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Preface
This book consists of six articles that came out of the following eight lecture series given

at the NATO Advanced Study Institute (ASI) “Combinatorial Optimization: Methods

and Applications” held at Université de Montréal on June 19 – 30, 2006:

Gérard Cornuéjols

(Carnegie Mellon University, USA)

Mixed integer programming

Sanjeeb Dash

(IBM Thomas J. Watson Research Center, USA)

Mixed integer rounding cuts and cyclic group polyhedra

Yury Kochetov

(Sobolev Institute of Mathematics, Russia)

Facility location problems. Discrete models and local search methods

Bernhard Korte; substituted by Stephan Held after the first lecture

(Forschungsinstitut für Diskrete Mathematik, Germany)

Making chips faster

Gleb Koshevoy

(Russian Academy of Sciences, Russia)

Discrete convexity and its applications in combinatorics

Shmuel Onn

(Technion - Israel Institute of Technology, Israel)

Convex discrete optimization

Dieter Rautenbach

(Institut für Optimierung und Operations Research Universität Ulm, Ulm, Germany)
Optimization and timing in VLSI design

Jens Vygen

(Forschungsinstitut für Diskrete Mathematik, Germany)

Combinatorial optimization in VLSI placement and routing

The six articles are ordered alphabetically by the last name of their first author. The

article by Nannicini et al. has been written in 2010 as a follow-up to the lectures given

by Cornuéjols at the ASI. The article by Onn is a reprint of his monograph published by

Springer in Encyclopedia of Optimization 2009, which follows the outline of his lectures
given at the ASI. The remaining four articles also follow the lectures given at the ASI,

but they have been updated in 2010.
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Mixed Integer Rounding Cuts and
Master Group Polyhedra

Sanjeeb DASH 1

IBM T.J.Watson Research Center, New York, USA

Abstract. We survey recent research on mixed-integer rounding (MIR) inequalities
and a generalization, namely the two-step MIR inequalities defined by Dash and
Günlük (2006). We discuss the master cyclic group polyhedron of Gomory (1969)
and discuss how other subadditive inequalities, similar to MIR inequalities, can be
derived from this polyhedron. Recent numerical experiments have shed much light
on the strength of MIR inequalities and the closely related Gomory mixed-integer
cuts, especially for the MIP instances in the MIPLIB 3.0 library, and we discuss
these experiments and their outcomes. Balas and Saxena (2007), and independently,
Dash, Günlük and Lodi (2007), study the strength of the MIR closure of MIPLIB
instances, and we explain their approach and results here. We also give a short proof
of the well-known fact that the MIR closure of a polyhedral set is a polyhedron.
Finally, we conclude with a survey of the complexity of cutting-plane proofs which
use MIR inequalities.

This survey is based on a series of 5 lectures presented at the Séminaire de
mathématiques supérieures, of the NATO Advanced Studies Institute, held in the
Université de Montréal, from June 19 – 30, 2006.

Keywords. Integer programming, cutting planes, subadditive inequalities, group
polyhedra, proof complexity

1. Introduction

Over the last 10 – 15 years, cutting planes have emerged as a vital tool in mixed-integer
programming. We call a linear inequality satisfied by all integer points in a polyhedron
P a cutting plane (or cut) for P. Most commercial software which solve mixed-integer
programs, such as ILOG-CPLEX [1] or XPRESS-MP [2], use sophisticated algorithms to
find cutting planes and combine them with linear programming based branch-and-bound
in a branch-and-cut system. There is a lot of literature on problem-specific cutting planes;
in the context of the traveling salesman problem (TSP) for example, comb inequalities
are very useful in solving TSP instances to optimality. In this survey, we will mainly
discuss cutting planes for general (mixed) integer programs. That is, we will not assume
any underlying combinatorial structure. In such cases, the mixed-integer rounding (MIR)
inequalities (or MIR cut) and the closely related Gomory mixed-integer (GMI) cuts form
the most important class of cutting planes.

1IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA; E-mail: sanjeebd@
us.ibm.com.
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The GMI cut was derived by Gomory in 1960 [3]. After some initial limited experi-
mentation, these cuts were hardly used to solve mixed-integer programs for a long time.
One exception is the paper of Geoffrion and Graves [4] in 1974 who described a success-
ful combination of GMI cuts with LP based branch-and-bound to solve MIPs. In particu-
lar, they used a “hybrid branch-and-bound/cutting-plane approach” where “the cuts em-
ployed are the original mixed integer cuts proposed by Gomory in 1960, and are applied
to each node problem in order to strengthen the LP bounds.” They used the above ideas to
solve a pure 0-1 integer program with several hundred binary variables. Some of the im-
plementation ideas in this paper anticipate the (independent) work of Balas, Ceria, Cor-
nuéjols and Natraj [5], who performed a systematic study of GMI cuts and popularized
them as a tool for general mixed-integer programs in the 1990s. See [6] for additional
historical information. Subsequent computational studies [7] confirmed the usefulness of
the GMI cut for practical mixed-integer programs.

Nemhauser and Wolsey [8, p. 244] introduced mixed-integer rounding inequalities,
or cutting planes that can be produced by what they call the MIR procedure. These au-
thors later [9] strengthened and redefined the MIR procedure and the resulting inequal-
ity; see [10] for a discussion on the development of MIR inequalities. They also showed
that the MIR inequality, the GMI cut, and the split cut were equivalent. Split cuts were
defined by Cook, Kannan and Schrijver [11], and are a special case of the disjunctive
cuts introduced by Balas [12]. Marchand and Wolsey [13] later showed that many cuts in
the literature are special cases of the MIR cut. They also computationally established the
usefulness of the MIR cut; the MIR cuts in their experiments are different from the GMI
cuts used in [5, 7]. The definition of the MIR cut we use in this paper is equivalent to the
one in [9], though our presentation is based on [14]. By the late 1990s, the importance
of the GMI cut and the MIR cut in solving mixed-integer programs was clear, and these
cuts have become a standard feature of major commercial MIP solvers.

Gomory [15] introduced group relaxations of integer programs. Some computa-
tional studies of group relaxations can be found in White [16], Shapiro [17], and Gorry,
Northup and Shapiro [18]. The latter paper contains a study of a group relaxation based
branch-and-bound algorithm. After some initial work on this topic, by the mid-1970s,
group relaxations were not viewed as a central technique to solve integer programs
(see [19]). In his important work on polyhedral properties of group relaxations, Go-
mory [20] studied corner polyhedra (the convex hull of solutions of group relaxations)
and the related cyclic group polyhedra. He highlighted the role of subadditive functions
in obtaining cutting planes for corner polyhedra and for MIPs, and derived the GMI cut
for pure integer programs from a facet of the master cyclic group polyhedron (MCGP).
GMI cuts for mixed-integer programs can similarly be derived from the mixed-integer
extension of the MCGP; see Gomory and Johnson [21]. The MCGP has a rich polyhedral
structure and it is natural to ask if it has other facets that would lead to useful cutting
planes for mixed-integer programs. We call such cuts group cuts. Following recent work
on this topic by Gomory, Johnson and coauthors in [22] and [23], cyclic group polyhedra
and group cuts are an active area of study; see [10, 24–29].

An active research topic is the computational study of the strength of closures (or
elementary closures) of different families of cutting planes. For a family of cutting planes
F , and a polyhedron P, the closure is the set of all points in P satisfying the cutting
planes in F . Chvátal [30] rediscovered Gomory cuts (we call them Gomory – Chvátal
cuts (GC) in this paper) and initiated the study of the Chvátal closure, i.e., the closure
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with respect to Gomory – Chvátal cuts. A computational study of the Chvátal closure can
be found in a recent paper by Fischetti and Lodi [31]. They framed the problem of sep-
arating a point from the Chvátal closure, or equivalently, of finding a violated GC cut,
as an MIP (such an MIP can also be found in Bockmayr and Eisenbrand [32]). See [33]
for related work on verifying that an inequality has Chvátal rank 1 or 2. Fischetti and
Lodi used a standard MIP solver to find violated GC cuts and approximately optimized
over the Chvátal closure of MIP instances in the MIPLIB 3.0 problem set. This proce-
dure is computationally intensive, but yields strong bounds for many of the pure integer
instances in MIPLIB, in contrast to using Gomory cuts derived from optimal simplex
tableau rows, as attempted in earlier papers on this topic. Independently, Bonami and
Minoux [34] approximately optimized over the closure with respect to lift-and-project
cuts for 0-1 MIP instances from MIPLIB 3.0. Recently Bonami et al. [35] optimized over
the closure of projected GC cuts for the mixed-integer instances from MIPLIB using
an MIP solver to find violated cuts. GC cuts and lift-and-project cuts are both special
cases of split/MIR cuts. Motivated by the above work, Dash, Günlük and Lodi [10] and
independently, Balas and Saxena [36] approximately optimize over the MIR closure of
MIP instances, and show that a large fraction of the integrality gap can be closed in this
way for MIPLIB 3.0 instances. However, it takes (in these papers) much more time to
optimize over the closures above than to solve the original MIP (with few exceptions, as
noted in [31, 36]). This is not surprising as it is NP-hard to separate an arbitrary point
from the Chvátal closure [37], or from the split closure [38] (though one can solve an LP
to find a violated lift-and-project cut).

Besides their usefulness in practice, cutting planes have some very interesting the-
oretical properties. Many statements with a combinatorial flavor, such as “the maximum
size clique in a specific graph G has fewer than 10 nodes,” can be proved by a Gomory –
Chvátal cutting-plane proof, or a sequence of GC cuts, where each one is obtained from
some original constraints modeling the combinatorial problem and the previous GC cuts.
This is a consequence of Gomory’s result [39] on the finite termination of his cutting
plane algorithm for solving integer programs. Pudlák [40] showed that for 0-1 integer
programs without integer solutions, GC cutting-plane proofs certifying their infeasibility
have exponentially many cuts in the worst case. A similar result for MIR cutting plane
proofs was recently proved in [41].

In this paper, we survey recent work on MIR cuts and cyclic group polyhedra. We
start off with a simple extension of MIR cuts, namely the two-step MIR cuts in Dash and
Günlük [25], a parametric family of group cuts. We then discuss fundamental properties
of Gomory’s cyclic group polyhedra, including Gomory’s characterization of the convex
hull of nontrivial facets of these polyhedra in Section 3. We further discuss some impor-
tant facets of these polyhedra, and their relationship to subadditive functions, and to valid
inequalities for mixed-integer programs. We move on (in Section 4) to a discussion of
the MIR closure of a polyhedral set, and present a short proof that the MIR closure is a
polyhedron, based on (but different from) a recent proof in Dash, Günlük, and Lodi [10].
This result follows from the result of Cook, Kannan and Schrijver [11] that the split clo-
sure of a polyhedral set is a polyhedron. We also present the MIP model from [10] to find
violated MIR cuts. In Section 5, we discuss computational work on using cyclic group
polyhedra to solve integer programs. We discuss recent studies on the computational ef-
fectiveness of two-step MIR cuts in Dash, Günlük and Goycoolea [24], and interpolated
group cuts in Fischetti and Saturni [42]. We also discuss computational studies of the
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strength of the MIR closure. Finally, in Section 6, we discuss a recent result from [41]
that shows that an MIR cutting plane proof certifying that an infeasible integer program
has no integral solutions can have exponentially many cuts in the worst case.

2. The MIR Inequality and Extensions

Consider the set

P = {v ∈ Rl, x ∈ Zn : Cv + Ax = d, v, x ≥ 0, x integer}.

By a mixed-integer program, we mean the problem of minimizing a linear function
gT v+hT x subject to (v, x) ∈ P, where g ∈ Rl, h ∈ Rn. Throughout the paper, we represent
matrices by A, B,C,G or H, and polyhedral sets by P or Q (with superscripts when ap-
propriate). We denote the continuous relaxation of P by PLP, and the convex hull of P by
conv(P). We will study valid inequalities for P, or (equivalently) cutting planes for PLP.
We assume that all numerical data is rational. Let

Q =
{
v ∈ R|J|, x ∈ Z|I| :

∑
j∈J

c jv j +
∑
i∈I

aixi = b, v, x ≥ 0
}
,

where the equation defining Q is obtained as a linear combination of the equations defin-
ing P, and I and J are index sets of the integer/noninteger variables. In other words,
a = λT A, c = λTC and b = λT d for some real vector λ of appropriate dimension. As
P ⊆ Q, valid inequalities for Q yield valid inequalities for P. For a valid inequality de-
rived in this way, we will refer to

∑
j∈J c jv j +

∑
i∈I aixi = b as its base equation. Finally,

for a number v, let v̂ stand for v − �v�, the fractional part of v.

2.1. The MIR Inequality

There are many equivalent ways of defining the MIR inequality; see [10]. The presenta-
tion here is based on the presentation in the book [14] by Wolsey. Define

Q1 = {v ∈ R, z ∈ Z : v + z ≥ b, v ≥ 0}.

The basic mixed-integer inequality, defined in [14] as

v + b̂z ≥ b̂�b�, (1)

is valid and facet-defining for Q1.

Lemma 1. conv(Q1) = {v, z ∈ R : v + z ≥ b, v + b̂z ≥ b̂�b�, v ≥ 0}.

Proof. The result is trivial if b̂ = 0; so assume b̂ � 0. Let Q′ be the set on the right-hand
side of the equation in Lemma 1. Let (v, z) ∈ Q1. If z ≥ �b�, then v ≥ 0 implies that
v + b̂z ≥ b̂�b�. If z ≤ �b�, then v + z ≥ b implies that

v ≥ b̂ + �b� − z ≥ b̂ + b̂(�b� − z) = b̂(�b� − z).

S. Dash / Mixed Integer Rounding Cuts and Master Group Polyhedra4
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Figure 1. The basic mixed-integer inequality

Therefore, Eq. (1) is a valid inequality for Q1 and conv(Q1) ⊆ Q′. On the other hand,
the extreme points of Q′ are (0, �b�) and (b̂, �b�), given by the intersections of the first
and third inequalities with the second inequality. Both these points lie in Q1, and thus
Q′ ⊆ conv(Q1).

In Figure 1(a), we depict the points in Q1 by horizontal lines. In Figure 1(b), the half-
plane above the dashed line represents Eq. (1), and contains the shaded regions which
are Q1 ∩ {z ≤ �b�} and Q1 ∩ {z ≥ �b�}. If b is not integral (i.e., b̂ � 0), then the point
(v̄, z̄) = (0, b) violates the basic mixed-integer inequality.

An approach to deriving valid inequalities for more general sets defined by a single
inequality is to combine variables to get a structure resembling Q1. For example, consider
Q, and a set S ⊆ I. We can relax the equation defining Q by rounding up the coefficients
of xi for i ∈ I \ S , and dropping continuous variables with negative coefficients to obtain∑

c j>0
c jv j +

∑
i∈S

aixi +
∑
i∈I\S

�ai�xi ≥ b, (2)

as a valid inequality for Q. Writing ai = �ai� + âi for i ∈ S , and re-arranging terms, we
get (∑

c j>0
c jv j +

∑
i∈S

âixi

)
+

(∑
i∈S

�ai�xi +
∑
i∈I\S

�ai�xi

)
≥ b. (3)

The first part of this inequality is nonnegative, and the second part is integral for all
(v, x) ∈ Q. Therefore, the basic mixed-integer inequality implies that(∑

c j>0
c jv j +

∑
i∈S

âixi

)
+ b̂

(∑
i∈S

�ai�xi +
∑
i∈I\S

�ai�xi

)
≥ b̂�b�. (4)

is valid for Q. The coefficients of xi in this inequality are b̂�ai� + â if i ∈ S , and b̂�ai� if
i ∈ I \S . Therefore, S = {i ∈ I : âi ≤ b̂} gives the strongest inequality of this form, which
is ∑

c j>0
c jv j +

∑
i∈I:âi≤b̂

(b̂�ai� + âi)xi +
∑

i∈I:âi>b̂

b̂�ai�xi ≥ b̂�b�. (5)

S. Dash / Mixed Integer Rounding Cuts and Master Group Polyhedra 5



We call Eq. (5) the mixed-integer rounding inequality for Q. Note that the coefficients of
xi can be written as b̂�ai� + min{âi, b̂}. Finally, as observed by Cornuéjols, Li, and Van-
denbussche [43], scaling the the equation defining Q by a rational number t before writ-
ing the MIR inequality, can be useful in some circumstances. We call such an inequality
a t-scaled MIR inequality.

Assume b̂ � 0. Subtracting b̂ times
∑

j∈J c jv j+
∑

i∈I aixi = b from the MIR inequality,
and dividing by (1 − b̂), we get the equivalent inequality:

∑
j∈J:c j>0

c jv j −
∑

j∈J:c j<0

b̂c j

1 − b̂
v j +

∑
i∈I:âi≤b̂

âixi +
∑

i∈I:âi>b̂

b̂(1 − âi)
1 − b̂

xi ≥ b̂, (6)

This is the Gomory mixed-integer cut, as originally defined in [3].
To define the MIR inequality for P, we start off with some multiplier vector λ and

define c = λTC, a = λT A, and b = λT d. Then cv + ax = b is a valid inequality for P, and
we call Eq. (5) an MIR inequality for P. Define the MIR rank of an inequality valid for
PLP to be 0. For an inequality valid for P, define the MIR rank to be a positive number t
if it does not have MIR rank t − 1 or less, but is a nonnegative linear combination of MIR
inequalities derived from inequalities with MIR rank t − 1. All cutting planes for a pure
integer program have finite MIR rank, but this is not true in the case of mixed-integer
programs [11].

A linear inequality gT v + hT x ≥ q is called a split cut for P if it is valid for both
PLP ∩ {πT x ≤ γ} and PLP ∩ {πT x ≥ γ + 1}, where π and γ are integral. The inequality
gT v + hT x ≥ q is said to be derived from the disjunction πT x ≤ γ ∨ πT x ≥ γ + 1. All
points in P satisfy any split cut for P. The basic mixed-integer inequality is a split cut for
Q1 derived from the disjunction z ≤ �b� and z ≥ �b�, when b̂ � 0. Therefore, the MIR
inequality (5) is a split cut for P. Nemhauser and Wolsey [9] showed that every split cut
for P is also an MIR inequality; more precisely, given a split cut, there is an MIR cut
which is equivalent to it in the sense that it differs from the split cut by some multiple of
the equations Cv + Ax = d.

The derivation of the MIR inequality can be viewed as a special case of the following
approach. Consider a linear transformation

T : Q → Q′ =

{
v′ ∈ R, z′ ∈ Z :

(
v′

z′

)
= U

(
v
x

)
+ w

}
⊆ Q1,

where U is a matrix, w is a vector. If αT
(
v′

z′

)
≥ β is valid for Q′, then αT U

(
v
x

)
+ αT w ≥ β

is valid for Q. In the case of the MIR inequality, w = 0, and the coefficients in the first
and second rows of U are defined, respectively, by the coefficients in the first and second
bracketed expressions in Eq. (3). This approach is used in local cuts for the TSP by
Applegate et al. [44] with varying linear transformations into varying sets, and not a fixed
set such as Q1. The transformations in [44] are defined by the operation of shrinking
sets of nodes to single nodes, and thus have a combinatorial nature, unlike the somewhat
abstract transformations in the case of the MIR inequality.

Subsequent to the work of Wolsey [14], and Marchand and Wolsey [13], deriv-
ing (or explaining) valid inequalities for mixed-integer programs in the above man-
ner, starting from valid inequalities for very simple polyhedral sets became an ac-
tive research topic. For example, let

∑
i∈I αi xi ≥ β be a valid inequality for P. Then
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∑
i∈I�αi�xi ≥ �β� is valid for P, and is called a Gomory – Chvátal cut if P has no con-

tinuous variables, and a projected Chvátal – Gomory cut [35] otherwise. The above in-
equality can be derived by mapping P into the set Q0 = {z ∈ Z : z ≥ β} via the map-
ping z =

∑
i∈I�αi�xi, and then using the only facet-defining inequality of Q0, namely

z ≥ �β�. Günlük and Pochet [45] define the mixing-mir inequalities from facets of the set
{(x, z) ∈ R × Zn : x + zi ≥ bi, for i = 1, . . . , n, x ≥ 0}. The underlying motivation behind
such research in the context of mixed-integer programming and in local cuts for the TSP
is that strong (facet-defining) inequalities for simple sets defined on few variables yield
useful inequalities for problems with many variables. The hard part is to find the appro-
priate small sets and linear transformations. In recent work, Espinoza [46] generated lin-
ear transformations dynamically, in a manner similar to the work in [44], to find useful
cutting planes for Q, though with moderate success.

2.2. Two-Step MIR Inequalities

In the relaxation of Q in Eq. (2), the coefficient ai of an integer variable xi is either
unchanged or rounded up to �ai�. One can get different cuts for Q by increasing ai to
a number less than �ai�, say �ai� + α where 0 < α < 1, thereby obtaining a stronger
relaxation than Eq. (2).

Dash and Günlük [25] obtained such cuts from a simple mixed-integer set with three
variables:

Q2 = {v ∈ R, y, z ∈ Z : v + αy + z ≥ β, v, y ≥ 0},

where α, β ∈ R are parameters that satisfy 1 > β > α > 0, and �β/α� > β/α. Though
β is required to be less than 1 in Q2, the fact that z can take on negative values makes
the set fairly general. We do not know of an explicit description of the convex hull of
points in Q2; however one can obtain the inequalities describing the convex hull in poly-
nomial time using results in [47] and [48]. Dash and Günlük showed that the following
inequalities are valid for Q2, and facet-defining under some conditions:

v + αy + βz ≥ β, (7)(
1/(β − α�β/α�)

)
v + y + �β/α�z ≥ �β/α�. (8)

Lemma 2 ( [25]). The inequality (7) is valid and facet-defining for Q2. If 1/α ≥ �β/α�,
then the inequality (8) is valid and facet-defining for Q2.

Proof. The inequality (7) can be obtained by treating v+αy as a continuous variable and
applying the basic mixed-integer inequality (1) to (v + αy) + z ≥ β. To see that inequality
(8) is valid, notice that the inequalities

(1/α)v + y + (β/α)z ≥ β/α,

(1/α)v + y + (1/α)z ≥ β/α,

are valid for Q2. Therefore, for any γ ∈ R satisfying 1/α ≥ γ ≥ β/α, the inequality

(1/α)v + y + γz ≥ β/α
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is also valid as it can be obtained as a convex combination of valid inequalities. If 1/α ≥

�β/α�, then

v/α + y + �β/α�z ≥ β/α (9)

is valid for Q2. Applying (1) to the previous inequality with v/α treated as a continuous
variable and y + �β/α�z treated as an integer variable gives inequality (8). Consider the
following points in Q2:

p1 = (0, 0, 1), p2 = (0, �β/α�, 0), p3 = (β − α�β/α�, �β/α�, 0), p4 = (β, 0, 0).

As depicted in Figure 2, the points p1, p3 and p4 are affinely independent and tight for
Eq. (7). Also, the affinely independent points p1, p2 and p3 are tight for Eq. (8), and thus
these two inequalities are facet-defining for Q2.

We call Eq. (8) the two-step MIR inequality for Q2; it is obtained by applying (1)
twice, and has MIR rank at most two. The inequalities (7) and (8) are not necessarily
sufficient to describe the convex hull of Q2. However, let Q2+ = Q2 ∩ {z ≥ 0}; Eqs. (7)
and (8), along with the inequalities v, x, z ≥ 0, define the convex hull of integer solutions
of Q2+ [25]. The additional restriction 1/α ≥ �β/α� is not required. Conforti and Wolsey
[49] characterized the convex hull of a generalization of Q2+ (and of Q2+) which they
call X2DIV. They assume all variables are nonnegative and thus their results do not imply
Lemma 2. We note that if 1/α ≤ �β/α� (1/α = �β/α�), inequality (8) is an (1/α)-scaled
MIR inequality for Q2+ (Q2). Thus, it is only when 1/α > �β/α� that the two-step MIR
inequality can have MIR rank 2.

We illustrate the use of inequality (8) in an example. Consider the equation 3.35x1+

2.5x2 − 1.2x3 = 4.7 with all variables nonnegative and integral. This equals .35x1 +

.5x2 + .8x3 + w = .7, where w = 3x1 + 2x2 − 2x3 − 4. Here β = 0.7; let α = 0.4. Then
1/α = 2.5 > �β/α� = 2. As x1, x3 ≥ 0, the inequality (.1x2) + .4(x1 + x2) + (x3 + w) ≥ .7
is a relaxation of the previous equation. Of the three terms in brackets, the first two are
nonnegative, and the last two are integral; we can thus apply inequality (8) to obtain the
valid inequality: 1

2 x1 +
2
3 x2 + x3 + w ≥ 1.

We now formalize this procedure to obtain valid inequalities for Q. Let β = b̂, and
chooseα ∈ (0, b̂) such that 1/α ≥ �b̂/α�. Define τ = �b̂/α� ≥ 2, and define ρ = b̂−α�b̂/α�.
Let ki, li be integers such that ki ≤ �âi/α�, and li ≥ �â/α�, for i ∈ I. Let I0, I1 and I2 be
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sets which form a partition of I, and let w =
∑

i∈I�ai�xi − �b�. We can relax the equation
in Q to obtain∑

c j>0
c jv j +

∑
i∈I1

(
kiα + (âi − kiα)

)
xi +

∑
i∈I2

liα xi +
∑
i∈I0

xi + w ≥ b̂,

which can be rewritten as∑
c j>0

c jv j +
∑
i∈I1

(âi − kiα)xi + α

(∑
i∈I1

kixi +
∑
i∈I2

lixi

)
+

(∑
i∈I0

xi + w
)
≥ b̂,

We can map points in Q to points in Q2 by equating the first variable in Q2 with the sum
of the first two terms in the equation above, and equating the second and third variables
with the first and second bracketed expressions, respectively. Applying inequality (8) and
substituting for w leads to the inequality∑

c j>0
c jv j +

∑
i∈I
γixi + ρ τ z ≥ ρ τ �b�, (10)

where

γi = ρτ�ai� +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρτ if i ∈ I0,
kiρ + âi − kiα if i ∈ I1,

liρ if i ∈ I2.

By inspection, the strongest inequality of this form is obtained by setting ki = k∗
i =

�âi/α� and li = l∗i = �â/α� for i ∈ I, and letting

I0 = {i ∈ I : âi ≥ b̂},

I1 = {i ∈ I \ I0 : âi − k∗
i α < ρ}, I2 = {i ∈ I \ I0 : âi − k∗

i α ≥ ρ}.

In other words,

γi = ρτ�ai� +min{ρτ, k∗
i ρ + âi − k∗

i α, l∗i ρ}.

As shown in [25], these inequalities imply the strong fractional cuts of Letchford and
Lodi [50]. They can be separated in polynomial time, under some restrictions.

Theorem 3 (Dash, Goycoolea, Günlük [24]). Given a point (v∗, x∗) ∈ QLP, the most
violated two-step MIR inequality can be found in polynomial time, assuming τ ≤ k for
some fixed k.

Here, the violation of Eq. (10) with respect to (v∗, x∗) is given by its right-hand
side minus the left-hand side evaluated at (v∗, x∗). The algorithm given in [24] is very
simple; just write down the inequality (10) for all feasible choices of α from the set
{âi/t : i ∈ I, t ∈ N, âi/t ≥ b̂/k} ∪ {1/t : t ∈ N, tb̂ ≤ k}, and compute the violation.

Kianfar and Fathi [51] generalize the two-step MIR inequalities and generate n-step
MIR inequalities for Q. These inequalities have MIR rank at most n.
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3. Master Polyhedra

Gomory [20] developed the concepts of corner polyhedra and master polyhedra as tools
to generate cutting planes for general integer programs, and to solve asymptotic integer
programs. We do not discuss the latter aspect here. The corner polyhedron (strengthened
corner polyhedron) for a vertex of PLP is the convex hull of integer points satisfying only
the linearly independent constraints which define the vertex (all constraints tight at the
vertex). Clearly, valid inequalities for a corner polyhedron of P yield valid inequalities
for P. The central element of Gomory’s approach is the fact that many different corner
polyhedra can be viewed as faces of a much smaller number of master polyhedra, which
are much more ‘regular’ and amenable to analysis. Gomory, and later Gomory and John-
son [21] showed how to obtain facets of master polyhedra, which yield valid inequali-
ties for corner polyhedra and thereby for P. In this section, we describe in detail master
cyclic group polyhedra, or master polyhedra associated with corner polyhedra for single
constraint (plus nonnegativity of variables) systems, such as the one defining Q. Many
results are available for such polyhedra, but master polyhedra for multiple constraint sys-
tems are less well-understood, beyond the initial results of Gomory. We briefly discuss
some recent research on this topic later.

For the set Q, assume that âi (i ∈ I) and b̂ are rational numbers with a common
denominator, say n, and let b̂ = r/n, where 0 < r < n. Rewrite Q as

Q =
{
v ∈ R|J|, x ∈ Z|I| :

(∑
i∈I

�ai�xi − �b�
)
+

∑
j∈J

c jv j +
∑
i∈I

âixi = b̂, v, x ≥ 0
}

Let Ik = {i ∈ I : âi = k/n} and define the mapping

wk =
∑
i∈Ik

xi, z = −

(∑
i∈I

�ai�xi − �b�
)

v+ =
∑
c j>0

c jv j, v− = −
∑
c j<0

c jv j,
(11)

that maps each point (v, x) in Q to a point (v+, v−,w) in the polyhedron

P′(n, r) = conv
{
v+, v− ∈ R, w ∈ Zn−1 : v+−v−+

n−1∑
i=1

i
n

wi−z =
r
n
, v+, v−,w ≥ 0, z ∈ Z

}
.

(If Ik is empty for some k, set wk to zero.) If Q has no continuous variables, then (11)
maps points in Q to points in the master cyclic group polyhedron of Gomory:

P(n, r) = conv
{
w ∈ Zn−1 :

n−1∑
i=1

i
n

wi − z =
r
n
, w ≥ 0, z ∈ Z

}
. (12)

We view P′(n, r) as the mixed-integer extension of P(n, r). For P(n, r), z can be assumed
to be nonnegative, but not for P′(n, r). Note that the constraint defining P(n, r) can be
written as

∑n−1
i=1 iwi ≡ r (mod n). In [3], Gomory first derived the GMI cut as a valid

inequality for points satisfying a similar equation.
Recently, Dash, Fukasawa and Günlük [52] studied the polyhedron
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K(n, r) = conv
{
(x, y) ∈ Zn × Zn :

n∑
i=1

ixi −

n∑
i=1

iyi = r, x, y ≥ 0
}

(13)

where n, r ∈ Z and 0 < r ≤ n, and characterized the convex hull of its nontrivial facets.
K(n, r) was first defined by Uchoa [53] in a slightly different form. Replacing z in (12)
by yn, and multiplying the defining constraint by n, we see that P(n, r) defines a face of
K(n, r). Facets of P(n, r) can be lifted to obtain facets of K(n, r), but not all facets can be
obtained this way [52].

3.1. Basic properties

Both P(n, r) and P′(n, r) are full-dimensional, unbounded polyhedra, and their character-
istic (recession) cones are Rn−1

+ and Rn+1
+ respectively. Also, the inequalities xi ≥ 0 for

i = 1, . . . , n − 1 define facets for both P(n, r) and P′(n, r), and the inequalities v− ≥ 0 and
v+ ≥ 0 are facet-defining for P′(n, r). Therefore, if ηT w ≥ ηo is a facet defining inequality
of P(n, r), then ηo ≥ 0, η ≥ 0 ∈ Rn−1. Further, for any nontrivial facet (i.e., not defined by
the nonnegativity inequalities), ηo > 0. We will assume in what follows that ηo is scaled
to be 1. Finally, any nontrivial facet of P(n, r) has the following property: there is a set of
n−1 linearly independent integer points χi in P(n, r) satisfying χi

i ≥ 1, for i = 1, . . . , n−1.
Gomory characterized the convex hull of nontrivial facets of P(n, r).

Theorem 4 ( [20]). If r � 0, then
∑n−1

i=1 ηiwi ≥ 1 is a nontrivial facet of P(n, r) if and only
if η = (ηi) is an extreme point of the inequalities

ηi + η j ≥ η(i+ j) mod n ∀i, j ∈ {1, . . . , n − 1}, (14)

ηi + η j = ηr ∀i, j such that r = (i + j) mod n, (15)

η j ≥ 0 ∀ j ∈ {1, . . . , n − 1}, (16)

ηr = 1. (17)

The property (14) is called subadditivity.
Gomory actually proved a more general result. Consider an integer k > 0, and let

r, n ∈ Zk
+, with each component of n greater than 1, and 0 < rl < nl, for l = 1, . . . , k.

Let G ⊆ Zk
+ consist of all vectors with the lth component contained in {0, . . . , nl − 1},

and let G+ = G \ 0. In the defining constraint for P(n, r), replace
∑n−1

i=1 iwi ≡ r (mod n)
by

∑
i∈G+ iwi ≡ r (mod n), where a vector equals another modulo n if and only if the

component-wise modular equations hold. Then Theorem 4 is true if r, n are defined as
above, the indices i, j are elements of G+, and we replace {1, . . . , n − 1} by G+. The
elements of G, along with the operation of addition modulo n, form the abelian group
Zn1 × · · · × Znk , which is cyclic when k = 1. When k > 1, some valid inequalities
(e.g., scaled MIR inequalities) when applied to the individual constraints of P(n, r) define
facets of P(n, r). For k = 2 (equivalently, G = Zn1 ×Zn2), in limited shooting experiments
(see Section 3.3) we observe that taking integral linear combinations of the first and sec-
ond constraints (with small multipliers, e.g., 1,1) and writing a scaled MIR (or two-step
MIR) inequality on the resulting constraint also yields facets. Dey and Richard studied
facet-defining inequalities in the case k ≥ 2 (though for an “infinite group” [54] variant
of P(n, r) ); see [28, 29]. When k >= 2, the relaxation of P(n, r) obtained by removing
the integrality of w is studied in [55] and [56] (in a different form).
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Optimizing a linear function over P(n, r) is similar to solving a knapsack problem
and can be done in pseudo-polynomial time (in n) via dynamic programming; therefore,
one can also separate a point from P(n, r) in pseudo-polynomial time. The theorem above
implies that separation can in fact be done by obtaining a basic optimal solution of the
constraints in the theorem. It also yields a way of showing that a particular inequality
defines a facet of P(n, r).

Gomory and Johnson [21] showed that the polyhedral structure of P′(n, r) can be
analyzed completely by just studying P(n, r).

Theorem 5 ( [21]). An inequality defines a nontrivial facet of P′(n, r) if and only if it has
the form

nη1v+ + nηn−1v− +

n−1∑
i=1
ηiwi ≥ 1, (18)

where (η1, . . . , ηn−1) defines a facet of P(n, r).

Gomory and Johnson also described the convex hull of nontrivial facets of P′(n, r),
as in Theorem 4, when r is nonintegral, but for our purpose Theorem 5 suffices. Valid
inequalities for P′(n, r) yield valid inequalities for Q. Given a facet (18) of P′(n, r),

nη1

(∑
c j≥0

c jv j

)
+ nηn−1

(∑
c j<0

c jv j

)
+

∑
i∈I

f (âi)xi ≥ 1 (19)

is a valid inequality for Q, where f (âi) = ηk if âi = k/n. We call such inequalities group
cuts for Q. We will see that the GMI cut can be derived as a group cut. Let (v′, x′) ∈

QLP \ conv(Q), and let (v′, x′) be mapped to (v′
+, v′

−,w′) via (11). Then (v′, x′) satisfies all
group cuts (and (v′

+, v′
−,w′) ∈ P′(n, r)) if and only if the separation LP

min
{
(nv′
+)η1 + (nv′

−)ηn−1 +
∑

i
w′

iηi : η satisfies Eqs. (14) – (17)
}
.

has optimum value at least 1. If some group cut is violated by (v′, x′), then the optimum
solution of the separation LP yields a most violated group cut with objective value less
than 1.

For P(n, r), let ei (i = 1, . . . , n − 1) be the unit vectors in Rn−1 with ones in the ith
component and zeros elsewhere.

Lemma 6. If η ∈ Rn−1 satisfies the constraints (15) – (17) and ηT x ≥ 1 is a valid in-
equality for P(n, r), then η satisfies the subadditivity constraints (14).

Proof. Let j, k ∈ {1, , . . . , n − 1}, and let i = j + k mod n. Let χ = e j + ek + er−i. Then
χ ∈ P(n, r), and ηTχ = η j+ηk+ηr−i ≥ 1. As ηi+ηr−i = 1, it follows that η j+ηk ≥ ηi.

Proof of Theorem 4. Let γT w ≥ 1 define a nontrivial facet of P(n, r). We argued earlier
that γ ≥ 0. We next show that γ satisfies Eqs. (15) and (17). Observe that er, ei + er−i ∈

P(n, r) and thus γr ≥ 1, and γi+γr−i ≥ 1. Further, there are integral points χ1, χ2 and χ′ in
P(n, r) lying on this facet such that χ1

i ≥ 1 and χ2
r−i ≥ 1 and χ′r ≥ 1. Then γT (χ1+χ2) = 2.

But
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χ = χ1 + χ2 − ei − er−i ∈ P(n, r) =⇒ γTχ = 2 − γi − γr−i ≥ 1.

Therefore, γi + γr−i ≤ 1. Similarly γTχ′ = 1, and

2χ′ − er ∈ P(n, r) =⇒ γT (2χ′ − er) = 2 − γr ≥ 1 =⇒ γr ≤ 1.

Therefore γ satisfies Eqs. (15) – (17). By Lemma 6, it also satisfies the subadditivity
constraints.

Let η satisfy Eqs. (14) – (17). For any integral point w∗ ∈ P(n, r)∑
i
ηiw∗

i ≥
∑

i
η(iw∗

i ) ≥ η(
∑

i iw∗
i ) = ηr = 1,

where the subscripts inside the brackets are computed modulo n. Therefore, ηT w ≥ 1
defines a valid inequality for P(n, r). Therefore, a nontrivial facet of P(n, r) is an extreme
point of Eqs. (14) – (17); otherwise it would be a convex combination of solutions of this
system, each of which defines a valid inequality for P(n, r). Let P(n, r) = {w ∈ Rn−1 :
Aw ≥ 1, w ≥ 0}, where Aw ≥ 1 represents the nontrivial facets of P(n, r) and 1 is a vector
with all components 1. Therefore, if A j stands for the jth column of A, then for any index
i � r, Ai + Ar−i = Ar = 1. Observe that er ∈ P(n, r) and ηT er = ηr = 1. Therefore

min{ηT w : Aw ≥ 1, w ≥ 0} = 1,

and an optimal dual vector y of the above LP satisfies

yT A ≤ η, yT 1 = 1, y ≥ 0.

If yT Ai < ηi for any index i � r, then

1 = ηi + ηr−i > yT Ai + yT Ar−i = yT 1 = 1.

Therefore yT Ai = ηi for i = 1, . . . , n − 1. This implies that η is a convex combination of
nontrivial facets {η j} of P(n, r), which in turn are solutions of Eqs. (14) – (17). Thus, if η
is an extreme point (14) – (17), ηT x ≥ 1 defines a facet of P(n, r), and the vector y is a
unit vector.

As the defining equation for P(n, r) has the same form as Q, we can apply the MIR
or two-step MIR inequalities to P(n, r). We define the t-scaled (two-step) MIR inequality
for P(n, r) for rational t > 0 as the inequality obtained by applying the t-scaled (two-step)
MIR inequality to Qp = {w ∈ Zn−1, z ∈ Z :

∑n−1
i=1 (i/n)wi − z = r/n, w ≥ 0} and then

substituting out z. We focus on t-scaled inequalities for integral t. For an integer n > 0
and integers t and i, define (ti)n = ti mod n, where k mod n stands for k − n�k/n�. For an
integer t, the t-scaled MIR inequality for P(n, r) becomes∑

(ti)n<(tr)n

(ti)n

(tr)n
xi +

∑
(ti)n≥(tr)n

n − (ti)n

n − (tr)n
xi ≥ 1. (20)

Given an integer t � n, it is shown in [26] that the (−t)-scaled MIR inequality is the same
as the t-scaled MIR inequality and also the (n − t)-scaled MIR inequality.
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Definition 7. An inequality
∑n−1

i=1 ηiwi ≥ 1 is a two-slope inequality if ηi − ηi−1 equals
either η1 or −ηn−1 for i = 2, . . . , n − 1.

Theorem 8 (Gomory, Johnson [21]). Every two-slope inequality for P(n, r) which satis-
fies the constraints (14) – (17) defines a facet for P(n, r).

Proof. By definition, for i = 2, . . . , n − 1 either η1 + ηi−1 = ηi or ηn−1 + ηi = ηi−1. The
constraints above are just the subadditivity constraints (14) (satisfied as equalities) when
i � r, r + 1, and constraints of the form (15) otherwise. These, along with the constraint
ηr = 1, define n − 1 linearly independent constraints from Eqs. (14) – (17).

Let ηT w ≥ 1 stand for the MIR inequality for P(n, r). By definition ηi = i/r if
i < r, and ηi = (n − i)/(n − r) otherwise. It clearly is a two-slope inequality, and satisfies
Eqs. (15) – (17). As it is a valid inequality for P(n, r), Lemma 6 implies that it satisfies
the subadditivity constraints, and therefore the requirements of Theorem 8. This implies
the following result of Gomory.

Corollary 9 ( [20]). The MIR inequality for P(n, r) defines a facet of P(n, r).

The following result can be proved in a similar manner.

Corollary 10. If an integer t > 0 is a divisor of n and tr is not a multiple of n, then the
t-scaled MIR inequality defines a facet of P(n, r).

We see later that for every nonzero integer t, such that tr is not a multiple of n, the t-
scaled MIR inequality (20) defines a facet of P(n, r) [25]. We also note that t-scaled MIR
inequalities for P(n, r) for some nonintegral t > 0 define facets of P(n, r). The two-step
MIR inequalities also yield facets of P(n, r).

Theorem 11 (Dash and Günlük [25]). Let Δ ∈ Z+ be such that r > Δ > 0, and n >
Δ�r/Δ� > r. The two-step MIR inequality for P(n, r), obtained by applying Eq. (10) to
Qp with α = Δ/n and b = r/n defines a facet of P(n, r).

We call a facet in the above result a 1-scaled two-step MIR facet of P(n, r) with
parameter Δ. Note that α = Δ/n satisfies the conditions of Lemma 2: (i) r > Δ > 0 ⇒

b̂ = r/n > α > 0, and (ii) n > Δ�r/Δ� > r ⇒ n/Δ > �r/Δ� > r/Δ⇒ 1/α > �b̂/α� > b̂/α.
Therefore the parameter α is assigned valid values. The proof of Theorem 11 is identical
to the proof of Corollary 9. Further, if tr is not a multiple of n, then for appropriate
choices of α, the t-scaled two-step MIR inequalities define facets of P(n, r) [25]. If t is a
divisor of n, the proof of this result is similar to that of Corollary 9. The two-step MIR
facets contain the 2slope facets in Araoz et al. [22]. Other facet classes can be found
in [22] (3slope facets), and also in [57].

An automorphism φ is a bijection from {0, 1, . . . , n − 1} to itself such that

φ
(
(a + b) mod n

)
=

(
φ(a) + φ(b)

)
mod n.

A bijection φ is an automorphism if and only if φ(i) = (ti)n where t is coprime with n
(n and t have no common divisors). The inverse of an automorphism is also an automor-
phism; if φ(i) = (ti)n, then φ−1(i) = (ui)n where u satisfies tu ≡ 1 (mod n) (such a u exists
as t and n are coprime).
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Theorem 12 (Gomory [20]). Let r be an integer such that 0 < r < n. Let φ be an
automorphism defined by φ(i) = (ti)n, and let s = φ(r). If

∑
i ηiwi ≥ 1 is a nontrivial facet

of P(n, r), then
∑

i ηiwφ(i) ≥ 1 is a nontrivial facet of P(n, s). Equivalently,
∑

i ηφ−1(i)wi ≥ 1
is a nontrivial facet of P(n, s).

Theorem 12 says that for an automorphism φ, the facets of P(n, r) are identical to
facets of P

(
n, φ(r)

)
after permuting facet coefficients, i.e., P(n, r) and P

(
n, φ(r)

)
have the

same polyhedral structure (are isomorphic polyhedra). Therefore, for a given n, we need
only study P(n, r) where r is a divisor of n in order to understand P(n, r) for all r.

Example 13. Let w∗ = (w∗
1,w

∗
2,w

∗
3,w

∗
4) be a nonnegative integer vector satisfying

1w1 + 2w2 + 3w3 + 4w4 ≡ 3 mod 5.

Note that 2 is coprime with 5, and 2 × 3 ≡ 1 mod 5. Clearly w∗ also satisfies 2(1w1 +

2w2 + 3w3 + 4w4) ≡ 2 × 3 ≡ 1 mod 5, or 2w1 + 4w2 + 1w3 + 3w4 ≡ 1 mod 5. Note that
the above equation is precisely the defining equation of P(5, 1), except that the variable
indices are different from their coefficients. Now any solution w′ of the last equation
satisfies 3(2w1 + 4w2 + 1w3 + 3w4) ≡ 3 mod 5, which is the same as the first modular
equation. Therefore, P(5, 3) and P(5, 1) have the same polyhedral structure.

3.2. Subadditivity

A function f : R → R is subadditive if for all u, v ∈ R, f (u) + f (v) ≥ f (u + v). Given a
subadditive function f , it is easy to see that a nonnegative integral solution x of

∑
i∈I aixi =

b satisfies
∑

i∈I f (ai)xi ≥ f (b). More generally, if the coefficients of Q are multiples of
1/n, then

n f (1/n)
∑
c j>0

c jv j − n f (1 − 1/n)
∑
c j<0

c jv j +
∑
i∈I

f (ai)xi ≥ f (b)

is a valid inequality for Q. If we don’t know n, we can replace n f (1/n) by limv→0+ f (v)/v
and n f (1−1/n) by limv→0+ f (1−v)/v. Thus, subadditive functions yield valid inequalities
for integer programs and for P(n, r).

Gomory and Johnson [21] showed how to obtain subadditive functions from facets
of P(n, r) using the property (14). Let

∑n−1
i=1 ηiwi ≥ 1 define a nontrivial facet of P(n, r).

Define a function f (v) over the domain [0, 1] as follows:

f (0) := 0, f (i/n) := ηi, ∀i = 1, . . . , n − 1, (21)

f
(
(i + δ)/n

)
:= (1 − δ) f (i/n) + δ f

(
(i + 1)/n

)
, ∀i = 0, . . . , n − 1 and δ ∈ (0, 1).

(22)

Then define f (v) for all v ∈ R by f (v) := f (v̂). Gomory and Johnson proved that f is
subadditive. We call f a facet-interpolated function (FIF); such a function is piecewise
linear and continuous. In Figure 3, we plot the coefficients of two facet-defining inequal-
ities for P(10, 7), and depict the corresponding facet-interpolated functions. Note that the
coefficients of the GMI cut (6), when divided by the right-hand side b̂, are given by the
function in Figure 3(a). If f stands for this function, and ai is the coefficient of xi in Q,

S. Dash / Mixed Integer Rounding Cuts and Master Group Polyhedra 15



0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

1

*

*

*

*

*

*

*

*

*

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.....
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.

(a)
0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

0

1

.

..
..
..
.
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
....
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
.
..
..
..
.....
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.

*

*

*

*

*

*

*

*

*

(b)

Figure 3. (a) The MIR facet for P(10, 7); (b) A two-step MIR facet for P(10, 7)

then the coefficient of xi in the GMI cut is given by b̂ times f (âi); if a continuous variable
v j has a positive (negative) coefficient c j, then b̂c j times the slope of f at the origin (at 1)
gives its cut coefficient.

An interesting aspect of FIFs is that one can use a facet of P(n′, r′) to obtain a valid
inequality for P(n, r), where n, r are completely unrelated to n′, r′. For FIFs derived from
some simple facets of P(n′, r′), such as t-scaled MIR facets where t is a divisor of n′, the
corresponding valid inequality for P(n, r) is dominated by the t-scaled MIR inequality for
P(n, r) [26]. A similar statement is true for two-step MIR FIFs, when Δ in Theorem 11
satisfies some additional conditions.

FIFs form a somewhat restricted subclass of all subadditive functions; they only
take nonnegative values and they are periodic. Dash, Fukasawa and Günlük [52] show
how to obtain more general subadditive functions by interpolating coefficients of facets
of K(n, r), and give examples of such functions which take on nonnegative values.

3.3. Shooting Experiments

Gomory and Johnson [21] showed that P′(n, r) has exponentially many facets (in n). Is
there a way of determining which facets are more “important” and yield more important
group cuts?

Gomory proposed using the solid angle subtended at the origin by a facet as a mea-
sure of the importance of the facet. Gomory, Johnson and Evans [23] estimate the solid
angle subtended at the origin by a facet of P(n, r) (in a ‘shooting’ experiment) by gen-
erating vectors uniformly distributed over the unit sphere and computing the frequency
with which different facets are hit by these directions. Given a direction d ≥ 0 (assume
d has norm 1), we say that d hits a nontrivial facet ηT w ≥ 1 of P(n, r) if it is the last
facet intersected by the ray {td : t ≥ 0}. In Figure 4, we depict d by the arrow. The ray
{td : t ≥ 0} intersects an inequality ηT w ≥ 1 when ηT (td) = 1. Therefore the facet hit by
d is given by

max{t : ηT (td) = 1, η is a facet} ≡ max
{ 1
ηT d

: η is a facet
}
≡ min{ηT d : η is a facet}.

Therefore, for any d ∈ Rn−1
+ , a basic optimal solution of the linear program

min{dTη : η satisfies Eqs. (14) – (17)}
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Figure 4. Facet hit by a direction vector

gives the facet hit by d. The facet hit by d can be interpreted as the one most violated by
d. Similar shooting experiments were first performed by Kuhn in the 1950s in the context
of the TSP, see [58, 59].

An important question about the shooting experiment is whether its results depend
on the r in P(n, r)? We next give a result from [26] which says that the classes of facets
discussed earlier are invariant under automorphisms. For example, the scaled MIR facets
of P(10, 1) are isomorphic to the scaled MIR facets of P(10, 3). In this section, we only
discuss integer scaling factors.

Theorem 14 ( [26]). Let n, r be integers with 0 < r < n. Let k be an integer coprime
with n, and let φ(i) = ki mod n. Then the scaled MIR and two-step MIR facets of P(n, r)
are isomorphic, respectively, to the scaled MIR facets and scaled two-step MIR facets of
P
(
n, φ(r)

)
.

Proof. We only prove the result for scaled MIR facets. It is not difficult to see that the
t-scaled MIR inequality in Eq. (20) can be written as

n−1∑
i=1

htr/n(ti/n)wi ≥ 1,

where hb(v) = v̂/b̂ if v̂ < b̂, and hb(v) = (1 − v̂)/(1 − b̂) otherwise (the function in
Figure 3(a)). The values of hb(v) depend only on b̂ and v̂, the fractional parts of b and v,
respectively. Thus if b′ and v′ are numbers such that b − b′ and v − v′ are integral, then
hb(v) = hb′(v′). Let k and φ be defined as in the theorem. From Eq. (20), the t-scaled MIR
inequality for P(n, r) is isomorphic to the following inequality of P

(
n, φ(r)

)
:

n−1∑
i=1

htr/n(ti/n) wφ(i) ≥ 1. (23)

Let s be the unique integer such that sk mod n = t. We will show that Eq. (23) is the
s-scaled MIR inequality for P

(
n, φ(r)

)
. If j is any integer between 1 and n − 1, then

sφ( j) mod n = sk j mod n = t j mod n ⇒ sφ( j)/n − t j/n is integral. Therefore Eq. (23) is
the same as

n−1∑
i=1

hsφ(r)/n(sφ(i)/n)wφ(i) ≥ 1,
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which is the s-scaled MIR inequality for P
(
n, φ(r)

)
. We conclude that the t-scaled MIR

inequality defines a facet of P(n, r) if and only if the s-scaled MIR inequality defines a
facet of P

(
n, φ(r)

)
.

One can refine the previous theorem and show that the family of t-scaled MIR
facets of P(n, r) with gcd(n, t) = l is isomorphic to the family of s-scaled MIR facets
of P

(
n, φ(r)

)
, where gcd(n, s) = l. One can then conclude that if n is a multiple of 2 (or

3), then the (n/2)-scaled ((n/3)-scaled) MIR facet of P(n, r) is isomorphic to the (n/2)-
scaled ((n/3)-scaled) MIR facet of P

(
n, φ(r)

)
. Thus the n/2-scaled and n/3-scaled MIR

facets remain invariant over isomorphic master polyhedra, as long as n is a multiple of 2
or 3. It is incorrectly stated in [26, Theorem 5] that this invariance holds for the t-scaled
MIR facet, where t is the largest divisor of n.

Corollary 15 ( [25]). If an integer t > 0 is not a divisor of n and tr is not a multiple of n,
then the t-scaled MIR inequality defines a facet of P(n, r).

Proof. Assume s is the largest common divisor of t and n. Then k = t/s and n have no
common divisors. Define φ using k as in Theorem 14; from its proof we know that the
s-scaled MIR inequality for P

(
n, φ(r)

)
is isomorphic to the t-scaled MIR inequality for

P(n, r). This is because sk mod n = t. Now s is a divisor of n, and sr is not a multiple
of n (otherwise tr would also be a multiple of n). Corollary 10 implies that the s-scaled
MIR inequality for P

(
n, φ(r)

)
defines a facet, and so does the t-scaled MIR inequality of

P(n, r).

An argument similar to the one above can be used to show that t-scaled two-step
MIR inequalities define facets of P(n, r).

Gomory, Johnson and Evans [23] observe that in a shooting experiment, a relatively
small number of facets of P(n, r) absorb most of the hits and the most important facets
of P(n, r) are related to the MIR inequality (they are t-scaled MIR facets [25]). Evans
[60] reports that the 2slope facets [22] constitute another important class of facets. The
experiments in [23] and [60] are performed on P(n, r) with n ≤ 30. Dash and Günlük
[26] extend these experiments to P(n, r) for n up to 200, and measure the importance of
additional facet classes.

Table 1 contains results for selected master polyhedra from [26]. The second and
third columns give the number of (integrally) scaled MIR facets and two-step MIR facets.
The fourth column gives the number of distinct facets hit in 100,000 shots. The fifth,
sixth, and seventh columns give, respectively, the hit frequencies for the scaled MIR
facets, the scaled two-step MIR facets, and most frequently hit facet from these classes.
For example, for P(50, 1) we see that the 378 scaled MIR and two-step MIR facets (out
of 65,346 facets) absorb almost 20% of all hits, and that a single facet from this class
absorbs 8.1% of all hits. Thus, a very few facets absorb a large fraction of all hits, and
are mostly scaled MIR and two-step MIR facets. In addition, neither class is uniformly
more important than the other. For example, for P(42, 1) the scaled MIR facets are more
important, whereas the scaled two-step MIR facets are more important for P(42, 21). For
the examples in Table 1, the facet in column 7 turns out to be a t-scaled MIR facet with t
the largest divisor of n for which the t-scaled MIR inequality is valid and facet-defining
for P(n, r). For P(50, 1), the facet in column 7 is the 25-scaled MIR facet, absorbing 8.1%
of all hits whereas all remaining scaled MIR facets combined absorb only 6.5% of the
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Table 1. Shots absorbed by MIR based facets for different P(n, r)

Number of facets % of shots hit

The group MIRs 2-step MIRs total hit MIRs 2-step MIRs top facet
P(42, 1) 21 186 46,407 23.5 6.9 9.4
P(42, 21) 11 236 53,754 11.8 15.4 9.6
P(50, 1) 25 353 65,346 14.6 5.1 8.1
P(50, 25) 13 452 68,202 8.9 11.1 8.1
P(72, 1) 36 673 11.6 2.2 5.0
P(72, 18) 27 616 2.3 2.2 0.9
P(100, 1) 50 1534 4.8 0.5 3.2
P(200, 1) 100 6584 0.5 0.0 0.4

shots. For P(72, 18), the 36-scaled MIR does not define a facet as 36 × 18 is a multiple
of 72. Instead, the most important facet is the 18-scaled MIR.

We believe that if n is even and r is odd, then the (n/2)-scaled MIR facet is the most
important facet of P(n, r). This is the case for all P(n, r) studied by Dash and Günlük.
However, we do not expect such a role for other divisors, independent of r. In the dis-
cussion after Theorem 14 we point out the invariance of the (n/2)-scaled MIR — when
it exists (n is even and r is odd) — over isomorphic master polyhedra. For example, for
P(100, 4), the most important MIR facet is the 10-scaled MIR facet (neither 25 nor 50
are valid scaling parameters). This facet of P(100, 4) is isomorphic to the 30-scaled MIR
of P(100, 28), which is therefore the most important MIR facet of P(100, 28). See Cor-
nuéjols, Li and Vandenbusche [43], who first suggested the possibility that the 1-scaled
MIR inequality need not be uniformly superior to other scaled MIR inequalities.

The practical implications of the shooting results are not clear. First, most practical
MIPs have upper and lower bounds on variables; at least one of these is ignored when
deriving group cuts from corner polyhedra relaxations. Secondly, continuous variables
are often present; then the 1-scaled MIR seems to have a special role. Recall from Eq. (18)
that in any facet η of P′(n, r), the coefficients of v+ and v− are nη1 and nηn−1, respectively.
From Eq. (14), it follows that for any index i between 1 and n−1 iη1 ≥ ηi and iηn−1 ≥ ηn−i.
Using ηr = 1, this implies that

η1 ≥
1
r

and ηn−1 ≥
1

n − r
. (24)

For the 1-scaled MIR facet, η1 = 1/r and ηn−1 = 1/(n − r); therefore, the 1-scaled MIR
inequality has the smallest possible coefficients for the continuous variables among all
group cuts for Q.

Gomory, Johnson and Evans [23] proposed using FIFs based on important (as mea-
sured by shooting) facets of P(n, r) with small n as valid inequalities for Q. Dash and
Günlük [26] argue that one can trivially find inequalities dominating the ones generated
by the approach above. The reason is that the important facets of P(n, r) are scaled MIR
and two-step MIR facets, and the valid inequalities for Q obtained from many of the cor-
responding FIFs are dominated by the scaled MIR and two-step MIR inequalities for Q.
See Section 3.2.
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4. MIR Closure

In this section, we discuss properties of the MIR closure of a polyhedral set P = {v ∈

R
l, x ∈ Zn : Cv + Ax = b, v, x ≥ 0} with m constraints. We define the MIR closure of

P as the set of points in PLP which satisfy all MIR cuts for P, and denote it by PMIR.
Nemhauser and Wolsey’s result [9] showing the equivalence of split cuts and MIR cuts
for P implies that the split closure of P — defined as the set of points in PLP satisfying all
split cuts for P — equals its MIR closure. Cook, Kannan and Schrijver [11] showed that
the split closure of P is a polyhedron. Andersen, Cornuéjols and Li [61], Vielma [62], and
Dash, Günlük and Lodi [10] give alternative proofs that the split closure of a polyhedral
set is a polyhedron. The latter proof is in terms of the MIR closure of P, and we discuss
it below. Caprara and Letchford [38] studied the separation problem for split cuts, i.e.,
the problem of finding a violated split cut given a point (v∗, x∗) ∈ PLP or proving that no
such cut exists. They proved that this separation problem is NP-hard.

For a vector w, let w+ stand for max{w, 0}, where the maximum is taken component-
wise. In this section, we assume that A,C and b have integral components (this is without
loss of generality, as we assumed earlier that they were rational matrices). Let

Π = {(λ, c+, α̌, ᾱ, β̌, β̄) ∈ Rm ×Rl ×Rn ×Zn ×R× Z : c+ ≥ λC, c+ ≥ 0,

α̌ + ᾱ ≥ λA, 1 ≥ α̌ ≥ 0,

β̌ + β̄ ≤ λb, 1 ≥ β̌ ≥ 0},

here c+, α̌, ᾱ are row vectors. Note that for any (λ, c+, α̌, ᾱ, β̌, β̄) ∈ Π,

c+v + (α̌ + ᾱ)x ≥ β̌ + β̄ (25)

is valid for PLP as it is a relaxation of (λC)v + (λA)x = λb. Furthermore, using the basic
mixed-integer inequality (1), we infer that

c+v + α̌x + β̌ᾱx ≥ β̌(β̄ + 1) (26)

is a valid inequality for P. We call Eq. (26) a relaxed MIR inequality derived from the
base inequality (25). (We use the notation ǎ and β̌ because for a fixed λ, the best choice
for β̌ equals λ̂b, and the best choices for components of ǎ are 0 or fractional parts of
components of λA, see the next paragraph.) If β̌ = 0, then the relaxed MIR inequality
is trivially satisfied by all points in PLP. If β̌ = 1, then Eq. (26) is identical to its base
inequality (25) and is satisfied by all points in PLP. Further, Eq. (26) is a split cut for P
derived from the disjunction ᾱx ≤ β̄ ∨ ᾱx ≥ β̄ + 1, and is therefore violated by (v∗, x∗) ∈

PLP only if β̄ < ᾱx∗ < β̄ + 1. This implies the following lemma.

Lemma 16. A relaxed MIR inequality (26) violated by (v∗, x∗) ∈ PLP satisfies (i) 0 <
β̌ < 1, (ii) 0 < Δ < 1, where Δ = β̄ + 1 − ᾱx∗.

It is easy to see that the MIR inequality (5) for P is also a relaxed-MIR inequality.
For a given multiplier vector λ, let α denote λA. Further, set c+ = (λC)+, β̄ = �λb� and
β̌ = λb−�λb�. Also, define α̌ and ᾱ as follows: if αi−�αi� < β̌ then α̌i = αi−�αi� and ᾱi =

�αi�, otherwise α̌i = 0 and ᾱi = �αi�. Clearly, (λ, c+, α̌, ᾱ, β̌, β̄) ∈ Π and the corresponding
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relaxed MIR inequality (26) is the same as the MIR inequality (5). Therefore, every split
cut is also a relaxed MIR inequality.

Recall the discussion in Section 2, where we observe that the MIR inequality is
the strongest inequality of the form (3). This property and Lemma 16 are used by Dash,
Günlük and Lodi [10, Lemma 6] to show that a point in PLP satisfies all MIR inequalities,
if and only if it satisfies all relaxed MIR inequalities. Therefore the MIR closure of P can
be defined as

PMIR =
{
(v, x) ∈ PLP : c+v + α̌x + β̌ᾱx ≥ β̌(β̄ + 1) for all (λ, c+, α̌, ᾱ, β̌, β̄) ∈ Π

}
.

Therefore, for a given point (v∗, x∗) ∈ PLP, one can test if (v∗, x∗) ∈ PMIR by solving the
nonlinear integer program (MIR-SEP):

max β̌(β̄ + 1) − (c+v∗ + α̌x∗ + β̌ᾱx∗)

s.t. (λT , c+, α̌, ᾱ, β̌, β̄) ∈ Π

If every solution of MIR-SEP has objective value zero or less, then (v∗, x∗) ∈ PMIR. On
the other hand, if some solution has positive objective value, it gives a violated relaxed
MIR inequality. For a point (v∗, x∗), we define the violation of a relaxed MIR inequality
to be its right-hand side minus its left-hand side evaluated at (v∗, x∗). The violation is
bounded above by β̌(β̄+1−ᾱx∗) which is strictly less than 1 for a violated MIR inequality.

Observe that MIR-SEP becomes an LP if ᾱ and β̄ are fixed to some integral values.
Let φ be a solution of MIR-SEP with objective value μ. Fix the values of ᾱ and β̄ in
MIR-SEP to the corresponding values in φ, say ᾱφ and β̄φ, respectively. The resulting LP
has a basic optimal solution φ′ with objective value ≥ μ. The LP constraints (other than
the variable bounds) can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣AT −I
CT −I
bT −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λT

α̌T

c+T

β̌

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤

≤

≥

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ᾱT
φ

0
β̄φ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
This implies the following result.

Theorem 17 ( [10]). If there is an MIR inequality violated by the point (v∗, x∗), then
there is another MIR inequality violated by (v∗, x∗) for which β̌ and the components of
λ, α̌ are rational numbers with denominator equal to a subdeterminant of [A C b].

We will now argue that Theorem 17 implies that the MIR closure of P is a polyhe-
dron. This argument is different from the one in [10]; there Theorem 17 is used in a differ-
ent manner. Consider a polyhedron in Rk defined by Gx+Hy ≤ b, let Φ be the maximum
absolute value of subdeterminants of [G H b]. The convex hull of its x-integral points
is a polyhedron, with extreme points whose x-coefficients have magnitude bounded by
(k + 1)Φ, and other coefficients have encoding size bounded by a polynomial function of
k andΦ. See Theorems 16.1 and 17.1 in [63]. By Lemma 16, every violated relaxed-MIR
inequality satisfies 0 < β̌ < 1. Therefore, Theorem 17 implies that β̌ can be assumed
to lie in the set B = {r/s ∈ (0, 1) : r, s ∈ Z, s is a subdeterminant of [A C b]}. For any
fixed β̌, MIR-SEP becomes a mixed-integer program; call this MIR-SEP(β̌). The convex
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hull of its (ᾱ, β̄)-integral solutions is a polyhedron, say P′(β̌). The set M formed by the
union of the extreme points of P′(β̌) for β̌ ∈ B is clearly finite. Further, the relaxed-MIR
inequalities defined by this set define the MIR closure of P. After all, if a point (v∗, x∗) is
not contained in the MIR closure of P, by Theorem 17, it is violated by some inequality
with β̌ in B and therefore by some inequality in M.

The above argument also implies that the relaxed-MIR cuts defining the MIR clo-
sure of P can be derived from disjunctions contained in a bounded set; more precisely
(ᾱ, β̄) are contained in the set D = [−(n + l + 1)Φ2, (n + l + 1)Φ2]n+1, where Φ is the
maximum absolute value of subdeterminants of [A C b]. Therefore, one can derive using
the equivalence of split cuts and MIR cuts that the split closure of P equals⋂

(c,d)∈D
conv(PLP ∩ {cx ≤ d} ∪ PLP ∩ {cx ≥ d + 1}).

Further, the vector of multipliers λ also has bounded coefficients. This result is similar
to [10, Lemma 21], where a bound on the magnitude of λ needed for nonredundant MIR
cuts is given; the latter bound is sharper as the proof in [10] does not use such general
arguments.

Lemma 18 ( [10, Lemma 21]). Assume that the coefficients in Cv+ Ax = b are integers.
If there is an MIR inequality violated by the point (v∗, x∗), then there is another MIR
inequality violated by (v∗, x∗) with λi ∈ (−mΨ,mΨ), where m is the number of rows in
Cv + Ax = b, and Ψ is the largest absolute value of subdeterminants of C.

If P has no continuous variables, it is easier to show that the MIR closure of P is a
polyhedron; one can show that λ ∈ (0, 1)m. Caprara and Letchford [38, Lemma 1] show
(in a different form) that λ ∈ (−1, 1)m, when P has no continuous variables; this yields a
short proof that the split closure of P is a polyhedron.

Assume (in this paragraph) that P has no continuous variables, i.e., C = 0. The prob-
lem of obtaining a violated Gomory – Chvátal cut be framed as a mixed-integer program,
see Bockmayr and Eisenbrand [32] and Fischetti and Lodi [31]. One can then infer, as
in the discussion on the MIR closure above, that the Chvátal closure of P is a polyhe-
dron. Bockmayr and Eisenbrand study this mixed-integer program and use the fact that
its integral hull has polynomially many extreme points in fixed dimension to show that
the Chvátal closure of P in fixed dimension has polynomially many facets. In fixed di-
mension, the number of extreme points of P′(β̌) can be shown to be bounded by a poly-
nomial function of the encoding size of Cv + Ax = b. If one can show that M is the
union of P′(β̌) for polynomially many choices of β̌, then one could give a positive answer
to Eisenbrand’s question [64]: Does the MIR (or split) closure of P have polynomially
many facets in fixed dimension? Dash, Günlük and Lodi show that the separation prob-
lem for MIR cuts can be framed as a mixed-integer program (see the discussion below).
Unfortunately, the number of variables in their separation MIP depends on the encoding
size of [A C b] and one cannot use the technique of Bockmayr and Eisenbrand to give a
positive answer to Eisenbrand’s question.

We next describe the approximate MIR separation model in [10] obtained by ap-
proximately linearizing the product β̌(β̄+ 1 − ᾱx∗) in the objective function of MIR-SEP.
Define a new variable Δ that stands for (β̄ + 1 − ᾱx). Let β̃ ≤ β̌ be an approximation of β̌
which is representable over some E = {εk : k ∈ K}. Let a number δ be representable over
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E if δ =
∑

k∈K̄ εk for some K̄ ⊆ K. One can write β̃ as
∑

k∈K εkπk using binary variables
πk, and approximate β̌Δ by β̃Δ. This last term can be written as

∑
k∈K εkπkΔ. This results

in the following approximate MIP model APPX-MIR-SEP for the separation of the most
violated MIR inequality:

max
∑
k∈K
εkΔk − (c+v∗ + α̌x∗) (27)

s.t. (λ, c+, α̌, ᾱ, β̌, β̄) ∈ Π (28)

β̌ ≥
∑
k∈K
εkπk (29)

Δ = (β̄ + 1) − ᾱx∗ (30)

Δk ≤ Δ ∀k ∈ K (31)

Δk ≤ πk ∀k ∈ K (32)

π ∈ {0, 1}|K| (33)

Let zsep and zapx-sep denote the optimal values of MIR-SEP and APPX-MIR-SEP,
respectively. For any integral solution of APPX-MIR-SEP, (λ, c+, α̌, ᾱ, β̌, β̄) ∈ Π and∑

k∈K
εkΔk ≤

∑
k∈K
εkΔπk ≤ β̌Δ,

implying that zsep ≥ zapx-sep. In other words, if the approximate separation problem finds a
solution with objective function value zapx-sep > 0, the corresponding MIR cut is violated
by at least as much. In the computational experiments of Dash, Günlük and Lodi with
APPX-MIR-SEP, they use E = {2−k : k = 1, . . . , k̄} for some small number k̄ (between 5
and 7). They prove that with this choice of E, APPX-MIR-SEP yields a violated MIR cut
provided that there is an MIR cut with a “large enough” violation. More precisely, they
prove [10, Theorem 8] that zapx-sep > zsep − 2−k̄.

If the relaxed-MIR inequality I with maximum violation has a value of β̌ which
is representable over E, one can choose π ∈ {0, 1}k̄ such that β̌ =

∑
k∈K εkπk. Set Δ =

β̄ + 1 − ᾱx∗. Set Δk = 0 if πk = 0, and Δk = Δ if πk = 1. Then Δk = πkΔ for all k ∈ K, and
β̌Δ =

∑
k∈K εkΔk. Therefore, the relaxed-MIR inequality I yields an optimal solution of

APPX-MIR-SEP whose objective function value equals the violation of the I. In other
words, zsep = zapx-sep. Theorem 17 implies that β̌ in a violated MIR cut can be assumed
to be a rational number with a denominator equal to a subdeterminant of [A C b]. This
implies the following result.

Theorem 19 ( [10]). Let Φ be the least common multiple of all subdeterminants of
[A C b], K = {1, . . . , logΦ}, and E = {εk = 2k/Φ,∀k ∈ K}. Then APPX-MIR-SEP is an
exact model for finding violated MIR cuts.

Caprara and Letchford [38], and more recently, Balas and Saxena [36], present op-
timization models for finding a violated split cut for P. In both papers, the authors use
two sets of multipliers that guarantee that the split cut is valid for both sides of the dis-
junction; see Eqs. (8) – (13) in [38] and Eq. (SP) in [36]. It is argued in [10] that the sep-
aration model in Caprara and Letchford (Eqs. (8) – (13)) actually finds the most violated
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MIR cut (the objective function equals four times the objective function of MIR-SEP). In
other words, an optimal solution of MIR-SEP is also optimal for the Caprara – Letchford
model and vice-versa. Similarly, the Balas – Saxena model (Eq. (2.1) or (PMILP) in [36])
is equivalent to MIR-SEP, and has the same objective function. Consequently, the models
in [38] and [36] are also equivalent to each other.

Caprara and Letchford do not perform any computational tests with their model. As
for Balas and Saxena, instead of bounding β̌ by β̃ and linearizing β̃Δ as in [10], they fix
the term corresponding to 1 − β̌ in their model to specific values between 0 and 1/2, and
for each value, solve an MIP to obtain a violated split cut. We will discuss some of the
computational results in [10] and [36] in the next section.

5. Computational Issues

Balas, Ceria, Cornuéjols and Natraj [5] showed that GMI cuts (MIR cuts with simplex
tableau rows as base inequalities), when added in rounds (all violated GMI cuts for the
current optimal tableau are added simultaneously), are very useful in solving the gen-
eral mixed-integer programs in MIPLIB 3.0. Bixby et al. [7] extended this observation
to larger problem sets, and performed additional experiments confirming the usefulness
of GMI cuts relative to other cuts in the CPLEX solver. Marchand and Wolsey [13] pro-
posed a different, effective way of generating MIR inequalities; their heuristic aggregates
constraints of the original formulation to obtain base inequalities which are different from
simplex tableau rows. Despite their effectiveness, GMI cuts often cause numerical dif-
ficulties, and this aspect limits their use. In some cases, simple implementations yield
invalid cuts [65]; in other cases, adding too many GMI cuts makes the resulting LP hard
to solve. The issue of invalid cuts is addressed in a recent paper by Cook et. al. [66] who
generate provably valid GMI cuts with negligible reduction in performance (as measured
by computing time and quality of bounds).

After Gomory [15] introduced group relaxations in 1965, White [16] and Shapiro
[17] showed that for a number of small IPs, group relaxations yielded strong bounds on
optimal values. For 12 of the 14 problems in the latter paper where the IP optimal is
known and is different from the LP relaxation value, the group relaxation bound equals
the optimal value. Gorry, Northup and Shapiro [18] performed a detailed study of a group
relaxation based branch-and-bound algorithm, and solved problems with up to 176 rows
and 2385 columns. In the above papers, group relaxations were solved via dynamic pro-
gramming algorithms. See Salkin [67, Chapter 9] for a discussion on early computational
work on this topic. In general it is NP-hard to solve the group relaxation problem or,
equivalently, to optimize over an arbitrary corner polyhedron [68] (or strengthened cor-
ner polyhedra [69]). In a recent computational study, Fischetti and Monaci [69] optimize
over the corner polyhedra (also strengthened corner polyhedra) associated with optimal
vertices of LP relaxations of some MIPLIB 3.0 and MIPLIB 2003 instances by solving
MIPs and show that the average integrality gap closed is 23.61% (34.48%) as opposed
to 25.32% with GMI cuts. The gap closed using corner polyhedra relaxations is worse
than that with GMI cuts; this is because throwing away the nonactive bounds on variables
often results in weak bounds on optimum values for MIPLIB instances, especially those
which have binary variables.

Two interesting directions of research extending the above work consist of (a) gen-
erating valid inequalities other than MIR cuts — especially group cuts — from the same
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base inequalities, and (b) aggregating constraints of the original formulation to obtain
base inequalities different from simplex tableau rows or those generated by Marchand
and Wolsey. The difference between recent work on (a) and earlier work in the previous
paragraph is that the corner polyhedron is used to generate cutting planes, rather than as
a relaxation by itself.

For the mixed-integer knapsack polyhedron, Atamtürk [70] developed valid inequal-
ities (via lifting) which use upper and lower bounds on variables, unlike the MIR cut in
Eq. (5) which uses only one of the bounds. For a collection of randomly generated mul-
tiple knapsack instances [71], his inequalities along with MIR cuts close a significantly
larger fraction of the integrality gap than MIR cuts alone. He uses scaled constraints of the
original formulation as base inequalities. Fischetti and Saturni [42] and Dash, Goycoolea
and Günlük [24] study the effectiveness of group cuts derived from simplex tableau rows
relative to GMI cuts. The first paper contains a study of group cuts derived via interpola-
tion; violated cuts of this type are obtained by solving an LP. The second paper presents
a heuristic to generate violated two-step MIR inequalities, and shows that they are useful
for the randomly generated instances of Atamtürk. For the unbounded instances (vari-
ables are nonnegative and not bounded above) in Atamtürk’s data set, two-step MIR in-
equalities derived from rows of the initial optimal simplex tableau combined with GMI
cuts (derived from the same tableau rows) close 78.65% of the integrality gap, whereas
GMI cuts alone close only 56.25% of the integrality gap. For these instances, two-step
MIR inequalities seem to be as effective as the lifted knapsack cuts of Atamtürk, and
more effective than K-cuts [43]. Fischetti and Saturni show that K-cuts for K = 1, . . . , 50
(or 1 – 50 scaled GMI cuts) close 75.99% of the integrality gap. Interestingly, the inte-
grality gap closed via (strengthened or otherwise) corner polyhedra relaxations [69] is
79.43%, which is only slightly better than the gap closed using two-step MIR inequali-
ties. These experiments suggest that the shooting experiments discussed earlier yield use-
ful information for problems which resemble master cyclic group polyhedra in that the
integer variables can take values from a large interval, and the constraints have general
(not 0-1) coefficients. For the bounded Atamtürk instances, we note that the lifted knap-
sack cuts are more (about 5 – 6%) effective in closing the integrality gap than two-step
MIR inequalities.

The authors in [24] observe that for the problems in MIPLIB 3.0, the gap closed
by one round of two-step MIR cuts + GMI cuts is essentially the same as that closed
by one round of GMI cuts alone. Interpolated group cuts, and 1 – 50 scaled GMI cuts
also seem to behave similarly [42]. Motivated by this observation, Dash and Günlük [27]
demonstrate that for a collection of practical instances (from MIPLIB 3.0, MIPLIB 2003,
MILPLib [72], and instances from [73]), after GMI cuts derived from the initial opti-
mal tableau rows are added, the solution of the resulting relaxation satisfies all non-GMI
group cuts derived from the initial tableau rows for 35% of the instances. In other words,
additional group cuts beyond the GMI cut derived from the initial optimal tableau rows
are not useful at all for these instances. On the other hand, for 82% of the remaining in-
stances (which potentially have violated group cuts), one can find violated two-step MIR
inequalities. Thus, unlike the Atamtürk instances, group cuts from single tableau rows
do not seem to be very useful for the above instances. However, two-step MIR inequal-
ities seem to be important relative to other group cuts. Fukasawa and Goycoolea [74]
extend the above experiments for MIPLIB instances to show that no other valid inequal-
ities derived from the mixed-integer knapsacks defined by initial optimal tableau rows
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and bounds on variables improve the integrality gap by a significant margin. The above
experiments suggest that for MIPLIB instances, in order to obtain cutting planes which
improve the integrality gap closed by GMI cuts, it is important to use information from
multiple constraints simultaneously. Some recent computational work in this direction
can be found in Espinoza [75].

Bonami and Minoux [34] approximately optimize over the lift-and-project closure
of 0-1 mixed integer programs via the equivalence of optimization and separation; in this
context the separation problem can be framed as a linear program. Lift-and-project cuts
are split cuts derived from disjunctions of the form xi ≤ 0 ∨ xi ≥ 1 for some integral vari-
able xi. Balas and Perregard [76] proposed a method to generate strengthened lift-and-
project cuts from simplex tableau rows, and their method and some variants were imple-
mented by Balas and Bonami [77] with encouraging results. Independently, Fischetti and
Lodi [31] show that for many practical MIPs, one can separate points from the Chvátal
closure of pure integer programs in reasonable time by formulating the separation prob-
lem as an MIP and solving it with a general MIP solver. They apply their separation al-
gorithm to approximately optimize over the Chvátal closures of MIPLIB instances and
obtain tight bounds on optimal solution values for many instances. Bonami et al. [35]
extend the definition of Gomory – Chvátal cuts to mixed integer programs (projected Go-
mory – Chvátal cuts) and use a similar MIP based separation procedure to obtain bounds
for mixed-integer programs in MIPLIB 3.0.

Optimizing over the split closure of MIPs should lead to stronger bounds than in
the papers above. Balas and Saxena [36] approximately optimize over the split closure of
MIPLIB instances to obtain strong bounds on their optimal values, and so do Dash, Gün-
lük and Lodi [10], who combine APPX-MIR-SEP with some heuristics to find violated
MIR cuts. In MIPLIB 3.0, 62 of the 65 instances have a nonzero integrality gap, other
than dsbmip, enigma and noswot. Balas and Saxena show that for these instances (other
than arki001 where they use cuts which potentially have MIR rank 2), at least 71.3% of
the integrality gap can be closed by optimizing over the split closure (the computation
time is quite high though). For these 62 instances, Dash, Günlük and Lodi show that at
least 59.3% of the integrality gap can be closed in one hour of computation time; a round
of GMI cuts closes only 28.4% of the integrality gap. For the 21 pure IPs, the gaps closed
by Dash, Günlük and Lodi, Fischetti and Lodi (GC cuts), Balas and Saxena, and GMI
cuts are on the average 59.2%, 56.5%, 76.0% and 29.8%, respectively. For the remain-
ing 41 MIPs, the corresponding numbers (with projected-GC cuts instead of GC cuts)
are, respectively, 59.3, 28.8, 68.9, and 27.7. Note that in Bonami et. al. [35], the bounds
for projected-GC cuts are obtained with only 20 minutes of computation, whereas the
bounds with GC cuts in [31] are obtained after 3 hours of computation, on the average.

6. Proof Complexity

If NP � coNP, then it cannot be true that for arbitrary Ax ≤ b without 0-1 solutions,
there is a polynomial-size (in the encoding size of A, b) certificate of the absence of 0-1
solutions. We next discuss a recent result in [41] which proves the existence of a family
of inequality systems without 0-1 solutions for which MIR cutting-plane proofs of 0-1
infeasibility have exponential length.

A boolean circuit can be viewed as a description of the elementary steps in an algo-
rithm via a directed acyclic graph with three types of nodes: input nodes — nodes with no
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incoming arcs, a single output node — the only node with no outgoing arcs, and compu-
tation nodes (also called gates), each of which is labelled by one of the Boolean functions
∧,∨, and ¬. For nodes i and j, an arc i j means that the value computed at i is used as
an input to the gate at node j. A computation is represented by placing 0-1 values on the
input gates, and then recursively applying the gates to inputs on incoming arcs, till the
function at the output node is evaluated. A function f : Rn → R is monotone if for x, y in
R

n, x ≤ y implies f (x) ≤ f (y). Monotone operations are monotone functions with one or
two inputs; some examples are

tx, r + x, x + y, �x�, thr(x, 0)

where t is a nonnegative constant, x and y are real variables, and r is a real constant;
thr(x, 0) is a threshold function which returns 0, if x < 0, and 1 otherwise. The functions
∧ and ∨ are monotone operations over the domain {0, 1}. The function f (x, y) = x − y,
where x, y ∈ R, is not monotone. A monotone boolean circuit uses only ∧ gates and ∨

gates; a monotone real circuit is one with arbitrary monotone operations as gates.
Consider CLIQUEk,n (say k is a fixed function of n), the function which takes as

input n-node graphs (represented by incidence vectors of their edges) and returns 1 if
the graph has a clique of size k or more, and 0 otherwise. This function is monotone, as
adding edges to a graph (changing some zeros to ones in the incidence vector) causes the
maximum clique size to increase. Every monotone boolean function can be computed by
a monotone boolean circuit. Razborov [78] showed that any monotone boolean circuit
solving CLIQUEk,n (for appropriate k) has a super-polynomial number of gates, and
Alon and Boppana [79] strengthened his bound to an exponential lower bound. Pudlák
[40], and independently, Cook and Haken [80], proved that the above bounds hold for
monotone real circuits.

Theorem 20 ( [40]). Let Cn be a monotone real circuit which takes as input graphs on n
nodes (given as incidence vectors of edges), and returns 1 if the input graph contains a
clique of size k = �n2/3�, and 0 if the graph contains a coloring of size k − 1 (and returns
0 or 1 for all other graphs). Then |Cn| ≥ 2Ω((n/ log n)1/3).

Pudlák [40] presented a set of linear inequalities I related to the problem of Theo-
rem 20 such that if I has a 0-1 solution, then there is a graph on n nodes which has both
a clique of size k and a coloring of size k − 1. He proved that given a Gomory – Chvátal
cutting plane proof P with L cuts which proves that I has no 0-1 solution, one can con-
struct a monotone real circuit with O

(
poly

(
size(P)

))
gates solving CLIQUEk,n. There-

fore L is exponential in n. Pudlák used the following properties of Gomory – Chvátal cuts
in mapping short cutting-plane proofs to small monotone real circuits (here g, h are row
vectors, r, s, t are numbers, x, y, z, c, e, f are column vectors):

1. If gx + hy ≤ t is a Gomory – Chvátal cut for Ax + By ≤ c, then for any 0-1
vector ȳ with the same dimension as y, gx ≤ t − hȳ is a Gomory-Chvátal cut for
Ax ≤ c − Bȳ;

2. if gx + hy ≤ t is a Gomory – Chvátal cut for Ax ≤ e, By ≤ f , then there are
numbers r and s such that gx ≤ r is a Gomory – Chvátal cut for Ax ≤ e, and
hy ≤ s is a Gomory – Chvátal cut for By ≤ f , and r + s ≤ t.

3. The number r (or s) can be computed from A, e (or B, f ) with polynomially many
monotone operations.
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Property (1) is easy to prove for all integer vectors ȳ. Consider property (2). As
gx + hy ≤ t is a Gomory – Chvátal cut for Ax ≤ e, By ≤ f , we can assume that g, h, t
are integral and there are nonnegative multiplier vectors λ, μ such that g = λA, h = μB,
t = �λe + μ f �. Clearly, gx ≤ �λe� (hy ≤ μ f ) is a Gomory – Chvátal cut for Ax ≤ e
(By ≤ f ), and so is hy ≤ �μ f �, and �λe� + �μ f � ≤ �λe + μ f �. Property (3) also follows
from this; the number �λe� can be computed from e via polynomially many monotone
operations (the coefficients of λ are treated as nonnegative constants).

In general, for a class of cutting planes C, if we can prove properties (1) – (3) in the
previous paragraph for C, then given a C-proof of the fact that Pudlák’s inequality system
I has no 0-1 solution, we can construct a monotone real circuit solving CLIQUEk,n with
polynomially many gates (in the size of the C-proof). This would yield an exponential
worst-case lower bound on the size of C-proofs certifying that I has no 0-1 solution
(of course, additional details have to be verified). In general, for many classes of cutting
planes properties (1) and (2) hold, e.g., the matrix cuts of Lovász and Schrijver (cuts
based on the N and N+ operators; see [81, 82]. Property (3) is often hard to prove, and is
not known to hold for matrix cuts. We prove in [41] that slight variants of properties (2)
and (3) hold for MIR cuts, and thereby obtain an exponential worst-case lower bound on
the complexity of MIR cuts. We state this result below. For completeness, we explicitly
give the inequality system I.

Let k = �n2/3�. Let z be a vector of n(n − 1)/2 0-1 variables, such that every 0-1
assignment to z corresponds to the incidence vector of a graph on n nodes (assume nodes
are numbered from 1, . . . , n). Let x be the 0-1 vector of variables (xi | i = 1, . . . , n) and
let y be the 0-1 vector of variables (yi j | i = 1, . . . , n, j = 1, . . . , k − 1). Consider the
inequalities

n∑
i=1

xi ≥ k, (34)

xi + x j ≤ 1 + zi j, ∀i, j ∈ N, with i < j, (35)
k−1∑
j=1

yi j = 1, ∀i ∈ N, (36)

yis + y js ≤ 2 − zi j, ∀i, j ∈ N with i < j, and ∀s ∈ {1, . . . , k − 1}. (37)

Then, in any 0-1 solution of the above inequalities, the set of nodes {i | xi = 1} forms a
clique of size k or more, and for all j ∈ {1, . . . , k − 1}, the set {i | yi j = 1} is a stable set.
Thus, the variables yi j define a mapping of nodes in a graph to k − 1 colors in a proper
coloring. Let Ax +Cz ≤ e stand for the inequalities (34) and (35), along with the bounds
0 ≤ x ≤ 1. Let By + Dz ≤ f stand for the inequalities (36) and (37), along with the
bounds 0 ≤ y ≤ 1 and 0 ≤ z ≤ 1. Then any 0-1 solution of Ax +Cz ≤ e and By + Dz ≤ f
corresponds to a graph which has both a clique of size k, and a coloring of size k − 1.
Clearly, no such 0-1 solution exists. Note that the above inequalities have O(n3) variables
and constraints.

Theorem 21 ( [41]). Every MIR cutting-plane proof of 0T x + 0T y + 0T z ≤ −1 from
Ax + Cz ≤ e and By + Dz ≤ f has exponential length.
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Many families of inequalities are either special cases of MIR cuts (e.g., Gomory –
Chvátal cuts, lift-and-project cuts), or can be obtained as rank k MIR cuts for some
fixed number k. For example, the two-step MIR inequalities have MIR rank 2 or less.
Therefore, one trivially obtains exponential worst-case lower bounds for the complexity
of cutting plane proofs for all such families of cutting planes.

The technique of deriving a polynomial size monotone circuit from a proof of in-
feasibility is called monotone interpolation, and was proposed by Krajíček [83,84] to es-
tablish lower bounds on the lengths of proofs in different proof systems. Razborov [85],
and Bonet, Pitassi and Raz [86], first used this idea to prove exponential lower bounds
for some proof systems.
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Abstract. VLSI design is probably the most fascinating application area of combi-
natorial optimization. Virtually all classical combinatorial optimization problems,
and many new ones, occur naturally as subtasks. Due to the rapid technological
development and major theoretical advances the mathematics of VLSI design has
changed significantly over the last ten to twenty years. This survey paper gives
an up-to-date account on the key problems in layout and timing closure. It also
presents the main mathematical ideas used in a set of algorithms called BonnTools,
which are used to design many of the most complex integrated circuits in industry.
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routing, timing optimization, clock tree synthesis

1. Introduction

The ever increasing abundance, role and importance of computers in every aspect of our
lives is clearly a proof of a tremendous scientific and cultural development — if not revo-
lution. When thinking about the conditions which made this development possible most
people will probably first think mainly of technological aspects such as the invention and
perfection of transistor technology, the possibility to fabricate smaller and smaller phys-
ical structures consisting of only a few atoms by now, and the extremely delicate, expen-
sive yet profitable manufacturing processes delivering to the markets new generations of
chips in huge quantities every couple of months. From this point of view the increase of
complexity might be credited mainly to the skills of the involved engineering sciences
and to the verve of the associated economic interests.

It is hardly conceived how important mathematics and especially mathematical op-
timization is for all parts of VLSI technology. Clearly, everybody will acknowledge that
the physics of semiconductor material relies on mathematics and that, considered from
a very abstract level, computer chips are nothing but intricate machines for the calcu-
lation of complex Boolean functions. Nevertheless, the role of mathematics is far from
being fully described with these comments. Especially the steps of the design of a VLSI
chip preceding its actual physical realization involve more and more mathematics. Many
of the involved tasks which were done by the hands of experienced engineers until one
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or two decades ago have become so complicated and challenging that they can only be
solved with highly sophisticated algorithms using specialized mathematics.

While the costs of these design and planning issues are minor compared to the in-
vestments necessary to migrate to a new technology or even to build a single new chip
factory, they offer large potentials for improvement and optimization. This and the fact
that the arising optimization problems, their constraints and objectives, can be captured
far more exactly in mathematical terms than many other problems arising in practical
applications, make VLSI design one of the most appealing, fruitful and successful appli-
cation areas of mathematics.

The Research Institute for Discrete Mathematics at the University of Bonn has been
working on problems arising in VLSI design for more than twenty years. Since 1987
there exists an intensive and growing cooperation with IBM, in the course of which more
than one thousand chips of IBM and its customers (microprocessor series, application
specific integrated circuits (ASICs), complex system-on-a-chip designs (SoC)) have been
designed with the so-called BonnTools. In 2005 the cooperation was extended to include
Magma Design Automation. Some BonnTools are now also part of Magma’s products
and are used by its customers.

The term BonnTools [1] refers to complete software solutions which have been de-
veloped at the institute in Bonn and are being used in many design centers all over the
world. The distinguishing feature of BonnTools is their innovative mathematics. With its
expertise in combinatorial optimization [2,3,4] the institute was able to develop some
of the best algorithms for the main VLSI design tasks: placement, timing optimization,
distribution of the clocking signals, and routing. Almost all classical combinatorial op-
timization problems such as shortest paths, minimum spanning trees, maximum flows,
minimum cost flows, facility location and so forth arise at some stage in VLSI design,
and the efficient algorithms known in the literature for these problems can be used to
solve various subproblems in the design flow. Nevertheless, many problems do not fit
into these standard patterns and need new customized algorithms. Many such algorithms
have been developed by our group in Bonn and are now part of the IBM design flow.

In this paper we survey the main mathematical components of BonnTools. It is a
common feature of these components that they try to restrict the optimization space, i.e.,
the set of feasible solutions which the algorithms can generate, as little as possible. This
corresponds to what is typically called a flat design style in contrast to a hierarchical
design style. The latter simplifies a problem by splitting it into several smaller problems
and restricting the solution space by additional constraints which make sure that the
partial solutions of the smaller problems properly combine to a solution of the entire
problem. Clearly, this can seriously deteriorate the quality of the generated solution.

While imposing as few unnecessary restrictions to the problems as possible, the
BonnTools algorithms are always considered with respect to their theoretical as well as
practical performance. Wherever possible, theoretical performance guarantees and rig-
orous mathematical proofs are established. The running time and practical behavior of
the implemented algorithms is always a main concern, because the code is used for real
practical applications.

The beauty and curse of applying mathematics to VLSI design is that problems are
never solved once for good. By new technological challenges, new orders of magnitude
in instance sizes, and new foci on objectives like the reduction of power consumption for
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portable devices or the increase of the productivity of the factories, new mathematical
problems arise constantly and classical problems require new solutions. This makes this
field most interesting not only for engineers, but also for mathematicians. See [5] for
some interesting open problems.

The paper is organized as follows. In the rest of this introduction we explain some
basic terminology of VLSI technology and design. Then, in Section 2, we describe our
placement tool BonnPlace and its key algorithmic ingredients. The placement problem
is solved in two phases: global and detailed placement. Global placement uses continu-
ous quadratic optimization and a new combinatorial partition algorithm (multisection).
Detailed placement is based on a sophisticated minimum cost flow formulation.

In Section 3 we proceed to timing optimization, where we concentrate on the three
most important topics: repeater trees, logic restructuring, and choosing physical realiza-
tions of gates (sizing and Vt-assignment). These are the main components of BonnOpt,
and each uses new mathematical theory.

As described in Section 4, BonnCycleOpt further optimizes the timing and robust-
ness by enhanced clock skew scheduling. It computes a time interval for each clock input
of a memory element. BonnClock, our tool for clock tree synthesis, constructs clock trees
meeting these time constraints and minimizing power consumption.

Finally, Section 5 is devoted to routing. Our router, BonnRoute, contains the first
global router that directly considers timing, power consumption, and manufacturing
yield, and is provably close to optimal. It is based on a new, faster algorithm for the min-
max resource sharing problem. The unique feature of our detailed router is an extremely
fast implementation of Dijkstra’s shortest path algorithm, allowing us to find millions of
shortest paths even for long-distance connections in very reasonable time.

1.1. A Brief Guided Tour through VLSI Technology

VLSI — very large-scale integrated — chips are by far the most complex structures in-
vented and designed by man. They can be classified into two categories: memory chips
and logic chips. In a memory chip transistors are packed into a rectangular array. For the
design of such chips no advanced mathematics is needed since the individual storage el-
ements (transistors) have to be arranged like a matrix. Logic chips have a very individual
design where mathematical methods — as explained below — are essential.
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Figure 1. Number of transistors per logic chip
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Integrated circuits are around since 1959. Jack Kilby of Texas Instruments was one
of its inventors. Since then the degree of integration grew exponentially. While the first
integrated circuits had only a few transistors on a silicon chip, modern chips can have
up to one million transistors per mm2, i.e., a chip of 2 cm2 total size can carry up to 2
billion transistors. The famous Moore’s law, a rule of thumb proposed by Gordon Moore
in 1965 [6] and updated in 1975, states that the number of transistors per chip doubles
every 24 months (see Figure 1).

This empirical observation is true ever since. As the size of a chip remains almost
constant (between 1 and 4 cm2), the minimum feature size on a chip has to halve about
every 4 years. See Figure 2 for the development of feature sizes on leading-edge computer
chips.

It is frequently asked how this extremely rapid development of chip technology will
continue. Technological as well as physical limitations have to be considered. However,
technological limitations could be overruled so far by more sophisticated manufacturing
approaches. Thus, the quite often predicted end of silicon technology is not yet in sight.
Certainly, there are genuine physical limitations. Today less than 100,000 electrons are
used to represent one bit, the absolute minimum is one. The switching energy of a single
transistor amounts nowadays to 10,000 attojoule (atto = 10−18). The lower bound de-
rived from quantum physics is 0.000,001 attojoule. Some experts believe that the limit
of feature size is around 5 nanometers (today 32 nanometers) and they predict that such
dimensions will be possible between 2020 and 2025. In any case, silicon technology will
be alive for some further decades. There is some interesting (theoretical) research on
quantum computing. However, nobody knows when such ideas can be used in hardware
and for mass production.

The extreme dynamics of chip technology can be demonstrated by cost reduction
over time. In Figure 3 the trend of cost reduction is shown from 1960 on. Green dots

Figure 3. Trend of cost reduction in microelectronics
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Figure 4. Schematic cross-sectional view of a chip
Figure 5. Microscopic view of a chip with aluminum
wiring

demonstrate the cost of 1 megabit of memory (DRAM), red triangles the cost of 1 million
transistors in silicon technology, blue squares the cost of 1 MIPS (million instructions
per second) computing power of Intel X86 processors and red diamonds show the cost
of 1 MIPS for Texas Instruments processors. All these developments indicate an average
reduction of cost of 35% per year. There is no other industry or technology known with
such huge figures over a period of 50 years.

Let us give some insight into the real structure of a chip. Figure 4 shows a schematic
of a chip and its different layers. This diagram refers to an older technology with only
three layers of metal interconnect. Modern chips have up to 12 layers for wiring signal
nets between the circuits. The cross-sectional view reveals the different layers generated
on the chip by lithographic processes. By doping with foreign atoms so-called wells (N-
wells and P-wells) are generated on the silicon substrate of the wafer. According to the
doping the regions have either a surplus (emitter zones) or a demand (collector zones)
of electrons. The space between these regions is controlled by a gate. The gates can be
charged with different electrical potentials. This will effect that the space underneath
the gate is blocked or that electrons can move, which means that the transistor as an
electronic switch is either closed or open.

Figure 5 displays the structure of a real chip, visualized by a scanning tunneling
microscope. We can identify emitter, collector and gates with their connector pins and
some horizontal part of the connecting wires. This picture shows an older technology
with aluminum as metal for the interconnect. Figure 6 shows the same technology. Each
layer contains horizontal and/or vertical wires, and adjacent layers are separated by an in-
sulation medium. One can also see vias, i.e., the connections between different metal lay-
ers. Vias can be considered as little holes in the insulating layer, filled with metal. Since
approximately ten years ago aluminum has been replaced by copper for the interconnect
wiring (Figure 7). This permits faster signal transmission.

1.2. The VLSI Design Problem: A High-Level View

Although all functions of a chip are composed of transistors and their interconnect, it is
not useful to work on this level directly. Instead one uses a library for the design of a
chip, where each element of the library represents a pre-designed configuration of sev-
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Figure 6. Layers of a chip visualized by electron microscopy

Figure 7. Microscopic view
of a chip with copper-wiring
(90 nm technology)

eral transistors, implementing a specific function. The elements of the library are called
books.

Each book is a blueprint of a (smaller) integrated circuit itself: it contains a list
of transistors and their layout, including internal interconnect. Most importantly, each
book has at least one input and at least one output. Most books implement an elementary
Boolean function, such as and, or, invert, xor, etc. For example, the output of an and
is charged (logical 1) if both inputs are charged, and discharged (logical 0) otherwise.
Other books implement registers.

Such simple cells are called standard cells. Their blueprints have unit height, be-
cause on the chip these cells have to be aligned vertically into so called cell rows.
Thereby, the power supply pins in each cell row are also aligned and power supply wires
can be arranged in straight horizontal lines across the chip.

Finally, there are complicated (and larger) books that represent complex structures
like memory arrays, adders, or even complete microprocessors that have been designed
earlier and are re-used several times. With each book there is also pre-computed infor-
mation about its timing behavior. A simple view is that we know how long it takes that a
change of an input bit is propagated to each output (if it has any effect).

A chip can contain many instances of the same book. These instances are called
circuits or cells. For example, a logic chip can contain millions of inverters, but a typical
library contains only a few dozen books that are different implementations of the invert
function. These books have different layouts and different timing behavior, although they
all implement the same function. Each circuit has a set of pins, and each of these pins
corresponds to an input or an output of the corresponding book.

The most important part of an instance of the VLSI design problem is a netlist,
which consists of a set of circuits, their pins, a set of additional pins that are inputs or
outputs of the chip itself (I/O ports), and a set of nets, which are pairwise disjoint sets of
pins. The layout problem consists of placing these circuits within the chip area, without
any overlaps, and connecting the pins of each net by wires, such that wires of different
nets are well separated from each other. Placement (Section 2) is a two-dimensional
problem (it is currently not possible to put transistors on top of each other), but routing
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(Section 5) is a three-dimensional problem as there are several (currently up to 12) layers
that can be used for wiring. Of course there are additional rules for placement and routing
that must be followed. Some of these are important for the nature of the problem and
will be discussed later on, others are merely technical but cause no algorithmic problems;
these will not be discussed in this paper.

Layout (placement and routing) is not the only interesting design task. Usually one
of the main challenges is to meet timing constraints. In particular, all signals must be
propagated in time not only through a single circuit, but also through long paths. In
a simple setting, we have an arrival time at each input of the chip, and also a latest
feasible arrival time at each output. Moreover, each register is controlled by a periodic
clock signal, and the signal to be stored in the register must arrive in time, and can then
be used for further computations. To make this possible, one can replace parts of the
netlist equivalently (the new parts must compute the same Boolean function as the old
ones). While the task to implement a given Boolean function optimally by a netlist (logic
synthesis) is extremely hard and more or less completely unsolved, we concentrate on
replacing smaller parts of the netlist or restrict to basic operations (Section 3). Another
possibility to speed up timing is to schedule the clock signals for all registers (Section 4),
thereby trading timing constraints of paths. This is one of the few tasks which we can
solve optimally, even for the largest VLSI instances.

2. Placement

A chip is composed of basic elements, called cells, circuits, boxes, or modules. They
usually have a rectangular shape, contain several transistors and internal connections, and
have at least two pins (in addition to power supply). The pins have to be connected to
certain pins of other cells by wires according to the netlist. A net is simply a set of pins
that have to be connected, and the netlist is the set of all nets.

The basic placement task is to place the cells legally — without overlaps — in the
chip area. A feasible placement determines an instance of the routing problem, which
consists of implementing all nets by wires. The quality of a placement depends on the
quality of a wiring that can be achieved for this instance.

For several reasons it is usually good if the wire length (the total length of the wires
connecting the pins of a net) is as short as possible. The power consumption of a chip
grows with the length of the interconnect wires, as higher electrical capacitances have
to be charged and discharged. For the same reason signal delays increase with the wire
length. Critical nets should be kept particularly short.

2.1. Estimating Net Length

An important question is how to measure (or estimate) wire length without actually rout-
ing the chip. First note that nets are wired in different layers with alternating orthogonal
preference direction. Therefore the l1-metric is the right metric for wire length. An exact
wire length computation would require to find disjoint sets of wires for all nets (vertex-
disjoint Steiner trees), which is an NP-hard problem. This even holds for the simplified
problem of estimating the length of each net by a shortest two-dimensional rectilinear
Steiner tree connecting the pins, ignoring disjointness and all routing constraints [7].
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Table 1. Worst-case ratios of major net models. Entry (r, c) is sup c(N)/r(N) over all point sets N with |N| = n.
Here c(N) denotes a net length in the model of column c and r(N) in the model of row r.
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A simple and widely used estimate for the net length of a finite set V ⊂ R2 of pin
coordinates (also called terminals) is the bounding box model bb, which is defined as half
the perimeter of the bounding box:

bb(V) = max
(x,y)∈V

x − min
(x,y)∈V

x + max
(x,y)∈V

y − min
(x,y)∈V

y

The bounding box net length is a lower bound for the minimum Steiner tree length and
computable in linear time. It is widely used for benchmarking and often also as an objec-
tive function in placement. Other useful measurements are the clique model clique which
considers all pin to pin connections of a net

clique(V) =
1

|V | − 1

∑
{(x,y),(x′,y′)}∈(V

2)
(|x − x′| + |y − y′|),

and the star model which is the minimum length of a star connecting all sinks to an opti-
mally placed auxiliary point. It can be shown that the clique model is the best topology-
independent approximation of the minimum Steiner length [8]. Therefore we use it in
our optimization framework, which we will present in Section 2.3.

Table 1 gives an overview on major net models and their mutual worst-case ratios.
They were proved in [8,9,10].

2.2. The Placement Problem

We now define the Simplified Placement Problem. It is called “simplified” as side con-
straints such as routability, timing constraints, decoupling capacitor densities, or nwell
filling are neglected.2 Moreover, wire length is estimated by the bounding box model.
Nevertheless this formulation is very relevant in practice. Net weights are incorporated to

2Readers who are not acquainted with these terms might just think of additional constraints.
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reflect timing criticalities and can be interpreted as Lagrange multipliers corresponding
to delay constraints. Other constraints can be dealt with by adjusting densities.

Simplified Placement Problem
Instance: • a rectangular chip area [xmin, xmax] × [ymin, ymax]

• a set of rectangular blockages
• a finite set C of (rectangular) cells
• a finite set P of pins, and a partition N of P into nets
• a weight w(N) > 0 for each net N ∈ N

• an assignment γ : P → C ∪ {�} of the pins to cells
[pins p with γ(p) = � are fixed; we set x(�) := y(�) := 0]

• offsets x(p), y(p) ∈ R of each pin p ∈ P

Task: Find a position (x(c), y(c)) ∈ R2 of each cell c ∈ C such that
• each cell is contained in the chip area,
• no cell overlaps with another cell or a blockage,
and the weighted net length∑

N∈N w(N) bb
({(

x
(
γ(p)

)
+ x(p), y

(
γ(p)

)
+ y(p)

)
| p ∈ N

})
is minimum.

A special case of the Simplified Placement Problem is the Quadratic Assignment
Problem (QAP), which is known to be one of the hardest combinatorial optimization
problems in theory and practice (for example, it has no constant-factor approximation
algorithm unless P = NP [11]).

Placement typically splits into global and detailed placement. Global placement
ends with an infeasible placement, but with overlaps that can be removed by local moves:
there is no large region that contains too many objects. The main objective of global
placement is to minimize the weighted net length. Detailed placement, or legalization,
takes the global placement as input and legalizes it by making only local changes. Here
the objective is to ensure the previously neglected constraints while minimizing the per-
turbation of the global placement.

The global placement algorithm developed in [12,13,14,15] has two major compo-
nents: quadratic placement and multisection.

At each stage the chip area [xmin, xmax] × [ymin, ymax] is partitioned by coordinates
xmin = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn = xmax and ymin = y0 ≤ y1 ≤ y2 ≤ · · · ≤

ym−1 ≤ ym = ymax into an array of regions Ri j = [xi−1, xi] × [y j−1, y j] for i = 1, . . . , n
and j = 1, . . . ,m. Initially, n = m = 1. Each movable object is assigned to one region
(cf. Figure 8).

In the course of global placement, columns and rows of this array, and thus the
regions, are subdivided, and movable objects are assigned to subregions. After global
placement, these rows correspond to cell rows with the height of standard cells, and the
columns are small enough so that no region contains more than a few dozen movable
objects. On a typical chip in 32 nm technology we have, depending on the library and die
size, about 10,000 rows and 2,000 columns.

2.3. Quadratic Placement

Quadratic placement means solving
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Figure 8. The initial four levels of the global placement with 1, 4, 16, and 64 regions. Colors indicate the
assignment of the movable objects to the regions. The large grey objects are fixed and serve as blockages.

min
∑
N∈N

w(N)
|N| − 1

∑
p,q∈N

(Xp,q + Yp,q),

where N is the set of nets, each net N is a set of pins, |N| is its cardinality (which we
assume to be at least two), and w(N) is the weight of the net, which can be any positive
number. For two pins p and q of the same net, Xp,q is the function

1.
(
x(c) + x(p) − x(d) − x(q)

)2 if p belongs to movable object c with offset x(p), q
belongs to movable object d with offset x(q), and c and d are assigned to regions
in the same column.

2.
(
x(c) + x(p) − v

)2 if p belongs to movable object c with offset x(p), c is as-
signed to region Ri, j, q is fixed at a position with x-coordinate u, and v =
max{xi−1,min{xi, u}}.

3.
(
x(c) + x(p) − xi

)2
+

(
x(d) + x(q) − xi′−1

)2 if p belongs to movable object c with
offset x(p), q belongs to movable object d with offset x(q), c is assigned to region
Ri, j, d is assigned to region Ri′, j′ , and i < i′.
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Figure 9. Minimizing the linear bounding box net length (left) gives hardly any information on relative posi-
tions compared to minimizing quadratic net length (right). As no disjointness constraints were considered yet,
many cells share their position, especially on the left-hand side.

4. 0 if both p and q are fixed.

Yp,q is defined analogously, but with respect to y-coordinates, and with rows playing the
role of columns.

In its simplest form, with n = m = 1, quadratic placement gives coordinates that
optimize the weighted sum of squares of Euclidean distances of pin-to-pin connections
(cf. the top left part of Figure 8). Replacing multi-terminal nets by cliques (i.e., consider-
ing a connection between p and q for all p, q ∈ N) is the best one can do as clique is the
best topology-independent net model (see Section 2.1). Dividing the weight of a net by
|N|−1 is necessary to prevent large nets from dominating the objective function. Splitting
nets along cut coordinates as in (ii) and (iii), first proposed in [12], partially linearizes
the objective function and reflects the fact that long nets will be buffered later.

There are several reasons for optimizing this quadratic objective function. Firstly,
delay along unbuffered wires grows quadratically with the length. Secondly, quadratic
placement yields unique positions for most movable objects, allowing one to deduce
much more information than the solution to a linear objective function would yield (see
Figure 9). Thirdly, as shown in [16], quadratic placement is stable, i.e., almost invariant
to small netlist changes. Finally, quadratic placement can be solved extremely fast.

To compute a quadratic placement, first observe that the two independent quadratic
forms, with respect to x- and y-coordinates, can be solved independently in parallel.
Moreover, each row and column can be considered separately and in parallel. Each
quadratic program is solved by the conjugate gradient method with incomplete Cholesky
pre-conditioning. The running time depends on the number of variables, i.e., the number
of movable objects, and the number of nonzero entries in the matrix, i.e., the number of
pairs of movable objects that are connected. As large nets result in a quadratic number
of connections, we replace large cliques, i.e., connections among large sets of pins in the
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same net that belong to movable objects assigned to regions in the same column (or row
when considering y-coordinates), equivalently by stars, introducing a new variable for
the centre of a star. This was proposed in [12,14].

The running time to obtain sufficient accuracy grows slightly faster than linearly.
There are linear-time multigrid solvers, but they do not seem to be faster in practice. We
can compute a quadratic placement within at most a few minutes for 5 million movable
objects. This is for the unpartitioned case n = m = 1; the problem becomes easier by
partitioning, even when sequential running time is considered.

It is probably not possible to add linear inequality constraints to the quadratic pro-
gram without a significant impact on the running time. However, linear equality con-
straints can be added easily, as was shown by [17]. Before partitioning, we analyze the
quadratic program and add center-of-gravity constraints to those regions whose movable
objects are not sufficiently spread. As the positions are the only information considered
by partitioning, this is necessary to avoid random decisions. See also [18] for a survey on
analytical placement.

2.4. Multisection

Quadratic placement usually has many overlaps which cannot be removed locally. Be-
fore legalization we have to ensure that no large region is overloaded. For this global
placement has a second main ingredient, which we call multisection.

The basic idea is to partition a region and assign each movable object to a subregion.
While capacity constraints have to be observed, the total movement should be minimized,
i.e., the positions of the quadratic placement should be changed as little as possible. More
precisely we have the following problem.

Multisection Problem
Instance: • Finite sets C (cells) and R (regions),

• sizes size : C → R≥0 ,
• capacities cap : R → R≥0 and
• costs d : C × R → R.

Task: Find an assignment g : C → R with∑
c∈C:g(c)=r size(c) ≤ cap(r) (for all r ∈ R)

minimizing the total cost
∑

c∈C d(c, r).

This partitioning strategy has been proposed in [12] for k = 4 and l1-distances as
costs as the Quadrisection Problem, and was then generalized to arbitrary k and costs in
[14]. It is a generalization of the Assignment Problem where the sizes and capacities are
all 1. To decide whether a solution of the Multisection Problem exists is NP-complete
(even for |R| = 2) since it contains the decision problem Partition. For our purpose it suf-
fices to solve the fractional relaxation which is known as the Hitchcock Transportation
Problem. Here each c ∈ C can be assigned fractionally to several regions:
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Hitchcock Transportation Problem
Instance: • Finite sets C (cells) and R (regions),

• sizes size : C → R≥0 ,
• capacities cap : R → R≥0 and
• costs d : C × R → R.

Task: Find a fractional assignment g : C × R → R+ with∑
r∈R g(c, r) = size(c) for all c ∈ C

and ∑
c∈C g(c, r) ≤ cap(r) for all r ∈ R

minimizing∑
c∈C

∑
r∈R g(c, r)d(c, r).

A nice characteristic of the fractional problem is, that one can easily find an opti-
mum solution with only a few fractionally assigned cells. Most cells can be assigned to
a unique region as shown by Vygen [13]:

Proposition 1. From any optimum solution g to the Hitchcock Problem we can obtain
another optimum solution g� in O(|C||R|2) time that is integral up to |R| − 1 cells.

Proof. W.l.o.g. let R = {1, . . . , k}. Let g be an optimum solution. Define Φ(g) := |{(c, r) |

c ∈ C, r ∈ R, g(c, r) > 0}|.
Let G be the undirected graph with vertex set R. For every cell c that is not assigned

integrally to one region, add an edge between the region i with least i and the region j
with largest j that contain parts of c. (G may have parallel edges.) If |E(G)| ≤ k − 1, we
are done.

Otherwise G contains a circuit ({v1, . . . , v j, v j+1 = v1}, {{vi, vi+1} | i = 1, . . . , j}). For
each i ∈ {1, . . . , j} there is a ci ∈ C with 0 < g(ci, vi) < size(ci) and 0 < g(ci, vi+1) <
size(ci) (here v j+1 := v1). c1, . . . , c j are pairwise distinct. Hence for a sufficiently small
ε > 0 we have that g′ and g′′ are feasible fractional partitions, where g′(ci, vi) := g(ci, vi)−
ε, g′(ci, vi+1) := g(ci, vi+1) + ε, g′′(ci, vi) := g(ci, vi) + ε, g′′(ci, vi+1) := g(ci, vi+1) − ε

(i = 1, . . . , j) and g′(c, r) := g′′(c, r) := g(c, r) for c ∈ C \ {c1, . . . , c j} and r ∈ R.
The arithmetic mean of the objective function values of g′ and g′′ is precisely that

of g, implying that g′ and g′′ are also optimum. If we choose ε as large as possible, Φ(g′)
or Φ(g′′) is strictly smaller than Φ(g).

After |C||R| iterations Φ must be zero. Note that each iterations can be performed in
O(|R|) time, including the update of G.

The Hitchcock transportation problem can be modeled as a minimum cost flow
problem as Figure 10 indicates. The fastest standard minimum cost flow algorithm runs
in O(n log n(n log n + kn)) [19]. However, super-quadratic running times are too slow for
VLSI instances. For the quadrisection case, where k = 4 and d is the l1-distance, there is
a linear-time algorithm by Vygen [13]. The algorithm is quite complicated but very effi-
cient in practice. Recently, Brenner [20] proposed an O(nk2(log n+k log k))-algorithm for
the general case. This is extremely fast also in practice and has replaced the quadrisection
algorithm of [13] in BonnPlace.

The idea is based on the well-known successive shortest paths algorithm (cf. [3]).
Let the cells C = {c1, c2, . . . , cn} be sorted by size size(c1) ≥ size(c2) ≥ · · · ≥ size(cn). We
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c1, . . . , cn r1, . . . , rk

Figure 10. The Hitchcock transportation problem is a relaxation of the multisection problem. All arcs are
oriented from left to right and are uncapacitated. The supply vertices on the left correspond to movable objects
and have supply size(c1), . . . , size(cn). The demand vertices on the right correspond to subregions and have
demand cap(r1), . . . , cap(rk). Arc costs are d(ci , r j) for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. Note that k � n in this
application.

assign the objects in this order. A key observation is that for doing this optimally we need
to re-assign only O(k2) previously assigned objects and thus can apply a minimum cost
flow algorithm in a digraph whose size depends on k only. Note that k is less than 10 in
all our applications, while n can be in the millions. The relevant results for our purposes
are summarized in following theorem.

Theorem 2 ([13,20]). The Hitchcock transportation problem with |R| = 4 and l1-distance
can be solved in O(n) time. The general case can be solved in O(nk2(log n+k log k)) time,
where n = |C| and k = |R|.

Figure 11 shows a multisection example where the movable objects are assigned
optimally to nine regions.

2.5. Overall Global Placement and Macro Placement

With these two components, quadratic placement and multisection, the global placement
can be described. Each level begins with a quadratic placement. Before subdividing the
array of regions further, we fix macro cells that are too large to be assigned completely to
a subregion. Macro placement uses minimum cost flow, branch-and-bound, and greedy
techniques. We briefly describe its main component.

Assume that we want to place rectangular macros numbered c1, . . . , cn, with widths
w1, . . . ,wn and heights h1, . . . , hn within an area [xmin, xmax] × [ymin, ymax]. The objective
function is weighted bounding box netlength. If we fix a relation ri j ∈ {W, S , E,N} for
each 1 ≤ i < j ≤ n, then this can be written as linear program:

min
∑
N∈N

w(N)
(
xN − xN + yN − y

N

)
(1)

subject to

xi ≥ xmin for i = 1, . . . , n

S. Held et al. / Combinatorial Optimization in VLSI Design46



Figure 11. An example for multisection: objects are assigned to 3 × 3 subregions. The colors reflect the as-
signment: the red objects are assigned to the top left region, the yellow ones to the top middle region, and so
on. This assignment is optimal with respect to total l1-distance.

xi + wi ≤ xmax for i = 1, . . . , n

yi ≥ ymin for i = 1, . . . , n

yi + hi ≤ ymax for i = 1, . . . , n

xi + wi ≤ x j for 1 ≤ i < j ≤ n with ri j = W

x j + wj ≤ xi for 1 ≤ i < j ≤ n with ri j = E

yi + hi ≤ y j for 1 ≤ i < j ≤ n with ri j = S

y j + h j ≤ yi for 1 ≤ i < j ≤ n with ri j = N

xi + x(p) ≥ xN for i = 1, . . . , n and p ∈ P with γ(p) = ci

x(p) ≥ xN for p ∈ P with γ(p) = �

xi + x(p) ≤ xN for i = 1, . . . , n and p ∈ P with γ(p) = ci

x(p) ≤ xN for p ∈ P with γ(p) = �

yi + y(p) ≥ y
N

for i = 1, . . . , n and p ∈ P with γ(p) = ci

y(p) ≥ y
N

for p ∈ P with γ(p) = �
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yi + y(p) ≤ yN for i = 1, . . . , n and p ∈ P with γ(p) = ci

y(p) ≤ yN for p ∈ P with γ(p) = � (2)

This is the dual of an uncapacitated minimum cost flow problem. Hence we can find
an optimum solution to Eq. (2) in O((n + m)(p + n2 + m log m) log(n + m)) time, where
n = |C|, m = |N|, and p = |P|. Instead of enumerating all 2n(n−1) possibilities for r, it
suffices to enumerate all pairs of permutations π, ρ on {1, . . . , n}. For 1 ≤ i < j ≤ n we
then define ri j := W if i precedes j in π and ρ, ri j := E if j precedes i in π and ρ, ri j := S
if i precedes j in π and j precedes i in ρ, and ri j := N if j precedes i in π and i precedes
j in ρ. One of the (n!)2 choices will lead to an optimum placement. This sequence-pair
representation is due to [21] and [22]. In practice, however, a branch-and-bound approach
is faster; Hougardy [23] solves instances up to approximately 20 circuits optimally. This
is also used as part of a post-optimization heuristic.

However, interaction of small and large blocks in placement is still not fully under-
stood [24,25], and placing large macros in practice often requires a significant amount of
manual interaction.

After partitioning the array of regions, the movable objects are assigned to the re-
sulting subregions. Several strategies are applied (see [15,26] for details), but the core
subroutine in each case is the multisection described above. An important further step
is repartitioning, where 2 × 2 or even 3 × 3 sub-arrays of regions are considered and all
their movable objects are reassigned to these regions, essentially by computing a local
quadratic placement followed by multisection.

There are further components which reduce routing congestion [27], deal with tim-
ing and resistance constraints, and handle other constraints like user-defined bounds on
coordinates or distances of some objects. Global placement ends when the rows corre-
spond to standard cell heights. Typically there are fewer columns than rows as most mov-
able objects are wider than high. Therefore 2 × 3 partitioning is often used in the late
stages of global placement.

2.6. Detailed Placement

Detailed placement, or legalization, considers standard cells only; all others are fixed
beforehand. The task is to place the standard cells legally without changing the (illegal)
input placement too much. Detailed placement does not only arise as a finishing step
during the overall placement flow, but also in interaction with timing optimization and
clock tree insertion. These steps add, remove or resize cells and thus require another
legalization of the placement that has become illegal.

Due to technology constraints cells cannot be placed with arbitrary y-coordinates.
Instead, they have to be arranged in cell rows. Cells that are higher than a cell row must be
fixed before detailed placement. Thus we can assume unit height and have the following
problem formulation:
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Placement Legalization Problem
Instance: • A rectangular chip area [xmin, xmax] × [ymin, ymax],

• a set of rectangular blockages,
• a set C of rectangular cells with unit height,
• An equidistant subdivision yR

0 = ymin ≤ yR
1 ≤ · · · ≤ yR

nR
= ymax of

[ymin, ymax] into cell rows
• a width w(c) and a position

(
x(c), y(c)

)
∈ R2 of each cell c ∈ C.

Task: Find new positions
(
x′(c), y′(c)

)
∈ Z2 of the cells such that

• each cell is contained in the chip area,
• each cell snaps into a cell row

(its y-coordinate is a cell row coordinate),
• no two cells overlap,
• no cell overlaps with any blockage,
and ∑

c∈C
((

x(c) − x′(c)
)2
+

(
y(c) − y′(c)

)2)
is minimum.

It is quite natural to model the legalization problem as a minimum cost flow prob-
lem, where flow goes from supply regions with too many objects to demand regions
with extra space [28]. Brenner and Vygen [29] refined this approach. We describe this
enhanced legalization algorithm in the following.

It consists of three phases. A zone is defined as a maximal part of a cell row that is
not blocked by any fixed objects, i.e., can be used for legalization.

The first phase guarantees that no zone contains more cells than fit into it. The sec-
ond phase places the cells legally within each zone in the given order. When minimizing
quadratic movement, this can be done optimally in linear time by Algorithm 1, as shown
in [29] (see also [30,31,32]). The algorithm gets as inputs a zone [xmin, xmax], coordinates
x1, . . . , xn ∈ R and widths w1, . . . ,wn > 0 with

∑n
i=1 wi ≤ xmax − xmin, and legalizes the

circuits within [xmin, xmax] in the given order. As all circuits stay within one zone, we do
not consider y-coordinates. It places the circuits from left to right, each optimally and as
far to the left as possible. If a circuit cannot be placed optimally, it is merged with its
predecessor.

Theorem 3. Algorithm 1 runs in linear time and computes coordinates x′
1, . . . , x

′
n with

xmin ≤ x′
1, x′

i + wi ≤ x′
i+1 (i = 1, . . . , n − 1), and xn + wn ≤ xmax, such that

∑n
i=1(xi − x′

i )
2

is minimum.

Proof. Each iteration increases i by one or decreases |L| and i by one. As 1 ≤ i ≤ |L| ≤

n + 1, the total number of iterations is at most 2n. Each takes constant time.
To prove correctness, the main observation is that we can merge circuits without

losing optimality. So if we merge circuits h and i, we write L′ := { j ∈ L | j < i}
and claim that there exists an optimum solution (x∗

j) j∈L′∪{i} of the subproblem defined by
( f j,Wj) j∈L′∪{i} where x∗

h +Wh = x∗
i .

Let (x∗
j) j∈L′∪{i} be an optimum solution of this subproblem. If x∗

i − Wh ≤ arg min fh,
then x∗

h can be set to x∗
i − Wh without increasing fh(x∗

h).
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1: Let fi : x �→ (x − xi)2.
2: x′

0 ← xmin, W0 ← 0, Wi ← wi for i = 1, . . . , n.
3: Let L be the list consisting of 0, 1, . . . , n, n + 1.
4: i ← 1.
5: while i < n + 1 do
6: Let h be the predecessor and j the successor of i in L.
7: if h = 0 or x′

h +Wh ≤ min{xmax − Wi, arg min fi} then
8: x′

i ← max{xmin,min{xmax − Wi, arg min fi}}.
9: i ← j.

10: else
11: Redefine fh by fh : x �→ fh(x) + fi(x +Wh).
12: Wh ← Wh +Wi.
13: Remove i from L.
14: i ← h.
15: end if
16: end while
17: for i ∈ {1, . . . , n} \ L do
18: x′

i ← x′
h +

∑i−1
j=h wj, where h is the maximum index in L that is smaller than i.

19: end for

Algorithm 1. Single Row Placement Algorithm

So suppose that x∗
i > x∗

h+Wh and x∗
i >arg min fh+Wh. Then x∗

i >max{xmin, arg min fh}+
Wh ≥ x′

h+Wh > min{xmax −Wi, arg min fi}, a contradiction as decreasing x∗
i would reduce

fi(x∗
i ).

Finally, some post-optimization heuristics (like exchanging two cells, but also much
more complicated operations) are applied.

The most difficult and important phase is the first one, which we describe here in
detail. If the global placement is very dense in some areas, a significant number of cells
has to be moved. As phase two works in each zone separately, phase one has to guarantee
that no zone contains more objects than fit into it.

In order to prevent long-distance movements within the zones later in phase two,
wide zones are partitioned into regions. Each movable object is assigned to a region. This
means that the centre of the movable object must be located in the assigned region. Parts
of an object can overlap with neighboring regions.

Unless all movable objects that are assigned to a region R can be placed legally with
their centre in R, some of them have to be moved out of R. But this is not sufficient: in
addition, it may be necessary to move some objects out of certain sequences of consec-
utive regions. More precisely, for a sequence of consecutive regions R1, . . . ,Rk within a
zone, we define its supply by

supp(R1, . . . ,Rk)

:= max
{

0,
k∑

i=1
(w(Ri) − a(Ri)) −

1
2

(wl(R1)+wr(Rk)) −
∑

1≤i< j≤k
(i, j)�(1,k)

supp(Ri, . . . ,R j)
}
,
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where a(Ri) is the width of region Ri, w(Ri) is the total width of cells that are currently
assigned to region Ri, and wl(Ri) and wr(Ri) are the widths of the leftmost and rightmost
cell in Ri, respectively, or zero if Ri is the leftmost (rightmost) region within the zone.

If supp(R1, . . . ,Rk) is positive, (R1, . . . ,Rk) is called a supply interval. Similarly, we
define the demand of each sequence of consecutive regions, and the demand intervals.
We now define a directed network G = (V, E, c) on regions, supply intervals, and demand
intervals, in which we compute a minimum cost flow that cancels demands and partly
cancels supplies. Let vertices and edges be defined by

V(G) := {regions, supply intervals, demand intervals}

E(G) := {(A, A′) | A, A′ adjacent regions}

∪ {(A, A′) | A supply interval, A′ maximal proper subset of A}

∪ {(A, A′) | A′ demand interval, A maximal proper subset of A′
}.

Let the cost c(A, A′) between two adjacent regions A, A′ be the expected cost of moving
a cell of width 1 from A to A′ and all other arcs costs be zero. The construction of
this uncapacitated minimum cost flow instance is illustrated in Figure 12. We look for a
minimum cost flow f which cancels all supplies:

f (δ+(v)) − f (δ−(v)) ≥ supp(v) + dem(v) for all v ∈ V(G).

This can be computed in O(n2 log2 n) time by Orlin’s minimum cost flow algorithm [19].
Figure 13 shows part of a typical result on a real chip.

Figure 12. An example with two zones and six regions, each of width 10 (top left), the supply (red) and demand
(green) regions and intervals with their supply and demand (bottom left), and the minimum cost flow instance
(right) with a solution shown in brown numbers. To realize this flow, objects of size 2, 2, and 5, respectively,
have to be moved from the top regions downwards.
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Figure 13. Small part of a real chip in legalization. Supply regions and intervals are shown in red, demand
regions and intervals in green. The blue edges represent the minimum cost flow, and their width is proportional
to the amount of flow.

Finally the flow is realized by moving objects along flow arcs. This means to move
cells of total size f (A, A′) from region A to region A′ for each pair of neighbors (A, A′).
An exact realization may not exists as small amounts of flow may not be realizable by
wide objects. Therefore the realization is approximated. We scan the arcs carrying flow
in topological order and solve a multi-knapsack problem by dynamic programming for
selecting the best set of cells to be moved for realizing the flow on each arc [28,29].

Of course zones can remain overloaded after realization. In this case phase one is
repeated with increased region widths and decreased demand values. Typically, after a
few iterations of phase 1 no overloaded zones remain.

The minimum cost flow formulation yields an optimum solution under some as-
sumptions [29], and an excellent one in practice. Experimental results show that the gap
between the computed solution and a theoretical lower bound is only approximately 10%,
and neither routability nor timing is significantly affected [33].

3. Timing Optimization

In this section we describe the main ingredients of timing optimization. These include al-
gorithms for the construction of timing- and routing-aware fan-out trees (repeater trees),
for the timing-oriented logic restructuring and optimization, and for the timing- and
power-aware choice of different physical realizations of individual gates. Each is based
on new mathematical theory.

S. Held et al. / Combinatorial Optimization in VLSI Design52



Altogether, these routines combined with appropriate net weight generation and it-
erative placement runs form the so-called timing-driven placement. Using the new algo-
rithms introduced in this section the overall turn-around time for timing closure, includ-
ing full placement and timing optimization, could be reduced from more than a week to
26 hours on the largest designs.

3.1. Timing Constraints

During optimization the signal propagation through a VLSI chip is estimated by a static
timing analysis. We give a simplified description and refer the interested reader to [34]
for further reading.

At every pin v ∈ P the latest arrival time av of a possible signal occurrence is
computed. Signals are propagated along the edges of the timing graph GT , which is a
directed graph on the vertex set V(GT ) = P of pins in the design. GT contains two type
of edges. First “net” edges are inserted for each source-sink pin pair (v,w) ∈ N of a
net N ∈ N , directed from the unique source of N to each sink. Second “circuit” edges
(v,w) ∈ E(GT ) are inserted for each input-output pin pair (v,w) of a cell, where a signal
in v triggers a signal in w. For every edge e ∈ E(GT ) a delay de is given. The delay
depends on various parameters, e.g., circuit size, load capacitance (wire plus sink pin
capacitances), net topologies, signal shapes.

The timing graph is acyclic as every cycle in the netlist is cut by a register, which
does not have a direct input to output connection.3 Arrival times are propagated in topo-
logical order. At each vertex v ∈ V(GT ) with δ−(v) = ∅ a start time AT(v) is given as de-
sign constraint. It initializes the arrival time in v by av = AT(v). Then for each v ∈ V(GT )
with δ−(v) � ∅, the arrival time av is the maximum over all incoming arrival times:

av := max
(u,v)∈δ−(v)

au + d(u,v). (3)

At each endpoint pin v ∈ V(GT ) with δ+(v) = ∅ of the combinational paths required
arrival times RAT(v) are given as design constraints. The signals arrive in time at v if
av ≤ RAT(v). To measure timing feasibility on arbitrary pins, the maximum feasible
required arrival time variable rv is computed for each v ∈ V(GT ). It is initialized by
rv = RAT(v) for all v ∈ V(GT ), δ+(v) = ∅. For the remaining vertices v ∈ V(GT ) with
δ+(v) � ∅ they are computed in reverse topological order by

rv := min
(v,w)∈δ+(v)

aw − d(v,w). (4)

The differenceσv := rv −av is called slack. If it is nonnegative the timing constraints
of all paths through v are satisfied. If σv ≥ 0 for all endpoint pins v ∈ V(GT ) with
δ+(v) = ∅, all timing constraints are met, which implies σv ≥ 0 for all nodes v ∈ V(GT ).
The slack can also be defined for an edge (v,w) ∈ E(GT ) by σ(v,w) := rw − d(v,w) − av with
following interpretation. When adding at most σ(v,w) to the delay d(v,w), all paths through
(v,w) are fast enough. Note that σ(v,w) can also be negative; then delays must be reduced.

In some applications (e.g., Section 3.3) we are interested in a most critical path.
Observe that there must be at least one path in GT from a start pin v ∈ V(GT ), δ−(v) = ∅

3We omit transparent latches here.
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to an endpoint pin v′ ∈ V(GT ), δ+(v′) = ∅, in which each vertex and edge has the
overall worst slack min{σv | v ∈ V(GT )}. Such a path can be determined efficiently
by backward search along a most critical incoming edge, starting from an endpoint pin
v′ ∈ V(GT ), δ+(v′) = ∅ with a smallest slack value σv′ = min{σv | v ∈ V(GT )}.

Beside the introduced late mode constraints earliest arrival time or early mode con-
straints are given, too. Here signals must not arrive too early at the endpoints. Propaga-
tion is analog to Eqs. (3) and (4) with min and max being swapped. Together with the
arrival times also signal shapes — slews4 in VLSI terminology — are propagated. These
are needed for proper delay calculation. When incorporating slews the above propagation
rules become incorrect, as an early signal with a very large slew can result in later arrival
times in subsequent stages than a late signal with a tight slew. In [35] we describe how to
overcome these slew related problems by a slight modification of the propagation rules.

3.2. Fan-out Trees

On an abstract level the task of a fan-out tree is to carry a signal from one gate, the root r
of the fan-out tree, to other gates, the sinks s1, . . . , sn of the fan-out tree, as specified by
the netlist. If the involved gates are not too numerous and not too far apart, then this task
can be fulfilled just by a metal connection of the involved pins, i.e., by a single net without
any repeaters. But in general we need to insert repeaters (buffers or inverters). Inverters
logically invert a signal while buffers implement the identity function. A repeater tree is
a netlist in which all circuits are repeaters, r is the only input, and S is the set of outputs.

In fact, fan-out trees are a very good example for the observation mentioned in the
introduction that the development of technology continually creates new complex design
challenges that also require new mathematics for their solution. Whereas circuit delay
traditionally dominated the interconnect delay and the construction of fan-out trees was
of secondary importance for timing, the feature size shrinking is about to change this
picture drastically.

Extending the current trends one can predict that in future technologies more than
half of all circuits of a design will be needed just for bridging distances, i.e., in fan-out
trees. The reason for this is that with decreasing feature sizes the wire resistances increase
more than wire capacitances decrease. The delay over a pure metal wire is roughly pro-
portional to the product of the total resistance and capacitance. It increases quadratically
with its length, as both resistance and capacitance depend linearly on the length. But by
inserting repeaters the growth rate can be kept linear. In current technologies buffers are
realized by two subsequent inverters. Therefore, inverters are more flexible and typically
faster than buffers.

Repeaters can be chosen from a finite library L of different sizes. Smaller sizes
have a smaller drive strength. The smaller a repeater is, the higher is its delay sensitivity
on the load capacitance ∂ delay /∂ cap. On the other hand do smaller repeaters involve
smaller input pin capacitances and therefore smaller load capacitances and delays for the
predecessor. We now define the Repeater Tree Problem.

4The slew of a signal is an estimate for how fast the voltage changes
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Repeater Tree Problem
Instance: • A root r and a set S of sinks.

• a start time AT(r) at the root r and a required arrival time RAT(s) at each
sink s,

• a parity in {+,−} for each sink indicating whether it requires the signal
or its inversion,

• placement information for the root and the sinks
Pl(r), Pl(s1), Pl(s2), . . . , Pl(sn) ∈ [xmin, xmax] × [ymin, ymax],

• physical information about the driver strength of r and the input capac-
itances of the sinks s ∈ S , and

• physical information about the wiring and the library L of available
repeaters (inverters and buffers).

Task: Find a repeater tree T that connects r with all sinks in S such that
• the desired parities are realized (i.e., for each sink s the number of in-

verters on the r-s-path in T is even iff s has parity +),
• the delay from r to s is at most RAT(s) − AT(r), for each s ∈ S ,
• and the power consumption is minimum.

In another formulation, AT(r) is not given but should be maximized. The procedure
that we proposed for fan-out tree construction [36,37,38] works in two phases. The first
phase generates a preliminary topology for the fan-out tree, which connects very critical
sinks in such a way as to maximize the minimum slack, and which minimizes wiring for
noncritical sinks. During the second phase the resulting topology is finalized and buffered
in a bottom-up fashion using mainly inverters and respecting the parities of the sinks.

A topology for root r and set S of sinks is a pair (T, Pl) where T is an arborescence
rooted at r in which the root has one child, the sinks have no children, and all other
vertices have two children, and Pl : V(T ) \ ({r} ∪ S ) → [xmin, xmax] × [ymin, ymax] is an
embedding of the internal vertices of T in the chip area. Let us denote by T[r,s] the unique
path from r to s in T . A simplified delay model is used to model delay within (T, Pl). The
delay on the path from the root r to a sink s ∈ S is approximated by

cnode · (|E(T[r,s])| − 1) +
∑

(u,v)∈E(T[r,s] )
cwire · ‖Pl(u) − Pl(v)‖1 (5)

The second term in this formula accounts for the wire or distance delay of the r-s-path
in T . This is a linear function in wire length as buffering from phase two is anticipated.
The first term adds an additional delay of cnode for every bifurcation. This reflects the fact
that a bifurcation adds additional capacitance. A constant adder is used as repeaters can
be inserted later to shield large downstream capacitances in the branches.

The involved constants are derived in a pre-processing step. The accuracy of this
very simple delay model is illustrated in Figure 14, which compares the estimated delay
with the measured delay after buffering and sizing at the critical sinks.

Our topology generation algorithm inserts the sinks by a greedy strategy. First the
sinks are sorted by their criticality. As criticality we use an upper bound for the slack at
the sink, namely the slack that would result at s ∈ S if we connected s to r by a shortest
possible wire without any bifurcation:
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Figure 14. The simple timing model used for topology generation matches actual timing results after buffering
well.

σs := RAT(s) − AT(r) − cwire‖Pl(r) − Pl(s)‖1. (6)

The individual sinks are now inserted one by one into the preliminary topology in
order of nonincreasing criticality, i.e., nondecreasing value of σs. When we insert a new
sink s, we consider all arcs e = (u, v) ∈ E(T ) of the preliminary topology constructed so
far and estimate the effect of subdividing e by a new internal node w and connecting s to
w.

The sink s will be appended to a new vertex subdividing an arc e of T that maximizes
ξσe − (100 − ξ)le, where σe and le estimate the corresponding worst slack at r and the
total length, respectively, when choosing e. The parameter ξ ∈ [0, 100] allows us to favor
slack maximization for timing critical instances or wiring minimization for noncritical
instances. Figure 15 gives an example for a preliminary topology.

In most cases it is reasonable to choose values for ξ that are neither too small nor too
large. Nevertheless, in order to mathematically validate our procedure we have proved
optimality statements for the extreme values ξ = 0 and ξ = 100. If we ignore timing
(ξ = 0) and choose an appropriate order of the sinks, the final length of the topology is
at most 3

2 times the minimum length of a rectilinear Steiner tree connecting the root and
the sinks. If we ignore wiring (ξ = 100), the topology realizes the optimum slack with
respect to our delay model (see below).

To measure the quality of the resulting topologies in practice, we can compute
bounds for performance and power consumption to compare against. A minimum power
topology obviously arises from a minimum Steiner tree on S ∪ {r}. Some Steiner points
may need to be replaced by two topology nodes with same coordinates. The following
bound can be specified for the maximum achievable slack:

Theorem 4. The maximum possible slack σmax of a topology (T, Pl) with respect to our
delay model is at most

−cnode · log2

(∑
s∈S

2−(RAT(s)−AT(r)−cwire‖Pl(r)−Pl(s)‖1)/cnode

)
.
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Figure 15. An example for topology generation with AT(r) = 0, cwire = 1, cnode = 2, and three sinks a, b and c
with displayed required arrival times. The criticalities areσa = 15−0−(4+2+6) = 3,σb = 16−0−(4+2+3) = 7,
and σc = 11 − 0 − (4+ 5) = 2. Our algorithm first connects the most critical sink c to r. The next critical sink is
a which is inserted into the only arc (r, c) creating an internal node w. For the insertion of the last sink b there
are now three possible arcs (r,w), (w, a), and (w, c). Inserting b into (w, a) creates the displayed topology whose
worst slack is −1, which is best possible here.

Proof. If |S | = 1, the statement is trivial. Let us assume |S | > 1. This means that we have
at least one internal node in T . We can assume that all internal nodes are placed at Pl(r).
The slack of a such a topology T is at least σmax if and only if

RAT(s) − AT(r) − cwire‖Pl(r) − Pl(s)‖1 − cnode · (|E(T[r,s])| − 1) ≥ σmax,

for all sinks s. Equivalently,

|E(T[r,s])| − 1 ≤
RAT(s) − AT(r) − cwire‖Pl(r) − Pl(s)‖1

cnode
−
σmax

cnode
.

By Kraft’s inequality [39] there exists a rooted binary tree with n leaves at depths
l1, l2, . . . , ln if and only if

∑n
i=1 2−li ≤ 1. If we contract the arc incident to r in our topology

we obtain a binary tree for which (|E(T[r,s])| − 1) is exactly the depth of sink s (remember
|S | > 1). Now Kraft’s inequality implies the theorem.

It is possible to calculate a slightly better and numerically stable bound using Huff-
man coding [40]: if we set as in Eq. (6)

σs = RAT(s) − AT(r) − cwire‖Pl(r) − Pl(s)‖1

for all s ∈ S , order these values σs1 ≤ σs2 ≤ · · · ≤ σsn , and iteratively replace the
largest two σsn−1 and σsn by −cnode + min{σsn−1 , σsn} = −cnode + σsn−1 until only one
value σ∗ is left, then the maximum possible slack with respect to our delay model is at
most this σ∗. This bound is never worse than the closed formula of Theorem 4. In fact,
it corresponds to shortest wires from each sink to the source and an optimum topology
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all internal nodes of which are at the position of the root. Such a topology would of
cause waste too many wiring resources and lead to excessive power consumption. The
topology generated by our algorithm is much better in these respects. Moreover we have
the following guarantee.

Theorem 5. For cwire = 0, the topology constructed by the above procedure with ξ = 100
realizes the maximum possible slack with respect to our delay model.

For cnode = 1 and integer values for AT(r) and RAT(s), s ∈ S , the theorem follows
quite easily from Kraft’s inequality, by induction on |S | [36]. The general case is more
complicated; see [38].

After inserting all sinks into the preliminary topology, the second phase begins, in
which we insert the actual inverters [37]. For each sink s we create a cluster C containing
only s. In general a cluster C is assigned a position Pl(C), a set of sinks S (C) all of the
same parity, and an estimate W(C) for the wiring capacitance of a net connecting a circuit
at position Pl(C) with the sinks in S (C). The elements of S (C) are either original sinks
of the fan-out tree or inverters that have already been inserted.

There are three basic operations on clusters. Firstly, if W(C) and the total input
capacitance of the elements of S (C) reach certain thresholds, we insert an inverter I at
position Pl(C) and connect it by wire to all elements of S (C). We create a new cluster C′

at position Pl(C) with S (C′) = {I} and W(C) = 0. As long as the capacitance thresholds
are not attained, we can move the cluster along arcs of the preliminary topology towards
the root r. By this operation W(C) increases while S (C) remains unchanged. Finally, if
two clusters happen to lie on a common position and their sinks are of the same parity,
we can merge them, but we may also decide to add inverters for some of the involved
sinks. This decision again depends on the capacitance thresholds and on the objectives
timing and wire length.

During buffering, the root connects to the clusters via the preliminary topology and
the clusters connect to the original sinks si via appropriately buffered nets. Once all clus-
ters have been merged to one which arrives at the root r, the construction of the fan-out
tree is completed.

The optimality statements which we proved within our delay model and the final
experimental results show that the second phase nearly optimally buffers the desired con-
nections. Our procedure is extremely fast. The topology generation solved 4.6 million
instances with up to 10000 sinks from a current 90 nm design in less than 100 seconds on
a 2.93 GHz Xeon machine [37], and the buffering is completed in less than 45 minutes.
On average we deviated less than 1.5% from the minimum length of a rectilinear Steiner
tree when minimizing wire length, and less than 3 ps from the theoretical upper slack
bound when maximizing worst slack.

We are currently including enhanced buffering with respect to timing constraints,
wire sizing, and plane assignment in our algorithm. We are also considering an improved
topology generation, in particular when placement or routing resources are limited.

3.3. Fan-in trees

Whereas in the last section one signal had to be propagated to many destinations via a
logically trivial structure, we now look at algorithmic tasks posed by the opposite situ-
ation in which several signals need to be combined to one signal as specified by some
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Figure 16. A sequence of circuits with Boolean functions g1, g2, . . . , gn on a critical path P.

Boolean expression. The netlist itself implicitly defines such a Boolean expression for
all relevant signals on a design. The decisions about these representations were taken at
a very early stage in the design process, i.e., in logic synthesis, in which physical effects
could only be crudely estimated. At a relatively late stage of the physical layout process
much more accurate estimates are available. If most aspects of the layout have already
been optimized but we still see negative slack at some cells, changing the logic that feeds
the cell producing the late signal is among the last possibilities for eliminating the tim-
ing problem. Traditionally, late changes in the logic are a delicate matter and only very
local modifications replacing some few cells have been considered, also due to the lack
of global algorithms.

To overcome the limitations of purely local and conservative changes, we have de-
veloped a totally novel approach that allows for the redesign of the logic on an entire
critical path taking all timing and placement information into account [41]. Keep in mind
that static timing analysis computes slack values for all pins of a design and that it re-
ports timing problems for instance as lists of critical paths. Whereas most procedures
for Boolean optimization of combinational logic are either purely heuristic or rely on
exhaustive enumeration and are thus very time consuming, our approach is much more
effective.

We consider a critical path P which combines a number of signals x1, x2, . . . , xn
arising at certain times AT(xi) and locations Pl(xi) by a sequence g1, g2, . . . , gn−1 of 2-
input gates as in Figure 16. Then we try to re-synthesize P in a best possible way.

Critical Path Logic Resynthesis Problem
Instance: • A set X of sources and a sink y,

• a start time AT(x) (and possibly a slew) at each source x ∈ X and a
required arrival time RAT(y) at the sink,

• placement information for the sources and the sink Pl(x1), Pl(x2), . . . ,
Pl(xn) , Pl(y) ∈ [xmin, xmax] × [ymin, ymax],

• a Boolean expression of the form
y = f (x1, x2, . . . , xn) = gn−1(. . . g3(g2(g1(x1, x2), x3), x4) . . . , xn)

where the gi are elementary Boolean functions,
• physical information about the driver strength of the sources and the

input capacitances of the sink, and
• physical information about the wiring and the library L of available el-

ementary logical circuits (and, or, nand, nor, invert,. . . ).

Task: Find a circuit representation of y as a function of the x ∈ X
• using elementary Boolean circuits,
• together with placement and sizing information for the circuits such that
• the computation of y completes before RAT(y), or as early as possible.
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Figure 17. Three logically equivalent circuits for the function f (a, b, . . . , h) that cor-
respond to the formulas f (a, . . . , h) = ((((((a ∧ b) ∨ c) ∧ d) ∨ e) ∧ f ) ∨ g) ∧ h,
f (a, . . . , h) = ((a ∧ b) ∧ ((d ∧ f ) ∧ h)) ∨ (((((c ∧ d) ∧ f ) ∨ (e ∧ f )) ∧ h) ∨ (g ∧ h)), and
f (a, . . . , h) = ((((a ∧ b) ∧ d) ∨ (c ∧ d)) ∧ ( f ∧ h)) ∨ (((e ∧ f ) ∧ h) ∨ (g ∧ h)). The first path is a typical input
of our procedure and the two alternative netlists have been obtained by the dynamic programming procedure
based on the identity (7). Ignoring wiring and assuming unit delays for the circuits, the second netlist would
for instance be optimal for AT(a) = AT(b) = AT(g) = AT(h) = 3, AT(e) = AT( f ) = 1, and AT(c) = AT(d) = 0,
leading to an arrival time of 6 for f (a, . . . , h) instead of 10 in the input path.

Our algorithm first generates a standard format. It decomposes complex circuits on
P into elementary and- and or-circuits with fan-in two plus inversions. Applying the
de Morgan rules we eliminate all inversions except for those on input signals of P. We
arrive at a situation in which P is essentially represented by a sequence of and- and
or-circuits. Equivalently, we could describe the procedure using nand-circuits only, and
we will indeed use nands for the final realization. However, for the sake of a simpler
description of our algorithm, and- and or-circuits are more suitable.

We now design an alternative, logically equivalent representation of the signal pro-
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Figure 18. The logic circuit corresponding to Eq. (7).

duced by gm as a function of the xi in such a way that late input signals do not pass
through too many logic stages of this alternative representation. This is easy if this se-
quence consists either just of and-circuits or just of or-circuits. In this situation every
binary tree with n leaves leads to a representation of the Boolean function by identifying
its leaves with the xi and its internal nodes with and-circuits or or-circuits. If we consider
only the arrival times AT(xi) of the signals which might be justified because all locations
are close together, we can easily construct and implement an optimal representation using
Huffman coding. If we consider both AT(xi) and Pl(xi), then inverting time the problem
is actually equivalent to the construction of a fan-out tree which we have described in
Section 3.2.

The most difficult case occurs if the and- and or-circuits alternate, i.e., the function
calculated by P is of the form

f (x1, x′
1, x2, x′

2, . . . , xn, x′
n) := ((. . . (((x1 ∧ x′

1) ∨ x2) ∧ x′
2) . . . ) ∨ xn) ∧ x′

n)

=

n∨
i=1

(
xi ∧

( n∧
j=i

x′
j

))
.

See Figure 17 for an example. In this case we apply dynamic programming based on
identities like the following:

f (x1, . . . , x′
n) =

(
f (x1, . . . , x′

l) ∧

( n∧
j=l+1

x′
j

))
∨ f (xl+1, . . . , x′

n). (7)

Note that Eq. (7) corresponds to a circuit structure as shown in Figure 18.
Our dynamic programming procedure maintains sets of useful sub-functions such

as f (xi, . . . , x′
j) and

∧ j
k=i x′

k together with estimated timing and placement information. In
order to produce the desired final signal, these sets of sub-functions are combined using
small sets of circuits as shown for instance in Figure 18, and the timing and placement
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information is updated. We maintain only those representations that are promising. The
final result of our algorithm is found by backtracking through the data accumulated by the
dynamic programming algorithm. After having produced a faster logical representation,
we apply de Morgan rules once more and collapse several consecutive elementary circuits
to more complex ones if this improves the timing behavior. In many cases this results
in structures mainly consisting of nand-circuits and inverters. Certainly, the number of
circuits used in the new representation is typically larger than in the old representation
but the increase is at most linear.

Our procedure is very flexible and contains the purely local changes as a special
case. Whereas the dynamic programming procedure is quite practical and easily allows us
to incorporate physical insight as well as technical constraints, we can validate its quality
theoretically by proving interesting optimality statements. In order to give an example
for such a statement, let us neglect placement information, assume nonnegative integer
arrival times and further assume a unit delay for and- and or-circuits. We proceed in
two steps. First, we derive a lower bound on the arrival time of desired signal and then
estimate the arrival time within our new logical representation.

Theorem 6. If C is a circuit of fan-in 2 for some Boolean function f depending on the
inputs x1, x2, . . . , xn with arrival times AT1,AT2, . . . ,ATn ∈ N0, then

AT( f ,C) ≥

⌈
log2

( n∑
i=1

2ATi

)⌉
,

where AT( f ,C) denotes the arrival time of the value of f as computed by C assuming a
unit delay for every circuit.

Proof. The existence of a circuit C of fan-in 2 that calculates the value of f by the time
T implies the existence of a rooted binary tree with n leaves of depths (T − AT1), (T −

AT2), . . . , (T − ATn) ∈ N0. By Kraft’s inequality, such a tree exists if and only if∑n
i=1 2−(T−ATi) ≤ 1 or, equivalently, T ≥ log2(

∑n
i=1 2ATi ), and the proof is complete.

In order to estimate the arrival time within the new logical representation we have
to analyze the growth behavior of recursions based on the decomposition identities used
during the dynamic programming. If we just use Eq. (7) for instance, then we have to es-
timate the growth of the following recursion which reflects the additional delays incurred
by the three circuits in Figure 18: For n ≥ 2 and nonnegative integers a, a1, . . . , an ∈ N0
let

AT(a) = a

AT(a1, . . . , an) = min
1≤l≤n−1

max{AT(a1, . . . , al) + 2,AT(al+1, . . . , an) + 1}.

We have demonstrated how to analyze such recursions in [41,42,43] and how to obtain
results like the following.

Theorem 7. If a1, a2, . . . , an ∈ N0, then

AT(a1, a2, . . . , an) ≤ 1.44 log2

( n∑
i=1

2ai

)
+ 2.
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Comparing the bounds in Theorems 6 and 7 implies that just using Eq. (7) during
the dynamic programming would lead to an algorithm with asymptotic approximation
ratio 1.44 [41]. Using further decomposition identities this can be reduced to (1 + ε) for
arbitrary ε > 0 [42]. Further details about practical application and computational results
can be found in [44].

So far we have described an algorithm for the redesign of a critical path which is in
fact a main issue during timing closure. This algorithm was “blind” for the actual func-
tion that was involved and hence applicable to almost every critical path. We have also
devised procedures for the timing-aware design of more complex functions. As an exam-
ple consider the following so-called prefix problem which is essential for the construction
of fast binary adders.

Prefix Problem
Instance: An associative operation ◦ : D2 → D and inputs x1, x2, . . . , xn ∈ D.
Task: Find a circuit computing x1 ◦ x2 ◦ · · · ◦ xi for all 1 ≤ i ≤ n.

Applying the above algorithm to the n desired output functions would lead to a cir-
cuit with good delay properties but with a quadratic number of circuits. Similar construc-
tions with close-to-optimal delay but quadratic size were described also by Liu et al. in
[45]. In [46] we constructed circuits solving the prefix problem with close-to-optimal
delay and much smaller sizes of O

(
n log

(
log(n)

))
.

For the addition of two n-bit binary numbers whose 2n bits arrive at times
t1, t2, . . . , t2n ∈ N0 this leads to circuits over the basis {∨,∧,¬} of fan-in 2 for ∨- or
∧-circuits and fan-in 1 for ¬-circuits calculating the sum of the two numbers with size
O

(
n log

(
log(n)

))
and delay

2 log2

( 2n∑
i=1

(2ti )
)
+ 6 log2

(
log2(n)

)
+ O(1).

In view of Theorem 6, the delay bound is close-to-optimal and the bound on the size is
optimal up to a factor of O

(
log

(
log(n)

))
. The best known adders are of depth log2(n) +

O
( √

log(n)
)

and size O
(
n log(n)

)
[47] or size O(n) [48], respectively. The adder developed

in [49], which takes arrival times into account, has size O
(
n log(n)

)
, but no delay bound

has been proved.

3.4. Gate Sizing and Vt-Assignment

The two problems considered in this section consist of making individual choices from
some discrete sets of possible physical realizations for each circuit of the netlist such that
some global objective function is optimized.

For gate sizing one has to determine the size of the individual circuits measured for
instance by their area or power consumption. This size affects the input capacitance and
driver strength of the circuit and therefore has an impact on timing. A larger circuit typ-
ically decreases downstream delay and increases upstream delay. Circuits with a single
output pin are called (logic) gates. Assuming gates instead of general multi-output cir-
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Figure 19. A simple electrical model of a circuit. The input capacitance Cin and the internal capacitance Cint
are proportional to the scaling factor of the circuit while the internal resistance Rint is antiproportional.

cuits simplifies mathematical problem formulations. This is the reason why the problem
is called rather gate sizing than circuit sizing.

Whereas the theoretically most well-founded approaches for the gate sizing prob-
lem rely on convex/geometric programming formulations [50,51,52], these approaches
typically suffer from their algorithmic complexity and restricted timing models. In many
situations, approaches that choose circuit sizes heuristically can produce competitive re-
sults because it is much easier to incorporate local physical insight into heuristic selection
rules than into a sophisticated convex program. Furthermore, the convex programming
formulations often assume continuous circuit size while standard cell libraries typically
only offer a discrete set of different sizes. In BonnOpt we use both, a global formula-
tion and convex programming for the general problem as well as heuristics for special
purposes.

For the simplest form of the global formulation we consider a directed graph G
which encodes the netlist of the design. G can be considered as the timing graph GT

from Section 3.1 after contracting all input pin vertices. For a set V0 of nodes v — e.g.,
start and end nodes of maximal paths — we are given signal arrival times av and we must
choose circuit sizes x = (xv)v∈V(G) ∈ [l, u] ⊆ RV(G) and arrival times for nodes not in V0
minimizing ∑

v∈V(G)
xv

subject to the timing constraints

av + d(v,w)(x) ≤ aw

for all arcs (v,w) ∈ E(G). The circuit sizes xv are scaling factors for the internal structures
of the circuit v (see Figure 19).

For simplicity it is assumed that the input and internal capacitances of circuit v are
proportional to xv while the internal resistance is antiproportional to xv. Using the Elmore
delay model [53], the delay through circuit v is of the form Rint(Cint + Cload) where Cload
is the sum of the wire capacitance and the input capacitances of the structures that are
charged over the circuit v. Since Cload depends on the circuit sizes of the corresponding
circuits in the same way, the delay d(v,w)(x) of some arc (v,w) of G is modeled by a linear
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function with positive coefficients depending on terms of the form xv, 1/xv and xw/xv.
Dualizing the timing constraints via Lagrange multipliers λ(u,v) ≥ 0 leads to the following
Lagrange function.

L(x, a, λ) =
∑

u∈V(G)
xu +

∑
(u,v)∈E(G)

λ(u,v)(au + d(u,v)(x) − av)

=
∑

u∈V(G)
xu +

∑
(u,v)∈E(G)

λ(u,v)d(u,v)(x) +
∑

(u,v)∈E(G)
λ(u,v)(au − av)

=
∑

u∈V(G)
xu +

∑
(u,v)∈E(G)

λ(u,v)d(u,v)(x)

+
∑

u∈V(G)
au

( ∑
v:(u,v)∈E(G)

λ(u,v) −
∑

v:(v,u)∈E(G)
λ(v,u)

)
.

Since after the dualization all arrival times (av)v∈V(G) (except those that are constant) are
free variables, every optimal solution of the dual maximization problem has the property
that ∑

u∈V(G)
au

( ∑
v:(u,v)∈E(G)

λ(u,v) −
∑

v:(v,u)∈E(G)
λ(v,u)

)
= 0

for all choices of au, i.e., the Lagrange multipliers λ(u,v) ≥ 0 constitute a nonnegative flow
on the timing graph [51].

Therefore, for given Lagrange multipliers the problem reduces to minimizing a
weighted sum of the circuit sizes x and delays d(u,v)(x) subject to x ∈ [l, u]. This step is
typically called local refinement. Generalizing results from [51,54,55,56] we proved that
it can be solved by a very straightforward cyclic relaxation method with linear conver-
gence rate in [57]. The overall algorithm is the classical constrained subgradient projec-
tion method (cf. [58]). The known convergence guarantees for this algorithm require an
exact projection, which means that we have to determine the above-mentioned nonnega-
tive flow on G that is closest to some given vector (λe)e∈E .

Since this exact projection is actually the most time-consuming part, practical im-
plementations use crude heuristics having unclear impact on convergence and quality.
To overcome this limitation, we proved in [59] that the convergence of the algorithm is
not affected by executing the projection in an approximate and much faster way. This
is done by combining the subgradient projection method [60,61] in a careful way with
the method of alternating projections [62] and results in a stable, fast, and theoretically
well-founded implementation of the subgradient projection procedure for circuit sizing.

Nevertheless, in practice there exist advanced heuristics that are also good and much
faster than the subgradient method. Such approaches improve all circuits iteratively based
on the “dual” slack values. The improvement does not follow a strict mathematical for-
mula but makes reasonable choices heuristically. Furthermore, time-consuming slack up-
dates are not done after every single cell change but only once per iteration. Additional
side constraints like load and slew limits, or placement density can be incorporated easily.

In [63], we developed a heuristic that yields competitive results compared to con-
tinuous mathematical optimization models, which lack accuracy due to simplified delay
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models and rounding errors. The worst path delays are within 6% of a lower delay bound
on average.

Global circuit sizing approaches are followed by local search on the critical paths.
Here delay effects due to layout changes are computed accurately and slacks are updated
after every circuit change. As accurate computations are extremely time consuming, only
a few circuits (approximately 1%) are considered by this local search. Afterwards the
worst path delays are within 2% of a lower delay bound on average.

The second optimization problem that we consider in this section is Vt-assignment.
A physical consequence of feature size shrinking is that leakage power consumption rep-
resents a growing part of the overall power consumption of a chip. Increasing the thresh-
old voltage of a circuit reduces its leakage but increases its delay. Modern libraries offer
circuits with different threshold voltages. The optimization problem that we face is to
choose the right threshold voltages for all circuits, which minimize the overall (leakage)
power consumption while respecting timing restrictions.

As proposed in [64,65], we first consider a netlist in which every circuit is real-
ized in its slowest and least-leaky version. We define an appropriate graph G whose arcs
are assigned delays, and some of whose arcs correspond to circuits for which we could
choose a faster yet more leaky realization. For each such arc e we can estimate the power
cost ce per unit delay reduction. We add a source node s joined to all primary inputs and
to all output nodes of memory elements and a sink node t joined to all primary outputs
and to all input nodes of memory elements. Then we perform a static timing analysis on
this graph and determine the set of arcs E′ that lie on critical paths.

The general step now consists in finding a cheapest s-t-cut (S , S ) in G′ = (V(G), E′)
by a max-flow calculation in an auxiliary network. Arcs leaving S that can be made
faster contribute ce to the cost of the cut, and arcs entering S that can be made slower
contribute −ce to the cost of the cut. Furthermore, arcs leaving S that cannot be made
faster contribute ∞ to the cost of the cut, and arcs entering S that cannot be made slower
contribute 0 to the cost of the cut.

If we have found such a cut of finite cost, we can improve the timing at the lowest
possible power cost per time unit by speeding up the arcs from S to S and slowing down
(if possible) the arcs from S to S . The acceleration is performed until nonaccelerated
paths become critical and the next iteration is performed on a growing auxiliary network.
Figure 20 illustrates the algorithm. The optimality statement is proved in [66] subject to
the simplifying assumptions that the delay/power dependence is linear and that we can
realize arbitrary Vt-values within a given interval, which today’s libraries typically do
not allow. Nevertheless, the linearity of the delay/power dependence approximately holds
locally and the discrete selectable values are close enough. There are strong connections
to the so-called discrete time-cost tradeoff problem as studied for instance in [67].

We point out that the described approach is not limited to Vt-assignment. It can be
applied whenever we consider roughly independent and local changes and want to find
an optimal set of operations that corrects timing violations at minimum cost. This has
been part of BonnTools for some time [68], but previously without using the possibility
of slowing arcs from S to S , and thus without optimality properties.
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Figure 20. A time-cost-tradeoff instance (top). For each arc the maximum delay, the minimum delay, and the
cost increase per unit delay decrease are specified. Initially every arc delay is chosen slowest possible. All three
paths have the same delay of 6 time units. The minimum A-D-cut is ({A,C}, {B,D}) with value 3 = 1 + 1 + 1
(bottom left). After accelerating the involved arcs (A, B), (C, B) and (C,D) all paths have delay 5. Now the
minimum cut is ({A,B}, {C,D}) with value 7 = 4 + 4 − 1 (bottom right). Note that (A,C) and (B,D) are leaving
the cut and therefore accelerated, but (C, B) is entering the cut and decelerated. All arcs except (C, B) reached
their minimum delay therefore have infinity capacitance. Now the minimum cut has weight infinity and the
algorithm stops. The critical paths A → B → D and A → C → D cannot be accelerated further.

4. Clock Scheduling and Clock Tree Construction

Most computations on chips are synchronized. They are performed in multiple cycles.
The result of a cycle is stored in special memory elements (registers, flip-flops, latches)
until it is used as input for the next cycle. Each memory element receives a periodic
clock signal, controlling the times when the bit at the data input is to be stored and
transferred to further computations in the next cycle. Today it is well-known that striving
for simultaneous clock signals (zero skew), as most chip designers did for a long time, is
not optimal. By clock skew scheduling, i.e., by choosing individual clock signal arrival
times for the memory elements, one can improve the performance. However, this also
makes clock tree synthesis more complicated. For nonzero skew designs it is very useful
if clock tree synthesis does not have to meet specified points in time, but rather time
intervals. We proposed this methodology together with new algorithms in [69,70,71].
Since then it has been successfully applied on many industrial high performance ASICs.

4.1. Clock Skew Scheduling

Let us define the latch graph as the digraph whose vertex set is the set of all memory
elements and which contains an arc (v,w) if the netlist contains a path from the output
of v to the input of w. Let d(v,w) denote the maximum delay of a path from v to w. If all
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Figure 21. A latch graph with 4 latches (numbered boxes). The arc numbers specify the longest path delays.
With a zero skew tree — when all latches switch simultaneously — the slowest path (3 → 1) determines the
cycle time Tzs = 1.2. With an optimum scheduled tree the slowest average delay cycle (1 → 2 → 4 → 1)
determines the cycle time Topt = 0.9.

memory elements receive a periodic clock signal of the same frequency 1/T (i.e., their
cycle time is T ), then a zero skew solution is feasible only if all delays are at most T .
Figure 21 shows a latch graph with four latches. In this example the minimum cycle time
with a zero skew tree would be 1.2, bounded by the path 3 → 1.

With clock skew scheduling one can relax this condition. Let latch 3 in the above
example switch earlier by 0.2 time units. Now signals on path 3 → 1 could spent 0.2
more time units per cycle. In turn the maximum allowed delay for signals on path 4 → 3
would decrease by 0.2 time units, which would not harm the overall cycle time as the
path delay of 0.4 is very fast. Now path 2 → 4 determines a limit for the minimum cycle
time of 1.1.

Motivated by this observation, the question arises how much can we improve the
performance for given delays? We ask for arrival times av of clock signals at all memory
elements x such that

av + d(v,w) ≤ aw + T (8)

holds for each arc (v,w) of the latch graph. We call such arrival times feasible. Now the
best achievable cycle time T due to clock scheduling is given by following theorem.

Theorem 8. Given a latch graph G with arcs delays d, the minimum cycle time T
for which feasible arrival times a : V(G) → R exist equals the maximum mean delay
dE(C)/|E(C)| of a directed cycle in C in G.

Proof. T is feasible if and only if there are arrival times a such that:

ac + d(v,w) ≤ aw + T ∀(v,w) ∈ E(G).

From shortest path theory it is known that such arrival times (node potentials) exist if and
only if (G, c) does not contain any cycle with negative total cost, where c(e) := T − de.
Equivalently,

T ≥
dE(C)

|E(C)|
for all cycles C in G.
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Figure 22. Slack histograms showing the improvement due to clock skew scheduling and appropriate clock
tree synthesis; left: zero skew, right: with BonnClock trees. Each histogram row represents a slack interval (in
ns) and shows the number of circuits with their worst slacks in this range. The placements on top are also
colored according to the worst circuit slacks.

This shows that the minimum possible T equals the longest average delay of a cycle.

In the example of Figure 21 this gives an optimum cycle time of 0.9, which can be
computed easily by enumerating all three cycles. In general, the optimal feasible cycle
time T and feasible clock signal arrival times a(T ) can be computed by minimum mean
cycle algorithms, e.g., those of Karp [72] or Young, Tarjan, and Orlin [73].

However, this simple situation is unrealistic. Today systems on a chip have multi-
ple frequencies and often several hundred different clock domains. The situation is fur-
ther complicated by transparent latches, user-defined timing tests, and various advanced
design methodologies.

Moreover, it is not sufficient to maximize the frequency only. The delays that are
input to clock skew scheduling are necessarily estimates: detailed routing will be done
later and will lead to different delays. Thus one would like to have as large a safety
margin — positive slack — as possible. In analogy to the slack definition from Section 3.1
the arc slack σ(v,w) for given T and a is defined asσ(v,w) := aw−av−d(v,w)+T for every arc
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(v,w) ∈ E(G). Note that aw + T defines a required arrival time for signals entering latch
w. In fact, maximizing the worst slack by clock scheduling is equivalent to minimizing
the cycle time:

Proposition 9. Let G be a latch graph with arc delays d. Let T ′ be the minimum possible
cycle time for (G, d), T > 0, and

σ′
T = max

a
min

(v,w)∈E(G)

(
aw − av − d(v,w) + T

)
be the maximum achievable worst slack for cycle time T . Then

T ′ = T − σ′
T .

Proof. This follows from the observation that σ′
T ′ = 0 and the difference T − σ′

T is
invariant in T .

In practice the cycle time is a fixed input parameter and clock scheduling is used to
achieve this cycle time and optimize the overall slack distribution.

Next, signals can also be too fast. This means that we are also given minimum delays
δ(v,w) of each path (v,w) ∈ E(G), and a signal must not arrive in the previous cycle:

av + δ(v,w) ≥ aw, ∀(v,w) ∈ E(G).

Although such early-mode violations can be repaired by delay insertion via buffering,
this can be very expensive in terms of placement and wiring resources as well as power
consumption. Clock skew scheduling can remove most early-mode violations at almost
no cost.

Finally, it is very hard to realize arbitrary individual arrival times exactly; moreover
this would lead to high power consumption in clock trees. Computing time intervals
rather than points in time is much better. Without making critical paths any worse, the
power consumption (and use of space and wiring resources) by clock trees can be reduced
drastically. Intervals for the clock arrival times can be introduced by splitting every v ∈

V(G) into two nodes vl, vu and adding the constraints avl ≤ avu . Delay constraints have to
be reconnected to the corresponding split nodes, i.e. av + d(v,w) ≤ aw + T is replaced by
avu + d(v,w) ≤ awl + T . Now [avl , avu] defines an admissible arrival time interval for v.

A three-stage clock skew scheduling approach was proposed by Albrecht et al. [70].
Firstly, only late-mode slacks are considered. Then early-mode violations are reduced
(more precisely, slacks that can be increased by inserting extra delays), without decreas-
ing any negative or small positive late-mode slacks. Thirdly, a time interval for each
memory element is computed such that whenever each clock signal arrives within the
specified time interval, no negative or small positive slack will decrease. In the next sec-
tion we discuss how to balance a certain set of slacks while not decreasing others.

4.2. Slack Balancing

In [70,74,65], generalizing the early work of Schneider and Schneider [75] and Young,
Tarjan and Orlin [73], we have developed slack balancing algorithms for very general
situations. The most general problem can be formulated as follows.
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The Slack Balancing Problem
Instance: A directed graph G (the timing graph), c : E(G) → R (delays),

a set F0 ⊆ E(G) (arcs where we are not interested in positive slack) and a
partition F of E(G) \ F0 (groups of arcs in which we are interested in the
worst slack only), and weights w : E(G)\F0 → R>0 (sensitivity of slacks),
such that there are no positive delay cycles in (V, F0).

Task: Find arrival times π : V(G) → R with
π(v) + c(e) ≤ π(w) for e = (v,w) ∈ F0 (9)

such that the vector of relevant slacks(
min

{
π(w) − π(v) − c(e)

w(e)

∣∣∣∣∣ e = (v,w) ∈ F
})

F∈F

(10)

(after sorting entries in nondecreasing order) is lexicographically maxi-
mal.

Note that the delays c include cycle adjusts and thus can be negative (for the latch
graph example above c(e) is the propagation delay minus the cycle time T ). The condi-
tions for e ∈ F0 correspond to edges on which slack must be nonnegative, but the actual
amount is not of interest. In the following we denote σπ(e) := π(w) − π(v) − c(e) as the
slack of e ∈ E(G) with respect to the node potential π.

An alternative formulation of the Slack Balancing Problem is given by the follow-
ing theorem.

Theorem 10. Let (G, c,w,F ) be an instance of the Slack Balancing Problem. Let
π : V(G) → R with σπ(e) ≥ 0 for e ∈ F0. For F ∈ F define

Fπ :=
{
e ∈ F

∣∣∣∣∣ σπ(e)
w(e)

minimal in F
}
.

and Eπ =
⋃

F∈F Fπ. Then π is an optimum solution if and only if there are no F ∈ F and
X f ⊂ V(G) for f ∈ Fπ such that

f ∈ δ−(X f ) for f ∈ Fπ,

σπ(e) > 0 for f ∈ Fπ, e ∈ δ+(X f ) ∩ F0,
σπ(e)
w(e)

>
σπ( f )
w( f )

for f ∈ Fπ, e ∈ δ+(X f ) ∩ Eπ. (11)

Proof. If there is an F ∈ F and X f ⊂ V(G) for f ∈ Fπ with Eq. (11), then π is not
optimum, because setting π′(v) := π(v) − ε · |{ f ∈ Fπ : v ∈ X f }| for v ∈ V(G) for a
sufficiently small ε > 0 increases the sorted vector (10) lexicographically (disproving
optimality).

Let now π, π′ : V(G) → R be two vectors with Eqs. (9) and (11), and suppose
there exists an f = (p, q) ∈ Eπ ∪ Eπ′ with σπ( f ) � σπ′ ( f ) and choose f such that
min{σπ( f ), σπ′ ( f )}/w( f ) is minimum. Without loss of generality σπ( f ) < σπ′ ( f ). Let
F ∈ F be the set containing f . Then f ∈ Fπ: The contrary assumption would im-
ply that there exists f ′ ∈ Fπ with σπ( f ′)/w( f ′) < σπ( f )/w( f ). Then σπ′ ( f ′)/w( f ′) =
σπ( f ′)/w( f ′) < σπ( f )/w( f ) < σπ′ ( f )/w( f ) and thus f � Fπ′ , a contradiction.
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For each f ′ = (p, q) ∈ Fπ let X f ′ be the set of all vertices reachable from q via arcs
e ∈ F0 with σπ(e) = 0 or arcs e ∈ Eπ with σπ(e)/w(e) ≤ σπ( f )/w( f ).

Then there exists an f ′ = (p, q) ∈ F with p ∈ X f ′ ; for otherwise (X f ′ ) f ′∈F would
satisfy Eq. (11). Hence there is a q-p-path P that consists only of arcs e with σπ(e) ≤

σπ′ (e). Summation yields σπ( f ) ≥ σπ′ ( f ), a contradiction.

This proof is essentially due to [35]. The special case w ≡ 1, |F | = 1 ∀F ∈ F ,
was considered by Albrecht [76], and the minimum balance problem (w ≡ 1, F0 = ∅,
F = {{e} | e ∈ E(G)) by Schneider and Schneider [75].

Now we show how to solve the Slack Balancing Problem.

Theorem 11. The Slack Balancing Problem can be solved in strongly polynomial time
O
(
I ·(n3 log n+min{nm, n3}·log2 n log log n+nm log m)

)
, where I := n+|{F ∈ F : |F | > 1}|,

or in pseudopolynomial time O
(
wmax(nm+ n2 log n)+ I(n log n+m)

)
for integral weights

w : E(G) → N with wmax := max{w(e) | e ∈ E \ F0}.

Sketch of proof. We may assume that (V(G), F0) contains no circuit of positive total
weight. Set w(e) := 0 for e ∈ F0 Analogously to the proof of Theorem 8, it is easy to
see that the maximum worst weighted slack is given by the negative maximum weighted
delay −c

(
E(C)

)
/w

(
E(C)

)
of a cycle C in G with w

(
E(C)

)
> 0 and that arrival times exist

that achieve this value.
Thus, an optimum solution for the Slack Balancing Problem can be obtained

by iteratively identifying the maximum weighted delay cycle C, resolving all inter-
secting partitions, and and just preserving their respective minimum weighted slacks
−c

(
E(C)

)
/w

(
E(C)

)
in subsequent iterations. Algorithm 2 describes the overall procedure.

In each iteration, the edges e ∈ F ∩ E(C) determine the final worst weighted slack
min{σπ( f )/w( f ) : f ∈ F} for their sets F. In lines 4 – 10 we fix the slack on all edges in
sets F ∈ F that intersect C. Note that the delay and weighting modifications just preserve
σπ(e)/w(e) ≥ λ� in future iterations, but prevent the slacks of these edges from growing
at the cost of less critical partitions.

If |V(C)| > 1, the critical cycle is contracted requiring adaption of incoming and
outgoing edge costs in lines 12 – 17. Contraction may leave loops e = (v, v) that can be
removed unless e ∈ F ∈ F with |F | > 1. In this case it is not clear whether e or another
edge from F will be the most critical edge in F. Thus, e must be kept, and may later lead
to critical cycles C that are loops.

In each iteration either a cycle C with |E(C)| > 1 is contracted or, if C is a loop, a
set F with |F | > 1 is removed from F . Thus there are at most I := n+ |{F ∈ F : |F | > 1}|
iterations of the while loop.

The dominating factor in each iteration is the computation of the maximum
weighted delay cycle. This can be done in strongly polynomial time O(min{n3 log2 n +
n2m log m,
n3 log n + n2m log2 n log log n}) by an adaption [74] of Megiddo’s [77] minimum ratio
cycle algorithm for nonsimple graphs.

Alternatively, adopting the minimum balance algorithm of Young, Orlin and Tar-
jan [73] for our purpose, the cumulative running time for all cycle computations is
bounded by the bound for a single maximum weighted delay cycle computation, which
is O

(
wmax(mn + n2 log n)

)
. This is the fastest algorithm for small wmax (especially if

w : R→ {0, 1}). Detailed proofs can be found in [65], and in [70] for unit weights.
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1: while (F � ∅) do
2: Compute the maximum weighted delay cycle C;
3: λ� ← c(C)/w(C);

/* Fixing (slack-preserving) delays in critical partitions */
4: for F ∈ F with F ∩ E(C) � ∅ do
5: for f ∈ F do
6: c( f ) ← c( f ) + λ�w( f );
7: w( f ) ← 0;
8: end for
9: F ← F \ {F};

10: end for

/* Critical cycle contraction*/
11: if |V(C)| > 1 then
12: for (x, y) ∈ δ−(V(C)) do
13: c(x, y) ← c(x, y) − π(y);
14: end for
15: for (x, y) ∈ δ+(V(C)) do
16: c(x, y) ← c(x, y) + π(x);
17: end for
18: Contract C;
19: Remove irrelevant loops from G;
20: end if
21: end while

Algorithm 2. Slack Balancing Algorithm

In practice, the Slack Balancing Problem can be solved much faster if we replace(
π(w) − π(v) − c(e)

)
/w(e) by min{Θ, π(w) − π(v) − c(e)} in (10), i.e., ignore slacks beyond

a certain threshold Θ, which we typically set to small positive values. In our three stage
clock scheduling approach optimizing only slacks below some threshold is necessary to
enable optimization in the next stage. Otherwise all arrival time relations would be fixed
already.

Positive slacks which have been obtained in a previous stage should not be decreased
in later stages. This can be modeled by increasing the corresponding delays and setting
their weights to 0, analogously to Algorithm 2. Time intervals for clock signal arrival
times also correspond to positive slack on arcs described in the last section. Time intervals
are maximized by the same algorithm.

By working on the timing graph — a direct representation of the timing analysis
constraints — rather than on the latch graph, we can consider all complicated timing con-
straints, different frequencies, etc. directly. Furthermore its size is linear in the size of the
netlist, while the latch graph can have a quadratic number of arcs and be much bigger.

On the other hand, in the timing graph model the vector of endpoints is optimized
instead the vector of longest paths as in the latch graph model. In an optimum solution
all paths entering the most critical cycle will obtain the most critical slack and give an
overall worse timing result. In our experiments it turned out to be most efficient to use
a combination of the latch graph — on most critical parts only — and the timing graph,

S. Held et al. / Combinatorial Optimization in VLSI Design 73



incorporating the advantages of both models.
Figure 22 shows a typical result on a leading-edge ASIC. The left-hand side shows

the slacks after timing-driven placement, but without clock skew scheduling, assuming
zero skew and estimating the on-chip variation on clock tree paths with 300 ps. The right-
hand side shows exactly the same netlist after clock skew scheduling and clock tree
synthesis. The slacks have been obtained with a full timing analysis as used for sign-
off, also taking on-chip variation into account. All negative slacks have disappeared. In
this case we improved the frequency of the most critical clock domain by 27%. The
corresponding clock tree is shown in Figure 25. It runs at 1.033 GHz [71], which is a very
high frequency for an ASIC design even today, several years later. Next we explain how
to construct such a clock tree, using the input of clock skew scheduling.

4.3. Clock Tree Synthesis

The input to clock tree construction is a set of sinks, a time interval for each sink, a set of
possible sources, a logically correct clock tree serving these sinks, a library of inverters
and other books that can be used in the clock tree, and a few parameters, most importantly
a slew target. The goal is to replace the initial tree by a logically equivalent tree which
ensures that all clock signals arrive within the specified time intervals.

Current ASIC chips contain several hundred clock tree instances with up to a mil-
lion sinks. For gigahertz frequencies manufacturing process variations already dissipate
20 – 30% of the cycle time. Therefore clock trees have to be constructed very carefully,
especially when realizing the delay targets induced by the arrival time windows.

Traditionally the individual delay constraints were met by balancing wires (cf. Chao
et al. [78]). Theoretically very exact delay targets can be met by tuning wire delay. The
drawback of this approach is that it often requires a lot of wiring resources, the prescribed
wiring layout is hard to achieve in detailed routing (see Section 5.4), and due to increasing
wiring resistances in new technologies delays increase significantly.

We proposed a different approach [71], which assumes all inserted wires to be routed
shortest possible. Delays are balanced by the constructed tree topology and accurate gate
sizing.

First, the input tree is condensed to a minimal tree by identifying equivalent books
and removing buffers and inverter pairs. For simplicity we will assume here that the tree
contains no special logic and can be constructed with inverters only.

Next we do some preprocessing to determine the approximate distance to a source
from every point on the chip, taking into account that some macros can prevent us from
going straight towards a source.

The construction then proceeds in a bottom-up fashion (cf. Figure 23). Consider a
sink s whose earliest feasible arrival time is latest, and consider all sinks whose arrival
time intervals contain this point in time. Then we want to find a set of inverters that drives
at least s but maybe also some of the other sinks. For each inverter we have a maximum
capacitance which it can drive, and the goal is to minimize power consumption.

The input pins of the newly inserted inverters become new sinks, while the sinks
driven by them are removed from the current set of sinks. When we insert an inverter,
we fix neither its position nor its size. Rather we compute a set of octagons as feasible
positions by taking all points with a certain maximal distance from the intersection of the
sets of positions of its successors, and subtracting blocked areas and all points that are
too far away from a source (cf. Figure 24). This can be computed efficiently [79].
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Figure 23. Different stages of a clock tree construction using BonnClock. The colored octagons indicate areas
in which inverters (current sinks) can be placed. The colors correspond to arrival times within the clock tree:
blue for signals close to the source, and green, yellow, and red for later arrival times. During the bottom-up
construction the octagons slowly converge to the source, here located approximately at the centre of the chip.
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Figure 24. Computation of the feasible area for a predecessor of an inverter. From all points that are not too far
away from the placement area of the inverter (blue) we subtract unusable areas (e.g., those blocked by macros)
and points that are too far away from the source. The result (green) can again be represented as a union of
octagons.

The inverter sizes are determined only at the very end after constructing the com-
plete tree. During the construction we work with solution candidates. A solution candi-
date is associated with an inverter size, an input slew, a feasible arrival time interval for
the input, and a solution candidate for each successor. We prune dominated candidates,
i.e., those for which another candidate with the same input slew exists whose time inter-
val contains the time interval of the former. Thus the time intervals imply a natural order
of the solution candidates with a given input slew.

Given the set of solution candidates for each successor, we compute a set of solution
candidates for a newly inserted inverter as follows. For each input slew at the successors
we simultaneously scan the corresponding candidate lists in the natural order and choose
maximal intersections of these time intervals. For such a nondominated candidate set we
try all inverter sizes and a discrete set of input slews and check whether they generate the
required input slews at the successors. If so, a new candidate is generated.

After an inverter is inserted but before its solution candidates are generated, the
successors are placed at a final legal position. It may be necessary to move other objects,
but with BonnPlace legalization (cf. Section 2.6) we can usually avoid moves with a
large impact on timing. There are some other features which pull sinks towards sources,
and which cause sinks that are ends of critical paths to be joined early in order to bound
negative timing effects due to on-chip variation.

The inverter sizes are selected at the very end by choosing a solution candidate at
the root. The best candidate (i.e., the best overall solution) with respect to timing (interval
matching and tree latency) and power consumption is chosen. Due to discretizing slews,
assuming bounded RC delays, and legalization, the timing targets may be missed by a
small amount, in the order of 20 ps. But this impacts the overall timing result only if the
deviation occurs in opposite directions at the ends of a critical path.

4.4. Sink Clustering

The overall power consumption of the clock trees is dominated by the bottom stage,
where 80 – 90% of the power is consumed. Therefore this stage is very important.
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Figure 25. Gigahertz clock tree built by BonnClock based on the result of BonnCycleOpt shown in Figure 22.

Colors indicate different arrival times as in Figure 23. Each net is represented by a star connecting the source

to all sinks.

The basic mathematical problem that we face here can be formulated as following
kind of facility location problem:

Sink Clustering Problem
Instance: A metric space (V, c),

a finite set D ⊆ V (terminals/clients),

demands d : D → R+ (input pin capacitances),
facility opening cost f ∈ R+ (cost for inserting a driver circuit),

capacity u ∈ R+ (capacity limit for a facility).

Task: Find a partition D = D1∪̇ . . . ∪̇Dk and

Steiner trees Ti for Di (i = 1, . . . , k) with
c(E(Ti)) + d(Di) ≤ u for i = 1, . . . , k (12)

such that
∑k

i=1 c(E(Ti)) + k f is minimum.
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The term c(E(Ti)) + d(Di) in Eq. (12) is the total load capacitance (wire plus input
pin capacitances) that must be served/driven by a facility/cell. The objective function
models power consumption. In our case, V is the plane and c is the l1-metric.

The sink clustering problem is closely related to the soft-capacitated facility location
problem. It contains the bin packing problem and the Steiner tree problem. The problem
can therefore not be approximated arbitrary well [80]:

Theorem 12. The Sink Clustering Problem has no (2 − ε)-approximation algorithm
for any ε > 0 for any class of metrics where the Steiner tree problem cannot be solved
exactly in polynomial time.

Proof. Assume that we have a (2 − ε)-approximation algorithm for some ε > 0, and let
S = {s1, . . . , sn}, k ∈ R+ be an instance of the decision problem Is there a Steiner
tree for S with length ≤ k?. We construct an instance of the Sink Clustering
Problem by taking S as the set of terminals, setting d(s) = 0 ∀s ∈ S , u = k and f = 2k/ε.
Then the (2 − ε)-approximation algorithm computes a solution consisting of one facility
if and only if there is a Steiner tree of length ≤ k. This implies that the above decision
problem, and hence the Steiner tree problem, can be solved in polynomial time.

The first constant-factor approximation algorithms for this problem were given by
Maßberg and Vygen [80]. One of them has a very fast running time of O(n log n) and is
described now.

Let F1 be a minimum spanning tree for (D, c) and e1, . . . , en−1 be the edges of F1 in
sorted order such that c(e1) ≥ · · · ≥ c(en−1). Let us further define a sequence of forests
by Fk := Fk−1 \ {ek−1} for k = 2, . . . , n. Exploiting the matroid property of forests it
is easy to see that each Fk, k = 1, . . . , n is a minimum weight spanning forest with
exactly k connected components. By a k-Steiner forest we mean a forest F with exactly
k connected components and D ⊆ V(F). By extending the Steiner ratio5 from minimum
spanning trees to minimum spanning forests we get:

Lemma 13. (1/α)c(Fk) is a lower bound for the cost of a minimum weight k-Steiner
forest, where α is the Steiner ratio.

We now compute a lower bound on the cost of an optimum solution. A feasible k-
Steiner forest is a k-Steiner forest where inequality (12) holds for each of the connected
components T1, . . . , Tk.

Let t′ be the smallest integer such that (1/α)c(Ft′)+d(D) ≤ t′ ·u. By inequality (12)
and Lemma 13 this is a lower bound for the number of facilities:

Lemma 14. t′ is a lower bound for the number of facilities in any feasible solution.

Let further t′′ be an integer in {t′, . . . , n} minimizing 1
α

c(Ft′′ ) + t′′ · f .

Theorem 15. (1/α)c(Ft′′) + t′′ · f is a lower bound for the cost of an optimal solution.

Denote Lr := (1/α)c(Ft′′), and Lf := t′′ · f . Then Lr + L f is a lower bound on the
cost of an optimum solution, and

5The Steiner ratio of a metric space (V, c) is the worst-case ratio, over all terminal sets T , of the lengths of a
minimum spanning tree for (T, c) and a shortest Steiner tree for T in (V, c).
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Lr + d(D) ≤ L f
u
f
. (13)

Based on these lower bound considerations the algorithm proceeds as follows. First
it computes a minimum spanning tree on (D, c). Second t′′ and Ft′′ are computed accord-
ing to Theorem 15. If a component T of Ft′′ violates Eq. (12) it must be decomposed into
smaller components.

Thus overloaded components (with c(E(T )) + d(Di) > u) are split. We do this in
such a way that at least u/2 of the load will be removed whenever we introduce a new
component. This can be done by considering a minimal overloaded subtree and applying
the next-fit algorithm for bin packing. Splitting continues until no overloaded component
exists. The number of new components is at most 2

u times the load of T .
Thus the total cost of the solution that we obtain is at most c(Ft′′ ) + t′′ f +

(2/u)(c(Ft′′) + d(D)) f = αLr + L f + (2 f /u)(αLr + d(D)). As ( f /u)Lr ≤ Lf by Eq. (13),
we get [80]:

Corollary 16. The above algorithm computes a solution of cost at most (2α + 1) times
the optimum in O(n log n) time, where α is the Steiner ratio.

[80] also proved better approximation guarantees for other metric spaces, but for
the rectilinear plane the above performance ratio of 4 is still the best known. How-
ever, Maßberg [81] proved stronger lower bounds. In practice, the ratio of the cost of
the computed solution over a tight lower bound is typically less than 1.1. Furthermore,
an exchange and merge heuristic is used to improve the clustering further as a post-
optimization step. The above approximation algorithm also proves extremely fast in prac-
tice; we used it on instances with up to one million sinks.

In general, nonoverlapping time windows might restrict the clustering. In addition
to being computed by BonnCycleOpt, time windows occur naturally in upper levels of
the clock tree even with uniform windows at the leaves. An extension of the approxi-
mation algorithm for the problem with time windows is given in [81]. By exploiting the
time intervals, which are single points only for the few most critical memory elements,
and by using an algorithm with provable performance guarantee the clock tree power
consumption could be reduced substantially.

5. Routing

Due to the enormous instance sizes, most routers comprise at least two major parts, global
and detailed routing. Global routing defines an area for each net to which the search for
actual wires in detailed routing is restricted. As global routing works on a much smaller
graph, we can globally optimize the most important design objectives. Moreover, global
routing has another important function: decide for each placement whether a feasible
routing exists and if not, give a certificate of unfeasibility.

5.1. The global routing graph

The global router works on a three-dimensional grid graph which is obtained by parti-
tioning the chip area into regions. For classical Manhattan routing this can be done by an
axis-parallel grid. In any case, these regions are the vertices of the global routing graph.
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Figure 26. An instance of the vertex-disjoint paths problem for estimating global routing capacities. Dashed
lines bound global routing regions. Here we show four wiring planes, each with a commodity (shown in differ-
ent colors), in alternating preference directions.

Adjacent regions are joined by an edge, with a capacity value indicating how many wires
of unit width can join the two regions. Each routing plane has a preference direction
(horizontal or vertical), and we remove edges orthogonal to this direction in the global
routing graph.

For each net we consider the regions that contain at least one of its pins. These
vertices of the global routing graph have to be connected by a Steiner tree. If a pin consists
of shapes in more than one region, we may assign it to one of them, say the one which
is closest to the center of gravity of the whole net, or by solving a group Steiner tree
problem.

The quality of the global routing depends heavily on the capacities of the global
routing edges. A rough estimate has to consider blockages and certain resources for nets
whose pins lie in one region only. These nets are not considered in global routing. How-
ever, they may use global routing capacity. Therefore we route very short nets, which lie
in one region or in two adjacent regions, first in the routing flow, i.e., before global rout-
ing. They are then viewed as blockages in global routing. Yet these nets may be rerouted
later in local routing if necessary.

Routing short nets before global routing makes better capacity estimates possible,
but this also requires more sophisticated algorithms than are usually used for this task.
We consider a vertex-disjoint paths problem for every set of four adjacent global routing

S. Held et al. / Combinatorial Optimization in VLSI Design80



regions, illustrated in Figure 26. There is a commodity for each wiring plane, and we try
to find as many paths for each commodity as possible. Each path may use the plane of its
commodity in preference direction and adjacent planes in the orthogonal direction.

An upper bound on the total number of such paths can be obtained by considering
each commodity independently and solving a maximum flow problem. However, this is
too optimistic and too slow. Instead we compute a set of vertex-disjoint paths (i.e., a lower
bound) by a very fast multicommodity flow heuristic [82]. It is essentially an augmenting
path algorithm but exploits the special structure of a grid graph. For each augmenting
path it requires only O(k) constant-time bit pattern operations, where k is the number of
edges orthogonal to the preferred wiring direction in the respective layer. In practice, k is
less than three for most paths.

This very fast heuristic finds a number of vertex-disjoint paths in the region of 90%
of the (weak) max-flow upper bound. For a complete chip with about one billion paths it
needs 5 minutes of computing time whereas a complete max-flow computation with our
implementation of the Goldberg-Tarjan algorithm would need more than a week.

Please note that this algorithm is used only for a better capacity estimation, i.e.,
for generating accurate input to the main global routing algorithm. However, this better
capacity estimate yields much better global routing solutions and allows the detailed
router to realize these solutions.

5.2. Classical Global Routing

In its simplest version, the global routing problem amounts to packing Steiner trees in
a graph with edge capacities. A fractional relaxation of this problem can be efficiently
solved by an extension of methods for the multicommodity flow problem. However, the
approach does not consider today’s main design objectives which are timing, signal in-
tegrity, power consumption, and manufacturing yield. Minimizing the total length of all
Steiner trees is no longer important. Instead, minimizing a weighted sum of the capaci-
tances of all Steiner trees, which is equivalent to minimizing power consumption, is an
important objective. Delays on critical paths also depend on the capacitances of their nets.
Wire capacitances can no longer be assumed to be proportional to the length, since cou-
pling between neighboring wires plays an increasingly important role. Small detours of
nets are often better than the densest possible packing. Spreading wires can also improve
the yield.

Our global router is the first algorithm with a provable performance guarantee which
takes timing, coupling, yield, and power consumption into account directly. Our algo-
rithm extends earlier work on multicommodity flows, fractional global routing, the min-
max resource sharing problem, and randomized rounding.

Let G be the global routing graph, with edge capacities u : E(G) → R+ and lengths
l : E(G) → R+. Let N be the set of nets. For each N ∈ N we have a set YN of feasible
Steiner trees. The set YN may contain all delay-optimal Steiner trees of N or, in many
cases, it may simply contain all possible Steiner trees for N in G. Actually, we do not need
to know the set YN explicitly. The only assumption which we make is that for each N ∈ N

and any ψ : E(G) → R+ we can find a Steiner tree Y ∈ YN with
∑

e∈E(Y) ψ(e) (almost)
minimum sufficiently fast. This assumption is justified since in practical instances almost
all nets have less than, say, 10 pins. We can use a dynamic programming algorithm for
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finding an optimum Steiner tree for small nets and a fast approximation algorithm for
others. With w(N, e) ∈ R+ we denote the width of net N at edge e. A straightforward
integer programming formulation of the classical global routing problem is:

min
∑
N∈N

∑
e∈E(G)

l(e)
∑

Y∈YN :e∈E(Y)

xN,Y

s.t.
∑
N∈N

∑
Y∈YN :e∈E(Y)

w(N, e)xN,Y ≤ u(e) (e ∈ E(G))

∑
Y∈YN

xN,Y = 1 (N ∈ N)

xN,Y ∈ {0, 1} (N ∈ N , Y ∈ YN)

Here the decision variable xN,Y is 1 iff the Steiner tree Y is chosen for net N. The de-
cision whether this integer programming problem has a feasible solution is already NP-
complete. Thus, we relax the problem by allowing xN,Y ∈ [0, 1]. Raghavan and Thomp-
son [83,84] proposed solving the LP relaxation first, and then using randomized round-
ing to obtain an integral solution whose maximum capacity violation can be bounded.
Although the LP relaxation has exponentially many variables, it can be solved in practice
for moderate instance sizes since it has only |E(G)|+ |N| many constraints. Therefore all
but |E(G)| + |N| variables are zero in an optimum basic solution. However, for current
complex chips with millions of nets and edges, all exact algorithms for solving the LP
relaxation are far too slow.

Fortunately, there exist combinatorial fully polynomial approximation schemes, i.e.,
algorithms that compute a feasible solution of the LP relaxation which is within a fac-
tor of 1 + ε of the optimum, and whose running time is bounded by a polynomial in
|V(G)| and 1/ε, for any accuracy ε > 0. If each net has exactly two pins, YN con-
tains all possible paths connecting N, and w ≡ 1, the global routing problem reduces to
the edge-disjoint paths problem whose fractional relaxation is the multicommodity flow
problem. Shahrokhi and Matula [85] developed the first fully polynomial approximation
scheme for multicommodity flows. Carden, Li and Cheng [86] first applied this approach
to global routing, while Albrecht [87] applied a modification of the approximation al-
gorithm by Garg and Könemann [88]. However, these approaches did not consider the
above-mentioned design objectives, like timing, power, and yield.

5.3. Advanced Global Routing

The power consumption of a chip induced by its wires is proportional to the weighted
sum of all capacitances (see Figure 27), weighted by switching activities. The coupling
capacitance depends on the distance between adjacent wires. In older technologies cou-
pling capacitances were quite small and therefore could be ignored. In deep submicron
technologies coupling matters a lot.

To account for this in global routing, we assign a certain space to each edge e and
each net N using this edge. We write s(e,N) ≥ 0 for the extra space that we assign in
addition to the width w(e,N). The contribution of edge e to the total capacitance of N is
then a convex function of s(e,N).
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adjacent
wire
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silicon substrate

Figure 27. The capacitance of a net consists of area capacitance (green) between the undersurface of the wire
and the substrate, proportional to length times width, fringing capacitance (blue) between side face of the wire
and substrate, proportional to length, and coupling capacitance (red), proportional to length if adjacent wires
exist. Note that the wire height is fixed within each plane, while the width varies.

Similarly to minimizing power consumption based on the above capacitance model,
we can optimize yield by replacing capacitance by “critical area”, i.e., the sensitivity of
a layout to random defects [89]. Such random defects are caused by small particles that
contaminate the chip during lithography. They can either disconnect a wire or connect
two wires to a short.

Moreover, we can also consider timing restrictions. This can be done by excluding
from the set YN all Steiner trees with large detours, or by imposing upper bounds on the
weighted sums of capacitances of nets that belong to critical paths. For this purpose, we
first do a static timing analysis under the assumption that every net has some expected
capacitance. The set YN will contain only Steiner trees with capacitance below this ex-
pected value. We enumerate all paths which have negative slacks under this assumption.
We compute the sensitivity of the nets of negative slack paths to capacitance changes,
and use these values to translate the delay bound to appropriate bounds on the weighted
sum of capacitances for each path. To compute reasonable expected capacitances we can
apply weighted slack balancing (cf. Section 4.2) using delay sensitivity and congestion
information.

Altogether we get a family M of subsets of N with N ∈ M, bounds U : M → R+

and convex functions g(e,N,M) : R+ → R+ for N ∈ M ∈ M and e ∈ E(G). We also
treat the objective function as a constraint (we can apply binary search to compute the
optimum value approximately, but in practice we can guess an excellent bound).

With these additional assumptions and this notation we can generalize the original
integer programming formulation of the global routing problem to:
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General Global Routing Problem
Instance: • An undirected graph G with edge capacities u : E(G) → R+,

• a set N of nets and a set YN of feasible Steiner trees for each net N,
• wire widths w : E(G) × N → R+,
• A family M of subsets of N with bounds U : M → R+ and convex

functions g(e,N,M) : R+ → R+ for N ∈ M ∈ M and e ∈ E(G).

Task: Find a Steiner tree YN ∈ YN and numbers s(e,N) ≥ 0 for each N ∈ N and
e ∈ E(YN), such that
•

∑
N∈N :e∈E(YN )(w(e,N) + s(e,N)) ≤ u(e) for each edge e ∈ E(G),

•
∑

N∈M
∑

e∈E(YN ) g(e,N,M)(s(e,N)) ≤ U(M) for each M ∈ M.

This general formulation was proposed by [90]. Reformulating it, we look for a
feasible solution (λ, x, s) to the following nonlinear optimization problem, where x is
integral and λ = 1. As this is hard, we first solve the following fractional relaxation
approximately and then apply randomized rounding to obtain an integral solution.

min λ s.t.∑
Y∈YN

xN,Y = 1 (N ∈ N)

∑
N∈M

( ∑
Y∈YN

xN,Y

∑
e∈E(Y)

g(e,N,M)(s(e,N))
)
≤ λU(M) (M ∈ M)

∑
N∈N

( ∑
Y∈YN :e∈E(Y)

xN,Y (w(e,N) + s(e,N))
)
≤ λ u(e) (e ∈ E(G))

s(e,N) ≥ 0 (e ∈ E(G),N ∈ N)

xN,Y ≥ 0 (N ∈ N , Y ∈ YN) (14)

This can be transformed to an instance of the Min-Max Resource Sharing Prob-
lem, defined as follows. Given finite sets R of resources and N of customers, an im-
plicitly given convex set BN , called block, and a convex resource consumption function
gN : BN → R

R
+ for every N ∈ N , the task is to find bN ∈ BN (N ∈ N) approximately

attaining λ∗ := inf{maxr∈R
∑

N∈N (gN(bN))r | bN ∈ BN(N ∈ N)}. In the general prob-
lem formulation we have access to the sets BN only via oracle functions fN : RR

+ → BN ,
called block solvers, which for N ∈ N and y ∈ RR

+ return an element bN ∈ BN with
y�gN(bN) ≤ σ infb∈BN y�gN(b). Here σ ≥ 1 is a given constant.

In our application the customers are the nets, and the resources are the elements of
E(G) ∪ M. We can define

BN := conv({(χ(Y), s) | Y ∈ YN , s ∈ R
E(G)
+ , se = 0 for e � E(Y)}),

where χ(Y) ∈ {0, 1}E(G) denote the edge-incidence vector of a Steiner tree Y. The func-
tions gN are then given by
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/* Initialization */
yr ← 1 for r ∈ R;
xN,b ← 0 for N ∈ N , b ∈ BN ;
XN ← 0 for N ∈ N;

/* Main Loop */
for p := 1 to t do

for N ∈ N do
while XN < p do

/* Call block solver */
b ← fN(y);
a ← gN(b);

/* Update variables */
ξ ← min{p − XN , 1/max{ar | r ∈ R}};
xN,b ← xN,b + ξ and XN ← XN + ξ;

/* Update prices */
for r ∈ R do

yr ← yreεξar ;
end for

end while
end for

end for
/* Take Average */
xN,b ← (1/t)xN,b for N ∈ N and b ∈ BN .

Algorithm 3. Resource Sharing Algorithm

(gN(x, s))e := (xew(e,N) + se)/u(e) (e ∈ E(G))

(gN(x, s))M :=
( ∑

e∈E(G):xe>0
xeg(e,N,M)(se/xe)

)/
U(M) (M ∈ M) (15)

for each N ∈ N and (x, s) ∈ BN .
We showed in [91] that the block solvers can be implemented by an approximation

algorithm for the Steiner tree problem in weighted graphs. Then they always return an
extreme point b ∈ BN , corresponding to a single Steiner tree, which we denote by Yb.

Algorithm 3 solves the Min-Max Resource Sharing Problem, and hence Eq. (14),
approximately. It is a primal-dual algorithm which takes two parameters 0 < ε < 1 and
t ∈ N. They control the approximation guarantee and running time.

The algorithm proceeds in t iterations where it calls the block solver for every net
based on current resource prices. After each individual choice the prices are updated.

Let optN(y) := infb∈BN y�gN(b). The analysis of the algorithm relies on weak duality:
any set of prices yields a lower bound on the optimum:

Lemma 17. Let y ∈ RR
+ be some cost vector with ��y � 0. Then
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∑
N∈N optN(y)

��y
≤ λ∗.

Proof. Let δ > 0 and (bN ∈ BN)N∈N a solution with maxr∈R
∑

N∈N (gN(bN))r < (1 + δ)λ∗.
Then ∑

N∈N optN(y)
��y

≤

∑
N∈N y�gN(bN)

��y
<

(1 + δ)λ∗��y
��y

= (1 + δ)λ∗.

The Resource Sharing Algorithm yields xN,b ≥ 0 for all b ∈ BN with
∑

b∈BN xN,b =

1. Hence we have a convex combination of vectors in BN for each N ∈ N . To estimate
the quality of the solution we prove two lemmas. Let y(p,i) denote y at the end of the ith
innermost iteration and kp the total number of innermost iterations within the pth outer
iteration. We call the outer iterations phases. Let y(p) denote y at the end of phase p.
Similar for the other variables in the algorithm.

Lemma 18. Let (x, y) be the output of the Resource Sharing Algorithm. Then

max
r∈R

∑
N∈N

(
gN

(∑
b∈BN

xN,bb
))

r
≤ max

r∈R

∑
N∈N

∑
b∈BN

xN,b(gN(b))r ≤
1
εt

ln
(
�

�y
)
.

Proof. The first inequality follows from the convexity of the functions gN . For the second
inequality, note that for r ∈ R:

∑
N∈N

∑
b∈BN

xN,b(gN(b))r =
1
t

t∑
p=1

kp∑
i=1
ξ(p,i)(a(p,i))r =

1
εt

ln y(t)
r ≤

1
εt

ln
(
�

�y(t)
)
.

Lemma 19. Let σ ≥ 1 such that y�gN( fN(y)) ≤ σ optN(y) for all y. Let ε > 0 and
ε′ := (eε − 1)σ. If ε′λ∗ < 1, then

�
�y(t) ≤ |R|etε′λ∗/(1−ε′λ∗).

Proof. We will consider the term �
�y(p) for all phases p. Initially we have ��y(0) = |R|.

We can estimate the increase of the resource prices as follows:∑
r∈R

y(p,i)
r =

∑
r∈R

y(p,i−1)
r eεξ

(p,i)(a(p,i))r

≤
∑
r∈R

y(p,i−1)
r + (eε − 1)

∑
r∈R

y(p,i−1)
r ξ(p,i)(a(p,i))r, (16)

because ξ(p,i)(a(p,i))r ≤ 1 for r ∈ R, and ex ≤ 1 + eε−1
ε

x for 0 ≤ x ≤ ε.
Moreover,∑

r∈R
y(p,i−1)

r (a(p,i))r ≤ σ optN(p,i) (y(p,i−1)). (17)

Using Eqs. (16), (17), the monotonicity of y, the fact
∑

i:N(p,i)=N ξ
(p,i) = 1 for all N,

and Lemma 17 we get
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�
�y(p) ≤ �

�y(p−1) + (eε − 1)σ
kp∑
i=1
ξ(p,i) optN(p,i) (y(p,i−1))

≤ �
�y(p−1) + ε′

∑
N∈N

optN(y(p))

≤ �
�y(p−1) + ε′λ∗��y(p)

and hence

�
�y(p) ≤

�
�y(p−1)

1 − ε′λ∗
.

Combining this with ��y(0) = |R| and 1 + x ≤ ex for x ≥ 0 we get, if ε′λ∗ < 1:

�
�y(t) ≤

|R|

(1 − ε′λ∗)t = |R|

(
1 +

ε′λ∗

1 − ε′λ∗

)t
≤ |R|etε′λ∗/(1−ε′λ∗).

Combining Lemmas 18 and 19 we get:

Theorem 20. Let λ∗ be the optimum LP value, λ∗ ≥ 1
2 , σλ∗ ≤ 5

2 , and 0 < ε ≤ 1
3 , and

tλ∗ > log|R|. Then the algorithm computes a feasible solution whose value differs from
the optimum by at most a factor

2 ln|R|

εt
+ σ

(eε − 1)
ε(1 − 5

2 (eε − 1))
.

By choosing ε and t appropriately, we get a (σ+ω)-optimal solution in O(ω−2 ln|R|)
iterations, for any ω > 0.

Although these assumptions on λ∗ and σ are realistic in practice, one can also get
rid of them and obtain a (σ + ω)-optimal solution with O(log|R|((|N| + |R|) log log|R| +

(|N| + |R|)ω−2)) oracle calls in general [91].
Moreover, we proposed several speedup techniques and an extremely efficient paral-

lel implementation [92,91]. This makes the approach applicable even on the largest VLSI
instances. One can obtain a solution which is provably within a few percent of the opti-
mum for an instance with millions of nets and constraints in a few hours of computing
time.

The algorithm always gives a dual solution and can therefore, by Lemma 17, give
a certificate of unfeasibility if a given placement is not routable. We also showed how to
make randomized rounding work [90,91].

This approach is quite general. It allows us to add further constraints. Here we have
modeled timing, yield, and power consumption, but we may think of other constraints if
further technological or design restrictions come up.

Figure 28 shows a typical result of global routing. In the dense (red and orange)
areas the main challenge is to find a feasible solution, while in other areas there is room
for optimizing objectives like power or yield. Experimental results show a significant
improvement over previous approaches which optimized net length and number of vias,
both in terms of power consumption and expected manufacturing yield [89,92].
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Figure 28. A typical global routing congestion map. Each edge corresponds to approximately 10x10 global

routing edges (and to approximately 1 000 detailed routing channels). Red, orange, yellow, green, and white

edges correspond to an average load of approximately 90 – 100%, 70 – 90%, 60 – 70%, 40 – 60%, and less than

40%.

We conclude this section by pointing out that this problem is not restricted to VLSI
design. It is in fact equivalent to routing traffic flow, with hard capacity bounds on edges

(streets), without capacity bounds on vertices, with flows statically repeated over time,
with bounds on weighted sums of travel times. Algorithm 3 can then be interpreted as

selfish routing with taxes that depend exponentially on congestion.

5.4. Detailed Routing

The task of detailed routing is to determine the exact layout of the metal realizations

of the nets. Efficient data structures are used to store all metal shapes and allow fast

queries. Grid-based routers define routing tracks (and minimum distances) and work with
a detailed routing graph G which is an incomplete three-dimensional grid graph, i.e.,

V(G) ⊆ {xmin, . . . , xmax} × {ymin, . . . , ymax} × {1, . . . , zmax} and ((x, y, z), (x′, y′, z′)) ∈ E(G)

only if |x − x′| + |y − y′| + |z − z′| = 1.
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The z-coordinate models the different routing layers of the chip and zmax is typically
around 10 – 12. We can assume without loss of generality that the x- and y-coordinates
correspond to the routing tracks; typically the number of routing tracks in each plane,
and hence xmax − xmin and ymax − ymin, is in the order of magnitude of 105, resulting in
a graph with more than 1011 vertices. The graph is incomplete because some parts are
reserved for internal circuit structures or power supply, and some nets may have been
routed earlier.

To find millions of vertex-disjoint Steiner trees in such a huge graph is very chal-
lenging. Thus we decompose this task, route the nets and even the two-point connections
making up the Steiner tree for each net individually. Then the elementary algorithmic
task is to determine shortest paths within the detailed routing graph (or within a part of
it, as specified by global routing).

Whereas the computation of shortest paths is probably the most basic and well-
studied algorithmic problem of discrete mathematics [3], the size of G and the num-
ber of shortest paths that have to be found concurrently makes the use of textbook ver-
sions of shortest path algorithms impossible. The basic algorithm for finding a shortest
path connecting two given vertices in a digraph with nonnegative arc weights is Dijk-
stra’s algorithm. Its theoretically fastest implementation, with Fibonacci heaps, runs in
O(m+n log n) time, where n and m denote the number of vertices and edges, respectively
[93]. For our purposes this is much too slow. Various strategies are applied to speed up
Dijkstra’s algorithm.

Since we are not just looking for one path but have to embed millions of disjoint
trees, the information provided by global routing is most important. For each two-point
connection global routing determines a corridor essentially consisting of the global rout-
ing tiles to which this net was assigned in global routing. If we find a shortest path for
the two-point connection within this corridor, the capacity estimates used during global
routing approximately guarantee that all desired paths can be realized disjointly. Further-
more, we get a dramatic speedup by restricting the path search to this corridor, which
usually represents a very small fraction of the entire routing graph.

The second important factor speeding up our shortest path algorithm is the way
in which distance information is stored. Whereas Dijkstra’s algorithm labels individual
vertices, we consider intervals of consecutive vertices that are similar with respect to their
usability and their distance properties. Since the layers are assigned preferred routing
directions, the intervals are chosen parallel to these. By the similarity of the vertices
in one interval we mean that their distance properties can be encoded more efficiently
than by storing numbers for each individual vertex. If e.g. the distance increases by one
unit from vertex to vertex we just need to store the distance information for one vertex
and the increment direction. Hetzel’s version of Dijkstra’s algorithm [94], generalized
by [95] and [96], labels intervals instead of vertices, and its time complexity therefore
depends on the number of intervals, which is typically about 50 times smaller than the
number of vertices. A sophisticated data structure for storing the intervals and answering
queries very fast is the basis of this algorithm and also of its efficient shared-memory
parallelization.

The last factor speeding up the path search is the use of a future cost estimate, which
is a lower bound on the distance of vertices to a given target set of vertices. This is a
well-known technique. Suppose we are looking for a path from s to t in G with respect
to edge weights c : E(G) → R+, which reflect higher costs for vias and wires orthogonal
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Figure 29. An instance of the shortest paths problem with unit edge weights. We look for a shortest path from
the big dark green vertex in the left to the big red vertex in the right part. The figures show Dijkstra’s algorithm
without future costs (top left), with l1-distances as future costs (top right), and with improved future costs
(bottom right). The improved future costs are based on distances in a grid graph arising by filling small holes
(blue vertices and edges in the bottom left). Points labeled by Dijkstra’s algorithm are marked light green. The
running time is roughly proportional to the number of labeled points (93 versus 51 versus 36).

to the preferred direction and can also be used to find optimal rip-up sets. Let l(x) be
a lower bound on the distance from x to t (the future cost) for any vertex x ∈ V. Then
we may apply Dijkstra’s algorithm to the costs c′(x, y) := c({x, y}) − l(x) + l(y). For any
s-t-path P we have c′(P) = c(P) − l(s) + l(t), and hence shortest paths with respect to c′

are also shortest paths with respect to c. If l is a good lower bound, i.e., close to the exact
distance, and satisfies the natural condition l(x) ≤ c({x, y}) + l(y) for all {x, y} ∈ E(G),
then this results in a significant speedup.

If the future cost estimate is exact, our procedure will only label intervals that con-
tain vertices lying on shortest paths.

Clearly, improving the accuracy of the future cost estimate improves the running
time of the path search and there is a tradeoff between the time needed to improve the
future cost and the time saved during path search. Hetzel [94] used l1-distances as future
cost estimates. In [95] we showed how to obtain and use much better estimates efficiently
by computing distances in a condensed graph whose vertices correspond to rectangles.
This leads to significant reductions of the running time as illustrated by Figure 29.

6. Conclusion

We have demonstrated that mathematics can yield better solutions for leading-edge chips.
Several complete microprocessor series (cf., e.g., [68,97]) and many leading-edge ASICs
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Figure 30. A system on a chip designed in 2006 with BonnTools. This 90nm design for a forthcoming IBM
server has more than 5 million circuits and runs with frequencies up to 1.5 GHz. Colors reflect the structure of
the underlying logic blocks.

(cf., e.g., [98,71]) have been designed with BonnTools. Many additional ones are in the
design centers at the time of writing. Figures 30 and 31 show examples of chips that have
been and are currently designed by IBM with BonnTools.

Chip design is inspiring a great deal of interesting work in mathematics. Indeed,
most classical problems in combinatorial optimization, and many new ones, have been
applied to chip design. Some algorithms originally developed for VLSI design automa-
tion are applied also in other contexts.

However, there remains a lot of work to do. Exponentially increasing instance sizes
continue to pose challenges. Even some classical problems (e.g., logic synthesis) have
no satisfactory solution yet, and future technologies continuously bring new problems.
Yet we strongly believe that mathematics will continue to play a vital role in facing these
challenges.
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Figure 31. A vector processing unit currently designed with BonnTools. This 22 nm prototype runs with a
frequency of 4.7 GHz.
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Facility Location: Discrete Models
and Local Search Methods

Yury KOCHETOV 1

Sobolev Institute of Mathematics, Russia

Abstract. Discrete location theory is one of the most dynamic areas of operations
research. We present the basic mathematical models used in this field, as well as
their properties and relationship with pseudo-Boolean functions. We also investi-
gate the theory of PLS-complete problems, average and worst case computational
complexity of the local search algorithms, and approximate local search. Finally,
we discuss computationally difficult test instances and promising directions for fur-
ther research.
Keywords. Local search, PLS-complete problems, pseudo-Boolean function,
Karush – Kuhn – Tucker conditions, metaheuristics

Introduction

Facility location constitutes a broad spectrum of mathematical models, methods, and ap-
plications in operations research. It is an interesting topic for theoretical studies, experi-
mental research, and real-world applications. Examples include storage facilities, ware-
houses, police and fire stations, base stations for wireless services, and others [1]. Who
actually proposed the first mathematical model in this field will probably never be known.
It is most common to credit Pierre de Fermat (1601 – 1665) and Evangelista Torricelli
(1608 – 1647), who studied a basic form of the spacial median problem (see [2] for a
historical review of the literature).

Surely no paper can cover all aspects of facility location. In these lecture notes,
we discuss only the basic discrete models and present theoretical results for local search
methods. In Section 1 we consider the well-known uncapacitated facility location prob-
lem and its generalizations. The main idea of this section is to show the useful relation-
ship between facility location models and pseudo-Boolean functions. In Section 2 we
introduce some simple neighborhoods and discuss the relations between local optima
and classical Karush – Kuhn – Tucker conditions. In Section 3 we define the class PLS
(polynomial time local search problems) and show that some local search problems in
facility location are the most difficult in this class. In Section 4 we investigate the quality
of local optima. More precisely, we introduce the class GLO (Guaranteed Local Optima)
and show that the closure of GLO under PTAS reductions coincides with the class APX,
which is the set of optimization problems with underlying decision problem in NP that
allow polynomial-time constant-factor approximation algorithms. Finally, in Section 5
we discuss difficult test instances for the local search methods.
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1. Discrete Facility Location Models

1.1. The Uncapacitated Facility Location Problem

This problem (UFLP) has been also called the simple plant location problem in the early
literature [3, 4]. Its input consists of a finite set I of sites with nonnegative fixed costs fi
of opening a facility in site i and a finite set J of users with a nonnegative production-
transportation costs ci j of servicing user j from a facility opened in site i. The goal is to
find a set of sites such that opening facilities there minimizes the total cost of servicing
all users. This means finding a nonempty subset S of I, which minimizes the objective
function F defined by

F(S ) =
∑
i∈S

fi +
∑
j∈J

min
i∈S

ci j :

the first term is the fixed cost for opening facilities in all sites in S and the second term
is the production-transportation cost for servicing all users from these sites.

This problem is NP-hard in the strong sense and it is difficult to approximate: unless
P = NP, it admits no constant-factor polynomial-time approximation algorithm, and so
it does not belong to the class APX. Polynomially solvable cases and approximation
algorithms are described in [5, 6].

For the metric case, when the matrix (ci j) satisfies the triangle inequality, the prob-
lem is strongly NP-hard again and Max SNP-hard. The best known approximation al-
gorithm has a guaranteed performance ratio of 1.52 and is suggested in [7]. A 1.463
factor approximation algorithm would imply P = NP [8]. For the special case of the
metric UFLP when facilities and users are points in d-dimensional Euclidean space and
the production-transportation costs are geometrical distances between the points, an ap-
proximation scheme is suggested meaning an (1+ ε)-factor approximation algorithm for
each positive ε with running time polynomial in |I| and |J| and exponential in d and 1/ε.
An excellent review of different techniques for approximations in the metric case can be
found in [9].

Exact branch and bound methods with lower bounds based on linear programming
relaxations have been developed by research teams in several countries. In describing
these bounds, we shall find it convenient to assume that I = {1, . . . ,m} and J = {1, . . . , n}.
The first approaches used a weak linear 0-1 programming formulation [10]. Let us intro-
duce the decision variables:

xi =

⎧⎪⎪⎨⎪⎪⎩1 if facility i is opened,
0 otherwise,

xi j =

⎧⎪⎪⎨⎪⎪⎩1 if user j is serviced from facility i,
0 otherwise.

Now the UFLP can be written as a 0-1 program:
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min
{∑

i∈I
fi xi +

∑
j∈J

∑
i∈I

ci jxi j

}
subject to

∑
i∈I

xi j = 1, j ∈ J,

nxi ≥
∑
j∈J

xi j, i ∈ I,

xi, xi j ∈ {0, 1}, i ∈ I, j ∈ J.

If we replace the last restriction by xi, xi j ∈ [0, 1] for all i ∈ I, j ∈ J we see that every
optimal solution satisfies

xi =
1
n

∑
j∈J

xi j, i ∈ I

and a lower bound can be computed as the optimal value of the following trivial linear
programming problem:

min
∑
j∈J

∑
i∈I

( fi/n + ci j)xi j

subject to
∑
i∈I

xi j = 1, j ∈ J,

0 ≤ xi j ≤ 1, i ∈ I, j ∈ J.

We may compute the optimal solution for the problem easily, but this lower bound is not
sharp. If we replace m restrictions nxi ≥

∑
j∈J xi j by n × m restrictions

xi ≥ xi j, i ∈ I, j ∈ J,

we will get an equivalent reformulation of the UFLP with a better lower bound. Note
that we do not have an analytical solution yet. This strong reformulation has been used in
the exact methods by researchers of Russia [11,12], Ukraine [13], Scandinavia [14], and
the USA [15] independently. Recently, the strong formulation was used for solving large
scale instances as well [16, 17]. Therefore, for combinatorial optimization problems we
can find different equivalent reformulations and the choice of formulation is important.

There is a useful relationship between the UFLP and minimization problem for
pseudo-Boolean functions. It was first noted by P. Hammer and S. Rudeanu [18, 19].
Later, V. Beresnev [20] suggested another reduction of the UFLP to a minimization prob-
lem for pseudo-Boolean polynomial with positive coefficients for nonlinear terms. More-
over, it has been shown that these combinatorial optimization problems are equivalent.
Below we discuss the reduction in details.

For a vector g = (g1, . . . , gm) with ranking

gi1 ≤ gi2 ≤ · · · ≤ gim ,

we introduce a vector Δg = (Δg0, . . . ,Δgm) in the following way:
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Δg0 = gi1 ;

Δgl = gil+1 − gil , 1 ≤ l < m;

Δgm = gim .

Lemma 1 ([11, 20]). For each 0-1 vector z = (z1, . . . , zm) distinct from (1, . . . , 1) the
following equations hold:

min
i|zi=0

gi = Δg0 +

m−1∑
l=1
Δglzi1 . . . zil ;

max
i|zi=0

gi = Δgm −

m−1∑
l=1
Δgm−lzim−l+1 · · · zim .

Let the ranking for column j of the matrix (ci j) be

ci j
1 j ≤ ci j

2 j ≤ · · · ≤ ci j
m j

Using Lemma 1, we can get a pseudo-Boolean function for the UFLP:

b(z) =
∑
i∈I

fi(1 − zi) +
∑
j∈J

m−1∑
l=0
Δcl jzi j

1
. . . zi j

l
.

Below we will see the relationship between the UFLP and the minimization problem
for this real-valued function defined on the 2n − 1 points of the hypercube distinct from
(1, . . . , 1).

Theorem 1 ([11, 20]). The minimization problem for the pseudo-Boolean function b(z)
for z � (1, . . . , 1) and the UFLP are equivalent. For optimal solutions z∗, S ∗ of these
problems we have F(S ∗) = b(z∗) and z∗

i = 0 ⇔ i ∈ S ∗ for all i ∈ I.

Let us consider an illustrative example. Put I = J = {1, 2, 3},

fi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝10
10
10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ci j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 3 10
5 0 0
10 20 7

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
According to Lemma 1, the corresponding function b(z) is the following:

b(z) = 10(1 − z1) + 10(1 − z2) + 10(1 − z3) + (5z1 + 5z1z2)

+ (3z2 + 17z1z2) + (7z2 + 3z2z3)

= 15 + 5(1 − z1) + 0(1 − z2) + 10(1 − z3) + 22z1z2 + 3z2z3.

Let us try to reconstruct an instance of the UFLP: we obtain I′ = I, J′ = {1, 2},

f ′
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 5
0

10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ c′
i j =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 0 3
0 0
22 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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The dimension of the new instance is less than the dimension of the original one, |J′| <

|J|. Moreover, f ′
2 = 0, hence, we may open the second facility without loss of optimality.

In other words, we get a new equivalent instance of the UFLP with smaller dimension.
Different instances of the UFLP can lead to the same function b(z). Thus, we may try to
reduce the dimension before solving the problem.

Theorem 2 ([21]). For the minimization problem of the pseudo-Boolean function b(z)
with positive coefficients in the nonlinear terms, the equivalent instance of the UFLP with
a minimal number of users can be found in polynomial time from n and m.

Idea of proof. Consider an arbitrary pseudo-Boolean function b(z) with positive coeffi-
cients in the nonlinear terms. Let L be the set of nonlinear terms and the function b(z)
defined by

b(z) =
∑
i∈I
αi(1 − zi) +

∑
l∈L
βl

∏
i∈Il

zi, where βl > 0 and Il ⊂ I for all l ∈ L.

The family of subsets {Il}l∈L of the set I with order relation Il′ < Il′′ ⇔ Il′ ⊂ Il′′ forms
a partially ordered set (poset). An arbitrary sequence of subsets Il1 < · · · < Ilk is called
a chain. An arbitrary partition of the family {Il}l∈L into nonoverlapping chains induces
a matrix (ci j) for the UFLP. Each element of the partition corresponds to a user. The
requirement to find an instance of the UFLP with a minimal number of users is equivalent
to finding a partition of the poset into the minimal number of nonoverlapping chains.
This is a well-known problem, which can be solved in polynomial time (see Dilworth’s
Theorem [22]).

The minimization problem for b(z) is equivalent to the UFLP but it has some new
properties. Let us consider this problem for continuous variables zi from the interval
[0, 1]. In the UFLP this replacement leads to an integrality gap:

gap = (F(S ∗) − FLP)/F(S ∗),

where FLP is the optimal value for the linear programming relaxation. It can be arbitrary
close to 1 [23]. For the minimization problem of b(z) the gap equals 0.

Theorem 3 ([24]). The set of optimal solutions of the minimization problem for arbitrary
pseudo-Boolean function with continuous variables contains a pure integer solution.

Suppose now that the fixed costs are the same for all facilities and that we open
exactly p facilities. The first item in the objective function of the UFLP is a constant and
we wish to minimize the objective function F defined by

F(S ) =
∑
j∈J

min
i∈S

ci j

for every subset S from I with cardinality p. This problem is known as the discrete
p-median problem. It is NP-hard in the strong sense and existence of a 2q(n,m)-factor
approximation algorithm for a polynomial q would imply P = NP [25]. In other words,
this problem does not belong to the class APX and a good approximate solution is hard
to find, as is the optimal one. The p-median problem can be reduced to the minimization
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problem for a pseudo-Boolean function as well. However, now one additional restriction∑
i∈I zi = m − p is added. Reformulations of Theorems 2 and 3 for the problem are valid

as well.

1.2. The Multi-Stage Facility Location Problem

Let us consider a more complicated situation, where we need several facilities to produce
the goods for users. We assume that there are k types of facilities (plants, warehouses,
distribution centers and others) and we need facilities of all types to produce the goods.
As in the previous model, the set of facilities I and the set of users J are finite. We assume
that I = I1 ∪ · · · ∪ Ik, where Il is the set of facilities of type l and Il1 ∩ Il2 = ∅ whenever
l1 � l2. Let P denote the set of all admissible facility paths. For each path p from P we
know a sequence of facilities p = {i1, . . . , ik}, where il ∈ Il for each l from 1 to k. For each
facility i we have the following nonnegative parameters: ci is the production cost, dii′ is
the transportation cost between facilities i and i′, and the set Pi of facility paths, which
contain this facility. Denote by Dp j the total transportation cost for the facility path p and
user j:

Dp j = di1i2 + · · · + dik−1ik + dik j.

Similarly, the total production cost for the facility path p is the following:

Cp = ci1 + · · · + cik .

The amount of goods for user j we denote by ϕ j. In the Multi-Stage Uncapacitated Fa-
cility Location Problem (MSUFLP) we need to find a subset of facilities and a subset
of facility paths in such a way to service all users with minimal total cost for opening
facilities, producing the goods and transporting them to users. Using similar variables as
for the UFLP, we can write the problem in the following way:

min
{∑

i∈I
fi xi +

∑
j∈J
ϕ j

∑
p∈P

(Cp + Dp j)xp j

}
subject to

∑
p∈P

xp j = 1, j ∈ J,

∑
p∈Pi

xp j ≤ xi, i ∈ I, j ∈ J,

xp j, xi ∈ {0, 1}, i ∈ I, p ∈ P, j ∈ J.

The objective function is the total cost. The first restriction ensures that all users are
satisfied. The second restriction allows us to use opening facilities only for servicing the
users.

The problem is strongly NP-hard and closely related to standardization and unifica-
tion problems [11, 14], pseudo-Boolean functions, and as we will see below, the bilevel
facility location problems. If each facility path contains exactly one facility then we get
the UFLP. Therefore, it is a difficult problem for approximation. For the metric case
some approximation algorithms are developed in [26, 27]. The branch and bound meth-
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ods based on heuristics for the dual linear programming problems are studied in [28,29].
Polynomially solvable cases are described in [30, 31].

The restriction xp j ≤ xi for all p ∈ Pi, i ∈ I, j ∈ J, can be used instead of∑
p∈Pi

xp j ≤ xi, i ∈ I, j ∈ J.

It is easy to check that this replacement gives the same integer optimal solution but a weak
linear programming relaxation. The same effect will occur (see [32]) if we introduce new
variables yp = 1 if the facility path p is used and yp = 0 otherwise, and replace the
restriction

∑
p∈Pi xp j ≤ xi for all i ∈ I, j ∈ J, by the following:

yp ≥ xp j, j ∈ J, p ∈ P,

xi ≥ yp, p ∈ Pi, i ∈ I.

Again, we have the same 0-1 optimal solution and a weak linear programming relaxation.
Moreover, there is a family of instances for the MSUFLP where the ratio of optimal value
of the original and new linear programming relaxations may be arbitrarily large. Let us
rewrite the MSUFLP as an unconstrained problem. Define Cp j = ϕ j(Cp + Dp j) for all
p ∈ P, j ∈ J. Now the MSUFLP can be written as the minimization problem for the
function F defined by

F(y) =
∑
i∈I

fi max
p∈Pi

{yp} +
∑
j∈J

min
p∈P

{Cp j | yp = 1}.

Using Lemma 1 we can obtain the following pseudo-Boolean function:

B(z) =
∑
i∈I

fi(1 −
∏
p∈Pi

zp) +
∑
j∈J

|P|−1∑
l=0

ΔCl jzi j
1
· · · zi j

l
.

Note that this function has positive and negative nonlinear terms.

Theorem 4 ([11, 20]). The MSUFLP is equivalent to the minimization problem for
pseudo-Boolean function B(z) for z � (1, . . . , 1). For optimal solutions z∗, y∗ of these
problems we have B(z∗) = F(y∗) and z∗

p = 1 − y∗
p for all p ∈ P.

Therefore, the MSUFLP can be reduced to a minimization problem for a pseudo-
Boolean function. For an arbitrary pseudo-Boolean function we can reconstruct an equiv-
alent instance of the MSUFLP with the minimal number of users.

1.3. Facility Location with User Preferences

Thus far we have assumed that there was only one decision maker who tried to minimize
the total cost of opening facilities and servicing users. However, users may be free to
choose the facility. They may have their own preferences, for example, the travel time to
a facility. They do not have to minimize the production and transportation costs of the
firm. Hence, we should include user preferences in the mathematical model [33].

Y. Kochetov / Facility Location: Discrete Models and Local Search Methods 103



Let the matrix (gi j) define the user preferences on the set I. If gi1 j < gi2 j, then user j
prefers facility i1. We assume for simplicity that all elements are different in each column
of the matrix. Otherwise, we must consider cooperative and noncooperative strategies for
the decision maker and users [34]. Therefore, the decision maker wishes to find a subset
S of opening facilities in such a way that all users will be serviced with minimal total
cost, taking into account user preferences. For this case, the mathematical model can be
presented as the 0-1 bilevel linear programming problem [35,36]: minimize the objective
function F defined by

F(xi) =
∑
i∈I

fi xi +
∑
j∈J

∑
i∈I

ci jx∗
i j(xi)

where x∗
i j(xi) is an optimal solution for the user problem:

min
xi j

∑
j∈J

∑
i∈I

gi jxi j

subject to
∑
i∈I

xi j = 1, j ∈ J,

xi j ≤ xi, i ∈ I, j ∈ J,

xi j ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function of the decision maker is, as before, the total cost of opening fa-
cilities and servicing all users. However, now the feasible domain is described by con-
straints xi ∈ {0, 1} for all i ∈ I and the auxiliary optimization problem (the user problem).
The values of variables xi are known for the auxiliary problem. The bilevel problem is a
new type of optimization problem. Such problems can be NP-hard even with continuous
variables, linear constraints and linear objective functions [34].

The uncapacitated facility location problem with user preferences (UFLPUP) can
be reduced to a single level problem [35, 36]. Observe that only the ranking of the gi j’s
for each j is of importance and not their numerical values. Let the ranking for user j be

gi1 j < gi2 j < · · · < gim j.

Put S i j = {l ∈ I| gl j < gi j} for all i ∈ I. For an optimal solution x∗
i j(xi) of the user problem

we have x∗
i j = 1 ⇒ xl = 0 for all l ∈ S i j. We may therefore rewrite the UFLPUP as

follows:

min
∑
i∈I

fi xi +
∑
j∈J

∑
i∈I

ci jxi j

subject to xi j + xl ≤ 1, l ∈ S i j, i ∈ I, j ∈ J,∑
i∈I

xi j = 1, j ∈ J,

xi j ≤ xi, i ∈ I, j ∈ J,

xi, xi j ∈ {0, 1}, i ∈ I, j ∈ J.
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Indeed, in every optimal solution of the problem all constraints of UFLP will be satisfied
and the first constraint will ensure that xi j is an optimal solution for the user problem.
The number of variables in the problem is the same as in the UFLP. However, while
the UFLP already has the large number of constraints n + nm, the UFLPUP has O(m2n)
additional ones. This prohibits a direct resolution except in small instances. In order to
avoid additional constraints from becoming too numerous we can rewrite them in the
equivalent form:∑

l∈S i j

xl ≤ |S i j|(1 − xi j), i ∈ I, j ∈ J,

or

xi ≤ xi j +
∑
l∈S i j

xl, i ∈ I, j ∈ J,

or

xi ≤ xi j +
∑
l∈S i j

xl j, i ∈ I, j ∈ J.

It is not difficult to show that the last inequality produces a better linear programming
relaxation than the three previous ones [36].

The special case of the UFLPUP when fi = 0 for all i ∈ I is also interesting. For the
UFLP this case is trivial; the optimal solution can be computed in linear time. However,
for the UFLPUP this case is NP-hard and the integrality gap can be arbitrarily close to
1. If ci j = gi j then we get the UFLP. If ci j = −gi j then we can solve the problem in
polynomial time [37]. Other reformulations, valid inequalities, branch and cut methods
and computational results for local search methods can be found in [38–40].

As with the previous location problems, the UFLPUP can be reduced to the mini-
mization problem for the pseudo-Boolean functions. For each j ∈ J we put

∇ci1 j = ci1 j

∇cil j = cil j − cil−1 j, 1 < l ≤ m,

and define the pseudo-Boolean function B(z) in the following way:

B(z) =
∑
i∈I

fi(1 − zi) +
∑
j∈J

∑
i∈I

∇ci j

∏
l∈S i j

zl.

Theorem 5 ([35]). The UFLPUP is equivalent to the minimization problem for the
pseudo-Boolean function B(z) for z � (1, . . . , 1). For the optimal solutions z∗, x∗ of these
problems we have B(z∗) = F(x∗) and z∗

i = 1 − x∗
i for all i ∈ I.

Note that the coefficients ∇ci j can be positive or negative. In other words, for an arbi-
trary pseudo-Boolean function we can reconstruct an equivalent instance of the UFLPUP
and vice versa. Moreover, we can reconstruct an instance of the UFLPUP with a minimal
number of users in polynomial time by the same method as in the proof of Theorem 2.
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1.4. Competitive Location with Foresight

Let us assume that two firms want to open facilities. The first firm, which we will refer
to as the leader, opens its own set of facilities X from the set I. We assume that |X| = p.
Later, the second firm, which we will refer to as the follower, opens its own set of facilities
Y from the set I \ X. We assume that |Y | = r. Each user selects one facility from the
union X ∪ Y according to its own preferences, for example, according to distances to the
facilities. Each firm will get a positive profit w j if it services the user j. The firms try to
maximize own profits. They do not have the same rights. The leader makes a decision
first. The follower makes a decision by analyzing the set X. It is a Stakelberg game for
two players, where we need to maximize the total profit of the leader [41–43].

Let us introduce the decision variables:

xi =

⎧⎪⎪⎨⎪⎪⎩1 if the leader opens facility i,
0 otherwise,

yi =

⎧⎪⎪⎨⎪⎪⎩1 if the follower opens facility i,
0 otherwise,

z j =

⎧⎪⎪⎨⎪⎪⎩1 if user j is serviced by a leader facility,
0 if user j is serviced by a follower facility.

For each vector x and each user j we can define the set of facilities

I j(x) =
{
i ∈ I

∣∣∣ gi j < min
l∈I

(gl j | xl = 1)
}
,

which allow “capturing” user j by the follower. Note that we consider conservative
users [43]. If a user has the same distances to the closest leader and the closest follower
facilities, he prefers the leader facility. Now the model can be written as a linear 0-1
bilevel programming problem [44]:

max
x

∑
j∈J

w jz∗
j(x)

subject to
∑
i∈I

xi = p,

xi ∈ {0, 1}, i ∈ I,

where z∗
j(x), y∗

i (x) is the optimal solution of the follower problem:

max
z,y

∑
j∈J

w j(1 − z j)

subject to 1 − z j ≤
∑

i∈I j(x)
yi, j ∈ J,

∑
i∈I

yi = r,

yi, z j ∈ {0, 1}, i ∈ I, j ∈ J.
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The objective function of the upper level defines the total profit of the leader. The feasible
domain is described by two constraints and an auxiliary optimization problem of the
follower. The vector x and the sets I j(x) for all j ∈ J are known in the follower problem.
The objective function of the lower level defines the total profit of the follower. The first
constraint guarantees that user j is serviced by the leader if the follower has no facilities in
the set I j(x). The second constraint requires opening exactly r facilities for the follower.

In [43] the follower problem is called the medianoid problem. It is shown there that
the medianoid problem is NP-hard and that the original bilevel problem is NP-hard even
for r = 1. Note that z∗

j(x) =
∏

i∈I j(x)(1 − y∗
i (x)) for all j ∈ J. Hence, the follower problem

can be rewritten for the polynomial P(y, x) =
∑

j∈J w j(1 −
∏

i∈I j(x)(1 − yi)) as follows:

max
y

{
P(y, x)

∣∣∣∣∣ ∑
i∈I

yi = r, yi ∈ {0, 1} for all i ∈ I
}
.

Recall that each user is serviced by the leader or by the follower. Thus, the sum of the
objective functions for the upper and lower levels is a constant. Hence, we can present
the bilevel problem as a min-max problem as follows:

min
x

max
y

{
P(y, x)

∣∣∣∣∣ ∑
i∈I

yi = r,
∑
i∈I

xi = p, xi, yi ∈ {0, 1} for all i ∈ I
}
.

In [45] it is shown that the problem is ΣP
2-hard. Therefore, we are dealing with a more

difficult problem than the NP-complete problems. Polynomially solvable cases and com-
plexity results can be found in [46]. In order to get an upper bound for the total profit
of the leader we can rewrite the bilevel problem as a single level mixed integer linear
program with an exponential number of constraints and variables. A similar approach is
suggested in [42] for a partial enumeration algorithm. If we extract a subfamily of con-
straints and variables, then we may get an upper bound. In [44] a nonclassical column
generation method is applied to find an optimal solution for the bilevel problem. Com-
putational experiments for the test instances from the benchmark library Discrete Lo-
cation Problems (http://math.nsc.ru/AP/benchmarks/english.html) indicate that the exact
method allows us to find the global optimum for p = r = 5, n = m = 100.

For higher dimensions we may apply heuristics or metaheuristics. The simplest
heuristic for the leader is to ignore the follower. The leader opens its own facilities to
minimize the total distance between users and his facilities. He wishes to service all users
and solves the classical p-median problem. This strategy is not so bad despite ignoring
the follower. Computational experiments show that this lower bound can be improved by
a few percent only.

The second strategy is more sophisticated. The leader anticipates that the follower
will react to his decision. Therefore, (p + r) facilities will be opened. According to the
second heuristic, the leader solves the (p + r)-median problem and opens the p most
profitable facilities. Unfortunately, this strategy is weak.

There is a third strategy suggested for continuous locations [47]. This heuristic is
iterative. For a solution of one decision maker, we find the optimal solution for the other
one. In discrete case this strategy produces a cycle. The best solution in the cycle is the
result of the approach. If we use the previous strategies to create a starting solution, we
can improve the profit of the leader. Surely, this is a more time consuming procedure.
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One of the most powerful approaches is a hybrid memetic algorithm, where a tabu
search is used to improve the elements of the population [48]. To evaluate neighboring
solutions for the leader, the linear programming relaxation of the follower problem is
solved by CPLEX software. To reduce the running time at each step of the tabu search,
the idea of randomized neighborhoods is used. Other heuristics can be found in [49, 50].

2. Local Optima and Karush – Kuhn – Tucker Conditions

Let us consider the minimization problem for the pseudo-Boolean function B(z) =∑
l∈L γl

∏
i∈Il zi with arbitrary coefficients γl. The UFLP,MSUFLP, and UFLPUP can be

reduced to this problem. We wish to show the relationship between Flip-minimal solu-
tions for B(z) and solutions that satisfy the classical Karush – Kuhn – Tucker conditions
for the Lagrange function L defined by

L(z, σ, μ) = B(z) +
∑
i∈I
σi(zi − 1) −

∑
i∈I
μizi

for continuous variables zi ∈ [0, 1] and nonnegative multipliers σi, μi corresponding to
constraints zi − 1 ≤ 0 and zi ≥ 0 for each i ∈ I. Recall that the Flip neighborhood for
solution z, or Flip(z) for short, is the set of 0-1 solutions that can be obtained from z
by flipping exactly one variable. A solution is called local minimal, for example Flip-
minimal, if it does not have neighboring solution with smaller value of the objective
function.

Theorem 6 ([51]). A 0-1 vector z∗ is Flip-minimal if and only if there exist nonnegative
multipliers σ∗

i , μ
∗
i , for all i ∈ I such that the vector (z∗, σ∗, μ∗) satisfies the Karush –

Kuhn – Tucker conditions:

(i) (∂L/∂zi)(z∗, σ∗, μ∗) =
∑

l∈L|i∈Il γl
∏

j∈Il\{i} z∗
j − μ

∗
i + σ

∗
i = 0, i ∈ I;

(ii) z∗
i μ

∗
i = 0, i ∈ I;

(iii) σ∗
i (z∗

i − 1) = 0, i ∈ I.

Proof. Suppose that the vector (z∗, σ∗, μ∗) satisfies the conditions (i) – (iii). Let z′ ∈

Flip(z∗) and z∗
i = 0, z′

i = 1 for an index i ∈ I. We then have

B(z∗) − B(z′) = −
∑

l∈L|i∈Il

γl

∏
j∈Il\{i}

z∗
j = σ

∗
i − μ∗i = −μ∗i ≤ 0.

Assume that z∗
i = 1, z′

i = 0. We have

B(z∗) − B(z′) =
∑

l∈L|i∈Il

γl

∏
j∈Il\{i}

z∗
j = μ

∗
i − σ∗

i = −σ∗
i ≤ 0.

For both cases B(z∗) ≤ B(z′), and z∗ is Flip-minimal.
Consider a Flip-minimal vector z∗. Denote by B′

i(z) the first derivative of the function
B(z) by the variable zi. Put

μ∗i =

⎧⎪⎪⎨⎪⎪⎩0 if z∗
i = 1

B′
i(z

∗) if z∗
i = 0

, σ∗
i =

⎧⎪⎪⎨⎪⎪⎩0 if z∗
i = 0

−B′
i(z

∗) if z∗
i = 1

, i ∈ I.
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If z∗
i = 0, z′

i = 1, then B(z∗) − B(z′) = −B′
i(z

∗) = −μ∗i . Since B(z∗) ≤ B(z′), we have
μ∗i ≥ 0. If z∗

i = 1, z′
i = 0, then B(z∗) − B(z′) = B′

i(z
∗) = −σ∗

i , and we have σ∗
i ≥ 0. For

both cases the conditions (i) – (iii) hold, which completes the proof.

Let us introduce an additional constraint
∑

i∈I zi = m− p into the minimization prob-
lem for B(z). This new problem corresponds to the p-median problem and its general-
izations. The Swap-neighborhood for z, or Swap(z) for short, is the set of 0-1 solutions,
which can be obtained from z by flipping exactly two variables with different values.

The Lagrange function L with multiplier λ and nonnegative multipliers μi, σi for
each i ∈ I is defined as follows:

L(z, λ, μ, σ) = B(z) + λ(m − p −
∑
i∈I

zi) +
∑
i∈I
σi(zi − 1) −

∑
i∈I
μizi.

The corresponding Karush – Kuhn – Tucker conditions are presented as:

∂L
∂zi

(z, λ, μ, σ) = B′
i(z) − λ + σi − μi = 0, i ∈ I,∑

i∈I
zi = m − p,

σi(zi − 1) = 0, i ∈ I,

μizi = 0, i ∈ I.

The vector (z∗, λ∗, μ∗, σ∗) is called a saddle point with respect to Swap-neighborhood or
Swap-saddle point if

L(z∗, λ, μ, σ) ≤ L(z∗, λ∗, μ∗, σ∗) ≤ L(z, λ∗, μ∗, σ∗)

for all 0-1 vectors z ∈ Swap(z∗), for all λ, and all nonnegative multipliers μ, σ.

Theorem 7 ([52]). For each 0-1 vector z∗ the following properties are equivalent:

(i) z∗ is Swap-minimal.
(ii) z∗ satisfies the KKT conditions.

(iii) There are the multiplier λ∗ and nonnegative multipliers μ∗i , σ
∗
i for each i ∈ I such

that the vector (z∗, λ∗, μ∗, σ∗) is the Swap-saddle point of the Lagrange function
L(z, λ, μ, σ).

The reductions of the facility location problems to the minimization problem for
the function B(z) save the objective function value. Hence, the vector z is Flip-minimal
for B(z) (Swap-minimal) if and only if the corresponding solution S defined by S (z) =
{i ∈ I | zi = 0} is Flip-minimal (Swap-minimal) for the location problem. When we use
wider neighborhoods, for example, k-Flip, Lin – Kernighan neighborhoods, Fiduccia –
Mattheyses neighborhoods and others [52], the set of local optima is decreased. However,
all local optima satisfy the KKT conditions. Hence, the large neighborhoods extract the
highest quality KKT points and we should use them in local search methods. Other the-
oretical properties of polynomially searchable neighborhoods can be found in [53–56].
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3. Complexity of Local Search

3.1. The Class PLS and PLS-Complete Problems

In order to introduce the concept of local search problems, let us recall a formal definition
of an optimization problem. An optimization problem OP is defined by the quadruple
〈I, Sol, F, goal〉, where

1. I is the set of instances of OP;
2. Sol is a function that associates to every input instance x of OP the set of its feasible

solutions;
3. F is the cost function that assigns an integer F(s, x) for every feasible solution s of x;
4. goal ∈ {min,max} specifies whether OP is a maximization or a minimization problem.

In the problem OP we need to find an optimal solution for a given instance.

Definition 1. A local search problem Π is a pair (OP,N), where OP is an optimization
problem and N is a function that, for every pair (x, s), assigns a set N(s, x) of neighboring
feasible solutions. In the local search problem we need to compute a solution that does
not have a better neighboring solution.

We will assume that for each instance x its feasible solutions have length bounded
by a polynomial in the length of x.

Definition 2. A local search problemΠ is in the class PLS if there are three polynomial-
time algorithms A, B, C with the following properties:

1. For each string x, algorithm A determines whether x is an instance (x ∈ I), and in this
case it produces a feasible solution.

2. For each instance x and each string s, algorithm B determines whether s is a feasible
solution for x and if so, B computes the cost F(s, x).

3. For each instance x and each feasible solution s, algorithm C determines whether s
is a local optimum, and if it is not, C outputs a neighboring solution for s with better
cost.

This definition gives rise directly to the standard local search algorithm, which starts
from the initial solution generated by the algorithm A, and then applies repeatedly al-
gorithm C until it reaches a local optimum. The precise algorithm is determined by the
chosen pivoting rule. For a current solution that is not a local optimum, the pivoting rule
selects a neighboring solution with strictly better cost.

The class PLS is not empty. A lot of well-known combinatorial optimization prob-
lems with natural polynomial neighborhoods belong to it, for example, the traveling
salesman problem with a polynomially searchable neighborhood, or the uncapacitated
facility location problem with the Flip or Swap neighborhoods.

Definition 3. A local search problem Π from the class PLS belongs to the class PPLS if
there exists a polynomial time algorithm that returns a local optimum for every instance
of the problem.
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The class PPLS is the polynomially solvable part of the class PLS. The relationship
between the classes PLS and PPLS is fundamental to complexity theory. If PPLS � PLS
then P � NP.

The class PPLS contains many “unweighted” problems. For example, the maximal
clique problem with the Flip-neighborhood is in it. The number of steps of the standard
local search algorithm is bounded by the number of vertices of the graph. The unweighted
set covering problem with each polynomial neighborhood belongs to the class PPLS as
well. A nontrivial example of the local search problem from PPLS is the linear program-
ming problem with an arbitrary polynomially searchable neighborhood. It is known that
the optimal solution for this problem can be found in polynomial time by the ellipsoid
method. Hence, this local search problem belongs to the class PPLS in spite of the fact that
the simplex method is not polynomial in the worst case for many well-known pivoting
rules. Note that the simplex method is in fact a local search. It moves from one basic
feasible solution to another one by exchanging a variable of the basis for another variable
outside the basis.

Theorem 8 ([57]). If a PLS problem Π is NP-hard then NP = co-NP.

This statement shows that it is very unlikely that the class PLS contains an NP-hard
problem. Therefore, the local search problems may not be so difficult. In other words,
there are no NP-complete problems that can be reduced to a local search problem from
the class PLS in polynomial time. Therefore, the complexity of problems in this class
is lower than that of NP-complete problems. Note that the conjecture NP � co-NP is
stronger than the conjecture P � NP, since the coincidence of the latter two classes
implies the coincidence of the former ones.

Definition 4. Let Π1 and Π2 be two local search problems. A PLS-reduction from Π1 to
Π2 consists of two polynomial time computable functions h and g such that:

1. h maps instances x of Π1 to instances h(x) of Π2.
2. g maps (solution of h(x), x) pairs to solutions of x.
3. For all instances x of Π1, if s is a local optimum for instance h(x) of Π2, then g(s, x)

is a local optimum for x.

PLS-reductions have the following standard properties.

Propopsition 1. If Π1 PLS-reduces to Π2 and Π2 PLS-reduces to Π3 then Π1 PLS-
reduces to Π3. Moreover, Π1 ∈ PPLS if Π2 ∈ PPLS.

Propopsition 2. Let Π1 = (OP,N1), Π2 = (OP,N2) be two local search problems in
PLS and each local optimum under an N2 neighborhood is a local optimum under an N1
neighborhood. Then Π1 PLS-reduces to Π2.

We say that a problem Π in PLS is PLS-complete if every problem in PLS can be
PLS-reduced to it. We describe below the first PLS-complete problem, which is the basis
of further reductions. This problem is called (Circuit, Flip). An instance of this problem
is a Boolean circuit x, which consists of AND, OR, and NOT gates. The circuit x has
m inputs and n outputs. The set of feasible solutions consists of all the binary strings
of length m. The neighborhood Flip(s) of a solution s consists of all the binary strings
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of length m whose Hamming distance equals one from s. The objective function F is
defined as

F(s) =
n∑

j=1
2 j−1y j,

where y j is the jth output of the circuit with input s.

Theorem 9 ([58]). Both the maximization version and the minimization versions of
(Circuit, Flip) are PLS-complete.

The following local search problems are PLS-complete:
1. Graph partitioning under the following neighborhoods: KL [58], Swap, FM,

FM1 [57]. Given an undirected graph G = (V, E) with |V | = 2n and positive integer
weights on its edges, we wish to find a partition of V into two subsets V1 and V2 with
|V1| = |V2| = n, such that the sum of the weights of the edges that have one endpoint in V1
and one endpoint in V2 is minimal. Swap neighborhood is defined as follows: a partition
(V1,V2) has as neighbors all the partitions that can be produced by swapping a node in
V1 with a node in V2.
In the Kernighan – Lin neighborhood we replace the single swap by a well-chosen se-
quence of n swaps. At each step of the sequence we choose to swap the best pair of nodes
among those that have not been used in previous steps of the sequence. By the term best,
as above, we mean that the swap produces the best improvement of the objective func-
tion. The FM neighborhood is defined in a similar way but now each step consists of the
two substeps. In the first substep, we examine all the nodes that have not moved since the
beginning of the sequence and choose to move the best such node from one side to the
other. In the second substep, we move the best node that has not yet been moved from
the opposite side. The neighborhood FM1 contains one neighboring solution only. This
solution is obtained after the first step of the FM procedure.

2. Traveling salesman problem under the k-Opt and LK′ neighborhoods. Given a
complete undirected graph of n nodes with positive integer weights on its edges, we wish
to find the least-weight tour that passes exactly once through each node. Neighboring
tours for the k-Opt neighborhood are defined as follows. We delete k edges from the
tour in order to obtain k nonconnected paths. Then we reconnect these k paths so that
a new tour is produced. The TSP under the k-Opt neighborhood is PLS-complete for
large k [59].
The main idea of the Lin – Kernighan neighborhood is as follows. Given a tour, we delete
an edge (a, b) and obtain a Hamiltonian path with end nodes a and b. Let a be stable and
b variable. If we add an edge (b, c) then a circle is created. There is a unique edge (c, d)
that is incident on node c, whose deletion breaks the circle, producing a new Hamiltonian
path with a new variable end node d. This procedure is called rotation. We can close a
tour by adding an edge between the stable end a and the variable end d. A move from
the current tour to a neighboring tour consists of removing an edge, then performing a
sequence of “greedy” rotations, and finally the reconnecting of the two ends to form a
tour. There are many variations of this main framework depending on how exactly the
rotation is chosen in each step, and on the restrictions on edges to enter and leave the
tour. A variant is denoted by LK′. The PLS-completeness is shown in [60].

Y. Kochetov / Facility Location: Discrete Models and Local Search Methods112



3. Max-Cut problem under the Flip neighborhood [57]. Given an undirected graph
G = (V, E) with positive integer weights on its edges, we wish to find a partition of the set
V into two not necessarily equal sets V1,V2 such that the sum of the weights of the edges
that have one end point in V1 and one end point in V2 is maximal. The maximization
and minimization versions are not equivalent. The minimization version can be solved in
polynomial time, whereas the maximization version is NP-hard. In the Flip neighborhood
two partitions are neighbors if one can be obtained from other by moving a node to
another subset.

4. Max-Sat problem under the Flip neighborhood [57, 61]. The input is a Boolean
formula in a conjunctive normal form with a positive integer weight for each clause.
A solution is an assignment of 0 or 1 to all variables. We wish to find an assignment
such that the sum of the weights of the satisfied clauses is maximized. The restriction of
Max-Sat to instances with at most k literals in each clause is called Max-kSat. In the Flip
neighborhood two assignments are neighbors if one can be obtained from the other by
flipping the value of one variable. This local search problem is PLS-complete even for
k = 2.

5. Not-all-equal Max-Sat problem under the Flip neighborhood. The input is a
set of clauses of the form (α1, . . . , αK), where αi is either a literal or a constant 0 or 1.
Such a clause is satisfied if its elements do not all have the same value. Each clause is
assigned a positive integer weight. A set of feasible solutions of the problem consists of
all assignments of 0 or 1 to the variables. We wish to find an assignment maximizing
the sum of the weights of the satisfied clauses. If we restrict the clauses to have at most
k literals then we get the NAE Max-kSat problem. The restriction to instances with no
negative literals in their clauses is called Pos NAE Max-Sat. The Flip neighborhood is
defined as for Max-Sat. The local search problem Pos NAE Max-3Sat under the Flip
neighborhood is PLS-complete [57, 61].

6. Stable configurations neural networks in the Hopfield model. The input is an
undirected graph G = (V, E) with a weight on each edge and a threshold tv for each
node v. A configuration assigns to each node v a state sv ∈ {−1, 1}. A node is “happy” if
sv = 1 and

∑
u w(uv)su sv + tv ≥ 0 or sv = −1 and

∑
u w(uv)su sv + tv ≤ 0. A configuration

is stable if all the nodes are happy. The problem is to find a stable configuration. We get
an optimization problem if we introduce the cost function

∑
(uv)∈E w(uv)susv +

∑
v∈V tvsv. It

is known [62] that if a node is unhappy then changing its state will increase the cost. In
fact, the stable configurations coincide with the locally optimal solutions with respect to
the Flip neighborhood. This local search problem is PLS-complete [57].

Figure 1 shows the sequence of PLS-reductions for the local search problems de-
scribed above and for two local search problems in facility location. The neighborhoods
FM1, FM, and KL for the p-median problem are defined in a way similar to the corre-
sponding neighborhoods for the graph partitioning problem.

3.2. PLS-Complete Facility Location Problems

Theorem 10 ([63]). The local search problem (UFLP, Flip) is PLS-complete.

Proof. Let us consider the PLS-complete problem (Max-Cut, Flip). Given a graph G =
(V, E) with positive weight we on each edge e, find a partition of the set V into two subsets
V1 and V2 with maximal weight of the cut W(V1,V2). We will reduce (Max-Cut, Flip)
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Figure 1. Reductions of the PLS-complete problems

to (UFLP, Flip). To this end we present the functions h, g from Definition 4 with the
required properties.

Denote by E(i) the set of edges in G that are incident to the vertex i ∈ V. Put I = V,
J = E and

fi =
∑

e∈E(i)
we, cie =

⎧⎪⎪⎨⎪⎪⎩0 if (i = i1) or (i = i2),
2we otherwise,

e = (i1, i2).

For each solution S of the UFLP we define a partition (V1,V2) in the following way:
V1 = S , V2 = V \ V1. We claim that∑

i∈S
fi +

∑
j∈J

min
i∈S

ci j +W(V1,V2) = 2
∑
e∈E

we.

This guarantees the desired properties of the reduction. Let us consider three cases for an
edge e = (i1, i2).

Case 1: i1, i2 ∈ V1. The weight we is included in fi1 and fi2 , mini∈S cie = 0, and we is not
included in W(V1,V2). Hence, the value we is presented twice in both parts of
the equation.

Case 2: i1, i2 ∈ V2. The values fi1 and fi2 are not included into the first term, mini∈S cie =

2we, and we is not included in W(V1,V2).
Case 3: i1 ∈ V1, i2 ∈ V2. The weight we is included in fi1 and W(V1,V2) but mini∈S cie =

0.
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Thus, we get the desired result.

Theorem 11 ([52]). The local search problem (p-median, FM1) is PLS-complete.

Proof. Let us consider the PLS-complete problem (Graph Partitioning, FM1). Given an
undirected graph G = (V, E) with even number of vertices and positive weight we on each
edge e, find a partition of the set V into two subsets V1,V2 with the same cardinalities
and a maximal weight of the cut W(V1,V2). We reduce this problem under the FM1
neighborhood to (p-median, FM1). Put

Wi =
∑

e∈E(i)
we, W =

∑
e∈E

we,

I = {1, . . . , |V |}, J = {1, . . . , |E| + |V |}, p = |V |/2.

For each index j = 1, . . . , |E| we assign the edge e ∈ E and put

ci j =

⎧⎪⎪⎨⎪⎪⎩0 if (i = i1) or (i = i2),
2we otherwise,

e = (i1, i2).

For each j = |E| + 1, . . . , |E| + |V | we define

ci j =

⎧⎪⎪⎨⎪⎪⎩0 if i = j − |E|,
W − Wi otherwise.

For the partition (V1,V2) we put S = V1. The proof of the theorem is based on the
following equality:∑

j∈J
min
i∈S

ci j +W(V1,V2) = pW.

By definition we have

|E|∑
j=1

min
i∈S

ci j = 2
∑

(we | e = (i1, i2), i1, i2 � S )

and

|J|∑
j=1+|E|

min
i∈S

ci j =
∑
i�S

(W − Wi) = pW −
∑
i�S

Wi.

Note that

∑
i�S

Wi = W(V1,V2) +
|E|∑
j=1

min
i∈S

ci j,

which completes the proof.
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3.3. Complexity of the Standard Local Search Algorithm

As we have mentioned above, there are polynomially solvable local search problems in
the class PLS. However, we still do not know of polynomial time algorithms for PLS-
complete problems. Whether such algorithms exist or not is still an open question for
further research. Below we will observe that the standard local search algorithm is not
appropriate since it takes, in the worst case, an exponential number of iterations to reach
a local optimum for every pivoting rule. In other words, we need a fresh idea (new frame-
work, new “ellipsoid” method) to show that PLS = PPLS, if it is true.

Definition 5. Let Π be a local search problem and x be an instance of Π. The transition
graph TGΠ(x) of the instance x is a directed graph with one node for each feasible solu-
tion of x and with an arc (s → t) whenever t ∈ N(s, x) and F(t, x) < F(s, x). The height
of a node v is the length of the shortest path in TGΠ(x) from v to a sink (a vertex with no
outgoing arcs). The height of TGΠ(x) is the largest height of a node.

The height of a node v is a lower bound on the number of iterations needed by the
standard local search algorithm even if it uses the best possible pivoting rule.

Definition 6. Suppose Π1 and Π2 are problems in PLS and let (h, g) be a PLS-reduction
from Π1 to Π2. This reduction is tight if for every instance x of Π1 we can choose a
subset R of feasible solutions for the image instance h(x) so that the following properties
are satisfied:

1. R contains all local optima of h(x).
2. For every solution t of x we can construct in polynomial time a solution q ∈ R of h(x)

such that g(q, x) = t.
3. Suppose that the transition graph of h(x), TGΠ2 (h(x)), contains an arc from q ∈ R to

q′ ∈ R or a directed path from q to q′ such that all internal path nodes are outside R,
and let t = g(q, x) and t′ = g(q′, x) be the corresponding solutions of x. Then either
t = t′ or TGΠ1 (x) contains an arc from t to t′.

Tight reductions allow us to transfer lower bounds on the running time of the stan-
dard local search algorithm from one problem to another. Thus, if the standard local
search algorithm ofΠ1 takes exponential time in the worst case, then so does the standard
algorithm for Π2.

All PLS-complete problems that we have referred to are complete under tight PLS
reductions. We now want to show that in the worst case the running time of the standard
local search algorithm is exponential for the tightly PLS-complete problems. To prove
this it suffices to find a local search problem in the class PLS which has this property.

Lemma 2 ([64]). There is a local search problem in PLS whose standard local search
algorithm takes exponential time.

Proof. Consider the following artificial minimization problem. For every instance x of
size n, the solution set consists of all n-bit integers 0, . . . , 2n − 1. For each solution i, its
cost is i, and if i > 0 it has one neighbor, i − 1. Thus, there is a unique local and global
minimum, namely 0, and the transition graph is a path from 2n − 1 down to 0. The local
search algorithm starting at 2n − 1 will follow this path.
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Theorem 12. The standard local search algorithm takes exponential time in the worst
case for the following problems, regardless of the tie-breaking and pivoting rules used:

• Graph partitioning under the neighborhoods KL [58], Swap, FM, FM1 [57].
• Traveling salesman problem under the k-Opt neighborhood for some constant k [59],

and the LK′ neighborhood [60].
• Max-Cut,Max-2Sat and Pos NAE Max-3Sat under the Flip neighborhood [57, 61].
• Stable configuration for neural networks [57].
• Uncapacitated facility location problem under the Flip neighborhood [63].
• p-median problem under the FM1, Swap,KL, FM neighborhoods [65].

It is interesting to see a family of nonartificial instances and initial solutions for
which the local search algorithm takes an exponential number of iterations to find a lo-
cal optimum. In order to do so we consider the Generalized Graph 2-Coloring problem
(2-GGCP) with the Flip-neighborhood: given an undirected graph G = (V, E) with in-
teger weight we on each edge e, find a color assignment c : V → {1, 2} of the vertices
that minimizes the total weight of the monochromatic edges. For each solution c(V), a
Flip neighbor is obtained by choosing a vertex and assigning a new color. A solution is
Flip-optimal if the flipping of every single vertex does not decrease the total weight of
monochromatic edges. The local search problem (2-GGCP, Flip) is tightly PLS-complete
as a reformulation of the Max-Cut problem under the Flip neighborhood.

To illustrate the exponential number of iterations needed for finding a Flip-optimal
solution, we present an example of a graph and an initial solution for 2-GGCP for which
the best improvement, meaning always flipping the best vertex, takes an exponential num-
ber of iterations. This graph consists of K modules with weights on the edges as shown
in Figure 2 for i = 1, . . . ,K and a chain of three additional vertices as shown in Figure 3.
Vertex 1 is called the input node and vertex 7 is called the output node of a module. The
input node of module i is adjacent to the output node of module i+1, for i = K −1, . . . , 1,
and the input node of module K is adjacent to the rightmost vertex of the chain of Fig-
ure 3. The output node of module 1 is only adjacent to vertices 4, 5, 6, and 10 of this
module. An edge of weight −M, where M is some large positive value, makes sure that
the two vertices incident to this edge have the same color.

Let us consider a starting solution with vertices of the same color. In this case, only
flipping the rightmost vertex of the chain yields an improvement. This flip results in a
solution in which the input node of module K is “unhappy.”
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Theorem 13 ([66]). If the input node of module K is the only unhappy node, then the
output node of module 1 flips 2K times.

3.4. Average Case Behavior

The worst-case analysis yields bad predictions about local search and metaheuristics such
as Genetic algorithms, Variable Neighborhood Search, Ant Colony algorithms, and oth-
ers [67–69]. However, computational experiments show a lot of positive results for local
search. In practice, it finds a local optimum quickly, with a small number of iterations
as compared to the size of the search space. It is interesting to understand why the local
search methods are so successfully used in applications. Is the standard local search al-
gorithm polynomial on average? The first results in this direction have been obtained by
C. Tovey [70, 71].

Consider the problem of maximizing a real valued function F defined on the vertices
of the n-dimensional 0-1 hypercube. We assume that the values of F are distinct. In the
Flip neighborhood for the hypercube, two vertices are neighbors if they differ in exactly
one component. For each F we can construct an ordering: a list of the vertices from best
to worst function value. The random distribution we consider is such that all orderings
are equally likely to occur.

Theorem 14 ([72]). Under the assumption that all orderings are equally likely, the ex-
pected number of iterations of the standard local search algorithm with the Flip neigh-
borhood and every pivoting rule is less than 3

2 en, where e is the logarithmic constant.

Note, that the statement holds for every kind of pivoting rule. Even a careful rule
such as picking the worst better neighbor has an expected performance of less than 3

2 en.

Theorem 15 ([72]). Suppose the ratio of probabilities of occurrence satisfies

Prob[v]
Prob[v′]

≤ 2αn

for all orderings v, v′ and a positive constant α. Then the expected number of iterations
of every local search algorithm with the Flip neighborhood is less than (α + 2)en.

This statement can be extended for more powerful neighborhoods.

Theorem 16 ([72]). Suppose the vertices of the hypercube are assigned neighbors in
such a way that every vertex has at most q(n) neighbors, where q(n) ≥ n is a polynomial.
Then for every probability distribution satisfying

Prob[v]
Prob[v′]

≤ 2αn for all orderings v, v′,

the expected number of iterations of every local search algorithm is less than e(α+2)q(n).

Other results for more powerful neighborhoods and other random distributions can
be found in [72]. It is not clear how to use these results for the facility location models.
Can we get a polynomial upper bound for the running time of the standard local search
algorithm on average for (UFLP, Flip), (p-median, Swap), and others? This is an open
question for further research.
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3.5. Approximate Local Search

Computational studies of local search algorithms and metaheuristics have been exten-
sively reported in the literature for various NP-hard optimization problems. Empirically,
local search heuristics appear to converge very quickly, in low-order polynomial time.
The standard local search algorithm terminates in a pseudo polynomial number of it-
erations, but polynomial-time algorithms for finding a local optimum are not known in
general. It is interesting to explore the possibility of identifying approximately locally
optimal solutions in polynomial time. We say that a feasible solution sε to an instance
of a combinatorial optimization problem OP with neighborhood function N is an ε-local
minimum if

F(sε) ≤ (1 + ε)F(s) for all s ∈ N(sε) and some positive ε.

Hence, while sε is not necessarily a local minimum, it almost is. A family of algorithms
(Aε)ε>0 for the local search problem is an ε-local optimization scheme if Aε produces an
ε-local optimum. If the running time of algorithm Aε is polynomial in the input size and
1/ε, it is called a fully polynomial-time ε-local optimization scheme. In [73] it is shown
that every local search problem in the class PLS with a linear objective function has a
fully polynomial-time ε-local optimization scheme. In particular, an ε-locally optimal
solution can be computed in polynomial time for the PLS-complete problems mentioned
above.

Let us consider a linear combinatorial optimization problem OP, where the set Sol
of feasible solutions is a family of subsets of a finite ground set E = {1, . . . , n}. The objec-
tive function F : 2E → Q+ assigns a nonnegative cost to every feasible solution s ∈ Sol
through F(s) =

∑
e∈s fe. Note that we focus on a linear combinatorial optimization prob-

lem as opposed to a general combinatorial optimization problem. The class of problems
we are looking at is equivalent to that of 0-1 integer linear programming problems. The
UFLP,MSUFLP and UFLPUP belong to this class.

The algorithm starts with a feasible solution s0. We then alter the element costs fe for
e ∈ E according to a prescribed scaling rule to generate a modified instance. Using local
search on this modified problem, we look for a solution with an objective function value
(with respect to the original cost) that is half that of F(s0). If no solution is found then
we are at a local optimum for the modified problem and output this solution. Otherwise,
we replace s0 by the solution, which has a cost of at most 0.5 F(s0), and the algorithm is
repeated. All details of the algorithm are described above. Note that the modification of
the cost coefficients in Step 2 merely amounts to rounding them up to the closest integer
multiple of q.

Theorem 17 ([73]). Algorithm ε-Local Search produces an ε-local minimum and its
running time is polynomial in the input size and 1/ε.

Proof. Let sε be the solution produced by the algorithm and s ∈ N(sε). Note that

F(sε) =
∑
e∈sε

fe ≤
∑
e∈sε

⌈ fe
q

⌉
q ≤

∑
e∈s

⌈ fe
q

⌉
q ≤

∑
e∈s

q
( fe

q
+ 1

)
≤

∑
e∈s

fe + nq = F(s) + nq.

If F(s) ≥ K/2 then
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1: Find s0 ∈ Sol(x) and put i := 0
2: Put K := F(si), q := εK/(2n(1 + ε)), f ′

e := � fe/q�q, e ∈ E.
3: Put j := 0 and si j := si.
4: repeat
5: if si j is a local minimum then
6: sε := si j, STOP
7: else
8: select better solution si j+1 ∈ N(si j), F(si j+1) < F(si j) and put j := j + 1
9: until F(si j) ≤ K/2

10: Put si+1 := si j, i := i + 1 and goto 2.

Algorithm 1. Algorithm ε-Local Search

F(sε) − F(s)
F(s)

≤
nq

F(s)
≤

nq
F(sε) − nq

≤
2nq

K − 2nq
= ε.

Let us analyze the running time. Step 1 is polynomial because the local search problem
is in the class PLS. In each improvement move in Step 4 we get an improvement of at
least of q units. Thus the number of local search iterations in Step 4 is O(n(1 + ε)/ε) =
O(n/ε). Step 2 is executed at most log F(s0) times. Thus, the total number of local search
iterations is O(n log F(s0)/ε). More accurate calculations give O(n2ε−1 log n) iterations.

If we replace the relative error in the definition of an ε-local optimum with the
absolute error, then the existence of a polynomial ε-Local Search algorithm will imply
PLS = PPLS.

Theorem 18 ([73]). If there is an algorithm that for every instance x of a PLS-complete
local search problem (OP,N) finds a feasible solution sε in polynomial time, such that

F(sε) ≤ F(s) + ε for all s ∈ N(sε)

for some fixed positive ε, then PLS = PPLS.

Proof. Recall that the objective function is an integer-value. For each instance x we create
a new instance x′ with the same set of feasible solutions, Sol(x′) = Sol(x), and a new
objective function defined by

F′(s) =
∑
e∈s

f ′
e , for all s ∈ Sol(x′), where f ′

e = fe(1 + ε) for every e ∈ E.

We apply the algorithm to the new instance x′ and let s′ be the resulting solution. Then,
F′(s′) − F′(s) ≤ ε for all s ∈ N(s′). Thus, F(s′) − F(s) ≤ ε/(ε + 1) < 1 for all s ∈ N(s′)
and s′ is a local optimum for x.

Theorem 19 ([73]). If a PLS-complete local search problem (OP,N) has a fully polyno-
mial time ε-local optimization scheme (Aε)ε>0 such that the actual running time of Aε is
polynomial in the input size and log 1/ε, then PLS = PPLS.
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Proof. Choose ε = 1/(n fmax + 1), fmax = maxe∈E fe and apply Aε. Note that its running
time is polynomial in the input size. If sε is the solution returned by the algorithm, then
F(sε) ≤ (1 + ε)F(s) < F(s) + 1 for all s ∈ N(sε). Hence, sε is a local optimum.

Observe that the results hold for the facility location problems as well.

4. The Quality of Local Optima

We say that a neighborhood is exact if each local optimum is a global one. The standard
local search algorithm with an exact neighborhood produces the optimal solution of the
problem. However, for the p-median problem (the traveling salesman problem [74] and
some others) the existence of the polynomially searchable exact neighborhoods implies
P = NP [65]. In general, this property can be presented in the following way.

An optimization problem OP with optimal value F∗(x) is called pseudo polynomi-
ally bounded if there is a polynomial q in the length of x ∈ I and Max(x), which is the
maximal absolute value of the components of x, such that

|F(s) − F∗(x)| ≤ q
(
|x|,Max(x)

)
for all x ∈ I and for all s ∈ S ol(x). The set of the pseudo polynomially bounded problems
is denoted by NPOB.

Theorem 20 ([64, 65]). Let OP ∈ NPOB and (OP,N) ∈ PLS. If the approximation of
OP within a factor ε is strongly NP-hard then N cannot guarantee a ratio of ε unless
P = NP.

For ε = 1 we have the following.

Corollary 1. If OP ∈ NPOB, (OP,N) ∈ PLS and OP is strongly NP-hard then N cannot
be exact unless P = NP.

Theorem 21 ([64]). If (OP,N) ∈ PLS and the approximation of OP within a factor ε is
NP-hard then N cannot guarantee a ratio of ε unless NP = co-NP.

Corollary 2. If (OP,N) ∈ PLS and OP is NP-hard, then N cannot be exact unless
NP = co-NP.

As we have mentioned in Section 1, the uncapacitated facility location problem is
NP-hard in the strong sense even for the metric case. Moreover, the existence of a polyno-
mial time 1.463-factor approximation algorithm for this problem implies P = NP. There-
fore, it is difficult to find an exact polynomially searchable neighborhood for this problem
or a neighborhood that guarantees the ratio ε ≤ 1.463. This is bad news. However, below
we will present some good news.

We say that an optimization problem OP is polynomially bounded if there exists a
polynomial r such that F(s) ≤ r(|x|) for every instance x of OP and every feasible solution
s of x.

Definition 7. An optimization problem OP has guaranteed local optima if there exists
a polynomial time searchable neighborhood N and a constant k such that F(s) ≤ kF∗(x)
for every instance x of OP and every local minimum s of x with respect to N.
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Definition 8. For an instance x and feasible solutions s, s′ of x we say that s′ is an
h-bounded neighbor of s if the Hamming distance between s and s′ is at most h. A
neighborhood N is said to be h-bounded if there exists a constant h such that every
neighbor of s is an h-bounded for every feasible solution s and every instance x.

Definition 9. Let OP be a polynomially bounded optimization problem. We say that OP
belongs to the class Guaranteed Local Optima (GLO) if the following two conditions
hold:

• at least one feasible solution s of x can be computed in polynomial time for every
instance x of OP,

• there exists a constant h such that OP has a guaranteed local optima with respect to a
suitable h-bounded neighborhood.

Definition 10. Let A and B be two optimization problems. A is said to be PTAS-reducible
to B (in symbol A ≤PTAS B) if three functions f , g, c exist such that:

• for every x ∈ IA and for every ε ∈ (0, 1)Q, (Q is the set of rational numbers) f (x, ε) ∈

IB is computable in polynomial time with respect to |x|;
• for every x ∈ IA, for every s ∈ SolB( f (x, ε)), and for every ε ∈ (0, 1)Q, g(x, s, ε) ∈

SolA(x) is computable in time polynomial with respect to both |x| and |s|;
• c : (0, 1)Q → (0, 1)Q is computable and surjective;
• for every x ∈ IA, for every s ∈ SolB( f (x, ε)), and for every ε ∈ (0, 1)Q EB( f (x, ε), s) ≤

c(ε) implies EA(x, g(x, s, ε)) ≤ ε, where E(x, s) is the relative error of s for x,

E(x, s) =
|F(s) − F∗(x)|

max{F(s), F∗(x)}
.

Suppose that A ≤PT AS B and B ∈ APX, then A ∈ APX. If C is a class of optimization
problems, then by C we denote the closure of C under PTAS reductions, that is, the set
of problems defined by

C = {A | ∃B ∈ C such that A ≤PTAS B}.

Theorem 22 ([75]). GLO = APX.

In other words, “. . . the basis of approximability of a large class problems stands an
important combinatorial property, namely, the fact that all local optima have guaranteed
quality with respect to global optima” G. Ausiello, M. Protasi [75].

5. Computationally Difficult Instances

The iterative local search methods show high performance for many combinatorial op-
timization problems in business, engineering, and science. These metaheuristics pro-
vide fast and robust tools, producing high quality solutions for location problems as
well [76–79]. As a rule, they deal with the set of local optima under polynomially search-
able neighborhoods. If the local optima cluster is in a small part of the feasible domain, as
for the metric TSP [80], we understand why these heuristics are so effective. Conversely,
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if we wish to generate computationally difficult instances for the local search methods
then we may try to create instances, where local optima are scattered all around the fea-
sible domain. Such computationally difficult instances for the UFLP based on binary
perfect codes, finite projective planes, and others [63] are described below.

5.1. Polynomially Solvable Instances

Let us consider a finite projective plane of order k [81], which is a collection of n =
k2 + k + 1 points x1, . . . xn and lines L1, . . . , Ln. An incidence matrix A is an n × n matrix
defining the following: ai j = 1 if x j ∈ Li and ai j = 0 otherwise. The incidence matrix A
satisfying the following properties:

1. A has constant row sum k + 1;
2. A has constant column sum k + 1;
3. the inner product of every pair of distinct rows of A is 1;
4. the inner product of every pair of distinct columns of A is 1.

These matrices exist if k is a power of a prime. A set of lines B j = {Li | x j ∈ Li} is
called a bundle for the point x j. The cardinality of each bundle is k+1 and |B j1 ∩ B j2| = 1
for every pair of different points x j1 and x j2. Let us define a class of instances for the
UFLP. Put I = J = {1, . . . , n} and

ci j =

⎧⎪⎪⎨⎪⎪⎩ξi j if ai j = 1,
+∞ otherwise,

fi = f for all i ∈ I, where f >
∑
i∈I

∑
j∈J
ξi j.

We denote this class by FPPk. It is easy to see that the optimal solution for FPPk corre-
sponds to a bundle. Hence, the problem can be solved in polynomial time.

Every bundle corresponds to a strong local optimum of the UFLP under the neigh-
borhood Flip ∪ Swap. Global optimum is one of them. The Hamming distance for an ar-
bitrary pair of the strong local optima equals 2k. Hence, the diameter of the area, where
local optima are located, is quite large. Moreover, there are no other local optima with
distance to the bundle less than or equal to k. As we will see in some computational
results, the local optima have large basins of attraction. For metaheuristics it is an addi-
tional obstacle for moving from one local optimum to another. In Tabu Search we have
to use a large tabu list. For Simulated Annealing we need high temperatures. If the pop-
ulation in Genetic Algorithm is a collection of the bundles then the crossover operators
produce “bad” local optima or the same bundles. For the GRASP heuristic this class is
difficult too [79].

5.2. Instances with Exponential Number of Strong Local Optima

Let us consider two classes of instances, where the number of strong local optima grows
exponentially as dimension increases. The first class uses binary perfect codes with code
distance 3. The second class involves a chess board.

Let Bk be a set of words (or vectors) of length k over an alphabet {0,1}. A binary
code of length k is an arbitrary nonempty subset of Bk. A binary perfect code C with
distance 3 is a subset of Bk with property |C| = 2k/(k+1) such that the Hamming distance
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d(c1, c2) for all c1, c2 ∈ C is at least 3 whenever c1 � c2. These codes exist for k = 2r − 1
and r > 1, integer. Put n = 2k, I = J = {1, . . . , n}. Every element i ∈ I corresponds
to a vertex x(i) of the binary hypercube Zk

2. Therefore, we may use a distance di j =

d(x(i), x( j)) for every pair of elements i, j ∈ I. Now we define

ci j =

⎧⎪⎪⎨⎪⎪⎩ξi j if d(x(i), x( j)) ≤ 1,
+∞ otherwise,

fi = f for all i ∈ I.

An arbitrary perfect code C produces a partition of Zk
2 into 2k/(k+1) disjointed spheres of

radius 1 and corresponds to a strong local optimum for the UFLP. The number of perfect
codes ℵ(k) grows exponentially as k increases. The best known lower bound [82] is

ℵ(k) ≥ 22((k+1)/2) log2(k+1)
× 32(k−3)/4

× 22((k+5)/4) log2(k+1)
.

The minimal distance between two perfect codes or strong local minima is at least
2(k+1)/2. We denote the class of benchmarks by BPCk.

Let us glue boundaries of the 3k × 3k chess board so that we get a torus. Put r =
3k. Each cell of the torus has 8 neighboring cells. For example, the cell (1, 1) has the
following neighbors: (1, 2), (1, r), (2, 1), (2, 2), (2, r), (r, 1), (r, 2), (r, r). Define n = 9k2,
I = J = {1, . . . , n} and

ci j =

⎧⎪⎪⎨⎪⎪⎩ξi j if the cells i, j are neighbors,
+∞ otherwise,

fi = f for all i ∈ I.

The torus is divided into k2 squares with 9 cells in each of them. Every cover of the torus
by k2 squares corresponds to a strong local optimum for the UFLP. The total number of
these strong local optima is 2 × 3k+1 − 9. The minimal distance between them is 2k. We
denote this class of benchmarks by CBk.

5.3. Instances with Large Integrability Gap

As we will see later, the integrality gap for the described classes is quite small. There-
fore, the branch and bound algorithm finds an optimal solution and proves the optimality
quickly. It is interesting to design benchmarks, which are computationally difficult for
both metaheuristics and branch and bound methods.

As in previous cases, let the n×n matrix (ci j) have the following property: each row
and column have the same number of finite elements. We denote this number by l. The
value l/n is called the density of the matrix. Now we present an algorithm to generate
random matrices (ci j) with the fixed density.

The array Column[ j] keeps the number of small elements in the jth column of the
generating matrix. Variable l0 is used to count the columns, where small elements must
be located in the ith row. These columns are detected in advance (line 7) and removed
from the set J (line 11). Note that we may get random matrices with exactly l small
elements for each row only if we remove lines 6 – 11 from the algorithm. By transposing
we get random matrices with this property for columns only. Now we introduce three
classes of benchmarks:

Gap-A: each column of ci j has exactly l small elements;
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1: J ← {1, . . .n}
2: Column [ j] ← 0 for all j ∈ J
3: c[i, j] ← +∞ for all i, j ∈ J
4: for i ← 1 to n do
5: l0 ← 0
6: for j ← 1 to n do
7: if n − i + 1 = l − Column[ j] then
8: c[i, j] ← ξ[i, j]
9: l0 ← l0 + 1

10: Column[ j] ← Column[ j] + 1
11: J ← J \ j
12: select a subset J′ ⊂ J, |J′| = l − l0 at random and put c[i, j] ← ξ[i, j], for j ∈ J′.

Algorithm 2. Random matrix generator (l, n)

Gap-B: each row of ci j has exactly l small elements;
Gap-C: each column and row of ci j have exactly l small elements.

For these classes we save I = J = {1, . . . , n} and fi = f for all i ∈ I. The instances
have a significant integrality gap δ = 100%(F∗ − FLP)/F∗, where FLP is an optimal
value for the linear programming relaxation. For l = 10, n = 100 we observe that δ ∈

[21%, 29%]. As a consequence, the branch and bound algorithm evaluates about 0.5×109

nodes in the branching tree for most of the instances from the class Gap-C.

5.4. Computational Experiments

To study the behavior of metaheuristics, we generate 30 random test instances for each
class. The values of ξi j are taken from the set {0, 1, 2, 3, 4} at random and f = 3000. All
instances are available at http://www.math.nsc.ru/AP/benchmarks/english.html. Optimal
solutions are found by the branch and bound algorithm. Table 1 shows the performance
of the algorithm on average. Column Running time presents the execution times on a PC
Pentium 1200 MHz, RAM 128 Mb. Column Iterations B&B shows the total number of
iterations or number of evaluated nodes in the branching tree. Column The best iteration
shows iterations for which optimal solutions were discovered. For comparison we include
two well known classes:

Uniform: values ci j are selected in the interval [0, 104] at random with uniform distribu-
tion and independently from each other.

Euclidean: values ci j are Euclidean distances between points i and j in two-dimensional
space. The points are selected in a square of size 7000 × 7000 at random with
uniform distribution and independently from each other.

For these classes f = 3000. The interval and size of the square are taken in such a
way that optimal solutions have the same cardinality as in the previous classes. Table 1
confirms that classes Gap-A, Gap-B, and Gap-C have a large integrality gap and they
are the most difficult for the branch and bound algorithm. The classes BPC7,CB4, and
Euclidean have a small integrality gap. Nevertheless, the classes BPC7 and CB4 are more
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Table 1. Performance of the branch and bound algorithm in average

Benchmarks n Gap Iterations The best Running
classes δ B&B iteration time

BPC7 128 0.1 374 264 371 646 00:00:15
CB4 144 0.1 138 674 136 236 00:00:06
FPP11 133 7.5 6 656 713 6 635 295 00:05:20
Gap-A 100 25.6 10 105 775 3 280 342 00:04:52
Gap-B 100 21.1 30 202 621 14 656 960 00:12:24
Gap-C 100 28.4 541 320 830 323 594 521 01:42:51
Uniform 100 4.7 9 834 2 748 <00:00:01
Euclidean 100 0.1 1 084 552 <00:00:01

Table 2. Attributes of the local optima allocation

Benchmarks N Diameter Radius R100 R∗

classes min ave max
BPC7 8868 55 1 3 357 24 52
CB4 8009 50 1 13 178 78 53
FPP11 8987 51 1 2 8 3 1
Gap-A 6022 36 1 53 291 199 7
Gap-B 8131 42 1 18 164 98 16
Gap-C 8465 41 1 14 229 134 21
Uniform 1018 33 1 31 101 61 1
Euclidean 40 21 11 13 18 — 10

difficult than the Euclidean class. This has a simple explanation: classes BPC7 and CB4
have many strong local optima with small waste over the global optimum.

In order to understand the difference between classes from the point of view of local
optima allocation, we produce the following computational experiment. For 9000 random
starting points we apply the standard local improvement algorithm with the Flip ∪ Swap
neighborhood and get a set of local optima, some of which are identical. Impressive dif-
ferences between benchmark classes become clear when the cardinality of the local op-
tima sets are compared. Classes Uniform and Euclidean have small pathological cardi-
nalities of local optima sets and, as we will see below, these classes are very easy for
metaheuristics. In Table 2 the column N shows the cardinalities for typical instances in
each class. The column Diameter yields a lower bound for the diameter of area, where
local optima are located. This value equals the maximal mutual Hamming distance over
all pairs of local optima obtained.

Figures 4 – 11 plot the costs of local optima against their distances from the global
optimum. For every local optimum we draw a sphere. The center of the sphere has coordi-
nates (x, y), where x is the distance, and y is the value of the objective function. The radius
of the sphere is the number of local optima, which are located near this local optimum.
More precisely, the Hamming distance d is less than or equal to 10. In Table 2 columns
min, ave, and max show the minimal, average, and maximal radiuses for the correspond-
ing sets of local optima. The class FPP11 has an extremely small maximal and average
value of the radiuses. Hence, the basins of attraction for the local optima are quite large.
In Figure 6 the local optima, which correspond to the bundles, are shown by two lower
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spheres. The distance between them is 22. One of them is the global optimum. All other
local optima are located quite far from global optimum and have higher values of the
objective function. The distance from global optimum to the nearest local optimum is 12.
Column R∗ in Table 2 gives the radius of the sphere for the global optimum. It equals
1 for the classes FPP11 and Uniform. The maximal values 53 and 52 belong to classes
CB4 and BPC7. Note that for all classes the sphere of global optima is not the maximal
or minimal one. It seems that there is no correlation between the density of local optima
in the feasible domain and the objective function. Column R100 shows the minimal radius
for the 100 biggest spheres. This column indicates that the classes Gap-A,Gap-B,Gap-C
have many large spheres. Class FPP11 has spheres that are not so large. In Figures 4, 5, 9,
and 10 there are many small spheres quite far from the global optimum. If we imagine the
set of local optima as a galaxy then we observe many small spheres at the border of the
galaxy and a lot of large spheres at the center. The region of high concentration of local
optima consists of the spheres with high and low values of the objective function. The
global optimum can be located at the center part of the galaxy and has a large sphere (see
Figures 4, 5) or very far from the center and has a small sphere (Figures 6, 10). We cannot
predict its radius or place in the galaxy. We can only observe that easy classes have a

Figure 4. Analysis of local optima for the class BPC7

Figure 5. Analysis of local optima for the class CB4
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Figure 6. Analysis of local optima for the class FPP11

Figure 7. Analysis of local optima for the class GAP-A

Figure 8. Analysis of local optima for the class GAP-B
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Figure 9. Analysis of local optima for the class GAP-C

Figure 10. Analysis of local optima for the class Uniform

Figure 11. Analysis of local optima for the class Euclidean
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small galaxy, N = 1018 for class Uniform and N = 40 for class Euclidean. The difficult
classes have large galaxies, N ≈ 9000 for classes BPC7, FPP11,Gap-C. It is possible that
the most difficult classes correspond to the cases, where several galaxies are separated
from each other by regions with high values of the objective function. Test instances
with this property are very interesting for future research [83]. Theoretical properties of
different landscapes for NP-hard combinatorial problems can be found in [84].

Table 3 shows the frequency of finding an optimal solution using the following meta-
heuristics: Probabilistic Tabu Search (PTS), Genetic Algorithm (GA) and Greedy Ran-
domizes Adaptive Search Procedure with Local Improvement (GRASP+LI). The stop-
ping criterion for the algorithms is the maximal number of steps by the neighborhood
Flip ∪ Swap. We use number 104 as the criteria. The genetic algorithm uses local im-
provements for each offspring during the evolution. Table 3 indicates that classes Eu-
clidean and Uniform are easy. The average number of steps before an optimal solution is
reached is less than 103 for all algorithms.

6. Conclusions

We have presented some discrete facility location models, as well as theoretical and ex-
perimental results for local search methods. We have explained why the concept of local
optimality is important for the theory of computational complexity and numerical meth-
ods. There are many open questions in this area. For example, the well-known set cover-
ing problem can be reformulated as a facility location problem. We still know very little
about the complexity of the corresponding local search problems. In [85] a one-to-one
correspondence between Nash equilibria in a facility location game and local optima in
a special facility location model is presented. This property helps to determine the com-
putational complexity of finding Nash equilibrium [21]. For the theory of approximation
algorithms the concept of local optimality plays an important role as well. In regards to
combinatorial optimization problems, the property that all local optima have guaranteed
quality with respect to global optima is the basis of the approximability of a large class
of problems [75].

Table 3. Frequency of obtaining optimal solutions by metaheuristics

Benchmarks Dimension PTS GA GRASP+LI
classes

BPC7 128 0.93 0.90 0.99
CB4 144 0.99 0.88 0.68
FPP11 133 0.67 0.46 0.99
Gap-A 100 0.85 0.76 0.87
Gap-B 100 0.59 0.44 0.49
Gap-C 100 0.53 0.32 0.42
Uniform 100 1.0 1.0 1.0
Euclidean 100 1.0 1.0 1.0
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Discrete Convexity and Its Applications
G.A. KOSHEVOY 1
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Abstract. We explain what subsets of the lattice Zn and what functions on the lat-
tice Zn could be called convex. The basis of the theory is the following three main
postulates of classical convex analysis: concave functions are closed under sums;
they are also closed under convolutions; and the superdifferential of a concave func-
tion is nonempty at each point of the domain. Interesting (and even dual) classes
of discrete concave functions arise if we require either the existence of superdif-
ferentials and closeness under convolutions or the existence of superdifferentials
and closeness under sums. The corresponding classes of convex sets are obtained
as the affinity domains of such discretely concave functions. The classes of the
first type are closed under (Minkowski) sums, and the classes of the second type
are closed under intersections. In both classes, the separation theorem holds true.
Unimodular sets play an important role in the classification of such classes. The
so-called polymatroidal discretely concave functions, most interesting for applica-
tions, are related to the unimodular system An := {±ei , ei − e j}. We demonstrate
that such functions naturally appear in mathematical economics, in combinatorics,
play an important role for solution of the Horn problem, for describing submodule
invariants over discrete valuation rings, etc.

Keywords. Integer polyhedron, base polyhedron, pure subgroup, pure system,
unimodular system, laminarization, pseudoconvexity, convolution, discrete valua-
tion ring, Horn problem, octohedron recurrence

Introduction

My lectures are devoted to the following questions: what subsets of the lattice Zn should
be regarded as “convex,” and what functions on Zn should be regarded as “convex” and
“concave”?

Lecture 1

There are several equivalent definition of convexity in the usual Euclidean spaces and of
convex/concave functions on these spaces. For instance, a subset of Rn is called convex
if, with every pair of its points x and y, it contains the whole line segment [x, y], defined
as {αx + (1 − α)y : α ∈ [0, 1]}. A cornerstone of classical convexity theory asserts that a
subset X of Rn is convex in this sense if and only if for every point z of Rn located outside
X, there exists a hyperplane which separates X and z; this property further implies that
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every pair of nonintersecting convex sets can be separated by a hyperplane. Our aim is
to construct a theory of convexity preserving the latter strong separation property in the
discrete setup, for subsets of integer points Zn in Rn.

In the discrete setup there are several instances where separation takes place. We
are going to list a few without defining the terms that we use: Frank (1982) [1] proved
the separation theorem for submodular and supermodular functions. Later on, Lovász
(1984) [2] proposed a convex continuation of a submodular function to the unit cube,
using a natural triangulation of the cube (this is a particular form of Choquet integra-
tion (1953) [3]). In 1991, Dress and Wentzel [4] introduced valuated matroids and later
Murota (1996) [5] considered their ultradiscretization, M�-convex/concave functions.
These functions form a class of functions for which the separation holds true (integer
valued M�-functions form class which is Fenchel dual to the class of supermodular func-
tions on the cube). In 1998, Danilov, Murota and I [6] found that discrete convexity plays
the key role in the existence of equilibria in economies with indivisibles. Let us point
out that in the economic framework, a class of functions which is equivalent to the ul-
tradiscretization of valuated matroids was implicitly introduced in 1982 by Kelso and
Crawford [7].

General theory was elaborated in the paper [8] by Danilov and myself. In the book
[9], a particularly important variant of general theory corresponding to a class of discrete
convexity related to generalized polymatroids was studied in depth. One can speculate
that in the discrete case there might be a variant of discrete convexity. The point is that in
the discrete case there is no unique theory of convexity, contrary to the usual Euclidean
case, and we will explain reasons for that.

Convex Sets in Zn and Separation

Let us define “convex” sets in Zn using an exterior approach via separation: let us call a
subset X of Zn “convex” if it can be separated by a hyperplane (in Rn) from any point in
Z

n \ X.
It is easy to check that such a “convex” set coincides with the set of all integer points

of its convex hull. To state this observation in symbols, we let co(X) denote the convex
hull of X and for every subset S of Rn, we let S (Z) denote S ∩ Zn. In this notation, every
“convex” set coincides with co(X)(Z). Since we want to deal with “closed convex sets,”
we add the requirement that co(X) be a polyhedron:

Definition. A subset X of Zn is said to be pseudoconvex if X = co(X)(Z) and co(X) is a
polyhedron (the intersection of finitely many half-spaces).

We let PC denote the set of pseudoconvex sets.
We call these sets pseudoconvex and not convex, because they do not possess the

strong separation property. To see this, consider the following simple example in Z2:
If X = {(0, 0), (1, 1)} and Y = {(0, 1), (1, 0)}, then both X and Y are pseudoconvex and
they do not intersect, but they cannot be separated by a hyperplane. This example shows
that separation of non-intersecting pseudoconvex sets does not follow from separation of
pseudoconvex sets and points outside them.

To construct an interesting theory of discrete convexity, we need the separation of
non-intersecting ”convex” sets, and so we have to consider narrower classes of subsets
of Zn than the class PC.
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Recall that a polyhedron P in a finite-dimensional Euclidean space V (V is isomor-
phic to Rn with some n, integer points of V we denote by M, M � Z

n) is said to be
rational if it is the set of solutions to a finite system of integer linear inequalities. A poly-
hedron P is integer if it is rational and if every (nonempty) face of P contains an integer
point.

For example, a polytope (a bounded polyhedron) is integer if and only if all its
vertices are integer points.

Proposition 1. Suppose X ⊂ M. The following assertions are equivalent:

(a) X is pseudoconvex;
(b) X = P(Z) for some integer polyhedron P ⊂ V;
(c) X is the set of integer solutions of a finite system of linear inequalities with integer

coefficients.

Proof. The implication (a) ⇒ (b) is almost obvious; it suffices to take P to be co(X).
The implication (b) ⇒ (c) is obvious. Finally, implication (c) ⇒ (a) is precisely Meyer’s
theorem (see [10, p. 430]).

Denote by IPh the class of all integer polyhedra in V. By Proposition 1, we have
a natural bijection between the classes IPh and PC, which is given by the mappings
φ : IPh → PC, P �→ P(Z) and φ−1 : X �→ co(X). Both of these classes are stable under
integer translations (X �→ X + m, m ∈ M), under reflection (X �→ −X), and under taking
faces (X �→ X ∩ F, where F is a face of the polyhedron co(X)). Furthermore, the class
of pseudoconvex sets PC is stable under intersection and is not stable under summation,
whereas the class of integer polyhedra IPh is stable under summation and is not stable
under intersection (the sum of two pseudoconvex sets need not be pseudoconvex, while
the intersection of integer polyhedra need not be an integer polyhedron).

In the following commutative diagrams the bottom mappings do not take the form
of intersection and summation, respectively.

PC × PC
∩

��

φ−1×φ−1

��

PC

φ−1

��

IPh × IPh �� IPh

IPh × IPh
+

��

φ×φ

��

IPh

φ

��

PC × PC �� PC

From the next proposition it follows that in a narrowed class K ⊂ PC, which pos-
sesses separation of pseudoconvex sets, and in P = φ(K), we have the following com-
muting diagrams

K × K
∩

��

φ−1×φ−1

��

PC

φ−1

��

IPh × IPh �� IPh

P × P
+

��

φ×φ

��

IPh

φ

��

PC × PC �� PC
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We say that a class K ⊂ PC is ample if K is stable under (a) integer translations,
(b) reflection, and (c) faces. In the same way we understand ampleness of a polyhedral
class P ⊂ IPh.

Proposition 2. Let K ⊂ PC be an ample class. The following four properties of K are
equivalent:

(Sep) if sets X and Y of K do not intersect, then there exists a (integer) linear functional
p : V → R such that p(x) > p(y) for any x ∈ X, y ∈ Y;

(Add) for every X, Y ∈ K the sets X ± Y are pseudoconvex;
(Int) if sets X and Y of K do not intersect, then the polyhedra co(X) and co(Y) do not

intersect as well;
(Edm) for every X, Y ∈ K the polyhedron co(X) ∩ co(Y) is integer.

Proof. (Add) ⇒ (Sep). If X and Y have an empty intersection, then 0 � X − Y. Since the
set X−Y is pseudoconvex, 0 does not belong to the polyhedron co(X−Y) = co(X)−co(Y).
Hence there exists a linear (integer) functional p : V → R which is strictly positive on
co(X − Y). Therefore p(x) > p(y) for x ∈ X and y ∈ Y.

(Sep) ⇒ (Int). This one is obvious.
(Int) ⇒ (Add). Let us show that X − Y is pseudoconvex. Since co(X − Y) = co(X) −

co(Y) is a polyhedron, we need to prove that X −Y = co(X −Y)∩ M. Suppose the integer
point m lies in co(X − Y) = co(X) − co(Y). Then the polyhedra co(X) and m + co(Y) =
co(m + Y) intersect. Applying (Int) to the sets X and m + Y, we see that these sets also
intersect, that is m ∈ X − Y.

(Edm) ⇒ (Int). This implication is obvious.
(Int) ⇒ (Edm). Suppose X, Y ∈ K , P = co(X), and Q = co(Y). We need to show

that P ∩ Q is an integer polyhedron. Obviously P ∩ Q is rational. Therefore we need to
establish that every (non-empty) face of P∩Q contains an integer point. We assume here,
without loss of generality, that the face is minimal.

Suppose F is a minimal (nonempty) face of the polyhedron P ∩ Q. Let P′ (resp. Q′)
be a minimal face of P (resp. Q) which contains F. We claim that F = P′ ∩ Q′.

Projecting V along F, we may suppose additionally that F is of dimension zero.
That is, F consists of a single point, which is a vertex of P∩ Q. Suppose, on the contrary,
that P′ ∩ Q′ contains some other point a. Since the point F is relatively interior both in
P′ and in Q′, then F is an interior point of some segment [a, b], lying in both P′ and Q′.
But in such a case the segment [a, b] ⊂ P′ ∩ Q′ ⊂ P ∩ Q, and F can not be a vertex of
P ∩ Q. Contradiction.

Thus, F = P′ ∩ Q′. Since our class K is stable under faces, the sets P′(Z) and Q′(Z)
belong to K . The property (Int) implies that the sets P′(Z) and Q′(Z) intersect. Because
of this, F is an integer singleton.

Definition. An ample class K ⊂ PC is a class of discrete convexity (or a DC-class) if it
possesses any of the properties from Proposition 2.

In the language of integer polyhedra, the definition of discrete convexity is formu-
lated as follows. A class P of integer polyhedra is a polyhedral class of discrete convexity
if it is ample and the following variant of the Edmonds’ condition holds:
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(Edm′) The intersection of any two polyhedra from P is an integer polyhedron (not
necessarily in P).

Jack Edmonds did not invent this property. We attributed it to him because of his
famous polymatroids intersection theorem.

According to Proposition 2, an equivalent condition is:

(Add′) (P + Q)(Z) = P(Z) + Q(Z) for every P,Q ∈ P.

Let us give a few examples of DC-classes.

Example 1 (One-dimensional case). Let V � R and M � Z. Then the class PC of
all pseudoconvex sets in M is a DC-class. This is not the case in higher dimensions of
course.

The class of integer rectangles in the plane R2 is a DC-class. More generally, if K1
and K2 are DC-classes in the free Abelian groups M1 and M2, respectively, then the class
of sets of the form X1 × X2 with Xi ∈ Ki, i = 1, 2, is a DC-class in M1 × M2 as well.

Example 2 (Hexagons). Let us consider a more interesting than rectangles class H of
polyhedra in R2 defined by the inequalities a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2, c ≤ x1 + x2 ≤ d,
where a1, a2, b1, b2, c and d are integers. It is easy to check that such a hexagon has in-
teger vertices (generally speaking, this hexagon can be degenerated to a polyhedron with
a smaller number of edges). Obviously, H is stable under integer translations, reflection
and faces. Since the intersection of hexagons yields a hexagon, we conclude that H is a
polyhedral DC-class.

Next two examples present two possible higher dimensional generalizations of Ex-
ample 2.

Example 3 (Base polyhedra). Let N be a finite set, and let V be the set of measures on
N, that is the dual space to RN .

A function b : 2N → R ∪ {+∞} is called submodular if for any S , T ⊂ N, the
following inequality holds

b(S ) + b(T ) ≥ b(S ∪ T ) + b(S ∩ T ).

Given a submodular function b, a base polyhedron is a polyhedron of the following form

B(b) = {x ∈ V | x(S ) ≤ b(S ), S ⊂ N, and x(N) = b(N)}.

Denote by B the class if base-polyhedra in V defined by integer-valued submodular func-
tions. Obviously, the class B is stable under integer translations and under reflection. Less
trivial is that B is stable under faces (see, e.g., [11]), and hence, each base polyhedron
has integer vertices. The well-known theorem by Edmonds [12] ensures that the property
(Edm) holds, and thus B is a polyhedral DC-class.

Example 4. Let N be a finite set, and let V = RN be the space of real-valued functions on
N. Consider the class L of polyhedra in V, given by inequalities of the form ai ≤ x(i) ≤ bi
and ai j ≤ x(i) − x( j) ≤ bi j, where i, j ∈ N, and all a’s and b’s are integers. We claim
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that these polyhedra are integer. Indeed, their vertices are given by equalities of the form
x(i) = ci and x(i) − x( j) = ci j where the c’s are integers. It is clear that such a system has
an integer solution.

Thus, the class L consists of integer polytopes. Since it is stable under intersection,
the axiom (Edm′) is satisfied automatically, and L is a polyhedral DC-class.

Examples 3 and 4 have to convince a reader that classes of discrete convexity are
non trivial and interesting objects. However, one can ask: do other classes exist and how
to construct such classes.

General Construction of Classes of Discrete Convexity

It is well known that any polyhedron can be decomposed into Minkowski sum of a linear
subspace (a lineal), a cone, and a polytope. There are two view points on polytopes, either
as the convex hull of a collection of points or as the set of solutions to a finite system of
linear inequalities.

For aims of construction of DC-classes we exploit another view points. Namely, we
are looking on polyhedra from the perspective of “directions” of its faces.

Homogenization

Let P ⊂ V be a polyhedron and let F be a face of P. The “direction” of F is the linear
space Tan(F) := R(F − F) = {α( f − f ′), α ∈ R, f , f ′ ∈ F}, the tangent space to F. For
example, for F = P, the space Tan(P) is the minimal linear subspace of V which contains
P; for a vertex x ∈ P, the tangent space Tan(x) is the null-dimensional subspace of V.

Linear subspaces are the simplest polyhedral, and to a polyhedron P we associate
the collection of directions of its faces

U(P) := {Tan(F), F is a face of P}.

We call the collection U(P) of linear subspaces of V the homogenization of P.
For a class of polyhedra P we associate the collection of directions of all polyhedra

in the class, a homogenization of the class,

U(P) := {U(P), P ∈ P}.

For an ample class P, there holds U(P) := {Tan(P), P ∈ P}.
We are going to show that a class P forms a class of discrete convexity if and only

if the homogenization U(P) forms a pure system of linear subspaces in V. To formulate
such a purity property we use the language of pseudoconvex sets.

For a (rational) vector subspace F ⊂ V � Rn the set S = F(Z) of all integer points of
F is an Abelian subgroup of M � Zn. Such subgroups of M are called pure. Equivalently,
a subgroup S ⊂ M is pure if and only if S is a pseudoconvex subset of M.

In general, the sum of pure subgroups of M need not be a pure subgroup of M. For
example, if M = Z2, S = Z(1, 1), and S ′ = Z(1,−1) then the group S + S ′ has index 2 in
M.

Definition. Pure subgroups S and S ′ of M are called mutually pure if the sum S + S ′ is
a pure subgroup of M. Two (rational) linear subspaces L and L′ of V are mutually pure if
the subgroups L(Z) and L′(Z) are mutually pure.
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For a pseudoconvex subset X in M, consider the tangent space Tan(X) := R(X − X)
in V , and the subgroup S = Z(X − X) in M. Of course, S ⊆ Tan(X)(Z), and in the general
case this inclusion is proper. Hence, in the general case, S needs not be a pure subgroup
of M. Nevertheless, there is an instance when we can guarantee the purity of S .

For a natural number n and X ⊂ M, we denote by [n]X the sum of n copies of X; for
example, [2]X = X + X.

Proposition 3. Let X ⊂ M. Suppose that [n]X is a pseudoconvex set for every n = 1, . . . .
Then the subgroup Z(X − X) is pure.

Given an ample class K of pseudoconvex sets, we associate to it the following sys-
tem of linear subspaces in V , the homogenization of K ,

U(K) = {Tan(X), X ∈ K}.

Definition. A collection U of linear subspaces in V is called a pure system if every pair
F,G ∈ U forms a pair of mutually pure subspaces. Elements of a pure system are called
flats.

Say that an ample class P of integer polyhedra is very ample if it contains the poly-
hedron nP with any integer n and any polyhedron P ∈ P.

The following proposition states that the homogenization of a DC-classes leads to a
pure system.

Proposition 4. Let P be a very ample DC-class P of integer polyhedra. Then U(P) is a
pure system.

Definition. A pure system U is said to be a pure S-system (correspondingly, a pure
I-system) if F +G (correspondingly, F ∩ G) belongs to U for any F,G ∈ U.

It is clear that the homogenization of an S-class is a pure S-system, and the homog-
enization of an I-class is a pure I-system.

Main properties of pure systems are collected in the following.

Theorem 1. (a) Any pure system contains finitely many subspaces.
(b) Let U be a pure system (in M), then the orthogonal system U⊥ is pure (in the Abelian

group M∗ of the dual space V∗), where U⊥ := {L⊥, L ∈ U} and L⊥ = {p ∈ V∗, p(v) =
0 ∀ v ∈ L}.

(c) U is an S-system if and only if U⊥ is an I-system.

Proofs can be found in [8].

Remark. Pure systems form a category. The objects of the category are pairs (M,U), a
free Abelian group and a pure system in it, and a morphism from (M,U) to (M′,U′) is a
homomorphism of groups f : M → M′ such that f (U) ⊂ U′.

The class of integer base-polyhedra B is a CD-class. Therefore its homogenization
U(B) is a pure system. We denote this pure system by U

(
A(N)

)
.
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Example 5 (The homogenization of base polyhedra). Let B(b) be the base-polyhedron
defined by a submodular function b : 2N → R ∪ {+∞}. Here we can assume that B(b)
is a symmetric base polyhedron (with respect to the origin 0). This means that b(S ) =
b(N \ S ); in particular, b(N) = 0. It is clear, that nB(b) = B(nb). Therefore, the tangent
space Tan

(
B(b)

)
is the base polyhedron B(∞b) that is a linear subspace given by the

following equations:

x(S ) = 0, S ∈ F (b),

where F (b) = {S ⊂ N, b(S ) = 0}. Obviously, ∅,N ∈ F (b). The symmetry of B(b)
implies that N \ S ∈ F (b) with any S ∈ F (b). Submodularity of b implies that S ∪ T and
S ∩ T belong to F (b) with any S , T ∈ F (b). Thus, F (b) is a Boolean subalgebra of 2N .

Thus, the set of flats in U(A(N)) is isomorphic to the set of Boolean subalgebras
in 2N . The codimension of a flat, corresponding to a Boolean subalgebra, is equal to the
number of union-irreducible elements (atoms) in the subalgebra.

Let us consider, for instance, one-dimensional flats (directions of edges of base-
polyhedra). These flats correspond to subalgebras with N − 1 atoms. Such a subalgebra
has one two-element atom and other atoms are singletons. Thus one-dimensional flats
have the form R(ei − e j), i � j, and (ei), i ∈ N, denote the Dirac measure at the point
i ∈ N.

Now we explain a construction of DC-classes from pure systems.

Dehomogenization

Let U be a pure system in V . Then the collection of all integer translations of flats of U is
a polyhedral DC-class. However, this class is of little interest. For instance, it contains no
polytopes (except possibly zero-dimensional ones). Below we define a more interesting
(maximal) DC-class Ph(U,Z) of integer polyhedra associated to a given pure system U.
In words, polyhedra of such a class have directions of faces from U.

Definition. Let U be a collection of (rational) vector subspaces in V. A polyhedron P
is said to be U-convex (or U-polyhedron) if, for any face F of P, the tangent space
Tan(F) = R(F − F) belongs to U.

Let Ph(U) be the set of U-polyhedra, and let Ph(U,Z) be the set of integer U-
polyhedra. The homogenization of Ph(U,Z) brings us back to U.

Theorem 2 ([8]). A class Ph(U,Z) is a DC-class of integer polyhedra if and only if U

is a pure system.

Because of this theorem, we get a bijection between (maximal) classes of discrete
convexity and (maximal) pure systems. We will show that there exists non-isomorphic
maximal pure systems. This is a reason for variety of theories of discrete convexity.

Open problem. To characterize maximal pure systems.
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Lecture 2

We established a construction of a bijection between maximal DC-classes and maximal
pure systems.

The implication: {DC-sets} ⇒ {pure systems} is given by the rule

K → Tan K := {Z(X − X), X ∈ K}.

The reverse implication is given by

U → Ph(U,Z),

where we let Ph(U,Z) denote the collection of integer polyhedra with direction of faces
being flats of U, that is P ∈ Ph(U,Z) if and only if, for any face F ⊂ P, the pure
subgroup R(F − F) ∩ Zn belongs to the pure system U.

Note, that Ph(U,Z) is a polyhedral DC-class, that is, for any P,Q ∈ Ph(U,Z), P∩Q
is an integer polyhedron.

Thus, in order to classify DC-classes we have to classify pure systems. This is an
open problem in general, but we can characterize classes which are generated by one-
dimensional flats.

Unimodular Systems

Pure S-systems generated by one-dimensional flats are classified by unimodular sets.

Definition. A subset R ⊂ M = Zn is called unimodular if, for any subset B ⊂ R the
subgroup ZB ⊂ M is pure. A unimodular system is a pair (M,R) where R is a unimodular
set in M. Non-zero elements of R are called roots.

We call a flat (or R-flat) a subspace of the form RB with some B ⊂ R.
The set collection of all R-flats, U(R), forms a pure S-system. Thus, the DC-

class Ph(U(R),Z) is an S-class of discrete convexity. We call elements of this class R-
polyhedra (directions of the edges of any R-polytope is a subset of R).

The DC-class Ph(U⊥(R),Z) is an I-class of discrete convexity, we call elements of
this class ∗R-polyhedra (directions of the normal vectors to facets of any ∗R-polytope is
a subset of R).

Note, that results of McMullen [13] on zonotope-type tiling of Rn and of Erdal and
Ryzhkov [14] on lattice structure of dicings can be deduced from that, for a unimodular
R, the classes of R-polyhedra and ∗R-polyhedra form S-class and I-class, respectively.

Examples of R-polyhedra are zonotopes
∑

r∈R[0, ar]r, ar ∈ Z+; ∗R-polyhedra are
Hoffman polyhedra of the form x(r) ≤ br, br ∈ Z, r ∈ R, (x ∈ (Rn)∗).

Let us remind some useful facts on unimodular systems: unimodular systems are
closely related to totally unimodular matrices. A matrix is totally unimodular if all of
its minors are equal to 0 or ±1. Suppose that a unimodular set R is of full dimension,
or, equivalently, spans V . If we pick a basis B ⊂ R and represent vectors of R as linear
combinations of the basis vectors, then the matrix of coefficients is totally unimodular. In
particular, the coefficients of this matrix are either 0 or ±1, which proves finiteness of any
unimodular set. Conversely, columns of a totally unimodular n×m matrix yield a unimod-
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ular set in Zn. Thus, unimodular systems are nothing but coordinate-free representations
of totally unimodular matrices.

By the homogenization of base polyhedra we get the pure system A(N), which is
spanned by one-dimensional flats Z(ei − e j), i, j ∈ N. Thus, the set of vectors ei − e j,
i, j ∈ N, is a unimodular set (in M∗

� (ZN)∗). This system is not of full dimension, since
it belongs to the hyperplane x(N) = 0.

If we project the set A(N ∪ {0}) along the axis Re0 onto the space (RN)∗, we obtain
the full-dimensional unimodular system consisting of the vectors ±ei and ei − e j, i, j ∈ N,
in (ZN)∗. We denote this system by AN . Of course, we could construct AN simply by
adding the basis (±ei, i ∈ N) to the system A(N). We shall show that AN-polyhedra are
nothing but generalized polymatroids.

Subsystems R ⊂ AN (more precisely, symmetrical subsystems, which contain 0 and
−r for any r ∈ R) are identical to so-called graphic unimodular systems.

To any graph G one can associate the so called cographic unimodular system D(G).
In a non-invariant way, it might be obtained as a system corresponding to the unimodular
matrix (Em, At), where (En, A) is the unimodular matrix for the graphical system with the
graph G.

Cubic (or three-valent) graphs give the most interesting examples of cographic sys-
tems. The simplest example of such a graph is the complete graph K4 with 4 vertices.
The corresponding system D(K4) is isomorphic to A3. The bipartite graph K3,3 yields a
more interesting example.

Example 6. The system D(K3,3) consists of the following 19 vectors in R4: {0,±ei,

i = 1, . . . , 4,±(e1 + e2),±(e2 + e3),±(e3 + e4),±(e4 + e1),±(e1 + e2 + e3 + e4)}.
One can check that D(K3,3) is not a graphic system.

Example 7. There is an exceptional unimodular system E5 in dimension five which is
neither graphic no cographic. It consists of the following 21 vectors: {0,±ei, i = 1, . . . , 5,
±(e1 − e2 + e3),±(e2 − e3 + e4),±(e3 − e4 + e5),±(e4 − e5 + e1),±(e5 − e1 + e2)}.

According to the Seymour theorem [15], every unimodular system can be con-
structed by combining graphic systems, cographic systems, and the system E5.

In dimension N, the maximal number of vectors in a unimodular system is less than
or equal to N(N + 1), and the system AN contains exactly N(N + 1) vectors.

Given a unimodular system R, define the set of all its subsystems which are isomor-
phic to Ak with some k, and such k is maximal,

Fram(R) = {H ⊂ R | H is Ak-type flat}.

For example Fram(An) = An, and Fram(E5) is constituted from one-dimensional flats of
E5.

Conjecture. Let R be a maximal unimodular system and let P be an R-polyhedron. Then
P can be represented in the form of a sum of Ak-type polyhedra, namely P is equal to a
sum of H -polyhedra, H ∈ Fram(R).

This conjecture was proposed by V. Danilov and holds true for some cases, for
example for the exceptional system E5, but still open for a general case.

In order to better understand the structure of R-polyhedra (∗R-polyhedra) we apply
two view-points: interior and exterior.
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Exterior Description

A fan Σ in V is a collection of cones, such that the intersection of any two cones of Σ is a
cone of Σ and it is a common face of both, and the union of all cones in Σ is equal to V.

A convex function f on V∗ is compatible with a fan Σ if f is linear on every cone σ
from Σ. In this case, it is easy to show that the subdifferential ∂( f ) is a polytope.

∂( f ) := {x ∈ V | x(p) ≤ f (p) ∀ p ∈ V∗}. (1)

More precisely, letσ be a full-dimensional cone of the fan Σ; denote by vσ a (unique)
linear function on the space V∗, which coincides with f on the cone σ. Then vσ (being
considered as an element of V) is a vertex of the polytope ∂( f ) and all vertices of the
polytope are of that form. In particular, a polytope P is integer if and only if its support
function φ(P, ·) has integer values in integer points.

The support function of any polytope P is compatible with the normal fan N(P).
Given a point x ∈ P, the following cone in the dual space V∗

Con∗(P, x) = {p ∈ V∗, p(x) ≥ p(y) ∀y ∈ P}

is said to be the cotangent cone to P at x. The collection of all cotangent cones Con∗(P, x),
x ∈ P, forms the cotangent fan (or the normal fan) N(P) of the polytope P. Cones of the
normal fan N(P) one-to-one correspond to faces of P.

Let R be a unimodular system. Element r of R can be identified with morphisms of
A1 to R. Conversely, morphisms of R to A1 are called coroots. In other words, a co-root
is a homomorphism of groups φ : M → Z such that |φ(r)| ≤ 1 for any root r ∈ R. The set
of co-roots is denoted by R∗.

Consider the pure system U⊥ = U(R)⊥, it consists of hyperplanes Hr(0) = (Rr)⊥,
r ∈ R, and all possible intersections of these hyperplanes. The hyperplanes cut the
space V∗ onto a finite number of cones (cameras) which constitute the fan Σ(R). One-
dimensional flats of U⊥ are called crossings as well as their primitive generators. (Of
course, the crossings exist only if the unimodular system R is of full dimension.) A cross-
ing is a surjective homomorphism of Abelian groups ξ : M → Z such that the kernel of ξ
is a flat of R. Let us denote by R∨ the set of crossings.

Lemma 1 ([8]). R∨ ⊂ R∗.

The support function to an R-polytope is compatible with the fan Σ(R) and is
uniquely determined by its restriction on R∨. This follows from the following

Proposition 5. Let U be a pure system in V , and let P ⊂ V be a convex polytope. The
following assertions are equivalent:

(a) P is a U-convex polytope;
(b) the normal fan N(P) consists of U⊥-cones.

Therefore, the support function f to an R-polytope P is characterized by the fam-
ily of real numbers ( f (ξ), ξ ∈ R∨). However, the values f (ξ), ξ ∈ R∨ are not arbitrary.
Being values of a convex function (the support function to a convex set is a convex ho-
mogeneous function on V∗), they have to satisfy some kind of “submodularity” relations.
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These relations may be divided into two groups. The first group of relations addresses
the functions’ linearity on each cone of the fan. The second group of the relations yields
convexity. Let us formulate these relations more explicitly:

I. Suppose that crossings ξ1, . . . , ξm ∈ R∨ belong to a cone σ ∈ Σ(R). Then any
linear relation

∑
i αiξi = 0 should imply the similar relation

∑
i αi f (ξi) = 0.

Of course, if the cone σ is simplicial (as in the case of An), these relations disappear.
II. Suppose that we have two adjacent (full-dimensional) cones σ and σ′ of the

fan, separated by a wall τ. Let τ be spanned by the crossings ξ1, . . . , ξm, and let ξ, ξ′ be
crossings from σ, σ′ respectively, which do not belong to the wall τ. Then any relation
αξ + α′ξ′ =

∑
i αiξi, where α, α′ > 0, implies the relation α f (ξ) + α′ f (ξ′) ≥

∑
i αi f (ξi).

(According to Lemma 1, we can assume that α = α′ = 1.)

Example 8 (Generalized polymatroids). Let us check that the class of generalized poly-
matroids in (RN)∗ coincides with the class of AN-polyhedra. The arrangement A(AN)
consists of hyperplanes p(i) = 0, i ∈ N, and p(i) = p( j), i, j ∈ N. The collection of
vectors {±1S , S ⊂ N} is the set of crossings. Cones of Σ(An) are in a one-to-one cor-
respondence with pairs of orders (%W ,%W′ ) on partitions (W,W′) of N. These partitions
derive from the partitions of coordinates in non-negative and negative parts; W denotes
the nonnegative coordinates of vectors of a cone, whereas W′ denotes the negative ones.

Now let f be a convex function on AN , which is compatible with the fan (Σ(AN)).
Consider the following two functions a and b on 2N : a(S ) := − f (−1S ) and b(S ) := f (1S )
for S ⊂ N. There are three kinds of relations between crossings: 1S + 1T = 1S ∪T + 1S ∩T ,
−1S − 1T = −1S ∪T − 1S ∩T , and

1S + (−1T ) = 1S −T + (−1T−S ). (2)

The first two yield submodularity of b and supermodularity of a, respectively, while the
third yields the following inequalities

b(S ) − a(T ) = f (1S ) + f (−1T ) ≥ f (1S −T ) + f (−1T−S ) = b(S − T ) − a(T − S ). (3)

Thus, the pair (b, a) is a strong pair in the sense of [11]. The corresponding polyhedron
∂ f is given by the inequalities

a(S ) ≤ x(S ) ≤ b(S ),

where S ⊂ N and, by definition, ∂ f is a generalized polymatroid.
Conversely, we can extend any strong pair (b, a) to a convex function onRN compat-

ible with the fan Σ(AN). Thus, the class of (bounded) generalized polymatroids coincides
with the class of AN-polytopes. Similarly, the class of all generalized polymatroids coin-
cides with the class of AN-polyhedra, and the class of integer generalized polymatroids
coincides with the class of integer AN-polytopes.

The normal fan of an ∗R-polyhedron is spanned by R-cones. Therefore a polyhedron
x(r) ≤ br, r ∈ R, br ∈ Z is an ∗R-polyhedron (no submodularity condition!). However, a
R∨-polytope might not be an ∗R-polytope.
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Laminarization

Recall, that, for a unimodular set R ⊂ Zn, we are interested in the polyhedral DC-classes
R-polyhedra (S-class) and ∗R-polyhedra (I-class).

How do we construct such polyhedra? The class of R-polyhedra is stable under
summation and, for example, contains the R-zonotopes. An R-zonotope is a sum of line
segments directed parallel to roots, Z =

∑
r∈R[0, arr], ar ∈ Z+, r ∈ R.

We have

Proposition 6. A polytope P is R-convex if and only if there exists a polytope P′ such
that P + P′ is an R-zonotope.

Let us note that despite the fact that the definition of the zonotope is transparent,
and so is its structure (a projection of a unit cube), but the number of its vertices might
be huge, for example, an An-zonotope has n! vertices.

In a general case, the set R∨ is not a unimodular system. However, if we can find
a unimodular system Q in R∨ such that its crossings form a subset in R (we call this
a laminarization of R), this will bring us an advantage. Indeed, in such a case any ∗Q-
polyhedron is an R-polyhedron, and therefore a polyhedron defined by systems of linear
inequalities

{v ∈ V, ξ(v) ≤ a(ξ), ξ ∈ Q}

is an R-polyhedron for arbitrary “right parts” a(ξ), ξ ∈ Q. Of course, when the a(ξ)
are integer, the corresponding polyhedron is integer too. Let us give a more particular
realization of this idea.

Example 9. A family T of subsets of a finite set N is called laminar if for any A, B ∈ T ,
either A ⊂ B, or B ⊂ A, or A ∩ B = ∅. Without loss of generality we can assume that any
singleton belongs to T .

Let T be a laminar family. We assert that the set Q = {±1T , T ∈ T } is a unimod-
ular set in the space RN . That is, Q is a laminarization of the system AN . Since the or-
thogonal hyperplanes (1T )⊥ are AN-flats, we have to check that any intersections of such
hyperplanes are also AN-flats.

Let us recall (Example 5 from Lecture 1) that an AN-flat has the form

F(A1, . . . , Ak) := {x ∈ (RN)∗, x(A j) = 0 for j = 1, . . . , k},

where A1, . . . , Ak are disjoint subsets of N. (The codimension of F(A1, . . . , Ak) is equal
to a number of non-empty A j-s.) In particular, the hyperplane (1T )⊥ is F(T ). Let us
show that the intersection of hyperplanes F(T1), . . . , F(Tk), where TJ ∈ T , has a form
F(A1, . . . , Ak). For this we write A j explicitly. Namely, A j is equal to T j minus the union
of those of the Ti which are contained in T j. Indeed, using the laminarity of T , we can
assume that the Ti-s do not intersect. Therefore, the vanishing x(T j)-s are equivalent to
the vanishing x(A j)-s.

In particular, for a laminar family T in N, the polyhedron defined by the inequalities

a(S ) ≤ x(S ) ≤ b(S ), S ∈ T ,
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is an AN-polyhedron for any functions a, b : T → R ∪ {∞}, and is an integer AN-
polyhedron for integer-valued a and b.

Dicing

In order to represent integer ∗R-polyhedra visually, it is convenient to use the notion
of a dicing. A dicing is the following regular polyhedral decomposition of V∗. Let us
consider the following counting (but locally finite) collection of hyperplanes Hr(a) =
{p ∈ V∗, p(r) = a}, where r ∈ R and a ∈ Z. These hyperplanes dissect the space
V∗ on connected parts, the regions of the dicing. Regions are bounded sets if R is of
full dimension. Closure of regions, as well as their faces, are called chambers of the
dicing. The set D(R) of the chambers form a polyhedral decomposition of V∗, that is the
chambers meet only their faces and cover the whole space V∗. If R is of full dimension
then nodes of the dicing (that is zero-dimensional chambers) are integer points of V∗.

Each chamber of the dicing D(R) is an integer ∗R-polyhedron. Conversely, any in-
teger ∗R-polyhedron is a union of chambers of D(R). Thus, an integer ∗R-polyhedron is
none other than a convex set composed from some chambers. Note that for the unimod-
ular system An, the number of different types of full-dimensional chambers is equal to
n!.

Example 10. Let us consider the dicing star St(R). It is composed from those chambers
of the dicing D(R), which contain the origin 0. In order to establish the convexity of
St(R), we show that:

St(R) = {p ∈ V∗, r(p) ≤ 1, where r ∈ R}.

For the time being, we call St′ the polyhedron appearing on the right hand of the formula.
Obviously, any chamber which contains 0 belongs to St′. Hence St(R) ⊂ St′.

Conversely, let p ∈ St′ \ St(R). Assume we move from p to 0 along the segment
[0, p]. At some time t, 0 < t < 1, the point tp will be on the boundary of St(R). Hence,
there exists r ∈ R with r(tp) = 1. This implies that r(p) = 1/t > 1, a contradiction.

From this description of St(R) we see that integer points of St(R) are the coroots
of R,

St(R)(Z) = R∗.

Conversely, St(R) = co(R∗).

It is not difficult to check that the convex hull co{r, r ∈ R} is a R-polytope iff

R∨ = R∗.

That is the case for R = An, but not the case, for example, for systems D4 and E5. For
each of these systems the crossings constitute a proper subset of coroots.

Problem. To describe unimodular sets with the property R∨ = R∗.
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Interior Description

For a pseudoconvex set X ⊂ M, we define the tangent cone Con(X, x) as the set of vectors
v such that x + tv ∈ co(X) for some t > 0.

Theorem 3. A subset X ∈ Zn is R-convex if and only if, for any x ∈ X, the following two
conditions are fulfilled

(A) the tangent cone Con(X, x) is R-convex, i.e., R+(Con(x, X) ∩ R) = Con(x, X);
(B) x + (Con(X, x) ∩ R) ⊂ X, that is for any x ∈ X and every root from the tangent cone

r ∈ Con(X, x) ∩ R, the point x + r belongs to X.

For a set of points X ⊂ M, we can define an R-convex hull of X, R-co(X), as an
R-convex set Y, such that X ⊂ Y, and there is not an R-convex set Z � Y with X ⊂ Z ⊂ Y.
One can check that, for any set there exists an R-convex hull, but there exists sets with
non-unique convex hull. Denote by CHR(X) the set of all convex hulls of X.

The following criterion of R-convexity holds true.

Proposition 7. A set X ⊂ M � Zn is R-convex if and only if together with every pair of
points x, y ∈ X there exists R-segment Z ∈ CHR({x, y}) such that Z ⊂ X.

An interior description of ∗R-convex sets is dual to Theorem 3.

Theorem 4. A subset Z ⊂ M∗ is ∗R-convex if and only if for any p ∈ Z, the following
two conditions are fulfilled.

(A) The cone Con(Z, p) is ∗R-convex;
(B) p + Con(Z, p) ∩ R∨ ⊂ Z.

Recall that the fan Σ(R) is the fan of an arrangement of hyperplanes

r⊥ = {ξ ∈ V∗ | r(ξ) = 0}, r ∈ R.

Note that Σ(R) decomposes V∗ in cones of the formσ(p), p ∈ V∗. The cone σ(p) consists
of vectors q ∈ V∗ which are comonotone with p, i.e., we have that if p(r) ≥ 0 for r ∈ R,
then q(r) ≥ 0. Thus, we have

σ(p) = {q ∈ V∗ | p(r) ≥ 0, r ∈ R ⇒ q(r) ≥ 0}.

So σ(p) is ∗R-polyhedron, and moreover, this is the minimal ∗R-convex cone which
contains p.

The class of ∗R-convex sets is stable under intersection. For a set Z ⊂ M∗, the
intersection of all ∗R-convex sets which contains Z is said to be the ∗R-convex hull of
Z, ∗R-co(Z). Of course, such a convex hull ∗R-co(Z) is the set of integer solutions to the
following inequalities

r(·) ≤ max
p∈Z

r(p), r ∈ R. (4)
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In particular, the convex hull of a pair of points x and y ∈ M∗, ∗R-co({x, y}), is the ∗R-
segment joining x and y. Contrary to the case of R-segments, the ∗R-segment is uniquely
defined for any pair of points, and the following holds

∗R- co({x, y}) = ({x + σ(y − x)} ∩ {y + σ(x − y)}) ∩ M∗, (5)

where σ(p) is the minimal cone of the fan Σ(R) that contains p ∈ V∗.
Now, suppose a set Z ⊂ M∗, with any pair of points p, q ∈ Z, contains their ∗R-

segment ∗R-co({p, q}). Does this imply that Z is ∗R-convex? This is true for unimodular
systems of An-type, but not true in general. Here is an example.

Example 11. Consider the unimodular set D4. The fan Σ(D4) is not simplicial. Specif-
ically, a cone constituted from the set of linear functionals being positive on the roots
{e1, e2, e4,−e1 − e3,−e3 − e4, e1 + e2 + e3 + e4} is not simplicial. This cone is generated by
the following crossings (functionals) ξ1 = x2 − x3, ξ2 = x1 − x3 + x4, ξ3 = x2, ξ4 = x1 − x3
and ξ5 = −x3 + x4. The plane spanned by ξ1 and ξ2 is not ∗R-convex, because ξ1 is an-
nihilated by e1, e4 and e1 + e2 + e3 + e4, ξ2 is annihilated by e2,−e1 − e3 and −e3 − e4.
The difference ξ2 − ξ1 = x1 − x2 + x4 is also a crossing, and it is annihilated by e3, e1 + e2
and e2 + e4. We exhausted all roots and there are no roots left to annihilate the plane. The
triangle co(0, ξ1, ξ2) has edges in ∗D4, but it is not ∗D4-convex.

Remark. The pure system U(D4) is maximal unimodular system, but it is not a maximal
pure system. Namely we can add the orthogonal plane to the plane spanned ξ1 and ξ2 to
the set of generators of U(D4) and get a bigger pure system D̂4.

However, if we will require that a set Z ⊂ M∗ and all its multipliers kZ, k = 1, 2, . . . ,
possess such a property, then Z (and of course all its multipliers) will be ∗R-convex.

Specifically, we have

Theorem 5. A set Z ⊂ M∗ is ∗R-convex iff for every k = 1, . . . , any p, q ∈ kZ and every
ξ ∈ σ(q − p) ∩ R∨, the following condition holds

p + ξ and q − ξ belong to kZ.

Lecture 3

Discrete Convex Functions

Pseudo-convexity

Let f be a function on the lattice Zn (or on some subset D ⊂ Zn). Similarly to the case with
sets in Zn, the pseudoconcavity is the first approximation to discrete concave functions.
Specifically, an affine function l is called a superdifferential of f at a point x if l ≥ f and
l(x) = f (x).

Proposition 8. For a function f : Zn → R ∪ {−∞}, the following two properties are
equivalent:

1. f has a superdifferential at each point of its domain;
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Figure 1. Standard triangulation of R2 with vertices in Z2

2. f is the restriction to Zn of a concave function defined on Rn.

For pseudoconvex function the separation theorem does hold in general. Here is
an example: the function f : {0, 1}2 → Z, defined by f (0, 0) = f (0, 1) = f (1, 0) = 0,
f (1, 1) = 1 is pseudoconcave. Let g = f . Then f is pseudoconvex, g is pseudoconcave,
and g ≥ f , but we can not separate these functions by an affine function.

Before going on to explain the general theory, we begin with examples of discrete
convex functions in dimensions one, two and three.

Dimension One

The class of pseudoconcave functions constitutes the class of discrete concave functions.
This class is stable under summation and the convolution.

Recall, that the convolution f � g of functions f and g is defined by

( f � g)(z) = inf
z=x+y

(
f (x) + g(y)

)
,

where the infimum is taken over all decompositions of z = x + y with x ∈ dom f and
y ∈ dom g.

Dimension Two

In order to define such functions, let us cut the plane R2 into parts by lines of three sorts:

x = a, a ∈ Z; y = b, b ∈ Z; x − y = c, c ∈ Z.

We obtain a standard triangulation of the plane (see Figure 1).
Let us extend a function f : Z2 → R over each triangle by linearity; as a result of

such a linear interpolation, we obtain a function f̃ : R2 → R. We say that the function f
is discretely concave if f̃ is a concave function on R2.

The concavity is equivalent to the rhombus conditions: there are three types of rhom-
buses which might occur.

This leads to
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Figure 2. Three types of rhombuses of the form of unions of two adjoin triangles of the standard triangulation
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Figure 3. Affinity areas of the function nx − (x3 + y3)/(x + y) on the grid Δ(n) for n = 5

Definition. A function f defined on the set H of integer points of a convex set constituted
from triangles of the above type is discretely concave (or a DC-function) if, for any
integers i and j ∈ H , the following inequalities hold:

(i) f (i, j) + f (i + 1, j + 1) ≥ f (i + 1, j) + f (i, j + 1);
(ii) f (i + 1, j) + f (i + 1, j + 1) ≥ f (i, j) + f (i + 2, j + 1);

(iii) f (i, j + 1) + f (i + 1, j + 1) ≥ f (i, j) + f (i + 1, j + 2).

For example, Any affine function is discretely concave. For such a function, all
inequalities (i)–(iii) are equalities indeed.

There exist more interesting quasi-separable functions. Suppose we are given three
discretely concave functions f , g, and h on one (integer) variable. Then, the function

F(x, y) = f (x) + g(y) + h(x − y),

on two (integer) variables is, obviously, a DC function.
If we let f , g, and h be equal to the same function y(k) = k(n − k)/2, then

F0(x, y) = [x(n − x) + y(n − y) + (x − y)(n − x + y)]/2 = nx − (x3 + y3)/(x + y)

is a DC function on the triangle Δ(n) = {(i, j) ∈ Z2, 1 ≤ y ≤ x ≤ n}. Figure 3 shows this
function and its affinity areas for n = 5.

Though, there are many nonseparable DC functions.
We can complete characterize discrete concave function defined on integer points

of the positive octant Z2
+. Namely, let M be a module of finite length over the discrete

valuation ring K�T�, that is, in fact, a finite-dimensional K-space with nilpotent action
of an operator T . Assume that we are given submodules N1 and N2. Define a function
c = c(M; N1,N2) : Z2

+ → Z by the rule
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Figure 4. Dual triangulation of the standard one

c(k1, k2) = dim(M/T k1 N1 + T K2 N2).

We have the following characterization.

Theorem 6 ([16]). 1. The function c is discrete concave.
2. Let c : Z2

+ → Z be a monotone discrete concave functions with c(0) ≥ 0. Then there
exist a module M and submodules N1 and N2 such that c = c(M; N1,N2).

An old question that goes back to 19th century: assume we know spectra of Hermi-
tian (symmetric) matrices A and B (of size n); what are the possible values of the spec-
trum of their sum C = A + B? For a history on solution of this problem, called the Horn
problem, see a nice paper by Fulton [17]. The crucial step was made by Klyachko [18]
and by Knutson and Tao [19] in proving the Horn conjecture. Klyachko’s proof is based
on difficult theorems from algebraic geometry. Danilov and I ( [20]) gave almost com-
binatorial solution to this problem. Namely, we formulate the answer in the form: Sp A,
Sp B and Sp C can be spectra of matrices A, B and C = A + B if and only if there exists a
discrete concave function on the triangle grid with vertices (0, 0), (n, 0), and (n, n), such
that the restriction of this function to the sides of the triangle have increments Sp A, Sp B
and Sp C, respectively. We formulated a conjecture is that there should be a canonical
bijection between the pairs of Hermitian matrices A, B and DC-functions on the triangle
grids having increments Sp A, Sp B and Sp(A + B) (this conjecture is proven in several
cases, for details see [20]).

In dimension two, there is another “conjugate” class of functions which have the
affinity areas of the form of ’rotated’ hexagons. This class is isomorphic to the class
of DC-functions with respect to the unimodular transformation

(
1 −1
0 1

)
. A function of

the conjugate class is coherent with the dicing depicted in Figure 3, that is a function
f : Z2 → R of this class being interpolated by affinity on each triangle of the dicing R2

with the lines x = a, y = b, x + y = c, a, b, c ∈ Z (see Figure 4) yields a concave function
f̃ : R2 → R.

In other words, such a function satisfies the following three types of inequalities (for
each type of rhombus composed from the triangles of the dicing):

(i)′ f (i, j) + f (i + 1, j + 1) ≤ f (i + 1, j) + f (i, j + 1);
(ii)′ f (i + 1, j) + f (i + 1, j + 1) ≥ f (i, j + 1) + f (i + 2, j);
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Figure 5. Decomposition of a cube into union of three g-polymatroids, two simplices and one octahedron

(iii)′ f (i, j + 1) + f (i + 1, j + 1) ≥ f (i + 1, j) + f (i, j + 2).

The functions of this class have affinity areas from the class of 2-dimensional gen-
eralized polymatroids (hexagons).

The class of integer-valued DC-functions and this class of conjugate functions are
Fenchel conjugate to each other. Recall, that a function

f ∗(p) = max
x∈Zn

f (x) − p(x), p ∈ (Zn)∗,

is Fenchel dual to a function f : Zn → Z.
For 2-dimensional DC-functions the separation theorem holds true. The reason is:

the intersection of any two triangles of the dicing is an integer polytope.

Lecture 4

Dimension Three

In this case we also propose a direct construction of functions with affinity areas being
generalized polymatroids (in Z3). Let us cut the space R3 into parts by planes of four
sorts: x = a, where a are integers; y = b, where b are integers, z = c, where c are integers;
and x + y + z = d, where d are integers. The tiles of this dicing are of three types: two
types of simplexes and the octahedron (see Figure 5).

These two simplexes and the octahedron (as well as their integer translations) are
g-polymatroids. Halves of the octahedron also g-polymatroids, that is if we cut the oc-
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tahedron by the wall (X, Y, XZ, YZ) we will obtain two halves co(X, Y, XZ, YZ, Z) and
co(X, Y, XZ, YZ, XY), which are g-polymatroids. The same holds for cutting either by the
wall (Z, XZ, YZ, XY), or by the wall (Z, ZY, X, XY).

Now we proceed similarly to the case of dimension two. Namely, we extend a func-
tion f : Z3 → R to a function f̃ : R3 → R by interpolating it on each simplex and octa-
hedron. In order to have a correct interpolation to the octahedron the following condition
must hold:

At least two of the sums of the values of a function f at the endpoints of the diagonals
of the octahedron, A = f (X) + f (YZ), B = f (XZ) + f (Y), C = f (Z) + f (XY), have to
be equal, that is either A = B, or B = C, or A = C.

If this condition does not hold in some octahedron, we can not interpolate the func-
tion. We suppose validity of this condition.

In order to get a concave interpolation f̃ , the octahedron condition has to hold:

(OCT) at least two of values A = f (X) + f (YZ), B = f (XZ) + f (Y), C = f (Z) + f (XY)
are equal and they are not less than the third one.

For example, the case A = C ≥ B corresponds to the case of linearity of f̃
on halves co(Z, ZY, X, XY, Y) and co(Z, ZY, X, XY, XZ) of the octahedron. However, two-
dimensional conditions have to be added. Namely, simplices from adjoint cubes which
share a common edge and simplices adjoining to an octahedron give rhombuses; for con-
cavity of f̃ the corresponding rhombus-type inequality must hold. It is easy to see that all
these rhombuses are located on planes x = a, y = b, z = c, x + y + z = d, a, b, c, d ∈ Z.
Thus, we come to

Definition. A function f : Z3 → R is a polymatroidal concave function if its restrictions
to any plane of the form x = a, or y = b, or z = c, or x + y + z = d for integers a, b, c, d,
satisfy the rhombus inequalities (i)′„ (ii)′„ (iii)′, and in each octahedron the octahedron
condition (OCT) holds true.

Examples of such functions:

f (x) + g(y) + h(z) + f ′(x + y) + k′(x + y + z),

with concave one dimensional functions f , g, . . . ;

f (x) + g(y) + h(z) + g′(y + z) + k′(x + y + z);

f (x) + g(y) + h(z) + h′(z + x) + k′(x + y + z);

convolutions of these functions.
In the class of the polymatroidal functions, the separation theorem holds true. The

reason: the intersection of two “tiles” is an integer polytope (three-dimensional variant
of the Edmonds theorem [12] on the intersection of polymatroids).

This class is stable under convolution, but is not stable under summation. The main
point is that the intersection of two halves of the octahedron being the quarter of the
octahedron is not a g-polymatroid.
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Figure 6. Standard triangulation of a cube

Dual Class of Functions: The Class of ∗A3-Concave Functions

Let us dice R3 by the hyperplanes x = a, y = b, z = c, x − y = a′, x − z = b′, y − z = c′

with integers a, b, . . . . This dicing cuts the unit cube into 6 simplices (see Figure 6)
Now, we interpolate a function f : Z3 → R to each simplex of this dicing. In order

to get a concave function, the submodularity condition must hold. Specifically, a pair
of adjoint simplices (in the same cube) gives the submodularity condition: for exam-
ple, the simplices (O, Z, XZ, XYZ) and (O, Z, XZ, XYZ) are adjoint (the common wall is
(O, Z, XYZ)), and the condition is f (XZ) + f (YZ) ≤ f (Z) + f (XYZ).

Because there are adjoint simplices from adjoint cubes (Figure 7) we need more
conditions.

This type of adjacency gives the following type of concavity conditions: for each
basis vector ei, i = 1, 2, 3, there holds

f (x) + f (x + ei + 1) ≤ f (x + ei) + f (x + 1).

The supermodularity together with these conditions characterize another class of func-
tions, ∗A3-concave functions.

This class is stable under summation and possesses the separation property (inter-
section of a pair of tiles of the dicing is a tile of the dicing). However, this class of func-
tions is not stable under convolution.

G.A. Koshevoy / Discrete Convexity and Its Applications156



������

������

������

������

O

X

�
�

�
�

�
�

�
�

�
�

�
�

��������������




































��������������

��������������

������

��������������

��������������

������

�
�

�
�

�
�

��������������


















X

O

XZ XYZ

X(XYZ)

Figure 7. Two ajoint simplexes from standard triangulation of two adjoin cubes

An example of ∗A3-concave functions are separable functions. Less trivial examples
come from quadratic functions. A function

f (x1, . . . , xn) =
∑

i j
ai jxix j

is an ∗An-function if and only if the following two conditions are met:

(a) ai j ≥ 0 for i � j, and
(b)

∑
j ai j ≤ 0 for i = 1, . . . , n.

In particular, the two-parameter function f (x, y) = −ax2 + 2bxy − cy2 is an ∗A2-function
iff 0 ≤ b ≤ min(a, c).

For integer-valued functions, the classes of A3-concave and ∗A3-concave functions
are Fenchel dual.

Lecture 5

Higher Dimensions

The class of ∗An-concave functions is characterized by the same inequalities as in the
case of dimension three. That is, let us cut Rn by the hyperplanes xi = ai, i = 1, . . . , n,
xi − x j = ai j, i, j = 1, . . . , n, with integer ai and ai j. This dicing cuts each unit integer cube
into n! simplices (numerated by chains, or permutations). For a function f : Zn → R, we
let f̃ : Rn → R denote a function being obtained from the extrapolation of f by affinity
on each cell of dicing.
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Claim. f̃ is concave iff f is supermodular, that is f (x) + f (y) ≤ f (x ∨ y) + f (x ∧ y),
where ∨ denotes the operation of taking the coordinate-wise maximum of vectors and ∧

denotes for the coordinate-wise minimum; and, for each basis vector ei, i = 1, 2, . . . , n,
at each point x ∈ Zn there holds

f (x) + f (x + ei + 1) ≤ f (x + ei) + f (x + 1).

This class of functions is stable under summation, and possesses the separation
property.

Here are some examples of such functions.
Let V be a finite dimensional vector space, T : V → V a nilpotent operator;

V1, . . . ,Vn subspaces of V invariant under the action of T , that is T : Vi → Vi, i = 1, . . . , n.
Then the function c = c(V, T ; V1, . . . ,Vn) defined by

c(k1, . . . , kn) = dim(V/T k1V1 + . . .T kn Vn),

is a monotone ∗An-concave function. Contrary to the case n = 2, there exists ∗An-
concave functions not of this form (this follows from that there exists non-regular ma-
troids (so-called the Vamos matroid [21])).

A function of the form ϕ
(
min(xa, a ∈ A)

)
, where A ⊂ [n], and ϕ is a concave function

of one variable is ∗An-concave. Being considered from the economic point of view as a
utility function, is might be interpreted as a “package function,” which embodies some
sort of preference for complementarity between the goods.

Recall that a collection of sets T ⊂ [n] forms an hierarchy, if for any A and A′ ∈ T ,
the sets A ∩ A′ and A ∪ A′ are listed in the set {∅, A, A′}.

Definition. A function f on I agrees with a hierarchy T if, there exists a subcollection
{At} of T , such that f equals the convolution of At-package-functions.

Theorem 7. Let f be a function agreeing with a hierarchy T . Then f is ∗An-concave.

A characterization of ∗An-concave functions similar to usual concave functions.

Theorem 8. A function f : Zn → R∪{−∞} is ∗An-concave if and only if, for any p, q ∈ Zn

and any crossing ξ ∈ σ(q − p), the following holds

f (p) + f (q) ≤ f (p + ξ) + f (q − ξ).

Note that for the unimodular systemAn with respect to the standard basis, the cross-
ings take the form ±1A, A ⊂ [n], and a crossing 1A belongs to σ(q − p) iff the inequality
(q − p)(ei − e j) ≥ 0 implies either i ∈ A, or i, j � A.

An-Concave Functions

A function f : Zn → R isAn-concave if f has affinity areas of the form ofAn-convex sets,
that is (if we pick the standard basis of the Abelian group Zn) for any p ∈ (Rn)∗, the set
Arg maxx∈Zn

(
f (x) − p(x)

)
takes the form of integer points of a generalized polymatroid.

This class of functions is stable under convolution and possesses the separation
property and was studied in the book [5].

G.A. Koshevoy / Discrete Convexity and Its Applications158



Here we propose several new characterizations of functions of this class.
We introduce for convenience reasons both an additional “fictitious” coordinate

x0 := −
∑

i xi and a “fictitious” basis vector e0 := 0. By these means, we are able to
write all the roots in a fully symmetric form, that is ei − e j, where i, j now belong to the
extended item set N′ := [n] ∪ {0}.

Let us call tangent spaces to the octahedrons A3-flats, that is, a flat spanned by the
vectors {ei − e j, ek − el, ei − el, ek − e j}, such that |{i, j, k, l} ∩ N′| = 4. Then we have

Theorem 9. A function f is an An- concave function if and only if its restriction to any
integer translation of any A3-flat is an A3-concave function.

Let x and y be two integer points. Denote by [x > y] := {i ∈ N′ | xi > yi} and by
[x < y] := {i ∈ N′ | xi < yi}.

Theorem 10. A function f is an An- concave function if and only if, for any x, y ∈ Zn,
and any i ∈ [x > y], there exists j ∈ [x < y] and there exists a root-path2 which joins the
points x and y + ei − e j, such that, for any vertex z of this path, we have

f (y) + f (z) ≤ f (y + ei − e j) + f (z − ei + e j).

How to Construct Such Functions

Let g be the indicator function of the positive orthant Zn
+ (i.e., g(x) = 0 for x ∈ Zn

+ and
g(x) = −∞ otherwise). Note that g is a PM-function (that is, a shortening for an An-
concave function with An being considered with respect to the standard basis). Consider
now the convolution of some function f with g so defined. This is exactly the monotone
extension of f . Thus the monotone extension of a PM-function is a PM-function. We
now mention two particular cases.

Let f be a PM-function on the Boolean cube. Then the monotone extension of f on
the positive orthant Zn

+ is a PM-function.
Let f be an arbitrary function on the set {0} ∪ {1 ⊗ i, i ∈ I}. Its monotone extension

on the orthant Zn
+ is a PM-function.

The sum of two PM-functions, however, need not be a PM-function.
However, in one important case, summation does preserve polymatroidness, that

is, when we consider discrete functions of a single variable. Then the cells of co( f ) are
“strips” of the form ai ≤ xi ≤ bi. Now, the intersections of such strips with polymatroids
are polymatroids as well. By induction, we have:

Proposition 9. Let f be a discrete PM-function and g be a separable pseudoconcave
function, then f + g is a PM-function.

We can make a similar statement when g depends on the single variable x0 = −
∑

i xi.
With this remark in mind, we can now construct quasi-separable PM-functions by means
of laminar families of subsets of N := [n]. Suppose we have two disjoint subsets A and
B of N, and let fA and fB be, respectively, PM-functions of the variables in A and in B.
Let φ be an auxiliary pseudoconcave function on Z. Then the function

2We define a root-path to be any path in Zn such that each edge of this path is parallel to a root.
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f (x) = fA(xA) + fB(xB) + φ
(
x(A ∪ B)

)
is a PM-function, where xA are the coordinates of x on A, and x(C) =

∑
i∈C xi.

Let f be a function. Note that f ′ is a k-capacity constraint on f if f ′ is obtained
from f as follows: f ′(x) = f (x) if x(I) ≤ k and f ′(x) = −∞ if x(I) > k. We can now
state that if f is a discrete PM-function on the orthant on which we impose a k-capacity
constraint, then f ′ is polymatroidal.

Economic Interpretation

Let f : Zn → R ∪ {−∞} be a utility function of a buyer.

Definition. The function f satisfies the SWGS-property (the step-wise gross substitu-
tion) if for any p ∈ (Rn)∗, for any x ∈ Arg max( f − p), and for any i ∈ I either of the
following two conditions hold:

(a) for any ε ≥ 0, x ∈ Arg max( f − (p + ε1i),
(b) there exists ε ≥ 0 and y ∈ Arg max( f − (p + ε 1i) such that yi = xi − 1 and y−i ≥ x−i.

The step-wise gross substitution condition can readily be given an economic inter-
pretation: any decrease in the unitary demand for item i can always be compensated by
an increase in the demand for the remaining items.

Proposition 10 ([22]). Let f be a pseudoconcave function on the integer lattice Zn. The
following properties are equivalent:

1. f is a PM-function;
2. f satisfies the SWGS-condition.

Corollary. PM-functions on the Boolean cube (ultradiscretization of valuated matroids;
Dress and Wentzel [4]) are identical to functions with gross substitution (due to Kelso
and Crawford [7]).

Because the classes of integer valued An-concave functions and ∗An-concave func-
tions are Fenchel conjugate classes and the later class is a subclass of the supermodular
functions, the PM-functions are submodular.

Definition. A base polytope B(b) ⊂ Rn is said to be A-polymatroid if b is a PM-function
on the Boolean cube.

The images (under the moment map) of the Mirkovic–Vilonen cycles on the affine
Grassmanians are A-polymatroids indeed (see [23] and Lectures 4 and 5.)

Problem. To describe the cone (under the Minkowski summation) of an A-polymatroid
and its Hilbert basis. (This problems looks easier than the Lovász problem on extreme
rays of the cone of submodular functions.)
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Figure 8. An elementary octahedron for octahedron recurrence

Algebraic Combinatorics

The main idea of the octahedron recurrence is rather transparent. Specifically, consider
the octahedron with vertices 0, a, a′, b, b′ and 1 (Figure 8). Let f be a real-valued func-
tion defined on the points 0, a, a′, b, b′. Then we can propagate f to the point 1 by the
following rule

f (1) = max
(
f (a) + f (a′), f (b) + f (b′)

)
− f (0).

Such a propagation is the octahedron recurrence.
We let Δn(OXYZ) denote the three-dimensional grid, constituted from the non-

negative integer points (x, y, z), such that x+y+z ≤ n (in Figure 9 we draw Δ3(XYZ)). Us-
ing the octahedron recurrence, we can propagate initial data given at the ground Δn(OXY)
and the front wall Δn(OXZ) to a function on the whole simplex Δn(OXYZ) and these ini-
tial data. We can set initial data at the shadow wall Δn(OYZ) and the slope wall Δn(XYZ)
and get a function on the simplex using the octahedron recurrence with the reverse prop-
agation vector (1,−1,−1).

The fundamental property of the octahedron recurrence is that if the initial data (at
the ground and the front wall) are discrete concave functions, then the corresponding
polarized function on the gridΔn(OXYZ) is anA3-concave function (for details see [24]).

Other Classes of Discrete Concave Functions

Until now we considered functions related to a particular class of discrete convexity
related to the unimodular systemAn. However we may construct discrete convex analysis
for any class of discrete convexity. Specifically, let K(U), where U is a pure system, be
a class of discrete convexity. Then a function f : M(Zn) → R∪{−∞} is K(U)-concave if
f is pseudoconcave and, for any p ∈ V∗, the set D( f , p) := Arg max( f − p) is U-convex,
that is, it belongs to the DC-class K(U).

The main properties of these functions are summarized in the following

Theorem 11. (a) For a pure system U, the K(U)-concave/convex functions possess the
separation property.

(b) For an S-class U, the K(U)-concave functions are stable under the convolution.
(c) For an I-class U, the K(U)-concave functions are stable under the summation.
(d) The classes of integer-valued K(U)-concave and K(U⊥)-concave functions are

Fenchel conjugate.
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Branching on Split Disjunctions
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Abstract. Branch-and-Cut is the most commonly used algorithm for solving Inte-
ger and Mixed-Integer Linear Programs. In order to reduce the number of nodes
that have to be enumerated before optimality of a solution can be proven, branching
on general disjunctions (i.e., split disjunctions involving more than one variable,
as opposed to branching on simple disjunctions defined on one variable only) was
shown to be very effective on particular classes of instances, but not much work has
been done to study general purpose methods of this kind. In this paper, we survey
known results related to this line of research, and we study the relationship between
branching and cutting from a split disjunction.

Keywords. Integer programming, Branch-and-Bound, Split disjunctions

Introduction

Solving Mixed-Integer Linear Programs (MILPs) is of great practical use in a number
of applications, and efficient software exists for this purpose. One key ingredient is the
Branch-and-Bound algorithm [1]. Branch-and-Bound has two main components: divid-
ing a problem into subproblems, which is known as branching, and computing bounds
on the objective function value at the subproblems. The idea is to recursively subdivide
the initial problem into smaller problems, until the subproblems can be easily solved, and
use bounds to eliminate as many as possible. Subproblems are typically stored in a tree
structure, hence they are called nodes in the literature. The bounding phase is carried out
by considering the Linear Programming (LP) relaxation of each node; in this paper, we
focus on the branching phase.

Whenever the solution x̄ to the LP associated with a node is fractional on a variable
xi that is required to take on integer values, a natural way of branching is to create two
subproblems imposing the constraint xi ≤ �x̄i� on one subproblem and xi ≥ �x̄i� on
the other. In this paper, we take a different approach whereby branching can occur on a
general hyperplane with integer components π by imposing π�x ≤ π0 on one child and
π�x ≥ π0 + 1 on the other.

1Corresponding Author: Giacomo Nannicini, Tepper School of Business, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213, USA; Email: nannicin@andrew.cmu.edu. Supported by an IBM
fellowship.

2Supported by NSF grant CMMI1024554 and ONR grant N00014-09-1-0033.
3Supported by ANR grant 07-JCJC-0151.

Combinatorial Optimization: Methods and Applications 
V. Chvátal (Ed.) 
IOS Press, 2011 

© 2011 The authors and IOS Press. All rights reserved 
doi:10.3233/978-1-60750-718-5-164

164



How do we choose π? We use the connections between branching and cutting from
split disjunctions [2], Gomory Mixed-Integer (GMI) cuts [3] and intersection cuts [4].
GMI cuts arise as intersection cuts from a split disjunction, and provide a computationally
inexpensive way of generating π. Therefore, we generate a pool of possible branching
hyperplanes this way, and select one by using strong branching [5]. We also investigate
the effect of modifying the hyperplanes by strenghtening the underlying GMI cut with a
Reduce-and-Split like algorithm [6,7].

Computational experiments on MIPLIB instances show that this approach is effec-
tive in practice, and can significantly reduce the size of the enumeration tree; on average,
the reduction in number of nodes is by more than a factor two on mixed-integer instances.

Extended versions of this work have appeared in [8,9]. In this paper, we give a uni-
fied treating of this topic. In Section 1, we give some preliminaries and survey the re-
search carried out in this area. In Section 2 we introduce our notation and recall sev-
eral known results that are useful for the subsequent parts of the paper. Section 3 stud-
ies the relationship between the integrality gap (i.e., the difference between the integer
optimum and the relaxed optimum) closed by generating an intersection cut from a split
disjunction, or branching on the same disjunction. In Section 4 we describe a branching
scheme that is based on exploiting the disjunctions defining the GMI cuts read directly
from an optimal simplex tableau; Section 5 modifies this scheme by adding a disjunc-
tion strenghtening step. In Section 6 we discuss the size of the coefficients of “good”
disjunctions. Finally, Section 7 concludes the paper with a computational evaluation.

1. Preliminaries and Literature Review

In this paper we consider the Mixed Integer Linear Program in standard form:

min c�x
Ax = b

x ≥ 0
∀ j ∈ NI x j ∈ Z,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ P

where c ∈ Rn, b ∈ Rm, A ∈ Rm×n and NI ⊂ N = {1, . . . , n}. The LP relaxation of P is the
linear program obtained by dropping the integrality constraints, and is denoted by P. We
denote by P the set of feasible solutions of P, which is a polyhedron. The Branch-and-
Bound algorithm makes an implicit use of the concept of disjunctions [10]: whenever
the solution to the current LP relaxation is fractional, we divide the current problem P

into two subproblems P1 and P2 such that the union of the feasible regions of P1 and
P2 contains all feasible solutions to P. Usually, this is done by choosing a fractional
component x̄i (for some i ∈ NI ) of the optimal solution x̄ to the relaxation P, and adding
the constraints xi ≤ �x̄i� and xi ≥ �x̄i� to P1 and P2 respectively. Choosing which variable
should be branched on at each step is of fundamental importance for the performance of
Branch-and-Bound. We refer to [11] for a recent survey on this topic.

Here, we take a more general approach whereby branching can occur with respect
to a direction π ∈ Rn by adding the constraints πx ≤ β0, πx ≥ β1 with β0 < β1 to P1 and
P2 respectively, as long as no feasible point of P is cut off. A natural way of generating
such directions is to consider split disjunctions D(π, π0) of the form:
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π�x ≤ π0

∨
π�x ≥ π0 + 1 (1)

with π ∈ Z
n, π0 ∈ Z, πi = 0 ∀i � NI . By integrality, every feasible solution to P

satisfies any split disjunction. In other words, a split disjunction is defined by two parallel
hyperplanes that have no integer point in the interior of the “strip” between them. In
the branching literature, disjunctions involving only one variable are labeled simple or
elementary, whereas those involving more than one variable are called general.

There are mainly two different categories of approaches to branching on general
disjunctions that have been proposed in the MILP literature. The first category contains
methods that try to identify “thin” directions of P ; the second category focuses on im-
proving as much as possible the LP bound at the children nodes. [12] discusses both
problems, which are shown to be strongly NP-hard in [13].

1.1. Branching on thin directions

The concept of thin direction requires the notion of width of a full-dimensional polyhe-
dron P along a direction u, which is defined as maxx,y∈P(ux−uy). Thus, for a pure integer
program associated with P, the integer width is defined as

min
π∈Zn\{0}

max
x,y∈P

(πx − πy).

This definition naturally extends to the mixed integer case by considering integer direc-
tions π ∈ Zn \ {0} with π j = 0 for j � NI .

The work of Lenstra [14] on solving integer programs in fixed dimension in poly-
nomial time (see also [15,16]) is at the origin of the idea of branching on thin directions
of P. The method works as follows. First, some thin directions of P are computed, us-
ing the lattice basis reduction algorithm by Lenstra, Lenstra and Lovász [17]. Then, the
space is transformed so that these directions correspond to unit vectors, and the problem
is solved by Branch-and-Bound in the new space. Thus, branching on single variables in
the transformed space translates back to branching on general disjunctions in the origi-
nal space. This method has proven successful for some particular instances where stan-
dard Branch-and-Bound fails because of the huge size of the enumeration tree, such as
the Market Split instances [18], whose solution is discussed in [19]. Other examples are
given in [20,21].

1.2. Branching for Maximum Bound Improvement

Another line of research which has been pursued is that of selecting a good general
disjunction for branching at each node of the Branch-and-Bound tree, in order to improve
as much as possible the bound at the children nodes. Owen and Mehrotra [22] proposed
branching on split disjunctions with coefficients in {−1, 0, 1} on the integer variables with
fractional values at the current node. They generate all possible such disjunctions, and
evaluate them using strong branching (i.e., solving the LPs associated with the children
nodes to optimality), in order to select the one that gives the largest improvement of
the dual bound. [8,9] follow this idea of generating disjunctions for maximum bound
improvement, and try to do so by exploiting the relationship between split cuts [2] and
split disjunctions for branching.
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2. Split Disjunctions: Cutting and Branching

Given a split disjunction D(π, π0) of the form (1), a split cut for P is a cut which is valid
(i.e., does not cut off any integral feasible solution) for both P1 = P ∩ {x : π�x ≤ π0} and
P2 = P ∩ {x : π�x ≥ π0 + 1}. Since P1 ∪ P2 contains all integral feasible points of P,
such a cut is valid for P as well. Split cuts were introduced in [2]. It is intuitive to see that
there should be some kind of relationship between a split cut derived from D(π, π0) and
the “strength” of the two polyhedra P1, P2; since the aim of branching is exactly that of
creating two strong (but smaller) subproblems P1,P2 associated with P1, P2, we want to
study this relationship. To do so, we first investigate some useful properties of split cuts
that will lead to the formulas used in the rest of this paper.

Split cuts are disjunctive cuts [10], i.e., cutting planes which are valid for conv(P1 ∪

P2). A pictorial representation of such a cut is given in Figure 1. Is there an easier way of
deriving split cuts without having to resort to disjunctive programming? [23] establishes
a correspondence between split cuts and intersection cuts [4], showing that each split cut
for P can be derived as an intersection cut from a split disjunction and a suitable basis
of P. This allows for a geometric understanding of their derivation, and for closed form
formulas.

We need some definitions. A basis for P is an m-subset B of N such that the column
submatrix of A induced by B is an invertible submatrix of A. Let J := N \ B denote
the index set of the nonbasic variables, BI = B ∩ NI the set of integer basic variables,
JI = J∩NI the set of integer nonbasic variables, JC = J\NI the set of continuous nonbasic
variables. Additionally, we denote by 〈x〉 the fractional part of x, i.e., 〈x〉 = x − �x�.
A further relaxation of the set P with respect to a basis B is obtained by removing the
nonnegativity constraints on the basic variables. We denote it by P(B):

P(B) := {x ∈ Rn : Ax = b and x j ≥ 0 for j ∈ J}. (2)

This set is a translate of a polyhedral cone: P(B) = C + x̄, where C = {x ∈ R
n :

Ax = 0 and x j ≥ 0 for j ∈ J} and x̄ solves {x ∈ Rn : Ax = b and x j = 0 for j ∈ J}, i.e., x̄
is the basic solution corresponding to the basis B. Typically, B will be the optimal basis
of an LP relaxation of MILP, but not necessarily so (see, e.g., [24]). In this paper, B will
be optimal for P. The cone C can be expressed also in terms of its extreme rays, r j for
j ∈ J: P(B) = Cone({r j} j∈J)+ x̄, where Cone({r j}) denotes the polyhedral cone generated
by vectors {r j}. Looking at the simplex tableau associated with B written in the usual
form:

split cut

πTx ≤ π0

P

P1

P

πTx ≤ π0 P1

πTx ≥ π0 + 1 P2 πTx ≥ π0 + 1 P2

Figure 1. Deriving a split cut.
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Intersection
cut

r2

α1

πTx ≥ π0

x̄
πTx ≤ π0

α2

r1

Figure 2. Deriving the intersection cut

xi = x̄i −
∑
j∈J

āi jx j ∀i ∈ B, (3)

the extreme rays of P(B) can be read directly as:

r j
i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−āi j if i ∈ B
1 if i = j
0 otherwise.

(4)

Observe that our interest is in split disjunctions that are violated by the current
fractional solution x̄. This is because we do not want x̄ to be feasible for either P1 or P2,
so that the solution to the LP relaxation is forced to “move” after branching. The same is
true for cutting planes: the most interesting ones are typically those that cut off x̄. How
do we generate a split cut as an intersection cut? Given any disjunction D(π, π0) violated
by x̄, we can generate a split cut using D(π, π0) and P(B) as exemplified in Figure 2. In
particular, the intersection cut is a half-space bounded by the hyperplane passing through
the intersection points of D(π, π0) with the extreme rays of P(B).

In order to find the intersection points, for all j ∈ J we compute the scalars:

α j(π, π0) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−
ε(π, π0)
πT r j if πT r j < 0,

1 − ε(π, π0)
πT r j if πT r j > 0,

+∞ otherwise,

(5)

where ε(π, π0) := πT x̄−π0 is the amount by which x̄ violates the first term of the disjunc-
tion D(π, π0). The number α j(π, π0) for j ∈ J is the smallest number α such that x̄ + αr j

satisfies the disjunction. In other words, x j = x̄+α j(π, π0)r j lies on one of the disjunctive
hyperplanes πT x = π0 and πT x = π0 + 1.

Now, the intersection cut associated with B and D(π, π0) supports the points x j and
is given by:
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∑
j∈J

x j

α j(π, π0)
≥ 1. (6)

The Euclidean distance between x̄ and this hyperplane is:

d(B, π, π0) :=

√
1∑

j∈J 1/(α j(π, π0))2 (7)

This quantity, called distance cut off or depth, was used as a measure of cut quality in
[25].

The well-known GMI cuts from a basis B, which are included in virtually every
Branch-and-Cut based software for solving MILPs, can be viewed as intersection cuts
from a particular split disjunction [4]. They can be obtained as follows. We start from a
disjunction on the integer basic variables:∑

i∈BI

π̂ixi ≤

⌊∑
i∈BI

π̂i x̄i

⌋ ∨ ∑
i∈BI

π̂ixi ≥

⌊∑
i∈BI

π̂i x̄i

⌋
+ 1, (8)

with π̂i ∈ Z ∀i ∈ BI and
∑

i∈BI π̂i x̄i � Z. Equation (8) is then strengthened on the nonbasic
integer variables where the affected α j are modified so that the distance cut off (7) is
maximized. We obtain the following disjunction:

π j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌊∑
i∈BI π̂iāi j

⌋
if j ∈ JI and

〈∑
i∈BI π̂iāi j

〉
≤

〈∑
i∈BI π̂i x̄i

〉⌈∑
i∈BI π̂iāi j

⌉
if j ∈ JI and

〈∑
i∈BI π̂iāi j

〉
>

〈∑
i∈BI π̂i x̄i

〉
π̂ j if j ∈ BI

0 otherwise,

π0 = �π� x̄�.

(9)

Plugging Eq. (9) into Eq. (5) gives a GMI cut that cuts off x̄. In the original cutting plane
procedure of Gomory [3], Eq. (8) is an elementary disjunction. Notice that we have a
closed form formula for this disjunction, therefore we can compute it very efficiently.
This is the class of split disjunctions that will be employed in the remainder.

3. Gap Closed by Cutting and by Branching

A violated split disjunction can be used for generating an intersection cut but it can be
used for branching as well. A good intersection cut cuts deeply into P and improves the
LP bound at the children nodes. Our suggestion is that a split disjunction defining a deep
cut is good for branching too.

Indeed, the improvement in the lower bound caused by branching on a split disjunc-
tion is no less than the improvement by the corresponding intersection cut. Let x̄1 and x̄2
be the LP relaxation optima of P1 and P2 (if Pk is infeasible then x̄k = ∞ for k ∈ {1, 2}).

Proposition 1. min j∈J c�x j ≤ min(c� x̄1, c� x̄2).
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Proof. We have x̄1 = arg min{c�x : c ∈ P1}, x̄2 = arg min{c�x : c ∈ P2}. Let Pr
1 =

P(B) ∩ {x ∈ Rn : π�x ≤ π0} and Pr
2 = P(B) ∩ {x ∈ Rn : π�x ≥ π0 + 1}. By the definition

of the points x j ∀ j ∈ J, min j∈J{c�x j} = min{c�x : x ∈ Pr
1 ∪ Pr

2}. Since P ⊆ P(B),
min{c�x : x ∈ Pr

1 ∪ Pr
2} ≤ min{c�x : x ∈ P1 ∪ P2} = min(c� x̄1, c� x̄2), which completes

the proof.

Therefore, in order to generate children nodes that have tight LP relaxations, it
makes sense to try to maximize the lower bound given in Proposition 1; as this quantity
is bounded from below by the gap closed by the corresponding intersection cut, this ex-
plains our intuition. However, it can be shown with a small example that the bound on the
gap closed by branching given by the corresponding intersection cut can be arbitrarily far
from the real value.

Example 2. Consider the integer program:

min −x1 − x2
x1 ≤ 1.5
x2 ≤ 1

x1/m − x2 ≥ 1.5/m − 1.25
mx1 − x2 ≤ 1.5m − 0.75

x1, x2 ∈ Z,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
P (10)

where m > 1 is a given parameter close to 1. The solution to the LP relaxation is (1.5, 1),
with an objective value of −2.5. The intersection cut obtained from the disjunction x1 −

x2 ≤ 0 ∨ x1 − x2 ≥ 1 is x1 + x2 ≤ 2, which gives an objective value of −2. Now suppose
we branch on x1 − x2 ≤ 0 ∨ x1 − x2 ≥ 1. We obtain two children P1 and P2, which are
both feasible. One can verify that optimal solution to the LP relaxation of P1 is ((1.5 −

1.25m)/(1−m), (1.5−1.25m)/(1−m))with objective value −2(1.5−1.25m)/(1−m), and the
optimal solution to the LP relaxation of P2 is ((1.5m−1.75)/(m−1), (0.5m−0.75)/(m−1))
with objective value −(2m − 2.5)/(m − 1). Therefore, the gap closed by branching is:

max
{
−2

1.5 − 1.25m
1 − m

,−
2m − 2.5

m − 1

}
− 2.5,

which can be made arbitrarily large when m tends to 1 from above. At the same time, the
intersection cut associated with the same disjunction closes a gap of 0.5 regardless of m.
We give a picture of the situation for m = 1.1 in Figure 3.

4. Branching on Disjunctions Defining the GMI Cuts

We need a procedure for selecting promising split disjunctions for branching. As we dis-
cussed in the introduction, optimizing over the set of all split disjunctions is strongly
NP-hard [13]. [9] simply suggests to concentrate on a finite class of general disjunctions
generated directly from the current optimal basis — the set G of split disjunctions defin-
ing the GMI cuts that can be read from the simplex tableau. The GMI cuts as defined by
Gomory [3] arise from simple disjunctions (8) with π̂ = ei for i ∈ BI where x̄i � Z. These
cuts have been shown to be very effective in practice [26]. The reasons for this choice
are the following. First, the set G is not only finite but relatively small. Its cardinality at
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cost function

x2 ≤ 1

x1/m− x2 ≥ 1.5/m− 1.25

mx1 − x2 ≤ 1.5m− 0.75

x1 + x2 ≤ 2

x1 ≤ 1.5

Figure 3. Representation of Example 2 for m = 1.1.

a given node of the Branch-and-Bound tree equals the number of integer variables with
fractional values in the current basic solution. Second, these disjunctions are fast to ob-
tain. They can be read from the current tableau with a closed form formula (9). Third,
as we explained at the end of Section 2, these disjunctions can be viewed as strength-
ened simple disjunctions (with respect to the cut depth) which suggests that they could
perform better than the elementary disjunctions.

The branching procedure proposed in [9] is as follows. Consider the set of all GMI
disjunctions arising from elementary disjunctions for a specific basic solution, and select
a subset S of it, containing the most promising disjunctions according to the chosen
criterion for comparison. The distance (7) cut off by the underlying intersection cut, is
used as a criterion for selecting promising disjunctions, picking those with the largest
distance. The cardinality of S is limited to a parameter k, which can be used to manage
the computational effort at different levels, e.g. a larger k can be used close to the root
where branching decisions are more important and a smaller k in the deep levels. Finally,
in view of Example 2, we apply strong branching to the disjunctions in S, in the spirit
of [5,22], to evaluate the true impact of each disjunction. Note that the computational
complexity of this algorithm is dominated by the strong branching phase.

Once strong branching is performed and we know the objective function improve-
ment at the children nodes c� x̄1, c� x̄2, we use

γmin(c� x̄1, c� x̄2) + (1 − γ) max(c� x̄1, c� x̄2), (11)

with 0 ≤ γ ≤ 1, as a measure of quality of a disjunction, attempting to increase the LP
bound. This approach is not new: for instance, [11] proposes γ = 5

6 in the context of
branching on elementary disjunctions.
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5. Strengthening the GMI Disjunctions

GMI cuts derived from elementary disjunctions are very strong in practice; but can we do
better? [6,7] experiment with cutting planes derived as GMI cuts from split disjunctions,
with good results. In our framework, their procedure can be seen as a method for finding
a disjunction (8) that gives rise to an intersection cut with better cut coefficients on the
continuous variables. The starting disjunction π̂ is then plugged into Eq. (9) as usual.
Clearly, this approach is computationally more expensive: the elementary disjunctions of
Section 4 can be read from the tableau with no additional cost, but finding a strong split
disjunction of the form (8) is not as simple, as there is an infinite number of them.

[8] proposes the following approach, which has also been modified and enhanced
for cutting plane generation in [7]. The motivating idea traces back to [6]. We look at the
expression of α j (5) for the intersection cut derived from Eq. (9):

α j

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
max

(
〈
∑

i∈BI π̂i x̄i〉

〈
∑

i∈BI π̂iāi j〉
,

1 − 〈
∑

i∈BI π̂i x̄i〉

1 − 〈
∑

i∈BI π̂iāi j〉

)
if j ∈ JI

max
(
〈
∑

i∈BI π̂i x̄i〉∑
i∈BI π̂iāi j

,
1 − 〈

∑
i∈BI π̂i x̄i〉

−
∑

i∈BI π̂iāi j

)
if j ∈ JC

(12)

where α j = ∞ if its denominator is zero. A larger α j means a smaller cut coefficient in
Eq. (6), hence a stronger cut, as can be seen from Eq. 7; and by Proposition 1, we argue
that a disjunction with large α j will be strong for branching as well. Therefore, we study
a method for increasing α j by acting on π̂.

It seems difficult to optimize α j for j ∈ JI because both terms of the fraction are
nonlinear. Furthermore, for j ∈ NI , α j is always at least 1, independent of the choice of
π̂. For j ∈ JC , α j can be smaller than 1, therefore we concentrate on trying to improve
these α j. From Eq. (12) we see that the denominator of α j for j ∈ JC is a linear function
of π̂, whereas the numerator is a nonlinear function of π̂ and is always between 0 and 1.
For this reason we attempt to minimize the denominator, i.e.,

∑
i∈BI π̂iāi j for j ∈ JC , over

integral vectors π̂. More specifically, we would like to minimize ‖d̃‖, where

d̃ =
(∑

i∈BI

π̂iāi j

)
j∈JC

. (13)

Since we try to improve the disjunction by looking at the cut coefficients on the contin-
uous variables, the method described in this section is only suitable for mixed-integer
instances.

Apply a permutation to the simplex tableau in order to obtain BI = {1, . . . , |BI |},
JC = {1, . . . , |JC |}, and define the matrix D ∈ R|BI |×|JC |, di j = āi j. Minimizing ‖d̃‖ can be
written as

min
π̂∈Z|BI |\{0}

∥∥∥∥∥∑
i∈BI

π̂idi

∥∥∥∥∥. (14)

This is a shortest vector problem in the additive group generated by the rows of D. If
these rows are linearly independent, the group defines a lattice, and we have the classical
shortest vector problem in a lattice, which is NP-hard under randomized reductions [27].
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[6] proposes a heuristic for Eq. (14) based on a reduction algorithm which cycles
through the rows of D and, for each such row dk, considers whether summing an integer
multiple of some other row yields a reduction of ‖dk‖. If this is the case, the matrix D
is updated by replacing dk with the shorter vector. Note, however, that this method only
considers two rows at a time.

The idea of [8] is to use, for each row dk of D, a subset Rk ⊂ BI of the rows of the
simplex tableau with dk ∈ Rk, in order to reduce ‖dk‖ as much as possible with a linear
combination with integer coefficients of dk and di for all i ∈ Rk \ {k}. This is done by
defining, for each row dk that we want to reduce, the convex minimization problem:

min
π̂k∈R|Rk | ,π̂k

k=1

∥∥∥∥∥∑
i∈Rk

π̂k
i di

∥∥∥∥∥, (15)

and then rounding the coefficients π̂k
i to the nearest integer �π̂k

i �. There are several reasons
for imposing π̂k

k = 1. One reason is that not only do we want to find a short vector, but
it is also important to find a vector π̂k with small norm: in the space B ∩ NI , the distance
between the two hyperplanes that define a split disjunction D(π, π0) is related to the norm
of π̂: in this space, disjunctions that cut off a larger volume have a small ‖π̂‖. We will
come back to this issue in Section 6. Another reason is that we must avoid the zero vector
as a solution. Yet another is to get different optimization problems for k = 1, . . . , |BI |, thus
increasing the chance of obtaining different branching directions. Vanishing the partial
derivatives of

∥∥∥∑i∈Rk π̂
k
i di

∥∥∥ with respect to π̂k
i for all i, we obtain an |Rk|×|Rk| linear system

that yields the optimal (continuous) solution.
Once these linear systems are solved and we have the optimal coefficients π̂k ∈ R|Rk |

for all k ∈ {1, . . . , |BI |}, we round them to the nearest integer. Then, we consider the norm
of

∑
i∈Rk�π̂

k
i � di. If

∥∥∥∑i∈Rk �π̂
k
i � di

∥∥∥ < ‖dk‖, then we have an improvement with respect to
the original row of the simplex tableau; in this case, we use

∑
i∈Rk

π̂k
i xi =

∑
i∈Rk

π̂k
i x̄i −

∑
j∈J

∑
i∈Rk

π̂k
i āi jx j, (16)

instead of row āk in order to compute a GMI disjunction, and consider the possibly im-
proved disjunction for branching.

It is natural to ask how to choose Rk ⊂ BI . Although using Rk = BI is possible,
in that case two problems arise: first, the size of the linear systems may become too
large, and second, if we add up too many rows then the coefficients on the variables with
indices in J ∩ NI may deteriorate. In particular, we may get more nonzero coefficients.
Thus, we do the following. We fix a maximum cardinality M|Rk |; if M|Rk | ≥ |BI |, we set
Rk = BI. Otherwise, for each row k that we want to reduce, we sort the remaining rows
by ascending number of nonzero coefficients on the variables with indices in {i ∈ J ∩ NI |

āki = 0}, and select the first M|Rk | indices as those in Rk. The reason for this choice
is that āk j = 0 implies α j = ∞, i.e., the cut is strong on that variable. Therefore, we
would like those coefficients that are 0 in row āk to be left unmodified when we compute∑

j∈Rk�π̂
k
j� ā j.
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6. On Non-Dominated Disjunctions

Although solving the shortest vector problem (14) is important for finding a deep cut, it
is not the only consideration when trying to find a good branching direction. In the space
B ∩ NI , the distance between the two hyperplanes that define a split disjunction D(π, π0)
is equal to 1/‖λ‖ as can be seen from Eq. (9). Therefore, in this space, disjunctions that
cut off a larger volume have a small ‖λ‖. We illustrate this with an example.

Example 3. Consider the following tableau, where x1, x2 are binary variables and y1, y2
are continuous:⎧⎪⎪⎨⎪⎪⎩x1 =

1
3 + 98y1 + y2

x2 =
1
3 − 99y1 − 1.01y2.

(17)

The solution to the shortest vector problem (14) is given by the integer multipliers λ1 =

99, λ2 = 98 which yield the shortest vector in the lattice (0, 0.02) and the disjunction
99x1 + 98x2 ≤ 65 ∨ 99x1 + 98x2 ≥ 66. The heuristic method of Section 5 computes
the continuous multipliers λ1 = 1, λ2 = 98/99 which are rounded to λ1 = 1, λ2 = 1,
that correspond to the disjunction x1 + x2 ≤ 0 ∨ x1 + x2 ≥ 1. It is easy to verify that
the distance between these two hyperplanes is roughly ten times larger than in the first
case. Therefore, in the unit square, the disjunction obtained through the heuristic method
dominates the one computed through the exact solution of the shortest vector problem.
Figure 4 gives a picture of this.

It is clear from Example 3 why disjunctions with small coefficients are likely to
perform better. It is intuitive to think that, at least in the unit hypercube, the coefficients
of “good” disjunctions will be small. However, this is not true in general. We formalize
our statament.

For a polyhedron P, we say that the split disjunction D(π1, π1
0) dominates D(π2, π2

0)
if P∩{π1�x ≤ π1

0} ⊆ P∩{π2�x ≤ π2
0} and P∩{π1�x ≥ π1

0+1} ⊆ P∩{π2�x ≥ π2
0+1}, with

x1 + x2 ≤ 0

∨ x1 + x2 ≥ 1

99x1 + 98x2 ≤ 65

∨ 99x1 + 98x2 ≥ 66

Figure 4. Representation of the disjunctions discussed in Example 3.
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at least one of the two inclusions being strict. The dominating disjunction is obviously
to be preferred to the dominated one for branching, as it induces the same partition of
the feasible integer points, while generating smaller feasible regions for the two children.
Thus, we are interested in finding nondominated disjunctions only. Do the coefficients
of nondominated disjunctions have a “nice” characterization, so that we can restrict our
search to disjunctions with small norm? Unfortunately, the answer is negative in general.
Even by restricting our attention to 0/1 polytopes, no polynomial bound (in the dimension
n) can be given on the size of the coefficients of nondominated disjunctions.

Proposition 4. The size of the coefficients of nondominated disjunctions for 0/1 poly-
topes of dimension n cannot be polynomially bounded in n.

Proof. It is known [28] that the largest integer coefficient in the facet description of a
full-dimensional 0/1 polytope can be exponential in n. Let a�x ≥ b be the hyperplane,
which we can assume to have all integer coefficients, describing such a facet with a large
coefficient. Consider the polytope defined by P = {x ∈ [0, 1]n | a�x ≥ b, a� ≤ b + 0.5}.
The disjunction D(π, π0) with π = a, π0 = b is nondominated, and in fact gives the convex
hull of the integer points in one branching step. However, its largest coefficient has size
exponential in n.

Therefore, even though in low dimension nondominated disjunctions have small
integer coefficients, in general there is no hope of finding a nice characterization of their
coefficients. The method described in Section 5 tries to generate disjunctions with small
coefficients heuristically, following the intuition of Example 3.

7. Computational Experiments

The ideas proposed in [8,9] were tested in a Branch-and-Bound framework implemented
on top of Cplex [29]. The test set consists of all instances in MIPLIB2.0, MIPLIB3 and
MIPLIB2003, excluding those that can be solved in less than 50 nodes by branching on
simple disjunctions, and those for which less than 50 nodes can be processed in an hour.
Also removed were the instances with zero integrality gap, which leaves 84 instances.

We report tests with three branching algorithms:

• Branching on single variables (Simple Disjunctions, SD);
• Branching on the disjunctions defining the GMI cuts at the optimal LP basis (GMI

Disjunctions, GD);
• Branching on the disjunctions defining the GMI cuts after the strengthening pro-

cedure described in Section 5 (Improved GMI Disjunctions, IGD).

In order to evaluate the effect of branching on split disjunctions, we focus primarily
on the integrality gap closed by branching. An additional important factor is the number
of infeasible children which are created by branching: in fact, if one of the two sides
of the branching disjunction is infeasible, the number of nodes in the enumeration tree
does not grow. This can be seen as adding a cutting plane (i.e., the feasible side of the
disjunction) to the current node. In case such a disjunction a discovered, it is always
preferred to the ones that create two children. Note that if both sides of the disjunction
are infeasible, the node is infeasible.
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7.1. Branching for Eight Levels

In this experiment, we branch at the top eight levels of the Branch-and-Bound tree, and
compare the resulting gap closed. At each node, for the SD algorithm we consider all
fractional integer variables for branching, whereas for GD we consider all simple GMI
disjunctions. Note that the number of candidate branching objects is the same for both
SD and GD. We set γ = 5

6 in Eq. (11) as suggested by [11], trying to increase the LP
bound in both children nodes. In this experiment, GD performs better, mainly due to
the larger gap closed by branching on split disjunctions. We observe an interesting sec-
ondary effect: branching on GMI disjunctions tends to produce more infeasible children,
which additionally decreases the amount of enumeration. We record this phenomenon by
counting the number of active nodes at the ninth level.

Table 1 contains a summary of the results. We report average values, and the number
of times that one method is better than the other according to the comparison criterion.

In terms of amount of gap closed, SD dominates in 20 cases, GD in 48 cases out
of 84. The average gap closed by SD and GD is 32.1% and 41.7%, respectively. The
difference in the average gap closed is 9.6%. It is statistically significantly larger than
zero with 99% confidence, according to a one-sided paired t-test (p-value = 0.0021).
These results support our observation that GD closes more gap.

A graphical representation of the gap closed by SD and GD is shown in Figure 5.A.
In the figure, dots correspond to test instances. The gap closed by SD is shown on the
abscissa while that closed by GD is shown on the ordinate. The diagonal line represents
equality in the gap closed by both methods. We observe that most points lie in the upper-
left triangle, corresponding to “GD outperforms SD.” Furthermore, most of the points
that lie in the lower-right triangle are close to the diagonal line — there are few cases in
which SD outperforms GD significantly.

It is interesting to observe that GD typically produces a smaller number of active
nodes at the ninth level. On this criterion, SD performs better in 16 cases while GD does
so in 53 cases. Out of the maximum possible 256 nodes at level nine, SD generates 113
while GD generates 65, on average. A statistical t-test rejects the null hypothesis “GD
produces at least as many active nodes at level nine as SD” at 99.9% level of confidence

Table 1. Comparison of SD and GD after eight levels of branching. Branch-and-Bound.

Percentage gap closed
average (# better)

Simple disjunctions (SD): 32.1% (20)
GMI disjunctions (GD): 41.7% (48)

Active nodes at level 9
average (# better)

Simple disjunctions (SD): 114.6 (16)
GMI disjunctions (GD): 66.7 (53)

Gap closed and active nodes together
# better

Simple disjunctions (SD): 6
GMI disjunctions (GD): 45
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Figure 5. A. Gap closed (in percentage) after eight levels of branching: GD vs. SD. B. Number of active nodes
after eight levels of branching: GD vs. SD. Every data point represents a test instance.

(p-value = 1.30e − 6). This indicates that the number of active nodes created by GD is
significantly smaller.

The difference in the performance is best seen graphically. In Figure 5.B, we plot
the number of active nodes at level nine produced by GD vs. that produced by SD. Not
only do most of the points lie below the equality line but many of them reside in the
bottom-right corner, corresponding to a significant difference in the number of nodes.
On the other hand, out of the 16 instances for which SD outperforms GD, only eight lie
visibly far from the equality line.

The effect of a smaller number of active nodes is important not by itself but in
combination with improvement in the gap. Combining both criteria, we count the cases
in which an algorithm strictly dominates in one of the criteria and performs at least as
well in the other criterion. SD is better than GD in only 6 cases, while GD outperforms
SD in 45 cases out of 84.

The reason for the smaller number of active nodes is that GD often generates dis-
junctions that produce only one feasible child. For some instances, this happens at most
nodes of the branching tree, resulting in only a few nodes at level nine. Although SD gen-
erates many infeasible children, GD generates even more. Sometimes, this is combined
with an impressive improvement of the gap closed over SD.

The combination of a larger improvement in the gap and a smaller number of active
nodes is a very desirable effect and it deserves more attention. Branching on a disjunction
that generates only one feasible child is equivalent to adding a single cut to the formula-
tion. One may argue that this cut would be added by a branch-and-cut algorithm anyway.
This is true in some cases but in others the disjunction inequality is stronger than the cor-
responding GMI cut. Figure 6 is an example. The cut generation procedure considers the
polyhedral cone pointed at x̄, relaxing some of the constraints defining P, and generates
the intersection cut βT x ≤ β0. But it cannot detect the fact that one of the feasible sets of
the children is empty. (Here, P ∩ {x ∈ Rn : πT x ≤ π0}.) When branching on D(π, π0), we
essentially add the cut πT x ≥ π0 + 1, which is stronger than βT x ≤ β0.
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x̄πTx ≤ π0 πTx ≥ π0 + 1

r2
r1

x̄2

p1 p2 βTx = β0

P

Figure 6. Disjunction with only one feasible child.

Consequently, branching on a split disjunction that generates only one child can
be viewed as strengthening the underlying intersection cut. Thus, branching on a split
disjunction cannot be substituted by adding the corresponding intersection cut even when
one of the disjunctive sets is empty. When both disjunctive sets are nonempty, branching
on a split disjunction can still close more gap than the corresponding cut, as we showed
in Section 3.

We do not consider branching on split disjunctions a substitute for cutting planes.
The procedure comes into play when Branch-and-Cut decides to start branching. It is
important to note that the observed good effects of branching on split disjunctions are
not neutralized by adding cuts. We repeat the above experiment in a Cut-and-Branch
framework where we add ten rounds of GMI cuts, MIR cuts, and knapsack cover cuts. As
expected, aggressive cut generation closes a significant amount of gap (63% on average),
leaving less work for the branching phase. As a result, the amount of gap closed by
branching on the top eight levels is smaller and the difference between the two methods is
smaller. Nevertheless, the mutual relation in performance is preserved, as seen in Table 2.

7.2. Effect of the Disjunction Strengthening Procedure

In this section we want to evaluate the impact of the disjunction improvement procedure
on the branching phase. We have already seen that GD is able to outperform SD in several
respects. We want to see if the same holds true for IGD. Therefore, we design a similar
experiment: we branch for 1000 nodes, and compare the integrality gap closed by each
method (or the number of nodes, for instances solved to optimality in less than 1000
nodes). In this experiment, generating fewer feasible nodes is clearly an advantage, as
it allows to progress further in the tree. Note that IGD can only be applied on mixed-
integer instances, because the disjunction strengthening procedure requires the presence
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Table 2. Comparison of SD and GD after eight levels of branching. Cut-and-branch.

Percentage gap closed
average (# better)

Simple disjunctions (SD): 5.6% (11)
GMI disjunctions (GD): 7.4% (52)

Active nodes at level 9
average (# better)

Simple disjunctions (SD): 107.6 (23)
GMI disjunctions (GD): 81.6 (44)

Gap closed and active nodes together
# better

Simple disjunctions (SD): 6
GMI disjunctions (GD): 39

of continuous variable. Thus, for this experiment the test set consists of the 57 instances
with more than one continuous variable only.

Since we are focusing on closing more integrality gap, in this experiment we set γ =
1 in Eq. (11). Besides, to speed up the computations, we do not apply strong branching to
all possible branching disjunctions, but only to the 10 most promising ones. This setting
is meant to mimick more closely what is done in commercial software, since strong
branching can be very expensive. This allows us to better evaluate the computational
overhead introduced by branching on split disjunctions. The most promising disjunctions
are chosen as the 10 variables with larges fractional variable (for SD), or as the split
disjunctions with largest distance cut off by the corresponding intersection cut (for GD
and IGD).

For IGD, after some preliminary testing, we decided to set M|Rk | = 50, i.e., we
combine at most 50 rows during the disjunction strenghtening phase.

Table 3 shows that the increase in the gap closed per node by branching on GMI
disjunctions is large compared to branching on single variables. Besides, the IGD method
seems to be on average superior in all respects to the two other methods, as it closes more
gap for the unsolved instances under 1000 nodes, and requires less nodes for the solved
instances. This is also evident if we compare the number of instances where each method
closes at least the same absolute gap as the other two methods: IGD ranks first with 36
instances over 57.

On the instances solved by all methods, SD is roughly twice as fast as GD and IGD.
Moreover, if we consider only the instances not solved by any method (i.e., all branch-
ing algorithms solve 1000 nodes without reaching optimality) we obtain the following
average times:

• SD: 32.59 seconds;
• GD: 150.61 seconds;
• IGD: 176.78 seconds.

This suggests that branching on split disjunctions introduces a significant computational
overhead at each node with respect to branching on simple disjunctions. The average
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Table 3. Results on mixed-integer instances after 1000 solved nodes

Number of solved instances

Simple disjunctions (SD): 15
GMI disjunctions (GD): 20
Improved GMI disjunctions (IGD): 20

Average number of nodes
on instances solved by all methods

Simple disjunctions (SD): 125.6
GMI disjunctions (GD): 98.1
Improved GMI disjunctions (IGD): 75.3

Average CPU time [sec]
on instances solved by all methods

Simple disjunctions (SD): 2.53
GMI disjunctions (GD): 5.23
Improved GMI disjunctions (IGD): 4.79

Average gap closed
on instances not solved by any method

Simple disjunctions (SD): 9.02%
GMI disjunctions (GD): 12.99%
Improved GMI disjunctions (IGD): 13.30%

Number of instances with largest closed gap
(at least as much as the other methods)

Simple disjunctions (SD): 34
GMI disjunctions (GD): 33
Improved GMI disjunctions (IGD): 36

time spent per node by the three methods, recorded as the geometric mean of the average
time spent per node over all the instances, is as follows:

• SD: 0.02 seconds;
• GD: 0.08 seconds;
• IGD: 0.10 seconds.

Therefore, the most evident drawback of branching on split disjunctions is that it is slower
than using simple disjunctions. It is slower in several respects: the first reason is that the
computations at each node take longer. This is because we have to compute the distance
cut off by the GMI cut associated with each row of the simplex tableau, and the reduction
step proposed in Section 5 involves the solution of an M|Rk | × M|Rk | linear system for
each row which is improved, where we chose M|Rk | = 50. All these computations are
carried out several times, thus the overhead per node with respect to branching on simple
disjunctions is significant. Additionally, generating the GMI disjunctions requires the
computation of the optimal simplex tableau, which is not necessary (and is typically not
carried out) when branching on single variables. The second reason is that, by branching
on GMI disjunctions, we add one (or more) rows to the formulation of children nodes,
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which may result in a slowdown of the LP solution process. On the other hand, branching
on simple disjunctions involves only a change in the bounds of some variables, thus the
size of the LP does not increase.

In summary, computational experience with branching on split disjunctions shows
that the size of the enumeration tree can be reduced by a factor of two or more on av-
erage. This is not quite sufficient to compensate for the increased computing time per
node. A possibility for overcoming this drawback is to combine branching on single vari-
ables and on split disjunctions, using the latter disjunctions only when the gap closed is
significantly greater.
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Convex Discrete Optimization
Shmuel ONN

Technion, Israel

Abstract. We develop an algorithmic theory of convex optimization over discrete
sets. Using a combination of algebraic and geometric tools we are able to provide
polynomial time algorithms for solving broad classes of convex combinatorial op-
timization problems and convex integer programming problems in variable dimen-
sion. We discuss some of the many applications of this theory including to quadratic
programming, matroids, bin packing and cutting-stock problems, vector partition-
ing and clustering, multiway transportation problems, and privacy and confidential
statistical data disclosure. Highlights of our work include a strongly polynomial
time algorithm for convex and linear combinatorial optimization over any family
presented by a membership oracle when the underlying polytope has few edge-
directions; a new theory of so-termed n-fold integer programming, yielding poly-
nomial time solution of important and natural classes of convex and linear integer
programming problems in variable dimension; and a complete complexity classifi-
cation of high dimensional transportation problems, with practical applications to
fundamental problems in privacy and confidential statistical data disclosure.

Keywords. Integer programming, combinatorial optimization, discrete optimiza-
tion, nonlinear optimization, convex optimization, multi criteria optimization,
polynomial time, transportation problem, multiindex transportation problem,
matroid, spanning tree, partitioning, clustering, polytope, zonotope, edge direction,
test set, augmentation, Graver base, Graver complexity, n-fold integer program-
ming, contingency table, statistical table, multiway table, margin, privacy in
databases, disclosure control, data security

1. Introduction

The general linear discrete optimization problem can be posed as follows.

Linear Discrete Optimization. Given a set S ⊆ Zn of integer points and an integer
vector w ∈ Zn, find an x ∈ S maximizing the standard inner product wx :=

∑n
i=1 wi xi.

The algorithmic complexity of this problem, which includes integer programming
and combinatorial optimization as special cases, depends on the presentation of the set
S of feasible points. In integer programming, this set is presented as the set of integer
points satisfying a given system of linear inequalities, which in standard form is given by

S = {x ∈ Nn : Ax = b},

where N stands for the nonnegative integers, A ∈ Zm×n is an m × n integer matrix, and
b ∈ Zm is an integer vector. The input for the problem then consists of A, b,w. In combi-
natorial optimization, S ⊆ {0, 1}n is a set of {0, 1}-vectors, often interpreted as a family of
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subsets of a ground set N := {1, . . . , n}, where each x ∈ S is the indicator of its support
supp(x) ⊆ N. The set S is presented implicitly and compactly, say as the set of indica-
tors of subsets of edges in a graph G satisfying a given combinatorial property (such as
being a matching, a forest, and so on), in which case the input is G,w. Alternatively, S
is given by an oracle, such as a membership oracle which, queried on x ∈ {0, 1}n, asserts
whether or not x ∈ S , in which case the algorithmic complexity also includes a count of
the number of oracle queries needed to solve the problem.

Here we study the following broad generalization of linear discrete optimization.

Convex Discrete Optimization. Given a set S ⊆ Zn, vectors w1, . . . ,wd ∈ Zn, and a
convex functional c : Rd → R, find an x ∈ S maximizing c(w1x, . . . ,wd x).

This problem can be interpreted as multi-objective linear discrete optimization:
given d linear functionals w1 x, . . . ,wd x representing the values of points x ∈ S under d
criteria, the goal is to maximize their “convex balancing” defined by c(w1x, . . . ,wd x). In
fact, we have a hierarchy of problems of increasing generality and complexity, parame-
terized by the number d of linear functionals: at the bottom lies the linear discrete opti-
mization problem, recovered as the special case of d = 1 and c the identity on R; and at
the top lies the problem of maximizing an arbitrary convex functional over the feasible
set S , arising with d = n and with wi = 1i the ith standard unit vector in Rn for all i.

The algorithmic complexity of the convex discrete optimization problem depends
on the presentation of the set S of feasible points as in the linear case, as well as on the
presentation of the convex functional c. When S is presented as the set of integer points
satisfying a given system of linear inequalities we also refer to the problem as convex
integer programming, and when S ⊆ {0, 1}n and is presented implicitly or by an oracle
we also refer to the problem as convex combinatorial optimization. As for the convex
functional c, we will assume throughout that it is presented by a comparison oracle that,
queried on x, y ∈ Rd , asserts whether or not c(x) ≤ c(y). This is a very broad presentation
that reveals little information on the function, making the problem, on the one hand, very
expressive and applicable, but on the other hand, very hard to solve.

There is a massive body of knowledge on the complexity of linear discrete opti-
mization — in particular (linear) integer programming [1] and (linear) combinatorial op-
timization [2]. The purpose of this monograph is to provide the first comprehensive uni-
fied treatment of the extended convex discrete optimization problem. The monograph
follows the outline of five lectures given by the author in the Séminaire de mathématiques
supérieures Series, Université de Montréal, during June 2006. Colorful slides of theses
lectures are available online at [3] and can be used as a visual supplement to this mono-
graph. The monograph has been written under the support of the ISF — Israel Science
Foundation. The theory developed here is based on and is a culmination of several recent
papers including [4–17] written in collaboration with several colleagues — Eric Babson,
Jesus De Loera, Komei Fukuda, Raymond Hemmecke, Frank Hwang, Vera Rosta, Uriel
Rothblum, Leonard Schulman, Bernd Sturmfels, Rekha Thomas, and Robert Weisman-
tel. By developing and using a combination of geometric and algebraic tools, we are able
to provide polynomial time algorithms for several broad classes of convex discrete opti-
mization problems. We also discuss in detail some of the many applications of our the-
ory, including to quadratic programming, matroids, bin packing and cutting-stock prob-
lems, vector partitioning and clustering, multiway transportation problems, and privacy
and confidential statistical data disclosure.
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We hope that this monograph will, on the one hand, allow users of discrete optimiza-
tion to enjoy the new powerful modelling and expressive capability of convex discrete
optimization along with its broad polynomial time solvability, and on the other hand,
stimulate more research on this new and fascinating class of problems, their complexity,
and the study of various relaxations, bounds, and approximations for such problems.

1.1. Limitations

Convex discrete optimization is generally intractable even for small fixed d, since already
for d = 1 it includes linear integer programming which is NP-hard. When d is a variable
part of the input, even very simple special cases are NP-hard, such as the following
problem, so-called positive semi-definite quadratic binary programming,

max{(w1 x)2 + · · · + (wnx)2 : x ∈ Nn, xi ≤ 1, i = 1, . . . , n}.

Therefore, throughout this monograph we will assume that d is fixed (but arbitrary).
As explained above, we also assume throughout that the convex functional c which

constitutes part of the data for the convex discrete optimization problem is presented by
a comparison oracle. Under such broad presentation, the problem is generally very hard.
In particular, if the feasible set is S := {x ∈ Nn : Ax = b} and the underlying polyhedron
P := {x ∈ Rn

+ : Ax = b} is unbounded, then the problem is inaccessible even in one
variable with no equation constraints. Indeed, consider the following family of univariate
convex integer programs with convex functions parameterized by −∞ < u ≤ ∞,

max{cu(x) : x ∈ N}, cu(x) :=

⎧⎪⎪⎨⎪⎪⎩−x, if x < u;
x − 2u, if x ≥ u.

Consider any algorithm attempting to solve the problem and let u be the maximum value
of x in all queries to the oracle of c. Then the algorithm can not distinguish between
the problem with cu, whose objective function is unbounded, and the problem with c∞,
whose optimal objective value is 0. Thus, convex discrete optimization (with an oracle
presented functional) over an infinite set S ⊂ Zn is quite hopeless. Therefore, an algo-
rithm that solves the convex discrete optimization problem will either return an optimal
solution, or assert that the problem is infeasible, or assert that the underlying polyhedron
is unbounded. In fact, in most applications, such as in combinatorial optimization with
S ⊆ {0, 1}n or integer programming with S := {x ∈ Zn : Ax = b, l ≤ x ≤ u} and l, u ∈ Zn,
the set S is finite and the problem of unboundedness does not arise.

1.2. Outline and Overview of Main Results and Applications

We now outline the structure of this monograph and provide a brief overview of what
we consider to be our main results and main applications. The precise relevant defini-
tions and statements of the theorems and corollaries mentioned here are provided in the
relevant sections in the monograph body. As mentioned above, most of these results are
adaptations or extensions of results from one of the papers [4–17]. The monograph gives
many more applications and results that may turn out to be useful in future development
of the theory of convex discrete optimization.
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The rest of the monograph consists of five sections. While the results evolve from
one section to the next, it is quite easy to read the sections independently of each other
(while just browsing now and then for relevant definitions and results). Specifically, Sec-
tion 3 uses definitions and the main result of Section 2; Section 5 uses definitions and
results from Sections 2 and 4; and Section 6 uses the main results of Sections 4 and 5.

In Section 2 we show how to reduce the convex discrete optimization problem over
S ⊂ Zn to strongly polynomially many linear discrete optimization counterparts over S ,
provided that the convex hull conv(S ) satisfies a suitable geometric condition, as follows.

Theorem 2.4. For every fixed d, the convex discrete optimization problem over any fi-
nite S ⊂ Zn presented by a linear discrete optimization oracle and endowed with a set
covering all edge-directions of conv(S ), can be solved in strongly polynomial time.

This result will be incorporated in the polynomial time algorithms for convex com-
binatorial optimization and convex integer programming to be developed in §3 and §5.

In Section 3 we discuss convex combinatorial optimization. The main result is that
convex combinatorial optimization over a set S ⊆ {0, 1}n presented by a membership ora-
cle can be solved in strongly polynomial time provided it is endowed with a set covering
all edge-directions of conv(S ). In particular, the standard linear combinatorial optimiza-
tion problem over S can be solved in strongly polynomial time as well.

Theorem 3.5. For every fixed d, the convex combinatorial optimization problem over
any S ⊆ {0, 1}n presented by a membership oracle and endowed with a set covering all
edge-directions of the polytope conv(S ), can be solved in strongly polynomial time.

An important application of Theorem 3.5 concerns convex matroid optimization.

Corollary 3.11. For every fixed d, convex combinatorial optimization over the family of
bases of a matroid presented by membership oracle is strongly polynomial time solvable.

In Section 4 we develop the theory of linear n-fold integer programming. As a con-
sequence of this theory we are able to solve a broad class of linear integer program-
ming problems in variable dimension in polynomial time, in contrast with the general
intractability of linear integer programming. The main theorem here may seem a bit tech-
nical at a first glance, but is really very natural and has many applications discussed in
detail in §4, §5 and §6. To state it we need a definition. Given an (r + s) × t matrix A, let
A1 be its r × t sub-matrix consisting of the first r rows and let A2 be its s × t sub-matrix
consisting of the last s rows. We refer to A explicitly as (r + s) × t matrix, since the defi-
nition below depends also on r and s and not only on the entries of A. The n-fold matrix
of an (r + s) × t matrix A is then defined to be the following (r + ns) × nt matrix,

A(n) := (1n ⊗ A1) ⊕ (In ⊗ A2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A1 A1 · · · A1
A2 0 0 · · · 0
0 A2 0 · · · 0
...
...
...
. . .
...

0 0 0 · · · A2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Given now any n ∈ N, lower and upper bounds l, u ∈ Znt
∞ with Z∞ := Z({±∞}, right-hand

side b ∈ Zr+ns, and linear functional wx with w ∈ Znt, the corresponding linear n-fold
integer programming problem is the following program in variable dimension nt,

max{wx : x ∈ Znt, A(n)x = b, l ≤ x ≤ u}.

The main theorem of §4 asserts that such integer programs are polynomial time solvable.

Theorem 4.11. For every fixed (r + s) × t integer matrix A, the linear n-fold integer
programming problem with any n, l, u, b, and w can be solved in polynomial time.

Theorem 4.11 has very important applications to high-dimensional transportation
problems which are discussed in §4.5.1 and in more detail in §6. Another major applica-
tion concerns bin packing problems, where items of several types are to be packed into
bins so as to maximize packing utility subject to weight constraints. This includes as a
special case the classical cutting-stock problem of [18]. These are discussed in detail in
§4.5.2.

Corollary 4.15. For every fixed number t of types and type weights v1, . . . , vt, the corre-
sponding integer bin packing and cutting-stock problems are polynomial time solvable.

In Section 5 we discuss convex integer programming, where the feasible set S is
presented as the set of integer points satisfying a given system of linear inequalities. In
particular, we consider convex integer programming over n-fold systems for any fixed
(but arbitrary) (r + s) × t matrix A, where, given n ∈ N, vectors l, u ∈ Znt

∞, b ∈ Zr+ns and
w1, . . . ,wd ∈ Znt, and convex functional c : Rd → R, the problem is

max{c(w1 x, . . . ,wd x) : x ∈ Znt, A(n)x = b, l ≤ x ≤ u}.

The main theorem of §5 is the following extension of Theorem 4.11, asserting that convex
integer programming over n-fold systems is polynomial time solvable as well.

Theorem 5.5. For every fixed d and (r + s) × t integer matrix A, convex n-fold integer
programming with any n, l, u, b,w1, . . . ,wd, and c can be solved in polynomial time.

Theorem 5.5 broadly extends the class of objective functions that can be efficiently
maximized over n-fold systems. Thus, all applications discussed in §4.5 automatically
extend accordingly. These include convex high-dimensional transportation problems and
convex bin packing and cutting-stock problems, which are discussed in detail in §5.4.1
and §6.

Another important application of Theorem 5.5 concerns vector partitioning prob-
lems which have applications in many areas including load balancing, circuit layout,
ranking, cluster analysis, inventory, and reliability, see, e.g., [11, 12, 16, 19, 20] and the
references therein. The problem is to partition n items among p players so as to maxi-
mize social utility. With each item is associated a k-dimensional vector representing its
utility under k criteria. The social utility of a partition is a convex function of the sums
of vectors of items that each player receives. In the constrained version of the problem,
there are also restrictions on the number of items each player can receive. We have the
following consequence of Theorem 5.5; more details on this application are in §5.4.2.
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Corollary 5.10. For every fixed number p of players and number k of criteria, the con-
strained and unconstrained vector partition problems with any item vectors, convex util-
ity, and constraints on the number of item per player, are polynomial time solvable.

In the last Section 6 we discuss multiway (high-dimensional) transportation prob-
lems and secure statistical data disclosure. Multiway transportation problems form a very
important class of discrete optimization problems and have been used and studied ex-
tensively in the operations research and mathematical programming literature, as well as
in the statistics literature in the context of secure statistical data disclosure and manage-
ment by public agencies, see, e.g., [21–30] and the references therein. The feasible points
in a transportation problem are the multiway tables (“contingency tables” in statistics)
such that the sums of entries over some of their lower dimensional sub-tables such as
lines or planes (“margins” in statistics) are specified. We completely settle the algorith-
mic complexity of treating multiway tables and discuss the applications to transportation
problems and secure statistical data disclosure, as follows.

In §6.2 we show that “short” 3-way transportation problems, over r × c × 3 tables
with variable number r of rows and variable number c of columns but fixed small number
3 of layers (hence “short”), are universal in that every integer programming problem is
such a problem (see §6.2 for the precise stronger statement and for more details).

Theorem 6.1. Every linear integer programming problem max{cy : y ∈ Nn : Ay = b} is
polynomial time representable as a short 3-way line-sum transportation problem

max
{
wx : x ∈ Nr×c×3 :

∑
i

xi, j,k = z j,k,
∑

j
xi, j,k = vi,k,

∑
k

xi, j,k = ui, j

}
.

In §6.3 we discuss k-way transportation problems of any dimension k. We provide
the first polynomial time algorithm for convex and linear “long” (k+1)-way transportation
problems, over m1 × · · · × mk × n tables, with k and m1, . . . ,mk fixed (but arbitrary), and
variable number n of layers (hence “long”). This is best possible in view of Theorem 6.1.
Our algorithm works for any hierarchical collection of margins: this captures common
margin collections such as all line-sums, all plane-sums, and more generally all h-flat
sums for any 0 ≤ h ≤ k (see §6.1 for more details). We point out that even for the very
special case of linear integer transportation over 3×3×n tables with specified line-sums,
our polynomial time algorithm is the only one known. We prove the following statement.

Corollary 6.4. For every fixed d, k,m1, . . . ,mk and family F of subsets of {1, . . . , k + 1}
specifying a hierarchical collection of margins, the convex (and in particular linear) long
transportation problem over m1 × · · · × mk × n tables is polynomial time solvable.

In our last subsection §6.4 we discuss an important application concerning privacy
in statistical databases. It is a common practice in the disclosure of a multiway table
containing sensitive data to release some table margins rather than the table itself. Once
the margins are released, the security of any specific entry of the table is related to the
set of possible values that can occur in that entry in any table having the same margins
as those of the source table in the data base. In particular, if this set consists of a unique
value, that of the source table, then this entry can be exposed and security can be violated.
We show that for multiway tables where one category is significantly richer than the
others, that is, when each sample point can take many values in one category and only
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few values in the other categories, it is possible to check entry-uniqueness in polynomial
time, allowing disclosing agencies to make learned decisions on secure disclosure.

Corollary 6.6. For every fixed k,m1, . . . ,mk and family F of subsets of {1, . . . , k + 1}
specifying a hierarchical collection of margins to be disclosed, it can be decided in poly-
nomial time whether any specified entry xi1,...,ik+1 is the same in all long m1 × · · · × mk × n
tables with the disclosed margins, and hence at risk of exposure.

1.3. Terminology and Complexity

We use R for the reals, R+ for the nonnegative reals, Z for the integers, and N for the
nonnegative integers. The sign of a real number r is denoted by sign(r) ∈ {0,−1, 1} and
its absolute value is denoted by |r|. The ith standard unit vector in Rn is denoted by 1i.
The support of x ∈ Rn is the index set supp(x) := {i : xi � 0} of nonzero entries of x.
The indicator of a subset I ⊆ {1, . . . , n} is the vector 1I :=

∑
i∈I 1i, so supp(1I) = I. When

several vectors are indexed by subscripts, w1, . . . ,wd ∈ Rn, their entries are indicated
by pairs of subscripts, wi = (wi,1, . . . ,wi,n). When vectors are indexed by superscripts,
x1, . . . , xk ∈ Rn, their entries are indicated by subscripts, xi = (xi

1, . . . , x
i
n). The integer

lattice Zn is naturally embedded in Rn. The space Rn is endowed with the standard inner
product which, for w, x ∈ Rn, is given by wx :=

∑n
i=1 wixi. Vectors w in Rn will also be

regarded as linear functionals on Rn via the inner product wx. Thus, we refer to elements
of Rn as points, vectors, or linear functionals, as will be appropriate from the context.
The convex hull of a set S ⊆ Rn is denoted by conv(S ) and the set of vertices of a
polyhedron P ⊆ Rn is denoted by vert(P). In linear discrete optimization over S ⊆ Zn,
the facets of conv(S ) play an important role, see Chvátal [31] and the references therein
for earlier work, and Grötschel, Lovász and Schrijver [2, 32] for the later culmination in
the equivalence of separation and linear optimization via the ellipsoid method of Yudin
and Nemirovskii [33]. As will turn out in §2, in convex discrete optimization over S ,
the edges of conv(S ) play an important role (most significantly in a way which is not
related to the Hirsch conjecture discussed in [34]). We therefore use extensively convex
polytopes, for which we follow the terminology of [35, 36].

We often assume that the feasible set S ⊆ Zn is finite. We then define its radius to
be its l∞ radius ρ(S ) := max{‖x‖∞ : x ∈ S } where, as usual, ‖x‖∞ := maxn

i=1|xi|. In other
words, ρ(S ) is the smallest ρ ∈ N such that S is contained in the cube [−ρ, ρ]n.

Our algorithms are applied to rational data only, and the time complexity is as in
the standard Turing machine model, see, e.g., [1, 37, 38]. The input typically consists of
rational (usually integer) numbers, vectors, matrices, and finite sets of such objects. The
binary length of an integer number z ∈ Z is defined to be the number of bits in its binary
representation, 〈z〉 := 1 + �log2(|z| + 1)� (with the extra bit for the sign). The length of a
rational number presented as a fraction r = p/q with p, q ∈ Z is 〈r〉 := 〈p〉 + 〈q〉. The
length of an m × n matrix A (and in particular of a vector) is the sum 〈A〉 :=

∑
i, j〈ai, j〉

of the lengths of its entries. Note that the length of A is no smaller than the number of
entries, 〈A〉 ≥ mn. Therefore, when A is, say, part of an input to an algorithm, with m, n
variable, the length 〈A〉 already incorporates mn, and so we will typically not account
additionally for m, n directly. But sometimes, especially in results related to n-fold integer
programming, we will also emphasize n as part of the input length. Similarly, the length
of a finite set E of numbers, vectors or matrices is the sum of lengths of its elements and
hence, since 〈E〉 ≥ |E|, automatically accounts for its cardinality.
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Some input numbers affect the running time of some algorithms through their unary
presentation, resulting in so-called “pseudo polynomial” running time. The unary length
of an integer number z ∈ Z is the number |z|+1 of bits in its unary representation (again, an
extra bit for the sign). The unary length of a rational number, vector, matrix, or finite set
of such objects are defined again as the sums of lengths of their numerical constituents,
and is again no smaller than the number of such numerical constituents.

When studying convex and linear integer programming in §4 and §5 we sometimes
have lower and upper bound vectors l, u with entries in Z∞ := Z( {±∞}. Both binary and
unary lengths of a ±∞ entry are constant, say 3 by encoding ±∞ := ±“00.”

To make the input encoding precise, we introduce the following notation. In ev-
ery algorithmic statement we describe explicitly the input encoding, by listing in square
brackets all input objects affecting the running time. Unary encoded objects are listed
directly whereas binary encoded objects are listed in terms of their length. For example,
as is often the case, if the input of an algorithm consists of binary encoded vectors (linear
functionals) w1, . . . ,wd ∈ Zn and unary encoded integer ρ ∈ N (bounding the radius ρ(S )
of the feasible set) then we will indicate that the input is encoded as [ρ, 〈w1, . . . ,wd〉].

Some of our algorithms are strongly polynomial time in the sense of [39]. For this,
part of the input is regarded as “special.” An algorithm is then strongly polynomial time
if it is polynomial time in the usual Turing sense with respect to all input, and in addition,
the number of arithmetic operations (additions, subtractions, multiplications, divisions,
and comparisons) it performs is polynomial in the special part of the input. To make this
precise, we extend our input encoding notation above by splitting the square bracketed
expression indicating the input encoding into a “left” side and a “right” side, separated
by semicolon, where the entire input is described on the right and the special part of the
input on the left. For example, Theorem 2.4, asserting that the algorithm underlying it is
strongly polynomial with data encoded as [n, |E|; 〈ρ(S ),w1, . . . ,wd, E〉], where ρ(S ) ∈ N,
w1, . . . ,wd ∈ Zn and E ⊂ Zn, means that the running time is polynomial in the binary
length of ρ(S ), w1, . . . ,wd, and E, and the number of arithmetic operations is polynomial
in n and the cardinality |E|, which constitute the special part of the input.

Often, as in [2], part of the input is presented by oracles. Then the running time
and the number of arithmetic operations count also the number of oracle queries. An
oracle algorithm is polynomial time if its running time, including the number of oracle
queries, and the manipulations of numbers, some of which are answers to oracle queries,
is polynomial in the length of the input encoding. An oracle algorithm is strongly polyno-
mial time (with specified input encoding as above), if it is polynomial time in the entire
input (on the “right”), and in addition, the number of arithmetic operations it performs
(including oracle queries) is polynomial in the special part of the input (on the “left”).

2. Reducing Convex to Linear Discrete Optimization

In this section we show that when suitable auxiliary geometric information about the
convex hull conv(S ) of a finite set S ⊆ Zn is available, the convex discrete optimiza-
tion problem over S can be reduced to the solution of strongly polynomially many linear
discrete optimization counterparts over S . This result will be incorporated into the poly-
nomial time algorithms developed in §3 and §5 for convex combinatorial optimization
and convex integer programming respectively. In §2.1 we provide some preliminaries on
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edge-directions and zonotopes. In §2.2 we prove the reduction which is the main result
of this section. In §2.3 we prove a pseudo polynomial reduction for any finite set.

2.1. Edge-Directions and Zonotopes

We begin with some terminology and facts that play an important role in the sequel.
A direction of an edge (1-dimensional face) e = [u, v] of a polytope P is any nonzero
scalar multiple of u − v. A set of vectors E covers all edge-directions of P if it contains
a direction of each edge of P. The normal cone of a polytope P ⊂ Rn at its face F is the
(relatively open) cone CF

P of those linear functionals h ∈ Rn which are maximized over P
precisely at points of F. A polytope Z is a refinement of a polytope P if the normal cone
of every vertex of Z is contained in the normal cone of some vertex of P. If Z refines P
then, moreover, the closure of each normal cone of P is the union of closures of normal
cones of Z. The zonotope generated by a set of vectors E = {e1, . . . , em} in Rd is the
following polytope, which is the projection by E of the cube [−1, 1]m into Rd,

Z := zone(E) := conv
{ m∑

i=1
λiei : λi = ±1

}
⊂ Rd .

The following fact goes back to Minkowski, see [35].

Lemma 2.1. Let P be a polytope and let E be a finite set that covers all edge-directions
of P. Then the zonotope Z := zone(E) generated by E is a refinement of P.

Proof. Consider any vertex u of Z. Then u =
∑

e∈E λee for suitable λe = ±1. Thus, the
normal cone Cu

Z consists of those h satisfying hλee > 0 for all e. Pick any ĥ ∈ Cu
Z and

let v be a vertex of P at which ĥ is maximized over P. Consider any edge [v,w] of P.
Then v − w = αee for some scalar αe � 0 and some e ∈ E, and 0 ≤ ĥ(v − w) = ĥαee,
implying αeλe > 0. It follows that every h ∈ Cu

Z satisfies h(v − w) > 0 for every edge of P
containing v. Therefore h is maximized over P uniquely at v and hence is in the cone Cv

P
of P at v. This shows Cu

Z ⊆ Cv
P. Since u was arbitrary, it follows that the normal cone of

every vertex of Z is contained in the normal cone of some vertex of P.

The next lemma provides bounds on the number of vertices of any zonotope and
on the algorithmic complexity of constructing its vertices, each vertex along with a lin-
ear functional maximized over the zonotope uniquely at that vertex. The bound on the
number of vertices has been rediscovered many times over the years. An early reference
is [40], stated in the dual form of 2-partitions. A more general treatment is [41]. Recent
extensions to p-partitions for any p are in [12, 42], and to Minkowski sums of arbitrary
polytopes are in [43]. Interestingly, already in [40], back in 1967, the question was raised
about the algorithmic complexity of the problem; this is now settled in [44,45] (the latter
reference correcting the former). We state the precise bounds on the number of vertices
and arithmetic complexity, but will need later only that for any fixed d the bounds are
polynomial in the number of generators. Therefore, below we only outline a proof that
the bounds are polynomial. Complete details are in the above references.

Lemma 2.2. The number of vertices of any zonotope Z := zone(E) generated by a set E
of m vectors inRd is at most 2

∑d−1
k=0

(
m−1

k

)
. For every fixed d, there is a strongly polynomial
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time algorithm that, given E ⊂ Zd, encoded as [m := |E|; 〈E〉], outputs every vertex v of
Z := zone(E) along with a linear functional hv ∈ Zd maximized over Z uniquely at v,
using O(md−1) arithmetics operations for d ≥ 3 and O(md) for d ≤ 2.

Proof. We only outline a proof that, for every fixed d, the polynomial bounds O(md−1) on
the number of vertices and O(md) on the arithmetic complexity hold. We assume that E
linearly spans Rd (else the dimension can be reduced) and is generic, that is, no d points
of E lie on a linear hyperplane (one containing the origin). In particular, 0 � E. The same
bound for arbitrary E then follows using a perturbation argument (cf. [12]).

Each oriented linear hyperplane H = {x ∈ Rd : hx = 0} with h ∈ Rd nonzero induces
a partition of E by E = H−

⊎
H0 ⊎

H+, with H− := {e ∈ E : he < 0}, E0 := E ∩ H,
and H+ := {e ∈ E : he > 0}. The vertices of Z = zone(E) are in bijection with ordered
2-partitions of E induced by such hyperplanes that avoid E. Indeed, if E = H−

⊎
H+

then the linear functional hv := h defining H is maximized over Z uniquely at the vertex
v :=

∑
{e : e ∈ H+} −

∑
{e : e ∈ H−} of Z.

We now show how to enumerate all such 2-partitions and hence vertices of Z. Let M
be any of the

(
m

d−1

)
subsets of E of size d−1. Since E is generic, M is linearly independent

and spans a unique linear hyperplane lin(M). Let Ĥ = {x ∈ Rd : ĥx = 0} be one of
the two orientations of the hyperplane lin(M). Note that Ĥ0 = M. Finally, let L be any
of the 2d−1 subsets of M. Since M is linearly independent, there is a g ∈ Rd which
linearly separates L from M \ L, namely, satisfies gx < 0 for all x ∈ L and gx > 0 for
all x ∈ M \ L. Furthermore, there is a sufficiently small ε > 0 such that the oriented
hyperplane H := {x ∈ Rd : hx = 0} defined by h := ĥ + εg avoids E and the 2-partition
induced by H satisfies H− = Ĥ−

⊎
L and H+ = Ĥ+

⊎
(M \ L). The corresponding vertex

of Z is v :=
∑

{e : e ∈ H+}−
∑

{e : e ∈ H−} and the corresponding linear functional which
is maximized over Z uniquely at v is hv := h = ĥ + εg.

We claim that any ordered 2-partition arises that way from some M, some orienta-
tion Ĥ of lin(M), and some L. Indeed, consider any oriented linear hyperplane H̃ avoid-
ing E. It can be perturbed to a suitable oriented Ĥ that touches precisely d − 1 points of
E. Put M := Ĥ0 so that Ĥ coincides with one of the two orientations of the hyperplane
lin(M) spanned by M, and put L := H̃− ∩ M. Let H be an oriented hyperplane obtained
from M, Ĥ and L by the above procedure. Then the ordered 2-partition E = H−

⊎
H+

induced by H coincides with the ordered 2-partition E = H̃−
⊎

H̃+ induced by H̃.
Since there are

(
m

d−1

)
many (d −1)-subsets M ⊆ E, two orientations Ĥ of lin(M), and

2d−1 subsets L ⊆ M, and d is fixed, the total number of 2-partitions and hence also the
total number of vertices of Z obey the upper bound 2d

(
m

d−1

)
= O(md−1). Furthermore, for

each choice of M, Ĥ and L, the linear functional ĥ defining Ĥ, as well as g, ε, hv = h =
ĥ + εg, and the vertex v =

∑
{e : e ∈ H+} −

∑
{e : e ∈ H−} of Z at which hv is uniquely

maximized over Z, can all be computed using O(m) arithmetic operations. This shows
the claimed bound O(md) on the arithmetic complexity.

We conclude with a simple fact about edge-directions of projections of polytopes.

Lemma 2.3. If E covers all edge-directions of a polytope P, and Q := ω(P) is the image
of P under a linear map ω : Rn → Rd, then ω(E) covers all edge-directions of Q.

Proof. Let f be a direction of an edge [x, y] of Q. Consider the face F := ω−1([x, y]) of
P. Let V be the set of vertices of F and let U = {u ∈ V : ω(u) = x}. Then for some u ∈ U
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and v ∈ V \U, there must be an edge [u, v] of F, and hence of P. Then ω(v) ∈ (x, y] hence
ω(v) = x + α f for some α � 0. Therefore, with e := (1/α)(v − u), a direction of the edge
[u, v] of P, we find that f = (1/α)

(
ω(v) − ω(u)

)
= ω(e) ∈ ω(E).

2.2. Strongly Polynomial Reduction of Convex to Linear Discrete Optimization

A linear discrete optimization oracle for a set S ⊆ Zn is one that, queried on w ∈ Zn,
either returns an optimal solution to the linear discrete optimization problem over S , that
is, an x∗ ∈ S satisfying wx∗ = max{wx : x ∈ S }, or asserts that none exists, that is, either
the problem is infeasible or the objective function is unbounded. We now show that a
set E covering all edge-directions of the polytope conv(S ) underlying a convex discrete
optimization problem over a finite set S ⊂ Zn allows to solve it by solving polynomially
many linear discrete optimization counterparts over S . The following theorem extends
and unifies the corresponding reductions in [15] and [10] for convex combinatorial opti-
mization and convex integer programming respectively. Recall from §1.3 that the radius
of a finite set S ⊂ Zn is defined to be ρ(S ) := max{|xi| : x ∈ S , i = 1, . . . , n}.

Theorem 2.4. For every fixed d there is a strongly polynomial time algorithm that,
given finite set S ⊂ Z

n presented by a linear discrete optimization oracle, inte-
ger vectors w1, . . . ,wd ∈ Zn, set E ⊂ Zn covering all edge-directions of conv(S ),
and convex functional c : Rd → R presented by a comparison oracle, encoded as
[n, |E|; 〈ρ(S ),w1, . . . ,wd, E〉], solves the convex discrete optimization problem

max{c(w1 x, . . . ,wd x) : x ∈ S }.

Proof. First, query the linear discrete optimization oracle presenting S on the trivial lin-
ear functional w = 0. If the oracle asserts that there is no optimal solution then S is empty
so terminate the algorithm asserting that no optimal solution exists to the convex discrete
optimization problem either. So assume the problem is feasible. Let P := conv(S ) ⊂ Rn

and Q := {(w1x, . . . ,wd x) : x ∈ P} ⊂ Rd. Then Q is a projection of P, and hence by
Lemma 2.3 the projection D := {(w1e, . . . ,wde) : e ∈ E} of the set E is a set covering all
edge-directions of Q. Let Z := zone(D) ⊂ Rd be the zonotope generated by D. Since d is
fixed, by Lemma 2.2 we can produce in strongly polynomial time all vertices of Z, every
vertex v along with a linear functional hv ∈ Zd maximized over Z uniquely at v. For each
of these polynomially many hv, repeat the following procedure. Define a vector gv ∈ Zn

by gv, j :=
∑d

i=1 wi, jhv,i for j = 1, . . . , n. Now query the linear discrete optimization oracle
presenting S on the linear functional w := gv ∈ Zn. Let xv ∈ S be the optimal solution
obtained from the oracle, and let zv := (w1xv, . . . ,wd xv) ∈ Q be its projection. Since
P = conv(S ), we have that xv is also a maximizer of gv over P. Since for every x ∈ P
and its projection z := (w1 x, . . . ,wd x) ∈ Q we have hvz = gvx, we conclude that zv is a
maximizer of hv over Q. Now we claim that each vertex u of Q equals some zv. Indeed,
since Z is a refinement of Q by Lemma 2.1, it follows that there is some vertex v of Z such
that hv is maximized over Q uniquely at u, and therefore u = zv. Since c(w1x, . . . ,wd x) is
convex on Rn and c is convex on Rd , we find that

max
x∈S

c(w1x, . . . ,wd x) = max
x∈P

c(w1x, . . . ,wd x) = max
z∈Q

c(z)

= max{c(u) : u vertex of Q} = max{c(zv) : v vertex of Z} .
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Using the comparison oracle of c, find a vertex v of Z attaining maximum value c(zv),
and output xv ∈ S , an optimal solution to the convex discrete optimization problem.

2.3. Pseudo Polynomial Reduction when Edge-Directions are not Available

Theorem 2.4 reduces convex discrete optimization to polynomially many linear dis-
crete optimization counterparts when a set covering all edge-directions of the underly-
ing polytope is available. However, often such a set is not available (see, e.g., [46] for
the important case of bipartite matching). We now show how to reduce convex discrete
optimization to many linear discrete optimization counterparts when a set covering all
edge-directions is not offhand available. In the absence of such a set, the problem is
much harder, and the algorithm below is polynomially bounded only in the unary length
of the radius ρ(S ) and of the linear functionals w1, . . . ,wd, rather than in their binary
length 〈ρ(S ),w1, . . . ,wd〉 as in the algorithm of Theorem 2.4. Moreover, an upper bound
ρ ≥ ρ(S ) on the radius of S is required to be given explicitly in advance as part of the
input.

Theorem 2.5. For every fixed d there is a polynomial time algorithm that, given finite
set S ⊆ Zn presented by a linear discrete optimization oracle, integer ρ ≥ ρ(S ), vectors
w1, . . . ,wd ∈ Zn, and convex functional c : Rd → R presented by a comparison oracle,
encoded as [ρ,w1, . . . ,wd], solves the convex discrete optimization problem

max{c(w1 x, . . . ,wd x) : x ∈ S }.

Proof. Let P := conv(S ) ⊂ Rn, let T := {(w1x, . . . ,wd x) : x ∈ S } be the projection of
S by w1, . . . ,wd, and let Q := conv(T ) ⊂ Rd be the corresponding projection of P. Let
r := nρmaxd

i=1‖wi‖∞ and let G := {−r, . . . ,−1, 0, 1, . . . , r}d. Then T ⊆ G and the number
(2r + 1)d of points of G is polynomially bounded in the input as encoded.

Let D := {u − v : u, v ∈ G, u � v} be the set of differences of pairs of distinct point
of G. It covers all edge-directions of Q since vert(Q) ⊆ T ⊆ G. Moreover, the number
of points of D is less than (2r + 1)2d and hence polynomial in the input. Now invoke
the algorithm of Theorem 2.4: while the algorithm requires a set E covering all edge-
directions of P, it needs E only to compute a set D covering all edge-directions of the
projection Q (see proof of Theorem 2.4), which here is computed directly.

3. Convex Combinatorial Optimization and More

In this section we discuss convex combinatorial optimization. The main result is that con-
vex combinatorial optimization over a set S ⊆ {0, 1}n presented by a membership oracle
can be solved in strongly polynomial time provided it is endowed with a set covering
all edge-directions of conv(S ). In particular, the standard linear combinatorial optimiza-
tion problem over S can be solved in strongly polynomial time as well. In §3.1 we pro-
vide some preparatory statements involving various oracle presentation of the feasible
set S . In §3.2 we combine these preparatory statements with Theorem 2.4 and prove the
main result of this section. An extension to arbitrary finite sets S ⊂ Zn endowed with
edge-directions is established in §3.3. We conclude with some applications in §3.4.
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As noted in the introduction, when S is contained in {0, 1}n we refer to discrete opti-
mization over S also as combinatorial optimization over S , to emphasize that S typically
represents a family F ⊆ 2N of subsets of a ground set N := {1, . . . , n} possessing some
combinatorial property of interest (for instance, the family of bases of a matroid over N,
see §3.4.2). The convex combinatorial optimization problem then also has the following
interpretation (taken in [13,15]). We are given a weightingω : N → Zd of elements of the
ground set by d-dimensional integer vectors. We interpret the weight vector ω( j) ∈ Zd

of element j as representing its value under d criteria (e.g., if N is the set of edges in a
network then such criteria may include profit, reliability, flow velocity, etc.). The weight
of a subset F ⊆ N is the sum ω(F) :=

∑
j∈F ω( j) of weights of its elements, representing

the total value of F under the d criteria. Now, given a convex functional c : Rd → R,
the objective function value of F ⊆ N is the “convex balancing” c

(
ω(F)

)
of the values

of the weight vector of F. The convex combinatorial optimization problem is to find a
family member F ∈ F maximizing c

(
ω(F)

)
. The usual linear combinatorial optimization

problem over F is the special case of d = 1 and c the identity on R. To cast a problem of
that form in our usual setup just let S := {1F : F ∈ F } ⊆ {0, 1}n be the set of indicators of
members of F and define weight vectors w1, . . . ,wd ∈ Zn by wi, j := ω( j)i for i = 1, . . . , d
and j = 1, . . . , n.

3.1. From Membership to Linear Optimization

A membership oracle for a set S ⊆ Zn is one that, queried on x ∈ Zn, asserts whether or
not x ∈ S . An augmentation oracle for S is one that, queried on x ∈ S and w ∈ Zn, either
returns an x̂ ∈ S with wx̂ > wx, i.e. a better point of S , or asserts that none exists, i.e. x
is optimal for the linear discrete optimization problem over S .

A membership oracle presentation of S is very broad and available in all reasonable
applications, but reveals little information on S , making it hard to use. However, as we
now show, the edge-directions of conv(S ) allow to convert membership to augmentation.

Lemma 3.1. There is a strongly polynomial time algorithm that, given set S ⊆ {0, 1}n

presented by a membership oracle, x ∈ S , w ∈ Zn, and set E ⊂ Zn covering all edge-
directions of the polytope conv(S ), encoded as [n, |E|; 〈x,w, E〉], either returns a better
point x̂ ∈ S , that is, one satisfying w > wx, or asserts that none exists.

Proof. Each edge of P := conv(S ) is the difference of two {0, 1}-vectors. Therefore, each
edge direction of P is, up to scaling, a {−1, 0, 1}-vector. Thus, scaling e := (1/‖e‖∞)e and
e := −e if necessary, we may and will assume that e ∈ {−1, 0, 1}n and we ≥ 0 for all
e ∈ E. Now, using the membership oracle, check if there is an e ∈ E such that x + e ∈ S
and we > 0. If there is such an e then output x̂ := x + e which is a better point, whereas
if there is no such e then terminate asserting that no better point exists.

Clearly, if the algorithm outputs an x̂ then it is indeed a better point. Conversely,
suppose x is not a maximizer of w over S . Since S ⊆ {0, 1}n, the point x is a vertex of
P. Since x is not a maximizer of w, there is an edge [x, x̂] of P with x̂ a vertex satisfying
wx̂ > wx. But then e := x̂ − x is the one {−1, 0, 1} edge-direction of [x, x̂] with we ≥ 0
and hence e ∈ E. Thus, the algorithm will find and output x̂ = x + e as it should.

An augmentation oracle presentation of a finite S allows to solve the linear discrete
optimization problem max{wx : x ∈ S } over S by starting from any feasible x ∈ S and

S. Onn / Convex Discrete Optimization 195



repeatedly augmenting it until an optimal solution x∗ ∈ S is reached. The next lemma
bounds the running time needed to reach optimality using this procedure. While the run-
ning time is polynomial in the binary length of the linear functional w and the initial
point x, it is more sensitive to the radius ρ(S ) of the feasible set S , and is polynomial
only in its unary length. The lemma is an adaptation of a result of [47,48] (stated therein
for {0, 1}-sets), which makes use of bit-scaling ideas going back to [49].

Lemma 3.2. There is a polynomial time algorithm that, given finite set S ⊂ Zn presented
by an augmentation oracle, x ∈ S , and w ∈ Zn, encoded as [ρ(S ), 〈x,w〉], provides an
optimal solution x∗ ∈ S to the linear discrete optimization problem max{wz : z ∈ S }.

Proof. Let k := maxn
j=1�log2(|wj| + 1)� and note that k ≤ 〈w〉. For i = 0, . . . , k define a

linear functional ui = (ui,1, . . . , ui,n) ∈ Zn by ui, j := sign(wj)�2i−k|wj|� for j = 1, . . . , n.
Then u0 = 0, uk = w, and ui − 2ui−1 ∈ {−1, 0, 1}n for all i = 1, . . . , k.

We now describe how to construct a sequence of points y0, y1, . . . , yk ∈ S such that
yi is an optimal solution to max{uiy : y ∈ S } for all i. First note that all points of S are
optimal for u0 = 0 and hence we can take y0 := x to be the point of S given as part of
the input. We now explain how to determine yi from yi−1 for i = 1, . . . , k. Suppose yi−1
has been determined. Set ỹ := yi−1. Query the augmentation oracle on ỹ ∈ S and ui; if the
oracle returns a better point ŷ then set ỹ := ŷ and repeat, whereas if it asserts that there is
no better point then the optimal solution for ui is read off to be yi := ỹ. We now bound
the number of calls to the oracle. Each time the oracle is queried on ỹ and ui and returns
a better point ŷ, the improvement is by at least one, i.e., ui(ŷ − ỹ) ≥ 1; this is so because
ui, ỹ and ŷ are integer. Thus, the number of necessary augmentations from yi−1 to yi is at
most the total improvement, which we claim satisfies

ui(yi − yi−1) = (ui − 2ui−1)(yi − yi−1) + 2ui−1(yi − yi−1) ≤ 2nρ + 0 = 2nρ,

where ρ := ρ(S ). Indeed, ui − 2ui−1 ∈ {−1, 0, 1}n and yi, yi−1 ∈ S ⊂ [−ρ, ρ]n imply
(ui − 2ui−1)(yi − yi−1) ≤ 2nρ; and yi−1 optimal for ui−1 gives ui−1(yi − yi−1) ≤ 0.

Thus, after a total number of at most 2nρk calls to the oracle we obtain yk which is
optimal for uk. Since w = uk we can output x∗ := yk as the desired optimal solution to
the linear discrete optimization problem. Clearly the number 2nρk of calls to the oracle,
as well as the number of arithmetic operations and binary length of numbers occurring
during the algorithm, are polynomial in ρ(S ), 〈x,w〉. This completes the proof.

We conclude this preparatory subsection by recording the following result of [50]
which incorporates the heavy simultaneous Diophantine approximation of [51].

Proposition 3.3. There is a strongly polynomial time algorithm that, given w ∈ Zn,
encoded as [n; 〈w〉], produces ŵ ∈ Zn, whose binary length 〈ŵ〉 is polynomially bounded
in n and independent of w, and with sign(ŵz) = sign(wz) for every z ∈ {−1, 0, 1}n.

3.2. Linear and Convex Combinatorial Optimization in Strongly Polynomial Time

Combining the preparatory statements of §3.1 with Theorem 2.4, we can now solve the
convex combinatorial optimization over a set S ⊆ {0, 1}n presented by a membership
oracle and endowed with a set covering all edge-directions of conv(S ) in strongly poly-
nomial time. We start with the special case of linear combinatorial optimization.
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Theorem 3.4. There is a strongly polynomial time algorithm that, given set S ⊆ {0, 1}n

presented by a membership oracle, x ∈ S , w ∈ Zn, and set E ⊂ Zn covering all edge-
directions of the polytope conv(S ), encoded as [n, |E|; 〈x,w, E〉], provides an optimal
solution x∗ ∈ S to the linear combinatorial optimization problem max{wz : z ∈ S }.

Proof. First, an augmentation oracle for S can be simulated using the membership oracle,
in strongly polynomial time, by applying the algorithm of Lemma 3.1

Next, using the simulated augmentation oracle for S , we can now do linear opti-
mization over S in strongly polynomial time as follows. First, apply to w the algorithm
of Proposition 3.3 and obtain ŵ ∈ Zn whose binary length 〈ŵ〉 is polynomially bounded
in n, which satisfies sign(ŵz) = sign(wz) for every z ∈ {−1, 0, 1}n. Since S ⊆ {0, 1}n, it is
finite and has radius ρ(S ) = 1. Now apply the algorithm of Lemma 3.2 to S , x and ŵ, and
obtain a maximizer x∗ of ŵ over S . For every y ∈ {0, 1}n we then have x∗ − y ∈ {−1, 0, 1}n

and hence sign
(
w(x∗ − y)

)
= sign

(
ŵ(x∗ − y)

)
. So x∗ is also a maximizer of w over S and

hence an optimal solution to the given linear combinatorial optimization problem. Now,
ρ(S ) = 1, 〈ŵ〉 is polynomial in n, and x ∈ {0, 1}n and hence 〈x〉 is linear in n. Thus, the
entire length of the input [ρ(S ), 〈x, ŵ〉] to the polynomial-time algorithm of Lemma 3.2 is
polynomial in n, and so its running time is in fact strongly polynomial on that input.

Combining Theorems 2.4 and 3.4 we recover at once the following result of [15].

Theorem 3.5. For every fixed d there is a strongly polynomial time algorithm that, given
set S ⊆ {0, 1}n presented by a membership oracle, x ∈ S , vectors w1, . . . ,wd ∈ Zn,
set E ⊂ Zn covering all edge-directions of the polytope conv(S ), and convex functional
c : Rd → R presented by a comparison oracle, encoded as [n, |E|; 〈x,w1, . . . ,wd, E〉],
provides an optimal solution x∗ ∈ S to the convex combinatorial optimization problem

max{c(w1z, . . . ,wdz) : z ∈ S }.

Proof. Since S is nonempty, a linear discrete optimization oracle for S can be simulated
in strongly polynomial time by the algorithm of Theorem 3.4. Using this simulated ora-
cle, we can apply the algorithm of Theorem 2.4 and solve the given convex combinatorial
optimization problem in strongly polynomial time.

3.3. Linear and Convex Discrete Optimization over any Set in Pseudo Polynomial Time

In §3.2 above we developed strongly polynomial time algorithms for linear and convex
discrete optimization over {0, 1}-sets. We now provide extensions of these algorithms to
arbitrary finite sets S ⊂ Zn. As can be expected, the algorithms become slower.

We start by recording the following fundamental result of Khachiyan [52] asserting
that linear programming is polynomial time solvable via the ellipsoid method [33]. This
result will be used below as well as several more times later in the monograph.

Proposition 3.6. There is a polynomial time algorithm that, given A ∈ Zm×n, b ∈ Zm,
and w ∈ Zn, encoded as [〈A, b,w〉], either asserts that P := {x ∈ Rn : Ax ≤ b} is
empty, or asserts that the linear functional wx is unbounded over P, or provides a vertex
v ∈ vert(P) which is an optimal solution to the linear program max{wx : x ∈ P}.
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The following analog of Lemma 3.1 shows how to covert membership to augmen-
tation in polynomial time, albeit, no longer in strongly polynomial time. Here, both the
given initial point x and the returned better point x̂ if any, are vertices of conv(S ).

Lemma 3.7. There is a polynomial time algorithm that, given finite set S ⊂ Zn presented
by a membership oracle, vertex x of the polytope conv(S ), w ∈ Zn, and set E ⊂ Zn

covering all edge-directions of conv(S ), encoded as [ρ(S ), 〈x,w, E〉], either returns a
better vertex x̂ of conv(S ), that is, one satisfying wx̂ > wx, or asserts that none exists.

Proof. Dividing each vector e ∈ E by the greatest common divisor of its entries and
setting e := −e if necessary, we can and will assume that each e is primitive, that is, its
entries are relatively prime integers, and we ≥ 0. Using the membership oracle, construct
the subset F ⊆ E of those e ∈ E for which x + re ∈ S for some r ∈ {1, . . . , 2ρ(S )}. Let
G ⊆ F be the subset of those f ∈ F for which w f > 0. If G is empty then terminate
asserting that there is no better vertex. Otherwise, consider the convex cone cone(F)
generated by F. It is clear that x is incident on an edge of conv(S ) in direction f if and
only if f is an extreme ray of cone(F). Moreover, since G = { f ∈ F : w f > 0} is
nonempty, there must be an extreme ray of cone(F) which lies in G. Now f ∈ F is an
extreme ray of cone(F) if and only if there do not exist nonnegative λe, e ∈ F \ { f }, such
that f =

∑
e� f λee; this can be checked in polynomial time using linear programming.

Applying this procedure to each f ∈ G, identify an extreme ray g ∈ G. Now, using the
membership oracle, determine the largest r ∈ {1, . . . , 2ρ(S )} for which x+ rg ∈ S . Output
x̂ := x + rg which is a better vertex of conv(S ).

We now prove the extensions of Theorems 3.4 and 3.5 to arbitrary, not necessarily
{0, 1}-valued, finite sets. While the running time remains polynomial in the binary length
of the weights w1, . . . ,wd and the set of edge-directions E, it is more sensitive to the
radius ρ(S ) of the feasible set S , and is polynomial only in its unary length. Here, the
initial feasible point and the optimal solution output by the algorithms are vertices of
conv(S ). Again, we start with the special case of linear combinatorial optimization.

Theorem 3.8. There is a polynomial time algorithm that, given finite S ⊂ Zn presented
by a membership oracle, vertex x of the polytope conv(S ), w ∈ Zn, and set E ⊂ Zn

covering all edge-directions of conv(S ), encoded as [ρ(S ), 〈x,w, E〉], provides an optimal
solution x∗ ∈ S to the linear discrete optimization problem max{wz : z ∈ S }.

Proof. Apply the algorithm of Lemma 3.2 to the given data. Consider any query x′ ∈ S ,
w′ ∈ Zn made by that algorithm to an augmentation oracle for S . To answer it, apply
the algorithm of Lemma 3.7 to x′ and w′. Since the first query made by the algorithm of
Lemma 3.2 is on the given input vertex x′ := x, and any consequent query is on a point
x′ := x̂ which was the reply of the augmentation oracle to the previous query (see proof of
Lemma 3.2), we see that the algorithm of Lemma 3.7 will always be asked on a vertex of
S and reply with another. Thus, the algorithm of Lemma 3.7 can answer all augmentation
queries and enables the polynomial time solution of the given problem.

Theorem 3.9. For every fixed d there is a polynomial time algorithm that, given finite
set S ⊆ Zn presented by membership oracle, vertex x of conv(S ), vectors w1, . . . ,wd ∈ Zn

set E ⊂ Zn covering all edge-directions of the polytope conv(S ), and convex functional
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c : Rd → R presented by a comparison oracle, encoded as [ρ(S ), 〈x,w1, . . . ,wd, E〉],
provides an optimal solution x∗ ∈ S to the convex combinatorial optimization problem

max{c(w1z, . . . ,wdz) : z ∈ S }.

Proof. Since S is nonempty, a linear discrete optimization oracle for S can be simulated
in polynomial time by the algorithm of Theorem 3.8. Using this simulated oracle, we can
apply the algorithm of Theorem 2.4 and solve the given problem in polynomial time.

3.4. Some Applications

3.4.1. Positive Semidefinite Quadratic Binary Programming

The quadratic binary programming problem is the following: given an n × n matrix M,
find a vector x ∈ {0, 1}n maximizing the quadratic form xT Mx induced by M. We consider
here the instance where M is positive semidefinite, in which case it can be assumed to be
presented as M = WT W with W a given d × n matrix. Already this restricted version is
very broad: if the rank d of W and M is variable then, as mentioned in the introduction,
the problem is NP-hard. We now show that, for fixed d, Theorem 3.5 implies at once that
the problem is strongly polynomial time solvable (see also [53]).

Corollary 3.10. For every fixed d there is a strongly polynomial time algorithm that
given W ∈ Zd×n, encoded as [n; 〈W〉], finds x∗ ∈ {0, 1}n maximizing the form xT WT Wx.

Proof. Let S := {0, 1}n and let E := {11, . . . , 1n} be the set of unit vectors in Rn. Then
P := conv(S ) is just the n-cube [0, 1]n and hence E covers all edge-directions of P. A
membership oracle for S is easily and efficiently realizable and x := 0 ∈ S is an initial
point. Also, |E| and 〈E〉 are polynomial in n, and E is easily and efficiently computable.

Now, for i = 1, . . . , d define wi ∈ Zn to be the ith row of the matrix W, that is,
wi, j := Wi, j for all i, j. Finally, let c : Rd → R be the squared l2 norm given by c(y) :=
‖y‖2

2 :=
∑d

i=1 y2
i , and note that the comparison of c(y) and c(z) can be done for y, z ∈ Zd

in time polynomial in 〈y, z〉 using a constant number of arithmetic operations, providing
a strongly polynomial time realization of a comparison oracle for c.

This translates the given quadratic programming problem into a convex combinato-
rial optimization problem over S , which can be solved in strongly polynomial time by
applying the algorithm of Theorem 3.5 to S , x = 0, w1, . . . ,wd, E, and c.

3.4.2. Matroids and Maximum Norm Spanning Trees

Optimization problems over matroids form a fundamental class of combinatorial opti-
mization problems. Here we discuss matroid bases, but everything works for independent
sets as well. Recall that a family B of subsets of {1, . . . , n} is the family of bases of a
matroid if all members of B have the same cardinality, called the rank of the matroid,
and for every B, B′ ∈ B and i ∈ B \ B′ there is a j ∈ B′ such that B \ {i} ∪ { j} ∈ B.
Useful models include the graphic matroid of a graph G with edge set {1, . . . , n} and B

the family of spanning forests of G, and the linear matroid of an m × n matrix A with B

the family of sets of indices of maximal linearly independent subsets of columns of A.
It is well known that linear combinatorial optimization over matroids can be solved

by the fast greedy algorithm [54]. We now show that, as a consequence of Theorem 3.5,
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convex combinatorial optimization over a matroid presented by a membership oracle can
be solved in strongly polynomial time as well (see also [13, 55]). We state the result
for bases, but the analogous statement for independent sets hold as well. We say that
S ⊆ {0, 1}n is the set of bases of a matroid if it is the set of indicators of the family B of
bases of some matroid, in which case we call conv(S ) the matroid base polytope.

Corollary 3.11. For every fixed d there is a strongly polynomial time algorithm that,
given set S ⊆ {0, 1}n of bases of a matroid presented by a membership oracle, x ∈ S ,
w1, . . . ,wd ∈ Zn, and convex functional c : Rd → R presented by a comparison oracle,
encoded as [n; 〈x,w1, . . . ,wd〉], solves the convex matroid optimization problem

max{c(w1z, . . . ,wdz) : z ∈ S }.

Proof. Let E := {1i − 1 j : 1 ≤ i < j ≤ n} be the set of differences of pairs of unit
vectors in Rn. We claim that E covers all edge-directions of the matroid base polytope
P := conv(S ). Consider any edge e = [y, y′] of P with y, y′ ∈ S and let B := supp(y) and
B′ := supp(y′) be the corresponding bases. Let h ∈ Rn be a linear functional uniquely
maximized over P at e. If B \ B′ = {i} is a singleton then B′ \ B = { j} is a singleton as well
in which case y− y′ = 1i −1 j and we are done. Suppose then, indirectly, that it is not, and
pick an element i in the symmetric difference BΔB′ := (B \ B′) ∪ (B′ \ B) of minimum
value hi. Without loss of generality assume i ∈ B \ B′. Then there is a j ∈ B′ \ B such
that B′′ := B \ {i} ∪ { j} is also a basis. Let y′′ ∈ S be the indicator of B′′. Now |BΔB′| > 2
implies that B′′ is neither B nor B′. By the choice of i we have hy′′ = hy − hi + h j ≥ hy.
So y′′ is also a maximizer of h over P and hence y′′ ∈ e. But no {0, 1}-vector is a convex
combination of others, a contradiction.

Now, |E| =
(
n
2

)
and E ⊂ {−1, 0, 1}n imply that |E| and 〈E〉 are polynomial in n.

Moreover, E can be easily computed in strongly polynomial time. Therefore, applying the
algorithm of Theorem 3.5 to the given data and the set E, the convex discrete optimization
problem over S can be solved in strongly polynomial time.

One important application of Corollary 3.11 is a polynomial time algorithm for
computing the universal Gröbner basis of any system of polynomials having a finite set
of common zeros in fixed (but arbitrary) number of variables, as well as the construction
of the state polyhedron of any member of the Hilbert scheme, see [4, 17]. Other impor-
tant applications are in the field of algebraic statistics [56], in particular for optimal ex-
perimental design. These applications are beyond our scope here and will be discussed
elsewhere.

Here is another concrete example of a convex matroid optimization application.

Example 3.12 (Maximum Norm Spanning Tree). Fix any positive integer d. Let
‖·‖p : Rd → R be the lp norm given by ‖x‖p := (

∑d
i=1|xi|

p)1/p for 1 ≤ p < ∞ and
‖x‖∞ := maxd

i=1|xi|. Let G be a connected graph with edge set N := {1, . . . , n}. For
j = 1, . . . , n let u j ∈ Zd be a weight vector representing the values of edge j under some
d criteria. The weight of a subset T ⊆ N is the sum

∑
j∈T u j representing the total values

of T under the d criteria. The problem is to find a spanning tree T of G whose weight has
maximum lp norm, that is, a spanning tree T maximizing ‖

∑
j∈T u j‖p.

Define w1, . . . ,wd ∈ Zn by wi, j := u j,i for i = 1, . . . , d, j = 1, . . . , n. Let S ⊆

{0, 1}n be the set of indicators of spanning trees of G. Then, in time polynomial in n, a
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membership oracle for S is realizable, and an initial x ∈ S is obtainable as the indicator of
any greedily constructible spanning tree T . Finally, define the convex functional c := ‖·‖p.
Then for most common values p = 1, 2,∞, and in fact for any p ∈ N, the comparison
of c(y) and c(z) can be done for y, z ∈ Zd in time polynomial in 〈y, z, p〉 by computing
and comparing the integer valued pth powers ‖y‖p

p and ‖z‖p
p. Thus, by Corollary 3.11, this

problem is solvable in time polynomial in 〈u1, . . . , un, p〉.

4. Linear n-fold Integer Programming

In this section we develop a theory of linear n-fold integer programming, which leads to
the polynomial time solution of broad classes of linear integer programming problems in
variable dimension. This will be extended to convex n-fold integer programming in §5.

In §4.1 we describe an adaptation of a result of [57] involving an oriented version
of the augmentation oracle of §3.1. In §4.2 we discuss Graver bases and their application
to linear integer programming. In §4.3 we show that Graver bases of n-fold matrices can
be computed efficiently. In §4.4 we combine the preparatory statements from §4.1, §4.2,
and §4.3, and prove the main result of this section, asserting that linear n-fold integer
programming is polynomial time solvable. We conclude with some applications in §4.5.

Here and in §5 we concentrate on discrete optimization problems over a set S pre-
sented as the set of integer points satisfying an explicitly given system of linear inequali-
ties. Without loss of generality we may and will assume that S is given either in standard
form S := {x ∈ Nn : Ax = b} where A ∈ Zm×n and b ∈ Zm, or in the form

S := {x ∈ Zn : Ax = b, l ≤ x ≤ u}

where l, u ∈ Zn
∞ and Z∞ = Z ( {±∞}, where some of the variables are bounded below

or above and some are unbounded. Thus, S is no longer presented by an oracle, but by
the explicit data A, b and possibly l, u. In this setup we refer to discrete optimization
over S also as integer programming over S . As usual, an algorithm solving the problem
must either provide an x ∈ S maximizing wx over S , or assert that none exists (either
because S is empty or because the objective function is unbounded over the underlying
polyhedron). We will sometimes assume that an initial point x ∈ S is given, in which
case b will be computed as b := Ax and not be part of the input.

4.1. Oriented Augmentation and Linear Optimization

We have seen in §3.1 that an augmentation oracle presentation of a finite set S ⊂ Zn

enables to solve the linear discrete optimization problem over S . However, the running
time of the algorithm of Lemma 3.2 which demonstrated this, was polynomial in the
unary length of the radius ρ(S ) of the feasible set rather than in its binary length.

In this subsection we discuss a recent result of [57] and show that, when S is pre-
sented by a suitable stronger oriented version of the augmentation oracle, the linear op-
timization problem can be solved by a much faster algorithm, whose running time is in
fact polynomial in the binary length 〈ρ(S )〉. The key idea behind this algorithm is that
it gives preference to augmentations along interior points of conv(S ) staying far off its
boundary. It is inspired by and extends the combinatorial interior point algorithm of [58].
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For any vector g ∈ Rn, let g+, g− ∈ Rn
+ denote its positive and negative parts, defined

by g+j := max{g j, 0} and g−
j := − min{g j, 0} for j = 1, . . . , n. Note that both g+, g− are

nonnegative, supp(g) = supp(g+)
⊎

supp(g−), and g = g+ − g−.
An oriented augmentation oracle for a set S ⊂ Zn is one that, queried on x ∈ S and

w+,w− ∈ Zn, either returns an augmenting vector g ∈ Zn, defined to be one satisfying
x + g ∈ S and w+g+ − w−g− > 0, or asserts that none exists.

Note that this oracle involves two linear functionals w+,w− ∈ Zn rather than one
(w+,w− are two distinct independent vectors and not the positive and negative parts of one
vector). The conditions on an augmenting vector g indicate that it is a feasible direction
and has positive value under the nonlinear objective function determined by w+,w−. Note
that this oracle is indeed stronger than the augmentation oracle of §3.1: to answer a query
x ∈ S , w ∈ Zn to the latter, set w+ := w− := w, thereby obtaining w+g+ − w−g− = wg for
all g, and query the former on x,w+,w−; if it replies with an augmenting vector g then
reply with the better point x̂ := x + g, whereas if it asserts that no g exists then assert that
no better point exists.

The following lemma is an adaptation of the result of [57] concerning sets of the
form S := {x ∈ Zn : Ax = b, 0 ≤ x ≤ u} of nonnegative integer points satisfying equations
and upper bounds. However, the pair A, b is neither explicitly needed nor does it affect
the running time of the algorithm underlying the lemma. It suffices that S is of that form.
Moreover, an arbitrary lower bound vector l rather than 0 can be included. So it suffices
to assume that S coincides with the intersection of its affine hull and the set of integer
points in a box, that is, S = aff(S ) ∩ {x ∈ Zn : l ≤ x ≤ u} where l, u ∈ Zn. We now
describe and prove the algorithm of [57] adjusted to any lower and upper bounds l, u.

Lemma 4.1. There is a polynomial time algorithm that, given vectors l, u ∈ Zn, set
S ⊂ Zn satisfying S = aff(S ) ∩ {z ∈ Zn : l ≤ z ≤ u} and presented by an oriented
augmentation oracle, x ∈ S , and w ∈ Zn, encoded as [〈l, u, x,w〉], provides an optimal
solution x∗ ∈ S to the linear discrete optimization problem max{wz : z ∈ S }.

Proof. We start with some strengthening adjustments to the oriented augmentation or-
acle. Let ρ := max{‖l‖∞, ‖u‖∞} be an upper bound on the radius of S . Then any aug-
menting vector g obtained from the oriented augmentation oracle when queried on y ∈ S
and w+,w− ∈ Zn, can be made in polynomial time to be exhaustive, that is, to satisfy
y + 2g � S (which means that no longer augmenting step in direction g can be taken).
Indeed, using binary search, find the largest r ∈ {1, . . . , 2ρ} for which l ≤ y+ rg ≤ u; then
S = aff(S ) ∩ {z ∈ Zn : l ≤ z ≤ u} implies y+ rg ∈ S and hence we can replace g := rg. So
from here on we will assume that if there is an augmenting vector then the oracle returns
an exhaustive one. Second, let R∞ := R ( {±∞} and for any vector v ∈ Rn let v−1 ∈ Rn

∞

denote its entry-wise reciprocal defined by v−1
i := 1/vi if vi � 0 and v−1

i := ∞ if vi = 0.
For any y ∈ S , the vectors (y − l)−1 and (u − y)−1 are the reciprocals of the “entry-wise
distance” of y from the given lower and upper bounds. The algorithm will query the ora-
cle on triples y,w+,w− with w+ := w − μ(u − y)−1 and w− := w + μ(y − l)−1 where μ is a
suitable positive scalar and w is the input linear functional. The fact that such w+,w− may
have infinite entries does not cause any problem: indeed, if g is an augmenting vector
then y+ g ∈ S implies that g+i = 0 whenever yi = ui and g−

i = 0 whenever li = yi, so each
infinite entry in w+ or w− occurring in the expression w+g+−w−g− is multiplied by 0 and
hence zeroed out.
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The algorithm proceeds in phases. Each phase i starts with a feasible point yi−1 ∈ S
and performs repeated augmentations using the oriented augmentation oracle, terminat-
ing with a new feasible point yi ∈ S when no further augmentations are possible. The
queries to the oracle make use of a positive scalar parameters μi fixed throughout the
phase. The first phase (i=1) starts with the input point y0 := x and sets μ1 := ρ ‖w‖∞. Each
further phase i ≥ 2 starts with the point yi−1 obtained from the previous phase and sets
the parameter value μi := 1

2μi−1 to be half its value in the previous phase. The algorithm
terminates at the end of the first phase i for which μi < 1/n, and outputs x∗ := yi. Thus,
the number of phases is at most �log2(2nρ‖w‖∞)� and hence polynomial in 〈l, u,w〉.

We now describe the ith phase which determines yi from yi−1. Set μi := 1
2μi−1 and

ŷ := yi−1. Iterate the following: query the strengthened oriented augmentation oracle on
ŷ, w+ := w − μi(u − ŷ)−1, and w− := w + μi(ŷ − l)−1; if the oracle returns an exhaustive
augmenting vector g then set ŷ := ŷ + g and repeat, whereas if it asserts that there is no
augmenting vector then set yi := ŷ and complete the phase. If μi ≥ 1/n then proceed to
the (i + 1)th phase, else output x∗ := yi and terminate the algorithm.

It remains to show that the output of the algorithm is indeed an optimal solution and
that the number of iterations (and hence calls to the oracle) in each phase is polynomial
in the input. For this we need the following facts, the easy proofs of which are omitted:

1. For every feasible y ∈ S and direction g with y + g ∈ S also feasible, we have

(u − y)−1g+ + (y − l)−1g− ≤ n.

2. For every y ∈ S and direction g with y + g ∈ S but y + 2g � S , we have

(u − y)−1g+ + (y − l)−1g− > 1
2 .

3. For every feasible y ∈ S , direction g with y + g ∈ S also feasible, and μ > 0,
setting w+ := w − μ(u − y)−1 and w− := w + μ(y − l)−1 we have

w+g+ − w−g− = wg − μ
(
(u − y)−1g+ + (y − l)−1g−).

Now, consider the last phase i with μi < 1/n, let x∗ := yi := ŷ be the output of the
algorithm at the end of this phase, and let x̂ ∈ S be any optimal solution. Now, the
phase is completed when the oracle, queried on the triple ŷ, w+ = w − μi(u − ŷ)−1, and
w− = w + μi(ŷ − l)−1, asserts that there is no augmenting vector. In particular, setting
g := x̂ − ŷ, we find w+g+ − w−g− ≤ 0 and hence, by facts 1 and 3 above,

wx̂ − wx∗ = wg ≤ μi
(
(u − ŷ)−1g+ + (ŷ − l)−1g−) < 1

n
n = 1.

Since wx̂ and wx∗ are integer, this implies that in fact wx̂ − wx∗ ≤ 0 and hence the output
x∗ of the algorithm is indeed an optimal solution to the given optimization problem.

Next we bound the number of iterations in each phase i starting from yi−1 ∈ S . Let
again x̂ ∈ S be any optimal solution. Consider any iteration in that phase, where the
oracle is queried on ŷ, w+ = w − μi(u − ŷ)−1, and w− = w + μi(ŷ − l)−1, and returns an
exhaustive augmenting vector g. We will now show that

w(ŷ + g) − wŷ ≥
1

4n
(wx̂ − wyi−1), (1)
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that is, the increment in the objective value from ŷ to the augmented point ŷ+ g is at least
1/(4n) times the difference between the optimal objective value wx̂ and the objective
value wyi−1 of the point yi−1 at the beginning of phase i. This shows that at most 4n such
increments (and hence iterations) can occur in the phase before it is completed.

To establish Eq. (1), we show that wg ≥ 1
2μi and wx̂ − wyi−1 ≤ 2nμi. For the first

inequality, note that g is an exhaustive augmenting vector and so w+g+ − w−g− > 0 and
ŷ+2g � S and hence, by facts 2 and 3, wg > μi

(
(u−ŷ)−1g++(ŷ−l)−1g−

)
> 1

2μi. We proceed
with the second inequality. If i = 1 (first phase) then this indeed holds since wx̂ − wy0 ≤

2nρ‖w‖∞ = 2nμ1. If i ≥ 2, let w̃+ := w − μi−1(u − yi−1)−1 and w̃− := w + μi−1(yi−1 − l)−1.
The (i − 1)th phase was completed when the oracle, queried on the triple yi−1, w̃+, and
w̃−, asserted that there is no augmenting vector. In particular, for g̃ := x̂ − yi−1, we find
w̃+g̃+ − w̃−g̃− ≤ 0 and so, by facts 1 and 3,

wx̂ − wyi−1 = wg̃ ≤ μi−1
(
(u − yi−1)−1g̃+ + (yi−1 − l)−1g̃−)

)
≤ μi−1n = 2nμi.

4.2. Graver Bases and Linear Integer Programming

We now come to the definition of a fundamental object introduced by Graver in [59].
The Graver basis of an integer matrix A is a canonical finite set G(A) that can be defined
as follows. Define a partial order ) on Zn which extends the coordinate-wise order ≤

on Nn as follows: for two vectors u, v ∈ Zn put u ) v and say that u is conformal to
v if |ui| ≤ |vi| and uivi ≥ 0 for i = 1, . . . , n, that is, u and v lie in the same orthant
of Rn and each component of u is bounded by the corresponding component of v in
absolute value. It is not hard to see that ) is a well partial ordering (this is basically
Dickson’s lemma) and hence every subset of Zn has finitely-many )-minimal elements.
Let L(A) := {x ∈ Zn : Ax = 0} be the lattice of linear integer dependencies on A. The
Graver basis of A is defined to be the set G(A) of all )-minimal vectors in L(A) \ {0}.

Note that if A is an m × n matrix then its Graver basis consist of vectors in Zn. We
sometimes write G(A) as a suitable |G(A)| × n matrix whose rows are the Graver basis
elements. The Graver basis is centrally symmetric (g ∈ G(A) implies −g ∈ G(A)); thus,
when listing a Graver basis we will typically give one of each antipodal pair and prefix
the set (or matrix) by ±. Any element of the Graver basis is primitive (its entries are
relatively prime integers). Every circuit of A (nonzero primitive minimal support element
of L(A)) is in G(A); in fact, if A is totally unimodular then G(A) coincides with the set
of circuits (see §5.1 in the sequel for more details on this). However, in general G(A) is
much larger. For more details on Graver bases and their connection to Gröbner bases see
Sturmfels [60] and for the currently fastest procedure for computing them see [61, 62].

Here is a quick simple example; we will see more structured and complex examples
later on. Consider the 1×3 matrix A := (1, 2, 1). Then its Graver basis can be shown to be
the set G(A) = ±{(2,−1, 0), (0,−1, 2), (1, 0,−1), (1,−1, 1)}. The first three elements (and
their antipodes) are the circuits of A; already in this small example noncircuits appear as
well: the fourth element (and its antipode) is a primitive linear integer dependency whose
support is not minimal.

We now show that when we do have access to the Graver basis, it can be used
to solve linear integer programming. We will extend this in §5, where we show that
the Graver basis enables to solve convex integer programming as well. In §4.3 we will
show that there are important classes of matrices for which the Graver basis is indeed
accessible.
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First, we need a simple property of Graver bases. A finite sum u :=
∑

i vi of vectors
vi ∈ Rn is conformal if each summand is conformal to the sum, that is, vi ) u for all i.

Lemma 4.2. Let A be any integer matrix. Then any h ∈ L(A) \ {0} can be written as a
conformal sum h :=

∑
gi of (not necessarily distinct) Graver basis elements gi ∈ G(A).

Proof. By induction on the well partial order ). Recall that G(A) is the set of )-minimal
elements in L(A) \ {0}. Consider any h ∈ L(A) \ {0}. If it is )-minimal then h ∈ G(A) and
we are done. Otherwise, there is a h′ ∈ G(A) such that h′

� h. Set h′′ := h − h′. Then
h′′ ∈ L(A) \ {0} and h′′

� h, so by induction there is a conformal sum h′′ =
∑

i gi with
gi ∈ G(A) for all i. Now h = h′ +

∑
i gi is the desired conformal sum of h.

The next lemma shows the usefulness of Graver bases for oriented augmentation.

Lemma 4.3. Let A be an m × n integer matrix with Graver basis G(A) and let l, u ∈ Zn
∞,

w+,w− ∈ Zn, and b ∈ Zm. Suppose x ∈ T := {y ∈ Zn : Ay = b, l ≤ y ≤ u}. Then for every
g ∈ Zn which satisfies x + g ∈ T and w+g+ − w−g− > 0 there exists an element ĝ ∈ G(A)
with ĝ ) g which also satisfies x + ĝ ∈ T and w+ĝ+ − w−ĝ− > 0.

Proof. Suppose g ∈ Zn satisfies the requirements. Then Ag = A(x + g) − Ax = b − b = 0
since x, x + g ∈ T . Thus, g ∈ L(A) \ {0} and hence, by Lemma 4.2, there is a conformal
sum g =

∑
i hi with hi ∈ G(A) for all i. Now, hi ) g is equivalent to h+i ≤ g+ and h−

i ≤ g−,
so the conformal sum g =

∑
i hi gives corresponding sums of the positive and negative

parts g+ =
∑

i h+i and g− =
∑

i h−
i . Therefore we obtain

0 < w+g+ − w−g− = w+
∑

i
h+i − w−

∑
i

h−
i =

∑
i

(w+h+i − w−h−
i )

which implies that there is some hi in this sum with w+h+i − w−h−
i > 0. Now, hi ∈ G(A)

implies A(x + hi) = Ax = b. Also, l ≤ x, x + g ≤ u and hi ) g imply that l ≤ x + hi ≤ u.
So x + hi ∈ T . Therefore the vector ĝ := hi satisfies the claim.

We can now show that the Graver basis enables to solve linear integer programming
in polynomial time provided an initial feasible point is available.

Theorem 4.4. There is a polynomial time algorithm that, given A ∈ Zm×n, its Graver
basis G(A), l, u ∈ Zn

∞, x,w ∈ Zn with l ≤ x ≤ u, encoded as [〈A,G(A), l, u, x,w〉], solves
the linear integer program max{wz : z ∈ Zn, Az = b, l ≤ z ≤ u} with b := Ax.

Proof. First, note that the objective function of the integer program is unbounded if and
only if the objective function of its relaxation max{wy : y ∈ Rn, Ay = b, l ≤ y ≤ u} is
unbounded, which can be checked in polynomial time using linear programming. If it is
unbounded then assert that there is no optimal solution and terminate the algorithm.

Assume then that the objective is bounded. Then, since the program is feasible,
it has an optimal solution. Furthermore, (as basically follows from Cramer’s rule, see,
e.g., [1, Theorem 17.1]) it has an optimal x∗ satisfying |x∗

j | ≤ ρ for all j, where ρ is an
easily computable integer upper bound whose binary length 〈ρ〉 is polynomially bounded
in 〈A, l, u, x〉. For instance, ρ := (n + 1)(n + 1)!rn+1 will do, with r the maximum among
maxi|

∑
j Ai, jx j|, maxi, j|Ai, j|, max{|l j| : |l j| < ∞}, and max{|u j| : |u j| < ∞}.
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Let T := {y ∈ Zn : Ay = b, l ≤ y ≤ u} and S := T ∩ [−ρ, ρ]n. Then our linear
integer programming problem now reduces to linear discrete optimization over S . Now,
an oriented augmentation oracle for S can be simulated in polynomial time using the
given Graver basis G(A) as follows: given a query y ∈ S and w+,w− ∈ Zn, search for
g ∈ G(A) which satisfies w+g+ − w−g− > 0 and y + g ∈ S ; if there is such a g then return
it as an augmenting vector, whereas if there is no such g then assert that no augmenting
vector exists. Clearly, if this simulated oracle returns a vector g then it is an augmenting
vector. On the other hand, if there exists an augmenting vector g then y + g ∈ S ⊆ T and
w+g+ − w−g− > 0 imply by Lemma 4.3 that there is also a ĝ ∈ G(A) with ĝ ) g such that
w+ĝ+ − w−ĝ− > 0 and y + ĝ ∈ T . Since y, y + g ∈ S and ĝ ) g, we find that y + ĝ ∈ S as
well. Therefore the Graver basis contains an augmenting vector and hence the simulated
oracle will find and output one.

Define l̂, û ∈ Zn by l̂ j := max(l j,−ρ), û j := min(u j, ρ), j = 1, . . . , n. Then it is easy
to see that S = aff(S ) ∩ {y ∈ Zn : l̂ ≤ y ≤ û}. Now apply the algorithm of Lemma 4.1 to
l̂, û, S , x, and w, using the above simulated oriented augmentation oracle for S , and obtain
in polynomial time a vector x∗ ∈ S which is optimal to the linear discrete optimization
problem over S and hence to the given linear integer program.

As a special case of Theorem 4.4 we recover the following result of [9] concerning
linear integer programming in standard form when the Graver basis is available.

Theorem 4.5. There is a polynomial time algorithm that, given matrix A ∈ Zm×n, its
Graver basis G(A), x ∈ Nn, and w ∈ Zn, encoded as [〈A,G(A), x,w〉], solves the linear
integer programming problem max{wz : z ∈ Nn, Az = b} where b := Ax.

4.3. Graver Bases of n-fold Matrices

As mentioned above, the Graver basis G(A) of an integer matrix A contains all circuits of
A and typically many more elements. While the number of circuits is already typically
exponential and can be as large as

(
n

m+1

)
, the number of Graver basis elements is usually

even larger and depends also on the entries of A and not only on its dimensions m, n.
So unfortunately it is typically very hard to compute G(A). However, we now show that
for the important and useful broad class of n-fold matrices, the Graver basis is better
behaved and can be computed in polynomial time. Recall the following definition from
the introduction. Given an (r + s) × t matrix A, let A1 be its r × t sub-matrix consisting of
the first r rows and let A2 be its s × t sub-matrix consisting of the last s rows. We refer to
A explicitly as (r + s) × t matrix, since the definition below depends also on r and s and
not only on the entries of A. The n-fold matrix of an (r + s) × t matrix A is then defined
to be the following (r + ns) × nt matrix,

A(n) := (1n ⊗ A1) ⊕ (In ⊗ A2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 A1 A1 · · · A1
A2 0 0 · · · 0
0 A2 0 · · · 0
...
...
...
. . .
...

0 0 0 · · · A2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We now discuss a recent result of [63], which originates in [21], and its extension
in [64], on the stabilization of Graver bases of n-fold matrices. Consider vectors x =
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(x1, . . . , xn) with xk ∈ Zt for k = 1, . . . , n. The type of x is the number |{k : xk
� 0}| of

nonzero components xk ∈ Zt of x. The Graver complexity of an (r+ s)× t matrix, denoted
c(A), is defined to be the smallest c ∈ N ( {∞} such that for all n, the Graver basis of
A(n) consists of vectors of type at most c(A). We provide the proof of the following result
of [63, 64] stating that the Graver complexity is always finite.

Lemma 4.6. The Graver complexity c(A) of any (r + s) × t integer matrix A is finite.

Proof. Call an element x = (x1, . . . , xn) in the Graver basis of some A(n) pure if xi ∈ G(A2)
for all i. Note that the type of a pure x ∈ G(A(n)) is n. First, we claim that if there is
an element of type m in some G(A(l)) then for some n ≥ m there is a pure element in
G(A(n)), and so it will suffice to bound the type of pure elements. Suppose there is an
element of type m in some G(A(l)). Then its restriction to its m nonzero components is an
element x = (x1, . . . , xm) in G(A(m)). Let xi =

∑ki
j=1 gi, j be a conformal decomposition of

xi with gi, j ∈ G(A2) for all i, j, and let n := k1 + · · · + km ≥ m. Then g := (g1,1, . . . , gm,km)
is in G(A(n)), else there would be ĝ � g in G(A(n)) in which case the nonzero x̂ with
x̂i :=

∑ki
j=1 ĝi, j for all i would satisfy x̂ � x and x̂ ∈ L(A(m)), contradicting x ∈ G(A(m)).

Thus g is a pure element of type n ≥ m, proving the claim.
We proceed to bound the type of pure elements. Let G(A2) = {g1, . . . , gm} be the

Graver basis of A2 and let G2 be the t × m matrix whose columns are the gi. Suppose x =
(x1, . . . , xn) ∈ G(A(n)) is pure for some n. Let v ∈ Nm be the vector with vi := |{k : xk = gi}|

counting the number of gi components of x for each i. Then
∑m

i=1 vi is equal to the type n
of x. Next, note that A1G2v = A1(

∑n
k=1 xk) = 0 and hence v ∈ L(A1G2). We claim that,

moreover, v ∈ G(A1G2). Suppose indirectly not. Then there is v̂ ∈ G(A1G2) with v̂ � v,
and it is easy to obtain a nonzero x̂ � x from x by zeroing out some components so that
v̂i = |{k : x̂k = gi}| for all i. Then A1(

∑n
k=1 x̂k) = A1G2v̂ = 0 and hence x̂ ∈ L(A(n)),

contradicting x ∈ G(A(n)).
So the type of any pure element, and hence the Graver complexity of A, is at most

the largest value
∑m

i=1 vi of any nonnegative element v of the Graver basis G(A1G2).

Using Lemma 4.6 we now show how to compute G(A(n)) in polynomial time.

Theorem 4.7. For every fixed (r + s) × t integer matrix A there is a strongly polynomial
time algorithm that, given n ∈ N, encoded as [n; n], computes the Graver basis G(A(n)) of
the n-fold matrix A(n). In particular, the cardinality |G(A(n))| and binary length 〈G(A(n))〉
of the Graver basis of the n-fold matrix are polynomially bounded in n.

Proof. Let c := c(A) be the Graver complexity of A and consider any n ≥ c. We show
that the Graver basis of A(n) is the union of

(
n
c

)
suitably embedded copies of the Graver

basis of A(c). For every c indices 1 ≤ k1 < · · · < kc ≤ n define a map φk1,...,kc from Zct to
Z

nt sending x = (x1, . . . , xc) to y = (y1, . . . , yn) with yki := xi for i = 1, . . . , c and yk := 0
for k � {k1, . . . , kc}. We claim that G(A(n)) is the union of the images of G(A(c)) under the(

n
c

)
maps φk1,...,kc for all 1 ≤ k1 < · · · < kc ≤ n, that is,

G(A(n)) =
⋃

1≤k1<···<kc≤n
φk1,...,kc(G(A(c))). (2)

If x = (x1, . . . , xc) ∈ G(A(c)) then x is a )-minimal nonzero element of L(A(c)), im-
plying that φk1,...,kc(x) is a )-minimal nonzero element of L(A(n)) and therefore we have
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φk1,...,kc(x) ∈ G(A(n)). So the right-hand side of Eq. (2) is contained in the left-hand side.
Conversely, consider any y ∈ G(A(n)). Then, by Lemma 4.6, the type of y is at most c,
so there are indices 1 ≤ k1 < · · · < kc ≤ n such that all nonzero components of y are
among those of the reduced vector x := (yk1 , . . . , ykc) and therefore y = φk1,...,kc(x). Now,
y ∈ G(A(n)) implies that y is a )-minimal nonzero element of L(A(n)) and hence x is a
)-minimal nonzero element of L(A(c)). Therefore x ∈ G(A(c)) and y ∈ φk1,...,kg (G(A(c))).
So the left-hand side of (2) is contained in the right-hand side.

Since A is fixed we have that c = c(A) and G(A(c)) are constant. Then Eq. (2)
implies that |G(A(n))| ≤

(
n
c

)
|G(A(c))| = O(nc). Moreover, every element of G(A(n)) is

an nt-dimensional vector φk1,...,kc(x) obtained by appending zero components to some
x ∈ G(A(c)) and hence has linear binary length O(n). So the binary length of the entire
Graver basis G(A(n)) is O(nc+1). Thus, the

(
n
c

)
= O(nc) images φk1,...,kc(G(A(c))) and their

union G(A(n)) can be computed in strongly polynomial time, as claimed.

Example 4.8. Consider the (2 + 1) × 2 matrix A with A1 := I2 the 2 × 2 identity and
A2 := (1, 1). Then G(A2) = ±(1,−1) and G(A1G2) = ±(1, 1) from which the Graver
complexity of A can be concluded to be c(A) = 2 (see the proof of Lemma 4.6). The
2-fold matrix of A and its Graver basis, consisting of two antipodal vectors only, are

A(2) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , G(A(2)) = ±
(
1 −1 −1 1

)
.

By Theorem 4.7, the Graver basis of the 4-fold matrix A(4) is computed to be the union
of the images of the 6 =

(
4
2

)
maps φk1,k2 : Z2·2 → Z4·2 for 1 ≤ k1 < k2 ≤ 4, getting

A(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, G(A(4)) = ±

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 1 0 0 0 0
1 −1 0 0 −1 1 0 0
1 −1 0 0 0 0 −1 1
0 0 1 −1 −1 1 0 0
0 0 1 −1 0 0 −1 1
0 0 0 0 1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

4.4. Linear n-fold Integer Programming in Polynomial Time

We now proceed to provide a polynomial time algorithm for linear integer programming
over n-fold matrices. First, combining the results of §4.2 and §4.3, we get at once the
following polynomial time algorithm for converting any feasible point to an optimal one.

Lemma 4.9. For every fixed (r + s) × t integer matrix A there is a polynomial time
algorithm that, given n ∈ N, l, u ∈ Znt

∞, x,w ∈ Znt satisfying l ≤ x ≤ u, encoded as
[〈l, u, x,w〉], solves the linear n-fold integer programming problem with b := A(n)x,

max{wz : z ∈ Znt, A(n)z = b, l ≤ z ≤ u}.

Proof. First, apply the polynomial time algorithm of Theorem 4.7 and compute the
Graver basis G(A(n)) of the n-fold matrix A(n). Then apply the polynomial time algorithm
of Theorem 4.4 to the data A(n),G(A(n)), l, u, x and w.
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Next we show that an initial feasible point can also be found in polynomial time.

Lemma 4.10. For every fixed (r + s) × t integer matrix A there is a polynomial time
algorithm that, given n ∈ N, l, u ∈ Znt

∞, and b ∈ Zr+ns, encoded as [〈l, u, b〉], either finds
an x ∈ Znt satisfying l ≤ x ≤ u and A(n)x = b or asserts that none exists.

Proof. If l � u then assert that there is no feasible point and terminate the algorithm.
Assume then that l ≤ u and determine some x ∈ Znt with l ≤ x ≤ u and 〈x〉 ≤ 〈l, u〉.
Now, introduce n(2r + 2s) auxiliary variables to the given n-fold integer program and
denote by x̂ the resulting vector of n(t+ 2r+ 2s) variables. Suitably extend the lower and
upper bound vectors to l̂, û by setting l̂ j := 0 and û j := ∞ for each auxiliary variable
x̂ j. Consider the auxiliary integer program of finding an integer vector x̂ that minimizes
the sum of auxiliary variables subject to the lower and upper bounds l̂ ≤ x̂ ≤ û and the
following system of equations, with Ir and Is the r × r and s × s identity matrices,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 Ir −Ir 0 0 A1 Ir −Ir 0 0 · · · A1 Ir −Ir 0 0
A2 0 0 Is −Is 0 0 0 0 0 · · · 0 0 0 0 0
0 0 0 0 0 A2 0 0 Is −Is · · · 0 0 0 0 0
...
...
...
...
...
...
...
...
...
...
. . .
...
...
...
...
...

0 0 0 0 0 0 0 0 0 0 · · · A2 0 0 Is −Is

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
x̂ = b.

This is again an n-fold integer program, with an (r + s) × (t + 2r + 2s) matrix Â, where
Â1 = (A1, Ir,−Ir, 0, 0) and Â2 = (A2, 0, 0, Is,−Is). Since A is fixed, so is Â. It is now
easy to extend the vector x ∈ Znt determined above to a feasible point x̂ of the auxiliary
program. Indeed, put b̂ := b − A(n)x ∈ Zr+ns; now, for i = 1, . . . , r + ns, simply choose
an auxiliary variable x̂ j appearing only in the ith equation, whose coefficient equals the
sign sign(b̂i) of the corresponding entry of b̂, and set x̂ j := |b̂i|. Define ŵ ∈ Zn(t+2r+2s)

by setting ŵ := 0 for each original variable and ŵ := −1 for each auxiliary variable,
so that maximizing ŵx̂ is equivalent to minimizing the sum of auxiliary variables. Now
solve the auxiliary linear integer program in polynomial time by applying the algorithm
of Lemma 4.9 corresponding to Â to the data n, l̂, û, x̂, and ŵ. Since the auxiliary ob-
jective ŵx̂ is bounded above by zero, the algorithm will output an optimal solution x̂∗.
If the optimal objective value is negative, then the original n-fold program is infeasible,
whereas if the optimal value is zero, then the restriction of x̂∗ to the original variables is
a feasible point x∗ of the original integer program.

Combining Lemmas 4.9 and 4.10 we get at once the main result of this section.

Theorem 4.11. For every fixed (r + s) × t integer matrix A there is a polynomial time
algorithm that, given n, lower and upper bounds l, u ∈ Znt

∞, w ∈ Znt, and b ∈ Zr+ns,
encoded as [〈l, u,w, b〉], solves the following linear n-fold integer programming problem,

max{wx : x ∈ Znt, A(n)x = b, l ≤ x ≤ u}.

Again, as a special case of Theorem 4.11 we recover the following result of [9]
concerning linear integer programming in standard form over n-fold matrices.
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Theorem 4.12. For every fixed (r + s) × t integer matrix A there is a polynomial time
algorithm that, given n, linear functional w ∈ Znt, and right-hand side b ∈ Zr+ns, encoded
as [〈w, b〉], solves the following linear n-fold integer program in standard form,

max{wx : x ∈ Nnt, A(n)x = b}.

4.5. Some Applications

4.5.1. Three-Way Line-Sum Transportation Problems

Transportation problems form a very important class of discrete optimization problems
studied extensively in the operations research and mathematical programming literature,
see, e.g., [22, 26–30] and the references therein. We will discuss this class of problem
and its applications to secure statistical data disclosure in more detail in §6.

It is well known that 2-way transportation problems are polynomial time solvable,
since they can be encoded as linear integer programs over totally unimodular systems.
However, already 3-way transportation problem are much more complicated. Consider
the following 3-way transportation problem over p×q×n tables with all line-sums fixed,

max
{
wx : x ∈ Np×q×n,

∑
i

xi, j,k = z j,k,
∑

j
xi, j,k = vi,k,

∑
k

xi, j,k = ui, j

}
.

The data for the problem consist of given integer numbers (lines-sums) ui, j, vi,k, z j,k for
i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , n, and a linear functional given by a p×q×n integer
array w representing the transportation profit per unit on each cell. The problem is to find
a transportation, that is, a p × q × n nonnegative integer table x satisfying the line sum
constraints, which attains maximum profit wx =

∑p
i=1

∑q
j=1

∑n
k=1 wi, j,kxi, j,k.

When at least two of the table sides, say p, q, are variable part of the input, and
even when the third side is fixed and as small as n = 3, this problem is already universal
for integer programming in a very strong sense [6, 8], and in particular is NP-hard [5];
this will be discussed in detail and proved in §6. We now show that in contrast, when
two sides, say p, q, are fixed (but arbitrary), and one side n is variable, then the 3-way
transportation problem over such long tables is an n-fold integer programming problem
and therefore, as a consequence of Theorem 4.12, can be solved is polynomial time.

Corollary 4.13. For every fixed p and q there is a polynomial time algorithm that, given
n, integer profit array w ∈ Zp×q×n, and line-sums u ∈ Zp×q, v ∈ Zp×n and z ∈ Zq×n,
encoded as [〈w, u, v, z〉], solves the integer 3-way line-sum transportation problem

max
{
wx : x ∈ Np×q×n,

∑
i

xi, j,k = z j,k,
∑

j
xi, j,k = vi,k,

∑
k

xi, j,k = ui, j

}
.

Proof. Re-index p × q × n arrays as x = (x1, . . . , xn) with each component indexed as
xk := (xk

i, j) := (x1,1,k, . . . , xp,q,k) suitably indexed as a pq vector representing the kth layer
of x. Put r := t := pq and s := p + q, and let A be the (r + s) × t matrix with A1 := Ipq
the pq × pq identity and with A2 the (p + q) × pq matrix of equations of the usual 2-
way transportation problem for p × q arrays. Re-arrange the given line-sums in a vector
b := (b0, b1, . . . , bn) ∈ Zr+ns with b0 := (ui, j) and bk := ((vi,k), (z j,k)) for k = 1, . . . , n.
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This translates the given 3-way transportation problem into an n-fold integer pro-
gramming problem in standard form,

max{wx : x ∈ Nnt, A(n)x = b},

where the equations A1(
∑n

k=1 xk) = b0 represent the constraints
∑

k xi, j,k = ui, j of all
line-sums where summation over layers occurs, and the equations A2xk = bk for k =
1, . . . , n represent the constraints

∑
i xi, j,k = z j,k and

∑
j xi, j,k = vi,k of all line-sums where

summations are within a single layer at a time.
Using the algorithm of Theorem 4.12, this n-fold integer program, and hence the

given 3-way transportation problem, can be solved in polynomial time.

Example 4.14. We demonstrate the encoding of the p × q × n transportation problem as
an n-fold integer program as in the proof of Corollary 4.13 for p = q = 3 (smallest case
where the problem is genuinely 3-dimensional). Here we put r := t := 9, s := 6, write

xk := (x1,1,k, x1,2,k, x1,3,k, x2,1,k, x2,2,k, x2,3,k, x3,1,k, x3,2,k, x3,3,k), k = 1, . . . , n,

and let the (9 + 6) × 9 matrix A consist of A1 = I9 the 9 × 9 identity matrix and

A2 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the corresponding n-fold integer program encodes the 3 × 3 × n transportation
problem as desired. Already for this case, of 3 × 3 × n tables, the only known polynomial
time algorithm for the transportation problem is the one underlying Corollary 4.13.

Corollary 4.13 has a very broad generalization to multiway transportation problems
over long k-way tables of any dimension k; this will be discussed in detail in §6.

4.5.2. Packing Problems and Cutting-Stock

We consider the following rather general class of packing problems which concern max-
imum utility packing of many items of several types in various bins subject to weight
constraints. More precisely, the data is as follows. There are t types of items. Each item of
type j has integer weight v j. There are n j items of type j to be packed. There are n bins.
The weight capacity of bin k is an integer uk. Finally, there is a utility matrix w ∈ Zt×n

where wj,k is the utility of packing one item of type j in bin k. The problem is to find a
feasible packing of maximum total utility. By incrementing the number t of types by 1
and suitably augmenting the data, we may assume that the last type t represents “slack
items” which occupy the unused capacity in each bin, where the weight of each slack
item is 1, the utility of packing any slack item in any bin is 0, and the number of slack
items is the total residual weight capacity nt :=

∑n
k=1 uk −

∑t−1
j=1 n jv j. Let x ∈ Nt×n be a

variable matrix where x j,k represents the number of items of type j to be packed in bin k.
Then the packing problem becomes the following linear integer program,
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max
{
wx : x ∈ Nt×n,

∑
j

v jx j,k = uk,
∑

k
x j,k = n j

}
.

We now show that this is in fact an n-fold integer programming problem and therefore,
as a consequence of Theorem 4.12, can be solved is polynomial time. While the number t
of types and type weights v j are fixed, which is natural in many bin packing applications,
the numbers n j of items of each type and the bin capacities uk may be very large.

Corollary 4.15. For every fixed number t of types and integer type weights v1, . . . , vt,
there is a polynomial time algorithm that, given n bins, integer item numbers n1, . . . , nt,
integer bin capacities u1, . . . , un, and t × n integer utility matrix w, encoded as
[〈n1, . . . , nt, u1, . . . , un,w〉], solves the following integer bin packing problem,

max
{
wx : x ∈ Nt×n,

∑
j

v jx j,k = uk,
∑

k
x j,k = n j

}
.

Proof. Re-index the variable matrix as x = (x1, . . . , xn) with xk := (xk
1, . . . , x

k
t ) where xk

j
represents the number of items of type j to be packed in bin k for all j and k. Let A be the
(t+1)× t matrix with A1 := It the t× t identity and with A2 := (v1, . . . , vt) a single row. Re-
arrange the given item numbers and bin capacities in a vector b := (b0, b1, . . . , bn) ∈ Zt+n

with b0 := (n1, . . . , nt) and bk := uk for all k. This translates the bin packing problem into
an n-fold integer programming problem in standard form,

max{wx : x ∈ Nnt, A(n)x = b},

where the equations A1(
∑n

k=1 xk) = b0 represent the constraints
∑

k x j,k = n j assuring
that all items of each type are packed, and the equations A2xk = bk for k = 1, . . . , n
represent the constraints

∑
j v jx j,k = uk assuring that the weight capacity of each bin is

not exceeded (in fact, the slack items make sure each bin is perfectly packed).
Using the algorithm of Theorem 4.12, this n-fold integer program, and hence the

given integer bin packing problem, can be solved in polynomial time.

Example 4.16 (Cutting-Stock Problem). This is a classical manufacturing problem [18],
where the usual setup is as follows: a manufacturer produces rolls of material (such as
scotch-tape or band-aid) in one of t different widths v1, . . . , vt. The rolls are cut out from
standard rolls of common large width u. Given orders by customers for n j rolls of width
v j, the problem facing the manufacturer is to meet the orders using the smallest possible
number of standard rolls. This can be cast as a bin packing problem as follows. Rolls of
width v j become items of type j to be packed. Standard rolls become identical bins, of
capacity uk := u each, where the number of bins is set to be n :=

∑t
j=1�n j/�u/v j�� which

is sufficient to accommodate all orders. The utility of each roll of width v j is set to be its
width negated wj,k := −v j regardless of the standard roll k from which it is cut (paying
for the width it takes). Introduce a new roll width v0 := 1, where rolls of that width
represent “slack rolls” which occupy the unused width of each standard roll, with utility
w0,k := −1 regardless of the standard roll k from which it is cut (paying for the unused
width it represents), with the number of slack rolls set to be the total residual width
n0 := nu −

∑t
j=1 n jv j. Then the cutting-stock problem becomes a bin packing problem
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and therefore, by Corollary 4.15, for every fixed t and fixed roll widths v1, . . . , vt, it is
solvable in time polynomial in

∑t
j=1�n j/�u/v j�� and 〈n1, . . . , nt, u〉.

One common approach to the cutting-stock problem uses so-called cutting patterns,
which are feasible solutions of the knapsack problem {y ∈ Nt :

∑t
j=1 v jy j ≤ u}. This is

useful when the common width u of the standard rolls is of the same order of magnitude
as the demand role widths v j. However, when u is much larger than the v j, the number
of cutting patterns becomes prohibitively large to handle. But then the values �u/v j� are
large and hence n :=

∑t
j=1�n j/�u/v j�� is small, in which case the solution through the

algorithm of Corollary 4.15 becomes particularly appealing.

5. Convex Integer Programming

In this section we discuss convex integer programming. In particular, we extend the the-
ory of §4 and show that convex n-fold integer programming is polynomial time solvable
as well. In §5.1 we discuss convex integer programming over totally unimodular matri-
ces. In §5.2 we show the applicability of Graver bases to convex integer programming.
In §5.3 we combine Theorem 2.4, the results of §4, and the preparatory facts from §§5.2,
and prove the main result of this section, asserting that convex n-fold integer program-
ming is polynomial time solvable. We conclude with some applications in §5.4.

As in §4, the feasible set S is presented as the set of integer points satisfying an
explicitly given system of linear inequalities, given in one of the forms

S := {x ∈ Nn : Ax = b} or S := {x ∈ Zn : Ax = b, l ≤ x ≤ u},

with matrix A ∈ Zm×n, right-hand side b ∈ Zm, and lower and upper bounds l, u ∈ Zn
∞.

As demonstrated in §1.1, if the polyhedron P := {x ∈ Rn : Ax = b, l ≤ x ≤ u} is
unbounded then the convex integer programming problem with an oracle presented con-
vex functional is rather hopeless. Therefore, an algorithm that solves the convex integer
programming problem should either return an optimal solution, or assert that the program
is infeasible, or assert that the underlying polyhedron is unbounded.

Nonetheless, we do allow the lower and upper bounds l, u to lie in Zn
∞ rather than

Z
n, since often the polyhedron is bounded even though the variables are not bounded ex-

plicitly (for instance, if each variable is bounded below only, and appears in some equa-
tion all of whose coefficients are positive). This results in broader formulation flexibility.
Furthermore, in the next subsections we prove auxiliary lemmas asserting that certain
sets cover all edge-directions of relevant polyhedra, which do hold also in the unbounded
case. So we now extend the notion of edge-directions, defined in §2.1 for polytopes,
to polyhedra. A direction of an edge (1-dimensional face) e of a polyhedron P is any
nonzero scalar multiple of y − x where x, y are any two distinct points in e. As before, a
set covers all edge-directions of P if it contains a direction of each edge of P.

5.1. Convex Integer Programming over Totally Unimodular Systems

A matrix A is totally unimodular if the determinant of every square submatrix of A lies in
{−1, 0, 1}. Such matrices arise naturally in network flows, ordinary (2-way) transportation
problems, and many other situations. A fundamental result in integer programming [65]
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asserts that polyhedra defined by totally unimodular matrices are integer. More precisely,
if A is an m × n totally unimodular matrix, l, u ∈ Zn

∞, and b ∈ Zm, then

PI := conv{x ∈ Zn : Ax = b, l ≤ x ≤ u} = {x ∈ Rn : Ax = b, l ≤ x ≤ u} := P,

that is, the underlying polyhedron P coincides with its integer hull PI . This has two con-
sequences useful in facilitating the solution of the corresponding convex integer program-
ming problem via the algorithm of Theorem 2.4. First, the corresponding linear integer
programming problem can be solved by linear programming over P in polynomial time.
Second, a set covering all edge-directions of the implicitly given integer hull PI , which
is typically very hard to determine, is obtained here as a set covering all edge-directions
of P which is explicitly given and hence easier to determine.

We now describe a well known property of polyhedra of the above form. A circuit of
a matrix A ∈ Zm×n is a nonzero primitive minimal support element of L(A). So a circuit
is a nonzero c ∈ Zn satisfying Ac = 0, whose entries are relatively prime integers, such
that no nonzero c′ with Ac′ = 0 has support strictly contained in the support of c.

Lemma 5.1. For every A ∈ Zm×n, l, u ∈ Zn
∞, and b ∈ Zm, the set of circuits of A covers

all edge-directions of the polyhedron P := {x ∈ Rn : Ax = b, l ≤ x ≤ u}.

Proof. Consider any edge e of P. Pick two distinct points x, y ∈ e and set g := y − x.
Then Ag = 0 and therefore, as can be easily proved by induction on |supp(g)|, there is
a finite decomposition g =

∑
i αici with αi positive real number and ci circuit of A such

that αici ) g for all i, where ) is the natural extension from Zn to Rn of the partial order
defined in §4.2. We claim that x + αici ∈ P for all i. Indeed, ci being a circuit implies
A(x + αici) = Ax = b; and l ≤ x, x + g ≤ u and αici ) g imply l ≤ x + αici ≤ u.

Now let w ∈ Rn be a linear functional uniquely maximized over P at the edge e.
Then wαici = w(x+αici) − wx ≤ 0 for all i. But

∑
(wαici) = wg = wy − wx = 0, implying

that in fact wαici = 0 and hence x + αici ∈ e for all i. This implies that each ci is a
direction of e (in fact, all ci are the same and g is a multiple of some circuit).

Combining Theorem 2.4 and Lemma 5.1 we obtain the following statement.

Theorem 5.2. For every fixed d there is a polynomial time algorithm that, given m × n
totally unimodular matrix A, set C ⊂ Zn containing all circuits of A, vectors l, u ∈ Zn

∞,
b ∈ Zm, and w1, . . . ,wd ∈ Zn, and convex c : Rd → R presented by a comparison oracle,
encoded as [〈A,C, l, u, b,w1, . . . ,wd〉], solves the convex integer program

max{c(w1 x, . . . ,wd x) : x ∈ Zn, Ax = b, l ≤ x ≤ u}.

Proof. First, check in polynomial time using linear programming whether the objective
function of any of the following 2n linear programs is unbounded,

max{±yi : y ∈ P}, i = 1, . . . , n, P := {y ∈ Rn : Ay = b, l ≤ y ≤ u}.

If any is unbounded then terminate, asserting that P is unbounded. Otherwise, let ρ be
the least integer upper bound on the absolute value of all optimal objective values. Then
P ⊆ [−ρ, ρ]n and S := {y ∈ Zn : Ay = b, l ≤ y ≤ u} ⊂ P is finite of radius ρ(S ) ≤ ρ. In
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fact, since A is totally unimodular, PI = P = conv(S ) and hence ρ(S ) = ρ. Moreover, by
Cramer’s rule, 〈ρ〉 is polynomially bounded in 〈A, l, u, x〉.

Now, since A is totally unimodular, using linear programming over PI = P we can
simulate in polynomial time a linear discrete optimization oracle for S . By Lemma 5.1,
the given set C, which contains all circuits of A, also covers all edge-directions of
conv(S ) = PI = P. Therefore we can apply the algorithm of Theorem 2.4 and solve the
given convex n-fold integer programming problem in polynomial time.

While the number of circuits of an m × n matrix A can be as large as 2
(

n
m+1

)
and

hence exponential in general, it is nonetheless relatively small in that it is bounded in
terms of m and n only and is independent of the matrix A itself. Furthermore, it may
happen that the number of circuits is much smaller than the upper bound 2

(
n

m+1

)
. Also, if

in a class of matrices, m grows slowly in terms of n, say m = O(log n), then this bound
is subexponential. In such situations, the above theorem may provide a good strategy for
solving convex integer programming over totally unimodular systems.

5.2. Graver Bases and Convex Integer Programming

We now extend the statements of §5.1 about totally unimodular matrices to arbitrary
integer matrices. The next lemma shows that the Graver basis of any integer matrix covers
all edge-directions of the integer hulls of polyhedra defined by that matrix.

Lemma 5.3. For every A ∈ Zm×n, l, u ∈ Zn
∞, and b ∈ Zm, the Graver basis G(A) of A

covers all edge-directions of the polyhedron PI := conv{x ∈ Zn : Ax = b, l ≤ x ≤ u}.

Proof. Consider any edge e of PI and pick two distinct points x, y ∈ e∩Zn. Then g := y−x
is in L(A) \ {0}. Therefore, by Lemma 4.2, there is a conformal sum g =

∑
i hi with hi ∈

G(A) for all i. We claim that x + hi ∈ PI for all i. Indeed, first note that hi ∈ G(A) ⊂ L(A)
implies Ahi = 0 and hence A(x + hi) = Ax = b; and second note that l ≤ x, x + g ≤ u and
hi ) g imply that l ≤ x + hi ≤ u.

Now let w ∈ Zn be a linear functional uniquely maximized over PI at the edge e.
Then whi = w(x + hi) − wx ≤ 0 for all i. But

∑
(whi) = wg = wy − wx = 0, implying that

in fact whi = 0 and hence x + hi ∈ e for all i. Therefore each hi is a direction of e (in fact,
all hi are the same and g is a multiple of some Graver basis element).

Combining Theorems 2.4 and 4.4 and Lemma 5.3 we obtain the following state-
ment.

Theorem 5.4. For every fixed d there is a polynomial time algorithm that, given in-
teger m × n matrix A, its Graver basis G(A), l, u ∈ Zn

∞, x ∈ Zn with l ≤ x ≤ u,
w1, . . . ,wd ∈ Zn, and convex c : Rd → R presented by a comparison oracle, encoded as
[〈A,G(A), l, u, x,w1, . . . ,wd〉], solves the convex integer program with b := Ax,

max{c(w1z, . . . ,wdz) : z ∈ Zn, Az = b, l ≤ z ≤ u}.

Proof. First, check in polynomial time using linear programming whether the objective
function of any of the following 2n linear programs is unbounded,

max{±yi : y ∈ P}, i = 1, . . . , n, P := {y ∈ Rn : Ay = b, l ≤ y ≤ u}.
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If any is unbounded then terminate, asserting that P is unbounded. Otherwise, let ρ be
the least integer upper bound on the absolute value of all optimal objective values. Then
P ⊆ [−ρ, ρ]n and S := {y ∈ Zn : Ay = b, l ≤ y ≤ u} ⊂ P is finite of radius ρ(S ) ≤ ρ.
Moreover, by Cramer’s rule, 〈ρ〉 is polynomially bounded in 〈A, l, u, x〉.

Using the given Graver basis and applying the algorithm of Theorem 4.4 we can
simulate in polynomial time a linear discrete optimization oracle for S . Furthermore, by
Lemma 5.3, the given Graver basis covers all edge-directions of the integer hull PI :=
conv{y ∈ Zn : Ay = b, l ≤ y ≤ u} = conv(S ). Therefore we can apply the algorithm of
Theorem 2.4 and solve the given convex program in polynomial time.

5.3. Convex n-fold Integer Programming in Polynomial Time

We now extend the result of Theorem 4.11 and show that convex integer programming
problems over n-fold systems can be solved in polynomial time as well. As explained in
the beginning of this section, the algorithm either returns an optimal solution, or asserts
that the program is infeasible, or asserts that the underlying polyhedron is unbounded.

Theorem 5.5. For every fixed d and fixed (r+ s)× t integer matrix A there is a polynomial
time algorithm that, given n, lower and upper bounds l, u ∈ Znt

∞, w1, . . . ,wd ∈ Znt, b ∈

Z
r+ns, and convex functional c : Rd → R presented by a comparison oracle, encoded as

[〈l, u,w1, . . . ,wd, b〉], solves the convex n-fold integer programming problem

max{c(w1 x, . . . ,wd x) : x ∈ Znt, A(n)x = b, l ≤ x ≤ u}.

Proof. First, check in polynomial time using linear programming whether the objective
function of any of the following 2nt linear programs is unbounded,

max{±yi : y ∈ P}, i = 1, . . . , nt, P := {y ∈ Rnt : A(n)y = b, l ≤ y ≤ u}.

If any is unbounded then terminate, asserting that P is unbounded. Otherwise, let ρ be
the least integer upper bound on the absolute value of all optimal objective values. Then
P ⊆ [−ρ, ρ]nt and S := {y ∈ Znt : A(n)y = b, l ≤ y ≤ u} ⊂ P is finite of radius ρ(S ) ≤ ρ.
Moreover, by Cramer’s rule, 〈ρ〉 is polynomially bounded in n and 〈l, u, b〉.

Using the algorithm of Theorem 4.11 we can simulate in polynomial time a linear
discrete optimization oracle for S . Also, using the algorithm of Theorem 4.7 we can
compute in polynomial time the Graver basis G(A(n)) which, by Lemma 5.3, covers all
edge-directions of PI := conv{y ∈ Znt : A(n)y = b, l ≤ y ≤ u} = conv(S ). Therefore
we can apply the algorithm of Theorem 2.4 and solve the given convex n-fold integer
programming problem in polynomial time.

Again, as a special case of Theorem 5.5 we recover the following result of [10]
concerning convex integer programming in standard form over n-fold matrices.

Theorem 5.6. For every fixed d and fixed (r+ s)× t integer matrix A there is a polynomial
time algorithm that, given n, linear functionals w1, . . . ,wd ∈ Znt, right-hand side b ∈

Z
r+ns, and convex functional c : Rd → R presented by a comparison oracle, encoded as

[〈w1, . . . ,wd, b〉], solves the convex n-fold integer program in standard form

max{c(w1 x, . . . ,wd x) : x ∈ Nnt, A(n)x = b}.
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5.4. Some Applications

5.4.1. Transportation Problems and Packing Problems

Theorems 5.5 and 5.6 generalize Theorems 4.11 and 4.12 by broadly extending the class
of objective functions that can be maximized in polynomial time over n-fold systems.
Therefore all applications discussed in §4.5 automatically extend accordingly.

First, we have the following analog of Corollary 4.13 for the convex integer trans-
portation problem over long 3-way tables. This has a very broad further generalization
to multiway transportation problems over long k-way tables of any dimension k, see §6.

Corollary 5.7. For every fixed d, p, q there is a polynomial time algorithm that, given n,
arrays w1, . . . ,wd ∈ Zp×q×n, line-sums u ∈ Zp×q, v ∈ Zp×n and z ∈ Zq×n, and convex func-
tional c : Rd → R presented by a comparison oracle, encoded as [〈w1, . . . ,wd, u, v, z〉],
solves the convex integer 3-way line-sum transportation problem

max
{
c(w1x, . . . ,wd x) : x ∈ Np×q×n,

∑
i

xi, j,k = z j,k ,
∑

j
xi, j,k = vi,k,

∑
k

xi, j,k = ui, j

}
.

Second, we have the following analog of Corollary 4.15 for convex bin packing.

Corollary 5.8. For every fixed d, number of types t, and type weights v1, . . . , vt ∈ Z, there
is a polynomial time algorithm that, given n bins, item numbers n1, . . . , nt ∈ Z, bin capac-
ities u1, . . . , un ∈ Z, utility matrices w1, . . . ,wd ∈ Zt×n, and convex functional c : Rd →

R presented by a comparison oracle, encoded as [〈n1, . . . , nt, u1, . . . , un,w1, . . . ,wd〉],
solves the convex integer bin packing problem,

max
{
c(w1x, . . . ,wd x) : x ∈ Nt×n,

∑
j

v jx j,k = uk,
∑

k
x j,k = n j

}
.

5.4.2. Vector Partitioning and Clustering

The vector partition problem concerns the partitioning of n items among p players to
maximize social value subject to constraints on the number of items each player can
receive. More precisely, the data is as follows. With each item i is associated a vector
vi ∈ Zk representing its utility under k criteria. The utility of player h under ordered
partition π = (π1, . . . , πp) of the set of items {1, . . . , n} is the sum vπh :=

∑
i∈πh vi of

utility vectors of items assigned to h under π. The social value of π is the balancing
c(vπ1,1, . . . , v

π
1,k, . . . , v

π
p,1, . . . , v

π
p,k) of the player utilities, where c is a convex functional on

R
pk. In the constrained version, the partition must be of a given shape, i.e. the number

|πh| of items that player h gets is required to be a given number λh (with
∑
λh = n). In the

unconstrained version, there is no restriction on the number of items per player.
Vector partition problems have applications in diverse areas such as load balancing,

circuit layout, ranking, cluster analysis, inventory, and reliability, see, e.g., [11,12,16,19,
20] and the references therein. Here is a typical example.

Example 5.9 (Minimal Variance Clustering). This problem has numerous applications
in the analysis of statistical data: given n observed points v1, . . . , vn in k-space, group
them into p clusters π1, . . . , πp that minimize the sum of cluster variances given by
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p∑
h=1

1
|πh|

∑
i∈πh

∥∥∥∥∥vi −

( 1
|πh|

∑
i∈πh

vi

)∥∥∥∥∥2
.

Consider instances where there are n = pm points and the desired clustering is balanced,
that is, the clusters should have equal size m. Suitable manipulation of the sum of vari-
ances expression above shows that the problem is equivalent to a constrained vector par-
tition problem, where λh = m for all h, and where the convex functional c : Rpk → R (to
be maximized) is the Euclidean norm squared, given by

c(z) = ‖z‖2 =

p∑
h=1

k∑
i=1

|zh,i|
2.

If either the number of criteria k or the number of players p is variable, the partition
problem is intractable since it instantly captures NP-hard problems [12]. When both k, p
are fixed, both the constrained and unconstrained versions of the vector partition problem
are polynomial time solvable [12,16]. We now show that vector partition problems (either
constrained or unconstrained) are in fact convex n-fold integer programming problems
and therefore, as a consequence of Theorem 5.6, can be solved is polynomial time.

Corollary 5.10. For every fixed number p of players and number k of criteria, there is
a polynomial time algorithm that, given n, item vectors v1, . . . , vn ∈ Zk, λ1, . . . , λp ∈ N,
and convex functional c : Rpk → R presented by a comparison oracle, encoded as
[〈v1, . . . , vn, λ1, . . . , λp〉], solves the constrained and unconstrained partitioning prob-
lems.

Proof. There is an obvious one-to-one correspondence between partitions and matrices
x ∈ {0, 1}p×n with all column-sums equal to one, where partition π corresponds to the
matrix x with xh,i = 1 if i ∈ πh and xh,i = 0 otherwise. Let d := pk and define d matrices
wh, j ∈ Zp×n by setting (wh, j)h,i := vi, j for all h = 1, . . . , p, i = 1, . . . , n and j = 1, . . . , k,
and setting all other entries to zero. Then for any partition π and its corresponding matrix
x we have vπh, j = wh, jx for all h = 1, . . . , p and j = 1, . . . , k. Therefore, the unconstrained
vector partition problem is the convex integer program

max
{
c(w1,1x, . . . ,wp,kx) : x ∈ Np×n,

∑
h

xh,i = 1
}
.

Suitably arranging the variables in a vector, this becomes a convex n-fold integer program
with a (0 + 1) × p defining matrix A, where A1 is empty and A2 := (1, . . . , 1).

Similarly, the constrained vector partition problem is the convex integer program

max
{
c(w1,1x, . . . ,wp,kx) : x ∈ Np×n,

∑
h

xh,i = 1,
∑

i
xh,i = λh

}
.

This again is a convex n-fold integer program, now with a (p + 1) × p defining matrix A,
where now A1 := Ip is the p × p identity matrix and A2 := (1, . . . , 1) as before.

Using the algorithm of Theorem 5.6, this convex n-fold integer program, and hence
the given vector partition problem, can be solved in polynomial time.
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6. Multiway Transportation Problems and Privacy in Statistical Databases

Transportation problems form a very important class of discrete optimization problems.
The feasible points in a transportation problem are the multiway tables (“contingency
tables” in statistics) such that the sums of entries over some of their lower dimensional
sub-tables such as lines or planes (“margins” in statistics) are specified. Transportation
problems and their corresponding transportation polytopes have been used and studied
extensively in the operations research and mathematical programming literature, as well
as in the statistics literature in the context of secure statistical data disclosure and man-
agement by public agencies, see [21–30] and references therein.

In this section we completely settle the algorithmic complexity of treating multiway
tables and discuss the applications to transportation problems and secure statistical data
disclosure, as follows. After introducing some terminology in §6.1, we go on to describe,
in §6.2, a universality result that shows that “short” 3-way r × c × 3 tables, with variable
number r of rows and variable number c of columns but fixed small number 3 of layers
(hence “short”), are universal in a very strong sense. In §6.3 we discuss the general
multiway transportation problem. Using the results of §6.2 and the results on linear and
convex n-fold integer programming from §4 and §5, we show that the transportation
problem is intractable for short 3-way r × c × 3 tables but polynomial time treatable for
“long” (k + 1)-way m1 × · · · × mk × n tables, with k and the sides m1, . . . ,mk fixed (but
arbitrary), and the number n of layers variable (hence “long”). In §6.4 we turn to discuss
data privacy and security and consider the central problem of detecting entry uniqueness
in tables with disclosed margins. We show that as a consequence of the results of §6.2
and §6.3, and in analogy to the complexity of the transportation problem established in
§6.3, the entry uniqueness problem is intractable for short 3-way r × c × 3 tables but
polynomial time decidable for long (k + 1)-way m1 × · · · × mk × n tables.

6.1. Tables and Margins

We start with some terminology on tables, margins and transportation polytopes. A k-
way table is an m1 × · · · × mk array x = (xi1,...,ik ) of nonnegative integers. A k-way trans-
portation polytope (or simply k-way polytope for brevity) is the set of all m1 × · · · × mk
nonnegative arrays x = (xi1,...,ik ) such that the sums of the entries over some of their
lower dimensional sub-arrays (margins) are specified. More precisely, for any tuple
(i1, . . . , ik) with i j ∈ {1, . . . ,m j} ∪ {+}, the corresponding margin xi1,...,ik is the sum of
entries of x over all coordinates j with i j = +. The support of (i1, . . . , ik) and of xi1,...,ik
is the set supp(i1, . . . , ik) := { j : i j � +} of nonsummed coordinates. For instance,
if x is a 4 × 5 × 3 × 2 array then it has 12 margins with support F = {1, 3} such as
x3,+,2,+ =

∑5
i2=1

∑2
i4=1 x3,i2,2,i4 . A collection of margins is hierarchical if, for some family

F of subsets of {1, . . . , k}, it consists of all margins ui1,...,ik with support in F . In partic-
ular, for any 0 ≤ h ≤ k, the collection of all h-margins of k-tables is the hierarchical
collection with F the family of all h-subsets of {1, . . . , k}. Given a hierarchical collection
of margins ui1,...,ik supported on a family F of subsets of {1, . . . , k}, the corresponding
k-way polytope is the set of nonnegative arrays with these margins,

TF :=
{
x ∈ R

m1×···×mk
+ : xi1,...,ik = ui1,...,ik , supp(i1, . . . , ik) ∈ F

}
.

The integer points in this polytope are precisely the k-way tables with the given margins.
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6.2. The Universality Theorem

We now describe the following universality result of [6, 8] which shows that, quite re-
markably, any rational polytope is a short 3-way r×c×3 polytope with all line-sums spec-
ified. (In the terminology of §6.1 this is the r × c × 3 polytope TF of all 2-margins fixed,
supported on the family F =

{
{1, 2}, {1, 3}, {2, 3}

}
.) By saying that a polytope P ⊂ Rp is

representable as a polytope Q ⊂ Rq we mean in the strong sense that there is an injection
σ : {1, . . . , p} → {1, . . . , q} such that the coordinate-erasing projection

π : Rq → Rp : x = (x1, . . . , xq) �→ π(x) =
(
xσ(1), . . . , xσ(p)

)
provides a bijection between Q and P and between the sets of integer points Q ∩ Zq and
P ∩ Zp. In particular, if P is representable as Q then P and Q are isomorphic in any
reasonable sense: they are linearly equivalent and hence all linear programming related
problems over the two are polynomial time equivalent; they are combinatorially equiva-
lent and hence they have the same face numbers and facial structure; and they are integer
equivalent and therefore all integer programming and integer counting related problems
over the two are polynomial time equivalent as well.

We provide only an outline of the proof of the following statement; complete details
and more consequences of this theorem can be found in [6, 8].

Theorem 6.1. There is a polynomial time algorithm that, given A ∈ Zm×n and b ∈ Zm,
encoded as [〈A, b〉], produces r, c and line-sums u ∈ Zr×c, v ∈ Zr×3 and z ∈ Zc×3 such that
the polytope P := {y ∈ Rn

+ : Ay = b} is representable as the 3-way polytope

T :=
{
x ∈ Rr×c×3

+ :
∑

i
xi, j,k = z j,k,

∑
j

xi, j,k = vi,k,
∑

k
xi, j,k = ui, j

}
.

Proof. The construction proving the theorem consists of three polynomial time steps,
each representing a polytope of a given format as a polytope of another given format.

First, we show that any P := {y ≥ 0 : Ay = b} with A, b integer can be represented
in polynomial time as Q := {x ≥ 0 : Cx = d} with C matrix all entries of which
are in {−1, 0, 1, 2}. This reduction of coefficients will enable the rest of the steps to run
in polynomial time. For each variable y j let k j := max{�log2|ai, j|� : i = 1, . . .m} be
the maximum number of bits in the binary representation of the absolute value of any
entry ai, j of A. Introduce variables x j,0, . . . , x j,k j , and relate them by the equations 2x j,i −

x j,i+1 = 0. The representing injection σ is defined by σ( j) := ( j, 0), embedding y j as
x j,0. Consider any term ai, j y j of the original system. Using the binary expansion |ai, j| =∑k j

s=0 ts2s with all ts ∈ {0, 1}, we rewrite this term as ±
∑k j

s=0 tsx j,s. It is not hard to verify
that this represents P as Q with defining {−1, 0, 1, 2}-matrix.

Second, we show that any Q := {y ≥ 0 : Ay = b} with A, b integer can be represented
as a face F of a 3-way polytope with all plane-sums fixed, that is, a face of a 3-way
polytope TF of all 1-margins fixed, supported on the family F =

{
{1}, {2}, {3}

}
.

Since Q is a polytope and hence bounded, we can compute (using Cramer’s rule) an
integer upper bound U on the value of any coordinate y j of any y ∈ Q. Note also that a
face of a 3-way polytope TF is the set of all x = (xi, j,k) with some entries forced to zero;
these entries are termed “forbidden,” and the other entries are termed “enabled.”
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For each variable y j, let r j be the largest between the sum of positive coefficients of
y j and the sum of absolute values of negative coefficients of y j over all equations,

r j := max
(∑

k
{ak, j : ak, j > 0},

∑
k

{|ak, j| : ak, j < 0}
)
.

Assume that A is of size m × n. Let r :=
∑n

j=1 r j, R := {1, . . . , r}, h := m + 1 and
H := {1, . . . , h}. We now describe how to construct vectors u, v ∈ Zr, z ∈ Zh, and a set
E ⊂ R × R × H of triples — the enabled, nonforbidden, entries — such that the polytope
Q is represented as the face F of the corresponding 3-way polytope of r × r × h arrays
with plane-sums u, v, z and only entries indexed by E enabled,

F :=
{
x ∈ Rr×r×h

+ : xi, j,k = 0 for all (i, j, k) � E, and∑
i, j

xi, j,k = zk,
∑
i,k

xi, j,k = v j,
∑

j,k
xi, j,k = ui

}
.

We also indicate the injection σ : {1, . . . , n} → R × R × H giving the desired embedding
of coordinates y j as coordinates xi, j,k and the representation of Q as F.

Roughly, each equation k = 1, . . . ,m is encoded in a “horizontal plane” R × R × {k}
(the last plane R × R × {h} is included for consistency with its entries being “slacks”);
and each variable y j, j = 1, . . . , n is encoded in a “vertical box” R j × R j × H, where
R =

⊎n
j=1 R j is the natural partition of R with |R j| = r j for all j = 1, . . . , n, that is, with

R j := {1 +
∑

l< j rl, . . . ,
∑

l≤ j rl}.
Now, all “vertical” plane-sums are set to the same value U, that is, u j := v j := U

for j = 1, . . . , r. All entries not in the union
⊎n

j=1 R j × R j × H of the variable boxes
will be forbidden. We now describe the enabled entries in the boxes; for simplicity we
discuss the box R1 × R1 × H, the others being similar. We distinguish between the two
cases r1 = 1 and r1 ≥ 2. In the first case, R1 = {1}; the box, which is just the single line
{1} × {1} × H, will have exactly two enabled entries (1, 1, k+), (1, 1, k−) for suitable k+, k−

to be defined later. We set σ(1) := (1, 1, k+), namely embed y1 = x1,1,k+ . We define the
complement of the variable y1 to be ȳ1 := U − y1 (and likewise for the other variables).
The vertical sums u, v then force ȳ1 = U − y1 = U − x1,1,k+ = x1,1,k− , so the complement
of y1 is also embedded. Next, consider the case r1 ≥ 2. For each s = 1, . . . , r1, the line
{s} × {s} × H (respectively, {s} × {1 + (s mod r1)} × H) will contain one enabled entry(
s, s, k+(s)

)
(respectively,

(
s, 1 + (s mod r1), k−(s)

)
. All other entries of R1 × R1 × H will

be forbidden. Again, we set σ(1) :=
(
1, 1, k+(1)

)
, namely embed y1 = x1,1,k+(1); it is

then not hard to see that, again, the vertical sums u, v force xs,s,k+(s) = x1,1,k+(1) = y1 and
xs,1+(s mod r1),k−(s) = U − x1,1,k+(1) = ȳ1 for each s = 1, . . . , r1. Therefore, both y1 and ȳ1 are
each embedded in r1 distinct entries.

We now encode the equations by defining the horizontal plane-sums z and the
indices k+(s), k−(s) above as follows. For k = 1, . . . ,m, consider the kth equation∑

j ak, jy j = bk. Define the index sets J+ := { j : ak, j > 0} and J− := { j : ak, j < 0}, and
set zk := bk +U ·

∑
j∈J− |ak, j|. The last coordinate of z is set for consistency with u, v to be

zh = zm+1 := r · U −
∑m

k=1 zk. Now, with ȳ j := U − y j the complement of variable y j as
above, the kth equation can be rewritten as
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∑
j∈J+

ak, jy j +
∑
j∈J−

|ak, j|ȳ j =

n∑
j=1

ak, jy j + U ·
∑
j∈J−

|ak, j| = bk + U ·
∑
j∈J−

|ak, j| = zk.

To encode this equation, we simply “pull down” to the corresponding kth horizontal plane
as many copies of each variable y j or ȳ j by suitably setting k+(s) := k or k−(s) := k. By
the choice of r j there are sufficiently many, possibly with a few redundant copies which
are absorbed in the last hyperplane by setting k+(s) := m + 1 or k−(s) := m + 1. This
completes the encoding and provides the desired representation.

Third, we show that any 3-way polytope with plane-sums fixed and entry bounds,

F :=
{
y ∈ Rl×m×n

+ :
∑
i, j

yi, j,k = ck,
∑
i,k

yi, j,k = b j,
∑

j,k
yi, j,k = ai, yi, j,k ≤ ei, j,k

}
,

can be represented as a 3-way polytope with line-sums fixed (and no entry bounds),

T :=
{
x ∈ Rr×c×3

+ :
∑

I
xI,J,K = zJ,K ,

∑
J

xI,J,K = vI,K ,
∑

K
xI,J,K = uI,J

}
.

In particular, this implies that any face F of a 3-way polytope with plane-sums fixed can
be represented as a 3-way polytope T with line-sums fixed: forbidden entries are encoded
by setting a “forbidding” upper-bound ei, j,k := 0 on all forbidden entries (i, j, k) � E and
an “enabling” upper-bound ei, j,k := U on all enabled entries (i, j, k) ∈ E. We describe the
presentation, but omit the proof that it is indeed valid; further details on this step can be
found in [5,6,8]. We give explicit formulas for uI,J , vI,K , zJ,K in terms of ai, b j, ck and ei, j,k
as follows. Put r := l · m and c := n + l +m. The first index I of each entry xI,J,K will be a
pair I = (i, j) in the r-set

{(1, 1), . . . , (1,m), (2, 1), . . . , (2,m), . . . , (l, 1), . . . , (l,m)}.

The second index J of each entry xI,J,K will be a pair J = (s, t) in the c-set

{(1, 1), . . . , (1, n), (2, 1), . . . , (2, l), (3, 1), . . . , (3,m)}.

The last index K will simply range in the 3-set {1, 2, 3}. We represent F as T via the injec-
tionσ given explicitly byσ(i, j, k) :=

(
(i, j), (1, k), 1

)
, embedding each variable yi, j,k as the

entry x(i, j),(1,k),1. Let U now denote the minimal between the two values max{a1, . . . , al}

and max{b1, . . . , bm}. The line-sums (2-margins) are set to be

u(i, j),(1,t) = ei, j,t, u(i, j),(2,t) =

⎧⎪⎪⎨⎪⎪⎩U if t = i,
0 otherwise,

u(i, j),(3,t) =

⎧⎪⎪⎨⎪⎪⎩U if t = j,
0 otherwise,

v(i, j),t =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U if t = 1,
ei, j,+ if t = 2,
U if t = 3,

z(i, j),1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c j if i = 1,
m · U − a j if i = 2,
0 if i = 3,

z(i, j),2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
e+,+, j − c j if i = 1,
0 if i = 2,
b j if i = 3,

z(i, j),3 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if i = 1,
a j if i = 2,
l · U − b j if i = 3.
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Applying the first step to the given rational polytope P, applying the second step to
the resulting Q, and applying the third step to the resulting F, we get in polynomial time
a 3-way r × c × 3 polytope T of all line-sums fixed representing P as claimed.

6.3. The Complexity of the Multiway Transportation Problem

We are now finally in position to settle the complexity of the general multiway transporta-
tion problem. The data for the problem consists of: positive integers k (table dimension)
and m1, . . . ,mk (table sides); family F of subsets of {1, . . . , k} (supporting the hierarchi-
cal collection of margins to be fixed); integer values ui1,...,ik for all margins supported on
F ; and integer “profit” m1 × · · · × mk array w. The transportation problem is to find an
m1 × · · ·×mk table having the given margins and attaining maximum profit, or assert than
none exists. Equivalently, it is the linear integer programming problem of maximizing
the linear functional defined by w over the transportation polytope TF ,

max
{
wx : x ∈ Nm1×···×mk : xi1,...,ik = ui1,...,ik , supp(i1, . . . , ik) ∈ F

}
.

The following result of [5] is an immediate consequence of Theorem 6.1. It asserts
that if two sides of the table are variable part of the input then the transportation problem
is intractable already for short 3-way tables with F =

{
{1, 2}, {1, 3}, {2, 3}

}
supporting all

2-margins (line-sums). This result can be easily extended to k-way tables of any dimen-
sion k ≥ 3 and F the collection of all h-subsets of {1, . . . , k} for any 1 < h < k as long as
two sides of the table are variable; we omit the proof of this extended result.

Corollary 6.2. It is NP-complete to decide, given r, c, and line-sums u ∈ Zr×c, v ∈ Zr×3,
and z ∈ Zc×3, encoded as [〈u, v, z〉], if the following set of tables is nonempty,

S :=
{
x ∈ Nr×c×3 :

∑
i

xi, j,k = z j,k,
∑

j
xi, j,k = vi,k,

∑
k

xi, j,k = ui, j

}
.

Proof. The integer programming feasibility problem is to decide, given A ∈ Zm×n and
b ∈ Zm, if {y ∈ Nn : Ay = b} is nonempty. Given such A and b, the polynomial time
algorithm of Theorem 6.1 produces r, c and u ∈ Zr×c, v ∈ Zr×3, and z ∈ Zc×3, such that
{y ∈ Nn : Ay = b} is nonempty if and only if the set S above is nonempty. This reduces
integer programming feasibility to short 3-way line-sum transportation feasibility. Since
the former is NP-complete (see, e.g., [1]), so turns out to be the latter.

We now show that in contrast, when all sides but one are fixed (but arbitrary), and
one side n is variable, then the corresponding long k-way transportation problem for
any hierarchical collection of margins is an n-fold integer programming problem and
therefore, as a consequence of Theorem 4.12, can be solved is polynomial time. This
extends Corollary 4.13 established in §4.5.1 for 3-way line-sum transportation.

Corollary 6.3. For every fixed k, table sides m1, . . . ,mk, and family F of subsets of
{1, . . . , k + 1}, there is a polynomial time algorithm that, given n, integer values u =
(ui1,...,ik+1 ) for all margins supported on F , and integer m1 × · · ·×mk ×n array w, encoded
as [〈u,w〉], solves the linear integer multiway transportation problem

max
{
wx : x ∈ Nm1×···×mk×n, xi1,...,ik+1 = ui1,...,ik+1 , supp(i1, . . . , ik+1) ∈ F

}
.
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Proof. Re-index the arrays as x = (x1, . . . , xn) with each x j = (xi1,...,ik , j) a suitably indexed
m1m2 · · · mk vector representing the jth layer of x. Then the transportation problem can
be encoded as an n-fold integer programming problem in standard form,

max{wx : x ∈ Nnt, A(n)x = b},

with an (r + s) × t defining matrix A where t := m1m2 · · · mk and r, s, A1 and A2 are
determined from F , and with right-hand side b := (b0, b1, . . . , bn) ∈ Zr+ns determined
from the margins u = (ui1,...,ik+1 ), in such a way that the equations A1(

∑n
j=1 x j) = b0

represent the constraints of all margins xi1,...,ik ,+ (where summation over layers occurs),
whereas the equations A2x j = b j for j = 1, . . . , n represent the constraints of all margins
xi1,...,ik , j with j � + (where summations are within a single layer at a time).

Using the algorithm of Theorem 4.12, this n-fold integer program, and hence the
given multiway transportation problem, can be solved in polynomial time.

The proof of Corollary 6.3 shows that the set of feasible points of any long k-way
transportation problem, with all sides but one fixed and one side n variable, for any hier-
archical collection of margins, is an n-fold integer programming problem. Therefore, as
a consequence of Theorem 5.6, we also have the following extension of Corollary 6.3 for
the convex integer multiway transportation problem over long k-way tables.

Corollary 6.4. For every fixed d, k, table sides m1, . . . ,mk, and family F of subsets
of {1, . . . , k + 1}, there is a polynomial time algorithm that, given n, integer values
u = (ui1,...,ik+1 ) for all margins supported on F , integer m1 ×· · ·×mk ×n arrays w1, . . . ,wd,
and convex functional c : Rd → R presented by a comparison oracle, encoded as
[〈u,w1, . . . ,wd〉], solves the convex integer multiway transportation problem

max
{
c(w1 x, . . . ,wd x) : x ∈ Nm1×···×mk×n, xi1,...,ik+1 = ui1,...,ik+1 , supp(i1, . . . , ik+1) ∈ F

}
.

6.4. Privacy and Entry-Uniqueness

A common practice in the disclosure of a multiway table containing sensitive data is to
release some of the table margins rather than the table itself, see, e.g., [23–25] and the
references therein. Once the margins are released, the security of any specific entry of
the table is related to the set of possible values that can occur in that entry in any table
having the same margins as those of the source table in the data base. In particular, if this
set consists of a unique value, that of the source table, then this entry can be exposed and
privacy can be violated. This raises the following fundamental entry-uniqueness problem:
given a consistent disclosed (hierarchical) collection of margin values, and a specific
entry index, is the value that can occur in that entry in any table having these margins
unique? We now describe the results of [14] that settle the complexity of this problem,
and interpret the consequences for secure statistical data disclosure.

First, we show that if two sides of the table are variable part of the input then the
entry-uniqueness problem is intractable already for short 3-way tables with all 2-margins
(line-sums) disclosed (corresponding to F =

{
{1, 2}, {1, 3}, {2, 3}

}
). This can be easily

extended to k-way tables of any dimension k ≥ 3 and F the collection of all h-subsets
of {1, . . . , k} for any 1 < h < k as long as two sides of the table are variable; we omit
the proof of this extended result. While this result indicates that the disclosing agency
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may not be able to check for uniqueness, in this situation, some consolation is in that an
adversary will be computationally unable to identify and retrieve a unique entry either.

Corollary 6.5. It is coNP-complete to decide, given r, c, and line-sums u ∈ Zr×c, v ∈ Zr×3,
z ∈ Zc×3, encoded as [〈u, v, z〉], if the entry x1,1,1 is the same in all tables in{

x ∈ Nr×c×3 :
∑

i
xi, j,k = z j,k,

∑
j

xi, j,k = vi,k,
∑

k
xi, j,k = ui, j

}
.

Proof. The subset-sum problem, well known to be NP-complete, is the following: given
positive integers a0, a1, . . . , am, decide if there is an I ⊆ {1, . . . ,m} with a0 =

∑
i∈I ai. We

reduce the complement of subset-sum to entry-uniqueness. Given a0, a1, . . . , am, consider
the polytope in 2(m + 1) variables y0, y1 . . . , ym, z0, z1, . . . , zm,

P :=
{
(y, z) ∈ R

2(m+1)
+ : a0y0 −

m∑
i=1

aiyi = 0, yi + zi = 1, i = 0, 1 . . . ,m
}
.

First, note that it always has one integer point with y0 = 0, given by yi = 0 and zi = 1
for all i. Second, note that it has an integer point with y0 � 0 if and only if there is
an I ⊆ {1, . . . ,m} with a0 =

∑
i∈I ai, given by y0 = 1, yi = 1 for i ∈ I, yi = 0 for

i ∈ {1, . . . ,m}\ I, and zi = 1−yi for all i. Lifting P to a suitable r×c×3 line-sum polytope
T with the coordinate y0 embedded in the entry x1,1,1 using Theorem 6.1, we find that T
has a table with x1,1,1 = 0, and this value is unique among the tables in T if and only if
there is no solution to the subset-sum problem with a0, a1, . . . , am.

Next we show that, in contrast, when all table sides but one are fixed (but arbitrary),
and one side n is variable, then, as a consequence of Corollary 6.3, the corresponding
long k-way entry-uniqueness problem for any hierarchical collection of margins can be
solved is polynomial time. In this situation, the algorithm of Corollary 6.6 below allows
disclosing agencies to efficiently check possible collections of margins before disclosure:
if an entry value is not unique then disclosure may be assumed secure, whereas if the
value is unique then disclosure may be risky and fewer margins should be released. Note
that this situation, of long multiway tables, where one category is significantly richer
than the others, that is, when each sample point can take many values in one category
and only few values in the other categories, occurs often in practical applications, e.g.,
when one category is the individuals age and the other categories are binary (“yes – no”).
In such situations, our polynomial time algorithm below allows disclosing agencies to
check entry-uniqueness and make learned decisions on secure disclosure.

Corollary 6.6. For every fixed k, table sides m1, . . . ,mk, and family F of subsets
of {1, . . . , k + 1}, there is a polynomial time algorithm that, given n, integer values
u = (u j1,..., jk+1 ) for all margins supported on F , and entry index (i1, . . . , ik+1), encoded as
[n, 〈u〉], decides if the entry xi1,...,ik+1 is the same in all tables in the set

{
x ∈ Nm1×···×mk×n : x j1,..., jk+1 = u j1,..., jk+1 , supp( j1, . . . , jk+1) ∈ F

}
.

Proof. By Theorem 6.3 we can solve in polynomial time both transportation problems
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l := min
{
xi1,...,ik+1 : x ∈ Nm1×···×mk×n, x ∈ TF

}
,

u := max
{
xi1,...,ik+1 : x ∈ Nm1×···×mk×n, x ∈ TF

}
,

over the corresponding k-way transportation polytope

TF :=
{
x ∈ R

m1×···×mk×n
+ : x j1,..., jk+1 = u j1,..., jk+1 , supp( j1, . . . , jk+1) ∈ F

}
.

Clearly, entry xi1,...,ik+1 has the same value in all tables with the given (disclosed) margins
if and only if l = u, completing the description of the algorithm and the proof.
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