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PREFACE

The IUTAM Symposium on Rheology of Bodies with Defects was held in Beijing in
September, 1997. It was aimed at the development of Rheology in Solid Mechanics.

Rheology is classified in Applied Mechanics Review under fluid mechanics, however, in its
broadest content as was envisaged in its earlier days, it covers the whole spectrum of
material behavior from elasticity, plasticity, and fluid mechanics to gas dynamics. It was
thought of as a branch of continuum mechanics, but emphasized the physical aspects of
different materials, and frequently proceeded from basic physical principles. As the
temperature rises, the distinction between solid and fluid, and the distinction between their
micro-mechanical movements, become blurred. The physical description of such materials
and their movements must be based on the thermodynamic principles of state variable
theory; the classical division between solid and fluid mechanics disappears.

Under the classification adopted by Applied Mechanics Reviews, the subjects dealt with in
this symposium come closer to viscoelasticity and viscoplasticity, especially close to the
subdivision of creep dealing with creep rupture. The symposium focused at building a
bridge between macroscopic and microscopic research on damage and fracture behavior of
defective bodies made of metal, polymer, composite and other viscoelastic materials. Two
different approaches are presented at the symposium. The first is a continuum damage
theory for time-dependent evolution of defects at the macro/meso/microscopic levels. The
other is based on thermodynamics, and makes use of recent advances in non-equilibrium
dynamics, non-equilibrium statistical physics and stochastic mechanics; it also tries to
merge macro/microscopic levels. The first approach comes very close to that presented in
the IUTAM Series on “Creep in Structures” and many other series on creep and fracture
of materials. The symposium provided a forum for discussion and interaction between the
two approaches. A similar trend can be seen in the IUTAM Symposium on “Creep in
Structures”; as the emphasis changed from pure deformation and stability of structures
toward the development of theories regarding the damage growth and propagation of
creep cracks, it also tended to merge with physical aspects of material sciences.

The early papers in this proceeding deal mainly with the theoretical framework and
related experimental work using both approaches. They are followed by more specific
studies on different materials, including composites, cast iron, mortar, concrete, clay and
rock-mass. Finally creep rupture analyses of structures are presented. By defects, we
usually mean voids, micro-cracks, inclusions and damage in material, but when dealing
with the stability analyses of structures, we also consider initial imperfections as defects;
this is the subject of the last paper dealing with creep analysis in structures.

X V
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The symposium was held in Beijing, for the benefit of the Eastern countries and in the
hope of bringing Western and Eastern scientists together. We had researchers from
Australia, France, Japan, Netherlands, Romania, Poland, Ukraine, and U.S.A. It was a
good international gathering with active discussion. It is with deep regret that several
scientists from Israel, Japan, Mexico and U. S. A. were unable to come at the last
moment.

The symposium was mainly organized by the Chinese Society of Theoretical and Applied
Mechanics (CSTAM). Special thanks should be given to Mr. He Lin, Zhao Da-Gang and
Ms. Tang Ya-Nan of the CSTAM office. The generous financial support of IUTAM is
much appreciated; the supports from CSTAM, NNSFC (National Natural Science
Foundation of China), Xiangtan University, Huazhong University, Peking University, and
Kluwer Academic Press are also gratefully acknowledged.

All the papers were reviewed and revised after the symposium; this delayed the assembly
of the manuscripts. However, I would like to take this opportunity to thank the authors
for their unfailing and cooperative efforts in quickly revising and returning their
manuscripts, and to thank the staffs of Kluwer Academic Press for publishing the
proceeding on time. Helps by Ms. Zhang Chong-jing and Ming-zhen Wang in the process
of editing of the volume is acknowledged. Special thanks is due to Prof. G. M. L.
Gladwell, the general editor of this series, for his careful review and checking of all the
manuscripts.

Ren Wang
Dept. of Mechanics & Engineering Sciences
Peking university, Beijing 100871, CHINA



THE RUPTURE THEORY OF RHEOLOGICAL MATERIALS
WITH DEFECTS*

L.W. Yuan
Institute of Rheological Mechanics, Xiangtan University, Hunan 411105, P.R.C.

Abstract The rupture process of rhcological material containing defects may be
considered as a thermodynamically open, far-from-equilibrium system in which the
self-organization of dissipative structures takes place.The self-similarity of dissipative
structures on different scaling levels provides the opportunity for transition from
micro- to meso- and macro-levels. In this paper, based on the experimental results of
local temperature field and pyromagnetic effect formed in the evolution period of
defects the rupture process of rheological material containing defects have been
studied from a unified standpoint of macro-/meso-/microscopic stratum system. It is
proved that this rupture process is not only a pure mechanical process, the thermo-
mcchatucal coupling effect and pyromagnetic effect are not negligible.

1. Introduction

The classical methods of solid mechanics assuming continuous deformation sometimes
does not provide an adequate description of the rheological behavior and fracture process
of a real material. Irreversible macro-deformation and the fracture of solids are
predominated by material behavior in meso-and micro-scale.
The fact that continuum approximation is often unsatisfactory for a real material is now
beyond doubt. In natural or man-made materials, a variety of micro-, meso- and macro-
defects appears at the natural state or the production stage that may evolve during the
material's service life.
The irreversible deformation and fracture of solids may be related to a class of processes
in which the macroscopic effects are predominated by mesoscopic level behavior. For this
reason, a reliable prediction of a rheological solid under external force should be based
upon a clear understanding of the mechanics of the processes in meso-and micro-scales.
It is evident that only the description of these processes within a single system, taking
into account the interrelation of different processes in micro-, meso-and macro-scales,
would provide an adequate theory of the deformation and fracture of rheological solids
from the first and the second principles of non-equilibrium thermodynamics.

*Project 19632030 supported by National Natural Science Foundation of China

1

R. Wang (ed.), IUTAM Symposium on Rheology of Bodies with Defects, 1–19.
© 1999 Kluwer Academic Publishers. Printed in the Netherlands.



2 L.W. YUAN

From this point of view, physical mechanism constructed on a general fundamental
concept in micro-scale, may be extended to meso- and macro-scale, if one uses the
experimental facts of statistical self-similarity and scaling invariance of cracking in solid
materials. As a consequence, a deformed rheological solid may be considered as a
thermodynamically open far-from-equilibrium system in which the self-organization of
dissipative structures takes place. For this reason, the development of rupture theory from
the thermodynamics of solid physics, allowing an adequate treatment of the response of a
deformed rheological solid to an external physico-mechanical action, is possible on the
basis of the quantum-statistical approach. The self-similarity of dissipative structures on
different scaling levels provides the opportunity for transition from micro- to meso- and
macro-levels.
In this paper, the recent progresses in the rupture theories of rheological materials with
defects have been systematically reviewed in different scaling levels. Its aim is to probe
the following possibility: the failure process of rheological bodies with defects can be
considered as the kinetic phase transitions related to the self-organization of
corresponding dissipative structures. Here, the time, the temperature, the rheological
character and the dissipation are emphasized, and great attention is paid to the concepts
of stratum, synergism, statistics, pyromagnetism and magneto-conductivity.

2. The constitutive equation with ordered parameters

The rupture theory of material in the rhcology of bodies with defects deems that[1,2] the
relation between the evolutionary behavior of meso-defect and the rheological property of
material depends on the disorder of defect distribution and the collective synergetic effect
of the far-from-equilibrium state. This synergetic effect extends across the micro-, meso-
and macro-levels, thus forming a stratum system. In this stratum system, the nonlinear
rheological dynamic variables of the highest stratum control the variation of the variable
of lower stratum. For a system under the action of external loading, the whole process of
defect evolution to macroscopic rupture can be described by the ordered parameters. They
are relatively slow-changing variables representing the rheological kinetic states in the
evolutionary process of the subsystem of the macroscopic strata in the rheological body
with defects.

2.1. THEORETICAL ANALYSES OF THE EXPERIMENTAL RESULTS

In the experiment on the local temperature field and its variation law formed by the
evolutions of the macro-crack and the meso-defects[3-5],the following three fundamental
phenomena are observed:
1) The global rheological state of system can be expressed as

where is the operator of excited state of the nth subsystem with being the

ground-state of meso-defect in the evolutionary process of defect. are complex
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functions of coordinates in describing the collective synergetic motion of meso-defect
which are ordered parameters. The free energy of the system can be written as

is an operator of energy, and is written as for the subsystem.

2) There exists cognate interaction among the correlated subsystems and weak cognate
interaction among meso-defects, where the Hermitian conjugate

is an operator of degenerated excitation, and

is the Kronecker delta, and J represents the intensity of weak cognate interaction

among meso-defects.
3) The excitation of subsystem is nonlinearly coupled with the oscillation variable of the
phonon of heat carrier and we have where g denotes the intensity of

nonlinear coupling
According to the above-mentioned phenomena 2) and 3). we have

Substituting Eq.(2.4) into Eq.(2.2), we obtain

where is a complex number and is its conjugate quantity. Then the nonlinear
rheological dynamic equation can be obtained from this equation as follows:

Let the complex number and is a real number. Without lose of generality

where Pn  and  Qn  can be regarded respectively as normal coordinates and normal

momenta of oscillations.  ω 0 is the oscillation frequency, the superscript " * " denotes
the corresponding conjugate quantity.

2.2. THE CONSTITUTIVE EQUATION WITH ORDERED PARAMETERS

First, we construct the Laplace function

when neglecting the terms and we have

For the evolution of meso-defects with heat transfer, the generalized momentum can be
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evaluated from Eq.(2.6) as follows

secondly, we construct the Hamilton quantity

where

and are determined by the self-consistent condition. From Eqs. (2.10). (2 .11) and
(2.8) . we obtain

Owing to the viscous effect in the rheological material, the evolutionary velocity of a
meso-defect will be smaller than the heal wave velocity caused by collective transmission

in the multi-phonons system, thus m consideration of we have

By substituting this equation into Eq.(2.12).we obtain

Under t h e condition of continuous approximation, the above equation can be written as

where d is the statistically averaged distance between correlated meso-defects Eq. (2.15)
is just like the constitutive equation with ordered parameters for the evolutionary slate in
the rupture process of a rheological material containing defects.
If the nth meso-defect is evolving with velocity and the center of this meso-defect is

located at then the ordered parameter of this mobile defect is

where is the excited energy of defect. the statistically averaging radius of defects,
is the constant which has a direct bearing on the stiffness and the density of

rheological material

2.3. THE SOLUTION OF CONSTITUTIVE EQUATION WITH ORDERED PARAMETER

So far as a rheological body w i t h defects is concerned on the whole, the fundamental
physical quantity is the statistical distribution A of meso-defect's density, from which the
average values of all functions of coordinate and momentum can be computed. Therefore,
we make a beginning from the Liouville's equation which gives a description of the
evolution of A in the phase space. We write as
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where is the Liouville's operator. may be regarded as the generalized coordinates

of a point in phase space, and the relation between and still obeys Eq.(2.9). For

the nonlinear system, the Liouville's operator is   where  Li   and  Lj  are,

respectively, the linear and the nonlinear part of this operator Adopting the technique of
Mori-Zwanzig's projective operator[6,7], by unfolding  Lj   in the light of A, and neglecting

higher order terms, we obtain

dependent on time t . , the rheological memory function, is the value

of ordered parameter A at time the past time. This equation shows the

oscillation of ordered parameter of the nonlinear system. Because the defect evolution
produces a local temperature field, as shown in Fig. 1 and the infra-acoustic oscillation of
collective transmission in the system for multi-phonons of heat carrier may be expressed
as Eq (2.13), we select the variable related to the oscillation to be the ordered parameter
Therefore, in the case after some lengthy manipulation ,we finally obtain the
solution of Eq.(2.15) as follows:

where is the frequency matrix , the correlation function of defects which is
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This equation describes the meso-defect with evolutionary velocity vn.
Moreover the interaction between defects contributes to the respective temperature fields
formed by various defects in the process of evolution and there finally occurs the
collaboration The collaborated condition of correlated defects leads to

where c   is the parameter of critical collaboration in rheo-dynamics and is determined

by the non-diagonalization characteristic of the nonlinear Liouville operator, and

are the effectively projected radii on x-axis of two local temperature fields, respectively.
In a certain range of (such as ). there emerges a sensitivity to the incipient
configuration of meso-defects, i.e., a chaotic behavior would appear. It is thus obvious
that the evolution of meso-defect naturally introduces disorderness, which reflects the
collective synergetic effect of nonlocal interaction among a large number of meso-
defects.

2.4. BRIEF SUMMARY

We are led to two primary conclusions based on the above discussion as follows:
( 1 ) The interior meso-defects with different sizes and types exhibit disordered
distribution, and the collective synergetic effect is generated by the interaction among
correlated meso-defects. The nonlinear coupling will prevail between the collective
excitation and the oscillation, there is an important influence on the state of rheological
motion of the defect evolution Therefore, the disorderness of meso-defect distribution
comes into action in a diversified form and the process of evolution is amplified. This
disorderness may be expressed by the ordered parameters, thus can also be reflected on
the constitutive equation of evolutionary state of the rheological material with defects.
(2) The rupture process of rheological material with defects is a process of nonlinear
rheo-dynamics which is consistent with non-equilibrium statistical thermodynamics of
the discontinuous system with a microstructure. The collaborative condition of correlated
meso-defects depends on the nonlinear rheo-dynamic parameter which is determined

by the characteristic of non-diagonalization of the nonlinear Liouville's operator. The
time sequence of energy transformation would be coupled with the thermo-mechanical
character of material when the defect is evolving. The ordering degree of the power-flow
distribution is reflected by the transformation direction of energy

3. Meso-physical mechanism of the process of defect evolution

The dissipation of energy, due to plastic deformation, near the tip of a dynamically
propagating crack and the surroundings of evolving defects may result in the heat
generation that forms the local temperature fields[9-12] as shown in Fig.1. It is suspected
that such temperature increase wil l strongly affect the nature of the deformation field of
the process zone at crack tip and may result in changes of the dynamic fracture toughness
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of the material. Otherwise, because there exists the temperature gradient in the process
zone at crack tip, it necessarily leads to the pyromagnetic effect in this zone[15]

3.1. THE THERMAL PROPERTY OF THE PROCESS ZONE AT CRACK TIP

As each stress and strain state is determined independently, unloading can be carried out
in the same way as loading. In fact, the same procedure applies to any load-time history.
The loss of energy, referred to as dissipation, can be calculated uniquely for each load or

we define the energy dissipation density and available energy density in relation to

such that adifferential change of energy state corresponds to

As a result of volume and surface change of the process zone at crack tip, the temperature
will alter accordingly. For an incremental change of stress and strain thermal
change can be obtained directly from[ 1 3 ]

Here,  θ can be calibrated experimentally in °K and it represents the non-equilibrium
temperature.
The experimental results of the temperature field formed at the main macro-crack tip and
the surroundings of meso-defects[1,2,4,5] demonstrate that the dissipation caused by
temperature gradient g is the main part of energy dissipation, and is called the thermal
dissipation        .  While the others, such as the dissipation caused by defect evolution,

rheological properly of material, strain softening, crack propagation etc., are called the
intrinsic dissipation which are the non-thermal dissipation, we have

Let us introduce the coefficient of energy dissipativc capability which is defined as

and the thermal conductivity coefficient can be obtained from Fourier law:

function of dissipated energy in the process zone at crack tip consists of and

and so

~unload path. Let denote the energy in unit volume of material within unit time. ThenW

~W

V Awhere and are , respectively, the increments of volume and surface of the
Cprocess zone at crack tip. Because has directionality and is related to the rate, so

according to the theory of the rate-dependence on temperature[16], we know the density



8 L. W. YUAN

where is the generalized Helmholtz free energy, h the thermal flux, the superscript

being the corresponding physical quantity of temperature rate-dependence.
Let   expresses the released energy for meso-defect evolution, Fg be the generalized
force which is conjugated with the dissipation variable, then

where is the free energy as shown in Eq (2.5), Y the dissipation variable affected by

the rheological property of material, Z the statistical distribution variable of meso-defects
Thus, the relation between the rheological character of material, the evolution of internal
meso-defect and the thermal dissipation can be wri t ten as

Therefore, we can see that the dissipation has a direct bearing on the process, and the
dissipation potential is inexistent
Define

then we have the energy equation for the process zone at the crack-tip

and

where cs is the specific heat, r the intensity of heat source, the nonlinear strain field,

and the linear stain field. The second, third and fourth terms on the right-hand side of

Eq.(3.10) represent respectively, the dissipation caused by the nonlinear rheological
deformation, the thermo-elasticity, and the oscillation of the ordered parameters, the 5th
term is the dissipation caused by the dispersion of temperature

3.2. THE ELECTROMAGNETIC CHARACTERS OF THE PROCESS ZONE AT CRACK TIP

In 1989, our experiments on polymer with defects and ductile alloy with crack under the
action of tensile loading[1 ,15] discovered that the process zone at crack tip forms local
heterogeneous temperature field. This zone has distinct electromagnetic character due to
the existence of temperature gradient. The intensity of magnetization field of this process
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zone is dependent on the theological properly of materials, the rate of external loading
and the temperature gradient in the process zone.
The experimental results of pyromagnetic effect reveal in the rupture process of
rheological material with defects as shown in Fig.2. These experimental results show:
( 1 ) The variations of magnetic induction field in the process zone at crack tip arc small at
the beginning of crack propagation. After the in i t ia l crack propagation, the intensity of
magnetic induction field slowly increases with the growing load and the increase of
temperature of the local temperature field At about sec. before fracture, the intensity
of magnetic induction field grows rapidly wi th the increase of the area and the
temperature of local temperature field near the process zone After tensile failure of
sample, the residual intensity on the fracture surface of the sample keeps up some
time(the longest time is about 3 days)before it disappears.
(2) During crack propagation, the process zone at crack tip is simultaneously acted upon

there occurs either the effect of induced current E or the change of heal resistance
as shown in Fig.3(a) and 3(b). These phenomena make clear that in the later stage of

crack propagation, the local temperature field, the magnetic induction field and the
electric induction field coexist in the process zone at crack tip, and have influence on
each other.

It is well known that the essential in the methodology of rheology in continuum
mechanics is Galilei’s invariant, but that for Maxwell equations in electromagnetics are
Lorentz’s invariants. Therefore, in order to write the characteristic equations for the

by the magnetic induction field B and the temperature gradient of the heat flow JH

(both are orthogonal to each other),thus in the direction which is perpendicular to the
directions of B and .or in the direction which is perpendicular to the direction of

JH
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process zone at crack tip, and let them be covariant with Galilei’s transformation, we
make use of non-dimensional analysis to obtain

where H expresses the magnetic field, E the electric field, i the electric current density,
and D the electric induction field, here the following transformation laws have been
used:

These transformation laws express the transform of quantity X in Galilei frame into

quantity in Lorentz frame  ,in which c is the light velocity, the moving velocity

of the frame relative to the frame Thus, the intensity of magnetic polarization M
and the intensity of electric polarization P of the process zone at the crack-tip can be
written respectively as

while

and are respectively the magneto-conductivity and the electro-conductivity of the
process zone.
The boundary condition of the process zone at the crack-tip can be obtained from the
local forms of global balance equations Now we begin by writing the global forms of
momentum balance equation and of energy balance equation as follows:

where s is the additional energy flux vector caused by the defect evolution in the process
zone, and expresses the electromagnetic energy flux vector. Define the strain
field and the stress field as follows

where is a characteristic quantity which is the magnetic inductance, I the electric
current. Under the assumption of sufficient smoothness, the local forms of Eq.(3.16) and

where is the speed of transmission of the heat-carrying phonon,  ei  the specific
internal energy, q the energy flux vector, f the specific bulk force, n the unitary outward
normal vector, for other symbols see Eq.(3. 10). Note, q here is
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Eq.( 3 . 1 7 ) may be wri t ten as

In equation (3.20) the terms M gradH and            express, respectively, the magnetizing

force and the Lorentz’s force in the process zone. In equation (3.21) the term
expresses the heat energy current of local temperature field near the process zone. In this
case, the Clausius-Duhem inequality may be written as

Thus, the operator of energy in Eq (2 2) can also be written as

In the above-mentioned equations, is the unitary magnetizing intensity, the

superscript expresses corresponding quantity for unitary density, the internal

energy of the process zone, the specific entropy. It is thus clear that owing to the effects
of thermodynamics, pyromagnetics and electromagnetics, the value of internal energy
function of the process zone has been decreasing.
According to Eqs.(3.20)and(3.21), after tensile failure, on the fracture surface we have

where u is the speed of transmission of the magnetic induction on the fracture surface.
After a period of lime(about 20-48 hours for polymer and 36-72 hours for ductile alloy),
on the fracture surface we have

where κ is the unitary outward normal vector on the boundary of the process zone.

3.3. BRIEF SUMMARY

We are led to two primary conclusions based on the above analyses as follows:
( 1 ) The interactions between electron and electron, electron and phonon, or phonon and
phonon in the material give rise to the exchange of the momentum and of the energy
between the correlated meso-defect and the molecular bond ,so that heat is transmitted in
the form of waves. Because the heat wave transmission is influenced by the action of
viscous damping, there will be formed a local heterogeneous temperature field at the
surroundings of meso-defects and the crack-tip of mobile macro-crack.
(2) Because there exists a temperature gradient in the process zone at the crack-tip, it
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necessarily leads to the pyromagnetic effect in this zone The carrier for metal is electron
or cavity, and for polymer is charged soliton or bipolaron, as is well known, the
interaction between phonons and electrons comprises dynamic dissipative processes, thus
the equations of conservation of linear momentum and energy ought to contain the
contribution of electromagnetic effect

4. Micro-physical mechanics of the rupture process

Traditionally, the analysis of processes that control rheological deformation and fracture
of solids at the micro-level has been confined to consideration of models that take into
account only paired interatomic bonds[17–19].But the rheological behavior of solids is
determined by the dynamics of collective excitations induced by the external factors
Thus fracture processes are collective, far-from-equilibrium processes, whose kinetics are
governed by the self-organization of dissipative structures that ensure an optimal, for
specified loading, level of dissipation of energy[20]. Therefore, in developing a physical
theory of the material rupture theory in the rheology of bodies with defects it is necessary
to exhibit the mechanisms of microscopic processes limiting the defect dynamics,
because it is this winch determines the process of rheological deformation of a solid
Moreover, the rheological behavior of the process zone at crack tip during defect
evolution is governed by the dynamics of collective excitations. The spectrum of
structural excitations (defects) in the process zone can be determined correctly from the
solution of the non-steady state equations of stochastic mechanics[21] with the potential
that is formed by an ensemble of atoms, and this potential determines the “structural
memory” of the process zone at the crack-tip. Therefore, the rupture process of
rheological solid with defects can be predicted reliably only with a clear understanding of
the nature and kinetics of the quantum process in a fractured solid.

4.1. THE INTERATOMIC PAIRWISE POTENTIAL

The usual approach to constructing the
quantum fracture mechanics of
irreversibly deformed solid is based on
the use of an interatomic pairwise
potential U(r) independent of the type
of interatomic force. It has the shape
shown in Fig.4 and is characterized by:
1 ) Minimum in  U(ri j)  which corres-

distance ij at zero absolute temperature,
is determined by the competition of the
forces of attraction and repulsion.
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maximum, i.e .

3) Energy spectrum of this potential represents a set of energy levels At its ground

state, an atom, owing to the oscillation is equal to zero, possesses a finite energy

reckoned from Here is the Planck’s constant and m is the
mass of an atom
4) The amplitude of the zero atomic oscillation is equal to

where

is the maximum velocity of a finite motion of atoms in the potential well U(r) at this
energy level ,and

is the DeBoer’s parameter.
5) Because of the Heisenberg’s uncertainty principle, the energy levels of the atoms in the
pairwise potential have finite widths .It is easy to show that the energy width of the
ground level is equal to

We note that is equal to the kinetic energy of an atom for which the deBroglie wave

length is equal to interatomic distance, i.e.,

decreases with growing n. Each energy level is characterized by its

stable atomic configuration and specific interatomic spacing As a rule.

This condition is closely related to the local temperature field at the crack-tip of a mobile
crack.

4.2. MICRO-PHYSICAL MECHANISM OF DEFECT EVOLUTION

This equality corresponds to the velocity of atomic motion  u = Ca of the atom.
6) Because of the asymmetrical shape of the potential U(r). the degeneracy of the levels
n= 1.2,....is elevated. So that the difference in the energies of the neighboring levels ,
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It is thus evident that in the process zone of a mobile macro-crack there are the
temperature gradient. The rheological stress is reduced with increment of the probability
of thermal activation. So, for ordered crystalline rheological materials, the number of
phonon (which can scatter the electron) increases with the rise of temperature, thus the
resistivity is also enhanced But for disordered amorphous eheological materials, they
have higher resistivity and lower sensitivity of temperature. Therefore, the rheological
behavior of a deformed media is governed by the dynamics of collective excitations,
among which should contain the transmission of the heat-carrying phonon and the action
of the electron-phonon coupling.
Based on these characters of potential U(r), it is sufficient for the main properties of the

the following general form[22]:

where f ( r ) is a periodic (quasiperiodic) function wi th period and

Here U(r) is a V-shaped potential which is defined by interatomic interaction, while

takes into account the long-range interatomic correlation(for most crystals

and glassy polymers), which determines the shear stiffness of material in the process
zone, characterized by the shear modulus where is the density of the material

and is the velocity of transverse acoustic waves.
Models incorporating only pairwise interatomic bonds in solids are customarily used in

which is characteristic of fractal structures. The exponent in Eq.(4.10) is determined by
the fractal dimension of the wave function of the atoms forming the solid and
dimension d of the enveloping space:

The wave function satisfying the Schrödinger equation when both the short-and
long-range interaction exist, are characterized by a hierarchy of spatial scales, which
obviously determine the scales of the structural levels of the deformation and fracture of

collective motion of excitated atoms to use the approximation of the potential relief Vij in

solids studied by Panin et al [25]. A strategy for solving problems involving many scales is
given by an approach based on the renormalization group.
In the process zone at the crack-tip (or the surroundings of defects), there exists a
hierachy of characteristic spatial scales of collective excitations in a deformed rheological
solid (n= 1,2,...) described by the ratios

the fracture analysis of kinetic processes[23]. In this case the equations of the fracture
macro-kinetics can be obtained by averaging the atomic fluctuations. Inclusion of the
long-range interatomic forces responsible for the shear stability of the solid changes the
situation drastically. Specifically, the effect of long-range forces results in a power
dependence of the correlation fluctuations of atoms[24]:
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the atomic level to the mesoscopic level, the exponent can also be expressed in terms of
Poisson’s ratio v. which specifies the change in volume during deformation of a
rheological solid:

Hence, using Eqs.(4.1 l)and (4.13),we obtain the relationship for fractal dimension of the
wave functions of atoms in the form

Take into consideration the formation of electromagnetic effect and the evolution of
local temperature field in the process zone. we can determine the Poisson’s ratio v by the
mesoscopic structural value (which is the statistical function of damage gradient and
the number density of microdamages) and the constant of the electron-phonon coupling

as

i.e.

where

is a function determining the temperature dependence of the effective density of
electron states, the Fermi function, the momentum of electron, the electron

energy spectrum, the Fermi energy, the Delta function and K the bulk modulus,

G the shear modulus. Based on our experimental the displacement distribution
of evolving defect field and the corresponding strain distribution are shown in Fig.5 and
Fig.6 respectively. The relations between the Poisson’s ratio (or the shear modulus) and
the variation of evolving defect location (x,y) are shown, respectively, in fig 7 and Fig.8.
The generalized equations of the transport of mass, momentum and energy(including
heat) in a deformed rheological solid wi th defects can be written in the form

where is the effective diffusion coefficient (the thermal conductivity etc.); and

are the f rac t iona l derivatives wi th respect to the t ime and the
coordinate, respectively. The use of fractional derivatives permits a simplification of the
mathematical form of the transport equations in far-from-equilibrium systems. To

where is the material vector velocity, Ve is the effective coefficient of transverse

deformation. In order to determine df for Eq.(4.11) the discussion may be shifted from
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elucidate the physical meaning of a transition to a space with a fractional dimension, it is
convenient to write Eq.(4.17)in integral form:

where is a memory function (the relaxation kernel, the creep kernel, etc.[26])
For creep of a rheological solid it is easy to obtain with the Laplace-Carson transform an
expression for in the form

where R(t) is the relaxation modulus. Thus we have

This result having taken the rheological properties of material into account[27] is in good
agreement wi th experiments of the local temperature field near the crack-tip.

5. Conclusions

As we have shown, the rheological materials with defects may be regarded as an open
far-from-equilibrium system. Its main characters are the phenomena of rheology and

dissipation which have manifested in the evoluting processes of various defects[28] .The
stratum hypothesis of micro-, meso-and macro-levels, indicates that the ordered
parameters always describe the synergetic activities of the subsystems of the highest
stratum. The constitutive equation with ordered parameters for the defect evolutionary
state will be changed accordingly. The states of order ,disorder, chaos, anti-chaos and
critical state of self-organization can, respectively, occur in different levels, and
transform from one to another during the evolution period.
The formation of local temperature field near the crack tip or the surroundings of
evolving defects demonstrates that the behavior depends on the rate of local energy
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transfer. In the creep process, there will be ample time for the material microstructure in
the process zone to interact with the external load. Nucleation and growth of meso-
defects in the process zone becomes unavoidable because the morphology of the
microstructure would have undergone significant changes with time prior to global
instability. This would be similar to the situation in phase transformation.
The rupture process of rheological material with defects can be predicted reliably only
wi th a clear understanding of the nature and kinetics of the quantum processes in the
process zone at the crack-tip. The nature of relations between processes of different scales
constitute the central problem in fracture physics. In this case the equations of the
macroscopic fracture kinetics can be obtained by averaging the atomic fluctuation.
Specifically, the effect of long-range forces results in a power dependence of the
correlation fluctuations of atoms as shown by Eq (4.10) which is characteristic of fractal

from the atomic level to the mesoscopic level, where the exponent is expressed in
terms of Poisson’s ratio V . which specifies the change in volume during deformation of
a medium. When the process zone at the crack-tip forms in a rheological solid, the
behavior of this solid becomes pronouncedly nonlinear and is determined by the self-
organization of structural excitations on micro-, meso, and macro-scopic scales. The
parameter that determines the kinetics of the dissipative processes in a deformable solid
is the ratio of the distortion energy density to the dilation energy density in the process
zone.When the critical state is reached , a non-equilibrium phase transition occurs with
violation of the configuration order, causing the shear rigidity to decrease and the volume
to increase. As a result, the local value of Poisson’s ratio in the process zone is on the
decrease. The instability of the critical state makes the critical phase to pass into a
destructive phase by means of self-organization at the mesoscopic level. The formation of
the destructive phase corresponds to the formation of a crack capable of self-similar
growth, leading to macro-fracture of the solid.
Our experimental results also show that due to the evolution of meso-defects there exists
a temperature gradient in the process zone at the crack-tip, it leads to the occurrence of
the pyromagnetic effect. The carrier for metal is electron or cavity with electric charge -e
or +e and spin ½. and for polymer is charged soliton which depends on the degeneracy of
ground states or bipolaron with electric charge . The transports of these carriers give
rise to the electromagnetic effect in the process zone at the mobile crack-tip. It is thus
clear that the rupture process of rheological material with defects is not only a pure
mechanical process, the thermo-mechanic-electromagnetic coupling effect definitely
could not be neglected.
In summary, the rupture process of rheological material with defects is either a
nonholonomic determinacy of the stratum system with nonlinear fluctuation caused by
the electron-phonon transports, or a deterministic non-periodic process of rheological
dissipation in which the global volume of the process zone at mobile crack tip changes
with the area of interior surface of the defects. The determinacy and the randomness
would be concomitant in the whole process. This paper attempts to combine the new
achievements in nonlinear rheo-dynamics, non-equilibrium thermodynamics and
statistical physics in the study of rupture theory of rheological material with defects from
a unified standpoint of micro-/meso-/macroscopic stratum.

structure. In order to determine the fractal dimension df  , the discussion must be shifted
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RHEOLOGICAL BEHAVIOR
AND FAILURE CHARACTERISTICS
OF VISCOELASTIC SOLIDS WITH DEFECTS*

TING-QING YANG

(Huazhong University of Science & Technology, Wuhan 430074, China)

Abstract Some new advances in study on rheological behavior and failure process of

viscoelastic solids with defects and some of our work are reviewed in this paper.

1 Introduction

Rheology of bodies with defects deals with the time-dependent damage evolution, the

defect growth, deformation mechanism and fracture characteristics of materials. This

topic of research involves the investigation of elasto-visco-plastic behavior and

constitutive relation of bodies with defects, the rheological characteristic and the failure

process of structures with defects (Yuan 1994, Yang 1996, 1996a). Some literatures in

the last decades are found to be based on the early works of researchers, such as

Williams M L, Knauss W G, Christensen R M, Schapery R A, McCartuey L N,

Kaminskii A A, Graham G A C, who studied crack growth and fracture in viscoelastic

solids. Significant development in study on rheology of bodies and structures with

defects has been made in the past several years. In this paper, some recent advances in

research on the rheological characteristics, deformation mechanisms and failure criteria

of viscoelastic solids with defects are reviewed. Some works in authors research group

are also reported.
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2 Viscoelastic Behavior and Fracture of Solid with Crack

Some textbooks such as Zhang (1994) have given an overall introduction on viscoelastic

fracture mechanics (VEFM). In the following a brief outline of some recent

development in the study on viscoelastic behavior and fracture characteristics of solids

with crack is presented.

A series of experiments in fracture mechanics for viscoelastic materials such as metals,

polymers and concretes have been studied. A number of papers have dealt with the

experiments of VEFM (see Zyczkowski 1991). Hyde and Chambers (1991) have

presented a summary of the pure mode-II and mixed-mode results for

Jethete Ml52 - an aeroengine casing material. Huang et al (1991) studied the problem of

plane stress crack growth in a rectangular linearly viscoelastic PMMA plate under a pair

of equal and opposite forces P applied to the crack surface. They asserted that there

exists a lower bound of the applied force When P is less than there is no crack

growth. There also exists a critical load , whose value can be determined

experimentally, for the transition from stable crack growth to an unstable crack growth.

Under a given load, there exists a critical crack length . Unstable crack growth would

take place when the crack length a(t) reached Based on some of Bazant’s work,

geometrically similar three-point bending concrete specimens were subjected to sudden

changes in loading rate. The viscoelastic cohesive crack model with rate-dependent

softening law is used to model the experimental results by Tandon et al (1995). Many

experimental results dealing with polymers can be found in other papers, such as by

Crook and Letton (1993), Yuan (1994), Liu and Li (1996).

Investigation concerning with concept and model of  fracture process zone ahead of the

crack tip has been developed. Knauss and Losi (1993) discussed crack propagation in a

nonlinearly viscoelastic solid with relation to adhesive bond failure. Two zones of

material behavior are presumed to govern the time-dependent growth: a linearly

viscoelastic bulk domain and a narrow line zone representing unstable and nonlinearly

viscoelastic response of the material. The displacement response in the bulk domain

under traction, the average strain across the strip and the cohesive fracture energy are

investigated. Assuming that there is a fracture process zone of Dugdale type in front of

the crack tip, Huang (1991) analyzed the viscoelastic and viscoplastic deformations in

the fracture process zone. The crack initiation and crack growth are considered to follow

a fracture criterion of critical energy release rate. On the stress field at crack tip,
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Atkinson and Eftaxiopoulos (1992) discussed the time evolution of the stress intensity

factors at both tips of a finite crack lying near the interface of a viscoelastic anisotropic

bimaterial. Eftaxiopoulos and Atkinson (1991) also studied the time evolution of the

force on dislocation and near tip stress field of a semi-infinite crack, lying at an angle

towards the welded interface of a bimaterial and just touching it.

A number of fracture mechanics parameters especially the integral parameters have

been defined for application to VEFM in the last decade. A reveiw of the integral

parameters in elastic-plastic fracture mechanics (EPFM) has been provided by Kim and

Orange (1988). Five types of fracture parameters for creep crack growth are brought out

in a paper by Brust and Majumder (1994). Kienzler and Hollstein (1991) showed the

derivation of integral fracture concept from conservation laws of general continuum

mechanics. In correspondence with integral used in EPFM and introducing a creep

potential, they gave the integral of creep fracture mechanics. Experimental and

numerical evaluations are given. An applicability to crack under steady-state creep

conditions is demonstrated experimentally. Kuo et al (1992) have found that is an

effective parameter to characterize steady-state and transient creep crack growth rate.

Kim and Van Stone (1995) investigated the ability of two other integrals as parameters

for correlating time-dependent crack growth rates. The integrals are the rate forms of

Kishimoto et al’s integral J^ and Blackburn’s integral J*. Sensale and Creus (1993) have

applied the transformed boundary element method (BEM) for investigating the

viscoelastic fracture behavior. Lee et al (1995, 1995a) investigated the behavior of the

cracked linear viscoelastic solid by using time-domain boundary element analysis. The

J(t) for the cracked linear viscoelastic body has been defined as the rate of change of the

functional M(t) for an incremental change in crack length. The computation of J(t) has

been performed from the time-domain BEM. Numerical computational procedure of  J(t)

has been successfully applied in cracked linear viscoelastic plates.

A number of other topics in VEFM have been developed rapidly. There are many

papers on the application of thermodynamic theory in viscoelastic fracture (Wang and

Shen 1994), the boundary value problem for crack growth in viscoelastic media (Linkov

1994), the constitutive equation with ordered parameters for the meso-defect

evolutionary state of viscoelastic material with defects (Yuan 1997), and the dynamic

crack tip field (Wang Z-Q 1993, Li F-C 1993, Gao 1990, Busso et al 1995 ). More

recently, Siegmund and Needleman (1997) presented a numerical study of dynamic

crack growth in elastic-viscoplastic solids. The effects of the strain rate hardening
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characterization on crack initiation, crack growth and crack arrest were investigated.

3 Rheology for Viscoelastic Solids with Inclusion/Void

In recent years, the viscoelastic inclusion/void problem has attracted the attention of

some scholars. Based on Eshelby’s and Hill’s works and by using Stieltjes convolutions

to express the constitutive equations of viscoelastic solids, Laws (1980) has solved

directly a viscoelastic inclusion problem under quasi-static condition , without the use of

correspondence principle.

The influence of inclusion shape on the overall viscoelastic behavior of composites was

studied by Wang and Weng (1992). The Eshelby-Mori-Tanaka method in elasticity is

extended into the Laplace domain to examine the linearly viscoelastic behavior in two

types of composites: a transversely isotropic one with aligned spheroidal inclusions and

an isotropic one with randomly oriented inclusions. Wang and Weng (1993) also studied

the nature of self-similarity and transient void growth in viscoelastic media with low

concentration of voids by means of the elastic-viscoelastic correspondence principle.

Many researches concentrated on the microvoids evolution. Bahr et al (1991) discussed

non-stationary nucleation of cavities at grain boundaries. The formation of creeping

pores at grain boundaries as a result of stress concentration in slip processes is

investigated by means of non-stationary nucleation theory. Van Der Giessen and

Tvergaard (1991) have studied micro-cracking due to cavitation and grain boundary

sliding in creeping polycrystals at elevated temperature. A plane strain cell model is

used to analyse the development of intergranular creep fracture. Continuous nucleation

of cavities and diffusive cavity growth are accounted for in the model, and also the

effect of freely sliding grain boundaries is incorporated. In addition to elastic

deformations, the grains are taken to deform by dislocation creep modelled by a power

law creep. Li (1996) has discussed the evolution process of microvoids in the

viscoelastic solid. Yu (1996) investigated the problem of steady-state creep crack

growth by the nucleation and growth of creep cavities ahead of a crack . The link

between crack velocity and rupture time in creep solids was explored. More recently,

Steenbrink et al (1997) dealt with a study of voids in amorphous glassy polymers that

exhibit elastic-viscoplasticity with rate dependent yield condition, intrinsic softening and

progressive strain hardening at large strains. A detailed numerical study is carried out

for plastic flow around voids and the resulting void growth, using the elastic-viscoplastic
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constitutive models for glassy polymers. Axisymmetric cells are presented by

considering the viscoelastic deformation around initially spherical voids. The study on

the cell model has shown that the axisymmetric deformation field around void for

polymers with softening and subsequent strain hardening can be quite different from

those found previously in metals under similar stress states.

4 The Use of Continuum Damage Mechanics

In the IUTAM fourth symposium on creep in structure (Cracow, Poland, 1990), several

papers were concerned with the theory and application of continuum damage mechanics

(CDM) in creep range. For instance: in the analysis of creep crack growth under

irradiation condition, Murakami and Mizuno (1991) proposed that the constitutive

equation might be demonstrated by analyzing the irradiation creep and irradiation creep

damage; considering the interaction between creep and damage, the strain localization,

Kruch and Chaboche (1991) presented a nonlocal damage approach for creep crack

growth prediction; after summarizing the development of constitutive equation for creep

CDM in metals, Hall and Hayhurst (1991) studied the size effects for notched and

cracked specimens, and the global performance of a multi-material structure as in steam

pipe weldments.

The use of CDM in viscoelastic solids leads to the improvement of mechanical modeling

and the advance in the analysis of rheological process. It can be seen that the process

zone model is improved when considering the CDM (Masuero and Greus 1993). Based

on a series of research, Murakami and Liu (1995) discussed the mesh-dependence and

its regularization in the local approach to creep fracture. By means of CDM and finite

element method (FEM), the paper concluded: the most essential cause of the mesh-

dependence in the local approach to fracture consists in the unlimited reduction of the

crack region width by the refinement of the finite elements; to avoid this mesh-

dependent width of the predicted crack, a nonlocal damage criterion is proposed; the

damage localization and the related nonlocal damage theory are influential on the

damage distribution in the process zone; stress sensitivity can be an important factor,

and the damage localization can be effectively avoided by proper modification of the

damage evolution equations. Recently, a viscoelastic constitutive model which describes

time- and temperature-dependent deformation behavior of particulate composites with

growing damage has been presented (Park and Schapery 1997). Ho (1996) has



26 TING-QING YANG

also discussed the characterization of damage by using a cumulative damage failure

criterion on predamaged solid propellants.

Lately there have been lots of researches on nonlocal damage theory and approach of
late years. Kruch et al (1991) introduced a nonlocal damage formulation, which

consists in averaging the damage parameter D over the characteristic volume with a

Gaussian function. So that the local approach with nonlocal damage can provide an

excellent prediction of the structure lifetime with initial stress concentrations. To

decrease the mesh-size effects as mentioned above, Murukami and Liu (1995) defined a

nonlocal damage rate variable. Recently, considering the research work of Hall and

Hayhurst (1991) and Bazant (1994) et al, a nonlocal continuum damage model for

elasto/visco-plastic material was derived and used to describe fatigue crack growth

behavior at high temperature by Qian et al (1996). A calculation method for nonlocal

damage was introduced. By means of FEM , the analysis of stress, strain and nonlocal

damage fields in a plate with a center crack was performed. The validity of the damage

model proposed was also verified by comparing the FEM numerical simulation with

experimental results.

More recently, Jie M and Yang (1997) have studied the slow extension of a mode-I

crack in PMMA. A nonlinear differential equation has been derived to govern the crack

propagation by using the Dugdale model. The craze length at the crack tip has been

assumed to be constant throughout the crack propagation based on former experimental

results. The viscous feature of the material in the craze zone has been taken into account

via an empirical relationship between the craze stress and the crack speed shown by

existing experiments. It has been found that the Dugdale model only works for crack

extension when the crack speed is lower than a certain value, i.e. the so-called slow

extension. An effective stress, instead of the stress intensity factor, has been introduced

to describe the crack tip zone. Variations of the crack length and the crack speed with

time have been computed and their dependence on the effective stress has been

discussed. Jie M et al (1997a) have also studied the craze damage field near the crack tip

of non-crystalline polymers. And, damage evolution and energy dissipation of polymers

with craze have been discussed via a theoretical model. A mathematical relation has

been derived between the damage of a single craze and that of a solid polymer with non-

interacting parallel crazes (Jie M et al, 1997b). The final life of a single craze and of

polymer with crazes is computed. It has been found that the energy dissipated in a craze

is proportional to the far-field stress.
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Based on a series of research, Hayhurst (1994) has investigated the use of CDM in creep

analysis for design. The paper presented the results of CDM analysis on a range of

components which included simple ligament situations, notch components, cracked

members and butt welded steam pipes. It was shown in all cases that the lifetimes and

the patterns of damage evolution can be accurately predicted from the uniaxial creep

data, and from data which yield the multiaxial rupture criterion of the material. Othman

et al (1993) have developed and successfully used a multi-axial constitutive equation

with two damage state variables to describe behavior of nickel-based superalloys. The

two damage state variables represent two physical mechanisms which take place in

tertiary creep due to grain boundary cavity nucleation and growth, and to the

multiplication of mobile dislocations, respectively.

5 Creep Crack Growth and Creep Failure

The development of study on creep fracture mechanics can be found in a lot of literature.

Most of them deal with metals and many on polymers. Cock and Ashby (1982) dealt

early with creep fracture by void growth in a long paper. The growth of void-like creep

damage has been analyzed in more details. Many papers on creep crack growth and

creep failure have been submitted to the IUTAM fourth Symposium on creep of

structure (see Zyczkowski 1991): theoretical, experimental and numerical investigations

of creep crack growth (by Kienzler R & Hollstein T); the assessment of creep-fatigue

initiation and crack growth ( by Priest R H & Miller D A ); a constitutive model for

creep and damage in composite materials (by Pyrz R); creep life estimates for defective

structures (by Ainsworth R A); an assessment procedure for the high temperature

response of structures (by Goodall I W et al); characterization of creep fatigue failure

process based on stochastic behavior of small crack initiation and growth (by Kitamura

T et al); fatigue crack propagation behavior under creep condition (by Ohji K and Kubo

S ), etc. Webster (1994) has made a review for the stress analysis procedures that are

employed for estimating creep crack growth. A creep fracture mechanics parameter C*

has been defined for describing situations where creep strains dominate. Experimental,

numerical and limit analysis procedures have been outlined for evaluating this parameter.

Van der Burg & Van der Giessen (1994) employ the Delaunay network model to study

the effect of randomness in the microstructure on the microcrack propagation behavior

and the ultimate times to rupture. A simulation of microcrack propagation in creeping
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polycrystals due to diffusive grain boundary cavitation has been studied.

Recently the fracture behavior of creeping materials under biaxial loading by FEM has

been investigated (Singh & Ramakrishnan 1995 ). A procedure for characterizing the

stress strain rate field during fracture of creeping materials was developed. Hyde et al

(1996) has analyzed the prediction of creep failure in aeroengine materials, nickel-base

superalloy and titanium alloy, at high temperature under multi-axial stress states. From

the uniaxial creep test results, a creep continuum damage model was established for each

material. As ceramic matrix composites at high temperature exhibit time-dependent

behavior due to fiber creep, even though the matrix remains elastic, Begley (1997 )

discussed the time dependent cracks in ceramic matrix composites. Using a bridging law

developed before which describes the effects of fibers bridging a matrix crack and

accounts for frictional sliding between the fibers and the matrix, the time-dependent

behavior of bridged cracks for the composites is modeled.

Time-dependent creep-fatigue crack growth is an important consideration in the design

and the estimation of remanent life of high temperature components. Grover and Saxena

(1995) characterized the creep-fatigue behavior in a Cr-Mo steel, a steam header

material, using the average value of the parameter , i.e. The analytically

estimated values of were compared with the experimental values of

Sedmak A and Sedmak S (1995 ) introduced and applied a critical crack assessment

procedure for high pressure steam turbine rotors.

More recently, Wang (1996) has reviewed the study on creep behavior, deformation

mechanisms and creep failure of polymer and polymer composite. Author gave a survey

to the researches and developments on VEFM in creep range, including creep crack

growth, relevant fracture mechanics parameters, creep failure and life assessment in

defective structure . Zhang and Yang (1997) reviewed the advances in research on

cracks/defects evolution and creep failure of rock. Yang J-Y (1997 ) investigated the

creep of the surrounding rocks of caverns in viscoelastic joint rock mass. The time-

dependent displacement field of the surrounding rocks can be determined by FEM.

6 Concluding Remarks

Time-dependent mechanical behavior, deformation mechanisms and failure criteria of

the bodies and structures with defects have become important research subjects in the

past several years. Although the above overview is far from complete the papers
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presented, it can be seen all the same that the study on rheological behavior and failure

characteristics of viscoelastic solids with defects has been developed rapidly and widely.

• Theoretical, experimental and numerical investigations are combined in studying the

viscoelastic behavior of solids with defects. The numerical simulation is a very

important approach.

• The topics of elastic-viscoplasticity, the creep of metals under high temperature and

that of composites have attracted more attention of late, and may become more

prosperous in the near future. CDM and micromechanics are very useful for the

research.

• Mechanical behavior of materials with various defects (such as cracks, inclusions,

voids etc) is strongly affected by their interaction. Such coupling and/or interaction

are significant nonlinear subjects.

• The application of the theory on viscoelastic solids and structures with defects can be

found in many aspects of engineering.
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SIMULATION OF SLOW KINETIC FRACTURE
OF GAS EMISSIONABLE MATERIALS
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Abstract

Three-dimensional problem on a slow quasi-stationary crack
growth in materials exhibiting specific properties of gas
emission in bulk is considered. The crack occupies
arbitrary domain in plane in initial moment t. The
connected diffusion-elasticity 3D problem is reduced to
two 2D boundary integro-differential equations which then
are solved numerically.

1. Introduction

A number of materials used in modern engineering exhibit
specific properties of gas emission in bulk under certain
mechanical and/or physical influence or aging. Gas
emission due to aging is typical for a number of polymers.
Some metals and alloys applied in nuclear-power
engineering become gas emissionable under radiation
( Likhachev et al., 1982).

Gas emission in bulk can frequently cause crack or crack-
like defects initiation and their slow propagation.
Experiments show that the cracking resistance of the
materials in gas presence is not a constant of the
material, but is characterized by a function - the
dependence of the crack growth velocity on the stress
intensity factor (Barenblatt et al. , 1966; Mishnaevsky
1994) . In this case, the crack growth is observed long
before the critical loading for materials in gas absence.
Thus, crack kinetics analysis implies simultaneous
consideration of gas diffusion into the crack and slow
kinetic crack growth due to the action of inner gas
pressure and other mechanical loads .

We suggest a numerical method for solving the 3D problem
for a medium with cracks occupying a plane region.
Problems of gas diffusion into crack and crack propagation
are solved by reducing to 2D integro-differential
equations in the crack domain. In model calculations, the
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crack velocity v at each point of the crack contour is
assumed to be dependent on the stress intensity factor K
at this point. The kinetics calculation is performed step
by step procedure. The algorithms applied here develop
those suggested earlier (Balueva, 1993).

2. Statement of the Problem

We consider the slow quasi-steady growth of a tensile
crack initiated at t =0 and occupying a domain G in the
plane The velocity v at each crack contour point is
assumed to be dependent on the stress intensity factor N
(as is adopted in kinetic crack theories) and specified by
a curve v(N) which is the material function. The crack is
growing under the action of a gas produced by gas emission
sources distributed in bulk. The crack is modeled by an
ideal sink (far from equilibrium state). The crack
velocity is assumed to be small as compared that in the
transient period. Under this assumption, the flow into the
crack can be found from the solution of the stationary
diffusion problem for each t. Suppose that initially there
are two diffusion sources of intensity W placed inside the
body on the symmetrically at a distance from the
crack . In view of the symmetry with respect to the crack
plane, we can consider the problem in the half-space

The boundary value problem for the gas concentration
is following one:

where is Laplacian, D is the coefficient of gas
diffusion in the medium.

The diffusion flow density for
is the unknown function in the problem. As

usual, to construct an integral equation for q, we first
consider the gas diffusion problem with sources in a
medium without the crack:
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The solution to problem (1.2) is the function

and the gas concentration in the crack plane is given by

Let us now write out the solution to the diffusion problem
without sources but with the gas concentration inside the
crack to be equal in magnitude and opposite in sign to
that in the first problem:

The following integral equation is obtained for the
diffusion flow density q from Eq. (1.5) :

Similarly, if a nonzero gas concentration

given inside the crack, then we

arrive at the integral equation
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The following integral equation is valid if two sources
symmetric with respect to the crack plane are placed at
arbitrary points and in bulk:

Using the superposition principle, we obtain the following
equations for several point sources of gas diffusion inside
the body or for those distributed with intensity density

where are the intensities of the sources at the points
and T is the region of diffusion sources

distribution with density To search for the
elastic fields induced by the gas diffusion into the crack,
we consider the problem of a tensile crack with load p
applied to its surfaces, where p is the gas pressure, which
depends on the crack volume and mass of gas entered. The gas
is assumed to be ideal; then the crack volume V, the mass of
the gas M, and the
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pressure p are related by the Clapeyron equation
Here R, and T are the molar mass of the gas, the gas
constant per mole, and absolute temperature, respectively.
Reducing the elasticity problem to boundary integral
equations, we obtain the system

where integral equation (1.11) for can be replaced by
Eqs. (1.7)-(1.10) depending on the number of sources and
their distribution. Equation (1.12) is the integro-
differential equation for the crack surfaces displacement

further, E, and v are the number of gas
moles in the crack, gas flow rate through the crack, Young's
modulus, and Poisson's ratio of the medium,



38  A.V. BALUEVA

respectively. The term r is the radius vector of the crack
contour and v in Eq.(1.19) is the crack contour point
velocity in the direction of its outer normal. Equations
(1.17) is used for the calculation the stress intensity
factor N, where s is current point along the crack contour
and is the distance from the contour in direction of its
inner normal (Slepyan, 1981).

Equations (1.17)-(1.19) provide the calculation of the stress
intensity factor N and of the new crack contour.

The solution is performed stepwise (Balueva at al.,1992). The
main computational difficulties of the first t-step are
related to solving integro-differential equations (1.11)-
(1.12) and in searching for a new crack contour via the
calculated velocities v at the previous contour points (see
Eq.(1.18)). The last computation is a separate calculational
problem. A procedure for solving the elasticity problem for a
normal tensile crack (Eq. (1.12)) has been developed
(Goldstein at al . , 1973) . For this reason, we focus on a
numerical method for solving the diffusion equation (1.11).
In case of a circular crack region, we obtain an analytic
solution.

3. Numerical Method for Solving the Diffusion Equation

Our method for solving the integro-differential equation is
based on the variational-difference method (Balueva et al. ,
1985) . Namely, after discretization, the values of q at the
grid points are searched for as an expansion through a system
of coordinate functions

where is a bilinear spline function with a support in
the four grid cells adjacent to the point of the
grid with the step h.

The coefficients coincide with the values of at
the grid points and are found by minimizing the corresponding
quadratic functional:
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The minimization is carried out by the gradient projection
method with an automatic step choice according to the
relation between the linear and the actual functional
increments.

4. Axisymmetric Problem of Gas Diffusion into a Crack due
Discrete Sources

The integral equation (1.11) in the case of a circular
crack of radius a and a point source lying on the
acquires the form
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This integral equation (3.1) can be rewritten

where K(k) is the complete elliptic integral of the first
kind.

Using properties of Bessel functions, we have

and Eg. (3.2) becomes

Denote

Then Eq. (3.5) can be represented in the form
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Using properties of the Bessel transformation, from Eq.
(3.6) we obtain

Thus, we arrive at the system of dual integral equations

The solution to system (3.9) has the form

or after substituting of g(y)

then, from Eq.(3.6) we can find function q(r) by the
formula

Omitting cumbersome details of integration, let us write
out the final expression for diffusion flux density
through the crack
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As the crack radius the solution has the asymptote

This formula coincides with the solution to the problem on
a diffusion source in a half-space. On the crack contour,
that is, as we have the asymptote

Thus, this solution has a root singularity, which is
actually observed in the problem of a gas diffusion into
the crack for consideration with a source given at
infinity (Balueva at al., 1994).

Comparison was made of numerical results with those
obtained analytically. Good agreement is observed in the
crack domain up to the last but one boundary node in the
vicinity of the contour. The numerical solution becomes
"bad" at the grid points adjacent to the boundary. This is
due to the root singularity of the solution on the crack
contour. An effective Boundary Refinement Method is
applied for improvement of numerical solution near the
boundary.

5. Crack Propagation due to Gas Diffusion from the Bulk
Sources

Software is developed to calculate the crack propagation
time and evolution of the crack shape and sizes under the
action of gas diffusion from a unit source or sources
distributed in bulk with a given density. These program is
based on the described methods for solving the integro-
differential equations (1.11) of the diffusion problem and
eqs.(1.12) of the elasticity problem. A quasi-steady
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statement of the problem is used. System (1.11) -(1.19) is
solved at each time step. The incubation period before
start of crack growth is calculated. This is a time before
the crack opening under the gas diffusion action achieves
the value for which the maximum stress intensity factor
along the crack contour becomes greater than the fracture
toughness threshold value

Calculation of the growth time is performed by the
following scheme:

1) the gas pressure is calculated in the current
crack region where is the

volume of the crack occupying the new region G (t) for unit
loading the gas mass n(t) being found at the previous
step.

2) the stress intensity factor along the crack
contour is calculated and used for calculation of the
crack velocity

3) normal distances toward the crack contour
passable by discrete contour points during this
propagation are defined as Time interval is
calculated so that contour points spreading with maximum
velocity pass a small distance chosen
experimentally.

4) a new contour shape is defined using a smoothing
procedure over propagating and stationary points
coordinates.

5) the diffusion problem is solved; the integral
flow through the crack surface, the total gas
flow rate Q, and the new gas amount in the crack

are defined.

6) the above procedure is repeated starting from
step 1.

Model calculations were performed for a circular plane
crack. Its kinetics was studied in the case of the gas
diffusion from a unit bulk source. The incubation period

and time of the crack growth from the initial to
double radius were calculated. The dependence of the
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values and on the distance, from the diffusion
source to the crack plane was studied. On diminishing the
distance the gas flux to the crack increases and the
gas pressure becomes greater, thus leading to the stress
intensity factor growth along the contour. As a result,
the velocity tends to its stationary value (on kinetic
diagram), propagation and incubation times being
practically independent of One more series of
calculation was performed to study the dependence of life-
time on the diffusion source intensity W. The greater the
source intensity, the less is the life-time.
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A NEW CREEP LAW AND ITS APPLICATION TO CRACK TIP FIELD
ANALYSIS
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Abstract
A crack is considered as a very thin failure zone but not an ideal discontinuous surface. Using a new

constitutive relation that contains all of the three stages of creep, the deformation field near a Mode I growing

crack tip is analyzed. The stress and strain remain finite at the crack tip. Asymptotic equations

of the crack tip field are derived and solved numerically. Besides the local autonomy of crack tip field is

discussed.

1. Introduction

Crack tip fields are related with fracture criterion. Most analysis of crack tip field is based on the concept of

infinite failure strain, therefore the obtained solutions as [1-3] are singular. Indeed, such solutions can reflect

the strain character in regions near but not too close to the crack tip. However, on physical grounds, finite strain

is expected to remain at the crack tip. If the singular field is truncated when strain is large enough, the growing

crack will become a very thin failure zone, at the boundary of which the stress and strain keep finite values. The

margin of failure zone may form a sharp angle at its tip as given in [4] for plastic material. Also, the failure

margin may form a smooth curve at its tip as given in [5]  for creep material. Definitely, the shape of failure

margin depends on the constitutive relation.

In the present paper the Mode I growing crack is analyzed using the new creep law given in [5]. The local

autonomy of the near tip field is also discussed.

2. The Creep Law

The creep behavior of materials under constant stress can be divided into three stages. The first is called the

initial stage, the second the steady creep stage and the third the unstable stage that correspond to failure. In [5],

a formula that contains the above three stages was proposed, for uniaxial load it can be written as
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where is the total strain, the elastic strain the creep strain,  the failure creep strain,  the stress

and C, n the material constants that may depends on the temperature. The superscript dot denotes

derivative with respect to time t

For general stress state the creep law takes the form,

where is creep strain tensor, S the deviator of stress tensor,  and s are the effective creep strain and

effective stress,

It follows from (2) and (3) that

Let

Eq. (4) becomes

From (6) the failure time can be obtained,

where B is the Beta function defined as

The relation between e and is shown in Fig. 1 for various and
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3. Steady Crack Growth

Fig.2 shows a Mode I semi-infinite crack growing steadily in a creep material. The coordinates (x, y) are fixed

on the moving crack tip.
Let denote the displacements, for incompressible material a potential function  can be introduced

such that

the strains are given by

Considering the quasi-static problem, the stress function can be introduced

The rate operator for steady crack growth is

in which V is the velocity of crack tip. Then the rates of strain and stress are

The constitutive relation can be written as
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in which G is elastic shear modules.

4. Asymptotic Equations

The failure boundary at crack tip may form either a smooth curve or an angle as shown in Fig.2, but the

analysis can prove that only the smooth curve is reasonable shape, and that the stress state near the crack tip is

in uniaxial tension for Mode I crack.

Far from the crack tip, stress and strain are relatively small. When the crack tip is approached, the effective
creep strain would increase monotonically up to the value , but the effective stress may only increase up to

a distance and then decrease because of creep relaxation.

Let s* denote the effective stress at , considering the material to be incompressible, the total strain at

can be obtained according to (15),

where and are the unit vectors along x and y directions respectively, is the dyadic symbol.

The stress strain field in the vicinity of crack tip can be expressed by an uniaxial tension plus a perturbation.

For convenience, the dimensionless polar coordinate is introduced as shown in Fig.2

where a is a character scale. According to Eq. (16) the displacement potential can be written as

in which is a positive exponent. Then

Where

then the velocity is
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the strain rates are

Further, considering that the basic stress state at crack tip is uniaxial tension, the stress function is written as

where

the stress rates are

The effective creep strain can be written as

substituting (30) into (4) and matching the singularity it follows that

in which

Using (2),(24) and (26)-(30), it follows that



52                                                                      Y.C.  GAO

(22),(28),(32) and (34) are the basic equations of the near tip field.

5. Boundary Conditions and Solutions

For Eq. (22), since g is an odd function, so

(22) shows that is also an odd function, further the regularity of (22) at requires that

where g'(0) is to be determined.

For Eq. (28), the regularity at requires that

where f (0) is also to be determined.

For Eq. (32), the regularity at requires that

Besides, at the failure strain should be reached

For Eq. (34), the following conditions should be supplied,

At the failure margin the traction free conditions must be satisfied,

Eq. (22), (28), (32), and (34) can be solved under boundary conditions (35)-(41). The important fact is that the

analytical solution to eq. (32) under conditions (38) and (39) is

Then the Eqs. (22), (28) and (34) under conditions (35)-(37), (40) and (41) can be solved numerically. The
undetermined values f(0) and g'(0) can be adjusted to fit condition (41). In order to reduce the calculation,

the following nature of equations should be noted. If are the solutions for  then

will be the solutions for Hence, it suffices to calculate the solution for  The calculation

starts from The curves of function for are shown in Fig.3 for various The adjusted

values of f(0) and g'(0) are listed in Table 1.
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6. Local Autonomy

The singular solution obtained in [1] was questioned in [6] for the character of  “local autonomy”, i.e. the crack

tip field does not have a free parameter. But [6] contains some algebraic mistakes, that was pointed out in [3].

The solutions obtained in [2] and [3] do also possess the “local autonomy” feature. In [5] it is stated that the

local autonomy is just the proper feature for a growing crack tip field in rate sensitive materials. Now, we can

understand this problem in a simpler way. Actually, for rate sensitive materials, the near tip field does not need

a parameter to fit the far field because the far field itself is already fixed by a given V (the velocity of crack

tip ). In order to explain this we can consider the growing crack in creep material, since V is contained in the

constitutive relation, the solution will depend on the specified value of V . Once the value of V is given, the

field is fixed, so it does not need to be fitted. On the contrary, for the crack growing in plastic material, the V

does not enter the basic equations and boundary conditions, therefore when V is given the solution of far field

is not fixed. For this case the near tip solution has to have a free parameter to fit the various far fields.

If the far field material is plastic one but the near tip field material is considered as rate sensitive, the crack t ip

velocity V cannot be determined by the state of far field, in this case, V is the free parameter that enable the

near t ip field to fit the far field. In sum, the so called “local autonomy” is not a real problem. It should be
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pointed out that in the present paper, the near tip solution contains an unknown parameter s* that w i l l be

determined by the given tar field, but it is not for fitting various far field.

7. Concluding Remarks and Discussion

• Considering that the fai lure strain is f in i te , a growing crack is regarded as a thin failure zone, therefore the

singular solution to the crack t ip field should be truncated when the failure strain is reached.

• According to the new creep law given in [5], the near tip field of Mode I growing crack is obtained. The

results show that the stress and strain state near the crack tip are in uniaxial tension. At the failure margin, the

effective failure creep strain is reached but the effective stress s* is an unknown .

• Near the crack tip, the rates of stress and strain possess the singularity of

• As s* is unknown, the near tip field does not contain a parameter to fit the far field because the far field is

fixed already.

• The so called “local autonomy” is not a real problem for the near tip field.

• The possibility of s* = 0 still remains open, that will be another case of solution for
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Abstract

For heterogeneous materials with distributed microcracks or microvoids, damage
evolution should be described in terms of a system of damage field and continuum
mechanics equations. It was found that the dynamic function of damage  i. e.
the intrinsic damage evolution rate and the macroscopic formulation of the nucleation,
growth and coalescence of microdamages, plays a key role in the evolution. The
population of microdamages has a tendency to form localized damage, namely a precursor
to failure. The increase of the relative gradient of damage signifies the occurrence of
damage localization. Under quasistatic small deformation in one dimensional strain state,
this leads to the following criteria and in Eulerian and Lagrangian
co-ordinates respectively, where is dilatation rate. Whereas under the same
assumptions the criterion for maximum stress is Clearly, damage localization is a
distinct feature of solids. It is relevant to the attainment of maximum stress via the
dynamic function of damage  f.

1. Introduction

Failure of Solids is a highly rate-dependent and non-linear process(Curran et al., 1985).
Sometimes failure is noted as a process of reduction of dimension, like a roughly two-
dimensional fracture surface formed in a three-dimensional body of solids. This is also
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known as localized failure, though distributed microdamages developed. Fragmentation
may be another kind of failure in solids, where distributed flaws appear to dominate the
formation of fragments. In creep, it was also found two types of failure, bulk and localized
damage predominance (Chan and Page, 1993). Usually, localized failure occurs suddenly,
hence becomes more dangerous. According to the statistical evolution of microdamage,
this paper intends to reveal what intrinsic factor in solids governs the localized failure.

We have established a fundamental equation of microdamage in the light of statistical
mesoscopic damage mechanics (Bai et al., 1991, 1997). This is the evolution equation of
microdamage in phase space

where n is the number density of microdamage in phase space and t is generalized time.
are the rates of variables and are nucleation and annihilation rate

densities of microdamage respectively. Now we examine a phase space {c, x}, i.e.
and where c is current size of microdamage and x is spatial coordinates. In this
formulation, it is assumed that microdamage can be properly described by its current sizes
c.

We investigate such an element of solid that is large enough to contain a number of
microdamages with different sizes but is small enough to be handled as a point
macroscopically, Fig. 1 (Pantelides, 1992). Actually, this is a revised version of continuum
to include microstructual variables. Suppose that denote the average failure volume of
a microdamage with current size c. Continuum damage should be defined by

It describes the fraction of damage in unit current volume. After multiplying one-
dimensional form of (1) by and integrating it, we obtain the evolution equation of
damage field
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where and v is particle velocity, A is growth rate of microdamage. f is defined

as the dynamic function of damage(DFD), which is uniquely dependent on mesoscopic
dynamics of microdamage. In this formulation, macroscopic damage is described by the
field variable which is deduced from statistical description of microdamage
(2) and governed by evolution equation (3). This damage field equation (3) should be
associated with other mechanical equations, such as continuum, momentum and energy
equations,(Xia et al., 1995).

As comparison, we recall continuum damage mechanics(Kachanov, 1986, Lemaitre
and Plumtree, 1979, Chaboche, 1988). The core of damage mechanics is its evolution law

where is an undetermined parameter and K is a stress-dependent function The
nominal stress in damaged solid is assumed to be related to the stress in the matrix

Actually, the continuum damage D in (5) should be a collective response of
microdamages, as described by (2).

2. One-dimensional Damage Field Equation

As a case study, we examine one-dimensional strain state. This means that all velocity
components and spatial derivatives are zero, except velocity component ν and derivative

For simplicity, we ignore the energy equation in this paper. Then, we have a system

of mechanical equations in one dimensional strain state,

where V is specific volume and v is particle velocity. Additionally, this is an Eulerian
formulation.

In continuum damage mechanics, damage evolution is usually assumed as an internal
variable in the constitutive equation. Instead of damage field equation (7), it assumes a
damage evolution law,
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Kachanov’s damage evolution law (5) is an example. In order to compare the difference
between the two formulations (7) and (10), we should examine other forms of damage field
equation.

3. Eulerian, Lagrangian and Hybrid Formulations of Damage Field Equation

The transformation from Eulerian coordinates (t, y) to Lagrangian ones (T, Y) are

So, the system of equations (7-9) in Lagrangian coordinates is

where is the init ial specific volume. Actually, the damage evolution rate should be

defined as Lagrangian derivative, Comparing (10) and (13), we can find that

the difference is the term of dilatation rate, where is natural strain. The

dynamic function of damage f is defined in Eulerian coordinates and depends on the
mesoscopic mechanisms of microdamage evolution. Whereas, the damage evolution rate
F in (10) should include the dilatation rate in it.

One more significant point is that damage D is defined in Eulerian coordinates, either
in statistical formulation (2) or in continuum damage mechanics like (10). Therefore, the
system of equations (13-15) is a hybrid form. For clarification, we define a Lagrangian
damage and corresponding dynamic function respectively. They
are all defined in a unit initial volume. Table 1 summarizes the three forms of damage field
equation.

4. Criterion for Damage Localization
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One of the major tasks of damage mechanics is to predict the transition from accumulation
of damage to catastrophic failure. This is usually attributed to the occurrence of damage
localization.

For easy understanding, we firstly examine a pilot problem in Lagrangian formulation.

Its inhomogeneity of damage can be defined by Then we focus on a transition

of the rate of the damage inhomogeneity being positive, namely

This implies an increase of relative inhomogeneity of damage. (17) is equivalent to

Clearly, this means that the relative increase of  damage gradient becomes greater than the
relative increase of damage itself. After substitution of Eq.(16) into (18) and considering

one can derive

where and Now, we consider quasi-static deformation. That is to say,

the inertial term in Eq.(15) can be ignored. Under this assumption, the momentum
equation (15) leads to vanishing stress gradient. In another word, stress becomes uniform.
In this case, (19) becomes

This is an intrinsic condition for transition, depending on DFD f only. More importantly,
the compound damage (see Davison and Stevens, 1974), i.e. the tangent of dynamic
function of damage, is the motivation of the transition.

When turning to dynamic case, we can rewrite (19) as

where and are the characteristic length scales of spatial

variations of damage and stress, respectively. when high damage region
corresponding to high stress region or when high damage region corresponding to
low stress region. From (21), we can conclude that inertia term, namely stress gradient,
will promote the transition, if high damage and stress regions coincide, i.e.
Moreover, the effects of the two characteristic length scales are opposite.

Actually, the above transition in Lagrangian coordinates does not exactly mean real
damage localization, because damage localization occurs in current configuration. In this
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configuration, a material element can expand during deformation. So, we should turn to
the evolution of damage D in Eulerian coordinates. Since we have known the inertial effect
qualitatively, in the following we shall examine quasistatic approximation only.

In order to do this, we look at a second pilot problem in hybrid form. Similar to (18),
we examine

Similar manipulations lead to a criterion as

One more term, damage multiplied by the gradient of dilatation rate appears on the left

side of (23). For small strain and damage, the term becomes smaller than

others. This is estimated as follows,

Therefore, an approximate condition is

Again, like (20), the compound damage plays a key role in (25), except the dynamic
function of damage f rather than f . Fig.2 shows the criterion (25) for damage localization
schematically. To our surprise, criterion (25) looks like the well-known Chapman-Jouguet
condition for detonation front (Taylor and Tankin, 1958).

Now, it is easy to turn to Eulerian formulation. The condition for damage localization
is

Once more, similar but a little troublesome manipulations lead to the following inequality

The second term on the right hand side of  (27) vanishes under quasistatic deformation. For
small deformation in Eulerian coordinates,

where Z is a displacement-type variable. Then, similar to (24), the last three terms in (27)
become negligibly small. So, a criterion for damage localization is obtained as
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Very clearly, as long as we subtract the dilatation rate from the compound damage
the criterion for damage localization is equivalent to (25).

Now, to summarize this section, we notice that three rates are involved in damage field

evolution: compound damage the intercept of DFD f/D and dilatation rate The
compound damage is the motivation of damage localization. Since the dynamic function
of damage is usually concave(Hayhurst et al., 1984), especially at the late stage of damage
evolution owing to coalescence of microdamages, there is a tendency to damage
localization. We leave the discussion on the intercept of DFD f/D to Section 6. As for the

effect of dilatation rate on damage localization in Eulerian formulation, it is obvious

that retards damage localization due to its geometric expansion. So, in the following
sections, we shall examine hybrid formulation and discuss criterion (25) only.
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5. Criterion Based on Mean Variables

One may notice that the discussion made in Section 4 concerns variables in damage and
deformation field. Actually, it is quite inconvenient and even impossible to know values of
all variables at every moment and every point in the field and then to determine if damage
localization occurs. In practice, we may prefer to use average values of variables to do this.
Now, we examine when this is appropriate.

Damage D can be decomposed into two parts: the average and fluctuation
(30)

For small fluctuation, Eq. (13) can be divided into two equations, one for the average
and the other for the fluctuation

Similar to (17) and (18), the increase o f relative fluctuation of damage can occur, when

Substitution of Eqs. (31-32) into the inequality (33) gives a criterion for the further increase
of relative fluctuation of damage under the approximation of small damage,

Also, the third term vanishes for quasistatic deformation and the fourth one, like the term

in (23) , becomes negligible for small deformation. Then, the criterion (34)

becomes

The significance of (35) is that we can use the average values of variables and criterion
(35) to predict the occurrence of damage localization. This is much easier than using the
field variables in (25). Hence (35) is truly operational in practice. Additionally, the
assumption of small fluctuation does not set limitation to the application of (35), because
the problem of damage localization itself is whether small fluctuation of damage can
evolve to localization or not. In the following, we shall ignore the bars over average values.

6. Other Criteria for Damage Evolution

Actually, in the concerned problem of damage evolution, there are four rate variables.
Three are intrinsic: DFD f, compound damage fD and the intercept of DFD f/D. And one
external is strain rate Their relative greatness can govern different modes of damage
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evolution. Following previous procedures, we derived corresponding conditions for these
under quasistatic and small deformation. Table 2 summarizes the results.

From Table 2, it is very clear that modes 2 and 3 are equivalent. From modes 1 and 3,
it can be seen that when strain rate this external variable retards both increases of
homogeneous damage and damage gradient and balances the intercept of DFD and
compound damage in the two modes, respectively. Noticeably, mode 4, the increase of
relative damage gradient, signifies that the increase of damage gradient(mode 3) overtakes
that of homogeneous damage(mode 1). Therefore, mode 4 becomes independent of strain
rate but dependent on two intrinsic rates fD and f/D only.

Although loading condition decides the moment damage localization occurs, the lower
bound for damage localization is essentially governed by intrinsic property of materials.
Now, one may wonder, why DFD f does not appear in all these modes and what role does
DFD f play. We leave this point to next section.

7. Criterion for Maximum Stress

Maximum stress attained under external loading decides the strength of materials. An
obvious question is if there is any connection between maximum stress and damage
localization. Under one-dimensional strain state, there is no difference between Cauchy
and engineering stresses and no macroscopically geometric softening. Hence, softening
comes from inside materials only.

The condition for attainment of maximum stress is

Substitution of (6) into (39) gives

or
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The left hand side term is strain hardening of matrix and the right is damage induced
softening. As an example, let us examine linear elastic matrix.. In this case, criterion (41)
can be expressed by

where is engineering strain. For small deformation, substituting
damage evolution equation into (42) and ignoring all small terms ( 0-th order
approximation), one can deduce an approximate criterion for maximum stress,

This approximate condition implies that at this moment load supporting matrix no longer
deforms further and all the increase of deformation  dt is due to damage increase  f dt.
One may recall, we have wondered what role does DFD f play in modes of damage
evolution. Now we find that the relative importance of DFD f and strain rate dominates
the attainment of maximum stress. This is a transition very different from all aboves on
damage evolution.

8. Comparison

We have found that damage localization and attainment of maximum stress are relevant
implicitly. To illustrate the interrelation, we examine a sample DFD

In this case, the critical condition for damage localization (29) leads to a order equation

The lower bound for damage localization (25) or (35) becomes

Whereas the criterion for maximum stress (43) becomes

In the diagram of D vs. (Fig. 3), one can see that the failure occurring at low strength is
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mainly due to damage localization, hence most dangerous. Depending on loading
conditions, maximum stress may be relevant to damage localization or not. Figs. 4 and 5
provide examples demonstrating homogenous damage and damage localization.

9. Summary

1. A formulation concerning inhomogeneous damage field evolution is constructed
based on statistical mesoscopic damage mechanics.

2. In the formulation, dynamic function of damage (DFD) linking
mesoscopic dynamics (nucleation, growth and coalescence) of microdamage and
macroscopic damage evolution, plays a key role.

3. A criterion for damage localization under quasistatic and small deformation is
obtained as

4. Positive dilatation rate spreads damage geometrically and then retards damage
localization.

5. Lower bound for damage localization is This is uniquely dependent
on DFD and then an intrisic property of materials.

6. As comparison, an approximate criterion for attainment of maximum stress
under the same assumption is also derived as

7. Damage localization usually causes low stress failure and appears to be
responsible for disaster.
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Abstract. This paper discusses a rate–type thermo–viscoelastic model
with a piecewise linear van der Waals type equil ibriuni surface. The ther-
modynamic restrictions on the constitutive equations are obtained in the
regions where they are smooth as well as the j u m p conditions they must
satisfy across the curves of discontinuities. An energy identity/inequality is
derived which allows us to obtain energy estimates of the solutions when
phase transitions take place or defects may generate and propagate. A nu-
merical scheme and its stability in energy is briefly discussed.

1. Introduction

The purpose of this work is to model formation and evolution of the de-
fects in bodies exhibit ing softening properties on a. strain interval. Here we
extend the results discussed in Suliciu (1995) for isothermal processes to
the dynamic thermomechanical ones. The prototype we consider is a rate–
type thermo-viscoelastic model with a piecewise l inear equi l ibr ium surface
of van der Waals type.

We assume that such an equi l ibr ium surface can be experimentally
determined as a piecewise linear stress–strain-temperature relation Van
Humbeeck and Delaey (1982), Otsuka and Shimizu (1982) and also Fu
et al. (1993). We also suppose that, the rate of work and the rate of heat
are known differential forms. We consider that the specific heat at constant
strain and the latent heat at constant temperature as def ined for instance
in Truesdell and Bharatha (1977) can be determined by calorimetric mea-
surements at any state, at least in principle.
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Based on the above assumptions we fo rmula te the two laws of thermo-
dynamics in a very classical spirit (see Suliciu (1997a) and the references
given there i n ) . This formula t ion allows us to determine in an explicit form
the internal energy and the entropy as functions of state variables even if
the usual theorems on smooth differential forms can not be directly ap-
plied to get restrictions on the constitutive functions. Thus the fact that
t h e normal to the equi l ibr ium stress–strain–temperature relation may have
j u m p discontinui t ies across certain lines i n the s t rain–temperature plane
implies that the heat capacity and the latent heat must have j u m p discon-
t i nu i t i e s too as a r equ i r emen t of the two laws of thermodynamics . However
the i n t e r n a l energy and the entropy result cont inuous and piecewise smooth
func t ions of the state variables.

Next we construct the free energy for any process and the relative free
energy for isothermal processes def ined for all e q u i l i b r i u m states but, with
respect to a fixed equil ibrium state. It was shown in Suliciu (1992b) that this
relative free energy function is positive for all isothermal stales whenever
t h e s t ra in of that fixed state lies outside the Maxwell’s interval at the
t empera tu re of t h a t given fixed state.

We establish an energy ident i ty / inequal i ty valid for a l l cont inuous and
piecewise smooth solutions of the governing system of the par t i a l differen-
tial equations. This iden t i ty / inequa l i ty is a consequence of the two laws of
t h e r m o d y n a m i c s and it is expressed in terms of the availability at a given
reference s ta te . We prove that t h e availability is a positive valued function
whenever t h e relative free energy is positive.

This property allows us to obtain energy estimates and an approach to
equi l ib r ium for this piecewise smooth case as it was done in Suliciu (1997a.)
for the smooth consti tutive equations. The equ i l ib r ium stress–strain-tem-
perature relation may be taken as an elastic constitutive equation to obtain
a complete system governing the one d imens iona l thermomechanica l motion
of our body. As it has negative values of the derivative wi th respect to strain
on some regions some in i t i a l boundary value problems may be i l l posed
i n t h e sense of H a d a m a r d t h u s o u r thermo–viscoelastic problem may be
t h o u g h t also as a viscoelastic regular iza t ion of the elastic i l l posed problem.
The energy iden t i ty / inequa l i ty allows us to jus t i fy such a r egu la r i za t ion .

One can also extend the results obtained for rate–type thermo–viscoelas-
ticity to rate–type thermo–viscoplasticity where the piecewise smoothness
is a hypothesis very often made. As the yield l imit moves here with the
temperature, one can get an equ i l i b r i um surface of the type considered in
Suliciu (1995) if for instance one takes a constant temperature large enough
such tha t F ina l ly we show how the energy inequal i ty can
be used here as in -Su l ic iu and Sul ic iu (1995) to obtain stability
conditions on the n u m e r i c a l schemes for computa t ion of the solutions of
these combined hyperbol ic–parabol ic i n i t i a l–bounda ry value problems and
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study thus the generation and propagation of defects in softening materials.

2. The Constitutive Equations and the Two Laws of Thermody-
namics

The thermodynamical structure we consider here is similar to the one pre-
sented in Serrin (1986) and Silhavý (1986) and discussed in details in Suli-
ciu (1997a). As the aim of these studies is to determine the thermodynamic
potentials, as internal energy and entropy, such that the two laws of thermo-
dynamics be satisfied, the smoothness assumption on the constitutive func-
tions allows us to apply well known mathematical results. However many
models from plasticity and pseudo-elasticity do not satisfy such smooth-
ness requirements at least concerning the form of the equilibrium response.
Our aim here is to obtain energy estimates applicable to the non smooth
constitutive equations describing the thermomechanical behavior of shape
memory alloys.

2 . 1 STRESS–STRAIN–TEMPERATURE RELATION, RATE OF WORK
AND  RATE OF HEAT

We adopt the following rate type thermo-viscoelastic stress-strain-tempera-
ture relation

Here

and these material parameters have the following meaning: E and  are the
dynamic and quasistatic Young's moduli respectively; F and are the
dynamic and quasistatic linear expansion coefficients while and
1,2 are the austenitic martensitic transformation coefficients. Finally,
is the absolute temperature and is a reference absolute temperature.
Of course is the stress and is the strain. We assume that E and F are
functions of the state variable Their smoothness properties will
be discussed in the next sections. As one observes is not smooth

since is not smooth.
We take the form of the rate–type constitutive equation for simplic-

ity reasons. The linear dependence on of 1, 2 is experimentally
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established for many shape memory alloys Otsuka and Shimizu (1982) , Van
Humbeeck and Delaey (1982) and also Fu et al. (1993) and the above simpli-
fied form of t h e e q u i l i b r i u m stress–strain–temperature relation
agrees with the experimentally determined one (see for instance Fu et
al. (1993) ) . The case when the straight lines are not
parallel will be treated elsewhere. For these materials the contribution of

Here the heat capacity at constant strain C and the latent heat v depend
on  the  state  variable

2.2. THE TWO LAWS OF THERMODYNAMICS

We take now the form of the two laws of thermodynamics as it was done
in Suliciu (l997a) (see also Serrin (1986) and Ši lhavý (1986)):
The first law: There is a funct ion called the internal energy such
that the difference between the rate of heat and the rate of work dur ing any
process is exactly the differential of the internal energy function
i.e.,

the differential form of heat divided by the absolute temperature can not
exceed the differential of the entropy function

dur ing any process.
In the domains where the constitutive functions E, F, v, C are smooth

and G is continuous one can prove that: the first law of thermodynamics is
satisfied if and only if there is a function verifying

and the second law of thermodynamics is satisfied if and only if there is a
function  verifying

(1992b), and Suliciu (1994) and also in (1996).
We follow Sul ic iu (1997a) (see also the references given there in) and

assume that the work and heat rates are defined by

in is often neglected. The form ( 1 ) of the constitutive
equation extends to the non isothermal processes the constitutive equa-
tion proposed in Suliciu (1989) and discussed in some details in (1992a),

The second law: There is a funct ion called the entropy such that
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As the function   is assumed to vanish only on   the
first law of thermodynamics (6) implies that

These properties will be used in what follows.

3. On the Instantaneous Elastic Response in Stress, in Internal
Energy and in Entropy and on the Equilibrium Response

3.1. ON THE INSTANTANEOUS ELASTIC RESPONSE

A more detailed discussion on the response of a rate–type material in fast
processes is given in Suliciu (1997a), see also (1997b) where the case when
the instantaneous response in stress rnay be path dependent is discussed
too. We consider an arbitrary but fixed state in the con-
st i tut ive domain and assume that in a neighborhood of that state the
constitutive functions E, F,   v, C are smooth functions. We say that we
have instantaneous elastic response in stress and respectively in internal
energy and in entropy if there are the func t ions

such that

One way to imagine an instantaneous process is as follows. First we
observe that the constitutive equation (1)1 written in an incremental way

determines the increment dσ of the stress when
the increments of strain and of temperature corresponding to incre-
ment dt of time are given. One can consider that the increment of strain
and of temperature take place in a vanishing increment of time (i.e. when

Physically, such a process may take place exactly across a shock
wave for instance or approximately whenever Gdt is negligible with respect
to Edε for instance (for a more detailed discussion on this matter see Suli-
ciu (1997a) and (1997b)) .
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As a consequence of (9) and (10) we have

and thus the func t ions E, F, C and v must be related by (see Suli-
ciu (1997a))

and

In other words as a consequence of the existence of the instantaneous
elastic response the two dynamic modul i E and F must be related b
( 1 2 ) , the latent heat υ is related to the dynamic linear thermal expansion

y

coefficient F by the so called Clapeyron fo rmula (13 ) 1 and the material
funct ions E, F, C must also satisfy

3.2. ON THE E Q U I L I B R I U M RESPONSE

The states

are called e q u i l i b r i u m states since if one holds and constant in time and
takes the in i t ia l stress then the stress remains also constant in
time.

Now, we d e f i n e

where

We ask ourselves which are t h e restrictions on such that
there are the funct ions
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verifying (the two laws of thermodynamic at equ i l ib r ium states)

When and exist and they are of class, we have

and

respectively. As a consequence of (20) we have

which may be called the e q u i l i b r i u m Clapeyron’s formula. Thus the rela-
tions (20) are equivalent to (21) and

at the points where is of class with respect to which in our
case is t rue for any with

From (21), (22) and we have the global form of the functions
a n d

and

Here may depend on but is piecewise constant with respect to
The two laws of thermodynamics impose fur ther restrictions on the form

of the function Indeed as the differential forms
and in (18) are exact their integration along any closed
curve must vanish. These facts together with the continuity of   lead
to
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where denotes the j u m p of f across Now, by using (23)–(24)
in (25) we arrive at the desired restrictions

Thus, once is known (say!) then and are determined
by (26) as a consequence, of the laws of thermodynamics and if
so are and If one assumes t ha t in the
region then C E is constant i n the region  wi th the
same value of the constant but has a linear variation with temperature
in the region where the phase transition takes place.
Therefore

We use (23), (1)3 and (27) in (18) to f ind the continuous and piecewise
smooth expressions of the e q u i l i b r i u m potentials  to
write

where the init ial state was chosen in the region 1, i.e., such that
For other choices o f t h e i n i t i a l state t h e equ i l ib r ium potentials a r e

constructed in a similar way. We observe that across  both
potentials are continuous while their partial derivatives
have j u m p discontinuities.

4. The Potentials of Thermodynamics at Arbitrary States

First of all we collect the restrictions obtained so far on the constitutive
functions and on the form of the internal energy U. Due
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to (8), (12)–(13) and (21) – (22) we can write for all states

Thus the internal energy at any state is the same as the in ternal
energy at equ i l i b r i um states and it is given by The
const i tut ive funct ions ν and F are determined by and they have
j u m p discontinuities across the straight lines  All these
conclusions are the consequence of this strong form of the first law (for
a weak form of the first law see Serrin (1986)) and the existence of the
instantaneous elastic response.

For our purpose here we choose as in Suliciu (1997a) a simple solution of
the equation which wil l be positive even when is negative
if the absolute temperature stays away from zero, i.e., we choose

if is properly chosen (see next section for a, justification on the way
is selected). This function E has also j u m p discontinuities across the lines

but we have

automatically satisfied without additional restrictions. Therefore
can be determined as continuous solutions of (11).

In order to construct the entropy func t ion (since we already have
we follow now a procedure similar to the one in

S u l i c i u (1997a). We need f i r s t t h e instantaneous elastic response func t ions
in stress with respect to the equ i l ib r ium state by
taking into account the expression (30) for E and  for F from equation

we easily find that

is the instantaneous elastic response in stress verifying The instan-
taneous elastic response in entropy with respect to
is determined from
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and it has the form

The entropy in our case is obtained from (34) e l imina t ing ; wi th the
help of (32), i.e, it is given by

We shall need in what follows the free energy potential defined as

w h i c h by (7) verif ies t h e relations

Now by using f i r s t (35) and relations (28) subsequently, we f i n d

Another potential called the equ i l ib r ium relative free energy with respect to
a fixed state was introduced in Suliciu (1989)
and discussed in some details in Suliciu (1992b) and will also be needed
here. It is defined as

where the fact t h a t was taken into account. One can observe
that the relative free energy is a smooth func t ion of
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5. Energy Identity/Inequality, Energy Estimates

Under the const i tut ive assumptions stated in this paper the governing sys-
tem of PDE’s for our rate–type viscoelastic material is

where 0 and E, F are given by (29) (30);  X  is  the ini t ial
spat ial  coordinate of  the bar ,  between 0 and i ts  length L , t  is  the t ime,  f
is the body force and r is the heat suply .

Now, we choose a fixed reference e q u i l i b r i u m state
and define the availability relative to that equi l ibr ium state

by

One can prove as in Suliciu (1997a) that all the c o n t i n u o u s solutions of the
system (40) verify the following energy i d e n t i t y / i n e q u a l i t y .

The key point in exploiting the identity/inequality (42) is that the avail-
ability is positive for all states if the reference slate

is chosen to verify certain restrictions which wil l be discussed below.
First we observe from (35) that the availability exceeds the
equil ibr ium availability, i.e., we have

Now,  as
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there results

The relative free energy defined in (39) was studied in the
isothermal case and, according to Suliciu (1992b), it is positive for any if
and only if is outside the Maxwell’s interval at

We introduce the Maxwell’s line
which determines together with two triangles of

equal areas. Then the Maxwell’s interval is determined such
that

and we have

Therefore the availabili ty is positive for all states
if and only if the reference state is chosen such that is outside the
Maxwell’s interval at Indeed the same condition is necessary and
suff ic ient for    to be positive and this ex-
plains in fact the choice we made for when constructing the equilib-
r ium potentials and in In particular, when
the expression of follows from (43) and (28)

and it is positive if
Before going farther we remark that the temperature dependent part of

the availability i.e. its first term in (44) has the following
property:

where is chosen such that



P1ECEWISE SMOOTH THERMO-VISCOELASTICITY 79

Indeed, as

it follows there exists one and only one root of
such that (45) holds (of course vanishes also at but it is

non-negative for all
Once we have the energy identity/inequality (42) and the positiveness of

the availability (41) the energy estimates and the approach to equilibrium
results of the type discussed in Suliciu (1997a) see also -Suliciu
and Suliciu (1992), Suliciu (1992b), -Suliciu and Suliciu (1995),
can be obtained.

We illustrate that here on an example. For that we add to the system
(40) of partial differential equations describing the motion of our thermo-
mechanical body the following initial conditions

for a body of length L. We choose the boundary conditions such that

i.e., such that there is no exchange of energy with the surroundings of the
body through its ends and Such conditions are of course
realized if or and or at and These
conditions are not necessary in fact for obtaining the estimates presented
below. One can take non vanishing boundary data and make changes of
dependent variables such that the new introduced variables verify condi-
tions of the form (48), as it was done for instance by Suliciu (1984) for the
isothermal case.

The total energy e(t) and its density are defined by

Now, we can state and prove the following result:
Whenever the  availability                   is  positive (which is so if the reference
state   is properly chosen) and   where is  de-
fined above, the continuous solution of the initial–boundary value problem
(40) + (48) + (49) is bounded in energy by the energy of the input data, i.e.,
the following energetic bound holds
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where

Proof of (51) . By applying Schwarz inequa l i ty and taking into account the
positiveness of the inequality (45) and (52), we can write

By integration of (44) with respect to X on the interval (0, L ) and taking
in to account ( 4 9 ) and the above inequal i ty we arrive at

Now, integrating the above inequality on a time interval ( 0 , t ) we obtain
the desired result.

Based on the same energy identity/inequality (42) and by taking into
account one can obtain energetic bounds on dissipative effects or
equivalently on the deviation from the equ i l ib r ium (see Suliciu (1984) for
the isothermal case), i.e. we can write

Among other things this inequality shows the close connection between rate
dependent and rate independent models. We do not discuss this problem
in detail here (see the above quoted papers for discussions).

Before closing this section we observe that we can take by
taking but then the inequality (45) can not be applied to get the
estimate (53). It, is one reason why we must consider processes for which
the absolute temperature stays bounded from below.

6. A numerical integration scheme and energy control of its sta-
bility

For the sake of simplicity we discuss here a prototype model which is linear.
It is close to our piecewise smooth model discussed in the previous sections
whenever the strain lies outside the phase transition interval
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We do that in order to got energetic stability restrictions on the time and
space integration steps. The restrictions thus obtained must also apply in
the case when moves through the phase transition interval.

The main assumptions we lay down are that the temperature does not
deviate too much from the reference temperature the stress does not
deviate too much from the equi l ib r ium stress and disregard the phase tran-
sition. More precisely we assume that.

We also introduce the notations

Based on the above assumptions and notations and can be wri t ten
as

Now, the system (40), when the body force f and the heat supply r
are neglected, takes the following linear form (see for a comparison Suli-
ciu (1997a))

In order to put the system (58) in a form closer to the system of linear
thermoelasticity as discussed in -Suliciu and Suliciu (1995) we
make the following change of dependent variables

and notations

The system (58) takes the following form
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or the equivalent form

which is more appropriate for the numerical scheme we intend to discuss.
The first three equations in (62) have a form closed to the characteristic

form of -Sul ic iu and Suliciu (1992) (see also (1985)) for the case
when In fact wi th the change and taking
into account that the above
system takes exactly the form discussed in the above quoted papers. When
the viscous effects are neglected (i.e. when then we have exactly
the system of linear thermoelasticity as discussed in -Suliciu and
Suliciu (1995). The form (61) of the governing system of equations allow us
to take into account in the numerical scheme in an easier way the boundary
conditions.

The numerical scheme we present here extends the scheme of
cu-Suliciu and Suliciu (1995) to the linear thermo-viscoelasticity modeled
by (61). With the time integration step and the space integra-
tion step, where L is the length of the bar and N the number of divisions
along the bar and the notations

this scheme at an inner point reads
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In the case when the viscous effect may be neglected (i.e., when
it was shown in - S u l i c i u and Suliciu (1995) that the energy

inequality (51) requires the integration step to satisfy

in order to get numerical stability. On the other hand if the t h e r m o - m e c h a -
nical coupling coefficient is negligible (i.e. when then we must have

-Suliciu and Sul ic iu (1985) (see also (1992))

Finally, if neither G nor α are negligible then both conditions (65) and
(66) are necessary conditions for numerical stability of our scheme. They
remain necessary conditions for numerical stability in the case when the
phase transition is present as we may discuss elsewhere.

Strictly speaking the conditions (66) valid for the uncoupled case
or the isothermal case are proved in

Suliciu and Suliciu (1985) when the numerical scheme is the method of
characteristics. In this case and thus Therefore if we
assume that the quantities (which are defined below the formulas

and are known at the time level then they are determined
at by the following formulas

We want to prove now that the stability condition (66) must hold for any
First we observe that the quantities p, q, R resulting at time level

from formulas for arbitrary can be written as

Next, we notice that the density of the total energy in this linear case has
the quadratic expression
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and the numerical total energy at, time level is given by

We can state now precisely a result from -Suliciu and Suliciu
(1985). For the numerical energy of a Cauchy problem verifies the
inequality

When v (0, 1) from the convexity of we can write

w h i c h implies that for the scheme wi th v (0, 1) the total energy of the
Cauchy problem decreases if _

For we may choose the in i t i a l data such that
(one example is for X ( 0 , L ) ) then

Thus

if there is at least one index i such tha t and
therefore there is no stabili ty in energy as t he energy increases i n time.

7. Some remarks on a Sokolovskii type thermo–viscoelastic per-
fect plastic model

A Sokolovskii rate–type elastic perfect plastic model with a temperature
dependent yield func t ion as considered by Bell (1973)
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where is the m e l t i n g point absolute tempera ture and is the yield
stress at zero temperature, was recently discussed by S u l i c i u (1997a). There
the relation

was imposed as a technical r e q u i r e m e n t in order to obtain the latent heat
as a con t inuous f u n c t i o n of its arguments. Based on the results

obtained in the preceding sections we show that such a restriction can be
removed and s t i l l construct the thermodynamics potentials and get “good”
energy estimates.

The governing system of equa t ions is (40) bu t t he func t i on is
taken slightly more general than in S u l i c i u (1997a) (see also Cristescu and
Suliciu (1982)) and it is

where again is a positive Maxwell’s type viscosity coefficient.

One can attach to t h e above viscoplastic model a viscoelastic one (for
is not well d e f i n e d ) by t a k i n g a positive constant

(an e q u i l i b r i u m Young’s m o d u l u s ) and d e f i n e

where

Then a relaxation func t ion w i l l lead to a
viscoelastic model wi th a piecewise smooth e q u i l i b r i u m curve as considered
in the previous sections. Any availabili ty func t ion constructed for the vis-
coelastic model is an availabil i ty func t ion for the viscoplastic model and
t h u s we may obtain energy estimates for the viscoplastic model too. The
lines are curves of d iscont inui ty for latent heat and for specific
heat When the condition (73) is satisfied the func t ions and are
continuous across the l ine

For the time being we conclude our considerations here.
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SOME REMARKS ON THERMODYNAMIC THEORY OF
VISCOUS ELASTOPLASTIC MEDIA

ZHEN–BANG KUANG
Shanghai Jiaotong University, Shanghai, 200240, P. R. China

Abstract

In this paper some aspects of the thermodynamic theory with internal variables are
discussed. A method to determine the constitutive equation of viscous elastoplastic

media with or without damage is proposed. This method is more flexible than traditional

one and more conformable to microscopic deformation mechanism.

1. Introduction

Let and h be the mass density, the internal energy per unit mass, the

thermodynamic temperature, the entropy per unit mass, the heat influx per unit area

and the heat supply per unit mass, then the first and second laws of thermodynamics
for a continuum are (Kuang, 1989)

and

where and are stress and strain tensors respectively.
Introducing the Helmholtz free energy per unit mass by

We can write the Clausius–Duhem inequality as

where is the irreversible entropy production rate per unit mass. Introducing
internal variables in current thermodynamics we assume that
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In the plastic and viscoplastic analysis it is usually assumed that( Chaboche 1993,
Nemes et.al. 1990, Lubarda & Krajcinovic 1995)

where and are elastic and inelastic strain rates respectively; and are

the total, reversible and irreversible work rates respectively. In the viscoelastic

analysis it is often assumed that(Valanis 1971, Lemaitre & Chaboche 1985)

where and are elastic and inelastic stresses respectively. In more general

case some authors assumed (Maugin et.al. 1992)

From the above discussion it is clear that in current literatures there is no

consistent way to decompose the work rate into reversible and irreversible parts,

but this is an essential problem in the thermodynamic theory with internal variables.

In the present paper we shall discuss this problem in more detail.

2. The Basic Postulates of Work Rate, Strain and Stress

In the constitutive equation of dielectric media the electric permittivity is effected
by two internal mechanisms: polarization and the leakage of electricity. In a

condenser with dielectric the polarization is equivalent to adding a resistor in
series, and the leakage of electricity is equivalent to adding a resistor in parallel
with the condenser. It is clear that in a dielectric there exist two different power

dissipation mechanisms. The Voigt and Maxwell models of viscoelasticity are

consistent with dashpots connected in parallel and in series, respectively, to a

spring. More complicated models in viscoelasticity have been introduced. In the

plastic—creep deformation at high temperature we can consider that the diffusion of

atomic defects and the motion of dislocations are linked in the same way. Summarizing
the above discussions we propose the following assumptions for a deformation version

of thermodynamic theory:
(1) In all cases the work rate can be divided into reversible and irreversible parts.

(2) The total stress tensor is composed of several internal stress tensors, i.e.

the total stress is the sum of several partial stresses:
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(3) Corresponding to each      there is also a partial strain rate     All the partial

strain rates    are equal to each other and equal to    but the different partial

strain rates may he composed of several parts, such as is the creep

strain rate) etc. :

But the stresses and are not divided into reversible and irreversible parts.

(4) A l l kinds of irreversible parts of strain rates produce

irreversible parts of the work rate. A l l the elastic parts of strain rates produce

reversible parts of the work rate.
(5) For some internal variables there may exist a bounding surface

such as the y i e l d surface for the plastic strain, the damage surface for damage

variables, the creep–hardening bound for creep strain (Murakami & Ohno 1982). The

bounding surface is an idealized narrow region where the physical variables

significantly change.
(6) The decomposition version is illustrated in figure 1, and

3. The Proposed Constitutive Equations.
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It is noted that    are dependent on internal variables b but the   are not.

Equation(5) is modified to

The model shown in Fig. 1 was very useful in one–dimensional viscoelasticity. It is

important to extend this model to three dimensional continuum mechanics and connect
i t with internal microscopic deformation mechanisms;this is the aim of this paper.
I t is emphasized that in (13) the internal variables     may be divided into two types:

are direct variables which describe internal deformation mechanisms, such as the

dislocation density and pattern, twin density and distribution etc. In this case     are
dependent only on but not included in  are indirect variables which describe

internal deformation mechanisms, such as the flow stress, hardening parameters, etc.

In this case some special combinations of may be included in and may be

dependent on and   or other variables.

In Ghosh(1980) the deformation is divided into grain deformation and grain boundary
deformation; his constitutive structure is similar to ours. In his model the grain

boundary element has a constant stress term and a viscous term and is in series with

the grain element. Holzapfel and Simo (1996) assumed

where is a divergence operator on and the are constants. Their model also

is essentially similar to ours.

Substituting equations (12) and (13) into (4) we get

Because (15) always holds, we obtain

and

In (17) A and are considered as irreversible forces corresponding to

irreversible fluxes and q respectively. In the following, two possible

versions are discussed.

(1) First version In this version internal variables are assumed as indirect
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variables describing deformation mechanisms. As in usual thermodynamic theory, we

assume that the irreversible fluxes are functions of irreversible forces, i.e.

Because does not depend on ( Coleman 1964), we assume in (19) that  and

also do not depend on Since is dependent on T, so and

are all dependent on T. Equations (19) should be determined by experimental data and
experience. For most engineering materials it is possible to introduce a general flow
potential such that

Introducing general flow potential we can establish the constitutive equation in a

simplified manner. Equations (16), (18) and (19) or (16), (18) and (20) give the
complete constitutive equation system. Usually the equations for are called the

evolution equations of internal variables.

(2) Second version in the first version the Helmholtz free energy is used,

actually the specific Gibbs character function ( or the complementary

energy) can also be used. Because

The Clausius–Dinhem inequality is

When remain constant we get the usual thermoelastic constitutive structure:

and (22) becomes

where are the irreversible forces corresponding to From (24) the evolution

equation of may be written as

If is known, then equations (23), (25) and (26) form a complete

constitutive equation system. However, because it is not easy in practice, an
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alternative method will be used (Rice 1971). Equation(23), can he rewritten in the
form

If are direct variables describing deformation mechanisms, then the irreversible

strain rates can occur only if the are changed. Then (27) gives

and

I f there exists a ” flow potential ” H such that

then

Geometrically      is normal to the surface of constant flow potential in the partial

stress space.

4. Isothermal Viscoelasticity with Damage

As a first example, an isothermal viscoelastic media with damage is discussed

(Fig. 2). For simplicity,the damage variable is considered as a scalar, and denoted

by where V and Vs are the total and solid volumes of an element respectively.

In Fig. 2 the superscripts “ed” , “id”,...etc. w i l l be used to denote the strain in the
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elastic and inelastic elements respectively arising from the damage effect. We note
that the damage theory is a developing theory and the definition of ‘ damage’  is not
fully clear. In fatigue damage, Cheng et.al. (1996)define damage as the ductility
exhaustion of material. In that model the dislocation structures also belong to the
damage. In this paper the phenomenon of damage is represented by microcracks and/or
microcavities, and in this sense i t involves a rheological process quite different
from deformation. Microcracks and microcavities themselves do not directly affect
the strength of a material (matrix), but they affect the local stiffness of the
material. The strength of a material is influenced indirectly through the local
deformation around these defects. Plastic flow can occur without damage and similarly,
damage can occur without noticeable macroplastic flow. So the damage variable is
different from other internal variables.

Version 1 Let

where    and     are the elastic moduli of parts 1 and 2 respectively. Equation (34)

represents the elastic strain energy stored in a damaged material, and it shows that
the effective stiffness is influenced by damage. According to the above explanation
and the method given in version 1, we have.

If we assume that is determined only by the variables of its own part, but D is

a function of variables in all parts, then

The simplest case is

where is a visco-sity coefficient, and C, n are constants.

Fig.2 shows that

Using (35),(37) and (38) we get the following coupled differential equations to

determine and D:
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or

In one–dimensional case, (40) reduces to

In the above equations the evolution form of D is only an example, the more precise

form should be given by a further research.

Version 2 In version 2 we let

In equation (42) we have assumed that the damage is associated with the stiffness
and the inelastic strain is also associated with internal variables as indicated

at the beginning of this section.

According to (23) and (25) we have

According to the theory of viscoelasticity the flow potential H is assumed as
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where is the viscosity coefficient tensor. In this case (33) gives

Using (43), (45), (38) and (37), we again obtain equation (39). Version 1 and 2 can give

the same constitutive equation under the appropriate assumptions.

Comments on damaged material     Equations (5) and (43) show that     can be divided

into elastic strain and damage strain ,i.e.

The damage strain is an inelastic strain which is produced through changing the

stiffness from E to (1-D)E, but its deformation mechanism is still the same as in

the elastic media. In (46) an is simply the sum of and so differentiating
with      or     in (34), we will get the same    This illustration for     is also

correct.

5. Coupled Creep–Elastoplastic Analysis

As a second example, an isothermal coupled creep–elastoplastic analysis is considered
( Fig. 3). In this analysis Norton’ s law for creep and Mises–flow theory with combined
hardening rules for elastoplasticity are assumed, so the flow potential F w i l l take
the form given in equation (47). Note that the time–independent plastic behavior is

a particular case of viscoplasticity when the rate of flow (inelastic strian)
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approaches infinite. In version 1, the Helmholtz free energy and a general flow

potential F should he assumed. According to the above explanation we select

where

and N are constants, is equivalent stress, is an initial yield stress ,

is a back stress, is an isotropic hardening parameter , and are internal

variables. Variables of parts 1 and 2 are distinguished by subscripts 1 and 2

respectively. According to version 1 we have

where the plasticity multiplier is determined by the consistency condition:

From (49) we assume and in a simple form

Combining (53) and (54) we get

where C and are selected functions of b and Q are constants. Equation (51)

is homogeneous in time of order one , so     is an implicit function of time. Further

study on plastic deformation is omitted here , the reader can find i t in many textbooks
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(Kuang 1989, Lemaitre & Chaboche 1985)

The model shown in Fig .3 gives

So the constitutive equation of coupled creep –elastoplastic media for loading case
is

In a simple tension loading case, the above equation is reduced to

or
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Abstract

The dynamic response of mechanical/structural systems and degradation processes
due to dynamics has mostly been analysed without the appropriate mutual coupling. In
this paper a joint (coupled) description of the system dynamics and the associated
degradation process is presented. After general formulation of the problem we consider a
randomly vibrating linear elastic system with stiffness degradation due to fatigue. The
vibration - degradation problem is represented by the vibration equation with a
special (nonlinear) stiffness degradation term. The solution of this equation (the
approximate probability density) is obtained by the modified maximum entropy method
and the results of associated numerical calculations are illustrated graphically.

1. Introduction

In the last decades the dynamics of elastic and inelastic bodies and systems has
been extensively studied, including the stochastic dynamics, which accounts additionally
for uncertainties and random irregularities in external and parametric excitations. Various
models and methods of analysis have been elaborated which provide the effective tools
for characterization of the stress distribution, and in the consequence for the reliability
estimation (cf. [1], [2], [3]). Also, various deterioration processes (which take place in
the material due to time-varying stress conditions) have been modelled and studied.
Especially, modelling and analysis of fatigue process (both, in deterministic and
stochastic setting) has been of a great research effort (cf. [4]). Fatigue accumulation
causes a progressive degrading of the stiffness of a material and it affects directly the
system performance. However, the studies mentioned above (particularly, those
concerned with stochastic dynamics and fatigue) have been conducted without the
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appropriate mutual coupling. It is no doubt that a more satisfactory approach should
consists in joint (coupled) description of the system dynamics and the associated
degradation process.

The objective of this paper, is the modelling and analysis of a coupled stochastic
dynamics - deterioration process. In particular, we consider randomly vibrating linear
system with stiffness degradation due to fatigue. Defining the fatigue degradation
process in terms of an instantaneous crack size and its critical value the coupled problem
is represented in the form of a vibration equation with a special (nonlinear) stiffness
degradation term. Solution of this equation (the approximate probability density of the
response) is obtained by the modified maximum entropy method.

2. General formulation of the response-degradation problem.

For a wide class of nonlinear vibratory systems with random excitation (both,
external or parametric) the coupled response - degradation problem can be formulated in
the following form:

where:
Y(t) - unknown response process,
D(t) - degradation process,
F[.] - given function of indicated variables satisfying the appropriate conditions
for the existence and uniqueness of the solution,

- given stochastic process characterizing the excitation; and is
the space of elementary events in the basic scheme of probability
theory,

- symbolizes the relationship between degradation and response process;
its specific mathematical form depends on the particular situation.

An important special class of the response-degradation problems is obtained if
relationship (2) takes the form of differential equation, that is, equations (1), (2) are
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where G is the appropriate function specifying the evolution of degradation; its
mathematical form is inferred from the elaboration of empirical data, or - it is derived
from the analysis of the physics of the process. In equation (5) dependence on Y(t) is
regarded here in more relaxed sense then it is usual. Degradation rate may depend
on the actual values of Y(t), but it can also depend on some functional of Y(t), for
example - on the integral of In fatigue degradation problem with D(t)
interpreted as a "normalized" crack size, the most common evolution equation is the
Paris equation which includes not Y(t) itself, but the stress range, i.e. quantity related to

In particular case, when the right-hand side of equation (5) depends solely on
the response process Y(t) and, possibly on then this equation gives the following
integral expression for the variability of degradation in time

Of course, if equation (4) does not depend on D(t) or equation (5) does not depend on
Y(t),   then the response - degradation problem becomes uncoupled.

Another special class of problems characterized generally by equations (1), (2) is
obtained if  functional relationship (2) does not include explicitly D(t) and  depends
on some statistical characteristics of the response process Y (t) or the joint process

A good example is a vibrating systems in which a degradation process
depends on the time which the response Y(t) spends above some critical level

3. Vibrating System with Stiffness
Degradation due to fatigue.

Let us consider linear vibrations of a structural mechanical component subjected to
Gaussian white excitation. Assume that during the vibration process a macroscopic
fatigue crack develops in the system which affects the stiffness (or natural frequency) of
the vibrating system. Let us denote by k(D) the stiffness dependence on the degradation
measure D. The governing equation has the form

where is a random process (white noise); denotes an element of space of
elementary events on which probability is defined. It is clear that y(t) denotes the
displacement (response process) and M, c are the mass and damping coefficients,
respectively. Dividing, both sides of equation (7) by M and then introducing new
variables: where denotes a standard deviation of the stationary
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displacement of equation (7) without degradation (i.e. when  we obtain a
dimensionless form of equation (7)

where denotes the initial (non-degraded) stiffness and
function q(D) is monotonically decreasing function of the degradation parameter D;

is the white noise with correlation function
where means the Dirac delta function. It should be

noticed, that for system (8) without degradation has in the stationary state
where is the standard deviation of the velocity.

A kinetic equation - empirically motivated - for fatigue crack size A(t) can be
taken in various forms (cf. [4]). The most common is the Paris equation

where is the stress intensity range, C and m are empirical constants. The stress
intensity factor K characterizes the magnitude of the local stress around the crack tip,
and depends on variables characterizing the loading, crack size and shape, and geometry
of the specimen. In general, it has the form

where A is the crack length, S represents the far-field stress resulting from the applied
load, B(A) is a factor which accounts for the shape of the specimen and the crack
geometry. The Paris equation when combined with the expression (10) leads to the
following equation for the fatigue crack growth rate

where is the stress range (associated with the response process Y(t)), and N denotes
the number of fatigue cycles.

Equations (8) and (11) constitute the coupled system of equations for the
response-degradation process. When equation (8) is represented in the form of two first
order equations (for processes
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then the response - degradation process is governed by the system of
three first-order equations (12) and (11) where the crack size A is additionally (by
appropriate function) related to the degradation measure D.
This system of stochastic equations can be analyzed by use of various methods. The
method proposed in this paper consists in reducing the nonlinear system of three
equations to the system of two first order equations. To this end, let us introduce the
function as

where is the initial crack size. Let us denote by the value of for the critical
crack length and define the degradation measure D as

which takes its values between zero and one. Hence, we have

Therefore, the kinetic equation for the degradation due to fatigue crack growth takes the
form

where is the stress range generated by the response process Y(t).
Since the vibratory system in question is subjected to random excitation

then the response Y(t) is a random process as well. In this case equation (16) has to be
modified (cf. [4]). Here, under assumption that the response process is narrow band, the
random stresses range will be characterized by double amplitude of the envelope of the
dimensionless response of the system (12), i.e.

and change from cycles to time is based on the relation
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where is the average number of up-crosings (cf. [4]) of a fixed (critical) level by
process Y(t). Therefore, equation (16) is represented as

The equations (12) and (19) constitute explicitly coupled response-degrading problem
for linearly vibrating system. It turns out that equation (19) does not depend explicitly on
D, so it belongs to the class of the degradation relations of the general form (6). The
exact analysis of the coupled system (12), (19) is involved. To make the further
treatment of the problem possible we will take advantage of the fact that the envelope
amplitude varies slowly in time. This agrees with the observation that the degradation
process is slow in comparison with the response itself. Therefore, making the "linear
approximation" where is given by (19) we can regard D occurring
in dynamic equations (12) as explicitly expressed by and Hence, equations
(12) can be written in the form of the following Itô stochastic equations

where is the standard Wiener process, and is the nonlinear term
accounting for the dependence of stiffness on the degradation, i.e.

4. Solution of the problem

In order to obtain quantitative results, one has to assume the specific function
characterizing the dependence of the stiffness on the degradation due to fatigue. Such a
dependence can be inferred from the empirical data. In the literature (cf. [1]) a
polynomial            of degree ten has been proposed. Empirical data can 
also be approximated by the equation

where are positive constants, such that (to have

In order to obtain a probabilistic characterization of the response with the
degradation of stiffness (22) the moment equations for the stochastic system (20) are
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generated. If we denote where is the symbol of the

probabilistic mean value, then we have

The information on the behaviour of the system is taken in the form of five
first equations from the above hierarchy of equations, i.e. equations for the first order
and second order moments

The approximate probability density is determined via the modified
maximum entropy method (cf. [5], [6]). This density has the form

where are unknown Lagrange coefficients and

is the normalizing constant.
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Let us discretize system (24) using (for instance) the Euler scheme (to make further
equations more clear) with the step As the result, the system (24) can be rewritten
as

with        assumed to be given initial condition. In our consideration these initial
moments were taken as the moments of stationary solution of the system (8) without
degradation.
The Lagrange coefficients are determined at each discrete time numerically from
the following system of algebraic nonlinear equations

Taking into account (25) and (26) this system can be written as

and can be solved using (for example) the five dimensional Newton method.
In the calculations the following values of parameters were used:

It is assumed that the degradation starts
when dimensionless system reaches the stationary state. In the absence of degradation

the response of the system (which is linear) is Gaussian. Degradation
introduces nonlinear and time-dependent stiffness and, therefore leads - in general - to
non-Gaussian behaviour of the system.

The results of numerical calculations are illustrated on figures 1-3. Figure 1
vizualizes function q(D) versus D for selected values of parameters       for curve  (1)

for curve (2) for curve (3) Generally, the form of degradation
function (22) is very flexible and many kinds of possible types of degradation (from linear
to strongly nonliniear) can be obtained. In practice, the values of parameters

should be estimated from experimental data.
Figure 2 shows the variance of the displacement in the system with degradation for
the same different values of parameters as in Fig. 1. As was mentioned above, in the
dimensionless system without degradation we have From this figure we see
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influence of degradation of the stiffness on the response of the system. The increasing of
degradation causes the increase of the variance of displacement of the system.
Figure 3 illustrates the non-Gaussian probability density of the distribution of the
displacement of the system with degradation for different number of response cycles.



108 K. SOBCZYK and

References:

1. Soong T.T, Grigoriu M., (1993), Random Vibrations of  Structural and Mechanical Systems, Prentice

Hall, New Jersey.

2. Lin Y.K., Cai G.Q., (1995), Advanced Probabilistic Dynamics, McGraw Hill, New York.

3. Sobczyk K., (1991), Stochastic Differential Equations with Applications to Physics and Engineering,

Kluwer, Dordrecht-Boston.

4. Sobczyk K., Spencer B.F., (1992), Random Fatigue: From Data to Theory, Academic Press, Boston.

5. Sobczyk K., J., (1993), Maximum entropy principle and nonlinear stochastic oscillators,

Physica A, 193,448-468.

6. J., Sobczyk K., (1996), Maximum entropy principle and non-stationary distributions of

stochastic systems, Probab. Engng Mechanics, Vol.11, 169-178

7. J., et. al. , Response of nonlinear degrading oscillator to random excitation, (submitted for

publication in J. Sound and Vibration)



EXPERIMENTAL STUDIES ON THE EVOLUTION OF DEFECT
TEMPERATURE FIELD DURING DEFORMATION OF ABS*

WENBO LUO
Institute of Rheological Mechanics, Xiangtan University, Hunan 411105, P.R.C.

Abstract The process of defect evolution is complicated which cuts across micro-,
meso- and macroscale levels, and should be inherently characterized by its rheology
and dissipation. Experiments of heat generation induced by any irreversible
deformation in the tensile failure process of thermoplastics with prefabricated defects
have been made in details. The initiation and evolution laws of the local temperature
field near defects are observed and recorded with infrared photography, and then
preliminarily analyzed. It is shown that the heat generated during defect evolution is
significant in our experiments and comprises some 25 to 70 per cent of the of external
work, so its contribution to the failure of materials is not negligible. Considering the
micro- and mesoscopic characters of deformation, a preliminary and qualitative
explanation to the cooling and heating phenomena observed in the experiments is also
presented in this paper.

1. Introduction

The mechanical properties and failure laws of polymeric materials have been
extensively studied not only because of their importance in industrial applications but
also because of their theoretical complications. At present, it has been realized that the
damage and fracture process of thermoplastics is dissipative and compatible with
irreversible thermodynamics. It cuts across micro-, meso- and macroscale levels, that is,
it starts from the rearrangement, slippage, reorientation, disentanglement and scission of
the entangled chain segments among molecular chains at microlevel, passes through the
mesolevel including the craze initiation, craze growth, fracture of craze matters, the
initiation and propagation of microcracks. and ends in macroscopic gross failure
induced by microcrack cascades and macrocrack propagations. Energy dissipation will
occur during the local molecular reorientation, rheological deformations in the materials
which lead to heat generation and form a temperature field. Such temperature effect
during the deformation of materials resulted from thermomechanical coupling, was first
considered by Duhamel[1] early in 1837. Thereafter, Farren and Taylor[2] measured the
heat generated by pulling a bar into the plastic region under quasi-static conditions and
found that 85 per cent of the mechanical energy was converted into heat. The advances

* Project 19632030 supported by National Natural Science Foundation of China.
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in irreversible thermodynamics[3] gave a keen impetus to the developments in the
thermomechanical coupling. Dillon reported experimental results on the heat generated
during the torsional oscillations of round aluminium and copper tubes[4,5], and gave an
analysis of the heat generated in a nonlinear thermoelastic material by the deviatoric
components of strain[6]. Cernocky and Krempl[7] proposed a coupled thermovisco-
plasticity theory based on the overstress constitutive equation and applied it to
investigate special types of loading: pure torsion, uniaxial loading and cyclic loading.
Ghoneim[8-10] presented coupled thermoviscoplasticity equations and applied them to
solve the problem of dynamic loading of a thick-walled cylinder as well as compression
or cyclic loading of an end-constrained cylinder. Beginning in 1985, Allen[11-13]

published a series of papers dealing with thermomechanical coupling in viscoplastic
uniaxial metallic bars. So far as thermoelastic coupling models are concerned, some
initial work was done by Schapery[14], Christensen[15,16] and Crochet and Naghdi[17].
Considering the changing between surface and volume energy in deformed bodies, Sih
gave a surface/volume energy density theory[18] to account for the mutually
thermomechanical coupling effects. Such theory has already been applied to a host of
problems and predictions agreed with experiments[19-21]. Although great advances have
been made in the theory and applications of thermomechanical coupling, most of them,
except Sih’s theory, were aimed at metallic continua[4,5,7,10-13], with a few dealing with
nonmetallic materials[22-24] or cracked bodies[19,25,26]. Recently, Kinra and Bishop[27]

presented an approximate analysis to a Griffith crack subjected to time harmonic
loading in model I, II and III. During the last two decades in this century, taking the
dissipation and rheology of defect evolution process as main research chains, Yuan
emphatically studied the thermomechanical coupling and thermomagnetic effects, and
proposed a new theory — rheology of bodies with defects[28-31]. It is generally pointed
out by experiments and simulation results due to the thermomechanical coupling
models mentioned above that during the initial elastic response the deformation causes
cooling in uniaxial tension and heating in uniaxial compression, while pure torsion
shows no temperature change for isotropic materials, and monotonous deformation in
the inelastic region causes only self-heating. Temperature fluctuation in a thermoplastic
specimen with prefabricated defects under uniaxial tensile plane stress is presented and
preliminarily analyzed herein in view of micro- and mesoscopic physical characters of
the deformation of thermoplastics, avoiding overelaborate procedures for modeling and
simulating. The heat generated during inelastic deformation is calculated from the local
temperature field and compared with the external work done.

2. Thermomechanical coupling equation

The coupled thermomechanical equations of a continuous media are defined by the
balance of momenta and conservation of energy:

where express the stress tensor components. stand for the body force vector

components. is the mass density, are the displacement vector components,

denotes the internal energy per unit mass. are the heat flux vector components per
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unit area of the boundary surface. is the heat supply rate per unit mass, and are
the strain tensor components. Dots on top of the letters denote derivations with respect
to time.
For any thermomechanical process, the above equations are restricted by the second law
of thermodynamics, i.e.,

where s is the entropy per unit mass and T is the absolute temperature.
Considering that the thermomeclianical state at a point of the inelastic material is
defined by the current values of the independent variables T and where is
the inelastic strain tensor, we can postulate the following general constitutive relations:

Let Helmhotz free energy be

therefore,

Substituting eq. (8) into eq. (2) and utilizing eqs (9) and (3), we can obtain

and

where the first term in the left hand side of eq.(13) represents internal dissipation and
the second term is the heat conduction dissipation.
According to eq.(6)

Using eq.(10) and substituting (14) into (12) there results
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If we assume the Fourier’s law

where the thermal conductivity tensor may depend on T and it becomes
clear that the only variable required to define the thermomechanical problem is
which can be expanded in a second order Taylor series in its arguments as follows[13]:

where , and is the reference temperature at which no strain is observed.
Substituting (17) into (10), we get

Using eqs (17) and (19), eq.(l 1) is led to

where represents the initial entropy per unit mass. For an isotropic elastic material,
that equation reduces to

Eq.(24) shows that the entropy change in an isotropic elastic material results from the
temperature change and the volumetric strain.

3. Experimental procedure

For many inelastic materials, we may

where is the initial stress at zero strain and temperature change. is the elastic

modulus tensor, and is called the thermal expansion tensor.
Thus

Substituting (17) into (15) and using (16) and (19) , we can obtain

where is the specific heat at constant strain per unit mass.The above

equation is the coupled heat conduction equation for anisotropic inelastic media. For an
isotropic elastic material, the above equation reduces to



EVOLUTION OF DEFECT TEMPERATURE FIELD—ABS 113

3.1. SPECIMEN AND MATERIAL

Consider a thin flat defective specimen
made of Acrylonitrile-Butadiene-Styrene
(ABS), a typical thermoplastic copolymer.
The dimensions of the specimen and
distribution of defects are shown in figure
1. where , the specimen
thickness The type and number
of defects may be different as specimen
requires. Table 1 lists the data for three
different types of specimen. The physical
properties of material tested are listed in
table 2.

3.2. TEST METHOD

The load-measuring-record-analysis system
consists of a LST-50S type electrohydraulic
servosystem for fatigue test of materials
(LST-50SEHS), a 6T61 type high sensitive
infrared scanner (6T61HSIS), a digital/analog
tape recorder (D/ATR), a four-channel tape
recorder (FCTR), a dual channel spectrum
analyzer (DCSA) and a microcomputer, their
interconnection is diagrammatically sketched
in figure 2. The specimen is loaded at
constant displacement rate of the ambient temperature is 15.2°C.



114 WENBO LUO

The electric signals of the loads and displacements during testing, together with the
clock pulses, are recorded with tapes, then converted into digital values by DCSA, and
finally the load-displacement curves can be obtained via computer. The temperature of
specimen surface can be demarcated analogously with different colors, the analog
signals of colors also can be converted into digital values by the analog-to-digital
converter unit of D/ATR. As a result, all information of the surface temperature field
and its variations with time arc recorded in D/ATR, and from these information, some
useful curves and data can be obtained as stated in the following sections.

4. Experimental results and analysis

4.1. LOCAL TEMPERATURE FIELD

The fluctuations of temperature at every spot near the defects in the specimen are
observed and recorded in the experiments. Cooling of the specimen will occur in the
initial stage of loading, this indicates there is a certain endothermic excitation embedded
in the materials. Stress whitening surrounding the defects will be observed during the
further load increasing stage, at this moment, the stress and strain response are already
in the nonlinear range as the material is being deformed permanently. The local
temperature returns to room condition and then rise steeply up to macroscopic rupture
of the specimen. Such phenomena of cooling and heating for ten spots (A,B,C,...,J) near
the defects in specimen B are clearly exhibited by the curves in figure 3 which indicate
the maximum temperature drop is 1.3 °C and the maximum temperature rise is
approximate 6.0 ºC. The close relation between the time history of local temperature
field near the defects and the load-displacement (stress-strain) curve is figuratively
shown in figure 4. During the elastic stage, the temperature drop is quite uniform over
the entire surface of the specimen
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Some investigators had drawn their attention to the peculiar phenomena of cooling and
heating of materials during deformation in the past thirty years, they laid particular
stress on metal materials[2-17]. Although a few experiments for non-metallic materials
were reported[22-24], thorough investigations and studies are necessary. To understand the
cause and mechanism of the phenomena, we would start with the micro- and
mesoscopic physical characters of the deformation of materials.
As we know, in general, the molecular chains of polymers are asymmetric in geometry,
their length-diameter ratio may vary at 2~4 orders of magnitude. The chain segments of
these molecular chains will arrange in parallel to form an orientated structure. In fact,
such orientation is the ordering process in which the molecules under external force
field overcome the weak Van der Waals force, and it indicates the decrease of
conformational entropy of material. The material is assumed to be isotropic initially,
according to eq.(24) in which for the uniaxial tension state in our experiments,
during the initial stage of loading, the decrease of the conformational entropy of
material, that is will give us

Eq.(25) agrees well with the cooling phenomenon observed and indicates the grouping
of heat sinks.
As the applied load increases, the orientational motion will tend to reach the limit, and
such state will firstly occur in the defective area with stress highly concentrated. At this
moment, the local temperature of the material near the defects in specimen B will drop
down to a valley at 36~38 sec, then the molecular chains subjected to high stresses will
break, the stresses redistribute to the adjacent chains. Thus the chain rupture occurs
concentratedly in a local area, and accumulates to form microvoids, when the quantity
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of microvoids reaches a critical value, a stable craze structure will come into being[33].
The stress whitening observed are the results of the grouping of quite small but highly
concentrated crazes. Craze retains a considerable strength because of craze matters, it
expands with meniscus instability mechanism and increases its thickness by interface
cold-drawing mechanism in the direction perpendicular to the interface. The physical
characters mentioned above show how the local yield of material at craze tip happens
and the crazes are in cold-drawing plastic state, hence a plastic deformation zone comes
into being and it agrees with Dugdale-Barenblatt’s model in shape. Considerable plastic
deformation energy dissipates in the form of heat, as a result, the inner heat sources
provide the heat generation to form the local temperature field, they gathered in the area
near the corresponding defects. The heating stage corresponds to the non-linear range of
load-displacement curve

4.2. HEAT GENERATION

From the energy point of view, the energy absorbed in plastic deformation during defect
evolution is converted into three parts, viz, a small part of free elastic potential which
can be released because of elastic recovery, a little larger part of restraint potential
stored in the reformed body and the major part of plastic heat which forms the local
temperature f i e l d . Without considering the heat transfer between deformed body and its

environment, the generated heat, , at time during the defect evolution can be
calculated from the temperature field as follows

in which, denotes the position vector in the temperature field, and strictly speaking,
and are also functions of temperature and the position vector, but since the

temperature change is small, they are taken to be constants in the following analysis. It
is difficult to get the exact expression of the temperature-rise function from the
experimental data, considering the thin plate specimen tested, the temperature will be
nearly the same along the thickness of the specimen, we may consider the isothermal
surfaces to be perpendicular to the surfaces of the specimen, eq.(26) can be written as

where denotes the thickness of specimen. are the areas encircled by two
adjacent isothermal lines respectively, the area located between two such isothermal

lines is considered to be isothermal in which the temperature rise is

If the areas Si, encircled by isothermal lines with regular temperature intervals (say )
are measured, the generated heat revealed in the temperature field can be expressed by

For in our experiments, according to eq.(28), the variation of heat
generated with the deformation displacement is calculated and compared with the
external work for specimen A,B and C
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Figure 5(a) shows that, before the rupture of the specimen, the maximum heat generated
is 24.3J(oule) while the external work is 56.35J at that moment for specimen A, in
specimen B, 28.2J for heat generated and 63.74J for external work(figure 5(b)), in
specimen C, 27.08J for heat generated
and 38.7J for external work(figure 5(c))
It is shown that the heat generated in
specimen with mesovoids comprises
some 25~44 per cent of the external
work, while that in specimen with
mesocracks  comprises  some  45~70 per
cent of the external work in our
experiments. This indicates that a
considerable part of external work is
dissipated in irreversible deformation
and converted into heat. The heat
generated during defect evolution is
significant and not negligible.

5. Conclusions

The initiation and evolution of the local temperature field near the defects is observed in
the paper. The cooling and heating phenomena and the heat generation in the process of
defect evolution are experimentally and theoretically analyzed. Combining the micro-
and mesoscopic physical characters of the deformation of materials, we consider it
reasonable that the cooling of specimen under uniaxial tension occurs in the range of
elastic deformation. It corresponds to the molecular re-orientations at microlevel, and
indicates the grouping of inner heat sinks. The analysis of failure process which cuts
across micro-, meso- and macrolevels shows that the plastic zone is formed, and the
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plastic deformation energy will normally dissipates by means of heat waves, the viscous
drag to the propagation of the heat waves will result in the grouping of heat sources,
therefore the non-uniform temperature field will be formed. Based on the experimental
data, the heat generated is calculated which comprises some per cent of the
external work. So its contribution to the failure of materials is not negligible. However,
it is obvious that the quantity of heat generated, the maximum temperature-rise and the
temperature-decrease are dependent on the types of material, the load conditions, the
type and number of defects, and even the shape and dimensions of the specimen, detail
analyses of the influential factors in the defect evolution will be made in our later
studies
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ABSTRACT The bodies with defects subjected to laser beam thermal shock will
successively undergo a variety of rheological processes. In this paper, the characteristics
of rheological thermal fracture of materials with pre-existing crack are theoretically
investigated by means of a simple model. Also, the behavior of rheological thermal
fracture of metal matrix composites induced by laser beam thermal shock has been
experimentally studied.

1. Introduction

Great attention has been paid to high power laser in the fields of materials and/or
structure damage and laser processing[1-4]. Interaction of a high power laser with
materials leads to two kinds of coupled damage, mechanical and thermal damage.
Depending on the laser parameters and the mechanical properties of the target material,
material damage could occur by spallation, melting and/or vaporization. However, in
the previous studies on laser-induced material damage, people ignored more or less the
fact that potential flaws may exist in components. The effect of pre-existing flaws and
rapid heating environment must be considered in accurate damage tolerance analysis. If
there are defects in such structures, the bodies subjected to laser beam thermal shock
will successively undergo a variety of rheological processes. Such processes may be the
absorption of light energy, temperature rise, thermal viscoplastic deformation, energy
dissipation, intense thermal stress concentration around defects, the growth and
coalescence of defects as well as the degradation of strength properties at elevated
temperatures caused by the heating. The non-linear coupled effects of these rheological
processes may result in catastrophic failure. The damage analysis for bodies with
defects exposed to intense thermal shock is very important for determining the safety of
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materials, components, especially the aerospace structural components .
In this paper, the characteristics of rheological thermal fracture of materials with

pre-existing crack subjected to laser beam thermal shock are theoretically investigated
by means of a simple model. Also, the behavior of rheological thermal failure of metal
matrix composites induced by laser beam thermal shock is experimentally studied.

2. Characteristics of rheological thermal fracture

Many papers have been written on thermal shock problems. Gupta[5] determined the
strength degradation and crack propagation in thermally shocked Schneider and
Petzow[6] developed a new testing method to determine the thermal shock fracture
toughness of The characteristics of thermal fracture induced
by laser beam are different from those induced by general mechanical load. To
understand the characteristics of rheological thermal fracture induced by laser beam we
first analyze the transient thermal stress intensity factors (TSIFs) for a center crack of
length 2c in an infinite plate subjected to laser beam thermal shock.

2.1 Theoretical model

Figure 1 shows the problem of interest. When the infinite plate is heated by laser beam
the tangential thermal stresses  are illustrated in figure 2. From the results
shown in Fig.2, we can see that tangential thermal stresses take on negative
values within the laser spot region and positive values around that region, respectively.
Only tangential thermal stress may contribute to the contact or opening of
crack. From Fig.2, one can conclude that the compressive thermal stresses
within the heat affected zone cause the crack surface to come into contact with each
other over a certain contact length and the tensile stresses around the heat affected
zone may tend to open the crack. Consequently, the problem may be treated as a pair of
embedded cracks with a smooth closure condition at the center (Fig. l(c)).
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The weight function method proposed by Bueckner[7] and Rice[8] has proved to be a
very useful and versatile method of calculating stress intensity factors, especially for
cracks subjected to non-uniform stress fields. Once the weight function for a
particular cracked body in mode I is determined, the stress intensity factor can be
calculated by integrating the weight function and the stress distribution

acting in the
prospective crack plane. This results in the following expression for the stress intensity
factor K,

where a is the crack length. After lengthy but straightforward derivation, we obtain the
following transient thermal stress intensity factors and which are primary
interest.

where and are the parameters of the crack opening displacement

functions at the crack tips A and B, respectively. Also, and are

functions of and , respectively. Their detail expressions are found in [9].
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To obtain and , the abscissa x in the tangential hoop stresses
have to be transformed to and respectively.

The formulation of the crack contact problem would depend on the crack contact
length 2b in the compressive zone that is an additional unknown variable. The physical
condition that accounts for this unknown is the smooth closure condition of the crack
surfaces at crack tip (Fig.l(c)), i.e.,

Consequently, the calculation of the crack contact zone 2b can be obtained from the
solution of the embedded crack problem by fixing the crack length 2C and then
determining iteratively the location of the crack tip A (Fig.l(c)) at each time step such
that equation (4) is satisfied. In this manner, the crack contact zone 2b and the stress
intensity factor at crack tip B can be determined.

2.2 Thermal stress intensity factor

The normalized TSIFs at crack tip B are calculated and in this
case the spatial shape and temporal shape are respectively assumed as

 where                        laser spot radius,  thermal expansion coefficient, Young’s
modulus , reference temperature, and are determined experimentally,
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The TSIFs originally increase as a function of time and reach maximum value at
some time, then decrease. The crack-length-dependent stress intensity factor is shown in
figure 3, where is non-dimensional time. The maximum in the stress intensity over the
crack length curves is typical for thermal shock loading and separates the region of
stable and unstable crack growth. This behavior is different from that under mechanical
loading, where external forces are applied and the SIF increases with the square root of
the crack length. The crack length that corresponds to the maximum TSIF
decreases with time. This result is different in quenching experiments where
increase with time[10]. If for crack lengths the critical TSIF is exceeded, the cracks
propagate in an unstable manner, because the TSIF increases until . The effect of
unstable crack propagation was very pronounced for initial notch lengths. This
demonstrates that such cracks continued to grow also in the region where the static
K(C) was below Hence the static crack arrest criterion does not hold in

this case, and the crack arrest should be discussed by using the dynamic theory of
elasticity.

3. Rheological thermal fracture of metal matrix composites

Particular interest in the aerospace industry has been directed towards ceramic-
reinforced metal matrix composites (MMCs)[11-12]. Thermal shock may give rise to
intense thermal stresses in the components around cracks and other kinds of defects and
especially in the components of ceramic-reinforced metal matrix composites as a result
of the thermoelastic mismatch in the metal and ceramic. The problem of the rheological
thermal fracture of metal matrix composites is very complicated, the present
investigation experimentally examines the fracture behavior of SiC particulate
reinforced 6061 aluminum alloy under laser thermal shock.
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3.1 Experimental procedure

Thermal shock is generated by an incident laser beam that impinges normally to a
single edge notched specimen. The energy of the laser beam ranges from 1J to 5J with
an intensity of the order of It is a single pulse Nd:glass
laser with a wavelength of and a FWHM (full width at half of the maximum)
of and . SiC particulate/6061 Al composite is chosen as a model MMC
system for this study. The composites with 15wt% SiC were fabricated by a melt
casting route, and as-cast ingots of the composite were subsequently extruded. The
samples are cut from the hot-pressed billets with dimensions of  The
test samples were the single-edge notched specimens placed in the static tensile
machine. So the thermal failure is induced by both laser thermal shock and far-field
mechanical load. Figure 4 shows the specimen configuration and dimensions. The rear
surface of the notched specimen which is polished is examined using both optical and
scanning electron microscopy (SEM) and the front surface of the specimen is irradiated
by the laser beam. The notched-tip region is subjected to laser beam heating. The
mechanical load is tensile stress of 36.7 MPa and the laser spot size is 5.0mm in
diameter.

3.2 Feature of thermal fracture of metal matrix composites

The macro-phenomena and threshold intensity are given in Table I for the thermal
failure of SiC particulate reinforced 6061 aluminium alloy composites induced by both
laser thermal shock and far-field mechanical load. According to the test data given in
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Table I, when only the mechanical loading exists, no visible macroscopic damage was
observed on the rear surface of the specimen. On the other hand, when the laser energy
density is respectively lower than and for 1 .0ms and FWHM
laser beam and the mechanical tensile stress is 36.7 MPa, we do not observe the
macroscopic damage on the rear surface of the specimen. When the laser energy density
is gradually increased, the damage is more and more serious. The specimen is totally
fractured as the laser energy density is increased to and  for 1 .0ms
and FWHM laser beam, respectively. It is noted that the laser intensity threshold
value for the specimen fractured is different for 1 .0ms and FWHM laser beam.
In this case, the other parameters, such as specimen dimensions, laser spot and
mechanical loading, are the same.

Figure 5 shows the SEM of micro-voids in the notched-tip region with a laser energy
density of and 1.0ms FWHM. It is observed that the voids occur in the form
of interfacial debonding between the particles and the matrix. In order to understand
the initial damage behavior of SiC-particle-reinforced 6061-A1 matrix composite
induced by laser beam thermal shock, the laser beam irradiated region is moved away
from the notched-tip region as shown in Fig.4(c). In this case, the radial crack appeared
around the periphery of the laser beam as shown in Fig.6. The radial crack occurs by
the void nucleation and growth within the matrix and by the decohesion at the interface
between the particle and the matrix. Little SiC particle fracture is observed in Fig.6.
When the reinforcement SiC particle is at the crack-tip, the SiC particle does not
fracture but resists the crack propagation. One can conclude that the initial damage may
be produced in the form of the separation of the SiC particle-matrix interface or in the
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form of void nucleation and growth within the matrix. The onset and progression of this
ductile matrix failure are influenced by the development of local plastic strains and
hydrostatic stresses during the coupled loading with both the laser thermal shock and
the far-field mechanical load. The initial damage is similar to the fatigue fracture
behavior.

When the energy density is increased to or for 1.0ms and
FWHM laser beam, respectively, the microcracks formed in the notched-region

grow into macroscopic cracks. The higher magnification SEM micrographs of
macroscopic cracks is shown in Fig.7. It is shown that reinforcement SiC particle
fracture is the dominant damage mechanism. The reinforcements are broken by cracks
perpendicular to the loading axis and the fraction of broken reinforcements increases
near the crack tip zone as shown in Fig.8. Note that the SEM in Fig.8 is distinct from
the SEM in Fig.5 and Fig.6 in damage mechanism.

3.3 Temperature rise and thermal stress

Surface and internal temperatures in the composite materials can be determined by the
diffusion equation

where I(r,t) is the intensity of incident laser beam,  r is the coordinate in radial
direction and the origin is taken at the center of the laser spot, t is time,   is the

temperature rise and the reflection coefficient is experimentally determined and
equals 0.4 approximately. In the above formulas  and h are the thermal
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conductivity, density, specific heat capacity of materials and the thickness of the plate,
respectively. During the period of laser irradiation, thermal conductivity effect can be
ignored. Therefore, the temperature rise is approximately

and for .The temperature at the center of the laser spot is much high than that
at the outer rim. The induced higher thermal expansion in the sample center is
constrained by the cooler edge, causing tensile hoop stresses at the edge and tangential
and radial compressive stresses in the center. For simplicity the sample is assumed to be
a disk the thermal stresses is calculated under plane stress condition. The linear elastic
solution for radial and tangential thermal stresses and has the
following form

where E and are the Young’s modulus and thermal expansion coefficient
respectively, R the radius of the disk. Only tangential thermal stress may

have contribution to crack opening. From equations (8) and (10), we have

where is the radius of laser spot. We see that the tangential thermal stresses
remain negative values within laser spot region and positive values around laser spot
region, respectively.

3.4 “ Thermal shock ” fracture toughness

The weight function method is used to calculate the stress intensity factor of the single
edge notched sample. For simplicity we assume the sample to be a disk with a radially
orientated single edge crack. Starting from the known solution of a constant stress
on the crack faces, it was shown by Oliveira and Wu[10,13] that the stress intensity factor
of an arbitrary stress distribution has the following solution

where c is the length of notch and The solutions for the coefficient
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functions for a polynomial of 4th order are given in

[10]. To use this resuit, abscissa X in the tangential hoop stresses of equation

(10) have to be replaced by Integrating the equation (14), we obtain

where

and Consequently, the specimen subjected to thermal shock shows crack
propagation with the minimum laser energy . At this critical condition, the stress

intensity factor representing thermal shock fracture toughness is:

where is the stress intensity factor induced by the far-field mechanical loading and
it is given by the following expression[14]

where

and W  is the width of the specimen.

The results of thermal shock fracture toughness are listed in Table III with the
related parameters listed in Table II . The fracture toughness at room temperature is

also listed in Table I I I [ I 5 ] . From the results listed in Table I I I we can clearly see that the
“ thermal shock ” toughness is larger than that at room temperature. Also as the
thermal shock becomes more intense, the thermal shock fracture toughness is larger.
This result is the same as that obtained by Schneider and Petzow[6]. Schneider and
Petzow measured the thermal shock fracture toughness of Si3N4 from room temperature

up to 1000°C. Their results showed a constant fracture toughness of up to
750°C and a strong increase at higher temperatures. The dependence of thermal shock
fracture toughness on the level of thermal shock is due to the difference of the
mechanical properties of the composite for different levels of thermal shock. When the
heating is slow and the temperature is not high, the deformation of the material is elastic.
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However, at rapid heating rate and at high temperature, the deformation is viscoelastic
or viscoplastic. This means that the rheological feature of the materials under intense
thermal shock has a strong influence on the fracture toughness. On the other hand, the
fracture toughness of materials is highly sensitive to the level of thermal shock.

3.5 Mechanism of crack formation and propagation

As previously described, the initial crack is produced by the mechanisms of void
formation in the matrix and separation of the SiC particle-matrix interface, while the
crack propagation is dominated by SiC particle fracture. Why is there the difference
between the damage mechanism between the crack formation and crack propagation? It
is well known that the reinforcement of a hard ceramic in a soft metallic matrix
produces composites with substantially higher yield strength compared to that of the
matrix. The strengthening effect is primarily attributed to two factors in various earlier
investigations. An alternative method of loading the particle is through the misfit strain
generated during plastic flow as a result of the difference in elastic moduli between the
particle and the matrix. A radial tensile stress is developed across the interface
which is given by where is the matrix yield stress at the plastic
strain locally attained adjacent to the particle and σT is any tensile hydrostatic stress
developed in the neighborhood of the particle. Consequently, it is proposed that at early
stage of laser irradiation the low yield stress of the matrix alloys causes the particle
loading to be low and the voids appear in the matrix or within the interface of
particle/matrix. Once the microcracks grow into macroscopic cracks, the hardening of
the matrix due to the high strain rate in the case of macrocrack propagation causes high
particle loading that exceeds the particle strength and causes the particle to fracture.

4. Conclusion

In this paper, the characteristics of rheological thermal fracture induced by laser beam
thermal shock are theoretically investigated. The thermal shock results obtained from
laser beam heating are markedly different from those obtained from mechanical loading.
For thermal shock loading the maximum in the stress intensity factor over the crack
length curves separates the regions of stable and unstable crack growth. The
experimental results of rheological thermal failure of metal matrix composites induced
by laser beam thermal shock show that the fracture toughness of the materials is highly
sensitive to the level of thermal shock and the rheological behavior of the materials
under intense thermal shock has a strong influence on the fracture toughness.
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A CONSTITUTIVE MODEL OF A PARTICLE
REINFORCED VISCOELASTIC COMPOSITE
MATERIAL WITH DEBONDED MICROVOIDS*
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Abstract

The statistical behavior of microvoids' evolution in a linear viscoelastic

material which contains well bonded second phase particles is investigated. The particle

size distribution is assumed to obey a logarithmic normal distribution. Because of the

difference in mechanical properties between the matrix and the second phase particles,

the debonding damage of particle-matrix interface may occur under the action of

external loads. This kind of damage will lead to microvoids' nucleation and growth. In

this paper, the reinforcing effect due to rigid particles and the weakening effect due to

microvoids produced from the debonding on the overall mechanical property of the

particle reinforced composite material are studied. By virtue of Eshelby's equivalent

inclusion method and Mori-Tanaka theory, the average normal stress on the particle-

matrix interface which governs the void nucleation and the dilational rate of void

volume which governs the void growth are calculated. Then, based on the kinetic

conditions for the microvoids' nucleation and growth as well as the balance law of voids'

number, the distribution functions of the number densities both for perfectly bonded

particles and for microvoids are obtained. Thus, a macroscopic constitutive relation of

the considered composite material is derived. It is shown that the macroscopic strain rate,

*This project is supported by the National Natural Science Foundation of China (19632030) and the Doctoral

Program Foundation of the State Education Commission of China
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the particle-size dispersity and the interface adhesive strength play key roles in

describing the overall mechanical property of such a composite material.

1. Introduction

A polymer composite comprised of a polymeric matrix material reinforced by

dispersed second phase rigid particles has been used as an advanced engineering plastics

in recent years [1,2]. Because the mechanical property of the dispersed phase differs

from that of the matrix, any of the following microdamage nucleation mechanisms may

be observed during the deformation process : namely, cracking of particles, debonding

at the interface and fracture of the matrix adjacent to stronger particles. The nucleated

microdamage will subsequently grow into microvoid under continued loading.

Obviously, the mechanical property of the composite is not only influenced by the

reinforcing effect due to rigid particles, but also influenced by the weakening effect due

to microvoids. Hence, in order to obtain the macroscopic constitutive relation of the said

composite, the evolutions of number densities both for the well bonded particles and the

microvoids have to be considered.

Recently, the statistical evolution of microvoids in a rheological material was

studied in Ref.[3]. The effective elastic-plastic behavior of a particle-reinforced

composite including debonding damage was also discussed by Zhao and W e n g [ 4 ] ,

Tohgo and Chou [5]. There the matrix materials are taken to be elasto-plastic. However,

the effects of the void growth and the particle-size distribution on the macroscopic

constitutive relation were not considered, and as is shown below, these effects could be

quite important in some cases.

In this paper, we propose a constitutive model of a rheological material filled

with second phase particles. The constitutive relation of the matrix material is linear

viscoelastic. The particle-size distribution is assumed to be log-normal distribution. It

may be further assumed that during the deformation process, when the average normal

stress on the interface exceeds the nucleation threshold, debonding damage at the

interface will occur with its probability obeying the Weibull's statistical function. Then,

by means of Eshelby's equivalent inclusion method and the Mori-Tanaka theory, the

kinetic equations for the void nucleation and the void growth are established. From these

kinetic equations together with the balance law of the voids' number, evolutions of the
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number densities for both the particles and the microvoids are obtained. The

corresponding constitutive relation of the composite material is then derived. The

influences of the loading rate, the particle-size dispersiry and the interface adhesive

strength are also examined under plane strain condition. It is found that all these factors

will play significant roles in predicting the overall mechanical property of a rheological

composite material with progressively debonded microdamage.

2. Nucleation of microvoids in a particle-reinforced composite

Now consider a particle-reinforced composite. The experimental observation
[2],[6] indicates that the particle-size distribution in several polymer composites can be

described by the logarithmic normal distribution

where c1 denotes the radius of a spherical particle,   is the average radius of particles,
is the particle-size dispersiry and is the total number of particles per unit volume.

So, the initial volume fraction of particles is

As the applied load increases, the nucleation of microdamage in the composite

may take place. A commonly observed nucleation mechanism is the debonding at

particle-matrix interface. Two necessary critical conditions for the debonding at

interface between the particle and the matrix are

(1) The critical energy criterion, i.e. the elastic energy released by forming the stress

free surface is at least equal to the surface energy created.

(2) The mechanical debonding criterion, i.e. the normal stress σ at the interface
must exceed the threshold bond strength between the particle and the matrix

material.

It was pointed out by Argont[7], Goods and Brownt[8], that for metallic

composites, when particle size is larger than 100Å, the critical energy criterion is
always satisfied if the normal stress reaches We shall use it here, so in the

following, only the mechanical debonding criterion will be considered. Extensive

investigations on the nucleation of microdamage in ductile materials have been
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conducted by many researchers (e.g., Ref. [7-11]). However, the kinetics of nucleation

process is complex and is not quite clear so far. Hence the expression of the nucleation

rate is usually given empirically. Suppose the probability of debonding at the interface

may be described by Weibull's distribution function

where is the average normal stress at the interface, and are material

parameters, which should be determined by experiment. Then for the number

of debonded particles per unit volume with radii between may be given

by

It follows that nucleation rate of microvoids can be expressed by

where the average normal stress will be determined in the next section.

3. Kinetic equations of microvoids' nucleation and growth

Now suppose the matrix material of the composite is a linear viscoelastic one,

its constitutive relation may be expressed by

where is the position vector, and are stress and strain tensors in the matrix

respectively, is the fourth-order relaxation tensor. When the matrix material is

isotropic, the components of the relaxation tensor in rectangular Cartesian coordinate

may be written as

where v is Poisson's ratio and for a Maxwell fluid is an exponential function

with E and η being Young's modulus and a coefficient of viscosity, respectively.
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When the matrix material is filled with second phase rigid particles, the

correspondence principle between an elastic and a linear viscoelastic solution in a

heterogeneous body can be utilized. By taking the Laplace transform to all the field

equations on such a equivalent inclusion problem, we can obtain the stress in rigid
particles and the strain of voids as follows

where denote eigenstrains of the particles and the voids respectively (see

Ref. [12]) . When Poisson's ratio of the matrix v remains constant, and can be

expressed in terms of the average strain of the matrix by

where is the fourth-order identity tensor, is Eshelby's tensor. For spherical

particles, the components of in a rectangular Cartesian coordinate are

It should be noted that in Eqs. (9) and (10), the inverse transform has already been

worked out.
Let          and           be the volume fraction of particles and the porosity of the

composite at time t respectively. Then the average stress and the average strain may be

written as

Hence the macroscopic constitutive relation of the composite ( the relationship between
may be obtained from Eqs. (6)-(12) so long as and are

determined.
From eqs.(10)-(12), and in eq.(9) may be expressed in terms of the

specified average strain by
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where is a fourth-order tensor:

The first invariants of ( denoted by respectively ), and hence

the relative growth rate of the void volume as well as the rate of the average

normal stress on the interface can easily be obtained directly from

eqs.(13) and (14). So the kinetic equation for the void nucleation may be given by Eq.(5)

with replaced by

In general, during the deformation process, the void shape may no longer

remain spherical. However, in the case of high stress triaxiality (for instance, in the case

of plane strain deformation), the notation c can still be used as the average radius of a

void. Thus the kinetic equation for the void growth may be written as

where

4. The statistical evolution of microvoids and the corresponding macroscopic

constitutive relation

Suppose at the instant the average normal stress at the particle-matrix

interface reaches and the microvoids nucleation takes place. If the number

density of the microvoids is denoted by i.e., the number of the voids per unit

volume with radius from c to at time t is then the balance law of

the void number can be written as
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where and g(t) are given by Eqs. (5) and (17).

The corresponding initial and boundary conditions are

In order to solve Eqs.(18) and (19), and in Eqs.(12)-(15) should be determined.

Evolution equations of and are

It follows that

Obviously, Eqs.(5), (13)-(21) are coupled to each other. So, these equations have to be
solved simultaneously to obtain

The number density of perfectly bonded particles is given by

and the statistical evolution of microvoids is described by the distribution function
which are closely related to the determination of and The derivation of

the macroscopic constitutive relation of the composite is straightforward and comes
directly from Eqs.(6)-( 12) as soon as and are known

where the fourth-order tensor is defined by

5. An illustrative example and discussions

In order to simplify the calculation, here a Maxwell fluid model is used for the

constitutive equation of the matrix material( see eqs.(7) and (8) ), and only the one-

dimensional plane strain deformation with constant strain rate is considered
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where is the reference time and is the macroscopic strain at Then, from
eqs.( 13) and (14), the first invariants of and may be given by

where

moreover, the expression of in eqs.(16)-(18) may be written as

After introducing the following non-dimensional parameters

we can rewrite all the governing equations in the non-dimensional forms. The material

parameters are taken to be

The number density of microvoids       is calculated numerically, and

depicted in Fig. 1 and Fig.2. It is shown that at the early stage of the deformation
the distribution curve of the number density gradually moves toward the

direction of larger size with the peak value increases rapidly indicating that void

nucleation is dominant (Fig.l). However, as time goes on, the void growth will become
more and more noticeable. Hence at the later stage the curve of the number

density moves in the direction of larger void size with a decreased peak value, and as a

whole the curve becomes smoother and flatter.
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As the macroscopic strain monotonically increases, the progressive

debonding and microvoids' growth take place. The evolutions of the volume
concentration of the well bonded particles and porosity are shown in Fig.3. At

the beginning, decreases more and more rapidly, and then decreases slowly and

tends to a saturation value. On the other hand, the porosity       results from both the
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nucleation and the growth of microvoids, and continues to increase until the material

fails.

The macroscopic stress-strain relations with different strain rates are shown in

Fig.4. The deformation is under plane strain condition. There are two factors which

influence the stress-strain relation : One is the strain rate, the other is the microvoids

evolution. For the same macroscopic strain, the macroscopic stress increases with

increasing strain rate. But the higher strain rate will lead to earlier void nucleation,

which in turn will reduce the magnitude of the stress. The latter factor will become more
pronounced at much higher strain rate

The influence of the particle-size dispersity on the stress-strain relation is

shown in Fig.5. It is found that a higher value of is unfavorable for improving the

mechanical property of the composite. For lower value of microvoids evolve

gradually, and the stress-strain curve increases continuously. On the contrary, for higher

value of microvoids evolve rapidly, and the softening effect becomes notable,

leading to a decrease of the material strength. As is displayed in Fig.5, when

the stress-strain curve has a maximum, after which the stress decreases continuously,

and the carrying capacity is reduced. This result is also consistent with the experimental

observations for PVC/NBR blends[ 1 3 ] . Thus, a lower value of ω is needed for attaining

a better quality of the composite material.
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The interphase adhesive strength also has a remarkable influence on the

macroscopic constitutive relation as indicated in Fig. 6. Higher interfacial strength will

reinforce the composite more effectively. However, in case the interfacial strength is

extremely high, other damage mechanisms, such as cracking of particles and craze-

fracture of the matrix, are possible. Thus in order to improve the mechanical property of

the composite, the effect of the matrix toughness should also be taken into
consideration[14].
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Abstract

In this paper, dynamic debonding between fibers and matrix is studied based on an
axisymmetrical model of a single fiber surrounded by a cylindrical matrix. Asymptotic fields
of stress and particle velocity are found in the vicinity of the crack front based on the concept
of local plane strain for an interfacial crack between two dissimilar materials. The method of
modified material stiffness constants and conversion relations between stress intensity factors
for a propagating interfacial crack and a stationary interfacial crack are employed in the study.

Introduction

In the problem of crack bridging in fiber-reinforced composites, fracture can usually be
induced by the dynamic loading through an interfacial debonding between fibers and matrix.
In order to study the dynamic strength of the composite, it is necessary for us to determine
the asymptotic stress fields in the vicinity of the front of a propagating interfacial crack and
the rate of energy release for interfacial crack propagation. The information thus obtained can
then be applied to the measurement of dynamic interfacial crack toughness. It can also be
used for the investigation of breakage of fibers resulting from crack kinking at the tip of the
crack.

Basic Equations

Our investigation is based on an axisymmetric model of a single fiber surrounded by a
hollow cylindrical matrix with an interfacial crack which propagates with a prescribed speed.
Both the fiber and the matrix are considered to be homogeneous, isotropic and linearly
elastic. We are interested in the determination of the asymptotic fields of stresses and particle
velocities in the vicinity of the front of the propagating interfacial crack.

When the body forces are absent, Navier's equations of motion for linearly elastic
material can be written as
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where are displacement components; and are Lame's constants; is the Laplacian
operator, is the mass per unit volume; t is time, e is the dilatation of deformation. In the
cylindrical coordinates system with axisymmetry, all field quantities are independent of

Thus

and

Stresses and strains are singular at the crack front. For the interest of asymptotic
analysis in the vicinity of the crack front, the terms of lower order of differentiations with
respect to r and z in Navier's equations may be neglected. Thus for any point with a distance
from the crack front much smaller than the radius of the fiber, equations (2) and (3) may be
written approximately as

Hence, Navier's equations are reduced to

front is employed. Let a be the radius of the fiber and the length of the crack. The crack
propagates in the z-direction with speed The local moving coordinates are

and the ξ
3
 - axis in the θ-direction is perpendicular to the ξ

1
 and ξ

2
 axes. Put

and denote

   

In the following, a moving coordinate system with the origin at any point on the crack
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Note that

For the interest of the field quantities in the vicinity of the crack front, we may write

Thus, for the asymptotic analysis of field quantities, equations (6), (7) and (8) can be
expressed as

Equations (14) (15) and (16) are identical to the governing equations for the dynamic
displacement field in the vicinity of the crack tip in a plane strain problem where an
interfacial crack propagates with speed v(t) in the -direction. The in-plane displacement
components and are generated by the in-plane axisymmetrical loading in r and z
directions while the anti-plane displacement component is generated by the twist of the
fiber relative to the matrix. For the plane strain problem, Eshelby, Read and Shockley
(1953) suggested that the displacement components can be expressed as

where

and p and are respectively eigenvalue and eigenvector to be determined. By substitution, it
is found that
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where

are respectively the speed of shear wave and the speed of dilatational wave.

Plane Strain Problem

The plane strain problem of interfacial crack propagation between two elastic materials
has been studied by Yang, Suo and Shih (1991). It was also investigated independently by
Huang (1992) based on the method of modified stiffness constants using the conversion of
stress intensity factors from the case of stationary crack to the case of propagating crack. In
the study, the stress intensity factors in the problem of stationary crack are defined according
to the work by Suo (1990).

In the following, the results obtained by Huang (1992) will be summarized. First, we
assume that the speed of the interfacial crack is sufficiently low that it is in the subsonic
range and also there is no configuration instability in the crack front. Thus the crack
front is always in the plane perpendicular to the fiber. Denote

We shall use the subscript 1 to refer to the matrix and the subscript 2 to refer to the fiber.
Put

and

The oscillation index is given by
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Asymptotic Fields in the Vicinity of the Crack Front

Let and be the dynamic stress intensity factors for mode I, mode II and
mode III deformations respectively. In the following, the asymptotic fields for stress and
particle velocity are found for the region of matrix only. The corresponding equations for the
region of the fiber can be obtained by replacing by  replacing by replacing

by and replacing by . A branch cut is made on the line of the crack. If we
omit the subscript 1 in we have the following asymptotic fields for stress and
particle velocity in the matrix near the front of the crack in the case of in-plane deformation.

where
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Subscripts s and d can be added to  and It is seen that there are oscillatory
singularities in stresses and particle velocities in the case of in-plane deformation.

For the anti-plane deformation, the asymptotic fields of stress and particle velocity in
the matrix are
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Hence, there is no oscillation in the case of anti-plane deformation.
When the two materials are identical, all asymptotic field equations are reduced to the

classical expressions given in Freund's text book (1990).

Energy Release Rates

The energy release rate for the in-plane deformation is found to be

For the anti-plane deformation, the energy release rate is found to be

Again, when the two materials are identical, equations (52) and (53) are reduced to the
classical expressions given in the text book by Freund (1990).

Dynamic Stress Intensity Factors

In the above expressions of asymptotic fields of stress and particle velocity and energy
release rates, the dynamic stress intensity factors are involved in the equations. Expressions
of dynamic stress intensity factors for a propagating interfacial crack can be derived from the
equations of the corresponding static stress intensity factors for a stationary crack through the
following conversion relations

For example, in the problem of a semi-infinite stationary crack on the negativeξ1 - axis,
if the following concentrated tractions are prescribed on the crack surface to be
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where is the Dirac delta function and d is a distance, the static complex stress intensity
factor is

The corresponding expression for the dynamic stress intensity factors is

By the method of superposition, equation (57) can be used to determine the dynamic stress
intensity factors due to the distributed force applied on the boundary of a plastic zone of
Dugdale type ahead of the front of a propagating interfacial crack.

Conclusions

In this paper, the asymptotic analysis of stresses and particle velocities in the vicinity
of the front of a propagating interfacial crack between the fiber and the matrix is presented.
All field equations and energy release rates per unit crack propagation are expressed in terms
of dynamic stress intensity factors. Our results can be used for further studies on dynamic
debonding between fibers and matrix and the breakage of the fiber at the crack front caused by
local dynamic stresses in a fiber-reinforced composite.
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Abstract This paper describes a model of stress relaxation in broken fibers in
unidirectional metal matrix composites reinforced with long brittle fibers. A cylindrical
cell with a broken fiber embedded in a power law creeping matrix is employed, and the
broken fiber is assumed to have a bilinear distribution of axial stress. Then, on the
basis of energy balance in the cell , a relaxation equation of interfacial shear stress
acting on stress recovery segments is derived in a simple form. Under constant overall
strain the relaxation equation is approximated rationally and integrated to obtain an
analytical solution, which is shown to agree fairly well with the numerical analysis of
Du and McMeeking (1995). Moreover, the relaxation equation is combined with
Curt in’s (1991) model, so that rupture lime in long term creep is evaluated analytically
and explici t ly on the assumption of global load sharing. It is shown that the resulting
relation represents well the dependence of creep rupture time on applied stress observed
experimentally on a unidirectional metal matrix composite.

1. Introduction

Unidirectional polymer matrix and metal matrix composites reinforced with long brittle
fibers may suffer from fiber breaks under in i t ia l loading and subsequent stress holding
in creep. Since it is probable that fiber breaks induce creep rupture of such composites,
the time-dependent evolution of stress profiles in broken fibers and neighboring intact
fibers in creeping matrices has been studied in several works so far.

This kind of study can be traced back to that of Lifshitz. and Rotem (1970). They
studied creep rupture of GFRPs by assuming a linear viscoelastic theory; they analyzed
the stress relaxation in broken fibers resulting from matrix viscosity, and then they
evaluated creep rupture time by extending the rupture model of Rosen (1964). More
detailed analysis was made by Lagoudas el al. (1989) with respect to the time-dependent
evolution of stress profiles in neighboring intact fibers and by Mason et al. (1992)
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concerning the effect of nonlinear, matrix viscosity on stress profiles around a fiber
break. Phoenix et al. (1988) and Otani et al. (1991), on the other hand, performed
creep experiments of carbon fiber/epoxy microcomposites. They thus suggested that
the extension of stress recovery parts in broken fibers with lime as well as the time-
dependent development of interfacial debonding can be main reasons for the creep
rupture.

For metal matrix composites, creep experiments of continuous SiC fiber/Ti alloy
systems have been done in recent works (Schwenker et al., 1993; Ohno et al. 1994a,
I994b, 1996; Weber et al., 1996). It was thus observed that such material systems
exhibit creep rupture even at stress levels fairly lower than tensile strength, and that
fiber breaks occur with the increase of creep strain. Numerical simulations to elucidate
the effect of fiber breaks on creep and creep rupture of unidirectional metal matrix
composites were done by Goda (1993), Kelly and Barbero (1993), Du and McMeeking
(1995), and Song et al. (1995). The simulations confirmed that the broken fibers in
metal matrix composites also can have the time-dependent evolution of stress profiles
resulting in the extension of stress recovery parts with time. Especially Du and
McMeeking (1995) ascertained that the stress relaxation in broken fibers becomes
significant in long term creep, and that the model of Curtin (1991) in combination with
that of McLean (1985) is effective in predicting analytically the creep rupture time in
short term creep. Weber et al. (1996) showed the validity of the Curtin-McLean model
by performing short term creep experiments of a SiC/Ti alloy composite.

Now a problem of interest is to formulate simply the stress relaxation in broken
fibers for the purpose of estimating analytically the rupture time in long term creep of
unidirectional metal matrix composites. Ohno and Yamakawa (1996) presented a
model for the stress relaxation by approximating bilinearly the stress distribution in
broken fibers and by imposing the deformation compatibility at broken fiber ends, and
they showed that the model leads to an analytical solution which simulates well the
stress relaxation computed by Du and McMeeking. Iyengar and Curtin (1997) also
presented a simple model for the stress relaxation in broken fibers, and for a few
integers of the stress exponent of matrix creep they obtained an analytical but implicit
solution to estimate the rupture time in long term creep.

In this paper, the stress relaxation in broken fibers in unidirectional metal matrix
composites is formulated in a simple form from the view point of energy balance, and
the resulting relation is applied to estimating analytically the creep rupture time in long
term creep. To begin with, using an overall balance equation of energy in a cylindrical
cell consisting of a broken fiber and a power-law creeping matrix, we derive a relaxation
equation of interfacial shear stress acting on broken fibers, in which axial stress profiles
are approximated bilinearly. Then, the relaxation equation is approximated rationally
and integrated to obtain an analytical solution for the interfacial shear stress relaxation
under constant overall strain, and the solution is combined with Curtin’s (1991) model
based on the assumption of global load sharing, so that the creep rupture time in long
term creep of composites is evaluated explicitly in an analytical form. Finally, the
analytical relations derived are discussed on the basis of the creep experiment on a
unidirectional SCS-6/Beta21S metal matrix composite at 500°C done by Ohno ct al.
(1996).
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2. Model for Stress Relaxation in Broken Fibers

We consider a unidirectional composite consisting of long brittle fibers and a power-law
creeping matrix with weak interface. Let the diameter and volume fraction of fibers he

respectively. We suppose that the fibers have a scatter of tensile strength,

and that fiber breaks occur dispersedly in the composite under tensile loads as a
consequence of weak interface.

To simplify the modeling of stress relaxation in broken fibers, we assume that the
intact fibers and the matrix have uniform distributions of longitudinal normal stresses

respectively. For the intact fibers and the matrix, then, we have the

following equations concerning longitudinal composite strain

where indicate Young’s moduli of the fibers and the matrix, respectively,

B and n are the creep constant and exponent of the matrix, and (
.

) denotes the
differentiation with respect to time t.

For the broken fibers, on the other hand, let us approximate bilinearly the distribution
of in the broken fibers, as shown in Fig. 1. Then, since the interfacial shear stress

becomes independent in the stress recovery region of the distribution of
and the stress recovery length are expressed in the following forms, which were

derived for short fibers by Kelly and Tyson (1965):
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Now, in order to formulate the stress relaxation in broken fibers resulting from
matrix creep, we consider a cyl indrical cell of length in which a broken fiber is
embedded (Fig. 1). Let us denote the cross areas of the fiber and matrix phases in the
cell by respectively. We assume further that the cell is sufficiently long in

the axial direction, so that at the broken fiber in the cell is subjected to the same-
load and displacement as the intact fibers:

Let us suppose that the work done by is converted in the cell to the elastic tensile

strain energy in the broken fiber, the elastic shear strain energy in the matrix and the
energy dissipation due to shear creep in the matrix, because we have assumed that the
fiber break does not disturb the uniform distributions of matrix normal stress in the

cell and fiber stress in the neighboring intact fibers. This energy balance can be

expressed in the following rate form if we notice that the matrix in the cell is subjected
to in the region of and if we ignore the radial variation of
shear stress in the matrix:

where denote the rigidity and shear creep rate of the matrix, respectively.

Using eqns (5) and (6), eqn (7) is rewritten as

This equation means that the fiber strain energy released due to the stress relaxation in
the broken fiber is used to shear the matrix around the fiber break elastically and in
creep in the cell. Substitution of eqns and (4) into eqn (8) leads to

As seen from the above equation, if is constant or increases slowly, matrix shear
creep causes the relaxation of which induces time-dependent extension of the stress
recovery length Thus, the above equation can be regarded as an evolution equation
of which describes the stress relaxation in broken fibers. On the other hand, if
increases rapidly, eqn (9) allows to develop. The value of however, is limited by
interfacial s l id ing stress Here and from now on is taken to be

positive since in the present work.
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It the matrix is a material of the Mises type, in eqn (9) is written as

This section deals with the relaxation of under constant overall strain Let us

suppose that the c e l l shown in Fig. 1 is subjected to applied instantaneously at

and that at the fiber break occurs and shear s l iding takes place at the
interface in the stress recovery region of

At so that eqn (9) is reduced to

Since the interfacial s l iding stress is usually much lower than the elastic shear stress
generated at perfectly bonded interface around fiber breaks, it is appropriate to assume
that while relaxes from satisfies

Then eqn (12) has an approximation

Substitution of eqn (10) into (15) gives

Now let us assume that relaxes much more quickly than This assumption,

which was ascertained numerically by Du and McMeeking (1995), is usually valid, as
discussed later in this section. Then, since the effect of on the relaxation of is
negligible, the above equation becomes

Hence, by integrating this equation and taking the initial value of to be equal to the
sliding stress the relaxation of is expressed analytically as

Here denotes the relaxation lime of defined as When relaxes

as eqn (18), the stress recovery length expressed as eqn (4) has the time-dependent

where If is negligibly small, eqn (10) is redueed to

3. Stress Relaxation under Constant Overall Strain
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extension

At eqns (18) and (20) take the forms

The relaxation of under constant overall strain, on the other hand, is expressed

by eqn (2) with

If elastic stress is taken to he the ini t ial value of  the above equation has the

solution

where denotes the relaxation time of defined as

Now we compare the relaxation functions and given by eqns (18) and

(24), respectively, (Fig. 2). The functions have different exponents and
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as a result of eqns (17) and (23), in which     and      under constant overall

strain are proportional to and respectively. Consequently, as illustrated

schematically in Fie. 2, usually relaxes much more slowly than in other words,

the stress relaxation in broken fibers becomes significant in long term creep.

4. Model for Short Term Creep

The previous sections have dealt wi th a model which describes the stress relaxation in
broken fibers. Before applying the model to estimating the rupture time of unidirectional
composites in long term creep, we describe the Curtin-McLean model discussed by Du
and McMceking (1995). The Curtin-McLean model is effective for short term creep,
because it is based on the assumption of no stress relaxation in broken fibers.

To analyze the longitudinal creep of unidirectional composites with no fiber breaks,
McLean (1985) solved eqns ( 1 ) and (2), along with

where denotes applied stress and is constant here. He thus obtained

where denotes the m o d u l u s based on the ru le of m i x t u r e s ; i .e . ,

Curtin (1991) presented a model for the load carrying capacity of fibers in
unidirectional composites with weak interface. In his model, the broken fibers have the
stress recovery parts subjected to constant interfacial shear stress so that the bilinear

distribution of expressed by eqns (3) and (4) wi th prevails in the broken

fibers. On the assumption of global load sharing, then, he showed that overall strain ε
induces the following fiber stress averaged on a cross section perpendicular to the fiber
direction:

where   denotes the probability that a fiber is broken within the stress recovery

distance from the cross section. In the above equation, the first and

second terms in the right hand side are concerned with the intact and broken fibers
within    from the cross section, and it is noted that such broken fibers have the

average stress equal to on the cross section because breaks are located randomly.

If is much smaller than fiber length, the Weibull statistics provides with
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where indicates a characteristic strength such that

It is shown from eqn (30) that when ε increases takes the maximum

Consequently can he regarded as the load carrying capacity of fibers in composites.
Du and McMeeking (1995) combined the McLean and the Curtin model mentioned

above so as to predict the creep rupture time which they computed by discretizing a
shear lag equation of creep of unidirectional metal matrix composites with weak interface.
They thus found that the creep rupture time in short term creep is estimated fairly well
as the time at which the intact fiber stress expressed by McLean’s model reaches the
load carrying capacity of fibers, derived by Curiln. This creep rupture time is

obtained by substituting eqn (27) into

It is obvious that eqn (33) is effective for

5. Estimation of Rupture Time in Long Term Creep

Since eqn (33) was derived by taking into account only the relaxation of matrix stress
this equation is not effective for long term creep in which the stress relaxation in

broken fibers becomes significant. In this section, creep rupture time in such long
term creep is estimated analytically by employing the relaxation model of interfacial
shear stress derived in Sections 2 and 3.
The problem of   estimating   in long term creep, however, is complicated, because
the fiber breaks which occurred at different times in the progress of creep have different
amounts of relaxation of i.e., relaxes more significantly at older breaks, and if a

where             and m are the Weibull parameters. Then, eqn (28) becomes

break has just occurred is equal to there. Now, to estimate analytically, let us
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simplify the problem by introducing the following assumptions (Iyengar and Curtin,
1997):

( 1 ) All the fiber breaks have the same amount of relaxation of as that around an
in i t ia l break.

(2) Longi tudinal normal stress in the matr ix , is completely relaxed, i.e.,

The first assumption permits us to employ Curtin’s model described in the preceding
section, because all the fiber breaks have the same stress recovery length

Here is not constant but time-dependent. Then, eqn (29) is modified as

and consequently eqn (30) takes the form

The second assumption, on the other hand, allows applied stress to satisfy
Therefore, eqn (36) becomes

Now let us approximate in the above equation. Since we have assumed that
is completely relaxed, the following strain is yielded at except for the effect

of fiber breaks, as seen from eqn (27):

Creep strain then takes place due to the fiber breaks and the stress relaxation in broken
fibers. Such strain, however, is usually much smaller than as shown later. It leads
us to approximate in eqn (37) using the relaxation function of at constant
overall strain The function is given by eqns (18) and (19) with replaced by

where for the hexagonal array of fibers.

Substituting eqn (39) into (37), and solving the resulting equation for time t, we
have
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Since at rupture, the above equation gives the strain and time at
rupture as follows:

where indicates the load carrying capacity of fibers in composites with

and was given by eqn (32).
Since eqn (43) is e f fec t ive for For sat isfying

eqn (43) is reduced to

Eqns  (38)  and  (42)  g ive

Hence, if the difference between and is less than about 15 percent. We
therefore can say that creep strain taking place before rupture is fairly small if is
taken to be the in i t i a l instantaneous strain by assuming the complete relaxation of
in long term creep. This validates the use of the relaxation function at constant
overall strain in approximating in eqn (37).

6. Discussion

Let us discuss the analytical predictions of creep rupture time on the basis of the creep
experiment on a 6-ply unidirectional SCS-6/Beta21S metal matrix composite at 500°C
done by Ohno et al. (1996). The composite consists of continuous SiC fibers, SCS-6,
and a metastable beta t i tanium alloy, Beta21S.

The analytical predictions (33) and (43) give the versus  relations shown by the
solid lines in Fig. 3. It is obvious that the predictions overestimate the experiments
especially in long term creep. The disagreement can be ascribed to some extent to the
degradation of fibers near the edges of specimens due to oxidation. We may consider
that such fibers, which had li t t le bonding with the matrix and could carry in effect no
load if broken once, caused a decrease in the load carrying capacity of fibers. The
decrease may be taken into account by simply reducing from 0.35 to 0.31, because

about ten percent of fibers in each ply were damaged due to oxidation. Since the
oxidation induced damage was significant in long term creep, the long term prediction
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(44) with is shown by the dashed line in the figure. It is seen that such a

long term prediction gets closer to the experiments.

7. Concluding Remarks

In the present work, the stress relaxation in broken fibers in unidirectional metal matrix
composites was formulated using a simple model, and the rupture time in long term
creep was estimated explicitly in an analytical form. The results obtained in this work
are summarized as follows.

(1) A relaxation equation of interfacial shear stress acting on broken fibers in
composites was derived by considering the overall balance of energy in a cell consisting
of a power-law creeping matrix and a broken fiber, in which fiber stress was assumed
to distribute bilinearly.

(2) For the cell with low sliding resistance at interface and negligible normal stress
in the matrix, the relaxation equation mentioned above was approximated rationally
and integrated to obtain an analytical solution under constant overall strain

(3) Interfacial shear stress around fiber breaks usually relaxes much more slowly
than matrix normal stress because the relaxation equation of has stronger
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nonlinearity in stress dependence than and because can have a much longer

relaxation lime than
(4) The analytical solution of interfacial shear stress relaxation was combined with

Curtin’s (1991) model, so that the rupture time and strain in long term creep were
estimated analytically and explicitly in terms of applied stress This relation represented
well the stress dependence of creep rupture t ime observed experimental ly on a
unidirectional SCS-6/Beta21S composite at 500° C.
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Abstract.    It was experimentally observed that a rheological process of material is
usually accompanied with an evolution of internal defects or micro-damage. Based on
the micro-observation of the twinning evolution for Zircaloy-4, the adiabatic shear
banding evolution for titanium alloy TB2 and the micro-cracks evolution for cast
magnesium alloy ZM5-T4, thermoplastics PMMA and cement mortar, a rate-dependent
defect/damage evolution law is suggested on the basis of thermo-activated mechanism.
Correspondingly, a damage-modified rate-dependent rheological relation, taking into
account the damage-weakening effect, is proposed and discussed.

1. Introduction

It is well-recognized that what distinguished explosion/impact dynamics from static
mechanics are mainly two so-called dynamic effects, i.e. the inertia effect and the strain-
rate effect[l, 2]. The former is studied by wave propagation in various forms, and the
later has promoted the study of dynamic mechanical behavior of materials under an
extensive range of strain rates.

The study of the dynamic mechanical behavior of materials has been receiving
greater attention by both mechanicians and material scientists in the recent one hundred
years[2]. It is worthwhile to point out the following two common characteristics
regardless of what specific material was studied.

Firstly, when the test range of strain rates is large enough, most materials display,
more or less, the so-called rate(time)-dependent mechanical behavior. In other words, all
the mechanical behavior observed in a certain range of strain rates are essentially
rheological, containing both of rate independent deformation and rate dependent viscous
flow, although different rheological relations may be suggested to describe the specific
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rate dependent response for different material, respectively.
Secondly, when the micro-structure of material is observed in a range of observation

scales, most materials reveal, more or less, a certain form of the so-called internal
defects. It means that all the practical materials are rheological bodies with defects. In
other words, the rheological process of any practical material is a process, more or less,
accompanied with an internal defect evolution process.

The complexity of the problem lies in the interactive or coupled relation between the
pure flow/deformation process and the pure defect (damage) evolution process. In fact,
on the one hand, the defect/damage evolution is a stress-assisted process, which
accompanies and is strongly dependent on the flow/deformation process. On the other
hand, the influence of the defect/damage evolution on the material strength or the
stress-flow/deformation response could not be neglected.

Thus, the study of rheological relation of materials by taking into account the
internal defects evolution has become one of the research frontiers, receiving more and
more attention by both mechanicians, rheologists and material scientists.

The dynamic mechanical behavior for different materials including metallic alloys,
polymers and concrete were experimentally studied in the authors’ laboratory from both
the macroscopic and microscopic view-points, in a range of strain rates from
(quasi-static loading) up to (impulsive loading). In the present paper, the main
experimental and theoretical results are summarized and discussed, and a class of
damage-modified rate-dependent constitutive relation, taking into account the internal
defect weakening effect, is finally proposed for the materials studied.

2. Experimental Results

2.1 TWINNING EVOLUTION FOR ZIRCALOY-4

The dynamic mechanical behavior for Zircaloy-4, a close-packed hexagonal (HCP)
zirconium alloy, was experimentally investigated under a range of strain rates from

(static loading) up to (impulsive loading)[3,4]. It was found that the
annealed Zircaloy-4 is highly sensitive to strain rates. The ratio of the dynamic flow
stress and the static flow stress for a given strain is as high as 140 %, or the so-called

dimensionless logarithmic strain-rate sensitivity is as high as 6-7 %, where is
defined as

denote stress, strain and strain rate respectively, and the subscripts d and s
denote the quantities at dynamic/high strain rate and at static strain rate, respectively.
The corresponding microstructures observed after different tests are shown in Figure 1,
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which reveals the following three essential facts.
(1) The rate-dependent macroscopic elastic visco-plastic deformation for the

Zircaloy-4 is mainly corresponding to the microscopic development of twinning, a kind
of plane defect in lattice. In other words, the macroscopic rate-dependent
flow/deformation is accompanied by a certain form of microscopic evolution of internal
defects.

(2) By comparing Fig. 1 (b) and (d), it can be seen that the twinning density increases
with increase of strain-rate for a given strain, showing the strain-rate strengthening
effect.

(3) On the other hand, by comparing Fig. l(a), (b) and (c), it can be seen that for a
given strain-rate, the twinning density increases with increasing strain, showing the strain
hardening effect.

Thus, the evolution of twinning is dependent on both the strain-rate and the strain.
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2.2. ADIABATIC SHEAR BANDING EVOLUTION FOR TB2

For TB2, a body-centered cubic titanium alloy, our experimental results also

show that its mechanical behavior is sensitive to strain rates, at different
given strain[5, 6]. However, the micro-observation reveals that, as shown in Fig. 2 and
Fig. 3, the macroscopic visco-plastic flow/deformation for TB2 at high strain rates is
microscopically characterized by the development of another basic, internal damage, i.e.
in the form of the so-called adiabatic shear band.

Fig. 2 clearly shows that for a given strain rate (if high enough), with increase of
strain, the shear band develops in a sequence of (a) trace of the localized shear
deformation, as shown in Fig.2a, (b) formation of the deformed shear band,
characterized by highly localized shear deformation without micro-structure change, as
shown in Fig.2b, (c) transformation from the deformed shear band into the transformed
shear band, wherein the material has undergone a transformation of micro-structure, as
shown in Fig.2c, and (d) crack propagating along the shear band, as shown in Fig.2d.
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Furthermore, Fig. 3 shows that for a given strain (if large enough), with increase of
strain rate the shear band also develops in a similar sequence, that is, (a) nucleation of
the deformed shear band, as shown in Fig. 3 a, (b) formation of the deformed shear band,
as shown in Fig.3b, (c) transformation of the deformed shear band into the transformed
shear band, as shown in Fig.3c, and so on.

Thus, the evolution of the internal damage in the form of adiabatic shear band is also
dependent on both strain rate and strain.

2.3. MICRO-CRACK EVOLUTION FOR ZM5-T4, PMMA AND CONCRETE

For ZM5-T4, a cast magnesium alloy, it was microscopically found that the dominant
form of internal defect/damage which accompany the macroscopic deformation of
material, is the micro-cracks along the grain boundaries[7], as shown in Fig. 4.
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Moreover, it was shown that the micro-cracks increase not only with increasing
strain, but also with increasing strain rate, as shown in Fig. 5. In other words, the
evolution of micro-cracks for ZM5-T4 is also dependent on both strain rate and strain.

For polymethylmethacrylate(PMMA), a thermoplastics, it was found[8] that before
the final fracture of the specimen tested, more or less micro-cracks can be seen within
the transparent PMMA specimen as a precursor of fracture. Moreover, the cracks, or
more generally speaking the internal damage in the form of cracks for PMMA was found
to increase with increasing strain, and to decrease with decreasing strain rate until no
crack can be seen at low enough strain rate. It means that the evolution of internal
cracks for PMMA is also dependent on both strain rate and strain.

For cement mortar, a sand reinforced cement composite material, a similar
phenomena of crack-evolution accompanying the deformation process at different strain
rates were experimentally observed by the authors. Although the cracks within the
opaque concrete specimens is not as easily visible and detectable as within the
transparent PMMA specimens, experimental evidences do reveal that the micro-cracks
certainly develop with the deformation process for a given strain rate, and also increase
with increase of strain rate for a given strain. In fact, the fraction sizes of the broken
specimen become smaller and finer with increasing strain rate, as can be seen in Fig.6,
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implying that the higher the strain rate is, the more cracks within the specimen have
developed before the final fracture.

Thus, two common, basic characteristics can be drawn from the experimental
results.

(1) From the combined macroscopic and microscopic view-point, a macro-
flow/deformation process of material is microscopically accompanied with an evolution
process of internal defects/damage in different forms.

(2) The defect/damage evolution is dependent on both strain and strain rate,
regardless whether the form of defect/damage is twin, adiabatic band or micro-crack.

Thus, when the rate-dependent constitutive relation of rheological material is studied,
the related rate-dependent evolution of defect/damage should be taken into account.

3. Constitutive Relation of Materials by Taking Account of Damage Evolution

It is well-known that the macroscopic thermo-viscoplastic behavior of materials can be
microscopically explained by the thermal activated motion of dislocation, a kind of
lattice effect, and described by the following Arrhenius type equation

where is the viscoplastic strain rate, is a frequency coefficient, k the Boltzmann’s
constant, T the absolute temperature, and the activation energy is a function of the
applied stress .In the thermal activation theory, a key problem is how the depends
on the or what form of the function should be. The simplest, linear relation
of was proposed by Seeger[9], which gives

where measures the long-range resistance to dislocation motion (athermal
component of stress), the short-range resistance (thermal component of stress),
the activation energy in the absence of stress, V  the activation volume, and in the Eq.(3)
the total strain rate has been used instead of by assuming that the elastic strain rate
component is negligible small. Eq.(3) means that a linear function exists between
and and its slop characterizes the strain rate sensitivity of materials as defined in
Eq.(l).

To describe the nonlinear function between which is frequently
observed in a wide range of strain rates, a thermo-viscoplastic constitutive equation as
follows was proposed by Wang[10] on the basis of thermo-activated mechanism with a
spectrum of hyperbolic-shape barriers,
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where is the strain rate weight function, the characteristic stress, and is a
material parameter characterizing the thermo-activated barriers. Obviously, when
and Eq.(4) reduces to Seeger’s model, i.e. Eq.(3).

To take into account the weakening influence of damage evolution upon the material
strength, introduce the following macro-parameter of damage, as usual,

where is the stress for material without damage, the same as that in Eqs. (2)-(4), and
is the apparent stress for material with damage, i.e. the decreased stress due to

damage.
In principle, the rheological constitutive relation taking into account the damage

evolution, i.e. the damage-modified rheological constitutive relation can be obtained by
combining Eqs. (4) and (5), if the additional equation for damage evolution is given.

Since the experimental results mentioned above reveal that the damage evolution
process is also a rate process similar to the rate process for viscoplastic deformation, it is
not unreasonable to consider the damage evolution as a thermal activated process. In
other words, similar to Eq. (2), the rate-dependent damage evolution can be expressed
by

where is the rate of damage evolution, is the frequency coefficient and is the
activation energy for damage evolution, respectively. Instead of analyzing the relation
between the and the applied stress in detail, assume that a proportional relation
exists between the in Eq. (6) and the in Eq. (2), that is

where is a material parameter. Then, from Eqs. (2) and (6), after some mathematics
calculations, we have

or by integrating,
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which formulates a rate dependent damage evolution law in a simple form for
engineering application.

It is worthwhile discussing the following three special cases of Eq. (9).
(1) In the case of constant strain rate, it is easy to integrate the Eq. (8), and if

assume that a strain-threshold, exists for damage evolution, then the Eq. (9)
reduces to

which explicitly describes a both strain and strain-rate dependent damage evolution
process. It was found that at high strain rates and large deformation, the damage-
modified nonlinear rheological behavior of PMMA, wherein the damage evolution
should be taken into consideration as mentioned above, can be satisfactorily described
by the so-called ZWT viscoelastic equation modified by the Eqs. (5) and (10), as shown
in [8,11]. Moreover, it was also found that based on the above Eq. (10) and by
introducing a critical damage the dynamic fracture criterion for PMMA at high

strain rates can be simply expressed as which is equivalent to a two control

variables (in terms of strain rate and strain) dynamic fracture criterion[8,11].
(2) When a proportional relation exists between Eq. (9)

reduces to a simpler form similar to Eq. (3),

where is the strain rate sensitivity of damage evolution. Without any loss of
generality, if the Seeger’s model is discussed as an example, then from Eqs. (3), (5) and
(11) the damage evolution modified Seeger’s viscoplastic constitutive equation can be
derived[7], that is,

before is negative, which means that an inverse (negative) strain rate effect

accompanies with a damage evolution process. Thus, depending on the value of the ratio
three cases may exist:

(a) When it shows an apparent strain-rate strengthening (positive sensitivity).

(b) When it shows an apparent strain-rate independence (non-sensitivity).
(c) When it shows an apparent strain-rate weakening (negative sensitivity).

where, and Correspondingly,

the similar damage evolution modified equation can be derived for Eq. (4) or other
forms of rate dependent constitutive relations. It is worthwhile noting that the sign
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Thus, it provides a new possible explanation for inverse strain rate effect based on
damage weakening mechanism.

(3) The thermal softening induced by the adiabatic temperature rise at high strain
rates. The adiabatic shear banding mentioned above is generally attributed to the so-
called thermo-plastic instability, or more strictly speaking, the so-called thermo-
viscoplastic constitutive instability[12]. The thermal softening induced by the adiabatic
heating during the adiabatic shearing process, actually, can be considered as a weakening
induced by a generalized damage. In fact, the adiabatic temperature rise dT and the
corresponding stress decrease during the adiabatic shearing can be expressed,
respectively, as

where is the Taylor-Quinney coefficient of visco-plastic work converted to heat,
the material density, the specific heat. If can be regard as a

constant, then we have

which is actually the special case of Eq. (9) when Thus,
the adiabatic temperature rise can be indeed regarded as a kind of generalized damage.

4. Conclusions

The following conclusions can be drawn from the above experimental evidence and
theoretical analyses.

(1) A macroscopic rheological flow/deformation process is actually accompanied
with a microscopic/mesoscopic defect/damage evolution process, which should be taken
into account when the macroscopic rheological constitutive relation is to be thoroughly
studied.

(2) The dominant form of internal defect/damage may be different for different
material studied. However, their evolution processes are all dependent on both strain
and strain rate. Thus, it should be emphasized that the rate dependent constitutive
response for the material studied actually contains the rate dependent evolution response
of internal defect/damage too. Moreover, the “adiabatic temperature rise” can be
regarded as a kind of generalized damage.

(3) Assuming a thermo-activation mechanism for damage evolution, a rate dependent
damage evolution law, and consequently a corresponding damage modified rate

dependent constitutive relation is proposed in the present paper. Both the positive strain
rate sensitivity and the negative strain rate sensitivity can be described by the
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proposed constitutive relation.
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Abstract

A theory of damage wave propagation in elastic-brittle materials is developed within the
framework of thermodynamics. Because the local extent of damage is a result of
microscopic movement of its neighborhood, we include the gradient of damage and the
additional kinetic energy in the construction of thermodynamic functions. A specific
elastic-brittle material model is presented. The governing equations of the coupled
thermo-damage-mechanism are derived. It is shown that the equation of the damage
evaluation is a non-linear wave equation and has a solitonic solution of the kink type.
The propagation speed is determined using energy analysis. Dissipative mechanisms,
like internal friction, irreversible phase transformation and chemical reactions, reduce
the speed of damage wave. More detailed discussions are presented in the paper.

1. Introduction

The dynamic responses of elastic-brittle materials, such as glasses, concretes and
ceramics, have received much attention over the last few years. The evolution of damage
in these elastic-brittle materials under impact loading is explained in terms of so-called
‘failure wave’ or ‘damage wave’. Recent experimental investigations of compressive
failure in glasses conducted by Brar et al (1991), Clifton (1993) and Bourne et al (1995)
reported a loss of spall strength behind the shock wave, which they describe as the

coalescence has occurred, and then spread to form a continuous failure front. Therefore,
it depends very much on the kinetics of changing microstructures. The wave front
velocity is found to be less than the shock wave speed and a function of the applied
compressive stress. Also, it varies with the material composition, i.e. the micro-damage
evolution. It is found by Bourne et al (1995) that the wave speed is less in soda-lime
float glass than in borosilicate glass. The precise nature of the failure
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 ‘failure wave’. The failure wave appeared to start at discrete nucleation sites until
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wave is, as yet, uncertain, because it is possibly associated with the shear stress level in
the shock wave, the evolution of temperature and the micro-defects. However, we
believe that the evolution of these microscopic motions must be accounted for in any
predictive model or theory. Attention here is focused on the influence of material
damage evolution on the damage wave motion, but not on its interactions with thermal
effect and stress field.

The dissipative mechanisms in glasses may be attributed to the formation of
microcracks, voids and phase transformation. All these mechanisms evolve within the
framework of thermodynamics. Based on continuum damage theory, see Leimatre and
Cabcache (1990) and Maigun(1990), the damage quantities which appear in the
expression of the free energy density or the evaluation equations are the scalar internal
variable and its gradient. For our purpose, it is neither necessary nor helpful to identify
the tensorial character of the internal and external state variables. In some cases,
however, such a description is appropriate, as emphasized by Onat and Leckie (1988).
The gradient of damage is introduced to account for the influence of damage at a
material point on the damage of its neighborhood, i.e. nonlocal averaging scheme. Of
course, a material characteristic size is introduced. Introduction of the gradient of state
variables is attributed to the works of Lehman(1989) and Maugin(1990). A constitutive
model, which depends on the damage and gradient of damage, as well as temperature
and its gradient, is presented here. The governing equations are derived from a sensible
assumption of the free energy density. Motivated by the work of Clifton(1993), the
failure wave is considered as the propagation of localized damage caused by thermally
activated phase transition in glasses. It follows that a form of free energy density similar
to that in phase transformation should be adopted in this paper.

The objective of the present work is to derive the equation of damage waves and to
characterise the features of its solutions based on observations of the mechanical
behavior of damaged materials. It is expected that this non-linear equation has solitonic
structures, stemming from its reversible physical and irreversible dissipative processes.
This characteristic of damage wave has been pointed out and considered in general by
Maugin (1990). But results for specific materials cannot be found to our knowledge.

This paper is organized as follows. In section 2, a statement of wave propagation in
an infinite medium is presented. The basic principles of thermodynamics based on
internal variables is briefly reviewed and the corresponding equations of motion is
derived. In section 3, a specific case is studied for elastic-brittle materials with specified
free energy density. Indeed, the resultant damage wave is a solitary wave due to energy
dispersion. The analytic solution in one-dimensional cases is given in section 4 and the
results are discussed in detail. Finally, some useful conclusions are given in section 5.

2. Problem Formulation

Let us consider an infinite solid, whether glass, concrete or ceramics, with a changing
microstructure. In each material element, its location is decided by the coordinate

and its motion by independent displacement at time t. To describe the effect
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of micro defects and their neighborhood on the material degradation, we introduce the
scalar as an additional independent variable with a range [0,1]. Like the
deformation field in classical wave theory, its distribution in the medium is called the
damage field and its motion the damage wave. The parameter may also serve to

define the changes relative to some reference state in the micro- and macro-cracks, such
as, geometry of individual cracks or statistical averages pertaining to distributed
microcracks, void volume, and the degree of molecular enlargements, crosslinking or
crystallinity. Rice (1971) also discussed the significance of   for describing the
dissipative mechanisms of crystalline slip, diffusion and phase transformation. With
these structure-related variations in mind, we shall call the structural parameter that
is interchangeable with the internal variable.

The particular feature of the classical damage theory based only on is that

finite element approximation depends much on mesh sensitivity. This spurious mesh
dependency is unacceptable. Many remedial methods have been put forward, such as,
non-locality, strain gradient and Correscat medium. In our work, we introduce the
gradient of damage as an additional internal variable in the thermodynamic description
of the dissipative process. This quantity is clearly related to the micro-movements of
micro defects and their interactions, as pointed out by Bazant(1994).

Under impact loading, a major feature of the material behavior is the heat generated
with the deformation. The resultant non-uniform temperature is controlled by the
coupled thermomechanical behavior, i.e. elastic deformation, damage and heat flux.

The reversible energy I is defined by:

in which is mass density, the acceleration energy of the microscopic links which is

proportional to the mass density; u is the free energy density; is the velocity vector;

denotes the rate of damage. The first term inside the bracket is the usual kinetic

energy and the second term is caused by the additional kinetic energy due to the degree
of freedom of The latter is a direct result that damage is not considered here as a
local quantity, but is defined as an averaging quantity over a finite volume. The
microscopic links in this finite domain also yield changes in the kinetic energy of this
local material. It is analogous to the fact that relative rotation of a small rigid domain
would impart additional kinetic energy. So, also depends on the characteristic length

of this finite volume.
Within the framework of thermodynamics, the free energy provides a new equation to

describe the evolution of the damage quantity. It is assumed that the free energy density
is a function of the strain tensor entropy s and entropy flux the damage field

and its gradient It can be expressed as a function of a set of thermodynamic state

variables:
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If the heat flux is then the flux of entropy is given by:

in which T is the absolute temperature.
For simplicity, the damage work is only associated with except for the thermal

effect. We choose the dissipative energy as:

in which A denotes the damage work per unit volume. It can be caused by the breakage
of links at the atomic level and/or the formation of voids. The body force is neglected
without loss of generality.

The problem we study here is related to the deformation and evolution of damage in
an infinite medium. It is reasonable not to include the external forces, heat flux and
damage source on the boundary in deriving the equations of motion and constitutive
relations.

To obtain the motion and damage evaluation equations for thermal and mechanical

state variables, we can construct the energy functional  in which W
is external work caused by the applied force, heat flux and damage source on the
boundary. The Lagrangian equation of the function are:

(1) Equations of motion

(2) Evolution equations of state variables

in which are generalized forces associated with respectively and

related to the reversible physical processes. A is related to irreversible processes, such
as cracking, crystalline slip and chemical reactions.

For simplicity, we assume small deformation and let be small too. Also, because

the time derivative of is not necessary continuous, we can choose:

The time derivative of the functional is the constitutive law. So, the constitutive
structure is related to the history of the deformation. The time-related variation of
leads to:
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To obtain the constitutive equations, we resort to the basic laws of thermodynamics. The
first law states that:

in which the extra entropy flux is and the internal energy sources vanish due to no
plastic dissipation in elastic-brittle materials. Besides, the constitutive law must also
obey the second law of thermodynamics, i.e. Clasussis-Duhem inequality,

Combining (8), (9) and (10), the following inequality is obtained

Very often this is split into three parts for three different sources of dissipated energies:
thermal effect, intrinsic dissipation and irreversible external process, such as phase
transformation, chemical reactions, etc. Hence:

Furthermore, the inequalities in (12) can be satisfied by assuming:

in which is a positive constant and a positive definite tensor.

In addition, normality is assumed for the evolution of damage variables, i.e. there
exists a convex free energy density u , see Moreau (1970), so that (10) holds. Similarly,

the dissipative force A must be a convex function of and the state variables

mentioned above. It is expected that there is a convex pseudo-potential of dissipation

so that:

The same results can be found in the work of Fremond and Nedjar(1996) and its
references. They obtained this result by imposing the condition .Equation

(13) is similar to the Fourier law and thus the tensor is called the thermal

conductivity coefficient. Because we do not deal with coupling mechanisms in this
paper, the governing equation for the temperature field is not necessary.
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3. Governing Equation

Damage in elastic-brittle materials takes the form of microcracks and voids when a
certain critical condition is reached. Its direct result is the reduction in material
properties, such as, strength and elastic modulus. Clifton (1993) interpreted the
microcracking in soda-lime glass under impact loading as the propagation of localized
regions of phase transformation. The phase change could be a transformation to a
crystalline phase or an amorphous phase with a higher coordination number. Because of
the large strains involved in phase transition, stress- induced microcracking can be
expected to result from heterogeneous nucleation and growth of transformation region.
Following the work of Leimatre and Chaboche (1985), a simple modeling of damage by
a scalar variable is introduced in the preceding section. Physically, it measures the

decrease in internal surface which transmits internal forces in an isotropic material over
a finite domain. In particular, it represents the microstructural rearrangement of particles
due to the existence of phase transformation. For similar reasons its gradient is also
introduced in the specific free energy. The idea of considering its gradient as an internal
variable dates back to Maugin (1990) and Fremond and Nedjar (1996).

With respect to many applications, it is advantageous to replace the entropy s by the
temperature T and its increment This can be achieved by a corresponding Legendre
transformation leading to the Helmholtz energy density:

is also assumed to be convex and sub-differential with respect to the thermodynamic
state variables. Its value must be positive in all sub-space.To be consistent wth the
internal variable theory, a sensible expression of free energy is given by:

in which denotes the initial reference strain energy without damage, the

minimum reference strain energy prior to failure, the elastic strain energy of

undamaged material at a certain state it measures the interaction of the strain

and temperature fields with the material damage, i.e.

in which are elastic moduli, K is bulk modulus, in which is

reference temperature, is thermal expansion coefficient, and is heat flux. The

quantity measures the non-local effect on the degradation of material strength. As no
plastic deformation is allowed, the material strength is a function of the extent of phase
transformation, i.e., For simplicity, it is assumed to be the momentum of shear
strength of a material point after damage has occurred over a finite domain. It satisfies
the requirement that the Helmholtz energy density function is positive, convex and sub-
differential in the space of And because of the occurrence of

damage,
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Substituting (17) into (6), we obtain:

To evaluate the dissipative force associated with we assume that the pseudo-

potential of dissipation is expressed by:

in which is the viscosity parameter of damage already defined in (13) but with an
opposite sign.

The expression of pseudo-potential of dissipation is chosen so that the damage arises
only from the additional viscous phenomenon. Thus, it follows:

Substituting (18) and (20) into (5), we can obtain the equation for the evolution of
damage as:

4. One-Dimensional Solutions

As an example, let us consider the damage wave propagation in an semi-infinite rod.
suddenly loaded by impact at its end. Equation (21) in this one-dimensional problem
becomes:

To simplify the above equation, we introduce the following parameters:

in which denotes the limiting velocity of the material, C
1
 describes the effect of the

damage or the material inhomogeneity, the effect of internal fields and the

material damping effect. The governing equation can be rewritten as:

Now, we proceed with the dimensional variables to simplify the governing equation
for damage:

Simple manipulation yields:

in which,

It should be noted that which represents the damage or inhomogeneity

effects at time t´, is a function of the strain and temperature at a local material
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point. A coupled mechanism exists for the evaluation of these thermodynamic state
variables. For the sake of simplicity, it is assumed to be known in the assessment of
damage evaluations only.

The above equation of damage evolution is the Klein-Gordon cubic non-linear

equation, or non-integrable model. This appears in quantum field theory problems,

see Rajaraman(1982), and in phase transition theory, see Krumhans and
Schrieffer(1975). In addition, Clifton(1993) attributed the damage wave in glass to
phase transformation. This explains our choice of the free energy in the form of eq. (16).

To study the behavior of non-linear equations, we will apply a version of the
asymptotic method of small-parameter expansion. This weak perturbation method is
suitable to the analysis of solitons, irrespective of whether the unperturbed system is
intergrable or not, see Abdullaev (1994). So the corresponding equation can be rewritten
as:

in which and it approaches zero when

because when no damage occurs; or and approach

zero when damage reaches a maximum.
First let us consider the evolution of the steady-state particular solution of (27), i.e.

Steady-state solutions are sought in the form of in which is

the propagation speed. It should be noted that is a relative speed, i.e. if v

is absolute speed. It is determined by the wave form and considered as an unknown
constant. From (27), we have:

in which

Multiplication of both sides by and integration yields:

in which C is a constant. For the case of i. e. the minimum of the function

the solitary solution can be obtained; otherwise, non-linear periodic

solution exists. We consider the former case here. Thus,

and the steady-state solution is given by:

in which the signs refer to two different types of solitons, kink and anti-kink, is
the initial equilibrium position.
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It is seen that and the initial value of the damage variable is

zero. This is consistent with the evolution process of damage. And if there are no energy
dissipation processes, the material point would reach the failure criterion sooner than if
there is a damping effect, as illustrated in Fig.l. The sign + is assumed in (31) and this
means that the solution is soliton of the kink type.

The steady-state Lagrangian density is:

then the energy of a moving soliton of the kink type is:

Expanding the energy in terms of Taylor’s series, this gives

in which the mass and the initial energy

It is shown that the velocity of the solitary wave is an arbitrary constant. It can be
predicted through the wave form or the stored energy measured experimentally because
a part of the energy is dissipated in the form of damage evolution, especially the motion
of localized phase boundary. In general, the speed of a solitonic wave is dependent on
the initial condition. Different impact stress causes different propagation velocity of the
boundary of the failure wave. But it should be pointed out that the maximum speed is
less than its limit

Let us define the kink energy center by the expression:
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Following the procedure of Rodrigez-Plaza and Vazquez(1990), we obtain equations for
the kink velocity and kink energy center for the perturbed case in (27). Differentiating
(33) with respect to t and using the perturbed nonlinear equation, we obtain the
differential equation for the velocity of solitary wave of the kink type as:

in which

In the same way, we find the equation for the kink center as:

For homogeneous deformation, that is, the magnitude of  V (x´t´)  is  independent of

the location of the material point, from (36) and (37), we obtain:

It is seen from (38) that the propagation speed decreases due to the existence of damping
effects. In addition, irreversible damage can extend the position of the kink center of
solitonic wave, and thus delay the time for material damage to reach the critical
condition.

5. Discussions and Conclusions

Damage evolution in elastic-brittle materials has received much recent attention because
of its significant effect on strength and ductility. A plausible method to describe the
material degradation is the internal variable method within the framework of
thermodynamics. For simplicity, we use the scalar internal variable as the

measure of the extent of damage at a material point. For practical prediction of the
evolution of microstructures, we modify the expression for the power of internal force
and inertia of the whole system, and assume that they are only dependent on the damage
rate and its gradient which are related to microscopic movements. Physical and chemical
processes, like phase transformation, microcracking and creep diffusion, can also be
incorportated in this thermodynamic model.

Due to the heterogeneity of microstructures, two types of interactions, i.e., among
various sites and orientations, exist and must be somehow represented in the
macroscopic continuum description. The interaction at the different sites controls the
localization of damage, while their relative rotation controls the kinetics of
microstructures. As an analogy, this situation can be modeled as a lot of particles with
spring connections between them. The interactions not only provide the whole system
with potential energy, but also with kinetic energy, resulting from the relative movement
of particles and the rotation of the springs. These interactions are ignored by the
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classical, local continuum damage models, but are taken into account in the non-local
models. So, the damage measurement at a material point depends not only on the
thermal field at the same point, but also on its neighborhood, see Bazant(1994). For
dynamic cases, the effect of relative microstructural rotation, like grain rotations caused
by phase transformation, becomes more obvious. In this paper, damage is not simply a
measure of the decrease of net area in transport of internal forces, but an additional
degree of freedom in describing the motion of a material point.

As stated above, the material damage at a point must be an average value over a
finite area characterized by a length This length has a major influence on the results

of analysis, such as size effect and wave velocity.
Dissipative mechanisms due to changing temperature, formation of microcracks,

voids, chemical reactions and phase transition all absorb energies and are included in a
scalar internal variable. They would have a definite influence on the elastic degradation
in strength. Irreversible energy absorption causes a damping effect on the propagation of
the failure wave and decreases the wave speed as indicated in equation (38).

As expected, the wave solution displays the feature of solitons of the kink type due to
the non-linear terms existing in the governing equation. The results show that the wave
velocity depends very much on the initial activation. With increasing impact stress, the
absorbed energy by the damage processes will increase. It is seen from (33) that it would
lead to an increase of the failure wave velocity. This is in good agreement with the
experimental results of Brar et al (1991).

The maximum speed is less than in which measure the non-local

effect of material damage. Using dimensional analysis, we can find that:

With increasing damage, the non-local effect becomes intensive. It decreases the
tensile strength and enlarges the influence area on this material point. This means that

and   if we take the undamaged material as the reference states. In turn, it

yields an important result that in which is the shear wave speed. As an

extreme, if the material, like Pyrex glasses, is very perfect, the damage extent is very
small, no damping effect is detected and no failure wave can be observed because its
speed approaches the shear wave speed.

It is anticipated that the model based on our formulation is free of spurious mesh
sensitivity due to the introduction of an internal material size. It can be employed to
predict correctly the behavior of brittle materials and compare with experimental results.
However, the theory is by no means complete and application of this model to numerical
algorithms, such as Finite Element Method requires further work..

Due to much uncertainty in the formation of failure wave, especially its related
physical processes, additional experimental and theoretical research is also needed. Of
course, the lack of distinction between observable deformation and internal variable
creates ambiguity. Whether or not a transformation shock occurs behind the clastic
wave needs further experimental investigation too. In addition, for a complex thermo-
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mechanical system, different forms of internal variables, like vector and tensor, are
needed for the description of orientational hardening materials. And how to extend this
approach to elastic-plastic solids and surface wave is being investigated.

Acknowledgments

The authors would like to thank the Australian Research Council (ARC) for supporting
this research. Xi Zhang is supported by an OPRS from the Australian Government and
an ARC scholarship from the research grant.

References

Abdullaev, F. Kh.(1994) Theory of Solitons in Inhomogeneous Media, John Wiley &
Sons Press.
Bazant, Z. P.(1994) Nonlocal damage theory based on micromechanics of crack
interactions, ASCE, J. Engng Mech. 120, 593-617.
Bourne, N. K., Rosenberg, Z. and Field, J. E.(1995), High-speed photography of
compressive failure wave in glasses, J. Appl. Phys. 78, 3736-3739.
Brar, N. S., Rosenberg, Z. and Bless, S. J., (1991) Impact-induced failure waves in glass
bars and plates, Appl. Phys. Lett., 59, pp3396-3398.
Clifton, R. J. (1993) Analysis of failure wave in glasses, Appl. Mech. Rev. 46, pp540-
546.
Fremond, M. and Nedjar, B. (1996) Damage, gradient of damage and principle of virtual
power, Int. J. Solids Structures, 33, pp1083-l103.
Krumhansl, J.L. and Schrieffer, J.R.,(1975) Phys. Rev. Bl1, 3565.
Lemaitre, J. and Chaboche, J. L., (1990), Mechanics of Solids, Cambridge University
Press, Cambridge, UK.
Lehmann, Th.(1989) Some thermodynamic consideration on inelastic deformations
including damage process, Acta Mech. 79,1-24.
Maugin, G. A. (1990) Internal variables and dissipative structures, Int. J. Non-Equilib
Thermodyn. 15, 173-192.
Moreau, J. J.(1970) sur les lois de frottement de viscosite et de plasticite, C. R. Acad.
Sci. Paris, 271,608-611.
Onat, E. T., and Leckie, F. A. (1988) Representation of mechanical behavior in the
presence of changing internal structures, J. Appl. Mech., 55, 1-10.
Rajaraman, R. (1982) An introduction to solitons and quantum filed theory, North-
Holland, Amsterdam.
Rodrigez-Plaza, M. J. and Vazquez, L.(1990) Phys. Rev. B41, 11437



EFFECT OF INITIAL FLAWS
IN HIGH CYCLE FATIGUE OF SG CAST IRON

A.-S. BÉRANGER

Renault - Direction de la Recherche - Service 60152
F-92109 Boulogne Billancourt, France.

AND

R. BILLARDON, F. HILD AND H. YAACOUB AGHA

Laboratoire de Mécanique et Technologie
ENS de Cachan - CNRS - Université Paris 6
F-94235 Cachan, France.

Abstract –  An  expression of the cumulative failure probability of a
structure is proposed for cyclic loading conditions. This expression is de-
pendent on the initial flaw distribution and on the microcrack propagation
law. Two independent sets of experiments were carried out on specimens
made of Spheroidal Graphite cast iron. These specimens were tested under
cyclic tension with different load ratios. The initial flaw distribution and
the propagation law parameters are identified from the first set of exper-
imental results. The expression of the failure probability is then used to
predict the second set of experimental data. The effect of the load ratio is
discussed and the influence of stress field heterogeneity is studied.

1. Introduction

The structural integrity of a component can either be assessed by using de-
terministic crack initiation criteria and by ignoring micro-inhomogeneities
(e.g., flaws) within the material, or by modeling the presence of these in-
homogeneities, their possible evolution with the number of cycles, and if
needed their statistical distribution. For structures made of cast iron and
subjected to high cycle fatigue, local failure is due to the presence of ini-
tial flaws randomly distributed within the material. Therefore, these flaws
as well as their stable propagation with the number of cycles need to be
accounted for.
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The fatigue process in materials can be schematically divided into two
stages. Macrocrack initiation, which is often due to initial flaws, has to be
considered for both brittle and ductile materials. Macrocrack propagation
is usually unstable for brittle materials, while first stable and then instable
for ductile materials. In this paper, we will focus our attention on SG cast
iron subjected to high cycle fatigue. The structure is therefore assumed to
remain macroscopically elastic, whereas the microscopic evolution of the
flaws is described according to a generalized Paris’ law up to local failure.

Statistical methods applied to predicting failure under monotonic condi-
tions have been extensively used. The first attempt was made by Weibull [1]
and was based on a statistical treatment of failure. Monotonic and cyclic
loading conditions were analyzed. Batdorf and Crose [2] modeled initial
flaws by cracks whose sizes and orientations were randomly distributed.
Lamon and Evans [3] derived another model based on similar assumptions.
The aim of this paper is to study the influence of randomly distributed
initial flaws on the failure of SG cast iron components. The effect of stress
field heterogeneity is also studied.

2. Flaw propagation in high cycle fatigue

In heterogeneous materials, initial heterogeneities are sometimes sphere-like
cavities (flaws due to cooling down in SG cast iron), or sphere-like brittle
inclusions with low interfacial strength (e.g., graphite in cast iron). During
microcrack propagation, it is assumed that the cracked surface increases
with no morphological change. Therefore, the radius a of the surface is the
only parameter to be accounted for.

In SG cast iron there are four different defect populations that may lead
to high cycle fatigue failure. First, pinholes located at or close to the as-
cast surface, second, graphite nodules third  macro-shrinkage
defects and fourth, micro-shrinkage pores
which are very difficult to detect but can be present in the components.
This last class of defects is studied in this paper since they tend to be the
main micro-propagation sites leading to final fracture. They are generally
larger than the graphite nodules.

The flaw geometry is described by a dimensionless factor Y such that a
general stress intensity factor K is given by

where stands for an equivalent uniaxial tensile stress (e.g., maximum
principal stress). It is worth noting that the values of the parameter Y
depend on the geometry of the initial defect and on whether or not the flaw
intersects a free surface.
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To take into account the localized non-linear behavior of the material
in the vicinity of the crack tip under cyclic loading conditions, the onset of
microcrack propagation is described by a criterion postulated by Pellas et
al. [4]

where refers to a so-called threshold stress intensity factor which
is a function of the current crack size [5]. The function models the
influence of load ratio R. It is supposed that the load history is simple,
such that the maximum principal stress direction is constant throughout
the load history. Therefore bifurcation of the crack is not considered.

In many practical situations, it can be assumed that the flaw size is
bounded by a maximum value A cyclic threshold stress can be defined
below which no failure occurs (i.e., the failure probability is equal to zero).
This cyclic threshold stress, Sth, is related to the threshold stress intensity
factor Its expression, when can be derived from eqs. (1) and
(2)

The microcrack propagation law keeps the main features of the macro-
crack propagation law based upon the generalized Paris’ law proposed by
Pellas et al. [4]

where C and are material parameters. The failure criterion is supposed
to be given by In high cycle fatigue, the flaw size does not in-
crease significantly over a major part of the loading domain up to fracture.
Therefore it is assumed that the evolution of the threshold stress intensity
factor depends only on the initial flaw size a0. Furthermore, the flaw size
varies usually between 60 and 500 where is only weakly de-
pendent on [5]. As a first approximation, the threshold stress intensity
factor will be taken as a constant. The following closed-form solution
can be derived by integration of eq. (4)

where denote the critical and initial flaw sizes, respectively,
and the maximum tensile stress over one cycle. The size can be
calculated from eq. (1) when is equal to and represents the
initial flaw size that becomes critical (i.e., equal to ) after NF cycles. The



194 A.S. BÉRANGER, R. BILLARDON, F. HILD, H.Y. AGHA..

constant is equal to . The value of the function is given by (when
and )

where is the normalized threshold defect size obtained by using eqs. (1)
and (2)

The aim of the next section is to derive an expression for the cumulative
failure probability for stable defect growth under cyclic loading conditions.

3. Cumulative failure probability

For sake of simplicity, only the case of constant (tensile) load level
is discussed. Furthermore, it is assumed that the flaw population can be
characterized by a single parameter, the flaw size a. Initial heterogeneities
are usually randomly distributed within the material, and are modeled by
a flaw size distribution function This function needs to be determined
in order to assess the reliability of heterogeneous materials under given
loading conditions. The cumulative failure probability of an element

is the probability of finding initial flaws larger than the critical flaw size

A generalization can be found in Ref. [7]. Equation (8) is valid if we assume
that the flaw size evolution is deterministic, and the only flaws to cause
failure are those initially present in material body. The cumulative failure
probability of a structure can be related to the cumulative failure
probability in the framework of the weakest link theory [8] by

Equation (9) holds when the flaw interaction can be neglected. In SG cast
iron, the average distance between flaws is large compared to their maxi-
mum size so that this hypothesis is very often fulfilled.

4. Stress field heterogeneity

Hild et al. [9] have introduced stress heterogeneity factors to characterize
the stress field. These factors are dependent on the load type and describe
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monotonic loadings. In the following, a modified version of these factors is
introduced. Under the condition that the flaw size is bounded by aM, the
flaw size distribution can be approximated by

The cumulative failure probability of a volume element can be approxi-
mated by

In the following, the scatter of endurance limits
will be investigated

When the stress level is close to (12) can be rewritten as

Equation (13) corresponds to a three-parameter Weibull law with
The parameter gives the tendency of the initial flaw distribution for large
defects By using eq. (9), the failure probability of a structure

of volume can then be approximated by

where is a modified stress heterogeneity factor which depends upon
the load type and the load level. The corresponding effective volume is
given by

The effective volume is also dependent on the load level. In simple cases
such as pure tension, this volume is zero when  and is equal
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The previous results will be applied to rotating bending (R = –1).  In
this case, can be expressed by

Figure 1 shows the change of the modified stress heterogeneity factor as a
function of the stress level for the particular case of rotating bending. In

Figure 1. Normalized stress heterogeneity factor versus dimensionless maximum stress
in rotating bending (m = 26).

the case of a complex structure, the stress heterogeneity factor and effective
volume may be numerically calculated as will be shown later.

5. Analysis of fatigue tests on SG cast iron

In this section, a series of experiments performed at LMT-Cachan and
Renault on specimens made of ferritic SG cast iron are analyzed in details.
These experiments have been carried out at different stress levels. The
specimens are tested under cyclic tension with two different load ratios
(R = –1, R = 0.1). Each curve of a standard S-N plot can be associated
with a constant failure probability.

When the fatigue limits are known, the identification can be performed
in two different stages. The first step consists of the identification of the
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flaw size distribution. A minimization scheme is used to determine the
minimum error between all the available experimental data on fatigue limits
[10]. By assuming the maximum flaw size be bounded by the flaw size
distribution can, for instance, be fitted either by eq. (10) or by a beta
distribution

where  are the parameters of the beta function, and  is the
Euler function of the first kind. The parameters to identify are and
the volume ratio and the threshold stress The first step of the iden-
tification is applied to the experimental results for the load ratio R = 0.1.
It yields: The second step
of the identification concerns the crack growth law (parameters

The parameter is used in In tension,
the identification is performed by studying a constant cumulative failure
probability (e.g., 50%). The following values are obtained: , and

In Fig. 2 predictions of the number of cycles to fail-
ure are compared with the experimental observations. It is shown that the
identified laws are in good agreement with the experimental results.

6. Validation of the model

The previous results are validated by comparing them with other exper-
imental results obtained independently. The two stages of the numerical
identification are compared separately.
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6.1. FLAW DISTRIBUTION

Experimental investigations are performed to quantify the identified flaw
distribution, and also to get more information about the size of the largest
defect Systematic microscopic observations on 50 fracture surfaces were
performed by using a Scanning Electron Microscope. Flaws with a diameter
less than 80 were not considered to avoid confusion with graphite nod-
ules (with maximum size on the order of 60 in diameter). In Fig. 3, the
experimental flaw distribution is given and compared with the identified
distribution. The identified distribution is in good agreement with the ex-
perimental one. The experimentally measured value of is 400 This
result shows that we are dealing with short cracks, and that the threshold
stress intensity factor can be considered as a constant for flaws of this size
as shown in Ref. [11]. Equation (10) could have been used but there was not
a good agreement between the identification of the flaw size distribution by
analyzing fatigue limits and the measurements shown in Fig. 3.

6.2. PROPAGATION LAW

Figure 4 shows the crack growth rate as a function of the stress intensity
range. The solid curve is the identified one. The other curves represent
experimental results obtained on specimens made of SG cast iron. The solid
squares concern an artificial short crack of initial length
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The open circles correspond to an artificial crack of initial size mm.
The open squares concern an artificial long crack of initial length mm
[12]. The identified curve is in good agreement with the experimental one for
short cracks especially near the threshold regime. The distinction with the
curve for long cracks is mainly described by threshold differences (Fig. 4).

6.3. PREDICTION OF EXPERIMENTAL RESULTS IN TENSION

The comparison between the threshold values calculated by using eq. (7) for
the load ratio R = –1 and R = 0.1 allows to identify the value of parameter

Figure 5 shows the comparison between the experimental
results for R = – 1 and the predicted results using the parameters identified
previously (R = 0.1) and

The predictions are in reasonable agreement with the experimental data.
This result shows that function accounts for the influence of load ratio
for different cumulative failure probabilities.

6.4. PREDICTION OF EXPERIMENTAL RESULTS IN ROTATING
BENDING

Experiments were carried out on 30 specimens in rotating bending. These
experimental results are used to assess the predictive capacity of the model
in the case of complex loads. Figure 6 shows the experimental results with
the 10% and 50% failure probabilities predicted by the model identified
from experiments in tension.

The prediction of the 50% failure probability is good. This result shows
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that the difference between the stress levels for the same failure probability
in tension and in rotating bending are due to the stress field heterogeneity.

7. Application to a structure

The identification and validation of the present model allows to make an
extension of the model to real structures. A post-processing program (AS-
TAR) has been developed to compute the failure probability and stress
heterogeneity factors of a cast structure.
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From the results of an elastic computation of a structure through a
Finite Element analysis, ASTAR evaluates the equivalent stress at
each integration point. A critical flaw size is associated to this stress
level and to a given number of cycles The failure probability at the
integration point is then calculated by numerical integration of eq. (8).
The integration over the total volume of a finite element gives the failure
probability of the element. The failure probability of the structure can
be calculated according to eq. (9). This procedure has been applied to a
suspension arm designed by Renault car company. The mesh consists of
3712 triangular shell elements. The industrial FE package ABAQUS [13]
is used to perform the elastic analysis of the structure. Figure 7 shows the
change of the effective volume as a function of the maximum applied stress.
Figure 8 gives the contours of the failure probabilities for a maximum

stress level of the order of 300 MPa and a number of cycles NF = 107.

8. Conclusions

A reliability analysis taking account of flaw size distributions has been
developed for components subjected to cyclic loading conditions. An ex-
pression of the cumulative failure probability is derived in the framework
of the weakest link theory and by assuming that the flaws do not interact.

Experimental data on SG cast iron in tension and in rotating bending
are analyzed within this framework. The predictions of the whole set of
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data is in good agreement with the experimental number of cycles to failure.
This last result shows that the expression of cumulative failure probability
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proposed herein is able to model fatigue data obtained on SG cast iron
and that the model can describe the influence of the load ratio. It shows
that the model can also take into consideration the influence of stress field
heterogeneity. Typical applications of this approach concern the reliability
analysis of cast components. The post-processing approach can predict the
reliability of the whole component under cyclic loading conditions. In other
words, it enables to predict the number of cycles to macrocrack initiation
(local failure), or the probability of reaching a certain number of cycles
without failure at any point of the component.
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STUDY OF CRACK DEVELOPMENT AS THE BASIS FOR
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Abstract

Concrete is a man-made material containing a particulate filler (roughly) designed
on the basis of a sieve curve. For a river aggregate, the particles are approximately
spherical and smooth-textured. The particle-matrix interface is usually the weakest
chain link in the mechanical system; damage evolution starts at particle-matrix
interfaces, even in the so called virgin state. For direct tension, these interface
cracks will be on average perpendicular to the loading direction. For compression,
they will run parallel to the loading direction. A single fracture surface is formed in
tension, and a series of fracture surfaces in compression. They are the result of crack
concentration within a process zone, in which the engineering crack meanders around
a dividing plane. This allows us to design structural models for crack development
on different resolution levels. Stereological notions are employed for that purpose.

1. Introduction

Concrete contains an aggregate with a wide range of particle sizes, the size distribu-
tion function of which is governed by the sieve curve. The building code generally
allows application of a maximum grain size of (about) 30 mm or more for mass
structures. The finer sand fractions have particles in the sub-millimeter range. The
aggregate constitutes a dense random particulate packing (Fig. 1), thereby provid-
ing the material with a load-bearing skeleton. An increase in the range of particle
sizes will have a positive influence on concrete ‘quality’; since smaller particles will
fill up the holes left by the larger ones (Jiang et al, 1994; Stroeven, 1997). The
particulate skeleton is glued together by a cementitious binder. The binder addi-
tionally fills the open spaces to guarantee durability. In this case also,the particle
size range of the binder is a major parameter in improving ‘quality (Fidjestøl, et al,
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1994). In normal weight concrete, the particulate skeleton transmits the major part
of the compressive loadings. Since the tensile strength is less than the compressive
strength, a steel reinforcement is applied for structural applications. between
aggregate and the cementitious matrix forms the weakest chain link in the microme-
chanical system, particularly when river aggregate is employed. This is due to the
inherent discontinuity in the density of cement particles near the interface (Stroeven
et al, 1997b). The phenomenon is also reflected in low microhardness values in the
interphase layer (Lyubimova, 1962).

Rheological behaviour of hardened concrete is intimately related to the devel-
opment, extension and coalescence of cracks on the various levels of the microstruc-
ture. The virgin state of cementitious materials is normally characterized by a dense
structure of small cracks, predominantly along the interfacial transition zones (ITZ)
between particles and matrix (Fig. 2). This will be the result of high stresses caused
by shrinkage and differential settlements during hardening (Hsu, 1963), and the rel-
ative weakness of the ITZ. High residual stresses will also be scattered throughout
the material volume in places where debonding failed to take place. The mechani-
cal system of the material can therefore be conceived as a load-bearing particulate
structure and a dense 3-D network of (potential) cracks; the structures are coupled.
Under increasing loading the integrity of the material will gradually break down.
This process of structural loosening manifests itself in cracking on the various levels
of the microstructure, ultimately leading to the development of engineering cracks.



CRACK DEVELOPMENT IN CONCRETE 207

Figure 2: Cracking visualized by filtered particle method in a section of a concrete
specimen previously subjected to about 75% of ultimate compressive loading; image
shows interface cracking around small sand grains in a blown-up part of field.

In a global way, total crack extension is called “damage”, so that crack formation
leads to damage evolution. The damage evolution process is characteristic of the
material structure under the particular loading conditions.

Structural models for cementitious sytems allowing estimation of ‘strength’ on
the basis of damage (evolution) parameters should be based on these principles.
This is fundamentally different for non-structural approaches like lattice and truss
systems. Since this is a very complicated problem, commonly the analytical ap-
proach is based on ordered crack configurations (Nied et al, 1978). In most cases
the model is two-dimensional. The present paper discusses only the outlines of a
new type of approach to solving these problems.

2. Damage and Resolution

Under low stresses, concrete is considered to be an elastic material. A concrete spec-
imen subjected to at least five compressive stress cycles with a maximum of (about)
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50% of ultimate capacity, will thereupon reveal a linear elastic response to stresses
below discontinuity, because stress concentrations from the virgin state have been
released by microcraking during these load cycles. The ‘elastic limit’, ‘discontinu-
ity point,’ or ‘crack initiation strength’ in concrete technology is characterized by a
certain ‘critical’ state of particle-matrix debonding (Stroeven, 1973; 1986).

For modelling of damage in bulk, the supposedly spherical river gravel particles
(diameter d) are assumed to be debonded over a similar angular extension, The
starting of crack coalescence defines on a global level the elastic limit. It is reflected
by a discontinuity in mechanical behaviour, which is commonly detected by strain
gauge readings or acoustic emission measurements (Dalhuisen et al, 1997). The
surface area of a bond crack at the onset of coalescence is given by (Fig. 3)

Figure 3: Debonding along the particle-matrix interface in concrete.

where and are the height and span of the crack, respectively.
Substitution of yields for the average crack sur-
face area with being the second moment of the particle
size distribution function (psd). The upper and lower boundaries of the sieve curves
in the building codes can generally be approximated by a straight line and a sec-
ond order parabola in a semi-logarithmic plot. Transformation readily leads to the
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approximate psd’s (Stroeven, 1982)

where the subscripts u and l refer respectively to the upper and lower boundary
curves corresponding to the sieve curve area in building codes, and is the smallest
particle size considered in the model. The first, second and third moments of these
psd's are presented in Table 1.

TABLE 1: Moments of the psd’s corresponding to the boundaries of the sieve curves
prescribed by the building code. Herein are, respectively, the smallest and
largest particles in the model; is the size of a particle intersecting a plane.

It should be noted that is the average size of the grains intersecting a (fracture)
plane. A comparison with demonstrates that a section, crack or fracture plane
(dividing surface) yields biased information on the psd in bulk, hence on the bulk
composition of the aggregate. The total amount of damage is where
the particle density, is given by Here is the volume fraction
of particles. As an example, substitution for the upper bound yields

Table 2 presents estimates for ‘damage’ as a function of resolution, determined by
eq (3) assuming and shows the influence of resolution or magnification
(M = dm/do).  An approach with a sensitivity level of 1mm (=lower boundary
for detecting crack trace length) would yield a specific crack surface area of about

which is quite close to experimental findings (Stroeven, 1990; 1992).
Fig. 2 shows a section image of a concrete specimen subjected to about three quarters
of ultimate compressive stresses taken from this investigation.

Two extreme cases for the onset of crack coalescence can be modelled. In
the first, the bond cracks will develop to a constant angular extension - as used
for the development of eq (3) - so that slightly out-of-plane cracks have to coalesce
in order to create the meso crack. The same hold for meso cracks which join to
form the macrocrack. In the second, the particle–matrix interface cracks will extend
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TABLE 2: Damage as  a function of resolution

to a common dividing suface. This implies the angular bond crack extension to
be a variable. Since the curvature of the dividing surface will be considerably less
than that of the largest particles in the mix, for modelling purposes the dividing
surface can be assumed planar. This is illustrated by the computer-simulated image
of a fracture surface of Fig. 4, which is modelled according to this concept. It
will form the basis for modelling damage evolution in the so called fracture process
zone. Although the width of this zone will be governed by the largest particles in the
mixture, the average distance of the coalescing microcracks to the dividing plane
can be expressed in terms of average size, of the particles intersecting with the
fracture plane, which is governed by the minimum grain size, as shown by Table 1.
Though relatively small, the friction resistance of the fracture surface is due to this
phenomenon.

In practice, the bond cracks which will constitute part of the future fracture
surface will not necessarily all be parallel to the dividing plane. Instead a system
with a partially planar orientation distribution has to be taken as a realistic man-
ifestation of damage states found in experimental investigations (Stroeven, 1990;
1992). The cracks with a uniform random orientation will be due to influences like
shrinkage, whereas the planar portion arises from the unidirectional loading. The
size distribution of the circles in the dividing plane delineating the tip of the 2-D
bond cracks is governed by an integral equation of Abel’s type (Stroeven, 1973). It
is assumed that this size distribution function is also valid for the partially ordered
case.

The relevant parameter to characterize damage in the model is the total crack
surface area per unit of the dividing surface, The increase in surface area of
the dividing surface is due to the particle indentations. Individual contributions are
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Figure 4: Computer-simulated fracture surface in concrete based on a dense random
packing of the aggregate.

given by eq (1). Using the moments of the psd’s presented in Table 1, we determine
for the two different sieve curves given by eq (2). Hence, for crack parameters in

a section we have
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in which  (Kendall et al, 1963). Note again
that are the smallest and largest particles included in the model, and
that magnification

3. Roughness of Fracture Surfaces

The average value, of the bond crack surface area per unit of the corresponding
area of the dividing plane is also the major parameter defining the roughness of the
fracture surface. The planar roughness index, being the ratio of total fracture
surface area to the corresponding area of the dividing plane, is given by

with represents the areal fraction of the matrix in the divided surface.
Equation ( 4 ) holds only for a 2-D (=planar) portion of cracks in a partially planar
system in which the dividing plane is the orientation plane of the 2-D portion. The
3-D ‘random’ portion of bond cracks in a partially planar system has also to be
considered. The total surface area of the 3-D portion of bond cracks per unit area
of the circular planes enclosed by their crack tip is 3/2 as demonstrated
earlier for the 2-D portion. Further, the total area of these circular planes enclosed
by the crack tips is twice their projected area on the dividing plane Here
a prime indicates a projected area. Hence, This situation is sketched in
Fig. 5. Hence, eq (4) can be modified to encompass both the 2-D and 3-D portions,

where the indices 2 and 3 refer to the 2-D and 3-D portions, respectively. The linear
roughness index, can be approximated by Substitution
of eq (5), assuming and ω = 0, respectively, gives

The sieve curves lead to near self-similarity situations as to the texture of the fracture
surface at different resolution levels. The resolution-dependency can therefore be
expressed by means of the fractal equation (Stroeven, 1991; 1996)

is the fractal profile dimension. Because is obtained from the slope of the
curve defined by eq (7), it is not necessary to determine the value of the constant
C. Solutions of eq (7) using eqs (6) and (2) have been determined, yielding fractal
dimensions around 1.08 to 1.13, which fall close to the available experimental data
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(El-Saouma et al, 1990). In general, slightly curved lines either with positive or with
negative curvature will he obtained, revealing the non-ideal fractal properties of the
fracture surface. High density concretes reveal an increased brittleness. As a result,
cleavage of particles will he more dominant, reducing fractal dimension. This has
been experimentally confirmed (Rawicki et al, 1992).

4 .      Crack          Coalescence

Crack coalescence will be governed by a function of the distance to the nearest
neighbour. In a global approach to crack coalescence in the dividing plane, the
relevant parameter will therefore be the average nearest neighbour distance between

cracks, This is given by

where can be taken from the list of crack parameters. Upon substitution in
eq (8) it is found for the respective sieve curves that
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It can easily bo checked that have about the same value (on the vari-
ous levels of the microstructure), indicating a high probability for coalescence of
large numbers of neighbouring cracks. The evolution under relatively low loadings
of damage on microstructural level is additionally stimulated by the high residual
stresses, mentioned earlier.

If it is assumed that all nearest neighbour pairs of cracks would join in the
dividing plane over the full loading range of the material body, then a lower bound
estimate for increase in ‘damage evolution’ in the dividing plane would be (Fig. 6)

Here is the diameter of the crack in the dividing plane and is the number
of cracks per unit area of the dividing plane. Of course, , in

which is the areal fraction of the dividing surface being cracked. As a conse-
quence, average crack size would he doubled. Roughly speaking, this process leads
to a new situation in which the smaller distances are eliminated, so that a more
uniformly spaced crack pattern is obtained. In direct compression tests of concretes
such a doubling of damage evolution was recorded from discontinuity to ultimate
at a measuring sensitivity of about 0.5 mm for crack traces in the section plane
(Stroeven, 1990; 1992). This may demonstrate that for such a sensitive approach
the damage development at ultimate is not very advanced. In fact, ultimate is
a structurally insignificant development stage in the gradual degradation process
of the material body. In direct tension, experiments have demonstrated that this
development stage is even less advanced, i.e. specific crack surface area showed a
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less pronounced increase from discontinuity to ultimate than in the case of direct
compression. Moreover, two-sided notched sections of prismatic fine-grained con-
crete specimens, previously subjected to direct tensile stresses, which had declined
to about 75% of ultimate during yielding, did not reveal an obviously delineated
macrocrack (Fig. 7). Crack concentration increased only slightly toward the notched
section. A fracture process zone with clear boundaries was proven a fiction: this
concept is a convenient but structurally unrealistic mathematical model.

In a regular pattern of cracks, (average) crack spacing, s, would be twice as
large as the average nearest neighbour spacing in a random point system (on which
the present arguments are based). Hence, s could amount to twice the average crack
size, on a high level of the microstructure (say, the mesolevel). Full coalescence
with the nearest neighbour would in this case lead to the following estimates for
damage evolution:
in the starting situation before two bond cracks will join:

and after joining:

Spatial damage around the dividing plane would thus increase by a factor 10/3.
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The nearest neighbour distance distribution of the aggregate particles is sig-
nificantly skewed to the left, as demonstrated by Fig. 8. Small distances occur in
reality more frequently than estimated by the theory based on a ‘random’ particu-
late structure consisting of finite size particles (a similar result as produced by a so
called ‘random generator’). Clustering is a natural phenomenon which is underesti-
mated in computer generated systems of particulate matter in which such random
generators are used. This implies a large proportion of the particles in the aggregate

Figure 8: Distribution function of the 3-D nearest neighbour spacing.

to be spaced very close to the nearest neighbour. The effect on crack coalescence
is that instead of bilateral crack coalescence, clusters of cracks will join, as demon-
strated by the computer simulated crack pattern in the dividing surface of Fig. 9.
To model this process, the spatial dispersion of the particles should be combined
with the actual size of the particles to yield realistic information on individual tip-
to-tip spacing of cracks. This is impossible to accomplish in a global approach. The
computer simulation system for material structure, which will be introduced in this
paper, will be used for this very purpose.
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5. Global Structural Model

A structural model for the ‘crack initiation strength’, or cracking strength could
incorporate this crack interaction phenomenon in a global way. The computer-
simulation approach will be used in the near future to elaborate more local features.
The model focuses on the highest microstructural level, so the leading parameters are

for size and for spacing. Koiter’s solution (Koiter, 1959) for the stress intensity
factor of an array of collinear cracks was transformed by Nied & Arin (1978) into
a multiple flaw fracture mechanics model for a planar array of interacting circular
cracks, which is highly relevant for the present case. The critical stress, is given
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by

in which Kcr is a the material’s critical stress intensity factor. Since, eq (12)
reduces to the simple expression

where C is proportional to the material’s stress intensity factor. In fact this is a
‘classical’ expression, because crack size in the present concept is directly related to
(minimum) grain size, so that appears in the denominator. When the cracking
strength of concrete can indeed be based on particle-matrix debonding as the weak-
est chain link in the micromechanical system, then the present structural formula
indicates the influence of particle characteristics on strength.

6. Local Structural Modelling

To model the crack interaction phenomenon realistically in and closely around the
dividing plane, we intend to study the structural phenomenon by means of the
computer simulation system SPACE (Stroeven et al, 1997a; 1997b). Therefore, a
short description of the system is given. Also, Figs. 1, 4 and 8 are produced along
this way. Further, Fig. 7 presents information on the nearest neighbour distribution
of bond cracks which is also obtained with this system.

To describe the non-homogeneous granular nature of the internal structure, the
model assumes the material to be composed of a finite number of discrete elements.
Each element represents by its shape and size a characteristic phase in the material.
Aggregate can be interpreted in this connection as pores or sand and gravel grains, or
- on a lower level of the microstructure - as binder particles (cement, fly ash, silica
fume). These elements are dispersed in a presumably homogeneous and uniform
matrix and are contained in a volume that corresponds to the shape of the specimen.
For example, concrete is on a mesolevel considered to be composed of aggregate
elements distributed within a cuboidal or cylindrical container. The associated
particle size distribution functions can easily be derived from sieve curves. The
model simulates the material by describing the shape of each element and its position
and orientation within the container

The computer-simulation model has to reproduce particulate structures real-
istically, and avoid the problem of ‘particle’ overlap. A commonly used method to
distribute particles randomly in a limited volume is to place particles one after the
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other (sequentially) at random locations, taking care not to overlap other particles
or the boundary (Zaitsev et al, 1981). Especially at higher densities, several trials
may be necessary for each particle to find a free (non-overlapping) space. Indeed
the number of unsuccessful attempts increases dramatically with fractional densi-
ties exceeding 0.3 (Pelikán et al, 1994). Hence, near-neighbours will be more remote
than in reality. Moreover, it has been established by Widom that the numerical pro-
cedure of sequentially adding spheres at random non-overlapping locations in 3-D
space significantly influences the limiting density, i.e. fractional density of mono-
sized spheres will be in the range 0.35 to 0.38 (Widom, 1966). In sequential rejection
processes, the spatial positions of successfully placed particles are not influenced by
the particles added later. Due to this lack of mutual influence a special order of
selection is required, especially when the particles in the distribution vary consider-
ably in size or shape. A process in which all particles are affected equally by their
environment in finding an appropriate location seems therefore far more realistic.

A single aggregate element will undergo influences from all sources in find-
ing its destination (position, orientation) inside the container during the produc-
tion/generation process. It is the internal influence of ‘particle’ interference (i.e.
chemical, physical or mechanical interaction), and the external influences such as
the container walls, gravity forces, and ‘particle’-matrix friction that determine the
final distribution of the particles.

To overcome the fundamental shortcomings of the random generator process,
we simulate the actual production characteristics of cementitious materials. At the
first production stage, design information like the shape and size distribution of each
ingredient, and the volumetric density, is used to obtain an actual set of discrete
particles. In the next stage the particles and the matrix are mixed, then moulded
into the container, and finally agitated. In this stage most of the influences that
control the particle distribution are active. Particle overlap is avoided because two
particles that collide during the mixing and moulding process will not be able to
penetrate each other.

In summary, the following steps are provided by the algorithms:

1. initially, a structured or random 3-D dilute distribution of elements with prede-
fined shape and size distribution is generated within the boundaries of a cuboidal
container. Random velocity and rotation vectors are assigned to each element;

2. the second stage is an iterative procedure where the displacement (and the ro-
tation) of each clement is given by a Newtonian model for particle motion. The
model relates the changes in displacement and velocity of an element to a set of
point forces acting on it. By temporarily freezing all other elements, the trajec-
tory of each element is checked for contacts with the boundary of the cube or with
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other elements. The object is displaced for one time step or up to its first contact.
Velocities of the objects immediately after contact are calculated by the contact
model and are assigned to the objects, whereupon the next contact is searched
within the remaining time. The number of contact searches within a single time
step is limited to avoid excessive calculations:

3. the iteration stops when certain convergence conditions are reached.

As illustrated by Fig. 8, application of the SPACE system will allow us to
perform a structural investigation of damage evolution in the fracture process zone,
provided a micromechanical concept is adopted. We can assess the significance of
the micromechanics by comparing outcomes with quantitative image analysis data
on damage evolution.

7. Conclusions

Stereological modelling of cracking in bulk and in the fracture plane is achieved for
concretes containing river aggregate. The approach will also offer a good approxi-
mation to describe damage characteristics in concretes in which crushed aggregate is
used, provided particle-matrix debonding is the weakestlink in the micromechanical
chain. Three-dimensional measures for damage, such as crack density or specific
crack surface area, have been related to characteristics of the load-bearing partic-
ulate skeleton. The same holds for damage evolution inside the fracture process
zone, leading ultimately to the formation of the fracture surface. Roughness of the
fracture surface could also he linked up with characteristics of the particulate phase.
This allow us to demonstrate the resolution-dependence of damage in experimental
observations and in modelling approaches. The fractal concept was used for this
purpose. It could be demonstrated that ultimate stress in tension or compression
involves only a relatively small amount of crack coalescence. The major part of crack
coalescence necessary for ‘controlled’ development of the fracture surface will occur
during the yielding stage. By using a global fracture mechanical model developed
for ceramic materials, we could relate the cracking strength of cementitous materials
to characteristics of the particulate phase. The development of a local structural
approach to ‘strength’ by way of the realistic 3-D structural computer simulation
program SPACE is foreseen for the near future.
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RATE SENSITIVE DAMAGE BEHAVIOR OF MORTAR IN
COMPRESSION *
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ABSTRACT  This study investigates the knowledge on rate sensitive behavior in

cracking process or damage behavior for brittle materials by testing concrete constituent,

mortar at different rates of straining. The material response is compared based on tests of

different strain rates. Cracking process of specimens are observed and recorded

synchronously with loading and deformation response for the mortar at different rates of

straining. For the mortar in a range of strain rates from 0.2 - 20,000,000 microstrains/sec,

the compressive strength increases and its nonlinearity decreases with increasing strain

rate. As the strain rate increases, the failure shows comparatively more violence and

faster crack propagation, with an increasing number of cracks and fragments. The strain

rate sensitive damage behavior indicates the reason why compressive strength,

nonlinearity, viscoplasticiry and other mechanical properties of mortar and concrete are

sensitive to the rate of straining.

1. Introduction

There have been a lot of experimental study on the phenomenon of rate sensitivity in

material strength for several decades, in which the strain rate sensitive behavior of

concrete and its constituents has been measured in terms of the strength, modulus of

elasticity, Poisson's ratio and nonlinearity of stress-strain curves in compression or
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tension[1,2].

Now, it is more important to explain why the materials show their strain rate

sensitivity and formulate a constitutive theory for evaluating the quasi-static and

dynamic behavior of brittle materials over a range of strain rates. Since cracking appears

to be the major process responsible for the nonlinear deformation, strength and other

material properties in concrete and its constituents, the study of cracking process would

be helpful for explaining the strain rate sensitivity of the material. The effect of strain

rate on damage or cracking process in the material is to be studied here.

There have been many studies in which cracking or submicrocracking were observed

in concrete, cement paste and mortar in compression[3] . However, much less attention

has been paid to studying the strain rate sensitive behavior of cracking process and

failure mode. In the work by Suaris and Shah[4], it was concluded that cracking appears

to be the major process responsible for the observed strain rate effect in concrete and

fiber reinforced concrete tested in their study. However, there was not sufficient work to

show the difference of cracking and failure for the material tested at different rates of

straining.

The purpose of this study is to improve the knowledge on strain rate sensitive

behavior in compressive strength, cracking process and failure mode for brittle materials

by testing concrete constituent, mortar, at different rates of straining. The material

response is compared based on different strain rates. The cracks on the surface of

specimens are observed with two Long Distance Microscopes (LDM) and recorded

synchronously with loading and deformation response for the mortar at different rates of

straining.

2. Experimental procedure

2.1. MATERIALS AND SPECIMENS

The experiments in this study are made on specimens prepared from mortar mixed by

425 ( for Mortar R ) or 525 ( for Mortar F ) cement and the standard sand for plastic

mortar strength test. The grain size of the standard sand is 0.4 mm. Two water-cement

ratios ( w/c ) of 0.4, 0.3 were used for Mortar R and Mortar F respectively, and the two

types of mortar had the same sand-cement ratio ( s/c ) 2.0. For Mortar R, a water reducer

at a dosage rate of 0.6 percent by mass of the cement was also used.
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Cylinder test specimens, were prepared using steel moulds. The

mortars were mixed according to the Standard for Mechanical Mixing of Hydraulic

Cement Paste and Mortar of Plastic Consistency. The specimens were cast in a vertical

position. During the first 24hr, the specimens remained in the moulds and were then

removed from the moulds and stored in lime-saturated water at a controlled room

temperature of 20 °C for 28 days.

2.2. EXPERIMENTAL SETUP

2.2.1. Loading

Specimens were loaded in uniaxial compression by using a rigid testing system with an

automatically controlled loading setup. The rigid testing system consists of the normal

loading setup and a three-point bending beam with great rigidity and the elastic relation

of deformation and loading. By controlling the rate of loading  f, it allows

the specimens to be loaded at controlled rates of straining (see Fig. 1), and by which

strain softening response can be monitored successfully.

The two displacement gauges provided the average longitudinal strain for the entire

height of the specimen. The tests were conducted at nine different ( average ) strain rates

ranging from 0.2 to over 20,000,000

microstrains/sec ( 20 / sec ). The strain rate was calculated from the linear portion of the

strain- time curves in the tests. The load -displacement response and deformation- time
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curves during the test were recorded by a bridge amplifier meter and a personal

computer. The stress-strain curves and strain-time curves were then obtained from the

load-displacement response and stored in the computer.

2.2.2. Crack Observation and Recording

Surface cracks on the test specimens were observed by two Long Distance Microscopes

(LDM) placed opposite to each other as shown in Fig. 2. The resolving power of LDM is

2 , and the magnification is 77 times at a distance of 65 cm from the testing specimen.

Two CCD cameras of horizontal 600 TV lines were connected to the two LDMs,

respectively. During testing, crack patterns on the surface of specimens could be seen in

a monitor and recorded by a video tape recorder. At the same time, the deformation and

load in the specimen were recorded by a bridge amplifier meter and a PC computer. In

this way, the cracking process observed on the surface of specimens were recorded
synchronously with the load-deformation response.
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3. Results and Discussion

3.1. RATE SENSITIVITY ON COMPRESSIVE STRENGTH, NONLINEARITY OF

STRESS-STRAIN CURVES

The average values of strength (peak stress) for Mortar R and F tested respectively by a

set of specimens are shown in Fig. 3, in which the curves are plotted against the strain

rates on a semi log scale. Fig. 4 gives stress-strain curves for the specimens loaded at

varying rates of straining in which each curve is given for a typical specimen of Mortar F

loaded at one of the strain rates ranging from 0.2 microstrains/sec ( 2.0 x 10~7 / sec ) to

20,000,000 microstrains/sec ( 20 / sec ). It can be seen that, over the range of strain rates

considered in this study, the strength of mortar increases with an increasing strain rate,

and the nonlinearity of stress-strain curves in the hardening and softening regimes

decreases with the increase of strain rate. At a high strain rate, the stress-strain curve is

seen as almost linear. However, the response of deformation for the specimen at a low

strain rate shows nonlinearity clearly.
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3.2. RATE SENSITIVITY ON DAMAGE

3.2.1. Failure mode

It is observed from the test that, as the strain rate increased, specimens failed with an

increasing number of cracks and fragments. At a low strain rate, the specimens may fail

without sudden rupture and the failure occurs when multiple cracks become connected

and run through the specimen. At a high strain rate, specimens failed more abruptly,

with several fragments and a louder cracking noise. This behavior suggests that the

failure mode of mortar specimens is sensitive to the strain rate. As the strain rate

increased, failure mode of the specimens shows comparatively more violence and

rapidity in time of crack propagation.

3.2.2. Cracking process
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In order to identify the mechanisms responsible for failure and cracking of specimens at

different strain rates, cracking process synchronous with the load-deformation response

was studied, in which images recorded by the video tape recorder are transformed to

digital images by the use of an image processing system composed of a computer and

image processor. The images at a low and a high strain rate are shown in Figs. 5 and Figs.

6. Fig. 5(a) shows a stress-strain curve with special points marked 1,2,....,8 for Mortar

F loaded at a strain rate of 2.0 microstrains/sec. The images of cracking at the marked

points of Fig. 5(a) are shown in Fig. 5(b) which display images on developed surface of

the specimen observed by two LDMs placed opposite to each other. It can be seen that,

on the specimen loaded at a low strain rate surface cracks were generated at a low stress

state prior to the peak stress, and propagated with increasing strain until failure occurred.

Fig. 6(a) gives the stress-strain curve for Mortar F loaded at a higher strain rate of 2000

microstrains/sec. Each graph in Fig. 6(b) shows the cracking state (on one face only) at

the marked points in Fig. 6(a) . It can be seen that, at a higher strain rate, the surface

cracks were generated near the peak point of the stress-strain curve and the cracking

process occurred mainly within the softening regime.



230 LI ZHAOXIA HUANG YAOPING



RATE SENSITIVE DAMAGE BEHAVIOR OF MORTAR IN COMPRESSION 231



232 LI ZHAOXIA HUANG YAOPING

The digital images with the cracking information are analyzed statistically. In order

to get quantitative results of cracking, values of total area ( that is, length multiplied by

the width of cracks on the surface of the specimen ) of cracks per area on the surface of

the specimen are calculated statistically by checking first the trunk of cracks and its

branches and computing then the total area of the trunk and branches[5]. For the

specimens loaded at varying rates of straining (the stress-strain curves are shown in Fig.

4 ), the statistical total area of cracks per area on the surface of the specimen was

obtained respectively. These values versus strain at different rates are showed in Fig 7.

It is evident that there exists a significant difference between the cracking process of

mortar specimens loaded at low and high strain rates. At a low strain rate, surface

cracking starts earlier and at a lower stress state, and the cracking process occurs over a

longer duration. Crack propagation in specimens at a low strain rate takes place within

both the hardening and softening regimes, while crack propagation in specimens at a

high strain rate occurs mainly within the softening regime. These observation on the
cracking process indicate why specimens loaded at low strain rates have lower strengths.

The cracking process appears to be responsible for the strain rate effect on strength.

Fig. 8 shows the maximum values, before fracture, of cracked area densities for the

specimens loading at different rate of strain. It is seen that, as the strain rate increased,

specimens failed with a decreasing value of cracked area. Considering the above

observation on the failure mode of specimens loaded at different strain rate, it is clear

that, there exists different types of cracking process for the specimens loaded at lower

and higher rate of strain. At a low strain rate, cracks generated early and past a longer

duration of propagation; At a high strain rate, cracks have not enough time to propagate

and the specimen fails due to too many yet tiny cracks, with very little of load

supporting area.
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4. Conclusions

From the experimental results and the discussion presented above, the following

conclusions can be drawn:

For the mortar in a range of strain rates from 0.2-20,000,000 microstrains/sec, the

compressive strength increases and its nonlinearity of material response decreases with

an increasing strain rate.

The failure mode and crack process of mortar specimens is sensitive to the strain

rate. As the strain rate increased, the failure shows comparatively more violence and

rapidity in cracking propagation, with an increasing number of cracks and fragments;

At a lower strain rate, cracking on the surface of specimens begins earlier and at a

lower stress state than that at a higher strain rate, and the cracking process occurs over a

longer duration. As the strain rate increases, specimens fail with a decreasing value of

cracked area.

The strain rate effect on failure mode and cracking process indicates the reason

why the compressive strength of mortar is sensitive to the strain rate. In order to further

clarify the strain rate effect on damage and cracking, additional studies are needed in the

micro- and meso-scale.
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COUPLED EFFECT OF CREEP AND STRESS RELAXATION OF
SOFT CLAY
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Abstract

The rheological behavior of soil mass is usually not governed simply by a single
process of creep and stress relaxation. Here, a Mesri stress-strain-time relation function
(Mesri., G. etc. 1981) is applied to describe the coupled effect of creep and stress
relaxation of soft clay. Numerical results are compared with those obtained from data
acquired from coupled creep-stress relaxation tests of clay samples. The results of the
study are satisfactory. Some relevant factors influencing the coupled effect are also
discussed.

1. Introduction

Creep and stress relaxation represent two different aspects of the rheological
characteristics of materials. Although it is recognized that creep process wil l induce
stress relaxation, and stress relaxation will also induce creep, yet they are considered to
be two separate and independent processes. Analyses in physical rheology(Liu Xiong
1994) indicated that creep and stress relaxation are two idealized mechanical concepts
of long-term mechanical properties; in essence they are governed by the same physical
mechanism. For example, the macroscopic difference between creep and stress
relaxation lies in the following: in the process of creep there exist external energy
sources to supply energy to the stressed system, in which the strength of its internal
structure weakens, the structure relaxes, and in consequence deformation increases with
time. The internal friction in the same stage of material aging will consume partially or
even all of the creep deformation energy. While the process of stress relaxation there
is no consumption of external energy; the decrease in internal stress is due to the
weakening of material structure; the internal friction accompanying by the weakening
process will consume energy at the cost of the ini t ial ly accumulated energy in the
material. In soil clay, the structure includes defects such as fissures, cavities and weak
connecting zones. During creep, micro-fissures close, micro-cracks build up, and then
macrocracks appear.
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After the soil mass has been excavated, instantaneous deformation will be induced in
the residue. This kind of deformation consists of both elastic and plastic components.
Under different boundary conditions there will be stress relaxation in some parts of the
soil mass where the deformation is restrained. At the same time a definite part of the
loading wil l be transferred to the adjacent regions, and cause creep in the soil mass; the
development in creep will in turn induce stress relaxation. In this context, the creep and
stress relaxation are mutually affected and coupled(Liu Xiong 1994).

The unstable process of earth slope failure include the dual action of soil creep and
stress relaxation. When the strength of soil is completely exhausted, a potential sliding
surface occurs in the soil slope. On the potential sliding surface, a certain part of it may
slide down due to creep while on another part of it there exists stress relaxation. It is a
sophisticated problem to determine on which part there is stress relaxation and on which
part there is creep. As a compromise we deal with creep and stress relaxation as an
unified process(Zhu Changqi & Guo Jianyang 1990).

In this paper, a Mesri function for describing the stress-strain-time nonlinear relation of
clay is adopted, we use coupled creep-stress relaxation tests(Xiong Junmin & Li Zuoqin
1993) to verify the feasibility of the stress-strain-time function on the one hand and to
discuss the influences of some factors on the coupled effects on the other hand.

2. Coupled creep-stress relaxation tests of clay

Coupled creep-stress relaxation tests have been carried out to determine the long-term
strength of clay. In this kind of tests the stresses and strains are functions of time. The
advantages of the coupled tests consist in their simplicity of operation which allows us
to save test time and to apply them widely in practical engineering.

The principle of the tests is as follows. Initial stress is imposed on a specimen by a
dynamometer, and the deformation is kept constant. Then, the dynamometer is relaxed,
causing a decrease in stress. Creep is induced in the specimen by the variation in stress,
while the increment in deformation of the specimen will be equal to the deformation
recovered in the dynamometer. Meanwhile stress relaxation takes place in the specimen
due to the variation in deformation. Therefor the test process incorporates a coupled
process of creep and stress relaxation.

Fig. 1 shows one result of experiments for Dark yellow clay.

3. Mechanical model of the coupled tests

Let the total deformation of the “dynamometer-specimen” system be in which the
deformation of the dynamometer is and that of the specimen is then we
have
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Let the elastic modulus of the dynamometer be the cross-sectional area of the

Substituting (2) into (1), we have

Differentiating the above equation with respect to time gives

The above equation can describe the time dependent response of soil mass in the
arbitrary extent of differences in principal stress levels.

Substituting expression (4) into expression (6), we obtain the equation of coupled effect
of creep and stress relaxation:

specimen the height the axial strain and the axial stress then

where is the difference in principal stresses.

4. Constitutive equation with respect to stress-strain-time function in a coupled
problem

Mesri function(5) is a general expression to describe the stress-strain-time relation of
clay which includes the time effect of soil mass in the whole extent of stress levels.

where is stress level, and are respectively the ratio of shear

strength and the ratio of failure at time is a parameter accounting for the time
effect.
Differentiating (5) with respect to time we obtain

Substituting into the above equation, we obtain
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This is the constitutive equation for the coupled effect of creep and stress relaxation, in

which D is the difference in principal stresses is the triaxial shear

strength of soil mass

5. Numerical solution of the constitutive equation in the coupled problem

An improved Euler algorithm applied to the numerical difference is employed to solve
the init ial value problem of the coupled constitutive equation (8). The initial value
problem of equation (8) can be written as

where is the initial D at time

Let the time step length be , time stations are taken as

and
The improved Euler formulae for the initial value problem in expression (9) are

The following conclusions can be drawn from the computations: (1) Fig.l indicate that,
the coupled soil creep-relaxation process simulated by Mesri function is in good
agreement with the results of test and suitable to describe the comprehensive and

complicated rheologic behaviour of soil. (2) As shown by Fig.2, is an important
factor affecting the coupled response, the larger it is, the smaller will be the stress at a
given time station; and with the increase in coupled time duration, the extent of
decrease tends to increase. (3) Fig.3 illustrates the effect of elastic coefficient of

dynamometer on the coupled responses when they vary from to As

compared with other factors, the effect of on stress change is not large; when

varies in the extent of the effect is greater. (4) In Fig.4, the effect of

the heights of soil samples on the response is shown when they change from 0.02m

to 0.2m. It can be seen that, with the increase in the extent of decrease in stress
increases at first and then gradually attenuates.
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6. Conclusions

The coupled process of creep and stress relaxation simulated by the Mesri function for
soil mass is in good agreement with the data obtained by the coupled tests. So the
proposed stress-strain-time relation is suitable to describe the comprehensive
rheological behaviour of soil mass.
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Abstract: In practice, there are geo-engineering constructions which fail abruptly
without additional excavation, load or geometry change, this kind of abrupt failure of
rockmass can cause serious disaster. For cracked rockmass under a condition of  quite low
level of field stress, it is considered in the paper that a delayed abrupt failure may be
induced by a long term of crack propagation with a subcritical crack growing process, this
weakening process of rock causes the final crack fracture when the stress intensity  factor at
the tip of crack reaches the fracture toughness of the rock. Based on this principle a method
to predict the abrupt failure of cracked rockmass is proposed.

1. Introduction

In practice, there are geo-engineering constructions which fail abruptly without additional
excavation, load or geometry change. Its relation to the excavation and geometry change
appears to have a certain delay period of t ime after the excavation, so that it is characterized
with abrupt collapse, and causes geological disaster. Abrupt failure in hard rockmass can take
place even in a condition with quite low level of field stress in geo-engineering.

Rockmass is a typical damaged material, in which the macro-defects such as joints and
micro-cracks usually play an important or key role in its deformation and failure. Fracture as a
typical bri t t le fa i lure can occur in the case of quite low level of field stress. It is known that a
fracture fai lure in rock, with high rate of crack extension, can be determined if the stress
intensity factor at the t ip of crack equals to the fracture toughness. On the other hand, for rock,
as most brittle materials, there exists a period of subcritical crack growth before fracture failure,
within the process crack extends with slow rate. Subcritical crack growing of rock can be
considered as an initial source of inducing fracture in rock, it indicates that a mechanism of
abrupt fai lure in hard rock mass is just a final result of rock mass being weakened by
subcritical crack growth.

2. Rate of Subcritical Crack Growth

The brittle failure of rock is mainly due to fracture along crack, if  stress intensity factor at the
tip of a crack is equal to fracture toughness of rock, a fracture failure, characterized with fast
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crack growing, will occur. Besides the fracture with fast crack growth, in rock material there
exists a period of subcritical crack growth, which is a process of crack propagation with slow
rate. A lot of fracture testing results show that the subcritical crack growth in rock can carry on
even in the case when load is kept unchanged.

The crack propagation during the process of subcritical crack growth increases the crack
length gradually and indirect ly increases the stress intensity factor of the crack, it leads to crack
fracture at last when the length of the crack is long enough to make stress intensity factor equal
to the fracture toughness of the rock. The determination of the time interval from the beginning
of subcritical crack growth to the final failure is very important. It can be used to predict the
period of time in which a geo-engineering construction will abruptly collapse after excavation.

It is known that there exists a threshold value of stress intensity factor , which is
less than the fracture toughness of the rock, if the stress intensity factor of a crack is equal to or
greater than the threshold value, a subcritical crack growth will take place. According to
Charles, R. J., the subcritical crack growth is considered to be caused by the exchange of the
ions at the t ip of the crack and by the stress concentration at the crack tip, this is a typical
interaction of mechanics and chemistry. Charles had set up an expression of subcritical crack
growth rate which is a function of the stress intensity factor of a crack and the environmental
temperature, etc.( Charles, R. J. 1958). In the case of constant environmental temperature
during the period of subcritical crack growth, the expression will be simplified as (Atkinson, B.
K. 1987):

(1)

Where V is the rate of the subcritical crack growth, is the stress intensity factor of
the crack, A and n are constant values which can be evaluated from subcritical crack growing
tests.

3. Duration of Subcritical Crack Growth and Abrupt Failure Prediction

From the above analysis it is known that the abrupt failure in hard rock mass can be considered
as a phenomenon of fracture failure after a period of crack propagation with low growing rate.
The time span of subcritical crack growing process is important in predicting the abrupt failure.
While an excavation in rock mass is made, it wi l l induce changes of stress distribution around
the excavated space. For such a problem, in the rock with cracks when the stress intensity
factors at the tip of some cracks equal to or greater than KISCC, these cracks will undergo
subcritical crack growth. The initial state of the crack growth is related to the stress condition
last after the excavation, and the end state of the subcritical crack growth is relevant to the

critical state of fracture if  the stress intensity factor equals to the fracture toughness of  the rock.
The duration of subcritical growing process can be defined by the time interval between

in i t ia l subcritical crack growth and critical crack growth. This duration will help us to predict
the time in which an abrupt failure wi l l take place after excavation in hard rock mass. For
example, in the following a model of infinite plane with a central crack is used to analyze the
duration. Assuming the half-length of the central crack in the infinite plane is ai (Fig. I) at the
in i t ia l state of subcritical propagation, the relative stress intensity factor at the tip of the crack is
found to de:
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Where is the field stress acted in the plane. Suppose the stress increases to the critical value
of fracture while the crack length remains unchanged, so the critical stress satisfies:

constant but the crack length increases to the critical length of fracture, there is the
following critical formula:

For an arbitrary case, assuming that the stress intensity factor at the tip of a crack

It is evident that the duration of subcritical crack growing process can be calculated by
integrating the above expression, that is:

Where is the fracture toughness of the rock. On the other hand, if the stress remains

satisfies . the crack, which is under the condition of subcritical crack
propagation, wi l l extend with a slow rate, say 2 V , so the growing rate can be defined with
the half-length of the crack a and time t :
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For conventional plane problem with a central crack of length 2a, there is ,
so Eq.(5) can be rewritten as:

Where is given by (2). Substituting (1) into (6) and supposing that the field stress
acted in the plane remains unchanged within the subcritical crack growing process, we have:

Integrating (7) gives the duration t of the subcritical crack growing process:

Rewrit ing (8) as:

A lot of testing results show that the constant (n – 2) is usually quite a large positive
value, so formula (9) can then be approximately expressed as the following by considering

In fact, in formula (10) can not be easily determined because the init ial crack length

is d i f f i cu l t to be given beforehand. Hereby a simplified method is to be used to calculate

the time span t . From formulas (2) and (3) there exists a relationship between

The value of can be obtained with conventional rock fracture testing. Substituting
(11) into ( 1 0 ) gives the duration of subcritical crack growing process:
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From formula (12) the time span of the subcritical crack growing process can be
determined by considering the parameters and , among them and

are constants of rock properties, the only variation is field stress . If the stress intensity

factor at the tip of the crack satisfies                          as well as the parameters of rock
sample and the stress are known, the time of the abrupt failure after excavation in rock mass
can then be predicted by evaluating the duration t .

In practice, the rockmass consists of macro-joints with random distribution (Fig.2), the
interaction of  joints wil l change the stress intensity factor of crack. The stress intensity factor
of a central crack in Fig.2(b) can then be written as:

Where is the influence coefficient and , so there is:

here indicates the critical stress of fracture for rock or rockmass with random

distribution defects. From formulas (13) and (14) there is:

Now the relative duration expression will be:
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The relevant time duration in the case can similarly be derived by assuming that the
coefficient  remains unchanged during the process of subcritical crack growth:

It is evident that the time duration of the subcritical crack growth in rockmass with joints
is much less than that in plane with a relative central crack.

4. Case

For the rock specimens from Dongchuan Copper Mine of  China, the above mentioned values
of , A and n had been indirectly evaluated from the results of double torsion tests (Cao,

P. 1993). The critical stress of  the rock samples is obtained with conventional tension
tests. The relevant parameters obtained are shown in the following table.

In the ultimate case , we can get the relative expression of time duration for the
copper mine by substituting the parameters into formula (12):

Where duration unit is second and stress unit is MPa , is the threshold stress related

to the threshold value of  stress intensity factor for rock or rockmass with defects.
Considering the relative values in the above table and formulas (13), (14), the relationship

between and for specimens of the mine can be calculated as:

From formula (17) the calculated duration of the whole subcritical crack growing process
is about 100 days for typical specimen of Dongchuan copper mine by assuming that the value

of stress is just the threshold stress . It indicates that the subcritical crack growth is
quite a long process. In this case the relationship between stress and duration t of rock
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sample from Dongchuan copper mine is shown
in Fig. 3.

It is not difficult to see from Fig.3 that if

the stress tends to , the relative
duration t wi l l tend to zero. For an arbitrary

value of stress ), in

most cases the duration of the subcritical
crack growth is so long that the delayed f
racture is characterized as abrupt collapse.

Above mentioned principle had been
employed to predict the caving law of
orebody of Dongchuan copper mine which
was suggested to be mined with block caving
method. Block caving is a mass productive
mining method, the caving process of
orebody is done gradually by a series of
delayed abrupt failure of orebody. From

formula (16) the relative critical stress can be determined with the following expression if

the time duration t is given, say :

Based on the experience of caving law of the orebody, it is known that the maximum time
interval between any two times of orebody caving , that is any two adjacent abrupt failures of
orebody, is usually wi th in 72 hours. Taking the 72 hours as a given time duration  of a step

of abrupt failure, the critical stress can then be determined by formula (18). With the
critical stress so obtained, the caving laws of the orebody had been predicted after evaluating
the stress distribution in the orebody using conventional numerical analysis methods. Then the
caving rate and the caved ore weight of orebody as well as the zone of caved orebody had been
predicted for the mine (Cao, P. 1995).

5. Conclusion

The abrupt failure of rockmass can cause a serious disaster for human, effective prediction and
prevention of the disaster is important for rock engineering. For hard and brittle rock under a
condition of quite low level of field stress, an delayed abrupt failure may be induced by a long
term of crack propagation within the subcritical crack growing process. The weakening
progress of rock causes the final crack fracture when the stress intensity factor at the tip of
crack reaches the fracture toughness of the rock. The results show us that the time duration of
the subcritical crack growing process is a function of the field stress acted at the crack if the
environment temperature remains constant and the stress intensity factor of the crack is greater
than or equal to the threshold value enabling subcritical crack growth.

In practical engineering, the stress condition in rockmass is usually in compression and/or
shear rather than only in tension, the principle and method mentioned earlier can be utilized
to analyze the possibility of abrupt failure and then to predict its duration by employing
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available numerical analysis method.

References

Charles, R. J. J., (1958) Static Fatigue of glass I, Journal of Applied Physics, Vol.29, 1549-
1553

Charles, R. J. J., (1958) Static Fatigue of glass II , Journal of Applied Physics, Vol.29, 1554-
1560

Atkinson, B. K., (1987) Fracture Mechanics of  Rock. London; Academic Press, London
Cao, P., Wang, H. Sun, Z., (1993) Testing Study of  Subcritical Propagation Rate Using

Double Torsion Method, Proceeding of  the Fifth Symposium on Fracture and Strength
of Rock and Concrete. Press of National University of  Defense Technology, Changsha,
190-194 (in Chinese with English Abstract)

Cao, P., Pan. C., Sun, Z., Luo, L., (1995) Prediction of Block Caving Rate Using
Subcritical Crack Growing Velocity, Transaction of  Nonferrous Metals Society of
China, Vol.5, No.4,14-17



ON  THE  STUDY  OF  CREEP  RUPTURE  OF  STRUCTURE*

REN WANG
Department of  Mechanics and Engineering Sciences
Peking University, Beijing, 100871, P. R..China

Abstract The study of creep rupture and the life expectancy of structures has long been
a subject of interest. The paper makes a brief survey of the continuum damage
mechanics approach to this subject which began in the early fifties and has achieved
quite satisfactory progress especially for metallic structures. In recent years due to the
need for prolonging the lifetime of existing structures and the application of new
materials, especially polymer materials, it is still under vigorous development. This
paper begins from some early basic work, introduces the development of constitutive
relations from uni-axial stress state to multi-axial stress state, and methods for
calculating the creep life together with estimating it by upper and lower bounds. In an
attempt to assess the creep rupture process of fiber reinforced composites, an analytic
calculation of creep rupture lifetime of a bi-material 3-bar truss under vertical and
horizontal loads is presented as an example. Finally, subjects for future research are
mentioned.

1. Introduction

Creep rupture of a structure occurs after the creep deformation reaches a certain stage in
which the damage in the interior of the material accumulates to such an extent that the
structure can no longer carry the given load and fails, or the deformation is considered
as excessive. It is somewhat like the load carrying capacity in plasticity theory, but the
structure now fails after a prolonged time. The calculation and estimation of the failure
time, i.e. the lifetime of the structure under such a loading, is a problem of great interest.
It is noted that not only metals working under high temperature reveal creep
deformation, but even rock and earth media have creep deformation under certain
conditions[l]. For polymers and polymer composites, creep deformation is their basic
character; there have been a number of studies of creep rupture in polymer composites
in high speed aircraft covering[2], electronic packaging[3], underground piping[4] etc.

To study the lifetime of a body one must rely on experiment. Many tests under uni-axial
stress condition have long been carried out together with the microscopic examination of
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the ruptured specimen and the study of the mode of failure. It is well known that creep
deformation can he divided into three stages: in the primary creep stage, the material
deforms continuously under constant stress, however, the strain rate decreases gradually
due to the adjustment of internal deformation mechanisms. For metallic materials,
especially under high stress, this period may be rather brief, but it could be quite long
for polymers, Findley[5] has reported his 26-year creep tests on poly-(vinylchloride)
(PVC) and polyethylene (PE), the creep strain rate is still decreasing gradually as the
deformation continues. The secondary creep stage arises as the strain rate decreases to a
minimum and remains constant with the deformation growing steadily. The total
deformation at this stage is sometime used as a criterion to set the allowable lifetime of
the structure. For polymers, the later part of the primary creep stage may sometimes be
taken approximately as a steady state creep. Under low stress, the strain rate may
become zero and the deformation stop growing; the corresponding stress is known as the
endurance strength (often referred to as non-failure under cyclic or random loading). For
larger stress, after a certain amount of deformation, the strain rate increases with an
accelerating rate, leading to final rupture. This is the tertiary creep stage. For some semi-
brittle materials, such as ceramics and some polymers, brittle failure occurs and the
tertiary creep stage is negligible.

For high temperature applications in power plant piping, the secondary creep stage is
sometimes neglected. Wilshire[5] suggested that the idea of steady state strain rate
should be discarded, saying that it is actually the decreasing strain rate overtaken by an
increasing strain rate due to damage development that leads to final rupture, for creep in
brittle material one may consider that there is only a primary stage. The projection
concept and its modification have no secondary creep stage; they fit the experimental
data of high temperature CrMoV alloy steel very well with 4 or 3 parameters. On this
basis, Wilshire[5] also discusses the extrapolation of short time creep data to the long
time creep curve, emphasizing in so doing that the suitable stress-temperature regime
according to the relevant deformation mechanism should be taken care of.. However,
following traditional concepts, we shall use the three-stage division in the following and
be interested especially in the tertiary creep stage.
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It may be of interest to look at the above figures taken from Hayhurst[7] for some uni-
axial test results of A1-Mg-Si alloy steel at 210 °C. Fig. 1a shows that under lower stress,
the lifetime increases; in Fig. 1b, the failure strain also decreases with increasing lifetime.
This should mean that under lower stress both the strain and strain rate are small and the
practical creep failure strain may usually be small.

A number of tests have been carried out under multi-axial stress condition: thin-walled
tubes under different combination of stress conditions, tensile loading of notched plates,
bending of beams etc. Together with the research into the deformation mechanisms,
various criteria of rupture have been proposed: maximum principal stress, effective
shear stress, etc. Like the yield condition in plasticity theory, an isochronous rupture
surface, which represents equal lifetimes for different stress conditions, is used to
express the failure criterion. For polymer materials, since its deformation mechanism is
more complicated and the physical aging effect is more pronounced, results on multi-
axial stress tests are rather scarce.

In theoretical investigations, it has long
been recognized that the internal structure
of a material deteriorates under the secular
action of external load. Researchers have
tried to define the damage and sought for
the rule which links its accumulation to
structural failure. According to Golub[8],
the attempts began in the twenties known
in the literature as the linear cumulative
damage rule. Figure 2 gives the plot of
damage against the rupture time tR; they
are straight lines for different stresses. The
total damage is determined from a simple
summation, and fracture occurs when the
total damage reaches 1.

The continuum damage mechanics approach toward creep rupture analysis was first
proposed by Kachanov[9]. He related the deterioration of internal structure to the
degree of breakage of continuity, called , in the material. When the material
deteriorates from , it fails. It is now common to use the damage
parameter the damage accumulates from 0 to 1 for final failure. The

accumulation rule is a nonlinear one as shown in dashed lines in Fig.2. We shall dwell
on its recent development in the following. Section 2 will give the progress in
constitutive relations and some lifetime assessment methods for metallic material,
section 3 will concern polymer and polymeric composites. In an attempt to assess the
creep rupture process of fiber reinforced composites, we give an analytic calculation of
creep rupture lifetime of a bi-material 3-bar truss under vertical and horizontal loads as
an example in section 5. Finally we discuss future research topics.
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2. Constitutive Relations for Creep Rupture and Lifetime Assessment Methods for
Metallic Materials

2.1. UNI-AXIAL CONSTITUTIVE RELATIONS

The earliest macro-mechanical analysis on creep rupture is due to N. J. Hoff[10] who
analyzed a rod subjected to constant tensile load. He used a power type viscous flow
law

where the dot stands for time derivative, and B and n are material constants dependent
on temperature. He made a finite deformation analysis of a uniform rod under tension.
Considering incompressibility, so that the cross sectional area decreases and approaches
zero as the rod elongates, one obtains the rupture time . It is inversely proportional to
the initial strain rate

Kachanov[9] called such a scheme as viscous failure, saying that the deformation is
due to internal flow within the crystals in the material; it is suitable for low stress
condition. For higher stress, and considering the tertiary creep stage, he suggested the
idea of semi-brittle failure; this is due to the formation and propagation of cracks at the
grain boundaries against a background of growing creep deformation. Thus he
introduced the continuity parameter which is related to the now commonly used
parameter by . Eq.(l) may now be written as

There is in addition an evolution equation of

where A, v are material constants dependent on temperature; A can also vary with time
to reflect changes in internal structure due to aging or radiation. The damage evolution
equation in a generalized form was also given by Golub[8] as

where are parameters determined by experiment. Eq.(4) is the case
when With q = 0,it will be the equation given by Rabotnov[l l],and with =
0, it will be the equation given by Lemaitre and Plumtree[12]. They all follow the form

This is the form for the damage rate equation which Cocks and Leckie[13] discussed
from the viewpoint of damage micro-mechanisms.
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To include the primary creep stage, a factor would be attached to the r.h.s. of Eqs.
(3) and (4) respectively[14]. For constant stress they can be integrated for  from 0 to 1
to get the rupture time

Eqs.(3) and (4) are 1-dimensional constitutive relations for creep rupture.

The projection concept discards the secondary creep stage[6] and expresses the creep
strain by

The first term on the r.h.s represents the primary creep strain, and the second term the
tertiary creep strain. From the viewpoint of deformation mechanism, it is the
adjustment of internal structure without damage in the primary stage, while the
initiation of damage, developing very slowly at the beginning, together with its buildup,
form a continuous process in the later stages.

2.2. MULTI-AXIAL CONSTITUTIVE RELATIONS

To extend these equations to multi-dimensional stress state, researchers first changed
to the maximum tensile stress. After many investigations with the micro-mechanisms of
destruction, it was noted that the first stress invariant and the second deviatoric stress
invariant, i.e. the effective shear stress, all contribute to the evolution of damage for
different materials, it is now accepted to use a dimensionless function   so that

where is a homogeneous convex function of  of the first order. Under uni-axial
stress reduces to , eq.(9) goes back to eq.(3). The general form of can be written
as [7]

It is a linear combination of the maximum principal stress; the effective shear
stress; and  the mean normal stress; and  are weighing parameters with

The parameters are determined from tests, e.g. [7] gives for
Aluminium;  for pure copper; for

low alloy steel.

The more commonly used one is independent of  eq. (10) reduces to[15]
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Figure 3 shows an isochronous rupture
surfaces under plane stress for aluminium
and pure copper[15]. Recently, Trivandey
and Delobelle[16] made an extensive
experimental study of austenitic stainless
steel, and concluded that damage is both
time and strain dependent. However the
scalar or tensorial nature of damage is not
clearly proved. They suggested adding a
small contribution of the second principal
stress in

The damage evolution equation will now
be written as:

Eq. (9) and (12) are 3-dimensional constitutive relations for creep rupture. Eq.(9)
represents a normality rule similar to the theory of plasticity with the strain rate vector
normal to the isochronous rupture surface.

Researchers have also considered strain hardening, the creep strain rate can be expressed
as a function of stress and the history of creep strain:

where the are the deviatoric stress, q is the creep hardening variable. Because q
cannot adequately describe the recovery of material hardening after the stress change,
Murakami and Ohno[17] introduced a creep hardening hyper-sphere in the creep strain
space:

where and are the center and radius of the hyper-sphere with their own evolution
rules respectively. When g = 0, the values obtained after a given deformation history is
then used to get the creep hardening variable q :

where is a material constant specifying the rate of development of

2.3. LIFETIME ASSESSMENT METHODS

Using the above constitutive relations and the damage evolution equation together with
the equilibrium and continuity equations, one forms an initial value problem starting
with elastic solution as the initial condition, see e.g. [18]. Kachanov[9] has given
several interesting examples of brittle failure: tubes under internal pressure, pure
bending of a beam, a beam under concentrated load, a stretched plate with a hole. He
has investigated the propagation of the failure front; in his case it is the surface of =
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0. The examples show that the failure front initially propagates rather slowly, then the
rate of formation of the failed region increases, and in the last stage failure bears an
“avalanche” character. This shows that for a comparatively large portion of the lifetime
the structure may still resist the external load. This seems to be a common feature in
most of the other problems solved by numerical methods also. In [19] Kachanov has
given other solutions on the brittle fracture of a thin interlayer, both in plane strain case
and in the axisymmetric case under a central concentrated tensile load. There are a few
other examples, such as a thick wall cylinder, a rotating disk etc. solved analytically
(see e.g. [18]). They may be used as a check for numerical methods. However, one can
see that the solution for any practical structure will be very complicated and will rely
on numerical and other approximate methods. An iteration method is described in [18],
but it is the finite element method that is most frequently used, especially in the crack
propagation problems in creeping materials[20,21,22]. Recently Needleman[23] in his
review of the computational modeling of material failure has also discussed some of
these problems.

Approximate methods that give lower and upper bounds are also used in estimating the
lifetime of structure. They may be useful in the early design stage.

LOWER BOUND---Reference stress method. Leckie and Hayhurst[15] introduced a
reference stress which is defined as an uni-axial stress that causes a creep energy
dissipation rate equal to the average dissipation rate of the structure; from

where V is the volume of the deformed material of the structure, and is the energy
dissipation rate, we obtain the reference stress

Many examples show that is nearly independent of material constants. After being
calculated from an exact solution for a certain value of n, it may be used for all other
values of n. A reference rupture stress is then introduced which is the stress for a uni-
axial specimen to have the same rupture time as the structure. For kinematically
determinate structures, it can be used to get a lower bound for the rupture time. It is not
proved for other cases. For aluminium alloy and steel which rupture according to
effective shear stress, i.e.   = 0 in eq.( 11), the reference rupture stress has the
following form:

the corresponding rupture time is [15 appendix]:
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For structures like plates and shells, which collapse when the entire cross section
reaches yield stress,

where P is the external load, s the plastic limit load, is the yield stress.

UPPER BOUND. Ponter[24] gave some upper bounds for creep rupture life of
structures subjected to variable load and temperature. He based his derivation on
being a convex function. For constant load he gives:

He went on to give upper bounds for variable loads and temperature history. Cocks and
Leckie[13] have extended his results by considering the damage rate equation that can
be written in the form as eq.(6). Boyle and Spencer[18,Ch.9] have also discussed the
estimate of failure time from energy principles and given two examples. They show
that their simple estimates provide an indication of lifetime which can be adequate for
design purpose.

Liaw et al[25] have considered the influence of primary creep in the estimation of
lifetime. They conclude that for steam pipes under high temperature, the inclusion of
primary creep decreases the creep crack growth life. Thus the life prediction analysis
without including primary creep can lead to a non-conservative estimate of remaining
life of a steam pipe. They developed a life prediction method using time dependent
fracture mechanics which is not considered in this paper.

3. Constitutive Relations for Creep Rupture and Lifetime Estimation for Polymers
and Polymer Composites

3.1. CONSTITUTIVE RELATIONS

Although the phenomenal appearances and even the forms of constitutive relations may
look quite similar for metals and polymers, the micro-mechanisms of deformation and
rupture are quite distinct. For metals, the micro-mechanism occurs at the atomic scale;
for polymers it is on the molecular scale, due to its basic micro-structure being
extensively intertwined, cross linking long molecular chains. Disentanglement, rotation
of these chains and slipping between them give rise to deformation. The basic damage
mechanisms in polymers are crazing and shear cracking on the molecular scale. Even
for the crystalline phase in semi-crystalline polymers, dislocation motion on a
molecular (rather than atomic) scale may be a mechanism of deformation in this phase.
The deformation is usually larger, and the dependence on temperature and strain rate
cover a larger range. Due to its increasing field of application, the study of constitutive
relations for polymers is currently intensive, as can be seen from some of the recent
review papers[26-29]. Some updated studies will be given below.
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The works on constitutive relations may be grouped into two kinds of approaches:

1. Thermodynamic and statistical approach. Schapery[30] adopted the frame-work
of thermodynamics of unequilibrium processes, introduced internal state variables and
derived general constitutive equations for nonlinear viscoelastic composites from a
general potential function. However, there is little discussion of the physical mechanism
for the nonlinear time dependent behavior. Altenbach et al[31] also discussed
constitutive relations from the assumption of the existence of a potential. Chen[32]
considered a new relaxation mechanism of polymer deformation, and treated the
entanglements as a kind of fuzzy constraint due to the combined effects of cohesive
forces and steric hindrance. The anelastic dissipation was treated as a thermally
activated process, promoted by the thermodynamic force, for the conformation
reorganization of segments through the coordinated inner rotation and local slippage of
links. The static retardation dissipation was treated as a thermal-mechanical activated
anchoring-disanchoring-reanchoring process of the chain, and the scission of the primary
bonds as the chemical-mechanical activated process. She set up a visco-elastic-plastic
constitutive relation which covers several existing ones as its limiting cases. Chen et
al[33] further derived a unified three-dimensional constitutive relation suitable for
describing the relaxation and transition of polymeric materials under small or large
deformation. It reproduces yielding at small deformation, the softening effect within the
moderate deformation as well as the hardening effect at large deformation. Vujosevic
and Krajcinovic[34] considered a statistical model for the creep deformation and failure
of thermoset-resin. The model is a two-dimensional triangular central force lattice of
perfect geometry. Neighboring nodes are connected by elastic links of identical stiffness,
identical strength, identical length and identical activation energy. Within the framework
of the reaction rate theory, the bonds (links) of the lattice are viewed as “coupled
oscillators in a state of thermal vibration”. The bond rupture was treated as a random
process activated by spatially and temporally random thermal fluctuations. An estimate
of time to creep rupture was obtained. They suggest that it provides a foundation for the
formulation of a rational design model for the creep failure of resin specimens.

2. Simple rheological modelling. Most papers have used the differential
representation to avoid stress history dependence and to cope with nonlinear behavior.
This again can be divided into two types, depending on whether the rheological elements
are connected in series or in parallel.

In Series, this means that the strain is the sum of an elastic strain and a viscous or
visco-plastic strain,

Zhang and Moore[29] have reported an extensive series of uni-axial compression tests
on high-density Polyethylene (HDPE) used for buried pipes. They used true stress and
true strain to cover finite deformation. The model consists of an elastic spring in series
with six viscous dashpots to fit the experimental curves, so that:
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It can describe the primary and secondary creep stages over a range of stress and a time
range between 0.1 sec to sec. With 9 dashpots in series it can cover a time range up
to years. Findley[5] also used a series representation,

where and are functions of stress. Li and Dasgupta[3] used  and
= c sinh ) with a, b, c, d as material constants.

In parallel, this means the total stress is the sum of a elastic stress and a viscous or
visco-plastic stress, so that:

The rheological model used by Teoh et al[35] is shown in Fig.4; the right hand part is
the model in parallel, and it is further connected in series with a elastic spring on the left.
The applied stress is equal to the sum of elastic stress and effective stresses
The viscous element shown obeys a Eyring fluid flow law:

where is the elastic strain and is the
time dependent anelastic strain, K, B are
material constants. They have fitted it with
many kinds of polymers.

Raghagan et al[27] and Bardenhagen et
al[28] have used similar models, but the
viscous dashpots obey different viscous
flow laws. They also formally extend the
relations to three-dimensions and
discussed the anisotropic case.

3.2. FAILURE CRITERIA

The constitutive relations above, except that of Vujosevic et al[34], do not include
damage effects, thus do not represent the tertiary creep stage. To estimate lifetime, we
must attach failure criteria. One kind of failure criterion is the deformation limit. When
the deformation reaches that limit the material is said to fail. Another is by energy
fracture criterion. The one commonly used[27,35] is that the total elastic energy stored
in the resistive springs equals to the critical energy for fracture. Brueller’s[36] criterion
is for the stored deviatoric strain energy to reach a critical value. Mai et al[37,38,49]
have presented an Essential Work of Fracture as a failure criterion; they separated a
damaged body into a fracture process zone and the remainder. The total work is then
separated into the essential fracture work imported into the fracture process zone and the
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nonessential fracture work absorbed by the outer region. When a new damage (to be
specific a crack) surface is created, an energy rate G is released which will be the energy
input into the fracture process zone if the crack propagation is autonomy. So when the
generalized energy release rate reaches a critical value say the crack grows and leads
to material failure. The criterion was supported by tests on sheets and under plane strain.

There are many other works on crack and void growth in creeping material, they are
reviewed in the paper by Yang[39] in this Symposium.

3.3. CALCULATION OF RUPTURE TIME

Teoh et al[35] give a detailed calculation of rupture time with the rheological model of
Fig.4. Note, that and are the elastic and anelastic strain respectively, is the elastic
modulus along the main fiber, and is the time dependent anelastic modulus transverse
to the main fiber. The criterion of critical elastic stored energy is used for its rupture,
viz.

where is the input power, is the dissipated power,  is the elastic stored energy,
R is the critical value. According to Fig.4, we get

where is the elastic strain at rupture, ' is the anelastic strain at rupture. When is
constant, Eq. (28) can be integrated to get:

from which we get the anelastic strain at rupture to be

Since the applied stress does not change, , and since we may
substitute these into eq.(26) and integrate,

we get:

and
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When from which we get the rupture time as:

where

We see, when instantaneous failure,

when endurance strength.

4. An Example: Creep Rupture Analysis of a Bi-material Three-bar Truss

Figure 5 shows the three bar truss, in which bars 1 and 3 are elastic creeping material,
bar 2 is a purely elastic material. Their constitutive relations are respectively:

Bar 3 is the same as bar 1.
Case 1. Loaded vertically by P
This may be looked upon as the case when the purely elastic fiber is embedded in a visco-
elastic matrix subjected to a pull along the fiber. From symmetry, , equilibrium
gives:

where S1, S2, are cross sectional areas of bars 1 and 2 respectively. Compatibility yields:

At t = 0, the elastic response is:

Thus, the initial conditions at the beginning of creep deformation are:

For t > 0, substituting the constitutive equations (33) into eq.(35), we get:
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Integrating eq. (33)c from we get

Substituting back to eq. (37), we get an integral-differential equation:

Under initial conditions (36), Goncalves Filho[40] gets closed form expressions for
and after complicated calculations. Taking as failure

condition, we may divide the solution according to structural parameters into two
different situations:

with eq. (40)a as the critical situation. Here we have already neglected the primary creep
stage, further let v = n - 1 , expressions for are

For k1/k2 larger or less than (E1B/A)  – 1 (concerning the properties of the elastic
creeping material only) their responses are different. When k1/k2 is larger, it corresponds
to the elastic-creeping bars carrying more load, and damage will grow at an increasing
rate; when it is equal, the damages grow at a constant rate; and when it is smaller, at a
decreasing rate. Figures 6 and 7 [40] (with =  0.9) show some of the numerical
results of situation (b) for Titanium Aluminium alloy as the elastic creeping material,
with k1 / k2= 18 (above the critical situation of 13), n = 6.8, v = 5.8. The curves show
the beneficial effect of the stress redistribution process on the elastic creeping bar, the
lifetime of the 3-bar configuration is shown to be 230% of that without the elastic bar.
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These results are those of [40], corresponding to = 0. For the present case, the
magnitude of reflects the role of the matrix  with increasing k1/k2 gets smaller and
tends to be less than the critical value ( E 1 B / A ) – 1 , damage will grow in a decreasing
rate, and the lifetime will be prolonged and depend more on the elastic bar.

Case 2. Loaded horizontally by Q
This corresponds to the fibers being loaded transversely. Bar 1 is now under tension, bar
3 under compression while bar 2 is free from load under small deformation. From
equilibrium we have

Compatibility gives

At t = 0, elastic solution gives

therefore

After integration we have

or

When
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Fig.8 shows the damage vs. normalized time. It should be a lower bound, since when
finite deformation is considered, the elastic bar 2 will contribute and increase the life.
Chun and Daniel[41] have tested and analyzed the transverse creep behavior of a uni-
directional SiC/Al composite. They observed that during creep, a gradual stress transfer
takes place between matrix and fibers, followed by stress redistribution and stress
relaxation in the matrix, resulting in higher creep resistance. No lifetime was considered.

5. Concluding Remarks

We have given a rough survey on the present status of creep rupture theory, but have
really touched very little on structure, There are many conferences and symposia on
application to structures and the problems arising therein; readers can refer to their
proceedings. For example, IUTAM holds “Creep in Structures” every ten years,
University College, Swansea holds “Creep and Fracture of Engineering Materials and
Structures” every three years, and there are many others. Those presented above are also
far from complete. I shall make some final remarks as follows.

1. Aside from the theoretical works on creep rupture, for practicing engineers, there is
the problem of deciding the remaining life of an existing structure. On the one hand,
there are the questions of where to measure, and how to improve the precision of in-
situ measuring techniques[42]. On the other hand, there is the interpretation of the
measured values, which again relies on theoretical work; there are many such
problems cited in the symposia organized e.g. at Swansea [43].

2. Although the study on creep rupture has made quite a big progress in recent years,
there are many subjects that still need further investigations, such as how to extend
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the analysis to the 3-dimensional case, and how to include anisotropy induced by
finite deformation, Non-stationary loading, severe environmental effects especially
for polymers, and radiation effects etc. are important. There are problems of
modelling that will reduce the number of parameters and suitable for
computation[16,23]. For computer software see e.g. Chattopadhyay and Ghosh[44].

3. Crack growth in creeping material is one of the fundamental problems in deciding
lifetime; it is surveyed in [39] by Yang. I wish to mention one supplementary work
which is on the effect of crack tip shape on lifetime. Yokobori Jr. and Yokobori[45]
compared uncracked specimens to those with rounded and sharp ended notches.
They used three terms: being the fracture life, ti, the crack initiation life, and  the
crack growth life so that .For uncracked specimens, , while for
cracked specimens, is negligible. For specimen with a rounded hole, lies
between these extremes. This means that for specimens with no apparent defects, or
rounded holes, should be used to estimate .

4. For polymer materials, the study of the effect of physical aging is still important;
some important literatures in recent years have been surveyed in [26], others will be
found in [46].

5. For fiber reinforced composite, the response under compressive loading is an active
field of research, see e.g.[47].

6. When the mechanical behavior is understood, an optimization study may be carried
out, this has been recently surveyed by Zyczkowski[48].

Acknowledgement: The careful editing and correction in English made by Professor
G. Gladwell to the manuscript, and comments and typing of equations by Dr.
X.H.Chen are gratefully acknowledged.

References:

1. Kelly A., Cook, A. H. and Greenwood, G.W. (1978) Creep of Engineering Materials and of the
Earth, Royal Soc. London.

2. Brinson, L .C. and Gates, T.S. (1995) Effects of physical aging on long term creep of polymers and
polymer matrix composites, Int. J. Solids Structures, 32, 827-846.

3. Li, J. and Dasgupta, A. (1993) Failure mechanism models for creep and creep rupture, IEEE Trans. on
Reliability, 42, 339-353.

4. Otani, H. Phoenix S. L. and Petrina, P. (1991) Matrix effects on lifetime statistics for carbon fibre-
epoxy micro-composites in creep rupture, J. Mater. Sci. 26, 1955-1970.

5. Findley, W.N. (1987) 26-year creep and recovery of Poly(Vinyl-Chloride) and Polyethylene, Polymer
Engrg. Sci., 27, 582-585.



CREEP RUPTURE OF STRUCTURE                 265

6. Wilshire, B. (1991) Microscopic models and macroscopic constitutive laws for high temperature creep
and creep fracture of metallic and ceramic materials, in Cocks, A. C. F. and Ponter, A. R. S. (eds.)
Mechanics of  Creep Brittle Materials-2, Elsevier Sci. Publ., New York, pp. 112-123.

7. Hayhurst, D. R. (J972) Creep rupture under multi-axial states of stress, J. Mech. Phys. Solids, 20,
381-390.

8. Golub, V.P. Non-linear models of creep damage accumulation, in Cocks, A. C. F. and Ponter, A. R. S.
(eds.) Mechanics of Creep Brittle Materials-2, Elsevier Sci. Publ., New York, pp. 254-267.

9. Kachanov, L. M. (1961) Rupture time under creep conditions, in Radok, J. R. M. (ed.) Problems in
Continuum Mechanics, JIAM, 202-218.

10. Hoff, N. J. (1954) Approximate analysis of structures in the presence of moderately large creep
deformation, Q. J. Appl. Math. 12, 49-55.

11. Rabotnov, Yu. N. (1969) Creep Problems in Structural members, North-Holland Publ. Co.
Amsterdam.

12. Lemaitre, J. and Plumtree, A., (1979) Application of damage concept to predict creep-fatigue failures,
J. of  Engineering Materials and Technology, Trims. ASME, 101, 284-292.

13. Cocks A. C. F. and Leckie, F. A., (1987) Creep constitutive equations for damaged materials in Wu,
T. Y. and HutchinsonJ. W. (eds.) Advances in Applied Mechanics, .25, 239-295.

14. Othman, A. M. and Hayhurst D. R. (1990) Multi-axial creep rupture of a model structure using a two
parameter material model, Int. J. Mech. Sci. 32, 35-48.

15. Leckie, F. A. and Hayhurst, D. R. (1974) Creep rupture of structures, Proc. R. Soc. London A340,
323-347.

16. Trivaudey F. and Delobelle P. (1993) Experimental study and modelization of creep damage under
multi-axial loadings at high temperature, in Wilshire, B. and Evans, R. W. (eds,) Creep and Fracture
of Engineering Materials and Structures, The institute of  Materials, London, 137-147.

17. Murakami, S. and Ohno, N. (1982) A constitutive equation of creep based on the concept of a creep-
hardening surface, Int. J. Solids Structures, 18, 597-609.

18.     Boyle, J. T. and Spence J. (1983) Stress Analysis for Creep, Butterworths, London.

19. Kachanov, L.M. (1984) in Dvorak, G. J. and Shield, R.T. (eds.) Mechanics of Material Behavior,
Elsevier, Amsterdam, pp. 191-199.

20. Conway, J. B.(I967) Numerical Methods for Creep and Rupture Analysis, Gordon and Breach Sci.
Publ., New York, Ch.VIII Stress rupture analysis.

21. Singh, R. N. and Ramakrishnan, C. V. (1995) Fracture Behavior of creeping materials under biaxial
loading by finite element method, Engrg. Fracture Mech., 51, 637-648.

22. Hall, F. R. and Hayhurst, D.R. (1991) Continuum damage mechanics modelling of high temperature
deformation and failure in a pipe weldment, Proc. R. Soc. London A433, 383-403.

23. Needleman, A. (1994) Computational modelling of material failure, Appl. Mech. Rev. 47 no.6 part 2
S34-S42.

24. Ponter, A.R.S. (1977) Upper bounds on the creep rupture life of structures subjected to variable load
and temperature, Int. J. Mech. Sci. 79-92.

25. Liaw, P. K., Saxena, A. and Schaefer, J. (1997) Creep crack growth behavior of steam pipe steels:
Effects of inclusion content and primary creep, Engrg. Fracture Mech., 57,105-130.

26. Wang, R. (1996) A review on creep failure of polymer and polymer composite, in Abe,T. and Tsuta,T.
(eds.) Advances in Engineering Plasticity and its Applications, Pergamon Press, 43-52.

27. Raghavan, J. and Meshii, M. (1997) Creep rupture of polymer composites, Composites Sci. & Tech.
57,375-388.

28. Bardenhagen, S. G. , Stout, M. G. and Gray, G.T. (1997) Three-dimensional, finite deformation,
viscoplastic loading, Mechanics of composite materials, 31, 511-518.

29. Zhang C. and Moore I. D. (1997), Nonlinear mechanical response of high density polyethylene, Part I:
experimental investigation and model evaluation, Part II: uniaxial constitutive modeling, Potymeer
Engrg.and Sci., 404-413, 414-420.



266 R. WANG

30. Altennbach, H., Altenbach, J. and Zolochevsky, A. (1995) A generalized constitutive equation for
creep of polymers at multiaxial constitutive models for polymeric materials Mechanics of Materials,
25, 235-253.

31. Schapery, R. A. (1994) Nonlinear viscoelastic constitutive equations for composites based on work
potentials, Appl. Mech. Rev. 47 no.6 part 2, S269-S275.

32. Chen, X.-H. (1995) Statistical mechanics of fuzzy random polymer networks, Science in China Ser.A
v.38 (Eng. ed.), 1095-1104.

33. Chen, X.-H., Tong P. and Wang R. (1998) Non-equilibrium statistical thermodynamic theory for
viscoelasticity of  polymers, 7. Mech. Phys. Solids, 46, 139-152.

34. Vujosevic, M. and Krajcinovic D. (1997) Creep rupture of polymer: A statistical model, Int. J. Solid
Structures, 34, 1105-1122.

35. Teoh, S. H. Cherry, B.W. and Kausch, H. H. (1992) Creep rupture modelling of polymers, Int. J.
Damage Mech., 1, 245-256.

36. Brueller, O. S. (1981) Energy related failure criteria of thermoplastics, Polymer Engrg. and Sci. 21,
145-150.

37. Mai, Y. W. and Powell, P. (1991) Essential work of fracture and J-integral measurements for ductile
polymers, J. Polymer Sci.. Part B polymer physics, 29, 785-793.

38. Wu, J. and Mai, Y. W. (1996) The essential fracture work concept for toughness measurement of
ductile polymers, Polymer Engrg. and Sci. 36, 2275-2288.

39. Yang, T. Q. (1998) Rheological behavior and failure characteristics of viscoelastic solids with defects,
this volume.

40. Ganclaves Filho, O. J. A. (1995) Closed form solution for the isothermal creep rupture behavior of a
two bar structure under constant load, Int. J. Solids Structures, 32, 3087-3104.

41. Chun, H. J. and Daniel, A.J. (1997) Transverse creep behavior of a unidirectional metal matrix
composite, Mechanics of Materials, 25, 37-46.

42. Cane, B.J. and Aplin P. F. (1994) Creep life assessment methods, J. Strain Analysis, 29, 225-232.
43. Wilshire, B. and Evans, R. W. (1993) Creep and Fracture of Engineering Materials and Structures,

The institute of Materials, London.
44. Chattopadhyay, L. and Ghosh, R. N. (1996) CLIP computer software for creep life prediction of

engineering materials, Engrg. Fracture Mech., 54, 71-73.
45. Yokobori Jr., A. T. and Yokobori, T. (1993) A new concept on high temperature creep crack

initiation, growth and creep fracture life, in Wilshire, B. and Evans, R.W.(eds.) Creep Fracture of
Engineering Materials and Structures, The institute of Materials, London, 81-97.

46. Bradshaw, R. D. and Brinson, L. C. (1997) Physical aging in polymer and polymer composites: An
analysis and method for time-aging time superposition, Polymer Engrg. and Sci. 37, 31-44.

47. Veazie,D. R. (1997) Compressive creep of IM7-K3B composite and the effect of physical aging on
viscoelastic behavior, Experimental Mech. 37, 62-68.

48. Zyczkowski, M. (1996) Optimal structural design under creep conditions, Appl. Mech. Rev. 49, 433-
446.

49. Mai, Y.-W., Chen, X.-H. and Wong, S.-C. (1998) Fracture Characterization of Structure-Property
Relationship of Polymer Blends, book chapter for Polymer Characterization Techniques and Their
Application to Blends, Simon, G. P. (ed.), American Chemical Society, Washington, DC, to be
published.
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Abstract

Paper deals with damage development in plates made of materials which exhibit asymmetric
behaviour with respect to its deterioration (different tension and compression failure). Material
properties are assumed to be time dependent, and analysis is carried out within two time
periods: in the first damage is nucleated till macrodefect appearance, and in the second one
macrodefects are spreading until they span plate thickens. Ratio of these two time periods is
considered as safety margin of analysed structure.

1. Introduction

There are two characteristic features which are inherent to materials exhibiting time
dependent behaviour: accumulation of irreversible deformations and deterioration.
Both are interrelated, though for a long time they were treated independently. As many
theories of creep were pursued [1] the effects of time dependent growth of material
deterioration was described initially only in the form of so called damage summation
rules (Palmgren [2] and Miner [3] for fatigue, and Robinson for creep [4]). It was not
earlier than mid-fifties when it became notorious that both phenomena should be
encompassed within a uniform set of constitutive equations. It was mainly due to
Kachanov’s damage evolution law [5], and subsequently Rabotnov [6] who put both
damage and strain rates into the frame of so called ,,kinetic equations of creep”. Their
works were then followed by numerous authors (Hayhurst [7], Chaboche [8],
Murakami and Ohno [9], Krajcinovic and Fonseka [10] and others) and resulted in
extensive description of material behaviour related to damage growth in the frame of
Continuum Damage Mechanics which introduces a new state variable responsible for
material deterioration.

However, the behaviour of structures made of materials which exhibit above
properties received less attention. For engineering application it is of significant
importance to study the influence of time dependent phenomena like deformation and
deterioration upon overall behaviour of structures. With respect to structures’ safety
development of damage plays decisive role and has to be studied with reference to local
mechanisms of material deterioration.
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In the present paper the effect of compressive stresses upon the creep failure of
clamped and simply supported plates is analysed. A combined theory by Hayhurst [7]
and Lemaitre [11] is used here to describe damage evolution law, whereas a non-
stationary creep theory coupled with damage is used to describe structure’s
deformation. The main interest is focused on analysis of progressive development of
damage which results in three distinctive stages corresponding to nucleation of first
macro-crack, its propagation throughout structure's body, and to the formation of
collapse mechanism. The corresponding times limiting these periods are denoted as

and and referred to as times of First Crack Appearance (FCA), Through-body
Crack Appearance (TCA) and Time of Structure Collapse (TSC), respectively.
However, the analysis in third period will not be carried out here as a
combine approach of Fracture Mechanics and Continuum Damage Mechanics should
be applied in this period.

Time can be considered as a lower limit of structure’s safe exploitation and the
ratio can be therefore used as an approximation of safety margins.

The paper is in sequel to [12] and [13] but here, in contrast to these papers, the
process is considered for time i.e. for period after FCA.

2. Constitutive equations

Time dependent deformations of structure’s body are described by steady-state creep
theory coupled with damage variable. As elastic deformations are assumed to be non-
negligible, the non-stationary creep-damage theory governs the structure’s behaviour
through the following set of differential equations:

where: A and m - damage evolution law constants, - parameter which characterises
failure mechanism mode and - maximal positive and minimal
negative principal stresses, h - parameter responsible for direct influence of negative
principal stress upon deterioration process , and < > denote Macauley
brackets.

The case of . and Eq. (4) defines so called non-unilateral behaviour of
materials, which respond differently for tensile and compressive stresses. For h = 1
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material is equally sensitive to tension and compression independent of value of
and is called bilateral one.

A material described by the simplified version of Eq. (4), used by many authors

for which direct effect of compressive stress is neglected, will be called a unilateral
one.

The different behaviour of above materials can be illustrated by the shape of
isochronous curves, which are loci of different principal stresses combination to yield
failure at the same time. In Fig. 1 the influence of is shown for a unilateral material.
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Two limiting cases and correspond to two different failure modes: inter-
and trans-crystalline ones, respectively. The case of reduces Eq. (5) to that of
classical Kachanov-Rabotnov theory of  brittle creep failure [5,6], whereas the case of

yields Huber-Mises ellipse.
The effect of h parameter is demonstrated by Fig. 2 which shows isochronous

curves for Finally, combined effect of both and h is shown in Fig. 3: for
and m = 2  different values of h give different curves within limit curves of

unilateral and bilateral materials (shown by dashed lines).

3. Numerical examples and results

The rectangular clamped and simply supported plates with sides length equal to 1.0
and 2.0 m and thickness of 0.10 m under uniform pressure were analysed for different
values of h equal to 0, 0.5 and 1.0. Parameter was set to two values of 0.5 and 1.0
(in the case of the direct effect of compressive stress is cancelled, c.f. Eq. (4)).
Remaining material constants are: MPa,

(Ti-6Al-2CR-2Mo alloy at tempera-
ture 675 K).

Immediate goal of the analysis carried out by means of the Finite Element
Method for structure discretisation and Euler's procedure for time integration is
evaluation of FCA and TCA times, and - in particular - their ratio . In the
computer code developed by authors, that enables analysis of thin plates as well as
those of moderate thickness, the layered degenerated isoparametric eight-node
Serendipity shell elements with reduced integration are employed. Ten layers and two-
point Gaussian quadrature for volume integration were adopted. The time (FCA) is
identified with condition fulfilled in any layer and Gaussian point. When this
condition is reached in all ten layers of a Gaussian point, the time is referred to as
(TCA). For time calculation is performed for modified structure geometry i.e.
excluding integration points in which
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The results were then transformed by a computer program which drew the lines
connecting consecutive points in which condition was fulfilled to provide
visualisation of plates cracking process for time

Results of calculations are given in Table 1 (clamped plates) and Table 2 (simply
supported plates).

The final stages of plates cracking, corresponding to above Tables, are shown in
Figs 4 to 7 where the location of FCA and TCA are depicted by and
respectively.

4. Conclusions

The results of analysis has shown considerable influence of compressive stress upon
creep rupture behaviour of analysed structures and that the process for clamped and
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simply supported plates differ quantitatively though they exhibit similarity with respect
to the influence of parameters and h.

It is seen from Table 1 and 2 that for higher value of a both times FCA and TCA
decrease. But in all cases, independent of value of h, the ratio of is higher for
higher value of . It means that for materials which exhibit inter-crystalline failure
mode rather then trans-crystalline one, the safety margin is greater. This observation is
valid also for materials which are compression insensitive (unilateral materials).

For non-unilateral materials the influence of compressive damage is sound when
compared with unilateral materials. Times of FCA and TCA are always shorter (for
both, clamped and simply supported plates) non-unilateral material; and higher the
value of h greater FCA and TCA times reduction. The same applies to the safety
margin of , which decreases with higher contribution of compressive damage
(higher value of h). Therefore, if material exhibits non-unilateral behaviour (what
should be observed by experimentally backed up isochronous failure curves) - this
phenomenon has to be taken into account in structural analysis.

Boundary conditions may have considerable influence on structure’s behaviour,
too: the safety margin for clamped plate can be almost twice as much as for simply
supported one. This observation is obvious in the light of cracking networks shown in
Figs 4 to 7. In all analysed cases the fracture process starts in the most stressed
regions. For clamped plates the cracks appear first on the upper surface of the plates
along its edges, and then tend to become simply supported ones; in consecutive stages
critical cross-cracking is developed. For simply supported plates this critical cracking
starts immediately after FCA.

5. References

[1] Garofalo, F., Fundamentals of creep and creep-rupture in metals, MacMillan, New York, 1965.
[2] Palmgren, A., Die Lebensdauer von Kugellagem, Z. Ver. Deutsch Ing., 68, 1924.
[3] Miner, M.A., Cumulative damage in fatigue, Trans. ASME, J. of Applied Mechanics, 12, pp A159-A164,

1945
[4] Robinson, L. R., Effect of temperature variation on the creep strength of steels, Trans. ASME, 60, pp 253-

259, 1938.
[5] Kachanov, L. M., On the time to rupture in creep conditions (in Russian), Izv. Ak. Nauk SSSR OTN, 8, pp

26-31, 1958.
[6] Rabotnov, Yu.N., Creep problems in structural members. North Holland Publ. Co., Amsterdam, 1969.



DEVELOPMENT OF NON-UNILATERAL DAMAGE FIELD IN... 273



274 A. BODNAR, M. CHRZANOWSKI



DEVELOPMENT OF NON-UNILATERAL DAMAGE FIELD IN... 275



276 A. BODNAR, M. CHRZANOWSKI

simply supported plates differ quantitatively though they exhibit similarity with respect
to the influence of parameters and h.

It is seen from Table 1 and 2 that for higher value of both times FCA and TCA
decrease. But in all cases, independent of value of h, the ratio of is higher for
higher value of It means that for materials which exhibit inter-crystalline failure
mode rather then trans-crystalline one, the safety margin is greater. This observation is
valid also for materials which are compression insensitive (unilateral materials).
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compared with unilateral materials. Times of FCA and TCA are always shorter (for
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margin of , which decreases with higher contribution of compressive damage
(higher value of h). Therefore, if material exhibits non-unilateral behaviour (what
should be observed by experimentally backed up isochronous failure curves) - this
phenomenon has to be taken into account in structural analysis.

Boundary conditions may have considerable influence on structure’s behaviour,
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supported one. This observation is obvious in the light of cracking networks shown in
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Abstract. - The critical states of cylindrical shells with initial imperfections
having plastic and creep deformations are investigated. These states are defined as
the load values at which the shell deflections rise sharply. The method of successive
loading for which the reaction of the shell to small loading steps is studied and the
process of deformation is considered is used. Some experimental results for shells
with irregular imperfections are given.

1. Introduction
The actual structures feature different kinds of initial imperfections and
inhomogeneity of material properties. These factors are caused by
production operations or by diverse operational conditions.

Their effect on the structural behavior under load is governed by the
degree of inhomogeneity they give to the structure, and it can be
considerable. New effects occur under plastic deformation and creep [1-3].
The inhomogeneity of material properties is determined by residual stresses
or the parameters that characterize the deformation anisotropy of the
material which emerges in the process of complex loading in the plastic
domain. If the flow theory with anisotropic kinematic hardening is used,
these parameters are residual microstresses [3, 4].

On the other hand, the geometrical imperfections and residual stresses
are included in the basic theoretical models whereby the behavior of
nonlinear systems under plastic deformation and creep is studied [2, 5, 6].

In this article the deformation and critical states of shells with shape
imperfections under plastic deformation and creep are investigated. Some
test results are presented.To be specific, we shall consider cylindrical shells.
2. Critical states of shells

Below are the results of investigation of the deformation and critical
state of elastoplastic shells with initial imperfections [3,7]. To be specific,
cylindrical shells loaded with the external pressure q and axial compressive
force T are considered.

The equations describing the stressed-and-strained state of the shell are
obtained using the variational principle of virtual displacements [8].
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The method of successive loading is used. This method is a version of
the methods of parameter continuation of solution where the loads are
taken as the parameters [3,9-12].

According to this method, the shell loading process is divided into
successive loading series. The increments of the loads acting on the shell
and (i is the step number) on each loading step are small, and the
stressed-and-strained state on each loading step is determined. The
equations used for investigation of the shell behavior make it possible to
determine the increments of the radial displacement and other components
of the stressed-and-strained state on each loading step. These increments
are added together.

In these investigations the deformation theory of plasticity is used, the
relationships for this theory being formulated in terms of the stress

increments and strain increments The increments of the radial
displacement being determined are added together, and

The calculations for specific initial imperfections are performed.The
critical state is defined as the load value at which the shell deflections
increase sharply [3,13]. This situation is shown schematically in Fig.l. For
one load q or T the critical state is determined by the limiting point A, and
for two loads it is determined by the limiting surface.

Below are the results of numerical analysis of the effect of initial
imperfections on the deformation and critical states of the shells.

Based on the above relationships, one can calculate the stressed-and-
strained state of a shell at the given level of loads. Increasing the loads,
one can find such value there of at which the shell deflection rises sharply.
This corresponds to the critical state.
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Fig.2 shows the critical stresses of the shells under external pressure
with regular (dashed curves ) and irregular ( solid curves ) fields of initial
shape imperfections. These types of imperfection are shown at the top
of the figure. The regular initial imperfections coincide with the shape at
which the carrying capacity of shells without imperfections reaches its
limit. The irregular initial imperfections impart higher rigidity to the shell
and thus the critical loads for such shells are higher.

It may be assumed that it is possible to set up fields of irregular
shape imperfections such that the critical loads do not decrease
and even increase in comparison with those for shells without
imperfections.

A shell undergoing initial deflection is accompanied by the hardening of
the material. The degree of hardening varies along the cross-sectional circle
of the shells as does the change in the initial deflection. The computational
methods and algorithms developed allow for these circumstances. Fig. 3
depicts the dependence of dimensionless critical load on for the
elastoplastic cylindrical shell with the irregular shape imperfections shown
on the lower left. The dashed and solid curves correspond to the analysis
of the shell without and with allowance for the uniform hardening of the
material, respectively. The symbols * show experimental results. In Fig. 2,
3, 4 captions and below R, h, L are the radius, thickness and length of the
shell, respectively.

Fig. 4 depicts the schemes that characterize the development of the
deflections of the shell with the shape imperfections shown at the top of the
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figure. As in Fig. 3, the solid and dashed curves correspond to analyzing
the shell with and without allowance for the nonuniform hardening.

Let us present some experimental results [3,7].
Fig. 5 depicts calculated and experimental results for three types of

shells under external pressure. The shells are made of the AMG-6m
aluminum alloy. The initial imperfection is shown at the top of the figure.
The solid curves show the calculated results, and the dashed curves
approximate the experimental data. The shell with R/h=150  exhibited no
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plastic deformation. There is larger difference between the calculation and
the experiment for the R/h=150 shell. This may be explained by
a significant change in the shape of the shell under loading. In Fig. 5 q* is
the same as in Fig. 3.
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Fig. 6, 7 show the results of the calculation of the critical load and
experimental data for shells with irregular initial defection under axial
compression and external pressure. The numbers in Fig. 6 indicate the shell
numbers.

The dashed curve in Fig. 6, 7 is a part of the Mises ellipse that separates
the elastic of deformation from the plastic one. In Fig. 6 the loads were
varied proportionally, and in Fig.7 the loads were varied proportionally
too or loading paths were piecewise linear (for two loadings).

A comparison between the calculations and the experiments shows that
the computational methods and algorithms developed are suitable for
describing the behavior ( deformation and critical states ) of elastoplastic
shells with shape imperfections.
3. Basic equations for structures with creep
To be specific again, we shall consider cylindrical shells under creep. For
the material the hypothesis of hardening and the equations of state in the
form [1]

together with the power law are used. Here, and are
creep velocities, creep deformations and stresses intensity.

The plastic deformation is described using the relationships of the flow
theory with anisotropic kinematic hardening. This theory is convenient for
the analysis of complex loading. The equation for the loading surface is

where are the stress deviators and are the residual microstresses.
c and may be expressed as follows [3,4]

where are the plastic deformations, is the function that allows for
Baushinger's effect, is Lode's parameter and is the yield point.

With a sufficient degree of accuracy we may assume that

The superscripts + and - denote the values of the yield point in tension
and in compression, respectively.

The values of for different loading paths are given in [3,4]. Finally
we have

where are the specific functions for different complex
loading paths.

Applying for the description of plastic deformation the relationships
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If in (3.19), (3.22) we put the plastic strains equal to zero
we shall obtain the equations given in [15].
4. Buckling of shells under creep
The critical state of structures under creep is determined by critical time it
takes for the structure to fail.

The approach to studying the time evolution of initial shape
imperfections is well defined and has received wide acceptance in studying
the creep buckling of such structural elements as shells, plates, and beams
[1,6,14,16]. When studying the creep, the loads are constant. The time at
which the deflection exhibits a sharp increase is the critical time. Each load
level is characterized by its own critical time.

Let us present some results of the analysis of a shell under internal
pressure and compression based on the equations given in section 3.

We shall use the power creep law at n=3. The shell with initial
deflection is made of the AMG-6m aluminium alloy. Fig. 8 shows
the curves that determine the time evolution of the deflection at different
values of the internal pressure q. At the moment of buckling the velocity of
radial displacement tends to infinity. If the axial load is constant, the
internal pressure has a reinforcing effect.

Curves 1,2, 3 correspond to the values of q equal to zero,
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Shown in Fig. 9 in the three-dimensional coordinate system
is the surface determining the critical state of the shell under creep for

the given initial deflection [17].
In the calculations the deflection was specified as

where m and n are the numbers of waves under buckling in the axial and
lateral directions. During the calculations the convergence with respect to
time step was examined. At and the corresponding
values of deflection differ by less than 5 percent [14].

If the plastic strain is allowed for, the effect of internal pressure
undergoes a qualitative change: with increasing pressure and constant axial
load the critical time shortens. When calculating the critical time, in
addition to the proportional loading where ( path 1),
complex step loading paths were realized as well ( for example, increasing
the compressive force beyond the yield point followed by varying the loads
proportionally in the plastic domain of
deformation (path 2)). To determine the instantaneous plastic
deformations for different complex loading paths, the flow theory with
anisotropic kinematic hardening [3,4] is used.

In Fig. 10 the loading paths and Mises ellipse are shown at the top right
of the figure. The buckling surface is also shown. The solid lines
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correspond to the calculation in the case of elastic deformation, the dashed
lines correspond to allowing for plastic deformation under complex loading
for path no 1. The shell is made of the AMG-6m aluminium alloy.

Loading path no 1 gave a lower value of the critical time in comparison
with loading path no 2. Allowing for plastic deformation has an
insignificant effect on the value of the critical time for the specific shells
considered above. Similar results were obtained when studying the creep
buckling of beams [18].
5. Conclusions
The results of the investigation described above show a great diversity of
phenomena that are due to the effect of initial imperfections on structural
behavior. This effect can be significant.

Of great importance is the development of a database containing data
on different structural initial imperfections which are used in the design of a
variety of structures of modern engineering [19,20].

Such studies are of importance for the development of optimum designs
and choice of optimum technologies. It is possible to set up special shape
imperfections deliberately in order to increase the carrying capacity and
service life of structures.
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