Complete Solutions Manual

A First Course in Differential Equations with Modeling Applications

Ninth Edition
Dennis G. Zill
Loyola Marymount University

Differential Equations with Boundary-Vary Problems

Seventh Edition
Dennis G. Zill
Loyola Marymount University
Michael R. Cullen
Late of Loyola Marymount University

By
Warren S. Wright
Loyola Marymount University

Carol D. Wright

Table of Contents

1 Introduction to Differential Equations 1
2 First-Ordcr Differential Equations 27
3 Modeling with First-Order Differential Equations 86
4 Higher-Order Differential Equations 137
5 Modeling with Higher-Order Differential Equations 231
6 Scries Solutions of Linear Equations 274
7 The Laplace Transform 352
8 Systems of Linear First-Order Differential Equations 419
9 Numerical Solutions of Ordinary Differential Equations 478
10 Plane Autonomous Systerns 506
11 Fourier Series 538
12 Boundary-Value Problems in Rectangular Coordinates 586
13 Boundary-Value Problems in Other Coordinate Systems 675
14 Integral Transforms 717
15 Numerical Solutions of Partial Differential Equations 761
Appendix I Gamma function 783
Appendix II Matrices 785

ミ 2009 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying. recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions Further permissions questions can be emailed to permissionrequest@cengage.com

ISBN-13: 978-0-495-38609-4
ISBN-10: 0-495-38609-X

Brooks/Cole

10 Davis Drive Belmont, CA 94002-3098 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

For your course and learning solutions, visit academic.cengage.com

Purchase any of our products at your local college store or at our preferred online store www.ichapters.com

NOTE: UNDER NO GIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:
Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they
may not copy or distribute any portion of the Supplement to any third party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Exercises 1.1

Definitions and Terminology

1. Second order; linear
2. Third order; nonlinear because of $(d y / d x)^{4}$
3. Fourth order; linear
4. Second order; nonlinear because of $\cos (r+u)$
5. Second order; nonlinear because of $(d y / d x)^{2}$ or $\sqrt{1+(d y / d x)^{2}}$
6. Second order: nonlinear because of R^{2}
7. Third order; linear
8. Second order; nonlinear because of \dot{x}^{2}
9. Writing the differential cquation in the form $x(d y / d x)+y^{2}=1$, we sec that it is nonlincar in y because of y^{2}. However, writing it in the form $\left(y^{2}-1\right)(d x / d y)+x=0$, we see that it is linear in x.
10. Writing the differential equation in the form $u(d v / d u)+(1+u) v=u e^{u}$ we see that it is linear in v. However, writing it in the form $\left(v+u v-u e^{u}\right)(d u / d v)+u=0$, we see that it is nonlinear in u.
11. From $y=e^{-x / 2}$ we obtain $y^{\prime}=-\frac{1}{2} e^{-x / 2}$. Then $2 y^{\prime}+y=-e^{-x / 2}+e^{-x / 2}=0$.
12. From $y=\frac{6}{5}-\frac{6}{5} e^{-20 t}$ we obtain $d y / d t=24 e^{-20 t}$, so that

$$
\frac{d y}{d t}+20 y=24 e^{-20 t}+20\left(\frac{6}{5}-\frac{6}{5} e^{-20 t}\right)=24 .
$$

13. From $y=e^{3 x} \cos 2 x$ we obtain $y^{\prime}=3 e^{3 x} \cos 2 x-2 e^{3 x} \sin 2 x$ and $y^{\prime \prime}=5 e^{3 x} \cos 2 x-12 e^{3 x} \sin 2 x$, so that $y^{\prime \prime}-6 y^{\prime}+13 y=0$.
14. From $y=-\cos x \ln (\sec x+\tan x)$ we obtain $y^{\prime}=-1+\sin x \ln (\sec x+\tan x)$ and $y^{\prime \prime}=\tan x+\cos x \ln (\sec x+\tan x)$. Then $y^{\prime \prime}+y=\tan x$.
15. The domain of the function, found by solving $x+2 \geq 0$, is $[-2, \infty)$. From $y^{\prime}=1+2(x+2)^{-1 / 2}$ we

Exercises 1.1 Definitions and Terminology

have

$$
\begin{aligned}
(y-x) y^{\prime} & =(y-x)\left[1+\left(2(x+2)^{-1 / 2}\right]\right. \\
& =y-x+2(y-x)(x+2)^{-1 / 2} \\
& =y-x+2\left[x+4(x+2)^{1 / 2}-x\right](x+2)^{-1 / 2} \\
& =y-x+8(x+2)^{1 / 2}(x+2)^{-1 / 2}=y-x+8
\end{aligned}
$$

An interval of definition for the solution of the differential cquation is $(-2, \infty)$ because y^{\prime} : defined at $x=-2$.
16. Since $\tan x$ is not defined for $x=\pi / 2+n \pi, n$ an integer, the domain of $y=5 \tan =$ $\{x \mid 5 x \neq \pi / 2+n \pi\}$ or $\{x \mid x \neq \pi / 10+n \pi / 5\}$. From $y^{\prime}=25 \sec ^{2} 5 x$ we have

$$
y^{\prime}=25\left(1+\tan ^{2} 5 x\right)=25+25 \tan ^{2} 5 x=25+y^{2} .
$$

An interval of definition for the solution of the differential equation is $(-\pi / 10, \pi / 10$. $\therefore-\therefore$ interval is ($\pi / 10,3 \pi / 10$), and so on.
17. The domain of the function is $\left\{x \mid 4-x^{2} \neq 0\right\}$ or $\{x \mid x \neq-2$ or $x \neq 2\}$. From $y^{\prime}=2=-$ we have

$$
y^{\prime}=2 x\left(\frac{1}{4-x^{2}}\right)^{2}=2 x y
$$

An interval of definition for the solution of the differential equation is $(-2,2)$. Otic: $:-.--$ $(-\infty,-2)$ and $(2, \infty)$.
18. The function is $y=1 / \sqrt{1-\sin x}$, whose domain is obtained from $1-\sin x \neq 0$ or : the domain is $\{x \mid x \neq \pi / 2+2 n \pi\}$. From $y^{\prime}=-\frac{1}{2}(1-\sin x)^{-3 / 2}(-\cos x)$ we have

$$
2 y^{\prime}=(1-\sin x)^{-3 / 2} \cos x=\left[(1-\sin x)^{-1 / 2}\right]^{3} \cos x=y^{3} \cos x .
$$

An interval of definition for the solution of the differential equation is $(\pi / 2,5 \pi / 2 . .$. is $(5 \pi / 2,9 \pi / 2)$ and so on.
19. Writing $\ln (2 X-1)-\ln (X-1)=t$ and differentiating implicitly we obtain

$$
\begin{aligned}
& \frac{2}{2 X-1} \frac{d X}{d t}-\frac{1}{X-1} \frac{d X}{d t}=1 \\
& \left(\frac{2}{2 X-1}-\frac{1}{X-1}\right) \frac{d X}{d t}=1 \\
& \frac{2 X-2-2 X+1}{(2 X-1)(X-1)} \frac{d X}{d t}=1 \\
& \frac{d X}{d t}=-(2 X-1)(X-1)=(X-1)(1-2 \mathbb{I}
\end{aligned}
$$

Exponentiating both sides of the implicit solution we obtain

$$
\begin{aligned}
\frac{2 X-1}{X-1} & =e^{t} \\
2 X-1 & =X e^{t}-e^{t} \\
\left(e^{t}-1\right) & =\left(e^{t}-2\right) X \\
X & =\frac{e^{t}-1}{e^{t}-2} .
\end{aligned}
$$

Solving $e^{t}-2=0$ we get $t=\ln 2$. Thus, the solution is defined on $(-\infty, \ln 2)$ or on $(\ln 2, \infty)$. The graph of the solution defined on $(-\infty, \ln 2)$ is dashed, and the graph of the solution defined on $(\ln 2, \infty)$ is solid.
20. Implicitly differentiating the solution, we obtain

$$
\begin{aligned}
-2 x^{2} \frac{d y}{d x}-4 x y+2 y \frac{d y}{d x} & =0 \\
-x^{2} d y-2 x y d x+y d y & =0 \\
2 x y d x+\left(x^{2}-y\right) d y & =0
\end{aligned}
$$

Using the quadratic formula to solve $y^{2}-2 x^{2} y-1=0$ for y, we get $y=\left(2 x^{2} \pm \sqrt{4 x^{4}+4}\right) / 2=x^{2} \pm \sqrt{x^{4}+1}$. Thus, two explicit solutions are $y_{1}=x^{2}+\sqrt{x^{4}+1}$ and $y_{2}=x^{2}-\sqrt{x^{4}+1}$. Both
 solutions are defined on $(-\infty, \infty)$. The graph of $y_{1}(x)$ is solid and the graph of y_{2} is dashed.
21. Differentiating $P=c_{1} e^{t} /\left(1+c_{1} e^{t}\right)$ we obtain

$$
\begin{aligned}
\frac{d P}{d t} & =\frac{\left(1+c_{1} e^{t}\right) c_{1} e^{t}-c_{1} e^{t} \cdot c_{1} e^{t}}{\left(1+c_{1} e^{t}\right)^{2}}=\frac{c_{1} e^{t}}{1+c_{1} e^{t}} \frac{\left[\left(1+c_{1} e^{t}\right)-c_{1} e^{t}\right]}{1+c_{1} e^{t}} \\
& =\frac{c_{1} e^{t}}{1+c_{1} e^{t}}\left[1-\frac{c_{1} e^{t}}{1+c_{1} e^{t}}\right]=P(1-P) .
\end{aligned}
$$

22. Differcntiating $y=e^{-x^{2}} \int_{0}^{x} c^{t^{2}} d t+c_{1} e^{-x^{2}}$ we obtain

$$
y^{\prime}=e^{-x^{2}} e^{x^{2}}-2 x e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t-2 c_{1} x e^{-x^{2}}=1-2 x e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t-2 c_{1} x e^{-x^{2}}
$$

Substituting into the differential equation, we have

$$
y^{\prime}+2 x y=1-2 x e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t-2 c_{1} x e^{-x^{2}}+2 x e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t+2 c_{1} x e^{-x^{2}}=1
$$

Exercises 1.1 Definitions and Terminology

23. From $y=c_{1} e^{2 x}+c_{2} x e^{2 x}$ we obtain $\frac{d y}{d x}=\left(2 c_{1}+c_{2}\right) e^{2 x}+2 c_{2} x e^{2 x}$ and $\frac{d^{2} y}{d x^{2}}=\left(4 c_{1}+4 c_{2}\right) e^{2 x}+4 c_{2} x e^{2 x}$, so that

$$
\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=\left(4 c_{1}+4 c_{2}-8 c_{1}-4 c_{2}+4 c_{1}\right) e^{2 x}+\left(4 c_{2}-8 c_{2}+4 c_{2}\right) x e^{2 x}=0
$$

24. From $y=c_{1} x^{-1}+c_{2} x+c_{3} x \ln x+4 x^{2}$ we obtain

$$
\begin{aligned}
\frac{d y}{d x} & =-c_{1} x^{-2}+c_{2}+c_{3}+c_{3} \ln x+8 x \\
\frac{d^{2} y}{d x^{2}} & =2 c_{1} x^{-3}+c_{3} x^{-1}+8
\end{aligned}
$$

and

$$
\frac{d^{3} y}{d x^{3}}=-6 c_{1} x^{-4}-c_{3} x^{-2}
$$

so that

$$
\begin{aligned}
x^{3} \frac{d^{3} y}{d x^{3}}+2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y= & \left(-6 c_{1}+4 c_{1}+c_{1}+c_{1}\right) x^{-1}+\left(-c_{3}+2 c_{3}-c_{2}-c_{3}+c_{2}\right) x \\
& \quad-\left(-c_{3}+c_{3}\right) x \ln x+(16-8+4) x^{2} \\
= & 12 x^{2} .
\end{aligned}
$$

25. From $y=\left\{\begin{array}{ll}-x^{2}, & x<0 \\ x^{2}, & x \geq 0\end{array}\right.$ we obtain $y^{\prime}=\left\{\begin{array}{ll}-2 x, & x<0 \\ 2 x, & x \geq 0\end{array}\right.$ so that $x y^{\prime}-2 y=0$.
26. The function $y(x)$ is not continuous at $x=0$ sincc $\lim _{x \rightarrow 0^{-}} y(x)=5$ and $\lim _{x \rightarrow 0^{+}} y(x)=-5$. Thus, $y^{\prime}(x)$ does not exist at $x=0$.
27. From $y=e^{m x}$ we obtain $y^{\prime}=m e^{m x}$. Then $y^{\prime}+2 y=0$ implies

$$
m e^{m x}+2 e^{m x}=(m+2) e^{m x}=0
$$

Since $e^{m x}>0$ for all $x, m=-2$. Thus $y=e^{-2 x}$ is a solution.
28. From $y=e^{m x}$ we obtain $y^{\prime}=m e^{m x x}$. Then $5 y^{\prime}=2 y$ implics

$$
5 m e^{m x}=2 e^{m x} \quad \text { or } \quad m=\frac{2}{5}
$$

Thus $y=e^{2 x / 5}>0$ is a solution.
29. From $y=e^{m x}$ we obtain $y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$. Then $y^{\prime \prime}-5 y^{\prime}+6 y=0$ implies

$$
m^{2} e^{m x}-5 m e^{m x}+6 e^{m x}=(m-2)(m-3) e^{m x}=0
$$

Since $e^{m x}>0$ for all $x, m=2$ and $m=3$. Thus $y=e^{2 x}$ and $y=e^{3 x}$ are solutions.
30. From $y=e^{m x}$ we obtain $y^{\prime}=m e^{m x}$ and $y^{\prime \prime}=m^{2} e^{m x}$. Then $2 y^{\prime \prime}+7 y^{\prime}-4 y=0$ implics

$$
2 m^{2} e^{m x}+7 m e^{m x}-4 e^{m x}=(2 m-1)(m+4) e^{m x}=0
$$

Since $e^{m x}>0$ for all $x, m=\frac{1}{2}$ and $m=-4$. Thus $y=e^{x / 2}$ and $y=e^{-4 x}$ are solutions.
31. From $y=x^{m}$ we obtain $y^{\prime}=m x^{m-1}$ and $y^{\prime \prime}=m(m-1) x^{m-2}$. Then $x y^{\prime \prime}+2 y^{\prime}=0$ implies

$$
\begin{aligned}
x m(m-1) x^{m-2}+2 m x^{m-1} & =[m(m-1) \div 2 m] x^{m-1}=\left(m^{2}+m\right) x^{m-1} \\
& =m(m+1) x^{m-1}=0 .
\end{aligned}
$$

Since $x^{m-1}>0$ for $x>0, m=0$ and $m=-1$. Thus $y=1$ and $y=x^{-1}$ are solutions.
32. From $y=x^{m}$ we obtain $y^{\prime}=m x^{m-1}$ and $y^{\prime \prime}=m(m-1) x^{m-2}$. Then $x^{2} y^{\prime \prime}-7 x y^{\prime}+15 y=0$ implies

$$
\begin{aligned}
x^{2} m(m-1) x^{m-2}-7 x m x^{m-1}+15 x^{m} & =[m(m-1)-7 m+15]: x^{m} \\
& =\left(m^{2}-8 m+15\right) x^{m}=(m-3)(m-5) x^{m}=0 .
\end{aligned}
$$

Since $x^{m}>0$ for $x>0, m=3$ and $m=5$. Thus $y=x^{3}$ and $y=x^{5}$ are solutions.
In Problems 39-96 we substitute $y=c$ into the differential equations and use $y^{\prime}=0$ and $y^{\prime \prime}=0$
33. Solving $5 c=10$ we sce that $y=2$ is a constant solution.
34. Solving $c^{2}+2 c-3=(c+3)(c-1)=0$ we see that $y=-3$ and $y=1$ are constant solutions.
35. Since $1 /(c-1)=0$ has no solutions, the differential equation has no constant solutions.
36. Solving $6 c=10$ we see that $y=5 / 3$ is a constant solution.
37. From $x=e^{-2 t}+3 e^{6 t}$ and $y=-e^{-2 t}+5 e^{6 t}$ we obtain

$$
\frac{d x}{d t}=-2 e^{-2 t}+18 e^{6 t} \quad \text { and } \quad \frac{d y}{d t}=2 e^{-2 t}+30 e^{6 t}
$$

Then

$$
x+3 y=\left(e^{-2 t}+3 e^{6 t}\right)+3\left(-e^{-2 t}+5 e^{6 t}\right)=-2 e^{-2 t}+18 e^{6 t}=\frac{d x}{d t}
$$

and

$$
5 x+3 y=5\left(e^{-2 t}+3 e^{6 t}\right)+3\left(-e^{-2 t}+5 e^{6 l}\right)=2 e^{-2 t}+30 e^{6 t}=\frac{d y}{d t}
$$

38. From $x=\cos 2 t+\sin 2 t+\frac{1}{5} e^{t}$ and $y=-\cos 2 t-\sin 2 t-\frac{1}{5} e^{t}$ we obtain

$$
\frac{d x}{d t}=-2 \sin 2 t+2 \cos 2 t+\frac{1}{5} e^{t} \quad \text { and } \quad \frac{d y}{d t}=2 \sin 2 t-2 \cos 2 t-\frac{1}{5} e^{t}
$$

and

$$
\frac{d^{2} x}{d t^{2}}=-4 \cos 2 t-4 \sin 2 t+\frac{1}{5} e^{t} \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}=4 \cos 2 t+4 \sin 2 t-\frac{1}{5} \epsilon^{t}
$$

Then
and

$$
4 y+c^{t}=4\left(-\cos 2 t-\sin 2 t-\frac{1}{5} e^{t}\right)+e^{t}=-4 \cos 2 t-4 \sin 2 t+\frac{1}{5} e^{t}=\frac{d^{2} x}{d t^{2}}
$$

Exercises 1.1 Definitions and Terminology

$$
4 x-e^{t}=4\left(\cos 2 t+\sin 2 t+\frac{1}{5} e^{t}\right)-e^{t}=4 \cos 2 t+4 \sin 2 t-\frac{1}{5} e^{t}=\frac{d^{2} y}{d t^{2}}
$$

39. $\left(y^{\prime}\right)^{2}+1=0$ has no real solutions becausc $\left(y^{\prime}\right)^{2}+1$ is positive for all functions $y=\phi(x)$.
40. The only solution of $\left(y^{\prime}\right)^{2}+y^{2}=0$ is $y=0$, since if $y \neq 0, y^{2}>0$ and $\left(y^{\prime}\right)^{2}+y^{2} \geq y^{2}>0$.
41. The first derivative of $f(x)=e^{x}$ is e^{x}. The first derivative of $f(x)=e^{k x}$ is $k e^{k x}$. The differential equations are $y^{\prime}=y$ and $y^{\prime}=k y$, respectively.
42. Any function of the form $y=c e^{x}$ or $y=c e^{-x}$ is its own second derivative. The corresponding differential equation is $y^{\prime \prime}-y=0$. Functions of the form $y=c \sin x$ or $y=c \cos x$ have second derivatives that are the negatives of themselves. The differential equation is $y^{\prime \prime}+y=0$.
43. We first note that $\sqrt{1-y^{2}}=\sqrt{1-\sin ^{2} x}=\sqrt{\cos ^{2} x}=|\cos x|$. This prompts us to consider values of x for which $\cos x<0$, such as $x=\pi$. In this case

$$
\left.\frac{d y}{d x}\right|_{x=\pi}=\left.\frac{d}{d x}(\sin x)\right|_{x=\pi} ^{!}=\left.\cos x\right|_{x=\pi}=\cos \pi=-1
$$

but

$$
\left.\sqrt{1-y^{2}}\right|_{x=\pi}=\sqrt{1-\sin ^{2} \pi}=\sqrt{1}=1
$$

Thus, $y=\sin x$ will only be a solution of $y^{\prime}=\sqrt{1-y^{2}}$ when $\cos x>0$. An interval of definition is then $(-\pi / 2, \pi / 2)$. Other intervals are $(3 \pi / 2,5 \pi / 2),(7 \pi / 2,9 \pi / 2)$, and so on.
44. Since the first and second derivatives of $\sin t$ and $\cos t$ involve $\sin t$ and $\cos t$, it is plausible that a linear combination of these functions, $A \sin t+B \cos t$, could be a solution of the differential equation. Using $y^{\prime}=A \cos t-B \sin t$ and $y^{\prime \prime}=-A \sin t-B \cos t$ and substituting into the diffcrential equation we get

$$
\begin{aligned}
y^{\prime \prime}+2 y^{\prime}+4 y & =-A \sin t-B \cos t+2 A \cos t-2 B \sin t+4 A \sin t+4 B \cos t \\
& =(3 A-2 B) \sin t+(2 A+3 B) \cos t=5 \sin t
\end{aligned}
$$

Thus $3 A-2 B=5$ and $2 A+3 B=0$. Solving these simultancous equations we find $A=\frac{15}{13}$ and $B=-\frac{10}{13}$. A particular solution is $y=\frac{15}{13} \sin t-\frac{10}{13} \cos t$.
45. One solution is given by the upper portion of the graph with domain approximately ($0,2.6$). The other solution is given by the lower portion of the graph, also with domain approximately $(0,2.6)$.
46. One solution, with domain approximately $(-\infty, 1.6)$ is the portion of the graph in the second quadrant together with the lower part of the graph in the first quadrant. A second solution, with domain approximately $(0,1.6)$ is the upper part of the graph in the first quadrant. The third solution. with domain $(0, \infty)$, is the part of the graph in the fourth quadrant.
47. Differentiating $\left(x^{3}+y^{3}\right) / x y=3 c$ we obtain

$$
\begin{aligned}
\frac{x y\left(3 x^{2}+3 y^{2} y^{\prime}\right)-\left(x^{3}+y^{3}\right)\left(x y^{\prime}+y\right)}{x^{2} y^{2}} & =0 \\
3 x^{3} y+3 x y^{3} y^{\prime}-x^{4} y^{\prime}-x^{3} y-x y^{3} y^{\prime}-y^{4} & =0 \\
\left(3 x y^{3}-x^{4}-x y^{3}\right) y^{\prime} & =-3 x^{3} y+x^{3} y+y^{4} \\
y^{\prime} & =\frac{y^{4}-2 x^{3} y}{2 x y^{3}-x^{4}}=\frac{y\left(y^{3}-2 x^{3}\right)}{x\left(2 y^{3}-x^{3}\right)} .
\end{aligned}
$$

48. A tangent line will be vertical where y^{\prime} is undefined. or in this case, where $x\left(2 y^{3}-x^{3}\right)=0$. This gives $x=0$ and $2 y^{3}=x^{3}$. Substituting $y^{3}=x^{3} / 2$ into $x^{3}+y^{3}=3 x y$ we get

$$
\begin{aligned}
x^{3}+\frac{1}{2} x^{3} & =3 x\left(\frac{1}{2^{1 / 3}} x\right) \\
\frac{3}{2} x^{3} & =\frac{3}{2^{1 / 3}} x^{2} \\
x^{3} & =2^{2 / 3} x^{2} \\
x^{2}\left(x-2^{2 / 3}\right) & =0 .
\end{aligned}
$$

Thus, there are vertical tangent lines at $x=0$ and $x=2^{2 / 3}$, or at $(0,0)$ and $\left(2^{2 / 3}, 2^{1 / 3}\right)$. Since $2^{2 / 3} \approx 1.59$, the estimates of the domains in Problem 46 were close.
49. The derivatives of the functions are $\phi_{1}^{\prime}(x)=-x / \sqrt{25-x^{2}}$ and $\phi_{2}^{\prime}(x)=x / \sqrt{25-x^{2}}$, neither of which is defined at $x= \pm 5$.
50. To determine if a solution curve passes through $(0,3)$ we let $t=0$ and $P=3$ in the cquation $P=c_{1} e^{t} /\left(1+c_{1} e^{t}\right)$. This gives $3=c_{1} /\left(1+c_{1}\right)$ or $c_{1}=-\frac{3}{2}$. Thus, the solution curve

$$
P=\frac{(-3 / 2) e^{t}}{1-(3 / 2) e^{t}}=\frac{-3 e^{t}}{2-3 e^{t}}
$$

passes through the point $(0,3)$. Similarly, letting $t=0$ and $P=1$ in the equation for the oneparameter family of solutions gives $1=c_{1} /\left(1+c_{1}\right)$ or $c_{1}=1+c_{1}$. Since this equation has no solution, no solution curve passes through $(0,1)$.
51. For the first-order differential equation integrate $f(x)$. For the second-order differential equation integrate twice. In the latter case we get $y=\int\left(\int f(x) d x\right) d x+c_{1} x+c_{2}$.
52. Solving for y^{\prime} using the quadratic formula we obtain the two differential equations

$$
y^{\prime}=\frac{1}{x}\left(2+2 \sqrt{1+3 x^{6}}\right) \quad \text { and } \quad y^{\prime}=\frac{1}{x}\left(2-2 \sqrt{1+3 x^{6}}\right)
$$

so the differential equation cannot be put in the form $d y / d x=f(x, y)$.

Exercises 1.1 Definitions and Terminology

53. The differential equation $y y^{\prime}-x y=0$ has normal form $d y / d x=x$. These are not equivalent because $y=0$ is a solution of the first differential equation but not a solution of the second.
54. Differentiating we get $y^{\prime}=c_{1}+3 c_{2} x^{2}$ and $y^{\prime \prime}=6 c_{2} x$. Then $c_{2}=y^{\prime \prime} / 6 x$ and $c_{1}=y^{\prime}-x y^{\prime \prime} / 2$, so

$$
y=\left(y^{\prime}-\frac{x \cdot y^{\prime \prime}}{2}\right) x+\left(\frac{y^{\prime \prime}}{6 x}\right) x^{3}=x y^{\prime}-\frac{1}{3} x^{2} y^{\prime \prime}
$$

and the differential equation is $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0$.
55. (a) Since $e^{-x^{2}}$ is positive for all values of $x, d y / d x>0$ for all x, and a solution, $y(x)$, of the differential equation must be increasing on any interval.
(b) $\lim _{x \rightarrow-\infty} \frac{d y}{d x}=\lim _{x \rightarrow-\infty} e^{-x^{2}}=0$ and $\lim _{x \rightarrow \infty} \frac{d y}{d x}=\lim _{x \rightarrow \infty} e^{-x^{2}}=0$. Since $d y / d x$ approaches 0 as x approaches $-\infty$ and ∞, the solution curve has horizontal asymptotes to the left and to the right.
(c) To test concavity we consider the second derivative

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(e^{-x^{2}}\right)=-2 x e^{-x^{2}}
$$

Since the sccond derivative is positive for $x<0$ and negative for $x>0$, the solution curve is concave up on $(-\infty, 0)$ and concave down on $(0, \infty)$. x
(d)

56. (a) The derivative of a constant solution $y=c$ is 0 , so solving $5-c=0$ we see that $c=5$ and so $y=5$ is a constant solution.
(b) A solution is increasing whore $d y / d x=5-y>0$ or $y<5$. A solution is decreasing where $d y / d x=5-y<0$ or $y>5$.
57. (a) The derivative of a constant solution is 0 , so solving $y(a-b y)=0$ we see that $y=0$ and $y=a / b$ are constant solutions.
(b) A solution is increasing wherc $d y / d x=y(a-b y)=b y(a / b-y)>0$ or $0<y<a / b$. A solution is decreasing where $d y / d x=b y(a / b-y)<0$ or $y<0$ or $y>a / b$.
(c) Using implicit differentiation we compute

$$
\frac{d^{2} y}{d x^{2}}=y\left(-b y^{\prime}\right)+y^{\prime}(a-b y)=y^{\prime}(a-2 b y)
$$

Solving $d^{2} y / d x^{2}=0$ we obtain $y=a / 2 b$. Since $d^{2} y / d x^{2}>0$ for $0<y<a / 2 b$ and $d^{2} y / d x^{2}<0$ for $a / 2 b<y<a / b$, the graph of $y=\phi(x)$ has a point of inflection at $y=a / 2 b$.
(d)

58. (a) If $y=c$ is a constant solution then $y^{\prime}=0$, but $c^{2}+4$ is never 0 for any real value of c.
(b) Since $y^{\prime}=y^{2}+4>0$ for all x where a solution $y=\phi(x)$ is defined, any solution must be increasing on any interval on which it is defined. Thus it cannot have any rclative extrema.
(c) Using implicit differentiation we computc $d^{2} y / d x^{2}=2 y y^{\prime}=2 y\left(y^{2}+4\right)$. Setting $d^{2} y / d x^{2}=0$ we see that $y=0$ corresponds to the only possible point of inflection. Since $d^{2} y / d x^{2}<0$ for $y<0$ and $d^{2} y / d x^{2}>0$ for $y>0$, there is a point of inflection where $y=0$.
(d) (
59. In Mathematica use

```
Clear[y]
y[x-]:= x Exp[5x] Cos[2x]
y[x]
y'"'[x] - 20y'''[x] + 1584y''[x] - 580y'[x] +841y[x]//Simplify
```

The output will show $y(x)=e^{5 x} x \cos 2 x$, which verifies that the correct function was entered, and 0 , which verifies that this function is a solution of the differential equation.
50. In Mathematica use

$$
\begin{aligned}
& \text { Clear }[y] \\
& y[x]:=20 \operatorname{Cos}[5 \log [x]] / x-3 \operatorname{Sin}[5 \log [x]] / x \\
& y[x] \\
& x^{\wedge} 3 y^{\prime \prime \prime}[x]+2 x^{\wedge} 2 y^{\prime \prime}[x]+20 x y^{\prime}[x]-78 y[x] / / \operatorname{Simplify}
\end{aligned}
$$

The output will show $y(x)=20 \cos (5 \ln x) / x-3 \sin (5 \ln x) / x$, which verifies that the correct function was entered, and 0 , which verifics that this function is a solution of the differential equation.

Exercises 1.2

Initial-Value Problens

Chan

1. Solving $-1 / 3=1 /\left(1+c_{1}\right)$ we get $c_{1}=-4$. The solution is $y=1 /\left(1-4 e^{-x}\right)$.
2. Solving $2=1 /\left(1+c_{1} e\right)$ we get $c_{1}=-(1 / 2) e^{-1}$. The solution is $y=2 /\left(2-e^{-(x+1)}\right)$.
3. Letting $x=2$ and solving $1 / 3=1 /(4+c)$ we get $c=-1$. The solution is $y=1 /\left(x^{2}-1\right)$. This solution is defined on the interval $(1, \infty)$.
4. Letting $x=-2$ and solving $1 / 2=1 /(4+c)$ we get $c=-2$. The solution is $y=1 /\left(x^{2}-2\right)$. This solution is defined on the interval $(-\infty,-\sqrt{2})$.
5. Letting $x=0$ and solving $1=1 / c$ we get $c=1$. The solution is $y=1 /\left(x^{2}+1\right)$. This solution is defined on the interval $(-\infty, \infty)$.
6. Letting $x=1 / 2$ and solving $-4=1 /(1 / 4+c)$ we get $c=-1 / 2$. The solution is $y=1 /\left(x^{2}-1 / 2\right)=$ $2 /\left(2 x^{2}-1\right)$. This solution is defined on the interval $(-1 / \sqrt{2}, 1 / \sqrt{2})$.

In Problems 7-10 we use $x=c_{1} \cos t+c_{2} \sin t$ and $x^{\prime}=-c_{1} \sin t+c_{2} \cos t$ to obtain a system of two equations in the two unknowns c_{1} and c_{2}.
7. From the initial conditions we obtain the system

$$
\begin{aligned}
& c_{1}=-1 \\
& c_{2}=8 .
\end{aligned}
$$

The solution of the initial-value problem is $x=-\cos t+8 \sin t$.
8. From the initial conditions we obtain the system

$$
\begin{aligned}
c_{2} & =0 \\
-c_{1} & =1
\end{aligned}
$$

The solution of the initial-value problem is $x=-\cos t$.
9. From the initial conditions we obtain

$$
\begin{aligned}
\frac{\sqrt{3}}{2} c_{1}+\frac{1}{2} c_{2} & =\frac{1}{2} \\
-\frac{1}{2} c_{1}+\frac{\sqrt{3}}{2} c_{2} & =0
\end{aligned}
$$

Solving, we find $c_{1}=\sqrt{3} / 4$ and $c_{2}=1 / 4$. The solution of the initial-value problem is $x=(\sqrt{3} / 4) \cos t+(1 / 4) \sin t$.
10. From the initial conditions we obtain

$$
\begin{aligned}
\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2} & =\sqrt{2} \\
-\frac{\sqrt{2}}{2} c_{1}+\frac{\sqrt{2}}{2} c_{2} & =2 \sqrt{2}
\end{aligned}
$$

Solving, we find $c_{1}=-1$ and $c_{2}=3$. The solution of the initial-value problem is $x=-\cos t+3 \sin t$.
\therefore Problems 11-14 we use $y=c_{1} e^{x}+c_{2} e^{-x}$ and $y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}$ to obtain a system of two equations \because the two unknowns c_{1} and c_{2}.
11. From the initial conditions we obtain

$$
\begin{aligned}
& c_{1}+c_{2}=1 \\
& c_{1}-c_{2}=2
\end{aligned}
$$

Solving, wo find $c_{1}=\frac{3}{2}$ and $c_{2}=-\frac{1}{2}$. The solution of the initial-value problem is $y=\frac{3}{2} e^{x}-\frac{1}{2} e^{-x}$.
-2 . From the initial conditions we obtain

$$
\begin{aligned}
& e c_{1}+e^{-1} c_{2}=0 \\
& e c_{1}-e^{-1} c_{2}=e
\end{aligned}
$$

Solving, we find $c_{1}=\frac{1}{2}$ and $c_{2}=-\frac{1}{2} e^{2}$. The solution of the initial-value problem is $y=\frac{1}{2} e^{x}-\frac{1}{2} e^{2} e^{-x}=\frac{1}{2} e^{x}-\frac{1}{2} e^{2-x}$.
-3. From the initial conditions we obtain

$$
\begin{aligned}
& e^{-1} c_{1}+e c_{2}=5 \\
& e^{-1} c_{1}-e c_{2}=-5
\end{aligned}
$$

Solving, we find $c_{1}=0$ and $c_{2}=5 e^{-1}$. The solution of the initial-value problem is $y=5 e^{-1} e^{-x}=$ 5^{-1-x}.
\therefore - From the initial conditions we obtain

$$
\begin{aligned}
& c_{1}+c_{2}=0 \\
& c_{1}-c_{2}=0
\end{aligned}
$$

Solving; we find $c_{1}=c_{2}=0$. The solution of the initial-value problem is $y=0$.
\therefore. Two solutions are $y=0$ and $y=x^{3}$.
\therefore Two solutions are $y=0$ and $y=x^{2}$. (Also, any constant multiple of x^{2} is a solution.)
\therefore-. re $f(x, y)=y^{2 / 3}$ we have $\frac{\partial f}{\partial y}=\frac{2}{3} y^{-1 / 3}$. Thus, the differential equation will have a unique solution \therefore any rectangular region of the plane where $y \neq 0$.
18. For $f(x, y)=\sqrt{x y}$ we have $\partial f / \partial y=\frac{1}{2} \sqrt{x / y}$. Thus: the differential equation will have a unique solution in any region where $x>0$ and $y>0$ or where $x<0$ and $y<0$.
19. For $f(x, y)=\frac{y}{x}$ we have $\frac{\partial f}{\partial y}=\frac{1}{x}$. Thus, the differential cquation will have a unique solution in any region where $x \neq 0$.
20. For $f(x, y)=x+y$ we have $\frac{\partial f}{\partial y}=1$. Thus, the differential equation will have a unique solution in the entire plane.
21. For $f(x, y)=x^{2} /\left(4-y^{2}\right)$ we have $\partial f / \partial y=2 x^{2} y /\left(4-y^{2}\right)^{2}$. Thus the differential cquation will have a unique solution in any region where $y<-2,-2<\ddot{y}<2$, or $y>2$.
22. For $f(x, y)=\frac{x^{2}}{1+y^{3}}$ we have $\frac{\partial f}{\partial y}=\frac{-3 x^{2} y^{2}}{\left(1+y^{3}\right)^{2}}$. Thus, the differential equation will have a unique solution in any region where $y \neq-1$.
23. For $f(x, y)=\frac{y^{2}}{x^{2}+y^{2}}$ we have $\frac{\partial f}{\partial y}=\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}$. Thus, the differential cquation will have a unique solution in any region not containing (0,0).
24. For $f(x, y)=(y+x) /(y-x)$ we have $\partial f / \partial y=-2 x /(y-x)^{2}$. Thus the differential equation will have a unique solution in any region where $y<x$ or where $y>x$.

In Problems 25-28 we identify $f(x, y)=\sqrt{y^{2}-9}$ and $\partial f / \partial y=y / \sqrt{y^{2}-9}$. We see that f and $\partial f / \partial y$ are both continuous in the regions of the plane determined by $y<-3$ and $y>3$ with no restrictions on x.
25. Since $4>3,(1,4)$ is in the region defined by $y>3$ and the differential equation has a unique solution through (1,4).
26. Since $(5,3)$ is not in cither of the regions defined by $y<-3$ or $y>3$, there is no guarantee of a unique solution through $(5,3)$.
27. Since $(2,-3)$ is not in either of the regions defined by $y<-3$ or $y>3$, there is no guarantee of a unique solution through $(2,-3)$.
28. Since $(-1,1)$ is not in cither of the regions defined by $y<-3$ or $y>3$, there is no guarantee of a unique solution through $(-1,1)$.
29. (a) A one-parameter family of solutions is $y=c x$. Since $y^{\prime}=c, x y^{\prime}=x c=y$ and $y(0)=c \cdot 0=0$.
(b) Writing the equation in the form $y^{\prime}=y / x$, we see that R cannot contain any point on the y-axis. Thus, any rectangular region disjoint from the y-axis and containing (x_{0}, y_{0}) will determine an
interval around x_{0} and a unique solution through (x_{0}, y_{0}). Since $x_{0}=0$ in part (a), we are not guaranteed a unique solution through (0.0).
(c) The piecowise-defined function which satisfies $y(0)=0$ is not a solution since it is not differentiable at $x=0$.
30. (a) Since $\frac{d}{d x} \tan (x+c)=\sec ^{2}(x+c)=1+\tan ^{2}(x+c)$, we see that $y=\tan (x+c)$ satisfies the differential equation.
(b) Solving $y(0)=\tan c=0$ we obtain $c=0$ and $y=\tan x$. Since $\tan x$ is discontinuous at $x= \pm \pi / 2$, the solution is not defined on $(-2,2)$ because it contains $\pm \pi / 2$.
(c) The largest interval on which the solution can exist is $(-\pi / 2, \pi / 2)$.
31. (a) Since $\frac{d}{d x}\left(-\frac{1}{x+c}\right)=\frac{1}{(x+c)^{2}}=y^{2}$, we see that $y=-\frac{1}{x+c}$ is a solution of the differentiai equation.
(b) Solving $y(0)=-1 / c=1$ we obtain $c=-1$ and $y=1 /(1-x)$. Solving $y(0)=-1 / c=-$: we obtain $c=1$ and $y=-1 /(1+x)$. Being sure to include $x=0$, we sec that the intervaof cxistence of $y=1 /(1-x)$ is $(-\infty, 1)$, while the interval of cxistence of $y=-1 /(1+x)$ is $(-1, \infty)$.
(c) By inspection we see that $y=0$ is a solution on $(-\infty, \infty)$.
32. (a) Applying $y(1)=1$ to $y=-1 /(x+c)$ gives

$$
1=-\frac{1}{1+c} \quad \text { or } \quad 1+c=-1
$$

Thus $c=-2$ and

$$
y=-\frac{1}{x-2}=\frac{1}{2-x}
$$

(b) Applying $y(3)=-1$ to $y=-1 /(x+c)$ gives

$$
-1=-\frac{1}{3+c} \quad \text { or } \quad 3+c=1
$$

Thus $c=-2$ and

$$
y=-\frac{1}{x-2}=\frac{1}{2-x}
$$

(c) No, they are not the same solution. The interval I of definition for the solution in part (a) is $(-\infty, 2)$; whereas the intcrval I of definition for the solution in part (b) is $(2, \infty)$. See the figure.

33. (a) Differentiating $3 x^{2}-y^{2}=c$ we get $6 x-2 y y^{\prime}=0$ or $y y^{\prime}=3 x$.
(b) Solving $3 x^{2}-y^{2}=3$ for y we get

$$
\begin{array}{lr}
y=\phi_{1}(x)=\sqrt{3\left(x^{2}-1\right)}, & 1<x<\infty \\
y=\phi_{2}(x)=-\sqrt{3\left(x^{2}-1\right)}, & 1<x<\infty \\
y=\phi_{3}(x)=\sqrt{3\left(x^{2}-1\right)}, & -\infty<x<-1 \\
y=\phi_{4}(x)=-\sqrt{3\left(x^{2}-1\right)}, & -\infty<x<-1
\end{array}
$$

(c) Only $y=\phi_{3}(x)$ satisfies $y(-2)=3$.
34. (a) Setting $x=2$ and $y=-4$ in $3 x^{2}-y^{2}=c$ we get $12-16=-4=c$, so the explicit solution is

$$
y=-\sqrt{3 x^{2}+4}, \quad-\infty<x<\infty
$$

(b) Setting $c=0$ we have $y=\sqrt{3} x$ and $y=-\sqrt{3} x$, both defined on $(-\infty, \infty)$

In Problems 35-38 we consider the points on the graphs with x-coordinates $x_{0}=-1, x_{0}=0, a$ $x_{0}=1$. The slopes of the tangent lines at these points are compared with the slopes given by $y^{\prime}\left(x_{0}\right)$
(a) through (f).
35. The graph satisfics the conditions in (b) and (f).
36. The graph satisfies the conditions in (e).
37. The graph satisfies the conditions in (c) and (d).
38. The graph satisfies the conditions in (a).
39. Intcgrating $y^{\prime}=8 e^{2 x}+6 x$ we obtain

$$
y=\int\left(8 e^{2 x}+6 x\right) d x=4 e^{2 x}+3 x^{2}+c
$$

Setting $x=0$ and $y=9$ we have $9=4+c$ so $c=5$ and $y=4 e^{2 x}+3 x^{2}+5$.
40. Integrating $y^{\prime \prime}=12 x-2$ we obtain

$$
y^{\prime}=\int(12 x-2) d x=6 x^{2}-2 x+c_{1} .
$$

Then, integrating y^{\prime} we obtain

$$
y=\int\left(6 x^{2}-2 x+c_{1}\right) d x=2 x^{3}-x^{2}+c_{1} x+c_{2}
$$

$\therefore-:=1$ the y-coordinate of the point of tangency is $y=-1+5=4$. This gives the initial condition $\therefore=4$. The slope of the tangent line at $x=1$ is $y^{\prime}(1)=-1$. From the initial conditions we \therefore - in

$$
2-1+c_{1}+c_{2}=4 \quad \text { or } \quad c_{1}+c_{2}=3
$$

\therefore

$$
6-2+c_{1}=-1 \quad \text { or } \quad c_{1}=-5
$$

$\cdots c_{1}=-5$ and $c_{2}=8$, so $y=2 x^{3}-x^{2}-5 x+8$.
$\because \because \because x=0$ and $y=\frac{1}{2}, y^{\prime}=-1$, so the only plausible solution curve is the one with negative slope $\therefore \quad \therefore \frac{1}{2}$), or the black curve.
$\therefore \therefore$ solution is tangent to the x-axis at $\left(x_{0}, 0\right)$, then $y^{\prime}=0$ when $x=x_{0}$ and $y=0$. Substituting \therefore values into $y^{\prime}+2 y=3 x-6$ we get $0+0=3 x_{0}-6$ or $x_{0}=2$.
\therefore - $-\therefore$ ieorm guarantees a unique (meaning single) solution through any point. Thus, there cannot $\therefore-$ distinct solutions through any point.
$\therefore \cdots \because y=\frac{1}{16} x^{4}, y^{\prime}=\frac{1}{4} x^{3}=x\left(\frac{1}{4} x^{2}\right)=x y^{1 / 2}$ and $y(2)=\frac{1}{16}(16)=1$. When

$$
y= \begin{cases}0, & x<0 \\ \frac{1}{16} x^{4}, & x \geq 0\end{cases}
$$

- - Mre

$$
y^{\prime}=\left\{\begin{array}{ll}
0, & x<0 \\
\frac{1}{4} x^{3}, & x \geq 0
\end{array}=x\left\{\begin{array}{ll}
0, & x<0 \\
\frac{1}{4} x^{2}, & x \geq 0
\end{array}=x y^{1 / 2},\right.\right.
$$

$\therefore: 2)=\frac{1}{16}(16)=1$. The two differcnt solutions are the same on the interval $(0, \infty)$, which is all $\therefore-$ - is required by Theorem 1.2.1.
$\because \quad \therefore=0 . d P / d t=0.15 P(0)+20=0.15(100)+20=35$. Thus, the population is increasing at a $\because-\because 3.500$ individuals per year.
\because population is 500 at time $t=T$ then

$$
\left.\frac{d P}{d t}\right|_{t=T}=0.15 P(T)+20=0.15(500)+20=95
$$

=-.- at this time, the population is increasing at a rate of 9,500 individuals per year.

Exercises 1.3 Differential Equations as Mathematical Models

Exercises 1.3

Differential Equations as Matheniatical Models

1. $\frac{d P}{d t}=k P+r ; \quad \frac{d P}{d t}=k P-r$
2. Let b be the rate of births and d the rate of deaths. Then $b=k_{1} P$ and $d=k_{2} P$. Since $d P / d t=b-d$, the differential equation is $d P / d t=k_{1} P-k_{2} P$.
3. Let b be the rate of births and d the rate of deaths. Then $b=k_{1} P$ and $d=k_{2} P^{2}$. Since $d P / d t=b-d$, the differential equation is $d P / d t=k_{1} P-k_{2} P^{2}$.
4. $\frac{d P}{d t}=k_{1} P-k_{2} P^{2}-h, h>0$
5. From the graph in the text we estimate $T_{0}=180^{\circ}$ and $T_{m}=75^{\circ}$. We observe that when $T=85$, $d T / d t \approx-1$. From the differential equation we then have

$$
k=\frac{d T / d t}{T-T_{m}}=\frac{-1}{85-75}=-0.1
$$

6. By inspecting the graph in the text we take T_{m} to be $T_{m}(t)=80-30 \cos \pi t / 12$. Then the temperature of the body at time t is determined by the differential equation

$$
\frac{d T}{d t}=k\left[T-\left(80-30 \cos \frac{\pi}{12} t\right)\right], \quad t>0 .
$$

7. The number of students with the flu is x and the number not infected is $1000-x$, so $d x / d t=$ $k x(1000-x)$.
8. By analogy, with the differential equation modeling the spread of a disease, we assume that the rate at which the technological innovation is adopted is proportional to the number of people who have adopted the innovation and also to the number of people, $y(t)$, who have not yet adopted it. Then $x+y=n$, and assuming that initially one person has adopted the innovation, we have

$$
\frac{d x}{d t}=k x(n-x), \quad x(0)=1 .
$$

9. The rate at which salt is leaving the tank is

$$
R_{\text {out }}(3 \mathrm{gal} / \mathrm{min}) \cdot\left(\frac{A}{300} \mathrm{lb} / \mathrm{gal}\right)=\frac{A}{100} \mathrm{lb} / \mathrm{min} .
$$

Thus $d A / d t=-A / 100$ (where the minus sign is used since the amount of salt is decreasing. The initial amount is $A(0)=50$.
10. The rate at which salt is entering the tank is

$$
R_{i n}=(3 \mathrm{gal} / \mathrm{min}) \cdot(2 \mathrm{lb} / \mathrm{gal})=6 \mathrm{lb} \cdot \mathrm{~min} .
$$

Exercises 1.3 Differcntial Equations as Mathematical Models

Since the solution is pumped out at a slower rate, it is accumulating at the rate of $(3-2) \mathrm{gal} / \mathrm{min}=$ $1 \mathrm{gal} / \mathrm{min}$. After t minutes there are $300+t$ gallons of brine in the tank. The rate at which salt is leaving is

$$
R_{\text {out }}=(2 \mathrm{gal} / \mathrm{min}) \cdot\left(\frac{A}{300+t} \mathrm{lb} / \text { gal }\right)=\frac{2 A}{300+t} \mathrm{lb} / \mathrm{min}
$$

The differential equation is

$$
\frac{d A}{d t}=6-\frac{2 A}{300+t}
$$

11. The rate at which salt is entering the tank is

$$
R_{i n}=(3 \mathrm{gal} / \mathrm{min}) \cdot(2 \mathrm{lb} / \mathrm{gal})=6 \mathrm{lb} / \mathrm{min}
$$

Since the tank loses liquid at the net ratc of

$$
3 \mathrm{gal} / \mathrm{min}-3.5 \mathrm{gal} / \mathrm{min}=-0.5 \mathrm{gal} / \mathrm{min}
$$

after t minutes the number of gallons of brine in the tank is $300-\frac{1}{2} t$ gallons. Thus the rate at which salt is leaving is

$$
R_{\text {out }}=\left(\frac{A}{300-t / 2} \mathrm{lb} / \mathrm{gal}\right) \cdot(3.5 \mathrm{gal} / \mathrm{min})=\frac{3.5 A}{300-t / 2} \mathrm{lb} / \mathrm{min}=\frac{7 \mathrm{~A}}{600-t} \mathrm{lb} / \mathrm{min} .
$$

The differential equation is

$$
\frac{d A}{d t}=6-\frac{7 A}{600-t} \quad \text { or } \quad \frac{d A}{d t}+\frac{7}{600-t} A=6
$$

2. The rate at which salt is entering the tank is

$$
R_{i n}=\left(c_{i n} \mathrm{lb} / \mathrm{gal}\right) \cdot\left(r_{i n} \mathrm{gal} / \mathrm{min}\right)=c_{i n} r_{i n} \mathrm{lb} / \mathrm{min}
$$

Now let $A(t)$ denote the number of pounds of salt and $N(t)$ the number of gallons of brine in the tank at time t. The concentration of salt in the tank as well as in the outflow is $c(t)=x(t) / N(t)$. But the number of gallons of brine in the tank remains steady, is increased, or is decreased depending on whether $r_{\text {in }}=r_{o u t}, r_{i n}>r_{\text {out }}$, or $r_{i n}<r_{\text {out }}$. In any case, the number of gallons of brine in the :ank at time t is $N(t)=N_{0}+\left(r_{i n}-r_{o u t}\right) t$. The output rate of salt is then

$$
R_{\text {out }}=\left(\frac{A}{N_{0}+\left(r_{\text {in }}-r_{\text {out }}\right) t} \mathrm{lb} / \mathrm{gal}\right) \cdot\left(r_{\text {out }} \mathrm{gal} / \mathrm{min}\right)=r_{\text {out }} \frac{A}{N_{0}+\left(r_{\text {in }}-r_{\text {out }}\right) t} \mathrm{lb} / \mathrm{min} .
$$

The differential equation for the amount of salt, $d A / d t=R_{i n}-R_{o u t}$, is

$$
\frac{d A}{d t}=c_{i n} r_{i n}-r_{o u t} \frac{A}{N_{0}+\left(r_{i n}-r_{o u t}\right) t} \quad \text { or } \quad \frac{d A}{d t}+\frac{r_{o u t}}{N_{0}+\left(r_{i n}-r_{o u t}\right) t} A=c_{i n} r_{i n}
$$

\therefore. The volume of water in the tank at time t is $V=A_{w} h$. The differential equation is then

$$
\frac{d h}{d t}=\frac{1}{A_{u ;}} \frac{d V}{d t}=\frac{1}{A_{v}}\left(-c A_{h} \sqrt{2 g h}\right)=-\frac{c A_{h}}{A_{w}} \sqrt{2 g h}
$$

Using $A_{h}=\pi\left(\frac{2}{12}\right)^{2}=\frac{\pi}{36}, A_{w}=10^{2}=100$, and $g=32$, this becomes

$$
\frac{d h}{d t}=-\frac{c \pi / 36}{100} \sqrt{64 h}=-\frac{c \pi}{450} \sqrt{h}
$$

14. The volume of water in the tank at time t is $V=\frac{1}{3} \pi r^{2} h$ where r is the radius of the tank at heig:h. From the figure in the text we see that $r / h=8 / 20$ so that $r=\frac{2}{5} h$ and $V=\frac{1}{3} \pi\left(\frac{2}{5} h\right)^{2} h=\frac{4}{75} \pi h h^{2}$
Diffcrentiating with respect to t we have $d V / d t=\frac{4}{25} \pi h^{2} d h / d t$ or

$$
\frac{d h}{d t}=\frac{25}{4 \pi h^{2}} \frac{d V}{d t}
$$

From Problem 13 wc have $d V / d t=-c A_{h} \sqrt{2 g h}$ where $c=0.6, A_{h}=\pi\left(\frac{2}{12}\right)^{2}$, and $g=32$. Thus $d V / d t=-2 \pi \sqrt{h} / 15$ and

$$
\frac{d h}{d t}=\frac{25}{4 \pi h^{2}}\left(-\frac{2 \pi \sqrt{h}}{15}\right)=-\frac{5}{6 h^{3 / 2}}
$$

15. Since $i=d q / d t$ and $L d^{2} q / d t^{2}+R d q / d t=E(t)$, we obtain $L d i / d t+R i=E(t)$.
16. By Kirchhoff's second law we obtain $R \frac{d q}{d t}+\frac{1}{C} q=E(t)$.
17. From Newton's second law we obtain $m \frac{d v}{d t}=-k v^{2}+m g$.
18. Since the barrel in Figure 1.3.16(b) in the text is submerged an additional y feet below its equilibrium: position the number of cubic fect in the additional submerged portion is the volume of the circular cylinder: $\pi \times$ (radius) ${ }^{2} \times$ hcight or $\pi(s / 2)^{2} y$. Then we have from Archimedes' principle

$$
\begin{aligned}
\text { upward force of water on barrel } & =\text { weight of water displaced } \\
& =(62.4) \times(\text { volume of water displaced }) \\
& =(62.4) \pi(s / 2)^{2} y=15.6 \pi s^{2} y
\end{aligned}
$$

It then follows from Newton's second law that

$$
\frac{w}{g} \frac{d^{2} y}{d t^{2}}=-15.6 \pi s^{2} y \quad \text { or } \quad \frac{d^{2} y}{d t^{2}}+\frac{15.6 \pi s^{2} g}{w} y=0
$$

where $g=32$ and w is the weight of the barrel in pounds.
19. The net force acting on the mass is

$$
F=m a=m \frac{d^{2} x}{d t^{2}}=-k(s+x)+m g=-k x+m g-k s .
$$

Since the condition of equilibrium is $m g=k s$, the differential equation is

$$
m \frac{d^{2} x}{d t^{2}}=-k x
$$

Exercises 1.3 Differential Equations as Mathematical Models

20. From Problem 19: without a damping force, the differential equation is $m d^{2} x / d t^{2}=-k x$. With a damping forco proportional to velocity, the differential equation becomes

$$
m \frac{d^{2} x}{d t^{2}}=-k x-\beta \frac{d x}{d t} \quad \text { or } \quad m \frac{d^{2} x}{d t^{2}}+\beta \frac{d x}{d t}+k x=0 .
$$

21. From $g=k / R^{2}$ we find $k=g R^{2}$. Using $a=d^{2} r / d t^{2}$ and the fact that the positive direction is upward we get

$$
\frac{d^{2} r}{d t^{2}}=-a=-\frac{k}{r^{2}}=-\frac{g R^{2}}{r^{2}} \quad \text { or } \quad \frac{d^{2} r}{d t^{2}}+\frac{g R^{2}}{r^{2}}=0 .
$$

22. The gravitational force on m is $F=-k M_{r} m / r^{2}$. Since $M_{r}=4 \pi \delta r^{3} / 3$ and $M=4 \pi \delta R^{3} / 3$ wo have $M_{r}=r^{3} M / R^{3}$ and

$$
F=-k \frac{M}{r^{2} m}=-k \frac{r^{3} M m / R^{3}}{r^{2}}=-k \frac{m M}{R^{3}} r
$$

Now from $F=m a=d^{2} r / d t^{2}$ we have

$$
m \frac{d^{2} r}{d t^{2}}=-k \frac{m M}{R^{3}} r \quad \text { or } \quad \frac{d^{2} r}{d t^{2}}=-\frac{k M}{R^{3}} r .
$$

23. The differential equation is $\frac{d A}{d t}=k(M-A)$.
24. The differential equation is $\frac{d A}{d t}=k_{1}(M-A)-k_{2} A$.
25. The differential equation is $x^{\prime}(t)=r-k x(t)$ where $k>0$.
26. By the Pythagorcan Theorem the slope of the tangent line is $y^{\prime}=\frac{-y}{\sqrt{s^{2}-y^{2}}}$.

2-. We sec from the figure that $2 \theta+\alpha=\pi$. Thus

$$
\frac{y}{-x}=\tan \alpha=\tan (\pi-2 \theta)=-\tan 2 \theta=-\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

Sinco the slope of the tangent line is $y^{\prime}=\tan \theta$ we have $y / x=2 y^{\prime} /\left[1-\left(y^{\prime}\right)^{2}\right]$ or $y-y\left(y^{\prime}\right)^{2}=2 x y^{\prime}$, which is the quadratic cquation $y\left(y^{\prime}\right)^{2}+2 x y^{\prime}-y=0$ in y^{\prime}. Using the quadratic formula, we get

$$
y^{\prime}=\frac{-2 x \pm \sqrt{4 x^{2}+4 y^{2}}}{2 y}=\frac{-x \pm \sqrt{x^{2}+y^{2}}}{y}
$$

Since $d y / d x>0$, the differential equation is

$$
\frac{d y}{d x}=\frac{-x+\sqrt{x^{2}+y^{2}}}{y} \quad \text { or } \quad y \frac{d y}{d x}-\sqrt{x^{2}+y^{2}}+x=0 .
$$

\therefore Fie differential equation is $d P / d t=k P$, so from Problem 41 in Exercises $1.1, P=e^{k t}$, and a Y-parametcr family of solutions is $P=c e^{k t}$.
29. The differential equation in (3) is $d T / d t=k\left(T-T_{m}\right)$. When the body is cooling, $T>T_{m}$, so $T-T_{m}>0$. Since T is decreasing, $d T / d t<0$ and $k<0$. When the body is warming, $T<T_{m}$, so $T-T_{m}<0$. Since T is increasing: $d T / d t>0$ and $k<0$.
30. The differential equation in (8) is $d A / d t=6-A / 100$. If $A(t)$ attains a maximum, then $d A / d t=0$ at this time and $A=600$. If $A(t)$ continues to increase without reaching a maximum, then $A^{\prime}(t)>0$ for $t>0$ and A cannot exceed 600. In this case, if $A^{\prime}(t)$ approaches 0 as t increases to infinity, we see that $A(t)$ approaches 600 as t increases to infinity.
31. This differential equation could describe a population that undergoes periodic fluctuations.
32. (a) As shown in Figure 1.3 .22 (b) in the text, the resultant of the reaction force of magnitude F and the weight of magnitude $m g$ of the particle is the centripetal force of magnitude $m \omega^{2} x$. The centripetal force points to the center of the circle of radius x on which the particle rotates about the y-axis. Comparing parts of similar triangles gives

$$
F \cos \theta=m g \quad \text { and } \quad F \sin \theta=m \omega^{2} x
$$

(b) Using the equations in part (a) we find

$$
\tan \theta=\frac{F \sin \theta}{F \cos \theta}=\frac{m \omega^{2} x}{m g}=\frac{\omega^{2} x}{g} \quad \text { or } \quad \frac{d y}{d x}=\frac{\omega^{2} x}{g} .
$$

33. From Problem 21, $d^{2} r / d t^{2}=-g R^{2} / r^{2}$. Since R is a constant, if $r=R+s$, then $d^{2} r / d t^{2}=d^{2} s / d t^{2}$ and, using a Taylor serics, we get

$$
\frac{d^{2} s}{d t^{2}}=-g \frac{R^{2}}{(R+s)^{2}}=-g R^{2}(R+s)^{-2} \approx-g R^{2}\left[R^{-2}-2 s R^{-3}+\cdots\right]=-g+\frac{2 g s}{R^{3}}+\cdots
$$

Thus, for R much larger than s, the differential equation is approximated by $d^{2} s / d t^{2}=-g$.
34. (a) If ρ is the mass density of the raindrop, then $m=\rho V$ and

$$
\frac{d m}{d t}=\rho \frac{d V}{d t}=\rho \frac{d}{d t}\left[\frac{4}{3} \pi r^{3}\right]=\rho\left(4 \pi r^{2} \frac{d r}{d t}\right)=\rho S \frac{d r}{d t}
$$

If $d r / d t$ is a constant, then $d m / d t=k S$ where $\rho d r / d t=k$ or $d r / d t=k / \rho$. Since the radius is decreasing, $k<0$. Solving $d r / d t=k / \rho$ we get $r=(k / \rho) t+c_{0}$. Since $r(0)=r_{0}, c_{0}=r_{0}$ and $r=k t / \rho+r_{0}$.
(b) From Newton's sccond law, $\frac{d}{d t}[m v]=m g$, where v is the velocity of the raindrop. Then

$$
m \frac{d v}{d t}+v \frac{d m}{d t}=m g \quad \text { or } \quad \rho\left(\frac{4}{3} \pi r^{3}\right) \frac{d v}{d t}+v\left(k 4 \pi r^{2}\right)=\rho\left(\frac{4}{3} \pi r^{3}\right) g
$$

Dividing by $4 \rho \pi r^{3} / 3$ we get

$$
\frac{d v}{d t}+\frac{3 k}{\rho r} v=g \quad \text { or } \quad \frac{d v}{d t}+\frac{3 k / \rho}{k t / \rho+r_{0}} v=g, \quad k<0
$$

35. We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let t be the time in hours after noon, $x(t)$ the depth in miles of the snow at time t, and $y(t)$ the distance the plow has moved in t hours. Then $d y / d t$ is the velocity of the plow and the assumption gives

$$
w x \frac{d y}{d t}=k
$$

where w is the width of the plow. Each side of this equation simply represents the volume of snow plowed in one hour. Now let t_{0} be the number of hours before noon when it started snowing and let s be the constant rate in milcs per hour at which x increases. Then for $t>-t_{0}, x=s\left(t+t_{0}\right)$. The differential cquation then becomes

$$
\frac{d y}{d t}=\frac{k}{w s} \frac{1}{t+t_{0}} .
$$

Integrating, we obtain

$$
y=\frac{k}{w s}\left[\ln \left(t+t_{0}\right)+c\right]
$$

where c is a constant. Now when $t=0, y=0$ so $c=-\ln t_{0}$ and

$$
y=\frac{k}{w s} \ln \left(1+\frac{t}{t_{0}}\right)
$$

Finally, from the fact that when $t=1, y=2$ and when $t=2, y=3$, we obtain

$$
\left(1+\frac{2}{t_{0}}\right)^{2}=\left(1+\frac{1}{t_{0}}\right)^{3}
$$

Expanding and simplifying gives $t_{0}^{2}+t_{0}-1=0$. Since $t_{0}>0$, we find $t_{0} \approx 0.618$ hours \approx 37 minutes. Thus it started snowing at about 11:23 in the morning.
36. (1): $\frac{d P}{d t}=k P$ is linear
(2): $\frac{d A}{d t}=k: A$ is lincar
(3): $\frac{d T}{d t}=k\left(T-T_{m}\right)$ is linear
(5): $\frac{d x}{d t}=k x(n+1-x)$ is nonlinear
(6): $\frac{d X}{d t}=k(\alpha-X)(\beta-X)$ is nonlinear
(8): $\frac{d A}{d t}=6-\frac{A}{100}$ is linear
(10): $\frac{d h}{d t}=-\frac{A_{h}}{A_{w}} \sqrt{2 g h}$ is nonlinear
(11): $L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E(t)$ is linear
(12): $\frac{d^{2} s}{d t^{2}}=-g$ is linear
(14): $m \frac{d v}{d t}=m g-k v$ is lincar
(15): $m \frac{d^{2} s}{d t^{2}}+k \frac{d s}{d t}=m g$ is linear
(16): lincarity or nonlinearity is determined by the manner in which W and T_{1} involve x.

Chapter 1 in Review

Chapter 1 in Review

1. $\frac{d}{d x} c_{1} e^{10 x}=10 c_{1} e^{10 x} ; \quad \frac{d y}{d x}=10 y$
2. $\frac{d}{d x}\left(5+c_{1} e^{-2 x}\right)=-2 c_{1} e^{-2 x}=-2\left(5+c_{1} e^{-2 x}-5\right) ; \quad \frac{d y}{d x}=-2(y-5) \quad$ or $\quad \frac{d y}{d x}=-2 y+10$
3. $\frac{d}{d x}\left(c_{1} \cos k x+c_{2} \sin k x\right)=-k c_{1} \sin k x+k c_{2} \cos k x$;
$\frac{d^{2}}{d x^{2}}\left(c_{1} \cos k x+c_{2} \sin k x\right)=-k^{2} c_{1} \cos k x-k^{2} c_{2} \sin k x=-k^{2}\left(c_{1} \cos k x+c_{2} \sin k x\right) ;$
$\frac{d^{2} y}{d x^{2}}=-k^{2} y \quad$ or $\quad \frac{d^{2} y}{d x^{2}}+k^{2} y=0$
4. $\frac{d}{d x}\left(c_{1} \cosh k x+c_{2} \sinh k x\right)=k c_{1} \sinh k x+k c_{2} \cosh k x$;
$\frac{d^{2}}{d x^{2}}\left(c_{1} \cosh k x+c_{2} \sinh k x\right)=k^{2} c_{1} \cosh k x+k^{2} c_{2} \sinh k x=k^{2}\left(c_{1} \cosh k x+c_{2} \sinh k x\right) ;$
$\frac{d^{2} y}{d x^{2}}=k^{2} y \quad$ or $\quad \frac{d^{2} y}{d x^{2}}-k^{2} y=0$
5. $y=c_{1} e^{x}+c_{2} x e^{x} ; \quad y^{\prime}=c_{1} e^{x}+c_{2} x e^{x}+c_{2} e^{x} ; \quad y^{\prime \prime}=c_{1} e^{x}+c_{2} x e^{x}+2 c_{2} e^{x}$;
$y^{\prime \prime}+y=2\left(c_{1} e^{x}+c_{2} x e^{x}\right)+2 c_{2} e^{x}=2\left(c_{1} e^{x}+c_{2} x e^{x}+c_{2} e^{x}\right)=2 y^{\prime} ; \quad y^{\prime \prime}-2 y^{\prime}+y=0$
6. $y^{\prime}=-c_{1} e^{x} \sin x+c_{1} e^{x} \cos x+c_{2} e^{x} \cos x+c_{2} e^{x} \sin x$;
$y^{\prime \prime}=-c_{1} e^{x} \cos x-c_{1} e^{x} \sin x-c_{1} e^{x} \sin x+c_{1} e^{x} \cos x-c_{2} e^{x} \sin x+c_{2} e^{x} \cos x+c_{2} e^{x} \cos x+c_{2} e^{x} \sin$ $=-2 c_{1} e^{x} \sin x+2 c_{2} e^{x} \cos x$;
$y^{\prime \prime}-2 y^{\prime}=-2 c_{1} e^{x} \cos x-2 c_{2} e^{x} \sin x=-2 y ; \quad y^{\prime \prime}-2 y^{\prime}+2 y=0$
7. a,d
8. c
9. b
10. a,c
11. b
12. a, b, d
13. A few solutions are $y=0, y=c$, and $y=e^{x}$.
14. Easy solutions to see are $y=0$ and $y=3$.
15. The slope of the tangent line at (x, y) is y^{\prime}, so the differential equation is $y^{\prime}=x^{2}+y^{2}$.
16. The rate at which the slope changes is $d y^{\prime} / d x=y^{\prime \prime}$, so the differential equation is $y^{\prime \prime}=-y^{\prime}$: $y^{\prime \prime}+y^{\prime}=0$.
17. (a) The domain is all real numbers.
(b) Since $y^{\prime}=2 / 3 x^{1 / 3}$, the solution $y=x^{2 / 3}$ is undefined at $x=0$. This function is a solution : the differential equation on $(-\infty, 0)$ and also on $(0, \infty)$.

Chapter 1 in Review

25. (a) Diffcrentiating $y^{2}-2 y=x^{2}-x+c$ we obtain $2 y y^{\prime}-2 y^{\prime}=2 x-1$ or $(2 y-2) y^{\prime}=2 x-1$.
(b) Setting $x=0$ and $y=1$ in the solution we have $1-2=0-0+c$ or $c=-1$. Thus, a solution of the initial-valuc problem is $y^{2}-2 y=x^{2}-x-1$.
(c) Solving $y^{2}-2 y-\left(x^{2}-x-1\right)=0$ by the quadratic formula we get $y=\left(2 \pm \sqrt{4+4\left(x^{2}-x-1\right)}\right) / 2$ $=1 \pm \sqrt{x^{2}-x}=1 \pm \sqrt{x(x-1)}$. Since $x(x-1) \geq 0$ for $x \leq 0$ or $x \geq 1$, we see that neither $y=1+\sqrt{x(x-1)}$ nor $y=1-\sqrt{x(x-1)}$ is differentiable at $x=0$. Thus, both functions are solutions of the differential equation, but neither is a solution of the initial-value problem.
\because Setting $x=x_{0}$ and $y=1$ in $y=-2 / x+x$, we get

$$
1=-\frac{2}{x_{0}}+x_{0} \quad \text { or } \quad x_{0}^{2}-x_{0}-2=\left(x_{0}-2\right)\left(x_{0}+1\right)=0
$$

Thus, $x_{0}=2$ or $x_{0}=-1$. Since $x=0$ in $y=-2 / x+x$, we see that $y=-2 / x+x$ is a solution of \because ie initial-value problem $x y^{\prime}+y=2 x, y(-1)=1$, on the interval $(-\infty, 0)$ and $y=-2 / x+x$ is a :-lution of the initial-value problem $x y^{\prime}+y=2 x, y(2)=1$, on the interval $(0, \infty)$.
2 .. From the differential equation, $y^{\prime}(1)=1^{2}+[y(1)]^{2}=1+(-1)^{2}=2>0$, so $y(x)$ is increasing in sme neighborhood of $x=1$. From $y^{\prime \prime}=2 x+2 y y^{\prime}$ we have $y^{\prime \prime}(1)=2(1)+2(-1)(2)=-2<0$, so $\therefore x$) is concave down in some neighborhood of $x=1$.

2: a)

$$
y=x^{2}+c_{1}
$$

$$
y=-x^{2}+c_{2}
$$

b) When $y=x^{2}+c_{1}, y^{\prime}=2 x$ and $\left(y^{\prime}\right)^{2}=4 x^{2}$. When $y=-x^{2}+c_{2}, y^{\prime}=-2 x$ and $\left(y^{\prime}\right)^{2}=4 x^{2}$.
c) Pasting together $x^{2}, x \geq 0$, and $-x^{2}, x \leq 0$, we get $y= \begin{cases}-x^{2}, & x \leq 0 \\ x^{2}, & x>0 .\end{cases}$

2:- -ie slope of the tangent line is $\left.y^{\prime}\right|_{(-1,4)}=6 \sqrt{4}+5(-1)^{3}=7$.
2. - ferentiating $y=x \sin x+x \cos x$ we get

$$
y^{\prime}=x \cos x+\sin x-x \sin x+\cos x
$$

:

$$
\begin{aligned}
y^{\prime \prime} & =-x \sin x+\cos x+\cos x-x \cos x-\sin x-\sin x \\
& =-x \sin x-x \cos x+2 \cos x-2 \sin x
\end{aligned}
$$

Chapter 1 in Review

Thus

$$
y^{\prime \prime}+y=-x \sin x-x \cos x+2 \cos x-2 \sin x+x \sin x+x \cos x=2 \cos x-2 \sin x
$$

An interval of definition for the solution is $(-\infty, \infty)$.
24. Differentiating $y=x \sin x+(\cos x) \ln (\cos x)$ we get

$$
\begin{aligned}
y^{\prime} & =x \cos x+\sin x+\cos x\left(\frac{-\sin x}{\cos x}\right)-(\sin x) \ln (\cos x) \\
& =x \cos x+\sin x-\sin x-(\sin x) \ln (\cos x) \\
& =x \cos x-(\sin x) \ln (\cos x)
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime \prime} & =-x \sin x+\cos x-\sin x\left(\frac{-\sin x}{\cos x}\right)-(\cos x) \ln (\cos x) \\
& =-x \sin x+\cos x+\frac{\sin ^{2} x}{\cos x}-(\cos x) \ln (\cos x) \\
& =-x \sin x+\cos x+\frac{1-\cos ^{2} x}{\cos x}-(\cos x) \ln (\cos x) \\
& =-x \sin x+\cos x+\sec x-\cos x-(\cos x) \ln (\cos x) \\
& =-x \sin x+\sec x-(\cos x) \ln (\cos x) .
\end{aligned}
$$

Thus

$$
y^{\prime \prime}+y=-x \sin x+\sec x-(\cos x) \ln (\cos x)+x \sin x+(\cos x) \ln (\cos x)=\sec x .
$$

To obtain an interval of definition we note that the domain of $\ln x$ is $(0, \infty)$, so we must hatt $\cos x>0$. Thus, an interval of definition is $(-\pi / 2, \pi / 2)$.
25. Differentiating $y=\sin (\ln x)$ we obtain $y^{\prime}=\cos (\ln x) / x$ and $y^{\prime \prime}=-[\sin (\ln x)+\cos (\ln x)] / x^{2}$. Ther

$$
x^{2} y^{\prime \prime}+x y^{\prime}+y=x^{2}\left(-\frac{\sin (\ln x)+\cos (\ln x)}{x^{2}}\right)+x \frac{\cos (\ln x)}{x}+\sin (\ln x)=0 .
$$

An interval of definition for the solution is $(0, \infty)$.
26. Differentiating $y=\cos (\ln x) \ln (\cos (\ln x))+(\ln x) \sin (\ln x)$ we obtain

$$
\begin{aligned}
y^{\prime} & =\cos (\ln x) \frac{1}{\cos (\ln x)}\left(-\frac{\sin (\ln x)}{x}\right)+\ln (\cos (\ln x))\left(-\frac{\sin (\ln x)}{x}\right)+\ln x \frac{\cos (\ln x)}{x}+\frac{\sin (\ln x)}{x} \\
& =-\frac{\ln (\cos (\ln x)) \sin (\ln x)}{x}+\frac{(\ln x) \cos (\ln x)}{x}
\end{aligned}
$$

Chapter 1 in Review

and

$$
\begin{aligned}
& y^{\prime \prime}=-x\left[\ln (\cos (\ln x)) \frac{\cos (\ln x)}{x}+\sin (\ln x) \frac{1}{\cos (\ln x)}\left(-\frac{\sin (\ln x)}{x}\right)\right] \frac{1}{x^{2}} \\
&+\ln (\cos (\ln x)) \sin (\ln x) \frac{1}{x^{2}}+x\left[(\ln x)\left(-\frac{\sin (\ln x)}{x}\right)+\frac{\cos (\ln x)}{x}\right] \frac{1}{x^{2}}-(\ln x) \cos (\ln x) \frac{1}{x^{2}} \\
&=\frac{1}{x^{2}}\left[-\ln (\cos (\ln x)) \cos (\ln x)+\frac{\sin ^{2}(\ln x)}{\cos (\ln x)}+\ln (\cos (\ln x)) \sin (\ln x)\right. \\
&-(\ln x) \sin (\ln x)+\cos (\ln x)-(\ln x) \cos (\ln x)]
\end{aligned}
$$

Then

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x y^{\prime}+y=- & \ln (\cos (\ln x)) \cos (\ln x)+\frac{\sin ^{2}(\ln x)}{\cos (\ln x)}+\ln (\cos (\ln x)) \sin (\ln x)-(\ln x) \sin (\ln x) \\
& +\cos (\ln x)-(\ln x) \cos (\ln x)-\ln (\cos (\ln x)) \sin (\ln x) \\
& +(\ln x) \cos (\ln x)+\cos (\ln x) \ln (\cos (\ln x))+(\ln x) \sin (\ln x) \\
= & \frac{\sin ^{2}(\ln x)}{\cos (\ln x)}+\cos (\ln x)=\frac{\sin ^{2}(\ln x)+\cos ^{2}(\ln x)}{\cos (\ln x)}=\frac{1}{\cos (\ln x)}=\sec (\ln x)
\end{aligned}
$$

To obtain an interval of definition, we note that the domain of $\ln x$ is $(0, \infty)$, so we must have $\operatorname{ms}(\ln x)>0$. Since $\cos x>0$ when $-\pi / 2<x<\pi / 2$, we require $-\pi / 2<\ln x<\pi / 2$. Since e^{x} \therefore an increasing function, this is equivalent to $e^{-\pi / 2}<x<e^{\pi / 2}$. Thus, an interval of definition is $\ddots^{-\pi / 2} ; e^{\pi / 2}$). (Much of this problem is morc easily done using a computer algebra system such as \therefore Iathematica or Maple.)
$\therefore=$ oblems 27-30 we have $y^{\prime}=3 c_{1} c^{3 x}-c_{2} e^{-x}-2$.
\therefore - The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
3 c_{1}-c_{2}-2 & =0
\end{aligned}
$$

; $c_{1}=\frac{1}{2}$ and $c_{2}=-\frac{1}{2}$. Thus $y=\frac{1}{2} e^{3 x}-\frac{1}{2} e^{-x}-2 x$.
\therefore The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
3 c_{1}-c_{2}-2 & =-3
\end{aligned}
$$

$\therefore c_{1}=0$ and $c_{2}=1$. Thus $y=e^{-x}-2 x$.

Chapter 1 in Review

29. The initial conditions imply

$$
\begin{gathered}
c_{1} e^{3}+c_{2} e^{-1}-2=4 \\
3 c_{1} e^{3}-c_{2} e^{-1}-2=-2
\end{gathered}
$$

so $c_{1}=\frac{3}{2} e^{-3}$ and $c_{2}=\frac{9}{2} e$. Thus $y=\frac{3}{2} e^{3 x-3}+\frac{9}{2} e^{-x+1}-2 x$.
30. The initial conditions imply

$$
\begin{gathered}
c_{1} e^{-3}+c_{2} e+2=0 \\
3 c_{1} e^{-3}-c_{2} e-2=1
\end{gathered}
$$

so $c_{1}=\frac{1}{4} e^{3}$ and $c_{2}=-\frac{9}{4} e^{-1}$. Thus $y=\frac{1}{4} e^{3 x-3}-\frac{9}{4} e^{-x-1}-2 x$.
31. From the graph we see that estimates for y_{0} and y_{1} are $y_{0}=-3$ and $y_{1}=0$.
32. The diffcrential cquation is

$$
\frac{d h}{d t}=-\frac{c A_{0}}{A_{w}} \sqrt{2 g h}
$$

Using $A_{0}=\pi(1 / 24)^{2}=\pi / 576, A_{w}=\pi(2)^{2}=4 \pi$, and $g=32$, this becomes

$$
\frac{d h}{d t}=-\frac{c \pi / 576}{4 \pi} \sqrt{64 h}=\frac{c}{288} \sqrt{h} .
$$

33. Let $P(t)$ be the number of owls present at time t. Then $d P / d t=k(P-200+10 t)$.
34. Setting $A^{\prime}(t)=-0.002$ and solving $A^{\prime}(t)=-0.0004332 A(t)$ for $A(t)$, we obtain

$$
A(t)=\frac{A^{\prime}(t)}{-0.0004332}=\frac{-0.002}{-0.0004332} \approx 4.6 \text { grams. }
$$

2
 First-Order Differential Equations

Exercises 2.1

Solution Curves Without a Solution

2.

4.

6.

Exercises 2.1 Solution Curves Without a Solution
7.

8.

9.

10.

11.

12.

13.

14.

$\because \equiv$ The isoclines have the form $y=-x+c$, which are straight lines with slope -1 .

\therefore The isoclines have the form $x^{2}+y^{2}=c$: which are ircles centered at the origin.

\therefore a. When $x=0$ or $y=4, d y / d x=-2$ so the lincal clements have slope -2 . When $y=3$ or $y=5$, $d y / d x=x-2$, so the lincal elements at $(x, 3)$ and $(x, 5)$ have slopes $x-2$.
2. At $\left(0, y_{0}\right)$ the solution curve is headed down. If $y \rightarrow \infty$ as x increases, the graph must eventually turn around and head up, but while heading up it can never cross $y=4$ where a tangent line to a solution curve must have slope -2 . Thus, y cannot approach ∞ as x approaches ∞.
$\because-\operatorname{Ten} y<\frac{1}{2} x^{2}, y^{\prime}=x^{2}-2 y$ is positive and the portions of solu$\because:$. curves "outside" the nullcline parabola are increasing. When $>\frac{1}{2} x^{2}, y^{\prime}=x^{2}-2 y$ is negative and the portions of the solution ...res "inside" the nullcline parabola are decreasing.

\therefore a) Any horizontal lineal element should be at a point on a nullcline. In Problem 1 the nullclines are $x^{2}-y^{2}=0$ or $y= \pm x$. In Problcm 3 the nullclines are $1-x y=0$ or $y=1 / x$. In Problem 4 the mullclines are $(\sin x) \cos y=0$ or $x=n \pi$ and $y=\pi / 2+n \pi$, where n is an integer. The graphs on the next page show the nullclines for the differential equations in Problems 1, 3, and 4 superimposed on the corresponding direction field.

Exercises 2.1 Solution Curves Without a Solution

(b) An autonomous first-order differential equation has the form $y^{\prime}=f(y)$. Nullclines have th: form $y=c$ where $f(c)=0$. These are the graphs of the equilibrium solutions of the differentia: equation.
19. Writing the differential equation in the form $d y / d x=y(1-y)(1+y)$ we see that critical points are located at $y=-1, y=0$, and $y=1$. The phase portrait is shown at the right.
(a)

(b)

(c)

(d)

20. Writing the differential equation in the form $d y / d x=y^{2}(1-y)(1+y)$ we see that critical points are located at $y=-1, y=0$, and $y=1$. The phase portrait is shown at the right.
(a)

(b)

Exercises 2.1 Solution Curves Without a Solution

(c)

(d)

\therefore Sulving $y^{2}-3 y=y(y-3)=0$ we obtain the critical points 0 and 3. From the phase ortrait we see that 0 is asymptotically stable (attractor) and 3 is unstable (repeller).
\therefore Siving $y^{2}-y^{3}=y^{2}(1-y)=0$ we obtain the critical points 0 and 1. From the phase \because grait we see that 1 is asymptotically stable (attractor) and 0 is scmi-stable.
Z. Sing $(y-2)^{4}=0$ we obtain the critical point 2 . From the phase portrait we see that - is semi-stable.
$\overline{=}=$ - ring $10+3 y-y^{2}=(5-y)(2+y)=0$ we obtain the critical points -2 and 5 . From \therefore phase portrait we see that 5 is asymptotically stable (attractor) and -2 is unstable apeller).
25. Solving $y^{2}\left(4-y^{2}\right)=y^{2}(2-y)(2+y)=0$ we obtain the critical points $-2,0$, and 2 . From the phase portrait we sec that 2 is asymptotically stable (attractor), 0 is semi-stable, and -2 is unstable (rcpeller).
26. Solving $y(2-y)(4-y)=0$ we obtain the critical points 0,2 , and 4. From the phase portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable (repellers).
27. Solving $y \ln (y+2)=0$ we obtain the critical points -1 and 0 . From the phase portrait we see that -1 is asymptotically stable (attractor) and 0 is unstable (repeller).
28. Solving $y e^{y}-9 y=y\left(e^{y}-9\right)=0$ we obtain the critical points 0 and $\ln 9$. From the phase portrait we see that 0 is asymptotically stable (attractor) and $\ln 9$ is unstable (repeller).
29. The critical points are 0 and c because the graph of $f(y)$ is 0 at these points. Since $f(y)>0$ fc: $y<0$ and $y>c$, the graph of the solution is increasing on $(-\infty, 0)$ and (c, ∞). Since $f(y)<0$ f $:$ $0<y<c$, the graph of the solution is decreasing on $(0, c)$.

8: - - critical points are approximately at $-2,2,0.5$, and 1.7. Since $f(y)>0$ for $y<-2.2$ and $\therefore<y<1.7$, the graph of the solution is increasing on $(-\infty,-2.2)$ and $(0.5,1.7)$. Since $f(y)<0$ $\therefore-2.2<y<0.5$ and $y>1.7$, the graph is decreasing on $(-2.2,0.5)$ and $(1.7, \infty)$.

:- इ:... the graphs of $z=\pi / 2$ and $z=\sin y$ we see that
$-2 y-\sin y=0$ has only three solutions. By inspection $--\quad$: $\because e$ that the critical points are $-\pi / 2,0$, and $\pi / 2$.

F:-.... the graph at the right we see that

$$
\begin{aligned}
& \frac{2}{\pi} y-\sin y\left\{\begin{array}{lll}
<0 & \text { for } & y<-\pi / 2 \\
>0 & \text { for } & y>\pi / 2
\end{array}\right. \\
& \frac{2}{\pi} y-\sin y\left\{\begin{array}{rrr}
>0 & \text { for } & -\pi / 2<y<0 \\
<0 & \text { for } & 0<y<\pi / 2
\end{array}\right.
\end{aligned}
$$

-.- Mables us to construct the phase portrait shown at the right. From this portrait we see that

- :- :- d $-\pi / 2$ are unstable (repellers), and 0 is asymptotically stable (attractor).
- $\quad \therefore d x=0$ every real number is a critical point, and hence all critical points are nonisolated.
\therefore that for $d y / d x=f(y)$ we are assuming that f and f^{\prime} are continuous functions of y on

Exercises 2.1 Solution Curves Without a Solution
some interval I. Now suppose that the graph of a nonconstant solution of the differential equation crosses the line $y=c$. If the point of intersection is taken as an initial condition we have two distinct solutions of the initial-value problem. This violates uniqueness, so the graph of any nonconstant solution must lie entirely on one side of any equilibrium solution. Since f is continuous it can only change signs at a point where it is 0 . But this is a critical point. Thus, $f(y)$ is completely positive or completely negative in each region R_{i}. If $y(x)$ is oscillatory or has a relative extremum, thei: it must have a horizontal tangent line at some point $\left(x_{0}, y_{0}\right)$. In this case y_{0} would be a critica. point of the differential equation, but we saw above that the graph of a nonconstant solution canno: intersect the graph of the cquilibrium solution $y=y_{0}$.
34. By Problem 33, a solution $y(x)$ of $d y / d x=f(y)$ cannot have relative extrema and hence must b monotone. Since $y^{\prime}(x)=f(y)>0, y(x)$ is monotone increasing, and since $y(x)$ is bounded abor: by $c_{2}, \lim _{x \rightarrow \infty} y(x)=L$, where $L \leq c_{2}$. We want to show that $L=c_{2}$. Since L is a horizont z_{-} asymptote of $y(x), \lim _{x \rightarrow \infty} y^{\prime}(x)=0$. Using the fact that $f(y)$ is continuous we have

$$
f(L)=f\left(\lim _{x \rightarrow \infty} y(x)\right)=\lim _{x \rightarrow \infty} f(y(x))=\lim _{x \rightarrow \infty} y^{\prime}(x)=0
$$

But then L is a critical point of f. Since $c_{1}<L \leq c_{2}$, and f has no critical points between c_{1} an: $c_{2}, L=c_{2}$.
35. Assuming the existence of the second derivative, points of inflection of $y(x)$ occur where $y^{\prime \prime}(x)=0$. From $d y / d x=f(y)$ we have $d^{2} y / d x^{2}=f^{\prime}(y) d y / d x$. Thus, the y-coordinate of: point of inflection can be located by solving $f^{\prime}(y)=0$. (Points where $d y / d x=0$ correspond :. constant solutions of the differential equation.)
36. Solving $y^{2}-y-6=(y-3)(y+2)=0$ we see that 3 and -2 are critical points. Now $d^{2} y / d x^{2}=(2 y-1) d y / d x=(2 y-1)(y-3)(y+2)$: so the only possible point of inflection is at $y=\frac{1}{2}$, although the concavity of solutions can be different on cither side of $y=-2$ and $y=3$. Since $y^{\prime \prime}(x)<0$ for $y<-2$ and $\frac{1}{2}<y<3$, and $y^{\prime \prime}(x)>0$ for $-2<y<\frac{1}{2}$ and $y>3$, we see that solution curves are concave down for $y<-2$ and $\frac{1}{2}<y<3$ and
 concave up for $-2<y<\frac{1}{2}$ and $y>3$. Points of inflection of solutions of autonomous differential equations will have the same y-coordinates becausc between critical poi:- they are horizontal translates of each other.
37. If (1) in the text has no critical points it has no constant solutions. The solutions have neither .. upper nor lower bound. Since solutions are monotonic, every solution assumes all real values.
35. The critical points are 0 and b / a. From the phase portrait we see that 0 is an attractor and b / a is a repeller. Thus, if an initial population satisfies $P_{0}>b / a$, the population "ecomes unbounded as t increases, most probably in finite time, i.e. $P(t) \rightarrow \infty$ as $t \rightarrow T$. I二 $0<P_{0}<b / a$, then the population eventually dies out, that is, $P(t) \rightarrow 0$ as $t \rightarrow \infty$. Fince population $P>0$ we do not consider the case $P_{0}<0$.
E. The only critical point of the antonomous differential equation is the positive number h / k. A hase portrait shows that this point is unstable, so h / k is a repcller. For any initial condition $\supset 0)=P_{0}<h / k \cdot d P / d t<0$, which means $P(t)$ is monotonic dccreasing and so the graph of $P(t)$ wnst cross the t-axis or the line $P=0$ at some time $t_{1}>0$. But $P\left(t_{1}\right)=0$ means the population \therefore extinct at time t_{1}.
\because Triting the differential equation in the form

$$
\frac{d v}{d t}=\frac{k}{m}\left(\frac{m g}{k}-v\right)
$$

sce that a critical point is $m g / k$.
From the phase portrait we see that $m g / k$ is an asymptotically stable critical \because int. Thus, $\lim _{t \rightarrow \infty} v=m g / k$.
$\because \because$-iting the differential equation in the form

$$
\frac{d v}{d t}=\frac{k}{m}\left(\frac{m g}{k}-v^{2}\right)=\frac{k}{m}\left(\sqrt{\frac{m g}{k}}-v\right)\left(\sqrt{\frac{m g}{k}}+v\right)
$$

\cdots see that the only physically meaningful critical point is $\sqrt{m g / k}$.
From the phase portrait we see that $\sqrt{m g / k}$ is an asymptotically stable \because :ical point. Thus, $\lim _{t \rightarrow \infty} v=\sqrt{m g / k}$.
\therefore a) From the phase portrait we sce that critical points are α and β. Let $X(0)=X_{0}$. If $X_{0}<\alpha$, we see that $X \rightarrow \alpha$ as $t \rightarrow \infty$. If $\alpha<X_{0}<\beta$, we see that $X \rightarrow \alpha$ as $t \rightarrow \infty$. If $X_{0}>\beta$, we see that $X(t)$ increases in an unbounded manner, but more specific behavior of $X(t)$ as $t \rightarrow \infty$ is not known.
(b) When $\alpha=\beta$ the phase portrait is as shown. If $X_{0}<\alpha$, then $X(t) \rightarrow \alpha$ as $t \rightarrow \infty$. If $X_{0}>\alpha$, then $X(t)$ increases in an unbounded manner. This could happen in a finite amount of time. That is, the phase portrait does not indicate that X becomes unbounded as $t \rightarrow \infty$.
(c) When $k=1$ and $\alpha=3$ the differcntial equation is $d X / d t=(\alpha-X)^{2}$. For $X(t)=\alpha-1 /(t+c)$ we have $d X / d t=1 /(t+c)^{2}$ and

$$
(\alpha-X)^{2}=\left[\alpha-\left(\alpha-\frac{1}{t+c}\right)\right]^{2}=\frac{1}{(t+c)^{2}}=\frac{d X}{d t}
$$

For $X(0)=\alpha / 2$ we obtain

$$
X(t)=\alpha-\frac{1}{t+2 / \alpha}
$$

For $X(0)=2 \alpha$ we obtain

$$
X(t)=\alpha-\frac{1}{t-1 / \alpha}
$$

For $X_{0}>\alpha, X(t)$ increases without bound up to $t=1 / \alpha$. For $t>1 / \alpha, X(t)$ increases bu: $X \rightarrow \alpha$ as $t \rightarrow \infty$

Exercises 2.2

Separable Variables

\cdots of the following problems we will encounter an expression of the form $\ln |g(y)|=f(x)+c$. To $\therefore g(y)$ we exponentiate both sides of the equation. This yields $|g(y)|=e^{f(x)+c}=e^{c} e^{f(x)}$ which $\therefore g(y)= \pm e^{c} e^{f(x)}$. Letting $c_{1}= \pm e^{c}$ we obtain $g(y)=c_{1} c^{f(x)}$.
\therefore Zan dy $=\sin 5 x d x$ we obtain $y=-\frac{1}{5} \cos 5 x+c$.

- $\Xi \because m d y=(x+1)^{2} d x$ we obtain $y=\frac{1}{3}(x+1)^{3}+c$.
\vdots Em dy $d y=-e^{-3 x} d x$ we obtain $y=\frac{1}{3} e^{-3 x}+c$.
$\therefore \min \frac{1}{(y-1)^{2}} d y=d x$ we obtain $-\frac{1}{y-1}=x+c$ or $y=1-\frac{1}{x+c}$.
$\equiv \cong \mathrm{m} \frac{1}{y} d y=\frac{4}{x} d x$ we obtain $\ln |y|=4 \ln |x|+c$ or $y=c_{1} x^{4}$.
$\div=$ m $\frac{1}{y^{2}} d y=-2 x d x$ we obtain $-\frac{1}{y}=-x^{2}+c$ or $y=\frac{1}{x^{2}+c_{1}}$.
- \equiv In $e^{-2 y} d y=e^{3 x} d x$ we obtain $3 e^{-2 y}+2 e^{3 x}=c$.

Finn $y e^{y} d y=\left(e^{-x}+e^{-3 x}\right) d x$ we obtain $y e^{y}-e^{y}+e^{-x}+\frac{1}{3} e^{-3 x}=c$.
$\equiv \equiv \min \left(y+2+\frac{1}{y}\right) d y=x^{2} \ln x d x$ we obtain $\frac{y^{2}}{2}+2 y+\ln |y|=\frac{x^{3}}{3} \ln |x|-\frac{1}{9} x^{3}+c$.
$\therefore \equiv \operatorname{Im} \frac{1}{(2 y+3)^{2}} d y=\frac{1}{(4 x+5)^{2}} d x$ we obtain $\frac{2}{2 y+3}=\frac{1}{4 x+5}+c$.
$\because \quad=\min \frac{1}{\csc y} d y=-\frac{1}{\sec ^{2} x} d x$ or $\sin y d y=-\cos ^{2} x d x=-\frac{1}{2}(1+\cos 2 x) d x$ we obtain $-\operatorname{os} y=-\frac{1}{2} x-\frac{1}{4} \sin 2 x+c \quad$ or $\quad 4 \cos y=2 x+\sin 2 x+c_{1}$.
$\therefore=-\operatorname{mom} 2 y d y=-\frac{\sin 3 x}{\cos ^{3} 3 x} d x$ or $2 y d y=-\tan 3 x \sec ^{2} 3 x d x$ we obtain $y^{2}=-\frac{1}{6} \sec ^{2} 3 x+c$.
$\therefore \quad=\operatorname{im} \frac{e^{y}}{\left(e^{y}+1\right)^{2}} d y=\frac{-e^{x}}{\left(e^{x}+1\right)^{3}} d x$ we obtain $-\left(e^{y}+1\right)^{-1}=\frac{1}{2}\left(e^{x}+1\right)^{-2}+c$.
$\therefore=\mathrm{m} \frac{y}{\left(1+y^{2}\right)^{1 / 2}} d y=\frac{x}{\left(1+x^{2}\right)^{1 / 2}} d x$ we obtain $\left(1+y^{2}\right)^{1 / 2}=\left(1+x^{2}\right)^{1 / 2}+c$.
$\because \equiv n \frac{1}{S} d S=k d r$ we obtain $S=c e^{k r}$.
$=\operatorname{lom} \frac{1}{Q-70} d Q=k d t$ we obtain $\ln |Q-70|=k t+c$ or $Q-70=c_{1} e^{k t}$.

Exercises 2.2 Separable Variables

17. From $\frac{1}{P-} \overline{P^{2}} d P=\left(\frac{1}{P}+\frac{1}{1-P}\right) d P=d t$ we obtain $\ln |P|-\ln |1-P|=t+c$ so that $\ln \left|\frac{P}{1-P}\right|=$ $t+c$ or $\frac{P}{1-P}=c_{1} e^{t}$. Solving for P we have $P=\frac{c_{1} e^{t}}{1+c_{1} e^{t}}$.
18. From $\frac{1}{N} d N=\left(t e^{t+2}-1\right) d t$ we obtain $\ln |N|=t e^{t+2}-e^{t+2}-t+c$ or $N=c_{1} e^{t e^{t+2}-e^{t+2}-t}$.
19. From $\frac{y-2}{y+3} d y=\frac{x-1}{x+4} d x$ or $\left(1-\frac{5}{y+3}\right) d y=\left(1-\frac{5}{x+4}\right) d x$ we obtain $y-5 \ln |y+3|=$ $x-5 \ln |x+4|+c$ or $\left(\frac{x+4}{y+3}\right)^{5}=c_{1} e^{x-y}$.
20. From $\frac{y+1}{y-1} d y=\frac{x+2}{x-3} d x$ or $\left(1+\frac{2}{y-1}\right) d y=\left(1+\frac{5}{x-3}\right) d x$ we obtain $y+2 \ln |y-1|=$ $x+5 \ln |x-3|+c$ or $\frac{(y-1)^{2}}{(x-3)^{5}}=c_{1} e^{x-y}$.
21. From $x d x=\frac{1}{\sqrt{1-y^{2}}} d y$ we obtain $\frac{1}{2} x^{2}=\sin ^{-1} y+c$ or $y=\sin \left(\frac{x^{2}}{2}+c_{1}\right)$.
22. Fron $\frac{1}{y^{2}} d y=\frac{1}{e^{x}+e^{-x}} d x=\frac{e^{x}}{\left(e^{x}\right)^{2}+1} d x$ we obtain $-\frac{1}{y}=\tan ^{-1} e^{x}+c$ or $y=-\frac{1}{\tan ^{-1} e^{x}+c}$.
23. From $\frac{1}{x^{2}+1} d x=4 d t$ we obtain $\tan ^{-1} x=4 t+c$. Lising $x(\pi / 4)=1$ we find $c=-3 \pi / 4$. The solution of the initial-value problem is $\tan ^{-1} x=4 t-\frac{3 \pi}{4}$ or $x=\tan \left(4 t-\frac{3 \pi}{4}\right)$.
24. From $\frac{1}{y^{2}-1} d y=\frac{1}{x^{2}-1} d x$ or $\frac{1}{2}\left(\frac{1}{y-1}-\frac{1}{y+1}\right) d y=\frac{1}{2}\left(\frac{1}{x-1}-\frac{1}{x+1}\right) d x$ we obtain $\ln |y-1|-\ln |y+1|=\ln |x-1|-\ln |x+1|+\ln c$ or $\frac{y-1}{y+1}=\frac{c(x-1)}{x+1}$. Using $y(2)=2$ we find $c=1$. A solution of the initial-value problem is $\frac{y-1}{y+1}=\frac{x-1}{x+1}$ or $y=x$.
25. From $\frac{1}{y} d y=\frac{1-x}{x^{2}} d x=\left(\frac{1}{x^{2}}-\frac{1}{x}\right) d x$ we obtain $\ln |y|=-\frac{1}{x}-\ln |x|=c$ or $x y=c_{1} e^{-1 / x}$. Using $y(-1)=-1$ we find $c_{1}=e^{-1}$. The solution of the initial-value problem is $x y=e^{-1-1 / x}$ or $y=e^{-(1+1 / x)} / x$.
26. From $\frac{1}{1-2 y} d y=d t$ we obtain $-\frac{1}{2} \ln |1-2 y|=t+c$ or $1-2 y=c_{1} \epsilon^{-2 t}$. Using $y(0)=5 / 2 \mathrm{we}$ finc $c_{1}=-4$. The solution of the initial-value problem is $1-2 y=-4 e^{-2 t}$ or $y=2 e^{-2 t}+\frac{1}{2}$.
27. Scparating variables and integrating we obtain

$$
\frac{d x}{\sqrt{1-x^{2}}}-\frac{d y}{\sqrt{1-y^{2}}}=0 \quad \text { and } \quad \sin ^{-1} x-\sin ^{-1} y=c
$$

Setting $x=0$ and $y=\sqrt{3} / 2$ we obtain $c=-\pi / 3$. Thus, an implicit solution of the initial-value problem is $\sin ^{-1} x-\sin ^{-1} y=-\pi / 3$. Solving for y and using an addition formula from trigonometry, we get

$$
y=\sin \left(\sin ^{-1} x+\frac{\pi}{3}\right)=x \cos \frac{\pi}{3}+\sqrt{1-x^{2}} \sin \frac{\pi}{3}=\frac{x}{2}+\frac{\sqrt{3} \sqrt{1-x^{2}}}{2} .
$$

25. From $\frac{1}{1+(2 y)^{2}} d y=\frac{-x}{1+\left(x^{2}\right)^{2}} d x$ we obtain

$$
\frac{1}{2} \tan ^{-1} 2 y=-\frac{1}{2} \tan ^{-1} x^{2}+c \quad \text { or } \quad \tan ^{-1} 2 y+\tan ^{-1} x^{2}=c_{1} .
$$

Using $y(1)=0$ we find $c_{1}=\pi / 4$. Thus, an implicit solution of the initial-value problem is $\tan ^{-1} 2 y+\tan ^{-1} x^{2}=\pi / 4$. Solving for y and using a trigonometric identity we get

$$
\begin{aligned}
2 y & =\tan \left(\frac{\pi}{4}-\tan ^{-1} x^{2}\right) \\
y & =\frac{1}{2} \tan \left(\frac{\pi}{4}-\tan ^{-1} x^{2}\right) \\
& =\frac{1}{2} \frac{\tan \frac{\pi}{4}-\tan \left(\tan ^{-1} x^{2}\right)}{1+\tan \frac{\pi}{4} \tan \left(\tan ^{-1} x^{2}\right)} \\
& =\frac{1}{2} \frac{1-x^{2}}{1+x^{2}} .
\end{aligned}
$$

2. Separating variables, integrating from 4 to x, and using t as a dummy variable of integration gives

$$
\begin{aligned}
\int_{4}^{x} \frac{1}{y} \frac{d y}{d t} d t & =\int_{4}^{x} e^{-t^{2}} d t \\
\left.\ln y(t)\right|_{4} ^{x} & =\int_{4}^{x} e^{-t^{2}} d t \\
\ln y(x)-\ln y(4) & =\int_{4}^{x} e^{-t^{2}} d t
\end{aligned}
$$

Csing the initial condition we have

$$
\ln y(x)=\ln y(4)+\int_{4}^{x} e^{-t^{2}} d t=\ln 1+\int_{4}^{x} e^{-t^{2}} d t=\int_{4}^{x} e^{-t^{2}} d t
$$

Thus,

$$
y(x)=e^{\int_{4}^{x} e^{-t^{2}} d t}
$$

Exercises 2.2 Separable Variables

30. Separating variables, integrating from -2 to x, and using t as a dummy variable of integration gives

$$
\begin{aligned}
& \int_{-2}^{x} \frac{1}{y^{2}} \frac{d y}{d t} d t=\int_{-2}^{x} \sin t^{2} d t \\
&-\left.y(t)^{-1}\right|_{-2} ^{x}=\int_{-2}^{x} \sin t^{2} d t \\
&-y(x)^{-1}+y(-2)^{-1}=\int_{-2}^{x} \sin t^{2} d t \\
&-y(x)^{-1}=-y(-2)^{-1}+\int_{-2}^{x} \sin t^{2} d t \\
& y(x)^{-1}=3-\int_{-2}^{x} \sin t^{2} d t .
\end{aligned}
$$

Thus

$$
y(x)=\frac{1}{3-\int_{-2}^{x} \sin t^{2} d t}
$$

31. (a) The equilibrium solutions $y(x)=2$ and $y(x)=-2$ satisfy the initial conditions $y(0)=2$ and $y(0)=-2$, respectively. Setting $x=\frac{1}{4}$ and $y=1$ in $y=2\left(1+c e^{4 x}\right) /\left(1-c e^{4 x}\right)$ wc obtain

$$
1=2 \frac{1+c e}{1-c e}, \quad 1-c e=2+2 c e, \quad-1=3 c e, \quad \text { and } \quad c=-\frac{1}{3 e} .
$$

The solution of the corresponding initial-value problem is

$$
y=2 \frac{1-\frac{1}{3} e^{4 x-1}}{1+\frac{1}{3} e^{4 x-1}}=2 \frac{3-e^{4 x-1}}{3+e^{4 x-1}}
$$

(b) Separating variables and integrating yields

$$
\begin{aligned}
\frac{1}{4} \ln |y-2|-\frac{1}{4} \ln |y+2|+\ln c_{1} & =x \\
\ln |y-2|-\ln |y+2|+\ln c & =4 x \\
\ln \left|\frac{c(y-2)}{y+2}\right| & =4 x \\
c \frac{y-2}{y+2} & =e^{4 x}
\end{aligned}
$$

Solving for y we get $y=2\left(c+e^{4 x}\right) /\left(c-e^{4 x}\right)$. The initial condition $y(0)=-2$ implies $2(c+1) /(c-1)=-2$ which yields $c=0$ and $y(x)=-2$. The initial condition $y(0)=2$ does not correspond to a value of c, and it must simply be recognized that $y(x)=2$ is a solution ot the initial-value problem. Setting $x=\frac{1}{4}$ and $y=1$ in $y=2\left(c+\epsilon^{4 x}\right) /\left(c-e^{4 x}\right)$ leads to $c=-3 \epsilon$. Thus, a solution of the initial-value problem is

$$
y=2 \frac{-3 e+e^{4 x}}{-3 e-e^{4 x}}=2 \frac{3-e^{4 x-1}}{3+e^{4 x-1}}
$$

32. Separating variables, wo have

$$
\frac{d y}{y^{2}-y}=\frac{d x}{x} \quad \text { or } \quad \int \frac{d y}{y(y-1)}=\ln |x|+c
$$

Using partial fractions, we obtain

$$
\begin{aligned}
\int\left(\frac{1}{y-1}-\frac{1}{y}\right) d y & =\ln |x|+c \\
\ln |y-1|-\ln |y| & =\ln |x|+c \\
\ln \left|\frac{y-1}{x y}\right| & =c \\
\frac{y-1}{x y} & =e^{c}=c_{1}
\end{aligned}
$$

Solving for y we get $y=1 /\left(1-c_{1} x\right)$. We note by inspection that $y=0$ is a singular solution of the differential cquation.
(a) Setting $x=0$ and $y=1$ we have $1=1 /(1-0)$, which is true for all values of c_{1}. Thus, solutions passing through $(0,1)$ are $y=1 /\left(1-c_{1} x\right)$.
(b) Setting $x=0$ and $y=0$ in $y=1 /\left(1-c_{1} x\right)$ we get $0=1$. Thus, the only solution passing through $(0,0)$ is $y=0$.
(c) Setting $x=\frac{1}{2}$ and $y=\frac{1}{2}$ we have $\frac{1}{2}=1 /\left(1-\frac{1}{2} c_{1}\right)$, so $c_{1}=-2$ and $y=1 /(1+2 x)$.
(d) Setting $x=2$ and $y=\frac{1}{4}$ we have $\frac{1}{4}=1 /\left(1-2 c_{1}\right)$, so $c_{1}=-\frac{3}{2}$ and $y=1 /\left(1+\frac{3}{2} x\right)=2 /(2+3 x)$.
\therefore Singular solutions of $d y / d x=x \sqrt{1-y^{2}}$ are $y=-1$ and $y=1$. A singular solution of $\left.e^{x}+e^{-x}\right) d y / d x=y^{2}$ is $y=0$.
\therefore Differentiating $\ln \left(x^{2}+10\right)+\csc y=c$ we get

$$
\because
$$

$$
\begin{aligned}
\frac{2 x}{x^{2}+10}-\csc y \cot y \frac{d y}{d x} & =0 \\
\frac{2 x}{x^{2}+10}-\frac{1}{\sin y} \cdot \frac{\cos y}{\sin y} \frac{d y}{d x} & =0 \\
2 x \sin ^{2} y d x-\left(x^{2}+10\right) \cos y d y & =0
\end{aligned}
$$

${ }^{-} \cdot \underline{i}$ iting the differential equation in the form

$$
\frac{d y}{d x}=\frac{2 x \sin ^{2} y}{\left(x^{2}+10\right) \cos y}
$$

$-\because$ see that singular solutions occur when $\sin ^{2} y=0$, or $y=k \pi$, where k is an integer.
35. The singular solution $y=1$ satisfies the initial-value problem.
36. Scparating variables we obtain $\frac{d y}{(y-1)^{2}}=d x$. Then

$$
-\frac{1}{y-1}=x+c \quad \text { and } \quad y=\frac{x+c-1}{x+c} .
$$

Setting $x=0$ and $y=1.01$ we obtain $c=-100$. The solution is

$$
y=\frac{x-101}{x-100}
$$

37. Separating variables we obtain $\frac{d y}{(y-1)^{2}+0.01}=d x$. Then

$$
10 \tan ^{-1} 10(y-1)=x+c \quad \text { and } \quad y=1+\frac{1}{10} \tan \frac{x+c}{10}
$$

Setting $x=0$ and $y=1$ we obtain $c=0$. The solution is

$$
y=1+\frac{1}{10} \tan \frac{x}{10}
$$

38. Separating variables we obtain $\frac{d y}{(y-1)^{2}-0.01}=d x$. Then, from (11) in this section of the manual with $u=y-1$ and $a=\frac{1}{10}$, we get

$$
5 \ln \left|\frac{10 y-11}{10 y-9}\right|=x+c
$$

Setting $x=0$ and $y=1$ we obtain $c=5 \ln 1=0$. The solution is

$$
5 \ln \left|\frac{10 y-11}{10 y-9}\right|=x
$$

Solving for y we obtain

Exercises 2.2 Separable Variables

$$
y=\frac{11+9 e^{x / 5}}{10+10 e^{x / 5}}
$$

Altcrnatively, we can use the fact that

$$
\int \frac{d y}{(y-1)^{2}-0.01}=-\frac{1}{0.1} \tanh ^{-1} \frac{y-1}{(0.1}=-10 \tanh ^{-1} 10(y-1)
$$

(We use the inverse hyperbolic tangent becausc $|y-1|<0.1$ or $0.9<y<1.1$. This follows from the initial condition $y(0)=1$.) Solving the above equation for y we get $y=1+0.1 \tanh (x / 10)$.
39. Separating variables, we have

$$
\frac{d y}{y-y^{3}}=\frac{d y}{y(1-y)(1+y)}=\left(\frac{1}{y} \div \frac{1 / 2}{1-y}-\frac{1 / 2}{1+y}\right) d y=d x
$$

Integrating; we get

$$
\ln |y|-\frac{1}{2} \ln |1-y|-\frac{1}{2} \ln |1+y|=x+c
$$

When $y>1$, this becomos

$$
\ln y-\frac{1}{2} \ln (y-1)-\frac{1}{2} \ln (y+1)=\ln \frac{y}{\sqrt{y^{2}-1}}=x+c
$$

Letting $x=0$ and $y=2$ we find $c=\ln (2 / \sqrt{3})$. Solving for y we get, $y_{1}(x)=2 e^{x} / \sqrt{4 e^{2 x}-3}$, where $x>\ln (\sqrt{3} / 2)$.

When $0<y<1$ we have

$$
\ln y-\frac{1}{2} \ln (1-y)-\frac{1}{2} \ln (1+y)=\ln \frac{y}{\sqrt{1-y^{2}}}=x+c
$$

Letting $x=0$ and $y=\frac{1}{2}$ we find $c=\ln (1 / \sqrt{3})$. Solving for y we get $y_{2}(x)=e^{x} / \sqrt{e^{2 x}+3}$, where $-\infty<x<\infty$.

When $-1<y<0$ we have

$$
\ln (-y)-\frac{1}{2} \ln (1-y)-\frac{1}{2} \ln (1+y)=\ln \frac{-y}{\sqrt{1-y^{2}}}=x+c
$$

Letting $x=0$ and $y=-\frac{1}{2}$ we find $c=\ln (1 / \sqrt{3})$. Solving for y we get $y_{3}(x)=-e^{x} / \sqrt{e^{2 x}+3}$, where $-\infty<x<\infty$.

When $y<-1$ wo have

$$
\ln (-y)-\frac{1}{2} \ln (1-y)-\frac{1}{2} \ln (-1-y)=\ln \frac{-y}{\sqrt{y^{2}-1}}=x+c .
$$

Exercises 2.2 Separable Variables

Letting $x=0$ and $y=-2$ we find $c=\ln (2 / \sqrt{3})$. Solving for y we get $y_{4}(x)=-2 e^{x} / \sqrt{4 e^{2 x}-3}$, where $x>\ln (\sqrt{3} / 2)$.

40. (a) The second derivative of y is

$$
\frac{d^{2} y}{d x^{2}}=-\frac{d y / d x}{(y-1)^{2}}=-\frac{1 /(y-3)}{(y-3)^{2}}=-\frac{1}{(y-3)^{3}}
$$

The solution curve is concave down when $d^{2} y / d x^{2}<0$ or $y>3$, and concave up when $d^{2} y / d x^{2}>0$ or $y<3$. From the phase portrait wo sce that the solution curve is decreasing when $y<3$ and increasing when $y>3$.

(b) Separating variables and integrating we obtain

$$
\begin{aligned}
(y-3) d y & =d x \\
\frac{1}{2} y^{2}-3 y & =x+c \\
y^{2}-6 y+9 & =2 x+c_{1} \\
(y-3)^{2} & =2 x+c_{1} \\
y & =3 \pm \sqrt{2 x+c_{1}} .
\end{aligned}
$$

The initial condition dictates whether to use the plus or minus sign.
When $y_{1}(0)=4$ we have $c_{1}=1$ and $y_{1}(x)=3+\sqrt{2 x+1}$.
When $y_{2}(0)=2$ wo have $c_{1}=1$ and $y_{2}(x)=3-\sqrt{2 x+1}$.
When $y_{3}(1)=2$ wo have $c_{1}=-1$ and $y_{3}(x)=3-\sqrt{2 x-1}$.
When $y_{4}(-1)=4$ we have $c_{1}=3$ and $y_{4}(x)=3+\sqrt{2 x+3}$.
41. (a) Separating variables we have $2 y d y=(2 x+1) d x$. Integrating gives $y^{2}=x^{2}+x+c$. Whel. $y(-2)=-1$ we find $c=-1$, so $y^{2}=x^{2}+x-1$ and $y=-\sqrt{x^{2}+x-1}$. The negative squar: root is chosen because of the initial condition.
(b) From the figure, the largest interval of definition appears to be approximately $(-\infty,-1.65)$.

(c) Solving $x^{2}+x-1=0$ we get $x=-\frac{1}{2} \pm \frac{1}{2} \sqrt{5}$, so the largest interval of definition is $\left(-\infty,-\frac{1}{2}-\frac{1}{2} \sqrt{5}\right)$. The right-hand endpoint of the interval is excluded becausc $y=$ $-\sqrt{x^{2}+x-1}$ is not differentiable at this point.
\therefore 2. (a) From Problem 7 the general solution is $3 e^{-2 y}+2 e^{3 x}=c$. When $y(0)=0$ we find $c=5$, so $3 e^{-2 y}+2 e^{3 x}=5$. Solving for y we get $y=-\frac{1}{2} \ln \frac{1}{3}\left(5-2 e^{3 x}\right)$.
(b) The interval of definition appears to be approximately $(-\infty, 0.3)$.

(c) Solving $\frac{1}{3}\left(5-2 e^{3 x}\right)=0$ we get $x=\frac{1}{3} \ln \left(\frac{5}{2}\right)$, so the exact interval of definition is $\left(-\infty, \frac{1}{3} \ln \frac{5}{2}\right)$.
$\therefore 3$. (a) While $y_{2}(x)=-\sqrt{25-x^{2}}$ is dcfined at $x=-5$ and $x=5, y_{2}^{\prime}(x)$ is not defined at these values, and so the interval of definition is the open interval $(-5,5)$.
(b) At any point on the x-axis the derivative of $y(x)$ is undefined, so no solution curve can cross the x-axis. Since $-x / y$ is not defined when $y=0$, the initial-value problem has no solution.
$\therefore 4$. (a) Scparating variables and integrating we obtain $x^{2}-y^{2}=c$. For $c \neq 0$ the graph is a hyperbola contered at the origin. All four initial conditions imply $c=0$ and $y= \pm x$. Since the differential equation is not defined for $y=0$, solutions are $y= \pm x, x<0$ and $y= \pm x, x>0$. The solution for $y(a)=a$ is $y=x, x>0$; for $y(a)=-a$ is $y=-x$; for $y(-a)=a$ is $y=-x, x<0$; and for $y(-a)=-a$ is $y=x, x<0$.
(b) Since x / y is not defined when $y=0$, the initial-value problem has no solution.
(c) Sctting $x=1$ and $y=2$ in $x^{2}-y^{2}=c$ we get $c=-3$, so $y^{2}=x^{2}+3$ and $y(x)=\sqrt{x^{2}+3}$, where the positive square root is chosen because of the initial condition. The domain is all real numbers since $x^{2}+3>0$ for all x.

Exercises 2.2 Separable Variables

45. Separating variables we have $d y /\left(\sqrt{1+y^{2}} \sin ^{2} y\right)=d x$ which is not readily integrated (even by a CAS). We note that $d y / d x \geq 0$ for all values of x and y and that $d y / d x=0$ when $y=0$ and $y=\pi$, which are equilibrium solutions.

46. Separating variables we have $d y /(\sqrt{y}+y)=d x /(\sqrt{x}+x)$. To integrate $\int d x /(\sqrt{x}+x)$ we substitutt $u^{2}=x$ and get

$$
\int \frac{2 u}{u+u^{2}} d u=\int \frac{2}{1+u} d u=2 \ln |1+u|+c=2 \ln (1+\sqrt{x})+c .
$$

Intcgrating the separated differential equation we have

$$
2 \ln (1+\sqrt{y})=2 \ln (1+\sqrt{x})+c \text { or } \ln (1+\sqrt{y})=\ln (1+\sqrt{x})+\ln c_{1} .
$$

Solving for y we get $y=\left[c_{1}(1+\sqrt{x})-1\right]^{2}$.
47. We are looking for a function $y(x)$ such that

$$
y^{2}+\left(\frac{d y}{d x}\right)^{2}=1
$$

Using the positive square root gives

$$
\frac{d y}{d x}=\sqrt{1-y^{2}} \Longrightarrow \frac{d y}{\sqrt{1-y^{2}}}=d x \Longrightarrow \sin ^{-1} y=x+c .
$$

Thus a solution is $y=\sin (x+c)$. If we use the negative square root we obtain

$$
y=\sin (c-x)=-\sin (x-c)=-\sin \left(x+c_{1}\right) .
$$

Note that when $c=c_{1}=0$ and when $c=c_{1}=\pi / 2$ we obtain the well known particular solutio:$y=\sin x, y=-\sin x, y=\cos x$, and $y=-\cos x$. Note also that $y=1$ and $y=-1$ are singui $:-$ solutions.
48. (a)

(b) For $|x|>1$ and $|y|>1$ the differential cquation is $d y / d x=\sqrt{y^{2}-1} / \sqrt{x^{2}-1}$. Separating variables and intcgrating, we obtain

$$
\frac{d y}{\sqrt{y^{2}-1}}=\frac{d x}{\sqrt{x^{2}-1}} \quad \text { and } \quad \cosh ^{-1} y=\cosh ^{-1} x+c
$$

Setting $x=2$ and $y=2$ we find $c=\cosh ^{-1} 2-\cosh ^{-1} 2=0$ and $\cosh ^{-1} y=\cosh ^{-1} x$. An explicit solution is $y=x$.
i9. Since the tension T_{1} (or magnitude T_{1}) acts at the lowest point of the cable, we use symmetry to solve the problem on the interval [0, $L / 2]$. The assumption that the roadbed is uniform (that is, weighs a constant ρ pounds per horizontal foot) implies $W=\rho x$, where x is measured in feet and $0 \leq x \leq L / 2$. Thercfore (10) in the text becomes $d y / d x=\left(\rho / T_{1}\right) x$. This last equation is a separable equation of the form given in (1) of Scction 2.2 in the text. Integrating and using the initial condition $y(0)=a$ shows that the shape of the cable is a parabola: $y(x)=\left(\rho / 2 T_{1}\right) x^{2}+a$. In terms of the sag h of the cable and the span L, we see from Figure 2.2 .5 in the toxt that $y(L / 2)=h+a$. By applying this last condition to $y(x)=\left(\rho / 2 T_{1}\right) x^{2}+a$ enables us to express $\rho / 2 T_{1}$ in terms of h and $L: y(x)=\left(4 h / L^{2}\right) x^{2}+a$. Since $y(x)$ is an even function of x, the solution is valid on $-L / 2 \leq x \leq L / 2$.
50. (a) Scparating variables and integrating, we have $\left(3 y^{2}+1\right) d y=$ $-(8 x+5) d x$ and $y^{3}+y=-4 x^{2}-5 x+c$. Using a CAS we show various contours of $f(x, y)=y^{3}+y+4 x^{2}+5 x$. The plots shown on $[-5,5] \times[-\overline{5}, \overline{5}]$ correspond to c-values of $0, \pm 5, \pm 20, \pm 40$, ± 80, and ± 125.

(b) The value of c corresponding to $y(0)=-1$ is $f(0,-1)=-2$; to $y(0)=2$ is $f(0,2)=10$; to $y(-1)=4$ is $f(-1,4)=67$; and to $y(-1)=-3$ is -31 .

E1. (a) An implicit solution of the differential equation $(2 y+2) d y-\left(4 x^{3}+6 x\right) d x=0$ is

$$
y^{2}+2 y-x^{4}-3 x^{2}+c=0
$$

Exercises 2.2 Separable Variables

The condition $y(0)=-3$ implies that $c=-3$. Therefore $y^{2}+2 y-x^{4}-3 x^{2}-3=0$.
(b) Using the quadratic formula we can solve for y in terms of x :

$$
y=\frac{-2 \pm \sqrt{4+4\left(x^{4}+3 x^{2}+3\right)}}{2}
$$

The explicit solution that satisfies the initial condition is then

$$
y=-1-\sqrt{x^{4}+3 x^{3}+4}
$$

(c) From the graph of $f(x)=x^{4}+3 x^{3}+4$ below we sce that $f(x) \leq 0$ on the approximate inter:-$-2.8 \leq x \leq-1.3$. Thus the approximate domain of the function

$$
y=-1-\sqrt{x^{4}+3 x^{3}+4}=-1-\sqrt{f(x)}
$$

is $x \leq-2.8$ or $x \geq-1.3$. The graph of this function is shown below.

(d) Using the root finding capabilities of a CAS, the zeros of f are found to be -2.82202 and -1.3409 . The domain of definition of the solution $y(x)$ is then $x>-1.3409$. The equality has been removed since the derivative $d y / d x$ does not exist at the points where $f(x)=0$. The graph of the solution $y=\phi(x)$ is given on the right.
52. (a) Separating variables and integrating, we have

$$
\left(-2 y+y^{2}\right) d y=\left(x-x^{2}\right) d x
$$

and

$$
-y^{2}+\frac{1}{3} y^{3}=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+c
$$

Using a CAS we show some contours of $f(x, y)=2 y^{3}-$ $6 y^{2}+2 x^{3}-3 x^{2}$. The plots shown on $[-7,7] \times[-5,5]$ correspond to c-values of $-450,-300,-200,-120$,
 $-60,-20,-10,-8.1,-5,-0.8,20,60$, and 120.
(b) The value of c corresponding to $y(0)=\frac{3}{2}$ is $f\left(0, \frac{3}{2}\right)=$ $-\frac{27}{4}$. The portion of the graph between the dots corresponds to the solution curve satisfying the intial condition. To determine the interval of definition we find $d y / d x$ for $2 y^{3}-6 y^{2}+2 x^{3}-3 x^{2}=-\frac{27}{4}$. Using implicit differentiation we get $y^{\prime}=\left(x-x^{2}\right) /\left(y^{2}-2 y\right)$, which is infinite when $y=0$ and $y=2$. Letting $y=0$ in
 $2 y^{3}-6 y^{2}+2 x^{3}-3 x^{2}=-\frac{27}{4}$ and using a CAS to solve for x we get $x=-1.13232$. Similarly, letting $y=2$, we find $x=1.71299$. The largest interval of definition is approximately $(-1.13232,1.71299)$.
(c) The value of c corresponding to $y(0)=-2$ is $f(0,-2)=$ -40 . The portion of the graph to the right of the dot corresponds to the solution curve satisfying the initial condition. To determine the interval of definition we find $d y / d x$ for $2 y^{3}-6 y^{2}+2 x^{3}-3 x^{2}=-40$. Using implicit differentiation we get $y^{\prime}=\left(x-x^{2}\right) /\left(y^{2}-2 y\right)$, which is infinite when $y=0$ and $y=2$. Letting $y=0$ in
 $2 y^{3}-6 y^{2}+2 x^{3}-3 x^{2}=-40$ and using a CAS to solve for x we get $x=-2.29551$. The largest interval of definition is approximately $(-2.29551, \infty)$.

Exercises 2.3

 $-\infty<x<\infty$. There is no transient term.
2. For $y^{\prime}+2 y=0$ an integrating factor is $e^{\int 2 d x}=e^{2 x}$ so that $\frac{d}{d x}\left[e^{2 x} y\right]=0$ and $y=c e^{-2 x}$ for $-\infty<x<\infty$. The transient term is $c e^{-2 x}$.
3. For $y^{\prime}+y=e^{3 x}$ an integrating factor is $e^{\int d x}=e^{x}$ so that $\frac{d}{d x}\left[e^{x} y\right]=e^{4 x}$ and $y=\frac{1}{4} e^{3 x}+c e^{-x}$ for $-\infty<x<\infty$. The transient term is $c e^{-x}$.
4. For $y^{\prime}+4 y=\frac{4}{3}$ an integrating factor is $e^{\int 4 d x}=e^{4 x}$ so that $\frac{d}{d x}\left[e^{4 x} y\right]=\frac{4}{3} e^{4 x}$ and $y=\frac{1}{3}+c e^{-4 x}$ for $-\infty<x<\infty$. The transient term is $c e^{-4 x}$.

Exercises 2.3 Lincar Equations

5. For $y^{\prime}+3 x^{2} y=x^{2}$ an integrating factor is $e^{\int 3 x^{2} d x}=e^{x^{3}}$ so that $\frac{d}{d x}\left[e^{x^{3}} y\right]=x^{2} e^{x^{3}}$ and $y=\frac{1}{3}+c^{4}$ - : for $-\infty<x<\infty$. The transient term is $c e^{-x^{3}}$.
6. For $y^{\prime}+2 x y=x^{3}$ an integrating factor is $e^{\int 2 x d x}=e^{x^{2}}$ so that $\frac{d}{d x}\left[e^{x^{2}} y\right]=x^{3} e^{x^{2}}$ and $:=$ $\frac{1}{2} x^{2}-\frac{1}{2}+c e^{-x^{2}}$ for $-\infty<x<\infty$. The transient term is $c e^{-x^{2}}$.
7. For $y^{\prime}+\frac{1}{x} y=\frac{1}{x^{2}}$ an integrating factor is $e^{\int(1 / x) d x}=x$ so that $\frac{d}{d x}[x y]=\frac{1}{x}$ and $y=\frac{1}{x} \ln x-\frac{1}{:}$ for $0<x<\infty$. The entire solution is transient.
8. For $y^{\prime}-2 y=x^{2}+5$ an integrating factor is $e^{-\int 2 d x}=e^{-2 x}$ so that $\frac{d}{d x}\left[e^{-2 x} y\right]=x^{2} e^{-2 x}+5 \epsilon^{--}=$ and $y=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{11}{1}+c e^{2 x}$ for $-\infty<x<\infty$. There is no transient term.
9. For $y^{\prime}-\frac{1}{x} y=x \sin x$ an integrating factor is $e^{-\int(1 / x) d x}=\frac{1}{x}$ so that $\frac{d}{d x}\left[\frac{1}{x} y\right]=\sin x$. $y=c x-x \cos x$ for $0<x<\infty$. There is no transient term.
10. For $y^{\prime}+\frac{2}{x} y=\frac{3}{x}$ an integrating factor is $e^{\int(2 / x) d x}=x^{2}$ so that $\frac{d}{d x}\left[x^{2} y\right]=3 x$ and $y=\frac{3}{2}+c^{-}$: for $0<x<\infty$. The transient term is $c x^{-2}$.
11. For $y^{\prime}+\frac{4}{x} y=x^{2}-1$ an integrating factor is $e . \int(4 / x) d x=x^{4}$ so that $\frac{d}{d x}\left[x^{4} y\right]=x^{6}-x^{4} \ldots$: $y=\frac{1}{7} x^{3}-\frac{1}{5} x+c x^{-4}$ for $0<x<\infty$. The transient term is $c x^{-4}$.
12. For $y^{\prime}-\frac{x}{(1+x)} y=x$ an integrating factor is $e^{-\int[x /(1+x)] d x}=(x+1) e^{-x}$ so that $\frac{d}{d x}\left[(x+1) e^{-x} y^{-}=\right.$ $x(x+1) e^{-x}$ and $y=-x-\frac{2 x+3}{x+1}+\frac{c e^{x}}{x+1}$ for $-1<x<\infty$. There is no transient term.
13. For $y^{\prime}+\left(1+\frac{2}{x}\right) y=\frac{e^{x}}{x^{2}}$ an integrating factor is $e^{\int[1+(2 / x)] d x}=x^{2} e^{x}$ so that $\frac{d}{d x}\left[x^{2} e^{x} y\right]=e^{2 x}$ a.: : $y=\frac{1}{2} \frac{e^{x}}{x^{2}}+\frac{c e^{-x}}{x^{2}}$ for $0<x<\infty$. The transicnt term is $\frac{c e^{-x}}{x^{2}}$.
14. For $y^{\prime}+\left(1+\frac{1}{x}\right) y=\frac{1}{x} e^{-x} \sin 2 x$ an integrating factor is $e^{\int[1+(1 / x)] d x}=x e^{x}$ so that $\frac{d}{d x}\left[x e^{x} y_{-}=\right.$ $\sin 2 x$ and $y=-\frac{1}{2 x} e^{-x} \cos 2 x+\frac{c e^{-x}}{x}$ for $0<x<\infty$. The entire solution is transient.
15. For $\frac{d x}{d y}-\frac{4}{y} x=4 y^{\bar{j}}$ an integrating factor is $e^{-\int(4 / y) d y}=e^{\ln y^{-4}}=y^{-4}$ so that $\frac{d}{d y}\left[y^{-4} x\right]=4 y$ a.: $x=2 y^{6}+c y^{4}$ for $0<y<\infty$. There is no transient term.

Exercises 2.3 Linear Equations

\therefore. For $\frac{d x}{d y}+\frac{2}{y} x=e^{y}$ an integrating factor is $e^{\int(2 / y) d y}=y^{2}$ so that $\frac{d}{d y}\left[y^{2} x\right]=y^{2} e^{y}$ and $x=e^{y}-\frac{2}{y} e^{y}+\frac{2}{y^{2}} e^{y}+\frac{c}{y^{2}}$ for $0<y<\infty$. The transicnt term is $\frac{c}{y^{2}}$.
$=$-. For $y^{\prime}+(\tan x) y=\sec x$ an integrating factor is $e^{\int \tan x d x}=\sec x$ so that $\frac{d}{d x}[(\sec x) y]=\sec ^{2} x$ and $J=\sin x+c \cos x$ for $-\pi / 2<x<\pi / 2$. There is no transient term.
\therefore. For $y^{\prime}+(\cot x) y=\sec ^{2} x \csc x$ an integrating factor is $e^{\int \cot x d x}=e^{\ln |\sin x|}=\sin x$ so that $\frac{d}{d x}[(\sin x) y]=\sec ^{2} x$ and $y=\sec x+c \csc x$ for $0<x<\pi / 2$. There is no transient term.
\therefore For $y^{\prime}+\frac{x+2}{x+1} y=\frac{2 x e^{-x}}{x+1}$ an integrating factor is $e^{\int[(x+2) /(x+1)] d x}=(x+1) e^{x}$, so $\frac{d}{d x}\left[(x+1) e^{x} y\right]=$ $2 x$ and $y=\frac{x^{2}}{x+1} e^{-x}+\frac{c}{x+1} e^{-x}$ for $-1<x<\infty$. The entire solution is transient.
\therefore. For $y^{\prime}+\frac{4}{x+2} y=\frac{5}{(x+2)^{2}}$ an integrating factor is $e^{\left.\int \frac{4}{4} /(x+2)\right] d x}=(x+2)^{4}$ so that $\frac{d}{d x}\left[(x+2)^{4} y\right]=$ $5 x+2)^{2}$ and $y=\frac{\overline{5}}{3}(x+2)^{-1}+c(x+2)^{-4}$ for $-2<x<\infty$. The entire solution is transient.
\therefore For $\frac{d r}{d \theta}+r \sec \theta=\cos \theta$ an integrating factor is $e^{\int \sec \theta d \theta}=e^{\ln |\sec x+\tan x|}=\sec \theta+\tan \theta$ so that $\frac{d}{d \theta}[(\sec \theta+\tan \theta) r]=1+\sin \theta$ and $(\sec \theta+\tan \theta) r=\theta-\cos \theta+c$ for $-\pi / 2<\theta<\pi / 2$.
\therefore. For $\frac{d P}{d t}+(2 t-1) P=4 t-2$ an integrating factor is $e^{\int(2 t-1) d t}=e^{t^{2}-t}$ so that $\frac{d}{d t}\left[e^{t^{2}-t} P\right]=$ $t t-2) e^{t^{2}-t}$ and $P=2+c e^{t-t^{2}}$ for $-\infty<t<\infty$. The transient term is $c e^{t-t^{2}}$.
\therefore-. For $y^{\prime}+\left(3+\frac{1}{x}\right) y=\frac{e^{-3 x}}{x}$ an integrating factor is $e^{\int[3+(1 / x) \mid d x}=x c^{3 x}$ so that $\frac{d}{d x}\left[x e^{3 x} y\right]=1$ and $y=e^{-3 x}+\frac{c e^{-3 x}}{x}$ for $0<x<\infty$. The entire solution is transient.
\therefore. For $y^{\prime}+\frac{2}{x^{2}-1} y=\frac{x+1}{x-1}$ an integrating factor is $e^{\int\left[2 /\left(x^{2}-1\right)\right] d x}=\frac{x-1}{x+1}$ so that $\frac{d}{d x}\left[\frac{x-1}{x+1} y\right]=1$ and $(x-1) y=x(x+1)+c(x+1)$ for $-1<x<1$.
\therefore For $y^{\prime}+\frac{1}{x} y=\frac{1}{x} e^{x}$ an integrating factor is $e^{\int(1 / x) d x}=x$ so that $\frac{d}{d x}[x y]=e^{x}$ and $y=\frac{1}{x} e^{x}+\frac{c}{x}$ zor $0<x<\infty$. If $y(1)=2$ then $c=2-e$ and $y=\frac{1}{x} e^{x}+\frac{2-e}{x}$.
\therefore For $\frac{d x}{d y}-\frac{1}{y} x=2 y$ an integrating factor is $e^{-\int(1 / y) d y}=\frac{1}{y}$ so that $\frac{d}{d y}\left[\frac{1}{y} x\right]=2$ and $x=2 y^{2}+c y$ -or $0<y<\infty$. If $y(1)=5$ then $c=-49 / 5$ and $x=2 y^{2}-\frac{49}{5} y$.

- $\overline{\text { For }} \frac{d i}{d t}+\frac{R}{L} i=\frac{E}{L}$ an intcgrating factor is $e^{\int(R / L) d t}=e^{R t / L}$ so that $\frac{d}{d t}\left[e^{R t / L} i\right]=\frac{E}{L} e^{R t / L}$ and

Exercises 2.3 Linear Equations

$i=\frac{E}{R}+c e^{-R t / L}$ for $-\infty<t<\infty$. If $i(0)=i_{0}$ then $c=i_{0}-E / R$ and $i=\frac{E}{R}+\left(i_{0}-\frac{E}{R}\right) e^{-R t t_{j} j}$
28. For $\frac{d T}{d t}-k T=-T_{m} k$ an integrating factor is $e^{\int(-k) d t}=e^{-k t}$ so that $\frac{d}{d t}\left[e^{-k t} T\right]=-T_{m} k e^{-k t}$ ar: \vdots $T=T_{m}+c e^{k t}$ for $-\infty<t<\infty$. If $T(0)=T_{0}$ then $c=T_{0}-T_{m}$ and $T=T_{m}+\left(T_{0}-T_{m}\right) e^{k t}$.
29. For $y^{\prime}+\frac{1}{x+1} y=\frac{\ln x}{x+1}$ an integrating factor is $c^{\int[1 /(x+1)!d x}=x+1$ so that $\frac{d}{d x}[(x+1) y]=$ $\ln x$ and $y=\frac{x}{x+1} \ln x-\frac{x}{x+1}+\frac{c}{x+1}$ for $0<x<\infty$. If $y(1)=10$ then $c=21$ anc $y=\frac{x}{x+1} \ln x-\frac{x}{x+1}+\frac{21}{x+1}$.
30. For $y^{\prime}+(\tan x) y=\cos ^{2} x$ an integrating factor is $e^{\int \tan x d x}=e^{\ln |\sec x|}=\sec x$ so that $\frac{d}{d x}[(\sec x) y]=$ $\cos x$ and $y=\sin x \cos x+c \cos x$ for $-\pi / 2<x<\pi / 2$. If $y(0)=-1$ then $c=-1$ and $y=$ $\sin x \cos x-\cos x$.
31. For $y^{\prime}+2 y=f(x)$ an integrating factor is $e^{2 x}$ so that

$$
y e^{2 x}= \begin{cases}\frac{1}{2} e^{2 x}+c_{1}, & 0 \leq x \leq 3 \\ c_{2}, & x>3\end{cases}
$$

If $y(0)=0$ then $c_{1}=-1 / 2$ and for continuity we must have
 $c_{2}=\frac{1}{2} e^{6}-\frac{1}{2}$ so that

$$
y= \begin{cases}\frac{1}{2}\left(1-e^{-2 x}\right), & 0 \leq x \leq 3 \\ \frac{1}{2}\left(e^{6}-1\right) e^{-2 x}, & x>3\end{cases}
$$

32. For $y^{\prime}+y=f(x)$ an integrating factor is e^{x} so that

$$
y e^{x}= \begin{cases}e^{x}+c_{1}, & 0 \leq x \leq 1 \\ -e^{x}+c_{2}, & x>1\end{cases}
$$

If $y(0)=1$ then $c_{1}=0$ and for continuity we must have $c_{2}=2 e$
 so that

$$
y= \begin{cases}1, & 0 \leq x \leq 1 \\ 2 e^{1-x}-1, & x>1\end{cases}
$$

33. For $y^{\prime}+2 x y=f(x)$ an integrating factor is $e^{x^{2}}$ so that

$$
y e^{x^{2}}= \begin{cases}\frac{1}{2} e^{x^{2}}+c_{1}, & 0 \leq x \leq 1 \\ c_{2}, & x>1\end{cases}
$$

If $y(0)=2$ then $c_{1}=3 / 2$ and for continuity we must have $c_{2}=\frac{1}{2} e+\frac{3}{2}$ so that

$$
y= \begin{cases}\frac{1}{2}+\frac{3}{2} e^{-x^{2}}, & 0 \leq x \leq 1 \\ \left(\frac{1}{2} e+\frac{3}{2}\right) e^{-x^{2}}: & x>1\end{cases}
$$

\therefore For

$$
y^{\prime}+\frac{2 x}{1+x^{2}} y= \begin{cases}\frac{x}{1+x^{2}}, & 0 \leq x \leq 1 \\ \frac{-x}{1+x^{2}}, & x>1\end{cases}
$$

En integrating factor is $1+x^{2}$ so that

$$
\left(1+x^{2}\right) y= \begin{cases}\frac{1}{2} x^{2}+c_{1}, & 0 \leq x \leq 1 \\ -\frac{1}{2} x^{2}+c_{2}, & x>1\end{cases}
$$

$\because y(0)=0$ then $c_{1}=0$ and for continuity we must have $c_{2}=1$ so that

$$
y= \begin{cases}\frac{1}{2}-\frac{1}{2\left(1+x^{2}\right)}, & 0 \leq x \leq 1 \\ \frac{3}{2\left(1+x^{2}\right)}-\frac{1}{2}, & x>1\end{cases}
$$

\therefore : Te first solve the initial-value problem $y^{\prime}+2 y=4 x, y(0)=3$ on the interval $\therefore 1]$. The integrating factor is $e^{\int 2 d x}=c^{2 x}$: so

$$
\begin{aligned}
\frac{d}{d x}\left[e^{2 x} y\right] & =4 x e^{2 x} \\
e^{2 x} y & =\int 4 x e^{2 x} d x=2 x e^{2 x}-e^{2 x}+c_{1} \\
y & =2 x-1+c_{1} e^{-2 x}
\end{aligned}
$$

\because sing the initial condition, we find $y(0)=-1+c_{1}=3$, so $c_{1}=4$ and
 $;=2 x-1+4 e^{-2 x}, 0 \leq x \leq 1$. Now, since $y(1)=2-1+4 e^{-2}=1+4 e^{-2}$, re solve the initial-value problem $y^{\prime}-(2 / x) y=4 x, y(1)=1+4 e^{-2}$ on the aterval $(1, \infty)$. The integrating factor is $e^{\int}(-2 / x) d x=e^{-2 \ln x}=x^{-2}$; so

$$
\begin{aligned}
\frac{d}{d x}\left[x^{-2} y\right] & =4 x x^{-2}=\frac{4}{x} \\
x^{-2} y & =\int \frac{4}{x} d x=4 \ln x+c_{2} \\
y & =4 x^{2} \ln x+c_{2} x^{2}
\end{aligned}
$$

TVe use $\ln x$ instead of $\ln |x|$ because $x>1$.) Lising the initial condition we find $y(1)=c_{2}=1+4 e^{-2}$, $\therefore y=4 x^{2} \ln x+\left(1+4 e^{-2}\right) x^{2}, x>1$. Thus, the solution of the original initial-value problem is

Exercises 2.3 Linear Equations

$$
y= \begin{cases}2 x-1+4 e^{-2 x}, & 0 \leq x \leq 1 \\ 4 x^{2} \ln x+\left(1+4 e^{-2}\right) x^{2} ; & x>1\end{cases}
$$

See Problem 42 in this section.
36. For $y^{\prime}+e^{x} y=1$ an integrating factor is $e^{e^{x}}$. Thus

$$
\frac{d}{d x}\left[c^{e^{x}} y\right]=e^{e^{x}} \quad \text { and } \quad e^{e^{x}} y=\int_{0}^{x} e^{e^{t}} d t+c
$$

From $y(0)=1$ we get $c=e$, so $y=e^{-e^{x}} \int_{0}^{x} e^{e^{l}} d t+e^{1-e^{x}}$.
When $y^{\prime}+e^{x} y=0$ we can separate variables and integrate:

$$
\frac{d y}{y}=-e^{x} d x \quad \text { and } \quad \ln |y|=-e^{x}+c .
$$

Thus $y=c_{1} e^{-e^{x}}$. From $y(0)=1$ we get $c_{1}=e$, so $y=e^{1-e^{x}}$.
When $y^{\prime}+e^{x} y=e^{x}$ we can see by inspection that $y=1$ is a solution.
37. An integrating factor for $y^{\prime}-2 x y=1$ is $e^{-x^{2}}$. Thus

$$
\begin{aligned}
\frac{d}{d x}\left[e^{-x^{2}} y\right] & =e^{-x^{2}} \\
e^{-x^{2}} y & =\int_{0}^{x} e^{-t^{2}} d t=\frac{\sqrt{\pi}}{2} \operatorname{erf}(x)+c \\
y & =\frac{\sqrt{\pi}}{2} e^{x^{2}} \operatorname{crf}(x)+c e^{x^{2}}
\end{aligned}
$$

From $y(1)=(\sqrt{\pi} / 2) e \operatorname{erf}(1)+c e=1$ we get $c=e^{-1}-\frac{\sqrt{\pi}}{2} \operatorname{erf}(1)$. The solution of the initial-va:: problem is

$$
\begin{aligned}
y & =\frac{\sqrt{\pi}}{2} e^{x^{2}} \operatorname{erf}(x)+\left(e^{-1}-\frac{\sqrt{\pi}}{2} \operatorname{erf}(1)\right) e^{x^{2}} \\
& =e^{x^{2}-1}+\frac{\sqrt{\pi}}{2} e^{x^{2}}(\operatorname{erf}(x)-\operatorname{erf}(1))
\end{aligned}
$$

38. We want 4 to be a critical point, so we use $y^{\prime}=4-y$.
39. (a) All solutions of the form $y=x^{5} e^{x}-x^{4} e^{x}+c x^{4}$ satisfy the initial condition. In this cas since $4 / x$ is discontinuous at $x=0$, the hypotheses of Theorem 1.2.1 are not satisfied and t initial-value problem does not have a unique solution.
(b) The differential equation has no solution satisfying $y(0)=y_{0}, y_{0}>0$.
(c) In this case, since $x_{0}>0$, Theorem 1.2 .1 applies and the initial-value problem has a unis: solution given by $y=x^{5} e^{x}-x^{4} e^{x}+c x^{4}$ where $c=y_{0} / x_{0}^{4}-x_{0} e^{x_{0}}+e^{x_{0}}$.
40. On the interval $(-3,3)$ the integrating factor is

$$
e^{\int x d x /\left(x^{2}-9\right)}=e^{-\int x d x /\left(9-x^{2}\right)}=e^{\frac{1}{2} \ln \left(9-x^{2}\right)}=\sqrt{9-x^{2}}
$$

and so

$$
\frac{d}{d x}\left[\sqrt{9-x^{2}} y\right]=0 \quad \text { and } \quad y=\frac{c}{\sqrt{9-x^{2}}}
$$

\therefore. We want the general solution to be $y=3 x-5+c e^{-x}$. (Rather than e^{-x}, any function that approaches 0 as $x \rightarrow \infty$ could be used.) Differentiating we get

$$
y^{\prime}=3-c e^{-x}=3-(y-3 x+5)=-y+3 x-2
$$

so the differential equation $y^{\prime}+y=3 x-2$ has solutions asymptotic to the line $y=3 x-5$.
$\therefore 2$. The left-hand derivative of the function at $x=1$ is $1 / e$ and the right-hand derivative at $x=1$ is $1-1 / e$. Thus, y is not differentiable at $x=1$.
53. (a) Differentiating $y_{c}=c / x^{3}$ we get

$$
y_{c}^{\prime}=-\frac{3 c}{x^{4}}=-\frac{3}{x} \frac{c}{x^{3}}=-\frac{3}{x} y_{c}
$$

so a differential equation with general solution $y_{c}=c / x^{3}$ is $x y^{\prime}+3 y=0$. Now

$$
x y_{p}^{\prime}+3 y_{p}=x\left(3 x^{2}\right)+3\left(x^{3}\right)=6 x^{3}
$$

so a differential equation with general solution $y=c / x^{3}+x^{3}$ is $x y^{\prime}+3 y=6 x^{3}$. This will be a general solution on $(0, \infty)$.
(b) Sincc $y(1)=1^{3}-1 / 1^{3}=0$, an initial condition is $y(1)=0$. Since $y(1)=1^{3}+2 / 1^{3}=3$, an initial condition is $y(1)=3$. In each case the interval of definition is $(0, \infty)$. The initial-value problem $x y^{\prime}+3 y=6 x^{3}, y(0)=0$ has solution $y=x^{3}$ for $-\infty<x<\infty$. In the figure the lower curve is the graph of $y(x)=x^{3}-1 / x^{3}$; while the upper curve is the graph of $y=x^{3}-2 / x^{3}$.

(c) The first two initial-value problems in part (b) are not uniquc. For example, setting $y(2)=2^{3}-1 / 2^{3}=63 / 8$, we see that $y(2)=63 / 8$ is also an initial condition leading to the solution $y=x^{3}-1 / x^{3}$.
\therefore. Since $e^{\int P(x) d x+c}=e^{c} e^{\int P(x) d x}=c_{1} e^{\int P(x) d x}$, we would have

$$
c_{1} e^{\int P(x) d x} y=c_{2}+\int c_{1} e^{\int P(x) d x} f(x) d x \quad \text { and } \quad e^{\int P(x) d x} y=c_{3}+\int e^{\int P(x) d x} f(x) d x
$$

which is the same as (6) in the text.
$\therefore 5$. We see by inspection that $y=0$ is a solution.
\therefore. The solution of the first equation is $x=c_{1} e^{-\lambda_{1} t}$. From $x(0)=x_{0}$ we obtain $c_{1}=x_{0}$ and so $x=x_{0} e^{-\lambda_{1} t}$. The second equation then becomes

$$
\frac{d y}{d t}=x_{0} \lambda_{1} e^{-\lambda_{1} t}-\lambda_{2} y \quad \text { or } \quad \frac{d y}{d t}+\lambda_{2} y=x_{0} \lambda_{1} e^{-\lambda_{1} t}
$$

Exercises 2.3 Linear Equations

which is linear. An integrating factor is $e^{\lambda_{2} t}$. Thus

$$
\begin{aligned}
\frac{d}{d t}\left[e^{\lambda_{2} t} y\right] & =x_{0} \lambda_{1} e^{-\lambda_{1} t} e^{\lambda_{2} t}=x_{0} \lambda_{1} e^{\left(\lambda_{2}-\lambda_{1}\right) t} \\
e^{\lambda_{2} t} y & =\frac{x_{0} \lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \\
y & =\frac{x_{0} \lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}+c_{2} e^{-\lambda_{2} t}
\end{aligned}
$$

From $y(0)=y_{0}$ we obtain $c_{2}=\left(y_{0} \lambda_{2}-y_{0} \lambda_{1}-x_{0} \lambda_{1}\right) /\left(\lambda_{2}-\lambda_{1}\right)$. The solution is

$$
y=\frac{x_{0} \lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}+\frac{y_{0} \lambda_{2}-y_{0} \lambda_{1}-x_{0} \lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{2} t}
$$

47. Writing the differential equation as $\frac{d E}{d t}+\frac{1}{R C} E=0$ we see that an integrating factor is $e^{t / R C}$ Then

$$
\begin{aligned}
\frac{d}{d t}\left[e^{t / R C} E\right] & =0 \\
e^{t / R C} E & =c \\
E & =c e^{-t / R C}
\end{aligned}
$$

From $E(4)=c e^{-4 / R C}=E_{0}$ wo find $c=E_{0} e^{4 / R C}$. Thus, the solution of the initial-value problem : $:$

$$
E=E_{0} e^{4 / R C} e^{-t / R C}=E_{0} e^{-(t-4) / R C}
$$

48. (a) An integrating factor for $y^{\prime}-2 x y=-1$ is $e^{-x^{2}}$. Thus

$$
\begin{aligned}
\frac{d}{d x}\left[e^{-x^{2}} y\right] & =-e^{-x^{2}} \\
e^{-x^{2}} y & =-\int_{0}^{x} e^{-t^{2}} d t=-\frac{\sqrt{\pi}}{2} \operatorname{erf}(x)+c
\end{aligned}
$$

From $y(0)=\sqrt{\pi} / 2$, and noting that $\operatorname{crf}(0)=0$, we get $c=\sqrt{\pi} / 2$. Thus

$$
y=e^{x^{2}}\left(-\frac{\sqrt{\pi}}{2} \operatorname{crf}(x)+\frac{\sqrt{\pi}}{2}\right)=\frac{\sqrt{\pi}}{2} e^{x^{2}}(1-\operatorname{erf}(x))=\frac{\sqrt{\pi}}{2} e^{x^{2}} \operatorname{erfc}(x)
$$

(b) Using a CAS we find $y(2) \approx 0.226339$.

49. (a) An intcgrating factor for

$$
y^{\prime}+\frac{2}{x} y=\frac{10 \sin x}{x^{3}}
$$

is x^{2}. Thus

$$
\begin{aligned}
\frac{d}{d x}\left[x^{2} y\right] & =10 \frac{\sin x}{x} \\
x^{2} y & =10 \int_{0}^{x} \frac{\sin t}{t} d t+c \\
y & =10 x^{-2} \operatorname{Si}(x)+c x^{-2}
\end{aligned}
$$

From $y(1)=0$ we get $c=-10 \operatorname{Si}(1)$. Thus

$$
y=10 x^{-2} \operatorname{Si}(x)-10 x^{-2} \operatorname{Si}(1)=10 x^{-2}(\operatorname{Si}(x)-\operatorname{Si}(1))
$$

(b)

(c) From the graph in part (b) we see that the absolute maximum occurs around $x=1.7$. Using the root-finding capability of a CAS and solving $y^{\prime}(x)=0$ for x we sec that the absolute maximum is ($1.688,1.742$).
$\because \therefore$ (a) The integrating factor for $y^{\prime}-\left(\sin x^{2}\right) y=0$ is $e^{-\int_{0}^{x} \sin \iota^{2} d t}$. Then

$$
\begin{aligned}
\frac{d}{d x}\left[e^{-\int_{0}^{x} \sin t^{2} d t} y\right] & =0 \\
e^{-\int_{0}^{x} \sin t^{2} d t} y & =c_{1} \\
y & =c_{1} e^{\int_{0}^{x} \sin t^{2} d t}
\end{aligned}
$$

Letting $t=\sqrt{\pi / 2} u$ we have $d t=\sqrt{\pi / 2} d u$ and

$$
\int_{0}^{x} \sin t^{2} d t=\sqrt{\frac{\pi}{2}} \int_{0}^{\sqrt{2 / \pi} x} \sin \left(\frac{\pi}{2} u^{2}\right) d u=\sqrt{\frac{\pi}{2}} S\left(\sqrt{\frac{2}{\pi}} x\right)
$$

so $y=c_{1} e^{\sqrt{\pi / 2}} S(\sqrt{2 / \pi} x)$. Using $S(0)=0$ and $y(0)=c_{1}=5$ we have $y=5 e^{\sqrt{\pi / 2}} S(\sqrt{2 / \pi} x)$.

Exercises 2.3 Linear Equations
(b)

(c) From the graph we see that as $x \rightarrow \infty, y(x)$ oscillates with decreasing amplitudes approaching 9.35672. Since $\lim _{x \rightarrow \infty} 5 S(x)=\frac{1}{2}, \lim _{x \rightarrow \infty} y(x)=5 e^{\sqrt{\pi / 8}} \approx 9.357$, and since $\lim _{x \rightarrow-\infty} S(x)=$ $-\frac{1}{2}, \lim _{x \rightarrow-\infty} y(x)=5 e^{-\sqrt{\pi / 8}} \approx 2.672$.
(d) From the graph in part (b) we see that the absolute maximum occurs around $x=1.7$ and the absolute minimum occurs around $x=-1.8$. Using the root-finding capability of a CAS anc: solving $y^{\prime}(x)=0$ for x, we see that the absolute maximum is $(1.772,12.235)$ and the absolute minimum is $(-1.772,2.044)$.

Exercises 2.4

Exact Equations

1. Let $M=2 x-1$ and $N=3 y+7$ so that $M_{y}=0=N_{x}$. From $f_{x}=2 x-1$ we obtain $f=x^{2}-x+h(y$ $h^{\prime}(y)=3 y+7$, and $h(y)=\frac{3}{2} y^{2}+7 y$. A solution is $x^{2}-x+\frac{3}{2} y^{2}+7 y=c$.
2. Let $M=2 x+y$ and $N=-x-6 y$. Then $M_{y}=1$ and $N_{x}=-1$, so the equation is not exact.
3. Let $M=5 x+4 y$ and $N=4 x-8 y^{3}$ so that $M_{y}=4=N_{x}$. From $f_{x}=5 x+4 y$ we obta: $:$. $f=\frac{5}{2} x^{2}+4 x y+h(y), h^{\prime}(y)=-8 y^{3}$, and $h(y)=-2 y^{4}$. A solution is $\frac{5}{2} x^{2}+4 x y-2 y^{4}=c$.
4. Let $M=\sin y-y \sin x$ and $N=\cos x+x \cos y-y$ so that $M_{y}=\cos y-\sin x=N_{x}$. Frow. $f_{x}=\sin y-y \sin x$ we obtain $f=x \sin y+y \cos x+h(y), h^{\prime}(y)=-y$, and $h(y)=-\frac{1}{2} y^{2}$. A solutic: is $x \sin y+y \cos x-\frac{1}{2} y^{2}=c$.
5. Let $M=2 y^{2} x-3$ and $N=2 y x^{2}+4$ so that $M_{y}=4 x y=N_{x}$. From $f_{r}=2 y^{2} x-3$ we obta:: $f=x^{2} y^{2}-3 x+h(y), h^{\prime}(y)=4$, and $h(y)=4 y$. A solution is $x^{2} y^{2}-3 x+4 y=c$.
6. Let $M=4 x^{3}-3 y \sin 3 x-y / x^{2}$ and $N=2 y-1 / x+\cos 3 x$ so that $M_{y}=-3 \sin 3 x-1 / x^{2}$ ar: $N_{x}=1 / x^{2}-3 \sin 3 x$. The equation is not exact.
7. Let $M=x^{2}-y^{2}$ and $N=x^{2}-2 x y$ so that $M_{y}=-2 y$ and $N_{x}=2 x-2 y$. The equation is n exact.
8. Let $M=1+\ln x+y / x$ and $N=-1+\ln x$ so that $M_{y}=1 / x=N_{x}$. From $f_{y}=-1+\ln x$ we obtain $\therefore=-y+y \ln x+h(y), h^{\prime}(x)=1+\ln x$, and $h(y)=x \ln x$. A solution is $-y+y \ln x+x \ln x=c$.
9. Let $M=y^{3}-y^{2} \sin x-x$ and $N=3 x y^{2}+2 y \cos x$ so that $M_{y}=3 y^{2}-2 y \sin x=N_{x}$. From $\therefore=y^{3}-y^{2} \sin x-x$ we obtain $f=x y^{3}+y^{2} \cos x-\frac{1}{2} x^{2}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $x y^{3}+y^{2} \cos x-\frac{1}{2} x^{2}=c$.
\therefore Let $M=x^{3}+y^{3}$ and $N=3 x y^{2}$ so that $M_{y}=3 y^{2}=N_{x}$. From $f_{x}=x^{3}+y^{3}$ we obtain $y=\frac{1}{4} x^{4}+x y^{3}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $\frac{1}{4} x^{4}+x y^{3}=c$.
\therefore Let $M=y \ln y-e^{-x y}$ and $N=1 / y+x \ln y$ so that $M_{y}=1+\ln y+x e^{-x y}$ and $N_{x}=\ln y$. The squation is not exact.
\therefore - $e \mathrm{ct} M=3 x^{2} y+c^{y}$ and $N=x^{3}+x e^{y}-2 y$ so that $M_{y}=3 x^{2}+e^{y}=N_{x}$. From $f_{x}=3 x^{2} y+e^{y}$ we btain $f=x^{3} y+x e^{y}+h(y), h^{\prime}(y)=-2 y$, and $h(y)=-y^{2}$. A solution is $x^{3} y+x e^{y}-y^{2}=c$.
10. Let $M=y-6 x^{2}-2 x e^{x}$ and $N=x$ so that $M_{y}=1=N_{x}$. From $f_{x}=y-6 x^{2}-2 x e^{x}$ we obtain $\therefore=x y-2 x^{3}-2 x e^{x}+2 e^{x}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $x y-2 x^{3}-2 x e^{x}+2 e^{x}=c$.
\therefore Let $M=1-3 / x+y$ and $N=1-3 / y \div x$ so that $M_{y}=1=N_{x}$. From $f_{x}=1-3 / x+y$ ae obtain $f=x-3 \ln |x|+x y+h(y), h^{\prime}(y)=1-\frac{3}{y}$, and $h(y)=y-3 \ln |y|$. A solution is $x+y+x y-3 \ln |x y|=c$.
\therefore Let $M=x^{2} y^{3}-1 /\left(1+9 x^{2}\right)$ and $N=x^{3} y^{2} \quad$ so that $\quad M_{y}=3 x^{2} y^{2}=N_{x}$. From ${ }^{\therefore}=x^{2} y^{3}-1 /\left(1+9 x^{2}\right)$ we obtain $f=\frac{1}{3} x^{3} y^{3}-\frac{1}{3} \arctan (3 x)+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $x^{3} y^{3}-\arctan (3 x)=c$.
\therefore Let $M=-2 y$ and $N=5 y-2 x$ so that $M_{y}=-2=N_{x}$. From $f_{x}=-2 y$ we obtain $f=-2 x y+h(y)$, $b^{\prime}(y)=5 y$, and $h(y)=\frac{5}{2} y^{2}$. A solution is $-2 x y+\frac{5}{2} y^{2}=c$.
\therefore - Let $M=\tan x-\sin x \sin y$ and $N=\cos x \cos y$ so that $M_{y}=-\sin x \cos y=N_{x}$. From $f_{x}=\tan x-\sin x \sin y$ we obtain $f=\ln |\sec x|+\cos x \sin y+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $\ln |\sec x|+\cos x \sin y=c$.
\therefore Let $M=2 y \sin x \cos x-y+2 y^{2} e^{x y^{2}}$ and $N=-x+\sin ^{2} x+4 x y e^{x y^{2}}$ so that

$$
M_{y}=2 \sin x \cos x-1+4 x y^{3} e^{x y^{2}}+4 y e^{x y^{2}}=N_{x}
$$

From $f_{x}=2 y \sin x \cos x-y+2 y^{2} e^{x y^{2}}$ we obtain $f=y \sin ^{2} x-x y+2 e^{x y^{2}}+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution is $y \sin ^{2} x-x y+2 e^{x y^{2}}=c$.
\therefore Let $M=4 t^{3} y-15 t^{2}-y$ and $N=t^{4}+3 y^{2}-t$ so that $M_{y}=4 t^{3}-1=N_{t}$. From $f_{t}=4 t^{3} y-15 t^{2}-y$ we obtain $f=t^{4} y-5 t^{3}-t y+h(y), h^{\prime}(y)=3 y^{2}$, and $h(y)=y^{3}$. A solution is $t^{4} y-5 t^{3}-t y+y^{3}=c$.
\therefore Let $M=1 / t+1 / t^{2}-y /\left(l^{2}+y^{2}\right)$ and $N=y e^{y}+t /\left(t^{2}+y^{2}\right)$ so that $M_{y}=\left(y^{2}-t^{2}\right) /\left(t^{2}+y^{2}\right)^{2}=$人 V. From $f_{l}=1 / t+1 / t^{2}-y /\left(t^{2}+y^{2}\right)$ we obtain $f=\ln |t|-\frac{1}{t}-\arctan \left(\frac{t}{y}\right)+h(y), h^{\prime}(y)=y e^{y}$,

Exercises 2.4 Exact Equations

and $h(y)=y e^{y}-e^{y}$. A solution is

$$
\ln |t|-\frac{1}{t}-\arctan \left(\frac{t}{y}\right)+y e^{y}-e^{y}=c .
$$

21. Let, $M=x^{2}+2 x y+y^{2}$ and $N=2 x y+x^{2}-1$ so that $M_{y}=2(x+y)=N_{x}$. From $f_{x}=x^{2}+2 x y+y^{2} w$: obtain $f=\frac{1}{3} x^{3}+x^{2} y+x y^{2}+h(y), h^{\prime}(y)=-1$, and $h(y)=-y$. The solution is $\frac{1}{3} x^{3}+x^{2} y+x y^{2}-y=c$ If $y(1)=1$ then $c=4 / 3$ and a solution of the initial-value problem is $\frac{1}{3} x^{3}+x^{2} y+x y^{2}-y=\frac{4}{3}$.
22. Let $M=e^{x}+y$ and $N=2+x+y \epsilon^{y}$ so that $M_{y}=1=N_{x}$. From $f_{x}=e^{x}+y$ we obtai. $f=e^{x}+x y+h(y), h^{\prime}(y)=2+y e^{y}$, and $h(y)=2 y+y e^{y}-y$. The solution i$e^{x}+x y+2 y+y e^{y}-e^{y}=c$. If $y(0)=1$ then $c=3$ and a solution of the initial-value prol: lom is $e^{x}+x y+2 y+y e^{y}-e^{y}=3$.
23. Let $M=4 y+2 t-5$ and $N=6 y+4 t-1$ so that $M_{y}=4=N_{t}$. From $f_{t}=4 y+2 t-5$ we obtai.. $f=4 t y+t^{2}-5 t+h(y), h^{\prime}(y)=6 y-1$, and $h(y)=3 y^{2}-y$. The solution is $4 t y+t^{2}-5 t+3 y^{2}-y=i$ If $y(-1)=2$ then $c=8$ and a solution of the initial-value problem is $4 t y+t^{2}-5 t+3 y^{2}-y=8$.
24. Let $M=t / 2 y^{4}$ and $N=\left(3 y^{2}-t^{2}\right) / y^{5}$ so that $M_{y}=-2 t / y^{5}=N_{t}$. From $f_{t}=t / 2 y^{4}$ we obtai:: $f=\frac{t^{2}}{4 y^{4}}+h(y), h^{\prime}(y)=\frac{3}{y^{3}}$, and $h(y)=-\frac{3}{2 y^{2}}$. The solution is $\frac{t^{2}}{4 y^{4}}-\frac{3}{2 y^{2}}=c$. If $y(1)=1$ the:. $c=-5 / 4$ and a solution of the initial-value problem is $\frac{t^{2}}{4 y^{4}}-\frac{3}{2 y^{2}}=-\frac{5}{4}$.
25. Let $M=y^{2} \cos x-3 x^{2} y-2 x$ and $N=2 y \sin x-x^{3}+\ln y$ so that $M_{y}=2 y \cos x-3 x^{2}=N_{x}$. Fror. $f_{x}=y^{2} \cos x-3 x^{2} y-2 x$ we obtain $f=y^{2} \sin x-x^{3} y-x^{2}+h(y), h^{\prime}(y)=\ln y$, and $h(y)=y \ln y-!$ The solution is $y^{2} \sin x-x^{3} y-x^{2}+y \ln y-y=c$. If $y(0)=e$ then $c=0$ and a solution of tl -initial-value problem is $y^{2} \sin x-x^{3} y-x^{2}+y \ln y-y=0$.
26. Let $M=y^{2}+y \sin x$ and $N=2 x y-\cos x-1 /\left(1+y^{2}\right)$ so that $M_{y}=2 y+\sin x=N_{x}$. Froi. $f_{x}=y^{2}+y \sin x$ we obtain $f=x y^{2}-y \cos x+h(y), h^{\prime}(y)=\frac{-1}{1+y^{2}}$, and $h(y)=-\tan ^{-1} y . \mathrm{TL}$. solution is $x y^{2}-y \cos x-\tan ^{-1} y=c$. If $y(0)=1$ then $c=-1-\pi / 4$ and a solution of thi-initial-value problem is $x y^{2}-y \cos x-\tan ^{-1} y=-1-\frac{\pi}{4}$.
27. Equating $M_{y}=3 y^{2}+4 k x y^{3}$ and $N_{x}=3 y^{2}+40 x y^{3}$ we obtain $k=10$.
28. Equating $M_{y}=18 x y^{2}-\sin y$ and $N_{x}=4 k x y^{2}-\sin y$ we obtain $k=9 / 2$.
29. Let $M=-x^{2} y^{2} \sin x+2 x y^{2} \cos x$ and $N=2 x^{2} y \cos x$ so that $M_{y}=-2 x^{2} y \sin x+4 x y \cos x=N$. From $f_{y}=2 x^{2} y \cos x$ we obtain $f=x^{2} y^{2} \cos x+h(y), h^{\prime}(y)=0$, and $h(y)=0$. A solution the differential equation is $x^{2} y^{2} \cos x=c$.
30. Let $M=\left(x^{2}+2 x y-y^{2}\right) /\left(x^{2}+2 x y+y^{2}\right)$ and $N=\left(y^{2}+2 x y-x^{2}\right) /\left(y^{2}+2 x y+x^{2}\right)$ so the: $M_{y}=-4 x y /(x+y)^{3}=N_{x}$. From $\quad f_{x}=\left(x^{2}+2 x y+y^{2}-2 y^{2}\right) /(x+y)^{2} \quad$ we obtain

Exercises 2.4 ミッ．：ミ．．．．－：．．．．

 $x^{2}+y^{2}=c(x+y)$.
31．We note that $\left(M_{y}-N_{x}\right) / N=1 / x$ ，so an integrating factor is $e^{\int d x / x}=x$ ．Let $M=2 \ldots$ ：： and $N=2 x^{2} y$ so that $M_{y}=4 x y=N_{x}$ ．From $f_{x}=2 x y^{2}+3 x^{2}$ we obtain $f=x^{2} y^{2}-x^{2}-3$ $h^{\prime}(y)=0$ ，and $h(y)=0$ ．A solution of the differential equation is $x^{2} y^{2}+x^{3}=c$ ．
32．We note that $\left(M_{y}-N_{x}\right) / N=1$ ，so an integrating factor is $e^{\int d x}=e^{x}$ ．Let $M=x y \epsilon^{x}-y^{2}-\quad$ ： and $N=x e^{x}+2 y e^{x}$ so that $M_{y}=x e^{x}+2 y e^{x}+e^{x}=N_{x}$ ．From $f_{y}=x e^{x}+2 y e^{x}$ we $: \therefore$ ． $f=x y e^{x}+y^{2} e^{x}+h(x), h^{\prime}(y)=0$ ，and $h(y)=0$ ．A solution of the differential equan：：： $x y e^{x}+y^{2} e^{x}=c$ ．
33．We note that $\left(N_{x}-M_{y}\right) / M=2 / y$ ，so an integrating factor is $e^{\int 2 d y / y}=y^{2}$ ．Let $M=6 x^{2}$ ： $N=4 y^{3}+9 x^{2} y^{2}$ so that $M_{y}=18 x y^{2}=N_{x}$ ．From $f_{x}=6 x y^{3}$ we obtain $f=3 x^{2} y^{3}-$ ： $h^{\prime}(y)=4 y^{3}$ ：and $h(y)=y^{4}$ ．A solution of the differential equation is $3 x^{2} y^{3}+y^{4}=c$ ．
34．We note that $\left(M_{y}-N_{x}\right) / N=-\cot x$ ，so an integrating factor is $e^{-\int \cot x d x}=\csc x$ ． $M=\cos x \csc x=\cot x$ and $N=(1+2 / y) \sin x \csc x=1+2 / y$ ，so that $M_{y}=0=N_{x}$ ．F－a．．． $f_{x}=\cot x$ we obtain $f=\ln (\sin x)+h(y), h^{\prime}(y)=1+2 / y$ ，and $h(y)=y+\ln y^{2}$ ．A solution $u^{2} \ldots$ differential cquation is $\ln (\sin x)+y+\ln y^{2}=c$ ．
35．We note that $\left(M_{y}-N_{x}\right) / N=3$ ，so an integrating factor is $e^{\int 3 d x}=e^{3 x}$ ．Let

$$
M=\left(10-6 y+e^{-3 x}\right) e^{3 x}=10 e^{3 x}-6 y e^{3 x}+1
$$

and

$$
N=-2 e^{3 x}
$$

so that $M_{y}=-6 e^{3 x}=N_{x}$ ．From $f_{x}=10 e^{3 x}-6 y e^{3 x}+1$ we obtain $f=\frac{10}{3} \epsilon^{3 x}-2 y e^{3 x}+x+h$ ． $h^{\prime}(y)=0$ ，and $h(y)=0$ ．A solution of the differential equation is $\frac{10}{3} e^{3 x}-2 y e^{3 x}+x=c$ ．
36．We note that $\left(N_{x}-M_{y}\right) / M=-3 / y$ ，so an integrating factor is $e^{-3 \int d y / y}=1 / y^{3}$ ．Let

$$
M=\left(y^{2}+x y^{3}\right) / y^{3}=1 / y+x
$$

and

$$
N=\left(5 y^{2}-x y+y^{3} \sin y\right) / y^{3}=5 / y-x / y^{2}+\sin y
$$

so that $M_{y}=-1 / y^{2}=N_{x}$ ．From $f_{x}=1 / y+x$ we obtain $f=x / y+\frac{1}{2} x^{2}+h(y), h^{\prime}(y)=5 / y+\sin y$ ． and $h(y)=5 \ln |y|-\cos y$ ．A solution of the differential equation is $x / y+\frac{1}{2} x^{2}+5 \ln |y|-\cos y=c$ ．
37．We note that $\left(M_{y}-N_{x}\right) / N=2 x /\left(4+x^{2}\right)$ ，so an integrating factor is $e^{-2 \int x d x /\left(1+x^{2}\right)}=1 /\left(4+x^{2}\right)$ ． Let $M=x /\left(4+x^{2}\right)$ and $N=\left(x^{2} y+4 y\right) /\left(4+x^{2}\right)=y$ ，so that $M_{y}=0=N_{x}$ ．From $f_{x}=x\left(4+x^{2}\right.$ ； we obtain $f=\frac{1}{2} \ln \left(4+x^{2}\right)+h(y), h^{\prime}(y)=y$ ，and $h(y)=\frac{1}{2} y^{2}$ ．A solution of the differential equation is $\frac{1}{2} \ln \left(4+x^{2}\right)+\frac{1}{2} y^{2}=c$ ．

Exercises 2.4 Exact Equations

38. We note that $\left(M_{y}-N_{x}\right) / N=-3 /(1+x)$, so an integrating factor is $e^{-3 \int d x /(1+x)}=1 /(1+x)^{3}$. L-: $M=\left(x^{2}+y^{2}-5\right) /(1+x)^{3}$ and $N=-(y+x y) /(1+x)^{3}=-y /(1+x)^{2}$, so that $M_{y}=2 y /(1+x)^{3}=\lambda^{-}$ From $f_{y}=-y /(1+x)^{2}$ we obtain $f=-\frac{1}{2} y^{2} /(1+x)^{2}+h(x), h^{\prime}(x)=\left(x^{2}-5\right) /(1+x)^{3}$, ar. $h(x)=2 /(1+x)^{2}+2 /(1+x)+\ln |1 \div x|$. A solution of the differential equation is

$$
-\frac{y^{2}}{2(1+x)^{2}}+\frac{2}{(1+x)^{2}}+\frac{2}{(1+x)}+\ln |1+x|=c
$$

39. (a) Implicitly differentiating $x^{3}+2 x^{2} y+y^{2}=c$ and solving for $d y / d x$ we obtain

$$
3 x^{2}+2 x^{2} \frac{d y}{d x}+4 x y+2 y \frac{d y}{d x}=0 \quad \text { and } \quad \frac{d y}{d x}=-\frac{3 x^{2}+4 x y}{2 x^{2}+2 y}
$$

By writing the last equation in differential form we get $\left(4 x y+3 x^{2}\right) d x+\left(2 y+2 x^{2}\right) d y=0$.
(b) Setting $x=0$ and $y=-2$ in $x^{3}+2 x^{2} y+y^{2}=c$ we find $c=4$, and setting $x=y=1$ we : find $c=4$. Thus, both initial conditions determine the same implicit solution.
(c) Solving $x^{3}+2 x^{2} y+y^{2}=4$ for y we get

$$
y_{1}(x)=-x^{2}-\sqrt{4-x^{3}+x^{4}}
$$

and

$$
y_{2}(x)=-x^{2}+\sqrt{4-x^{3}+x^{4}}
$$

Observe in the figure that $y_{1}(0)=-2$ and $y_{2}(1)=1$.

40. To see that the cquations are not equivalent consider $d x=-(x / y) d y$. An integrating factor:$\mu(x, y)=y$ resulting in $y d x+x d y=0$. A solution of the latter equation is $y=0$, but this is not solution of the original equation.
41. The explicit solution is $y=\sqrt{\left(3+\cos ^{2} x\right) /\left(1-x^{2}\right)}$. Since $3+\cos ^{2} x>0$ for all x we must hav. $1-x^{2}>0$ or $-1<x<1$. Thus, the interval of definition is $(-1,1)$.
42. (a) Since $f_{y}=N(x, y)=x e^{x y}+2 x y+1 / x$ we obtain $f=e^{x y}+x y^{2}+\frac{y}{x}+h(x)$ so the:$f_{x}=y e^{x y}+y^{2}-\frac{y}{x^{2}}+h^{\prime}(x)$. Let $M(x: y)=y e^{x y}+y^{2}-\frac{y}{x^{2}}$.
(b) Since $f_{x}=M(x, y)=y^{1 / 2} x^{-1 / 2}+x\left(x^{2}+y\right)^{-1}$ we obtain $f=2 y^{1 / 2} x^{1 / 2}+\frac{1}{2} \ln \left|x^{2}+y\right|+g($ i. so that $f_{y}=y^{-1 / 2} x^{1 / 2}+\frac{1}{2}\left(x^{2}+y\right)^{-1}+g^{\prime}(x)$. Let $N(x, y)=y^{-1 / 2} x^{1 / 2}+\frac{1}{2}\left(x^{2}+y\right)^{-1}$.
43. First note that

$$
d\left(\sqrt{x^{2}+y^{2}}\right)=\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y
$$

Then $x d x+y d y=\sqrt{x^{2}+y^{2}} d x$ becomes

$$
\frac{x}{\sqrt{x^{2}+y^{2}}} d x+\frac{y}{\sqrt{x^{2}+y^{2}}} d y=d\left(\sqrt{x^{2}+y^{2}}\right)=d x
$$

The left side is the total differential of $\sqrt{x^{2}+y^{2}}$ and the right side is the total differential of $x+c$. Thus $\sqrt{x^{2}+y^{2}}=x+c$ is a solution of the differential equation.
44. To see that the statement is true, write the separable equation as $-g(x) d x+d y / h(y)=0$. Identifying $M=-g(x)$ and $N=1 / h(y)$, we see that $M_{y}=0=N_{x}$, so the differcntial equation is exact.
4.5. (a) In differential form we have $\left(v^{2}-32 x\right) d x+x v d v=0$. This is not an exact form, but $\mu(x)=x$ is an integrating factor. Multiplying by x we get $\left(x v^{2}-32 x^{2}\right) d x+x^{2} v d v=0$. This form is the total differential of $u=\frac{1}{2} x^{2} v^{2}-\frac{32}{3} x^{3}$: so an implicit solution is $\frac{1}{2} x^{2} v^{2}-\frac{32}{3} x^{3}=c$. Letting $x=3$ and $v=0$ we find $c=-288$. Solving for v we get

$$
v=8 \sqrt{\frac{x}{3}-\frac{9}{x^{2}}} .
$$

(b) The chain leaves the platform when $x=8$, so the velocity at this time is

$$
v(8)=8 \sqrt{\frac{8}{3}-\frac{9}{64}} \approx 12.7 \mathrm{ft} / \mathrm{s}
$$

\therefore ㄷ. (a) Letting

$$
M(x, y)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}} \quad \text { and } \quad N(x, y)=1+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}
$$

we compute

$$
M_{y}=\frac{2 x^{3}-8 x y^{2}}{\left(x^{2}+y^{2}\right)^{3}}=N_{x}
$$

so the differential cquation is exact. Then we have

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =M(x, y)=\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}=2 x y\left(x^{2}+y^{2}\right)^{-2} \\
f(x, y) & =-y\left(x^{2}+y^{2}\right)^{-1}+g(y)=-\frac{y}{x^{2}+y^{2}}+g(y) \\
\frac{\partial f}{\partial y} & =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+g^{\prime}(y)=N(x, y)=1+\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
\end{aligned}
$$

Thus, $g^{\prime}(y)=1$ and $g(y)=y$. The solution is $y-\frac{y}{x^{2}+y^{2}}=c$. When $c=0$ the solution is $x^{2}+y^{2}=1$.
(b) The first graph below is obtained in Mathematica using $f(x, y)=y-y /\left(x^{2}+y^{2}\right)$ and

ContourPlot $[\mathrm{f}[\mathrm{x}, \mathrm{y}],\{\mathrm{x},-3,3\},\{\mathrm{y},-\mathbf{3}, \mathbf{3}\}$,

Exercises 2.4 Exact Equations

$$
\begin{aligned}
& \text { Axes }->\text { True, AxesOrigin }->\{0,0\} \text {, AxesLabel }->\{x, y\} \text {, } \\
& \text { Frame }->\text { False, PlotPoints }->100 \text {, ContourShading }->\text { False, } \\
& \text { Contours }->\{0,-0.2,0.2,-0.4,0.4,-0.6,0.6,-0.8,0.8\}]
\end{aligned}
$$

The second graph uses

$$
x=-\sqrt{\frac{y^{3}-c y^{2}-y}{c-y}} \quad \text { and } \quad x=\sqrt{\frac{y^{3}-c y^{2}-y}{c-y}} .
$$

In this casc the x-axis is vertical and the y-axis is horizontal. To obtain the third graph. solve $y-y /\left(x^{2}+y^{2}\right)=c$ for y in a CAS. This appears to give one real and two comp: solutions. When graphed in Mathematica however, all three solutions contribute to the gra;This is because the solutions involve the square root of expressions containing c. For sc... values of c the expression is negative, causing an apparent complex solution to actually be $\mathrm{r}-\ldots$

Exercises 2.5

 Solutions by Sulstitutions1. Letting $y=u x$ we have

$$
\begin{aligned}
(x-u x) d x+x(u d x+x d u) & =0 \\
d x+x d u & =0 \\
\frac{d x}{x}+d u & =0 \\
\ln |x|+u & =c \\
x \ln |x|+y & =c x .
\end{aligned}
$$

2. Letting $y=u x$ we have

$$
\begin{aligned}
(x+u x) d x+x(u d x+x d u) & =0 \\
(1+2 u) d x+x d u & =0 \\
\frac{d x}{x}+\frac{d u}{1+2 u} & =0 \\
\ln |x|+\frac{1}{2} \ln |1+2 u| & =c \\
x^{2}\left(1+2 \frac{y}{x}\right) & =c_{1} \\
x^{2}+2 x y & =c_{1}
\end{aligned}
$$

3. Letting $x=v y$ we lave

$$
\begin{aligned}
v y(v d y+y d v)+(y-2 v y) d y & =0 \\
v y^{2} d v+y\left(v^{2}-2 v+1\right) d y & =0 \\
\frac{v d v}{(v-1)^{2}}+\frac{d y}{y} & =0 \\
\ln |v-1|-\frac{1}{v-1}+\ln |y| & =c \\
\ln \left|\frac{x}{y}-1\right|-\frac{1}{x / y-1}+\ln y & =c \\
(x-y) \ln |x-y|-y & =c(x-y)
\end{aligned}
$$

4. Letting $x=v y$ we have

$$
\begin{aligned}
y(v d y+y d v)-2(v y+y) d y & =0 \\
y d v-(v+2) d y & =0 \\
\frac{d v}{v+2}-\frac{d y}{y} & =0 \\
\ln |v+2|-\ln |y| & =c \\
\ln \left|\frac{x}{y}+2\right|-\ln |y| & =c \\
x+2 y & =c_{1} y^{2}
\end{aligned}
$$

5. Letting $y=u x$ wo have

$$
\begin{aligned}
\left(u^{2} x^{2}+u x^{2}\right) d x-x^{2}(u d x+x d u) & =0 \\
u^{2} d x-x d u & =0 \\
\frac{d x}{x}-\frac{d u}{u^{2}} & =0 \\
\ln |x|+\frac{1}{u} & =c \\
\ln |x|+\frac{x}{y} & =c \\
y \ln |x|+x & =c y .
\end{aligned}
$$

6. Letting $y=u x$ and using partial fractions, we have

$$
\begin{aligned}
\left(u^{2} x^{2}+u x^{2}\right) d x+x^{2}(u d x+x d u) & =0 \\
x^{2}\left(u^{2}+2 u\right) d x+x^{3} d u & =0 \\
\frac{d x}{x}+\frac{d u}{u(u+2)} & =0 \\
\ln |x|+\frac{1}{2} \ln |u|-\frac{1}{2} \ln |u+2| & =c \\
\frac{x^{2} u}{u+2} & =c_{1} \\
x^{2} \frac{y}{x} & =c_{1}\left(\frac{y}{x}+2\right) \\
x^{2} y & =c_{1}(y+2 x)
\end{aligned}
$$

7. Letting $y=u x$ wc have

$$
\begin{aligned}
(u x-x) d x-(u x+x)(u d x+x d u) & =0 \\
\left(u^{2}+1\right) d x+x(u+1) d u & =0 \\
\frac{d x}{x}+\frac{u+1}{u^{2}+1} d u & =0 \\
\ln |x|+\frac{1}{2} \ln \left(u^{2}+1\right)+\tan ^{-1} u & =c \\
\ln x^{2}\left(\frac{y^{2}}{x^{2}}+1\right)+2 \tan ^{-1} \frac{y}{x} & =c_{1} \\
\ln \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{x} & =c_{1}
\end{aligned}
$$

5. Letting $y=u x$ we have

$$
\begin{aligned}
(x+3 u x) d x-(3 x+u x)(u d x+x d u) & =0 \\
\left(u^{2}-1\right) d x+x(u+3) d u & =0 \\
\frac{d x}{x}+\frac{u+3}{(u-1)(u+1)} d u & =0 \\
\ln |x|+2 \ln |u-1|-\ln |u+1| & =c \\
\frac{x(u-1)^{2}}{u+1} & =c_{1} \\
x\left(\frac{y}{x}-1\right)^{2} & =c_{1}\left(\frac{y}{x}+1\right) \\
(y-x)^{2} & =c_{1}(y \div x)
\end{aligned}
$$

\ddagger Letting $y=u x$ we have

$$
\begin{aligned}
-u x d x+(x+\sqrt{u} x)(u d x+x d u) & =0 \\
\left(x^{2}+x^{2} \sqrt{u}\right) d u+x u^{3 / 2} d x & =0 \\
\left(u^{-3 / 2}+\frac{1}{u}\right) d u+\frac{d x}{x} & =0 \\
-2 u^{-1 / 2}+\ln |u|+\ln |x| & =c \\
\ln |y / x|+\ln |x| & =2 \sqrt{x / y}+c \\
y(\ln |y|-c)^{2} & =4 x .
\end{aligned}
$$

\therefore Letting $y=u x$ we have

$$
\begin{aligned}
\left(u x+\sqrt{x^{2}-(u x)^{2}}\right) d x-x(u d x+x d u) d u & =0 \\
\sqrt{x^{2}-u^{2} x^{2}} d x-x^{2} d u & =0 \\
x \sqrt{1-u^{2}} d x-x^{2} d u & =0, \quad(x>0) \\
\frac{d x}{x}-\frac{d u}{\sqrt{1-u^{2}}} & =0 \\
\ln x-\sin ^{-1} u & =c \\
\sin ^{-1} u & =\ln x+c_{1}
\end{aligned}
$$

$$
\begin{aligned}
\sin ^{-1} \frac{y}{x} & =\ln x+c_{2} \\
\frac{y}{x} & =\sin \left(\ln x+c_{2}\right) \\
y & =x \sin \left(\ln x+c_{2}\right)
\end{aligned}
$$

See Problem 33 in this section for an analysis of the solution.
11. Letting $y=u x$ we have

$$
\begin{aligned}
\left(x^{3}-u^{3} x^{3}\right) d x+u^{2} x^{3}(u d x+x d u) & =0 \\
d x+u^{2} x d u & =0 \\
\frac{d x}{x}+u^{2} d u & =0 \\
\ln |x|+\frac{1}{3} u^{3} & =c \\
3 x^{3} \ln |x|+y^{3} & =c_{1} x^{3}
\end{aligned}
$$

Using $y(1)=2$ we find $c_{1}=8$. The solution of the initial-value problem is $3 x^{3} \ln |x|+y^{3}=8 x^{3}$.
12. Letting $y=u x$ we have

$$
\begin{aligned}
\left(x^{2}+2 u^{2} x^{2}\right) d x-u x^{2}(u d x+x d u) & =0 \\
x^{2}\left(1+u^{2}\right) d x-u x^{3} d u & =0 \\
\frac{d x}{x}-\frac{u d u}{1+u^{2}} & =0 \\
\ln |x|-\frac{1}{2} \ln \left(1+u^{2}\right) & =c \\
\frac{x^{2}}{1+u^{2}} & =c_{1} \\
x^{4} & =c_{1}\left(x^{2}+y^{2}\right)
\end{aligned}
$$

Using $y(-1)=1$ we find $c_{1}=1 / 2$. The solution of the initial-valuc problem is $2 x^{4}=y^{2}+x^{2}$.
13. Letting $y=u x$ we have

$$
\begin{aligned}
\left(x+u x e^{u}\right) d x-x e^{u}(u d x+x d u) & =0 \\
d x-x e^{u} d u & =0 \\
\frac{d x}{x}-e^{u} d u & =0
\end{aligned}
$$

$$
\begin{aligned}
\ln |x|-e^{u} & =c \\
\ln |x|-e^{y / x} & =c .
\end{aligned}
$$

Using $y(1)=0$ we find $c=-1$. The solution of the initial-value problem is $\ln |x|=e^{y / x}-1$.
\therefore - Letting $x=v y$ we have

$$
\begin{aligned}
y(v d y+y d v)+v y(\ln v y-\ln y-1) d y & =0 \\
y d v+v \ln v d y & =0 \\
\frac{d v}{v \ln v}+\frac{d y}{y} & =0 \\
\ln |\ln | v||+\ln | y| & =c \\
y \ln \left|\frac{x}{y}\right| & =c_{1}
\end{aligned}
$$

Ǔsing $y(1)=e$ we find $c_{1}=-e$. The solution of the initial-value problem is $y \ln \left|\frac{x}{y}\right|=-e$.
\therefore. From $y^{\prime}+\frac{1}{x} y=\frac{1}{x} y^{-2}$ and $w=y^{3}$ we obtain $\frac{d w}{d x}+\frac{3}{x} w=\frac{3}{x}$. An integrating factor is x^{3} so that $r^{3} w=x^{3}+c$ or $y^{3}=1+c x^{-3}$.
-. From $y^{\prime}-y=e^{x} y^{2}$ and $w=y^{-1}$ we obtain $\frac{d w}{d x}+w=-e^{x}$. An integrating factor is e^{x} so that $\epsilon^{x} w=-\frac{1}{2} e^{2 x}+c$ or $y^{-1}=-\frac{1}{2} e^{x}+c e^{-x}$.
\therefore. From $y^{\prime}+y=x y^{4}$ and $w=y^{-3}$ we obtain $\frac{d w}{d x}-3 u=-3 x$. An integrating factor is $e^{-3 x}$ so that $\epsilon^{-3 x} w=x e^{-3 x}+\frac{1}{3} e^{-3 x}+c$ or $y^{-3}=x+\frac{1}{3}+c e^{3 x}$.
-i. From $y^{\prime}-\left(1+\frac{1}{x}\right) y=y^{2}$ and $w=y^{-1}$ we obtain $\frac{d w}{d x}+\left(1+\frac{1}{x}\right) w=-1$. An integrating factor is $x e^{x}$ so that $x e^{x} w=-x e^{x}+e^{x}+c$ or $y^{-1}=-1+\frac{1}{x}+\frac{c}{x} e^{-x}$.
\therefore. From $y^{\prime}-\frac{1}{t} y=-\frac{1}{t^{2}} y^{2}$ and $w=y^{-1}$ we obtain $\frac{d w}{d t}+\frac{1}{t} w=\frac{1}{t^{2}}$. An integrating factor is t so that $t w=\ln t+c$ or $y^{-1}=\frac{1}{t} \ln t+\frac{c}{t}$. Writing this in the form $\frac{t}{y}=\ln t+c$, we see that the solution can also be cxpressed in the form $e^{t / y}=c_{1} t$.
\therefore From $y^{\prime}+\frac{2}{3\left(1+t^{2}\right)} y=\frac{2 t}{3\left(1+t^{2}\right)} y^{4}$ and $u^{\prime}=y^{-3}$ we obtain $\frac{d w}{d t}-\frac{2 t}{1+t^{2}} w=\frac{-2 t}{1+t^{2}}$. An integrating factor is $\frac{1}{1+t^{2}}$ so that $\frac{w}{1+t^{2}}=\frac{1}{1+t^{2}}+c$ or $y^{-3}=1+c\left(1+t^{2}\right)$.
21. From $y^{\prime}-\frac{2}{x} y=\frac{3}{x^{2}} y^{4}$ and $w=y^{-3}$ we obtain $\frac{d w}{d x}+\frac{6}{x} w=-\frac{9}{x^{2}}$. An integrating factor is x^{6} so the: $x^{6} w=-\frac{9}{5} x^{5}+c$ or $y^{-3}=-\frac{9}{5} x^{-1}+c x^{-6}$. If $y(1)=\frac{1}{2}$ then $c=\frac{49}{5}$ and $y^{-3}=-\frac{9}{5} x^{-1}+\frac{49}{5} x^{-6}$.
22. From $y^{\prime}+y=y^{-1 / 2}$ and $w=y^{3 / 2}$ we obtain $\frac{d w}{d x}+\frac{3}{2} w=\frac{3}{2}$. An integrating factor is $e^{3 x / 2}$ so tha: $e^{3 x / 2} w=e^{3 x / 2}+c$ or $y^{3 / 2}=1+c e^{-3 x / 2}$. If $y(0)=4$ then $c=7$ and $y^{3 / 2}=1+7 e^{-3 x / 2}$.
23. Let $u=x+y+1$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=u^{2}$ or $\frac{1}{1+u^{2}} d u=d x$. Thu:$\tan ^{-1} u=x+c$ or $u=\tan (x+c)$, and $x+y+1=\tan (x+c)$ or $y=\tan (x+c)-x-1$.
24. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\frac{1-u}{u}$ or $u d u=d x$. Thus $\frac{1}{2} u^{2}=x+$. or $u^{2}=2 x+c_{1}$, and $(x+y)^{2}=2 x+c_{1}$.
25. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\tan ^{2} u$ or $\cos ^{2} u d u=d x$. Thu: $\frac{1}{2} u+\frac{1}{4} \sin 2 u=x+c$ or $2 u+\sin 2 u=4 x+c_{1}$, and $2(x+y)+\sin 2(x+y)=4 x+c_{1}$ or $2 y+\sin 2(x+y)=$ $2 x+c_{1}$.
26. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\sin u$ or $\frac{1}{1+\sin u} d u=d x$. Multiplyin: by $(1-\sin u) /(1-\sin u)$ we have $\frac{1-\sin u}{\cos ^{2} u} d u=d x$ or $\left(\sec ^{2} u-\sec u \tan u\right) d u=d x$. Thu. $\tan u-\sec u=x+c$ or $\tan (x+y)-\sec (x+y)=x+c$.
27. Let $u=y-2 x+3$ so that $d u / d x=d y / d x-2$. Then $\frac{d u}{d x}+2=2+\sqrt{u}$ or $\frac{1}{\sqrt{u}} d u=d x$. The: $2 \sqrt{u}=x+c$ and $2 \sqrt{y-2 x+3}=x+c$.
28. Let $u=y-x+5$ so that $d u / d x=d y / d x-1$. Then $\frac{d u}{d x}+1=1+e^{u}$ or $e^{-u} d u=d x$. Tha: $-e^{-u}=x+c$ and $-e^{y-x+5}=x+c$.
29. Let $u=x+y$ so that $d u / d x=1+d y / d x$. Then $\frac{d u}{d x}-1=\cos u$ and $\frac{1}{1+\cos u} d u=d x$. Now

$$
\frac{1}{1+\cos u}=\frac{1-\cos u}{1-\cos ^{2} u}=\frac{1-\cos u}{\sin ^{2} u}=\csc ^{2} u-\csc u \cot u
$$

so we have $\int\left(\csc ^{2} u-\csc u \cot u\right) d u=\int d x$ and $-\cot u+\csc u=x+c$. Thus $-\cot (x+y)+\csc (x+y)=$ $x+c$. Setting $x=0$ and $y=\pi / 4$ we obtain $c=\sqrt{2}-1$. The solution is

$$
\csc (x+y)-\cot (x+y)=x+\sqrt{2}-1
$$

30. Let $u=3 x+2 y$ so that $d u / d x=3+2 d y / d x$. Then $\frac{d u}{d x}=3+\frac{2 u}{u+2}=\frac{5 u+6}{u+2}$ and $\frac{u+2}{5 u+6} d u=d$, i Now by long division

$$
\frac{u+2}{5 u+6}=\frac{1}{5}+\frac{4}{25 u+30}
$$

so we have

$$
\int\left(\frac{1}{5}+\frac{4}{25 u+30}\right) d u=d x
$$

and $\frac{1}{5} u+\frac{4}{25} \ln |25 u+30|=x+c$. Thus

$$
\frac{1}{5}(3 x+2 y)+\frac{4}{25} \ln |75 x+50 y+30|=x+c
$$

Setting $x=-1$ and $y=-1$ we obtain $c=\frac{4}{25} \ln 95$. The solution is

$$
\frac{1}{5}(3 x+2 y)+\frac{4}{25} \ln |75 x+50 y+30|=x+\frac{4}{25} \ln 95
$$

r

$$
5 y-5 x+2 \ln |75 x+50 y+30|=2 \ln 95
$$

\equiv We write the differential cquation $M(x, y) d x+N(x, y) d y=0$ as $d y / d x=f(x: y)$ where

$$
f(x, y)=-\frac{M(x, y)}{N(x, y)}
$$

The function $f(x, y)$ must necessarily be homogencous of degrec 0 when M and N are homogeneous of degree α. Since M is homogencous of degree $\alpha, M(t x, t y)=t^{\alpha} M(x, y)$, and letting $t=1 / x$ we Gave

$$
M(1, y / x)=\frac{1}{x^{\alpha}} M(x, y) \quad \text { or } \quad M(x, y)=x^{\alpha} M(1, y / x)
$$

Thus

$$
\frac{d y}{d x}=f(x, y)=-\frac{x^{\alpha} M(1, y / x)}{x^{\alpha} N(1, y / x)}=-\frac{M(1, y / x)}{N(1, y / x)}=F\left(\frac{y}{x}\right)
$$

\therefore Rewrite $\left(5 x^{2}-2 y^{2}\right) d x-x y d y=0$ as

$$
x y \frac{d y}{d x}=5 x^{2}-2 y^{2}
$$

and divide by $x y$, so that

$$
\frac{d y}{d x}=5 \frac{x}{y}-2 \frac{y}{x}
$$

We then identify

$$
F\left(\frac{y}{x}\right)=5\left(\frac{y}{x}\right)^{-1}-2\left(\frac{y}{x}\right)
$$

:3. (a) By inspection $y=x$ and $y=-x$ are solutions of the differential equation and not members of the family $y=x \sin \left(\ln x+c_{2}\right)$.
(b) Letting $x=5$ and $y=0$ in $\sin ^{-1}(y / x)=\ln x+c_{2}$ we get $\sin ^{-1} 0=\ln 5+c$ or $c=-\ln 5$. Then $\sin ^{-1}(y / x)=\ln x-\ln 5=\ln (x / 5)$. Because the range of the arcsine function is $[-\pi / 2, \pi / 2]$ we
must have

$$
\begin{aligned}
&-\frac{\pi}{2} \leq \ln \frac{x}{5} \leq \frac{\pi}{2} \\
& e^{-\pi / 2} \leq \frac{x}{5} \leq e^{\pi / 2} \\
& 5 e^{-\pi / 2} \leq x \leq 5 e^{\pi / 2}
\end{aligned}
$$

The interval of definition of the solution is approximately [1.04, 24.05].

34. As $x \rightarrow-\infty$: $e^{6 x} \rightarrow 0$ and $y \rightarrow 2 x+3$. Now write $\left(1+c e^{6 x}\right) /\left(1-c e^{6 x}\right)$ as $\left(e^{-6 x}+c\right) /\left(e^{-6 x}-\right.$ Then, as $x \rightarrow \infty, e^{-6 x} \rightarrow 0$ and $y \rightarrow 2 x-3$.
35. (a) The substitutions $y=y_{1}+u$ and

$$
\frac{d y}{d x}=\frac{d y_{1}}{d x}+\frac{d u}{d x}
$$

lead to

$$
\begin{aligned}
\frac{d y_{1}}{d x}+\frac{d u}{d x} & =P+Q\left(y_{1}+u\right)+R\left(y_{1}+u\right)^{2} \\
& =P+Q y_{1}+R y_{1}^{2}+Q u+2 y_{1} R u+R u^{2}
\end{aligned}
$$

or

$$
\frac{d u}{d x}-\left(Q+2 y_{1} R\right) u=R u^{2}
$$

This is a Bernoulli equation with $n=2$ which can be reduced to the linear equation

$$
\frac{d w}{d x}+\left(Q+2 y_{1} R\right) w=-R
$$

by the substitution $w=u^{-1}$.
(b) Identify $P(x)=-4 / x^{2}, Q(x)=-1 / x$, and $R(x)=1$. Then $\frac{d w}{d x} \div\left(-\frac{1}{x}+\frac{4}{x}\right) w=-1$. $-\therefore$ integrating factor is x^{3} so that $x^{3} w=-\frac{1}{4} x^{4}+c$ or $u=\left[-\frac{1}{4} x+c x^{-3}\right]^{-1}$. Thus, $y=\frac{2}{x}+u$.
36. Write the differential equation in the form $x\left(y^{\prime} / y\right)=\ln x+\ln y$ and let $u=\ln y$. Then $\left.d u / d x=y^{\prime}\right\lrcorner$ and the differential equation becomes $x(d u / d x)=\ln x+u$ or $d u / d x-u / x=(\ln x) / x$, which ξ first-order and linear. An integrating factor is $e^{-\int d x / x}=1 / x$, so that (using integration by par:-

$$
\frac{d}{d x}\left[\frac{1}{x} u\right]=\frac{\ln x}{x^{2}} \quad \text { and } \quad \frac{u}{x}=-\frac{1}{x}-\frac{\ln x}{x}+c .
$$

The solution is

$$
\ln y=-1-\ln x+c x \quad \text { or } \quad y=\frac{e^{c x-1}}{x}
$$

37. Write the diffcrential cquation as

$$
\frac{d v}{d x} \div \frac{1}{x} v=32 v^{-1}
$$

ad let $u=v^{2}$ or $v=u^{1 / 2}$. Then

$$
\frac{d u}{d x}=\frac{1}{2} u^{-1 / 2} \frac{d u}{d x}
$$

ad substituting into the differential equation. we have

$$
\frac{1}{2} u^{-1 / 2} \frac{d u}{d x}+\frac{1}{x} u^{1 / 2}=32 u^{-1 / 2} \quad \text { or } \quad \frac{d u}{d x}+\frac{2}{x} u=64 .
$$

Fie latter differential equation is linear with integrating factor $c^{\int(2 / x) d x}=x^{2}$. so

$$
\frac{d}{d x}\left[x^{2} u\right]=64 x^{2}
$$

.nd

$$
x^{2} u=\frac{64}{3} x^{3}+c \quad \text { or } \quad v^{2}=\frac{64}{3} x+\frac{c}{x^{2}} .
$$

$\therefore \quad$ rite the differential equation as $d P / d t-a P=-b P^{2}$ and let $u=P^{-1}$ or $P=u^{-1}$. Then

$$
\frac{d p}{d t}=-u^{-2} \frac{d u}{d t}
$$

$=: . \mathrm{d}$ substituting into the differential equation, wo have

$$
-u^{-2} \frac{d u}{d t}-a u^{-1}=-b u^{-2} \quad \text { or } \quad \frac{d u}{d t}+a u=b
$$

Te latter differential equation is lincar with integrating factor $e^{\int a d t}=\epsilon^{a t}$, so

$$
\frac{d}{d t}\left[e^{a t} u\right]=b e^{a t}
$$

$\therefore \mathrm{ad}$

$$
\begin{aligned}
e^{a t} u & =\frac{b}{a} e^{a l}+c \\
e^{a l} P^{-1} & =\frac{b}{a} e^{a t}+c \\
P^{-1} & =\frac{b}{a}+c e^{-a t} \\
P & =\frac{1}{b / a+c e^{-a t}}=\frac{a}{b+c_{1} e^{-a l}} .
\end{aligned}
$$

Exercises 2.6

A Numerical Method

1. We identify $f(x, y)=2 x-3 y+1$. Then, for $h=0.1$,

$$
y_{n+1}=y_{n}+0.1\left(2 x_{n}-3 y_{n}+1\right)=0.2 x_{n}+0.7 y_{n}+0.1
$$

and

$$
\begin{aligned}
& y(1.1) \approx y_{1}=0.2(1)+0.7(5)+0.1=3.8 \\
& y(1.2) \approx y_{2}=0.2(1.1)+0.7(3.8)+0.1=2.98
\end{aligned}
$$

For $h=0.05$.

$$
y_{n-1}=y_{n}+0.05\left(2 x_{n}-3 y_{n}+1\right)=0.1 x_{n}+0.85 y_{n}+0.05
$$

and

$$
\begin{aligned}
y(1.05) & \approx y_{1}=0.1(1)+0.85(5)+0.05=4.4 \\
y(1.1) & \approx y_{2}=0.1(1.05)+0.85(4.4)+0.05=3.895 \\
y(1.15) & \approx y_{3}=0.1(1.1)+0.85(3.895)+0.05=3.47075 \\
y(1.2) & \approx y_{4}=0.1(1.15)+0.85(3.47075)+0.05=3.11514
\end{aligned}
$$

2. We identify $f(x, y)=x+y^{2}$. Then, for $h=0.1$,

$$
y_{n+1}=y_{n}+0.1\left(x_{n}+y_{n}^{2}\right)=0.1 x_{n}+y_{n}+0.1 y_{n}^{2}
$$

and

$$
\begin{aligned}
& y(0.1) \approx y_{1}=0.1(0)+0+0.1(0)^{2}=0 \\
& y(0.2) \approx y_{2}=0.1(0.1)+0+0.1(0)^{2}=0.01
\end{aligned}
$$

For $h=0.05$;

$$
y_{n+1}=y_{n}+0.05\left(x_{n}+y_{n}^{2}\right)=0.05 x_{n}+y_{n}+0.05 y_{n}^{2}
$$

and

$$
\begin{aligned}
y(0.05) & \approx y_{1}=0.05(0)+0+0.05(0)^{2}=0 \\
y(0.1) & \approx y_{2}=0.05(0.05)+0+0.05(0)^{2}=0.0025 \\
y(0.15) & \approx y_{3}=0.05(0.1)+0.0025+0.05(0.0025)^{2}=0.0075 \\
y(0.2) & \approx y_{4}=0.05(0.15)+0.0075 \div 0.05(0.0075)^{2}=0.0150
\end{aligned}
$$

3. تsparating variables and integrating, wo have

$$
\frac{d y}{y}=d x \quad \text { and } \quad \ln |y|=x+c
$$

Fins $y=c_{1} \epsilon^{x}$ and, using $y(0)=1$, we find $c=1$, so $y=e^{x}$ is the solution of the initial-value woblem.

$\therefore=0.1$				
$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$	Actual Value	Abs. Error	FRel. Error
0.00	1.0000	1.0000	0.0000	0.00
0.10	1.1000	1.1052	0.0052	0.47
0.20	1.2100	1.2214	0.0114	0.93
0.30	1.3310	1.3499	0.0189	1.40
0.40	1.4641	1.4918	0.0277	1.86
0.50	1.6105	1.6487	0.0382	2.32
0.60	1.7716	1.8221	0.0506	2.77
0.70	1.9487	2.0138	0.0650	3.23
0.80	2.1436	2.2255	0.0820	3.68
0.90	2.3579	2.4596	0.1017	4.13
1.00	2.5937	2.7183	0.1245	4.58

$h=0.05$		Actual Value	Abs. Error	\% Rel. Error
0.00	1.0000	1.0000	0.0000	0.00
0.05	1.0500	1.0513	0.0013	0.12
0.10	1.1025	1.1052	0.0027	0.24
0.15	1.1576	1.1618	0.0042	0.36
0.20	1.2155	1.2214	0.0059	0.48
0.25	1.2763	1.2840	0.0077	0.60
0.30	1.3401	1.3499	0.0098	0.72
0.35	1.4071	1.4191	0.0120	0.84
0.40	1.4775	1.4918	0.0144	0.96
0.45	1.5513	1.5683	0.0170	1.08
0.50	1.6289	1.6487	0.0198	1.20
0.55	1.7103	1.7333	0.0229	1.32
0.60	1.7959	1.8221	0.0263	1.44
0.65	1.8856	1.9155	0.0299	1.56
0.70	1.9799	2.0138	0.0338	1.68
0.75	2.0789	2.1170	0.0381	1.80
0.80	2.1829	2.2255	0.0427	1.92
0.85	2.2920	2.3396	0.0476	2.04
0.90	2.4066	2.4596	0.0530	2.15
0.95	2.5270	2.5857	0.0588	2.27
1.00	2.6533	2.7183	0.0650	2.39

\therefore Separating variables and integrating, we have

$$
\frac{d y}{y}=2 x d x \quad \text { and } \quad \ln |y|=x^{2}+c
$$

Thus $y=c_{1} e^{x^{2}}$ and. using $y(1)=1$, we find $c=e^{-1}$, so $y=e^{x^{2}-1}$ is the solution of the initial-value problem.

Exercises 2.6 A Numerical Method
$h=0.1$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$	Actual Value	Abs. Error	\% Rel. Error
1.00	1.0000	1.0000	0.0000	0.00
1.10	1.2000	1.2337	0.0337	2.73
1.20	1.4640	1.5527	0.0887	5.71
1.30	1.8154	1.9937	0.1784	8.95
1.40	2.2874	2.6117	0.3243	12.42
1.50	2.9278	3.4903	0.5625	16.12

$h=0.05$				
$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$	Actual Value	Abs. Error	\% Rel. Error
1.00	1.0000	1.0000	0.0000	0.00
1.05	1.1000	1.1079	0.0079	0.72
1.10	1.2155	1.2337	0.0182	1.47
1.15	1.3492	1.3806	0.0314	2.27
1.20	1.5044	1.5527	0.0483	3.11
1.25	1.6849	1.7551	0.0702	4.00
1.30	1.8955	1.9937	0.0982	4.93
1.35	2.1419	2.2762	0.1343	5.90
1.40	2.4311	2.6117	0.1806	6.92
1.45	2.7714	3.0117	0.2403	7.98
1.50	3.1733	3.4903	0.3171	9.08

5.

$h=0.05$	
$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	0.0000
0.05	0.0500
0.10	0.0976
0.15	0.1429
0.20	0.1863
0.25	0.2278
0.30	0.2676
0.35	0.3058
0.40	0.3427
0.45	0.3782
0.50	0.4124

6.

$x_{\boldsymbol{n}}$	$y_{\boldsymbol{n}}$
0.00	1.0000
0.10	1.1000
0.20	1.2220
0.30	1.3753
0.40	1.5735
0.50	1.8371

$h=0.05$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	1.0000
0.05	1.0500
0.10	1.1053
0.15	1.1668
0.20	1.2360
0.25	1.3144
0.30	1.4039
0.35	1.5070
0.40	1.6267
0.45	1.7670
0.50	1.9332

8.

\boldsymbol{x}_{n}	y_{n}
0.00	1.0000
0.10	1.1000
0.20	1.2159
0.30	1.3505
0.40	1.5072
0.50	1.6902

$h=0.05$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	1.0000
0.05	1.0500
0.10	1.1039
0.15	1.1619
0.20	1.2245
0.25	1.2921
0.30	1.3651
0.35	1.4440
0.40	1.5293
0.45	1.6217
0.50	1.7219

9.

$h=0.1$	
$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
1.00	1.0000
1.10	1.0000
1.20	1.0191
1.30	1.0588
1.40	1.1231
1.50	1.2194

$h=0.05$

x_{n}	y_{n}
1.00	1.0000
1.05	1.0000
1.10	1.0049
1.15	1.0147
1.20	1.0298
1.25	1.0506
1.30	1.0775
1.35	1.1115
1.40	1.1538
1.45	1.2057
1.50	1.2696

10.

$h=0.1$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	0.5000
0.10	0.5250
0.20	0.5499
0.30	0.5747
0.40	0.5991
0.50	0.6231

$\frac{x_{n}=0}{y}$	y_{n}
0.00	0.5000
0.05	0.5125
0.10	0.5250
0.15	0.5375
0.20	0.5499
0.25	0.5623
0.30	0.5746
0.35	0.5868
0.40	0.5989
0.45	0.6109
0.50	0.6228

-1. Tables of values were computed using the Euler and RK4 methods. The resulting points were pir-:-: and joined using ListPlot in Mathematica. A somewhat simplified version of the code usec: $\because \therefore$ this is given in the Student Resource and Solutions Manual (SRSM) under Use of Computers:-. Section 2.6.

$$
h=0.25
$$

$$
h=0.1
$$

$$
h=0.05
$$

$\therefore 2$. Sce the comments in Problem 11 above.

$h=0.05$

23. Tables of values, shown below, were first computed using Euler's method with $h=0.1$ and $h=1$ and then using the RK4 method with the same values of h. Using separation of variables we f.: : that the solution of the differential equation is $y=1 /\left(1-x^{2}\right)$, which is undefined at $x=1$. Wre: the graph has a vertical asymptote. Because the actual solution of the differential equation becon-:unbounded at x approaches 1 , very small changes in the inputs x will result in large changes in $:-$ corresponding outputs y. This can be expected to have a serious effect on numerical procedures.

Exercises 2.6 A Numcrical Method

$h=0.1$ (Euler)		$h=0.05$ (Fuler)		$h=0.1$ (RK4)		$h=0.05$ (RK4)	
x_{n}	y_{n}	x_{n}	y_{n}	\boldsymbol{x}_{n}	y_{n}	\boldsymbol{x}_{n}	y_{n}
0.00	1.0000	0.00	1.0000	0.00	1.0000	0.00	1.0000
0.10	1.0000	0.05	1.0000	0.10	1.0101	0.05	1.0025
0.20	1.0200	0.10	1.0050	0.20	1.0417	0.10	1.0101
0.30	1.0616	0.15	1.0151	0.30	1.0989	0.15	1.0230
0.40	1.1292	0.20	1.0306	0.40	1.1905	0.20	1.0417
0.50	1.2313	0.25	1.0518	0.50	1.3333	0.25	1.0667
0.60	1.3829	0.30	1.0795	0.60	1.5625	0.30	1.0989
0.70	1.6123	0.35	1.1144	0.70	1.9607	0.35	1.1396
0.80	1.9763	0.40	1.1579	0.80	2.7771	0.40	1.1905
0.90	2.6012	0.45	1.2115	0.90	5.2388	0.45	1.2539
1.00	3.8191	0.50	1.2776	1.00	42.9931	0.50	1.3333
		0.55	1.3592			0.55	1.4337
		0.60	1.4608			0.60	1.5625
		0.65	1.5888			0.65	1.7316
		0.70	1.7529			0.70	1.9608
		0.75	1.9679			0.75	2.2857
		0.80	2.2584			0.80	2.7777
		0.85	2.6664			0.85	3.6034
		0.90	3.2708			0.90	5.2609
		0.95	4.2336			0.95	10.1973
		1.00	5.9363			1.00	84.0132

The graphs below were obtained as described above in Problem 11.

14. (a) The graph to the right was obtained as described above in Problem 11 using $h=0.1$.

Chapter 2 in Review

(b) Writing the differential equation in the form $y^{\prime}+2 x y=1$ we see that an integrating factor is $e^{\int 2 x d x}=e^{x^{2}}$, so

$$
\frac{d}{d x}\left[e^{x^{2}} y_{j}^{]}=e^{x^{2}}\right.
$$

and

$$
y=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t+c e^{-x^{2}}
$$

This solution can also be expressed in terms of the inverse error function as

$$
y=\frac{\sqrt{\pi}}{2} e^{-x^{2}} \operatorname{erfi}(x)+c e^{-x^{2}}
$$

Letting $x=0$ and $y(0)=0$ we find $c=0$, so the solution of the initial-value problem is

$$
y=e^{-x^{2}} \int_{0}^{x} e^{t^{2}} d t=\frac{\sqrt{\pi}}{2} e^{-x^{2}} \operatorname{erfi}(x)
$$

ic) Using cither FindRoot in Mathematica or fsolve in Maple we see that $y^{\prime}(x)=0$ when $x=0.924139$. Since $y(0.924139)=0.541044$, we see from the graph in part (a) that $(0.924139,0.541044)$ is a relative maximum. Now, using the substitution $u=-t$ in the integral below. we have

$$
y(-x)=e^{-(-x)^{2}} \int_{0}^{-x} e^{t^{2}} d t=e^{-x^{2}} \int_{0}^{x} e^{(-u)^{2}}(-d u)=-e^{-x^{2}} \int_{0}^{x} e^{u^{2}} d u=-y(x)
$$

Thus, $y(x)$ is an odd function and $(-0.924139,-0.541044)$ is a relative minimum.

Chapter 2 in Review

\therefore Writing the differential equation in the form $y^{\prime}=k(y+A / k)$ we see that the critical point $-A / k$ \therefore a repeller for $k>0$ and an attractor for $k<0$.
\therefore Separating variables and integrating we have

$$
\begin{aligned}
\frac{d y}{y} & =\frac{4}{x} d x \\
\ln y & =4 \ln x+c-\ln x^{4}+c \\
y & =c_{1} x^{4} .
\end{aligned}
$$

We see that when $x=0, y=0$, so the initial-value problem has an infinite number of solutions for $i=0$ and no solutions for $k \neq 0$.
\therefore True; $y=k_{2} / k_{1}$ is always a solution for $k_{1} \neq 0$.

Chapter 2 in Review

4. True: writing the differential equation as $a_{1}(x) d y+a_{2}(x) y d x=0$ and separating variables yiolc:-

$$
\frac{d y}{y}=-\frac{a_{2}(x)}{a_{1}(x)} d x
$$

5. $\frac{d y}{d x}=(y-1)^{2}(y-3)^{2}$
6. $\frac{d y}{d x}=y(y-2)^{2}(y-4)$
7. When n is odd, $x^{n}<0$ for $x<0$ and $x^{n}>0$ for $x>0$. In this case 0 is unstable. When n is eve: $x^{n}>0$ for $x<0$ and for $x>0$. In this case 0 is semi-stable.

When n is odd, $-x^{n}>0$ for $x<0$ and $-x^{n}<0$ for $x>0$. In this case 0 is asymptotically stal:-: When n is cven, $-x^{n}<0$ for $x<0$ and for $x>0$. In this case 0 is semi-stable.
8. Using a CAS we find that the zero of f occurs at approximately $P=1.3214$. From the gra:... we observe that $d P / d t>0$ for $P<1.3214$ and $d P / d t<0$ for $P>1.3214$, so $P=1.3214$ is: asymptotically stable critical point. Thus, $\lim _{t \rightarrow \infty} P(t)=1.3214$.
9.

10. (a) linear in y, homogeneous, exact
(b) linear in x
(c) separable, exact, lincar in x and y
(d) Bernoulli in x
(e) scparable
(f) separable, linear in x, Bernoulli
(g) linear in x
(h) homogeneous
(i) Bernoulli
(j) homogeneous, exact, Bernoulli
(k) linear in x and y, exact, scparable, homogencous
(1) cxact, linicar in y
(m) homogencous
(n) separable
11. Separating variables and using the identity $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$, we have

$$
\begin{aligned}
\cos ^{2} x d x & =\frac{y}{y^{2}+1} d y \\
\frac{1}{2} x+\frac{1}{4} \sin 2 x & =\frac{1}{2} \ln \left(y^{2}+1\right)+c
\end{aligned}
$$

and

$$
2 x+\sin 2 x=2 \ln \left(y^{2}+1\right)+c
$$

\therefore Write the differential equation in the form

$$
y \ln \frac{x}{y} d x=\left(x \ln \frac{x}{y}-y\right) d y
$$

This is a homogeneous equation, so let $x=u y$. Then $d x=u d y+y d u$ and the differential equation becomos

$$
y \ln u(u d y+y d u)=(u y \ln u-y) d y \quad \text { or } \quad y \ln u d u=-d y
$$

Separating variables, we olbtain

$$
\begin{aligned}
\ln u d u & =-\frac{d y}{y} \\
u \ln |u|-u & =-\ln |y|+c \\
\frac{x}{y} \ln \left|\frac{x}{y}\right|-\frac{x}{y} & =-\ln |y|+c \\
x(\ln x-\ln y)-x & =-y \ln |y|+c y
\end{aligned}
$$

23. The differential equation

$$
\frac{d y}{d x}+\frac{2}{6 x+1} y=-\frac{3 x^{2}}{6 x+1} y^{-2}
$$

is Bernoulli. Using $u=y^{3}$, we obtain the linear equation

$$
\frac{d w}{d x}+\frac{6}{6 x+1} w=-\frac{9 x^{2}}{6 x+1}
$$

An integrating factor is $6 x+1$, so

$$
\begin{aligned}
& \frac{d}{d x}\left[(6 x+1) w^{]}=-9 x^{2}\right. \\
& w=-\frac{3 x^{3}}{6 x+1}+\frac{c}{6 x+1}
\end{aligned}
$$

and

$$
(6 x+1) y^{3}=-3 x^{3}+c
$$

Notc: The differential equation is also exact.)
\therefore Write the differential equation in the form $\left(3 y^{2}+2 x\right) d x+\left(4 y^{2}+6 x y\right) d y=0$. Letting $M=3 y^{2}+2 x$ and $N=4 y^{2}+6 x y$ we see that $M_{y}=6 y=N_{x}$, so the differential equation is exact. From $f_{x}=3 y^{2}+2 x$ we obtain $f=3 x y^{2}+x^{2}+h(y)$. Then $f_{y}=6 x y+h^{\prime}(y)=4 y^{2}+6 x y$ and $h^{\prime}(y)=4 y^{2}$ so $h(y)=\frac{1}{3} y^{3}$. A one-paramcter family of solutions is

$$
3 x y^{2}+x^{2}+\frac{4}{3} y^{3}=c
$$

Chapter 2 in Review

15. Write the equation in the form

$$
\frac{d Q}{d t}+\frac{1}{t} Q=t^{3} \ln t
$$

An integrating factor is $e^{\ln t}=t$, so

$$
\begin{aligned}
\frac{d}{d t}[t Q] & =t^{4} \ln t \\
t Q & =-\frac{1}{25} t^{5}+\frac{1}{5} t^{5} \ln t+c
\end{aligned}
$$

and

$$
Q=-\frac{1}{25} t^{4}+\frac{1}{5} t^{4} \ln t+\frac{c}{t} .
$$

16. Letting $u=2 x+y+1$ we have

$$
\frac{d u}{d x}=2+\frac{d y}{d x}
$$

and so the given differential equation is transformed into

$$
u\left(\frac{d u}{d x}-2\right)=1 \quad \text { or } \quad \frac{d u}{d x}=\frac{2 u+1}{u}
$$

Separating variables and integrating we get

$$
\begin{aligned}
\frac{u}{2 u+1} d u & =d x \\
\left(\frac{1}{2}-\frac{1}{2} \frac{1}{2 u+1}\right) d u & =d x \\
\frac{1}{2} u-\frac{1}{4} \ln |2 u+1| & =x+c \\
2 u-\ln |2 u+1| & =2 x+c_{1} .
\end{aligned}
$$

Resubstituting for u gives the solution

$$
4 x+2 y+2-\ln |4 x+2 y+3|=2 x+c_{1}
$$

or

$$
2 x+2 y+2-\ln |4 x+2 y+3|=c_{1}
$$

17. Write the equation in the form

$$
\frac{d y}{d x} \div \frac{8 x}{x^{2}+4} y=\frac{2 x}{x^{2}+4}
$$

An integrating factor is $\left(x^{2}+4\right)^{4}$, so

$$
\frac{d}{d x}\left[\left(x^{2}+4\right)^{4} y\right]=2 x\left(x^{2}+4\right)^{3}
$$

Chapter 2 in Review

$$
\left(x^{2}+4\right)^{4} y=\frac{1}{4}\left(x^{2}+4\right)^{4}+c
$$

and

$$
y=\frac{1}{4}+c\left(x^{2}+4\right)^{-4}
$$

- -etting $M=2 r^{2} \cos \theta \sin \theta+r \cos \theta$ and $N=4 r+\sin \theta-2 r \cos ^{2} \theta$ we see that $M_{r}=4 r \cos \theta \sin \theta+$ $\operatorname{os} \theta=N_{\theta}$, so the differential equation is cxact. From $f_{\theta}=2 r^{2} \cos \theta \sin \theta+r \cos \theta$ we obtain $\therefore=-r^{2} \cos ^{2} \theta+r \sin \theta+h(r)$. Then $f_{r}=-2 r \cos ^{2} \theta+\sin \theta+h^{\prime}(r)=4 r+\sin \theta-2 r \cos ^{2} \theta$ and $\because r)=4 r$ so $h(r)=2 r^{2}$. The solution is

$$
-r^{2} \cos ^{2} \theta+r \sin \theta+2 r^{2}=c
$$

\therefore The differential equation has the form $(d / d x)[(\sin x) y]=0$. Intcgrating, we have $(\sin x) y=c$ or $=c / \sin x$. The initial condition implics $c=-2 \sin (7 \pi / 6)=1$. Thus, $y=1 / \sin x$, where the \therefore.-terval $\pi<x<2 \pi$ is chosen to include $x=7 \pi / 6$.
\therefore Separating variables and integrating we have

$$
\begin{aligned}
\frac{d y}{y^{2}} & =-2(t+1) d t \\
-\frac{1}{y} & =-(t+1)^{2}+c \\
y & =\frac{1}{(t+1)^{2}+c_{1}}, \quad \text { where }-c=c_{1}
\end{aligned}
$$

The initial condition $y(0)=-\frac{1}{8}$ implies $c_{1}=-9$, so a solution of the initial-value problem is

$$
y=\frac{1}{(t+1)^{2}-9} \quad \text { or } \quad y=\frac{1}{t^{2}+2 t-8}
$$

\because here $-4<t<2$.
\because (a) For $y<0, \sqrt{y}$ is not a real number.
ib) Scparating variables and intcgrating we have

$$
\frac{d y}{\sqrt{y}}=d x \quad \text { and } \quad 2 \sqrt{y}=x+c
$$

Letting $y\left(x_{0}\right)=y_{0}$ we get $c=2 \sqrt{y_{0}}-x_{0}$, so that

$$
2 \sqrt{y}=x+2 \sqrt{y_{0}}-x_{0} \quad \text { and } \quad y=\frac{1}{4}\left(x+2 \sqrt{y_{0}}-x_{0}\right)^{2} .
$$

Since $\sqrt{y}>0$ for $y \neq 0$, we see that $d y / d x=\frac{1}{2}\left(x+2 \sqrt{y_{0}}-x_{0}\right)$ must be positive. Thus, the interval on which the solution is defined is $\left(x_{0}-2 \sqrt{y_{0}}, \infty\right)$.

Chapter 2 in Review

22. (a) The differential equation is homogeneous and we let $y=u x$. Then

$$
\begin{aligned}
\left(x^{2}-y^{2}\right) d x+x y d y & =0 \\
\left(x^{2}-u^{2} x^{2}\right) d x+u x^{2}(u d x+x d u) & =0 \\
d x+u x d u & =0 \\
u d u & =-\frac{d x}{x} \\
\frac{1}{2} u^{2} & =-\ln |x|+c \\
\frac{y^{2}}{x^{2}} & =-2 \ln |x|+c_{1}
\end{aligned}
$$

The initial condition gives $c_{1}=2$, so an implicit solution is $y^{2}=x^{2}(2-2 \ln |x|)$.
(b) Solving for y in part (a) and being sure that the initial condition is still satisficd, we have $y=-\sqrt{2}|x|(1-\ln |x|)^{1 / 2}$, where $-\epsilon \leq x \leq e$ so that $1-\ln |x| \geq 0$. The graph of this function indicates that the derivative is not defined at $x=0$ and $x=e$. Thus, the solution of the initial-value problem is $y=-\sqrt{2} x(1-\ln x)^{1 / 2}$, for $0<x<e$.

23. The graph of $y_{1}(x)$ is the portion of the closed black curve lying in the fourth quadrant. Its inte:- of definition is approximately $(0.7,4.3)$. The graph of $y_{2}(x)$ is the portion of the left-hand bl: : curve lying in the third quadrant. Its interval of definition is $(-\infty, 0)$.
24. The first step of Euler's method gives $y(1.1) \approx 9 \div 0.1(1+3)=9.4$. Applying Euler's method $:=$ more time gives $y(1.2) \approx 9.4+0.1(1+1.1 \sqrt{9.4}) \approx 9.8373$.
25. Since the differential cquation is autonomous, all lineal elements on a given horizontal line have the same slope. The direction field is then as shown in the figure at the right. It appears from the figure that the differential equation has critical points at -2 (an attractor) and at 2 (a repoller). Thus, -2 is an aymptotically stable critical point and 2 is an unstable critical point.

25. Since the differential equation is autonomous, all lineal elements on a given horizontal line have the same slope. The direction field is then as shown in the figure at the right. It appears from the figure that the differential equation has no critical points.

3
 Modeling with First-Order Differential Equations

Exercises 3.1

Linear Models

1. Let $P=P(t)$ be the population at time t, and P_{0} the initial population. From $d P / d t=k=$ obtain $P=P_{0} e^{k t}$. Using $P(5)=2 P_{0}$ we find $k=\frac{1}{5} \ln 2$ and $P=P_{0} e^{(\ln 2) t / 5}$. Setting $P(t)=$ we have $3=e^{(\ln 2) t / 5}$, so

$$
\ln 3=\frac{(\ln 2) t}{5} \quad \text { and } \quad t=\frac{5 \ln 3}{\ln 2} \approx 7.9 \text { years. }
$$

Sctting $P(t)=4 P_{0}$ we have $4=e^{(\ln 2) t / 5}$, so

$$
\ln 4=\frac{(\ln 2) t}{5} \quad \text { and } \quad t \approx 10 \text { years }
$$

2. From Problem 1 the growth constant is $k=\frac{1}{5} \ln 2$. Then $P=P_{0} e^{(1 / 5)(\ln 2) t}$ and $10,000=P_{0} e^{(3 / 5}$ Solving for P_{0} we get $P_{0}=10,000 e^{-(3 / 5) \ln 2}=6,597.5$. Now

$$
P(10)=P_{0} e^{(1 / 5)(\ln 2)(10)}=6,597.5 e^{2 \ln 2}=4 P_{0}=26,390 .
$$

The rate at which the population is growing is

$$
P^{\prime}(10)=k P(10)=\frac{1}{5}(\ln 2) 26,390=3658 \text { persons/year } .
$$

3. Let $P=P(t)$ be the population at time t. Then $d P / d t=k P$ and $P=c e^{k t}$. From $P(0)=c=$ we see that $P=500 e^{k t}$. Since 15% of 500 is 75 , we have $P(10)=500 e^{10 k}=575$. Solving for : get $k=\frac{1}{10} \ln \frac{575}{500}=\frac{1}{10} \ln 1.15$. When $t=30$,

$$
P(30)=500 e^{(1 / 10)(\ln 1.15) 30}=500 e^{3 \ln 1.15}=760 \text { years }
$$

and

$$
P^{\prime}(30)=k P(30)=\frac{1}{10}(\ln 1.15) 760=10.62 \text { persons } / \text { year } .
$$

4. Let $P=P(t)$ be bacteria population at time t and P_{0} the initial number. From $d P / d t=k=$ obtain $P=P_{0} e^{k t}$. Using $P(3)=400$ and $P(10)=2000$ we find $400=P_{0} e^{3 k}$ or $e^{k}=\left(400 / P_{1}\right.$. From $P(10)=2000$ we then have $2000=P_{0} e^{10 k}=P_{0}\left(400 / P_{0}\right)^{10 / 3}$, so

$$
\frac{2000}{400^{10 / 3}}=P_{0}^{-7 / 3} \quad \text { and } \quad P_{0}=\left(\frac{2000}{400^{10 / 3}}\right)^{-3 / 7} \approx 201
$$

E. -at $A=A(t)$ be the amount of lead present at time t. From $d A / d t=k A$ and $A(0)=1$ we obtain $\therefore=e^{k t}$. Using $A(3.3)=1 / 2$ we find $k=\frac{1}{3.3} \ln (1 / 2)$. When 90% of the lead has decayed, 0.1 grams $\cdots 11$ remain. Setting $A(t)=0.1$ we have $e^{t(1 / 3.3) \ln (1 / 2)}=0.1$, so

$$
\frac{t}{3.3} \ln \frac{1}{2}=\ln 0.1 \quad \text { and } \quad t=\frac{3.3 \ln 0.1}{\ln (1 / 2)} \approx 10.96 \text { hours }
$$

$\therefore \therefore$. $\mathrm{Et} A=A(t)$ be the amount present at time t. From $d A / d t=k A$ and $A(0)=100$ we obtain $\therefore=100 e^{k t}$. Using $A(6)=97$ we find $k=\frac{1}{6} \ln 0.97$. Then $A(24)=100 e^{(1 / 6)(\ln 0.97) 24}=100(0.97)^{4} \approx$ ミ5 mg.
-. $-\operatorname{tting} A(t)=50$ in Problem 6 we obtain $50=100 e^{k t}$, so

$$
k t=\ln \frac{1}{2} \quad \text { and } \quad t=\frac{\ln (1 / 2)}{(1 / 6) \ln 0.97} \approx 136.5 \text { hours. }
$$

- a) The solution of $d A / d t=k A$ is $A(t)=A_{0} e^{k t}$. Letting $A=\frac{1}{2} A_{0}$ and solving for t we obtain the half-life $T=-(\ln 2) / k$.
b) Since $k=-(\ln 2) / T$ we have

$$
A(t)=A_{0} e^{-(\ln 2) t / T}=A_{0} 2^{-t / T}
$$

c) Writing $\frac{1}{8} A_{0}=A_{0} 2^{-l / T}$ as $2^{-3}=2^{-l / T}$ and solving for t we get $t=3 T$. Thus, an initial amount A_{0} will decay to $\frac{1}{8} A_{0}$ in three half-lives.
$\therefore \therefore I=I(t)$ be the intensity, t the thickness, and $I(0)=I_{0}$. If $d I / d t=k I$ and $I(3)=0.25 I_{0}$, then $\therefore=I_{0} e^{k t}, k=\frac{1}{3} \ln 0.25$, and $I(15)=0.00098 I_{(0)}$.
इぃm $d S / d t=r S$ wo obtain $S=S_{0} e^{r t}$ where $S(0)=S_{0}$.
a) If $S_{0}=\$ 5000$ and $r=5.75 \%$ then $S(5)=\$ 6665.45$.

3) If $S(t)=\$ 10.000$ then $t=12$ years.
$\therefore \quad S \approx \$ 6651.82$
.. - and that $A=A_{0} e^{k t}$ and $k=-0.00012378$. If $A(t)=0.145 A_{0}$ then $t \approx 15,600$ years.
$\because \equiv$ Example 3 in the text, the amount of carbon present at time t is $A(t)=A_{0} e^{-0.00012378 t}$. $-\div$ ing $t=660$ and solving for A_{0} we have $A(660)=A_{0} e^{-0.0001237(660)}=0.921553 A_{0}$. Thus, \because roximately 92% of the original amount of C-14 remained in the cloth as of 1988.
-: \because :ume that $d T / d t=k(T-10)$ so that $T=10+c e^{k t}$. If $T(0)=70^{\circ}$ and $T(1 / 2)=50^{\circ}$ then $c=60$ $\therefore k=2 \ln (2 / 3)$ so that $T(1)=36.67^{\circ}$. If $T(t)=15^{\circ}$ then $t=3.06$ minutes.

- \because : me that $d T / d t=k(T-j)$ so that $T=j+c e^{k t}$. If $T(1)=55^{\circ}$ and $T(5)=30^{\circ}$ then $k=-\frac{1}{4} \ln 2$ $\therefore \quad \therefore=59.4611$ so that $T(0)=64.4611^{\circ}$.

Exercises 3.1 Linear Models

15. We use the fact that the boiling temperature for water is $100^{\circ} \mathrm{C}$. Now assume that $d T / d t=$ $k(T-100)$ so that $T=100+c e^{k t}$. If $T(0)=20^{\circ}$ and $T(1)=22^{\circ}$, then $c=-80$ and $k=$ $\ln (39 / 40) \approx-0.0253$. Then $T(t)=100-80 e^{-0.0253 t}$, and when $T=90, t=82.1$ seconds. \because $T(t)=98^{\circ}$ then $t=145.7$ seconds.
16. The differential equation for the first container is $d T_{1} / d t=k_{1}\left(T_{1}-0\right)=k_{1} T_{1}$, whose solution :$T_{1}(t)=c_{1} e^{k_{1} t}$. Since $T_{1}(0)=100$ (the initial temperature of the metal bar), we have $100=c_{1}$ ar $T_{1}(t)=100 e^{k_{1} l}$. After 1 minute, $T_{1}(1)=100 e^{k_{1}}=90^{\circ} \mathrm{C}$, so $k_{1}=\ln 0.9$ and $T_{1}(t)=100 e^{t \ln 0}$. After 2 minutes, $T_{1}(2)=100 e^{2 \ln 0.9}=100(0.9)^{2}=81^{\circ} \mathrm{C}$.

The differential equation for the second container is $d T_{2} / d t=k_{2}\left(T_{2}-100\right)$, whose solution :$T_{2}(t)=100+c_{2} e^{k_{2} t}$. When the metal bar is immersed in the second container, its initial temperatu:is $T_{2}(0)=81$, so

$$
T_{2}(0)=100+c_{2} e^{k_{2}(0)}=100+c_{2}=81
$$

and $c_{2}=-19$. Thus, $T_{2}(t)=100-19 e^{k_{2} t}$. After 1 minute in the second tank, the temperature the metal bar is $91^{\circ} \mathrm{C}$, so

$$
\begin{aligned}
T_{2}(1) & =100-19 e^{k_{2}}=91 \\
e^{k_{2}} & =\frac{9}{19} \\
k_{2} & =\ln \frac{9}{19}
\end{aligned}
$$

and $T_{2}(t)=100-19 e^{t \ln (9 / 19)}$. Setting $T_{2}(t)=99.9$ we have

$$
\begin{aligned}
100-19 e^{t \ln (9 / 19)} & =99.9 \\
e^{t \ln (9 / 19)} & =\frac{0.1}{19} \\
t & =\frac{\ln (0.1 / 19)}{\ln (9 / 19)} \approx 7.02 .
\end{aligned}
$$

Thus, from the start of the "double dipping" process, the total time until the bar reaches 99. in the second container is approximately 9.02 minutes.
17. Using separation of variables to solve $d T / d t=k\left(T-T_{m}\right)$ we get $T(t)=T_{m}+c e^{k t}$. Using $T(0)={ }^{-}$ we find $c=70-T_{m}$, so $T(t)=T_{m}+\left(70-T_{m}\right) e^{k t}$. Using the given observations, we obtain

$$
\begin{aligned}
T\left(\frac{1}{2}\right) & =T_{m}+\left(70-T_{m}\right) e^{k / 2}=110 \\
T(1) & =T_{m}+\left(70-T_{m}\right) e^{k}=145
\end{aligned}
$$

Then, from the first equation, $e^{k / 2}=\left(110-T_{m}\right) /\left(70-T_{m}\right)$ and

$$
\begin{aligned}
e^{k}=\left(e^{k / 2}\right)^{2}=\left(\frac{110-T_{m}}{70-T_{m}}\right)^{2} & =\frac{145-T_{m}}{70-T_{m}} \\
\frac{\left(110-T_{m}\right)^{2}}{70-T_{m}} & =145-T_{m} \\
12100-220 T_{m}+T_{m}^{2} & =10150-215 T_{m}+T_{m}^{2} \\
T_{m} & =390
\end{aligned}
$$

The temperature in the oven is 390°.
:3. (a) The initial temperature of the bath is $T_{m}(0)=60^{\circ}$, so in the short term the temperature of the chemical, which starts at 80°, should decrease or cool. Over time, the temperature of the bath will increase toward 100° since $e^{-0.1 t}$ decreases from 1 toward 0 as t increases from 0 . Thus, in the long term, the temperature of the chemical should increase or warm toward 100°.
(b) Adapting the model for Newton's law of cooling, we have

$$
\frac{d T}{d t}=-0.1\left(T-100+40 e^{-0.1 t}\right), \quad T(0)=80
$$

Writing the differential equation in the form

$$
\frac{d T}{d t}+0.1 T=10-4 e^{-0.1 t}
$$

we see that it is linear with integrating factor $e^{\int 0.1 d t}=e^{0.1 t}$. Thus

$$
\begin{aligned}
\frac{d}{d t}\left[e^{0.1 t} T\right] & =10 e^{0.1 t}-4 \\
e^{0.1 t} T & =100 e^{0.1 t}-4 t+c
\end{aligned}
$$

and

$$
T(t)=100-4 t e^{-0.1 t}+c e^{-0.1 t}
$$

Now $T(0)=80$ so $100+c=80, c=-20$ and

$$
T(t)=100-4 t e^{-0.1 t}-20 e^{-0.1 t}=100-(4 t+20) e^{-0.1 t}
$$

The thinner curve verifies the prediction of cooling followed by warming toward 100°. The wider curve shows the temperature T_{m} of the liquid bath.

- $\because=$-tifying $T_{m}=70$, the differential equation is $d T / d t=k(T-70)$. Assuming $T(0)=98.6$ and \cdots : ating variables we find $T(t)=70+28.9 e^{k t}$. If $t_{1}>0$ is the time of discovery of the body, then

$$
T\left(t_{1}\right)=70+28.6 e^{k t_{1}}=85 \quad \text { and } \quad T\left(t_{1}+1\right)=70+28.6 e^{k\left(t_{1}+1\right)}=80
$$

Exercises 3.1 Linear Models

Therefore $e^{k t_{1}}=15 / 28.6$ and $e^{k\left(t_{1}^{2}-1\right)}=10 / 28.6$. This implies

$$
e^{k}=\frac{10}{28.6} e^{-k t_{1}}=\frac{10}{28.6} \cdot \frac{28.6}{15}=\frac{2}{3},
$$

so $k=\ln \frac{2}{3} \approx-0.405465108$. Therefore

$$
t_{1}=\frac{1}{k} \ln \frac{1.5}{28.6} \approx 1.5916 \approx 1.6
$$

Death took place about 1.6 hours prior to the discovery of the body.
20. Solving the differential equation $d T / d t=k S\left(T-T_{m}\right)$ subject to $T(0)=T_{0}$ gives

$$
T(t)=T_{m}+\left(T_{0}-T_{m}\right) e^{k S t}
$$

The temperatures of the coffee in cups A and B are, respectively,

$$
T_{A}(t)=70+80 e^{k S t} \quad \text { and } \quad T_{B}(t)=70+80 e^{2 k S t}
$$

Then $T_{A}(30)=70+80 e^{30 k S}=100$, which implies $e^{30 k S}=\frac{3}{8}$. Hence

$$
\begin{aligned}
T_{B}(30) & =70+80 e^{60 k S}=70+80\left(e^{30 k S}\right)^{2} \\
& =70+80\left(\frac{3}{8}\right)^{2}=70+80\left(\frac{9}{64}\right)=81.25^{\circ} \mathrm{F}
\end{aligned}
$$

21. From $d A / d t=4-A / 50$ we obtain $A=200+c e^{-t / 50}$. If $A(0)=30$ then $c=-170$ $A=200-170 e^{-t / 50}$.
22. From $d A / d t=0-A / 50$ we obtain $A=c c^{-t / 50}$. If $A(0)=30$ then $c=30$ and $A=30 e^{-t / 50}$.
23. From $d A / d t=10-A / 100$ wo obtain $A=1000+c e^{-t / 100}$. If $A(0)=0$ then $c=-1000$ $A(t)=1000-1000 e^{-t / 100}$.
24. From Problem 23 the number of pounds of salt in the tank at time t is $A(t)=1000-1000 e^{-t}$. The concentration at time t is $c(t)=A(t) / 500=2-2 e^{-t / 100}$. Thercfore $c(5)=2-2 e^{-1 / 2}$ $0.0975 \mathrm{lb} / \mathrm{gal}$ and $\lim _{t \rightarrow \infty} c(t)=2$. Solving $c(t)=1=2-2 e^{-t / 100}$ for t we obtain $t=100 \mathrm{ln} \mathrm{I}$ 69.3 min .
25. From

$$
\frac{d A}{d t}=10-\frac{10 A}{500-(10-5) t}=10-\frac{2 A}{100-t}
$$

we obtain $A=1000-10 t+c(100-t)^{2}$. If $A(0)=0$ then $c=-\frac{1}{10}$. The tank is empty in minutes.
26. With $c_{i n}(t)=2+\sin (t / 4) \mathrm{lb} / \mathrm{gal}$, the initial-value problem is

$$
\frac{d A}{d t}+\frac{1}{100} A=6+3 \sin \frac{t}{4}, \quad A(0)=50 .
$$

-ie differential equation is linear with integrating factor $e^{\int d t / 100}=e^{t / 100}$, so

$$
\begin{aligned}
\frac{d}{d t}\left[c^{t / 100} A(t)\right] & =\left(6+3 \sin \frac{t}{4}\right) e^{t / 100} \\
e^{t / 100} A(t) & =600 e^{t / 100}+\frac{150}{313} e^{t / 100} \sin \frac{t}{4}-\frac{3750}{313} e^{t / 100} \cos \frac{t}{4}+c
\end{aligned}
$$

$\because 1$

$$
A(t)=600+\frac{150}{313} \sin \frac{t}{4}-\frac{3750}{313} \cos \frac{t}{4}+c e^{-t / 100}
$$

$-\div$ ing $t=0$ and $A=50$ we have $600-3750 / 313+c=50$ and $c=-168400 / 313$. Then

$$
A(t)=600+\frac{150}{313} \sin \frac{t}{4}-\frac{3750}{313} \cos \frac{t}{4}-\frac{168400}{313} e^{-t / 100}
$$

- graphs on $[0,300$ and $[0,600]$ below show the effect of the sine function in the input when mpared with the graph in Figure 3.1.4(a) in the text.

$=\equiv \mathrm{m}$

$$
\frac{d A}{d t}=3-\frac{4 A}{100+(6-4) t}=3-\frac{2 A}{50+t}
$$

$\stackrel{-}{\circ}$.btain $A=50+t+c(50+t)^{-2}$. If $A(0)=10$ then $c=-100 ; 000$ and $A(30)=64.38$ pounds.
\geq 三 Initially the tank contains 300 gallons of solution. Since brine is pumped in at a rate of $3 \mathrm{gal} / \mathrm{min}$ and the mixture is pumped out at a rate of $2 \mathrm{gal} / \mathrm{min}$, the net change is an increase of $1 \mathrm{gal} / \mathrm{min}$. Thus, in 100 minutes the tank will contain its capacity of 400 gallons.
E: The differential equation describing the amount of salt in the tank is $A^{\prime}(t)=6-2 A /(300+t)$ with solution

$$
A(t)=600+2 t-\left(4.95 \times 10^{7}\right)(300+t)^{-2} ; \quad 0 \leq t \leq 100
$$

as noted in the discussion following Example 5 in the text. Thus, the amount of salt in the rank when it overflows is

$$
A(100)=800-\left(4.95 \times 10^{7}\right)(400)^{-2}=490.625 \mathrm{lbs}
$$

When the tank is overflowing the amount of salt in the tank is governed by the differential
equation

$$
\begin{aligned}
\frac{d A}{d t} & =(3 \mathrm{gal} / \mathrm{min})(2 \mathrm{lb} / \mathrm{gal})-\left(\frac{A}{400} \mathrm{lb} / \mathrm{gal}\right)(3 \mathrm{gal} / \mathrm{min}) \\
& =6-\frac{3 A}{400}, \quad A(100)=490.625
\end{aligned}
$$

Solving the equation, we obtain $A(t)=800+c e^{-3 t / 400}$. The initial condition yields $c=-654.947$, so that

$$
A(t)=800-654.947 e^{-3 t / 400}
$$

When $t=150, A(150)=587.37 \mathrm{lbs}$.
(d) As $t \rightarrow \infty$, the amount of salt is 800 lbs , which is to be expected since $(400 \mathrm{gal})(2 \mathrm{lb} / \mathrm{gal})=800 \mathrm{lbs}$.
(e)

29. Assume $L d i / d t+R i=E(t), L=0.1, R=50$, and $E(t)=50$ so that $i=\frac{3}{5}+c e^{-500 t}$. If $i(0)=$ then $c=-3 / 5$ and $\lim _{t \rightarrow \infty} i(t)=3 / 5$.
30. Assume $L d i / d t+R i=E(t), E(t)=E_{0} \sin \omega t$, and $i(0)=i_{0}$ so that

$$
i=\frac{E_{0} R}{L^{2} \omega^{2}+R^{2}} \sin \omega t-\frac{E_{0} L \omega}{L^{2} \omega^{2}+R^{2}} \cos \omega t+c e^{-R t / L}
$$

Since $i(0)=i_{0}$ we obtain $c=i_{0}+\frac{E_{0} L \omega}{L^{2} \omega^{2}+R^{2}}$.
31. Assume $R d q / d t+(1 / C) q=E(t), R=200, C=10^{-4}$, and $E(t)=100$ so that $\ddot{q}=1 / 100+c e^{-50}$ If $q(0)=0$ then $c=-1 / 100$ and $i=\frac{1}{2} e^{-50 t}$.
32. Assume $R d q / d t+(1 / C) q=E(t), R=1000, C=5 \times 10^{-6}$, and $E(t)=200$. Then $q=\frac{1}{1000}+c e^{-20}$ and $i=-200 c e^{-200 t}$. If $i(0)=0.4$ then $c=-\frac{1}{500}, q(0.005)=0.003$ coulombs, and $i(0.005)$ 0.1472 amps . We have $q \rightarrow \frac{1}{1000}$ as $t \rightarrow \infty$.
33. For $0 \leq t \leq 20$ the differential equation is $20 d i / d t+2 i=120$. An integrating factor is $e^{t / 10}$, s $(d / d t)\left[e^{t / 10} i\right]=6 e^{t / 10}$ and $i=60+c_{1} e^{-t / 10}$. If $i(0)=0$ then $c_{1}=-60$ and $i=60-60 e^{-t / \mathbf{n}}$ For $t>20$ the differential equation is $20 d i / d t+2 i=0$ and $i=c_{2} e^{-t / 10}$. At $t=20$ we wa
$\because \because^{-2}=60-60 e^{-2}$ so that $c_{2}=60\left(e^{2}-1\right)$. Thus

$$
i(t)= \begin{cases}60-60 e^{-t / 10}, & 0 \leq t \leq 20 \\ 60\left(e^{2}-1\right) e^{-t / 10}, & t>20\end{cases}
$$

-1. \quad parating variables, we obtain

$$
\begin{aligned}
\frac{d q}{E_{0}-q / C} & =\frac{d t}{k_{1}+k_{2} t} \\
-C \ln \left|E_{0}-\frac{q}{C}\right| & =\frac{1}{k_{2}} \ln \left|k_{1}+k_{2} t\right|+c_{1} \\
\frac{\left(E_{0}-q / C\right)^{-C}}{\left(k_{1}+k_{2} t\right)^{1 / k_{2}}} & =c_{2} .
\end{aligned}
$$

B-: $\operatorname{ting} q(0)=q_{0}$ we find $c_{2}=\left(E_{0}-q_{0} / C\right)^{-C} / k_{1}^{1 / k_{2}}$, so

$$
\begin{aligned}
\frac{\left(E_{0}-q / C\right)^{-C}}{\left(k_{1}+k_{2} t\right)^{1 / k_{2}}} & =\frac{\left(E_{0}-q_{0} / C\right)^{-C}}{k_{1}^{1 / k_{2}}} \\
\left(E_{0}-\frac{q}{C}\right)^{-C} & =\left(E_{0}-\frac{q_{0}}{C}\right)^{-C}\left(\frac{k_{1}}{k+k_{2} t}\right)^{-1 / k_{2}} \\
E_{0}-\frac{q}{C} & =\left(E_{0}-\frac{q 0}{C}\right)\left(\frac{k_{1}}{k+k_{2} t}\right)^{1 / C k_{2}} \\
q & =E_{0} C+\left(q_{0}-E_{0} C\right)\left(\frac{k_{1}}{k+k_{2} t}\right)^{1 / C k_{2}}
\end{aligned}
$$

$5 . \quad$ । a) From $m d v / d t=m g-k v$ we obtain $v=m g / k+c e^{-k t / m}$. If $v(0)=v_{0}$ then $c=v_{0}-m g / k$ and the solution of the initial-value problem is

$$
v(t)=\frac{m g}{k}+\left(v_{0}-\frac{m g}{k}\right) e^{-k t / m}
$$

b) As $t \rightarrow \infty$ the limiting velocity is $m g / k$.
(c) From $d s / d t=v$ and $s(0)=0$ we obtain

$$
s(t)=\frac{m g}{k} t-\frac{m}{k}\left(v_{0}-\frac{m g}{k}\right) e^{-k t / m}+\frac{m}{k}\left(v_{0}-\frac{m g}{k}\right) .
$$

\therefore (a) Intcgrating $d^{2} s / d t^{2}=-g$ we get $v(t)=d s / d t=-g t+c$. From $v(0)=300$ wc find $c=300$, and we are given $g=32$, so the velocity is $v(t)=-32 t+300$.
'b) Integrating again and using $s(0)=0$ we get $s(t)=-16 t^{2}+300 t$. The maximum height is attained when $v=0$, that is, at $t_{a}=9.375$. The maximum height will be $s(9.375)=1406.25 \mathrm{ft}$.

Exercises 3.1 Linear Models

37. When air resistance is proportional to velocity, the model for the velocity is $m d v / d t=$ $-m g-k v$ (using the fact that the positive direction is upward.) Solving the differential equition using separation of variables we obtain $v(t)=-m g / k+c e^{-k t / m}$. From $v(0)=300$ we get

$$
v(t)=-\frac{m g}{k}+\left(300+\frac{m g}{k}\right) e^{-k t / m}
$$

Integrating and using $s(0)=0$ we find

$$
s(t)=-\frac{m g}{k} t+\frac{m}{k}\left(300+\frac{m g}{k}\right)\left(1-e^{-k t / m}\right)
$$

Setting $k=0.0025, m=16 / 32=0.5$, and $g=32$ we have

$$
s(t)=1,340,000-6,400 t-1,340,000 e^{-0.005 t}
$$

and

$$
v(t)=-6,400+6,700 e^{-0.005 t}
$$

The maximum height is attained whon $v=0$, that is, at $t_{a}=9.162$. The maximum height will $s(9.162)=1363.79 \mathrm{ft}$, which is less than the maximum height in Problem 36.
38. Assuming that the air resistance is proportional to velocity and the positive direction is downwe. with $s(0)=0$, the model for the velocity is $m d v / d t=m g-k v$. Using separation of variat:to solve this differential equation, we obtain $v(t)=m g / k+c e^{-k t / m}$. Then, using $v(0)=0$. get $v(t)=(m g / k)\left(1-\epsilon^{-k t / m}\right)$. Letting $k=0.5, m=(125+35) / 32=5$, and $g=32$, we h: $v(t)=320\left(1-e^{-0.1 t}\right)$. Integrating, we find $s(t)=320 t+3200 e^{-0.1 t}+c_{1}$. Solving $s(0)=$ for c_{1} we find $c_{1}=-3200$, thereforc $s(t)=320 t+3200 e^{-0.1 t}-3200$. At $t=15$, when $:$ parachute opens, $v(15)=248.598$ and $s(15)=2314.02$. At this time the value of k change $k=10$ and the now initial velocity is $v_{0}=248.598$. With the parachute open, the skydir-velocity is $v_{p}(t)=m g / k+c_{2} e^{-k l / m}$, where t is reset to 0 when the parachute opens. Letr: $m=5, g=32$, and $k=10$, this gives $v_{p}(t)=16+c_{2} e^{-2 t}$. From $v(0)=248.598$ we -.. $c_{2}=232.598$, so $v_{p}(t)=16+232.598 e^{-2 t}$. Integrating, we get $s_{p}(t)=16 t-116.299 e^{-2 t}+c_{3}$. Sol \cdots $s_{p}(0)=0$ for c_{3}, we find $c_{3}=116.299$, so $s_{p}(t)=16 t-116.299 e^{-2 t}+116.299$. Twenty seconds a_{i} leaving the planc is five seconds after the parachute opens. The skydiver's velocity at this tim$v_{p}(5)=16.0106 \mathrm{ft} / \mathrm{s}$ and she has fallen a total of $s(15)+s_{p}(5)=2314.02+196.294=2510.3$: Her terminal velocity is $\lim _{t \rightarrow x} v_{p}(t)=16$, so she has very nearly reached her terminal velc. five seconds after the parachute opens. When the parachute opens, the distance to the grour: $15,000-s(15)=15,000-2,314=12,686 \mathrm{ft}$. Solving $s_{p}(t)=12,686$ we get $t=785.6 \mathrm{~s}=$: min . Thus, it will take her approximately 13.1 minutes to reach the ground after her parachute . opened and a total of $(785.6+15) / 60=13.34$ minutes after she cxits the plane.
39. (a) The differential equation is first-ordcr and lincar. Letting $b=k / \rho$, the integrating fact
$e^{\int 3 b d l /\left(b t+r_{0}\right)}=\left(r_{0}+b t\right)^{3}$. Then

$$
\frac{d}{d t}\left[\left(r_{0}+b t\right)^{3} v\right]=g\left(r_{0}+b t\right)^{3} \quad \text { and } \quad\left(r_{0}+b t\right)^{3} v=\frac{g}{4 b}\left(r_{0}+b t\right)^{4}+c .
$$

The solution of the differential equation is $v(t)=(g / 4 b)\left(r_{0}+b t\right)+c\left(r_{0}+b t\right)^{-3}$. Using $v(0)=0$ we find $c=-g r_{0}^{4} / 4 b$, so that

$$
v(t)=\frac{g}{4 b}\left(r_{0}+b t\right)-\frac{g r_{0}^{4}}{4 b\left(r_{0}+b t\right)^{3}}=\frac{g \rho}{4 k}\left(r_{0}+\frac{k}{\rho} t\right)-\frac{g \rho r_{0}^{4}}{4 k\left(r_{0}+k t / \rho\right)^{3}} .
$$

(b) Integrating $d r / d t=k / \rho$ we get $r=k t / \rho+c$. Using $r(0)=r_{0}$ we have $c=r_{0}$, so $r(t)=k t / \rho+r_{0}$.
(c) If $r=0.007 \mathrm{ft}$ when $t=10 \mathrm{~s}$, then solving $r(10)=0.007$ for k / ρ, we obtain $k / \rho=-0.0003$ and $r(t)=0.01-0.0003 t$. Solving $r(t)=0$ we get $t=33.3$, so the raindrop will have evaporated completely at 33.3 seconds.
\therefore - Separating variables, we obtain $d P / P=k \cos t d t$, so

$$
\ln |P|=k \sin t+c \quad \text { and } \quad P=c_{1} e^{k \sin t}
$$

If $P(0)=P_{0}$, then $c_{1}=P_{0}$ and $P=P_{0} e^{k \sin t}$.

\therefore (a) From $d P / d t=\left(k_{1}-k_{2}\right) P$ we obtain $P=P_{0} e^{\left(k_{1}-k_{2}\right) t}$ where $P_{0}=P(0)$.
(b) If $k_{1}>k_{2}$ then $P \rightarrow \infty$ as $t \rightarrow \infty$. If $k_{1}=k_{2}$ then $P=P_{0}$ for every t. If $k_{1}<k_{2}$ then $P \rightarrow 0$ as $t \rightarrow \infty$.
$=$. (a) The solution of the differential equation is $P(t)=c_{1} e^{k l}+h / k$. If we let the initial population of fish be P_{0} then $P(0)=P_{0}$ which implies that

$$
c_{1}=P_{0}-\frac{h}{k} \quad \text { and } \quad P(t)=\left(P_{0}-\frac{h}{k}\right) e^{k t}+\frac{h}{k} .
$$

b) For $P_{0}>h / k$ all terms in the solution arc positive. In this case $P(t)$ increases as time t increases. That is, $P(t) \rightarrow \infty$ as $t \rightarrow \infty$.

For $P_{0}=h / k$ the population remains constant for all time t :

$$
P(t)=\left(\frac{h}{k}-\frac{h}{k}\right) e^{k t}+\frac{h}{k}=\frac{h}{k} .
$$

For $0<P_{0}<h / k$ the cocfficient of the exponential function is negative and so the function decreases as time t increases.
c) Since the function decreases and is concave down, the graph of $P(t)$ crosses the t-axis. That is, there exists a time $T>0$ such that $P(T)=0$. Solving

$$
\left(P_{0}-\frac{h}{k}\right) e^{k T}+\frac{h}{k}=0
$$

Exercises 3.1 Linear Models

for T shows that the time of extinction is

$$
T=\frac{1}{k} \ln \left(\frac{h}{h-k P_{0}}\right) .
$$

43. (a) Solving $r-k x=0$ for x we find the equilibrium solution $x=r / k$. When $x<r / k$, $d x / d t>0$ and when $x>r / k, d x / d t<0$. From the phase portrait we see that $\lim _{t \rightarrow \infty} x(t)=r / k$.
(b) From $d x / d t=r-k x$ and $x(0)=0$ we obtain $x=r / k-(r / k) e^{-k t}$ so that $x \rightarrow r / k$ as $t \rightarrow \infty$. If $x(T)=r / 2 k$ then $T=(\ln 2) / k$.

44. (a) Solving $k_{1}(M-A)-k_{2} A=0$ for A we find the equilibrium solution
\therefore $A=k_{1} M /\left(k_{1}+k_{2}\right)$. From the phase portrait we see that $\lim _{t \rightarrow \infty} A(t)=$ $k_{1} M /\left(k_{1}+k_{2}\right)$. Since $k_{2}>0$, the material will never be completely memorized and the larger k_{2} is, the less the amount of material will be memorized over time.
(b) Write the differential equation in the form $d A / d t+\left(k_{1}+k_{2}\right) A=$ $k_{1} M$. Then an integrating factor is $e^{\left(k_{1}+k_{2}\right) t}$, and

$$
\begin{aligned}
\frac{d}{d t}\left[e^{\left(k_{1}+k_{2}\right) t} A\right] & =k_{1} M e^{\left(k_{1}+k_{2}\right) t} \\
e^{\left(k_{1}+k_{2}\right) t} A & =\frac{k_{1} M}{k_{1}+k_{2}} e^{\left(k_{1}+k_{2}\right) t}+c \\
A & =\frac{k_{1} M}{k_{1}+k_{2}}+c e^{-\left(k_{1}+k_{2}\right) t}
\end{aligned}
$$

Using $A(0)=0$ we find $c=-\frac{k_{1} M}{k_{1}+k_{2}}$ and $A=\frac{k_{1} M}{k_{1}+k_{2}}\left(1-e^{-\left(k_{1}+k_{2}\right) t}\right)$. As $t \rightarrow \infty$, $A \rightarrow \frac{k_{1} M}{k_{1}+k_{2}}$.
4.5. (a) For $0 \leq t<4,6 \leq t<10$ and $12 \leq t<16$, no voltage is applicd to the heart and $E(t)=0$. At the other times, the differential equation is $d E / d t=-E / R C$. Scparating variables, integrating, and solving for e, we get $E=k e^{-l / R C}$; subject to $E(4)=E(10)=E(16)=12$. These intitial conditions yield, respectively, $k=12 e^{4 / R C}: k=12 e^{10 / R C}, k=12 e^{16 / R C}$, and $k=12 e^{22 / R C}$. Thus

$$
E(t)= \begin{cases}0, & 0 \leq t<4,6 \leq t<10,12 \leq t<16 \\ 12 e^{(1-t) / R C}, & 4 \leq t<6 \\ 12 e^{(10-t) / R C}, & 10 \leq t<12 \\ 12 e^{(16-t) / R C}, & 16 \leq t<18 \\ 12 e^{(22-l) / R C}, & 22 \leq t<24 .\end{cases}
$$

(b)

$\because \therefore$ (a) (i) Using Newton's second law of motion, $F=m a=m d v / d t$, the differential equation for the velocity v is

$$
m \frac{d v}{d t}=m g \sin \theta \quad \text { or } \quad \frac{d v}{d t}=g \sin \theta,
$$

where $m g \sin \theta, 0<\theta<\pi / 2$, is the component of the weight along the plane in the direction of motion.
(ii) The model now becomes

$$
m \frac{d v}{d t}=m g \sin \theta-\mu m g \cos \theta
$$

where $\mu m g \cos \theta$ is the component of the force of sliding friction (which acts perpendicular to the plane) along the plane. The negative sign indicates that this component of force is a retarding force which acts in the direction opposite to that of motion.
(iiii) If air resistance is taken to be proportional to the instantaneous velocity of the body, the model becomes

$$
m \frac{d v}{d t}=m g \sin \theta-\mu m g \cos \theta-k v
$$

where k is a constant of proportionality.
(b) (i) With $m=3$ slugs, the differential equation is

$$
3 \frac{d v}{d t}=(96) \cdot \frac{1}{2} \quad \text { or } \quad \frac{d v}{d t}=16
$$

Integrating the last equation gives $v(t)=16 t+c_{1}$. Since $v(0)=0$, we have $c_{1}=0$ and: $v(t)=16 t$.
(ii) With $m=3$ slugs, the differential cquation is

$$
3 \frac{d v}{d t}=(96) \cdot \frac{1}{2}-\frac{\sqrt{3}}{4} \cdot(96) \cdot \frac{\sqrt{3}}{2} \quad \text { or } \quad \frac{d v}{d t}=4
$$

In this case $v(t)=4 t$.
(iiii) When the retarding force due to air resistance is taken into account, the different:oquation for velocity v becomes

$$
3 \frac{d v}{d t}=(96) \cdot \frac{1}{2}-\frac{\sqrt{3}}{4} \cdot(96) \cdot \frac{\sqrt{3}}{2}-\frac{1}{4} v \quad \text { or } \quad 3 \frac{d v}{d t}=12-\frac{1}{4} v
$$

The last differential equation is linear and has solution $v(t)=48+c_{1} e^{-t / 12}$. Since $v(0)=$ we find $c_{1}=-48$, so $v(t)=48-48 e^{-t / 12}$.
47. (a) (i) If $s(t)$ is distance measured down the plane from the highest point, then $d s / d t=v$. In: grating $d s / d t=16 t$ gives $s(t)=8 t^{2}+c_{2}$. Using $s(0)=0$ then gives $c_{2}=0$. Now the lons L of the plane is $L=50 / \sin 30^{\circ}=100 \mathrm{ft}$. The time it takes the box to slide completely dc the plane is the solution of $s(t)=100$ or $t^{2}=25 / 2$, so $t \approx 3.54 \mathrm{~s}$.
(ii) Integrating $d s / d t=4 t$ gives $s(t)=2 t^{2}+c_{2}$. Using $s(0)=0$ gives $c_{2}=0$, so $s(t)=2 t^{2} ;$ the solution of $s(t)=100$ is now $t \approx 7.07 \mathrm{~s}$.
(iii) Integrating $d s / d t=48-48 e^{-t / 12}$ and using $s(0)=0$ to determine the constan: integration, we obtain $s(t)=48 t+576 e^{-t / 12}-576$. With the aid of a CAS we find that solution of $s(t)=100$, or

$$
100=18 t+576 e^{-t / 12}-576 \quad \text { or } \quad 0=48 t+576 e^{-t / 12}-676
$$

is now $t \approx 7.84 \mathrm{~s}$.
(b) The differential equation $m d v / d t=m g \sin \theta-\mu m g \cos \theta$ can be written

$$
m \frac{d v}{d t}=m g \cos \theta(\tan \theta-\mu)
$$

If $\tan \theta=\mu, d v / d t=0$ and $v(0)=0$ implies that $v(t)=0$. If $\tan \theta<\mu$ and $v(0)=0$. : integration implies $v(t)=g \cos \theta(\tan \theta-\mu) t<0$ for all time t.
(c) Since $\tan 23^{\circ}=0.4245$ and $\mu=\sqrt{3} / 4=0.4330$, we see that $\tan 23^{\circ}<0.4330$. The differt: equation is $d v / d t=32 \cos 23^{\circ}\left(\tan 23^{\circ}-\sqrt{3} / 4\right)=-0.251493$. Integration and the $1:-$
the initial condition gives $v(t)=-0.251493 t+1$. When the box stops, $v(t)=0$ or $0=$ $-0.251493 t+1$ or $t=3.976254 \mathrm{~s}$. From $s(t)=-0.125747 t^{2}+t$ we find $s(3.976254)=1.988119 \mathrm{ft}$.
(d) With $v_{0}>0 . v(t)=-0.251493 t+v_{0}$ and $s(t)=-0.125747 t^{2}+v_{0} t$. Because two real positive solutions of the equation $s(t)=100$, or $0=-0.12 .5747 t^{2}+v_{0} t-100$, would be physically meaningless, we use the quadratic formula and require that $b^{2}-4 a c=0$ or $v_{0}^{2}-50.2987=0$. From this last cquality we find $v_{0} \approx 7.092164 \mathrm{ft} / \mathrm{s}$. For the time it takes the box to traverse the entire inclined plane, we must have $0=-0.125747 t^{2}+7.092164 t-100$. Mathematica gives complex roots for the last equation: $t=28.2001 \pm 0.0124458$ i. But, for

$$
0=-0.125747 t^{2}+7.092164691 t-100
$$

the roots are $t=28.1999 \mathrm{~s}$ and $t=28.2004 \mathrm{~s}$. So if $v_{0}>7.092164$, we are guaranteed that the box will slide completely down the plane.

- (a) We saw in part (b) of Problem 36 that the ascent time is $t_{a}=9.375$. To find when the camonball hits the ground we solve $s(t)=-16 t^{2}+300 t=0$, getting a total time in flight of $t=18.75 \mathrm{~s}$. Thus, the time of descent is $t_{d}=18.75-9.375=9.375$. The impact velocity is $v_{i}=v(18.75)=-300$, which has the same magnitude as the initial velocity.

। b) We saw in Problem 37 that the ascent time in the case of air resistance is $t_{a}=9.162$. Solving $s(t)=1,340,000-6,400 t-1,340,000 e^{-0.005 t}=0$ we see that the total time of flight is 18.466 s . Thus, the descent time is $t_{d}=18.466-9.162=9.304$. The impact velocity is $v_{i}=v(18.466)=$ -290.91 , compared to an initial velocity of $v_{0}=300$.

Exercises 3.2

Nonlinear Models

: a) Solving $N(1-0.0005 N)=0$ for N we find the equilibrium solutions $N=0$ and $N=2000$. When $0<N<2000, d N / d t>0$. From the phase portrait we see that $\lim _{t \rightarrow \infty} N(t)=2000$. A graph of the solution is shown in part (b).
(b) Separating variables and integrating we have

$$
\frac{d N}{N(1-0.0005 N)}=\left(\frac{1}{N}-\frac{1}{N-2000}\right) d N=d t
$$

and

$$
\ln N-\ln (N-2000)=t+c
$$

Solving for N we get $N(t)=2000 e^{c+t} /\left(1+e^{c+t}\right)=2000 e^{c} e^{t} /\left(1+e^{c} e^{t}\right)$. Using $N(0)=1 \quad \cdots$ solving for e^{c} we find $e^{c}=1 / 1999$ and so $N(t)=2000 e^{t} /\left(1999+e^{l}\right)$. Then $N(10)=1833.2$ so 1834 companies are expected to adopt the new technology when $t=10$.
2. From $d N / d t=N(a-b N)$ and $N(0)=500$ we obtain

$$
N=\frac{500 a}{500 b+(a-500 b) e^{-a t}}
$$

Since $\lim _{t \rightarrow \infty} N=a / b=50,000$ and $N(1)=1000$ we have $a=0.7033, b=0.00014, \dot{a}:$. $N=50.000 /\left(1+99 e^{-0.7033 \ell}\right)$.
3. From $d P / d t=P\left(10^{-1}-10^{-7} P\right)$ and $P(0)=5000$ we obtain $P=500 /\left(0.0005+0.0995 e^{-0 . \mathrm{I}^{*}}{ }^{-3}\right.$ that $P \rightarrow 1,000,000$ as $t \rightarrow \infty$. If $P(t)=500,000$ then $t=52.9$ months.
4. (a) We have $d P / d t=P(a-b P)$ with $P(0)=3.929$ million. Using separation of variable: $-a$ obtain

$$
\begin{aligned}
P(t) & =\frac{3.929 a}{3.929 b+(a-3.929 b) e^{-a t}}=\frac{a / b}{1+(a / 3.929 b-1) e^{-a t}} \\
& =\frac{c}{1+(c / 3.929-1) e^{-a t}},
\end{aligned}
$$

where $c=a / b$. At $t=60(1850)$ the population is 23.192 million, so

$$
23.192=\frac{c}{1+(c / 3.929-1) e^{-60 a}}
$$

or $c=23.192+23.192(c / 3.929-1) e^{-60 a}$. At $t=120(1910)$,

$$
91.972=\frac{c}{1+(c / 3.929-1) e^{-120 a}}
$$

or $c=91.972+91.972(c / 3.929-1)\left(e^{-60 a}\right)^{2}$. Combining the two equations for c we get

$$
\left(\frac{(c-23.192) / 23.192}{c / 3.929-1}\right)^{2}\left(\frac{c}{3.929}-1\right)=\frac{c-91.972}{91.972}
$$

or

$$
91.972(3.929)(c-23.192)^{2}=(23.192)^{2}(c-91.972)(c-3.929)
$$

The solution of this quadratic equation is $c=197.274$. This in turn gives $a=0.0313$. Ther: :

$$
P(t)=\frac{197.274}{1+49.21 e^{-0.0313 t}}
$$

b)

Year	Census Population	Predicted Population	Error	Error
1790	3.929	3.929	0.000	0.00
1800	5.308	5.334	-0.026	-0.49
1810	7.240	7.222	0.018	0.24
1820	9.638	9.746	-0.108	-1.12
1830	12.866	13.090	-0.224	-1.74
1840	17.069	17.475	-0.406	-2.38
1850	23.192	23.143	0.049	0.21
1860	31.433	30.341	1.092	3.47
1870	38.558	39.272	-0.714	-1.85
1880	50.156	50.044	0.112	0.22
1890	62.948	62.600	0.348	0.55
1900	75.996	76.666	-0.670	-0.88
1910	91.972	91.739	0.233	0.25
1920	105.711	107.143	-1.432	-1.35
1930	122.775	122.140	0.635	0.52
1940	131.669	136.068	-4.399	-3.34
1950	150.697	148.445	2.252	1.49

The model predicts a population of 159.0 million for 1960 and 167.8 million for 1970 . The census populations for these ycars were 179.3 and 203.3, respectivcly. The percentage errors are 12.8 and 21.2 , respectivcly.

三. ia) The differential equation is $d P / d t=P(5-P)-4$. Solving $P(5-P)-4=0$ for P we obtain equilibrium solutions $P=1$ and $P=4$. The phase portrait is shown on the right and solution curves arc shown in part (b). We see that for $P_{0}>4$ and $1<P_{0}<4$ the population approaches 4 as t increases. For $0<P<1$ the population decreases to 0 in finite time.
b) The differential equation is

$$
\frac{d P}{d t}=P(5-P)-4=-\left(P^{2}-5 P+4\right)=-(P-4)(P-1)
$$

Separating variables and intcgrating, we obtain

$$
\begin{aligned}
\frac{d P}{(P-4)(P-1)} & =-d t \\
\left(\frac{1 / 3}{P-4}-\frac{1 / 3}{P-1}\right) d P & =-d t \\
\frac{1}{3} \ln \left|\frac{P-4}{P-1}\right| & =-t+c \\
\frac{P-4}{P-1} & =c_{1} e^{-3 t}
\end{aligned}
$$

Setting $t=0$ and $P=P_{0}$ we find $c_{1}=\left(P_{0}-4\right) /\left(P_{0}-1\right)$. Solving for P we obtain

$$
P(t)=\frac{4\left(P_{0}-1\right)-\left(P_{0}-4\right) e^{-3 t}}{\left(P_{0}-1\right)-\left(P_{0}-4\right) e^{-3 t}}
$$

(c) To find when the population becomes extinct in the case $0<P_{0}<1$ we set $P=0$ in

$$
\frac{P-4}{P-1}=\frac{P_{0}-4}{P_{0}-1} e^{-3 t}
$$

from part (a) and solve for t. This gives the time of extinction

$$
t=-\frac{1}{3} \ln \frac{4\left(P_{0}-1\right)}{P_{0}-4} .
$$

6. Solving $P(5-P)-\frac{25}{4}=0$ for P we obtain the equilibrium solution $P=\frac{5}{2}$. For $P \neq \frac{5}{2}, d P / d t<0$. Thus, if $P_{0}<\frac{5}{2}$, the population becomes extinct (otherwise there would be another equilibrium: solution.) Using separation of variables to solve the initial-value problem, we get

$$
P(t)=\left[4 P_{0}+\left(10 P_{0}-25\right) t\right] /\left[4+\left(4 P_{0}-10\right) t\right]_{]} .
$$

To find when the population becomes extinct for $P_{0}<\frac{5}{2}$ we solve $P(t)=0$ for t. We see that the time of extinction is $t=4 P_{0} / 5\left(5-2 P_{0}\right)$.
7. Solving $P(5-P)-7=0$ for P we obtain complex roots, so there are no equilibrium solutions Since $d P / d t<0$ for all values of P, the population becomes extinct for any initial condition. Usin: separation of variables to solve the initial-value problem, we get

$$
P(t)=\frac{5}{2}+\frac{\sqrt{3}}{2} \tan \left[\tan ^{-1}\left(\frac{2 P_{0}-5}{\sqrt{3}}\right)-\frac{\sqrt{3}}{2} t\right] .
$$

Solving $P(t)=0$ for t we sec that the time of extinction is

$$
t=\frac{2}{3}\left(\sqrt{3} \tan ^{-1}(5 / \sqrt{3})+\sqrt{3} \tan ^{-1}\left[\left(2 P_{0}-5\right) / \sqrt{3}\right]\right) .
$$

8. (a) The differential equation is $d P / d t=P(1-\ln P)$, which has the equilibrium solution $P=e$. When $P_{0}>e, d P / d t<0$, and when $P_{0}<e$, $d P / d t>0$.

(b) The differential equation is $d P / d t=P(1+\ln P)$, which has the equilibrium solution $P=1 / e$. When $P_{0}>1 / e ; d P / d t>0$, and when $P_{0}<1 / e$, $d P / d t<0$.

(c) From $d P / d t=P(a-b \ln P)$ we obtain $-(1 / b) \ln |a-b \ln P|=t+c_{1}$ so that $P=e^{a / b} e^{-c e^{-t}}$ If $P(0)=P_{0}$ then $c=(a / b)-\ln P_{0}$.

Exercises 3.2

\therefore Let $X=X(t)$ be the amount of C at time t and $d X / d t=k(120-2 X)(150-$. . If $\mathrm{I}=\mathrm{a}$ $I(5)=10$. then

$$
X(t)=\frac{150-1.50 e^{180 k t}}{1-2.5 e^{180 k t}}
$$

rhere $k=.0001259$ and $X(20)=29.3$ grams. Now by L'Hôpital's rule, $X \rightarrow 60$ as $t \rightarrow \infty$, so that the amount of $A \rightarrow 0$ and the amount of $B \rightarrow 30$ as $t \rightarrow \infty$.
\therefore From $d X / d t=k(150-X)^{2}, X(0)=0$, and $X(5)=10$ we obtain $X=150-1.50 /(150 k t+1)$ where $\therefore=.000095238$. Then $X(20)=33.3$ grams and $X \rightarrow 150$ as $t \rightarrow \infty$ so that the amount of $A \rightarrow 0$ End the amount of $B \rightarrow 0$ as $t \rightarrow \infty$. If $X(t)=75$ then $t=70$ minutes.
\therefore (a) The initial-value problem is $d h / d t=-8 A_{h} \sqrt{h} / A_{w}$, $h(0)=H$. Separating variables and integrating we have

$$
\frac{d h}{\sqrt{h}}=-\frac{8 A_{h}}{A_{w}} d t \quad \text { and } \quad 2 \sqrt{h}=-\frac{8 A_{h}}{A_{w}} t+c
$$

Using $h(0)=H$ we find $c=2 \sqrt{H}$, so the solution of
 the initial-value problem is $\sqrt{h(t)}=\left(A_{w} \sqrt{H}-4 A_{h} t\right) / A_{w}$, where $A_{w} \sqrt{H}-4 A_{h} t \geq 0$. Thus,

$$
h(t)=\left(A_{w} \sqrt{H}-4 A_{h} t\right)^{2} / A_{w}^{2} \quad \text { for } \quad 0 \leq t \leq A_{w} \sqrt{H} / 4 A_{h} .
$$

b) Identifying $H=10, A_{w}=4 \pi$, and $A_{h}=\pi / 576$ we have $h(t)=t^{2} / 331,776-(\sqrt{5 / 2} / 144) t+10$.

Solving $h(t)=0$ we see that the tank empties in $576 \sqrt{10}$ seconds or 30.36 minutes.
\therefore To obtain the solution of this differential equation we use $h(t)$ from Problem 13 in Exercises 1.3. Then $h(t)=\left(A_{w} \sqrt{H}-4 c A_{h} t\right)^{2} / A_{w}^{2}$. Solving $h(t)=0$ with $c=0.6$ and the values from Problem 11 ae see that the tank empties in 3035.79 seconds or 50.6 minutes.
\therefore a) Separating variables and integrating gives

$$
6 h^{3 / 2} d h=-5 d t \quad \text { and } \quad \frac{12}{5} h^{5 / 2}=-5 t+c
$$

Using $h(0)=20$ we find $c=1920 \sqrt{5}$, so the solution of the initial-value problem is $h(t)=$ $\left(800 \sqrt{5}-\frac{25}{12} t\right)^{2 / 5}$. Solving $h(t)=0$ we see that the tank empties in $384 \sqrt{5}$ seconds or 14.31 minutes.
b) When the height of the water is h, the radius of the top of the water is $r=h \tan 30^{\circ}=h_{\rho}$ and $A_{w}=\pi h^{2} / 3$. The differential equation is

$$
\frac{d h}{d t}=-c \frac{A_{h}}{A_{w}} \sqrt{2 g h}=-0.6 \frac{\pi(2 / 12)^{2}}{\pi h^{2} / 3} \sqrt{64 h}=-\frac{2}{5 h^{3 / 2}} .
$$

Separating variables and integrating gives

$$
5 h^{3 / 2} d h=-2 d t \quad \text { and } \quad 2 h^{5 / 2}=-2 t+c
$$

Using $h(0)=9$ we find $c=486$, so the solution of the initial-value problem is $h(t)=(243-t)^{2_{i}}$: Solving $h(t)=0$ we see that the tank cmpties in 243 seconds or 4.05 minutes.
14. Whon the height of the water is h, the radius of the top of the water is $\frac{2}{5}(20-h)$ ar: $A_{u}=4 \pi(20-h)^{2} / 25$. The differential equation is

$$
\frac{d h}{d t}=-c \frac{A_{h}}{A_{w}} \sqrt{2 g h}=-0.6 \frac{\pi(2 / 12)^{2}}{4 \pi(20-h)^{2} / 25} \sqrt{64 h}=-\frac{5}{6} \frac{\sqrt{h}}{(20-h)^{2}} .
$$

Separating variables and integrating we have

$$
\frac{(20-h)^{2}}{\sqrt{h}} d h=-\frac{5}{6} d t \quad \text { and } \quad 800 \sqrt{h}-\frac{80}{3} h^{3 / 2}+\frac{2}{5} h^{5 / 2}=-\frac{5}{6} t+c
$$

Using $h(0)=20$ we find $c=2560 \sqrt{5} / 3$, so an implicit solution of the initial-value problem is

$$
800 \sqrt{h}-\frac{80}{3} h^{3 / 2}+\frac{2}{5} h^{\overline{5} / 2}=-\frac{5}{6} t+\frac{2560 \sqrt{5}}{3} .
$$

To find the time it takes the tank to cmpty we set $h=0$ and solve for t. The tank empties :$1024 \sqrt{5}$ seconds or 38.16 minutes. Thus, the tank emptics more slowly when the base of the cc:is on the bottom.
15. (a) After separating variables we obtain

$$
\begin{aligned}
\frac{m d v}{m g-k v^{2}} & =d t \\
\frac{1}{g} \frac{d v}{1-(\sqrt{k} v / \sqrt{m g})^{2}} & =d t \\
\frac{\sqrt{m g}}{\sqrt{k} g} \frac{\sqrt{k / m g} d v}{1-(\sqrt{k} v / \sqrt{m g})^{2}} & =d t \\
\sqrt{\frac{m}{k g}} \tanh ^{-1} \frac{\sqrt{k} v}{\sqrt{m g}} & =t+c \\
\tanh ^{-1} \frac{\sqrt{k} v}{\sqrt{m g}} & =\sqrt{\frac{k g}{m}} t+c_{1}
\end{aligned}
$$

Thus the velocity at time t is

$$
v(t)=\sqrt{\frac{m g}{k}} \tanh \left(\sqrt{\frac{k g}{m}} t+c_{1}\right)
$$

Setting $t=0$ and $v=v_{0}$ we find $c_{1}=\tanh ^{-1}\left(\sqrt{k} v_{0} / \sqrt{m g}\right)$.
b) Since $\tanh t \rightarrow 1$ as $t \rightarrow \infty$, we have $v \rightarrow \sqrt{m g / k}$ as $t \rightarrow \infty$.
c) Integrating the expression for $v(t)$ in part (a) we obtain an integral of the form $\int d u / u$:

$$
s(t)=\sqrt{\frac{m g}{k}} \int \tanh \left(\sqrt{\frac{k g}{m}} t+c_{1}\right) d t=\frac{m}{k} \ln \left[\cosh \left(\sqrt{\frac{k g}{m}} t+c_{1}\right)\right]+c_{2}
$$

Setting $t=0$ and $s=0$ we find $c_{2}=-(m / k) \ln \left(\cosh c_{1}\right)$, where c_{1} is given in part (a).
\therefore-he differential equation is $m d v / d t=-m g-k v^{2}$. Separating variables and intcgrating, we have

$$
\begin{aligned}
\frac{d v}{m g+k v^{2}} & =-\frac{d t}{m} \\
\frac{1}{\sqrt{m g k}} \tan ^{-1}\left(\frac{\sqrt{k} v}{\sqrt{m g}}\right) & =-\frac{1}{m} t+c \\
\tan ^{-1}\left(\frac{\sqrt{k} v}{\sqrt{m g}}\right) & =-\sqrt{\frac{g k}{m}} t+c_{1} \\
v(t) & =\sqrt{\frac{m g}{k}} \tan \left(c_{1}-\sqrt{\frac{g k}{m}} t\right)
\end{aligned}
$$

Setting $v(0)=300, m=\frac{16}{32}=\frac{1}{2}, g=32$, and $k=0.0003$, we find $v(t)=230.94 \tan \left(c_{1}-0.138564 t\right)$ End $c_{1}=0.914743$. Integrating

$$
v(t)=230.94 \tan (0.914743-0.138564 t)
$$

ae get

$$
s(t)=1666.67 \ln |\cos (0.914743-0.138564 t)|+c_{2}
$$

\because - \because ing $s(0)=0$ we find $c_{2}=823.843$. Solving $v(t)=0$ we see that the maximum height is attained \because hen $t=6.60159$. The maximum height is $s(6.60159)=823.843 \mathrm{ft}$.
\therefore - (a) Let ρ be the weight density of the water and V the volume of the object. Archimedes; principle states that the upward buoyant force has magnitude equal to the weight of the water displaced.
Taking the positive direction to be down, the differential equation is

$$
m \frac{d v}{d t}=m g-k v^{2}-\rho V
$$

(b) Using separation of variables we have

$$
\begin{aligned}
\frac{m d v}{(m g-\rho V)-k v^{2}} & =d t \\
\frac{m}{\sqrt{k}} \frac{\sqrt{k} d v}{(\sqrt{m g-\rho V})^{2}-(\sqrt{k} v)^{2}} & =d t \\
\frac{m}{\sqrt{k}} \frac{1}{\sqrt{m g-\rho V}} \tanh ^{-1} \frac{\sqrt{k} v}{\sqrt{m g-\rho V}} & =t+c .
\end{aligned}
$$

Thus

$$
v(t)=\sqrt{\frac{m g-\rho V}{k}} \tanh \left(\frac{\sqrt{k m g-k \rho V}}{m} t+c_{1}\right)
$$

(c) Since $\tanh t \rightarrow 1$ as $t \rightarrow \infty$, the terminal velocity is $\sqrt{(m g-\rho V) / k}$.
18. (a) Writing the equation in the form $\left(x-\sqrt{x^{2}+y^{2}}\right) d x+y d y=0$ we identify $M=x-\sqrt{x^{2}+.}$. and $N=y$. Since M and N are both homogeneous functions of degree 1 we use the substituti:-: $y=u x$. It follows that

$$
\begin{aligned}
\left(x-\sqrt{x^{2}+u^{2} x^{2}}\right) d x+u x(u d x+x d u) & =0 \\
x\left[1-\sqrt{1+u^{2}}+u^{2}\right] d x \div x^{2} u d u & =0 \\
-\frac{u d u}{1+u^{2}-\sqrt{1+u^{2}}} & =\frac{d x}{x} \\
\frac{u d u}{\sqrt{1+u^{2}}\left(1-\sqrt{1+u^{2}}\right)} & =\frac{d x}{x} .
\end{aligned}
$$

Letting $w=1-\sqrt{1+u^{2}}$ we have $d w=-u d u / \sqrt{1+u^{2}}$ so that

$$
\begin{aligned}
-\ln \left|1-\sqrt{1+u^{2}}\right| & =\ln |x|+c \\
\frac{1}{1-\sqrt{1+u^{2}}} & =c_{1} x \\
1-\sqrt{1+u^{2}} & =-\frac{c_{2}}{x} \quad\left(-c_{2}=1 / c_{1}\right) \\
1+\frac{c_{2}}{x} & =\sqrt{1+\frac{y^{2}}{x^{2}}} \\
1+\frac{2 c_{2}}{x}+\frac{c_{2}^{2}}{x^{2}} & =1+\frac{y^{2}}{x^{2}}
\end{aligned}
$$

Solving for y^{2} we have

$$
y^{2}=2 c_{2} x+c_{2}^{2}=4\left(\frac{c_{2}}{2}\right)\left(x+\frac{c_{2}}{2}\right)
$$

which is a family of parabolas symmetric with respect to the x-axis with vertex at ($-c_{2} / 2$, c and focus at the origin.
(b) Let $u=x^{2}+y^{2}$ so that

$$
\frac{d u}{d x}=2 x+2 y \frac{d y}{d x}
$$

Then

$$
y \frac{d y}{d x}=\frac{1}{2} \frac{d u}{d x}-x
$$

and the differential cquation can be written in the form

$$
\frac{1}{2} \frac{d u}{d x}-x=-x+\sqrt{u} \quad \text { or } \quad \frac{1}{2} \frac{d u}{d x}=\sqrt{u} .
$$

Scparating variables and integrating gives

$$
\begin{aligned}
\frac{d u}{2 \sqrt{u}} & =d x \\
\sqrt{u} & =x+c \\
u & =x^{2}+2 c x+c^{2} \\
x^{2}+y^{2} & =x^{2}+2 c x+c^{2} \\
y^{2} & =2 c x+c^{2} .
\end{aligned}
$$

-a. (a) From $2 W^{2}-W^{3}=W^{2}(2-W)=0$ we see that $W=0$ and $W=2$ are constant solutions.
(b) Separating variables and using a CAS to integrate we get

$$
\frac{d W}{W \sqrt{4-2 W}}=d x \quad \text { and } \quad-\tanh ^{-1}\left(\frac{1}{2} \sqrt{4-2 W}\right)=x+c
$$

Using the facts that the hyperbolic tangent is an odd function and $1-\tanh ^{2} x=\operatorname{sech}^{2} x$ we have

$$
\begin{aligned}
\frac{1}{2} \sqrt{4-2 W} & =\tanh (-x-c)=-\tanh (x+c) \\
\frac{1}{4}(4-2 W) & =\tanh ^{2}(x+c) \\
1-\frac{1}{2} W & =\tanh ^{2}(x+c) \\
\frac{1}{2} W & =1-\tanh ^{2}(x+c)=\operatorname{sech}^{2}(x+c)
\end{aligned}
$$

Thus, $W(x)=2 \operatorname{sech}^{2}(x+c)$.
(c) Letting $x=0$ and $W=2$ we find that $\operatorname{sech}^{2}(c)=1$ and $c=0$.

$\therefore \quad$ a) Solving $r^{2}+(10-h)^{2}=10^{2}$ for r^{2} we see that $r^{2}=20 h-h^{2}$. Combining the rate of input of water, π, with the rate of output due to evaporation, $k \pi r^{2}=k \pi\left(20 h-h^{2}\right)$, we have $d V / d t=$
$\pi-k \pi\left(20 h-h^{2}\right)$. Using $V=10 \pi h^{2}-\frac{1}{3} \pi h^{3}$, we see also that $d V / d t=\left(20 \pi h-\pi h^{2}\right) d h / d^{-}$ Thus,

$$
\left(20 \pi h-\pi h^{2}\right) \frac{d h}{d t}=\pi-k \pi\left(20 h-h^{2}\right) \quad \text { and } \quad \frac{d h}{d t}=\frac{1-20 k h+k h^{2}}{20 h-h^{2}}
$$

(b) Letting $k=1 / 100$, separating variables and integrating (with the help of a CAS), we get

$$
\frac{100 h(h-20)}{(h-10)^{2}} d h=d t \quad \text { and } \quad \frac{100\left(h^{2}-10 h+100\right)}{10-h}=t+c
$$

Uising $h(0)=0$ we find $c=1000$, and solving for h we get $h(t)=0.005\left(\sqrt{t^{2}+4000 t}-t\right)$, where the positive square root is chosen because $h \geq 0$.

(c) The volume of the tank is $V=\frac{2}{3} \pi(10)^{3}$ feet, so at a rate of π cubic feet per minute, the t \because.... will fill in $\frac{2}{3}(10)^{3} \approx 666.67$ minutes ≈ 11.11 hours.
(d) At 666.67 minutes, the depth of the water is $h(666.67)=5.486$ feet. From the graph in (b suspect that $\lim _{t \rightarrow \infty} h(t)=10$, in which case the tank will never completely fill. To prove $-\ldots$ we compute the limit of $h(t)$:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} h(t) & =0.005 \lim _{t \rightarrow \infty}\left(\sqrt{t^{2}+4000 t}-t\right)=0.005 \lim _{t \rightarrow \infty} \frac{t^{2}+4000 t-t^{2}}{\sqrt{t^{2}+4000 t}+t} \\
& =0.005 \lim _{t \rightarrow \infty} \frac{4000 t}{t \sqrt{1+4000 / t}+t}=0.005 \frac{4000}{1+1}=0.005(2000)=10
\end{aligned}
$$

21. (a)

t	$\mathrm{P}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t})$
0	3.929	0.035
10	5.308	0.036
20	7.240	0.033
30	9.638	0.033
40	12.866	0.033
50	17.069	0.036
60	23.192	0.036
70	31.433	0.023
80	38.558	0.030
90	50.156	0.026
100	62.948	0.021
110	75.996	0.021
120	91.972	0.015
130	105.711	0.016
140	122.775	0.007
150	131.669	0.014
160	150.697	0.019
170	179.300	

b) The regression line is $Q=0.0348391-0.000168222 P$.

c) The solution of the logistic equation is given in cquation (5) in the text. Identifying $a=$ 0.0348391 and $b=0.000168222$ we have

$$
P(t)=\frac{a P_{0}}{b P_{0}+\left(a-b P_{0}\right) e^{-a t}}
$$

d) With $P_{0}=3.929$ the solution becomes

$$
P(t)=\frac{0.136883}{0.000660944+0.0341781 e^{-0.0348391 t}}
$$

e)

f) We identify $t=180$ with $1970, t=190$ with 1980 , and $t=200$ with 1990 . The model predicts $P(180)=188.661, P(190)=193.735$, and $P(200)=197.485$. The actual population figures for these years are 203.303, 226.542, and 248.765 millions. As $t \rightarrow \infty, P(t) \rightarrow a / b=207.102$.
$\because \quad$ a) Using a CAS to solve $P(1-P)+0.3 e^{-P}=0$ for P we see that $P=1.09216$ is an equilibrium solution.
b) Since $f(P)>0$ for $0<P<1.09216$, the solution $P(t)$ of

$$
d P / d t=P(1-P)+0.3 e^{-P}, \quad P(0)=P_{0}
$$

is increasing for $P_{0}<1.09216$. Since $f(P)<0$ for $P>1.09216$, the solution $P(t)$ is decreasing for $P_{0}>1.09216$. Thus $P=1.09216$ is an attractor.

Exercises 3.2 Nonlincar Models

(c) The curves for the second initial-value problem are thicker. The equilibrium solution for the logic model is $P=1$. Comparing 1.09216 and 1 , we sce that the percentage increase is 9.216%.

23. To find t_{d} we solve

$$
m \frac{d v}{d t}=m g-k v^{2}, \quad v(0)=0
$$

using separation of variables. This gives

$$
v(t)=\sqrt{\frac{m g}{k}} \tanh \sqrt{\frac{k g}{m}} t .
$$

Integrating and using $s(0)=0$ gives

$$
s(t)=\frac{m}{k} \ln \left(\cosh \sqrt{\frac{k g}{m}} t\right)
$$

To find the time of descent we solve $s(t)=823.84$ and find $t_{d}=7.77882$. The impact velocity $v\left(t_{d}\right)=182.998$, which is positive because the positive direction is downward.
24. (a) Solving $v_{t}=\sqrt{m g / k}$ for k we obtain $k=m g / v_{t}^{2}$. The differential equation then becomes

$$
m \frac{d v}{d t}=m g-\frac{m g}{v_{t}^{2}} v^{2} \quad \text { or } \quad \frac{d v}{d t}=g\left(1-\frac{1}{v_{t}^{2}} v^{2}\right) .
$$

Separating variables and integrating gives

$$
v_{t} \tanh ^{-1} \frac{v}{v_{t}}=g t+c_{1} .
$$

The initial condition $v(0)=0$ implies $c_{1}=0$, so

$$
v(t)=v_{t} \tanh \frac{g t}{v_{t}}
$$

We find the distance by integrating:

$$
s(t)=\int v_{t} \tanh \frac{g t}{v_{l}} d t=\frac{v_{t}^{2}}{g} \ln \left(\cosh \frac{g t}{v_{t}}\right)+c_{2}
$$

The initial condition $s(0)=0$ implies $c_{2}=0$, so

$$
s(t)=\frac{v_{t}^{2}}{g} \ln \left(\cosh \frac{g t}{v_{t}}\right)
$$

In 25 seconds she has fallen $20,000-14,800=5.200$ fect. Using a CAS to solve

$$
5200=\left(v_{t}^{2} / 32\right) \ln \left(\cosh \frac{32(25)}{v_{t}}\right)
$$

for v_{t} gives $v_{t} \approx 271.711 \mathrm{ft} / \mathrm{s}$. Then

$$
s(t)=\frac{v_{t}^{2}}{g} \ln \left(\cosh \frac{g t}{v_{t}}\right)=2307.08 \ln (\cosh 0.117772 t)
$$

(b) At $t=15, s(15)=2,542.94 \mathrm{ft}$ and $v(15)=s^{\prime}(15)=256.287 \mathrm{ft} / \mathrm{sec}$.
$=$. While the object is in the air its velocity is modeled by the linear differential equation $m d v / d t=$ $n g-k v$. Using $m=160, k=\frac{1}{4}$, and $g=32$, the differential equation becomes $d v / d t+(1 / 640) v=$ 32. The integrating factor is $e^{\int d t / 640}=e^{t / 640}$ and the solution of the differential equation is $:^{1 / 640} v=\int 32 e^{l / 640} d t=20,480 e^{t / 640}+c$. Using $v(0)=0$ we see that $c=-20,480$ and $v(t)=$ $20,480-20,480 e^{-l / 640}$. Integrating we get $s(t)=20,480 t+13,107,200 e^{-t / 640}+c$. Since $s(0)=0$, $\because=-13,107,200$ and $s(t)=-13,107,200+20,480 t+13,107,200 e^{-t / 640}$. To find when the object :its the liquid we solve $s(t)=500-75=425$, obtaining $t_{a}=5.16018$. The velocity at the time of impact with the liquid is $v_{a}=v\left(t_{a}\right)=164.482$. When the object is in the liquid its velocity is تnodeled by the nonlinear differential equation $m d v / d t=m g-k v^{2}$. Using $m=160, g=32$, and $\therefore=0.1$ this becomes $d v / d t=\left(51,200-v^{2}\right) / 1600$. Separating variables and integrating we have

$$
\frac{d v}{51,200-v^{2}}=\frac{d t}{1600} \quad \text { and } \quad \frac{\sqrt{2}}{640} \ln \left|\frac{v-160 \sqrt{2}}{v+160 \sqrt{2}}\right|=\frac{1}{1600} t+c .
$$

Solving $v(0)=v_{a}=164.482$ we obtain $c=-0.00407537$. Then, for $v<160 \sqrt{2}=226.274$,

$$
\left|\frac{v-160 \sqrt{2}}{v+160 \sqrt{2}}\right|=e^{\sqrt{2} t / 5-1.8443} \quad \text { or } \quad-\frac{v-160 \sqrt{2}}{v+160 \sqrt{2}}=e^{\sqrt{2} t / 5-1.8443}
$$

Solving for v we get

$$
v(t)=\frac{13964.6-2208.29 e^{\sqrt{2} t / 5}}{61.7153+9.75937 e^{\sqrt{2} t / 5}}
$$

-ilegrating we find

$$
s(t)=226.275 t-1600 \ln \left(6.3237+e^{\sqrt{2} t / 5}\right)+c
$$

Bilving $s(0)=0$ we see that $c=3185.78$, so

$$
s(t)=3185.78+226.275 t-1600 \ln \left(6.3237+e^{\sqrt{2} t / 5}\right)
$$

- 5 find when the object hits the bottom of the tank we solve $s(t)=75$, obtaining $t_{b}=0.466273$.
-ine time from when the object is dropped from the helicopter to when it hits the bottom of the $\because \mathrm{nk}$ is $t_{a}+t_{b}=5.62708$ seconds.

Exercises 3.2 Nonlinear Models

26. The velocity vector of the swimmer is

$$
\mathbf{v}=\mathbf{v}_{s}+\mathbf{v}_{r}=\left(-v_{s} \cos \theta,-v_{s} \sin \theta\right)+\left(0, v_{r}\right)=\left(-v_{s} \cos \theta \cdot-v_{s} \sin \theta+v_{r}\right)=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)
$$

Equating components gives

$$
\frac{d x}{d t}=-v_{s} \cos \theta \quad \text { and } \quad \frac{d y}{d t}=-v_{s} \sin \theta+v_{r}
$$

so

$$
\frac{d x}{d t}=-\tau_{s} \frac{x}{\sqrt{x^{2}+y^{2}}} \quad \text { and } \quad \frac{d y}{d t}=-v_{s} \frac{y}{\sqrt{x^{2}+y^{2}}}+v_{r}
$$

Thus,

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{-v_{s} y+v_{r} \sqrt{x^{2}+y^{2}}}{-v_{s} x}=\frac{v_{s} y-v_{r} \sqrt{x^{2}+y^{2}}}{v_{s} x} .
$$

27. (a) With $k=v_{r} / v_{s}$,

$$
\frac{d y}{d x}=\frac{y-k \sqrt{x^{2}+y^{2}}}{x}
$$

is a first-order homogeneous differential equation (see Section 2.5). Substituting $y=u x$ int: the differential equation gives

$$
u+x \frac{d u}{d x}=u-k \sqrt{1+u^{2}} \quad \text { or } \quad \frac{d u}{d x}=-k \sqrt{1+u^{2}}
$$

Separating variables and integrating we obtain

$$
\int \frac{d u}{\sqrt{1+u^{2}}}=-\int k d x \quad \text { or } \quad \ln \left(u+\sqrt{1+u^{2}}\right)=-k \ln x+\ln c .
$$

This implies

$$
\ln x^{k}\left(u+\sqrt{1+u^{2}}\right)=\ln c \quad \text { or } \quad x^{k}\left(\frac{y}{x}+\frac{\sqrt{x^{2}+y^{2}}}{x}\right)=c .
$$

The condition $y(1)=0$ gives $c=1$ and so $y+\sqrt{x^{2}+y^{2}}=x^{1-k}$. Solving for y gives

$$
y(x)=\frac{1}{2}\left(x^{1-k}-x^{1+k}\right)
$$

(b) If $k=1$, then $v_{s}=v_{r}$ and $y=\frac{1}{2}\left(1-x^{2}\right)$. Since $y(0)=\frac{1}{2}$, the swimmer lands on the we:beach at $\left(0, \frac{1}{2}\right)$. That is, $\frac{1}{2}$ mile north of $(0,0)$.
If $k>1$, then $v_{r}>v_{s}$ and $1-k<0$. This mcans $\lim _{x \rightarrow 0^{+}} y(x)$ becomes infinitc, sin:$\lim _{x \rightarrow 0^{+}} x^{1-k}$ becomes infinite. The swimmer nover makes it to the west beach and is swe: northward with the current.
If $0<k<1$, then $v_{s}>v_{r}$ and $1-k>0$. The value of $y(x)$ at $x=0$ is $y(0)=0$. The swimn:has made it to the point $(0,0)$.
28. The velocity vector of the swimmor is

$$
\mathbf{v}=\mathbf{v}_{s} \div \mathbf{v}_{r}=\left(-v_{s}: 0\right)+\left(0 . v_{r}\right)=\left(\frac{d x}{d t}: \frac{d y}{d t}\right)
$$

Equating components gives
so

$$
\frac{d x}{d t}=-v_{s} \quad \text { and } \quad \frac{d y}{d t}=v_{r}
$$

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{v_{r}}{-v_{s}}=-\frac{v_{r}}{v_{s}} .
$$

29. The differential equation

$$
\frac{d y}{d x}=-\frac{3(x) x(1-x)}{2}
$$

separates into $d y=15\left(-x+x^{2}\right) d x$. Integration gives $y(x)=-\frac{15}{2} x^{2}+5 x^{3}+c$. The condition $y(1)=0$ gives $c=\frac{5}{2}$ and so $y(x)=\frac{1}{2}\left(-15 x^{2}+10 x^{3}+5\right)$. Since $y(0)=\frac{5}{2}$, the swimmer has to walk 2.5 miles back down the west beach to reach $(0,0)$.
30. This problem has a great many components, so we will consider the case in which air resistance is assumed to be proportional to the velocity. By Problem $3 \overline{5}$ in Section 3.1 the differential equation is

$$
m \frac{d v}{d t}=m g-k v
$$

and the solution is

$$
v(t)=\frac{m g}{k}+\left(v_{0}-\frac{m g}{k}\right) e^{-k t / m}
$$

If we take the initial velocity to be 0 , then the velocity at time t is

$$
v(t)=\frac{m g}{k}-\frac{m g}{k} e^{-k t / m}
$$

The mass of the raindrop is about $m=62 \times 0.000000155 / 32 \approx 0.0000003$ and $g=32$, so the volocity at time t is

$$
v(t)=\frac{0.0000096}{k}-\frac{0.0000096}{k} e^{-3333333 k t}
$$

If we let $k=0.0000007$, then $v(100) \approx 13.7 \mathrm{ft} / \mathrm{s}$. In this case 100 is the time in seconds. Since $7 \mathrm{mph} \approx 10.3 \mathrm{ft} / \mathrm{s}$, the assertion that the average velocity is 7 mph is not unreasonable. Of course, this assumes that the air resistance is proportional to the velocity, and, more importantly, that the constant of proportionality is 0.0000007 . The assumption about the constant is particularly suspect.
51. (a) Letting $c=0.6, A_{h}=\pi\left(\frac{1}{32} \cdot \frac{1}{12}\right)^{2}, A_{w}=\pi \cdot 1^{2}=\pi$, and $g=32$, the differential equation in Proble 12 becomes $d h / d t=-0.00003255 \sqrt{h}$. Separating variables and integrating, we get $2 \sqrt{h}=-0.00003255 t+c$, so $h=\left(c_{1}-0.00001628 t\right)^{2}$. Sctting $h(0)=2$, we find $c=\sqrt{2}$, so $h(t)=(\sqrt{2}-0.00001628 t)^{2}$, where h is measured in feet and t in seconds.
(b) One hour is $3: 600$ seconds, so the hour mark should be placed at

$$
h(3600)=[\sqrt{2}-0.00001628(3600)]^{2} \approx 1.838 \mathrm{ft} \approx 22.0525 \mathrm{in}
$$

up from the bottom of the tank. The remaining marks corresponding to the passage of $2,3,4, \ldots, 12$ hours are placed at the values shown in the table. The marks are not evenly spaced because the water is not draining out at a uniform rate; that is, $h(t)$ is not a lincar function of time.

time (seconds)	height (inches)
0	24.0000
1	22.0520
2	20.1864
3	18.4033
4	16.7026
5	15.0844
6	13.5485
7	12.0952
8	10.7242
9	9.4357
10	8.2297
11	7.1060
12	6.0648

32. (a) In this casc $A_{w}=\pi h^{2} / 4$ and the differential equation is

$$
\frac{d h}{d t}=-\frac{1}{7680} h^{-3 / 2}
$$

Separating variables and integrating, we have

$$
\begin{aligned}
h^{3 / 2} d h & =-\frac{1}{7680} d t \\
\frac{2}{5} h^{5 / 2} & =-\frac{1}{7680} t+c_{1} .
\end{aligned}
$$

Setting $h(0)=2$ we find $c_{1}=8 \sqrt{2} / 5$, so that

$$
\begin{aligned}
\frac{2}{5} h^{5 / 2} & =-\frac{1}{7680} t+\frac{8 \sqrt{2}}{5} \\
h^{5 / 2} & =4 \sqrt{2}-\frac{1}{3072} t
\end{aligned}
$$

and

$$
h=\left(4 \sqrt{2}-\frac{1}{3072} t\right)^{2 / 5}
$$

(b) In this case $h(4 \mathrm{hr})=h(14,400 \mathrm{~s})=11.8515$ inches and $h(5 \mathrm{hr})=h(18,000 \mathrm{~s})$ is not a r : number. Using a CAS to solve $h(t)=0$, we see that the tank runs dry at $t \approx 17,378 \mathrm{~s} \approx 4$: hr. Thus, this particular conical water clock can only measure time intervals of less than \therefore : hours.
33. If we let r_{h} denote the radius of the hole and $A_{w}=\pi[f(h)]^{2}$, then the differential equation $d h / d t=-k \sqrt{h}$, where $k=c A_{h} \sqrt{2 g} / A_{u}$: becomes

$$
\frac{d h}{d t}=-\frac{c \pi r_{h}^{2} \sqrt{2 g}}{\pi[f(h)]^{2}} \sqrt{h}=-\frac{8 c r_{h}^{2} \sqrt{h}}{[f(h)]^{2}} .
$$

For the time marks to be equally spaced, the rate of change of the height must be a constant; that is, $d h / d t=-a$. (The constant is negative because the height is decreasing.) Thus

$$
-a=-\frac{8 c r_{h}^{2} \sqrt{h}}{[f(h)]^{2}}, \quad[f(h)]^{2}=\frac{8 c r_{h}^{2} \sqrt{h}}{a}, \quad \text { and } \quad r=f(h)=2 r_{h} \sqrt{\frac{2 c}{a}} h^{1 / 4}
$$

Solving for h. we have

$$
h=\frac{a^{2}}{64 c^{2} r_{h}^{4}} r^{4}
$$

The shape of the tank with $c=0.6, a=2 \mathrm{ft} / 12 \mathrm{hr}=1 \mathrm{ft} / 21,600 \mathrm{~s}$, and $r_{h}=1 / 32(12)=1 / 384$ is shown in the above figure.
\vdots : This is a Contributed Problem and the solution has been providel by the authors of the problem.)
(a) Answers will vary
(b) Answers will vary. This sample data is from Data from "Growth of Sunflower

Seeds" by H.S. Reed and R.H. Holland, Proc. Nat. Acad. Sci., Volume 5, 1919, page 140. as quoted in http://math.arizona.edu/~dsl/bflower.htm

day	height
7	17.93
14	36.36
21	67.76
28	98.10
35	131.00
42	169.50
49	205.50
56	228.30
53	247.10
-0	250.50
-7	253.80
54	254.50

Exercises 3.2 Nonlincar Models

(c)

(d) In the case of the sample data, it looks more like logistic growth, with $\mathrm{C}=255 \mathrm{~cm} . \mathrm{C}$ is the height of the flower when it is fully grown.
(e) For our sample data:

day	height	$\mathrm{dH} / \mathrm{dt}$	k estimate
7	17.93	2.633	0.000619
14	36.36	3.559	0.000448
21	67.76	4.410	0.000348
28	98.10	4.517	0.000293
35	131.00	5.100	0.000314
42	169.50	5.321	0.000367
49	205.50	4.200	0.000413
56	228.30	2.971	0.000487
63	247.10	1.586	0.000812
70	250.50	0.479	0.000425
77	253.80	0.286	0.000938
84	254.50	0.100	0.000786

We average the k values to obtain $k \approx 0.000521$. An argument can be made for dropping the first two and last two estimates, to obtain $k \approx 0.000432$.
(f) The solution is $y=\frac{255}{1+K e^{-.133 t}}$. We use the height of the sunflower at day 42 to obtain $y=\frac{255}{1+133.697 e^{-.133 t}}$.

3.5. (This is a Contributed Problem and the solution has been provided by the author of the problem.)
(a) Direction field and the solution curve sketch together:

Exercises 3.2 Nonlinear Models

(b) The solution is $P(t)=e^{k t}, k=1 / 12$, with graph:

(c) the DE has the constant zero function as equilibrium.
(d) The population grows to infinity.
(e) If the initial population is P_{0} then the resulting population would be $P(t)=P_{0} e^{k t}, k=1 / 12$,
(f) The solution would change from constant to exponential.
(g) Direction field with solution sketch.

Exercises 3.2

(h) The solution to the IVP is

$$
P=\frac{125}{3+122 e^{-t / 12}}
$$

and the graph is

i) the constant solutions to the DE are the zero function and the $125 / 3$ sunction.
j) solutions tend to $125 / 3$.
k) If the initial population is P_{0} then the resulting population could be expressed by

$$
P=\frac{125}{3+125 C e^{-t / 12}}
$$

Where

$$
C=\frac{1}{P_{0}}-\frac{3}{125}
$$

I: the solution would no longer be constant but tend to $125 / 3$.
m) there would be little change...the new solution would still tend to $125 / 3$.

Exercises 3.2 Nonlinear Models

(n) Direction field with solution sketch.

(o) the zero function is the only constant solution.
(p) The solution is slowly approaching 0 ; a change to $P(0)$ would still result in a solution curve which tends to 0 .

Exercises 3.3

Modeling with Systems of First-Order DEs

1. The linear equation $d x / d t=-\lambda_{1} x$ can be solved by either separation of variables or by a. grating factor. Integrating both sides of $d x / x=-\lambda_{1} d t$ we obtain $\ln |x|=-\lambda_{1} t+c$ from wh: get $x=c_{1} e^{-\lambda_{1} t}$. Using $x(0)=x_{0}$ we find $c_{1}=x_{0}$ so that $x=x_{0} e^{-\lambda_{1} l}$. Substituting this resi:-: the second differential equation we have

$$
\frac{d y}{d t}+\lambda_{2} y=\lambda_{1} x_{0} c^{-\lambda_{1} t}
$$

which is linear. An integrating factor is $e^{\lambda_{2} t}$ so that

$$
\begin{gathered}
\frac{d}{d t}\left[e^{\lambda_{2} t} y\right]=\lambda_{1} x_{0} e^{\left(\lambda_{2}-\lambda_{1}\right) t}+c_{2} \\
y=\frac{\lambda_{1} x_{0}}{\lambda_{2}-\lambda_{1}} e^{\left(\lambda_{2}-\lambda_{1}\right) t} e^{-\lambda_{2} t}+c_{2} e^{-\lambda_{2} t}=\frac{\lambda_{1} x_{0}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}+c_{2} e^{-\lambda_{2} t} .
\end{gathered}
$$

Using $y(0)=0$ we find $c_{2}=-\lambda_{1} x_{0} /\left(\lambda_{2}-\lambda_{1}\right)$. Thus

$$
y=\frac{\lambda_{1} x_{0}}{\lambda_{2}-\lambda_{1}}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right) .
$$

Substituting this result into the third differential equation we have

$$
\frac{d z}{d t}=\frac{\lambda_{1} \lambda_{2} x_{0}}{\lambda_{2}-\lambda_{1}}\left(e^{-\lambda_{1} t}-e^{-\lambda_{2} t}\right)
$$

Integrating we find

$$
z=-\frac{\lambda_{2} x_{0}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}+\frac{\lambda_{1} x_{0}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{2} t}+c_{3} .
$$

Using $z(0)=0$ we find $c_{3}=x_{0}$. Thus

$$
z=x_{0}\left(1-\frac{\lambda_{2}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{1} t}+\frac{\lambda_{1}}{\lambda_{2}-\lambda_{1}} e^{-\lambda_{2} t}\right)
$$

2. We see from the graph that the half-life of A is approximately x, y, z 4.7 days. 'To determine the half-life of B we use $t=50$ as a base, since at this time the amount of substance A is so small that :t contributes very little to substance B. Now we see from the raph that $y(50) \approx 16.2$ and $y(191) \approx 8.1$. Thus, the half-life of B is approximately 141 days.

3. The amounts x and y are the same at about $t=5$ days. The amounts x and z are the same at about $t=20$ days. The amounts y and z are the same at about $t=147$ days. The time when y and z are the same makes sense because most of A and half of B are gone. so half of C should have jeen formed.
\therefore Euppose that the scries is described schematically by $W \Longrightarrow-\lambda_{1} X \Longrightarrow-\lambda_{2} Y \Longrightarrow-\lambda_{3} Z$ where $-\lambda_{1},-\lambda_{2}$, and $-\lambda_{3}$ are the decay constants for W, X and Y. respectively, and Z is a stable element. -et $w(t), x(t), y(t)$. and $z(t)$ denote the amounts of substances W, X, Y, and Z, respectively. A model for the radioactive series is

$$
\begin{aligned}
& \frac{d w}{d t}=-\lambda_{1} w \\
& \frac{d x}{d t}=\lambda_{1} w-\lambda_{2} x \\
& \frac{d y}{d t}=\lambda_{2} x-\lambda_{3} y \\
& \frac{d z}{d t}=\lambda_{3} y
\end{aligned}
$$

: The system is

$$
\begin{aligned}
& x_{1}^{\prime}=2 \cdot 3+\frac{1}{50} x_{2}-\frac{1}{50} x_{1} \cdot 4=-\frac{2}{25} x_{1}+\frac{1}{50} x_{2}+6 \\
& x_{2}^{\prime}=\frac{1}{50} x_{1} \cdot 4-\frac{1}{50} x_{2}-\frac{1}{50} x_{2} \cdot 3=\frac{2}{25} x_{1}-\frac{2}{25} x_{2}
\end{aligned}
$$

Exercises 3.3 Modeling with Systems of First-Order DEs

6. Let x_{1}, x_{2} and x_{3} be the amounts of salt in tanks A, B, and C, respectively, so that

$$
\begin{aligned}
& x_{1}^{\prime}=\frac{1}{100} x_{2} \cdot 2-\frac{1}{100} x_{1} \cdot 6=\frac{1}{50} x_{2}-\frac{3}{50} x_{1} \\
& x_{2}^{\prime}=\frac{1}{100} x_{1} \cdot 6+\frac{1}{100} x_{3}-\frac{1}{100} x_{2} \cdot 2-\frac{1}{100} x_{2} \cdot 5=\frac{3}{50} x_{1}-\frac{7}{100} x_{2}+\frac{1}{100} x_{3} \\
& x_{3}^{\prime}=\frac{1}{100} x_{2} \cdot 5-\frac{1}{100} x_{3}-\frac{1}{100} x_{3} \cdot 4=\frac{1}{20} x_{2}-\frac{1}{20} x_{3} .
\end{aligned}
$$

7. (a) A model is

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =3 \cdot \frac{x_{2}}{100-t}-2 \cdot \frac{x_{1}}{100+t}, & & x_{1}(0)=100 \\
\frac{d x_{2}}{d t} & =2 \cdot \frac{x_{1}}{100+t}-3 \cdot \frac{x_{2}}{100-t}, & & x_{2}(0)=50
\end{aligned}
$$

(b) Since the system is closed, no salt enters or leaves the system and $x_{1}(t)+x_{2}(t)=100+50=1^{-}$ for all time. Thus $x_{1}=150-x_{2}$ and the second equation in part (a) becomes

$$
\frac{d x_{2}}{d t}=\frac{2\left(150-x_{2}\right)}{100+t}-\frac{3 x_{2}}{100-t}=\frac{300}{100+t}-\frac{2 x_{2}}{100+t}-\frac{3 x_{2}}{100-t}
$$

or

$$
\frac{d x_{2}}{d t}+\left(\frac{2}{100+t}+\frac{3}{100-t}\right) x_{2}=\frac{300}{100+t}
$$

which is linear in x_{2}. An integrating factor is

$$
e^{2 \ln (100+t)-3 \ln (100-t)}=(100+t)^{2}(100-t)^{-3}
$$

so

$$
\frac{d}{d t}\left[(100+t)^{2}(100-t)^{-3} x_{2}\right]=300(100+t)(100-t)^{-3}
$$

Using integration by parts, we obtain

$$
(100+t)^{2}(100-t)^{-3} x_{2}=300\left[\frac{1}{2}(100+t)(100-t)^{-2}-\frac{1}{2}(100-t)^{-1}+c\right] .
$$

Thus

$$
\begin{aligned}
x_{2} & =\frac{300}{(100+t)^{2}}\left[c(100-t)^{3}-\frac{1}{2}(100-t)^{2}+\frac{1}{2}(100+t)(100-t)\right] \\
& =\frac{300}{(100+t)^{2}}\left[c(100-t)^{3}+t(100-t)\right] .
\end{aligned}
$$

Using $x_{2}(0)=50$ we find $c=5 / 3000$. At $t=30, x_{2}=\left(300 / 130^{2}\right)\left(70^{3} c+30 \cdot 70\right) \approx 47.4 \mathrm{ll}$:
8. A model is

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=(4 \mathrm{gal} / \mathrm{min})(0 \mathrm{lb} / \mathrm{gal})-(4 \mathrm{gal} / \mathrm{min})\left(\frac{1}{200} x_{1} \mathrm{lb} / \mathrm{gal}\right) \\
& \frac{d x_{2}}{d t}=(4 \mathrm{gal} / \mathrm{min})\left(\frac{1}{200} x_{1} \mathrm{lb} / \mathrm{gal}\right)-(4 \mathrm{gal} / \mathrm{min})\left(\frac{1}{150} x_{2} \mathrm{lb} / \mathrm{gal}\right) \\
& \frac{d x_{3}}{d t}=(4 \mathrm{gal} / \mathrm{min})\left(\frac{1}{150} x_{2} \mathrm{lb} / \mathrm{gal}\right)-(4 \mathrm{gal} / \mathrm{min})\left(\frac{1}{100} x_{3} \mathrm{lb} / \mathrm{gal}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =-\frac{1}{50} x_{1} \\
\frac{d x_{2}}{d t} & =\frac{1}{50} x_{1}-\frac{2}{75} x_{2} \\
\frac{d x_{3}}{d t} & =\frac{2}{75} x_{2}-\frac{1}{25} x_{3} .
\end{aligned}
$$

Over a long period of time we would expect x_{1}, x_{2}, and x_{3} to approach 0 because the entering pure water should flush the salt out of all three tanks.
\therefore Zooming in on the graph it can be seen that the populations are Frst equal at about $t=5.6$. The approximate periods of x and y Gre both 45 .

\therefore a) The population $y(t)$ approaches 10,000 , while the population $x(t)$ approaches extinction.

b) The population $x(t)$ approaches 5,000 , while the population $y(t)$ approaches extinction.

\therefore The population $y(t)$ approaches 10,000 , while the population $x(t)$ approaches extinction.

Exercises 3.3 Modeling with Systems of First-Order DEs
(d) The population $x(t)$ approaches 5.000 , while the population $y(t)$ approaches extinction.

11. (a)

(c)

(d)

In each case the population $x(t)$ approaches 6,000 , while the population $y(t)$ approaches 8:000.
12. By Kirchhoff's first law we have $i_{1}=i_{2}+i_{3}$. By Kirchhoff's second law, on each loop we ha: $E(t)=L i_{1}^{\prime}+R_{1} i_{2}$ and $E(t)=L i_{1}^{\prime}+R_{2} i_{3}+q / C$ so that $q=C R_{1} i_{2}-C R_{2} i_{3}$. Then $i_{3}=q^{\prime}=$ $C R_{1} i_{2}^{\prime}-C R_{2} i_{3}$ so that the system is

$$
\begin{aligned}
L i_{2}^{\prime}+L i_{3}^{\prime}+R_{1} i_{2} & =E(t) \\
-R_{1} i_{2}^{\prime}+R_{2} i_{3}^{\prime}+\frac{1}{C} i_{3} & =0 .
\end{aligned}
$$

13. By Kirchhoff's first law we have $i_{1}=i_{2}+i_{3}$. Applying Kirchhoff's second law to cach loop : obtain

$$
E(t)=i_{1} R_{1}+L_{1} \frac{d i_{2}}{d t}+i_{2} R_{2}
$$

and

$$
E(t)=i_{1} R_{1}+L_{2} \frac{d i_{3}}{d t}+i_{3} R_{3}
$$

Combining the three equations, we obtain the system

$$
\begin{aligned}
& L_{1} \frac{d i_{2}}{d t}+\left(R_{1}+R_{2}\right) i_{2}+R_{1} i_{3}=E \\
& L_{2} \frac{d i_{3}}{d t}+R_{1} i_{2}+\left(R_{1}+R_{3}\right) i_{3}=E
\end{aligned}
$$

14. By Kirchhoff's first law we have $i_{1}=i_{2}+i_{3}$. By Kirchhoff's second law, on each loop we have $E(t)=L i_{1}^{\prime}+R i_{2}$ and $E(t)=L i_{1}^{\prime}+q / C$ so that $q=C R i_{2}$. Then $i_{3}=q^{\prime}=C R i_{2}^{\prime}$ so that system is

$$
\begin{aligned}
L i^{\prime}+R i_{2} & =E(t) \\
C R i_{2}^{\prime}+i_{2}-i_{1} & =0 .
\end{aligned}
$$

2.5. We first note that $s(t)+i(t)+r(t)=n$. Now the rate of change of the number of susceptible persons, $s(t)$, is proportional to the number of contacts between the number of people infected and the number who are susceptible; that is, $d s / d t=-k_{1} s i$. We use $-k_{1}<0$ because $s(t)$ is decreasing. Next, the rate of change of the number of persons who have recovered is proportional to the number infected; that is. $d r / d t=k_{2} i$ where $k_{2}>0$ since r is increasing. Finally, to obtain $d i / d t$ we usc

$$
\frac{d}{d t}(s+i+r)=\frac{d}{d t} n=0
$$

This gives

$$
\frac{d i}{d t}=-\frac{d r}{d t}-\frac{d s}{d t}=-k_{2} i+k_{1} s i
$$

The system of differential equations is then

$$
\begin{aligned}
& \frac{d s}{d t}=-k_{1} s i \\
& \frac{d i}{d t}=-k_{2} i+k_{1} s i \\
& \frac{d r}{d t}=k_{2} i .
\end{aligned}
$$

\therefore reasonable set of initial conditions is $i(0)=i_{0}$, the number of infected pcople at time $0, s(0)=$ $-i_{0}$, and $r(0)=0$.
\therefore a) If we know $s(t)$ and $i(t)$ then we can determine $r(t)$ from $s+i+r=n$.
b) In this case the system is

$$
\begin{aligned}
& \frac{d s}{d t}=-0.2 s i \\
& \frac{d i}{d t}=-0.7 i+0.2 s i
\end{aligned}
$$

We also note that when $i(0)=i_{0}, s(0)=10-i_{0}$ since $r(0)=0$ and $i(t)+s(t)+r(t)=0$ for all values of t. Now $k_{2} / k_{1}=0.7 / 0.2=3.5$, so we consider initial conditions $s(0)=2, i(0)=8$; $s(0)=3.4, i(0)=6.6 ; s(0)=7, i(0)=3$; and $s(0)=9, i(0)=1$.

Exercises 3.3 Modeling with Systems of First-Order DEs

We see that an initial susceptible population greater than k_{2} / k_{1} results in an cpidemic in the se-.that the number of infected persons increases to a maximum before decreasing to 0 . On the of: hand. when $s(0)<k_{2} / k_{1}$, the number of infected persons decreases from the start and there is : cpidemic.
17. Since $x_{0}>y_{0}>0$ we have $x(t)>y(t)$ and $y-x<0$. Thus $d x / d t<0$ and $d y / d t>0$. We conclude that $x(t)$ is decreasing and $y(t)$ is increasing. As $t \rightarrow \infty$ we expect that $x(t) \rightarrow C$ and $y(t) \rightarrow C$, where C is a constant common equilibrium concentration.

18. We write the system in the form

$$
\begin{aligned}
& \frac{d x}{d t}=k_{1}(y-x) \\
& \frac{d y}{d t}=k_{2}(x-y)
\end{aligned}
$$

where $k_{1}=\kappa / V_{A}$ and $k_{2}=\kappa / V_{B}$. Letting $\approx(t)=x(t)-y(t)$ we have

$$
\begin{aligned}
\frac{d x}{d t}-\frac{d y}{d t} & =k_{1}(y-x)-k_{2}(x-y) \\
\frac{d z}{d t} & =k_{1}(-z)-k_{2} z \\
\frac{d z}{d t}+\left(k_{1}+k_{2}\right) z & =0 .
\end{aligned}
$$

This is a linear first-order differential equation with solution $z(t)=c_{1} e^{-\left(k_{1}+k_{2}\right) t}$. Now

$$
\frac{d x}{d t}=-k_{1}(y-x)=-k_{1} z=-k_{1} c_{1} e^{-\left(k_{1}+k_{2}\right) t}
$$

and

$$
x(t)=c_{1} \frac{k_{1}}{k_{1}+k_{2}} e^{-\left(k_{1}+k_{2}\right) t}+c_{2}
$$

Since $y(t)=x(t)-z(t)$ we have

$$
y(t)=-c_{1} \frac{k_{2}}{k_{1}+k_{2}} e^{-\left(k_{1}+k_{2}\right) t}+c_{2}
$$

The initial conditions $x(0)=x_{0}$ and $y(0)=y_{0}$ imply

$$
c_{1}=x_{0}-y_{0} \quad \text { and } \quad c_{2}=\frac{x_{0} k_{2}+y_{0} k_{1}}{k_{1}+k_{2}} .
$$

The solution of the system is

$$
\begin{aligned}
& x(t)=\frac{\left(x_{0}-y_{0}\right) k_{1}}{k_{1}+k_{2}} e^{-\left(k_{1}+k_{2}\right) t}+\frac{x_{0} k_{2}+y_{0} k_{1}}{k_{1}+k_{2}} \\
& y(t)=\frac{\left(y_{0}-x_{0}\right) k_{2}}{k_{1}+k_{2}} e^{-\left(k_{1}+k_{2}\right) t}+\frac{x_{0} k_{2}+y_{0} k_{1}}{k_{1}+k_{2}} .
\end{aligned}
$$

As $t \rightarrow \infty, x(t)$ and $y(t)$ approach the common limit

$$
\begin{aligned}
\frac{x_{0} k_{2}+y_{0} k_{1}}{k_{1}+k_{2}} & =\frac{x_{0} \kappa / V_{B}+y_{0} \kappa / V_{A}}{\kappa / V_{A}+\kappa / V_{B}^{r}}=\frac{x_{0} V_{A}+y_{0} V_{B}}{V_{A}+V_{B}} \\
& =x_{0} \frac{V_{A}}{V_{A}+V_{B}}+y_{0} \frac{V_{B}}{V_{A}+V_{B}}
\end{aligned}
$$

This makes intuitive sense because the limiting concentration is seen to be a weighted average of the two initial concentrations.
\therefore Since there are initially $2 \overline{0}$ pounds of salt in tank A and -one in $\operatorname{tank} B$, and since furthermore only pure water is \therefore eing pumped into tank A, we would expect that $x_{1}(t)$ --ould steadily decrease over time. On the other hand, Ence salt is being added to tank B from tank A, we would spect $x_{2}(t)$ to increase over time. However, since pure
 \cdots ater is being added to the system at a constant rate and - mixed solution is being pumped out of the system, it makes sense that the amount of salt in both -aks would approach 0 over time.
2. \because assume here that the temperature, $T(t)$, of the metal bar does not affect the temperature, $T_{A}(t)$, \therefore :he medium in container A. By Newton's law of cooling, then, the differential cquations for $T_{A}(t)$ $\because i \Gamma(t)$ are

$$
\begin{aligned}
\frac{d T_{A}}{d t} & =k_{A}\left(T_{A}-T_{B}\right), \quad k_{A}<0 \\
\frac{d T}{d t} & =k\left(T-T_{A}\right) . \quad k<0
\end{aligned}
$$

\therefore eect to the initial conditions $T(0)=T_{0}$ and $T_{A}(0)=T_{1}$. Separating variables in the first \therefore. stion , wo find $T_{A}(t)=T_{B}+c_{1} e^{k_{A} t}$. Using $T_{A}(0)=T_{1}$ we find $c_{1}=T_{1}-T_{B}$, so

$$
T_{A}(t)=T_{B}+\left(T_{1}-T_{B}\right) e^{k_{A} t}
$$

Exercises 3.3 Modeling with Systems of First-Order DEs

Substituting into the second difforential equation, we have

$$
\begin{aligned}
\frac{d T}{d t}=k\left(T-T_{A}\right) & =k T-k T_{A}=k T-k\left[T_{B}+\left(T_{1}-T_{B}\right) e^{k_{A} t}\right] \\
\frac{d T}{d t}-k T & =-k T_{B}-k\left(T_{1}-T_{B}\right) e^{k_{A} t}
\end{aligned}
$$

This is a linear differential equation with integrating factor $e^{\int-k d t}=e^{-k t}$. Then

$$
\begin{aligned}
\frac{d}{d t}\left[e^{-k t} T\right] & =-k T_{B} e^{-k t}-k\left(T_{1}-T_{B}\right) e^{\left(k_{A}-k\right) t} \\
e^{-k t} T & =T_{B} e^{-k t}-\frac{k}{k_{A}-k}\left(T_{1}-T_{B}\right) e^{\left(k_{A}-k\right) t}+c_{2} \\
T & =T_{B}-\frac{k}{k_{A}-k}\left(T_{1}-T_{B}\right) e^{k_{A} t}+c_{2} e^{k t}
\end{aligned}
$$

Using $T(0)=T_{0}$ we find $c_{2}=T_{0}-T_{B}+\frac{k}{k_{\Lambda}-k}\left(T_{1}-T_{B}\right)$, so

$$
T(t)=T_{B}-\frac{k}{k_{A}-k}\left(T_{1}-T_{B}\right) e^{k_{A} t}+\left[T_{0}-T_{B}+\frac{k}{k_{A}-k}\left(T_{1}-T_{B}\right)\right] e^{k t}
$$

21. (This is a Contributed Problem and the solution has been provided by the authors of the problem.)
(a) In the short term there is a mixing of an ethanol solution. In the long term, the system will contain a 20% solution of ethanol.
(b)

$$
100 P^{\prime \prime}=\frac{1}{50} P-\frac{1}{10} Q-P^{\prime}
$$

(c) First write $Q=50 P^{\prime}-30+P / 2$ and then it's straightforward substitution into the equation in (b).
(d) From equation in (19) we find $P^{\prime}(0)=6 / 10+7 / 50-200 / 100=-63 / 50$. The solution is

$$
P(t)=\frac{-604}{19} e^{-t / 400} \sin \left(\frac{\sqrt{95} t}{2000}\right) \sqrt{95}-100 e^{-t / 400} \cos \left(\frac{\sqrt{95} t}{2000}\right)+100
$$

(e) The solution is

$$
Q(t)=\frac{-270}{19} e^{-t / 400} \cos \left(\frac{\sqrt{95} t}{2000}\right)-\frac{130}{19} e^{-t / 400} \sin \left(\frac{\sqrt{95} t}{2000}\right) \sqrt{95}+20+\frac{23}{19} e^{-t / 20}
$$

(f) In both cases, the there is a concentration of 20% in each tank; $P(t) \rightarrow 100$ and $Q(t) \rightarrow 20$.

Chapter 3 in Review

\therefore The differential cquation is $d P / d t=0.15 P$.
\therefore True. From $d A / d t=k A, A(0)=A_{0}$, we have $A(t)=A_{0} e^{k t}$ and $A^{\prime}(t)=k A_{0} e^{k t}$, so $A^{\prime}(0)=k A_{0}$. At $T=-(\ln 2) k$,

$$
A^{\prime}(-(\ln 2) / k:)=k A(-(\ln 2) / k)=k A_{0} e^{k[-(\ln 2) / k]}=k A_{0} e^{-\ln 2}=\frac{1}{2} k: A_{0}
$$

\vdots From $\frac{d P}{d t}=0.018 P$ and $P(0)=4$ billion we obtain $P=4 e^{0.018 t}$ so that $P(45)=8.99$ billion.
$\dot{\mp}$ Let $A=A(t)$ be the volume of CO_{2} at time t. From $d A / d t=1.2-A / 4$ and $A(0)=16 \mathrm{ft}^{3}$ we obtain $A=4.8+11.2 e^{-t / 4}$. Since $A(10)=5.7 \mathrm{ft}^{3}$, the concentration is 0.017%. As $t \rightarrow \infty$ we have $A \rightarrow 4.8 \mathrm{ft}^{3}$ or 0.06%.

ミ. Scparating variables, we have

$$
\frac{\sqrt{s^{2}-y^{2}}}{y} d y=-d x
$$

Substituting $y=s \sin \theta$, this becomes

$$
\begin{aligned}
\frac{\sqrt{s^{2}-s^{2} \sin ^{2} \theta}}{s \sin \theta}(s \cos \theta) d \theta & =-d x \\
s \int \frac{\cos ^{2} \theta}{\sin \theta} d \theta & =-\int d x \\
s \int \frac{1-\sin ^{2} \theta}{\sin \theta} d \theta & =-x+c \\
s \int(\csc \theta-\sin \theta) d \theta & =-x+c \\
-s \ln |\csc \theta+\cot \theta|+s \cos \theta & =-x+c \\
-s \ln \left|\frac{s}{y}+\frac{\sqrt{s^{2}-y^{2}}}{y}\right|+s \frac{\sqrt{s^{2}-y^{2}}}{s} & =-x+c .
\end{aligned}
$$

Letting $s=10$, this is

$$
-10 \ln \left|\frac{10}{y}+\frac{\sqrt{100-y^{2}}}{y}\right|+\sqrt{100-y^{2}}=-x+c
$$

Chapter 3 in Review

Letting $x=0$ and $y=10$ we determine that $c=0$, so the solution is

$$
-10 \ln \left|\frac{10+\sqrt{100-y^{2}}}{y}\right|+\sqrt{100-y^{2}}=-x
$$

or

$$
x=10 \ln \left|\frac{10+\sqrt{100-y^{2}}}{y}\right|-\sqrt{100-y^{2}}
$$

6. From $V d C / d t=k A\left(C_{s}-C\right)$ and $C(0)=C_{0}$ we obtain $C=C_{s}+\left(C_{0}-C_{s}\right) e^{-k A l / V}$.
7. (a) The differential equation

$$
\begin{aligned}
\frac{d T}{d t} & =k\left(T-T_{m}\right)=k\left[T-T_{2}-B\left(T_{1}-T\right)\right] \\
& =k\left[(1+B) T-\left(B T_{1}+T_{2}\right)\right]=k(1+B)\left(T-\frac{B T_{1}+T_{2}}{1+B}\right)
\end{aligned}
$$

is autonomous and has the single critical point $\left(B T_{1}+T_{2}\right) /(1+B)$. Since $k<0$ and B by phasc-linc analysis it is found that the critical point is an attractor and

$$
\lim _{t \rightarrow \infty} T(t)=\frac{B T_{1}+T_{2}}{1+B}
$$

Moreover,

$$
\lim _{t \rightarrow \infty} T_{m}(t)=\lim _{t \rightarrow \infty}\left[T_{2}+B\left(T_{1}-T\right)\right]=T_{2}+B\left(T_{1}-\frac{B T_{1}+T_{2}}{1+B}\right)=\frac{B T_{1}+T_{2}}{1+B}
$$

(b) The differential equation is

$$
\frac{d T}{d t}=k\left(T-T_{m}\right)=k\left(T-T_{2}-B T_{1}+B T\right)
$$

or

$$
\frac{d T}{d t}-k(1+B) T=-k\left(B T_{1}+T_{2}\right)
$$

This is linear and has integrating factor $e^{-\int k(1+B) d t}=e^{-k(1+B) \ell}$. Thus,

$$
\begin{aligned}
\frac{d}{d t}\left[e^{-k(1+B) t} T\right] & =-k\left(B T_{1}+T_{2}\right) e^{-k(1+B) t} \\
e^{-k(1+B) t} T & =\frac{B T_{1}+T_{2}}{1+B} e^{-k(1+B) t}+c \\
T(t) & =\frac{B T_{1}+T_{2}}{1+B}+c e^{k(1+B) t}
\end{aligned}
$$

Since k is negative, $\lim _{t \rightarrow \infty} T(t)=\left(B T_{1}+T_{2}\right) /(1+B)$.
(c) The temperature $T(t)$ decreases to the value $\left(B T_{1}+T_{2}\right) /(1+B)$, whereas $T_{m}(t)$ increa: $\left(B T_{1}+T_{2}\right) /(1+B)$ as $t \rightarrow \infty$. Thus, the temperature $\left(B T_{1}+T_{2}\right) /(1+B)$, (which is a. weis average

$$
\frac{B}{1+B} T_{1}+\frac{1}{1+B} T_{2}
$$

of the two initial temperatures), can be interpreted as an equilibrium temperature. The body cannot get cooler than this value whereas the medium cannot get hotter than this value.
3. By separation of variables and partial fractions,

$$
\ln \left|\frac{T-T_{m}}{T+T_{m}}\right|-2 \tan ^{-1}\left(\frac{T}{T_{m}}\right)=4 T_{m}^{3} k t+c
$$

Then rewrite the right-hand side of the differential equation as

$$
\begin{aligned}
\frac{d T}{d t} & =k\left(T^{4}-T_{m}^{4}\right)=\left[\left(T_{m}+\left(T-T_{m}\right)\right)^{4}-T_{m}^{4}\right] \\
& =k T_{m}^{4}\left[\left(1+\frac{T-T_{m}}{T_{m}}\right)^{4}-1\right] \\
& =k T_{m}^{4}\left[\left(1+4 \frac{T-T_{m}}{T_{m}}+6\left(\frac{T-T_{m}}{T_{m}}\right)^{2} \cdots\right)-1\right] \leftarrow \text { binomial expansion }
\end{aligned}
$$

When $T-T_{m}$ is small compared to T_{m}, every term in the expansion after the first two can be ignored, giving

$$
\frac{d T}{d t} \approx k_{1}\left(T-T_{m}\right), \quad \text { where } \quad k_{1}=4 k T_{m}^{3}
$$

\vdots We first solve $(1-t / 10) d i / d t+0.2 i=4$. Separating variables we obtain $d i /(40-2 i)=d t /(10-t)$. Then

$$
-\frac{1}{2} \ln |40-2 i|=-\ln |10-t|+c \quad \text { or } \quad \sqrt{40-2 i}=c_{1}(10-t)
$$

Since $i(0)=0$ we must have $c_{1}=2 / \sqrt{10}$. Solving for i we get $i(t)=4 t-\frac{1}{5} t^{2}$,

$i \leq t<10$. For $t \geq 10$ the equation for the current becomes $0.2 i=4$ or $i=20$. Thus

$$
i(t)= \begin{cases}4 t-\frac{1}{5} t^{2}, & 0 \leq t<10 \\ 20, & t \geq 10\end{cases}
$$

The graph of $i(t)$ is given in the figure.
\because Erom $y\left[1+\left(y^{\prime}\right)^{2}\right]=k$ we obtain $d x=(\sqrt{y} / \sqrt{k-y}) d y$. If $y=k \sin ^{2} \theta$ then

$$
d y=2 k \sin \theta \cos \theta d \theta . \quad d x=2 k\left(\frac{1}{2}-\frac{1}{2} \cos 2 \theta\right) d \theta, \quad \text { and } \quad x=k \theta-\frac{k}{2} \sin 2 \theta+c .
$$

$\because x=0$ when $\theta=0$ then $c=0$.
$\therefore \quad \Xi$ om $d x / d t=k_{1} x(\alpha-x)$ we obtain

$$
\left(\frac{1 / \alpha}{x}+\frac{1 / \alpha}{\alpha-x}\right) d x=k_{1} d t
$$

\therefore that $x=\alpha c_{1} e^{\alpha k_{1} t} /\left(1+c_{1} e^{\alpha k_{1} t}\right)$. From $d y / d t=k_{2} x y$ we obtain

$$
\ln |y|=\frac{k_{2}}{k_{1}} \ln \left|1+c_{1} e^{\alpha k_{1} t}\right|+c \quad \text { or } \quad y=c_{2}\left(1+c_{1} e^{\alpha k_{1} t}\right)^{k_{2} / k_{1}}
$$

Chapter 3 in Review

12. In tank A the salt input is

$$
\left(7 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(2 \frac{\mathrm{lb}}{\mathrm{gal}}\right)+\left(1 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{2}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\left(14+\frac{1}{100} x_{2}\right) \frac{\mathrm{lb}}{\mathrm{~min}} .
$$

The salt output is

$$
\left(3 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{1}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)+\left(5 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{1}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\frac{2}{25} x_{1} \frac{\mathrm{lb}}{\mathrm{~min}} .
$$

In tank B the salt input is

$$
\left(5 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{1}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\frac{1}{20} x_{1} \frac{\mathrm{lb}}{\mathrm{~min}} .
$$

The salt output is

$$
\left(1 \frac{\mathrm{gal}}{\min }\right)\left(\frac{x_{2}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)+\left(4 \frac{\mathrm{gal}}{\mathrm{~min}}\right)\left(\frac{x_{2}}{100} \frac{\mathrm{lb}}{\mathrm{gal}}\right)=\frac{1}{20} x_{2} \frac{\mathrm{lb}}{\mathrm{~min}} .
$$

The system of differential equations is then

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=14+\frac{1}{100} x_{2}-\frac{2}{25} x_{1} \\
& \frac{d x_{2}}{d t}=\frac{1}{20} x_{1}-\frac{1}{20} x_{2} .
\end{aligned}
$$

13. From $y=-x-1+c_{1} e^{x}$ we obtain $y^{\prime}=y \div x$ so that the differential equation of the ortho family is

$$
\frac{d y}{d x}=-\frac{1}{y+x} \quad \text { or } \quad \frac{d x}{d y}+x=-y
$$

This is a linear differential cquation and has integrating factor $e^{\int d y}=e^{y}$, so

$$
\begin{aligned}
\frac{d}{d y}\left[e^{y} x\right] & =-y e^{y} \\
e^{y} x & =-y e^{y}+e^{y}+c_{2} \\
x & =-y+1+c_{2} e^{-y}
\end{aligned}
$$

-4. Differentiating the family of curves, we have

$$
y^{\prime}=-\frac{1}{\left(x+c_{1}\right)^{2}}=-\frac{1}{y^{2}}
$$

The differential equation for the family of orthogonal trajectories is then $y^{\prime}=y^{2}$. Separating variables and integrating we get

$$
\begin{aligned}
\frac{d y}{y^{2}} & =d x \\
-\frac{1}{y} & =x+c_{1} \\
y & =-\frac{1}{x+c_{1}} .
\end{aligned}
$$

- . . This is a Contributed Problem and the solution has been provided by the author of the problem.)
(a) $p(x)=-\rho(x) g\left(y+\frac{1}{K} \int q(x) d x\right)$
(b) The ratio is increasing. The ratio is constant.
(c) $p(x)=k e^{\cdot(\alpha g \rho / K) x}$
d) When the pressure p is constant but the density ρ is a function of x then

$$
\rho(x)=-\frac{K p}{g\left(K y+\int q(x) d x\right)} .
$$

When the Darcy flux is proportional to the density then

$$
\rho=\sqrt{\frac{K p}{2(C K p-\beta g x)}},
$$

where C is an arbitrary constant.
e) As the density and Darcy velocity decreases, the pressure in the container initially increascbut then decreases. The density change is less dramatic than the drop in the velocity and has a greater initial effect on the system. However, as the donsity of the fluid decreases, the effec: is to decrease the pressure.

Chapter 3 in Review

16. (This is a Contributed Problem and the solution has been provided by the authors of the problem.)
(a) Direction ficld and the solution curve sketch together:
(b) The solution is $P(t)=e^{k t}, k=1 / 12$, with graph:

(c) the DE has the constant zero function as equilibrium.
(d) The population grows to infinity.
(e) If the initial population is P_{0} then the resulting population would be $P(t)=P_{0} e^{k t}, k=1 / 12$,
(f) The solution would change from constant to exponential.
(g) Direction field with solution sketch.

(h) The solution to the IVP is

$$
P=\frac{125}{3+122 e^{-t / 12}}
$$

and the graph is

(i) the constant solutions to the DE are the zero function and the $125 / 3$ function.
(j) solutions tend to $125 / 3$.
(k) If the initial population is P_{0} then the resulting population could be expressed by

$$
P=\frac{125}{3+125 C e^{-t / 12}}
$$

where

$$
C=\frac{1}{P_{0}}-\frac{3}{125} .
$$

(l) the solution would no longer be constant but tend to $125 / 3$.
(m) there would be little change...the new solution would still tend to $125 / 3$.

Chapter 3 in Review

(n) Direction field with solution sketch.

(o) the zero function is the only constant solution.
(p) The solution is slowly approaching 0 ; a change to $P(0)$ would still result in a solution curve which tends to 0 .

4 Higher-Order Differential Equations

Exercises 4.1

Preliminary Theory-Linear Equations

\bar{Z} Eom $y=c_{1} e^{x}+c_{2} e^{-x}$ we find $y^{\prime}=c_{1} e^{x}-c_{2} e^{-x}$. Then $y(0)=c_{1}+c_{2}=0, y^{\prime}(0)=c_{1}-c_{2}=1$ so -atat $c_{1}=\frac{1}{2}$ and $c_{2}=-\frac{1}{2}$. The solution is $y=\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}$.
\therefore Evom $y=c_{1} e^{4 x}+c_{2} e^{-x}$ we find $y^{\prime}=4 c_{1} e^{4 x}-c_{2} e^{-x}$. Then $y(0)=c_{1}+c_{2}=1, y^{\prime}(0)=4 c_{1}-c_{2}=2$ \therefore that $c_{1}=\frac{3}{5}$ and $c_{2}=\frac{2}{5}$. The solution is $y=\frac{3}{5} e^{4 x}+\frac{2}{5} e^{-x}$.
\therefore 三. Em $y=c_{1} x+c_{2} x \ln x$ we find $y^{\prime}=c_{1}+c_{2}(1+\ln x)$. Then $y(1)=c_{1}=3, y^{\prime}(1)=c_{1}+c_{2}=-1$ so \therefore..at $c_{1}=3$ and $c_{2}=-4$. The solution is $y=3 x-4 x \ln x$.
\div Fiom $y=c_{1}+c_{2} \cos x+c_{3} \sin x$ we find $y^{\prime}=-c_{2} \sin x+c_{3} \cos x$ and $y^{\prime \prime}=-c_{2} \cos x-c_{3} \sin x$. Then $\therefore)=c_{1}-c_{2}=0, y^{\prime}(\pi)=-c_{3}=2, y^{\prime \prime}(\pi)=c_{2}=-1$ so that $c_{1}=-1, c_{2}=-1$, and $c_{3}=-2$. The \therefore ation is $y=-1-\cos x-2 \sin x$.
Ξ Eiom $y=c_{1}+c_{2} x^{2}$ we find $y^{\prime}=2 c_{2} x$. Then $y(0)=c_{1}=0, y^{\prime}(0)=2 c_{2} \cdot 0=0$ and hence $y^{\prime}(0)=1$ \therefore not possible. Since $a_{2}(x)=x$ is 0 at $x=0$, Theorem 4.1 is not violated.
$\therefore \quad \because$ this case we have $y(0)=c_{1}=0, y^{\prime}(0)=2 c_{2} \cdot 0=0$ so $c_{1}=0$ and c_{2} is arbitrary. Two solutions se $y=x^{2}$ and $y=2 x^{2}$.

- इom $x(0)=x_{0}=c_{1}$ we sec that $x(t)=x_{0} \cos \omega t+c_{2} \sin \omega t$ and $x^{\prime}(t)=-x_{0} \sin \omega t+c_{2} \omega \cos \omega t$. Zien $x^{\prime}(0)=x_{1}=c_{2} \omega$ implies $c_{2}=x_{1} / \omega$. Thus

$$
x(t)=x_{0} \cos \omega t+\frac{x_{1}}{\omega} \sin \omega t .
$$

: Enving the system

$$
\begin{aligned}
& x\left(t_{0}\right)=c_{1} \cos \omega t_{0}+c_{2} \sin \omega t_{0}=x_{0} \\
& x^{\prime}\left(t_{0}\right)=-c_{1} \omega \sin \omega t_{0}+c_{2} \omega \cos \omega t_{0}=x_{1}
\end{aligned}
$$

$\therefore c_{1}$ and c_{2} gives

$$
c_{1}=\frac{\omega x_{0} \cos \omega t_{0}-x_{1} \sin \omega t_{0}}{\omega} \quad \text { and } \quad c_{2}=\frac{x_{1} \cos \omega t_{0}+\omega x_{0} \sin \omega t_{0}}{\omega} .
$$

Exercises 4.1 Preliminary Theory Lincar Equations

Thus

$$
\begin{aligned}
x(t) & =\frac{\omega x_{0} \cos \omega t_{0}-x_{1} \sin \omega t_{0}}{\omega} \cos \omega t+\frac{x_{1} \cos \omega t_{0}+\omega x_{0} \sin \omega t_{0}}{\omega} \sin \omega t \\
& =x_{0}\left(\cos \omega t \cos \omega t_{0}+\sin \omega t \sin \omega t_{0}\right)+\frac{x_{1}}{\omega}\left(\sin \omega t \cos \omega t_{0}-\cos \omega t \sin \omega t_{0}\right) \\
& =x_{0} \cos \omega\left(t-t_{0}\right)+\frac{x_{1}}{\omega} \sin \omega\left(t-t_{0}\right) .
\end{aligned}
$$

9. Since $a_{2}(x)=x-2$ and $x_{0}=0$ the problem has a unique solution for $-\infty<x<2$.
10. Since $a_{0}(x)=\tan x$ and $x_{0}=0$ the problem has a unique solution for $-\pi / 2<x<\pi / 2$.
11. (a) We have $y(0)=c_{1}+c_{2}=0, y(1)=c_{1} e+c_{2} e^{-1}=1$ so that $c_{1}=e /\left(e^{2}-1\right)$ $c_{2}=-e /\left(e^{2}-1\right)$. The solution is $y=e\left(e^{x}-e^{-x}\right) /\left(e^{2}-1\right)$.
(b) We have $y(0)=c_{3} \cosh 0+c_{4} \sinh 0=c_{3}=0$ and $y(1)=c_{3} \cosh 1+c_{4} \sinh 1=c_{4} \sinh 1=$ so $c_{3}=0$ and $c_{4}=1 / \sinh 1$. The solution is $y=(\sinh x) /(\sinh 1)$.
(c) Starting with the solution in part (b) we have

$$
y=\frac{1}{\sinh 1} \sinh x=\frac{2}{e^{1}-e^{-1}} \frac{e^{x}-e^{-x}}{2}=\frac{e^{x}-e^{-x}}{e-1 / \epsilon}=\frac{e}{e^{2}-1}\left(e^{x}-e^{-x}\right)
$$

12. In this case we have $y(0)=c_{1}=1, y^{\prime}(1)=2 c_{2}=6$ so that $c_{1}=1$ and $c_{2}=3$. The solutic:$y=1+3 x^{2}$.
13. From $y=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x$ wc find $y^{\prime}=c_{1} e^{x}(-\sin x \div \cos x)+c_{2} e^{x}(\cos x+\sin x)$.
(a) We have $y(0)=c_{1}=1, y^{\prime}(\pi)=-e^{\pi}\left(c_{1}+c_{2}\right)=0$ so that $c_{1}=1$ and $c_{2}=-1$. The solutic: $y=e^{x} \cos x-e^{x} \sin x$.
(b) We have $y(0)=c_{1}=1, y(\pi)=-e^{\pi}=-1$, which is not possible.
(c) We have $y(0)=c_{1}=1, y(\pi / 2)=c_{2} e^{\pi / 2}=1$ so that $c_{1}=1$ and $c_{2}=e^{-\pi / 2}$. The solutic:$y=c^{x} \cos x+e^{-\pi / 2} e^{x} \sin x$.
(d) We have $y(0)=c_{1}=0, y(\pi)=c_{2} e^{\pi} \sin \pi=0$ so that $c_{1}=0$ and c_{2} is arbitrary. Solutions $y=c_{2} e^{x} \sin x$, for any real numbers c_{2}.
14. (a) We have $y(-1)=c_{1}+c_{2}+3=0, y(1)=c_{1}+c_{2}+3=4$, which is not possible.
(b) We have $y(0)=c_{1} \cdot 0+c_{2} \cdot 0+3=1$, which is not possible.
(c) We have $y(0)=c_{1} \cdot 0+c_{2} \cdot 0+3=3, y(1)=c_{1}+c_{2}+3=0$ so that c_{1} is arbitrary $c_{2}=-3-c_{1}$. Solutions are $y=c_{1} x^{2}-\left(c_{1}+3\right) x^{4}+3$.
(d) We have $y(1)=c_{1}+c_{2}+3=3, y(2)=4 c_{1}+16 c_{2}+3=15$ so that $c_{1}=-1$ and $c_{2}=1$. solution is $y=-x^{2}+x^{4}+3$.
15. Since $(-4) x+(3) x^{2} \div(1)\left(4 x-3 x^{2}\right)=0$ the set of functions is lincarly dependent.
-3. Since (1) $0+(0) x+(0) e^{x}=0$ the set of functions is lincarly dependent. A similar argument shows that any set of functions containing $f(x)=0$ will be linearly dependent.
\because Since $(-1 / 5) 5+(1) \cos ^{2} x+(1) \sin ^{2} x=0$ the set of functions is linearly dependent.

- Since (1) $\cos 2 x+(1) 1+(-2) \cos ^{2} x=0$ the set of functions is linearly dependent.
\because Since $(-4) x+(3)(x-1)+(1)(x+3)=0$ the set of functions is linearly dependent.
\therefore From the graphs of $f_{1}(x)=2+x$ and $f_{2}(x)=2+|x|$ we sec that the set of functions is linearly independent since they cannot be multiples of each other.

\therefore Euppose $c_{1}(1+x)+c_{2} x+c_{3} x^{2}=0$. Then $c_{1}+\left(c_{1}+c_{2}\right) x+c_{3} x^{2}=0$ and so $c_{1}=0, c_{1}+c_{2}=0$, and $3=0$. Since $c_{1}=0$ we also have $c_{2}=0$. Thus, the set of functions is linearly independent.
\therefore Since $(-1 / 2) e^{x}+(1 / 2) e^{-x}+(1) \sinh x=0$ the set of functions is linearly dependent.
\therefore The functions satisfy the differential equation and are linearly independent since

$$
W\left(e^{-3 x} \cdot e^{1 x}\right)=7 e^{x} \neq 0
$$

For $-\infty<x<\infty$. The general solution is

$$
y=c_{1} e^{-3 x}+c_{2} e^{4 x}
$$

-1. The functions satisfy the differential equation and are linearly independent since

$$
W(\cosh 2 x, \sinh 2 x)=2
$$

$\therefore-\infty<x<\infty$. The general solution is

$$
y=c_{1} \cosh 2 x+c_{2} \sinh 2 x
$$

\therefore - he functions satisfy the differential equation and are linearly independent since

$$
W\left(e^{x} \cos 2 x, e^{x} \sin 2 x\right)=2 e^{2 x} \neq 0
$$

$\therefore \mathrm{Er}-\infty<x<\infty$. The general solution is $y=c_{1} e^{x} \cos 2 x+c_{2} e^{x} \sin 2 x$.
\therefore-ine functions satisfy the diffcrential cquation and arc linearly independent since

$$
W\left(e^{x / 2}: x e^{x / 2}\right)=e^{x} \neq 0
$$

$\because-\infty<x<\infty$. The general solution is

$$
y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}
$$

Exercises 4.1 Proliminary Theory-Linear Fquations

27. The functions satisfy the differential cquation and are linearly independent since

$$
W\left(x^{3}, x^{4}\right)=x^{6} \neq 0
$$

for $0<x<x$. The general solution on this interval is

$$
y=c_{1} x^{3}+c_{2} x^{4}
$$

28. The functions satisfy the differential equation and are linearly independent since

$$
W(\cos (\ln x), \sin (\ln x))=1 / x \neq 0
$$

for $0<x<\infty$. The general solution on this interval is

$$
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x) .
$$

29. The functions satisfy the differential equation and are linearly independent since

$$
W\left(x, x^{-2}, x^{-2} \ln x\right)=9 x^{-6} \neq 0
$$

for $0<x<\infty$. The general solution on this interval is

$$
y=c_{1} x+c_{2} x^{-2}+c_{3} x^{-2} \ln x .
$$

30. The functions satisfy the differential equation and are linearly indcpendent since

$$
W(1, x, \cos x, \sin x)=1
$$

for $\cdots<x<\infty$. The general solution on this interval is

$$
y=c_{1}+c_{2} x+c_{3} \cos x+c_{1} \sin x
$$

31. The functions $y_{1}=e^{2 x}$ and $y_{2}=e^{5 x}$ form a fundamental set of solutions of the associated home: ncous equation, and $y_{p}=6 e^{x}$ is a particular solution of the nonhomogeneous equation.
32. The functions $y_{1}=\cos x$ and $y_{2}=\sin x$ form a fundamental set of solutions of the associated ho-geneous equation, and $y_{p}=x \sin x+(\cos x) \ln (\cos x)$ is a particular solution of the nonhomogene equation.
33. The functions $y_{1}=e^{2 x}$ and $y_{2}=x e^{2 x}$ form a fundamental set of solutions of the associehomogencous cquation, and $y_{p}=x^{2} e^{2 x}+x-2$ is a particular solution of the nonhomogent equation.
34. The functions $y_{1}=x^{-1 / 2}$ and $y_{2}=x^{-1}$ form a fundamental set of solutions of the associehomogencous equation, and $y_{p}=\frac{1}{15} x^{2}-\frac{1}{6} x$ is a particular solution of the nonhomogeneous equat:
35. (a) We have $y_{p_{1}}^{\prime}=6 e^{2 x}$ and $y_{p_{1}}^{\prime \prime}=12 e^{2 x}$, so

$$
y_{p_{1}}^{\prime \prime}-6 y_{p_{1}}^{\prime}+5 y_{p_{1}}=12 e^{2 x}-36 e^{2 x}+15 e^{2 x}=-9 e^{2 x}
$$

Also, $y_{p_{2}}^{\prime}=2 x+3$ and $y_{p_{2}}^{\prime \prime}=2$. so

$$
y_{p_{2}}^{\prime \prime}-6 y_{p_{2}}^{\prime}+5 y_{p_{2}}=2-6(2 x+3)+5\left(x^{2}+3 x\right)=5 x^{2}+3 x-16 .
$$

(b) By the superposition principle for nonhomogeneous equations a particular solution of $y^{\prime \prime}-6 y^{\prime}+5 y=5 x^{2}+3 x-16-9 e^{2 x}$ is $y_{p}=x^{2}+3 x+3 e^{2 r}$. A particular solution of the second equation is

$$
y_{p}=-2 y_{p_{2}}-\frac{1}{9} y_{p_{1}}=-2 x^{2}-6 x-\frac{1}{3} e^{2 x}
$$

\therefore (a) $y_{p_{1}}=5$
(b) $y_{p_{2}}=-2 x$
(c) $y_{p}=y_{p_{1}}+y_{p_{2}}=5-2 x$
(d) $y_{p}=\frac{1}{2} y_{p_{1}}-2 y_{p_{2}}=\frac{5}{2}+4 x$
\because - (a) Since $D^{2} x=0, x$ and 1 are solutions of $y^{\prime \prime}=0$. Since they are lincarly independent, the general solution is $y=c_{1} x+c_{2}$.
(b) Since $D^{3} x^{2}=0, x^{2}, x$, and 1 are solutions of $y^{\prime \prime \prime}=0$. Since they are linearly independent, the gencral solution is $y=c_{1} x^{2}+c_{2} x+c_{3}$.
(c) Since $D^{4} x^{3}=0, x^{3}, x^{2}, x$, and 1 are solutions of $y^{(4)}=0$. Since they are lincarly independent, the general solution is $y=c_{1} x^{3}+c_{2} x^{2}+c_{3} x+c_{4}$.

1d) By part (a), the general solution of $y^{\prime \prime}=0$ is $y_{c}=c_{1} x+c_{2}$. Since $D^{2} x^{2}=2!=2, y_{p}=x^{2}$ is a particular solution of $y^{\prime \prime}=2$. Thus, the general solution is $y=c_{1} x+c_{2}+x^{2}$.
(e) By part (b), the general solution of $y^{\prime \prime \prime}=0$ is $y_{c}=c_{1} x^{2}+c_{2} x+c_{3}$. Since $D^{3} x^{3}=3$! $=6$, $y_{p}=x^{3}$ is a particular solution of $y^{\prime \prime \prime}=6$. Thus, the general solution is $y=c_{1} x^{2}+c_{2} x+c_{3}+x^{3}$.
(f) By part (c), the general solution of $y^{(1)}=0$ is $y_{c}=c_{1} x^{3}+c_{2} x^{2}+c_{3} x+c_{1}$. Since $D^{4} x^{4}=4$! $=24$, $y_{p}=x^{4}$ is a particular solution of $y^{(4)}=24$. Thus, the general solution is $y=c_{1} x^{3}+c_{2} x^{2}+$ $c_{3} x+c_{4}+x^{4}$.
$\therefore 3 \cdot$ the superposition principle, if $y_{1}=e^{x}$ and $y_{2}=e^{-x}$ are both solutions of a homogencous linear :ifferential cquation, then so are

$$
\frac{1}{2}\left(y_{1}+y_{2}\right)=\frac{e^{x}+e^{-x}}{2}=\cosh x \quad \text { and } \quad \frac{1}{2}\left(y_{1}-y_{2}\right)=\frac{e^{x}-e^{-x}}{2}=\sinh x
$$

39. (a) From the graphs of $y_{1}=x^{3}$ and $y_{2}=\mid x_{1}^{3}$ we see that the functions are linearly independent since they cannot be multiples of each other. It is easily shown that $y_{1}=x^{3}$ is a solution of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$. To show that $y_{2}=|x|^{3}$ is a solution let $y_{2}=x^{3}$ for

 $x \geq 0$ and let $y_{2}=-x^{3}$ for $x<0$.
(b) If $x \geq 0$ then $y_{2}=x^{3}$ and

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x^{3} & x^{3} \\
3 x^{2} & 3 x^{2}
\end{array}\right|=0
$$

If $x<0$ then $y_{2}=-x^{3}$ and

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x^{3} & -x^{3} \\
3 x^{2} & -3 x^{2}
\end{array}\right|=0
$$

This does not violate Theorem 4.1.3 since $a_{2}(x)=x^{2}$ is zero at $x=0$.
(c) The functions $Y_{1}=x^{3}$ and $Y_{2}=x^{2}$ are solutions of $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$. They are line independent since $W\left(x^{3}, x^{2}\right)=x^{4} \neq 0$ for $-\infty<x<\infty$.
(d) The function $y=x^{3}$ satisfies $y(0)=0$ and $y^{\prime}(0)=0$.
(e) Noither is the general solution on $(-\infty, \infty)$ since we form a general solution on an interva. which
$a_{2}(x) \neq 0$ for every x in the interval.
40. Since $e^{x-3}=e^{-3} e^{x}=\left(e^{-5} e^{2}\right) e^{x}=e^{-5} e^{x+2}$, we see that e^{x-3} is a constant multiple of e^{x+2} and set of functions is linearly dependent.
41. Since $0 y_{1}+0 y_{2}+\cdots+0 y_{k}+1 y_{k+1}=0$, the set of solutions is linearly dependent.
42. The set of solutions is linearly dependent. Suppose n of the solutions are linearly independer:not: then the set of $n+1$ solutions is linearly dependent). Without loss of generality, let this st ${ }^{-}$ $y_{1}, y_{2}, \ldots, y_{n}$. Then $y=c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n} y_{n}$ is the general solution of the n th-order differc:-: equation and for some choice, $c_{1}^{*}, c_{2}^{*}, \ldots, c_{n}^{*}$, of the cocfficients $y_{n+1}=c_{1}^{*} y_{1}+c_{2}^{*} y_{2}+\cdots+c_{n}^{*} y_{n}$. : then the set $y_{1}, y_{2}, \ldots, y_{n}, y_{n+1}$ is linearly dependent.

Excreises 4.2

Reduction of Order

Problems 1-8 we use reduction of order to find a second solution. In Problems 9-16 we use formula - from the text.
\therefore Define $y=u(x) e^{2 x}$ so

$$
y^{\prime}=2 u e^{2 x}+u^{\prime} e^{2 x}, \quad y^{\prime \prime}=e^{2 x} u^{\prime \prime}+4 e^{2 x} u^{\prime}+4 e^{2 x} u, \quad \text { and } \quad y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x} u^{\prime \prime}=0
$$

Therefore $u^{\prime \prime}=0$ and $u=c_{1} x+c_{2}$. Taking $c_{1}=1$ and $c_{2}=0$ we sec that a second solution is $y=x e^{2 x}$.
\therefore Define $y=u(x) x e^{-x}$ so

$$
y^{\prime}=(1-x) e^{-x} u+x e^{-x} u^{\prime}, \quad y^{\prime \prime}=x e^{-x} u^{\prime \prime}+2(1-x) e^{-x} u^{\prime}-(2-x) e^{-x} u
$$

:nd

$$
y^{\prime \prime}+2 y^{\prime}+y=e^{-x}\left(x u^{\prime \prime}+2 u^{\prime}\right)=0 \quad \text { or } \quad u^{\prime \prime}+\frac{2}{x} u^{\prime}=0 .
$$

$\because w=u^{\prime}$ we obtain the linear first-order cquation $w^{\prime}+\frac{2}{x} w=0$ which has the integrating factor $\therefore \int d x / x=x^{2}$. Now

$$
\frac{d}{d x}\left[x^{2} w^{\prime}\right]=0 \quad \text { gives } \quad x^{2} w^{\prime}=c
$$

Therefore $u=u^{\prime}=c / x^{2}$ and $u=c_{1} / x$. A second solution is $y_{2}=\frac{1}{x} x e^{-x}=e^{-x}$.
F Define $y=u(x) \cos 4 x$ so

$$
y^{\prime}=-4 u \sin 4 x+u^{\prime} \cos 4 x, \quad y^{\prime \prime}=u^{\prime \prime} \cos 4 x-8 u^{\prime} \sin 4 x-16 u \cos 4 x
$$

$$
y^{\prime \prime}+16 y=(\cos 4 x) u^{\prime \prime}-8(\sin 4 x) u^{\prime}=0 \quad \text { or } \quad u^{\prime \prime}-8(\tan 4 x) u^{\prime}=0 .
$$

$\because u=u^{\prime}$ we obtain the lincar first-order equation $w^{\prime}-8(\tan 4 x) w=0$ which has the integrating \therefore tor $e^{-8 \int \tan 4 x d x}=\cos ^{2} 4 x$. Now

$$
\frac{d}{d x}\left[\left(\cos ^{2} 4 x\right) w\right]=0 \quad \text { gives } \quad\left(\cos ^{2} 4 x\right) w=c
$$

-.-erefore $w=u^{\prime}=c \sec ^{2} 4 x$ and $u=c_{1} \tan 4 x$. A second solution is $y_{2}=\tan 4 x \cos 4 x=\sin 4 x$.
$=$ - \because Inc $y=u(x) \sin 3 x$ so

$$
y^{\prime}=3 u \cos 3 x+u^{\prime} \sin 3 x, \quad y^{\prime \prime}=u^{\prime \prime} \sin 3 x+6 u^{\prime} \cos 3 x-9 u \sin 3 x,
$$

and

$$
y^{\prime \prime}+9 y=(\sin 3 x) u^{\prime \prime}+6(\cos 3 x) u^{\prime}=0 \quad \text { or } \quad u^{\prime \prime}+6(\cot 3 x) u^{\prime}=0 .
$$

If $w=u^{\prime}$ we obtain the lincar first-order equation $w^{\prime}+6(\cot 3 x) w=0$ which has the integrati-. factor $e^{6 \int \cot 3 x d x}=\sin ^{2} 3 x$. Now

$$
\frac{d}{d x}\left[\left(\sin ^{2} 3 x\right) u\right]=0 \quad \text { gives } \quad\left(\sin ^{2} 3 x\right) w=c
$$

Therefore $u=u^{\prime}=c \csc ^{2} 3 x$ and $u=c_{1} \cot 3 x$. A sccond solution is $y_{2}=\cot 3 x \sin 3 x=\cos 3 x$.
5. Define $y=u(x) \cosh x$ so

$$
y^{\prime}=u \sinh x+u^{\prime} \cosh x, \quad y^{\prime \prime}=u^{\prime \prime} \cosh x+2 u^{\prime} \sinh x+u \cosh x
$$

and

$$
y^{\prime \prime}-y=(\cosh x) u^{\prime \prime}+2(\sinh x) u^{\prime}=0 \quad \text { or } \quad u^{\prime \prime}+2(\tanh x) u^{\prime}=0
$$

If $w=u^{\prime}$ we obtain the lincar first-order equation $w^{\prime}+2(\tanh x) w=0$ which has the integrati:factor $e^{2 \int \tanh x d x}=\cosh ^{2} x$. Now

$$
\frac{d}{d x}\left[\left(\cosh ^{2} x\right) w\right]=0 \quad \text { gives } \quad\left(\cosh ^{2} x\right) w=c
$$

Therefore $w=u^{\prime}=c \operatorname{sech}^{2} x$ and $u=c \tanh x$. A sccond solution is $y_{2}=\tanh x \cosh x=\sinh x$.
6. Define $y=u(x) e^{5 x}$ so

$$
y^{\prime}=5 e^{5 x} u+e^{5 x} u^{\prime}, \quad y^{\prime \prime}=e^{5 x} u^{\prime \prime}+10 e^{5 x} u^{\prime}+25 e^{5 x} u
$$

and

$$
y^{\prime \prime}-25 y=e^{5 x}\left(u^{\prime \prime}+10 u^{\prime}\right)=0 \quad \text { or } \quad u^{\prime \prime}+10 u^{\prime}=0
$$

If $w=u^{\prime}$ we obtain the linear first-order equation $w^{\prime}+10 w=0$ which has the integrating fac: $e^{10 \int d x}=e^{10 x}$. Now

$$
\frac{d}{d x}\left[e^{10 x} w\right]=0 \quad \text { gives } \quad e^{10 x} w=c
$$

Therefore $w=u^{\prime}=c e^{-10 x}$ and $u=c_{1} e^{-10 x}$. A second solution is $y_{2}=e^{-10 x} e^{5 x}=e^{-\check{o} x}$.
7. Definc $y=u(x) e^{2 x / 3}$ so

$$
y^{\prime}=\frac{2}{3} e^{2 x / 3} u+e^{2 x / 3} u^{\prime}, \quad y^{\prime \prime}=e^{2 x / 3} u^{\prime \prime}+\frac{4}{3} e^{2 x / 3} u^{\prime}+\frac{4}{9} e^{2 x / 3} u
$$

and

$$
9 y^{\prime \prime}-12 y^{\prime}+4 y=9 e^{2 x / 3} u^{\prime \prime}=0
$$

Thercfore $u^{\prime \prime}=0$ and $u=c_{1} x+c_{2}$. Taking $c_{1}=1$ and $c_{2}=0$ we see that a second solution: $y_{2}=x e^{2 x / 3}$.
8. Define $y=u(x) e^{x / 3}$ so

$$
y^{\prime}=\frac{1}{3} e^{x / 3} u+e^{x / 3} u^{\prime}, \quad y^{\prime \prime}=e^{x / 3} u^{\prime \prime}+\frac{2}{3} e^{x / 3} u^{\prime}+\frac{1}{9} e^{x / 3} u
$$

$=1$

$$
6 y^{\prime \prime}+y^{\prime}-y=e^{x / 3}\left(6 u^{\prime \prime}+5 u^{\prime}\right)=0 \quad \text { or } \quad u^{\prime \prime}+\frac{5}{6} u^{\prime}=0
$$

$\therefore \because=u^{\prime}$ we obtain the linear first-order equation $w^{\prime}+\frac{5}{6} w=0$ which has the integrating factor
\vdots : $\iint d x=e^{5 x / 6}$. Now

$$
\frac{d}{d x}\left[e^{5 x / 6} w\right]=0 \quad \text { gives } \quad e^{5 x / 6} w=c
$$

-Eerefore $w=u^{\prime}=c e^{-5 x / 6}$ and $u=c_{1} e^{-5 x / 6}$. A second solution is $y_{2}=e^{-\bar{j} x / 6} e^{x / 3}=e^{-x / 2}$.
$\because \quad: \quad$ intifying $P(x)=-7 / x$ we have

$$
y_{2}=x^{4} \int \frac{e^{-\int(-7 / x) d x}}{x^{8}} d x=x^{4} \int \frac{1}{x} d x=x^{4} \ln |x|
$$

\therefore second solution is $y_{2}=x^{4} \ln |x|$.
$\because \quad \therefore \quad$ Intifying $P(x)=2 / x$ we have

$$
y_{2}=x^{2} \int \frac{e^{-\int(2 / x) d x}}{x^{4}} d x=x^{2} \int x^{-6} d x=-\frac{1}{5} x^{-3}
$$

\therefore second solution is $y_{2}=x^{-3}$.
$\because \quad \because$ Entifying $P(x)=1 / x$ wo have

$$
y_{2}=\ln x \int \frac{e^{-\int d x / x}}{(\ln x)^{2}} d x=\ln x \int \frac{d x}{x(\ln x)^{2}}=\ln x\left(-\frac{1}{\ln x}\right)=-1
$$

\therefore Second solution is $y_{2}=1$.
\because. Entifying $P(x)=0$ we have

$$
y_{2}=x^{1 / 2} \ln x \int \frac{e^{-\int 0 d x}}{x(\ln x)^{2}} d x=x^{1 / 2} \ln x\left(-\frac{1}{\ln x}\right)=-x^{1 / 2}
$$

\therefore second solution is $y_{2}=x^{1 / 2}$.
$\therefore \quad \therefore$ ntifying $P(x)=-1 / x$ we have

$$
\begin{aligned}
y_{2} & =x \sin (\ln x) \int \frac{e^{-\int-d x / x}}{x^{2} \sin ^{2}(\ln x)} d x=x \sin (\ln x) \int \frac{x}{x^{2} \sin ^{2}(\ln x)} d x \\
& =x \sin (\ln x) \int \frac{\csc ^{2}(\ln x)}{x} d x=[x \sin (\ln x)][-\cot (\ln x)]=-x \cos (\ln x)
\end{aligned}
$$

\therefore second solution is $y_{2}=x \cos (\ln x)$.
.$=$ Zentifying $P(x)=-3 / x$ we have

$$
\begin{aligned}
y_{2} & =x^{2} \cos (\ln x) \int \frac{e^{-\int-3 d x / x}}{x^{4} \cos ^{2}(\ln x)} d x=x^{2} \cos (\ln x) \int \frac{x^{3}}{x^{4} \cos ^{2}(\ln x)} d x \\
& =x^{2} \cos (\ln x) \int \frac{\sec ^{2}(\ln x)}{x} d x=x^{2} \cos (\ln x) \tan (\ln x)=x^{2} \sin (\ln x)
\end{aligned}
$$

A second solution is $y_{2}=x^{2} \sin (\ln x)$.
15. Identifying $P(x)=2(1+x) /\left(1-2 x-x^{2}\right)$ we have

$$
\begin{aligned}
y_{2} & =(x+1) \int \frac{e^{-\int 2(1+x) d x /\left(1-2 x-x^{2}\right)}}{(x+1)^{2}} d x=(x+1) \int \frac{e^{\ln \left(1-2 x-x^{2}\right)}}{(x+1)^{2}} d x \\
& =(x+1) \int \frac{1-2 x-x^{2}}{(x+1)^{2}} d x=(x+1) \int\left[\frac{2}{(x+1)^{2}}-1\right] d x \\
& =(x+1)\left[-\frac{2}{x+1}-x\right]=-2-x^{2}-x
\end{aligned}
$$

A sccond solution is $y_{2}=x^{2}+x+2$.
16. Identifying $P(x)=-2 x /\left(1-x^{2}\right)$ we have

$$
y_{2}=\int e^{-\int-2 x d x /\left(1-x^{2}\right)} d x=\int e^{-\ln \left(1-x^{2}\right)} d x=\int \frac{1}{1-x^{2}} d x=\frac{1}{2} \ln \left|\frac{1+x}{1-x}\right| .
$$

A second solution is $y_{2}=\ln |(1+x) /(1-x)|$.
17. Define $y=u(x) e^{-2 x}$ so

$$
y^{\prime}=-2 u e^{-2 x}+u^{\prime} e^{-2 x}, \quad y^{\prime \prime}=u^{\prime \prime} e^{-2 x}-4 u^{\prime} e^{-2 x}+4 u e^{-2 x}
$$

and

$$
y^{\prime \prime}-4 y=e^{-2 x} u^{\prime \prime}-4 e^{-2 x} u^{\prime}=0 \quad \text { or } \quad u^{\prime \prime}-4 u^{\prime}=0 .
$$

If $w=u^{\prime}$ we obtain the lincar first-order equation $w^{\prime}-4 w=0$ which has the integrating : $e^{-4 \int d x}=e^{-4 x}$. Now

$$
\frac{d}{d x}\left[e^{-4 x} w\right]=0 \quad \text { gives } \quad e^{-4 x} w=c
$$

Therefore $w=u^{\prime}=c e^{4 x}$ and $u=c_{1} e^{4 x}$. A second solution is $y_{2}=e^{-2 x} e^{4 x}=e^{2 x}$. We obscrvation that a particular solution is $y_{p}=-1 / 2$. The general solution is

$$
y=c_{1} e^{-2 x}+c_{2} e^{2 x}-\frac{1}{2}
$$

18. Define $y=u(x) \cdot 1$ so

$$
y^{\prime}=u^{\prime}, \quad y^{\prime \prime}=u^{\prime \prime} \quad \text { and } \quad y^{\prime \prime}+y^{\prime}=u^{\prime \prime}+u^{\prime}=1 .
$$

If $w=u^{\prime}$ we obtain the linear first-order equation $w^{\prime}+w=1$ which has the integrating : $e^{\int d x}=e^{x}$. Now

$$
\frac{d}{d x}\left[e^{x} w\right]=e^{x} \quad \text { gives } \quad e^{x} w=e^{x}+c
$$

Therefore $w=u^{\prime}=1+c e^{-x}$ and $u=x+c_{1} e^{-x}+c_{2}$. The general solution is

$$
y=u=x+c_{1} e^{-x}+c_{2}
$$

19. Define $y=u(x) e^{x}$ so

$$
y^{\prime}=u e^{x}+u^{\prime} e^{x}: \quad y^{\prime \prime}=u^{\prime \prime} e^{x}+2 u^{\prime} e^{x}+u e^{x}
$$

and

$$
y^{\prime \prime}-3 y^{\prime}+2 y=e^{x} u^{\prime \prime}-e^{x} u^{\prime}=5 e^{3 x}
$$

If $w=u^{\prime}$ we obtain the linear first-order equation $u^{\prime}-u=5 e^{2 x}$ which has the integrating factor $e^{-\int d x}=e^{-x}$. Now

$$
\frac{d}{d x}\left[e^{-x} w\right]=5 e^{x} \quad \text { gives } \quad e^{-x} w=5 e^{x}+c_{1}
$$

Therefore $w=u^{\prime}=5 e^{2 x}+c_{1} e^{x}$ and $u=\frac{5}{2} e^{2 x}+c_{1} e^{x}+c_{2}$. The general solution is

$$
y=u e^{x}=\frac{5}{2} e^{3 x}+c_{1} e^{2 x}+c_{2} e^{x}
$$

\because Define $y=u(x) e^{x}$ so

$$
y^{\prime}=u e^{x}+u^{\prime} e^{x} ; \quad y^{\prime \prime}=u^{\prime \prime} e^{x}+2 u^{\prime} e^{x}+u e^{x}
$$

$\therefore \mathrm{ad}$

$$
y^{\prime \prime}-4 y^{\prime}+3 y=e^{x} u^{\prime \prime}-e^{x} u^{\prime}=x .
$$

$\because u=u^{\prime}$ we obtain the linear first-order equation $u^{\prime}-2 u=x e^{-x}$ which has the integrating factor ${ }_{-}-\int^{2 d x}=e^{-2 x}$. Now

$$
\frac{d}{d x}\left[e^{-2 x} w\right]=x e^{-3 x} \quad \text { gives } \quad c^{-2 x} w=-\frac{1}{3} x e^{-3 x}-\frac{1}{9} e^{-3 x}+c_{1}
$$

- Ac efore $w=u^{\prime}=-\frac{1}{3} x e^{-x}-\frac{1}{9} e^{-x}+c_{1} e^{2 x}$ and $u=\frac{1}{3} x e^{-x}+\frac{4}{9} e^{-x}+c_{2} e^{2 x}+c_{3}$. The general \because ittion is

$$
y=u e^{x}=\frac{1}{3} x+\frac{4}{9}+c_{2} e^{3 x}+c_{3} e^{x}
$$

$\therefore \quad$ a) For m_{1} constant, let $y_{1}=e^{m_{1} x}$. Then $y_{1}^{\prime}=m_{1} e^{m_{l} x}$ and $y_{1}^{\prime \prime}=m_{1}^{2} e^{m_{1} x}$. Substituting into the differential equation we obtain

$$
\begin{aligned}
a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1} & =a m_{1}^{2} e^{m_{1} x}+b m_{1} e^{m_{1} x}+c e^{m_{1} x} \\
& =e^{m_{1} x}\left(a m_{1}^{2}+b m_{1}+c\right)=0
\end{aligned}
$$

Thus, $y_{1}=e^{m_{1} x}$ will be a solution of the differential equation whenever $a m_{1}^{2}+b m_{1}+c=0$. Since a quadratic equation always has at least one real or complex root, the differential equation must have a solution of the form $y_{1}=e^{m_{1} x}$.
\therefore Write the differential equation in the form

$$
y^{\prime \prime}+\frac{b}{a} y^{\prime}+\frac{c}{a} y=0,
$$

and let $y_{1}=e^{m_{1} x}$ be a solution. Then a second solution is given by

$$
\begin{aligned}
y_{2} & =e^{m_{1} x} \int \frac{e^{-b x / a}}{e^{2 m_{1} x}} d x \\
& =e^{m_{1} x} \int e^{-\left(b / a+2 m_{1}\right) x} d x \\
& =-\frac{1}{b / a+2 m_{1}} e^{m_{1} x} e^{-\left(b / a \div 2 m_{1}\right) x} \quad\left(m_{1} \neq-b / 2 a\right) \\
& =-\frac{1}{b / a+2 m_{1}} e^{-\left(b / a \perp m_{1}\right) x}
\end{aligned}
$$

Thus, when $m_{1} \neq-b / 2 a$, a second solution is given by $y_{2}=e^{m_{2} x}$ where $m_{2}=-b / a-$ When $m_{1}=-b / 2 a$ a second solution is given by

$$
y_{2}=e^{m_{1} x} \int d x=x e^{m_{1} x}
$$

(c) The functions

$$
\begin{aligned}
\sin x & =\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right) & \cos x & =\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \\
\sinh x & =\frac{1}{2}\left(e^{x}-e^{-x}\right) & \cosh x & =\frac{1}{2}\left(e^{x}+e^{-x}\right)
\end{aligned}
$$

are all expressible in terms of exponential functions.
22. We have $y_{1}^{\prime}=1$ and $y_{1}^{\prime \prime}=0$, so $x y_{1}^{\prime \prime}-x y_{1}^{\prime}+y_{1}=0-x+x=0$ and $y_{1}(x)=x$ is a solution of : differential equation. Letting $y=u(x) y_{1}(x)=x u(x)$ wo get

$$
y^{\prime}=x u^{\prime}(x)+u(x) \quad \text { and } \quad y^{\prime \prime}=x u^{\prime \prime}(x)+2 u^{\prime}(x)
$$

Then $x y^{\prime \prime}-x y^{\prime}+y=x^{2} u^{\prime \prime}+2 x u^{\prime}-x^{2} u^{\prime}-x u+x u=x^{2} u^{\prime \prime}-\left(x^{2}-2 x\right) u^{\prime}=0$. If we make : substitution $w=u^{\prime}$, the linear first-order differential equation becomes $x^{2} w^{\prime}-\left(x^{2}-x\right) w=0$, wl: is separable:

$$
\begin{aligned}
\frac{d w}{d x} & =\left(1-\frac{1}{x}\right) w \\
\frac{d w}{w} & =\left(1-\frac{1}{x}\right) d x \\
\ln w & =x-\ln x+c \\
w & =c_{1} \frac{e^{x}}{x}
\end{aligned}
$$

Then $u^{\prime}=c_{1} e^{x} / x$ and $u=c_{1} \int e^{x} d x / x$. To integrate e^{x} / x we use the series representation for
----s. a second solution is

$$
\begin{aligned}
y_{2}=x u(x) & =c_{1} x \int \frac{e^{x}}{x} d x \\
& =c_{1} x \int \frac{1}{x}\left(1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots\right) d x \\
& =c_{1} x \int\left(\frac{1}{x}+1+\frac{1}{2!} x+\frac{1}{3!} x^{2}+\cdots\right) d x \\
& =c_{1} x\left(\ln x+x+\frac{1}{2(2!)} x^{2}+\frac{1}{3(3!)} x^{3}+\cdots\right) \\
& =c_{1}\left(x \ln x+x^{2}+\frac{1}{2(2!)} x^{3}+\frac{1}{3(3!)} x^{4}+\cdots\right) .
\end{aligned}
$$

\therefore Enterval of definition is probably $(0, \infty)$ because of the $\ln x$ term.
$\Rightarrow \quad$ a Tre have $y^{\prime}=y^{\prime \prime}=e^{x}$, so

$$
x y^{\prime \prime}-(x+10) y^{\prime}+10 y=x e^{x}-(x+10) e^{x}+10 e^{x}=0
$$

and $y=c^{x}$ is a solution of the differential equation.
$51 \mathrm{By}(5)$ a second solution is

$$
\begin{aligned}
y_{2}= & y_{1} \int \frac{e^{-\int P(x) d x}}{y_{1}^{2}} d x=e^{x} \int \frac{e^{\int \frac{x+10}{x} d x}}{e^{2 x}} d x=e^{x} \int \frac{e^{\int(1+10 / x) d x}}{e^{2 x}} d x \\
= & e^{x} \int \frac{e^{x+\ln x^{10}}}{e^{2 x}} d x=e^{x} \int x^{10} e^{-x} d x \\
= & e^{x}\left(-3,628,800-3,628,800 x-1,814,400 x^{2}-604,800 x^{3}-151,200 x^{4}\right. \\
& \left.\quad-30,240 x^{5}-5,040 x^{6}-720 x^{7}-90 x^{8}-10 x^{9}-x^{10}\right) e^{-x} \\
= & -3,628,800-3,628,800 x-1,814,400 x^{2}-604,800 x^{3}-151,200 x^{4} \\
& \quad-30,240 x^{5}-5,040 x^{6}-720 x^{7}-90 x^{8}-10 x^{9}-x^{10}
\end{aligned}
$$

c) By Corollary (A) of Theorem 4.1.2, $-\frac{1}{10!} y_{2}=\sum_{n=0}^{10} \frac{1}{n!} x^{n}$ is a solution.

Exercises 4.3 Homogeneous Linear Equations with Constant Cocfficients

Exercises 4.3

Homogeneous Linear Equations with Constant Coeffieien:

1. From $4 m^{2}+m=0$ we obtain $m=0$ and $m=-1 / 4$ so that $y=c_{1}+c_{2} e^{-x / 4}$.
2. From $m^{2}-36=0$ we obtain $m=6$ and $m=-6$ so that $y=c_{1} e^{6 x}+c_{2} e^{-6 x}$.
3. From $m^{2}-m-6=0$ we obtain $m=3$ and $m=-2$ so that $y=c_{1} e^{3 x}+c_{2} e^{-2 x}$.
4. From $m^{2}-3 m+2=0$ wc obtain $m=1$ and $m=2$ so that $y=c_{1} e^{x}+c_{2} e^{2 x}$.
5. From $m^{2}+8 m+16=0$ we obtain $m=-4$ and $m=-4$ so that $y=c_{1} e^{-4 x}+c_{2} x e^{-4 x}$.
6. From $m^{2}-10 m+25=0$ we obtain $m=5$ and $m=5$ so that $y=c_{1} \epsilon^{5 x}+c_{2} x e^{5 x}$.
\therefore From $12 m^{2}-5 m-2=0$ we obtain $m=-1 / 4$ and $m=2 / 3$ so that $y=c_{1} e^{-x / 4}+c_{2} e^{2 x / 3}$.
7. From $m^{2}+4 m-1=0$ we obtain $m=-2 \pm \sqrt{5}$ so that $y=c_{1} e^{(-2 \div \sqrt{5}) x}+c_{2} e^{(-2-\sqrt{5}) x}$.
8. From $m^{2}+9=0$ we obtain $m=3 i$ and $m=-3 i$ so that $y=c_{1} \cos 3 x+c_{2} \sin 3 x$.
9. From $3 m^{2}+1=0$ we obtain $m=i / \sqrt{3}$ and $m=-i / \sqrt{3}$ so that $y=c_{1} \cos (x / \sqrt{3})+c_{2}(\sin x / 1$.
10. From $m^{2}-4 m+5=0$ we obtain $m=2 \pm i$ so that $y=e^{2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$.
$\because 2$. From $2 m^{2}+2 m+1=0$ we obtain $m=-1 / 2 \pm i / 2$ so that

$$
y=e^{-x / 2}\left[c_{1} \cos (x / 2)+c_{2} \sin (x / 2)\right]
$$

23. From $3 m^{2}+2 m+1=0$ we obtain $m=-1 / 3 \pm \sqrt{2} i / 3$ so that

$$
y=e^{-x / 3}\left[c_{1} \cos (\sqrt{2} x / 3)+c_{2} \sin (\sqrt{2} x / 3)\right] .
$$

-4. From $2 m^{2}-3 m+4=0$ we obtain $m=3 / 4 \pm \sqrt{23} i / 4$ so that

$$
y=e^{3 x / 4}\left[c_{1} \cos (\sqrt{23} x / 4)+c_{2} \sin (\sqrt{23} x / 4)\right]
$$

-5. From $m^{3}-4 m^{2}-5 m=0$ we obtain $m=0, m=5$, and $m=-1$ so that

$$
y=c_{1}+c_{2} e^{5 x}+c_{3} e^{-x}
$$

-巨. From $m^{3}-1=0$ we obtain $m=1$ and $m=-1 / 2 \pm \sqrt{3} i / 2$ so that

$$
y=c_{1} e^{x}+e^{-x / 2}\left[c_{2} \cos (\sqrt{3} x / 2)+c_{3} \sin (\sqrt{3} x / 2)!\right.
$$

$\because-2 m m^{3}-5 m^{2}+3 m+9=0$ we obtain $m=-1, m=3$, and $m=3$ so that

$$
y=c_{1} e^{-x}+c_{2} e^{3 x}+c_{3} x e^{3 x}
$$

-s. $2 m m^{3}+3 m^{2}-4 m-12=0$ we obtain $m=-2, m=2$, and $m=-3$ so that

$$
y=c_{1} e^{-2 x}+c_{2} e^{2 x}+c_{3} e^{-3 x} .
$$

－From $m^{3}+m^{2}-2=0$ we obtain $m=1$ and $m=-1 \pm i$ so that

$$
u=c_{1} e^{t}+e^{-t}\left(c_{2} \cos t+c_{3} \sin t\right)
$$

\therefore From $m^{3}-m^{2}-4=0$ we obtain $m=2$ and $m=-1 / 2 \pm \sqrt{7} i / 2$ so that

$$
x=c_{1} e^{2 t}+e^{-t / 2}\left[c_{2} \cos (\sqrt{7} t / 2)+c_{3} \sin (\sqrt{7} t / 2)\right]
$$

\therefore From $m^{3}+3 m^{2}+3 m+1=0$ wc obtain $m=-1, m=-1$ ，and $m=-1$ so that

$$
y=c_{1} e^{-x}+c_{2} x e^{-x}+c_{3} x^{2} e^{-x}
$$

\therefore From $m^{3}-6 m^{2}+12 m-8=0$ we obtain $m=2, m=2$ ，and $m=2$ so that

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} x^{2} e^{2 x}
$$

\therefore From $m^{4}+m^{3}+m^{2}=0$ we obtain $m=0, m=0$ ，and $m=-1 / 2 \pm \sqrt{3} i / 2$ so that

$$
y=c_{1}+c_{2} x+e^{-x / 2}\left[c_{3} \cos (\sqrt{3} x / 2)+c_{4} \sin (\sqrt{3} x / 2)\right]
$$

\because From $m^{4}-2 m^{2}+1=0$ we obtain $m=1, m=1, m=-1$ ，and $m=-1$ so that

$$
y=c_{1} e^{x}+c_{2} x c^{x}+c_{3} e^{-x}+c_{4} x e^{-x}
$$

\because Erom $16 m^{4}+24 m^{2}+9=0$ we obtain $m= \pm \sqrt{3} i / 2$ and $m= \pm \sqrt{3} i / 2$ so that

$$
y=c_{1} \cos (\sqrt{3} x / 2)+c_{2} \sin (\sqrt{3} x / 2)+c_{3} x \cos (\sqrt{3} x / 2)+c_{4} x \sin (\sqrt{3} x / 2)
$$

\therefore ミ־om $m^{4}-7 m^{2}-18=0$ we obtain $m=3, m=-3$ ，and $m= \pm \sqrt{2} i$ so that

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}+c_{3} \cos \sqrt{2} x+c_{4} \sin \sqrt{2} x
$$

\therefore ㅋym $m^{5}+5 m^{4}-2 m^{3}-10 m^{2}+m+5=0$ we obtain $m=-1, m=-1, m=1$ ，and $m=1$ ，and $\because=-5$ so that

$$
u=c_{1} e^{-r}+c_{2} r e^{-r}+c_{3} e^{r}+c_{4} r e^{r}+c_{5} e^{-5 r}
$$

－Fiom $2 m^{5}-7 m^{4}+12 m^{3}+8 m^{2}=0$ we obtain $m=0, m=0, m=-1 / 2$ ，and $m=2 \pm 2 i$ so that

$$
x=c_{1}+c_{2} s+c_{3} e^{-s / 2}+e^{2 s}\left(c_{4} \cos 2 s+c_{5} \sin 2 s\right)
$$

2．ミッm $m^{2}+16=0$ we obtain $m= \pm 4 i$ so that $y=c_{1} \cos 4 x+c_{2} \sin 4 x$ ．If $y(0)=2$ and $y^{\prime}(0)=-2$ \therefore En $c_{1}=2, c_{2}=-1 / 2$ ，and $y=2 \cos 4 x-\frac{1}{2} \sin 4 x$ ．
\therefore ． $5 m m^{2}+1=0$ we obtain $m= \pm i$ so that $y=c_{1} \cos \theta+c_{2} \sin 0$ ．If $y(\pi / 3)=0$ and $y^{\prime}(\pi / 3)=2$ $\because \because n$

$$
\begin{array}{r}
\frac{1}{2} c_{1}+\frac{\sqrt{3}}{2} c_{2}=0 \\
-\frac{\sqrt{3}}{2} c_{1}+\frac{1}{2} c_{2}=2
\end{array}
$$

Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

so $c_{1}=-\sqrt{3}, c_{2}=1$, and $y=-\sqrt{3} \cos \theta+\sin \theta$.
31. From $m^{2}-4 m-5=0$ we obtain $m=-1$ and $m=5$, so that $y=c_{1} e^{-t}+c_{2} e^{5 t}$. If $y(1)=$ and $y^{\prime}(1)=2$, then $c_{1} e^{-1}+c_{2} e^{5}=0,-c_{1} e^{-1}+5 c_{2} e^{5}=2$, so $c_{1}=-e / 3, c_{2}=e^{-5} / 3$. $y=-\frac{1}{3} e^{1-t}+\frac{1}{3} e^{5 t-5}$.
32. From $4 m^{2}-4 m-3=0$ we obtain $m=-1 / 2$ and $m=3 / 2$ so that $y=c_{1} e^{-x / 2}+c_{2} e^{3 x / 2}$. If $y(0=$ and $y^{\prime}(0)=5$ then $c_{1}+c_{2}=1,-\frac{1}{2} c_{1}+\frac{3}{2} c_{2}=5$, so $c_{1}=-7 / 4, c_{2}=11 / 4$, and $y=-\frac{7}{4} e^{-x / 2}+\frac{11}{4} \epsilon$:
33. From $m^{2}+m+2=0$ we obtain $m=-1 / 2 \pm \sqrt{7} i / 2$ so that $y=e^{-x / 2}\left[c_{1} \cos (\sqrt{7} x / 2)+c_{2} \sin (\sqrt{7} x-\right.$ If $y(0)=0$ and $y^{\prime}(0)=0$ then $c_{1}=0$ and $c_{2}=0$ so that $y=0$.
34. From $m^{2}-2 m+1=0$ we obtain $m=1$ and $m=1$ so that $y=c_{1} e^{x}+c_{2} x e^{x}$. If $y(0)=5$ $y^{\prime}(0)=10$ then $c_{1}=5, c_{1}+c_{2}=10$ so $c_{1}=5, c_{2}=5$, and $y=5 e^{x}+5 x e^{x}$.
35. From $m^{3}+12 m^{2}+36 m=0$ we obtain $m=0, m=-6$, and $m=-6$ so that $y=c_{1}+c_{2} e^{-6 x}+c_{3} x f^{-}$ If $y(0)=0, y^{\prime}(0)=1$, and $y^{\prime \prime}(0)=-7$ then

$$
c_{1}+c_{2}=0, \quad-6 c_{2}+c_{3}=1, \quad 36 c_{2}-12 c_{3}=-7
$$

so $c_{1}=5 / 36, c_{2}=-5 / 36, c_{3}=1 / 6$, and $y=\frac{5}{36}-\frac{5}{36} e^{-6 x}+\frac{1}{6} x e^{-6 x}$.
36. From $m^{3}+2 m^{2}-5 m-6=0$ we obtain $m=-1, m=2$, and $m=-3$ so that

$$
y=c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} e^{-3 x} .
$$

If $y(0)=0, y^{\prime}(0)=0$, and $y^{\prime \prime}(0)=1$ then

$$
c_{1}+c_{2}+c_{3}=0, \quad-c_{1}+2 c_{2}-3 c_{3}=0, \quad c_{1}+4 c_{2}+9 c_{3}=1,
$$

so $c_{1}=-1 / 6, c_{2}=1 / 15, c_{3}=1 / 10$, and

$$
y=-\frac{1}{6} e^{-x}+\frac{1}{15} e^{2 x}+\frac{1}{10} e^{-3 x} .
$$

37. From $m^{2}-10 m+25=0$ we obtain $m=5$ and $m=5$ so that $y=c_{1} e^{5 x}+c_{2} x e^{5 x}$. If $y(0)=1$ $y(1)=0$ then $c_{1}=1, c_{1} e^{5}+c_{2} e^{5}=0$, so $c_{1}=1 . c_{2}=-1$, and $y=e^{5 x}-x e^{5 x}$.
38. From $m^{2}+4=0$ we obtain $m= \pm 2 i$ so that $y=c_{1} \cos 2 x+c_{2} \sin 2 x$. If $y(0)=0$ and $y(\pi=$ then $c_{1}=0$ and $y=c_{2} \sin 2 x$.
39. From $m^{2}+1=0$ we obtain $m= \pm i$ so that $y=c_{1} \cos x+c_{2} \sin x$ and $y^{\prime}=-c_{1} \sin x+c_{2} c$. From $y^{\prime}(0)=c_{1}(0)+c_{2}(1)=c_{2}=0$ and $y^{\prime}(\pi / 2)=-c_{1}(1)=0$ we find $c_{1}=c_{2}=0$. A soluti.: the boundary-value problem is $y=0$.
40. From $m^{2}-2 m+2=0$ we obtain $m=1 \pm i$ so that $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$. If $y(0)=1$ $\ddot{i}: \pi)=1$ then $c_{1}=1$ and $y(\pi)=e^{\pi} \cos \pi=-e^{\pi}$. Since $-e^{\pi} \neq 1$, the boundary-value problcm: no solution.
\therefore The auxiliary equation is $m^{2}-3=0$ which has roots $-\sqrt{3}$ and $\sqrt{3}$. By (10) the general solution is $y=c_{1} e^{\sqrt{3} x}+c_{2} e^{-\sqrt{3} x}$. By (11) the general solution is $y=c_{1} \cosh \sqrt{3} x+c_{2} \sinh \sqrt{3} x$. For $z=c_{1} e^{\sqrt{3} x}+c_{2} e^{-\sqrt{3} x}$ the initial conditions imply $c_{1}+c_{2}=1, \sqrt{3} c_{1}-\sqrt{3} c_{2}=5$. Solving for c_{1} and ϱ_{2} we find $c_{1}=\frac{1}{2}(1+5 \sqrt{3})$ and $c_{2}=\frac{1}{2}(1-5 \sqrt{3})$ so $y=\frac{1}{2}(1+5 \sqrt{3}) e^{\sqrt{3} x}+\frac{1}{2}(1-5 \sqrt{3}) e^{-\sqrt{3} x}$. For $y=c_{1} \cosh \sqrt{3} x+c_{2} \sinh \sqrt{3} x$ the initial conditions imply $c_{1}=1, \sqrt{3} c_{2}=5$. Solving for c_{1} and c_{2} wo find $c_{1}=1$ and $c_{2}=\frac{5}{3} \sqrt{3}$ so $y=\cosh \sqrt{3} x+\frac{5}{3} \sqrt{3} \sinh \sqrt{3} x$.
\therefore. The auxiliary equation is $m^{2}-1=0$ which has roots -1 and 1 . By (10) the general solution is $y=c_{1} e^{x}+c_{2} e^{-x}$. By (11) the general solution is $y=c_{1} \cosh x+c_{2} \sinh x$. For $y=c_{1} e^{x}+c_{2} e^{-x}$ the boundary conditions imply $c_{1}+c_{2}=1$. $c_{1} e-c_{2} e^{-1}=0$. Solving for c_{1} and c_{2} we find $c_{1}=1 /\left(1+e^{2}\right)$ and $c_{2}=e^{2} /\left(1+e^{2}\right)$ so $y=e^{x} /\left(1+e^{2}\right)+e^{2} e^{-x} /\left(1+e^{2}\right)$. For $y=c_{1} \cosh x+c_{2} \sinh x$ the boundary onditions imply $c_{1}=1 . c_{2}=-\tanh 1$, so $y=\cosh x-(\tanh 1) \sinh x$.
\therefore The auxiliary equation should have two positive roots, so that the solution has the form $y=c_{1} e^{k_{1} x}+c_{2} e^{k_{2} x}$. Thus, the differential equation is (f).
\therefore The auxiliary equation should have one positive and one negative root, so that the solution has the تorm $y=c_{1} e^{k_{1} x}+c_{2} e^{-k_{2} x}$. Thus, the differential equation is (a).
\equiv The auxiliary equation should have a pair of complex roots $\alpha \pm \beta i$ where $\alpha<0$, so that the solution Tas the form $e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)$. Thus. the differential equation is (c).
\therefore. The auxiliary equation should have a repeated negative root, so that the solution has the form $y=c_{1} e^{-x}+c_{2} x e^{-x}$. Thus, the differential equation is (c).
\therefore - The differential equation should have the form $y^{\prime \prime}+k^{2} y=0$ where $k=1$ so that the period of the solution is 2π. Thus, the differential equation is (d).

- The differential equation should have the form $y^{\prime \prime}+k^{2} y=0$ where $k=2$ so that the period of the solution is π. Thus, the differential equation is (b).
\therefore Since $(m-4)(m+5)^{2}=m^{3}+6 m^{2}-15 m-100$ the differential equation is $y^{\prime \prime \prime}+6 y^{\prime \prime}-15 y^{\prime}-100 y=0$. The differential equation is not unique since any constant multiple of the left-hand side of the diffcrential cquation would lead to the auxiliary roots.
$\because-$. A third root must be $m_{3}=3-i$ and the auxiliary equation is

$$
\left(m+\frac{1}{2}\right)[m-(3+i)][m-(3-i)]=\left(m+\frac{1}{2}\right)\left(m^{2}-6 x+10\right)=m^{3}-\frac{11}{2} m^{2}+7 m+5 .
$$

The differential equation is

$$
y^{\prime \prime \prime}-\frac{11}{2} y^{\prime \prime}+7 y^{\prime}+5 y=0
$$

\because. From the solution $y_{1}=e^{-4 x} \cos x$ we conclude that $m_{1}=-4+i$ and $m_{2}=-4-i$ are roots of the auxiliary cquation. Hence another solution must be $y_{2}=e^{-4 x} \sin x$. Now dividing the polynomial

Exercises 4.3 Homogeneous Lincar Equations with Constant Coefficients

$m^{3}+6 m^{2}+m-34$ by $[m-(-4+i)][m-(-4-i)]=m^{2}+8 m+17$ gives $m-2$. Therefore $m_{s}=$ is the third root of the auxiliary equation. and the general solution of the differential cquation

$$
y=c_{1} e^{-4 x} \cos x \div c_{2} e^{-4 x} \sin x+c_{3} e^{2 x}
$$

52. Factoring the difference of two squares we obtain

$$
m^{4}+1=\left(m^{2}+1\right)^{2}-2 m^{2}=\left(m^{2}+1-\sqrt{2} m\right)\left(m^{2}+1+\sqrt{2} m\right)=0
$$

Using the quadratic formula on each factor we get $m= \pm \sqrt{2} / 2 \pm \sqrt{2} i / 2$. The solution o : differential equation is

$$
y(x)=e^{\sqrt{2} x / 2}\left(c_{1} \cos \frac{\sqrt{2}}{2} x+c_{2} \sin \frac{\sqrt{2}}{2} x\right)+e^{-\sqrt{2} x / 2}\left(c_{3} \cos \frac{\sqrt{2}}{2} x+c_{4} \sin \frac{\sqrt{2}}{2} x\right) .
$$

53. Using the definition of $\sinh x$ and the formula for the cosine of the sum of two angles, we har:

$$
\begin{aligned}
y & =\sinh x-2 \cos (x+\pi / 6) \\
& =\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}-2\left[(\cos x)\left(\cos \frac{\pi}{6}\right)-(\sin x)\left(\sin \frac{\pi}{6}\right)\right] \\
& =\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}-2\left(\frac{\sqrt{3}}{2} \cos x-\frac{1}{2} \sin x\right) \\
& =\frac{1}{2} e^{x}-\frac{1}{2} e^{-x}-\sqrt{3} \cos x+\sin x .
\end{aligned}
$$

This form of the solution can be obtained from the general solution $y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} c-$ $c_{4} \sin x$ by choosing $c_{1}=\frac{1}{2}, c_{2}=-\frac{1}{2}: c_{3}=-\sqrt{3}$, and $c_{4}=1$.
54. The anxiliary equation is $m^{2}+\alpha=0$ and we consider three cases where $\lambda=0, \lambda=\alpha^{2}>$: $\lambda=-\alpha^{2}<0$:

Case I When $\alpha=0$ the gencral solution of the differential equation is $y=c_{1}+c_{2} x$. The bow. conditions imply $0=y(0)=c_{1}$ and $0=y(\pi / 2)=c_{2} \pi / 2$, so that $c_{1}=c_{2}=0$ and the ppossesses only the trivial solution.
Case II When $\lambda=-\alpha^{2}<0$ the general solution of the differential equation is $y=c$: $c_{2} e^{-\alpha x}$, or alternatively, $y=c_{1} \cosh \alpha x+c_{2} \sinh \alpha x$. Again, $y(0)=0$ implies $c_{1}=0$ $y=c_{2} \sinh \alpha x$. The second boundary condition implics $0=y(\pi / 2)=c_{2} \sinh \alpha \pi / 2$ or $c_{2}=$ this case also, the problem possesses only the trivial solution.

Case III When $\lambda=\alpha^{2}>0$ the general solution of the differential equation is $y=c_{1}$ co$c_{2} \sin \alpha x$. In this case also, $y(0)=0$ yields $c_{1}=0$, so that $y=c_{2} \sin \alpha x$. The second bo:condition implies $0=c_{2} \sin \alpha \pi / 2$. When $\alpha \pi / 2$ is an integer multiple of π, that is, when $\Leftrightarrow \therefore$ for k a nonzero integer, the problem will have nontrivial solutions. Thus, for $\lambda=\alpha^{2}=\vdots$. boundary-value problem will have nontrivial solutions $y=c_{2} \sin 2 k x$, where k is a nonzero $\therefore-$.
. \because the other hand. when α is not an even integer, the boundary-value problem will have only the \cdots ial solution.
$\because-\because \mathrm{ng}$ a CAS to solve the auxiliary equation $m^{3}-6 m^{2}+2 m+1$ we find $m_{1}=-0.270534$, $\cdots=0.658675$, and $m_{3}=5.61186$. The general solution is

$$
y=c_{1} e^{-0.270531 x}+c_{2} e^{0.658675 x}+c_{3} e^{5.61186 x}
$$

Ir. $\quad-$ ing a CAS to solve the auxiliary equation $6.11 m^{3}+8.59 m^{2}+7.93 m+0.778=0$ we find $\cdots:=-0.110241, m_{2}=-0.647826+0.857532 i$, and $m_{3}=-0.647826-0.857532 i$. The general \because intion is

$$
y=c_{1} e^{-0.110241 x}+e^{-0.647826 x}\left(c_{2} \cos 0.857532 x+c_{3} \sin 0.857532 x\right)
$$

"- --sing a CAS to solve the auxiliary equation $3.15 m^{4}-5.34 m^{2}+6.33 m-2.03=0$ we find $\because_{i}=-1.74806 . m_{2}=0.501219, m_{3}=0.62342+0.588965 i$, and $m_{4}=0.62342-0.588965 i$. The \because neral solution is

$$
y=c_{1} e^{-1.74806 x}+c_{2} e^{0.501219 x}+e^{0.62342 x}\left(c_{3} \cos 0.588965 x+c_{1} \sin 0.588965 x\right)
$$

E- - ing a CAS to solve the auxiliary equation $m^{4}+2 m^{2}-m+2=0$ we find $m_{1}=1 / 2+\sqrt{3} i / 2$, $\overbrace{2}=1 / 2-\sqrt{3} i / 2, m_{3}=-1 / 2+\sqrt{7} i / 2$, and $m_{4}=-1 / 2-\sqrt{7} i / 2$. The general solution is

$$
y=e^{x / 2}\left(c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right)+e^{-x / 2}\left(c_{3} \cos \frac{\sqrt{7}}{2} x+c_{4} \sin \frac{\sqrt{7}}{2} x\right) .
$$

三. From $2 m^{4}+3 m^{3}-16 m^{2}+15 m-4=0$ we obtain $m=-4, m=\frac{1}{2}, m=1$, and $m=1$, so that $=c_{1} e^{-4 x}+c_{2} e^{x / 2}+c_{3} e^{x}+c_{4} x e^{x}$. If $y(0)=-2, y^{\prime}(0)=6, y^{\prime \prime}(0)=3$, and $y^{\prime \prime \prime}(0)=\frac{1}{2}$, then

$$
\begin{aligned}
c_{1}+c_{2}+c_{3} & =-2 \\
-4 c_{1}+\frac{1}{2} c_{2}+c_{3}+c_{4} & =6 \\
16 c_{1}+\frac{1}{4} c_{2}+c_{3}+2 c_{4} & =3 \\
-64 c_{1}+\frac{1}{8} c_{2}+c_{3}+3 c_{4} & =\frac{1}{2}
\end{aligned}
$$

so $c_{1}=-\frac{4}{75}, c_{2}=-\frac{116}{3}, c_{3}=\frac{918}{25}, c_{4}=-\frac{58}{\bar{j}}$, and

$$
y=-\frac{4}{75} e^{-4 x}-\frac{116}{3} e^{x / 2}+\frac{918}{25} e^{x}-\frac{58}{5} x e^{x}
$$

\therefore. From $m^{4}-3 m^{3}+3 m^{2}-m=0$ we obtain $m=0, m=1, m=1$, and $m=1$ so that $y=c_{1}+c_{2} e^{x}+c_{3} x e^{x}+c_{4} x^{2} c^{x}$. If $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=1$, and $y^{\prime \prime \prime}(0)=1$ then

$$
c_{1}+c_{2}=0, \quad c_{2}+c_{3}=0, \quad c_{2}+2 c_{3}+2 c_{4}=1, \quad c_{2}+3 c_{3}+6 c_{4}=1
$$

Exercises 4.3 Homogeneous Linear Equations with Constant Coefficients

so $c_{1}=2, c_{2}=-2, c_{3}=2, c_{4}=-1 / 2$, and

$$
y=2-2 e^{x}+2 x \epsilon^{x}-\frac{1}{2} x^{2} e^{x}
$$

Exercises 4.4

Undetermined Coefficients Superposition Approach

1. From $m^{2}+3 m+2=0$ we find $m_{1}=-1$ and $m_{2}=-2$. Then $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ and we assum $y_{p}=A$. Substituting into the differential equation we obtain $2 A=6$. Then $A=3, y_{p}=3$ and

$$
y=c_{1} e^{x}+c_{2} e^{-2 x}+3
$$

2. From $4 m^{2}+9=0$ we find $m_{1}=-\frac{3}{2} i$ and $m_{2}=\frac{3}{2} i$. Then $y_{c}=c_{1} \cos \frac{3}{2} x+c_{2} \sin \frac{3}{2} x$ and we assum: $y_{p}=A$. Substituting into the differential equation we obtain $9 A=15$. Then $A=\frac{5}{3}, y_{p}=\frac{5}{3}$ and

$$
y=c_{1} \cos \frac{3}{2} x+c_{2} \sin \frac{3}{2} x+\frac{5}{3}
$$

3. From $m^{2}-10 m+25=0$ we find $m_{1}=m_{2}=5$. Then $y_{c}=c_{1} e^{5 x}+c_{2} x c^{a x}$ and we assum: $y_{p}=A x+B$. Substituting into the differential equation we obtain $25 A=30$ and $-10 A+25 B=$ Then $A=\frac{6}{5}, B=\frac{3}{5}, y_{p}=\frac{6}{5} x+\frac{3}{5}$, and

$$
y=c_{1} e^{5 x}+c_{2} x e^{5 x}+\frac{6}{5} x+\frac{3}{5} .
$$

4. From $m^{2}+m-6=0$ we find $m_{1}=-3$ and $m_{2}=2$. Then $y_{c}=c_{1} e^{-3 x}+c_{2} e^{2 x}$ and we assu:. $y_{p}=A x+B$. Substituting into the differential equation we obtain $-6 A=2$ and $A-6 B=0$. Th: $A=-\frac{1}{3}, B=-\frac{1}{18}, y_{p}=-\frac{1}{3} x-\frac{1}{18}$, and

$$
y=c_{1} e^{-3 x}+c_{2} e^{2 x}-\frac{1}{3} x-\frac{1}{18} .
$$

5. From $\frac{1}{4} m^{2}+m+1=0$ we find $m_{1}=m_{2}=-2$. Then $y_{c}=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$ and wo assu:$y_{p}=A x^{2}+B x+C$. Substituting into the differential equation we obtain $A=1,2 A+B=-$ and $\frac{1}{2} A+B+C=0$. Thon $A=1, B=-4, C=\frac{7}{2}, y_{p}=x^{2}-4 x+\frac{7}{2}$, and

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+x^{2}-4 x+\frac{7}{2}
$$

6. From $m^{2}-8 m+20=0$ we find $m_{1}=4+2 i$ and $m_{2}=4-2 i$. Then $y_{c}=e^{4 x}\left(c_{1} \cos 2 x+c_{2} \sin 2\right.$: and we assume $y_{p}=A x^{2}+B x+C+(D x+E) e^{x}$. Substituting into the differential equation -

Stain

$$
\begin{aligned}
2 A-8 B+20 C & =0 \\
-6 D+13 E & =0 \\
-16 A+20 B & =0 \\
13 D & =-26 \\
20 A & =100 .
\end{aligned}
$$

Then $A=5, B=4, C=\frac{11}{10}, D=-2, E=-\frac{12}{13}, y_{p}=5 x^{2}+4 x+\frac{11}{10}+\left(-2 x-\frac{12}{13}\right) e^{x}$ and

$$
y=e^{4 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+5 x^{2}+4 x+\frac{11}{10}+\left(-2 x-\frac{12}{13}\right) e^{x}
$$

-. From $m^{2}+3=0$ we find $m_{1}=\sqrt{3} i$ and $m_{2}=-\sqrt{3} i$. Then $y_{c}=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x$ and we assume $y_{p}=\left(A x^{2}+B x+C\right) e^{3 x}$. Substituting into the differential equation we obtain $24+6 B+12 C=0,12 A+12 B=0$, and $12 A=-48$. Then $A=-4, B=4, C=-\frac{4}{3}$, $: p=\left(-4 x^{2}+4 x-\frac{4}{3}\right) e^{3 x}$ and

$$
y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x+\left(-4 x^{2}+4 x-\frac{4}{3}\right) e^{3 x}
$$

‥ From $4 m^{2}-4 m-3=0$ wc find $m_{1}=\frac{3}{2}$ and $m_{2}=-\frac{1}{2}$. Then $y_{c}=c_{1} e^{3 x / 2}+c_{2} e^{-x / 2}$ and we assume $y_{p}=A \cos 2 x+B \sin 2 x$. Substituting into the differential equation we obtain $-19-8 B=1$ and $\overline{3} A-19 B=0$. Then $A=-\frac{19}{425}, B=-\frac{8}{425}, y_{p}=-\frac{19}{425} \cos 2 x-\frac{8}{425} \sin 2 x$, and

$$
y=c_{1} e^{3 x / 2}+c_{2} e^{-x / 2}-\frac{19}{425} \cos 2 x-\frac{8}{425} \sin 2 x
$$

9. From $m^{2}-m=0$ we find $m_{1}=1$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{x}+c_{2}$ and we assume $y_{p}=A x$. Substituting into the differential equation we obtain $-A=-3$. Then $A=3, y_{p}=3 x$ and $y=c_{1} e^{x}+c_{2}+3 x$.
-0. From $m^{2}+2 m=0$ we find $m_{1}=-2$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{-2 x}+c_{2}$ and we assume $y_{p}=A x^{2}+B x+C x e^{-2 x}$. Substituting into the differential equation we obtain $2 A+2 B=5$, $4 A=2$, and $-2 C=-1$. Then $A=\frac{1}{2}, B=2, C=\frac{1}{2}, y_{p}=\frac{1}{2} x^{2}+2 x+\frac{1}{2} x e^{-2 x}$, and

$$
y=c_{1} e^{-2 x}+c_{2}+\frac{1}{2} x^{2}+2 x+\frac{1}{2} x e^{-2 x} .
$$

-1. From $m^{2}-m+\frac{1}{4}=0$ we find $m_{1}=m_{2}=\frac{1}{2}$. Then $y_{c}=c_{1} e^{x / 2}+c_{2} x e^{x / 2}$ and we assume $y_{p}=A+B x^{2} e^{x / 2}$. Substituting into the differential equation we obtain $\frac{1}{4} A=3$ and $2 B=1$. Then $A=12, B=\frac{1}{2}, y_{p}=12+\frac{1}{2} x^{2} e^{x / 2}$, and

$$
y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}+12+\frac{1}{2} x^{2} e^{x / 2}
$$

Exercises 4.4 Undetermined Coefficients - Superposition Approach
12. From $m^{2}-16=0$ we find $m_{1}=4$ and $m_{2}=-4$. Then $y_{c}=c_{1} e^{4 x}+c_{2} e^{-4 x}$ and we ass $y_{p}=A x e^{4 x}$. Substituting into the differential equation we obtain $8 A=2$. Then $A=\frac{1}{4}, y_{p}=\frac{1}{1}$. and

$$
y=c_{1} e^{4 x}+c_{2} e^{-4 x}+\frac{1}{4} x e^{4 x}
$$

13. From $m^{2}+4=0$ we find $m_{1}=2 i$ and $m_{2}=-2 i$. Then $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and we as $y_{p}=A x \cos 2 x+B x \sin 2 x$. Substituting into the differential equation we obtain $4 B=0$ $-4 A=3$. Then $A=-\frac{3}{4}, B=0, y_{p}=-\frac{3}{4} x \cos 2 x$, and

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{3}{4} x \cos 2 x
$$

14. From $m^{2}-4=0$ we find $m_{1}=2$ and $m_{2}=-2$. Then $y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}$ and we assume $y_{p}=\left(A x^{2}+B x+C\right) \cos 2 x+\left(D x^{2}+E x+F\right) \sin 2 x$. Substituting into the differential equatic :. obtain

$$
\begin{aligned}
-8 A & =0 \\
-8 B+8 D & =0 \\
2 A-8 C+4 E & =0 \\
-8 D & =1 \\
-8 A-8 E & =0 \\
-4 B+2 D-8 F & =-3 .
\end{aligned}
$$

Then $A=0, B=-\frac{1}{8}, C=0, D=-\frac{1}{8}, E=0, F=\frac{13}{32}$, so $y_{p}=-\frac{1}{8} x \cos 2 x+\left(-\frac{1}{8} x^{2}+\frac{13}{32}\right): \because$ and

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}-\frac{1}{8} x \cos 2 x+\left(-\frac{1}{8} x^{2}+\frac{13}{32}\right) \sin 2 x .
$$

15. From $m^{2}+1=0$ we find $m_{1}=i$ and $m_{2}=-i$. Then $y_{c}=c_{1} \cos x+c_{2} \sin x$ and we as$y_{p}=\left(A x^{2}+B x\right) \cos x+\left(C x^{2}+D x\right) \sin x$. Substituting into the differential cquation we: $\pm C=0,2 A+2 D=0,-4 A=2$, and $-2 B+2 C=0$. Then $A=-\frac{1}{2}, B=0, C=0, D=$ $y_{p}=-\frac{1}{2} x^{2} \cos x+\frac{1}{2} x \sin x$, and

$$
y=c_{1} \cos x+c_{2} \sin x-\frac{1}{2} x^{2} \cos x+\frac{1}{2} x \sin x
$$

16. From $m^{2}-5 m=0$ we find $m_{1}=5$ and $m_{2}=0$. Then $y_{c}=c_{1} e^{5 x}+c_{2}$ and we a$y_{p}=A x^{4}+B x^{3}+C x^{2}+D x$. Substituting into the differential cquation we obtain $-20-\div=$ $12 A-15 B=-4,6 B-10 C=-1$, and $2 C-5 D=6$. Then $A=-\frac{1}{10}, B=\frac{14}{75}, C=$ $D=-\frac{697}{625}, y_{p}=-\frac{1}{10} x^{4}+\frac{14}{75} x^{3}+\frac{53}{250} x^{2}-\frac{697}{625} x$, and

$$
y=c_{1} e^{5 x}+c_{2}-\frac{1}{10} x^{4}+\frac{14}{75} x^{3}+\frac{53}{250} x^{2}-\frac{697}{625} x
$$

\because. From $m^{2}-2 m+5=0$ we find $m_{1}=1+2 i$ and $m_{2}=1-2 i$. Then $y_{c}=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$ and $\because e$ assume $y_{p}=A x e^{x} \cos 2 x+B x e^{x} \sin 2 x$. Substituting into the differential equation we obtain $\therefore B=1$ and $-4 A=0$. Then $A=0, B=\frac{1}{4}, y_{p}=\frac{1}{4} x e^{x} \sin 2 x$, and

$$
y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{1}{4} x e^{x} \sin 2 x
$$

-玉. Fom $m^{2}-2 m+2=0$ we find $m_{1}=1+i$ and $m_{2}=1-i$. Then $y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$ \therefore and we assume $y_{p}=A e^{2 x} \cos x+B e^{2 x} \sin x$. Substituting into the differential equation we obtain $-\frac{1}{2} \div 2 B=1$ and $-2 A+B=-3$. Then $A=\frac{7}{5}, B=-\frac{1}{5}, y_{p}=\frac{7}{5} e^{2 x} \cos x-\frac{1}{5} e^{2 x} \sin x$ and

$$
y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{7}{5} e^{2 x} \cos x-\frac{1}{5} e^{2 x} \sin x
$$

\therefore Zom $m^{2}+2 m+1=0$ we find $m_{1}=m_{2}=-1$. Then $y_{c}=c_{1} e^{-x}+c_{2} x e^{-x}$ and we assume $\therefore=A \cos x+B \sin x+C \cos 2 x+D \sin 2 x$. Substituting into the differential equation we obtain $\therefore B=0,-2 A=1:-3 C+4 D=3$, and $-4 C-3 D=0$. Then $A=-\frac{1}{2}, B=0, C=-\frac{9}{25}, D=\frac{12}{25}$, $\therefore=-\frac{1}{2} \cos x-\frac{9}{25} \cos 2 x+\frac{12}{25} \sin 2 x$. and

$$
y=c_{1} e^{-x}+c_{2} x e^{-x}-\frac{1}{2} \cos x-\frac{9}{25} \cos 2 x+\frac{12}{25} \sin 2 x
$$

$\therefore \because=0 \mathrm{~m} m^{2}+2 m-24=0$ we find $m_{1}=-6$ and $m_{2}=1$. Then $y_{c}=c_{1} e^{-6 x}+c_{2} e^{4 x}$ and we \therefore sume $y_{p}=A+\left(B x^{2}+C x\right) e^{4 x}$. Substituting into the differential equation we obtain $-24 A=16$, $-B+10 C=-2$, and $20 B=-1$. Then $A=-\frac{2}{3}, B=-\frac{1}{20} ; C=-\frac{19}{100}, y_{p}=-\frac{2}{3}-\left(\frac{1}{20} x^{2}+\frac{19}{100} x\right) e^{4 x}$, ad

$$
y=c_{1} e^{--6 x}+c_{2} e^{4 x}-\frac{2}{3}-\left(\frac{1}{20} x^{2}+\frac{19}{100} x\right) e^{4 x}
$$

\therefore Enom $m^{3}-6 m^{2}=0$ we find $m_{1}=m_{2}=0$ and $m_{3}=6$. Then $y_{c}=c_{1}+c_{2} x+c_{3} e^{6 x}$ and we assume $\because=A x^{2}+B \cos x+C \sin x$. Substituting into the differential equation we obtain $-12 A=3$, $\therefore B-C=-1$, and $B+6 C=0$. Then $A=-\frac{1}{1}, B=-\frac{6}{37}, C=\frac{1}{37}, y_{p}=-\frac{1}{4} x^{2}-\frac{6}{37} \cos x+\frac{1}{37} \sin x$, \therefore...d

$$
y=c_{1}+c_{2} x+c_{3} e^{6 x}-\frac{1}{4} x^{2}-\frac{6}{37} \cos x+\frac{1}{37} \sin x
$$

\therefore Fom $m^{3}-2 m^{2}-4 m+8=0$ we find $m_{1}=m_{2}=2$ and $m_{3}=-2$. Then $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} e^{-2 x}$ \therefore ald we assume $y_{p}=\left(A x^{3}+B x^{2}\right) e^{2 x}$. Substituting into the differential cquation we obtain $24 \Lambda=6$ \therefore 기d $6 A+8 B=0$. Then $A=\frac{1}{4}, B=-\frac{3}{16}, y_{p}=\left(\frac{1}{4} x^{3}-\frac{3}{16} x^{2}\right) e^{2 x}$, and

$$
y=c_{1} e^{2 x}+c_{2} x e^{2 x}+c_{3} e^{-2 x}+\left(\frac{1}{4} x^{3}-\frac{3}{16} x^{2}\right) e^{2 x}
$$

\therefore Enom $m^{3}-3 m^{2}+3 m-1=0$ we find $m_{1}=m_{2}=m_{3}=1$. Then $y_{c}=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}$ and ?e assume $y_{p}=A x+B+C x^{3} e^{x}$. Substituting into the differential equation we obtain $-A=1$,

Exercises 4.4 Undetermined Coofficients - Superposition Approach
$3 .-1-B=0$, and $6 C=-4$. Then $A=-1, B=-3, C=-\frac{2}{3}, y_{p}=-x-3-\frac{2}{3} x^{3} e^{x}$, and

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}-x-3-\frac{2}{3} x^{3} e^{x}
$$

$\therefore \dot{\therefore}$. Fom $m^{3}-m^{2}-4 m+4=0$ we find $m_{1}=1, m_{2}=2$, and $m_{3}=-2$. Then $y_{c}=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{--}$ and we assume $y_{p}=A+B x e^{x}+C x e^{2 x}$. Substituting into the differential equation we obtain $4 A=$ $-3 B=-1$, and $4 C=1$. Then $A=\frac{5}{4}, B=\frac{1}{3}, C=\frac{1}{4}, y_{p}=\frac{5}{4}+\frac{1}{3} x e^{x}+\frac{1}{4} x e^{2 x}$, and

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{-2 x}+\frac{5}{4}+\frac{1}{3} x e^{x}+\frac{1}{4} x e^{2 x} .
$$

25. From $m^{4}+2 m^{2}+1=0$ we find $m_{1}=m_{3}=i$ and $m_{2}=m_{4}=-i$. Then $y_{c}=c_{1} \cos x+c_{2} \sin x-$ $3^{r} \cos x+c_{4} x \sin x$ and we assume $y_{p}=A x^{2}+B x+C$. Substituting into the differential equat: op obtain $A=1, B=-2$, and $4 A+C=1$. Then $A=1, B=-2, C=-3, y_{p}=x^{2}-2 x-3, \because$

$$
y=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x+x^{2}-2 x-3
$$

2う. From $m^{4}-m^{2}=0$ we find $m_{1}=m_{2}=0, m_{3}=1$, and $m_{4}=-1$. Then $y_{c}=c_{1}+c_{2} x+c_{3} e^{r}+c_{4}{ }^{-}$ Ed we assume $y_{p}=A x^{3}+B x^{2}+\left(C x^{2}+D x\right) e^{-x}$. Substituting into the differential equation btain $-6 A=4,-2 B=0,10 C-2 D=0$, and $-4 C=2$. Then $A=-\frac{2}{3}, B=0, C=-$: $D=-\frac{5}{2}, y_{p}=-\frac{2}{3} x^{3}-\left(\frac{1}{2} x^{2}+\frac{5}{2} x\right) e^{-x}$, and

$$
y=c_{1}+c_{2} x+c_{3} e^{x}+c_{4} e^{-x}-\frac{2}{3} x^{3}-\left(\frac{1}{2} x^{2}+\frac{5}{2} x\right) e^{-x}
$$

2.. Te have $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and we assume $y_{p}=A$. Substituting into the differential cqua:: \because find $A=-\frac{1}{2}$. Thus $y=c_{1} \cos 2 x+c_{2} \sin 2 x-\frac{1}{2}$. From the initial conditions we obtain $c_{1}=$ \therefore ad $c=\sqrt{2}$, so $y=\sqrt{2} \sin 2 x-\frac{1}{2}$.
25. Te have $y_{c}=c_{1} e^{-2 x}+c_{2} e^{x / 2}$ and we assume $y_{p}=A x^{2}+B x+C$. Substituting into the differe: Guation we find $A=-7, B=-19$, and $C=-37$. Thus $y=c_{1} e^{-2 x}+c_{2} e^{x / 2}-7 x^{2}-19 x-$ Eom the initial conditions we obtain $c_{1}=-\frac{1}{5}$ and $c_{2}=\frac{186}{5}$, so

$$
y=-\frac{1}{5} e^{-2 x}+\frac{186}{5} e^{x / 2}-7 x^{2}-19 x-37
$$

2. We have $y_{c}=c_{1} e^{-x / 5}+c_{2}$ and we assume $y_{p}=A x^{2}+B x$. Substituting into the differential equ: \because find $A=-3$ and $B=30$. Thus $y=c_{1} e^{-x / 5}+c_{2}-3 x^{2}+30 x$. From the initial conditio:: Stain $c_{1}=200$ and $c_{2}=-200$, so

$$
y=200 e^{-x / 5}-200-3 x^{2}+30 x
$$

31. To have $y_{c}=c_{1} e^{-2 x}+c_{2} x e^{-2 x}$ and we assume $y_{p}=\left(A x^{3}+B x^{2}\right) e^{-2 x}$. Substituting int iferential equation we find $A=\frac{1}{6}$ and $B=\frac{3}{2}$. Thus $y=c_{1} e^{-2 x}+c_{2} x e^{--2 x}+\left(\frac{1}{6} x^{3}+\frac{3}{2} x^{2}\right)$ Eom the initial conditions we obtain $c_{1}=2$ and $c_{2}=9$, so

$$
y=2 e^{-2 x}+9 x e^{-2 x}+\left(\frac{1}{6} x^{3}+\frac{3}{2} x^{2}\right) e^{-2 x}
$$

31. We have $y_{c}=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right)$ and we assume $y_{p}=A e^{-4 x}$. Substituting into the differential equation we find $A=7$. Thus $y=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+7 e^{-4 x}$. From the initial conditions we obtain $c_{1}=-10$ and $c_{2}=9$, so

$$
y=\epsilon^{-2 x}(-10 \cos x+9 \sin x)+7 e^{-4 x}
$$

32. Wc have $y_{c}=c_{1} \cosh x+c_{2} \sinh x$ and we assume $y_{p}=A x \cosh x+B x \sinh x$. Substituting into the differential equation we find $A=0$ and $B=\frac{1}{2}$. Thus

$$
y=c_{1} \cosh x+c_{2} \sinh x+\frac{1}{2} x \sinh x
$$

From the initial conditions we obtain $c_{1}=2$ and $c_{2}=12$, so

$$
y=2 \cosh x+12 \sinh x+\frac{1}{2} x \sinh x
$$

33. We have $x_{c}=c_{1} \cos \omega t+c_{2} \sin \omega t$ and we assume $x_{p}=A t \cos \omega t+B t \sin \omega t$. Substituting into the differential equation we find $A=-F_{0} / 2 \omega$ and $B=0$. Thus $x=c_{1} \cos \omega t+c_{2} \sin \omega t-\left(F_{0} / 2 \omega\right) l \cos \omega t$. From the initial conditions we obtain $c_{1}=0$ and $c_{2}=F_{0} / 2 \omega^{2}$, so

$$
x=\left(F_{0} / 2 \omega^{2}\right) \sin \omega t-\left(F_{0} / 2 \omega\right) t \cos \omega t
$$

\therefore Whave hat $x_{c}=c_{1} \cos \omega t+c_{2} \sin \omega t$ and we assume $x_{p}=A \cos \gamma t+B \sin \gamma t$, where $\gamma \neq \omega$. Substituting into the differential cquation we find $A=F_{0} /\left(\omega^{2}-\gamma^{2}\right)$ and $B=0$. Thus

$$
x=c_{1} \cos \omega t+c_{2} \sin \omega t+\frac{F_{0}}{\omega^{2}-\gamma^{2}} \cos \gamma t
$$

From the initial conditions we obtain $c_{1}=-F_{0} /\left(\omega^{2}-\gamma^{2}\right)$ and $c_{2}=0$, so

$$
x=-\frac{F_{0}}{\omega^{2}-\gamma^{2}} \cos \omega t+\frac{F_{0}}{\omega^{2}-\gamma^{2}} \cos \gamma t
$$

\therefore. We have $y_{c}=c_{1}+c_{2} e^{x}+c_{3} x e^{x}$ and we assume $y_{p}=A x+B x^{2} e^{x}+C e^{5 x}$. Substituting into the differential equation we find $A=2, B=-12$, and $C=\frac{1}{2}$. Thus

$$
y=c_{1}+c_{2} e^{x}+c_{3} x e^{x}+2 x-12 x^{2} e^{x}+\frac{1}{2} e^{5 x}
$$

From the initial conditions we obtain $c_{1}=11, c_{2}=-11$, and $c_{3}=9$, so

$$
y=11-11 e^{x}+9 x e^{x}+2 x-12 x^{2} e^{x}+\frac{1}{2} e^{5 x}
$$

\therefore We have $y_{c}=c_{1} e^{-2 x}+e^{x}\left(c_{2} \cos \sqrt{3} x+c_{3} \sin \sqrt{3} x\right)$ and we assume $y_{p}=A x+B+C x e^{-2 x}$. Substituting into the differential equation we find $A=\frac{1}{4}, B=-\frac{5}{8}$, and $C=\frac{2}{3}$. Thus

$$
y=c_{1} e^{-2 x}+e^{x}\left(c_{2} \cos \sqrt{3} x+c_{3} \sin \sqrt{3} x\right)+\frac{1}{4} x-\frac{5}{8}+\frac{2}{3} x e^{-2 x}
$$

Exercises 4.4 Undetermined Coefficients Superposition Approach

From the initial conditions we obtain $c_{1}=-\frac{23}{12} ; c_{2}=-\frac{59}{24}$. and $c_{3}=\frac{17}{72} \sqrt{3}$, so

$$
y=-\frac{23}{12} e^{-2 x}+e^{x}\left(-\frac{59}{24} \cos \sqrt{3} x+\frac{17}{72} \sqrt{3} \sin \sqrt{3} x\right)+\frac{1}{4} x-\frac{5}{8}+\frac{2}{3} x e^{-2 x} .
$$

37. We have $y_{c}=c_{1} \cos x \div c_{2} \sin x$ and we assume $y_{p}=A x^{2}+B x+C$. Substituting into the differerequation we find $A=1 . B=0$, and $C=-1$. Thus $y=c_{1} \cos x+c_{2} \sin x+x^{2}-1$. From $y(0)=$ and $y(1)=0$ we obtain

$$
\begin{gathered}
c_{1}-1=5 \\
(\cos 1) c_{1}+(\sin 1) c_{2}=0
\end{gathered}
$$

Solving this system we find $c_{1}=6$ and $c_{2}=-6 \cot 1$. The solution of the boundary-value prot: is

$$
y=6 \cos x-6(\cot 1) \sin x+x^{2}-1 .
$$

38. We have $y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$ and we assume $y_{p}=A x+B$. Substituting into the differc: $:$ equation we find $A=1$ and $B=0$. Thus $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+x$. From $y(0)=0$ and $y(\pi:=$ we obtain

$$
\begin{array}{r}
c_{1}=0 \\
\pi-e^{\pi} c_{1}=\pi
\end{array}
$$

Solving this system we find $c_{1}=0$ and c_{2} is any real number. The solution of the boundary- T : problem is

$$
y=c_{2} e^{x} \sin x+x .
$$

39. The general solution of the differential equation $y^{\prime \prime}+3 y=6 x$ is $y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x-$. The condition $y(0)=0$ implies $c_{1}=0$ and so $y=c_{2} \sin \sqrt{3} x+2 x$. The condition $y(1)+y^{\prime}(1=$ implies $c_{2} \sin \sqrt{3}+2+c_{2} \sqrt{3} \cos \sqrt{3}+2=0$ so $c_{2}=-4 /(\sin \sqrt{3}+\sqrt{3} \cos \sqrt{3})$. The solution is

$$
y=\frac{-4 \sin \sqrt{3} x}{\sin \sqrt{3}+\sqrt{3} \cos \sqrt{3}}+2 x
$$

40. Using the general solution $y=c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x+2 x$, the boundary conditions $y(0)+y^{\prime}(0=$ $y(1)=0$ yield the systcm

$$
\begin{aligned}
c_{1}+\sqrt{3} c_{2}+2 & =0 \\
c_{1} \cos \sqrt{3}+c_{2} \sin \sqrt{3}+2 & =0
\end{aligned}
$$

Solving gives

$$
c_{1}=\frac{2(-\sqrt{3}+\sin \sqrt{3})}{\sqrt{3} \cos \sqrt{3}-\sin \sqrt{3}} \quad \text { and } \quad c_{2}=\frac{2(1-\cos \sqrt{3})}{\sqrt{3} \cos \sqrt{3}-\sin \sqrt{3}} .
$$

Thus,

$$
y=\frac{2(-\sqrt{3}+\sin \sqrt{3}) \cos \sqrt{3} x}{\sqrt{3} \cos \sqrt{3}-\sin \sqrt{3}}+\frac{2(1-\cos \sqrt{3}) \sin \sqrt{3} x}{\sqrt{3} \cos \sqrt{3}-\sin \sqrt{3}}+2 x .
$$

\therefore. We have $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$ and we assume $y_{p}=A \cos x+B \sin x$ on [0, $\left.\pi / 2\right]$. Substituting into the differential equation we find $A=0$ and $B=\frac{1}{3}$. Thus $y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{3} \sin x$ on $0, \pi / 2]$. On $(\pi / 2, \infty)$ we have $y=c_{3} \cos 2 x+c_{4} \sin 2 x$. From $y(0)=1$ and $y^{\prime}(0)=2$ we obtain

$$
\begin{aligned}
c_{1} & =1 \\
\frac{1}{3}+2 c_{2} & =2
\end{aligned}
$$

Solving this system we find $c_{1}=1$ and $c_{2}=\frac{5}{6}$. Thus $y=\cos 2 x+\frac{5}{6} \sin 2 x+\frac{1}{3} \sin x$ on $[0, \pi / 2 \dot{1}$. Now continuity of y at $x=\pi / 2$ implies

$$
\cos \pi+\frac{5}{6} \sin \pi+\frac{1}{3} \sin \frac{\pi}{2}=c_{3} \cos \pi+c_{4} \sin \pi
$$

or $-1+\frac{1}{3}=-c_{3}$. Hence $c_{3}=\frac{2}{3}$. Continuity of y^{\prime} at $x=\pi / 2$ implies

$$
-2 \sin \pi+\frac{5}{3} \cos \pi+\frac{1}{3} \cos \frac{\pi}{2}=-2 c_{3} \sin \pi+2 c_{4} \cos \pi
$$

rr $-\frac{5}{3}=-2 c_{4}$. Then $c_{4}=\frac{5}{6}$ and the solution of the initial-value problem is

$$
y(x)= \begin{cases}\cos 2 x+\frac{5}{6} \sin 2 x+\frac{1}{3} \sin x, & 0 \leq x \leq \pi / 2 \\ \frac{2}{3} \cos 2 x+\frac{5}{6} \sin 2 x, & x>\pi / 2\end{cases}
$$

\therefore We have $y_{c}=e^{x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)$ and we assume $y_{p}=A$ on $[0, \pi]$. Substituting into the iiffcrential equation we find $A=2$. Thus, $y=e^{x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+2$ on $[0, \pi]$. On (π, ∞) we aave $y=e^{x}\left(c_{3} \cos 3 x+c_{1} \sin 3 x\right)$. From $y(0)=0$ and $y^{\prime}(0)=0$ we obtain

$$
c_{1}=-2, \quad c_{1}+3 c_{2}=0
$$

Solving this system, we find $c_{1}=-2$ and $c_{2}=\frac{2}{3}$. Thus $y=e^{x}\left(-2 \cos 3 x+\frac{2}{3} \sin 3 x\right)+2$ on $[0, \pi]$. Now, continuity of y at $x=\pi$ implies

$$
e^{\pi}\left(-2 \cos 3 \pi+\frac{2}{3} \sin 3 \pi\right)+2=e^{\pi}\left(c_{3} \cos 3 \pi+c_{4} \sin 3 \pi\right)
$$

$\because 2+2 e^{\pi}=-c_{3} e^{\pi}$ or $c_{3}=-2 e^{-\pi}\left(1+e^{\pi}\right)$. Continuity of y^{\prime} at π implies

$$
\frac{20}{3} e^{\pi} \sin 3 \pi=\epsilon^{\pi}\left[\left(c_{3}+3 c_{4}\right) \cos 3 \pi+\left(-3 c_{3} \div c_{4}\right) \sin 3 \pi \bar{j}\right.
$$

$. \mathrm{r}-c_{3} e^{\pi}-3 c_{4} e^{\pi}=0$. Since $c_{3}=-2 e^{-\pi}\left(1+e^{\pi}\right)$ we have $c_{4}=\frac{2}{3} e^{-\pi}\left(1+e^{\pi}\right)$. The solution of the Eitial-value problem is

$$
y(x)= \begin{cases}e^{x}\left(-2 \cos 3 x+\frac{2}{3} \sin 3 x\right) \div 2, & 0 \leq x \leq \pi \\ \left(1+e^{\pi}\right) e^{x-\pi}\left(-2 \cos 3 x+\frac{2}{3} \sin 3 x\right), & x>\pi\end{cases}
$$

Exercises 4.4 Undetermined Coefficients - Superposition Approach

$\therefore 3$. a) From $y_{p}=A e^{k x}$ we find $y_{p}^{\prime}=A k e^{k x}$ and $y_{p}^{\prime \prime}=A k^{2} e^{k x}$. Substituting into the different: equation we get

$$
a A k^{2} e^{k x}+b A k e^{k x}+c A e^{k x}=\left(a k^{2}+b k+c\right) A e^{k x}=e^{k x},
$$

so $\left(a k^{2}+b k+c\right) A=1$. Since k is not a root of $a m^{2}+b m+c=0, A=1 /\left(a k^{2}+b k+c\right)$.
b) From $y_{p}=A x e^{k x}$ we find $y_{p}^{\prime}=A k x e^{k x}+A e^{k x}$ and $y_{p}^{\prime \prime}=A k^{2} x e^{k x}+2 A k e^{k x}$. Substituting i. : the differential equation we get

$$
\begin{aligned}
& a A k^{2} x e^{k x}+2 a A k e^{k x}+b A k x e^{k x}+b A e^{k x}+c A x e^{k x} \\
&=\left(a k^{2}+b k+c\right) A x e^{k x}+(2 a k+b) A e^{k x} \\
&=(0) A x e^{k x}+(2 a k+b) A e^{k x}=(2 a k+b) A e^{k x}=e^{k x}
\end{aligned}
$$

where $a k^{2}+b k+c=0$ because k is a root of the auxiliary equation. Now, the root: the auxiliary equation are $-b / 2 a \pm \sqrt{b^{2}-4 a c} / 2 a$, and since k is a root of multiplicity $k \neq-b / 2 a$ and $2 a k+b \neq 0$. Thus $(2 a k+b) A=1$ and $A=1 /(2 a k+b)$.
(c) If k is a root of multiplicity two, then, as we saw in part (b), $k=-b / 2 a$ and $2 a k+b=$ From $y_{p}=A x^{2} e^{k x}$ we find $y_{p}^{\prime}=A k x^{2} e^{k x}+2 A x e^{k x}$ and $y_{p}^{\prime \prime}=A k^{2} x^{2} e^{k x}+4 A k x e^{k x}=2.4$. Substituting into the differential equation, we get

$$
\begin{aligned}
& a A k^{2} x^{2} e^{k x}+4 a A k x e^{k x}+2 a A e^{k x}+b A k x^{2} e^{k x}+2 b A x e^{k x}+c A x^{2} e^{k x} \\
&=\left(a k^{2}+b k+c\right) A x^{2} e^{k x}+2(2 a k+b) A x e^{k x}+2 a A e^{k x} \\
&=(0) A x^{2} e^{k x}+2(0) A x e^{k x}+2 a A c^{k x}=2 a A e^{k x}=e^{k x} .
\end{aligned}
$$

Since the differcntial equation is second order, $a \neq 0$ and $A=1 /(2 a)$.
$\therefore 4$. \because ing the double-angle formula for the cosine, we have

$$
\sin x \cos 2 x=\sin x\left(\cos ^{2} x-\sin ^{2} x\right)=\sin x\left(1-2 \sin ^{2} x\right)=\sin x-2 \sin ^{3} x .
$$

S-.ce sin x is a solution of the related homogeneous differential equation we look for a part:
\therefore ation of the form $y_{p}=A x \sin x+B x \cos x+C \sin ^{3} x$. Substituting into the differential equ: \cdots obtain

$$
2 A \cos x+(6 C-2 B) \sin x-8 C \sin ^{3} x=\sin x-2 \sin ^{3} x .
$$

三sating coofficients we find $A=0, C=\frac{1}{4}$, and $B=\frac{1}{4}$. Thus, a particular solution is

$$
y_{p}=\frac{1}{4} x \cos x+\frac{1}{4} \sin ^{3} x .
$$

25. a) $f(x)=e^{x} \sin x$. We see that $y_{p} \rightarrow \infty$ as $x \rightarrow \infty$ and $y_{p} \rightarrow 0$ as $x \rightarrow-\infty$.
b) $f(x)=e^{-x}$. We see that $y_{p} \rightarrow \infty$ as $x \rightarrow \infty$ and $y_{p} \rightarrow \infty$ as $x \rightarrow-\infty$.
(c) $f(x)=\sin 2 x$. We see that y_{p} is sinusoidal.
(d) $f(x)=1$. We see that y_{p} is constant and simply translates y_{c} vertically.
\therefore. The complementary function is $y_{c}=e^{2 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$. We assume a particular solution of the form $y_{p}=\left(A x^{3}+B x^{2}+C x\right) e^{2 x} \cos 2 x+\left(D x^{3}+E x^{2}+F\right) e^{2 x} \sin 2 x$. Substituting into the lifferential equation and using a CAS to simplify yields

$$
\begin{aligned}
& {\left[12 D x^{2}+(6 A+8 E) x+(2 B+4 F)\right] e^{2 x} \cos 2 x } \\
&+\left[-12 A x^{2}+\right.(-8 B+6 D) x+(-4 C+2 E) j e^{2 x} \sin 2 x \\
&=\left(2 x^{2}-3 x\right) e^{2 x} \cos 2 x+\left(10 x^{2}-x-1\right) e^{2 x} \sin 2 x
\end{aligned}
$$

This gives the system of equations

$$
\left.\begin{array}{rlrl}
12 D & =2, & 6 A+8 E=-3, & 2 B+4 F
\end{array}\right)
$$

from which we find $A=-\frac{5}{6}, B=\frac{1}{4}, C=\frac{3}{8}, D=\frac{1}{6}, E=\frac{1}{4}$, and $F=-\frac{1}{8}$. Thus, a particular solution of the differential equation is

$$
y_{p}=\left(-\frac{5}{6} x^{3}+\frac{1}{4} x^{2}+\frac{3}{8} x\right) e^{2 x} \cos 2 x+\left(\frac{1}{6} x^{3}+\frac{1}{4} x^{2}-\frac{1}{8} x\right) e^{2 x} \sin 2 x
$$

\because The complementary function is $y_{c}=c_{1} \cos x+c_{2} \sin x+c_{3} x \cos x+c_{4} x \sin x$. We assume a particular Eolution of the form $y_{p}=A x^{2} \cos x+B x^{3} \sin x$. Substituting into the differential equation and using \& CAS to simplify yields

$$
(-8 A+24 B) \cos x+3 B x \sin x=2 \cos x-3 x \sin x
$$

This implies $-8 A+24 B=2$ and $-24 B=-3$. Thus $B=\frac{1}{8}, A=\frac{1}{8}$, and $y_{p}=\frac{1}{8} x^{2} \cos x+\frac{1}{8} x^{3} \sin x$.

Exercises 4.5

Undetermined Coefficients - Anmihilator Approach

$\left.\therefore 9 D^{2}-4\right) y=(3 D-2)(3 D+2) y=\sin x$
$\left.\therefore \quad D^{2}-5\right) y=(D-\sqrt{5})(D+\sqrt{5}) y=x^{2}-2 x$
$\left.D^{2}-4 D-12\right) y=(D-6)(D+2) y=x-6$
$\left.=2 D^{2}-3 D-2\right) y=(2 D+1)(D-2) y=1$
$\left.\therefore D^{3}+10 D^{2}+25 D\right) y=D(D+5)^{2} y=e^{x}$
$\left.\therefore \quad D^{3}+4 D\right) y=D\left(D^{2}+4\right) y=e^{x} \cos 2 x$

Exercises 4.5 Undetermined Cocfficients - Annihilator Approach

7. $\left(D^{3}+2 D^{2}-13 D+10\right) y=(D-1)(D-2)(D+5) y=x e^{-x}$
8. $\left(D^{3}+4 D^{2}+3 D\right) y=D(D+1)(D+3) y=x^{2} \cos x-3 x$
9. $\left(D^{4}+8 D\right) y=D(D+2)\left(D^{2}-2 D+4\right) y=4$
10. $\left(D^{4}-8 D^{2}+16\right) y=(D-2)^{2}(D+2)^{2} y=\left(x^{3}-2 x\right) e^{4 x}$
11. $D^{4} y=D^{4}\left(10 x^{3}-2 x\right)=D^{3}\left(30 x^{2}-2\right)=D^{2}(60 x)=D(60)=0$
12. $(2 D-1) y=(2 D-1) 4 e^{x / 2}=8 D e^{x / 2}-4 e^{x / 2}=4 e^{x / 2}-4 e^{x / 2}=0$
13. $(D-2)(D+5)\left(e^{2 x}+3 e^{-5 x}\right)=(D-2)\left(2 e^{2 x}-15 e^{-5 x}+5 e^{2 x}+15 e^{-5 x}\right)=(D-2) 7 e^{2 x}=14 e^{2 x}-1 \div \cdot$
14. $\left(D^{2}+64\right)(2 \cos 8 x-5 \sin 8 x)=D(-16 \sin 8 x-40 \cos 8 x)+64(2 \cos 8 x-5 \sin 8 x)$

$$
=-128 \cos 8 x+320 \sin 8 x+128 \cos 8 x-320 \sin 8 x=0
$$

15. D^{4} because of x^{3}
16. D^{5} because of x^{4}
17. $D(D-2)$ because of 1 and $e^{2 x}$
18. $D^{2}(D-6)^{2}$ because of x and $x e^{6 x}$
19. $D^{2}+4$ because of $\cos 2 x$
20. $D\left(D^{2}+1\right)$ because of 1 and $\sin x$
21. $D^{3}\left(D^{2}+16\right)$ because of x^{2} and $\sin 4 x$
22. $D^{2}\left(D^{2}+1\right)\left(D^{2}+25\right)$ because of $x, \sin x$, and $\cos 5 x$
23. $(D+1)(D-1)^{3}$ because of e^{-x} and $x^{2} e^{x}$
24. $D(D-1)(D-2)$ because of $1, e^{x}$, and $e^{2 x}$
25. $D\left(D^{2}-2 D+5\right)$ because of 1 and $e^{x} \cos 2 x$
26. $\left(D^{2}+2 D+2\right)\left(D^{2}-4 D+5\right)$ because of $e^{-x} \sin x$ and $e^{2 x} \cos x$
27. $1, x, x^{2}, x^{3}, x^{4}$
28. $D^{2}+4 D=D(D+4) ; \quad 1, e^{-4 x}$
29. $e^{6 x}, e^{-3 x / 2}$
30. $D^{2}-9 D-36=(D-12)(D+3) ; \quad e^{12 x}, e^{-3 x}$
31. $\cos \sqrt{5} x, \sin \sqrt{5} x$
32. $D^{2}-6 D+10=D^{2}-2(3) D+\left(3^{2}+1^{2}\right) ; e^{3 x} \cos x, e^{3 x} \sin x$
33. $D^{3}-10 D^{2}+25 D=D(D-5)^{2} ; \quad 1, e^{5 x}, x e^{5 x}$
34. 1, $x, e^{5 x}, e^{7 x}$
35. Applying D to the differential equation we obtain

$$
D\left(D^{2}-9\right) y=0
$$

Then

$$
y=\underbrace{c_{1} e^{3 x}+c_{2} e^{-3 x}}_{y_{c}}+c_{3}
$$

and $y_{p}=A$. Substituting y_{p} into the differential equation yields $-9 A=54$ or $A=-6$. The general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-3 x}-6
$$

E. Applying D to the differential equation we obtain

$$
D\left(2 D^{2}-7 D+5\right) y=0
$$

Then

$$
y=\underbrace{c_{1} e^{5 x / 2}+c_{2} e^{x}}_{y_{c}}+c_{3}
$$

and $y_{p}=A$. Substituting y_{p} into the differential equation yields $5 A=-29$ or $A=-29 / 5$. The seneral solution is

$$
y=c_{1} e^{5 x / 2}+c_{2} e^{x}-\frac{29}{5}
$$

:- Applying D to the differential equation we obtain

$$
D\left(D^{2}+D\right) y=D^{2}(D+1) y=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} e^{-x}}_{y_{c}}+c_{3} x
$$

\therefore nd $y_{p}=A x$. Substituting y_{p} into the differential equation yiclds $A=3$. The general solution is

$$
y=c_{1}+c_{2} e^{-3 x}+3 x
$$

\therefore Applying D to the differential equation we obtain

$$
D\left(D^{3}+2 D^{2}+D\right) y=D^{2}(D+1)^{2} y=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} e^{-x}+c_{3} x e^{-x}}_{y_{c}}+c_{4} x
$$

End $y_{p}=A x$. Substituting y_{p} into the differential equation yields $A=10$. The general solution is

$$
y=c_{1}+c_{2} e^{-x}+c_{3} x e^{-x}+10 x
$$

Applying D^{2} to the differential equation we obtain

$$
D^{2}\left(D^{2}+4 D+4\right) y=D^{2}(D+2)^{2} y=0
$$

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

Then

$$
y=\underbrace{c_{1} e^{-2 x}+c_{2} x e^{-2 x}}_{y_{c}}+c_{3}+c_{4} x
$$

and $y_{p}=A x+B$. Substituting y_{p} into the differential equation yields $4 A x+(4 A+4 B)=2$: Equating coefficients gives

$$
\begin{aligned}
4 A & =2 \\
4 A+4 B & =6 .
\end{aligned}
$$

Then $A=1 / 2, B=1$. and the general solution is

$$
y=c_{1} e^{-2 x}+c_{2} x e^{-2 x}+\frac{1}{2} x+1
$$

40. Applying D^{2} to the differential equation we obtain

$$
D^{2}\left(D^{2}+3 D\right) y=D^{3}(D+3) y=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} e^{-3 x}}_{y_{c}}+c_{3} x^{2}+c_{4} x
$$

and $y_{p}=A x^{2}+B x$. Substituting y_{p} into the differential equation yields $6 A x+(2 A+3 B)==$ Equating coofficients gives

$$
\begin{aligned}
6 A & =4 \\
2 A+3 B & =-5 .
\end{aligned}
$$

Then $A=2 / 3, B=-19 / 9$, and the general solution is

$$
y=c_{1}+c_{2} e^{-3 x}+\frac{2}{3} x^{2}-\frac{19}{9} x
$$

41. Applying D^{3} to the differential equation we obtain

$$
D^{3}\left(D^{3}+D^{2}\right) y=D^{5}(D+1) y=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} x+c_{3} e^{-x}}_{y_{c}}+c_{4} x^{4}+c_{5} x^{3}+c_{6} x^{2}
$$

and $y_{p}=A x^{4}+B x^{3}+C x^{2}$. Substituting y_{p} into the differential equation yields

$$
12 A x^{2}+(24 A+6 B) x+(6 B+2 C)=8 x^{2}
$$

Equating cocfficients gives

$$
\begin{aligned}
12 A & =8 \\
24 A+6 B & =0 \\
6 B+2 C & =0
\end{aligned}
$$

Then $A=2 / 3, B=-8 / 3, C=8$, and the general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{-x}+\frac{2}{3} x^{4}-\frac{8}{3} x^{3}+8 x^{2}
$$

\therefore Applying D^{4} to the differential equation we obtain

$$
D^{4}\left(D^{2}-2 D+1\right) y=D^{4}(D-1)^{2} y=0
$$

Then

$$
y=\underbrace{c_{1} e^{x}+c_{2} x e^{x}}_{y_{c}}+c_{3} x^{3}+c_{4} x^{2}+c_{5} x+c_{6}
$$

End $y_{p}=A x^{3}+B x^{2}+C x+E$. Substituting y_{p} into the differcntial cquation yields

$$
A x^{3}+(B-6 A) x^{2}+(6 A-4 B+C) x+(2 B-2 C+E)=x^{3}+4 x
$$

Equating coefficionts gives

$$
\begin{array}{r}
A=1 \\
B-6 A=0 \\
6 A-4 B+C=4 \\
2 B-2 C+E=0 .
\end{array}
$$

Then $A=1, B=6, C=22, E=32$, and the general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+x^{3}+6 x^{2}+22 x+32 .
$$

\Rightarrow Applying $D-4$ to the differential equation we obtain

$$
(D-4)\left(D^{2}-D-12\right) y=(D-4)^{2}(D+3) y=0 .
$$

-hen

$$
y=\underbrace{c_{1} e^{4 x}+c_{2} e^{-3 x}}_{y_{c}}+c_{3} x e^{4 x}
$$

\therefore and $y_{p}=A x e^{4 x}$. Substituting y_{p} into the differential equation yields $7 A e^{4 x}=e^{4 x}$. Equating .jefficients gives $A=1 / 7$. The gencral solution is

$$
y=c_{1} e^{4 x}+c_{2} e^{-3 x}+\frac{1}{7} x e^{4 x} .
$$

$=\therefore$ plying $D-6$ to the differential equation we obtain

$$
(D-6)\left(D^{2}+2 D+2\right) y=0
$$

-ien

$$
y=\underbrace{e^{-x}\left(c_{1} \cos x+c_{2} \sin x\right)}_{y c}+c_{3} e^{6 x}
$$

Exercises 4.5 Undetermined Coefficients - Annihilator Approach
and $y_{p}=A e^{6 x}$. Substituting y_{p} into the differential equation yields $50 A e^{6 x}=5 e^{6 x}$. Eq.. coofficients gives $A=1 / 10$. The general solution is

$$
y=e^{-x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{1}{10} e^{6 x}
$$

45. Applying $D(D-1)$ to the differential equation we obtain

$$
D(D-1)\left(D^{2}-2 D-3\right) y=D(D-1)(D+1)(D-3) y=0
$$

Then

$$
y=\underbrace{c_{1} e^{3 x}+c_{2} e^{-x}}_{y_{c}}+c_{3} e^{x}+c_{4}
$$

and $y_{p}=A e^{x}+B$. Substituting y_{p} into the differential cquation yields $-4 A e^{x}-3 B=4$ Equating coefficients gives $A=-1$ and $B=3$. The general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-x}-e^{x}+3
$$

46. Applying $D^{2}(D+2)$ to the differential equation we obtain

$$
D^{2}(D+2)\left(D^{2}+6 D+8\right) y=D^{2}(D+2)^{2}(D+4) y=0
$$

Then

$$
y=\underbrace{c_{1} e^{-2 x}+c_{2} e^{-4 x}}_{y_{c}}+c_{3} x e^{-2 x}+c_{4} x+c_{5}
$$

and $y_{p}=A x e^{-2 x}+B x+C$. Substituting y_{p} into the diffcrential equation yields

$$
2 A e^{-2 x}+8 B x+(6 B+8 C)=3 e^{-2 x}+2 x
$$

Equating coefficients gives

$$
\begin{aligned}
2 A & =3 \\
8 B & =2 \\
6 B+8 C & =0 .
\end{aligned}
$$

Then $A=3 / 2, B=1 / 4, C=-3 / 16$, and the general solution is

$$
y=c_{1} e^{-2 x}+c_{2} e^{-4 x}+\frac{3}{2} x e^{-2 x}+\frac{1}{4} x-\frac{3}{16} .
$$

47. Applying $D^{2}+1$ to the differential equation we obtain

$$
\left(D^{2}+1\right)\left(D^{2}+25\right) y=0
$$

Then

$$
y=\underbrace{c_{1} \cos 5 x+c_{2} \sin 5 x}_{y_{c}}+c_{3} \cos x+c_{4} \sin x
$$

Exercises 4.5 Undetermined Coefficients - Anmihilator Approach

and $y_{p}=A \cos x+B \sin x$. Substituting y_{p} into the differential equation yields

$$
24 A \cos x+24 B \sin x=6 \sin x
$$

Equating coefficients gives $A=0$ and $B=1 / 4$. The general solution is

$$
y=c_{1} \cos 5 x+c_{2} \sin 5 x+\frac{1}{4} \sin x
$$

-. Applying $D\left(D^{2}+1\right)$ to the differential equation we obtain

$$
D\left(D^{2}+1\right)\left(D^{2}+4\right) y=0
$$

Then

$$
y=\underbrace{c_{1} \cos 2 x+c_{2} \sin 2 x}_{y_{c}}+c_{3} \cos x+c_{4} \sin x+c_{5}
$$

and $y_{p}=A \cos x+B \sin x+C$. Substituting y_{p} into the differential equation yiolds

$$
3 A \cos x+3 B \sin x+4 C=4 \cos x+3 \sin x-8
$$

Equating coefficients gives $A=4 / 3 . B=1$, and $C=-2$. The general solution is

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{4}{3} \cos x+\sin x-2
$$

: Applying $(D-4)^{2}$ to the differential cquation we obtain

$$
(D-4)^{2}\left(D^{2}+6 D+9\right) y=(D-4)^{2}(D+3)^{2} y=0
$$

Then

$$
y=\underbrace{c_{1} e^{-3 x}+c_{2} x e^{-3 x}}_{y_{c}}+c_{3} x e^{4 x}+c_{4} e^{4 x}
$$

\therefore nd $y_{p}=A x e^{4 x}+B e^{4 x}$. Substituting y_{p} into the differential equation yields

$$
49 A x e^{4 x}+(14 A+49 B) e^{4 x}=-x e^{4 x}
$$

Equating coefficients gives

$$
\begin{aligned}
49 A & =-1 \\
14 A+49 B & =0 .
\end{aligned}
$$

Then $A=-1 / 49, B=2 / 343$, and the general solution is

$$
y=c_{1} e^{-3 x}+c_{2} x e^{-3 x}-\frac{1}{49} x e^{4 x}+\frac{2}{343} e^{4 x} .
$$

\therefore pplying $D^{2}(D-1)^{2}$ to the differential equation we obtain

$$
D^{2}(D-1)^{2}\left(D^{2}+3 D-10\right) y=D^{2}(D-1)^{2}(D-2)(D+5) y=0
$$

Exercises 4.5 Undctermined Coefficients - Annihilator Approach

Then

$$
y=\underbrace{c_{1} e^{2 x}+c_{2} e^{-\overline{5} x}}_{y_{c}}+c_{3} x e^{x}+c_{4} e^{x}+c_{5} x+c_{6}
$$

and $y_{p}=A x e^{x}+B e^{x}+C x+E$. Substituting y_{p} into the differential equation yields

$$
-6 A x e^{x}+(5 A-6 B) e^{x}-10 C x+(3 C-10 E)=x e^{x}+x
$$

Equating cocfficients gives

$$
\begin{aligned}
-6 A & =1 \\
5 A-6 B & =0 \\
-10 C & =1 \\
3 C-10 E & =0 .
\end{aligned}
$$

Then $A=-1 / 6, B=-5 / 36, C=-1 / 10, E=-3 / 100$, and the general solution is

$$
y=c_{1} e^{2 x}+c_{2} e^{-5 x}-\frac{1}{6} x e^{x}-\frac{\overline{5}}{36} e^{x}-\frac{1}{10} x-\frac{3}{100} .
$$

51. Applying $D(D-1)^{3}$ to the differential cquation we obtain

$$
D(D-1)^{3}\left(D^{2}-1\right) y=D(D-1)^{4}(D+1) y=0
$$

Then

$$
y=\underbrace{c_{1} e^{x}+c_{2} e^{-x}}_{y_{c}}+c_{3} x^{3} e^{x}+c_{4} x^{2} e^{x}+c_{5} x e^{x}+c_{6}
$$

and $y_{p}=A x^{3} e^{x}+B x^{2} e^{x}+C x e^{x}+E$. Substituting y_{p} into the diffcrential equation yields

$$
6 A x^{2} e^{x}+(6 A+4 B) x e^{x}+(2 B+2 C) e^{x}-E=x^{2} e^{x}+5
$$

Equating coefficients gives

$$
\begin{aligned}
6 A & =1 \\
6 A+4 B & =0 \\
2 B+2 C & =0 \\
-E & =5 .
\end{aligned}
$$

Then $A=1 / 6, B=-1 / 4, C=1 / 4, E=-5$, and the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{6} x^{3} e^{x}-\frac{1}{4} x^{2} e^{x}+\frac{1}{4} x e^{x}-5 .
$$

22. Applying $(D+1)^{3}$ to the differential equation we obtain

$$
(D+1)^{3}\left(D^{2}+2 D+1\right) y=(D+1)^{5} y=0
$$

Then

$$
y=\underbrace{c_{1} e^{-x}+c_{2} x e^{-x}}_{y_{c}}+c_{3} x^{4} e^{-x}+c_{4} x^{3} e^{-x}+c_{5} x^{2} e^{-x}
$$

and $y_{p}=A x^{4} e^{-x}+B x^{3} e^{-x}+C x^{2} e^{-x}$. Substituting y_{p} into the differential equation yields

$$
12 A x^{2} e^{-x}+6 B x e^{-x}+2 C e^{-x}=x^{2} e^{-x}
$$

Equating cocfficients gives $A=\frac{1}{12}, B=0$, and $C=0$. The general solution is

$$
y=c_{1} e^{-x}+c_{2} x e^{-x}+\frac{1}{12} x^{4} e^{-x}
$$

ㅍ. Applying $D^{2}-2 D+2$ to the differential equation we obtain

$$
\left(D^{2}-2 D+2\right)\left(D^{2}-2 D+5\right) y=0
$$

Then

$$
y=\underbrace{e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)}_{y_{c}}+\epsilon^{x}\left(c_{3} \cos x+c_{4} \sin x\right)
$$

and $y_{p}=A e^{x} \cos x+B e^{x} \sin x$. Substituting y_{p} into the differential equation yields

$$
3 A e^{x} \cos x+3 B e^{x} \sin x=e^{x} \sin x
$$

Equating coefficients gives $A=0$ and $B=1 / 3$. The general solution is

$$
y=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{1}{3} e^{x} \sin x
$$

F- Applying $D^{2}-2 D+10$ to the differential equation we obtain

$$
\left(D^{2}-2 D+10\right)\left(D^{2}+D+\frac{1}{4}\right) y=\left(D^{2}-2 D+10\right)\left(D+\frac{1}{2}\right)^{2} y=0
$$

Zhen

$$
y=\underbrace{c_{1} e^{-x / 2}+c_{2} x e^{-x / 2}}_{y_{c}}+c_{3} e^{x} \cos 3 x+c_{4} e^{x} \sin 3 x
$$

:ad $y_{p}=A e^{x} \cos 3 x+B e^{x} \sin 3 x$. Substituting y_{p} into the differential equation yields

$$
(9 B-27 A / 4) e^{x} \cos 3 x-(9 A+27 B / 4) e^{x} \sin 3 x=-e^{x} \cos 3 x+e^{x} \sin 3 x
$$

Equating coefficients gives

$$
\begin{aligned}
& -\frac{27}{4} A+9 B=-1 \\
& -9 A-\frac{27}{4} B=1
\end{aligned}
$$

-hen $A=-4 / 225, B=-28 / 225$, and the general solution is

$$
y=c_{1} e^{-x / 2}+c_{2} x e^{-x / 2}-\frac{4}{225} e^{x} \cos 3 x-\frac{28}{225} e^{x} \sin 3 x .
$$

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

55. Applying $D^{2}+25$ to the differential equation we obtain

$$
\left(D^{2}+25\right)\left(D^{2}+25\right)=\left(D^{2}+25\right)^{2}=0
$$

Then

$$
y=\underbrace{c_{1} \cos 5 x+c_{2} \sin 5 x}_{y_{c}}+c_{3} x \cos 5 x+c_{4} x \cos 5 x
$$

and $y_{p}=A x \cos 5 x+B x \sin 5 x$. Substituting y_{p} into the differential equation yields

$$
10 B \cos 5 x-10 A \sin 5 x=20 \sin 5 x
$$

Equating coofficients gives $A=-2$ and $B=0$. The general solution is

$$
y=c_{1} \cos 5 x+c_{2} \sin 5 x-2 x \cos 5 x
$$

56. Applying $D^{2}+1$ to the differential equation we obtain

$$
\left(D^{2}+1\right)\left(D^{2}+1\right)=\left(D^{2}+1\right)^{2}=0
$$

Then

$$
y=\underbrace{c_{1} \cos x+c_{2} \sin x}_{y_{c}}+c_{3} x \cos x+c_{4} x \cos x
$$

and $y_{p}=A x \cos x+B x \sin x$. Substituting y_{p} into the differential equation yields

$$
2 B \cos x-2 A \sin x=4 \cos x-\sin x
$$

Equating coefficients gives $A=1 / 2$ and $B=2$. The general solution is

$$
y=c_{1} \cos x+c_{2} \sin x+\frac{1}{2} x \cos x-2 x \sin x
$$

57. Applying $\left(D^{2}+1\right)^{2}$ to the differential cquation we obtain

$$
\left(D^{2}+1\right)^{2}\left(D^{2}+D+1\right)=0
$$

Then

$$
y=\underbrace{e^{-x / 2}\left[c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right]}_{y_{c}}+c_{3} \cos x+c_{4} \sin x+c_{5} x \cos x+c_{6} x \sin x
$$

and $y_{p}=A \cos x+B \sin x+C x \cos x+E x \sin x$. Substituting y_{p} into the differential equatic..

$$
(B+C+2 E) \cos x+E x \cos x+(-A-2 C+E) \sin x-C x \sin x=x \sin x
$$

Equating coefficients gives

$$
\begin{array}{r}
B+C+2 E=0 \\
E=0 \\
-A-2 C+E=0 \\
-C=1 .
\end{array}
$$

Then $A=2, B=1, C=-1$, and $E=0$, and the general solution is

$$
y=e^{-x / 2}\left[c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right]+2 \cos x+\sin x-x \cos x
$$

Ex. Writing $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$ and applying $D\left(D^{2}+4\right)$ to the differential cquation we obtain

$$
D\left(D^{2}+4\right)\left(D^{2}+4\right)=D\left(D^{2}+4\right)^{2}=0
$$

Then

$$
y=\underbrace{c_{1} \cos 2 x+c_{2} \sin 2 x}_{y_{c}}+c_{3} x \cos 2 x+c_{4} x \sin 2 x+c_{5}
$$

and $y_{p}=A x \cos 2 x+B x \sin 2 x+C$. Substituting y_{p} into the differential equation yields

$$
-4 A \sin 2 x+4 B \cos 2 x+4 C=\frac{1}{2}+\frac{1}{2} \cos 2 x .
$$

Equating coefficients gives $A=0, B=1 / 8$, and $C=1 / 8$. The general solution is

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{8} x \sin 2 x+\frac{1}{8} .
$$

ت̇. Applying D^{3} to the differential equation we obtain

$$
D^{3}\left(D^{3}+8 D^{2}\right)=D^{5}(D+8)=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} x+c_{3} e^{-8 x}}_{y_{c}}+c_{4} x^{2}+c_{5} x^{3}+c_{6} x^{4}
$$

and $y_{p}=A x^{2}+B x^{3}+C x^{4}$. Substituting y_{p} into the differential equation yields

$$
16 A+6 B+(48 B+24 C) x+96 C x^{2}=2+9 x-6 x^{2}
$$

Equating cocfficients gives

$$
\begin{aligned}
16 A+6 B & =2 \\
48 B+24 C & =9 \\
96 C & =-6 .
\end{aligned}
$$

Then $A=11 / 256, B=7 / 32$, and $C=-1 / 16$, and the general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{-8 x}+\frac{11}{256} x^{2}+\frac{7}{32} x^{3}-\frac{1}{16} x^{4}
$$

3. Applying $D(D-1)^{2}(D+1)$ to the differential equation we obtain

$$
D(D-1)^{2}(D+1)\left(D^{3}-D^{2}+D-1\right)=D(D-1)^{3}(D+1)\left(D^{2}+1\right)=0
$$

Then

$$
y=\underbrace{c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x}_{y_{c}}+c_{4}+c_{5} e^{-x}+c_{6} x e^{x}+c_{7} x^{2} e^{x}
$$

Exercises 4.5 Undetermined Coefficients - Annihilator Approach

and $y_{p}=A+B e^{-x}+C x e^{x}+E x^{2} e^{x}$. Substituting y_{p} into the differential equation yields

$$
4 E x e^{x}+(2 C+4 E) e^{x}-4 B e^{-x}-A=x e^{x}-e^{-x}+7
$$

Equating coefficients gives

$$
\begin{aligned}
4 E & =1 \\
2 C+4 E & =0 \\
-4 B & =-1 \\
-A & =7 .
\end{aligned}
$$

Then $A=-7: B=1 / 4, C=-1 / 2$, and $E=1 / 4$, and the general solution is

$$
y=c_{1} e^{x}+c_{2} \cos x+c_{3} \sin x-7+\frac{1}{4} e^{-x}-\frac{1}{2} x e^{x}+\frac{1}{4} x^{2} e^{x} .
$$

61. Applying $D^{2}(D-1)$ to the differential equation we obtain

$$
D^{2}(D-1)\left(D^{3}-3 D^{2}+3 D-1\right)=D^{2}(D-1)^{4}=0 .
$$

Then

$$
y=\underbrace{c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}}_{y_{c}}+c_{4}+c_{5} x+c_{6} x^{3} e^{x}
$$

and $y_{p}=A+B x+C x^{3} e^{x}$. Substituting y_{p} into the differential equation yields

$$
(-A+3 B)-B x+6 C e^{x}=16-x+e^{x}
$$

Equating coefficients gives

$$
\begin{aligned}
-A+3 B & =16 \\
-B & =-1 \\
6 C & =1 .
\end{aligned}
$$

Then $A=-13, B=1$, and $C=1 / 6$, and the general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+c_{3} x^{2} e^{x}-13+x+\frac{1}{6} x^{3} e^{x} .
$$

62. Writing $\left(e^{x}+e^{-x}\right)^{2}=2+e^{2 x}+e^{-2 x}$ and applying $D(D-2)(D+2)$ to the differential equa:: obtain

$$
D(D-2)(D+2)\left(2 D^{3}-3 D^{2}-3 D+2\right)=D(D-2)^{2}(D+2)(D+1)(2 D-1)=0
$$

Then

$$
y=\underbrace{c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} e^{x / 2}}_{y_{c}}+c_{4}+c_{5} x e^{2 x}+c_{6} e^{-2 x}
$$

and $y_{p}=A+B x e^{2 x}+C e^{-2 x}$. Substituting y_{p} into the differential equation yields

$$
2 A+9 B e^{2 x}-20 C e^{-2 x}=2+e^{2 x}+e^{-2 x}
$$

Equating coefficients gives $A=1, B=1 / 9$. and $C=-1 / 20$. The general solution is

$$
y=c_{1} e^{-x}+c_{2} e^{2 x}+c_{3} e^{x / 2}+1+\frac{1}{9} x e^{2 x}-\frac{1}{20} e^{-2 x}
$$

\therefore Applying $D(D-1)$ to the differential equation we obtain

$$
D(D-1)\left(D^{4}-2 D^{3}+D^{2}\right)=D^{3}(D-1)^{3}=0 .
$$

Then

$$
y=\underbrace{c_{1}+c_{2} x+c_{3} e^{x}+c_{4} x e^{x}}_{y_{c}}+c_{5} x^{2}+c_{6} x^{2} e^{x}
$$

and $y_{p}=A x^{2}+B x^{2} e^{x}$. Substituting y_{p} into the diffcrential equation yields $2 A+2 B e^{x}=1+c^{x}$. Equating coefficients gives $A=1 / 2$ and $B=1 / 2$. The general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{x}+c_{4} x e^{x}+\frac{1}{2} x^{2}+\frac{1}{2} x^{2} e^{x}
$$

i- Applying $D^{3}(D-2)$ to the differential equation we obtain

$$
D^{3}(D-2)\left(D^{4}-4 D^{2}\right)=D^{5}(D-2)^{2}(D+2)=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} x+c_{3} e^{2 x}+c_{4} e^{-2 x}}_{y_{c}}+c_{5} x^{2}+c_{6} x^{3}+c_{7} x^{4}+c_{8} x e^{2 x}
$$

and $y_{p}=A x^{2}+B x^{3}+C x^{4}+E x e^{2 x}$. Substituting y_{p} into the differential equation yields

$$
(-8 A+24 C)-24 B x-48 C x^{2}+16 E e^{2 x}=5 x^{2}-e^{2 x}
$$

Equating coefficients gives

$$
\begin{aligned}
-8 A+24 C & =0 \\
-24 B & =0 \\
-48 C & =5 \\
16 E & =-1 .
\end{aligned}
$$

Then $A=-5 / 16, B=0, C=-5 / 48$. and $E=-1 / 16$, and the general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{2 x}+c_{4} e^{-2 x}-\frac{5}{16} x^{2}-\frac{5}{48} x^{4}-\frac{1}{16} x e^{2 x} .
$$

Exercises 4.5 Undctermined Coefficients - Annihilator Approach

65. The complementary function is $y_{c}=c_{1} e^{8 x}+c_{2} e^{-8 x}$. Using D to annihilate 16 we find $y_{p}=$ Substituting y_{p} into the differential equation we obtain $-64 A=16$. Thus $A=-1 / 4$ and

$$
\begin{aligned}
y & =c_{1} e^{8 x}+c_{2} e^{-8 x}-\frac{1}{4} \\
y^{\prime} & =8 c_{1} e^{8 x}-8 c_{2} e^{-8 x}
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =\frac{5}{4} \\
8 c_{1}-8 c_{2} & =0 .
\end{aligned}
$$

Thus $c_{1}=c_{2}=5 / 8$ and

$$
y=\frac{5}{8} e^{8 x}+\frac{5}{8} e^{-8 x}-\frac{1}{4} .
$$

66. The complementary function is $y_{c}=c_{1}+c_{2} e^{-x}$. Using D^{2} to annihilate x we find $y_{p}=A x-{ }_{-}$ Substituting y_{p} into the differential equation we obtain $(A+2 B)+2 B x=x$. Thus $A=-$: $B=1 / 2$, and

$$
\begin{aligned}
y & =c_{1}+c_{2} e^{-x}-x+\frac{1}{2} x^{2} \\
y^{\prime} & =-c_{2} e^{-x}-1+x
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =1 \\
-c_{2} & =1 .
\end{aligned}
$$

Thus $c_{1}=2$ and $c_{2}=-1$, and

$$
y=2-e^{-x}-x+\frac{1}{2} x^{2} .
$$

67. The complementary function is $y_{c}=c_{1}+c_{2} e^{5 x}$. Using D^{2} to annihilate $x-2$ we find $y_{p}=A x-$. Substituting y_{p} into the differential equation we obtain $(-5 A+2 B)-10 B x=-2+x$. Thus $A=$ and $B=-1 / 10$, and

$$
\begin{aligned}
y & =c_{1}+c_{2} e^{5 x}+\frac{9}{25} x-\frac{1}{10} x^{2} \\
y^{\prime} & =5 c_{2} e^{5 x}+\frac{9}{25}-\frac{1}{5} x
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
c_{2} & =\frac{41}{125} .
\end{aligned}
$$

Thus $c_{1}=-41 / 125$ and $c_{2}=41 / 125$, and

$$
y=-\frac{41}{125}+\frac{41}{125} e^{5 x}+\frac{9}{25} x-\frac{1}{10} x^{2}
$$

53. The complementary function is $y_{c}=c_{1} e^{x}+c_{2} e^{-6 x}$. Using $D-2$ to annihilate $10 e^{2 x}$ we find $y_{p}=A e^{2 x}$. Substituting y_{p} into the differential equation we obtain $8 A e^{2 x}=10 e^{2 x}$. Thus $A=5 / 4$ and

$$
\begin{aligned}
y & =c_{1} e^{x}+c_{2} e^{-6 x}+\frac{5}{4} e^{2 x} \\
y^{\prime} & =c_{1} e^{x}-6 c_{2} e^{-6 x}+\frac{5}{2} e^{2 x}
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =-\frac{1}{4} \\
c_{1}-6 c_{2} & =-\frac{3}{2}
\end{aligned}
$$

Thus $c_{1}=-3 / 7$ and $c_{2}=5 / 28$, and

$$
y=-\frac{3}{7} e^{x}+\frac{5}{28} e^{-6 x}+\frac{5}{4} e^{2 x}
$$

\therefore The complementary function is $y_{c}=c_{1} \cos x+c_{2} \sin x$. Using $\left(D^{2}+1\right)\left(D^{2}+4\right)$ to annihilatc $8 \cos 2 x-4 \sin x$ we find $y_{p}=A x \cos x+B x \sin x+C \cos 2 x+E \sin 2 x$. Substituting y_{p} into the differential equation we obtain $2 B \cos x-3 C \cos 2 x-2 A \sin x-3 E \sin 2 x=8 \cos 2 x-4 \sin x$. Thus $A=2, B=0, C=-8 / 3$, and $E=0$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+2 x \cos x-\frac{8}{3} \cos 2 x \\
y^{\prime} & =-c_{1} \sin x+c_{2} \cos x+2 \cos x-2 x \sin x+\frac{16}{3} \sin 2 x
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{2}+\frac{8}{3} & =-1 \\
-c_{1}-\pi & =0
\end{aligned}
$$

Thus $c_{1}=-\pi$ and $c_{2}=-11 / 3$, and

$$
y=-\pi \cos x-\frac{11}{3} \sin x+2 x \cos x-\frac{8}{3} \cos 2 x
$$

- The complementary function is $y_{c}=c_{1}+c_{2} e^{x}+c_{3} x e^{x}$. Using $D(D-1)^{2}$ to annihilate $x e^{x}+5$ we find $y_{p}=A x+B x^{2} e^{x}+C x^{3} e^{r}$. Substituting y_{p} into the differential equation we obtain
$A+(2 B+6 C) e^{x}+6 C x e^{x}=x e^{x}+5$. Thus $A=5, B=-1 / 2$, and $C=1 / 6$, and

$$
\begin{aligned}
y & =c_{1}+c_{2} e^{x}+c_{3} x e^{x}+5 x-\frac{1}{2} x^{2} e^{x}+\frac{1}{6} x^{3} e^{x} \\
y^{\prime} & =c_{2} e^{x}+c_{3}\left(x e^{x}+e^{x}\right)+5-x e^{x}+\frac{1}{6} x^{3} e^{x} \\
y^{\prime \prime} & =c_{2} e^{x}+c_{3}\left(x e^{x}+2 e^{x}\right)-e^{x}-x e^{x}+\frac{1}{2} x^{2} e^{x}+\frac{1}{6} x^{3} e^{x}
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =2 \\
c_{2}+c_{3}+5 & =2 \\
c_{2}+2 c_{3}-1 & =-1
\end{aligned}
$$

Thus $c_{1}=8, c_{2}=-6$, and $c_{3}=3$, and

$$
y=8-6 e^{x}+3 x e^{x}+5 x-\frac{1}{2} x^{2} e^{x}+\frac{1}{6} x^{3} e^{x}
$$

-1. The complementary function is $y_{c}=e^{2 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)$. Using D^{4} to annihilate : find $y_{p}=A+B x+C x^{2}+E x^{3}$. Substituting y_{p} into the differential cquation we ($18.4-4 B+2 C)+(8 B-8 C+6 E) x+(8 C-12 E) x^{2}+8 E x^{3}=x^{3}$. Thus $A=0, B=$ $C^{\prime}=3 / 16$, and $E^{\prime}=1 / 8$, and

$$
\begin{aligned}
y & =e^{2 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{3}{32} x+\frac{3}{16} x^{2}+\frac{1}{8} x^{3} \\
y^{\prime} & =e^{2 x}\left[c_{1}(2 \cos 2 x-2 \sin 2 x)+c_{2}(2 \cos 2 x+2 \sin 2 x)\right]+\frac{3}{32}+\frac{3}{8} x+\frac{3}{8} x^{2}
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1} & =2 \\
2 c_{1}+2 c_{2}+\frac{3}{32} & =4
\end{aligned}
$$

Tius $c_{1}=2, c_{2}=-3 / 64$, and

$$
y=e^{2 x}\left(2 \cos 2 x-\frac{3}{64} \sin 2 x\right) \div \frac{3}{32} x+\frac{3}{16} x^{2}+\frac{1}{8} x^{3}
$$

-2. The complementary function is $y_{c}=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{x}$. Using $D^{2}(D-1)$ to ann:.
$-\epsilon^{x}$ we find $y_{p}=A x^{3}+B x^{4}+C x e^{x}$. Substituting y_{p} into the differential equation we .
$-6 A+24 B)-24 B x+C e^{x}=x+e^{x}$. Thus $A=-1 / 6, B=-1 / 24$, and $C=1$, and

$$
\begin{aligned}
y & =c_{1}+c_{2} x+c_{3} x^{2}+c_{4} e^{x}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+x e^{x} \\
y^{\prime} & =c_{2}+2 c_{3} x+c_{4} e^{x}-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+e^{x}+x e^{x} \\
y^{\prime \prime} & =2 c_{3}+c_{4} e^{x}-x-\frac{1}{2} x^{2}+2 e^{x}+x e^{x} \\
y^{\prime \prime \prime} & =c_{4} e^{x}-1-x+3 e^{x}+x e^{x}
\end{aligned}
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{4} & =0 \\
c_{2}+c_{4}+1 & =0 \\
2 c_{3}+c_{4}+2 & =0 \\
2+c_{4} & =0
\end{aligned}
$$

-hus $c_{1}=2, c_{2}=1, c_{3}=0$, and $c_{4}=-2$, and

$$
y=2+x-2 e^{x}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+x e^{x}
$$

\because - -0 see in this case that the factors of L do not commute consider the operators $(x D-1)(D+4)$ $\because \mathrm{Zd}(D+4)(x D-1)$. Applying the operators to the function x we find

$$
\begin{aligned}
(x D-1)(D+4) x & =\left(x D^{2}+4 x D-D-4\right) x \\
& =x D^{2} x+4 x D x-D x-4 x \\
& =x(0)+4 x(1)-1-4 x=-1
\end{aligned}
$$

ad

$$
\begin{aligned}
(D+4)(x D-1) x & =(D+4)(x D x-x) \\
& =(D+4)(x \cdot 1-x)=0 .
\end{aligned}
$$

-ius, the oporators are not the same.

Exercises 4.6

Variation of Parameters

The particular solution, $y_{p}=u_{1} y_{1}+u_{2} y_{2}$. in the following problems can take on a variety of especially where trigonometric functions are involved. The validity of a particular form can : checked by substituting it back into the differential equation.

1. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sec x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\sin x \sec x}{1}=-\tan x \\
& u_{2}^{\prime}=\frac{\cos x \sec x}{1}=1
\end{aligned}
$$

Then $u_{1}=\ln |\cos x| ; u_{2}=x$, and

$$
y=c_{1} \cos x+c_{2} \sin x+\cos x \ln |\cos x|+x \sin x
$$

2. The auxiliary cquation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\tan x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x \tan x=\frac{\cos ^{2} x-1}{\cos x}=\cos x-\sec x \\
& u_{2}^{\prime}=\sin x
\end{aligned}
$$

Then $u_{1}=\sin x-\ln |\sec x+\tan x|, u_{2}=-\cos x$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+\cos x(\sin x-\ln |\sec x+\tan x|)-\cos x \sin x \\
& =c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

3. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sin x$ we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =-\sin ^{2} x \\
u_{2}^{\prime} & =\cos x \sin x
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=\frac{1}{4} \sin 2 x-\frac{1}{2} x=\frac{1}{2} \sin x \cos x-\frac{1}{2} x \\
& u_{2}=-\frac{1}{2} \cos ^{2} x
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+\frac{1}{2} \sin x \cos ^{2} x-\frac{1}{2} x \cos x-\frac{1}{2} \cos ^{2} x \sin x \\
& =c_{1} \cos x+c_{2} \sin x-\frac{1}{2} x \cos x .
\end{aligned}
$$

4. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sec x \tan x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x(\sec x \tan x)=-\tan ^{2} x=1-\sec ^{2} x \\
& u_{2}^{\prime}=\cos x(\sec x \tan x)=\tan x
\end{aligned}
$$

Then $u_{1}=x-\tan x, u_{2}=-\ln |\cos x|$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+x \cos x-\sin x-\sin x \ln |\cos x| \\
& =c_{1} \cos x+c_{3} \sin x+x \cos x-\sin x \ln |\cos x|
\end{aligned}
$$

5. The auxiliary cquation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\cos ^{2} x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x \cos ^{2} x \\
& u_{2}^{\prime}=\cos ^{3} x=\cos x\left(1-\sin ^{2} x\right)
\end{aligned}
$$

Then $u_{1}=\frac{1}{3} \cos ^{3} x, u_{2}=\sin x-\frac{1}{3} \sin ^{3} x$, and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x+\frac{1}{3} \cos ^{4} x+\sin ^{2} x-\frac{1}{3} \sin ^{4} x \\
& =c_{1} \cos x+c_{2} \sin x+\frac{1}{3}\left(\cos ^{2} x+\sin ^{2} x\right)\left(\cos ^{2} x-\sin ^{2} x\right)+\sin ^{2} x \\
& =c_{1} \cos x+c_{2} \sin x+\frac{1}{3} \cos ^{2} x+\frac{2}{3} \sin ^{2} x \\
& =c_{1} \cos x+c_{2} \sin x+\frac{1}{3}+\frac{1}{3} \sin ^{2} x
\end{aligned}
$$

6. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sec ^{2} x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\sin x}{\cos ^{2} x} \\
& u_{2}^{\prime}=\sec x
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{\cos x}=-\sec x \\
& u_{2}=\ln |\sec x+\tan x|
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x-\cos x \sec x+\sin x \ln |\sec x+\tan x| \\
& =c_{1} \cos x+c_{2} \sin x-1+\sin x \ln |\sec x+\tan x|
\end{aligned}
$$

7. The auxiliary equation is $m^{2}-1=0$, so $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$ and

$$
W=\left|\begin{array}{rr}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2
$$

Identifying $f(x)=\cosh x=\frac{1}{2}\left(e^{-x}+e^{x}\right)$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{4} e^{-2 x}+\frac{1}{4} \\
& u_{2}^{\prime}=-\frac{1}{4}-\frac{1}{4} e^{2 x}
\end{aligned}
$$

Then

$$
\begin{aligned}
u_{1} & =-\frac{1}{8} e^{-2 x}+\frac{1}{4} x \\
u_{2} & =-\frac{1}{8} e^{2 x}-\frac{1}{4} x
\end{aligned}
$$

$\therefore \mathrm{a} d$

$$
\begin{aligned}
y & =c_{1} e^{x}+c_{2} e^{-x}-\frac{1}{8} e^{-x}+\frac{1}{4} x e^{x}-\frac{1}{8} \epsilon^{x}-\frac{1}{4} x e^{-x} \\
& =c_{3} e^{x}+c_{4} e^{-x}+\frac{1}{4} x\left(e^{x}-e^{-x}\right) \\
& =c_{3} e^{x}+c_{4} e^{-x}+\frac{1}{2} x \sinh x .
\end{aligned}
$$

- Fe auxiliary equation is $m^{2}-1=0$, so $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$ and

$$
W=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2 .
$$

-Entifying $f(x)=\sinh 2 x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{1}{4} e^{-3 x}+\frac{1}{4} e^{x} \\
& u_{2}^{\prime}=\frac{1}{4} e^{-x}-\frac{1}{4} e^{3 x}
\end{aligned}
$$

- -en

$$
\begin{aligned}
& u_{1}=\frac{1}{12} e^{-3 x}+\frac{1}{4} e^{x} \\
& u_{2}=-\frac{1}{4} e^{-x}-\frac{1}{12} e^{3 x}
\end{aligned}
$$

$\cdots \mathrm{d}$

$$
\begin{aligned}
y & =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{12} e^{-2 x}+\frac{1}{4} e^{2 x}-\frac{1}{4} e^{-2 x}-\frac{1}{12} e^{2 x} \\
& =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{6}\left(e^{2 x}-e^{-2 x}\right) \\
& =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{3} \sinh 2 x .
\end{aligned}
$$

3 -ie auxiliary equation is $m^{2}-4=0$, so $y_{c}=c_{1} e^{2 x}+c_{2} e^{-2 x}$ and

$$
W=\left|\begin{array}{rr}
e^{2 x} & e^{-2 x} \\
2 e^{2 x} & -2 e^{-2 x}
\end{array}\right|=-4
$$

\therefore-ntifying $f(x)=e^{2 x} / x$ we obtain $u_{1}^{\prime}=1 / 4 x$ and $u_{2}^{\prime}=-e^{4 x} / 4 x$. Then

$$
\begin{aligned}
& u_{1}=\frac{1}{4} \ln |x| \\
& u_{2}=-\frac{1}{4} \int_{x_{0}}^{x} \frac{e^{4 t}}{t} d t
\end{aligned}
$$

$$
y=c_{1} e^{2 x}+c_{2} e^{-2 x}+\frac{1}{4}\left(e^{2 x} \ln |x|-e^{-2 x} \int_{x_{0}}^{x} \frac{e^{4 t}}{t} d t\right), \quad x_{0}>0
$$

10. The auxiliary equation is $m^{2}-9=0$, so $y_{c}=c_{1} e^{3 x}+c_{2} e^{-3 x}$ and

$$
W=\left|\begin{array}{rr}
e^{3 x} & e^{-3 x} \\
3 e^{3 x} & -3 e^{-3 x}
\end{array}\right|=-6
$$

Identifying $f(x)=9 x / e^{3 x}$ we obtain $u_{1}^{\prime}=\frac{3}{2} x e^{-6 x}$ and $u_{2}^{\prime}=-\frac{3}{2} x$. Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{24} e^{-6 x}-\frac{1}{4} x e^{-6 x}, \\
& u_{2}=-\frac{3}{4} x^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} e^{3 x}+c_{2} e^{-3 x}-\frac{1}{24} e^{-3 x}-\frac{1}{4} x e^{-3 x}-\frac{3}{4} x^{2} e^{-3 x} \\
& =c_{1} e^{3 x}+c_{3} e^{-3 x}-\frac{1}{4} x e^{-3 x}(1-3 x)
\end{aligned}
$$

11. The auxiliary equation is $m^{2}+3 m+2=(m+1)(m+2)=0$, so $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ and

$$
W=\left|\begin{array}{cc}
e^{-x} & e^{-2 x} \\
-e^{-x} & -2 e^{-2 x}
\end{array}\right|=-e^{-3 x}
$$

Idcntifying $f(x)=1 /\left(1+e^{x}\right)$ we obtain

$$
\begin{aligned}
u_{1}^{\prime} & =\frac{e^{x}}{1+e^{x}} \\
u_{2}^{\prime} & =-\frac{e^{2 x}}{1+e^{x}}=\frac{e^{x}}{1+e^{x}}-e^{x}
\end{aligned}
$$

Then $u_{1}=\ln \left(1+e^{x}\right), u_{2}=\ln \left(1+e^{x}\right)-e^{x}$, and

$$
\begin{aligned}
y & =c_{1} e^{-x}+c_{2} e^{-2 x}+e^{-x} \ln \left(1+e^{x}\right)+e^{-2 x} \ln \left(1+e^{x}\right)-e^{-x} \\
& =c_{3} e^{-x}+c_{2} e^{-2 x}+\left(1+e^{-x}\right) e^{-x} \ln \left(1+e^{x}\right)
\end{aligned}
$$

12. The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$, so $y_{c}=c_{1} e^{x}+c_{2} x e^{x}$ and

$$
W=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & x e^{x}+e^{x}
\end{array}\right|=e^{2 x}
$$

Identifying $f(x)=e^{x} /\left(1+x^{2}\right)$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{x e^{x} e^{x}}{e^{2 x}\left(1+x^{2}\right)}=-\frac{x}{1+x^{2}} \\
& u_{2}^{\prime}=\frac{e^{x} e^{x}}{e^{2 x}\left(1+x^{2}\right)}=\frac{1}{1+x^{2}} .
\end{aligned}
$$

Then $u_{1}=-\frac{1}{2} \ln \left(1+x^{2}\right), u_{2}=\tan ^{-1} x$, and

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
$$

2. The auxiliary equation is $m^{2}+3 m+2=(m+1)(m+2)=0$, so $y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x}$ and

$$
W=\left|\begin{array}{rr}
e^{-x} & e^{-2 x} \\
-e^{-x} & -2 e^{-2 x}
\end{array}\right|=-e^{-3 x}
$$

Identifying $f(x)=\sin e^{x}$ wc obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{e^{-2 x} \sin e^{x}}{e^{-3 x}}=e^{x} \sin e^{x} \\
& u_{2}^{\prime}=\frac{e^{-x} \sin e^{x}}{-e^{-3 x}}=-e^{2 x} \sin e^{x}
\end{aligned}
$$

Then $u_{1}=-\cos e^{x}, u_{2}=e^{x} \cos e^{x}-\sin e^{x}$, and

$$
\begin{aligned}
y & =c_{1} e^{-x}+c_{2} e^{-2 x}-e^{-x} \cos e^{x}+e^{-x} \cos e^{x}-e^{-2 x} \sin e^{x} \\
& =c_{1} e^{-x}+c_{2} e^{-2 x}-e^{-2 x} \sin e^{x}
\end{aligned}
$$

\therefore The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$, so $y_{c}=c_{1} e^{t}+c_{2} t e^{t}$ and

$$
W=\left|\begin{array}{cc}
e^{t} & t e^{t} \\
e^{t} & t e^{t}+e^{t}
\end{array}\right|=e^{2 t}
$$

Zentifying $f(t)=e^{t} \tan ^{-1} t$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{t e^{t} e^{t} \tan ^{-1} t}{e^{2 t}}=-t \tan ^{-1} t \\
& u_{2}^{\prime}=\frac{e^{t} e^{t} \tan ^{-1} t}{e^{2 t}}=\tan ^{-1} t
\end{aligned}
$$

Zhen

$$
\begin{aligned}
& u_{1}=-\frac{1+t^{2}}{2} \tan ^{-1} t+\frac{t}{2} \\
& u_{2}=t \tan ^{-1} t-\frac{1}{2} \ln \left(1+t^{2}\right)
\end{aligned}
$$

ald

$$
\begin{aligned}
y & =c_{1} e^{t}+c_{2} t e^{t}+\left(-\frac{1+t^{2}}{2} \tan ^{-1} t+\frac{t}{2}\right) e^{t}+\left(t \tan ^{-1} t-\frac{1}{2} \ln \left(1+t^{2}\right)\right) t e^{t} \\
& =c_{1} e^{t}+c_{3} t e^{t}+\frac{1}{2} e^{t}\left[\left(t^{2}-1\right) \tan ^{-1} t-\ln \left(1+t^{2}\right)\right]
\end{aligned}
$$

- Ze auxiliary cquation is $m^{2}+2 m+1=(m+1)^{2}=0$, so $y_{c}=c_{1} e^{-t}+c_{2} t e^{-t}$ and

$$
W=\left|\begin{array}{cc}
e^{-t} & t e^{-t} \\
-e^{-t} & -t e^{-t}+e^{-t}
\end{array}\right|=e^{-2 t}
$$

Exercises 4.6 Variation of Parameters

Identifying $f(t)=e^{-t} \ln t$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{t e^{-t} e^{-t} \ln t}{e^{-2 t}}=-t \ln t \\
& u_{2}^{\prime}=\frac{e^{-t} e^{-t} \ln t}{e^{-2 t}}=\ln t
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{2} t^{2} \ln t+\frac{1}{4} t^{2} \\
& u_{2}=t \ln t-t
\end{aligned}
$$

and

$$
\begin{aligned}
y & =c_{1} e^{-t}+c_{2} t e^{-t}-\frac{1}{2} t^{2} e^{-t} \ln t+\frac{1}{4} t^{2} e^{-t}+t^{2} e^{-t} \ln t-t^{2} e^{-t} \\
& =c_{1} e^{-t}+c_{2} t e^{-t}+\frac{1}{2} t^{2} e^{-t} \ln t-\frac{3}{4} t^{2} e^{-t} .
\end{aligned}
$$

16. The auxiliary equation is $2 m^{2}+2 m+1=0$, so $y_{c}=e^{-x / 2}\left[c_{1} \cos (x / 2)+c_{2} \sin (x / 2)\right]$ and

$$
W=\left|\begin{array}{cc}
e^{-x / 2} \cos \frac{x}{2} & e^{-x / 2} \sin \frac{x}{2} \\
-\frac{1}{2} e^{-x / 2} \cos \frac{x}{2}-\frac{1}{2} e^{-x / 2} \sin \frac{x}{2} & \frac{1}{2} e^{-x / 2} \cos \frac{x}{2}-\frac{1}{2} e^{x / 2} \sin \frac{x}{2}
\end{array}\right|=\frac{1}{2} e^{-x} .
$$

Identifying $f(x)=2 \sqrt{x}$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{e^{-x / 2} \sin (x / 2) 2 \sqrt{x}}{e^{-x / 2}}=-4 e^{x / 2} \sqrt{x} \sin \frac{x}{2} \\
& u_{2}^{\prime}=-\frac{e^{-x / 2} \cos (x / 2) 2 \sqrt{x}}{e^{-x / 2}}=4 e^{x / 2} \sqrt{x} \cos \frac{x}{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-4 \int_{x_{0}}^{x} e^{t / 2} \sqrt{t} \sin \frac{t}{2} d t \\
& u_{2}=4 \int_{x_{0}}^{x} e^{l / 2} \sqrt{t} \cos \frac{t}{2} d t
\end{aligned}
$$

and

$$
y=e^{-x / 2}\left(c_{1} \cos \frac{x}{2}+c_{2} \sin \frac{x}{2}\right)-4 e^{-x / 2} \cos \frac{x}{2} \int_{x_{0}}^{x} e^{t / 2} \sqrt{t} \sin \frac{t}{2} d t+4 e^{-x / 2} \sin \frac{x}{2} \int_{x_{0}}^{x} e^{t / 2} \sqrt{t} \cos -
$$

17. The auxiliary equation is $3 m^{2}-6 m+6=0$, so $y_{c}=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$ and

$$
W=\left|\begin{array}{cc}
e^{x} \cos x & e^{x} \sin x \\
e^{x} \cos x-e^{x} \sin x & e^{x} \cos x+e^{x} \sin x
\end{array}\right|=e^{2 x} .
$$

Identifying $f(x)=\frac{1}{3} e^{x} \sec x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\left(e^{x} \sin x\right)\left(e^{x} \sec x\right) / 3}{e^{2 x}}=-\frac{1}{3} \tan x \\
& u_{2}^{\prime}=\frac{\left(e^{x} \cos x\right)\left(e^{x} \sec x\right) / 3}{e^{2 x}}=\frac{1}{3}
\end{aligned}
$$

Then $u_{1}=\frac{1}{3} \ln (\cos x): u_{2}=\frac{1}{3} x$, and

$$
y=c_{1} e^{x} \cos x+c_{2} e^{x} \sin x+\frac{1}{3} \ln (\cos x) e^{x} \cos x+\frac{1}{3} x e^{x} \sin x
$$

-5. The auxiliary equation is $4 m^{2}-4 m+1=(2 m-1)^{2}=0$, so $y_{c}=c_{1} e^{x / 2}+c_{2} x e^{x / 2}$ and

$$
W=\left|\begin{array}{cc}
e^{x / 2} & x e^{x / 2} \\
\frac{1}{2} e^{x / 2} & \frac{1}{2} x e^{x / 2}+e^{x / 2}
\end{array}\right|=e^{x}
$$

Identifying $f(x)=\frac{1}{4} e^{x / 2} \sqrt{1-x^{2}}$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{x e^{x / 2} e^{x / 2} \sqrt{1-x^{2}}}{4 e^{x}}=-\frac{1}{4} x \sqrt{1-x^{2}} \\
& u_{2}^{\prime}=\frac{e^{x / 2} e^{x / 2} \sqrt{1-x^{2}}}{4 e^{x}}=\frac{1}{4} \sqrt{1-x^{2}}
\end{aligned}
$$

To find u_{1} and u_{2} we use the substitution $v=1-x^{2}$ and the trig substitution $x=\sin \theta$, respectively:

$$
\begin{aligned}
& u_{1}=\frac{1}{12}\left(1-x^{2}\right)^{3 / 2} \\
& u_{2}=\frac{x}{8} \sqrt{1-x^{2}}+\frac{1}{8} \sin ^{-1} x
\end{aligned}
$$

Thus

$$
y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}+\frac{1}{12} e^{x / 2}\left(1-x^{2}\right)^{3 / 2}+\frac{1}{8} x^{2} e^{x / 2} \sqrt{1-x^{2}}+\frac{1}{8} x e^{x / 2} \sin ^{-1} x
$$

\therefore The auxiliary equation is $4 m^{2}-1=(2 m-1)(2 m+1)=0$, so $y_{c}=c_{1} e^{x / 2}+c_{2} e^{-x / 2}$ and

$$
W=\left|\begin{array}{rr}
e^{x / 2} & e^{-x / 2} \\
\frac{1}{2} e^{x / 2} & -\frac{1}{2} e^{-x / 2}
\end{array}\right|=-1
$$

identifying $f(x)=x e^{x / 2} / 4$ we obtain $u_{1}^{\prime}=x / 4$ and $u_{2}^{\prime}=-x e^{x} / 4$. Then $u_{1}=x^{2} / 8$ and $\therefore 2=-x e^{x} / 4+e^{x} / 4$. Thus

$$
\begin{aligned}
y & =c_{1} e^{x / 2}+c_{2} e^{-x / 2}+\frac{1}{8} x^{2} e^{x / 2}-\frac{1}{4} x e^{x / 2}+\frac{1}{4} e^{x / 2} \\
& =c_{3} e^{x / 2}+c_{2} e^{-x / 2}+\frac{1}{8} x^{2} e^{x / 2}-\frac{1}{4} x e^{x / 2}
\end{aligned}
$$

and

$$
y^{\prime}=\frac{1}{2} c_{3} e^{x / 2}-\frac{1}{2} c_{2} e^{-x / 2}+\frac{1}{16} x^{2} e^{x / 2}+\frac{1}{8} x e^{x / 2}-\frac{1}{4} e^{x / 2}
$$

Exercises 4.6 Variation of Parameters

The initial conditions imply

$$
\begin{aligned}
c_{3}+c_{2} & =1 \\
\frac{1}{2} c_{3}-\frac{1}{2} c_{2}-\frac{1}{4} & =0
\end{aligned}
$$

Thus $c_{3}=3 / 4$ and $c_{2}=1 / 4$, and

$$
y=\frac{3}{4} e^{x / 2}+\frac{1}{4} e^{-x / 2}+\frac{1}{8} x^{2} e^{x / 2}-\frac{1}{4} x e^{x / 2}
$$

20. The auxiliary equation is $2 m^{2}+m-1=(2 m-1)(m+1)=0$, so $y_{c}=c_{1} e^{x / 2}+c_{2} e^{-x}$ and

$$
W=\left|\begin{array}{cc}
e^{x / 2} & e^{-x} \\
\frac{1}{2} e^{x / 2} & -e^{-x}
\end{array}\right|=-\frac{3}{2} e^{-x / 2}
$$

Identifying $f(x)=(x+1) / 2$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{3} e^{-x / 2}(x+1) \\
& u_{2}^{\prime}=-\frac{1}{3} e^{x}(x+1)
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-e^{-x / 2}\left(\frac{2}{3} x-2\right) \\
& u_{2}=-\frac{1}{3} x e^{x} .
\end{aligned}
$$

Thus

$$
y=c_{1} e^{x / 2}+c_{2} e^{-x}-x-2
$$

and

$$
y^{\prime}=\frac{1}{2} c_{1} e^{x / 2}-c_{2} e^{-x}-1
$$

The initial conditions imply

$$
\begin{aligned}
c_{1}-c_{2}-2 & =1 \\
\frac{1}{2} c_{1}-c_{2}-1 & =0
\end{aligned}
$$

Thus $c_{1}=8 / 3$ and $c_{2}=1 / 3$, and

$$
y=\frac{8}{3} e^{x / 2}+\frac{1}{3} e^{-x}-x-2
$$

21. The auxiliary equation is $m^{2}+2 m-8=(m-2)(m+4)=0$, so $y_{c}=c_{1} e^{2 x}+c_{2} e^{-4 x}$ and

$$
W=\left|\begin{array}{rr}
e^{2 x} & e^{-4 x} \\
2 e^{2 x} & -4 e^{-4 x}
\end{array}\right|=-6 e^{-2 x} .
$$

Identifying $f(x)=2 e^{-2 x}-e^{-x}$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{3} e^{-4 x}-\frac{1}{6} e^{-3 x} \\
& u_{2}^{\prime}=\frac{1}{6} e^{3 x}-\frac{1}{3} e^{2 x}
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{12} e^{-4 x}+\frac{1}{18} e^{-3 x} \\
& u_{2}=\frac{1}{18} e^{3 x}-\frac{1}{6} e^{2 x}
\end{aligned}
$$

Thus

$$
\begin{aligned}
y & =c_{1} e^{2 x}+c_{2} e^{-4 x}-\frac{1}{12} e^{-2 x}+\frac{1}{18} e^{-x}+\frac{1}{18} e^{-x}-\frac{1}{6} e^{-2 x} \\
& =c_{1} e^{2 x}+c_{2} e^{-4 x}-\frac{1}{4} e^{-2 x}+\frac{1}{9} e^{-x}
\end{aligned}
$$

\therefore.nd

$$
y^{\prime}=2 c_{1} e^{2 x}-4 c_{2} e^{-4 x}+\frac{1}{2} e^{-2 x}-\frac{1}{9} e^{-x} .
$$

The initial conditions imply

$$
\begin{gathered}
c_{1}+c_{2}-\frac{5}{36}=1 \\
2 c_{1}-4 c_{2}+\frac{7}{18}=0
\end{gathered}
$$

Fius $c_{1}=25 / 36$ and $c_{2}=4 / 9$, and

$$
y=\frac{25}{36} e^{2 x}+\frac{4}{9} e^{-4 x}-\frac{1}{4} e^{-2 x}+\frac{1}{9} e^{-x}
$$

-ie auxiliary cquation is $m^{2}-4 m+4=(m-2)^{2}=0$, so $y_{c}=c_{1} e^{2 x}+c_{2} x e^{2 x}$ and

$$
W=\left|\begin{array}{cc}
e^{2 x} & x e^{2 x} \\
2 e^{2 x} & 2 x e^{2 x}+e^{2 x}
\end{array}\right|=e^{4 x}
$$

Sntifying $f(x)=\left(12 x^{2}-6 x\right) e^{2 x}$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=6 x^{2}-12 x^{3} \\
& u_{2}^{\prime}=12 x^{2}-6 x .
\end{aligned}
$$

\because -

$$
\begin{aligned}
& u_{1}=2 x^{3}-3 x^{4} \\
& u_{2}=4 x^{3}-3 x^{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
y & =c_{1} e^{2 x}+c_{2} x e^{2 x}+\left(2 x^{3}-3 x^{4}\right) e^{2 x}+\left(4 x^{3}-3 x^{2}\right) x e^{2 x} \\
& =c_{1} e^{2 x}+c_{2} x e^{2 x}+e^{2 x}\left(x^{4}-x^{3}\right)
\end{aligned}
$$

and

$$
y^{\prime}=2 c_{1} e^{2 x}+c_{2}\left(2 x e^{2 x}+e^{2 x}\right)+e^{2 x}\left(4 x^{3}-3 x^{2}\right)+2 e^{2 x}\left(x^{4}-x^{3}\right) .
$$

The initial conditions imply

$$
\begin{aligned}
c_{1} & =1 \\
2 c_{1}+c_{2} & =0
\end{aligned}
$$

Thus $c_{1}=1$ and $c_{2}=-2$, and

$$
y=e^{2 x}-2 x e^{2 x}+e^{2 x}\left(x^{4}-x^{3}\right)=e^{2 x}\left(x^{4}-x^{3}-2 x+1\right)
$$

23. Write the equation in the form

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\left(1-\frac{1}{4 x^{2}}\right) y=x^{-1 / 2}
$$

and identify $f(x)=x^{-1 / 2}$. From $y_{1}=x^{-1 / 2} \cos x$ and $y_{2}=x^{-1 / 2} \sin x$ we compute

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}
x^{-1 / 2} \cos x & x^{-1 / 2} \sin x \\
-x^{-1 / 2} \sin x-\frac{1}{2} x^{-3 / 2} \cos x & x^{-1 / 2} \cos x-\frac{1}{2} x^{-3 / 2} \sin x
\end{array}\right|=\frac{1}{x} .
$$

Now

$$
u_{1}^{\prime}=-\sin x \quad \text { so } \quad u_{1}=\cos x
$$

and

$$
u_{2}^{\prime}=\cos x \quad \text { so } \quad u_{2}=\sin x
$$

Thus a particular solution is

$$
y_{p}=x^{-1 / 2} \cos ^{2} x+x^{-1 / 2} \sin ^{2} x
$$

and the general solution is

$$
\begin{aligned}
y & =c_{1} x^{-1 / 2} \cos x+c_{2} x^{-1 / 2} \sin x+x^{-1 / 2} \cos ^{2} x+x^{-1 / 2} \sin ^{2} x \\
& =c_{1} x^{-1 / 2} \cos x+c_{2} x^{-1 / 2} \sin x+x^{-1 / 2}
\end{aligned}
$$

24. Write the equation in the form

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}+\frac{1}{x^{2}} y=\frac{\sec (\ln x)}{x^{2}}
$$

and identify $f(x)=\sec (\ln x) / x^{2}$. From $y_{1}=\cos (\ln x)$ and $y_{2}=\sin (\ln x)$ we compute

$$
W=\left|\begin{array}{cc}
\cos (\ln x) & \sin (\ln x) \\
-\frac{\sin (\ln x)}{x} & \frac{\cos (\ln x)}{x}
\end{array}\right|=\frac{1}{x} .
$$

Лow

$$
u_{1}^{\prime}=-\frac{\tan (\ln x)}{x} \text { so } \quad u_{1}=\ln |\cos (\ln x)|,
$$

and

$$
u_{2}^{\prime}=\frac{1}{x} \quad \text { so } \quad u_{2}=\ln x .
$$

Thus, a particular solution is

$$
y_{p}=\cos (\ln x) \ln |\cos (\ln x)|+(\ln x) \sin (\ln x) .
$$

and the gencral solution is

$$
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)+\cos (\ln x) \ln |\cos (\ln x)|+(\ln x) \sin (\ln x) .
$$

\therefore The auxiliary equation is $m^{3}+m=m\left(m^{2}+1\right)=0$, so $y_{c}=c_{1}+c_{2} \cos x+c_{3} \sin x$ and

$$
W=\left|\begin{array}{rrr}
1 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
0 & -\cos x & -\sin x
\end{array}\right|=1 .
$$

Identifying $f(x)=\tan x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=W_{1}=\left|\begin{array}{ccc}
0 & \cos x & \sin x \\
0 & -\sin x & \cos x \\
\tan x & -\cos x & -\sin x
\end{array}\right|=\tan x \\
& u_{2}^{\prime}=W_{2}=\left|\begin{array}{ccc}
1 & 0 & \sin x \\
0 & 0 & \cos x \\
0 & \tan x & -\sin x
\end{array}\right|=-\sin x \\
& u_{3}^{\prime}=W_{3}=\left|\begin{array}{rrr}
1 & \cos x & 0 \\
0 & -\sin x & 0 \\
0 & -\cos x & \tan x
\end{array}\right|=-\sin x \tan x=\frac{\cos ^{2} x-1}{\cos x}=\cos x-\sec x .
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\ln |\cos x| \\
& u_{2}=\cos x \\
& u_{3}=\sin x-\ln |\sec x+\tan x|
\end{aligned}
$$

and

$$
\begin{aligned}
y= & c_{1}+c_{2} \cos x+c_{3} \sin x-\ln |\cos x|+\cos ^{2} x \\
& \quad+\sin ^{2} x-\sin x \ln |\sec x+\tan x| \\
= & c_{4}+c_{2} \cos x+c_{3} \sin x-\ln |\cos x i-\sin x \ln | \sec x+\tan x \mid
\end{aligned}
$$

Exercises 4.6 Variation of Parameters
for $-\pi / 2<x<\pi / 2$.
26. The auxiliary equation is $m^{3}+4 m=m\left(m^{2}+4\right)=0$, so $y_{c}=c_{1}+c_{2} \cos 2 x+c_{3} \sin 2 x$ and

$$
W=\left|\begin{array}{rrr}
1 & \cos 2 x & \sin 2 x \\
0 & -2 \sin 2 x & 2 \cos 2 x \\
0 & -4 \cos 2 x & -4 \sin 2 x
\end{array}\right|=8
$$

Identifying $f(x)=\sec 2 x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{8} W_{1}=\frac{1}{8}\left|\begin{array}{ccc}
0 & \cos 2 x & \sin 2 x \\
0 & -2 \sin 2 x & 2 \cos 2 x \\
\sec 2 x & -4 \cos 2 x & -4 \sin 2 x
\end{array}\right|=\frac{1}{4} \sec 2 x \\
& u_{2}^{\prime}=\frac{1}{8} W_{2}=\frac{1}{8}\left|\begin{array}{ccc}
1 & 0 & \sin 2 x \\
0 & 0 & 2 \cos 2 x \\
0 & \sec 2 x & -4 \sin 2 x
\end{array}\right|=-\frac{1}{4} \\
& u_{3}^{\prime}=\frac{1}{8} W_{3}=\frac{1}{8}\left|\begin{array}{ccc}
1 & \cos 2 x & 0 \\
0 & -2 \sin 2 x & 0 \\
0 & -4 \cos 2 x & \sec 2 x
\end{array}\right|=-\frac{1}{4} \tan 2 x .
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=\frac{1}{8} \ln |\sec 2 x+\tan 2 x| \\
& u_{2}=-\frac{1}{4} x \\
& u_{3}=\frac{1}{8} \ln |\cos 2 x|
\end{aligned}
$$

and

$$
\left.y=c_{1}+c_{2} \cos 2 x+c_{3} \sin 2 x+\frac{1}{8} \ln |\operatorname{scc} 2 x+\tan 2 x|-\frac{1}{4} x \cos 2 x+\frac{1}{8} \sin 2 x \ln \right\rvert\, \cos 2 x
$$

for $-\pi / 4<x<\pi / 4$.
27. The auxiliary equation is $3 m^{2}-6 m+30=0$, which has roots $1 \pm 3 i$, so $y_{c}=e^{x}\left(c_{1} \cos 3 x+c_{2}\right.$ ․ We consider first the differential equation $3 y^{\prime \prime}-6 y^{\prime}+30 y=15 \sin x$, which can be solve . undetermined coefficients. Letting $y_{p_{1}}=A \cos x+B \sin x$ and substituting into the diff-: equation we get

$$
(27 A-6 B) \cos x+(6 A+27 B) \sin x=15 \sin x
$$

Then

$$
27 A-6 B=0 \quad \text { and } \quad 6 A+27 B=15
$$

$\therefore A=\frac{2}{17}$ and $B=\frac{9}{17}$. Thus, $y_{p_{1}}=\frac{2}{17} \cos x+\frac{9}{17} \sin x$. Next, we consider the differential equation $y^{\prime \prime}-6 y^{\prime}+30 y$, for which a particular solution $y_{p_{2}}$ can be found using variation of parameters. The Tronskian is

$$
W=\left|\begin{array}{cc}
e^{x} \cos 3 x & e^{x} \sin 3 x \\
e^{x} \cos 3 x-3 e^{x} \sin 3 x & 3 e^{x} \cos 3 x+e^{x} \sin 3 x
\end{array}\right|=3 e^{2 x}
$$

Gentifying $f(x)=\frac{1}{3} e^{x} \tan x$ we obtain

$$
u_{1}^{\prime}=-\frac{1}{9} \sin 3 x \tan 3 x=-\frac{1}{9}\left(\frac{\sin ^{2} 3 x}{\cos 3 x}\right)=-\frac{1}{9}\left(\frac{1-\cos ^{2} 3 x}{\cos 3 x}\right)=-\frac{1}{9}(\sec 3 x-\cos 3 x)
$$

\because

$$
u_{1}=-\frac{1}{27} \ln |\sec 3 x+\tan 3 x|+\frac{1}{27} \sin 3 x
$$

Sext

$$
u_{2}^{\prime}=\frac{1}{9} \sin 3 x \quad \text { so } \quad u_{2}=-\frac{1}{27} \cos 3 x
$$

Thus

$$
\begin{aligned}
y_{p_{2}} & =-\frac{1}{27} e^{x} \cos 3 x(\ln |\sec 3 x+\tan 3 x|-\sin 3 x)-\frac{1}{27} e^{x} \sin 3 x \cos 3 x \\
& =-\frac{1}{27} e^{x}(\cos 3 x) \ln |\sec 3 x+\tan 3 x|
\end{aligned}
$$

-nd the general solution of the original differential equation is

$$
y=e^{x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+y_{p_{1}}(x)+y_{p_{2}}(x)
$$

-: The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$, which has repeated root 1 , so $y_{c}=c_{1} c^{x}+c_{2} x e^{x}$. Te consider first the differential equation $y^{\prime \prime}-2 y^{\prime}+y=4 x^{2}-3$, which can be solved using andetermined coefficients. Letting $y_{p_{1}}=A x^{2}+B x+C$ and substituting into the diffcrential Guation we get

$$
A x^{2}+(-4 A+B) x+(2 A-2 B+C)=4 x^{2}-3
$$

Then

$$
A=4, \quad-4 A+B=0, \quad \text { and } \quad 2 A-2 B+C=-3
$$

$\therefore A=4, B=16$, and $C=21$. Thus, $y_{p_{1}}=4 x^{2}+16 x+21$. Next we consider the differential -quation $y^{\prime \prime}-2 y^{\prime}+y=x^{-1} e^{x}$, for which a particular solution $y_{p_{2}}$ can be found using variation of \because arameters. The Wronskian is

$$
W=\left|\begin{array}{cc}
e^{x} & x e^{x} \\
e^{x} & x e^{x}+e^{x}
\end{array}\right|=e^{2 x}
$$

Fentifying $f(x)=e^{x} / x$ we obtain $u_{1}^{\prime}=-1$ and $u_{2}^{\prime}=1 / x$. Then $u_{1}=-x$ and $u_{2}=\ln x$, so that

$$
y_{p_{2}}=-x e^{x}+x e^{x} \ln x
$$

Exercises 4.6 Variation of Parametcrs

and the general solution of the original differential cquation is

$$
\begin{aligned}
y=y_{c}+y_{p_{1}}+y_{p_{2}} & =c_{1} e^{x}+c_{2} x e^{x}+4 x^{2}+16 x+21-x e^{x}+x e^{x} \ln x \\
& =c_{1} e^{x}+c_{3} x e^{x}+4 x^{2}+16 x+21+x e^{x} \ln x
\end{aligned}
$$

29. The interval of definition for Problem 1 is $(-\pi / 2, \pi / 2)$, for Problem 7 is $(-\infty, \infty)$, for Pro is $(0, \infty)$, and for Problem 18 is $(-1,1)$. In Problem 24 the general solution is

$$
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)+\cos (\ln x) \ln |\cos (\ln x)|+(\ln x) \sin (\ln x)
$$

for $-\pi / 2<\ln x<\pi / 2$ or $e^{-\pi / 2}<x<e^{\pi / 2}$. The bounds on $\ln x$ are due to the presence of se in the differential cquation.
30. We are given that $y_{1}=x^{2}$ is a solution of $x^{4} y^{\prime \prime}+x^{3} y^{\prime}-4 x^{2} y=0$. To find a sccond solution reduction of order. Let $y=x^{2} u(x)$. Then the product rule gives

$$
y^{\prime}=x^{2} u^{\prime}+2 x u \quad \text { and } \quad y^{\prime \prime}=x^{2} u^{\prime \prime}+4 x u^{\prime}+2 u
$$

so

$$
x^{4} y^{\prime \prime}+x^{3} y^{\prime}-4 x^{2} y=x^{5}\left(x u^{\prime \prime}+5 u^{\prime}\right)=0
$$

Letting $w=u^{\prime}$, this becornes $x w^{\prime}+5 w=0$. Separating variables and integrating we have

$$
\frac{d w}{w}=-\frac{5}{x} d x \quad \text { and } \quad \ln |w|=-5 \ln x+c .
$$

Thus, $w=x^{-5}$ and $u=-\frac{1}{4} x^{-4}$. A second solution is then $y_{2}=x^{2} x^{-4}=1 / x^{2}$, and the solution of the homogeneous differential equation is $y_{c}=c_{1} x^{2}+c_{2} / x^{2}$. To find a particular si y_{p}, we use variation of parameters. The Wronskian is

$$
W=\left|\begin{array}{cc}
x^{2} & 1 / x^{2} \\
2 x & -2 / x^{3}
\end{array}\right|=-\frac{4}{x} .
$$

Identifying $f(x)=1 / x^{4}$ we obtain $u_{1}^{\prime}=\frac{1}{4} x^{-5}$ and $u_{2}^{\prime}=-\frac{1}{4} x^{-1}$. Then $u_{1}=-\frac{1}{16} x^{-}$ $u_{2}=-\frac{1}{4} \ln x$, so

$$
y_{p}=-\frac{1}{16} x^{-4} x^{2}-\frac{1}{4}(\ln x) x^{-2}=-\frac{1}{16} x^{-2}-\frac{1}{4} x^{-2} \ln x .
$$

The general solution is

$$
y=c_{1} x^{2}+\frac{c_{2}}{x^{2}}-\frac{1}{16 x^{2}}-\frac{1}{4 x^{2}} \ln x .
$$

31. Suppose $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$, where u_{1} and u_{2} are defined by (5) of Section 4.
-ext. Then, for x and x_{0} in I,

$$
\begin{aligned}
y_{p}(x) & =y_{1}(x) \int_{x_{0}}^{x} \frac{-y_{2}(t) f(t)}{W(t)} d t+y_{2}(x) \int_{x_{0}}^{x} \frac{y_{1}(t) f(t)}{W(t)} d t \\
& =\int_{x_{0}}^{x} \frac{-y_{1}(x) y_{2}(t) f(t)}{W(t)} d t+\int_{x_{0}}^{x} \frac{y_{1}(t) y_{2}(x) f(t)}{W(t)} d t \\
& =\int_{x_{0}}^{x} \frac{\left[\frac{y_{1}(t) y_{2}(x) f(t)}{W(t)}+\frac{-y_{1}(x) y_{2}(t) f(t)}{W(t)}\right] d t}{} \\
& =\int_{x_{0}}^{x} \frac{y_{1}(t) y_{2}(x) f(t)-y_{1}(x) y_{2}(t) f(t)}{W(t)} d t \\
& =\int_{x_{0}}^{x} \frac{y_{1}(t) y_{2}(x)-y_{1}(x) y_{2}(t)}{W(t)} f(t) d t \\
& =\int_{x_{0}}^{x} G(x, t) f(t) d t
\end{aligned}
$$

\therefore I. In the solution of Example 3 in the text we saw that $y_{1}=e^{x}, y_{2}=e^{-x}, f(x)=1 / x$, and $W\left(y_{1}, y_{2}\right)=$ -2 . From (13) the Green's function for the differential equation is

$$
G(x, t)=\frac{e^{t} e^{-x}-e^{x} e^{-t}}{-2}=\frac{e^{x-t}-e^{-(x-t)}}{2}=\sinh (x-t)
$$

The general solution of the differential equation on any interval $\left[x_{0}, x\right]$ not containing the origin is -ien

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\int_{x_{0}}^{x} \frac{\sinh (x-t)}{t} d t
$$

\therefore Te already know that $y_{p}(x)$ is a particular solution of the differential equation. We simply need to Siow that it satisfies the initial conditions. Certainly

$$
y\left(x_{0}\right)=\int_{x_{0}}^{x_{0}} G(x, t) f(t) d t=0
$$

\because-sing Lcibniz's rule for differentiation under an integral sign we have

$$
y_{p}^{\prime}(x)=\frac{d}{d x} \int_{x_{0}}^{x} G(x, t) f(t) d t=\int_{x_{0}}^{x} \frac{d}{d x} G(x, t) f(t) d t+f(t) G(x, x) \cdot 1-f(t) G\left(x_{0}, x\right) \cdot 0
$$

Fom (13) in the text, $G(x, x)=0$ so

$$
y_{p}^{\prime}(x)=\frac{d}{d x} \int_{x_{0}}^{x} G(x, t) f(t) d t
$$

.nd

$$
y_{p}^{\prime}\left(x_{0}\right)=\frac{d}{d x} \int_{x_{0}}^{x_{0}} G(x, t) f(t) d t=0
$$

Exercises 4.6 Variation of Parameters

34. From the solution of Problem 32 we have that a particular solution of the differential equation

$$
y_{p}(x)=\int_{0}^{x} G(x, t) e^{2 t} d t
$$

where $G(x, t)=\sinh (x-t)$. Then

$$
\begin{aligned}
y_{p}(x) & =\int_{0}^{x} e^{2 t} \sinh (x-t) d t=\int_{0}^{x} e^{2 t} \frac{e^{x-t}-e^{-(x-t)}}{2} d t \\
& =\frac{1}{2} \int_{0}^{x}\left[e^{x+t}-e^{-x+3 t}\right] d t=\left.\frac{1}{2}\left[e^{x+t}-\frac{1}{3} e^{-x+3 t}\right]\right|_{0} ^{x} \\
& =\frac{1}{2} e^{2 x}-\frac{1}{6} e^{2 x}-\frac{1}{2} e^{x}+\frac{1}{6} e^{-x}=\frac{1}{3} e^{2 x}-\frac{1}{2} e^{x}+\frac{1}{6} e^{-x} .
\end{aligned}
$$

Exercises 4.7

Cauchy-Euler Equation

1. The auxiliary equation is $m^{2}-m-2=(m+1)(m-2)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{2}$.
2. The auxiliary equation is $4 m^{2}-4 m+1=(2 m-1)^{2}=0$ so that $y=c_{1} x^{1 / 2}+c_{2} x^{1 / 2} \ln x$.
3. The auxiliary equation is $m^{2}=0$ so that $y=c_{1}+c_{2} \ln x$.
4. The auxiliary equation is $m^{2}-4 m=m(m-4)=0$ so that $y=c_{1}+c_{2} x^{4}$.
5. The auxiliary equation is $m^{2}+4=0$ so that $y=c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)$.
6. The auxiliary equation is $m^{2}+4 m+3=(m+1)(m+3)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{-3}$.
\therefore. The auxiliary equation is $m^{2}-4 m-2=0$ so that $y=c_{1} x^{2-\sqrt{6}}+c_{2} x^{2+\sqrt{6}}$.
7. The auxiliary equation is $m^{2}+2 m-4=0$ so that $y=c_{1} x^{-1+\sqrt{5}}+c_{2} x^{-1-\sqrt{5}}$.
8. The auxiliary equation is $25 m^{2}+1=0$ so that $y=c_{1} \cos \left(\frac{1}{5} \ln x\right)+c_{2} \sin \left(\frac{1}{5} \ln x\right)$.
9. The auxiliary equation is $4 m^{2}-1=(2 m-1)(2 m+1)=0$ so that $y=c_{1} x^{1 / 2}+c_{2} x^{-1 / 2}$.
10. The auxiliary equation is $m^{2}+4 m+4=(m+2)^{2}=0$ so that $y=c_{1} x^{-2}+c_{2} x^{-2} \ln x$.
11. The auxiliary equation is $m^{2}+7 m+6=(m+1)(m+6)=0$ so that $y=c_{1} x^{-1}+c_{2} x^{-6}$.
12. The auxiliary equation is $3 m^{2}+3 m+1=0$ so that

$$
y=x^{-1 / 2}\left[c_{1} \cos \left(\frac{\sqrt{3}}{6} \ln x\right)+c_{2} \sin \left(\frac{\sqrt{3}}{6} \ln x\right)\right] .
$$

14. The auxiliary equation is $m^{2}-8 m+41=0$ so that $y=x^{4}\left[c_{1} \cos (5 \ln x)+c_{2} \sin (5 \ln x)\right]$.
-5. Assuming that $y=x^{m}$ and substituting into the differential equation we obtain

$$
m(m-1)(m-2)-6=m^{3}-3 m^{2}+2 m-6=(m-3)\left(m^{2}+2\right)=0
$$

Thus

$$
y=c_{1} x^{3}+c_{2} \cos (\sqrt{2} \ln x)+c_{3} \sin (\sqrt{2} \ln x)
$$

\therefore. Assuming that $y=x^{m}$ and substituting into the differential equation we obtain

$$
m(m-1)(m-2)+m-1=m^{3}-3 m^{2}+3 m-1=(m-1)^{3}=0
$$

Thus

$$
y=c_{1} x+c_{2} x \ln x+c_{3} x(\ln x)^{2} .
$$

\because - Assuming that $y=x^{m}$ and substituting into the differential equation we obtain $n(m-1)(m-2)(m-3)+6 m(m-1)(m-2)=m^{4}-7 m^{2}+6 m=m(m-1)(m-2)(m+3)=0$.

Thus

$$
y=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{-3}
$$

- Assuming that $y=x^{m}$ and substituting into the differential equation we obtain $\cdots(m-1)(m-2)(m-3)+6 m(m-1)(m-2)+9 m(m-1)+3 m+1=m^{4}+2 m^{2}+1=\left(m^{2}+1\right)^{2}=0$.

Thus

$$
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)+c_{3}(\ln x) \cos (\ln x)+c_{4}(\ln x) \sin (\ln x) .
$$

\therefore The auxiliary equation is $m^{2}-5 m=m(m-5)=0$ so that $y_{c}=c_{1}+c_{2} x^{5}$ and

$$
W\left(1, x^{\bar{x}}\right)=\left|\begin{array}{cc}
1 & x^{5} \\
0 & 5 x^{4}
\end{array}\right|=5 x^{4}
$$

-ientifying $f(x)=x^{3}$ we obtain $u_{1}^{\prime}=-\frac{1}{5} x^{4}$ and $u_{2}^{\prime}=1 / 5 x$. Then $u_{1}=-\frac{1}{25} x^{5}, u_{2}=\frac{1}{5} \ln x$, and

$$
y=c_{1}+c_{2} x^{5}-\frac{1}{25} x^{5}+\frac{1}{5} x^{5} \ln x=c_{1}+c_{3} x^{5}+\frac{1}{5} x^{5} \ln x
$$

2. -a auxiliary equation is $2 m^{2}+3 m+1=(2 m+1)(m+1)=0$ so that $y_{c}=c_{1} x^{-1}+c_{2} x^{-1 / 2}$ and

$$
W\left(x^{-1}, x^{-1 / 2}\right)=\left|\begin{array}{cc}
x^{-1} & x^{-1 / 2} \\
-x^{-2} & -\frac{1}{2} x^{-3 / 2}
\end{array}\right|=\frac{1}{2} x^{-5 / 2}
$$

- تntifying $f(x)=\frac{1}{2}-\frac{1}{2 x}$ we obtain $u_{1}^{\prime}=x-x^{2}$ and $u_{2}^{\prime}=x^{3 / 2}-x^{1 / 2}$. Then $u_{1}=\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$, $==\frac{2}{5} x^{5 / 2}-\frac{2}{3} x^{3 / 2}$: and

$$
y=c_{1} x^{-1}+c_{2} x^{-1 / 2}+\frac{1}{2} x-\frac{1}{3} x^{2}+\frac{2}{5} x^{2}-\frac{2}{3} x=c_{1} x^{-1}+c_{2} x^{-1 / 2}-\frac{1}{6} x+\frac{1}{15} x^{2}
$$

Exercises 4.7 Cauchy-Euler Equation

21. The auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$ so that $y_{c}=c_{1} x+c_{2} x \ln x$ and

$$
W(x, x \ln x)=\left|\begin{array}{cc}
x & x \ln x \\
1 & 1+\ln x
\end{array}\right|=x
$$

Iientifying $f(x)=2 / x$ we obtain $u_{1}^{\prime}=-2 \ln x / x$ and $u_{2}^{\prime}=2 / x$. Then $u_{1}=-(\ln x)^{2}, u_{2}=2:$ and

$$
\begin{aligned}
y & =c_{1} x+c_{2} x \ln x-x(\ln x)^{2}+2 x(\ln x)^{2} \\
& =c_{1} x+c_{2} x \ln x+x(\ln x)^{2}, \quad x>0 .
\end{aligned}
$$

22. The auxiliary equation is $m^{2}-3 m+2=(m-1)(m-2)=0$ so that $y_{c}=c_{1} x+c_{2} x^{2}$ and

$$
W\left(x, x^{2}\right)=\left|\begin{array}{cc}
x & x^{2} \\
1 & 2 x
\end{array}\right|=x^{2}
$$

Identifying $f(x)=x^{2} e^{x}$ we obtain $u_{1}^{\prime}=-x^{2} e^{x}$ and $u_{2}^{\prime}=x e^{x}$. Then $u_{1}=-x^{2} e^{x}+2 x e^{x}$. $\therefore=x e^{x}-e^{x}$, and

$$
\begin{aligned}
y & =c_{1} x+c_{2} x^{2}-x^{3} e^{x}+2 x^{2} e^{x}-2 x e^{x}+x^{3} e^{x}-x^{2} e^{x} \\
& =c_{1} x+c_{2} x^{2}+x^{2} e^{x}-2 x e^{x}
\end{aligned}
$$

23. I:- auxiliary equation $m(m-1)+m-1=m^{2}-1=0$ has roots $m_{1}=-1, m_{2}=$: $\therefore=c_{1} x^{-1}+c_{2} x$. With $y_{1}=x^{-1}, y_{2}=x$, and the identification $f(x)=\ln x / x^{2}$, we get

$$
W=2 x^{-1}, \quad W_{1}=-\ln x / x, \quad \text { and } \quad W_{2}=\ln x / x^{3}
$$

Z-en $u_{1}^{\prime}=W_{1} / W=-(\ln x) / 2, u_{2}^{\prime}=W_{2} / W=(\ln x) / 2 x^{2}$, and integration by parts gives

$$
\begin{aligned}
& u_{1}=\frac{1}{2} x-\frac{1}{2} x \ln x \\
& u_{2}=-\frac{1}{2} x^{-1} \ln x-\frac{1}{2} x^{-1}
\end{aligned}
$$

\because

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}=\left(\frac{1}{2} x-\frac{1}{2} x \ln x\right) x^{-1}+\left(-\frac{1}{2} x^{-1} \ln x-\frac{1}{2} x^{-1}\right) x=-\ln x
$$

\because

$$
y=y_{c}+y_{p}=c_{1} x^{-1}+c_{2} x-\ln x, \quad x>0 .
$$

\therefore - $-\therefore$ auxiliary equation $m(m-1)+m-1=m^{2}-1=0$ has roots $m_{1}=-1, m_{2}=$ $\therefore=c_{1} x^{-1}+c_{2} x$. With $y_{1}=x^{-1}, y_{2}=x$, and the identification $f(x)=1 / x^{2}(x+1)$, we get

$$
W=2 x^{-1}, \quad W_{1}=-1 / x(x+1), \quad \text { and } \quad W_{2}=1 / x^{3}(x+1)
$$

Then $u_{1}^{\prime}=W_{1} / W=-1 / 2(x+1), \quad u_{2}^{\prime}=W_{2} / W=1 / 2 x^{2}(x+1)$, and integration (by partial fractions for u_{2}^{\prime}) gives

$$
\begin{aligned}
& u_{1}=-\frac{1}{2} \ln (x+1) \\
& u_{2}=-\frac{1}{2} x^{-1}-\frac{1}{2} \ln x+\frac{1}{2} \ln (x+1)
\end{aligned}
$$

so

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2}=\left[-\frac{1}{2} \ln (x+1)\right] x^{-1}+\left[-\frac{1}{2} x^{-1}-\frac{1}{2} \ln x+\frac{1}{2} \ln (x+1)\right] x \\
& =-\frac{1}{2}-\frac{1}{2} x \ln x+\frac{1}{2} x \ln (x+1)-\frac{\ln (x+1)}{2 x}=-\frac{1}{2}+\frac{1}{2} x \ln \left(1+\frac{1}{x}\right)-\frac{\ln (x+1)}{2 x}
\end{aligned}
$$

and

$$
y=y_{c}+y_{p}=c_{1} x^{-1}+c_{2} x-\frac{1}{2}+\frac{1}{2} x \ln \left(1+\frac{1}{x}\right)-\frac{\ln (x+1)}{2 x}, \quad x>0 .
$$

-. The auxiliary equation is $m^{2}+2 m=m(m+2)=0$, so that $y=c_{1}+c_{2} x^{-2}$ and $y^{\prime}=-2 c_{2} x^{-3}$. The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
-2 c_{2} & =4
\end{aligned}
$$

Thus, $c_{1}=2, c_{2}=-2$, and $y=2-2 x^{-2}$. The graph is given to the right.

2. The auxiliary equation is $m^{2}-6 m+8=(m-2)(m-4)=0$, so that

$$
y=c_{1} x^{2}+c_{2} x^{4} \quad \text { and } \quad y^{\prime}=2 c_{1} x+4 c_{2} x^{3} .
$$

The initial conditions imply

$$
\begin{aligned}
& 4 c_{1}+16 c_{2}=32 \\
& 4 c_{1}+32 c_{2}=0
\end{aligned}
$$

-ius, $c_{1}=16, c_{2}=-2$, and $y=16 x^{2}-2 x^{4}$. The graph is given to the right.

2-. The auxiliary equation is $m^{2}+1=0$, so that

$$
y=c_{1} \cos (\ln x)+c_{2} \sin (\ln x)
$$

and

$$
y^{\prime}=-c_{1} \frac{1}{x} \sin (\ln x)+c_{2} \frac{1}{x} \cos (\ln x)
$$

The initial conditions imply $c_{1}=1$ and $c_{2}=2$. Thus
 $y=\cos (\ln x)+2 \sin (\ln x)$. The graph is given to the right.

2玉. The auxiliary equation is $m^{2}-4 m+4=(m-2)^{2}=0$, so that

$$
y=c_{1} x^{2}+c_{2} x^{2} \ln x \quad \text { and } \quad y^{\prime}=2 c_{1} x+c_{2}(x+2 x \ln x)
$$

The initial conditions imply $c_{1}=5$ and $c_{2}+10=3$. Thus $y=5 x^{2}-7 x^{2} \ln x$. The graph is given to the right.

29. The auxiliary equation is $m^{2}=0$ so that $y_{c}=c_{1}+c_{2} \ln x$ and

$$
W(1, \ln x)=\left|\begin{array}{ll}
1 & \ln x \\
0 & 1 / x
\end{array}\right|=\frac{1}{x}
$$

Identifying $f(x)=1$ we obtain $u_{1}^{\prime}=-x \ln x$ and $u_{2}^{\prime}=x$. Then $u_{1}=\frac{1}{4} x^{2}-\frac{1}{2} x^{2} \ln x, u_{2}=\frac{1}{2} x^{2}$, and

$$
y=c_{1}+c_{2} \ln x+\frac{1}{4} x^{2}-\frac{1}{2} x^{2} \ln x+\frac{1}{2} x^{2} \ln x=c_{1}+c_{2} \ln x+\frac{1}{4} x^{2} .
$$

The initial conditions imply $c_{1}+\frac{1}{4}=1$ and $c_{2}+\frac{1}{2}=-\frac{1}{2}$. Thus, $c_{1}=\frac{3}{4}, c_{2}=-1$,
 and $y=\frac{3}{4}-\ln x+\frac{1}{4} x^{2}$. The graph is given to the right.
30. The auxiliary equation is $m^{2}-6 m+8=(m-2)(m-4)=0$, so -hat $y_{c}=c_{1} x^{2}+c_{2} x^{4}$ and

$$
W=\left|\begin{array}{cc}
x^{2} & x^{4} \\
2 x & 4 x^{3}
\end{array}\right|=2 x^{5}
$$

Identifying $f(x)=8 x^{4}$ we obtain $u_{1}^{\prime}=-4 x^{3}$ and $u_{2}^{\prime}=4 x$. Thon
 $u_{2}=-x^{4}, u_{2}=2 x^{2}$, and $y=c_{1} x^{2}+c_{2} x^{4}+x^{6}$. The initial conditions imply

$$
\begin{aligned}
\frac{1}{4} c_{1}+\frac{1}{16} c_{2} & =-\frac{1}{64} \\
c_{1}+\frac{1}{2} c_{2} & =-\frac{3}{16}
\end{aligned}
$$

Thus $c_{1}=\frac{1}{16}, c_{2}=-\frac{1}{2}$, and $y=\frac{1}{16} x^{2}-\frac{1}{2} x^{4}+x^{6}$. The graph is given above.
:-. Substituting $x=e^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}+8 \frac{d y}{d t}-20 y=0
$$

The auxiliary equation is $m^{2}+8 m-20=(m+10)(m-2)=0$ so that

$$
y=c_{1} e^{-10 t}+c_{2} e^{2 t}=c_{1} x^{-10}+c_{2} x^{2}
$$

2. Substituting $x=e^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}-10 \frac{d y}{d t}+25 y=0
$$

The auxiliary equation is $m^{2}-10 m+25=(m-5)^{2}=0$ so that

$$
y=c_{1} e^{5 t}+c_{2} t e^{5 t}=c_{1} x^{5}+c_{2} x^{5} \ln x
$$

53. Substituting $x=e^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}+9 \frac{d y}{d t}+8 y=e^{2 t}
$$

The auxiliary equation is $m^{2}+9 m+8=(m+1)(m+8)=0$ so that $y_{c}=c_{1} c^{-t}+c_{2} e^{-8 t}$. Using undctcrmined coefficients we try $y_{p}=A e^{2 t}$. This leads to $30 A e^{2 t}=e^{2 t}$, so that, $A=1 / 30$ and

$$
y=c_{1} e^{-t}+c_{2} e^{-8 t}+\frac{1}{30} e^{2 t}=c_{1} x^{-1}+c_{2} x^{-8}+\frac{1}{30} x^{2}
$$

\therefore Substituting $x=\epsilon^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}-5 \frac{d y}{d t}+6 y=2 t
$$

The auxiliary equation is $m^{2}-5 m+6=(m-2)(m-3)=0$ so that $y_{c}=c_{1} e^{2 t}+c_{2} e^{3 t}$. Using undetermincd coefficients we try $y_{p}=\Lambda t+B$. This leads to $(-5 A+6 B)+6 A t=2 t$, so that, $A=1 / 3, B=5 / 18$, and

$$
y=c_{1} e^{2 t}+c_{2} e^{3 t}+\frac{1}{3} t+\frac{5}{18}=c_{1} x^{2}+c_{2} x^{3}+\frac{1}{3} \ln x+\frac{5}{18} .
$$

\therefore Substituting $x=e^{t}$ into the differential equation we obtain

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+13 y=4+3 e^{t}
$$

Exercises 4.7 Cauchy-Euler Equation

The auxiliary equation is $m^{2}-4 m+13=0$ so that $y_{c}=e^{2 t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)$. Using undetern:coefficients we try $y_{p}=A+B e^{t}$. This leads to $13 A+10 B e^{t}=4+3 e^{t}$, so that $A=4 / 13, B=\varepsilon$ \therefore 미

$$
\begin{aligned}
y & =e^{2 t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)+\frac{4}{13}+\frac{3}{10} e^{t} \\
& =x^{2}\left[c_{1} \cos (3 \ln x)+c_{2} \sin (3 \ln x)\right]+\frac{4}{13}+\frac{3}{10} x
\end{aligned}
$$

35. Fiom

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{x^{2}}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)
$$

:- Sllows that

$$
\begin{aligned}
\frac{d^{3} y}{d x^{3}} & =\frac{1}{x^{2}} \frac{d}{d x}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)-\frac{2}{x^{3}}\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right) \\
& =\frac{1}{x^{2}} \frac{d}{d x}\left(\frac{d^{2} y}{d t^{2}}\right)-\frac{1}{x^{2}} \frac{d}{d x}\left(\frac{d y}{d t}\right)-\frac{2}{x^{3}} \frac{d^{2} y}{d t^{2}}+\frac{2}{x^{3}} \frac{d y}{d t} \\
& =\frac{1}{x^{2}} \frac{d^{3} y}{d t^{3}}\left(\frac{1}{x}\right)-\frac{1}{x^{2}} \frac{d^{2} y}{d t^{2}}\left(\frac{1}{x}\right)-\frac{2}{x^{3}} \frac{d^{2} y}{d t^{2}}+\frac{2}{x^{3}} \frac{d y}{d t} \\
& =\frac{1}{x^{3}}\left(\frac{d^{3} y}{d t^{3}}-3 \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}\right) .
\end{aligned}
$$

astituting into the differential cquation we obtain

$$
\begin{gathered}
\frac{d^{3} y}{d t^{3}}-3 \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}-3\left(\frac{d^{2} y}{d t^{2}}-\frac{d y}{d t}\right)+6 \frac{d y}{d t}-6 y=3+3 t \\
\frac{d^{3} y}{d t^{3}}-6 \frac{d^{2} y}{d t^{2}}+11 \frac{d y}{d t}-6 y=3+3 t
\end{gathered}
$$

-i- auxiliary equation is $m^{3}-6 m^{2}+11 m-6=(m-1)(m-2)(m-3)=0$ so that $y_{c}=c_{1} e^{t}+c_{\text {: }}$
$\therefore{ }^{3}$. Using undetermined coefficients we try $y_{p}=A+B t$. This leads to $(11 B-6 A)-6 B t=\vdots-$
$\therefore \therefore$ iat $A=-17 / 12, B=-1 / 2$, and

$$
y=c_{1} e^{t}+c_{2} e^{2 t}+c_{3} e^{3 t}-\frac{17}{12}-\frac{1}{2} t=c_{1} x+c_{2} x^{2}+c_{3} x^{3}-\frac{17}{12}-\frac{1}{2} \ln x
$$

$\therefore \because$ sxt two problems we use the substitution $t=-x$ since the initial conditions are on the ir - ミ. \because In this case

$$
\begin{gathered}
\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=-\frac{d y}{d x} \\
\frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{d y}{d t}\right)=\frac{d}{d t}\left(-\frac{d y}{d x}\right)=-\frac{d}{d t}\left(y^{\prime}\right)=-\frac{d y^{\prime}}{d x} \frac{d x}{d t}=-\frac{d^{2} y}{d x^{2}} \frac{d x}{d t}=\frac{d^{2} y}{d x^{2}}
\end{gathered}
$$

37. The differential equation and initial conditions become

$$
4 t^{2} \frac{d^{2} y}{d t^{2}}+y=0 ;\left.\quad y(t)\right|_{t=1}=2 ;\left.\quad y^{\prime}(t)\right|_{t=1}=-4
$$

The auxiliary cquation is $4 m^{2}-4 m+1=(2 m-1)^{2}=0$, so that

$$
y=c_{1} t^{1 / 2}+c_{2} t^{1 / 2} \ln t \quad \text { and } \quad y^{\prime}=\frac{1}{2} c_{1} t^{-1 / 2}+c_{2}\left(t^{-1 / 2}+\frac{1}{2} t^{-1 / 2} \ln t\right)
$$

The initial conditions imply $c_{1}=2$ and $1+c_{2}=-4$. Thus

$$
y=2 t^{1 / 2}-5 t^{1 / 2} \ln t=2(-x)^{1 / 2}-5(-x)^{1 / 2} \ln (-x), \quad x<0
$$

5玉. The differential equation and initial conditions become

$$
t^{2} \frac{d^{2} y}{d t^{2}}-4 t \frac{d y}{d t}+6 y=0 ;\left.\quad y(t)\right|_{t=2}=8 ;\left.\quad y^{\prime}(t)\right|_{t=2}=0
$$

The auxiliary equation is $m^{2}-5 m+6=(m-2)(m-3)=0$, so that

$$
y=c_{1} t^{2}+c_{2} t^{3} \quad \text { and } \quad y^{\prime}=2 c_{1} t+3 c_{2} t^{2}
$$

The initial conditions imply

$$
\begin{array}{r}
4 c_{1}+8 c_{2}=8 \\
4 c_{1}+12 c_{2}=0
\end{array}
$$

from which we find $c_{1}=6$ and $c_{2}=-2$. Thus

$$
y=6 t^{2}-2 t^{3}=6 x^{2}+2 x^{3}: \quad x<0
$$

\therefore Letting $u=x+2$ we obtain $d y / d x=d y / d u$ and, using the Chain Rule,

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d u}\right)=\frac{d^{2} y}{d u^{2}} \frac{d u}{d x}=\frac{d^{2} y}{d u^{2}}(1)=\frac{d^{2} y}{d u^{2}}
$$

Substituting into the differential cquation we obtain

$$
u^{2} \frac{d^{2} y}{d u^{2}}+u \frac{d y}{d u}+y=0
$$

The auxiliary equation is $m^{2}+1=0$ so that

$$
y=c_{1} \cos (\ln u)+c_{2} \sin (\ln u)=c_{1} \cos [\ln (x+2)]+c_{2} \sin [\ln (x+2)]
$$

\therefore If $1-i$ is a root of the auxiliary equation then so is $1+i$, and the auxiliary equation is

$$
(m-2)[m-(1+i)][m-(1-i)]=m^{3}-4 m^{2}+6 m-4=0
$$

We need $m^{3}-4 m^{2}+6 m-4$ to have the form $m(m-1)(m-2)+b m(m-1)+c m+d$. Expanding this last expression and cquating coefficients we get $b=-1, c=3$, and $d=-4$. Thus, the differential -quation is

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+3 x y^{\prime}-4 y=0
$$

Exercises 4.7 Cauchy-Euler Equation

⒈ For $x^{2} y^{\prime \prime}=0$ the auxiliary equation is $m(m-1)=0$ and the general solution is $y=c_{1}+c^{\text {. }}$:nitial conditions imply $c_{1}=y_{0}$ and $c_{2}=y_{1}$, so $y=y_{0}+y_{1} x$. The initial conditions are Fr all real values of y_{0} and y_{1}.

For $x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0$ the auxiliary equation is $m^{2}-3 m+2=(m-1)(m-2)=0 \alpha$ yeneral solution is $y=c_{1} x+c_{2} x^{2}$. The initial condition $y(0)=y_{0}$ implies $0=y_{0}$ and the w_{0}. $\because 0)=y_{1}$ implics $c_{1}=y_{1}$. Thus, the initial conditions are satisfied for $y_{0}=0$ and for all rea. $\because y_{1}$.

ミ. $x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0$ the auxiliary equation is $m^{2}-5 m+6=(m-2)(m-3)=0$ \div-eral solution is $y=c_{1} x^{2}+c_{2} x^{3}$. The initial conditions imply $y(0)=0=y_{0}$ and $y^{\prime}(0)=0$. \therefore Enitial conditions are satisfied only for $y_{0}=y_{1}=0$.
ㅍ. - \because function $y(x)=-\sqrt{x} \cos (\ln x)$ is defined for $x>0$ and has x-intercepts where $\ln x=\pi$ $\therefore k$ an integer or where $x=e^{\pi / 2+k \pi}$. Solving $\pi / 2+k \pi=0.5$ we get $k \approx-0.34$, so $e^{\pi / 2+k-}$ $\therefore:=$ all negative integers and the graph has infinitely many x-intercepts in the interval $(0,0 . \%$
13. -ie auxiliary equation is $2 m(m-1)(m-2)-10.98 m(m-1)+8.5 m+1.3=0$, $\cdots:=-0.053299, m_{2}=1.81164, m_{3}=6.73166$, and

$$
y=c_{1} x^{-0.053299}+c_{2} x^{1.81164}+c_{3} x^{6.73166}
$$

$\therefore \therefore$. - auxiliary equation is $m(m-1)(m-2)+4 m(m-1)+5 m-9=0$, so that $m_{1}=1.40 \approx$ \therefore :wo complex roots are $-1.20409 \pm 2.22291 i$. The general solution of the differential eque:

$$
y=c_{1} x^{1.40819}+x^{-1.20409}\left[c_{2} \cos (2.22291 \ln x)+c_{3} \sin (2.22291 \ln x)\right] .
$$

\therefore :iat $m_{1}=m_{2}=\sqrt{2}$ and $m_{3}=m_{4}=-\sqrt{2}$. The gencral solution of the differential equat:

$$
y=c_{1} x^{\sqrt{2}}+c_{2} x^{\sqrt{2}} \ln x+c_{3} x^{-\sqrt{2}}+c_{4} x^{-\sqrt{2}} \ln x .
$$

4 - - auxiliary equation is $m(m-1)(m-2)(m-3)-6 m(m-1)(m-2)+33 m(m-1)-105 m+16=$ \therefore-iat $m_{1}=m_{2}=3+2 i$ and $m_{3}=m_{4}=3-2 i$. The general solution of the differential ec: \because

$$
y=x^{3}\left[c_{1} \cos (2 \ln x)+c_{2} \sin (2 \ln x)\right]+x^{3} \ln x\left[c_{3} \cos (2 \ln x)+c_{4} \sin (2 \ln x)\right] .
$$

\therefore-. - auxiliary equation

$$
m(m-1)(m-2)-m(m-1)-2 m+6=m^{3}-4 m^{2}+m+6=0
$$

\therefore _uts $m_{1}=-1, m_{2}=2$, and $m_{3}=3$, so $y_{c}=c_{1} x^{-1}+c_{2} x^{2}+c_{3} x^{3}$. With $y_{1}=x^{-1}, y_{2}=$ $=.^{3}$. and the identification $f(x)=1 / x$, we get from (11) of Section 4.6 in the text

$$
W_{1}=x^{3} ; \quad W_{2}=-4, \quad W_{3}=3 / x, \quad \text { and } \quad W=12 x .
$$

Exercises 4.8 Solving Systems of Linear DEs by Elimination

Then $u_{1}^{\prime}=W_{1} / W=x^{2} / 12, u_{2}^{\prime}=W_{2} / W=-1 / 3 x, u_{3}^{\prime}=1 / 4 x^{2}$, and integration gives

$$
u_{1}=\frac{x^{3}}{36}, \quad u_{2}=-\frac{1}{3} \ln x . \quad \text { and } \quad u_{3}=-\frac{1}{4 x}
$$

so

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}+u_{3} y_{3}=\frac{x^{3}}{36} x^{-1}+x^{2}\left(-\frac{1}{3} \ln x\right)+x^{3}\left(-\frac{1}{4 x}\right)=-\frac{2}{9} x^{2}-\frac{1}{3} x^{2} \ln x
$$

and

$$
y=y_{c}+y_{p}=c_{1} x^{-1}+c_{2} x^{2}+c_{3} x^{3}-\frac{2}{9} x^{2}-\frac{1}{3} x^{2} \ln x, \quad x>0
$$

Exercises 4.8

Solving Systems of Linear DES by Elimination

\therefore From $D x=2 x-y$ and $D y=x$ we obtain $y=2 x-D x, D y=2 D x-D^{2} x$, and $\left(D^{2}-2 D+1\right) x=0$.
The solution is

$$
\begin{aligned}
& x=c_{1} e^{t}+c_{2} t e^{t} \\
& y=\left(c_{1}-c_{2}\right) e^{l}+c_{2} t e^{t}
\end{aligned}
$$

-. From $D x=4 x+7 y$ and $D y=x-2 y$ we obtain $y=\frac{1}{7} D x-\frac{4}{7} x, D y=\frac{1}{7} D^{2} x-\frac{4}{7} D x$, and $\left.D^{2}-2 D-15\right) x=0$. The solution is

$$
\begin{aligned}
& x=c_{1} e^{5 t}+c_{2} e^{-3 t} \\
& y=\frac{1}{7} c_{1} c^{5 t}-c_{2} e^{-3 t}
\end{aligned}
$$

: Enom $D x=-y+t$ and $D y=x-t$ we obtain $y=t-D x, D y=1-D^{2} x$, and $\left(D^{2}+1\right) x=1+t$. The solution is

$$
\begin{aligned}
& x=c_{1} \cos t+c_{2} \sin t+1+t \\
& y=c_{1} \sin t-c_{2} \cos t+t-1
\end{aligned}
$$

$=$ Eom $D x-4 y=1$ and $x+D y=2$ wc obtain $y=\frac{1}{4} D x-\frac{1}{4}, D y=\frac{1}{4} D^{2} x$, and $\left(D^{2}+1\right) x=2$. The Glution is

$$
\begin{aligned}
& x=c_{1} \cos t+c_{2} \sin t+2 \\
& y=\frac{1}{4} c_{2} \cos t-\frac{1}{4} c_{1} \sin t-\frac{1}{4} .
\end{aligned}
$$

Exercises 4.8 Solving Systems of Linear DEs by Elimination
5. From $\left(D^{2}+5\right) x-2 y=0$ and $-2 x+\left(D^{2}+2\right) y=0$ we obtain $y=\frac{1}{2}\left(D^{2}+5\right) x, D^{2} y=\frac{1}{2}\left(D^{4}+5^{-}\right.$. and $\left(D^{2}+1\right)\left(D^{2}+6\right) x=0$. The solution is

$$
\begin{aligned}
& x=c_{1} \cos t+c_{2} \sin t+c_{3} \cos \sqrt{6} t+c_{4} \sin \sqrt{6} t \\
& y=2 c_{1} \cos t+2 c_{2} \sin t-\frac{1}{2} c_{3} \cos \sqrt{6} t-\frac{1}{2} c_{4} \sin \sqrt{6} t
\end{aligned}
$$

6. From $(D+1) x+(D-1) y=2$ and $3 x+(D+2) y=-1$ we obtain $x=-\frac{1}{3}-\frac{1}{3}(D-$. $D x=-\frac{1}{3}\left(D^{2}+2 D\right) y$, and $\left(D^{2}+5\right) y=-7$. The solution is

$$
\begin{aligned}
& y=c_{1} \cos \sqrt{5} t+c_{2} \sin \sqrt{5} t-\frac{7}{5} \\
& x=\left(-\frac{2}{3} c_{1}-\frac{\sqrt{5}}{3} c_{2}\right) \cos \sqrt{5} t+\left(\frac{\sqrt{5}}{3} c_{1}-\frac{2}{3} c_{2}\right) \sin \sqrt{5} t+\frac{3}{5}
\end{aligned}
$$

\therefore From $D^{2} x=4 y+\epsilon^{t}$ and $D^{2} y=4 x-e^{t}$ we obtain $y=\frac{1}{4} D^{2} x-\frac{1}{4} e^{t}, D^{2} y=\frac{1}{4} D^{4} x-\frac{1}{4} e^{t}$, and $\left(D^{2}+4\right)(D-2)(D+2) x=-3 e^{t}$. The solution is

$$
\begin{aligned}
& x=c_{1} \cos 2 t+c_{2} \sin 2 t+c_{3} e^{2 t}+c_{4} e^{-2 t}+\frac{1}{5} e^{t} \\
& y=-c_{1} \cos 2 t-c_{2} \sin 2 t+c_{3} e^{2 t}+c_{4} e^{-2 t}-\frac{1}{5} e^{t}
\end{aligned}
$$

玉. From $\left(D^{2}+5\right) x+D y=0$ and $(D+1) x+(D-4) y=0$ we obtain $(D-5)\left(D^{2}+4\right) x=$ $D-5)\left(D^{2}+4\right) y=0$. The solution is

$$
\begin{aligned}
& x=c_{1} e^{5 t}+c_{2} \cos 2 t+c_{3} \sin 2 t \\
& y=c_{4} e^{5 t}+c_{5} \cos 2 t+c_{6} \sin 2 t
\end{aligned}
$$

Substituting into $(D+1) x+(D-4) y=0$ gives

$$
\left(6 c_{1}+c_{4}\right) e^{5 t}+\left(c_{2}+2 c_{3}-4 c_{5}+2 c_{6}\right) \cos 2 t+\left(-2 c_{2}+c_{3}-2 c_{5}-4 c_{6}\right) \sin 2 t=0
$$

$\therefore 5$ that $c_{4}=-6 c_{1}, c_{5}=\frac{1}{2} c_{3}, c_{6}=-\frac{1}{2} c_{2}$. and

$$
y=-6 c_{1} e^{5 t}+\frac{1}{2} c_{3} \cos 2 t-\frac{1}{2} c_{2} \sin 2 t
$$

E. Eom $D x+D^{2} y=e^{3 t}$ and $(D+1) x+(D-1) y=4 e^{3 t}$ we obtain $D\left(D^{2}+1\right) x=34 \epsilon^{6}$ $\left.D \cdot D^{2}+1\right) y=-8 e^{3 t}$. The solution is

$$
\begin{aligned}
& y=c_{1}+c_{2} \sin t+c_{3} \cos t-\frac{4}{15} e^{3 t} \\
& x=c_{4}+c_{5} \sin t+c_{6} \cos t+\frac{17}{15} e^{3 t}
\end{aligned}
$$

\therefore bstituting into $(D+1) x+(D-1) y=4 e^{3 t}$ gives

$$
\left(c_{1}-c_{1}\right)+\left(c_{5}-c_{6}-c_{3}-c_{2}\right) \sin t+\left(c_{6}+c_{5}+c_{2}-c_{3}\right) \cos t=0
$$

Exercises 4.8 Solving Systems of Linear DEs $\overline{\mathrm{E}}: \mathbf{-} \cdot \boldsymbol{\sim}$

so that $c_{4}=c_{1}, c_{5}=c_{3}, c_{6}=-c_{2}$. and

$$
x=c_{1}-c_{2} \cos t+c_{3} \sin t+\frac{17}{15} e^{3 t}
$$

-1. From $D^{2} x-D y=t$ and $(D+3) x+(D+3) y=2$ we obtain $D(D+1)(D+3) x=1+3 t$ and $D(D+1)(D+3) y=-1-3 t$. The solution is

$$
\begin{aligned}
& x=c_{1}+c_{2} e^{-t}+c_{3} e^{-3 t}-t+\frac{1}{2} t^{2} \\
& y=c_{4}+c_{5} e^{-t}+c_{6} e^{-3 t}+t-\frac{1}{2} t^{2}
\end{aligned}
$$

Substituting into $(D+3) x+(D+3) y=2$ and $D^{2} x-D y=t$ gives

$$
3\left(c_{1}+c_{4}\right)+2\left(c_{2}+c_{5}\right) e^{-t}=2
$$

and

$$
\left(c_{2}+c_{5}\right) e^{-t}+3\left(3 c_{3}+c_{6}\right) e^{-3 t}=0
$$

so that $c_{4}=-c_{1}, c_{5}=-c_{2}, c_{6}=-3 c_{3}$. and

$$
y=-c_{1}-c_{2} e^{-t}-3 c_{3} e^{-3 t}+t-\frac{1}{2} t^{2}
$$

\therefore From $\left(D^{2}-1\right) x-y=0$ and $(D-1) x+D y=0$ we obtain $y=\left(D^{2}-1\right) x, D y=\left(D^{3}-D\right) x$, and ($D-1)\left(D^{2}+D+1\right) x=0$. The solution is

$$
\begin{aligned}
& x=c_{1} e^{t}+e^{-t / 2}\left[c_{2} \cos \frac{\sqrt{3}}{2} t+c_{3} \sin \frac{\sqrt{3}}{2} t\right] \\
& y=\left(-\frac{3}{2} c_{2}-\frac{\sqrt{3}}{2} c_{3}\right) e^{-t / 2} \cos \frac{\sqrt{3}}{2} t+\left(\frac{\sqrt{3}}{2} c_{2}-\frac{3}{2} c_{3}\right) e^{-t / 2} \sin \frac{\sqrt{3}}{2} t .
\end{aligned}
$$

\therefore From $\left(2 D^{2}-D-1\right) x-(2 D+1) y=1$ and $(D-1) x+D y=-1$ we obtain $(2 D+1)(D-1)(D+1) x=-1$ and $(2 D+1)(D+1) y=-2$. The solution is

$$
\begin{aligned}
& x=c_{1} e^{-t / 2}+c_{2} e^{-t}+c_{3} e^{t}+1 \\
& y=c_{4} e^{-t / 2}+c_{5} e^{-t}-2 .
\end{aligned}
$$

Substituting into $(D-1) x+D y=-1$ gives

$$
\left(-\frac{3}{2} c_{1}-\frac{1}{2} c_{4}\right) e^{-t / 2}+\left(-2 c_{2}-c_{5}\right) e^{-t}=0
$$

\therefore that $c_{4}=-3 c_{1}, c_{5}=-2 c_{2}$, and

$$
y=-3 c_{1} e^{-t / 2}-2 c_{2} e^{-t}-2
$$

Exercises 4.8 Solving Systems of Linear DEs by Elimination
13. From $(2 D-5) x+D y=e^{t}$ and $(D-1) x+D y=5 e^{t}$ we obtain $D y=(5-2 D) x+e^{t}$ and (4-D)x=: Then

$$
x=c_{1} e^{4 t}+\frac{4}{3} e^{t}
$$

and $D y=-3 c_{1} e^{4 t}+5 e^{t}$ so that

$$
y=-\frac{3}{4} c_{1} e^{4 t}+c_{2}+5 e^{t}
$$

14. From $D x+D y=c^{t}$ and $\left(-D^{2}+D+1\right) x+y=0$ we obtain $y=\left(D^{2}-D-1\right) x, D y=\left(D^{3}-D^{2}-.-\right.$ and $D^{2}(D-1) x=e^{t}$. The solution is

$$
\begin{aligned}
& x=c_{1}+c_{2} t+c_{3} e^{t}+t e^{t} \\
& y=-c_{1}-c_{2}-c_{2} t-c_{3} e^{t}-t e^{t}+e^{t}
\end{aligned}
$$

15. Multiplying the first equation by $D+1$ and the second cquation by $D^{2}+1$ and subtractir:obtain $\left(D^{4}-D^{2}\right) x=1$. Then

$$
x=c_{1}+c_{2} t+c_{3} e^{t}+c_{4} e^{-t}-\frac{1}{2} t^{2}
$$

Multiplying the first equation by $D+1$ and subtracting we obtain $D^{2}(D+1) y=1$. Then

$$
y=c_{5}+c_{6} t+c_{7} e^{-\iota}-\frac{1}{2} t^{2}
$$

Substituting into $(D-1) x+\left(D^{2}+1\right) y=1$ gives

$$
\left(-c_{1}+c_{2}+c_{5}-1\right)+\left(-2 c_{4}+2 c_{7}\right) e^{-t}+\left(-1-c_{2}+c_{6}\right) t=1
$$

so that $c_{5}=c_{1}-c_{2}+2, c_{6}=c_{2}+1$, and $c_{7}=c_{4}$. The solution of the system is

$$
\begin{aligned}
& x=c_{1}+c_{2} t+c_{3} e^{t}+c_{4} e^{-t}-\frac{1}{2} t^{2} \\
& y=\left(c_{1}-c_{2}+2\right)+\left(c_{2}+1\right) t+c_{4} e^{-t}-\frac{1}{2} t^{2} .
\end{aligned}
$$

16. From $D^{2} x-2\left(D^{2}+D\right) y=\sin t$ and $x+D y=0$ we obtain $x=-D y, D^{2} x=-D^{3}$: $D\left(D^{2}+2 D+2\right) y=-\sin t$. The solution is

$$
\begin{aligned}
& y=c_{1}+c_{2} e^{-t} \cos t+c_{3} e^{-t} \sin t+\frac{1}{5} \cos t+\frac{2}{5} \sin t \\
& x=\left(c_{2}+c_{3}\right) e^{-t} \sin t+\left(c_{2}-c_{3}\right) e^{-t} \cos t+\frac{1}{5} \sin t-\frac{2}{5} \cos t
\end{aligned}
$$

1二. From $D x=y, D y=z$. and $D z=x$ we obtain $x=D^{2} y=D^{3} x$ so that $(D-1)\left(D^{2}+D+1=\right.$

$$
x=c_{1} e^{t}+e^{-t / 2}\left[c_{2} \sin \frac{\sqrt{3}}{2} t+c_{3} \cos \frac{\sqrt{3}}{2} t\right],
$$

Exercises 4.8 Solving Systems of Linear DEs by Eliminatio::

$$
y=c_{1} e^{t}+\left(-\frac{1}{2} c_{2}-\frac{\sqrt{3}}{2} c_{3}\right) e^{-t / 2} \sin \frac{\sqrt{3}}{2} t+\left(\frac{\sqrt{3}}{2} c_{2}-\frac{1}{2} c_{3}\right) e^{-t / 2} \cos \frac{\sqrt{3}}{2} t
$$

and

$$
z=c_{1} e^{t}+\left(-\frac{1}{2} c_{2}+\frac{\sqrt{3}}{2} c_{3}\right) e^{-t / 2} \sin \frac{\sqrt{3}}{2} t+\left(-\frac{\sqrt{3}}{2} c_{2}-\frac{1}{2} c_{3}\right) e^{-t / 2} \cos \frac{\sqrt{3}}{2} t .
$$

-5. From $D x+z=e^{t},(D-1) x+D y+D z=0$, and $x+2 y+D z=e^{t}$ we obtain $z=-D x+\epsilon^{\text {. }}$. $D z=-D^{2} x+\epsilon^{t}$, and the system $\left(-D^{2}+D-1\right) x+D y=-e^{t}$ and $\left(-D^{2}+1\right) x+2 y=0$. The: $y=\frac{1}{2}\left(D^{2}-1\right) x, D y=\frac{1}{2} D\left(D^{2}-1\right) x$, and $(D-2)\left(D^{2}+1\right) x=-2 e^{t}$ so that the solution is

$$
\begin{aligned}
& x=c_{1} e^{2 t}+c_{2} \cos t+c_{3} \sin t+e^{t} \\
& y=\frac{3}{2} c_{1} e^{2 t}-c_{2} \cos t-c_{3} \sin t \\
& z=-2 c_{1} e^{2 t}-c_{3} \cos t+c_{2} \sin t
\end{aligned}
$$

\because. Write the system in the form

$$
\begin{array}{r}
D x-6 y=0 \\
x-D y+z=0 \\
x+y-D z=0 .
\end{array}
$$

Multiplying the second equation by D and adding to the third equation we obtain $D+1) x-\left(D^{2}-1\right) y=0$. Eliminating y between this equation and $D x-6 y=0$ we find

$$
\left(D^{3}-D-6 D-6\right) x=(D+1)(D+2)(D-3) x=0
$$

Thus

$$
x=c_{1} e^{-t}+c_{2} e^{-2 t}+c_{3} e^{3 t}
$$

and, successively substituting into the first and second equations, we get

$$
\begin{aligned}
& y=-\frac{1}{6} c_{1} e^{-t}-\frac{1}{3} c_{2} e^{-2 t}+\frac{1}{2} c_{3} e^{3 t} \\
& z=-\frac{5}{6} c_{1} e^{-t}-\frac{1}{3} c_{2} e^{-2 t}+\frac{1}{2} c_{3} e^{3 t} .
\end{aligned}
$$

- Trite the system in the form

$$
\begin{aligned}
(D+1) x-z & =0 \\
(D+1) y-z & =0 \\
x-y+D z & =0
\end{aligned}
$$

\therefore.ultiplying the third equation by $D+1$ and adding to the second equation we obtain $D+1) x+\left(D^{2}+D-1\right) z=0$. Eliminating z between this equation and $(D+1) x-z=0$

Exercises 4.8 Solving Systems of Linear DEs by Elimination
\because find $D(D+1)^{2} x=0$. Thus

$$
x=c_{1}+c_{2} e^{-t}+c_{3} t e^{-t}
$$

$\therefore . \therefore$ successively substituting into the first and third equations, we get

$$
\begin{aligned}
& y=c_{1}+\left(c_{2}-c_{3}\right) e^{-t}+c_{3} t e^{-t} \\
& z=c_{1}+c_{3} e^{-t}
\end{aligned}
$$

:1. $\Xi-\mathrm{m}(D+5) x+y=0$ and $4 x-(D+1) y=0$ we obtain $y=-(D+5) x$ so that $D y=-\left(D^{2} \div\right.$

- $\because=4 x+\left(D^{2}+5 D\right) x+(D+5) x=0$ and $(D+3)^{2} x=0$. Thus

$$
\begin{aligned}
& x=c_{1} e^{-3 t}+c_{2} t e^{-3 t} \\
& y=-\left(2 c_{1}+c_{2}\right) e^{-3 t}-2 c_{2} t e^{-3 t}
\end{aligned}
$$

$x(1)=0$ and $y(1)=1$ we obtain

$$
\begin{array}{r}
c_{1} e^{-3}+c_{2} e^{-3}=0 \\
-\left(2 c_{1}+c_{2}\right) e^{-3}-2 c_{2} e^{-3}=1
\end{array}
$$

\therefore

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
2 c_{1}+3 c_{2} & =-e^{3}
\end{aligned}
$$

$\therefore \cdots=e^{3}$ and $c_{2}=-e^{3}$. The solution of the initial value problem is

$$
\begin{aligned}
& x=e^{-3 t+3}-t e^{-3 t+3} \\
& y=-e^{-3 t+3}+2 t e^{-3 t+3}
\end{aligned}
$$

ミ. ミ. $-\mathrm{D}-y=-1$ and $3 x+(D-2) y=0$ we obtain $x=-\frac{1}{3}(D-2) y$ so that $D x=-\frac{1}{3}\left(D^{2}-\right.$
$\left.-\cdots-\frac{1}{3}: D^{2}-2 D\right) y=y-1$ and $\left(D^{2}-2 D+3\right) y=3$. Thus

$$
y=e^{t}\left(c_{1} \cos \sqrt{2} t+c_{2} \sin \sqrt{2} t\right)+1
$$

$\therefore:$

$$
x=\frac{1}{3} e^{t}\left[\left(c_{1}-\sqrt{2} c_{2}\right) \cos \sqrt{2} t+\left(\sqrt{2} c_{1}+c_{2}\right) \sin \sqrt{2} t\right]+\frac{2}{3} .
$$

$\because \cdots \because=y(0)=0$ we obtain

$$
\begin{aligned}
c_{1}+1 & =0 \\
\frac{1}{3}\left(c_{1}-\sqrt{2} c_{2}\right)+\frac{2}{3} & =0
\end{aligned}
$$

Thus $c_{1}=-1$ and $c_{2}=\sqrt{2} / 2$. The solution of the initial value problem is

$$
\begin{aligned}
& x=e^{t}\left(-\frac{2}{3} \cos \sqrt{2} t-\frac{\sqrt{2}}{6} \sin \sqrt{2} t\right)+\frac{2}{3} \\
& y=e^{t}\left(-\cos \sqrt{2} t+\frac{\sqrt{2}}{2} \sin \sqrt{2} t\right)+1
\end{aligned}
$$

33. Equating Newton's law with the net forces in the x - and y-directions gives $m d^{2} x / d t^{2}=0$ and $m d^{2} y / d t^{2}=-m g$, respectively. From $m D^{2} x=0$ we obtain $x(t)=c_{1} t+c_{2}$, and from $m D^{2} y=-m g$ or $D^{2} y=-g$ we obtain $y(t)=-\frac{1}{2} g t^{2}+c_{3} t+c_{4}$.
34. From Newton's second law in the x-direction we have

$$
m \frac{d^{2} x}{d t^{2}}=-k \cos \theta=-k \frac{1}{v} \frac{d x}{d t}=-|c| \frac{d x}{d t}
$$

In the y-direction we have

$$
m \frac{d^{2} y}{d t^{2}}=-m g-k \sin \theta=-m g-k \frac{1}{v} \frac{d y}{d t}=-m g-|c| \frac{d y}{d t}
$$

From $m D^{2} x+|c| D x=0$ we have $D(m D+|c|) x=0$ so that $(m D+|c|) x=c_{1}$ or $(D+|c| / m) x=c_{2}$. This is a linear first-order differential equation. An integrating factor is $e^{\int|c| d t / m}=e^{|c| t / m}$ so that

$$
\frac{d}{d t}\left[e^{|c| t / m} x\right]=c_{2} e^{c \mid t / m}
$$

and $\epsilon^{\mid c_{\mathrm{c}} t / m} x=\left(c_{2} m /|c|\right) e^{\prime \epsilon \mid t / m}+c_{3}$. The general solution of this equation is $x(t)=c_{4}+c_{3} e^{-\mid c t / m}$.
From $\left(m D^{2}+|c| D\right) y=-m g$ we have $D(m D+|c|) y=-m g$ so that $(m D+|c|) y=-m g t+c_{1}$ or $(D+|c| / m) y=-g t+c_{2}$. This is a linear first-order differential equation with integrating factor $e^{\int|c| d t / m}=e^{|c| t / m}$. Thus

$$
\begin{aligned}
\frac{d}{d t}\left[e^{|c| t / m} y\right] & =\left(-g t+c_{2}\right) e^{|c| t / m} \\
e^{c \mid t / m} y & =-\frac{m g}{|c|} t e^{|c| t / m}+\frac{m^{2} g}{c^{2}} e^{|c| t / m}+c_{3} e^{|c| t / m}+c_{1}
\end{aligned}
$$

and

$$
y(t)=-\frac{m g}{|c|} t \div \frac{m^{2} g}{c^{2}}+c_{3}+c_{4} e^{-\mid c: t / m}
$$

25. Multiplying the first equation by $D+1$ and the second equation by D we obtain

$$
\begin{aligned}
& D(D+1) x-2 D(D+1) y=2 t+t^{2} \\
& D(D+1) x-2 D(D+1) y=0
\end{aligned}
$$

This leads to $2 t+t^{2}=0$, so the system has no solution.

Exercises 4.8 Solving Systems of Linear DEs by Elimination

26. The FindRoot application of Mathematica gives a solution of $x_{1}(t)=x_{2}(t)$ as approximate: $t=13.73$ minutes. So tank B contains more salt than tank A for $t>13.73$ minutes.
27. (a) Separating variables in the first equation, we have $d x_{1} / x_{1}=-d t / 50$, so $x_{1}=c_{1} e^{-t / 50}$. Fr. $x_{1}(0)=15$ we get $c_{1}=15$. The second differential equation then becomes

$$
\frac{d x_{2}}{d t}=\frac{15}{50} e^{-t / 50}-\frac{2}{75} x_{2} \quad \text { or } \quad \frac{d x_{2}}{d t}+\frac{2}{75} x_{2}=\frac{3}{10} e^{-t / 50} .
$$

This differential equation is linear and has the integrating factor $e^{\int 2 d t / 75}=e^{2 t / 75}$. Then

$$
\frac{d}{d t}\left[e^{2 t / 75} x_{2}\right]=\frac{3}{10} e^{-l / 50+2 t / 75}=\frac{3}{10} e^{t / 150}
$$

so

$$
e^{2 l / 75} x_{2}=45 e^{t / 150}+c_{2}
$$

and

$$
x_{2}=45 e^{-t / 50}+c_{2} e^{-2 t / 75}
$$

From $x_{2}(0)=10$ we get $c_{2}=-35$. The third differential equation then becomes

$$
\frac{d x_{3}}{d t}=\frac{90}{75} e^{-t / 50}-\frac{70}{75} e^{-2 t / 75}-\frac{1}{25} x_{3}
$$

or

$$
\frac{d x_{3}}{d t}+\frac{1}{25} x_{3}=\frac{6}{5} e^{-t / 50}-\frac{14}{15} e^{-2 t / 75} .
$$

This differential equation is linear and has the integrating factor $e^{\int d t / 25}=\epsilon^{t / 25}$. Then

$$
\frac{d}{d t}\left[e^{t / 25} x_{3}\right]=\frac{6}{5} e^{-t / 50+t / 25}-\frac{14}{15} e^{-2 t / 75+t / 25}=\frac{6}{5} e^{t / 50}-\frac{14}{15} e^{t / 75}
$$

so

$$
e^{t / 25} x_{3}=60 e^{t / 50}-70 e^{t / 75}+c_{3}
$$

and

$$
x_{3}=60 e^{-t / 50}-70 e^{-2 t / 75}+c_{3} e^{-t / 25}
$$

From $x_{3}(0)=5$ we get $c_{3}=15$. The solution of the initial-value problem is

$$
\begin{aligned}
& x_{1}(t)=15 e^{-t / 50} \\
& x_{2}(t)=45 e^{-t / 50}-35 e^{-2 t / 75} \\
& x_{3}(t)=60 e^{-t / 50}-70 e^{-2 t / 75}+15 e^{-t / 25}
\end{aligned}
$$

ib) pounds sait

c) Solving $x_{1}(t)=\frac{1}{2}, x_{2}(t)=\frac{1}{2}$, and $x_{3}(t)=\frac{1}{2}$. FindRoot gives, respectively, $t_{1}=170.06 \mathrm{~min}$, $t_{2}=214.7 \mathrm{~min}$, and $t_{3}=224.4 \mathrm{~min}$. Thus, all three tanks will contain less than or equal to $0 . \overline{5}$ pounds of salt, after 224.4 minutes.

Exercises 4.9

Nonlinear Differential Equations

$\therefore \quad \because$ have $y_{1}^{\prime}=y_{1}^{\prime \prime}=e^{x}$; so

$$
\left(y_{1}^{\prime \prime}\right)^{2}=\left(e^{x}\right)^{2}=e^{2 x}=y_{1}^{2}
$$

\therefore ㅇo. $y_{2}^{\prime}=-\sin x$ and $y_{2}^{\prime \prime}=-\cos x$, so

$$
\left(y_{2}^{\prime \prime}\right)^{2}=(-\cos x)^{2}=\cos ^{2} x=y_{2}^{2}
$$

\because wever, if $y=c_{1} y_{1}+c_{2} y_{2}$, we have $\left(y^{\prime \prime}\right)^{2}=\left(c_{1} e^{x}-c_{2} \cos x\right)^{2}$ and $y^{2}=\left(c_{1} e^{x}+c_{2} \cos x\right)^{2}$. Thus ${ }^{\prime 2} \neq y^{2}$.
$\because \quad \because$ have $y_{1}^{\prime}=y_{1}^{\prime \prime}=0$, so

$$
y_{1} y_{1}^{\prime \prime}=1 \cdot 0=0=\frac{1}{2}(0)^{2}=\frac{1}{2}\left(y_{1}^{\prime}\right)^{2}
$$

$\therefore y_{2}^{\prime}=2 x$ and $y_{2}^{\prime \prime}=2$, so

$$
y_{2} y_{2}^{\prime \prime}=x^{2}(2)=2 x^{2}=\frac{1}{2}(2 x)^{2}=\frac{1}{2}\left(y_{2}^{\prime}\right)^{2} .
$$

\because.ever, if $y=c_{1} y_{1}+c_{2} y_{2}$, we have $y y^{\prime \prime}=\left(c_{1} \cdot 1+c_{2} x^{2}\right)\left(c_{1} \cdot 0+2 c_{2}\right)=2 c_{2}\left(c_{1}+c_{2} x^{2}\right)$ and $\therefore \because^{2}=\frac{1}{2}\left[c_{1} \cdot 0+c_{2}(2 x)\right]^{2}=2 c_{2}^{2} x^{2}$. Thus $y y^{\prime \prime} \neq \frac{1}{2}\left(y^{\prime}\right)^{2}$.
$\therefore-u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $u^{\prime}=-u^{2}-1$ which is separable. Thus

$$
\frac{d u}{\because^{2}+1}=-d x \Longrightarrow \tan ^{-1} u=-x+c_{1} \Longrightarrow y^{\prime}=\tan \left(c_{1}-x\right) \Longrightarrow y=\ln \left|\cos \left(c_{1}-x\right)\right|+c_{2}
$$

$\therefore=-u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $u^{\prime}=1+u^{2}$. Separating variables we obtain

$$
\frac{d u}{1+u^{2}}=d x \Longrightarrow \tan ^{-1} u=x+c_{1} \Longrightarrow u=\tan \left(x+c_{1}\right) \Longrightarrow y=-\ln \left|\cos \left(x+c_{1}\right)\right|+c_{2}
$$

Exercises 4.9 Nonlinear Differential Equations

5. Let $u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $x^{2} u^{\prime}+u^{2}=0$. Scparating variables we obta:

$$
\begin{aligned}
\frac{d u}{u^{2}}=-\frac{d x}{x^{2}} & \Longrightarrow-\frac{1}{u}=\frac{1}{x}+c_{1}=\frac{c_{1} x+1}{x} \Longrightarrow u=-\frac{1}{c_{1}}\left(\frac{x}{x+1 / c_{1}}\right)=\frac{1}{c_{1}}\left(\frac{1}{c_{1} x+1}-1\right) \\
& \Longrightarrow y=\frac{1}{c_{1}^{2}} \ln \left|c_{1} x+1\right|-\frac{1}{c_{1}} x+c_{2} .
\end{aligned}
$$

6. Let $u=y^{\prime}$ so that $y^{\prime \prime}=u d u / d y$. The equation becomes $(y+1) u d u / d y=u^{2}$. Separating varic. we obtain

$$
\begin{aligned}
\frac{d u}{u}=\frac{d y}{y+1} & \Longrightarrow \ln |u|=\ln |y+1|+\ln c_{1} \Longrightarrow u=c_{1}(y+1) \\
& \Longrightarrow \frac{d y}{d x}=c_{1}(y+1) \Longrightarrow \frac{d y}{y+1}=c_{1} d x \\
& \Longrightarrow \ln |y+1|=c_{1} x-c_{2} \Longrightarrow y+1=c_{3} e^{c_{1} x} .
\end{aligned}
$$

ㄷ. Let $u=y^{\prime}$ so that $y^{\prime \prime}=u d u / d y$. The equation becomes $u d u / d y+2 y u^{3}=0$. Separating vari: we obtain

$$
\begin{aligned}
\frac{d u}{u^{2}}+2 y d y=0 & \Longrightarrow-\frac{1}{u}+y^{2}=c_{1} \Longrightarrow u=\frac{1}{y^{2}-c_{1}} \Longrightarrow y^{\prime}=\frac{1}{y^{2}-c_{1}} \\
& \Longrightarrow\left(y^{2}-c_{1}\right) d y=d x \Longrightarrow \frac{1}{3} y^{3}-c_{1} y=x+c_{2}
\end{aligned}
$$

5. Let $u=y^{\prime}$ so that $y^{\prime \prime}=u d u / d y$. The cquation becomes $y^{2} u d u / d y=u$. Separating variab.: obtain

$$
\begin{aligned}
d u=\frac{d y}{y^{2}} & \Longrightarrow u=-\frac{1}{y}+c_{1} \Longrightarrow y^{\prime}=\frac{c_{1} y-1}{y} \Longrightarrow \frac{y}{c_{1} y-1} d y=d x \\
& \Longrightarrow \frac{1}{c_{1}}\left(1+\frac{1}{c_{1} y-1}\right) d y=d x\left(\text { for } c_{1} \neq 0\right) \Longrightarrow \frac{1}{c_{1}} y+\frac{1}{c_{1}^{2}} \ln |y-1|=x+c_{2}
\end{aligned}
$$

If $c_{1}=0$, then $y d y=-d x$ and another solution is $\frac{1}{2} y^{2}=-x+c_{2}$.
9. (a)

(b) Let $u=y^{\prime}$ so that $y^{\prime \prime}=u d u / d y$. The equation bccomes $u d u / d y+y u=0$. Separating variables we obtain

$$
d u=-y d y \Longrightarrow u=-\frac{1}{2} y^{2}+c_{1} \Longrightarrow y^{\prime}=-\frac{1}{2} y^{2}+c_{1} .
$$

When $x=0, y=1$ and $y^{\prime}=-1$ so $-1=-1 / 2+c_{1}$ and $c_{1}=-1 / 2$. Then

$$
\begin{aligned}
\frac{d y}{d x}=-\frac{1}{2} y^{2}-\frac{1}{2} & \Longrightarrow \frac{d y}{y^{2}+1}=-\frac{1}{2} d x \Longrightarrow \tan ^{-1} y=-\frac{1}{2} x+c_{2} \\
& \Longrightarrow y=\tan \left(-\frac{1}{2} x+c_{2}\right)
\end{aligned}
$$

When $x=0, y=1$ so $1=\tan c_{2}$ and $c_{2}=\pi / 4$. The solution of the initial-value problem is

$$
y=\tan \left(\frac{\pi}{4}-\frac{1}{2} x\right)
$$

The graph is shown in part (a).
(c) The interval of definition is $-\pi / 2<\pi / 4-x / 2<\pi / 2$ or $-\pi / 2<x<3 \pi / 2$.

Let $u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $\left(u^{\prime}\right)^{2}+u^{2}=1$ which results in $u^{\prime}= \pm \sqrt{1-u^{2}}$. To solve $u^{\prime}=\sqrt{1-u^{2}}$ we separate variables:

$$
\begin{aligned}
\frac{d u}{\sqrt{1-u^{2}}}=d x & \Longrightarrow \sin ^{-1} u=x+c_{1} \Longrightarrow u=\sin \left(x+c_{1}\right) \\
& \Longrightarrow y^{\prime}=\sin \left(x+c_{1}\right)
\end{aligned}
$$

When $x=\pi / 2, y^{\prime}=\sqrt{3} / 2$, so $\sqrt{3} / 2=\sin \left(\pi / 2+c_{1}\right)$ and $c_{1}=$ $-\pi / 6$. Thus

$$
y^{\prime}=\sin \left(x-\frac{\pi}{6}\right) \Longrightarrow y=-\cos \left(x-\frac{\pi}{6}\right)+c_{2} .
$$

Then $x=\pi / 2, y=1 / 2$: so $1 / 2=-\cos (\pi / 2-\pi / 6)+c_{2}=-1 / 2+c_{2}$ and $c_{2}=1$. The solution of \therefore initial-value problem is $y=1-\cos (x-\pi / 6)$.
-) solve $u^{\prime}=-\sqrt{1-u^{2}}$ we separate variables:

$$
\begin{aligned}
\frac{d u}{\sqrt{1-u^{2}}}=-d x & \Longrightarrow \cos ^{-1} u=x+c_{1} \\
& \Longrightarrow u=\cos \left(x+c_{1}\right) \Longrightarrow y^{\prime}=\cos \left(x+c_{1}\right)
\end{aligned}
$$

Then $x=\pi / 2, y^{\prime}=\sqrt{3} / 2$, so $\sqrt{3} / 2=\cos \left(\pi / 2+c_{1}\right)$ and $c_{1}=-\pi / 3$. Thus

$$
y^{\prime}=\cos \left(x-\frac{\pi}{3}\right) \Longrightarrow y=\sin \left(x-\frac{\pi}{3}\right)+c_{2}
$$

\because ?en $x=\pi / 2, y=1 / 2$, so $1 / 2=\sin (\pi / 2-\pi / 3)+c_{2}=1 / 2+c_{2}$ and $c_{2}=0$. The solution of the \therefore-ial-value problem is $y=\sin (x-\pi / 3)$.

Exercises 4.9 Nonlincar Differcntial Equations

-1. $\because u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $u^{\prime}-(1 / x) u=(1 / x) u^{3}$, which is Bernoulli. $\therefore=u^{-2}$ we obtain $d w / d x+(2 / x) w=-2 / x$. An integrating factor is x^{2}, so

$$
\begin{aligned}
\frac{d}{d x}\left[x^{2} w\right]=-2 x & \Longrightarrow x^{2} w=-x^{2}+c_{1} \Longrightarrow w=-1+\frac{c_{1}}{x^{2}} \\
& \Longrightarrow u^{-2}=-1+\frac{c_{1}}{x^{2}} \Longrightarrow u=\frac{x}{\sqrt{c_{1}-x^{2}}} \\
& \Longrightarrow \frac{d y}{d x}=\frac{x}{\sqrt{c_{1}-x^{2}}} \Longrightarrow y=-\sqrt{c_{1}-x^{2}}+c_{2} \\
& \Longrightarrow c_{1}-x^{2}=\left(c_{2}-y\right)^{2} \Longrightarrow x^{2}+\left(c_{2}-y\right)^{2}=c_{1}
\end{aligned}
$$

12. IS $u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $u^{\prime}-(1 / x) u=u^{2}$, which is a Bernoulli diffe: -uation. Using the substitution $w=u^{-1}$ we obtain $d w / d x+(1 / x) w=-1$. An integrating : $\therefore x$. so
$\left.\frac{A}{\cdots} x w\right\} \left.=-x \Longrightarrow w=-\frac{1}{2} x+\frac{1}{x} c \Longrightarrow \frac{1}{u}=\frac{c_{1}-x^{2}}{2 x} \Longrightarrow u=\frac{2 x}{c_{1}-x^{2}} \Longrightarrow y=-\ln \right\rvert\, c_{1}-x^{-}-$
\therefore Doblems 13-16 the thinner curve is obtained using a numerical solver, while the thicker curve \therefore of the Taylor polynomial.
13. We look for a solution of the form
$\because x)=y(0)+y^{\prime}(0) x+\frac{1}{2!} y^{\prime \prime}(0) x^{2}+\frac{1}{3!} y^{\prime \prime \prime}(0) x^{3}+\frac{1}{4!} y^{(4)}(0) x^{4}+\frac{1}{5!} y^{(5)}(0) x^{\bar{j}}$.
From $y^{\prime \prime}(x)=x+y^{2}$ we compute

$$
\begin{aligned}
y^{\prime \prime \prime}(x) & =1+2 y y^{\prime} \\
y^{(4)}(x) & =2 y y^{\prime \prime}+2\left(y^{\prime}\right)^{2} \\
y^{(5)}(x) & =2 y y^{\prime \prime \prime}+6 y^{\prime} y^{\prime \prime}
\end{aligned}
$$

L-sing $y(0)=1$ and $y^{\prime}(0)=1$ we find

$$
y^{\prime \prime}(0)=1, \quad y^{\prime \prime \prime}(0)=3, \quad y^{(4)}(0)=4, \quad y^{(5)}(0)=12
$$

An approximate solution is

$$
y(x)=1+x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{10} x^{5} .
$$

14. We look for a solution of the form
$y(x)=y(0)+y^{\prime}(0) x+\frac{1}{2!} y^{\prime \prime}(0) x^{2}+\frac{1}{3!} y^{\prime \prime \prime}(0) x^{3}+\frac{1}{4!} y^{(4)}(0) x^{4}+\frac{1}{5!} y^{(5)}(0) x^{5}$.
From $y^{\prime \prime}(x)=1-y^{2}$ we compute

$$
\begin{aligned}
y^{\prime \prime \prime}(x) & =-2 y y^{\prime} \\
y^{(4)}(x) & =-2 y y^{\prime \prime}-2\left(y^{\prime}\right)^{2} \\
y^{(5)}(x) & =-2 y y^{\prime \prime \prime}-6 y^{\prime} y^{\prime \prime}
\end{aligned}
$$

Using $y(0)=2$ and $y^{\prime}(0)=3$ we find

$$
y^{\prime \prime}(0)=-3, \quad y^{\prime \prime \prime}(0)=-12, \quad y^{(4)}(0)=-6, \quad y^{(5)}(0)=1.02
$$

An approximate solution is

$$
y(x)=2+3 x-\frac{3}{2} x^{2}-2 x^{3}-\frac{1}{4} x^{4}+\frac{17}{20} x^{5}
$$

25. We look for a solution of the form
$y(x)=y(0)+y^{\prime}(0) x+\frac{1}{2!} y^{\prime \prime}(0) x^{2}+\frac{1}{3!} y^{\prime \prime \prime}(0) x^{3}+\frac{1}{4!} y^{(1)}(0) x^{4}+\frac{1}{5!} y^{(5)}(0) x^{5}$.
From $y^{\prime \prime}(x)=x^{2}+y^{2}-2 y^{\prime}$ we compute

$$
\begin{aligned}
y^{\prime \prime \prime}(x) & =2 x+2 y y^{\prime}-2 y^{\prime \prime} \\
y^{(4)}(x) & =2+2\left(y^{\prime}\right)^{2}+2 y y^{\prime \prime}-2 y^{\prime \prime \prime} \\
y^{(5)}(x) & =6 y^{\prime} y^{\prime \prime}+2 y y^{\prime \prime \prime}-2 y^{(4)}
\end{aligned}
$$

Using $y(0)=1$ and $y^{\prime}(0)=1$ we find

$$
y^{\prime \prime}(0)=-1, \quad y^{\prime \prime \prime}(0)=4, \quad y^{(4)}(0)=-6 . \quad y^{(5)}(0)=14
$$

An approximate solution is

$$
y(x)=1+x-\frac{1}{2} x^{2}+\frac{2}{3} x^{3}-\frac{1}{4} x^{4}+\frac{7}{60} x^{5}
$$

Exercises 4.9 Nonlinear Differential Equations

16. We look for a solution of the form

$$
\begin{aligned}
y(x)= & y(0)+y^{\prime}(0) x+\frac{1}{2!} y^{\prime \prime}(0) x^{2}+\frac{1}{3!} y^{\prime \prime \prime}(0) x^{3}+\frac{1}{4!} y^{(4)}(0) x^{4} \\
& +\frac{1}{5!} y^{(5)}(0) x^{5}+\frac{1}{6!} y^{(6)}(0) x^{6} .
\end{aligned}
$$

From $y^{\prime \prime}(x)=e^{y}$ we compute

$$
\begin{aligned}
y^{\prime \prime \prime}(x) & =e^{y} y^{\prime} \\
y^{(4)}(x) & =e^{y}\left(y^{\prime}\right)^{2}+e^{y} y^{\prime \prime} \\
y^{(5)}(x) & =e^{y}\left(y^{\prime}\right)^{3}+3 e^{y} y^{\prime} y^{\prime \prime}+e^{y} y^{\prime \prime \prime} \\
y^{(6)}(x) & =e^{y}\left(y^{\prime}\right)^{4}+6 e^{y}\left(y^{\prime}\right)^{2} y^{\prime \prime}+3 e^{y}\left(y^{\prime \prime}\right)^{2}+4 e^{y} y^{\prime} y^{\prime \prime \prime}+e^{y} y^{(4)}
\end{aligned}
$$

U"sing $y(0)=0$ and $y^{\prime}(0)=-1$ we find

$$
y^{\prime \prime}(0)=1, \quad y^{\prime \prime \prime}(0)=-1, \quad y^{(4)}(0)=2, \quad y^{(5)}(0)=-5, \quad y^{(6)}(0)=16
$$

An approximate solution is

$$
y(x)=-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{24} x^{5}+\frac{1}{45} x^{6} .
$$

17. We need to solve $\left[1+\left(y^{\prime}\right)^{2}\right]^{3 / 2}=y^{\prime \prime}$. Let $u=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation bec $\left(1+u^{2}\right)^{3 / 2}=u^{\prime}$ or $\left(1+u^{2}\right)^{3 / 2}=d u / d x$. Separating variables and using the substitution $u=$ we have

$$
\begin{aligned}
\frac{d u}{\left(1+u^{2}\right)^{3 / 2}}=d x & \Longrightarrow \int \frac{\sec ^{2} \theta}{\left(1+\tan ^{2} \theta\right)^{3 / 2}} d \theta=x \Longrightarrow \int \frac{\sec ^{2} \theta}{\sec ^{3} \theta} d \theta=x \\
& \Longrightarrow \int \cos \theta d \theta=x \Longrightarrow \sin \theta=x \Longrightarrow \frac{u}{\sqrt{1+u^{2}}}=x \\
& \Longrightarrow \frac{y^{\prime}}{\sqrt{1+\left(y^{\prime}\right)^{2}}}=x \Longrightarrow\left(y^{\prime}\right)^{2}=x^{2}\left[1+\left(y^{\prime}\right)^{2}\right]=\frac{x^{2}}{1-x^{2}} \\
& \Longrightarrow y^{\prime}=\frac{x}{\sqrt{1-x^{2}}}(\text { for } x>0) \Longrightarrow y=-\sqrt{1-x^{2}}
\end{aligned}
$$

18. When $y=\sin x, y^{\prime}=\cos x, y^{\prime \prime}=-\sin x$, and

$$
\left(y^{\prime \prime}\right)^{2}-y^{2}=\sin ^{2} x-\sin ^{2} x=0
$$

When $y=e^{-x}, y^{\prime}=-e^{-x} ; y^{\prime \prime}=e^{-x}$, and

$$
\left(y^{\prime \prime}\right)^{2}-y^{2}=e^{-2 x}-e^{-2 x}=0
$$

From $\left(y^{\prime \prime}\right)^{2}-y^{2}=0$ we have $y^{\prime \prime}= \pm y$, which can be treated as tro linear equations. Since linear combinations of solutions of linear homogencous differential equations are also solutions. we sce that $y=c_{1} e^{x}+c_{2} e^{-x}$ and $y=c_{3} \cos x+c_{4} \sin x$ must satisfy the differential equation. However, linear combinations that involve both exponential and trigonometric functions will not be solutions since the differential equation is not lincar and each type of function satisfies a different linear diffcrential equation that is part of the original differential equation.
\therefore Letting $u=y^{\prime \prime}$, separating variables, and integrating we have

$$
\frac{d u}{d x}=\sqrt{1+u^{2}} ; \quad \frac{d u}{\sqrt{1+u^{2}}}=d x, \quad \text { and } \quad \sinh ^{-1} u=x+c_{1}
$$

Then

$$
u=y^{\prime \prime}=\sinh \left(x+c_{1}\right), \quad y^{\prime}=\cosh \left(x+c_{1}\right)+c_{2}, \quad \text { and } \quad y=\sinh \left(x+c_{1}\right)+c_{2} x+c_{3} .
$$

$\therefore \because$ If the constant $-c_{1}^{2}$ is used instead of c_{1}^{2}, then, using partial fractions,

$$
y=-\int \frac{d x}{x^{2}-c_{1}^{2}}=-\frac{1}{2 c_{1}} \int\left(\frac{1}{x-c_{1}}-\frac{1}{x+c_{1}}\right) d x=\frac{1}{2 c_{1}} \ln \left|\frac{x+c_{1}}{x-c_{1}}\right|+c_{2}
$$

Aiternatively, the inverse hyperbolic tangent can be uscd.
\therefore Let $u=d x / d t$ so that $d^{2} x / d t^{2}=u d u / d x$. The equation becomes $u d u / d x=-k^{2} / x^{2}$. Separating ariables we obtain

$$
u d u=-\frac{k^{2}}{x^{2}} d x \Longrightarrow \frac{1}{2} u^{2}=\frac{k^{2}}{x}+c \Longrightarrow \frac{1}{2} v^{2}=\frac{k^{2}}{x}+c
$$

Then $t=0, x=x_{0}$ and $v=0$ so $0=\left(k^{2} / x_{0}\right)+c$ and $c=-k^{2} / x_{0}$. Then

$$
\frac{1}{2} v^{2}=k^{2}\left(\frac{1}{x}-\frac{1}{x_{0}}\right) \quad \text { and } \quad \frac{d x}{d t}=-k \sqrt{2} \sqrt{\frac{x_{0}-x}{x x_{0}}} .
$$

Sparating variables we have

$$
-\sqrt{\frac{x x_{0}}{x_{0}-x}} d x=k \sqrt{2} d t \Longrightarrow t=-\frac{1}{k} \sqrt{\frac{x_{0}}{2}} \int \sqrt{\frac{x}{x_{0}-x}} d x
$$

\because sing Mathematica to integrate we obtain

$$
\begin{aligned}
t & =-\frac{1}{k} \sqrt{\frac{x_{0}}{2}}\left[-\sqrt{x\left(x_{0}-x\right)}-\frac{x_{0}}{2} \tan ^{-1} \frac{\left(x_{0}-2 x\right)}{2 x} \sqrt{\frac{x}{x_{0}-x}}\right] \\
& =\frac{1}{k} \sqrt{\frac{x_{0}}{2}}\left[\sqrt{x\left(x_{0}-x\right)}+\frac{x_{0}}{2} \tan ^{-1} \frac{x_{0}-2 x}{2 \sqrt{x\left(x_{0}-x\right)}}\right] .
\end{aligned}
$$

22.

For $d^{2} x / d t^{2}+\sin x=0$ the motion appears to be periodic with amplitude 1 when $x_{1}=$ amplitude and period are larger for larger magnitudes of x_{1}.

For $d^{2} x / d t^{2}+d x / d t+\sin x=0$ the motion appears to be periodic with decreasing amplitu \because. $d x / d t$ term could be said to have a damping effect.

Chapter 4 in Review

1. $y=0$
2. Since $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$, a particular solution for $y^{\prime \prime}-y=1+e^{x}$ is $y_{p}=A+B x e^{x}$.
3. It is not true unless the differential equation is homogencous. For example, $y_{1}=x$ is a sol... $y^{\prime \prime}+y=x$, but $y_{2}=5 x$ is not.
4. True
5. The set is linearly independent over $(-\infty, 0)$ and linearly dependent over $(0, \infty)$.
6. (a) Since $f_{2}(x)=2 \ln x=2 f_{1}(x)$, the set of functions is linearly dependent.
(b) Since x^{n+1} is not a constant multiple of x^{n} : the set of functions is linearly independer:-
(c) Since $x+1$ is not a constant multiple of x, the set of functions is linearly independen:
(d) Since $f_{1}(x)=\cos x \cos (\pi / 2)-\sin x \sin (\pi / 2)=-\sin x=-f_{2}(x)$, the set of functions is ... dependent.
(e) Since $f_{1}(x)=0 \cdot f_{2}(x)$, the set of functions is linearly dependent.
(f) Since $2 x$ is not a constant multiple of 2 , the set of functions is linearly independent.

Chapter 4 in Review

(g) Since $3\left(x^{2}\right)+2\left(1-x^{2}\right)-\left(2+x^{2}\right)=0$, the set of functions is lincarly dependent.
(h) Since $x e^{x+1}+0(4 x-5) e^{x}-e x e^{x}=0$, the set of functions is linearly dependent.
\therefore (a) The general solution is

$$
y=c_{1} e^{3 x}+c_{2} e^{-5 x}+c_{3} x e^{-5 x}+c_{4} e^{x}+c_{5} x e^{x}+c_{6} x^{2} e^{x}
$$

(b) The general solution is

$$
y=c_{1} x^{3}+c_{2} x^{-5}+c_{3} x^{-5} \ln x+c_{4} x+c_{5} x \ln x+c_{6} x(\ln x)^{2} .
$$

玉. Variation of parameters will work for all choices of $g(x)$, although the integral involved may not always be able to be expressed in terms of clementary functions. The method of undetermined coofficients will work for the functions in (b), (c), and (e).
j. From $m^{2}-2 m-2=0$ we obtain $m=1 \pm \sqrt{3}$ so that

$$
y=c_{1} e^{(1+\sqrt{3}) x}+c_{2} e^{(1-\sqrt{3}) x}
$$

\therefore From $2 m^{2}+2 m+3=0$ we obtain $m=-1 / 2 \pm(\sqrt{5} / 2) i$ so that

$$
y=e^{-x / 2}\left(c_{1} \cos \frac{\sqrt{5}}{2} x+c_{2} \sin \frac{\sqrt{5}}{2} x\right)
$$

\because From $m^{3}+10 m^{2}+25 m=0$ we obtain $m=0, m=-5$, and $m=-5$ so that

$$
y=c_{1}+c_{2} e^{-5 x}+c_{3} x e^{-5 x}
$$

\because From $2 m^{3}+9 m^{2}+12 m+5=0$ we obtain $m=-1, m=-1$, and $m=-5 / 2$ so that

$$
y=c_{1} e^{-5 x / 2}+c_{2} e^{-x}+c_{3} x e^{-x}
$$

2:. From $3 m^{3}+10 m^{2}+15 m+4=0$ we obtain $m=-1 / 3$ and $m=-3 / 2 \pm(\sqrt{7} / 2) i$ so that

$$
y=c_{1} e^{-x / 3}+e^{-3 x / 2}\left(c_{2} \cos \frac{\sqrt{7}}{2} x+c_{3} \sin \frac{\sqrt{7}}{2} x\right) .
$$

I. From $2 m^{4}+3 m^{3}+2 m^{2}+6 m-4=0$ we obtain $m=1 / 2: m=-2$, and $m= \pm \sqrt{2} i$ so that

$$
y=c_{1} e^{x / 2}+c_{2} e^{-2 x}+c_{3} \cos \sqrt{2} x+c_{4} \sin \sqrt{2} x
$$

I5. Applying D^{4} to the differential cquation we obtain $D^{1}\left(D^{2}-3 D+5\right)=0$. Then

$$
y=\underbrace{e^{3 x / 2}\left(c_{1} \cos \frac{\sqrt{11}}{2} x+c_{2} \sin \frac{\sqrt{11}}{2} x\right)}_{y c}+c_{3}+c_{4} x+c_{5} x^{2}+c_{6} x^{3}
$$

and $y_{p}=A+B x+C x^{2}+D x^{3}$. Substituting y_{p} into the differential equation yields

$$
(5 A-3 B+2 C)+(5 B-6 C+6 D) x+(5 C-9 D) x^{2}+5 D x^{3}=-2 x+4 x^{3}
$$

Chapter 4 in Review

Equating coefficients gives $A=-222 / 625, B=46 / 125, C=36 / 25$, and $D=4 / 5$. The gel: solution is

$$
y=e^{3 x / 2}\left(c_{1} \cos \frac{\sqrt{11}}{2} x+c_{2} \sin \frac{\sqrt{11}}{2} x\right)-\frac{222}{625}+\frac{46}{125} x+\frac{36}{25} x^{2}+\frac{4}{5} x^{3}
$$

16. Applying $(D-1)^{3}$ to the differential equation we obtain $(D-1)^{3}(D-2 D+1)=(D-1)^{5}=$ Then

$$
y=\underbrace{c_{1} e^{x}+c_{2} x e^{x}}_{y_{c}}+c_{3} x^{2} e^{x}+c_{4} x^{3} e^{x}+c_{5} x^{4} e^{x}
$$

and $y_{p}=A x^{2} e^{x}+B x^{3} e^{x}+C x^{4} e^{x}$. Substituting y_{p} into the differential equation yields

$$
12 C x^{2} e^{x}+6 B x e^{x}+2 A e^{x}=x^{2} e^{x}
$$

Equating coefficients gives $A=0: B=0$, and $C=1 / 12$. The general solution is

$$
y=c_{1} e^{x}+c_{2} x e^{x}+\frac{1}{12} x^{4} e^{x} .
$$

17. Applying $D\left(D^{2}+1\right)$ to the differential equation we obtain

$$
D\left(D^{2}+1\right)\left(D^{3}-5 D^{2}+6 D\right)=D^{2}\left(D^{2}+1\right)(D-2)(D-3)=0
$$

Then

$$
y=\underbrace{c_{1}+c_{2} e^{2 x}+c_{3} e^{3 x}}_{y_{c}}+c_{4} x+c_{5} \cos x+c_{6} \sin x
$$

and $y_{p}=A x+B \cos x+C \sin x$. Substituting y_{p} into the diffcrential equation yields

$$
6 A+(5 B+5 C) \cos x+(-5 B+5 C) \sin x=8+2 \sin x
$$

Equating coefficients gives $A=4 / 3, B=-1 / 5$, and $C=1 / 5$. The general solution is

$$
y=c_{1}+c_{2} e^{2 x}+c_{3} e^{3 x}+\frac{4}{3} x-\frac{1}{5} \cos x+\frac{1}{5} \sin x
$$

I5. Applying D to the differential equation we obtain $D\left(D^{3}-D^{2}\right)=D^{3}(D-1)=0$. Then

$$
y=\underbrace{c_{1}+c_{2} x+c_{3} e^{x}}_{y_{c}}+c_{4} x^{2}
$$

and $y_{p}=A x^{2}$. Substituting y_{p} into the differential equation yields $-2 A=6$. Equating coef. gives $A=-3$. The general solution is

$$
y=c_{1}+c_{2} x+c_{3} e^{x}-3 x^{2}
$$

29. The auxiliary equation is $m^{2}-2 m+2=[m-(1+i)][m-(1-i)]=0$, so $y_{c}=c_{1} e^{x} \sin x+c_{2}$: and

$$
W=\left|\begin{array}{cc}
e^{x} \sin x & e^{x} \cos x \\
e^{x} \cos x+e^{x} \sin x & -e^{x} \sin x+e^{x} \cos x
\end{array}\right|=-e^{2 x}
$$

Identifying $f(x)=e^{x} \tan x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\frac{\left(e^{x} \cos x\right)\left(e^{x} \tan x\right)}{-e^{2 x}}=\sin x \\
& u_{2}^{\prime}=\frac{\left(e^{x} \sin x\right)\left(e^{x} \tan x\right)}{-e^{2 x}}=-\frac{\sin ^{2} x}{\cos x}=\cos x-\sec x
\end{aligned}
$$

Then $u_{1}=-\cos x, u_{2}=\sin x-\ln |\sec x+\tan x|$, and

$$
\begin{aligned}
y & =c_{1} e^{x} \sin x+c_{2} e^{x} \cos x-e^{x} \sin x \cos x+e^{x} \sin x \cos x-e^{x} \cos x \ln |\sec x+\tan x| \\
& =c_{1} e^{x} \sin x+c_{2} e^{x} \cos x-e^{x} \cos x \ln |\operatorname{scc} x+\tan x|
\end{aligned}
$$

\%- The auxiliary equation is $m^{2}-1=0$, so $y_{c}=c_{1} e^{x}+c_{2} e^{-x}$ and

$$
W=\left|\begin{array}{cc}
e^{x} & e^{-x} \\
e^{x} & -e^{-x}
\end{array}\right|=-2
$$

Eentifying $f(x)=2 e^{x} /\left(e^{x}+e^{-x}\right)$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=\frac{1}{e^{x}+e^{-x}}=\frac{e^{x}}{1+e^{2 x}} \\
& u_{2}^{\prime}=-\frac{e^{2 x}}{e^{x}+e^{-x}}=-\frac{e^{3 x}}{1+e^{2 x}}=-e^{x}+\frac{e^{x}}{1+e^{2 x}}
\end{aligned}
$$

-ien $u_{1}=\tan ^{-1} e^{x}, u_{2}=-e^{x}+\tan ^{-1} e^{x}$, and

$$
y=c_{1} e^{x}+c_{2} e^{-x}+e^{x} \tan ^{-1} e^{x}-1+e^{-x} \tan ^{-1} e^{x}
$$

-. The auxiliary equation is $6 m^{2}-m-1=0$ so that

$$
y=c_{1} x^{1 / 2}+c_{2} x^{-1 / 3}
$$

2-. The auxiliary equation is $2 m^{3}+13 m^{2}+24 m+9=(m+3)^{2}(m+1 / 2)=0$ so that

$$
y=c_{1} x^{-3}+c_{2} x^{-3} \ln x+c_{3} x^{-1 / 2}
$$

- - auxiliary equation is $m^{2}-5 m+6=(m-2)(m-3)=0$ and a particular solution is $-:=x^{4}-x^{2} \ln x$ so that

$$
y=c_{1} x^{2}+c_{2} x^{3}+x^{4}-x^{2} \ln x
$$

- - Ae auxiliary equation is $m^{2}-2 m+1=(m-1)^{2}=0$ and a particular solution is $y_{p}=\frac{1}{4} x^{3}$ so that

$$
y=c_{1} x+c_{2} x \ln x+\frac{1}{4} x^{3}
$$

\therefore a) The auxiliary equation is $m^{2}+\omega^{2}=0$, so $y_{c}=c_{1} \cos \omega x+c_{2} \sin \omega x$. When $\omega \neq \alpha$, $y_{p}=A \cos \alpha x+B \sin \alpha x$ and

$$
y=c_{1} \cos \omega x+c_{2} \sin \omega x+A \cos \alpha x+B \sin \alpha x
$$

Chapter 4 in Review

When $\omega=\alpha, y_{p}=A x \cos \omega x+B x \sin \omega x$ and

$$
y=c_{1} \cos \omega x+c_{2} \sin \omega x+A x \cos \omega x+B x \sin \omega x .
$$

b) The auxiliary equation is $m^{2}-\omega^{2}=0$, so $y_{c}=c_{1} e^{\omega x}+c_{2} e^{-\omega x}$. When $\omega \neq \alpha, y_{p}=A e^{\alpha \cdot x}$

$$
y=c_{1} e^{\omega x}+c_{2} e^{-\omega x}+A c^{\alpha x} .
$$

When $\omega=\alpha, y_{p}=A x e^{\omega x}$ and

$$
y=c_{1} e^{\omega x}+c_{2} e^{-\omega x}+A x e^{\omega x} .
$$

26. (a) If $y=\sin x$ is a solution then so is $y=\cos x$ and $m^{2}+1$ is a factor of the auxiliary eq: $m^{4}+2 m^{3}+11 m^{2}+2 m+10=0$. Dividing by $m^{2}+1$ we get $m^{2}+2 m+10$, which has: $-1 \pm 3 i$. The general solution of the differential equation is

$$
y=c_{1} \cos x+c_{2} \sin x+e^{-x}\left(c_{3} \cos 3 x+c_{4} \sin 3 x\right) .
$$

(b) The auxiliary equation is $m(m+1)=m^{2}+m=0$, so the associated homogencous differ: cquation is $y^{\prime \prime}+y^{\prime}=0$. Letting $y=c_{1}+c_{2} e^{-x}+\frac{1}{2} x^{2}-x$ and computing $y^{\prime \prime}+y^{\prime}$ we . Thus, the differcontial equation is $y^{\prime \prime}+y^{\prime}=x$.
2-. (a) The auxiliary equation is $m^{4}-2 m^{2}+1=\left(m^{2}-1\right)^{2}=0$, so the general solution : differential equation is

$$
y=c_{1} \sinh x+c_{2} \cosh x+c_{3} x \sinh x+c_{4} x \cosh x .
$$

b) Since both $\sinh x$ and $x \sinh x$ are solutions of the associated homogeneous differential eq:. a particular solution of $y^{(4)}-2 y^{\prime \prime}+y=\sinh x$ has the form $y_{p}=A x^{2} \sinh x+B x^{2} \operatorname{cosi}$:
25. Snce $y_{1}^{\prime}=1$ and $y_{1}^{\prime \prime}=0, x^{2} y_{1}^{\prime \prime}-\left(x^{2}+2 x\right) y_{1}^{\prime}+(x+2) y_{1}=-x^{2}-2 x+x^{2}+2 x=0$, and $y_{1}=$ a solution of the associated homogeneous equation. Using the method of reduction of order. $\vdots=u x$. Then $y^{\prime}=x u^{\prime}+u$ and $y^{\prime \prime}=x u^{\prime \prime}+2 u^{\prime}$, so

$$
\begin{aligned}
x^{2} y^{\prime \prime}-\left(x^{2}+2 x\right) y^{\prime}+(x+2) y & =x^{3} u^{\prime \prime}+2 x^{2} u^{\prime}-x^{3} u^{\prime}-2 x^{2} u^{\prime}-x^{2} u-2 x u+x^{2} u+2 x \\
& =x^{3} u^{\prime \prime}-x^{3} u^{\prime}=x^{3}\left(u^{\prime \prime}-u^{\prime}\right)
\end{aligned}
$$

I: find a sccond solution of the homogencous equation we note that $u=e^{x}$ is a solu::
$"-u^{\prime}=0$. Thus, $y_{c}=c_{1} x+c_{2} x e^{x}$. To find a particular solution wc set $x^{3}\left(u^{\prime \prime}-u^{\prime}\right)=$ Lat $u^{\prime \prime}-u^{\prime}=1$. This differential equation has a particular solution of the form $A x$. Subst:\cdots ind $A=-1$, so a particular solution of the original differential equation is $y_{p}=-x^{2}$: neral solution is $y=c_{1} x+c_{2} x e^{x}-x^{2}$.
2. The auxiliary equation is $m^{2}-2 m+2=0$ so that $m=1 \pm i$ and $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$.
$-2)=0$ and $y(\pi)=-1$ we obtain $c_{1}=e^{-\pi}$ and $c_{2}=0$. Thus, $y=e^{x-\pi} \cos x$.
30. The auxiliary equation is $m^{2}+2 m+1=(m+1)^{2}=0$, so that $y=c_{1} e^{-x}+c_{2} x e^{-x}$. Setting $y(-1)=0$ and $y^{\prime}(0)=0$ we get $c_{1} e-c_{2} e=0$ and $-c_{1}+c_{2}=0$. Thus $c_{1}=c_{2}$ and $y=c_{1}\left(e^{-x}+x e^{-x}\right)$ is a solution of the boundary-value problem for any real number c_{1}.
3i. The auxiliary equation is $m^{2}-1=(m-1)(m+1)=0$ so that $m= \pm 1$ and $y=c_{1} e^{x}+c_{2} e^{-x}$. Assuming $y_{p}=A x+B+C \sin x$ and substituting into the differential equation we find $A=-1$, $B=0$, and $C=-\frac{1}{2}$. Thus $y_{p}=-x-\frac{1}{2} \sin x$ and

$$
y=c_{1} e^{x}+c_{2} e^{-x}-x-\frac{1}{2} \sin x
$$

Sctting $y(0)=2$ and $y^{\prime}(0)=3$ we obtain

$$
\begin{aligned}
c_{1}+c_{2} & =2 \\
c_{1}-c_{2}-\frac{3}{2} & =3 .
\end{aligned}
$$

Solving this system we find $c_{1}=\frac{13}{4}$ and $c_{2}=-\frac{5}{4}$. The solution of the initial-value problem is

$$
y=\frac{13}{4} e^{x}-\frac{5}{4} e^{-x}-x-\frac{1}{2} \sin x
$$

32. The auxiliary equation is $m^{2}+1=0$, so $y_{c}=c_{1} \cos x+c_{2} \sin x$ and

$$
W=\left|\begin{array}{rr}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right|=1
$$

Identifying $f(x)=\sec ^{3} x$ we obtain

$$
\begin{aligned}
& u_{1}^{\prime}=-\sin x \sec ^{3} x=-\frac{\sin x}{\cos ^{3} x} \\
& u_{2}^{\prime}=\cos x \sec ^{3} x=\sec ^{2} x
\end{aligned}
$$

Then

$$
\begin{aligned}
& u_{1}=-\frac{1}{2} \frac{1}{\cos ^{2} x}=-\frac{1}{2} \sec ^{2} x \\
& u_{2}=\tan x
\end{aligned}
$$

Thus

$$
\begin{aligned}
y & =c_{1} \cos x+c_{2} \sin x-\frac{1}{2} \cos x \sec ^{2} x+\sin x \tan x \\
& =c_{1} \cos x+c_{2} \sin x-\frac{1}{2} \sec x+\frac{1-\cos ^{2} x}{\cos x} \\
& =c_{3} \cos x+c_{2} \sin x+\frac{1}{2} \sec x
\end{aligned}
$$

and

Chapter 4 in Review

$$
y^{\prime}=-c_{3} \sin x+c_{2} \cos x+\frac{1}{2} \sec x \tan x
$$

- :nitial conditions imply

$$
\begin{aligned}
c_{3}+\frac{1}{2} & =1 \\
c_{2} & =\frac{1}{2}
\end{aligned}
$$

$-\cdots c_{2}=1 / 2$ and

$$
y=\frac{1}{2} \cos x+\frac{1}{2} \sin x+\frac{1}{2} \sec x
$$

3. $-\div=y^{\prime}$ so that $u^{\prime}=y^{\prime \prime}$. The equation becomes $u d u / d x=4 x$. Separating variables we obt

$$
u d u=4 x d x \Longrightarrow \frac{1}{2} u^{2}=2 x^{2}+c_{1} \Longrightarrow u^{2}=4 x^{2}+c_{2}
$$

$\because \cdots=1, y^{\prime}=u=2$, so $4=4+c_{2}$ and $c_{2}=0$. Then

$$
\begin{aligned}
u^{2}=4 x^{2} & \Longrightarrow \frac{d y}{d x}=2 x \quad \text { or } \quad \frac{d y}{d x}=-2 x \\
& \Longrightarrow y=x^{2}+c_{3} \quad \text { or } \quad y=-x^{2}+c_{4}
\end{aligned}
$$

$\because \because-\because=1, y=5$, so $5=1+c_{3}$ and $5=-1+c_{4}$. Thus $c_{3}=4$ and $c_{4}=6$. Wc have $y=$. $\therefore \therefore=-x^{2}+6$. Note however that when $y=-x^{2}+6, y^{\prime}=-2 x$ and $y^{\prime}(1)=-2 \neq 2$. Thr: $\therefore \cdots:-$ of the initial-value problem is $y=x^{2}+4$.
H. --- $=y^{\prime}$ so that $y^{\prime \prime}=u d u / d y$. The equation becomes $2 u d u / d y=3 y^{2}$. Scparating varial.

$$
2 u d u=3 y^{2} d y \Longrightarrow u^{2}=y^{3}+c_{1}
$$

$\because-\therefore \because=0 . y=1$ and $y^{\prime}=u=1$ so $1=1+c_{1}$ and $c_{1}=0$. Then

$$
\begin{aligned}
u^{2}=y^{3} & \Longrightarrow\left(\frac{d y}{d x}\right)^{2}=y^{3} \Longrightarrow \frac{d y}{d x}=y^{3 / 2} \Longrightarrow y^{-3 / 2} d y=d x \\
& \Longrightarrow-2 y^{-1 / 2}=x+c_{2} \Longrightarrow y=\frac{4}{\left(x+c_{2}\right)^{2}}
\end{aligned}
$$

$\cdots: \therefore=0 . y=1$, so $1=4 / c_{2}^{2}$ and $c_{2}= \pm 2$. Thus, $y=4 /(x+2)^{2}$ and $y=4 /(x-2)^{2}$. \ldots.... Shat when $y=4 /(x+2)^{2}, y^{\prime}=-8 /(x+2)^{3}$ and $y^{\prime}(0)=-1 \neq 1$. Thus, the so \cdots
$\therefore-$ - \quad--value problem is $y=4 /(x-2)^{2}$.
$\therefore \equiv-\therefore$ auxiliary equation is $12 m^{4}+64 m^{3}+59 m^{2}-23 m-12=0$ and has roots -4 .-. $\because \because \dot{\overline{\dot{B}}}$. The general solution is

$$
y=c_{1} e^{-4 x}+c_{2} e^{-3 x / 2}+c_{3} e^{-x / 3}+c_{4} e^{x / 2}
$$

Chapter 4 in Review

(b) The system of equations is

$$
\begin{aligned}
c_{1}+c_{2}+c_{3}+c_{4} & =-1 \\
-4 c_{1}-\frac{3}{2} c_{2}-\frac{1}{3} c_{3}+\frac{1}{2} c_{4} & =2 \\
16 c_{1}+\frac{9}{4} c_{2}+\frac{1}{9} c_{3}+\frac{1}{4} c_{4} & =5 \\
-64 c_{1}-\frac{27}{8} c_{2}-\frac{1}{27} c_{3}+\frac{1}{8} c_{4} & =0
\end{aligned}
$$

Using a CAS we find $c_{1}=-\frac{73}{495}, c_{2}=\frac{109}{35}, c_{3}=-\frac{3726}{385}$, and $c_{4}=\frac{257}{45}$. The solution of the initial-value problem is

$$
y=-\frac{73}{495} e^{-4 x}+\frac{109}{35} e^{-3 x / 2}-\frac{3726}{385} e^{-x / 3}+\frac{257}{45} e^{x / 2}
$$

Consider $x y^{\prime \prime}+y^{\prime}=0$ and look for a solution of the form $y=x^{m}$. Substituting into the differential equation we have

$$
x y^{\prime \prime}+y^{\prime}=m(m-1) x^{m-1}+m x^{m-1}=m^{2} x^{m-1}
$$

Thus, the general solution of $x y^{\prime \prime}+y^{\prime}=0$ is $y_{c}=c_{1}+c_{2} \ln x$. To find a Darticular solution of $x y^{\prime \prime}+y^{\prime}=-\sqrt{x}$ we use variation of parameters. The Wronskian is

$$
W=\left|\begin{array}{cc}
1 & \ln x \\
0 & 1 / x
\end{array}\right|=\frac{1}{x}
$$

identifying $f(x)=-x^{-1 / 2}$ we obtain

$$
u_{1}^{\prime}=\frac{x^{-1 / 2} \ln x}{1 / x}=\sqrt{x} \ln x \quad \text { and } \quad u_{2}^{\prime}=\frac{-x^{-1 / 2}}{1 / x}=-\sqrt{x},
$$

so that

$$
u_{1}=x^{3 / 2}\left(\frac{2}{3} \ln x-\frac{4}{9}\right) \quad \text { and } \quad u_{2}=-\frac{2}{3} x^{3 / 2}
$$

Then

$$
y_{p}=x^{3 / 2}\left(\frac{2}{3} \ln x-\frac{4}{9}\right)-\frac{2}{3} x^{3 / 2} \ln x=-\frac{4}{9} x^{3 / 2}
$$

and the general solution of the differential equation is

$$
y=c_{1}+c_{2} \ln x-\frac{4}{9} x^{3 / 2}
$$

Chapter 4 in Review

The initial conditions are $y(1)=0$ and $y^{\prime}(1)=0$. These imply that $c_{1}=\frac{4}{9}$ and $c_{2}=\frac{2}{3}$. . solution of the initial-value problem is

$$
y=\frac{4}{9}+\frac{2}{3} \ln x-\frac{4}{9} x^{3 / 2} .
$$

The graph is shown above.
E. $=-\operatorname{mom}(D-2) x+(D-2) y=1$ and $D x+(2 D-1) y=3$ we obtain $(D-1)(D-2) y=-6:$ - $r=3-(2 D-1) y$. Then

$$
y=c_{1} e^{2 t}+c_{2} e^{t}-3 \quad \text { and } \quad x=-c_{2} e^{t}-\frac{3}{2} c_{1} e^{2 t}+c_{3} .
$$

Sabstituting into $(D-2) x+(D-2) y=1$ gives $c_{3}=\frac{5}{2}$ so that

$$
x=-c_{2} e^{t}-\frac{3}{2} c_{1} e^{2 t}+\frac{5}{2} .
$$

35. From $(D-2) x-y=t-2$ and $-3 x+(D-4) y=-4 t$ we obtain $(D-1)(D-5) x=9-8 t$. T:

$$
x=c_{1} e^{t}+c_{2} e^{5 t}-\frac{8}{5} t-\frac{3}{25}
$$

ad

$$
y=(D-2) x-t+2=-c_{1} e^{t}+3 c_{2} e^{5 t}+\frac{16}{25}+\frac{11}{25} t
$$

39. Emom $(D-2) x-y=-e^{t}$ and $-3 x+(D-4) y=-7 e^{t}$ we obtain $(D-1)(D-5) x=-4 e^{t}$ so -

$$
x=c_{1} e^{t}+c_{2} e^{5 t}+t e^{t} .
$$

-nen

$$
y=(D-2) x+e^{t}=-c_{1} e^{t}+3 c_{2} e^{5 t}-t e^{t}+2 e^{t} .
$$

 Then

$$
y=c_{1} \cos t+c_{2} \sin t-\frac{2}{3} \cos 2 t+\frac{7}{3} \sin 2 t
$$

\square

$$
\begin{aligned}
x & =-\frac{1}{5}(D+3) y+\frac{1}{5} \cos 2 t \\
& =\left(\frac{1}{5} c_{1}-\frac{3}{5} c_{2}\right) \sin t+\left(-\frac{1}{5} c_{2}-\frac{3}{5} c_{1}\right) \cos t-\frac{5}{3} \sin 2 t-\frac{1}{3} \cos 2 t .
\end{aligned}
$$

5
 Modeling with Higher-Order Differential Equations

Exercises 5.1

Linear Models: Initial-Value Problems

1. From $\frac{1}{8} x^{\prime \prime}+16 x=0$ we obtain

$$
x=c_{1} \cos 8 \sqrt{2} t+c_{2} \sin 8 \sqrt{2} t
$$

so that the period of motion is $2 \pi / 8 \sqrt{2}=\sqrt{2} \pi / 8$ seconds.
2. From $20 x^{\prime \prime}+k x=0$ we obtain

$$
x=c_{1} \cos \frac{1}{2} \sqrt{\frac{k}{5}} t+c_{2} \sin \frac{1}{2} \sqrt{\frac{k}{5}} t
$$

so that the frequency $2 / \pi=\frac{1}{4} \sqrt{k / 5} \pi$ and $k=320 \mathrm{~N} / \mathrm{m}$. If $80 x^{\prime \prime}+320 x=0$ then

$$
x=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

so that the frequency is $2 / 2 \pi=1 / \pi$ cycles $/ \mathrm{s}$.
3. From $\frac{3}{4} x^{\prime \prime}+72 x=0, x(0)=-1 / 4$, and $x^{\prime}(0)=0$ we obtain $x=-\frac{1}{4} \cos 4 \sqrt{6} t$.
\therefore From $\frac{3}{4} x^{\prime \prime}+72 x=0, x(0)=0$, and $x^{\prime}(0)=2$ we obtain $x=\frac{\sqrt{6}}{12} \sin 4 \sqrt{6} t$.
ㅍ. From $\frac{5}{8} x^{\prime \prime}+40 x=0, x(0)=1 / 2$, and $x^{\prime}(0)=0$ we obtain $x=\frac{1}{2} \cos 8 t$.
(a) $x(\pi / 12)=-1 / 4, x(\pi / 8)=-1 / 2, x(\pi / 6)=-1 / 4, x(\pi / 4)=1 / 2, x(9 \pi / 32)=\sqrt{2} / 4$.
(b) $x^{\prime}=-4 \sin 8 t$ so that $x^{\prime}(3 \pi / 16)=4 \mathrm{ft} / \mathrm{s}$ directed downward.
(c) If $x=\frac{1}{2} \cos 8 t=0$ then $t=(2 n+1) \pi / 16$ for $n=0,1,2, \ldots$.
3. From $50 x^{\prime \prime}+200 x=0 . x(0)=0$, and $x^{\prime}(0)=-10$ we obtain $x=-5 \sin 2 t$ and $x^{\prime}=-10 \cos 2 t$.
\because From $20 x^{\prime \prime}+20 x=0, x(0)=0$, and $x^{\prime}(0)=-10$ we obtain $x=-10 \sin t$ and $x^{\prime}=-10 \cos t$.
(a) The 20 kg mass has the larger amplitude.
(b) $20 \mathrm{~kg}: x^{\prime}(\pi / 4)=-5 \sqrt{2} \mathrm{~m} / \mathrm{s}, x^{\prime}(\pi / 2)=0 \mathrm{~m} / \mathrm{s} ; \quad 50 \mathrm{~kg}: x^{\prime}(\pi / 4)=0 \mathrm{~m} / \mathrm{s}, x^{\prime}(\pi / 2)=10 \mathrm{~m} / \mathrm{s}$
(c) If $-5 \sin 2 t=-10 \sin t$ then $\sin t(\cos t-1)=0$ so that $t=n \pi$ for $n=0,1,2, \ldots$, placing both masses at the equilibrium position. The 50 kg mass is moving upward; the 20 kg mass is moving upward whon n is even and downward when n is odd.
8. From $x^{\prime \prime}+16 x=0, x(0)=-1$, and $x^{\prime}(0)=-2$ we obtain

$$
x=-\cos 4 t-\frac{1}{2} \sin 4 t=\frac{\sqrt{5}}{2} \sin (4 t-4.249) .
$$

The period is $\pi / 2$ seconds and the amplitude is $\sqrt{5} / 2$ feet. In 4π seconds it will make 8 co:cycles.
9. From $\frac{1}{4} x^{\prime \prime}+x=0, x(0)=1 / 2$, and $x^{\prime}(0)=3 / 2$ we obtain

$$
x=\frac{1}{2} \cos 2 t+\frac{3}{4} \sin 2 t=\frac{\sqrt{13}}{4} \sin (2 t+0.588) .
$$

10. From $1.6 x^{\prime \prime}+40 x=0, x(0)=-1 / 3$, and $x^{\prime}(0)=5 / 4$ we obtain

$$
x=-\frac{1}{3} \cos 5 t+\frac{1}{4} \sin 5 t=\frac{5}{12} \sin (5 t-0.927) .
$$

If $x=5 / 24$ then $t=\frac{1}{5}\left(\frac{\pi}{6}+0.927+2 n \pi\right)$ and $t=\frac{1}{5}\left(\frac{5 \pi}{6}+0.927+2 n \pi\right)$ for $n=0,1,2, \ldots$.
11. From $2 x^{\prime \prime}+200 x=0, x(0)=-2 / 3$, and $x^{\prime}(0)=5$ we obtain
(a) $x=-\frac{2}{3} \cos 10 t+\frac{1}{2} \sin 10 t=\frac{5}{6} \sin (10 t-0.927)$.
(b) The amplitude is $5 / 6 \mathrm{ft}$ and the period is $2 \pi / 10=\pi / 5$
(c) $3 \pi=\pi k / 5$ and $k=15$ cycles.
(d) If $x=0$ and the weight is moving downward for the second time, then $10 t-0.927=$ $t=0.721 \mathrm{~s}$.
(e) If $x^{\prime}=\frac{25}{3} \cos (10 t-0.927)=0$ then $10 t-0.927=\pi / 2+n \pi$ or $t=(2 n+1) \pi / 20+0.0$. $n=0,1,2, \ldots$
(f) $x(3)=-0.597 \mathrm{ft}$
(g) $x^{\prime}(3)=-5.814 \mathrm{ft} / \mathrm{s}$
(h) $x^{\prime \prime}(3)=59.702 \mathrm{ft} / \mathrm{s}^{2}$
(i) If $x=0$ then $t=\frac{1}{10}(0.927+n \pi)$ for $n=0,1,2, \ldots$ The velocity at these times is $x^{\prime}= \pm 8.33 \mathrm{ft} / \mathrm{s}$.
(j) If $x=5 / 12$ then $t=\frac{1}{10}(\pi / 6+0.927+2 n \pi)$ and $t=\frac{1}{10}(5 \pi / 6+0.927+2 n \pi)$ for $n=0$, \ldots.
(k) If $x=5 / 12$ and $x^{\prime}<0$ then $t=\frac{1}{10}(5 \pi / 6+0.927+2 n \pi)$ for $n=0,1,2, \ldots$.
12. From $x^{\prime \prime}+9 x=0, x(0)=-1$, and $x^{\prime}(0)=-\sqrt{3}$ we obtain

$$
x=-\cos 3 t-\frac{\sqrt{3}}{3} \sin 3 t=\frac{2}{\sqrt{3}} \sin \left(3 t+\frac{4 \pi}{3}\right)
$$

and $x^{\prime}=2 \sqrt{3} \cos (3 t+4 \pi / 3)$. If $x^{\prime}=3$ then $t=-7 \pi / 18+2 n \pi / 3$ and $t=-\pi / 2+2 n^{-}$ $n=1,2,3, \ldots$.
13. From $k_{1}=40$ and $k_{2}=120$ we compute the effective spring constant $k=4(40)(120) / 10=$ Now, $m=20 / 32$ so $k / m=120(32) / 20=192$ and $x^{\prime \prime}+192 x=0$. Using $x(0)=0$ and $x^{\prime} 11=$ obtain $x(t)=\frac{\sqrt{3}}{12} \sin 8 \sqrt{3} t$.
\therefore. Let m be the mass and k_{1} and k_{2} the spring constants. Then $k=4 k_{1} k_{2} /\left(k_{1}+k_{2}\right)$ is the effective spring constant of the system. Since the initial mass stretches one spring $\frac{1}{3}$ foot and another spring $\frac{1}{2}$ foot, using $F=k s$, we have $\frac{1}{3} k_{1}=\frac{1}{2} k_{2}$ or $2 k_{1}=3 k_{2}$. The given period of the combined system is $2 \pi / \omega=\pi / 15$, so $\omega=30$. Since a mass weighing 8 pounds is $\frac{1}{4}$ slug, we have from $w^{2}=k / m$

$$
30^{2}=\frac{k}{1 / 4}=4 k \quad \text { or } \quad k=225
$$

We now have the system of equations

$$
\begin{aligned}
\frac{4 k_{1} k_{2}}{k_{1}+k_{2}} & =225 \\
2 k_{1} & =3 k_{2}
\end{aligned}
$$

Solving the second equation for k_{1} and substituting in the first equation, we obtain

$$
\frac{4\left(3 k_{2} / 2\right) k_{2}}{3 k_{2} / 2+k_{2}}=\frac{12 k_{2}^{2}}{5 k_{2}}=\frac{12 k_{2}}{5}=225 .
$$

Thus, $k_{2}=375 / 4$ and $k_{1}=1125 / 8$. Finally, the weight of the first mass is

$$
32 m=\frac{k_{1}}{3}=\frac{1125 / 8}{3}=\frac{375}{8} \approx 46.88 \mathrm{lb}
$$

\because Eor large valucs of t the differential equation is approximated by $x^{\prime \prime}=0$. The solution of this -quation is the linear function $x=c_{1} t+c_{2}$. Thus, for large time, the restoring force will have jecayed to the point where the spring is incapable of returning the mass, and the spring will simply Eep on stretching.

Ifi. As t becomes larger the spring constant increases; that is, the spring is stiffening. It would seem -iat the oscillations would become periodic and the spring would oscillate more rapidly. It is likely Sat the amplitudes of the oscillations would decrease as t increases.
L^{-}
a) above
(b) heading upward

12
a) below
(b) from rest

4
a) below
(b) heading upward

2 a) above
(b) heading downward
$=F m \frac{1}{8} x^{\prime \prime}+x^{\prime}+2 x=0, x(0)=-1$, and $x^{\prime}(0)=8$ we obtain $x=4 t e^{-4 t}-e^{-4 t}$ and
$=8 e^{-4 t}-16 t e^{-4 t}$. If $x=0$ then $t=1 / 4$ second. If $x^{\prime}=0$ then $t=1 / 2$ second and the -reme displacement is $x=e^{-2}$ feet.
\therefore - $-=$ om $\frac{1}{4} x^{\prime \prime}+\sqrt{2} x^{\prime}+2 x=0, x(0)=0$, and $x^{\prime}(0)=5$ we obtain $x=5 t e^{-2 \sqrt{2} t}$ and
$x^{\prime}=5 e^{-2 \sqrt{2} t}(1-2 \sqrt{2} t)$. If $x^{\prime}=0$ then $t=\sqrt{2} / 4$ second and the extreme displacemer: $x=5 \sqrt{2} e^{-1} / 4$ feet.
23. (a) From $x^{\prime \prime}+10 x^{\prime}+16 x=0, x(0)=1$, and $x^{\prime}(0)=0$ we obtain $x=\frac{4}{3} e^{-2 t}-\frac{1}{3} e^{-8 t}$.
(b) From $x^{\prime \prime}+x^{\prime}+16 x=0, x(0)=1$, and $x^{\prime}(0)=-12$ then $x=-\frac{2}{3} e^{-2 t}+\frac{5}{3} e^{-8 t}$.

24 . (a) $x=\frac{1}{3} e^{-8 t}\left(4 e^{6 t}-1\right)$ is not zero for $t \geq 0$; the cxtreme displacement is $x(0)=1$ meter.
(b) $x=\frac{1}{3} e^{-8 t}\left(5-2 e^{6 t}\right)=0$ when $t=\frac{1}{6} \ln \frac{5}{2} \approx 0.153$ second; if $x^{\prime}=\frac{4}{3} e^{-8 t}\left(c^{6 t}-10\right)=0$. $t=\frac{1}{6} \ln 10 \approx 0.384$ second and the extreme displacement is $x=-0.232$ meter.
25. (a) From $0.1 x^{\prime \prime}+0.4 x^{\prime}+2 x=0, x(0)=-1$, and $x^{\prime}(0)=0$ we obtain $x=e^{-2 t}\left[-\cos 4 t-\frac{1}{2}\right.$ si:-
b) $x=\frac{\sqrt{5}}{2} e^{-2 t} \sin (4 t+4.25)$
(c) If $x=0$ then $4 t+4.25=2 \pi, 3 \pi, 4 \pi, \ldots$ so that the first time heading upward is $t=1.294$ seconds.
9. a) From $\frac{1}{4} x^{\prime \prime}+x^{\prime}+5 x=0, x(0)=1 / 2$, and $x^{\prime}(0)=1$ we obtain $x=e^{-2 t}\left(\frac{1}{2} \cos 4 t+\frac{1}{2} \sin t^{-}\right.$
b) $x=\frac{1}{\sqrt{2}} e^{-2 t} \sin \left(4 t+\frac{\pi}{4}\right)$.
c) If $x=0$ then $4 t+\pi / 4=\pi, 2 \pi, 3 \pi, \ldots$ so that the times heading downward are $t=(7+8 n-$ for $n=0,1,2, \ldots$.
d)

2.. $=\operatorname{mom} \frac{5}{16} x^{\prime \prime}+\beta x^{\prime}+5 x=0$ we find that the roots of the auxiliary equation are $m=-\frac{8}{5} \beta \pm \frac{4}{5} \sqrt{43^{2}}-$
a) If $4 \beta^{2}-25>0$ then $\beta>5 / 2$.
(b) If $4 \beta^{2}-25=0$ then $\beta=5 / 2$.
c) If $4 \beta^{2}-25<0$ then $0<\beta<5 / 2$.
25. Eom $0.75 x^{\prime \prime}+\beta x^{\prime}+6 x=0$ and $\beta>3 \sqrt{2}$ we find that the roots of the auxiliary equation \therefore
$m=-\frac{2}{3} \beta \pm \frac{2}{3} \sqrt{3^{2}-18}$ and

$$
x=e^{-23 t / 3}\left[c_{1} \cosh \frac{2}{3} \sqrt{\beta^{2}-18} t+c_{2} \sinh \frac{2}{3} \sqrt{\beta^{2}-18 t}\right] .
$$

If $x(0)=0$ and $x^{\prime}(0)=-2$ then $c_{1}=0$ and $c_{2}=-3 / \sqrt{\beta^{2}-18}$.
If $\frac{1}{2} x^{\prime \prime}+\frac{1}{2} x^{\prime}+6 x=10 \cos 3 t, x(0)=2$, and $x^{\prime}(0)=0$ then

$$
x_{c}=e^{-t / 2}\left(c_{1} \cos \frac{\sqrt{47}}{2} t+c_{2} \sin \frac{\sqrt{47}}{2} t\right)
$$

and $x_{p}=\frac{10}{3}(\cos 3 t+\sin 3 t)$ so that the equation of motion is

$$
x=e^{-t / 2}\left(-\frac{4}{3} \cos \frac{\sqrt{47}}{2} t-\frac{64}{3 \sqrt{47}} \sin \frac{\sqrt{47}}{2} t\right)+\frac{10}{3}(\cos 3 t+\sin 3 t) .
$$

(a) If $x^{\prime \prime}+2 x^{\prime}+5 x=12 \cos 2 t+3 \sin 2 t, x(0)=1$, and $x^{\prime}(0)=5$ then $x_{c}=e^{-t}\left(c_{1} \cos 2 t+c_{2} \sin 2 t\right)$ and $x_{p}=3 \sin 2 t$ so that the equation of motion is

$$
x=\epsilon^{-t} \cos 2 t+3 \sin 2 t
$$

(b)

(c) x

From $x^{\prime \prime}+8 x^{\prime}+16 x=8 \sin 4 t, x(0)=0$, and $x^{\prime}(0)=0$ wc obtain $x_{c}=c_{1} e^{-4 t}+c_{2} t e^{-4 t}$ and $r_{p}=-\frac{1}{4} \cos 4 t$ so that the cquation of motion is

$$
x=\frac{1}{4} e^{-4 t}+t e^{-4 t}-\frac{1}{4} \cos 4 t .
$$

Erom $x^{\prime \prime}+8 x^{\prime}+16 x=e^{-t} \sin 4 t, x(0)=0$, and $x^{\prime}(0)=0$ we obtain $x_{c}=c_{1} e^{-4 t}+c_{2} t e^{-4 t}$ and $\cdots=-\frac{24}{625} e^{-t} \cos 4 t-\frac{7}{625} e^{-t} \sin 4 t$ so that

$$
x=\frac{1}{625} e^{-4 t}(24+100 t)-\frac{1}{625} e^{-t}(24 \cos 4 t+7 \sin 4 t)
$$

As $t \rightarrow \infty$ the displacement $x \rightarrow 0$.
From $2 x^{\prime \prime}+32 x=68 e^{-2 t} \cos 4 t, x(0)=0$, and $x^{\prime}(0)=0$ we obtain $x_{c}=c_{1} \cos 4 t+c_{2} \sin 4 t$ and $\mathrm{n}=\frac{1}{2} e^{-2 t} \cos 4 t-2 e^{-2 t} \sin 4 t$ so that

$$
x=-\frac{1}{2} \cos 4 t+\frac{9}{4} \sin 4 t+\frac{1}{2} e^{-2 t} \cos 4 t-2 e^{-2 t} \sin 4 t
$$

Ence $x=\frac{\sqrt{85}}{4} \sin (4 t-0.219)-\frac{\sqrt{17}}{2} e^{-2 t} \sin (4 t-2.897)$, the amplitude approaches $\sqrt{85} / 4$ as $t \rightarrow \infty$.

Exercises 5.1 Linear Models: Initial-Value Problems

35. 1a) By-Hooke's law the external force is $F(t)=k h(t)$ so that $m x^{\prime \prime}+\beta x^{\prime}+k x=k h(t)$.
bi From $\frac{1}{2} x^{\prime \prime}+2 x^{\prime}+4 x=20 \cos t, x(0)=0$, and $x^{\prime}(0)=0$ we obtain $x_{c}=e^{-2 t}\left(c_{1} \cos 2 t+c_{2} \because\right.$ and $x_{p}=\frac{56}{13} \cos t+\frac{32}{13} \sin t$ so that

$$
x=e^{-2 t}\left(-\frac{56}{13} \cos 2 t-\frac{72}{13} \sin 2 t\right)+\frac{56}{13} \cos t+\frac{32}{13} \sin t .
$$

55. a From $100 x^{\prime \prime}+1600 x=1600 \sin 8 t, x(0)=0$, and $x^{\prime}(0)=0$ we obtain $x_{c}=c_{1} \cos 4 t+c_{2}$: and $x_{p}=-\frac{1}{3} \sin 8 t$ so that by a trig identity

$$
x=\frac{2}{3} \sin 4 t-\frac{1}{3} \sin 8 t=\frac{2}{3} \sin 4 t-\frac{2}{3} \sin 4 t \cos 4 t
$$

b. If $x=\frac{1}{3} \sin 4 t(2-2 \cos 4 t)=0$ then $t=n \pi / 4$ for $n=0,1,2, \ldots$.
c. I: $x^{\prime}=\frac{8}{3} \cos 4 t-\frac{8}{3} \cos 8 t=\frac{8}{3}(1-\cos 4 t)(1+2 \cos 4 t)=0$ then $t=\pi / 3+n \pi / 2$ and $t=\pi / 6-$ Eor $n=0,1,2, \ldots$ at the extreme values. Note: There are many other values of t for ${ }^{-}$ $u^{\prime}=0$.
d) $: \pi / 6+n \pi / 2)=\sqrt{3} / 2 \mathrm{~cm}$ and $x(\pi / 3+n \pi / 2)=-\sqrt{3} / 2 \mathrm{~cm}$
(e) x

3. Е־m. $x^{\prime \prime}+4 x=-5 \sin 2 t+3 \cos 2 t, x(0)=-1$, and $x^{\prime}(0)=1$ we obtain $x_{c}=c_{1} \cos 2 t+c_{6}$. $=\frac{3}{4} t \sin 2 t+\frac{5}{4} t \cos 2 t$, and

$$
x=-\cos 2 t-\frac{1}{8} \sin 2 t+\frac{3}{4} t \sin 2 t+\frac{5}{4} t \cos 2 t .
$$

35. $\equiv \mathrm{m} x^{\prime \prime}+9 x=5 \sin 3 t, x(0)=2$, and $x^{\prime}(0)=0$ we obtain $x_{c}=c_{1} \cos 3 t+c_{2} \sin 3 t, x_{p}=-$ \therefore

$$
x=2 \cos 3 t+\frac{5}{18} \sin 3 t-\frac{5}{6} t \cos 3 t .
$$

3〕. a! From $x^{\prime \prime}+\omega^{2} x=F_{0} \cos \gamma t, x(0)=0$, and $x^{\prime}(0)=0$ we obtain $x_{c}=c_{1} \cos \omega t+c_{2} \sin \ldots$ $x_{p}=\left(F_{0} \cos \gamma t\right) /\left(\omega^{2}-\gamma^{2}\right)$ so that

$$
x=-\frac{F_{0}}{\omega^{2}-\gamma^{2}} \cos \omega t+\frac{F_{0}}{\omega^{2}-\gamma^{2}} \cos \gamma t
$$

b! $\lim _{-i \omega} \frac{F_{0}}{\omega^{2}-\gamma^{2}}(\cos \gamma t-\cos \omega t)=\lim _{\gamma \rightarrow \omega} \frac{-F_{0} t \sin \gamma t}{-2 \gamma}=\frac{F_{0}}{2 \omega} t \sin \omega t$.
40. From $x^{\prime \prime}+\omega^{2} x=F_{0} \cos \omega t, x(0)=0$, and $x^{\prime}(0)=0$ we obtain $x_{c}=c_{1} \cos \omega t+c_{2} \sin \omega t$ and $x_{p}=\left(F_{0} t / 2 \omega\right) \sin \omega t$ so that $x=\left(F_{0} t / 2 \omega\right) \sin \omega t$.
41. (a) From $\cos (u-v)=\cos u \cos v+\sin u \sin v$ and $\cos (u+v)=\cos u \cos v-\sin u \sin v$ we obtain $\sin u \sin v=\frac{1}{2}[\cos (u-v)-\cos (u+v)]$. Letting $u=\frac{1}{2}(\gamma-\omega) t$ and $v=\frac{1}{2}(\gamma+\omega) t$, the result follows.
(b) If $\epsilon=\frac{1}{2}(\gamma-\omega)$ then $\gamma \approx \omega$ so that $x=\left(F_{0} / 2 \epsilon \gamma\right) \sin \epsilon t \sin \gamma t$.
42. See the article "Distinguished Oscillations of a Forced Harmonic Oscillator" by T.G. Procter in The College Mathematics Journal, March, 1995. In this article the author illustrates that for $F_{0}=1$, $\lambda=0.01, \gamma=22 / 9$, and $\omega=2$ the system exhibits beats oscillations on the interval $[0,9 \pi]$, but that this phenomenon is transient as $t \rightarrow \infty$.

43. (a) The gencral solution of the homogeneons equation is

$$
\begin{aligned}
x_{c}(t) & =c_{1} e^{-\lambda t} \cos \left(\sqrt{\omega^{2}-\lambda^{2}} t\right)+c_{2} e^{-\lambda t} \sin \left(\sqrt{\omega^{2}-\lambda^{2}} t\right) \\
& =A e^{-\lambda t} \sin \left[\sqrt{\omega^{2}-\lambda^{2}} t+\phi\right]
\end{aligned}
$$

where $A=\sqrt{c_{1}^{2}+c_{2}^{2}}, \sin \phi=c_{1} / A$, and $\cos \phi=c_{2} / A$. Now

$$
x_{p}(t)=\frac{F_{0}\left(\omega^{2}-\gamma^{2}\right)}{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}} \sin \gamma t+\frac{F_{0}(-2 \lambda \gamma)}{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}} \cos \gamma t=A \sin (\gamma t+\theta)
$$

where

$$
\sin \theta=\frac{\frac{F_{0}(-2 \lambda \gamma)}{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}}{\frac{F_{0}}{\sqrt{\omega^{2}-\gamma^{2}+4 \lambda^{2} \gamma^{2}}}}=\frac{-2 \lambda \gamma}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}}
$$

and

$$
\cos \theta=\frac{\frac{F_{0}\left(\omega^{2}-\gamma^{2}\right)}{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}}{\frac{F_{0}}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}}}=\frac{\omega^{2}-\gamma^{2}}{\sqrt{\left(\omega^{2}-\gamma^{2}\right)^{2}+4 \lambda^{2} \gamma^{2}}} .
$$

(b) If $g^{\prime}(\gamma)=0$ then $\gamma\left(\gamma^{2}+2 \lambda^{2}-\omega^{2}\right)=0$ so that $\gamma=0$ or $\gamma=\sqrt{\omega^{2}-2 \lambda^{2}}$. The first derivative test shows that g has a maximum value at $\gamma=\sqrt{\omega^{2}-2 \lambda^{2}}$. The maximum value of g is

$$
g\left(\sqrt{\omega^{2}-2 \lambda^{2}}\right)=F_{0} / 2 \lambda \sqrt{\omega^{2}-\lambda^{2}}
$$

(c) Wc identify $\omega^{2}=k / m=4, \lambda=\beta / 2$, and $\gamma_{1}=\sqrt{\omega^{2}-2 \lambda^{2}}=\sqrt{4-\beta^{2} / 2}$. As $\beta \rightarrow 0$. and the resonance curve grows without bound at $\gamma_{1}=2$. That is, the system approaci: resonance.

44. (a) For $n=2, \sin ^{2} \gamma t=\frac{1}{2}(1-\cos 2 \gamma t)$. The system is in pure resonance when $2 \gamma_{1} / 2 \pi=u$ when $\gamma_{1}=\omega / 2$.
(b) Note that

$$
\sin ^{3} \gamma t=\sin \gamma t \sin ^{2} \gamma t=\frac{1}{2}[\sin \gamma t-\sin \gamma t \cos 2 \gamma t]
$$

Now

$$
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
$$

so

$$
\sin \gamma t \cos 2 \gamma t=\frac{1}{2}[\sin 3 \gamma t-\sin \gamma t]
$$

and

$$
\sin ^{3} \gamma t=\frac{3}{4} \sin \gamma t-\frac{1}{4} \sin 3 \gamma t
$$

Thus

$$
x^{\prime \prime}+\omega^{2} x=\frac{3}{4} \sin \gamma t-\frac{1}{4} \sin 3 \gamma t
$$

The frequency of free vibration is $\omega / 2 \pi$. Thus, when $\gamma_{1} / 2 \pi=\omega / 2 \pi$ or $\gamma_{1}=\omega$, anc $3 \gamma_{2} / 2 \pi=\omega / 2 \pi$ or $3 \gamma_{2}=\omega$ or $\gamma_{3}=\omega / 3$, the system will be in pure resonance.
(c)

$\therefore 5$. Solving $\frac{1}{20} q^{\prime \prime}+2 q^{\prime}+100 q=0$ we obtain $q(t)=\epsilon^{-20 t}\left(c_{1} \cos 40 t+c_{2} \sin 40 t\right)$. The initial conditions $q(0)=5$ and $q^{\prime}(0)=0$ imply $c_{1}=5$ and $c_{2}=5 / 2$. Thus

$$
q(t)=e^{-20 t}\left(5 \cos 40 t+\frac{5}{2} \sin 40 t\right)=\sqrt{25+25 / 4} e^{-20 t} \sin (40 t+1.1071)
$$

and $q(0.01) \approx 4.5676$ coulombs. The charge is zcro for the first time when $40 t+1.1071=\pi$ or $t \approx 0.0509$ second.

- Solving $\frac{1}{4} q^{\prime \prime}+20 q^{\prime}+300 q=0$ we obtain $q(t)=c_{1} e^{-20 t}+c_{2} e^{-60 t}$. The initial conditions $q(0)=4$ and $q^{\prime}(0)=0$ imply $c_{1}=6$ and $c_{2}=-2$. Thus

$$
q(t)=6 e^{-20 t}-2 e^{-60 t}
$$

Setting $q=0$ we find $e^{40 t}=1 / 3$ which implics $t<0$. Therefore the charge is not 0 for $t \geq 0$.
\therefore - Solving $\frac{5}{3} q^{\prime \prime}+10 q^{\prime}+30 q=300$ we obtain $q(t)=e^{-3 t}\left(c_{1} \cos 3 t+c_{2} \sin 3 t\right)+10$. The initial conditions $q(0)=q^{\prime}(0)=0$ imply $c_{1}=c_{2}=-10$. Thus

$$
q(t)=10-10 e^{-3 t}(\cos 3 t+\sin 3 t) \quad \text { and } \quad i(t)=60 e^{-3 t} \sin 3 t
$$

Solving $i(t)=0$ we see that the maximum charge occurs when $t=\pi / 3$ and $q(\pi / 3) \approx 10.432$.
55. Solving $q^{\prime \prime}+100 q^{\prime}+2500 q=30$ we obtain $q(t)=c_{1} e^{-50 t}+c_{2} t e^{-50 t}+0.012$. The initial conditions $\geq(0)=0$ and $q^{\prime}(0)=2$ imply $c_{1}=-0.012$ and $c_{2}=1.4$. Thus, using $i(t)=q^{\prime}(t)$ we get

$$
q(t)=-0.012 e^{-50 t}+1.4 t e^{-50 t}+0.012 \quad \text { and } \quad i(t)=2 e^{-50 t}-70 t e^{-50 t}
$$

Solving $i(t)=0$ we see that the maximum charge occurs when $t=1 / 35$ second and $q(1 / 35) \approx$. 01871 coulomb.
\therefore zolving $q^{\prime \prime}+2 q^{\prime}+4 q=0$ we obtain $q_{c}=e^{-t}(\cos \sqrt{3} t+\sin \sqrt{3} t)$. The steady-state charge has the जmm $q_{p}=A \cos t+B \sin t$. Substituting into the differential cquation we find

$$
(3 A+2 B) \cos t+(3 B-2 A) \sin t=50 \cos t
$$

Thus, $A=150 / 13$ and $B=100 / 13$. The steady-state charge is

$$
q_{p}(t)=\frac{150}{13} \cos t+\frac{100}{13} \sin t
$$

\therefore dhe steady-state current is

$$
i_{p}(t)=-\frac{150}{13} \sin t+\frac{100}{13} \cos t
$$

ミミ シ

$$
i_{p}(l)=\frac{E_{0}}{Z}\left(\frac{R}{Z} \sin \gamma t-\frac{X}{Z} \cos \gamma t\right)
$$

$\therefore Z=\sqrt{X^{2}+R^{2}}$ we sec that the amplitude of $i_{p}(l)$ is

$$
A=\sqrt{\frac{E_{0}^{2} R^{2}}{Z^{4}}+\frac{E_{0}^{2} X^{2}}{Z^{4}}}=\frac{E_{0}}{Z^{2}} \sqrt{R^{2}+X^{2}}=\frac{E_{0}}{Z} .
$$

$\because-$－．- －erential cquation is $\frac{1}{2} q^{\prime \prime}+20 q^{\prime}+1000 q=100 \sin 60 t$ ．To use Example 10 in the ter
$\therefore \because E_{0}=100$ and $\hat{i}_{i}=60$ ．Then

$$
\begin{gathered}
X=L \uparrow-\frac{1}{c \gamma}=\frac{1}{2}(60)-\frac{1}{0.001(60)} \approx 13.3333 \\
Z=\sqrt{X^{2}+R^{2}}=\sqrt{X^{2}+400} \approx 24.0370 \\
\frac{E_{0}}{Z}=\frac{100}{7} \approx 4.1603 .
\end{gathered}
$$

E．．．．PYoblem 50，then

$$
i_{p}(t) \approx 4.1603 \sin (60 t+\phi)
$$

$\therefore \dot{\therefore} \dot{-2} \rho=-X / Z$ and $\cos \phi=R / Z$ ．Thus $\tan \phi=-X / R \approx-0.6667$ and ϕ is a fourth q a $\therefore \therefore$ रow $\phi \approx-0.5880$ and

$$
i_{p}(t)=4.1603 \sin (60 t-0.5880)
$$

$\because \therefore \quad \therefore-\cdots \frac{1}{2} q^{\prime \prime}+20 q^{\prime}+1000 q=0$ we obtain $q_{c}(t)=e^{-20 t}\left(c_{1} \cos 40 t+c_{2} \sin 40 t\right)$ ．The stcac： $\therefore \quad$ Las the form $q_{p}(t)=A \sin 60 t+B \cos 60 t+C \sin 40 t+D \cos 40 t$ ．Substituting $:-$ ．－atital cquation we find

$$
\begin{aligned}
& (-1600 A-2400 B) \sin 60 t+(2400 A-1600 B) \cos 60 t \\
& \quad+(400 C-1600 D) \sin 40 t+(1600 C+400 D) \cos 40 t \\
& =200 \sin 60 t+400 \cos 40 t
\end{aligned}
$$

三～－．ting coefficients we obtain $A=-1 / 26, B=-3 / 52, C=4 / 17$ ，and $D=1 / 17$ ．The \cdot $\therefore-$－－：harge is

$$
q_{p}(t)=-\frac{1}{26} \sin 60 t-\frac{3}{52} \cos 60 t+\frac{4}{17} \sin 40 t+\frac{1}{17} \cos 40 t
$$

$\therefore-$－-2 steady－state current is

$$
i_{p}(t)=-\frac{30}{13} \cos 60 t+\frac{45}{13} \sin 60 t+\frac{160}{17} \cos 40 t-\frac{40}{17} \sin 40 t .
$$

53. Solving $\frac{1}{2} q^{\prime \prime}+10 q^{\prime}+100 q=150$ we obtain $q(t)=e^{-10 t}\left(c_{1} \cos 10 t+c_{2} \sin 10 t\right)+3 / 2$. The initial conditions $q(0)=1$ and $q^{\prime}(0)=0$ imply $c_{1}=c_{2}=-1 / 2$. Thus

$$
q(t)=-\frac{1}{2} e^{-10 t}(\cos 10 t+\sin 10 t)+\frac{3}{2}
$$

As $t \rightarrow \infty: q(t) \rightarrow 3 / 2$.
54. In Problem 50 it is shown that the amplitude of the steady-state curront is E_{0} / Z, where $Z=\sqrt{X^{2}+R^{2}}$ and $X=L \gamma-1 / C \gamma$. Since E_{0} is constant the amplitude will be a maximum when Z is a minimum. Since R is constant, Z will be a minimum when $X=0$. Solving $L_{\gamma}^{\gamma}-1 / C \gamma=0$ for γ we obtain $\gamma=1 / \sqrt{L C}$. The maximum amplitude will be E_{0} / R.
55. By Problem 50 the amplitucle of the steady-state curront is E_{0} / Z, where $Z=\sqrt{X^{2}+R^{2}}$ and $X=L_{\gamma}-1 / C \gamma$. Since E_{0} is constant the amplitude will be a maximum when Z is a minimum. Since R is constant, Z will be a minimum when $X=0$. Solving $L \gamma-1 / C \gamma=0$ for C we obtain $C=1 / L \gamma^{2}$.
E. Solving $0.1 q^{\prime \prime}+10 q=100 \sin \gamma t$ we obtain

$$
q(t)=c_{1} \cos 10 t+c_{2} \sin 10 t+q_{p}(t)
$$

where $q_{p}(t)=A \sin \gamma t+B \cos \gamma t$. Substituting $q_{p}(t)$ into the differential cquation we find

$$
\left(100-\gamma^{2}\right) A \sin \gamma t+\left(100-\gamma^{2}\right) B \cos \gamma t=100 \sin \gamma t
$$

Equating coefficients we obtain $A=100 /\left(100-\gamma^{2}\right)$ and $B=0$. Thus, $q_{p}(t)=\frac{100}{1.00-\gamma^{2}} \sin \gamma t$. The initial conditions $q(0)=q^{\prime}(0)=0$ imply $c_{1}=0$ and $c_{2}=-10 \gamma /\left(100-\gamma^{2}\right)$. The charge is

$$
q(t)=\frac{10}{100-\gamma^{2}}(10 \sin \gamma t-\gamma \sin 10 t)
$$

and the current is

$$
i(t)=\frac{100 \gamma}{100-\gamma^{2}}(\cos \gamma t-\cos 10 t)
$$

-- In an $L C$-series circuit there is no resistor: so the differential equation is

$$
L \frac{d^{2} q}{d t^{2}}+\frac{1}{C} q=E(t)
$$

Then $q(t)=c_{1} \cos (t / \sqrt{L C}) \div c_{2} \sin (t / \sqrt{L C})+q_{p}(t)$ where $q_{p}(t)=A \sin \gamma t+B \cos \gamma t$. Sulsstituting (t) into the differential equation we find

$$
\left(\frac{1}{C}-L \gamma^{2}\right) A \sin \gamma t \div\left(\frac{1}{C}-L \gamma^{2}\right) B \cos \gamma t=E_{0} \cos \gamma t
$$

Equating coefficients we obtain $A=0$ and $B=E_{0} C /\left(1-L C \gamma^{2}\right)$. Thus, the charge is

$$
q(t)=c_{1} \cos \frac{1}{\sqrt{L C}} t+c_{2} \sin \frac{1}{\sqrt{L C}} t+\frac{E_{0} C}{1-L C \gamma^{2}} \cos \gamma t
$$

Exercises 5.1 Linear Models: Initial-Value Problems

The initial conditions $q(0)=q_{0}$ and $q^{\prime}(0)=i_{0}$ imply $c_{1}=q_{0}-E_{0} C /\left(1-L C \gamma^{2}\right)$ and $c_{2}=i_{1}$ The current is $i(t)=q^{\prime}(t)$ or

$$
\begin{aligned}
i(t) & =-\frac{c_{1}}{\sqrt{L C}} \sin \frac{1}{\sqrt{L C}} t+\frac{c_{2}}{\sqrt{L C}} \cos \frac{1}{\sqrt{L C}} t-\frac{E_{0} C \gamma}{1-L C \gamma^{2}} \sin \gamma t \\
& =i_{0} \cos \frac{1}{\sqrt{L C}} t-\frac{1}{\sqrt{L C}}\left(q_{0}-\frac{E_{0} C}{1-L C \gamma^{2}}\right) \sin \frac{1}{\sqrt{L C}} t-\frac{E_{0} C \gamma}{1-L C \gamma^{2}} \sin \gamma t .
\end{aligned}
$$

55. When the circuit is in resonance the form of $q_{p}(t)$ is $q_{p}(t)=A t \cos k t+B t \sin k t$ where $k=1$ Substituting $q_{p}(t)$ into the differential equation we find

$$
q_{p}^{\prime \prime}+k^{2} q_{p}=-2 k A \sin k t+2 k B \cos k t=\frac{E_{0}}{L} \cos k t
$$

Equating coefficients we obtain $A=0$ and $B=E_{0} / 2 k L$. The charge is

$$
q(t)=c_{1} \cos k t+c_{2} \sin k t+\frac{E_{0}}{2 k L} t \sin k t .
$$

The initial conditions $q(0)=q_{0}$ and $q^{\prime}(0)=i_{0}$ imply $c_{1}=q_{0}$ and $c_{2}=i_{0} / k$. The current is

$$
\begin{aligned}
i(t) & =-c_{1} k \sin k t+c_{2} k \cdot \cos k \cdot t+\frac{E_{0}}{2 k L}(k t \cos k t+\sin k t) \\
& =\left(\frac{E_{0}}{2 k L}-q_{0} k\right) \sin k t+i_{0} \cos k t+\frac{E_{0}}{2 L} t \cos k t .
\end{aligned}
$$

Exercises 5.2

Linear Modelst Boundary-Value Problems

1. (a) The gencral solution is

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+\frac{w_{0}}{24 E I} x^{4}
$$

The boundary conditions are $y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(L)=0, y^{\prime \prime \prime}(L)=0$. The f:conditions give $c_{1}=0$ and $c_{2}=0$. The conditions at $x=L$ give the system

$$
\begin{aligned}
2 c_{3}+6 c_{4} L+\frac{w_{0}}{2 E I} L^{2} & =0 \\
6 c_{4}+\frac{w_{0}}{E I} L & =0
\end{aligned}
$$

Solving, we obtain $c_{3}=w_{0} L^{2} / 4 E I$ and $c_{4}=-w_{0} L / 6 E I$. The deflection is

$$
y(x)=\frac{w_{0}}{24 E I}\left(6 L^{2} x^{2}-4 L x^{3}+x^{4}\right) .
$$

(b)

2. (a) The general solution is

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+\frac{w_{0}}{24 E I} x^{4}
$$

The boundary conditions are $y(0)=0, y^{\prime \prime}(0)=0, y(L)=0, y^{\prime \prime}(L)=0$. The first two conditions give $c_{1}=0$ and $c_{3}=0$. The conditions at $x=L$ give the system

$$
\begin{aligned}
c_{2} L+c_{4} L^{3} \div \frac{u_{0}}{24 E I} L^{4} & =0 \\
6 c_{4} L+\frac{u_{0}}{2 E I} L^{2} & =0 .
\end{aligned}
$$

Solving, we obtain $c_{2}=w_{0} L^{3} / 24 E I$ and $c_{4}=-w_{0} L / 12 E I$. The deflection is

$$
y(x)=\frac{w_{0}}{24 E I}\left(L^{3} x-2 L x^{3}+x^{4}\right) .
$$

(b)

- (a) The general solution is

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+\frac{w_{0}}{24 E I} x^{4}
$$

The boundary conditions are $y(0)=0, y^{\prime}(0)=0, y(L)=0, y^{\prime \prime}(L)=0$. The first two conditions give $c_{1}=0$ and $c_{2}=0$. The conditions at $x=L$ give the system

$$
\begin{aligned}
c_{3} L^{2}+c_{4} L^{3}+\frac{w_{0}}{24 E I} L^{4} & =0 \\
2 c_{3}+6 c_{4} L+\frac{w_{0}}{2 E I} L^{2} & =0
\end{aligned}
$$

Solving, we obtain $c_{3}=w_{0} L^{2} / 16 E I$ and $c_{4}=-5 u_{0} L / 48 E I$. The deflection is

$$
y(x)=\frac{u_{0}}{48 E I}\left(3 L^{2} x^{2}-5 L x^{3}+2 x^{4}\right) .
$$

(b)

4. (a) The general solution is

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+\frac{w_{0} L^{4}}{E I \pi^{4}} \sin \frac{\pi}{L} x
$$

The boundary conditions are $y(0)=0, y^{\prime}(0)=0, y(L)=0, y^{\prime \prime}(L)=0$. The first two conn: give $c_{1}=0$ and $c_{2}=-w_{0} L^{3} / E I \pi^{3}$. The conditions at $x=L$ give the system

$$
\begin{aligned}
c_{3} L^{2}+c_{4} L^{3}+\frac{w_{0}}{E I \pi^{3}} L^{4} & =0 \\
2 c_{3}+6 c_{4} L & =0
\end{aligned}
$$

Solving, we obtain $c_{3}=3 w_{0} L^{2} / 2 E I \pi^{3}$ and $c_{4}=-w_{0} L / 2 E I \pi^{3}$. The deflection is

$$
y(x)=\frac{w_{0} L}{2 E I \pi^{3}}\left(-2 L^{2} x+3 L x^{2}-x^{3}+\frac{2 L^{3}}{\pi} \sin \frac{\pi}{L} x\right)
$$

(b)

(c) Using a CAS we find the maximum deflection to be 0.270806 when $x=0.572536$.
5. (a) The general solution is

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}+\frac{w_{0}}{120 E I} x^{5}
$$

The boundary conditions are $y(0)=0, y^{\prime \prime}(0)=0, y(L)=0, y^{\prime \prime}(L)=0$. The first two conci: give $c_{1}=0$ and $c_{3}=0$. The conditions at $x=L$ give the system

$$
\begin{aligned}
c_{2} L+c_{4} L^{3}+\frac{w_{0}}{120 E I} L^{5} & =0 \\
6 c_{4} L+\frac{w_{0}}{6 E I} L^{3} & =0
\end{aligned}
$$

Solving. we obtain $c_{2}=7 w_{0} L^{4} / 360 E I$ and $c_{4}=-w_{0} L^{2} / 36 E I$. The deflection is

$$
y(x)=\frac{w_{0}}{360 E I}\left(7 L^{4} x-10 L^{2} x^{3}+3 x^{5}\right)
$$

(b)

(c) Using a CAS we find the maximum deflcction to be 0.234799 when $x=0.51933$.
6. (a) $y_{\text {max }}=y(L)=w_{0} L^{4} / 8 E I$
(b) Replacing both L and x by $L / 2$ in $y(x)$ we obtain $w_{0} L^{4} / 128 E I$, which is $1 / 16$ of the maximum deflection when the length of the beam is L.
(c) $y_{\max }=y(L / 2)=5 w_{0} L^{4} / 384 E I$
(d) The maximum deflection in Example 1 is $y(L / 2)=\left(w_{0} / 24 E I\right) L^{4} / 16=w_{0} L^{4} / 384 E I$, which is $1 / 5$ of the maximum displacement of the beam in part (c).
\therefore The gencral solution of the differential equation is

$$
y=c_{1} \cosh \sqrt{\frac{P}{E I}} x+c_{2} \sinh \sqrt{\frac{P}{E I}} x+\frac{w_{0}}{2 P} x^{2}+\frac{w_{0} E I}{P^{2}}
$$

Setting $y(0)=0$ we obtain $c_{1}=-u_{0} E I / P^{2}$, so that

$$
y=-\frac{w_{0} E I}{P^{2}} \cosh \sqrt{\frac{P}{E I}} x+c_{2} \sinh \sqrt{\frac{P}{E I}} x+\frac{w_{0}}{2 P} x^{2}+\frac{w_{0} E I}{P^{2}} .
$$

Sctting $y^{\prime}(L)=0$ we find

$$
c_{2}=\left(\sqrt{\frac{P}{E I}} \frac{w_{0} E I}{P^{2}} \sinh \sqrt{\frac{P}{E I}} L-\frac{w_{0} L}{P}\right) / \sqrt{\frac{P}{E I}} \cosh \sqrt{\frac{P}{E I}} L .
$$

5. The general solution of the differential equation is

$$
y=c_{1} \cos \sqrt{\frac{P}{E I}} x+c_{2} \sin \sqrt{\frac{P}{E I}} x+\frac{w_{0}}{2 P} x^{2}+\frac{w_{0} E I}{P^{2}}
$$

Setting $y(0)=0$ we obtain $c_{1}=-w_{0} E I / P^{2}$, so that

$$
y=-\frac{w_{0} E I}{P^{2}} \cos \sqrt{\frac{P}{E I}} x+c_{2} \sin \sqrt{\frac{P}{E I}} x+\frac{w_{0}}{2 P} x^{2}+\frac{w_{0} E I}{P^{2}} .
$$

Setting $y^{\prime}(L)=0$ we find

$$
c_{2}=\left(-\sqrt{\frac{P}{E I}} \frac{u_{0} E I}{P^{2}} \sin \sqrt{\frac{P}{E I}} L-\frac{u_{0} L}{P}\right) / \sqrt{\frac{P}{E I}} \cos \sqrt{\frac{P}{E I}} L .
$$

9. This is Example 2 in the text with $L=\pi$. The cigenvalues are $\lambda_{n}=n^{2} \pi^{2} / \pi^{2}=n^{2}: n=1$. and the corresponding cigenfunctions are $y_{n}=\sin (n \pi x / \pi)=\sin n x, n=1,2,3, \ldots$.
10. This is Example 2 in the text with $L=\pi / 4$. The eigenvalues are $\lambda_{n}=n^{2} \pi^{2} /(\pi / 4)^{2}=16 n^{-}$ $2,3, \ldots$ and the eigenfunctions are $y_{n}=\sin (n \pi x /(\pi / 4))=\sin 4 n x: n=1,2,3, \ldots$.
11. For $\lambda \leq 0$ the only solution of the boundary-value problem is $y=0$. For $\lambda=\alpha^{2}>0$ we :

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

Now

$$
y^{\prime}(x)=-c_{1} \alpha \sin \alpha x+c_{2} \alpha \cos \alpha x
$$

and $y^{\prime}(0)=0$ implies $c_{2}=0$, so

$$
y(L)=c_{1} \cos \alpha L=0
$$

gives

$$
\alpha L=\frac{(2 n-1) \pi}{2} \quad \text { or } \quad \lambda=\alpha^{2}=\frac{(2 n-1)^{2} \pi^{2}}{4 L^{2}}, n=1,2,3, \ldots
$$

The eigenvalues $(2 n-1)^{2} \pi^{2} / 4 L^{2}$ correspond to the cigenfunctions $\cos \frac{(2 n-1) \pi}{2 L} x$ for $n=1,2,3, \ldots$.
12. For $\lambda \leq 0$ the only solution of the boundary-value problem is $y=0$. For $\lambda=\alpha^{2}>0$ we 1 .

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

Since $y(0)=0$ implies $c_{1}=0 . y=c_{2} \sin x d x$. Now

$$
y^{\prime}\left(\frac{\pi}{2}\right)=c_{2} \alpha \cos a \frac{\pi}{2}=0
$$

gives

$$
\alpha \frac{\pi}{2}=\frac{(2 n-1) \pi}{2} \quad \text { or } \quad \lambda=\alpha^{2}=(2 n-1)^{2}, n=1,2,3, \ldots .
$$

The eigenvalues $\lambda_{n}=(2 n-1)^{2}$ correspond to the eigenfunctions $y_{n}=\because \because(2 n-1) x$.
23. For $\lambda=-\alpha^{2}<0$ the only solution of the boundary-value problem is $y=0$. For $\lambda=1$. $y=c_{1} x+c_{2}$. Now $y^{\prime}=c_{1}$ and $y^{\prime}(0)=0$ implics $c_{1}=0$. Then $y=c_{2}$ and $y^{\prime}(\pi)=0$. Thi: an eigenvalue with corresponding cigenfunction $y=1$.
For $\lambda=\alpha^{2}>0$ we have

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x .
$$

Now

$$
y^{\prime}(x)=-c_{1} \alpha \sin \alpha x+c_{2} \alpha \cos \alpha x
$$

and $y^{\prime}(0)=0$ implies $c_{2}=0$, so

$$
y^{\prime}(\pi)=-c_{1} \alpha \sin \alpha \pi=0
$$

gives

$$
\alpha \pi=n \pi \quad \text { or } \quad \lambda=a^{2}=n^{2}, n=1,2,3, \ldots .
$$

The eigenvalues n^{2} correspond to the cigenfunctions $\cos n x$ for $n=0,1,2 \ldots$.
For $\lambda \leq 0$ the only solution of the boundary-value problem is $y=0$. For $\lambda=\alpha^{2}>0$ we have

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

Now $y(-\pi)=y(\pi)=0$ implies

$$
\begin{align*}
& c_{1} \cos \alpha \pi-c_{2} \sin \alpha \pi=0 \\
& c_{1} \cos \alpha \pi+c_{2} \sin \alpha \pi=0 . \tag{1}
\end{align*}
$$

This homogencous system will have a nontrivial solution when

$$
\left|\begin{array}{rr}
\cos \alpha \pi & -\sin \alpha \pi \\
\cos \alpha \pi & \sin \alpha \pi
\end{array}\right|=2 \sin \alpha \pi \cos \alpha \pi=\sin 2 \alpha \pi=0
$$

Then

$$
2 \alpha \pi=n \pi \quad \text { or } \quad \lambda=\alpha^{2}=\frac{n^{2}}{4} ; \quad n=1,2,3, \ldots
$$

When $n=2 k-1$ is odd, the eigenvalucs are $(2 k-1)^{2} / 4$. Since $\cos (2 k-1) \pi / 2=0$ and \therefore in $(2 k-1) \pi / 2 \neq 0$, we sec from either equation in (1) that $c_{2}=0$. Thus, the eigenfunctions corresponding to the eigenvalucs $(2 k-1)^{2} / 4$ are $y=\cos (2 k-1) x / 2$ for $k=1,2,3, \ldots$. Similarly, then $n=2 k$ is even, the eigenvalues are k^{2} with corresponding eigenfunctions $y=\sin k x$ for $\vdots=1,2,3, \ldots$.

The auxiliary equation has solutions

$$
m=\frac{1}{2}(-2 \pm \sqrt{4-4(\lambda+1)})=-1 \pm \alpha .
$$

Er $\lambda=-\alpha^{2}<0$ we have

$$
y=e^{-x}\left(c_{1} \cosh \alpha x+c_{2} \sinh \alpha x\right)
$$

The boundary conditions imply

$$
\begin{aligned}
& y(0)=c_{1}=0 \\
& y(5)=c_{2} e^{-5} \sinh 5 \alpha=0
\end{aligned}
$$

- $c_{1}=c_{2}=0$ and the only solution of the boundary-value problem is $y=0$.

ミ $\lambda=0$ we have

$$
y=c_{1} e^{-x}+c_{2} x e^{-x}
$$

:-id the only solution of the boundary-valuc problem is $y=0$.
$\equiv \because \lambda=\alpha^{2}>0$ we have

$$
y=e^{-x}\left(c_{1} \cos \alpha x+c_{2} \sin \alpha x\right)
$$

x $y(0)=0$ implies $c_{1}=0$, so

$$
y(5)=c_{2} e^{-5} \sin 5 \alpha=0
$$

\%es

$$
5 \alpha=n \pi \quad \text { or } \quad \lambda=\alpha^{2}=\frac{n^{2} \pi^{2}}{25}, n=1,2,3, \ldots
$$

Fe eigenvalues $\lambda_{n}=\frac{n^{2} \pi^{2}}{25}$ correspond to the cigenfunctions $y_{n}=e^{-x} \sin \frac{n \pi}{5} x$ for $n=1$, 2.
$\therefore \equiv: \because \lambda<-1$ the only solution of the boundary-value problem is $y=0$. For $\lambda=-1 \mathrm{w}$ -
$\therefore=c_{1} x+c_{2}$. Now $y^{\prime}=c_{1}$ and $y^{\prime}(0)=0$ implies $c_{1}=0$. Then $y=c_{2}$ and $y^{\prime}(1)=0$. Thus, $\therefore=$ \therefore an eigenvalue with corresponding eigenfunction $y=1$.
$\Xi \lambda>-1$ or $\lambda+1=\alpha^{2}>0$ we have

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x
$$

\therefore

$$
y^{\prime}=-c_{1} \alpha \sin \alpha x+c_{2} \alpha \cos \alpha x
$$

$\therefore y^{\prime}(0)=0$ implics $c_{2}=0$, so

$$
y^{\prime}(1)=-c_{1} \alpha \sin \alpha=0
$$

3

$$
\alpha=n \pi, \quad \lambda+1=\alpha^{2}=n^{2} \pi^{2}, \quad \text { or } \quad \lambda=n^{2} \pi^{2}-1, n=1,2,3, \ldots .
$$

-i. cigenvalues $n^{2} \pi^{2}-1$ correspond to the cigenfunctions $\cos n \pi x$ for $n=0,1,2, \ldots$.
$\because-\ddot{Z} \lambda=\alpha^{2}>0$ a general solution of the given differential equation is

$$
y=c_{1} \cos (\alpha \ln x)+c_{2} \sin (\alpha \ln x)
$$

5 See $\ln 1=0$, the boundary condition $y(1)=0$ implies $c_{1}=0$. Therefore

$$
y=c_{2} \sin (\alpha \operatorname{In} x)
$$

$\because-1 \cdot g \ln e^{\pi}=\pi$ we find that $y\left(e^{\pi}\right)=0$ implics

$$
c_{2} \sin \alpha \pi=0
$$

$\because: \pi=n \pi, n=1,2,3, \ldots$. The eigenvalues and cigenfunctions are, in turn,

$$
\lambda=\alpha^{2}=n^{2}, \quad n=1,2,3, \ldots \quad \text { and } \quad y=\sin (n \cdot \ln x)
$$

For $\lambda \leq 0$ the only solution of the boundary-value problem is $y=0$.
18. For $\lambda=0$ the general solution is $y=c_{1}+c_{2} \ln x$. Now $y^{\prime}=c_{2} / x$, so $y^{\prime}\left(e^{-1}\right)=c_{2} e=0$ implies $c_{2}=0$. Then $y=c_{1}$ and $y(1)=0$ gives $c_{1}=0$. Thus $y(x)=0$.

For $\lambda=-\alpha^{2}<0, y=c_{1} x^{-\alpha}+c_{2} x^{\prime x}$. The boundary conditions give $c_{2}=c_{1} e^{2 \alpha}$ and $c_{1}=0$, so that $c_{2}=0$ and $y(x)=0$.

For $\lambda=\alpha^{2}>0, y=c_{1} \cos (\alpha \ln x)+c_{2} \sin (\alpha \ln x)$. From $y(1)=0$ we obtain $c_{1}=0$ and $y=$ $c_{2} \sin (\alpha \ln x)$. Now $y^{\prime}=c_{2}(\alpha / x) \cos (\alpha \ln x)$, so $y^{\prime}\left(e^{-1}\right)=c_{2} e \alpha \cos \alpha=0$ implies $\cos \alpha=0$ or $\alpha=(2 n-1) \pi / 2$ and $\lambda=\alpha^{2}=(2 n-1)^{2} \pi^{2} / 4$ for $n=1,2,3, \ldots$ The corresponding eigenfunctions are

$$
y_{n}=\sin \left(\frac{2 n-1}{2} \pi \ln x\right)
$$

19. For $\lambda=\alpha^{1}: \alpha>0$, the general solution of the boundary-value problem

$$
y^{(4)}-\lambda y=0, \quad y(0)=0, y^{\prime \prime}(0)=0, y(1)=0, y^{\prime \prime}(1)=0
$$

is

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x+c_{3} \cosh \alpha x+c_{4} \sinh \alpha x
$$

The boundary conditions $y(0)=0 . y^{\prime \prime}(0)=0$ give $c_{1}+c_{3}=0$ and $-c_{1} \alpha^{2}+c_{3} \alpha^{2}=0$, from which we conclude $c_{1}=c_{3}=0$. Thus, $y=c_{2} \sin \alpha x+c_{4} \sinh \alpha x$. The boundary conditions $y(1)=0$, $y^{\prime \prime}(1)=0$ then give

$$
\begin{aligned}
c_{2} \sin \alpha+c_{4} \sinh \alpha & =0 \\
-c_{2} \alpha^{2} \sin \alpha+c_{4} \alpha^{2} \sinh \alpha & =0
\end{aligned}
$$

In order to have nonzero solutions of this system, we must have the determinant of the coefficients equal zero, that is,

$$
\left|\begin{array}{cc}
\sin \alpha & \sinh \alpha \\
-\alpha^{2} \sin \alpha & \alpha^{2} \sinh \alpha
\end{array}\right|=0 \quad \text { or } \quad 2 \alpha^{2} \sinh \alpha \sin \alpha=0
$$

But since $\alpha>0$, the only way that this is satisfied is to have $\sin \alpha=0$ or $\alpha=n \pi$. The system is then satisfied by choosing $c_{2} \neq 0, c_{4}=0$, and $\alpha=n \pi$. The eigenvalues and corresponding eigenfunctions are then

$$
\lambda_{n}=\alpha^{4}=(n \pi)^{4}, n=1,2,3, \ldots \quad \text { and } \quad y=\sin n \pi x
$$

\therefore For $\lambda=\alpha^{4}, \alpha>0$, the general solution of the differential equation is

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x+c_{3} \cosh \alpha x+c_{4} \sinh \alpha x
$$

The boundary conditions $y^{\prime}(0)=0, y^{\prime \prime \prime}(0)=0$ give $c_{2} \alpha+c_{4} \alpha=0$ and $-c_{2} \alpha^{3}+c_{4} \alpha^{3}=0$ from which we conclude $c_{2}=c_{4}=0$. Thus, $y=c_{1} \cos \alpha x+c_{3} \cosh \alpha x$. The boundary conditions $y(\pi)=0$,

Exercises 5.2 Lincar Models: Boundary-Value Problems

$y^{\prime \prime}(\pi)=0$ then give

$$
\begin{aligned}
c_{2} \cos \alpha \pi+c_{4} \cosh \alpha \pi & =0 \\
-c_{2} \lambda^{2} \cos \alpha \pi+c_{1} \lambda^{2} \cosh \alpha \pi & =0
\end{aligned}
$$

The determinant of the coefficients is $2 \alpha^{2} \cosh \alpha \cos \alpha=0$. But since $\alpha>0$, the only way $:$ this is satisfied is to have $\cos \alpha \pi=0$ or $\alpha=(2 n-1) / 2, n=1,2,3, \ldots$. The eigenvalues orresponding cigenfunctions are

$$
\lambda_{n}=\alpha^{4}=\left(\frac{2 n-1}{2}\right)^{4}: n=1,2,3, \ldots \quad \text { and } \quad y=\cos \left(\frac{2 n-1}{2}\right) x .
$$

21. If restraints are put on the column at $x=L / 4, x=L / 2$, and $x=3 L / 4$, then the critical coad will be P_{4}.
22. (a) The general solution of the differential equation is

$$
y=c_{1} \cos \sqrt{\frac{P}{E I}} x+c_{2} \sin \sqrt{\frac{P}{E I}} x+\delta
$$

Since the column is cmbedded at $x=0$, the boundary conditions arc $y(0)=y^{\prime}(0)=0$. If $\bar{d}=$ this implies that $c_{1}=c_{2}=0$ and $y(x)=0$. That is, there is no deffection.
b) If $\delta \neq 0$, the boundary conditions give, in turn, $c_{1}=-\delta$ and $c_{2}=0$. Then

$$
y=\delta\left(1-\cos \sqrt{\frac{P}{E I}} x\right)
$$

In order to satisfy the boundary condition $y(L)=\delta$ we must have

$$
\delta=\delta\left(1-\cos \sqrt{\frac{P}{E I}} L\right) \quad \text { or } \quad \cos \sqrt{\frac{P}{E I}} L=0
$$

This gives $\sqrt{P / E I} L=n \pi / 2$ for $n=1,2,3, \ldots$. The smallest value of P_{n} : the Euler loa: then

$$
\sqrt{\frac{P_{1}}{E I}} L=\frac{\pi}{2} \quad \text { or } \quad P_{1}=\frac{1}{4}\left(\frac{\pi^{2} E I}{L^{2}}\right)
$$

23. I: $\lambda=\alpha^{2}=P / E I$, then the solution of the differential equation is

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x+c_{3} x+c_{4} .
$$

The conditions $y(0)=0 . y^{\prime \prime}(0)=0$ yield, in turn. $c_{1}+c_{1}=0$ and $c_{1}=0$. With $c_{1}=0$ and $c_{4}=0$ the solution is $y=c_{2} \sin \alpha x+c_{3} x$. The conditions $y(L)=0, y^{\prime \prime}(L)=0$, then yield

$$
c_{2} \sin \alpha L+c_{3} L=0 \quad \text { and } \quad c_{2} \sin \alpha L=0
$$

Hence, nontrivial solutions of the problem exist only if $\sin \alpha L=0$. From this point on, the analysis is the same as in Example 3 in the text.
$\because \therefore$ (a) The boundary-valuc problem is

$$
\frac{d^{4} y}{d x^{4}}+\lambda \frac{d^{2} y}{d x^{2}}=0, \quad y(0)=0, y^{\prime \prime}(0)=0, y(L)=0, y^{\prime}(L)=0
$$

where $\lambda=\alpha^{2}=P / E I$. The solution of the differential equation is $y=c_{1} \cos \alpha x+c_{2} \sin \alpha x+$ $c_{3} x+c_{4}$ and the conditions $y(0)=0, y^{\prime \prime}(0)=0$ yield $c_{1}=0$ and $c_{4}=0$. Next, by applying $y(L)=0, y^{\prime}(L)=0$ to $y=c_{2} \sin \alpha x+c_{3} x$ we get the system of equations

$$
\begin{aligned}
c_{2} \sin \alpha L+c_{3} L & =0 \\
\alpha c_{2} \cos \alpha L+c_{3} & =0 .
\end{aligned}
$$

To obtain nontrivial solutions c_{2}, c_{3}, we must have the determinant of the coefficients equal to zero:

$$
\left|\begin{array}{rr}
\sin \alpha L & L \\
\alpha \cos \alpha L & 1
\end{array}\right|=0 \quad \text { or } \quad \tan \beta=\beta
$$

where $\beta=\alpha L$. If β_{n} denotes the positive roots of the last equation, then the eigenvalues are found from $\beta_{n}=\alpha_{n} L=\sqrt{\lambda_{n}} L$ or $\lambda_{n}=\left(\beta_{n} / L\right)^{2}$. From $\lambda=P / E I$ we see that the critical loads are $P_{n}=\beta_{n}^{2} E I / L^{2}$. With the aid of a CAS we find that the first positive root of $\tan \beta=\beta$ is (approximately) $\beta_{1}=4.4934$, and so the Euler load is (approximately) $P_{1}=20.1907 E I / L^{2}$. Finally, if we use $c_{3}=-c_{2} \alpha \cos \alpha L$, then the deflection curves are

$$
y_{n}(x)=c_{2} \sin \alpha_{n} x+c_{3} x=c_{2}\left[\sin \left(\frac{\beta_{n}}{L} x\right)-\left(\frac{\beta_{n}}{L} \cos \beta_{n}\right) x\right] .
$$

(b) With $L=1$ and c_{2} appropriately chosen, the general shape of the first buckling mode,

$$
y_{1}(x)=c_{2}\left[\sin \left(\frac{4.4934}{L} x\right)-\left(\frac{4.4934}{L} \cos (4.4934)\right) x\right],
$$

is shown below.

\therefore The general solution is

$$
y=c_{1} \cos \sqrt{\frac{\rho}{T}} \omega x+c_{2} \sin \sqrt{\frac{\rho}{T}} \omega x
$$

Exercises 5.2 Lincar Models: Boundary-Value Problems

From $y(0)=0$ we obtain $c_{1}=0$. Sctting $y(L)=0$ we find $\sqrt{\rho / T} \omega L=n \pi, n=1,2,3, \ldots$. critical specds are $\omega_{n}=n \pi \sqrt{T} / L \sqrt{\rho}, n=1,2,3, \ldots$. The corresponding deflection curves

$$
y(x)=c_{2} \sin \frac{n \pi}{L} x: \quad n=1,2,3, \ldots
$$

wherc $c_{2} \neq 0$.
26. (a) When $T(x)=x^{2}$ the given differential equation is the Cauchy-Euler cquation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+\rho u^{2} y=0
$$

The solutions of the auxiliary equation

$$
m(m-1)+2 m+\rho u^{2}=m^{2}+m+\rho w^{2}=0
$$

are

$$
m_{1}=-\frac{1}{2}-\frac{1}{2} \sqrt{4 \rho \omega^{2}-1} i, \quad m_{2}=-\frac{1}{2}+\frac{1}{2} \sqrt{4 \rho \omega^{2}-1} i
$$

when $\rho \omega^{2}>0.25$. Thus

$$
y=c_{1} x^{-1 / 2} \cos (\lambda \ln x)+c_{2} x^{-1 / 2} \sin (\lambda \ln x)
$$

where $\lambda=\frac{1}{2} \sqrt{4 \rho \omega^{2}-1}$. Applying $y(1)=0$ gives $c_{1}=0$ and consequently

$$
y=c_{2} x^{-1 / 2} \sin (\lambda \ln x)
$$

The condition $y(\epsilon)=0$ requires $c_{2} e^{-1 / 2} \sin \lambda=0$. We obtain a nontrivial solution : $\lambda_{n}=n \pi, n=1,2,3, \ldots$. But

$$
\lambda_{n}=\frac{1}{2} \sqrt{4 \rho \omega_{n}^{2}-1}=n \pi
$$

Solving for ω_{n} gives

$$
\dot{\omega}_{n}=\frac{1}{2} \sqrt{\left(4 n^{2} \pi^{2}+1\right)} / \rho
$$

The corresponding solutions are

$$
y_{n}(x)=c_{2} x^{-1 / 2} \sin (n \pi \ln x)
$$

(b) y

-1

y

27. The auxiliary equation is $m^{2}+m=m(m+1)=0$ so that $u(r)=c_{1} r^{-1}+c_{2}$. The bounc: conditions $u(a)=u_{0}$ and $u(b)=u_{1}$ yield the systom $c_{1} a^{-1}+c_{2}=u_{0}, c_{1} b^{-1}+c_{2}=u_{1}$. Solving g :

$$
c_{1}=\left(\frac{u_{0}-u_{1}}{b-a}\right) a b \quad \text { and } \quad c_{2}=\frac{u_{1} b-u_{0} a}{b-a} .
$$

Thus

$$
u(r)=\left(\frac{u_{0}-u_{1}}{b-a}\right) \frac{a b}{r}+\frac{u_{1} b-u_{0} a}{b-a}
$$

25. The auxiliary equation is $m^{2}=0$ so that $u(r)=c_{1}+c_{2} \ln r$. The boundary conditions $u(a)=u_{0}$ and $u(b)=u_{1}$ yield the system $c_{1}+c_{2} \ln a=u_{0}, c_{1}+c_{2} \ln b=u_{1}$. Solving gives

$$
c_{1}=\frac{u_{1} \ln a-u_{0} \ln b}{\ln (a / b)} \quad \text { and } \quad c_{2}=\frac{u_{0}-u_{1}}{\ln (a / b)}
$$

Thus

$$
u(r)=\frac{u_{1} \ln a-u_{0} \ln b}{\ln (a / b)}+\frac{u_{0}-u_{1}}{\ln (a / b)} \ln r=\frac{u_{0} \ln (r / b)-u_{1} \ln (r / a)}{\ln (a / b)}
$$

9. The solution of the initial-value problem

$$
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=0, x^{\prime}(0)=v_{0}, \omega^{2}=10 / m
$$

is $x(t)=\left(v_{0} / \omega\right) \sin \omega t$. To satisfy the additional boundary condition $x(1)=0$ we require that $\omega=n \pi, n=1.2,3, \ldots$. The eigenvalues $\lambda=u^{2}=n^{2} \pi^{2}$ and eigenfunctions of the problem are then $x(t)=\left(v_{0} / n \pi\right) \sin n \pi t$. Using $\omega^{2}=10 / m$ we find that the only masses that can pass through the equilibrium position at $t=1$ are $m_{n}=10 / n^{2} \pi^{2}$. Note for $n=1$, the heaviest mass $m_{1}=10 / \pi^{2}$ will not pass through the equilibrium position on the interval $0<t<1$ (the period of $x(t)=\left(v_{0} / \pi\right) \sin \pi t$ is $T=2$. so on $0 \leq t \leq 1$ its graph passes through $x=0$ only at $t=0$ and $t=1$). Whereas for $n>1$, masses of lighter weight will pass through the equilibrium position $n-1$ times prior to passing through at $t=1$. For example, if $n=2$. the period of $x(t)=\left(v_{0} / 2 \pi\right) \sin 2 \pi t$ is $2 \pi / 2 \pi=1$, the mass will pass through $x=0$ only once $\left(t=\frac{1}{2}\right)$ prior to $t=1$: if $n=3$, the poriod of $x(l)=\left(v_{0} / 3 \pi\right) \sin 3 \pi t$ is $\frac{2}{3}$, the mass will pass through $x=0$ twice $\left(t=\frac{1}{3}\right.$ and $\left.t=\frac{2}{3}\right)$ prior to $t=1$: and so on.
\therefore The initial-value problem is

$$
x^{\prime \prime}+\frac{2}{m} x^{\prime}+\frac{k}{m} x=0, \quad x(0)=0, x^{\prime}(0)=v_{0}
$$

With $k=10$, the auxiliary equation has roots $\gamma=-1 / m \pm \sqrt{1-10 \mathrm{~m}} / \mathrm{m}$. Consider the three cases: (i) $m=\frac{1}{10}$. The roots are $\gamma_{1}=\gamma_{2}=10$ and the solution of the differential equation is $r(t)=c_{1} e^{-10 t}+c_{2} t e^{-10 t}$. The initial conditions imply $c_{1}=0$ and $c_{2}=v_{0}$ and so $x(t)=v_{0} t e^{-10 t}$. The condition $x(1)=0$ implies $v_{0} e^{-10}=0$ which is impossible because $v_{0} \neq 0$.
ii) $1-10 m>0$ or $0<m<\frac{1}{10}$. The roots are

$$
\gamma_{1}=-\frac{1}{m}-\frac{1}{m} \sqrt{1-10 m} \quad \text { and } \quad \gamma_{2}=-\frac{1}{m}+\frac{1}{m} \sqrt{1-10 m}
$$

and the solution of the differential equation is $x(t)=c_{1} e^{\gamma 1} t+c_{2} e^{\gamma 2 t}$. The initial conditions imply

$$
\begin{aligned}
c_{1}+c_{2} & =0 \\
\gamma_{1} c_{1}+\uparrow_{2} c_{2} & =v_{0}
\end{aligned}
$$

Exercises 5.2 Linear Models: Boundary-Value Problems

so $c_{1}=v_{0} /\left(\gamma_{1}-\gamma_{2}\right), c_{2}=-v_{0} /\left(\gamma_{1}-\gamma_{2}\right)$, and

$$
x(t)=\frac{v_{0}}{\gamma_{1}-\gamma_{2}}\left(e^{\gamma_{1} t}-e^{\gamma_{2} t}\right) .
$$

Again, $x(1)=0$ is impossible because $v_{0} \neq 0$.
(iii) $1-10 m<0$ or $m>\frac{1}{10}$. The roots of the auxiliary equation are

$$
\gamma_{1}=-\frac{1}{m}-\frac{1}{m} \sqrt{10 m-1} i \quad \text { and } \quad \gamma_{2}=-\frac{1}{m}+\frac{1}{m} \sqrt{10 m-1} i
$$

and the solution of the differential equation is

$$
x(t)=c_{1} e^{-t / m} \cos \frac{1}{m} \sqrt{10 m-1} t+c_{2} e^{-t / m} \sin \frac{1}{m} \sqrt{10 m-1} t .
$$

The initial conditions imply $c_{1}=0$ and $c_{2}=m v_{0} / \sqrt{10 m-1}$, so that

$$
x(t)=\frac{m v_{0}}{\sqrt{10 m-1}} e^{-t / m} \sin \left(\frac{1}{m} \sqrt{10 m-1} t\right)
$$

The condition $x(1)=0$ implies

$$
\begin{aligned}
& \frac{m v_{0}}{\sqrt{10 m-1} e^{-1 / m} \sin \frac{1}{m} \sqrt{10 m-1}}=0 \\
& \sin \frac{1}{m} \sqrt{10 m-1}=0 \\
& \frac{1}{m} \sqrt{10 m-1}=n \pi \\
& \frac{10 m-1}{m^{2}}=n^{2} \pi^{2}, n=1,2: 3, \ldots \\
&\left(n^{2} \pi^{2}\right) m^{2}-10 m+1=0 \\
& m=\frac{10 \sqrt{100-4 n^{2} \pi^{2}}}{2 n^{2} \pi^{2}}=\frac{5 \pm \sqrt{25-n^{2} \pi^{2}}}{n^{2} \pi^{2}} .
\end{aligned}
$$

Since m is real. $25-n^{2} \pi^{2} \geq 0$. If $25-n^{2} \pi^{2}=0$, then $n^{2}=25 / \pi^{2}$; and n is not an integer. $25-n^{2} \pi^{2}=(5-n \pi)(5+n \pi)>0$ and since $n>0,5+n \pi>0$, so $5-n \pi>0$ also. Then n s and so $n=1$. Thercfore the mass m will pass through the equilibrium position when $t=1$:

$$
m_{1}=\frac{5+\sqrt{25-\pi^{2}}}{\pi^{2}} \quad \text { and } \quad m_{2}=\frac{5-\sqrt{25-\pi^{2}}}{\pi^{2}}
$$

31. (a) The gencral solution of the differential equation is $y=c_{1} \cos 4 x+c_{2} \sin 4 x$. From $y_{0}=y$ (! we sec that $y=y_{0} \cos 4 x+c_{2} \sin 4 x$. From $y_{1}=y(\pi / 2)=y_{0}$ we see that any solution. satisfy $y_{0}=y_{1}$. We also see that when $y_{0}=y_{1}, y=y_{0} \cos 4 x+c_{2} \sin 4 x$ is a solution boundary-valuc problem for any choice of c_{2}. Thus, the boundary-value problem docs no ${ }^{-}$ a unique solution for any choice of y_{0} and y_{1}.
(b) Whenever $y_{0}=y_{1}$ there are infinitely many solutions.
(c) When $y_{0} \neq y_{1}$ there will be no solutions.
(d) The boundary-value problem will have the trivial solution when $y_{0}=y_{1}=0$. This solution will not be unique.
\therefore (a) The general solution of the differential equation is $y=c_{1} \cos 4 x+c_{2} \sin 4 x$. From $1=y(0)=c_{1}$ we see that $y=\cos 4 x+c_{2} \sin 4 x$. From $1=y(L)=\cos 4 L+c_{2} \sin 4 L$ we sec that $c_{2}=(1-\cos 4 L) / \sin 4 L$. Thus,

$$
y=\cos 4 x+\left(\frac{1-\cos 4 L}{\sin 4 L}\right) \sin 4 x
$$

will be a unique solution when $\sin 4 L \neq 0$; that is, when $L \neq k \pi / 4$ where $k=1,2,3, \ldots$.
(b) There will be infinitely many solutions when $\sin 4 L=0$ and $1-\cos 4 L=0$; that is, when $L=k \pi / 2$ where $k=1,2,3, \ldots$.
(c) There will be no solution when $\sin 4 L \neq 0$ and $1-\cos 4 L \neq 0$; that is, when $L=k \pi / 4$ whore $k=1,3,5, \ldots$.
d) There can be wo trivial solution since it would fail to satisfy the boundary conditions.
\therefore a) A solution curve has the same y-coordinate at both ends of the interval $\left[-\pi, \pi \pi_{j}^{?}\right.$ and the tangent, lines at the endpoints of the interval are parallel.
b) For $\lambda=0$ the solution of $y^{\prime \prime}=0$ is $y=c_{1} x+c_{2}$. From the first boundary condition we have

$$
y(-\pi)=-c_{1} \pi+c_{2}=y(\pi)=c_{1} \pi \div c_{2}
$$

or $2 c_{1} \pi=0$. Thus, $c_{1}=0$ and $y=c_{2}$. This constant solution is seen to satisfy the boundaryvalue problem.
For $\lambda=-\alpha^{2}<0$ we have $y=c_{1} \cosh \alpha x+c_{2} \sinh \alpha x$. In this case the first boundary condition gives

$$
\begin{aligned}
y(-\pi) & =c_{1} \cosh (-\alpha \pi)+c_{2} \sinh (-\alpha \pi) \\
& =c_{1} \cosh \alpha \pi-c_{2} \sinh \alpha \pi \\
& =y(\pi)=c_{1} \cosh \alpha \pi+c_{2} \sinh \alpha \pi
\end{aligned}
$$

or $2 c_{2} \sinh \alpha \pi=0$. Thus $c_{2}=0$ and $y=c_{1} \cosh \alpha x$. The second boundary condition implies in a similar fashion that $c_{1}=0$. Thus, for $\lambda<0$, the only solution of the boundary-value problem is $y=0$.
For $\lambda=\alpha^{2}>0$ we have $y=c_{1} \cos \alpha x+c_{2} \sin \alpha x$. The first boundary condition implies

$$
\begin{aligned}
y(-\pi) & =c_{1} \cos (-\alpha \pi)+c_{2} \sin (-\alpha \pi) \\
& =c_{1} \cos \alpha \pi-c_{2} \sin \alpha \pi \\
& =y(\pi)=c_{1} \cos \alpha \pi+c_{2} \sin \alpha \pi
\end{aligned}
$$

or $2 c_{2} \sin \alpha \pi=0$. Similarly, the second boundary condition implics $2 c_{1} \alpha \sin \alpha \pi=1$ $c_{1}=c_{2}=0$ the solution is $y=0$. However, if $c_{1} \neq 0$ or $c_{2} \neq 0$, then $\sin \alpha \pi=0$, which in: that α must be an integer, n. Therefore, for c_{1} and c_{2} not both $0, y=c_{1} \cos n x+c_{2} \sin n$.. nontrivial solution of the boundary-value problem. Since $\cos (-n x)=\cos n x$ and $\sin (-n$. $-\sin n x$, we may assume without loss of generality that the eigenvalues are $\lambda_{n}=\alpha^{2}=n^{\text {- }}$ n a positive integer. The corresponding eigenfunctions are $y_{n}=\cos n x$ and $y_{n}=\sin n x$.
c)

$y=\sin 4 x-2 \cos 3 x$
$\Xi \equiv \lambda=\alpha^{2}>0$ the general solution is $y=c_{1} \cos \sqrt{\alpha} x+c_{2} \sin \sqrt{\alpha} x$. Setting $y(0)=0$ we $:=0$. so that $y=c_{2} \sin \sqrt{\alpha} x$. The boundary condition $y(1)+y^{\prime}(1)=0$ implies

$$
c_{2} \sin \sqrt{\alpha}+c_{2} \sqrt{\alpha} \cos \sqrt{\alpha}=0
$$

2
$-\operatorname{Zing} c_{2} \neq 0$, this equation is equivalent to $\tan \sqrt{\alpha}=-\sqrt{\alpha}$. Thus, the eigenvalues are $\lambda_{n}=\therefore$ $\therefore=1,2,3, \ldots$, where the x_{n} are the consecutive positive roots of $\tan \sqrt{\alpha}=-\sqrt{\alpha}$.
35. - see from the graph that $\tan x=-x$ has infinitely many roots. $\therefore \lambda_{n}=\alpha_{n}^{2}$, there are no new eigenvalues when $\alpha_{n}<0$. For $\lambda=0$, \therefore afferential equation $y^{\prime \prime}=0$ has general solution $y=c_{1} x+c_{2}$. The \because....dary conditions imply $c_{1}=c_{2}=0$, so $y=0$.

E. . - an a CAS we find that the first four nonnegative roots of $\tan x=-x$ are approxime: $\therefore-25.4 .91318,7.97867$, and 11.0855. The corresponding eigenvalues are 4.11586, 24.7: 5591, and 122.889, with cigenfunctions $\sin (2.02876 x), \sin (4.91318 x), \sin (7.97867 x)$, ($21.0855 x$).
:- - the case when $\lambda=-\alpha^{2}<0$, the solution of the differential -uation is $y=c_{1} \cosh \alpha x+c_{2} \sinh \alpha x$. The condition $y(0)=0$ Hes $c_{1}=0$. The condition $y(1)-\frac{1}{2} y^{\prime}(1)=0$ applicd to $=c_{2} \sinh \alpha x$ gives $c_{2}\left(\sinh \alpha-\frac{1}{2} \alpha \cosh \alpha\right)=0$ or $\tanh \alpha=\frac{1}{2} \alpha$. As \therefore be seen from the figure, the graphs of $y=\tanh x$ and $y=\frac{1}{2} x$ in\because - sect at a single point with approximate x-coordinate $\alpha_{1}=1.915$.
 -ius, there is a single negative eigenvalue $\lambda_{1}=-\alpha_{1}^{2} \approx-3.667$ and \therefore corresponding eigenfuntion is $y_{1}=\sinh 1.915 x$.
$\equiv::-\lambda=0$ the only solution of the boundary-valuc problem is $y=0$.
$\equiv \therefore \lambda=\alpha^{2}>0$ the solution of the differential equation is $y=c_{1} \cos \alpha x+c_{2} \sin \alpha x$. The cond: : : : . $\mathfrak{I}=0$ gives $c_{1}=0$, so $y=c_{2} \sin \alpha x$. The condition $y(1)-\frac{1}{2} y^{\prime}(1)=0$ gives $c_{2}\left(\sin \alpha-\frac{1}{2} \alpha \cos a=\right.$ \therefore he cigenvalues are $\lambda_{n}=\alpha_{n}^{2}$ when $\alpha_{n}, n=2,3,4, \ldots$, are the positive roots of $\tan \alpha=\frac{1}{2} \alpha$. $\therefore C A S$ we find that the first three values of α are $\alpha_{2}=4.27487, \alpha_{3}=7.59655$, and $\alpha_{4}=10 .:-$ --e first thrce eigenvalues are then $\lambda_{2}=\alpha_{2}^{2}=18.2738, \lambda_{3}=\alpha_{3}^{2}=57.7075$, and $\lambda_{4}=\alpha_{4}^{2}=116 . \%$. \cdots in corresponding eigenfunctions $y_{2}=\sin 4.27487 x, y_{3}=\sin 7.59655 x$, and $y_{4}=\sin 10.8121 \ldots$
$\geq \equiv \because \lambda=\alpha^{4}, \alpha>0$, the solution of the differential equation is

$$
y=c_{1} \cos \alpha x+c_{2} \sin \alpha x+c_{3} \cosh \alpha x+c_{4} \sinh \alpha x
$$

$--\quad$ boundary conditions $y(0)=0, y^{\prime}(0)=0, y(1)=0, y^{\prime}(1)=0$ $=\cdots$ in turn,

$$
\begin{gathered}
c_{1}+c_{3}=0 \\
\alpha c_{2}+\alpha c_{4}=0 \\
c_{1} \cos \alpha+c_{2} \sin \alpha+c_{3} \cosh \alpha+c_{4} \sinh \alpha=0 \\
-c_{1} \alpha \sin \alpha+c_{2} \alpha \cos \alpha+c_{3} \alpha \sinh \alpha+c_{4} \alpha \cosh \alpha=0
\end{gathered}
$$

$-\therefore$ first two equations enable us to write

$$
\begin{aligned}
c_{1}(\cos \alpha-\cosh \alpha)+c_{2}(\sin \alpha-\sinh \alpha) & =0 \\
c_{1}(-\sin \alpha-\sinh \alpha)+c_{2}(\cos \alpha-\cosh \alpha) & =0
\end{aligned}
$$

-... - determinant

$$
\left|\begin{array}{rr}
\cos \alpha-\cosh \alpha & \sin \alpha-\sinh \alpha \\
-\sin \alpha-\sinh \alpha & \cos \alpha-\cosh \alpha
\end{array}\right|=0
$$

\therefore ifies to $\cos \alpha \cosh \alpha=1$. From the figure showing the graphs of $1 / \cosh x$ and $\cos x$.

Exercises 5.2 Linear Models: Boundary-Value Problems

that this equation has an infinite number of positive roots. With the aid of a CAS the first fo:are found to be $\alpha_{1}=4.73004, \alpha_{2}=7.8532, \alpha_{3}=10.9956$, and $\alpha_{4}=14.1372$, and the corres: eigenvalues are $\lambda_{1}=500.5636, \lambda_{2}=3803.5281, \lambda_{3}=14,617.5885$, and $\lambda_{4}=39.944 .1890$. Lthird equation in the systom to climinate c_{2}, we find that the eigenfunctions are

$$
y_{n}=\left(-\sin \alpha_{n}+\sinh \alpha_{n}\right)\left(\cos \alpha_{n} x-\cosh \alpha_{n} x\right)+\left(\cos \alpha_{n}-\cosh \alpha_{n}\right)\left(\sin \alpha_{n} x-\sinh \alpha_{n} .\right.
$$

Exercises 5.3

Nonlinear Models

1. The period corresponding to $x(0)=1: x^{\prime}(0)=1$ is approximately 5.o. The period corresponding to $x(0)=1 / 2 . x^{\prime}(0)=-1$:- approximately 6.2.

2. The solutions are not periodic.

3. --he period corresponding to $x(0)=1, x^{\prime}(0)=1$ is approxEnately 5.8. The second initial-value problem does not have \because periodic solution.

Exercises 5.3 Nonlinear Models

Buth solutions have periods of approximately 6.3.

Fom the graph we see that $\left|x_{1}\right| \approx 1.2$.

Form the graphs wo see that the interval is approximately -0.8.1.1).

\therefore nce

$$
x e^{0.01 x}=x\left[1+0.01 x+\frac{1}{2!}(0.01 x)^{2}+\cdots\right] \approx x
$$

$\therefore r$ small values of x : a linearization is $\frac{d^{2} x}{d t^{2}}+x=0$.

Fr $x(0)=1$ and $x^{\prime}(0)=1$ the oscillations are symmetric about the line $x=0$ with amplitude \therefore-ghtly greater than 1 .

Exercises 5.3 Nonlinear Models

$\equiv r(0)=-2$ and $x^{\prime}(0)=0.5$ the oscillations are symmetric about the line $x=-2$ wit. \therefore :-alitude.
$\equiv \because 0)=\sqrt{2}$ and $x^{\prime}(0)=1$ the oscillations are symmetric about the line $x=0$ with amp:-
$\therefore-\div$ greater than 2.
$\equiv . \because . . .0)=2$ and $x^{\prime}(0)=0.5$ the oscillations are symmetric about the line $x=2$ wit. :...itude.
$\equiv \because \cdots=-2$ and $x^{\prime}(0)=0$ there is no oscillation; the solution is constant.
$\equiv \because, 0)=-\sqrt{2}$ and $x^{\prime}(0)=-1$ the oscillations are symmetric about the line $x=0$ with ar:
\therefore - tle greater than 2.
\therefore - - is a damped hard spring, so x will approach 0 as t
\cdots-uaches ∞.

$\therefore .-$-. is a damped soft spring, so we might expect no oscillatory solutions. x \because never, if the initial conditions are sufficiently small the spring can oscillate. 5

\because en k_{1} is very small the effect of the nonlinearity is greatly diminished, and the system is \therefore
\because Jure resonance.
a

The system appears to be oscillatory for $-0.000465 \leq k_{1}<0$ and nonoscillatory : $k_{1} \leq-0.000466$.

31

Exercises 5.3 Nonlinear Models

The system appears to be oscillatory for $-0.3493 \leq k_{1}<0$ and nonoscillatory for $k_{1} \leq-$
-3. For $\lambda^{2}-\omega^{2}>0$ we choose $\lambda=2$ and $\omega=1$ with $x(0)=1$幺d $x^{\prime}(0)=2$. For $\lambda^{2}-\omega^{2}<0$ we choose $\lambda=1 / 3$ and $\omega=1$ \cdots in $x(0)=-2$ and $x^{\prime}(0)=4$. In both cascs the motion wresponds to the overdamped and underdamped cases for wing/mass systems.

$\therefore \dot{-}$. a) Setting $d y / d t=u$, the differential cquation in (13) becomes $d v / d t=-g R^{2} / y^{2}$. Bu:
chain rule, $d v / d t=(d v / d y)(d y / d t)=v d v / d t$, so $v d v / d y=-g R^{2} / y^{2}$. Separating : and integrating we obtain

$$
v d v=-g R^{2} \frac{d y}{y^{2}} \quad \text { and } \quad \frac{1}{2} r^{2}=\frac{g R^{2}}{y}+c
$$

Setting $v=v_{0}$ and $y=R$ we find $c=-g R+\frac{1}{2} v_{0}^{2}$ and

$$
v^{2}=2 g \frac{R^{2}}{y}-2 g R+v_{0}^{2}
$$

b) As $y \rightarrow \infty$ we assume that $v \rightarrow 0^{+}$. Then $v_{0}^{2}=2 g R$ and $v_{0}=\sqrt{2 g R}$.
c) U'sing $g=32 \mathrm{ft} / \mathrm{s}$ and $R=4000(5280) \mathrm{ft}$ we find

$$
v_{0}=\sqrt{2(32)(4000)(5280)} \approx 36765.2 \mathrm{ft} / \mathrm{s} \approx 25067 \mathrm{mi} / \mathrm{hr}
$$

d) $c_{0}=\sqrt{2(0.165)(32)(1080)} \approx 7760 \mathrm{ft} / \mathrm{s} \approx 5291 \mathrm{mi} / \mathrm{hr}$
$=5$: a) Intuitively, one might expect that only half of a 10 -pound chain could be lifted by a:rertical force.
b) Since $x=0$ when $t=0$, and $v=d x / d t=\sqrt{160-64 x / 3}$, we have $v(0)=\sqrt{160} \approx 12.1$.
c) Since x should always be positive, we solve $x(t)=0$, getting $t=0$ and $t=\frac{3}{2} \sqrt{5 / 2} \approx$ Since the graph of $x(t)$ is a parabola, the maximum value occurs at $t_{m}=\frac{3}{4} \sqrt{5 / 2}$. (1 . also be obtained by solving $x^{\prime}(t)=0$.) At this time the height of the chain is $x\left(t_{r}\right.$: ft . This is higher than predicted because of the momentum gencrated by the force. W°.. chain is 5 feet high it still has a positive velocity of about $7.3 \mathrm{ft} / \mathrm{s}$, which keeps it goin: for a while.
d) As discussed in the solution to part (c) of this problem, the chain has momentum gr. by the force applied to it that will cause it to go higher than expected. It will then : to below the expected maximum height, again duc to momentum. This, in turn, will to next go higher than expected, and so on.
\therefore (a) Setting $d x / d t=v$. the differential equation becomes $(L-x) d v / d t-t^{2}=L g$. But. br the Chain Rule, $d v / d t=(d v / d x)(d x / d t)=v d v / d x$, so $(L-x) v d v / d x-v^{2}=L g$. Separating variables and integrating we obtain

$$
\frac{v}{v^{2}+L g} d v=\frac{1}{L-x} d x \quad \text { and } \quad \frac{1}{2} \ln \left(v^{2}+L g\right)=-\ln (L-x)+\ln c,
$$

so $\sqrt{v^{2}+L g}=c /(L-x)$. When $x=0, v=0$, and $c=L \sqrt{L g}$. Solviug for v and simplifying we get

$$
\frac{d x}{d t}=v(x)=\frac{\sqrt{L g\left(2 L x-x^{2}\right)}}{L-x} .
$$

Again, scparating variables and integrating we obtain

$$
\frac{L-x}{\sqrt{L g\left(2 L x-x^{2}\right)}} d x=d t \quad \text { and } \quad \frac{\sqrt{2 L x-x^{2}}}{\sqrt{L g}}=t+c_{1}
$$

Since $x(0)=0$, we have $c_{1}=0$ and $\sqrt{2 L x-x^{2}} / \sqrt{L g}=t$. Solving for x we get

$$
x(t)=L-\sqrt{L^{2}-L g t^{2}} \quad \text { and } \quad r(t)=\frac{d x}{d t}=\frac{\sqrt{L} g t}{\sqrt{L-g t^{2}}} .
$$

b) The chain will be completely on the ground when $x(t)=L$ or $t=\sqrt{L / g}$.
(c) The predicted velocity of the upper end of the chain when it hits the ground is infinity.
:- (a) Let (x, y) be the coordinates of S_{2} on the curve C. The slope at (x, y) is then

$$
d y / d x=\left(v_{1} t-y\right) /(0-x)=\left(y-v_{1} t\right) / x \quad \text { or } \quad x y^{\prime}-y=-v_{1} t
$$

ib) Differentiating with respect to x and using $r=v_{1} / v_{2}$ gives

$$
\begin{aligned}
x y^{\prime \prime}+y^{\prime}-y^{\prime} & =-v_{1} \frac{d t}{d x} \\
x y^{\prime \prime} & =-\imath_{1} \frac{d t}{d s} \frac{d s}{d x} \\
x y^{\prime \prime} & =-v_{1} \frac{1}{v_{2}}\left(-\sqrt{1+\left(y^{\prime}\right)^{2}}\right) \\
x y^{\prime \prime} & =r \sqrt{1+\left(y^{\prime}\right)^{2}} .
\end{aligned}
$$

Letting $u=y^{\prime}$ and separating variables, we obtain

$$
\begin{aligned}
x \frac{d u}{d x} & =r \sqrt{1 \div u^{2}} \\
\frac{d u}{\sqrt{1+u^{2}}} & =\frac{r}{x} d x \\
\sinh ^{-1} u & =r \ln x+\ln c=\ln \left(c x^{r}\right) \\
u & =\sinh \left(\ln c x^{r}\right) \\
\frac{d y}{d x} & =\frac{1}{2}\left(c x^{r}-\frac{1}{c x^{r}}\right) .
\end{aligned}
$$

At $t=0, d y / d x=0$ and $x=a$. so $0=c a^{r}-1 / c a^{r}$. Thus $c=1 / a^{r}$ and

$$
\frac{d y}{d x}=\frac{1}{2}\left[\left(\frac{x}{a}\right)^{r}-\left(\frac{a}{x}\right)^{r}\right]=\frac{1}{2}\left[\left(\frac{x}{a}\right)^{r}-\left(\frac{x}{a}\right)^{-r}\right] .
$$

If $r>1$ or $r<1$, integrating gives

$$
y=\frac{a}{2}\left[\frac{1}{1+r}\left(\frac{x}{a}\right)^{1+r}-\frac{1}{1-r}\left(\frac{x}{a}\right)^{1-r}\right]+c_{1} .
$$

When $t=0, y=0$ and $x=a$, so $0=(a / 2)[1 /(1+r)-1 /(1-r)]+c_{1}$. Thus $c_{1}=a r /:$ and

$$
y=\frac{a}{2}\left[\frac{1}{1+r}\left(\frac{x}{a}\right)^{1+r}-\frac{1}{1-r}\left(\frac{x}{a}\right)^{1-r}\right]+\frac{a r}{1-r^{2}} .
$$

c) To see if the paths ever intersect we first note that if $r>1$, then $v_{1}>v_{2}$ and $y \rightarrow \infty$ as :. In other words, S_{2} always lags behind S_{1}. Next, if $r<1$, then $v_{1}<v_{2}$ and $y=a r$: when $x=0$. In other words, when the submarine's speed is greater than the ship's, the: will intersect at the point $\left(0, a r /\left(1-r^{2}\right)\right)$.
Finally, if $r=1$, then integration gives

$$
y=\frac{1}{2}\left[\frac{x^{2}}{2 a}-\frac{1}{a} \ln x\right]+c_{2}
$$

When $t=0, y=0$ and $x=a$, so $0=(1 / 2)[a / 2-(1 / a) \ln a]+c_{2}$. Thus $c_{2}=-(1 \ddot{-}$ $\left.\left.1^{\prime} a\right) \ln a\right]$ and

$$
y=\frac{1}{2}\left[\frac{x^{2}}{2 a}-\frac{1}{a} \ln x\right]-\frac{1}{2}\left[\frac{a}{2}-\frac{1}{a} \ln a\right]=\frac{1}{2}\left[\frac{1}{2 a}\left(x^{2}-a^{2}\right)+\frac{1}{a} \ln \frac{a}{x}\right] .
$$

Since $y \rightarrow \infty$ as $x \rightarrow 0^{+}, S_{2}$ will never catch up with S_{1}.
\therefore ai Let (r, θ) denote the polar coordinates of the destroycr S_{1}. When S_{1} travels the $6{ }_{11}:$.9.0) to (3,0) it, stands to reason, since S_{2} travels half as fast as S_{1}, that the polar c . . of S_{2} are $\left(3, \theta_{2}\right)$, where θ_{2} is unknown. In other words, the distances of the ships f^{2}.

Exercises 5.3

are the same and $r(t)=15 t$ then gives the radial distance of both ships. This is necessary it S_{1} is to intercept S_{2}.
b) The differential of arc length in polar coordinates is $(d s)^{2}=(r d \theta)^{2}+(d r)^{2}$, so that

$$
\left(\frac{d s}{d t}\right)^{2}=r^{2}\left(\frac{d \theta}{d t}\right)^{2}+\left(\frac{d r}{d t}\right)^{2}
$$

Using $d s / d t=30$ and $d r / d t=15$ then gives

$$
\begin{aligned}
900 & =225 t^{2}\left(\frac{d \theta}{d t}\right)^{2}+225 \\
675 & =225 t^{2}\left(\frac{d \theta}{d t}\right)^{2} \\
\frac{d \theta}{d t} & =\frac{\sqrt{3}}{t} \\
\theta(t) & =\sqrt{3} \ln t+c=\sqrt{3} \ln \frac{r}{15}+c
\end{aligned}
$$

When $r=3, \theta=0$, so $c=-\sqrt{3} \ln \frac{1}{5}$ and

$$
\theta(t)=\sqrt{3}\left(\ln \frac{r}{15}-\ln \frac{1}{5}\right)=\sqrt{3} \ln \frac{r}{3} .
$$

Thus $r=3 e^{\theta / \sqrt{3}}$; whose graph is a logarithmic spiral.
c) The time for S_{1} to go from $(9,0)$ to $(3,0)=\frac{1}{5}$ hour. Now S_{1} must intercept the path of S_{2} for some angle β, where $0<\beta<2 \pi$. At the time of interception t_{2} we have $15 t_{2}=3 e^{\beta / \sqrt{3}}$ or $t=\frac{1}{\overline{3}} e^{\beta / \sqrt{3}}$. The total time is then

$$
t=\frac{1}{5}+\frac{1}{5} e^{3 / \sqrt{3}}<\frac{1}{5}\left(1+e^{2 \pi / \sqrt{3}}\right) .
$$

2 :-wce $(d x / d t)^{2}$ is always positive, it is necessary to use $|d x / d t|(d x / d t)$ in order to account for the $\therefore:-$ that the motion is oscillatory and the velocity (or its square) should be negative when the $\because: \mathrm{ing}$ is contracting.
2. ミ1 From the graph we see that the approximations appears to be quite good for $0 \leq x \leq 0.4$. Using an equation solver to solve $\sin x-x=0.05$ and $\sin x-x=0.005$, we find that the approximation is accurate to one decimal place for $\theta_{1}=0.67$ and to two decimal places for $\theta_{1}=$ 0.31 .

Exercises 5.3 Nonlinear M:odels

(b)

21. (a) Write the differential equation as

$$
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \sin \theta=0
$$

where $\omega^{2}=g / l$. To test for differences between the earth and the moon we take $l=3, \theta(0)=1$, and $\theta^{\prime}(0)=$ 2. Using $g=32$ on the earth and $g=5.5$ on the moon
 we obtain the graphs shown in the figure. Comparing the apparent periods of the graphs, we see that the pendulum oscillates faster on thr than on the moon.
(b) The amplitude is greater on the moon than on the earth.
(c) The linear model is

$$
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \theta=0
$$

where $\omega^{2}=g / l$. When $g=32, l=3, \theta(0)=1$, and $\theta^{\prime}(0)=2$, the solution is

$$
\theta(t)=\cos 3.266 t+0.612 \sin 3.266 t
$$

When $g=5.5$ the solution is

$$
\theta(t)=\cos 1.354 t+1.477 \sin 1.354 t
$$

As in the nonlinear case, the pendulum oscillates faster on the carth than on the moc:still has greater amplitude on the moon.
22. (a) The general solution of

$$
\frac{d^{2} \theta}{d t^{2}}+\theta=0
$$

is $\theta(t)=c_{1} \cos t+c_{2} \sin t$. From $\theta(0)=\pi / 12$ and $\theta^{\prime}(0)=-1 / 3$ we find

$$
\theta(t)=(\pi / 12) \cos t-(1 / 3) \sin t .
$$

Setting $\theta(t)=0$ we have tan $t=\pi / 4$ which implies $t_{1}=\tan ^{-1}(\pi / 4) \approx 0.66577$.
(b) We sct $\theta(t)=\theta(0)+\theta^{\prime}(0) t+\frac{1}{2} \theta^{\prime \prime}(0) t^{2}+\frac{1}{6} \theta^{\prime \prime \prime}(0) t^{3}+\cdots$ and use $\theta^{\prime \prime}(t)=-\sin \theta(l)$ together witi: $\theta(0)=\pi / 12$ and $\theta^{\prime}(0)=-1 / 3$. Then

$$
\theta^{\prime \prime}(0)=-\sin (\pi / 12)=-\sqrt{2}(\sqrt{3}-1) / 4
$$

and

$$
\theta^{\prime \prime \prime}(0)=-\cos \theta(0) \cdot \theta^{\prime}(0)=-\cos (\pi / 12)(-1 / 3)=\sqrt{2}(\sqrt{3}+1) / 12
$$

Thus

$$
\theta(t)=\frac{\pi}{12}-\frac{1}{3} t-\frac{\sqrt{2}(\sqrt{3}-1)}{8} t^{2}+\frac{\sqrt{2}(\sqrt{3}+1)}{72} t^{3}+\cdots .
$$

(c) Setting $\pi / 12-t / 3=0$ we obtain $t_{1}=\pi / 4 \approx 0.785398$.
(d) Setting

$$
\frac{\pi}{12}-\frac{1}{3} t-\frac{\sqrt{2}(\sqrt{3}-1)}{8} t^{2}=0
$$

and using the positive root we obtain $t_{1} \approx 0.63088$.
(e) Setting

$$
\frac{\pi}{12}-\frac{1}{3} t-\frac{\sqrt{2}(\sqrt{3}-1)}{8} t^{2}+\frac{\sqrt{2}(\sqrt{3}+1)}{72} t^{3}=0
$$

we find with the help of a CAS that $t_{1} \approx 0.661973$ is the first positive root.
(f) From the output we see that $y(t)$ is an interpolating function on the interval $0 \leq t \leq 5$, whose graph is shown. The positive root of $y(t)=0$ near $t=1$ is $t_{1}=0.666404$.

(g) To find the next two positive roots we change the interval used in NDSolve and Plot from $\{\mathbf{t}, \mathbf{0}, 5\}$ to $\{\mathbf{t}, \mathbf{0}, \mathbf{1 0}\}$. We see from the graph that the second and third positive roots are near 4 and 7 , respectively. Replacing $\{\mathbf{t}, \mathbf{1}\}$ in FindRoot with $\{\mathbf{t}, \mathbf{4}\}$ and then
 $\{\mathrm{t}, 7\}$ we obtain $t_{2}=3.84411$ and $t_{3}=7.0218$.
\therefore From the table below we see that the pendulum first passes the vertical position between $1 . \overline{1}$ a:1.8 seconds. To refine our estimate of t_{1} we estimate the solution of the differential equation: :.1. . 1.8] using a step size of $h=0.01$. From the resulting table we see that t_{1} is between $1.76 \therefore .$. 1.77 seconds. Repeating the process with $h=0.001$ we conclude that $t_{1} \approx 1.767$. Then the perior: \therefore the pendulum is approximately $4 t_{1}=7.068$. The error when using $t_{1}=2 \pi$ is $7.068-6.283=0.5:-$ and the percentage relative error is $(0.785 / 7.068) 100=11.1$.

$\mathrm{h}=0.1$		$\mathrm{h}=0.01$	
t_{n}	θ_{n}	t_{n}	θ_{n}
0.00	0.78540	1.70	0.07706
0.10	0.78523	1.71	0.06572
0.20	0.78407	1.72	0.05428
0.30	0.78092	1.73	0.04275
0.40	0.77482	1.74	0.03111
0.50	0.76482	1.75	0.01938
0.60	0.75004	1.76	0.00755
0.70	0.72962	1.77	-0.00438
0.80	0.70275	1.78	-0.01641
0.90	0.66872	1.79	-0.02854
1.00	0.62687	1.80	-0.04076
1.10	0.57660		
1.20	0.51744	$\mathrm{h}=0.001$	
1.30	0.44895	1.763	0.00398
1.40	0.37085	1.764	0.00279
1.50	0.28289	1.765	0.00160
1.60	0.18497	1.766	0.00040
1.70	0.07706	1.767	-0.00079
1.80	-0.04076	1.768	-0.00199
1.90	-0.16831	1.769	-0.00318
2.00	-0.30531	1.770	-0.00438

2. \quad Is is a Contributed Problem and the solution has been provided by the author of the problem.)
(a) The auxiliary equation is $m^{2}+g / \ell=0$, so the general solution of the differential equation

$$
\theta(t)=c_{1} \cos \sqrt{\frac{g}{\ell}} t+c_{2} \sin \sqrt{\frac{g}{\ell}} t .
$$

The initial condtion $\theta(0)=0$ implies $c_{1}=0$ and $\theta^{\prime}(0)=\omega_{0}$ implics $c_{2}=\omega_{0} \sqrt{\ell / g}$. Thus,

$$
\theta(t)=\omega_{0} \sqrt{\frac{\ell}{g}} \sin \sqrt{\frac{g}{\ell}} t
$$

b) At $0_{\text {max }}, \sin \sqrt{g / \ell} t=1$, so

$$
\theta_{\mathrm{xax}}=\omega_{0} \sqrt{\frac{\ell}{g}}=\frac{m_{b}}{m_{w}+m_{b}} \frac{v_{b}}{\ell} \sqrt{\frac{\ell}{g}}=\frac{m_{b}}{m_{w}+m_{b}} \frac{v_{b}}{\sqrt{\ell g}}
$$

and

$$
v_{b}=\frac{m_{w}+m_{b}}{m_{b}} \sqrt{\ell g} \theta_{\text {max }}
$$

c) We have $\cos \theta_{\max }=(l-h) / k=1-h / \ell$. Then

$$
\cos \theta_{\max } \approx 1-\frac{1}{2} \theta_{\max }^{2}=1-\frac{h}{\ell}
$$

and

$$
\theta_{\max }^{2}=\frac{2 h}{\ell} \quad \text { or } \quad \theta_{\max }=\sqrt{\frac{2 h}{\ell}}
$$

Thus

$$
v_{b}=\frac{m_{u}+m_{b}}{m_{b}} \sqrt{\ell g} \sqrt{\frac{2 h}{\ell}}=\frac{m_{w}+m_{b}}{m_{b}} \sqrt{2 g h} .
$$

(d) When $m_{b}=5 \mathrm{~g}, m_{w}=1 \mathrm{~kg}$, and $h=6 \mathrm{~cm}$, we have

$$
v_{b}=\frac{1005}{5} \sqrt{2(980)(6)} \approx 21,797 \mathrm{~cm} / \mathrm{s} .
$$

Chapter 5 in Review

\therefore. ft , since $k=4$
2. $2 \pi / 5$, since $\frac{1}{4} x^{\prime \prime}+6.25 x=0$
3. $5 / 4 \mathrm{~m}$, since $x=-\cos 4 t+\frac{3}{4} \sin 4 t$
\therefore. True
3. False; since an external force may exist
\therefore False; since the equation of motion in this case is $x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)$ and $x(t)=0$ can have at most one real solution
-. overdamped
3. From $x(0)=(\sqrt{2} / 2) \sin \phi=-1 / 2$ we sec that $\sin \phi=-1 / \sqrt{2}$, so ϕ is an angle in the third or fourth quadrant. Since $x^{\prime}(t)=\sqrt{2} \cos (2 t+\phi), x^{\prime}(0)=\sqrt{2} \cos \phi=1$ and $\cos \phi>0$. Thus ϕ is in the zourth quadrant and $\phi=-\pi / 4$.
$\therefore y=0$ because $\lambda=8$ is not an eigenvalue
$\therefore y=\cos 6 x$ because $\lambda=(6)^{2}=36$ is an cigenvalue
\therefore The period of a spring/mass system is given by $T=2 \pi / \omega$ where $\omega^{2}=k / m=k g / W$, where k is the spring constant, W is the weight of the mass attached to the spring; and g is the accelcration due to gravity. Thus the period of oscillation is $T=(2 \pi / \sqrt{k g}) \sqrt{W}$. If the weight of the original mass $\therefore W$, then $(2 \pi / \sqrt{k g}) \sqrt{W}=3$ and $(2 \pi / \sqrt{k g}) \sqrt{W-8}=2$. Dividing, we get $\sqrt{W} / \sqrt{W-8}=3 / 2$ jr $W=\frac{9}{1}(W-8)$. Solving for W we find that the weight of the original mass was 14.4 pounds.
\therefore (a) Solving $\frac{3}{8} x^{\prime \prime}+6 x=0$ subject to $x(0)=1$ and $x^{\prime}(0)=-4$ we obtain

$$
x=\cos 4 t-\sin 4 t=\sqrt{2} \sin (4 t+3 \pi / 4) .
$$

(b) The amplitude is $\sqrt{2}$. period is $\pi / 2$, and frequency is $2 / \pi$.

Chapter 5 in Review

(c) If $x=1$ then $t=n \pi / 2$ and $t=-\pi / 8+n \pi / 2$ for $n=1,2,3, \ldots$.
d) If $x=0$ then $t=\pi / 16+n \pi / 4$ for $n=0,1.2, \ldots$ The motion is upward for n ere. downward for n odd.
(e) $x^{\prime}(3 \pi / 16)=0$
(f) If $x^{\prime}=0$ then $4 t+3 \pi / 4=\pi / 2+n \pi$ or $t=3 \pi / 16+n \pi$.
3. Te assume that he spring is initially compressed by 4 inches and that the positive direction: $\cdots-a x i s$ is in the direction of elongation of the spring. Then, from $\frac{1}{4} x^{\prime \prime}+\frac{3}{2} x^{\prime}+2 x=0, x(0)=\cdots$ \therefore ad $x^{\prime}(0)=0$ we obtain $x=-\frac{2}{3} e^{-2 t}+\frac{1}{3} e^{-4 t}$.
\therefore ㅍ. Fiom $x^{\prime \prime}+\beta x^{\prime}+64 x=0$ we see that oscillatory motion results if $\beta^{2}-256<0$ or $0 \leq \beta<1$.
E. Fim $m x^{\prime \prime}+4 x^{\prime}+2 x=0$ we sec that nonoscillatory motion results if $16-8 m \geq 0$ or $0<m$
.an $\frac{1}{4} x^{\prime \prime}+x^{\prime}+x=0, x(0)=4$. and $x^{\prime}(0)=2$ we obtain $x=4 e^{-2 t}+10 t e^{-2 t}$. If $x^{\prime}(t)=0$. $-=1 / 1.0$, so that the maximum displacement is $x=5 e^{-0.2} \approx 4.094$.
$\therefore \therefore$. \because iting $\frac{1}{8} x^{\prime \prime}+\frac{8}{3} x=\cos \gamma t+\sin \gamma t$ in the form $x^{\prime \prime}+\frac{64}{3} x=8 \cos \gamma t+8 \sin \gamma t$ we identify $\omega^{2}=$ -ie system is in a state of pure resonance when $\gamma_{i}=\omega=\sqrt{64 / 3}=8 / \sqrt{3}$.
25. Cearly $x_{p}=A / \omega^{2}$ suffices.

- From $\frac{1}{8} x^{\prime \prime}+x^{\prime}+3 x=e^{-t}: x(0)=2$, and $x^{\prime}(0)=0$ we obtain $x_{c}=e^{-4 t}\left(c_{1} \cos 2 \sqrt{2} t+c_{2} \sin 2 i^{-}\right.$$y=\frac{8}{17} e^{-l}$, and

$$
x=e^{-4 t}\left(\frac{26}{17} \cos 2 \sqrt{2} t+\frac{28 \sqrt{2}}{17} \sin 2 \sqrt{2} t\right)+\frac{8}{17} e^{-t}
$$

$2-$ - a) Let k be the effective spring constant and x_{1} and x_{2} the elongation of springs k_{1} and k_{2}. restoring forces satisfy $k_{1} x_{1}=k_{2} x_{2}$ so $x_{2}=\left(k_{1} / k_{2}\right) x_{1}$. From $k\left(x_{1}+x_{2}\right)=k_{1} x_{1}$ we have

$$
\begin{aligned}
k\left(x_{1}+\frac{k_{1}}{k_{2}} x_{2}\right) & =k_{1} x_{1} \\
k\left(\frac{k_{2}+k_{1}}{k_{2}}\right) & =k_{1} \\
k & =\frac{k_{1} k_{2}}{k_{1}+k_{2}} \\
\frac{1}{k} & =\frac{1}{k_{1}}+\frac{1}{k_{2}} .
\end{aligned}
$$

:b) From $k_{1}=2 W$ and $k_{2}=4 W$ we find $1 / k=1 / 2 W+1 / 4 W=3 / 4 W$. Then $k=4 W / 3=4 m$. The diffcrential equation $m x^{\prime \prime}+k x=0$ then becomes $x^{\prime \prime}+(4 g / 3) x=0$. The solution is

$$
x(t)=c_{1} \cos 2 \sqrt{\frac{g}{3}} t+c_{2} \sin 2 \sqrt{\frac{g}{3}} t
$$

The initial conditions $x(0)=1$ and $x^{\prime}(0)=2 / 3$ imply $:=: \quad:=$:
(c) To compute the maximum speed of the mass we compute

$$
x^{\prime}(t)=2 \sqrt{\frac{g}{3}} \sin 2 \sqrt{\frac{g}{3}} t+\frac{2}{3} \cos 2 \sqrt{\frac{g}{3}} t \quad \text { and } \quad\left|x^{\prime}(t)\right|=\sqrt{4 \frac{g}{3}+\frac{9}{9}}=\frac{2}{3}, \overline{3}-\therefore
$$

\therefore From $q^{\prime \prime}+10^{4} q=100 \sin 50 t, q(0)=0$, and $q^{\prime}(0)=0$ we obtain $q_{c}=c_{1} \cos 114-\therefore \ldots$. $y_{y}=\frac{1}{75} \sin 50 t$, and
(a) $q=-\frac{1}{150} \sin 100 t+\frac{1}{75} \sin 50 t$.
(b) $i=-\frac{2}{3} \cos 100 t+\frac{2}{3} \cos 50 t$, and
(c) $q=0$ when $\sin 50 t(1-\cos 50 t)=0$ or $t=n \pi / 50$ for $n=0,1,2, \ldots$.
\because (a) By Kirchhoff's second law,

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=E(t)
$$

Using $q^{\prime}(t)=i(t)$ we can write the differential equation in the form

$$
L \frac{d i}{d t}+R i+\frac{1}{C} q=E(t)
$$

Then differentiating we obtain

$$
L \frac{d^{2} i}{d t^{2}}+R \frac{d i}{d t}+\frac{1}{C} i=E^{\prime}(t)
$$

1b) From $L i^{\prime}(t)+R i(t)+(1 / C) q(t)=E(t)$ we find

$$
L i^{\prime}(0)+\operatorname{Ri}(0)+(1 / C) q(0)=E(0)
$$

or

$$
L i^{\prime}(0)+R i_{0}+(1 / C) q_{0}=E(0)
$$

Solving for $i^{\prime}(0)$ we get

$$
i^{\prime}(0)=\frac{1}{L}\left[E(0)-\frac{1}{C} q_{0}-R i_{0}\right]
$$

\therefore For $\lambda=\alpha^{2}>0$ the general solution is $y=c_{1} \cos \alpha x+c_{2} \sin \alpha x$. Now

$$
y(0)=c_{1} \quad \text { and } \quad y(2 \pi)=c_{1} \cos 2 \pi \alpha+c_{2} \sin 2 \pi \alpha
$$

so the condition $y(0)=y(2 \pi)$ implies

$$
c_{1}=c_{1} \cos 2 \pi \alpha+c_{2} \sin 2 \pi \alpha
$$

which is true when $\alpha=\sqrt{\lambda}=n$ or $\lambda=n^{2}$ for $n=1,2,3, \ldots$. Since

$$
y^{\prime}=-\alpha c_{1} \sin \alpha x+\alpha c_{2} \cos \alpha x=-n c_{1} \sin n x+n c_{2} \cos n x
$$

Chapter 5 in Review

we see that $y^{\prime}(0)=n c_{2}=y^{\prime}(2 \pi)$ for $n=1,2,3, \ldots$. Thus, the eigenvalues are n^{2} for $n=1$. 3. ..., with corresponding cigenfunctions $\cos n x$ and $\sin n x$. When $\lambda=0$, the general solution: $y=c_{1} x+c_{2}$ and the corresponding eigenfunction is $y=1$.

For $\lambda=-\alpha^{2}<0$ the gencral solution is $y=c_{1} \cosh \alpha x+c_{2} \sinh \alpha x$. In this case $y(0)=c_{1}$ a $y(2 \pi)=c_{1} \cosh 2 \pi \alpha+c_{2} \sinh 2 \pi \alpha$, so $y(0)=y(2 \pi)$ can only be valid for $\alpha=0$. Thus, there are . oigenvalues corresponding to $\lambda<0$.
2.. (a) The differential cquation is $d^{2} r / d t^{2}-\omega^{2} r=-g \sin \omega t$. The auxiliary equation is $m^{2}-\omega^{2}=$ so $r_{c}=c_{1} e^{\omega t}+c_{2} e^{-\omega t}$. A particular solution has the form $r_{p}=A \sin \omega t+B \cos \omega t$. Sulbtuting into the differential equation we find $-2 A \omega^{2} \sin \omega t-2 B \omega^{2} \cos \omega t=-g \sin \omega t$. Tl . $B=0, A=g / 2 \omega^{2}$, and $r_{p}=\left(g / 2 \omega^{2}\right) \sin \omega t$. The gencral solution of the differential ec: tion is $r(t)=c_{1} e^{\omega t}+c_{2} e^{-\omega t}+\left(g / 2 \omega^{2}\right) \sin \omega t$. The initial conditions imply $c_{1}+c_{2}=r_{0}$: $g / 2 \omega-\omega c_{1}+\omega c_{2}=v_{0}$. Solving for c_{1} and c_{2} we get

$$
c_{1}=\left(2 \dot{u}^{2} r_{0}+2 \omega v_{0}-g\right) / 4 \omega^{2} \quad \text { and } \quad c_{2}=\left(2 \omega^{2} r_{0}-2 \omega v_{0}+g\right) / 4 \omega^{2}
$$

so that

$$
r(t)=\frac{2 \omega^{2} r_{0}+2 \omega v_{0}-g}{4 \omega^{2}} e^{\omega t}+\frac{2 \omega^{2} r_{0}-2 \omega v_{0}+g}{4 \omega^{2}} e^{-\omega t}+\frac{g}{2 \omega^{2}} \sin \omega t .
$$

(b) The bead will exhibit simple harmonic motion when the exponential terms are missing. So.$c_{1}=0, c_{2}=0$ for r_{0} and v_{0} we find $r_{0}=0$ and $v_{0}=g / 2 \dot{\omega}$.

To find the minimum length of rod that will accommodate simple harmonic motion we $c \cdot-$ mino the amplitude of $r(t)$ and double it. Thus $L=g / \omega^{2}$.
(c) As t increascs, $e^{\omega t}$ approaches infinity and $e^{-\omega t}$ approachos 0 . Since $\sin \omega t$ is boundeci. distance, $r(t)$, of the bead from the pivot point increases without bound and the distar the bead from P will eventually exceed $L / 2$.
(d)

(e) For cach v_{0} we want to find the smallest value of t for which $r(t)= \pm 20$. Whether we 1 . $r(t)=-20$ or $r(t)=20$ is determined by looking at the graphs in part (d). The tota that the bead stays on the rod is shown in the table below.

v_{0}	0	10	15	16.1	17
r	-20	-20	-20	20	20
t	1.55007	2.35494	3.43088	6.11627	4.22339

When $v_{0}=16$ the bead never leaves the rod.
\pm - . - nlike the derivation given in (1) of Section 5.1 in the text, the weight $m g$ of the mass m does not apear in the net force since the spring is not stretched by the weight of the mass when it is in the -quilibrium position (i.e. there is no $m g-k s$ term in the net force). The only force acting on the \because ass when it is in motion is the restoring force of the spring. By Newton's sccond law,

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \text { or } \quad \frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0 .
$$

\therefore. The force of kinetic friction opposing the motion of the mass in μN, where μ is the coefficient of \therefore iding friction and N is the normal component of the weight. Since friction is a force opposite to :ine direction of motion and since N is pointed directly downward (it is simply the weight of the mass), Newton's second law gives, for motion to the right ($x^{\prime}>0$),

$$
m \frac{d^{2} x}{d t^{2}}=-k x-\mu m g
$$

and for motion to the left $\left(x^{\prime}<0\right)$.

$$
m \frac{d^{2} x}{d t^{2}}=-k x+\mu m g
$$

Traditionally, these two equations are written as one expression

$$
m \frac{d^{2} x}{d t^{2}}+f_{x} \operatorname{sgn}\left(x^{\prime}\right)+k x=0
$$

where $f_{k}=\mu m g$ and

$$
\operatorname{sgn}\left(x^{\prime}\right)=\left\{\begin{aligned}
1 . & x^{\prime}>0 \\
-1, & x^{\prime}<0
\end{aligned}\right.
$$

Series Solutions of Linear Equations

Exercises 6.1

Solutions About Ordinary Points

1. $\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1} /(n+1)}{2^{n} x^{n} / n}\right|=\lim _{n \rightarrow \infty} \frac{2 n}{n+1}|x|=2|x|$

The series is absolutely convergent for $2|x|<1$ or $|x|<\frac{1}{2}$. The radius of convergence is $R=$ At $x=-\frac{1}{2}$, the series $\sum_{n-1}^{\infty}(-1)^{n} / n$ converges by the alternating series tost. At $x=\frac{1}{2}$, the \leq : $\sum_{n=1}^{x} 1 / n$ is the harmonic series which diverges. Thus, the given series converges on $\left[-\frac{1}{2}, \frac{1}{2}\right)$.
2. $\left.\lim _{n \rightarrow \infty}\left|\frac{100^{n+1}(x+7)^{n-1} /(n+1)!}{100^{n}(x+7)^{n} / n!}=\lim _{n \rightarrow \infty} \frac{100}{n+1}\right| x+7 \right\rvert\,=0$

The radius of convergence is $R=\infty$. The scrics is absolutely convergent on $(-\infty, \infty)$.
3. By the ratio test,

$$
\lim _{k \rightarrow \infty}\left|\frac{(x-5)^{k+1} / 10^{k+1}}{(x-5)^{k} / 10^{k}}\right|=\lim _{k \rightarrow \infty} \frac{1}{10}|x-5|=\frac{1}{10}|x-5|
$$

The sorics is absolutely convergent for $\frac{1}{10}|x-5|<1$. $|x-5|<10$, or on $(-5,15)$. The radin. convergence is $R=10$. At $x=-5$, the series $\sum_{k=1}^{\infty}(-1)^{k}(-10)^{k} / 10^{k}=\sum_{k=1}^{\infty} 1$ diverges by the: term test. At $x=15$, the scries $\sum_{k=1}^{\infty}(-1)^{k} 10^{k} / 10^{k}=\sum_{k=1}^{\infty}(-1)^{k}$ diverges by the nth term Thus, the series converges on $(-5,15)$.
4. $\lim _{i: \rightarrow \infty}\left|\frac{(k+1)!(x-1)^{k+1}}{k!(x-1)^{k}}\right|=\lim _{k \rightarrow \infty}(k+1)|x-1|=\left\{\begin{array}{cc}\infty, & x \neq 1 \\ 0, & x=1\end{array}\right.$

The radius of convergence is $R=0$ and the series converges only for $x=1$.
5. $\sin x \cos x=\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\frac{x^{7}}{5040}+\cdots\right)\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\cdots\right)=x-\frac{2 x^{3}}{3}+\frac{2 x^{5}}{15}-\frac{4 x^{7}}{315}-$
5. $s^{-x} \cos x=\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\cdots\right)\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots\right)=1-x+\frac{x^{3}}{3}-\frac{x^{4}}{6}+\cdots$

ㄱ. $\frac{1}{\cos x}=\frac{1}{1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots}=1 \div \frac{x^{2}}{2}+\frac{5 x^{4}}{4!}+\frac{61 x^{6}}{6!}+\cdots$
Since $\cos (\pi / 2)=\cos (-\pi / 2)=0$, the series converges on $(-\pi / 2, \pi / 2)$.
5. $\frac{1-x}{2+x}=\frac{1}{2}-\frac{3}{4} x+\frac{3}{8} x^{2}-\frac{3}{16} x^{3}+\cdots$

Since the function is undefined at $x=-2$, the series converges on $(-2,2)$.
\therefore Let $k=n \div 2$ so that $n=k-2$ and

$$
\sum_{n=1}^{\infty} n c_{n} x^{n+2}=\sum_{k=3}^{\infty}(k-2) c_{k-2} x^{k}
$$

\because Let $k=n-3$ so that $n=k+3$ and

$$
\begin{aligned}
& \sum_{n=3}^{\infty}(2 n-1) c_{n} x^{n-3}=\sum_{k=0}^{\infty}(2 k+5) c_{k+3} x^{k} . \\
& \because \quad \sum_{:=1}^{\infty} 2 n c_{n} x^{n-1}+\sum_{n=0}^{\infty} 6 c_{n} x^{n+1}=2 \cdot 1 \cdot c_{1} x^{0}+\underbrace{\sum_{n=2}^{\infty} 2 n c_{n} x^{n-1}}_{k=n-1}+\underbrace{\sum_{n=0}^{\infty} 6 c_{n} x^{n+1}}_{k=n+1} \\
& =2 c_{1}+\sum_{k=1}^{\infty} 2(k+1) c_{k+1} x^{k}+\sum_{k=1}^{\infty} 6 c_{k-1} x^{k} \\
& =2 c_{1}+\sum_{k=1}^{\infty}\left[2(k+1) c_{k-1}+6 c_{k-1}\right] x^{k} \\
& \therefore \quad \sum_{:=2}^{\infty} n(n-1) c_{n} x^{n}+2 \sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+3 \sum_{n=1}^{\infty} n c_{n} x^{n} \\
& =2 \cdot 2 \cdot 1 c_{2} x^{0}+2 \cdot 3 \cdot 2 c_{3} x^{1}+3 \cdot 1 \cdot c_{1} x^{1}+\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}}_{k=n}+2 \underbrace{\sum_{n=4}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+3 \underbrace{\sum_{n=2}^{\infty} n c_{n} x^{n}}_{k=n} \\
& =4 c_{2}+\left(3 c_{1}+12 c_{3}\right) x+\sum_{k=2}^{\infty} k(k-1) c_{k} \cdot x^{k}+2 \sum_{k=2}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+3 \sum_{k=2}^{\infty} k c_{k} x^{k} \\
& =4 c_{2}+\left(3 c_{1}+12 c_{3}\right) x+\sum_{k=2}^{\infty}\left[(k(k-1)+3 k) c_{k}+2(k+2)(k+1) c_{k-2}\right] x^{k} \\
& =4 c_{2}+\left(3 c_{1}+12 c_{3}\right) x+\sum_{k=2}^{\infty}\left[k(k+2) c_{k}+2(k+1)(k+2) c_{k+2}\right] x^{k} \\
& =\sum_{n=1}^{\infty}(-1)^{n+1} x^{n-1} ; \quad y^{\prime \prime}=\sum_{n=2}^{\infty}(-1)^{n+1}(n-1) x^{n-2}
\end{aligned}
$$

$$
\begin{aligned}
(x+1) y^{\prime \prime}+y^{\prime} & =(x+1) \sum_{n=2}^{\infty}(-1)^{n+1}(n-1) x^{n-2}+\sum_{n=1}^{\infty}(-1)^{n+1} x^{n-1} \\
& =\sum_{n=2}^{\infty}(-1)^{n+1}(n-1) x^{n-1}+\sum_{n=2}^{\infty}(-1)^{n+1}(n-1) x^{n-2}+\sum_{n=1}^{\infty}(-1)^{n+1} x^{n-1} \\
& =-x^{0}+x^{0}+\underbrace{\sum_{n=2}^{\infty}(-1)^{n+1}(n-1) x^{n-1}}_{k=n-1}+\underbrace{\sum_{n=3}^{\infty}(-1)^{n+1}(n-1) x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=2}^{\infty}(-1)^{n+1} \cdots}_{k=n-1} \\
& =\sum_{k=1}^{\infty}(-1)^{k+2} k x^{k}+\sum_{k=1}^{\infty}(-1)^{k+3}(k+1) x^{k}+\sum_{k=1}^{\infty}(-1)^{k+2} x^{k} \\
& =\sum_{k=1}^{\infty}\left[(-1)^{k+2} k-(-1)^{k+2} k-(-1)^{k+2}+(-1)^{k+2}\right] x^{k}=0
\end{aligned}
$$

14. $y^{\prime}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n}{2^{2 n}(n!)^{2}} x^{2 n-1}: \quad y^{\prime \prime}=\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n(2 n-1)}{2^{2 n}(n!)^{2}} x^{2 n-2}$

$$
\begin{aligned}
x y^{\prime \prime}+y^{\prime}+x y & =\underbrace{\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n(2 n-1)}{2^{2 n}(n!)^{2}} x^{2 n-1}}_{k=1}+\underbrace{\sum_{n=1}^{\infty} \frac{(-1)^{n} 2 n}{2^{2 n}(n!)^{2}} x^{2 n-1}}_{k=n}+\underbrace{\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{2 n}(n!)^{2}} x^{2 n+1}}_{k=n+1} \\
& =\sum_{k=1}^{\infty}\left[\frac{(-1)^{k} 2 k(2 k-1)}{2^{2 k}(k!)^{2}}+\frac{(-1)^{k} 2 k}{2^{2 k}(k!)^{2}}+\frac{(-1)^{k-1}}{2^{2 k-2}[(k-1)!]^{2}}\right] x^{2 k-1} \\
& =\sum_{k=1}^{\infty}\left[\frac{(-1)^{k}(2 k)^{2}}{2^{2 k}(k!)^{2}}-\frac{(-1)^{k}}{2^{2 k-2}[(k-1)!]^{2}}\right] x^{2 k-1} \\
& =\sum_{k=1}^{\infty}(-1)^{k}\left[\frac{(2 k)^{2}-2^{2} k^{2}}{2^{2 k}(k!)^{2}}\right] x^{2 k-1}=0
\end{aligned}
$$

15. The singular points of $\left(x^{2}-25\right) y^{\prime \prime}+2 x y^{\prime}+y=0$ are -5 and 5 . The distance from 0 to $e^{-:}$ these points is 5 . The distance from 1 to the closest of these points is 4 .
16. The singular points of $\left(x^{2}-2 x+10\right) y^{\prime \prime}+x y^{\prime}-4 y=0$ are $1+3 i$ and $1-3 i$. The distance : to either of these points is $\sqrt{10}$. The distance from 1 to cither of these points is 3 .
17. Substituting $y=\sum_{n=0}^{x} c_{n} x^{n}$ into the differential equation wo have

$$
\begin{aligned}
y^{\prime \prime}-x y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n+1}}_{k=n+1}=\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} c_{k-1} x^{\prime} \\
& =2 c_{2}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-c_{k-1}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
c_{2}=0 \\
(k+2)(k+1) c_{k+2}-c_{k-1}=0
\end{gathered}
$$

and

$$
c_{k+2}=\frac{1}{(k+2)(k+1)} c_{k-1}, \quad k=1,2,3, \ldots
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{3}=\frac{1}{6} \\
& c_{4}=c_{5}=0 \\
& c_{6}=\frac{1}{180}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
c_{3} & =0 \\
c_{4} & =\frac{1}{12} \\
c_{5} & =c_{6}=0 \\
c_{7} & =\frac{1}{504}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}+\cdots \quad \text { and } \quad y_{2}=x+\frac{1}{12} x^{4}+\frac{1}{504} x^{7}+\cdots
$$

\therefore Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+x^{2} y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n+2}}_{k=n+2}=\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=2}^{\infty} c_{k-2} x^{k} \\
& =2 c_{2}+6 c_{3} x+\sum_{k=2}^{\infty}\left[(k+2)(k+1) c_{k+2}+c_{k-2}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
c_{2}=c_{3}=0 \\
(k+2)(k+1) c_{k+2}+c_{k-2}=0
\end{gathered}
$$

and

$$
c_{k: 2}=-\frac{1}{(k+2)(k+1)} c_{k-2}, \quad k=2,3,4, \ldots
$$

Exercises 6.1 Solutions About Ordinary Points

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{1}=-\frac{1}{12} \\
& c_{5}=c_{6}=c_{7}=0 \\
& c_{8}=\frac{1}{672}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{4}=0 \\
& c_{5}=-\frac{1}{20} \\
& c_{6}=c_{7}=c_{8}=0 \\
& c_{9}=\frac{1}{1440}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1-\frac{1}{12} x^{4}+\frac{1}{672} x^{8}-\cdots \quad \text { and } \quad y_{2}=x-\frac{1}{20} x^{5}+\frac{1}{1440} x^{9}-\cdots .
$$

-9. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}-2 x y^{\prime}+y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-2 \underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-2 \sum_{k=1}^{\infty} k c_{k} x^{k}+\sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}+c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-(2 k-1) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}+c_{0}=0 \\
(k+2)(k+1) c_{k+2}-(2 k-1) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{1}{2} c_{0} \\
c_{k+2} & =\frac{2 k-1}{(k+2)(k+1)} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

\cdots oosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-\frac{1}{2} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=-\frac{1}{8} \\
& c_{6}=-\frac{7}{240}
\end{aligned}
$$

...d so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=\frac{1}{6} \\
& c_{5}=\frac{1}{24} \\
& c_{7}=\frac{1}{112}
\end{aligned}
$$

-it so on. Thus, two solutions are

$$
y_{1}=1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{7}{240} x^{6}-\cdots \quad \text { and } \quad y_{2}=x+\frac{1}{6} x^{3}+\frac{1}{24} x^{5}+\frac{1}{112} x^{7}+\cdots .
$$

$\because \because \quad$ Bbstituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}-x y^{\prime}+2 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+2 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} k c_{k} x^{k}+2 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}+2 c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-(k-2) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Tins

$$
\begin{gathered}
2 c_{2}+2 c_{0}=0 \\
(k+2)(k+1) c_{k+2}-(k-2) c_{k}=0
\end{gathered}
$$

.nd

$$
\begin{aligned}
c_{2} & =-c_{0} \\
c_{k+2} & =\frac{k-2}{(k+2)(k+1)} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Exercises 6.1 Solutions About Ordinary Points

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-1 \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=0 \\
& c_{6}=c_{8}=c_{10}=\cdots=0 .
\end{aligned}
$$

For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=-\frac{1}{6} \\
& c_{5}=-\frac{1}{120}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1-x^{2} \quad \text { and } \quad y_{2}=x-\frac{1}{6} x^{3}-\frac{1}{120} x^{5}-\cdots .
$$

21. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+x^{2} y^{\prime}+x y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n-1}^{\infty} n c_{n} x^{n+1}}_{k=n+1}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n+1}}_{k=n+1} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=2}^{\infty}(k-1) c_{k-1} x^{k}+\sum_{k=1}^{\infty} c_{k-1} x^{k} \\
& =2 c_{2}+\left(6 c_{3}+c_{0}\right) x+\sum_{k=2}^{\infty}\left[(k+2)(k+1) c_{k+2}+k c_{k-1}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
c_{2}=0 \\
6 c_{3}+c_{0}=0 \\
(k+2)(k+1) c_{k+2}+k c_{k \quad 1}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =0 \\
c_{3} & =-\frac{1}{6} c_{0} \\
c_{k+2} & =-\frac{k}{(k+2)(k+1)} c_{k-1}, \quad k=2,3,4, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{3}=-\frac{1}{6} \\
& c_{4}=c_{5}=0 \\
& c_{6}=\frac{1}{45}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{3}=0 \\
& c_{1}=-\frac{1}{6} \\
& c_{3}=c_{6}=0 \\
& c_{7}=\frac{5}{252}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1-\frac{1}{6} x^{3}+\frac{1}{45} x^{6}-\cdots \quad \text { and } \quad y_{2}=x-\frac{1}{6} x^{4}+\frac{5}{252} x^{7}-\cdots
$$

zibstituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+2 x y^{\prime}+2 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+2 \underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+2 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+2 \sum_{k=1}^{\infty} k c_{k} x^{k}+2 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}+2 c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k-2}+2(k+1) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

-inus

$$
\begin{gathered}
2 c_{2}+2 c_{0}=0 \\
(k+2)(k+1) c_{k+2}+2(k+1) c_{k}=0
\end{gathered}
$$

ad

$$
\begin{aligned}
c_{2} & =-c_{0} \\
c_{k+2} & =-\frac{2}{k+2} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-1 \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{1}=\frac{1}{2} \\
& c_{6}=-\frac{1}{6}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=-\frac{2}{3} \\
& c_{5}=\frac{4}{15} \\
& c_{7}=-\frac{8}{105}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1-x^{2}+\frac{1}{2} x^{4}-\frac{1}{6} x^{6}+\cdots \quad \text { and } \quad y_{2}=x-\frac{2}{3} x^{3}+\frac{4}{15} x^{5}-\frac{8}{105} x^{7}+\cdots .
$$

23. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
(x-1) y^{\prime \prime}+y^{\prime} & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}}_{k=n-1}-\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n-1}}_{k=n-1} \\
& =\sum_{k=1}^{\infty}(k+1) k c_{k+1} x^{k}-\sum_{k=0}^{\infty}(k+2)(k+1) c_{k \div 2} x^{k}+\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k} \\
& =-2 c_{2}+c_{1}+\sum_{k=1}^{\infty}\left[(k+1) k c_{k+1}-(k+2)(k+1) c_{k+2}+(k+1) c_{k+1}\right] x^{k}=
\end{aligned}
$$

Thus

$$
\begin{gathered}
-2 c_{2}+c_{1}=0 \\
(k+1)^{2} c_{k+1}-(k+2)(k+1) c_{k+2}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{2} c_{1} \\
c_{k-2} & =\frac{k+1}{k+2} c_{k-1}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find $c_{2}=c_{3}=c_{4}=\cdots=0$. For $c_{1}=\therefore \vdots:=: \cdots$

$$
c_{2}=\frac{1}{2}, \quad c_{3}=\frac{1}{3}, \quad c_{4}=\frac{1}{4}
$$

and so on. Thus, two solutions are

$$
y_{1}=1 \quad \text { and } \quad y_{2}=x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\cdots
$$

Bbstituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
(x+2) y^{\prime \prime}+x y^{\prime}-y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}}_{k=n-1}+\underbrace{\sum_{n=2}^{\infty} 2 n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=1}^{\infty}(k+1) k c_{k+1} x^{k}+\sum_{k=0}^{\infty} 2(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=1}^{\infty} k c_{k} x^{k}-\sum_{k=1}^{\infty} \therefore \\
& =4 c_{2}-c_{0}+\sum_{k=1}^{\infty}\left[(k+1) k c_{k+1}+2(k+2)(k+1) c_{k+2}+(k-1) c_{k} x^{\prime}=\right.
\end{aligned}
$$

-:us

$$
\begin{gathered}
4 c_{2}-c_{0}=0 \\
(k+1) k c_{k+1}+2(k+2)(k+1) c_{k \div 2}+(k-1) c_{k}=0, \quad k=1,2,3, \ldots
\end{gathered}
$$

\because

$$
\begin{aligned}
c_{2} & =\frac{1}{4} c_{0} \\
c_{k+2} & =-\frac{(k+1) k c_{k+1}+(k-1) c_{k}}{2(k+2)(k+1)}, \quad k=1,2,3, \ldots
\end{aligned}
$$

\because oosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{1}=0, \quad c_{2}=\frac{1}{4}, \quad c_{3}=-\frac{1}{24}, \quad c_{4}=0, \quad c_{5}=\frac{1}{480}
$$

$\because \therefore$ so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=0 \\
& c_{3}=0 \\
& c_{4}=c_{5}=c_{6}=\cdots=0
\end{aligned}
$$

-..... two solutions are

$$
y_{1}=c_{0}\left[1+\frac{1}{4} x^{2}-\frac{1}{24} x^{3}+\frac{1}{480} x^{5}+\cdots\right] \quad \text { and } \quad y_{2}=c_{1} x .
$$

Exercises 6.1 Solutions About Ordinary Points

25. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential cquation we have

$$
\begin{aligned}
y^{\prime \prime}-(x+1) y^{\prime}-y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n-1}}_{k=n-1}-\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} k c_{k} \cdot x^{k}-\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}-\sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}-c_{1}-c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k \text { T } 2}-(k+1) c_{k+1}-(k+1) c_{k}\right] x^{k}=
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}-c_{1}-c_{0}=0 \\
(k+2)(k \div 1) c_{k+2}-(k+1)\left(c_{k+1}+c_{k}\right)=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{c_{1}+c_{0}}{2} \\
c_{k+2} & =\frac{c_{k+1}+c_{k}}{k+2} ; \quad k=1,2,3, \ldots .
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=\frac{1}{2}, \quad c_{3}=\frac{1}{6}, \quad c_{4}=\frac{1}{6}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
c_{2}=\frac{1}{2}, \quad c_{3}=\frac{1}{2}, \quad c_{4}=\frac{1}{4}
$$

and so on. Thus, two solutions are

$$
y_{1}=1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{6} x^{4}+\cdots \quad \text { and } \quad y_{2}=x+\frac{1}{2} x^{2}+\frac{1}{2} x^{3}+\frac{1}{4} x^{4}+\cdots .
$$

26. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
\left(x^{2}+1\right) y^{\prime \prime}-6 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}}_{k=n}+\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-6 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k}+\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-6 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}-6 c_{0}+\left(6 c_{3}-6 c_{1}\right) x+\sum_{k=2}^{\infty}\left[\left(k^{2}-k-6\right) c_{k}+(k+2)(k+1) c_{k+2}\right] \cdot r^{:}=
\end{aligned}
$$

Exercises 6.1 Solutions About Ordinary \mathfrak{F}

Thus

$$
\begin{gathered}
2 c_{2}-6 c_{0}=0 \\
6 c_{3}-6 c_{1}=0 \\
(k-3)(k+2) c_{k}+(k+2)(k+1) c_{k+2}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =3 c_{0} \\
c_{3} & =c_{1} \\
c_{k+2} & =-\frac{k-3}{k+1} c_{k}, \quad k=2,3,4, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=3 \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=1 \\
& c_{6}=-\frac{1}{5}
\end{aligned}
$$

End so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=1 \\
& c_{5}=c_{7}=c_{9}=\cdots=0
\end{aligned}
$$

Thus, two solutions are

$$
y_{1}=1+3 x^{2}+x^{4}-\frac{1}{5} x^{6}+\cdots \quad \text { and } \quad y_{2}=x+x^{3}
$$

-. Enbstituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
& \left(x^{2}+2\right) y^{\prime \prime}+3 x y^{\prime}-y=\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}}_{k=n}+2 \underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+3 \underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=i}^{\infty}}_{:=} . \\
& =\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k}+2 \sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+3 \sum_{k=1}^{\infty} k c_{k} x^{k}-\sum_{k=0}^{\infty} c_{k} x^{k} \\
& =\left(4 c_{2}-c_{0}\right)+\left(12 c_{3}+2 c_{1}\right) x+\sum_{k=2}^{\infty}\left[2(k+2)(k+1) c_{k+2}+\left(k^{2}+2 k-1\right) c_{k}\right] x_{j}=.
\end{aligned}
$$

Exercises 6.1 Solutions About Ordinary Points

Thus

$$
\begin{gathered}
4 c_{2}-c_{0}=0 \\
12 c_{3}+2 c_{1}=0 \\
2(k+2)(k+1) c_{k+2}+\left(k^{2}+2 k-1\right) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{4} c_{0} \\
c_{3} & =-\frac{1}{6} c_{1} \\
c_{k+2} & =-\frac{k^{2}+2 k-1}{2(k+2)(k+1)} c_{k} ; \quad k=2,3,4, \ldots .
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=\frac{1}{4} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=-\frac{7}{96}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=-\frac{1}{6} \\
& c_{5}=\frac{7}{120}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1+\frac{1}{4} x^{2}-\frac{7}{96} x^{4}+\cdots \quad \text { and } \quad y_{2}=x-\frac{1}{6} x^{3}+\frac{7}{120} x^{5}-\cdots
$$

25. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k}-\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=1}^{\infty} k c_{k} x^{k}-\sum_{k=0}^{\infty} c_{k} x^{k} \\
& =\left(-2 c_{2}-c_{0}\right)-6 c_{3} x+\sum_{k=2}^{\infty}\left[-(k+2)(k+1) c_{k+2} \div\left(k^{2}-1\right) c_{k}\right] x^{k}=
\end{aligned}
$$

Thus

$$
\begin{gathered}
-2 c_{2}-c_{0}=0 \\
-6 c_{3}=0 \\
-(k+2)(k+1) c_{k+2}+(k-1)(k+1) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{1}{2} c_{0} \\
c_{3} & =0 \\
c_{k+2} & =\frac{k-1}{k+2} c_{k}, \quad k=2,3,4, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-\frac{1}{2} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=-\frac{1}{8}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=c_{5}=c_{7}=\cdots=0
\end{aligned}
$$

Thus, two solutions are

$$
y_{1}=1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\cdots \quad \text { and } \quad y_{2}=x
$$

Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
&(x-1) y^{\prime \prime}-x y^{\prime}+y=\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}}_{k=n-1}-\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
&=\sum_{k=1}^{\infty}(k+1) k c_{k+1} x^{k}-\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} k c_{k} x^{k}+\sum_{k=0}^{\infty} c_{k} x^{k} \\
&=-2 c_{2}+c_{0}+\sum_{k=1}^{\infty}\left[-(k+2)(k+1) c_{k+2}+(k+1) k c_{k+1}-(k-1) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
-2 c_{2}+c_{0}=0
$$

Exercises 6.1 Solutions About Ordinary Points

$$
-(k+2)(k+1) c_{k+2}+(k+1) k c_{k+1}-(k-1) c_{k}=0
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{2} c_{0} \\
c_{k+2} & =\frac{k c_{k+1}}{k+2}-\frac{(k-1) c_{k}}{(k+2)(k+1)}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=\frac{1}{2}, \quad c_{3}=\frac{1}{6}, \quad c_{4}=\frac{1}{24},
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain $c_{2}=c_{3}=c_{4}=\cdots=0$. Thus,

$$
y=C_{1}\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots\right)+C_{2} x
$$

and

$$
y^{\prime}=C_{1}\left(x+\frac{1}{2} x^{2}+\cdots\right)+C_{2}
$$

The initial conditions imply $C_{1}=-2$ and $C_{2}=6$, so

$$
y=-2\left(1+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots\right)+6 x=8 x-2 e^{x} .
$$

30. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential cquation we have

$$
\begin{aligned}
& (x+1) y^{\prime \prime}-(2-x) y^{\prime}+y \\
& \quad=\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}}_{k=n-1}+\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-2 \underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n-1}}_{k=n-1}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=1}^{\infty}(k+1) k c_{k+1} x^{k}+\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-2 \sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}+\sum_{k=1}^{\infty} k c_{k} x^{k}+\sum_{k=0}^{\infty} \\
& =2 c_{2}-2 c_{1}+c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-(k+1) c_{k+1}+(k+1) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}-2 c_{1}+c_{0}=0 \\
(k+2)(k+1) c_{k+2}-(k+1) c_{k+1}+(k+1) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =c_{1}-\frac{1}{2} c_{0} \\
c_{k+2} & =\frac{1}{k+2} c_{k+1}-\frac{1}{k+2} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=-\frac{1}{2}, \quad c_{3}=-\frac{1}{6} ; \quad c_{4}=\frac{1}{12}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
c_{2}=1, \quad c_{3}=0, \quad c_{4}=-\frac{1}{4}
$$

and so on. Thus,

$$
y=C_{1}\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\cdots\right)+C_{2}\left(x+x^{2}-\frac{1}{4} x^{4}+\cdots\right)
$$

and

$$
y^{\prime}=C_{1}\left(-x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots\right)+C_{2}\left(1+2 x-x^{3}+\cdots\right) .
$$

The initial conditions imply $C_{1}=2$ and $C_{2}=-1$, so

$$
\begin{aligned}
y & =2\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\cdots\right)-\left(x+x^{2}-\frac{1}{4} x^{4}+\cdots\right) \\
& =2-x-2 x^{2}-\frac{1}{3} x^{3}+\frac{5}{12} x^{4}+\cdots
\end{aligned}
$$

\because Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}-2 x y^{\prime}+8 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-2 \underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+8 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-2 \sum_{k=1}^{\infty} k c_{k} x^{k}+8 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}+8 c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+(8-2 k) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}+8 c_{0}=0 \\
(k+2)(k+1) c_{k+2}+(8-2 k) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =-4 c_{0} \\
c_{k+2} & =\frac{2(k-4)}{(k+2)(k+1)} c_{k} ; \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-4 \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=\frac{4}{3} \\
& c_{6}=c_{8}=c_{10}=\cdots=0 .
\end{aligned}
$$

For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=-1 \\
& c_{5}=\frac{1}{10}
\end{aligned}
$$

and so on. Thus,

$$
y=C_{1}\left(1-4 x^{2}+\frac{4}{3} x^{4}\right)+C_{2}\left(x-x^{3}+\frac{1}{10} x^{5}+\cdots\right)
$$

and

$$
y^{\prime}=C_{1}\left(-8 x+\frac{16}{3} x^{3}\right)+C_{2}\left(1-3 x^{2}+\frac{1}{2} x^{4}+\cdots\right)
$$

The initial conditions imply $C_{1}=3$ and $C_{2}=0$, so

$$
y=3\left(1-4 x^{2}+\frac{4}{3} x^{4}\right)=3-12 x^{2}+4 x^{4} .
$$

32. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential cquation we have

$$
\begin{aligned}
\left(x^{2}+1\right) y^{\prime \prime}+2 x y^{\prime} & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n}}_{k=n}+\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} 2 n c_{n} x^{n}}_{k=n} \\
& =\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k}+\sum_{k=0}^{\infty}(k+2)(k+1) c_{k \div 2} x^{k}+\sum_{k=1}^{\infty} 2 k c_{k} x^{k} \\
& =2 c_{2}+\left(6 c_{3}+2 c_{1}\right) x+\sum_{k=2}^{\infty}\left[k(k+1) c_{k}+(k+2)(k+1) c_{k+2}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}=0 \\
6 c_{3}+2 c_{1}=0 \\
k(k+1) c_{k}+(k+2)(k+1) c_{k+2}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =0 \\
c_{3} & =-\frac{1}{3} c_{1} \\
c_{k+2} & =-\frac{k}{k+2} c_{k}, \quad k=2,3,4, \ldots
\end{aligned}
$$

Thoosing $c_{0}=1$ and $c_{1}=0$ we find $c_{3}=c_{4}=c_{5}=\cdots=0$. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{3}=-\frac{1}{3} \\
& c_{4}=c_{6}=c_{8}=\cdots=0 \\
& c_{5}=-\frac{1}{5} \\
& c_{7}=\frac{1}{7}
\end{aligned}
$$

:nd so on. Thus

$$
y=C_{0}+C_{1}\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots\right)
$$

-rd

$$
y^{\prime}=c_{1}\left(1-x^{2}+x^{4}-x^{6}+\cdots\right)
$$

-ie initial conditions imply $c_{0}=0$ and $c_{1}=1$, so

$$
y=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\cdots
$$

\because bstituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+(\sin x) y & =\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\cdots\right)\left(c_{0}+c_{1} x+c_{2} x^{2}+\cdots\right) \\
& =\left[2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+\cdots\right]+\left[c_{0} x+c_{1} x^{2}+\left(c_{2}-\frac{1}{6} c_{0}\right) x^{3}+\cdots\right. \\
& =2 c_{2}+\left(6 c_{3}+c_{0}\right) x+\left(12 c_{4}+c_{1}\right) x^{2}+\left(20 c_{5}+c_{2}-\frac{1}{6} c_{0}\right) x^{3}+\cdots=0
\end{aligned}
$$

-ius

$$
\begin{gathered}
2 c_{2}=0 \\
6 c_{3}+c_{0}=0 \\
12 c_{4}+c_{1}=0 \\
20 c_{5}+c_{2}-\frac{1}{6} c_{0}=0
\end{gathered}
$$

Exercises 6.1 Solutions About Ordinary Points

and

$$
\begin{aligned}
& c_{2}=0 \\
& c_{3}=-\frac{1}{6} c_{0} \\
& c_{4}=-\frac{1}{12} c_{1} \\
& c_{5}=-\frac{1}{20} c_{2}+\frac{1}{120} c_{0} .
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=0, \quad c_{3}=-\frac{1}{6}, \quad c_{4}=0, \quad c_{5}=\frac{1}{120}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
c_{2}=0, \quad c_{3}=0, \quad c_{4}=-\frac{1}{12}, \quad c_{\overline{3}}=0
$$

and so on. Thus, two solutions are

$$
y_{1}=1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\cdots \quad \text { and } \quad y_{2}=x-\frac{1}{12} x^{4}+\cdots .
$$

34. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+e^{x} y^{\prime}-y= & \sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2} \\
& +\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\cdots\right)\left(c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots\right)-\sum_{n=0}^{\infty} c \\
= & {\left[2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+\cdots\right] } \\
& +\left[c_{1}+\left(2 c_{2}+c_{1}\right) x+\left(3 c_{3}+2 c_{2}+\frac{1}{2} c_{1}\right) x^{2}+\cdots\right]-\left[c_{0}+c_{1} x+c_{2} x^{2}+\right. \\
= & \left(2 c_{2}+c_{1}-c_{0}\right)+\left(6 c_{3}+2 c_{2}\right) x+\left(12 c_{4}+3 c_{3}+c_{2}+\frac{1}{2} c_{1}\right) x^{2}+\cdots=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}+c_{1}-c_{0}=0 \\
6 c_{3}+2 c_{2}=0 \\
12 c_{4}+3 c_{3}+c_{2}+\frac{1}{2} c_{1}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{2} c_{0}-\frac{1}{2} c_{1} \\
c_{3} & =-\frac{1}{3} c_{2} \\
c_{4} & =-\frac{1}{4} c_{3}+\frac{1}{12} c_{2}-\frac{1}{24} c_{1} .
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=\frac{1}{2}, \quad c_{3}=-\frac{1}{6}, \quad c_{4}=0
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
c_{2}=-\frac{1}{2}: \quad c_{3}=\frac{1}{6}, \quad c_{4}=-\frac{1}{24}
$$

and so on. Thus, two solutions are

$$
y_{1}=1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\cdots \quad \text { and } \quad y_{2}=x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\cdots .
$$

\because. The singular points of $(\cos x) y^{\prime \prime}+y^{\prime}+5 y=0$ are odd integer multiples of $\pi / 2$. The dir: $-\therefore$ I to either $\pm \pi / 2$ is $\pi / 2$. The singular point closest to 1 is $\pi / 2$. The distance from 1 to $\therefore-\ldots-$ singular point is then $\pi / 2-1$.
${ }_{i}^{2}$ Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the first differential equation leads to

$$
\begin{aligned}
y^{\prime \prime}-x y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n+1}}_{k=n+1}=\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} c_{k-1} \cdots \\
& =2 c_{2}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-c_{k-1}\right] x^{k}=1 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}=1 \\
(k+2)(k+1) c_{k+2}-c_{k-1}=0
\end{gathered}
$$

ad

$$
\begin{aligned}
c_{2} & =\frac{1}{2} \\
c_{k+2} & =\frac{c_{k-1}}{(k+2)(k+1)}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Exercises 6.1 Solutions About Ordinary Points

Let c_{0} and c_{1} be arbitrary and iterate to find

$$
\begin{aligned}
& c_{2}=\frac{1}{2} \\
& c_{3}=\frac{1}{6} c_{0} \\
& c_{4}=\frac{1}{12} c_{1} \\
& c_{5}=\frac{1}{20} c_{2}=\frac{1}{40}
\end{aligned}
$$

and so on. The solution is

$$
\begin{aligned}
y & =c_{0}+c_{1} x+\frac{1}{2} x^{2}+\frac{1}{6} c_{0} x^{3}+\frac{1}{12} c_{1} x^{4}+\frac{1}{40} c_{5}+\cdots \\
& =c_{0}\left(1+\frac{1}{6} x^{3}+\cdots\right)+c_{1}\left(x+\frac{1}{12} x^{4}+\cdots\right)+\frac{1}{2} x^{2}+\frac{1}{40} x^{5}+\cdots .
\end{aligned}
$$

Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the second differential equation leads to

$$
\begin{aligned}
y^{\prime \prime}-4 x y^{\prime}-4 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=1}^{\infty} 4 n c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=0}^{\infty} 4 c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} 4 k c_{k} x^{k}-\sum_{k=0}^{\infty} 4 c_{k} x^{k} \\
& =2 c_{2}-4 c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-4(k+1) c_{k}\right] x^{k} \\
& =e^{x}=1+\sum_{k=1}^{\infty} \frac{1}{k!} x^{k} .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}-4 c_{0}=1 \\
(k+2)(k+1) c_{k+2}-4(k+1) c_{k}=\frac{1}{k!}
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{2}+2 c_{0} \\
c_{k+2} & =\frac{1}{(k+2)!}+\frac{4}{k+2} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

-et c_{0} and c_{1} be arbitrary and iterate to find

$$
\begin{aligned}
& c_{2}=\frac{1}{2}+2 c_{0} \\
& c_{3}=\frac{1}{3!}+\frac{4}{3} c_{1}=\frac{1}{3!}+\frac{4}{3} c_{1} \\
& c_{4}=\frac{1}{4!}+\frac{4}{4} c_{2}=\frac{1}{4!}+\frac{1}{2}+2 c_{0}=\frac{13}{4!}+2 c_{0} \\
& c_{5}=\frac{1}{5!}+\frac{4}{5} c_{3}=\frac{1}{5!}+\frac{4}{5 \cdot 3!}+\frac{16}{15} c_{1}=\frac{17}{5!}+\frac{16}{15} c_{1} \\
& c_{6}=\frac{1}{6!}+\frac{4}{6} c_{4}=\frac{1}{6!}+\frac{4 \cdot 13}{6 \cdot 4!}+\frac{8}{6} c_{0}=\frac{261}{6!}+\frac{4}{3} c_{0} \\
& c_{7}=\frac{1}{7!}+\frac{4}{7} c_{5}=\frac{1}{7!}+\frac{4 \cdot 17}{7 \cdot 5!}+\frac{64}{105} c_{1}=\frac{409}{7!}+\frac{64}{105} c_{1}
\end{aligned}
$$

.nd so on. The solution is

$$
\left.\left.\begin{array}{rl}
y= & c_{0}+c_{1} x+\left(\frac{1}{2}+2 c_{0}\right) x^{2}+\left(\frac{1}{3!}+\frac{4}{3} c_{1}\right) x^{3}+\left(\frac{13}{4!}+2 c_{0}\right) x^{4}+\left(\frac{17}{5!}+\frac{16}{15} c_{1}\right) x^{5} \\
& +\left(\frac{261}{6!}+\frac{4}{3} c_{0}\right) x^{6} \div\left(\frac{409}{7!}+\frac{64}{105} c_{1}\right) x^{7}+\cdots \\
= & c_{0}
\end{array}\right]\left[1+2 x^{2}+2 x^{4}+\frac{4}{3} x^{6}+\cdots\right]+c_{1}\left[x+\frac{4}{3} x^{3}+\frac{16}{15} x^{5}+\frac{64}{105} x^{7}+\cdots\right]\right)
$$

- Te identify $P(x)=0$ and $Q(x)=\sin x / x$. The Taylor series representation for $\sin x / x$ is $1-x^{2} / 3!+$ $\therefore 5!-\cdots$, for $|x|<\infty$. Thus, $Q(x)$ is analytic at $x=0$ and $x=0$ is an ordinary point of the \because fferential equation.
$\therefore x>0$ and $y>0$, then $y^{\prime \prime}=-x y<0$ and the graph of a solution curve is concave down. Thus, Hatever portion of a solution curve lies in the first quadrant is concave down. When $x>0$ and . $<0, y^{\prime \prime}=-x y>0$, so whatever portion of a solution curve lies in the fourth quadrant is concave \because.

Exercises 6.1 Solutions About Ordinary Points

39. (a) Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
y^{\prime \prime}+x y^{\prime}+y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+\underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=1}^{\infty} k c_{k} x^{k}+\sum_{k=0}^{\infty} c_{k} x^{k} \\
& =\left(2 c_{2}+c_{0}\right)+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+(k+1) c_{k}\right] x^{k}=0
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}+c_{0}=0 \\
(k+2)(k+1) c_{k+2}+(k+1) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{1}{2} c_{0} \\
c_{k+2} & =-\frac{1}{k+2} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-\frac{1}{2} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=-\frac{1}{4}\left(-\frac{1}{2}\right)=\frac{1}{2^{2} \cdot 2} \\
& c_{6}=-\frac{1}{6}\left(\frac{1}{2^{2} \cdot 2}\right)=-\frac{1}{2^{3} \cdot 3!}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=-\frac{1}{3}=-\frac{2}{3!} \\
& c_{5}=-\frac{1}{5}\left(-\frac{1}{3}\right)=\frac{1}{5 \cdot 3}=\frac{4 \cdot 2}{5!} \\
& c_{7}=-\frac{1}{7}\left(\frac{4 \cdot 2}{5!}\right)=-\frac{6 \cdot 4 \cdot 2}{7!}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k} \cdot k!} x^{2 k} \quad \text { and } \quad y_{2}=\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k} k!}{(2 k+1)!} x^{2 k+1} .
$$

(b) For $y_{1}, S_{3}=S_{2}$ and $S_{5}=S_{4}$, so we plot $S_{2}, S_{4}, S_{6}, S_{8}$, and S_{10}.

For $y_{2}, S_{3}=S_{4}$ and $S_{5}=S_{6}$, so we plot $S_{2}, S_{4}, S_{6}, S_{8}$, and S_{10}.

(c)

The graphs of y_{1} and y_{2} obtained from a numerical solver are shown. We sce that the partial sum representations indicate the even and odd natures of the solution, but don't really give a very accurate representation of the true solution. Increasing N to about 20 gives a much more accurate representation on $[-4,4]$.
(d) From $e^{x}=\sum_{k=0}^{\infty} x^{k} / k$! we see that $e^{-x^{2} / 2}=\sum_{k=0}^{\infty}\left(-x^{2} / 2\right)^{k} / k$! $=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k} / 2^{k} k$!. From (5) of Section 4.2 we have

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{-\int x d x}}{y_{1}^{2}} d x=e^{-x^{2} / 2} \int \frac{e^{-x^{2} / 2}}{\left(e^{-x^{2} / 2}\right)^{2}} d x=e^{-x^{2} / 2} \int \frac{e^{-x^{2} / 2}}{e^{-x^{2}}} d x=e^{-x^{2} / 2} \int e^{x^{2} / 2} d x \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k} k!} x^{2 k} \int \sum_{k=0}^{\infty} \frac{1}{2^{k} k!} x^{2 k} d x=\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k} k!} x^{2 k}\right)\left(\sum_{k=0}^{\infty} \int \frac{1}{2^{k} k!} x^{2 k} d x\right) \\
& =\left(\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k} k!} x^{2 k}\right)\left(\sum_{k=0}^{\infty} \frac{1}{(2 k+1) 2^{k} k!} x^{2 k+1}\right) \\
& =\left(1-\frac{1}{2} x^{2}+\frac{1}{2^{2} \cdot 2} x^{4}-\frac{1}{2^{3} \cdot 3!} x^{6}+\cdots\right)\left(x+\frac{1}{3 \cdot 2} x^{3}+\frac{1}{5 \cdot 2^{2} \cdot 2} x^{5}+\frac{1}{7 \cdot 2^{3} \cdot 3!} x^{7}+\cdots\right) \\
& =x-\frac{2}{3!} x^{3}+\frac{4 \cdot 2}{5!} x^{5}-\frac{6 \cdot 4 \cdot 2}{7!} x^{7}+\cdots=\sum_{k=0}^{\infty} \frac{(-1)^{k} 2^{k} k!}{(2 k+1)!} x^{2 k+1} .
\end{aligned}
$$

4. (a) We have

$$
\begin{aligned}
y^{\prime \prime}+(\cos x) y= & 2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+30 c_{6} x^{4}+42 c_{7} x^{5}+\cdots \\
& +\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots\right)\left(c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\cdots\right. \\
= & \left(2 c_{2}+c_{0}\right)+\left(6 c_{3}+c_{1}\right) x+\left(12 c_{4}+c_{2}-\frac{1}{2} c_{0}\right) x^{2}+\left(20 c_{5}+c_{3}-\frac{1}{2} c_{1}\right) x^{3} \\
& +\left(30 c_{6}+c_{4}+\frac{1}{24} c_{0}-\frac{1}{2} c_{2}\right) x^{4}+\left(42 c_{7}+c_{5}+\frac{1}{24} c_{3}-\frac{1}{2} c_{3}\right) x^{5}+\cdots
\end{aligned}
$$

Then

$$
30 c_{6}+c_{1}+\frac{1}{24} c_{0}-\frac{1}{2} c_{2}=0 \quad \text { and } \quad 42 c_{7}+c_{5}+\frac{1}{24} c_{1}-\frac{1}{2} c_{3}=0
$$

which gives $c_{6}=-c_{0} / 80$ and $c_{7}=-19 c_{1} / 5040$. Thus

$$
y_{1}(x)=1-\frac{1}{2} x^{2}+\frac{1}{12} x^{4}-\frac{1}{80} x^{6}+\cdots
$$

and

$$
y_{2}(x)=x-\frac{1}{6} x^{3}+\frac{1}{30} x^{5}-\frac{19}{5040} x^{7}+\cdots
$$

(b) From part (a) the general solution of the differential equation is $y=c_{1} y_{1}+c_{2} y_{2}$. $y(0)=c_{1}+c_{2} \cdot 0=c_{1}$ and $y^{\prime}(0)=c_{1} \cdot 0+c_{2}=c_{2}$, so the solution of the initial-value prob:

$$
y=y_{1}+y_{2}=1+x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}+\frac{1}{30} x^{5}-\frac{1}{80} x^{6}-\frac{19}{5040} x^{7}+\cdots .
$$

Exercises 6.2 Solutions About Singular Poin:
(c)

(d)

Exercises 6.2

- -wregular singular point: $x=0$
- Regular singular points: $x=0,-3$
: Trregular singular point: $x=3$; regular singular point: $x=-3$
$=$ Irregular singular point: $x=1$; regular singular point: $x=0$
- Regular singular points: $x=0, \pm 2 i$
irregular singular point: $x=5$; regular singular point: $x=0$

Exercises 6.2 Solutions About Singular Points

7. Regular singular points: $x=-3,2$
8. Regular singular points: $x=0, \pm i$
9. Irregular singular point: $x=0$; regular singular points: $x=2, \pm 5$
10. Irregular singular point: $x=-1$; regular singular points: $x=0,3$
11. Writing the differential equation in the form

$$
y^{\prime \prime}+\frac{5}{x-1} y^{\prime}+\frac{x}{x+1} y=0
$$

we see that $x_{0}=1$ and $x_{0}=-1$ are regular singular points. For $x_{0}=1$ the differential cquati can be put in the form

$$
(x-1)^{2} y^{\prime \prime}+\tilde{o}(x-1) y^{\prime}+\frac{x(x-1)^{2}}{x+1} y=0
$$

In this case $p(x)=5$ and $q(x)=x(x-1)^{2} /(x+1)$. For $x_{0}=-1$ the differential equation can put in the form

$$
(x+1)^{2} y^{\prime \prime}+5(x+1) \frac{x+1}{x-1} y^{\prime}+x(x+1) y=0 .
$$

In this case $p(x)=5(x+1) /(x-1)$ and $q(x)=x(x+1)$.
12. Writing the differential equation in the form

$$
y^{\prime \prime}+\frac{x+3}{x} y^{\prime}+7 x y=0
$$

we see that $x_{0}=0$ is a regular singular point. Multiplying by x^{2}, the differential equation ca:put in the form

$$
x^{2} y^{\prime \prime}+x(x+3) y^{\prime}+7 x^{3} y=0
$$

We identify $p(x)=x+3$ and $q(x)=7 x^{3}$.
13. We identify $P(x)=5 / 3 x+1$ and $Q(x)=-1 / 3 x^{2}$, so that $p(x)=x P(x)=\frac{5}{3}+x$ and q i, $x^{2} Q(x)=-\frac{1}{3}$. Then $a_{0}=\frac{5}{3}, b_{0}=-\frac{1}{3}$, and the indicial equation is

$$
r(r-1)+\frac{5}{3} r-\frac{1}{3}=r^{2}+\frac{2}{3} r-\frac{1}{3}=\frac{1}{3}\left(3 r^{2}+2 r-1\right)=\frac{1}{3}(3 r-1)(r+1)=0 .
$$

The indicial roots are $\frac{1}{3}$ and -1 . Since these do not differ by an integer we expect to find two solutions using the method of Frobenius.
14. We identify $P(x)=1 / x$ and $Q(x)=10 / x$, so that $p(x)=x P(x)=1$ and $q(x)=x^{2} Q(x)=$ Then $a_{0}=1, b_{0}=0$, and the indicial equation is

$$
r(r-1)+r=r^{2}=0
$$

The indicial roots are 0 and 0 . Since these are equal, we cxpect the method of Frobenius to \because single series solution.
5. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
2 x y^{\prime \prime}-y^{\prime}+2 y=\left(2 r^{2}-3 r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[2(k+r-1)(k+r) c_{k}-(k+r) c_{k}+2 c_{k-1}\right] x^{k+r-1}=0
$$

which implies

$$
2 r^{2}-3 r=r(2 r-3)=0
$$

and

$$
(k+r)(2 k+2 r-3) c_{k}+2 c_{k-1}=0
$$

The indicial roots are $r=0$ and $r=3 / 2$. For $r=0$ the recurrence relation is

$$
c_{k}=-\frac{2 c_{k-1}}{k(2 k-3)}, \quad k=1,2,3, \ldots
$$

nd

$$
c_{1}=2 c_{0}, \quad c_{2}=-2 c_{0}, \quad c_{3}=\frac{4}{9} c_{0}
$$

and so on. For $r=3 / 2$ the recurrence relation is

$$
c_{k}=-\frac{2 c_{k-1}}{(2 k+3) k}, \quad k=1,2,3, \ldots,
$$

ad

$$
c_{1}=-\frac{2}{5} c_{0}, \quad c_{2}=\frac{2}{35} c_{0}, \quad c_{3}=-\frac{4}{945} c_{0}
$$

=rd so on. The general solution on $(0, \infty)$ is

$$
y=C_{1}\left(1+2 x-2 x^{2}+\frac{4}{9} x^{3}+\cdots\right)+C_{2} x^{3 / 2}\left(1-\frac{2}{5} x+\frac{2}{35} x^{2}-\frac{4}{945} x^{3}+\cdots\right) .
$$

$\because \quad \because$ stituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
2 x y^{\prime \prime}+5 y^{\prime}+x y= & \left(2 r^{2}+3 r\right) c_{0} x^{r-1}+\left(2 r^{2}+7 r+5\right) c_{1} x^{r} \\
& +\sum_{k=2}^{\infty}\left[2(k+r)(k+r-1) c_{k}+5(k+r) c_{k}+c_{k-2}\right] x^{k+r-1} \\
= & 0
\end{aligned}
$$

\therefore implies

$$
\begin{gathered}
2 r^{2}+3 r=r(2 r+3)=0 \\
\left(2 r^{2}+7 r+5\right) c_{1}=0 \\
(k+r)(2 k+2 r+3) c_{k}+c_{k-2}=0
\end{gathered}
$$

Exercises 6.2 Solutions About Singular Points

The indicial roots are $r=-3 / 2$ and $r=0$, so $c_{1}=0$. For $r=-3 / 2$ the recurrence relation is

$$
c_{k}=-\frac{c_{k-2}}{(2 k-3) k}, \quad k=2,3,4, \ldots,
$$

and

$$
c_{2}=-\frac{1}{2} c_{0}, \quad c_{3}=0, \quad c_{1}=\frac{1}{40} c_{0}
$$

and so on. For $r=0$ the recurrence relation is

$$
c_{k}=-\frac{c_{k-2}}{k(2 k+3)}: \quad k=2,3,4, \ldots,
$$

and

$$
c_{2}=-\frac{1}{14} c_{0}, \quad c_{3}=0, \quad c_{4}=\frac{1}{616} c_{0}
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1} x^{-3 / 2}\left(1-\frac{1}{2} x^{2}+\frac{1}{40} x^{4}+\cdots\right)+C_{2}\left(1-\frac{1}{14} x^{2}+\frac{1}{616} x^{4}+\cdots\right) .
$$

17. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
4 x y^{\prime \prime}+\frac{1}{2} y^{\prime}+y & =\left(4 r^{2}-\frac{7}{2} r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[4(k+r)(k+r-1) c_{k}+\frac{1}{2}(k+r) c_{k}+c_{k-1}\right] x^{k+\cdot-} \\
& =0
\end{aligned}
$$

which implics

$$
4 r^{2}-\frac{7}{2} r=r\left(4 r-\frac{7}{2}\right)=0
$$

and

$$
\frac{1}{2}(k+r)(8 k+8 r-7) c_{k}+c_{k-1}=0
$$

The indicial roots are $r=0$ and $r=7 / 8$. For $r=0$ the recurrence relation is

$$
c_{k}=-\frac{2 c_{k-1}}{k(8 k-7)}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=-2 c_{0}, \quad c_{2}=\frac{2}{9} c_{0}, \quad c_{3}=-\frac{4}{459} c_{0},
$$

and so on. For $r=7 / 8$ the rccurrence relation is

$$
c_{k}=-\frac{2 c_{k-1}}{(8 k+7) k}, \quad k=1,2,3, \ldots,
$$

and

$$
c_{1}=-\frac{2}{15} c_{0}, \quad c_{2}=\frac{2}{345} c_{0}, \quad c_{3}=-\frac{4}{32,085} c_{0}
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1}\left(1-2 x+\frac{2}{9} x^{2}-\frac{4}{459} x^{3}+\cdots\right)+C_{2} x^{7 / 8}\left(1-\frac{2}{15} x+\frac{2}{345} x^{2}-\frac{4}{32,085} x^{3}+\cdots\right)
$$

-8. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(x^{2}+1\right) y= & \left(2 r^{2}-3 r+1\right) c_{0} x^{r}+\left(2 r^{2}+r\right) c_{1} x^{r+1} \\
& +\sum_{k=2}^{\infty}\left[2(k+r)(k+r-1) c_{k}-(k+r) c_{k}+c_{k}+c_{k-2}\left\lfloor x^{k+r}\right.\right. \\
= & 0
\end{aligned}
$$

which implies

$$
\begin{gathered}
2 r^{2}-3 r+1=(2 r-1)(r-1)=0 \\
\left(2 r^{2}+r\right) c_{1}=0
\end{gathered}
$$

and

$$
[(k+r)(2 k+2 r-3)+1] c_{k}+c_{k-2}=0 .
$$

The indicial roots are $r=1 / 2$ and $r=1$, so $c_{1}=0$. For $r=1 / 2$ the recurrence relation is

$$
c_{k}=-\frac{c_{k-2}}{k(2 k-1)}, \quad k=2,3,4, \ldots
$$

and

$$
c_{2}=-\frac{1}{6} c_{0}, \quad c_{3}=0, \quad c_{4}=\frac{1}{168} c_{0}
$$

and so on. For $r=1$ the recurrence relation is

$$
c_{k}=-\frac{c_{k-2}}{k(2 k+1)}, \quad k=2,3,4, \ldots
$$

and

$$
c_{2}=-\frac{1}{10} c_{0}, \quad c_{3}=0, \quad c_{4}=\frac{1}{360} c_{0}
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1} x^{1 / 2}\left(1-\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\cdots\right)+C_{2} x\left(1-\frac{1}{10} x^{2}+\frac{1}{360} x^{4}+\cdots\right) .
$$

\because Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
3 x y^{\prime \prime}+(2-x) y^{\prime}-y= & \left(3 r^{2}-r\right) c_{0} x^{r-1} \\
& +\sum_{k=1}^{\infty}\left[3(k+r-1)(k+r) c_{k}+2(k+r) c_{k}-(k+r) c_{k-1}\right] x^{k+r-1} \\
= & 0
\end{aligned}
$$

which implies

$$
3 r^{2}-r=r(3 r-1)=0
$$

and

$$
(k+r)(3 k+3 r-1) c_{k}-(k+r) c_{k-1}=0
$$

The indicial roots are $r=0$ and $r=1 / 3$. For $r=0$ the recurrence relation is

$$
c_{k}=\frac{c_{k-1}}{3 k-1}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=\frac{1}{2} c_{0}, \quad c_{2}=\frac{1}{10} c_{0}, \quad c_{3}=\frac{1}{80} c_{0}
$$

and so on. For $r=1 / 3$ the recurrence relation is

$$
c_{k}=\frac{c_{k-1}}{3 k}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=\frac{1}{3} c_{0}, \quad c_{2}=\frac{1}{18} c_{0}, \quad c_{3}=\frac{1}{162} c_{0},
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1}\left(1+\frac{1}{2} x+\frac{1}{10} x^{2}+\frac{1}{80} x^{3}+\cdots\right)+C_{2} x^{1 / 3}\left(1+\frac{1}{3} x+\frac{1}{18} x^{2}+\frac{1}{162} x^{3}+\cdots\right)
$$

20. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
x^{2} y^{\prime \prime}-\left(x-\frac{2}{9}\right) y & =\left(r^{2}-r+\frac{2}{9}\right) c_{0} x^{r}+\sum_{k=1}^{\infty}\left[(k+r)(k+r-1) c_{k}+\frac{2}{9} c_{k}-c_{k-1}\right] x^{k+r} \\
& =0
\end{aligned}
$$

which implies

$$
r^{2}-r+\frac{2}{9}=\left(r-\frac{2}{3}\right)\left(r-\frac{1}{3}\right)=0
$$

and

$$
\left[(k+r)(k+r-1)+\frac{2}{9}\right] c_{k}-c_{k-1}=0
$$

The indicial roots are $r=2 / 3$ and $r=1 / 3$. For $r=2 / 3$ the recurrence relation is

$$
c_{k}=\frac{3 c_{k-1}}{3 k^{2}+k}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=\frac{3}{4} c_{0}, \quad c_{2}=\frac{9}{56} c_{0}, \quad c_{3}=\frac{9}{560} c_{0},
$$

and so on. For $r=1 / 3$ the recurrence relation is

$$
c_{k}=\frac{3 c_{k-1}}{3 k^{2}-k}, \quad k=1,2,3, \ldots,
$$

and

$$
c_{1}=\frac{3}{2} c_{0}, \quad c_{2}=\frac{9}{20} c_{0}, \quad c_{3}=\frac{9}{160} c_{0}
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1} x^{2 / 3}\left(1+\frac{3}{4} x+\frac{9}{56} x^{2}+\frac{9}{560} x^{3}+\cdots\right)+C_{2} x^{1 / 3}\left(1+\frac{3}{2} x+\frac{9}{20} x^{2}+\frac{9}{160} x^{3}-\cdots\right.
$$

\therefore Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we oire:

$$
\begin{aligned}
2 x y^{\prime \prime}-(3+2 x) y^{\prime}+y= & \left(2 r^{2}-5 r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[2(k+r)(k+r-1) c_{k}\right. \\
& \left.-3(k+r) c_{k}-2(k+r-1) c_{k-1}+c_{k-1}\right] x^{k+r-1} \\
= & 0
\end{aligned}
$$

which implies

$$
2 r^{2}-5 r=r(2 r-5)=0
$$

and

$$
(k+r)(2 k+2 r-5) c_{k}-(2 k+2 r-3) c_{k-1}=0
$$

The indicial roots are $r=0$ and $r=\overline{3} / 2$. For $r=0$ the recurrence relation is

$$
c_{k}=\frac{(2 k-3) c_{k-1}}{k(2 k-5)}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=\frac{1}{3} c_{0}, \quad c_{2}=-\frac{1}{6} c_{0} . \quad c_{3}=-\frac{1}{6} c_{0}
$$

and so on. For $r=5 / 2$ the recurrence relation is

$$
c_{k}=\frac{2(k+1) c_{k-1}}{k(2 k+5)}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=\frac{4}{7} c_{0}, \quad c_{2}=\frac{4}{21} c_{0}, \quad c_{3}=\frac{32}{693} c_{0},
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1}\left(1+\frac{1}{3} x-\frac{1}{6} x^{2}-\frac{1}{6} x^{3}+\cdots\right)+C_{2} x^{5 / 2}\left(1+\frac{4}{7} x+\frac{4}{21} x^{2}+\frac{32}{693} x^{3}+\cdots\right)
$$

\therefore Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obte:.:-

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{4}{9}\right) y= & \left(r^{2}-\frac{4}{9}\right) c_{0} x^{r}+\left(r^{2}+2 r+\frac{5}{9}\right) c_{1} x^{r+1} \\
& +\sum_{k=2}^{\infty}\left[(k+r)(k+r-1) c_{k}+(k+r) c_{k}-\frac{4}{9} c_{k}+c_{k-2} y^{\prime}-\right. \\
= & 0
\end{aligned}
$$

Exercises 6.2 Solutions About Singular Points
which implies

$$
\begin{gathered}
r^{2}-\frac{4}{9}=\left(r+\frac{2}{3}\right)\left(r-\frac{2}{3}\right)=0 \\
\left(r^{2}+2 r+\frac{5}{9}\right) c_{1}=0
\end{gathered}
$$

and

$$
\left[(k+r)^{2}-\frac{4}{9}\right] c_{k}+c_{k-2}=0
$$

The indicial roots are $r=-2 / 3$ and $r=2 / 3$, so $c_{1}=0$. For $r=-2 / 3$ the recurrence relation :-

$$
c_{k}=-\frac{9 c_{k-2}}{3 k(3 k-4)}, \quad k=2,3,4, \ldots
$$

and

$$
c_{2}=-\frac{3}{4} c_{0}, \quad c_{3}=0, \quad c_{4}=\frac{9}{128} c_{0}
$$

and so on. For $r=2 / 3$ the recurrence relation is

$$
c_{k}=-\frac{9 c_{k-2}}{3 k(3 k+4)}, \quad k=2,3,4, \ldots,
$$

and

$$
c_{2}=-\frac{3}{20} c_{0}, \quad c_{3}=0, \quad c_{4}=\frac{9}{1,280} c_{0}
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1} x^{-2 / 3}\left(1-\frac{3}{4} x^{2}+\frac{9}{128} x^{4}+\cdots\right)+C_{2} x^{2 / 3}\left(1-\frac{3}{20} x^{2}+\frac{9}{1,280} x^{4}+\cdots\right)
$$

23. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
9 x^{2} y^{\prime \prime}+9 x^{2} y^{\prime}+2 y= & \left(9 r^{2}-9 r+2\right) c_{0} x^{r} \\
& +\sum_{k=1}^{\infty}\left[9(k+r)(k+r-1) c_{k}+2 c_{k}+9(k+r-1) c_{k-1}\right] x^{k+r} \\
= & 0,
\end{aligned}
$$

which implies

$$
9 r^{2}-9 r+2=(3 r-1)(3 r-2)=0
$$

and

$$
[9(k+r)(k+r-1)+2] c_{k}+9(k+r-1) c_{k-1}=0 .
$$

The indicial roots are $r=1 / 3$ and $r=2 / 3$. For $r=1 / 3$ the recurrence relation is

$$
c_{k}=-\frac{(3 k-2) c_{k-1}}{k(3 k-1)}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=-\frac{1}{2} c_{0}, \quad c_{2}=\frac{1}{5} c_{0}, \quad c_{3}=-\frac{7}{120} c_{0},
$$

and so on. For $r=2 / 3$ the recurrence relation is

$$
c_{k}=-\frac{(3 k-1) c_{k-1}}{k(3 k+1)}, \quad k=1,2,3, \ldots
$$

and

$$
c_{1}=-\frac{1}{2} c_{0}, \quad c_{2}=\frac{5}{28} c_{0} . \quad c_{3}=-\frac{1}{21} c_{0}
$$

and so on. The general solution on $(0, \infty)$ is

$$
y=C_{1} x^{1 / 3}\left(1-\frac{1}{2} x+\frac{1}{5} x^{2}-\frac{7}{120} x^{3}+\cdots\right)+C_{2} x^{2 / 3}\left(1-\frac{1}{2} x+\frac{5}{28} x^{2}-\frac{1}{21} x^{3}+\cdots\right)
$$

\therefore Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtat.

$$
\begin{aligned}
2 x^{2} y^{\prime \prime}+3 x y^{\prime}+(2 x-1) y= & \left(2 r^{2}+r-1\right) c_{0} x^{r} \\
& +\sum_{k=1}^{\infty}\left[2(k+r)(k+r-1) c_{k}+3(k+r) c_{k}-c_{k}+2 c_{k-1}\right. \\
= & 0
\end{aligned}
$$

ninch implies

$$
2 r^{2}+r-1=(2 r-1)(r+1)=0
$$

and

$$
[(k+r)(2 k+2 r+1)-1] c_{k}+2 c_{k-1}=0
$$

The indicial roots are $r=-1$ and $r=1 / 2$. For $r=-1$ the recurrence relation is

$$
c_{k}=-\frac{2 c_{k-1}}{k(2 k-3)}, \quad k=1,2,3, \ldots
$$

$\therefore \mathrm{ad}$

$$
c_{1}=2 c_{0}, \quad c_{2}=-2 c_{0}, \quad c_{3}=\frac{4}{9} c_{0}
$$

:-d so on. For $r=1 / 2$ the recurrence relation is

$$
c_{k}=-\frac{2 c_{k-1}}{k(2 k+3)}, \quad k=1,2,3, \ldots
$$

$$
c_{1}=-\frac{2}{5} c_{0}, \quad c_{2}=\frac{2}{35} c_{0} . \quad c_{3}=-\frac{4}{945} c_{0},
$$

:-1 so on. The gencral solution on $(0, \infty)$ is

$$
y=C_{1} x^{-1}\left(1+2 x-2 x^{2}+\frac{4}{9} x^{3}+\cdots\right)+C_{2} x^{1 / 2}\left(1-\frac{2}{5} x+\frac{2}{35} x^{2}-\frac{4}{945} x^{3}+\cdots\right) .
$$

25. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
x y^{\prime \prime}+2 y^{\prime}-x y= & \left(r^{2}+r\right) c_{0} x^{r-1}+\left(r^{2}+3 r+2\right) c_{1} x^{r} \\
& +\sum_{k=2}^{\infty}\left[(k+r)(k+r-1) c_{k}+2(k+r) c_{k}-c_{k-2}\right] x^{k+r-1} \\
= & 0
\end{aligned}
$$

which implies

$$
\begin{gathered}
r^{2}+r=r(r+1)=0 \\
\left(r^{2}+3 r+2\right) c_{1}=0
\end{gathered}
$$

and

$$
(k+r)(k+r+1) c_{k}-c_{k-2}=0
$$

The indicial roots are $r_{1}=0$ and $r_{2}=-1$, so $c_{1}=0$. For $r_{1}=0$ the recurrence relation is

$$
c_{k}=\frac{c_{k-2}}{k(k+1)}, \quad k=2,3,4, \ldots
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{3!} c_{0} \\
c_{3} & =c_{\bar{\partial}}=c_{7}=\cdots=0 \\
c_{4} & =\frac{1}{5!} c_{0} \\
c_{2 n} & =\frac{1}{(2 n+1)!} c_{0}
\end{aligned}
$$

For $r_{2}=-1$ the recurrence relation is

$$
c_{k}=\frac{c_{k-2}}{k(k-1)}, \quad k=2,3,4, \ldots,
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{2!} c_{0} \\
c_{3} & =c_{5}=c_{7}=\cdots=0 \\
c_{4} & =\frac{1}{4!} c_{0} \\
c_{2 n} & =\frac{1}{(2 n)!} c_{0}
\end{aligned}
$$

The gencral solution on $(0, \infty)$ is

$$
\begin{aligned}
y & =C_{1} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n}+C_{2} x^{-i} \sum_{n=1}^{\infty} \frac{1}{2!}! \\
& =\frac{1}{x}\left[C_{1} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}+C_{2} \sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}\right] \\
& =\frac{1}{x}\left[C_{1} \sinh x+C_{2} \cosh x\right]
\end{aligned}
$$

2 . Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obte:-

$$
\begin{aligned}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y= & \left(r^{2}-\frac{1}{4}\right) c_{0} x^{r}+\left(r^{2}+2 r+\frac{3}{4}\right) c_{1} x^{r+1} \\
& +\sum_{k=2}^{\infty}\left[(k+r)(k+r-1) c_{k}+(k+r) c_{k}-\frac{1}{4} c_{k}+c_{k-2}, r\right. \\
= & 0
\end{aligned}
$$

which implies

$$
\begin{gathered}
r^{2}-\frac{1}{4}=\left(r-\frac{1}{2}\right)\left(r+\frac{1}{2}\right)=0 \\
\left(r^{2}+2 r+\frac{3}{4}\right) c_{1}=0
\end{gathered}
$$

and

$$
\left[(k+r)^{2}-\frac{1}{4}\right] c_{k}+c_{k-2}=0
$$

The indicial roots are $r_{1}=1 / 2$ and $r_{2}=-1 / 2$, so $c_{1}=0$. For $r_{1}=1 / 2$ the recurrence relatic. :

$$
c_{k}=-\frac{c_{k-2}}{k(k+1)}, \quad k=2,3,4, \ldots
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{1}{3!} c_{0} \\
c_{3} & =c_{5}=c_{7}=\cdots=0 \\
c_{4} & =\frac{1}{5!} c_{0} \\
c_{2 n} & =\frac{(-1)^{n}}{(2 n+1)!} c_{0}
\end{aligned}
$$

For $r_{2}=-1 / 2$ the recurrence relation is

$$
c_{k}=-\frac{c_{k \cdots 2}}{k(k-1)}, \quad k=2,3,4, \ldots
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{1}{2!} c_{0} \\
c_{3} & =c_{\overline{3}}=c_{7}=\cdots=0 \\
c_{4} & =\frac{1}{4!} c_{0} \\
c_{2 n} & =\frac{(-1)^{n}}{(2 n)!} c_{0}
\end{aligned}
$$

The general solution on $(0, \infty)$ is

$$
\begin{aligned}
y & =C_{1} x^{1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n}+C_{2} x^{-1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
& =C_{1} x^{-1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}+C_{2} x^{-1 / 2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n} \\
& =x^{-1 / 2}\left[C_{1} \sin x+C_{2} \cos x\right] .
\end{aligned}
$$

2-. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential cquation and collecting terms, we obtain

$$
x y^{\prime \prime}-x y^{\prime}+y=\left(r^{2}-r\right) c_{0} x^{r-1}+\sum_{k=0}^{\infty}\left[(k+r+1)(k+r) c_{k+1}-(k+r) c_{k}+c_{k}\right] x^{k+r}=0
$$

which implies

$$
r^{2}-r=r(r-1)=0
$$

and

$$
(k+r+1)(k+r) c_{k+1}-(k+r-1) c_{k}=0
$$

The indicial roots are $r_{1}=1$ and $r_{2}=0$. For $r_{1}=1$ the recurrence relation is

$$
c_{k+1}=\frac{k c_{k}}{(k+2)(k+1)}, \quad k=0,1,2, \ldots,
$$

and one solution is $y_{1}=c_{0} x$. A second solution is

$$
\begin{aligned}
y_{2} & =x \int \frac{e^{-\int-1 d x}}{x^{2}} d x=x \int \frac{e^{x}}{x^{2}} d x=x \int \frac{1}{x^{2}}\left(1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots\right) d x \\
& =x \int\left(\frac{1}{x^{2}}+\frac{1}{x}+\frac{1}{2}+\frac{1}{3!} x+\frac{1}{4!} x^{2}+\cdots\right) d x=x\left[-\frac{1}{x}+\ln x+\frac{1}{2} x+\frac{1}{12} x^{2}+\frac{1}{72} x^{3}+\cdots\right] \\
& =x \ln x-1+\frac{1}{2} x^{2}+\frac{1}{12} x^{3}+\frac{1}{72} x^{4}+\cdots .
\end{aligned}
$$

The general solution on $(0, \infty)$ is

$$
y=C_{1} x+C_{2} y_{2}(x)
$$

- Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms. we obtain

$$
\begin{aligned}
y^{\prime \prime}+\frac{3}{x} y^{\prime}-2 y= & \left(r^{2}+2 r\right) c_{0} x^{r-2}+\left(r^{2}+4 r+3\right) c_{1} x^{r-1} \\
& +\sum_{k=2}^{\infty}\left[(k+r)(k+r-1) c_{k}+3(k+r) c_{k}-2 c_{k-2}\right] x^{k+r-2} \\
= & 0
\end{aligned}
$$

\because hich implies

$$
\begin{gathered}
r^{2}+2 r=r(r+2)=0 \\
\left(r^{2}+4 r+3\right) c_{1}=0 \\
(k+r)(k+r+2) c_{k}-2 c_{k-2}=0
\end{gathered}
$$

-ie indicial roots are $r_{1}=0$ and $r_{2}=-2$, so $c_{1}=0$. For $r_{1}=0$ the recurrence relation is

$$
c_{k}=\frac{2 c_{k-2}}{k(k+2)}, \quad k=2,3,4, \ldots
$$

$$
\begin{align*}
& c_{2}=\frac{1}{4} c_{0} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=\frac{1}{48} c_{0} \\
& c_{6}=\frac{1}{1,152} c_{0} .
\end{align*}
$$

$-\therefore$ result is

$$
y_{1}=c_{0}\left(1+\frac{1}{4} x^{2}+\frac{1}{48} x^{4}+\frac{1}{1,152} x_{6}+\cdots\right)
$$

$\therefore:=$ cond solution is

$$
\begin{aligned}
2 & =y_{1} \int \frac{e^{-\int(3 / x) d x}}{y_{1}^{2}} d x=y_{1} \int \frac{d x}{x^{3}\left(1+\frac{1}{4} x^{2}+\frac{1}{48} x^{4}+\cdots\right)^{2}} \\
& =y_{1} \int \frac{d x}{x^{3}\left(1+\frac{1}{2} x^{2}+\frac{5}{48} x^{4}+\frac{7}{576} x^{6}+\cdots\right)}=y_{1} \int \frac{1}{x^{3}}\left(1-\frac{1}{2} x^{2}+\frac{7}{48} x^{4}+\frac{19}{576} x^{6}+\cdots\right) \\
& =y_{1} \int\left(\frac{1}{x^{3}}-\frac{1}{2 x}+\frac{7}{48} x-\frac{19}{576} x^{3}+\cdots\right) d x=y_{1}\left[-\frac{1}{2 x^{2}}-\frac{1}{2} \ln x+\frac{7}{96} x^{2}-\frac{19}{2,304} x^{4}+\cdots\right. \\
& =-\frac{1}{2} y_{1} \ln x+y\left[-\frac{1}{2 x^{2}}+\frac{7}{96} x^{2}-\frac{19}{2,304} x^{4}+\cdots\right] .
\end{aligned}
$$

The general solution on $(0, \infty)$ is

$$
y=C_{1} y_{1}(x)+C_{2} y_{2}(x)
$$

29. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
x y^{\prime \prime}+(1-x) y^{\prime}-y=r^{2} c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[(k+r)(k+r-1) c_{k}+(k+r) c_{k}-(k+r) c_{k-1}\right] x^{k+r-1}=
$$

which implies $r^{2}=0$ and

$$
(k+r)^{2} c_{k}-(k+r) c_{k-1}=0
$$

The indicial roots are $r_{1}=r_{2}=0$ and the recurrence relation is

$$
c_{k}=\frac{c_{k-1}}{k}, \quad k=1,2,3, \ldots
$$

One solution is

$$
y_{1}=c_{0}\left(1+x+\frac{1}{2} x^{2}+\frac{1}{3!} x^{3}+\cdots\right)=c_{0} e^{x} .
$$

A second solution is

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{-\int(1 / x-1) d x}}{e^{2 x}} d x=e^{x} \int \frac{e^{r} / x}{e^{2 x}} d x=e^{x} \int \frac{1}{x} e^{-x} d x \\
& =e^{x} \int \frac{1}{x}\left(1-x+\frac{1}{2} x^{2}-\frac{1}{3!} x^{3}+\cdots\right) d x=e^{x} \int\left(\frac{1}{x}-1+\frac{1}{2} x-\frac{1}{3!} x^{2}+\cdots\right) d x \\
& =e^{x}\left[\ln x-x+\frac{1}{2 \cdot 2} x^{2}-\frac{1}{3 \cdot 3!} x^{3}+\cdots\right]=e^{x} \ln x-e^{x} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot n!} x^{n} .
\end{aligned}
$$

The gencral solution on $(0, \infty)$ is

$$
y=C_{1} e^{x}+C_{2} e^{x}\left(\ln x-\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \cdot n!} x^{n}\right)
$$

30. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain

$$
x y^{\prime \prime}+y^{\prime}+y=r^{2} c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[(k+r)(k+r-1) c_{k}+(k+r) c_{k}+c_{k-1}\right] x^{k+r-1}=0
$$

which implies $r^{2}=0$ and

$$
(k+r)^{2} c_{k}+c_{k-1}=0
$$

The indicial roots are $r_{1}=r_{2}=0$ and the recurrence relation is

$$
c_{k}=-\frac{c_{k-1}}{k^{2}}, \quad k=1,2,3, \ldots
$$

One solution is

$$
y_{1}=c_{0}\left(1-x+\frac{1}{2^{2}} x^{2}-\frac{1}{(3!)^{2}} x^{3}+\frac{1}{(4!)^{2}} x^{4}-\cdots\right)=c_{0} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(n!)^{2}} x^{n}
$$

A second solution is

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{-\int(1 / x) d x}}{y_{1}^{2}} d x=y_{1} \int \frac{d x}{x\left(1-x+\frac{1}{4} \cdot x^{2}-\frac{1}{36} \cdot r^{3}-\cdots\right.} \\
& =y_{1} \int \frac{d x}{x\left(1-2 x+\frac{3}{2} x^{2}-\frac{5}{9} x^{3}+\frac{35}{288} x^{4}-\cdots\right)} \\
& =y_{1} \int \frac{1}{x}\left(1+2 x+\frac{5}{2} x^{2}+\frac{23}{9} x^{3}+\frac{677}{288} x^{4}+\cdots\right) d x \\
& =y_{1} \int\left(\frac{1}{x}+2+\frac{5}{2} x+\frac{23}{9} x^{2}+\frac{677}{288} x^{3}+\cdots\right) d x \\
& =y_{1}\left[\ln x+2 x+\frac{5}{4} x^{2}+\frac{23}{27} x^{3}+\frac{677}{1,152} x^{4}+\cdots\right] \\
& =y_{1} \ln x+y_{1}\left(2 x+\frac{5}{4} x^{2}+\frac{23}{27} x^{3}+\frac{677}{1,152} x^{4}+\cdots\right)
\end{aligned}
$$

The general solution on $(0, \infty)$ is

$$
y=C_{1} y_{1}(x)+C_{2} y_{2}(x)
$$

\therefore. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obtain.

$$
\begin{gathered}
x y^{\prime \prime}+(x-6) y^{\prime}-3 y=\left(r^{2}-7 r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[(k+r)(k+r-1) c_{k}+(k+r-1) c_{k-1}\right. \\
\left.-6(k+r) c_{k}-3 c_{k-1}\right] x^{k+r-1}=0
\end{gathered}
$$

which implies

$$
r^{2}-7 r=r(r-7)=0
$$

and

$$
(k+r)(k+r-7) c_{k}+(k+r-4) c_{k-1}=0
$$

The indicial roots are $r_{1}=7$ and $r_{2}=0$. For $r_{1}=7$ the recurrence relation is

$$
(k+7) k c_{k}+(k+3) c_{k-1}=0, \quad k=1,2,3, \ldots,
$$

Ir

$$
c_{k}=-\frac{k+3}{k(k+7)} c_{k-1}, \quad k=1,2,3, \ldots
$$

Exercises 6.2 Solutions About Singular Points

Taking $c_{0} \neq 0$ we obtain

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} c_{0} \\
& c_{2}=\frac{\overline{3}}{18} c_{0} \\
& c_{3}=-\frac{1}{6} c_{0} .
\end{aligned}
$$

and so on. Thus, the indicial root $r_{1}=7$ yields a single solution. Now, for $r_{2}=0$ the recurres: relation is

$$
k(k-7) c_{k}+(k-4) c_{k-1}=0, \quad k=1,2,3, \ldots
$$

Then

$$
\begin{aligned}
-6 c_{1}-3 c_{0} & =0 \\
-10 c_{2}-2 c_{1} & =0 \\
-12 c_{3}-c_{2} & =0 \\
-12 c_{4}+0 c_{3} & =0 \Longrightarrow c_{4}=0 \\
-10 c_{5}+c_{4} & =0 \Longrightarrow c_{5}=0 \\
-6 c_{6}+2 c_{5} & =0 \Longrightarrow c_{6}=0 \\
0 c_{7}+3 c_{6} & =0 \Longrightarrow c_{7} \text { is arbitrary }
\end{aligned}
$$

and

$$
c_{k}=-\frac{k-4}{k(k-7)} c_{k-1}, \quad k=8,9,10, \ldots
$$

Taking $c_{0} \neq 0$ and $c_{7}=0$ we obtain

$$
\begin{aligned}
& c_{1}=-\frac{1}{2} c_{0} \\
& c_{2}=\frac{1}{10} c_{0} \\
& c_{3}=-\frac{1}{120} c_{0} \\
& c_{4}=c_{5}=c_{6}=\cdots=0 .
\end{aligned}
$$

Taking $c_{0}=0$ and $c_{7} \neq 0$ we obtain

$$
\begin{aligned}
c_{1} & =c_{2}=c_{3}=c_{4}=c_{5}=c_{6}=0 \\
c_{8} & =-\frac{1}{2} c_{7} \\
c_{9} & =\frac{5}{36} c_{7} \\
c_{10} & =-\frac{1}{36} c_{7}
\end{aligned}
$$

and so on. In this case we obtain the two solutions

$$
y_{1}=1-\frac{1}{2} x+\frac{1}{10} x^{2}-\frac{1}{120} x^{3} \quad \text { and } \quad y_{2}=x^{7}-\frac{1}{2} x^{8}+\frac{5}{36} x^{9}-\frac{1}{36} x^{10} \div \cdots .
$$

5. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation and collecting terms, we obta:-

$$
\begin{aligned}
x(x-1) y^{\prime \prime}+3 y^{\prime}- & 2 y \\
= & \left(4 r-r^{2}\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[(k+r-1)(k+r-12) c_{k-1}-(k+r)(k+r-\right. \\
& \left.\quad 3(k+r) c_{k}-2 c_{k-1}\right] x^{k+r-1} \\
= & 0
\end{aligned}
$$

Which implies

$$
4 r-r^{2}=r(4-r)=0
$$

and

$$
-(k+r)(k+r-4) c_{k}+[(k+r-1)(k+r-2)-2] c_{k-1}=0 .
$$

The indicial roots are $r_{1}=4$ and $r_{2}=0$. For $r_{1}=4$ the recurrence relation is

$$
-(k+4) k c_{k}+[(k+3)(k+2)-2] c_{k-1}=0
$$

or

$$
c_{k}=\frac{k+1}{k} c_{k-1}, \quad k=1,2,3, \ldots
$$

Taking $c_{0} \neq 0$ we obtain

$$
\begin{aligned}
& c_{1}=2 c_{0} \\
& c_{2}=3 c_{0} \\
& c_{3}=4 c_{0}
\end{aligned}
$$

Exercises 6.2 Solutions About Singular Points

and so on. Thus, the indicial root $r_{1}=4$ yields a single solution. For $r_{2}=0$ the recurrence rele:is

$$
-k(k-4) c_{k}+k(k-3) c_{k-1}=0, \quad k=1,2,3, \ldots,
$$

or

$$
-(k-4) c_{k}+(k-3) c_{k-1}=0, \quad k=1,2,3 \ldots \ldots
$$

Then

$$
\begin{aligned}
3 c_{1}-2 c_{0} & =0 \\
2 c_{2}-c_{1} & =0 \\
c_{3}+0 c_{2} & =0 \quad \Rightarrow \quad c_{3}=0 \\
0 c_{4}+c_{3} & =0 \quad \Rightarrow \quad c_{4} \text { is arbitrary }
\end{aligned}
$$

and

$$
c_{k}=\frac{(k-3) c_{k-1}}{k-4}, \quad k=5,6,7, \ldots
$$

Taking $c_{0} \neq 0$ and $c_{1}=0$ we obtain

$$
\begin{aligned}
& c_{1}=\frac{2}{3} c_{0} \\
& c_{2}=\frac{1}{3} c_{0} \\
& c_{3}=c_{4}=c_{5}=\cdots=0 .
\end{aligned}
$$

Taking $c_{0}=0$ and $c_{4} \neq 0$ we obtain

$$
\begin{aligned}
& c_{1}=c_{2}=c_{3}=0 \\
& c_{5}=2 c_{4} \\
& c_{6}=3 c_{4} \\
& c_{7}=4 c_{4}
\end{aligned}
$$

and so on. In this case we obtain the two solutions

$$
y_{1}=1+\frac{2}{3} x+\frac{1}{3} x^{2} \quad \text { and } \quad y_{2}=x^{4}+2 x^{5}+3 x^{6}+4 x^{7}+\cdots
$$

33. (a) From $t=1 / x$ we have $d t / d x=-1 / x^{2}=-t^{2}$. Then

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}=-t^{2} \frac{d y}{d t}
$$

and

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{d}{d x}\left(-t^{2} \frac{d y}{d t}\right)=-t^{2} \frac{d^{2} y}{d t^{2}} \frac{d t}{d x}-\frac{d y}{d t}\left(2 t \frac{d t}{d x}\right)=t^{1} \frac{d^{2} y}{d t^{2}}+2 t^{3} \frac{d y}{d t} .
$$

Now

$$
x^{4} \frac{d^{2} y}{d x^{2}}+\lambda y=\frac{1}{t^{4}}\left(t^{4} \frac{d^{2} y}{d t^{2}}+2 t^{3} \frac{d y}{d t}\right)+\lambda y=\frac{d^{2} y}{d t^{2}}+\frac{2}{t} \frac{d y}{d t}+\lambda y=0
$$

becomes

$$
t \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+\lambda t y=0
$$

(b) Substituting $y=\sum_{n=0}^{\infty} c_{n} t^{n+r}$ into the differential equation and collecting terms, we obtain

$$
\begin{aligned}
t \frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+\lambda t y= & \left(r^{2}+r\right) c_{0} t^{r-1}+\left(r^{2}+3 r+2\right) c_{1} t^{r} \\
& +\sum_{k=2}^{\infty}\left[(k+r)(k+r-1) c_{k}+2(k+r) c_{k}+\lambda c_{k-2}\right] t^{k+r-1} \\
= & 0
\end{aligned}
$$

which implies

$$
\begin{gathered}
r^{2}+r=r(r+1)=0 \\
\left(r^{2}+3 r+2\right) c_{1}=0
\end{gathered}
$$

and

$$
(k+r)(k+r+1) c_{k}+\lambda c_{k-2}=0
$$

The indicial roots are $r_{1}=0$ and $r_{2}=-1$, so $c_{1}=0$. For $r_{1}=0$ the recurrence relation is

$$
c_{k}=-\frac{\lambda c_{k-2}}{k(k+1)}, \quad k=2,3,4, \ldots
$$

and

$$
\begin{aligned}
& c_{2}=-\frac{\lambda}{3!} c_{0} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=\frac{\lambda^{2}}{5!} c_{0} \\
& c_{2 n}=(-1)^{n} \frac{\lambda^{n}}{(2 n+1)!} c_{0}
\end{aligned}
$$

For $r_{2}=-1$ the recurrence relation is

$$
c_{k}=-\frac{\lambda c_{k-2}}{k(k-1)}, \quad k=2,3,4, \ldots,
$$

Exercises 6.2 Solutions About Singular Points

and

$$
\begin{aligned}
c_{2} & =-\frac{\lambda}{2!} c_{0} \\
c_{3} & =c_{5}=c_{7}=\cdots=0 \\
c_{4} & =\frac{\lambda^{2}}{4!} c_{0} \\
c_{2 n} & =(-1)^{n} \frac{\lambda^{n}}{(2 n)!} c_{0}
\end{aligned}
$$

The gencral solution on $(0, \infty)$ is

$$
\begin{aligned}
y(t) & =c_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(\sqrt{\lambda} t)^{2 n}+c_{2} t^{-1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(\sqrt{\lambda} t)^{2 n} \\
& =\frac{1}{t}\left[C_{1} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(\sqrt{\lambda} t)^{2 n+1}+C_{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}(\sqrt{\lambda} t)^{2 n}\right] \\
& =\frac{1}{t}\left[C_{1} \sin \sqrt{\lambda} t+C_{2} \cos \sqrt{\lambda} t\right] .
\end{aligned}
$$

(c) Using $t=1 / x$, the solution of the original cquation is

$$
y(x)=C_{1} x \sin \frac{\sqrt{\lambda}}{x}+C_{2} x \cos \frac{\sqrt{\lambda}}{x} .
$$

34. (a) From the boundary conditions $y(a)=0, y(b)=0$ we find

$$
\begin{aligned}
& C_{1} \sin \frac{\sqrt{\lambda}}{a}+C_{2} \cos \frac{\sqrt{\lambda}}{a}=0 \\
& C_{1} \sin \frac{\sqrt{\lambda}}{b}+C_{2} \cos \frac{\sqrt{\lambda}}{b}=0 .
\end{aligned}
$$

Since this is a homogeneous system of linear equations, it will have nontrivial solutions for and C_{2} if

$$
\left\lvert\, \begin{aligned}
\left|\begin{array}{ll}
\sin \frac{\sqrt{\lambda}}{a} & \cos \frac{\sqrt{\lambda}}{a} \\
\sin \frac{\sqrt{\lambda}}{b} & \cos \frac{\sqrt{\lambda}}{b}
\end{array}\right| & =\sin \frac{\sqrt{\lambda}}{a} \cos \frac{\sqrt{\lambda}}{b}-\cos \frac{\sqrt{\lambda}}{a} \sin \frac{\sqrt{\lambda}}{b} \\
& =\sin \left(\frac{\sqrt{\lambda}}{a}-\frac{\sqrt{\lambda}}{b}\right)=\sin \left(\sqrt{\lambda} \frac{b-a}{a b}\right)=0 .
\end{aligned}\right.
$$

This will be the case if

$$
\sqrt{\lambda}\left(\frac{b-a}{a b}\right)=n \pi \quad \text { or } \quad \sqrt{\lambda}=\frac{n \pi a b}{b-a}=\frac{n \pi a b}{L}, \quad n=1,2, \ldots
$$

or, if

$$
\lambda_{n}=\frac{n^{2} \pi^{2} a^{2} b^{2}}{L^{2}}=\frac{P_{n} b^{4}}{E I}
$$

The critical loads are then $P_{n}=n^{2} \pi^{2}(a / b)^{2} E I_{0} / L^{2}$. Using $C_{2}=-C_{1} \sin (\sqrt{\lambda} / a) / \cos (\sqrt{\lambda} / a)$ we have

$$
\begin{aligned}
y & =C_{1} x\left[\sin \frac{\sqrt{\lambda}}{x}-\frac{\sin (\sqrt{\lambda} / a)}{\cos (\sqrt{\lambda} / a)} \cos \frac{\sqrt{\lambda}}{x}\right] \\
& =C_{3} x\left[\sin \frac{\sqrt{\lambda}}{x} \cos \frac{\sqrt{\lambda}}{a}-\cos \frac{\sqrt{\lambda}}{x} \sin \frac{\sqrt{\lambda}}{a}\right] \\
& =C_{3} x \sin \sqrt{\lambda}\left(\frac{1}{x}-\frac{1}{a}\right)
\end{aligned}
$$

and

$$
y_{n}(x)=C_{3} x \sin \frac{n \pi a b}{L}\left(\frac{1}{x}-\frac{1}{a}\right)=C_{3} x \sin \frac{n \pi a b}{L a}\left(\frac{a}{x}-1\right)=C_{4} x \sin \frac{n \pi a b}{L}\left(1-\frac{a}{x}\right) .
$$

b) When $n=1, b=11$, and $a=1$, we have, for $C_{4}=1$,

$$
y_{1}(x)=x \sin 1.1 \pi\left(1-\frac{1}{x}\right) .
$$

- Express the differential equation in standard form:

$$
y^{\prime \prime \prime}+P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 .
$$

$\because \because$ ppose x_{0} is a singular point of the differential equation. Then we say that x_{0} is a regular singular \therefore nt if $\left(x-x_{0}\right) P(x),\left(x-x_{0}\right)^{2} Q(x)$, and $\left(x-x_{0}\right)^{3} R(x)$ are analytic at $x=x_{0}$.
Finostituting $y=\sum_{n=0}^{\infty} c_{n} x^{n \perp r}$ into the first differcntial cquation and collecting terms, we obtain

$$
x^{3} y^{\prime \prime}+y=c_{0} x^{r}+\sum_{k=1}^{\infty}\left[c_{k}+(k+r-1)(k+r-2) c_{k-1}\right] x^{k+r}=0 .
$$

\therefore Ellows that $c_{0}=0$ and

$$
c_{k}=-(k+r-1)(k+r-2) c_{k-1} .
$$

-ie only solution we obtain is $y(x)=0$.
\cdots ostituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the second differential equation and collecting terms, we obtain

$$
x^{2} y^{\prime \prime}+(3 x-1) y^{\prime}+y=-r c_{0}+\sum_{k=0}^{\infty}\left[(k+r+1)^{2} c_{k}-(k+r+1) c_{k+1}\right] x^{k+r}=0
$$

Exercises 6.2 Solutions About Singular Points

which implies

$$
\begin{gathered}
-r c_{0}=0 \\
(k+r+1)^{2} c_{k}-(k+r+1) c_{k+1}=0
\end{gathered}
$$

If $c_{0}=0$, then the solution of the differential equation is $y=0$. Thus, we take $r=0$, from wh: we obtain

$$
c_{k+1}=(k+1) c_{k}, \quad k=0,1,2, \ldots
$$

Letting $c_{0}=1$ we get $c_{1}=2, c_{2}=3!, c_{3}=4$!, and so on. The solution of the differential equat: is then $y=\sum_{n=0}^{x}(n+1)!x^{n}$, which converges only at $x=0$.
37. We write the differential equation in the form $x^{2} y^{\prime \prime}+(b / a) x y^{\prime}+(c / a) y=0$ and identify $a_{0}=$: and $b_{0}=c / a$ as in (12) in the text. Then the indicial equation is

$$
r(r-1)+\frac{b}{a} r+\frac{c}{a}=0 \quad \text { or } \quad a r^{2}+(b-a) r+c=0
$$

which is also the auxiliary cquation of $a x^{2} y^{\prime \prime}+b x y^{\prime} \div c y=0$.

Arcreises 6, \boldsymbol{B}, Special Functions

1. Since $\nu^{2}=1 / 9$ the general solution is $y=c_{1} J_{1 / 3}(x)+c_{2} J_{-1 / 3}(x)$.
2. Since $\nu^{2}=1$ the general solution is $y=c_{1} J_{1}(x)+c_{2} Y_{1}(x)$.
3. Since $\nu^{2}=25 / 4$ the general solution is $y=c_{1} J_{5 / 2}(x)+c_{2} J_{-5 / 2}(x)$.
4. Since $\nu^{2}=1 / 16$ the general solution is $y=c_{1} J_{1 / 4}(x)+c_{2} J_{-1 / 4}(x)$.
5. Since $\nu^{2}=0$ the gencral solution is $y=c_{1} J_{0}(x)+c_{2} Y_{0}(x)$.
6. Since $\nu^{2}=4$ the general solution is $y=c_{1} J_{2}(x)+c_{2} Y_{2}(x)$.
7. We identify $\alpha=3$ and $\nu=2$. Then the general solution is $y=c_{1} J_{2}(3 x)+c_{2} Y_{2}(3 x)$.
8. We identify $\alpha=6$ and $\nu=\frac{1}{2}$. Then the general solution is $y=c_{1} J_{1 / 2}(6 x)+c_{2} J_{-1 / 2}(6 x)$.
9. We identify $\alpha=5$ and $\nu=\frac{2}{3}$. Then the gencral solution is $y=c_{1} J_{2 / 3}(5 x)+c_{2} J_{-2 / 3}(5 x)$.
10. We identify $\alpha=\sqrt{2}$ and $\nu=8$. Then the general solution is $y=c_{1} J_{8}(\sqrt{2} x)+c_{2} Y_{8}(\sqrt{2} x)$.
11. If $y=x^{-1 / 2} v(x)$ then

$$
\begin{aligned}
y^{\prime} & =x^{-1 / 2} v^{\prime}(x)-\frac{1}{2} x^{-3 / 2} v(x) \\
y^{\prime \prime} & =x^{-1 / 2} v^{\prime \prime}(x)-x^{-3 / 2} v^{\prime}(x)+\frac{3}{4} x^{-5 / 2} v(x)
\end{aligned}
$$

and

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+\alpha^{2} x^{2} y=x^{3 / 2} v^{\prime \prime}(x)+x^{1 / 2} v^{\prime}(x)+\left(\alpha^{2} x^{3 / 2}-\frac{1}{4} x^{-1 / 2}\right) v(x)=0 .
$$

Multiplying by $x^{1 / 2}$ we obtain

$$
x^{2} v^{\prime \prime}(x)+x v^{\prime}(x)+\left(\alpha^{2} x^{2}-\frac{1}{4}\right) v(x)=0
$$

whose solution is $v=c_{1} J_{1 / 2}(\alpha x)+c_{2} J_{-1 / 2}(\alpha x)$. Then $y=c_{1} x^{-1 / 2} J_{1 / 2}(\alpha x)+c_{2} x^{-1 / 2} J_{-1 / 2}(\alpha x)$.
If $y=\sqrt{x} v(x)$ then

$$
\begin{aligned}
y^{\prime} & =x^{1 / 2} v^{\prime}(x)+\frac{1}{2} x^{-1 / 2} v(x) \\
y^{\prime \prime} & =x^{1 / 2} v^{\prime \prime}(x)+x^{-1 / 2} v^{\prime}(x)-\frac{1}{4} x^{-3 / 2} v(x)
\end{aligned}
$$

and

$$
\begin{aligned}
x^{2} y^{\prime \prime}+\left(\alpha^{2} x^{2}-\nu^{2}+\frac{1}{4}\right) y & =x^{5 / 2} v^{\prime \prime}(x)+x^{3 / 2} v^{\prime}(x)-\frac{1}{4} x^{1 / 2} v(x)+\left(\alpha^{2} x^{2}-\nu^{2}+\frac{1}{4}\right) x^{1 / 2} v(x) \\
& =x^{5 / 2} v^{\prime \prime}(x)+x^{3 / 2} v^{\prime}(x)+\left(\alpha^{2} x^{5 / 2}-\nu^{2} x^{1 / 2}\right) v(x)=0
\end{aligned}
$$

Nultiplying by $x^{-1 / 2}$ we obtain

$$
x^{2} v^{\prime \prime}(x)+x v^{\prime}(x)+\left(\alpha^{2} x^{2}-\nu^{2}\right) v(x)=0
$$

whose solution is $v(x)=c_{1} J_{\nu}(\alpha x)+c_{2} Y_{\nu}(\alpha x)$. Then $y=c_{1} \sqrt{x} J_{\nu}(\alpha x)+c_{2} \sqrt{x} Y_{\nu}(\alpha x)$.
Write the differential equation in the form $y^{\prime \prime}+(2 / x) y^{\prime}+(4 / x) y=0$. This is the form of (18) in the text with $a=-\frac{1}{2}, c=\frac{1}{2}, b=4$, and $p=1$, so, by (19) in the text, the general solution is

$$
y=x^{-1 / 2}\left[c_{1} J_{1}\left(4 x^{1 / 2}\right)+c_{2} Y_{1}\left(4 x^{1 / 2}\right)^{\top} .\right.
$$

Write the differential equation in the form $y^{\prime \prime}+(3 / x) y^{\prime}+y=0$. This is the form of (18) in the text with $a=-1, c=1, b=1$, and $p=1$, so, by (19) in the tcxt, the general solution is

$$
y=x^{-1}\left[c_{1} J_{1}(x)+c_{2} Y_{1}(x)\right] .
$$

Write the differential cquation in the form $y^{\prime \prime}-(1 / x) y^{\prime}+y=0$. This is the form of (18) in the tcxt with $a=1, c=1, b=1$, and $p=1$, so, by (19) in the text, the general solution is

$$
y=x\left[c_{1} J_{1}(x)+c_{2} Y_{1}(x)\right] .
$$

Write the differential equation in the form $y^{\prime \prime}-(5 / x) y^{\prime}+y=0$. This is the form of (18) in the text with $a=3, c=1, b=1$, and $p=2$, so, by (19) in the text, the general solution is

$$
y=x^{3}\left[c_{1} J_{3}(x)+c_{2} Y_{3}(x)\right] .
$$

Exercises 6.3 Special Functions

17. Write the differential equation in the form $y^{\prime \prime}+\left(1-2 / x^{2}\right) y=0$. This is the form of (18) in text with $a=\frac{1}{2}, c=1, b=1$, and $p=\frac{3}{2}$, so, by (19) in the text, the general solution is

$$
y=x^{1 / 2}\left[c_{1} J_{3 / 2}(x)+c_{2} Y_{3 / 2}(x)\right]=x^{1 / 2}\left[C_{1} J_{3 / 2}(x)+C_{2} J_{-3 / 2}(x)\right]
$$

18. Write the differential equation in the form $y^{\prime \prime}+\left(4+1 / 4 x^{2}\right) y=0$. This is the form of (18) i : text with $a=\frac{1}{2}, c=1, b=2$, and $p=0$, so. by (19) in the text, the general solution is

$$
y=x^{1 / 2}\left[c_{1} J_{0}(2 x)+c_{2} Y_{0}(2 x)\right] .
$$

19. Write the differential equation in the form $y^{\prime \prime}+(3 / x) y^{\prime}+x^{2} y=0$. This is the form of (18) i:text with $a=-1, c=2, b=\frac{1}{2}$, and $p=\frac{1}{2}$. so, by (19) in the text, the general solution is

$$
y=x^{-1}\left[c_{1} J_{1 / 2}\left(\frac{1}{2} x^{2}\right)+c_{2} Y_{1 / 2}\left(\frac{1}{2} x^{2}\right)\right]
$$

or

$$
y=x^{-1}\left[C_{1} J_{1 / 2}\left(\frac{1}{2} x^{2}\right)+C_{2} J_{-1 / 2}\left(\frac{1}{2} x^{2}\right)\right] .
$$

20. Write the differential equation in the form $y^{\prime \prime}+(1 / x) y^{\prime}+\left(\frac{1}{9} x^{4}-4 / x^{2}\right) y=0$. This is the for: (18) in the text with $a=0, c=3, b=\frac{1}{9}$, and $p=\frac{2}{3}$, so, by (19) in the text, the general solut:...

$$
y=c_{1} J_{2 / 3}\left(\frac{1}{9} x^{3}\right)+c_{2} Y_{2 / 3}\left(\frac{1}{9} x^{3}\right)
$$

or

$$
y=C_{1} J_{2 / 3}\left(\frac{1}{9} x^{3}\right)+C_{2} J_{-2 / 3}\left(\frac{1}{9} x^{3}\right) .
$$

21. Using the fact that $i^{2}=-1$, along with the definition of $J_{\nu}(x)$ in (7) in the text, we have

$$
\begin{aligned}
I_{\nu}(x) & =i^{-\nu} J_{\nu}(i x)=i^{-\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\nu+n)}\left(\frac{i x}{2}\right)^{2 n+\nu} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\nu+n)} i^{2 n+\nu-\nu}\left(\frac{x}{2}\right)^{2 n+\nu} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(1+\nu+n)}\left(i^{2}\right)^{n}\left(\frac{x}{2}\right)^{2 n+\nu} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{2 n}}{n!\Gamma(1+\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!\Gamma(1+\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu}
\end{aligned}
$$

which is a real function.
22. (a) The differential equation has the form of (18) in the tex: \cdots

$$
\begin{aligned}
1-2 a=0 & \Longrightarrow a=\frac{1}{2} \\
2 c-2=2 & \Longrightarrow c=2 \\
b^{2} c^{2}=-\beta^{2} c^{2}=-1 & \Longrightarrow \beta=\frac{1}{2} \quad \text { and } \quad b=\frac{1}{2} i \\
a^{2}-p^{2} c^{2}=0 & \Longrightarrow p=\frac{1}{4}
\end{aligned}
$$

Then, by (19) in the text.

$$
y=x^{1 / 2}\left[c_{1} J_{1 / 4}\left(\frac{1}{2} i x^{2}\right)+c_{2} J_{-1 / 4}\left(\frac{1}{2} i x^{2}\right)\right]
$$

In terms of real functions the general solution can be written

$$
y=x^{1 / 2}\left[C_{1} I_{1 / 4}\left(\frac{1}{2} x^{2}\right)+C_{2} K_{1 / 4}\left(\frac{1}{2} x^{2}\right)\right] .
$$

(b) Write the differential equation in the form $y^{\prime \prime}+(1 / x) y^{\prime}-7 x^{2} y=0$. This is the form $0:=$ the text with

$$
\begin{aligned}
1-2 a=1 & \Longrightarrow a=0 \\
2 c-2=2 & \Longrightarrow c=2 \\
b^{2} c^{2}=-\beta^{2} c^{2}=-7 & \Longrightarrow \beta=\frac{1}{2} \sqrt{7} \text { and } b=\frac{1}{2} \sqrt{7} i \\
a^{2}-p^{2} c^{2}=0 & \Longrightarrow p=0 .
\end{aligned}
$$

Then, by (19) in the text,

$$
y=c_{1} J_{0}\left(\frac{1}{2} \sqrt{7} i x^{2}\right)+c_{2} Y_{0}\left(\frac{1}{2} \sqrt{7} i x^{2}\right) .
$$

In terms of real functions the general solution can be written

$$
y=C_{1} I_{0}\left(\frac{1}{2} \sqrt{7} x^{2}\right)+C_{2} K_{0}\left(\frac{1}{2} \sqrt{7} x^{2}\right)
$$

33. The differential cquation has the form of (18) in the text with

$$
\begin{aligned}
1-2 a=0 & \Longrightarrow a=\frac{1}{2} \\
2 c-2=0 & \Longrightarrow c=1 \\
b^{2} c^{2}=1 & \Longrightarrow b=1 \\
a^{2}-p^{2} c^{2}=0 & \Longrightarrow p=\frac{1}{2} .
\end{aligned}
$$

Exercises 6.3 Special Functions

Then. by (19) in the text,

$$
y=x^{1 / 2}\left[c_{1} J_{1 / 2}(x)+c_{2} J_{-1 / 2}(x)\right]=x^{1 / 2}\left[c_{1} \sqrt{\frac{2}{\pi x}} \sin x+c_{2} \sqrt{\frac{2}{\pi x}} \cos x\right]=C_{1} \sin x+C_{2} \cos x
$$

24. Write the differential equation in the form $y^{\prime \prime}+(4 / x) y^{\prime}+\left(1+2 / x^{2}\right) y=0$. This is the form of :-1 the text with

$$
\begin{aligned}
1-2 a=4 & \Longrightarrow a=-\frac{3}{2} \\
2 c-2=0 & \Longrightarrow c=1 \\
b^{2} c^{2}=1 & \Longrightarrow b=1 \\
a^{2}-p^{2} c^{2}=2 & \Longrightarrow p=\frac{1}{2} .
\end{aligned}
$$

Then, by (19), (23), and (24) in the text,

$$
\begin{aligned}
y & =x^{-3 / 2}\left[c_{1} J_{1 / 2}(x)+c_{2} J_{-1 / 2}(x)\right]=x^{-3 / 2}\left[c_{1} \sqrt{\frac{2}{\pi x}} \sin x+c_{2} \sqrt{\frac{2}{\pi x}} \cos x\right] \\
& =C_{1} \frac{1}{x^{2}} \sin x+C_{2} \frac{1}{x^{2}} \cos x
\end{aligned}
$$

25. Write the differential equation in the form $y^{\prime \prime}+(2 / x) y^{\prime}+\left(\frac{1}{16} x^{2}-3 / 4 x^{2}\right) y=0$. This is the fo... 18) in the text with

$$
\begin{aligned}
1-2 a=2 & \Longrightarrow a=-\frac{1}{2} \\
2 c-2=2 & \Longrightarrow c=2 \\
b^{2} c^{2}=\frac{1}{16} & \Longrightarrow b=\frac{1}{8} \\
a^{2}-p^{2} c^{2}=-\frac{3}{4} & \Longrightarrow p=\frac{1}{2} .
\end{aligned}
$$

Then, by (1.9) in the text,

$$
\begin{aligned}
y & =x^{-1 / 2}\left[c_{1} J_{1 / 2}\left(\frac{1}{8} x^{2}\right)+c_{2} J_{-1 / 2}\left(\frac{1}{8} x^{2}\right)\right] \\
& =x^{-1 / 2}\left[c_{1} \sqrt{\frac{16}{\pi x^{2}}} \sin \left(\frac{1}{8} x^{2}\right)+c_{2} \sqrt{\frac{16}{\pi x^{2}}} \cos \left(\frac{1}{8} x^{2}\right)\right] \\
& =C_{1} x^{-3 / 2} \sin \left(\frac{1}{8} x^{2}\right)+C_{2} x^{-3 / 2} \cos \left(\frac{1}{8} x^{2}\right) .
\end{aligned}
$$

26. Write the differential equation in the form $y^{\prime \prime}-(1 / x) y^{\prime}+\left(4+3 / 4 x^{2}\right) y=0$. This is the form c :

Exercises 6.3

in the text with

$$
\begin{aligned}
1-2 a=-1 & \Longrightarrow a=1 \\
2 c-2=0 & \Longrightarrow c=1 \\
b^{2} c^{2}=4 & \Longrightarrow b=2 \\
a^{2}-p^{2} c^{2}=\frac{3}{4} & \Longrightarrow p=\frac{1}{2} .
\end{aligned}
$$

Then, by (19) in the text,

$$
\begin{aligned}
y & =x\left[c_{1} J_{1 / 2}(2 x)+c_{2} J_{-1 / 2}(2 x)\right]=x\left[c_{1} \sqrt{\frac{2}{\pi 2 x}} \sin 2 x+c_{2} \sqrt{\frac{2}{\pi 2 x}} \cos 2 x\right] \\
& =C_{1} x^{1 / 2} \sin 2 x+C_{2} x^{1 / 2} \cos 2 x
\end{aligned}
$$

27. (a) The recurrence relation follows from

$$
\begin{aligned}
-\nu J_{\nu}(x)+x J_{\nu-1}(x) & =-\sum_{n=0}^{\infty} \frac{(-1)^{n} \nu}{n!\Gamma(1+\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu}+x \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu-1} \\
& =-\sum_{n=0}^{\infty} \frac{(-1)^{n} \nu}{n!\Gamma(1+\nu+n)}\left(\frac{x}{2}\right)^{2 n-\nu}+\sum_{n=0}^{\infty} \frac{(-1)^{n}(\nu+n)}{n!\Gamma(1+\nu+n)} \cdot 2\left(\frac{x}{2}\right)\left(\frac{x}{2}\right)^{2 n+\nu-1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}(2 n+\nu)}{n!\Gamma^{\top}(1+\nu+n)}\left(\frac{x}{2}\right)^{2 n+\nu}=x J_{\nu}^{\prime}(x) .
\end{aligned}
$$

(b) The formula in part (a) is a linear first-order differential equation in $J_{\nu}(x)$. An integrating factor for this cquation is x^{ν}, so

$$
\frac{d}{d x}\left[x^{\nu} J_{\nu}(x)\right]=x^{\nu} J_{\nu-1}(x)
$$

25. Subtracting the formula in part (a) of Problem 27 from the formula in Example 5 we obtain

$$
0=2 \nu J_{\nu}(x)-x J_{\nu+1}(x)-x J_{\nu-1}(x) \quad \text { or } \quad 2 \nu J_{\nu}(x)=x J_{\nu+1}(x)+x J_{\nu-1}(x)
$$

29. Letting $\nu=1$ in (21) in the text we have

$$
x J_{0}(x)=\frac{d}{d x}\left[x J_{1}(x)\right] \quad \text { so } \quad \int_{0}^{x} r J_{0}(r) d r=\left.r J_{1}(r)\right|_{r=0} ^{r=x}=x J_{1}(x) .
$$

71. From (20) we obtain $J_{0}^{\prime}(x)=-J_{1}(x)$, and from (21) we obtain $J_{0}^{\prime}(x)=J_{-1}(x)$. Thus $J_{0}^{\prime}(x)=$ $J_{-1}(x)=-J_{1}(x)$.
72. Since $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$ and

$$
\Gamma\left(1-\frac{1}{2}+n\right)=\frac{(2 n-1)!}{(n-1)!2^{2 n-1}} \sqrt{\pi} \quad n=1,2,3, \ldots
$$

Exercises 6.3 Special Functions
wre obtain

$$
\begin{aligned}
J_{-1 / 2}(x) & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma\left(1-\frac{1}{2}+n\right)}\left(\frac{x}{2}\right)^{2 n-1 / 2}=\frac{1}{\Gamma\left(\frac{1}{2}\right)}\left(\frac{x}{2}\right)^{-1 / 2}+\sum_{n=1}^{\infty} \frac{(-1)^{n}(n-1)!2^{2 n-1} x^{2 n-1 / 2}}{n!(2 n-1)!2^{2 n-1 / 2} \sqrt{\pi}} \\
& =\frac{1}{\sqrt{\pi}} \sqrt{\frac{2}{x}}+\sum_{n=1}^{\infty} \frac{(-1)^{n} 2^{1 / 2} x^{-1 / 2}}{2 n(2 n-1)!\sqrt{\pi}} x^{2 n}=\sqrt{\frac{2}{\pi x}}+\sqrt{\frac{2}{\pi x}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}=\sqrt{\frac{2}{\pi x}} \cos x .
\end{aligned}
$$

32. (a) By Problem 28, with $\nu=1 / 2$, we obtain $J_{1 / 2}(x)=x J_{3 / 2}(x)+x J_{-1 / 2}(x)$ so that

$$
J_{3 / 2}(x)=\sqrt{\frac{2}{\pi \cdot x}}\left(\frac{\sin x}{x}-\cos x\right)
$$

with $\nu=-1 / 2$ we obtain $-J_{-1 / 2}(x)=x J_{1 / 2}(x)+x J_{-3 / 2}(x)$ so that

$$
J_{-3 / 2}(x)=-\sqrt{\frac{2}{\pi x}}\left(\frac{\cos x}{x}+\sin x\right)
$$

and with $\nu=3 / 2$ we obtain $3 J_{3 / 2}(x)=x J_{5 / 2}(x)+x J_{1 / 2}(x)$ so that

$$
J_{\bar{y} / 2}(x)=\sqrt{\frac{2}{\pi x}}\left(\frac{3 \sin x}{x^{2}}-\frac{3 \cos x}{x}-\sin x\right) .
$$

(b)

33. Letting

$$
s=\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}
$$

we have

$$
\frac{d x}{d t}=\frac{d x}{d s} \frac{d s}{d t}=\frac{d x}{d t}\left[\frac{2}{\alpha} \sqrt{\frac{k}{m}}\left(-\frac{\alpha}{2}\right) c^{-\alpha t / 2}\right]=\frac{d x}{d s}\left(-\sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)
$$

and

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d x}{d s}\left(\frac{\alpha}{2} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)+\frac{d}{d t}\left(\frac{d x}{d s}\right)\left(-\sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right) \\
& =\frac{d x}{d s}\left(\frac{\alpha}{2} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)+\frac{d^{2} x}{d s^{2}} \frac{d s}{d t}\left(-\sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right) \\
& =\frac{d x}{d s}\left(\frac{\alpha}{2} \sqrt{\frac{k}{m}} e^{-\alpha t / 2}\right)+\frac{d^{2} x}{d s^{2}}\left(\frac{k}{m} e^{-\alpha t}\right) .
\end{aligned}
$$

Then

$$
m \frac{d^{2} x}{d t^{2}}+k e^{-\alpha t} x=k e^{-\alpha t} \frac{d^{2} x}{d s^{2}}+\frac{m \alpha}{2} \sqrt{\frac{k}{m}} e^{-\alpha t / 2} \frac{d x}{d s}+k e^{-\alpha t} x=0
$$

Multiplying by $2^{2} / \alpha^{2} m$ we have

$$
\frac{2^{2}}{\alpha^{2}} \frac{k}{m} e^{-\alpha t} \frac{d^{2} x}{d s^{2}}+\frac{2}{\alpha} \sqrt{\frac{k}{m}} e^{-\alpha t / 2} \frac{d x}{d s}+\frac{2^{2}}{\alpha^{2}} \frac{k}{m} e^{-\alpha t} x=0
$$

or, since $s=(2 / \alpha) \sqrt{k / m} e^{-\alpha t / 2}$,

$$
s^{2} \frac{d^{2} x}{d s^{2}}+s \frac{d x}{d s}+s^{2} x=0
$$

\ddagger Differentiating $y=x^{1 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right)$ with respect to $\frac{2}{3} \alpha x^{3 / 2}$ we obtain

$$
y^{\prime}=x^{1 / 2} w^{\prime}\left(\frac{2}{3} \alpha x^{3 / 2}\right) \alpha x^{1 / 2}+\frac{1}{2} x^{-1 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right)
$$

and

$$
\begin{aligned}
y^{\prime \prime}= & \alpha x u^{\prime \prime}\left(\frac{2}{3} \alpha x^{3 / 2}\right) \alpha x^{1 / 2}+\alpha w^{\prime}\left(\frac{2}{3} \alpha x^{3 / 2}\right) \\
& +\frac{1}{2} \alpha w^{\prime}\left(\frac{2}{3} \alpha x^{3 / 2}\right)-\frac{1}{4} x^{-3 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right) .
\end{aligned}
$$

Then, after combining terms and simplifying: we have

$$
y^{\prime \prime}+\alpha^{2} x y=\alpha\left[\alpha x^{3 / 2} w^{\prime \prime}+\frac{3}{2} w^{\prime}+\left(\alpha x^{3 / 2}-\frac{1}{4 \alpha x^{3 / 2}}\right) w\right]=0
$$

Letting $t=\frac{2}{3} \alpha x^{3 / 2}$ or $\alpha x^{3 / 2}=\frac{3}{2} t$ this differential equation becomes

$$
\frac{3}{2} \frac{\alpha}{t}\left[t^{2} w^{\prime \prime}(t)+t w^{\prime}(t)+\left(t^{2}-\frac{1}{9}\right) w(t)\right]=0, \quad t>0
$$

\because (a) By Problem 34, a solution of Airy's equation is $y=x^{1 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right)$, where

$$
w(t)=c_{1} J_{1 / 3}(t)+c_{2} J_{-1 / 3}(t)
$$

is a solution of Bessel's equation of order $\frac{1}{3}$. Thus, the general solution of Airy's equation : $:=$ $x>0$ is

$$
y=x^{1 / 2} w\left(\frac{2}{3} \alpha x^{3 / 2}\right)=c_{1} x^{1 / 2} J_{1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)+c_{2} x^{1 / 2} J_{-1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)
$$

Exercises 6.3 Special Functions

(b) Airy's equation, $y^{\prime \prime}+\alpha^{2} x y=0$, has the form of (18) in the text with

$$
\begin{aligned}
& 1-2 a=0 \Longrightarrow a=\frac{1}{2} \\
& 2 c-2=1 \Longrightarrow c=\frac{3}{2} \\
& b^{2} c^{2}=\alpha^{2} \Longrightarrow b=\frac{2}{3} \alpha \\
& a^{2}-p^{2} c^{2}=0 \Longrightarrow p=\frac{1}{3}
\end{aligned}
$$

Then, by (19) in the text,

$$
y=x^{1 / 2}\left[c_{1} J_{1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)+c_{2} J_{-1 / 3}\left(\frac{2}{3} \alpha x^{3 / 2}\right)\right] .
$$

36. The general solution of the differential equation is

$$
y(x)=c_{1} J_{0}(\alpha x)+c_{2} Y_{0}(\alpha x)
$$

In order to satisfy the conditions that $\lim _{x \rightarrow 0^{-}} y(x)$ and $\lim _{x \rightarrow 0^{+}} y^{\prime}(x)$ arc finite we are forcec: define $c_{2}=0$. Thus, $y(x)=c_{1} J_{0}(\alpha x)$. The second boundary condition, $y(2)=0$, implics $c_{1}=1$ $J_{0}(2 \alpha)=0$. In order to have a nontrivial solution we require that $J_{0}(2 \alpha)=0$. From Table 6.1. first threc positive zeros of J_{0} are found to be

$$
2 \alpha_{1}=2.4048, \quad 2 \alpha_{2}=5.5201, \quad 2 \alpha_{3}=8.6537
$$

and so $\alpha_{1}=1.2024, \alpha_{2}=2.7601, \alpha_{3}=4.3269$. The eigenfunctions corresponding to the eigenval: $\lambda_{1}=\alpha_{1}^{2}, \lambda_{2}=\alpha_{2}^{2}, \lambda_{3}=\alpha_{3}^{2}$ are $J_{0}(1.2024 x) ; J_{0}(2.7601 x)$, and $J_{0}(4.3269 x)$.
37. (a) The differential equation $y^{\prime \prime}+(\lambda / x) y=0$ has the form of (18) in the text with

$$
\begin{gathered}
1-2 a=0 \Longrightarrow a=\frac{1}{2} \\
2 c-2=-1 \Longrightarrow c=\frac{1}{2} \\
b^{2} c^{2}=\lambda \Longrightarrow b=2 \sqrt{\lambda} \\
a^{2}-p^{2} c^{2}=0 \Longrightarrow p=1 .
\end{gathered}
$$

Then, by (19) in the text,

$$
y=x^{1 / 2}\left[c_{1} J_{1}(2 \sqrt{\lambda x})+c_{2} Y_{1}(2 \sqrt{\lambda x})\right]
$$

(b) We first note that $y=J_{1}(t)$ is a solution of Bessel's equation, $t^{2} y^{\prime \prime}+t y^{\prime}+\left(t^{2}-1\right) y=0$. $\nu=1$. That is,

$$
t^{2} J_{1}^{\prime \prime}(t)+t J_{1}^{\prime}(t)+\left(t^{2}-1\right) J_{1}(t)=0
$$

or，letting $t=2 \sqrt{x}$ ，

$$
4 x J_{1}^{\prime \prime}(2 \sqrt{x})+2 \sqrt{x} J_{1}^{\prime}(2 \sqrt{x})+(4 x-1) J_{1}(2 \sqrt{x})=0
$$

Now，if $y=\sqrt{x} J_{1}(2 \sqrt{x})$ ，we have

$$
y^{\prime}=\sqrt{x} J_{1}^{\prime}(2 \sqrt{x}) \frac{1}{\sqrt{x}}+\frac{1}{2 \sqrt{x}} J_{1}(2 \sqrt{x})=J_{1}^{\prime}(2 \sqrt{x})+\frac{1}{2} x^{-1 / 2} J_{1}(2 \sqrt{x})
$$

and

$$
y^{\prime \prime}=x^{-1 / 2} J_{1}^{\prime \prime}(2 \sqrt{x})+\frac{1}{2 x} J_{1}^{\prime}(2 \sqrt{x})-\frac{1}{4} x^{-3 / 2} J_{1}(2 \sqrt{x}) .
$$

Then

$$
\begin{aligned}
x y^{\prime \prime}+y & =\sqrt{x} J_{1}^{\prime \prime} 2 \sqrt{x}+\frac{1}{2} J_{1}^{\prime}(2 \sqrt{x})-\frac{1}{4} x^{-1 / 2} J_{1}(2 \sqrt{x})+\sqrt{x} J(2 \sqrt{x}) \\
& =\frac{1}{4 \sqrt{x}}\left[4 x J_{1}^{\prime \prime}(2 \sqrt{x})+2 \sqrt{x} J_{1}^{\prime}(2 \sqrt{x})-J_{1}(2 \sqrt{x})+4 x J(2 \sqrt{x})\right] \\
& =0
\end{aligned}
$$

and $y=\sqrt{x} J_{1}(2 \sqrt{x})$ is a solution of Airy＇s differential equation．
3．We see from the graphs below that the graphs of the modified Bessel functions are not oscillatory， while thosc of the Bessel functions，shown in Figures 6．3．1 and 6．3．2 in the text，are oscillatory．

a）We identify $m=4, k=1$ ，and $\alpha=0.1$ ．Then

$$
x(t)=c_{1} J_{0}\left(10 e^{-0.05 t}\right)+c_{2} Y_{0}\left(10 e^{-0.05 t}\right)
$$

and

$$
x^{\prime}(t)=-0.5 c_{1} J_{0}^{\prime}\left(10 e^{-0.05 t}\right)-0.5 c_{2} Y_{0}^{\prime}\left(10 e^{-0.05 t}\right)
$$

Exercises 6.3 Special Functions

Now $x(0)=1$ and $x^{\prime}(0)=-1 / 2$ imply

$$
\begin{aligned}
& c_{1} J_{0}(10)+c_{2} Y_{0}(10)=1 \\
& c_{1} J_{0}^{\prime}(10)+c_{2} Y_{0}^{\prime}(10)=1
\end{aligned}
$$

Using Cramer's rule we obtain

$$
c_{1}=\frac{Y_{0}^{\prime}(10)-Y_{0}(10)}{J_{0}(10) Y_{0}^{\prime}(10)-J_{0}^{\prime}(10) Y_{0}(10)}
$$

and

$$
c_{2}=\frac{J_{0}(10)-J_{0}^{\prime}(10)}{J_{0}(10) Y_{0}^{\prime}(10)-J_{0}^{\prime}(10) Y_{0}(10)}
$$

Using $Y_{0}^{\prime}=-Y_{1}$ and $J_{0}^{\prime}=-J_{1}$ and Table 6.2 we find $c_{1}=-4.7860$ and $c_{2}=-3.1803$. Th

$$
x(t)=-4.7860 J_{0}\left(10 e^{-0.05 t}\right)-3.1803 Y_{0}\left(10 e^{-0.05 t}\right)
$$

(b)

40. (a) Identifying $\alpha=\frac{1}{2}$, the general solution of $x^{\prime \prime}+\frac{1}{4} t x=0$ is

$$
x(t)=c_{1} x^{1 / 2} J_{1 / 3}\left(\frac{1}{3} x^{3 / 2}\right)+c_{2} x^{1 / 2} J_{-1 / 3}\left(\frac{1}{3} x^{3 / 2}\right) .
$$

Solving the system $x(0.1)=1, x^{\prime}(0.1)=-\frac{1}{2}$ we find $c_{1}=-0.809264$ and $c_{2}=0.782397$.
(b)

41. (a) Letting $t=L-x$, the boundary-value problem becomes

$$
\frac{d^{2} \theta}{d t^{2}}+\alpha^{2} t \theta=0, \quad \theta^{\prime}(0)=0, \quad \theta(L)=0
$$

where $\alpha^{2}=\delta g / E I$. This is Airy's differential equation, so by Problem 35 its solution is

$$
y=c_{1} t^{1 / 2} J_{1 / 3}\left(\frac{2}{3} \alpha t^{3 / 2}\right)+c_{2} t^{1 / 2} J_{-1 / 3}\left(\frac{2}{3} \alpha t^{3 / 2}\right)=c_{1} \theta_{1}(t)+c_{2} \theta_{2}(t)
$$

Exercises 6.3 Special Fuiction:

(b) Looking at the series forms of θ_{1} and θ_{2} we see that $\theta_{1}^{\prime}(0) \neq 0$, while $\theta_{2}^{\prime}(0)=0$. Thme. $-{ }^{-}$ boundary condition $\theta^{\prime}(0)=0$ implies $c_{1}=0$, and so

$$
\theta(t)=c_{2} \sqrt{t} J_{-1 / 3}\left(\frac{2}{3} \alpha t^{3 / 2}\right)
$$

From $\theta(L)=0$ we have

$$
c_{2} \sqrt{L} J_{-1 / 3}\left(\frac{2}{3} \alpha L^{3 / 2}\right)=0
$$

so either $c_{2}=0$, in which case $\theta(t)=0$. or $J_{-1 / 3}\left(\frac{2}{3} \alpha L^{3 / 2}\right)=0$. The column will just sta:- : : bend when L is the length corresponding to the smallest positive zero of $J_{-1 / 3}$.
(c) Using Mathematica, the first positive root of $J_{-1 / 3}(x)$ is $x_{1} \approx 1.86635$. Thus $\frac{2}{3} \alpha L^{3 / 2}=1 . x^{6}$ implies

$$
\begin{aligned}
L & =\left(\frac{3(1.86635)}{2 \alpha}\right)^{2 / 3}=\left[\frac{9 E I}{4 \delta g}(1.86635)^{2}\right]^{1 / 3} \\
& =\left[\frac{9\left(2.6 \times 10^{7}\right) \pi(0.05)^{4} / 4}{4(0.28) \pi(0.05)^{2}}(1.86635)^{2}\right]^{1 / 3} \approx 76.9 \mathrm{in}
\end{aligned}
$$

2. (a) Writing the differential equation in the form $x y^{\prime \prime}+(P L / M) y=0$, we identify $\lambda=P I \therefore$ From Problem 37 the solution of this differential equation is

$$
y=c_{1} \sqrt{x} J_{1}(2 \sqrt{P L x / M})+c_{2} \sqrt{x} Y_{1}(2 \sqrt{P L x / M})
$$

Now $J_{1}(0)=0$, so $y(0)=0$ implies $c_{2}=0$ and

$$
y=c_{1} \sqrt{x} J_{1}(2 \sqrt{P L x / M})
$$

(b) From $y(L)=0$ we have $y=J_{1}(2 L \sqrt{P M})=0$. The first positive zero of J_{1} is $3.8317 \mathrm{so} . \mathrm{so} \ldots$ $2 L \sqrt{P_{1} / M}=3.8317$, we find $P_{1}=3.6705 M / L^{2}$. Therefore,

$$
y_{1}(x)=c_{1} \sqrt{x} J_{1}\left(2 \sqrt{\frac{3.6705 x}{L}}\right)=c_{1} \sqrt{x} J_{1}\left(\frac{3.8317}{\sqrt{L}} \sqrt{x}\right)
$$

(c) For $c_{1}=1$ and $L=1$ the graph of $y_{1}=\sqrt{x} J_{1}(3.8317 \sqrt{x})$ is shown.

a) Since $l^{\prime}=v$, we intcgrate to obtain $l(t)=v t+c$. Now $l(0)=l_{0}$ implies $c=l_{0}$, so $l(t)=l^{\prime}-$:

Exercises 6.3 Special Functions

Using $\sin \theta \approx \theta$ in $l d^{2} \theta / d t^{2}+2 l^{\prime} d \theta / d t+g \sin \theta=0$ gives

$$
\left(l_{0}+v t\right) \frac{d^{2} \theta}{d t^{2}}+2 v \frac{d \theta}{d t}+g \theta=0 .
$$

(b) Dividing by v, the differential equation in part (a) becomes

$$
\frac{l_{0}+v t}{v} \frac{d^{2} \theta}{d t^{2}}+2 \frac{d \theta}{d t}+\frac{g}{v} \theta=0
$$

Letting $x=\left(l_{0}+v t\right) / v=t+l_{0} / v$ we have $d x / d t=1$, so

$$
\frac{d \theta}{d t}=\frac{d \theta}{d x} \frac{d x}{d t}=\frac{d \theta}{d x}
$$

and

$$
\frac{d^{2} \theta}{d t^{2}}=\frac{d(d \theta / d t)}{d t}=\frac{d(d \theta / d x)}{d x} \frac{d x}{d t}=\frac{d^{2} \theta}{d x^{2}} .
$$

Thus, the differential equation becomes

$$
x \frac{d^{2} \theta}{d x^{2}}+2 \frac{d \theta}{d x}+\frac{g}{v} \theta=0 \quad \text { or } \quad \frac{d^{2} \theta}{d x^{2}}+\frac{2}{x} \frac{d \theta}{d x}+\frac{g}{v x} \theta=0 .
$$

(c) The differential cquation in part (b) has the form of (18) in the text with

$$
\begin{gathered}
1-2 a=2 \Longrightarrow a=-\frac{1}{2} \\
2 c-2=-1 \Longrightarrow c=\frac{1}{2} \\
b^{2} c^{2}=\frac{g}{v} \Longrightarrow b=2 \sqrt{\frac{g}{v}} \\
a^{2}-p^{2} c^{2}=0 \Longrightarrow p=1 .
\end{gathered}
$$

Then, by (19) in the text,
or

$$
\theta(x)=x^{-1 / 2}\left[c_{1} J_{1}\left(2 \sqrt{\frac{g}{v}} x^{1 / 2}\right)+c_{2} Y_{1}\left(2 \sqrt{\frac{g}{v}} x^{1 / 2}\right)\right]
$$

$$
\theta(t)=\sqrt{\frac{v}{l_{0}+v t}}\left[c_{1} J_{1}\left(\frac{2}{v} \sqrt{g\left(l_{0}+v t\right)}\right)+c_{2} Y_{1}\left(\frac{2}{v} \sqrt{g\left(l_{0}+v t\right)}\right)\right] .
$$

(d) To simplify calculations, let

$$
u=\frac{2}{v} \sqrt{g}\left(\overline{l_{0}+v t}\right)=2 \sqrt{\frac{g}{v}} x^{1 / 2}
$$

and at $t=0$ let $u_{0}=2 \sqrt{g l_{0}} / u$. The gencral solution for $\theta(t)$ can then be written

$$
\theta=C_{1} u^{-1} J_{1}(u)+C_{2} u^{-1} Y_{1}(u) .
$$

Before applying the initial conditions, note that

$$
\frac{d \theta}{d t}=\frac{d \theta}{d u} \frac{d u}{d t}
$$

so when $d \theta / d t=0$ at $t=0$ we have $d \theta / d u=0$ at $u=u_{0}$. Also;

$$
\frac{d \theta}{d u}=C_{1} \frac{d}{d u}\left[u^{-1} J_{1}(u)\right]+C_{2} \frac{d}{d u}\left[u^{-1} Y_{1}(u)\right]
$$

which, in view of (20) in the text, is the same as

$$
\frac{d \theta}{d u}=-C_{1} u^{-1} J_{2}(u)-C_{2} u^{-1} Y_{2}(u)
$$

Now at $t=0$, or $u=u_{0}$, (1) and (2) give the system

$$
\begin{aligned}
& C_{1} u_{0}^{-1} J_{1}\left(u_{0}\right)+C_{2} u_{0}^{-1} Y_{1}\left(u_{0}\right)=\theta_{0} \\
& C_{1} u_{0}^{-1} J_{2}\left(u_{0}\right)+C_{2} u_{0}^{-1} Y_{2}\left(u_{0}\right)=0
\end{aligned}
$$

whose solution is easily obtaincd using Cramer's rule:

$$
C_{1}=\frac{u_{0} \theta_{0} Y_{2}\left(u_{0}\right)}{J_{1}\left(u_{0}\right) Y_{2}\left(u_{0}\right)-J_{2}\left(u_{0}\right) Y_{1}\left(u_{0}\right)}, \quad C_{2}=\frac{-u_{0} \theta_{0} J_{2}\left(u_{0}\right)}{J_{1}\left(u_{0}\right) Y_{2}\left(u_{0}\right)-J_{2}\left(u_{0}\right) Y_{1}\left(u_{0}\right.}
$$

In view of the given identity these results simplify to

$$
C_{1}=-\frac{\pi}{2} u_{0}^{2} \theta_{0} Y_{2}\left(u_{0}\right) \quad \text { and } \quad C_{2}=\frac{\pi}{2} u_{0}^{2} \theta_{0} J_{2}\left(u_{0}\right)
$$

The solution is then

$$
\theta=\frac{\pi}{2} u_{0}^{2} \theta_{0}\left[-Y_{2}\left(u_{0}\right) \frac{J_{1}(u)}{u}+J_{2}\left(u_{0}\right) \frac{Y_{1}(u)}{u}\right]
$$

Returning to $u=(2 / v) \sqrt{g\left(l_{0}+v t\right)}$ and $u_{0}=(2 / v) \sqrt{g l_{0}}$, we have
$\theta(t)=\frac{\pi \sqrt{g l_{0}} \theta_{0}}{v}\left[-Y_{2}\left(\frac{2}{v} \sqrt{g l_{0}}\right) \frac{J_{1}\left(\frac{2}{v} \sqrt{g\left(l_{0}+v t\right)}\right)}{\sqrt{l_{0}+v t}}+J_{2}\left(\frac{2}{v} \sqrt{g l_{0}}\right) \frac{Y_{1}\left(\frac{2}{v} \sqrt{g\left(l_{0}+v t\right.}\right.}{\sqrt{l_{0}+r t}}-\right.$
(e) When $l_{0}=1 \mathrm{ft}, \theta_{0}=\frac{1}{10}$ radian, and $v=\frac{1}{60} \mathrm{ft} / \mathrm{s}$, the above function is

$$
\theta(t)=-1.69045 \frac{J_{1}(480 \sqrt{2}(1+t / 60))}{\sqrt{1+t / 60}}-2.79381 \frac{Y_{1}(480 \sqrt{2}(1+t / 60))}{\sqrt{1+t / 60}}
$$

The plots of $\theta(t)$ on $[0,10],[0,30]$, and $[0,60]$ are

(f) The graphs indicate that $\theta(t)$ decreases as l increases.

The graph of $\theta(t)$ on $[0,300]$ is shown.

4.4. (a) From (26) in the text, wo have

$$
P_{6}(x)=c_{0}\left(1-\frac{6 \cdot 7}{2!} x^{2}+\frac{4 \cdot 6 \cdot 7 \cdot 9}{4!} x^{4}=\frac{2 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 11}{6!} x^{6}\right)
$$

where

$$
c_{0}=(-1)^{3} \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}=-\frac{5}{16}
$$

Thus,

$$
P_{6}(x)=-\frac{5}{16}\left(1-21 x^{2}+63 x^{4}-\frac{231}{5} x^{6}\right)=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right)
$$

Also, from (26) in the text we have

$$
P_{7}(x)=c_{1}\left(x-\frac{6 \cdot 9}{3!} x^{3}+\frac{4 \cdot 6 \cdot 9 \cdot 11}{5!} x^{5}-\frac{2 \cdot 4 \cdot 6 \cdot 9 \cdot 11 \cdot 13}{7!} x^{7}\right)
$$

where

$$
c_{1}=(-1)^{3} \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6}=-\frac{35}{16}
$$

Thus

$$
P_{7}(x)=-\frac{35}{16}\left(x-9 x^{3}+\frac{99}{5} x^{5}-\frac{429}{35} x^{7}\right)=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right)
$$

(b) $P_{6}(x)$ satisfies $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+42 y=0$ and $P_{7}(x)$ satisfies $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+56 y=$
4.5. The recurrence relation can be written

$$
\begin{aligned}
& P_{k+1}(x)=\frac{2 k+1}{k+1} x P_{k}(x)-\frac{k}{k+1} P_{k-1}(x), \quad k=2,3,4, \ldots \\
k=1: & P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2} \\
k=2: & P_{3}(x)=\frac{5}{3} x\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)-\frac{2}{3} x=\frac{5}{2} x^{3}-\frac{3}{2} x \\
k=3: & P_{4}(x)=\frac{7}{4} x\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right)-\frac{3}{4}\left(\frac{3}{2} x^{2}-\frac{1}{2}\right)=\frac{35}{8} x^{4}-\frac{30}{8} x^{2}+\frac{3}{8} \\
k=4: & P_{5}(x)=\frac{9}{5} x\left(\frac{35}{8} x^{4}-\frac{30}{8} x^{2}+\frac{3}{8}\right)-\frac{4}{5}\left(\frac{5}{2} x^{3}-\frac{3}{2} x\right)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x
\end{aligned}
$$

$$
\begin{aligned}
& k=5: \quad P_{6}(x)=\frac{11}{6} x\left(\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x\right)-\frac{5}{6}\left(\frac{35}{8} x^{4}-\frac{30}{8} x^{2}+\frac{3}{8}\right)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{\vdots}{3} \\
& k=6: \quad P_{7}(x)
\end{aligned}=\frac{13}{7} x\left(\frac{231}{16} x^{6}-\frac{315}{16} x^{4} \div \frac{105}{16} x^{2}-\frac{5}{16}\right)-\frac{6}{7}\left(\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x\right) .
$$

46. If $x=\cos \theta$ then

$$
\begin{aligned}
\frac{d y}{d \theta} & =-\sin \theta \frac{d y}{d x} \\
\frac{d^{2} y}{d \theta^{2}} & =\sin ^{2} \theta \frac{d^{2} y}{d x^{2}}-\cos \theta \frac{d y}{d x}
\end{aligned}
$$

and

$$
\sin \theta \frac{d^{2} y}{d \theta^{2}}+\cos \theta \frac{d y}{d \theta}+n(n+1)(\sin \theta) y=\sin \theta\left[\left(1-\cos ^{2} \theta\right) \frac{d^{2} y}{d x^{2}}-2 \cos \theta \frac{d y}{d x}+n(n+1) y\right]=0
$$

That is,

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0
$$

\therefore The only solutions bounded on $[-1,1]$ are $y=c P_{n}(x), c$ a constant and $n=0,1,2, \ldots$ By (it') of the properties of the Legendre polynomials, $y(0)=0$ or $P_{n}(0)=0$ implies n must be odd. Thus the first three positive eigenvalues correspond to $n=1,3$, and 5 or $\lambda_{1}=1 \cdot 2, \lambda_{2}=3 \cdot 4=12$, and $\lambda_{3}=5 \cdot 6=30$. We can take the eigenfunctions to be $y_{1}=P_{1}(x), y_{2}=P_{3}(x)$, and $y_{3}=P_{5}(x)$.

- Using a CAS we find

$$
\begin{aligned}
& P_{1}(x)=\frac{1}{2} \frac{d}{d x}\left(x^{2}-1\right)^{1}=x \\
& P_{2}(x)=\frac{1}{2^{2} 2!} \frac{d^{2}}{d x^{2}}\left(x^{2}-1\right)^{2}=\frac{1}{2}\left(3 x^{2}-1\right) \\
& P_{3}(x)=\frac{1}{2^{3} 3!} \frac{d^{3}}{d x^{3}}\left(x^{2}-1\right)^{3}=\frac{1}{2}\left(5 x^{3}-3 x\right) \\
& P_{4}(x)=\frac{1}{2^{4} 4!} \frac{d^{4}}{d x^{4}}\left(x^{2}-1\right)^{4}=\frac{1}{8}\left(35 x^{4}-30 x^{2}+3\right) \\
& P_{50}(x)=\frac{1}{2^{5} 5!} \frac{d^{5}}{d x^{5}}\left(x^{2}-1\right)^{5}=\frac{1}{8}\left(63 x^{5}-70 x^{3}+15 x\right) \\
& P_{6}(x)=\frac{1}{2^{6} 6!} \frac{d^{6}}{d x^{6}}\left(x^{2}-1\right)^{6}=\frac{1}{16}\left(231 x^{6}-315 x^{4}+105 x^{2}-5\right) \\
& P_{7}(x)=\frac{1}{2^{7} 7!} \frac{d^{7}}{d x^{7}}\left(x^{2}-1\right)^{7}=\frac{1}{16}\left(429 x^{7}-693 x^{5}+315 x^{3}-35 x\right)
\end{aligned}
$$

Exercises 6.3 Special Functions

49.

20. Zeros of Legendre polynomials for $n \geq 1$ are
$P_{1}(x): 0$
$P_{2}(x): \pm 0.57735$
$P_{3}(x): 0, \pm 0.77460$
$P_{t}(x): \pm 0.33998, \pm 0.86115$
$P_{5}(x): 0, \pm 0.53847, \pm 0.90618$
$P_{6}(x): \pm 0.23862, \pm 0.66121, \pm 0.93247$
$P_{-}(x): 0, \pm 0.40585, \pm 0.74153, \pm 0.94911$
$P_{10}(x): \pm 0.14887, \pm 0.43340, \pm 0.67941, \pm 0.86506, \pm 0.097391$
The zeros of any Legendre polynomial are in the interval $(-1,1)$ and are symmetric with res: to 0.

Chapter 6 in Review

1. False; $J_{1}(x)$ and $J_{-1}(x)$ are not linearly independent when ν is a positive integer. (In this $\nu=1$). The general solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$ is $y=c_{1} J_{1}(x)+c_{2} Y_{1}(x)$.
2. False; $y=x$ is a solution that is analytic at $x=0$.
3. $r=-1$ is the nearest singular point to the ordinary point $x=0$. Theorem 6.1.1 guarantecs existence of two power series solutions $y=\sum_{n=1}^{\infty} c_{n} x^{n}$ of the differential equation that conver:

Chapter 6 in Review

least for $-1<x<1$. Since $-\frac{1}{2} \leq x \leq \frac{1}{2}$ is properly contained in $-1<x<1$, both power series must converge for all points contained in $-\frac{1}{2} \leq x \leq \frac{1}{2}$.
4. The easiest way to solve the system

$$
\begin{aligned}
2 c_{2}+2 c_{1}+c_{0} & =0 \\
6 c_{3}+4 c_{2}+c_{1} & =0 \\
12 c_{4}+6 c_{3}-\frac{1}{3} c_{1}+c_{2} & =0 \\
20 c_{5}+8 c_{4}-\frac{2}{3} c_{2}-c_{3} & =0
\end{aligned}
$$

is to choose, in turn, $c_{0} \neq 0, c_{1}=0$ and $c_{0}=0, c_{1} \neq 0$. Assuming that $c_{0} \neq 0, c_{1}=0$, we have

$$
\begin{aligned}
& c_{2}=-\frac{1}{2} c_{0} \\
& c_{3}=-\frac{2}{3} c_{2}=\frac{1}{3} c_{0} \\
& c_{4}=-\frac{1}{2} c_{3}-\frac{1}{12} c_{2}=-\frac{1}{8} c_{0} \\
& c_{5}=-\frac{2}{5} c_{4}+\frac{1}{30} c_{2}-\frac{1}{20} c_{3}=\frac{1}{60} c_{0}
\end{aligned}
$$

whereas the assumption that $c_{0}=0, c_{1} \neq 0$ implics

$$
\begin{aligned}
& c_{2}=-c_{1} \\
& c_{3}=-\frac{2}{3} c_{2}-\frac{1}{6} c_{1}=\frac{1}{2} c_{1} \\
& c_{4}=-\frac{1}{2} c_{3}+\frac{1}{36} c_{1}-\frac{1}{12} c_{2}=-\frac{5}{36} c_{1} \\
& c_{5}=-\frac{2}{5} c_{1}+\frac{1}{30} c_{2}-\frac{1}{20} c_{3}=-\frac{1}{360} c_{1} .
\end{aligned}
$$

ive terms of two power series solutions are then

$$
y_{1}(x)=c_{0}\left[1-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{8} x^{4}+\frac{1}{60} x^{5}+\cdots\right]
$$

and

$$
y_{2}(x)=c_{1}\left[x-x^{2}+\frac{1}{2} x^{3}-\frac{\bar{j}}{36} x^{4}-\frac{1}{360} x^{5} \div \cdots\right] .
$$

\vdots The interval of convergence is centered at 4 . Since the serics converges at -2 , it converges at least $\therefore 1$ the interval $[-2,10)$. Since it diverges at 13 , it converges at most on the interval $[-5,13)$. Thus, -t -7 it docs not converge, at 0 and 7 it does converge, and at 10 and 11 it might converge.

Chapter 6 in Review

6. We have

$$
f(x)=\frac{\sin x}{\cos x}=\frac{x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots}{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\cdots}=x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\cdots
$$

7. The differential cquation $\left(x^{3}-x^{2}\right) y^{\prime \prime}+y^{\prime}+y=0$ has a regular singular point at $x=1$ and : irregular singular point at $x=0$.
8. The differential cquation $(x-1)(x+3) \cdot y^{\prime \prime}+y=0$ has regular singular points at $x=1$ and $x=-$
9. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation we obtain

$$
2 x y^{\prime \prime}+y^{\prime}+y=\left(2 r^{2}-r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[2(k+r)(k+r-1) c_{k}+(k+r) c_{k}+c_{k-1}\right] x^{k+r-1}=0
$$

which implies

$$
2 r^{2}-r=r(2 r-1)=0
$$

and

$$
(k+r)(2 k+2 r-1) c_{k}+c_{k-1}=0
$$

The indicial roots are $r=0$ and $r=1 / 2$. For $r=0$ the recurrence relation is

$$
c_{k}=-\frac{c_{k-1}}{k(2 k-1)}, \quad k=1,2,3, \ldots
$$

so

$$
c_{1}=-c_{0}, \quad c_{2}=\frac{1}{6} c_{0}, \quad c_{3}=-\frac{1}{90} c_{0} .
$$

For $r=1 / 2$ the recurrence relation is

$$
c_{k}=-\frac{c_{k-1}}{k(2 k+1)}, \quad k=1,2,3, \ldots
$$

so

$$
c_{1}=-\frac{1}{3} c_{0}, \quad c_{2}=\frac{1}{30} c_{0}, \quad c_{3}=-\frac{1}{630} c_{0}
$$

Two linearly independent solutions are

$$
y_{1}=1-x+\frac{1}{6} x^{2}-\frac{1}{90} x^{3}+\cdots
$$

and

$$
y_{2}=x^{1 / 2}\left(1-\frac{1}{3} x+\frac{1}{30} x^{2}-\frac{1}{630} x^{3}+\cdots\right)
$$

20. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we

$$
\begin{aligned}
y^{\prime \prime}-x y^{\prime}-y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}-\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}-\underbrace{\sum_{n=11}^{\infty} \cdots}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}-\sum_{k=1}^{\infty} k c_{k} x^{k}-\sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}-c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}-(k+1) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}-c_{0}=0 \\
(k+2)(k+1) c_{k+2}-(k+1) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{1}{2} c_{0} \\
c_{k+2} & =\frac{1}{k+2} c_{k}, \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=\frac{1}{2} \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=\frac{1}{8} \\
& c_{6}=\frac{1}{48}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=\cdots=0 \\
& c_{3}=\frac{1}{3} \\
& c_{5}=\frac{1}{15} \\
& c_{7}=\frac{1}{105}
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1+\frac{1}{2} x^{2}+\frac{1}{8} x^{4}+\frac{1}{48} x^{6}+\cdots
$$

and

Chapter 6 in Review

$$
y_{2}=x+\frac{1}{3} x^{3}+\frac{1}{15} x^{5}+\frac{1}{105} x^{7}+\cdots
$$

11. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we obtain

$$
(x-1) y^{\prime \prime}+3 y=\left(-2 c_{2}+3 c_{0}\right)+\sum_{k=1}^{\infty}\left[(k+1) k c_{k-1}-(k+2)(k+1) c_{k+2}+3 c_{k}\right] x^{k}=0
$$

which implies $c_{2}=3 c_{0} / 2$ and

$$
c_{k+2}=\frac{(k+1) k c_{k+1}+3 c_{k}}{(k+2)(k+1)}, \quad k=1,2,3, \ldots
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=\frac{3}{2}, \quad c_{3}=\frac{1}{2}, \quad c_{4}=\frac{5}{8}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
c_{2}=0, \quad c_{3}=\frac{1}{2}, \quad c_{4}=\frac{1}{4}
$$

and so on. Thus, two solutions are

$$
y_{1}=1+\frac{3}{2} x^{2}+\frac{1}{2} x^{3}+\frac{5}{8} x^{4}+\cdots
$$

and

$$
y_{2}=x+\frac{1}{2} x^{3}+\frac{1}{4} x^{4}+\cdots
$$

12. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we obtain

$$
y^{\prime \prime}-x^{2} y^{\prime}+x y=2 c_{2}+\left(6 c_{3}+c_{0}\right) x+\sum_{k=1}^{\infty}\left[(k+3)(k+2) c_{k+3}-(k-1) c_{k}\right] x^{k+1}=0
$$

which implies $c_{2}=0, c_{3}=-c_{0} / 6$, and

$$
c_{k-3}=\frac{k-1}{(k+3)(k+2)} c_{k} . \quad k=1,2,3, \ldots
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{3}=-\frac{1}{6} \\
& c_{4}=c_{7}=c_{10}=\cdots=0 \\
& c_{5}=c_{8}=c_{11}=\cdots=0 \\
& c_{6}=-\frac{1}{90}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{3}=c_{6}=c_{9}=\cdots=0 \\
& c_{4}=c_{7}=c_{10}=\cdots=0 \\
& c_{5}=c_{8}=c_{11}=\cdots=0
\end{aligned}
$$

and so on. Thus, two solutions are

$$
y_{1}=1-\frac{1}{6} x^{3}-\frac{1}{90} x^{6}-\cdots \quad \text { and } \quad y_{2}=x
$$

-3. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n+r}$ into the differential equation, we obtain

$$
\begin{gathered}
x y^{\prime \prime}-(x+2) y^{\prime}+2 y=\left(r^{2}-3 r\right) c_{0} x^{r-1}+\sum_{k=1}^{\infty}\left[(k+r)(k+r-3) c_{k}\right. \\
\left.-(k+r-3) c_{k-1}\right] x^{k+r-1}=0
\end{gathered}
$$

which implies

$$
r^{2}-3 r=r(r-3)=0
$$

and

$$
(k+r)(k+r-3) c_{k}-(k+r-3) c_{k-1}=0
$$

The indicial roots are $r_{1}=3$ and $r_{2}=0$. For $r_{2}=0$ the recurrence rolation is

$$
k(k-3) c_{k}-(k-3) c_{k-1}=0, \quad k=1,2,3, \ldots
$$

Then

$$
\begin{aligned}
c_{1}-c_{0} & =0 \\
2 c_{2}-c_{1} & =0 \\
0 c_{3}-0 c_{2} & =0 \Longrightarrow c_{3} \text { is arbitrary }
\end{aligned}
$$

and

$$
c_{k}=\frac{1}{k} c_{k-1}, \quad k=4,5,6, \ldots
$$

Taking $c_{0} \neq 0$ and $c_{3}=0$ we obtain

$$
\begin{aligned}
c_{1} & =c_{0} \\
c_{2} & =\frac{1}{2} c_{0} \\
c_{3} & =c_{4}=c_{3}=\cdots=0 .
\end{aligned}
$$

Taking $c_{0}=0$ and $c_{3} \neq 0$ we obtain

$$
\begin{aligned}
& c_{0}=c_{1}=c_{2}=0 \\
& c_{4}=\frac{1}{4} c_{3}=\frac{6}{4!} c_{3} \\
& c_{5}=\frac{1}{5 \cdot 4} c_{3}=\frac{6}{5!} c_{3} \\
& c_{6}=\frac{1}{6 \cdot 5 \cdot 4} c_{3}=\frac{6}{6!} c_{3}
\end{aligned}
$$

Chapter 6 in Review

and so on. In this case we obtain the two solutions

$$
y_{1}=1+x+\frac{1}{2} x^{2}
$$

and

$$
y_{2}=x^{3}+\frac{6}{4!} x^{4}+\frac{6}{5!} x^{5}+\frac{6}{6!} x^{6}+\cdots=6 e^{x}-6\left(1+x+\frac{1}{2} x^{2}\right)
$$

14. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential cquation we have

$$
\begin{aligned}
& (\cos x) y^{\prime \prime}+y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\cdots\right)\left(2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+30 c_{6} x^{4}+\cdots\right. \\
& \quad+\sum_{n=0}^{\infty} c_{n} x^{n} \\
& =\left[2 c_{2}+6 c_{3} x+\left(12 c_{4}-c_{2}\right) x^{2}+\left(20 c_{5}-3 c_{3}\right) x^{3}+\left(30 c_{6}-6 c_{4}+\frac{1}{12} c_{2}\right) x^{4}+\cdots\right] \\
& \quad+\left[c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+\cdots\right] \\
& = \\
& \left(c_{0}+2 c_{2}\right)+\left(c_{1}+6 c_{3}\right) x+12 c_{4} x^{2}+\left(20 c_{3}-2 c_{3}\right) x^{3}+\left(30 c_{6}-5 c_{4}+\frac{1}{12} c_{2}\right) x^{4}+\cdots \\
& =
\end{aligned}
$$

Thus

$$
\begin{aligned}
c_{0}+2 c_{2} & =0 \\
c_{1}+6 c_{3} & =0 \\
12 c_{4} & =0 \\
20 c_{\overline{5}}-2 c_{3} & =0 \\
30 c_{6}-5 c_{4}+\frac{1}{12} c_{2} & =0
\end{aligned}
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{1}{2} c_{0} \\
c_{3} & =-\frac{1}{6} c_{1} \\
c_{4} & =0 \\
c_{5} & =\frac{1}{10} c_{3} \\
c_{6} & =\frac{1}{6} c_{4}-\frac{1}{360} c_{2}
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=-\frac{1}{2}, \quad c_{3}=0, \quad c_{4}=0, \quad c_{5}=0, \quad c_{6}=\frac{1}{720}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we find

$$
c_{2}=0, \quad c_{3}=-\frac{1}{6}, \quad c_{4}=0 . \quad \therefore=-\frac{\vdots}{3}, \quad \therefore=
$$

and so on. Thus, two solutions are

$$
y_{1}=1-\frac{1}{2} x^{2}+\frac{1}{720} x^{6}+\cdots \quad \text { and } \quad y_{2}=x-\frac{1}{6} x^{3}-\frac{1}{60} x^{3}-\cdots
$$

15.

$$
\begin{aligned}
y^{\prime \prime}+x y^{\prime}+2 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n--2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n}}_{k=n}+2 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=1}^{\infty} k c_{k} x^{k}+2 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =2 c_{2}+2 c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+(k+2) c_{k}\right] x^{k}=0 .
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}+2 c_{0}=0 \\
(k+2)(k+1) c_{k+2}+(k+2) c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =-c_{0} \\
c_{k+2} & =-\frac{1}{k+1} c_{k} . \quad k=1,2,3, \ldots
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-1 \\
& c_{3}=c_{5}=c_{7}=\cdots=0 \\
& c_{4}=\frac{1}{3} \\
& c_{6}=-\frac{1}{15}
\end{aligned}
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
& c_{2}=c_{4}=c_{6}=-\cdots=0 \\
& c_{3}=-\frac{1}{2} \\
& c_{5}=\frac{1}{8} \\
& c_{7}=-\frac{1}{48}
\end{aligned}
$$

Chapter 6 in Review

and so on. Thus, the general solution is

$$
y=C_{0}\left(1-x^{2}+\frac{1}{3} x^{4}-\frac{1}{15} x^{6}+\cdots\right)+C_{1}\left(x-\frac{1}{2} x^{3}+\frac{1}{8} x^{5}-\frac{1}{48} x^{7}+\cdots\right)
$$

and

$$
y^{\prime}=C_{0}\left(-2 x+\frac{4}{3} x^{3}-\frac{2}{5} x^{5}+\cdots\right)+C_{1}\left(1-\frac{3}{2} x^{2}+\frac{5}{8} x^{4}-\frac{7}{48} x^{6}+\cdots\right)
$$

Setting $y(0)=3$ and $y^{\prime}(0)=-2$ we find $c_{0}=3$ and $c_{1}=-2$. Therefore, the solution initial-value problem is

$$
y=3-2 x-3 x^{2}+x^{3}+x^{4}-\frac{1}{4} x^{5}-\frac{1}{5} x^{6}+\frac{1}{24} x^{7}+\cdots .
$$

16. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential equation we have

$$
\begin{aligned}
(x+2) y^{\prime \prime}+3 y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-1}}_{k=n-1}+2 \underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+3 \underbrace{\sum_{n=0}^{\infty} c_{n} x^{n}}_{k=n} \\
& =\sum_{k=1}^{\infty}(k+1) k c_{k+1} x^{k}+2 \sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+3 \sum_{k=0}^{\infty} c_{k} x^{k} \\
& =4 c_{2}+3 c_{0}+\sum_{k=1}^{\infty}\left[(k+1) k c_{k+1}+2(k+2)(k+1) c_{k+2}+3 c_{k}\right] x^{k}=0
\end{aligned}
$$

Thus

$$
\begin{gathered}
4 c_{2}+3 c_{0}=0 \\
(k+1) k c_{k+1}+2(k+2)(k+1) c_{k+2}+3 c_{k}=0
\end{gathered}
$$

and

$$
\begin{aligned}
c_{2} & =-\frac{3}{4} c_{0} \\
c_{k+2} & =-\frac{k}{2(k+2)} c_{k+1}-\frac{3}{2(k+2)(k+1)} c_{k}, \quad k=1,2,3, \ldots .
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
\begin{aligned}
& c_{2}=-\frac{3}{4} \\
& c_{3}=\frac{1}{8} \\
& c_{4}=\frac{1}{16} \\
& c_{5}=-\frac{9}{320}
\end{aligned}
$$

Chapter 6 in Review

and so on. For $c_{0}=0$ and $c_{1}=1$ we obtain

$$
\begin{aligned}
c_{2} & =0 \\
c_{3} & =-\frac{1}{4} \\
c_{4} & =\frac{1}{16} \\
c_{5} & =0
\end{aligned}
$$

and so on. Thus, the general solution is

$$
y=C_{0}\left(1-\frac{3}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}-\frac{9}{320} x^{5}+\cdots\right)+C_{1}\left(x-\frac{1}{4} x^{3}+\frac{1}{16} x^{4}+\cdots\right)
$$

and

$$
y^{\prime}=C_{0}\left(-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{4} x^{3}-\frac{9}{64} x^{4}+\cdots\right)+C_{1}\left(1-\frac{3}{4} x^{2}+\frac{1}{4} x^{3}+\cdots\right) .
$$

Sctting $y(0)=0$ and $y^{\prime}(0)=1$ we find $c_{0}=0$ and $c_{1}=1$. Therefore, the solution of the initial-value problem is

$$
y=x-\frac{1}{4} x^{3}+\frac{1}{16} x^{4} \div \cdots
$$

$:-$ The singular point of $(1-2 \sin x) y^{\prime \prime}+x y=0$ closest to $x=0$ is $\pi / 6$. Hence a lower bound is $\pi / 6$.
-5. While we can find two solutions of the form

$$
y_{1}=c_{0}[1+\cdots] \text { and } y_{2}=c_{1}[x+\cdots]
$$

the initial conditions at $x=1$ give solutions for c_{0} and c_{1} in terms of infinite series. Letting $t=x-1$ the initial-value problem becomes

$$
\frac{d^{2} y}{d t^{2}}+(t+1) \frac{d y}{d t}+y=0, \quad y(0)=-6, y^{\prime}(0)=3
$$

Substituting $y=\sum_{n=0}^{\infty} c_{n} t^{n}$ into the diffcrential equation, we have

$$
\begin{aligned}
\frac{d^{2} y}{d t^{2}}+(t+1) \frac{d y}{d t}+y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} t^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} t^{n}}_{k=n}+\underbrace{\sum_{n=1}^{\infty} n c_{n} t^{n-1}}_{k=n \cdot 1}+\underbrace{\sum_{n=0}^{\infty} c_{n} t^{n}}_{k=n} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} t^{k}+\sum_{k=1}^{\infty} k c_{k} t^{k}+\sum_{k=0}^{\infty}(k+1) c_{k+1} t^{k}+\sum_{k=0}^{\infty} c_{k} t^{k} \\
& =2 c_{2}+c_{1}+c_{0}+\sum_{k=1}^{\infty}\left[(k+2)(k+1) c_{k+2}+(k+1) c_{k+1}+(k+1) c_{k}\right] t^{k}=0
\end{aligned}
$$

Thus

$$
\begin{gathered}
2 c_{2}+c_{1}+c_{0}=0 \\
(k+2)(k+1) c_{k+2}+(k+1) c_{k+1}+(k+1) c_{k}=0
\end{gathered}
$$

Chapter 6 in Review

and

$$
\begin{aligned}
c_{2} & =-\frac{c_{1}+c_{0}}{2} \\
c_{k+2} & =-\frac{c_{k+1}+c_{k}}{k+2}, \quad k=1,2,3, \ldots .
\end{aligned}
$$

Choosing $c_{0}=1$ and $c_{1}=0$ we find

$$
c_{2}=-\frac{1}{2}, \quad c_{3}=\frac{1}{6}, \quad c_{4}=\frac{1}{12},
$$

and so on. For $c_{0}=0$ and $c_{1}=1$ we find

$$
c_{2}=-\frac{1}{2}, \quad c_{3}=-\frac{1}{6}, \quad c_{4}=\frac{1}{6},
$$

and so on. Thus; the gencral solution is

$$
y=c_{0}\left[1-\frac{1}{2} t^{2}+\frac{1}{6} t^{3}+\frac{1}{12} t^{4}+\cdots\right]+c_{1}\left[t-\frac{1}{2} t^{2}-\frac{1}{6} t^{3}+\frac{1}{6} t^{4}+\cdots\right] .
$$

The initial conditions then imply $c_{0}=-6$ and $c_{1}=3$. Thus the solution of the initial-value prc is

$$
\begin{aligned}
y=- & -6\left[1-\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{12}(x-1)^{4}+\cdots\right] \\
& +3\left[(x-1)-\frac{1}{2}(x-1)^{2}-\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots\right]
\end{aligned}
$$

19. Writing the differential equation in the form

$$
y^{\prime \prime}+\left(\frac{1-\cos x}{x}\right) y^{\prime}+x y=0
$$

and noting that

$$
\frac{1-\cos x}{x}=\frac{x}{2}-\frac{x^{3}}{24}+\frac{x^{5}}{720}-\cdots
$$

is analytic at $x=0$, we conclude that $x=0$ is an ordinary point of the differential equation.
20. Writing the differential equation in the form

$$
y^{\prime \prime}+\left(\frac{x}{e^{x}-1-x}\right) y=0
$$

and noting that

$$
\frac{x}{e^{x}-1-x}=\frac{2}{x}-\frac{2}{3}+\frac{x}{18}+\frac{x^{2}}{270}-\cdots
$$

we see that $x=0$ is a singular point of the differential equation. Since

$$
x^{2}\left(\frac{x}{e^{x}-1-x}\right)=2 x-\frac{2 x^{2}}{3}+\frac{x^{3}}{18}+\frac{x^{4}}{270}-\cdots
$$

we conclude that $x=0$ is a regular singular point.
21. Substituting $y=\sum_{n=0}^{\infty} c_{n} x^{n}$ into the differential cquation we \vdots :

$$
\begin{aligned}
y^{\prime \prime}+x^{2} y^{\prime}+2 x y & =\underbrace{\sum_{n=2}^{\infty} n(n-1) c_{n} x^{n-2}}_{k=n-2}+\underbrace{\sum_{n=1}^{\infty} n c_{n} x^{n+1}}_{k=n+1}+2 \underbrace{\sum_{n=0}^{\infty} c_{n} \cdot i^{\prime}-:}_{k=n+1} \\
& =\sum_{k=0}^{\infty}(k+2)(k+1) c_{k+2} x^{k}+\sum_{k=2}^{\infty}(k-1) c_{k-1} x^{k}+2 \sum_{k=1}^{\infty} c_{k-1} \cdot x^{k} \\
& =2 c_{2}+\left(6 c_{3}+2 c_{0}\right) x+\sum_{k=2}^{\infty}\left[(k+2)(k+1) c_{k-2}+(k+1) c_{k-1}\right] x^{k}=5-2: \cdot
\end{aligned}
$$

Thus, equating coefficients of like powers of x gives

$$
\begin{aligned}
2 c_{2} & =5 \\
6 c_{3}+2 c_{0} & =-2 \\
12 c_{4}+3 c_{1} & =0 \\
20 c_{5}+4 c_{2} & =10 \\
(k+2)(k+1) c_{k+2}+(k+1) c_{k-1} & =0, \quad k=4,5,6, \ldots
\end{aligned}
$$

and

$$
\begin{aligned}
c_{2} & =\frac{5}{2} \\
c_{3} & =-\frac{1}{3} c_{0}-\frac{1}{3} \\
c_{4} & =-\frac{1}{4} c_{1} \\
c_{5} & =\frac{1}{2}-\frac{1}{5} c_{2}=\frac{1}{2}-\frac{1}{5}\left(\frac{5}{2}\right)=0 \\
c_{k+2} & =-\frac{1}{k+2} c_{k-1} .
\end{aligned}
$$

Using the recurrence relation, we find

$$
\begin{aligned}
& c_{6}=-\frac{1}{6} c_{3}=\frac{1}{3 \cdot 6}\left(c_{0}+1\right)=\frac{1}{3^{2} \cdot 2!} c_{0}+\frac{1}{3^{2} \cdot 2!} \\
& c_{7}=-\frac{1}{7} c_{4}=\frac{1}{4 \cdot 7} c_{1} \\
& c_{8}=c_{11}=c_{14}=\cdots=0 \\
& c_{9}=-\frac{1}{9} c_{6}=-\frac{1}{3^{3} \cdot 3!} c_{0}-\frac{1}{3^{3} \cdot 3!} \\
& c_{10}=-\frac{1}{10} c_{7}=-\frac{1}{4 \cdot 7 \cdot 10} c_{1}
\end{aligned}
$$

Chapter 6 in Review

$$
\begin{aligned}
& c_{12}=-\frac{1}{12} c_{9}=\frac{1}{3^{4} \cdot 4!} c_{0}+\frac{1}{3^{4} \cdot 4!} \\
& c_{13}=-\frac{1}{13} c_{0}=\frac{1}{4 \cdot 7 \cdot 10 \cdot 13} c_{1}
\end{aligned}
$$

and so on. Thus

$$
\begin{aligned}
& y=c_{0}\left[1-\frac{1}{3} x^{3}+\frac{1}{3^{2} \cdot 2!} x^{6}-\frac{1}{3^{3} \cdot 3!} x^{9}+\frac{1}{3^{4} \cdot 4!} x^{12}-\cdots\right] \\
& +c_{1}\left[x-\frac{1}{4} x^{4}+\frac{1}{4 \cdot 7} x^{7}-\frac{1}{4 \cdot 7 \cdot 10} x^{10}+\frac{1}{4 \cdot 7 \cdot 10 \cdot 13} x^{13}-\cdots\right] \\
& +\left[\frac{5}{2} x^{2}-\frac{1}{3} x^{3}+\frac{1}{3^{2} \cdot 2!} x^{6}-\frac{1}{3^{3} \cdot 3!} x^{9}+\frac{1}{3^{4} \cdot 4!} x^{12}-\cdots\right] .
\end{aligned}
$$

22. (a) From $y=-\frac{1}{u} \frac{d u}{d x}$ we obtain

$$
\frac{d y}{d x}=-\frac{1}{u} \frac{d^{2} u}{d x^{2}}+\frac{1}{u^{2}}\left(\frac{d u}{d x}\right)^{2}
$$

Then $d y / d x=x^{2}+y^{2}$ becomes

$$
-\frac{1}{u} \frac{d^{2} u}{d x^{2}}+\frac{1}{u^{2}}\left(\frac{d u}{d x}\right)^{2}=x^{2}+\frac{1}{u^{2}}\left(\frac{d u}{d x}\right)^{2}
$$

so $\quad \frac{d^{2} u}{d x^{2}}+x^{2} u=0$.
(b) The differential equation $u^{\prime \prime}+x^{2} u=0$ has the form of (18) in Section 6.3 in the text wit:

$$
\begin{aligned}
& 1-2 a=0 \Longrightarrow a=\frac{1}{2} \\
& 2 c-2=2 \Longrightarrow c=2 \\
& b^{2} c^{2}=1 \Longrightarrow b=\frac{1}{2} \\
& a^{2}-p^{2} c^{2}=0 \Longrightarrow p=\frac{1}{4} .
\end{aligned}
$$

Then, by (19) of Section 6.3 in the text,

$$
u=x^{1 / 2}\left[c_{1} J_{1 / 4}\left(\frac{1}{2} x^{2}\right)+c_{2} J_{-1 / 4}\left(\frac{1}{2} x^{2}\right)\right] .
$$

Chapter 6 in Review

(c) We have

$$
\begin{aligned}
y & =-\frac{1}{u} \frac{d u}{d x}=-\frac{1}{x^{1 / 2} w(t)} \frac{d}{d x} x^{1 / 2} w(t) \\
& =-\frac{1}{x^{1 / 2} w}\left[x^{1 / 2} \frac{d w}{d t} \frac{d t}{d x}+\frac{1}{2} x^{-1 / 2} w\right] \\
& =-\frac{1}{x^{1 / 2} w}\left[x^{3 / 2} \frac{d w}{d t}+\frac{1}{2 x^{1 / 2}} w^{\prime}\right] \\
& =-\frac{1}{2 x w}\left[2 x^{2} \frac{d w}{d t}+w\right]=-\frac{1}{2 x w}\left[4 t \frac{d w}{d t}+w\right] .
\end{aligned}
$$

Now

$$
\begin{aligned}
4 t \frac{d w}{d t}+w= & 4 t \frac{d}{d t}\left[c_{1} J_{1 / 4}(t)+c_{2} J_{-1 / 4}(t)\right]+c_{1} J_{1 / 4}(t)+c_{2} J_{-1 / 4}(t) \\
= & 4 t\left[c_{1}\left(J_{-3 / 4}(t)-\frac{1}{4 t} J_{1 / 4}(t)\right)+c_{2}\left(-\frac{1}{4 t} J_{-1 / 4}(t)-J_{3 / 4}(t)\right)\right] \\
& +c_{1} J_{1 / 4}(t)+c_{2} J_{-1 / 4}(t) \\
= & 4 c_{1} t J_{-3 / 4}(t)-4 c_{2} t J_{3 / 4}(t) \\
= & 2 c_{1} x^{2} J_{-3 / 4}\left(\frac{1}{2} x^{2}\right)-2 c_{2} x^{2} J_{3 / 4}\left(\frac{1}{2} x^{2}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
y & =-\frac{2 c_{1} x^{2} J_{-3 / 4}\left(\frac{1}{2} x^{2}\right)-2 c_{2} x^{2} J_{3 / 4}\left(\frac{1}{2} x^{2}\right)}{2 x\left[c_{1} J_{1 / 4}\left(\frac{1}{2} x^{2}\right)+c_{2} J_{-1 / 4}\left(\frac{1}{2} x^{2}\right)\right]} \\
& =x \frac{-c_{1} J_{-3 / 4}\left(\frac{1}{2} x^{2}\right)+c_{2} J_{3 / 4}\left(\frac{1}{2} x^{2}\right)}{c_{1} J_{1 / 4}\left(\frac{1}{2} x^{2}\right)+c_{2} J_{-1 / 4}\left(\frac{1}{2} x_{1}^{2}\right)}
\end{aligned}
$$

Letting $c=c_{1} / c_{2}$ we have

$$
y=x \frac{J_{3 / 4}\left(\frac{1}{2} x^{2}\right)-c J_{-3 / 4}\left(\frac{1}{2} x^{2}\right)}{c J_{1 / 4}\left(\frac{1}{2} x^{2}\right)+J_{-1 / 4}\left(\frac{1}{2} x^{2}\right)}
$$

\therefore a) Equations (10) and (24) of Section 6.3 in the text imply

$$
Y_{1 / 2}(x)=\frac{\cos \frac{\pi}{2} J_{1 / 2}(x)-J_{-1 / 2}(x)}{\sin \frac{\pi}{2}}=-J_{-1 / 2}(x)=-\sqrt{\frac{2}{\pi x}} \cos x
$$

Chapter 6 in Review

(b) From (15) of Section 6.3 in the text

$$
I_{1 / 2}(x)=i^{-1 / 2} J_{1 / 2}(i x) \quad \text { and } \quad I_{-1 / 2}(x)=i^{1 / 2} J_{-1 / 2}(i x)
$$

so

$$
I_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sum_{n=0}^{\infty} \frac{1}{(2 n+1)!} x^{2 n+1}=\sqrt{\frac{2}{\pi x}} \sinh x
$$

and

$$
I_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{2 n}=\sqrt{\frac{2}{\pi x}} \cosh x
$$

(c) Equation (16) of Section 6.3 in the text and part (b) imply

$$
\begin{aligned}
K_{1 / 2}(x) & =\frac{\pi}{2} \frac{I_{-1 / 2}(x)-I_{1 / 2}(x)}{\sin \frac{\pi}{2}}=\frac{\pi}{2}\left[\sqrt{\frac{2}{\pi x}} \cosh x-\sqrt{\frac{2}{\pi x}} \sinh x\right] \\
& =\sqrt{\frac{\pi}{2 x}}\left[\frac{e^{x}+e^{-x}}{2}-\frac{e^{x}-e^{-x}}{2}\right]=\sqrt{\frac{\pi}{2 x}} e^{-x}
\end{aligned}
$$

24. (a) Using formula (5) of Section 4.2 in the text, we find that a second solution of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}=$ is

$$
\begin{aligned}
y_{2}(x) & =1 \cdot \int \frac{e^{\int 2 x d x /\left(1-x^{2}\right)}}{1^{2}} d x=\int e^{-\ln \left(1-x^{2}\right)} d x \\
& =\int \frac{d x}{1-x^{2}}=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

where partial fractions was used to obtain the last integral.
(b) Using formula (5) of Section 4.2 in the text, we find that a second solution of $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0$ is

$$
\begin{aligned}
y_{2}(x) & =x \cdot \int \frac{e^{\int 2 x d x /\left(1-x^{2}\right)}}{x^{2}} d x=x \int \frac{e^{-\ln \left(1-x^{2}\right)}}{x^{2}} d x \\
& =x \int \frac{d x}{x^{2}\left(1-x^{2}\right)} d x=x\left[\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)-\frac{1}{x}\right] \\
& =\frac{x}{2} \ln \left(\frac{1+x}{1-x}\right)-1
\end{aligned}
$$

where partial fractions was used to obtain the last integral.
(c)

25. (a) By the binomial theorem we have

$$
\begin{aligned}
{\left[1+\left(t^{2}-2 x t\right)\right]^{-1 / 2}=} & 1-\frac{1}{2}\left(t^{2}-2 x t\right)+\frac{(-1 / 2)(-3 / 2)}{2!}\left(t^{2}-2 x t\right)^{2} \\
& +\frac{(-1 / 2)(-3 / 2)(-5 / 2)}{3!}\left(t^{2}-2 x t\right)^{3}+\cdots \\
= & 1-\frac{1}{2}\left(t^{2}-2 x t\right)+\frac{3}{8}\left(t^{2}-2 x t\right)^{2}-\frac{5}{16}\left(t^{2}-2 x t\right)^{3}+\cdots \\
= & 1+x t+\frac{1}{2}\left(3 x^{2}-1\right) t^{2}+\frac{1}{2}\left(5 x^{3}-3 x\right) t^{3}+\cdots \\
= & \sum_{n=0}^{\infty} P_{n}(x) t^{n}
\end{aligned}
$$

(b) Letting $x=1$ in $\left(1-2 x t+t^{2}\right)^{-1 / 2}$, we have

$$
\begin{aligned}
\left(1-2 t+t^{2}\right)^{-1 / 2} & =(1-t)^{-1}=\frac{1}{1--t}=1+t+t^{2}+t^{3}+\ldots \quad(|t|<1) \\
& =\sum_{n=0}^{\infty} t^{n}
\end{aligned}
$$

From part (a) we have

$$
\sum_{n=0}^{\infty} P_{n}(1) t^{n}=\left(1-2 t+t^{2}\right)^{-1 / 2}=\sum_{n=0}^{\infty} t^{n}
$$

Equating the cocfficients of corresponding terms in the two serics, we see that $P_{n}(1)=:$ Similarly, letting $x=-1$ we have

$$
\begin{aligned}
\left(1+2 t+t^{2}\right)^{-1 / 2} & =(1+t)^{-1}=\frac{1}{1+t}=1-t+t^{2}-3 t^{3}+\ldots \quad(|t|<1) \\
& =\sum_{n=0}^{\infty}(-1)^{n} t^{n}=\sum_{n=0}^{\infty} P_{n}(-1) t^{n}
\end{aligned}
$$

so that $P_{n}(-1)=(-1)^{n}$.

The Laplace Transform

Excreises 7.1

Definition of the Laplace Transform

1. $\mathscr{L}\{f(t)\}=\int_{0}^{1}-e^{-s t} d t+\int_{1}^{\infty} e^{-s t} d t=\left.\frac{1}{s} e^{-s t}\right|_{0} ^{1}-\left.\frac{1}{s} e^{-s t}\right|_{1} ^{\infty}$

$$
=\frac{1}{s} e^{-s}-\frac{1}{s}-\left(0-\frac{1}{s} e^{-s}\right)=\frac{2}{s} e^{-s}-\frac{1}{s} ; \quad s>0
$$

2. $\mathscr{L}\{f(t)\}=\int_{0}^{2} 4 e^{-s t} d t=-\left.\frac{4}{s} e^{-s t}\right|_{0} ^{2}=-\frac{4}{s}\left(e^{-2 s}-1\right), \quad s>0$
3. $\mathscr{L}\{f(t)\}=\int_{0}^{1} t e^{-s t} d t+\int_{1}^{\infty} e^{-s t} d t=\left.\left(-\frac{1}{s} t e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right)\right|_{0} ^{1}-\left.\frac{1}{s} e^{-s t}\right|_{1} ^{\infty}$

$$
=\left(-\frac{1}{s} e^{-s}-\frac{1}{s^{2}} e^{-s}\right)-\left(0-\frac{1}{s^{2}}\right)-\frac{1}{s}\left(0-e^{-s}\right)=\frac{1}{s^{2}}\left(1-e^{-s}\right), \quad s>0
$$

4. $\mathscr{L}\{f(t)\}=\int_{0}^{1}(2 t+1) e^{-s t} d t=\left.\left(-\frac{2}{s} t e^{-s t}-\frac{2}{s^{2}} e^{-s t}-\frac{1}{s} e^{-s t}\right)\right|_{0} ^{1}$

$$
=\left(-\frac{2}{s} e^{-s}-\frac{2}{s^{2}} e^{-s}-\frac{1}{s} e^{-s}\right)-\left(0-\frac{2}{s^{2}}-\frac{1}{s}\right)=\frac{1}{s}\left(1-3 e^{-s}\right)+\frac{2}{s^{2}}\left(1-e^{-s}\right), \quad s>0
$$

5. $\mathscr{L}\{f(t)\}=\int_{0}^{\pi}(\sin t) e^{-s t} d t=\left.\left(-\frac{s}{s^{2}+1} e^{-s t} \sin t-\frac{1}{s^{2}+1} e^{-s t} \cos t\right)\right|_{0} ^{\pi}$

$$
=\left(0+\frac{1}{s^{2}+1} e^{-\pi s}\right)-\left(0-\frac{1}{s^{2}+1}\right)=\frac{1}{s^{2}+1}\left(e^{-\pi s}+1\right), \quad s>0
$$

6. $\mathscr{L}\{f(t)\}=\int_{\pi / 2}^{\infty}(\cos t) e^{-s t} d t=\left.\left(-\frac{s}{s^{2}+1} e^{-s t} \cos t+\frac{1}{s^{2}+1} e^{-s t} \sin t\right)\right|_{\pi / 2} ^{\infty}$

$$
=0-\left(0+\frac{1}{s^{2}+1} e^{\cdots \pi s / 2}\right)=-\frac{1}{s^{2}+1} e^{-\pi s / 2}: \quad s>0
$$

7. $f(t)= \begin{cases}0, & 0<t<1 \\ t, & t>1\end{cases}$

$$
\mathscr{L}\{f(t)\}=\int_{1}^{\infty} t e^{-s t} d t=\left.\left(-\frac{1}{s} t e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right)\right|_{1} ^{\infty}=\frac{1}{s} e^{-s}+\frac{1}{s^{2}} e^{-s}, \quad s>0
$$

8. $f(t)= \begin{cases}0, & 0<t<1 \\ 2 t-2, & t>1\end{cases}$

$$
\mathscr{L}\{f(t)\}=2 \int_{1}^{\infty}(t-1) e^{-s t} d t=\left.2\left(-\frac{1}{s}(t-1) e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right)\right|_{1} ^{x}=\frac{2}{s^{2}} e^{-s}, \quad s>0
$$

9. The function is $f(t)=\left\{\begin{array}{ll}1-t, & 0<t<1 \\ 0, & t>1\end{array}\right.$ so

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\int_{0}^{1}(1-t) e^{-s t} d t+\int_{1}^{\infty} 0 e^{-s t} d t=\int_{0}^{1}(1-t) e^{-s t} d t=\left.\left(-\frac{1}{s}(1-t) e^{-s t}+\frac{1}{s^{2}} e^{-s t}\right)\right|_{0} ^{1} \\
& =\frac{1}{s^{2}} e^{-s}+\frac{1}{s}-\frac{1}{s^{2}}, \quad s>0
\end{aligned}
$$

10. $f(t)=\left\{\begin{array}{ll}0, & 0<t<a \\ c, & a<t<b ; \\ 0, & t>b\end{array} \quad \mathscr{L}\{f(t)\}=\int_{a}^{b} c e^{-s t} d t=-\left.\frac{c}{s} e^{-s t}\right|_{a} ^{b}=\frac{c}{s}\left(e^{-s a}-e^{-s b}\right), \quad s>0\right.$
11. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{t+7} e^{-s t} d t=e^{7} \int_{0}^{\infty} e^{(1-s) t} d t=\left.\frac{e^{7}}{1-s} e^{(1-s) t}\right|_{0} ^{\infty}=0-\frac{e^{7}}{1-s}=\frac{e^{7}}{s-1}, \quad s>1$
12. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-2 t-5} e^{-s t} d t=e^{-5} \int_{0}^{\infty} e^{-(s+2) t} d t=-\left.\frac{e^{-5}}{s+2} e^{-(s+2) t}\right|_{0} ^{\infty}=\frac{e^{-5}}{s+2}, \quad s>-2$
-3. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} t e^{4 t} e^{-s t} d t=\int_{0}^{\infty} t e^{(4-s) t} d t=\left.\left(\frac{1}{4-s} t e^{(4-s) t}-\frac{1}{(4-s)^{2}} e^{(4-s) t}\right)\right|_{0} ^{\infty}$

$$
=\frac{1}{(4-s)^{2}}, \quad s>4
$$

-4. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} t^{2} e^{-2 t} e^{-s t} d t=\int_{0}^{\infty} t^{2} e^{-(s+2) t} d t$

$$
=\left.\left(-\frac{1}{s+2} t^{2} e^{-(s+2) t}-\frac{2}{(s+2)^{2}} t e^{-(s+2) t}-\frac{2}{(s+2)^{3}} e^{-(s+2) t}\right)\right|_{0} ^{\infty}=\frac{2}{(s+2)^{3}}, \quad s>-2
$$

-5. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-t}(\sin t) e^{-s t} d t=\int_{0}^{\infty}(\sin t) e^{-(s+1) t} d t$

$$
\begin{aligned}
& =\left.\left(\frac{-(s+1)}{(s+1)^{2}+1} e^{-(s+1) t} \sin t-\frac{1}{(s+1)^{2}+1} e^{-(s+1) t} \cos t\right)\right|_{0} ^{\infty} \\
& =\frac{1}{(s+1)^{2}+1}=\frac{1}{s^{2}+2 s+2}, \quad s>-1
\end{aligned}
$$

-5. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{t}(\cos t) e^{-s t} d t=\int_{0}^{\infty}(\cos t) e^{(1-s) t} d t$

$$
\begin{aligned}
& =\left.\left(\frac{1-s}{(1-s)^{2}+1} e^{(1-s) t} \cos t+\frac{1}{(1-s)^{2}+1} e^{(1-s) t} \sin t\right)\right|_{0} ^{\infty} \\
& =-\frac{1-s}{(1-s)^{2}+1}=\frac{s-1}{s^{2}-2 s+2}: \quad s>1
\end{aligned}
$$

Exercises 7.1 Definition of the Laplace Transform
17. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} t(\cos t) e^{-s t} d t$

$$
\begin{aligned}
& =\left[\left(-\frac{s t}{s^{2}+1}-\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\right)(\cos t) e^{-s t}+\left(\frac{t}{s^{2}+1}+\frac{2 s}{\left(s^{2}+1\right)^{2}}\right)(\sin t) e^{-s t}\right]_{0}^{\infty} \\
& =\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}, \quad s>0
\end{aligned}
$$

18. $\mathscr{L}\{f(t)\}=\int_{0}^{\infty} t(\sin t) e^{-s t} d t$

$$
\begin{aligned}
& =\left[\left(-\frac{t}{s^{2}+1}-\frac{2 s}{\left(s^{2}+1\right)^{2}}\right)(\cos t) e^{-s t}-\left(\frac{s t}{s^{2}+1}+\frac{s^{2}-1}{\left(s^{2}+1\right)^{2}}\right)(\sin t) e^{-s t}\right]_{0}^{\infty} \\
& =\frac{2 s}{\left(s^{2}+1\right)^{2}}, \quad s>0
\end{aligned}
$$

19. $\mathscr{L}\left\{2 t^{4}\right\}=2 \frac{4!}{s^{\bar{j}}}$
20. $\mathscr{L}\left\{t^{5}\right\}=\frac{\overline{5}!}{s^{6}}$
21. $\mathscr{L}\{4 t-10\}=\frac{4}{s^{2}}-\frac{10}{s}$
22. $\mathscr{L}\{7 t+3\}=\frac{7}{s^{2}}+\frac{3}{s}$
23. $\mathscr{L}\left\{t^{2}+6 t-3\right\}=\frac{2}{s^{3}}+\frac{6}{s^{2}}-\frac{3}{s}$
24. $\mathscr{L}\left\{-4 t^{2}+16 t+9\right\}=-4 \frac{2}{s^{3}}+\frac{16}{s^{2}}+\frac{9}{s}$
25. $\mathscr{L}\left\{t^{3}+3 t^{2}+3 t+1\right\}=\frac{3!}{s^{4}}+3 \frac{2}{s^{3}}+\frac{3}{s^{2}}+\frac{1}{s}$
26. $\mathscr{L}\left\{8 t^{3}-12 t^{2}+6 t-1\right\}=8 \frac{3!}{s^{4}}-12 \frac{2}{s^{3}}+\frac{6}{s^{2}}--$
27. $\mathscr{L}\left\{1+e^{4 t}\right\}=\frac{1}{s}+\frac{1}{s-4}$
28. $\mathscr{L}\left\{t^{2}-e^{-9 t}+5\right\}=\frac{2}{s^{3}}-\frac{1}{s+9}+\frac{5}{s}$
29. $\mathscr{L}\left\{1+2 e^{2 t}+e^{4 t}\right\}=\frac{1}{s}+\frac{2}{s-2}+\frac{1}{s-4}$
30. $\mathscr{L}\left\{e^{2 l}-2+e^{-2 t}\right\}=\frac{1}{s-2}-\frac{2}{s}+\frac{1}{s+\vdots}$
31. $\mathscr{L}\left\{4 t^{2}-5 \sin 3 t\right\}=4 \frac{2}{s^{3}}-5 \frac{3}{s^{2}+9}$
32. $\mathscr{L}\{\cos 5 t+\sin 2 t\}=\frac{s}{s^{2}+25}+\frac{2}{s^{2}+4}$
33. $\mathscr{L}\{\sinh k t\}=\frac{1}{2} \mathscr{L}\left\{e^{k t}-e^{-k t}\right\}=\frac{1}{2}\left[\frac{1}{s-k}-\frac{1}{s+k}\right]=\frac{k}{s^{2}-k^{2}}$
34. $\mathscr{L}\{\cosh k t\}=\frac{1}{2} \mathscr{L}\left\{e^{k t}+e^{k t}\right\}=\frac{s}{s^{2}-k^{2}}$
35. $\mathscr{L}\left\{e^{t} \sinh t\right\}=\mathscr{L}\left\{e^{t} \frac{e^{t}-e^{-t}}{2}\right\}=\mathscr{L}\left\{\frac{1}{2} e^{2 t}-\frac{1}{2}\right\}=\frac{1}{2(s-2)}-\frac{1}{2 s}$
36. $\mathscr{L}\left\{e^{-t} \cosh t\right\}=\mathscr{L}\left\{e^{-t} \frac{e^{t}+e^{-t}}{2}\right\}=\mathscr{L}\left\{\frac{1}{2}+\frac{1}{2} e^{-2 t}\right\}=\frac{1}{2 s}+\frac{1}{2(s+2)}$
37. $\mathscr{L}\{\sin 2 t \cos 2 t\}=\mathscr{L}\left\{\frac{1}{2} \sin 4 t\right\}=\frac{2}{s^{2}+16}$

3s. $\mathscr{L}\left\{\cos ^{2} t\right\}=\mathscr{L}\left\{\frac{1}{2}+\frac{1}{2} \cos 2 t\right\}=\frac{1}{2 s}+\frac{1}{2} \frac{s}{s^{2}+4}$
39. From the addition formula for the sine function, $\sin (4 t+5)=(\sin 4 t)(\cos 51-\cos =3$,

$$
\begin{aligned}
\mathscr{L}\{\sin (4 t+5)\} & =(\cos 5) \mathscr{L}\{\sin 4 t\}+(\sin 5) \mathscr{L}\{\cos \not+\psi\} \\
& =(\cos 5) \frac{4}{s^{2}+16}+(\sin 5) \frac{s}{s^{2}+16} \\
& =\frac{4 \cos 5+(\sin 5) s}{s^{2}+16} .
\end{aligned}
$$

2. From the addition formula for the cosine function,

$$
\cos \left(t-\frac{\pi}{6}\right)=\cos t \cos \frac{\pi}{6}+\sin t \sin \frac{\pi}{6}=\frac{\sqrt{3}}{2} \cos t+\frac{1}{2} \sin t
$$

so

$$
\begin{aligned}
\mathscr{L}\left\{\cos \left(t-\frac{\pi}{6}\right)\right\} & =\frac{\sqrt{3}}{2} \mathscr{L}\{\cos t\}+\frac{1}{2} \mathscr{L}\{\sin t\} \\
& =\frac{\sqrt{3}}{2} \frac{s}{s^{2}+1}+\frac{1}{2} \frac{1}{s^{2}+1}=\frac{1}{2} \frac{\sqrt{3} s+1}{s^{2}+1} .
\end{aligned}
$$

⒈ (a) Using integration by parts for $\alpha>0$,

$$
\Gamma(\alpha+1)=\int_{0}^{\infty} t^{\alpha} e^{-t} d t=-\left.t^{\alpha} e^{-t}\right|_{0} ^{\infty}+\alpha \int_{0}^{\infty} t^{\alpha-1} e^{-t} d t=\alpha \Gamma(\alpha) .
$$

(b) Let $u=s t$ so that $d u=s d t$. Then

$$
\mathscr{L}\left\{t^{\alpha}\right\}=\int_{0}^{\infty} e^{-s t} t^{\alpha} d t=\int_{0}^{\infty} e^{-u}\left(\frac{u}{s}\right)^{\alpha} \frac{1}{s} d u=\frac{1}{s^{\alpha+1}} \Gamma(\alpha+1), \quad \alpha>-1 .
$$

\therefore (a) $\mathscr{L}\left\{t^{-1 / 2}\right\}=\frac{\Gamma(1 / 2)}{s^{1 / 2}}=\sqrt{\frac{\pi}{s}}$
(b) $\mathscr{L}\left\{t^{1 / 2}\right\}=\frac{\Gamma(3 / 2)}{s^{3 / 2}}=\frac{\sqrt{\pi}}{2 s^{3 / 2}}$
(c) $\mathscr{L}\left\{t^{3 / 2}\right\}=\frac{\Gamma(5 / 2)}{s^{5 / 2}}=\frac{3 \sqrt{\pi}}{4 s^{5 / 2}}$
\therefore Let $F(t)=t^{1 / 3}$. Then $F(t)$ is of exponential order, but $f(t)=F^{\prime}(t)=\frac{1}{3} t^{-2 / 3}$ is umboum $; \therefore$. $t=0$ and hence is not of exponential ordcr. Let

$$
f(t)=2 t e^{t^{2}} \cos e^{t^{2}}=\frac{d}{d t} \sin e^{t^{2}}
$$

Exercises 7.1 Definition of the Laplace Transform

This function is not of exponential order but we can show that its Laplace transform exists. Usin. Entegration by parts we have

$$
\begin{aligned}
\mathscr{L}\left\{2 t e^{t^{2}} \cos e^{t^{2}}\right\} & =\int_{0}^{\infty} e^{-s t}\left(\frac{d}{d t} \sin e^{t^{2}}\right) d t=\lim _{a \rightarrow \infty}\left[\left.e^{-s t} \sin e^{t^{2}}\right|_{0} ^{a}+s \int_{0}^{a} e^{-s t} \sin e^{t^{2}} d t\right] \\
& =-\sin 1+s \int_{0}^{\infty} e^{-s t} \sin e^{t^{2}} d t=s \mathscr{L}\left\{\sin e^{t^{2}}\right\}-\sin 1
\end{aligned}
$$

Since $\sin \epsilon^{t^{2}}$ is continuous and of cxponential order. $\mathscr{L}\left\{\sin \epsilon^{t^{2}}\right\}$ exists, and therefore $\mathscr{L}\left\{2 t e^{t^{2}} \cos \epsilon^{-=}\right.$ exists.
± 4. The relation will be valid when s is greater than the maximum of c_{1} and c_{2}.
$\therefore 5$. Since e^{t} is an increasing function and $t^{2}>\ln M+c t$ for $M>0$ we have $e^{t^{2}}>e^{\ln M+c t}=M e^{c t}$ i :ufficiently large and for any c. Thus, $e^{t^{2}}$ is not of exponential order.
-6. Assuming that (c) of Theorcm 7.1.1 is applicable with a complex exponent, we have

$$
\mathscr{L}\left\{e^{(a+i b) t}\right\}=\frac{1}{s-(a+i b)}=\frac{1}{(s-a)-i b} \frac{(s-a)+i b}{(s-a)+i b}=\frac{s-a+i b}{(s-a)^{2}+b^{2}} .
$$

By. Euler's formula, $c^{i \theta}=\cos \theta+i \sin \theta$, so

$$
\begin{aligned}
\mathscr{L}\left\{e^{(a+i b) t}\right\} & =\mathscr{L}\left\{e^{a l} e^{i b t}\right\}=\mathscr{L}\left\{e^{a t}(\cos b t+i \sin b t)\right\} \\
& =\mathscr{L}\left\{e^{a l} \cos b t\right\}+i \mathscr{L}\left\{e^{a t} \sin b l\right\} \\
& =\frac{s-a}{(s-a)^{2}+b^{2}}+i \frac{b}{(s-a)^{2}+b^{2}}
\end{aligned}
$$

Equating real and imaginary parts we get

$$
\mathscr{L}\left\{e^{a t} \cos b t\right\}=\frac{s-a}{(s-a)^{2}+b^{2}} \quad \text { and } \quad \mathscr{L}\left\{e^{a l} \sin b t\right\}=\frac{b}{(s-a)^{2}+b^{2}}
$$

4.. We want $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ or

$$
m(\alpha x+\beta y)+b=\alpha(m x+b)+\beta(m y+b)=m(\alpha x+\beta y)+(\alpha+\beta) b
$$

for all real numbers α and β. Taking $\alpha=\beta=1$ we see that $b=2 b$, so $b=0$. Thus, $f(x)=m$. will be a linear transformation when $b=0$.
$\dot{\Psi}$. Assume that $\mathscr{L}\left\{t^{n-1}\right\}=(n-1)!/ s^{n}$. Then, using the definition of the Laplace transform: intcgration by parts, we have

$$
\begin{aligned}
\mathscr{L}\left\{t^{n}\right\} & =\int_{0}^{\infty} e^{-s t} t^{n} d t=-\left.\frac{1}{s} e^{-s t} t^{n}\right|_{0} ^{\infty}+\frac{n}{s} \int_{0}^{\infty} e^{-s t} t^{n-1} d t \\
& =0+\frac{n}{s} \mathscr{L}\left\{t^{n-1}\right\}=\frac{n}{s} \frac{(n-1)!}{s^{n}}=\frac{n!}{s^{n+1}}
\end{aligned}
$$

Exercises 7.2

Inverse Transforms and Transforms of Derivatives

1. $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}}\right\}=\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{2}{s^{3}}\right\}=\frac{1}{2} t^{2}$
2. $\mathscr{L}^{-1}\left\{\frac{1}{s^{4}}\right\}=\frac{1}{6} \mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=\frac{1}{6} t^{3}$
3. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{48}{s^{5}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{48}{24} \cdot \frac{4!}{s^{5}}\right\}=t-2 t^{4}$
4. $\mathscr{L}^{-1}\left\{\left(\frac{2}{s}-\frac{1}{s^{3}}\right)^{2}\right\}=\mathscr{L}^{-1}\left\{4 \cdot \frac{1}{s^{2}}-\frac{4}{6} \cdot \frac{3!}{s^{4}}+\frac{1}{120} \cdot \frac{5!}{s^{6}}\right\}=4 t-\frac{2}{3} t^{3}+\frac{1}{120} t^{5}$
5. $\mathscr{L}^{-1}\left\{\frac{(s+1)^{3}}{s^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}+3 \cdot \frac{1}{s^{2}}+\frac{3}{2} \cdot \frac{2}{s^{3}}+\frac{1}{6} \cdot \frac{3!}{s^{4}}\right\}=1+3 t+\frac{3}{2} t^{2}+\frac{1}{6} t^{3}$
6. $\mathscr{L}^{-1}\left\{\frac{(s+2)^{2}}{s^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}+4 \cdot \frac{1}{s^{2}}+2 \cdot \frac{2}{s^{3}}\right\}=1+4 t+2 t^{2}$

ㄱ. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}}-\frac{1}{s}+\frac{1}{s-2}\right\}=t-1+e^{2 t}$
s. $\mathscr{L}^{-1}\left\{\frac{4}{s}+\frac{6}{s^{5}}-\frac{1}{s+8}\right\}=\mathscr{L}^{-1}\left\{4 \cdot \frac{1}{s}+\frac{1}{4} \cdot \frac{4!}{s^{5}}-\frac{1}{s+8}\right\}=4+\frac{1}{4} t^{4}-e^{-8 t}$
9. $\mathscr{L}^{-1}\left\{\frac{1}{4 s+1}\right\}=\frac{1}{4} \mathscr{L}^{-1}\left\{\frac{1}{s+1 / 4}\right\}=\frac{1}{4} e^{-t / 4}$
20. $\mathscr{L}^{-1}\left\{\frac{1}{5 s-2}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{5} \cdot \frac{1}{s-2 / 5}\right\}=\frac{1}{5} e^{2 t / 5}$
i1. $\mathscr{L}^{-1}\left\{\frac{5}{s^{2}+49}\right\}=\mathscr{L}^{-1}\left\{\frac{5}{7} \cdot \frac{7}{s^{2}+49}\right\}=\frac{5}{7} \sin 7 t$
$\therefore \mathscr{L}^{-1}\left\{\frac{10 s}{s^{2}+16}\right\}=10 \cos 4 t$
-3. $\mathscr{L}^{-1}\left\{\frac{4 s}{4 s^{2}+1}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+1 / 4}\right\}=\cos \frac{1}{2} t$
-4. $\mathscr{L}^{-1}\left\{\frac{1}{4 s^{2}+1}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1 / 2}{s^{2}+1 / 4}\right\}=\frac{1}{2} \sin \frac{1}{2} t$

Exercises 7.2 Inverse Transforms and Transforms of Derivatives
15. $\mathscr{L}^{-1}\left\{\frac{2 s-6}{s^{2}+9}\right\}=\mathscr{L}^{-1}\left\{2 \cdot \frac{s}{s^{2}+9}-2 \cdot \frac{3}{s^{2}+9}\right\}=2 \cos 3 t-2 \sin 3 t$
16. $\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+2}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2}+\frac{1}{\sqrt{2}} \frac{\sqrt{2}}{s^{2}+2}\right\}=\cos \sqrt{2} t+\frac{\sqrt{2}}{2} \sin \sqrt{2} t$
17. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+3 s}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{3} \cdot \frac{1}{s}-\frac{1}{3} \cdot \frac{1}{s+3}\right\}=\frac{1}{3}-\frac{1}{3} e^{-3 t}$
18. $\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}-4 s}\right\}=\mathscr{L}^{-1}\left\{-\frac{1}{4} \cdot \frac{1}{s}+\frac{5}{4} \cdot \frac{1}{s-4}\right\}=-\frac{1}{4}+\frac{5}{4} e^{4 t}$
19. $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s-3}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{4} \cdot \frac{1}{s-1}+\frac{3}{4} \cdot \frac{1}{s+3}\right\}=\frac{1}{4} e^{t}+\frac{3}{4} e^{-3 t}$
20. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+s-20}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{9} \cdot \frac{1}{s-4}-\frac{1}{9} \cdot \frac{1}{s+5}\right\}=\frac{1}{9} e^{4 t}-\frac{1}{9} e^{-5 t}$
21. $\mathscr{L}^{-1}\left\{\frac{0.9 s}{(s-0.1)(s+0.2)}\right\}=\mathscr{L}^{-1}\left\{(0.3) \cdot \frac{1}{s-0.1}+(0.6) \cdot \frac{1}{s+0.2}\right\}=0.3 e^{0.1 t}+0.6 e^{-0.2 t}$
22. $\mathscr{L}^{-1}\left\{\frac{s-3}{(s-\sqrt{3})(s+\sqrt{3})}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}-3}-\sqrt{3} \cdot \frac{\sqrt{3}}{s^{2}-3}\right\}=\cosh \sqrt{3} t-\sqrt{3} \sinh \sqrt{3} t$
23. $\mathscr{L}^{-1}\left\{\frac{s}{(s-2)(s-3)(s-6)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1}{s-2}-\frac{1}{s-3}+\frac{1}{2} \cdot \frac{1}{s-6}\right\}=\frac{1}{2} e^{2 t}-e^{3 t}+\frac{1}{2} e^{6 t}$
24. $\mathscr{L}^{-1}\left\{\frac{s^{2}+1}{s(s-1)(s+1)(s-2)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{1}{s}-\frac{1}{s-1}-\frac{1}{3} \cdot \frac{1}{s+1}+\frac{5}{6} \cdot \frac{1}{s-2}\right\}$

$$
=\frac{1}{2}-e^{t}-\frac{1}{3} e^{-t}+\frac{5}{6} e^{2 t}
$$

25. $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}+5 s}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s\left(s^{2}+5\right)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{5} \cdot \frac{1}{s}-\frac{1}{5} \frac{s}{s^{2}+5}\right\}=\frac{1}{5}-\frac{1}{5} \cos \sqrt{5} t$
26. $\mathscr{L}^{-1}\left\{\frac{s}{\left(s^{2}+4\right)(s+2)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{4} \cdot \frac{s}{s^{2}+4}+\frac{1}{4} \cdot \frac{2}{s^{2}+4}-\frac{1}{4} \cdot \frac{1}{s+2}\right\}=\frac{1}{4} \cos 2 t+\frac{1}{4} \sin 2 t-\frac{1}{4}:$
27. $\mathscr{L}^{-1}\left\{\frac{2 s-4}{\left(s^{2}+s\right)\left(s^{2}+1\right)}\right\}=\mathscr{L}^{-1}\left\{\frac{2 s-4}{s(s+1)\left(s^{2}+1\right)}\right\}=\mathscr{L}^{-1}\left\{-\frac{4}{s}+\frac{3}{s \div 1}+\frac{s}{s^{2}+1}+\frac{3}{s^{2} \div 1}\right.$.

$$
=-4+3 e^{-t}+\cos t+3 \sin t
$$

28. $\mathscr{L}^{-1}\left\{\frac{1}{s^{4}-9}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{s^{2}-3}-\frac{1}{6 \sqrt{3}} \cdot \frac{\sqrt{3}}{s^{2}+3}\right\}=\frac{1}{6 \sqrt{3}} \sinh \sqrt{3} t-\frac{1}{6 \sqrt{3}} \sin \sqrt{3} t$
29. $\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{3} \cdot \frac{1}{s^{2}+1}-\frac{1}{3} \cdot \frac{1}{s^{2}-\frac{1}{2}}\right\}$

$$
\begin{aligned}
& =\mathscr{L}^{-1}\left\{\frac{1}{3} \cdot \frac{1}{s^{2}+1}-\frac{1}{6} \cdot \frac{2}{s^{2}+4}\right\} \\
& =\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t
\end{aligned}
$$

$$
\therefore \mathscr{L}^{-1}\left\{\frac{6 s+3}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\}=\mathscr{L}^{-1}\left\{2 \cdot \frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}-2 \cdot \frac{s}{s^{2}+4}-\frac{1}{2} \cdot \frac{2}{s^{2}+4}\right\}
$$

\therefore :. The Laplace transform of the initial-value problem is

$$
s \mathscr{L}\{y\}-y(0)-\mathscr{L}\{y\}=\frac{1}{s} .
$$

Eolving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=-\frac{1}{s}+\frac{1}{s-1} .
$$

Thus

$$
y=-1+e^{t} .
$$

$\because=$-ie Laplace transform of the initial-value problem is

$$
2 s \mathscr{L}\{y\}-2 y(0)+\mathscr{L}\{y\}=0 .
$$

ξ :xing for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{6}{2 s+1}=\frac{3}{s+1 / 2} .
$$

Tis

$$
y=3 e^{-t / 2} .
$$

$=-$ Laplace transform of the initial-value problem is

$$
s \mathscr{L}\{y\}-y(0)+6 \mathscr{L}\{y\}=\frac{1}{s-4} .
$$

$\therefore=$ ng for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{(s-4)(s+6)}+\frac{2}{s+6}=\frac{1}{10} \cdot \frac{1}{s-4}+\frac{19}{10} \cdot \frac{1}{s+6} .
$$

\cdots

$$
y=\frac{1}{10} e^{4 t}+\frac{19}{10} e^{-6 t} .
$$

- -.: Laplace transform of the initial-value problem is

$$
s \mathscr{L}\{y\}-\mathscr{L}\{y\}=\frac{2 s}{s^{2}+25} .
$$

Exercises 7.2 Inverse Transforms and Transforms of Derivatives
\because Ying for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2 s}{(s-1)\left(s^{2}+25\right)}=\frac{1}{13} \cdot \frac{1}{s-1}-\frac{1}{13} \frac{s}{s^{2}+25}+\frac{5}{13} \cdot \frac{5}{s^{2}+25} .
$$

-

$$
y=\frac{1}{13} e^{t}-\frac{1}{13} \cos 5 t+\frac{\tilde{5}}{13} \sin 5 t
$$

SE, - Laplace transform of the initial-value problem is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+5[s \mathscr{L}\{y\}-y(0)]+4 \mathscr{L}\{y\}=0 .
$$

Fing for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s+5}{s^{2}+5 s+4}=\frac{4}{3} \frac{1}{s+1}-\frac{1}{3} \frac{1}{s+4} .
$$

-has

$$
y=\frac{4}{3} e^{-t}-\frac{1}{3} e^{-4 t} .
$$

33. -ie Laplace transform of the initial-value problem is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]=\frac{6}{s-3}-\frac{3}{s+1} .
$$

\because ving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{6}{(s-3)\left(s^{2}-4 s\right)}-\frac{3}{(s+1)\left(s^{2}-4 s\right)}+\frac{s-5}{s^{2}-4 s} \\
& =\frac{5}{2} \cdot \frac{1}{s}-\frac{2}{s-3}-\frac{3}{5} \cdot \frac{1}{s+1}+\frac{11}{10} \cdot \frac{1}{s-4} .
\end{aligned}
$$

-un

$$
y=\frac{5}{2}-2 e^{3 t}-\frac{3}{5} e^{-t}+\frac{11}{10} e^{4 t} .
$$

3^{-}. -he Laplace transform of the initial-valuo problem is

$$
s^{2} \mathscr{L}\{y\}-s y(0)+\mathscr{L}\{y\}=\frac{2}{s^{2}+2} .
$$

Shing for $\mathscr{L}\{y\}$ wo obtain

$$
\mathscr{L}\{y\}=\frac{2}{\left(s^{2}+1\right)\left(s^{2}+2\right)}+\frac{10 s}{s^{2}+1}=\frac{10 s}{s^{2}+1}+\frac{2}{s^{2}+1}-\frac{2}{s^{2}+2} .
$$

Tins

$$
y=10 \cos t+2 \sin t-\sqrt{2} \sin \sqrt{2} t
$$

35. Tine Laplace transform of the initial-value problem is

$$
s^{2} \mathscr{L}\{y\}+9 \mathscr{L}\{y\}=\frac{1}{s-1}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{(s-1)\left(s^{2}+9\right)}=\frac{1}{10} \cdot \frac{1}{s-1}-\frac{1}{10} \cdot \frac{1}{s^{2}+9}-\frac{1}{10} \cdot \frac{s}{s^{2}+9} .
$$

Thus

$$
y=\frac{1}{10} c^{t}-\frac{1}{30} \sin 3 t-\frac{1}{10} \cos 3 t
$$

39. The Laplace transform of the initial-value problem is
$2\left[s^{3} \mathscr{L}\{y\}-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)\right] \div 3\left[s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)\right]-3[s \mathscr{L}\{y\}-y(0)]-2 \mathscr{L}\{y\}=-\cdots$
Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2 s+3}{(s+1)(s-1)(2 s+1)(s+2)}=\frac{1}{2} \frac{1}{s+1}+\frac{5}{18} \frac{1}{s-1}-\frac{8}{9} \frac{1}{s+1 / 2}+\frac{1}{9} \frac{1}{s-\therefore}
$$

Thus

$$
y=\frac{1}{2} e^{-l}+\frac{5}{18} e^{t}-\frac{8}{9} e^{-t / 2}+\frac{1}{9} e^{-2 t}
$$

47. The Laplace transform of the initial-value problem is

$$
s^{3} \mathscr{L}\{y\}-s^{2}(0)-s y^{\prime}(0)-y^{\prime \prime}(0)+2\left[s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)\right]-[s \mathscr{L}\{y\}-y(0)]-2 \mathscr{L}\{y\}=\frac{\vdots}{:-}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{s^{2}+12}{(s-1)(s+1)(s+2)\left(s^{2}+9\right)} \\
& =\frac{13}{60} \frac{1}{s-1}-\frac{13}{20} \frac{1}{s+1}+\frac{16}{39} \frac{1}{s+2}+\frac{3}{130} \frac{s}{s^{2}+9}-\frac{1}{65} \frac{3}{s^{2}+9}
\end{aligned}
$$

Thus

$$
y=\frac{13}{60} e^{t}-\frac{13}{20} e^{-t}+\frac{16}{39} e^{-2 t}+\frac{3}{130} \cos 3 t-\frac{1}{65} \sin 3 t
$$

\therefore The Laplace transform of the initial-value problem is

$$
s \mathscr{L}\{y\}+\mathscr{L}\{y\}=\frac{s+3}{s^{2}+6 s+13} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{s+3}{(s+1)\left(s^{2}+6 s+13\right)}=\frac{1}{4} \cdot \frac{1}{s+1}-\frac{1}{4} \cdot \frac{s+1}{s^{2}+6 s+13} \\
& =\frac{1}{4} \cdot \frac{1}{s+1}-\frac{1}{4}\left(\frac{s+3}{(s+3)^{2}+4}-\frac{2}{(s+3)^{2}+4}\right) .
\end{aligned}
$$

Ehus

$$
y=\frac{1}{4} e^{-t}-\frac{1}{4} e^{-3 t} \cos 2 t+\frac{1}{4} e^{-3 t} \sin 2 t
$$

Exercises 7.2 Inverse Transforms and Transforms of Derivatives
$\therefore 2$. The Laplace transform of the initial-value problem is

$$
s^{2} \mathscr{L}\{y\}-s \cdot 1-3-2[s \mathscr{L}\{y\}-1]+5 \mathscr{L}\{y\}=\left(s^{2}-2 s+5\right) \mathscr{L}\{y\}-s-1=0
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s+1}{s^{2}-2 s+5}=\frac{s-1+2}{(s-1)^{2}+2^{2}}=\frac{s-1}{(s-1)^{2}+2^{2}}+\frac{2}{(s-1)^{2}+2^{2}} .
$$

Thus

$$
y=e^{t} \cos 2 t+e^{t} \sin 2 t
$$

43. (a) Differentiating $f(t)=t e^{a t}$ we get $f^{\prime}(t)=a t e^{a t}+e^{a t}$ so $\mathscr{L}\left\{a t e^{a t}+e^{a t}\right\}=s \mathscr{L}\left\{t e^{a t}\right\}$, where have used $f(0)=0$. Writing the equation as

$$
a \mathscr{L}\left\{t e^{a t}\right\}+\mathscr{L}\left\{e^{a t}\right\}=s \mathscr{L}\left\{t e^{a t}\right\}
$$

and solving for $\mathscr{L}\left\{t e^{a t}\right\}$ we get

$$
\mathscr{L}\left\{t e^{a t}\right\}=\frac{1}{s-a} \mathscr{L}\left\{e^{a t}\right\}=\frac{1}{(s-a)^{2}} .
$$

(b) Starting with $f(t)=t$ sin $k t$ we have

$$
\begin{aligned}
f^{\prime}(t) & =k t \cos k t+\sin k t \\
f^{\prime \prime}(t) & =-k^{2} t \sin k t+2 k \cos k t
\end{aligned}
$$

Then

$$
\mathscr{L}\left\{-k^{2} t \sin t+2 k \cos k t\right\}=s^{2} \mathscr{L}\{t \sin k t\}
$$

where we have used $f(0)=0$ and $f^{\prime}(0)=0$. Writing the above equation as

$$
-k^{2} \mathscr{L}\{t \sin k t\}+2 k \mathscr{L}\{\cos k t\}=s^{2} \mathscr{L}\{t \sin k t\}
$$

and solving for $\mathscr{L}\{t \sin k l\}$ gives

$$
\mathscr{L}\{t \sin k t\}=\frac{2 k}{s^{2}+k^{2}} \mathscr{L}\{\cos k t\}=\frac{2 k}{s^{2}+k^{2}} \frac{s}{s^{2}+k^{2}}=\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}} .
$$

44. Let $f_{1}(t)=1$ and $f_{2}(t)=\left\{\begin{array}{ll}1, & t \geq 0, t \neq 1 \\ 0, & t=1\end{array}\right.$. Then $\mathscr{L}\left\{f_{1}(t)\right\}=\mathscr{L}\left\{f_{2}(t)\right\}=1 / s$, but $f_{1}(t) \neq 1:$
45. For $y^{\prime \prime}-4 y^{\prime}=6 e^{3 t}-3 e^{-t}$ the transfer function is $W(s)=1 /\left(s^{2}-4 s\right)$. The zero-input respon-

$$
y_{0}(t)=\mathscr{L}^{-1}\left\{\frac{s-5}{s^{2}-4 s}\right\}=\mathscr{L}^{-1}\left\{\frac{5}{4} \cdot \frac{1}{s}-\frac{1}{4} \cdot \frac{1}{s-4}\right\}=\frac{5}{4}-\frac{1}{4} c^{4!}
$$

and the zero-state response is

$$
\begin{aligned}
y_{1}(t) & =\mathscr{L}^{-1}\left\{\frac{6}{(s-3)\left(s^{2}-4 s\right)}-\frac{3}{(s+1)\left(s^{2}-4 s\right)}\right\} \\
& =\mathscr{L}^{-1}\left\{\frac{27}{20} \cdot \frac{1}{s-4}-\frac{2}{s-3}+\frac{5}{4} \cdot \frac{1}{s}-\frac{3}{5} \cdot \frac{1}{s+1}\right\} \\
& =\frac{27}{20} e^{4 t}-2 e^{3 t}+\frac{5}{4}-\frac{3}{5} e^{-t}
\end{aligned}
$$

$\therefore j$. From Theorem 7.2.2, if f and f^{\prime} arc continuous and of exponential order, $\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-\vdots$ From Theorem 7.1.3, $\lim _{s \rightarrow \infty} \mathscr{L}\left\{f^{\prime}(t)\right\}=0$ so

$$
\lim _{s \rightarrow \infty}[s F(s)-f(0)]=0 \quad \text { and } \quad \lim _{s \rightarrow \infty} F(s)=f(0)
$$

For $f(t)=\cos k t$,

$$
\lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} s \frac{s}{s^{2}+k^{2}}=1=f(0)
$$

Exercises 7.3

Operational Properties I
$\therefore \mathscr{E}\left\{t e^{10 t}\right\}=\frac{1}{(s-10)^{2}}$
2. $\mathscr{L}\left\{t e^{-6 t}\right\}=\frac{1}{(s+6)^{2}}$
2. $\mathscr{L}\left\{t^{3} e^{-2 t}\right\}=\frac{3!}{(s+2)^{4}}$
$\therefore \mathscr{L}\left\{t^{10} e^{-7 t}\right\}=\frac{10!}{(s+7)^{1.1}}$
․ $\mathscr{L}\left\{t\left(e^{t}+e^{2 t}\right)^{2}\right\}=\mathscr{L}\left\{t e^{2 t}+2 t e^{3 t}+t e^{4 t}\right\}=\frac{1}{(s-2)^{2}}+\frac{2}{(s-3)^{2}}+\frac{1}{(s-4)^{2}}$
$\therefore \mathscr{L}\left\{e^{2 t}(t-1)^{2}\right\}=\mathscr{L}\left\{t^{2} e^{2 t}-2 t e^{2 t}+e^{2 t}\right\}=\frac{2}{(s-2)^{3}}-\frac{2}{(s-2)^{2}}+\frac{1}{s-2}$

- $\mathcal{L}\left\{e^{t} \sin 3 t\right\}=\frac{3}{(s-1)^{2}+9}$
$\mathscr{L}\left\{e^{-2 t} \cos 4 t\right\}=\frac{s+2}{(s+2)^{2}+16}$

Exercises 7.3 Operational Properties I

9. $\mathscr{\perp}\left\{\left(1-e^{t}+3 e^{-4 t}\right) \cos 5 t\right\}=\mathscr{L}\left\{\cos 5 t-e^{t} \cos 5 t+3 e^{-4 t} \cos 5 t\right\}$

$$
=\frac{s}{s^{2}+25}-\frac{s-1}{(s-1)^{2}+25}+\frac{3(s+4)}{(s+4)^{2}+25}
$$

10. $\mathcal{L}\left\{e^{3 l}\left(9-4 t+10 \sin \frac{t}{2}\right)\right\}=\mathscr{L}\left\{9 c^{3 t}-4 t e^{3 t}+10 e^{3 t} \sin \frac{t}{2}\right\}=\frac{9}{s-3}-\frac{4}{(s-3)^{2}}+\frac{5}{(s-3)^{2}+1 /:}$
11. $\mathscr{E}^{-1}\left\{\frac{1}{(s+2)^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s+2)^{3}}\right\}=\frac{1}{2} t^{2} e^{-2 t}$
$\therefore 2 . \mathbb{E}^{-i}\left\{\frac{1}{(s-1)^{4}}\right\}=\frac{1}{6} \mathscr{L}^{-1}\left\{\frac{3!}{(s-1)^{4}}\right\}=\frac{1}{6} t^{3} e^{t}$
12. $\mathscr{L}^{-:}\left\{\frac{1}{s^{2}-6 s+10}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{(s-3)^{2}+1^{2}}\right\}=e^{3 t} \sin t$
13. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+2 s+5}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}\right\}=\frac{1}{2} e^{-t} \sin 2 t$
14. $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+4 s+5}\right\}=\mathscr{L}^{-1}\left\{\frac{s+2}{(s+2)^{2}+1^{2}}-2 \frac{1}{(s+2)^{2}+1^{2}}\right\}=e^{-2 t} \cos t-2 e^{-2 t} \sin t$
15. $\mathscr{L}^{-1}\left\{\frac{2 s+5}{s^{2}+6 s+34}\right\}=\mathscr{L}^{-1}\left\{2 \frac{(s+3)}{(s+3)^{2}+5^{2}}-\frac{1}{5} \frac{5}{(s+3)^{2}+5^{2}}\right\}=2 e^{-3 t} \cos 5 t-\frac{1}{5} e^{-3 t} \sin 5 t$
16. $\mathscr{L}^{-1}\left\{\frac{s}{(s+1)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{s+1-1}{(s+1)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right\}=e^{-t}-t e^{-t}$
17. $\mathscr{L}^{-1}\left\{\frac{5 s}{(s-2)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{5(s-2)+10}{(s-2)^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{5}{s-2}+\frac{10}{(s-2)^{2}}\right\}=5 e^{2 t}+10 t e^{2 t}$
18. $\mathscr{L}^{-1}\left\{\frac{2 s-1}{s^{2}(s+1)^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{5}{s}-\frac{1}{s^{2}}-\frac{5}{s+1}-\frac{4}{(s+1)^{2}}-\frac{3}{2} \frac{2}{(s+1)^{3}}\right\}=5-t-5 e^{-t}-4 t e^{-t}-\frac{3}{2}-$
19. $\mathscr{L}^{-1}\left\{\frac{(s+1)^{2}}{(s+2)^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{(s+2)^{2}}-\frac{2}{(s+2)^{3}}+\frac{1}{6} \frac{3!}{(s+2)^{4}}\right\}=t e^{-2 t}-t^{2} e^{-2 t}+\frac{1}{6} t^{3} e^{-2 t}$
20. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+4 \mathscr{L}\{y\}=\frac{1}{s+4} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{(s+4)^{2}}+\frac{2}{s+4} .
$$

Thus

$$
y=t e^{-4 t}+2 e^{-4 t}
$$

22. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-\mathscr{L}\{y\}=\frac{1}{s}+\frac{1}{(s-1)^{2}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s(s-1)}+\frac{1}{(s-1)^{3}}=-\frac{1}{s}+\frac{1}{s-1}+\frac{1}{(s-1)^{3}} .
$$

Thus

$$
y=-1+e^{t}+\frac{1}{2} t^{2} e^{t}
$$

23. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+2[s \mathscr{L}\{y\}-y(0)]+\mathscr{L}\{y\}=0 .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s+3}{(s+1)^{2}}=\frac{1}{s+1}+\frac{2}{(s+1)^{2}}
$$

Thus

$$
y=e^{-t}+2 t e^{-t}
$$

24. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]+4 \mathscr{L}\{y\}=\frac{6}{(s-2)^{4}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain $\mathscr{L}\{y\}=\frac{1}{20} \frac{5!}{(s-2)^{6}}$. Thus, $y=\frac{1}{20} t^{5} e^{2 t}$.
-5. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-6[s \mathscr{L}\{y\}-y(0)]+9 \mathscr{L}\{y\}=\frac{1}{s^{2}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1+s^{2}}{s^{2}(s-3)^{2}}=\frac{2}{27} \frac{1}{s}+\frac{1}{9} \frac{1}{s^{2}}-\frac{2}{27} \frac{1}{s-3}+\frac{10}{9} \frac{1}{(s-3)^{2}} .
$$

Thus

$$
y=\frac{2}{27}+\frac{1}{9} t-\frac{2}{27} e^{3 t}+\frac{10}{9} t e^{3 t}
$$

-3 . The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-4[s \mathscr{L}\{y\}-y(0)]+4 \mathscr{L}\{y\}=\frac{6}{s^{4}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s^{5}-4 s^{4}+6}{s^{4}(s-2)^{2}}=\frac{3}{4} \frac{1}{s}+\frac{9}{8} \frac{1}{s^{2}}+\frac{3}{4} \frac{2}{s^{3}}+\frac{1}{4} \frac{3!}{s^{4}}+\frac{1}{4} \frac{1}{s-2}-\frac{13}{8} \frac{1}{(s-2)^{2}}
$$

Exercises 7.3 Operational Properties I

Thus

$$
y=\frac{3}{4}+\frac{9}{8} t+\frac{3}{4} t^{2}+\frac{1}{4} t^{3}+\frac{1}{4} e^{2 t}-\frac{13}{8} t e^{2 t}
$$

$2-$. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-6[s \mathscr{L}\{y\}-y(0)]+13 \mathscr{L}\{y\}=0 .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=-\frac{3}{s^{2}-6 s+13}=-\frac{3}{2} \frac{2}{(s-3)^{2}+2^{2}} .
$$

Thus

$$
y=-\frac{3}{2} e^{3 t} \sin 2 t
$$

28. The Laplace transform of the differential equation is

$$
2\left[s^{2} \mathscr{L}\{y\}-s y(0)\right]+20[s \mathscr{L}\{y\}-y(0)]+\tilde{\jmath} 1 \mathscr{L}\{y\}=0
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{4 s+40}{2 s^{2}+20 s+51}=\frac{2 s+20}{(s+5)^{2}+1 / 2}=\frac{2(s+5)}{(s+5)^{2}+1 / 2}+\frac{10}{(s+5)^{2}+1 / 2} .
$$

Thus

$$
y=2 e^{-5 t} \cos (t / \sqrt{2})+10 \sqrt{2} e^{-5 t} \sin (t / \sqrt{2})
$$

29. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-[s \mathscr{L}\{y\}-y(0)]=\frac{s-1}{(s-1)^{2}+1} .
$$

Solving for $\mathscr{L}:\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s\left(s^{2}-2 s+2\right)}=\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{s-1}{(s-1)^{2}}+1+\frac{1}{2} \frac{1}{(s-1)^{2}+1} .
$$

Thus

$$
y=\frac{1}{2}-\frac{1}{2} e^{t} \cos t+\frac{1}{2} e^{t} \sin t
$$

30. The Laplace transform of the differential cquation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-2[s \mathscr{L}\{y\}-y(0)]+\check{5} \mathscr{L}\{y\}=\frac{1}{s}+\frac{1}{s^{2}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{4 s^{2}+s+1}{s^{2}\left(s^{2}-2 s+5\right)}=\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^{2}}+\frac{-7 s / 25-109 / 25}{s^{2}-2 s+5} \\
& =\frac{7}{25} \frac{1}{s}+\frac{1}{5} \frac{1}{s^{2}}-\frac{7}{25} \frac{s-1}{(s-1)^{2}+2^{2}}+\frac{51}{25} \frac{2}{(s-1)^{2}+2^{2}} .
\end{aligned}
$$

Thus

$$
y=\frac{7}{25}+\frac{1}{5} t-\frac{\overline{1}}{25} t^{2}-2
$$

31. Taking the Laplace transform of both sides of the differentiai equation an ane obtain

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime \prime}\right\}+\mathscr{L}\left\{2 y^{\prime}\right\}+\mathscr{L}\{y\} & =0 \\
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+2 s \mathscr{L}\{y\}-2 y(0)+\mathscr{L}\{y\} & =0 \\
s^{2} \mathscr{L}\{y\}-c s-2+2 s \mathscr{L}\{y\}-2 c+\mathscr{L}\{y\} & =0 \\
\left(s^{2}+2 s+1\right) \mathscr{L}\{y\} & =c s+2 c+2 \\
\mathscr{L}\{y\} & =\frac{c s}{(s+1)^{2}}+\frac{2 c-2}{(s-1)^{2}} \\
& =c \frac{s+1-1}{(s+1)^{2}}+\frac{2 c-2}{(s+1} \\
& =\frac{c}{s+1}+\frac{c+2}{(s+1)^{2}} .
\end{aligned}
$$

Therefore,

$$
y(t)=c \mathscr{E}^{-1}\left\{\frac{1}{s+1}\right\}+(c+2) \mathscr{L}^{-1}\left\{\frac{1}{(s+1)^{2}}\right\}=c e^{-t}+(c+2) t e^{-t}
$$

To find c we let $y(1)=2$. Thon $2=c e^{-1}+(c+2) e^{-1}=2(c+1) e^{-1}$ and $c=e-1$. Thus

$$
y(t)=(e-1) e^{-t}+(e \div 1) t e^{-t}
$$

2. Taking the Laplace transform of both sides of the differential equation and letting $c=$ obtain

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime \prime}\right\}+\mathscr{L}\left\{8 y^{\prime}\right\}+\mathscr{L}\{20 y\} & =0 \\
s^{2} \mathscr{L}\{y\}-y^{\prime}(0)+8 s \mathscr{L}\{y\}+20 \mathscr{L}\{y\} & =0 \\
s^{2} \mathscr{L}\{y\}-c+8 s \mathscr{L}\{y\}+20 \mathscr{L}\{y\} & =0 \\
\left(s^{2}+8 s+20\right) \mathscr{L}\{y\} & =c \\
\mathscr{L}\{y\} & =\frac{c}{s^{2}+8 s+20}=\frac{c}{(s+4)^{2}+4} .
\end{aligned}
$$

Therefore,

$$
y(t)=\mathscr{L}^{-1}\left\{\frac{c}{(s+4)^{2}+4}\right\}=\frac{c}{2} e^{-4 t} \sin 2 t=c_{j} e^{-4 t} \sin 2 t .
$$

Exercises 7.3 Operational Properties I

To find c we let $y^{\prime}(\pi)=0$. Then $0=y^{\prime}(\pi)=c e^{-4 \pi}$ and $c=0$. Thus, $y(t)=0$. (Since differential equation is homogeneous and both boundary conditions are 0, we can see immedia ${ }^{-}$ that $y(t)=0$ is a solution. We have shown that it is the only solution.)
33. Recall from Section 5.1 that $m x^{\prime \prime}=-k x-\beta x^{\prime}$. Now $m=W / g=4 / 32=\frac{1}{8}$ slug, and $4=2$; that $k=2 \mathrm{lb} / \mathrm{ft}$. Thus, the differential equation is $x^{\prime \prime}+7 x^{\prime}+16 x=0$. The initial condition: $x(0)=-3 / 2$ and $x^{\prime}(0)=0$. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{x\}+\frac{3}{2} s+7 s \mathscr{L}\{x\}+\frac{21}{2}+16 \mathscr{L}\{x\}=0
$$

Solving for $\mathscr{L}\{x\}$ we obtain

$$
\mathscr{L}\{x\}=\frac{-3 s / 2-21 / 2}{s^{2}+7 s+16}=-\frac{3}{2} \frac{s+7 / 2}{(s+7 / 2)^{2}+(\sqrt{15} / 2)^{2}}-\frac{7 \sqrt{15}}{10} \frac{\sqrt{15} / 2}{(s+7 / 2)^{2}+(\sqrt{15} / 2)^{2}} .
$$

Thus

$$
x=-\frac{3}{2} e^{-7 t / 2} \cos \frac{\sqrt{15}}{2} t-\frac{7 \sqrt{15}}{10} e^{-7 t / 2} \sin \frac{\sqrt{15}}{2} t .
$$

34. The differential equation is

$$
\frac{d^{2} q}{d t^{2}}+20 \frac{d q}{d t}+200 q=150, \quad q(0)=q^{\prime}(0)=0
$$

The Laplace transform of this equation is

$$
s^{2} \mathscr{L}\{q\}+20 s \mathscr{L}\{q\}+200 \mathscr{L}\{q\}=\frac{150}{s}
$$

Solving for $\mathscr{L}\{q\}$ we obtain

$$
\mathscr{L}\{q\}=\frac{150}{s\left(s^{2}+20 s+200\right)}=\frac{3}{4} \frac{1}{s}-\frac{3}{4} \frac{s+10}{(s+10)^{2}+10^{2}}-\frac{3}{4} \frac{10}{(s+10)^{2} \div 10^{2}} .
$$

Thus

$$
q(t)=\frac{3}{4}-\frac{3}{4} e^{-10 t} \cos 10 t-\frac{3}{4} e^{-10 t} \sin 10 t
$$

and

$$
i(t)=q^{\prime}(l)=15 e^{-10 t} \sin 10 t
$$

35. The differential equation is

$$
\frac{d^{2} q}{d t^{2}}+2 \lambda \frac{d q}{d t}+\omega^{2} q=\frac{E_{0}}{L}, \quad q(0)=q^{\prime}(0)=0
$$

The Laplace transform of this equation is

$$
s^{2} \mathscr{L}\{q\}+2 \lambda s \mathscr{L}\{q\}+\omega^{2} \mathscr{L}\{q\}=\frac{E_{0}}{L} \frac{1}{s}
$$

or

$$
\left(s^{2}+2 \lambda s+\omega^{2}\right) \mathscr{L}\{q\}=\frac{E_{0}}{L} \frac{1}{s} .
$$

Solving for $\mathscr{L}\{q\}$ and using partial fractions we obtain

$$
\mathscr{L}\{q\}=\frac{E_{0}}{L}\left(\frac{1 / \omega^{2}}{s}-\frac{\left(1 / \omega^{2}\right) s+2 \lambda / \omega^{2}}{s^{2}+2 \lambda s+\omega^{2}}\right)=\frac{E_{0}}{L \omega^{2}}\left(\frac{1}{s}-\frac{s+2 \lambda}{s^{2}+2 \lambda s+\omega^{2}}\right)
$$

For $\lambda>\omega$ we write $s^{2}+2 \lambda s+\omega^{2}=(s+\lambda)^{2}-\left(\lambda^{2}-\omega^{2}\right)$, so (recalling that $\omega^{2}=1 / L C$.

$$
\mathscr{L}\{q\}=E_{0} C\left(\frac{1}{s}-\frac{s+\lambda}{(s+\lambda)^{2}-\left(\lambda^{2}-\omega^{2}\right)}-\frac{\lambda}{(s+\lambda)^{2}-\left(\lambda^{2}-\omega^{2}\right)}\right)
$$

Thus for $\lambda>\omega$:

$$
q(t)=E_{0} C\left[1-e^{-\lambda t}\left(\cosh \sqrt{\lambda^{2}-\omega^{2}} t-\frac{\lambda}{\sqrt{\lambda^{2}-\omega^{2}}} \sinh \sqrt{\lambda^{2}-\omega^{2}} t\right)\right]
$$

For $\lambda<\omega$ we write $s^{2}+2 \lambda s+\omega^{2}=(s+\lambda)^{2}+\left(\omega^{2}-\lambda^{2}\right)$, so

$$
\mathscr{L}\{q\}=E_{0} C\left(\frac{1}{s}-\frac{s+\lambda}{(s+\lambda)^{2}+\left(\omega^{2}-\lambda^{2}\right)}-\frac{\lambda}{(s+\lambda)^{2}+\left(\omega^{2}-\lambda^{2}\right)}\right)
$$

Thus for $\lambda<\omega$,

$$
q(t)=E_{0} C\left[1-e^{-\lambda t}\left(\cos \sqrt{\omega^{2}-\lambda^{2}} t-\frac{\lambda}{\sqrt{\omega^{2}-\lambda^{2}}} \sin \sqrt{\omega^{2}-\lambda^{2}} t\right)\right]
$$

For $\lambda=\omega, s^{2}+2 \lambda+\omega^{2}=(s+\lambda)^{2}$ and

$$
\mathscr{L}\{q\}=\frac{E_{0}}{L} \frac{1}{s(s+\lambda)^{2}}=\frac{E_{0}}{L}\left(\frac{1 / \lambda^{2}}{s}-\frac{1 / \lambda^{2}}{s+\lambda}-\frac{1 / \lambda}{(s+\lambda)^{2}}\right)=\frac{E_{0}}{L \lambda^{2}}\left(\frac{1}{s}-\frac{1}{s+\lambda}-\frac{\lambda}{(s+\lambda \cdot}\right.
$$

Thus for $\lambda=\omega$,

$$
q(t)=E_{0} C\left(1-e^{-\lambda t}-\lambda t e^{-\lambda t}\right)
$$

I. The differential equation is

$$
R \frac{d q}{d t}+\frac{1}{C} q=E_{0} e^{-k t}, \quad q(0)=0
$$

The Laplace transform of this equation is

$$
R s \mathscr{L}\{q\}+\frac{1}{C} \mathscr{L}\{q\}=E_{0} \frac{1}{s+k}
$$

Solving for $\mathscr{L}\{q\}$ we obtain

$$
\mathscr{L}\{q\}=\frac{E_{0} C}{(s+k)(R C s+1)}=\frac{E_{0} / R}{(s+k)(s+1 / R C)}
$$

When $1 / R C \neq k$ we have by partial fractions

$$
\mathscr{L}\{q\}=\frac{E_{0}}{R}\left(\frac{1 /(1 / R C-k)}{s+k}-\frac{1 /(1 / R C-k)}{s+1 / R C}\right)=\frac{E_{0}}{R} \frac{1}{1 / R C-k}\left(\frac{1}{s+k}-\frac{1}{s+1 / R C}\right)
$$

Thus

$$
q(t)=\frac{E_{0} C}{1-k I R C}\left(e^{-k t}-e^{-t / R C}\right)
$$

When $1 / R C=k$ we have

$$
\mathscr{L}\{q\}=\frac{E_{0}}{R} \frac{1}{(s+k)^{2}} .
$$

Thus

$$
q(t)=\frac{E_{0}}{R} t e^{-k t}=\frac{E_{0}}{R} t e^{-l / R C}
$$

37. $\mathscr{L}\{(t-1) \mathscr{U}(t-1)\}=\frac{e^{-s}}{s^{2}}$
38. $\mathscr{L}\left\{e^{2-t} \cup(t-2)\right\}=\mathscr{L}\left\{e^{-(t-2)} \mathscr{U}(t-2)\right\}=\frac{e^{-2 s}}{s+1}$
39. $\mathscr{L}\{t \mathscr{U}(t-2)\}=\mathscr{L}\{(t-2) \mathscr{U}(t-2)+2 \mathscr{U}(t-2)\}=\frac{e^{-2 s}}{s^{2}}+\frac{2 e^{-2 s}}{s}$

Alternativcly, (16) of this section in the text could be used:

$$
\mathscr{L}\{t \cup(t-2)\}=e^{-2 s} \mathscr{L}\{t+2\}=e^{-2 s}\left(\frac{1}{s^{2}}+\frac{2}{s}\right)
$$

40. $\mathscr{L}\{(3 t+1) \mathscr{W}(t-1)\}=3 \mathscr{L}\{(t-1) \mathscr{U}(t-1)\}+4 \mathscr{L}\{\mathscr{V}(t-1)\}=\frac{3 e^{-s}}{s^{2}}+\frac{4 e^{-s}}{s}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{(3 t+1) \mathscr{V}(t-1)\}=e^{-s} \mathscr{L}\{3 t+4\}=e^{-s}\left(\frac{3}{s^{2}} \perp \frac{4}{s}\right) .
$$

41. $\mathscr{L}\left\{\cos 2 t^{\mathscr{U}}(t-\pi)\right\}=\mathscr{L}\{\cos 2(t-\pi) \mathscr{U}(t-\pi)\}=\frac{s e^{-\pi s}}{s^{2}+4}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\{\cos 2 t \mathscr{q}(t-\pi)\}=e^{-\pi s} \mathscr{L}\{\cos 2(t+\pi)\}=e^{-\pi s} \mathscr{L}\{\cos 2 t\}=e^{-\pi s} \frac{s}{s^{2}+4}
$$

42. $\mathscr{L}\left\{\sin t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=\mathscr{L}\left\{\cos \left(t-\frac{\pi}{2}\right) \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\}=\frac{s e^{-\pi s / 2}}{s^{2}+1}$

Alternatively, (16) of this section in the text could be used:

$$
\mathscr{L}\left\{\sin t \text { थ }\left(t-\frac{\pi}{2}\right)\right\}=e^{-\pi s / 2} \mathscr{L}\left\{\sin \left(t+\frac{\pi}{2}\right)\right\}=e^{-\pi s / 2} \mathscr{L}\{\cos t\}=e^{-\pi s / 2} \frac{s}{s^{2}+1}
$$

43. $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{2} \cdot \frac{2}{s^{3}} e^{-2 s}\right\}=\frac{1}{2}(t-2)^{2}$ U $(t-2)$
44. $\mathscr{L}^{-1}\left\{\frac{\left(1+e^{-2 s}\right)^{2}}{s+2}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s+2}+\frac{2 e^{-2 s}}{s+2}+\frac{e^{-4 s}}{s+2}\right\}=e^{-2 t}+2 e^{-2(l-2)} \mathscr{q}(t-2)+e^{-2(t-4) \cdot t}$
45. $\mathscr{L}^{-1}\left\{\frac{e^{-\pi s}}{s^{2}+1}\right\}=\sin (t-\pi) \mathscr{U}(t-\pi)=-\sin t \mathscr{U}(t-\pi)$

46． $\mathscr{L}^{-1}\left\{\frac{s e^{-\pi s / 2}}{s^{2}+4}\right\}=\cos 2\left(t-\frac{\pi}{2}\right) थ\left(t-\frac{\pi}{2}\right)=-\cos 2 t थ\left(t-\frac{\pi}{2}\right)$
47． $\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s(s+1)}\right\}=\mathscr{L}^{-1}\left\{\frac{e^{-s}}{s}-\frac{e^{-s}}{s+1}\right\}=\mathscr{U}(t-1)-e^{-(t-1)} \mathscr{U}(t-1)$
48． $\mathscr{L}^{-1}\left\{\frac{e^{-2 s}}{s^{2}(s-1)}\right\}=\mathscr{L}^{-1}\left\{-\frac{e^{-2 s}}{s}-\frac{e^{-2 s}}{s^{2}}+\frac{e^{-2 s}}{s-1}\right\}=-\mathscr{U}(t-2)-(t-2) \mathscr{U}(t-2)+e^{t-2} \mathscr{U}(t-2)$
49．（c）
50．（e）
51．（f）
52．（b）
53．（a）
54．（d）
55． $\mathscr{L}\{2-4 \vartheta(t-3)\}=\frac{2}{s}-\frac{4}{s} e^{-3 s}$
56． $\mathscr{L}\{1-\mathscr{U}(t-4)+\mathscr{U}(t-5)\}=\frac{1}{s}-\frac{e^{-4 s}}{s}+\frac{e^{-5 s}}{s}$
57． $\mathscr{L}\left\{t^{2} ひ(t-1)\right\}=\mathscr{L}\left\{\left[(t-1)^{2}+2 t-1\right] ひ(t-1)\right\}=\mathscr{L}\left\{\left[(t-1)^{2}+2(t-1)+1\right] ひ(t-1)\right\}$

$$
=\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right) e^{-s}
$$

Alternatively，by（16）of this section in the text，

$$
\mathscr{L}\left\{t^{2} \mathscr{U}(t-1)\right\}=e^{-s} \mathscr{L}\left\{t^{2}+2 t+1\right\}=e^{-s}\left(\frac{2}{s^{3}}+\frac{2}{s^{2}}+\frac{1}{s}\right) .
$$

55． $\mathscr{L}\left\{\sin t \mathscr{U}\left(t-\frac{3 \pi}{2}\right)\right\}=\mathscr{L}\left\{-\cos \left(t-\frac{3 \pi}{2}\right) \mathscr{U}\left(t-\frac{3 \pi}{2}\right)\right\}=-\frac{s e^{-3 \pi s / 2}}{s^{2}+1}$
39． $\mathscr{L}\{t-t \mathscr{U}(t-2)\}=\mathscr{L}\{t-(t-2) \psi(t-2)-2 \mathscr{U}(t-2)\}=\frac{1}{s^{2}}-\frac{e^{-2 s}}{s^{2}}-\frac{2 e^{-2 s}}{s}$
j0． $\mathscr{L}\{\sin t-\sin t \mathscr{U}(t-2 \pi)\}=\mathscr{L}\{\sin t-\sin (t-2 \pi) \mathscr{U}(t-2 \pi)\}=\frac{1}{s^{2}+1}-\frac{e^{-2 \pi s}}{s^{2}+1}$
31． $\mathscr{L}\{f(t)\}=\mathscr{L}\{\mathscr{U}(t-a)-\mathscr{U}(t-b)\}=\frac{e^{-a s}}{s}-\frac{e^{-b s}}{s}$
三2． $\mathscr{L}\{f(t)\}=\mathscr{L}\{\mathscr{U}(t-1)+\mathscr{U}(t-2)+\mathscr{U}(t-3)+\cdots\}=\frac{e^{-s}}{s}+\frac{e^{-2 s}}{s}+\frac{e^{-3 s}}{s}+\cdots=\frac{1}{s} \frac{e^{-s}}{1-e^{-s}}$
33．The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+\mathscr{L}\{y\}=\frac{5}{s} e^{-s} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{5 e^{-s}}{s(s+1)}=5 e^{-s}\left[\frac{1}{s}-\frac{1}{s+1}\right] .
$$

Exercises 7.3 Operational Properties I

Thus

$$
y=5 y(t-1)-\bar{y} e^{-(t-1)} y(t-1)
$$

j4. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+\mathscr{L}\{y\}=\frac{1}{s}-\frac{2}{s} e^{-s} .
$$

Gring for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s(s+1)}-\frac{2 e^{-s}}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}-2 e^{-s}\left[\frac{1}{s}-\frac{1}{s+1}\right] .
$$

Thus

$$
y=1-e^{-t}-2\left[1-e^{-(t-1)}\right] \cdot \vartheta(t-1) .
$$

6.5. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-y(0)+2 \mathscr{L}\{y\}=\frac{1}{s^{2}}-e^{-s} \frac{s+1}{s^{2}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}(s+2)}-e^{-s} \frac{s+1}{s^{2}(s+2)}=-\frac{1}{4} \frac{1}{s}+\frac{1}{2} \frac{1}{s^{2}}+\frac{1}{4} \frac{1}{s+2}-e^{-s}\left[\frac{1}{4} \frac{1}{s}+\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{4} \frac{1}{s+2}\right]
$$

Thus

$$
y=-\frac{1}{4}+\frac{1}{2} t+\frac{1}{4} e^{-2 t}-\left[\frac{1}{4}+\frac{1}{2}(t-1)-\frac{1}{4} e^{-2(t-1)}\right] \mathscr{q}(t-1) .
$$

bit. Tine Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+4 \mathscr{L}\{y\}=\frac{1}{s}-\frac{e^{-s}}{s}
$$

solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{1-s}{s\left(s^{2}+4\right)}-e^{-s} \frac{1}{s\left(s^{2}+4\right)}=\frac{1}{4} \frac{1}{s}-\frac{1}{4} \frac{s}{s^{2}+4}-\frac{1}{2} \frac{2}{s^{2}+4}-e^{-s}\left[\frac{1}{4} \frac{1}{s}-\frac{1}{4} \frac{s}{s^{2}+4}\right] .
$$

Thus

$$
y=\frac{1}{4}-\frac{1}{4} \cos 2 t-\frac{1}{2} \sin 2 t-\left[\frac{1}{4}-\frac{1}{4} \cos 2(t-1)\right] \mathscr{Y}(t-1) .
$$

ET. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+4 \mathscr{L}\{y\}=e^{-2 \pi s} \frac{1}{s^{2}+1}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{E}\{y\}=\frac{s}{s^{2}+4}+e^{-2 \pi s}\left[\frac{1}{3} \frac{1}{s^{2}+1}-\frac{1}{6} \frac{2}{s^{2}+4}\right] .
$$

Thus

$$
y=\cos 2 t+\left[\frac{1}{3} \sin (t-2 \pi)-\frac{1}{6} \sin 2(t-2 \pi)\right] \Downarrow(t-2 \pi) .
$$

58. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)-\bar{j}[s \mathscr{L}\{y\}-y(0)]+6 \mathscr{L}\{y\}=\frac{e^{-s}}{s}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =e^{-s} \frac{1}{s(s-2)(s-3)}+\frac{1}{(s-2)(s-3)} \\
& =e^{-s}\left[\frac{1}{6} \frac{1}{s}-\frac{1}{2} \frac{1}{s-2}+\frac{1}{3} \frac{1}{s-3}\right]-\frac{1}{s-2}+\frac{1}{s-3} .
\end{aligned}
$$

Thus

$$
y=\left[\frac{1}{6}-\frac{1}{2} e^{2(t-1)}+\frac{1}{3} e^{3(t-1)}\right] \cdot \ddot{U}(t-1)-e^{2 t}+e^{3 t}
$$

ㅋ. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+\mathscr{L}\{y\}=\frac{e^{-\pi s}}{s}-\frac{e^{-2 \pi s}}{s}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=e^{-\pi s}\left[\frac{1}{s}-\frac{s}{s^{2}+1}\right]-e^{-2 \pi s}\left[\frac{1}{s}-\frac{s}{s^{2}+1}\right]+\frac{1}{s^{2}+1} .
$$

Thus

$$
y=[1-\cos (t-\pi)]^{\circ}(t-\pi)-[1-\cos (t-2 \pi)]^{4}(t-2 \pi)+\sin t
$$

$-\quad$ The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+4[s \mathscr{L}\{y\}-y(0)] \div 3 \mathscr{L}\{y\}=\frac{1}{s}-\frac{e^{-2 s}}{s}-\frac{e^{-1 s}}{s}+\frac{e^{-6 s}}{s}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{y\}= & \frac{1}{3} \frac{1}{s}-\frac{1}{2} \frac{1}{s+1}+\frac{1}{6} \frac{1}{s+3}-e^{-2 s}\left[\frac{1}{3} \frac{1}{s}-\frac{1}{2} \frac{1}{s-1}+\frac{1}{6} \frac{1}{s+3}\right] \\
& -e^{-4 s}\left[\frac{1}{3} \frac{1}{s}-\frac{1}{2} \frac{1}{s+1}+\frac{1}{6} \frac{1}{s+3}\right]+e^{-6 s}\left[\frac{1}{3} \frac{1}{s}-\frac{1}{2} \frac{1}{s+1}+\frac{1}{6} \frac{1}{s+3}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
y=\frac{1}{3} & -\frac{1}{2} e^{-t}+\frac{1}{6} e^{-3 t}-\left[\frac{1}{3}-\frac{1}{2} e^{-(l-2)}+\frac{1}{6} e^{-3(t-2)}\right] \Downarrow(t-2) \\
& -\left[\frac{1}{3}-\frac{1}{2} e^{-(t-4)}+\frac{1}{6} e^{-3(l-4)}\right] \cdot U(t-4)+\left[\frac{1}{3}-\frac{1}{2} e^{-(t-6)}+\frac{1}{6} e^{-3(t-6)}\right] \Downarrow(t-6) .
\end{aligned}
$$

\because Ecall from Section 5.1 that $m x^{\prime \prime}=-k x+f(t)$. Now $m=W / g=32 / 32=1$ slug, and $32=\because$
\therefore that $k=16 \mathrm{lb} / \mathrm{ft}$. Thus, the differential equation is $x^{\prime \prime}+16 x=f(t)$. The initial conditions $:=$ i) $=0, x^{\prime}(0)=0$. Also, since

$$
f(t)= \begin{cases}20 t, & 0 \leq t<5 \\ 0, & t \geq 5\end{cases}
$$

Exercises 7.3 Operational Properties I
and $20 t=20(t-5)+100$ we can write

$$
f(t)=20 t-20 t \%(t-5)=20 t-20(t-5) \%(t-5)-100 \psi(t-5) .
$$

The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{x\}+16 \mathscr{L}\{x\}=\frac{20}{s^{2}}-\frac{20}{s^{2}} e^{-5 s}-\frac{100}{s} e^{-5 s}
$$

Solving for $\mathscr{L}\{x\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{x\} & =\frac{20}{s^{2}\left(s^{2}+16\right)}-\frac{20}{s^{2}\left(s^{2}+16\right)} e^{-\bar{s} s}-\frac{100}{s\left(s^{2}+16\right)} e^{-\bar{s} s} \\
& =\left(\frac{5}{4} \cdot \frac{1}{s^{2}}-\frac{5}{16} \cdot \frac{4}{s^{2}+16}\right)\left(1-e^{-5 s}\right)-\left(\frac{25}{4} \cdot \frac{1}{s}-\frac{25}{4} \cdot \frac{s}{s^{2}+16}\right) e^{-5 s} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
x(t) & =\frac{5}{4} t-\frac{5}{16} \sin 4 t-\left[\frac{5}{4}(t-5)-\frac{5}{16} \sin 4(t-5)\right] U(t-5)-\left[\frac{25}{4}-\frac{25}{4} \cos 4(t-5)\right] \vartheta(t-5 \\
& =\frac{5}{4} t-\frac{5}{16} \sin 4 t-\frac{5}{4} t \cdot(t-5)+\frac{5}{16} \sin 4(t-5) \cdot(t-5)+\frac{25}{4} \cos 4(t-5) \psi(t-5)
\end{aligned}
$$

72. Recall from Section 5.1 that $m x^{\prime \prime}=-k x+f(t)$. Now $m=W / g=32 / 32=1$ slug, and $32=$. so that $k=16 \mathrm{lb} / \mathrm{ft}$. Thus, the differential cquation is $x^{\prime \prime}+16 x=f(t)$. The initial conditions $x(0)=0, x^{\prime}(0)=0$. Also, since

$$
f(t)= \begin{cases}\sin t, & 0 \leq t<2 \pi \\ 0, & t \geq 2 \pi\end{cases}
$$

and $\sin t=\sin (t-2 \pi)$ we can write

$$
f(t)=\sin t-\sin (t-2 \pi) \cdot(t-2 \pi) .
$$

The Laplace transform of the differential cquation is

$$
s^{2} \mathscr{L}\{x\}+16 \mathscr{L}\{x\}=\frac{1}{s^{2}+1}-\frac{1}{s^{2}+1} e^{-2 \pi s} .
$$

Solving for $\mathscr{L}\{x\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{x\} & =\frac{1}{\left(s^{2}+16\right)\left(s^{2}+1\right)}-\frac{1}{\left(s^{2}+16\right)\left(s^{2}+1\right)} e^{-2 \pi s} \\
& =\frac{-1 / 15}{s^{2}+16}+\frac{1 / 15}{s^{2}+1}-\left[\frac{-1 / 15}{s^{2}+16}+\frac{1 / 15}{s^{2}+1}\right] e^{-2 \pi s} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
x(t) & =-\frac{1}{60} \sin 4 t+\frac{1}{15} \sin t+\frac{1}{60} \sin 4(t-2 \pi) थ(t-2 \pi)-\frac{1}{15} \sin (t-2 \pi) \mathscr{U}(t-2 \pi) \\
& = \begin{cases}-\frac{1}{60} \sin 4 t+\frac{1}{15} \sin t, & 0 \leq t<2 \pi \\
0, & t \geq 2 \pi .\end{cases}
\end{aligned}
$$

-3. The differential equation is

$$
2.5 \frac{d q}{d t}+12.5 q=5 \vartheta(t-3) .
$$

The Laplace transform of this equation is

$$
s \mathscr{L}\{q\}+5 \mathscr{L}\{q\}=\frac{2}{s} e^{-3 s} .
$$

Solving for $\mathscr{L}\{q\}$ we obtain

$$
\mathscr{L}\{q\}=\frac{2}{s(s+5)} e^{-3 s}=\left(\frac{2}{5} \cdot \frac{1}{s}-\frac{2}{5} \cdot \frac{1}{s+5}\right) e^{-3 s}
$$

Thus

$$
q(t)=\frac{2}{5} \psi(t-3)-\frac{2}{5} c^{-5(t-3)} u(t-3)
$$

-4. The differential equation is

$$
10 \frac{d q}{d t}+10 q=30 e^{l}-30 e^{t} थ(t-1.5)
$$

The Laplace transform of this equation is

$$
s \mathscr{L}\{q\}-q_{0}+\mathscr{L}\{q\}=\frac{3}{s-1}-\frac{3 e^{1.5}}{s-1.5} e^{-1.5 s}
$$

Solving for $\mathscr{L}\{q\}$ we obtain

$$
\mathscr{L}\{q\}=\left(q_{0}-\frac{3}{2}\right) \cdot \frac{1}{s+1}+\frac{3}{2} \cdot \frac{1}{s-1}-3 e^{1.5}\left(\frac{-2 / 5}{s+1}+\frac{2 / 5}{s-1.5}\right) e^{-1 . \overline{5} s}
$$

Thus

$$
q(t)=\left(q_{0}-\frac{3}{2}\right) e^{-t}+\frac{3}{2} e^{t}+\frac{6}{5} e^{1 . \overline{5}}\left(e^{-(t-1.5)}-e^{1.5(t-1.5)}\right) \mathscr{}(t-1 . \overline{0})
$$

-5. (a) The differential equation is

$$
\frac{d i}{d t}+10 i=\sin t+\cos \left(t-\frac{3 \pi}{2}\right) थ\left(t-\frac{3 \pi}{2}\right), \quad i(0)=0
$$

The Laplace transform of this equation is

$$
s \mathscr{L}\{i\}+10 \mathscr{L}\{i\}=\frac{1}{s^{2}+1}+\frac{s e^{-3 \pi s / 2}}{s^{2}+1} .
$$

Solving for $\mathscr{L}\{i\}$ we obtain

$$
\begin{aligned}
\mathscr{L}\{i\} & =\frac{1}{\left(s^{2}+1\right)(s+10)}+\frac{s}{\left(s^{2}+1\right)(s+10)} e^{-3 \pi s / 2} \\
& =\frac{1}{101}\left(\frac{1}{s+10}-\frac{s}{s^{2}+1}+\frac{10}{s^{2}+1}\right)+\frac{1}{101}\left(\frac{-10}{s+10}+\frac{10 s}{s^{2}+1}+\frac{1}{s^{2}+1}\right) e^{-3 \pi s} .
\end{aligned}
$$

Exercises 7.3 Operational Properties I

Thus

$$
\begin{aligned}
i(t)= & \frac{1}{101}\left(e^{-10 t}-\cos t+10 \sin t\right) \\
& +\frac{1}{101}\left[-10 e^{-10(t-3 \pi / 2)}+10 \cos \left(t-\frac{3 \pi}{2}\right)+\sin \left(t-\frac{3 \pi}{2}\right)\right] \cup\left(t-\frac{3 \pi}{2}\right)
\end{aligned}
$$

(b)

The maximum valuc of $i(t)$ is approximately 0.1 at $t=1.7$, the minimum is approximately at 4.7. [Using Mathematica we see that the maximum valuc is $i(t)$ is 0.0995037 at $t=1.67 \mathrm{C}=$ and the mininum value is $i(3 \pi / 2) \approx-0.0990099$ at $t=3 \pi / 2$.]
76. (a) The diffcrential equation is

$$
50 \frac{d q}{d t}+\frac{1}{0.01} q=E_{0}[u(t-1)-u(t-3)], \quad q(0)=0
$$

or

$$
50 \frac{d q}{d t}+100 q=E_{0}[\psi(t-1)-\vartheta(t-3)], \quad q(0)=0 .
$$

The Laplace transform of this equation is

$$
50 s \mathscr{L}\{q\}+100 \mathscr{L}\{q\}=E_{0}\left(\frac{1}{s} e^{-s}-\frac{1}{s} e^{-3 s}\right) .
$$

Solving for $\mathscr{L}\{q\}$ we obtain

$$
\mathscr{L}\{q\}=\frac{E_{0}}{50}\left[\frac{e^{-s}}{s(s+2)}-\frac{e^{-3 s}}{s(s+2)}\right]=\frac{E_{0}}{50}\left[\frac{1}{2}\left(\frac{1}{s}-\frac{1}{s+2}\right) e^{-s}-\frac{1}{2}\left(\frac{1}{s}-\frac{1}{s+2}\right) e^{-3 s}\right] .
$$

Thus

$$
q(t)=\frac{E_{0}}{100}\left[\left(1-e^{-2(t-1)}\right) \cdot \|(t-1)-\left(1-e^{-2(t-3)}\right) \cdot \mathscr{U}(t-3)\right] .
$$

(b) q

Assuming $E_{0}=100$, the maximum value of $q(t)$ is approximately 1 at $t=3$. [Using M matica we see that the maximum value of $q(t)$ is 0.981684 at $t=3$.]
--. The differential cquation is

$$
E I \frac{d^{4} y}{d x^{4}}=w_{0}[1-\mathscr{U}(x-L / 2)]
$$

Taking the Laplace transform of both sides and using $y(0)=y^{\prime}(0)=0$ we obtain

$$
s^{4} \mathscr{L}\{y\}-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=\frac{w_{0}}{E I} \frac{1}{s}\left(1-e^{-L s / 2}\right)
$$

Letting $y^{\prime \prime}(0)=c_{1}$ and $y^{\prime \prime \prime}(0)=c_{2}$ we have

$$
\mathscr{L}\{y\}=\frac{c_{1}}{s^{3}}+\frac{c_{2}}{s^{4}}+\frac{w_{0}}{E I} \frac{1}{s^{5}}\left(1-e^{-L s / 2}\right)
$$

so that

$$
y(x)=\frac{1}{2} c_{1} x^{2}+\frac{1}{6} c_{2} x^{3}+\frac{1}{24} \frac{w_{0}}{E I}\left[x^{4}-\left(x-\frac{L}{2}\right)^{4} \vartheta\left(x-\frac{L}{2}\right)\right] .
$$

To find c_{1} and c_{2} we compute

$$
y^{\prime \prime}(x)=c_{1}+c_{2} x+\frac{1}{2} \frac{w_{0}}{E I}\left[x^{2}-\left(x-\frac{L}{2}\right)^{2} \vartheta\left(x-\frac{L}{2}\right)\right]
$$

and

$$
y^{\prime \prime \prime}(x)=c_{2}+\frac{w_{0}}{E I}\left[x-\left(x-\frac{L}{2}\right) u\left(x-\frac{L}{2}\right)\right]
$$

Then $y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0$ yields the system

$$
\begin{gathered}
c_{1}+c_{2} L+\frac{1}{2} \frac{w_{0}}{E I}\left[L^{2}-\left(\frac{L}{2}\right)^{2}\right]=c_{1}+c_{2} L+\frac{3}{8} \frac{w_{0} L^{2}}{E I}=0 \\
c_{2}+\frac{w_{0}}{E I}\left(\frac{L}{2}\right)=c_{2}+\frac{1}{2} \frac{w_{0} L}{E I}=0
\end{gathered}
$$

Solving for c_{1} and c_{2} we obtain $c_{1}=\frac{1}{8} w_{0} L^{2} / E I$ and $c_{2}=-\frac{1}{2} w_{0} L / E I$. Thus

$$
y(x)=\frac{w_{0}}{E I}\left[\frac{1}{16} L^{2} x^{2}-\frac{1}{12} L x^{3}+\frac{1}{24} x^{4}-\frac{1}{24}\left(x-\frac{L}{2}\right)^{4} थ\left(x-\frac{L}{2}\right)\right] .
$$

- The differential equation is

$$
E I \frac{d^{4} y}{d x^{4}}=w_{0}[u(x-L / 3)-u(x-2 L / 3)]
$$

-aking the Laplace transform of both sides and using $y(0)=y^{\prime}(0)=0$ we obtain

$$
s^{4} \mathscr{L}\{y\}-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=\frac{w_{0}}{E I} \frac{1}{s}\left(e^{-L s / 3}-e^{-2 L s / 3}\right)
$$

$\therefore \operatorname{sting} y^{\prime \prime}(0)=c_{1}$ and $y^{\prime \prime \prime}(0)=c_{2}$ we have

$$
\mathscr{L}\{y\}=\frac{c_{1}}{s^{3}}+\frac{c_{2}}{s^{4}}+\frac{w_{0}}{E I} \frac{1}{s^{5}}\left(e^{-L s / 3}-e^{-2 L s / 3}\right)
$$

Exercises 7.3 Opcrational Properties I
so that.

$$
y(x)=\frac{1}{2} c_{1} x^{2}+\frac{1}{6} c_{2} x^{3}+\frac{1}{24} \frac{w_{0}}{E I}\left[\left(x-\frac{L}{3}\right)^{4} \vartheta\left(x-\frac{L}{3}\right)-\left(x-\frac{2 L}{3}\right)^{4} 川\left(x-\frac{2 L}{3}\right)\right] .
$$

To find c_{1} and c_{2} we compute

$$
y^{\prime \prime}(x)=c_{1}+c_{2} x+\frac{1}{2} \frac{w_{0}}{E I}\left[\left(x-\frac{L}{3}\right)^{2} \vartheta\left(x-\frac{L}{3}\right)-\left(x-\frac{2 L}{3}\right)^{2} \nVdash\left(x-\frac{2 L}{3}\right)\right]
$$

and

$$
y^{\prime \prime \prime}(x)=c_{2}+\frac{w_{0}}{E I}\left[\left(x-\frac{L}{3}\right) \nVdash\left(x-\frac{L}{3}\right)-\left(x-\frac{2 L}{3}\right) थ\left(x-\frac{2 L}{3}\right)\right] .
$$

Then $y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0$ yiclds the system

$$
\begin{aligned}
c_{1}+c_{2} L+\frac{1}{2} \frac{w_{0}}{E I}\left[\left(\frac{2 L}{3}\right)^{2}-\left(\frac{L}{3}\right)^{2}\right]=c_{1}+c_{2} L+\frac{1}{6} \frac{w_{0} L^{2}}{E I} & =0 \\
c_{2}+\frac{w_{0}}{E I}\left[\frac{2 L}{3}-\frac{L}{3}\right]=c_{2}+\frac{1}{3} \frac{w_{0} L}{E I} & =0
\end{aligned}
$$

Solving for c_{1} and c_{2} we obtain $c_{1}=\frac{1}{6} w_{0} L^{2} / E I$ and $c_{2}=-\frac{1}{3} w_{0} L / E I$. Thus

$$
y(x)=\frac{w_{0}}{E I}\left(\frac{1}{12} L^{2} x^{2}-\frac{1}{18} L x^{3}+\frac{1}{24}\left[\left(x-\frac{L}{3}\right)^{4} \cdot \ddot{\left.\left.\left(x-\frac{L}{3}\right)-\left(x-\frac{2 L}{3}\right)^{4} \cdot y\left(x-\frac{2 L}{3}\right)\right]\right) ~}\right.\right.
$$

79. The differential equation is

$$
E I \frac{d^{4} y}{d x^{4}}=\frac{2 w_{0}}{L}\left[\frac{L}{2}-x+\left(x-\frac{L}{2}\right) य\left(x-\frac{L}{2}\right)\right] .
$$

Taking the Laplace transform of both sides and using $y(0)=y^{\prime}(0)=0$ we obtain

$$
s^{4} \mathscr{L}\{y\}-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=\frac{2 u_{0}}{E I L}\left[\frac{L}{2 s}-\frac{1}{s^{2}}+\frac{1}{s^{2}} e^{-L s / 2}\right] .
$$

Letting $y^{\prime \prime}(0)=c_{1}$ and $y^{\prime \prime \prime}(0)=c_{2}$ we have

$$
\mathscr{L}\{y\}=\frac{c_{1}}{s^{3}}+\frac{c_{2}}{s^{4}}+\frac{2 w_{0}}{E I L}\left[\frac{L}{2 s^{5}}-\frac{1}{s^{6}}+\frac{1}{s^{6}} e^{-L s / 2}\right]
$$

so that

$$
\begin{aligned}
y(x) & =\frac{1}{2} c_{1} x^{2}+\frac{1}{6} c_{2} x^{3}+\frac{2 w_{0}}{E I L}\left[\frac{L}{48} x^{4}-\frac{1}{120} x^{5}+\frac{1}{120}\left(x-\frac{L}{2}\right)^{\bar{\sigma}} \varphi\left(x-\frac{L}{2}\right)\right] \\
& =\frac{1}{2} c_{1} x^{2}+\frac{1}{6} c_{2} x^{3}+\frac{w_{0}}{60 E I L}\left[\frac{5 L}{2} x^{4}-x^{5}+\left(x-\frac{L}{2}\right)^{\bar{\sigma}} \psi\left(x-\frac{L}{2}\right)\right]
\end{aligned}
$$

To find c_{1} and c_{2} we compute

$$
y^{\prime \prime}(x)=c_{1}+c_{2} x+\frac{w_{0}}{60 E I L}\left[30 L x^{2}-20 x^{3}+20\left(x-\frac{L}{2}\right)^{3} \vartheta\left(x-\frac{L}{2}\right)\right]
$$

and

$$
y^{\prime \prime \prime}(x)=c_{2}+\frac{w_{0}}{60 E I L}\left[60 L x-60 x^{2}+60\left(x-\frac{L}{2}\right)^{2} \because\left(x-\frac{L}{2}\right)\right]
$$

Then $y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0$ yields the system

$$
\begin{aligned}
c_{1}+c_{2} L+\frac{w_{0}}{60 E I L}\left[30 L^{3}-20 L^{3}+\frac{5}{2} L^{3}\right]=c_{1}+c_{2} L+\frac{5 w_{0} L^{2}}{24 E I} & =0 \\
c_{2}+\frac{w_{0}}{60 E I L}\left[60 L^{2}-60 L^{2}+15 L^{2}\right]=c_{2}+\frac{w_{0} L}{4 E I} & =0
\end{aligned}
$$

Solving for c_{1} and c_{2} we obtain $c_{1}=w_{0} L^{2} / 24 E I$ and $c_{2}=-w_{0} L / 4 E I$. Thus

$$
y(x)=\frac{w_{0} L^{2}}{48 E I} x^{2}-\frac{w_{0} L}{24 E I} x^{3}+\frac{w_{0}}{60 E I L}\left[\frac{5 L}{2} x^{4}-x^{5}+\left(x-\frac{L}{2}\right)^{5} \cup\left(x-\frac{L}{2}\right)\right] .
$$

31. The differential equation is

$$
E I \frac{d^{4} y}{d x^{4}}=w_{0}[1-\psi(x-L / 2)]
$$

Taking the Laplace transform of both sides and using $y(0)=y^{\prime}(0)=0$ we obtain

$$
s^{4} \mathscr{L}\{y\}-s y^{\prime \prime}(0)-y^{\prime \prime \prime}(0)=\frac{w_{0}}{E I} \frac{1}{s}\left(1-e^{-L s / 2}\right)
$$

Letting $y^{\prime \prime}(0)=c_{1}$ and $y^{\prime \prime \prime}(0)=c_{2}$ we have

$$
\mathscr{L}\{y\}=\frac{c_{1}}{s^{3}}+\frac{c_{2}}{s^{4}}+\frac{w_{0}}{E I} \frac{1}{s^{5}}\left(1-e^{-L s / 2}\right)
$$

so that

$$
y(x)=\frac{1}{2} c_{1} x^{2}+\frac{1}{6} c_{2} x^{3}+\frac{1}{24} \frac{w_{0}}{E I}\left[x^{4}-\left(x-\frac{L}{2}\right)^{4} \vartheta\left(x-\frac{L}{2}\right)\right] .
$$

To find c_{1} and c_{2} we compute

$$
y^{\prime \prime}(x)=c_{1}+c_{2} x+\frac{1}{2} \frac{w_{0}}{E I}\left[x^{2}-\left(x-\frac{L}{2}\right)^{2} \because\left(x-\frac{L}{2}\right)\right] .
$$

Then $y(L)=y^{\prime \prime}(L)=0$ yields the system

$$
\begin{array}{r}
\frac{1}{2} c_{1} L^{2}+\frac{1}{6} c_{2} L^{3}+\frac{1}{24} \frac{w_{0}}{E I}\left[L^{4}-\left(\frac{L}{2}\right)^{4}\right]=\frac{1}{2} c_{1} L^{2}+\frac{1}{6} c_{2} L^{3}+\frac{5 w_{0}}{128 E I} L^{4}=0 \\
c_{1}+c_{2} L+\frac{1}{2} \frac{w_{0}}{E I}\left[L^{2}-\left(\frac{L}{2}\right)^{2}\right]=c_{1}+c_{2} L+\frac{3 w_{0}}{8 E I} L^{2}=0
\end{array}
$$

Solving for c_{1} and c_{2} we obtain $c_{1}=\frac{9}{128} w_{0} L^{2} / E I$ and $c_{2}=-\frac{\frac{7}{128}}{128} w_{0} L / E I$. Thus

$$
y(x)=\frac{w_{0}}{E I}\left[\frac{9}{256} L^{2} x^{2}-\frac{19}{256} L x^{3}+\frac{1}{24} x^{4}-\frac{1}{24}\left(x-\frac{L}{2}\right)^{4} \vartheta\left(x-\frac{L}{2}\right)\right] .
$$

s1. (a) The temperature T of the cake insido the oven is modeled by

$$
\frac{d T}{d t}=k:\left(T-T_{m}\right)
$$

where T_{m} is the ambient temperature of the oven. For $0 \leq t \leq 4$, we have

$$
T_{m}=70+\frac{300-70}{1-0} t=70+57.5 t
$$

Hence for $t \geq 0$,

$$
T_{m}= \begin{cases}70+57.5 t, & 0 \leq t<4 \\ 300, & t \geq 4\end{cases}
$$

In terms of the unit step function,

$$
T_{m}=(70+57.5 t)[1-\psi(t-4)]+300 \psi(t-4)=70+57.5 t+(230-57.5 t) \psi(t-4)
$$

The initial-valuc problem is then

$$
\frac{d T}{d t}=k[T-70-57.5 t-(230-57.5 t) \cdot(t-4)], \quad T(0)=70 .
$$

(b) Let $t(s)=\mathscr{L}\{T(t)\}$. Transforming the equation, using $230-57.5 t=-57.5(t-4)$ and Theorem 7.3.2, gives

$$
s t(s)-70=k\left(t(s)-\frac{70}{s}-\frac{57.5}{s^{2}}+\frac{57.5}{s^{2}} e^{-4 s}\right)
$$

or

$$
t(s)=\frac{70}{s-k}-\frac{70 k}{s(s-k)}-\frac{57.5 k}{s^{2}(s-k)}+\frac{57.5 k}{s^{2}(s-k)} e^{-4 s} .
$$

After using partial functions, the inverse transform is then

$$
T(t)=70+57.5\left(\frac{1}{k}+t-\frac{1}{k} e^{k t}\right)-57.5\left(\frac{1}{k}+t-4-\frac{1}{k} e^{k(l-4)}\right) \nLeftarrow(t-4)
$$

Of course, the obvious question is: What is k ? If the cake is supposed to bake for, sat minutes, then $T(20)=300$. That is,

$$
300=70+57.5\left(\frac{1}{k}+20-\frac{1}{k} e^{20 k}\right)-57.5\left(\frac{1}{k}+16-\frac{1}{k} e^{16 k}\right)
$$

But this equation has no physically meaningful solution. This should be no surprise sinc= model predicts the asymptotic behavior $T(t) \rightarrow 300$ as t increases. Using $T(20)=299$ ins: we find, with the help of a CAS, that $k \approx-0.3$.
82. We use the fact that Theorem 7.3 .2 can be written as

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{f(t)\}
$$

(a) Indentifying $a=1$ we have

$$
\mathscr{L}\{(2 t+1) \mathscr{U}(t-1)\}=\mathscr{L}\{[2(t-1)+3] u(t-1)\}=e^{-s} \mathscr{L}\{2 t+3\}=e^{-s}\left(\frac{2}{s^{2}}+\frac{3}{s}\right)
$$

Using (16) in the text we have

$$
\mathscr{L}\{(2 t+1) \mathscr{U}(t-1)\}=e^{-s} \mathscr{L}\{2(t+1)+1\}=e^{-s} \mathscr{L}\{2 t+3\}=e^{-s}\left(\frac{2}{s^{2}}+\frac{3}{s}\right)
$$

(b) Indentifying $a=5$ we have

$$
\mathscr{L}\left\{e^{t} u(t-5)\right\}=\mathscr{L}\left\{e^{t-\tilde{a}+5} \cup(t-5)\right\}=e^{5} \mathscr{L}\left\{e^{t-5} \mathscr{U}(t-5)\right\}=e^{5} e^{-\tilde{j} s} \mathscr{L}\left\{e^{t}\right\}=\frac{e^{-5(s-:}}{s-1}
$$

Using (16) in the text we have

$$
\mathscr{L}\left\{e^{t} \mathscr{Q}(t-5)\right\}=e^{-5 s} \mathscr{L}\left\{e^{t+5}\right\}=e^{-5 s} e^{5} \mathscr{L}\left\{e^{t}\right\}=\frac{e^{-5(s-1)}}{s-1}
$$

(c) Indentifying $a=\pi$ we have

$$
\mathscr{L}\{\cos t \mathscr{U}(t-\pi)\}=-\mathscr{L}\{\cos (t-\pi) \mathscr{U}(t-\pi)\}=-e^{-\pi s} \mathscr{L}\{\cos t\}=-\frac{s e^{-\pi s}}{s^{2}+1} .
$$

Using (16) in the text we have

$$
\mathscr{L}\{\cos t \mathscr{U}(t-\pi)\}=e^{-\pi s} \mathscr{L}\{\cos (t+\pi)\}=-e^{-\pi s} \mathscr{L}\{\cos t\}=-\frac{s e^{-\pi s}}{s^{2}+1}
$$

(d) Indentifying $a=2$ we have

$$
\begin{aligned}
\mathscr{L}\left\{\left(t^{2}-3 t\right) \mathscr{U}(t-2)\right\} & =\mathscr{L}\left\{\left[(t-2)^{2}+4 t-4-3 t\right] \mathscr{U}(t-2)\right\} \\
& =\mathscr{L}\left\{\left[(t-2)^{2}+(t-2)-2\right] \mathscr{U}(t-2)\right\} \\
& =e^{-2 s} \mathscr{L}\left\{t^{2}+t-2\right\}=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{1}{s^{2}}-\frac{2}{s}\right) .
\end{aligned}
$$

Using (16) in the text we have

$$
\begin{aligned}
\mathscr{L}\left\{\left(t^{2}-3 t\right) \mathscr{V}(t-2)\right\} & =e^{-2 s} \mathscr{L}\left\{(t+2)^{2}-3(t+2)\right\} \\
& =e^{-2 s} \mathscr{L}\left\{t^{2}+t-2\right\}=e^{-2 s}\left(\frac{2}{s^{3}}+\frac{1}{s^{2}}-\frac{2}{s}\right) .
\end{aligned}
$$

a. (a) From Theorem 7.3.1 we have $\mathscr{L}\left\{t e^{k t i}\right\}=1 /(s-k i)^{2}$. Then, using Euler's formula.

$$
\begin{aligned}
\mathscr{L}\left\{t e^{k t i}\right\} & =\mathscr{L}\{t \cos k t+i t \sin k t\}=\mathscr{L}\{t \cos k t\}+i \mathscr{L}\{t \sin k t\} \\
& =\frac{1}{(s-k i)^{2}}=\frac{(s+k i)^{2}}{\left(s^{2}+k^{2}\right)^{2}}=\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}}+i \frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}}
\end{aligned}
$$

Equating real and imaginary parts we have

$$
\mathscr{L}\{t \cos k t\}=\frac{s^{2}-k^{2}}{\left(s^{2}+k^{2}\right)^{2}} \quad \text { and } \quad \mathscr{L}\{t \sin k t\}=\frac{2 k s}{\left(s^{2}+k^{2}\right)^{2}} .
$$

Exercises 7.3 Operational Properties I

(b) The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{x\}+\omega^{2} \mathscr{L}\{x\}=\frac{s}{s^{2}+\omega^{2}}
$$

Solving for $\mathscr{L}\{x\}$ we obtain $\mathscr{L}\{x\}=s /\left(s^{2}+\omega^{2}\right)^{2}$. Thus $x=(1 / 2 \omega) t \sin \omega t$.

Exercises 7.4

> Operational Properties II

1. $\mathscr{L}\left\{t e^{-10 t}\right\}=-\frac{d}{d s}\left(\frac{1}{s+10}\right)=\frac{1}{(s+10)^{2}}$
2. $\mathscr{L}\left\{t^{3} e^{t}\right\}=(-1)^{3} \frac{d^{3}}{d s^{3}}\left(\frac{1}{s-1}\right)=\frac{6}{(s-1)^{4}}$
3. $\mathscr{L}\{t \cos 2 t\}=-\frac{d}{d s}\left(\frac{s}{s^{2}+4}\right)=\frac{s^{2}-4}{\left(s^{2}+4\right)^{2}}$
4. $\mathscr{L}\{t \sinh 3 t\}=-\frac{d}{d s}\left(\frac{3}{s^{2}-9}\right)=\frac{6 s}{\left(s^{2}-9\right)^{2}}$
5. $\mathscr{L}\left\{t^{2} \sinh t\right\}=\frac{d^{2}}{d s^{2}}\left(\frac{1}{s^{2}-1}\right)=\frac{6 s^{2}+2}{\left(s^{2}-1\right)^{3}}$
6. $\mathscr{L}\left\{t^{2} \cos t\right\}=\frac{d^{2}}{d s^{2}}\left(\frac{s}{s^{2}+1}\right)=\frac{d}{d s}\left(\frac{1-s^{2}}{\left(s^{2}+1\right)^{2}}\right)=\frac{2 s\left(s^{2}-3\right)}{\left(s^{2}+1\right)^{3}}$
7. $\mathscr{L}\left\{t e^{2 t} \sin 6 t\right\}=-\frac{d}{d s}\left(\frac{6}{(s-2)^{2}+36}\right)=\frac{12(s-2)}{\left[(s-2)^{2}+36\right]^{2}}$
8. $\mathscr{L}\left\{t e^{-3 t} \cos 3 t\right\}=-\frac{d}{d s}\left(\frac{s+3}{(s+3)^{2}+9}\right)=\frac{(s+3)^{2}-9}{\left[(s+3)^{2}+9\right]^{2}}$
9. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}+\mathscr{L}\{y\}=\frac{2 s}{\left(s^{2}+1\right)^{2}} .
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2 s}{(s+1)\left(s^{2}+1\right)^{2}}=-\frac{1}{2} \frac{1}{s+1}-\frac{1}{2} \frac{1}{s^{2}+1}+\frac{1}{2} \frac{s}{s^{2}+1}+\frac{1}{\left(s^{2}+1\right)^{2}}+\frac{s}{\left(s^{2}+1\right)^{2}} .
$$

Thus

$$
\begin{aligned}
y(t) & =-\frac{1}{2} e^{-t}-\frac{1}{2} \sin t+\frac{1}{2} \cos t+\frac{1}{2}(\sin t-t \cos t)+\frac{1}{2} t \sin t \\
& =-\frac{1}{2} e^{-t}+\frac{1}{2} \cos t-\frac{1}{2} t \cos t+\frac{1}{2} t \sin t
\end{aligned}
$$

10. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{y\}-\mathscr{L}\{y\}=\frac{2(s-1)}{\left((s-1)^{2}+1\right)^{2}}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2}{\left((s-1)^{2}+1\right)^{2}}
$$

Thus

$$
y=e^{t} \sin t-t e^{t} \cos t
$$

1. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+9 \mathscr{L}\{y\}=\frac{s}{s^{2}+9} .
$$

Letting $y(0)=2$ and $y^{\prime}(0)=5$ and solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{2 s^{3}+5 s^{2}+19 s+45}{\left(s^{2}+9\right)^{2}}=\frac{2 s}{s^{2}+9}+\frac{5}{s^{2}+9}+\frac{s}{\left(s^{2}+9\right)^{2}} .
$$

Thus

$$
y=2 \cos 3 t+\frac{5}{3} \sin 3 t+\frac{1}{6} t \sin 3 t
$$

2. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+\mathscr{L}\{y\}=\frac{1}{s^{2}+1}
$$

Solving for $\mathscr{L}\{y\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s^{3}-s^{2}+s}{\left(s^{2}+1\right)^{2}}=\frac{s}{s^{2}+1}-\frac{1}{s^{2}+1}+\frac{1}{\left(s^{2}+1\right)^{2}}
$$

Thus

$$
y=\cos t-\sin t+\left(\frac{1}{2} \sin t-\frac{1}{2} t \cos t\right)=\cos t-\frac{1}{2} \sin t-\frac{1}{2} t \cos t .
$$

-3. The Laplace transform of the differential cquation is

$$
s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+16 \mathscr{L}\{y\}=\mathscr{L}\{\cos 4 t-\cos 4 t \mathscr{U}(t-\pi)\}
$$

or by (16) of Section 7.3,

$$
\begin{aligned}
\left(s^{2}+16\right) \mathscr{L}\{y\} & =1+\frac{s}{s^{2}+16}-c^{-\pi s} \mathscr{L}\{\cos 4(t+\pi)\} \\
& =1+\frac{s}{s^{2}+16}-e^{-\pi s} \mathscr{L}\{\cos 4 t\} \\
& =1+\frac{s}{s^{2}+16}-\frac{s}{s^{2}+16} \epsilon^{-\pi s}
\end{aligned}
$$

Exercises 7.4 Operational Properties II

Thus

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+16}+\frac{s}{\left(s^{2}+16\right)^{2}}-\frac{s}{\left(s^{2}+16\right)^{2}} e^{-\pi s}
$$

and

$$
y=\frac{1}{4} \sin 4 t+\frac{1}{8} t \sin 4 t-\frac{1}{8}(t-\pi) \sin 4(t-\pi) थ(t-\pi)
$$

14. The Laplace transform of the differential equation is

$$
\begin{aligned}
& s^{2} \mathscr{L}\{y\}-s y(0)-y^{\prime}(0)+\mathscr{L}\{y\}=\mathscr{L}\left\{1-\mathscr{U}\left(t-\frac{\pi}{2}\right)+\sin t \mathscr{U}\left(t-\frac{\pi}{2}\right)\right\} \\
&\left(s^{2}+1\right) \mathscr{L}\{y\}=s+\frac{1}{s}-\frac{1}{s} e^{-\pi s / 2}+e^{-\pi s / 2} \mathscr{L}\left\{\sin \left(t+\frac{\pi}{2}\right)\right\} \\
&=s+\frac{1}{s}-\frac{1}{s} e^{-\pi s / 2}+e^{-\pi s / 2} \mathscr{L}\{\cos t\} \\
&=s+\frac{1}{s}-\frac{1}{s} e^{-\pi s / 2}+\frac{s}{s^{2}+1} e^{-\pi s / 2}
\end{aligned}
$$

or

Thus

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{s}{s^{2}+1}+\frac{1}{s\left(s^{2}+1\right)}-\frac{1}{s\left(s^{2}+1\right)} e^{-\pi s / 2}+\frac{s}{\left(s^{2}+1\right)^{2}} e^{-\pi s / 2} \\
& =\frac{s}{s^{2}+1}+\frac{1}{s}-\frac{s}{s^{2}+1}-\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right) e^{-\pi s / 2}+\frac{s}{\left(s^{2}+1\right)^{2}} e^{-\pi s / 2} \\
& =\frac{1}{s}-\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right) e^{-\pi s / 2}+\frac{s}{\left(s^{2}+1\right)^{2}} e^{-\pi s / 2}
\end{aligned}
$$

and

$$
\begin{aligned}
y & =1-\left[1-\cos \left(t-\frac{\pi}{2}\right)\right] \mathscr{U}\left(t-\frac{\pi}{2}\right)+\frac{1}{2}\left(t-\frac{\pi}{2}\right) \sin \left(t-\frac{\pi}{2}\right) \mathscr{U}\left(t-\frac{\pi}{2}\right) \\
& =1-(1-\sin t) थ\left(t-\frac{\pi}{2}\right)-\frac{1}{2}\left(t-\frac{\pi}{2}\right) \cos t \cup\left(t-\frac{\pi}{2}\right) .
\end{aligned}
$$

15.

16. y

17. From (7) of Scction 7.2 in the text along with Theorem 7.4.1,

$$
\mathscr{L}\left\{t y^{\prime \prime}\right\}=-\frac{d}{d s} \mathscr{L}\left\{y^{\prime \prime}\right\}=-\frac{d}{d s}\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]=-s^{2} \frac{d Y}{d s}-2 s Y+y(0)
$$

so that the transform of the given sccond-order differential equation is the lincar first-order differential equation in $Y(s)$:

$$
s^{2} Y^{\prime}+3 s Y=-\frac{4}{s^{3}} \quad \text { or } \quad Y^{\prime}+\frac{3}{s} Y=-\frac{4}{s^{5}}
$$

The solution of the latter equation is $Y(s)=4 / s^{4}+c / s^{3}$, so

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}=\frac{2}{3} t^{3}+\frac{c}{2} t^{2}
$$

2. From Theorem 7.4.1 in the text

$$
\mathscr{L}\left\{t y^{\prime}\right\}=-\frac{d}{d s} \mathscr{L}\left\{y^{\prime}\right\}=-\frac{d}{d s}[s Y(s)-y(0)]=-s \frac{d Y}{d s}-Y
$$

so that the transform of the given sccond-order differential equation is the linear first-order differential equation in $Y(s)$:

$$
Y^{\prime}+\left(\frac{3}{s}-2 s\right) Y=-\frac{10}{s}
$$

Using the integrating factor $s^{3} e^{-s^{2}}$, the last equation yields

$$
Y(s)=\frac{5}{s^{3}}+\frac{c}{s^{3}} e^{s^{2}}
$$

But if $Y(s)$ is the Laplace transform of a piccewise-continuous function of exponential order, we must have, in view of Theorem 7.1.3, $\lim _{s \rightarrow \infty} Y(s)=0$. In order to obtain this condition we require $c=0$. Hence

$$
y(t)=\mathscr{L}^{-1}\left\{\frac{5}{s^{3}}\right\}=\frac{5}{2} t^{2}
$$

$\therefore \mathscr{L}\left\{1 * t^{3}\right\}=\frac{1}{s} \frac{3!}{s^{4}}=\frac{6}{s^{5}}$
$\therefore \mathscr{L}\left\{t^{2} * t e^{t}\right\}=\frac{2}{s^{3}(s-1)^{2}}$
$\therefore \quad \dot{z}\left\{e^{-t} * e^{t} \cos t\right\}=\frac{s-1}{(s+1)\left[(s-1)^{2}+1\right]}$
22. $\mathscr{L}\left\{e^{2 t} * \sin t\right\}=\frac{1}{(s-2)\left(s^{2}+1\right)}$
23. $\mathscr{L}\left\{\int_{0}^{t} e^{\tau} d \tau\right\}=\frac{1}{s} \mathscr{L}\left\{e^{t}\right\}=\frac{1}{s(s-1)}$
24. $\mathscr{L}\left\{\int_{0}^{t} \cos \tau d \tau\right\}=\frac{1}{s} \mathscr{L}\{\cos t\}=\frac{s}{s\left(s^{2}+1\right)}=\frac{1}{s^{2}+1}$
2.5. $\mathscr{L}\left\{\int_{0}^{t} e^{-\tau} \cos \tau d \tau\right\}=\frac{1}{s} \mathscr{L}\left\{e^{-t} \cos t\right\}=\frac{1}{s} \frac{s+1}{(s+1)^{2}+1}=\frac{s+1}{s\left(s^{2}+2 s+2\right)}$
26. $\mathscr{L}\left\{\int_{0}^{t} \tau \sin \tau d \tau\right\}=\frac{1}{s} \mathscr{L}\{t \sin t\}=\frac{1}{s}\left(-\frac{d}{d s} \frac{1}{s^{2}+1}\right)=-\frac{1}{s} \frac{-2 s}{\left(s^{2}+1\right)^{2}}=\frac{2}{\left(s^{2}+1\right)^{2}}$
27. $\mathscr{L}\left\{\int_{0}^{t} \tau e^{t-\tau} d \tau\right\}=\mathscr{L}\{t\} \mathscr{L}\left\{e^{t}\right\}=\frac{1}{s^{2}(s-1)}$
28. $\mathscr{L}\left\{\int_{0}^{t} \sin \tau \cos (t-\tau) d \tau\right\}=\mathscr{L}\{\sin t\} \mathscr{L}\{\cos t\}=\frac{s}{\left(s^{2}+1\right)^{2}}$
29. $\mathscr{L}\left\{t \int_{0}^{t} \sin \tau d \tau\right\}=-\frac{d}{d s} \mathscr{L}\left\{\int_{0}^{t} \sin \tau d \tau\right\}=-\frac{d}{d s}\left(\frac{1}{s} \frac{1}{s^{2}+1}\right)=\frac{3 s^{2}+1}{s^{2}\left(s^{2}+1\right)^{2}}$
30. $\mathscr{L}\left\{t \int_{0}^{t} \tau e^{-\tau} d \tau\right\}=-\frac{d}{d s} \mathscr{L}\left\{\int_{0}^{t} \tau e^{-\tau} d \tau\right\}=-\frac{d}{d s}\left(\frac{1}{s} \frac{1}{(s+1)^{2}}\right)=\frac{3 s+1}{s^{2}(s+1)^{3}}$
31. $\mathscr{L}^{-1}\left\{\frac{1}{s(s-1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1 /(s-1)}{s}\right\}=\int_{0}^{t} e^{\tau} d \tau=e^{t}-1$
32. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}(s-1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1 / s(s-1)}{s}\right\}=\int_{0}^{t}\left(e^{\tau}-1\right) d \tau=e^{t}-t-1$
33. $\mathscr{L}^{-1}\left\{\frac{1}{s^{3}(s-1)}\right\}=\mathscr{L}^{-1}\left\{\frac{1 / s^{2}(s-1)}{s}\right\}=\int_{0}^{t}\left(e^{\tau}-\tau-1\right) d \tau=e^{t}-\frac{1}{2} t^{2}-t-1$
34. Using $\mathscr{L}^{-1}\left\{\frac{1}{(s-a)^{2}}\right\}=t e^{a t},(8)$ in the text gives

$$
\mathscr{L}^{-1}\left\{\frac{1}{s(s-a)^{2}}\right\}=\int_{0}^{t} \tau e^{a \tau} d \tau=\frac{1}{a^{2}}\left(a t e^{a t}-e^{a t}+1\right)
$$

35. (a) The result in (4) in the text is $\mathscr{L}^{-1}\{F(s) G(s)\}=f * g$, so identify

$$
F(s)=\frac{2 k^{3}}{\left(s^{2}+k^{2}\right)^{2}} \quad \text { and } \quad G(s)=\frac{4 s}{s^{2}+k^{2}}
$$

Then

$$
f(t)=\sin k t-k t \cos k t \quad \text { and } \quad g(t)=4 \cos k t
$$

so

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{8 k^{3} s}{\left(s^{2}+k^{2}\right)^{3}}\right\} & =\mathscr{L}^{-1}\{F(s) G(s)\}=f * g=4 \int_{0}^{t} f(\tau) g(t-\tau) d t \\
& =4 \int_{0}^{t}(\sin k \tau-k \tau \cos k \tau) \cos k(t-\tau) d \tau .
\end{aligned}
$$

Using a CAS to evaluate the integral we get

$$
\mathscr{L}^{-1}\left\{\frac{8 k^{3} s}{\left(s^{2}+k^{2}\right)^{3}}\right\}=t \sin k t-k t^{2} \cos k t .
$$

(b) Observe from part (a) that

$$
\mathscr{L}\{t(\sin k t-k t \cos k t)\}=\frac{8 k^{3} s}{\left(s^{2}+k^{2}\right)^{3}},
$$

and from Theorem 7.4.1 that $\mathscr{L}\{t f(t)\}=-F^{\prime}(s)$. We saw in (5) in the text that

$$
\mathscr{L}\{\sin k t-k t \cos k t\}=2 k^{3} /\left(s^{2}+k^{2}\right)^{2}
$$

so

$$
\mathscr{L}\{t(\sin k t-k t \cos k t)\}=-\frac{d}{d s} \frac{2 k^{3}}{\left(s^{2}+k^{2}\right)^{2}}=\frac{8 k^{3} s}{\left(s^{2}+k^{2}\right)^{3}} .
$$

I. The Laplace transform of the differential equation is

$$
s^{2} \mathscr{L}\{y\}+\mathscr{L}\{y\}=\frac{1}{\left(s^{2}+1\right)}+\frac{2 s}{\left(s^{2}+1\right)^{2}}
$$

Thus

$$
\mathscr{L}\{y\}=\frac{1}{\left(s^{2}+1\right)^{2}}+\frac{2 s}{\left(s^{2}+1\right)^{3}}
$$

and, using Problem 35 with $k=1$,

$$
y=\frac{1}{2}(\sin t-t \cos t)+\frac{1}{4}\left(t \sin t-t^{2} \cos t\right) .
$$

:- The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}+\mathscr{L}\{t\} \mathscr{L}\{f\}=\mathscr{L}\{t\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain $\mathscr{L}\{f\}=\frac{1}{s^{2}+1}$. Thus, $f(t)=\sin t$.
\therefore The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}=\mathscr{L}\{2 t\}-4 \mathscr{L}\{\sin t\} \mathscr{L}\{f\}
$$

Exercises 7.4 Operational Properties II

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{2 s^{2}+2}{s^{2}\left(s^{2}+5\right)}=\frac{2}{5} \frac{1}{s^{2}}+\frac{8}{5 \sqrt{5}} \frac{\sqrt{5}}{s^{2}+5} .
$$

Thus

$$
f(t)=\frac{2}{5} t+\frac{8}{5 \sqrt{5}} \sin \sqrt{5} t
$$

39. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}=\mathscr{L}\left\{t e^{t}\right\}+\mathscr{L}\{t\} \mathscr{L}\{f\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s^{2}}{(s-1)^{3}(s+1)}=\frac{1}{8} \frac{1}{s-1}+\frac{3}{4} \frac{1}{(s-1)^{2}}+\frac{1}{4} \frac{2}{(s-1)^{3}}-\frac{1}{8} \frac{1}{s+1} .
$$

Thus

$$
f(t)=\frac{1}{8} e^{t}+\frac{3}{4} t e^{t}+\frac{1}{4} t^{2} e^{t}-\frac{1}{8} e^{-t}
$$

40. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}+2 \mathscr{L}\{\cos t\} \mathscr{L}\{f\}=4 \mathscr{L}\left\{e^{-t}\right\}+\mathscr{L}\{\sin t\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{4 s^{2}+s+5}{(s+1)^{3}}=\frac{4}{s+1}-\frac{7}{(s+1)^{2}}+4 \frac{2}{(s+1)^{3}} .
$$

Thus

$$
f(t)=4 e^{-t}-7 t e^{-t}+4 t^{2} e^{-t}
$$

41. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}+\mathscr{L}\{1\} \mathscr{L}\{f\}=\mathscr{L}\{1\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain $\mathscr{L}\{f\}=\frac{1}{s+1}$. Thus, $f(t)=e^{-t}$.
42. The Laplace transform of the given equation is

$$
\mathscr{L}\{f\}=\mathscr{L}\{\cos t\}+\mathscr{L}\left\{e^{-t}\right\} \mathscr{L}\{f\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}
$$

Thus

$$
f(t)=\cos t+\sin t
$$

43. The Laplace transform of the given equation is

$$
\begin{aligned}
\mathscr{L}\{f\} & =\mathscr{L}\{1\}+\mathscr{L}\{t\}-\mathscr{L}\left\{\frac{8}{3} \int_{0}^{t}(t-\tau)^{3} f(\tau) d \tau\right\} \\
& =\frac{1}{s}+\frac{1}{s^{2}}+\frac{8}{3} \mathscr{L}\left\{t^{3}\right\} \mathscr{L}\{f\}=\frac{1}{s}+\frac{1}{s^{2}}+\frac{16}{s^{4}} \mathscr{L}\{f\} .
\end{aligned}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s^{2}(s+1)}{s^{4}-16}=\frac{1}{8} \frac{1}{s+2}+\frac{3}{8} \frac{1}{s-2}+\frac{1}{4} \frac{2}{s^{2}+4}+\frac{1}{2} \frac{s}{s^{2}+4} .
$$

Thus

$$
f(t)=\frac{1}{8} e^{-2 t}+\frac{3}{8} e^{2 t}+\frac{1}{4} \sin 2 t+\frac{1}{2} \cos 2 t .
$$

44. The Laplace transform of the given equation is

$$
\mathscr{L}\{t\}-2 \mathscr{L}\{f\}=\mathscr{L}\left\{e^{t}-e^{-t}\right\} \mathscr{L}\{f\}
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{f\}=\frac{s^{2}-1}{2 s^{4}}=\frac{1}{2} \frac{1}{s^{2}}-\frac{1}{12} \frac{3!}{s^{4}} .
$$

Thus

$$
f(t)=\frac{1}{2} t-\frac{1}{12} t^{3}
$$

$\therefore .5$. The Laplace transform of the given equation is

$$
s \mathscr{L}\{y\}-y(0)=\mathscr{L}\{1\}-\mathscr{L}\{\sin t\}-\mathscr{L}\{1\} \mathscr{L}\{y\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain

$$
\mathscr{L}\{y\}=\frac{s^{2}-s+1}{\left(s^{2}+1\right)^{2}}=\frac{1}{s^{2}+1}-\frac{1}{2} \frac{2 s}{\left(s^{2}+1\right)^{2}} .
$$

Thus

$$
y=\sin t-\frac{1}{2} t \sin t
$$

$=2$. The Laplace transform of the given equation is

$$
s \mathscr{L}\{y\}-y(0)+6 \mathscr{L}\{y\}+9 \mathscr{L}\{1\} \mathscr{L}\{y\}=\mathscr{L}\{1\} .
$$

Solving for $\mathscr{L}\{f\}$ we obtain $\mathscr{L}\{y\}=\frac{1}{(s+3)^{2}}$. Thus, $y=t e^{-3 t}$.

Exercises 7.4 Operational Properties II

47. The differential equation is

$$
0.1 \frac{d i}{d t}+3 i+\frac{1}{0.05} \int_{0}^{t} i(\tau) d \tau=100[\vartheta(t-1)-\vartheta(t-2)]
$$

or

$$
\frac{d i}{d t}+30 i+200 \int_{0}^{t} i(\tau) d \tau=1000[\mathscr{U}(t-1)-U(t-2)],
$$

where $i(0)=0$. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{i\}-y(0)+30 \mathscr{L}\{i\}+\frac{200}{s} \mathscr{L}\{i\}=\frac{1000}{s}\left(e^{-s}-e^{-2 s}\right) .
$$

Solving for $\mathscr{L}\{i\}$ we obtain

$$
\mathscr{L}\{i\}=\frac{1000 e^{-s}-1000 e^{-2 s}}{s^{2}+30 s+200}=\left(\frac{100}{s+10}-\frac{100}{s+20}\right)\left(e^{-s}-e^{-2 s}\right) .
$$

Thus

$$
i(t)=100\left(e^{-10(t-1)}-e^{-20(t-1)}\right) \mathscr{U}(t-1)-100\left(e^{-10(t-2)}-e^{-20(t-2)}\right) \mathscr{U}(t-2) .
$$

48. The differential equation is

$$
0.005 \frac{d i}{d t}+i+\frac{1}{0.02} \int_{0}^{t} i(\tau) d \tau=100[t-(t-1) \ddot{U}(t-1)]
$$

or

$$
\frac{d i}{d t}+200 i+10,000 \int_{0}^{t} i(\tau) d \tau=20,000[t-(t-1) \psi(t-1)]
$$

wherc $i(0)=0$. The Laplace transform of the differential equation is

$$
s \mathscr{L}\{i\}+200 \mathscr{L}\{i\}+\frac{10,000}{s} \mathscr{L}\{i\}=20,000\left(\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}\right) .
$$

Solving for $\mathscr{L}\{i\}$ we obtain

$$
\mathscr{L}\{i\}=\frac{20,000}{s(s+100)^{2}}\left(1-e^{-s}\right)=\left[\frac{2}{s}-\frac{2}{s+100}-\frac{200}{(s+100)^{2}}\right]\left(1-e^{-s}\right) .
$$

Thus

$$
i(t)=2-2 e^{-100 t}-200 t e^{-100 t}-2 \mathscr{U}(t-1)+2 e^{-100(t-1)} \mathscr{U}_{(}(t-1)+200(t-1) e^{-1.00(t-1)} \mathscr{U}(t-.
$$

49. $\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-2 a s}}\left[\int_{0}^{a} e^{-s t} d t-\int_{a}^{2 a} e^{-s t} d t\right]=\frac{\left(1-e^{-a s}\right)^{2}}{s\left(1-e^{-2 a s}\right)}=\frac{1-e^{-a s}}{s\left(1+e^{-a s}\right)}$
50. $\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-2 a s}} \int_{0}^{a} e^{-s t} d t=\frac{1}{s\left(1+e^{-a s}\right)}$
\because-. Using integration by parts,

$$
\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-b s}} \int_{0}^{b} \frac{a}{b} t e^{-s t} d t=\frac{a}{s}\left(\frac{1}{b s}-\frac{1}{e^{b s}-1}\right) .
$$

ㅍ. $\mathscr{L}\{f(t)\}=\frac{1}{1-e^{-2 s}}\left[\int_{0}^{1} t e^{-s t} d t+\int_{1}^{2}(2-t) e^{-s t} d t\right]=\frac{1-e^{-s}}{s^{2}\left(1-e^{-2 s}\right)}$
ㅍ. $\mathcal{L}\{f(t)\}=\frac{1}{1-e^{-\pi s}} \int_{0}^{\pi} e^{-s t} \sin t d t=\frac{1}{s^{2}+1} \cdot \frac{e^{\pi s / 2}+e^{-\pi s / 2}}{e^{\pi s / 2}-e^{-\pi s / 2}}=\frac{1}{s^{2}+1} \operatorname{coth} \frac{\pi s}{2}$
$\therefore \mathscr{L}\{f(t)\}=\frac{1}{1-e^{-2 \pi s}} \int_{0}^{\pi} e^{-s t} \sin t d t=\frac{1}{s^{2}+1} \cdot \frac{1}{1-e^{-\pi s}}$
\therefore. The differential equation is $L d i / d t+R i=E(t)$, where $i(0)=0$. The Laplace transform \therefore. equation is

$$
L s \mathscr{L}\{i\}+R \mathscr{L}\{i\}=\mathscr{L}\{E(t)\}
$$

From Problem 49 we have $\mathscr{L}\{E(t)\}=\left(1-e^{-s}\right) / s\left(1+e^{-s}\right)$. Thus

$$
(L s+R) \mathscr{L}\{i\}=\frac{1-e^{-s}}{s\left(1+e^{-s}\right)}
$$

and

$$
\begin{aligned}
\mathscr{L}\{i\} & =\frac{1}{L} \frac{1-e^{-s}}{s(s+R / L)\left(1+e^{-s}\right)}=\frac{1}{L} \frac{1-e^{-s}}{s(s+R / L)} \frac{1}{1+e^{-s}} \\
& =\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right)\left(1-e^{-s}\right)\left(1-e^{-s}+e^{-2 s}-e^{-3 s}+e^{-4 s}-\cdots\right) \\
& =\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right)\left(1-2 e^{-s}+2 e^{-2 s}-2 e^{-3 s}+2 e^{-4 s}-\cdots\right)
\end{aligned}
$$

Iherefore,

$$
\begin{aligned}
i(t)= & \frac{1}{R}\left(1-e^{-R t / L}\right)-\frac{2}{R}\left(1-e^{-R(t-1) / L}\right) \cup(t-1) \\
& +\frac{2}{R}\left(1-e^{-R(t-2) / L}\right) \cup(t-2)-\frac{2}{R}\left(1-e^{-R(t-3) / L}\right) \mathscr{U}(t-3)+\cdots \\
= & \frac{1}{R}\left(1-e^{-R t / L}\right)+\frac{2}{R} \sum_{n=1}^{\infty}(-1)^{n}\left(1-e^{-R(t-n) / L}\right) \cup(t-n)
\end{aligned}
$$

Exercises 7.4 Operational Properties II

The graph of $i(t)$ with $L=1$ and $R=1$ is shown below.

56. The differential equation is $L d i / d t+R i=E(t)$, where $i(0)=0$. The Laplace transform of $:$ Equation is

$$
L s \mathscr{L}\{i\}+R \mathscr{L}\{i\}=\mathscr{L}\{E(t)\} .
$$

From Problem 51 we have

$$
\mathscr{L}\{E(t)\}=\frac{1}{s}\left(\frac{1}{s}-\frac{1}{e^{s}-1}\right)=\frac{1}{s^{2}}-\frac{1}{s} \frac{1}{e^{s}-1} .
$$

Thus

$$
(L s+R) \mathscr{L}\{i\}=\frac{1}{s^{2}}-\frac{1}{s} \frac{1}{e^{s}-1}
$$

and

$$
\begin{aligned}
\mathscr{L}\{i\} & =\frac{1}{L} \frac{1}{s^{2}(s+R / L)}-\frac{1}{L} \frac{1}{s(s+R / L)} \frac{1}{e^{s}-1} \\
& =\frac{1}{R}\left(\frac{1}{s^{2}}-\frac{L}{R} \frac{1}{s}+\frac{L}{R} \frac{1}{s+R / L}\right)-\frac{1}{R}\left(\frac{1}{s}-\frac{1}{s+R / L}\right)\left(e^{-s}+e^{-2 s}+e^{-3 s}+\cdots\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
i(t)= & \frac{1}{R}\left(t-\frac{L}{R}+\frac{L}{R} e^{-R 2 t / L}\right)-\frac{1}{R}\left(1-e^{-R(t-1) / L}\right) \mathscr{U}(t-1) \\
& -\frac{1}{R}\left(1-e^{-R(t-2) / L}\right) \mathscr{U}(t-2)-\frac{1}{R}\left(1-e^{-R(t-3) / L}\right) \mathscr{V}(t-3)-\cdots \\
= & \frac{1}{R}\left(t-\frac{L}{R}+\frac{L}{R} e^{-R t / L}\right)-\frac{1}{R} \sum_{n=1}^{\infty}\left(1-e^{-R(t-n) / L}\right) \mathscr{U}(t-n) .
\end{aligned}
$$

The graph of $i(t)$ with $L=1$ and $R=1$ is shown below.

57. The differential equation is $x^{\prime \prime}+2 x^{\prime}+10 x=20 f(t)$, where $f(t)$ is the meander function in Proble:-. 49 with $a=\pi$. Using the initial conditions $x(0)=x^{\prime}(0)=0$ and taking the Laplace transforn $:=$ obtain

$$
\begin{aligned}
\left(s^{2}+2 s+10\right) \mathscr{L}\{x(t)\} & =\frac{20}{s}\left(1-e^{-\pi s}\right) \frac{1}{1+e^{-\pi s}} \\
& =\frac{20}{s}\left(1-e^{-\pi s}\right)\left(1-e^{-\pi s}+e^{-2 \pi s}-e^{-3 \pi s}+\cdots\right) \\
& =\frac{20}{s}\left(1-2 e^{-\pi s}+2 e^{-2 \pi s}-2 e^{-3 \pi s}+\cdots\right) \\
& =\frac{20}{s}+\frac{40}{s} \sum_{n=1}^{\infty}(-1)^{n} e^{-n \pi s}
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathscr{L}\{x(t)\} & =\frac{20}{s\left(s^{2}+2 s+10\right)}+\frac{40}{s\left(s^{2}+2 s+10\right)} \sum_{n=1}^{\infty}(-1)^{n} e^{-n \pi s} \\
& =\frac{2}{s}-\frac{2 s+4}{s^{2}+2 s+10}+\sum_{n=1}^{\infty}(-1)^{n}\left[\frac{4}{s}-\frac{4 s+8}{s^{2}+2 s+10}\right] e^{-n \pi s} \\
& =\frac{2}{s}-\frac{2(s+1)+2}{(s+1)^{2}+9}+4 \sum_{n=1}^{\infty}(-1)^{n}\left[\frac{1}{s}-\frac{(s+1)+1}{(s+1)^{2}+9}\right] e^{-n \pi s}
\end{aligned}
$$

and

$$
\begin{aligned}
x(t)=2 & \left(1-e^{-t} \cos 3 t-\frac{1}{3} e^{-t} \sin 3 t\right)+4 \sum_{n=1}^{\infty}(-1)^{n}\left[1-e^{-(t-n \pi)} \cos 3(t-n \pi)\right. \\
& \left.-\frac{1}{3} e^{-(t-n \pi)} \sin 3(t-n \pi)\right] थ(t-n \pi)
\end{aligned}
$$

The graph of $x(t)$ on the interval $[0,2 \pi)$ is shown below.

- Te differential cquation is $x^{\prime \prime}+2 x^{\prime}+x=5 f(t)$, where $f(t)$ is the square wave function with $a=\pi$.

Exercises 7.4 Operational Properties II

Ving the initial conditions $x(0)=x^{\prime}(0)=0$ and taking the Laplace transform, we obtain

$$
\begin{aligned}
\left(s^{2}+2 s+1\right) \mathscr{L}\{x(t)\} & =\frac{5}{s} \frac{1}{1+e^{-\pi s}}=\frac{5}{s}\left(1-e^{-\pi s}+e^{-2 \pi s}-e^{-3 \pi s}+e^{-4 \pi s}-\cdots\right) \\
& =\frac{5}{s} \sum_{n=0}^{\infty}(-1)^{n} e^{-n \pi s} .
\end{aligned}
$$

Then

$$
\mathscr{L}\{x(t)\}=\frac{5}{s(s+1)^{2}} \sum_{n=0}^{\infty}(-1)^{n} e^{-n \pi s}=5 \sum_{n=0}^{\infty}(-1)^{n}\left(\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}}\right) e^{-n \pi s}
$$

and

$$
x(t)=5 \sum_{n=0}^{\infty}(-1)^{n}\left(1-e^{-(t-n \pi)}-(t-n \pi) e^{-(t-n \pi)}\right) \mathscr{U}(t-n \pi)
$$

The graph of $x(t)$ on the interval $[0,4 \pi)$ is shown below.

59. $f(t)=-\frac{1}{t} \mathscr{L}^{-1}\left\{\frac{d}{d s}[\ln (s-3)-\ln (s+1)]\right\}=-\frac{1}{t} \mathscr{L}^{-1}\left\{\frac{1}{s-3}-\frac{1}{s+1}\right\}=-\frac{1}{t}\left(e^{3 t}-e^{-t}\right)$
50. The transform of Bessel's equation is

$$
-\frac{d}{d s}\left[s^{2} Y(s)-s y(0)-y^{\prime}(0)\right]+s Y(s)-y(0)-\frac{d}{d s} Y(s)=0
$$

or. after simplifying and using the initial condition, $\left(s^{2}+1\right) Y^{\prime}+s Y=0$. This equation :separable and linear. Solving gives $Y(s)=c / \sqrt{s^{2}+1}$. Now $Y(s)=\mathscr{L}\left\{J_{0}(t)\right\}$, where J_{i} derivative that is continuous and of exponential order, implies by Problem 46 of Exercises $: .$.

$$
1=J_{0}(0)=\lim _{s \rightarrow \infty} s Y(s)=c \lim _{s \rightarrow \infty} \frac{s}{\sqrt{s^{2}+k^{2}}}=c
$$

so $c=1$ and

$$
Y(s)=\frac{1}{\sqrt{s^{2}+1}} \quad \text { or } \quad \mathscr{L}\left\{J_{0}(t)\right\}=\frac{1}{\sqrt{s^{2}+1}}
$$

1. (a) Using Theorem 7.4.1, the Laplace transform of the differential equation is

$$
\begin{aligned}
-\frac{d}{d s}\left[s^{2} Y\right. & \left.-s y(0)-y^{\prime}(0)\right]+s Y-y(0)+\frac{d}{d s}[s Y-y(0)]+n Y \\
& =-\frac{d}{d s}\left[s^{2} Y\right]+s Y+\frac{d}{d s}[s Y]+n Y \\
& =-s^{2}\left(\frac{d Y}{d s}\right)-2 s Y+s Y+s\left(\frac{d Y}{d s}\right)+Y+n Y \\
& =\left(s-s^{2}\right)\left(\frac{d Y}{d s}\right)+(1+n-s) Y=0
\end{aligned}
$$

Separating variables, we find

$$
\begin{aligned}
\frac{d Y}{Y} & =\frac{1+n-s}{s^{2}-s} d s=\left(\frac{n}{s-1}-\frac{1+n}{s}\right) d s \\
\ln Y & =n \ln (s-1)-(1+n) \ln s+c \\
Y & =c_{1} \frac{(s-1)^{n}}{s^{1+n}} .
\end{aligned}
$$

Since the differential equation is homogeneous, any constant multiple of a solution be a solution, so for convenience we take $c_{1}=1$. The following polynomials are son: Laguerre's differential equation:

$$
\begin{array}{rlrl}
n=0: & L_{0}(t) & =\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1 \\
n=1: & L_{1}(t) & =\mathscr{L}^{-1}\left\{\frac{s-1}{s^{2}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s^{2}}\right\}=1-t \\
n=2: & L_{2}(t) & =\mathscr{L}^{-1}\left\{\frac{(s-1)^{2}}{s^{3}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{2}{s^{2}}+\frac{1}{s^{3}}\right\}=1-2 t+\frac{1}{2} t^{2} \\
n=3: & L_{3}(t) & =\mathscr{L}^{-1}\left\{\frac{(s-1)^{3}}{s^{4}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{3}{s^{2}}+\frac{3}{s^{3}}-\frac{1}{s^{4}}\right\}=1-3 t+\frac{3}{2} t^{2} \\
n=4: & L_{1}(t) & =\mathscr{L}^{-1}\left\{\frac{(s-1)^{4}}{s^{5}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s}-\frac{4}{s^{2}}+\frac{6}{s^{3}}-\frac{4}{s^{4}}+\frac{1}{s^{5}}\right\} \\
& =1-4 t+3 t^{2}-\frac{2}{3} t^{3}+\frac{1}{24} t^{4} .
\end{array}
$$

(b) Letting $f(t)=t^{n} e^{-t}$ we note that $f^{(k)}(0)=0$ for $k=0,1,2, \ldots, n-1$ and $f^{*}=$

Now, by the first translation theorem,

$$
\begin{aligned}
\mathscr{L}\left\{\frac{e^{t}}{n!} \frac{d^{n}}{d t^{n}} t^{n} e^{-t}\right\} & =\frac{1}{n!} \mathscr{L}\left\{e^{t} f^{(n)}(t)\right\}=\left.\frac{1}{n!} \mathscr{L}\left\{f^{(n)}(t)\right\}\right|_{s \rightarrow s-1} \\
& =\frac{1}{n!}\left[s^{n} \mathscr{L}\left\{t^{n} e^{-t}\right\}-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-f^{(n-1)}(0)\right]_{s \rightarrow s-1} \\
& =\frac{1}{n!}\left[s^{n} \mathscr{L}\left\{t^{n} e^{-t}\right\}\right]_{s \rightarrow s-1} \\
& =\frac{1}{n!}\left[s^{n} \frac{n!}{(s+1)^{n+1}}\right]_{s \rightarrow s-1}=\frac{(s-1)^{n}}{s^{n+1}}=Y
\end{aligned}
$$

where $Y=\mathscr{L}\left\{L_{n}(t)\right\}$.Thus

$$
L_{n}(t)=\frac{e^{t}}{n!} \frac{d^{n}}{d t^{n}}\left(t^{n} e^{-t}\right), \quad n=0,1,2, \ldots
$$

62. The output for the first three lines of the program are

$$
\begin{gathered}
9 y[t]+6 y^{\prime}[t]+y^{\prime \prime}[t]==t \sin [t] \\
1-2 s+9 Y+s^{2} Y+6(-2+s Y)==\frac{2 s}{\left(1+s^{2}\right)^{2}} \\
Y \rightarrow-\left(\frac{-11-4 s-22 s^{2}-4 s^{3}-11 s^{4}-2 s^{5}}{\left(1+s^{2}\right)^{2}\left(9+6 s+s^{2}\right)}\right)
\end{gathered}
$$

The fourth line is the same as the third line with $Y \rightarrow$ removed. The final line of output shor:solution involving complex coefficients of $e^{i l}$ and $e^{-i t}$. To get the solution in more standard : write the last line as two lines:

$$
\begin{aligned}
& \text { euler }=\left\{\mathbf{E}^{\wedge}(\mathrm{It})->\operatorname{Cos}[\mathbf{t}]+\mathbf{I} \operatorname{Sin}[\mathrm{t}], \mathbf{E}^{\wedge}(-\mathrm{It}) \rightarrow>\operatorname{Cos}[\mathrm{t}]-\mathrm{I} \operatorname{Sin}[\mathbf{t}]\right\} \\
& \text { InverseLaplaceTransform }[\mathbf{Y}, \mathbf{s}, \mathbf{t}] / \text { euler } / / \text { Expand }
\end{aligned}
$$

We see that the solution is

$$
y(t)=\left(\frac{487}{250}+\frac{247}{50} t\right) e^{-3 t}+\frac{1}{250}(13 \cos t-15 t \cos t-9 \sin t+20 t \sin t)
$$

63. The solution is

$$
y(t)=\frac{1}{6} e^{t}-\frac{1}{6} e^{-t / 2} \cos \sqrt{15} t-\frac{\sqrt{3 / 5}}{6} e^{-t / 2} \sin \sqrt{15} t
$$

64. The solution is

$$
q(t)=1-\cos t+(6-6 \cos t) \mathscr{U}(t-3 \pi)-(4+4 \cos t) \mathscr{U}(t-\pi) .
$$

Exercises 7.5

小hum

1. The Laplace transform of the differential equation yiolds

$$
\mathscr{L}\{y\}=\frac{1}{s-3} e^{-2 s}
$$

so that

$$
y=e^{3(t-2)} \|(t-2)
$$

2. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{2}{s+1}+\frac{e^{-s}}{s+1}
$$

so that

$$
y=2 e^{-t}+e^{-(t-1)}(t-1)
$$

3. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+1}\left(1+e^{-2 \pi s}\right)
$$

so that

$$
y=\sin t+\sin t u(t-2 \pi)
$$

\therefore The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{4} \frac{4}{s^{2}+16} e^{-2 \pi s}
$$

so that

$$
y=\frac{1}{4} \sin 4(t-2 \pi) \mathscr{U}(t-2 \pi)=\frac{1}{4} \sin 4 t \mathscr{U}(t-2 \pi)
$$

\equiv The Laplace transform of the difforential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+1}\left(e^{-\pi s / 2}+e^{-3 \pi s / 2}\right)
$$

so that

$$
\begin{aligned}
y & =\sin \left(t-\frac{\pi}{2}\right) \mathscr{U}\left(t-\frac{\pi}{2}\right)+\sin \left(t-\frac{3 \pi}{2}\right) थ\left(t-\frac{3 \pi}{2}\right) \\
& =-\cos t थ\left(t-\frac{\pi}{2}\right)+\cos t \vartheta\left(t-\frac{3 \pi}{2}\right) .
\end{aligned}
$$

-he Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{s}{s^{2}+1}+\frac{1}{s^{2}+1}\left(e^{-2 \pi s}+e^{-4 \pi s}\right)
$$

Exercises 7.5 The Dirac Delta Function
so that

$$
y=\cos t+\sin t[\mathscr{U}(t-2 \pi)+\mathscr{U}(t-4 \pi)] .
$$

-. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{s^{2}+2 s}\left(1+e^{-s}\right)=\left[\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{1}{s+2}\right]\left(1+e^{-s}\right)
$$

so that

$$
y=\frac{1}{2}-\frac{1}{2} e^{-2 t}+\left[\frac{1}{2}-\frac{1}{2} e^{-2(t-1)}\right] \vartheta(t-1) .
$$

3. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{s+1}{s^{2}(s-2)}+\frac{1}{s(s-2)} e^{-2 s}=\frac{3}{4} \frac{1}{s-2}-\frac{3}{4} \frac{1}{s}-\frac{1}{2} \frac{1}{s^{2}}+\left[\frac{1}{2} \frac{1}{s-2}-\frac{1}{2} \frac{1}{s}\right] e^{-2 s}
$$

so that

$$
y=\frac{3}{4} e^{2 t}-\frac{3}{4}-\frac{1}{2} t+\left[\frac{1}{2} e^{2(t-2)}-\frac{1}{2}\right] \mathscr{U}(t-2) .
$$

9. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{(s+2)^{2}+1} e^{-2 \pi s}
$$

so that

$$
y=e^{-2(t-2 \pi)} \sin t \mathscr{U}(t-2 \pi) .
$$

20. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{(s+1)^{2}} e^{-s}
$$

so that

$$
y=(t-1) e^{-(t-1)} \mathscr{U}(t-1)
$$

11. The Laplace transform of the differential equation yiclds

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{4+s}{s^{2}+4 s+13}+\frac{e^{-\pi s}+e^{-3 \pi s}}{s^{2}+4 s+13} \\
& =\frac{2}{3} \frac{3}{(s+2)^{2}+3^{2}}+\frac{s+2}{(s+2)^{2}+3^{2}}+\frac{1}{3} \frac{3}{(s+2)^{2}+3^{2}}\left(e^{-\pi s}+e^{-3 \pi s}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
y= & \frac{2}{3} e^{-2 t} \sin 3 t+e^{-2 t} \cos 3 t+\frac{1}{3} e^{-2(t-\pi)} \sin 3(t-\pi)^{\mathscr{U}}(t-\pi) \\
& +\frac{1}{3} e^{-2(t-3 \pi)} \sin 3(t-3 \pi) \mathscr{U}(t-3 \pi) .
\end{aligned}
$$

12. The Laplace transform of the differential cquation yields

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{1}{(s-1)^{2}(s-6)}+\frac{e^{-2 s}+e^{-4 s}}{(s-1)(s-6)} \\
& =-\frac{1}{25} \frac{1}{s-1}-\frac{1}{5} \frac{1}{(s-1)^{2}}+\frac{1}{25} \frac{1}{s-6}+\left[-\frac{1}{5} \frac{1}{s-1}+\frac{1}{5} \frac{1}{s-6}\right]\left(e^{-2 s}+e^{-4 s}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
y=- & \frac{1}{25} e^{t}-\frac{1}{5} t e^{t}+\frac{1}{25} e^{6 \iota}+\left[-\frac{1}{5} e^{t-2}+\frac{1}{5} e^{6(t-2)}\right] ひ(t-2) \\
& +\left[-\frac{1}{5} e^{t-4}+\frac{1}{5} e^{6(t-4)}\right] \vartheta(t-4) .
\end{aligned}
$$

-3. The Laplace transform of the differential equation yields

$$
\mathscr{L}\{y\}=\frac{1}{2} \frac{2}{s^{3}} y^{\prime \prime}(0)+\frac{1}{6} \frac{3!}{s^{4}} y^{\prime \prime \prime}(0)+\frac{1}{6} \frac{P_{0}}{E I} \frac{3!}{s^{4}} e^{-L s / 2}
$$

so that

$$
y=\frac{1}{2} y^{\prime \prime}(0) x^{2}+\frac{1}{6} y^{\prime \prime \prime}(0) x^{3}+\frac{1}{6} \frac{P_{0}}{E I}\left(x-\frac{L}{2}\right)^{3} u\left(x-\frac{L}{2}\right) .
$$

Using $y^{\prime \prime}(L)=0$ and $y^{\prime \prime \prime}(L)=0$ we obtain

$$
\begin{aligned}
y & =\frac{1}{4} \frac{P_{0} L}{E I} x^{2}-\frac{1}{6} \frac{P_{0}}{E I} x^{3}+\frac{1}{6} \frac{P_{0}}{E I}\left(x-\frac{L}{2}\right)^{3} U\left(x-\frac{L}{2}\right) \\
& = \begin{cases}\frac{P_{0}}{E I}\left(\frac{L}{4} x^{2}-\frac{1}{6} x^{3}\right), \quad 0 \leq x<\frac{L}{2} \\
\frac{P_{0} L^{2}}{4 E I}\left(\frac{1}{2} x-\frac{L}{12}\right), \quad \frac{L}{2} \leq x \leq L .\end{cases}
\end{aligned}
$$

\therefore. From Problem 13 we know that

$$
y=\frac{1}{2} y^{\prime \prime}(0) x^{2}+\frac{1}{6} y^{\prime \prime \prime}(0) x^{3}+\frac{1}{6} \frac{P_{0}}{E I}\left(x-\frac{L}{2}\right)^{3} \mathscr{U}\left(x-\frac{L}{2}\right)
$$

U'sing $y(L)=0$ and $y^{\prime}(L)=0$ we obtain

$$
\begin{aligned}
y & =\frac{1}{16} \frac{P_{0} L}{E I} x^{2}-\frac{1}{12} \frac{P_{0}}{E I} x^{3}+\frac{1}{6} \frac{P_{0}}{E I}\left(x-\frac{L}{2}\right)^{3} \\
& = \begin{cases}\frac{P_{0}}{E I}\left(\frac{L}{16} x^{2}-\frac{1}{12} x^{3}\right), & \left.0 \leq x<\frac{L}{2}\right) \\
\frac{P_{0}}{E I}\left(\frac{L}{16} x^{2}-\frac{1}{12} x^{3}\right)+\frac{1}{6} \frac{P_{0}}{E I}\left(x-\frac{L}{2}\right)^{3}, & \frac{L}{2} \leq x \leq L .\end{cases}
\end{aligned}
$$

\therefore You should disagree. Although formal manipulations of the Laplace transform lead to $y(t=$ $\frac{1}{3} e^{-l} \sin 3 t$ in both cases, this function does not satisfy the initial condition $y^{\prime}(0)=0$ of the seca: $:$ initial-value problem.

Exercises 7.6 Systems of Linear Differential Equations

Exercises 7.6

Systems of Linear Differential Equations

1. Taking the Laplace transform of the system gives

$$
\begin{aligned}
s \mathscr{L}\{x\} & =-\mathscr{L}\{x\}+\mathscr{L}\{y\} \\
s \mathscr{L}\{y\}-1 & =2 \mathscr{L}\{x\}
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{1}{(s-1)(s+2)}=\frac{1}{3} \frac{1}{s-1}-\frac{1}{3} \frac{1}{s+2}
$$

and

$$
\mathscr{L}\{y\}=\frac{1}{s}+\frac{2}{s(s-1)(s+2)}=\frac{2}{3} \frac{1}{s-1}+\frac{1}{3} \frac{1}{s+2} .
$$

Then

$$
x=\frac{1}{3} e^{t}-\frac{1}{3} e^{-2 t} \quad \text { and } \quad y=\frac{2}{3} e^{t}+\frac{1}{3} e^{-2 t} .
$$

2. Taking the Laplace transform of the system gives

$$
\begin{aligned}
& s \mathscr{L}\{x\}-1=2 \mathscr{L}\{y\}+\frac{1}{s-1} \\
& s \mathscr{L}\{y\}-1=8 \mathscr{L}\{x\}-\frac{1}{s^{2}}
\end{aligned}
$$

so that

$$
\mathscr{L}\{y\}=\frac{s^{3}+7 s^{2}-s+1}{s(s-1)\left(s^{2}-16\right)}=\frac{1}{16} \frac{1}{s}-\frac{8}{15} \frac{1}{s-1}+\frac{173}{96} \frac{1}{s-4}-\frac{53}{160} \frac{1}{s+4}
$$

and

$$
y=\frac{1}{16}-\frac{8}{15} e^{t}+\frac{173}{96} e^{4 t}-\frac{53}{160} e^{-4 t}
$$

Then

$$
x=\frac{1}{8} y^{\prime}+\frac{1}{8} t=\frac{1}{8} t-\frac{1}{15} e^{t}+\frac{173}{192} e^{4 t}+\frac{53}{320} e^{-4 t}
$$

3. Taking the Laplace transform of the system gives

$$
\begin{aligned}
& s \mathscr{L}\{x\}+1=\mathscr{L}\{x\}-2 \mathscr{L}\{y\} \\
& s \mathscr{L}\{y\}-2=5 \mathscr{L}\{x\}-\mathscr{L}\{y\}
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{-s-5}{s^{2}+9}=-\frac{s}{s^{2}+9}-\frac{\tilde{0}}{3} \frac{3}{s^{2}+9}
$$

and

$$
x=-\cos 3 t-\frac{5}{3} \sin 3 t
$$

Then

$$
y=\frac{1}{2} x-\frac{1}{2} x^{\prime}=2 \cos 3 t-\frac{7}{3} \sin 3 t .
$$

4. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(s+3) \mathscr{L}\{x\}+s \mathscr{L}\{y\} & =\frac{1}{s} \\
(s-1) \mathscr{L}\{x\}+(s-1) \mathscr{L}\{y\} & =\frac{1}{s-1}
\end{aligned}
$$

so that

$$
\mathscr{L}\{y\}=\frac{5 s-1}{3 s(s-1)^{2}}=-\frac{1}{3} \frac{1}{s}+\frac{1}{3} \frac{1}{s-1}+\frac{4}{3} \frac{1}{(s-1)^{2}}
$$

and

$$
\mathscr{L}\{x\}=\frac{1-2 s}{3 s(s-1)^{2}}=\frac{1}{3} \frac{1}{s}-\frac{1}{3} \frac{1}{s-1}-\frac{1}{3} \frac{1}{(s-1)^{2}} .
$$

Then

$$
x=\frac{1}{3}-\frac{1}{3} e^{t}-\frac{1}{3} t e^{t} \quad \text { and } \quad y=-\frac{1}{3}+\frac{1}{3} e^{t}+\frac{4}{3} t e^{t}
$$

3. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(2 s-2) \mathscr{L}\{x\}+s \mathscr{L}\{y\} & =\frac{1}{s} \\
(s-3) \mathscr{L}\{x\}+(s-3) \mathscr{L}\{y\} & =\frac{2}{s}
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{-s-3}{s(s-2)(s-3)}=-\frac{1}{2} \frac{1}{s}+\frac{5}{2} \frac{1}{s-2}-\frac{2}{s-3}
$$

and

$$
\mathscr{L}\{y\}=\frac{3 s-1}{s(s-2)(s-3)}=-\frac{1}{6} \frac{1}{s}-\frac{5}{2} \frac{1}{s-2}+\frac{8}{3} \frac{1}{s-3} .
$$

Then

$$
x=-\frac{1}{2}+\frac{5}{2} e^{2 t}-2 e^{3 t} \quad \text { and } \quad y=-\frac{1}{6}-\frac{5}{2} e^{2 t}+\frac{8}{3} e^{3 t}
$$

E. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(s+1) \mathscr{L}\{x\}-(s-1) \mathscr{L}\{y\} & =-1 \\
s \mathscr{L}\{x\}+(s+2) \mathscr{L}\{y\} & =1
\end{aligned}
$$

so that

$$
\mathscr{L}\{y\}=\frac{s+1 / 2}{s^{2}+s+1}=\frac{s+1 / 2}{(s+1 / 2)^{2}+(\sqrt{3} / 2)^{2}}
$$

and

Exercises 7.6 Systcms of Linear Differential Equations

$$
\mathscr{L}\{x\}=\frac{-3 / 2}{s^{2}+s+1}=-\sqrt{3} \frac{\sqrt{3} / 2}{(s+1 / 2)^{2}+(\sqrt{3} / 2)^{2}} .
$$

-ien

$$
y=e^{-t / 2} \cos \frac{\sqrt{3}}{2} t \quad \text { and } \quad x=-\sqrt{3} e^{-t / 2} \sin \frac{\sqrt{3}}{2} t
$$

-. -aing the Laplace transform of the system gives

$$
\begin{aligned}
\left(s^{2}+1\right) \mathscr{L}\{x\}-\mathscr{L}\{y\} & =-2 \\
-\mathscr{L}\{x\}+\left(s^{2}+1\right) \mathscr{L}\{y\} & =1
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{-2 s^{2}-1}{s^{4}+2 s^{2}}=-\frac{1}{2} \frac{1}{s^{2}}-\frac{3}{2} \frac{1}{s^{2}+2}
$$

and

$$
x=-\frac{1}{2} t-\frac{3}{2 \sqrt{2}} \sin \sqrt{2} t
$$

Then

$$
y=x^{\prime \prime}+x=-\frac{1}{2} t+\frac{3}{2 \sqrt{2}} \sin \sqrt{2} t
$$

E. Iaking the Laplace transform of the system gives

$$
\begin{aligned}
(s+1) \mathscr{L}\{x\}+\mathscr{L}\{y\} & =1 \\
4 \mathscr{L}\{x\}-(s+1) \mathscr{L}\{y\} & =1
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{s+2}{s^{2}+2 s+5}=\frac{s+1}{(s+1)^{2}+2^{2}}+\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}
$$

and

$$
\mathscr{L}\{y\}=\frac{-s+3}{s^{2}+2 s+5}=-\frac{s+1}{(s+1)^{2}+2^{2}}+2 \frac{2}{(s+1)^{2}+2^{2}}
$$

Then

$$
x=e^{-t} \cos 2 t+\frac{1}{2} e^{-t} \sin 2 t \quad \text { and } \quad y=-e^{-t} \cos 2 t+2 e^{-t} \sin 2 t
$$

9. Adding the equations and then subtracting them gives

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}=\frac{1}{2} t^{2}+2 t \\
& \frac{d^{2} y}{d t^{2}}=\frac{1}{2} t^{2}-2 t
\end{aligned}
$$

Taking the Laplace transform of the system gives

$$
\mathscr{L}\{x\}=8 \frac{1}{s}+\frac{1}{24} \frac{4!}{s^{5}}+\frac{1}{3} \frac{3!}{s^{4}}
$$

and

$$
\mathscr{L}\{y\}=\frac{1}{24} \frac{4!}{s^{5}}-\frac{1}{3} \frac{3!}{s^{4}}
$$

so that

$$
x=8+\frac{1}{24} t^{4}+\frac{1}{3} t^{3} \quad \text { and } \quad y=\frac{1}{24} t^{4}-\frac{1}{3} t^{3} .
$$

-0. Taking the Laplace transform of the system gives

$$
\begin{aligned}
(s-4) \mathscr{L}\{x\}+s^{3} \mathscr{L}\{y\} & =\frac{6}{s^{2}+1} \\
(s+2) \mathscr{L}\{x\}-2 s^{3} \mathscr{L}\{y\} & =0
\end{aligned}
$$

so that

$$
\mathscr{L}\{x\}=\frac{4}{(s-2)\left(s^{2}+1\right)}=\frac{4}{5} \frac{1}{s-2}-\frac{4}{5} \frac{s}{s^{2}+1}-\frac{8}{5} \frac{1}{s^{2}+1}
$$

and

$$
\mathscr{L}\{y\}=\frac{2 s+4}{s^{3}(s-2)\left(s^{2}+1\right)}=\frac{1}{s}-\frac{2}{s^{2}}-2 \frac{2}{s^{3}}+\frac{1}{5} \frac{1}{s-2}-\frac{6}{5} \frac{s}{s^{2}+1}+\frac{8}{5} \frac{1}{s^{2}+1} .
$$

Then

$$
x=\frac{4}{5} e^{2 t}-\frac{4}{5} \cos t-\frac{8}{5} \sin t
$$

and

$$
y=1-2 t-2 t^{2}+\frac{1}{5} e^{2 t}-\frac{6}{5} \cos t+\frac{8}{5} \sin t
$$

-.- Taking the Laplace transform of the system gives

$$
\begin{aligned}
s^{2} \mathscr{L}\{x\}+3(s+1) \mathscr{L}\{y\} & =2 \\
s^{2} \mathscr{L}\{x\}+3 \mathscr{L}\{y\} & =\frac{1}{(s+1)^{2}}
\end{aligned}
$$

\rightarrow that

$$
\mathscr{L}\{x\}=-\frac{2 s+1}{s^{3}(s+1)}=\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{2} \frac{2}{s^{3}}-\frac{1}{s+1} .
$$

Then

$$
x=1+t \div \frac{1}{2} t^{2}-e^{-l}
$$

\therefore. d

$$
y=\frac{1}{3} t e^{-t}-\frac{1}{3} x^{\prime \prime}=\frac{1}{3} t e^{-t}+\frac{1}{3} e^{-t}-\frac{1}{3} .
$$

\therefore-aking the Laplace transform of the system gives

$$
\begin{aligned}
(s-4) \mathscr{L}\{x\}+2 \mathscr{L}\{y\} & =\frac{2 e^{-s}}{s} \\
-3 \mathscr{L}\{x\}+(s+1) \mathscr{L}\{y\} & =\frac{1}{2}+\frac{e^{-s}}{s}
\end{aligned}
$$

Exercises 7.6 Systems of Linear Differential Equations
so that

$$
\begin{aligned}
\mathscr{L}\{x\} & =\frac{-1 / 2}{(s-1)(s-2)}+e^{-s} \frac{1}{(s-1)(s-2)} \\
& =\frac{1}{2} \frac{1}{s-1}-\frac{1}{2} \frac{1}{s-2}+e^{-s}\left[-\frac{1}{s-1}+\frac{1}{s-2}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{e^{-s}}{s}+\frac{s / 4-1}{(s-1)(s-2)}+e^{-s} \frac{-s / 2+2}{(s-1)(s-2)} \\
& =\frac{3}{4} \frac{1}{s-1}-\frac{1}{2} \frac{1}{s-2}+e^{-s}\left[\frac{1}{s}-\frac{3}{2} \frac{1}{s-1}+\frac{1}{s-2}\right] .
\end{aligned}
$$

Then

$$
x=\frac{1}{2} e^{t}-\frac{1}{2} e^{2 t}+\left[-e^{t-1}+e^{2(t-1)}\right] \mathscr{U}(t-1)
$$

and

$$
y=\frac{3}{4} e^{t}-\frac{1}{2} e^{2 t}+\left[1-\frac{3}{2} e^{t-1}+e^{2(t-1)}\right] \mathscr{U}(t-1) .
$$

13. The system is

$$
\begin{aligned}
x_{1}^{\prime \prime} & =-3 x_{1}+2\left(x_{2}-x_{1}\right) \\
x_{2}^{\prime \prime} & =-2\left(x_{2}-x_{1}\right) \\
x_{1}(0) & =0 \\
x_{1}^{\prime}(0) & =1 \\
x_{2}(0) & =1 \\
x_{2}^{\prime}(0) & =0 .
\end{aligned}
$$

Taking the Laplace transform of the system gives

$$
\begin{aligned}
\left(s^{2}+5\right) \mathscr{L}\left\{x_{1}\right\}-2 \mathscr{L}\left\{x_{2}\right\} & =1 \\
-2 \mathscr{L}\left\{x_{1}\right\}+\left(s^{2}+2\right) \mathscr{L}\left\{x_{2}\right\} & =s
\end{aligned}
$$

so that

$$
\mathscr{L}\left\{x_{1}\right\}=\frac{s^{2}+2 s+2}{s^{4}+7 s^{2}+6}=\frac{2}{5} \frac{s}{s^{2}+1}+\frac{1}{5} \frac{1}{s^{2}+1}-\frac{2}{5} \frac{s}{s^{2}+6}+\frac{4}{5 \sqrt{6}} \frac{\sqrt{6}}{s^{2}+6}
$$

and

$$
\mathscr{L}\left\{x_{2}\right\}=\frac{s^{3}+5 s+2}{\left(s^{2}+1\right)\left(s^{2}+6\right)}=\frac{4}{5} \frac{s}{s^{2}+1}+\frac{2}{5} \frac{1}{s^{2}+1}+\frac{1}{3} \frac{s}{s^{2}+6}-\frac{2}{5 \sqrt{6}} \frac{\sqrt{6}}{s^{2}+6} .
$$

Then

$$
x_{1}=\frac{2}{5} \cos t+\frac{1}{5} \sin t-\frac{2}{5} \cos \sqrt{6} t+\frac{4}{5 \sqrt{6}} \sin \sqrt{6} t
$$

and

$$
x_{2}=\frac{4}{5} \cos t+\frac{2}{5} \sin t+\frac{1}{5} \cos \sqrt{6} t-\frac{7}{5} \sqrt{3}
$$

-4. In this system x_{1} and x_{2} represent displacoments of masses m_{1} and m from positions. Since the net forces acting on m_{1} and m_{2} are

$$
-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) \quad \text { and } \quad-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2} .
$$

respectively, Newton's sccond law of motion gives

$$
\begin{aligned}
& m_{1} x_{1}^{\prime \prime}=-k_{1} x_{1}+k_{2}\left(x_{2}-x_{1}\right) \\
& m_{2} x_{2}^{\prime \prime}=-k_{2}\left(x_{2}-x_{1}\right)-k_{3} x_{2} .
\end{aligned}
$$

Using $k_{1}=k_{2}=k_{3}=1, m_{1}=m_{2}=1, x_{1}(0)=0, x_{1}(0)=-1, x_{2}(0)=0$, and $x_{2}^{\prime} 0=\therefore:-:$ taking the Laplace transform of the system, we obtain

$$
\begin{aligned}
& \left(2+s^{2}\right) \mathscr{L}\left\{x_{1}\right\}-\mathscr{L}\left\{x_{2}\right\}=-1 \\
& \mathscr{L}\left\{x_{1}\right\}-\left(2+s^{2}\right) \mathscr{L}\left\{x_{2}\right\}=-1
\end{aligned}
$$

so that

$$
\mathscr{L}\left\{x_{1}\right\}=-\frac{1}{s^{2}+3} \quad \text { and } \quad \mathscr{L}\left\{x_{2}\right\}=\frac{1}{s^{2}+3}
$$

Then

$$
x_{1}=-\frac{1}{\sqrt{3}} \sin \sqrt{3} t \quad \text { and } \quad x_{2}=\frac{1}{\sqrt{3}} \sin \sqrt{3} t
$$

2. (a) By Kirchhoff's first law we have $i_{1}=i_{2}+i_{3}$. By Kirchhoff's second law, on each loop \therefore. $E(t)=R i_{1}+L_{1} i_{2}^{\prime}$ and $E(t)=R i_{1}+L_{2} i_{3}^{\prime}$ or $L_{1} i_{2}^{\prime}+R i_{2}+R i_{3}=E(t)$ and $L_{2} i_{3}^{\prime}+R i_{2}+R i_{s}=$ ミ -
(b) Taking the Laplace transform of the system

$$
\begin{array}{r}
0.01 i_{2}^{\prime}+5 i_{2}+5 i_{3}=100 \\
0.0125 i_{3}^{\prime}+5 i_{2}+5 i_{3}=100
\end{array}
$$

gives

$$
\begin{aligned}
& (s+500) \mathscr{L}\left\{i_{2}\right\}+500 \mathscr{L}\left\{i_{3}\right\}=\frac{10,000}{s} \\
& 400 \mathscr{L}\left\{i_{2}\right\}+(s+400) \mathscr{L}\left\{i_{3}\right\}=\frac{8,000}{s}
\end{aligned}
$$

so that

$$
\mathscr{L}\left\{i_{3}\right\}=\frac{8,000}{s^{2}+900 s}=\frac{80}{9} \frac{1}{s}-\frac{80}{9} \frac{1}{s+900} .
$$

Then

$$
i_{3}=\frac{80}{9}-\frac{80}{9} e^{-900 t} \quad \text { and } \quad i_{2}=20-0.0025 i_{3}^{\prime}-i_{3}=\frac{100}{9}-\frac{100}{9} e^{-900 t}
$$

Exercises 7.6 Systems of Linear Differential Equations
(c) $i_{1}=i_{2}+i_{3}=20-20 e^{-900 t}$
16. (a) Taking the Laplace transform of the system

$$
\begin{aligned}
i_{2}^{\prime}+i_{3}^{\prime}+10 i_{2} & =120-120 थ(t-2) \\
-10 i_{2}^{\prime}+5 i_{3}^{\prime}+5 i_{3} & =0
\end{aligned}
$$

gives

$$
\begin{aligned}
(s+10) \mathscr{L}\left\{i_{2}\right\}+s \mathscr{L}\left\{i_{3}\right\} & =\frac{120}{s}\left(1-e^{-2 s}\right) \\
-10 s \mathscr{L}\left\{i_{2}\right\}+\tilde{5}(s+1) \mathscr{L}\left\{i_{3}\right\} & =0
\end{aligned}
$$

so that

$$
\mathscr{L}\left\{i_{2}\right\}=\frac{120(s+1)}{\left(3 s^{2}+11 s+10\right) s}\left(1-e^{-2 s}\right)=\left[\frac{48}{s+5 / 3}-\frac{60}{s+2}+\frac{12}{s}\right]\left(1-e^{-2 s}\right)
$$

and

$$
\mathscr{L}\left\{i_{3}\right\}=\frac{240}{3 s^{2}+11 s+10}\left(1-e^{-2 s}\right)=\left[\frac{240}{s+5 / 3}-\frac{240}{s+2}\right]\left(1-e^{-2 s}\right)
$$

Then

$$
i_{2}=12+48 e^{-5 t / 3}-60 e^{-2 t}-\left[12+48 e^{-5(t-2) / 3}-60 e^{-2(t-2)}\right] \mathscr{U}(t-2)
$$

and

$$
i_{3}=240 e^{-5 t / 3}-240 e^{-2 l}-\left[240 e^{-5(t-2) / 3}-240 e^{-2(t-2)}\right] \mathscr{U}(t-2) .
$$

(b) $i_{1}=i_{2}+i_{3}=12+288 e^{-5 t / 3}-300 e^{-2 t}-\left[12+288 e^{-5(t-2) / 3}-300 e^{-2(t-2)}\right] \mathscr{U}(t-2)$
${ }^{17}$. Taking the Laplace transform of the system

$$
\begin{aligned}
i_{2}^{\prime}+11 i_{2}+6 i_{3} & =50 \sin t \\
i_{3}^{\prime}+6 i_{2}+6 i_{3} & =50 \sin t
\end{aligned}
$$

gives

$$
\begin{aligned}
(s+11) \mathscr{L}\left\{i_{2}\right\}+6 \mathscr{L}\left\{i_{3}\right\} & =\frac{50}{s^{2}+1} \\
6 \mathscr{L}\left\{i_{2}\right\}+(s+6) \mathscr{L}\left\{i_{3}\right\} & =\frac{50}{s^{2}+1}
\end{aligned}
$$

so that

$$
\mathscr{L}\left\{i_{2}\right\}=\frac{50 s}{(s+2)(s+15)\left(s^{2}+1\right)}=-\frac{20}{13} \frac{1}{s+2}+\frac{375}{1469} \frac{1}{s+15}+\frac{145}{113} \frac{s}{s^{2}+1}+\frac{85}{113} \frac{1}{s^{2}+1}
$$

Then

$$
i_{2}=-\frac{20}{13} e^{-2 t}+\frac{375}{1469} e^{-15 t}+\frac{145}{113} \cos t+\frac{85}{113} \sin t
$$

and

$$
i_{3}=\frac{25}{3} \sin t-\frac{1}{6} i_{2}^{\prime}-\frac{11}{6} i_{2}=\frac{30}{13} e^{-2 t}+\frac{250}{1469} e^{-15 t}-\frac{280}{113} \cos t+\frac{810}{113} \sin t .
$$

2. Taking the Laplace transform of the system

$$
\begin{aligned}
0.5 i_{1}^{\prime}+50 i_{2} & =60 \\
0.005 i_{2}^{\prime}+i_{2}-i_{1} & =0
\end{aligned}
$$

gives

$$
\begin{aligned}
s \mathscr{L}\left\{i_{1}\right\}+100 \mathscr{L}\left\{i_{2}\right\} & =\frac{120}{s} \\
-200 \mathscr{L}\left\{i_{1}\right\}+(s+200) \mathscr{L}\left\{i_{2}\right\} & =0
\end{aligned}
$$

so that

$$
\mathscr{L}\left\{i_{2}\right\}=\frac{24,000}{s\left(s^{2}+200 s+20,000\right)}=\frac{6}{5} \frac{1}{s}-\frac{6}{5} \frac{s+100}{(s+100)^{2}+100^{2}}-\frac{6}{5} \frac{100}{(s+100)^{2}+100^{2}} .
$$

Then

$$
i_{2}=\frac{6}{5}-\frac{6}{5} e^{-100 t} \cos 100 t-\frac{6}{5} e^{-100 t} \sin 100 t
$$

and

$$
i_{1}=0.005 i_{2}^{\prime}+i_{2}=\frac{6}{5}-\frac{6}{5} e^{-100 t} \cos 100 t
$$

\therefore Taking the Laplace transform of the system

$$
\begin{aligned}
2 i_{1}^{\prime}+50 i_{2} & =60 \\
0.005 i_{2}^{\prime}+i_{2}-i_{1} & =0
\end{aligned}
$$

gives

$$
\begin{aligned}
2 s \mathscr{L}\left\{i_{1}\right\}+50 \mathscr{L}\left\{i_{2}\right\} & =\frac{60}{s} \\
-200 \mathscr{L}\left\{i_{1}\right\}+(s+200) \mathscr{L}\left\{i_{2}\right\} & =0
\end{aligned}
$$

so that

$$
\begin{aligned}
\mathscr{L}\left\{i_{2}\right\} & =\frac{6,000}{s\left(s^{2}+200 s+5,000\right)} \\
& =\frac{6}{5} \frac{1}{s}-\frac{6}{5} \frac{s+100}{(s+100)^{2}-(50 \sqrt{2})^{2}}-\frac{6 \sqrt{2}}{5} \frac{50 \sqrt{2}}{(s+100)^{2}-(50 \sqrt{2})^{2}}
\end{aligned}
$$

Then
and

$$
i_{2}=\frac{6}{5}-\frac{6}{5} e^{-100 t} \cosh 50 \sqrt{2} t-\frac{6 \sqrt{2}}{5} e^{-100 t} \sinh 50 \sqrt{2} t
$$

$$
i_{1}=0.005 i_{2}^{\prime}+i_{2}=\frac{6}{5}-\frac{6}{5} e^{-100 t} \cosh 50 \sqrt{2} t-\frac{9 \sqrt{2}}{10} e^{-100 t} \sinh 50 \sqrt{2} t
$$

Exercises 7.6 Systems of Linear Differential Equations
20. (a) Using Kirchhoff's first law we write $i_{1}=i_{2}+i_{3}$. Since $i_{2}=d q / d t$ we have $i_{1}-i_{3}=d c$ Using Kirchhoff's second law and summing the voltage drops across the shorter loop give:

$$
E(t)=i R_{1}+\frac{1}{C} q,
$$

so that

$$
i_{1}=\frac{1}{R_{1}} E(t)-\frac{1}{R_{1} C} q .
$$

Then

$$
\frac{d q}{d t}=i_{1}-i_{3}=\frac{1}{R_{1}} E(t)-\frac{1}{R_{1} C} q-i_{3}
$$

and

$$
R_{1} \frac{d q}{d t}+\frac{1}{C} q+R_{1} i_{3}=E(t)
$$

Summing the voltage drops across the longer loop gives

$$
E(t)=i_{1} R_{1}+L \frac{d i_{3}}{d t}+R_{2} i_{3} .
$$

Combining this with (1) we obtain
or

$$
i_{1} R_{1}+L \frac{d i_{3}}{d t}+R_{2} i_{3}=i_{1} R_{1}+\frac{1}{C} q
$$

$$
L \frac{d i_{3}}{d t}+R_{2} i_{3}-\frac{1}{C} q=0
$$

(b) Using $\left.L=R_{1}=R_{2}=C=1, E(t)=50 e^{-t} \cdot\right)(t-1)=50 e^{-1} e^{-(t-1)} \mathscr{U}(t-1), q(0)=i_{3}(0=$ and taking the Laplace transform of the system we obtain

$$
\begin{aligned}
& (s+1) \mathscr{L}\{q\}+\mathscr{L}\left\{i_{3}\right\}=\frac{50 e^{-1}}{s+1} e^{-s} \\
& (s+1) \mathscr{L}\left\{i_{3}\right\}-\mathscr{L}\{q\}=0
\end{aligned}
$$

so that

$$
\mathscr{L}\{q\}=\frac{50 e^{-1} e^{-s}}{(s+1)^{2}+1}
$$

and

$$
q(t)=50 e^{-1} e^{-(t-1)} \sin (t-1) \mathscr{U}(t-1)=50 e^{-t} \sin (t-1) \mathscr{U}(t-1)
$$

21. (a) Taking the Laplace transform of the system

$$
\begin{array}{r}
4 \theta_{1}^{\prime \prime}+\theta_{2}^{\prime \prime}+8 \theta_{1}=0 \\
\theta_{1}^{\prime \prime}+\theta_{2}^{\prime \prime}+2 \theta_{2}=0
\end{array}
$$

gives

$$
\begin{aligned}
4\left(s^{2}+2\right) \mathscr{L}\left\{\theta_{1}\right\}+s^{2} \mathscr{L}\left\{\theta_{2}\right\} & =3 s \\
s^{2} \mathscr{L}\left\{\theta_{1}\right\}+\left(s^{2}+2\right) \mathscr{L}\left\{\theta_{2}\right\} & =0
\end{aligned}
$$

so that

$$
\left(3 s^{2}+4\right)\left(s^{2}+4\right) \mathscr{L}\left\{\theta_{2}\right\}=-3 s^{3}
$$

or

$$
\mathscr{L}\left\{\theta_{2}\right\}=\frac{1}{2} \frac{s}{s^{2}+4 / 3}-\frac{3}{2} \frac{s}{s^{2}+4} .
$$

Then

$$
\theta_{2}=\frac{1}{2} \cos \frac{2}{\sqrt{3}} t-\frac{3}{2} \cos 2 t \quad \text { and } \quad \theta_{1}^{\prime \prime}=-\theta_{2}^{\prime \prime}-2 \theta_{2}
$$

so that

$$
\theta_{1}=\frac{1}{4} \cos \frac{2}{\sqrt{3}} t+\frac{3}{4} \cos 2 t
$$

(b)

Mass m_{2} has extreme displacements of greater magnitude. Mass m_{1} first passes thay......... equilibrium position at about $t=0.87$, and mass m_{2} first passes through its equi:......... position at about $t=0.66$. The motion of the pendulums is not periodic since $\cos (2 t, \overline{\mathrm{y}} \quad \ldots \cdot$ period $\sqrt{3} \pi, \cos 2 t$ has period π, and the ratio of these periods is $\sqrt{3}$, which is not an number.
(c) The Lissajous curve is plotted for $0 \leq t \leq 30$.

d)

t	θ_{1}	θ_{2}
1	-0.2111	0.8263
2	-0.6585	0.6438
3	0.4830	-1.9145
4	-0.1325	0.1715
5	-0.4111	1.6951
6	0.8327	-0.8662
7	0.0458	-0.3186
8	-0.9639	0.9452
9	0.3534	-1.2741
10	0.4370	-0.3502

(e) Using a CAS to solve $\theta_{1}(t)=\theta_{2}(t)$ we see that $\theta_{1}=\theta_{2}$ (so that the double pendulum is straight out) when t is about 0.75 seconds.
f) To make a movie of the pendulum it is necessary to locate the mass in the plane as a func of time. Suppose that the upper arm is attached to the origin and that the equilibrium pos:lies along the negative y-axis. Then mass m_{1} is at $\left(x,(t), y_{1}(t)\right)$ and mass m_{2} is at $\left(x_{2}(t), y=\right.$ where

$$
x_{1}(t)=16 \sin \theta_{1}(t) \quad \text { and } \quad y_{1}(t)=-16 \cos \theta_{1}(t)
$$

and

$$
x_{2}(t)=x_{1}(t)+16 \sin \theta_{2}(t) \quad \text { and } \quad y_{2}(t)=y_{1}(t)-16 \cos \theta_{2}(t)
$$

A reasonable movie can be constructed by letting t range from 0 to 10 in increments $:$ seconds.

Chapter 7 in Review

1. $\mathscr{L}\{f(t)\}=\int_{0}^{1} t e^{-s t} d t+\int_{1}^{\infty}(2-t) e^{-s t} d t=\frac{1}{s^{2}}-\frac{2}{s^{2}} e^{-s}$
2. $\mathscr{L}\{f(t)\}=\int_{2}^{4} e^{-s t} d t=\frac{1}{s}\left(e^{-2 s}-e^{-4 s}\right)$
3. False; consider $f(t)=t^{-1 / 2}$.
4. False, since $f(t)=\left(e^{t}\right)^{10}=e^{10 t}$.
5. True, since $\lim _{s \rightarrow \infty} F(s)=1 \neq 0$. (See Theorem 7.1. 3 in the text.)

万. False; consider $f(t)=1$ and $g(t)=1$.
$\therefore \mathscr{L}\left\{e^{-7 t}\right\}=\frac{1}{s+7}$
‥ $\mathscr{L}\left\{t e^{-7 t}\right\}=\frac{1}{(s+7)^{2}}$
9. $\mathscr{L}\{\sin 2 t\}=\frac{2}{s^{2}+4}$
-0. $\mathscr{L}\left\{e^{-3 t} \sin 2 t\right\}=\frac{2}{(s+3)^{2}+4}$
:1. $\mathscr{L}\{t \sin 2 t\}=-\frac{d}{d s}\left[\frac{2}{s^{2}+4}\right]=\frac{4 s}{\left(s^{2}+4\right)^{2}}$
22. $\mathscr{L}\{\sin 2 t \mathscr{U}(t-\pi)\}=\mathscr{L}\{\sin 2(t-\pi) \mathscr{U}(t-\pi)\}=\frac{2}{s^{2}+4} e^{-\pi s}$
:3. $\mathscr{L}^{-1}\left\{\frac{20}{s^{6}}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{6} \frac{5!}{s^{6}}\right\}=\frac{1}{6} t^{5}$
$\therefore \mathscr{L}^{-1}\left\{\frac{1}{3 s-1}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{3} \frac{1}{s-1 / 3}\right\}=\frac{1}{3} e^{t / 3}$
:5. $\mathscr{L}^{-1}\left\{\frac{1}{(s-5)^{3}}\right\}=\frac{1}{2} \mathscr{L}^{-1}\left\{\frac{2}{(s-5)^{3}}\right\}=\frac{1}{2} t^{2} e^{5 t}$
$\therefore \mathscr{L}^{-1}\left\{\frac{1}{s^{2}-5}\right\}=\mathscr{L}^{-1}\left\{-\frac{1}{2 \sqrt{5}} \frac{1}{s+\sqrt{5}}+\frac{1}{2 \sqrt{5}} \frac{1}{s-\sqrt{5}}\right\}=-\frac{1}{2 \sqrt{5}} e^{-\sqrt{5} t}+\frac{1}{2 \sqrt{5}} e^{\sqrt{5} t}$

Chapter 7 in Review

17. $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}-10 s+29}\right\}=\mathscr{L}^{-1}\left\{\frac{s-5}{(s-5)^{2}+2^{2}}+\frac{5}{2} \frac{2}{(s-5)^{2}+2^{2}}\right\}=c^{5 l} \cos 2 t+\frac{5}{2} e^{5 t} \sin 2 t$
18. $\mathscr{L}^{-1}\left\{\frac{1}{s^{2}} e^{- \text {Јs } s}\right\}=(t-5) U(t-5)$
19. $\mathscr{L}^{-1}\left\{\frac{s+\pi}{s^{2}+\pi^{2}} e^{-s}\right\}=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+\pi^{2}} e^{-s}+\frac{\pi}{s^{2}+\pi^{2}} e^{-s}\right\}$

$$
=\cos \pi(t-1) u(t-1)+\sin \pi(t-1)^{v} u(t-1)
$$

20. $\mathscr{L}^{-1}\left\{\frac{1}{L^{2} s^{2}+n^{2} \pi^{2}}\right\}=\frac{1}{L^{2}} \frac{L}{n \pi} \mathscr{L}^{-1}\left\{\frac{n \pi / L}{s^{2}+\left(n^{2} \pi^{2}\right) / L^{2}}\right\}=\frac{1}{L n \pi} \sin \frac{n \pi}{L} t$
21. $\mathscr{L}\left\{e^{-5 i t}\right\}$ exists for $s>-5$.
22. $\mathscr{L}\left\{t e^{8 t} f(t)\right\}=-\frac{d}{d s} F(s-8)$.
23. $\mathscr{L}\left\{e^{a t} f(t-k) \mathscr{U}(t-k)\right\}=e^{-k s} \mathscr{L}\left\{e^{a(t+k)} f(t)\right\}=e^{-k s} e^{a k} \mathscr{L}\left\{e^{a l} f(t)\right\}=e^{-k(s-a)} F(s-a)$
24. $\mathscr{L}\left\{\int_{0}^{t} e^{a \tau} f(\tau) d \tau\right\}=\frac{1}{s} \mathscr{L}\left\{e^{a t} f(t)\right\}=\frac{F(s-a)}{s}$, whereas

$$
\mathscr{L}\left\{e^{a t} \int_{0}^{t} f(\tau) d \tau\right\}=\left.\mathscr{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}\right|_{s \rightarrow s-a}=\left.\frac{F(s)}{s}\right|_{s \rightarrow s-a}=\frac{F(s-a)}{s-a} .
$$

25. $f(t) \mathscr{U}\left(t-t_{0}\right)$
26. ${ }^{\circ}(t)-f(t) d\left(t-t_{0}\right)$

2-. $f\left(t-t_{0}\right) थ\left(t-t_{0}\right)$
25. sit $^{(t)}-f(t) \mathscr{U}\left(t-t_{0}\right)+f(t) \mathscr{U}\left(t-t_{1}\right)$
29. $\because t t)=t-[(t-1)+1] \mathscr{U}(t-1)+\mathscr{U}(t-1)-\mathscr{U}(t-4)=t-(t-1) \mathscr{U}(t-1)-\mathscr{U}(t-4)$ $\mathscr{\propto}\{f(t)\}=\frac{1}{s^{2}}-\frac{1}{s^{2}} e^{-s}-\frac{1}{s} e^{-4 s}$ $\not \approx\left\{e^{t} f(t)\right\}=\frac{1}{(s-1)^{2}}-\frac{1}{(s-1)^{2}} e^{-(s-1)}-\frac{1}{s-1} e^{-4(s-1)}$
3. $\because t)=\sin t \mathscr{U}(t-\pi)-\sin t \mathscr{U}(t-3 \pi)=-\sin (t-\pi) \mathscr{U}(t-\pi)+\sin (t-3 \pi) \mathscr{U}(t-3 \pi)$

$$
\nsupseteq\{f(t)\}=-\frac{1}{s^{2}+1} e^{-\pi s}+\frac{1}{s^{2}+1} e^{-3 \pi s}
$$

$$
\neq\left\{e^{t} f(t)\right\}=-\frac{1}{(s-1)^{2}+1} e^{-\pi(s-1)}+\frac{1}{(s-1)^{2}+1} e^{-3 \pi(s-1)}
$$

3. - t) $=2-2 \mathscr{U}(t-2)+[(t-2)+2] \mathscr{U}(t-2)=2+(t-2) \mathscr{U}(t-2)$
$\mathscr{L}\{f(t)\}=\frac{2}{s}+\frac{1}{s^{2}} e^{-2 s}$
$\mathscr{L}\left\{e^{t} f(t)\right\}=\frac{2}{s-1}+\frac{1}{(s-1)^{2}} e^{-2(s-1)}$

$\mathscr{L}\{f(t)\}=\frac{1}{s^{2}}-\frac{2}{s^{2}} e^{-s}+\frac{1}{s^{2}} e^{-2 s}$
$\mathscr{L}\left\{e^{t} f(t)\right\}=\frac{1}{(s-1)^{2}}-\frac{2}{(s-1)^{2}} e^{-(s-1)}+\frac{1}{(s-1)^{2}} e^{-2(s-1)}$
4. Taking the Laplace transform of the differential equation we obtain

$$
\mathscr{L}\{y\}=\frac{5}{(s-1)^{2}}+\frac{1}{2} \frac{2}{(s-1)^{3}}
$$

so that

$$
y=5 t e^{t}+\frac{1}{2} t^{2} e^{t}
$$

34. Taking the Laplace transform of the differential cquation we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{1}{(s-1)^{2}\left(s^{2}-8 s+20\right)} \\
& =\frac{6}{169} \frac{1}{s-1}+\frac{1}{13} \frac{1}{(s-1)^{2}}-\frac{6}{169} \frac{s-4}{(s-4)^{2}-2^{2}}+\frac{5}{338} \frac{2}{(s-4)^{2}+2^{2}}
\end{aligned}
$$

so that

$$
y=\frac{6}{169} e^{t}+\frac{1}{13} t e^{t}-\frac{6}{169} e^{4 t} \cos 2 t+\frac{5}{338} e^{4 t} \sin 2 t
$$

i5. Taking the Laplace transform of the given differential cquation we obtain

$$
\begin{aligned}
\mathscr{L}\{y\}= & \frac{s^{3}+6 s^{2}+1}{s^{2}(s+1)(s+5)}-\frac{1}{s^{2}(s+1)(s+5)} e^{-2 s}-\frac{2}{s(s+1)(s+5)} e^{-2 s} \\
= & -\frac{6}{25} \cdot \frac{1}{s}+\frac{1}{5} \cdot \frac{1}{s^{2}}+\frac{3}{2} \cdot \frac{1}{s+1}-\frac{13}{50} \cdot \frac{1}{s+5} \\
& -\left(-\frac{6}{25} \cdot \frac{1}{s}+\frac{1}{5} \cdot \frac{1}{s^{2}}+\frac{1}{4} \cdot \frac{1}{s+1}-\frac{1}{100} \cdot \frac{1}{s+5}\right) e^{-2 s} \\
& \quad-\left(\frac{2}{5} \cdot \frac{1}{s}-\frac{1}{2} \cdot \frac{1}{s+1}+\frac{1}{10} \cdot \frac{1}{s+5}\right) e^{-2 s}
\end{aligned}
$$

so that

$$
\begin{aligned}
y=- & \frac{6}{25}+\frac{1}{5} t+\frac{3}{2} e^{-t}-\frac{13}{50} e^{-5 t}-\frac{4}{25} \psi(t-2)-\frac{1}{5}(t-2)^{\mathscr{U}}(t-2) \\
& +\frac{1}{4} e^{-(t-2)} U_{(}(t-2)-\frac{9}{100} e^{-5(t-2)} U(t-2)
\end{aligned}
$$

Chapter 7 in Review

30. Taking the Laplace transform of the differential cquation we obtain

$$
\begin{aligned}
\mathscr{L}\{y\} & =\frac{s^{3}+2}{s^{3}(s-5)}-\frac{2+2 s+s^{2}}{s^{3}(s-5)} e^{-s} \\
& =-\frac{2}{125} \frac{1}{s}-\frac{2}{25} \frac{1}{s^{2}}-\frac{1}{5} \frac{2}{s^{3}}+\frac{127}{125} \frac{1}{s-5}-\left[-\frac{37}{125} \frac{1}{s}-\frac{12}{25} \frac{1}{s^{2}}-\frac{1}{5} \frac{2}{s^{3}}+\frac{37}{125} \frac{1}{s-5}\right] e^{-s}
\end{aligned}
$$

so that

$$
y=-\frac{2}{125}-\frac{2}{25} t-\frac{1}{5} t^{2}+\frac{127}{125} e^{5 t}-\left[-\frac{37}{125}-\frac{12}{25}(t-1)-\frac{1}{5}(t-1)^{2}+\frac{37}{125} e^{5(t-1)}\right] \mathscr{U}(t-1) .
$$

5-. Taking the Laplace transform of the integral equation we obtain

$$
\mathscr{L}\{y\}=\frac{1}{s}+\frac{1}{s^{2}}+\frac{1}{2} \frac{2}{s^{3}}
$$

5) that

$$
y(t)=1+t+\frac{1}{2} t^{2} .
$$

55. Taking the Laplace transform of the integral cquation we obtain

$$
(\mathscr{L}\{f\})^{2}=6 \cdot \frac{6}{s^{4}} \quad \text { or } \quad \mathscr{L}\{f\}= \pm 6 \cdot \frac{1}{s^{2}}
$$

\therefore that $f(t)= \pm 6 t$.

- - -ing the Laplace transform of the system gives

$$
\begin{aligned}
s \mathscr{L}\{x\}+\mathscr{L}\{y\} & =\frac{1}{s^{2}}+1 \\
4 \mathscr{L}\{x\}+s \mathscr{L}\{y\} & =2
\end{aligned}
$$

\therefore-hat

$$
\mathscr{L}\{x\}=\frac{s^{2}-2 s+1}{s(s-2)(s+2)}=-\frac{1}{4} \frac{1}{s}+\frac{1}{8} \frac{1}{s-2}+\frac{9}{8} \frac{1}{s+2} .
$$

-2n

$$
x=-\frac{1}{4}+\frac{1}{8} e^{2 t}+\frac{9}{8} e^{-2 t} \quad \text { and } \quad y=-x^{\prime}+t=\frac{9}{4} e^{-2 t}-\frac{1}{4} e^{2 t}+t
$$

$4)^{-} .-1 \mathrm{~g}$ the Laplace transform of the system gives

$$
\begin{aligned}
& s^{2} \mathscr{L}\{x\}+s^{2} \mathscr{L}\{y\}=\frac{1}{s-2} \\
& 2 s \mathscr{L}\{x\}+s^{2} \mathscr{L}\{y\}=-\frac{1}{s-2}
\end{aligned}
$$

\therefore riat

$$
\mathscr{L}\{x\}=\frac{2}{s(s-2)^{2}}=\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{1}{s-2}+\frac{1}{(s-2)^{2}}
$$

\therefore

$$
\mathscr{L}\{y\}=\frac{-s-2}{s^{2}(s-2)^{2}}=-\frac{3}{4} \frac{1}{s}-\frac{1}{2} \frac{1}{s^{2}}+\frac{3}{4} \frac{1}{s-2}-\frac{1}{(s-2)^{2}}
$$

Then

$$
x=\frac{1}{2}-\frac{1}{2} e^{2 t}+t e^{2 t} \quad \text { and } \quad y=-\frac{3}{4}-\frac{1}{2} t+\frac{3}{4} e^{2 t}-t e^{2 t}
$$

\therefore The integral equation is

$$
10 i+2 \int_{0}^{t} i(\tau) d \tau=2 t^{2}+2 t
$$

Taking the Laplace transform we obtain

$$
\mathscr{L}\{i\}=\left(\frac{4}{s^{3}}+\frac{2}{s^{2}}\right) \frac{s}{10 s+2}=\frac{s+2}{s^{2}(5 s+2)}=-\frac{9}{s}+\frac{2}{s^{2}}+\frac{4 \overline{5}}{5 s+1}=-\frac{9}{s}+\frac{2}{s^{2}}+\frac{9}{s+1 / 5} .
$$

Thus

$$
i(t)=-9+2 t+9 e^{-t / 5}
$$

12. The differential equation is

$$
\frac{1}{2} \frac{d^{2} q}{d t^{2}}+10 \frac{d q}{d t}+100 q=10-10 थ(t-5)
$$

Taking the Laplace transform we obtain

$$
\begin{aligned}
\mathscr{L}\{q\} & =\frac{20}{s\left(s^{2}+20 s+200\right)}\left(1-e^{-5 s}\right) \\
& =\left[\frac{1}{10} \frac{1}{s}-\frac{1}{10} \frac{s+10}{(s+10)^{2}+10^{2}}-\frac{1}{10} \frac{10}{(s+10)^{2}+10^{2}}\right]\left(1-e^{-\bar{j} s}\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
& q(t)=\frac{1}{10}-\frac{1}{10} e^{-10 t} \cos 10 t-\frac{1}{10} e^{-10 t} \sin 10 t \\
&-\left[\frac{1}{10}-\frac{1}{10} e^{-10(t-5)} \cos 10(t-5)-\frac{1}{10} e^{-10(t-5)} \sin 10(t-5)\right] \vartheta(t-5)
\end{aligned}
$$

13. Taking the Laplace transform of the given differential equation we obtain

$$
\mathscr{L}\{y\}=\frac{2 w_{0}}{E I L}\left(\frac{L}{48} \cdot \frac{4!}{s^{5}}-\frac{1}{120} \cdot \frac{5!}{s^{6}}+\frac{1}{120} \cdot \frac{5!}{s^{6}} e^{-s L / 2}\right)+\frac{c_{1}}{2} \cdot \frac{2!}{s^{3}}+\frac{c_{2}}{6} \cdot \frac{3!}{s^{4}}
$$

so that

$$
y=\frac{2 w_{0}}{E I L}\left[\frac{L}{48} x^{4}-\frac{1}{120} x^{5}+\frac{1}{120}\left(x-\frac{L}{2}\right)^{5} \mho\left(x-\frac{L}{2}\right)+\frac{c_{1}}{2} x^{2}+\frac{c_{2}}{6} x^{3}\right]
$$

where $y^{\prime \prime}(0)=c_{1}$ and $y^{\prime \prime \prime}(0)=c_{2}$. Using $y^{\prime \prime}(L)=0$ and $y^{\prime \prime \prime}(L)=0$ we find

$$
c_{1}=w_{0} L^{2} / 24 E I, \quad c_{2}=-w_{0} L / 4 E I
$$

Hence

$$
y=\frac{w_{0}}{12 E I L}\left[-\frac{1}{5} x^{5}+\frac{L}{2} x^{4}-\frac{L^{2}}{2} x^{3}+\frac{L^{3}}{4} x^{2}+\frac{1}{5}\left(x-\frac{L}{2}\right)^{5} थ\left(x-\frac{L}{2}\right)\right]
$$

Chapter 7 in Review

44. (a) In this case the boundary conditions are $y(0)=y^{\prime \prime}(0)=0$ and $y(\pi)=y^{\prime \prime}(\pi)=0$. If we :$c_{1}=y^{\prime}(0)$ and $c_{2}=y^{\prime \prime \prime}(0)$ then

$$
s^{4} \mathscr{L}\{y\}-s^{3} y(0)-s^{2} y^{\prime}(0)-s y(0)-y^{\prime \prime \prime}(0)+4 \mathscr{L}\{y\}=\mathscr{L}\left\{w_{0} / E I\right\}
$$

and

$$
\mathscr{L}\{y\}=\frac{c_{1}}{2} \cdot \frac{2 s^{2}}{s^{4}+4}+\frac{c_{2}}{4} \cdot \frac{4}{s^{4}+4}+\frac{w_{0}}{8 E I}\left(\frac{2}{s}-\frac{s-1}{(s-1)^{2}+1}-\frac{s+1}{(s+1)^{2}+1}\right)
$$

From the table of transforms we get

$$
y=\frac{c_{1}}{2}(\sin x \cosh x+\cos x \sinh x)+\frac{c_{2}}{4}(\sin x \cosh x-\cos x \sinh x)+\frac{w_{0}}{4 E I}(1-\cos x \cosh x
$$

Uising $y(\pi)=0$ and $y^{\prime \prime}(\pi)=0$ we find

$$
c_{1}=\frac{w_{0}}{4 E I}(1+\cosh \pi) \operatorname{csch} \pi, \quad c_{2}=-\frac{w_{0}}{2 E I}(1+\cosh \pi) \operatorname{csch} \pi
$$

Hence

$$
\begin{aligned}
y= & \frac{w_{0}}{8 E I}(1+\cosh \pi) \operatorname{csch} \pi(\sin x \cosh x+\cos x \sinh x) \\
& -\frac{w_{0}}{8 E I}(1+\cosh \pi) \operatorname{csch} \pi(\sin x \cosh x-\cos x \sinh x)+\frac{w_{0}}{4 E I}(1-\cos x \cosh x)
\end{aligned}
$$

(b) In this case the boundary conditions are $y(0)=y^{\prime}(0)=0$ and $y(\pi)=y^{\prime}(\pi)=0$. If w ε. $c_{1}=y^{\prime \prime}(0)$ and $c_{2}=y^{\prime \prime \prime}(0)$ then

$$
s^{4} \mathscr{L}\{y\}-s^{3} y(0)-s^{2} y^{\prime}(0)-s y(0)-y^{\prime \prime \prime}(0)+4 \mathscr{L}\{y\}=\mathscr{L}\{\delta(t-\pi / 2)\}
$$

and

$$
\mathscr{L}\{y\}=\frac{c_{1}}{2} \cdot \frac{2 s}{s^{4}+4}+\frac{c_{2}}{4} \cdot \frac{4}{s^{4}+4}+\frac{w_{0}}{4 E I} \cdot \frac{4}{s^{4}+4} e^{-s \pi / 2}
$$

From the table of transforms we get

$$
\begin{aligned}
y=\frac{c_{1}}{2} & \sin x \sinh x+\frac{c_{2}}{4}(\sin x \cosh x-\cos x \sinh x) \\
& +\frac{w_{0}}{4 E I}\left[\sin \left(x-\frac{\pi}{2}\right) \cosh \left(x-\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right) \sinh \left(x-\frac{\pi}{2}\right)\right] \mathscr{U}\left(x-\frac{\pi}{2}\right)
\end{aligned}
$$

Using $y(\pi)=0$ and $y^{\prime}(\pi)=0$ we find

$$
c_{1}=\frac{w_{0}}{E I} \frac{\sinh \frac{\pi}{2}}{\sinh \pi}, \quad c_{2}=-\frac{w_{0}}{E I} \frac{\cosh \frac{\pi}{2}}{\sinh \pi} .
$$

Hence

$$
\begin{aligned}
y= & w_{0} \\
2 E I & \frac{\sinh \frac{\pi}{2}}{\sinh \pi} \sin x \sinh x-\frac{w_{0}}{4 E I} \frac{\cosh \frac{\pi}{2}}{\sinh \pi}(\sin x \cosh x-\cos x \sinh x) \\
& +\frac{w_{0}}{4 E I}\left[\sin \left(x-\frac{\pi}{2}\right) \cosh \left(x-\frac{\pi}{2}\right)-\cos \left(x-\frac{\pi}{2}\right) \sinh \left(x-\frac{\pi}{2}\right)\right] थ\left(x-\frac{\pi}{2}\right) .
\end{aligned}
$$

Chapter 7 in Review

45. (a) With $\omega^{2}=g / l$ and $K=k / m$ the system of differential equations is

$$
\begin{aligned}
& \theta_{1}^{\prime \prime}+\omega^{2} \theta_{1}=-K\left(\theta_{1}-\theta_{2}\right) \\
& \theta_{2}^{\prime \prime}+\omega^{2} \theta_{2}=K\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Denoting the Laplace transform of $\theta(t)$ by $\Theta(s)$ we have that the Laplace transform of the system is

$$
\begin{aligned}
& \left(s^{2}+\omega^{2}\right) \Theta_{1}(s)=-K \Theta_{1}(s)+K \Theta_{2}(s)+s \theta_{0} \\
& \left(s^{2}+\omega^{2}\right) \Theta_{2}(s)=K \Theta_{1}(s)-K \Theta_{2}(s)+s \psi_{0}
\end{aligned}
$$

If we add the two equations, we get

$$
\Theta_{1}(s)+\Theta_{2}(s)=\left(\theta_{0}+\psi_{0}\right) \frac{s}{s^{2}+\omega^{2}}
$$

which implies

$$
\theta_{1}(t)+\theta_{2}(t)=\left(\theta_{0}+\psi_{0}\right) \cos \omega t .
$$

This cnables us to solve for first, say, $\theta_{1}(t)$ and then find $\theta_{2}(t)$ from

$$
\theta_{2}(t)=-\theta_{1}(t)+\left(\theta_{0}+\psi_{0}\right) \cos \omega t .
$$

Now solving

$$
\begin{aligned}
\left(s^{2}+\omega^{2}+K\right) \Theta_{1}(s)-K \Theta_{2}(s) & =s \theta_{0} \\
-k \Theta_{1}(s)+\left(s^{2}+\omega^{2}+K\right) \Theta_{2}(s) & =s \psi_{0}
\end{aligned}
$$

gives

$$
\left[\left(s^{2}+\omega^{2}+K\right)^{2}-K^{2}\right] \Theta_{1}(s)=s\left(s^{2}+\omega^{2}+K\right) \theta_{0}+K s \psi_{0}
$$

Factoring the difference of two squares and using partial fractions we get

$$
\Theta_{1}(s)=\frac{s\left(s^{2}+\omega^{2}+K\right) \theta_{0}+K s \psi_{0}}{\left(s^{2}+\omega^{2}\right)\left(s^{2}+\omega^{2}+2 K\right)}=\frac{\theta_{0}+\psi_{0}}{2} \frac{s}{s^{2}+\omega^{2}}+\frac{\theta_{0}-\psi_{0}}{2} \frac{s}{s^{2}+\omega^{2}+2 K}
$$

so

$$
\theta_{1}(t)=\frac{\theta_{0}+\psi_{0}}{2} \cos \omega t+\frac{\theta_{0}-\psi_{0}}{2} \cos \sqrt{\omega^{2}+2 K} t
$$

Then from $\theta_{2}(t)=-\theta_{1}(t)+\left(\theta_{0}+\psi_{0}\right) \cos \omega t$ we get

$$
\theta_{2}(t)=\frac{\theta_{0}+\psi_{0}}{2} \cos \omega t-\frac{\theta_{0}-\psi_{0}}{2} \cos \sqrt{\omega^{2}+2 K} t
$$

(b) With the initial conditions $\theta_{1}(0)=\theta_{0}, \theta_{1}^{\prime}(0)=0, \theta_{2}(0)=\theta_{0}, \theta_{2}^{\prime}(0)=0$ we have

$$
\theta_{1}(t)=\theta_{0} \cos \omega t, \quad \theta_{2}(t)=\theta_{0} \cos \omega t .
$$

Physically this means that both pendulums swing in the same direction as if they were free since the spring exerts no influence on the motion $\left(\theta_{1}(t)\right.$ and $\theta_{2}(t)$ are free of $\left.K\right)$.

Chapter 7 in Review

With the initial conditions $\theta_{1}(0)=\theta_{0}, \theta_{1}^{\prime}(0)=0, \theta_{2}(0)=-\theta_{0}, \theta_{2}^{\prime}(0)=0$ we have

$$
\theta_{1}(t)=\theta_{0} \cos \sqrt{\omega^{2}+2 K} t, \quad \theta_{2}(t)=-\theta_{0} \cos \sqrt{\omega^{2}+2 K} t
$$

Physically this means that both pendulums swing in the opposite directions, stretching compressing the spring. The amplitude of both displacements is $\left|\theta_{0}\right|$. Moreover, $\theta_{1}(t)=\theta_{0}$ $\theta_{2}(t)=-\theta_{0}$ at precisely the same times. At these times the spring is stretched to its maxim:

Systems of Linear First-Order

 Differential Equations
Exercises 8.1

Preliminary Theory Linear Systems
I. Let $\mathbf{X}=\binom{x}{y}$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rr}3 & -5 \\ 4 & 8\end{array}\right) \mathbf{X}$.
2. Let $\mathbf{X}=\binom{x}{y}$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rr}4 & -7 \\ 5 & 0\end{array}\right) \mathbf{X}$.
3. Let $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rrr}-3 & 4 & -9 \\ 6 & -1 & 0 \\ 10 & 4 & 3\end{array}\right) \mathbf{X}$.
$\dot{\ddagger}$. Let $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rrr}1 & -1 & 0 \\ 1 & 0 & 2 \\ -1 & 0 & 1\end{array}\right) \mathbf{X}$.
\equiv Let $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{rrr}1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 1\end{array}\right) \mathbf{X}+\left(\begin{array}{c}0 \\ -3 t^{2} \\ t^{2}\end{array}\right)+\left(\begin{array}{c}t \\ 0 \\ -t\end{array}\right)+\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$.
\therefore Let $\mathbf{X}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$. Then $\mathbf{X}^{\prime}=\left(\begin{array}{ccc}-3 & 4 & 0 \\ 5 & 9 & 0 \\ 0 & 1 & 6\end{array}\right) \mathbf{X}+\left(\begin{array}{c}e^{-t} \sin 2 t \\ 4 e^{-t} \cos 2 t \\ -e^{-t}\end{array}\right)$.
$-\frac{d x}{d t}=4 x+2 y+e^{l} ; \quad \frac{d y}{d t}=-x+3 y-e^{t}$
: $\frac{d x}{d t}=7 x+5 y-9 z-8 e^{-2 t} ; \quad \frac{d y}{d t}=4 x+y+z+2 e^{5 t} ; \quad \frac{d z}{d t}=-2 y+3 z+e^{5 t}-3 e^{-2 t}$
$\therefore \frac{d x}{d t}=x-y+2 z+e^{-t}-3 t ; \quad \frac{d y}{d t}=3 x-4 y+z+2 e^{-t}+t ; \quad \frac{d z}{d t}=-2 x+5 y+6 z+2 e^{-t}-t$
$\therefore \frac{d x}{d t}=3 x-7 y+4 \sin t+(t-4) e^{4 t} ; \quad \frac{d y}{d t}=x+y+8 \sin t+(2 t+1) e^{4 t}$

Exercises 8.1 Preliminary Theory-Linear Systems

11. Since

$$
\mathbf{X}^{\prime}=\binom{-5}{-10} e^{-\bar{t} t} \quad \text { and } \quad\left(\begin{array}{cc}
3 & -4 \\
4 & -7
\end{array}\right) \mathbf{X}=\binom{-5}{-10} e^{-5 t}
$$

we see that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
3 & -4 \\
4 & -7
\end{array}\right) \mathbf{X}
$$

12. Since

$$
\mathbf{X}^{\prime}=\binom{5 \cos t-5 \sin t}{2 \cos t-4 \sin t} e^{t} \quad \text { and } \quad\left(\begin{array}{ll}
-2 & 5 \\
-2 & 4
\end{array}\right) \mathbf{X}=\binom{5 \cos t-5 \sin t}{2 \cos t-4 \sin t} e^{t}
$$

we see that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
-2 & 5 \\
-2 & 4
\end{array}\right) \mathbf{X}
$$

13. Since

$$
\mathbf{X}^{\prime}=\binom{3 / 2}{-3} e^{-3 t / 2} \quad \text { and } \quad\left(\begin{array}{rr}
-1 & 1 / 4 \\
1 & -1
\end{array}\right) \mathbf{X}=\binom{3 / 2}{-3} e^{-3 t / 2}
$$

we sce that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
-1 & 1 / 4 \\
1 & -1
\end{array}\right) \mathbf{X}
$$

14. Since

$$
\mathbf{X}^{\prime}=\binom{5}{-1} e^{t}+\binom{4}{-4} t e^{t} \quad \text { and } \quad\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) \mathbf{X}=\binom{5}{-1} e^{t}+\binom{4}{-4} t e^{t}
$$

we see that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) \mathbf{X}
$$

15. Since

$$
\mathbf{X}^{\prime}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right) \mathbf{X}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

we see that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rrr}
1 & 2 & 1 \\
6 & -1 & 0 \\
-1 & -2 & -1
\end{array}\right) \mathbf{X}
$$

16. Since

$$
\mathbf{X}^{\prime}=\left(\begin{array}{c}
\cos t \\
\frac{1}{2} \sin t-\frac{1}{2} \cos t \\
-\cos t-\sin t
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
1 & 0 & 1 \\
1 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) \mathbf{X}=\left(\begin{array}{c}
\cos t \\
\frac{1}{2} \sin t-\frac{1}{2} \cos t \\
-\cos t-\sin t
\end{array}\right)
$$

we see that

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rrr}
1 & 0 & 1 \\
1 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) \mathbf{X}
$$

\therefore. Yes, since $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=-2 e^{-8 t} \neq 0$ the set $\mathbf{X}_{1}, \mathbf{X}_{2}$ is linearly independent on $-\infty<t<\infty$.
-i. Yes, since $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=8 e^{2 t} \neq 0$ the set $\mathbf{X}_{1}, \mathbf{X}_{2}$ is linearly independent on $-\infty<t<\infty$.
-9. No, since $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right)=0$ the set $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$ is lincarly dependent on $-\infty<t<\infty$.
20. Yes, since $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right)=-84 e^{-t} \neq 0$ the set $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$ is linearly independent o: $-\infty<t<\infty$.
21. Since

$$
\mathbf{X}_{p}^{\prime}=\binom{2}{-1} \quad \text { and } \quad\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right) \mathbf{X}_{p}+\binom{2}{-4} t+\binom{-7}{-18}=\binom{2}{-1}
$$

we see that

$$
\mathbf{X}_{p}^{\prime}=\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right) \mathbf{X}_{p}+\binom{2}{-4} t+\binom{-7}{-18}
$$

22. Since

$$
\mathbf{X}_{p}^{\prime}=\binom{0}{0} \quad \text { and } \quad\left(\begin{array}{rr}
2 & 1 \\
1 & -1
\end{array}\right) \mathbf{X}_{p}+\binom{-5}{2}=\binom{0}{0}
$$

we see that

$$
\mathbf{X}_{p}^{\prime}=\left(\begin{array}{rr}
2 & 1 \\
1 & -1
\end{array}\right) \mathbf{X}_{p}+\binom{-5}{2}
$$

2.3. Since

$$
\mathbf{X}_{p}^{\prime}=\binom{2}{0} e^{t}+\binom{1}{-1} t e^{t} \quad \text { and } \quad\left(\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right) \mathbf{X}_{p}-\binom{1}{7} e^{t}=\binom{2}{0} e^{t}+\binom{1}{-1} t e^{t}
$$

we see that

$$
\mathbf{X}_{p}^{\prime}=\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right) \mathbf{X}_{p}-\binom{1}{7} e^{t}
$$

\therefore-i. Since

$$
\mathbf{X}_{p}^{\prime}=\left(\begin{array}{c}
3 \cos 3 t \\
0 \\
-3 \sin 3 t
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
1 & 2 & 3 \\
-4 & 2 & 0 \\
-6 & 1 & 0
\end{array}\right) \mathbf{X}_{p}+\left(\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right) \sin 3 t=\left(\begin{array}{c}
3 \cos 3 t \\
0 \\
-3 \sin 3 t
\end{array}\right)
$$

we see that

$$
\mathbf{X}_{p}^{\prime}=\left(\begin{array}{rrr}
1 & 2 & 3 \\
-4 & 2 & 0 \\
-6 & 1 & 0
\end{array}\right) \mathbf{X}_{p}+\left(\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right) \sin 3 t
$$

\therefore Let

$$
\mathbf{X}_{1}=\left(\begin{array}{r}
6 \\
-1 \\
-5
\end{array}\right) e^{-t}, \quad \mathbf{X}_{2}=\left(\begin{array}{r}
-3 \\
1 \\
1
\end{array}\right) e^{-2 t} ; \quad \mathbf{X}_{3}=\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) e^{3 t}, \quad \text { and } \quad \mathbf{A}=\left(\begin{array}{ccc}
0 & 6 & 0 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Exercises 8.1 Preliminary Theory--Linear Systems

Then

$$
\begin{aligned}
& \mathbf{X}_{1}^{\prime}=\left(\begin{array}{r}
-6 \\
1 \\
5
\end{array}\right) e^{-t}=\mathbf{A} \mathbf{X}_{1}, \\
& \mathbf{X}_{2}^{\prime}=\left(\begin{array}{r}
6 \\
-2 \\
-2
\end{array}\right) e^{-2 t}=\mathbf{A} \mathbf{X}_{2} \\
& \mathbf{X}_{3}^{\prime}=\left(\begin{array}{l}
6 \\
3 \\
3
\end{array}\right) e^{3 t}=\mathbf{A} \mathbf{X}_{3}
\end{aligned}
$$

and $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}\right)=20 \neq 0$ so that $\mathbf{X}_{1}, \mathbf{X}_{2}$, and \mathbf{X}_{3} form a fundamental set for $\mathbf{X}^{\prime}=\mathbf{A X}$ $-\infty<t<\infty$.
26. Let

$$
\begin{aligned}
& \mathbf{X}_{1}=\binom{1}{-1-\sqrt{2}} e^{\sqrt{2} t} \\
& \mathbf{X}_{2}=\binom{1}{-1+\sqrt{2}} e^{-\sqrt{2} t} \\
& \mathbf{X}_{p}=\binom{1}{0} t^{2}+\binom{-2}{4} t+\binom{1}{0}
\end{aligned}
$$

and

$$
\mathbf{A}=\left(\begin{array}{rr}
-1 & -1 \\
-1 & 1
\end{array}\right)
$$

Then

$$
\begin{aligned}
& \mathbf{X}_{1}^{\prime}=\binom{\sqrt{2}}{-2-\sqrt{2}} e^{\sqrt{2} t}=\mathbf{A} \mathbf{X}_{1} \\
& \mathbf{X}_{2}^{\prime}=\binom{-\sqrt{2}}{-2+\sqrt{2}} e^{-\sqrt{2} t}=\mathbf{A} \mathbf{X}_{2} \\
& \mathbf{X}_{p}^{\prime}=\binom{2}{0} t+\binom{-2}{4}=\mathbf{A} \mathbf{X}_{p}+\binom{1}{1} t^{2}+\binom{4}{-6} t+\binom{-1}{5}
\end{aligned}
$$

and $W\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=2 \sqrt{2} \neq 0$ so that \mathbf{X}_{p} is a particular solution and \mathbf{X}_{1} and \mathbf{X}_{2} form a fundar:set on $-\infty<t<\infty$.

Exercises 8.2

1. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-5)(\lambda+1)=0$. For $\lambda_{1}=5$ we obtain

$$
\left(\begin{array}{rr|r}
-4 & 2 & 0 \\
4 & -2 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{cc|c}
1 & -1 / 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{1}{2} .
$$

For $\lambda_{2}=-1$ we obtain

$$
\left(\begin{array}{ll|l}
2 & 2 & 0 \\
4 & 4 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{-1}{1}
$$

Then

$$
\mathbf{X}=c_{1}\binom{1}{2} e^{5 t}+c_{2}\binom{-1}{1} e^{-t}
$$

2. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-1)(\lambda-4)=0$. For $\lambda_{1}=1$ we obtain

$$
\left(\begin{array}{ll|l}
1 & 2 & 0 \\
1 & 2 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \text { so that } \quad \mathbf{K}_{1}=\binom{-2}{1}
$$

For $\lambda_{2}=4$ we obtain

$$
\left(\begin{array}{rr|r}
-2 & 2 & 0 \\
1 & -1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text { so that } \mathbf{K}_{2}=\binom{1}{1} .
$$

Then

$$
\mathbf{X}=c_{1}\binom{-2}{1} e^{t}+c_{2}\binom{1}{1} e^{4 t}
$$

3. The systcm is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
-4 & 2 \\
-5 / 2 & 2
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-1)(\lambda+3)=0$. For $\lambda_{1}=1$ we obtain

$$
\left(\begin{array}{cc|c}
-5 & 2 & 0 \\
-5 / 2 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-5 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \text { so that } \quad \mathbf{K}_{1}=\binom{2}{5} .
$$

Exercises 8.2 Homogeneous Linear Systems

$\equiv \lambda_{2}=-3$ we obtain

$$
\left(\begin{array}{cc|c}
-1 & 2 & 0 \\
-5 / 2 & 5 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{2}{1} .
$$

$\because \because$

$$
\mathbf{X}=c_{1}\binom{2}{5} e^{t}+c_{2}\binom{2}{1} e^{-3 t}
$$

4. - srstem is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
-5 / 2 & 2 \\
3 / 4 & -2
\end{array}\right) \mathbf{X}
$$

$=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\frac{1}{2}(\lambda+1)(2 \lambda+7)=0$. For $\lambda_{1}=-7 / 2$ we obtain

$$
\left(\begin{array}{cc|c}
1 & 2 & 0 \\
3 / 4 & 3 / 2 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ll|l}
1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{-2}{1}
$$

$\equiv \because \lambda_{2}=-1$ we obtain

$$
\left(\begin{array}{rr|r}
-3 / 2 & 2 & 0 \\
3 / 4 & -1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-3 & 4 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{4}{3} .
$$

-in

$$
\mathbf{X}=c_{1}\binom{-2}{1} e^{-7 t / 2}+c_{2}\binom{4}{3} e^{-t}
$$

3. - sistem is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
10 & -5 \\
8 & -12
\end{array}\right) \mathbf{X}
$$

$\therefore \dot{Z} \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-8)(\lambda+10)=0$. For $\lambda_{1}=8$ we obtain

$$
\left(\begin{array}{cc|c}
2 & -5 & 0 \\
8 & -20 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{cc|c}
1 & -5 / 2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{5}{2} .
$$

$\equiv .: \lambda_{2}=-10$ we obtain

$$
\left(\begin{array}{rr|r}
20 & -5 & 0 \\
8 & -2 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{cc|c}
1 & -1 / 4 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{1}{4}
$$

$-\%$

$$
\mathbf{X}=c_{1}\binom{5}{2} e^{8 t}+c_{2}\binom{1}{4} e^{-10 t}
$$

E. - -e system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
-6 & 2 \\
-3 & 1
\end{array}\right) \mathbf{X}
$$

$\cdots \operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda(\lambda+5)=0$. For $\lambda_{1}=0$ we obtain

$$
\left(\begin{array}{ll|l}
-6 & 2 & 0 \\
-3 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{cc|c}
1 & -1 / 3 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{1}{3} .
$$

For $\lambda_{2}=-5$ we obtain

$$
\left(\begin{array}{rr|r}
-1 & 2 & 0 \\
-3 & 6 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
1 & -2 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{2}{1}
$$

Then

$$
\mathbf{X}=c_{1}\binom{1}{3}+c_{2}\binom{2}{1} e^{-\bar{\jmath} t}
$$

-. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rrr}
1 & 1 & -1 \\
0 & 2 & 0 \\
0 & 1 & -1
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-1)(2-\lambda)(\lambda+1)=0$. For $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=-1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
2 \\
3 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) e^{-t}
$$

E. The system is

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rrr}
2 & -7 & 0 \\
5 & 10 & 4 \\
0 & 5 & 2
\end{array}\right) \mathbf{X}
$$

and $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(2-\lambda)(\lambda-5)(\lambda-7)=0$. For $\lambda_{1}=2, \lambda_{2}=5$, and $\lambda_{3}=7$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
4 \\
0 \\
-5
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{r}
-7 \\
3 \\
5
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
-7 \\
5 \\
5
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
4 \\
0 \\
-5
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{r}
-7 \\
3 \\
5
\end{array}\right) e^{5 t}+c_{3}\left(\begin{array}{r}
-7 \\
5 \\
5
\end{array}\right) e^{7 t}
$$

Te have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda+1)(\lambda-3)(\lambda+2)=0$. For $\lambda_{1}=-1$: $\lambda_{2}=3$, and $\lambda_{3}=-2$ we obta:...

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right)
$$

Exercises 8.2 Homogeneous Linear Systems
so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right) e^{-t}+c_{2}\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right) e^{3 t}+c_{3}\left(\begin{array}{r}
1 \\
-1 \\
3
\end{array}\right) e^{-2 t}
$$

20. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\lambda(\lambda-1)(\lambda-2)=0$. For $\lambda_{1}=0, \lambda_{2}=1$, and $\lambda_{3}=2$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right): \quad \mathbf{K}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

\therefore that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{2 t}
$$

:1. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda+1)(\lambda+1 / 2)(\lambda+3 / 2)=0$. For $\lambda_{1}=-1, \lambda_{2}=-1 / 2$, and $\lambda_{3}=-$ obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
4 \\
0 \\
-1
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{r}
-12 \\
6 \\
5
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
4 \\
2 \\
-1
\end{array}\right)
$$

\equiv St that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
4 \\
0 \\
-1
\end{array}\right) e^{-t}+c_{2}\left(\begin{array}{r}
-12 \\
6 \\
5
\end{array}\right) e^{-t / 2}+c_{3}\left(\begin{array}{r}
4 \\
2 \\
-1
\end{array}\right) e^{-3 t / 2}
$$

12. Te have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-3)(\lambda+5)(6-\lambda)=0$. For $\lambda_{1}=3, \lambda_{2}=-5$, and $\lambda_{3}=6$ we obt: :

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
2 \\
-2 \\
11
\end{array}\right)
$$

5 that

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{3 t}+c_{2}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right) e^{-5 t}+c_{3}\left(\begin{array}{r}
2 \\
-2 \\
11
\end{array}\right) e^{6 t}
$$

13. Te have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda+1 / 2)(\lambda-1 / 2)=0$. For $\lambda_{1}=-1 / 2$ and $\lambda_{2}=1 / 2$ we obtain

$$
\mathbf{K}_{1}=\binom{0}{1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{1}
$$

so that

$$
\mathbf{X}=c_{1}\binom{0}{1} e^{-t / 2}+c_{2}\binom{1}{1} e^{t / 2}
$$

If

$$
\mathbf{X}(0)=\binom{3}{5}
$$

then $c_{1}=2$ and $c_{2}=3$.
:4. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(2-\lambda)(\lambda-3)(\lambda+1)=0$. For $\lambda_{1}=2, \lambda_{2}=3$, and $\lambda_{3}=-1$ we obe

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
5 \\
-3 \\
2
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) e^{3 t}+c_{3}\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right) e^{-t}
$$

If

$$
\mathbf{X}(0)=\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)
$$

then $c_{1}=-1, c_{2}=5 / 2$, and $c_{3}=-1 / 2$.
$\therefore \mathbf{X}=c_{1}\left(\begin{array}{c}0.382175 \\ 0.851161 \\ 0.359815\end{array}\right) e^{8.58979 t}+c_{2}\left(\begin{array}{c}0.405188 \\ -0.676043 \\ 0.615458\end{array}\right) e^{2.25684 t}+c_{3}\left(\begin{array}{c}-0.923562 \\ -0.132174 \\ 0.35995\end{array}\right) e^{-0.0466321 t}$
$\therefore \mathbf{X}=c_{1}\left(\begin{array}{c}0.0312209 \\ 0.949058 \\ 0.239535 \\ 0.195825 \\ 0.0508861\end{array}\right) e^{5.05452 t}+c_{2}\left(\begin{array}{c}-0.280232 \\ -0.836611 \\ -0.275304 \\ 0.176045 \\ 0.338775\end{array}\right) e^{4.09561 t}+c_{3}\left(\begin{array}{c}0.262219 \\ -0.162664 \\ -0.826218 \\ -0.346439 \\ 0.31957\end{array}\right) e^{-2.92362 t}$

$$
+c_{4}\left(\begin{array}{c}
0.313235 \\
0.64181 \\
0.31754 \\
0.173787 \\
-0.599108
\end{array}\right) e^{2.02882 t}+c_{5}\left(\begin{array}{c}
-0.301294 \\
0.466599 \\
0.222136 \\
0.0534311 \\
-0.799567
\end{array}\right) e^{-0.155338 t}
$$

Exercises 8.2 Homogeneous Linear Systems
17. (a)

(b) Letting $c_{1}=1$ and $c_{2}=0$ we get $x=5 e^{8 t}, y=2 e^{8 t}$. Eliminating the parameter we $y=\frac{2}{5} x, x>0$. When $c_{1}=-1$ and $c_{2}=0$ we find $y=\frac{2}{5} x, x<0$. Letting $c_{1}=0$ and $c_{2}=$: get $x=e^{-10 t}, y=4 e^{-10 t}$. Eliminating the parameter we find $y=4 x, x>0$. Letting $c_{1}=$ and $c_{2}=-1$ we find $y=4 x, x<0$.
(c) The eigenvectors $\mathbf{K}_{1}=(5,2)$ and $\mathbf{K}_{2}=(1,4)$ are shown in the figure in part (a).
18. In Problem 2, letting $c_{1}=1$ and $c_{2}=0$ we get $x=-2 e^{t}$, $y=e^{t}$. Eliminating the parameter we find $y=-\frac{1}{2} x, x<0$. When $c_{1}=-1$ and $c_{2}=0$ we find $y=-\frac{1}{2} x, x>0$. Letting $c_{1}=0$ and $c_{2}=1$ we get $x=e^{4 t}, y=e^{4 t}$. Eliminating the parameter we find $y=x, x>0$. When $c_{1}=0$ and $c_{2}=-1$ we find $y=x, x<0$.

In Problem 4, letting $c_{1}=1$ and $c_{2}=0$ we get $x=-2 e^{-7 t / 2}$, $y=e^{-7 t / 2}$. Eliminating the parameter we find $y=-\frac{1}{2} x, x<0$. When $c_{1}=-1$ and $c_{2}=0$ we find $y=-\frac{1}{2} x, x>0$. Letting $c_{1}=0$ and $c_{2}=1$ we get $x=4 e^{-t}, y=3 e^{-t}$. Eliminating the parameter we find $y=\frac{3}{4} x, x>0$. When $c_{1}=0$ and $c_{2}=-1$ we find $y=\frac{3}{4} x, x<0$.
19. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}=0$. For $\lambda_{1}=0$ we obtain

$$
\mathbf{K}=\binom{1}{3} .
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{1}{2}
$$

so that

$$
\mathbf{X}=c_{1}\binom{1}{3}+c_{2}\left[\binom{1}{3} t+\binom{1}{2}\right] .
$$

20. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda+1)^{2}=0$. For $\lambda_{1}=-1$ we obtain

$$
\mathbf{K}=\binom{1}{1}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathrm{P}=\binom{0}{1 / 5}
$$

so that

$$
\mathbf{X}=c_{1}\binom{1}{1} e^{-t}+c_{2}\left[\binom{1}{1} t e^{-t}+\binom{0}{1 / 5} e^{-t}\right]
$$

\because. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-2)^{2}=0$. For $\lambda_{1}=2$ we obtain

$$
\mathbf{K}=\binom{1}{1}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{-1 / 3}{0}
$$

so that

$$
\mathbf{X}=c_{1}\binom{1}{1} e^{2 t}+c_{2}\left[\binom{1}{1} t e^{2 t}+\binom{-1 / 3}{0} e^{2 t}\right] .
$$

\because We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-6)^{2}=0$. For $\lambda_{1}=6$ we obtain

$$
\mathbf{K}=\binom{3}{2}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{1 / 2}{0}
$$

so that

$$
\mathbf{X}=c_{1}\binom{3}{2} e^{6 t}+c_{2}\left[\binom{3}{2} t e^{6 t}+\binom{1 / 2}{0} e^{6 t}\right]
$$

\therefore Te have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(1-\lambda)(\lambda-2)^{2}=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Eor $\lambda_{2}=2$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right)
$$

Exercises 8.2 Homogeneous Linear Systems

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{2 t}
$$

24. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-8)(\lambda+1)^{2}=0$. For $\lambda_{1}=8$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)
$$

For $\lambda_{2}=-1$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right)
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right) e^{8 t}+c_{2}\left(\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right) e^{-t}+c_{3}\left(\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right) e^{-t}
$$

2.5. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\lambda(5-\lambda)^{2}=0$. For $\lambda_{1}=0$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
-4 \\
-5 \\
2
\end{array}\right)
$$

For $\lambda_{2}=5$ wc obtain

$$
\mathbf{K}=\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right)
$$

A solution of $\left(\mathbf{A}-\lambda_{2} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\left(\begin{array}{c}
5 / 2 \\
1 / 2 \\
0
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
-4 \\
-5 \\
2
\end{array}\right)+c_{2}\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right) e^{5 t}+c_{3}\left[\left(\begin{array}{r}
-2 \\
0 \\
1
\end{array}\right) t e^{5 t}+\left(\begin{array}{c}
5 / 2 \\
1 / 2 \\
0
\end{array}\right) e^{5 t}\right]
$$

26. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(1-\lambda)(\lambda-2)^{2}=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

For $\lambda_{2}=2$ we obtain

$$
\mathbf{K}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right)
$$

A solution of $\left(\mathbf{A}-\lambda_{2} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\left(\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) e^{2 t}+c_{3}\left[\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) t e^{2 t}+\left(\begin{array}{r}
0 \\
-1 \\
0
\end{array}\right) e^{2 t}\right] .
$$

$:^{-}$. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda-1)^{3}=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

Solutions of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ and $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{Q}=\mathbf{P}$ are

$$
\mathbf{P}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{Q}=\left(\begin{array}{c}
1 / 2 \\
0 \\
0
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) e^{t}+c_{2}\left[\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) t e^{t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{t}\right]+c_{3}\left[\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \frac{t^{2}}{2} e^{t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) t e^{t}+\left(\begin{array}{c}
1 / 2 \\
0 \\
0
\end{array}\right) e^{t}\right] .
$$

\therefore Te have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-4)^{3}=0$. For $\lambda_{I}=4$ we obtain

$$
\mathbf{K}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Elutions of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ and $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{Q}=\mathbf{P}$ are

$$
\mathbf{P}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{Q}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

\therefore that

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{4 t}+c_{2}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) t e^{4 t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{4 t}\right]+c_{3}\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \frac{t^{2}}{2} e^{4 t}+\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) t e^{4 t}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{4 t}\right] .
$$

Exercises 8.2 Homogencous Linear Systems

29. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-4)^{2}=0$. For $\lambda_{1}=4$ we obtain

$$
\mathbf{K}=\binom{2}{1}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{1}{1}
$$

so that

$$
\mathbf{X}=c_{1}\binom{2}{I} e^{4 t}+c_{2}\left[\binom{2}{1} t e^{4 t}+\binom{1}{1} e^{4 t}\right] .
$$

If

$$
\mathbf{X}(0)=\binom{-1}{6}
$$

then $c_{1}=-7$ and $c_{2}=13$.
30. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda+1)(\lambda-1)^{2}=0$. For $\lambda_{1}=-1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)
$$

For $\lambda_{2}=1$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right) e^{-t}+c_{2}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{t}
$$

If

$$
\mathbf{X}(0)=\left(\begin{array}{l}
1 \\
2 \\
5
\end{array}\right)
$$

then $c_{1}=2, c_{2}=3$, and $c_{3}=2$.
31. In this case $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(2-\lambda)^{5}$, and $\lambda_{1}=2$ is an eigenvalue of multiplicity 5 . L: independent eigenvcctors are

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right) .
$$

Exercises 8.2 Homogeneous Linear Systemi:

32. In Problem 20 letting $c_{1}=1$ and $c_{2}=0$ we get $x=e^{t}, y=e^{t}$. Eliminating the parametcr we fin : $y=x, x>0$. When $c_{1}=-1$ and $c_{2}=0$ we find $y=x, x<0$.

In Problem 21 letting $c_{1}=1$ and $c_{2}=0$ we get $x=e^{2 t}, y=e^{2 t}$. Eliminating the parameter wo $f=$: $y=x, x>0$. When $c_{1}=-1$ and $c_{2}=0$ we find $y=x, x<0$.

Phase portrait for Problem 20

Phase portrait for Problem 21
\therefore Problems 33-46 the form of the answer will vary according to the choice of eigenvector. For exam
\therefore Problem 33, if \mathbf{K}_{1} is chosen to be $\binom{1}{2-i}$ the solution has the form

$$
\mathbf{X}=c_{1}\binom{\cos t}{2 \cos t+\sin t} e^{4 t}+c_{2}\binom{\sin t}{2 \sin t-\cos t} e^{4 t}
$$

\therefore We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-8 \lambda+17=0$. For $\lambda_{1}=4+i$ we obtain

$$
\mathbf{K}_{1}=\binom{2+i}{5}
$$

so that

$$
\mathbf{X}_{1}=\binom{2+i}{5} e^{(4+i) t}=\binom{2 \cos t-\sin t}{5 \cos t} e^{4 t} \dot{+i}\binom{\cos t+2 \sin t}{5 \sin t} e^{4 t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{2 \cos t-\sin t}{5 \cos t} e^{4 t}+c_{2}\binom{\cos t+2 \sin t}{5 \sin t} e^{4 t}
$$

\therefore We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}+1=0$. For $\lambda_{1}=i$ we obtain

$$
\mathbf{K}_{1}=\binom{-1-i}{2}
$$

so that

$$
\mathbf{X}_{1}=\binom{-1-i}{2} e^{i t}=\binom{\sin t-\cos t}{2 \cos t}+i\binom{-\cos t-\sin t}{2 \sin t} .
$$

Then

$$
\mathbf{X}=c_{1}\binom{\sin t-\cos t}{2 \cos t}+c_{2}\binom{-\cos t-\sin t}{2 \sin t} .
$$

35. We have $\operatorname{det}(A-\lambda)=\lambda^{2}-8 \lambda+17=0$. For $\lambda_{1}=4+i$ we obtain

$$
\mathbf{K}_{1}=\binom{-1-i}{2}
$$

so that

$$
X_{1}=\binom{-1-i}{2} e^{(4+i) t}=\binom{\sin t-\cos t}{2 \cos t} e^{4 t}+i\binom{-\sin t-\cos t}{2 \sin t} e^{4 t}
$$

Then

$$
X=c_{1}\binom{\sin t-\cos t}{2 \cos t} e^{4 t}+c_{2}\binom{-\sin t-\cos t}{2 \sin t} e^{4 t}
$$

36. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-10 \lambda+34=0$. For $\lambda_{1}=5+3 i$ we obtain

$$
\mathbf{K}_{1}=\binom{1-3 i}{2}
$$

so that

$$
\mathbf{X}_{1}=\binom{1-3 i}{2} e^{(5 \div 3 i) t}=\binom{\cos 3 t+3 \sin 3 t}{2 \cos 3 t} e^{5 t t}+i\binom{\sin 3 t-3 \cos 3 t}{2 \sin 3 t} e^{5 t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{\cos 3 t+3 \sin 3 t}{2 \cos 3 t} e^{5 t}+c_{2}\binom{\sin 3 t-3 \cos 3 t}{2 \sin 3 t} e^{5 t}
$$

37. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}+9=0$. For $\lambda_{1}=3 i$ we obtain

$$
\mathbf{K}_{1}=\binom{4+3 i}{5}
$$

so that

$$
\mathbf{X}_{1}=\binom{4+3 i}{5} e^{3 i t}=\binom{4 \cos 3 t-3 \sin 3 t}{5 \cos 3 t}+i\binom{4 \sin 3 t+3 \cos 3 t}{5 \sin 3 t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{4 \cos 3 t-3 \sin 3 t}{5 \cos 3 t}+c_{2}\binom{4 \sin 3 t+3 \cos 3 t}{\overline{5} \sin 3 t} .
$$

38. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}+2 \lambda+5=0$. For $\lambda_{1}=-1+2 i$ we obtain

$$
\mathbf{K}_{1}=\binom{2+2 i}{1}
$$

so that

$$
\begin{aligned}
\mathbf{X}_{1} & =\binom{2+2 i}{1} e^{(-1+2 i) t} \\
& =\binom{2 \cos 2 t-2 \sin 2 t}{\cos 2 t} e^{-t}+i\binom{2 \cos 2 t+2 \sin 2 t}{\sin 2 t} e^{-t}
\end{aligned}
$$

Then

$$
\mathbf{X}=c_{1}\binom{2 \cos 2 t-2 \sin 2 t}{\cos 2 t} e^{-t}+c_{2}\binom{2 \cos 2 t+2 \sin 2 t}{\sin 2 t} e^{-t}
$$

3. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-\lambda\left(\lambda^{2}+1\right)=0$. For $\lambda_{1}=0$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

For $\lambda_{2}=i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
-i \\
i \\
1
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{r}
-i \\
i \\
1
\end{array}\right) e^{i t}=\left(\begin{array}{r}
\sin t \\
-\sin t \\
\cos t
\end{array}\right)+i\left(\begin{array}{r}
-\cos t \\
\cos t \\
\sin t
\end{array}\right)
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{r}
\sin t \\
-\sin t \\
\cos t
\end{array}\right)+c_{3}\left(\begin{array}{r}
-\cos t \\
\cos t \\
\sin t
\end{array}\right)
$$

\therefore TVe have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda+3)\left(\lambda^{2}-2 \lambda+5\right)=0$. For $\lambda_{1}=-3$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right)
$$

Eor $\lambda_{2}=1+2 i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{c}
-2-i \\
-3 i \\
2
\end{array}\right)
$$

9 that

$$
\mathbf{X}_{2}=\left(\begin{array}{c}
-2 \cos 2 t+\sin 2 t \\
3 \sin 2 t \\
2 \cos 2 t
\end{array}\right) e^{t}+i\left(\begin{array}{c}
-\cos 2 t-2 \sin 2 t \\
-3 \cos 2 t \\
2 \sin 2 t
\end{array}\right) e^{t}
$$

Exercises 8.2 Homogeneous Linear Systems

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right) e^{-3 t}+c_{2}\left(\begin{array}{c}
-2 \cos 2 t+\sin 2 t \\
3 \sin 2 t \\
2 \cos 2 t
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{c}
-\cos 2 t-2 \sin 2 t \\
-3 \cos 2 t \\
2 \sin 2 t
\end{array}\right) e^{t}
$$

41. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(1-\lambda)\left(\lambda^{2}-2 \lambda+2\right)=0$. For $\lambda_{1}=1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) .
$$

For $\lambda_{2}=1+i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{c}
1 \\
i \\
i
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{c}
1 \\
i \\
i
\end{array}\right) e^{(1+i) t}=\left(\begin{array}{r}
\cos t \\
-\sin t \\
-\sin t
\end{array}\right) e^{t}+i\left(\begin{array}{c}
\sin t \\
\cos t \\
\cos t
\end{array}\right) e^{t}
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{c}
\cos t \\
-\sin t \\
-\sin t
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{c}
\sin t \\
\cos t \\
\cos t
\end{array}\right) e^{t}
$$

42. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda-6)\left(\lambda^{2}-8 \lambda+20\right)=0$. For $\lambda_{1}=6$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

For $\lambda_{2}=4+2 i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
-i \\
0 \\
2
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{r}
-i \\
0 \\
2
\end{array}\right) e^{(4+2 i) t}=\left(\begin{array}{c}
\sin 2 t \\
0 \\
2 \cos 2 t
\end{array}\right) e^{4 t}+i\left(\begin{array}{c}
-\cos 2 t \\
0 \\
2 \sin 2 t
\end{array}\right) e^{4 t}
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) e^{6 l}+c_{2}\left(\begin{array}{c}
\sin 2 t \\
0 \\
2 \cos 2 t
\end{array}\right) e^{4 t}+c_{3}\left(\begin{array}{c}
-\cos 2 t \\
0 \\
2 \sin 2 t
\end{array}\right) e^{4 t}
$$

43. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(2-\lambda)\left(\lambda^{2}+4 \lambda+13\right)=0$. For $\lambda_{1}=2$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{c}
28 \\
-5 \\
25
\end{array}\right)
$$

For $\lambda_{2}=-2+3 i$ wo obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{c}
4+3 i \\
-5 \\
0
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{c}
4+3 i \\
-5 \\
0
\end{array}\right) e^{(-2+3 i) t}=\left(\begin{array}{c}
4 \cos 3 t-3 \sin 3 t \\
-5 \cos 3 t \\
0
\end{array}\right) e^{-2 t}+i\left(\begin{array}{c}
4 \sin 3 t+3 \cos 3 t \\
-5 \sin 3 t \\
0
\end{array}\right) \epsilon^{-2 t}
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{c}
28 \\
-5 \\
25
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{c}
4 \cos 3 t-3 \sin 3 t \\
-5 \cos 3 t \\
0
\end{array}\right) e^{-2 t}+c_{3}\left(\begin{array}{c}
4 \sin 3 t+3 \cos 3 t \\
-5 \sin 3 t \\
0
\end{array}\right) e^{-2 t}
$$

14. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda+2)\left(\lambda^{2}+4\right)=0$. For $\lambda_{1}=-2$ we obtain

$$
\mathbf{K}_{\mathrm{I}}=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right)
$$

For $\lambda_{2}=2 i$ we obtain

$$
\mathbf{K}_{2}=\left(\begin{array}{c}
-2-2 i \\
1 \\
1
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{c}
-2-2 i \\
1 \\
1
\end{array}\right) e^{2 i t}=\left(\begin{array}{c}
-2 \cos 2 t+2 \sin 2 t \\
\cos 2 t \\
\cos 2 t
\end{array}\right)+i\left(\begin{array}{c}
-2 \cos 2 t-2 \sin 2 t \\
\sin 2 t \\
\sin 2 t
\end{array}\right)
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) e^{-2 t}+c_{2}\left(\begin{array}{c}
-2 \cos 2 t+2 \sin 2 t \\
\cos 2 t \\
\cos 2 t
\end{array}\right)+c_{3}\left(\begin{array}{c}
-2 \cos 2 t-2 \sin 2 t \\
\sin 2 t \\
\sin 2 t
\end{array}\right) .
$$

\therefore. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(1-\lambda)\left(\lambda^{2}+25\right)=0$. For $\lambda_{I}=1$ we obtain

$$
\mathbf{K}_{1}=\left(\begin{array}{c}
25 \\
-7 \\
6
\end{array}\right)
$$

Exercises 8.2 Homogencous Linear Systems

For $\lambda_{2}=5 i$ we obtain

$$
K_{2}=\left(\begin{array}{c}
1+5 i \\
1 \\
1
\end{array}\right)
$$

so that

$$
\mathbf{X}_{2}=\left(\begin{array}{c}
1+5 i \\
1 \\
1
\end{array}\right) e^{5 i t}=\left(\begin{array}{c}
\cos 5 t-5 \sin 5 t \\
\cos 5 t \\
\cos 5 t
\end{array}\right)+i\left(\begin{array}{c}
\sin 5 t+5 \cos 5 t \\
\sin 5 t \\
\sin 5 t
\end{array}\right)
$$

Then

$$
\mathbf{X}=c_{1}\left(\begin{array}{c}
25 \\
-7 \\
6
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{c}
\cos 5 t-5 \sin 5 t \\
\cos 5 t \\
\cos 5 t
\end{array}\right)+c_{3}\left(\begin{array}{c}
\sin 5 t+5 \cos 5 t \\
\sin 5 t \\
\sin 5 t
\end{array}\right)
$$

If

$$
\mathbf{X}(0)=\left(\begin{array}{r}
4 \\
6 \\
-7
\end{array}\right)
$$

then $c_{1}=c_{2}=-1$ and $c_{3}=6$.
$\pm \overline{5}$. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-10 \lambda+29=0$. For $\lambda_{\mathbf{I}}=5+2 i$ we obtain

$$
\mathbf{K}_{1}=\binom{1}{I-2 i}
$$

so that

$$
\mathbf{X}_{1}=\binom{1}{1-2 i} e^{(5+2 i) t}=\binom{\cos 2 t}{\cos 2 t+2 \sin 2 t} e^{\overline{5} t}+i\binom{\sin 2 t}{\sin 2 t-2 \cos 2 t} e^{5 t}
$$

and

$$
\mathbf{X}=c_{1}\binom{\cos 2 t}{\cos 2 t+2 \sin 2 t} e^{5 t}+c_{3}\binom{\sin 2 t}{\sin 2 t-2 \cos 2 t} e^{5 t}
$$

If $\mathbf{X}(0)=\binom{-2}{8}$: then $c_{1}=-2$ and $c_{2}=5$.
$\therefore 7$

Phase portrait for Problem 36

Phase portrait for Problem 37

Phase portrait for Problem 38
f. . (a) Letting $x_{1}=y_{1}, x_{1}^{\prime}=y_{2}, x_{2}=y_{3}$, and $x_{2}^{\prime}=y_{4}$ we have

$$
\begin{aligned}
& y_{2}^{\prime}=x_{1}^{\prime \prime}=-10 x_{1}+4 x_{2}=-10 y_{1}+4 y_{3} \\
& y_{4}^{\prime}=x_{2}^{\prime \prime}=4 x_{1}-4 x_{2}=4 y_{1}-4 y_{3} .
\end{aligned}
$$

The corresponding linear system is

$$
\begin{aligned}
& y_{1}^{\prime}=y_{2} \\
& y_{2}^{\prime}=-10 y_{1}+4 y_{3} \\
& y_{3}^{\prime}=y_{4} \\
& y_{4}^{\prime}=4 y_{1}-4 y_{3}
\end{aligned}
$$

or

$$
\mathbf{Y}^{\prime}=\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
-10 & 0 & 4 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -4 & 0
\end{array}\right) \mathbf{Y}
$$

Using a CAS, we find eigenvalues $\pm \sqrt{2} i$ and $\pm 2 \sqrt{3} i$ with corresponding eigenvectors

$$
\left(\begin{array}{c}
\mp \sqrt{2} i / 4 \\
1 / 2 \\
\mp \sqrt{2} i / 2 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 / 2 \\
0 \\
1
\end{array}\right)+i\left(\begin{array}{c}
\mp \sqrt{2} / 4 \\
0 \\
\mp \sqrt{2} / 2 \\
0
\end{array}\right)
$$

and

$$
\left(\begin{array}{c}
\pm \sqrt{3} i / 3 \\
-2 \\
\mp \sqrt{3} i / 6 \\
1
\end{array}\right)=\left(\begin{array}{r}
0 \\
-2 \\
0 \\
1
\end{array}\right)+i\left(\begin{array}{c}
\pm \sqrt{3} / 3 \\
0 \\
\mp \sqrt{3} / 6 \\
0
\end{array}\right) .
$$

Exercises 8.2 Homogeneous Linear Systems

Thus

$$
\begin{aligned}
& \mathbf{Y}(t)=c_{1} {\left[\left(\begin{array}{c}
0 \\
1 / 2 \\
0 \\
1
\end{array}\right) \cos \sqrt{2} t-\left(\begin{array}{c}
-\sqrt{2} / 4 \\
0 \\
-\sqrt{2} / 2 \\
0
\end{array}\right) \sin \sqrt{2} t\right] } \\
&+ c_{2}\left[\left(\begin{array}{c}
-\sqrt{2} / 4 \\
0 \\
-\sqrt{2} / 2 \\
0
\end{array}\right) \cos \sqrt{2} t+\left(\begin{array}{c}
0 \\
1 / 2 \\
0 \\
1
\end{array}\right) \sin \sqrt{2} t\right] \\
&+c_{3}\left[\left(\begin{array}{r}
0 \\
-2 \\
0 \\
1
\end{array}\right) \cos 2 \sqrt{3} t-\left(\begin{array}{c}
\sqrt{3} / 3 \\
0 \\
-\sqrt{3} / 6 \\
0
\end{array}\right)\right. \\
&\sin 2 \sqrt{3} t] \\
&+c_{4}\left[\left(\begin{array}{c}
\sqrt{3} / 3 \\
0 \\
-\sqrt{3} / 6 \\
0
\end{array}\right) \cos 2 \sqrt{3} t+\left(\begin{array}{r}
-2 \\
0 \\
0 \\
1
\end{array}\right) \sin 2 \sqrt{3} t\right]
\end{aligned}
$$

The initial conditions $y_{1}(0)=0, y_{2}(0)=1, y_{3}(0)=0$, and $y_{4}(0)=-1$ imply $c_{1}=-\frac{2}{\overline{5}}, c_{2}=$ $c_{3}=-\frac{3}{5}$, and $c_{4}=0$. Thus,

$$
\begin{aligned}
& x_{1}(t)=y_{1}(t)=-\frac{\sqrt{2}}{10} \sin \sqrt{2} t+\frac{\sqrt{3}}{5} \sin 2 \sqrt{3} t \\
& x_{2}(t)=y_{3}(t)=-\frac{\sqrt{2}}{5} \sin \sqrt{2} t-\frac{\sqrt{3}}{10} \sin 2 \sqrt{3} t
\end{aligned}
$$

(b) The second-order system is

$$
\begin{aligned}
& x_{1}^{\prime \prime}=-10 x_{1}+4 x_{2} \\
& x_{2}^{\prime \prime}=4 x_{1}-4 x_{2}
\end{aligned}
$$

or

$$
\mathbf{X}^{\prime \prime}=\left(\begin{array}{rr}
-10 & 4 \\
4 & -4
\end{array}\right) \mathbf{X}
$$

We assume solutions of the form $\mathbf{X}=\mathbf{V} \cos \omega t$ and $\mathbf{X}=\mathbf{V} \sin \omega t$. Since the eigenvalues $z_{:}$: and $-12, \omega_{1}=\sqrt{-(-2)}=\sqrt{2}$ and $\omega_{2}=\sqrt{-(-12)}=2 \sqrt{3}$. The corresponding eigent: are

$$
\mathbf{V}_{1}=\binom{1}{2} \quad \text { and } \quad \mathbf{V}_{2}=\binom{-2}{1}
$$

Then, the general solution of the system is

$$
\mathbf{X}=c_{1}\binom{1}{2} \cos \sqrt{2} t+c_{2}\binom{1}{2} \sin \sqrt{2} t+c_{3}\binom{-2}{1} \cos 2 \sqrt{3} t+c_{4}\binom{-2}{1} \sin 2 \sqrt{3} t
$$

The initial conditions

$$
\mathbf{X}(0)=\binom{0}{0} \quad \text { and } \quad \mathbf{X}^{\prime}(0)=\binom{1}{-1}
$$

imply $c_{1}=0, c_{2}=-\sqrt{2} / 10, c_{3}=0$, and $c_{4}=-\sqrt{3} / 10$. Thus

$$
\begin{aligned}
& x_{1}(t)=-\frac{\sqrt{2}}{10} \sin \sqrt{2} t+\frac{\sqrt{3}}{5} \sin 2 \sqrt{3} t \\
& x_{2}(t)=-\frac{\sqrt{2}}{5} \sin \sqrt{2} t-\frac{\sqrt{3}}{10} \sin 2 \sqrt{3} t
\end{aligned}
$$

$=$ (a) From $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda(\lambda-2)=0$ we get $\lambda_{1}=0$ and $\lambda_{2}=2$. For $\lambda_{1}=0$ we obtain

$$
\left(\begin{array}{ll|l}
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{1}=\binom{-1}{1}
$$

For $\lambda_{2}=2$ we obtain

$$
\left(\begin{array}{rr|r}
-1 & 1 & 0 \\
1 & -1 & 0
\end{array}\right) \Longrightarrow\left(\begin{array}{rr|r}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { so that } \quad \mathbf{K}_{2}=\binom{1}{1}
$$

Then

$$
\mathbf{X}=c_{1}\binom{-1}{1}+c_{2}\binom{1}{1} e^{2 l}
$$

The line $y=-x$ is not a trajectory of the system. Trajectories are $x=-c_{1}+c_{2} e^{2 t}: y=c_{1}+c_{2} e^{2 t}$ or $y=x+2 c_{1}$. This is a family of lines perpendicular to the line $y=-x$. All of the constant solutions of the system do, however, lie on the line $y=-x$.

(b) From $\operatorname{dct}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}=0$ we get $\lambda_{1}=0$ and

$$
\mathbf{K}=\binom{-1}{1}
$$

A solution of $\left(\mathbf{A}-\lambda_{1} \mathbf{I}\right) \mathbf{P}=\mathbf{K}$ is

$$
\mathbf{P}=\binom{-1}{0}
$$

so that

$$
\mathbf{X}=c_{1}\binom{-1}{1}+c_{2}\left[\binom{-1}{1} t+\binom{-1}{0}\right] .
$$

Exercises 8.2 Homogeneous Linear Systems

All trajectories are parallel to $y=-x$, but $y=-x$ is not a trajectory. There are constant solutions of the system, however, that do lie on the line $y=-x$.

50. The system of differential equations is

$$
\begin{aligned}
& x_{1}^{\prime}=2 x_{1}+x_{2} \\
& x_{2}^{\prime}=2 x_{2} \\
& x_{3}^{\prime}=2 x_{3} \\
& x_{4}^{\prime}=2 x_{4}+x_{5} \\
& x_{5}^{\prime}=2 x_{5} .
\end{aligned}
$$

We see immediately that $x_{2}=c_{2} e^{2 t}, x_{3}=c_{3} e^{2 t}$, and $x_{5}=c_{5} e^{2 t}$. Then

$$
x_{1}^{\prime}=2 x_{1}+c_{2} e^{2 t} \quad \text { so } \quad x_{1}=c_{2} t e^{2 t}+c_{1} e^{2 t}
$$

and

$$
x_{4}^{\prime}=2 x_{4}+c_{5} e^{2 t} \quad \text { so } \quad x_{4}=c_{5} t e^{2 t}+c_{4} e^{2 t}
$$

The general solution of the system is

$$
\mathbf{X}=\left(\begin{array}{c}
c_{2} t e^{2 t}+c_{1} e^{2 t} \\
c_{2} e^{2 t} \\
c_{3} e^{2 t} \\
c_{5} t e^{2 t}+c_{4} e^{2 t} \\
c_{5} e^{2 t}
\end{array}\right)
$$

Exercises 8.2 Homogeneous Linear Syster:

$$
\begin{aligned}
& =c_{1}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) e^{2 t}+c_{2}\left[\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) t e^{2 t}+\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right) e^{2 t}\right] \\
& +\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right) e^{2 t}+c_{4}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right) e^{2 t}+c_{5}\left[\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right) t e^{2 t}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right) e^{2 t}\right] \\
& =c_{1} \mathbf{K}_{1} e^{2 t}+c_{2}\left[\mathbf{K}_{1} t e^{2 t}+\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right) e^{2 t}\right] \\
& +c_{3} \mathbf{K}_{2} e^{2 t}+c_{4} \mathbf{K}_{3} e^{2 t}+c_{5}\left[\mathbf{K}_{3} t e^{2 t}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right) e^{2 t}\right]
\end{aligned}
$$

There are three solutions of the form $\mathbf{X}=\mathbf{K} e^{2 t}$, where \mathbf{K} is an eigenvector, and two solutions \therefore the form $\mathbf{X}=\mathbf{K} t e^{2 t}+\mathbf{P} e^{2 t}$. See (12) in the text. From (13) and (14) in the text

$$
(\mathbf{A}-2 \mathbf{I}) \mathbf{K}_{1}=\mathbf{0}
$$

and

$$
(\mathbf{A}-2 \mathbf{I}) \mathbf{K}_{2}=\mathbf{K}_{1}
$$

This implies

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

so $p_{2}=1$ and $p_{5}=0$. while p_{1}, p_{3}, and p_{4} are arbitrary. Choosing $p_{1}=p_{3}=p_{4}=0$ we have

$$
\mathbf{P}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Therefore a solution is

$$
\mathbf{X}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) t e^{2 t}+\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) e^{2 t}
$$

Repcating for \mathbf{K}_{3} we find

$$
\mathbf{P}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right),
$$

so another solution is

$$
\mathbf{X}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right) t e^{2 t}+\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right) e^{2 t}
$$

51. From $x=2 \cos 2 t-2 \sin 2 t, y=-\cos 2 t$ we find $x+2 y=-2 \sin 2 t$. Then

$$
(x+2 y)^{2}=4 \sin ^{2} 2 t=4\left(1-\cos ^{2} 2 t\right)=4-4 \cos ^{2} 2 t=4-4 y^{2}
$$

and

$$
x^{2}+4 x y+4 y^{2}=4-4 y^{2} \quad \text { or } \quad x^{2}+4 x y+8 y^{2}=4
$$

This is a rotated conic section and, from the discriminant $b^{2}-4 a c=16-32<0$, we see the: curve is an ellipse.
52. Suppose the eigenvalues are $\alpha \pm i \beta, \beta>0$. In Problem 36 the eigenvalues are $5 \pm 3 i$, in Problem 37 they are $\pm 3 i$, and in Problem 38 they are $-1 \pm 2 i$. From Problem 47 we deduc: the phase portrait will consist of a family of closed curves when $\alpha=0$ and spirals when $\alpha \neq$. origin will be a repellor when $\alpha>0$, and an attractor when $\alpha<0$.

Exercises 8.3

> Nonhomogeneous Iinear Systems
\therefore Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
2-\lambda & 3 \\
-1 & -2-\lambda
\end{array}\right|=\lambda^{2}-1=(\lambda-1)(\lambda+1)=0
$$

we obtain cigenvalucs $\lambda_{1}=-1$ and $\lambda_{2}=1$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{-1}{1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{-3}{1}
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{-1}{1} e^{-t}+c_{2}\binom{-3}{1} e^{t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{1}}{b_{1}}
$$

into the system yields

$$
\begin{aligned}
& 2 a_{1}+3 b_{1}=7 \\
& -a_{1}-2 b_{1}=-5,
\end{aligned}
$$

From which we obtain $a_{1}=-1$ and $b_{1}=3$. Then

$$
\mathbf{X}(t)=c_{1}\binom{-1}{1} e^{\cdot t}+c_{2}\binom{-3}{1} e^{t}+\binom{-1}{3} .
$$

\therefore Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
5-\lambda & 9 \\
-1 & 11-\lambda
\end{array}\right|=\lambda^{2}-16 \lambda \div 64=(\lambda-8)^{2}=0
$$

$\because e$ obtain the eigenvalue $\lambda=8$. A corrosponding eigenvector is

$$
\mathbf{K}=\binom{3}{1}
$$

Solving $(\mathbf{A}-8 \mathbf{I}) \mathbf{P}=\mathbf{K}$ we obtain

$$
\mathbf{P}=\binom{2}{1}
$$

-hus

$$
\mathbf{X}_{c}=c_{1}\binom{3}{1} e^{8 t}+c_{2}\left[\binom{3}{1} l e^{8 t}+\binom{2}{1} e^{8 t}\right] .
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{1}}{b_{\mathrm{I}}}
$$

into the system yields

$$
\begin{aligned}
5 a_{1}+9 b_{1} & =-2 \\
-a_{1}+11 b_{1} & =-6
\end{aligned}
$$

from which we obtain $a_{1}=1 / 2$ and $b_{1}=-1 / 2$. Then

$$
\mathbf{X}(t)=c_{1}\binom{3}{1} e^{8 t}+c_{2}\left[\binom{3}{1} t e^{8 t}+\binom{2}{1} e^{8 t}\right]+\binom{1 / 2}{-1 / 2}
$$

3. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right|=\lambda^{2}-2 \lambda-8=(\lambda-4)(\lambda+2)=0
$$

we obtain eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=4$. Corresponding cigenvectors are

$$
\mathbf{K}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{1}
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-1} e^{-2 t}+c_{2}\binom{1}{1} e^{4 t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{3}}{b_{3}} t^{2}+\binom{a_{2}}{b_{2}} t+\binom{a_{1}}{b_{1}}
$$

into the system yields

$$
\begin{array}{rrrr}
a_{3}+3 b_{3}=2 & a_{2}+3 b_{2}=2 a_{3} & a_{1}+3 b_{1}=a_{2} \\
3 a_{3}+b_{3}=0 & 3 a_{2}+b_{2}+1=2 b_{3} & 3 a_{1}+b_{1}+5=b_{2}
\end{array}
$$

from which we obtain $a_{3}=-1 / 4, b_{3}=3 / 4, a_{2}=1 / 4, b_{2}=-1 / 4, a_{1}=-2$, and $b_{1}=3 / 4$. Tl: :

$$
\mathbf{X}(t)=c_{1}\binom{1}{-1} e^{-2 t}+c_{2}\binom{1}{1} e^{4 t}+\binom{-1 / 4}{3 / 4} t^{2}+\binom{1 / 4}{-1 / 4} t+\binom{-2}{3 / 4}
$$

4. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
1-\lambda & -4 \\
4 & 1-\lambda
\end{array}\right|=\lambda^{2}-2 \lambda+17=0
$$

we obtain eigenvalues $\lambda_{1}=1+4 i$ and $\lambda_{2}=1-4 i$. Corresponding eigenvectors are

$$
\mathbf{K}_{\mathbf{1}}=\binom{i}{1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{-i}{1}
$$

Thus

$$
\begin{aligned}
\mathbf{X}_{c} & =c_{1}\left[\binom{0}{1} \cos 4 t+\binom{-1}{0} \sin 4 t\right] e^{t}+c_{2}\left[\binom{-1}{0} \cos 4 t-\binom{0}{1} \sin 4 t\right] e^{t} \\
& =c_{1}\binom{-\sin 4 t}{\cos 4 t} e^{t}+c_{2}\binom{-\cos 4 t}{-\sin 4 t} e^{t} .
\end{aligned}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{3}}{b_{3}} t+\binom{a_{2}}{b_{2}}+\binom{a_{1}}{b_{1}} e^{6 t}
$$

into the system yields

$$
\begin{aligned}
& a_{3}-4 b_{3}=-4 \quad a_{2}-4 b_{2}=a_{3} \quad-5 a_{1}-4 b_{1}=-9 \\
& 4 a_{3}+b_{3}=1 \quad 4 a_{2}+b_{2}=b_{3} \quad 4 a_{1}-5 b_{1}=-1
\end{aligned}
$$

from which we obtain $a_{3}=0, b_{3}=1, a_{2}=4 / 17, b_{2}=1 / 17, a_{1}=1$, and $b_{1}=1$. Then

$$
\mathbf{X}(t)=c_{1}\binom{-\sin 4 t}{\cos 4 t} e^{t}+c_{2}\binom{-\cos 4 t}{-\sin 4 t} e^{t}+\binom{0}{1} t+\binom{4 / 17}{1 / 17}+\binom{1}{1} e^{6 t}
$$

\because Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
4-\lambda & 1 / 3 \\
9 & 6-\lambda
\end{array}\right|=\lambda^{2}-10 \lambda+21=(\lambda-3)(\lambda-7)=0
$$

we obtain the cigenvalues $\lambda_{1}=3$ and $\lambda_{2}=7$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{1}{-3} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{9} .
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-3} e^{3 t}+c_{2}\binom{1}{9} e^{7 t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{1}}{b_{1}} e^{t}
$$

nto the system yields

$$
\begin{aligned}
3 a_{1}+\frac{1}{3} b_{1} & =3 \\
9 a_{1}+5 b_{1} & =-10
\end{aligned}
$$

Erom which we obtain $a_{1}=55 / 36$ and $b_{1}=-19 / 4$. Then

$$
\mathbf{X}(t)=c_{1}\binom{1}{-3} e^{3 t}+c_{2}\binom{1}{9} e^{7 t}+\binom{55 / 36}{-19 / 4} e^{t}
$$

Exercises 8.3 Nonhomogencous Linear Systems
6. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
-1-\lambda & 5 \\
-1 & 1-\lambda
\end{array}\right|=\lambda^{2}+4=0
$$

we obtain the eigenvalues $\lambda_{1}=2 i$ and $\lambda_{2}=-2 i$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{5}{1+2 i} \quad \text { and } \quad \mathbf{K}_{2}=\binom{5}{1-2 i}
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{5 \cos 2 t}{\cos 2 t-2 \sin 2 t}+c_{2}\binom{5 \sin 2 t}{2 \cos 2 t+\sin 2 t} .
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{2}}{b_{2}} \cos t+\binom{a_{1}}{b_{1}} \sin t
$$

into the system yields

$$
\begin{aligned}
-a_{2}+5 b_{2}-a_{1} & =0 \\
-a_{2}+b_{2}-b_{1}-2 & =0 \\
-a_{1}+5 b_{1}+a_{2}+1 & =0 \\
-a_{1}+b_{1}+b_{2} & =0
\end{aligned}
$$

from which we obtain $a_{2}=-3, b_{2}=-2 / 3, a_{1}=-1 / 3$, and $b_{1}=1 / 3$. Then

$$
\mathbf{X}(t)=c_{1}\binom{5 \cos 2 t}{\cos 2 t-2 \sin 2 t}+c_{2}\binom{5 \sin 2 t}{2 \cos 2 t+\sin 2 t}+\binom{-3}{-2 / 3} \cos t+\binom{-1 / 3}{1 / 3} \sin t
$$

․ Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
0 & 2-\lambda & 3 \\
0 & 0 & 5-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)(5-\lambda)=0
$$

we obtain the eigenvalues $\lambda_{1}=1, \lambda_{2}=2$, and $\lambda_{3}=5$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
$$

Thus

$$
\mathbf{X}_{c}=C_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+C_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{2 t}+C_{3}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) e^{j t}
$$

Substituting

$$
\mathbf{X}_{p}=\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right) e^{4 t}
$$

into the systern yields

$$
\begin{aligned}
-3 a_{1}+b_{1}+c_{1} & =-1 \\
-2 b_{1}+3 c_{1} & =1 \\
c_{1} & =-2
\end{aligned}
$$

from which we obtain $c_{1}=-2, b_{1}=-7 / 2$, and $a_{1}=-3 / 2$. Then

$$
\mathbf{X}(t)=C_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) e^{t}+C_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{2 t}+C_{3}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) e^{5 t}+\left(\begin{array}{c}
-3 / 2 \\
-7 / 2 \\
-2
\end{array}\right) e^{4 t}
$$

E. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{ccc}
-\lambda & 0 & 5 \\
0 & 5-\lambda & 0 \\
5 & 0 & -\lambda
\end{array}\right|=-(\lambda-5)^{2}(\lambda+5)=0
$$

we obtain the cigenvalues $\lambda_{1}=5, \lambda_{2}=5$, and $\lambda_{3}=-5$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) .
$$

Thus

$$
\mathbf{X}_{c}=C_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{5 t}+C_{3}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) e^{-5 t}
$$

Substituting

$$
\mathbf{X}_{p}=\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right)
$$

:nto the system yields

$$
\begin{aligned}
& 5 c_{1}=-5 \\
& 5 b_{1}=10 \\
& 5 a_{1}=-40
\end{aligned}
$$

$\therefore \mathrm{am}$ which we obtain $c_{1}=-1, b_{1}=2$, and $a_{1}=-8$. Then

$$
\mathbf{X}(t)=C_{1}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{5 t}+C_{2}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{5 t}+C_{3}\left(\begin{array}{r}
1 \\
0 \\
-1
\end{array}\right) e^{-5 t}+\left(\begin{array}{r}
-8 \\
2 \\
-1
\end{array}\right)
$$

Exercises 8.3 Nonhomogeneous Linear Systems
9. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
-1-\lambda & -2 \\
3 & 4-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda+2=(\lambda-1)(\lambda-2)=0
$$

we obtain the eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=2$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{1}{-1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{-4}{6}
$$

Thus

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-1} e^{t}+c_{2}\binom{-4}{6} e^{2 t}
$$

Substituting

$$
\mathbf{X}_{p}=\binom{a_{1}}{b_{1}}
$$

Ento the system yields

$$
\begin{aligned}
-a_{1}-2 b_{1} & =-3 \\
3 a_{1}+4 b_{1} & =-3
\end{aligned}
$$

̇om which we obtain $a_{1}=-9$ and $b_{1}=6$. Then

$$
\mathbf{X}(t)=c_{1}\binom{1}{-1} e^{t}+c_{2}\binom{-4}{6} e^{2 t}+\binom{-9}{6}
$$

Setting

$$
\mathbf{X}(0)=\binom{-4}{5}
$$

ne obtain

$$
\begin{aligned}
c_{1}-4 c_{2}-9 & =-4 \\
-c_{1}+6 c_{2}+6 & =5
\end{aligned}
$$

Then $c_{1}=13$ and $c_{2}=2$ so

$$
\mathbf{X}(t)=13\binom{1}{-1} e^{t}+2\binom{-4}{6} e^{2 t}+\binom{-9}{6} .
$$

-i. : a) Let $\mathbf{I}=\binom{i_{2}}{i_{3}}$ so that

$$
\mathbf{I}^{\prime}=\left(\begin{array}{ll}
-2 & -2 \\
-2 & -5
\end{array}\right) \mathbf{I}+\binom{60}{60}
$$

and

$$
\mathbf{I}_{c}=c_{1}\binom{2}{-1} e^{-t}+c_{2}\binom{1}{2} e^{-6 t}
$$

If $\mathbf{I}_{p}=\binom{a_{1}}{b_{1}}$ then $\mathbf{I}_{p}=\binom{30}{0}$ so that

$$
\mathbf{I}=c_{1}\binom{2}{-1} e^{-t}+c_{2}\binom{1}{2} e^{-6 t}+\binom{30}{0} .
$$

For $\mathbf{I}(0)=\binom{0}{0}$ we find $c_{1}=-12$ and $c_{2}=-6$.
(b) $i_{1}(t)=i_{2}(t)+i_{3}(t)=-12 e^{-t}-18 e^{-6 l}+30$.
-1. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
3 & -3 \\
2 & -2
\end{array}\right) \mathbf{X}+\binom{4}{-1}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{1}+c_{2}\binom{3}{2} e^{l}
$$

Then

$$
\Phi=\left(\begin{array}{cc}
1 & 3 e^{t} \\
1 & 2 e^{t}
\end{array}\right) \quad \text { and } \quad \Phi^{-1}=\left(\begin{array}{cc}
-2 & 3 \\
e^{-t} & -e^{-t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{-11}{5 e^{-t}} d t=\binom{-11 t}{-\tilde{3} e^{-t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-11}{-11} t+\binom{-15}{-10}
$$

2. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{X}+\binom{0}{4} t
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{1} e^{t}+c_{2}\binom{1}{3} e^{-t}
$$

Then

$$
\Phi=\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
\frac{3}{2} e^{-t} & -\frac{1}{2} e^{-t} \\
-\frac{1}{2} e^{t} & \frac{1}{2} e^{t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{-2 t e^{-t}}{2 t e^{t}} d t=\binom{2 t e^{-t}+2 e^{-t}}{2 t e^{l}-2 e^{t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{4}{8} t+\binom{0}{-4}
$$

From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
3 & -5 \\
3 / 4 & -1
\end{array}\right) \mathbf{X}+\binom{1}{-1} e^{t / 2}
$$

Exercises 8.3 Nonhomogencous Linear Systems

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{10}{3} e^{3 t / 2}+c_{2}\binom{2}{1} e^{t / 2}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
10 e^{3 t / 2} & 2 e^{l / 2} \\
3 e^{3 t / 2} & e^{t / 2}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
\frac{1}{4} e^{-3 t / 2} & -\frac{1}{2} e^{-3 t / 2} \\
-\frac{3}{4} e^{-t / 2} & \frac{5}{2} e^{-t / 2}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{\frac{3}{4} e^{-t}}{-\frac{13}{4}} d t=\binom{-\frac{3}{4} e^{-t}}{-\frac{13}{4} t}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-13 / 2}{-13 / 4} t e^{t / 2}+\binom{-15 / 2}{-9 / 4} e^{t / 2}
$$

2. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
2 & -1 \\
4 & 2
\end{array}\right) \mathbf{X}+\binom{\sin 2 t}{2 \cos 2 t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{-\sin 2 t}{2 \cos 2 t} e^{2 t}+c_{2}\binom{\cos 2 t}{2 \sin 2 t} e^{2 t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{rr}
-e^{2 t} \sin 2 t & e^{2 t} \cos 2 t \\
2 e^{2 t} \cos 2 t & 2 e^{2 t} \sin 2 t
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
-\frac{1}{2} e^{-2 t} \sin 2 t & \frac{1}{4} e^{-2 t} \cos 2 t \\
\frac{1}{2} e^{-2 t} \cos 2 t & \frac{1}{4} e^{-2 t} \sin 2 t
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{\frac{1}{2} \cos 4 t}{\frac{1}{2} \sin 4 t} d t=\binom{\frac{1}{8} \sin 4 t}{-\frac{1}{8} \cos 4 t}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-\frac{1}{8} \sin 2 t \cos 4 t-\frac{1}{8} \cos 2 t \cos 4 t}{\frac{1}{4} \cos 2 t \sin 4 t-\frac{1}{4} \sin 2 t \cos 4 t} e^{2 t}
$$

15. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
0 & 2 \\
-1 & 3
\end{array}\right) \mathbf{X}+\binom{1}{-1} e^{t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{2}{1} e^{t}+c_{2}\binom{1}{1} e^{2 t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{rr}
2 e^{t} & e^{2 t} \\
e^{t} & e^{2 t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
e^{-t} & -e^{-t} \\
-e^{-2 t} & 2 e^{-2 t}
\end{array}\right)
$$

sc that

$$
\mathbf{U}=\int \mathbf{\Phi}^{-1} \mathbf{F} d t=\int\binom{2}{-3 e^{-t}} d t=\binom{2 t}{3 e^{-t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{4}{2} t e^{t}+\binom{3}{3} e^{t}
$$

16. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
0 & 2 \\
-1 & 3
\end{array}\right) \mathbf{X}+\binom{2}{e^{-3 t}}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{2}{1} e^{t}+c_{2}\binom{1}{1} e^{2 l}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
2 e^{t} & e^{2 t} \\
e^{t} & e^{2 t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
e^{-t} & -e^{-t} \\
-e^{-2 t} & 2 e^{-2 t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{2 e^{-t}-e^{-4 t}}{-2 e^{-2 t}+2 e^{-5 t}} d t=\binom{-2 e^{-t}+\frac{1}{4} e^{-4 t}}{e^{-2 t}-\frac{2}{5} e^{-5 t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{\frac{1}{10} e^{-3 t}-3}{-\frac{3}{20} e^{-3 t}-1}
$$

\because From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
1 & 8 \\
1 & -1
\end{array}\right) \mathbf{X}+\binom{12}{12} t
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{4}{1} e^{3 t}+c_{2}\binom{-2}{1} e^{-3 t}
$$

Then

$$
\Phi=\left(\begin{array}{rr}
4 e^{3 t} & -2 e^{-3 t} \\
e^{3 t} & e^{-3 t}
\end{array}\right) \quad \text { and } \quad \Phi^{-1}=\left(\begin{array}{cc}
\frac{1}{6} e^{-3 t} & \frac{1}{3} e^{-3 t} \\
-\frac{1}{6} e^{3 t} & \frac{2}{3} e^{3 t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{6 t e^{-3 t}}{6 t e^{3 t}} d t=\binom{-2 t e^{-3 t}-\frac{2}{3} e^{-3 t}}{2 t e^{3 t}-\frac{2}{3} e^{3 l}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-12}{0} t+\binom{-4 / 3}{-4 / 3}
$$

. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
1 & 8 \\
1 & -1
\end{array}\right) \mathbf{X}+\binom{e^{-t}}{t e^{t}}
$$

re obtain

$$
\mathbf{X}_{c}=c_{1}\binom{4}{1} e^{3 t}+c_{2}\binom{-2}{1} e^{-3 t}
$$

Exercises 8.3 Nonhomogeneous Linear Systems

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
4 e^{3 t} & -2 e^{3 t} \\
e^{3 t} & e^{-3 t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
\frac{1}{6} e^{-3 t} & \frac{1}{3} e^{-3 t} \\
-\frac{1}{6} e^{3 t} & \frac{2}{3} e^{3 t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{\frac{1}{6} e^{-4 t}+\frac{1}{3} t e^{-2 t}}{-\frac{1}{6} e^{2 t}+\frac{2}{3} t e^{4 t}} d t=\binom{-\frac{1}{24} e^{-4 t}-\frac{1}{6} t e^{-2 t}-\frac{1}{12} e^{-2 t}}{-\frac{1}{12} e^{2 t}+\frac{1}{6} t e^{4 t}-\frac{1}{24} e^{4 t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-t e^{t}-\frac{1}{4} e^{t}}{-\frac{1}{8} e^{-t}-\frac{1}{8} e^{t}}
$$

19. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
3 & 2 \\
-2 & -1
\end{array}\right) \mathbf{X}+\binom{2}{1} e^{-t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-1} e^{t} \div c_{2}\left[\binom{1}{-1} t e^{t}+\binom{0}{1 / 2} e^{t}\right] .
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
e^{t} & t e^{t} \\
-e^{t} & \frac{1}{2} e^{t}-t e^{t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
e^{-t}-2 t e^{-t} & -2 t e^{-t} \\
2 e^{-t} & 2 e^{-t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{2 e^{-2 t}-6 t e^{-2 t}}{6 e^{-2 t}} d t=\binom{\frac{1}{2} e^{-2 t}+3 t e^{-2 t}}{-3 e^{-2 t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{1 / 2}{-2} e^{-t}
$$

20. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
3 & 2 \\
-2 & -1
\end{array}\right) \mathbf{X}+\binom{1}{1}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-1} e^{t}+c_{2}\left[\binom{1}{-1} t e^{t}+\binom{0}{1 / 2} e^{\ell}\right] .
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
e^{t} & t e^{t} \\
-e^{t} & \frac{1}{2} e^{t}-t e^{t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
e^{-t}-2 t e^{-t} & -2 t e^{-t} \\
2 e^{-t} & 2 e^{-t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{e^{-t}-4 t e^{-t}}{2 e^{-t}} d t=\binom{3 e^{-t}+4 t e^{-t}}{-2 e^{-t}}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{3}{-5}
$$

Exercises 8.3 Nonhomogeneous Linear Syster:-:
21. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \mathbf{X}+\binom{\sec t}{0}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{\cos t}{\sin t}+c_{2}\binom{\sin t}{-\cos t}
$$

Then

$$
\Phi=\left(\begin{array}{rr}
\cos t & \sin t \\
\sin t & -\cos t
\end{array}\right) \quad \text { and } \quad \Phi^{-1}=\left(\begin{array}{rr}
\cos t & \sin t \\
\sin t & -\cos t
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \mathbf{\Phi}^{-1} \mathbf{F} d t=\int\binom{1}{\tan t} d t=\binom{t}{-\ln |\cos t|}
$$

and

$$
\mathbf{X}_{p}=\mathbf{\Phi} \mathbf{U}=\binom{t \cos t-\sin t \ln |\cos t|}{t \sin t+\cos t \ln |\cos t|}
$$

22. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right) \mathbf{X}+\binom{3}{3} e^{t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{-\sin t}{\cos t} e^{t}+c_{2}\binom{\cos t}{\sin t} e^{t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{rr}
-\sin t & \cos t \\
\cos t & \sin t
\end{array}\right) e^{t} \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{rr}
-\sin t & \cos t \\
\cos t & \sin t
\end{array}\right) e^{-t}
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{-3 \sin t+3 \cos t}{3 \cos t+3 \sin t} d t=\binom{3 \cos t+3 \sin t}{3 \sin t-3 \cos t}
$$

and

$$
\mathbf{X}_{p}=\mathbf{\Phi} \mathbf{U}=\binom{-3}{3} e^{t}
$$

3. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right) \mathbf{X}+\binom{\cos t}{\sin t} e^{t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{-\sin t}{\cos t} e^{t}+c_{2}\binom{\cos t}{\sin t} e^{t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{rr}
-\sin t & \cos t \\
\cos t & \sin t
\end{array}\right) e^{t} \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{rr}
-\sin t & \cos t \\
\cos t & \sin t
\end{array}\right) e^{-t}
$$

Exercises 8.3 Nonhomogencous Linear Systems
so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-\mathrm{i}} \mathbf{F} d t=\int\binom{0}{1} d t=\binom{0}{t}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{\cos t}{\sin t} t e^{t}
$$

2. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
2 & -2 \\
8 & -6
\end{array}\right) \mathbf{X}+\binom{1}{3} \frac{1}{t} e^{-2 t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{1}{2} e^{-2 t}+c_{2}\left[\binom{1}{2} t e^{-2 t}+\binom{1 / 2}{1 / 2} e^{-2 t}\right]
$$

Then

$$
\Phi=\left(\begin{array}{cc}
1 & t+\frac{1}{2} \\
2 & 2 t+\frac{1}{2}
\end{array}\right) e^{-2 t} \quad \text { and } \quad \Phi^{-1}=\left(\begin{array}{cc}
-4 t-1 & 2 t+1 \\
4 & -2
\end{array}\right) e^{2 t}
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{2+2 / t}{-2 / t} d t=\binom{2 t+2 \ln t}{-2 \ln t}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{2 t+\ln t-2 t \ln t}{4 t+3 \ln t-4 t \ln t} e^{-2 t}
$$

25. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{X}+\binom{0}{\sec t \tan t}
$$

re obtain

$$
\mathbf{X}_{c}=c_{1}\binom{\cos t}{-\sin t}+c_{2}\binom{\sin t}{\cos t} .
$$

Then

$$
\Phi=\left(\begin{array}{rr}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) t \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

so that

$$
\mathrm{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{-\tan ^{2} t}{\tan t} d t=\binom{t-\tan t}{-\ln |\cos t|}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{\cos t}{-\sin t} t+\binom{-\sin t}{\sin t \tan t}-\binom{\sin t}{\cos t} \ln |\cos t|
$$

23. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \mathbf{X}+\binom{1}{\cot t}
$$

Exercises 8.3 Nonhomogeneous Linear Systē.-.
we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{\cos t}{-\sin t}+c_{2}\binom{\sin t}{\cos t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{rr}
\cos t & \sin t \\
-\sin t & \cos t
\end{array}\right) \quad \text { and } \quad \Phi^{-1}=\left(\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{0}{\csc t} d t=\binom{0}{\ln |\csc t-\cot t|}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{\sin t \ln |\csc t-\cot t|}{\cos t \ln |\csc t-\cot t|}
$$

\therefore-. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{cc}
1 & 2 \\
-1 / 2 & 1
\end{array}\right) \mathbf{X}+\binom{\csc t}{\sec t} e^{t}
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\binom{2 \sin t}{\cos t} e^{t}+c_{2}\binom{2 \cos t}{-\sin t} e^{t}
$$

Then

$$
\Phi=\left(\begin{array}{cc}
2 \sin t & 2 \cos t \\
\cos t & -\sin t
\end{array}\right) e^{t} \quad \text { and } \quad \Phi^{-1}=\left(\begin{array}{cr}
\frac{1}{2} \sin t & \cos t \\
\frac{1}{2} \cos t & -\sin t
\end{array}\right) e^{-t}
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{\frac{3}{2}}{\frac{1}{2} \cot t-\tan t} d t=\binom{\frac{3}{2} t}{\frac{1}{2} \ln |\sin t|+\ln |\cos t|}
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{3 \sin t}{\frac{3}{2} \cos t} t e^{t}+\binom{\cos t}{-\frac{1}{2} \sin t} e^{t} \ln |\sin t|+\binom{2 \cos t}{-\sin t} e^{t} \ln |\cos t| .
$$

三som

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right) \mathbf{X}+\binom{\tan t}{1}
$$

-ee obtain

$$
\mathbf{X}_{c}=c_{1}\binom{\cos t-\sin t}{\cos t}+c_{2}\binom{\cos t+\sin t}{\sin t}
$$

Fan

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
\cos t-\sin t & \cos t+\sin t \\
\cos t & \sin t
\end{array}\right) \quad \text { and } \quad \mathbf{\Phi}^{-1}=\left(\begin{array}{cc}
-\sin t & \cos t+\sin t \\
\cos t & \sin t-\cos t
\end{array}\right)
$$

\because that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{2 \cos t+\sin t-\sec t}{2 \sin t-\cos t} d t=\left(\begin{array}{c}
2 \sin t-\cos t-\ln \mid \sec t+\tan t \\
-2 \cos t-\sin t
\end{array}\right.
$$

Exercises 8.3 Nonhomogeneous Lincar Systems
and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{3 \sin t \cos t-\cos ^{2} t-2 \sin ^{2} t+(\sin t-\cos t) \ln |\sec t+\tan t|}{\sin ^{2} t-\cos ^{2} t-\cos t(\ln |\sec t+\tan t|)}
$$

29. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 3
\end{array}\right) \mathbf{X}+\left(\begin{array}{c}
e^{t} \\
e^{2 t} \\
t e^{3 t}
\end{array}\right)
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\left(\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) e^{3 t}
$$

Then

$$
\mathbf{\Phi}=\left(\begin{array}{ccc}
1 & e^{2 t} & 0 \\
-1 & e^{2 t} & 0 \\
0 & 0 & e^{3 t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} e^{-2 t} & \frac{1}{2} e^{-2 t} & 0 \\
0 & 0 & e^{-3 t}
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\left(\begin{array}{c}
\frac{1}{2} e^{t}-\frac{1}{2} e^{2 t} \\
\frac{1}{2} e^{-t}+\frac{1}{2} \\
t
\end{array}\right) d t=\left(\begin{array}{c}
\frac{1}{2} e^{t}-\frac{1}{4} e^{2 t} \\
-\frac{1}{2} e^{-t}+\frac{1}{2} t \\
\frac{1}{2} t^{2}
\end{array}\right)
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\left(\begin{array}{c}
-\frac{1}{4} e^{2 t}+\frac{1}{2} t e^{2 t} \\
-e^{t}+\frac{1}{4} e^{2 t}+\frac{1}{2} t e^{2 t} \\
\frac{1}{2} t^{2} e^{3 t}
\end{array}\right)
$$

35. From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rrr}
3 & -1 & -1 \\
1 & 1 & -1 \\
1 & -1 & 1
\end{array}\right) \mathbf{X}+\left(\begin{array}{c}
0 \\
t \\
2 e^{t}
\end{array}\right)
$$

we obtain

$$
\mathbf{X}_{c}=c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{t}+c_{2}\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) e^{2 t}+c_{3}\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e^{2 t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{ccc}
e^{t} & e^{2 t} & e^{2 t} \\
e^{t} & e^{2 t} & 0 \\
e^{t} & 0 & e^{2 t}
\end{array}\right) \quad \text { and } \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{ccc}
-e^{-t} & e^{-t} & e^{-t} \\
e^{-2 t} & 0 & -e^{-2 t} \\
e^{-2 t} & -e^{-2 t} & 0
\end{array}\right)
$$

so that

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\left(\begin{array}{c}
t e^{-t}+2 \\
-2 e^{-t} \\
-t e^{-2 t}
\end{array}\right) d t=\left(\begin{array}{c}
-t e^{-t}-e^{-t}+2 t \\
2 e^{-t} \\
\frac{1}{2} t e^{-2 t}+\frac{1}{4} e^{-2 t}
\end{array}\right)
$$

and

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\left(\begin{array}{c}
-1 / 2 \\
-1 \\
-1 / 2
\end{array}\right) t+\left(\begin{array}{c}
-3 / 4 \\
-1 \\
-3 / 4
\end{array}\right)+\left(\begin{array}{l}
2 \\
2 \\
0
\end{array}\right) e^{t}+\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right) t e^{t}
$$

… From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{rr}
3 & -1 \\
-1 & 3
\end{array}\right) \mathbf{X}+\binom{4 e^{2 t}}{4 e^{4 t}}
$$

we obtain

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
-e^{4 t} & e^{2 t} \\
e^{4 t} & e^{2 t}
\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
-\frac{1}{2} e^{-4 t} & \frac{1}{2} e^{-4 t} \\
\frac{1}{2} e^{-2 t} & \frac{1}{2} e^{-2 t}
\end{array}\right)
$$

and

$$
\begin{aligned}
\mathbf{X} & =\boldsymbol{\Phi} \boldsymbol{\Phi}^{\cdots 1}(0) \mathbf{X}(0)+\boldsymbol{\Phi} \int_{0}^{t} \boldsymbol{\Phi}^{-1} \mathbf{F} d s=\boldsymbol{\Phi} \cdot\binom{0}{1}+\boldsymbol{\Phi} \cdot\binom{e^{-2 t}+2 t-1}{e^{2 t}+2 t-1} \\
& =\binom{2}{2} t e^{2 t}+\binom{-1}{1} e^{2 t}+\binom{-2}{2} t e^{4 t}+\binom{2}{0} e^{4 t} .
\end{aligned}
$$

\therefore From

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right) \mathbf{X}+\binom{1 / t}{1 / t}
$$

re obtain

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
1 & 1+t \\
1 & t
\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
-t & 1+t \\
1 & -1
\end{array}\right)
$$

and

$$
\mathbf{X}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{-1}(1) \mathbf{X}(1)+\boldsymbol{\Phi} \int_{1}^{t} \boldsymbol{\Phi}^{-1} \mathbf{F} d s=\boldsymbol{\Phi} \cdot\binom{-4}{3}+\boldsymbol{\Phi} \cdot\binom{\ln t}{0}=\binom{3}{3} t-\binom{1}{4}+\binom{1}{1} \ln \div
$$

$\therefore \operatorname{zet} \mathbf{I}=\binom{i_{1}}{i_{2}}$ so that

$$
\mathbf{I}^{\prime}=\left(\begin{array}{rr}
-11 & 3 \\
3 & -3
\end{array}\right) \mathbf{I}+\binom{100 \sin t}{0}
$$

$\because-\mathrm{d}$

$$
\mathbf{I}_{c}=c_{1}\binom{1}{3} e^{-2 t}+c_{2}\binom{3}{-1} e^{-12 t} .
$$

Then

$$
\begin{gathered}
\boldsymbol{\Phi}=\left(\begin{array}{cc}
e^{-2 t} & 3 e^{-12 t} \\
3 e^{-2 t} & -\epsilon^{-12 t}
\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
\frac{1}{10} e^{2 t} & \frac{3}{10} e^{2 t} \\
\frac{3}{10} e^{12 t} & -\frac{1}{10} e^{12 t}
\end{array}\right) . \\
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{10 e^{2 t} \sin t}{30 e^{12 t} \sin t} d t=\binom{2 e^{2 t}(2 \sin t-\cos t)}{\frac{6}{29} e^{12 t}(12 \sin t-\cos t)},
\end{gathered}
$$

and

$$
\mathbf{I}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{\frac{332}{29} \sin t-\frac{76}{29} \cos t}{\frac{276}{29} \sin t-\frac{168}{29} \cos t}
$$

so that

$$
\mathbf{I}=c_{1}\binom{1}{3} e^{-2 t}+c_{2}\binom{3}{-1} e^{-12 t}+\mathbf{I}_{p}
$$

$\therefore \mathbf{I}(0)=\binom{0}{0}$ then $c_{1}=2$ and $c_{2}=\frac{6}{29}$.
5.. Write the differential equation as a system

$$
\begin{aligned}
& y^{\prime}=v \\
& v^{\prime}=-Q y-P u+f \quad \text { or } \quad\binom{y}{v}^{\prime}=\left(\begin{array}{rr}
0 & 1 \\
-Q & -P
\end{array}\right)\binom{y}{v}+\binom{0}{f} .
\end{aligned}
$$

Zrom (9) in the text of this section, a particular solution is then $\mathbf{X}_{p}=\boldsymbol{\Phi}(x) \int \boldsymbol{\Phi}^{-1}(x) \mathbf{F}(x) d x \ldots$

$$
\boldsymbol{\Phi}(x)=\left(\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right) \quad \text { and } \quad \mathbf{X}_{p}=\binom{u_{1}}{u_{2}}
$$

Ehen

$$
\boldsymbol{\Phi}^{-1}(x)=\frac{1}{y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}}\left(\begin{array}{rr}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right)
$$

\because

$$
\mathbf{X}_{p}=\int \frac{1}{W}\left(\begin{array}{rr}
y_{2}^{\prime} & -y_{2} \\
-y_{1}^{\prime} & y_{1}
\end{array}\right)\binom{0}{f} d x
$$

End $W=y_{1} y_{2}^{\prime}-y_{2} y_{1}^{\prime}$. Thus

$$
u_{1}=\int \frac{-y_{2} f(x)}{W} d x \quad \text { and } \quad u_{2}=\int \frac{y_{1} f(x)}{W} d x
$$

--hich are the antiderivative forms of the equations in (5) of Section 4.6 in the text.
35. (a) The eigenvalues are $0,1,3$, and 4 , with corresponding eigenvectors

$$
\left(\begin{array}{r}
-6 \\
-4 \\
1 \\
2
\end{array}\right), \quad\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right), \quad\left(\begin{array}{l}
3 \\
1 \\
2 \\
1
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right) .
$$

(b) $\boldsymbol{\Phi}=\left(\begin{array}{cccc}-6 & 2 e^{t} & 3 e^{3 t} & -e^{4 t} \\ -4 & e^{t} & e^{3 t} & e^{4 t} \\ 1 & 0 & 2 e^{3 t} & 0 \\ 2 & 0 & e^{3 t} & 0\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cccc}0 & 0 & -\frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} e^{-t} & \frac{1}{3} e^{-l} & -2 e^{-t} & \frac{8}{3} e^{-t} \\ 0 & 0 & \frac{2}{3} e^{-3 t} & -\frac{1}{3} e^{-3 t} \\ -\frac{1}{3} e^{-4 t} & \frac{2}{3} e^{-4 t} & 0 & \frac{1}{3} e^{-4 t}\end{array}\right)$
(c) $\boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t)=\left(\begin{array}{c}\frac{2}{3}-\frac{1}{3} e^{2 t} \\ \frac{1}{3} e^{-2 t}+\frac{8}{3} e^{-t}-2 e^{t}+\frac{1}{3} t \\ -\frac{1}{3} e^{-3 t}+\frac{2}{3} e^{-t} \\ \frac{2}{3} e^{-5 t}+\frac{1}{3} e^{-4 t}-\frac{1}{3} t e^{-3 t}\end{array}\right)$,
$\int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t=\left(\begin{array}{c}-\frac{1}{6} e^{2 t}+\frac{2}{3} t \\ -\frac{1}{6} e^{-2 t}-\frac{8}{3} e^{-t}-2 e^{t}+\frac{1}{6} t^{2} \\ \frac{1}{9} e^{-3 t}-\frac{2}{3} e^{-t} \\ -\frac{2}{15} e^{-5 t}-\frac{1}{12} e^{-4 t}+\frac{1}{27} e^{-3 t}+\frac{1}{9} t e^{-3 t}\end{array}\right)$,
$\mathbf{X}_{p}(t)=\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t=\left(\begin{array}{c}-5 e^{2 t}-\frac{1}{5} e^{-t}-\frac{1}{27} e^{t}-\frac{1}{9} t e^{t}+\frac{1}{3} t^{2} e^{t}-4 t-\frac{59}{12} \\ -2 e^{2 t}-\frac{3}{10} e^{-t}+\frac{1}{27} e^{t}+\frac{1}{9} t e^{t}+\frac{1}{6} t^{2} e^{t}-\frac{8}{3} t-\frac{95}{36} \\ -\frac{3}{2} e^{2 t}+\frac{2}{3} t+\frac{2}{9} \\ -e^{2 t}+\frac{4}{3} t-\frac{1}{9}\end{array}\right)$,
$\mathbf{X}_{c}(t)=\boldsymbol{\Phi}(t) \mathbf{C}=\left(\begin{array}{c}-6 c_{1}+2 c_{2} e^{t}+3 c_{3} e^{3 t}-c_{4} e^{1 t} \\ -4 c_{1}+c_{2} e^{t}+c_{3} e^{3 t}+c_{4} e^{4 t} \\ c_{1}+2 c_{3} e^{3 t} \\ 2 c_{1}+c_{3} e^{3 t}\end{array}\right)$,
$\mathbf{X}(t)=\boldsymbol{\Phi}(t) \mathbf{C}+\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t$
$=\left(\begin{array}{c}-6 c_{1}+2 c_{2} e^{t}+3 c_{3} e^{3 t}-c_{4} e^{4 t} \\ -4 c_{1}+c_{2} e^{t}+c_{3} e^{3 t}+c_{4} e^{4 t} \\ c_{1}+2 c_{3} e^{3 t} \\ 2 c_{1}+c_{3} e^{3 t}\end{array}\right)+\left(\begin{array}{c}-5 e^{2 t}-\frac{1}{5} e^{-t}-\frac{1}{27} e^{t}-\frac{1}{9} t e^{t}+\frac{1}{3} t^{2} e^{t}-4 t-\frac{1}{2} \\ -2 e^{2 t}-\frac{3}{10} e^{-t}+\frac{1}{27} e^{t}+\frac{1}{9} t e^{t}+\frac{1}{6} t^{2} e^{t}-\frac{8}{3} t- \\ -\frac{3}{2} e^{2 t}+\frac{2}{3} t+\frac{2}{9} \\ -e^{2 t}+\frac{4}{3} t-\frac{1}{9}\end{array}\right.$
(d) $\mathbf{X}(t)=c_{1}\left(\begin{array}{r}-6 \\ -4 \\ 1 \\ 2\end{array}\right)+c_{2}\left(\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right) e^{t}+c_{3}\left(\begin{array}{l}3 \\ 1 \\ 2 \\ 1\end{array}\right) e^{3 t}+c_{4}\left(\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right) e^{4 t}$

$$
+\left(\begin{array}{c}
-5 e^{2 t}-\frac{1}{5} e^{-t}-\frac{1}{27} e^{t}-\frac{1}{9} t e^{t}+\frac{1}{3} t^{2} e^{t}-4 t-\frac{59}{12} \\
-2 e^{2 t}-\frac{3}{10} e^{-t}+\frac{1}{27} e^{t}+\frac{1}{9} t e^{t}+\frac{1}{6} t^{2} e^{t}-\frac{8}{3} t-\frac{95}{36} \\
-\frac{3}{2} e^{2 t}+\frac{2}{3} t+\frac{2}{9} \\
-e^{2 t}+\frac{4}{3} t-\frac{1}{9}
\end{array}\right)
$$

Exercises 8.4

Matrix Exponential

1. For $\mathbf{A}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$ we have

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) \\
& \mathbf{A}^{3}=\mathbf{A} \mathbf{A}^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right), \\
& \mathbf{A}^{4}=\mathbf{A} \mathbf{A}^{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 16
\end{array}\right),
\end{aligned}
$$

and so on. In general

$$
\mathbf{A}^{k}=\left(\begin{array}{cc}
1 & 0 \\
0 & 2^{k}
\end{array}\right) \quad \text { for } \quad k=1,2,3, \ldots
$$

Thus

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\frac{\mathbf{A}}{1!} t+\frac{\mathbf{A}^{2}}{2!} t^{2}+\frac{\mathbf{A}^{3}}{3!} t^{3}+\cdots \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{1}{1!}\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) t+\frac{1}{2!}\left(\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right) t^{2}+\frac{1}{3!}\left(\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right) t^{3}+\cdots \\
& =\left(\begin{array}{cc}
1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots & 0 \\
0 & 1+2 t+\frac{(2 t)^{2}}{2!}+\frac{(2 t)^{3}}{3!}+\cdots
\end{array}\right)=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)
\end{aligned}
$$

and

$$
e^{-\mathbf{A} t}=\left(\begin{array}{cc}
e^{-t} & 0 \\
0 & e^{-2 t}
\end{array}\right)
$$

2. For $\mathbf{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ we have

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathbf{I} \\
& \mathbf{A}^{3}=\mathbf{A} \mathbf{A}^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \mathbf{I}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\mathbf{A}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{A}^{4}=\left(\mathbf{A}^{2}\right)^{2}=\mathbf{I} \\
& \mathbf{A}^{5}=\mathbf{A} \mathbf{A}^{4}=\mathbf{A} \mathbf{I}=\mathbf{A}
\end{aligned}
$$

and so on. In general,

$$
\mathbf{A}^{k}= \begin{cases}\mathbf{A}, & k=1,3,5, \ldots \\ \mathbf{I} . & k=2,4,6, \ldots\end{cases}
$$

Thus

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\frac{\mathbf{A}}{1!} t+\frac{\mathbf{A}^{2}}{2!} t^{2}+\frac{\mathbf{A}^{3}}{3!} t^{3}+\cdots \\
& =\mathbf{I}+\mathbf{A} t+\frac{1}{2!} \mathbf{I} t^{2}+\frac{1}{3!} \mathbf{A} t^{3}+\cdots \\
& =\mathbf{I}\left(1+\frac{1}{2!} t^{2}+\frac{1}{4!} t^{4}+\cdots\right)+\mathbf{A}\left(t+\frac{1}{3!} t^{3}+\frac{1}{5!} t^{5}+\cdots\right) \\
& =\mathbf{I} \cosh t+\mathbf{A} \sinh t=\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)
\end{aligned}
$$

and

$$
e^{-\mathrm{A} t}=\left(\begin{array}{cc}
\cosh (-t) & \sinh (-t) \\
\sinh (-t) & \cosh (-t)
\end{array}\right)=\left(\begin{array}{rr}
\cosh t & -\sinh t \\
-\sinh t & \cosh t
\end{array}\right) .
$$

5. Eor

$$
\mathbf{A}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right)
$$

e have

$$
\mathbf{A}^{2}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

-ius, $\mathbf{A}^{3}=A^{4}=A^{5}=\cdots=0$ and

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{rrr}
t & t & t \\
t & t & t \\
-2 t & -2 t & -2 t
\end{array}\right)=\left(\begin{array}{ccc}
t+1 & t & t \\
t & t+1 & t \\
-2 t & -2 t & -2 t+1
\end{array}\right)
$$

ミ:

$$
\mathbf{A}=\left(\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
5 & 1 & 0
\end{array}\right)
$$

Exercises 8.4 Matrix Exponential

Tre have

$$
\begin{aligned}
& \mathbf{A}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
5 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
5 & 1 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right) \\
& \mathbf{A}^{3}=\mathbf{A A}^{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
3 & 0 & 0 \\
5 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
3 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Thus, $\mathbf{A}^{4}=\mathbf{A}^{\overline{5}}=\mathbf{A}^{6}=\cdots=0$ and

$$
\begin{aligned}
e^{\mathbf{A} t} & =\mathbf{I}+\mathbf{A} t+\frac{1}{2} \mathbf{A}^{2} t^{2} \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
3 t & 0 & 0 \\
5 t & t & 0
\end{array}\right) \div\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\frac{3}{2} t^{2} & 0 & 0
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 t & 1 & 0 \\
\frac{3}{2} t^{2}+5 t & t & 1
\end{array}\right) .
\end{aligned}
$$

3. Tising the result of Problem 1,

$$
\mathbf{X}=\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}=c_{1}\binom{e^{t}}{0}+c_{2}\binom{0}{e^{t}}
$$

5. U'ising the result of Problem 2,

$$
\mathbf{X}=\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{c_{1}}{c_{2}}=c_{1}\binom{\cosh t}{\sinh t}+c_{2}\binom{\sinh t}{\cosh t}
$$

\therefore - Cin ing the result of Problem 3,

$$
\mathbf{X}=\left(\begin{array}{ccc}
t+1 & t & t \\
t & t+1 & t \\
-2 t & -2 t & -2 t+1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=c_{1}\left(\begin{array}{c}
t+1 \\
t \\
-2 t
\end{array}\right)+c_{2}\left(\begin{array}{c}
t \\
t+1 \\
-2 t
\end{array}\right)+c_{3}\left(\begin{array}{c}
t \\
t \\
-2 t+1
\end{array}\right)
$$

3. Tising the result of Problem 4,

$$
\mathbf{X}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
3 t & 1 & 0 \\
\frac{3}{2} t^{2}+5 t & t & 1
\end{array}\right)\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=c_{1}\left(\begin{array}{c}
1 \\
3 t \\
\frac{3}{2} t^{2}+5 t
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
t
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

9. To solve

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \mathbf{X}+\binom{3}{-1}
$$

we identify $t_{0}=0, \mathbf{F}(t)=\binom{3}{-1}$, and use the results of Problem 1 and cquation (5) in the

$$
\begin{aligned}
\mathbf{X}(t) & =e^{\mathbf{A} t} \mathbf{C}+e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s \\
& =\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) \int_{0}^{t}\left(\begin{array}{cc}
e^{-s} & 0 \\
0 & e^{-2 s}
\end{array}\right)\binom{3}{-1} d s \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left(\begin{array}{cc}
c^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) \int_{0}^{t}\binom{3 e^{-s}}{-e^{-2 s}} d s \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left.\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-3 e^{-s}}{\frac{1}{2} e^{-2 s}}\right|_{0} ^{t} \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-3 e^{-t}+3}{\frac{1}{2} e^{-2 t}-\frac{1}{2}} \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\binom{-3+3 e^{t}}{\frac{1}{2}-\frac{1}{2} e^{2 t}}=c_{3}\binom{1}{0} e^{t}+c_{4}\binom{0}{1} e^{2 t}+\binom{-3}{\frac{1}{2}}
\end{aligned}
$$

\because To solve

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \mathbf{X}+\binom{t}{e^{4 t}}
$$

We identify $t_{0}=0, \mathbf{F}(t)=\binom{t}{e^{4 t}}$, and use the results of Problem 1 and equation (5) in the \ldots

$$
\begin{aligned}
\mathbf{X}(t) & =e^{\mathbf{A} t} \mathbf{C}+e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s \\
& =\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) \int_{0}^{t}\left(\begin{array}{cc}
e^{-s} & 0 \\
0 & e^{-2 s}
\end{array}\right)\binom{s}{e^{4 s}} d s \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right) \int_{0}^{t}\binom{s e^{-s}}{e^{2 s}} d s \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left.\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-s e^{-s}-e^{-s}}{\frac{1}{2} e^{2 s}}\right|_{0} ^{t} \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right)\binom{-t e^{-t}-e^{-t}+1}{\frac{1}{2} e^{2 t}-\frac{1}{2}} \\
& =\binom{c_{1} e^{t}}{c_{2} e^{2 t}}+\binom{-t-1+e^{t}}{\frac{1}{2} e^{4 t}-\frac{1}{2} e^{2 t}}=c_{3}\binom{1}{0} e^{t}+c_{4}\binom{0}{1} e^{2 t}+\binom{-t-1}{\frac{1}{2} e^{4 t}}
\end{aligned}
$$

11. To solve

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \mathbf{X}+\binom{1}{1}
$$

we identify $t_{0}=0, \mathbf{F}(t)=\binom{1}{1}$, and use the results of Problem 2 and equation (5) in the tex:

$$
\begin{aligned}
\mathbf{X}(t) & =e^{\mathbf{A} t} \mathbf{C}+e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s \\
& =\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{c_{1}}{c_{2}}+\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right) \int_{0}^{t}\left(\begin{array}{rr}
\cosh s & -\sinh s \\
-\sinh s & \cosh s
\end{array}\right)\binom{1}{1} d s \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right) \int_{0}^{t}\binom{\cosh s-\sinh s}{-\sinh s+\cosh s} d s \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left.\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{\sinh s-\cosh s}{-\cosh s+\sinh s}\right|_{0} ^{t} \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{\sinh t-\cosh t+1}{-\cosh t+\sinh t+1} \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left(\begin{array}{l}
\sinh ^{2} t-\cosh 2 \\
\sinh ^{2} t-\cosh 2 \\
\cosh t+\sinh t \\
\sinh t+\cosh t
\end{array}\right) \\
& =c_{1}\binom{\cosh t}{\sinh t}+c_{2}\binom{\sinh t}{\cosh t}+\binom{\cosh t}{\sinh t}+\binom{\sinh t}{\cosh t}-\binom{1}{1} \\
& =c_{3}\binom{\cosh t}{\sinh t}+c_{4}\binom{\sinh t}{\cosh t}-\binom{1}{1}
\end{aligned}
$$

12. To solve

$$
\mathbf{X}^{\prime}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \mathbf{X}+\binom{\cosh t}{\sinh t}
$$

we identify $t_{0}=0, \mathbf{F}(t)=\binom{\cosh t}{\sinh t}$, and use the results of Problem 2 and equation (0) in $:$

$$
\begin{aligned}
\mathbf{X}(t) & =e^{\mathbf{A} t} \mathbf{C}+e^{\mathbf{A} t} \int_{t_{0}}^{t} e^{-\mathbf{A} s} \mathbf{F}(s) d s \\
& =\left(\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{c_{1}}{c_{2}}+\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right) \int_{0}^{t}\left(\begin{array}{rr}
\cosh s & -\sinh s \\
-\sinh s & \cosh s
\end{array}\right)\left(\begin{array}{c}
\cosh s \\
\sinh s
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right) \int_{0}^{t}\binom{1}{0} d s \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left.\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{s}{0}\right|_{0} ^{t} \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)\binom{t}{0} \\
& =\binom{c_{1} \cosh t+c_{2} \sinh t}{c_{1} \sinh t+c_{2} \cosh t}+\binom{t \cosh t}{t \sinh t}=c_{1}\binom{\cosh t}{\sinh t}+c_{2}\binom{\sinh t}{\cosh t}+t\binom{\cosh t}{\sinh t}
\end{aligned}
$$

\therefore We have

$$
\mathbf{X}(0)=c_{1}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-4 \\
6
\end{array}\right) .
$$

-hus, the solution of the initial-value problem is

$$
\mathbf{X}=\left(\begin{array}{c}
t+1 \\
t \\
-2 t
\end{array}\right)-4\left(\begin{array}{c}
t \\
t+1 \\
-2 t
\end{array}\right)+6\left(\begin{array}{c}
t \\
t \\
-2 t+1
\end{array}\right)
$$

\because have

$$
\mathbf{X}(0)=c_{3}\binom{1}{0}+c_{4}\binom{0}{1}+\binom{-3}{\frac{1}{2}}=\binom{c_{3}-3}{c_{4}+\frac{1}{2}}=\binom{4}{3} .
$$

$\cdots c_{3}=7$ and $c_{4}=\frac{5}{2}$, so

$$
\mathbf{X}=7\binom{1}{0} e^{t}+\frac{5}{2}\binom{0}{1} e^{2 t}+\binom{-3}{\frac{1}{2}} .
$$

$\Xi ₹ \because=1 s \mathbf{I}-\mathbf{A}=\left(\begin{array}{cc}s-4 & -3 \\ 4 & s+4\end{array}\right)$ we find

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\left(\begin{array}{cc}
\frac{3 / 2}{s-2}-\frac{1 / 2}{s+2} & \frac{3 / 4}{s-2}-\frac{3 / 4}{s+2} \\
\frac{-1}{s-2}+\frac{1}{s+2} & \frac{-1 / 2}{s-2}+\frac{3 / 2}{s+2}
\end{array}\right)
$$

\therefore

$$
e^{\mathbf{A} t}=\left(\begin{array}{cc}
\frac{3}{2} e^{2 t}-\frac{1}{2} e^{-2 t} & \frac{3}{4} e^{2 t}-\frac{3}{4} e^{-2 t} \\
-e^{2 t}+e^{-2 t} & -\frac{1}{2} e^{2 t}+\frac{3}{2} e^{-2 t}
\end{array}\right) .
$$

[^0]\[

$$
\begin{aligned}
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C} & =\left(\begin{array}{cc}
\frac{3}{2} e^{2 t}-\frac{1}{2} e^{-2 t} & \frac{3}{4} e^{2 t}-\frac{3}{4} e^{-2 t} \\
-e^{2 t}+e^{-2 t} & -\frac{1}{2} e^{2 t}+\frac{3}{2} e^{-2 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{3 / 2}{-1} e^{2 t}+c_{1}\binom{-1 / 2}{1} e^{-2 t}+c_{2}\binom{3 / 4}{-1 / 2} e^{2 t}+c_{2}\binom{-3 / 4}{3 / 2} e^{-2 t} \\
& =\left(\frac{1}{2} c_{1}+\frac{1}{4} c_{2}\right)\binom{3}{-2} e^{2 t}+\left(-\frac{1}{2} c_{1}-\frac{3}{4} c_{2}\right)\binom{1}{-2} e^{-2 t} \\
& =c_{3}\binom{3}{-2} e^{2 t}+c_{4}\binom{1}{-2} e^{-2 t}
\end{aligned}
$$
\]

16. From $s \mathbf{I}-\mathbf{A}=\left(\begin{array}{cc}s-4 & 2 \\ -1 & s-1\end{array}\right)$ we find

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\left(\begin{array}{cc}
\frac{2}{s-3}-\frac{1}{s-2} & -\frac{2}{s-3}+\frac{2}{s-2} \\
\frac{1}{s-3}-\frac{1}{s-2} & \frac{-1}{s-3}+\frac{2}{s-2}
\end{array}\right)
$$

and

$$
e^{\mathbf{A} t}=\left(\begin{array}{cc}
2 e^{3 t}-e^{2 t} & -2 e^{3 t}+2 e^{2 t} \\
e^{3 t}-e^{2 t} & -e^{3 t}+2 e^{2 t}
\end{array}\right)
$$

The general solution of the system is then

$$
\begin{aligned}
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C} & =\left(\begin{array}{cc}
2 e^{3 t}-e^{2 t} & -2 e^{3 t}+2 e^{2 t} \\
e^{3 t}-e^{2 t} & -e^{3 t}+2 e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{2}{1} e^{3 t}+c_{1}\binom{-1}{-1} e^{2 t}+c_{2}\binom{-2}{-1} e^{3 t}+c_{2}\binom{2}{2} e^{2 t} \\
& =\left(c_{1}-c_{2}\right)\binom{2}{1} e^{3 t}+\left(-c_{1}+2 c_{2}\right)\binom{1}{1} e^{2 t} \\
& =c_{3}\binom{2}{1} e^{3 t}+c_{1}\binom{1}{1} e^{2 t}
\end{aligned}
$$

\therefore. From $s \mathbf{I}-\mathbf{A}=\left(\begin{array}{cc}s-j & 9 \\ -1 & s+1\end{array}\right)$ we find

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\left(\begin{array}{cc}
\frac{1}{s-2} \div \frac{3}{(s-2)^{2}} & -\frac{9}{(s-2)^{2}} \\
\frac{1}{(s-2)^{2}} & \frac{1}{s-2}-\frac{3}{(s-2)^{2}}
\end{array}\right)
$$

and

$$
e^{\mathbf{A} t}=\left(\begin{array}{cc}
e^{2 t}+3 t e^{2 t} & -9 t e^{2 t} \\
t e^{2 t} & e^{2 t}-3 t e^{2 t}
\end{array}\right)
$$

The general solution of the system is then

$$
\begin{aligned}
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C} & =\left(\begin{array}{cc}
e^{2 t}+3 t e^{2 t} & -9 t e^{2 t} \\
t e^{2 t} & e^{2 t}-3 t e^{2 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{1}{0} e^{2 t}+c_{1}\binom{3}{1} t e^{2 t}+c_{2}\binom{0}{1} e^{2 t}+c_{2}\binom{-9}{-3} t e^{2 t} \\
& =c_{1}\binom{1+3 t}{t} e^{2 t}+c_{2}\binom{-9 t}{1-3 t} e^{2 t}
\end{aligned}
$$

2. From $s \mathbf{I}-\mathbf{A}=\left(\begin{array}{cc}s & -1 \\ 2 & s+2\end{array}\right)$ we find

$$
(s \mathbf{I}-\mathbf{A})^{-1}=\left(\begin{array}{cc}
\frac{s+1+1}{(s+1)^{2}+1} & \frac{1}{(s+1)^{2}+1} \\
\frac{-2}{(s+1)^{2}+1} & \frac{s+1-1}{(s+1)^{2}+1}
\end{array}\right)
$$

and

$$
e^{\mathbf{A} t}=\left(\begin{array}{cc}
e^{-t} \cos t+e^{-t} \sin t & e^{-t} \sin t \\
-2 e^{-t} \sin t & e^{-t} \cos t-e^{-t} \sin t
\end{array}\right)
$$

The general solution of the system is then

$$
\begin{aligned}
\mathbf{X}=e^{\mathbf{A} t} \mathbf{C} & =\left(\begin{array}{cc}
e^{-t} \cos t+e^{-t} \sin t & e^{-t} \sin t \\
-2 e^{-t} \sin t & e^{-t} \cos t-e^{-t} \sin t
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{1}{0} e^{-t} \cos t+c_{1}\binom{1}{-2} e^{-t} \sin t+c_{2}\binom{0}{1} e^{-t} \cos t+c_{2}\binom{1}{-1} e^{-t} \sin t \\
& =c_{1}\binom{\cos t+\sin t}{-2 \sin t} e^{-t}+c_{2}\binom{\sin t}{\cos t-\sin t} e^{-t}
\end{aligned}
$$

\therefore Eolving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
2-\lambda & 1 \\
-3 & 6-\lambda
\end{array}\right|=\lambda^{2}-8 \lambda+15=(\lambda-3)(\lambda-5)=0
$$

- find cigenvalues $\lambda_{1}=3$ and $\lambda_{2}=5$. Corresponding eigenvectors arc

$$
\mathbf{K}_{1}=\binom{1}{1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{3}
$$

Exercises 8.4 Matrix Exponential

Then

$$
\mathbf{P}=\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right), \quad \mathbf{P}^{-1}=\left(\begin{array}{cr}
3 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right), \quad \text { and } \quad \mathbf{D}=\left(\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right)
$$

so that

$$
\mathbf{P D P}^{-1}=\left(\begin{array}{cc}
2 & 1 \\
-3 & 6
\end{array}\right)
$$

20. Solving

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\left|\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)=0
$$

we find eigenvalucs $\lambda_{1}=1$ and $\lambda_{2}=3$. Corresponding eigenvectors are

$$
\mathbf{K}_{1}=\binom{-1}{1} \quad \text { and } \quad \mathbf{K}_{2}=\binom{1}{1}
$$

Then

$$
\mathbf{P}=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right), \quad \mathbf{P}^{-1}=\left(\begin{array}{rr}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right), \quad \text { and } \quad \mathbf{D}=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right)
$$

so that

$$
\mathbf{P D P}^{-1}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

21. From equation (3) in the text

$$
\begin{aligned}
e^{t \mathbf{A}}=e^{t \mathbf{P} \mathbf{P P}^{-1}} & =\mathbf{I}+t\left(\mathbf{P D P}^{-1}\right)+\frac{1}{2!} t^{2}\left(\mathbf{P D} \mathbf{P}^{-1}\right)^{2}+\frac{1}{3!} t^{3}\left(\mathbf{P D} \mathbf{P}^{-1}\right)^{3}+\cdots \\
& =\mathbf{P}\left[\mathbf{I}+t \mathbf{D}+\frac{1}{2!}(t \mathbf{D})^{2}+\frac{1}{3!}(t \mathbf{D})^{3}+\cdots\right] \mathbf{P}^{-1}=\mathbf{P} e^{t \mathbf{D}} \mathbf{P}^{-1}
\end{aligned}
$$

22. From equation (3) in the text

$$
e^{t \mathbf{D}}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)+t\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)+\frac{1}{2!} t^{2}\left(\begin{array}{cccc}
\lambda_{1}^{2} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & & \lambda_{n}^{2}
\end{array}\right) \quad \begin{aligned}
& +\frac{1}{3!} t^{3}\left(\begin{array}{cccc}
\lambda_{1}^{3} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{3} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & & \lambda_{n}^{3}
\end{array}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
1+\lambda_{1} t+\frac{1}{2!}\left(\lambda_{1} t\right)^{2}+\cdots & 0 & 0 \\
0 & 1+\lambda_{2} t+\frac{1}{2!}\left(\lambda_{2} t\right)^{2}+\cdots & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1+\lambda_{n} t+\frac{1}{2!}\left(\lambda_{n} t\right)^{2} \div \cdots
\end{array}\right\} \\
& =\left(\begin{array}{cccc}
e^{\lambda_{1} t} & 0 & \cdots & 0 \\
0 & e^{\lambda_{2} t} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & & e^{\lambda_{n} t}
\end{array}\right) .
\end{aligned}
$$

23. From Problems 19, 21, and 22, and equation (1) in the text

$$
\begin{aligned}
\mathbf{X} & =e^{t \mathbf{A}} \mathbf{C}=\mathbf{P} e^{t \mathbf{D}} \mathbf{P}^{-1} \mathbf{C} \\
& =\left(\begin{array}{cc}
e^{3 t} & e^{5 t} \\
e^{3 t} & 3 e^{5 t}
\end{array}\right)\left(\begin{array}{cc}
e^{3 t} & 0 \\
0 & e^{5 t}
\end{array}\right)\left(\begin{array}{cc}
\frac{3}{2} e^{-3 t} & -\frac{1}{2} e^{-3 t} \\
-\frac{1}{2} e^{-5 t} & \frac{1}{2} e^{-5 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =\left(\begin{array}{cc}
\frac{3}{2} e^{3 t}-\frac{1}{2} e^{5 t} & -\frac{1}{2} e^{3 t}+\frac{1}{2} e^{5 t} \\
\frac{3}{2} e^{3 t}-\frac{3}{2} e^{5 t} & -\frac{1}{2} e^{3 t}+\frac{3}{2} e^{5 t}
\end{array}\right)\binom{c_{1}}{c_{2}} .
\end{aligned}
$$

\therefore From Problems $20-22$ and equation (1) in the text

$$
\begin{aligned}
\mathbf{X} & =e^{t \mathbf{A}} \mathbf{C}=\mathbf{P} e^{t \mathbf{D}} \mathbf{P}^{-1} \mathbf{C} \\
& =\left(\begin{array}{cc}
-e^{t} & e^{3 t} \\
e^{t} & e^{3 t}
\end{array}\right)\left(\begin{array}{cc}
e^{t} & 0 \\
0 & e^{3 t}
\end{array}\right)\left(\begin{array}{cc}
-\frac{1}{2} e^{-t} & \frac{1}{2} e^{-t} \\
\frac{1}{2} e^{3 t} & \frac{1}{2} e^{-3 t}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =\left(\begin{array}{cc}
\frac{1}{2} e^{t}+\frac{1}{2} e^{9 t} & -\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t} \\
-\frac{1}{2} e^{t}+\frac{1}{2} e^{9 t} & \frac{1}{2} e^{t}+\frac{1}{2} e^{3 t}
\end{array}\right)\binom{c_{1}}{c_{2}}
\end{aligned}
$$

2 If $\operatorname{det}(s \mathbf{I}-\mathbf{A})=0$, then s is an eigenvalue of \mathbf{A}. Thus $s \mathbf{I}-\mathbf{A}$ has an inverse if s is not an cigenof \mathbf{A}. For the purposes of the discussion in this section, we take s to be larger than the ̇igenvalue of \mathbf{A}. Under this condition $s \mathbf{I}-\mathbf{A}$ has an inversc.
\therefore Since $\mathbf{A}^{3}=\mathbf{0}, \mathbf{A}$ is nilpotent. Since

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\cdots \div \mathbf{A}^{k} \frac{t^{k}}{k!}+\cdots
$$

$\therefore \mathbf{A}$ is nilpotent and $\mathbf{A}^{m}=\mathbf{0}$, then $\mathbf{A}^{k}=\mathbf{0}$ for $k \geq m$ and

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\cdots+\mathbf{A}^{m-\mathbf{1}} \frac{t^{m-1}}{(m-1)!}
$$

In this problem $\mathbf{A}^{3}=0$, so

$$
\begin{aligned}
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{ccc}
-1 & 1 & 1 \\
-1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right) t+\left(\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 1
\end{array}\right) \frac{t^{2}}{2} \\
& =\left(\begin{array}{ccc}
1-t-t^{2} / 2 & t & t+t^{2} / 2 \\
-t & 1 & t \\
-t-t^{2} / 2 & t & 1+t+t^{2} / 2
\end{array}\right)
\end{aligned}
$$

and the solution of $\mathbf{X}^{\prime}=\mathbf{A X}$ is

$$
\mathbf{X}(t)=e^{\mathbf{A} t} \mathbf{C}=e^{\mathbf{A} t}\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{c}
c_{1}\left(1-t-t^{2} / 2\right)+c_{2} t+c_{3}\left(t+t^{2} / 2\right) \\
-c_{1} t+c_{2}+c_{3} t \\
c_{1}\left(-t-t^{2} / 2\right)+c_{2} t+c_{3}\left(1+t+t^{2} / 2\right)
\end{array}\right)
$$

27. (a) The following commands can be used in Mathematica:

$$
\begin{aligned}
& \mathrm{A}=\{\{4,2\},\{\mathbf{3}, 3\}\} \\
& \mathbf{c}=\{\mathbf{c} 1, \mathbf{c} 2\} ; \\
& \mathrm{m}=\text { MatrixExp}[\mathrm{A} t] \\
& \text { sol }=\operatorname{Expand}[\mathrm{m} . \mathrm{c}] \\
& \text { Collect }[\text { sol, }\{\mathbf{c} 1, \mathrm{c} 2\}] / / \text { MatrixForm }
\end{aligned}
$$

The output gives

$$
\begin{aligned}
& x(t)=c_{1}\left(\frac{2}{5} e^{t}+\frac{3}{5} e^{6 t}\right)+c_{2}\left(-\frac{2}{5} e^{t}+\frac{2}{5} e^{6 t}\right) \\
& y(t)=c_{1}\left(-\frac{3}{5} e^{t}+\frac{3}{5} e^{6 t}\right)+c_{2}\left(\frac{3}{5} e^{t}+\frac{2}{5} e^{6 t}\right)
\end{aligned}
$$

The eigenvalues are 1 and 6 with corresponding cigenvectors

$$
\binom{-2}{3} \quad \text { and } \quad\binom{1}{1}
$$

so the solution of the system is

$$
\mathbf{X}(t)=b_{1}\binom{-2}{3} e^{t}+b_{2}\binom{1}{1} e^{6 i t}
$$

or

$$
\begin{aligned}
& x(t)=-2 b_{1} e^{t}+b_{2} e^{6 t} \\
& y(t)=3 b_{1} e^{t}+b_{2} e^{6 t}
\end{aligned}
$$

If we replace b_{1} with $-\frac{1}{5} c_{1}+\frac{1}{5} c_{2}$ and b_{2} with $\frac{3}{5} c_{1}+\frac{2}{5} c_{2}$, we obtain the solution found u matrix exponential.
(b) $x(t)=c_{1} e^{-2 t} \cos t-\left(c_{1}+c_{2}\right) e^{-2 t} \sin t$
$y(t)=c_{2} e^{-2 t} \cos t+\left(2 c_{1}+c_{2}\right) e^{-2 t} \sin t$
23. $x(t)=c_{1}\left(3 e^{-2 t}-2 e^{-t}\right)+c_{3}\left(-6 e^{-2 t}+6 e^{-t}\right)$
$y(t)=c_{2}\left(4 e^{-2 t}-3 e^{-t}\right)+c_{4}\left(4 e^{-2 t}-4 e^{-t}\right)$
$z(t)=c_{1}\left(e^{-2 t}-e^{-t}\right)+c_{3}\left(-2 e^{-2 t}+3 e^{-t}\right)$
$w(t)=c_{2}\left(-3 e^{-2 t}+3 e^{-t}\right)+c_{4}\left(-3 e^{-2 t}+4 e^{-t}\right)$

Chapter 8 in Review

1. If $\mathbf{X}=k\binom{4}{5}$, then $\mathbf{X}^{\prime}=\mathbf{0}$ and

$$
k\left(\begin{array}{rr}
1 & 4 \\
2 & -1
\end{array}\right)\binom{4}{5}-\binom{8}{1}=k\binom{24}{3}-\binom{8}{1}=\binom{0}{0}
$$

We see that $k=\frac{1}{3}$.
2. Solving for c_{1} and c_{2} we find $c_{1}=-\frac{3}{4}$ and $c_{2}=\frac{1}{4}$.
3. Since

$$
\left(\begin{array}{rrr}
4 & 6 & 6 \\
1 & 3 & 2 \\
-1 & -4 & -3
\end{array}\right)\left(\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{r}
12 \\
4 \\
-4
\end{array}\right)=4\left(\begin{array}{r}
3 \\
1 \\
-1
\end{array}\right)
$$

πe see that $\lambda=4$ is an cigenvalue with eigenvector \mathbf{K}_{3}. The corrcsponding solution is $\mathbf{X}_{3}=\mathrm{K}_{1}=$
\therefore The other eigenvalue is $\lambda_{2}=1-2 i$ with corresponding cigenvector $K_{2}=\binom{1}{-i}$. The solution is

$$
\mathbf{X}(t)=c_{1}\binom{\cos 2 t}{-\sin 2 t} e^{t}+c_{2}\binom{\sin 2 t}{\cos 2 t} e^{t}
$$

: Te have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda-1)^{2}=0$ and $\mathbf{K}=\binom{1}{-1}$. A solution to $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K}$ is $\mathbf{P}=$; \therefore that

$$
\mathbf{X}=c_{1}\binom{1}{-1} e^{t}+c_{2}\left[\binom{1}{-1} t e^{t}+\binom{0}{1} e^{t}\right]
$$

$\because \cdot \mathrm{e}$ have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=(\lambda+6)(\lambda+2)=0$ so that

$$
\mathbf{X}=c_{1}\binom{1}{-1} e^{-6 t}+c_{2}\binom{1}{1} e^{-2 t}
$$

Chapter 8 in Review

\therefore We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-2 \lambda+5=0$. For $\lambda=1+2 i$ we obtain $\mathbf{K}_{1}=\binom{1}{i}$ and

$$
\mathbf{X}_{\mathbf{1}}=\binom{1}{i} e^{(1+2 i) t}=\binom{\cos 2 t}{-\sin 2 t} e^{t}+i\binom{\sin 2 t}{\cos 2 t} e^{t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{\cos 2 t}{-\sin 2 t} e^{t}+c_{2}\binom{\sin 2 t}{\cos 2 t} e^{t}
$$

s. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}-2 \lambda+2=0$. For $\lambda=1+i$ we obtain $\mathbf{K}_{1}=\binom{3-i}{2}$ and

$$
\mathbf{X}_{1}=\binom{3-i}{2} e^{(1+i) t}=\binom{3 \cos t+\sin t}{2 \cos t} e^{t}+i\binom{-\cos t+3 \sin t}{2 \sin t} e^{t}
$$

Then

$$
\mathbf{X}=c_{1}\binom{3 \cos t+\sin t}{2 \cos t} e^{t}+c_{2}\binom{-\cos t+3 \sin t}{2 \sin t} e^{t}
$$

9. We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda-2)(\lambda-4)(\lambda+3)=0$ so that

$$
\mathbf{X}=c_{1}\left(\begin{array}{r}
-2 \\
3 \\
1
\end{array}\right) e^{2 t}+c_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) e^{4 t}+c_{3}\left(\begin{array}{r}
7 \\
12 \\
-16
\end{array}\right) e^{-3 t}
$$

- We have $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=-(\lambda+2)\left(\lambda^{2}-2 \lambda+3\right)=0$. The eigenvalues are $\lambda_{1}=-2, \lambda_{2}=1-$ and $\lambda_{2}=1-\sqrt{2} i$, with eigenvectors

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
-7 \\
5 \\
4
\end{array}\right), \quad \mathbf{K}_{2}=\left(\begin{array}{c}
1 \\
\sqrt{2} i / 2 \\
1
\end{array}\right), \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{c}
1 \\
-\sqrt{2} i / 2 \\
1
\end{array}\right)
$$

Thus

$$
\begin{aligned}
\mathbf{X} & =c_{1}\left(\begin{array}{r}
-7 \\
5 \\
4
\end{array}\right) e^{-2 t}+c_{2}\left[\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \cos \sqrt{2} t-\left(\begin{array}{c}
0 \\
\sqrt{2} / 2 \\
0
\end{array}\right) \sin \sqrt{2} t\right] e^{t} \\
& +c_{3}\left[\left(\begin{array}{c}
0 \\
\sqrt{2} / 2 \\
0
\end{array}\right) \cos \sqrt{2} t+\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \sin \sqrt{2} t\right] e^{t} \\
& =c_{1}\left(\begin{array}{r}
-7 \\
5 \\
4
\end{array}\right) e^{-2 t}+c_{2}\left(\begin{array}{c}
\cos \sqrt{2} t \\
-\frac{1}{2} \sqrt{2} \sin \sqrt{2} t \\
\cos \sqrt{2} t
\end{array}\right) e^{t}+c_{3}\left(\begin{array}{c}
\sin \sqrt{2} t \\
\frac{1}{2} \sqrt{2} \cos \sqrt{2} t \\
\sin \sqrt{2} t
\end{array}\right) e^{t}
\end{aligned}
$$

-1. We have

$$
\mathbf{X}_{c}=c_{1}\binom{1}{0} e^{2 t}+c_{2}\binom{4}{1} c^{1 t}
$$

Then

$$
\Phi=\left(\begin{array}{cc}
e^{2 t} & 4 e^{4 t} \\
0 & e^{4 t}
\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
e^{-2 t} & -4 e^{-2 t} \\
0 & e^{-4 t}
\end{array}\right)
$$

and

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{2 e^{-2 t}-64 t e^{-2 t}}{16 t e^{-4 t}} d t=\binom{15 e^{-2 t}+32 t e^{-2 t}}{-e^{-4 t}-4 t e^{-4 t}}
$$

so that

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{11+16 t}{-1-4 t}
$$

2. We have

$$
\mathbf{X}_{c}=c_{1}\binom{2 \cos t}{-\sin t} e^{t}+c_{2}\binom{2 \sin t}{\cos t} e^{l}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
2 \cos t & 2 \sin t \\
-\sin t & \cos t
\end{array}\right) e^{t} ; \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{rr}
\frac{1}{2} \cos t & -\sin t \\
\frac{1}{2} \sin t & \cos t
\end{array}\right) e^{-t}
$$

and

$$
\mathbf{U}=\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{\cos t-\sec t}{\sin t} d t=\binom{\sin t-\ln |\sec t+\tan t|}{-\cos t}
$$

so that

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-2 \cos t \ln |\sec t+\tan t|}{-1+\sin t \ln |\sec t+\tan t|} e^{t}
$$

-i. We have

$$
\mathbf{X}_{c}=c_{1}\binom{\cos t+\sin t}{2 \cos t}+c_{2}\binom{\sin t-\cos l}{2 \sin t}
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
\cos t+\sin t & \sin t-\cos t \\
2 \cos t & 2 \sin t
\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
\sin t & \frac{1}{2} \cos t-\frac{1}{2} \sin t \\
-\cos t & \frac{1}{2} \cos t+\frac{1}{2} \sin t
\end{array}\right)
$$

and

$$
\begin{aligned}
\mathbf{U} & =\int \boldsymbol{\Phi}^{-1} \mathbf{F} d t=\int\binom{\frac{1}{2} \sin t-\frac{1}{2} \cos t+\frac{1}{2} \csc t}{-\frac{1}{2} \sin t-\frac{1}{2} \cos t+\frac{1}{2} \csc t} d t \\
& =\binom{-\frac{1}{2} \cos t-\frac{1}{2} \sin t+\frac{1}{2} \ln |\csc t-\cot t|}{\frac{1}{2} \cos t-\frac{1}{2} \sin t+\frac{1}{2} \ln |\csc t-\cot t|}
\end{aligned}
$$

Chapter 8 in Review

\therefore so that

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-1}{-1}+\binom{\sin t}{\sin t+\cos t} \ln |\csc t-\cot t|
$$

\therefore We have

$$
\mathbf{X}_{c}=c_{1}\binom{1}{-1} e^{2 t}+c_{2}\left[\binom{1}{-1} t e^{2 t}+\binom{1}{0} e^{2 t}\right]
$$

Then

$$
\boldsymbol{\Phi}=\left(\begin{array}{cc}
e^{2 t} & t e^{2 t}+e^{2 t} \\
-e^{2 t} & -t e^{2 t}
\end{array}\right), \quad \boldsymbol{\Phi}^{-1}=\left(\begin{array}{cc}
-t e^{-2 t} & -t e^{-2 t}-e^{-2 t} \\
e^{-2 t} & e^{-2 t}
\end{array}\right)
$$

and

$$
\mathbf{U}=\int \Phi^{-1} \mathbf{F} d t=\int\binom{t-1}{-1} d t=\binom{\frac{1}{2} t^{2}-t}{-t}
$$

so that

$$
\mathbf{X}_{p}=\boldsymbol{\Phi} \mathbf{U}=\binom{-1 / 2}{1 / 2} t^{2} e^{2 t}+\binom{-2}{1} t e^{2 t}
$$

-5. (a) Letting

$$
\mathbf{K}=\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right)
$$

we note that $(\mathbf{A}-2 \mathbf{I}) \mathbf{K}=\mathbf{0}$ implies that $3 k_{1}+3 k_{2}+3 k_{3}=0$, so $k_{1}=-\left(k_{2}+k_{3}\right)$. Ch. $k_{2}=0, k_{3}=1$ and then $k_{2}=1, k_{3}=0$ we get

$$
\mathbf{K}_{1}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{2}=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

respectivcly. Thus,

$$
\mathbf{X}_{1}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right) e^{2 t} \quad \text { and } \quad \mathbf{X}_{2}=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right) e^{2 t}
$$

are two solutions.
(b) From $\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=\lambda^{2}(3-\lambda)=0$ we see that $\lambda_{1}=3$, and 0 is an eigenvalue of mul:two. Letting

$$
\mathbf{K}=\left(\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right)
$$

Chapter 8 in Review

as in part (a), we note that $(\mathbf{A}-\mathbf{0}) \mathbf{K}=\mathbf{A K}=\mathbf{0}$ implies that $k_{1}+k_{2}+k_{3}=\therefore$. $k_{1}=-\left(k_{2}+k_{3}\right)$. Choosing $k_{2}=0, k_{3}=1$, and then $k_{2}=1, k_{3}=0$ we get

$$
\mathbf{K}_{2}=\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right) \quad \text { and } \quad \mathbf{K}_{3}=\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

respectively. Since the eigenvector corresponding to $\lambda_{1}=3$ is

$$
\mathbf{K}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

the general solution of the system is

$$
\mathbf{X}=c_{1}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) e^{3 t}+c_{2}\left(\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right)+c_{3}\left(\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right)
$$

Exercises 9.1

Euler Methods and Error Analysis
1.

$h=0.1$	
$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
1.00	5.0000
1.10	3.9900
1.20	3.2546
1.30	2.7236
1.40	2.3451
1.50	2.0801

$h=0.05$

x_{n}	y_{n}
1.00	5.0000
1.05	4.4475
1.10	3.9763
1.15	3.5751
1.20	3.2342
1.25	2.9452
1.30	2.7009
1.35	2.4952
1.40	2.3226
1.45	2.1786
1.50	2.0592

3. $h=0.1$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	0.0000
0.10	0.1005
0.20	0.2030
0.30	0.3098
0.40	0.4234
0.50	0.5470

$h=0.05$

x_{n}	y_{n}
0.00	0.0000
0.05	0.0501
0.10	0.1004
0.15	0.1512
0.20	0.2028
0.25	0.2554
0.30	0.3095
0.35	0.3652
0.40	0.4230
0.45	0.4832
0.50	0.5465

2. $h=0.1$

x_{n}	y_{n}
0.00	2.0000
0.10	1.6600
0.20	1.4172
0.30	1.2541
0.40	1.1564
0.50	1.1122

$h=0.05$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	2.0000
0.05	1.8150
0.10	1.6571
0.15	1.5237
0.20	1.4124
0.25	1.3212
0.30	1.2482
0.35	1.1916
0.40	1.1499
0.45	1.1217
0.50	1.1056

4.

$h=0.1$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	1.0000
0.10	1.1110
0.20	1.2515
0.30	1.4361
0.40	1.6880
0.50	2.0488

$h=0.05$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	1.0000
0.05	1.0526
0.10	1.1113
0.15	1.1775
0.20	1.2526
0.25	1.3388
0.30	1.4387
0.35	1.5556
0.40	1.6939
0.45	1.8598
0.50	2.0619

Exercises 9.1 Euler Methods and Error Are $-\underset{\sim}{-}$
5. $h=0.1$

x_{n}	y_{n}
0.00	0.0000
0.10	0.0952
0.20	0.1822
0.30	0.2622
0.40	0.3363
0.50	0.4053

$h=0.05$
$\left[\begin{array}{cc}x_{n} & y_{n} \\ \hline 0.00 & 0.0000 \\ 0.05 & 0.0488 \\ 0.10 & 0.0953 \\ 0.15 & 0.1397 \\ 0.20 & 0.1823 \\ 0.25 & 0.2231 \\ 0.30 & 0.2623 \\ 0.35 & 0.3001 \\ 0.40 & 0.3364 \\ 0.45 & 0.3715 \\ 0.50 & 0.4054 \\ \hline\end{array}\right.$
$\therefore \quad h=0.1$

x_{n}	y_{n}
0.00	0.5000
0.10	0.5215
0.20	0.5362
0.30	0.5449
0.40	0.5490
0.50	0.5503

$h=0.05$

x_{n}	y_{n}
0.00	0.5000
0.05	0.5116
0.10	0.5214
0.15	0.5294
0.20	0.5359
0.25	0.5408
0.30	0.5444
0.35	0.5469
0.40	0.5484
0.45	0.5492
0.50	0.5495

\because	$h=0.1$
	$\boldsymbol{x}_{\boldsymbol{n}}$ $\boldsymbol{y}_{\boldsymbol{n}}$ 1.00 1.0000 1.10 1.0095 1.20 1.0404 1.30 1.0967 1.40 1.1866 1.50 1.3260

$h=0.05$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
1.00	1.0000
1.05	1.0024
1.10	1.0100
1.15	1.0228
1.20	1.0414
1.25	1.0663
1.30	1.0984
1.35	1.1389
1.40	1.1895
1.45	1.2526
1.50	1.3315

6. $h=0.1$

$x_{\boldsymbol{n}}$	$y_{\boldsymbol{n}}$
0.00	0.0000
0.10	0.0050
0.20	0.0200
0.30	0.0451
0.40	0.0805
0.50	0.1266

$h=0.05$

$\boldsymbol{x}_{\boldsymbol{n}}$	$y_{\boldsymbol{n}}$
0.00	0.0000
0.05	0.0013
0.10	0.0050
0.15	0.0113
0.20	0.0200
0.25	0.0313
0.30	0.0451
0.35	0.0615
0.40	0.0805
0.45	0.1022
0.50	0.1266

8. $h=0.1$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	1.0000
0.10	1.1079
0.20	1.2337
0.30	1.3806
0.40	1.5529
0.50	1.7557

10. $h=0.1 \quad h=0.05$

x_{n}	y_{n}
0.00	0.5000
0.10	0.5250
0.20	0.5498
0.30	0.5744
0.40	0.5986
0.50	0.6224

$h=0.05$
$\left[\begin{array}{cc}x_{n} & y_{n} \\ \hline 0.00 & 1.0000 \\ 0.05 & 1.0519 \\ 0.10 & 1.1079 \\ 0.15 & 1.1684 \\ 0.20 & 1.2337 \\ 0.25 & 1.3043 \\ 0.30 & 1.3807 \\ 0.35 & 1.4634 \\ 0.40 & 1.5530 \\ 0.45 & 1.6503 \\ 0.50 & 1.7560 \\ \hline\end{array}\right.$

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	0.5000
0.05	0.5125
0.10	0.5250
0.15	0.5374
0.20	0.5498
0.25	0.5622
0.30	0.5744
0.35	0.5866
0.40	0.5987
0.45	0.6106
0.50	0.6224

Exercises 9.1 Euler Methods and Error Analysis

11. To obtain the analytic solution use the substitution $u=x+y-1$. The resulting differential equat: in $u(x)$ will be separable.

$h=0.1$			$h=0.05$		
x_{n}	y_{n}	Actual Value	x_{n}	y_{n}	Actual Value
0.00	2.0000	2.0000	0.00	2.0000	2.0000
0.10	2.1220	2.1230	0.05	2.0553	2.1230
0.20	2.3049	2.3085	0.10	2.1228	2.3085
0.30	2.5858	2.5958	0.15	2.2056	2.5958
0.40	3.0378	3.0650	0.20	2.3075	3.0650
0.50	3.8254	3.9082	0.25	2.4342	3.9082
			0.30	2.5931	2.5958
			0.35	2.7953	2.7997
			0.40	3.0574	3.0650
			0.45	3.4057	3.4189
			0.50	3.8840	3.9082

12. (a) y

(b)

x_{n}	Euler	Imp. Euler
1.00	1.0000	1.0000
1.10	1.2000	1.2469
1.20	1.4938	1.6430
1.30	1.9711	2.4042
1.40	2.9060	4.5085

13. (a) Using Euler's method we obtain $y(0.1) \approx y_{1}=1.2$.
(b) Using $y^{\prime \prime}=4 e^{2 x}$ we see that the local truncation crror is

$$
y^{\prime \prime}(c) \frac{h^{2}}{2}=4 e^{2 c} \frac{(0.1)^{2}}{2}=0.02 e^{2 c}
$$

Since $e^{2 x}$ is an increasing function, $e^{2 c} \leq e^{2(0.1)}=e^{0.2}$ for $0 \leq c \leq 0.1$. Thus an upper : for the local truncation error is $0.02 e^{0.2}=0.0244$.
(c) Since $y(0.1)=e^{0.2}=1.2214$, the actual error is $y(0.1)-y_{1}=0.0214$, which is less than $i \quad$.
(d) Using Euler's method with $h=0.05$ we obtain $y(0.1) \approx y_{2}=1.21$.
(e) The crror in (d) is $1.2214-1.21=0.0114$. With global truncation error $O(h)$, when \dagger. size is halved we expect the error for $h=0.05$ to be one-half the error when $h=0.1$. Com: 0.0114 with 0.0214 we see that this is the case.
14. (a) Using the improved Euler's method we obtain $y(0.1) \approx y_{1}=1.22$.
(b) Uising $y^{\prime \prime \prime}=8 e^{2 x}$ we see that the local truncation error is

$$
y^{\prime \prime \prime}(c) \frac{h^{3}}{6}=8 e^{2 c} \frac{(0.1)^{3}}{6}=0.001333 e^{2 c} .
$$

Since $e^{2 x}$ is an increasing function, $e^{2 c} \leq e^{2(0.1)}=e^{0.2}$ for $0 \leq c \leq 0.1$. Thus an upper br..... for the local truncation crror is $0.001333 e^{(10.2}=0.001628$.
(c) Since $y(0.1)=e^{0.2}=1.221403$, the actual error is $y(0.1)-y_{1}=0.001403$ which is lese :0.001628.
(d) Using the improved Euler's method with $h=0.05$ we obtain $y(0.1) \approx y_{2}=1.221025$.
(e) The error in (d) is $1.221403-1.221025=0.000378$. With global truncation error $O\left(h^{2}\right.$. $\ldots-{ }_{-}$ the step size is halved we expect the error for $h=0.05$ to be one-fourth the error for $h=$ Comparing 0.000378 with 0.001403 we see that this is the case.
-j. (a) Using Euler's method we obtain $y(0.1) \approx y_{1}=0.8$.
(b) Using $y^{\prime \prime}=\bar{y} e^{-2 x}$ we see that the local truncation crror is

$$
5 e^{-2 c} \frac{(0.1)^{2}}{2}=0.025 e^{-2 c}
$$

Since $e^{-2 x}$ is a decreasing function, $e^{-2 c} \leq e^{0}=1$ for $0 \leq c \leq 0.1$. Thus an upper botin $\because=$ the local truncation crror is $0.025(1)=0.025$.
(c) Since $y(0.1)=0.8234$, the actual error is $y(0.1)-y_{1}=0.0234$, which is less than 0.025 .
(d) Using Euler's method with $h=0.05$ we obtain $y(0.1) \approx y_{2}=0.8125$.
(e) The error in (d) is $0.8234-0.8125=0.0109$. With global truncation error $O(h)$, wher $-\cdots$ step size is halved we expect the crror for $h=0.05$ to be one-half the error whon $h=\ldots$. Comparing 0.0109 with 0.0234 we see that this is the case.
-5. (a) Using the improved Euler's method we obtain $y(0.1) \approx y_{1}=0.825$.
(b) Using $y^{\prime \prime \prime}=-10 e^{-2 x}$ we see that the local truncation error is

$$
10 e^{-2 c} \frac{(0.1)^{3}}{6}=0.001667 e^{-2 c}
$$

Since $e^{\cdots 2 x}$ is a decreasing function, $e^{-2 c} \leq e^{0}=1$ for $0 \leq c \leq 0.1$. Thus an upper bounc: $-:=$ the local truncation error is $0.001667(1)=0.001667$.
(c) Since $y(0.1)=0.823413$, the actual crror is $y(0.1)-y_{1}=0.001087$, which is less thar 0.000^{-}
(d) Using the improved Euler's method with $h=0.05$ we obtain $y(0.1) \approx y_{2}=0.823781$.
(e) The error in (d) is $|0.823413-0.8237181|=0.000305$. With global truncation crror O when the step size is halved we expect the error for $h=0.05$ to be one-fourth the error $h=0.1$. Comparing 0.000305 with 0.001587 we see that this is the case.
\therefore - (a) Using $y^{\prime \prime}=38 e^{-3(x-1)}$ we sec that the local truncation crror is

$$
y^{\prime \prime}(c) \frac{h^{2}}{2}=38 e^{-3(c-1)} \frac{h^{2}}{2}=19 h^{2} e^{-3(c-1)}
$$

(b) Since $e^{-3(x-1)}$ is a decreasing function for $1 \leq x \leq 1.5, e^{-3(c-1)} \leq e^{-3(1-1)}=1$ for $1 \leq c \leq:$. and

$$
y^{\prime \prime}(c) \frac{h^{2}}{2} \leq 19(0.1)^{2}(1)=0.19
$$

(c) Using Euler's method with $h=0.1$ we obtain $y(1.5) \approx 1.8207$. With $h=0.05$ we obt:. $y(1.5) \approx 1.9424$.
(d) Since $y(1.5)=2.0532$, the error for $h=0.1$ is $E_{0.1}=0.2325$, while the error for $h=0.0$: $E_{0.05}=0.1109$. With global truncation error $O(h)$ we expect $E_{0.1} / E_{0.05} \approx 2$. We actually he: $E_{0.1} / E_{0.05}=2.10$.
18. (a) Using $y^{\prime \prime \prime}=-114 e^{-3(x-1)}$ we see that the local truncation crror is

$$
\left|y^{\prime \prime \prime}(c) \frac{h^{3}}{6}\right|=114 e^{-3(x-1)} \frac{h^{3}}{6}=19 h^{3} e^{-3(c-1)}
$$

(b) Since $e^{-3(x-1)}$ is a decreasing function for $1 \leq x \leq 1.5, e^{-3(c-1)} \leq e^{-3(1-1)}=1$ for $1 \leq c \leq$: and

$$
\left|y^{\prime \prime \prime}(c) \frac{h^{3}}{6}\right| \leq 19(0.1)^{3}(1)=0.019
$$

(c) Using the improved Euler's method with $h=0.1$ we obtain $y(1.5) \approx 2.080108$. With $h=$ we obtain $y(1.5) \approx 2.059166$.
(d) Since $y(1.5)=2.053216$, the error for $h=0.1$ is $E_{0.1}=0.026892$, while the error for $h=0$.. $E_{0.05}=0.005950$. With global truncation error $O\left(h^{2}\right)$ we expect $E_{0.1} / E_{0.05} \approx 4$. We act $\quad:$ have $E_{0.1} / E_{0.05}=4.52$.
19. (a) Using $y^{\prime \prime}=-1 /(x+1)^{2}$ we sec that the local truncation error is

$$
\left|y^{\prime \prime}(c) \frac{h^{2}}{2}\right|=\frac{1}{(c \div 1)^{2}} \frac{h^{2}}{2}
$$

(b) Since $1 /(x+1)^{2}$ is a decrasing function for $0 \leq x \leq 0.5,1 /(c+1)^{2} \leq 1 /(0+1)^{2}=$: $0 \leq c \leq 0.5$ and

$$
\left|y^{\prime \prime}(c) \frac{h^{2}}{2}\right| \leq(1) \frac{(0.1)^{2}}{2}=0.005
$$

(c) Using Euler's method with $h=0.1$ we obtain $y(0.5) \approx 0.4198$. With $h=0.05$ we κ^{\prime}. $y(0.5) \approx 0.4124$.
(d) Since $y(0.5)=0.4055$, the error for $h=0.1$ is $E_{0.1}=0.0143$, while the error for $h=c$ $E_{0.05}=0.0069$. With global truncation error $O(h)$ we cxpect $E_{0.1} / E_{0.05} \approx 2$. We actuall: $E_{0.1} / E_{0.05}=2.06$.
20. (a) Using $y^{\prime \prime \prime}=2 /(x+1)^{3}$ we see that the local truncation crror is

$$
y^{\prime \prime \prime}(c) \frac{h^{3}}{6}=\frac{1}{(c+1)^{3}} \frac{h^{3}}{3} .
$$

(b) Since $1 /(x+1)^{3}$ is a decreasing function for $0 \leq x \leq 0.5,1 /(c+1)^{3} \leq 1 /(0+1)^{3}=1$ for $0 \leq c \leq 0.5$ and

$$
y^{\prime \prime \prime}(c) \frac{h^{3}}{6} \leq(1) \frac{(0.1)^{3}}{3}=0.000333
$$

(c) Uising the improved Euler's method with $h=0.1$ we obtain $y(0.5) \approx 0.405281$. With $h=0.05$ we obtain $y(0.5) \approx 0.405419$.
(d) Since $y(0.5)=0.405465$, the error for $h=0.1$ is $E_{0.1}=0.000184$, while the error for $h=0.05$ is $E_{0.05}=0.000046$. With global truncation error $O\left(h^{2}\right)$ we expect $E_{0.1} / E_{0.05} \approx 4$. We actually have $E_{0.1} / E_{0.05}=3.98$.
21. Because y_{n+1}^{*} depends on y_{n} and is used to determine y_{n+1}, all of the y_{n}^{*} cannot be computed at one time independently of the corresponding y_{n} values. For example, the computation of y_{4}^{*} involves the value of y_{3}.

Exercises 9.2

Runge-Kutta Methods

1.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$	Actual Value
0.00	2.0000	2.0000
0.10	2.1230	2.1230
0.20	2.3085	2.3085
0.30	2.5958	2.5958
0.40	3.0649	3.0650
0.50	3.9078	3.9082

Exercises 9.2 Runge-Kutta Methods

2. In this problem we use $h=0.1$. Substituting $w_{2}=\frac{3}{4}$ into the equations in (4) in the text, we obtain

$$
w_{1}=1-w_{2}=\frac{1}{4}, \quad \alpha=\frac{1}{2 w_{2}}=\frac{2}{3}, \quad \text { and } \quad \beta=\frac{1}{2 w_{2}}=\frac{2}{3} .
$$

The resulting second-order Runge-Kutta method is

x_{n}	Second -Order Runge-Kutta	Improv Euler
0.00	2.0000	$2.00:$
0.10	2.1213	$2.122:$
0.20	2.3030	$2.36 \vdots$
0.30	2.5814	$2.58 \equiv$
0.40	3.0277	$3.03-$
0.50	3.8002	$3.82 \equiv$

$$
y_{n+1}=y_{n}+h\left(\frac{1}{4} k_{1}+\frac{3}{4} k_{2}\right)=y_{n}+\frac{h}{4}\left(k_{1}+3 k_{2}\right)
$$

where

$$
\begin{aligned}
& k_{1}=f\left(x_{n}, y_{n}\right) \\
& k_{2}=f\left(x_{n}+\frac{2}{3} h, y_{n}+\frac{2}{3} h k_{1}\right) .
\end{aligned}
$$

The table compares the values obtained using this second-order Runge-Kutta method wit: values obtained using the improved Euler's method.
3.

x_{n}	y_{n}
1.00	5.0000
1.10	3.9724
1.20	3.2284
1.30	2.6945
1.40	2.3163
1.50	2.0533

4.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	2.0000
0.10	1.6562
0.20	1.4110
0.30	1.2465
0.40	1.1480
0.50	1.1037

5.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	0.0000
0.10	0.1003
0.20	0.2027
0.30	0.3093
0.40	0.4228
0.50	0.5463

6.

$x_{\boldsymbol{n}}$	$y_{\boldsymbol{n}}$
0.00	1.0000
0.10	1.1115
0.20	1.2530
0.30	1.4397
0.40	1.6961
0.50	2.0670

7.

\boldsymbol{x}_{n}	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	0.0000
0.10	0.0953
0.20	0.1823
0.30	0.2624
0.40	0.3365
0.50	0.4055

8.

x_{n}	y_{n}
0.00	0.0000
0.10	0.0050
0.20	0.0200
0.30	0.0451
0.40	0.0805
0.50	0.1266

9.

x_{n}	y_{n}
0.00	0.5000
0.10	0.5213
0.20	0.5358
0.30	0.5443
0.40	0.5482
0.50	0.5493

10.

$x_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.00	1.0000
0.10	1.1079
0.20	1.2337
0.30	1.3807
0.40	1.5531
0.50	1.7561

11.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
1.00	1.0000
1.10	1.0101
1.20	1.0417
1.30	1.0989
1.40	1.1905
1.50	1.3333

12.

$x_{\boldsymbol{n}}$	$y_{\boldsymbol{n}}$
0.00	0.5000
0.10	0.5250
0.20	0.5498
0.30	0.5744
0.40	0.5987
0.50	0.6225

13. (a) Write the equation in the form

$$
\frac{d v}{d t}=32-0.025 v^{2}=f(t, v)
$$

$\boldsymbol{t}_{\boldsymbol{n}}$	$\boldsymbol{v}_{\boldsymbol{n}}$
0.0	0.0000
1.0	25.2570
2.0	32.9390
3.0	34.9770
4.0	35.5500
5.0	35.7130

(b)

(c) Separating variables and using partial fractions we havc

$$
\frac{1}{2 \sqrt{32}}\left(\frac{1}{\sqrt{32}-\sqrt{0.125} v}+\frac{1}{\sqrt{32}+\sqrt{0.125} v}\right) d v=d t
$$

and

$$
\frac{1}{2 \sqrt{32} \sqrt{0.125}}(\ln |\sqrt{32}+\sqrt{0.125} v|-\ln |\sqrt{32}-\sqrt{0.125} v|)=t+c .
$$

Since $v(0)=0$ we find $c=0$. Solving for v we obtain

$$
v(t)=\frac{16 \sqrt{5}\left(e^{\sqrt{3.2} t}-1\right)}{e^{\sqrt{3.2} t}+1}
$$

and $v(5) \approx 35.7678$. Alternatively, the solution can be expressed as

$$
v(t)=\sqrt{\frac{m g}{k}} \tanh \sqrt{\frac{k g}{m}} t .
$$

-i. (a)

\boldsymbol{t} (days)	1	2	3	4	5
\boldsymbol{A} (observed)	2.78	13.53	36.30	47.50	49.40
\boldsymbol{A} (approximated)	1.93	12.50	36.46	47.23	49.00

(b) From the graph we estimate $A(1) \approx 1.68, A(2) \approx 13.2$,
$A(3) \approx 36.8, A(4) \approx 46.9$, and $A(5) \approx 48.9$.
$A(t)$

c) Let $\alpha=2.128$ and $\beta=0.0432$. Separating variables we obtain

$$
\begin{aligned}
\frac{d A}{A(\alpha-\beta A)} & =d t \\
\frac{1}{\alpha}\left(\frac{1}{A}+\frac{\beta}{\alpha-\beta A}\right) d A & =d t \\
\frac{1}{\alpha}[\ln A-\ln (\alpha-\beta A)] & =t+c \\
\ln \frac{A}{\alpha-\beta A} & =\alpha(t+c) \\
\frac{A}{\alpha-\beta A} & =e^{\alpha(t+c)} \\
A & =\alpha e^{\alpha(l+c)}-\beta A e^{\alpha(t+c)} \\
{\left[1+\beta e^{\alpha(t+c)}\right] A } & =\alpha e^{\alpha(t+c)} .
\end{aligned}
$$

Thus

$$
A(t)=\frac{\alpha e^{\alpha(t+c)}}{1+\beta e^{\alpha(t+c)}}=\frac{\alpha}{\beta+e^{-\alpha(t-c)}}=\frac{\alpha}{\beta+e^{-\alpha c} e^{-\alpha t}} .
$$

From $A(0)=0.24$ we obtain

$$
0.24=\frac{\alpha}{\beta+e^{-\alpha c}}
$$

so that $e^{-\alpha c}=\alpha / 0.24-\beta \approx 8.8235$ and

$$
A(t) \approx \frac{2.128}{0.0432+8.8235 e^{-2.128 t}}
$$

t (days)	1	2	3	4	5
\boldsymbol{A} (observed)	2.78	13.53	36.30	47.50	49.40
A (actual)	1.93	12.50	36.46	47.23	49.00

15. (a)

x_{n}	$\boldsymbol{h}=0.05$	$h=0.1$
1.00	1.0000	1.0000
1.05	1.1112	
1.10	1.2511	1.2511
1.15	1.4348	
1.20	1.6934	1.6934
1.25	2.1047	
1.30	2.9560	2.9425
1.35	7.8981	
1.40	1.0608×10^{15}	903.0282

(b) y

-6. (a) Using the RK4 method we obtain $y(0.1) \approx y_{1}=1.2214$.
(b) Using $y^{(5)}(x)=32 e^{2 x}$ we sce that the local truncation error is

$$
y^{(\overline{5})}(c) \frac{h^{5}}{120}=32 e^{2 c} \frac{(0.1)^{5}}{120}=0.000002667 e^{2 r}
$$

Since $e^{2 x}$ is an increasing function, $e^{2 c} \leq e^{2(0.1)}=e^{0.2}$ for $0 \leq c \leq 0.1$. Thus an upper F_{i}.....: for the local truncation error is $0.000002667 e^{0.2}=0.000003257$.
(c) Since $y(0.1)=e^{0.2}=1.221402758$, the actual crror is $y(0.1)-y_{1}=0.000002758$ which is :than 0.000003257 .
(d) Using the RK4 formula with $h=0.05$ we obtain $y(0.1) \approx y_{2}=1.221402571$.
(e) The error in (d) is $1.221402758-1.221402571=0.000000187$. With global truncation $\div \cdots$: : $O\left(h^{4}\right)$, when the stcp size is halved we cxpect the error for $h=0.05$ to be one-sixtecnti: $-\ldots$ error for $h=0.1$. Comparing 0.000000187 with 0.000002758 we see that this is the case.
\therefore (a) Using the RK4 method we obtain $y(0.1) \approx y_{1}=0.823416667$.
(b) Using $y^{(\overline{5})}(x)=-40 e^{-2 x}$ we sec that the local truncation crror is

$$
40 e^{-2 c} \frac{(0.1)^{5}}{120}=0.000003333
$$

Since $e^{-2 x}$ is a decreasing function, $e^{-2 c} \leq e^{0}=1$ for $0 \leq c \leq 0.1$. Thus an upper bounci *: the local truncation crror is $0.000003333(1)=0.000003333$.
(c) Since $y(0.1)=0.823413441$, the actual error is $\left|y(0.1)-y_{1}\right|=0.000003225$, which is less the 0.000003333 .
(d) Using the RK4 method with $h=0.05$ we obtain $y(0.1) \approx y_{2}=0.823413627$.
(e) The error in (d) is $|0.823413441-0.823413627|=0.000000185$. With global truncation or: $O\left(h^{4}\right)$, when the step size is halved we expect the error for $h=0.05$ to be one-sixteenth t. error when $h=0.1$. Comparing 0.000000185 with 0.000003225 we see that this is the case.
18. (a) Using $y^{(5)}=-1026 e^{-3(x-1)}$ we sce that the local truncation error is

$$
\left|y^{(5)}(c) \frac{h^{5}}{120}\right|=8.55 h^{5} e^{-3(c-1)}
$$

(b) Since $e^{-3(x-1)}$ is a decreasing function for $1 \leq x \leq 1.5, e^{-3(c-1)} \leq e^{-3(1-1)}=1$ for $1 \leq c \leq$: and

$$
y^{(5)}(c) \frac{h^{5}}{120} \leq 8.55(0.1)^{\overline{5}}(1)=0.0000855
$$

(c) Cising the RK4 method with $h=0.1$ we obtain $y(1.5) \approx 2.053338827$. With $h=0.05$ we ob: $y(1.5) \approx 2.053222989$.
19. (a) Using $y^{(5)}=24 /(x+1)^{5}$ we see that the local truncation error is

$$
y^{(5)}(c) \frac{h^{5}}{120}=\frac{1}{(c+1)^{5}} \frac{h^{5}}{5} .
$$

(b) Since $1 /(x+1)^{5}$ is a decreasing function for $0 \leq x \leq 0.5,1 /(c+1)^{5} \leq 1 /(0+1)^{5}=$: $0 \leq c \leq 0.5$ and

$$
y^{(5)}(c) \frac{h^{5}}{5} \leq(1) \frac{(0.1)^{5}}{5}=0.000002
$$

(c) Using the RK4 method with $h=0.1$ we obtain $y(0.5) \approx 0.405465168$. With $h=0.05$ we 0 $y(0.5) \approx 0.405465111$.
20. Each step of Euler's method requires only 1 function evaluation, while each step of the imp: Euler's method requires 2 function evaluations - once at $\left(x_{n}, y_{n}\right)$ and again at $\left(x_{n+1}, y_{n+1}^{*}\right.$. second-order Runge-Kutta mothods require 2 function cvaluations per step, while the RK4 1r:requires 4 function evaluations per step. To compare the methods we approximate the solut: $y^{\prime}=(x+y-1)^{2}, y(0)=2$, at $x=0.2$ using $h=0.1$ for the Runge-Kutta method, $h=0.05 \therefore$: improved Euler's method, and $h=0.025$ for Euler's method. For each method a total of 8 fur: cvaluations is required. By comparing with the exact solution we see that the RK4 method a:: to still give the most accurate result.

$\boldsymbol{x}_{\boldsymbol{n}}$	Euler $\mathbf{h = 0 . 0 2 5}$	Imp. Euler $\mathbf{h}=\mathbf{0 . 0 5}$	RK4 $\mathbf{h = 0 . 1}$	Actual
0.000	2.0000	2.0000	2.0000	2.0000
0.025	2.0250			2.0263
0.050	2.0526	2.0553		2.0554
0.075	2.0830			2.0875
0.100	2.1165	2.1228	2.1230	2.1230
0.125	2.1535			2.1624
0.150	2.1943	2.2056		2.2061
0.175	2.2395			2.2546
0.200	2.2895	2.3075	2.3085	2.3085

21. (a) For $y^{\prime}+y=10 \sin 3 x$ an integrating factor is e^{x} so that

$$
\begin{aligned}
\frac{d}{d x}\left[e^{x} y\right]=10 e^{x} \sin 3 x & \Longrightarrow e^{x} y=e^{x} \sin 3 x-3 e^{x} \cos 3 x+c \\
& \Longrightarrow y=\sin 3 x-3 \cos 3 x+c e^{-x}
\end{aligned}
$$

When $x=0, y=0$, so $0=-3+c$ and $c=3$. The solution is

$$
y=\sin 3 x-3 \cos 3 x+3 e^{-x}
$$

$$
-5-
$$

Using Newton's method we find that $x=1.53235$ is the only positive root in [0, 2].
(b) Using the RK4 method with $h=0.1$ we obtain the table of valucs shown. These values an $\cdots \div \vdots$ to obtain an interpolating function in Mathematica. The graph of the interpolating func: :shown. Using Mathematica's root finding capability we see that the only positive root $\mathrm{i}: . .$. is $x=1.53236$.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$
0.0	0.0000
0.1	0.1440
0.2	0.5448
0.3	1.1409
0.4	1.8559
0.5	2.6049
0.6	3.3019
0.7	3.8675
0.8	4.2356
0.9	4.3593
1.0	4.2147

x_{n}	y_{n}
1.0	4.2147
1.1	3.8033
1.2	3.1513
1.3	2.3076
1.4	1.3390
1.5	0.3243
1.6	-0.6530
1.7	-1.5117
1.8	-2.1809
1.9	-2.6061
2.0	-2.7539

Exercises 9.2 Runge-Kutta Methods

22. This is a Contributed Problem and the solution has been provided by the author of the problem.)

The answers shown here pertain to the case $F \neq 0$, i.e. answers to question (h). Answers t. questions (a)-(g) are obtained by setting $F=0$.
(a) Divide both sides of the cquation given in the text by the quantity $(M / 2)$ to obtain

$$
\left(\frac{d x}{d t}\right)^{2}+\omega^{2} x^{2}+(2 F / M) x=C
$$

where $\omega=\sqrt{k / M}$.
(b) Set $C=1$ to obtain

$$
\left(\frac{d x}{d t}\right)^{2}+\omega^{2} x^{2}+(2 F / M) x=1
$$

Upon completing the square in the above equation we have

$$
\left(\frac{d x}{d t}\right)^{2}=-\left(\omega x+\frac{F}{M \omega}\right)^{2}+\frac{F^{2}+M^{2} \omega^{2}}{M^{2} \omega^{2}} .
$$

If we let $u=\omega x+F /(M \omega)$ then this equation reduces to

$$
\frac{d u}{d t}=\frac{\sqrt{F^{2}+M^{2} \omega^{2}}}{M} \sqrt{1-\left(\frac{M^{2} \omega^{2}}{F^{2}+M^{2} \omega^{2}}\right) u^{2}}
$$

Finally, with $y=M \omega^{2} / \sqrt{F^{2}+M^{2} \omega^{2}} u$, equation (1) reduces to

$$
\frac{d y}{d t}=\omega \sqrt{1-y^{2}}, \quad \text { with } \quad y(0)=\frac{F}{\sqrt{M^{2} \omega^{2}+F^{2}}}
$$

(c) Use Euler's method with $F=10: k=48$, and $M=3$ to solve

$$
\frac{d y}{d t}=\omega \sqrt{1-y^{2}}, \quad y(0)=\frac{F}{\sqrt{M^{2} \omega^{2}+F^{2}}} \quad \text { or } \quad \frac{d y}{d t}=4 \sqrt{1-y^{2}}, \quad y(0)=\frac{5}{\sqrt{61}} .
$$

(d) Graphically, we observe (this can also be shown analytically) that the solution $y(t)$ sta:the intitial point $y_{0}=y(0)$, increases almost linearly until it reaches 1 at time

$$
t^{*}=\frac{\pi / 2-\arcsin y_{0}}{\omega}
$$

and remains at 1 afterwards. The numerical solution is described by

$$
y(t)= \begin{cases}\sin \left(\omega t+\arcsin y_{0}\right) & \text { if } 0 \leq t \leq t^{*} \\ 1 & \text { if } t>t^{*}\end{cases}
$$

Figure 1: Plot of $y(t)$ versus time for $N=5000$
Therefore, the numerical solution docs not seem to capture the physics involved afte: since there are no oscillations. Note that the constant solution $y=1$ is a solutio: $: \therefore$ initial-value problem. However, the solution is not physical.
(e) First separate variables and integratc

$$
\int \frac{d y}{\sqrt{1-y^{2}}}=\int \omega d t
$$

to obtain

$$
\arcsin y=\omega t+C_{0}
$$

Upon using the initial condition, we find

$$
y(t)=\sin \left(\omega t+\arcsin y_{0}\right) .
$$

The analytic solution does capture the oscillations of the spring.
(f) Differentiate both sides of equation (2) with respect to time to obtain

$$
\frac{d^{2} y}{d t^{2}}=\omega\left(-y \frac{d y}{d t}\right) \frac{1}{\sqrt{1-y^{2}}}
$$

and then use the fact that $d y / d t=\omega \sqrt{1-y^{2}}$.
From equation (2), we have $y(0)=y_{0}$ and from cquation 2 again, we have

$$
y^{\prime}(0)=\omega \sqrt{1-y_{0}^{2}}
$$

(g) First create the following function file (name it spring2.m)

```
function out=spring2(t,y);
omcga=4;
out(1)=y(2);
```

out $(2)=-\omega^{2} * y(1)$;
out=out';
then in the Matlab window, type the following commands:
$\gg \mathrm{M}=3 ; k=48: \omega=\sqrt{k / M} ; \mathrm{F}=10:$
$\gg y 0=F / \sqrt{\left(M^{2} \omega^{2}+F^{2}\right)}$
$\gg y_{1}=\omega \sqrt{1-y_{0}^{2}}$
$\gg[t, y]=\operatorname{ode} 45\left({ }^{\prime} \operatorname{spring} 2^{\prime},[0, p i / 2],\left[y_{0}, y_{1}\right]:\right.$
$\gg \operatorname{plot}(\mathrm{t}, \mathrm{y}(:, 1))$
where $y_{1}=d y / d t$ at $t=0$. The resulting plot is shown in figure 2 . The graph is consist: with the analytical solution $y(t)=\sin \left(\omega t+\arcsin y_{0}\right)$ from part (e).

Figure 2: Plot of $y(t)$ versus time using ODE4s

The second-order differential equation has constant coefficients. The analytic solutici: easily be obtained,

$$
x(t)=\frac{\sqrt{F^{2}+M^{2} \omega^{2}}}{M \omega^{2}}\left(y_{0} \cos (\omega t)+\frac{y_{1}}{\omega} \sin (\omega t)\right)-\frac{F}{M \omega^{2}} .
$$

Exercises 9.3

Multistep Methods

- the tables in this section "ABM" stands for Adams-Bashforth-Moulton.

1. Writing the differential equation in the form $y^{\prime}-y=x-1$ we see that an integrating factor is $e^{-\int d x}=e^{-x}$, so that

$$
\frac{d}{d x}\left[e^{-x} y\right]=(x-1) e^{-x}
$$

and

$$
y=e^{x}\left(-x e^{-x}+c\right)=-x+c e^{x}
$$

From $y(0)=1$ we find $c=1$, so the solution of the initial-value problem is $y=-x+e^{x}$. Actual values of the analytic solution above are compared with the approximated values in the table.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\boldsymbol{y}_{\boldsymbol{n}}$	Actual	
0.0	1.00000000	1.00000000	init. cond.
0.2	1.02140000	1.02140276	RK4
0.4	1.09181796	1.09182470	RK4
0.6	1.22210646	1.22211880	RK4
0.8	1.42552788	1.42554093	ABM

2. The following program is written in Mathematica. It uscs the Adams-Bashforth-Moulton method to approximate the solution of the initial-value problem $y^{\prime}=x+y-1, y(0)=1$, on the interval $[0,1]$.

Clear[f, $\mathrm{x}, \mathrm{y}, \mathrm{h}, \mathrm{a}, \mathrm{b}, \mathrm{y} 0$];
$\mathrm{f}\left[\mathbf{x}_{-}, \mathbf{y}_{-}\right]:=\mathbf{x}+\mathbf{y}-\mathbf{1} ; \quad\left(*\right.$ define the differential equation $\left.{ }^{*}\right)$
$\mathbf{h}=0.2 ; \quad$ (* set the stcp size ${ }^{*}$)
$\mathbf{a}=\mathbf{0} ; \mathbf{y 0}=\mathbf{1} ; \mathbf{b}=\mathbf{1} ; \quad$ (* set the initial condition and the interval *)
$\mathrm{f}[\mathbf{x}, \mathbf{y}] \quad$ (* display the DE^{*})
Clear[k1, k2, k3, k4, $\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v}]$
$\mathrm{x}=\mathrm{u}[0]=\mathrm{a} ;$
$\mathrm{y}=\mathrm{v}[0]=\mathrm{y} 0$;
$\mathrm{n}=0$;
While $\left[\mathbf{x}<\mathbf{a}+\mathbf{3 h}, \quad\left(*\right.\right.$ use RK4 to compute the first 3 values after $y(0){ }^{*}$) $\mathrm{n}=\mathrm{n}+1 ;$

$$
\begin{aligned}
& \mathrm{k} 1=\mathrm{f}[\mathrm{x}, \mathrm{y}] ; \\
& \mathrm{k} 2=\mathrm{f}[\mathrm{x}+\mathrm{h} / 2, \mathrm{y}+\mathrm{h} \mathrm{k} 1 / 2] ; \\
& \mathrm{k} 3=\mathrm{f}[\mathrm{x}+\mathrm{h} / 2, \mathrm{y}+\mathrm{h} \mathbf{k} 2 / 2] ; \\
& \mathrm{k} 4=\mathrm{f}[\mathrm{x}+\mathrm{h}, \mathrm{y}+\mathrm{h} \mathrm{k} 3] ; \\
& \mathrm{x}=\mathrm{x}+\mathrm{h} ; \\
& \mathrm{y}=\mathrm{y}+(\mathrm{h} / 6)(\mathrm{k} 1+2 \mathrm{k} 2+2 \mathrm{k} 3+\mathrm{k} 4) ; \\
& \mathrm{u}[\mathrm{n}]=\mathrm{x} ; \\
& \mathrm{v}[\mathrm{n}]=\mathrm{y}] ; \\
& \text { While }[\mathrm{x} \leq \mathrm{b}, \\
& \mathrm{p} 3=\mathrm{f}[\mathrm{u}[\mathrm{n}-3], \mathrm{v}[\mathrm{n}-3]] ; \\
& \mathrm{p} 2=\mathrm{f}[\mathrm{u}[\mathrm{n}-\mathbf{2}], \mathrm{v}[\mathrm{n}-2]] ; \\
& \mathrm{p} 1=\mathrm{f}[\mathbf{u}[\mathrm{n}-1], \mathrm{v}[\mathrm{n}-1]] ; \\
& \mathrm{p} 0=\mathrm{f}[\mathrm{u}[\mathrm{n}], \mathrm{v}[\mathrm{n}]] ; \\
& \mathrm{pred}=\mathrm{y}+(\mathrm{h} / 24)(55 \mathrm{p} 0-59 \mathrm{p} 1+37 \mathrm{p} 2-9 \mathrm{p} 3) ; \quad \text { (* predictor }^{*} \\
& \mathrm{x}=\mathrm{x}+\mathrm{h} ; \\
& \mathrm{p} 4=\mathrm{f}[\mathrm{x}, \mathrm{pred}] ; \\
& \mathrm{y}=\mathrm{y}+(\mathrm{h} / \mathbf{2 4})(9 \mathrm{p} 4+19 \mathrm{p} 0-5 \mathrm{p} 1+\mathrm{p} 2) ; \\
& \mathrm{n}=\mathrm{n}+1 ; \\
& \mathrm{u}[\mathrm{n}]=\mathrm{x} ; \\
& \mathrm{v}[\mathrm{n}]=\mathrm{y}]
\end{aligned}
$$

(*display the table ${ }^{*}$)
TableForm[Prepend[Table[\{u[n], v[n]\}, $\{\mathbf{n}, \mathbf{0},(b-a) / h\}],\{" x(n) ", " y(n) "\}^{-}:$
3. The first predictor is $y_{4}^{*}=0.73318477$.

x_{n}	y_{n}	
0.0	1.00000000	init. cond.
0.2	0.73280000	RK4
0.4	0.64608032	RK4
0.6	0.65851653	RK4
0.8	0.72319464	ABM

4. The first prodictor is $y_{4}^{*}=1.21092217$.

$x_{\boldsymbol{n}}$	$y_{\boldsymbol{n}}$	
0.0	2.00000000	init. cond.
0.2	1.41120000	RK4
0.4	1.14830848	RK4
0.6	1.10390600	RK4
0.8	1.20486982	ABM

5. The first predictor for $h=0.2$ is $y_{4}^{*}=1.02343488$.

x_{n}	$\mathbf{h = 0 . 2}$		$\mathrm{h}=0.1$	
0.0	0.00000000	init. cond.	0.00000000	init. cond.
0.1			0.10033459	RK4
0.2	0.20270741	RK4	0.20270988	RK4
0.3			0.30933604	RK4
0.4	0.42278899	RK4	0.42279808	ABM
0.5			0.54631491	ABM
0.6	0.68413340	RK4	0.68416105	ABM
0.7			0.84233188	ABM
0.8	1.02969040	ABM	1.02971420	ABM
0.9			1.26028800	ABM
1.0	1.55685960	ABM	1.55762558	ABM

万. The first predictor for $h=0.2$ is $y_{4}^{*}=3.34828434$.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\mathbf{h = 0 . 2}$		$\mathbf{h}=\mathbf{0 . 1}$	
0.0	1.00000000	init. cond.	1.00000000	init. cond.
0.1			1.21017082	RK4
0.2	1.44139950	RK4	1.44140511	RK4
0.3			1.69487942	RK4
0.4	1.97190167	RK4	1.97191536	ABM
0.5			2.27400341	ABM
0.6	2.60280694	RK4	2.60283209	ABM
0.7			2.96031780	ABM
0.8	3.34860927	ABM	3.34863769	ABM
0.9			3.77026548	ABM
1.0	4.22797875	ABM	4.22801028	ABM

${ }^{-}$. The first predictor for $h=0.2$ is $y_{4}^{*}=0.13618654$.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$		$\mathrm{h}=0.1$	
0.0	0.00000000	init. cond.	0.00000000	init. cond.
0.1			0.00033209	RK4
0.2	0.00262739	RK4	0.00262486	RK4
0.3			0.00868768	RK4
0.4	0.02005764	RK4	0.02004821	ABM
0.5			0.03787884	ABM
0.6	0.06296284	RK4	0.06294717	ABM
0.7			0.09563116	ABM
0.8	0.13598600	ABM	0.13596515	ABM
0.9			0.18370712	ABM
1.0	0.23854783	ABM	0.23841344	ABM

Exercises 9.3 Multistep Methods

s. The first predictor for $h=0.2$ is $y_{4}^{*}=2.61796154$.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$		$\mathrm{h}=0.1$	
0.0	1.00000000	init. cond.	1.00000000	init, cond.
0.1			1.10793839	RK4
0.2	1.23369623	RK4	1.23369772	RK4
0.3			1.38068454	RK4
0.4	1.55308554	RK4	1.55309381	ABM
0.5			1.75610064	ABM
0.6	1.99610329	RK4	1.99612995	ABM
0.7			2.28119129	ABM
0.8	2.62136177	ABM	2.62131818	ABM
0.9			3.02914333	ABM
1.0	3.52079042	ABM	3.52065536	ABM

Exercises 9.4

Higher-Order Equations and Systems

1. The substitution $y^{\prime}=u$ leads to the iteration formulas

$$
y_{n+1}=y_{n}+h u_{n}, \quad u_{n+1}=u_{n}+h\left(4 u_{n}-4 y_{n}\right) .
$$

The initial conditions are $y_{0}=-2$ and $u_{0}=1$. Then

$$
\begin{aligned}
& y_{1}=y_{0}+0.1 u_{0}=-2+0.1(1)=-1.9 \\
& u_{1}=u_{0}+0.1\left(4 u_{0}-4 y_{0}\right)=1+0.1(4+8)=2.2 \\
& y_{2}=y_{1}+0.1 u_{1}=-1.9+0.1(2.2)=-1.68
\end{aligned}
$$

The general solution of the differcntial equation is $y=c_{1} e^{2 x}+c_{2} x e^{2 x}$. From the initial con we find $c_{1}=-2$ and $c_{2}=5$. Thus $y=-2 e^{2 x}+5 x e^{2 x}$ and $y(0.2) \approx-1.4918$.
2. The substitution $y^{\prime}=u$ leads to the iteration formulas

$$
y_{n+1}=y_{n}+h u_{n}, \quad u_{n+1}=u_{n}+h\left(\frac{2}{x} u_{n}-\frac{2}{x^{2}} y_{n}\right) .
$$

The initial conditions are $y_{0}=4$ and $u_{0}=9$. Then

$$
\begin{aligned}
& y_{1}=y_{0}+0.1 u_{0}=4+0.1(9)=4.9 \\
& u_{1}=u_{0}+0.1\left(\frac{2}{1} u_{0}-\frac{2}{1} y_{0}\right)=9+0.1[2(9)-2(4)]=10 \\
& y_{2}=y_{1}+0.1 u_{1}=4.9+0.1(10)=5.9 .
\end{aligned}
$$

The general solution of the Cauchy－Euler differential equation is $y=c_{1} x+c_{2} x^{2}$ ．From the in：－：： conditions we find $c_{1}=-1$ and $c_{2}=5$ ．Thus $y=-x+5 x^{2}$ and $y(1.2)=6$ ．

3．The substitution $y^{\prime}=u$ leads to the system

$$
y^{\prime}=u, \quad u^{\prime}=4 u-4 y
$$

Using formula（4）in the text with x correspond－ ing to t, y corresponding to x ，and u correspond－

x_{n}	$\begin{gathered} \mathrm{h}=0.2 \\ y_{n} \end{gathered}$	$\begin{gathered} \mathrm{h}=0.2 \\ u_{n} \end{gathered}$	$\begin{gathered} \mathrm{h}=0.1 \\ y_{n} \end{gathered}$	$\begin{gathered} \mathrm{h}=0.1 \\ u_{n} \end{gathered}$
0.0	－2．0000	1.0000	－2．0000	1.005
0.1			－1．8321	2． $5=2$
0.2	－1．4928	4.4731	－1．4919	4．4．こら

4．The substitution $y^{\prime}=u$ leads to the system

$$
y^{\prime}=u, \quad u^{\prime}=\frac{2}{x} u-\frac{2}{x^{2}} y
$$

Using formula（4）in the text with x correspond－ ing to t, y corresponding to x ，and u correspond－ ing to y ，we obtain the table shown．

5．The substitution $y^{\prime}=u$ leads to the system

$$
y^{\prime}=u, \quad u^{\prime}=2 u-2 y+e^{t} \cos t
$$

Using formula（4）in the text with y correspond－

x_{n}	$\begin{gathered} \mathrm{h}=0.2 \\ y_{n} \end{gathered}$	$\begin{gathered} \mathbf{h}=0.2 \\ u_{n} \end{gathered}$	$\begin{gathered} \mathrm{h}=0.1 \\ y_{n} \end{gathered}$	$\begin{gathered} \mathbf{h}=0.1 \\ u_{n} \end{gathered}$
0.0	1.0000	2.0000	1.0000	2．0っこ！
0.1			1.2155	2．3゙ミ
0.2	1.4640	2.6594	1.4640	2．65ご

\boldsymbol{x}_{n}	$\begin{gathered} \mathrm{h}=0.2 \\ y_{n} \end{gathered}$	$\begin{gathered} \mathbf{h}=0.2 \\ \mathbf{u}_{\boldsymbol{n}} \end{gathered}$	$\begin{gathered} \mathrm{h}=0.1 \\ y_{n} \end{gathered}$	$\begin{gathered} \mathbf{h}=0.1 \\ u_{n} \end{gathered}$
1.0	4.0000	9.0000	4.0000	9.00
1.1			4.9500	10．00：：
1.2	6.0001	11.0002	6.0000	11.0

万．Using $h=0.1$ ，the RK4 method for a system，and a numerical solver，we obtain

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$	$\mathrm{~h}=0.2$
0.0	0.0000	0.0000
0.1	2.5000	3.7500
0.2	2.8125	5.7813
0.3	2.0703	7.4023
0.4	0.6104	9.1919
0.5	-1.5619	11.4877

Exercises 9.4 Higher-Order Equations and Systems
7.

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 2}$ $\boldsymbol{y}_{\boldsymbol{n}}$	$\mathrm{h}=0.1$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 1}$ $\boldsymbol{y}_{\boldsymbol{n}}$
0.0	6.0000	2.0000	6.0000	2.0000
0.1			7.0731	2.6524
0.2	8.3055	3.4199	8.3055	3.4199

8.

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{y}_{\boldsymbol{n}}$	$\mathrm{h}=0.1$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=0.1$ $\boldsymbol{y}_{\boldsymbol{n}}$
0.0	1.0000	1.0000	1.0000	1.0000
0.1				
0.2			1.4006	1.8963

9.

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 2}$ $\boldsymbol{y}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 1}$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 1}$ $\boldsymbol{y}_{\boldsymbol{n}}$
0.0	-3.0000	5.0000	-3.0000	5.0000
0.1			-3.4790	4.6707
0.2	-3.9123	4.2857	-3.9123	4.2857

Exercises 9.4 Higher-Order Equations and System:
:

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0}, 2$ $\boldsymbol{y}_{\boldsymbol{n}}$	$\mathrm{h}=0.1$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0} .1$ $\boldsymbol{y}_{\boldsymbol{n}}$
0.0	0.5000	0.2000	0.5000	0.2000
0.1			1.0207	1.0115
0.2	2.1589	2.3279	2.1904	2.3592

\because. Solving for x^{\prime} and y^{\prime} we obtain the system

$$
\begin{aligned}
& x^{\prime}=-2 x+y+5 t \\
& y^{\prime}=2 x+y-2 t .
\end{aligned}
$$

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 2}$ $\boldsymbol{y}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 1}$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 1}$ $\boldsymbol{y}_{\boldsymbol{n}}$
0.0	1.0000	-2.0000	1.0000	-2.0000
0.1			0.6594	-2.0476
0.2	0.4179	-2.1824	0.4173	-2.1821

\therefore Solving for x^{\prime} and y^{\prime} we obtain the system

$$
\begin{aligned}
& x^{\prime}=\frac{1}{2} y-3 t^{2}+2 t-5 \\
& y^{\prime}=-\frac{1}{2} y+3 t^{2}+2 t+5
\end{aligned}
$$

$\boldsymbol{t}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=0.2$ $\boldsymbol{y}_{\boldsymbol{n}}$	$\mathrm{h}=0.1$ $\boldsymbol{x}_{\boldsymbol{n}}$	$\mathrm{h}=\mathbf{0 . 1}$ $\boldsymbol{y}_{\boldsymbol{n}}$
0.0	3.0000	-1.0000	3.0000	-1.0000
0.1			2.4727	-0.4527
0.2	1.9867	0.0933	1.9867	0.0933

Exercises 9.5

1. We identify $P(x)=0, Q(x)=9, f(x)=0$, and $h=(2-0) / 4=0.5$. Then the finite different. equation is

$$
y_{i+1}+0.25 y_{i} \div y_{i-1}=0
$$

The solution of the corresponding linear system gives

x	0.0	0.5	1.0	1.5	2.0
y	4.0000	-5.6774	-2.5807	6.3226	1.0000

2. We identify $P(x)=0, Q(x)=-1, f(x)=x^{2}$, and $h=(1-0) / 4=0.25$. Then the finite differe:: equation is

$$
y_{i+1}-2.0625 y_{i}+y_{i-1}=0.0625 x_{i}^{2}
$$

The solution of the corresponding linear system gives

x	0.00	0.25	0.50	0.75	1.00
y	0.0000	-0.0172	-0.0316	-0.0324	0.0000

3. We identify $P(x)=2, Q(x)=1, f(x)=5 x$, and $h=(1-0) / 5=0.2$. Then the finite differ:equation is

$$
1.2 y_{i+1}-1.96 y_{i}+0.8 y_{i-1}=0.04\left(5 x_{i}\right)
$$

The solution of the corresponding lincar system gives

x	0.0	0.2	0.4	0.6	0.8	1.0
y	0.0000	-0.2259	-0.3356	-0.3308	-0.2167	0.0000

4. We identify $P(x)=-10, Q(x)=25, f(x)=1$, and $h=(1-0) / 5=0.2$. Then the finite diffe: $:$ equation is

$$
-y_{i}+2 y_{i-1}=0.04
$$

The solution of the corresponding linear system gives

x	0.0	0.2	0.4	0.6	0.8	1.0
y	1.0000	1.9600	3.8800	7.7200	15.4000	0.0000

5. We identify $P(x)=-4, Q(x)=4, f(x)=(1+x) e^{2 x}$, and $h=(1-0) / 6=0.1667$. Then the :difference equation is

$$
0.6667 y_{i+1}-1.8889 y_{i}+1.3333 y_{i-1}=0.2778\left(1+x_{i}\right) e^{2 x_{i}}
$$

The solution of the corresponding linear system gives

x	0.0000	0.1667	0.3333	0.5000	0.6667	0.8333	1.0000
y	3.0000	3.3751	3.6306	3.6448	3.2355	2.1411	0.0000

万. We identify $P(x)=5, Q(x)=0, f(x)=4 \sqrt{x}$, and $h=(2-1) / 6=0.1667$. Then the finite difference equation is

$$
1.4167 y_{i+1}-2 y_{i}+0.5833 y_{i-1}=0.2778\left(4 \sqrt{x_{i}}\right)
$$

The solution of the corresponding linear system gives

\mathbf{x}	1.0000	1.1667	1.3333	1.5000	1.6667	1.8333	2.0000
y	1.0000	-0.5918	-1.1626	-1.3070	-1.2704	-1.1541	-1.0000

\therefore We identify $P(x)=3 / x, Q(x)=3 / x^{2}, f(x)=0$, and $h=(2-1) / 8=0.125$. Then the finite difference equation is

$$
\left(1+\frac{0.1875}{x_{i}}\right) y_{i+1}+\left(-2+\frac{0.0469}{x_{i}^{2}}\right) y_{i}+\left(1-\frac{0.1875}{x_{i}}\right) y_{i-1}=0
$$

The solution of the corresponding linear system gives

x	1.000	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2.000
y	5.0000	3.8842	2.9640	2.2064	1.5826	1.0681	0.6430	0.2913	0.0000

5. We identify $P(x)=-1 / x, Q(x)=x^{-2}, f(x)=\ln x / x^{2}$, and $h=(2-1) / 8=0.125$. Then the finite difference equation is

$$
\left(1-\frac{0.0625}{x_{i}}\right) y_{i+1}+\left(-2+\frac{0.0156}{x_{i}^{2}}\right) y_{i}+\left(1+\frac{0.0625}{x_{i}}\right) y_{i-1}=0.0156 \ln x_{i} .
$$

The solution of the corresponding linear system gives

x	1.000	1.125	1.250	1.375	1.500	1.625	1.750	1.875	2.000
y	0.0000	-0.1988	-0.4168	-0.6510	-0.8992	-1.1594	-1.4304	-1.7109	-2.0000

9. We identify $P(x)=1-x, Q(x)=x, f(x)=x$, and $h=(1-0) / 10=0.1$. Then the finite difference equation is

$$
\left[1+0.05\left(1-x_{i}\right)\right] y_{i+1}+\left[-2+0.01 x_{i}\right] y_{i}+\left[1-0.05\left(1-x_{i}\right)\right] y_{i-1}=0.01 x_{i}
$$

The solution of the corresponding linear system gives

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6
y	0.0000	0.2660	0.5097	0.7357	0.9471	1.1465	1.3353
					0.7	0.8	0.9
						1.5149	1.6855

\therefore I. We identify $P(x)=x, Q(x)=1, f(x)=x$, and $h=(1-0) / 10=0.1$. Then the finite difference equation is

$$
\left(1+0.05 x_{i}\right) y_{i+1}-1.99 y_{i}+\left(1-0.05 x_{i}\right) y_{i-1}=0.01 x_{i} .
$$

Exercises 9.5 Second-Order Boundary-Valuc Problems

The solution of the corresponding lincar system gives

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6
y	1.0000	0.8929	0.7789	0.6615	0.5440	0.4296	0.3216
				0.7	0.8	0.9	1.0

11. We identify $P(x)=0, Q(x)=-4, f(x)=0$, and $h=(1-0) / 8=0.125$. Then the finite differc: equation is

$$
y_{i+1}-2.0625 y_{i}+y_{i-1}=0
$$

The solution of the corresponding linear system gives

x	0.000	0.125	0.250	0.375	0.500	0.625	0.750	0.875	1.000
y	0.0000	0.3492	0.7202	1.1363	1.6233	2.2118	2.9386	3.8490	5.0000

12. We identify $P(r)=2 / r, Q(r)=0, f(r)=0$, and $h=(4-1) / 6=0.5$. Then the finite differ-: equation is

$$
\left(1+\frac{0.5}{r_{i}}\right) u_{i+1}-2 u_{i}+\left(1-\frac{0.5}{r_{i}}\right) u_{i-1}=0 .
$$

The solution of the corresponding linear system gives

r	1.0	1.5	2.0	2.5	3.0	3.5	4.0
u	50.0000	-72.2222 .83 .3333	90.0000	-94.4444	.97 .5190	100.0000	

13. (a) The difference cquation

$$
\left(1+\frac{h}{2} P_{i}\right) y_{i+1}+\left(-2+h^{2} Q_{i}\right) y_{i} \div\left(1-\frac{h}{2} P_{i}\right) y_{i-1}=h^{2} f_{i}
$$

is the same as equation (8) in the text. The cquations are the same because the derivatio: based only on the differential cquation, not the boundary conditions. If we allow i to : from 0 to $n-1$ we obtain n equations in the $n+1$ unknowns $y_{-1}, y_{0}, y_{1}, \ldots, y_{n-1}$. Six: is one of the given boundary conditions, it is not an unknown.
(b) Identifying $y_{0}=y(0), y_{-1}=y(0-h)$, and $y_{1}=y(0+h)$ we have from equation (5) in th.

$$
\frac{1}{2 h}\left[y_{1}-y_{-1}\right]=y^{\prime}(0)=1 \quad \text { or } \quad y_{1}-y_{-1}=2 h
$$

The difference equation corresponding to $i=0$.

$$
\left(1+\frac{h}{2} P_{0}\right) y_{1}+\left(-2+h^{2} Q_{0}\right) y_{0}+\left(1-\frac{h}{2} P_{0}\right) y_{-1}=h^{2} f_{0}
$$

becomes, with $y_{-1}=y_{1}-2 h$,

$$
\left(1+\frac{h}{2} P_{0}\right) y_{1}+\left(-2+h^{2} Q_{0}\right) y_{0}+\left(1-\frac{h}{2} P_{0}\right)\left(y_{1}-2 h\right)=h^{2} f_{0}
$$

Chapter 9 in Review

or

$$
2 y_{1}+\left(-2+h^{2} Q_{0}\right) y_{0}=h^{2} f_{0}+2 h-P_{0}
$$

 obtaining $n+1$ equations in the $n \div 1$ unknowns $y_{-1}, y_{0}, y_{1}, \ldots, y_{n-1}$.
(c) Using $n=5$ we obtain

x	0.0	0.2	0.4	0.6	0.8	1.0
y	-2.2755	-2.0755	-1.8589	-1.6126	-1.3275	-1.0000

\therefore. Using $h=0.1$ and, after shooting a few times, $y^{\prime}(0)=0.43535$ we obtain the following tabie. \because the RK44 method.

x	0.0	0.1	0.2	0.3	0.4	0.5	0.6
y	1.00000	1.04561	1.09492	1.14714	1.20131	1.25633	1.31096

0.7	0.8	0.9	1.0
1.36392	1.41388	1.45962	1.50003

Chapter 9 in Review

\boldsymbol{x}_{n}	$\begin{aligned} & \text { Euler } \\ & h=0.1 \end{aligned}$	$\begin{aligned} & \text { Euler } \\ & \mathbf{h}=0.05 \end{aligned}$	$\mathrm{Imp}_{\mathrm{h}=0.1}$	$\underset{\substack{\text { Imp. Euter }}}{ }$	$\begin{gathered} \mathrm{RK} 4 \\ \mathrm{~h}=0.1 \end{gathered}$	$\underset{\mathbf{h}=0.05}{\text { RK4 }}$
1.00	2.0000	2.0000	2.0000	2.0000	2.0000	2.0000
1.05		2.0693		2.0735		2.0736
1.10	2.1386	2.1469	2.1549	2.1554	2.1556	2.1556
1.15		2.2328		2.2459		2.2462
1.20	2.3097	2.3272	2.3439	2.3450	2.3454	2.3454
1.25		2.4299		2.4527		2.4532
1.30	2.5136	2.5409	2.5672	2.5689	2.5695	2.5695
1.35		2.6604		2.6937		2.6944
1.40	2.7504	2.7883	2.8246	2.8269	2.8278	2.8278
1.45		2.9245		2.9686		2.9696
1.50	3.0201	3.0690	3.1157	3.1187	3.1197	3.1197

Chapter 9 in Review

2.

x_{n}	$\begin{aligned} & \text { Euler } \\ & \mathbf{h}=0.1 \end{aligned}$	$\begin{gathered} \text { Euler } \\ \mathrm{h}=0.05 \end{gathered}$	$\mathrm{lmp}_{\mathrm{h}=0 . \text { Euler }}$	Imp. Euler $h=0.05$	$\underset{\substack{\text { RK4 } \\ \hline \\ \hline}}{ }$	$\underset{\mathbf{h}=\mathbf{0 . 0 5}}{\text { RK4 }}$
0.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.05		0.0500		0.0501		0.0500
0.10	0.1000	0.1001	0.1005	0.1004	0.1003	0.1003
0.15		0.1506		0.1512		0.1511
0.20	0.2010	0.2017	0.2030	0.2027	0.2026	0.2026
0.25		0.2537		0.2552		0.2551
0.30	0.3049	0.3067	0.3092	0.3088	0.3087	0.3087
0.35		0.3610		0.3638		0.3637
0.40	0.4135	0.4167	0.4207	0.4202	0.4201	0.4201
0.45		0.4739		0.4782		0.4781
0.50	0.5279	0.5327	0.5382	0.5378	0.5376	0.5376

3.

$\boldsymbol{x}_{\boldsymbol{n}}$	$\begin{gathered} \text { Euler } \\ h=0.1 \end{gathered}$	$\underset{h=0.05}{\text { Euler }}$	$\begin{gathered} \text { Imp. Euler } \\ h=0.1 \end{gathered}$	$\underset{\substack{\text { Imp } \\ \mathbf{h} .05}}{ }$	$\begin{gathered} \text { RK4 } \\ h=0.1 \end{gathered}$	$\begin{gathered} \text { RK4 } \\ h=0.05 \end{gathered}$
0.50	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000
0.55		0.5500		0.5512		0.5512
0.60	0.6000	0.6024	0.6048	0.6049	0.6049	0.6049
0.65		0.6573		0.6609		0.6610
0.70	0.7095	0.7144	0.7191	0.7193	0.7194	0.7194
0.75		0.7739		0.7800		0.7801
0.80	0.8283	0.8356	0.8427	0.8430	0.8431	0.8431
0.85		0.8996		0.9082		0.9083
0.90	0.9559	0.9657	0.9752	0.9755	0.9757	0.9757
0.95		1.0340		1.0451		1.0452
1.00	1.0921	1.1044	1.1163	1.1168	1.1169	1.1169

4.

x_{n}	$\begin{aligned} & \text { Euler } \\ & h=0.1 \end{aligned}$	$\underset{h=0.05}{\text { Euler }}$	$\operatorname{Imp}_{\mathrm{h}=0.1}$	$\underset{h=0.05}{\text { Imp. Euler }^{2}}$	$\underset{\mathrm{h}=0.1}{\mathrm{RK} 4}$	$\underset{h=0.05}{\text { RK4 }}$
1.00	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1.05		1.1000		1.1091		1.1095
1.10	1.2000	1.2183	1.2380	1.2405	1.2415	1.2415
1.15		1.3595		1.4010		1.4029
1.20	1.4760	1.5300	1.5910	1.6001	1.6036	1.6036
1.25		1.7389		1.8523		1.8586
1.30	1.8710	1.9988	2.1524	2.1799	2.1909	2.1911
1.35		2.3284		2.6197		2.6401
1.40	2.4643	2.7567	3.1458	3.2360	3.2745	3.2755
1.45		3.3296		4.1528		4.2363
1.50	3.4165	4.1253	5.2510	5.6404	5.8338	5.8446

5. Using

$$
\begin{array}{ll}
y_{n+1}=y_{n}+h u_{n}, & y_{0}=3 \\
u_{n+1}=u_{n}+h\left(2 x_{n}+1\right) y_{n}, & u_{0}=1
\end{array}
$$

Chapter 9 in Review

we obtain (when $h=0.2) y_{1}=y(0.2)=y_{0}+h u_{0}=3+(0.2) 1=3.2$. When $h=0.1$ we hare

$$
\begin{aligned}
& y_{1}=y_{0}+0.1 u_{0}=3+(0.1) 1=3.1 \\
& u_{1}=u_{0}+0.1\left(2 x_{0}+1\right) y_{0}=1+0.1(1) 3=1.3 \\
& y_{2}=y_{1}+0.1 u_{1}=3.1+0.1(1.3)=3.23
\end{aligned}
$$

6. The first predictor is $y_{3}^{*}=1.14822731$.

x_{n}	y_{n}	
0.0	2.00000000	init. cond.
0.1	1.65620000	RK4
0.2	1.41097281	RK4
0.3	1.24645047	RK4
0.4	1.14796764	ABM

․ Using $x_{0}=1, y_{0}=2$, and $h=0.1$ we have

$$
\begin{aligned}
& x_{1}=x_{0}+h\left(x_{0}+y_{0}\right)=1+0.1(1+2)=1.3 \\
& y_{1}=y_{0}+h\left(x_{0}-y_{0}\right)=2+0.1(1-2)=1.9
\end{aligned}
$$

and

$$
\begin{aligned}
& x_{2}=x_{1}+h\left(x_{1}+y_{1}\right)=1.3+0.1(1.3 \div 1.9)=1.62 \\
& y_{2}=y_{1}+h\left(x_{1}-y_{1}\right)=1.9+0.1(1.3-1.9)=1.84
\end{aligned}
$$

Thus, $x(0.2) \approx 1.62$ and $y(0.2) \approx 1.84$.
5. We identify $P(x)=0, Q(x)=6.55(1+x): f(x)=1$, and $h=(1-0) / 10=0.1$. Then the: $-\ldots \cdot$ difference equation is

$$
\left.y_{i+1}+{ }^{i}-2+0.0655\left(1+x_{i}\right)\right] y_{i}+y_{i-1}=0.001
$$

or

$$
y_{i+1}+\left(0.0655 x_{i}-1.9345\right) y_{i}+y_{i-1}=0.001
$$

The solution of the corresponding linear system gives

| x | 0.0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 0.0000 | 4.1987 | 8.1049 | 11.3840 | 13.7038 | 14.7770 | 14.4083 |

[^0]: - - neral solution of the system is then

