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On those fleeting occasions when I regain my sense of wonder, I marvel at the 
complexity of things in general. During my own short lifetime we have put 
a man on the moon and observed ancient organisms on deep ocean floors. 
Computers and cell phones have become near necessities, and even inex-
pensive cars do not often break down (a minor miracle to my reminiscing 
mind). Being adaptable, we have become accustomed to the most elaborate 
of devices. And we take them for granted as one might have a kitchen knife 
some hundreds of years ago.

Life sciences have not lagged behind. We have mapped the basic structures of 
life and increasingly have come to understand the human body and the sub-
stances circulating in it. Using this knowledge, we have developed products 
that can alter and regulate both mind and body. To be sure, there is still much 
to be done, and hopefully there always will be. But we have achieved a great 
deal already.

Now and again I talk with people outside my field and find it both fascinating 
and frustrating. Fascinating because there are so many incredible developments 
out there, and frustrating because it is nary impossible for me to know enough 
to truly appreciate them. Our world has become so complex that it is difficult 
for any one individual to have little more than a single area of expertise. And 
even this can only be had with a great deal of effort. While I might wish it 
otherwise—and I do—this is the way it is. But more disconcerting is that spe-
cialization often impedes the work of people who should be working together: 
professionals from disparate fields who must team up to get things done.

My own area is statistics. Within it, I specialize in biostatistics. Specializing even 
further, I have gained some expertise in my discipline's methods in clinical 
trials. And when I return to Earth from my contemplative heights, I find there is 
often great disorder in these trials. At times it seems to me a wonder they even 
work at all. Clinical studies are planned and executed by dozens of people both 
within and without the organization. In great measure their success depends on 
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the good graces of harried physicians and volunteering subjects who are often 
very infirm. A single trial may be conducted across many centers, countries, and 
even continents, making its management that much more difficult. And stud-
ies often take years to complete, during which time anything can happen and 
generally does.

So like most complicated ventures, success depends on numerous processes 
and professionals with varied expertise. A partial list of specialties includes 
finance, clinical, regulatory, marketing, toxicology, biology, physics, materi-
als engineering, software engineering, medical monitoring, analytic chemistry, 
and information technology. And yes, statistics. If we cannot coordinate effec-
tively between these specialties, our trials will be suboptimal at best.

Paradoxically, our complex products demand both added specialization within 
fields and ever more dialogue between them. So while we ask our people to 
know more about less, we increasingly require that they communicate with 
others in the same predicament. And as specialization deepens, interactions 
between experts become more difficult.

Simply put, for a clinical trial to work people must talk to one another. And 
while it is impossible for any to fully understand all others, each must know 
enough for the dialogue to be useful. This then brings me to my book's 
objective.

Statistics—be they more complex or less—are involved in virtually every clinical 
trial. The discipline provides essential input in the planning stage on issues like 
trial design, choice of endpoints, and sample size. And it supplies the language 
for communicating outcomes using simple statistics like mean and median, 
and more sophisticated tests for inferring conclusions. This is my work, and I 
like it. And in medical research, statistics is important work. But just because it 
is, I do not expect others to take year-long courses in it. Indeed, among those 
who already have, many are perfectly happy to leave this year behind them.

For a large number of clinical trial professionals my discipline is a black box 
they are content to leave as is. But this must not be if we are to design, conduct, 
and report trials effectively. In the chapters that follow I aim to cast some light 
into this box.

This book explains clinical trial statistics in the simplest language I can man-
age. There is very little formal mathematics in it and almost no formulas. More 
importantly, I place the discipline in the wider context of clinical trials—the 
inevitable constraints of time and money, and limitations associated with clin-
ical practice. I also relate trial design and analysis to its intended audience—to 
those needing the information it provides, such as regulators, scientists, physi-
cians, corporate managers, investors, and others.
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The book is a practical guide. It is based on years of applied experience, much 
of it my own. In it I present numerous examples from pharmaceuticals, devices, 
and other products. Crucially, I describe how statisticians must consider a 
trial's overall needs and reconcile to them. And I show how at times it must be 
the other way around. Be that as it may, a clinical trial cannot maximize any 
one discipline's preferences. But it can optimize—and it must.

For nonstatisticians this book provides strategies for productive dialogue with 
those who are; it describes the statistician's approach to clinical trials and the 
basic tools at the statistician's disposal. For statistical professionals this is a 
“how-to” guide for interacting with the many others working on clinical stud-
ies. In this book I describe—for the benefit of statisticians and nonstatisticians 
alike—the numerous considerations involved in clinical studies and their effect 
on a trial's statistics.

Competence and native intelligence will get you a long way in most every field. 
But little apart from experience can give you experience. Well, I present here what 
I believe to be the next best thing: other people's experience. I describe the cen-
tral topics of clinical trial statistics with real-world examples, recounting clinical 
tales and their morals. I have to the best of my ability written a book to facilitate 
communication between the field I have chosen and those I have not.
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Introduction
When putting together a clinical trial, each discipline involved brings its 
own particular and peculiar view to the table. Some of these are complemen-
tary, while others combine less seamlessly. Still others will pull in different 
directions. It is your job to find the best way to profit from this kaleidoscope of 
views—to merge the varying approaches to produce a solid study.

Clinical trials are a multidisciplinary effort. Now this is a very general statement 
and is true of many professional endeavors. Besides, you have long known it to 
be true. So instead of keeping to generalities, let me begin with a hypothetical, 
though typical, example from pharmaceuticals. In it I will describe some of 
the central issues that arise when planning a clinical study and focus on the 
biostatistician's role in them.

I do not intend to be exhaustive here. It is virtually impossible to cover all 
relevant issues and, more to the point, it is impractical. My aim is to provide an 
idea of statistics' contribution to planning a clinical trial. This will be enough 
to keep me occupied for a while.

Clinical Development and Statistics: 
The General View
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Allerton's Palsy
Allerton's Palsy (ALP), whether discovered by him or on him, is a neurodegen-
erative disorder primarily affecting physical function. In about 10% of cases 
there is internal organ involvement, and there is some question whether these 
cases constitute a distinct disorder. Be that as it may, ALP is primarily a disease 
in which the immune system misidentifies a part of the brain as foreign and 
attacks it—that is, an autoimmune disease. The brain cells (neurons) attacked 
by ALP degenerate over time. This usually leads to serious disability and in 
some cases to death. The natural history of the disease—the individual path it 
takes—is highly variable. Some with ALP show little change in physical func-
tioning over decades, while others will deteriorate within a few years. Most 
commonly, the disease progresses slowly at first and accelerates over time.

Diagnosis of ALP is difficult so the number of reported cases is unreliable. The 
onset of the disease is usually between the ages of 30 and 45, though much 
later onsets have also been documented. ALP is more common in men than 
women, with an estimated male-to-female ratio of 3:1.

Your Company has developed CTC-11, a molecule designed to protect brain 
cells at risk from the disorder. As such, your compound aims to provide 
neuroprotection in ALP. Virtually all early studies with CTC-11 have been 
encouraging: In vitro testing demonstrated significant reductions in cell death, 
whereby animal neuron cultures treated and exposed to a toxic environ-
ment displayed a much smaller rate of cell death than those untreated. Other 
preclinical studies showed that the molecule delays onset of the disease in 
rats. In animals that had already developed ALP, CTC-11 slowed progression 
of the disease relative to those not treated. Preclinical testing also indicated 
that in the animal models tested, the molecule is safe. Finally, two early Phase 
I clinical trials in healthy volunteers showed that even high doses of CTC-11 
produced only minor side effects, such as headaches and transient rashes.

So it seems you have in hand a potentially safe and effective drug for ALP—a 
chronic disease that currently has only marginally effective treatments and no 
cure. But it is still early and there are many issues to be considered before moving 
on to the first clinical study in humans with the disease. In the following sections 
I examine a sampling of these issues and articulate some typical questions that 
arise. And for each, I describe the statistical input required for providing answers.

Science

In vitro testing is about as far from the clinic and its patients as you can get. 
Success at this stage is supportive of efficacy in humans but is often little more 
than that. The positive results observed in animals provide you with stronger 
support; after all, the molecule has now been tested in a living organism. 
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But here too the evidence is fragile. First, results in animals frequently do 
not replicate in humans or only partially replicate. Second, and more impor-
tant, ALP is a human disease that does not naturally occur in any other spe-
cies. Unfortunately, the animal models developed to study ALP have yet to be 
fully validated-scientists are unsure whether they mimic the human form of 
the disease well enough to serve as suitable models for it. So the best you can 
now say is that CTC-11 has effectively treated animals that have been caused 
to develop an ALP-like disorder. But has your drug actually treated ALP? Well, 
you would like to think so. Yet you will not know until the molecule is tested 
in humans with the disease.

Despite all the caveats, there is no denying that your results have been good so 
far. In fact, some of your outcomes in animals could even be termed impres-
sive. And since you cannot do much better than you have, it is only natural that 
you want to know what CTC-11 can do for humans with ALP.

Thus your continuing efforts with CTC-11 are scientifically important and may 
end up helping some very ill people. If successful, they will likely contribute 
to your Company's coffers and, with a bit of goodwill, to your own modest 
ones as well. Finally, a successful effort will almost certainly get you that lunch 
with Aunt Augusta promised in a moment of weakness—the one contingent 
on your “finally doing something useful with your life.”

Your Division Head has asked you to prepare a presentation for management, 
which is now ready to decide on the molecule's future. Management, she says, 
would like a summary of the results obtained thus far. She gives you about a week 
for it. You work late hours and a weekend to convert the large amount of informa-
tion generated to date into a presentation that even management can understand. 
You contemplate incorporating something about the importance of the project to 
patients and a word or two about market potential as well. But you are an R&D 
manager and your boss has made it clear that the presentation should deal with 
scientific findings only. “Stick to the facts as you know them,” she says, and you 
wonder which version of the Bible they will have you swear on.

The presentation is done. After more than three hours of endless chatter (only a 
small part of it your own), it is over. Slightly sweating still, you leave the room 
and close the door behind you. The air in the hallway feels surprisingly fresh 
compared to what passed for oxygen in the conference room. You take the 
stairway down and do not even notice the receptionist's benevolent smile as 
you wait for the automatic door at the entrance to open. You go through the 
door and out, and for a while your mind is empty.

Walking to your office you think back to those long hours in the lab—the 
many frustrations and few rewards. And you ponder the time it took to 
prepare the presentation with every sentence and chart in its proper place. 
Did anyone notice? You certainly hope so.
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Clutching the laptop as if it were your only friend, you wonder if it all comes 
down to this: three exhausting hours and a PowerPoint file. Of course you 
know that a management presentation alone will not determine the fate of a 
development program. But that is how it feels.

Well, you have done your best and believe you have made a good scientific 
case for the molecule. Your Division Head backed you throughout the meet-
ing, as did a couple of VPs. The CEO appeared positive, but he has this way 
of nodding his head that makes you think he would have preferred to shake 
it instead. You simply do not know. Regardless, other than one wearisome VP 
nearing retirement, no one was outright negative. And now they must decide 
whether the scientific evidence supports the substantial investment needed for 
testing CTC-11 in patients with ALP.

Statistical Input

The preclinical studies were likely conducted with the statistician's help in data 
analysis and have his stamp of approval. With any luck he was also involved in 
designing these studies, which was almost certainly the case in Phase I.

But all this is behind you. The evidence from these early experiments is in its 
final form, and just about all that could be learned has been learned. It is now 
left for others to decide if R&D has presented sufficient evidence for CTC-11 to 
justify the cost of moving forward.

Still, the statistician might have helped you prepare your presentation by 
pointing out which numbers are best presented and how. He may also have 
suggested a graph or two and some color-coordinated charts. But beyond what 
he has already done in CTC-11's development, there is little of substance for 
him to do now. In short, the statistician's input into the scientific aspects of 
results after they have been obtained and analyzed is limited.

There is, however, an exception that typically occurs in due-diligence, where 
individuals consider investing in a particular R&D venture. These potential 
investors may seek a statistician's evaluation of the quality of the evidence 
obtained—the degree to which the results presented were produced by 
well-designed and correctly analyzed studies. Clearly, well-designed studies 
provide more reliable conclusions than sloppy ones, and correct statistical 
analyses are more apt to yield an accurate picture than incorrect ones.

Trial Sample Size

After numerous management meetings and a discussion with the board, the 
Company has decided to go ahead with the molecule. Public Relations 
have come out with a press release emphasizing the favorable results obtained 
to date and stating that the “Company is excited about pursuing further 
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development of CTC-11, a promising drug for Allerton's Palsy.” The drug, states 
the press release, “will enter a Phase IIa clinical trial in the first quarter next 
year,” and there is some hint in the release of a pivotal Phase III clinical trial 
to come. But you are so euphoric with the current decision that the mention of 
Phase III makes little difference. Besides, you have learned enough about press 
releases to know they are not meant for you. When doing science, it is better 
you read Excel sheets than broadsheets.

So the Company will pursue further development of CTC-11. However, as 
always, you will be testing the molecule with limited resources. At this stage the 
budget is for a 6-month trial with about 150 subjects; half will receive CTC-11 
(Treatment group) and half will receive Standard-of-Care (Control group). 
Will this be enough?

Statistical Input

Many compounds do not go directly from Phase I into full-fledged trials like 
the one proposed. A smaller pilot study is probably more common and, under 
the circumstances, perhaps more advisable. In fact, you have no idea where the 
number 150 came from and suspect it had more to do with budgets and stock 
prices than with the development program's needs. Regardless, this is what 
you have been given and it is substantial. But “substantial” does not necessar-
ily mean “sufficient,” the relationship between the two depending on the case 
at hand.

Numbers—as large or small as they may seem at first—cannot be evaluated 
without a context. A 9-year-old child selling lemonade in front of her family's 
garage might feel that taking in $30 on a single Sunday makes her the class 
tycoon. But offer her the same in a toy store and she might complain of under-
funding (and, frighteningly, might use these very words).

Be that as it may, this is what you have and you must make the best of it. Still, 
you are not going to take the numbers proposed as set in stone, and one of 
your first questions is whether they will provide your development program 
with the information needed. Specifically, will this study produce enough 
data for making an informed decision on taking CTC-11 into the next level 
of testing?

The statistician's role here is central. He will likely begin with straightforward 
power analyses, which here relate to calculations determining the number of 
subjects needed for demonstrating the drug's efficacy.1

1  This is assuming the drug is effective. If a drug is ineffective, no sample size will make it otherwise. 
Thus, the goal of power analysis is to compute a sample size that will provide statistically significant 
results given a product that is assumed (or known) to have a particular level of efficacy.
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In a future chapter we will deal with power analysis in greater detail. For the 
moment let us point out that to do these analyses a statistician needs several 
pieces of information. The most important of these is an estimate of the drug's 
effect size relative to Control. For example, stating that CTC-11 is superior to 
Control by about 10% is saying that the drug's effect size is about 10%.2

The statistician will get these estimates from clinicians and others in the organi-
zation. But he should also review results obtained to date within the Company 
and read some scientific publications on the subject. To do this he will need 
assistance from life-scientists, without whose help he will have difficulty 
extracting the required information from medical publications.

This is but one example of professionals from different fields needing to interact 
in trial planning. In this book I will note many more. So while statisticians need 
not have deep knowledge of biology or chemistry or medicine, they should be 
sufficiently conversant in these disciplines to conduct intelligent discussions 
with those who are. And the same goes for life-scientists, who would do well 
to be conversant in statistics.

Once acquired, the statistician will incorporate this information into his power 
analyses. These will yield sample sizes that will be more useful than those 
proposed primarily on financial considerations. If management's proposal 
and the power analyses produce very different sample sizes, you will (alas) 
have another opportunity for multidisciplinary interaction.

When determining sample size, the statistician will do well to talk with physi-
cians and marketing personnel regarding the kind of CTC-11 efficacy needed 
for the drug to sell. Incorporating this information into power analyses will 
provide the Company with data on how valuable (or not) trials of varying sizes 
are likely to be from the standpoint of assessing market need.

You have asked the statistician to compute the required 
sample size that will ensure your trial is a success: 
the number of subjects that will provide sufficient 
information for making future decisions on CTC-11. The 
statistician, in turn, has asked you for information; he has 
requested that you estimate the effect of the drug relative 
to Control. On the face of it, this is a silly request. After 
all, you are planning to conduct a trial precisely to discover  

this effect, so how can you be expected to know it before 
conducting your trial? To tell the truth, you cannot know 
it. But you can come up with an intelligent guess and 
have no choice but to do so. Indeed, estimating an effect 
size for the purpose of planning a trial of which the 
purpose is to estimate effect size arises often. We shall 
deal with it later, but for the moment let me assure you it 
is not as problematic as it sounds.

A Difficulty within a Problem

2  Quantification of effects—effect sizes—come in a variety of forms, percent being one of several.
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The statistician should also expand his exploration to alternative study 
designs—not just the initially proposed six-month study of 150 subjects in 
two arms. Some of these designs will require fewer resources, while others will 
require more. He might, for example, examine a scenario where the larger trial 
is replaced with a smaller pilot study of 10 to 30 subjects. This sort of study 
could provide a more realistic estimate of the drug's effect in humans—an 
estimate that is now lacking. Once the pilot study is done, there will be more 
reliable information for planning the larger trial.

The larger the trial, the more informative the data obtained from it. But, as 
Goldilocks demonstrated years ago, strength does not necessarily reside in 
numbers; if a smaller trial can provide us with the required information, we 
should prefer it to a larger one. Conversely, if the larger study has little potential 
to provide the required data and an even larger trial is needed, you would do 
well to forgo the former and request more resources.

So a small pilot may be just what the statistician ordered. But this pilot will 
come at a price: A two-stage approach—a pilot and subsequent, larger trial—
will slow down the development process. Moreover, given the fixed budget, any 
pilot will come at the expense of resources earmarked for the second stage. Here 
too there is more than one option. For example, you can design a standalone 
pilot and reassess development strategy after its completion. Alternatively, you 
can design the larger study with an early stopping point for interim analysis—
an early check of the results. Once interim results are in, the information can 
be used to modify the remainder of the trial if needed.

These two approaches—one that specifies two studies and another that implies 
a single, two-stage study—can have very different implications for the Company. 
They differ in costs, logistics, time, flexibility, and numerous other parameters. 
The choice between them should be considered carefully.

For the moment let us simply state that the statistician's role is central when 
discussing trial sample size—the number of subjects that should be recruited 
for it. At the same time, it is very important for those requesting sample size 
estimates to actively involve statisticians in discussions dealing with a wider 
range of topics as well—for example, the drug's potential clinical effects and 
alternatives to the initially proposed design. And given that it takes at least two 
to trial, it is critical that the statistician be open-minded enough to step out of 
his equation-laden armor and become cognizant of these issues.

In sum, the fact that a relatively large sample size has been proposed for this 
early trial does not necessarily imply that it will provide the information needed. 
Together with your colleagues in R&D, logistics, statistics, and elsewhere, you 
should discuss all realistic alternatives: There can be two trials instead of one, 
one two-stage trial, as well as trials with more than two arms or less, a longer 
trial or a shorter one, and so on.
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Now all this may seem a bit complicated, and it can be. At the same time 
you should keep in mind that because your budget is limited, the universe 
of possibilities is restricted as well; covering all, or nearly all, study design 
possibilities given fixed resources is definitely doable.

Trial Length

Virtually all published studies investigating treatment for ALP evaluated effects 
of anti-inflammatory agents, both steroidal and not. Where positive results 
were obtained (albeit modest ones), they appeared between three weeks and 
four months into the trial. But CTC-11's hypothesized mechanism of action 
is neuroprotection; it is meant to shield brain cells from processes leading 
to degeneration and death. Neuroprotective activity is most useful in the 
long term, with its short-term effects likely to be more subtle than those of 
anti-inflammatory agents. As a result, your new drug may even prove inferior 
to existing treatments in alleviating short-term symptoms, such as pain and 
fatigue.

So you reason that your best bet for success may be demonstrating CTC-11's 
effect on Disease Progression rather than short-term alleviation of symptoms. 
Of course, in any study conducted, you will also collect data on symptom relief. 
It is just that you feel that longer-term measures will highlight CTC-11's benefit 
more than short-term ones.

By definition, endpoints associated with Disease Progression measure change 
over time. In chronic diseases these endpoints generally reflect the dete-
rioration that occurs with varying rates, depending on the specific disease, 
individual patient, quality of treatment, and other factors. One measure of 
Disease Progression in ALP is the Mannheim Working Group Lower Limb 
Reflex Response Scale (MLRS). The measure consists of multiple items, most 
based on a physician's exam of foot and knee reflexes and several reported by 
the patient. The MLRS is relatively reliable and has shown at least moderate 
relationships with other important disease parameters.

Based on a review of scientific literature you conclude that meaningful declines 
in MLRS in ALP typically take at least nine months to appear; they are rarely 
observed in six months or less. This is especially true for patients in early stages 
of ALP, where progression is slower than at later stages. And your initial trial is 
intended for early-stage ALP patients.

Based on these data and CTC-11's mechanism of action you believe that a 
longer trial will increase your chances for success. Consequently, you feel that 
the MLRS—a measure sensitive to Disease Progression—should be the most 
important efficacy endpoint in your trial. It will be the study's Primary Efficacy 
Endpoint.
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Now it might seem that I have moved away from sample size and study design 
and entered a discussion of endpoints in a clinical trial—in other words, that 
I am now dealing with parameters, such as MLRS, that will ultimately deter-
mine whether one drug is better than another. This is indeed a very important 
discussion, but I have not entered it despite clear indications to the contrary.

Deciding on a trial's endpoints, particularly the central ones, is critical and will 
be dealt with in time. But in this section I focus on trial length and will ignore 
the issue of endpoint selection to the best of my ability.

Now let us get back to the trial. Summarizing thus far, you are contemplating 
a study showing CTC-11's effect on Disease Progression, feeling this is where 
the drug's greatest advantage is. And you believe MLRS is the best measure for 
demonstrating it.

But MLRS can only pick up relatively large changes in Disease Progression, 
and these take more than the six months currently planned for your trial. So if 
you want to show meaningful Treatment-Control differences on this particular 
endpoint, you will need a longer trial, which will present its own problems. 
Longer trials require more resources than shorter ones and are more difficult 
to get right: The logistics are more complex, larger numbers of patients are 
lost along the way, and the number of unpleasant surprises popping up will 
be larger as well. Moreover, a 9- or 12-month trial will delay the Company's 
development program and, with it, your long-awaited lunch date with Aunt 
Augusta. On top of all of this there is a price to pay—literally. Given a fixed 
budget, extending the trial must come at the expense of something else. And 
this “something else” is probably important for the trial's success as well.

A Moral

In clinical trials, as in life in general, just about everything is 
connected to everything else. So it is that you wish to limit 
your discussions to trial length and find yourself slipping 
ever so naturally into sample size computation and endpoint 
selection. For many of us, it would be nice if both life and sci-
ence were to proceed in an orderly fashion. There would, as 
the Greeks taught us, be a “beginning,” “middle,” and “end” 
to everything. But the Greeks were strong on mythology, and 
this concept of orderly progression is often only tenuously 
related to reality.

Issues and events generally do not advance in the uni-
form and orderly fashion we would like. And even scientists 
have questioned the established order. Thus, for example, 
where evolution was once thought to proceed slowly and 

at a relatively even pace, this no longer is the consensus. 
Oddly, artists have found themselves in a similar seafaring 
vessel. Thus, a good many artists in the last century created 
works of which the point was that neither time nor space is 
arranged in a particularly orderly fashion.

The division of larger concepts into smaller, more manage-
able ones is often artificial. But I will make an effort at order 
regardless. It is how we learn best and, at this stage, we are 
learning. At the same time, I suggest you keep in mind that 
the process of planning a clinical trial typically involves at 
least as much disorder as order. And the confusion ebbs and 
flows as we design and execute the trial while dealing with 
finances, logistics, people, and unexpected events that arise 
to produce ever more fascinating forms of disorder.
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So deciding if you should place your chips on, say, a 12-month study is no 
trivial matter; any decision you make comes complete with a matching set of 
risks and rewards. And if you tend toward the longer study, you will need to do 
some creative budgeting and decide which aspects of the shorter trial to forgo 
so that resources are freed to finance the extended study.

Statistical Input

One obvious way to cut costs in a clinical trial is reducing its sample size; 
if you are going to conduct a 12-month instead of a 6-month trial, do it 
with fewer subjects. There are other options as well. For example, you might 
consider eliminating some expenses like imaging with MRI. You can also go 
back to management to make the case for more resources. But in this particular 
section I shall limit myself to discussing the relationship between trial length 
and sample size.

In principle, the more subjects in a trial, the greater its likelihood for showing 
meaningful results. An additional principle is that the greater the difference 
between Treatment and Control, the greater your chance for success as well.

Lengthening the trial and reducing sample size may actually turn out to your 
advantage. But this will only happen if the increased Treatment-Control differ-
ence expected in the 12-month trial will more than offset the study's weaken-
ing by reducing sample size. Unfortunately, at this stage of the game you cannot 
know whether or not this will be the case. In fact, you will not truly know until 
after completing the trial. So what do you do? Well, you do the best you can.

So you are now in the position of having to make a decision under conditions 
of uncertainty. Put more plainly, you will need to do some gambling here—
with patient numbers, Company resources, and your own career. But before 
going ahead and rolling the dice, you should collect as much information 
as you can—information that will enable optimizing your risk-taking. Even 
gambling must be approached wisely—actually, especially gambling.

There are two issues here, one of which is clearly statistical, and we shall begin 
with it: As noted, reducing the number of subjects in a clinical trial will, all else 
held equal, decrease its chances for success; having fewer subjects in your study 
as opposed to more will reduce the trial's statistical power—its ability to con-
vincingly demonstrate that Treatment is superior to Control.

But all else is not held equal here, since by extending the trial you expect to 
increase the drug's effect relative to Control, which will increase your study's like-
lihood for success. So in deciding on a 12-month rather than a 6-month study, 
you are faced with a tradeoff: The 12-month trial may provide you with a larger 
clinical effect (good) but compel a smaller sample (bad), while the 6-month trail 
will allow for a larger sample (good) but may yield a smaller effect (bad).
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Keep in mind that this is rarely a zero-sum game; you cannot expect that the 
same budget distributed differently will provide similar chances for success. 
For example, a longer trial might necessitate a cut of 10% in the number 
of subjects while yielding a 15% increase in the Treatment-Control differ-
ence. Putting these two together is unlikely to balance your overall power; 
you might end up with more or with less and cannot know which by simply 
thinking about it.

All sorts of strange and interesting outcomes can result when doing these kinds 
of cost-benefit analyses. And some will make you happier than others. Indeed, 
even experienced clinicians and statisticians are not very good at intuiting these 
tradeoffs' outcomes. Thus, the relative advantages and disadvantages of longer 
and shorter studies cannot be resolved by theoretical discussion. Analyses must 
be conducted, and many of these will be done by the statistician.

Unfortunately, your information about these two sides of the tradeoff is not 
equal: Reducing sample size will assuredly reduce power, while the increase in 
clinical effect of a longer trial is, at this stage, conjecture. Faced with certain 
loss and possible gain you might tend to the conservative and go with the cer-
tainty. And if you are very unsure about CTC-11's long-term advantage in ALP, 
this is precisely what you should do. After all, it makes little sense to gamble 
on a highly uncertain increase in clinical effect with the certainty of reduced 
power. But we are dealing with biological systems here, and the issues are 
rarely clear cut. It is more than likely that you are neither completely sure nor 
completely unsure regarding the drug's effect over time. Indeed, you are prob-
ably located in the proverbial “somewhere in between.” And if this is where 
you are firmly placed, and it troubles you deeply, you might do well to see a 
therapist. And once you've done that, make an appointment with the statisti-
cian as well.

Given the reasoning presented thus far, you know something about the “cer-
tainty index” attached to your two options. Write this down and save it. But 
there is still much more to be considered, so let us move on.

For starters, you should ask the following questions: “What is the minimum 
increase in CTC-11's effect in a 12-month trial relative to a 6-month trial that 
will offset the loss in sample size?” Now this is something that a statistician 
knows how to compute. But she will need a few values to do it with and will 
ask you for them. Some of these can be known and others will be “intelligent 
guesses” at best.

The first number the statistician will want is the sample size your budget will 
allow for the 6-month trial. This is known and was originally set at about 150. 
The second number she will ask for is how many subjects you can expect to 
recruit for a 12-month trial given the fixed budget provided. This number 
can also be computed relatively easily. What you need to determine is the 



Chapter 1:  Clinical Development and Statistics: The General View12

cost-per-subject in a 12-month trial3 and divide your total budget by it. The 
difference between the number obtained and 150 is the reduction in sample 
size expected in the longer trial.

The statistician will then ask you for numbers that you can only obtain by 
intelligent conjecture. The first of these relates to the effect size you expect will 
emerge from the shorter trial, and the second relates to the expected, larger 
effect size that will emerge in the longer trial.

As an aside, quantifying effect size is not trivial and the statistician can help 
you with this as well. For the moment, let us assume that you know how to 
quantify effect sizes.

Summarizing thus far, to reach an informed decision on a longer versus a 
shorter trial, the statistician will need the following four quantities:

n	 Number of subjects in a 6-month trial.
n	 Number of subjects in a 12-month trial.
n	 Expected effect of CTC-11 relative to Control in a 6-month trial.
n	 Expected effect of CTC-11 relative to Control in a 12-month trial.

Using the four values for input and conducting statistical computations called 
power analyses, the statistician will tell you whether the loss of sample size of 
the longer trial will be worth your while.

But you are not home free yet. This is due to the nature of the information 
you gave the statistician and on which the computations were based. Recall 
that calculating 6-month and 12-month sample sizes was straightforward and 
based on known quantities: total budget for the project, cost-per-subject in 
the 6-month trial, and cost-per-subject in the 12-month trial. However, the 
“expected effect of CTC-11 relative to Control” quantities were “intelligent 
estimates.”

Discussions on trial length revolve around two major issues, only one of which 
is statistical. Well, we are now with the nonstatistical issue. Specifically, to 
obtain expected effect sizes in the two trials considered, you need to estimate 
the relationship between trial length and the effect of CTC-11. This is a clinical 
matter and will therefore require discussion with those who are experts in this 
area. On the upside, it is now your turn to ask for the numbers rather than to 
provide them.

So you now go to your clinical people and ask them to estimate the difference 
in effect size between 6-month and 12-month trials. They have their tools to 
do this, which may include earlier results in animal models, knowledge of 

3  Cost-per-subject in this case refers to total cost that includes all trial expenses, including payment to 
physicians, cost of drugs and laboratory tests, data handling, and so on.
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biological mechanisms, scientific literature, hunches, and more. Since this is a 
book about statistics, I will leave it for them to explain how they do what they 
do. I will, however, enumerate the particular pieces of information you and the 
statistician will require from them: 

1.	 An estimated range of effect size differences between 6-month and 
12-month trials: For example, after due consideration your scientists 
might tell you that “a 12-month trial is likely to show an increase of 10% 
to 25% in effect size relative to a 6-month trial.”

2.	 Some indication of certainty attached to the range given: The scientists 
might, for example, say that “we are fairly certain a 12-month trial will 
achieve about a 15% increase relative to a 6-month trial. A larger increase 
is possible but unlikely.”

At this stage of the game this is about the best that you can hope for. And it is 
not bad at all. Having obtained this information, you go back to the statisti-
cian with it.

Initially, the statistician may have conducted a power analysis based on specific 
numbers. For example, he might have told you the following: 

n	 A trial with 150 subjects and 10% CTC-11 superiority over Control has a 
75% chance for success.

n	 A trial with 70 subjects and 20% CTC-11 superiority over Control has a 
68% chance for success.

Now that you have a range of effects, you can do better. More specifically, the 
statistician can now compute your trial's chance for success under different 
assumptions of effects and sample sizes.

There is no decision yet, but there will be one soon. And you now have at your 
disposal a great deal of useful information—information that will maximize 
your likelihood for making the correct decision.

Recruitment

AP is a relatively rare disease with a known prevalence of about 45,000 in the 
United States and 60,000 in Europe. Diagnosis is problematic, and there are 
many documented cases of mistaken diagnosis. Thus, the true numbers are likely 
higher—according to some estimates, by as much as a third. These are certainly 
important data for marketing, but you are not there yet. In fact, you are not even 
close. Currently you are concerned with patients with a definite diagnosis of ALP, 
since it is from these patients you will recruit for your upcoming study.

Whether you plan for a 6-month or 12-month trial, the quicker you finish the 
study, the quicker you will move forward with CTC-11. Firmly believing you 
have a winner, you are keen to get beyond this early phase and into those that 
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take you closer to market. Truth be told, you are a bit too keen, since it will take 
years regardless. Still, you prefer it be fewer years than more, and the rate at 
which you recruit patients will have a great deal to do with how many.

Statistical Input

Recruitment in clinical trials is a wide-ranging topic that touches upon many 
aspects of the study: There are the types of patients to be recruited, the physi-
cians and hospitals involved, costs, logistics, monitoring, and so on. In this 
section I will, to the degree possible, limit my discussion to the statistician's 
potential involvement in this issue.

CTC-11 is intended for individuals suffering from ALP, which, like every 
group of people, is heterogeneous. There are male and female, young and old, 
otherwise healthy and not, and the list goes on. As in all clinical trials, you 
will need to specify precisely the characteristics of patients who are eligible 
for your study. This is done via inclusion criteria and exclusion criteria that 
are delineated in the clinical trial protocol. You may, for example, wish to 
include only subjects between the ages of 18 and 70 and exclude those who 
have another serious illness.

Most inclusion and exclusion criteria are determined by clinical rationale, but 
there may be other considerations as well. Regardless of how these criteria 
are determined, they will affect your recruitment rate. At the most basic level, 
setting liberal criteria for entry into the trial will make for quicker recruitment 
than setting more restrictive criteria.

It would appear that a statistician has little to contribute to the discussion of 
inclusion/exclusion criteria, and this is generally true—but not entirely true. 
The statistician's first contribution might be to state the obvious, which is the 
following: “Make sure that the patients you recruit for the trial are similar to 
those who will be treated with CTC-11 if and when the drug reaches the market.” 
In statistical parlance, this means making sure that those participating in your 
trial will constitute a representative sample of the population for whom you 
intend the drug: the intended use population.

Now this suggestion seems sufficiently self-evident that you would know it with-
out the statistician's help. At the same time it is always nice to have someone 
around who makes sure you do not forget the obvious. While samples and pop-
ulations may not be uppermost in your thoughts, they are the statistician's bread 
and butter. But there is another reason to involve the statistician here, and it 
relates to the fact that even self-evident principles are not universally applicable.

Recall that the planned clinical trial is the first in individuals who have the disease. 
Your goal then is to demonstrate that the drug is potentially useful—that it is 
feasible—and that further development is worthwhile. This is not necessarily 
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the same as demonstrating efficacy of CTC-11 in a “representative sample” of 
those for whom you intend the drug. Your most urgent goal is showing “some 
sort of efficacy.”

Now it stands to reason that given the specific characteristics of a planned trial, 
such as its length and endpoints, some types of ALP sufferers might be more 
likely to benefit from CTC-11 than others. To take but one example, Disease 
Progression in ALP is generally slow at first and accelerates with time. Thus, 
a newly diagnosed case may show little deterioration within the first year 
whether on an effective or ineffective drug. Consequently, you may wish to 
exclude early-stage cases from a feasibility trial; only in later phases of drug 
development, when both your samples are larger and time periods longer, will 
you include such patients. In short, the current trial should be planned to max-
imize your chances for positive results, even at the expense of other parameters 
(such as having a representative sample).

Once again we are in “tradeoff territory” in that excluding early-stage ALP 
patients will not only yield a nonrepresentative sample, but it will also slow 
recruitment. And aside from being inconvenient, slower recruitment will make 
for a longer, more expensive trial and may require cuts elsewhere—for example, 
in sample size. Does this sound familiar? It should. Once more you are faced 
with cost-benefit analysis and, as before, you will need to weigh various options 
and their effects on the likelihood of your trial's success. For this you will do 
well to involve the statistician, who can provide you with probabilities for 
success under different trial configurations.

Some Concluding Thoughts
I have presented an example of early drug development that in many ways is typ-
ical of such efforts. There are questions relating to trial length and size, patient 
type and recruitment, and many others not mentioned. As can be expected, 
statistics has roles of varying importance in each of these. For example, the 
statistician has relatively little to contribute when outcomes have already been 
obtained and analyzed. Yet, even here his role varies, depending on need. On 
the other hand, his contribution to determining a trial's sample size is central. 
And when discussing a study's length and population, his role is not as central 
but can be important nonetheless.

You may have also noticed that much of the information sought from the stat-
istician in the trial planning stage has to do with determination of the study's 
sample size. Hence, it would seem that, at least at this stage of the proceedings, 
statistics has a one-track mind. Well, yes and no.

There is little question that determination of sample size is one of the 
statistician's major roles in study planning. It is a role he plays often and 
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should know how to play well. But he also has additional responsibilities early 
on, such as assisting in trial design: determining number of arms, selecting 
endpoints, advising on length, and assisting on procedures for randomization 
and blinding. These and others will be discussed as we go along. Moreover 
there will be additional areas requiring statistics that are not directly related 
to human testing and so will be noted in passing only (like now). These, for 
example, might include the following:

n	 Assisting analytical chemists to ensure quality of both drug substance 
and drug product.

n	 Developing sampling plans for chemicals produced in-house and those 
bought from suppliers.

n	 Estimating a drug's overall shelf life under different storage conditions 
varying by temperature and humidity.

At the same time, I do have to admit that the statistician's bag of tricks, like 
that of virtually every profession, is limited. Indeed, once you have learned a 
few of the tricks in it, you might justifiably claim to know statistics. Still, the 
distance between knowing and doing is great. Correct application of statistical 
methodology to the wide variety of situations that arise in clinical trials may 
be as much an art as a science. And I hope to have offended neither artist nor 
scientist here.
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n	 Trial design: multidisciplinary considerations
n	 Developing a diagnostic kit
n	 Intended use and trial design
n	 Essential questions for planning a study

Introduction
In Chapter 1, I described a situation in which management asks you to justify 
a molecule's further development. You then prepare a presentation on the 
scientific merits of the product. Having heard the presentation, management 
decides to allocate resources for a first trial in humans with the disease. It is 
only then that you begin to fret about the upcoming study's design. Or is it?

Questions For Planning Trials

Contents

I said before that “everything is connected to everything 
else”—that most every issue in clinical trials cannot be con-
sidered in isolation from others. Well, I will now belabor the 
point. It is that important. One can only hope that having 
made it twice, I shall henceforth desist (doubtful).

To the point belabored: Scientific justification for a medical 
product is crucial. Yet, this sort of evidence by itself cannot 
and should not determine whether to develop a product. To 
take an obvious example, a company's resources must be 
considered as well. If the money is not there, the trial will go 
begging irrespective of the scientific merit for it. Moreover, 

potential costs and benefits must be weighed in the context 
of an organization's overall pipeline—the other products it is 
currently developing and their needs and potential returns.

Management has now heard that CTC-11 is a scientifically 
promising molecule and thinks favorably of it. But it also 
knows that Allerton's Palsy is relatively rare, so the mole-
cule's potential market is small. What should a company do 
when choosing between a product with, say, more scientific 
promise than another but with less market potential? In 
addition, market potential itself is difficult to estimate in 
that it depends on numerous factors in addition to disease 

Moral of the Same

Continued
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I began Chapter 1 with a scientific presentation to management because one needs 
to start somewhere. I could have just as easily chosen another point in the devel-
opment process. But while “the beginning” is to some degree an arbitrary concept, 
there are better places to start than others. And the question of sample size—that 
most associated with my own profession—is typically not one of these.

Over the years I have been asked for sample size estimates very early on in 
the trial planning process. More often than not I find that these requests had 
come much earlier than relevant. While I cannot be sure why this is, I have my 
suspicions. First, estimating the number of subjects needed for a trial goes a 
long way in estimating overall length and cost. Thus, it is certainly reasonable 
for anyone thinking about a study to want to know something about the 
efforts required early on. Additionally, there may be some expectation that 
the statistician and his mathematically driven profession will provide some 
definite answer at a stage where so few are to be had. Or perhaps it is simply a 
matter of involving another individual from beyond the pale when no handy 
answers are available in one's immediate professional circle.

Be that as it may, R&D in the industry typically raise the issue of sample size 
long before there can be a meaningful answer for it. You see, I can only compute 
the number of subjects needed after knowing something about the product, 
the trial's design, endpoints, and expected effects. And obtaining all of these 
usually requires a great deal of preliminary study and discussion.

Still, being asked the question early on gives me the opportunity to stick my 
nose into nonstatistical issues as well. I like this. More importantly, if you 

Moral of the Same—Cont'd

prevalence. For example, knowledge of existing and potential 
treatments and their costs is crucial. Also important is the 
natural history of the disease. For example, chronic  
illnesses typically require much more treatment over a 
patient's lifetime than acute ones. Also important is patent 
status of current treatments, informing on how soon cheaper 
generic treatments may be available.

Then there are politics to be considered. When one proj-
ect gets more resources, others will get fewer. This is likely 
to make some people unhappy. And unhappy people can 
be problematic for an organization, particularly if they are 
important people.

Focusing on the scientific aspects of CTC-11 implies man-
agement's decision would be independent of the drug's 
overall development plan. Well, it cannot be. In deciding 

whether to go ahead with an early-stage trial, management 
must also consider the steps required beyond this initial trial. 
And while development plans are imperfect tools, surprises 
being the rule in the development process, companies must 
start their planning somewhere. So, in fact, you were proba-
bly designing (theoretical) future trials long before you heard 
management's decision on the first. No clinical trial can be 
considered in isolation.

I thus suggest that when reading this book you also be aware of 
what is not mentioned. Indeed, I propose that you exercise your 
clinical trial mind by raising issues beyond those discussed 
and seeking solutions for them. It is a worthwhile exercise. 
In routine product development you will be asked to provide 
many answers and to juggle multiple factors throughout. So if 
you have ever dreamed of joining the circus, welcome.
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involve the statistician in issues apparently unrelated to the discipline, you will 
soon find some related nonetheless. Examples abound, and a few will find 
their way into this book.

This chapter is about asking questions. Specifically, it is about how questions 
beget answers that lead to more questions and answers that ultimately yield 
enough information for designing an intelligent study. I articulate some of 
these questions and answers in the context of a hypothetical development pro-
cess. Some of the issues I raise will be specific to the project at hand and, in this 
sense, of limited use. But this is the way it is; general principles are essential 
but cannot cover all those aspects you will need to deal with when designing 
a specific trial. There is no substitute for experience, and being exposed to a 
variety of examples will make the next one that much easier to deal with. At 
the same time, by the end of this chapter I will get to those questions that you 
must ask before all others.

Where do i Begin?
One of the first questions you typically ask is “What can my product actually do?” 
Now you cannot expect to answer this definitively until you have completed 
development, gone to market, and received some feedback from it. And even 
then you may be a bit confused, since medical products usually perform 
differently in the real world than they do in the more controlled environment 
of clinical trials. Indeed, a truly accurate answer to this question may only be 
had after the product has been on the market for some time and used by large 
numbers of patients. But this should not be an excuse to avoid estimating your 
product's performance at an early stage. After all, if you do not expect something, 
you would not consider developing it in the first place. In the hypothetical 
example that follows I explore where this question leads you in the context of 
planning a study for a diagnostic kit.

Kinitis
Company scientists believe they have discovered a marker for Kinitis, a disorder of 
the kidney of which the symptoms are typically mild to nonexistent. Prevalence 
of Kinitis in Western countries is about 1 in 8,000, with men and women about 
equally likely to suffer from it. Most with the disorder do not know they have it and, 
given the mild symptoms, are likely never to know. However, some Kinitis cases 
deteriorate to the point of loss of kidney function and, in rare instances, complete 
failure. This alone is reason enough for wanting to detect the disorder early on.

Kidney Specific Antigen (KSA) is present at low levels in the blood of most 
healthy individuals. Yet, researchers also noticed that it tends to be much 
higher in those with Kinitis. Acting on this information, your Company has 
developed and patented a diagnostic kit for measuring KSA in serum.
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A formal, controlled study has yet to be done. But based on anecdotal evi-
dence, the biology of the kidney, and the hypothesized mechanism of the dis-
ease, scientists believe they can detect Kinitis. Moreover, they believe they may 
also be able to use their test to assess risk for the disorder in those who do not 
have it. Specifically, they believe that those with high levels of KSA are likely 
to have Kinitis, and those with low levels do not. And they suspect that those 
in between do not have the disease but are at greater risk for it. But for now 
this is mere conjecture. You have yet to sufficiently characterize the KSA-Kinitis 
relationship, let alone defined “high,” “medium,” and “low” values on the 
marker.

Current diagnosis of the disease is difficult and initially involves ruling out dis-
orders that are more easily detected. Definitive diagnosis of Kinitis requires a 
relatively risky invasive test. Imaging techniques are currently being developed 
for diagnosing the disease, but at the time of writing this book they are rela-
tively inaccurate and prohibitively expensive. Hence, a simple blood test for 
the presence of Kinitis would certainly be welcome

On top of all this, no reliable method for assessing risk for the disease exists. 
Instead, there are some general guidelines relating to age and family history: 
Older people and those with first-degree relatives who contracted particularly 
severe variants of the disorder are considered at higher risk than the general 
population. These individuals are told to undergo more frequent testing for 
(the imperfect) indicators of Kinitis. If the results are positive, the invasive test 
may be appropriate, depending on the risks and benefits for specific patients. 
Clearly a marker that could assess risk for the condition would be very helpful 
and would rationalize testing—in other words, it would enable the efficient 
determination of who should be tested and how often. Thus, the ability to 
identify individuals at risk has the potential for both saving lives and invasive 
procedures.

In sum, you have a blood test with the potential for evaluating the presence 
and/or risk of Kinitis and wish to conduct a clinical trial for it. This is a good 
start, and you naturally begin with the question “What can my product do?” 
This is a fine question. Still, you must get more specific and, in this context, 
parse the requirement for information into the following two questions:

n	 “How accurate is my product at diagnosing Kinitis?”
n	 “How accurate is my product at assessing risk for the disease?”

Having asked these questions and in possession of anecdotal data only, you 
are now pretty well stuck. Other than some very rough estimates from pathol-
ogy and the few blood tests actually done, you have little to go on. This is 
fine. You have articulated your questions and have some idea where you are 
headed.
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At about this stage I usually get my first phone call. “We're developing a diag-
nostic kit,” I'm told. “Could you sign a nondisclosure agreement (NDA) so we 
can get more specific?” I agree, of course (after all, this is what I do for a living), 
and the conversation picks up again after I have signed the NDA.

“You see,” my new client says, “we have an assay for diagnosing Kinitis and 
need to evaluate its accuracy. We'd like to know how many subjects we need 
for a study.” At this stage my answer is usually one variant or another of “Hold 
on.” I then go on to explain that several critical issues must be addressed before 
considering the mechanics of the trial itself.

The preceding two questions have led you to a fork in the road. Yet, before choos-
ing one branch or the other, you should be asking some other questions. One 
of these is “Is my diagnostic kit in anything resembling its final form?” For example, 
it may very well be that you have developed an early version of the kit of which 
the results are unstable—results that come up worryingly different even when 
testing the same blood. This could happen for any number of reasons, includ-
ing differences between kit batches, insufficiently precise production, differences 
in testing between laboratories, and so on. Whatever the reason, a kit that can-
not provide repeatable results cannot yield accurate results even if the marker it 
measures is highly associated with the disorder of interest. When this is the case 
you should first be perfecting the diagnostic kit and assessing its stability. In other 
words, you should be planning a trial assessing repeatability and reproducibility 
(R&R) rather than a clinical trial evaluating the kit's diagnostic accuracy.

We are now in a chicken-and-egg-Catch-22 (CEC22) type stage. If KSA is not 
an effective marker for Kinitis, you do not want to waste your time and money 
perfecting the diagnostic kit for it. And if your kit is unstable, you will not be 
able to know if KSA is effective. Thus, you find yourself in the position of hav-
ing to invest time and money to perfect a kit so that you can assess whether it 
should have been perfected in the first place. This leads to the question “How 
much should I invest in R&R at this stage?”

In this context, an R&R study evaluates the degree to which your test provides 
similar results when assessing the same blood under different conditions—
for example, by using kits produced in different batches and/or applied in 
different laboratories and/or used by different technicians and/or testing 
bloods from different types of patients. You then analyze your results with 
an eye to understanding the reason for any instability that arises and take 
corrective action.

Now, R&R studies are typically much less expensive than clinical trials. Still, 
they can be costly because they involve producing kits and obtaining blood 
samples that may be relatively rare. As in all research, you can go for a small 
study, a large one, or any point between. Well, what should you do?
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There is no simple answer. Clearly, it would be nice to have a perfected kit 
before testing it more extensively. But if perfecting requires exorbitant resources, 
perhaps something less than perfect can do well enough. And what, you ask, 
is “well enough”? It seems then that we are as far as ever from “How many 
subjects do I need for my clinical trial?” Yet, we are on our way.

Getting back to the moral of this particular story, you should avoid going into 
a clinical trial with a product that is expected to undergo meaningful changes. 
If you do, the estimates you obtain for it will be inaccurate and may lead to 
erroneous decisions regarding further development.

There are, of course, those times when you have no choice. For example, if you 
do not show some immediate success, you will lose funding altogether and 
the project will grind to a halt. Life is like that. And when this happens you 
can only do your best, which is weigh the risks and rewards and make your 
investors and researchers aware of them.

For the sake of moving forward, let us assume that your kit is beyond early 
development—that for now your assay is about as good as it can be. There 
may be changes in the future, but what you have in hand is sufficient for an 
early clinical study of efficacy.

So you are once again planning a clinical study, which brings you back to 
the fork in the road mentioned. And this means asking at least a few more 
questions, one of which is the seemingly naive “What is my trial's goal?” In this 
context there are at least two options:

1.	 Testing the presence of Kinitis.
2.	 Testing the risk for Kinitis.

Choosing the first option—assessing your test's ability to indicate the presence 
or absence of the disorder only—is certainly the simpler of the two. You might, 
for example, choose subjects who have already undergone the invasive test and 
have a definite diagnosis of positive or negative. You then test your assay on 
these individuals and assess your product's accuracy in discriminating between 
those who have the disease and those who do not. This is a reasonable, 
early-stage approach. Yet, as is often the case, things are not as simple as they 
seem, and you will need to answer another basic question: “Who is my product 
intended for?”

If your product is meant for screening a wider population, the proposed trial is 
lacking, since it only examines your kit's performance in those who have already 
undergone the invasive test. This is likely to be a relatively narrow segment of 
the population—a segment of which the members are at greater risk for Kinitis 
than your intended use population. This, in turn, will lead to your obtaining 
biased estimates of your kit's accuracy in the intended use population.
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So it turns out the trial that is simplest logistically will not provide you with a 
good estimate of the kit's accuracy in the general population. Dealing with this 
is a complex issue and beyond the scope of this book. My point, however, is 
not, and it is this: To the degree possible, your clinical trial should reflect your 
product's performance in the intended use population. For reasons of cost and 
convenience you might loosen this requirement at an early stage, and this is 
fine. But all the while you must be aware of what you are gaining and what you 
are losing by doing this.

Since at present you wish to show some feasibility, it is sufficient to demon-
strate reasonable accuracy in an enriched population—in a group whose prev-
alence of the disease is much higher than in the intended use population. If 
the results are less than satisfactory in this narrow group, your product is prob-
ably useless in any case. Thus, this type of trial can lead to a products' complete 
rejection or qualified acceptance. And you have decided that the possibility of 
“qualified acceptance” is acceptable given the trial's relatively small expense.

Your second option is conducting a trial to test for both diagnosis and risk. This is a 
much more problematic option that leads to a number of additional questions: 

n	 “Who is my product intended for?” This is the same question as the previous 
one but with different implications. Here you are asking whether 
you wish to (a) test those already identified at risk and confirming or 
disconfirming or (b) also test those not currently identified at risk. The 
first group is much smaller and, as before, makes the trial's logistics 
simpler and less costly. On the other hand, the second option is nearer 
to your intended use for the product and will better indicate its market 
potential in general.

n	 “How do I evaluate the accuracy of my kit for assessing risk?” Other than a 
few general, and only marginally accurate, guidelines, there is no gold-
standard, or acceptable standard, for measuring risk. So now you have at 
least two options:
a.	 Use today's guidelines as standard regardless and compare yourself 

to them. In this instance you would include in your study individuals 
identified as at risk and those who are not and assess whether your 
test can discriminate between them. However, if your results are weak, 
you will not know whether this is due to your kit's inaccuracy or to 
the fact that today's guidelines imperfectly identified those at risk.

b.	 A much more informative trial would involve a long enough follow-up 
to evaluate whether those you identified as at risk actually develop the 
disorder. Planning this sort of trial would lead to the question “How 
long must my follow-up period be to enable assessing whether a person does or 
does not develop the disease?” Unless the answer to this option is “a short 
period of time,” this is not a realistic, early-stage option.
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Keep in mind that your first order of business is demonstrating that your kit 
has some potential to be useful. And this is most easily done with subjects 
who have already been diagnosed. Once you have demonstrated some sort 
of accuracy, you can move on to more complicated trials intended to answer 
more difficult questions. There may be other options as well, and I suggest you 
come up with one or two of them yourself.

The Essentials
In this chapter I could have brought up many more examples and articulated 
many more questions. Indeed, I shall do this as we proceed; it is part and parcel 
of the process. For the moment I wish only to address the issue of Q&A in 
general and hope to make the point sufficiently to move on. For me, “moving 
on” actually means going back—back to basics. And this means articulating the 
questions that must be asked before going on to plan any clinical trial: 

What do I want to show in this trial?

Whom do I want to show it to?

In the next chapter I will deal with the first.
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Introduction
In 1923 a reporter asked George Mallory why he wanted to climb Mt. Everest. 
The famous reply “Because it's there”—whether actually Mallory's words or the 
reporter's—came to epitomize this characteristic of doing things for their own 
sake—and, in Mallory's case, of dying for them.

At one time or another most of us do things “because they're there,” although 
Herculean mountain climbing, like good steak, tends to be rare. Success in 
these sorts of endeavors gives us satisfaction, proves some point or other, and 
begets admiration. As for practical use, that is not really the point.

Those doing basic science will tell you they seek to solve problems for their 
own sake. Much of their work goes unnoticed except perhaps by a handful of 
experts in some subspecialty or other. Yet, every so often their ideas do reach 
industry where necessity is the most common ancestor of invention. And 
because need is the fundamental driver of industry, it will unashamedly ask, 
“What is it good for?”

Medical Product Attributes

n	 Basic and applied science
n	 Endpoints
n	 Measurement: statistical and clinical roles
n	 Common attributes tested in trials:

n	 efficacy
n	 safety
n	 performance
n	 pharmacokinetics
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Now as far as questions go, this is a pretty good one. The answer will mark 
your target and, in our own particular language, define your product's intended 
use. It is certainly useful to mark your target if you hope to get there. It is 
also worthwhile repeating the “What is it good for?” question throughout the 
development process and even after. This is because targets can change, and, 
like children in math class, multiply. Aspirin, for example, was developed to 
treat pain and fever and is now also used for preventing heart attacks. Similarly, 
a drug for the treatment of colorectal cancer has been shown to be effective in 
treating a degenerative eye disease. And then there are drugs like Viagra.

So the question “What is it good for?” is basic, and it may be the most basic of 
all. At the same time it is often too general to be of practical use when planning 
a specific clinical trial. For example, suppose you have developed a device that 
is implanted in the body for monitoring blood flow from the heart to the lungs. 
This is important information for physicians treating patients with congestive 
heart failure (CHF). Specifically, this particular device is “good for” long-term 
monitoring of CHF patients. An appropriate test of it would see large numbers 
of patients implanted with the device for long periods of time and parameters 
like hospitalization rates and life expectancy measured. Yet, before exposing 
many patients to new technology over long periods, you had better conduct 
a more limited clinical trial. In this trial you would demonstrate in a small 
group that the device can be implanted safely and can function after implanta-
tion. Only after making your point in a relatively small study will you go on to 
conduct the larger trial meant to test the device's intended use directly.1 Now 
this sort of early trial will provide a great deal of information on the product's 
functioning and very little about its clinical benefit. But it is necessary before 
embarking on a study designed to test “what it is good for.”

Another example is the dose-response studies in pharmaceuticals where 
each group receives a different dose of the same drug (and a dose = 0 con-
dition is usually included as well).2 In this sort of study you aim to identify 
a drug's optimal dose rather than addressing the general “What is it good 
for?”. Once the dose has been established, you can go on to test the product's 
intended use.

1  Your initial study will likely have a short follow-up (say, two or three months), after which, if you 
succeed, you will go on to the larger trial with the longer follow-up (say, a year to two). At the same time, 
you will continue to monitor those patients from the first trial. You do not, however, want the initial trial to 
extend over a year or two, since this will greatly delay time-to-market. Just how long the initial “short and 
limited” trial ought to be is something to be discussed and decided upon with clinicians and regulators.
2  There can, of course, be dose-response relationships of interest in devices as well. For example, when 
using a cardiac catheter for ablating (burning) by electrical current, there will be a relationship between 
the current's strength and the degree of ablation. You may then wish to conduct a study to determine 
the optimal “electrical dose” for a given application.
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Thus, long before your reach the pivotal trial stage—the study or studies 
determining whether your product should be offered to the general public—
you will need to address numerous preliminary issues.

Product development, by definition, takes place over time. In our particular 
industry much of the process is formalized with many conventions, includ-
ing specific names for processes and stages. Thus, there are preclinical studies 
where your product is assessed in the laboratory and clinical trial Phases I, II, 
and III where your product is tested on humans. There are many variations on 
this broad scheme, and few development programs are staged exactly alike. 
Regardless, the “What is it good for?” question will only be answered defini-
tively at the very end. Thus, when planning a specific study, you would do well 
to come up with explicit questions tailored for the specific trial at the particular 
stage. And the question most appropriate to begin with is “What do I want to 
show in this trial?”

Now this particular question has some very definite implications in the context 
of a given study. At the same time, you would do even better to subdivide it 
into the following two issues:

1.	 “What attribute of my product do I want to assess?”
2.	 “What about this attribute do I want to show?” That is, what do I aim to 

demonstrate with this attribute that I have chosen to assess?

In this chapter I cover the most common attributes tested in clinical trials. In 
the next I will enumerate goals you might set for these attributes—that is, what 
you would like to demonstrate about them. Finally, I will put the two together 
to create a sort of “matrix guide” to defining clinical trial objectives for clinical 
trials in general.

Attributes
Efficacy

For a product to be “effective” it must do what it is meant to do. Simple. A blood 
test assessing a woman's risk for having a baby with Down syndrome should 
be accurate, and a pill for reducing pain should do just that.

Defining a product's efficacy is really another way of answering the question 
“What is it good for?”. This then seems to bring us back to square one: when I 
said that “it is often much too general to be of practical use when planning a 
particular clinical trial.” Well, I do not retract.

First, “often” is not “always.” Second, as I showed in the preceding chapter, 
a product's ultimate use is not necessarily that assessed in a given stage  
of development. Finally, and perhaps most importantly, issues in clinical 



Chapter 3:  Medical Product Attributes28

development will sometimes weave within and upon themselves, taking you 
back to places you have already been. Testing efficacy is only one of numerous 
attributes that a trial might assess. And it may or may not be a relevant question, 
depending on the phase of development you happen to be in at the moment.

Safety

If an effective product does what it should do, a safe product should not do what 
it is not supposed to do. For example, a drug for relieving migraine headaches 
should only relieve migraine headaches. It should not cause annoying side 
effects like fatigue or disorientation or any other bodily reaction apart from its 
intended effect.

To take a more complex example, some medications for autoimmune disorders, 
such as multiple sclerosis and rheumatoid arthritis, are designed to suppress 
one or another of the immune system's responses. More particularly, they aim 

When setting up an efficacy trial, you need to define 
precisely what your product is expected to do and test it. 
Testing involves evaluation, which in turn requires measur-
ing the product's effect. You will, for example, measure an 
anti-inflammatory medication's effect on inflammation and 
a drug-eluting stent's ability to remain clear of plaque. These 
effects will then be compared to some Reference, such as 
another treatment in the trial or perhaps historical data. So at 
some (early) point, you must ask, “What should I be measur-
ing in this study to demonstrate efficacy?”

Measurement is a central topic in clinical trials and arises 
throughout. But it is most formally addressed when discuss-
ing a trial's endpoints—the particular parameters used for 
assessing product attributes such as efficacy. And there 
are of course endpoints measuring other attributes such as 
safety or pharmacokinetics.

On the face of it, measurement is a statistical issue. After all, 
endpoints are most commonly evaluated with numbers, which 
are the statistician's forte. Yet, at the more basic level they are a 
clinical issue. While the statistician can advise on the method 
of measurement and quality of the data it yields, the clinician 
must determine the substance—the clinical relevance of the 
measurement. Thus, it is the physician, not the statistician, 
who specifies whether pain should be measured in a particular 
trial. Once determined, the statistician can assist by exploring 

alternatives for measuring the parameter. Pain, for example, 
can be measured in a number of ways, including self-report 
questionnaires, the physician's impression, and counting the 
number of pain pills taken over a period of time. In the context 
of a specific trial, each of these measures has its advantages and 
disadvantages—some clinical, others statistical. To take another 
example, a clinician may wish to measure disease activity in a 
complex illness like lupus (SLE). Having difficulty in selecting 
the best measure (none are really good), the doctor will ask the 
statistician for an opinion on the strengths and weaknesses of 
each. Most likely the selection process will be done in collabora-
tion among the statistician, the physician, and others.

As a general rule, then, clinicians choose the content of 
what needs to be measured, and statisticians assist in 
determining the form. And from experience I can say 
that once these discussions begin, neither clinicians nor 
statisticians limit themselves to their supposed areas of 
expertise. Nor should they be.

Depending on the product of interest, the choice of 
endpoints can be straightforward or not. Unfortunately, 
in some situations there are no agreed-upon choices 
at all—in which case you and the statistician will have 
quite a challenge coming up with them. Regardless, end-
points are a central issue in clinical trials and deserve 
their own chapter. I suspect they will get it.

A Word on Endpoints
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to restrain that activity of the system that is most damaging in the disease—
the specific immune reaction causing the system's misguided assault on the 
patient's own organs. But suppressing immune activity has its risks, not least of 
which is weakening the body's ability to defend itself from real threats. Thus, 
in the case of immunosuppressive agents, an important element in demon-
strating safety is showing that while protecting the body from one kind of dis-
ease, it does not expose it to others.

Performance

In clinical trials, the term performance has been used to refer to different attri-
butes. In this book I shall limit its use to refer to “manipulation”—that is, to 
operating the product successfully. To function properly some medical prod-
ucts require manipulation beyond relatively simple actions like swallowing a 
pill or injecting medication into a patient's arm. This issue is often encoun-
tered in interventional devices, such as surgical apparatuses or catheters meant 
for insertion into blood vessels.

For example, there have been a number of surgical techniques developed for 
eliminating uterine fibroids—benign growths in the uterus that can cause 
great discomfort, heavy menstrual bleeding, and infertility. A necessary but not 
sufficient condition for effective treatment is performing the specific surgical 
technique correctly. This can be assessed during the surgery itself or soon after. 
Evaluation of efficacy—assessing the ultimate goal of surgery of relieving the 
physical and psychological difficulties caused by fibroids—could take many 
months and even years to do properly.

To evaluate performance in uterine fibroid removal, you might measure 
the time it takes to conduct the procedure, its ability to remove the fibroid 

On the Consumption of Cakes

Now most pharmaceuticals and interventional device prod-
ucts are not completely safe, and you will rarely get efficacy 
without exposing the physiological system to some risk. As 
in life, having your cake and eating it too is a virtual impos-
sibility. And while we are spouting clichés, I might also men-
tion that there is no free lunch. Given these alas-too-true 
life principles, demonstrating safety often involves showing 
that a product's benefits outweigh its risks. In other words, 
rather than showing your product to be perfectly safe, your 
goal when assessing an attribute or combination of attri-
butes is showing that the product is worthwhile “all things 
considered.” This naturally leads to a risk-benefit analysis 
that is a section typically included in clinical trial reports.

Risk-benefit analysis need not limit itself to considerations 
of the safety-efficacy tradeoff alone. The section will often 
deal with issues external to the product, such as alterna-
tives to it, cost, and the severity of the illness it treats. We 
would expect, for example, that physicians who are treat-
ing aggressive life-threatening illnesses will be more con-
cerned with efficacy than safety relative to those who are 
treating minor ailments. Thus, the tradeoffs between any 
product's attributes must be considered in the wider con-
text of the disease it treats, the intended use population, 
and other relevant factors.
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completely, and whether the procedure requires a particularly adroit surgical 
manipulation or can be done with average surgical skills only. Additionally, 
you may want to assess the degree to which the procedure can be done without 
affecting the tissue around the fibroid.

Note that none of the parameters mentioned in the preceding paragraph involve 
efficacy directly in the sense of evaluating the procedure's intended effect on 
the patient's ailment (e.g., its ability to reduce pain or menstrual bleeding). 
Performance is related to efficacy in that you must succeed with the former to 
achieve the latter. Yet the two are distinct in that acceptable performance is a 
necessary but not sufficient condition for efficacy. Not only should an opera-
tion succeed, but it is also recommended that the patient live. And because 
performance and efficacy do not completely overlap, they are often evaluated 
separately—in the same or different studies.

The term performance is also used to describe the physical aspects of the prod-
uct itself. For example, many products are required to withstand a minimal 
force before breakage and/or be provided in sterile packaging. For these aspects 
of performance the manufacturer might be asked to test both the product's 
strength and the integrity of its packaging. Clearly, products of which the steril-
ity may be compromised by faulty packaging and/or are likely to break when 
used should not be on the market. Such physical attributes of products are crit-
ical for both safety and efficacy, but they are usually not tested in clinical trials.3 
Physical performance of products is usually evaluated in bench testing, which 
typically involves assessing products in laboratory environments. Thus, for 
example, the strength of a guide-wire used in catheterization might be tested 
by stretching it to the breaking point while measuring the force applied. The 
force at which the guide-wire tears is then specified as that which it can with-
stand. You would then compare your results to acceptable standards for such 
products, determining whether your guide-wire's strength complies with that 
required.

Another use for the term performance relates to subject compliance with medi-
cal treatment. For example, a pill may be effective chemically, but it is useless 
if subjects are unwilling to take it for one reason or another (e.g., hard to swal-
low, must be taken too often, etc.). Here, too, performance—compliance—
is a necessary but not sufficient condition for clinical efficacy. As noted at 
the beginning of this section, I will limit my use of the term performance to  
the  assessment of the degree to which a medical product can be manipulated 
successfully.

3  If, for example, breakage of the tested device occurs in a clinical trial, it will certainly be recorded. But 
it is unexpected, and the trial is not set up for this. Typically, a clinical study will be approved only after 
you have shown that the physical attributes of the product are acceptable.
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Pharmacokinetics

Pharmacokinetics is the study of what a body does to a drug: the rate at which 
it is absorbed, the time it reaches its maximum concentration in the body, the 
time it takes to be eliminated from the body, and so on. For example, you may 
want to measure quantities of the active ingredient in the blood over time for 
an orally ingested drug and compare these quantities to the same drug admin-
istered intravenously. Other parameters of pharmacokinetic interest may be 
the drug's behavior when given in different formulations and doses, when 
administered before meals or after, and so on.

Like performance, a drug's pharmacokinetics profile is related to efficacy 
but distinct from it. Thus, a formulation will not be effective if it cannot be 
absorbed by the body and distributed properly. Yet, absorption does not 
guarantee efficacy. The latter has as much to do with the efficacy of the drug's 
active ingredient as with its kinetics.

Virtually all medications require some sort of pharmacokinetic analysis 
as part of the development process. At the same time, pharmacokinetics is 
especially central when dealing with generic drugs—medications that are 
copies of brand name drugs (sometimes erroneously termed ethical drugs) 
that are produced once the original patent of the latter has expired.4 In most 
cases, approval of generic drugs involves demonstrating that their pharma-
cokinetic profile is equivalent to that of the original. In other words, generic 
drug producers are usually not required to conduct clinical trials for dem-
onstrating efficacy. Such trials have already been conducted for the original 
drug, and what remains for generic producers to show is that theirs behave 
similarly in the body. The regulator reasonably assumes that if a generic drug 
is similar chemically to the original and behaves in the body similar to the 
original, it will also yield similar clinical outcomes to the original. Chemical 
similarity is shown through the production process itself, and behavior in 
the body is tested by comparing the pharmacokinetics of the generic and 
original drugs.

There are, however, exceptions. For example, topical drugs—those used on 
the skin or other external parts of the body—often do not enter the blood-
stream, or they enter in quantities too minute to evaluate. As such, they are 
not assessed on pharmacokinetics (or assessed to ensure they do not enter 
the blood in detectable quantities). Here, a generic drug maker may have 
no choice but to conduct a clinical trial to demonstrate that the new drug's 
efficacy and safety are equivalent to the old.

4  Ethical drugs refer in general to those that can only be given by prescription. In clinical trials the term 
commonly refers to a branded drug under patent protection.
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Summarizing and Some Thoughts
Before going ahead and planning your clinical trial you must be clear on the 
choice of attribute your study should evaluate. There are several to choose 
from. The most common are efficacy, safety, performance, and pharmacoki-
netics. These cover the majority of attributes you will encounter when assessing 
clinical products. Yet, there are others, and we shall make a note of them from 
time to time.

At the end of the day you will want to know what your product is good for, 
which is really another way of asking if it is effective. Thus, of the attributes 
enumerated, efficacy is typically most directly related to your ultimate goal. For 
example, patients suffering from rheumatoid arthritis (RA) will buy your prod-
uct if it reduces pain and swelling and enables greater freedom of movement. 
At the same time, they will certainly expect your drug to be safe, so demonstrat-
ing adequate safety is critical to any medical product.

It would seem then that of all the attributes enumerated, efficacy is most 
directly related to the more general “What is it good for?”. This is in fact the 
case. Yet, determining the attributes to be evaluated must be examined on a 
study-by-study basis. This is especially true in early development, where there 
is a great deal to be understood about a product in addition to its efficacy. For 
example, in some cases you might wish to launch your product as quickly as 
possible, even if this means marketing less than your final version for it. This 
in turn would imply a more limited trial—one that evaluates less than the ulti-
mate “efficacy package.” You might, for instance, have a diagnostic kit meant 
to measure breathing rate, heart rate, sleep apnea, and sleep stages. Now it is 
relatively easy to recruit subjects for testing, say, heart and breathing rates—all 
subjects have them. But recruiting subjects with sleep apnea will be more dif-
ficult and is likely to lengthen your trial and delay regulatory submission. As a 
result you might choose to conduct a clinical trial assessing your kit's ability to 
measure breathing and heart rates and leave the “apnea submission” for later. 
In this particular case you will have tested only a subset of “what the product 
is good for.” Another reason for testing only a subset of a product's (planned, 
final) efficacy may be that your R&D people are ready to sign off on one of the 
product's attributes but feel the need for more time to perfect others.

So while the question “What do I want to show in this trial?” is typically related 
to “What is my product good for?,” it often also differs from it in any particular 
study. And this difference—be it small or large—will have some very definite 
implications for what you expect your study to achieve. This in turn will influ-
ence many aspects of your trial, including its design.

It is therefore vital to emphasize that when planning trials you should not, at 
least initially, consider any one attribute more important than another. First, 
the regulator often views your attributes' importance differently than you do. 
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Second, the attributes enumerated are related to one another, so it may be 
artificial to rank their importance. For example, a surgical device with infe-
rior performance characteristics is likely to be ineffective and unsafe as well. 
Similarly, few people will be willing to take a medication that frequently 
produces unpleasant side effects, even if it is approved. It will thus be ineffective 
in practice even if its active ingredient is, in principle, very effective.

To the statistician, safety and performance and pharmacokinetics sometimes 
feel like adjuncts to efficacy. Physicians, on the other hand, will typically raise 
the safety issue before all others. Since both safety and efficacy are important, as 
are pharmacokinetics and performance, personal preference in prioritization is 
somewhat beside the point. All must be tested before a product is to enter the 
market. 

Science has gotten us far. We now, for example, treat diseases 
like diabetes that once meant certain death. Additionally, 
we have developed fantastically complex and informative 
diagnostic techniques like computer tomography (CT) and 
magnetic resonance imaging (MRI). In developed countries 
life expectancy has increased dramatically in the last 100 
years, and a large part of the credit resides with medicine. 
Moreover, at any given time scientists, clinicians, and entre-
preneurs are continually working to provide us with newer 
and better products. We expect no less. And we want these 
products to be safe and effective, which they generally are. 
But not so fast—or, perhaps, even faster.

Let me explain: If you want to know the long-term effects of a 
drug, you will, alas, have to study it in the long term. Thus, you 
cannot really know whether an innovative drug is safe when 
taken over 10 years until you have tested it for this long. But if 
you wait 10 years before bringing it to market, you will have 
kept it from some very eager patients (not to mention the pos-
sibility of having gone bankrupt in the meantime). Similarly, 
when developing a vaccine you cannot really know how well 
it works without giving it to thousands of people and follow-
ing up on them for months and even years. Yet, there are times 
when a vaccine is required on short notice, such as, for exam-
ple, when a new strain of flu threatens to create an epidemic. 
So instead of testing the long-term effect of the product, you 
might test whether the vaccine produces the antibodies for 
the disease in question. Thus, many vaccines introduced to 
market have not had their intended use tested directly, nor 
will they have had their long-term safety assessed.

What are we to do? As a society we want innovation quickly, 
and we (and our lawyers) want these innovations to have 
positive effects only. Well, you cannot have both. And in 
the short history of biomedical development and regulatory 
approval there are numerous examples of drugs and devices 
approved that were later found harmful. This is a sad state of 
affairs. But there is really no way around it; while we might 
be able to improve the system of innovation and regulatory 
approval, the tradeoff between speed and safety has, in prin-
ciple, no solution. The best you can do is design a process 
optimizing the two—creating a system of checks and bal-
ances that will yield innovation with “reasonable” speed 
while providing safety with “reasonable” assurance. You will 
then continually monitor the process and tweak it as neces-
sary. And this tweaking will often come after discovering 
that a product reached market when it should not have.

Unfortunately, I have nothing original to propose here. I merely 
wish to point out that as long as people demand “new prod-
ucts now” and get them, they will also, from time to time, end 
up with products that are not as safe as they would like. So the 
next time you hear about an approved product turned sour, do 
not be quick to judge the regulator harshly. We—consumers, 
physicians, legislators—have placed agencies such as FDA 
and EMEA in a bind from which they cannot extract them-
selves to everyone's satisfaction. The line between speed and 
safety is a fine one, and “to approve or not to approve” is pre-
cisely the question. All decisions on approval come with their 
risks and rewards, costs and benefits. And, on occasion, the 
regulator will find itself on the wrong side of the line.

A Fine Line Crisscrossed
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In sum, to get your product approved by regulatory authorities, prescribed by 
physicians, and purchased by customers, you will need to show that it possesses 
a reasonable combination of the attributes relevant for it. And to assess these 
attributes you will usually be required to conduct one or more clinical trials. 
To plan any trial correctly, you must know in advance what your product is 
good for in general and what you aim to show in the particular study. And 
while these issues overlap, they are not necessarily the same. This is sufficiently 
self-evident that it had better be put in writing.
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Introduction
A clinical trial is, well, a trial. You conduct one by collecting evidence 
that you analyze and present before a judge and a jury that may consist 
of colleagues, managers, journal reviewers, investors, regulators, Aunt 
Augusta, and others. The verdict may be favorable or not, or, as sometimes 
happens in the industry, it may fall into the gray area between. And if the 
latter happens with some favorably leaning evidence as well, you will likely 
conduct a retrial.

Clinical studies are generally rigid affairs carried out according to guidelines, 
points to consider, and recommendations provided by organizations such as the 
FDA, EMEA, and ICH. A multitude of evidentiary rules and endless acronyms 
are used for both expediency and evidence of guild membership; cite the right 
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ones and you will not only say a great deal with a few words, but you will also 
be identified as a bird of a feather. If you have not done so already, you may one 
day soon discuss IRB approvals for GCP studies handled by CROs collecting 
data with EDC in CDISC-ready format. And when you find yourself actually 
enjoying this kind of talk, you might make some friends in the process. And 
you likely lose others.

When rules are followed—when patients have been read their rights, the study 
is well designed, and its data analyzed correctly—you will likely have what 
you need for an informed decision. But study outcomes are not always as clear 
cut, and even meticulously planned trials, not to mention sloppy ones, may 
produce equivocal results. A hung jury is always a possibility.

I have been carried away with this courtroom analogy and will soon desist. But 
I will do so only after pointing out that like rulings in general, results of clinical 
trials are evaluated by comparing. In the courtroom you compare the data pre-
sented to a Reference called “reasonable doubt.” If you are beyond it, you con-
vict. In a clinical trial you compare your Treatment to a Reference like Placebo 
and conclude success or failure. Using statistics you will also associate a level 
of certainty with your conclusion; you might, for instance, be 90% sure the two 
groups differ or 95% or any other level of certainty but 100%. Absolute proof 
is for mathematics and vodka only.

In many clinical trials the comparator will be “built in,” as when a trial 
includes two groups of subjects: the one being evaluated and a comparator. 
Alternatively, you might test the product by itself and compare the outcome 
to some predetermined level of performance. But whether the comparison of 
attributes is direct or indirect, internal or external, there will need to be one. 
Attributes, like Aunt Augusta, are relative.

Actual comparison of attributes can only take place after data have been 
collected. But the comparison's details must be prespecified. This is what I 
meant when I said that before a study begins, you must clearly state what 
you want to show—what the trial's main attributes are and what you aim 
to demonstrate with them. Translating this into practical terms, I provide 
the following examples of questions you might ask when planning your 
study. 

n	 Does my drug reduce inflammation for longer periods than the standard 
of care?

n	 Is the accuracy of my assay for Kinitis above the minimum set by the 
regulator?

n	 Is the safety profile of my orally administered drug for portal 
hypertension at least as effective as that provided intravenously?

n	 Is my device easier to handle than the two already on the market?
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Each of these questions implies both an attribute and a comparison. So 
when you undertake a trial, you must deal with each of the following at the 
outset:

n	 The attribute you wish to evaluate.
n	 The objective for the attribute—what you wish to show with it.

Together, these two elements provide the reason for your trial and must be deter-
mined before all else. Addressing them is about as good a place to begin as any.

Suppose you have developed an antibiotic and aim to compare its efficacy to 
that most commonly prescribed in the indication. You might, for example, want 
to show that the new drug reduces bacteria counts at least as well as the competi-
tor. The implied comparison for this particular attribute—efficacy as measured 
by Bacteria Count—is that your drug is “at least as good as” the competitor. 
Formally this leads to the objective termed non-inferiority, which involves show-
ing your drug is no worse than the comparator. Now showing that you are “not 
inferior” when you want to demonstrate “at least as good as” would seem a bit 
convoluted. And it is. But there is a good reason for it, which will be explained.

Moving on, you are also convinced that your product has some advantage over 
the competitor in that it is prescribed for three days as opposed to the other 
drug's seven days. As such, you believe yours to be more convenient, implying 
an analytic comparison between the two products meant to show superior-
ity—that is, the new drug is more convenient than the other.

To this point you have made two comparative statements: “I am at least as good 
as” on one attribute (efficacy) and “I am better” on another (convenience). 
Having further considered your second statement, you feel that you can do 
even better. Specifically, you reason that a more convenient regimen will 
yield greater compliance—higher rates of patients taking the medication as 
prescribed. And better compliance will likely yield greater cure rates.

To summarize, you now have at least three possible attributes and objectives 
for the planned trial:

n	 Non-inferiority on efficacy: The new antibiotic is at least as good as the old 
in terms of eliminating bacteria.

n	 Superiority on convenience: The new antibiotic is, relative to the old, easier 
on the patient.

n	 Superiority on efficacy: The new product yields a better cure than the competitor.

Faced with three alternatives, you are now charged with setting up a trial to test 
one or more of them. And the choice is not obvious. The trials imply different 
designs, sample sizes, timelines, costs, and so forth. As always, you can do no 
better than conduct cost-benefit analysis based on relevant information.
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It is generally easier to demonstrate non-inferiority than superiority, the former 
being a more modest claim. Thus, the chances for proving non-inferiority are 
higher, which translates into smaller required sample sizes than superiority for 
the same chance for success. Alternatively, given the same sample size, you have a 
higher likelihood for success with non-inferiority. In short, this particular objec-
tive has much going for it.

Yet, it is only natural that deciding on an inexpensive and less risky trial has its 
downside. Specifically, if your non-inferiority trial succeeds, you will only be able 
to claim your product is “no worse” than the competitor. And this is certainly a 
weaker statement than “it is better.” So what do you do? As in most cases, your 
final decision will be based on a number of considerations, such as science, bud-
get, timelines, and marketing. In this instance it may actually be marketing that 
provides the decisive argument. When faced with about equally effective prod-
ucts, your marketing people argue, physicians will choose the one that is more 
convenient for the patient. Thus, it would be nice to claim superior efficacy but 
unnecessary. Having listened to and learned, you feel you can have the best of 
both worlds: demonstrate non-inferiority in your trial and, once approved, point 
out to the market that taking a drug for three days is more convenient than taking 
it for seven. Physicians and consumers will then go on to do their own math.

In the preceding chapter I presented some of the more common attributes 
tested in clinical trials: efficacy, safety, performance, and pharmacokinetics. 
In the following sections I shall describe in greater detail “what about” these 
attributes you might wish to show—my objectives for them.

Objectives (or Comparisons or “What Abouts”)
When statistically comparing a product's attribute to another, your objective 
will be showing one of the following:

1.	 “My product is better”: Superiority.
2.	 “My product is neither better nor worse”: Equivalence.
3.	 “My product is not worse”: Non-inferiority.

Let us take up each in turn.

Superiority

Superiority is basic. You run a trial, collect data, and use them to compare directly 
between products or your product and some performance goal. If the statistic 
obtained for your product (e.g., Percent Cure, Percent Complying, Accuracy) is 
sufficiently different in the favorable direction from the comparator, you will 
claim that your product is superior.
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Statistical comparisons to a criterion, rather than to some Control group, 
are typically associated with single-arm trials—studies in which all subjects 
undergo the same procedure. For example, you have a noninvasive diag-
nostic device designed to detect a particular type of bacterium in the stom-
ach. To test it you select individuals who are known to be either positive 
or negative for the bacterium by means of biopsy—the current gold stan-
dard test. You then assess each of your subjects using the new method for 
presence or absence of the microbe. Finally, you compute the proportion 
of correct diagnoses obtained with your product in comparison to the gold 
standard (which, for lack for a better option, we assume is always correct). 
This provides you with some proportions (e.g., 88% true positives, 84% true 
negatives), which you then compare to a prespecified criterion such as a per-
formance goal or an objective performance criterion (OPC). If, for example, 
the performance goal = 0.80, you will claim success if you show that you are 
at 0.80 or above.

Alternatively, you will conduct a multiple-arm trial in which one group of 
subjects receives the treatment of interest, while other groups receive alterna-
tive treatments and/or Placebo. This sort of trial may include any number of 
groups, but to keep things simple I shall address the two-group case only. In 
each of my examples you will compare a Test product T to a Reference R. 
The principles of comparing two groups hold true for multiple groups as well, 
and what statistical differences exist need not concern us. So having conducted 
a superiority trial, your statistical analysis of its data will yield one of two 
conclusions: “T is superior to R,” or “I cannot say T is superior to R.”

The second conclusion—“I cannot say T is superior to R”—is 
somewhat tortuous, and it would certainly be simpler to say, 
“T is not superior to R” or “T is inferior to R.” But according 
to statistical theory and prevailing philosophy of science, we 
are formally limited to “I cannot say T is superior to R.”

Yet philosophy of science is usually not high on your list when 
stating conclusions about T and R after a trial comparing 
them. It is therefore reasonable to suppose that if your results 
were really bad, you would conclude that “T is not superior 
to R.” You might, in fact, not hesitate to conclude that your 
product is “downright inferior.” And this is fine. In product 
development we must make decisions one way or the other 

and cannot be too concerned about splitting hairs. All the 
same, even when disappointed there is reason to be careful 
with your final judgment. Using the more cautious “I cannot 
say T is superior to R” as opposed to the more definite “T is 
inferior to R” may, in some cases, actually salvage a promis-
ing product. It leaves the door open for additional investi-
gation, and we shall discuss this further when dealing with 
issues relating to sample size and error of estimation. For 
the moment I merely ask you keep in mind that despite its 
indecisiveness, the statement “I cannot say T is better than 
R” is not only scientifically and philosophically correct, but it 
can be useful as well.

On PHILOSOPHY OF Science, APPLIED RESEARCH 
and their Interaction
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Now the concept of “superiority” is indeed as straightforward as it seems. Yet, 
when you apply it in practice, it may not always be. An example: Most cancers 
have multiple treatments—in part because even effective treatments often slow 
the disease rather than cure it, and additional options are needed. Moreover, 
even an effective treatment will often become ineffectual after multiple admin-
istrations. When this happens the treating physician will seek an alternative. 
Unfortunately, there is no silver bullet for most forms of cancer, so researchers 
are continually developing new and hopefully better treatments for it.

Having developed a treatment for a particular cancer, you now wish to dem-
onstrate its effectiveness. Specifically, you aim to show that it is superior to 
the current standard—the treatment that is recommended as first line by 
the American Society of Clinical Oncology. But your product is still at the 
development stage and will not normally be given an opportunity for direct 
comparison to a proven standard. After all, why would patients and physicians 
accept (and ethics committees approve) a study in which subjects receive an 
experimental treatment when a proven one is available?

So in this instance ethical considerations will likely prevent testing your new 
drug by itself on patients for whom a standard drug is indicated. What do 
you do? One solution might be to prescribe your drug in addition to the 
standard of care. Your eventual comparison would then be “accepted drug + 
new” versus “accepted drug only.” But this is not always possible—for exam-
ple, when subjects' physiological systems cannot tolerate two chemotherapy 
agents administered at the same time. And besides, it may not work. Another 
option might be to test the new drug on subjects for whom first-line treat-
ment has failed. But as a rule you prefer to avoid this. First, patients who 
fail approved treatments are likely to have more advanced stages of a disease 
and so are more difficult to help; limiting your trial's subjects to especially 
difficult patients is likely to reduce your chances for showing efficacy. Second, 
even if you do succeed with these especially ill patients, you have not shown 
your drug superior to first-line treatment; you have only demonstrated effi-
cacy for those who failed the first-line drug. Thus, the best you could hope for 
from this trial is that your drug will be approved for use only after standard 
treatment has failed, as a second line or third. This will narrow your potential 
market considerably.

Be that as it may, you will probably not be given the opportunity for head-to-head 
superiority testing versus standard-of-care. This may leave you with little choice 
but a single-arm trial—one in which only subjects failing standard treatment 
receive your drug. You would then determine success or failure by compar-
ing results to some external standard or expectation—external, that is, to your 
trial. For example, from information in scientific publications you might esti-
mate the survival time of individuals who failed first-line treatment and use 
this estimate as your Reference. But these criteria are often difficult to interpret 
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because of the large variation of outcomes in the literature. An alternative 
might be to compare your drug's results to those of patients receiving no 
treatment after having failed all standard therapies. This is the preferred option 
and gets you back to a two-arm trial with a direct comparison. But recruitment 
of Control subjects may be difficult, since very ill subjects who are receiving no 
treatment have little incentive to participate in a clinical trial.

To summarize, you planned to test your drug for superiority and instead found 
yourself up against two difficulties: You are not permitted a head-to-head 
comparison versus current treatment, and there appears to be no agreed-upon 
benchmark to which you can compare results of a single-arm trial. How then 
will you determine whether or not your drug is superior to anything?

Well, we can go back and forth here, discussing different possible designs, 
hoping to identify the optimal approach. And mind you, there must be some 
such design. If there were not, we could not develop new drugs in this not 
uncommon situation. Well, I will let you puzzle this out for yourself. It is a 
good exercise. Here I only wish to point out while the concept of superiority is 
statistically basic, its application in practice can be tricky.

Equivalence

It is virtually impossible to show two products to be truly the same even if 
they are truly identical. Indeed, in statistics we assume that showing identity is 
impossible. For now I ask that you take my word for it; an explanation is forth-
coming. And because you cannot show that two products are truly equal, we 
define equivalence using a range of values rather than a single number. Thus, 
you will declare one product equivalent to another if the performance of the 
former is within a predetermined range of the latter. For example, you might 
specify your product is equivalent to another if your obtained rate of cure is 
within ±5% of the comparator. Thus, to demonstrate equivalence you specify 
upper and lower equivalence margins. If your study shows product outcome 
is within these margins relative to the comparator, you will conclude that the 
products are equivalent.

In an earlier chapter I mentioned that the statistician's 
bag of tricks is limited. We have a case in point here 
where we approach one problem by framing it in terms of 
another. Specifically, equivalence is shown if your prod-
uct's performance is between lower and upper margins. 
And how do you test this? Well, you aim to demonstrate 
that it is higher than the lower margin and lower than the 

upper. Now showing “lower” is the flip side of “higher” 
and entails the same statistical methodology. We have 
thus translated the concept of equivalence into two, 
superiority-like statements. So if you wish to add another 
acronym to your arsenal, try TOST—two one-sided t-tests, 
which combine two superiority-type tests for assessing 
equivalence.

Statistical Connections
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So equivalence is defined by limiting your attribute at both ends. Using the 
preceding example, you wish to show that the cure rate is ±5% relative to the 
comparator, which implies the following:

− ≤ − ≤ +5 5% %T R

While the principle should be clear, the logic seems less so; why would you 
ever want to limit performance at the upper end? Why reject a product for 
being better? Well, there can be at least two answers to this question, one of 
which has primarily to do with wording. To this point I have equated “higher” 
with superior and “lower” with inferior, and this is not always the case. As 
anyone who cooks, bakes, or carries out contracts for the Mafia knows, there is 
such a thing as “getting it just right.”

Ischemic stroke involves a disturbance in brain function due to a lack of blood 
supply to it. This can, for example, occur when a clot (thrombosis) blocks the 
flow in vessels carrying blood to the brain cells. Patients with ischemic stroke 
are routinely given anticoagulants in an effort to prevent additional clots. 
One such anticoagulant is Warfarin, and there are many others of the same 
family.

In a severe ischemic stroke many brain cells will die due to lack of blood supply. 
And when this happens, cells in the vicinity of those that have died are at risk 
as well. This is the case even after the region's blood supply has been rees-
tablished. Suppose your company has developed a neuroprotective agent—a 
drug that provides protection to brain cells at risk—for addressing this particu-
lar phenomenon. You believe the drug can be effective when given up to five 
hours after a stroke's onset. Having developed the drug and completed preclin-
ical testing with it, you are now planning a superiority trial. Specifically, you 
aim to show via statistical analysis that stroke patients receiving your drug do 
better than those who do not—in short, a superiority trial.

Yet before testing your drug's efficacy, you will need to show that it is safe. 
There are many aspects to safety in a stroke, but I shall deal with only one: the 
possibility of your drug interacting with the anticoagulants. Recall that patients 
with ischemic stroke will often be given Warfarin-like drugs to prevent clotting. 
Well, if physicians are to use your drug, they must be sure that it will not inter-
fere with existing treatments. In this particular example, you will need to dem-
onstrate that administering your product will not affect Warfarin's behavior in 
the body. To show this you will likely set up an equivalence trial of which the 
goal is demonstrating that Warfarin “is neither better nor worse” when given 
with your treatment compared to when given by itself.1

1  Warfarin is used here to model your new drug's interaction with the class of Warfarin-like agents 
rather than with this specific medication.
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Here, as in similar situations, the equivalence trial will likely be done on 
healthy volunteers. This is a characteristic of Phase I clinical trials that typically 
aim to test safety only. The study itself will probably be conducted using a 
crossover design in which each subject is exposed to both treatments of 
interest as follows:

1.	 In stage one, half of the subjects will receive Warfarin alone, while 
the other half will receive Warfarin with your neuroprotective agent 
T. Pharmacokinetic measurements will be obtained from all subjects.

2.	 The second stage involves a washout period—an interval in which 
subjects receive neither of the drugs and is judged long enough for both 
agents to be eliminated from the body.

3.	 The trial's final stage will be the reverse of the first. In it, subjects who 
received Warfarin alone will now receive it with T, while those who 
received both drugs will receive Warfarin alone. Once again you will 
obtain pharmacokinetic measurements from all subjects.

4.	 You will then compare the behavior of Warfarin—its pharmacokinetics—
between the Warfarin-alone and Warfarin-T groups.

To make this comparison, you might compute for each subject the following ratio:

R

T

Behavior of Warfarin in the blood when given alone

Behavior of War
=

ffarin in the blood when given with new drug
.

2

If there is no interaction between the drugs, Warfarin should be unaffected 
by T, and this ratio should be about 1.0—that is, the behavior of Warfarin in 
the blood will be about the same with or without adding your neuroprotec-
tive agent. You then compare the average of subject-ratios to 1.0. Showing that 
this average is neither too low nor too high relative to 1.0—that it is within an 
“equivalence range” of 1.0—will allow you to conclude equivalence. Here this 
means that Warfarin remains “just right” when taken with T.

Here you might state that a ratio no lower than 0.80 and no higher than 1.25 
demonstrates equivalence. Determination of the range should be based on 
both clinical and statistical criteria. At the same time I should point out that 
equivalence testing in pharmacokinetics is usually simpler than non-inferiority 
with respect to the determination of clinically appropriate margins. While in  
most non-inferiority situations there are no acceptable criteria for “range of 
non-inferiority,” in most cases of equivalence in pharmacokinetics there 
exists an acceptable range (typically, a ratio-range of 0.80 to 1.25). To learn 

2  In pharmacokinetics, “behavior” has several measures such as Tmax, which is the time it takes for the 
drug to reach maximal concentrations in the blood. Here then you would assess the T/R ratio for all 
relevant pharmacokinetic parameters.



Chapter 4: S etting Research Objectives44

more about non-inferiority margins, which I will discuss in the next section, 
I recommend that you take a look at EMEA's Guideline on the Choice of Non-
inferiority Margin (2005).

Equivalence studies are most often conducted to assess generic drugs—new 
and chemically equivalent3 versions of established drugs. When producing 
a generic drug, your statistical test aims to show its performance is equiva-
lent to the established agent. This is generally done by demonstrating that 
the pharmacokinetic properties of the generic drug are similar to those of 
the comparator. We assume here that if the two active ingredients have simi-
lar pharmacokinetic profiles, they also have similar clinical effects. This is 
why trials for showing equivalence of generics usually involve pharmacoki-
netic comparisons rather than clinical efficacy. As a result, pharmacokinetic 
studies are generally much shorter than efficacy studies and require fewer 
subjects.

One last word on equivalence in generics: There are some cases where “higher” 
is indeed “better,” and you will still be required to show equivalence. This is 
the second reason for using equivalence, despite the apparent advantage of the 
superiority approach.

Suppose you wish to show that your topical medication for eliminating some 
fungus can serve as a generic equivalent to some R. In this case, where the drug 
is topical and not meant to enter the bloodstream, a pharmacokinetic study 
is not an option. Instead, you will be asked to demonstrate that T's Fungus-
Cure—a clinical efficacy parameter—is equivalent to that of R. Once done, you 
will conclude that T is equivalent to R and can be used as a generic substitute 
for it.

Now in this last example more (Cure) is indeed better. Thus, it may seem a bit 
foolish to use equivalence rather than non-inferiority. After all, if your generic 
drug turns out to be much better than the comparator, shouldn't everyone 
be happier? Well, yes and no. In fact, a drug that gets rid of fungus better 
than another is generally preferable. But if this is the case, T can no longer 
be considered equivalent to R. It is a different product and will need to be 
evaluated as such,4 so it cannot be labeled “equivalent.” When this happens—
when your generic version turns out to be superior to the original—you will be 
required to go the longer route required for approving a new drug, since this is 
what you actually have.

3  Generic drugs have the same quantity and structure of active ingredient, but they are not necessarily 
the same overall. The drugs' coatings, for example, may be different. Moreover, since they are produced in 
different plants by different companies, one cannot assume they are similar without some testing in humans.
4  For example, different products cannot (like generics) be assumed equivalent on parameters relating 
to safety.
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In summary, equivalence should be used in the following situations:

1.	 Demonstrating that a new drug does not affect the pharmacokinetics of 
another drug given with it—that is, showing that the established drug is 
equivalent when given by itself or with T.

2.	 Demonstrating that T is pharmacokinetically equivalent to R and, by 
implication, that it is clinically equivalent as well.

3.	 Demonstrating that T is clinically equivalent to R when it cannot be 
shown by pharmacokinetics.

I also noted that if in an equivalence trial T is actually shown to be superior to 
R, T will be considered a new product and will need to be tested in additional 
studies.

Non-inferiority

Demonstrating one product to be non-inferior entails showing it to be “no 
worse” than another. There are various designs for testing non-inferiority but 
the term as used typically implies at least a two-arm trial. Let us take the simple 
case of T versus R.

Having set up and undertaken a non-inferiority clinical trial, you are now 
ready to conduct statistical testing. As before, formal testing will yield only 
one of two conclusions: “Product T is non-inferior to R,” or “I cannot say 
that product T is non-inferior to R.” The second conclusion suggests that we 
are in the habit of making inconclusive statements. And we are. But these 
statements are both theoretically correct and, at times, useful. So we will stick 
with them.

The fact that there can be only one of two conclusions from a non-inferiority 
study has implications at both ends: 

1.	 Highly unfavorable results will yield “I cannot say T is non-inferior to B” 
rather than “T is inferior to R.”

2.	 Highly favorable results will yield only “T is non-inferior to R” rather than 
“T is superior to R.”

The first scenario is not particularly interesting because you do not care 
whether an inferior product is simply that or “very inferior.” The second 
scenario however, is at the very least annoying. This is because you cannot  
formally conclude superiority from a non-inferiority trial even if it is obvious. 
For example, suppose you have conducted a non-inferiority study comparing 
T to R with 100 subjects in each group and found T to produce a cure rate of 
90%, while R yields a mere 40%. Even here—where if you had conducted a 
superiority trial, you would have shown it—you cannot formally conclude 
that T is superior to R.
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Non-inferiority works similarly to equivalence except that its margin is at one 
end only. This number is referred to as a non-inferiority margin. For example, 
if you specified a non-inferiority margin on Cure Rate of 7%, your data will 
need to show that your product is “no worse than 7% worse than the compara-
tor.” This is the same as declaring that you are superior to the comparator's 
efficacy minus 7%. Technically then, showing non-inferiority requires demon-
strating that you are no worse than the comparator minus some delta—a non-
inferiority delta, which is an alternative term for non-inferiority margin.

The actual mechanics of conducting such comparisons requires some statis-
tics. A simplistic account of these will be presented in the next chapter, and I 
refer you to standard texts if you wish to understand the analytical techniques 
as well.

In practice, regardless of the type of trial you conduct, if you observe a result 
greatly in your favor, you are likely to believe that your test product T is supe-
rior to R. This is reasonable, and there should be nothing to prevent you 
from thinking it. You might even consider shouting it from rooftops. But 
formally you are constrained to claim only that which was specified before 
the trial began. If your initial stated aim was non-inferiority, you will be 
permitted to claim no more than this. The principle underlying this is as 
straightforward as it is important: Formal conclusions at the end of a trial must 
be perfectly consistent with the objectives set for the trial (see Chapter 9). Much 
of the justification for concluding anything from clinical trials rests upon 
this principle.

The concept of non-inferiority gives rise to a number of issues, including the 
following: 

n	 Why design a study to show “non-inferiority” if you believe you are 
“as good as”? Clearly, claiming “T is as good as R” is a more direct 
statement than “T is not inferior to R”—and stronger besides.

n	 Why would you ever want to demonstrate a product to be “no worse” 
in the first place? If your product is better, go ahead and show it. If 
not, there seems no practical use for it, since there is already one on 
the market meeting patients' needs.

n	 What is “non-inferior”? In other words, which criterion do you 
choose for establishing non-inferiority? For example, would you 
consider your product non-inferior if its true Cure Rate is 78% and 
the comparator's is 80%? And if yours is 79.5% and the comparator's 
is 80%, what then? In other words, which difference is sufficiently 
small to allow your claim that one product is non-inferior to another? 
This is crucial because when planning a trial you must determine in 
advance what constitutes proof—that is, you will need to specify in 
advance the outcome that will support your claim.
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The first bullet suggests that it is better to show “as good as” than “non-inferior.” 
And while this is certainly the case, it cannot technically be done. As noted, 
even identical products will rarely perform identically in different groups of 
individuals. Indeed, apply the same pharmaceutical or device to the same peo-
ple twice, and you will not get identical results. Your options then become 
limited to (1) equivalence—showing your attribute within some range—or 
(2) non-inferiority—demonstrating your attribute better than some “compara-
tor minus some delta.”

A perhaps intuitive example can be found in election surveys, which are nearer 
to our everyday experiences. These surveys are rarely in precise agreement 
despite purporting to estimate the same parameters (e.g., percent who will 
vote for Peoria Joe). Keep in mind that at the end of the day candidate Joe 
will get exactly Y% of the vote. And yet different surveys aiming to predict 
this figure will come up with different numbers even when they have the 
same sample size and are taken from the same population at the same time. 
And while the methodology of clinical trials is typically different from that of 
surveys (with exceptions), the principle is the same. We “survey” two samples 
and expect that even if they were asked the same question—given the same 
treatment—the results will differ.

It is the nature of sampling that no matter how well planned, none of these 
groups will be identical to the population they purport to represent and, thus, 
to each other. Consequently, whatever it is you measure on the sample will 
virtually always yield results that differ from the truth in the population. We 
call this sampling error—the fact that samples typically err to some degree or 
another in representing the population from which they were taken. Now it is 
difficult to overstate the importance of accounting sampling error when con-
ducting clinical trials. And to prove the point, I shall devote much of the next 
chapter to it.

So we require some statistical sleight of hand to deal with the impossibility of 
showing identity, and in the concepts of non-inferiority and equivalence we 
have it. Getting back to our initial questions, the answer to the first bullet is 
clear. You conduct non-inferiority because when you want to show “at least as 
good,” you have no choice; even if you are identical, you will not, in a given 
trial, be able to show this.

This gets us to the two additional issues raised—namely, your motivation for 
showing “at least as good” to begin with and, having decided on it, determin-
ing a criterion for comparison. I will use a specific example to address both 
these issues and in the process suggest the relationship between them.

Diabetes is a disease that generally causes higher than normal sugar levels in 
the blood. This can lead to a wide variety of complications, many of which 
are sufficiently serious to endanger life and limb. For many diabetes patients 
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the only treatment is injection of insulin, a hormone that in healthy people 
is produced by the pancreas and that reduces sugar levels. Diabetes patients 
who require insulin to control their disease are said to have insulin-dependent 
diabetes.

Treatment with insulin must be carefully managed. Injecting too little will 
insufficiently reduce blood sugar and may cause a hyperglycemic episode 
(“hyper” for short)—the occurrence of an abnormally high level of sugar in 
the blood. Conversely, injecting too much insulin will reduce the blood sugar 
level abnormally. A hypoglycemic episode, or “hypo,” is the occurrence of an 
unusually low level of sugar in the blood. It is therefore imperative that in any 
given circumstance a diabetic patient must inject the right amount of insulin 
to prevent both hyper and hypo.

There is currently a standard formula for calculating the recommended amount 
of insulin to be injected in any particular circumstance. The formula is based 
on various parameters, including the person's current blood sugar level, the 
amount of carbohydrates the individual intends to eat, the individual's body's 
sensitivity to insulin, and others.

Suppose you have developed a new formula for determining the amount of 
insulin to be injected and a device to go with it. Using the device, patients 
enter the required information and are provided a suggested quantity of insu-
lin to inject. Having conducted initial testing on your device, you believe 
it is about as good as that using the existing formula. In other words, you 
expect your new formula and device to be about as effective as the old. Thus, 
your product cannot be said to be superior to the one already on the market. 
Accordingly, you plan a non-inferiority trial comparing your device T to the 
existing standard R.

But why would you want to show non-inferiority to begin with? If there is 
already a device for precisely this purpose and yours is no better, why pro-
duce an alternative? Well, there may be any number of reasons. We shall 
choose price: Your device will cost much less than the competitor and as such 
will be easier on the wallet of those who would consider the alternative. Your 
product will also provide those who cannot afford the current device with 
an alternative. In sum, conducting a successful non-inferiority trial for your 
device will demonstrate that the device is “about as good” as that on the 
market. Coupled with its being less expensive, you will have shown it has a 
marketing edge over the product currently on the market. There can be many 
others. In fact, one of these was mentioned earlier when discussing drugs 
that have similar efficacy, with one being more convenient to take than the 
other. Whatever the reason, there are circumstances in which non-inferiority 
make sense.
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Now that we have provided an answer to the second question, we come to the 
trickier issue of defining non-inferiority when comparing T to R. First, the for-
mal definition:

…a non-inferiority trial aims to demonstrate [analytically] that the test 
product is not worse than the comparator by more than a prespecified, 
small amount. This amount is known as the non-inferiority margin, or 
delta (Δ).5

So in any particular trial aiming to demonstrate that T is non-inferior to R, you 
will need to do the following: 

1.	 Quantify the concept of “non-inferiority” by attaching some number to it. 
For example, you might claim that as long as that amount of insulin your 
device recommends causes no more than 5% additional (and not serious) 
hyper and hypo episodes than the competitor, it will be considered non-
inferior. Thus, you define a non-inferiority margin of 5% on efficacy as 
measured by incidence of hypo and hyper episodes.

2.	 Set up a trial of which the design will provide an acceptable test of 
whether or not your product meets the quantitative criterion specified at 
the higher and lower ends.

That there cannot be a one-size-fits-all criterion for non-inferiority should now be 
apparent. Thus, for example, you would expect a smaller allowable margin in life-
threatening applications than in those that are not. Where the risk is great (e.g., 
life and limb), T will be allowed a non-inferiority margin that is smaller than 
when the risk is minor (e.g., stomach upset). Making use of the guidelines again:

The choice of [non-inferiority] delta [or margin] must always be 
justified on both clinical and statistical grounds. It always needs to be 
tailored specifically to the particular clinical context, and no rule can be 
provided that covers all situations.6

Returning to our example, we noted that incorrect insulin recommendations can 
lead to either hypo or hyper episodes. As a general rule (with exceptions), hypo 
episodes are more hazardous to the patient than hyper episodes. Because of this, 
the regulator may require your non-inferiority trial to have two different margins: 
one for hyper episodes with a relatively large delta and another for hypo with a 
smaller delta. For example, you might be required to do the following:

1.	 Demonstrate that the number of hyper episodes when using T (new device) 
is no more than 8% higher than when using R (current device). More 

5  European Medicines Agency (EMEA). Guideline on the Choice for Non-inferiority Margin. 2005. London.
6  European Medicines Agency (EMEA). Guideline on the Choice of the Non-inferiority Margin. 2005. London.
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formally, demonstrate that the non-inferiority margin for showing efficacy 
with respect to hyper is –8%.

2.	 Show that the number of hypo episodes using T is no more than 3% 
higher than when using R. Formally then, the non-inferiority margin for 
demonstrating efficacy on hypo is –3%.

In this section I described circumstances where statistical considerations leave 
you no choice but to go the non-inferiority route. Underlying all this is the 
assumption that non-inferiority is a reasonable thing to show. Well, is it? At 
the more basic level there would seem to remain the following question: From 
the clinical standpoint, why would the regulator approve any product based 
on non-inferiority? Well, I noted a couple of reasons, and there are others. But 
having been with this topic for a while, I shall heed Chaucer's dictum that “it 
is nought good a slepyng hound to wake.”

Putting It Together
In the preceding chapter I dealt with attributes, while in this one I described 
some options for “what about” these attributes you might wish to show. Put 
these two together and you get what usually comes under the section headed 
“Study Objectives” in a clinical trial's protocol. Table 4.1 shows some of these 
combinations.

Following are some “Study Objective” statements taken (with appropriate 
modifications) from clinical trial protocols. You might try placing each in its 
respective table cell. If you cannot, then the objective does not contain all the 
information it should.

n	 “Show that T's safety is now worse than R when given twice daily in a 
population of recently diagnosed lupus.”

n	 “Demonstrate that T is substantially equivalent to R in detecting severe 
heart arrhythmia.”

n	 “Assess the safety and tolerability of T in patients with venous insufficiency.”
n	 “Show that T is equivalent to R in the treatment of migraine.”

Table 4.1  Clinical Trial Aims and Attributes

 Attribute of Interest

Objective 
(Analytic Aim)

 
Efficacy

 
Safety

 
Performance

 
Pharmacokinetics

Superiority A B C D
Equivalence E F G H
Non-inferiority I J K L
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You might have noticed that the third bullet did not include a “comparative 
statement” but simply stated that the study's objective is to assess safety and 
tolerability. This study's planners should have stated that they wish to assess 
these attributes “relative to. …” They could have chosen a comparator within 
the trial, external to the trial, or some acceptable reference if there is one. Since 
they did not, the objective cannot be identified with a cell in the table and is 
lacking.

In this chapter I dealt with planning a clinical trial by focusing on its objec-
tives. These in turn imply testing product attributes with a specific goal in 
mind. In the chapter that follows I shall begin dealing with actual statistics—
those associated with describing results obtained from trials and more com-
plex issues relating to statistical comparisons.
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n	 Classification, science, and statistics
n	 Descriptive statistics in a hearing implant
n	 Statistical versus clinical thinking
n	 Classification, grouping, and descriptive statistics
n	 Intended use populations and statistical populations
n	 Intended use and accuracy: an example from oncology
n	 Samples and populations
n	 Phase I and Phase II trial population differences

INTRODUCTION: A MENTAL ACTIVITY
n	 Cats and dogs are biologically different.
n	 Cats and dogs are domesticated.
n	 It's raining cats and dogs.

The first two statements are very simple—banal even. But they are also examples 
of a central cognitive process of ours: classification.

When I say that cats and dogs are different, I call attention to their dissimilarity 
and place each in a separate group. And when focusing on their similarity, 
I put them in the same class of domesticated animals. This mental activity is 
very basic and sufficiently important for there to be many words in English 
for it: traits, groups, classes, characteristics, types, categories, and taxonomies. 
The third statement, when I think about it, makes little sense.

Statistical Thinking

Contents



Chapter 5: S tatistical Thinking54

Alexis de Tocqueville (1805–1859) contrasted this cognitive process with that 
of the Devine: 

The Deity does not regard the human race collectively. He surveys 
at one glance and severally all the beings … and he discerns in each 
man the resemblances which assimilate him to all his fellows, and the 
differences which distinguish him from them. God, therefore, stands 
in no need of general ideas; that is to say, He is never sensible of the 
necessity of collecting a considerable number of analogous objects 
under the same form for greater convenience in thinking. Such is, 
however, not the case with man. If the human mind were to attempt 
to examine and pass a judgment on all the individual cases before 
it, the immensity of detail would soon lead it astray and bewilder 
its discernment: in this strait, man has recourse to an imperfect but 
necessary expedient. … Having superficially considered a certain 
number of objects, and remarked their resemblance, he assigns to them 
a common name, sets them apart, and proceeds onwards.1

So no two dogs are identical, and even two door handles coming off the same 
production line differ. But some objects are sufficiently similar that we lump 
them together.

Jean Piaget (1896–1980), whose theory of child development is one of the 
few constants in psychology, observed that the ability to classify starts early 
and refines as we go along. The young child being no deity (despite some 
parental behavior to the contrary), she will learn early to distinguish between 
toys and knives, and upon seeing one or the other will, to use Piaget's and 
de Tocqueville's term, assimilate it into its category—that is, she will place it 
in the appropriate “pigeonhole” in the brain. Once assimilated, the object is 
understood and can be treated accordingly. For example, a wooden train set and 
Lego blocks will be distinguished from a Swiss Army knife and bread knife, 
with the pairs assimilated into the respective categories formed.

Time goes by and the child's universe expands. Her experience grows and her 
brain matures. Her distinctions become finer. She will learn to differentiate 
sharp knives from dull ones and between toys needing electricity and those 
that do not. She will know that “batteries not included” means a gadget will 
not work when she gets home, and that inside the home or out, some knives 
should be handled with greater care than others.

Every so often the child will see an object for which she has no ready-made 
category. She might, for instance, observe a zebra and instinctively place it in 

1  de Tocqueville, A. (1840). Democracy in America. Project Gutenberg EBook.
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her “horse” pigeonhole. Then focusing on the difference in coloring and the 
fact that she is at the zoo and not a racetrack, she will have second thoughts. 
Confused, she is motivated to update her classification system—to create a new 
category. If her brain has sufficiently matured, she will. If not, this will have 
to wait. Piaget calls this constructing of new mental classes accommodation. For 
the young child it involves creating a “zebra pigeonhole” separate from the 
“horse pigeonhole” she already has. Once done, she can assimilate the two ani-
mals into more suitable categories. As the child's distinctions multiply, she is 
better able to make sense of the world around her. Without this shared under-
standing, she could not communicate with the rest of us, and we could not 
communicate with her. Life itself depends on it. Thus, it would be impossible 
to keep out of harm's way if we could not distinguish between cats and cars, 
bipeds and mopeds.

Classification is a central activity of science as well. Geologists will group rocks, 
physiologists type tissues, and zoologists categorize animals into taxonomies. 
Some of these systems are theoretical and have little immediate application, 
although one day they might. Thus, you might classify planets outside the 
Milky Way by density and orbit, using this information to estimate when 
and where they were created. This is interesting—even fascinating—but of no 
immediate use on terra cognita. On the other hand, classify human tissue prop-
erly, and you might know how to treat it and, perhaps, even find a replacement 
for it; correctly identify geological strata, and you might know the chance for a 
landslide or something about resources underneath.

Statistics provides methods for classifying objects into groups. With the 
aid of statistical testing, also called hypothesis testing, we can, to use 
Piaget's terms, both assimilate and accommodate. In this sense statistical 
techniques are formalizations of one of our central thought processes. But 
first things first.

Description
The discipline of statistics is typically divided into two parts and taught that 
way. The first of these is descriptive statistics, which provides methods for 
summarizing and organizing data. When I obtain data, the first thing I do is 
describe the data using the methods available to me. This helps me get a feel 
for the numbers, which is important. But in doing this I am more an observer 
than a participant. It is only at a later stage of data analysis that I will be con-
cerned with arriving at specific conclusions from the data. It is when doing the 
latter that I am more directly affecting product development.

Now looking at data—even to merely get a “feel” for them—is no trivial pursuit. 
A multitude of numbers are usually involved, and simply looking at them will 
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not get me very far. On the other hand, reducing all data into one or two sum-
mary statistics—say, the mean and standard deviation—will likely mask a great 
deal of essential information. So my first task is to summarize the data suffi-
ciently to make them comprehensible—that is, to reduce the jumble of num-
bers into a few meaningful statistics. Now there can be no summarizing of data 
without a loss of information. As we well know, the whole of the information is 
present in the individual objects only—in all the measurements taken. Thus, the 
challenge is to summarize while retaining the essential storyline of the data.

Let us suppose that a company wishes to test the efficacy of an implantable hear-
ing aid and conducts a trial with 248 subjects. All subjects are implanted the 
same device, and their hearing is evaluated both before and after the implanta-
tion. The trial done, my first task is to describe the data in a manner that best 
tells their story. To do this I will use techniques that come under the heading 
of Descriptive Statistics, which provide numerical and graphical methods for 
summarizing and simplifying the numbers. If I do my job well, I will have 
transformed the data into information.

I will not provide here an overview of Descriptive Statistics. Many good books 
on the subject are available. In this section I shall merely present an example 
intended to give a taste of the challenges associated with “simply presenting 
data.” Yet, before going on, I should say a word about how the data in this 
example were generated.

The Audiometer Hearing Test (AHT) evaluates individuals' sensitivity to tone 
as a function of Frequency and Loudness; Frequency is measured in Hertz (Hz) 
and Loudness in decibels (dB). In this hypothetical study each subject was 
exposed to frequencies of 500 Hz, 1,000 Hz, and 2,000 Hz. At each of these, the 
audiologist varied Loudness in decibels (dB), aiming to identify the minimal 
dB level at which a subject perceives a specific tone. The greater the Loudness 
required for perceiving a tone, the poorer the hearing.

Testing was done before and after implantation of the device,2 so each subject 
has a “hearing profile” at two time points. For example, a profile of 30 dB, 45 dB, 
and 38 dB indicates that these are levels of Loudness needed for a subject to per-
ceive tones of 500 Hz, 1,000 Hz, and 2,000 Hz, respectively. Figure 5.1 presents 
pre- and postimplantation profiles for one of the subjects in the study.

In Figure  5.1, we have what audiologists call an audiogram and what stat-
isticians call graphical descriptive statistics. Using this simple tool—a plot of 
Loudness against Frequency for two time points—we have a presentation 
that is much more informative than a mere list of six numbers. You can now 
conveniently see the subject's profiles before and after implantation without 

2  Testing before implantation was done using the best available (external) hearing aid for the subject.
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delving too deeply into the numbers. And you can go on to make statements 
like the following:

n	 Implantation seems to have led to hearing gain at every Frequency.
n	 The greatest gain was at 500 Hz and the smallest at 2,000 Hz.
n	 There may be a relationship between efficacy and Frequency such 

that the higher the Frequency, the lower the device's efficacy. (This 
is based on the observation that improvement seemed to decrease 
as Frequency increased. Keep in mind, however, that these data 
are for 1 of 248 subjects only—a subject that may or may not be 
representative of the others. As will often happen when doing 
Descriptive Statistics, you will notice patterns in the data that will be 
“filed away for future testing.”)

While these statements may seem simple (and they are), they are also a fine 
example of how selecting an appropriate method for presenting data can make 
the data's meaning accessible. Also note that in my statements I have gone 
beyond mere description and hinted at inferences—for example, “Implantation 
seems to have led to hearing gain. …” It appears, then, that my separating of 
processes—in this case, separating between mere description of data and reach-
ing conclusions from them—is somewhat artificial, and once again we find 
that “everything is connected.”

Getting back to my description and resultant statements, they seem useful. 
Still, they are based on one subject only. As a matter of fact, we have 248 sub-
jects, each assessed at three frequencies at two different time points. So in all 
we have 1,488 data points, and presenting 248 separate audiograms will not 
do. While each is informative by itself, there are simply too many to make 
examining each and every one feasible.

Figure 5.1
Pure Tone Audiogram for 
Patient 054
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A statistician given these numbers has many options for organizing (read 
“reducing”) the data both numerically and graphically. Following are a few 
possibilities:

1.	 Plot the Average Change Profile for all subjects by:
a.	 For each subject, compute pre-post difference at each Frequency.
b.	 Compute the average pre-post difference for all subjects at each 

Frequency.
c.	 Graph this average in a manner similar to that shown in Figure 5.1. 

You now have a similar graph but with a single profile representing 
Average Change over all subjects.

2.	 Repeat (a) and add an interval around each point in the graph representing 
the smallest and greatest change encountered over all subjects. That is, 
at each point show a line parallel to the y-axis representing the range of 
change achieved; the upper limit and lower limits of this line represent the 
range of measurements observed across all subjects.

3.	 Compute pre-post differences at each Frequency and present the average 
along with an interval describing the standard deviation at each point. 
You now have a single “difference line” rather than lines representing 
“before” and “after” measurements.

Working with physicians, I often present statistics in 
numerical or graphical form. Almost inevitably some 
physician will place her finger on a data point or spe­
cific chart and say something like “This makes per­
fect sense. You can see from here how the treatment 
works. …” This might have occurred, for example, when 
presenting Figure 5.1, which is only 1 of 248 and should 
not be interpreted in isolation. In my infinite statistical 
wisdom I smile inwardly and point out that our aim is to 
look at the pattern in the data rather than at the individ­
ual patient. And in this particular instance I am probably 
right, since research is designed to evaluate what hap­
pens “on average” (though, admittedly, my smile is likely 
smugger than it should be).

Still, it is not as simple as all that. Physicians work with real 
people, not numbers. And while averages may guide medi­
cal practice in general, the doctor deals daily with “indi­
vidual data points.” And each point is distinctive, being a 
patient with a particular Age, Gender, Medical History, Level 
of Family and Financial Support, Ability to Withstand Pain, 
Severity of Disease, and many other characteristics relevant 

to treatment. Consciously or not, these individuals' data and 
others will be taken into account by the physician deciding 
on treatment. And these very characteristics are lost on stat­
isticians computing summary statistics.

Over the years I have found these natural tendencies of the 
two disciplines to be a barrier in communicating between 
them. Simply put, I have often been frustrated when talking 
with physicians, and I am sure they are no less frustrated 
with me. Different professions being what they are, there is 
no ideal solution for this. At the same time, both disciplines 
must be aware of the others' natural tendencies and use 
them to the best advantage. Thus, for example, observing 
overall patterns is the essence of statistical investigation. At 
the same time, understanding the individual case can go a 
long way to gaining a deeper understanding of the clinical, 
physiological, and psychological processes involved. And 
this in turn can provide the statistician with an understand­
ing that will guide him to more insightful analyses. Analyzing 
data without at least some understanding of the medicine 
involved is as an egregious an error as focusing exclusively 
on the individual when doing statistics.

On Statisticians and Clinicians
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4.	 For each subject, compute Percent Change by dividing the pre-post 
change in dB by the preimplantation dB value and multiplying by 100. 
These new plots describe Percent Change rather than Absolute Change.

5.	 Compute Average Percent Change over all subjects and present a 
single number representing Percent Change from preimplantation to 
postimplantation.

6.	 Define “Success/Failure” for each subject as follows:
Success: A hearing improvement of at least 20% at each Frequency.
Failure: At least one Frequency in which Percent Change is less than 20%.

Once Change is transformed in this way, compute the rate of Success over 
all subjects—that is, the proportion of subjects for whom the procedure 
was successful given the criterion of “at least 20% improvement at each 
Frequency.”

As an exercise, you might try coming up with additional possibilities. There are 
many more, and, as a rule, one cannot be said to be more correct than another. 
Rather, each description tells its own story, addressing a different aspect of the 
data. Depending on the question of interest, some of the descriptions will usu-
ally be more informative than others; change the question and you will likely 
change the appropriate analysis. Thus, it is your challenge to select the one 
most suitable description for the specific circumstance. All the while you must 
keep in mind that while the techniques can be simple or complex, the goal is 
always the same: Present the data in an accessible and meaningful fashion.

Now there is another important issue here that relates to the grouping 
mentioned in the preceding section. For example, had the subjects in this 
trial come from two groups—for example, each implanted with a different 
device—would you have combined their data and presented their statistics 
as a single group? This is not such an innocent question, and we shall deal 
with it at length. But for now I will give the simple answer: “No.” When a 
trial includes two or more groups, the data should be presented separately for 
each. (The exception is if you conclude that the groups do not differ and are, 
despite being treated differently, a single group in terms of outcome. Here, 
then, is a hint of things to come—of issues connecting between description 
and statistical testing.)

You see, descriptive statistics make most sense when they are done within 
a specific category. Thus, we will compute the average weight of apples 
from Annie's Orchard separately from that of oranges from Shady's Grove. 
Statisticians, like the rest of us, should not confuse the two.

I shall thus formally define descriptive statistics as providing procedures to 
summarize, organize, and simplify data collected from a specific group, a population. 
The latter part of this statement is not typically articulated when defining 
descriptive statistics. But it is correct, it suits my purpose, and I shall keep it.
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I should also point out that our usual conception of categories typically 
includes descriptive statistics, although we may not call them that. A child, for 
instance, will see an animal that walks like a duck and quacks like a duck and 
decide it is a duck because it fits the descriptive statistics she has accumulated 
for the category. Over time she has collected data on ducks and knows their 
distribution of sizes, colors, and behaviors. Upon seeing an animal that might 
be a duck, she matches its individual characteristics to the group-descriptive 
statistics she has constructed. Similarly, she has amassed data and organized 
them for numerous categories such as houses and trees and trolls. Thus, view-
ing the process, the methods encompassed by descriptive statistics are in fact a 
formalization of the thought processes we engage in continuously.

In the first section of this chapter I considered the mental activity of 
categorization, and in the second I discussed the area of statistics meant to 
organize and simplify data collected from a category. In the section that follows 
I discuss how statistics approaches the idea of category and how it resembles its 
application in everyday life.

Population
In an earlier chapter I mentioned the term population for the first time and 
have been using the term quite a bit. In both statistics and everyday life, it is 
defined as a group of objects—persons, places, or things—that have an attri-
bute in common. Thus, Swedes are individuals who have Sweden in common, 
and the population of individuals suffering from migraines share a similar 
disease. Now the child—or adult for that matter—may not formally define her 
mental bins as populations, but this is precisely what they are. And when she 
assimilates an object to one of these bins, she has, in our language, assigned it 
to a population.

Everyday communication requires that we understand one another more or 
less, which is usually enough. You do not need to properly define “cars” to 
drive them nor “dogs” to pet them. But this is not the case in the science of 
clinical trials. If, for instance, you claim that a product straightens teeth, you 
must specify the relevant population for it. Do you mean for young or old peo-
ple? Are you talking about very crooked teeth or only slightly askew? And are 
you referring to the population of individuals who must align a single tooth, 
or must there be at least two teeth involved?

For each clinical trial you specify inclusion and exclusion criteria, which 
define the population of interest precisely. And if your product is found safe 
and effective in the trial, you will claim that it works for the population of 
subjects represented by those participating in the study—for them and not 
for others.
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There are many possible definitions for the term population, and I shall use 
one that suits my purpose: A population is a group of elements3 that have 
a characteristic of interest in common that those in other populations do 
not have. For example, if your trial includes subjects that have experienced a 
myocardial infarction (MI), this is the characteristic common to your group 
(and that excludes those who have not had an MI).

So it is you who decides on the population of study in a manner that suits your 
purposes. And here is a difference of sorts from the term's use in everyday life, 
which typically refers to self-evident groupings, such as cats, cucumbers, and 
communists. For example, when studying immune disorders you will lump 
AIDS and minor allergies in the same population. And when studying people 
who experienced life-threatening ailments, MI, AIDS, and car crash victims will 
find themselves in the same group.

So you create populations by defining them; they are figments of your appli-
cation and are specified for a purpose. Statistics is a tool for describing and 
demarking populations, and as such can no more dictate the population of 
interest than a hammer suggesting where to place your blows. The choice is 
yours, and you must be careful with it. Once made, statistics will provide you 
with the tools for extracting information from the population and determining 
who or what belongs to it.

Belaboring the point, one characteristic of populations is that they can be as 
shifty as the Sahara's sands. But unlike those particular particles, it is you who 
determine the rules of motion. Thus, your population can include anyone 
who is currently suffering a cold, in which case individuals will move in and 
out of your group as their condition changes. Alternatively, you can define a 
population as anyone who has ever experienced a cold, in which case your 
group is much more inclusive. A third option might consist of all who will 
experience a cold in the future, in which case the population of interest is not 
readily available for study. While available in theory, it is only after a particu-
lar individual experiences a cold that you will know he actually belonged to 
this population.

Now the “cold-groupings” enumerated are neither right nor wrong in any abso-
lute sense. Rather, each is appropriate in a particular context. If you want to know 
“what it feels like to have a cold,” you will interview those who have experienced 
one. But if you wish to examine the effect of your medication on alleviating cold 
symptoms, you had better give your drug only to those who are currently ill. 
And if your goal is to estimate market potential for a new medication, people 
who will have the illness in the future are of greatest interest.

3  People, places, things, concepts, and so on—anything of interest.
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Regulators require that you define an intended use population 
for your product—people with particular characteristics 
(that others do not share) for whom your product is meant. 
Frequently, defining and studying a population can be 
straightforward. But this is not always the case.

Suppose you have developed a blood test for diagnosing a 
rare cancer—one that currently can be positively diagnosed 
by biopsy only. Your first step might be a simple feasibil­
ity trial in which subjects sent to biopsy undergo your test 
as well. Once the results from both tests are in, you com­
pare your diagnosis with that obtained from histology and 
determine your test's accuracy. Let us assume that you have 
already done this and found your accuracy encouraging but 
not perfect. This is fine. After all, you do not expect a blood 
test to be as accurate as an invasive procedure. Instead, your 
blood test is intended to aid diagnosis rather than as a gold 
standard for definitive determination of whether or not the 
disease is present.

Having completed the feasibility trial and obtained satis­
factory results, you now plan a pivotal trial—a study aimed 
to prove to both regulators and consumers that your test 
is useful. When developing the trial's protocol, you will 
need to provide complete information on the planned trial, 
including (1) the intended use population for your product 
and (2) where and how you will obtain subjects for it.

Considering the first issue, you would like your test to be used for 
screening in general—for everyone. But this is impractical; you 
cannot expect physicians to routinely screen all their patients 
for a rare disorder, nor can you expect health care providers 
to pay for it. So you decide to be less ambitious and define a 
limited intended use population. For example, you might state 
that your test is meant for “all those who underwent biopsy 
for the specific cancer.” Upon further consideration you realize 
that this too makes little sense. If patients have already done 
the gold standard test, why trouble them with one that is less 
accurate? In other words, your intended use population should 
not be those who have already undergone the test.

So you decide to take one step back in the diagnostic process 
and define your target group as those “at risk for the cancer 
or suspected of it.” These are patients who the physician may 
or may not ultimately send for biopsy. The physician's final 
decision regarding biopsy will be based on the best available 
information on the patient—data obtained from physical 

examination, family history, routine lab tests, and other 
information. The goal, you decide, is to have your blood test 
included among this collection of assessments that comes 
under the heading “best available information” (excluding 
biopsy, which may or may not follow the initial assessments). 
This is reasonable, since a biopsy is a serious procedure, and 
one should use noninvasive tests before deciding on it.

More formally, you specify that your blood test is intended as 
“a diagnostic aid for individuals at risk for the cancer.” The test, 
you claim, is “an aid” and not meant to be definitive by itself.

Now that you have defined your intended use population, 
you begin recruiting subjects from this population for the 
trial. This, then, is one, basic function of a well-defined target 
population: It determines the group of people from among 
whom you will select for study.

Since your product has yet to be approved, the information 
it provides will not be used in the trial. Participating phy­
sicians will be asked to decide on referral to biopsy in the 
usual manner.4 Your aim in this trial is to demonstrate your 
diagnostic efficacy—your test's accuracy—by comparing its 
results with those obtained from the gold standard biopsy. 
Once demonstrated, it can actually be applied in the diag­
nostic process, but not before.

The trial has begun, and the physicians proceed as usual. 
Subjects in the trial undergo your test, and a good portion of 
them—let us say, about 40%—are sent on to biopsy. Some of 
these turn out positive for the cancer and others negative. You 
conduct statistical analyses comparing your test's outcomes 
to those of biopsy, find the blood test's accuracy reasonable, 
and present your data to the regulator for approval.

All seems to be going smoothly until the regulator's statis­
tician asks, “What about the 60% of patients who were not 
sent for a biopsy? Do you know how accurate your blood 
test is in that group?” Some of them were diagnosed neg­
ative by your test and others positive. And having no gold 
standard reference diagnosis for them, you cannot evalu­
ate your test's accuracy for them. Now this would seem 

A Catch (for Example)

4 Indeed, it would be best if in this trial the physician would not be 
made aware of your blood test's results. Until the time that your 
test is approved for marketing, it should not be used for treatment 
decisions.
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It seems, then, that intended use populations are not always easily defined. And 
once defined, they can be difficult to study comprehensively. How would you 
suggest solving this problem? For those of you particularly interested in this sort 
of scenario, I should mention that this issue is called referral bias (or verifica-
tion bias), the statistical treatment of which is beyond the scope of this book.

Samples
Another characteristic of populations is that they are virtually always very large. 
Indeed, they are so large that in almost all cases our attempt to learn something 
about them must be from a sample; we do not, and usually cannot, study the 
whole population. I shall define a sample as a subset of a population that is 
obtained by sampling from the population. Simple.

There are many sampling methods in clinical trials, and I shall discuss a few 
of them in future chapters. Here, I wish only to point out that samples are 
designed to represent the populations from which they are obtained. Putting 

an impossible question to answer, since there is no defini­
tive diagnosis for these patients. All you know about them 
is that the physician was convinced they do not have the 
cancer and so did not send them for invasive testing. But a 
physician's decision, unlike a biopsy, is not a gold standard 
diagnosis. Technically, then, you cannot evaluate your test's 
accuracy in this group.

You think about it for a few moments and give what seems 
to you an obvious answer: “There is no reason,” you say, “to 
assume that my test performs any differently in this group 
than in those referred to biopsy. I would therefore like your 
decision to be based only on those 40% of patients who under­
went both diagnostic tests.” In other words, you assume that 
the accuracy obtained when comparing your test to the gold 
standard is similar in those not referred to a biopsy.

Your reply seems to have no effect on the regulator's 
statistician, who replies, “Those not referred to a biopsy are 
different in that the physician did not suspect them of hav­
ing cancer. Your blood test's accuracy may or may not be the 
same in that group as in the other, but we do not know. In 
fact, there is reason to believe that your test is less accurate 
in the nonbiopsy group. After all, those who were not sent 
to invasive testing have milder symptoms than the others, 
and it may be more difficult to separate the positives from 

the negatives in this milder-symptom group. Regardless, you 
cannot assume that the results obtained in one group apply 
to the other as well.”

Your face darkens. Then you consider suggesting that all 
those not sent for invasive testing should be assumed nega­
tive; while they have not been diagnosed by a biopsy, the 
physician decided that they are negative, and you will use 
this diagnosis to test your accuracy in this group. Now you 
must consider the following:

1.	 You do not know whether the regulator will accept this 
answer. After all, it is a biopsy, rather than a physician's 
decision, that is considered the gold standard.

2.	 Even if the regulator accepts your argument, you 
have no idea how many of the nonbiopsy patients 
were diagnosed negative by your blood test. This is 
one analysis that you have not done. In other words, 
you have no idea how accurate you are versus the 
physician's “negative” diagnosis.

So before making this second suggestion, you plan on 
reanalyzing your data to assess their agreement with the 
physicians' negative diagnosis. And even if your results 
turn out to be favorable, you still do not know whether the 
regulator's decision will be favorable as well.

A Catch (for Example)—cont'd
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this together with the preceding chapters, we get the following standard proce-
dure for a clinical trial and for research in general:

1.	 Define the product attributes of interest for the specific study, including 
efficacy, safety, compliance, and so forth.

2.	 Specify the intended use population for the product.
3.	 Identify subjects from the intended use population and select a sample 

of them.
4.	 Measure the relevant endpoints—those relating to the attributes of 

interest specified—on each member of this sample. For example, if your 
study assesses efficacy, you might measure Cure for each subject scored as 
0 (“not cured”) or 1 (“cured”).

5.	 Use your results to estimate the parameter of interest in the population. 
For example, compute % Cure in your sample, which becomes your 
best estimate for % Cure in the population; in other words, your trial's 
outcome is meant to estimate what the outcome would have been had 
you studied the whole population (which you cannot).

6.	 Report the results obtained with the suggestion that they represent the 
true values in the population more or less.

Suppose you are testing a new product for migraine headaches and are at the 
very beginning of trials in humans. Your natural first step is a Phase I study in 
a sample of healthy individuals—people who do not suffer from migraines. 
Once you show your drug is safe in Phase I, you will move on to testing fea-
sibility in Phase II on those experiencing the disorder. Phase III is far into the 
future, and you are not thinking about it at the moment.

Earlier I noted that it is you who determines the population, which is based 
on your particular interest. Well, you already seem to have a problem here 
in that the healthy volunteers of Phase I do not really interest you. Still, they 
have now become your population of interest. Why is this so? Truth be told, 
you have no choice in the matter. Your drug has yet to be tested in humans, 
and before testing it in those who are ill, both regulator and ethics com-
mittees require that it be tested on the subjects who are most resilient—on 
those who do not have the problem. At this early stage the medical com-
munity is most concerned that your product does no harm, that it is safe. 
Once that is established, you will be allowed to test efficacy in the diseased 
population.

So for the moment, healthy volunteers are your population of interest, and 
this is because (1) they are hardier than your ultimate intended use group 
and so most appropriate for testing safety early on, and (2) their biological 
system is sufficiently similar to those with the ailment so that what you learn 
about the drug from the healthy group can, with respect to safety, apply to 
the other. In other words, we expect results in healthy humans to generalize 
to those with the illness. This, of course, should not be a new idea. After all, 
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your research began in test tubes of which the results you generalized to mice 
and continued with generalizing results from mice to humans. Clearly, nei-
ther test tubes nor mice were your intended use population.

Moving on, you have collected data from a sample of 20 healthy volunteers 
and found two safety problems of note. Specifically, two of the subjects expe-
rienced a mild bout of sweating after taking the first pill. The trial's principal 
investigator believes that these adverse events (AEs) are related to the drug but 
judged them mild enough to allow both subjects to complete the trial. Based 
on the results obtained in Phase I, you conclude that the drug is safe enough 
to be tested in those who have migraines. Have you made the right decision? 
Assuming that Phase I was conducted properly, the short answer is “yes.” At the 
same time, we should take a more careful look at what exactly was done here.

You sampled 20 people from a very large population and obtained (mostly) 
favorable results. You then concluded that this sample of 20 provides enough 
information to conclude that the drug is safe in general. Now you may recall 
my emphasizing that scientific enquiry requires precisely defined terms. 
And here I described a population as “very large,” which does not seem 
particularly precise. So at this stage I will formally state that populations are 
sufficiently large that, in statistics, they are considered infinite in size. Now 
while this may not be the case every time, for all practical purposes this is so. 
You see, you could have selected 200 or 2,000 and would still have obtained 
only the tiniest of fractions from the population of healthy individuals. And 
when you go on to conduct a trial in subjects with migraines, whatever numbers 
you choose will still constitute a very small portion of all those with the illness. 
Thus, in virtually all clinical trials the number of subjects participating is a 
minuscule proportion of the population they aim to represent.

The fact is that when sampling you will never know exactly how safe your pill 
is in any population. To know this, you will have to measure each and every 
member of the population. And since this cannot be done—since you are for-
ever constrained to learning about the whole from subsets of it—populations 
are, for all practical purposes, so “very large” that they are infinite. Now if I 
really want to get technical here, I would provide examples of finite popula-
tions that can be measured in their entirety. Instead, I shall compromise and 
provide additional details in a footnote.5

5  For example, we might define all girls in a specific fifth-grade class at a specific school as our 
population and go on to measure all of them on a parameter of interest. Similarly, there might be a 
very rare disease where it is realistically possible to measure all individuals known to suffer from it. But 
we must consider that (1) these cases are sufficiently rare and are not particularly relevant to this book, 
and (2) even in cases such as these, one is, in fact, often sampling. Let us take the rare disease where the 
researcher's goal is typically to learn something about this disease in general and thus about those who 
will contract it in the future as well. In this sense, even measuring all who currently have the disease is 
sampling from a population. It is just that some in this population are not at this time available.
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Getting back to the initial question, why could you conclude that your drug 
is safe based on a sample of 20 subjects? Indeed, why not 200 or 2,000? Well, 
in Phase I there is usually no formal statistical justification for this. It is just 
that over time certain conventions have developed, and one of these is that 
relatively small numbers of subjects are enough for testing safety early on.6 
There is some statistical logic to this in that the size of Phase I trials is based on 
experience, which is another way of saying “empirical data.” But while there 
is statistical logic here, there is usually no hard and fast statistical justification 
for the specific sample size of the kind you find in later stages. And, as all my 
general rules, this one has exceptions as well.

In summary, samples are subsets of populations, and the results obtained 
from them are designed to generalize to the population. Whether or not this 
is actually what happens is a crucial question that we shall address in the 
following chapter.

6  Keep in mind that Phase I is only done after extensive preclinical testing, much of which is designed 
to demonstrate a drug's safety in biological systems similar to humans. Moreover, Phase I testing is 
usually very thorough, with subjects kept in the hospital throughout and tests—vital signs, blood 
chemistry—taken continuously.
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n	 Clinical trial data: sampling, estimating, and knowing
n	 Sample statistics and population parameters
n	 Using point estimates in a drug trial
n	 Quantifying intuition in the treatment of migraine
n	 Sampling error
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Introduction: Fact and Fiction

Imagine that you run a two-arm trial testing a drug for reducing fever, with 
the goal being to demonstrate safety and efficacy. There are 22 subjects in 
Treatment, 26 in Control, and you take their Temperature at baseline and 
at three-hour time points. The protocol specifies that baseline Temperature 
should be measured no more than 10 minutes before taking the drug and not 
after; final assessment should be within 10 minutes of the three-hour time 
point.

Assessing one of the subjects at baseline, you find his temperature to be 38.5°C. 
The subject's temperature was measured about two minutes before he took the 
pill. At three hours and four minutes, his temperature was 37.2°C, a 1.3°C 
reduction. Depending on his group, the result may be favorable, unfavorable, 
or somewhere in between. Be that as it may, I will focus on the more basic 
question, “Can you believe what you see?,” and in way of an answer, I shall ask 
a few more questions:

n	 If you had taken the subject's temperature seven minutes before he took the 
pill instead of two minutes, would his temperature have been 38.5°C exactly?

Estimation
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n	 If you had assessed the subject at three hours minus six minutes instead 
of three hours and four minutes, would you have gotten an identical 
1.3°C reduction from the baseline?

n	 If another individual were randomly selected to participate in the trial 
instead of this one, would she have shown a 1.3°C reduction as well?

n	 Having completed the trial, you find that the average reduction was 
1.8°C in Treatment and 1.0°C in Control, a difference of 0.8°C in favor 
of Treatment. If each group had consisted of 31 subjects (instead of 22 
and 26 in Treatment and Control, respectively), would you have gotten 
the same result?

I will give you a hint: The answer to all of these questions is “Not much of a 
chance.” In other words, “No.”

Now the implication of all this is that you cannot trust what you see, which is 
something you likely learned long ago along with “Don't talk to strangers.” 
This particular issue has also been central for some great personages like Kant, 
Schopenhauer, Berkeley, Locke, Holmes, and Houdini. So when you see a 
0.8°C difference in reduction between two drugs, you cannot really believe 
it. Nor could you have trusted another number had it emerged. And if this 
is the case, how can you conclude anything from clinical studies? In fact, if 
empirical data cannot be trusted, what is the use of science? Well, let us not go 
overboard.

Some Terminology
In the preceding chapter I described a Phase I study in which you obtained 
a sample of 20 healthy volunteers to test the safety of a drug for migraine 
headaches. Having found only two subjects experiencing mild AEs, you 
concluded that the drug was sufficiently safe to advance to the next stage of 
testing.

Claiming that your product is “sufficiently safe” is a good start, but you need 
to be more precise. Specifically, you must quantify the statement, which you do 
by stating that about 10% (2 out of 20) individuals who take the medication 
may experience mild bouts of sweating. You also add that to the best of your 
knowledge there are no other AEs associated with the drug—and certainly no 
serious adverse events (SAEs).

Notwithstanding what I just wrote, these statements are based on data, so they 
seem to be sound. They very well might be. Still, as noted in the preceding 
section, you cannot take the process generating these data for granted. You 
have, in statistical terminology, engaged in estimation—approximated a 
population value from a sample. Specifically, you obtained a sample of 20 
individuals, measured some endpoint on them (occurrence of AE), and 
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computed a statistic (10%). In statistical terms you have obtained a sample 
statistic. Here this is the proportion of subjects experiencing AEs in the sam-
ple, which is your best estimate of the population parameter—the value of 
interest in the population and, as such, the truth.

Keep in mind that I have done no more than attach some terminology to the 
familiar activity of making statements about populations from samples. We 
engage in this activity continually. Thus when meeting Sheldon for the first 
time, you form an opinion of him; you use a single encounter (a sample of 
behaviors) to conclude something about Sheldon in general (his popula-
tion of behaviors). And when a teacher makes up an arithmetic exam con-
sisting of 10 questions, she expects her sample to represent all arithmetic 
problems of this type. She aims that the grade obtained by a pupil on this 
test with its specific problems will be a good estimate of the pupil's ability 
in general. The teacher has little interest in how well a pupil can solve arith-
metic on a specific test. She wants to assess arithmetic ability in general, so 
she uses samples from the infinite population of arithmetic problems. The 
grade obtained is a sample statistic estimating the population parameter 
“true ability in arithmetic.”

You may have noticed that I inserted the word “truth” here, which can 
mean anything from the trivial to the transcendent. In statistics its mean-
ing is straightforward: Truth is the value in the population—the population 
parameter.

Estimation and Certainty
You are about to start a Phase II trial testing a prophylactic drug for migraines, 
and I will not detain you. After extensive planning and consultation, you 
settle on a simple two-arm, one-month trial of 80 migraine sufferers. Half of 
your subjects will be randomly assigned to receive the investigational drug 
(Treatment) and half a placebo (Control).

The trial is done, the data have been collected, and you find that 20 subjects in 
Control had at least one migraine during the trial. The number experiencing 
migraines among those in Treatment was 10. Based on these results, you 
conclude the following:

1.	 My best estimate for the One-Month Rate of At Least One Migraine in the 
population of those receiving placebo is 20/40 = 50%.

2.	 My best estimate for the One-Month Rate of At Least One Migraine in the 
population of drug takers is 10/40 = 25%.

3.	 My drug is superior to the placebo in this trial (25% vs. 50%).
4.	 My drug is superior to the placebo in the population.
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A Word on Certainty

The solution suggested—foregoing definitive statements in 
favor of those with high probability—is not perfect. But it is 
the rule in life as it is in statistics. Thus when you buy a toy 
for your child, you assume with some degree of probability 
that it will function properly. It usually does, but sometimes it 
doesn't. Similarly, when you drive your car or fly to a distant 
city, you are “pretty sure” you will arrive safely. But accidents 
happen. Over time you have learned to live with uncertainty 
and minimize it to the degree you can. You buy products and 
make travel plans (and do much else) based on probabilistic 
assumptions. And while you do not formally compute these 
probabilities, let alone articulate them, you make intui-
tive use of them. In science, with the aid of statistics, we 
transform intuition into numbers.

Now many scholarly works are available that describe how 
we humans go about computing probabilities intuitively. 
Many of these show that we do it often—and badly. Yet we 
muddle along regardless, building roads and cities, bearing 
children and raising them, and engaging in a variety of other 

activities with a fair degree of competency. Still, in both 
science and life we must live with uncertainty.

At the same time, it should be obvious that our “probability 
requirements” differ between situations. For example, when 
you decide to take an umbrella to work, you would like to 
have made the right decision, but if you did not, it is not a 
disaster. At worse, you are inconvenienced by an unneces-
sary umbrella when it does not rain or, having decided to 
forgo the umbrella when it does rain, you get a little wet. 
This is not the case in medical products, where incorrect 
decisions typically have more serious consequences.

So let us agree that while we are generally reconciled to 
uncertainty, its acceptable level varies from one situa-
tion to another. Specifically, where life and limb are con-
cerned, we aim to keep uncertainty at a minimum. And 
what this “minimum” should be, and how we go about 
obtaining it, is something statisticians are particularly 
concerned with.

These are reasonable statements but this is a clinical trial and you will have to do 
better. You need to be right. Well, are you? The short answer is that you will never 
know. Populations are infinite in size and one cannot know the exact truth about 
them. As you might imagine, this is not a satisfactory answer. Both consumers and 
physicians expect to know how safe and effective your medication is, and here you 
are suggesting that it is impossible to know. That is just not good enough.

Clearly, we need some compromise, and it is this: Instead of providing definitive 
statements about your product, you will provide information you believe is true 
with “a great degree of certainty.” It is the best you can do. So instead of mak-
ing statements like, “I'm certain my drug causes mild AEs in 10% of subjects,” 
consumers will have to settle for statements like “I'm pretty sure that. …”  
In other words, having given up on certainty, you will report numbers that have 
a high probability of being true, and report the probability as well.

Getting back to the issue at hand, we agree that empirical studies cannot yield 
the perfect truth. Still, some studies will provide better information than others 
and when planning a trial you try to make yours one of the good ones.

Now there are many factors that determine the accuracy of a particular study's 
information, including: 

n	 The degree to which measures can provide consistent results—that is, the 
extent to which they are repeatable and reproducible.
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n	 The degree to which measures are relevant to the issue under 
investigation—in other words, valid. For example, you can measure shoe 
size with both accuracy and repeatability, but doing so will usually not be 
terribly relevant for most clinical indications.

n	 The degree to which subjects are similar to those in the intended use 
population—that is, the degree to which your sample is representative of 
the population.

n	 The number of subjects in your trial—that is, your study's sample size.

There are many other factors, and I shall cover the most important ones when 
discussing clinical trial design. For the moment I will focus on the issue of 
sample size only.

While we agree that you can never know the truth in the population, we can 
also agree that the larger your sample size, the nearer the truth you can expect to 
be.1 For example, you put greater trust in the results of a poll of 500 people than 
you do in one of 50. Similarly, you are more comfortable labeling someone a 
“good student” if you know that she achieved good grades on several tests as 
opposed to one. Examples like these abound and have found their way into 
our language as well. For instance, you “take a second look” when you are 
unsure of something, which in statistical terms means that you have enlarged 
your sample from one to two in an effort to get nearer to the truth.

Summarizing thus far:

1.	 Knowing the truth in the population with absolute certainty is virtually 
impossible in both everyday and clinical trials.

2.	 We are thus forever constrained to probability-like statements.
3.	 The degree of certainty associated with any statement is in great measure 

determined by the sample size it is based on; the larger the sample, the 
greater the level of certainty.

Now long before reading this book you knew that more observations lead to 
greater certainty. At the same time, there is something you may not know that 
is essential: the functional relationship between sample size and certainty. This 
is the actual amount with which certainty changes as sample size changes. 
Consequently, you cannot quantify just how sure you are of a particular result 
given a specific sample size. And in clinical trials you will need to know this.

So we agree that a poll of 500 provides more confidence in results than one of 
50. But without some mathematics, we will not be able to say just how much 
greater our confidence is. And if team A beats team B twice in a row, you are 
more confident of A's superiority than if it had won once only. Yet here too you 
do not know how to quantify by how much your certainty has increased in the 
second instance relative to the first.

1  Assuming, of course, that the other factors affecting your data's accuracy are, more or less, taken care of.
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Let us agree that using phrases like “fairly certain” or “pretty sure” is fine in 
our everyday lives but not sufficient in clinical trials. To get your product to 
market, you will need to make some very specific quantitative statements about 
its attributes. These consist of two types:

1.	 The first type of statement relates to the attributes of the product 
itself—attributes such as safety and efficacy. For example, you might 
claim that the drug (a) causes mild AEs in about 10% of those who take 
it and (b) reduces the incidence of migraines by 50%.

2.	 The second type of statement relates to the degree of confidence you 
have in the estimates provided. You might, for example, wish to say that 
you are 99% confident of the numbers reported. Unfortunately, you 
cannot.

Now the first statement is straightforward and simply involves computing  
sample statistics from study data. You then cite these sample statistics as your 
best estimates of population parameters—of how the drug will perform when 
used by a large number of people. The second statement is more involved, in 
part because it is also dependent on the relationship between sample size and 
accuracy.

Points Estimates and Interval Estimates
At this stage I have already defined sample statistics, presented examples of 
them, and noted that quantities like Rate of Migraine obtained in a trial provide 
your best estimates of the truth. And they do. But they are also wrong. This 
should come as no surprise, since I have emphasized all along the limitations 
of samples in representing populations. Because populations are infinite and 
you cannot measure all of the elements in them, you also cannot know the 
absolute truth about them. In other words, you have zero certainty about any 
estimate of a population parameter.

Oddly, this logic makes no distinction between small samples or large; with 
both you are equally certain that your specific estimate is wrong. Yet, this is 
the way it is: For large samples or small, you can pretty well take for granted 
that your point estimate of the population parameter is incorrect. But if this 
is the case, how can we express the apparent “accuracy advantage” of larger 
samples over small ones?2 It seems, then, that we require a somewhat differ-
ent approach.

2  I write “apparent” because on occasion a smaller sample might, by chance, yield a better estimate 
than a larger one. But this hedging my bets with “apparent” is cumbersome, and I shall omit it in 
the future. Be that as it may, you should keep in mind that on occasion, smaller samples yield more 
accurate estimates than larger ones by chance.
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While all samples provide wrong estimates, we expect larger samples to 
yield values nearer to the truth. Thus when discussing an estimate's accu-
racy, you should not be asking whether or not you have hit the nail on the 
head (you know the answer to that one). You should rather be asking how 
close to the nail you pounded the hammer. In estimates, as in hand gre-
nades, close counts. So from here on I shall be dealing with distance of point 
estimates from the truth rather than assessing whether a specific value is 
right or wrong.

Recall that in the preceding section I mentioned that there is a functional 
relationship between sample size and level of certainty—a mathematical 
formula relating the size of samples to the accuracy of the estimate yielded 
by them. Using the rationale presented, we can expect this relationship to 
relate to distance. Specifically, the functional relationship describes how 
increases in sample size yield values that are nearer to the truth in the 
population.

Now all of this appears to be reasonable, but it seems to have a basic flaw—in 
fact, a seemingly fatal one. Recall that we wish to know the truth in the popu-
lation and have reconciled to never knowing it. So instead, I suggest an alter-
native that involves determining just how near the truth an estimate might be 
given the sample size derived from it. But if I cannot know the truth, how am I 
ever to know my distance from it?

Well this is indeed a problem, which I will summarily dismiss by noting 
that mathematicians have already taken care of it. And this elegant theory 
formulated hundreds of years ago has been tested with the brawn of modern 
computing and found to work. In short, it can be trusted.

Having set the backdrop, I will now move forward on the issue of distance 
using the concept of interval estimate—estimation that takes into account 
an interval-distance from the truth, as opposed to the point estimation.  
To do this, I will appeal once more to your Phase II clinical trial of a 
drug for migraines and make the following statements (with absolute 
certainty):

1.	 Before conducting the trial, you have no empirical information on 
the efficacy of your drug. So all you can say with complete certainty is 
that among those taking the medication, between 0% and 100% will 
experience at least one migraine a month.

2.	 Having conducted the trial and found that 25% experienced migraines, 
you can now say for certain that the true rate in the population is neither 
0% nor 100% exactly.

Now let me introduce into this mix the more intriguing, if more distressing, 
uncertainty.
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Whatever the truth about your drug, you can, after having conducted the trial, 
state the following:

1.	 The population parameter—the true Migraine per Month Rate for those 
taking your drug—is over 0% and less than 100%; it cannot be 0% 
because some subjects experienced migraines, and it cannot be 100% 
because some did not. Where exactly between 0% and 100% you do not 
know, but you can say the following:
(a)	The true value is very likely between 1% and 99%.
(b)	It is less likely to reside between 15% and 35%.
(c)	 It is even less likely to reside between 24% and 26%.
(d)	It is not 25%.

Statements (a) to (d) can be summarized by saying that the narrower the 
interval, the less confident you are that the true population value is in it. 
Unfortunately, the more informative the interval—the narrower it is—
the less certain you are of it. Thus, you are absolutely sure the true rate is 
between 0% and 100%, which is useless information. And you are abso-
lutely sure that the 25% obtained is wrong, a specific value that (had it been 
right) would have been most informative of all. In short, the narrower the 
interval I specify around my point estimate, the less likely the true population 
parameter is to be in it.

Now all these statements are associated with the idea of sampling error, 
which is the statistical term for saying that samples do not perfectly represent 
populations. Sampling error can be small or large; it may yield an estimate 
of 25% when the truth happens to be 25.76%, or 33.0%, or any other rate 
between 0 and 100. The particular inaccuracy of a given estimate is subject to 
sampling error and cannot be known because the true population parameter 
is unknowable. Yet, what you do know is this: Larger samples yield, on average, 
smaller sampling error. And what you know intuitively, in statistics translates into 
probabilities. Specifically, it enables you to state the probability with which the 
true population value falls within a specified interval and thus: 

n	 The larger the sample, the smaller the sampling error.3

n	 And the smaller the sampling error, the narrower the interval I can 
specify with a given probability that the true value is in it. For example, 
if I obtained 25% from a sample of 20, I am less certain that the true 
population value is between 20% and 30% than if I obtained 25% from 
a sample of 100. I recommend that you read the preceding sentence a few 
times until it makes completes sense to you.

3  I just want to remind you again that this is true “on average,” since small samples may, by blind luck, 
yield better estimates than large ones.
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So for any given sample size, statistics provides us tools to construct intervals of 
a given width with a specified probability that the true value is in the interval. 
And, once again, we have a sentence that you should probably read a few times 
before moving on.

In statistics we translate this reasoning into numbers using the concept of 
confidence interval (CI). For example, stating that the 95% CI is between 20% 
and 30% is saying that I am 95% confident that the true population value lies 
between these two values.4

The mathematical formulation relating the width of a CI to the sample size 
can, in most cases, be provided by the central limit theorem. The theo-
rem came into its final form early in the twentieth century, though ele-
ments of it have been with us for almost 300 years. Applying the theorem, 
I can construct an interval around the sample mean—an interval within 
which the true population mean is likely to be. I construct this interval using 
the sample size and other parameters. For the moment, I remain with  
sample size.

Summarizing and a Bit more
In statistics we deal with two types of estimates: point and interval. A point 
estimate is my best guess of the truth but is wrong, and an interval estimate 
provides a range within which I believe it likely that the truth resides. The 
probability that the population parameter is indeed within a given interval is 
in great measure a function of sample size. Thus, constructing a 95% CI will 
yield a wide interval when the sample is small and a narrow interval when the 
sample is large. At the extreme, when my sample is infinite—when it is actually 
the population—the width of the interval is 0; the value obtained is exactly the 
value in the population. In other words, it is no longer an estimate, and I no 
longer have an interval.

I use the 95% CI example because, for reasons unknown, it is the most 
frequently used in clinical trials; it is the standard. Yet applying the same type 
of computations, I can construct intervals of varying confidence as well. As you 
might expect, a 90% CI is narrower than a 95% CI, and an 80% CI is narrower 
still. If this is not apparent to you, give it some thought. Understand why this 
is so, and you will understand the concept of CI.

4  The formal (technical) definition in statistics of a CI is different. It is actually “I am certain with 
some P% that repeated samples of this size will yield statistics within a particular interval.” In practice, 
however, it is used as described here: the interval within which the truth—the population parameter—
resides with a given probability. For the sake of completeness (and correctness), the formal definition 
of a confidence interval is the interval within which a specified percent of results will fall when your 
study is conducted repeatedly. From this point on, however, I shall use the more practical definition.
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You are running for public office, and you commission a poll 
among independent voters. Before conducting your poll, you 
determine that as long as at least 20% of these voters sup-
port you, there is no need to invest more resources in them; 
20% is all you will need from this population to win the elec-
tion. This is important information because your resources 
are limited and you must optimize their use.

At this stage of the campaign you believe that you are at least 
there—that your support among independent voters is at 
20% or higher. But while you “believe” this is the case, you are 
sufficiently unsure to be worried about it. And now you must 
decide just how many resources to invest in the poll itself. 
The larger the sample you commission, the nearer to the truth 

your outcome will be. But larger samples are more costly, and 
you have other activities to fund as well. Consulting with a 
statistician, you learn that if you sample 100 people, the 90% 
CI will be about 14% wide. For example, if the result is 22%, 
you will know with 90% confidence that the true proportion of 
supporters among the undecided is between about 16% and 
30%. Is this good enough? Probably not. But this is for you 
to decide, not for the statistician. If, on the other hand, you 
believe yourself nearer to 30%, a poll of 100 will do, since the 
confidence interval around 30% (or a similar value) is between 
23% and 38%. In other words, if your result is near 30% and 
the size of your poll is 100, you will be 90% sure that you have 
exceeded the 20% minimum set for yourself.

How Confident Is Confident Enough?

Being able to compute CIs opens a whole new world for us—one in which we 
can make decisions and attach specific probabilities to them. It allows us to 
make informed decisions quantified in probability terms. As such, CIs enable us 
to know just how informed our decisions really are. And this is very different from 
everyday statements such as “I think that…”

In chapters that follow, I will relate CIs to statistical testing, which is central 
in clinical trials. At this stage I would like to present a practical example of 
decision making aided by the CI, which is presented in the box below.

As noted some time ago, one's “confidence requirements” depend on the 
circumstances. It will be you (and regulators and others) who will decide just 
how confident you must be of any particular estimate. The statistician cannot 
help you a great deal with this, since these requirements usually relate to 
considerations other than mathematics.5 Once you decide how confident of 
your estimate you need to be, the statistician will tell you how many subjects 
will get you there. And even after the study is done, you will not have perfectly 
precise information. Yet you will have enough data to make informed decisions. 
And this is not bad at all.

5  I am being a bit harsh on the statistician here. It is true that his forte is computing numbers, and 
it is generally up to you—the drug developer—to interpret these numbers in the most appropriate 
manner. At the same time, your run-of-the-mill statistician has been exposed to numerous medical 
product development projects. As a result, he can likely provide useful tips on what is and what is not 
acceptable when estimating true population values in varying circumstances.
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“God, therefore, stands in no need of general ideas; that is to say, he 
is never sensible of the necessity of collecting a considerable number 
of analogous objects under the same form for greater convenience in 
thinking. …

General ideas are no proof of the strength, but rather of the 
insufficiency of the human intellect; for there are in nature no 
beings exactly alike, no things precisely identical, nor any rules 
indiscriminately and alike applicable to several objects at once. The 
chief merit of general ideas is that they enable the human mind to pass 
a rapid judgment on a great many objects at once; but, on the other 
hand, the notions they convey are never otherwise than incomplete, 
and they always cause the mind to lose as much in accuracy as it gains 
in comprehensiveness.”

—Alexis de Tocqueville1

From Description to Testing: 
A Beginning

■	 Statistics, “an imperfect but necessary expedient”
■	 Our psychology and descriptive statistics
■	 ANOVA: analyzing variation to compare means
■	 Statistical and clinical thinking
■	 Significance: a hint of things to come using a diagnostic device
■	 Sensitivity
■	 Specificity
■	 Type I Error and Type II Error in diagnostic accuracy

Contents

1  de Toqueville, A. Democracy in America (Volume 2, Chapter 2). 1840. Project Gutenberg, 2006. 
netLibrary. http://www.gutenberg.org/files/816/816-h/816-h.htm.
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Introduction
What the deity is or is not credited with has been a matter of faith and specula-
tion for some millennia. I will attempt no contribution to the issue. But I will 
discuss statistics, readily admitting its ungodly nature as an “imperfect but nec-
essary expedient” in the sense that de Tocqueville meant. Viewed thus, science 
itself represents intellectual insufficiency being a symptom of this need for 
“general ideas.” But for weakness or strength, statistics does its best to support 
the research process. And I shall attempt here to show how.

In Chapter 5 I observed that both child and statistician look for commonal-
ity in objects so as to lump them together. Like the rest of us, they collect “a 
considerable number of analogous objects under the same form for the greater 
convenience in thinking.” In statistics we call this collection of analog objects 
a population. I then described the process of selecting samples from these large 
collections to learn about the many from the few.

Sample data in hand, the statistician's natural inclination is to describe them. 
He does this by computing sample statistics like proportions, means, medians, 
ranges, and standard deviations. This activity constitutes a large part of statisti-
cians' efforts and comes under the heading of descriptive statistics.

Many descriptive techniques are straightforward and easily done with Excel or 
any of the many available statistical software packages. We thus compute “mean 
Income,” “median House Price,” “proportion of Waking Hours Spent in Front 
of the TV,” and so on. There are also graphical descriptions such as histograms, 
scatterplots, and others. Yet, be they numeric or graphical, simple or complex, 
descriptive statistics must be applied wisely because they “always cause the mind 
to lose as much in accuracy as it gains in comprehensiveness.” You see, when 
doing descriptive statistics, I make the inevitable compromise of presenting a 
few numbers in lieu of all the data collected. And while the former are simpler 
to understand than the latter, they are also incomplete. I thus forgo the whole of 
the information in favor of comprehension—a necessary expedient.

A less complementary word for descriptive statistics is stereotyping, which the 
Oxford Dictionary defines as a “simplified idea of the characteristics which typ-
ify a person or thing.” Substitute “population” for “person or thing” and you 
have described sample statistics like the mean and median.

Now the activity of stereotyping has gotten a bad name, and there is some jus-
tification for that. But, as de Tocqueville pointed out, we have no choice in the 
matter. Our mind is simply not built for handling each and every peculiarity of 
each and every member of a population. So, for example, when I say that the 
average height of women in New Zealand is 163 centimeters, I well know that 
most of them are taller or shorter. Indeed, there are probably very few at the 
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mean exactly; in presenting 163 centimeters for the mean, I sacrifice accuracy 
“to gain comprehension.”

Simplification is a central goal of descriptive statistics, but there can be such 
a thing as too much of it—of summarizing the original data to a point where 
the result is more misleading than informative. The statistician's challenge is 
to present summary statistics that tell the data's story as accurately as possible, 
which is often harder than it seems. Consequently, we should keep in mind 
that any particular sample statistic may be a good descriptor of the data or less 
than that. And by way of an example, I will present the following four hypo-
thetical distributions of numbers:

A. 8, 8, 8, 8, 8, 8, 8, 8
B. 6, 7, 7, 7.5, 8.5, 9, 9, 10
C. 4, 4, 4, 4, 12, 12, 12, 12
D. 0, 0, 0, 0, 0, 0, 64

In all four sets the mean is 8, and in three of the four none of the individual 
numbers are at the mean exactly. From this standpoint alone, 8 is an imper-
fect simplification of all but the Distribution A, which it represents perfectly. 
At the same time, further examination of the numbers suggests that the num-
ber 8 varies in the degree to which it appropriately represents the other three 
distributions. Clearly it is a better descriptor of B than of C and D; in B all of 
the numbers are distributed uniformly around 8, even though an actual “8” 
does not appear in it. This is not the case in C and D, where the numbers are 
generally further from the mean. At the same time, in C the numbers are sym-
metrically distributed around 8 (all are equally far from it), which makes the 
number a better descriptor than in D, which is “lopsided” distribution.

I have little doubt that you can find additional reasons for one distribution 
being more appropriately described by the mean than another. You might also 
come up with alternative summaries that may be more informative, such as 
the following:

1.	 When describing D, one should exclude the large number (64) for being 
an outlier and only then go on to compute descriptive statistics.

2.	 No summary statistic is appropriate for C as a single unit, since its 
numbers appear to have been sampled from different populations.

Indeed, C is particularly interesting in that one might claim that the numbers in it 
originated from two populations: one with a mean of 4 and the other of 12. And 
if this were the case, it is inappropriate to compute an overall mean for C, since, as 
noted, descriptive statistics should be done separately for each population. Two 
or more groups should not be combined when computing sample statistics like 
means and standard deviations because they provide misleading information.
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I have been talking about descriptive statistics and will soon 
discuss hypothesis testing, which is at the heart of the scien-
tific method. In both I avoid formal technique to the degree 
possible. At the same time, it is difficult to resist something 
as elegant and intuitive as analysis of variance (ANOVA) 
when it rears its attractive head.

Look at C, and you will find that even though all of the 
numbers are presented in a single list, it consists of two 
groups: one with a mean of 4 and one with a mean of 12. If 
I told you that the first four numbers came from the Control 
group and the remainder came from the Treatment group, 
you would likely conclude that there is a (significant) dif-
ference between them. “Treatment,” you would say, “seems 
to differ from Control.” Formalizing, I can do the following:

1.	 Compute the standard deviation—a description 
of spread—for all the numbers combined and 
obtain 4.3.

2.	 Compute the standard deviation for the two groups 
separately and come up with 0 for each.

The difference between the standard deviations obtained 
suggests that the “variation within each group” is much 
smaller than the “variation overall.” In other words, com-
paring these variations, I get an indication of whether they 
ought to be combined or separated. Thus ANOVA, like all 
methods of hypothesis testing, provides us with a quantita-
tive index of whether data should be separated or combined. 
In the current context, its logic is as follows:

1.	 Computing the mean for all the numbers in Distribution 
C, I obtain 8.

2.	 8 is a pretty bad descriptor of this list of numbers 
because:
a.	 There is not a single number 8 on the list.
b.	 The numbers are stacked in two groups—one at 

4 and the other at 12, and there are no numbers in 
between.

c.	 Each of these stacks is uniform and pretty far from 
the mean of 8.

I will thus conclude that while 8 is in fact the true mean of 
Distribution C, it is a bad descriptor of it. A better option 
might be to provide the mean for each group separately—4 

for the first and 12 for the second. And by doing this, I indicate 
my belief that these numbers represent two populations.

It is important to note that all this makes sense only if 
you also have some additional information suggesting 
that there are two populations here—for example, when 
the first group includes only subjects receiving Treatment 
and the second Control (or, for instance, when one group 
includes females and the other males). Simply taking a 
distribution and arranging its numbers by size and calling 
the different sizes “groups” is usually not very useful.2

Now this should be very familiar to you, since it is very much 
how you identify populations. For example, you might observe 
a group of people in which there are both adults and children. 
Unconsciously you might note that on the variable Size there 
is little variation within each group separately. But when 
combining the groups, the variation of Size is great. Thus, you 
would conclude that there are two populations here. It is the 
same when looking at trees and cars. While trees differ greatly 
from one another, as do cars, the variation within each group 
separately is much smaller than that of the groups combined. 
Thus, comparing the variation within a group to that overall 
provides an efficient method for identifying populations.

While the formulas associated with ANOVA are somewhat 
more complex than presented, the principle is the same: 
Examine the relative size of variation computed in differ-
ent ways on the same numbers. Hence you are analyzing 
variance.

As it turns out, both the logic and mathematics of ANOVA 
are the workhorses of a large number of statistical tech-
niques grouped under the heading of the General Linear 
Model (GLM). These include often-used procedures like 
ANOVA itself, correlation, regression, and t-test. And they 
are fine illustrations of how descriptive statistics are closely 
tied to hypothesis testing even though they are typically pre-
sented as separate topics.

From Description to Testing

2 I write “usually” because there are techniques such as clus-
ter analysis that do this, which in some circumstances can be 
informative. But such techniques are seldom applied to clinical 
trial data.
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Getting back to the issue at hand, statisticians recognize that some descriptive 
statistics are better than others in particular situations. Consequently, in any par-
ticular application, they usually present several of them, thus providing a more 
complete picture of the data. In the case of Distributions A and B, I might also 
want to present the standard deviation, which indicates the dispersion of num-
bers around the mean. I may also add some indication of shape using kurtosis 
and skewness. Depending on the numbers' characteristics, one should select 
those descriptors that best tell their story—that present as complete a picture as 
possible despite the information lost when computing summary statistics.

I should emphasize that this is not a trivial message. Presenting your data well—in 
an elegant and understandable fashion—will go a long way to getting your project 
to succeed. When trying to understand your data, as well as help others understand 
it, it is well worth the effort to select the most informative descriptives for it.

As we all know, numbers can be very elastic in the hands of statisticians (and 
politicians, journalists, Ponzi scam artists, lawyers, etc.). Indeed, much has 
been written about how to present the same data in different ways depending 
on the story one wishes to tell. There are also jokes about this and even a well-
known expletive attributed to a nineteenth-century politician. I thus feel the 
need to emphasize that I am not writing in cynical mode here. I take for granted 
that you who conduct clinical trials and I who analyze them wish to get at the 
truth. And this means that we both aim to present sample statistics in a way 
that will represent the data as precisely as possible. And just to make sure that 
both you and I keep to our resolve, regulators have put in place various proce-
dures to keep us honest. I will deal with some of these in chapters to come.

So let us agree that summarizing data is both necessary and problematic and that 
de Tocqueville had a point. Yet he himself generalized and so simplified. In par-
ticular, we know that our tendency to stereotype is not equally applied—that it 
depends in great measure on the situation we happen to be in. Thus, to know how 
financial markets fared in general, I might look up one of their many summary 
indexes like the Dow or FTSE or DAX. Such indexes lump many stock prices into 
a single number, which is enough information for some purposes. But if I were 
interested in the performance of a specific stock, I would seek out its value rather 
than that of any index it might belong to. In other words, some situations call for 
generalization, while others require more precise and limited information.

I should also note that statisticians sometimes deal with individual points in 
their data as well. But this is most often done to identify and understand out-
liers—values that do not fit the general pattern of the data. As a rule, individ-
ual points do not interest the statistician, and in this we differ from clinicians, 
whose primary preoccupation is the individual patient.
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To this point I noted the fact that statisticians compute sample statistics and 
focus on them. By doing this they primarily emphasize the similarity of sub-
jects in a group rather than differences between them. This, however, is only 
half the story.

Differences
Say you have developed a device for detecting sleep apnea, a disorder char-
acterized by pauses in breathing during sleep. A gold-standard reference (R) 
for diagnosing the disorder already exists, but it involves using a large and 
cumbersome device that requires patients hooking up to it with several wires 

An editorial in the British Journal of Medicine3 explains that 
evidence-based medicine refers to “integrating individual 
clinical expertise and the best external evidence.” The writers go 
on to explain that by “best available external clinical evidence 
we mean clinically relevant research, often from the basic sci-
ences of medicine, but especially from patient centered clinical 
research.” The term evidence-based medicine has been around 
for some years now and is generally accepted as good medical 
practice. Its application requires physicians to base treatment 
on both personal experience and sound clinical research.

Now this seems sufficiently obvious that one may wonder 
why it needs to be said at all. Well, it turns out that evidence-
based medicine is often counter to everyday medical practice 
in which physicians tend to “think clinically” rather than sta-
tistically. You see, each patient's profile is unique, differing from 
all others on parameters such as Medical History, Laboratory 
Test Results, Age, Sex, Social Support, and Tolerance for Pain. 
By nature, physicians focus on the individual, and this often 
obscures the fact that patients are exemplars of larger groups 
and should be treated as such. As a result, physicians will 
sometimes ignore empirical research and base their decisions 
on their own (at times limited and erroneous) experience and 
intuition. This is considered sufficiently problematic to have 
made the issue of evidence-based medicine prominent in 
medical journals, as well as in formal and informal discussions 
between practitioners. After all, if each patient were to be 
viewed uniquely, there could be no general treatment guide-
lines, and much of medical research would be superfluous.

In this book I am most concerned with statistics in clinical 
trials. Thus I am more interested in statistical thinking than 

in clinical thinking. When planning a clinical trial, the general 
approach is naturally statistical; we wish to show that “in gen-
eral” our product works when used by a relatively large num-
ber of individuals. And when interpreting the results of clinical 
trials, we typically look at summary descriptive statistics, such 
as the mean, rather than at individual patients. Thus, when 
planning clinical trials, clinical thinking can be a handicap. Yet, 
clinical trials are also about treating individual patients, each 
of whom is unique. So when considering clinical research, 
both statistical and clinical approaches are necessary.

The difference in approaches described often makes it dif-
ficult for physicians and statisticians to communicate with 
one another. Indeed, I have frequently encountered this dif-
ference in approaches to be a source of misunderstanding 
and even frustration (on both sides). Thus, for example, when 
presenting data to physicians I have found them interpreting 
individual data points while I obstinately maintain that they 
should be looking at summary statistics instead.

This difference between statistical and clinical thinking is 
often difficult to bridge. Yet it must be bridged. And there is 
no question of right or wrong here because both are required. 
The British Journal of Medicine suggests that, in the clinic, 
physicians should be “integrating individual clinical exper-
tise and the best external evidence.” This certainly is good 
advice for those conducting in clinical trials as well.

On Statistical and Clinical Thinking

3  Sackett DL, Rosenberg WM, Gray JA, Haynes RB, Richardson 
WS. “Evidence-based medicine: What it is and what it isn't.” 
1996, BMJ 312(7023): 71–72.
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during the night. Thus, assessment with R usually involves patients spending 
nights at a sleep lab, with diagnosis obtained via multichannel recording.

Your new test product (T) is simpler to use and requires only a single contact 
point with the body. Additionally, it is compact and can be used at home. The 
device includes software that records and interprets single-channel data, which 
can later be downloaded at the doctor's office.

You have completed the prototype and are now ready to conduct a pivotal trial 
for marketing approval. Many aspects of your product must be tested to obtain 
approval. These include procedural and material safety, efficacy, software vali-
dation, and others. In this section I will deal with efficacy, which in diagnostic 
devices translates into accuracy—that is, demonstrating that your device actu-
ally measures what it purports to measure, and does this reasonably well.

You have decided to assess T's efficacy by comparing it directly with R.4 The trial 
will include 250 subjects and will take place in a sleep lab. Each subject will 
be connected to T and R, both of which yield a large quantity of continuously 
recorded data. Your primary aim in this trial is to demonstrate T's accuracy in 
providing a dichotomous diagnosis of “positive” or “negative” (respectively, 
sick or healthy), which is done as follows:

n	 For each subject, both T and R provide a count of sleep apnea episodes 
during the night.

n	 If a subject's count is below 20 (for the night), he or she is diagnosed 
“negative” (healthy). If the number of episodes is 20 or above, the subject 
is scored “positive” (sick). Thus, each individual in the trial is scored as 
follows:
■	 0—Negative (# of episodes < 20)
■	 1—Positive (# of episodes ≥ 20)

Here, as in many diagnostic devices, you dichotomize a continuous score by 
transforming it into positive or negative. The continuous score is the apnea 
count that can vary from 0 to infinity, while the dichotomous diagnosis is 
determined by assessing whether a subject's score is above or below the cutoff 
of 20. This is useful for physicians who find it convenient to think of patients 
in terms of positive or negative. Yet, in many cases—and ours is one of them—
the continuous score itself is also meaningful. For example, you would expect 

4  Depending on the regulator and the device, there may be other options as well. For example, you may 
compare your device to a predicate (P)—an approved device, though not itself a gold standard. Your own 
device, if approved, may serve as P for future devices in their approval process. You might also conduct a 
trial in which each subject undergoes measurements with T, P, and R, aiming to show that T agrees with R 
more than P does. Doing the latter will allow you to claim that you are more accurate than a competitor, P. 
There are other options as well, with the one presented in this section among the simplest.
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a subject having 7 episodes during the night to have less of a sleep apnea 
problem than one who has 19. Yet, transforming the number of episodes to 
positive or negative yields the same diagnosis for both, which in turn results 
in loss of information. Dealing with continuous scores in diagnostic devices 
is an important issue and often difficult to deal with. Here I shall remain 
with the relatively straightforward case of comparing T to R, each providing a 
dichotomous score.

Table  7.1 presents your trial's results. Specifically, it shows the dichotomous 
diagnosis of positive or negative by both T and R for the 250 subjects participat-
ing in the trial. Let us first understand how to read the table and then examine 
how to interpret the numbers in it.

n	 The columns represent the gold standard (R) diagnosis. Looking at 
the bottom row (margin), you can see that R diagnosed 100 subjects 
“negative” and 150 “positive.”

n	 The rows represent the diagnoses yielded by your device, T. Looking at the 
leftmost column (margin), you see the sum of each row for T. Overall, T 
diagnosed 109 of the subjects “negative” and 141 “positive.”

In other words, T and R yielded very similar results overall, with the former 
diagnosing 60% of the sample positive and the latter diagnosing 56% positive. 
However, figures relating to overall agreement of group proportions are not 
particularly relevant to the devices' intended use. Keep in mind that doctors 
wish to diagnose individual patients, not groups. Thus, you and the regulator 
are primarily interested in the degree to which T's and R's diagnoses agree on 
each subject's diagnostic status. To explore this issue, you must examine the 
cells inside the table rather than the marginals that we discussed before.

Before going on I should emphasize that the gold standard R is, by definition, 
correct; in the context of this particular study, it provides a subject's true diag-
nosis. Now there is no perfect measurement, and even gold standards err every 
so often.5 But because they are the best we have, we treat their diagnosis as true 

Table 7.1  Outcome of Test Diagnosis by Reference Diagnosis

 Gold Standard Diagnosis (R)  

Test Diagnosis (T) 0 (negative) 1 (positive) Total

0 (negative)   81   28 109
1 (positive)   19 122 141
Total 100 150 250

5  If R is especially inaccurate, we call it an imperfect gold standard. When this is the case, 
disagreements between T and R are often adjudicated with the aid of a third method.



Differences 85

and conduct a trial to evaluate how well T agrees with them. In other words, in 
any case of disagreement between T and R, we say that the latter is correct and 
the former is erroneous.

Estimating T's accuracy is thus done by comparing its agreement with R at 
the subject level and involves looking at the data in the four inner cells of 
the table. There are several ways to look at these data and compute statistics 
from them. For the purpose of our example, we shall deal with two summary 
statistics only:

n	 Specificity: Of the total 100 true negatives—subjects diagnosed “healthy” 
by R—81 were also diagnosed negative by T. Thus, T detected 81 of 100 true 
negatives in the sample, which yields a proportion of 0.81. This proportion 
is termed specificity and is defined as the probability of T diagnosing an 
individual “negative” when the individual is in fact negative.

n	 Sensitivity: Of the total 150 true positives—subjects diagnosed “sick” 
by R—122 were also diagnosed positive by T. Thus, T detected 122 of 
150 true positives, which yields a proportion of 0.81 as well. This figure 
is termed sensitivity and is defined as the probability of T diagnosing a 
person “positive” when the person is in fact positive.

We thus learn that your device has both specificity and sensitivity of 0.81, which 
may or may not be considered acceptable. Deciding whether or not a device 
is sufficiently accurate is between you and the regulator. And if the device is 
approved for use, the market will form its opinion as well. The following are 
two of the factors that determine whether a device's sensitivity and specificity 
are acceptable: 

n	 The device's accuracy relative to those of similar products on the market.
n	 The relative advantages and disadvantages of your device compared to the 

gold standard. In this case, T is much more convenient than R and is also 
less expensive. On the other hand, T is less accurate in that it identifies only 
81% of true positives and true negatives. In your report to the regulator, 
you will need to justify this tradeoff; in other words, you will need to 
explain why the greater convenience and lower cost of T are sufficiently 
advantageous to outweigh its relative inaccuracy. This is typically justified 
by risk analysis, a section in your clinical study report (CSR). Risk analysis 
is, essentially, a cost-benefit evaluation of your product.

Having completed your study and submitted the CSR, you now await the regu-
lator's decision. The regulator, however, has asked for clarifications. One of her 
questions—a common one that should have been foreseen and preempted in 
the report—is whether your device performs similarly in different subgroups 
of your sample. In this example the regulator asks whether your product is 
equally accurate in both men and women.
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To answer this question, you reconstruct Table  7.1 to cover both men and 
women separately, and you come up with Table  7.2. Computing specificity 
and sensitivity of T within each of the subgroups yields the following: 

n	 Specificitymen = 48/60 = 0.80; Specificitywomen = 33/40 = 0.82
n	 Sensitivitymen = 73/80 = 0.91; Sensitivitywomen = 49/70 = 0.70

Looking at these numbers, it appears that your device's accuracy in detecting 
negatives is about the same for men and women; specificity is 0.80 and 0.82 for 
the two groups, respectively. However, the sensitivity obtained for men (0.91) 
seems much higher than for women (0.70). Based on this result, you suspect 
that T's ability to detect True Positives is higher in men than in women.

I write “suspect” because a difference between two point estimates obtained 
from a sample does not necessarily reflect a true difference in the population. 
Recall that it is the truth in the population rather than outcomes in a specific 
trial that interests you. After all, another study would have yielded different 
results where the difference between the sexes may have been larger or smaller 
(or, perhaps, in the opposite direction altogether). And because you cannot 
know from a sample what the true sensitivities are, you cannot be certain that 
the difference you see reflects a true difference in the population.

The issue involved here is central in statistics and relates to how we distinguish 
between observed differences that are probably due to chance from those that 
are real. This is done by using formal statistical testing, where at the end you 
conclude whether or not the differences observed are statistically significant—
that is, whether or not they are real (and not a result of sampling error).

Here I will compare the accuracy of your device between men and women 
using confidence intervals. There is in fact a more appropriate test, but I will 
use confidence intervals because they were explained in the preceding chapter 
and are intuitive.6 Recall that in constructing a confidence interval around 

Table 7.2  Outcome of Test Diagnosis by Reference Diagnosis by Gender

Men Women

Test (T) Gold Standard Diagnosis (R) Total Test (T) Gold Standard Diagnosis (R) Total
  0   1   0   1

0 48   7   55 0 33 21   54
1 12 73   85 1   7 49   56
Total 60 80 140 Total 40 70 110

6  The relationship between statistical testing and comparison of confidence intervals is not 
straightforward, and the two are not interchangeable. However, for our modest purposes, this will do.
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sample statistics, I provide a range of values within which I am fairly certain 
that the population parameter resides. Doing this for values obtained from 
your study for men and women separately, I obtain the results in Table 7.3.7

Before going on, I should point out that for all my examples in this section I 
construct 95% confidence intervals. This is the standard in clinical trials and 
therefore the most relevant. At the same time, you may recall from the preced-
ing chapter that you can construct any size confidence intervals you choose—
that is, those that provide greater or lesser likelihoods for presence of the true 
value between their upper and lower limits.

Let us now examine Table 7.3 and make some statements about it:

n	 Specificity of T in men was 0.80, and you can be 95% confident that the 
true specificity in the population is between 0.67 and 0.89.

n	 Specificity in women is 0.82, and you can be 95% certain that the true 
value in the population is between 0.67 and 0.93.
n	 Conclusion: The confidence intervals overlap, so, for example, the 

value 0.78 is within both intervals. This means that two specificities 
might actually be similar or even identical in the population. In other 
words, you cannot say with 95% certainty that the device's specificity 
is different for men and women.8

Note that the confidence interval for women is wider than that for men. This 
is because there are more men than women in this study, enabling greater 
precision in estimating your device's accuracy in men.

7  There are several methods for computing confidence intervals for proportions, which in most cases 
yield similar results. The confidence intervals in the table were computed using the Exact Binomial 
method.
8  When confidence intervals do not overlap, the values compared always differ significantly. However, 
the reverse is not always true—that is, when confidence intervals do overlap, the respective values 
sometimes differ significantly. This is not the case here, and this particular issue is beyond the scope of 
this book. It does, however, point to the difference between statistical testing done correctly and that 
using confidence intervals (which can sometimes yield erroneous conclusions).

Table 7.3  Specificity and Sensitivity with Confidence Intervals by Gender

  
 
 

Subgroup

Specificity Sensitivity

 
 
Value

Lower 
Confidence  
Limit

Upper 
Confidence 
Limit

 
 
Value

Lower 
Confidence  
Limit

Upper 
Confidence 
Limit

Men 0.80 0.67 0.89 0.91 0.83 0.96
Women 0.82 0.67 0.93 0.70 0.58 0.80
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n	 Sensitivity of T in men is 0.91, and you can be 95% certain that the true 
value in the population is between 0.83 and 0.96.

n	 Sensitivity in women is 0.70, and you can be 95% certain that the true 
sensitivity in the population is between 0.58 and 0.80.
n	 Conclusion: The confidence intervals do not overlap; you can be 95% 

certain that sensitivity in women is no higher than 0.80 and that in 
men it is no lower than 0.83. Consequently, you can say with 95% 
confidence that sensitivity of the device is higher in men than in 
women.

In statistical terminology, the difference in sensitivity between men and women 
is significant; it is real and not due to chance. Put a bit differently, you can now 
claim (with 95% confidence) that the difference observed between men and 
woman in sensitivity is not due to sampling error; it represents a true differ-
ence. The implication of this is that, in the context of my device's sensitivity, 
men and women belong to different populations. Understanding this logic is 
critical for understanding the concept of statistical testing (or hypothesis test-
ing) and is as follows:

n	 In any given study, I do not believe the point estimates obtained, since 
they were computed on samples from the population and, as such, are 
subject to sampling error. In other words, the outcomes obtained in the 
study may or may not well represent the truth in the population.

n	 Because I do not believe that point estimates are perfectly representative 
of the truth, I cannot interpret differences observed in them directly. Thus, 
for example, if I observe greater accuracy in men than in women, I cannot 
say for certain whether this is true in the population or merely a chance 
occurrence in this particular study.

n	 Instead of taking point estimates at face value, I build 95% confidence 
intervals around them. Once I construct the confidence interval, I can say 
with 95% certainty that the true population parameter lies between its 
lower and upper limits.

n	 Looking at the confidence intervals of the two groups, I examine whether 
or not they overlap. If they do not, I conclude that the groups differ 
significantly—that I am 95% certain they differ—that is, they belong to 
different populations.

n	 The flip side of the preceding statement is that there is a 5% chance that 
I am wrong—that I happened to get an extreme result by chance (by 
sampling error). In other words, there is a 5% chance that the groups do 
not truly differ despite the results observed.

n	 Erroneously concluding that two groups differ is, in statistics, termed Type 
I Error. (Type II Error is concluding that two groups do not differ when, 
in truth, they do.)
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Given the results obtained and the logic presented, you formally conclude 
that “my device's sensitivity is significantly higher in men than in women, 
and this conclusion has at most a 5% chance of being wrong.” In statistical 
terminology, you conclude that sensitivity is higher in men than in women at 
P ≤ 0.05—that is, there is a probability of 5% or less that your conclusion is in 
fact due to Type I Error.

Now just to remain on the right side of the law, I must emphasize once 
more that significance testing is not typically done with confidence intervals. 
Moreover, the result of testing with confidence intervals is not always in perfect 
agreement with more appropriate tests. Specifically, when a significant result 
is obtained, the correct test will also yield this. But there can be cases where 
looking at confidence intervals will not suggest a significant difference, and the 
appropriate statistical test will show otherwise. Still, I believe that significance 
testing is most conveniently understood in this context and thus, for the intui-
tive convenience of the non-statisticians among you, I present it.

There is a great deal more to be said about statistical significance, much of 
which is very technical. While I wish to keep the technical aspects to a mini-
mum, I believe that a deeper understanding of the concepts presented is essen-
tial. My aim in the next chapter is to provide such an understanding.

It is time, then, to summarize the central points of this chapter:

n	 Descriptive statistics are meant to summarize data for the greater 
convenience of thinking.

n	 Data summaries are more accessible to our brain but necessarily lead to 
loss of information.

n	 Data summaries make sense when done on a single population; we 
should not, for example, compute the mean over two populations, since it 
will represent neither.

n	 Statistical testing, also termed hypothesis testing, is a method for 
determining whether groups of numbers represent the same population 
or different ones.

In the next chapter I shall take what we learned in this one on description and 
testing, and draw ever nearer to formalized hypothesis testing. And I will do 
this with no equations—and hope to get away with it.
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Statistical Significance, Explanation, 
and Prediction

1  The Arabian Nights: Their Best-Known Tales, unknown author, from Project Gutenberg.

“[The one] whom he took to be their captain came under the tree in 
which Ali Baba was concealed, and making his way through some shrubs, 
pronounced these words so distinctly: ‘Open, Sesame,’ that Ali Baba heard 
him. As soon as the captain of the robbers had uttered these words, a door 
opened in the rock.…”

—Arabian Nights1
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Introduction: Overview and Limitations
In my own profession, the rock-tumbling words are “statistical significance.” 
Earn the right to say them, and you win; otherwise, you lose. And while it is not 
always as simple as that, often enough it is.

When statistical testing yields significance, you conclude that the difference 
observed reflects the truth.2 “Drug A,” you say, “is more effective than B in the 
population.” Adding that the result was significant at P ≤ 0.05, you also caution 
that there is a 5% chance you have erred in this inference. Thus, statistical 
testing yields conclusions with probabilities attached to them. And while your 
confidence in these conclusions is usually high, uncertainty will remain until 
you assess the whole population. In other words, uncertainty will remain.

Here is an extreme example: It is generally acknowledged that death comes to 
all; that it is a certainty. But, based on this evidence alone we cannot say this for 
certain. While history tells us there has yet to be an individual born who did 
not die, the observation is based on a sample only. There are billions born who 
have yet to die and untold numbers yet unborn. Thus, the observation “all who 
live die” derives from a large sample, and we have great confidence in it. But 
it is not based on the whole population, so statistically there is some nonzero 
probability that it is incorrect (although I wouldn't get my hopes up).

Getting back to real life: Having conducted a clinical trial and achieved 
significance, your product will be nearer approval. There will be scientific 
publications and presentations, and a press release as well. If your results are 
not statistically significant, a postmortem begins.

At times I am somewhat puzzled by the absolute importance attached to 
“statistical significance.” You see, it is a relative concept, and it depends on 
one's definition of it. Thus, what is significant with one definition may not 
be so with another. Moreover, significance in different contexts has varying 
implications for a product. For example, one will typically take more seriously 
a significant result in a preplanned analysis than one obtained post hoc (see 
Chapter 9).

So while statistical significance is typically viewed dichotomously—you either 
obtained it or you did not—there is a continuous scale underlying it. Thus, 
researchers will sometimes use phrases like “highly significant,” “significant,” 
“trend toward significance,” and so on. Notwithstanding, statisticians are 
generally less fond of these “levels of significance” and would rather keep to 
the dichotomous “yes” or “no.” This too will be discussed.

2  I shall keep here to the common case where a statistical test aims to show the difference. While at 
times you may want to show similarity, the term statistical significance retains its meaning throughout.
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Then there is this: Statistical significance does not necessarily imply clinical 
significance (or clinical meaningfulness). Formal statistical testing indicates 
whether an observed outcome is likely to reflect the truth in the population. Yet 
it remains silent on the importance of the phenomenon itself. For example, if 
one drug regularly reduces fever one minute faster than another, the difference 
between the two is statistically significant—that is, it is consistent and so not 
due to chance. But few physicians will consider a single minute sufficiently 
meaningful to influence their decision on which of two drugs to prescribe. In 
this particular instance, then, we have statistical but not clinical significance.

You see, statistical significance cares nothing for clinical utility. It is not just 
that it is heartless but because P values are computed quantities and so tend 
to detachment. Like all disciplines, statistics is designed to answer some 
questions and does not address itself to others. My own particular task is 
to determine if an observed result occurred by chance or reflects some truth 
in the population. The clinical interpretation of the outcome itself is left 
for others. Now this is the party line and is true. But really, statisticians 
will often have something to say about clinical utility as well. Having been 
exposed to numerous medical products, many of us have a sense for which 
effects are clinically meaningful and which are not. So while making clini-
cal claims is outside our core competence, it is not outside our competence 
altogether. In the following sections I present some additional ways of look-
ing at statistical significance that I hope will provide a deeper understanding 
of the concept.

Description, Inference, and Testing
Give me a set of observations, and I will describe them. This is the statistician's 
basic attitude to data. I will compute summary statistics like the mean and 
present simple graphs “for the greater convenience of thinking.” Examining 
these sample statistics, I will get a feel for the numbers and learn something 
about the population of interest. This, then, is one level of understanding, 
which entails describing the way things are. Yet, there is another, perhaps more 
interesting, level that concerns why things are as they are.

Let me explain. In statistics, as in everyday life, we differentiate description from 
explanation. Descriptive statistics provide snapshots of reality and make no 
effort to explain why the pictures turned out as they did. Observing these pic-
tures, I simply state that this is what we see. It is like saying “What a beautiful 
day!” and no more. Yet, having said this, one might also add that “the sun is 
shining, pigeons are cooing, and Irish eyes are smiling” and so shift from the 
realm of description to explanation—from presenting the way things are to 
explaining why they are so. Inferential statistics is the subdiscipline concerned 
with discovering the “why.”
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Now the nature of statistical explanation has a very specific form that I will 
describe with examples. I suggest that throughout you relate these examples to 
everyday reasoning, and I suspect that you will find them similar. Indeed, you 
will discover that you have been doing statistics long before you ever heard 
the word. At the same time, statistics formalizes and quantifies, an activity not 
often done outside of science.

Suppose I have collected data on the Height of 100 children from some neigh-
borhood A. Describing the data, I compute the following: 

n	 Central tendency—the general location of the numbers obtained, which 
is a point on the 0 to ∞ centimeter scale. The most common measure of 
central tendency is the mean.

n	 Spread—the variation around this central location, which is most often 
described by the standard deviation.

In most cases these simple descriptors provide a good summary of the num-
bers and thus a reasonable starting point for getting a sense of the data. At the 
same time they remain silent on why the numbers are as they are. They do not, 
for example, answer questions like these: 

n	 Why do these children differ in Height from one another?
n	 Do children in Neighborhood A differ in Height from those in, say, 

Neighborhood B?

Now looking at these questions, you might simply say, “Who cares?”—and you 
may have a point. However, my aim here is not merely answering these par-
ticular questions. Rather, I provide these examples to demonstrate the sort of 
questions scientists ask and that statisticians answer in terms of variation. It is 
a concept that for many of us will take some getting used to.

Inferential statistics—the second major subdiscipline of statistics—is designed 
to answer these questions and others using hypothesis testing (or statistical 
testing). The answers provided by inferential statistics are always of the same 
form and constitute “statistical explanation.” Unless you are very familiar with 
the topic, the preceding statements may sound somewhat confusing. So I will 
now expand the example and see where this takes us.

For each of the 100 children whose Height I measured I also obtained the 
Heights of their mothers. I now have two variables: Height of Child and 
Height of Mother. I then relate the two variables using, say, regression and/
or correlation. As expected, I find there is a lawful relationship between 
these two variables such that the taller the mother, the taller the child. 
Conducting statistical testing on the data (the method for which is no con-
cern of ours at the moment), I find the result significant. In other words, I 
conclude that there is a nonrandom relationship—a true relation—between 
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the Height of the mother and the child emerging from the sample, and I 
specify that it is significant—it is pretty likely to be true in the general 
population as well.

Looking at this operation more formally yields the following:

n	 I measured the Height of Children in Neighborhood A and found there is 
variation in it—that is, the children differ from one another in Height.

n	 For each child, I measured the Height of his or her mother. As expected, 
I found that there is variation in Height of Mother as well—that mothers 
differ in Height from one another.

n	 I arranged Height in mother–child pairs, computed some statistical 
measure of association (e.g., correlation), and found a relatively 
consistent relationship between the pairs: Taller mothers tend to have 
taller children, and shorter mothers tend to have shorter children. I note, 
of course, that the relationship is not perfect; some tall mothers have 
short children and the opposite. Still, the relationship is there.

n	 I can now conclude that variation in Child Height is explained by variation in 
Mother Height.

Expounding on the last statement, I then say, “There is variation in Child 
Height. Some are shorter and others are taller. There is also variation in Mother 
Height. These variations are associated such that, in general, tall mothers 
have taller children and short mothers have shorter children. In other words, 
variation in Mother Height statistically explains variation in Child Height (and 
the opposite).” In statistics we use, and quantify, explained variance in one 
variable by another.

By simply collecting data and describing them, I learn something about the 
way things are. By relating variables to one another, I learn something about 
why they are this way. This, then, is the nature of statistical explanation: showing 
that variation in one variable is related to variation in another.3

It is critical to note that statistical explanation is simply a statement of a 
mathematical relationship between variables. As such, it makes no claim as 
to cause. Statistically, it is perfectly legitimate to say that “variation in Child 
Height explains variation in Mother Height,” even though the statement may 
seem nonsensical. Inferential statistics is designed to detect relationships, and 
here its role ends. The underlying cause of the relationship—for example, 
heredity—is left to other disciplines.

3  I can also explain variation in one variable using several others. For example, variation in Height 
of Child can be shown to be related to variation in Height of Mothers and Fathers. There are other 
“explanatory combinations” as well, and I will stick to the simple case where one variable explains 
another, single variable.
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Summarizing so far, having collected data and related between variables, I have 
successfully explained why children vary in Height. It is so, I say, because their 
mothers vary in height as well.

At the same time, scientists are well aware that it is a rare phenomenon that 
can be fully explained by a single other phenomenon. Variation on Height 
is no different. Thus, Height of Mother is only one explanation for Height 
of Child, and there can be many other explanations, including Nutrition, 
Overall Health, Socioeconomic Status, Height of Father, and so on. Taking 
this into account, I state that my explanation is partial. And here is an addi-
tional strength of my discipline: It can quantify the degree to which any 
explanation is incomplete. For example, when the correlation between two 
variables is 0.90, I will say that my explanation is strong: “I have explained 
most of the variance in one parameter with another.” When the correlation 
is lower, my explanation is weaker—that is, I have explained less of the 
variation in Y with X. Thus, statistics can provide quantities indicating just 
how well I have explained a given phenomenon using one or more others.

Recall that early in this section I asked two questions. The first was why 
children vary in Height. Well, I have provided one answer for it. The second 
was concerned with differences in Height between children from different 
locations. I will now show that my approach to the second question is identical 
to the first.

As before, I collected data on Height of children in Neighborhood A. I then 
also collected Height data from a sample of children in Neighborhood B. I now 
state the following, which should sound familiar:

n	 I measured Height of a sample of children from Neighborhood A and 
a sample from Neighborhood B. I found there to be variation in both 
groups.

n	 For the sake of convenience, I arbitrarily label Neighborhood A “0” 
and Neighborhood B “1.” Thus, there is variation on the variable 
Neighborhood as well (some children receive the score 0 and others 1).

n	 For each child I now have two numbers: Height in centimeters and 
Neighborhood coded dichotomously.

n	 Arranging these numbers as pairs for each child, I compute the 
relationship between them. Recall that relating Mothers and Children 
also involved computing the relationship between pairs of numbers.

Let us assume that I have found a lawful and significant relationship between 
Height and Neighborhood such that “the ‘higher the Neighborhood, the taller 
the child”; in other words, Neighborhood 1 is associated with taller children 
than Neighborhood 0—the mean height in Neighborhood 1 is greater than 
that in Neighborhood 0. I can now claim that variation in Neighborhood 
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explains variation in Height.4 Once more, I must caution you that statistics has 
only formalized the relationship and quantifies it; I might, for example, have 
obtained a correlation of 0.34 between the two variables, but this alone does 
not imply cause. To interpret this statistical/mathematical relationship, I shall 
need the help of other disciplines such as genetics, sociology, and economics.

Additionally, while I have explained variation between Neighborhood and 
Height, I have not explained why there is variation in child Height within 
Neighborhood.5 So once again my explanation is partial. In sum, understanding 
in statistics entails relating variations to one another.

On the Partial Nature of Scientific 
Explanations
Describing what we see is as essential in science as it is in our everyday lives. Explaining 
our observations—saying why things are as we see them—is no less important.

Here is another example: You visit your daughter's school and observe that 
“most of the kids in her class ride bicycles,” which is a simple account of 
the way things are. Hypothesizing on the reason for it, you add that “many 
parents of the children in her class are members of the Bike for Betterment 
Club (BBC).” Now this is a reasonable explanation, and it may even be 
right. And in everyday conversation it is surely enough. But if you wish to 
be scientific, you need to test your hypothesis by collecting data and ana-
lyzing them. Specifically, you need to demonstrate a positive relationship 
between parents' membership in bicycle clubs and children's tendency to 
ride a bicycle.

There are several ways to assess this relationship analytically. One of these 
is by simply labeling each parent and each child as being a bike rider or 
not. This will yield one of two values (e.g., 0 or 1) for each individual. You 
can then relate these parent–child dichotomous values to each other. Using 
another method, you could compute the proportion of parents within each 
class that bicycle and the proportion of children. You will then relate these 
“proportion pairs” measured over many classes. There are other approaches 
as well and, generally, none is particularly superior to another in any abso-
lute sense. Rather, different approaches answer slightly different questions 
and each is correct in its place.

4  For those of you who are familiar with statistical tests, I should point out that using correlation to 
relate a continuous variable (Height) to a dichotomous variable (Neighborhood) is equivalent to 
conducting an independent group's t-test.
5  In fact, this was partially done by relating children to their mothers previously.
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Let us assume that you are right and children whose parents belong to bike clubs 
are more likely to bike themselves (however shown). Like most explanations, 
this one is partial at best. Thus, it is reasonable to expect that some children 
whose parents belong to BBC do not bike and vice versa. In other words, the 
model predicting children's behavior from that of parents does not completely 
explain the phenomenon in question. As one might expect, there are additional 
factors that come into play here that may include Family Income, Geographic 
Location, Child Age, Parent–Child Relationship, and others.

Virtually all of our explanations—in both life and science—are imperfect 
(partial). And being that it is a fact of existence, it should not be particularly 
troubling. As scientists we would, of course, wish it were otherwise, but this is 
the way it is. Thus, we cannot completely explain the causes of War or Weather 
or Psychotic Episodes, or perfectly predict how a medical intervention will turn 
out. But while virtually all of our explanations are partial, some are less so 
than others. Thus, for example, we can predict Weather better than we can 
Earthquakes.

Now scientists will not be completely happy until they explain a phenomenon 
of interest entirely. Statistically, their aim is to explain 100% of the variation in 
a phenomenon. And since explanations will always be partial, it follows that 
scientists cannot be completely happy—a point I shall not pursue.

Yet while we expect all of our explanations to be incomplete, on occasion they 
are especially so. And when we feel our understanding particularly lacking, 
we will seek additional or alternative explanations. Indeed, much of scientific 
activity is concerned with strengthening explanations—with increasing the 
ability to comprehend a phenomenon using others. For example, if I want to 
predict Outcome in a particular indication, I may appeal to several variables, 
including Drug received, Gender, and Age. Using all three, I may obtain a better 
prediction of Outcome. Moreover, I will be able to compare the degree to which 
each of the variables—or each combination of them—explains Outcome. In 
this way I can assess the relative contribution of each parameter to predicting 
efficacy. I might, for example, find that Age predicts clinical outcome better 
than Gender—that Age explains more variation in Outcome than does Gender. 
And I might also find that Drug—receiving one type rather than another—is 
more related to prognosis than the two other parameters combined. Statistics 
provides us with tools to both quantify explanations and assess their relative 
quality (completeness).

This, then, is the statistical path to enlightenment: Show that independent 
variables (also termed explanatory variables, such as Drug and Age) explain 
dependent variables (such as Quality of Life and Survival). You may have 
noticed that I used the words “explain” and “predict” interchangeably. Well, 
in this context they are in fact interchangeable. Using statistical modeling, 
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I relate between variables and obtain solutions. For example, I will demon-
strate a relationship between taking a drug and recovering from pneumonia. 
Having done this, I can say that Drug “explains” Recovery, and I can also say 
that Drug “predicts” Recovery. The models themselves cannot tell you whether 
they are predicting, explaining, or merely relating. At the end of the day, it is 
your logic that will give meaning to statistical results. Equations cannot speak 
for themselves and are not meant to.

For example, global warming appears to be a fact of some periods in the 
twentieth century. It is also a fact that during this period humanity has 
released more CO2 into the atmosphere than in previous eras. Some complex 
mathematical equations have related these parameters quantitatively. Yet, 
these equations do not by themselves prove that CO2 causes global warming. 
This must be left for other types of scientific reasoning. Similarly, I can relate 
mathematically between Age and Height of children. Having done this, I can 
now partially predict Height from Age. But can Age be said to cause Height 
to change? This is not a question statistics can answer on its own.

To summarize so far:

n	 The goal of inferential statistics is to understand phenomena by relating 
variation in them to variation in other phenomena.

n	 The stronger the relationship, the better the explanation.
n	 Whether the relationship is strong or weak, it is almost always incomplete. 

As such, prediction of parameters such as Response to Treatment 
cannot be perfect.

When reporting clinical study results, both the regulator and 
the scientific journal reviewers often expect information 
relating to covariates—variables such as Age, Ethnicity, 
and patient's General Medical Condition that may affect 
the outcomes of drug or device Treatment. For example, 
you might be required to assess whether your product 
affects females differently from males, Hispanics differently 
from Asians, and/or generally healthy people from those 
who have a chronic medical condition. Additionally, in mul-
ticenter trials you will likely be asked to compare outcomes 
between centers to assess whether Location/Center is 
related to a Treatment's effect. In this way those examining 
your overall results can learn whether or not they apply to 
identifiable subgroups equally. For example, knowing that 

a medication is more effective in warm climates than cold 
climates is relevant for making decisions about treatment.

In recent years responsiveness to Treatment has also been 
correlated with subjects' genetic characteristics. The area 
investigating these issues is called pharmacogenomics, 
which relates genetic variation with variation in Treatment 
efficacy. This particular branch of science is in its infancy, 
and one of its aims is to personalize medicine—that is, 
to tailor treatments to individual patients based on their 
genetic traits. In statistical terminology, pharmacogenomics 
investigates variation in genetic characteristics (covariates) 
that it hopes to use to explain/predict variation in Response 
to Treatment.

Personalizing Medicine
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Quantifying Explanation
In the preceding section I noted that explanations can be strong or weak. They 
can, of course, be any point between as well. In everyday discourse I might, for 
example, say that “Sheldon will probably come to the party if I invite him.” No 
one (other than the odd statistician), however, will ask me to provide the actual 
probability for it. But when doing science we must quantify our predictive/explan-
atory statements. Only then can we gauge their strength and completeness.

So the statistical path to enlightenment involves relating variables to one 
another. More important, statistics can quantify just how strong this relation-
ship is or, if you will, just how good the explanation is. One such quantitative 
indication is proportion of variance explained.

Let me begin with an extreme example where distances between different 
locations are recorded in both Miles and Kilometers. Having done this, I now 
have two values for each distance. Relating the two (say, by correlation), I find 
that the relationship is perfect. In other words, 100% of variance in Miles is 
explained by Kilometers, and 100% of the proportion of variance in Miles is 
explained by Kilometers.

Now this, of course, is no explanation in the conventional sense. Miles and 
Kilometers are merely alternative ways of expressing distance, and being long 
in one does not cause you to be long in another. Recall, however, that statistical 
models are not concerned with meaning.

As a rule, percent of variance explained will be lower than 100%, and, more 
often than not, it will be much lower. Yet be it low or high, proportion of vari-
ance explained provides a quantitative indicator of the degree to which an 
explanation is complete.

Here are some examples:

n	 At a particular university, student's High School Grades explains about 
10% of the variation in Grades at the University.

n	 Average Parental Height in one western country explains about 40% of 
the variance in Child's Height.

n	 In patients admitted to a hospital due to fever and neutropenia (low 
count of neutrophil, a type of white blood cell), about 30% of the 
variance in Length of Hospital Stay was explained by Monocyte Count 
(another type of white blood cell), Temperature at Admission, and 
Presence of Localized Infection. Thus, three parameters could be used to 
predict 30% of variation in Hospital Stay.

Proportion of variance explained can be affected by many factors such as 
the accuracy of measurement, range of values in the parameters measured, 
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type and characteristics of the parameters used, and others. It is thus essen-
tial to remember that this quantitative indicator of the quality of explana-
tion does not necessarily reflect the “truth.” For example, we know there is a 
relationship between Height and Weight. But if the instruments we use are 
inaccurate, we may not discover this relationship. And if I fail to discover a 
relationship between Height and Weight—if the variance in one explains 0% 
of the variance in the other—it is because of an imperfect method rather than 
some truth of nature.

Explanation and Inference in Clinical Trials
Say your company has developed an autologous cell therapy VO-14C for 
venous ulcers, which are ulcerations in tissue caused by insufficient blood 
supply to veins. You are now planning a first trial in humans with the disease 
and wish to compare the safety and efficacy of your treatment with some 
standard of care (SOC), the currently accepted treatment.

This is your first trial in humans, and you do not know the optimal Treatment 
Duration for your drug. Your planned study will address this issue as well. After 
numerous discussions you decide on an 18-week trial with the following five 
groups:

1.	 SOC only (Control group)
2.	 SOC + 10 weeks treatment with VO-14C
3.	 SOC + 12 weeks treatment with VO-14C
4.	 SOC + 14 weeks treatment with VO-14C
5.	 SOC + 16 weeks treatment with VO-14C

The trial will include 150 patients, 30 of which will be randomly assigned to 
each treatment arm. Regardless of treatment duration, primary efficacy will be 
measured at 18 weeks.

You will collect many efficacy measures in this trial, the most important of which 
is whether or not a subject's ulcer has closed completely. Thus, Complete Closure, 
a dichotomous parameter taking on values of “yes” or “no,” will be your primary 
efficacy endpoint. From your Company's view, the trial will be considered a 
success if the following occur:

a.	 At least one of the VO-14C groups shows a significantly higher proportion 
of Complete Closure at 18 weeks than SOC.

b.	 There is a discernable, and hopefully significant, relationship between 
Treatment Duration and Complete Closure. This will help determine 
the optimal Treatment Duration for the drug. In this analysis 
Treatment Duration with VO-14C in the SOC group is, of course, 0 
weeks.
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Earlier in this section I wrote that primary efficacy in this trial is measured by 
the dichotomous Complete Closure. Yet, for the purpose of illustrating my 
point, I will use another parameter: Change in Ulcer Area from baseline to  
18 weeks. This is computed by simply subtracting Ulcer Surface Area at 18 weeks 
from that measured at baseline. I will call this difference Delta, where larger 
deltas are associated with greater efficacy. In the case of Complete Closure, 
Delta = Area at baseline.

I noted that Complete Closure is the most clinically meaningful efficacy end-
point in a trial investigating treatment for venous ulcers. Both physicians and 
regulators will tell you so, and it is therefore specified as the trial's primary 
efficacy endpoint. But should we ignore patients whose Ulcer Size was reduced 
considerably but did not close? Clearly, two patients with open ulcers at the 
end of the trial cannot be said to be equally well off if one's ulcer was greatly 
reduced and the other's was not. Now some endpoints are more meaning-
ful than others, and this is a fact. But it is a rare endpoint that encompasses 
all relevant information about a treatment. Consequently, almost all clini-
cal trials specify numerous endpoints of interest. Judicious selection of these 
endpoints is an important factor in clinical trial study design and deserves its 
own chapter. (It will get it.)

So I have chosen the continuous endpoint Delta for my example as opposed 
to the dichotomous Complete Closure. Yet I could have just as easily chosen 
Percent Delta (% Delta), which also provides continuous data, as opposed 
to the dichotomous Complete Closure. In this way I could, for example, 

When Treatment groups differ significantly, we conclude 
that what we see is real—that there is indeed a difference 
between them in the population. When differences seem 
“substantial” but are not significant, it is not clear what to 
think. First, the term substantial is open to interpretation, and 
what may seem a meaningful difference to one researcher 
may not be so for another. Second, as noted, it may not 
always be useful to view significance as an all or none con-
cept, especially in the early stages of development. Clearly, in 
the trial described you would like at least one VO-14C group 
to be significantly superior to Control. But what if your result 
suggests you can be only 90% certain of a true difference 
instead of the traditional 95%? And what do you conclude 
when all drug arms show better numbers than SOC but none 
of the differences are significant?

At this stage I wish simply to point out that nonsignificant 
results must be approached with caution. Statistics has 
rules, and this is how it should be. But there is no harm in 
speculating, even optimistically. As human beings we have 
intuitions and should not forgo using them. Indeed, scien-
tific knowledge will benefit if we find ways to combine its 
formal methods with our personal experience and hunches. 
And sometimes this might mean that when science points 
in one direction and your gut feeling points in another, you 
will put more faith in the latter. Willie Ashenden put it well 
when he said, “I was aware that the earth was round, but I 
knew it was flat.”6

A Note on Choices and Nonsignificance

6Maugham, S. Cakes and Ale. New York: The Modern Library.
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distinguish between an ulcer reduced from 10 cm2 to 1 cm2 from one reduced 
from 18 cm2 to 9 cm2; while both have equivalent Deltas, their % Deltas are 
very different.

As a statistician I can tell you which endpoints provide data that are numeri-
cally informative. And in measurement terms, the continuous variable Delta is 
generally more informative than Complete Closure, which has only two cat-
egories. However, the latter is more meaningful clinically, which is why it is the 
trial's primary endpoint.

It seems that as much as I try to stay the course, I find myself sidetracked 
by related issues. Getting back to the issue at hand, I focus here on the 
continuous Delta, of which the hypothetical outcome is described in Table 
8.1 and Figure 8.1.

Having presented these results I have engaged the first stage of statistical analy-
sis, which is concerned with describing. But while I have yet to interpret the 
data formally, I have some idea about what is going on just by looking at the 
graph. Specifically, there appears to be a dose-response relationship between 
Treatment Duration and Delta such that:

n	 Longer Treatment Duration is associated with greater Delta.
n	 The relationship between Treatment Duration and Delta is strongest 

between 0 and 14 weeks; there appears to be relatively little improvement 
between 14 and 16 weeks.

As noted in the preceding section, statistical explanation involves relating 
variables to one another. Well, this is precisely what I have done by observ-
ing the association between Treatment Duration and Delta. And in doing 
this I went beyond description to inference—addressing the “why” of your 
results. Variation in Ulcer Area, I tentatively say, is at least partially explained 
by Treatment Duration.

Table 8.1  Change in Ulcer Area (Delta) from Baseline to 18 Weeks by 
Treatment Period

  Delta from Baseline to 18 Weeks

Treatment N Mean (cm2) Standard Deviation

Standard of Care 30 2.2 0.9
10 Weeks 30 3.5 1.2
12 Weeks 30 4.3 1.6
14 Weeks 30 5.0 1.8
16 Weeks 30 5.1 1.7
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Now every discipline provides explanations 
in its particular language. A life scientist might 
explain outcomes based on chemical reactions, 
while the psychologist may point to the uncon-
ditional love patients receive from drugs and 
devices. Yet, neither the life scientist nor the 
psychologist should attempt an explanation 
before making certain that the relationship 
they are interpreting is in fact real. In science, 
as in life, it is good advice to remember that 
appearances can be deceiving—that data may 
reflect sampling error rather than truth. So the 
first order of business is for the statistician to 
conduct (inferential) statistical testing to assess 

whether the relationship observed is significant. An explanation of the results—in 
any language—should only follow once we know, or at least have a strong hunch, 
that what we see reflects some truth in the population and is not due to chance.

In this particular case there can be several statistical tests applied, and I will not 
trouble you with them. For my purposes it is enough that you know that inter-
pretation of cause in clinical trials should follow statistical inference. Thus, the 
statistician's role in scientific explanation often precedes all other explanations 
and serves as the justification for them.

To this point I have looked at inferential statistics from three related points of view:

1.	 Inferential statistics provides techniques that help explain phenomenon.
2.	 Statistical explanation—statistical inference—is done by relating variables 

to one another. Specifically, it is done by showing that variation in one 
variable is associated with variation in another.

On Design and Analysis

When designing a clinical trial you should consider the statis-
tical analyses planned for its data. In the current example you 
aim to assess the relationship between Efficacy and Treatment 
Duration. Clearly, you will not be able to do so unless your 
trial measures both parameters appropriately. To this end you 
include a Control group (Treatment Duration = 0 weeks) and four 
additional durations (10, 12, 14, and 16 weeks). Hopefully these 
will allow for the inference of interest. If, for example, the periods 
were more widely spaced, you might not be able to interpolate 
efficiently between them. If they were more narrowly spaced, 
there would be more of them, which would mean fewer subjects 
per group. Smaller sample sizes may in turn yield unreliable 
information for the effect of Treatment Duration on Delta.

As you can see, even in this relatively straightforward 
trial there are some nontrivial methodological issues to be 
addressed—issues that will have impact on the study's util-
ity. Now while this certainly is obvious, it turns out that many 
studies are planned offhand with the expectation that once 
data are obtained, statistics will cause “answers to emerge.” 
Well, this is not likely to happen. Statisticians, like comedi-
ans, can only work with the material they have. Sir Ronald 
Fisher put it best when he said, “To call in a statistician after 
the experiment is done may be no more than asking him to 
perform a postmortem examination: He may be able to say 
what the experiment died of.”

Figure 8.1
Change in Ulcer Area (Delta) 
from baseline to 18 weeks 
by Treatment group.
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3.	 Inferential statistics provides techniques that enable determining whether 
or not the differences observed between two or more samples reflect the 
truth in the population or are likely due to chance.

In the following section I present yet another view of inferential statistics.

Modeling
Rational thought and behavior are generally guided by expectation. For exam-
ple, we do not cross a busy street when the light is green because we expect 
some unpleasantness if we do. And we plan our vacation expecting (hoping?) 
for a pleasant time. Similarly, we expect a good student to do well on any given 
test and believe that working hard generally begets positive results. Additional 
examples abound. Translating this idea into the more formal language we:

1.	 Construct models of reality. (“It is dangerous to cross a busy street when 
the light is green.”)

2.	 Infer expectation from the model. (“If I cross this busy street, I could get 
hurt.”)

3.	 Make decisions based on expectation. (“I will wait for the red light before 
I cross.”)

Models are simplified versions of reality and in this sense are also stereotypes. 
They do not truly exist because the world we live in is much too complex for 
them to fit perfectly. A good student will not get good grades on every test, and 
crossing the street safely on a green light is not unheard of. But good models 
approximate the truth sufficiently “for the greater convenience of thinking.”

Statistics makes use of numerous models. One of the more common ones is 
the normal distribution, which describes how some types of phenomenon 
behave. Many variables in nature are distributed more or less normally, like 
systolic blood pressure and the Height of some trees. Yet, before I show you 
how to use all of this, I shall first describe the characteristics of the normal dis-
tribution using Figure 8.2.

As you can see, and perhaps already know, the normal 
distribution is symmetric around the mean, and its 
particular shape is related to the standard deviation. 
It is a two-parameter model in that it is determined 
by the mean and standard deviation.

As an example, consider the Kubanga Forest in 
Angola, which has mature trees of which the mean 
Height (μ) is 648 cm, with a standard deviation (σ) 
of 62 cm. Given the characteristics of the normal dis-
tribution, we can state the following about Height of 
trees in Kubanga:

Figure 8.2
The normal distribution.
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n	 The largest proportion (density) of tree Height is around the mean μ of 
648 cm.

n	 The distribution is symmetric such that the greatest proportion of trees is 
near the mean, with decreasingly smaller proportions as we move away 
from the mean. Specifically, about:
n	 68% of the trees are within 1σ of either side of the mean. In other 

words, 68% of the trees in the Kubanga Forest are between 648 cm + 
62 cm and 648 cm – 62 cm (586 cm–710 cm).

n	 95% of the trees are within 2σ of μ (524 cm–772 cm).
n	 99.7% of the trees are between 3σ of μ (462 cm–834 cm).

These are characteristics of the normal distribution as applied to Height of 
trees in Kubanga. It is also a model and is “about” right. Yet, like all models, it 
is a simplification and so not completely right.

After traveling treacherous roads and difficult trails, you finally arrive at a 
forest. You believe you are in Kubanga, but you do not know this for certain. 
It has been a long trek, the day is hot, and you are slightly disoriented. But 
while you may be unsure about your whereabouts, you have not forgotten the 
information in the preceding list.

After finishing off a canteen and resting for a few minutes, you select a tree at 
random and measure its Height (you have brought along your laser as well). 
The tree sampled is 835 cm tall. In other words, if you are indeed in Kubanga, 
the tree you have randomly selected is a rarity. In this particular forest there is 
only a 0.03% chance of randomly coming upon a tree shorter than 462 cm or 
taller than 834 cm.7

Before you did your calculations, there were only two possible answers to 
your question: (1) you are in Kubanga, and (2) you are not in Kubanga. And 
now, after having done your calculations, there are still the same possibili-
ties. However, at this stage you are better placed to make an informed choice 
between them. Specifically you can reason either of the following:

n	 You are in Kubanga and have by chance stumbled upon a tree of which the 
Height is rare (about one-tenth of 1% of trees in Kubanga are this tall or taller).

or
n	 You are not in Kubanga, since the tree you randomly chose and measured 

is not typical for this forest. As a result, you conclude that you are in some 
other forest where the trees are generally taller than those in Kubanga.

7  In computing the probability, I have used both tails of the distribution, saying that there is a 0.03% 
chance of randomly coming upon a tree below or above a particular Height. Alternatively, I could have 
said that the probability of randomly coming upon a tree over 834 cm in Kubanga is 0.015%. In the 
interest of avoiding the sometimes confusing issue of one-tailed and two-tailed tests, I ask that you 
accept the logic presented as is. As a rule (with some exceptions) we use two-tailed tests in clinical trials.
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These were your two options, and now you must choose between them. Based 
on your computations, your chance of being in Kubanga is 0.015%. This is a 
very small chance, so you conclude that you are in the wrong forest. And in 
making this decision, you know there is about a one-tenth of 1% chance that 
you have erred—that is, that you are in Kubanga and have randomly come 
upon an atypically tall tree.

Now some of you might have found this reasoning simple, while others may 
have had to read it a couple of times. Be that as it may, I must point out 
that you have long been familiar with this sort of logic. As adults you have 
(implicit) models for most situations in which you find yourself—models 
that in great measure determine your expectations and conclusions. And 
when a chosen model does not seem to fit a particular circumstance, you 
consider modifying your conclusion. In this case you had an expectation of 
how “trees in Kubanga behave.” You then compared observed data to this 
expectation and found a lack of fit. As a result, you concluded that you are 
probably not in Kubanga. In this way you continuously engage in (informal) 
hypothesis testing.

To discuss hypothesis testing formally, I will return to a simple clinical trial 
where you wish to show that Test drug (T) is better than a Reference drug (R). 
Translating this into formal statistical nomenclature, we specify competing 
hypotheses about reality:

1.	 Null Hypothesis: The Null Hypothesis is the “state of the world” until 
proven otherwise. In this case, you (and the regulator) assume that that  
T is about as good as R; until proven otherwise, you will not claim the 
new drug or device is more effective.

2.	 Alternative Hypothesis: The Alternative Hypothesis is what you 
would like to demonstrate in the clinical trial, which is that the initial 
assumption about the state of the world is incorrect. Specifically, you 
would like to show that T and R are not the same.

These translate into the following formal statements:

H0: T = R (Null Hypothesis)
H1: T ≠ R (Alternative Hypothesis)8

where H0 is the Null Hypothesis and H1 is the Alternative Hypothesis.

Now recall that even if the two medical products are equivalent, a given trial 
will show some difference between them. This is due to sampling error and 

8  Actually, you want to show that T > R, not only that they are different. After all, if T < R, they are 
indeed different, but it is of no interest to you as a drug developer. Once again, we encounter this issue 
of one- and two-tailed tests.
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so is attributed to chance rather than reflecting a true difference. So to test the 
hypotheses, you do the following:

1.	 Specify the behavior of chance differences—that is, create a model that 
describes how sampling error behaves. For example, when you flip a 
coin 100 times, you know how it should behave if it were fair. Thus 
you know that even a fair coin has a decent chance of coming up  
52 heads and 48 tails or, say, 54 tails and 46 heads. So if results such 
as these emerge, you will consider attributing them to sampling error 
rather than concluding that the coin is biased.

2.	 Conduct a clinical trial (or, in the example of testing a coin for fairness, 
flip it 100 times).

3.	 Compare the empirical result to the model, describing how chance behaves.
4.	 If the result obtained is very unlikely given the “chance model,” you conclude 

that the difference is real (not due to chance)—that is, you conclude that the 
drugs differ significantly or that the coin is biased (differs significantly from 
“fairness”). If the result is likely given the chance model, you cannot conclude 
that the differences you observe are real rather than due to chance.

There are many nuances that can be added here and many technical details. 
As before, I refer those interested to standard texts. My point here is that sig-
nificance testing, which is the tool of inferential statistics, simply formalizes 
the way we think: We construct models that lead to expectations, which we 
test using observed data. If the results are extreme enough given the (null) 
model—the initial expectation—we reject it. If they are not, we remain 
with our initially stated model. When we reject the Null Hypothesis, we say 
that we have obtained a significant result, and we infer that the Alternative 
Hypothesis is true.

On Inference and Populations
Do men and women differ? Well, it depends on the attributes you consider. 
When looking at the attribute of being a Human, both are of the same popula-
tion. When examining, say, Height, they differ on average—that is, each belongs 
to a different population, populations that differ in their mean Height.

Thus in statistics as in life, population is a matter of definition. Now there 
are times when the distinction between populations is obvious to us. But 
there are others, notably in clinical trials, where we do not know whether 
we have one population or two. For example, if T and R are equally effec-
tive, we say that while the products have different names, for the purpose of 
efficacy, subjects receiving either belong to the same population. If however 
they differ in effectiveness, we say that individuals receiving T belong to a 
different population from those receiving R.
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I described how hypothesis testing is designed to assess whether T and R differ. 
Here is another way to say it: 

H0: Individuals receiving T and R belong to the same population.
H1: �Individuals receiving T belong to a different population than 

those receiving R.

Inasmuch as hypothesis testing is designed to assess differences between enti-
ties, it is a method for discovering whether we are dealing with one population 
or with more.

Remember Piaget and his concept of accommodation (Chapter 5)? When 
we encounter an entity that does not fit neatly into a ready-made category, 
we  construct a specific category for it. Statistical testing is thus a formal 
procedure for creating such categories—for deciding whether something we 
see can be classified into an existing population (assimilated) or requires a 
new one (accommodated).

Summary
Descriptive statistics provides techniques that help us to summarize data. 
Inferential statistics provides tools for all of the following:

n	 Explaining why the data are as they are.
n	 Assessing whether relationships between variables are real/true or likely 

due to chance.
n	 Discovering differences.
n	 Assisting in determining cause.
n	 Testing hypotheses.
n	 Discriminating between populations or, alternatively, indicating whether 

different sets of data were obtained from the same population.
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“Economists … predicted eight of the last three depressions.”
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Exploratory and Confirmatory 
Clinical Trials

Introduction: An Unlikely Story
Henri Delaunay played soccer in Paris at the turn of the last century. After 
he retired, he became a referee but then gave it up after being hit by a ball, 
breaking two teeth, and swallowing the whistle in the process. In 1906 
Delaunay became president of the Paris team with which he had played and 
went on to become secretary general of the French Football Federation. In 
1924 he joined football's governing body FIFA (Fédération Internationale de 
Football Association), where he served until 1928.
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While in FIFA Delaunay proposed a European football tournament to decide 
the continent's champion. Thirty-one years later his idea bore fruit with the first 
European Nations Cup in 1958. The tournament's finals were held in France 
in 1960 where the Soviet Union was awarded the Henri Delaunay Trophy after 
defeating Yugoslavia 2–1.

The tournament has taken place every four years since and in 1968 it was 
renamed the European Football Championship. The cup is usually won by 
powerhouses like Germany, France, and Italy. But a few others have won as 
well and in 1992 something especially odd happened. The finals that year 
were held in Sweden, with eight teams participating the host and seven others 
advancing from the tournament's early stages. Among those taking part was 
the defending champion and favorite Germany, and a team not meant to be 
there in the first place.

Based on its performance in the qualifying round, Yugoslavia—which would 
soon be divided into component parts—had earned a place in the finals that 
year. But the country was embroiled in wars and was ultimately disquali-
fied for political reasons. Denmark was the runner-up in Yugoslavia's group 
and received the ticket to Sweden instead. Thus it was no small surprise that 
Denmark made it to the final's championship game that year. And it was 
an even bigger surprise that the country went on to beat the heavily favored 
Germans.

Now every assessment is vulnerable to error and soccer matches are no excep-
tion. Each game is designed to measure which of two teams is better and while 
in a given game we expect the better team to win, upsets do happen. Was 
Denmark's victory over Germany an upset?

Before attempting an answer to this question, I should first define the term 
better. Recall that in statistics truth is the population parameter. Thus I conclude 
that team A is truly better than B if the former wins most of the games between 
the two in the (infinite) population of games. This is, of course, a theoretical 
concept because there could not have been an infinite number of games 
between Germany and Denmark either in 1992 or during any other period. 
Still, it is consistent with our statistical view where truth relates to the value in 
the population.

Viewed thus, each game in the European Championship is a sample of one 
from an infinite population. And while each game is meant to represent 
the population, it cannot do so perfectly because of error. At the same time 
we know that, on average, the larger the sample, the nearer its information to 
the truth—that is, the smaller the sampling error. Thus the tournament could 
have reduced error by increasing sample size. For example, it might have had 
the two teams in the finals compete in a best-of-three format. While even this 



Hindsight and Foresight 113

would not ensure that the better team would be crowned champion, it would 
certainly increase the probability of its happening.

Using multiple measurements is common in many sports, including tennis, 
bicycling, and baseball. It is also applied in qualifying stages of soccer tourna-
ments that are typically played over long periods of time. But the nature of the 
game makes it difficult for any team to play on consecutive days or even one 
day apart. Thus a multiple-game format for two teams reaching a tournament's 
final is impractical.

So it seems that football competitions are not necessarily conducted according 
to sound statistical principles. And given that upsets are most likely to occur 
in single games—and tend to get righted over repeated measurements “in the 
long run”—many in the soccer world wondered if Denmark was in fact the 
“best” team in Europe in 1992.

Hindsight and Foresight
On June 27, 1992, a headline in the Boston Globe read:

“Denmark European champion, Germany loses in a shocker.”

The article described Denmark's 2–0 win in the final and the ecstatic celebra-
tions of its fans. The newspaper then pointed out that it was the first time in six 
years that the Danes had beaten Germany in soccer. Like virtually all who took 
an interest in such things, the writers concluded that an error had occurred, 
although they preferred the term “shocker.”

Now let us suppose there was at least one person—a friend of yours—who 
disagreed with the conventional wisdom of the day. Allow me to offer alternative 
scenarios in which she shares her wisdom with you.

Scenario 1: After the final your friend tells you she knew all along that 
Denmark would beat Germany. Of the two teams reaching the final, she 
believes that Denmark was easily the better and adds that the Danes were the 
best in Europe that year. The surprise, she explains, was not that Denmark 
won the tournament but that the team had failed to qualify outright. This, 
rather than Denmark's victory in the final, was the glaring error.

Your friend justifies her conclusion by describing Denmark's performance 
in the early stages of the tournament and explaining how almost every 
one of its players is superior to Germany's in the parallel position. She 
adds that Denmark had the better coach as well. In short, she had known 
all along that Demark would be crowned European champion and that 
the team would win the final by at least two goals. She puts all of her 
thoughts in writing and asks you to look at it.
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She is a good friend and you smile. Outside it is sunny and quiet—a 
restful Sunday afternoon. You go to the refrigerator and come back with 
a couple of beers. You hand her a bottle and, taking a seat on the couch, 
change the subject.

Allow me now to offer an alternative version of these events.

Scenario 2: On the Sunday before the games in Sweden your friend 
presents you with an analysis in writing. You read the typewritten 
document that explains why Denmark is the best team in Europe. The 
analysis is meticulous, and it is obvious that your friend has given 
a great deal of thought to the matter. She predicts that Demark and 
Germany will reach the finals and analyzes the strengths and weaknesses 
of each. She concludes that the Danes will win by two goals at least.

She is a good friend and you smile. You go to the refrigerator, take out a 
couple of beers, and change the subject.

The games begin and as the 16-day tournament progresses your opinion 
changes. It seems your friend has correctly analyzed Denmark's early 
group stage games. She had also predicted that there would be a difficult 
game against The Netherlands in the semifinals, in which the Danes 
would prevail (she wrote that The Netherlands are better than Germany 
that year). Finally there is her prediction for the final that “Denmark will 
win by at least two goals.”

Despite your initial incredulity, you become convinced that Denmark was 
indeed the deserving winner of Europe. And you gain a measure of respect 
for your friend. Indeed, you consider asking for her hand in marriage but 
fear that she might predict that outcome as well.

Let us now examine the similarities and differences in these two scenarios. In 
both cases Denmark was crowned European champion. The team's performance 
in the final and the games leading up to it is a fact. And unless you believe that 
supernatural forces take the trouble to intervene in soccer, the tournament's 
events had nothing to do with your friend's opinion under either scenario. 
Thus the games' outcomes are identical under either of the scenarios. The 
difference, of course, is the timing of your friend's explanation of the results. 
In Scenario 1 she tells you that after the final she “knew all along” who would 
win and why. In Scenario 2 she had predicted the outcome outright. And your 
attitude toward the two explanations is completely different.

I am well aware that there is nothing here that is new to you. Yet I would like to 
emphasize again that in both scenarios the same events occurred on the field, 
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and your friend provided the same explanation for both. The first scenario 
did little (perhaps nothing) to alter your opinion that Denmark's win was a 
fluke; in the second scenario you are pretty much convinced that Denmark 
was a deserving winner, if not the deserving winner. Now all of this may be 
very interesting (or not), but it is now time to relate all of this to biostatistics 
in clinical trials.

Hypotheses
Clinical studies involve comparisons. Depending on the design and indica-
tion, you will compare treatments, time points, doses, routes of administra-
tion, hospitals, ethnic groups, age groups, and more. Where possible you will 
also compare current outcomes with those obtained historically. And while 
there are endless variations on the “comparison theme,” the most meaningful 
are those that are preplanned.

Suppose you are assessing an innovative surgical device and associated proce-
dure relative to standard of care (SOC). Your device has already been approved 
by the regulator, and now you have to convince the insurance companies to 
cover the new procedure as they do the other; your trial is for reimbursement 
purposes.

In the pivotal study the regulator allowed you a single-arm trial with some 
performance goal requirement that you achieved. But these data did not pro-
vide direct comparison to SOC on Length of Hospital Stay, which is your pri-
mary endpoint in the upcoming trial. Your goal now is to convince insurance 
companies that your product is superior to SOC and, thus, less expensive 
overall. Stating this formally:

H0: Length-of-StayT = Length-of-StayR

H1: Length-of-StayT ≠ Length-of-StayR

The alternative hypothesis claims that the two devices differ on the parameter 
of interest rather than stating your explicit goal of demonstrating a shorter 
Length-of-Stay. This is a two-tailed test, which is conventional and allows for 
rejecting the Null in either direction. If after having collected the data you 
reject the Null in the hoped-for direction, you declare superiority to SOC on 
Length-of-Stay.

If you had run your trial with no specific hypotheses and happened to 
achieve superiority on some parameter or other, you would be less convinc-
ing. After all, you will have collected many variables and conducted many 
tests; at least some can be expected to turn out in your favor by chance alone. 
It is like two teams playing many games against each other, with each match 
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constituting a comparison. Even the weaker team will win every so often, and 
if you selectively present these wins only, you will “prove” the superiority of 
the weaker team.

To the degree possible, analyses of secondary endpoints should be specified 
in the protocol as well. Additionally, before the end of your trial, you should 
write a statistical analysis plan (SAP) in which you detail all the tests you plan 
to do. Between the Statistical Considerations section in the protocol and the 
SAP (and another element or two) you will convince others that your results 
reflect the truth in the population.

Invariably there will be analyses that you did not plan; statistical tests beget 
more tests in the same way that answers often lead to additional questions. 
There is no reason to avoid these analyses. Indeed, it would be a shame to 
waste any data. At the same time, these sorts of additional tests will be less 
than convincing.

Suppose you wish to conduct a late-stage clinical trial in ischemic stroke, 
where the brain's blood supply is reduced, causing brain damage. In the study 
you will compare between those receiving TYP-01, your new treatment, and 
Control. The study's central endpoints include established scales of physical 
and mental function in stroke such as the modified Rankin Scale (mRS) and 
the National Institutes of Health Stroke Scale (NIHSS). Your primary analyses 
call for comparing the two groups on these parameters three months after the 
stroke has occurred. Other endpoints for comparing the groups may include 
Amount of Brain Damage as measured by Computer Tomography (CT) and/or 
Magnetic Resonance Imaging (MRI).

The trial is done. Your chosen primary efficacy endpoint is mRS, a measure 
of patient physical function varying from 0 (fully functioning) to 6 (dead). 
Success or failure in this late-stage clinical trial will be determined by TYP-
01's performance on the primary efficacy endpoint at three months. If you can 
demonstrate that your drug is superior to Control on mRS, you win; if you fail, 
you lose.

Like all such studies, your trial specified inclusion and exclusion criteria—
parameters determining who is and is not eligible for the trial. Among the 
many criteria specified is that the NIHSS at baseline be between 7 and 22. You 
stipulated this range for the following reasons:

1.	 TYP-01 will be of little use to patients who have very high NIHSS, which 
is associated with severe strokes that cannot be treated effectively in any 
manner.

2.	 Your drug will be no more effective than Control in patients with low 
NIHSS, which is associated with mild strokes. These subjects will likely 
recover with treatment or without.
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Your study is completed and its data collected. At this stage your statistician com-
pares the two groups as planned and finds that those receiving TYP-01 have slightly 
better (lower) mRS scores than Control. But the difference is not statistically sig-
nificant. So it turns out that your study has failed to demonstrate TYP-01's efficacy, 
and everyone is disappointed. Naturally, you are reluctant to leave it at that.

Now clinical trials are costly affairs, and you are not about to ignore data that 
were so painstakingly collected, even if the overall conclusion is a failure. So you 
ask the statistician to look at the results in a variety of ways. In particular you 
request analyses of the primary endpoint in subsets of subjects. This is termed 
subgroup analysis, where you assess your drug's efficacy relative to Control in 
selected patients. In this particular case you decide to assess Treatment-Control 
differences in subgroups of subjects differing on baseline NIHSS, which is a 
measure of stroke severity at trial entry. Examining these analyses you discover 
a striking result: When you compare TYP-01 to Control only in those whose 
baseline NIHSS was between 11 and 16, your drug turns out to be far superior 
to Control—a difference that is statistically significant.

I said before that inclusion in your stroke study is determined 
in part by NIHSS, while primary efficacy is measured by mRS. 
Since both are measures of patient functioning, one would 
expect that the parameter determining the trial's success (mRS) 
would also be that used for trial eligibility. This is customary and 
recommended and, in this particular instance, impractical. For 
technical reasons it is difficult if not impossible to assess mRS 
at baseline. Thus, one measure will be used to assess patient 
function at baseline, and another, more meaningful parameter 
will be used to evaluate efficacy at three months.

Where possible you should measure critical endpoints at both 
trial entry and subsequent time points of interest. This will allow 
efficient assessment of patients' Change. But with a stroke, you 
cannot measure this change on mRS but can on NIHSS. This 
is unfortunate because “change endpoints” are typically more 
powerful than those measured at a single time only.

Be that as it may, you chose mRS at three months for primary 
efficacy. Did you make the right decision? Unfortunately, you 
will only know after your trial is done. The best you can do 
before the study is obtain the relevant information to make 
an informed decision. In this particular instance you must 
decide between the following: 

a.	 The best clinical endpoint for measuring primary 
efficacy (mRS) but that cannot be measured at baseline.

b.	 An endpoint of lower quality that can be measured at 
both baseline and at three months (NIHSS).

There is something to be said statistically for the second option 
and clinically for the first. Yet, there may also be a third option 
in which you remain with the comparison described and 
statistically adjust the three-month mRS for baseline NIHSS.1 
This is not as good as having the same measure at both time 
points, but it might be a reasonable compromise given your 
options. It would appear, then, that statistical procedures can 
sometimes strengthen unavoidable weaknesses in design, and 
this is true. Yet, I say “unavoidable” because you should always 
specify the best design possible and only resort to statistical pro-
cedures for correcting design deficiencies. While useful, statisti-
cal adjustments for weaknesses in design are rarely as efficient 
(and convincing) as having a good design in the first place.

All the while you must keep in mind that the regulator 
will have something to say about this choice you face. For 
example, the agency may insist that mRS be your primary 
endpoint rather than NIHSS, in which case you have no 
choice in the matter.

1This approach is associated with a large family of procedures that 
are called covariate analyses. I will address this in greater detail later 
in this chapter.

Constraints
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Now over 60% of the subjects in the trial had baseline NIHSS of 11 to 16, 
so this result is based on the majority of participants. In other words, the 
outcome of this post hoc analysis is not based on some small, obscure 
subgroup. Moreover, the difference observed is perfectly in line with your 
initial reasoning. Recall that you had specified a range of 7 to 22 on NIHSS for 
inclusion precisely because you felt that only patients with moderate strokes 
will benefit from TYP-01. To this end you excluded subjects who were either 
too severely disabled (NIHSS > 22) or not disabled enough (NIHSS < 7). 
Well, it turns out that you did not exclude enough and should have selected 
the 11 to 16 range, which you now do. Based on these results you conclude 
the following: 

a.	 TYP-01 is superior to Control (SOC).
b.	 The intended use population for your drug includes patients with 

baseline NIHSS—with Severity of Stroke—of 11 to 16.

You report this to both the regulator and the investors, who reject your 
conclusions. The reason for this can be found in the preceding sections.

Here is another example: You conduct a trial to demonstrate the accuracy 
of a device that diagnoses significant cardiac disorders. You expect that your 
sensitivity and specificity will be 0.80 and 0.85, respectively, and you state 
this in the trial's protocol. Unfortunately, your actual results turn out to be 
weaker. On the face of it, your study is a bust. You then reanalyze the trial's 
data from different angles and discover that when assessing individuals less 
than 60 years of age, your sensitivity and specificity are both in the vicinity 
of 0.90. In other words, the device works well for younger subjects only. 
You consult with interventional cardiologists, who tell you there is a logical 
explanation for this. The device, they tell you, seems to be sensitive to the 
heart's disease status as well as to Age; older people's hearts are sufficiently 
weak that they appear disordered on your test regardless. In other words, 
the signal used by your device to diagnose disorders is indeed produced 
by cardiac problems, but it is also produced by shopworn hearts. Using 
this information you designate the product's intended use population as 
“younger than 60 years of age.”

In both cases the outcomes obtained are fact. They were not caused by your 
analyses. When assessing TYP-01 in a subset of stroke patients and when exam-
ining your device in subjects younger than 60, you obtained statistically sig-
nificant results. And in both cases your results are rejected. Given that your 
numbers actually occurred, the negative responses to them seem unfair. But 
they are not.

In both cases your results were a product of post hoc analysis—analyses after 
the fact. And because they were not anticipated before the trial, they are less 
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trustworthy. So instead of accepting the new results outright, you will be asked 
to conduct another trial for each indication where the hypotheses stated in 
advance related to the following: 

1.	 Stroke subjects with NIHSS at baseline of 11 to 16.
2.	 Subjects aged up to 60 for your diagnostic device.

The scientific approach to after-the-fact explanations, and with it the 
statistical approach, is no different from our natural attitude to the “Denmark 
explanation.” In science we prove points by making predictions and confirming 
them rather than by observing outcomes and explaining them.

On the Importance of Post Hoc Analyses
While post hoc analyses cannot be considered proof, they are nonethe-
less essential tools for generating hypotheses. Indeed, much scientific 
activity involves observing and hypothesizing. But the scientific method 
also requires replicating results, which in this case means demonstrating 
that observations-turned-hypotheses can be prespecified and tested 
successfully.

In practice, there is great temptation to make claims based on favorable 
post hoc results. This is especially true when there are good explanations 
for these outcomes. In my experience, unanticipated outcomes that can be 
explained feel predicted. And in reporting these results, as is often the case 
in scientific publications, researchers will often omit or “mildly conceal” 
the post hoc nature of such favorable findings. At the very least, this is 
scientifically wrong.

Like most statisticians, I frequently find myself in conflict with clients who want 
to believe favorable post hoc results and scientific principles that call for addi-
tional proof. Specifically, I will be asked (directly or indirectly) to report these 
outcomes as is without mentioning the manner in which they were obtained. 
This is not a comfortable place to be in. Years in the field have taught me 
that there is usually no conscious attempt at dishonesty here. Companies truly 
believe in their products and theories; they would not otherwise invest vast 
amounts of resources in them. Thus, they find it difficult to accept results that 
do not support the predictions. And when favorable post hoc results emerge, 
they embrace them.

It is part of the statistician's job description to restrain this particular nature of 
humans. But—despite some opinions to the contrary—statisticians are human 
too. As such we are subject to the same foibles as those we work with. I must 
admit that I have failed on this now and again, and I heartily recommend that 
you do as I say and not, alas, as I sometimes do.
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The All Too Human Model
There are times when I sit impatiently facing the computer monitor awaiting 
the Word in its contemporary form, called “output.” Depending on the results 
I may praise or rail, but this does not trouble the machine. In moments of 
clarity, it does not trouble me either. On occasion even I realize that processors 
running statistical procedures are neither for nor against me; they simply go 
about their business, paying no personal heed to the hands that key.

The programs I use are set up to analyze data in fixed steps, and even the 
“decisions” they make—their choice of one routine or another within an 
analysis—are burned into their programs. They are, in this sense, unfeeling. 
But this does not necessarily mean that they are without bias. In fact, being 
extensions of our own reasoning, they are very much subject to the kind of 
human foibles I have been describing.

Figure 9.1 represents measurements of Engine Size (displacement in inches3) 
and Acceleration (time in seconds from 0 to 60 miles) for 404 car models. 
As you might imagine, and as can be seen in the figure, the larger the engine, 
the greater the acceleration. Knowing this before having analyzed the data, 
and assuming the relationship will be adequately described by a straight line, 
I planned to fit a simple linear regression model to the data. This I did, and I 
present the line computed in the scatterplot as well.

The line in Figure 9.1 seems to fit the data, and I conclude that this simple 
linear model reasonably describes the relationship between Acceleration and 
Engine Size. Moreover, having prespecified the model before analyzing the data 
would seem to make this a confirmatory study and especially credible. Well, 
almost. Actually, I did prespecify that I would fit a simple linear model to the 
data, but I did not prespecify its specific parameters.
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Figure 9.1
Relationship between 
Acceleration and Engine 
Size with a fitted first-order 
linear model.
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Reach back to your high school algebra and recall that lines in two-dimensional 
space have the following general form:

	 = + ´y c b x 	  (9.1)

In this particularly example:

y = Acceleration
x = Engine Size
c = �Constant (termed intercept, which is the point on the y-axis that the 

line intersects)
b = Regression coefficient, which is the line's slope

On the technical side, the procedure requires that I provide the computer 
program with the model's (linear) form and data. It will then use the 
programmed procedure to compute the parameters “c” and “b” of the equation. 
Once done, I have a formula with which I can predict Acceleration from Engine 
Size. In this particular case it is the following equation:

		  = - ´Acceleration 18.434 0.0150 (Engine Size) 	 (9.2)

Plug in an Engine Size—one of the 404 models of which the data were already 
collected or another of your choice—and you will obtain the model's prediction 
for Acceleration. For example, estimating Acceleration for an engine of size 280 
inch3, I plug the number into the formula as follows:

= - ´ =Acceleration 18.434 0.0150 280 14.2

Thus, given the model, I expect an engine of size 280 inch3 to provide a car's 
Acceleration from 0 to 60 miles of 14.2 seconds. Not too impressive.

Having posited a linear model before building it but not having prespecified 
the model's parameters, this “trial” is not purely confirmatory but rather:

n	 Confirmatory with respect to testing whether a linear model fits the data.
n	 Exploratory in that it uses an optimization procedure to determine the 

model's actual parameters after having “looked” at the data.

In a wholly confirmatory study, I would do the following:

1.	 Prespecify the model, complete with specific values for “c” and “b,” which 
would have likely been developed on pilot data.2

2.	 Collect new data—obtain another random sample of cars from 
the population—and use Eq. (9.2) to estimate Acceleration given 
Engine Size.

2  Models can, of course, be developed using theory as well. For example, I might test a model 
constructed by a mechanical engineer based on theoretical computations only.
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Models are useful to the degree that they apply to the popu-
lation in general. In this sense, their performance on the data 
used for building them provides limited information. So it is 
with a drug in an exploratory study that is shown to be effec-
tive; its utility must then be confirmed on a new sample of 
subjects—on another exemplar of the population. But con-
firming takes time and resources, and it would be nice to have 
some indication of the degree to which a model will perform 
in the future. Thus, the regression procedure provides stan-
dard error for c and b (constant and slope) that are quantita-
tive indicators of how these parameters are likely to change 

when they are computed on a new sample. Other measures 
of model fit, such as R-square and standard error of esti-
mate, relate to the distance of the points on the graph from 
the line. If the points, which represent actually observed cars, 
are far from the line, we say the linear model does not fit 
very well (R-square is low and standard error of estimate is 
high). If the points are near the line we say that our model fits 
well (R-square is high and standard error of estimate is low). 
Additional statistics abound, each of which provides some 
information on the degree to which you can trust a models' 
future performance before actually testing it (in the future).

Testing and Trusting

3.	 Compare the results predicted by the model to the cars' actual 
acceleration values.

If the differences between observed and predicted Accelerations are sufficiently 
small, I have confirmed the model. If the differences are unacceptable, the 
model is disconfirmed. Thus, a confirmatory trial would test an existing 
model “as is” on data; it would not use the data to build or modify any part 
of Eq. (9.2).

The “partial-confirmatory” approach just described is common in research, 
and there is nothing wrong with it. Regardless, when building models we 
should distinguish between the confirmatory and exploratory elements in 
them. This will provide us information on the degree to which we can trust 
our results. In this particular example, I can be confident that a straight line is 
a reasonable way to model the data. After all, I specified the simple model in 
advance, and it fits the data. However, I am less trusting of the model's specific 
parameters; in other words, I am less certain that the constant (18.434) and the 
slope (–0.0150) are reasonable estimates of the true values in the population 
because they were not prespecified.

I said before that a simple linear model fits the data reasonably well and the 
figure presented bears this out. Still, life is not mathematics—and neither are 
cars—and most of the points are off the line; in other words, the model does not 
fit perfectly, and there is no one-to-one correspondence between Acceleration 
and Engine Size. This too was expected. Examining the figure, I wonder if I 
can do better. I see, for example, that there are several relatively small engines 
(about 100 inch3) of which the Acceleration is in the vicinity of 25 seconds, yet, 
according to the estimated model, they “should be” about 17 seconds. At the 
other end of the scale—when looking at the largest engines—all of the points 
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are below the line. In other words, for all these engines the model predicts 
slower Acceleration than is actually the case. This is not optimal. Ideally a line 
will “pass through” the data throughout the range rather than be uniformly 
above or below in certain subranges.

Thus, the error in prediction of Acceleration from Engine Size produced by Eq. 
(9.2) is, at times, more than I would like. Hoping for a better model, I decide 
to fit a more complex equation to the data. Specifically I choose a model of 
which the form is a second-order polynomial—one that posits an element of 
nonlinearity in the relationship between Acceleration and Engine Size. The 
new equation (which you might also vaguely recall from high school algebra) 
has the following form:

	 = + ´ + ´ 2
1 2y c b x b x 	 (9.3)

where:

x2 = Engine Size squared (parabola, remember?)
b2 = �An additional coefficient to be estimated—the weight assigned to the 

nonlinear term (x2) in predicting acceleration

Estimating the model using the optimization procedure mentioned yields the 
following:

 (9.4)

If you are familiar with this procedure, fine. Otherwise, do not fret. It is enough 
to know that instead of using the simple model (Eq. (9.1)), I have fit a more 
complex model (Eq. (9.3)) to the data.

Having run the procedure, I obtain Eq. (9.4) and 
present the results of my efforts in Figure 9.2.

Looking at Figure 9.2, I see that the line is curved and 
appears to fit the data better than the line in Figure 
9.1. There is a clear improvement at the high end 
of Engine Size, where the first-order model passed 
above the data points, while the second-order 
model passed through them. But there appears to 
be little or no improvement at the lower end of 
the Engine Size scale. As it turns out, the model in 
Figure 9.2 is statistically superior to the first in that 
its R2 (R squared) is 0.36 as opposed to the first 
one's 0.32.3 This is no dramatic improvement but 

= + ´ - ´ 2Acceleration 15.863 0.0139 (Engine Size) 0.0001 (Engine Size)
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Relationship between 
Acceleration and Engine 
Size with fitted second-
order linear model.

3  R2 is a measure of model fit. The higher it is, the better the fit.
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is a step in the right direction. Moreover, the difference between the models is 
statistically significant. In other words, I can be pretty certain that the second 
model will fit in the population better than the first. Or can I?

I now have a better fit to the current data and, arguably, a better prediction of 
Acceleration from Engine Size. I write “arguably” because while the model fits 
the data at hand better, it is far from clear that its predictive prowess in the popu-
lation will exceed that of the simpler model. Keep in mind that my more recent 
effort has two post hoc elements to it: the model's form and the parameters esti-
mated. While in my first effort the model's form (linear) was prespecified, in my 
second effort I added a nonlinear term after looking at the numbers.

So I am once again in a situation where post hoc testing has provided me with 
apparently useful information. But how useful is it? This is no idle question, 
since in the future I will want to use some model to predict Acceleration from 
Engine Size on new data. This means that I must now choose between the two 
models computed. Based on fit alone, I should choose my second effort, while 
based on “planned versus post hoc analyses,” I should choose the first. All 
the while I should remember there is a third option—namely, fitting an even 
more complex model to the data, since neither of my first two efforts yielded 
particularly impressive results. I will consider this third possibility soon.

The example described presents the statistician with a quandary: choosing 
between models to predict future events based on sample data. In one form or 
another, this issue arises continuously in clinical research.

Suppose you conduct a dose-response study testing five doses ranging from 
0 mg to 60 mg in an indication where the stronger the response, the better. You 
start at 0 mg to make sure the kind of response you are trying to elicit does not 
occur naturally in the human body. And you choose 60 mg for your highest 
dose, expecting that your drug produces its maximal response at about 40 mg 
and weakens thereafter. This is what your early data have suggested and, judg-
ing by the limited research reported, what others have found as well. In fact, 
you could have probably forgone the 60 mg dose, but you had the resources 
and wanted to substantiate your earlier results and those reported in the litera-
ture. Figure 9.3 shows the results obtained in this trial.

Surprisingly, the 60 mg dose elicits a stronger response than 40 mg, and you 
must now to decide which should be used in your upcoming feasibility trial. 
Specifically, should you believe your expectation that 40 mg is optimal, or 
should you go with the apparently more effective dose of 60 mg observed?

As before, the preferred solution is to repeat the study and test whether 
these results replicate. But this is not an option. While your company has 
the monetary resources for another study, it cannot spare the time; its plan 
requires that the molecule move forward to a feasibility trial, and you have 
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no say in the matter. Discussing the issue with your superiors, they agree 
that another study is a good idea but that neither you nor they can make it 
happen. Given the results obtained, they say, any dose between 40 mg and 
60 mg should do for now. They propose that you bring up the issue again after 
the drug is approved and starts generating income. Perhaps then, they say, the 
company will be open to considering tests of alternative doses.

So you have been given the authority to determine the dose, and decide on 
40 mg. It is the safe option and probably not a bad one. But you are not 
completely comfortable with this route, and you review your results repeatedly 
to see whether more can be gleaned from them. In reassessing your results, you 
come up with Figure 9.4, in which two dose-response curves (models) have 
been fit to the data.
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Looking at the simpler, dotted-line curve, 60 mg is your best option; it 
produces the strongest response, which is preferred in this indication. 
In fact, you do not really need a model for this. The strongest response 
was observed at 60 mg, and that is that. At the same time, this result is 
at variance with your expectations. Specifically, the maximal response was 
expected at 40 mg, and pushing it up to 60 mg is sufficiently inconsistent 
to be questionable. Keeping this in mind, you fit the more complex, solid-
line model. And although more complex, its form is often encountered 
in dose-response studies and thus may more accurately reflect this rela-
tionship than the simpler model. Examining the solid curve, the strongest 
response is slightly over 50 mg rather than 60 mg, which is situated on the 
curve's downward trend.

So it seems that repeated looks at the data have only complicated 
matters. You are now faced with three choices, each with advantages and 
disadvantages:

n	 The safest choice is 40 mg. It is consistent with expectation, yields an 
acceptable response, and no one will blame you for selecting it. Yet, 
you would not have conducted the study in the first place if you were 
completely sure of the 40 mg dose.

n	 Using a simple dose-response model, you ought to choose 60 mg. Of the 
doses tested, this provides the best response. Indeed, even if you had not 
used a model at all, you would have reached the same conclusion, which 
is also in 60 mg's favor.

n	 Given a more complex model of the type often fitted to dose-response 
data, the dose of choice for the feasibility trial should be in the vicinity 
of 50 mg.

Having dug into the data a bit deeper, you now have three options and no clear 
criterion to guide your choice. Now as a statistician I would really like to help 
you, but there is not much I can do. While the first argument might be the 
most powerful statistically, all three make sense. In this particular circumstance 
I would likely push (mildly) for the first option but would ask to discuss the 
matter further with clinicians.

Allow me another example—one that in one form or another I have 
encountered in the development of diagnostic tests. Suppose you have 
designed a device that produces a number for detecting some disorder. Let 
us call this number Score-X. Now Score-X is a product of theory, early test-
ing, and intensive work by your company's algorithm experts. Applying it in 
a pilot yields reasonable, but not outstanding, accuracy: sensitivity and speci-
ficity of about 0.8 each. You are now planning your pivotal trial and writing 
a protocol in preparation for submission to the regulator. Once approved, 
you will go ahead with the trial, and if the results expected materialize, your 
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device will likely be approved.4 Meanwhile your company has added another 
algorithm expert to the staff, and she comes up with a modified diagnostic 
indicator that she calls Score-Y. Reanalyzing your pilot data with Score-Y, 
both sensitivity and specificity increase appreciably (to about 0.9 each). 
What should you do?

If this new expert came up with Score-Y after looking at the data, the solution 
is probably “post hoc enough” to be rejected. Indeed, chances are that your 
other experts would also have achieved better results if they were allowed 
to modify the algorithm based on available data. But this is not how it 
happened. The new person came up with the algorithm using the same infor-
mation your other experts had before the pilot trial. She only used the more 
recently acquired data to test the model rather than to develop it. So here is 
what you have:

1.	 A post hoc study in the sense that Score-Y was computed after the pilot.
2.	 A planned study in that you assessed Score-Y on data that were not used 

in its development, which is certainly not post hoc.

The important moral of this story is that the difference between “planned” and 
“after-the-fact” is not necessarily a matter of chronology. To evaluate trustwor-
thiness of outcomes, you must examine how these outcomes were obtained. 
When your model is fit to some data, these same data do not provide an 
optimal test of your model. However, if the model was built independently of 
a specific data set, this latter set provides an acceptable test of the model even 
if its numbers were collected before the model was constructed.

To address this issue, when developing algorithms, researchers often take exist-
ing data and divide them into two or three subsets. They use the first subset—
usually the largest—for what is called “learning.” Once the learning phase is 
completed, one has an algorithm that can be tested on “virgin” data—numbers 
that were not used in algorithm development (though collected at the same 
time). Whether you choose one or two data sets in addition to the first depends 
both on the amount of data at your disposal and your researcher's preferences. 
This is a technical issue that need not concern us. My point is this: Where 
possible, do not “waste” all your data on building a model. Select a random 
subset of them to be excluded from the model-building phase. Once your 
equation has been developed, use the data that have been set aside to test your 
accuracy. This way you have, for all practical purposes, conducted two trials, the 
first being exploratory and the second confirmatory.

4  I write “likely” because even the regulator's preapproval of a protocol does not guarantee acceptance 
of the product after a successful study. At the same time, it certainly increases the likelihood for eventual 
marketing approval, so submitting your protocol to the regulator before going ahead with a pivotal 
study is highly recommended.
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The examples described thus far involve “shades of gray” in decision making. 
Based on statistical “fit parameters” only, there are better results and worse. 
But statistical fit is not the only concern in choosing between models, and this 
makes your choice less than straightforward. Now all this might be an amusing 
intellectual exercise if the reality of biomedical development did not necessi-
tate your deciding one way or the other. But you must decide, and at times the 
decision-making process feels a bit like gambling, which it is. You can collect 
information to increase your odds for success, but you will not know whether 
your choice has been a good one until the results are in.

Robustness
Some creatures adapt to their environment so well that they are perpetually 
on the brink of extinction. Koestler5 tells of the koala bear that is native to 
Australia and the last surviving member of its biological family. It feeds almost 
exclusively on eucalyptus leaves that are toxic for most animals and low in pro-
tein besides. The koala's liver neutralizes the toxins, and its gut extracts what 
little protein it needs. Lying motionless for up to 18 hours each day, its needs 
are modest. Thus, the creature has virtually no competition for its precious 
greens and has almost no natural enemies.

The koala and its environment are a perfect fit. But this is a precarious place 
to be. You see, when everything is “just right,” it takes very little to make it 
wrong. In the case of the koala, you have an animal whose physiology is per-
fectly suited to its diet and its diet to its habitat. Thus, any tiny change in the 
supply of eucalyptus (due to climate, competition, disease, etc.) may render 
the animal extinct. So it seems that in some cases, when it fits like a glove, it 
fits too well.

This phenomenon has been termed an evolutionary cul-de-sac—a dead end 
brought about by evolving too well to a particular environment. Now there are 
those who suggest that this particular concept has had its day, and this may 
be so.6 Yet, the concept is sufficiently intriguing and relevant to my statistical 
world that I find the tale worth telling. Moreover, it is but one example, albeit 
extreme, of the tension between generalization and specialization that is ubiq-
uitous in both life and science. Examples abound, and the idea is sufficiently 
basic to have found its way into everyday language. Thus, you may deride the 
generalist as being a “Jack of all trades and master of none” or extol his virtues 
as a “Renaissance man.” A sage once said some 2,000 years ago, “If you grab 
too much, you end up with nothing.”7 I suspect there have been others arguing 

5  Koestler, A. (1990). The Ghost in the Machine. London: Penguin.
6  Erikkson, T. (2004). Evolutionary biology: Ferns reawakened. Nature, 428: 480–481.
7  Babylonian Talmud, Yoma 80a.



Robustness 129

this way or that. But, really, there can be no single rule about the advantages 
and disadvantages of specialization, and it depends on the circumstances.

At the same time, given the ever-increasing complexity of both our personal 
and professional lives, society seems to have come down on the side of the 
specialist. Yet as the koala's tale points out, it cannot be as simple as all that, 
and we will soon have our own statistical tale to back this up.

Closer to home—your kitchen, in fact—you likely have several types of knives, 
each for a special purpose. Thus, you may have one for butter, another for 
cheese, one or two for breads, and still others for steak and fruits and vegeta-
bles. Depending on your culinary propensities there may be more or fewer, 
but chances are there is at least some specialization there. Yet every once in a 
while you might change your environment and go camping, where there will 
be neither cabinets nor flank steak. For these occasions you will likely take a 
Swiss Army knife or some such compromise of a utensil—one that can perform 
a great deal, though none of it especially well (a generalist). Clearly, some 
situations call for specialization, while in others it presents more problems 
than solutions.

I shall now return to my Acceleration–Engine Size models with our newfound 
wisdom. Recall that our first model was a simple line. You might even call it 
“crude”—a simplistic, insensitive creature in our statistical arsenal of models. 
The second model was a bit more specialized—better fitted to the numbers in 
that it displayed a mild curvature in an attempt to better account for the data's 
scatter. But it was a relatively feeble attempt nonetheless, as evidenced by an 
R2 that was only slightly superior to that of the straight line. In Figure 9.5, 
I present the most complex fitted model to this point.

Clearly, the line drawn in Figure 9.5 fits the data better than either of the models 
presented so far. This is so because the more complex polynomial allows it to 
fit better to local conditions in the graph (i.e., it can “squiggle” more as needed 
along the series of points).

Now all this would be well and good if my only 
task were to fit a line to observed data, where 
the greater the fit, the better. But in statistics I am 
rarely concerned with the data at hand. Rather, 
in analyzing sample data, my objective is to obtain 
information that will generalize to the population 
as a whole. And there is the rub.

The models and subsequent predictions/estimates 
I obtain from a sample data set must fit “in gen-
eral” if they are to be of any use; they must be 
useful when assessing data that were not used 
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in building the model. If I wish to be practical, my “knife-model” should be 
nearer the Swiss Army sort than the one used by a chef for a specific task; 
it must be useful for predicting Acceleration from Engine Size in general and 
applicable to cars I have yet to observe. Because of sampling error—because the 
data I am fitting my function to do not perfectly represent all data of interest in 
the population—I had better construct a model that is sufficiently insensitive 
to peculiarities of a specific data set. In short, I had better not pay too much 
attention to “local curves” that are unlikely to repeat when obtaining another 
sample. So of the three models, which do I choose?

Well, there are no hard-and-fast rules here. But there are some principles that 
should be considered. One is that a model fit “overly well” to the environment 
at hand is unlikely to fit to other environments. In statistics we call this overfit-
ting, which is adapting a model to local conditions to the point that it is not 
useful in other situations. In statistical terminology, an overfitted model will 
not generalize well to the population.

Now this idea of overfitting is very much related to post hoc testing. My overfit-
ted model was made to fit a specific “data environment.” It was not specified in 
advance without having seen the data. Thus, our mistrust of post hoc analyses 
springs from the same well as that of overfitted models, both being analogous 
to drawing the target after seeing where the arrow hit.

Long ago we were taught that the simplest explanation (in our case, a model) 
is preferable to all others (something about Occam and a razor). But this 
principle relates to models of which the explanatory power is equivalent; for 
example, if two models are equally efficient in explaining data, choose the sim-
pler one. But in our case we have three models of increasing complexity, each 
explaining more of that observed. Which then should we choose—the simple 
and weak or the complex and strong?

As always, the answer is “It depends.” I cannot tell you which is to be selected 
in any particular case. But here are some points you should consider when 
encountering this sort of situation:

n	 Planned versus post hoc: All else held equal, prefer a model you specified 
before evaluating the data to the one constructed after looking at them.

n	 Sample size: The larger the sample, the more likely it is to represent the 
population well, and thus the more I will trust the models fit to it. Thus, 
a post hoc model based on a large number of observations can be trusted 
more than one derived from fewer observations.

n	 Complexity: As a general rule, complex models are likely to be more efficient 
on the data at hand than simplistic ones. But the former are also likely to 
be more inefficient on future, yet-to-be-observed data. Thus, the optimal 
model is likely somewhere between the very simple and the very complex.
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n	 Statistical indicators: When constructing models using statistics, outputs 
come complete with parameters describing how good they are for the data 
at hand (e.g., R2) and how good they are likely to be in the populations 
(e.g., standard error or standard error of estimate). Use these statistics to 
evaluate the degree to which your model is likely to fit future data.

n	 Intuition/logic: A model that makes intuitive and/or scientific sense is 
more likely to be correct than one that makes less sense (even if the latter 
demonstrates superior fit in a particular data set). For example, if biology says 
that higher doses yield stronger effects within a certain range and a model 
says otherwise, be less trusting of the model (and, perhaps, repeat the study).

n	 Cross-validation: A model that has been cross-validated successfully—has 
been tested successfully on data not used to construct it—is preferable to 
one that has not been.

While there is no one principle that can determine your choice in every circum-
stance, the simpler the model, the more robust it is—that is, the more likely it 
is to be useful in different situations. A Swiss Army knife is robust in that it is 
moderately handy in a large variety of situations, while a steak knife is perfectly 
handy in only a few. If you know that all you will be doing is eating steak, stick 
to the latter. If you wish to generalize to camping trips and other situations, 
you should tend to the robust. In the following sections I will formalize the 
ideas presented with some quotations from the guidelines.

The Confirmatory Trial
A confirmatory trial, as its name suggests, is a study designed to confirm a 
prediction or hypothesis. The International Conference on Harmonization (ICH) 
guidance for statistical principles in clinical trials provides the following:

A confirmatory trial is an adequately controlled trial in which the 
hypotheses are stated in advance [emphasis added] and evaluated. 
As a rule, confirmatory trials are necessary to provide firm evidence of 
efficacy or safety. In such trials the key hypothesis of interest follows 
directly from the trial's primary objective, is always predefined, and is 
the hypothesis that is subsequently tested when the trial is complete.8

Thus, when planning a confirmatory trial, you must do the following in advance:

1.	 Articulate your hypothesis clearly, as in the following:
a.	 My innovative chemotherapy treatment will yield longer Survival than 

the standard treatment.

8  International Conference on Harmonization. (2003). Guidance for industry: Statistical principles for 
clinical trials ICH topic E9.
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b.	 Subjects using my company's insulin pump will have fewer 
Hypoglycemic Events than when using their standard pump.

c.	 My diagnostic device will yield greater Accuracy (sensitivity and 
specificity) versus the gold standard than the competitor's.

2.	 Indicate how you will test this hypothesis:
a.	 Specify the endpoints.
b.	 Specify the statistical tests to be applied.

3.	 Indicate what will constitute “success” or “failure”—for example:
a.	 I will have demonstrated success if my therapy yields significantly 

more Cures than the comparator.
b.	 I will have demonstrated success if both my Sensitivity and Specificity 

are significantly greater than 0.85.

Once you have specified your hypotheses—endpoints, statistical testing, and 
success criteria—your hands are more or less tied; you have taken away your 
freedom to conduct critical post hoc analyses. And this is precisely the point: 
When conducting a clinical trial, the data are yours, and there is nothing to stop 
you from analyzing them as you wish. But if you would like others to accept 
your outcomes as fact—if your objective is to have your results accepted by a 
jury of your peers—you will need to play by rigid rules. And one of the most 
important of these is that your product should not be judged definitively 
by post hoc analyses. It is for this reason that the confirmatory trial is “neces-
sary to provide firm evidence of efficacy and safety.” It, and not an exploratory 
trial, must be conducted to get your product approved.

The Exploratory Trial
The International Conference on Harmonization stated the following:

The rationale and design of confirmatory trials nearly always rests 
on earlier clinical work carried out in a series of exploratory studies. 
Like all clinical trials, these exploratory studies should have clear and 
precise objectives. However, in contrast to confirmatory trials, their 
objectives may not always lead to simple tests of predefined hypotheses. 
In addition, exploratory trials may sometimes require a more flexible 
approach to design so that changes can be made in response to 
accumulating results. Their analysis may entail data exploration; tests of 
hypothesis may be carried out, but the choice of hypothesis may be data 
dependent. Such trials cannot be the basis of the formal proof of efficacy, 
although they may contribute to the total body of relevant evidence.9

9  International Conference on Harmonization. (2003). Guidance for industry: Statistical principles for 
clinical trials ICH topic E9.
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Thus, exploratory trials:

n	 Should have specific, well-articulated goals. It is highly inadvisable to 
go into a vaguely designed trial in the hopes that “data will speak for 
themselves.”

n	 Can be flexible of design. You can look at your data as you go along and 
adjust the trial accordingly. For example, if you have a three-dose trial, 
and midway through it you find that one dose is completely ineffective, 
you should feel free (after serious consideration) to eliminate the 
offending dose and increase the size of the other arms.

n	 Involve data analyses that “may entail data exploration”; in other words, 
post hoc tests are both legitimate and expected.

n	 Are not luxuries. They are needed to move your product forward and 
will “nearly always” provide the basis for your confirmatory trials—those 
studies that will, ultimately, determine whether or not your product is 
marketable.

Helping you to determine the optimal mix of exploratory and confirmatory 
investigations in your development program is one of the statistician's 
central roles.
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n	 Planning a drug trial in a neurological indication
n	 design
n	 selection of endpoints
n	 relationship between logistics and data quality

n	 Challenges of collecting diary data
n	 Hypothesis testing for superiority step by step
n	 Type I Error
n	 Alpha
n	 P-value
n	 Type II Error
n	 Interpretation of nonsignificant outcomes
n	 Demonstrating similarity: equivalence and non-inferiority testing
n	 Interim analysis and multiple testing

Introduction: The Shaking Palsy
In 1817 an English physician and member of the Royal College of Surgeons pub-
lished An Essay on the Shaking Palsy. In it he characterized individuals he believed 
suffered from a common ailment. Here is a description of one of them:

It was a man sixty-two years of age; the greater part of whose life had 
been spent as an attendant at a magistrate's office. He had suffered 
from the disease about eight or ten years. All the extremities were 
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considerably agitated, the speech was very much interrupted, and the 
body much bowed and shaken.… He described the disease as having 
come on very gradually.1

In the essay James Parkinson provided the first systematic description of 
an illness that now carries his name. Parkinson's disease is a chronic and 
progressive illness in which the function of specific brain cells degenerates. 
The disease typically causes speech and motor difficulties.

Most patients who take medication for Parkinson's soon notice that their 
condition alternates between “On-Time,” when the symptoms are milder, and 
“Off-Time,” when the symptoms are more severe. Alternating between these 
two states is a reality for Parkinson's patients, who will often arrange their 
lives to accommodate the cycle. The principal aim of many Parkinson's drugs 
is reducing Off-Time and increasing On-Time, which is also the aim of your 
innovative molecule.

By Way of Introduction
Many of the ideas described in this chapter have been mentioned in lesser 
detail in earlier chapters. Here I combine these sometimes disparate ideas 
to complete the puzzle of statistical testing in its various forms. I  then 
add to it the problematic issue of multiple testing—of conducting a 
number of statistical tests on data collected in a single study, also termed 
multiplicity.

You may notice some repetition in this chapter because I approach similar 
concepts from diverging angles. This should assist the “minimally familiar” to 
gain a deeper understanding of the material. But it is also likely to bore others. 
One cannot, it seems, please all of the people all of the time. And you heard 
it here first.

A Study
Patients in later-stage Parkinson's take L-Dopa, a precursor of the actual 
neurotransmitter lacking in the disease. Once in the brain, L-Dopa gets 
converted into dopamine, a substance that is essential for proper functioning 
and that is not adequately produced in Parkinson's. Say your drug, Apparatone, 
is indicated in the ailment's early stages—before subjects begin taking L-Dopa. 
Aside from being designed to reduce Parkinson's symptoms, it also aims to 
delay the need for L-Dopa.

1  Parkinson J. An essay on the shaking palsy. Published as a monograph in 1817, in Journal of 
Neuropsychiatry Clinical Neuroscience, 14: 223–236.
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Preclinical studies have been completed with Apparatone, as have Phase I and 
a dose-response trial. Your company expects that the dose selected is good 
enough to take the drug through the remaining stages to marketing.

You are project manager for a late Phase II trial designed to confirm the 
selected dose's safety and efficacy. In it, Apparatone will be compared to what 
is considered the best drug now on the market, which will be its Reference (R, 
Control). Yours will be a simple design:

1.	 Each subject will be randomized to receive either Apparatone or R, using 
a 1:1 ratio—that is, there will be an equal number of subjects assigned to 
each of the groups.

2.	 The total number of subjects planned for the trial is 100 (50 per group).
3.	 The trial length is 24 weeks.
4.	 All through the study, subjects will complete daily diaries in which they 

record On-Time and Off-Time during waking hours.
5.	 Safety endpoints are adverse events, including a list of anticipated 

Adverse Events based on previous experience with the drug.
6.	 The trial's primary efficacy endpoint is Percent On-Time (POT) per day 

over the study period.
7.	 The trial's primary objectives are to demonstrate safety and efficacy, with the 

latter set up using formal hypotheses. You aim to show that Apparatone is:
a.	 About as safe as R based on examination of descriptive data for 

each group.
b.	 Superior to R on POT using formal statistical testing.

This particular trial will not test whether Apparatone delays future need for 
L-Dopa more than R. If it did, you might have:

a.	 Designed the first part of the trial as described and analyzed the data 
after all subjects have completed 24 weeks.

b.	 Added long-term follow-up to assess whether the two groups differ 
On-Time to L-Dopa therapy, which would be evaluated using survival 
analysis. The latter assess time-to-event parameters, such as, in this 
case, time to needing L-Dopa. This analytic technique is common 
in many indications and especially in terminal diseases, where 
treatments are related to time to death.

After an initial screening and baseline visit, subjects will see their physician 
every six weeks. At each of these visits they will hand in diaries and receive 
medication for the next six weeks. Other measures will be taken during 
these visits, including laboratory parameters, vital signs, Physician Overall 
Assessment, and self-reported Quality of Life (QoL). Adverse Events will be 
also solicited at six-week visits, but subjects are asked to report them as they 
occur between visits as well.
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So to summarize: You have designed a two-arm, randomized trial of which the 
main aims are to show that Apparatone is safe and provides better POT than 
the standard of care (SOC) currently on the market.

Your trial is almost finished, and all 100 subjects have completed the study 
and provided the required data. This sort of perfection rarely occurs in 
clinical trials, where missing data are the general rule. For the moment 
I  shall keep things simple and deal with missing values later. It is now  
time to test your data, and in the sections that follow I describe several 
scenarios for it.

Data Analysis Scenario I
Scenario I is straightforward and is likely the one described in the study's 
protocol. The efficacy outcome of greatest interest is POT, which you compute 
and present separately for each of the two Treatments. Looking at the numbers, 
you find that this primary efficacy parameter is higher in Apparatone than 

Our topic is multiple statistical comparisons, and I will get 
there. But in the tradition of “everything is connected to 
everything else,” I should say a word on collecting diary data, 
which presents many challenges.

Diaries are self-report measures and thus are prone to 
patients' subjective perceptions. Now in many instances it 
is precisely subjectivity that interests you. This, for exam-
ple, might be the case when evaluating Pain and QoL. But 
this is not so here where, if it were practical, On-Times and 
Off-Times would be measured by observation rather than by 
self-report. Being dependent on patients' perceptions, dia-
ries are especially susceptible to measurement error.

The difficulties introduced by measurement error are typi-
cally less problematic in two-arm randomized trials than in 
single-arm trials. In the former you expect individuals of all 
groups to be about equally error-prone, canceling out one anoth-
er's errors. You will then assume that any differences emerging 
between groups at the end of the trial reflect differences due to 
Treatment. At the same time, even errors that “more or less can-
cel out” introduce noise and weaken a study's power.

When collecting data with diaries, there is often a problem 
of compliance as well—of subjects not completing forms as 

instructed. In the Apparatone trial this could leave you with 
subjects who have no primary efficacy parameter, which 
effectively reduces your sample size.

My suggestion is that you avoid diaries where possible. And 
when you must use them, specify that their data should be 
secondary rather than primary. Yet avoiding diaries or speci-
fying them as secondary are not always possible, and the 
current situation is a case in point. To test Apparatone you 
must estimate POT over 24 weeks, which can only be done 
by diary. So the best you can do is to make every effort that 
these data are collected reliably. For example, you might sup-
ply patients with fax machines with which to submit their 
diaries daily. This will provide you with a measure of over-
sight of the data. You might also consider calling subjects 
on a regular basis to remind them of the diary's importance, 
or even calling them for obtaining daily POT measurements. 
Here, then, is one of many examples where trial logistics 
affect data quality and, thus, a trial's outcome.

The moral of this particular story is that statisticians 
should make it their business to be aware of trial logistics 
in addition to understanding the measurement qualities of 
endpoints.

Diaries and Logistics
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Control by 6%. Statistical testing comparing the two groups yields a significant 
result (P = 0.03). This is a good result, and based on this information, your 
Company is considering moving on to a pivotal trial with Apparatone. As for 
myself, I shall move on as well—to more complex data analytical scenarios. 
But before I do, some statistical background is in order.

Possibilities and Probabilities
Possibility 1: You conduct a clinical trial comparing some Test drug T to a 
Reference R. Having completed the study, you evaluate the results and find 
that T is more effective than R. You conclude that what you observe reflects the 
truth in the population and declare that T is superior to R. As when reaching 
conclusions in general, you may be right or wrong.

Possibility 2: You conduct a clinical trial comparing T and R. Formally compar-
ing the two, you find the difference between them is not statistically significant. 
As a result, you conclude that there is no evidence that the drugs differ from 
each other. Once again, you may be right or wrong.

Now all of this is obvious. The trick, of course, is to ensure that whatever your 
conclusion turns out to be, it should be correct. Well, you cannot ensure this, 
and the familiar culprit is sampling error.2 Even when drugs truly differ, sam-
pling error can result in data suggesting they do not. Conversely, even when 
T and R are truly equivalent, a particular study may suggest that one is better 
than the other.

So it seems you will never be completely certain of any conclusion reached. But 
this is not as tragic as it sounds. It is in fact something you have long learned to 
live with. Every day you experience uncertainties in your life, but you do your 
best to deal with them and move on. Science is no different. And among the 
more important tools available to scientists for reducing uncertainty is statis-
tics. Using the discipline's methods you can do the following: 

1.	 Decrease the chance of reaching an erroneous conclusion.
2.	 For any given conclusion, specify your probability of being wrong.

In short, you cannot completely eliminate uncertainty, but you can keep it to 
a minimum. You have probably often said, “I'm pretty sure that …” or “I'm 
guessing that …,” which is usually good enough to inform your listener. But 
this will not do in science, where you must quantify your terms with bolder 
statements like “I'm 95% certain that …” or “There's about a 25% chance that 
I'm wrong.” And statistics provides you with the tools to do that. 

2  There are other culprits that can mask the truth in a clinical trial, such as measurement error. For the 
moment we shall focus on sampling error.
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You may recall from Chapter 8 that statistical testing, also called hypothesis test-
ing, follows some very specific reasoning. This in turn leads to a fixed sequence 
of analytical steps. To save you the trouble of rereading earlier material, I will 
summarize both logic and steps as they apply to the Apparatone study. For the 
moment, read the following without trying to make a connection to practical 
applications. View this simply as an intellectual exercise. Its value will emerge 
in time. The steps are as follows: 

1.	 Until proven otherwise, Apparatone is assumed to be no better than R. 
For simplicity's sake we shall say they are about equal.

2.	 Given that the drugs are equally effective, you can predict the outcomes 
that would occur when comparing them over many studies. Specifically, 
an infinite repetition of a trial between Apparatone and an R equivalent 
to it will yield a distribution difference that has the following 
characteristics:
a.	 A mean of 0. Since the drugs are equivalent and sampling error  

is random, observed differences will sometimes favor Apparatone 
and other times favor R. Necessarily, they will “average out” to 0.

b.	 Most of the differences between Apparatone and R will be relatively 
small and on either side of 0. But sampling error can, by chance, also 
be large. So if you repeat a study comparing equivalent compounds 
many times, there will be the odd result where the drugs will look 
different even though they are not.

During your lifetime, you buy new products, cross streets, and 
propose marriage. You bring a dog home, and you send your 
child to one school or another. Each of these involves risks 
and rewards. And at some point—perhaps long after you have 
made the decision and acted upon it—you will find yourself 
sitting in some armchair on a Monday morning wondering if 
you made the right decision. Alas, there is no Control group in 
life, so you can only speculate on “what might have been.”

Certainty is rare. Yet the artificial environment of clinical 
trials enables designs that increase your chances for it; what 
is usually impossible in your everyday life—setting up a 
Control group—is usually possible in formal research. In this 
sense, scientific decision making is generally easier than it is 
in real life. Yet, the two have a great deal in common because 
they both: 

1.	 Use empirical data.
2.	 Involve comparisons between results obtained under 

different circumstances. In real life, this is often done 
by speculation (e.g., “If I had done B instead of A, the 
results would probably have been …”). In science, you 
will specify a Control and compare your Treatment to it.

It seems, then, that the concepts of statistical decision 
making have been familiar to you long before you knew 
what science is. At the same time, I am not suggesting that 
all, or even most, real-life decisions parallel the scientific 
process. As human beings we have varied modes of think-
ing and numerous tools for reaching conclusions. We use 
“gut feelings,” solicit others' opinions, and once in a while 
flip coins. I am simply pointing out that at least some of your 
daily decision making parallels the scientific method.

Decisions, Decisions
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c.	 Entries a and b imply a normal distribution of differences of which the 
mean is 0—that is, a symmetrical distribution around 0 where most of the 
values are near the mean with a smattering of extreme values on either side.3

Now it would be good if we could end this little exercise here and actually 
construct the theoretical distribution of differences under the assumption of 
equivalence. Unfortunately, we do not yet have all the information required. 
You see, a normal distribution is determined by two parameters—the mean 
and spread—with the latter quantified by the standard deviation or its square: 
the variance. There is however no reason to fret, since the spread can be 
estimated from the actual data collected in the trial. So using the information 
available (mean = 0, shape = normal, variation estimated from trial), we can 
construct what is termed the sampling distribution of the mean. In our partic-
ular example, it is the distribution of expected outcomes when computing the 
difference between two equivalent compounds over an infinity of studies.

The reasoning outlined has determined that the mean of the distribution of 
differences must be 0 and that the spread will be “relatively small.” But to actu-
ally construct this theoretical distribution, the phrase “relatively small” will not 
do; it must be quantified. To illustrate this, I present in Figure 10.1 two  normal 
distributions with identical means (0) but different spreads, both of which you 
may choose to call “relatively small.”

In B, for example, virtually all differences are between –5 and +5.  
In A there is still some nonnegligible chance of coming up with 
a difference within ±5. Translating this into probability: If I 
were to randomly select an observation from A, my chances of 
obtaining 5 and above (or –5 and below) are perhaps about 
10%. If I were to randomly select an observation from distri-
bution B, my chances of obtaining a value greater than 5 (or 
smaller than –5) are tiny and somewhere near 0%.

Why Is This Important?
Comparing Apparatone and Control in a clinical trial is, when 
the two are equivalent, like randomly selecting a single out-
come from their theoretical distribution of differences. Once 
you obtain this outcome (in a trial), you can compute how 
likely this result is, given the assumption of equivalence—that 
is, given the distribution constructed assuming equivalence.

Figure 10.1
Normal distributions with 
different spreads.

3  I use the normal distribution here for illustration purposes. Hypothesis testing utilizes many other 
distributions, such as Chi-square, binomial, and Poisson. And when a specific distribution cannot be 
specified, we can use nonparametric techniques that assume none.
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Please read the preceding paragraph as many times as necessary until it is clear 
to you. Now once you know what you should be getting when two compounds 
are equivalent, you go ahead and conduct your (single) trial. Having done so, 
you obtain an outcome—a difference between the two compounds. Finally, you 
compare this outcome to what is expected assuming the compounds are equiv-
alent. If it is—if the difference is expected more than 5% of the time under the 
assumption of equivalence—you will not conclude that the compounds truly 
differ. The difference, you will say, is expected given sampling error alone; it 
should not be attributed to a real difference. But if the difference is very large—
one that is expected 5% or less of the time assuming equivalence—you will 
conclude that the compounds are likely different. A large difference such as 
this, you will say, does not occur often with equivalent products. It is therefore 
likely that they truly differ.

As noted, the spread (standard deviation) of differences between T and R when 
they are equivalent and when the study is done repeatedly cannot be known 
exactly—at least not until the trial is repeated an infinite number of times, 
which it will not be. So, in practice, we estimate the spread of this distribution 
of differences from the results of the trial itself.

A final note: Constructing the distribution described is based on the central 
limit theorem, which states that the distribution's mean is 0, it is more or less 
normal, and it has a standard deviation termed standard error. According to 
this important theorem, the standard error is estimated from results observed 
in the trial by dividing the standard deviation obtained by the square root of 
the sample size.

Getting Slightly More Technical
Suppose, for instance, that the standard error of my theoretical “equality distri-
bution” is 3. Because the distribution is normal and I know the characteristics 
of the normal distribution, I can say the following: 

1.	 About 67% of studies comparing equivalent drugs will yield a 
difference of up to 3. In other words, the chance of obtaining a 
difference between –3 and +3 when the drugs are truly equally effective 
in my trial is about 67%.

2.	 There is about a 95% chance that the trial's result (assuming equivalence) 
will be between minus and plus two standard errors of the mean—that is, 
between –6 and 6.

3.	 There is a one-third of 1% chance of getting a result that is either smaller 
than –9 or greater than 9.

Of course, you will only conduct a single study. But knowing all of the 
above, you can, ahead of time, design a method for making an inference from it. 
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For example, you might specify at the beginning of your trial that any difference 
of 1.96 standard errors or more will cause you to reject the H0 of equivalence. 
This implies that any result that can only happen 5 of 100 times or fewer when 
the products are truly equivalent will bring you to conclude that “this result is 
too infrequent for equivalent products; I will therefore conclude that they are 
not equivalent.”

There is, however, a critical point that I must add. Being, say, 95% certain that 
products truly differ is like saying that there is a 5% chance they do not—in 
other words, that the extreme result obtained was gotten by chance. After all, 
even equivalent products will, on occasion, differ greatly in a particular trial 
due to sampling error.

Using the information presented, you are now in a position to conduct a trial 
and make inferences. Moreover, you can attach the following probabilities to 
these conclusions: 

n	 The probability that compounds truly differ.
n	 The probability of having erred in concluding a true difference.

The latter probability—that of erroneously concluding a difference—is termed 
Type I Error.

Here are two important points:

1.	 When doing statistical inference, it is certainly possible to erroneously not 
conclude that a true difference exists—that is, erroneously not reject the 
assumption of equality. This issue is related to power, which is central in 
all research, and its time will certainly come.

2.	 By convention, a significant difference is one expected to occur 5% 
of the time or less when the groups are truly equal. This Alpha = 0.05 
is specified at the outset as the cutoff for inferring one way or the 
other. Obtain a probability > 0.05, and the result is nonsignificant; if 
it is ≤ 0.05, it is significant. Either way, you—or rather your computer 
program—will typically compute the actual probability of the observed 
result.4 This probability is called the test's P-value. For example, if the 
difference observed was expected to occur only 12 of 10,000 times 
assuming equality, your P-value is 0.0012. The smaller the P-values, the 
more convincing the evidence for nonequality. However, significance is 
determined by one thing only: whether your P-value is larger or smaller 
than 0.05. The 0.05 cutoff was prespecified and so, formally, is the one 
that counts. This is consistent with the confirmatory approach described 
in the preceding chapter.

4  Actually, the probability of the observed result or one more extreme.
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Formalizing
I now return to our trial with Apparatone and describe how its hypoth-
eses should be formalized in the trial protocol. We begin with the Null 
Hypothesis, which is the “state of the world until proven otherwise.” In 
this case, you initially posit that Apparatone = R (in the population). 
You then specify the alternative, which is Apparatone ≠ Control in the 
population. Thus,

H0: μA = μR

H1: μA ≠ μR

where:

H0: Null Hypothesis (the “state of the world until proven otherwise”)
H1: �Alternative Hypothesis (the “otherwise” you want to prove in the 

study; i.e., the study's objective)
μ: Mean Percent On-Time in the population
A: Apparatone
R: Reference compound or Control

Formal hypothesis testing works as follows:

1.	 Assume H0 and specify H1.
2.	 Specify the probability for rejecting H0, which is usually 0.05. This 

value is denoted as Alpha, which is the chance for erroneously 
rejecting H0.

3.	 Conduct the trial.
4.	 Compute the actual result and, using statistical testing, compute 

the probability (P) of its occurrence in a universe described by H0—
that is, in a distribution constructed based on the assumption of 
equivalence.

5.	 Reject H0 or not based on the observed result.

The choice of 0.05 as the risk of erroneously rejecting the Null Hypothesis 
is that generally accepted. When a comparison is said to be “statistically 
significant,” this almost always means the observed result was P ≤ 0.05—
in other words, that it had a 5% chance or less of occurring assuming the 
Null Hypothesis is true. This is also the figure typically expected by the 
regulator.

Rejecting H0 erroneously—in our case, concluding there is a difference between 
Apparatone and Control when there is none—is termed Type I Error. And the 
chance for making a Type I Error (usually 5%) is termed Alpha. The probability 
of not concluding a difference when in fact there is one is naturally termed 
beta. No less naturally, we call it a Type II Error.
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On the Inability to Prove the Null 
and Its Implications
Logic dictates that you can reject H0 but not accept it. In other words, the Null 
Hypothesis cannot be proven. A great deal has been written about this topic, and I 
will not add to it. If this aspect of philosophy of science interests you, I suggest 
you pick up one of the many fine books on it. My concern here is rather 
with implications the principle has for product development. Specifically, 
the fact that you cannot accept H0 creates at least two questions that must be 
addressed: 

1.	 How are nonsignificant results to be interpreted?
2.	 Given that nonsignificance does not prove similarity, how are products to 

be shown similar?

The following sections deal with each of these.

Interpreting Nonsignificant Results
Suppose you failed to show that Apparatone is significantly superior to Control. 
The obvious conclusion is that your drug is no better than the competitor. But 
this is technically incorrect, since all you can definitely say based on a nonsig-
nificant result is that you cannot reject H0. In other words, it may well be that 
Apparatone is truly better, but you happened to be unlucky in this particular 
trial. Now if you carry this reasoning to the extreme you will never reject a new 
product, which is clearly untenable. What then do you do?

Well as usual, it depends. For example, if your result was obtained in a large, 
well-designed trial, you will probably conclude, “I gave it my best shot, and 
now it's time to move on to something else.” You will thus accept H0 in deed 
if not in word. But if nonsignificance emerged in a small, exploratory trial, 
you might search through your data more deeply for any indication of a favor-
able result. Here, even a suggestion of your product's superiority may suffice to 
move on with it into a larger trial.

So while statistical significance is important, it is but one of many factors affect-
ing decisions in drug and device development. The interpretation of nonsig-
nificant results must depend on the circumstances. Following is a partial list of 
factors that will affect conclusions in the presence of inconclusive results:

n	 Previous data: A product that demonstrates especially strong results in 
earlier studies is more likely to survive a single failure than one that has a 
less successful history.

n	 Actual P-value obtained in the study: As a rule, all P-values larger than 0.05 are 
nonsignificant. At the same time, values near significance (e.g., P = 0.08) 
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are more likely to be looked upon favorably than those that are not (e.g., 
P = 0.42). A nonsignificant result that is near significance is called a trend 
toward significance, which is usually defined as P-values in the 0.05 to 
0.10 range.

n	 Overall direction of results. Statistical analyses are typically conducted 
on a number of variables, many of which are related to one another. 
For example, when assessing an antibiotic, I might evaluate its effect 
on fever, bacterial count, and subject's self-reported health. When 
several tests of interest all point in a favorable direction, I will, even 
if the individual results are nonsignificant, tend to view the outcome 
favorably. But if outcomes across tests are inconsistent, I would be more 
skeptical.

n	 Science: A product that should work based on solid scientific reasoning 
(e.g., a known mechanism of action) will be given more benefit of the 
doubt than one where the science is shakier.

n	 Finances: The more resources at your disposal, the more likely you are to 
give a potential product additional chances after an apparent failure.

n	 Pipeline: The more products your company has in development, and/or 
waiting their turn, the less likely a product showing nonsignificant results 
will be pursued.

n	 Stock prices: Admitting failure will depress stock prices. Thus, even if a 
product deserves to be declared a failure, it may not be in a company's 
best interest to do so at a particular point in time. This is not a good 
reason for ignoring nonsignificance and trying again. In fact, this 
amounts to dishonesty. And where amounts are concerned—especially 
large ones—you will sometimes find dishonesty as well.

In sum, at times a nonsignificant result will sound the death-knell for a 
product. Other times it will not. Results of statistical testing, like that of 
all evidence, must be considered in the general context of a product's 
development.

Statistical Testing for Non-inferiority 
and Equivalence
Up to now I have explored studies where the Null Hypothesis states that two 
treatments are equivalent and the trial's objective is to reject this by showing 
T superior to R. But there are many scenarios in medicine where you wish to 
show that T and R are similar. One such occurrence is when a company wants 
to show that its generic version of a drug is just as good as a drug that has lost 
its patent protection. Another instance might involve a device that one wishes 
to show to be just as effective as the competitor, while having more advantages 
(e.g., price, safety, or convenience).



Statistical Testing for Non-inferiority and Equivalence 147

As mentioned in earlier chapters, demonstrating that two products are 
equivalent is tricky. First, the Null Hypothesis T = R is no longer appropri-
ate, since this is what you would like to prove. Being that a product is guilty 
until proven innocent, the Null must reflect this, and if we assume T = R 
and remain with it when failing, we have defeated the whole purpose of 
scientific investigation. Clearly this is what we wish to prove rather than 
assume.

So the logical solution is reversing the hypotheses so that T ≠ R is the Null 
and T = R is the alternative. But this poses its own problem, since, as I have 
noted often, two products cannot be shown to be the same. Indeed, because of 
sampling error, even the same product will “come out different” when tested 
in two different groups.

In Chapter 4, I said that the statistical solution to these difficulties is showing 
that two products are similar rather than the same. This in turn entails defining 
the term similar in such a way that would allow for proving one's case using 
statistical methods while being acceptable clinically. Here is the reasoning 
followed for demonstrating similarity:

n	 T = R cannot be shown even if this is in fact the case.
n	 Similarity is then defined by selecting some small margin delta (Δ) for 

determining a range around R that T must meet. Specifically, we will say 
that T is:
n	 Non-inferior to R if T ≥ R – Δ—that is, it is “no worse than R by some 

small margin.”
n	 Equivalent to R if T ≥ R – Δ1 and T ≤ R + Δ2—that is, it is “within an 

‘equivalence’ range of R.”

The quantity Δ must be clinically as well as statistically justified. Clinically, it 
must be sufficiently small to be “practically nonsignificant.” In practice this 
means specifying by how much T can differ from R and still be considered 
about the same. At the same time, Δ must be large enough to allow for statis-
tically rejecting the Null Hypothesis. Keep in mind that the smaller the Δ, 
the more difficult it is to reject the Null. At the extreme, when two products 
are truly the same and the Δ allowed is 0, it is nearly impossible to show 
equivalence.5

Specifically, you are required to determine some margin delta (Δ) within 
which T is allowed to differ from R and still be considered “equivalent” to it. 
For example, you might determine that if T is within ±10% of R, it is, for all 

5  “Near impossible” and not “impossible” because there is always an element of luck in statistical 
testing—good and bad—so there is some small chance for showing T > R (even when they are 
identical).
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intents and purposes, clinically equivalent. Translating this into hypotheses, 
we specify the following:

H0: T < R – 10% or T > R + 10%
H1: R – 10% ≤ T ≤ R + 10%

Translating these hypotheses into English, you:

1.	 Start out by assuming that T differs from R to a large extent—below R by 
more than 10% or above it by more than 10%.

2.	 Conduct the trial to show that R is within the ±10% range.

This is the scenario in generics, where we aim to show the new product 
equivalent. In other cases we typically do not mind if T is better and only wish 
to ensure that it is not worse. These lead to a non-inferiority approach, where 
T is bounded on one side and not the other. Specifically:

H0: T < R – Δ
H1: T ≥ R – Δ

Unless you are especially interested in the actual methods used for testing 
such hypotheses, the issue is best left to the statistician. At the same time, you 
should be aware that:

n	 There are statistical solutions for showing superiority, equivalence, and 
non-inferiority.

n	 When demonstrating equivalence and non-inferiority, you are showing 
similarity, not identity.

Data Analysis Scenario II
I began this chapter with an Apparatone-Control trial and described the simple 
scenario (Scenario I) where you conduct the trial and, as planned, analyze 
your data at the end of it. I then took a detour and dealt with implications of 
nonsignificant results and equivalence/non-inferiority testing. It is now time 
to continue with Apparatone where I left off and describe another common 
testing scenario.

Your Apparatone-Control trial is double blind: Physicians do not know 
which drug they are dispensing, and subjects do not know which they are 
receiving. Partway into the trial, several physicians in the study report that 
many subjects have shown relatively dramatic improvements. Since the 
effect of Control is known—your competitor has been on the market for 
years now—they believe it likely that these results are due to Apparatone. 
In other words, they are guessing that Apparatone is a good deal superior 
to Control.
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By now about half of the subjects have completed the study's 24 weeks. Most of 
the remaining participants have already begun the trial, and a few have yet to 
be recruited. Given the length of the study, its logistics, and the necessary activ-
ities at trial's end, you estimate it will take another 10 months before you can 
conduct the planned, primary efficacy analysis on all subjects. Ten months is a 
long time, and your company would like to move forward with Apparatone as 
quickly as possible. The apparently positive results suggest it may be possible 
to statistically demonstrate Apparatone's superiority at this early stage.

Using the anecdotal information provided by the physicians, you decide to 
compare Apparatone to Control using those subjects who have already com-
pleted the trial—27 in one group and 26 in another. Analyzing these data you 
find that Apparatone patients have, on average, 11% more On-Time than those 
in Control (P < 0.05). You have thus obtained a statistically significant result in 
the right direction and so wish to stop the trial and declare success.

Well, you cannot. Indeed, unless you had planned this “halfway analysis” 
before the trial began, you should not have conducted it in the first place. 
Recall that before the trial began you did the following:

1.	 Planned a 24-week study, with the primary endpoint Percent-On-Time to 
be tested after trial completion.

2.	 Determined that when testing your study hypotheses, you are willing to 
accept a Type I Error of 5%; in other words, you are willing to live with a 
5% chance of wrongly concluding that Apparatone is better than Control.

If you go ahead with your test as planned at the end of the trial and the results 
are significant, you will claim the following:

n	 A 95% chance that your “superiority conclusion” is correct.
n	 A 5% chance that it is incorrect (Type I Error).

But this 5% chance of erring is repeated every time you conduct a statistical test 
of which the criterion for significance is P ≤ 0.05. Thus the chance of error 
mounts the more tests you do. In fact, were you to conduct five statistical tests, 
there would be more than a 20% chance that at least one of your results would 
be significant by chance alone.6 So conducting your interim test increases your 
chance for Type I Error beyond 5%. And this is unacceptable.

Now you might argue, “I have only conducted a single test, and it was signifi-
cant. My chance for Type I Error on it was 5%, and I did not conduct another. 
Therefore, my Type I Error for the study remained 5%.” Well, there are a 
couple of problems here. First, you chose to do the test based on physicians' 

6  This calculation assumes that the tests are independent as, for example, when testing five subgroups 
of patients.
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The trial was set up with both physicians and patients blinded. 
This was done to limit bias in the study, an issue that will be 
discussed at length in the chapter dealing with clinical trial 
design. Nevertheless, word sometimes gets out, and there is 
little that you can do about it. Thus, many “blinded” trials are 
not exactly that. In this case, report of dramatic improvements 
emerged, and both the physicians and you associated it with 
the new drug. Now you generally cannot help hearing what 
physicians are saying. But you can avoid acting upon it. Making 
interim decisions based on results already known (partially or 
fully) is akin to post hoc analysis. And in the preceding chap-
ter I noted how problematic this is. Additionally, and perhaps 
more importantly, knowing results while a study is ongoing is 
likely to influence the study's conduct. It might, for instance, 

affect the type of patients physicians decide to recruit to the 
study and their conduct with them. This will introduce bias in 
that the sample is no longer completely random and physician 
evaluation of results is likely affected by expectation; in other 
words, they are less objective and so, by definition, biased. 
Conversely, when results are unfavorable, the pace of recruit-
ment may slow and the type of patients selected for study may 
change. Evaluations will likely be more unfavorable as well.

Thus, to the degree possible, you should set up your trial so 
its results remain unknown until all of the data have been 
collected. And if by chance you come across information on 
outcome while the trial is ongoing, make every effort not to 
advertise it and/or act upon it.

A Note on Bias

observations, and so, in a sense, you conducted a post hoc analysis—one that 
was driven by results. And while the information that led you to the test was 
anecdotal, had you not been told that there is a good chance for favorable 
results, you would have not done this interim analysis. Second, it stands to 
reason that if your interim results had been unfavorable, the trial would have 
continued to its conclusion and the analysis repeated. This means that at the 
time of conducting the first test, you were already willing to accept a Type I 
Error larger than 5%. And this, as noted, is unacceptable.

Here, then, we have one example of multiple testing or, as it is sometimes 
called, multiplicity. The more tests you conduct, the greater your chances for 
erroneously obtaining favorable results. Thus, when planning your trial, you 
should always do the following:

1.	 Specify one test only with P ≤ 0.05 the criterion for significance.
or
2.	 Specify several tests and make sure that all of them together have no more 

than a 5% chance of a Type I Error (more on this in a moment).

Data Analysis Scenario III
Another frequent scenario is, in principle, statistically not so different from 
the one just described. For the purposes of Scenario III, I shall modify the 
Apparatone-Control trial to include three arms:

n	 Apparatone 25 mg
n	 Apparatone 50 mg
n	 Control
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The trial is done and the numbers look fine. Apparatone 25 mg shows an 
increase of 7% in On-Time relative to Control, while 50 mg yields an increase 
of 3%. You compare each of these groups separately to Control and find that 
the lower dose is significantly superior to the competitor, but the higher dose 
is not (tests 1 and 2). When combining the two Apparatone arms together and 
comparing the combined group to Control, your result is significant as well 
(test 3). Finally, when comparing the two Apparatone arms to each other, the 
statistical test is nonsignificant (test 4). You conclude the following:

n	 Apparatone is superior to Control.
n	 If there is a difference between the two Apparatone doses, 25 mg is likely 

better. But there is no statistical testing result to back this up, and you did 
not expect one. The trial was powered to compare Apparatone to Control; 
it was not designed to detect a significant difference between Apparatone 
doses.

Well, in terms of multiple testing we have quite a mess here. Because you 
conducted four tests, your chance for a Type I Error is certainly greater than 
5%. And since this is the case, you cannot be completely certain how to inter-
pret your results. The solution is, as always, to plan the statistical tests you will 
conduct at the end of the trial—their type and number—before you begin the 
trial. You would then ask the statistician to set up the planned tests so their 
combined chance for Type I Error is no greater than 5%.

Summary and Solution
In the preceding sections I provided two examples that result in multiple 
testing. There are many others, and a partial list follows:

n	 Multiple comparisons between treatment groups: This was the case in the 
preceding section, where three treatment groups led to four comparisons 
of interest.

n	 Repeated testing at different points in time: In most clinical trials, 
measurements are taken over time. Repeating the same comparison at 
different time points—even if done at the end of the trial after results for 
all of the time points are in—entails multiplicity.

n	 Interim analyses: This involves analyzing data before the trial has been 
completed, as described in Scenario II. Keep in mind that planned interim 
analyses are possible and permissible. This will be discussed later.

n	 Testing different endpoints: Virtually all clinical trials have more than one 
endpoint of interest. Indeed, the number of endpoints in a typical clinical 
trial often seems endless. Comparing groups on many endpoints entails 
multiplicity. And multiple testing is likely to yield a significant result here 
and there, even when this is not the truth in the population.
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n	 Conducting different statistical tests on the same data: Different statistical 
tests can at times be appropriately applied to the same comparison. 
Applying more than one procedure to a particular comparison constitutes 
multiplicity as well.

As noted in both of the preceding sections, the solution for an increase in the 
chance for Type I Error resulting from multiplicity is to make sure that your 
overall Type I Error remains no more than 5%—that all of the critical tests in 
your trial do not, together, have more than a 0.05 chance of yielding a chance 
significant result.

While the statistics of multiple testing should be left to the statistician, the 
principles are sufficiently straightforward that it would be useful for you to be 
aware of them when designing a study:

1.	 Plan all primary analyses in advance and specify them in the trial 
protocol.

2.	 Make sure that your chance for a Type I Error for all primary tests 
combined—overall Type I Error—is no greater than 5%. This is done 
by adjusting the acceptable Type I Error for each test to be less than 
5% so that when all tests are considered, the overall chance for Type 
I Error is 5%. One simple, and overly conservative, way to do this 
is to divide 0.05 by the number of tests you plan to do and use the 
new value as the criterion for significance. For example, if you plan to 
conduct five tests, specify in advance that a result will be considered 
significant only if P ≤ 0.01. I mention this to provide you with some 
idea of how multiplicity can be accounted for. At the same time, I 
also noted that this is an overly conservative method—one that will 
reduce your chances for justifiably rejecting the Null. It seems, then, 
that you will have no choice but to consult with your statistician on 
this. Recommendation: Where possible—and this is usually possible—
specify a single primary analysis in your trial. All other tests are then 
specified “exploratory” and you do not need to control Type I Error for 
them. But you must keep in mind that there is a price to paid here, and 
it is this: Be your secondary analyses what may, they will be viewed as 
providing weaker evidence than if you had controlled Type I Error for 
them as well.

Finally, I should note that it is certainly legitimate to conduct multiple tests 
without controlling for Type I Error. Collecting data via clinical trials is an ardu-
ous and costly endeavor, and you should feel free to obtain all the information 
possible from these data. Statistics should not dictate what you can or cannot 
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Setting overall Type I Error at 5% ensures that your chance of 
erring by incorrectly rejecting H0 is acceptable. But you obtain 
this at the price of having a trial that is less sensitive to discov-
ering a new phenomenon—that is, you reduce your chance for 
rejecting H1 when it ought to be rejected—you reduce your 
study's power. In other words, the more you protect yourself 
from Type I Error, the more you are likely to commit a Type II 
Error (not rejecting H0 when it should be rejected).

Allow me to illustrate this using an extreme and unreal-
istic example. Suppose you conduct a study and decide in 
advance that under no circumstances will you reject the Null 
Hypothesis. In this case you have ensured that you will not 
make a Type I Error; because you will never reject H0, you will 
also never reject it incorrectly. But when this is the case, H0 
will not be rejected even when it should be. In other words, by 

perfectly protecting yourself from Type I Error, you reduced 
your study's power to 0. Conversely, deciding in advance to 
reject H0 regardless, will ensure that you will not make a Type 
II Error; you will always reject H0 when it should be rejected 
and have 100% power. But then, of course, your chances for 
rejecting it incorrectly (Type I Error) are high as well.
In any study planned, you must balance between:

n	 Caution—avoidance of incorrectly rejecting the Null
and 
n	 Power—the wish to discover something new by 

correctly rejecting the Null

And finding the optimal balance must be done via 
informed interactions among clinicians, R&D managers, 
and statisticians.

Cost and Benefit

do with your data. It will, however, have a great deal to say about the certainty 
associated with results. Specifically, when you controlled for Type I Error—when 
you controlled for multiple testing—you can be fairly certain that significant 
results represent the truth in the population (in fact, 95% certain). Conversely, 
outcomes of testing where multiplicity was not controlled are more tenuous 
and are unlikely to be accepted by regulators, companies, or individuals con-
templating investing in your product.
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n	 Adapting methodology to objectives
n	 Blinding and randomization
n	 On the difference between “less rigorous” design and “shoddy”
n	 Questions to ask when designing a clinical trial:

n	 questions relating directly to design
n	 questions relating indirectly to design

n	 Case study: designing trial in psoriasis
n	 Independent groups versus paired design

n	 power
n	 clinical and logistical issues

n	 The principle underlying correct design
n	 Random error and bias in testing an antidepressant
n	 Missing data, bias, and imputation
n	 Sensitivity analysis
n	 Analysis sets (intent to treat, per protocol, etc.)

INTRODUCTION: THE FIRST STEPS
A clinical trial is designed to meet specific objectives. It is your job to ensure 
that there will be a good chance for it. So before all else you must articulate 
your aims clearly. In Chapter 2 I noted that in any study the basic question is 
“What do I want to show?” This leads to the distinction between a trial's primary 
attributes of interest and its analytic aims. Combining these two dimensions 
generated Table 11.1, which covers most trials' objectives.

Elements of Clinical Trial Design I:  
Putting It Together

Contents
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In Chapter 10, we wanted to demonstrate that Apparatone Percent On-Time is 
better than Reference over 24 weeks. This primary objective lands you in cell 
“A,” where the aim is to show superiority on efficacy. Yet, virtually all trials are 
concerned also with safety, which puts you in “J” as well.

Unlike efficacy, demonstrating that your product is safe is typically done infor-
mally by comparing descriptive statistics between study arms; unless a trial 
has a very high frequency of product-related safety events—and fortunately 
most do not—hypothesis testing on these parameters is neither practical nor 
meaningful. Thus, in most trials, safety will be evaluated by examination of 
descriptive statistics relating to proportions of adverse events (AEs) in study 
arms, their severities, and their relationship to Treatment. These semiformal 
comparisons will be supplemented by biological knowledge, where AEs will be 
related to what may or may not be expected in the indication. For example, we 
are more likely to attribute an occurrence of stroke to Treatment in a cardiology 
trial than in gynecology, even if in both cases there may have been no appar-
ent causal connection. Either way, statistical testing on infrequent serious AEs 
(SAEs) is unfeasible. For example, observing “only” 1 death in 100 due to study 
Treatment should certainly be enough to be rid of it (assuming, of course, that 
a safer alternative exists). At the same time, formally comparing 1/100 to 0/100 
will not yield statistical significance.

Be that as it may, there certainly are cases where safety is tested formally. One 
might, for example, require a heart valve replacement procedure to yield signif-
icantly less than, say, 5% major adverse cardiac events (MACE), such as heart 
attack and death.

Like most activities, trials are conducted under multiple constraints, the most com-
mon of which are time and money. But whatever the limitations, your resources 
must be sufficient for a trial's informational needs, including the following:

1.	 Type of information required (efficacy, safety, etc.).
2.	 Amount of information required (number of subjects, length of follow-up 

period, etc.).
3.	 Level of certainty in the information obtained—that is, the degree to 

which you will be confident of the results obtained.

Table 11.1  Clinical Trial Aims and Attributes

Analytic Aim

Attribute of Interest

Efficacy Safety Performance Pharmacokinetics

Superiority A B C D
Equivalence E F G H
Non-inferiority I J K L
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It goes without saying that companies prefer more information to less and 
wish to have great confidence in it. And they would also like to have all this 
within timeline and budget requirements. Well it is generally impossible to 
maximize everything and, personally, I know of no bakery that provides cakes 
that can be both had and eaten. More importantly, maximizing everything—if 
at all possible—is usually unnecessary, since the amount of data collected and 
confidence in a study's conclusions should correspond to the intended audi-
ence's needs and no more. Moreover, investing more resources in a trial than 
are needed may be unethical as well as wasteful (see Chapter 14).

A study's informational needs are addressed by the question “Whom do I want 
to show my results to?” (see Chapter 2). This refers to the study's intended audi-
ence, which may include regulators, investors, management, physicians, the 
scientific community, and others—individuals who typically have different 
“evidentiary requirements” from a trial. Consequently, pinpointing the audi-
ence for your study's results is central to design.

For example, regulatory agencies are likely to require extensive information 
that was collected using precisely defined procedures before granting market-
ing approval. This is not the case, however, with companies that are assessing 
feasibility, where a relatively informal trial aimed at providing “some idea” 
of safety and efficacy will suffice. Physicians, on the other hand, are generally 
more impressed by articles in leading scientific journals than by FDA approval. 
Thus, for example, when submitting to the regulator, you might go for a non-
inferiority trial to increase the likelihood of formal success. Once regulatory 
approval is “out of the way,” you will design another study that may only get 
into a leading journal if it results in superiority.1 Conversely, when information 
is for internal company use only, a trend (rather than significance) might suf-
fice. Specifying more modest goals will allow for using more modest resources. 
Thus some objectives and audiences will require rigorous trials, while others 
will get by with less.

Rigorousness of design is very much what this chapter is about. We will exam-
ine how to achieve it and look at some of the more common techniques for 
“rigor by design,” such as blinding and randomization. Some of the ele-
ments that were discussed in the preceding chapters will make an appear-
ance, as well as some new ones. Taken together, these will provide you with 
general principles of trial design. At the same time, what makes most clini-
cal trials fascinating (and difficult) are the elements that are unique to them. 
Indeed, I have rarely encountered a study—simple as it may have seemed at  

1  Or, more commonly (and not completely kosher), write a non-inferiority protocol that obligates you 
with the regulator, and if superiority emerges, publish it (omitting to mention the initial hypothesis).
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first glance—that did not present distinctive challenges. And while it is always 
advisable to apply common principles of correct design, stock solutions will 
usually only get you partway there.

So some studies are less thorough than others, and this is fine. But it is impor-
tant to distinguish between “less rigorous” and “shoddy.” It is one thing to 
knowingly design a less-than-ideal trial, optimizing resources to coincide with 
objectives, and it is quite another to use resources inefficiently. In short, your 
study should be as sound as possible given the means available. To ensure that 
this happens, you should do the following:

n	 State your goals clearly, and delineate the consumers for your data.
n	 Correctly apply the principles of experimental design.
n	 Consult with experts where you feel your knowledge is lacking.
n	 Think!

And when resources are limited, you must be also courageous enough to forgo 
a study that has little chance of achieving its objectives.

Classifying Design Principles
When doing science one's natural tendency is to classify. In this frame of 
mind I have often tried to come up with a classification system for issues 
relating to clinical trial design. At times I thought I had met with suc-
cess, only to find novel permutations that cannot be fit neatly into any 
predefined category. So instead of forcing my questions into an artificial 
classification system, I shall present them in two very general categories: 
questions relating directly to trial design and those relating indirectly. And 
even here you will find that some distinctions are artificial. Regardless, my 
goal here is to present and overview only. If you are especially interested 
in trial design principles, I suggest you pick up one or two books on that 
topic.2

Questions Revisited
Following are some questions that experience has taught me are important 
when designing clinical studies. They relate to practical issues, and I suspect 
that you have encountered at least some of them yourself. Where possible I 
suggest you recall the situations in which you were faced with them and the 
solutions applied.

2  Pocock, S. J. (1991). Clinical trials: A practical approach, New York: Wiley and Sons; Piantadosi, S. 
(2005). Clinical trials: A methodologic perspective, Hoboken, NJ: Wiley and Sons.
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Questions Relating Directly to Trial Design

n	 What are your primary objectives? Do you aim to show superiority, 
non-inferiority, and so on? This is the study's most basic element—
that on which its very purpose hangs. It comes under the heading 
Analytic Aim in Table 11.1.

n	 Which primary characteristics do you wish to test? This too is basic 
and appears in Table 11.1 under Attribute of Interest.

n	 What are the endpoints that will best address your study's objectives? 
In other words, how will you translate attributes such as safety and 
efficacy into actual measures to be evaluated at trial's end? This issue 
of endpoints—their choice, measurement properties, and number—is 
sufficiently important to warrant its own chapter and will get it soon.

n	 For whom is the study's information meant?
n	 How many arms will the study have, and, most important, will one of 

them be a Control group?
n	 What is the most appropriate comparison group for your study? In 

most cases you will have more than one option. For example, you 
might choose a Placebo, a Predicate, or, perhaps, another Dose of 
your own medication. In some cases you may forgo a Control group 
altogether in favor of, for example, comparison to historical data. An 
alternative may be a one-arm trial where each subject is compared at 
the end of the trial to his or her condition at baseline.

n	 How many subjects will participate in the trial? This relates to sample 
size and will naturally be honored with a chapter of its own.

n	 If the study is to have more than one arm, how will subjects be 
divided among them? This relates to both:
–	 Randomization technique used, if any.
–	 Ratio of assignment of subjects to groups. For example, you might 

decide to assign subjects in equal proportions to study arms (i.e.,  
a 1:1 ratio) or apply a 2:1 ratio in favor of the experimental product. 
Assigning a larger number of subjects to Treatment than Control 
is typically done for obtaining more precise information about the 
effects of the experimental product—that is, the new product for 
which there is usually less information than the Comparator.

n	 Is blinding possible in the trial? If it is, will both patients and 
physicians be blinded or only one of these? Will the statistician be 
blinded as well? What specific procedures will you put in place to 
ensure that those who should not be aware of subject assignment to 
Treatment and overall study results will, in fact, be unaware of them?

n	 How many study centers and treating physicians will there be?
n	 Will there be decision points during the trial in the form of interim 

analysis, or will all formal analyses be done once the trial is done and 
all the data collected?
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Questions Relating Indirectly to Trial Design

n	 What is the intended use population for your product in general? 
How will you increase the likelihood for your drug working in the 
population selected? For example, you may want to exclude those with:
–	 Very severe forms of the disease, because they will probably not be 

helped by your treatment.
–	 Especially mild forms, since they will often recover spontaneously 

without an intervention.
n	 Will the current study represent the whole of the intended use 

population or a subgroup of it only? For example, when your primary 
aim is to demonstrate feasibility—to show your drug has some 
“promising potential”—you might include only that subgroup with 
the greatest likelihood of benefiting from the product. This sort of 
limited trial will typically require a smaller sample size than one 
assessing the whole of the intended use population.

n	 Are the study's goals primarily exploratory or confirmatory? If the 
trial will have elements of both, what are they? Which of the study 
endpoints will be confirmatory and which exploratory?

n	 Where will the study be conducted? This refers to centers, regions, 
and countries, as well as to actual physical surroundings (hospital, 
outpatient clinic, home, etc.).

n	 Who will conduct the trial? Specifically, you must make sure that 
the health care personnel participating will represent those who 
will be using the product once it is on the market. For example, 
when evaluating a device for detecting skin cancer, will the device be 
intended for physicians in general or dermatologists only?

n	 How will you ensure that participating centers adequately represent 
those in which the product will be used once it is approved?

n	 What are the resources available for the trial?
n	 How does this particular study fit into the company's overall 

development plan? For instance, if this is a Phase II study, will its 
primary endpoint be the same as that planned for the pivotal trial?

n	 How are missing values to be addressed when analyzing study results? 
This relates directly to statistical analysis of data rather than study 
design. At the same time, a trial's procedures and logistics must be 
planned to minimize the occurrence of missing data. For example, 
specifying few visits and measures in a short trial is likely to provide 
more complete information than planning a longer trial with many 
visits and measurements.

The questions listed, and the many others that are not, overlap to some degree 
or another. You would do well to raise as many questions as possible and 
answer them as best you can with the resources at your disposal. There is no 
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need to be concerned about this. Asking questions is cheap and answering 
them is often inexpensive as well.

Complications
The topics described in the preceding section were raised freely. In the sec-
tions that follow, I will describe more systematic principles for optimizing trial 
design. But before getting there I must emphasize again that planning a clini-
cal study is far from an orderly process. As much as you might like it otherwise, 
you will likely be sidetracked in study design as well.

Here is an example: Say you are evaluating a topical agent for psoriasis. The 
preceding trial was a dose-response study that identified what the Company 
believes is the optimal dose. It now wishes to test this dose in a small- to 
medium-size trial to confirm the finding and, hopefully, justify moving on to 
pivotal Phase III testing. The primary efficacy endpoint in the current study 
is—as it will be in Phase III if you get there—Change in Affected Area on the 
skin from baseline to end of trial (or Change in Lesion Size).

You initially plan a simple two-arm study in which one group receives R (stan-
dard of care) and another T (Company's innovative ointment). Subjects will be 
randomized using a 1:1 ratio, meaning there will be an equal number per group. 
You consult with the statistician, who asks you a few questions and comes back 
with a recommendation for 123 subjects per group, for a total of 246.

Your regulatory affairs manager then reminds you that for market approval in 
this indication, the regulator typically requires that at least 1,500 subjects in 
total be exposed to a drug (over all phases). The regulator's concern is safety, 
anticipating that a sample of 1,500 subjects can reveal relatively rare adverse 
events if any exist. The regulator could, of course, have chosen a larger or 
smaller number. While to some degree arbitrary, the specific “overall exposure” 
requirement determined by the agency is based on risk analysis in the indica-
tion, experience with similar drugs, and the burden that can be reasonably 
placed on companies in the process of a new drug application (NDA) pro-
cess. Be that as it may, if 1,500 subjects must be exposed to the product before 
approval, you must make sure this will be the case.

So while your focus on the current Phase II trial has not changed, you are now 
also thinking about future trials as well. Specifically, you wonder whether more 
subjects should be getting T in this trial, which will get you nearer to the 1,500 
required at the end of the day.

Now thinking ahead is generally a good idea. Yet it can, like thinking in general, 
complicate matters. Here it leads you to consider exposing more subjects to your 
new medication. You now contemplate a 2:1 ratio assignment for the current 
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study—two subjects assigned to T for every one to R. Keeping the number of sub-
jects planned constant at 246, 164 will be randomized to T and 82 to R.

Now all this would be good and well if it were not for the issue of free lunches—
or rather, the lack of them. Specifically, trial power—its chance for correctly 
rejecting the Null—is optimal when sample sizes are equal in treatment arms. 
Having changed your trial's treatment allocation, you will also need to increase 
sample size to obtain the original power planned.

One option is to remain with your 1:1 trial and worry about the pivotal trial later. 
You reason that if the drug does well in the upcoming study, there will surely 
be enough resources for larger pivotal studies—such that would yield the 1,500 
exposed to T over all phases. This might in fact be your best alternative. Still, you 
do not want to give up on what, after internal Company discussions, seems a good 
option: a 2:1 assignment ratio. Yet choosing this alternative requires going back to 
management for more resources, which you are loathe to do. So what do you do?

Well, all things considered, what you want to do is the right thing. But you have 
now complicated matters sufficiently that you are no longer certain what that 
is. Then some little articulate bird whispers “statistician” in your ear, and you 
reluctantly pick up the phone.

You tell the statistician that you wish to treat more subjects with the new medi-
cation, given the fixed budget allotted to a two-arm trial; is it possible, you ask, 
with the same budget to design a trial with a larger number of subjects receiving 
the new medication? The statistician says there might be and suggests a paired 
design—one in which each subject receives both medications. For this trial you 
would choose subjects with at least two skin lesions and randomly assign T to 
one lesion and R to the other. At study's end you will do the following:

1.	 Compute Change in Affected Area for each lesion separately.
2.	 For each subject, compute the difference between T-treated and R-treated 

lesions on Change in Affected Area.
3.	 Average the differences computed in step 2 over all subjects.
4.	 Test whether the average computed in step 2 is sufficiently different from 

0 to indicate that T and R truly differ.

Note that if T = R, the average difference between Change in Affected Area 
between them should be about 0. Thus, statistical testing in this trial aims to 
show that T – R is significantly greater than 0; in other words, Change is greater 
with the new ointment compared to standard of care. In principle this is no 
different than a trial in two independent groups, where your objective is dem-
onstrating that Reduction in T is greater than that in R (or T – R > 0).

Using this design, you have a 1:1 assignment ratio, except that now each sub-
ject receives both T and R—that is, a subject is his or her own Control, and this 
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way, you have cut the initial sample size by half. You can now go on to add 
to this number and obtain the total of 164 you aimed for with the 2:1 design, 
except that with this design the number of subjects receiving T and R is equal. 
This provides better power relative to the uneven ratio. Moreover, the statisti-
cian tells you that this setup is likely to be much more powerful than the other 
because comparisons are paired.

I mentioned that paired designs, where each subject 
receives both treatments, are more powerful than indepen-
dent group designs, where each subject gets one of the 
treatments. There are some exceptions, but when the paired 
design is logistically practical and clinically relevant, they 
are few.

I will now present some hypothetical numbers that should 
help understand why paired designs can be especially 
powerful:

1.	 In Table 11.2, A represents a design with six subjects: 
three whose lesions are treated with R and the 
remaining three with T; therefore, the study has six 
subjects and six lesions.

2.	 B represents a design with three subjects. Each 
has one lesion treated with T and the other with R; 

therefore, the study has three subjects and six 
lesions.

Table 11.2 describes hypothetical results of these two stud-
ies for each individual lesion. Each outcome represents a 
reduction in Lesion Size from baseline to the end of the trial. 
Thus, the larger the value the better.

The following can be said of the similarities in outcome in 
the two studies:

n	 The three values for lesions treated with R in A and the 
three for R in B are identical. The same can be said for 
lesions treated with T. Consequently:
n	 Mean RA = Mean RB = 31.3
n	 Mean TA = Mean TB = 28.0
n	 Mean difference of R and T is 3.3 in both groups

Paired Designs and Power

Table 11.2  Reduction in Lesion Size in mm2 From Baseline to End of 
Trial, for Each Subject by Type of Study (Independent or Paired) by 
Treatment (Reference or Treatment)

A: Independent Groups Designa B: Paired Designb

 Group

Subject

Group

DeltaR (mm2) T (mm2) R (mm2) T (mm2)

  6 (subject 1) 13 (subject 4) 1   6   4 2
71 (subject 2)   4 (subject 5) 2 17 13 4
17 (subject 3) 67 (subject 6) 3 71 67 4

Mean 31.3 28.0 31.3 28.0 3.3
SD 34.8 34.1 34.8 34.1 1.2

aEach of six subjects has one lesion chosen and is treated with either R or T on it.
bEach of three subjects has two lesions chosen, one randomly assigned to treatment with R and the 
other to T.

Continued
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Note that the mean difference in A was computed by 
subtracting 28.0 from 31.3, which is the mean of all R 
subjects taken from the mean of A subjects. In B, I first 
computed the difference for each subject, then computed 
the mean of the differences. Since the operations of addi-
tion and subtraction are transitive, I obtained the same 
result: The difference between means equals the mean of 
differences.

But while the numbers are the same in the two studies, there 
is a crucial difference between the two setups with regard 
to statistical testing. To understand why this is so, you must 
remember that when we do statistical testing we must give 
meaning to numbers, since by themselves they have none. 
For example, 100 miles may be nothing to a truck driver, but 
it is a great distance to one who commutes 2.3 miles to work 
every day. In statistics we have an elegant way of demon-
strating this formally, which works as follows:

1.	 Observe all distances covered daily by the truck driver 
and the commuter.

2.	 Compute the mean of distances for each separately.
3.	 For each, compute standard deviation (SD) of these 

distances using the following formula:

Now the formula for SD is one of those few revealing formu-
las that provides insight into statistical thinking. It is for this 
reason that I present it here. Let us now attempt to tease out 
its meaning. In the formula:

n	 The overall mean is subtracted from each individual 
value. In our case, we have a commuter who, say, 
has a mean of 2.3 miles per day computed over 200 
commuting days.

n	 The differences are squared. For example, if on a 
particular day the commuter drove 1.2 miles, the 
deviation from the mean is –1.1, which we square 
and obtain 1.21. If on another day the commute 
was 5.3 miles, the difference from the mean is +2 
miles and its square is 4. We do this for all distances 

observed, divide by N,3 and take the square root of 
the result. In slow, more meaningful motion we do 
the following:

n	 Subtract each trip from the mean of all trips. This 
provides a deviation—the commuter's deviation 
on that day from her typical commute, where 
“typical is represented by the mean over all trips.”

n	 Square each individual deviation so that all 
differences are positive.

n	 Sum all the squared differences and divide by N. 
This yields the “typical squared deviation” from 
the typical trip. If you will, it is the average squared 
deviation.

n	 Take the square root, which returns the numbers 
to their original units in miles (they are no longer 
squared).

n	 The final result is something like the average 
deviation of all the trips from their mean. Since 
we have some squaring and square roots here, 
the final result is not exactly an average. It 
is therefore termed a standard deviation 
rather than an average deviation. But while 
technically it is not precisely an average, this is 
its meaning; in other words, the SD is, more or 
less, the average deviation of values from the 
mean in a given distribution.

The SD provides us with an excellent tool for putting num-
bers into context—for giving them meaning. For example, 
let us suppose that on a particular day our erstwhile com-
muter traveled 4 miles and that her mean over all days is 
2.3 and SD is 3.4. Now while 4 miles is 1.7 miles more than 
her usual commute, it is well within her typical deviation 
from her average. In fact, it is half her usual deviation:  

2( )iX X
SD

N
-

=

Paired Designs and Power— cont'd

3  Or N – 1, depending on whether we are computing a sample 
or population standard deviation. But this need not concern us 
here because (a) I wish to present the concept and not detain you 
with more mathematical issues and (b) when N – the number of 
observations is large, the difference between dividing by N or  
N – 1 is near meaningless. For example, divide 10 by 200 and you 
get 0.05, and divide 10 by 199 and you get 0.0502512.
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(4.0 – 2.3)/3.4 = 0.5. In other words, this 4-mile trip can be 
said to be “typical” and “about average” for her (even though 
her actual average is 2.3 miles).

Once more in slow motion: To evaluate whether a distance 
such as 4 is greater or small, I subtracted it from the mean 
of 2.3 and obtained 1.7. Now 1.7 may be very little or very 
much; recall that distances by themselves tell you next to 
nothing. So I put this 1.7 into the context of 3.4, the “aver-
age distances from the average” for this commuter. And this 
turned out to be half the typical deviation from her mean trip 
(not very much).

On the other hand, a truck driver whose mean may be 80 
miles and SD 20 miles is only one SD from the mean when 
driving 100 miles. In other words, this is his “typical” devi-
ation—a “regular” trip for him. Thus, 100 miles for the truck 
driver is about the same as 5.6 miles for our commuter; 
these respective distances are, relatively speaking, the 
same for both.

What is the moral of this story? In statistics we evaluate 
differences (and ratios and other measures of disparities 
between numbers). Based on the values (of distance) that we 
obtain, we must decide: 

n	 This distance is really large—“T and R truly differ.”

or
n	 This distance is not really large—“T and R cannot be 

said to be different.”

To evaluate distance, we compute an SD, which serves as our 
reference, our context. If the distance we obtain is very large 
in SD terms, it is large. If the distance between T and R is very 
small relative to SD, it is small. In short, we look at a distance 
relative to its context that we term SD; we do not look at the 
distance by itself.

n	 Back to our independent and paired designs: Paired 
designs usually (but not always) yield much smaller 
references/contexts/standard deviations and with 
them, a much greater chance to conclude that T and 
R are significantly different. The SD in our paired 
design is 1.2, and the distance between T and R 

is 3.3. The SD in the independent design is about 
50,4 and the distance between T and R is 3.3 as 
well. Using the reasoning presented, the same “raw 
difference” (3.3) in the two groups has a completely 
different meaning in terms of magnitude. It is a great 
magnitude in the paired design and a small one in the 
independent design; it is a significant difference in 
the paired design and a nonsignificant difference in 
the independent design.

n	 A challenging exercise might be to look at Table 11.2 and 
figure out how this sort of magic occurred—where the 
same distance in the context of the same T and R can 
have very divergent meanings. Regardless of whether 
or not you figure this out, it is important to remember 
that paired designs can, when appropriate, provide very 
powerful tools for getting at the truth (in the population). 
Unfortunately, they are often inappropriate—impossible 
even—which will be discussed.

Just a final note: The statistical test described here involved 
subtracting one value from another and dividing by some mea-
sure of variation, such as SD.5 This is typical of the most com-
mon statistical tests, which are classified under the heading 
of the general linear model (GLM, including t-test, analysis of 
variance, regression, mixed linear models, and others). Now in 
statistics there are many different types of tests, depending on 
the data available; GLM can be used in many cases but not 
all. But the principle is always the same: Evaluate divergence 
(by difference or ratio or whatever) relative to some context. 
If the divergence is great, we conclude a real/true difference 
in the population between the groups tested in the trial, and 
the result is significant. If the divergence is not great, we hold 
our peace.

Paired Designs and Power— cont'd

4  The formula for computing the common standard deviation for 
two groups—in this case, for computing the standard deviation of 
their differences—can be found in any basic statistics book, and 
we shall just leave it at that.
5  Actually, we use the standard error (SE) rather than standard 
deviation (SD) for very important reasons but it is not sufficiently 
important for our purposes to dwell on them here. For general 
information SE is typically much smaller than SD and is 
computed by /SD N where N is the number of subjects in the 
trial.
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Paired designs can, however, have drawbacks. Indeed, in some cases they are 
impossible. For example, you may want to compare the relative efficacy of mas-
tectomy and lumpectomy as treatments for breast cancer, where a paired design 
is impossible for obvious reasons. There can be other, more subtle difficulties 
with the paired design, and our particular psoriasis study illustrates them: 

n	 Both medications are topical, so you expect their effect to be mostly, 
if not exclusively, local. This is good and suggests you can in fact treat 
two lesions on the same subject with different medications. At the 
same time, enough of each drug may enter the bloodstream so that, 
to some degree, each lesion gets treated by both medications. This 
will bias your results in that the estimated effect of one drug will be 
confounded by the effect of the other. Thus, before embarking on a 
paired design, you will need to make sure that treating two lesions on 
the same subject with different medications will be indeed that.

n	 Now, even if the medications do not enter the blood (which is 
something you should already know from Phase I), a paired design 
introduces another problem. Specifically, if your Test drug is in fact 
more effective than the Reference, subjects are likely to notice it. And 
if they do, they may apply your medication to both lesions, which is 
understandable. After all, their personal comfort is of greater priority 
than scientific knowledge. In other words, at least some of your 
subjects may not comply with the trial's protocol. This will weaken the 
difference between lesions and so bias the trial's results. And if many 
subjects choose to do this, your outcome may be invalid altogether.

I will leave you to address these different options—to think about what might 
be an optimal design under varying considerations of time, money, and compli-
ance. My point in this section is to show the kind of back and forth inherent in 
clinical trials that makes it often difficult to “work by the book.” And yet despite 
what I have written in this section, we will now move on to “the book.”

The Principle
A clinical trial is planned, run, and analyzed to provide information on a prod-
uct of interest. As such, its data must reflect on the product. This, as the U.S. 
Constitution would have it, should be self-evident. Stating the idea analytically 
in the context of a simple study, we have something like the following:

n	 In your trial, groups T and R have a similar makeup of subjects who 
will have been treated the same in all respects but one: One group will 
receive the Test drug and the other will receive the Reference.

n	 When this is the case, (nonrandom) differences that emerge from the two 
groups will necessarily be attributed to the drug received—to the fact that 
the only difference between the groups was the type of treatment dispensed.
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This, then, in its simplest form is how to ensure that your trial will provide 
information on the product of interest: 

1.	 Equate groups on all but the parameter or parameters of interest.
2.	 Run your trial—treat each group differently in a controlled manner.
3.	 Assess whether or not the groups provide “about equal” results.

Putting it the other way around, a clinical study's outcome should not reflect 
factors extraneous to the information you seek. For example, if subjects in T are 
generally younger than those in R, you will not know if any group differences 
that emerge are due to Treatment, Age, or both.

While the principle is obvious, and we have likely known it long before doing 
science, it turns out that factors other than Treatment often come into play in 
clinical studies. As you might imagine, it cannot be otherwise since it is impos-
sible to equate groups completely on all but Treatment. And this means that 
you must be very careful in both designing clinical studies and reaching con-
clusions from them.

Random Error
Statisticians distinguish between two types of error that can influence study 
results. One is random error, which is so called because it can go either way 
about equally. For example, suppose your trial's primary endpoint is Systolic 
Blood Pressure. Random error may occur because:

n	 Physicians vary in ability to measure blood pressure. Some may 
provide higher values, others lower, and some will usually be about 
accurate. Moreover, each physician will vary in measurement accuracy 
from one occasion to another.

n	 Some devices are more accurate than others, and here too, a given 
device is likely to vary in accuracy from one occasion to another.

n	 Some subjects may have exerted themselves more and others less 
before being measured. And since subjects vary in the behavior on 
different occasions, so will the accuracy of measurements obtained 
from them.

These errors in measurement are likely to increase or decrease Blood Pressure 
values about equally in the different study arms. As such, they are random and 
will add noise to a study's outcome but are not expected to bias results in one 
direction or another—that is, the resulting error is not expected to provide a 
consistent advantage to one group or the other. For example, random physi-
cian error is expected to be about the same in both groups, so neither group 
will be disadvantaged by it. However, overall measurement will be “noisier,” 
making results less reliable and the study less powerful—less likely to detect 
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true differences between T and R, since they are at least partially masked by 
noise. Hence when designing a trial, you should make every effort to reduce 
random error. In the specific case of Blood Pressure, you might, for example, 
do the following:

n	 Provide physicians with standard and explicit instructions on 
the procedure to be used (e.g., subject must have rested five 
minutes before being evaluated, and actual measurement should 
be done when subject is in a sitting position in a chair with 
backrest, etc.).

n	 Provide physicians with uniform training of procedures.
n	 Use devices of the same make in all clinics and calibrate them 

regularly.
n	 Monitor the data as they are being collected, investigate erroneous/

suspicious results, and take corrective action if needed.

Now all this will not solve your random error problem completely. But it will 
reduce it. So first you design all technical elements of your trial to minimize 
error (e.g., select accurate instruments and train participants to measure cor-
rectly). Once done, specify a sufficiently large sample size to reduce the remain-
ing error to the point that reliable conclusions can be reached.

Random error is a fact of both sampling and measurement. In the long run 
(on average), it tends to even out, leaving you with outcomes that are unbiased 
estimates of T-R differences. But you can imagine that in small samples even 
randomness may not help, since it has not gotten its “long run” chance. Here 
is a simple example related to sampling: You assign subjects to groups T or R in 
an indication where males and females are equally likely to have the disorder. 
If your study has only four subjects per group, imbalances in gender makeup 
can happen easily. For example, in one group 75% of those assigned will hap-
pen to be women and in the other 75% will be men. So while sampling error 
is indeed random (when sampling is done correctly), it may still yield groups 
that differ appreciably and bias results.

In this example, any differences (or lack thereof) at the end of the trial may be 
due to Gender rather than to the medication of interest. However, this sort of 
imbalance is unlikely to happen with 100 subjects per group. When the num-
bers are large, imbalances in sampling are expected to be relatively small.

Similarly, measurement error tends to even out in the long run. For example, if 
you have only a few subjects in each Treatment arm, a large error in the blood 
pressure values of one subject may have a major effect on group comparisons. 
However, when the sample is large, this sort of error will likely occur in both 
groups about equally, and a single subject's erroneous outcome is less apt to 
affect the study's results overall.
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So to summarize thus far:

n	 Random error in sampling and measurement is a fact we must live with.
n	 Random error will add noise to data but will not bias in one direction 

or another (it is, by definition, random).
n	 Good design reduces random error.
n	 Larger samples reduce the effect of random error.

The last bullet deserves emphasizing. Many who plan clinical studies feel that 
a large sample size will “take care of business.” Well, it often will. Yet, it is both 
wasteful and unethical to increase sample size to solve problems that can be 
dealt with by designing a better trial. So first design a good trial, and only then 
resort to the “sample size solution.”

Bias
What I said in the preceding section is unfortunately not true for bias, the sec-
ond type of error statisticians talk about. Bias, as the word implies, misleads. An 
example of potential bias was described earlier where subjects in one group 
were younger than in the other. As long as this remains, increasing sample size 
will not help you; whether your sample size per group is 20 or 200, as long as 
subjects in the two groups differ on Age, the result may be due to this param-
eter rather than the different treatments administered. The solution, then, is 
designing a study where this bias will not occur.

The moral of this story is that there will always be at least some superfluous influ-
ences on your trial's outcome. This in turn will make it impossible to attribute all 
T-R differences to the treatments administered. Studies are done by people and 
with people and in real-world environments. As such, their outcomes will be 
affected by other than Treatment differences. These include differences among 
physicians, subjects, centers, equipment, laboratories, and so on. But as long as 
these “contributors to error” are random—as long as they influence the results 
in all groups randomly and so, we expect, about equally—your results may be 
weaker than you wish, but the weakness can be overcome. But if your study is 
biased, its results will deceive and so may be invalid altogether.

Here is another example: Suppose you are testing an innovative antidepressant 
using a simple two-arm study in which half the subjects are assigned to receive 
a placebo and half will receive your drug. The study is planned for four weeks, 
at the end of which you will compare the two groups.6 While you expect results 

6  The comparison will usually be done on the difference between baseline and end-of-trial values on 
some measure of depression. However, the actual endpoint chosen is not particularly relevant for the 
moral of this particular story.
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to reflect the difference in efficacy between T and R, let us explore why this may 
not be the only reason for group differences:

n	 Subjects recruited for studying depression are naturally depressed. 
In fact, they are likely to be even more depressed than the general 
population of depressed individuals. This is so because a trial in this 
indication typically specifies a minimal depression score for inclusion 
in the trial—one indicating an abnormally high level of disease. This 
is reasonable. After all, your drug is meant to treat people who are ill, 
and you want to make sure that those participating are sufficiently so 
to be helped by your drug. At the same time, depression is known to 
wax and wane. On average, those with high levels will tend to improve 
over time and those with low levels will tend to worsen. And this 
waxing and waning is unrelated to Treatment. Since you have 
included especially depressed people in your trial, you can expect that, 
on average, more will improve than worsen regardless of Treatment.

n	 Depression has known neurological causes. But to a great degree it 
is also under psychological control. Consequently, you can expect a 
sizeable placebo effect—improvements that have nothing to do with 
the chemical makeup of treatments. This too will cause the study's 
actual results to inaccurately reflect the effect you wish to study.7 In 
fact, the differences you obtain in this particular trial may be smaller 
than the true, “long run” difference between the two treatments. This 
takes us to the next bullet.

n	 Your trial is relatively short—shorter than most in an indication where 
study periods are typically 12 weeks or more. Your study's length 
(or rather, the lack of it) may yield a relatively large placebo effect 
masking your drug's effect. This is because placebo effects tend to 
decrease over time, and your planned study provides little opportunity 
for this to happen.

As study designs go, this one is straightforward. And in it I have identified rea-
sons that it may produce outcomes reflecting something other than Treatment 
differences. As you can imagine, there are several solutions for the difficulties 
described, although none are perfect.

The bottom line is that bias is generally a more serious problem than ran-
dom error.8 While the latter can be overcome by large samples, bias cannot 

7  If the placebo effect is equal in the two groups and the drug's effect is “on top” of the placebo effect 
your results will not be biased. Whether this is or is not the case should be discussed with clinicians 
familiar with the indication.
8  As with most rules, here too there are exceptions. For example, a slightly biased trial providing a slight 
underestimation of a treatment effect is preferable to one in which random error is so great that the 
effect goes undetected.
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and must be addressed directly. Thus, a central principal of clinical study 
design is:

Identify bias and eliminate it!

Read this sentence a few times and burn it into your brain. It cannot be 
overemphasized.

In the following sections I present common examples of potential sources of 
bias in clinical trials. Some of these have been mentioned in passing, some not, 
and many others are not on the list. Virtually every trial has the potential for 
its own, specific brand of bias. It is pointless to attempt an exhaustive list. Here 
I merely intend to point you in a few directions when looking to reduce bias 
in clinical trials. In general, however, you will have to seek your own unique 
trouble in any particular trial.

Missing Data

In virtually every trial some of the subjects drop out at one point or another. 
The number of dropouts can be quite large, especially in longer trials and/or 
studies of which the procedures are particularly burdensome for participants. 
In many cases the reasons for individual dropout are unknown. But the poten-
tial for the bias they introduce can be substantial and must be considered. In 
point of fact, missing data can lead to random error and/or bias. The difficulty, 
of course, is that since the data are missing, you cannot know. ICH guidelines 
state the following:

If all subjects randomized into a clinical trial satisfied all entry 
criteria, followed all trial procedures perfectly with no losses to 
follow-up, and provided complete data records, then the set of 
subjects to be included in the analysis would be self-evident. The 
design and conduct of a trial should aim to approach this ideal as 
closely as possible, but in practice, it is doubtful if it can ever be  
fully achieved.

It goes without saying that the preferred way to deal with the problem is to 
not have missing data in the first place. And to the degree possible, efforts 
should be made in this direction. At the same time, missing data are gen-
erally inevitable and must be dealt with. One way to address the problem 
in statistical analyses is to make “intelligent assumptions” on why subjects 
dropped out. Based on these assumptions we then impute (attribute) out-
comes to them. We will then conduct analyses under different “missing data 
scenarios.” This is termed sensitivity analysis, and its goal is to assess the 
degree to which outcomes are sensitive to different assumptions about (1) why 
data are missing and (2) what results may have looked like had the data not 
been missing.
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For example, in acute indications such as bacterial infections, subjects drop-
ping out might tend to be those whose disease was treated successfully. 
Once treated, their problem is resolved and they feel no need to return 
for follow-up evaluation. If your drug is particularly effective, this sort of 
“dropout tendency” will weaken efficacy. This is because more subjects will 
have dropped out due to success. And if Treatment is indeed superior to 
Control, more can be expected to drop out from the former. But keep in 
mind that this is an assumption and that you do not really know whether it 
is the case; the subjects who dropped out are long gone. You can, however, 
make reasonable assumptions about the causes of dropout, impute missing 
values accordingly, and assess outcomes under different imputation scenar-
ios. In the example described, you might assign success to all dropouts—in 
both Treatment and Control—reanalyze the data, and see how this affects 
your results. If in both analyses—that using only observed data and that 
including imputed “success” to dropouts—your Treatment emerges supe-
rior to Control, you may be in the clear; your data are insensitive (robust) 
to different, reasonable assumptions about missing data. But what if the 
following are true? 

1.	 Analyses on observed data show no difference between Treatment and 
Control.

2.	 Analyses on data where missing values have been imputed produce 
superiority of Treatment to Control.

Well, it is not clear.

Moreover, there is always the possibility that subjects dropping out from each 
of the groups do so for different reasons. For example, those who dropped out 
from Treatment may have done so because their problems were solved, and 
those who dropped out from Control may have done so because their prob-
lems were not solved. If this were the case, the appropriate imputation would 
be “success” to those dropping out from Treatment and “failure” to those leav-
ing Control. This in turn would strengthen your results.

Depending on the pattern of missing data and the imputations chosen, many 
results are possible. And these outcomes may be inconsistent with one another, 
which may introduce uncertainty into any conclusions you wish to reach.

In chronic indications, for example, it is reasonable to assume that subjects are 
more likely to drop out when their treatment is ineffective; had the treatment 
been effective, they would return because their disease requires continual 
attention. Having only successful subjects remain in the study may increase 
observed success in both Control and Treatment. Here, too, reasonable impu-
tations should be made and sensitivity analyses conducted. For example, you 
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might assign failure to missing subjects in both groups. And if there are more 
of them in Control than in Treatment, the latter will profit. Indeed, as part 
of your exploration of the possible effects of missing data, you should assess 
their pattern across study arms—explore whether their numbers and types 
differed across groups. For example, you might ask if more dropped out of R 
than T or if those who dropped out differed in any way (e.g., Age) from those 
who stayed. There can, as you can imagine, be many more questions such as  
these, the answers of which are likely to help you better interpret study outcome.

Missing data can occur for reasons other than patient dropout—for example, 
when a physician forgets to assess a certain parameter or a measuring instru-
ment has malfunctioned. In these cases, a particular measurement has been 
lost but not the subject. The degree to which this can be a serious problem 
depends, of course, on the number and type of such missing values. As a rule, 
this sort of lost data presents less difficulty than subject dropout for the fol-
lowing reasons:

1.	 The magnitude of lost data is usually smaller.
2.	 It is generally safe to assume that phenomena such as device malfunction 

and physician forgetfulness occur randomly. This may definitely not be 
the case for subject dropout.

There are many other possibilities. For example, in some cases, it is reason-
able to assign a subject's last observed value to his or her missing measure-
ment. This is called last observation carried forward (LOCF). There are, 
however, instances where this sort of imputation will bias your results. For 
example, when assessing a disease in which patient's condition deteriorates 
over time (e.g., Alzheimer's), LOCF is inappropriate. This is because LOCF 
keeps measurements constant over time, which is not appropriate in dis-
eases where measurements are expected to change over the course of a trial. 
Thus, using LOCF in Alzheimer's—substituting later measurements with 
earlier ones—is likely to bias outcomes upward.

The issue of missing data is as difficult to deal with as it is common. While there 
are general rules for addressing the problem, missing values must ultimately 
be dealt with in the context of the specific trial.9 Most important, methods for 
addressing missing data should be specified in the protocol. In this way you will 
avoid the potential bias of specifying imputations and analyses after already 
having information about a trial's results.

9  For additional (readable) information, see European Agency for Evaluation of Medicinal 
Products (EMEA). (2001). Points to consider on missing values. London: European Medicines 
Agency.
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The analytic approaches described are designed to overcome possible biases 
attributable to missing data. Yet, as noted, it is best to avoid missing data in the 
first place. Good design and logistics will help. Here are some examples:

n	 Shorter trials will generally have fewer missing data than longer ones.
n	 Measurement procedures that are easy on subjects are more likely to 

have fewer missing data than those that are more difficult.
n	 Measurements taken at the clinic are less likely to be missing than 

those collected by having subjects record data at home.
n	 Good study monitoring and data management will identify problems 

early.
n	 Centers with a favorable history of conducting clinical trials are likely 

to do a better job collecting complete data than those with an inferior 
track record.

Unblinding

Say you are a nice person (as you already know), and your physicians like you 
a lot. Additionally, your company is paying them well for conducting research. 
If the trial is not blinded—if physicians know which subjects receive T and 
which R—they may unconsciously report better results than warranted for the 
drug relative to the placebo. Similarly, subject reporting of their condition may 
be biased when the Treatment received is known. The solution, of course, is to 
blind both physician and subjects to Treatment. This is not always possible and 
will be discussed in the next chapter.

In many instances, despite a trial's “blinding by design,” physicians (and 
sometimes subjects) can pretty well guess which arm is which. For example, 
a medication given intravenously may cause a rash at the site of entry, while 
the placebo will not. This “unofficial unblinding” is common and as much 
a threat to trial validity as a lack of blinding by design. Indeed, it may cause 
even greater bias than the usual unblinded trial. This is because you have 
assumed blinding and will have taken no measures to prevent bias from that 
particular quarter.

Compliance

A drug may be effective, but if the subjects do not take it as prescribed, the results 
will be unfavorable. At the same time, this bias will relate to the chemical proper-
ties of the treatment but not to the “Treatment as a whole.” Allow me to explain: 
Suppose you have developed an effective molecule but one of which the pill is 
large and difficult to swallow (literally). Thus, you have an effective molecule 
and, despite this, an ineffective Treatment; people simply do not take it. In this 
instance, lack of compliance will bias the estimate of the molecule's efficacy. 
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It will not, however, bias the estimate of your Treatment's efficacy in real life. This 
is because “real-life” efficacy—of the Treatment rather than the chemical—is also 
associated with the degree to which the pill is taken as prescribed.

In late-stage clinical trials, the effect of the molecule is less important rela-
tive to the effect of (real-life) Treatment overall. Late-stage clinical trials are 
designed to assess a drug's performance in the marketplace and are less con-
cerned with its “chemical efficacy.” And if this is the stage you are in, lack 
of compliance cannot be said to bias your results; it is part and parcel of 
Treatment outcome and evaluation. However, in early stages you may be more 
interested in the molecule's efficacy, leaving open the option for modifying 
the product (e.g., making the pill smaller, coating it differently, etc.). When 
this is the case, lack of compliance will indeed bias the outcome of interest. 
The moral of this particular tale is that the definition of bias itself may depend 
on the circumstances. Belaboring the point, while you must be aware of the 
general principles of study design, this should not exempt you from actu-
ally thinking. And in this case, thinking should lead you to ensure that the 
Treatment your company has devised enables good compliance.

Some Additional Sources of Bias

n	 Nonrepresentative subjects: If trial participants do not well represent 
the population of interest, the study may provide biased estimates 
of effects in the intended use population.10 The solution for this is 
straightforward and involves sampling correctly.

n	 Nonrepresentative physicians and/or medical centers: This, like biased 
sampling of subjects, must be avoided. And this too is done by using 
appropriate sampling methodology.

n	 Baseline difference between subjects in Treatment and comparator groups: 
For example, if subjects in your Treatment group are older and 
more infirm than those in Control, you will likely underestimate 
Treatment efficacy. Indeed, when this occurs, your anticipated effect 
may disappear altogether. Randomizing subjects to a study group will 
typically take care of this potential problem. When by chance it does 
not, there are statistical methods designed to overcome the difficulty 
(e.g., analysis of covariance; ANCOVA). Still, it is always preferable 
to trust good design rather than statistical corrections after the fact.

10  Note the difference between nonrepresentative sampling, which is incorrect sampling and leads 
to bias, and sampling error, which does not. For example, you might sample more women than men 
in a disease where males outnumber females. This will produce a biased sample. On the other hand, 
even if you sampled correctly (randomly from a representative sample), your sample is likely to be an 
imperfect representation of the population due to random sampling error. Being random, sampling 
error is not biased.



Chapter 11: E lements of Clinical Trial Design I:  Putting It Together176

Intent to Treat (ITT)

I have mentioned now and again that clinical trials will often turn out differ-
ently than planned. This is not necessarily a result of inadequate planning but 
often simply due to their complexity and their dependence on large numbers 
of people. As stated, one nontrivial consequence is missing data that can be 
missing for numerous reasons and can affect results in unexpected ways, most 
of which are difficult to evaluate properly.

Imputing missing data is one method for addressing the problem. But there is 
an even more basic issue, and it is this: Whom do I analyze? Now, the answer to 
this seems obvious enough: all who participate in the trial. Yet, even this seem-
ingly straightforward statement is far from sufficient. What, for example, do 
you do with the following subjects?

n	 Those who dropped out in the first week of a 12-month trial.
n	 Those who came to all the planned appointments but never took any 

of the medications given to them.
n	 Those who consented to participate in the trial, were randomized to 

one of the arms, and then never returned.
n	 Those who were randomized to R but mistakenly given T.
n	 Those who took trial medications incorrectly throughout the trial—

for example, took one pill a day instead of three.
n	 Those who should never have been included in the first place because 

they did not meet all of the inclusion or exclusion criteria—for 
example, women who participated in a trial for excessive menstrual 
bleeding but did not meet the criterion for “excessive.”

Now it is a rare trial in which one or more of the preceding, or other protocol 
violations, do not occur. And when it does, we have on our hands subjects 
who did not participate in the trial as planned. To deal with such situations, we 
define analysis sets, which specify the data that will be included in an analy-
sis. Any given study may have various analysis sets. Thus, for example, we may 
define one that includes only measured data and another that will include 
missing data as well (dealt with using one of the many methods developed  
for it). One common analysis set is called intention to treat (ITT) and is 
described in the ICH guidelines as follows:

The intention-to-treat (ITT) principle implies that the primary analysis 
should include all randomized subjects. Compliance with this principle 
would necessitate complete follow-up of all randomized subjects for 
study outcomes. In practice this ideal may be difficult to achieve, for 
reasons to be described. In this document the term “full analysis set” 
is used to describe the analysis set which is as complete as possible 
and as close as possible to the intention-to-treat ideal of including 
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all randomized subjects. Preservation of the initial randomization in 
analysis is important in preventing bias and in providing a secure 
foundation for statistical tests. In many clinical trials the use of 
the full analysis set provides a conservative strategy. Under many 
circumstances it may also provide estimates of treatment effects which 
are more likely to mirror those observed in subsequent practice.

The guidelines then go on to describe what the full analysis set might be. The 
details are less important for us, especially when we consider that the same 
methods applied to different studies may have different implications. But the 
principle is clear: Once you eliminate subjects for any reason, you are in danger 
of biasing a trial's results. A comparative trial is based on random assignment 
and the consequent assumptions that the groups will thus be equal on all but 
Treatment type. This and this alone allows you to reach definitive conclusions 
about the effect of T versus R. Once you violated this principle—have eliminated 
subjects from the trial who were randomized to it—you will potentially cause 
bias. Fisher and colleagues (1990)11 define the ITT analysis set as follows:

Includes all randomized patients in the groups to which they were 
randomly assigned, regardless of their adherence with entry criteria, 
regardless of the treatment they actually received, and regardless of the 
subsequent withdrawal from treatment or deviation from the protocol.

Well, the ITT principle is often very difficult to apply and in some cases has the 
potential for causing more bias if applied than if not. Still, it is the ideal, and 
this is where one should begin. In practice, analysis sets—the types of subjects 
who will or will not be analyzed—must be specified in the protocol. Specifying 
whom you will analyze ahead of time will eliminate the potential bias of pick-
ing and choosing at the end of the trial after some or all results are known. 
Here are some general rules (that, as usual, have exceptions):

n	 When assessing safety you should analyze anyone who received 
treatment whether or not they violated the protocol.

n	 An individual who provides no data after receipt of treatment 
(postbaseline data) can usually be excluded from the trial.

n	 Subjects with major entry violations—such that have the potential to 
affect their outcome—can be eliminated if:
–	 The decision to include or exclude them from the analysis is done 

blind to outcome.
–	 The decision can be made objectively and for all groups equally.

11  Fisher, L. D., Dixon, D. O., Herson, J., Frankowski, R. K., Hearron, M. S., & Peace, K. E. (1990). 
Intention-to-treat in clinical trials. In K. E. Peace (Ed.), Statistical Issues in Drug Research and Development 
(pp. 331–350.) New York: Marcel Dekker.
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And, as always, use your head. If elimination of data has the potential for caus-
ing bias, avoid it. And if you feel that at least some subject should be excluded 
from the trial, then you must:

a.	 Explain why eliminating them will not bias trial results, and/or
b.	 Provide additional (sensitivity) analyses that demonstrate that leaving 

these subjects out will minimally affects trial results.

Summary
In this chapter I emphasized the importance of rigorous design customized to 
a study's goals. However solid your design and well planned the trial, the data 
yielded will be imperfect; they will be influenced by random error and, if you 
are not careful, by bias as well. Random error can be addressed relatively easily. 
Bias can easily ruin your trial. Keep your eyes open to where it might occur and 
eliminate it to the degree possible.
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■	 Blinding in clinical trial design
■	 Potential effects on subjects, physicians, study monitors, and 

administrators
■	 Randomization in clinical trial design
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Introduction: Methods for Avoiding Bias
When describing methods for avoiding bias, I can do no better than begin with 
the International Conference on Harmonization (ICH) guidelines:

The most important design techniques for avoiding bias in clinical trials 
are blinding and randomization [emphasis added], and these should 
be normal features of most controlled clinical trials intended to be 
included in a marketing application. Most such trials follow a double-
blind approach in which treatments are prepacked in accordance with 
a suitable randomization schedule and supplied to the trial center(s) 
labeled only with the subject number and the treatment period so 
that no one involved in the conduct of the trial is aware of the specific 
treatment allocated to any particular subject, not even as a code letter.1

Blinding and randomization are the major tools for preventing bias in trial 
design, and I shall now discuss each in turn.

Blinding

In a double-blind trial neither physician nor subject knows the Treatment 
administered. This is meant to eliminate potential sources of bias such as the 
following:

n	 Recruitment and allocation of subjects to Treatment: Physicians, knowing the 
treatment that a particular subject is about to receive may, consciously 
or not, decide to keep the subject out of the trial. Alternatively, they may 
manipulate allocation to ensure that specific subjects receive a selected 
Treatment. They might do this, for instance, based on her or his assumptions 
on who can best benefit from each of the treatments. This would lead to 
nonrandom differences in composition of trial groups and bias—that 
is, between-group differences at the end of the trial may be due to group 
composition rather than to Treatment. In statistical terminology, subject 
differences between study groups may confound the Treatment effect.

n	 Physician and subject behavior during the trial: I just described a situation 
where the physician may bias allocation through knowledge of it. But 
even if allocation is completely blind, unblinding during the study (e.g., 
the “informal type” noted in the preceding chapter) may affect study 
results by:
n	 Physicians providing different care based on what they believe is 

necessary for the different treatments.
n	 Physicians recruiting subsequent subjects for the trial based on the 

results of those recruited earlier. For example, if the physicians, based 

1  International Conference on Harmonization (ICH). (1998). Statistical Principles for Clinical Trials.
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on early results, believe Treatment to be ineffective they will be less 
keen on recruiting subjects to the study. And when they do recruit, 
they may decide to avoid placing subjects in special need of care in 
the Test drug group.

n	 Subjects who know their Treatment allocation at any stage in the 
study may drop out of it as a result.

n	 Assessment during and after the trial: Subjects suspecting they receive a 
new drug may subjectively report better results than those believing they 
are taking a placebo. This applies to physicians as well, who are no less 
susceptible to bias than trial participants.

n	 Handling of withdrawals: In most trials there is subject dropout that 
companies are committed to minimize. At the same time, study 
personnel may be more or less “committed,” depending on observed 
results and group allocation. For example, the sponsor's personnel  
may be keener to recover a Control failure than their innovative  
drug's failure.

Physicians must provide patients with the best care pos-
sible. There is even a Greek oath involved here. Now life is 
not mathematics and neither oaths nor meticulous planning 
can ensure that all patient care is dispensed as it should be. 
Moreover, in any particular indication, the conception of 
“best care” typically varies among professionals. This means 
that the doctor—or any other caregiver—usually has some 
flexibility when treating patients. For example, a physician 
can decide how often to see patients and select the diagnos-
tic tests and medications for them.

But in clinical trials this changes dramatically. A health care 
professional participating in a clinical study is also signing 
on to a protocol—that is, to the manner in which patients will 
be treated, including number of visits, diagnostic tests, and 
medications. And while all protocols provide some flexibility 
depending on patient condition and reaction to treatment, 
they also introduce inflexibility as well. Thus, physicians in 
clinical trials give up at least some autonomy—and often, a 
great deal of it—when choosing how to treat their patients. 
While it cannot be otherwise, it is also reflexively difficult for 
health care professionals.

The ethics of restricting physicians’ flexibility when treating in 
clinical studies have been discussed extensively and are con-
tinually being discussed in specific contexts and indications. 

This is an important issue that we shall leave for others. In this 
context, however, it is critical for me to point out that clinical 
trials are often difficult environments for physicians. Giving 
up one's autonomy to a protocol (as must be done in a well-
controlled trial) often goes against the very basic instincts of 
caregivers. And I suspect that it is no less difficult for them to 
be blind to the treatment they are dispensing.

Now this does not change the fact that those participating in 
studies agree to relinquish at least some authority to a docu-
ment. It does however mean that physicians' reflexive actions 
may, inadvertently, be at variance with the protocol and so 
undermine study design. Consequently, when planning and 
monitoring studies, you should be aware of this and make sure 
that those signing on to protocols are well aware of what they 
are committing to. Moreover, your trial's monitoring should 
pay special attention to protocol violation by physicians.

As much as we would like clinical trials to represent the 
real world, they do not. And it is no surprise that medica-
tions' performance in clinical trials often differs in mean-
ingful ways from their performance in the more flexible, 
and less controlled, environment of everyday treatment. 
Remembering this will go a long way to preserving a trial's 
integrity and, most important, will guide correct interpreta-
tion of study data.

A Quandary
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I just presented a partial list of negative effects associated with an unblinded 
trial. Clearly, trials should be blinded where possible, but sometimes they can-
not be. For example, when comparing a surgical technique to pharmaceutical 
intervention, it is impossible for either physician or subject not to know the 
treatment received. Here you will need to come up with methods other than 
blinding to minimize bias, such as the following:

n	 To the degre possible, make use of objective assessments such as imaging—
assessments that both patient and treating physician have little influence over.

n	 Ensure that those evaluating patients are unaware of the Treatment 
received—that is, that Treatment and assessment are separated where 
possible.

n	 When there is little risk to the subject, consider sham surgery for those 
being treated with medication. In this way, both groups will undergo 
surgery and receive medication, with those in the sham group receiving 
the active medication. While this will not blind the physician conducting 
the surgery, it will blind the patient.

In other cases blinding is possible, but it requires some additional logis-
tics or sleight of hand. Imagine, for instance, that you are comparing two 
drugs, one given twice a day and one given three times a day. In this case 
you might specify that both groups will take three pills a day, with the first 
taking two with the active drug and one with a placebo. Here, then, is one 
more example of where a potential source of bias has been identified and 
eliminated.

As you can imagine, the number of potential biases is about as large as 
the number of clinical trials; only a small fraction of them can be covered 
in any book. The implication for those designing clinical studies, then, is 
(and I repeat) to identify potential biases and eliminate them in any given 
instance.

Randomization
I said before that “a clinical trial is planned, run, and analyzed to provide infor-
mation on a product of interest. As such, its data must reflect on the product.2 And 
while the principle is not new to you, some of its implications may be.

To allow for definitive conclusions about Treatment, you must compare its 
results with Reference subjects who are “about similar.” This similarity relates 
to prognostic factors such as Age that are deemed predictive of outcome. In 

2  As opposed to reflecting imperfect design, such as all those receiving Treatment A being from San 
Francisco and those receiving Treatment B being from Kuala Lumpur.
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short, subjects in groups you plan to compare had better be similar in their 
chances for Cure or some other clinical effect studied. Without this similarity 
you cannot definitively attribute differences in outcome between groups to the 
Treatment of interest.

I use the phrase “about similar” because it is impossible to match groups 
perfectly on all subject characteristics and trial procedures. First, trial partici-
pants differ on factors that we know about and usually measure such as Age. 
Being known, these are relatively easy to deal with. For example, we might 
compare the groups on them to demonstrate equality. And when inequality 
arises, statistical techniques such as analysis of covariance (ANCOVA) can 
go at least part of the way to addressing potential difficulties in statistical 
inference.

At the same time there are variables potentially related to outcome that we 
typically do not measure, such as Emotional Strength and Social Support. And 
since they have not been measured, you cannot compare the groups in regards 
to them. Finally, there are numerous, potentially prognostic factors that we do 
not even know about and so do not contemplate measuring. Such variables 
might include relatively esoteric variables like Churchgoing, Hair Color, and 
Number of First-Order Relatives under Age 10.

Yet all this does not change the fact that subjects in study arms must be matched 
if we are to reach unbiased conclusions when comparing them. And in an 
imperfect world we settle for “about equal,” which we hope to achieve with 
randomization. Consequently, randomization provides the basis for meaning-
ful comparisons between study arms and no less.

Now this is the general principle, the permutations on which can be many. 
To take an example, the extent of recovery from stroke is related to sub-
ject and stroke characteristics such as History of Previous Strokes or Near 
Strokes,3 Area of Brain Affected, and Physical Function prior to stroke and 
immediately after. Since these are strongly related to prognosis—with or 
without Treatment—you will want to ensure that the groups are more or 
less equivalent on them by “helping the randomization out.” You can do 
this by using stratified randomization, where subjects are randomized 
within strata (class, category). For example, you might divide all subjects 
into three prognostic strata such as “favorable,” “average,” and “unfavor-
able.” Once classified, you will randomize subjects within each prognos-
tic stratum to either Treatment or Control. Doing so will ensure that, at 
least with respect to the prognostic factors you know about, study arms 
are matched.

3  Transient ischemic attacks (TIAs) are “ministrokes” that typically leave no measurable damage and are 
often predictive of more serious ischemic events to come.
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Here are just a few notes on randomization techniques:

n	 Simple and stratified randomization are just two of many randomization 
methods of assigning subjects to treatment. There are others such as 
dynamic randomization, which adjusts randomization along the way to 
increase the likelihood that groups are balanced on critical parameters. 

I have noted throughout that clinical trials are imperfect 
affairs. There are many reasons for it, not least of which is 
that subjects are humans and behave accordingly. For exam-
ple, some comply with Treatment, while others do not. This, 
then, can make it problematic to decide which subjects to 
include in any trial's definitive (primary) statistical analyses. 
For example, should subjects who are taking only 60% of the 
pills prescribed be included in the analysis? Should those 
who drop out before receiving any treatment be included? 
And if so, how is it to be done? For instance how are you to 
analyze a subject's outcome when he or she has not provided 
you with any outcome data?

To address this issue, we begin with the principle that clini-
cal trials are meant to simulate real-world performance. 
And given that real-world medicine is usually even messier 
than that in clinical trials, we should include all subjects we 
planned to treat in the trial—all intent to treat (ITT) subjects 
regardless of their behavior or that of those treating them. 
In this way we will best simulate our treatments' safety and 
effectiveness in the wild.

Thus one reason for analyzing all ITT subjects is our aim that, to 
the degree possible, trials must represent real-world therapeu-
tics. But there is also a fundamental statistical principle associ-
ated with ITT analysis, and it is this: Including all ITT subjects 
means preserving randomization, which is the basis for reach-
ing unbiased conclusions from statistical comparisons. ITT 
subjects include all randomized patients, whereas excluding 
randomized patients for any reason impairs randomization. 
And impaired randomization undercuts the theoretical justifi-
cation for reaching conclusions from group comparisons.

As noted in the preceding chapter, Fisher and colleagues4 
stated that the ITT analyses set (or population)—the data 
of all ITT subjects—includes “all randomized patients in 
the groups to which they were randomly assigned, regard-
less of their adherence with the entry criteria, regardless of 
the treatment they actually received, and regardless of sub-

sequent withdrawal from treatment or deviation from the 
protocol.” Now this definition is extreme, as are its implica-
tions. For example, it necessitates including subjects in the 
group to which they were randomized, regardless of treat-
ment received. Suppose, for instance, that a subject was 
randomized to Control but erroneously received Treatment. 
The ITT principle dictates that she or he will be analyzed 
as belonging to Control. Only then will initial randomiza-
tion be maintained and with it, the justification for infer-
ring differences between groups. In fact, there are many 
complications that arise from adhering to the ITT principle. 
But these are usually fewer than those resulting from not 
adhering to it.

So here is the bottom line:

■	 Reaching definitive conclusions about a product from 
comparing groups A and B is only justified if A and B 
are “about the same” on all but product use.

■	 Randomization is designed to ensure this “about 
sameness.”

■	 Using the ITT principle maintains randomization and, 
with it, allows for meaningful comparisons between A 
and B.

■	 The ITT principle—using all randomized subjects when 
comparing groups—is straightforward in principle but 
can be problematic to apply.

If you wish to explore the complexities of the ITT issue in 
clinical trials—and there are many—I suggest you begin 
with the relevant guidelines.5

Intent to Treat

4  Fisher, L. D., Dixon, D. O., Herson, J., Frankowski, R. K., Hearron, M. S., &  
Peace, K. E. (1990). Intention-to-treat in clinical trials. In K. E. Peace 
(Ed.), Statistical Issues in Drug Research and Development (pp. 331–350.) 
New York: Marcel Dekker.
5  International Conference on Harmonization (ICH) (1998), Step 5. 
Statistical principles in clinical trials. European Medicines Agency 
(EMEA), London.
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In other words, dynamic randomization continually evaluates the quality 
of randomization and makes corrections as required. Suppose, for 
example, that Gender is an important prognostic factor in a particular 
indication, and you wish to ensure that Treatment groups have about 
equal proportions of males and females. A dynamic randomization 
scheme will monitor male/female proportions as you go along, and 
when it detects an imbalance, it will alter the odds accordingly. For 
example, if more females have been randomized to B relative to A, 
subsequent females may be randomized with a 60% chance of A rather 
than the usual 50%. In this way randomization is maintained technically, 
while its odds have been adjusted to increase the likelihood of ultimate 
equality between groups (on Gender).

n	 Thus, if you fear that simple randomization may not adequately match 
groups, consult with a statistician. She should be able to help you 
achieve this “about equality” of groups that is so important for your 
trial.

n	 Straightforward randomization is not always simple logistically, 
and stratified randomization can be a logistic nightmare. Dynamic 
randomization is more difficult than either. Consequently, in any 
particular trial you must weigh the risks and benefits of various 
randomization approaches. While the principle of randomization is the 
basis for unbiased statistical comparisons, we must not allow statistical 
principles to be a tail wagging the trial dog.

n	 Fair coins—or computer randomization programs for that matter—do 
not have a deep understanding of probability theory. As such, they will 
sometimes deviate greatly from what is expected. For example, even a fair 
coin will, on occasion, come up “heads” 10 times in a row. It happens. 
Thus, every so often, group imbalances will arise despite randomization. 
And if you detect such imbalances at the end of the trial, statistical 
techniques can often address them.

n	 Infrequently, randomization itself may lead to bias. This may occur 
when patients cannot be blinded to treatment, as when comparing 
surgical and pharmaceutical interventions. In these circumstances 
subjects randomized to their preferred treatment are more likely 
to remain in the study than those not. At the very least, subjects' 
motivation will vary depending on whether or not they have received 
their preferred treatment. The effect of patient preference on outcome is 
not straightforward and inconsistent results have been obtained across 
studies. Indeed, the effect of patient preference may very well depend 
on the indication in question with no “one rule fits all.” One proposed 
solution to this potential bias is the partially randomized patient 
preference design. In the design, patients with strong preferences 
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are allocated to their treatment of choice while those with no strong 
preference are randomized in the usual manner. Intriguingly, this 
may be one situation where random assignment causes bias and 
non-random assignment reduces it. For those interested in the topic, 
McPherson et al.6 is a good place to start.

An Interim Summary
The preceding two sections can best be summed up by the following quote 
from ICH's Statistical Principles in Clinical Trials:

Randomization introduces a deliberate element of chance into 
the assignment of treatments to subjects in a clinical trial. During 
subsequent analysis of the trial data, it provides a sound statistical 
basis for the quantitative evaluation of the evidence relating to 
treatment effects. It also tends to produce treatment groups in which 
the distributions of prognostic factors, known and unknown, are 
similar. In combination with blinding, randomization helps to avoid 
possible bias in the selection and allocation of subjects arising from the 
predictability of treatment assignments.

The Control Group
With some exceptions, Control groups are necessary for arriving at definitive 
conclusions from clinical trials. Without them you cannot obtain a good esti-
mate of your product's effect (versus Control, of course), which will naturally 
limit information about your product and claims for it.

Yet, despite the importance of having a Control group, there are instances 
where you will choose not to have one. This is fine. But when going this route, 
you must be aware of the ramifications and weigh the costs and benefits care-
fully. If you decide to forgo a Control group, your trial will be logistically sim-
pler and cheaper, but the data from it will be more limited. All the while, you 
should keep in mind that with or without Control, every clinical trial involves 
comparisons. These may be implicit, explicit, or both.

Let us look at an example: Suppose you are testing an innovative heart valve 
meant for replacing a defective original, which is implanted by catheterization 
rather than the standard open-heart surgery. While this is currently an experi-
mental procedure, it will likely become common in the future. Be that as it may, 

6  McPherson K., Britton A., Wennberg J. E., (1997). Are randomised controlled trials controlled? Patient 
preferences and unblind trials. The Journal of the Royal Society of Medicine, 90, 652–656.
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because this is an experimental procedure, you will only be permitted to do it 
on those who cannot undergo the standard, open-heart surgery. Typically, these 
are patients whom surgeons consider too infirm to undergo a major procedure 
such as open-heart surgery. Thus, it would make no sense to compare between 
the two techniques—replacement by catheterization and open-heart surgery—
since subjects in the two groups are likely to be very different. Specifically, those 
in the open-heart arm will probably be in better medical condition overall, thus 
biasing any subsequent comparison to the catheterization arm.

Another, more appropriate option would be to compare subjects undergoing 
your procedure, with similar subjects receiving noninvasive—pharmaceutical—
standard of care only. Doing this will provide you with a Control group, and so 
with a Reference to compare to at the end of the trial. This comparison is rea-
sonable, but due to budgetary reasons, you choose a single-arm trial neverthe-
less. What few resources you have, you wish to invest in assessing the innovative 
product only. First, there is currently no clinical information about your proce-
dure, so you would like to maximize the number of people exposed to it in your 
trial. Second, at this stage you are interested in technical performance more 
than you are in efficacy. A Control group of subjects receiving standard of care 
will allow a formal comparison on efficacy but not performance. After all, those 
undergoing noninvasive standard of care receive no surgical procedure at all.

So this is your first study in humans, and you feel that having fewer than 20 
subjects in Treatment will not provide enough information on the product. 
Truth be told, even 20 subjects is not a great deal, yet you have little choice but 
to keep to the budget. Thus after extensive discussions, you decide to go with 
a single-arm trial.

Having no Control, there will be no perfectly suitable comparison to your 
Treatment's outcome. Regardless, you will make several comparisons, since this 
is the only way to estimate your product's worth. For example, you will contrast 
your procedure's technical success with some figure you believe is acceptable. 
Additionally, you may ask participating physicians to evaluate the procedure's 
technical aspects by questionnaire. Their answers will necessarily depend on 
procedures they are familiar with, so they too will be comparative in nature. 
You might also contrast your trial's outcomes with those typically observed 
in similar patients who received a noninvasive standard of care. This will pro-
vide you an estimate of efficacy relative to historical data that can be had from 
patient files and/or scientific publications. In the absence of a Control group, 
this is the best you can do and is likely sufficient at an early stage of product 
development.

I will now go back to an earlier statement that in some circumstances a Control 
group is unnecessary. There are at least two instances where this can occur, one 
more frequent than the other.
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Existing Reference

When developing a new medical device, you might be required to compare it 
with some existing Reference value rather than to some Reference test. Your goal 
would be to demonstrate either similarity or superiority to the Reference value. 
This happens when the regulator sets a performance goal, obviating the need 
for a Control group.

Suppose, for example, that you have developed a diagnostic kit for predicting 
preeclampsia (pregnancy-induced high blood pressure with, perhaps, other 
symptoms) in late pregnancy from a first-trimester blood test. In this indi-
cation you may be required to show that your sensitivity and specificity val-
ues are above some threshold like 0.70. Here there is no other choice, since 
another test for predicting preeclampsia does not exist;7 in other words, there 
can be no Control even if you wish to have one.

I just described a situation in which there can be no Control. However com-
parison to a Reference value, rather than to Control, is also appropriate when 
there is a well-established Reference—that is, when the results of alternative 
procedures are known with a fair certainty.

Known Outcome

In some infrequent cases the outcome of standard of Treatment is definitively 
or almost definitively known. For example, a particular late-stage cancer may 
be associated with no more than a three-month survival rate in virtually all 
cases regardless of Treatment. Suppose you have developed an innovative drug 
and believe your product can extend this period considerably for all subjects. 
Given the natural history of the disease, you know that any Control group will 
yield a three-month survival at most. As such, your study need only show that 
survival with your treatment exceeds this three-month period; there is no rea-
son to include a Control group in it.

Here is another example: You have developed a treatment for generating 
nerve growth following complete spinal cord injury. When a spinal cord 
injury is truly complete, there is also complete paralysis from some loca-
tion in the body downward. At present there is no treatment that can restore 
movement after complete injury. This implies that any Control group in 
this indication will yield 100% failure in restoring movement. Thus in the 

7  There are some known risk factors for the disease, but their predictive power is very low, identifying 
only about 25% of cases.
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trial you plan, there is no need for Control because its outcome is known 
in advance.8 In general, where outcomes of standard of care are known 
with near certainty, you can forgo a Control group with little or no loss of 
information.

To conclude, an ideal design will include both Treatment and Control. Yet there 
are circumstances where you reluctantly make do with a one-arm trial due to 
monetary and/or logistical considerations. And there are still other instances 
where a two-arm trial is unnecessary or minimally informing. Yet regardless 
of trial design, all studies entail some sort of comparison. Depending on the 
design selected and the indication, some of these will be more informative 
than others. Following is a list of trial designs and their consequent compari-
sons from most informative to least. Note that the list is not exhaustive and is 
meant only to provide some idea on the relative merits of various designs.

n	 Parallel groups, randomized:
n	 There is a Control group.
n	 Subjects are randomized to one group or the other.
n	 The two arms—Treatment and Control—are run parallel in time.

The comparisons in this trial are straightforward, as are the conclusions from 
them.

n	 Parallel groups, nonrandomized:
n	 There is a Control group.
n	 Subjects are assigned to groups based on nonrandom criteria—

typically associated with clinical and/or logistic considerations.
n	 The two arms—Treatment and Control—are run in parallel.

Comparisons here are suspect because differences in Treatment may be con-
founded by differences between subjects in the two groups. At the same time, 
in some indications a trial like this may better simulate clinical practice by 
enabling subjects to select their preferred treatment.

n	 Nonparallel groups:
n	 The trial includes both Treatment and Control, the assignment to 

which may or may not be random.
n	 The groups are not run in parallel. For example, all subjects in 

Treatment are recruited first, and only after the Treatment arm is 
completed, Control initiated.

8  I have made things a bit more simplistic here than they ought to be, since there are reports of (partial) 
movement restoration after complete spinal cord injury. It is not clear if they occurred due to some nerve 
regeneration or, perhaps, because the initial diagnosis of “completeness” was wrong. Regardless, even in 
cases such as these, you must carefully weigh your design options and be ready to defend the one selected.
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Here, too, your results may be biased. This is because any differences between 
the groups may be due to difference in Time of Treatment. In other words, 
Treatment may be confounded by Time of Treatment.

n	 Baseline Control:
n	 There is only a single arm: Treatment.
n	 Subjects are compared to themselves—that is, outcomes following 

treatment are compared to baseline values.9

Single-arm differences from baseline are especially problematic to interpret for 
various reasons, including possible placebo effects.

n	 Historical Control:
n	 There is only a single arm: Treatment.
n	 Outcomes are compared to available data from other sources. Ideally, 

this “other source” will be individual data obtained from subjects treated 
in the same center. Less ideally, your comparison will be to summary 
statistics from published data on subjects as similar as possible to yours.

Because Control here is nonrandomized, chances are that the subjects in your 
trial differ in meaningful ways from those in others (or in hospital records). 
Thus while historical controls can be useful to some extent, they are far from 
ideal. Where there is no choice but to use them, statistical techniques to mini-
mize bias, such as propensity analysis, can be used.

n	 No explicit Control or accepted Reference value:
n	 There is only a single arm: Treatment.
n	 There is no specified comparison group—that is, no historical, 

concurrent, or baseline control.

In this, as in all, trials there will be comparisons. But they will be informal and will 
likely involve contrasting your outcome with some “best guess” expectation.

Looking at Data During the Trial
Efficacy

Blinding is mostly mentioned in the context of subject assignment to Treatment, 
where to the degree possible you should keep this information concealed from 
both the physician and the subject. But this rule is just one special case of the 
general principle: Any data that might potentially bias the trial outcome should 
be hidden from those they may unduly influence.

9  This should not be confused with trials in which each subject undergoes both Treatment and Control 
as, for example, in crossover trials. When designed appropriately, such trials provide comparisons that 
are as meaningful as randomized, parallel group studies.
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Now let us look at the potentially distorting effects of interim analysis—of analyz-
ing outcome data before a trial is completed. Suppose you accrued complete data 
for about half the planned number of subjects in a study. And suppose further that 
you analyze these data and find Treatment to be only marginally effective rela-
tive to Control. Now you have no idea whether this state of affairs will continue. 
But for the moment you do know that your product does not appear particularly 
useful. If you choose to make these data known to physicians, you may bias their 
behavior and with it, trial results. They may, for example, now begin to recruit dif-
ficult subjects only—such that standard therapy holds little hope for them (“If the 
patient will be helped by standard treatment,” reasons the physician, “why should 
I enroll him or her in a trial where one of two treatments is relatively ineffective?”). 
These newly recruited subjects are likely to show low rates of recovery in both 
arms, weakening study results in general. Moreover, anticipating weak outcomes, 
physician evaluations may become biased. Patients will then pick up on the doc-
tors' nonverbal messages and report their own condition more negatively. Finally, 
the study's sponsor might give up on the trial or, at the very least, allocate fewer 
resources to it. This will reduce study quality and subsequent data from it.

Of course, bias can also occur when favorable results emerge and are made known. 
And while the potential distortions will differ from those just described, they will 
nonetheless have an impact. Thus, the greatest threat to trial validity associated with 
interim analysis is potential bias. Statisticians in particular should be reminded of 
this, since for many, problems related to interim analysis are statistical in nature 
only. As such, they can be solved statistically. Well, it is indeed the case that interim 
analyses have statistical aspects that must be addressed. And it is also true that 
in most cases the statistician can address them properly. Regardless, the greatest 
threat to a trial's validity posed by analyzing data along the way is bias.

Even in the land of the blind there will be some who see, be it 
with one eye or two. Trial data simply cannot remain hidden 
from all. There are too many people and processes involved, 
and at least some of these require knowledge of group 
assignment. Moreover, even in well-blinded studies physi-
cians know the state of their subjects, and subjects know 
how they personally feel. While neither knows precisely the 
Treatment group involved, each will speculate, and at least 
some are bound to be right. Additionally, clinical research 
associates—personnel monitoring the study—regularly 
review a study's case research forms (forms on which trial 
data are recorded; CRFs). Thus, trial monitors are privy to 
trial results, which they pass along to those managing the 

data. In sum, there are those who will do their best to guess 
about blinded data and others who cannot, for logistical rea-
sons, be blinded in the first place.

Yet there is a vast difference between exposing trial person-
nel to locally collected numbers—as is normally the case with 
physicians, subjects, and monitors—and revealing the results 
of aggregate data. The former are often blinded and, even when 
not, are merely local snapshots that may not reflect the trial as a 
whole. They can provide a sort of blurred vision of the trial's sta-
tus but no more. However, the results of interim analysis consti-
tute information on the current status of a product and so have 
great potential to influence trial participants and procedures.

Blurred Vision
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Interim Analysis of Safety

To this point I have emphasized biases arising from interim analysis of efficacy 
data. This can be expected from a statistician, since some of our most interest-
ing work is associated with these data. For example, power analyses determin-
ing sample size are typically based on efficacy, and our most sophisticated 
techniques are generally applied in the service of efficacy analyses.

But clinical trials often collect other types of information as well, and in all 
instances they must obtain safety data. In fact, safety is arguably more impor-
tant than efficacy, since the first tenet of treatment is “safety first.” Before you 
attempt a cure, make sure you are doing no harm. So as a rule you will proceed 
to demonstrate efficacy only after having showed your product to be reason-
ably safe. And because it is safety first, you can expect our attitude to making 
safety data known to differ from that of efficacy. This is indeed the case.

In the first place, every clinical trial must have a mechanism for informing rele-
vant bodies and personnel of major safety events as they occur. In other words, 
there is continuous “interim analysis” of at least some safety information 
throughout a trial. It would be unethical otherwise. Additionally, some trials—
especially those in relatively risky indications and lasting longer—establish data 
monitoring committees (DMCs) of which the main task is to look at accumu-
lated safety data along the way. The mandates of a DMC will differ depend-
ing on trial needs, but the committee is almost always charged with reviewing 
safety data at specified intervals. In an article titled “Role of Independent Data-
Monitoring Committees in Randomized Clinical Trials Sponsored by the 
National Cancer Institute,”10 the authors state the following:

DMCs … provide a body able to protect patient safety, to protect the 
integrity of the clinical experiments on which patients have consented 
to participate, and to assure the public that conflicts of interest do not 
compromise either patient safety or trial integrity.

Thus, unlike efficacy data, the following is true:

n	 Critical safety data such as unexpected serious adverse events (SAEs) must 
be routinely reported and, if even remotely related to Treatment, must be 
revealed to trial participants.

n	 Less serious adverse events (AEs)—even if they are expected adverse 
events—are often analyzed in the aggregate. This is typically done for 
DMCs or other types of safety monitoring bodies. And while these bodies 
are generally independent,11 their conclusions may need to be revealed, 
depending on the circumstances.

10  Smith M. A., Ungerleider R. S., Korn E. L., et al. (1997). Role of independent data-monitoring committees in 
randomized clinical trials sponsored by the National Cancer Institute. Journal of Clinical Oncology, 15, 2736–2743.
11  Independent in the sense that they are not associated with the day-to-day running of the trial and are 
not beholden to special interests associated with the study.
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At the same time, and like most issues in clinical trials, relating to unblind-
ing of safety data is far from straightforward. For example, some DMCs regu-
larly receive AE data by arm but are not told which arm is which. This is a 
sort of “partial blinding” meant to reduce members' bias in deciding whether 
or not to discontinue a trial for safety reasons. Moreover, some DMCs are 
charged with evaluating efficacy as well and will incorporate the information 
into decisions on whether or not to continue a study. Thus, an innovative drug 
that causes many AEs may, in some indications, be considered useful if it is 
sufficiently effective.

DMCs are independent bodies, and data provided to them need not be 
revealed to trial participants. At the same time, study information is hard 
to keep secret. And in any case, a DMC's decision on whether or not to con-
tinue a trial must be made public. In fact, you will often find early-stage 
companies releasing statements to the press on a DMC decision to allow 
the trial to continue. Of course this is not much of an accomplishment. If it 
were not expected, the trial would not have been run in the first place. But it 
may sound sufficiently impressive to the uninitiated, who might then fool-
ishly invest their money based on press releases such as this. Yet expected 
or not, public pronouncements of DMC decisions constitute information in 
the aggregate on an ongoing clinical trial. As such, they have the potential 
for biasing outcome.

Another potential problem occurs in cases where it is virtually impossible 
to separate efficacy from safety. Suppose, for example, that you are testing 
the efficacy/performance of an insulin pump—a device designed to provide 
diabetics with appropriate quantities of insulin under different conditions. 
Such conditions might include patient's current level of blood sugar, sen-
sitivity to insulin, and the amount of carbohydrates the patient plans to 
consume at his next meal. An ineffective pump will cause inappropriate 
quantities of insulin to be pumped into the body, causing adverse events 
such as hypo- and hyperglycemia. This will also happen when the device 
clogs. In other words, the product's performance is directly related to safety, 
so knowledge of the latter will necessarily provide information on the for-
mer. And since safety data are often made known, here this may amount to 
providing efficacy information as well.12

I will not delve more deeply into this topic. While clearly related to statistics, 
it is not purely statistical, and solutions for it must be found outside the realm 
of statistics.

12  While the relationship between AEs and device malfunction is more direct here than in most 
indications, it is far from being “one-to-one.” Hypo- and hyperglycemia can be caused by factors 
other than the device, so reporting these AEs does not necessarily reflect on the product. But it reflects 
enough on the device to potentially bias the trial.
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Statistical Considerations in Interim 
Analysis: Multiplicity
I said before that unless you have sufficient reason for it, efficacy should be 
analyzed only after all study data have been collected. Doing otherwise may 
introduce unnecessary bias into an ongoing trial. And for the record, curiosity 
is not a sufficient reason. Yet potential bias is not the only reason for avoid-
ing data analysis along the way. Let us look at the statistical issues involved, 
which relate primarily to Type I Error. I previously dealt with this topic in 
Chapter 10. If you do not require a review, feel free to skip this section. For 
those of you who remain, I will proceed gingerly through this minor statisti-
cal minefield.

Conclusions from statistical testing are probabilistic in nature. For exam-
ple, obtaining a significantly superior effect of T over R implies that you are 
95% certain that T > R. And by stating this you acknowledge that there is 
a 5% chance you have erred—have mistakenly concluded that T is better. 
Statistically speaking, you have allowed yourself a 5% chance of committing 
Type I Error, which is rejecting the Null Hypothesis when it should not be 
rejected.

Formally, then, Type I Error is incorrectly rejecting the Null Hypothesis—
whatever it may happen to be; contingent on your study's objectives, it can take 
on several different forms. For the sake of simplicity, I shall deal here with the 
fairly common case where you wish to show some T superior to R and specify 
the Null and Alternative hypotheses as follows:

H0: T = R

H1: T ≠ R

Now, when comparing two entities there is always the chance that one 
will emerge superior to the other by chance alone. On occasion, for exam-
ple, even a weak dueler will eliminate a stronger one. So when measur-
ing “superiority” in a single duel, results can go either way. And while the 
chance of the better shot killing the poorer is greater than the reverse, the 
latter can happen as well. Now it is generally impossible to eliminate the 
chance of Type I Error—in this case, of concluding that the truly weaker 
dueler is stronger. But it is possible to reduce the chance of this happening. 
For example, you might require that the comparison consists of a “best of 
5” series as opposed to a single duel. Increasing sample size increases the 
chance of the truth emerging, and consequently it reduces the chances of a 
Type I Error. Thus, while the possibility of committing a Type I Error will 
always be a cloud hovering above any comparison you make, you have some 
control over its size.
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The Type I Error rate generally accepted in science (and by regulators) is 5%— 
that is, when you wish to reject the Null Hypothesis, journals and regulators 
will require that you be 95% certain of your rejection. And while exceptions 
exist—cases where higher or lower probabilities for rejecting H0 are allowed—
they are few and far between.

Getting back to clinical trials, you can keep the probability for Type I Error 
manageable by determining what must happen in order to “prove” superior-
ity. The more stringent you set the criteria for success, the lower your chance 
of a Type I Error. For example, before a study you might state that only if T's 
efficacy is at least twice R's in a sample of 400 subjects will you conclude 
that T > R. Conversely, you can set more liberal criteria and, for example, 
accept an 8% difference obtained on 30 subjects as sufficient evidence for 
superiority.

In sum, your statistical decision-making game is, with respect to Type I Error, 
played between the following goalposts on either side of the field:

a.	 Choose lenient criteria for rejection → greater chance of rejection → 
greater chance of incorrect rejection → greater chance of Type I Error.

b.	 Choose harsh criteria of rejection → smaller chance of rejection → 
smaller chance of incorrect rejection → smaller chance of Type I Error.

Now, statisticians know how to calculate your chances of error in a trial 
(and given there is Type I, you can safely assume there is a Type II as well). 
Computations are typically based on various assumptions, statistical and clini-
cal in nature, and range from “fairly simple” to “bafflingly complex.” For the 
moment it is enough that you know that statisticians know how to do this, and 
I recommend that you leave it to them.

In conclusion, the chance of a “false positive”—of erroneously claiming  
success—occurs every time you compare two groups statistically. And since it 
happens with every comparison, the more comparisons you make, the greater 
the chance of it happening. This, then, is the statistical problem with interim 
analyses: On each comparison your chance of this sort of error is 5%. Thus 
when you multiply such analyses, you also increase the chance of Type I Error 
beyond the permissible 5%.

In my own particular discipline, this issue is called multiple testing or multi-
plicity. If, for instance, your drug is truly ineffective and you conduct five sepa-
rate comparisons with it (say, you compare T and R on five endpoints), you 
have more than a 20% chance of obtaining at least one false positive result.

A more intuitive example might be flipping a coin that, when done often 
enough, will eventually yield the hoped-for result, even if not justified. Using 
this analogy, statistical testing is akin to flipping a coin of which the chance 
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of coming up false positive is 5% on each flip. Flip often enough, and even if 
your product is not superior, you are bound to get lucky and obtain a favorable 
result by chance alone.

Now getting lucky is highly recommended, especially when the luck happens 
to be good. But when you seek the truth, you had better avoid both good and 
bad luck and stick to the facts. In clinical trials we ask that your overall chance 
of Type I Error—regardless of the number of comparisons you make—remain 
no higher than 5%.

I said before that the generally accepted Type I Error rate is 5%. And this is 
true. At the same time, statistical procedures and criteria must be subservient 
to study goals and not the other way around. If, for example, you are running 
a pivotal trial for regulatory approval, you will need to go with the 5% Type 
I Error rate. This is what the regulator demands, and satisfying the regulator 
is, along with a few other goals, your trial's aim. Thus determining an accept-
able Type I Error rate cannot be determined in mathematical isolation. Here 
is another example: In an exploratory trial you are typically more concerned 
with detecting efficacy than with protecting yourself from making a false 
positive. At this stage of development you reason as follows: “My primary aim is 

Increasing the chance of wrongly concluding success would 
seem to be a bad thing. And it is. Yet, setting stringent cri-
teria for success also means that your chance of detecting a 
true effect is reduced as well. Allow me to demonstrate this 
with an extreme (and unrealistic) example.

Suppose you conduct a trial in which you decide in advance 
that you will never conclude success regardless of the 
results. Having made the decision, you have also effec-
tively reduced the chance of Type I Error to 0; since you will 
never conclude success, you will also never conclude suc-
cess erroneously (a good thing). However, by playing it safe 
you have also eliminated any chance of detecting true suc-
cess (a bad thing). Let us now take the opposite and equally 
unrealistic example.

Before proceeding with a trial, you decide that you will 
declare superiority irrespective of trial results. Here, you will 
always conclude success. Thus, you will always conclude 

success if warranted (good), but you will also always con-
clude success when it is not warranted; in other words, you 
will have a high probability of Type I Error (bad).

Thus we have here a typical tradeoff between risk and cau-
tion: Protect yourself from Type I Error, and you reduce your 
chance of detecting true effects; increase your chance to 
detect favorable effects, and you also increase your chance 
of “detecting” them erroneously. In formal statistical termi-
nology, you cannot have your cake and eat it, too.

Using even more formal terminology, the more you defend 
from Type I Error, the greater your chances to commit a 
Type II Error, which is not detecting superiority when you 
should. On the other hand, the less cautious you are—the 
less you defend from Type I Error—the greater your trial's 
power for finding a (true) favorable effect. Yet, by doing this 
you have also increased your chance of accepting a chance 
favorable effect.

Type I Error in Practice
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to discover some hint of effectiveness if it is truly there. If obtained, I will con-
duct a confirmatory trial with the customary chance of Type I Error (5%). Thus 
the truth will emerge at the end of the day even if I am a bit lax with it early 
on. And if I am not lax with it at the exploratory stage, I might just pass up a 
good product—not detect its effect for lack of power or simply bad luck—and 
the opportunity will likely not return.” In other words, incorrectly embrace a 
product and you will eventually discard it; incorrectly discard a product and it 
is usually gone for good.

Consequently, in feasibility studies you might allow for a 10% Type I Error 
rate and so increase your study's power—its chance of detecting a true effect—
while increasing the probability of Type I Error. Indeed, in the early stages 
of trials, companies and statisticians often ignore Type I Error altogether. 
Instead, they will make go/no-go decisions based on informal examination 
data. For example, if most of a trial's results point in the hoped-for direc-
tion, you will decide to continue development even if none of the individual 
tests was actually significant. As noted, at this stage of development you are 
more fearful of discarding an effective product than with keeping an ineffec-
tive one.

To conclude, there is no single Type I Error rate that is correct in all circum-
stances. Statistical testing, like trial design itself, must meet study objectives.

Reasons for Interim Analyses and Some 
Statistical Solutions
While looking at data along the way is not recommended, there are exceptions—
cases where for one reason or another you must make decisions before the trial 
is completed. And to make these decisions you will require comparative data—
that is, you will have to conduct a statistical test on the data available. Adding 
tests along the way—like adding tests in general—will increase your chance of 
reaching conclusions based on chance alone (rather than truth).

Imagine you are planning a study of 200 patients per group, and you chose 
this sample size “to be on the safe side.” You suspect that fewer subjects will 
do, but you are not completely sure. You therefore plan a larger—perhaps too 
large—study.13

13  In fact, conducting a larger-than-needed clinical trial is usually unethical; after all, you are needlessly 
exposing a certain number of subjects to unproven treatment. This, then, is one additional reason for 
making T – R comparisons along the way to assess whether the number of participants can be reduced. 
Saving money is also a not unheard of reason for preferring smaller trials over larger ones.
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In this sort of trial it would be very helpful to have some mechanism to allow 
for testing results before all 200 subjects have completed the trial. This mecha-
nism should enable you to stop the trial earlier than planned while maintain-
ing the Type I Error rate at 5% (despite the fact that you may end up testing at 
least twice—once in the interim and, if the results are not sufficiently favorable, 
once again at the end of the trial).

Well, formal interim analysis is a mechanism for this. Statistically the term interim 
analysis is quite general and can refer to any one of several scenarios of analyz-
ing data while the trial is ongoing. The specific statistical technique applied for 
interim analysis depends on various factors, including the following:

n	 The reason for wanting to analyze partial data in the first place.
n	 The point or points in the trial at which these analyses will be conducted.

As an aside, I should note that the issue of multiplicity can be very technical 
and is not limited to analyzing interim data (see Chapter 10). It also applies to 
cases where you wish to analyze multiple endpoints or apply multiple statisti-
cal tests to a single endpoint. In each of these cases the more tests you conduct, 
the greater your chances of (unjustifiably) obtaining a favorable result. I noted 
that the technical statistical aspects of multiplicity are beyond the scope of this 
book. At the same time, the nonstatistician should be aware of the following:

n	 There can be some very good reasons for wanting to analyze data while a 
trial is ongoing, and doing so (correctly) is perfectly legitimate.

n	 Analyzing interim data is statistically problematic.
n	 There are both statistical and logistical solutions for difficulties arising 

from interim analyses.

I mention that there can be some “very good reasons” for interim analysis, 
and I elaborate on some of these in the following sections.

Futility

Futility analysis is designed to evaluate whether or not to continue a trial—that 
is, whether keeping to the trial's planned sample size is or is not worthwhile. For 
example, when interim results (after, say, half the subjects have been completed and 
analyzed) are such that the chance of success at the end of the trial is tiny or nil, you 
may want to declare the trial “futile”; there is simply no point in going on with it.

Futility analysis permits stopping the trial for failure but does not allow stop-
ping for success. Thus, if your planned futility analysis actually obtained sig-
nificant T > R, you are not permitted to stop the trial and claim success. This 
relates to the idea that conclusions based on statistical analyses are convincing 
only when the analyses have been specified in advance (see Chapter 9). And 
since in this case you did not specify in advance that success is an option—
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you specified a futility analysis that allows stopping for failure only—if you 
happen to unexpectedly come up with a favorably significant result, you will 
not be able to claim it.

“Standard” Interim Analysis

As it is most commonly used, the term interim analysis refers to analysis of par-
tial data for the purpose of making one of the following decisions:

a.	 Declare success and stop trial, which will happen if you obtain significant 
results in the hoped-for direction.

b.	 Continue with the trial as planned, when interim results are sufficiently 
favorably to continue but not so favorable as to allow for declaring 
success.

c.	 Stop the trial for futility when the results are so unfavorable that it is 
pointless to go on.

Now this “conventional” option includes futility, so you might rightly wonder 
why futility analysis exists as a stand-alone option. Well there is good reason 
for it: When testing futility, you do not give yourself the option for success. As 
such, you are also not increasing the probability of a Type I Error. After all, if you 
will never claim success, you will never claim success mistakenly. Thus, futility 
analysis does not require any adjustment for an increase in Type I Error. And not 
adjusting the Type I Error rate can make it easier to obtain success in later stages. 
Specifically, multiple comparisons (for success) require that the overall Type I 
Error rate—what we term α—must be 5% for all tests. This means that for each 
individual test, α must be lower than 5%; only thus will overall α remain at 5% 
or lower. This also means that each individual test now has a more stringent cri-
terion for success and so is less powerful for showing T > R.14

There are numerous variations on these themes of futility and conventional 
interim analyses. For example, you might set up a trial with three arms: two 
dose groups and one placebo. If an interim analysis suggests that one dose is 
better than another, you will have the subjects who have been receiving the 
less effective dose switch to the more effective one and continue the trial as 
planned. And from this point on, you will recruit patients into two arms rather 
than to three. This will increase your sample size in the remaining arms and 
with it, the power for detecting differences between them.

14  When adjusting for overall comparisons correctly, your overall chance of success—for rejecting 
H0—remains the same when considering the trial as a whole. At the same time, the chance of each 
individual analysis obtaining the hoped-for result is smaller. In many cases a Company wishes 
to have a high probability of success in a particular analysis (say, at the end of the trial). And to 
achieve this in the presence of multiple analyses, the Company will have no choice but to increase 
the sample size.
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Additional reasons for looking at data as you go along include:

n	 Determining the ultimate trial sample size needed.
n	 Determining the most appropriate inclusion/exclusion criteria for the trial 

(e.g., when you find that some subjects’ characteristics are associated with 
efficacy and others are not).

Since sample size and inclusion/exclusion should, as a general rule, be deter-
mined before the trial begins, you can imagine that these options are not 
often applied and are nontrivial statistically. I discuss some of the methods for 
addressing these issues in the following.

Adjusting Sample Size by Counting Events

All powered trials—trials designed to obtain statistical significance—are based 
on assumptions. Some of these are not directly related to Treatment-Control 
differences (effect size) and so may be assessed during the trial with little or no 
statistical repercussions. For example, suppose you are testing the accuracy of a 
noninvasive device for detecting Stenosis in cardiac valves. In planning the trial, 
the statistician determined that at least 80 subjects with Stenosis (as measured 
by some Reference Standard) are needed to adequately test device sensitivity. 
In other words, 80 positive subjects are required to have sufficient power to 
demonstrate acceptable sensitivity. When you planned the study, you assumed 
that at least 1 in 10 of the subjects of the intended use population had Stenosis. 
Using this assumption, you planned for 800 subjects, anticipating that this will 
yield the 80 positives required. If you were right, all is well. But if you overes-
timated the incidence of Stenosis in the relevant population, you will end up 
with too few positive subjects. Consequently, your trial will not be sufficiently 
powered, and your chance of demonstrating adequate sensitivity will be smaller 
than planned. To ensure that by trial's end you have enough subjects for the 
required power, you may wish to count the number of positive subjects (by 
Reference Standard) as you go along. This can be done without actually testing 
whether or not you have diagnosed them correctly with your device. As such, 
this counting has little or no potential for biasing the study results.

Counting events is, for example, also done in trials meant to demonstrate 
that Treatment increases survival. To demonstrate efficacy on survival, at 
least some subjects must, alas, die during the trial; if no subjects die in either 
Treatment or Control, you have no power to show superiority of the former. 
In this sort of trial you will have calculated the minimum number of deaths 
needed to sufficiently power your trial to demonstrate efficacy. You will then 
count the number deaths as you go along in both Treatment and Control 
during the trial. Here, too, you will not test efficacy—that is, you will not 
compare the number of events between Treatment and Control. Rather, you 
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will count the event of interest over all subjects. You will then end the trial 
only after having achieved the requisite number of events of interest (in this 
case, death). This will not guarantee that you will demonstrate T > R, but it 
will guarantee that your power to do so, assuming an effective treatment, is 
acceptable.

Adaptive Trials

As noted, sample sizes of powered trials are based on assumptions, the most cen-
tral of which relate to effect size—the degree to which Treatment differs from a 
comparator. In most cases one can come up with reasonable estimates of effect 
size from various sources (previous studies, literature, reasonable guesses, etc.). 
But in some cases trial planners are pretty much in the dark; while they have 
some idea of effect size, they are not very confident about it. This circumstance 
might, for example, arise when a novel medication for a hitherto untreated dis-
ease is being tested in humans for the first time. In this case you will want to 
obtain a reasonable estimate of effect size based on interim results.

In the circumstances described it would be especially useful to look at the data 
as you go along and, based on results obtained, determine the final sample 
size for the trial. But while it is useful, it can also lead to inflated Type I Error 
rates. There are several options to deal with such situations, none of which is 
straightforward statistically or logistically. These include adaptive designs and 
Bayesian designs.

In classic adaptive design, interim results are assessed at planned time points. 
Observed results are then compared to those assumed before the trial began. Then, 
based on the disparity, decisions are made on the trial's future. In this scenario, ini-
tial assumptions relating to T-R differences remain, as does the trial's design, includ-
ing upper bound of sample size. “Adaptation” typically relates to the ability to stop 
or continue the trial along the way one or more times based on the observed-
assumed comparison noted. Bayesian designs are more flexible in that they enable 
updating initial trial assumptions using results observed at the interim. Here too 
data are evaluated at planned time points. But once assumptions are updated with 
accumulated data, they can be used for “redesigning“ the remainder of the trial. In 
many instances such designs are not realistic options for logistical reasons. But to 
know whether this is the case, you will need to consult with the statistician and oth-
ers on your staff. Statistical Principles in Clinical Trials states the following:15

An interim analysis is any analysis intended to compare treatment arms 
with respect to efficacy or safety at any time prior to formal completion 
of a trial. Because the number, methods and consequences of these 

15  International Conference on Harmonization (ICH). (1998).
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comparisons affect the interpretation of the trial, all interim analyses 
should be carefully planned in advance and described in the protocol. 
Special circumstances may dictate the need for an interim analysis 
that was not defined at the start of a trial. In these cases, a protocol 
amendment describing the interim analysis should be completed prior 
to unblinded access to treatment comparison data.

In conclusion, looking at data along the way is certainly permitted. But because 
it has nontrivial implications, it must also be planned correctly. Ideally, the pro-
cess and the decision-making options implied will be specified in the trial's pro-
tocol. Where an unanticipated need for interim analysis arises during the trial, 
the protocol can be amended accordingly. Specifically, you will need to justify 
why you wish to conduct these analyses and how you will ensure that they will 
neither bias the trial nor inflate Type I Error beyond the level allowed.

Summary
Developing a solid trial design depends on numerous factors. Your first step 
must always be precise delineation of study aims and the audience for which 
results are intended. Once done, you can proceed with designing the trial cor-
rectly with or without interim analyses.

Virtually all designs involve compromises, and there is rarely such a thing as 
a perfect trial. Your challenge in designing a clinical study is to come up with 
an optimal configuration given the goals, circumstances, and constraints.

To maximize the likelihood that trial conclusions will be correct, you should, where 
possible, incorporate various elements into it. These include random assignment, 
blinding, specification of a Control group, avoidance of interim analyses, and, in gen-
eral, avoidance of multiple testing. But in real life not all of these may be possible.
Virtually every trial configuration is unique and must be approached as such.

Thus, I cannot emphasize enough that solid study design depends on using 
your head; formal principles will get you only so far, since exceptions are as 
common as rules.

Clearly, you can do no better than your best when designing a trial under real-world 
constraints. Sadly, however, there are situations where your best is simply not good 
enough. It is thus critical to emphasize that you should not undertake a trial that does 
not have a reasonable likelihood of providing the information required correctly. If your 
best cannot do this, then do not do the trial; a bad trial is worse than no trial at all.

However designed, clinical studies aim to produce information that will guide 
the future of your product. And this information is encapsulated in the trial's 
endpoints, which is the topic of the following chapter.
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Introduction: A Humanitarian  
and His Machine

Reminiscing in his later years, Willem Kolff recalled having been an average stu-
dent. And though not lacking in human friendship, some of the best days of his 
youth were spent with animals. There had been rabbits and guinea pigs, pheas-
ants, pigeons, and even sheep. There was a time, he said, when he dreamed of 
managing a zoo but his father had pointed out that there were only three zoos 
in The Netherlands. (Fathers, I suppose, will do that.) And so the young boy's 
dream became the sort of passing phase we might today smile benevolently 
upon. But there may have been a time—long in the past, no doubt—when we 
might have shed a tear or two over some unrequited youthful dream.

After completing gymnasium in his hometown of Leiden, Kolff followed in his 
father's footsteps and attended medical school at the university there. He com-
pleted his studies in 1938 and went on to postgraduate studies at the University 
of Groningen where Polak Daniels, who was to become his mentor, was head 
of the medical department. Kollf recalls:1

Professor Daniels had one quality which I think is very important. There 
are some professors who want their students to do exactly what the 
professor is interested in. This man was different. He set us free, and 
when I wanted to pursue a certain thing, he would study it and help. 
All my life I've tried to follow that example and, where possible, allow 
my students to follow their interest.

In May 1940 the Germans invaded The Netherlands. The Daniels family, who 
were Jewish, committed suicide. Rather than cooperate with Nazi sympathizers 
put in charge at Groningen, Kolff moved to a small hospital in Kampen on the 
Zuider Zee (now called the Ijsselmeer).2

The ancient town of Kampan in southwest Netherlands can trace its history well 
into the Dark Ages. Built by a river, the town had been a major trading center 
for hundreds of years, but by the time of Kolff's arrival, its trading importance 
had been long replaced by Amsterdam. In Kampen the young doctor joined 
the local Resistance, where he saved hundreds of lives “simulating diseases” 
on individuals in danger of being arrested by the occupying German forces.3 
But his fame would derive from his “other” activity at Kampen: developing an  

1  Academy of Achievement. (2008). Willem Kolff interview. Pioneer of artificial organs. Washington, D.C. 
http://www.achievement.org/autodoc/page/kol0int-1.
2  Blakeslee, S. (2009). Willem Kolff, doctor who invented kidney and heart machines, dies at 97. New 
York Times. http://www.nytimes.com/2009/02/13/health/13kolff.html.
3  Academy of Achievement. (2008). Willem Kolff interview. Pioneer of artificial organs. Washington, D.C. 
http://www.achievement.org/autodoc/page/kol0int-1.
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artificial kidney. “The exciting thing,” he would say of the machine he devel-
oped, “is to see someone who is doomed to die, live and be happy.”4 He might 
have been referring to both of his wartime activities.

Kolff constructed the first dialysis machine with what odds and ends he could 
scrounge in his wartorn country. These included laundry tubs, sausage casings, 
and an automobile water pump. He treated his first patient with the machine 
in 1943, but it was only two years and 16 patients later that he experienced his 
first success. The year was 1945, and The Netherlands had just been liberated. 
The woman treated was in jail for being a Nazi sympathizer, where she fell into 
a coma from failed kidneys. The first thing she said upon waking up was that 
she would divorce her nonsympathizing husband. She went on to live seven 
more years to age 74.

In the United States alone there are today about 200,000 people on dialysis 
treatment—individuals who owe their lives to “direct descendants” of Kolff's 
ramshackle machine. Since his first triumph on September 11, 1945, more 
than 20 million lives have been saved by the procedure.

Five years after the war Dr. Willem Kolff moved to Cleveland, Ohio. His first 
years were devoted to improving his English, retaking his medical exams, and 
becoming a citizen. He would then develop the first completely artificial heart, 
which he transplanted into a dog in 1957. Some 25 years later at the University 
of Utah, the artificial heart he had invented was transplanted into a human 
subject. Kolff received numerous awards for his work and a great deal of inter-
national recognition. He was known, and still is, as the “father of artificial 
organs.” Professor Willem Kollf died in 2009, three days before his ninety-
seventh birthday.

Choices
Humans cannot live with failed kidneys, and dialysis replaces the organ's most 
important functions to the degree possible. For many dialysis patients the 
device is a temporary solution—a stopgap until such time that a donor kidney 
can be found for them.

Kidney transplantation has progressed a great deal since its first, failed instance 
in 1950 and subsequent successes in Paris and Boston in 1954. Yet despite 
great improvements and as with medical interventions in general, the proce-
dure fails occasionally. Estimates of permanent kidney failure during the first 
year postsurgery are as high as 20%, depending on numerous factors. These 

4  From the presentation of the Vladimir K. Zworkin Award for outstanding research contributions in 
the field of medical and biological engineering.
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include the organ's source (live donor or cadaver), surgical complications, stor-
age quality of the explanted kidney, and the recipient's health factors. Thus, in 
some populations, the kidney transplant survival rate is as low as 80% during 
the first year and is even lower when considering longer periods. But despite 
difficulties and occasional setbacks, the procedure's rate of success has steadily 
increased over the past decades. Today, there are large subgroups of patients for 
whom the first-year Kidney Survival Rate is well over 90%.

To this point, I have implied that efficacy of transplantation can be measured by 
the amount of time a transplanted kidney remains functioning after surgery—a 
“Kidney Survival” parameter that seems to make sense for describing the pro-
cedure's outcome. Yet the utility of any parameter in capturing the relevant 
clinical experience of kidney transplantation—or any other procedure, for that 
matter—should be determined by clinicians rather than statisticians. Still, sta-
tistics does have some points to make about developing and selecting variables 
for describing clinical trial results. I shall mention a few of these here.

Before going on, I should note that this chapter deals primarily with measures 
of efficacy—those parameters with which we mean to demonstrate a trial's effi-
cacy objectives. As examples they are the simplest for me, and they are often 
central to statisticians' activities in clinical studies. Yet, I should also empha-
size that: 

1.	 Assessing outcome in clinical trials is critical for aspects other than 
efficacy. As noted in Chapter 3, there can be a variety of attributes 
measured in any particular study, including safety, performance, and 
pharmacokinetics.

2.	 In many cases the distinction between efficacy and safety is somewhat 
blurred. For instance, transplanted kidney failure clearly has implications 
for subject safety as well. To take another example, the safety of an insulin 
delivery system can be measured by the rates of hypo- and hyperglycemia 
episodes associated with it. But these very same rates are also measures of 
the device's efficacy.

3.	 Most issues relating to measures of efficacy are relevant for other 
attributes as well. At the same time, and depending on the circumstances, 
there can be important differences among the statistical treatment 
of measures relating to different attributes. Examples of these will be 
provided later in this chapter.

Getting back to the issue at hand, and as you can imagine, there is more than 
one informative parameter when it comes to evaluating the efficacy of kid-
ney transplantation. For example, even successfully transplanted kidneys will 
differ in level of function; some will simply work better than others. One of 
these functions, for example, is the degree to which the organs are able to clear 
blood plasma of urea. Urea is a waste product of protein metabolism that can 
be measured by the blood urea nitrogen (BUN) test. Another important test of 
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kidney function is creatinine clearance (CCr), which calculates the amount of 
blood cleared of creatinine per unit of time. Creatinine is waste excreted into 
the blood by muscle activity.

Now choosing efficacy parameters for assessing Treatment outcome is useful 
in general and is particularly important in clinical trials. Recall that the typi-
cal clinical study compares between Treatments and so must have measures 
for it. We call these measures endpoints, which are usually quantitative values 
describing the outcome. The National Cancer Institute (NCI) defines an end-
point as follows:

An event or outcome that can be measured objectively to determine 
whether the intervention being studied is beneficial. The endpoints 
of a clinical trial are usually included in the study objectives. Some 
examples of endpoints are survival, improvements in quality of life, 
relief of symptoms, and disappearance of the tumor.5

5  National Cancer Institute (NCI). Dictionary of cancer terms. http://www.cancer.gov/dictionary/.

The National Cancer Institute writes that we should select 
endpoints “that can be measured objectively.” I should, how-
ever, point out that the Institute's statement refers to the 
method of measurement rather than to its content. Allow 
me to explain with an example: Unlike X-rays, ELISA kits, 
and tape measures, Quality of Life (QoL) questionnaires are 
self-report measures and, thus, subjective. Yet this is how it 
should be, since when evaluating QoL we wish to know how 
subjects feel; when evaluating these endpoints, we are actu-
ally seeking the subjective view.

Thus when NCI instructs us to measure endpoints objec-
tively, it does not mean to rule out the use of subjective mea-
sures. Indeed, two of the measures it notes—“improvement 
in quality of life” and “relief of symptoms”—are usually self-
reported and subjective in nature. Rather, NCI is suggesting 
that whichever endpoints we choose to evaluate—be they 
objective or subjective—we do so objectively; that is, we 
should measure them as accurately and without bias as pos-
sible. But really, this should not be a new idea for you. As 
described in Chapter  12, we measure accurately by elimi-
nating elements in our design that may contribute to error. 
Recall that in statistics we classify error into two types: ran-
dom error and bias, the latter generally having greater poten-
tial for undermining a clinical investigation than the former.

In the preceding chapter I also pointed out that blinding 
patients and physicians will go a long way toward eliminat-
ing bias. Thus if a patient does not know which Treatment 
she receives, her answers to a QoL questionnaire cannot be 
affected (biased) by this knowledge; she will answer without 
knowing what she is “supposed” to say. (And actually, what 
she is supposed to say is the truth as she sees it and noth-
ing else.)

You should also keep in mind that blinding is only one of 
several methods designed for eliminating potential bias 
in the assessment process. Another common source of 
bias can be the measurement tool itself. Thus, an inven-
tory including “leading questions” is likely to bias study 
results as well (e.g., “On a scale of 1 to 10, with 10 being 
most favorable, how well do you feel now that you've 
been treated by our world-renowned experts?”). Similarly, 
a tape measure that has inches marked a bit longer than 
they should be will regularly provide lengths that are lon-
ger than they ought to be. Clearly, the topic of measure-
ment inaccuracy (random error and bias) is crucial when 
considering endpoint assessment. I have discussed this 
issue in preceding chapters and will dig no deeper here. 
Besides, I have already written about it in another book6 
and am not the only one to have done so.

Recalling Study Design

Continued
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NCI's definition of endpoints naturally focuses on those relevant to oncology 
trials—measures, for example, relating to the disappearance of a malignant 
tumor. But the principle of “measuring to evaluate outcome”—the idea that we 
must record endpoints if we are to assess Treatment—is the same for trials in all 
indications.

Using two of the parameters enumerated by NCI and adding the others already 
noted, I now have five endpoints for assessing transplantation success:

n	 Survival Time of transplanted kidney
n	 Survival Time of patient
n	 Kidney Function measured by BUN
n	 Kidney Function measured by CCr
n	 Patient Quality of Life

It may well be that these endpoints are sufficient for capturing the clinically 
relevant experience of kidney transplantation. Indeed, they may be more than 
enough. Nevertheless, allow me to introduce yet another endpoint into the mix. 
And for this particular measure I shall need to present some background first.

When transplanting a kidney—or most other biological organs for that 
matter—the patient's immune system will recognize the implant as foreign 
and attack it. The system's assault may be sufficiently effective to cause irrep-
arable damage to the transplanted body part, causing permanent failure. To 
minimize this reaction, transplanted patients are usually given medications of 
which the function is to suppress those parts of the immune system that might 
damage the newly introduced organ. While these compounds are usually effec-
tive in the middle and long term, they often cannot prevent episodes of acute 
rejection early on. A single acute rejection episode in kidney transplantation 
will not usually lead to permanent failure. But it will not help. And multiple 

I should also add that the issue of “subjectivity in mea-
surement” resulting from nonblinding (i.e., bias) arises 
when assessing apparently objective measures as well. 
For example, while X-ray machines are neither for nor 
against any particular result—and in this sense are 
objective—the individuals operating them and interpret-
ing their outcomes may not be. Consequently, objective 
endpoints are equally prone to “subjectivity,” which can 
be circumvented by rigorous study design that includes 
blinding and other safeguards. These may include, for 
instance, applying procedures to correctly calibrate mea-

surement instruments and designing trials in a way that 
reduces subject dropout.

So, once again, we encounter the reality that in clinical tri-
als “everything is connected to everything else.” In this par-
ticular instance we must consider a study's design while we 
specify endpoints to evaluate its outcome.

Recalling Study Design–Cont'd

6 Tal, J. (2000). Reading between the Numbers: Statistical Thinking in 
Everyday Life. New York: McGraw-Hill.
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acute rejections, which are most common soon after surgery but can happen at 
other times as well, increase the likelihood for permanent failure.

Perico and colleagues7 write, “Delayed graft function [DGF] is a form of acute 
renal failure resulting in … risk of acute rejection episodes and decreased long-
term survival [of the transplanted kidney].” They add, “Several new drugs show 
promise in animal studies in preventing or ameliorating … delayed graft func-
tion, but definitive clinical trials are lacking.” Thus DGF is yet another end-
point for assessing transplantation success. It is, however, problematic because 
its definition can vary across medical centers, patients, and physicians. As a 
result, DGF may not be a precise enough  measure for determining outcome 
in clinical trials. For the moment—but for the moment only—I shall put aside 
this issue and define DGF as the need for dialysis treatment following kidney 
transplantation. Adding this parameter to those already enumerated, we now 
have a total of six endpoints for evaluating transplantation outcome. How, 
then, do we choose among them?

7  Perico, N., Cattaneo, D., Sayegh, M. H., & Remuzzi, G. (2004). Delayed graft function in kidney transplantation. Lancet, 364(9447), 
1814–1827.

Efficacy endpoints in clinical trials are designed to evalu-
ate Treatment outcome.8 As such, they describe different 
Treatments' successes and are used to compare among them. 
It is thus imperative that they be measured uniformly across 
centers, investigators, patients, and so on. If a parameter is 
evaluated differently under varying circumstances, any group 
differences on it may be due to factors other than Treatment;  
and  absence of group differences may be due to inconsistent 
measurement rather than to lack of efficacy. Thus, it stands to 
reason that an endpoint measured inconsistently should not 
be used for describing outcome of medical interventions in a 
clinical study. And while the principle is obvious enough, it is 
sometimes difficult to apply in practice.

Let us take the example of DGF, which we defined as the need 
for dialysis after kidney transplantation. It turns out that the 
word “need” is open to interpretation, with some physicians 
quicker to the “dialysis trigger” than others. Thus, a conser-
vative physician may order dialysis based on early signs of a 
kidney's weakening function, while one less conservative may 
give the transplanted kidney more time to recover before mak-
ing a final decision on dialysis. Now some of these differences 
in clinical practice among physicians are due to personality 

or erroneous reading of guidelines and so can be made uni-
form with suitable action. For example, you might convene a 
meeting of all participating investigators in the trial to reach 
consensus on the circumstances in which posttransplanta-
tion dialysis is “needed.” If you obtain consensus, DGF will 
be defined and measured uniformly throughout the study. As 
such, it will also be a suitable endpoint for your trial.

Now all this is well and good when disagreements among 
physicians can be bridged. But this is not always the case, 
since such differences are often attributable to dissimilari-
ties in clinical experience and/or deeply held opinions. And 
when this is the case, it is unrealistic to expect all physicians 
to agree to the same criteria for any particular intervention. 
In DGF there can be several solutions to the problem, includ-
ing the following: 

n	 Seek consensus as described.
n	 Allow to participate in the trial only those physicians 

who are willing to accept endpoint definitions as 
written in the protocol.

Uniformity in Measuring Endpoints

8  This, of course, is also the case for safety endpoints, performance 
endpoints, and those measuring other aspects of Treatment outcome.

Continued                                                                                                                    
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Multiple Testing Revisited
Your Company has developed NG-12 for countering organ rejection in kidney 
transplantation. Having read the preceding section, you know there are at least 
six alternatives for describing your results and thus six endpoints for compar-
ing T (NG-12) to some standard of care R. Which do you choose?

Now this might seem like an odd question. Why, in fact, pick among endpoints 
when you can choose all of them? Well, this may not be a bad idea. But it is 
probably not a good one either. First, you cannot usually expect an experimental 
method to be superior to standard of care on every single parameter measured. 
Thus, staking your study's success on demonstrating T > R on all endpoints mea-
sured seems much too risky. Second, even if T is truly superior to R on every con-
ceivable efficacy measure in the population, there is always the chance of failing 
by chance on one or two of them in a given trial (i.e., a sample). So even if you 
have an outstanding molecule, conducting multiple tests with the expectation of 
success on all of them is risky and should be avoided. Be that as it may, NG-12's 
future will depend a great deal on the endpoints you choose to test it with. So 
you had better think them out carefully before making a final decision.

I wrote in Chapter 12 that conducting numerous statistical tests increases the 
likelihood of succeeding by chance—of obtaining favorable results when you 
do not really “deserve” them. Not surprisingly, you can also fail by chance. 
The more statistical tests you perform—the more endpoints you compare—the 
greater the probability for erroneous results in either direction. In statistics the 
issue is known as multiplicity or multiple testing (see Chapter 10).

In the preceding chapter I noted that every time you conduct a statistical test 
you have some chance of getting erroneously lucky—of rejecting the Null when 

n	 Discard the endpoint altogether and, as a possible 
alternative, define transplanted kidney failure using 
laboratory tests assessing kidney function (e.g., BUN 
and/or CCr).

n	 Record the endpoint despite lack of uniformity and 
relegate it to a minor role in statistical testing and 
consequent conclusions. When doing so, you essentially 
state that the parameter in question:
n	 Is sufficiently interesting to assess, and
n	 Cannot be measured accurately enough for reaching 

definitive conclusions with it.

When designing a clinical trial, you can choose any of the 
preceding, but choose you must.

Considering the specific case of DGF, I described the dif-
ficulty and presented several solutions for it. Similar solu-
tions apply in other indications. Yet, there is no universal 
answer for nonuniformity in measuring endpoints because 
there is none for dealing with measurement error in general. 
Indications differ, as do physicians, endpoints, and clinical 
trials. So at the end of the day you will need to tailor your 
approach to the study at hand, its logistics, endpoints, and 
personnel.

Be that as it may, measuring endpoints precisely—with 
minimal error and bias—is critical in clinical trials. So criti-
cal, in fact, that if you cannot do it properly, your trial will 
likely fail to meet its objectives.

Uniformity in Measuring Endpoints–Cont'd
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you should not—that is, of concluding the drug is effective when it is not. We 
call this Type I Error. The flip side is not rejecting H0 when you should—of not 
saying T > R when this statement is actually correct. This is termed Type II Error 
and will be dealt with at length in Chapter 14 in the context of sample size 
determination. For the moment it is enough to know that the more tests you 
conduct, the greater your chance for erring.

One solution for this particular problem is to simply measure fewer endpoints, 
which will naturally yield fewer statistical tests. This is definitely legitimate 
but should only be used if the endpoints excluded are expendable—when the 
information they provide is relatively unimportant. But this is not the case 
here, where eliminating one or more of the six to reduce the number of statisti-
cal tests would be a sort of scientific “Don't ask, don't tell.” To one less subtle 
this might be construed as scientific dishonesty.

It seems, then, that you are now between a commercial rock and a scientific 
hard place:

n	 Commercially you want your trial to succeed, and one way of doing this 
is by limiting the number of statistical tests for showing success, which in 
turn suggests reducing the number of endpoints measured.

n	 Scientifically you would like to measure all trial endpoints that can 
contribute to your understanding of differences between T and R.

This is a common quandary in clinical trials.

Virtually every study requires that you choose between what will and will not 
be measured. One generally cannot measure all endpoints always, since the 
number of potentially informative endpoints is typically prohibitive. Thus in 
most clinical trials there is no question of not leaving endpoints out. The more 
relevant issue is which to include. I will address this and several other pertinent 
topics in the following sections.

Selecting Endpoints to Include in Your 
Trial: Part I
When fearing failure due to multiplicity, selecting few endpoints for your trial 
may solve the problem. But this is an ill-advised strategy if it leads to exclud-
ing useful information. There is in fact an alternative that is practical and com-
monly used. I shall soon discuss it. But for the moment I would like to remain 
with this “paring down of endpoints,” which I believe goes to the heart of what 
it means to perform good clinical research.

In this book I have generally approached clinical trials as a commercial enter-
prise. They often are, but sometimes they are not. Yet be they commercial or 
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academic, they are scientific endeavors as well. And whatever your motive for a 
clinical study, you should be doing good science rather than bad.

Now the term good science is sufficiently sweeping that describing it would 
require a book of its own. Indeed many have been written on the topic but this 
is not one of them. In the current context, the concept encompasses a long list 
of elements of which the correct application yields replicable results—that is, 
results that will be repeated when a trial is repeated. One central element of 
good science is clear thinking, itself an elusive idea. This is not a formal term 
in clinical trials, and I do not have a good definition for it either. But well 
defined or not, the concept is vital to much of what we do in clinical trials (and 
elsewhere).

When I encounter a long list of endpoints in a study's protocol, a warning light 
will come on. Experience has taught me that researchers will often attempt to 
disguise an ill-conceived study with a plethora of endpoints; they try to cover 
up a study's weaknesses by measuring and then measuring some more. It as if 
the researcher is saying, “I'm not quite sure what I want to show or even what 
I can show, so I'll measure everything under the sun and something good will 
surely turn up.” I have already noted that this can introduce statistical compli-
cations. But this is not the half of it.

Clinical trials must be well thought out. They should be done well or not at all. 
Merely conducting a study with good intentions and great hopes is unlikely to 
yield meaningful results. The most prominent statistician of the previous century, 
Sir Ronald Fisher, wrote, “To call in the statistician after the experiment is done 
may be no more than asking him to perform a postmortem examination: he may 
be able to say what the experiment died of.”9 So if you want your trial to achieve 
its goals you must design it right, which includes selecting its endpoints well.

Now there are certainly instances where you require multiple endpoints to 
properly describe the Treatment in question. Indeed, virtually every clinical 
trial collects information on numerous parameters and this is perfectly accept-
able. On the other hand, researchers will often specify many endpoints because 
they have not done their homework—have shirked the intellectual effort of 
thinking clearly. And this is a recipe for failure.

In NCI's definition, endpoints are selected to demonstrate that “the interven-
tion being studied is beneficial.” In other words, endpoints must be closely tied 
to a Treatment's benefit; they are, as explained in Chapter 4, a direct translation 
of study objectives into measurable parameters. Now in early stages of trial 
planning it is often the case that neither objectives nor endpoints are clearly 
defined. This is fine. Yet if you are to do good science, a clearer picture must 

9  Quoted in Nature Drug Discovery. http://www.nature.com/drugdisc/news/articles/424610a.html.
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eventually emerge. And choosing endpoints for your trial is part and parcel of 
this clarification process. In other words, the process of endpoint selection can also 
be that of clarifying your thinking about the trial at hand.

When study objectives are well defined, endpoints will pretty much “select 
themselves.” But when they are not, you can apply the process in reverse. Thus 
if you have some difficulty defining study objectives precisely, make a list of 
all those parameters you believe are potentially useful. Once done, review the 
list and evaluate the degree to which each endpoint is useful in describing your 
product's performance. You will then select those that best serve your purpose, 
which in turn will assist you to better define the trial's objectives.

In the following section I use our running example and some others to show this. I 
also describe the more standard alternative for dealing with multiple endpoints.

Selecting Endpoints to Include in Your 
Trial: Part II
Select multiple endpoints and require success on all of them, and you have 
built a self-destruct mechanism into your trial. In the preceding section  
I noted one solution for this, which is specifying fewer endpoints. When appro-
priate, there is a good deal to be said for this route, including the following:

n	 Forcing you to think clearly about the study at hand.
n	 Reducing your chances of obtaining results by chance alone.
n	 Reducing the burden of data collection on both subjects and investigators.
n	 Decreasing costs.

Yet paring down the number of endpoints to a bare minimum is not always an 
option. Often, a relatively large number of variables must be measured to thor-
oughly comprehend the effect of Treatment, and there is no way around it.

I will now return to NG-12, where all six efficacy endpoints were deemed use-
ful and should be retained. Here, as in most studies, the best way to deal with 
difficulties arising from multiplicity is prioritizing the endpoints by impor-
tance. Allow me to explain: Even when all measures considered are informa-
tive, some are typically more so than others. Indeed, in most trials you will be 
able to identify a single endpoint that best reflects your study's efficacy objec-
tive.10 This is called the study's primary endpoint. Once identified, your first 
priority becomes demonstrating success on this parameter. It is the measure on 
which you stake your trial's success: Show that T is superior to R on the primary 

10  A reminder: Primary endpoints can, of course, refer to objectives other than efficacy. Keep in mind 
that for the sake of simplicity I focus here on efficacy and will add a few words about other endpoint 
types later in this chapter.
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endpoint, and you win. Otherwise, you lose. And this is independent of results 
on other, secondary endpoints.

By specifying a primary efficacy endpoint, you will have addressed all the 
salient issues discussed: 

1.	 Eliminated multiplicity, since you are staking success on a single statistical 
test only.

2.	 Retained all scientifically meaningful measures and relegated all but one 
to “less than primary” status.

3.	 Increased your chance for success.
4.	 Identified which measure is most intimately associated with your efficacy 

objective and in the process defined your trial's objective precisely.

Thus, in the majority of clinical studies assessing efficacy, you should choose 
a single endpoint (in some cases two, but rarely more) for demonstrating the 
trial's main efficacy objective. This single measure will be your trial's prin-
cipal parameter for determining “whether the intervention being studied is 
beneficial.”

The ICH guidelines state the following:11

The primary variable (“target” variable, primary endpoint) should 
be the variable capable of providing the most clinically relevant and 
convincing evidence directly related to the primary objective of the 
trial.

Secondary variables are either supportive measurements related to the 
primary objective or measurements of effects related to the secondary 
objectives.… The number of secondary variables should be limited and 
should be related to the limited number of questions to be answered in 
the trial.

As you can see, the solution for multiplicity can be straightforward: Select as 
many endpoints for study as you feel necessary, but make sure to specify which 
is primary and which is not. At the same time this does not absolve you of 
thinking carefully about your choice of endpoints in general—both primary 
and others. As the guidelines point out:

a.	 The primary variable should provide “the most convincing evidence 
directly related to the primary objective.”

b.	 “The number of secondary endpoints should be limited.”

11  International Conference on Harmonization (ICH). (1998). Note for Guidance on Statistical Principles 
for Clinical Trials.
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Let us now apply our newly gained knowledge to assessing NG-12 for kidney 
transplantation. Recall that I enumerated six measures for this trial. These can 
be grouped conceptually as follows:

1.	 Kidney function (DGF, CCr, BUN)
2.	 Survival (subject and kidney)
3.	 Subjective feeling (QoL)

Since all relate to efficacy of kidney transplantation, they are correlated con-
ceptually and probably statistically as well. In this sense it is somewhat artifi-
cial to group them separately. Yet this categorization serves my purpose, and I 
shall keep to it for the moment.

Of the categories enumerated, the second seems most informative clinically. 
After all, surgeons transplant kidneys to function properly and, perhaps, to 
increase life expectancy as well. Thus, if “importance in general” were the cri-
terion for choosing endpoints, you would likely choose Kidney or Overall 
Survival. But this is not necessarily the case since, as the guidelines point out, 
your primary endpoint should be that which best addresses your study's objec-
tives. Now recall that the aim of NG-12 is to reduce harmful immune reactions 
to the transplanted organ. Using the reasoning presented, it would seem that 
your primary endpoint should relate directly to immune response rather than, 
say, to Kidney Survival. Perico and colleagues write, “Delayed graft function 
[DGF] is a form of acute renal failure resulting in … risk of acute rejection epi-
sodes and decreased long-term survival [of the transplanted kidney].” In other 
words, acute rejection (which NG-12 aims to avoid) leads to both DGF and 
shortened Kidney Survival.

Following Perico and colleagues and the logic presented for selecting primary 
endpoints, we seem to have narrowed down our choice to two endpoints: DGF 
and Kidney Survival. And of these, DGF is most directly related to immune 
response. Perhaps, then, we have our primary endpoint? Well, maybe.

Precedent

I have been discussing the intricacies of an issue that can 
nonetheless be straightforward. As I shall point out in the 
next section, there are instances where a study's primary 
efficacy objective is sufficiently clear and simple that the pri-
mary endpoint all but selects itself. Then there are also those 
occasions where your life is made easier by precedent.

As you might expect, in most instances you will not have 
been the first to investigate a particular clinical phenomenon. 

And when this happens and past designs and objectives are 
sufficiently similar to yours, the path for selecting a primary 
endpoint may be clear. Then, depending on your opinion of 
the quality and appropriateness of earlier research, you may 
decide to conform to it or come up with your own endpoint 
even so. Often, however, the choice will depend on factors 
beyond your control like company preference and regula-
tory policy. As much as one wishes to do as good science as 

Continued
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Selecting Endpoints to Include in Your 
Trial: Part III
If a drug is meant to reduce fever, then Temperature should likely be the pri-
mary endpoint in a trial assessing efficacy with it. And if a diagnostic test aims 
to detect some disease, then Accuracy (quantified by Sensitivity, Specificity, 
and the like) is your natural choice. At times determining primary endpoints 
can, in fact, be fairly straightforward.

Suppose, however, that you wish to evaluate the efficacy of a cardiac stent, 
a kind of mesh tube inserted into clogged arteries for widening and keeping 
them open. A reasonable measure of success is Change in Stenosis—of abnor-
mal narrowing in the blood vessel—before and after the procedure. You might 
also assess Change in Blood Flow through the artery. But while both these 
parameters relate to the stent's local physiological effects, neither describes 
the general clinical benefit to the patient. This might be better characterized 
by parameters such as future occurrence of Myocardial Infarction (MI) and 
Survival, which are further in both time and concept from Change in Stenosis 
and Blood Flow.

Recall that NG-12 is designed to reduce damaging immune reactions in kid-
ney transplantation. As such, its most direct measure of efficacy is the Immune 
Reaction itself. The DGF endpoint, while associated with such reactions, is not 
a direct measure of them. Further down the timeline, we have Kidney Survival, 
which is likely most meaningful to both patients and nephrologists.

Each of the preceding endpoints for NG-12—Immune Reaction, DGF, and 
Kidney Survival—is a link in a chain for describing NG-12 efficacy. If you wish 
you can add even more links to gain a deeper understanding of the phenom-
ena in question. This is perfectly legitimate. But of these, which should be your 
primary endpoint? When you have “more direct” and “more clinically mean-
ingful,” which one should you choose?

I do not have a definitive answer for you. First, I am a statistician and can 
only advise on endpoint selection, since it is for the investigator to make the 
final determination on this. I am not shirking responsibility here but merely 

possible, one must also consider the circumstances. In short, 
pick your fights wisely.

Be your preferences what they may, it would be foolish to 
select a primary endpoint—or design a study, for that matter—
without having first obtained as much relevant information as 

you can reasonably get your hands on. This can be done by 
reviewing journal articles, looking up previous regulatory sub-
missions, and consulting with experts in the field. Once done, 
you may find that selecting a primary endpoint is simpler than 
initially thought.

Precedent–Cont'd
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conceding a meager understanding of biological/clinical processes, which are 
required for specifying endpoints in a particular indication. As an aside, even 
investigators who possess both the knowledge and experience sometimes find 
it difficult to prioritize endpoints on a scale of “primaryness.” Yet, this does not 
absolve me from presenting the principles involved, which I shall proceed to do.

As trivial as it may seem, you should keep in mind that medical interventions are 
designed to provide clinical benefits for patients. It makes little sense to widen arter-
ies when this does not ease Climbing Stairs, increase Survival, and/or provide 
other tangible results for patients. Similarly, a cancer drug that reduces Tumor 
Size but does nothing for Survival or QoL is unhelpful. Indeed, the NCI sug-
gests this when writing that endpoints must be capable of demonstrating that 
“the intervention being studied is beneficial.” We can safely assume that “ben-
eficial” refers to the patient as a whole rather than to some local physiological 
outcome unrelated to patient health and well-being. The ICH states this as well 
when writing that a primary endpoint “should be the variable capable of pro-
viding the most clinically relevant [emphasis added] and convincing evidence 
directly related to the primary objective of the trial.” Here you can generally 
substitute “clinically relevant” with “beneficial to patient.”

As a general rule, not without its exceptions, our most important endpoints 
should measure the effect our medical product has on patients' lives. While 
direct physiological measures, like blood pressure and Stenosis, are informa-
tive, they are often less useful than information on how a patient feels.

Now all this would be simple when considering endpoints that are “direct 
but clinically meaningless.” But there are very few such animals. In most 
instances direct measures of an intervention are correlated to some degree 
or another with clinical outcomes. Thus, for example, you can expect at least 
some relationship between Change in Stenosis and QoL. Similarly, Change in 
Number of Bacteria in the blood before and after antibiotic treatment is highly 

I said before that you can generally substitute “clinically rel-
evant” with “beneficial to patient,” and this is true. At the 
same time, “generally” is not “always,” and the relationship 
between clinical and patient benefit is sometimes complex. 
For example, a relatively toxic drug for some terminal disease 
might increase Survival while substantially reducing the qual-
ity of the patient's remaining days. Should you be developing 
this sort of drug at all? And once developed, should you ask 

the patient to decide whether she wants to take it? Perhaps 
it is the patient's physician and/or family who should decide. 
These have been important questions for many years now, 
and I suspect they will become even more important as life 
spans increase and medical technology advances. But with 
your permission I shall leave this for medical ethics books and 
will remain with the (generally true) statement that clinical 
and patient benefit are positively correlated.

Clinical Utility and the Benefit to the Patient
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correlated with Fever and other clinical parameters of bacterial infections. And 
since both Stenosis and Bacteria are predictive of clinical phenomena, they 
provide clinically meaningful information as well. To take an extreme example, 
if a nonclinical endpoint X perfectly predicts a clinical endpoint Y, the two are 
equally informative. When this is the case, either X or Y can be selected, with 
the choice determined by cost and convenience. This, then, is another impor-
tant issue underlying our discussion of endpoint selection: Direct (and less 
than perfectly clinically meaningful) measures are typically easier and cheaper 
to obtain than clinical ones. Thus, you will usually prefer the former for cost 
and the latter for information. And here, as in many other instances in clinical 
trials, you will need to optimize your choices in a manner that is acceptable to 
your target audience, be they scientists, regulators, and/or others.

To this point I have used the words “direct” and “indirect.” Getting nearer the 
language of clinical trials, the National Institutes of Health defines a surrogate 
endpoint as follows:

A biomarker intended to substitute for a clinical endpoint. A surrogate 
endpoint is expected to predict clinical benefit (or harm, or lack of 
benefit or harm).12

To some degree or another, I have in fact been dealing in this section with the 
“surrogateness” of endpoints—the degree to which nonclinical endpoints can 
be used as substitutes for clinically informative ones. And I have presented the 
principle, not without its exceptions, that primary efficacy endpoints should be 
clinically meaningful. But I have also pointed out that it is often cheaper and 
more convenient to obtain surrogate endpoints. The choice is yours and should 
ultimately depend on your study's context. In early R&D you often seek little 
more than “hints of efficacy,” in which case surrogates might do. Conversely, 
in later stages of development you will require more definitive proof of clinical 
benefit. And if your study is pivotal, a clinically meaningful primary endpoint 
will almost always be required.

Validity, Reliability, and Bias
Although I have not specifically used the term, much of this chapter has been 
addressing the validity of endpoints—the degree to which they describe mean-
ingful, real-world product attributes. For example, Presence of Stenosis (yes/
no) is a valid endpoint for a diagnostic test designed to detect clogged arteries, 
while DGF provides valid information in kidney transplantation; both of these 
endpoints are said to describe what the products they relate to do. White Blood 

12  Biomarkers Definition Working Group. (2001). Biomarkers and surrogate endpoints: Preferred 
definitions and conceptual framework. Clin Pharma Col Ther, 69, 89–95.
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Cell Count (WBC), on the other hand, is not relevant for assessing efficacy of 
a sleeping pill. Yet, it may still be valid for assessing safety, since such a pill 
should be affecting sleep while causing no change on parameters such as WBC 
(and others). Thus, in general:

n	 Only valid endpoints can definitively demonstrate product attributes such 
as efficacy and safety.

n	 Validity is adjudged in a context, so a measure that is informative in one 
circumstance may not be so in another.

n	 An endpoint cannot be said to be valid in any context until it is 
demonstrated as such. The process of validation is often complex and 
cumbersome. It is also beyond the scope of this book.

n	 Because validation is usually a project unto itself, you should, to the 
degree possible, avoid selecting study measures that must first be 
validated.

Now it makes perfect sense that a study's endpoints should be meaningful for 
it. At the same time you cannot justify an endpoint simply because it seems to 
be meaningful to you. We are doing science here and a variable is valid only 
after having been shown to be so.

Still, investigators are often tempted to use nonvalidated measures for 
demonstrating primary and secondary objectives. A common reason is the 
knowledge-based conviction that there exists no valid endpoint to aptly 
describe the phenomenon investigated. When this is indeed the case, there are 
several approaches for dealing with the problem, including the following: 

n	 Select a validated endpoint that may be less than ideal under the 
circumstances but is “good enough”—one that is sufficiently correlated 
with the phenomenon of interest to provide a reasonable measure of it.

n	 Take the long route by developing a new endpoint and validating 
it. While this will no doubt require both effort and expense, there is 
sometimes no way around this.

n	 Change the trial's design so an existing validated endpoint will be 
adequate for it. While this is a sort of tail-wagging-the-dog solution—
adapting a trial to an endpoint rather than the reverse—producing 
evidence based on validated endpoints is that important.

n	 Develop an endpoint that “makes sense” and use it as is. This is not a 
good solution even if the measure appears well defined and meaningful.

Another reason for considering nonvalidated endpoints is associated with sta-
tistical power—with the ability of your trial to result in (correct) rejection of 
the Null Hypothesis.

Suppose your company has decided to move ahead with NG-12, and the ini-
tial plan is for DGF to be the planned trial's primary endpoint. Unfortunately 
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the resources allotted are limited, and no more than 40 subjects can take part 
in the study—20 per group. Having done your homework, you know that 
the rate of DGF in your population when using standard procedures is about  
25%. Thus you expect that in your trial about 5 placebo subjects will experience 
DGF. Given a very optimistic drug effect, you estimate that there will be only 
2 subjects experiencing DGF in NG-12. In other words, under the best of circum-
stances you anticipate rates of 25% and 8% in T and R, respectively. Now these 
are impressive numbers and if they were to accurately represent the truth in the 
population, you have yourself a powerful drug. Unfortunately your planned trial 
will have a small sample size, and the actual frequencies associated with these 
rates will not suffice for achieving statistical significance. So instead you seek an 
alternative endpoint of which the event rate is likely to be higher.

After much thought and discussion with the investigator, you come up with an 
endpoint termed “Early Transplantation Outcome,” which is scored as follows:

n	 Success = 1: If both of the following occur:
n	 No DGF within 30 days of transplantation and
n	 Recovery of at least 80% of normal Creatinine Clearance function by 

72 hours postsurgery.
n	 Failure = 0: Either of the above not occurring.

You anticipate that scoring primary efficacy using this composite endpoint—
one combining multiple variables—will substantially increase the primary end-
point event rate, giving you a fighting chance for statistical significance despite 
the small sample. But while your composite might make clinical sense—and may 
be validated in the future—it has yet to be used and must be assumed invalid. 
Selecting an endpoint that will provide sufficient event rates for reasonable 
power is a good idea; choosing an unsubstantiated primary endpoint is not.

All of this does not mean that yet-to-be-validated endpoints should be excluded 
from clinical trials. After all, if you do not incorporate such measures into stud-
ies, they cannot be validated. But you should not use them for formal proof of 
product attributes.

A valid endpoint must also be capable of providing accurate results consis-
tently; it should be without bias and have reliability. By definition, a reliable 
measure yields similar results when it should; in other words, it displays little 
variation when measuring the same thing repeatedly. In clinical trials we typi-
cally distinguish two types of reliability: 

1.	 Repeatability is the variation obtained when measuring under very 
similar circumstances—for example, when assessing WBC in two aliquots 
from the same blood sample, using the same instrument and lab 
technician on the same day.
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2.	 Reproducibility is the variation obtained when measuring the same 
thing under less similar circumstances—for example, assessing WBC of 
two aliquots from the same blood sample on different days and/or using 
different lab technicians.

Both repeatability and reproducibility assess variation where there should be 
none. At the same time we must remember that in the real world there is no 
such thing as perfect measurement; all measurement is unreliable to some degree. 
So instead of aspiring to perfectly reliable endpoints, we must set our sights 
more modestly on those that can provide enough consistency. Now “enough” 
is another one of those bothersome words that should be defined more pre-
cisely. To keep things simple, I will just mention here that this implies “enough 
to serve our purposes.” And in clinical trials this usually means giving your trial 
a reasonable chance to achieve its objectives.

At the same time I should point out that reliability does not ensure accuracy; a 
measure can be both consistent and biased at the same time. A simple exam-
ple is a tape measure that yields outcomes that are generally off by a couple of 
inches. If I used this measure repeatedly on the same object, I might get very 
similar results each time. Yet even so my outcomes will be biased by 2 inches 
on average.

When the extent of bias is known, it can be corrected, and the measure can 
be made good. For example, in the preceding case, all I need to do is subtract 
2 inches from any outcome obtained to eliminate bias. Yet in many cases we 
suspect bias but have no adequate method for estimating it. Consequently, one 
should make every effort to apply methods that are likely to be unbiased. In 
the preceding chapter I described two of the more powerful methods for this: 
blinding and randomization.

In sum, for an endpoint to be useful I must ensure that it be measured both 
reliably and without bias. But while this is a prerequisite for validity, it does 
not guarantee it. For example, a consistently precise measure of Height is of lit-
tle use in assessing the efficacy of an antibiotic. In other words, reliability and 
lack of bias are necessary but not sufficient conditions for validity.

Measurement Properties of Endpoints
In statistics we distinguish several kinds of measurement scales by the informa-
tion they provide. The three-value “Gold,” “Silver,” and “Bronze” scale used in 
competition informs on placement or order. With it, I know who came before 
whom but cannot know the actual distance between the top finishers. Not sur-
prisingly, we call this an ordinal scale.
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Ordinal scales abound in clinical research, where one survey of 175 published 
studies found that 70% used them.13 Well-known examples include the New 
York Heart Association (NYHA) classification of Heart Failure (1 to 4),14 gen-
eral Cancer Staging (usually 1 to 4), and the Ritchie Index for scoring joint ten-
derness (0 to 3).15 Since actual arithmetic distance is not meaningful on any 
of these scales, they need not use numbers. For example, the distance between 
cancer stages 1 and 2 is not equivalent to that between stages 2 and 3. At the 
same time these scales provide information on order, so their categories are 
usually labeled with numbers or letters. And as you have seen, colors will 
sometimes do as well.

Stenosis (narrowing of a blood vessel) is often reported in percentage terms. 
Thus, an artery can be said to have 22% narrowing and 45% Stenosis or any 
other number between 0 and 100% (the latter indicating complete blockage—
narrowing to the point blood cannot flow through). Like Temperature and 
Blood Pressure, Stenosis is measured on a ratio scale, which has the following 
characteristics:

1.	 The order of values is meaningful. Thus, 45% Stenosis is higher than 26%, 
which in turn is higher than 10% and so on.

2.	 The distance between values is numerically meaningful. For example, 
the difference between 40% and 60% is numerically equivalent to 
that between 60% and 80%. However, I use the phrase “numerically 
equivalent” advisedly here, since it does not necessarily imply “clinical 
equivalence.” For example, the therapeutic implications for 20% and 
40% Stenosis may be similar; a physician will often treat patients with 
either similarly. This is not the case for 40% and 60%, where the latter 
is much more likely than the former to undergo intervention (e.g., 
placement of stent). Quantitative values do not necessarily have one-to-
one relationships with clinical information, a topic I shall deal with in 
greater detail in the following.

3.	 Ratios of scale values are interpretable. For example, it makes sense to say 
that 80% is twice 40%, as is the case with 20% and 10%. At the same 
time, as in the case of distances, we should remember that identical ratios 
may have different clinical meanings, depending on the numbers they 
were derived from.

13  Forrest, M., & Andersen, B. (1986). Ordinal scales and statistics in medical research. British Medical 
Journal (Clin Res Ed), 292, 537–538.
14  The Criteria Committee of the New York Heart Association. (1994). Nomenclature and Criteria for 
Diagnosis of Diseases of the Great and Great Vessels, 9th ed. Boston: Little, Brown & Co.
15  Richie, D. M., et al. (1968). Clinical studies with an articular index for the assessment of joint 
tenderness in patients with rheumatoid arthritis. Q J Med, 37, 393–406.
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Ratio scales provide information on order and then some. This reflects the gen-
eral rule that higher-level numerical scales provide additional information to 
that of lower ones. For example, if you “un-transform” Gold, Silver, and Bronze 
back to Time (in, say, seconds), you will have information on both distance 
and order.

Why then would anyone convert a higher-level scale into a lower one? Some 
reasons for this will become apparent soon. At this point I suggest you try 
coming up with one of your own, beginning with the assumption that the 
International Olympic Committee has chosen their ratio-to-ordinal transfor-
mation for good reason.

When discussing measurement on a ratio scale I pointed to the arithmetic 
operations subtraction and division. These cannot be done with the values 
Gold, Silver, and Bronze, which points to another characteristic distinguishing 
scales: the arithmetic operations permissible with them. For example, it makes 
perfect sense to describe Stenosis in a group of individuals by computing their 
average. But this is not the case for, say, the dichotomous Healthy/Sick scale 
that is best described by count and percent—that is, by number and propor-
tion of each category in the group.

Let us now examine a less refined scale of Stenosis that can take on three 
values only:

0—Between 0% and 50%: Low Stenosis and risk; no need for invasive 
intervention
1—Between 50% and 70%: Moderate Stenosis and risk; invasive 
intervention indicated but not urgent
2—Between 70% and 100%: High Stenosis and risk: immediate 
invasive intervention indicated

Now, most interventional cardiologists would protest that this scale is rather 
simplistic in that both risk and treatment are determined by a great deal more 
than Stenosis. I offer my humble apologies, but I shall remain with this scale 
because it will serve for a statistical example. Indeed as far as many physicians 
are concerned, statisticians have a great deal to apologize for, regardless. Let the 
record show that I am willing to take on this burden if only to get on with it, 
which I am about to do.

Having transformed the continuous 0% to 100% Stenosis scale into three 
classes, I have converted my ratio scale into an ordinal one and so reduced the 
numerical information. At the same time I have described clinical implications 
more directly, which is a natural way for clinicians to approach data.

In the preceding example I chose to transform a ratio scale into an ordinal one. 
At times, however, I have no choice. For example, the modified Rankin Scale 
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(mRS)16 is designed to assess functioning of patients who have experienced 
stroke. The scale has seven values: 

0—No symptoms at all
1—No significant disability despite symptoms; able to carry out all 
usual duties and activities
2—Slight disability; unable to carry out all previous activities, but able 
to after own affairs without assistance
3—Moderate disability; requiring some help, but able to walk without 
assistance
4—Moderately severe disability; unable to walk without assistance 
and unable to attend to own bodily needs without assistance
5—Severe disability; bedridden, incontinent, and requiring constant 
nursing care and attention
6—Dead

While the mRS uses the numbers 1 to 6, their meaning is not of the sort 
we learned about in school. We cannot, for example, say that the difference 
between 6 and 5 is equal to that between 3 and 2, nor can we say that 4 is twice 
2 (well, I suppose we can say it if we really want to). It seems then that some 
ordinal scales are naturally that, while others result from transformations of 
higher-level numerical scales.

Yet even mRS, a naturally ordinal scale, can be further transformed for clinical 
purposes. For example, in a study investigating a treatment for stroke, I may 
wish to know how many patients reached 0 or 1 at the end of the trial. The 
question implies a two-category scale where 0 to 1 on the original scale com-
prise one category and 2 to 6 another. In other words, my 0 to 6 scale has 
become a two-point scale where the lower value indicates a good outcome 
(Success) and the higher an inferior outcome (Failure). Once again, I have 
transformed a scale to indicate meaningful clinical information at the expense 
of greater statistical resolution.

Dichotomous, 0/1 scales are often termed qualitative, as in the Food and Drug 
Administration's guidance on reporting diagnostic test results.17 The agency 
writes as follows: 

Diagnostic results (outcomes) are usually classified as either 
quantitative or qualitative. A quantitative result is a numerical amount 

16  Bonita R., & Beaglehole, R. (1988). Modification of Rankin scale: Recovery of motor function after 
stroke. Stroke, 19(12), 1497–1500.
17  Food and Drug Administration. (2007). Guidance for Industry and FDA Staff: Statistical Guidance 
on Reporting Results from Studies Evaluating Diagnostic Tests. Rockville, MD: Food and Drug 
Administration.
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or level, while a qualitative result usually consists of one of only two 
possible responses—for example, diseased or nondiseased, positive or 
negative, yes or no.

At the same time, it is important to note that not all “qualitative” scales are 
created equal. There are those like success/failure and diseased/nondiseased 
that are ordinal in that we can meaningfully point to “better” and “worse” 
outcomes. This is not the case for other parameters such as Gender, Race, and 
Hospital Center, the values of which have no self-evident ordering.18

Over the years it has become generally, though not universally, accepted that 
the most clinically meaningful outcome on the seven-point mRS is a reduc-
tion from some high value to 0 or 1. Thus, while a reduction from 4 to 3 is 
certainly useful, only an outcome at the lower end of the scale can be con-
sidered “success” when evaluating Treatment. Using this classification, I can 
say that patients reaching 0 or 1 are responders, while those remaining at 2 
are nonresponders. Thus, coding Success or Failure based on whether or not a 
subject achieved one of the lower mRS values, I am describing response. This 
transformation allows for responder analysis, where I compute the rate (in one 
or more groups) of those achieving success—that is, compute the proportion 
responding.

Responder analysis involves two steps:

1.	 Determining a success criterion at the subject level and labeling a subject 
who reached the criterion “Responder” and others “Nonresponders.”

2.	 Computing the proportion of Responders in a group.

Throughout this section I have pointed out that statistical and clinical mean-
ings do not necessarily correspond. Responder analysis allows bridging this 
gap and, in many circumstances, is an optimal interleaving of statistical data 
and clinical implications. This is best shown with an example, for which I once 
again return to Stenosis. Suppose I have catheterized a group of subjects whose 
average Stenosis was 70%, my goal being that each patient be reduced to below 
50%. Suppose further that at the end of my trial I find that average Stenosis is 
40%. On the face of it I have achieved success. After all, the procedure reduced 
average Stenosis from 70% by 30 percentage points. At the same time, these 
numbers do not tell me how many subjects Responded—how many achieved 
a level below 50%. Depending on actual outcomes, I might have succeeded 
with more subjects or less. The latter would occur when the average reduc-
tion of 30% achieved is due mostly to large reductions in a small number of  

18  Hospital centers can, for example, be ordered from smaller to larger. But this is only possible after 
adding in ratio scale values of size. Given the labels only (“Children's Hospital,” “St. Luke's,” etc.), there 
is no natural ordering.
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subjects (and small reductions in others). Responder analysis solves this problem 
in that it provides success/failure information at the subject level. In this case I 
would code each subject as follows:

0—Postprocedure Stenosis ≥ 50% (Failure)
1—Postprocedure Stenosis < 50% (Success)

I would then compute the proportion of subjects scored “Success” of the total 
sample size.

A formal classification of all possible scale types is not necessary for our pur-
poses. It is enough to know that endpoints should be optimally measured and 
reported. Statistically, ratio scales are most informative and should be used 
where possible. At the same time, a clinical trial is designed to provide mean-
ingful clinical information, so your choice of measurement, and the manner in 
which you report it, must take this into account as well.

A note on arithmetic manipulation and statistical testing: I noted that different 
scales enable different arithmetic manipulations. For example, I can provide 
average Weight and median Survival Time but neither statistic is particularly 
useful on a two-value Responder scale. Going one step further, different types 
of scale values must be tested with different statistical procedures. For exam-
ple, a t-test compares means, so it is not appropriately applied to ordinal data. 
Conversely, ordinal data provide information on counts and percentages, 
which are often analyzed using a Fisher's Exact Test (or a Chi-square test). Thus 
when conducting statistical tests, statisticians must first determine the type of 
data they are dealing with. To summarize:

n	 Scales differ on the amount of numerical (statistical) and clinical 
information they provide.

n	 The types of arithmetic manipulations possible with data depend on the 
measurement scale used, which in turn has implications for statistical 
testing.

n	 No scale can be said to be superior to others in all circumstances. Rather, 
in any particular situation we should select the scale that optimizes both 
clinical and statistical information.

Safety Endpoints
I mentioned early on that most of this chapter deals with efficacy endpoints— 
endpoints with which you plan to demonstrate a study's efficacy objective(s). 
This was done for convenience, since the issues I wanted to address were best 
demonstrated in the context of efficacy. At the same time, many other attri-
butes are measured in clinical trials, the most common of which relate to 
safety.
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In most confirmatory trials the Null and Alternative hypotheses concern effi-
cacy. To avoid problems associated with multiplicity, we specify, where pos-
sible, a single confirmatory efficacy endpoint (to be analyzed once). If we wish 
to test multiple efficacy endpoints and/or want to analyze a single endpoint 
several times, we must make statistical allowance for it. This is not usually 
the case for safety, which is not generally tested using a confirmatory strat-
egy. Instead, safety endpoints are typically analyzed descriptively—by provid-
ing descriptive statistics of results and assessing whether or not safety profiles 
are acceptable.

But even when safety is tested using a confirmatory strategy, the approach will 
need to differ from efficacy. This is because safety data must be analyzed con-
tinuously throughout the trial. After all, it would not be ethical to wait for 
the end of the trial to find out whether my yet-to-be-tested treatment is safe. 
Consequently, dealing with the issue of multiplicity in safety can differ mark-
edly from that of efficacy. With your permission, I shall leave this for another 
book. Regardless, you should be aware that approaches to selecting and testing 
endpoints can differ as a function of the attributes these endpoints relate to.

Summary
In this chapter I addressed some of the major issues associated with clinical 
trial endpoints: selecting them, deciding which is primary and which not, mak-
ing sure they do their job properly, ensuring that they are measured reliably 
and without bias, and making sure they are valid. Then there is the issue of 
measurement type (ordinal, ratio, etc.), which is dealt with by selecting scales 
that are useful statistically and clinically.

I noted that the process of determining endpoints can be straightforward, 
particularly if your study resembles well-designed trials conducted by others. 
Defining study goals precisely will also enhance the process of endpoint selec-
tion. Yet even then complexities will arise if, after defining your objectives, you 
find there are no validated endpoints for them. When this happens you will 
need to find a less-than-perfect-but-satisfactory endpoint (recommended) or 
validate a new one yourself (to be avoided). Alternatively, you might redesign 
your trial so that existing validated endpoints are a perfect fit for it.

The greatest difficulty in selecting endpoints will arise when you have not pre-
cisely defined your study's objectives. Unfortunately, this is not an uncommon 
occurrence even in experienced organizations. At the same time, you can often 
leverage this difficulty to your advantage. Specifically, the process of endpoint 
selection can go a long way to assisting company staff in honing in on study 
objectives. In other words, endpoint selection can and should be used to clarify 
what you wish to achieve with your trial.
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Clinical trials are costly affairs, and you should feel free to measure as many 
endpoints as you think are useful. Yet you must also make sure to do the 
following:

n	 Measure only as much as the “market can bear.” If your data collection 
becomes burdensome for clinicians and/or subjects, you are liable to 
end up with bad data; in other words, you will increase your chances of 
getting missing, unreliable, and biased data, and will generally make a 
mess of things.

n	 Address the issue of multiplicity in the confirmatory portion of your trial.
n	 Specify a limited number of primary and secondary endpoints from the 

many you have chosen to measure. This will:
n	 Show to both yourself and others that you have defined your study 

objectives well—that you know what you want from the trial, and
n	 Provide greater credibility to significant results should they emerge.

So now you have designed your study, selected your endpoints, and specified 
which is primary and which is secondary. All that remains is for the statistician 
to tell you how many subjects your trial should include for meeting its objec-
tives. Onward, then, to the next chapter.
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n	 Defining power intuitively
n	 Elements of study design affecting power:

n	 effect size
n	 sampling error
n	 measurement Error
n	 study design
n	 stratification

n	 The “mechanics” of computing sample size: a simulation for computing 
sample size in rheumatoid arthritis

n	 Determining sample size for equivalence and non-inferiority
n	 Why a nonsignificance difference is not equivalence
n	 Ethics and sample size

Introduction: A Simple Study
When blood alcohol content (BAC) is below 0.03%, the average person will 
seem normal. When it is 0.0%, this will often happen as well. Now it is gener-
ally recognized that driving and alcohol should not mix, and most countries 
have some laws to that effect. The United States, for example, permits a blood 
alcohol level of up to 0.08%, and in Japan it is 0.03%. In Germany the law 
is more involved, with experienced drivers allowed 0.05% and inexperienced 
none. Other variants abound.

Say you are from Missouri and you want to conduct a confirmatory trial assess-
ing the effects of drink on driving. These are the trial's hypotheses:

H0: Ingesting alcohol does not affect driving
H1: Ingesting alcohol affects driving

Sample Size

Contents
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To test these, you will need to define an endpoint—some parameter to mea-
sure “affect” by. I dealt with the issue in preceding chapters and will do so here 
as well. But before I do, I shall first address study design.

Having defined your objective, you set up a simple trial where each subject will 
be randomly assigned to either Alcohol or Placebo. Alcohol will be mixed with 
quinine water (T), and Placebo will be Quinine only (R). About half an hour 
after ingesting one of the liquids, each subject will undergo testing on a driving 
simulator. Subjects will be exposed to several simulated challenges and their 
behavior recorded. Once the trial is completed, you will compare the average 
performance in T and R on the parameters of interest.

While this is about as straightforward as a controlled trial can be, there are 
numerous details you must work out before moving forward. The following 
should be central on your list:

1.	 Number of subjects per group
2.	 Target BAC level in the Alcohol group
3.	 Simulator model

Translating these into our own language, we have:

1.	 Sample size
2.	 Effect size
3.	 Measurement

I will now deal with each, beginning with sample size.

The (Big) Idea
In this chapter I mostly describe trials of which the objective is to show that treat-
ments differ—studies aimed to demonstrate superiority or inferiority. To keep 
things simple, I will mention superiority almost exclusively; inferiority is merely 
the flip side of it and the statistical approach to both is the same. Further on I will 
apply these principles to non-inferiority and equivalence trials, which you will 
find are not all that different in terms of sample size determination. Be that as it 
may, in a confirmatory trial of any kind you must specify a sample that is large enough 
to provide a reasonable chance for rejecting the Null (when it should be rejected).

In the typical superiority trial you begin by assuming treatments are equal and 
conduct a study to show that this is not the case. Once done, you will analyze 
the data and either:

n	 Reject the Null, concluding a difference.
or
n	 Fail to reject the Null and conclude you cannot conclude.
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In preceding chapters I noted the possibility of making a Type I Error—of 
mistakenly rejecting the Null Hypothesis. We label this probability Alpha (α). 
Here I deal primarily with Type II Error, which is mistakenly failing to reject 
the Null. For example, if T truly differs from R and your trial did not yield 
a significant difference between them, you have made a Type II Error—you 
have not rejected the Null when it should have been rejected.

Clinical research is meant to reveal the truth in the population. In the cur-
rent BAC trial, T and R truly differ or not, which has nothing to do with the study; 
there is some “inconvertible truth out there” that we aim to discover, and 
whether or not we do has no effect on it. So while a particular study will not 
influence the truth,1 its characteristics will determine our chance to detect 
it. And a central one of the characteristics is sample size (N)—the number 
of trial participants. So when comparing two groups, the truth is either of the 
following and no other:

n	 T and R are equal.
or
n	 T and R differ.

In a superiority trial your objective is to detect the latter when this is indeed the 
truth.

I chose the BAC example to begin with, since it is generally accepted (by the 
sober) that alcohol impairs driving. This implies that in this trial you should 
obtain a significant result. This is not a typical trial in the sense that research is 
generally done to discover novel phenomena rather than to verify known ones. 
Yet this suits my purpose of discussing statistical power, which here quantifies 
the chance for detecting a difference when one exists. Clearly, one does not 
wish to obtain significance when T and R do not differ. So to summarize the 
case at hand:

n	 T and R differ in the population. This is the truth.
n	 Having conducted the trial, you will either:

a.	 Reject the Null and conclude that T and R differ (correct), or
b.	 Fail to reject the Null (incorrect; commit a Type II Error).

In statistics, we label the chances of making a Type II Error, Beta (β); β is the 
probability of failing to show that T and R differ when they actually do. If you 
recall that the probability of making a Type I Error is α, you begin to grasp the 
imaginative powers of statisticians.

1  With your permission, I shall leave for others the intriguing issue relating to our affecting reality in 
the process of observing it.
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Since there are only two possible conclusions in this trial and the likelihood 
of erring is β, the likelihood of correctly rejecting the Null is 1 – β. Statisticians 
know how to compute this probability. And while I will describe one exam-
ple for this, I suggest that you generally leave the mathematical particulars to 
them. The point is this: In a superiority trial your chance of concluding that there 
is a difference when one truly exists is 1 – β. This is the power of your study to 
achieve its objective.

To this point I have described a circumstance in which T and R truly differ 
and you conduct a trial hoping to show this. But if the two indeed differ, why 
should your study ever fail to show it? Well, there can be many reasons for it. 
I will deal primarily with one of these: bad luck.

I shall now return to my running example and explore how one (you, actu-
ally) might get unlucky. Suppose that your randomization misfired and that 
those assigned to the Alcohol group happened to be more experienced drivers 
than those to Placebo. The formers' performance on the simulator in the trial 
was indeed diminished by a bit of alcohol but not enough for them to differ 
from Placebo. In short, alcohol detrimentally affects driving (truly), and your 
unlucky randomization did not allow you to discover this.

It seems I have hit a couple of nails on the head here and, to mix my metaphors, 
I did not call them by name. I first mentioned getting “unlucky” and then said 
that the subjects in T received “a bit of alcohol.” Well, it is time to name names.

In most superiority studies your practical objective is to 
show T > R (or R > T) rather than T ≠ R. In other words, 
you aim to show that T differs from R in a certain direc-
tion and reject the Null that this is not the case. Discovering 
the opposite effect—for example, that your drug is inferior 
to the competitor—is of no commercial interest. In statis-
tics this implies stating one-sided hypotheses that yield 
one-sided tests. Conversely, T ≠ R leads to a two-sided 
hypothesis because you will reject the Null hypothesis if T 
is either superior or inferior to R.

These two possibilities—aiming to show difference in 
a specific direction or in either direction—have some 
very definite statistical implications. I will not address 
them here because, importantly, virtually all clinical trials 
aiming to show superiority state a two-sided hypothe-
sis regardless. This is typically the regulator's require-
ment, as well as that of research presented in scientific 

journals. In our current example this implies the follow-
ing hypotheses:

H0: T = R (Driving ability is the same under the influence 
and not.)
H1: T ≠ R (Driving ability differs between those having con-
sumed alcohol and those not. This leaves open the possi-
bility of rejecting the Null if driving under the influence is 
worse or better than driving over it.)

Having stated these hypotheses you will, at the conclusion 
of this trial, conduct a two-sided test. A significant result in 
the hoped-for direction will spell success. If you obtain a sig-
nificant difference in the opposite direction, you will reject 
the Null as well, but you will do so grudgingly.

Thus, while the issue of one- and two-sided tests is, theo-
retically, both interesting and important, I will mostly assume 
two-sided tests and limit my discussion to them.

One-Sided and Two-Sided Tests
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Sampling Error
Random samples do not perfectly represent populations, but if done correctly, 
they are usually close enough. Still, there are times you can get unlucky, and in 
the preceding section I showed how this might happen in our running exam-
ple. Specifically, I described how you might obtain large, chance differences at 
baseline. When this occurs, the study's eventual results will likely misrepresent 
the truth. We call this particular form of lack of luck “sampling error.”

So when I used the word “unlucky” in this context, I am referring to a lack of 
luck in sampling, which may affect the results down the line. Now there are 
numerous other ways of getting unlucky in clinical trials; it would not be a 
human endeavor otherwise. But for the moment I will remain with this par-
ticular problematic circumstance, since it is of central importance in the con-
text of statistical power—that is, of the relationship between a study's N and its 
probability for yielding rejection of the Null (when it should be rejected).

Clearly we would like to avoid sampling error. And while we cannot com-
pletely ensure this—indeed, we can be certain that sampling error will 
occur—there is much we can do to reduce it. One central method for reduc-
ing sampling error is increasing N. On average, larger samples are more likely 
to represent the population accurately than smaller ones.2 In other words, 
increasing N will, on average, reduce sampling error. This will reduce your 
chance for getting unlucky, which in turn will increase your chance for dis-
covering the truth.

Keeping with our simple and simplistic example:

n	 You plan for the drink-and-drive trial with three subjects per group.
n	 Having randomly selected six subjects from the population, you proceed 

to randomly assign each to T or R.
n	 There is natural variation in driving ability in the population, so your six 

subjects can be ranked in ability from 1 to 6, with 1 being the best and 6 
the worst.

n	 Randomly assigning each to one of the groups, your chance for ending up with 
the top three drivers in the Alcohol group is 5%; the probability of having at 
least two of the three top drivers in the Alcohol group is almost 50%.

In short, when there are only six subjects in the trial, your chance of getting 
a relatively large difference in ability between the groups before applying your 
intervention is high. This will then increase your chances of failing to reject the 
Null despite the truth that alcohol impairs driving.

2  Provided the sampling is done correctly—without bias.
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But if, for example, you plan to include 10 subjects in each of the study groups 
T and R, your chance of randomly obtaining a great imbalance between them at 
baseline is much smaller. Here, the chance of the five best drivers ending up in the 
Alcohol group is near zero. Enlarging your sample per group further—say, ran-
domly assigning 100 subjects to each—you will increase your chances further of:

a.	 Obtaining a representative sample of the population in each group, and 
thus

b.	 Obtaining two groups that are similar in terms of driving ability.

And when treatment arms are similar to begin with, you are pretty much assured 
that any differences between them at the end of the trial can be attributed to 
the trial's manipulation—to the difference in Treatment between the two.

Statisticians know the mathematical relationship between the size of N and 
the degree to which samples represent populations. One example of this is 
described by the central limit theorem, which is worth looking up. 

I have described a study where each of six subjects was ran-
domly assigned to each of two groups. I then pointed out 
that there is a 5% chance that the best three drivers will end 
up in T and almost a 50% chance that at least two of the three 
will be in this Alcohol group. I then noted that increasing N 
will reduce the likelihood of such imbalances occurring. Well, 
we can take care of this problem even without increasing the 
number of participants in the trial.

Suppose that before assigning subjects to Alcohol or Tonic 
Water Only, you test them on your simulator. Having done 
this, you can now rank them in driving ability from 1 to 6. 
You then divide them into three Ability strata: the best two 
drivers in A, the second ability-pair in B, and the remaining in 
C. You then randomly assign subjects to T and R by strata—
that is, you conduct stratified assignment. You might, for 
example, flip a coin to decide which of the two drivers in 
strata A will be assigned to the Alcohol condition and assign 
the other to Tonic Water Only. Repeat this for the other two 
pairs, and you will have reduced the likelihood of a conse-
quential imbalance.

Stratified randomization aims to ensure that subjects in the 
different treatment groups are similar. Stratified sampling—
where one samples specific proportions of individuals from 
various subpopulations (strata) in the larger population—

is meant to ensure that the subjects selected will be rep-
resentative of the population of interest. There are various 
other sampling schemes aimed at increasing the likelihood 
that treatment groups will be “about equal” at baseline. 
Depending on the trial, some methods may be more essential 
than others, though all will typically complicate trial logis-
tics. Here too you would do well to consult with your statis-
tician. I should add the following:

n	 Stratification of any kind should be used for those 
parameters that are related to outcome only. For 
example, cardiology trials often yield different results for 
men and women. It is thus advisable to ensure that the 
male–female proportions are about the same in T and 
R, which can be ensured by stratifying on Gender. Yet, 
it would make little sense to stratify by variables that 
are unrelated to the outcome, such as Shoe Size or Eye 
Color. While subjects do truly differ on them, I suspect 
that having an imbalance between T and R on, say, 
Shoe Size will have little or no effect on study results.

n	 The moral of this story is as simple as it is important: 
Increasing N is not the only way to reduce your chance 
of getting unlucky. A well-designed study, which 
includes a good sampling plan, will increase a study's 
power independent of sample size.

Sampling Schemes to Reduce Sampling Error
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Effect Size
One of the more critical decisions you will need to make in the trial described 
is just how much alcohol to give to the subjects in T. This will greatly affect 
the expected difference between the groups and, with it, other important trial 
parameters. By deciding on the BAC level in T, you will influence effect size—the 
degree to which the groups differ when one is given alcohol and the other not.

When BAC is at 0.03% or less, most people will behave normally so that the 
Treatment effect of alcohol on driving will be subtle; it may only be picked up 
by a sophisticated simulator and, even then, just barely. But when BAC is, say, 
0.12%, its effect on driving will be sufficiently apparent that even an imbal-
anced assignment of subjects or a crude simulator will detect them. In other 
words, a large effect size may get you significant differences—may enable you 
to discover the truth—even in the presence of nontrivial sampling error and/or 
less-than-optimal measurements.

Effect size refers to the strength of the relationship between two populations. 
In this case, it is the quantification of the difference in Driving Ability between 
those receiving alcohol and those not. For example, you might expect those 
in R to perform 20% better than those in T on a simulator. Alternatively, you 
might say that subjects in R will react 0.3 seconds faster to a simulated bar-
rier relative to those in T. In these examples, expected effect sizes are 20% and 
0.3 seconds, respectively. Effect sizes can be defined in many ways, and it is the 
statistician's task to define the specific form relevant to the study at hand.

Since large effect sizes are easier to detect than small ones, the former will 
require smaller sample sizes for rejecting the Null. Thus, even a sample of  
3 in each group is likely to demonstrate differences between subjects with 
BAC = 0.12% and those with BAC = 0.00%. But when BAC in the Alcohol 
group is low, you will need a larger sample to obtain reasonable power. Thus 
we have another important principle:

The larger the expected effect size, the smaller the sample required to detect it.

It should now be clear why the statistician will ask you for the expected 
effect of your trial's manipulation when you ask him to determine N. It sim-
ply makes no sense to compute the number of subjects needed in a study 
without some idea of what you are looking for. If you are looking for the 
elephant in the room, one look should be enough. But if it is a bacterium 
you are hoping to detect, you should be using a microscope. Indeed, sam-
ples are to statisticians what microscopes are to life scientists. When the 
expected phenomenon is very large, a crude instrument—a small sample 
size, a weak microscope, or even the naked eye—is sufficient. But a small 
effect will only be detected with a powerful tool—a large sample size or a 
powerful microscope.
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Now while it is perfectly logical for the statistician to want an estimate effect for 
planning a trial, it seems a bit silly as well. After all, one typically conducts a trial 
to discover an effect that is thus far unknown. And here the statistician is asking 
you for an estimate of this effect before a study begins. Being that an estimate of 
effect size is needed to compute N, and that this effect cannot be known with-
out a trial, it would appear impossible to compute sample size properly.

Well there is often a difference between theory and practice and so it is here. In 
reality it is a rare researcher who does not have some idea of what to expect in a 
study; typically there are known results from animals and humans, in addition 
to scientific publications related to phenomena under study.

And on those (usually rare) occasions when effect size cannot be estimated 
intelligently, the alternative is specifying the minimal clinically meaningful 
effect—that is, the effect clinicians require for considering the intervention use-
ful for patients. You would then ask the statistician to specify the N required 
to have sufficient power to discover this effect or one larger. If the true effect is 
smaller than this minimum, your N will likely not be sufficient to detect a dif-
ference between the groups. At the same time you typically have little interest 
in detecting an effect that is not commercially viable.

In fact, even when you have a good estimate of effect size, you should ask, “What 
is the minimal effect that interests me?” and then plan your trial accordingly. More 
often than not, it will be a waste of resources running a trial to detect a commer-
cially uninteresting effect. Bottom line, regardless of how you estimate T 's effect, 
you have to do it. And, practically speaking, this is not usually a very difficult task.

Measurement
In the first section of this chapter I noted that stating hypotheses and later test-
ing them require translating a trial's objectives into measurable parameters. We 
call these parameters endpoints, and in our drink-and-drive trial there are many 
options to choose from, including the following:

Discovering a commercially uninteresting difference between 
treatments can be interesting when doing basic science. 
Thus, a molecule may only slightly affect the body, but the 
fact that it does may reveal a useful biological mechanism. 
Indeed, scientists may find meaning where entrepreneurs 
will not, which is more the rule than the exception. At the 
same time, commercial organizations—especially those 

with large, well-funded R&D departments—may be inter-
ested in real, though noncommercial, effects as well. This 
is because detecting weak effects may, with additional 
research, lead to the discovery of stronger effects. The 
moral of this particular story is that pharma and biotech 
companies often ask different questions than basic scien-
tists. But not always.

On Industry, Science, and Science in Industry
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n	 Reaction Time to a simulated obstacle on the road.
n	 Number of Times per minute subject uses rearview mirror.
n	 Degree to which subject obeys speed limit.
n	 Number of attempts needed for successful parking in a tight space.

Depending on trial objectives, you will select one or more of these or some 
other parameter and collect data from subjects while on the simulator. At the 
end of the trial you will compare T and R on confirmatory endpoints and will 
either reject or fail to reject the Null.

In the preceding chapter I noted that endpoints should be measured with pre-
cision and without bias. And having endpoints thus measured will increase 
your trail's power independent of sample size.

An Interim Summary
We have seen that your study's power—its ability to detect true differences 
of interest—depends on Trial Design, Effect Size, and Sample Size (N). You 
should not compute N without obtaining information on the other two. In the 
case of the drink-and-drive trial, you can control effect size by giving smaller 
or larger quantities of alcohol to subjects in T. But this is not usually the case 
in clinical trials, where you are pretty much stuck with a given product that 
has a specific effect size in the intended use population. So of these three fac-
tors affecting power, you typically have the least control over effect size. But in 
most clinical trials you will have some control over “quality of measurement.” 
For example, you might employ more accurate instruments than less and make 
sure that those using them are adequately trained.

Throughout this book I emphasized that everything is connected to everything 
else. So it is here, where:

n	 Larger effect sizes are easier to detect than smaller ones.
n	 Larger N's are more likely to detect effects than smaller ones.
n	 Accurate measures are more likely to detect effects than less accurate 

measures.

Part and parcel of your job is to optimize these factors to obtain the required 
power.

To this point I have discussed factors affecting statistical power but have not 
indicated what “adequate” power is. Clearly, the greater your power, the bet-
ter; after all, you conduct a trial to succeed and will have little chance of 
doing that with weak power. But is 70% power enough or even 80%? Either 
of these would likely do in Las Vegas, but what about the clinic? As usual, 
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situations vary, and the optimal choice in one study may be less than opti-
mal for another. Still, there is “convention” to consider. The ICH guidelines 
say the following:

The probability of type II error is conventionally set at 10% to 20%; 
it is in the sponsor's interest to keep this figure as low as feasible, 
especially in the case of trials that are difficult or impossible to repeat.3

Keeping in mind that Type II Error is β and power is 1 – β, power is “conven-
tionally set” at 80% to 90%.

How It Actually Works
There are many methods for computing the number of subjects needed for a 
study. Off-the-shelf programs will suffice for most trial designs, while others 
are sufficiently unique to require running power simulations for them. While 
the simulation route is less standard—though certainly common enough—
I feel it is more intuitive than theoretical approaches and will use it here for 
illustrating the process.

Say you are conducting a trial in rheumatoid arthritis (RA) comparing two 
monoclonal antibodies, T and R. Each of these medications is designed to 
bind to and inhibit Tumor Necrosis Factor α (TNF – α), a protein secreted 
by the immune system. TNF – α is involved in several biologically important 
pathways, including inflammation. Blocking TNF – α in RA patients aims to 
reduce inflammation and disease activity. In the best of cases it will induce 
remission.

There are various continuous scales for measuring RA activity, each with cutoffs 
for categorizing disease activity. One of these is the DAS-28 (4), of which the 
cutoffs divide patients into those with “high” or “moderate” activity or “remis-
sion.” The scale's score is computed by taking into account the following:

n	 Number of swollen joints of the 28 measured (swollen joint count; SJC).
n	 Number of tender joints of the 28 measured (tender joint count; TJC).
n	 Level of C-reactive protein (CRP), a protein found in blood that rises in 

response to inflammation.
n	 Pain as measured by the visual analogue scale (VAS; 0 = “no pain,”  

100 = “unbearable pain”).4

Your planned trial will include subjects with at least moderate disease activity 
defined by DAS-28(4) ≥ 3.8. Its objective is assessing the degree to which your 
monoclonal antibody T induces remission relative to R. Remission is achieved 

3  International Conference on Harmonization (ICH). (1998). Statistical Principles for Clinical Trials.
4  The formula combining these variables is DAS28-28(4) = 0.56 × SQRT(TJC28) + 0.28 × SQRT(SJC28) + 
0.36 × ln(CRP + 1) + 0.014 × VAS + 0.96.
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by reaching DAS-28(4) ≤ 2.3. Thus, at the end of the trial each subject will be 
classified dichotomously as follows:

“Failure” = 0 = DAS-28(4) > 2.3
“Success” = 1 = DAS-28(4) ≤ 2.3

At trial's end you will compare Proportion Success in T to Proportion Success 
in R, using a Fisher's Exact Test, a standard method for testing differences in 
proportions.

Before initiating the study, you wish to determine N if you are to have a rea-
sonable chance of showing that T is superior to R (if indeed it is). Specifically, 
you want to have at least 80% power to obtain a significant result in favor of 
T. After discussions with your clinician and statistician, you come up with the 
following relevant information:

n	 The sample in your trial will be drawn from a population similar to that 
used in past studies. The database available at your Company includes about 
1,400 subjects, more than half of whom had DAS-28(4) ≥ 3.8 at baseline in 
their respective study. These subjects are available for your simulation.

n	 The effect of R in this population is generally known and estimated to be 
about a 30% reduction in DAS, with a standard deviation of 17%. Thus, 
the distribution of R effect sizes is 30% ± 17%.

n	 Your estimate for T 's effect is 50% in this population, with a standard 
deviation of 26%. Thus the distribution of T effect sizes is 50% ± 26%.

n	 At the end of your trial you will compare Proportion Remission in two 
groups, using a Fisher's Exact Test.

You are now ready to program the simulation as follows:

1.	 “Create” an R group of, say, 50 subjects by:
a.	 Randomly selecting 50 subjects with DAS-28(4) > 3.8 from those in 

your database.5

b.	 For each subject, determine “success” or “failure” in the R group by:
i.	 Randomly selecting an effect of R from a distribution of effects (the 

mean and standard deviation of which are 30% and 17%, respectively).6

ii.	 Multiply the subject's DAS-28(4) by the sampled effect, obtaining 
his or her simulated score at the end of the trial.

5  Sampling will be done “with replacement”—that is, after randomly selecting a subject, he is 
“returned” to the pool and is available for further sampling. This is because the population of RA 
sufferers is infinite and, you assume, represented by the patients in your database. Thus, each individual 
subject in this database represents an infinite number of subjects like him. “Replacing” a subject—
returning the subject to the data set, thus making him available for future sampling—maintains the 
database's representativeness of the infinite population of RA sufferers you wish to include in your trial.
6  For the sake of simplicity, we will assume that the distribution of effects is normally distributed. Thus, 
you are asking the computer to randomly select an effect from a normal distribution with mean = 30 
and standard deviation = 17.
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iii.	Recode the resultant score as follows: if above 2.3, subject is 
classified “failure”; if 2.3 or less, subject is a “success.”

iv.	Repeat these steps for each of the 50 subjects.

Here is an example for a single subject:

n	 Subject selected for simulation has DAS-28(4) = 3.6.
n	 Effect randomly selected from assumed distribution of effects is a 

reduction of 42% in DAS-28(4).
n	 Given the subject and effect sampled, score at the end of the trial =  

3.6 – 3.6 × 0.42 = 2.1.
n	 Observing 2.1, you find it is below 2.3, which classifies the subject a success.

Repeating the process 50 times yields 50 simulated subjects and a Proportion of 
Success in the sample. The process is then repeated for T, where the only change 
is a different hypothesized effect; for each subject an effect is randomly selected 
from a distribution with a mean of 50% and a standard deviation of 26.

We are almost there! At the end of the simulation described, you have two 
groups of 50 subjects each: one “treated” with R that yields some Proportion 
of Success and another “treated” with T that has another Proportion of Success. 
You then compare the two groups using Fisher's Exact Test and obtain an out-
come that is either significant or not. In sum, each individual simulated study 
will have one of the following two outcomes:

1.	 T is significantly superior to R (reject Null).
2.	 T is not significantly superior to R (fail to reject Null).

Having conducted the test, you record the result and save it for future use. 
You then repeat the process with another sample of 50 subjects per group and 
obtain another outcome (reject the Null or not).

Now the simulation described can be repeated as many times as you wish. 
Suppose you repeated it 10,000 times and find that on 28% of occasions T is 
significantly superior to R–that is, 2,800 times T was significantly superior to 
R, while 7,200 times it was not. Your conclusion from this simulation is thus: 
“Given the assumption enumerated, a sample of 50 subjects per group will 
provide a 0.28 chance of demonstrating T > R”–that is, a sample of 50 sub-
jects will provide 28% power. Since you wish to have power of at least 80%, 
you repeat this process with a larger sample size. The sample size that yields 
the required power—typically somewhere between 80% and 90%—is the one 
specified for the trial. So to summarize:

1.	 Specify assumptions for the effect of T and R, along with associated 
standard deviations.

2.	 Find (or generate) typical baseline data for the subjects you will recruit in 
the trial.
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3.	 Create samples of varying size (N) for T and R using baseline data and 
assumed effects.

4.	 Statistically compare each pair of samples obtained and repeat the process 
many times (e.g., 10,000).

5.	 Count the number of times you obtain significant results in the hoped-for 
direction. The proportion of times this happens is your power for the N 
used in the simulation.

6.	 Vary N upward and/or downward until you obtain significant results in 
80% to 90% of simulated trials.

Keep in mind that the process described involves simulation with a random 
selection of the subjects' baseline values and a random selection of effect 
size. As such, it will produce slightly different results on different occasions. 
However, if you repeat the process enough times—and in this case, 10,000 
is more than enough—the result you get will be reliable: it will be stable. Be 
that as it may, dealing with the issue of variation in simulation results—as, of 
course, the simulation itself—is best left to the statistician.

Equivalence and Non-inferiority
You have produced a generic equivalent to an ethical drug for which the 
patent has expired. To have your drug approved, you must show that its 
pharmacokinetics are similar to the original drug. For example, you will 
be expected to demonstrate that your drug is equivalent to the original on 
C-max, which is the maximum concentration reached in the blood after 
taking the drug.

C-max is estimated by giving the subjects the drug, drawing blood at regular 
intervals, and evaluating the amount of the drug in the samples on each occa-
sion. Typically, the crossover design will be used, where every subject first gets 
one drug and then the other, and the two results are compared. Half of the sub-
jects will receive T and then R, and half will receive R and then T.

I have often noted that it is pretty much impossible to demonstrate that two 
products are identical, and so it is here. So instead you will be asked to show 
that your generic drug's C-max is within 20% of the original. Specifically, for 
each subject you will compute:

= generic

original

C max-
Ratio

C -max

and be expected to show that this ratio is between 0.80 and 1.25. This trans-
lates into the following Null and Alternative hypotheses:

H0: Ratio > 1.25 or Ratio < 0.80
H1: 1.25 ≥ Ratio ≥ 0.80
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One way of approaching statistical testing is comparing the Ratio obtained to 
each of the relevant values. Specifically, you will want to show that the Ratio is 
superior to 0.80 and that it is inferior to 1.25. In other words, our equivalence 
problem has been transformed into separate statistical tests that we know how 
to deal with. As such, sample size in equivalence can be computed similarly to 
that in superiority.

In a non-inferiority trial you want to show that your product R is no worse 
than T minus some non-inferiority delta. When, for example, the statistic of 
interest is a Proportion of Success (P), this translates into testing the following 
hypotheses:

H0: PT < PR – Δ
H0: PT ≥ PR – Δ

where:

PT—Proportion of Success obtained with the new Test product
PR—Proportion of Success obtained with the established Reference
Δ—amount by which PT can be smaller than PR and still be considered 
“no worse”

Once again, we essentially have a “superiority scenario.”7 But instead of having 
to show T > R, we are asked to show that T is superior to some value smaller 
than R. I should note that when Δ = 0, this scenario becomes a standard supe-
riority test where you wish to show PT > PR.

8

As in superiority, the required sample size will depend in great measure on the 
effect size. Effect size here is the expected difference between T and R to begin 
with (e.g., T – R) and “tacking on” the non-inferiority delta, Δ. Thus, the sam-
ple size needed will depend on the following:

n	 The expected difference between T and R as described in the preceding 
section. For example, the larger the difference in favor of T, the smaller the 
sample size needed to show a significant difference. 

and
n	 The size of Δ—the larger the non-inferiority delta, the more we “enlarge” the 

effect size that needs to be detected and the smaller the sample required.

7  I write “essentially” and this is so. At the same time, the actual statistical approach to sample size 
determination in superiority and non-inferiority differ. This is a very technical issue having to do with 
variance estimations and, as you can imagine, is primarily of interest to statisticians. It is certainly 
beyond both scope and interest of this book.
8  While “non-inferiority” has been here appropriately restated in “superiority” terms, there are, 
nevertheless, intricacies relating to sample size computation best left to the statistician.
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A Word on Ethics
Conducting a clinical trial entails exposing participants to new treatments. And 
being new, we can never be completely certain they are also safe, so, inevitably, 
clinical trials must be concerned with subject safety. In any clinical study the 
concern for subject safety is paramount and must precede all other consider-
ations. To quote the World Medical Association Declaration of Helsinki:

The Declaration of Geneva of the World Medical Association binds 
the physician with the words, “The health of my patient will be my 
first consideration,” and the International Code of Medical Ethics 
declares that, “A physician shall act only in the patient's interest when 
providing medical care which might have the effect of weakening the 
physical and mental condition of the patient.”

In medical research on human subjects, considerations related to the 
well-being of the human subject should take precedence over the 
interests of science and society.

I have to this point avoided the moral and philosophical issues associated with 
clinical trials; it is a subject unto itself and not the subject of this book. Still, it 
is necessary to point out that society has accepted clinical trials as both neces-
sary and moral, and that the justification for exposing subjects to new treat-
ments is the potential for scientific and therapeutic gain. Citing the Declaration 
of Helsinki once more:

Medical progress is based on research which ultimately must rest in 
part on experimentation involving human subjects.

Medical research is only justified if there is a reasonable likelihood that 
the populations in which the research is carried out stand to benefit 
from the results of the research.

Thus, whether a trial is more rigorous or less, it must always be justified by 
the information it has the potential to provide. Consequently, you must be 

Suppose you compare T to R and find no difference. Does 
this mean that T and R are equivalent? Well, it can, but not 
necessarily. There are many ways to obtain nonsignificant 
results, and one way of doing this is using a small N—that 
is, designing a study that has little power to detect a dif-
ference even if one exists. When doing this, your nonsig-
nificant result may be due to a lack of power rather than 
to a similarity between T and R. Consequently, failing to 

detect a statistical difference between T and R cannot by 
itself be evidence of equivalence or non-inferiority. It is for 
this reason that equivalence and non-inferiority designs 
specify hypotheses such as those described. Specifically, 
you set up your tests that equivalence or non-inferiority 
can only be obtained by getting a significant result. In 
short, nonsignificant differences cannot provide proof of 
equivalence.

Equivalence and Nonsignificance
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convinced, and be able to convince others, that the study's potential benefits 
outweigh its potential risks. This in fact is the central consideration of the 
ethics committee9 that will need to approve your research before it can be 
implemented. Following are some implications of this for study design:

n	 Even less rigorous trials (e.g., exploratory studies) must have the potential 
to provide useful information—information that is sufficiently useful to 
outweigh the risks involved.

n	 Shoddy trials are not only bad policy, but they are also unethical. Given 
the resources available, you must plan the most scientifically sound trial 
possible.

n	 The number of patients participating in a trial—the trial's sample size—
must be optimal. If it is too small, the information provided will be 
negligible and not justify the risk. And if N is too large, you will have 
unnecessarily exposed more subjects to a new treatment than scientific 
rigor requires.

Summary
Many factors affect a trial's ability to detect differences between T and R, includ-
ing the following:

n	 Sample size—the larger the sample size, the greater the likelihood for 
detecting an effect when it exists.

n	 Measurement—the more accurate the measurement, the greater the 
likelihood for significant results.

n	 Trial design—the more efficient the design, the greater the chance for 
significant results.

There are many other factors, for example, the intended use population. Clearly, 
selecting subjects that are more likely to be helped by your drug will increase 
your chances of success. Whatever the pertinent factors in your particular trial, 
it is essential that you not consider them in isolation. Thus, for example, more 
accurate measurement will reduce the required sample size relative to less accu-
rate measurement. And the same holds true for more efficient design, which 
will reduce required N as well. That is why when computing N for your trial you 
will need to conduct extensive discussions with the statistician, as well as with 
others. With them you will determine key study aspects such as these:

n	 Trial design, including the endpoints to be measured in the trial.
n	 Intended use population.
n	 Minimal therapeutic effect to be detected.

9  Often called internal review boards (IRBs).
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n	 A story with a moral. Maybe.

Some time ago I received a phone call from an unhappy client. He was careful 
with his words, but the upshot was that he did not appreciate my overzealousness. 
“When I ask for numbers,” he said at some point, “that's exactly what I want.”

His request had involved a straightforward statistical task that I had completed 
and to which I had added an unsolicited opinion. Truth be told, his call caught 
me off guard and all through it I remained mostly silent. Hanging up the 
phone, I wondered whether I had done right. I wonder still.

For almost a year I had been working with this client on a diagnostic kit that his 
company was developing. The kit had been completed a few months before, 
and investigators had begun collecting data with it. At some point there seemed 
to be a problem with batch-to-batch stability, and there was talk of modifying 
the product. The kit was kept as is, and development moved forward.

The product in question is a blood test designed to detect some disease. Its 
advantage relative to the gold standard is speed and cost; it can be done in most 
laboratories on sampled blood. The gold standard, on the other hand, requires 
complex diagnostic equipment and a specialist to interpret its results. So the 
kit's disadvantage is that it is not a gold standard and never will be. In short, the 
new test is less accurate but much more accessible than the gold standard.

For several months the Company had been collecting data and had obtained 
about 300 gold standard negative samples and 40 positive. As is often the case 
in these indications, negative cases are easier to obtain than positive.

Concluding Remarks

Contents
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While the Company had collected numerous endpoints, two were of primary 
interest. The first was Diagnosis of the disease by the gold standard scored 
dichotomously (Negative or Positive), and the second was a continuous Score 
produced by the kit. Most values on Score are between 0 and 600, with higher 
values indicating greater likelihood of the disease.

My first task was to determine the optimal cutoff on Score for determining 
Positive and Negative. That is, I was asked to find a point on the Score scale 
below which a subject would be labeled Negative and above which Positive. 
This would transform Score into a dichotomous scale and provide informa-
tion in the same form as the gold standard. It would also allow for a direct 
comparison between the two methods. Once the diagnoses from both the gold 
standard and the predicate are similarly identified, each subject can be labeled 
as being one of the following:

n	 True-positive (TP): Both predicate and gold standard diagnose Positive.
n	 False-positive (FP): Predicate diagnosis is Positive, while gold standard 

is Negative.
n	 True-negative (TN): Both predicate and gold standard diagnose  

Negative.
n	 False-negative (FN): Predicate diagnosis is Negative, while gold  

standard is Positive.

I should note that there is a relatively standard methodology for determining 
the cutoff X, which I used. At the same time, there can be more than one solu-
tion for the problem, depending on Company preferences. Specifically, the 
choice of X depends in part on which of the two correct diagnoses (TP or TN) 
interest the Company most and which type of errors (FP or FN) it wishes most 
to avoid. Be that as it may, I computed X and included it in my brief report.  
I also provided the resulting level of agreement between gold standard and 
predicate using statistics such as Sensitivity and Specificity.

My second task was to tell the Company how many subjects would be 
required for the pivotal trial. Here this meant determining the number of 
gold standard Positive and Negative subjects to demonstrate some minimal 
accuracy of the predicate. This too involves standard methodology. Having 
done the computations, I added my sample size recommendations to the 
report. I wrote also that there was some flexibility on both cutoff and sam-
ple size based on various assumptions, which I suggested we discuss. So far, 
so good.

I have noted that the analyses required of me were standard. In fact, I had done 
dozens of similar projects in the past. Where difficulties arose, they were fairly 
typical as well. As it turned out, all through my computations I felt uncom-
fortable with the results obtained. I felt they were not sufficiently robust. Here 
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this meant that the cutoff X found, along with the accuracy it yields, may not 
generalize to a new sample—one that had not been used to determine cutoff 
and accuracy.

Now you can expect that a cutoff optimized on a specific data set will not work 
as efficiently on a different data set. But if the first sample was large enough, 
or the separation provided by X between Positive and Negative on Score clear 
enough, the results obtained should more or less apply to other data as well. 
But this was not the case here, where the separation was unimpressive and the 
number of positive cases used for determining X was small. On top of all this, 
there was the issue of the kit's relative instability that had not been addressed.

Estimates are by definition estimates, and you can never truly know the extent 
to which they represent the population. As such, you cannot be sure of the 
degree to which results obtained with one sample will replicate in another. But 
based on experience, statistics, and intuition, I can gauge the degree to which 
I can trust my results. And in this case I did not. I felt that using the outcomes 
I had generated for planning the pivotal trial could easily result in failure of 
the latter.

So in addition to presenting my results to the client, I described my discomfort 
and provided some tables and graphs to back up my position. I then recom-
mended extending the learning phase of the study—the phase used for deter-
mining X. Specifically, I suggested that at least 50 additional positive cases be 
obtained and tested before moving on to the pivotal trial. And, recall, positive 
samples are particularly hard to come by. I wrote that this would provide more 
robust results and increase the Company's chance to plan the pivotal trial cor-
rectly. So while I gave the client what he asked for, I had also—in his view, at 
least—exceeded my mandate.

The particular individual I was working with is CEO of a small start-up. He is 
intelligent, experienced, and knows his job well. I had met with him several 
times, and on two occasions also met with his regulatory and scientific con-
sultants. I felt I knew enough to make the statements I did. At the same time, 
it was also clear to me that were the Company to follow my recommendation, 
development would be slowed and costs would rise.

While I had provided my suggestions based on solid statistical principles, I had 
little knowledge of the Company's overall strategy and the funds available to 
it. The CEO gently pointed this out to me in our conversation. He then added 
that the resources available to the Company could cover a pivotal trial but little 
more. The route I was recommending was simply impossible. In sum, he said, 
I had been asked to provide sample size requirements based on available data 
and should have stuck to what I was being paid to do. What he left unsaid is 
that I had put down my thoughts in a report for everyone to see.
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Throughout this book I have suggested that statisticians and other clinical trial 
professionals often stick their noses into areas outside their immediate exper-
tise. As a general rule, I firmly believe the projects will benefit by it. But rules 
have exceptions, and this may have been one of them. While my brief report to 
the CEO was statistically sound, it had major implications for the Company as 
a whole—implications that had not been asked about.

Now you can imagine that I have no definite formula for correct behavior in 
such situations, which can often arise when working with start-up organiza-
tions. I might, for example, have taken any one of a number of alternative 
routes, including these:

n	 Keeping to the task at hand and no more.
n	 Providing my “additional and less-than-welcome” opinion over the 

phone. Being more informal in this way, my suggestions may have been 
more palatable.

n	 Asking the CEO for a meeting with both him and one or two of the 
Company's directors to explain my position. This would have allowed 
him to decide who should be made aware of the information I was to 
impart.

Any of these might have worked, but, then again, they may not have. Unlike 
well-designed clinical trials, there are no control groups in life.



249

Note: Italicized terms in definitions indicate that the term appears in the Glossary.

Adaptive testing In a clinical trial, a design that enables adjustments to a trial design based on accumulating 
results.

Adverse event (AE) Unfavorable and unintended sign occurring to a subject in a clinical trial.

Aliquot In blood tests, refers to a portion of the blood taken. For example, dividing the sampled 
blood into four aliquots enables four different tests on it.

Alpha (α) In statistical testing, the probability of Type I Error—that is, of rejecting the Null Hypothesis 
erroneously.

Alternative Hypothesis In hypothesis testing, the alternative statement to the Null Hypothesis.

Analysis of covariance An analysis of variance in which a covariate—an extraneous variable to those of interest—is 
included to reduce expected bias associated with the covariate.

Analysis of variance (ANOVA) An inferential statistical technique for comparing between means of different groups.

Analysis Population See analysis set.

Analysis set In clinical trial data, a set of data to be analyzed. In a clinical trial there are often several such 
sets—for example, the set of all observed values, the set that includes imputed data as 
well, intent to treat, and so on.

Animal model An animal with a disease—naturally occurring or induced—that is either the same as or like 
a disease in humans. The animal is meant to serve as a (research) model for the human 
disease.

Anticipated adverse events An adverse event that is anticipated given the nature of the product/investigation.

Anticoagulant A substance meant to prevent blood from clotting.

Arm A group in a clinical trial—for example, “treatment arm,” “control arm,” and so on.

Autoimmune disease Disorders in which the body's immune system attacks healthy cells (as opposed to its normal 
function to protect from potentially harmful foreign substances).

Autologous cell therapy A procedure where the patient's own cells are removed and manipulated, and then returned 
to the patient for therapeutic purposes.

Bayesian design A type of adaptive design based on updating trial assumptions based on accumulating 
results.

Bench testing Testing in a simulated, nonhuman (virtual) environment—for example, applying specified 
pressure on a device to assess the amount of pressure it can withstand.

Beta in (hypothesis testing) In statistical testing, the probability of not rejecting the Null Hypothesis when it should be 
rejected. Also termed Type II Error.

Glossary
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Bias (in measurement) Having systematic error—for example, a thermometer that systematically overestimates 
temperature or a clinical trial aiming to assess the general population that includes 
young subjects only.

Biased estimate An estimate having bias.

Binary See dichotomous.

Blinding In a clinical trial, hiding information from participants to reduce the possibility for bias. See 
also double blind.

Brand-name drug A drug marketed under a specific manufacturer-selected brand name, often under patent 
protection (as opposed to a generic drug that is typically sold under the common name 
for a drug).

Case research form (CRF) Paper and/or electronic forms used for recording clinical trial data.

Central limit theorem In probability, a theorem describing the relationship between the sample mean and popula-
tion mean.

Central tendency The tendency of quantitative data to cluster around some central value (like mean and 
median, which are measures of central tendency).

Claim (label claim) A description in the medical product's labeling of what it can do (e.g., treat disease “X” with 
side effects “Y”).

Clinical meaningfulness Having clinical (medical) utility.

Clinical research associate 
(CRA)

Individuals responsible for trial monitoring and other administrative aspects of a clinical 
trial (e.g., instructing trial staff on study procedures).

Clinical significance See clinical meaningfulness.

Cluster analysis A statistical technique for discovering grouping (clusters) in data.

C-max The maximum concentration of a drug in the body (measured by pharmacokinetic 
analysis).

Coefficient of determination See Explained variance; R-square.

Comparator In a clinical trial, the product the investigational drug is compared to.

Compliance Used in various contexts to describe the degree to which instructions are followed—
for example, the degree to which a patient complies with the drug regimen 
prescribed.

Composite endpoint A single endpoint made up of a combination of two or more components—for example, 
some “overall score” computed from several relevant clinical endpoints.

Confidence interval A range within which a specific population parameter is to be with a specified degree of 
confidence (probability).

Confirmatory trial A controlled trial in which hypotheses are stated in advance and tested after data have been 
collected.

Confounding In a clinical trial, an extraneous variable that may affect the outcome and lead to erroneous 
conclusions (e.g., initial, baseline difference in Age between two groups in a trial).

Control group In clinical trials, a group used for comparison to the Treatment group—for example, a group 
receiving no Treatment for comparison to that receiving an experimental Treatment.

Correlation In statistics, a quantitative index for the relationship between variables.

Covariate In the context of clinical trials, variables other than Treatment that affect clinical outcome.
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Creatinine The broken-down (and no longer useful) form of creatine, an acid produced by the liver and 
providing some of the energy used by muscles. It is a waste product and is cleared by 
the kidneys.

Crossover design A longitudinal study in which the subject receives different treatments in sequence.

Cross-validation Testing a model/algorithm on the portion of a data set that was not used to construct the 
model/algorithm.

Data monitoring committee 
(DMC)

An independent group of experts that monitors accumulated clinical trial data, usually for 
the purpose of assessing trial safety. The precise responsibilities of a DMC are deter-
mined on a trial-by-trial basis and specified in the committee's charter. Also termed data 
safety monitoring board (DSMB).

Dependent variable A variable that is determined by independent (or explanatory) variables.

Descriptive statistics The area of statistics concerned with describing data quantitatively (e.g., mean, standard devia-
tion) and graphically (e.g., histogram, scatterplot).

Development plan An overall blueprint (plan) for developing a product—for example, a drug development 
plan.

Dichotomous (variable) Taking on two values—for example, a diagnostic outcome that can take on either “positive” 
or “negative.”

Dispersion (of data) In descriptive statistics, the variation in measurements in a sample or population.

Distribution A collection of values.

Dose-response Relationship between the quantities of a treatment given (e.g., dose of a drug) and biological 
response to them.

Double blind In a clinical trial, where neither the individual providing the treatment nor the person 
receiving it knows which of the study treatments it is.

Dropout In a clinical trial, an individual who drops out of the trial and so does not complete it.

Drug product The final form of the drug in packaging intended for marketing (includes both the active and 
inactive ingredients).

Drug substance The active ingredient in a drug.

Due diligence The process of evaluating the performance of a product, typically for investment 
purposes.

Dynamic randomization A randomization scheme that allows for (dynamic) adjustment during the trial to ensure 
equality of groups on characteristics of interest.

Effect size In statistics, a measure of the strength of the relationship between two variables—for 
example, the difference in effect between new and standard treatment or the ratio of 
their cure rates.

Efficacy In clinical trials, the capacity of a product to produce the desired effect—for example, a pill 
for fever possesses efficacy if it reduces temperature.

ELISA (enzyme-linked  
immunosorbent assay)

A biochemical technique primarily used to detect an antibody or antigen in (human) liquid 
samples.

EMEA European Medicines Agency.

Endpoint In a clinical trial, a measure of an outcome of interest. For example, (duration of) “survival” 
is an outcome of interest in many cancer trials.
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Enriched population A population in which there is overrepresentation of a group of interest. For example, in 
evaluating a diagnostic test, one may conduct a trial with more positive cases than are 
generally found in the population. This is typically done when positive cases are rare and 
a representative sample of a given size will yield to few positive cases for investigation.

Equivalence (trial) A trial with the primary objective of showing that the response to two or more treatments 
differs by an amount that is clinically unimportant.1

Equivalence margins Upper and lower margins (bounds) around a comparator, within which the new product 
must be to claim equivalence to the former.

Error of estimation See estimation error.

Estimation Using a sample statistic to estimate the true population parameter (which cannot be known 
precisely).

Estimation error The inaccuracy associated with estimating the value of a variable (e.g., cure rate of a disease, 
accuracy of a diagnostic method).

Ethical drug A drug dispensed only upon written instructions from a medical professional. When used in 
clinical trials, the term often refers to a branded drug that is under patent protection (as 
opposed to a generic drug).

Ethics committee See internal review board (IRB).

Evidence-based medicine Application of the best available scientific evidence to medical decision making.

Evolutionary cul-de-sac Evolutionary development to the point of perfect or near perfect fit to a specific environment. 
This is hypothesized to yield a small variation of genes in the population, which will not 
enable the population to survive changes to the environment.

Exclusion criteria Conditions that preclude an individual's participation in a clinical trial.

Explained variance The proportion of variation in a variable (or variables) that is explained via mathematical 
modeling by another variable or variables.

Explanatory variable See independent variable.

Exploratory trial A study designed to explore a phenomenon more than it is designed to test specific, well-
defined hypotheses about it.

FDA Food and Drug Administration.

First-line treatment Recommended initial therapy.

Formulation Pharmacologic substance prepared according to a formula.

Full analysis set The analysis set that is nearest that of intent to treat (ITT) given the circumstances.

General linear model A mathematical model that assumes a linear relationship between variables. It is the basis for a 
large number of frequently used inferential statistical methods such as analysis of variance.

Generalize, generalization  
(in a clinical trial)

The extent to which the findings of a clinical trial can be reliably extrapolated from the 
subjects who participated in the trial to a broader patient population and a broader 
range of clinical settings.2

Generic See generic drug.

Generic drug A drug typically sold under the common name for the drug rather than a brand name. 
Generic drugs have no patent protection as opposed to the branded drugs of which the 
effects they are meant to mimic.

1 ICH E9. (1998). Statistical Principles for Clinical Trials.
2 ICH E9. (1998). Statistical Principles in Clinical Trials.
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Gold standard The accepted standard. For example, in diagnostic tests, it is typically the most accurate 
measure in use.

Helsinki committee See internal review board.

Histogram A graphical technique in descriptive statistics presenting a frequency distribution with the 
aid of bars.

Hypothesis testing A statistical method for making decisions about populations from sample data. The method 
provides information on the likelihood that the observed patterns in the data reflect the 
truth in the (unknowable) population.

ICH International Conference on Harmonization.

Imperfect gold standard A gold standard measurement that is nevertheless relatively inaccurate (for a gold standard).

Impute In data analysis, the process of replacing missing measurements with estimates.

Inclusion criteria Condition for an individual's participation in a clinical trial.

Independent groups design A study in which different and unrelated subjects receive different treatments (as opposed 
to, say, a paired design).

Independent variable A variable of which the value determines that of other variables.

Inferential statistics The branch of statistics concerned with making conclusions about populations from 
samples.

Intended use population The population of all those for whom a medical product is intended (i.e., designed for).

Intent to treat (ITT) The analysis set that “includes all randomized patients in the groups to which they were 
randomly assigned, regardless of their adherence with entry criteria, regardless of the 
treatment they actually received, and regardless of the subsequent withdrawal from 
treatment or deviation from the protocol.”3

Intercept In linear regression, the point on the y-axis that the regression line crosses.

Interim analysis Any analysis intended to compare treatment arms with respect to efficacy or safety at any 
time prior to the formal completion of a trial.4

Internal review board (IRB) A committee (typically internal to a hospital or clinic) that is responsible for deciding 
whether a clinical trial as described in the trial's protocol is ethical and, if so, can be 
conducted. Decisions are made in accordance with the declaration of Helsinki.

Interval estimate An interval within which the true value of a population value is said to be (with a specified 
probability).

In vitro An artificial environment outside of living organisms. For example, in  vitro fertilization 
refers to fertilization taking place outside the body.

Ischemic stroke A condition in which the blood supply to the brain is cut off.

Kurtosis Degree of “peakedness” of a distribution of numbers.

Laboratory parameters Typically refers to the parameters obtained from blood tests, such as red and white cell 
counts, liver enzymes, and so on.

Last observation carried  
forward (LOCF)

A method to impute missing data by replacing a missing value with the last observed quantity 
measured on the variable in question.

Marginals In a frequency table, the sums of each of the rows and columns.

3 Fisher, L. D., et al. (1990). Intention to treat in clinical trials. In Peace, K. E. (Ed.) (1991). Statistical Issues in Drug Research and 
Development, pp. 331–350. New York: Marcel Dekker.
4 ICH E9. (1998). Statistical Principles for Clinical Trials.
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Mean Arithmetic average (summing all values and dividing by the number of values).

Measurement error The difference between the true value of a quantity (e.g., height) and that obtained by 
measurement.

Mechanism of action (MOA) The specific interaction with the body through which a medical product produces its effect.

Median The point in distribution above which and below which are located half the values in the 
distribution. The 50th percentile.

Model A description or mathematical statement used to represent reality more simply, such as a 
regression line representing the relationship between height and weight.

Monitoring (clinical trial 
monitoring)

Oversight activities for monitoring a clinical trial's conduct—for example, ensuring patient 
rights or ensuring data quality. Such monitoring is typically done by a clinical research 
associate (CRA).

Monoclonal antibodies Proteins made in the laboratory from a single clone of a B cell, the type of cells of the 
immune system that make antibodies.

Multiple testing Conducting more than one statistical test on a set of data, thus increasing the chance for 
Type I Error.

Multiple-arm trial A clinical trial with more than one arm—that is, with at least two treatments tested.

Multiplicity See multiple testing.

N Letter used to signify a trial's sample size (or that of a group/arm in it).

Natural history (of a disease) The course a particular disease usually takes.

Neurodegenerative Loss of neuronal (nerve cell) function or structure due to cells' death. Parkinson's disease 
and multiple sclerosis are examples of neurodegenerative diseases.

Neuron A cell of the nervous system found in the brain, spinal cord, and ganglia and nerves of 
peripheral nervous system.

Neuroprotection A mechanism or mechanisms that protect nerve cells from degeneration and/or death.

Neuroprotective Providing neuroprotection.

New drug application (NDA) The vehicle through which drug sponsors formally propose that the FDA approve a new 
pharmaceutical for sale and marketing in the United States.5

Non-inferiority No worse than a comparator or, more accurately, no worse than a comparator minus some 
margin (termed non-inferiority margin).

Non-inferiority delta See non-inferiority margin.

Non-inferiority margin The margin (delta) by which a product must be shown to be no worse than the comparator 
in a non-inferiority trial.

Non-inferiority trial A trial of which the aim is to show that a product is no worse than a comparator by a pre-
specified amount, termed non-inferiority margin.

Normal distribution A theoretical frequency distribution of data that is bell shaped and symmetrical about the 
mean and median.

Null Hypothesis In hypothesis testing, the initial stated belief about the value of a population parameter.

Objective performance  
criterion (OPC)

In a clinical trial, a quantitative criterion that the tested product must meet or exceed. The 
criterion is computed from a historical database, after matching cases from the historical 
database to those in the current trial.

5 FDA. http://www.fda.gov/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/
NewDrugApplicationNDA/default.htm.
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One-sided hypothesis A hypothesis that states a departure from the Null Hypothesis in a particular direction (in con-
trast to a two-side hypothesis specifying that the departure can be in either direction).

One-sided test See one-sided hypothesis.

Ordinal scale A scale of measurement that provides information on rank (e.g., first, second, third) but does 
not provide quantitatively meaningful distances between the ranks.

Outlier A value in a distribution that is numerically distant from the rest of the values.

Overfitting Fitting a model too closely to a set of data and thus modeling the error in it as well.

P See P-value.

P-value In statistical testing, the probability of obtaining the result observed by chance alone.

Paired design An experimental design in which (1) the same subjects receive more than one treatment or 
(2) the subjects receiving different treatments are paired based on relevant characteristics 
(e.g., Age, Disease History, etc.).

Pairing See paired design.

Partially randomized patient 
preference design

A clinical trial design in which subjects with strong preferences are allocated to their treat-
ment of choice, while those with no strong preference are randomized in the usual 
manner.

Performance The ability of a product to perform as intended. The term is used in various contexts— 
for example, the ability of a catheter to do as intended when used by the appropriate 
professional or the accuracy of a diagnostic test.

Pharmacogenomics An area of pharmacology dealing with the effect of genetic makeup on response to drugs.

Performance Goal In a clinical trial, a quantitative performance criterion that the tested product must meet or 
exceed. Performance Goals are often obtained from the scientific literature.

Phase I clinical trial First stage of clinical testing in humans. A Phase I trial typically includes relatively few 
subjects and is primarily concerned with assessing a product's safety.

Phase IIa clinical trial A term used in practice—but not officially defined—to describe an early Phase II trial. A trial 
that is generally more limited in scope than Phase II (or Phase IIb).

Phase II clinical trial Controlled clinical studies conducted to evaluate the effectiveness of the drug for a particular 
indication or indications in patients with the disease or condition under study and to 
determine the common short-term side effects and risks.6

Phase III clinical trial A large clinical trial of a product that has been shown to be safe and effective in earlier trials. 
Also termed a pivotal trial because it often determines whether the product will receive 
approval for marketing.

Pilot study A relatively small, preliminary study conducted in preparation for the main research. It is 
designed to provide data for planning the main research.

Pipeline A set of molecules, devices, or other (potential) medical products that a company has under 
development at a given point in time.

Pivotal trial Trial from which data will be used to make significant claims. For example, Phase III trials 
are pivotal trials.

Placebo A dummy medical treatment—that is, a pill that looks, feels, and swallows like one with an 
active ingredient but contains no such ingredient.

6 Food and Drug Administration (2010). ClinicalTrials.gov protocol data element definitions (draft). http://prsinfo.clinicaltrials.gov/
definitions.html.



Glossary256

Placebo effect An improvement in outcome due to patient's expectation that the treatment is effective, 
rather than to the treatment itself.

Plasma (blood plasma) A component of the blood; the fluid in which blood cells are suspended.

Point estimate A specific, single value obtained from a sample to estimate this value in the population. For 
example, the sample mean is one's best point estimate for the population mean.

Population (1) A collection of elements (e.g., people, animals, data) that have at least one characteristic 
in common (e.g., all are diabetics). (2) All units we wish to understand. For example, the 
population of all U.S. Type I diabetics includes all those in the United States who suffer 
from Type I diabetes.

Population parameter The value of a parameter such as the mean in the population. This can generally not be 
known precisely and is estimated from a sample.

Post hoc analysis Unplanned analyses; analyses decided on after the data have been collected.

Power See statistical power.

Power analysis A statistical technique used for determining the number of subjects needed to detect 
a phenomenon of interest (e.g., a difference between Treatment group and Control 
group).

Preclinical In clinical trials, relating to the stage of nonhuman research (e.g., animal studies). Despite 
the term's apparent meaning, preclinical research is often also done in parallel with 
clinical activities.

Predicate In device development, an existing device similar to the new device, to which the latter can 
be appropriately compared.

Prevalence (of a disease) The number of people living with a specific disease in a specified period of time.

Primary efficacy endpoint An outcome measure (endpoint) used for assessing the main desired effect of a medical 
product.

Primary endpoint An endpoint in a trial measuring the phenomenon associated with the trial's primary 
objective.

Prognostic factors Factors predictive of disease course/outcome. For example, metastasis (yes/no) is often an 
important prognostic factor in cancer.

Propensity analysis In data analysis, a method for assigning subjects in different Treatment groups to subgroups 
for the purpose of comparing similar subgroups in different treatments. The method is 
aimed at reducing bias associated with comparing groups that are dissimilar on other 
than the factor of interest (e.g., such as the treatment received).

Proportion of variance 
explained

A quantitative index of the degree to which one variable is dependent (or can be explained/
predicted) by another.

Protocol (clinical study 
protocol)

In a clinical trial, the document that describes the study's objectives, methods, procedures, 
statistical considerations, and so on.

Protocol violation In a clinical trial, instances where the trial procedures specified in the protocol are not 
precisely followed or applied.

P-value The probability of a statistical test having yielded a Type I Error.

Quality of life (QoL) A measure of the general well-being of an individual (e.g., a subject in a clinical trial).

Random error Error that results from chance variation and so has an equal chance of being high or low.

Randomization In a clinical trial, the process of assigning subjects or objects to a study group (e.g., Treatment 
or Control) on a random basis.
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Range The difference between the lowest and highest values in a distribution.

Ratio scale A scale of measurement that provides quantitative values of which the computed ratios are 
meaningful.

Reference In a clinical trial, the group against which the new treatment/method (test) is compared.

Referral bias In evaluation of a diagnostic method, referral bias occurs when only a certain subset of 
individuals (rather than a representative sample) undergoes a diagnostic method under 
investigation. Also termed “spectrum bias.”

Regression In statistics, a method (model) for describing the relationship between variables.

Reimbursement Method of payment for medical service, usually by a third-party payer (e.g., health mainte-
nance organization, Medicare).

Reliability In statistics, the degree of consistency of a measure—that is, the degree to which it produces 
similar results in circumstances where it should. For example, a reliable blood test will 
return similar results when repeated on the same blood. Repeatability and reproducibility 
are two types of reliability.

Reliable Having reliability.

Repeatability The consistency results when measuring under similar circumstances—for example, measur-
ing the same blood on the same day with the same instrument by the same operator.

Repeatable Having repeatability.

Representative sample In statistics, a sample of units being studied (e.g., patients) that reflects—is representative 
of—the population of these units.

Reproducibility The consistency of results when measuring the same object under different conditions—
for example, measuring the same blood using different machines from the same  
production line.

Reproducible Having reproducibility.

Responder analysis An analysis of data on a scale of measurement coded as “response” or “nonresponse” for 
each individual. The “responder scale” is dichotomous.

Risk analysis In a medical product, analysis of its relative risks and benefits.

Robust Relatively insensitive to change in conditions. For example, a robust model is one that fits 
reasonably well across different samples of data.

Route of administration A way of administering a drug into the body (e.g., via pill taken orally, subcutaneous 
administration).

r-square (r2) See explained variance.

Sample A subset of the population.

Sample size The number of units (e.g., animals, subjects) participating in a trial.

Sample statistic A statistic such as the mean or standard deviation that is computed with data from a 
sample.

Sampling The process of selecting units (e.g., subjects, objects) from a population to create a sample.

Sampling distribution Distribution of sample statistics such as the mean.
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Sampling error The error caused by observing a sample rather than the whole of the population.

Scatterplot A graph of plotted points to show the relationship between two sets of data in two-dimensions 
(x-axis and y-axis).

Scientific method A systematic method of research involving collection of data for theory building and 
(hypothesis) testing.

Secondary endpoint Either supportive measurements related to the primary objective of the trial or measurements 
of effects related to the secondary objectives.7

Sensitivity In a diagnostic test, the proportion of positives that are correctly identified.

Sensitivity analysis In data analysis, simulation of the degree of which results are robust by systematically chang-
ing assumptions and repeating statistical analyses under each.

Serious adverse event (SAE) In a clinical trial, any untoward event that is at least one of the following: leads to death, is 
life threatening, requires hospitalization or prolongation of hospitalization, results in 
persistent or significant disability/incapacity, is a congenital anomaly/birth defect, or 
requires intervention to prevent permanent impairment or damage.8

Single-arm trial A clinical trial in which all subjects receive the same treatment.

Skewness Degree of symmetry (or lack of) in a distribution of numbers.

Sleep apnea A disorder characterized by pauses in breathing during sleep.

Specificity In a diagnostic test, the proportion of negatives that are correctly identified.

Spread (of data) Dispersion of data (measured by statistics like the standard deviation).

Standard deviation A value computed from data that measures variation, or dispersion, in it. Dispersion is 
considered relative to the data's mean.

Standard error The estimated standard deviation of a sample statistic such as the mean.

Standard error of estimate In regression, a measure of the model's error in prediction. Conversely, the accuracy of the 
regression model's prediction.

Standard of care The accepted, most common treatment for a disease.

Statistical analysis plan (SAP) A document that contains a more technical and detailed elaboration of the principal features 
of the analysis described in the protocol and includes detailed procedures for executing 
the statistical analysis of the primary and secondary variables and other data.9

Statistically significant A result that is unlikely to have occurred by chance (i.e., is likely to reflect the truth).

Statistical power (1 – β) The capability of a test to detect a real phenomenon (e.g., positive effect of a drug). In hypoth-
esis testing it is the probability of rejecting the Null Hypothesis when it should be rejected.

Statistical testing See hypothesis testing.

Stenosis A narrowing, typically used in reference to blood vessels.

Stent A tube inserted into a tubular part of the body (e.g., blood vessel) to provide support. In the 
case of blood vessels, it is aimed at allowing more unobstructed flow of blood.

Stratified assignment See stratified randomization.

7 ICH E9. (1998). Statistical Principles for Clinical Trials.
8 http://www.fda.gov/safety/medwatch/howtoreport/ucm053087.htm.
9 ICH E9. (1998). Statistical Principles for Clinical Trials.
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Stratified randomization Randomization done separately within two or more subsets based on subject characteristics 
(strata) aimed at “equalizing” groups/arms so that any subsequent differences can be 
attributed to treatment.

Subgroup analysis In data analysis, comparing subsets of subjects in order to identify patterns in the data.

Substantial equivalence Considered the same. Substantial equivalence of a new product to a comparator is shown by 
demonstrating similarity on key attributes (e.g., safety and efficacy).

Superiority Being better than another. In clinical trials, aiming to show one product (drug, device, 
etc.) better than a comparator (other product, placebo, etc.) on an attribute of interest  
(e.g., safety, efficacy).

Surrogate endpoint A biomarker intended to substitute for a clinical endpoint10; for example, in oncology, where 
Tumor Size is often used as a surrogate for Survival.

Survival analysis Analyses involving time to event data—for example, time to death, time to ulcer closure.

Test In a clinical trial, the product being tested (typically versus some reference).

Treatment group In a clinical trial, the group of subjects receiving an investigational treatment.

Trend toward significance “Near significance” is often defined as outcomes of statistical testing that produce P-values 
greater than 0.05 and less than or equal to 0.10.

Two-sided hypothesis A hypothesis that states a departure from the Null Hypothesis in two directions (e.g., either 
higher or lower). In contrast to a one-sided hypothesis.

Type I Error Rejecting the Null Hypothesis erroneously.

Type II Error Not rejecting the Null Hypothesis erroneously.

Unbiased Not having bias. See also bias.

Urea A waste product produced by the body's metabolizing of protein, which is secreted into the 
blood and removed by the kidneys.

Valid Having validity.

Validate To demonstrate validity.

Validity In clinical trials, the extent that a measure (or model) measures what it intends to measure; 
for example, a valid animal model of a disease is one that provides useful information 
on the human form of the disease.

Variable An object (person, place, thing, etc.) that can take on more than one value; for example, 
Diagnosis is a variable that can take on “positive” or “negative.”

Variance A measure of spread. The square of the standard deviation.

Verification bias See referral bias.

Vital signs Measures assessing the most basic body functions, such as body temperature, pulse rate, and 
respiration rate.

Washout period Period it takes for a drug to be completely cleared from the body.

10 Biomarkers Definition Working Group (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. 
Clin Pharma Col Ther, 69, 89–95.
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