
E�A
0

] [
EA 0

]

+εB

[
0

PDA

] [
0 (PDB)�

]
+ ε−1

B

[
K�E�B

0

] [
EBK 0

]
< 0

for any positive numbers εA > 0 and εB > 0.
Based on Schur complement the following LMI must hold for all admissible

uncertainties to guarantee the stability of the closed-loop system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P + ε−1
A E�A EA + ε

−1
B K�E�B EBK A�clP 0 0

PAcl −P PDA PDB

0 D�A P −ε−1
A I 0

0 D�B P 0 −ε−1
B I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Using the expression of Acl and the uncertainty lemma, we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J [A + BK]� P 0 0
P [A + BK] −P PDA PDB

0 D�A P −ε−1
A I 0

0 D�B P 0 −ε−1
B I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

where J = −P + ε−1
A E�A EA + ε

−1
A K�E�B EBK, εA > 0, εB > 0 are positive scalars, and

P and K design parameters
This inequality is nonlinear in the design parameters P and K. To overcome

this, we let X = P−1, and pre- and post-multiply the left hand side respectively
by diag(X, X, I, I) we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

XJX XA� + XK�B� 0 0
AX + BKX −X DA DB

0 D�A −ε−1
A I 0

0 D�B 0 −ε−1
B I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

with XJX = −X + ε−1
A XE�A EAX + ε−1

A XK�E�B EBKX
Letting Y = KX and using the Schur complement imply:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X XA� + Y�B� XE�A Y�E�B
AX + BY −X + εADAD�A + εBDBD�B 0 0

EAX 0 −εAI 0
EBY 0 0 −εBI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

9.2. Stabilization 397

Theorem 9.2.2 There exists a state feedback controller that stabilizes the uncertain
system if there exist a symmetric and positive-definite matrix X > 0, a matrix Y and
positive scalars εA > 0 and εB > 0 that satisfy the the following LMIs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X > 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X XA� + Y�B� XE�A Y�E�B
AX + BY −X + εADAD�A + εBDBD�B 0 0

EAX 0 −εAI 0

EBY 0 0 −εBI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

The controller gain is given by K = YX−1.

Remark 9.2.1 The conditions of this theorem are only sufficient and therefore, if
the LMIs are not satisfied this doesn’t imply that the system is not stabilizable

As we made for the stabilization of the nominal, we can also design a sate feed-
back controller that stabilizes the uncertain system with a certain degree of stability
α > 0. This controller can design using the results of the following corollary.

Corollary 9.2.2 Let α be a given positive scalar. There exists a state feedback
controller that stabilizes the uncertain system if there exist a symmetric and positive-
definite matrix X > 0, a matrix Y and positive scalars εA > 0 and εB > 0 that satisfy
the the following LMIs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X > 0⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X X [A + αI]� + Y�B� XE�A Y�E�B
[A + αI] X + BY −X + εADAD�A + εBDBD�B 0 0

EAX 0 −εAI 0

EBY 0 0 −εBI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

The controller gain is given by K = YX−1.

Example 9.2.2 To show how we can design the state feedback controller that sta-
bilizes the uncertain system let us consider system of the previous example with the
following extra data:

DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0.2
0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[
0 0.1 0.4

]

DB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3
0.2
0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EB =
[
0.1 0.2

]

Our goal is to design the gain, K of the state feedback controller that stabilizes
our system. For this purpose, we write the following program.

398 9. Robust Control

%%%

% Stabilizability of linear systems %

%%%

% Uncertainl case

clear all;

yalmip(’clear’)

% Data

A=[1 0 -1; 0 -2 1; 2 -1 -2];

B=[0 1; 2 0; 1 1];

Da=[0.1; 0.2; 0.3];

Ea=[0 0.1 0.4];

Db=[0.3; 0.2; 0.1];

Eb=[0.1 0.2];

n=size(A,1);

m=size(B,2);

% Variables

X=sdpvar(n,n,’symmetric’); % declaration

Y=sdpvar(m,n,’full’);

epsa=sdpvar(1);

epsb=sdpvar(1);

% LMI

F=set(X>0) % Initialization

F=F+set(epsa>0);

F=F+set(epsb>0);

J=-X+epsa*Da*Da’+epsb*Db*Db’;

F=F+set([-X X*A’+Y’*B’ X*Ea’ Y’*Eb’;

A*X+B*Y J zeros(n,1) zeros(n,1) ;

Ea*X zeros(1,n) -epsa*eye(1) zeros(1,1) ;

Eb*Y zeros(1,n) zeros(1,1) -epsb*eye(1)] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

X=double(X)

Y=double(Y)

epsa=double(epsa)

epsb=double(epsb)

eig(X) % check if the eigenvalues are positive

% compute the controller gain

K=Y*inv(X)

checkset(F)

9.2. Stabilization 399

If we run this program the LMIs are feasible and we get:

εA = 292.1496, εB = 325.6510

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
311.8397 112.0526 87.9395
112.0526 502.6397 −47.2877
87.9395 −47.2877 157.7885

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Y =

[
0.4291 455.4875 −71.0439
−299.5657 −247.9759 132.7033

]
.

The eigenvalues of the matrix, X, are:

s1 = 96.8537,

s2 = 320.9106,

s3 = 554.5035,

that are all positive and therefore, the matrix, X, is symmetric and positive definite.
The corresponding controller is given by:

K =

[−0.3712 0.9941 0.0545
−1.4066 −0.0277 1.6167

]
.

Let us now assume that we don’t have access to the state vector and try to design
a static feedback controller of the following form:

u(k) = Ky(k) (9.13)

where K is the gain controller that we have to design and y(k) is the measured output
that we get through the sensors.

Combining now the system’s dynamics (9.2) and the controller (9.13), we get:

x(k + 1) = [A + ΔA(t)] x(k) + [B + ΔB(t)] Ky(k)

= [Acl + ΔAcl(t)] x(k)

where Acl = A + BK and Acl = ΔA(t) + ΔB(t)K.
The output equation is given by:

y(k) = Cx(k)

where y(k) ∈ Rp is the output system and C is a known matrix with appropriate
dimension.

Based on the previous results, the nominal system with the static output controller
will be stable if the following holds:

[−P (A + BKC)� P

 −P

]
< 0.

Let X = P−1 and pre- and post-multiply this inequality by diag(X, X) we get:
[−X

AX + BKCX −X

]
< 0.

400 9. Robust Control

The term BKCX is nonlinear since it contains the two decision variables K and
X. To overcome this we introduce the new condition:

CX = NC

which may be restrictive in some conditions.
Using this and letting Y = KN, we get the following result.

Theorem 9.2.3 There exists a static output controller of the form (9.13) if there
exist a symmetric and positive-definite matrices X and N and a matrix Y such that
the following hold:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CX = NC⎡⎢⎢⎢⎢⎢⎣ −X

AX + BYC −X

⎤⎥⎥⎥⎥⎥⎦ < 0.
(9.14)

The controller gain is given by K = YN−1.

For the uncertain system, the closed-loop system will be stable is the following
holds for all admissible:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

CX = NC⎡⎢⎢⎢⎢⎢⎣ −X

(A + ΔA) X + (B + ΔB) YC −X

⎤⎥⎥⎥⎥⎥⎦ < 0.

Notice that the second inequality can be rewritten as follows:
[−X

AX + BYC −X

]
+

[
0

ΔAX 0

]
+

[
0

ΔBYC 0

]
< 0.

The second terms can be in turn written as follows:
[

0

DAFA(k)EAX 0

]
=

[
0

DA

]
FA(k)

[
EAX 0

]

and
[

0

DBFB(k)EBBYC 0

]
=

[
0

DB

]
FB(k)

[
EBBYC 0

]
.

Using this and Lemma 9.1.2, we get:
[

0

DAFA(k)EAX 0

]
≤ εA

[
0

DA

] [
0 D�A

]
+ ε−1

A

[
(EAX)�

0

] [
EAX 0

]
[

0

DBFB(k)EBBYC 0

]
≤ εB

[
0

DB

] [
0 D�B

]
+ ε−1

B

[
(EBBYC)�

0

] [
EBBYC 0

]
.

for any εA and εB real positive scalars.

9.2. Stabilization 401

Using this relations and Schur complement we get the following result.

Theorem 9.2.4 There exists a static output controller of the form (9.13) if there
exist a symmetric and positive-definite matrices X and N and a matrix Y such that
the following hold for all admissible uncertainties:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CX = NC⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X

AX + BYC −X + εADAD�A + εBDBD�B

EAX 0 −εAI

EBYC 0 0 εBI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0.

(9.15)

The controller gain is given by K = YN−1.

To ovoid the conservatism that may result from the condition we introduced pre-
viously, let us consider another approach. Before presenting this approach let us
firstly introduce the following definition.

Definition 9.2.3 The column (row) rank of a matrix G is equal to maximal number
of linearly independent columns (raws) of G. A matrix G ∈ Rm× is equal at most
to min(m, n). This matrix is said to be full column (row) rank if its rank is equal to
max(m, n).

Remark 9.2.2 A matrix G that has full column (row) rank implies that exists a
nonsingular transformation Tr (Tl) such that we get:

TrG =

[
I

0

] (
GTl =

[
I 0
])

It is important to notice that the transformation Tr (Tl) is not unique. In fact we
can always obtain another transformation using the following:

Tr =

[(
G�B

)−1 B�
G�⊥�

] (
Tl =

[
G�
(
GG�

)−1 G⊥
])

where B�⊥� is the transpose on an orthogonal basis for null space of G� and G⊥ is
the orthogonal basis of the null space of the matrix G.

The following lemma will be used in developing our results.

Lemma 9.2.1 Let ξ ∈ Rn, P ∈ Rn×n a symmetric and positive-definite matrix and
a matrix S ∈ Rm×n such that rank (S) = r < n, then the following statements are
equivalent:

1. ξ�Pξ < 0,∀ξ � 0, S ξ = 0;

2. ∃X ∈ Rn×m such that P + XS + S �X� < 0

In the following we will give two results to design the controller gain. In the first
case, we will assume that the matrix B is a full column rank matrix, while the second
result assumes that the matrix C is a full row rank matrix.

402 9. Robust Control

Theorem 9.2.5 Assume that the matrix B is full column rank. If there exist symmet-
ric and positive-definite matrix P ∈ Rn×n matrices G ∈ Rn×n and L ∈ Rn×p with the
following structures

G =

[
G1 G2

0 G3

]

L =

[
L1

0

]

such the following LMI holds:
[

P −G −G� [GTrA + LC] T−1
r

 −P

]
< 0 (9.16)

then the closed-loop is exponentially stable and the controller gain is given by:

K = G−1
1 L1

Proof: Let us assume the LMI (10.17) holds. Using now the fact that the matrix
B is full column rank, which implies that there exists a matrix Tr, and the structure
of the matrix L, we get:

L =

[
L1

0

]

Using the expression of the controller, ie.: K = G−1
1 L1, obtain:

L =

[
G1K

0

]

Based on the structure of G, we can rewrite this expression as follows:

L =

[
G1 G2

0 G3

] [
I

0

]
K = GTrBK

Let P̄ = T�r PTr which gives P = T−�r P̄T−1
r . Using this the LMI (10.17) becomes:

[
T−�r P̄T−1

r −G −G�

T−�r

[
A� +C�K�B�

]
T�r G� T−�r P̄T−1

r

]
< 0

Pre- and post-multiply this by diag(T�r , T�r) and its transpose we obtain:
[

P − T�r
[
G −G�

]
Tr
[

A� + C�K�B�
]

T�r G�Tr −P

]
< 0

Defining M, X and H as follows:

M =

[
P 0
0 −P

]

X =

[
T�r G�Tr

0

]

H =
[
−I A + BKC

]

9.2. Stabilization 403

the previous inequality becomes:

M + XH + H�X� < 0

Defining ξ by

ξ =

[
x(k + 1)

x(k)

]

the closed-loop dynamics can be written as follows:

Hξ = 0

Using now the previous lemma, the inequality M+XH+H�X� < 0 is equivalent
to ξ�Mξ < 0. This inequality is equivalent in turn to:

[
x�(k + 1) x�(k)

] [P 0
0 −P

] [
x(k + 1)

x(k)

]
< 0

That gives:

x�(k + 1)Px(k + 1) − x�(k)Px(k) < 0

Substituting x(k + 1) by its expression for the closed-loop dynamics, we get:

A�clPAcl − P < 0

which implies that the closed-loop dynamics is exponentially stable. �

Example 9.2.3 To show how the results developed for this approach work let us
consider a dynamical discrete-time system with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1 0.4 0.3
0.1 0.3 0.5
0.7 0.7 0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3 0.8
0.3 0.5
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
0.4 0.3 1

]

It is important to see that the matrix B is full column rank. Therefore, there exists
a transformation Tr such that we have:

TrB =

[
I

0

]

To compute the transformation, Tr, let us assume it has the following form:

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
t1 t2 t3
t4 t5 t6
t7 t8 t9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

404 9. Robust Control

Using the previous defing Tr we get:
[

0.3 0.3
0.8 0.5

] [
t1
t2

]
=

[
1
0

]

[
0.3 0.3
0.8 0.5

] [
t4
t5

]
=

[
0
1

]

t3, t6, · · · , t9 arbitrary values

Choosing t3 = 0, t6 = 1, t7 = 0, t8 = 0 and t9 = 1, we get:

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−5.5556 8.8889 0
−3.3333 3.3333 1

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Its inverse is given by:

T−1
r =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3 −0.8 0.8
0.3 −0.5 0.5
0 0 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
The following program can be used to compute the controller gain.

%%%

% Static output stabilization %

%%%

% Nominal case

clear all;

yalmip(’clear’)

% Data

A=[3 0.3 2; 1 0 1; 0.3 0.6 0.6];

B=[1 0; 0 1; 1 0];

C=[1 1 0; 0 1 1];

n=size(A,1);

m=size(B,2);

p=size(C,1);

% Transfrormation T is given by:

T=[1 0 0; 1 1 -1; 1 0 -1];

% Variables declaration

P=sdpvar(n,n,’symmetric’);

G1=sdpvar(n-p,n-p,’full’);

G2=sdpvar(n-p,p,’full’);

G3=sdpvar(p,p,’full’);

L1=sdpvar(n-p,p,’full’);

9.2. Stabilization 405

G=[G1 G2; zeros(p,n-p) G3];

L=[L1; zeros(p,p)];

% LMIs

F=set(P>0) % Initialization

F=F+set([P-G-G’ (G*T*A+L*C)*inv(T);

((G*T*A+L*C)*inv(T))’ -P] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

P=double(P)

G1=double(G1)

G2=double(G2)

G3=double(G3)

L1=double(L1)

eig(P) % check if the eigenvalues are positive

% compute the controller gain

K=inv(G1)*L1

checkset(F)

Let us now assume that the output matrix C is full row rank. This means that
there exists a transformation, Tl (not unique) such that the following holds:

CTl =
[
I 0
]

The following theorem gives a similar results when this assumption holds for C.

Theorem 9.2.6 Assume that the matrix C is full row rank. If there exist symmetric
and positive-definite matrix P ∈ Rn×n matrices G ∈ Rn×n and L ∈ Rm×n with the
following structures

G =

[
G1 0
G2 G3

]
,G1 ∈ Rp×p,G2 ∈ Rm×p,G3 ∈ R(n−p)×(n−p),

L =
[

L1 0
]
, L1 ∈ Rm×p,

such the following LMI holds:
[

P −G −G�
[
G�T�l A� + L�B�

]
T−�l

 −P

]
< 0 (9.17)

then the closed-loop is exponentially stable and the controller gain is given by:

K = L1G−1
1

406 9. Robust Control

Proof: Let us assume the LMI (9.17) holds. Using now the fact that the matrix C
is full row rank, which implies that there exists a matrix Tl, and the structure of the
matrix L, we get:

L =
[

L1 0
]

Using the expression of the controller, ie.: K = L1G−1
1 , we obtain:

L =
[

KG1 0
]

Based on the structure of G, we can rewrite this expression as follows:

L = K
[
I 0
] [G1 0

G2 G3

]
= KCTlG

Let P̄ = TlPT�l which gives P = T−1
l P̄T−�l . Using this the LMI (9.17) becomes:

[
T−1

l P̄T−�l −G −G�

T−1

l [A + BKC] TlG T−1
l P̄T−�l

]
< 0

Pre- and post-multiply this by diag(Tl, Tl) and its transpose we obtain:[
P − Tl

[
G −G�

]
T�l

[A + BKC] TlGT�l −P

]
< 0

Defining M, X and H as follows:

M =

[
P 0
0 −P

]

X =

[
TlGT�l

0

]

H =
[
−I [A + BKC]�

]

the previous inequality becomes:

M + XH + H�X� < 0

Consider the dual system of (6.11):

x̂(k + 1) = [A + BKC]� x̂(k)

Defining ξ by

ξ =

[
x̂(k + 1)

x̂(k)

]

the closed-loop dynamics of the dual system can be written as follows:

Hξ = 0

Using now the previous lemma, the inequality M+XH+H�X� < 0 is equivalent
to ξ�Mξ < 0. This inequality is equivalent in turn to:

[
x̂�(k + 1) x̂�(k)

] [P 0
0 −P

] [
x̂(k + 1)

x̂(k)

]
< 0

9.2. Stabilization 407

That gives:

x̂�(k + 1)Px̂(k + 1) − x̂�(k)Px̂(k) < 0

Substituting x̂(k + 1) by its expression for the closed-loop dynamics, we get:

AclPA�cl − P < 0

which implies that the closed-loop dynamics of the dual system is exponentially
stable. �

Example 9.2.4 In this example, we consider the same system as in the last example.
It is important to see that the matrix C is full row rank. Therefore, there exists a

transformation Tl such that we have:

CTl =
[
I 0
]
=
[
1 0 0

]

To compute the transformation, Tl, let us assume it has the following form:

Tr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
t1 t2 t3
t4 t5 t6
t7 t8 t9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the previous definition Tl we obtain this transformation. We can also use

Matlab to compute such transformation matrix. This approach will be used in this
example.

The following program can be used to compute the controller gain.

%%%

% Static output stabilization %

%%%

% Nominal case

clear all;

yalmip(’clear’)

% Data

A=[3 0.3 2; 1 0 1; 0.3 0.6 -0.6];

B=[1 0; 0 1; 1 0];

% C=[1 1 0; 0 1 1];

C=[1 1 0];

n=size(A,1);

m=size(B,2);

p=size(C,1);

% Transfrormation T is given by:

T=[0 0 1; 1 0 -1; -1 1 1];

T=[C’*inv(C*C’) null(C)];

408 9. Robust Control

% Variables declaration

P=sdpvar(n,n,’symmetric’);

G1=sdpvar(p,p,’full’);

G2=sdpvar(m,p,’full’);

G3=sdpvar(n-p,n-p,’full’);

L1=sdpvar(m,p,’full’);

G=[G1 zeros(p,n-p); G2 G3];

L=[L1 zeros(m,m)];

% LMIs

F=set(P>0) % Initialization

F=F+set([P-G-G’ (inv(T)*(A*T*G+B*L))’;

inv(T)*(A*T*G+B*L) -P] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

P=double(P)

G1=double(G1)

G2=double(G2)

G3=double(G3)

L1=double(L1)

eig(P) % check if the eigenvalues are positive

% compute the controller gain

K=L1*inv(G1)

checkset(F)

If we run this program, we get:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2.2747 −0.5548 −0.7761
−0.5548 0.4246 0.4775
−0.7761 0.4775 0.7107

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

G1 =
[
1.6459

]
,G2 =

[−0.5169
−0.7761

]
,G3 =

[
0.4392 0.4795
0.4626 0.7099

]
,

L1 =

[−1.6568
−0.4629

]

which gives the the following gain:

K =

[−1.0066
−0.2812

]

9.2. Stabilization 409

It can be seen that all the poles of the closed-loop dynamics are all inside the unit
circle.

Let us now focus on the design of the output feedback controller. In this we
assume that the dynamics of the system is described by:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = [A + ΔA(k)] x(k) + [B + ΔB(k)] u(k)

y(k) = [C + ΔC(k)] x(k)

where A, B and C keep the same definitions while ΔA(k), ΔB(k) and ΔC(k) are
given by:

ΔA(k) = DAFA(k)EA

ΔA(k) = DBFB(k)EB

ΔA(k) = DC FC(k)EC

with F�A (k)FA(k) ≤ I, F�B (k)FB(k) ≤ I and F�C (k)FC(k) ≤ I.
The structure of the controller we will use here is given by:

⎧⎪⎪⎨⎪⎪⎩
x̂(k + 1) = Ax̂(k) + Bu(k) + L [Cx(k) − Cx̂(k)]

u(k) = Kx̂(k)

where K and L are the controller gain to be determined.

Remark 9.2.3 It is important to notice that the dynamics of the controller can be
rewritten as follows:

⎧⎪⎪⎨⎪⎪⎩
x̂(k + 1) = [A + BK − LC] x̂(k) + Ly(k)

u(k) = Kx̂(k)

which corresponds to the dynamic output feedback controller’s dynamics.

Let e(k) be defined by:

e(k) = x(k) − x̂(k)

which implies:

e(k + 1) = x(k + 1) − x̂(k)

= Ax(k) + Bu(k) − Ax̂(k) − Bu(k) − LC [x(k) − x̂(k)]

= Ae(k) − LCe(k)

= [A − LC] e(k)

From the other side we have:

x(k + 1) = Ax(k) + BKx̂(k)

= Ax(K) + BK [x(k) − e(k)]

= [A + BK] x(k) − BKe(k)

410 9. Robust Control

Now if we define η(k) by:

η(k) =

[
x(k)
e(k)

]

the augmented dynamics give:

η(k + 1) = Ãη(k)

where

Ã =

[
A + BK −BK

0 A − LC

]

The nominal closed-loop dynamics is stable if there exists a symmetric and and
positive-definite matrix, P̃, such that the following holds:

[−P̃ Ã�P̃
P̃Ã −P̃

]
< 0

Now if we let:

P̃ =

[
P 0
0 Q

]

and using the expression of Ã we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 [A + BK]� P 0
0 −Q − [BK]� P [A − LC]� Q

P [A + BK] −PBK −P 0
0 Q [A − LC] 0 −Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

This condition can be rewritten as follows:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 [A + BK]� P 0
0 −Q − [BK]� P [A − LC]� Q

P [A + BK] −PBK −P 0
0 Q [A − LC] 0 −Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 −PBK 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 − [BK]� P 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Noticing that:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 −PBK 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−PB

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
0 K 0 0

]

9.2. Stabilization 411

Using Lemma 9.1.2, we get:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 −PBK 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ ε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
−PB

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
0 0 − [PB]� 0

]

+ε−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
K�
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
0 K 0 0

]

for ε > 0.
Using Schur complement, the previous condition will hold if this holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 [A + BK]� P 0
0 −Q + ε−1K�K 0 [A − LC]� Q

P [A + BK] 0 −P + εPB [PB]� 0
0 Q [A − LC] 0 −Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Using again Schur complement this condition will hold if the following holds:[
JP 0
0 JQ

]
< 0

where

JP = −P + [A + BK]� P
[
P − εPBB�P

]−1
P [A + BK]

JQ = −Q + ε−1K�K + [A − LC]� Q [A − LC]

If the following holds, the closed-loop dynamics is stable for given K and L:[−P [A + BK]� P
P [A + BK] −P + εPBB�P

]
< 0

[−Q + ε−1K�K [A − LC]� Q
Q [A − LC] −Q

]
< 0

To design the gain parameters K and L, first of all, let X = P−1 and pre- and
post-multiply the first inequality by diag [X, X], we get:[−X X [A + BK]�

[A + BK] X −X + εBB�

]
< 0

If we define Y = KX we get the following LMI that can compute ε and the
gain K: [−X XA� + Y�B�

AX + BY −X + εBB�

]
< 0

With the ε and the gain K computed by the previous LMI and we define W = QL
we get the LMI that permits to compute the gain L:[−Q + ε−1K�K A�Q −C�W�

QA −WC −Q

]
< 0

412 9. Robust Control

Theorem 9.2.7 There exists a stabilizing dynamic output feedback if there exist
symmetric and positive-definite matrices X and Q, matrices Y and W and a scalar
ε such that the following LMIs holds:[−X XA� + Y�B�

AX + BY −X + εBB�

]
< 0 (9.18)

[−Q + ε−1K�K A�Q −C�W�
QA −WC −Q

]
< 0 (9.19)

The controller gain are given by:

K = YX−1

L = Q−1W

Remark 9.2.4 The LMIs of this theorem are independent and therefore, we can
solve the first one to get the gain K and the scalar ε. With these two parameters,
we can solve the second LMI to get the gain L of the controller.

9.3 H∞ Stabilization

Previously, we treated the stabilization problem of systems without external distur-
bances, but practically we are always facing external disturbances that we can not
neglect in the design phase. If these disturbances can be modeled by a gaussian pro-
cess (expectation is null and the variance is constant), we can recourse to the linear
quadratic gaussian problem that gives a solution to the problem by solving a Ricatti
equation. This assumption on the external signal is in general very hard to verify and
therefore we need another alternate to solve such problem. H∞ control technique
has been propose to overcome this with less assumptions. In fact, the H∞ control
theory requires only that the external disturbance has finite energy, which is always
satisfied in practice.

Practical systems are always affected by external disturbances that may degrade
the system performance. To overcome the negative effects of the external distur-
bances that are supposed to have finite energy or finite average power, the H∞
technique was proposed. Contrary to optimal control which handles the case of
external disturbances that must satisfy some special assumptions, H∞ control re-
quires only that the external disturbance have finite energy or finite average power.
H∞ control is a way minimize the worst-case gain of the system. This optimization
problem can be stated as a game optimization problem with two players; the de-
signer, who is seeking a controller that minimizes the gain, and nature which seeks
an external disturbance that maximizes the gain.

The goal of H∞ control is to seek a controller (state-feedback, dynamic out-
put feedback, static output feedback) that minimizes the H∞-norm of the system

9.3. H∞ Stabilization 413

closed-loop transfer matrix between the controlled output z(k) and the external
disturbance w(k) that belongs to L2[0, T], with ΔA(k) = ΔB(k) ≡ 0, that is,

‖Gzw‖∞ = sup
‖w(k)‖2,[0,T]�0

‖z(k)‖2,[0,T]

‖w(k)‖2,[0,T]
, (9.20)

where ‖Gzw‖ is the transfer matrix between the output z(k) and the external
disturbance w(k).

The H∞ control problem can be defined on either finite or infinite horizon (T →
∞). In the rest of this section, we develop the finite horizon case. To get the infinite
horizon case, we let T go to infinity with the appropriate assumptions.

The H∞-norm cost function (9.20) is not acceptable as an objective function
since this cost depends on the controller; that is, the supremum makes this function
independent of a particular disturbance input.

A quadratic objective function that yields tractable solutions of the differential
game is referred to as a suboptimal solution to the H∞ optimization control problem.
It can be obtained by considering the following bound on the closed-loop H∞ norm:

‖Gzw‖∞ = sup
‖w(k)‖2,[0,T]�0

‖z(k)‖2,[0,T]

‖w(k)‖2,[0,T]
< γ,

where γ is referred to as the performance bound.
This suboptimal controller must also satisfy the following bound:

‖Gzw‖2∞ = sup
‖w(k)‖2,[0,T]�0

‖z(k)‖22,[0,T]

‖w(k)‖22,[0,T]

< γ2. (9.21)

To make the supremum satisfy this inequality, the following should hold:

‖z(k)‖22,[0,T]

‖w(k)‖22,[0,T]

≤ γ2 − ε2, (9.22)

which gives

‖z(k)‖22,[0,T] − γ2‖w(k)‖22,[0,T] ≤ −ε2‖w(k)‖22,[0,T]. (9.23)

Note that the satisfaction of this inequality for all disturbance inputs and some ε
is equivalent to the bound on the closed-loop H∞ norm (9.22). Therefore, the left-
hand side of (9.23) can be used as an objective function of our H∞ optimization
control problem. Therefore, the optimization problem we should solve is given by

min
u(.)

⎡⎢⎢⎢⎢⎢⎣
T∑

k=0

[
z�(k)z(k) − γ2w�(k)w(k)

]⎤⎥⎥⎥⎥⎥⎦ ,

subject to the free nominal system.
When the uncertainties are present in the dynamics, the robust H∞ control con-

sists of making the gain from the exogenous w(t) to the controlled output z(t),
(l2-gain) less than or equal to γ > 0, that is,

414 9. Robust Control

T∑
k=0

‖z(k)‖2 ≤ γ2
T∑

k=0

‖w(k)‖2,

for all T > 0 and for all admissible uncertainties. Note that T can be chosen to be
infinite.

Mathematically the robust H∞ control problem can be stated as follows. Given a
positive γ, find a controller that robustly stabilizes the system and guarantees

sup
w(.)∈l2[0,∞]

‖zk‖22
‖wk‖22

≤ γ2

for all admissible uncertainties.
Let us consider the following class of discrete-time linear systems:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(k + 1) = Ax(k) + Bu(k) + Ew(k)

z(k) = Cx(k) + Du(k) + Fw(k)

y(k) = Gx(k) + Hw(k)

(9.24)

where x(k) ∈ Rn is the state vector and u(k) is the control input; w(k) ∈ Rl is
the disturbance input which belongs to l2[0,∞) (l2[0,∞) is the space of square
summable infinite sequence and for w = {w(k)} ∈ l2[0,∞), its norm is given by

‖w‖2 =
√∑∞

k=0 |w(k)|2 .); y(k) ∈ Rm is the measurement output and z(k) is the objec-
tive signal to be attenuated, A, B, C, D, E, F, G and H ar real known with appropriate
dimensions.

In this section, the state-feedback and output-feedback control will be considered
respectively for system (9.24) when the state variables are assumed to be fully or
partly available for feedback. The state-feedback controller has the following form

u(k) = Kx(k) (9.25)

and the output-feedback controller is assumed to be dynamic and has the following
structure:

{
xc(k + 1) = Adxc(k) + Bdy(k)

u(k) = Cd xc(k) + Ddy(k)
(9.26)

Accordingly, the closed-loop system (1) with (9.25) is given by
{

x(k + 1) = Âx(k) + Êw(k)
z(k) = Ĉx(k) + F̂w(k)

(9.27)

where

Â = A + BK,

Ĉ = C + DK,

Ê = E,

F̂ = F.

9.3. H∞ Stabilization 415

Likewise, for the output-feedback case, by defining ξ(k) �
[

x�(k) x�c (k)
]�

, the
corresponding closed-loop system resulted from (1) and (9.26) is given by{

ξ(k + 1) = Ãξ(k) + Ẽw(k)
z(k) = C̃ξ(k) + F̃w(k)

(9.28)

where

Ã =

[
A + BDdG BCd

BdG Ad

]
,

Ẽ =

[
E + BDdH

BdH

]

C̃ =
[
C + DDdG DCd

]
,

F̃ = [F + DDdH]

Obviously, the resulting system (9.27) and (9.28) are also discrete-time. Now, for
more precise description of the main objective of this section, we also introduce the
following definition for the underlying systems and for more details on this concept
we the reader is referred to [2] and the references therein.

Definition 9.3.1 Given a scalar γ > 0, system (9.27) or (9.28) is said to be stable
and has an H∞ noise attenuation performance index γ if it is stable and under zero
initial condition, ‖z‖2 < γ ‖w‖2 holds for all nonzero w(k) ∈ l2[0,∞).

Therefore, the purpose of this session is to design a H∞ state-feedback and
output-feedback controller, respectively, such that the resulting closed-loop systems
(9.27) and (9.28) are stable and has a prescribed H∞ performance index.

Let us firstly develop the H∞ performance criterion for the closed-loop systems
(9.27) and (9.28). To this end, we establish a general closed-loop system model as
follows: {

x(k + 1) = Āx(k) + Ēw(k)
z(k) = C̄x(k) + F̄w(k)

(9.29)

where state vector x(k) ∈ Rl (l ≥ n), and the construction of system matrix Ā,
Ē, C̄, and F̄ are different when applying the state-feedback or output-feedback con-
trollers, respectively. Now, the following lemma gives a sufficient condition for a
bounded H∞ performance criterion (i.e., the so-called bounded real lemma (BRL))
for system (9.29).

Lemma 9.3.1 Consider system (9.29) and let γ > 0 be a given constant. If there
exists a matrix P > 0 such that⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ā�PĀ − P Ā�PĒ C̄�

 −γ2I + Ē�PĒ F̄�

 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0 (9.30)

then system (9.29) is stable with a H∞ performance index γ.

Proof. Notice that if the LMI (9.30) holds, then it results Ā�PĀ − P < 0 holds
too and this implies that the closed-loop dynamics is stable.

416 9. Robust Control

Let us now focus on the proof of the H∞ performance. For this purpose, consider
the system (9.29) and construct a Lyapunov function as

V(xk) = x�k Pxk, (9.31)

where P satisfy (9.30). Then, one has

ΔV(xk, k) � V(xk+1, k + 1) − V(xk, k)

= x�k+1Pxk+1 − x�k Pxk (9.32)

Using now the expression of x(k + 1), we get:

ΔV(xk, k) = x(k)
[
A�PA − P

]
x(k) + x�(k)A�PEw(k) + w�(k)E�PAx(k)

+w�(k)E�PEw(k) (9.33)

Now, to establish the H∞ performance for the system, consider the following
performance index:

J �
∑∞

k=0

[
z�(k)z(k) − γ2w�(k)w(k)

]

Under zero initial condition, V(x(k)) |k=0= 0, and we have

J ≤
∑∞

k=0

[
z�(k)z(k) − γ2w�(k)w(k) + ΔV

]

=
∑∞

k=0
ζ�(k)Φζ(k)

where ζ(k) �
[

x�(k) w�(k)
]�

and

Φ �
[

Ā�PĀ − P + C̄�C̄ Ā�PĒ + C̄�F̄

 −γ2

I + Ē�PĒ + F̄�F̄

]

Note that Φ < 0 is equivalent to:
[

Ā�PĀ − P Ā�PĒ

 −γ2I + Ē�PĒ

]
+

[
C̄�
F̄�

]
I
−1
[
C̄ F̄

]
< 0.

By Schur complement, one has
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ā�PĀ − P Ā�PĒ C̄�

 −γ2I + Ē�PĒ F̄�

 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ < 0.

Therefore, inequalities (9.30) guarantees Φ < 0, i.e., J < 0 which means that
‖e‖2 < γ ‖w‖2, this completes the proof. �

9.3.1 State-Feedback Control

In this subsection, we design a state-feedback controller of the form (9.25). The
following theorem presents a sufficient condition of the existence of the controllers
for system (9.24).

9.3. H∞ Stabilization 417

First of all notice that the LMI (9.30) can be rewritten as follows for any invertible
matrix G:

Φ = η�1Φ1η1

with

η1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G−1 0 0
G−1A 0 0

0 I 0
0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀG +G�Ā� −G�PG G�Ā� −G 0 G�C̄�
ĀG −G� G�PG −G� −G G�PĒ 0

0 ĒPG −γ2
I + Ē�PĒ F̄�

C̄G 0 F̄ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Similarly, Φ1 can be decomposed in turn as follows:

Φ1 = η
�
2Φ2η2

with

η2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
0 I 0 0
0 G 0 0
0 0 I 0
0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ĀG +G�Ā� −G�PG G�Ā� −G 0 0 G�C̄�
ĀG −G� −2G − 2G� −G� −G G� + I 0 0

0 G + I P − 2I PĒ 0
0 0 Ē�P −γ2

I + Ē�PĒ F̄�
C̄G 0 0 F̄ −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In turn we can decompose Φ2 as follows:

Φ2 = η
�
3Φ3η3

with

η3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
G 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J1

ĀG −G� J2

0 G + I P − 2I

0 0 Ē�P −γ2

I + Ē�PĒ

C̄G 0 0 F̄ −I

G + I 0 0 0 0 −Ē�PĒ − 2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

418 9. Robust Control

with J1 = ĀG +G�Ā� −G� −G and J2 = −2G − 2G�.
Using now all these decomposition we get:

Φ = η�3 η
�
2 η
�
1Φ3η1η2η3

The LMI, Φ < 0 holds if Φ3 < 0 holds.
Using the now the expressions of Ā, Ē, C̄, and F̄ and letting Y = KG, the LMI

Φ3 < 0 becomes:

Φ3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̄1

AG + BY −G� J2

0 G + I P − 2I

0 0 E�P −γ2

I + E�PE

CG + DY 0 0 F −I

G + I 0 0 0 0 −E�PE − 2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

with J̄1 = AG +G�A� + BY + Y�B −G� −G and J2 = −2G − 2G�.
Based on this development, we get the following result.

Theorem 9.3.1 Let γ > 0 be a positive scalar. There exists a controller (9.25) such
that the resulting closed-loop system (9.27) is stable and achieves a prescribed H∞
performance index γ if there exists a symmetric and positive-definite matrix P > 0,
a nonsingular matrix G and a matrix Y such that the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̄1

AG + BY −G� J2

0 G + I P − 2I

0 0 E�P −γ2

I + E�PE

CG + DY 0 0 F −I

G + I 0 0 0 0 −E�PE − 2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

with J̄1 = AG +G�A� + BY + Y�B −G� −G and J2 = −2G − 2G�. Moreover, the
controller gain is given by

K = YG−1 (9.34)

Remark 9.3.1 The LMI of this theorem can be solved easily by convex optimization
softwares. Also, the optimal H∞ performance index γ can be obtained by by letting
δ = γ2 in the LMI of the theorem and solve the corresponding LMI by minimizing δ.
The corresponding disturbance rejection is γ =

√
δ.

Now, we give the following numerical example to verify the results obtained in
the above Theorem.

9.3. H∞ Stabilization 419

Example 9.3.1 Consider a system of the structure (9.24) with the following data:

A =

[
1.00 −1.25
2.50 2.50

]
,

B =

[
0.50
0.10

]
,

C =
[
1 0
]
,

D = 0.8,

E =

[
0.08
0.10

]
,

F = 0.6.

Our purpose in this example is to design a state-feedback H∞ controller of the
form of (9.25) such that the resulting closed-loop system is stable with an optimal
H∞ performance index.

%%%

% State feedback H-8 control

%%%

% Uncertainl case

clear all;

yalmip(’clear’)

% Data

A=[1 0 -1; 0 -2 1; 2 -1 -2];

B=[0 1; 2 0; 1 1];

E=[0.1; 0.2; -0.1]

C=[0.1 0.2; 0.3 0.5; 1 -1];

D=[0.1 0.4; -0.2 -0.3];

F=[0.3; 0.2; 0.1];

n=size(A,1);

m=size(B,2);

% Variables

P=sdpvar(n,n,’symmetric’); % declaration

Y=sdpvar(m,n,’full’);

G=sdpvar(n,n,’full’);

% LMI

F=set(P>0) % Initialization

J1=A*G+G’*A’+B*Y+Y’*B’-G-G’;

J2=2*G-2*G’;

J3=-delta*eye(1)+E’*P*E;

420 9. Robust Control

J4=-E’*P*E-2*eye(n);

F=F+set([J1 G’*A’+Y’*B’-G zeros(n,n) zeros(n,1) G’*C’+Y’*D’ G’+eye(n);

A*G+B*Y-G’ J2 G’+eye(n) zeros(n,1) zeros(n,m) zeros(n);

zeros(n) G+eye(n) P-2*eye(n) P*E zeros(n,m) zeros(n);

zeros(1,n) zeros(1,n) E’*P J3 F’ zeros(1,n)

C*G+D*Y zeros(m,n) zeros(m,n) F -eye(m) zeros(m,n) ;

G+eye(n) zeros(n) zeros(n) zeros(n,1) zeros(,m) J4] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

P=double(P)

Y=double(Y)

G=double(G)

eig(P) % check if the eigenvalues are positive

eig(G)

% compute the controller gain

K=Y*inv(G)

checkset(F)

By solving the LMI of Theorem 9.3.1, the optimal H∞ performance index is given
γ
 =, and the corresponding controller gains are:

K =
[
−6.05 −2.57

]

Furthermore, applying the above controllers and giving two possible system
modes evolution, the state response of the closed-loop system are shown in Figures
1-2 under given initial condition x0 = [−1.2 0.6]�.

9.3.2 Static Output Feedback H∞ Control

Let us consider the design of the static output feedback controller with the following
form:

u(k) = Ky(k)

where y(k) is the measured output and K ∈ Rm×p is the controller gain to be
computed.

Lemma 9.3.2 Consider a system of the form (9.24) with x(0) = 0. If there exists a
Lyapunov function V(x) = x�Px, with P a symmetric and positive-definite matrix,
satisfying the following:

ΔV = V(x(k + 1)) − V(x(k)) < γ2‖w(k)‖2 − ‖z(k)‖2,∀k

then the H∞ performance is satisfied. Moreover, the closed-loop system is stable.

9.3. H∞ Stabilization 421

Theorem 9.3.2 Assume that the matrix B is full column rank. If there exist a sym-
metric and positive-definite matrix P and matrices S ∈ Rn×n and L ∈ Rn×p with the
following structures

S =

[
S 1 S 2

0 S 3

]
, L =

[
L1

0

]

such that the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J

0 −I

[

[S TrA + LG] T−1
r

]�
CT−1

r −P

[S TrE + LH]� F 0 −γ2
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (9.35)

where J = P − S − S �, then the system (9.24) is stable under the static output
feedback controller and satisfies the H∞ performance, i.e.: ‖z‖22 < γ2‖w‖22. The
stabilizing controller gain K is given by:

K = S −1
1 L1

Proof: To prove this theorem, let us first of all assume that the LMI (9.35) holds.
Let us alos define P̄ = T�r PTr, which is equivalent to P = T−1

r P̄T−1
r . Using this, the

LMI (9.35) becomes:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̄

0 −I

[

[S TrA + LG] T−1
r

]�
CT−1

r −P

[S TrE + LH]� F 0 −γ2
I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

where J̄ = T−1
r P̄T−1

r − S − S �.
Pre- and post-multiply this inequality by diag

[
T�r , I, T�r , I

]
and its transpose, we

get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̄

0 −I

[

T�r [S TrA + LG]
]� C −P
[

T topr [S TrE + LH]
]� F 0 −γ2

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

where J̄ = P̄ − T�r
[
S + S �

]
Tr.

Using now the structures of the matrices S and L, we get:

L =

[
L1

0

]
=

[
S 1K

0

]

=

[
S 1 S 2

0 S 3

] [
I

0

]
K = S Tr BK

422 9. Robust Control

which implies:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J̄

0 −I

[

T�r [S TrA + LG]
]� C −P
[

T topr [S TrE + LH]
]� F 0 −γ2

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Defining P, X andH as follows:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 0 0 0
0 I 0 0
0 0 −P 0
0 0 0 −γ2

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T�r S Tr 0
0 I

0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

H =

[−I 0 A + BKC E + BKC
0 −I C F

]

this inequality becomes P +XH +H�X� < 0.
If we define, ξ(k) by

ξ(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k + 1)
z(k)
x(k)
w(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
the closed-loop dynamics can be rewritten as follows:

Hξ(k) = 0

Using Finsler’s lemma,P+XH+H�X� < 0 is equivalent to ξ�Pξ(k) < 0 which
gives in turn the following:

x�(k + 1)Px(k + 1) − x�Px(k) < γ2w�(k)w(k) − z�(k)z(k)

Based on the previous lemma, the closed-loop dynamics satisfies the H∞
performance and is stable. This ends the proof of the theorem. �

9.3.3 Output-Feedback Control

Now let us consider the output-feedback case. T We will consider the following
dynamics: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x(k + 1) = Ax(k) + Bu(k) + Bww(k)

z(k) = Czz(k)

y(k) = Cyx(k)

where x(k) and u(k) are respectively the state and the control, A, B, Cz and C are
known matrices.

9.3. H∞ Stabilization 423

The controller we consider is given by:
⎧⎪⎪⎨⎪⎪⎩

x̂(k + 1) = Ax̂(k) + Bu(k) + LC [x(k) − x̂(k)]

u(k) = Kx̂(k)

where x̂(k) is the state of the controller and the gain K and L are to be determined.
If we define e(k) as:

e(k) = x(k) − x̂(k)

we have:

x(k + 1) = Ax(k) + BKx̂(k) + Bww(k)

= [A + BK] x(k) − BKe(k) + Bww(k)

e(k + 1) = [A − LC] e(k) + Bww(k)

Let η(k) be defined by:

η(k) =

[
x(k)
e(k)

]

we get the following dynamics for the augmented system:

η(k + 1) = Ãη(k) + B̃ww(k)

z(k) = C̃zη(k)

where

Ã =

[
A + BK −BK

0 A − LC

]
,

B̃w =

[
Bw

Bw

]
, C̃z =

[
Cz 0

]
,

Theorem 9.3.3 Let K and L be given gains and γ a positive scalar. If there exist a
symmetric and positive-definite matrix P̃ such that the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̃ 0 Ã�P̃ C̃�z

 −γ2

I B̃wP̃ 0

 −P̃ 0

 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

then closed-loop system is stable and satisfies the H∞ performance.

Proof: Since C̃�z C̃z is positive definite matrix, it results using the Schur
complement that the closed-loop dynamics is stable.

Let V(k) = η�(k)P̃η(k), where P̃ is a symmetric and positive-definite matrix
solution of the LMI of the theorem.

424 9. Robust Control

Now let us compute ΔV(k), i.e.:

Δ(k) = V(k + 1) − V(k)

=
[
Ãη(k) + B̃ww(k)

]�
P̃
[
Aη(k) + B̃ww(k)

]
− η(k)P̃η(k)

=
[
η�(k) w�(k)

] [Ã�P̃Ã − P Ã�P̃B̃w

 B̃�P̃B̃w

] [
η(k)
w(k)

]

Now to establish the H∞ performance, let us consider the following index:

J =
∞∑

k=0

z�(k)z(k) − γ2w�(k)w(k)

where γ is a positive scalar.
Under zero initial conditions, we have:

J =
∞∑

k=0

z�(k)z(k) − γ2w�(k)w(k) + ΔV

=

∞∑
k=0

ζ�Ψζ(k)

where

Ψ =

[
Ã�P̃Ã − P Ã�P̃B̃w

 B̃�P̃B̃w − γ2
I

]
.

Using Schur complement, we get:

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P̃ 0 Ã�P̃ C̃�z

 −γ2

I B̃wP̃ 0

 −P̃ 0

 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, the LMI of the theorem guarantees that Φ < 0, i.e.: J < 0 which
means that ‖e‖2 ≤ γ‖w‖2 which completes the proof of the theorem. �

To design the controller, i.e.: the gains K and L, let us define:

X̃ = P̃−1 =

[
X 0
0 X

]

Since the condition in the previous theorem is nonlinear in the design parameters
K, L and X. To overcome this let us pre- and post-multiply the condition of the
theorem by diag [X, I, X, I], we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X̃ 0 X̃Ã� X̃C̃�z

 −γ2

I X̃B̃w 0

 −X̃ 0

 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

9.4. Conclusion 425

The nonlinear appears in the term ÃX̃. In fact, using the expressions of Ã and X̃
we get:

ÃX̃ =

[
A + BK −BK

0 A − LC

] [
X 0
0 X

]

=

[
AX + BKX −BKX

0 AX − LCX

]

Now if we define Y = KX and add the new condition CX = NC and define
W = LN, we get the LMI condition that allows the design of the parameters K and
L. The following theorem gives the design of the controller gains.

Theorem 9.3.4 Let γ a positive scalar. If there exist symmetric and positive-definite
matrices X, N and mtarix Y such that the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X̃ 0 X̃Ã� X̃C̃�z

 −γ2

I X̃B̃w 0

 −X̃ 0

 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

with
[

AX + BY −BY

 AX −WC

]
,

with the following constraint:

CX = NC

then closed-loop system is stable and satisfies the H∞ performance and the gains
are given by:

K = YX−1

L = WN−1

9.4 Conclusion

This chapter covers some advanced concepts of control. It tackles the stability and
the stabilization problem and their robustness. The uncertainties we considered in
this chapter are of norm bounded type. LMI conditions are developed either for
stability and stabilization. The controller gain is obtained from the resolution of
an LMI. Some examples are provided to show how to solve the stability and the
stabilization problems.

426 9. Robust Control

9.5 Problems

1. For the following dynamics check the stability and determine the best degree
of stability we can get when the system is stable. Use Matlab to solve such
problems.

(a)

A =

[
1 2
3 4

]

(b)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(c)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1

0.1 0.2 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(d)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3 1 0
0.1 0 1
0.2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(e)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1

−0.006 −0.11 0.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(f)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2.1 1 0
−1.46 0 1
0.336 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
2. For the following dynamics check the robust stability and determine the best

degree of stability we can get when the system is stable. Use Matlab to solve
such problems.

(a)

A =

[
1 2
3 4

]
,DA =

[
0.1
0.4

]
, EA =

[
0.1 0.4

]
,

(b)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0.4
0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[

0.1 0 0.4
]
,

9.5. Problems 427

(c)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1

0.1 0.2 0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.2
0.1
0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[
0.1 0.2 0.1

]
,

(d)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3 1 0
0.1 0 1
0.2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
−0.1
0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[
0.1 −0.1 0.2

]
,

(e)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1

−0.006 −0.11 0.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0
0.0
0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[

0 0 0.4
]
,

(f)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2.1 1 0
−1.46 0 1
0.336 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0.0
0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[

0.1 0 0
]
,

3. For the following dynamics design the state feedback controller that stabilizes
the closed-loop dynamics and determine the best degree of stability maximal
we can get for the system. Use Matlab to solve such problems.

(a)

A =

[
3 −2
1 0

]
B =

[
1
0

]
,C =

[
1 −0.7

]

(b)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
3.1 −2.3 0.2
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦C =
[
0 1 −0.7

]

(c)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−3.1 −2.3 −0.2

1 0 0
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦C =
[
0 0 1

]

(d)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6.1 −11.6 −7.1 −0.6
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C =

[
0 0 1 5

]

4. For the following dynamics design the state feedback controller that assures the
robust stability of the closed -loop dynamics and determine the best degree of
stability that we can get for each system. Use Matlab to solve such problems.

428 9. Robust Control

(a)

A =

[
1 2
3 −4

]
,DA =

[
0.1
0.4

]
, EA =

[
0.1 0.4

]
,

(b)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
1 2 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0

0.4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[

0 0 0.2
]
,

(c)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1

0.1 −0.2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.2
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[

0.1 0 0.1
]
,

(d)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.5 1 0
−0.1 0 1
0.2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[
0.1 −0.1 0

]
,

(e)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
−0.6 0.11 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.0
0.0
0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[

0 0 0.1
]
,

(f)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.1 1 0

1.46 0 1
0.3 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3
0.0
0.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[
0.2 0 0

]
,

5. Consider a dynamical system:

x(k + 1) = Ax(k) + Bu(k) + Bww(k)

z(k) = Cx(k)

y(k) = Cx(k)

9.5. Problems 429

with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−6.1 −11.6 −7.1 −0.6
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bw =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1
0
0

0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =
[
0 0 1 5

]

(a) design a state feedback controller that assures the H∞ performance
(b) design a static output feedback controller that assures the H∞ performance
(c) design a dynamical output feedback controller that assures the H∞

performance

6. Consider a dynamical system:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5.1 −8.6 −3.1 0.6
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C =
[

0 0 1 5
]

(a) design a state feedback controller
(b) design a static output feedback controller
(c) design a dynamical output feedback controller

10
Guaranteed Cost Control Problem

After reading this chapter, the reader will be able to :

1. define the guaranteed cost problem

2. design a stabilizing controller (state feedback, static output feedback,
dynamic output feedback) for uncertain discrete-time systems

3. establish LMI conditions for the design of the stabilizing controllers

4. use existing tools to solve such problem

10.1 Introduction

In the previous chapter, we presented different results that can be used to deal with
nominal and uncertain systems and also with systems that are subject to exter-
nal disturbances. LMI conditions were developed to design controller to achieve
the desired goal. In this chapter we consider uncertain discrete-time with norm
bounded uncertainties and try to present results that can be used to design a con-
troller such that the resulting closed-loop system is asymptotically stable while an
upper bound on the closed-loop value of the associated linear quadratic cost function
is guaranteed.

432 10. Guaranteed Cost Control Problem

Guaranteed cost control for uncertain discrete-time systems is a control problem
that has been a research topic of recurring interest in recent years. Its aim is to design
a controller such that the resulting closed-loop system is asymptotically stable while
an upper bound on the closed-loop value of an associated cost function is guaranteed.
Various approaches have been developed and a great number of results on this topic
have been reported in the literature using either the Riccati equation approach or the
linear matrix inequality (LMI) approach. The LMI approach offers the possibility
of solving the problem easily since tools for this purpose are already available.

In this chapter, we consider the guaranteed cost control problem for uncer- tain
discrete-time systems. The uncertainties of the dynamics of the discrete-time system
are assumed to be time-varying but norm-bounded. A linear quadratic cost function
is defined as a performance measure for the closed-loop system. Attention is focused
on the design of a state feedback controller which ensures not only the asymptotic
stability of the closed-loop system but also an upper bound on the closed-loop value
of the cost function. A sufficient condition for the solvability of this problem in the
LMI setting is obtained. The static output feedback and the dynamic output feedback
controllers are also tackled.

The rest of the chapter is organized as follows. In Section 2, the problem is stated.
In Section 3, we developed the sufficient condition to design the state feedback
controller such that the resulting closed-loop system is asymptotically stable while
an upper bound on the closed-loop value of the associated linear quadratic cost
function is guaranteed. Same results are developed in Section 4 for the static output
feedback and the dynamic output feedback controllers.

10.2 Problem Statement

Let the dynamics of the discrete time system be described by the following:
⎧⎪⎪⎨⎪⎪⎩

x(k + 1) = [A + ΔA(k)] x(k) + [B + ΔB(k)] u(k)

x(0) = x0
(10.1)

where x(k) ∈ Rn, u(k) ∈ Rm represent the values of the state and the input at the in-
stant kT , A and B are known matrices with appropriate dimensions,ΔA(k) andΔB(k)
represent the uncertainties of the system that are assumed to have the following
forms: ⎧⎪⎪⎨⎪⎪⎩

ΔA(k) = DAFA(k)EA

ΔB(k) = DBFB(k)EB
(10.2)

with F�A (k)FA(k) ≤ I and F�B (k)FB(k) ≤ I.
Associated with this system we have the following cost function:

J =
∞∑

k=0

[
x�(k)Qx(k) + u�(k)Ru(k)

]
(10.3)

10.3. State Feedback Control Design 433

where Q is a symmetric and positive-definite matrix and R is a symmetric and
positive-definite matrix.

The controller we will consider in the chapter has the following form:

u(k) = Kx(k) (10.4)

Combining the system dynamics and the controller expression we obtain the
following expression for the closed-loop dynamics:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = [A + BK + ΔA(k) + ΔB(k)K] x(k)

x(0) = x0

The corresponding cost is given by:

J =
∞∑

k=0

[
x�(k)

[
Q + K�RK

]
x(k)
]

The objective of this chapter is to design a state feedback controller with the form
(10.4) such that the closed-loop dynamics is stable for all admissible uncertainties
with a guaranteed cost. The design variable is the gain of the controller K that we
have to determine.

Definition 10.2.1 For the uncertain system (10.1) and cost (10.3), if there exist a
control law u
(.) and a positive scalar J
 such that for all admissible uncertainties,
the closed-dynamics is asymptotically stable and J ≤ J
, then J
 is said to be a
guaranteed cost and u
(.) is said to be a guaranteed cost control law

In the rest of this chapter we will try to solve this control and develop LMI con-
dition that can be used to design the state feedback controller that gives the desired
objective.

10.3 State Feedback Control Design

The aim of this section is to design the state feedback controller such that the
closed-dynamics is asymptotically stable and J ≤ J
. First of all we will assume
the existence of the controller and determine under which condition, the closed-
dynamics is asymptotically stable and J ≤ J
. Then, based on this condition we
design the gain of the state feedback controller.

The following result gives the condition under which the closed-dynamics is
asymptotically stable and J ≤ J
.

Theorem 10.3.1 Let K be a given gain. If there is exist symmetric and positive-
definite matrices P, U and V, and positive scalars εA and εB such that the following
LMI holds:

434 10. Guaranteed Cost Control Problem

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P A�P + K�B�P E�A K�E�B I K�

 −P + εAPDD�P + εBPDD�P 0 0 0 0
EA 0 −εAI 0 0 0

EBK 0 0 −εBI 0 0
I 0 0 0 −U 0
K 0 0 0 0 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (10.5)

then the closed-loop system is stable and the upper bound of the cost is J ≤
x�(0)Px(0).

Proof: From the LMI (10.5) and the results of the previous chapter, we conclude
that the closed-loop dynamics is stable. Let the Lyapunov function candidate be
given by:

V(x(k)) = x�(k)Px(k) (10.6)

where P is solution of the LMI (10.5).
Using this Lyapunov function and the closed-loop dynamics, we get:

ΔV(k) = V(x(k + 1)) − V(x(k))

= x�(k + 1)Px(k + 1) − x�(k)Px(k)

= x�(k)
[
V �PV − P

]
x(k)

with V = [A + BK + ΔA(k) + ΔB(k)K]
Notice that

[−P V �P
PV −P

]

that can be rewritten as follows:
[−P A�P + K�B�P

 −P

]
+

[
0 ΔA�(k)P

 0

]
+

[
0 K�ΔB�(k)P

 0

]

On the other hand, notice that:
[

0 0
PDAFA(k)EA 0

]
=

[
0

PDA

]
FA(k)

[
EA 0

]

[
0 0

PDBFB(k)EBK 0

]
=

[
0

PDB

]
FB(k)

[
EBK 0

]

Using Lemma 9.1.2, we get:
[

0 ΔA�(k)P
0 0

]
+

[
0 ΔA�(k)P
0 0

]�
≤ εA

[
0 0
0 PDAD�A P

]

+ε−1
A

[
E�A EA 0

0 0

]

10.3. State Feedback Control Design 435

[
0 K�ΔB�(k)P
0 0

]
+

[
0 K�ΔB�(k)P
0 0

]�
≤ εB

[
0 0
0 PDBD�B P

]

+ε−1
B

[
K�E�B EBK 0

0 0

]

Using Schur complement, if the following holds, the system is stable:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P A�P + K�B�P E�A K�E�B

 −P + εAPDAD�A P + εBPDBD�B P 0 0
EA 0 −εAI 0

EBK 0 0 −εBI

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Based on the LMI (10.5) of the Theorem 1, we get:

ΔV(k) + x�(k)
[
Q + K�RK

]
x(k) ≤ 0

with Q = U−1 and R = V−1.
Using the fact that the closed-loop dynamics is stable, we get:

−x�(0)Px(0) +
∞∑

k=0

x�(k)
[
Q + K�RK

]
x(k) ≤ 0

which gives

J ≤ x�(0)Px(0)

This ends the proof of the theorem. �
The design of the controller which assures that the closed-loop dynamics is

asymptotically stable and the cost J is bounded for all admissible uncertainties
is brought to the determination of the gain K. The condition (10.5) of the previ-
ous theorem can be used for this purpose since it already assures the stability of
the closed-loop dynamics and the corresponding gain is bounded. This LMI can
not be used directly since it is nonlinear in the decision variables P and K. Some
transformations for this LMI are needed.

For this purpose, let X = P−1 and pre- and post-multiplying the condition (10.5)
respectively by diag [X, X, I, I, I, I] we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X XA� + XK�B� XE�A XK�E�B X XK�

 −X + εADAD�A + εBDBD�B 0 0 0 0

EAX 0 −εAI 0 0 0
EBKX 0 0 −εBI 0 0

X 0 0 0 −U 0
KX 0 0 0 0 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Letting Y = KX, we get the following theorem.

436 10. Guaranteed Cost Control Problem

Theorem 10.3.2 There exists a guaranteed cost control law if there is exist sym-
metric and positive-definite matrices X, U and V, a matrix Y and positive scalars
εA and εB such that the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X XA� + Y�B� XE�A Y�E�B X Y�

 −X + εADAD�A + εBDBD�B 0 0 0 0

EAX 0 −εAI 0 0 0
EBY 0 0 −εBI 0 0

X 0 0 0 −U 0
Y 0 0 0 0 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (10.7)

then the closed-loop system is stable under the control law u(k) = YX−1x(k) and the
upper bound of the cost is J ≤ x�(0)X−1x(0).

In the next example, we show how to solve the guaranteed cost control problem
for the class of system we are considering. We will also give the code that can be
used for this purpose.

Example 10.3.1 To show how to solve the guaranteed control problem for the
class of discrete-time systems, let us consider a system of the form (10.1) with the
following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.7 0 −0.5

0.05 0.8 0
0 0.3 0.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3
0

0.6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0

0.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,DB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.2
0

0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

EA =
[
0.3 0 0.2

]
, EB =

[
0.2
]

First of all, we can check that the system is unstable. In fact the eigenvalues of
the matrix A are:

s1 = 3.6992

s2 = 0.8122

s3 = 0.5886

One pole is outside the unit circle and therefore even the nominal system is un-
stable. We can then use the results of the previous theorem to stabilize it and at the
same time guarantee that the cost remains bounded for all admissible uncertainties.
The following program can be used to compute the controller gain.

%%%%%%%%%%%%%%%

% Guaranteed cost control for uncertain System %

%%%%%%%%%%%%%%%

clear all;

yalmip(’clear’)

10.3. State Feedback Control Design 437

% Data

A=[3.7 0 -0.5; 0.05 0.8 0; 0 0.3 0.6];

B=[0.3; 0; 0.6];

Da=[0.1; 0; 0.2];

Ea=[0.3 0 0.2];

Db=[0.2; 0; 0.1];

Eb=[0.2];

n=size(A,1);

m=size(B,2);

% Variables

X=sdpvar(n,n,’symmetric’);

Y=sdpvar(m,n,’full’);

U=sdpvar(n,n,’symmetric’);

V=sdpvar(m,m,’symmetric’);

epsa=sdpvar(1,1,’full’);

epsb=sdpvar(1,1,’full’);

% LMI

F=set(X>0) % Initilization

F=F+set(X>0)

F=F+set(U>0)

F=F+set(V>0)

F=F+set(epsa>0)

F=F+set(epsb>0)

J=-X+epsa*Da*Da’ +epsa*Db*Db’ ;

F=F+set([-X X*A’+Y’*B’ X*Ea’ Y’*Eb’ X Y’;

A*X+B*Y J zeros(n,1) zeros(n,1) zeros(n) zeros(n,1);

Ea*X zeros(1,n) -epsa*eye(1) zeros(1) zeros(1,n) zeros(1);

Eb*Y zeros(1,n) zeros(1) -epsb*eye(1) zeros(1,n) zeros(1) ;

X zeros(n) zeros(n,1) zeros(n,1) -U zeros(n,1);

Y zeros(1,n) zeros(1) zeros(1) zeros(1,n) -V] < 0)

% Solve

Sol=solvesdp(F)

% Extract data from the solution

X=double(X)

Y=double(Y)

U=double(U)

V=double(V)

epsa=double(epsa)

438 10. Guaranteed Cost Control Problem

epsb=double(epsb)

K=Y*inv(X)

eig(X)

checkset(F)

If we run this program we get:

εA = 3.2836

εB = 80.7197

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.3115 0.7176 5.7987
0.7176 27.9978 −3.2042
5.7987 −3.2042 30.2667

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Y =

[
−6.5607 −10.5129 −16.8854

]

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
70.7693 3.1020 15.6204
3.1020 131.3457 0.6395

15.6204 0.6395 151.8819

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
V =

[
203.4407

]

The matrices X, U and V are all symmetric and positive-definite and therefore
the LMI is feasible. The corresponding gain is given by:

K =
[
−20.0355 0.5198 3.3356

]
.

In this section we assumed that the states are available for feedback. More often
this is not true for different reasons like the absence of appropriate sensors or for
price reasons. Therefore, a controller that uses only the measured outputs (states) is
preferable in this case. The next section tackles the design of controllers that use the
measured states. Two types of controllers are presented, the static feedback output
and the dynamic feedback output controllers.

10.4 Output Feedback Control

The dynamics in this case is given by:

⎧⎪⎪⎨⎪⎪⎩
x(k + 1) = [A + ΔA(k)] x(k) [B + ΔB(k)] u(k)

y(k) = [C + ΔC(k)] x(k) [D + ΔD(k)] u(k)
(10.8)

where u(k) ∈ Rm is the control input and y(k) ∈ Rp is the measured output and A,
B, C and D are known known real matrices with appropriate dimensions and ΔA(k),
ΔB(k), ΔC(k) and ΔD(k) are the system uncertainties that are supposed to satisfy the
following:

10.4. Output Feedback Control 439

ΔA(k) = DAFA(k)EA

ΔB(k) = DBFB(k)EB

ΔC(k) = DCFC(k)EC

ΔD(k) = DDFD(k)ED

with DA, EA, DB, EB, DD, EC , DD and ED are known matrices.
The corresponding cost function for the system (10.8) is given by 10.3).
Let us first of all consider the case of the following controller for the case when

D = 0:

u(k) = Ky(k) = KCx(k) (10.9)

where K is a the controller gain that we have to determine.
Using the expression of the controller, the closed-loop system becomes:

x(k + 1) = [A + ΔA(k) + BKC + ΔB(k)KC] x(k)

This dynamics will be stable and has a guaranteed cost for all admissible un-
certainties if there exist symmetric and positive definite matrices P, U, and V and
positive scalars εA and εB such that the following holds:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P A�P +C�K�B�P E�A C�K�E�B I C�K�

 −P + εAPDAD�A P + εBPDBD�B P 0 0 0 0
EA 0 −εAI 0 0 0

EBKC 0 0 −εBI 0 0
I 0 0 0 −U 0

KC 0 0 0 0 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Proceeding similarly as we did previously we get after posing X = P−1 pre- and
post- multiplying this by diag [X, X, I, I, I, I], we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X XA� + XC�K�B� XE�A XC�K�E�B X XC�K�

 −X + εADAD�A + εBDBD�B 0 0 0 0
EA 0 −εAI 0 0 0

EBKCX 0 0 −εBI 0 0
X 0 0 0 −U 0

KCX 0 0 0 0 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Let us assume that the following holds:

CX = NC

Using this and posing Y = KN, we get the following result.

440 10. Guaranteed Cost Control Problem

Theorem 10.4.1 There exists a guaranteed cost control law if there is exist symmet-
ric and positive-definite matrices X, U, V and N, a matrix Y and positive scalars εA

and εB such that the following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X XA� +C�Y�B� XE�A C�Y�E�B X C�Y�

 −X + εADAD�A + εBDBD�B 0 0 0 0

EAX 0 −εAI 0 0 0
EBYC 0 0 −εBI 0 0

X 0 0 0 −U 0
YC 0 0 0 0 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0 (10.10)

with the following constraint:

CX = NC (10.11)

then the closed-loop system is stable under the control law u(k) = YN−1 x(k) and the
upper bound of the cost is J ≤ x�(0)X−1x(0).

Let us now concentrate on the design of the output dynamic feedback controller.
The control law we are interested by in this section is given by:

⎧⎪⎪⎨⎪⎪⎩
x̂(k + 1) = KAx̂(k) + KBy(k)

u(k) = KC x̂(k)
(10.12)

where KA, KB and KC are gains to be determined.
Our goal is to design a control law of the form (10.12) such that the closed-loop

dynamics is stable and the cost is bounded for all admissible uncertainties.
In the rest of this section we will restrict ourself to the following expression for

the uncertainties:

ΔA(k) = DAFA(k)EA

ΔC(k) = DCFC(k)EC

where DA, EA, DC and EC are known matrices and FA(k) and FC(k) are the
uncertainties that satisfies F�A (k)FA(k) ≤ I and F�C (k)FC(k) ≤ I.

Letting D = 0 and the uncertainties on the matrix B are equal to zero in the dy-
namics and combining the system and the controller dynamics, we get the following
one:

η(k + 1) =
[
Ã + D̃F(k)Ẽ

]
η(k) (10.13)

10.4. Output Feedback Control 441

where

η(k) =

[
x(k)
x̂(k)

]
,

Ã =

[
A BKC

KBC KA

]
,

D̃ =

[
DA 0
0 KBDC

]
,

Ẽ =

[
EA 0
EC 0

]

F(k) =

[
FA 0
0 FC

]
.

The corresponding cost function becomes:

J =
∞∑

k=0

η�(k)Q̃η(k) (10.14)

where

Q̃ =

[
Q 0
0 K�C RKC

]

There are different ways to design the dynamic output feedback controller. In
the rest of this section, we will develop one among these ways (see [2]). Before
designing the gains KA, KB and KC let us establish under which conditions the
closed-loop dynamics for given gains will be robustly stable and has guaranteed
cost. The following theorem gives such results.

Theorem 10.4.2 Let KA, KB and KC be given gains. If there exist symmetric and
positive-definite matrices X, U and V and positive scalars εA and εC such that the
following LMI holds:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X 0 XA� XC�K�B XE�A XE�C X 0

 −X XK�C B� XK�A 0 0 0 XK�C

 −X + εADAD�A 0 0 0 0 0

 −X + εCKBDCD�C K�B 0 0 0 0

 −εAI 0 0 0

 −εCI 0 0

 −U 0

 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0(10.15)

then the closed-loop system is stable and the upper bound of the cost is J ≤
x�(0)X−1x(0).

Proof: From the LMI (10.15) and the results of the previous chapter, we conclude
that the closed-loop dynamics is stable. Let the Lyapunov function candidate be
given by:

V(η(k)) = η�(k)P̃η(k)

442 10. Guaranteed Cost Control Problem

where P̃ = X̃−1 is solution of the LMI (10.15).
Using this Lyapunov function and the closed-loop dynamics, we get:

ΔV(k) = V(η(k + 1)) − V(η(k))

= η�(k + 1)P̃η(k + 1) − η�(k)P̃η(k)

= η�(k)
[
V �P̃V − P̃

]
η(k)

with V =
[
Ã + ΔÃ(k)

]
Notice that [−P̃ V �P̃

P̃V −P̃

]

that can be rewritten as follows:[−P̃ Ã�P̃

 −P̃

]
+

[
0 ΔÃ�(k)P̃

 0

]

On the other hand, notice that:
[

0 0
P̃D̃F(k)Ẽ 0

]
=

[
0

P̃D̃

]
F(k)

[
Ẽ 0
]

Using the lemma 9.1.2, we get:
[

0 ΔÃ�(k)P̃
0 0

]
+

[
0 ΔÃ�(k)P̃
0 0

]�
≤ ε
[

0 0
0 P̃D̃D̃�P̃

]

+ε−1

[
Ẽ�Ẽ 0

0 0

]

for ε > 0.
Using Schur complement, if the following holds, the system is stable:

[−P̃ + εẼ�Ẽ Ã�P̃

 −P̃ + εP̃D̃D̃�P̃

]
< 0

Based on the LMI (10.15) of the theorem, we get:

ΔV(k) + η�(k)Q̃η(k) ≤ 0

with Q = U−1 and R = V−1.
Using the fact that the closed-loop dynamics is stable, we get:

−x�(0)Px(0) +
∞∑

k=0

x�(k)
[
Q + K�RK

]
x(k) ≤ 0

which gives

J ≤ x�(0)Px(0)

This ends the proof of the theorem. �

10.4. Output Feedback Control 443

Theorem 10.4.3 Consider the system (10.8) with the dynamic output feedback
controller, then system (10.8) is robustly stabilizable if there exist symmetric and
positive-definite matrices X, U and V, a matrix Y and positive scalars εA and εC

such that the following LMI is feasible:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−X 0 XA� XC�C XE�A XE�C X 0

 −X Y�B� XA� 0 0 0 Y�

 −X + εADAD�A 0 0 0 0 0

 −X + εCC�DCD�CC 0 0 0 0

 −εAI 0 0 0

 −εCI 0 0

 −U 0

 −V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0(10.16)

Moreover

1. the dynamic output feedback controller and the control law are given by:

x̂(k + 1) = Ax̂(k) +C�y(k)

u(k) = YX−1 x̂(k)

2. the cost function satisfies:

J ≤ x�(0)X−1x(0)

Remark 10.4.1 The feasible solution of the previous theorem allows us to con-
struct a family of controllers which represents an advantage of this approach. The
controller that may assure the minimum bound of interest.

To design the controller that assures the minimum bound for the cost notice that
x�(0)X−1x(0) < � for a given initial vector x(0) can be rewritten as follows:

[−� x�(0)
x(0) −X

]
< 0 (10.17)

The following optimization problem will give the desired controller:

min � s.t.: (10.16)-(10.17)

Corollary 10.4.1 Let X, U, V, Y, �, εA and εC be the solution of the optimization
problem, then the controller (10.12) with:

KA = A

KB = C�

KC YX−1

will stabilize the system and at the same time assure the minimum cost.

444 10. Guaranteed Cost Control Problem

10.5 Conclusion

In this chapter we considered uncertain discrete-time systems and design a state
feedback controller that stabilized the closed-loop dynamics and at the sane time
guarantees that the associated cost remains bounded for all admissible uncertainties.
LMI condition is established to design the state feedback controller gain.

10.6 Problems

1. For the following dynamical discrete-time systems with the following data:

A =

[
1 1
−1 5

]
, B =

[
0
1

]
,DA =

[
0.1
0.2

]
, EA =

[
0.2 −0.1

]
,

DB =

[−0.1
0.2

]
EB =

[
0.1
]
,Q =

[
1 0
0 2

]
R =

[
0.1
]

A =

[
0 1
−2 −5

]
, B =

[
0 1
1 0

]
,DA =

[−0.1
−0.2

]
, EA =

[
0.1 −0.11

]
,

DB =

[
0.1
−0.1

]
, EB =

[
0.1 0.1

]
,Q =

[
2 0
0 4

]
R =

[
5
]

(a) write a Matlab program to solve the guaranteed cost problem
(b) give initial conditions and write a simulation program to plot the behavior

of the states versus time

2. For the following dynamical discrete-time system with the following data:

A =

[
1 1
−1 1

]
, B =

[
0
1

]
,DA =

[
0.1
−0.1

]
, EA =

[
−0.1 −0.1

]
,

DB =

[
0.1
−0.2

]
EB =

[
−0.1

]

(a) design the following controllers:

i. state feedback

ii. static output feedback

iii. dynamic output feedback

that assure the guaranteed cost
(b) give initial conditions and write a simulation program to plot the behavior

of the states versus time when F(k) = 0.1 sin(k)

10.6. Problems 445

3. For the following dynamical discrete-time system with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
−1 1 0
−1 −2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
−0.1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , EA =
[
−0.1 −0.1 −0.1

]
,

DB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
−0.2
−0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ EB =
[
−0.1 −0.2

]

(a) design the following controllers:

i. state feedback

ii. static output feedback

iii. dynamic output feedback

that assure the guaranteed cost
(b) give initial conditions and write a simulation program to plot the behavior

of the states versus time when F(k) = 0.5 cos(k)

Part VII

Case Studies

11
Case Studies

After reading this chapter the reader will:

1. experiment his knowledge in regard to the design and real time
implementation of mechatronic systems

2. live the design of mechatronic systems from A to Z

3. be able to perform the different phases of the design of mechatronic
systems

4. be able to solve the control problem and establish the control law that
we have to implement in real time

5. be able to write programs in C language using the interrupt concept for
real time implementation

11.1 Introduction

In the previous chapters we developed some concepts that we illustrated their appli-
cations by academic examples to show the readers how these results apply. More
specifically, we have seen how to design the mechatronic systems and we have

450 11. Case Studies

presented the different steps that we must follow to success the design of the desired
mechatronic system. We have presented the approaches that we must use in the
design of:

• the mechanical part

• the electronic circuit

• the program in C for the real-time implementation

These tools were applied for some practical systems and more details were given
to help the reader to execute his own design.

For the control algorithms most of the examples we presented were academic
with perfect models. Unfortunately, for a practical system the model we will have
is just a realization that may describe the system in some particular conditions, and
for some reasons this model will not work perfectly as expected during the real-
time implementation of the algorithms. This can be caused by different neglected
dynamics that may change the behavior for some frequencies.

The aim of this chapter is to show the reader how we can implement in real-time
the theoretical results we developed earlier in the previous chapters for practical
systems. We will proceed gradually and show all the steps to make it easy for the
readers. The case studies we consider in this chapter are those that are discussed and
designed in the previous chapters.

11.2 Velocity Control of the dc Motor Kit

As a first example, let us consider the speed control of the dc motor driving a me-
chanical part. The choice of this example is very important since most of the systems
will use such dc motor. The dc motor we will consider is manufactured by Maxon
company. This motor is very important since it comes with a gearbox (ratio 6:1) and
an encoder that gives one hundred pulses per revolution, which gives 600 pulses per
revolution that we exploit by using quadrature method to bring it to two thousand
four hundred pulses per revolution. The system we are using in this example for the
real-time implementation of control algorithms we presented earlier if more flexible
and offer more advantages.

The data sheet of this motor gives all the important parameters and therefore the
transfer function of this actuator can be obtained easily. The load we are considering
in this example is a small disk with graduation that we would like to control in speed
and later on in position. This setup is illustrated in Figs. 11.1-(11.2). The disk we
are considering has a diameter equal to 0.06 m and a mass equal to 0.050 Kg. With
these data and the one of the data sheet of the dc motor, we can get the transfer
function between the velocity of the disk and the input voltage.

Let us first of all concentrate on speed control of the load. In this case to establish
the transfer function of this system (dc motor actuator and its load) we can either
use the data sheet, the information we have on the disk and the results in Boukas [1]

11.2. Velocity Control of the dc Motor Kit 451

C1,C2,C3 are
equal to 0.1μF

C4,C5 are equal
to 100μF/16V

Battery
voltage

regulator

ds
P

ic
30

F
40

11

D
C

M
ot

or
Se

ns
or

17
18
19
20
21
22
23
24 25

26
27
28
29
30
31
32

C5

C4

C3

C2

C1

L
2

9
3

D

Fig. 11.1 Electronic circuit of dc motor kit

or proceed with an identification. Using the first approach the results of Chapter 2
in [1], we get:

G(s) =
K

τs + 1
with

K = 48.91

τ = 63.921 ms

For the identification of our system, we can do it in real-time using the real-
time implementation setup and appropriate C program. Since the microcontroller
owns limited memory, the identification can be done into two steps. Firstly, in a first
experiment the gain, K, is determined, then using this gain we compute the steady
state value that can be used to compute the constant time τ.

To design the controller we should first of all specify the performances we would
like that our system has. As a first performance, we require that our system is stable.
It is also needed that the system speed will have a good behavior at the transient
regime with a zero error at the steady state regime for a step reference. For the
transient we would like that our load has a settling time with 5% less or equal to 3τ

5
and an overshoot less or equal to 5%.

To accomplish the design of the appropriate controller we can either make the
design in continuous-time and then obtain the algorithm we should program in the
software part, or proceed with all the design in the discrete-time directly. In the rest
of this example, we will opt for the second approach.

452 11. Case Studies

Fig. 11.2 Real-time implementation setup

From the expression of the system transfer function, and the desired perfor-
mances it results that we need at least a proportional and integrator (PI) controller.
The transfer function of this controller is given by:

C(s) = KP +
KI

s

where KP and KI are gains to be determined to force the load to have the
performances we imposed.

11.2. Velocity Control of the dc Motor Kit 453

Using a zero-order-holder and the Z -transform table we get:

G(z) =
Kz
(
1 − e−

T
τ

) (
1 − z−1

)

(z − 1)
(
z − e− T

τ

)

=
K
(
1 − e− T

τ

)

z − e− T
τ

For the controller, using the trapezoidal discretisation we get:

C(z) =
U(z)
E(z)

= KP + KI
T
2

z + 1
z − 1

=

(
KP +

T KI
2

)
z +
(
−KP +

T KI
2

)

z − 1

Dividing the numerator and the denominator by z and going back to time, we get:

u(k) = u(k − 1) +
(
KP +

T KI

2

)
e(k) +

(
−KP +

T KI

2

)
e(k − 1)

Combining the transfer function of the actuator and its load and the one of the
controller we get the following closed-loop transfer function:

F(z) =
K
(
1 − e− T

τ

) (
KP +

T KI
2

)
z + K

(
1 − e− T

τ

) (
−KP +

T KI
2

)

z2 +
(
K
(
KP +

T KI

2

) (
1 − e− T

τ

)
− 1 − e− T

τ

)
z + K

(
1 − e− T

τ

) (
−KP +

T KI

2

)
+ e− T

τ

Using now the desired performances, it is easy to conclude that the dominant
poles are

s1,2 = −ζωn ± jwn

√
1 − ζ2

where ζ and ωn represent respectively the damping ratio and the natural frequency
of the closed-loop of our system control.

From control theory (see Boukas [1]) it is well known that the overshoot d% and
the settling time ts at 5% are given by:

d% = 100e
−πζ√
1−ζ2

ts =
3
ζωn

Using our performances and these expressions we conclude that:

ζ = 0.707

ωn =
5
τζ
= 110.6387rad/s

which give the following dominant poles:

s1,2 = −78.2216± 78.2452 j

454 11. Case Studies

Using the transformation z = eT s with T = τ
10 = 0.0064, we obtain the following

dominant poles in the Z -domain:

z1,2 = 0.5317 ± 0.2910 j

With these poles we have the following characteristic equation:

Δd = (z − 0.5317 − 0.2910 j) (z − 0.5317 + 0.2910 j)

= z2 − 1.0634z+ 0.3674

Using now the poles placement technique we get:

1 +C(z)G(z) = Δd

which implies:

KI =
0.3040

KT
(
1 − e− T

τ

)

KP =
−0.4308+ 2e−

T
τ

2K
(
1 − e− T

τ

)

Using the values of K, T and τ, we get the following expression for the gains KP

and KI :

KP = 0.1480

KI = 10.1951

Remark 11.2.1 Cautions have to be made in this case since we don’t care about
the positions of the zero of the transfer function and therefore we may have some
surprises when implementing this controller. It is clear that the performances we
will get (settling time and the overshoot) will depend on the positions of the zero.
For more details on this matter we refer the reader to Boukas [1].

To implement now this PI control algorithm and assure the desired performances
we will use a microcontroller from Microship1. This choice is due to our experience
with this type of microcontroller. The reader can keep in mind that any other micro-
controller from other manufacturer with some small changes will do the job. In this
example we will use the microcontroller dsPIC30F4011 from Microhip.

The code for our implementation is made in C-language. This language is
adopted for its simplicity. The implementation has the following structure:

//

// Put here the include

//

#include "p30F4011.h" // proc specific header

//

1 See www.microchip.com

11.2. Velocity Control of the dc Motor Kit 455

// Define a struct

//

typedef struct {

// PI Gains

float K_P; // Propotional gain

float K_I; // Integral gain

//

// PI Constants

//

float Const1_pid; // KP + T KI/2

float Const2_pid; // -KP + T KI/2

float Reference; // speed reference

//

// System variables

//

float y_k; // y_m[k] -> measured output at time k

float u_k; // u[k] -> output at time k

float e_k; // e[k] -> error at time k

//

// System past variables

//

float u_prec; // u[k-1] -> output at time k-1

float e_prec; // e[k-1] -> error at time k-1

}PIStruct;

PIStruct thePI;

thePI.Const1= thePI.K_P+T*thePI.K_I/2;

thePI.Const2=-thePI.K_P+T*thePI.K_I/2;

thePI.Reference=600;

//

// Functions

//

float ReadSpeed(void);

float ComputeControl(void);

float SendControl(void);

//

// Interrupt program here using Timer 1 (overflow of counter Timer 1)

//

void __ISR _T1Interrupt(void) // interrupt routine code

{

456 11. Case Studies

// Interrupt Service Routine code goes here

float Position_error;

//

// Read speed

//

thePI.y_m=ReadSpeed();

thePI.e_k= thePI.Reference-thePI.y_m;

//

// Compute the control

//

ComputeContrl();

//

// Send control

//

SendControl();

IFS0bits.T1IF=0; // Disable the interrupt

}

int main (void) // start of main application code

{

// Application code goes here

int i;

// Initialize the variables Reference and ThePID.y_m (it can be read

from inputs) Reference = 0x8000; // Hexadecimal number

(0b... Binary number) ThePID = 0x8000;

// Initialize the registers

TRISC=0x9fff; // RC13 and RC14 (pins 15 and 16) are configured as outputs

IEC0bits.T1IE=1; // Enable the interrupt on Timer 1

// Indefinite loop

while (1)

{

}

return 0

}

% ReadSpeed function

int ReadSpeed (void)

{

}

11.3. Position Control of the dc Motor Kit 457

% ComputeControl function

int ComputeControl (void)

{

thePI.u_k=thePI.u_prec+thePI.Const1*thePI.e_k+thePI.Const2*thePI.e_prec;

}

% SendControl function

int Send Control (void)

{

sendControl()

//

// Update past data

//

thePI.u_prec=thePI.u_k;

ThePI.e_prec=thePI.e_k;

}

As it can be seen from this structure, first of all we notice that the system will
enter the loop and at each interrupt the call for the functions:

• ReadSpeed;

• ComputeControl;

• SendControl;

is made and the appropriate action is taken.
The ReadSpeed function returns the load speed at each sampling time that will

be used by the ComputeControl function. The SendControl function sends the
appropriate voltage to the actuator via the L293D chip.

Using the compiler HighTec C to get the hex code and the PicKit-2 to upload
the file in the memory of the microcontroller. For more detail on how to get the hex
code we invite the reader to the manual of the compiler HighTec C or the compiler
C30 of Microchip.

The state approach in this case is trivial and we will not develop it.

11.3 Position Control of the dc Motor Kit

Let us focus on the load position control. Following similar steps as for the load ve-
locity control developed in the previous section, we need firstly to choose the desired
performances we would like our system will have. The following performances are
imposed:

458 11. Case Studies

• system stable in the closed-loop;

• settling time ts at 2% equal to the best one we can have

• overshoot equal to 5%

• steady-state equal to zero for a step function as input

Using the performances and the transfer function, it is easy to conclude that a
proportional controller KP is enough to satisfy these performances.

In this example, we will use the continuous-time approach for the design of the
controller. Based on the past chapter, the model of our system is given by:

G(s) =
K

s (τs + 1)

where K and τ take the same values as for the speed control.
Let the transfer controller be give by:

C(s) = KP

Using these expression, the closed-loop transfer function is given by:

F(s) =
C(s)G(s)

1 +C(s)G(s)

=

KKP
τ

s2 + 1
τ s + KKP

τ

Since the system is of type 1, it results that the error to a step function as input is
equal to zero with a proportional controller.

Based on the specifications, the following complex poles:

s1,2 = −ζwn ± jwn

√
1 − ζ2

will do the job and the corresponding characteristic equation is given by:

s2 + 2ζwns + w2
n = 0.

Equating this with the one of the closed-loop system we get:

2ζwn =
1
τ

w2
n =

KKP

τ
.

To determine the best settling time ts at 2 %, notice that we have:

ts =
4
ζwn

.

Using now the fact:

ζwn =
1
2τ

11.3. Position Control of the dc Motor Kit 459

we obtain:

ts = 8τ

Therefore the best settling time at %2 we can have with this controller is 8 times
the constant time of the system. Any value less than will be attainable. In fact, this is
trivial if we look to the root locus of the closed-loop system when varying KP. This
is given by Fig. 11.3. To fix the gain of the controller the desired poles s1,2 = −7.5± j,
we use the figure and choosing a ζ = 0.707. This gives KP = 0.1471.

−20 −15 −10 −5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

0.99

0.20.40.580.720.83
0.91

0.96

0.99

2.557.51012.51517.5

0.20.40.580.720.83
0.91

0.96

Root Locus

Real Axis

Im
ag

in
ar

y
A

xi
s

Fig. 11.3 Root locus of the dc motor with a proportional controller

Using this controller, the time response for a step function of amplitude equal to
30 degrees is represented by the Fig. 11.4 from which we conclude that the designed
controller satisfies all the desired performances with a settling time at %2 equal
to 0.5115 s. But if we implement this controller, the reality will be different from
simulation since the backlash of the gearbox is not included in the used model and
therefore in real-time the result will be different and the error will never be zero. To
overcome this problem we can use a proportional and derivative controller that may
give better settling time at %2. Let the transfer function of this controller be given
by:

C(s) = KP + KD s

where KP and KD are the gain to be determined.

460 11. Case Studies

Remark 11.3.1 It is important to notice that the use of a proportional and deriva-
tive controller will introduce a zero in the closed-loop transfer that may improve the
settling time if it is well placed. Depending on its position, the overshoot and the
settling time will be affected. For more details on this matter we refer the reader
to [1].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Time response for a step function with 30 degrees as amplitude

Time in second (sec)

A
ng

ul
ar

 p
os

iti
on

 in
 d

eg
re

e

Fig. 11.4 Time response for a step function with 30 degrees as amplitude

With this controller the closed-loop transfer function is given by:

G(s) =
C(s)G(s)

1 +C(s)G(s)

=

KKD s+KKP
τ

s2 + 1+KKD
τ s + KKP

τ

As before two complex poles are used for the design of the controller. If we
equate the two characteristic equations we get:

2ζwn =
1 + KKD

τ

w2
n =

KKP

τ
.

11.3. Position Control of the dc Motor Kit 461

In this case we have two unknown variables KP and KD and two algebraic
equations which determines uniquely the gains. Their expressions are given by:

KP =
τw2

n

K

KD =
2τζwn

K
Using now the desired performances, we conclude similarly as before that the

steady error to an input equal to step function of amplitude equal to 30 degrees for
instance is equal to zero and the damping ratio ζ corresponding to an overshoot
equal to %5 is equal to 0.707. The settling time, ts at % 2, that we may fix as a
proportion of the time constant of the system, gives:

wn =
4
ζts

.

Now if we fix the settling time at 3τ, we get:

wn = 29.4985.

Using these values we get the following ones for the controller gains:

KP = 1.1374

KD = 0.0545.

which gives the following complex poles:

s1,2 = −28.6763± 6.9163 j.

and the zero at:

z = −20.8618.

Using this controller the time response for an input with an amplitude equal
to 30 degrees is represented in Fig. 11.5. As it can be seen from this figure that
the overshoot and the settling time are less those obtained using the proportional
controller.

To implement either the proportional or the proportional and derivative con-
trollers we need to get the recurrent equation for the control law. For this purpose,
we need to discretize the transfer function of the controller using the different meth-
ods presented earlier. Let us use the trapezoidal method which consists to replace s
by 2

T
z−1
z+1 . This gives:

C(z) = Kp for the proportional controller

C(z) = KP + KD
2
T

z − 1
z + 1

for the proportional and derivative controller

If we denote by u(k) and e(k) by the control and the error between the reference
and the output at instant kT , we get the following expressions:

1. for the proportional

u(k) = KPe(k)

462 11. Case Studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Time response for a step function with 30 degrees as amplitude

Time in second (sec)

A
ng

ul
ar

 p
os

iti
on

 in
 d

eg
re

e

Fig. 11.5 Time response for a step function with 30 degrees as amplitude

2. for the proportional and derivative controller

u(k) = −u(k − 1) +

(
KP +

2KD

T

)
e(k) +

(
KP − 2KD

T

)
e(k − 1)

The implementation is this controller uses the same function with some minors
changes. The listing the corresponding functions is:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Main program %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

main

% Data

% Variables

% While loop

while (1)

do

ReadSpeed;

ComputeControl;

SendControl;

end;

11.3. Position Control of the dc Motor Kit 463

% ReadSpeed function

% ComputeControl function

% SendControl function

Let us now use the state space representation of this example and design a state
feedback controller that will guarantee the desired performances. For this case we
will firstly assume the complete access to the states and secondly we relax this as-
sumption by assuming that we have access only to the position. As we did previously
we can proceed either in the continuous-time or in discrete-time.

Previously we establish the state space description of this system and it is given
by:

ẋ(t) =

[
0 1
0 − 1

τ

]
x(t) +

[
0
K
τ

]
u(t)

where x(t) ∈ R2 (x1(t) = θ(t) and x2(t) = θ̇(t)), and u(t) ∈ R (the applied voltage).
From the desired performances with a settling time at %2 equal to 3τ, we get

the same dominant poles as before, and therefore the same characteristic equation,
Δd(s) = s2 + 2ζwns + w2

n = 0 (with ζ = 0.707 and wn =
4

3ζτ). Using the controller
expression the closed-loop characteristic equations given by:

det (sI − A + BK) = 0

By equalizing these two equations we get the following gains:

K1 = 1.1146

K2 = 0.0326

Using this controller the time response for an input with an amplitude equal to
30 degrees is represented in Fig. 11.6. As it can be seen from this figure that the
overshoot and the settling time are those we would like to have. It is important
to notice the existence of the error at the steady state regime. This error can be
eliminated if we add an integral action in the loop. For more detail on this we refer
the reader to [1].

For the second case since we don’t have access to the load speed we can either
compute it from the position or use an observer to estimate the system state. As it
was said earlier, the poles that we use for the design of the observer should be faster
than those used in the controller design.

Choosing the following poles (s1,2 4 times the real part of those used in the design
of the controller):

s1,2 = −4ζwn ± jwn

√
1 − ζ2

= −83.4218± 20.8618 j

464 11. Case Studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

time in sec

ou
tp

ut

Fig. 11.6 Time response for a step function with 30 degrees as amplitude

we get the following gains for the observer:

L1 = 151.2

L2 = 5029.4

The gains of the controller remain the same as for the complete access case to the
state vector.

In the following Matlab we provide the design of the controller and the observer
at the same time and give simulation that shows the behavior of the states of the
system and observer with respect to time.

clear all

%data

tau=0.064

k=48.9

A = [0 1;0 -1/tau];

B = [0 ; k/tau];

C = [1 0];

D = 0;

% controller design

K = acker(A,B,[-3+3*j -3-3*j]);

L = acker(A’,C’,[-12+3*j -12-3*j])’;

11.3. Position Control of the dc Motor Kit 465

% Simualation data

Ts = 0.01;

x0 = [1 ; 1];

z0 = [1.1 ; 0.9];

Tf = 2; %final time

%augmented system

Ah = [A -B*K;

L*C A-B*K-L*C];

Bh = zeros(size(Ah,1),1);

Ch = [C D*K];

Dh = zeros(size(Ch,1),1);

xh0 = [x0 ; z0];

t=0:Ts:Tf;

u = zeros(size(t));

m = ss(Ah,Bh,Ch,Dh);

%simulation

[y,t,x] = lsim(m,u,t,xh0);

%plotting

figure;

plot(t,y);

title(’Output’);

xlabel(’Time in sec’)

ylabel(’Output’)

grid

figure;

plot(t,x(:,1:size(A,1)));

title(’States of the system’);

xlabel(’Time in sec’)

ylabel(’System states’)

grid

figure;

plot(t,x(:,size(A,1)+1:end));

title(’states of the observer’);

xlabel(’Time in sec’)

ylabel(’Observer states’)

grid

Figs. (11.7)-(11.9) gives an illustration of the output, the system’s states and the
observer’s states.

466 11. Case Studies

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Output

Time in sec

O
ut

pu
t

Fig. 11.7 Output versus time

We can also design the state feedback controller using the linear quadratic
regulator. In fact, if we chose the following matrices for the cost function:

Q =

[
1 0
0 5

]

R = 10

Remark 11.3.2 In general, there is no magic rule for the choice the matrices for
the cost function. But in general the fact that we use a high value for the control for
instance will force the control to take small values and may prevent saturation.

Using these matrices and the Matlab function, lqr, we get:

K =
[
0.3162 0.6875

]
.

We can also design a state feedback controller using the results on robust control
part. Since the system has no uncertainties and there is no external disturbance, we
can design a state feedback controller for the nominal dynamics. Using the system
data and Maltlab, we get:

X =

[
1.1358 −0.3758
−0.3758 1.1465

]

Y =
[
−0.0092 0.0228

]

11.4. Balancing Robot Control 467

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
States of the system

Time in sec

S
ys

te
m

 s
ta

te
s

Fig. 11.8 System’s states versus time

The corresponding controller gain is given:

K =
[
−0.0017 0.0193

]
.

Remark 11.3.3 Since we have the continuous-time model for the dc motor kit, we
have use it to design the controller gain. In this case we have solved the following
LMI:

AX + XA� + BY + Y�B� < 0

The gain K is given by: K = YX−1.
For more detail on the continuous time case we refer the reader to Boukas [2]

and the references therein.

11.4 Balancing Robot Control

The balancing robot is a challenging system from the control perspective since it
is an unstable system in open-loop. This system has attracted a lot of researchers
and many designs have been proposed for this purpose. Here we will present the
design developed and tested in mechatronic laboratory at École Polytechnique de
Montréal.

468 11. Case Studies

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5
states of the observer

Time in sec

O
bs

er
ve

r
st

at
es

Fig. 11.9 Observer’s states versus time

Figs. 11.10-11.11 give an idea of the robot. It was developed for research purpose
and to allow the mechatronics students to implement their control algorithm and
get familiar with complex system. The robot has two independent wheels each one
driven by a dc motor via a gear with a ratio of 1:6. Each motor has an encoder
to measure the speed of the shaft. The two motors are attached to the body of the
robot. Other sensors like the accelerometer and gyroscope are used to measure the
tilt angle. Appropriate filters are introduced to eliminate the noises of the measures
and therefore get a useful signal for control.

The brain of the robot is built around a Microchip dsPIC of the family 30F4011.
All the programming is done in C and inserted in the dsPIC, after producing the
executable code by C30 of Microchip, using the PCKit2.

If we refer to Chapter 4, the mathematical model is given by:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

11.4. Balancing Robot Control 469

Fig. 11.10 Balancing robot

where

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ(t)
ψ̇(t)
x(t)
ẋ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
147.2931 −0.4864 0 −10.6325

0 0 0 1
0 −0.0429 0 −0.9371

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1.4687

0
0.1295

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C =

[
1 0 0 0
0 0 1 0

]
.

470 11. Case Studies

C1,C2,C3

C4,C5 are
equal to
0.1μF

C6,C7 are
equal to

100μF/16V

Battery
voltage

regulator

ds
P

IC
30

F
40

11

dc
m

ot
or

dc
m

ot
or

Se
ns

or

Se
ns

or

L
2

9
3

D

C6 C5

C7

C3

C4 C2

C1

Fig. 11.11 Electronic circuit of the balancing robot

Since the system is unstable in open loop, let us design a state feedback controller
that gives the following performances:

1. the system is stable in closed-loop;

2. overshoot less or equal to 5 %;

3. a settling time at 2 % equal to 1.5 s;

From the specifications we get:

ζ = 0.707

w =
4

ζ × 1.5
= 3.7718 rad/s

The corresponding dominant pair of poles is given by:

s1,2 = −2.6667± 2.6675 j.

Since the matrix A is of rank four, we need to place two more poles to determine
the state feedback controller gain, K. Let us chose the following dominated poles:

s3 = −13.3335

s4 = −13.3335

11.4. Balancing Robot Control 471

Using the function acker, we get the following gain:

K =
[

339.5604 27.5946 −132.5973 −76.8450
]
.

0 0.5 1 1.5 2 2.5 3
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time in sec

O
ut

pu
ts

Fig. 11.12 Outputs versus time

The simulation results with this controller are illustrated in Figs. 11.12-11.13.
The system starts from an initial condition x�0 =

[
1 0 0.5 0

]
with a zero input. If we

try to send an input reference we will have errors in states or in outputs. To overcome
this an integral action needs to be added. If we denote by x̃(t) =

∫ t

0
(xr(t) − x(t)) dt,

with xr(t) is the position reference and following [1], we get:

η̇(t) = Ãη(t) + B̃u(t)

y(t) = C̃η(t)

472 11. Case Studies

0 0.5 1 1.5 2 2.5 3
−7

−6

−5

−4

−3

−2

−1

0

1

Time in sec

S
ta

te
s

Fig. 11.13 States versus time

where

η(t) =

[
x(t)
x̃(t)

]
,

Ã =

[
A 0
−C 0

]
,

B̃ =

[
B
0

]
,

C̃ =
[
C 0

]

The new dynamics become of order five and we need to fix three dominated poles
plus the dominating poles that come from the specifications. These poles are fixed
to the following ones:

s3,4 = −13.3335± 2.6675 j

s5 = −13.3335

Using the function acker, we get the following gain:

K =
[
339.5604 27.5946 −132.5973 −76.8450 0.1

]
.

11.4. Balancing Robot Control 473

We can also design a state feedback controller using the linear quadratic control
technique. In fact if we chose the following matrices:

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 5 0 0
0 0 10 0
0 0 0 20

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =
[
10
]

and solving the Ricatti equation using the Matlab function lqr, we get:

K =
[
218.9494 17.7264 −1.0000 −15.7658

]

The corresponding eigenvalues for the closed-loop are given by:

s1 = −12.7439

s2 = −11.5936

s3 = −0.9420

s4 = −0.1371

The simulation results with this controller can be obtained similarly and the detail
is omitted.

For this system, we can design also a state feedback controller using the ro-
bust control theory. This can be done either in continuous-time or discrete-time.
Since our model is in continuous-time we will do the design using the LMI in
continuous-time. Solving the appropriate LMI (the one we used for the dc motor
kit with different sizes for the matrices, we get:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0595 −0.2156 0.1053 0.0177
−0.2156 1.9238 −0.0705 0.7732
0.1053 −0.0705 1.4496 −0.3439
0.0177 0.7732 −0.3439 1.5028

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =
[
−7.2149 27.5211 −13.6001 7.4801

]

which gives the following gain for the state feedback controller:

K =
[
−174.2563 −10.5741 6.0437 13.8536

]

The corresponding eigenvalues for the closed-loop are given by:

s1,2 = −6.9770± 6.4079 j

s3,4 = −0.6028± 0.9598 j

The advantage of this method is that we don’t have to provide poles as for the
case of pole placement technique. On the top of this the LMI technique can handle
more appropriately the presence of saturations in the input if it is the case.

As a lst example, let consider the H∞ control problem for the two wheels robot.
In this case, we add a term in the state dynamic. This term is Bw(t) where w(t) is

474 11. Case Studies

the external disturbance that has finite energy. Solving the appropriate LMI with
γ = 0.1, we get:

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.1233 −2.7517 0.2742 1.2667
−2.7517 61.0512 −1.5973 14.4055
0.2742 −1.5973 2.0232 −3.4932
1.2667 14.4055 −3.4932 16.4930

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Y =
[
−143.3219 316.5973 −60.7376 −33.8808

]

which gives the following gain for the state feedback controller:

K =
[
−193.7547 −9.4711 39.7088 29.5092

]

The corresponding eigenvalues for the closed-loop are given by:

s1,2 = −3.8372± 8.9414 j

s3,4 = −1.9189± 2.0781 j

For the design of other controllers can be obtained easily and we let this as an
exercise for the reader since the design is brought to write a program of Matlab
similar to those we give in the text.

11.5 Magnetic Levitation System

In this section we will present the magnetic levitation system we presented earlier.
This mechatronic system developed in our mechatronic laboratory is composed of
two parts: a fixed one that represents the coil and that generates the electromagnetic
force and a ferromagnetic object which we would like to place at a certain position
by acting on the electromagnetic force generated by the coil. The objective of the
system is to control the vertical position of the moving object by adjusting the cur-
rent in the electromagnet through the input voltage. The object position is measured
using a Hall effect sensor. An elecgronic circuit build around a dsPIC30F4011 sup-
plies the coil through an L298, an integrate circuit, with a current that is proportional
to the command voltage of the actuator. As the magnetic force can be only attrac-
tive, the mutual conductance amplier turns off for negative commands. This system
is illustrated by Fig. 11.14.

The mathematical model for this system is given by the following equation:

ml̈(t) = mg − F1 − F2

where m is the mass of the moving object, l(t) ∈ R+ is the distance measured
from the electromagnet, F1 and F2 are respectively the force generated by the coil
when the current is i(t) and the electromagnetic force between the electromagnet
and permanent magnet placed of the head of the moving object.

11.5. Magnetic Levitation System 475

The expression of these force are given by:

F1 = K1
i2(t)
l2(t)

F2 = K2
1

l2(t)

This model in nonlinear that we can linearize to get the following (see
Chapter 1):

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where

x(t) =

[
x1(t)(position)
x2(t)(velocity)

]

A =

⎡⎢⎢⎢⎢⎢⎣
0 1

2[sign(u2)kcu2
e+kpR2]

mR2 x3
e

0

⎤⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎣ 0
−2sign(u)kcue

mR2 x2
e

⎤⎥⎥⎥⎥⎦
C =

[−3Cp

0.032x4
e

0
]

D =
Cb

0.032R

The data of the system is given by Table 11.1. Using this data, the matrices are
given by:

A =

[
0 1

2490.8 0

]
,

B =

[
0

−1.2711

]
,

C =
[

473.5711 0
]
,

D =
[
−0.0833

]
,

It is important to notice that the system is unstable in open loop since it has a
pole with a positive real part. This can be checked by computing the eigenvalues of
the matrix A.

Let us design a state feedback controller to guarantee the following perfor-
mances:

1. the system is stable in closed-loop

2. an overshoot less or equal to 0.2 %

3. a settling time at % 2 equal to 0.05 sec

476 11. Case Studies

i(t)

u(t)

po
upée russe magnétique

Fig. 11.14 Magnetic levitatios system

11.5. Magnetic Levitation System 477

Table 11.1 Data of the magnetic levitation system

Variable value
R 62.7 Ω
L 60 mH

m (object mass) 7.64 g
kc 5.9218 10−4

kp 4.0477 10−6

Cb −0.1671
Cp −1.9446 10−8

diameter of the permanent magnet 9 mm

Since the overshoot is less or equal to 0.2 %, it results that ζ = 0.9. The time
settling time at 2 % is given by:

ts =
4
ζwn

where wn is natural pulse.
If we fix the settling time at 0.05 sec we get:

wn =
4

0.05 × 0.9
= 88.8889

The dominant poles for the design are then given by:

s1,2 = −ζwn ± jwn

√
1 − ζ2 = −80.000 ± 38.75 j

Using this pair of poles we get:

K1 = −175.6

K2 = −125.9

Using this controller the time response starting from given initial conditions is
represented in Fig. 11.15. As it can seen from this figure that the overshoot and the
settling time are those we would like to have.

For the second case since we don’t have access to the load speed we can either
compute it from the position or use an observer to estimate the system state. As it
was said earlier, the poles that we use for the design of the observer should be faster
than those used in the controller design.

Choosing the following poles (s1,2 4 times the real part of those used in the design
of the controller):

s1,2 = −4ζwn ± jwn

√
1 − ζ2

= −320.0 ± 38.75 j

478 11. Case Studies

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.16

−0.15

−0.14

−0.13

−0.12

−0.11

−0.1

−0.09

−0.08
Time response of linear position

lin
ea

r
po

si
tio

n
in

 m
et

er

Time in second

Fig. 11.15 Time response for moving object

we get the following gains for the observer:

L1 = 1.351

L2 = 224.5927

We can experiment all the other controller as we did for the dc motor kit and the
two wheels robot but we prefer let this part as exercise for the reader to practice the
tools. Notice we invite him/her to make the design in continuous-time and discrete-
time cases and compare the results. The dimension of this system allows that.

A sample for programming the state feedback control of this system is given
bellow:

#include <p30fxxxx.h>

#include <stdio.h>

#include <stdlib.h>

#include <adc10.h>

#include <math.h>

#include <uart.h>

//

// Configuration

//

11.5. Magnetic Levitation System 479

// Interne frequency (30 MIPS) instructions/sec

// Number of samples: 7,37*16/4 = 29480000

_FOSC(CSW_FSCM_OFF & FRC_PLL16);

_FWDT(WDT_OFF);

_FBORPOR(PBOR_OFF & MCLR_DIS);

_FGS(CODE_PROT_OFF);

_FICD(ICS_NONE);

__C30_UART=2;

//

// Variables

#define Freq_pic 29480000 // PIC Frequency

#define a11 7.8510061454215840e-001

#define a12 2.2727760074413661e-004

#define a21 5.0829248960838420e+001

#define a22 1.0000643300984893e+000

#define b11 3.7771272752681438e-005

#define b12 4.5392069137012870e-004

#define b21 8.7496385285734044e-003

#define b22 1.0852723324638587e-001

#define Ts 2.2727272727272727e-004

#define u_max 1.1789999999999999e+001

#define ref_tension 5.0000000000000000e+000

#define ref_pic 1.0240000000000000e+003

#define duty_cycle_ref 5.8481764206955049e+001

#define x_ref 7.8768775539549939e-003

#define u_ref 2.0000000000000000e+000

#define y_ref 8.5691877396730676e-001

#define K0 5.2128678707944724e+004

#define K1 3.9336557697049994e+002

double y[2] = {0.0, 0.0};

double u[2] = {0.0, 0.0};

double y_tilde[2] = {0.0, 0.0};

double tension_tilde[2] = {0.0, 0.0};

double tension = 0.0;

double duty_cycle_tilde = 0.0;

double lim_Sup = 0.0;

double lim_Inf = 0.0;

double position_tilde[2] = {0.0, 0.0};

480 11. Case Studies

double vitesse_tilde[2] = {0.0, 0.0};

double integrale_tilde[2] = {0.0, 0.0};

double duty_cycle = 0.0;

double temps_total = 0.0;

double n = 6553500.0/65536.0;

int compteur = 0;

int compteur_freq = 0;

int uart_flag = 1;

unsigned long Val_reg = 0;

//

// Functions

//

void init(void){

INTCON1bits.NSTDIS=0; // Activation of the level of interruption

TRISE = 0; // Configuration of PORTE as output

TRISD = 0; //Configuration of PORTD as output

PORTEbits.RE8 = 1;

PORTEbits.RE2 = 0;

PORTDbits.RD0 = 1;

ADPCFG= 0xFFFF; // Configuration of the pins of PORTB as digital

I/O

}

void init_ADC (void){

SetChanADC10(ADC_CHX_POS_SAMPLEA_AN3AN4AN5 &

ADC_CHX_NEG_SAMPLEA_NVREF);

ConfigIntADC10(ADC_INT_DISABLE);

OpenADC10(ADC_MODULE_ON & ADC_IDLE_CONTINUE & ADC_FORMAT_INTG

& ADC_CLK_AUTO & ADC_AUTO_SAMPLING_ON & ADC_SAMPLE_SIMULTANEOUS,

ADC_VREF_AVDD_AVSS & ADC_SCAN_OFF & ADC_CONVERT_CH_0ABC

& ADC_SAMPLES_PER_INT_1 & ADC_ALT_BUF_OFF & ADC_ALT_INPUT_OFF,

ADC_SAMPLE_TIME_1 & ADC_CONV_CLK_SYSTEM & ADC_CONV_CLK_32Tcy,

ENABLE_AN4_ANA & ENABLE_AN5_ANA, SCAN_NONE);

}

void init_Timer1 (void){

INTCON1bits.NSTDIS=0; // Activation of mode 16 bits of the Timer1

T1CONbits.TON = 1; // Autorisation du Timer1

11.5. Magnetic Levitation System 481

T1CONbits.TGATE = 0; // Dsactivation du mode Timer Gate

T1CONbits.TSIDL=1; // Synchronisation of Timer1 sur le Idle mode

T1CONbits.TCKPS = 0; // Choice of the Prescaler 1:1

(1=1:8, 2=1:64)

T1CONbits.TCS=0; // Selection of the interne clock (0=FOSC/4)

IFS0bits.T1IF = 0; // Put to zero the overflow bit for the

interrupt of Timer1

IEC0bits.T1IE = 1; // Activation of the interruption of Timer1

PR1 = 6699; // Sampling frequency at 4400 Hz environ

IPC0bits.T1IP = 5; // Priority 5 for the interruption of the

Timer1

}

/* ROUTINE D’INITIALISATION DE L’UART */

void init_UART (void){

ConfigIntUART2(UART_RX_INT_DIS & UART_RX_INT_PR0

& UART_TX_INT_DIS & UART_TX_INT_PR0);

// Configuration of the register U2MODE

U2MODEbits.UARTEN = 1; // UART pins controlled by UART

U2MODEbits.USIDL = 0; // UART communication continue in

Idle Mode

U2MODEbits.WAKE = 1; // Wake up enable in sleep Mode

U2MODEbits.LPBACK = 0; // Loopback mode disabled

U2MODEbits.ABAUD = 0; // Autobaud process disabled

U2MODEbits.PDSEL = 0; // 8-bit data, no parity

U2MODEbits.STSEL = 0; // 1 stop-bit.

// Configuration du registre U2STA

U2STAbits.UTXISEL = 0; // Transmission Interrupt Mode

Selection bit

U2STAbits.UTXBRK = 0; // UxTX pin operates normally

U2STAbits.UTXEN = 1; // Transmit enable

U2STAbits.URXISEL = 1; // Interrupt occurs when one charater

is received

U2STAbits.ADDEN = 0; // Address detect disabled

U2BRG = 31; // Value for 57600 bps baudrate

}

482 11. Case Studies

//

// Initialization of the complementary mode PWM

//

void init_PWM (void){

Val_reg = 1023; // Frquence de 30000 Hz environ

lim_Sup = (u_max*(2*Val_reg + 1)/(2*Val_reg + 2)) - u_ref;

lim_Inf = -u_max - u_ref;

PTCONbits.PTEN = 1; // Activation of the time base

PTCONbits.PTSIDL = 1; // Configuration in Idle Mode

PTCONbits.PTCKPS = 0; // Selection de 4TCY (Prescale: 00 = 1:1;

01= 1:4; 10 = 1:16; 11 = 1:64)

PTCONbits.PTMOD = 0; // Selection of the free running mode

PTMRbits.PTDIR = 0; // Increment of the time base

PTMRbits.PTMR = Val_reg; // Register value of the Time base

PTPER = Val_reg; // Value of the signal period

PWMCON1bits.PMOD1 = 0; // Selection the mode PWM complementary

PWMCON1bits.PEN1H = 1; // Activation of the pins in mode PWM

PWMCON1bits.PEN1L = 1; // Activation of the pins in mode PWM

DTCON1bits.DTAPS = 0; // Time base unit is 1TCY

DTCON1bits.DTA = 0; // Value of the DT for the unity A

PDC1 = 0; // zero of the dutycycle

}

void __attribute__((interrupt, auto_psv)) _T1Interrupt (void){

if (IFS0bits.T1IF){

PORTEbits.RE2 = !PORTEbits.RE2;

PDC1 = (2.0 * (Val_reg + 1) * duty_cycle)/100.0; // Calcul de la

valeur du registre PDC1

y[0] = (ReadADC10(2)*ref_tension)/ref_pic; // Signal of the

sensor in Volts

y_tilde[0] = y[0] - y_ref;

position_tilde[1] = position_tilde[0];

vitesse_tilde[1] = vitesse_tilde[0];

11.5. Magnetic Levitation System 483

integrale_tilde[1] = integrale_tilde[0];

y_tilde[1] = y_tilde[0];

tension_tilde[1] = tension_tilde[0];

position_tilde[0] = (a11*position_tilde[1]+a12*vitesse_tilde[1]

+b11*tension_tilde[1]+b12*y_tilde[1]);

vitesse_tilde[0] = (-a21*position_tilde[1]+a22*vitesse_tilde[1]

+b21*tension_tilde[1]+b22*y_tilde[1]);

tension_tilde[0] = (K0*position_tilde[0]) +

(K1*vitesse_tilde[0]);// + N*ref;

if(tension_tilde[0]>lim_Sup){tension_tilde[0] = lim_Sup;}

// Saturation of the tension tilde

if(tension_tilde[0]<lim_Inf){tension_tilde[0] = lim_Inf;}

tension = u_ref + tension_tilde[0];

duty_cycle_tilde = tension_tilde[0]*(50.0/u_max);

duty_cycle = duty_cycle_ref + duty_cycle_tilde; // Computation

of the duty cycle in percentage

temps_total += Ts;

compteur_freq = 0;

compteur++;

if(compteur == 10){ // Print data every 1 ms

compteur = 0.0;

uart_flag = 1;

}

IFS0bits.T1IF = 0; // put to zero of the overflow bit

}

}

/* PROGRAMME PRINCIPAL */

int main (void){

init();

init_PWM();

init_ADC();

init_UART();

init_Timer1();

while(1){

if (uart_flag){

484 11. Case Studies

printf("%lf %lf %lf %lf %lf %lf %lf\n\r",

temps_total, tension, u_ref, y[0], y_ref,

position_tilde[0], x_ref);

uart_flag = 0;

}

}

}

11.6 Conclusion

This chapter covered some case studies that were developed in our mechatronics
laboratory at École Polytechnique de Montréal. We covered all the steps for the
design of a mechatronic system with different kind of details. The emphasis is put
on the design of the control algorithm of each presented system.

11.7 Problems

1. Let us consider a dynamical discrete-time system with the following data:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
0 0 1
0 −2 −3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C =
[
1 1 0

]
,

D =
[
0
]

11.7. Problems 485

with the following norm bounded uncertainties:

DA =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0.2
0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

EA =
[

0.1 −0.2 −0.1
]
,

DB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1
0.2
0.3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

EB =
[

0.1 −0.2
]
,

DC =
[

0.1
]
,

EC =
[

0.1 0.2 −0.1
]
,

(a) design for the nominal system the following controller:

i. state feedback controller

ii. static output feedback controller

iii. dynamic output feedback controller

(b) design for the uncertain system the following controller:

i. state feedback controller

ii. static output feedback controller

iii. dynamic output feedback controller

(c) if we have an extra term in the state dynamics that add external disturbance:
x(k + 1) = [A + ΔA] x(k) + [B + ΔB] u(k) + Bww(k). Design the controllers
(state feedback, static output, dynamic output feedback) for the nominal
and uncertain system that assure the H∞ performance.

(d) design the state-feeback, static output feedback and dynamic feedback
controllers that assure the guaranteed cost for all admissible uncertainties.

2. In this problem we invite you to proceed with the design of a small boat that
you can control using a joystick to make it moving in a small lac for instance.

(a) give a schematic design (batteries, motors, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

3. In this problem we invite you to proceed with the design of a small aircraft that
you can control using a joystick to make it flying.

(a) give a schematic design (batteries, motor, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

486 11. Case Studies

4. In this problem, we ask for the design of a vacuum cleaner. This device should
be automatic and avoid obstacle in its environment. It is also important to design
a cheap one that can communicate wireless via an emitter and receiver and a
joystick

(a) give a schematic design (electronic circuit, motor, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

5. In this problem we invite you to proceed with the design of a mechatronic sys-
tem that control the position of a small ball of ping pong. Pressed air can be
used to position the ball.

(a) give a schematic design (electronic circuit, motor, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

6. In this problem we would like to design a one leg robot that can move using
one wheel while remaining in a vertical position. Provide the design of such
mechatronic system.

(a) give a schematic design (electronic circuit, motor, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

7. Solar energy is an alternate source of power that can be used. In this problem
we ask you to design a solar system that maximize the energy generated by the
solar panel.

(a) give a schematic design (electronic circuit, motor, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

8. In this problem we ask to design a hoover that can be controlled to seal on water
via a emitter and a receiver using a joystick.

(a) give a schematic design (electronic circuit, motor, etc.)
(b) establish the mathematical model
(c) fix the specifications you would like to have and design the appropriate

controller that can give such performances

AppendixA
C Language Tutorial

The aim of this appendix is to review the C language to refresh the memory of the
reader and help him to start writing his programs without reading huge books on the
subject. Our intention is not replace these books and readers that are not familiar
with the subject are strongly encouraged to consult book of Kernighan and Ritchie1.

Firstly we invite the reader to download a C compiler and a text editor. To exper-
iment the different programs in C we will give, the reader must type the programs,
save them and then compile them. For more details on how to do this we refer the
reader to the manual of the used C compiler.

To start our tutorial, let us consider our first simple program. This program is
intended to write “Welcome to mechatronics course”. The listing of this program is
given by the following lines:

#include < stdio.h>

void main()

{

printf("\nWelcome to mechatronics course\n");

}

To see the output of this simple program we need to have an editor and a C
compiler.

1 Brian W. C. Kernighan and Dennis M. Ritchie, The C Programming Language– ANSI C, Prentice
Hall, 1988

488 AppendixA. C Language Tutorial

Each C program is composed by variables and functions and must have a “main”
function. Except some reserved words all the variables and the functions must be
declared before they can be used. The variables can take one of the following types:

• integer

• real

• character

• etc.

The functions specify the tasks the program has to perform and for which it is
designed for. The “main” function establishes the overall logic of the code.

Let us examine the previous program. The first statement

#include < stdio.h>

includes a specification of the C I/O library. The “.h” files are by convention “header
files” which contain definitions of variables and functions necessary for the func-
tioning of a program, whether it can be a user-written section of code, or as part of
the standard C libaries.

The directive

#include

tells the C compiler to insert the contents of the specified file at that point in the
code.

The notation

<...>

instructs the C compiler to look for the file in certain “standard” system directories.
The void preceeding “main” indicates that main is of “void” type–that is, it has

no type associated with it, which means in another sense that it cannot return a result
during the execution.

The “;” denotes the end of a statement. Blocks of statements are put in braces
{· · · }, as in the definition of functions. All C statements are defined in free format,
i.e., with no specified layout or column assignment. White space (tabs or spaces) is
never significant, except inside quotes as part of a character string.

The statement printf line prints the message “Welcome to mechatronics course”
on “stdout” (the output stream corresponding to the X-terminal window in which
you run the code), while the statement

\n

prints a “new line” character, which brings the cursor onto the next line. By con-
struction, the function printf never inserts this character on its own and this is let to
the programmer.

AppendixA. C Language Tutorial 489

The standard C language has some reserved keywords that can not be used by the
programmer for naming variables or other purpose and he must used them as it is
suggested otherwise mistakes will appear during the compilation. These keywords
are listed in the Table A.1.

Table A.1 List of C language keywords

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned

continue for signed void
default goto sizeof volatile

do if static while

Table A.2 Number representations

Base Representation Chiffres permis Example

Decimal (10) 0123456789 5
Binary (2) 0b... 01 0b10101010
Octal (8) 0... 01234567 05

Hexadecimal (16) 0x... 0123456789ABCDEF 0x5A

Table A.3 Integer representations

Type Size (bits) Min Max

char, signed char 8 -128 +127
unsigned char 8 0 255

short, signed short 16 -32768 +32767
unsigned short 16 0 65535
int, signed int 16 -32768 +32767
unsigned int 16 0 65535

long, signed long 32 −231 +231 − 1
unsigned long 32 0 232 − 1

long long, signed long long 64 −263 +263 − 1
unsigned long long 64 0 264 − 1

490 AppendixA. C Language Tutorial

Table A.4 Decimal representations

Type Taille (bits) Emin Emax Nmin Nmax

float 32 -128 +127 2−126 2128

double 32 -128 +127 2−126 2128

long double 64 -1022 +1023 2−1022 21024

Let us look to the constants and variables. The constants have to be defined before
it can be used. The structure we used to define these constant is:

#define name value

The word name is the one we give to the constant and the value is the value that
this constant takes. The following example gives some constants:

#define acceleration 9.81

#define pi 3.14

#define mot "welcome to mechatronics course’’

#define False 0

In general when we manipulate data, we use different number representation.
Table A.2 gives the bases we are usually using when programming microcontroller.

For the variables, we must declare them before also. The following syntax is
used:

type <name>;

where the type is one of the following:

• int (for integer variable)

• short (for short integer)

• long (for long integer)

• float (for single precision real (floating point) variable)

• double (for double precision real (floating point) variable)

• char (for character variable (single byte))

Tables A.3 and A.4 gives the values taken in each type. It is important to mention
that the compiler checks for consistency in the types of all variables used in the
program to prevent mistakes. The following example shows some variables:

int i,j,k;

float x,y;

unsigned char var1;

unsigned char var2[10] = "welcome";

Once these variables and constants are defined what we can do with? The answer
is that we can do many things like:

AppendixA. C Language Tutorial 491

• arithmetic operations (act on one or multi variables)

• logic operations (act on one or multi variables)

• relational operations (act on one or multi variables)

• etc.

Tables A.5 and A.6 give an idea on the different operations we can do either on
the constants or the variables.

Table A.5 Arithmetic operations

Symbol Meaning example

+ addition u[k] = u1[k] + u2[k];
- substrate u[k] = u1[k] − u2[k];
/ division u[k] = u1[k]/u2[k]; (u2[k] must be different from zero)
* multiplication u[k] = K ∗ x[k];
% modulo u[k] = u1[k]%u2[k];

Table A.6 Logic operations

Symbol Meaning example

& ET u[k] = u1[k]&u2[k];
| OR u[k] = u1[k] | u2[k];
∧ XOR u[k] = u1[k] ∧ u2[k];
∼ inversion u[k] =∼ x[k];
� shift left u[k] = u1[k]� u2[k];
� shift right u[k] = u1[k]� u2[k];

More often we need to print data wither on the screen or an LCD. For this purpose
the print function can be used. This function can be instructed to print integers, floats
and strings properly. The general syntax is

printf("format", variables);

where ”format” specifies the conversion specification and variables is a list of
quantities to be printed.

The useful formats are:

%.nd integer (optional n = number of columns; if 0, pad with zeroes)

%m.nf float or double (optional m = number of columns,

n = number of decimal places)

%ns string (optional n = number of columns)

492 AppendixA. C Language Tutorial

%c character

\n \t to introduce new line or tab

\g ring the bell (‘‘beep’’) on the terminal

In some programs, the concepts of loops are preferable to perform calculations
that require repetitive actions on a stream of data or a region of memory. There are
several ways to loop in the standard C and the following ways the most common
used loops:

// while loop

while (expression)

{

block of statements to be executed

}

// for loop

for (expression_1; expression_2; expression_3)

{

block of statements to be executed

}

In some cases we need to take an action based on the realization of some con-
dition or dependent on the value of a given variable. In this case the word if or the
word if else and the switch can be used. The following structures are used:

if (conditional_1)

{

block of statements to be executed when conditional_1 is true

}

else if (conditional_2)

{

block of statements to be executed when conditional_2 is true

}

else

{

block of statements to be executed otherwise

}

Tables A.7 and A.8 show the most used conditional operators that we may use in
the expressions.

Table A.7 Logic operations

Symbol Meaning example

&& and x&&y
|| or x||y
! not x!y

AppendixA. C Language Tutorial 493

Table A.8 Logic operations

Symbol Meaning example

< smaller than x < y
<= smaller than or equal to x <= y
== equal to x == y
! = not equal to x! = y
>= greater than or equal to x >= y
> greater than x > y

switch (expression)

{

case const_expression_1:

{

block of statements to be executed

break;

}

case const_expression_2:

{

block of statements to be executed

break;

}

default:

{

block of statements

}

}

The C language allows the programmer to access directly the memory locations
using the pointers. To show how this works, let us consider a variable Xposition
defined as follows:

float Xposition;

Xposition = 1.5;

If for example we want to get the address of the variable Xposition, the following
can be used:

float* pXposition;

float Xposition;

Xposition = 1.5;

pXposition = &Xposition;

In this code we define a pointer to objects of type float, Xposition and set it equal
to the address of the variable Xposition.

494 AppendixA. C Language Tutorial

To get the content of the memory location referenced by a pointer is obtained
using the “*” operator (this is called dereferencing the pointer). Thus, *pXposition
refers to the value of Xposition.

Arrays of any type play an important role in C. The syntax of the declaration of
the arrays is simple and the following gives that:

type varname[dim];

where dim is the dimension we want to give to the array varname.
In standard C, the array begins with the position 0 and all its elements occupy

adjacent locations in memory. Thus, if matrix is an array, ∗matrix is the same thing
as matrix[0], while ∗(matrix + 1) is the same thing as matrix[1], and so on.

References

[1] Boukas, E.K.: Systèmes Asservis. Editions de l’Ecole Polytechnique de Montréal,
Montréal (1995)

[2] Boukas, E.K.: Stochastic Switching Systems: Analysis and Design. Birkhauser, Boston
(2005)

[3] Bryson Jr, A.E., Ho, Y.: Applied optimal control: optimization, estimation, and control.
Blaisdell, Waltham (1969)

[4] Powell, J., Franklin, G., Workman, M.: Digital Control of Dynamic Systems. Addison
Weley, New York (1998)

[5] Kailath, T.: Linear Systems. Prentice-Hall, New York (1980)
[6] Lozeau, M., Boukas, E.K.: Design and control of a balancing robot (2009)
[7] Rugh, W.J.: Linear System Theory. Prentice Hall, New Jersey (1996)

Index

ac motor, 29
Accelerometer, 28
Ackerman formula

state estimator, 302
observable form, 305

state feedback controller
controllable form, 292
Jordan form, 292
observable form, 292

state observer, 302
observable form, 305

Actuator
ac motor, 29
dc motor, 29

advantages, 29
hydaulic actuator, 29
hydraulic actuator

advantages, 29
disadvantages, 29

pneumatic actuator, 29
selecting actuators, 29

Block diagram, 46
Bode method, 166

phase lag controller design, 181
phase lead controller design, 178
phase lead-lag controller design, 184

proportional controller design, 166
proportional derivative controller design,

171
proportional integral and derivative

controller design, 175
proportional integral controller design,

168
Bode plot technique, 119

computation, 119
definition, 119
example, 119

Camera, 28
Canonical form, 219

controllable form, 219
Jordan form, 219
MIMO, 257

controllable form, 257
Jordan form, 257
observable form, 257
transformation, 260

observable form, 219
Computer controlled system, 73

feedback path configuration, 73
forward path configuration, 73

control design problem, 128
approach, 129

498 Index

controller parameters, 128
controller structure, 128
derivative controller (D), 128
formulation, 128
intergral controller (I), 128
performances, 128
proportional controller (P), 128
proportional integral and derivative

controller (PID), 128
transfer function method, 130

Bode method, 165
empirical method, 130
root locus method, 139

Controllability, 246
definition, 246
gramian, 249
MIMO, 253

canonical form, 257
multiplicity equal 1, 253
multiplicity greater than 1, 253

test, 247
Controllability index, 263
Controllable form, 219

dc motor, 29
mathematical modeling, 49
state space description, 50
transfer function, 49

dsPIC30F4011, 344
Dual system, 268

description, 268
Dynamic programming, 321

finite horizon, 321
infinite horizon, 326

Empirical method, 130
controller design, 130
frequency domain, 135
stable system, 130
time domain, 130
unstable system, 133

Encoder, 28
absolute encoder, 28
incremental encoder, 28

Guaranteed cost control, 426
fdefinition, 426
formulation, 426
norm bounded uncertainties, 426

output feedback control
LMI condition, 435

state feedback control, 427
LMI condition, 430

static output controller, 434
LMI condition, 434

Gyroscope, 28

hydraulic actuator, 29

Jordan form, 219

Laplace transform, 77
definition, 77

Matrix function, 45
block diagram, 45
definition, 45

Mechatronic system, 3
actuator, 29

ac motor, 29
dc motor, 29
hydaulic actuator, 29
pneumatic actuator, 29
selecting actuators, 29

brainstorming, 341
components, 3, 25
dc moror control, 35
design, 3
design phase, 341
dsPIC30F4011, 344
electrnic design, 344
electronic circuit, 31, 344
electronic circuit design, 5
examples, 25
identification, 60

transfer function, 60
tstate space approach, 63

magnetic levitation control, 40
mechanical part design, 4
Mechatronics, 25
mehanical part design, 26
modeling, 45

based on physics law, 48
dc motor example, 49
magnetic levitation example, 57
matrix transfer, 45
state space description, 46
state space model, 48

Index 499

transfer function, 45
transfer function concept, 48
two wheels robot example, 51

real-time implementation, 7, 34, 344
counter, 7
example of a program, 7
interrupt, 7
PWM, 7

sensor, 27, 28
accelerometer, 28
camera, 28
encoder, 28
encoderincremental encoder, 28
gyroscope, 28

software design, 344
traffic light example, 13

C code, 14
two wheels robot control, 38

Microcontroller, 3, 344
components, 3
dsPIC30F4011, 344

C code, 349
interrupt, 357
PWM, 349

interfaces, 3
Microprocessor, 2

components, 2
interfaces, 2

Nominal system, 379
free system, 379

Observability, 246
definition, 249
gramian, 251
test, 251

Observable form, 219
Overshoot, 103

Phase lag controller, 154
root locus, 154

Phase lag controller design
Bode method, 181

Phase lead controller, 151
root locus, 151

Phase lead controller design
Bode method, 178

Phase lead-lag controller, 159
root locus, 159

Phase lead-lag controller design
Bode method, 184

pneumatic actuator, 29
Pole assignment, 282
Pole placement, 282
Proportional and derivative controller, 144

root locus, 144
Proportional and integral controller, 141

root locus, 141
Proportional controller, 139

root locus, 139
Proportional controller design

Bode method, 166
Proportional derivative controller design

Bode method, 171
Proportional integral and derivative

controller, 147
root locus, 147

Proportional integral and derivative
controller design

Bode method, 175
Proportional integral controller design

Bode method, 168

Reduced state estimator, 306
Reduced state observer, 306
Robust control, 379

H∞-stabilization, 407
degree of stability, 380
guaranteed cost control, 426
nominal system, 387
robust stability, 382
stability, 380

LMI condition, 380
Lyapunov approach, 380

stabilization problem, 387
controller type, 387
dynamic output feedback controller,

387
state feedback controller, 387
static output feedback controller, 387

tools, 384
LMI toolbox of Matlab, 384
Scilab, 384
Yalmip and Sedumi, 384

uncertain system, 387
uncertainty, 379

norm bounded, 379
Robust stability, 382

500 Index

LMI condition, 382
norm bounded uncertainty, 382
sufficient condition, 382

Robust stabilization, 390
LMI condition, 390
state feedback controller, 390

Root locus
phase lag controller design, 154
phase lead controller design, 151
phase lead-lag controller design, 159
proportional and derivative controller

design, 144
proportional and integral controller

design, 141
proportional controller design, 139
proportional integral and derivative

controller design, 147
Root locus method

controller design, 139
Root locus technique, 114

asymptotes, 114
characteristics, 114

breakpoints of the root locus, 114
departure angle of the complex poles ,

114
departure of the root locus, 114
equations, 114
example, 114
intersection of the root locus, 114
number of branches, 114
rules, 114
symmetry, 114
termination of the root locus, 114

Sampling frequency
determination, 74

Sampling period
determination, 74

Sampling process, 74
definition, 74
sampler, 74
sampling frequency, 74
sampling period, 74
Shannon theorem, 74
zero-order holder (ZOH), 74

Schur Complement
lemma, 381

Schur complement, 381
Sensor

accelerometer, 28

camera, 28
encoder

absolute encoder, 28
incremental encoder, 28

gyroscope, 28
sensor, 28
Separation principle, 309

controller design, 309
controller design and observer design,

309
observer design, 309

Settling time, 103
Stability, 108

w-transformation, 108
characteristion equation, 108
definition, 108
example, 108
Jury criteria, 108
methods, 108
Raible, 108

Stabilization
dynamic output feedback controller, 387
nominal system, 387
state feedback controller, 387
static output feedback controller, 387
uncertain system, 387

stabilization
H∞ control

formulation, 407
robust H∞ control, 409

State estimator
Ackerman formula, 302
MIMO, 305
observable form, 305
reduced estimator, 306

State feedback control
pole assignment, 282
pole placement, 282
system asymptotically stable, 297

State feedback controller
Ackerman formula, 291
controllable form, 288
general form, 282
LMI condition, 390
relation between controllable from gain

and the one for more general form,
289

State obersver
MIMO, 305

Index 501

State observer, 302
Ackerman formula, 302
observable form, 305
reduced observer, 306

State space description, 46, 219
canonical form, 219
definition, 46

State space model, 216
block diagram, 217
canonical form, 221

controllable form, 221
example, 228
Jordan form, 227
observable form, 225

computation of the transfer function, 231
control design problem, 281
controllability, 246

index, 264
test, 247

discretisation, 217
linear quadratic regulator, 321

dynamic programming, 321
fininite horizon, 326
finite horizon, 321

observability, 246
test, 249

output feedback controller, 301
assumption, 301
design, 301
structure, 301

real-time implementation, 367
LQR, 367
reccurent equation, 367
state feedback control, 367

stability, 240
invariance of the stability when

changing the canonical form, 241
Lyapunov method, 240
Lyapunov theorem, 241

state feedback control
Ackerman formula, 291
block diagram, 282
necessary assumption, 281
pole placement method, 282
structure, 282

steady state error, 240
time response, 237

Static output feedback, 394
LMI condition, 394

Time response, 103
computation based on state space model,

237
overshoot, 103
performances, 103
settling time, 103
Z-transform inverse, 83

Transfer function, 45, 88, 93
approximation methods

backward integration, 88
forward integration, 88
poles/zeros matching, 88
trapezoidal integration, 88

block diagram, 45, 48
computation, 93

example, 93
definition, 45, 48
real-time implementation, 361

PID, 361
reccurent equation, 361

Two wheels robot, 51
mathematical modeling, 51

Uncertain system, 379
free system, 379
LMI stabilization condition, 390

Uncertainty
admissible, 379
norm bounded, 379

Z-transform, 77
back shift, 79
definition, 77
example, 77
final value theorem, 79
initial value theorem, 79
linearity and homogeneity, 79
properties, 79
shift, 79
table, 79

Z-transform inverse, 83
methods, 83

partial fraction, 83
polynomial division, 83
residue, 83

Ziegler-Nichols method, 130
frequency domain, 135
time domain, 130

	Cover
	Mechatronic Systems
	ISBN 9783642223235
	Preface
	In Memory of Prof. El-K´ebir Boukas
	Contents
	List of Figures
	List of Tables

	1 Introduction
	Mechanical Part Design
	Electronic Circuit Design
	Real-Time Implementation
	Organization of the Book

	Part I: Mechatronic Systems
	2 Mechatronic Systems
	Mechatronics
	Mechanical Part
	Sensors
	Actuators
	Electronic Circuit
	Real-Time Implementation
	Examples of Mechatronic Systems
	Dc Motor Control
	Two Wheels Robot
	Magnetic Levitation

	Conclusions
	Problems

	Part II: Modeling
	3 Mathematical Modeling
	Mathematical Modeling Based on Physics Laws
	Concept of Transfer Function
	State Space Description

	Identification
	Transfer Function Approach
	State Space Description Approach

	Conclusions
	Problems

	Part III: Transfer Function Approaches
	4 Analysis Based on Transfer Function
	Introduction
	Sampling Process
	Transfer Function Concept
	Time Response and Its Computation
	Stability and Steady-State Error
	Root Locus Technique
	Bode Plot Technique
	Conclusions
	Problems

	5 Design Based on Transfer Function
	Introduction
	Formulation of the Control Design Problem
	Design Based on Empirical Methods
	Design Based on Root Locus
	Design Based on Bode Plot
	Case Study
	Proportional Controller
	Proportional and Integral Controller
	Proportional and Derivative Controller
	Proportional Integral and Derivative Controller
	Phase Lead Controller
	Phase Lag Controller
	Phase Lead-Lag Controller

	Conclusion
	Problems

	Part IV: State Space Approaches
	6 Analysis Based on State Space
	Introduction
	State Space Concept
	Time Response and Its Computation
	Stability
	Controllability and Observability
	Case Study
	Conclusion
	Problems

	7 Design Based on State Space
	Introduction
	Formulation of the Control Design Problem
	State Feedback Controller Design
	Output Feedback Controller Design
	Linear Quadratic Regulator
	Case Study
	Conclusions
	Problems

	Part V: Implementation
	8 Design and Implementation of Mechatronic System
	Introduction
	Design Phase
	Electronic Design
	Software Design and Real-Time Implementation
	dsPIC30F4011
	Pusle Width Modulation
	Interrupts

	Design and Implementation Based of Transfer Function
	Design and Implementation Based on State Space
	Conclusions
	Problems

	Part VI: Advanced Control
	9 Robust Control
	Stability Problem
	Stabilization
	H∞ Stabilization
	State-Feedback Control
	Static Output Feedback H∞ Control
	Output-Feedback Control

	Conclusion
	Problems

	10 Guaranteed Cost Control Problem
	Introduction
	Problem Statement
	State Feedback Control Design
	Output Feedback Control
	Conclusion
	Problems

	Part VII: Case Studies
	11 Case Studies
	Introduction
	Velocity Control of the dc Motor Kit
	Position Control of the dc Motor Kit
	Balancing Robot Control
	Magnetic Levitation System
	Conclusion
	Problems

	Appendix A: C Language Tutorial
	References
	Index

