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Introduction

During the course of the past few years, it became evident that the purely algebraic
concept of homological dimension was closely reiated to the set theoretic foundations of
mathematics. The classical uses of various homological dimensions in ring theory were in the
study of commutative noetherian rings and finitely generated modules over them—the com-
mutative algebra arising from algebraic geometry. The outstanding result obtained by these
methods was the theorem that a regular local ring is a unique factorization domain, a proof
of which (due to I. Kaplansky) is in these notes, Chapter 1, §3 and Chapter 2, §4. How-
ever, once finiteness conditions such as noetherian rings or finitely generated modules were
dropped, entirely different phenomena occurred. Collected here are some of these. For ex-
ample, if R denotes the real numbers, the projective dimension of R(x,,x,,x3) asan
R[x,, x,, x;]—module is 2 <= the continuum hypothesis holds. And if V' is a countable
dimensional vector space over R, the global dimension of Homg(V, N =k+1 <= %0 =
R, . Using the same techniques for modules over small additive categories, B. Mitchell ob-
tained similar results on the vanishing of li(r_n(k). His attack is sketched here.

Because set theoretic manipulations obviously play an important role in obtaining such
results, an appendix on elementary set theory is included. For those to whom the axiom
of choice and cardinal and ordinal arithmetic are mysterious things they know about but
still don’t really understand, the appendix may not clear up the mystery but it will give the
results necessary in a reasonably short space.

These notes were prepared for a series of ten lectures given at the American University
June 20—25, 1971. The bulk of the lectures were on projective dimensions of ‘‘very large”
modules as given in Chapter 2. Chapter 1 and the appendix were included for reference
and in general only referred to in passing or in private conversations. The material on flat
modules (Theorems 1.29 to 1.34) seemed to be referred to most frequently although other
portions of these presumably familiar sections were of use to some people in attendance.
Some, such as §3 of Chapter 1, were incorporated into the talks. Since there seemed to be
a feeling that having basic results and definitions readily at hand was of value, the purely
background listing of Chapter | and the Appendix were left in the final form of the notes.

Although the material in these notes is not new, there are several places where exist-
ing work has been simplified. For example, a commutative local nondomain of global
dimension 3 is described without reference to analysis, and the dimension of a quotient
field of a polynomial ring rather than a regular local ring is calculated. A derivation of
Tor one step at a time without the usual derived tunctor machinery is included in Chapter

vit



2, §2. The author is grateful to A. Zaks for pointing out this approach.

The author wishes to thank the American University, Professor Mary Gray, the
National Science Foundation, the Conference Board of the Mathematical Sciences, and all
the participants for their contributions to making the Regional Conference the enjoyable

experience it was.

Barbara L. Osofsky

Rutgers University
New Brunswick, N.J.
1971
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CHAPTER 1
Introductory ring and category theory

This chapter lists basic results about rings and modules and categories with which the
reader is presumed familiar. All definitions and notations are listed in § 1, which also in-
cludes some examples, and basic results are obtained in § 2. Since many of the results in
Chapter 2 have been obtained in more general categories than modules over a ring, definitions
will be given in the language of categories and then specialized to the case of modules.

Proofs of the equivalences of the two definitions will be left to the interested reader. Set
theoretical notations and definitions are in the Appendix which starts on page 71. The
reader is particularly referred to functional notation on page 74, 15(b). Functions are written
on the left unless underscored.

§1. General definitions, notations, examples.

1. Definitions. (a) A monoid (X, o} is a set X together with a binary operaton o
on X satisfying Vx, y, z € X:
(i) xoy)oz=x0(yoz) (thatis, o is associative).
(i) de€ X, xoe=eox=x (e is called the identity of X).

(b) Let (x, °) and (y, A) be monoids. A monoid morphism (or map) from X
to Y is a function f: X > Y such that Vx, x' € X, f(x o x") = f(x) A f(x') and fey) =
ey where ey is the identity of X and ey the identity of Y.

2. Notation. (a) Let (X, o) be a monoid. If there is no danger of misunderstanding,
x o y will be written xy. The identity of X will be denoted by 1, or e, orjust 1 or e
if X is clear. The monoid will often be called X when o is understood.

(b) If X and Y are monoids, f: X ~» Y will mean f is a monoid map.

3. Example. Let C be a category, X € |C| = the class of objects of C. Then
C(X. X) is a monoid.
4. Definitions. (a) A group (G, °) is a monoid such that

(i) VXEG Iy EG xoy =yox =e y is called the inverse of x

and written x7 !,

(b) A group morphism f: G > G’ is a monoid morphism from one group G to
another group G'.
5. Notation. G will denote the category of groups and group morphisms with com-
position = composition of functions.
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6. Definition. A monoid X is called commutative or abelian if
(iv) Vx, ¥y € X, xy = yx (commutative law).

7. Notation. (a) 1If G is an abelian group, the group operation is usually written +,
the inverse of x is written — x, and the identity of G is written 0. In general, no sub-
scripts are used on these symbols even though the + and O of several groups may be in-
volved. + is called addition and read “plus”.

(b) Ab denotes the category of all abelian groups and group morphisms.

8. Examples. (a) Let X be a set. The set of all bijections X < X forms a group
under composition of functions. It is called the group of permutations of X. If X is finite,
X | = k, then it is also called the symmetric group on k letters.

(b) Let N denote the nonnegative integers, Z the integers, Q the rationals, R
the reals, and C the complex numbers, all under the usual operations of arithmetic. Then
(N, +) and each set under times are commutative monoids but not groups; each of the re-
maining sets is a group under +; and R — {0}, Q — {0}, and C — {0} are groups under times.

(c) Let RT denote the positive reals under usual multiplication. Then for any
r € R*, the function f: R > R", f(x) = 7* isa group map. If r # 1, f! is the function
log,.

9. Definitions. (a) A ring is a triple (R, +, -) where (R, +) is an abelian group and
(R, ) is a monoid, and the distributive laws x{(y + z) = xy + xz, (x + y)z = xz + yz hold.
The identity of (R, <) is denoted by 1.

(b) A ring (R, +, *) is called commutative if (R, *) is a commutative monoid.

(c) A ring (R, +, -) is called a division ring or skewfield or sfield if (R — {0}, *)
is a group.

(d) A commutative division ring is called a field.

(e) If (R, +, ) and (R', +, +) are rings, a ring morphism f: R > R’ is a func-
tion which is a monoid morphism on both (R, +) and (R, *).

10. Notation. R will denote the category of rings and ring morphisms.

11. Examples. (a) (Z, +, +) is a commutative ring; (R, +, +), (Q, +, *) and
(C, +, <) are all fields.

(b) Let X, Y € |Abl. Define + on Ab(X, ¥) by (f+g) (x)=f(x) +g(x)
forall f, g€ Ab,x € X. Ab(X, Y) is an abelian group under this operation.

(AB(X, X), +,°)€ R, VX € |AbI.

12. Definition. (a) Let (R, +, <) be aring. A right R-module is a triple (M, +, A)
where (M, +) is an abelian group and A is a function from M X R —~ M satisfying
Vr,sER x, yEM

Hx+y»yAr=xAr+yAar
[ yA@r+s)=pAr+yAs
(ilil) x Ars=(xAr)As

(iv) x Al =x.
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(b) A left R-module is a triple (M, +, A) with A: R X M ~ M satisfying the
left sided analogues of the definition of right R-modules.

(c) An R-morphism or R-map from a module (M, +, A) 1o a module (N, +, *)
on the same side is a group morphism f from (M, +) to (V, +) satisfying f(x A r) =
fx)#r (or (r Ax)f=r*xf).

13. Notation. (a) R-morphisms will always be written on the side opposite scalars
(= elements of R). Thus for left R-modules, a morphism will be f€ S°P. This makes the
morphism condition look like the associative law. -

(b) M will denote M is a left R-module. M, will denote M is a right R-
module.

(c) gM (resp. Mg ) will denote the category of left (right) R-modules and R-
morphisms. HomRM(M, N) will be denoted Homy (M, N) or Hom, (M, . N). Similarly,
HomMR(M, N) = Hom (M. N ) = Hom, (M, N).

14. Examples. (a) Any abelian group M is a Z-module (on either side) under n + x =
x + o +x (ntimes) for n€EN~- {0},0-x =0, (—n) x=n(-x).

(b) Any ring is both a right and left module over itself under ring multiplication.

(c) A vector space is a module over a field. Q, R, and C are all vector spaces
over Q. A linear transformation is an R-morphism of vector spaces.

(d) Let R be a commutative ring. Then any M € , M is also in M, under
xr=r-x Vx€M reR

(e) Let M€ M, A = Hom (M, M). Then A isaring and M is a right A-
module.

() If M€ My, A = Hom, (M, M) then M is a left A-module.

15. Definition. Let R and S be rings. An R-S bimodule M is a left R, right S
module such that Vx EM, r ER, sE€ S, (rx)s = r(xs).

16. Notation. My will mean M is an R-S bimodule.

17. Examples. (a) Forany M, A= Hom, (M, M), we have M . If M isa vector
space, A is called the ring of all linear transformations on M.

(b) If R is commutative, any M isan R-R bimodule as in 14(d). This is
called the natural bimodule structure of M.

18. Definition. (a) A category A is called additive if A(X, Y) is an abelian group
VX, Y € 1A and for all maps f, g € A(X, Y), I € A(Y, Z).h€ A(Z', X), we have
(ftgoch=fohtgohand [o(ftg)=lof+log,

(b) An additive functor £: A > B where A and B are additive categories is a

functor such that Y7, g € A(X, ). F(f + g) = F(f) + F(g).

19. Examples. (a) Ab, oM, and My are additive categories. The embeddings
M~ Ab, Mp = Ab are additive functors. If R is commutative. M = M, as in 14(d)
and f— f gives an additive functor o M= M, which is contravariant under our conventions.

20. Definition. A cagetory C is called small if C is a set. The category of small
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categories has functors for its maps, which are composed by writing on the left. Note that
G, Ab, R, S are not small and so in our set theory they cannot belong to any category.

Note also that C is small if and only if IC| is a set.
21. Examples. (a) A monoid is a category with one object.
(b) A ring is an additive category with one object.
(c) A poset X set can be considered as a small category x such that Vx, y€
X, x(x, ) U x(y, x) has at most one element. It is a chain if x(x, y) U x(¥, x) has precisely
one element. Moreover, if x is a category such that ¥x, y € | x!, x(x, ) U x(», x) has at
most one element, then one gets a partial order < on Ixl by x <y <> x(x, y) # &.

22. Notation and intuitive definitions. (a) A diagram is a collection of *‘vertices”
(objects in a category () and “‘arrows” (representing maps in the category () such as

A~ B 4l A->B
G v 7 (i) wl G v
C D<C c

o

where a dotted arrow is a map to be found. Thus in (i) we have maps (elements) in
C(4, B), C(4, €), and C(C, B); in (ii) f€ C(B, A),uc C(4, D),g€ C(C, D) and v €
C(C, B); and in (iii) we have maps in C(4, B) and C(4, C) and must produce a map in
C(C, B).

(b) A diagram is said to commute if any way to get from one vertex to another
yields the same map. We write 4 > C > B=4 — B if (i) commutes: c5 B L>A R
D=C%5D or ufv =g if (ii) commutes; and 3g:C - B such that (iii) commutes. In the
last case, we say the diagram (iil) can be completed to a commutative diagram. Note that
except in S, when maps are underlined, we compose maps as if we were writing functions
on the left.

(c) A = B factors through C means we have a commutative diagram of the form
(i) or (iii).

(d) A diagram written all in one row or column as

A->B~->Cor *+=>A>B~>- or

- KN« O

is called a sequence.

23. Definition. Let C and D be categories, F and G functors from C to D (say
both covariant). A natural transformation n: £ = G is a family of maps
{n, € D(F(4), G(4))14 € IC ]} such that Vf: A > BE C,
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Fa) —L— F)

N

64y —L 6s)

commutes.

24. Examples. (a) Let C be any small category, D any category. The class of all
covariant functors from C to 7 with natural transformations as maps forms a category
called the functor category DC.

(b) If C and D are additive, the category of all additive covariant functors from
C to D and natural transformations will also be denoted DC.

(c) Let R be a ring (= additive category with one object). Let F € |ABRI,
F(1)=1,. Then Vr, sER, F(r) € AbM, M) and since F(rs) = F(r)F(s) and F(r + s) =
F(r) + F(s), Vx €M, F(rs)x = F(r)(F(s)x) and F(r + s)x = F(r)x + F(s)x. That is, F
gives a left R-module structure on the abelian group M. Moreover, if N is any left R-
module, F(r) = left multiplication by r in Ab(V, N) is a functor: R > Ab. Thus
[ABR | o le M 1. Now let n be a natural transformation: F = G, M = F(1), N = G(1). Then
n € Ab(M, N) and, Vr € R,

M_n_.,N

E(r) l , 1 G(r)
M—N

commutes, that is G(r)n = nF(r). If x €M, r - nx = n(rx), or r(xn) = (rx)n. Thatis, 1
is an R-homomorphism. One conversely sees that the statement _f € Hom, (M, N) is
precisely the statement that f is a natural transformation from F to G, so AbR M
Similarly, MR © éﬁ)_R

(d) If C is any small additive category, CM = AbC behaves very much like left
C-modules for C a ring, except that each module is an indexed family of abelian groups.
Many arguments for M go over to this case and yield interesting results. Right C-
modules are the category AL,

25. Categorical deﬁn?t?c;ns. If a definition consists of a pair of definitions, the first is
for an arbitrary category C, the second is what it reduces to for special categories. Notation
is introduced where necessary, and will be used in the sequel. Let f: 4 > B.

(@) fin C is an epimorphism or epicif Vg h: B~ C, 4 Ay ;-g;’ C commutes
=g=h, thatis gf=hf=>g=~h.

@) fin M G,.or S is epic if f is onto. The situation in R is more com-
plicated.

() f in C is a monomorphism or monic if Vg, h: C - A4,
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r
ct- 455

N

commutes = g = h, thatis, fg =fh=>g=h

(b") fin G, R, oM, or S is monic if f is I-1.

(c) fin C is an isomorphism if 3g: B > A4 such that fg =15 and gf=1,. We
write f: A = B or simply A = B if f is understood.

(c') fin G, M, or S is an isomorphism if f is a bijection.

(d) A subobject of C € IC| is a monomorphism 4 = C. 4 > C will be denoted
A C C in spite of the fact that this notation ignores the map which is the subobject and not
all subsets are subobjects. The meaning of C must be inferred from the context.

(e} A subobject in S is a subset. A subgroup of G in G (or Ab) is a subset
H of G such that e € H and Vx,y €H, xy and x ! €H. Asubringof R in R isa
subset § of R such that (S, +) is a subgroup of (R, +),1 €S, and Vs, teES, ste s.
A submodule of M in M (Mg) is a subgroup (¥, +) of (M, +) such that VreR, nEN,
m €M (nrEN). A submodule of R is called a left ideal, a submodule of R, is called a
right ideal.

(f) A quotient object of C in C is an epimorphism C - A.

(f)Llet GEG. If A,BCG, let AB= {abla€ A, b € B}. A subgroup H of
G is called normal if Vx € G, xHx ! = H. If H is a normal subgroup of G, the quotient
group G/H is {HxIx € G} under multiplication Hx + Hy = Hx - y. The map v: G - G/H,
v(x) = Hx is called the natural map: G > G/H. Let R€ R. A subset / CR is called an
ideal of R (= two-sided ideal) if 7 is a right and a left ideal of R. If I is an ideal, the
quotient ring R/ is the quotient abelian group together with the multiplication
I+ +s)y=1+rs. If M€ M, a quotient module M/N is a quotient group where N
is a submodule of M and (N + x) =N+ rx forall xEM, r €R.

(g) im f is a monomorphism: 1 B such that f factors through u and if
f factors through the monomorphism C - B, the u factors through C— B, thatis

I .3
c
commutes implies u factors through C - B.
(') In S, G, Ab. o M, im f = the class (set) of values of f.
(h) X € IC1 is called an initial object if VY € ICI, 31 f: X > Y. X is called a
terminal object if Vyeicl g Y > X. X is called a zero object if it is both an initial

and a terminal object. In this case X and any map X = Y or Y - X or any map which

A
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factors through X is called 0.

(i) Let C be a category with 0. The kernel of f, ker f, is a map K - A such
that fo kerf=0 and VL 2,4 with fg=0, 3'h:L > K such that

!

K—A—8

B!h?ﬁ/

L

commutes, The cokernel of f, coker f, isa map B — C such that 4 —f*B - (C is 0 and
VB £ L with gf=0, 31h:C— L such that

commutes.
(') In G, Ab, oM, ker f= {x € Alf(x) = e (or 0)}. coker f= B/im f in
AD, g M.
(j) Let X be an object in a category C, S a set, S—f—> X a set map. X is
called free on S if VY € C and Vg: S—>Y€ES Fth: XY in C such that
f

§—X

SN I
Y

commutes.

This may be rephrased as follows. If C is a subcategory of S and F = the forgetful
functor: C — S taking underlying sets, thenif F has a left adjoint U, U(S) is free on S
where f: S = U(S) is the element of S(S, U(S)) corresponding to lU(S) in C(U(S), U(S))
under the adjoint isomorphism S (X, F(Y)) = C(U(X), Y). (See 31, page 12.)

GyMe g M is called free with free basis B if B = {b.li€ 1}C M such that
VYmem 3 {i), ---,ik}e I and {ry, == ,rk} C R such that m = robi ot by

k _ . .
and TE, rb; =0=r=0 Y/

i

(k) Let {4 - A i€ 1} be a family of maps of C with common domain.
This family is called the product of the family {A’.Ii € T}, and written erl A, if for
every family {B ~> Al.li € 1} of maps with common domain, 3'h: B —> A4 such that
Vie1,

m
A —— 4,
Ith
{
B
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commutes. The , are called the projections of the product.
k) In S, G, oM, R, the product of a family {4 i€ T} is Xc1 A, together
with coordinatewise operations and set projections.
(1) The coproduct of a family {Aili € 1}, written UieI Ai , is a family of
injection maps {j: A4, ~ UieI Ai} such that for every family {4, - B} Ith: UAI. -> B
such that
A, SIEN 14,

/

\ L

B

commutes Vi€ T. If T has two elements, we also write 411 B.

(') In S, U4, is the disjoint union of the A,. In M, U1 A4, HA4,) is
also denoted éBiEI A, (A, ® A4,) and is the submodule of HieI A, such that {f) €
Bec14,=/" OV'i. 1t is in this case called the direct sum of the A;. The injections
take x € 4, to that element of the product with ith entry x and all other entries 0.

(m) Let (I,<) be a poset. Let {n A, > A, li </} be a family of maps in C
indexed by < such thatif i=j 7 = ly,; ?nd z <k => T Tip = Tix . Such a family is
called a direct system indexed by I {4, Ji A4 6 1} is called the colimit of the
family, written 4 = IL"}I A, if each dlagram

A————>A
\/

commutes and ¥ {A‘f - Bli € T} such that

A——»A
\/

commutes, 3'h: A -~ B such that

A—————’A

N4
;3/

commutes. If T is a directed set, IirRAi is called the direct limit of the Ai or the inductive
limit.

(n) Let (1, <) be a poset and {Tr'.j: 4, + A],|i </} be a family of mapsin C
indexed by I°P suchthat m,=1, and i <j<k=m;m, =m,. Suchafamiy is called an
inverse system. {ni: A~ Al.li € T}is called the limit of the family, written A = yﬂ]l A
if each diagram
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Ai<———AI.
\,/

commutes and YV {B~ A, li € T} such that

A, ——4,
\B/
commutes, 3'%: B~ A such that
A; "‘———Aj
\‘\\A/
\ '3
I

B

commutes. If T is a directed set, l(iin_Ai is called the inverse limit or projective limit of the A;.
(o) A sequence *++ >4 > B—> C—> +++ of maps in a category with O is called
exact if for any vertex having a map in and a map out, the kernel of the outgoing map =
the image of the incoming map. Either of the sequences 0 >4 >B~>C—->0 or 4 >B~>C
is called a short exact sequence (s.e.s.) if it is exact.
(p) () Ans.es. B => C—> 0 is called split exact (or splits) if 3i:C - B
such that C — B > C= leo.
(i) Ans.e.s. 0> A4 <> B is called split exact (or splits) if 3n:B—> 4
such that 4 5B -5 4 = 1,.
(iii) Ans.e.s. 0> A4 > B> C— 0 is called split exact (or splits) if 0~
A->B or B> C— 0 splits.
(@) P € C is called projective if Vses. B>C-0and f: P~ C, Jg. P-4

such that
P
/
/
f
lg 7
S/
B C 0
commutes.
(t) 1 € C is called injective if Vses. 0>A4>B and 1 4~>1, 3g:B~>1

such that

0——A4—B
/

cominutes.
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26. Exercises. (a) Each primed definition in 25 for a specific category satisfies the un-

primed categorical definition.

(b) In 25(f"), if NV is a subset of M € G, R, or p M, then the cosets Nx or
N +x of N form a quotient object under the given operations <= N is a normal subgroup,
ideal, or submodule of M respectively. In fact, the kernel of any homomorphism in G is a
normal subgroup, and in RM is a submodule.

(¢) In 25(p), if 0> A > B> C— 0O isans.es. then 0 > 4 ~ B splits < B ~>
C ~ 0 splits = {u:A4 > B, i:C~ B} isacoproduct of 4 and C = {v. B~ ( n:B > A}
is a product of 4 and C

27. Intuitive definition. A map f: A - B or family of such is said to satisfy a unique
mapping property (UMP) with respect to a property P if f satisfies P and for all g satisfy-
ing P,3'h such that one of f=gh, f= hg, g = fh or g = hf holds (which one depends
on P).

28. Remark. Let f. A~ B satisfy a UMP with respect to P. Then f is unique up to
isomorphism in the sense that if g: C - D also satisfies the UMP with respect to P, there
exists an isomorphism 8 such that f=6g or f=g68. We check this in one case, all others
are the same. If

!

A——B
I
; g

is the UMP diagram, then

23w S f
i
A
is also the UMP diagram and then
4L B
1, i kh
A4 0
s f
H
A

is the UMP diagram, so by uniqueness 1, = KW' h Similarly, 1,,= hh'. Thus kernels, coker-
nels, images, products, coproducts, limits and colimits are all unique up to isomorphism.

29. Examples. There are natural categories of certain sets and their “nice” functions
which show that unprimed definitions in 25 may not agree with the primed ones.
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(a) Let f:R—>S €R. If K, denotes the kernel of f in Ab, then K, is
an ideal of R. However, the kernel of f in the category R is not defined since all ring
homomorphisms take 1> 1 so R has no zero object. In spite of this, Kf is usually
called the kernel of f

(b) If G isagroupand H a subgroup of G, then coker (H —~ G)= G/H
where H is the smallest normal subgroup of G containing H.

(c) The imbedding Z -+ Q is an epimorphism in R since any ring homomor-
phism of Q is either O or an isomorphism (Q has no ideals other than Q and 0). This
map is clearly not onto. Similarly, in the category of Hausdorff spaces and continuous
maps, Q > R is epic since Q is dense in R.

(d) Let C be the category of connected Hausdorff spaces with base points and
continuous maps taking base point to base point. Then f: (X, x,) = (Y, y,) is monic if
f is locally 1-1. Thus the projection of the helix (cos 6, sin 8, 6), (0, 0, 0) in Euclidean
3-space onto the x-y plane is monic but not 1-1. We verify that locally 1-1 implies
monic by showing that if

g
Z, zy) 'T—i (X, x4)

satisfy fg=/rh, then U= {z € Z|g(z) = h(z)} is both open and closed. Since it contains
z, and Z is connected, then U=Z and g=h If z€ U let N be a neighborhood
of g(z) on which f is 1-1. Then g~ '(N) N A= Y(N) is a neighborhood of z contained
in U If z; isin the closure of U and N isany netin U converging to z,, then
g(N) converges to g(z,) and h(N) converges to h(z,) so g(z,) = h(z,) by the Haus-
dorff property. Hence U is closed.

Problem. What are the monic maps in this category? Locally 1-1 is not necessary.
For let X be the subspace of the Euclidean plane consisting of all points with polar coor-
dinates (r, 1/n),— 1/n <r < 1/n for n a positive integer. Taking (0, 0) as base point,
let f:X~R2, f(r, 1/n)= (r, 1/n) for r= O’fl{(r,]/n)l—l/n<r<0} a homeomorphism
with the interval {(r, — 1/n)|0 < r < 1/n} U the arc {(1/n, 6)|— 1/n < 8 < 1/n} such that
f(0,0)= (0, 0), f(- 1/n, 1/n)= (1/n, 1/n). One easily verifies that f is continuous, monic
in the category of connected spaces with base point, but not locally 1-1.

(e) In the category of topological spaces and continuous maps. for any set S

with at least 2 elements, let S; and S, denote the space S with the indiscrete topology
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(S and & open) and the space S with the discrete topology (every subset open). Then
1,:8; = §; isa l-1, onto, epic and monic continuous map which is not an isomorphism.

(f) Of course, in any subcategory of S, 1-1 = monic and onto = epic. Also, in
any abelian category, monic + epic implies iso.

30. Definition. Let C be a category. The representable or Hom functors on C are
the functors Cy = Homp(X, ) (covariant) and cX= Home( , X) from C to S (or
Ab if C is additive) defined by VY € [Cl,f € C(Y, Z), Cx(Y)= Hom((X, Y), CX(Y) =
Hom (Y, X), C(): Home(X, ¥) > Homp(X, Z),C¥(f) : Hom(Z, X) - Hom(Y, X) are
composition of functions, that is Va:X -7, Cy(Na= fa and Ve:Z - X, cX()B = Bf.

31. Let C and D be categories, F a functor: C—> D, G a functor: D~ C. F isa left
adjoint of G if the functor: CX D - S given by (4, B) > D(F(A), B) is naturally iso-
morphic to (4, B) > C(4, G(B)).

32. Definition. Let C and D be additive categories, F an additive functor from
CtoD, 04->B~>C—-0 ans.e.s.in C.

(a) F is called left exact if 0= F(0) > F(4) > F(B) > F(C) (or 0~ F(C)~>
F(B) ~ F(4)) is exact. _

(b) F is called right exact if F(4)—> F(B)~> F(C)~> 0 (or F(C)~> F(B)~
F(A) » Q) is exact.

(c) F is called exact if 0> F(4)=> F(B)—~> F(C)~> 0 (or 0~ F(C)~> F(B) >
F(A) > 0) is exact.

(d) F is split exact in the sense that if 0 >4 - B~ C— 0 is split exact, so
is 0> F(4) > F(B)~ F(C)~> 0 (or the reverse).

33. Definition and notation. (a) Let M € My. N C M is called essential or large
in M, written NC'M, if VK#0CM KNN#0. Alternatively, NC' M if 0~
N-> M is exact, and Vf:M ~ Q, fi monic > f monic.

(b) Let M€ ;M. N C M is called superfluous or small in M if VK+#0C
M, K+N=M=K=M Alternatively, N is small in M if for v the natural map:

M- M/N, f:Q = M, vf is epic — f is epic.

(c) For M€ Mg, an injective hull of M, E(M), isans.e.s. 0> M > E(M),
where E(M) is injective and i(M) C ' E(M).

(d) For M€ Mg, a projective cover of M isans.e.s. P(M) LM >0 where
P(M) is projective and ker u is small in P(M).

34. Definitions. Let R be aring, M€ My.

(a) M is called finitely generated (f.g.) if it is isomorphic to a quotient of a
free module on a finite set. Alternatively, M is f.g. if 3)‘1 , v, x, €M such that
Veem Hrl, <o+ .1, €ER with Tixr,=x

(b) R (M) is called right artinian if Ry, (Mp) has d.c.c. on submodules.

(c) R (M) is called right noetherian if Rp (Mp) has a.c.c. on submodules.

35. Definitions and notation. Let M € Mgy (or G—replace 0 by e in ().
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(a) M is called simple if NCM=N=M or N=0 (¥ assumed normal in G).
(b) A sequence 0=N, CN, CN,C--CN, =M is called a normal sequence
of length A for M (in G, each N, is normal in N, ,).

H
() If 0=Ny,C N, C--+ CN, =M isanormal series for M such that
Vi, N;,, /N; is simple, then this sequence is called a composition series, and its length & =
[ (M) is called the length of M.

36. Definition and notation. (a) Let M€ Mg, N € ;M. M @, N is an abelian
group and a set map: M X N LM ®x NV universal with respect to the properties
(i) 7 is biadditive, that is, le, m, €M, n€EN,
(m, + m,, n)=1(m,, n) + 7(m,, n)
and Vm €M, n,, n, €N,
T(m, n; + ny)=1(m, n,) + 1(m, n,).
(i) 7 is R-associative, thatis, Vm EM, rER, n €M, r(mr, n)=71(m, rn).

Thatis, M X N> M@, N satisfies (i) and (ii) and if M X N2> G € Ab satisfies
(i) and (ii), ¢ factors uniquely through r.

(b) 7(m, n) is written m Q@ n.
(c) If ffM>M, g:N>N, then fRg: MR, N>M ®, N is defined by

MXN M®g N
(f,g)j 1f®g
MXN ——M &, N

where (f, g) (m, n) = (f(m), ng). Clearly 7'(f, g) is biadditive and R-associative, so f®
g exists by the UMP of ®,. Thus &, is a covariant functor of two variables:
Qg Mg X gM > Ab.

37. Intuitive definition. An abelian category is a category that behaves almost the
same as Mp. Indeed, a small abelian category A embeds as a full subcategory of Mg for
some R in the sense that 3 a I-1 functor 7:A - Mg such that I(A(X, Y))=
Hom, (I(X), 1(Y)).

38. Definition. An abelian category is an additive category with kernels, cokernels,
finite products, finite coproducts and such that every monomorphism is a kernel and every
epimorphism a cokernel.

39. Remarks. (a) Most of what we say about Mg goes through for arbitrary
abelian categories. If C is a small additive category, the category of (-modules, Abc is
abelian and the arguments for the ring case (C has only one object) go through almost ver-
batim. This yields additional results of interest and so should be kept in mind.

(b) If P is a property of diagrams in a category, the property obtained by re-
versing all arrows is called the dual property. Thus, kernel and cokernel, limit and colimit,
product and coproduct, projective and injective, essential submodule and small kernel are
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all dual properties. If the proof of a property involves only diagrams, a proof of the dual
property can be obtained by reversing all arrows. In this case we say the dual property fol-
lows by duality. However, not all duals to theorems hold. For example, every module has
an injective hull, but not every module has a projective cover.

40. Definition. Let A be an additive category. ¥V € A is calied a generator if
Vf:A->B f+0=3g: V>4, fg #0; W is called a cogenerator if Yf:S>B, f#C=
Jg:B->W, gf #0.

41. Definition. A category A has enough projectives if VM € |A|,3f:P> M
where P is projective and f epic. A has enough injectives if VM € |A|,3f:M > E
where f is monic and F injective.

42. Definition. Let {4;li € T} be a family of subobjects of A. nieIAi isa subobject
of A factoring through each A; such that given any morphism C - A factoring through
each 4;, 3!f: C—’nfeIAi such that

4;
niE 14; / T

33 >C

commutes.

43. Definition. Let {A;|i € T} be a family of subobjects of 4. Then UieIAi is
a subobject of A containing each A; such that for all f:4 - B, if a subobject C of B
contains f(4;) for each i, then C contains f(\J;c74,). Here “C contains f(4')”
means A’ > A —— B factors through C - B. Note that this is not the dual of () in general.

44. Definition. A category A is called a Grothendieck category if it is abelian, has
exact direct limits (alternatively, B Cll;c74; = B = Uke F(D) (BN U;c, A;) and colimits
exist) and has a generator U. Almost anything true in Mg is also true in a Grothendieck
category. For example, they have enough injectives and projectives. We will use this in
many remarks.

45. Definition. let M and P be objectsin Ab. A relation R from M to P
is called formally additive if aRb and ¢Rd =(a + c)R (b + d). Thus a formally addi-
tive function is a homomorphism. A standard technique is to define a formally additive
relation and then show it is a function. We say that the function f is well defined if f
is a formally additive relation such that f(0) = {0}. A formally additive relation is a func-
tion if and only if this holds.

46. Notation. let R bearing NCM in Mg, XCM in S. Then (N:X)=
{(rERIxreN Vx € X}

47. Definition. A ring R is regular (in the sense of von Neumann) if every finitely
generated right ideal is a direct summand of Rj.

48. Definition. Let R be aring. The ring R[x] of polynomials in one variable
over R has additive group the free R-module on a set {x/|i € w} with multiplication

n 1 m i\ -~ SR k N : : H
(2 pa;x") (Zj:Ob,-x/) =% (E/.H:kai bi)x . The power series ring R[[x]] has addi-
tive group R“ where (a,) iswritten £7 a.x' and (2 a.x)) (X2 b,x))=

o p i =0 =0%i j=07J
Dl AN k
=0 (T jmpa;b)x".
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49. Definition. The Jacobson radical of a ring R, J(R), is the intersection of all the
maximal right ideals of R.

50. Definition. A ring R is called local if the set of all nonunits of R forms an
ideal. No commutativity or chain conditions are assumed.

51. Definition. An R-module M is called flat if Vs.e.s. 0>4>B 0>4Q®; M
>BQp M (or 0> MQ®p A>MQg B) is exact.

52. Definition. Ans.e.s. 0> 4 - B is pure (or a submodule A4 is pure in B) if
VME M,0>4Q, M>B®, M is exact.

R R R

53. Notation. Let A = ®?=1Ai’ B =17 B; with injections u, :4; > A and pro-
jections m;:B > B;. Let f:4 > B Then f is completely determined by {m fl1 <j<m},
and each 1rl-f is completely determined by {rr fu 1 <i <m}. We will denote [ by the
matrix (ﬂj fu;). In an abelian category, B is also @ 1 1’ say with injections u}. If
C=TM._,C, with projections ), and g:B - C, then the matrix for gf is the matrix
product (n;cgu,'-) (mfu;) since wym, =815 ;- Thus we will write and compose f and g
as matrices. For example, we write A as a column

u,

Uy

and functions on the left. (This is exactly what one does in linear algebra.)

§2. Basic properties of projectives, injectives, flat modules, Hom, and ® .

We list here basic results assumed familiar to most readers. A will denote a Grothen-
dieck category with infinite products and coproducts. Think Mg if you wish. Very few
proofs will be given although enough lemmas and hints will be stated to give an outline of
proofs.

PropPOSITION 1.1 (CHINESE REMAINDER THEOREM). Let R bearing, 1,1,
I, ideals of R such that I + I, =RNj#k<n Then R/(2 I, ~TL R/, in R

n

ProOF. Consider the map R - ITL R/I such that R > L, R//; T, R/I, is
the natural map. The kernel is clearly ﬂ i=11;- Now forall j, k #}, 1,. + 1/, =R Assume
I+ ]kl eyt Ikm = R whenever the k; are all different from j. If &k, ., #] I +
P =R= Ikllk2 Ikmll- +Ik,1k2 1km+1 =1k1 Ikm so [ -#-Ik1
I =R. Thus there exists x; € /; such that y; =1 —x; belongs to the product of

km+1 i
the I, k #j, and hence to each such /.. If x € ML R/I;, x is the image of
Tl yt;, where mx=r; + 1.
ProposiTiON 1.2. Let i :A~>B,i,:C>B nm :B>A4,1,:B>C in A. The
following are equivalent.
() kermy=1i,,keri, =0, and myi, = 1,-

(i) ker i, =0, ker My =1y, and "111 =1y
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(iii)y B=A & C with injections 1y, m = coker i; for j# k.
(iv) B = AnC with projections m, i, = ker m; for j#k
V) m +im =g, i = ai, =0, 70, = 1, 7,0, = 16,

COROLLARY 1.3. Every additive functor is split exact.

(Apply (v) of 1.2))

The converse of 1.3 is also true—a split exact functor is additive.

PROPOSITION 1.4. U is a generator in A <= VB € A, ®A(U,B)U - B taking
(uf> - X f(u) is epic.

Example. R is a generator in M, and M, where 1.4 reduces to the statement
that every module is a quotient of a free.

PROPOSITION 1.5. U is a cogenerator in A <=VYB€E€ A, B ~ A, 5yU is injective.

PROPOSITION 1.6. The functor A(,) is left exact in both variables, Qp is right
exact. Thatis, let 0> A = B £ -0 be exact. Then NYM we have exact sequences

0— A(C. M)y— AB, M) — A4, M),
0— AM, A) — AWM, B) — AWM, O),
AQyM—>BR, M— C®; M— 0,
M@y A—>MQRr B—> M@, C—0.

PrROOF . We sketch only a few of the exactness proofs; the rest are similar. B ®, M
> CQ@p M~ 0 is exact since C®, M is generated by {¢ @ m} and B~ C is epic.
Let B = B ®, M/_im(A ®r M), ® | themap B > C ®M induced by & 1. De-
fine u:CXM~->B by Y, m)ECXM, let c=pb forsome b€ B Then u(c, m)=
b®m u(,m) is formally additive. Moreover, fb=0=bE€Sima=5b & m = 0. Hence
u( , m) is a function Vm, so u is a function which is easily seen to be biadditive and R-

associative. Thus u« defines a unique map: C @z M~ B which is the inverse isomor-
phismof § ® 1, and ker f® 1=im(4 ®, M).

Since A(M, ): A — Ab is an additive functor, A(M, ) A(M, a)=0. Let f:Y >
AWM, B), AM, B)f=0. Then Vy€Y,Bof(y)=0. Hence fy= oz, for some z, €
A(M, A). Since a = Kker f,z, isunique and y >z, € Ab(Y, A(M, 4)), so f factors
through A(M, @) and AWM, a) = ker AM, B).

ProrosiTioN 1.7. Hom (Lig; 14; B)= li_rgI Hom (4;, B) where the isomorphism
is natural on systems indexed by the poset 1 provided the limits and colimits exist.
Similarly, Hom (4, lim B;) = lim Hom (4, B,)).

Proor. Let {m;:4; ~ A;1i <j} be a direct system of maps indexed by T,
miA; > l_ir_r)lAi. Then f& Hom (l_iLn)Ai, B) =7 . n € Hom (4;, B) is a family of maps
ij» B): Hom (4;, B) - Hom (4,, B). By definition of the
limit, there exists a unique map «:Hom (li_n; A, B) - l(@ Hom (4, B). The maps

which commute with Hom (7

limC; > C; define a unique map: lim C; > I, 1 G;.
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Let v; project I;c7 Hom (4;, B) = Hom (4;, B). Then lim Hom (4;, B) ~
[THom (4;, B) 2L Hom (A;, B) is a family of maps g; such that Vx € lim Hom (4;, B),
gx:A;~> B and gx o m;=gx Then 3h :lim 4; > B such that g;x = h o m;, Vi
Then x — h is the inverse isomorphism of «.

We note that

Dic1€ = lim  DiesCollie1G = lim g, G,
JseF(1) JeF(T)
so Hom (B, 1 C;, B) =M, 1 Hom (C,, B).
PrOPOSITION 1.8. The following are equivalent for P € | A .
(i) P is projective.
(iil) M>P—~>0 exact =M~ P~ 0 splits.
(iii) For any generator U, U~ P~ 0 exact = the sequence splits.
(iv) A(P, ) is an exact functor.
PrROPOSITION 1.9. The following are equivalent for £ € |Al.
(i) E is infective.
(i) 0> E~>M exact = 0> E > M splits.
(iii) A( ,E) is an exact functor.
PropPoSITION 1.10. Let M=I,c1M;, N=, 1N, Then
(@) M is injective <= M, is injective Vi
(b) N is projective <= N, is projective Vi
ProrosiTiON 1.11. Let R, S, T be rings, zMg, oPr, sV, Or bimodules. Then
(@) (Homp(P, Q))s, 7(Homg(P, N)),
(i) s(Homy(Q, P)), (Homg(V, P))y,
(i) xM @y P);.
PrROPOSITION 1.12. Given gMg, oPp, Qp then Homg(Mg, (Hom, (P, Q)g)) =~

Hom,(M Qg P, Q) naturally as R-modules. The obvious left-right symmetric theorem also
holds. (It is this property of @ which makes it so significant—Hom and ® are adjoints.)

Proor. The inverse isomorphisms are ¢ and ¢ where Vre Homg (M, Hom (P, 0)),
meM, pEP ¢(f)(m®p)=f(m) (p) €Q, Vg € Hom (M ® P, ), mEM, pEP,
V(@) (m)(p)=g(m @ p).

ProPOSITION 1.13 (BAER’S CRITERION). An R-module M is injective <= Vf: [~
M, I anideal of R,Am €M such that f(x)=mxVx €1 (xf=xm Vx €1, for left
modules). -

ProoF. If M isinjective, 0 >/ — R exact, then f:/ > M extendsto f:R->M
and m=f(1). If every f:I-> M is given by a multiplication, let 0> A4 - B be exact,
g:A =M By Zorn’s lemma, extend g to an element g maximal in the family of all
homomorphisms from submodules 4, C B to M, ordered by inclusion of subsets of
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B X M Then domain g is essential in B, and if x € B — domain g, one can extend g
to a function g’ with x in its domain by setting g'(x)=m where my =g(),Vy €
(domain g :x).
ProPOSITION 1.14. Q/Z is an injective cogenerator in Ab.
PROPOSITION 1.15. Let D be an injective cogenerator in Mg, rMg. Then
(Homg(M, D))p is injective in Mg <= M is flat.
ProOF. Let 0> A4 > B beexact, 0 > K >4, M—>BQ, M exact. Since Dg
is injective,
Homg(B ®, M, D) — Homg(4 @z M, D) —— Homg(K, D) — 0
~ ~ 1
Homg (B, Homg(M, D)) — Homg (4, Homg(M, D)) — Homg(K, D) — 0
is exact, where the vertical maps are the isomorphisms of Proposition 1.12. Since Dg isa

cogenerator, Homg(K, D)= 0 <= K = 0. Hence ®z M is exact <= Homy, (, Homg(M D))
is exact.

PrROPOSITION 1.16. Every M € My can be embedded in an injective E € Mg.

ProoF . By Proposition 1.10, 1.14 and 1.15, Homy(R, IL,c 71 Q/Z) = E is injective in
Mg. If T=HomyWM, Q/Z), ¢:M ~ E, $(m) (r) =<i(mr)) embeds M in E.

PROPOSITION 1.17. Every M € My can be embedded as an essential submodule of
an injective module E(M).

ProoF. Embed M in an injective E and set E(M) = a maximal essential extension
of M in E. If KCF is maximal with respect to E(M) N K = 0, then there is a func-
tion f:E - F which is zero on K and the identity on E(M). Then K = ker f and
EM)C im f so 0> E(M) > E is split by £~ im f.

LEMMA 1.18. Let M € Mg. The following are equivalent.

(i) M=Z,c1M;, each M; simple.
(i) M=, JM;, each M, simple.
(i) NCM=>M=NDK forsome KCM

A module with the properties of 1.18 is called semisimple.

LEMMA -1.19. Let R be a ring, M an irreducible R-module, A = Homg (M, M).
Then A is a division ring and V{xl, cer x,JCM x €(0:(0: ZAx,)) <= x € ZAx,;.

LEMMA 1.20. Let R be aring, M an irreducible R-module, A = Homg (M, M),
Then Vxl, *++,x, €M linearly independent over A and Vyl ey, EM, Ire R,
X =y, Vi, 1<i<n

LEMMA 1.21. J(R)={x € R|1 — xr has a two-sided inverse Yr ER} = {(x ER|1 —rx
has a two-sided inverse V'r ER}.

THEOREM 1.22. Let R be aring. The following are equivalent.
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(i) Every M € My is projective.

(i") Every M € gM is projective.

(i) Every M € My is injective.

(ii") Every M€ rM s injective.

(iii) Every M € My is semisimple.

(iii") Every M € M is semisimple.

(iv) Ry is semisimple.

(iv) gR is semisimple.

(v) Rg hasd.c.c.and R has no nilpotent right ideals.
(V') RR hasd.c.c.and R has no nilpotent left ideals.
(vi) R s isomorphic to a finite direct product of matrix rings over division rings.
(vil) R is regular and noetherian.

A ring with these properties is called semisimple artinian.

ProposITION 1.23. Let M € My. Then M is noetherian <= every N CM s
finitely generated.

Proor. Maximum condition = every N C M contains a maximal finitely generated
submodule which must equal N. Every N C M finitely generated = every chain /, C

I, C --- terminates when you have picked up a finite set of generators for UiEw 1.

LEMMA 1.24. Let ME My, NCM. Then M hasa.c.c. <> M/N and N have
acc M hasdcc <=MN and N haved c c

PROPOSITION 1.25. Let R be a right noetherian ring. Then every finitely generated
right R-module is noetherian.

THEOREM 1.26 (DUAL BASIS LEMMA) . P € My is projective == 3{x,EP|i€ T}
and {f,:P - R} such that ¥x €P, f(x)=0 V'i and x = Zx,f;(x).

PrOOF. Let P be projective, @,c75; R 7> P> 0 exact, DHR free on
{b;li€ 1}. Let j:P~> @, 1b;R be the injection splitting the s.e.s. Set x;= n(d;),

Py = the kth projection of €,c18;R > bR, f, = pj. Then fix =0V and x = mix =
W Z by pix) = Zx,fi(x).

Conversely, let F=®i€1biR be free on {b;|i € T} and let v:F > P be defined
by »(b;)=x;. Then {f;: P~ b;R} defines amap j:P - Il,c7b;R whose image is in
@biR by the finiteness property. ¥x € P, vj(x)=v ( bifi(x)=Zx,f;(x)=x so
F% P-0 splits.

THEOREM 1.27 (NAKAYAMA'S LEMMA). Let M be a finitely generated R-module.
Then MJ(R)=M <= M = 0.

PrROOF. Let 0 # M= Z,’.’:l x;R, where no set of less than n elements generates M.

If x, € M/(R), then x,= E/'-'zlxl-ri where r; € J(R),Vj. Then x;(1-r)= Ziei Xl

and 1 —r; is invertible, a contradiction. Thus no x; € MJ/(R).
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THEOREM 1.28. Any finitely generared projective module P over a local ring R is
free.

Proo¥. Let P= XL, x;R where n is the smallest number of generators possible.
Let F= @;1 b;R be free on {b;},v:F — P the epimorphism defined by vb; = x;. Then
F=kerv®P where PP=P andthe R/J(R) vector spaces F/FJ(R) and P/PJ(R) both
have dimension n. Hence Q/QJ(R)=0 so ¢ =0 by Nakayama’s lemma, where Q= kerv.

THEOREM 1.29. Let {ni/. CA; > Ay (i <j€ 1} be a direct system of maps indexed by
I. Then lim (4, @ M)~ (limA4,) @ M.

ProOF . {m, ® 1:4, @M~ (l_ig A;)@M|i<je& I} defines a unique map
¢:lim (4, @ M) > (lim A)) @ M. m;:A; > lim A, defines a unique map » P4, - lim 4,
which is onto. For (x, m) € (lim A;)XM, let x come from (q;) in &4, Then
(x, m) >{a;, @ m) € ®(4; ® M) > lim (4; ® M) yields a well defined map: (l_ir_n) 4) R
M~ lim (4, ® M) which is the inverse of ¢.

Alternatively, this follows from the adjointness of S=®, M and T = Hom,(M, ).
Let n be the natural isomorphism Homy(S4, B) ® Homg(A, TB). Then 6, = nSA’SA(ISA)
is a natural transformation : 1y, > TS and yp = n;é’TB(lTB) is a natural transforma-

tion :ST — 14p. One verifies using these transformations that S takes a colimit diagram
A, — A, SA; — SA;

\ / " 10 a colimit diagram \ /
A

SA4
THEOREM 1.30. Any projective R-module P is flat.

Proor. VM EgM,R® ;M=~M under r @ x »>rx, x >1®x, and this isomor-
phism is natural. Hence R is flat. Since a direct sum is a direct limit and &, is split
exact, any free and any projective is flat.

THEOREM 1.31. M€ M is flat ==& M=~ IM for all right ideals I of R.
ProoF. Forall M and forall I C Ry,
@ gM —— RQ® M

0— IM ——— RM=~=M
is a commutative diagram with exact bottom row. Then ker / ® zM — IM = 0 <=
ker I®@ pM>R® M=0.
Now M is flat <= ,(Homy (M, Q/Z)) is injective by 1.15 == VI C R we

have exactness of
Homg (R, Hom,z(M, Q/Z)) —— Homg (I, Homz(M, Q/Z)) — 0
Homg,(R @, M, Q/Z) —— Hom,(/ ®, M, Q/Z) — 0
= VY ICL R 0>1®; M>R ®z M is exact.

THEOREM 1.32. Let 0> K—>F—> A >0 beexact, F flat. Then A is flat
= (0> K~>F ispure) == (KI=FINK, VI CR).
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ProoF. Consider the commutative diagram with exact rows.

KQI—FQI—A4QI—0

FI —— Al —0

!

0
-1
ker (FI¢—-> FRI->AQRD=¢KXN=KI so ARI~FI/KIL ker (FI > A=
KN FI so A isflat &= A4 Q] > Al is an isomorphism <= K/ =K N FI.
For the pure portion, let 0 > U—> P~ M - 0 be exact, P projective. Chase the

commutative exact diagram

0
}

KQU—FQU-—A4QU—0

| | J

0—KQP—FQRP—AQP—>(

| | l

KQM—FQM—ARM—0

S
THEOREM 1.33. Let 0> K > F—> A~ 0 be exact, F free with basis {b;|i & T}.
The following are equivalent.
(a) A is flat.
(®) Vi{k,,* -+, k,} CK If:F— K such that f(k)=k; Vi 1 <i<n
(c) Vx €K, 3f: F > K such that f(x)= x.
PROOF. A is flat == KI=K N FI, Y left ideals 7 == (Vr,, -+ ,r, €1 Zb;r; €
K = Zb;r; = Zk;s; for some {k;} C K, {5;}C D).
(b) = (¢) is clear.
() =(a). If Thr; €K with {r,} C I and If:F—> K such that f(Zb;r;)=
Zb;r;, then Tb;r,= Zf(b;)r; so KI D FI N K and we have equality, implying A is flat.
(@)= (b). If A4 isflatand {k,, - ,k,}C K, let k;=Zb;r; and [=Z; ;Rry.
Then {k} CK N FI={k;} CKI= 3{/,} C K and {s;;}C R such that k;= I, (Z;s5,;7;),
Vi1 <i<n Define f:F~K by f;) = Z sy Then f(k;))=f(Zb;r;) =
Zj Eklkskjrii= k; forall i
COROLLARY 134. If F isfreeand 0> K> F > A - 0 exact with A flat, then
K is flat.

PrOOF. Let Zx;r;=0,x,€K Let f:F—>K, f(x;)=x, Vi Thenif x;= Zb;s;s
L, ;bisiiri =0, so Z;s;r; =0, and x;= Zf(b;)s;; .
If P= @ieICiR L K->0is exact, P free on {c;|i € I}, then Zc;r; € kerv <=

Zv(c; ;= 0= 3d,- € P such that v(c;) = Z;v(d))s; and Z;s5;r; =0 for some {s;;} CR

Vit



22 BARBARA L. OSOFSKY

Then ¢; - Eidj s;; € ker v Vi, and the map g:P > kerv,g(c;)=c; - Z; d;sj; satisfies

g(er)=Ziciry — Xy pdpsr = Zyepry— Xidy - 0= Zery, so K s flat by Theorem 1.33.
THEOREM 1.35. Let R be a ring. The following are equivalent.
(a) Vx €R, 3a€R, xax = x.
(b) R is regular in the sense of von Neumann.
(c) Every countably generated right ideal I is of the form = Z,., e;R where
{e;1i € a} are orthogonal idempotents and « is an ordinal < .

(d) Every R-module is flat.

Proor. (a) = (b). If xax =x, then e =xa is idempotent and eR = xR, so every
cyclic ideal is generated by an idempotent. By a simple induction, it is enough to show that
every ideal eR + fR = eR @ gR where g is an idempotent orthogonal to e (so e +g is
also idempotent). Clearly eR + fR =eR ® (1 — e)fR. Let h=h? hR = (1 —e)fR. Then
h(1 — e) =g is an idempotent orthogonal to e and (1 — e)fR = gR.

(b) = (c). Let I=ZZ x;R, N,=ZE x;R By(b), N, isa direct summand of
R Yk, so N, is a direct summand of N, ,,, say N, =N, D L,. Then I=N, &
L, ® L, ®--- . The orthogonal idempotents are obtained as in (a) = (b).

(c) = (a). Vx €R, xR = @iEQeiR, and, since x is in a finite sum, Z e;r;, a=
n+1 and xR=eR for e= E?zoei idempotent. Then Ja, xa=e, so xax =ex =X
(b) = (d). Let F be afree R-module, K a finitely generated submodule of F.
.o If n=1
1 3

K is a direct summand of R and so of F. Now assume any finitely generated submodule

Then K is contained in a finitely generated direct summand of F, say 69?:1["

of EB'I" ‘R,. is a direct summand. Then =, :K - R, has finitely generated image J, so
R,=I®L forsome L and K=K N D] 'R, ®K  since I is projective. Then
Kn EB',"‘R,. is finitely generated, so @'I‘_IR,- =KnN @’;“Ri ®M, and DR, =
K®L®M Thusif KCF and {k,, +--, k,} CK, 3 aprojection F~> K fixing each
k., so F/K is flat by Theorem 1.33.

(d) = (b). Vxl, +<+,x, €R If:R~> ZL x;R fixing each x,. This is clearly a
projection onto a direct summand.

[

THEOREM 1.36. Let Fy be flat, gG,, E, [initely generated (resp. finitely presented).
Let v:F ®y Hom(E, G) ~ Hom, (£, F ®5 G), v(x ® N) (&) =x ® \(e), Vx EF, N €
Hom,(E, G),e €E. Then v is 1-1 (resp. a bijection).

ProoF. Let L, > Ly~ E — 0 be an exact sequence with L, finitely generated
free and L, (finitely generated) free. By one-sided exactness of Hom and ®, we have
exact rows in the commutative diagram.

0 — F Qg Hom, (E, G) — F Qg Hom (L, G) — F @z Hom,(L,, G)
by | Yo ) Yy

0 — Hom,, (E, F ® G) — Hom, (Lo, F ®; G) — Hom,(L,, F ®, G)
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Now if L, =@7 x;A, then F ®g Hom,(L,, G)~F @z €D Hom(x;4, G) =

F® ®rc,~ @7(F®G), ~®Hom (4, F®G)~Hom,(Ly, F®p G) and v, is
the composition of these isomorphisms. Hence v is 1-1. If,in addition, L, is finitely
generated so v, is an isomorphism, » must be onto.

THEOREM 1.37. Let 0=Ny, CN, CN,C-.- CN =M and 0=P, CP C
P,C++-CP, =M in Mg. Then
@ W+ Wy 0P Wy, NP+ N~
[P+ Wiy ﬁPI.+1)]/[(N,.ﬁP].+I)+P]-].

(b) One can insert modules between the N’s and between the P’s so that the
two resulting chains of modules {N;} and {P/'} have the same length 1 and there is a per-
mutation o of the numbers from O to | — 1 such that Ny, /N, zP:,(,)_l_l/}"o(,).

(c) Ifeach N, [N, is simple, then m < k.

Definition. 1f the condition (c) of Theorem 1.37 holds, 0 =N, C N, C--- C N, =M
is called a composition series for M and M is said to have finite length. (b) plus (c) to-
gether are called the Jordan-Holder-Schrier theorem. If M has a composition series, then
any two such have the same length and isomorphic factor groups.

§3. Basic commutative algebra

In this section, R will denote a commutative ring, and if R is noetherian, Np will
denote the category of finitely generated R-modules. Definitions and basic results will
occupy the first portion, and a discussion of unique factorization properties of regular local
rings the second portion.

Definitions. (a) A multiplicatively closed set § in R is a subset of R — {0} such
that x €S and yES=>xy €S

(b) Anideal I is called prime if Va, bER abET<==>a€] or bel Alter-
natively, / is prime iff R —/ is multiplicatively closed. x € R is prime if xR is a prime
ideal.

(c) Let M€ My, r€R — {0}. r is called a zero divisor on M if Ix #0EM
such that xr= 0.

(d) R is an integral domain <= R has no zero divisors (on Rg) <=0 isa
prime ideal. R 1is a unique factorization domain (UFD) if it is a domain such that every
element is a product of primes,

(e) Let S be a multiplicatively closed set of R. Define an equivalence relation
~ on RXS by (r,s)~(r,s")y == 3t €S such that #(rs’ —r's)= 0. Then the equiva-
lence classes under ~ form a ring Rg under cl(r, s) + cl(r, s') = cl(rs’ + s, ss),

@, s)yel(r', sy =cl(rr', ss'). In Rg every s€ S is invertible, in fact i:R - Ry, i(r) =
(r, 1) is a solution to the UMP

R — Ry

f\ /3
T
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where T is any ring in which f(s) is invertible Vses. cl(r, s) will be written r/s or
rs~!. If P isa prime ideal, Ry_p will be written Rp. If R is a domain and P= 0,
R, is called the quotient field of R.

(f) For M€ Mg. S a multiplicatively closed set in R (P a prime ideal), then
Mgy (Mpy) will denote the Rg (Rp) module M @y Rg (M ®5 Rp).

(8) Let R bearing. M € Mg, / anideal of R such that (12,77 = 0. Then
{MI" |n € w)} is a basis for neighborhoods of {0} in the [-adic topology on M. The com-
pletion M of M is the completion with respect to this topology, that is, the set of equiva-
lfnce classes of sequences {g;|i € w} such that Vne w,INE w, a; —a; € MI", Vi j>N
R is a ring, called the completion of R If R islocal, R is called complete if it is com-
plete in the M-adic topology, where M s its maximal ideal (assume (},_, M" = 0).

(h) x€ER (I CR) isnilpotent if In€ w,x"=0 (" =0). [ isnilif x €
I = x is nilpotent.

ProrosiTION 1.38. Ry is R-flat.

PROOF. Let F—> Rp > 0 beexact, F free on {b;}, b, >a;. If Za;r; =0, a;,=
w;fu;, let w= Ty, w; = I, v. Then Tw™lu,w,r; =0 so for some €S,
t(Zu;w;r;)=0. Let v(d)= (tw)~'. Then b; —dtw;u; € ker v and the map b, > b; -
drwiu; from F to ker v fixes Zb,r;, so R, is flat by Theorem 1.33.

THEOREM 1.39. R i*S - 0 exactin Ab, v aring homomorphism = 3 1-1
correspondence between ideals of S and ideals I of R with 1D kerv. Prime ideals cor-
respond to prime ideals.

THEOREM 1.40. Let S be a multiplicatively closed set of R, P an ideal in R.

(a) P prime = P(sy prime.

(b) P maximal in (Iz CRRIINS=Q} =P prime.

(c) PNS=0Q = Psy is a proper ideal of Rg.

(d) If P isprime, Rp is local with unique maximal ideal P(P), and N prime
ideals Q, #Q,CP, QI(P) * Qz(P)'

PROPOSITION 1.41. Let M & Mg, [ a maximal element of {(0:a){a € M — {0}}.
Then [ is prime.

ProrosITION 1.42. Let P,, P,, +++, P, beideals of R, P, primefor i>1, I a
subring of Py UP, U+ P Then I CP; forsome i

THEOREM 1.43. Ler R be noetherian, M € Np = (Mg |M, finitely generated},
Z(M) = the set of zero divisors on M. Then

(a) ZM) =ULoP;. P; prime,
(b) P prime 2(0:M) implies P 2O P, for some i
@ ICZM=>F0+<meM mi=0.
THEOREM 1.44. Let P be the set of all prime ideals of R.
(a) Npe pP is nil, and if R is noetherian it is nilpotent.

(b) Unions and intersections of chains in P are again in P
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Definitions. (a) Let P be a prime ideal of R. Then let height P=ht P> n ==
there exists a chain of prime ideals P=P, D P, D +++ D P, descending from P.
{(b) The Krull dimension of R, dim R = sup {ht P|P a prime ideal of R}.
A priori there seems to be no reason why ht 2 should be finite. In the non-noetherian
case it may not be. Even in the noetherian case dim R need not be finite. However, if R

is local and noetherian it must be,

THEOREM 1.45 (PRINCIPAL IDEAL THEOREM). Let R be a noetherian ring, x € R,
P minimal in the set of primes containing x. Then ht P < |.

PrOOF. Note such a P exists by Zorn’s lemma (use 1.44 (b)). Now assume P D
QDU Q and U prime. Localize at P and divide by Uwpy to reduce to the case where
R is a local domain with maximal ideal P and @ is a prime C P missing x. R/xR
has only one prime ideal, namely P/xR, which must therefore be nilpotent. Since R/P
is a field and R is noetherian, this implies P/xR has a composition series and so d.c.c.
Let 0= {reR|3y € Q yr€ Q%) By thed.c.c., xR+ Q¥ =xR + Q*+1 fo;
some k. Then Q%) =xQ®) 4+ g+ 1) o Q) = gk+1) py Nakayama’s lemma. Now
localize at . Then (Q(Q))k = ng)) = (Q(Q))k+l which, by Nakayama’s lemma, implies
Q(Q) = 0. Since R is a domain, this implies O = 0.

THEOREM 1.46. If I=x R+ -+ +x R and P is minimal in the set of primes
containing I, then ht P<n.¥Q prime D I, ht Q/[ in R/[=htQ —n.

ProOF. Let Q prime D/ @D Q, D -+ D Q. achain of primes of length ht Q.
Assume x, €Q, ,,x, € Q; forsome i<k Then Q; , isnot minimal over Q; , +
x,;R by Theorem 1.45, so there exists a prime P; such that x, €P; and Q; ;D P, D
Q;, - Hence we may select a chain such that x, € g, _,. Now use induction in R/x R.

Note particularly that for any prime P of height k¥ and x € P, ht PxR in R/xR
is either & or k—1.

COROLLARY 1.47. If R is local and noetherian, then dim R = n < o, where n <
the minimal number of generators for the maximal ideal M.

Definition. A commutative local noetherian ring R with maximal M such that
dim R = minimal number of generators for M is called a regular local ring.

Regular local rings arise as the local rings of regular points in algebraic geometry.
Roughly speaking, such a point has precisely the correct number of defining relations near
it. For a long time, evidence and results in special-cases led to the conjecture that such
rings were unique factorization domains (UFD’s) and every localization at a prime was regu-
lar. The dimension theory of Chapter 2 had its greatest triumph in proving both of these
conjectures. I would like to sketch a proof up to the point where homological dimension
comes in, and take the topic up again in Chapter 2, §3.

LEMMA 1.48. Let R be noetherian, I an ideal of R. Then 3 a finite number of

prime ideals Py, -+, P DI such that 12 T P;. Every prime containing I contains

11
one of the P;. Hence, there are only a finite number of primes minimal over I



26 BARBARA L. OSOFSKY

THEOREM 1.49. A local noetherian ring R with maximal ideal M is regular local
< 3x €M - M? such that R/xR is regular local and xR properly contains some prime
ideal. Regular local rings are domains.

ProoF. If R is regular local of dimension n and x €M — M?, then M*= M/(xR)
is generated by n — 1 elements and has height n — 1 by Theorem 1.46, so is regular local.
By Lemma 1.48, the set of primes minimal over O is finite, say {P;|1 <i<n}. If
M-M*CU™,P;, then MCM*UUL,P;, so MCP; forsome i Then dimR=0
and R is a field. Otherwise, we may pick x & (J2,P;. By induction, R/xR is a domain
s0 xR is prime, but not minimal. For any prime P C xR, xP =P so by Nakayama’s
lemma P =0.

If x €M—-M?* such that R/xR is regular local of dimension » — 1 and xR D P,
P prime, then M is generated by n elements and ht M >n, so R is regular local.r

Lemma 1.50. A domain R is a UFD <= every nonzero prime ideal contains a
prime element. If R is noetherian this is true <= every height 1 prime is principal.

LEMMA 1.51. A domain R isa UFD = Rg is a UFD for every multiplicatively
closed set S. The converse is also true if R has a. c. c. on principal ideals.

Definitions. (a) Let R be a domain. A fractional ideal / of R is a submodule of
Q = the quotient field of R such that x/ C R for some x €R.

(b) If I is a (fractional) ideal of the domain R, I~! = {x € Q|xI C R}.
(c) I iscalled invertible if /™! =R.

Since Q is the injective hull of R, I~! = Hom (I, R). By the dual basis lemma, [ is
invertible, i.e., 1 = Z o, f;, 0, €1, §; € I=! == is finitely generated projective (i.e. {o;}
generating / and {§;} C /! satisfy Zaq;B;x = x, Vx €1). Then I invertible =/ in-
vertible for all multiplicatively closed S.

If R islocal and I invertible, then I must be free and so principal. In general,
however, invertible ideals are not principal. Let R = Z[\/———S] TI=@4+ \/—_S)R + 3R.
Since (4 + \/?——S)R NZ=21Z,I#R, and 3 has no proper factors in R so [ is not
principal. But (4—+/=5)/3 and 2 €171 and 1= (4 -+v~5)3)-((4 +V~-5)/3)-23.

THEOREM 1.52. Let R be noetherian, M a finitely generated R-module. Then M
is projective *=>M(P) is a projective Rp module Y maximal ideals P.

Proor. If M is projective, say M @ Q = F with F free on n generators, then
Mipy ®Qpy = Fipy = D7TRp by the properties of @p.

Now let M p), be projective for all maximal P. By 1.36, Rp ®g Homgp(M, F) ~
Hom, (M, Rp ® F), VFe g M since M is finitely presented. But

HomRP(M ®gRp, Rp ®F) ~ Homy (M, HomRP(RP,RP ® F)) = Homp (M, R, Qp F),

so0 M@ Rp is Rp-projective <= Ry, ®5 Hom,(M, ) isexact. Let 4 - B~ 0 be ex-
act, Hom(M, A) >~ Hom(M, B) > L > 0 also exact. Tensoring with Rp, we see L py =0,
V maximal P. Let 0% x €L. By Zorn’s lemma, 1 an ideal maximal in {7/ D (0:x)|1 & [}
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which is a maximal ideal P of R. As for Rp, L(P) can be identified with equivalence classes of
L X (R—-P) under (I, s)~ (I, 1) ==3Ju ¢ P with (It = I's)u=0, where (I, 5) corre-
sponds to [ ® s~ !, Thus x ® 1 =0 in Ly < Ju¢P, xu=0, contradicting P D(0:x).
We conclude L =0 so Hom(¥M, ) is exact and M is projective.

In the special case that R is a domain and [/ a finitely generated (fractional) ideal,
(py is for all maximal P. For if I~ #R
and P is a maximal ideal containing /17, in Rp, I(P) is generated by a single element,

there is a shorter proof that 7 is invertible if /

say «. Let ay,--- ,a, generate I Then ai=asix_1 for some x & P. Then
xa lo; =5, €R Vi, so xa~' €I7! and x=xa"'a€/"' C P, a contradiction.

LEMMA 1.53. Let R be noetherian. Then R is a UFD <= Rp isa UFD for all
maximal P and invertible ideals are principal.

LEMMA 1.54. Let I be an ideal in a domain R such that 1 ® F\ = F, for F,
and F, finitely generated free. Then [ is principal.

PrROOF. Let F, = @15,R, F, =@B4c;R 0# ¢, €1 Tensor with Q = the quo-
tient field of R. Let ¢;= Zay;b;, 4 =(q;) an n X n matrix over R. b= Xf;; ¢;,
B= (Bjk) an n X n matrix with column one from Q, other entries from R. Let Vi be
the 7, j cofactor of 4. For j#1,8;= 7ij/detA €R Now b;=p;¢c, + 2Bk ok
where Bilcl = (v;,/det A)c, €1 Moreover, I= XL (y;,/det A)c,R since this is the
image of the projection of F, on I Then I=¢,/det A(ZL v;,R), and Za,;7;,/det A=1.
But detA‘la“. is just the cofactor of B obtained by deleting column 1 and row i, and
soin R. Thus Il v, R=R

THEOREM 1.55. A4 regular local ring R is a unique factorization domain and Rp Is
regular local for all prime ideals P.

PROOF MODULO HOMOLOGICAL DIMENSION RESULTS. If dimR=0 or 1, R isa
field or a discrete valuation ring and the theorem holds. Now assume it holds for all regular
local rings of dimension < dim R.

Let x €M —M?* T=R[l/x], the subring of Q generated by R and 1/x. Then
R isa UFD == T is. Any localization of T at a maximal ideal P is a localization of R
at a prime ideal whose height is less than dim R, so each Tp is a UFD by the induction
hypothesis. Hence we need only show that an invertible T-ideal J is principal. This fol-
lows from Lemma 1.54 if we can find free T-modules F; and F, such that /@ F, =
F,. We will return to this when we have the machinery to do so. (See Theorems 2.33 and
2.34)
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CHAPTER 2
Homological dimensions

81. Definitions of various dimensions, Ext, and Tor.

Let A be an arbitrary Grothendieck category with enough projectives and injectives. The
typical example one has in mind is zM (or Mg), the category of unital left (right) modules
over a ring R with 1, but there will be references to others such as Abc = the category of
additive functors from a small additive category C to the category of abelian groups Ab
(morphisms are natural transformations) and Spec (, M) obtained by inverting all essential
monomorphisms in x M. Definitions and theorems will usually be stated for A if they
hold there, even though proofs in some cases will be elementwise and so require modifica-
tion to be valid for A.

Definition. A short projective resolution (s.p.r.) of M € A is a short exact sequence
(ses) 0> K-> P->M->Q where P is projective. A projective resolution (p.r) of M is an
exact sequence

-—)Pn——>Pn_l—>---—>Pl-—+P0—>M—>0

where P; is projective for all i € w.
A short injective resolution (s.i.r.) of M isanses 0->M-—>E > F—> 0 where E
is injective. An injective resolution (i.1.) is an exact sequence

0—>M——>EO—>EI——>---—>E’I—>~-

where each E; is injective.
Note each p.r1. (i.r.) is just a family of s.p.r.’s (s.i.1.’s) of appropriate modules.
Definition. Let A, BE€ A. Write A ~ B if there exist projective modules P, and
P, suchthat 4 ®P, B ®P,. Dually 4 ~; B if there exist injective modules £, and
E, with ADE, ~BODE,.

LEMMA 2.1. ~ (resp. ~;) Is an equivalence relation on A,

ProoF. 0O is projective and A DO~ A B0 so A~A4 A~B=>B~4 by def-
inition of ~. If A®P, ~B®P, and BOP, ~CDP,, then 4 P ®P~
Ber,®P,=~CO®P, ®P, so ~ is transitive. The proof for ~

Notation. Let [A4] ([A]i) denote the equivalence class of A under ~ (~)).

; is identical.

PropoSITION 2.2 (SCHANUEL'S LEMMA). Let 0> K> P 2540 and
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0K P % A4>0 betwosprsof A Then K®P ~K &P (the dual proposition
holds for s.i. r’s).

ProoF. Consider

p o271
i lo‘
Pr—— 4 0
l
0

The maps § and 7 exist, making the diagram commute since P and P’ are projective.

Let
B 1
¢ = :P®imK — P @imK,

1=y -7
Y 1

Y= PP®imK—>P®imK'.
1-8y -8

One verifies that ¢ and  have the desired codomains and ¢ and ¢ are the appropriate identities.

COROLLARY 2.3. If 0> K->P->M~->0 isansprof M, set K(M)=K Then
(K] is independent of the s. p.r. used and of the representative of |[M] used. Fors.ir’s
0->M—->E->F-0, set JM)=[F];.

Proor. That [K] is independent of the resolution is from Proposition 2.2. Since
for P' projective 0 >K>P' @P—>P' ®M~>0 isans.p.r. of P'®M, [K] isindepen-
dent of the representative of [M] used. Intuitively this says K is a function from equiva-
lence classes of modules to equivalence classes.

Notation. Set Ko@) = (M), K, () = K(K,_, (D), Jo®1) = M],, T, = I(J,_,(M))
We will ignore any set-class logical problems in this definition—we do not need actual func-
tions, just a language.

Definitions. (a) The weak dimension of 0 #M € g M or Mg, w.d. (M), is the
smallest n € w such that K, (M) is flat, or e if no such n exists.

(b) The projective dimension of M # 0, p.d. (M) or p.d.x(M), is the
smallest n € w such that K, (M) is projective or oo if 1 such an n.

(¢) The injective dimension of M # 0, i.d. (M), is the smallest n € w such
that J (M) is injective or o if F such an n

(d) The global — dimension of A, gl.—d. (A)=sup { —d. (M)IM € A} where
— isw,p,ori

(e) The - dimension of 0=-1.

Remarks. (i) p.d.(DA;)=sup p.d. (4;), w.d.(B 4,) = sup {w.d. (4))}.
(i) If P is projective, 4 C.P, P/A not projective, then

p.d. (P/4)=p.d. (4) + 1.
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If, in addition, P/A is not flat, and A = zM or Mg, then
w.d. (P/IA)=w.d. (4) + 1.
Finally, if 4 CE, E injective, 4 not injective, then
i.d.(4)=1 d. (E/4) + 1.
There is an alternate way of arriving at the various dimensions in terms of derived

functors Ext (and TorR in the case of R-modules). It is messier to get at, but in many

cases easier to work with. We will use both approaches simultaneously. o
Definitions. (a) A complex U is a sequence of maps - -+ > A4, In, A,_, et
where a o =0, Vn The nth homology group of the complex is the quotient H, =
ker o, /ima, .. (If the arrow points toward increasing n, we call it cohomology and
write A" = kera, /ima,_,.)
(b) If A and B are complexes, a complex map f: U~ B is a family of

morphisms f, : 4, - B, such that

n—1

fnl lfn—l

Bn Bn—l

A, —— 4

commutes Vn.
! g .
(c) A short exact sequence of complexes 0 A —->PB > ¢ -0 isacommu-

tative diagram with exact columns

0 (l) 0
| |
‘11n+1 an—H)"fn a_", An—l -
B 8 l
—*Bn+lnh+l)Bn _’i) anl -
l Yn41 l Yn l
_)Cn+l Cn - Cn—l -
| | !
0 0 0

Note. 1f f:U-PB, f induces a map H,(A) > H, (B) since flad,) C B(f4,) and
flker o) C ker f.
! g
THEOREM 2.4 (THEOREM OF THE LONG EXACT SEQUENCE). Let 0->U-—> B —
€ — 0 be a short exact sequence of complexes. Then there exists an exact sequence

9 f g o
c— () — Hy (D) — H,(B)— H, Q) — H,_ () — -

(reverse subscripts for cohomology).

Proor. We will drop the n in our functions.. Although the proof will be for M.
the theorem is true in any abelian category. We define 8 as follows.
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For x €kervy,x =gb forsome b€ B, ,. Then x=gb' ==b"=b+ fa for some
a€A4,,,. Since ygb'=0=gpb', B0 = f(a') for some unique a' € 4,. Now Bb—pb’ =
Bfa = f(oaa) so Bb=f(a' +aa) and x > 4" is a well-defined function from ker vy, ., ~
A, /im a. Moreover fua'=ffa'=§Bb' =0 so 4 Ekera and :x >a +ima €H,(A)
is a well-defined function which is clearly an R-homomorphism. Let 8(x)=0. 4’ = ac ==
Bb' =fac=Pfc = b —fc Eker f == x =gb' — gfc € g (ker ). Now if x = yu for some
ueC, ,, then u= gv for some v, so yu="7ygv=gpv € g(ker B) so imy C ker §
and § defines a map H,  ,(§) > H,(U) whose kernel is g(ker 8).

Since fo = Bf, f(ker ) C ker § so f induces a map f, :kera > H,(B). For x €
kera, let fix=0 in H_(B). Then fx =pb forsome bEB, ,,, and Ogh =x + im «
since y(gh) = gfb = gfx = 0. Since fay = ffy, f(im a) C ker §, ker f; =im 6 + ima and
f, induces a map: H, (W)~ H, (P) with ker =im 6.

Since g induces a map: ker § - ker v, g induces a map g, :ker > H,(§). x €
ker g, «=gx = yc forsome c€C,  , <= gx=vgv=gBv forsome vEB, , , <
gx —Pv)y=0<=>x-Pv=fw forsome w€A,,, <> x €im f+ im . Hence g, in-
duces a map: H,(B) > H,(§) with ker=imf

We have already seen in one higher dimension that ker 8 = im g

Definition. Let M€ A,

---~>Pn—>Pn~l——)---~—)P1—>Po——>M——>0

a projective resolution of M, F an additive function: A > Ab. Let M be the complex
= FP)—>F@,_,) > —FPy,)— 0

(or 0= F(Py)—> F(P,) — +++ — F(P,) — -+ if F is contravariant). The nth left

(right) derived functor of F, L, F(M)= HnLiUl) (RPF(M) =H" (J}) in the contravariant

case). If 0> M~ E,—~ E, — -+ is an injective resolution of M, and M is the com-
plex 0> F(Ey))~> F(E,)~> - > F(E, )~ -+, H"(N) will also be called R"F(M).

THEOREM 2.5. L F (R'F) is a funcror: A —> Ab.

ProoOF. We will treat only the L, case, the R" case being dual. We must first de-
fine L, (F)(f: 4~ B) and then show that the particular resolution used is irrelevant.

Let f: 4 - B,
d
972:--- — P —n>----———>P0-——~>A——)0’

d
W:...ﬁQn_i)..._;QO_,B_,O

be projective resolutions of 4 and B respectively.

Consider the diagram
Py— A
I

o |1
0, — B— 0.
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Since P, is projective, 3f, 1Py > Q,. making the diagram commute.
Assume we have maps f,:P; > Q;, 0 <i{<n—1, such that
PP
[ rn|ne
0, — 0,
commutes forall i<n-1. Set K; , =ker (P, > P,_,), K',.+l =ker (Q; > Q;_,)- Then
fo_(K,) C K, and one has a diagram
P, — K,
0, — K,—0
by the projectivity of P, which makes

Pn——’Pn—l

[5 [

Qn - Qn— 1
commute. By induction one has a complex map f : TR->N.

Consider the complex maps
F{(d,)
ces —> F(Pn).__.) cee —» F(PO)—> 0
FG,) lmo)

'

)
F = F(Q,) = = F(@g) = 0,

By commutativity F(f,) (ker F(d,)) C ker F(d',), F(f,)(im F(d, ,,)) C im F(d,) so
F(f,,) induces a map of homology L, (F)(f): L, (F)(4)~> L, (F)(B). We observe that
L (F) is formally additive.

Let us assume that we have two complex morphisms [, g: M — N extending f
Then f'—g=h isa complex morphism extending 0:4 - B. We will construct maps

U P> Qi

iy _'),Pn __—’lln Pn_1 ‘P‘ i ‘,Po — ’A > 0
n+1 P .
R L L L LR
W« N Vs v e’
Qn d' Qn—] e Ql Q() B 0
n

with the property that w,d, +d,, u,,  =h,. Since dyh, =0, h,P, C im d}.

n
Hence 3Ju, :P, ~> Q, with dju, =h,. Now assume u; has been defined for 0 <i<n.

Then

d(h, —w,d)=dh, —du,d,=h, d,—du.d

n—n n'n n-non nonon

=, _d,_, +du)d,~dud, =0

n—1"n-1 nn nn'n
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so h, —u,d, :P, > imd, . Then by projectivity of P, we get

un+1"" Jhn—undn
e a1 7,
Qn +1 Kn +1
so we get our family of u; by induction.
Then F(h,)= F(u,)F(d,) + F(d, . JF(t,, ), and Fi) her pa,,) =
Fd, , )F(u,,,), soon L F(4)-F(h,) induces the zero homomorphism. Thus L,(f)
is independent of the lifting of f along M. Clearly L,F(fg)=L,F(f)L, F(g) and

Ly(14)= 1z, 4y

Now let P and N be two distinct projective resolutions of 4. 1, induces a map
¢ L, F(A;M) > L, F(A;N) and amap ¢:L, F(A;N)~> L, F(4;IN) where the nota-
tion indicates the resolution used to calculate the derived functors. The compositions ¢y
and ¢ are also induced by the identity: N> N and M->M and so are the identity of
their respective domains. Hence L, F(A) is independent of the resolution.

LEMMA 2.6. Let 0> A > B - C—-> 0 be exact,
SD?:..._>P"_.>..._>PO_,A.._,O’
N-... —Q, > —Q, = C—0
projective resolutions. Then there exists a projective resolution
D="'——>T,,-—>"‘—*To—>3_>0
of B such that 0>M >0 > N0 is exact.

PROOF. Assume we have a commutative diagram with exact columns

0 0 0 o0
Do i
-—)Pn—)Pn_l——~—7Pn_2—)-.-———>PO—>A——>O
{ t,_ l i

T, =T, ,— -+ —Ty—B—0

«—--
SN

c =0, 0,_, —";%Qn_z—» e = Qy—C—0

4
0 0 0 0

Then
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0

—— kerd, ,——0

l

i -—>"kertn_l
. €7
2 -

——*kerd;_

]

0

n 0

0
P
P &g,
Q
0
is easily seen to be exact. Since @, is projective, there exists €:Q, — ker ¢, | making
the diagram commute. Then e:Q, > kert, | and P, > kerd, , »> kert, , inducea

map ¢,:P, ®Q, » kert, | so that the diagram commutes. ¢,
im (kerd,, _,) and P, ®Q, > kert, , > ker d;_l is epic. Induction completes the

is epic since im 7, D

proof.
THEOREM 2.7. Let 0> A—>B->C—>0 beanses, F an additive functor A -
Ab. Then there exists a long exact sequence
voo— L F(CO)— L,F(A) — L, F(B) — L, F(C) — L,_,F(4)
— s = LoF(A) — L F(B) — L F(C) — 0

(or 0 = ROF(C) — R°F(B) — R°F(4) > R'F(C) > «-« > R"F(4) »> R"T'F(C) > +++).

ProoF. Let 0> I > O >N~ 0 be an exact sequence of projective resolutions
of A, B and C asin the lemma. Since each @, is projective, each coumn 0 > P, -
T, = Q,~ 0 issplit, so 0> F(P,)~> F(T,)~> F(Q,)~> 0 is split exact. Apply the
theorem of the long exact sequence to the exact sequence 0 — F(’D?n>0) > F(O,59)
F(M,5,) > 0.

Definitions. (a) R"Homy( , B) (4) = Ext’;\ (4, B).

(b) L,(®g BXA) = Tork(4, B).

ProprosITION 2.8. [f 4 is projective, LnF(A)ZO,Vn =1 (if A isinjective,
R"F(4)=0,Yn > 1).

ProOF. 0> P, =4 > A~ 0 is a projective resolution of 4 so L, F(A) is the
nth homology of 0~ FA - 0.

THEOREM 2.9. Ext?k(A, B) = A(4, B), Ext}(4, B) = coker (A(P, B) -~ A(K, B)),
Torg(A4, B) = A ® B, TorX(4, B) = ker (K ®z B> P ® B) where 0>K>P->A->0
isas pr of A Moreover,

Ext} (4. B) ~ Ext}~ (K 4, B); Tori(4, B) =~ Tork (K4, B),
and rthese isomorphisms are natural.

Proor . By the one-sided exactness of Hom, for 0 > K > P> 4 - 0 exact,
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Ext%(A, B) = ker (A(P, B) > A(K, B)) = A(4, B).
By Theorem 2.7,
0— A(4, B) — A B) — AKX, B) — Ext;\(A, B) — Ext}x(P, B)
—> eer —> Ext'/l_ Yp B) — Ext;‘\’l(K, B)— Ext;l(A, B) — Ext'A(P, By— -

is exact. By Theorem 2.8, Ext’/;‘(P, B)=0,Vn > 1. Checking through the construction of
the connecting homomorphism 6 gives naturality. The theorem for Ext follows. The
proof for Tor is dual.

We note that Ext”(A, B) is also functorial in B, with composition with f inducing
Ext"(4, f). This will be used in the next section.

CoroLLARY 2.10. p.d. 4 < n == Ext'A+1 4, B)=0,YBEA. w.d (4)<n<+=
TorR, (4, B)=0,VB € z M.

PROOF. A is projective <= 0—>K > P~ A4~ 0 is split exact == VB, 0 >
A(A, B) > A(P, B) > A(K, B) > 0 is exact (take B =K for one direction) <= Exty(4, B)=
0, VB. Since Ext’;\' '(K,4, B) = Ext"(4, B), the statement for all n follows by induction.

By Theorem 1.32, 4 isflat = 0> K~>P—> A4 - 0 ispure exact == 0>K®&, B~
P Qp B is exact VB = Tor’f(A, B)=0,VYB. Now use induction as above.

We note that, by the long exact sequence for Ext (Tor), B is injective (flat)
— Ext;\(A, B) =0, VA (Tork (4, B) = 0, V4) since for any exact sequences 0 > U~ V -
W 0,0~ AW, B) > A(V, B) > A(U, B) > Exty (W, B) is exact and Ext}(4, B) is the
cokernel in such a sequence. Tor’f(W, B)»UQ, B->V®; B>W®, B~>0 isexact
and Tor’f(W, B) is the kernel of such a sequence.

Definition. (a) E’}(A, B) = R"Hom, (4, )(B),

(b) T,(A, B)=L, (A &g —)(B).
THEOREM 2.11. E'} (4, B) = Ext}(4, B), TH(4, B) = Tork(4, B).

We will prove this theorem in the next section. For the moment we just note some
consequences of it.

Remark. This theorem gives an easier way to remember 2.10. [t says we can resolve
the second variable in Ext or Tor and get the same result as in the remark directly fol-
lowing Corollary 2.10.

CoroLLArRY 2.12. gl. p.d. (A) =gl i.d. (A), gl. w.d. (Mg) = gl. w.d. (x M).

PROOF. By Corollary 2.10, p.d. 4 < n, ¥4 <= Extx+ (4, B)= 0,VY4 and VB <=
E’;\“L (4, B)=0,¥4 and VB (use Theorem 2.11) == i.d. B < n, VB (analog of Corollary
2.10 for E%). The same proof works for weak dimensions.

Definition. gl. p.d. (gM) is called the left global dimension of R (l.gl.d. (R)), gl.
p.d. (Mg) is the right global dimension of R (written gl. d. (R) since in general we will
work in Mp). gl. w.d. (Mg) is called the weak global dimension of R. gl. w.d. (R)
is independent of sides.
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Remark. gl. w.d. (R)<1. gld (R) since K,4 projective = K, (4) is flat.
82. An alternative derivation of Tor and Ext.

The proof of Theorem 2.11 is very powerful, and indeed contains the heart of all the
information derived on Ext and Tor in §1. We will illustrate this by a derivation of Tor
from scratch. We completely forget all work on derived functors and repeat those few por-
tions necessary to make this section independent. It is clear what arrows must be reversed,
kernels changed to cokernels, and projectives changed to injectives to make the same thing work
for Ext. Even Schanuel’s lemma is unnecessary if we redefine K,4={K€ A 13 ans.e.s.
0>K—->P—>4 -0 with P projective}.

Let A and B be abelian categories with enough projectives, and let <4, B) be a
right exact covariant functor from A X B > Ab such that (P, ) and ( , Q) are exact
for projective P and Q. To simplify arguments, we will assume A and B are embedded
in Ab and we have a way of identifying isomorphic objects or selecting representatives of
isomorphism classes.

Let
M=0—-Kk—>P—4—0,

EU(:O—»[%—»ﬁ—»/f—»O,
mz()—»]‘——»Q——»B—)(),

N=0—-T—0—B—0,
be s.p.r’s,and let a:4 — A,8:B > B. Since P> A4 >0 and é—*é - 0 are exact
and P and @ are projective, we get «, and §; such that the following diagrams com-
mute:
0—K—>P—>4—0
] o) lal 10[
0—>Kk—PFP—>4—0
0—-T—Q—B—0
le |8 |6
0—>T—0—B—0
Theorem 2.14 below will make sense out of the following notation. Set
Ly,(4, By=(A4, B},
L,(4, By=ker (K, B) — (P, B)),
L,(a, 8) = the map induced by (a/, ) on
L,(4, B) to L,(4, B),
L,(4, B)=ker (4, TY — (4, @),
L ,(a, B) = the map induced by (e, 5'1 ) on
L,(4, B) to L,(4,B),
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L4, B)=L (K B),
Ly, B) =L,(a},B),
LA, B)=L,(4 T),
Ly, 8) =L, @, B,

and in general, for n > 1,
LA BYy=L,_ (K4 B)=L,(K,_,A4, B),
Ln(a y ﬁ) = Ln—- l(a'[y 6)
(or L,(a,_,,B) where a,_ , isa “lifting” of @ to K,_,A obtained by iterating the
construction of «,). L, is defined similarly using the second variable.
All of our diagrams will be finite. Our major diagram chasing is contained in the fol-
lowing lemma. The construction of ¢ should be carefully noted.
LEMMA 2.13 (THE SNAKE-A SHORT FORM OF THE LONG EXACT SEQUENCE). Given

a commutative diagram with exact rows and columns

0

0‘1[0‘2

A, — A, — A, —0

ifl 113 [fs
B, 4 B,

B, — B, — B, — 0
82

lgl g3
T T2

C,— Cy—C; —0

| b
o 0 0

then there exists an exact sequence
i g ¢ 13

ker ay —> ker §, = ker v, — A, —>B3§§+ C; — 0.

Proo¥ . Clearly f|(ker a;) C ker 8, g,(ker B,) C ker vy, and since f, is monic
f7 Mker B,) C ker . This gives exactness at ker f,.

Let x € kery,. 3u, x =g, u. Any other preimage ' of x is of the form u' =
u+fy. Set u=pu Since g,u =v,g,u=0,u=fv and then B,u' =f,(v + a,y).
Set ¢(x)=a,v=0a,(v +a;y). ¢ isa well-defined function since we get the same values
of ¢(x) regardless of the choices involved (¥ and y). It is clearly 2 homomorphism.

xEkerp=aw=0=>3z, v=0z2=2u =p,fz=>u~fz€ kerp, >x€
g,(ker §,). Clearly ¢g'1 =0 since for x € g,(ker 8,), u = 0. We thus have exactness
at kerv,.

f30=0 since fu =0=f(a,w)=0. If fyw=0,3v, w=a,v. Then
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62fzv =0=173y, fov=p,u and g,B,u=0. Thus g,u € kery, and ¢(g,u)=x This
gives exactness at A4;.

THEOREM 2.14. L, and L, are functors of two variables (independent of the resolu-
tions and liftings of o and (). Moreover, L, is naturally isomorphic to L,,.

ProoF. The result is contained in one three-dimensional (finite) diagram (needed for 2.11
but omitted in §1). For clarity we separate out the front face first. It is the commutative

diagram
0
fs
(K, T)— (K, Q)— (K, B) — 0
Poerens w
fa : fi
U oooen m

0— (P, T —> (P, Q) — (P, B)— 0

x
(A, T)— (A, Q) — (A, B)—0

By definition,
L,(4, B)=ker f,,
L (4, B)= ket f,,
LK, B) =ker [,
L,(A, T)=kerf,,

By Lemma 2.13 we have a connecting epimorphism ¢ : ker f, > ker f; with kernel 0.
Hence ¢:L,(4, B)=~ L (4, B).

Now, ker f, is independent of N, so ker f, isalso. kerf, is independent of m,
so ker f, must be. That ker f; = ker f, is clear. Moreover, ker f; = L (K, B) is inde-
pendent of T and ker f, =L, (4, T) is independent of K, so L,(A4, B) is independent
ofboth K and T (i.e. M and M) and L,(4, B)~ L (KA B)~ L (K A, B)~
LA K\B)= L,(A, K\B)~ L,(4, B).

We next take our basic diagram and insert the same thing with hats on behind it to get
a commutative parallelopiped. (The diagram is on the next page.)

The map L,(a, B) is induced by (e, B) in the upper right-hand edge since
(ay, B) (L, (4, B) C ker (K, B) > (P, B)). Likewise L,(a,p) isinduced by the lower
left-hand edge (o, ﬁ'l ). x=u-u—>v—>w is the way ¢ was constructed. If ~ indi-
cates image in the back face, ¢: £1(’Z» By~ Ll(/'f, B) is obtained from % & » il -

0 > W and commutativity of the diagram yields ¢ is natural; indeed, if s indicates
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restriction of domain and/or range, (&), )" = ¢ (a, }) ¢~ '. Since (a, ) is independent
of the lifting a, of a, sois (a, gy = L, (a, B), which is also independent of §,. Sym-
metrically, L, (a, ) is independent of B, and of course of «,. Thus the theorem holds
for n=1.

0
K Ty ————w (K, Q) ————— (K, B)—>0
, |
(a')V' I ¢ / : <al|‘M
|
KT — e K — o kB > 0
| v | w
I {
1] ) Y
0 (P, Ty edee e (B Q) -4~ === (P By—= 0
> | P A
Y P ( 1 d l v
u - ] u < {
0 (P D ————> (P Q) ———t> (BB > 0
|
| ! |
v '} 1
AT -4 sd ) —F == dB)—>0
a,B)) 7 | 7| {a, B
[ ] - | ¥
g | < 1
(AT ———— > (A, O (4. B) ~ 0
) ] Y
\ 0 } 0 { 0
0 0 0

Now L,(a, )= ¢£1(a’1, B)p~! (see top of diagram) and so is independent of g8,
and Ly(e, B)=9¢"1L,(a, B'l)qs (left-hand face) is independent of «,. Since L,(4, B)
and £2(A, B) are naturally isomorphic to the same subgroup of (K, T, with maps induced by
(a'l , B'l ), L, is naturally isomorphic to L,. Indeed we have a whole string of natural isomorph-
isms L,(4, By=~L,(K,A, B)y=~L (A, K,B)= the corresponding barred functors.

By induction, one gets natural isomorphisms with or without bars
LA B) =L, (KA, K:B)
for 0<i+j<n

LEMMA 2.15. Let 0> A4 >4 > A0 beanses Then there exists a simultaneous
projective resolution of this sequence, that is, a commutative diagram
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0 0 0

) | |
0—K —P —A4 —0

v ) b,
0—K —P—>4—0

!
0—K =P —>4 —0

| \ {

0 0 0

with exact columns and s. p. r. rows.
~

ProOF. Given the projective resolutions I and P, since P is projective there
exists €: P ~> A’ such that

€
’
7

-— "

v
A —i—0
commutes. Let P'=P@®F. P-4~ 4" and ¢:P > A" induce amap P > A' whose
image contains 4 and maps onto A. Therefore the image is A'. The sequence of kernels
K—-K - K0 is exact by Lemma 2.13, and K = K’ is the restriction of the monomor-
phism P - P’ and so monic.

THEOREM 2.16. Let 0> A > A > 4 > 0 be exact. Then there exists an exact se-
quence

cv — L (4, B)— L, (4 B)— L (4, B)— L,_,(4, B)
—> v — L (A, B)—> (4, B)— (A", B) — (4, BY — 0
and a corresponding sequence in the second variable.

PrROOF. Resolve simultaneously by Lemma 2.15 and apply Lemma 2.13 twice to the
diagram

(K, T 0
| \<K,1Q)
K, T l SNk B o (BB — (4B —0
[ \(K’,Q) l\'o 1
R, T 1 TS (K. B — (P.B) — (A B) —0
l ™ (K, O 1\0 l
0 1\‘<12,B>«» (P,BY — (4, B —0
o T |
0

0 0

Notice that ¢ :ker (<KA, Ty > (K, 0N~ (K, B) has image contained in ker (K, B) ~ (P, B))=
L,(A, B). This gives the result starting at n = 2. The rest of the sequence just iterates the
L,, L, portionsince L, (4, B)=L,(K,_,A B) and L, (4, B)=L,(K,_,A4, B).
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§3. Elementary applications
We start with two proofs of

THEOREM 2.17 (GLOBAL DIMENSION THEOREM). Let R be a ring. Then

gl. d. (R)=sup {p.d. R/NIIz CRR}
=0 or 1 +sup{p.d (Dlig CRR}.
PROOF NUMBER ONE. By Baer’s criterion, M€ I, is injective <= forall /, C Rp,
0 — Homg (R/I, M) — Homg (R, M) — Homgz([, M) — 0

is exact <= Exty(R/l, M)=0 forall I Since Extp*'(R/I, M)~ Ext}h(R/l, I M),
Ld M) <n<=ExtZt'R/L, M)=0, VI Hence g. d. (R) <n = Extp* R/, M)=0,VI
and VM < p.d. (R/N)<n VI

Since 0> />R~ R/I > 0 isexact and R is projective, either p.d. (R/]) =
p-d. ) + 1 for some I or every such sequence splits. In the former case, sup {p.d. RN CR}=
1 +sup {p.d. )i/ C R}, and in the latter R is semisimple artinian and so has global

dimension zero.

LEMMA 2.18 (AUSLANDER). Let M= UB<& Mg, where « is an ordinal and
Mg CM, for <1 Assume p.d. Mp/U <pM,) <k forall §<a Then p.d M)<k.
(This lemma holds in any Grothendieck category with enough projectives.)

ProoF. If k= o there is nothing to prove, so we willuse induction on finite & If
k=0, Mﬂ/ U7<BM7 is projective, so My = N; @ U7<BM7. Let Lg=Z2, 4N, Ly=0,
M, =N,. Assume L; isa direct sum forall § <f and U5<7L5 =®a<7 N s equal
to M, ¥y <. Itis then clear that U, 5L, = @ ,;N, andso M;=@D, ;N, By
induction, M=, M=, N; is projective.

Now assume the lemma for k — 1. For each B, let P; > M, be epic with Py pro-
jective, and consider the projective resolution of M,

0—>K——>@5<QPB—>M—>O.
Set Q= ®7<BPB ,Kg=K N Q. Then we have a directed family of exact sequences
(s.p.1.’s)
0—K;— Qs —>Mz;—0
inducing s.p.r1.’s
0—Lg— Py — Mg/U, M, — 0
where L, is the projection of K to Pg, Ly~ Kﬁ/U7<ﬁK7. Then p.d. (Kz/ U <K, <
k — 1, so by induction, p.d. (K) <k — 1. Then p.d. M) < k.

PROOF NUMBER TWO OF THEOREM 2.17. Let M =X, x,R andset M, =
Z,<pXy R Then Mg/ U7<ﬁM7 is a quotient of x5 R and so cyclic. Apply Auslander’s
lemma.,

We note that the analog of the global dimension theorem for weak global dimension is
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a standard result. For, by Theorem 1.31, a module M is flat <=V7 CR O0->M@gl~>
M ®zR isexact == Tor{(M, )=0,V I CR.

We observe that a ring R has global dimension = 0 <= R is semisimple artinian
<= l.gl. d.(R)= 0 (Proposition 1.22). Aring R hasw.g. d.(R)= 0 <= R is von Neumann
regular (Proposition 1.35).

Not all useful abelian categories are modules over a ring. We give an application of
another category of global dimension = 0.

PROPOSITION 2.19. Let A be a Grothendieck category of global dimension zero with
infinite direct products. Let UE€|A|, R=A(U, U). Then R is a right self injective
regular ring.

PrRoOF. Let F be the functor A(U, ) from A to M. Let X, Y €A such
that for some indexing set I, there is an epimorphism f: €, 7U; > X, where each
U;~U. Then we may take I = A(U, X) and f;=i:U~> X. Let X € Homg (F(X), F(Y))
and g: @ieA(U,X)Ui -7 gl u; = Ao fl U Let J be any finite subset of 1, K =
ker f N ,c, U;. Any subobject of €,., U; is a direct summand and so a quotient of a
direct sum of copies of U. Let

31
a:U—KCPUCch U, a=|:).
ieJ i€l ay

Then fa=0=% fIUia,-, SO go = K(Ef[uiozi) = 0. By exact direct limits, ker f=
mp(l)ker (f‘e)iej v;) S kerg Thus g=¢ o f forsome ¢, and X =F(¢). (In cate-
gorical terms, if U is a generator, then F is a full functor.)

Now let I be any finitely generated right ideal of R. Then there exists an epimor-
phism f: @2 R, > where D R, =F(D?, U), and an embedding v:7/~R By
the above, vf= F(¢) for some ¢:@i"’:1 U, > U Since A has global dimension 0, im ¢
is a direct summand of U. Then F(im ¢)= 7 is a direct summand of F(U)=R.

Now let M be any right ideal of R Then

Homg, (M, R) = HomR(l_iLn) I R)~ Ll_@ Homg (I, R)
~ Jim Homg (F(V), F(U)) ~ lim AV, U) = ACim V, U)
where [ runs over the finitely generated ideals of R contained in M and the Vs are
some subobjects of U. But l_lrg V' is also a subobject of U, hence a direct summand.
Thus the map A(U, U)=R ~ A(@ V, U) = Homgz (M, R) is epic. By Baer’s criterion, R
is right self injective.

PropPoOSITION 2.20. Let R be any ring, M a (quasi) injective R-module, S =
Homg (M, M). Then S/J(S) is a right self injective regular ring.

PROOF. We obtain a Grothendieck category Spec (Mg) and a functor F: M, -
Spec (Mgp) as follows.

ISpec (Mg) 1= [Mgl, F(M)=M, VM €Ny,
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Spec (Mg) (P Q)= lim (Homg (M, Q).
mc'p

That is, maps are maps from essential submodules of P to ( identified if they agree on an
essential submodule of P. F(f) is the class of f under this identification. F is a functor
since if g agrees with g’ on N C' Q and f agrees with f' on M C' P, then gf agrees
with gf on fF!W)NMC'P InSpec (Mp), all essential monomorphisms are invertible.
Now let M C P, K maximal with respect to M N K =0. Then M@K C' P, soin
Spec (Mg), P=M @ K. Hence gl. d. (Spec (Mg))=0. By Proposition 2.19, the ring
A= Spec (Mg) (F(M), F(M)) is right self injective and regular. But M is (quasi) injec-
tive = (=)Vf:N—>M NC M, f isinduced by a map:M~>M<>S > A isonto. Let a €
ker (S > A). Then ker« g’ M, and (1 + )} ker 18 monic so 1 + @ is monic, and
im(1 + @) Dkera=im (1 + &) C' M Let B:im (1 + @) > M be the inverse of M
im (1 + «). Then f is epic and extends to a monomorphism : M - M. This implies
M=im (1 + @), and 1 + « is invertible. Thus a € J(S), ker (§ > A) CJ(S) and
J(A)=0=ker (§ > A)=J(S).

Of course this is not a complete proof of Proposition 2.20—it omits the very general
categorical result which implies that Spec (My) is Grothendieck with infinite products
(to insure existence of the necessary limits). Hence we will give a ring theoretic proof which
actually picks up what we need of the functor F: Mz = Spec (Mg).

Let M, be (quasi) injective, S = Homy (M, M), S = S/J(S), where — denotes the
natural map.

(a) Let N C M have no proper essential extensions in M. Then M=N® K for
any K maximal with respect to K NN =10 since a map m extending 1, ® 0g has
image an essential extension of N and kernel containing K and with 0 intersection with
N. Hence = is a direct sum projection. We note thatif K @ N =M and L C K has no
proper essential extension in K, then K =L @K, by the same argument. (This is the
same argument used to get the injective hull.)

(b) Let /={a € Sikera C' M}. Asabove, 1+« is invertible Vo € I, Since
ker (s — £) Dker s N ker ¢ and an intersection of essential submodules is essential, [ is a
subgroup of (S, +) and is clearly a left ideal. Hence 7 C J(S). Let t &1, s€ S. Then
VO#N_C_M, either SN=0 or sNNkert#0, so NNkerts# 0 and ts €1 There-
fore [ is an ideal.

(c) Let s€S kers®K C' M Then s:K - sK is monic and so has an inverse
y:sK—> K Let ¢t extend y toamap t:M—>M Then (sts—s)(kers ®K)=0 so
sts—s €[ and S/ is regular. Thus J(S) C L

(d) Let s> —s€ L Then kersNker(1—s)=0 and y Eker (s> - s)=>(1 —s)y €
ker s and sy € ker (1 —s),50 kers @ ker (1 ~s)C' M If N, is a maximal essential
extension of kers in M and N, is a maximal essential extension of ker (1 —s) in M,
then M=N, ®N, by (a) and N, =eM for some e= e’ €S, eN, =0. Then (e ~s)-
(ker s @ ker (1 —5))=0, so e-s €[ Thatis, idempotents lift modulo I

(e) Let e and f be idempotentsin S, eM N fM=0. Then eMOfMBK=M



44 BARBARA L. OSOFSKY

for some K since eM and fM have no proper essential extensions in M. Thus eM &
fM=gM forsome g=g?> €S

(f) Let e and f be idempotents of S. Then eM N fM#0=eS NfS # 0. For
let (eM N fM)® K C'M, K maximal with respect to K N eM N fM=0. Let a maximal
essential extension of eM N fM in eM (respectively fM) be gM (hM) where g and h
are projections with kernel K. Then eg=g fh=h, and g—h €1 Hence g #0 isin
eS NfS.

(b) to (f) have established a correspondence between direct summands of M and
direct summands of S.

(g) Let f:1~S, I anideal of S. We now do the equivalent of passing to our
spectral category. Let {€;|i € T} be a maximal set of idempotents in / such that Ze, S
is direct. Since S is regular, Q} Ie S C'I and any map from [ to S is completely
determined by what it does on 69161 €, S, since no element in S can annihilate an essen-
tial right ideal of S. Let €= e, €S hft e;, and X; = f(e;). Backin M, ZiereM is
direct by (¢) and (f), so x;e;:¢;M > M induces a map g: @e e;M— M which comes
from a map m: M - M. (The lim and hm have been reduced’'to @ and I1 respectively.)
Clearly me; = Xx;e;=f(e;) so mx = f(x), Vx €1, and S is right self injective.

Let R be rlght noetherian. Then gl. d. (R) = w. gl. d. (R) since any K, R/ is
finitely presented and so flat <= projective. Thus for a two-sided noetherian ring, right
and left global dimensions agree. This is not true in general. For example, let R = (Z Q)
Then the only right ideals of R are direct sums of ("‘g 8)% G O)R and {(0 pq)}

3 9)R which are projective. Hence gl.d. (R)=1. ButlL.gl.d. (R)> 1 since (0 Q) is
not a projective left ideal (Q is not a projective Z-module).

gl. d. (R) <1 <= every submodule of a projective is projective < every quotient
module of an injective is injective <= every right ideal of R is projective. Such a ring
is called (right) hereditary. The commutative hereditary domains are precisely the Dedekind
domains (every ideal is invertible).

Let R be a ring containing an infinite direct product of subrings. Then R is not
hereditary. We will give two different proofs of this fact, both of which have additional
interesting consequences. The first exhibits a quotient of an injective which is not injective,
the second exhibits a submodule of a projective which is not projective.

ProPOSITION 2.21. Let R bearing, NZ,R; asubring of R where R; has
identity e; # 0. Let M be any module DRy, and set 1= {x ERlex= 0,V'i € w}.
Then M/I is not injective.

PrOOF. Forany 4 Cw, let E, denote its characteristic function as an element of TIZ,R,.
Let w=U,-°=°0Ai where 4, N4, =& for j#k Let

F={SCP()ISD{4,lj€w} and B, CES, B+ C =B NC i finite}.

F is inductive. Let S; be a maximal element of F.
Let {B;11<i<n}C S, B;#B; if i#j Assume ZL Epr, €l Then
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B; N U, B, = C is finite. Since Vk € B~ C;, ¢, 7 Eg.7; = 7, and Vk € w - B;,
ekEBj =0, ekEB], r=0, V'k, so EBI,r]- €1 Hence Zpegg EgR maps onto a direct sum
modulo /. Let v be the natural map: M - M/I

Define ¢: (25 EgR)I ~M/I by $(E4,)=v(E4 ). Vi€ w, ¢(Ep)=0, VBES, -
{4;1j € w}. Assume M/I is injective. Then 3m € M mapping to the image of 1 + 1
in an extension of ¢ such that

vaAI, = VEAI,, YiEe w,

yvmEg =0, VBE S, - {4;1] € w}.
Since mEAl -E, 4, €[ C R, we may multiply it on the left by e, and get
e, (mE , ) =0, V'k € w. In particular, e, (mE , )— e, V'ke A;, so e (me, )=
e, V'k e 4.

Similarly, mEg €I, VBE S, — {4;1j € W}, s0 V'k € w, e,(mEg) = 0 = e, (mEgey).

Let f be a choice function on X j€w {k € 4; le (me)=e.}. C= {f(D)]i€ w}is
an infinite set and so must have infinite intersection w1th some element D of S, by maxi-
mahty of S5. But CNA4;={f()}, so D& {4;|j € w}. Hence Vek €D, e, (me,)=0
but Veke {f(])} e (mek) e,, a contradiction.

COROLLARY 2.22. If R contains an infinite direct product of subrings, then R is
not hereditary.

ProoF. E(R)/] is a quotient of an injective module which is not injective.

CoROLLARY 2.23. Let R be a ring such that every cyclic R-module is injective.
Then R is semisimple artinian.

ProoF. Since every principal ideal xR of R is injective, R is regular in the sense
of von Neumann. If R is not semisimple artinian, then R possesses an infinite set cf
orthogonal idempotents {e,|i € [}. Since Ry is injective, R = E(@i e;R) ®fR where
E(@D,e,R)=(1-f)R, f=f% Then {e(l —f)|i € 1}V {f} is a set of orthogonal idem-
potents generating an essential right ideal, so w.1. 0.g. @ele RC'R Llet x ER, x¢;
0,Vi Since Rx=Re forsome e=e? C R, we may assume x is idempotent. Let y €
xR ﬂ@eiR. Then xy =0=y, so xR =0. Now every map f: @eiR -> @eiR is given
by left multiplication by an element m, € R, and the preceding says my is unique. Then
f - my is a ring homorphism: Homp (B, ¢R, @De,R)~> R, and Homg (P e;R D;¢;R
contains the “diagonal” TI;e;Re;. By Proposition 2.20 with M = R, there is a noninjective
cyclic R-module.

Notice that Corollary 2.23 can be rephrased i. d. (R/)=0,VIC R = gl.d. R)= 0.
If all we know, however, is that i.d. (R/7) <1 for all I, absolutely no conclusion about
gl.d. (R) can be drawn without extra hypotheses on R. We will come back to this later.
We now give our second proof of Corollary 2.22.

PROPOSITION 2.24. Let R bearing, IL,c 1R, a subring of R, where ¢; # 0 is
the identity of R;. For A C 1, let E, denote the characteristic function of A. Let
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{4;1j € w} = X be a countable family of disjoint infinite subsets of 1 with U/.Ew 4;=1,
and S a subset of P(1)—F(1) maximal with respect to X CS and B, CeS=>8B=C
or BN C is finite. Then ZgcgEgR is not projective. If T C P(1) is uncountable and
has the property that

H{A4;10<i<n-1} N {B;In<j<m}=@and {4;} U {B;} CT]
=T, ‘E nz, (- EBI,)¢O,
then Zp-rEgR s not projective.

PrOOF. Assume S is countable, say S = {B, |k € w} where the indexing is 1-1.
Then B, -U,, B, N B, is infinite since B; N B, is finite Vj <k and B, is infinite.

J
Let f be a choice function on {B, — U'<kB/‘ N B, |k € w}. Then f(k) E}EB].,Vk >j, so

i
S U {f(w)} has the finite intersection property, and f(w) ¢S, contradicting the maximality

of §. Thus S is uncountable.

Assume Z, .cE, R or Z,..E,R is projective. Let F=@ieriR be a free
module containing it as a direct summand. For each finite subset F of § or 7T, let g(F)
be a subset of S or T obtained by expressing E, asasum XL b,r;, projecting each
b; onto ZE, R, and setting g(F) equal to a finite subset containing F such that
Z eqr)E4R contains all such projections. Set V, = {A]- [/ € w} (or any countable sub-
set of T). Assume V; has been constructed such that V; is countable and g(F(V)) C

Vi 41, Yk <i V¥, has only a countable number of finite subsets, and g of each is finite.
Hence Uper-(V)g(F) Viy, is countable. Set C= Uz, V;. Then C is countable,
say C= {C | € w} and g(C) C C. The projection of E].Ew E~ R onto the direct sum-
mand of F generated by the set of b; needed to get all of the G is already in EECI,R
50

YEsR= Y, EcROM
=
where the first sum is over S or T. Let BES~ {(|j€w}or BET- {(lj € w}.
Then Ep = E;‘ZIEC’_r,. +m where meEM.

Let C,, € {C;1j € w,j > n} such that u=EC EgNL, (1 —EC)%&O In the
case of T, any C,, m > n will do. In the case of S B- U" £, BN () is infinite and
so has nonempty intersection with some 4;=C,, .

Now u € E EC R since u—EC u so Egu=u= Z;‘ZlEciriu + mu = mu = 0.
But u=uFg=um, so u2 = umum = 0, a contradiction.

COROLLARY 2.22,PROOF 2. £,-¢E, R is a nonprojective right ideal of R. The
T of Proposition 2.24 also exists and yields a nonprojective ideal.

LEMMA 2.25. Let 0> A4 > B> C—> 0 beexact. Then if two of p.d. (4), p.d. (B),
p.d. (C) are finite so is the third, and either
(i) p.d.(4) <p.d. (B)=p.d. (O),
(il) p.d. (B)<p.d. (4)=p.d. (C) - 1.
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(ii)) p.d. A)=p.d. B)=Zp.d. (O)— 1.
ProOF. By the long exact sequence for Ext,
- — Ext"(C, M) — Ext" (8, M) — Ext" (4, M)
— Ext"*1(C, M) — Ext"* (B, M) — +--
we see that p.d. (4) < p.d. (B) = for n=p.d. (4) + 1, Ext" "5, M)=0,VYM, Vk >0
so Ext®TR(B, M)~ Ext"t*(C, M), VM, Yk =0 and p.d. (B) = p.d. (O).

If p.d.(B)<p.d.(4), Ext"*'(4, M) ~ Ext"T2(C, M), VM where n > p.d. (B) so
p.d. (4)=p.d. (O) - 1.

If p.d. (B)=p.d. (4)=n, either both are infinite and »n = p.d. (C) =1 or both
are finite and Ext"*2(C, M)=0,VM, so p.d. (C)<n + 1.

We conclude this section with an application to polynomial rings.

THEOREM 2.26. Let R be aring, x a central element which is neither a unit nor a
zero divisor. Set R*=R/xR andlet A # 0 be an R*module. Then p.d. (Ag+)=
n<eo=>pd (A,)=n+1.

ProoOF. We use induction on n

If n=0,A4 isa direct summand of a free R*-module F*. Since xR is a free R-module,
p.d. (R;)= p.d. (R/XR)< 1, so p.d. (FI:)< 1. Hence p.d.(4z) <1. But A cannot
be contained in a free R-module since x is not a zero divisor on any free module. Thus
p.d. (Ag) # 0, so p.d. (Adg) = 1.

If n>0, let

0—=K*"—F*—4—0
be exact in Mg, F* R*free. Then p.d. (K;.) =n— 1 by definition of projective di-
mension since A4 is not R™-projective. By the induction hypothesis, p.d. (Kg) = n. Let
{b;1i € T} be a free basis for Fp+, and G, afree R-module on {b;|i€ 1}, v:Gp ~
Fg, b)) =b;. Then kerv=Gx ~G. Set L=v"'(K). We thus have a commutative dia-
gram with exact rows and columns

0 0

{ |

Gx Gx

' }
0—L—G

v 1%
0—K—F*—>4—0

}

0

p.d. (Gxp)=0 since x is not a zero divisor on G, p.d. (Kgz)=n Hence either
p.d. (Kg)=p.d. (L), in which case p.d. (Ag)=p.d. (Lg)+1=n+1 or p.d. (Lg)=
0,p.d. (Kg)=1, and n=1.

If p.d.(Lg)=0 and p.d. (Kg)=1,p.d. (Ag) =1 since Ap is not projective and
0>L->G—>A->0 isas.p.r.of 4 K is R* -projective, and Kp = L/Gx =~ (L/Lx)(Gx/Lx).
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Since L is a direct summand of a free R-module H, L/Lx isan R*-direct summand of
the free R*-module H/Hx and sois R*-projective. (Gx/Lx)g = (G/L)g = Ap so we
have an exact sequence of R*-modules

0 —Gx/Lx ~4 — LlLx — K— 0

where K and L/Lx are R™-projective and p.d. (Ag+) =1, a contradiction.

The assumption p.d. (Mgs) < oo is essential here, for if R=7Z, x =4, then 2Z/4Z
has infinite dimension as a Z/4Z-module, but dimension 1 as a Z-module,

THEOREM 2.27. Let R be any ring. Then gl.d. (R[x])=gl.d. (R) + 1.

PROOF. Let M € Mg, and set M{x] =M ®, R[x]. Since ®; commutes with
direct sums, M R-projective = M ®, R[x] Rix]-projective. Conversely, if M @, R[x]
is R[x]-projective M is R-projective since D=, M,~M ®p R[x] is a direct summand of
an R [x]-free module which is R-projective. Since @, R[x] is exact, K, (M)=0 in
My = K, (M Qp R[x])=0 in MR[x] vie.pd(Mg)=p.d. (MQ; R[x]g(5)) One
concludes gl.d. (R) < gl.d. (R [x]).

Now let N be any R [x]-module. Then there is a natural R[x]-map v:N®, R[x] >N
given by module multiplication. Consider the map ¢:N ®z R[x] > N ®, R[x] given by
d(Zhom ® X)=Zh (mX @ X' —m; ® X*1). v¢=0 by inspection, and ker ¢ =0
since —m, ® X"*! is a nonzero R-projection of ¢(Z,m; ® X') if m, # 0. More-
over, if uZ:.‘ZO m; @ X =0.

k 1 \
(B(§ o)
=1\ j=1

! I
< mk-i+1X{_l+l®Xk_l—2 mk_i+lX4_’®X""+l>
| =)

L\ j=

K ! ,
My_jpy X7 @ X0 - ) <Z My XTI

(k—D=1

g

u[\/]a-

~

Ii
{
M=

.
i
—

=1

1+1
_ 2 mk_j+1XI—1+l>®Xk—l
=1
k
=my ®@ X0+ ) m_, ® XD,
(k= D=1

Hence
0— N@®g Rlx] & N®; R[x] &> N—0

is exact and p.d. (Ng(;)) < p.d. (W ®g Rx]) + 1=p.d. (V) + 1 so gl.d. (R[x]) <
gl.d. (R) + 1. If one of gl.d. (R) or gl.d. (R[x]) is infinite, so is the other and we are
done. If not, let gl.d. (R)y=n and M, have p.d. (Mgz)=nThen by Proposition 2.21,
pd. Mg y)=nt+1 sogd RIx])=n+1

CoroLLARY 2.28 (HILBERT SYZYGY THEOREM). Let K be afield. Then
ghd (K[x, = x,])=n
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ProoF. gl. d. (K)= 0. Apply Theorem 2.27 n times.
§4. Commutative algebra revisited

LemMMA 2.29. Let R be a noetherian ring, x a central element in J(R), X nota
zero divisor on R or on the finitely generated R-module M, R* = R/xR. Then
p.d. (M/Mxg+) = p.d. (Mg).

ProOOF. Let 0> K-> F—> M — 0 be a short projective resolution of M. We then

have a commutative diagram
¢

0— K —"— F——> M—0
d
0 — K/Kx — F/Fx — M/Mx — 0.
We claim the bottom row is exact. Clearly »': F/Fx - M/Mx is epic, and ker v' =
(Fx + K)/[Fx ~K/KNFx. Let u€Fx NK, u=fx forsome fEF Then v(f)x=0 so
v(f) =0 implies f€ K. Thatis, Fx N K= Kx so the bottom row is exact, and since
F/Fx is R™-free, it is a short R™-projective resolution of M/Mx.
If Mg is projective, it is a direct summand of F, so M/Mx is a direct summand of
F/Fx and so projective,
If M/Mx is R*-projective, the bottom sequence splits, say K/Kx LN F/Fx AR K/Kx
is the identity on K/Kx. Then

KCF
g }T/Fx
|y

K25 K/kx — 0

Let k € K. Then there exists f€ K mapping onto k + Kx in K/Kx under the vertical
map. Then k € u(gf) + Kx so K = ug(K) + Kx. By Nakayama’s lemma, K = ug(K)
since K is finitely generated and x € J(R). Hence pg:K — K is onto. The chain

ker ug C ker (ug)? C ++- C ker (ug)” C +++ terminates since K is noetherian. Say n is
the smallest integer such that ker (ug)” = ker (ug)"*! where (ug)® = 1,. Let (ug)"z=0.
Since ug is onto, z = ug(y) for some y € K. Then (ug)’t'y=0=(ug)"y=0=

ug)"~'z=0 so ker (ug)" = ker (ug)"~!, a contradiction, or n=0 and ker ug=0.

y—1
Thus pg is 1-1, and K - F¥ e, K splits the top sequence.

If p.d. (Kg)=n—-1<=>p.d. (K/Kxge)=n—1, then p.d. Mp)=n <=
p.d. (M/Mxge) = n, so induction completes the proof.

We remark that the finite generation of M is crucial here. We will later look at a
case where p.d. (M/Mx), /xR) < p.d. (Mg), R alocal ring, enabling us to use induction.

LEMMA 2.30. Let R be a commutative noetherian local ring such that every ele-
ment in J(R) is a zero divisor. Then any finitely generated R-module of finite projective
dimension is projective.



50 BARBARA L. OSOFSKY

ProoF. Assume not. Then there exists a finitely generated R-module M of projec-
tive dimension 1. Let {x;11 <i < n} be a basis for M/MJ/(R). By Nakayama’s lemma,
there is a s. p.r.

n
0—>K—F=@@ b R—M—0
1

where K C FJ(R). Since R is noetherian, and J(R) C Z(Ry), by Theorem 1.43 there is
an x € R such that J(R)x = 0. Then Kx =0 but K is free and nonzero since
p.d. (My) =1, a contradiction.

We recall from Chapter 1 the following characterization of regular local rings. A com-
mutative, local, noetherian ring R is regular local of dimension n if and only if either
n=0 and R isafield or # >0 and Ix €J(R), x not a zero divisor, such that R/xR
is regular local of dimension n — 1.

THEOREM 2.31. Let R be a commutative, noetherian local ring with Jacobson radi-
cal J. Then for e >n=1,p.d. (Jg)=n -1 <> R s regular local of dimension n.

Proor. Let n=1. If R isregular, then J is generated by one nonzero divisor
and so is free. Conversely, if J is projective then it is free. Hence J is generated by one
element which is not a zero divisor so height (/) 2 1 (minimal primes consist of zero
divisors). Therefore, by the principal ideal theorem, height /=1 and R is regular.

Let n> 1. If R is regular, select x €J—J?, and set R* = R/xR. J(R™)=J/xR.
By induction, p.d. (J/XR)ge)=n — 2. By Theorem 2.26, p.d. (J/xR)g)=n—-1=
p.d. (/g) by Lemma 2.25.

If p.d. (Jg)=n-1, by Lemma 2.30, Ix €J-J2, x not a zero divisor in R.
Then we have an exact sequence

0 — Rx/Jx — J/Jx — J/Rx — 0.

Let J/J? = Rx/Jx ® U, U the preimage of Uin J By Nakayama’s lemma Rx + U=J.
Let yERxNU Then y=mx €U so x €J? and r€J. Thus y €Jx and Rx/Jx

is a direct summand of J/J/x. By Lemma 2.29, p.d. (J/Jxgs) = p.d. (Jg) =n—1 s0

p.-d. (J/Rxge) <n—1<oo Since p.d. (Jg)=>12>p.d. (Rxp), p.d. (J//Rxgz) = p.d. (Jg)=
n—1. By Theorem 2.26, p.d. (J/Rxps)=n — 2. By the induction hypothesis R/xR is
regular local of dimension n — 1 and since x is not contained in any minimal prime, R

is regular local of dimension n.

THEOREM 2.32. Let R be a regular local ring of dimension n, A a finitely gener-
ated R-module. Then p.d.(4,)<n

Proo¥. By the global dimension theorem, it suffices to look at the case where A is
a finitely generated submodule of a free, and to show that p.d. (4g) <n —1 in that case.
Let x €J—J% Then x is not a zero divisor on 4 or R. By Lemma 2.29
p.d. (4/Axp ) = p.d. (Ag). By induction p.d.(4p) <n - 1. The start of the induc-
tion, when n =0, is clear, for then R is a field.
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These last theorems say that regular local rings are precisely the commutative local
noetherian rings of finite global dimension.

We can now complete the proof that a regular local ring is a unique factorization domain.

THEOREM 2.33. Let R be a regular local ring, P a prime ideal of R. Then Rp
is a regular local ring.

ProOF. By Theorem 2.32, P has a finite projective resolution P. By Proposition
1.38, Rp isa flat R-module. Then tensoring P by Rp gives a finite projective resolution
of PRp. By Theorem 2.31, Rp is regular. Note that p.d. ((PRP)RP) = height P—1 is
less than p.d. (J/(R)g) unless P=J(R).

THEOREM 2.34. Let R be a regular local ring, x €J —J* where J=J(R), T=
R[1/x). Let I be an invertible ideal of T. Then I is principal

PrOOF. Let [p =INR. Then I' has a finite free resolution

Po—F,—F, ,— o —Fy—1I—0.

n

Tensoring P by the flat R-module T gives a finite free resolution

0—F,—F, , —>—F,—1—0

of / in M. Since I isinvertible, Fy ~imF, ®L F, ~imF, ®imF,, - | F,_ | =
F,®imF, |, I®imF & imF,D - OimF, ~IOF ®F; &+ & (F, or
F, YF,®F,®:-® (F,_, or F,), where the last term depends on whether n is

even or odd.
By Lemma 1.54, I is principal.

We have thus filled in the gaps in our sketched proof of the UFD property of regular
local rings.

We conclude this section with some comments and examples concerning the hypotheses
used. What happens if we drop the local and noetherian properties?

In the case of a commutative noetherian ring, one certainly has examples of rings
with finite global dimension and zero divisors, such as direct products of fields. By Theorem
1.52, for any finitely generated module M over such a ring R, M is projective < Mpy
is projective for all maximal P. Since R, is flat, p.d. (Mp) <n == p.d.RP(M(P)) <n
for all maximal P. Thus gl.d. (R)= sup{gl.d. (Rp)|P a maximal ideal}, and R has
finite global dimension <= every R is regular local and R has finite Krull dimension.
The finite Krull dimension is significant—the Krull dimension of R will equal its global
dimension if R, is regular VP If R= K[{X;li€ w}], K afield,and S is the com-
plement of U:o:o ( ?:nz:l _lxiR), then every localization of R at a prime is regular but
R has infinite global dimension.

How bad can the zero divisors of R be if R is noetherian of finite global dimension?

THEOREM 2.35. Ler R be a commutative noetherian ring of finite global dimension.
Then R is a finite ring direct product of domains.
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ProOF. By Theorem 1.43, there are only a finite number of minimal prime ideals,
say P,, Py, «=+, P,.

Let P be a maximal ideal of R. Since Rp has finite global dimension, it must be
a domain and hence has only one minimal prime ideal, namely 0. Thus P contains at
most one of the P,, and P, + P/‘ = R for i#j By the Chinese remainder theorem,
R/NP,~ L R/P;. By Theorem 144, MNP, isnil. Let 0#x € (1P, P amaximal
ideal containing (0:x). Then x does not go to zero in Ry, but is nilpotent there, a con-
tradiction. Hence ﬂP,. = 0.

When we drop the noetherian hypothesis, nice results vanish. The first thing to go
is the domain property.

PrROPOSITION 2.36. Let R be a commutative local ring of finite global dimension,
and x,y €ER —{0}, xy =0. Then gl.d.(R)=3 and w.gl.d. (R) = 2.

ProOF. We have an exact sequence
0—(@0:x) = R—Rx—0.

Since R is local, (0:x) CJ(R). If Rx were flat, there would be a map ¢:R ~ (0:x)
fixing y. Then y = ¢(1)y implies y(1 — ¢(1))=0. Since ¢(1)EJR), | — ¢(1) isin-
vertible, a contradiction. Hence w.d. (xR) =1 so w.d. (R/xR) = 2.

Now assume (0:x) is projective. As a matter of fact it must then be free, but we
will not obtain that full result as we need only one portion of the proof.

Let F~ @, 16,R~(0:x) ®K be free on {b;|i € I} and let {m;:F > b;R}
and ¢:F - (0:x) be the corresponding projections. Let 0#y € (0:x),y=
Zcsbir;, where J isa finite subset of 1. Then y = Eiej¢(bj)r].. Let ¢(bi)= Zbysy; -

i'i
Then

y= 0 b= Y bisry
jES i kEJ

Since {bj |j € J} are independent, r = 2 ciSimm forall j, Set M= EieJRrj. Since

y #0,M+# 0, so, by Nakayama’s lemma, not all Sim arein J(R). Say Siomo is a unit.

Then Tio (¢(b,, 0R)) = bioR so {0:x)—~ bioR splits. Hence (0:x) contains a free

direct summand which cannot be annihilated by x. We conclude p.d. (xR) = 2 so

p.d. (R/xR) = 3.

THEOREM 2.37. There exists a commutative local ring of global dimension 3 and
weak global dimension 2 which has zero divisors.

ProOF. let S be the ring of polynomials with rational exponents in an indetermin-
ant x over a field. Let T be the localization of S at the origin, that is, every element
of T is of the form x®u where « is a nonnegative rational and « is a unitin 7.
(Any rank 1, nondiscrete valuation ring will do for T in the example.) Set

R={(a H)ETX Tla—-b< D).

It is easy to check that R is a ring under coordinatewise operations. (R is the pullback
of the diagram
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T

!

T— T/
For (¢, b))€ER, a#0 and b#0, let a=x% b= xPv, u and v units. Set O,(a, b)=
a = the left order of (a4, b); Oa, b) = = the right order of (a, ). The appropriate or-
ders of (g, 0), (0, b), and (0, 0) are —o=. Note that if 0, b)< O,(c, d) and a=
O/(c, d), then there exists an r € J(R) such that
0,[(c, d)—(a, b)r] =—°
O;[(c, d)— (g, b)r] = a.

Let 7 be an ideal in R. We consider two cases.

Case (i). {O/r)|r €I} has a minimal element. Let O,(r) be minimal in this set for
rel, andlet s€I Then O s - rx(C1EN= 01N u))=—oo for some unit u in T,
so [=rRO®UIN{sER|0,(s)=—2}) if O,(r) can be taken as — o, If not, Vser
0,5)<0,(r) oIt ET, O,(r—s(t 1))=~oco. Then O,(r—s(t, 1)) > O,(r) so t isa unit
and s € rR. Hence I=rR is projective (free).

Case (ii). {O0,(r)|r € I} has no minimal element. Let {a;|i € w} be a sequence of
rationals decreasing to inf {O,(r)ir €1}, and let O,(r;)=«;, r; €L Without loss of gen-
erality, O,(r;)=— since we may take r,=r,, ,(x*"**1 0). Let s €[ Then 3i
o; <O so O)(s - rix(o’(s))—“"u) =—oo for some unit ¥ and /= X2 r,R®IN
{sERIO;s =~ o},

The right-left symmetric statements hold. Hence any ideal is a direct sum of (at most)
two ideals of the form 7R or ZZ,r,R where the orders of the r; are — o on one side
and strictly decrease on the other. Assume /= rR. Then

0—@0:r)—R—rR—0

is a short projective resolution of rR. Either (0:7)=0 or (0:r)=ZZ,r,R where the
order of r;=1/i on one side and — <= on the other. Hence we need only check the
dimension of /= X7 ,r,R where the orders of the r; strictly decrease on one side and are

— e on the other. But we then have an exact sequence with @;ObiR free on {b;|i € w}

0= @ &= byl )R — @ bR e 20 rR—0
= = £

where v(b;)=r; and r;/r,,, =0 on the appropriate side. The kernel of v is free, so
p.-d. (/) < 1. Any finite subset of the kernel is contained in @B o(b; — b;, ,1;/r;r ()R for
some n, which is a direct summand of €D;Z,b;R. Hence I is flat. Thus the projective
dimension of any ideal < 2, and the weak dimension < 1. The theorem follows from
the global dimension theorem.

If the dimension of J(R) is finite in the nonnoetherian case we cannot conclude that
R has finite global dimension. There are valuation domain examples of this. Also, the
ring R =T/{x%u|u aunit, > 1} has p.d. J(R))=1,p.d. (xR)= 2, and p.d. (/)=
for all other proper ideals of R. This example shows that the noetherian hypothesis is
essential in Theorem 2.32.



54 BARBARA L. OSOFSKY

85
We include here some strictly set theoretic propositions about posets useful in the
sequel.
Definition. Let X and Y be posets, f: X = Y. Then f is semi-order-preserving
if Vx, y € X, f(x) <f(»)=x <y. (In the linearly ordered case, this is the same as order-

preserving.)

ProposiTION 2.38. Let X be a poset, 8
set of X. Then there exists a 1-1 semi-order-preserving cofinal embedding [ of $Q, into X

o the smallest cardinality of a cofinal sub-

PrOOF. Let Y be a cofinal subset of X of cardinality X,, and let ¢: Q, v
Let f(0)= ¢(0). Assume f has been defined for all f<a € Q,. Since la| <N, ,
im (f],) is not cofinal in X. Thus there exists x € X such that VB <o (x < f(R)).
Since Y is cofinal in X, 3y = ¢(8) € Y such that x <y. Hence VB <a 1(y <f(B)).
Let y be the smallest ordinal in 2, such that VB < a 1(@(7) < f(8). Define f(a)=
@(7). This defines f by transfinite: induction. We note that ¢~ !f is 1-1 order-preserving,
so 7 1f(@) >a, Va<Q,. Let y=¢(y) €Y. Then y <f(B) for some <7 by
definition of f. Hence the embedding is cofinal.

ProroSITION 2.39. Let §2 be a regular ordinal, f a cofinal, semi-order-preserving
embedding of §1 into a poset X. Then no set of cardinality < 2| is cofinal in X.

ProOOF. Let Y beasubsetof X, [Y|< |Q. Forall y€Y, set Fy=
{a € Q|f(e) =y}, and let ¢(y) be the smallest ordinal in Fy. Then |im¢|<|Y|<
[£21, so Uyey¢())) is a union of |Y| ordinals each with cardinality < |€]. Since £
is regular, Uyeytp(y) =a< Q. Then f(a + 1) is not less than f(B) for any <«
so f(a + 1) is not less than y < f(¢(y)) forany y €Y. Hence Y is not cofinal in X.

ProposiTION 2.40. Let X be a directed poset, Y C X. Let [ be a function:
FX)> X such that {x;,|10<i<n} € FX)=>x, <f({x;10<i<n}),Vicn+1. Then
IVC X suchthat YCV, f(FV)CV, and RyiYI= VI

PROOF. Set V,=7Y. Assume F; has been defined for all i <n such that V; C
Vies for 0<i<n-1, and [Vl < N, 1Y|. By Corollary 0.16 in the Appendix,
IFOV I < Ry IV, | = 8y 1 Yl Hence |[f(F(V,))< R,1Y| (choice yields a 1-1 function:
im f - domain f). Set V,_  , =V, UAFWV, ). |V, ;| < NOIV,II by Corollary 0.15
in the Appendix. By induction we have {V;|i € w} with |V, <R |Y|, Y=V,C
ViCe,and f(FV)C V. Set V= UiEw Vi. IVI< R, 1Y| by Corollary 0.15,
and since any finite subset of ¥ is contained in V; for some i, f(F(V)) C V.

ProposiTION 2.41. Let X be a directed poset of cardinality R, such that no set of
cardinality < X is cofinal in X. Let f:F (X)> X, f(S)=x forall x€S. Let Y CX,
[YI<N,. Then ¥B<o,3VyC X suchthat Y C Vg, [Vgl=R,IY U {2}, f(F(Vp)) C
Vﬁ, and UB<aVB is cofinal in X. If Qﬁ is regular, no set of cardinality < Rg is
cofinal in V.

ProoF . Let ¢:X <=, be a bijection. Let f/o be a set containing Y and
$(0) such that f(V) C V, and [Vl < Ry 1Y U {¢(0)}. Assume forall v <5 € Q,
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V., has been defined such that if [yl <R, | VISRl YU{BH, F(F(V,)C V, and
3x € V such that Vu<v,x € V ="1(x, <x) Let v be the smallest element of Q such
that Vx€U7<5V —l(¢(v) x) Such a v exists since [§] <R, = [6| < ¥y for
some f<a so |U7<5 LIS I8IRglY U} = R |V U (B} = max (Rg, [YU {2} )<
N, so U7<5 V is nat cofmal in X. Let Vs be obtained from U7<5 v, Uie)}
by Proposition 2.40. transfinite induction, we have V5 Vs < 2, such that le I <
161 1Y U {&g}l and f(F(l75)) CV,. Set Vg = VQB UB<cx Vg is cofinal in X since
o) <x forsome x € V CV,. Let Q be regular, Z C Vs, 1Z] < Rg. Then Z C ¥V
for some & < €15 since {5 is regular. Hence Ve, contains an element not equal or
less than any element of Z, so Z is not cofinal in V.

PROPOSITION 2.42. Let X be a set of cardinality W. Then there exists a family
{4;1i€ 1} € PX) such that |1|= 2% and Vil, iy, *++* , 1, distinct elements of 1,
A; Neee N4 ﬂ(X A,kﬂ)ﬂ---ﬁ(X—Ain)#Qi.

ProOOF. The cardinality of the set of finite subsets of X X 2 is N and so is the
cardinality of the set S of all finite subsets of X X 2 which are functions.

For each s €S, let B = {f€2X|f extends s}. Set

= { i:Uo BSi|nEw,si€S}.
Then |T|= R since |F(S)I=
Foreach PE2X let Ap={tE€TIPEL}. If PPy P, 01,0y """ O
are given such that P, # Q;,\/i,j, then for Vi, Vj,3x €EX, x; €EP, -0V QP
Let s; agree with P; on {x; |1 <j<m}. Then U7 €Adp N NAp N

1

(T=Ag )N N (T-4

=0 s
Om )
§6. Not so elementary applications and counting theorems

So far, our use of set theory has avoided counting arguments. In this section, we count.

Since ®, commutes with direct limits, a direct limit of flat modules is flat. Also, a
finitely related flat module must be projective. But in general, direct limits of projectives
are not projective and flat modules are not projective. With appropriate cardinality condi-
tions, we can still get bounds on their projective dimensions.

PrROPOSITION 2.43. Let M € My, be generated by R, elements for n € w. As-
sume there exists a family of submodules {N, C M|a € Q} directed under C (and closed
under unions of countable chains) such that M=% .qN, andp.d. (N,) <k a€Q.
Thenp.d M<k+n+1 (pd M<k+h)

PrOOF. Since M is ¥, -generated, we can reindex to get M = UBEQH(Ea<ﬁNa)'
where for § € w we may assume the N, form an ascending chain. By hypothesis or in-
ductive hyp-ithesis, each X, 5N, has dimension <k +(n—-1)+1 (k+n~-1 for
n>1) so Ng/E,.4N, has dimension <k +n+1 (k+n) by Lemma 2,25, Apply
Auslander’s lemma.

THEOREM 2.44. Let 1 be a directed poset, ¢ a semi-order-preserving cofinal em-
bedding of Q, in 1 for n€ w. Let {ni,. A2 A1 < j} be a direct system indexed
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by 1,pd (4)<k Vi€ 1. Then p.d. (limy4,)<n+k+1.

Proor. Without loss of generality, T = ¢(§2,). Assume n >0 and the result is true
for n— 1. By Proposition 2.41, T is an ascending union of directed subsets [ =
Uﬁ<ﬂ,, V‘3 where | Vﬁ! <N,_,. Now li_II‘,I'Ai = ®i€IAi/K for some K. Set KB =
Kn G},EVBA,.. Then lim,, A4, = @ieVﬁAi/KB has dimension <k +n —1 by the in-
duction hypothesis, and so does ®ieuﬁ<7 VgAi/UB<7Kﬁ for y<,. By Lemma
2.25,p.d. (Kg) and p.d. (UpcyKy) <k +n—1. Hence p.d. (K,/Usc Kg) <k +n.
By Auslander’s lemma, p.d. (K) <k + n. By Lemma 2.25,p.d. (DA4;/K) <k +n +1.

We are left with the case n= 0. Then ¢ is an order-equivalence w <«— T = ¢(w).
Set B=€D_,4,. Then

0— B B—lim 4,— 0
—_—
1
is exact where
14,
Yap Ak @ Agyys Y=
T, k+1
Lemma 2.25 completes the proof since p.d.(B)<k. Q.E.D.

THEOREM 2.45. Let M be an R -related flat R-module (that is, 3a s.e.s. 0>
K>F->M~0 where K is generated by R, elements and F is free). Then
pd M<n+l.

REMARK. This theorem follows from Theorem 2.44 and Lazard’s theorem that a flat
module is a direct limit of finitely generated free modules. We will give a different proof.

PrRooF. Let M be a flat R-module, 0 > K > F—> M — 0 exact where
F=@1xR isfreeon {x;li€ T} Let S={k;|1<j<n}CK, k; = Zx;r;. Then
there exists a map ¢, :F > K such that ¢s(k/.) = k/” Vkl- € S. Using a choice function
selecting some ¢, for each §, let Y (§)= {¢s(xi)]ri}- #0 for some k; € S}

Let X =F(K). For any finite subset S of X, let f(S)=Us u ¢(US). By 2.40,
given any countable subset T of X, there exists a countable set ¥ such that TCVCX
and f(F(V)C V. Set V'= UV, Ay, =Z,.,kR. For any finite set WC A, WC
ZL, kR forsome §={k;|1<i<n}€V. Then f(S)EV, so ¢g induces a function
from F to A, which is zero on basis elements not involved in defining (S). Thus
F/A, is flat.

Let Y be the family of all countably generated modules 4 C K such that F/4 is
flat. Y is a directed set under C and closed under unions of countable chains. Moreover,
K=7Z,cyA. By Proposition 2.43, p.d. (K) <sup,cy p.-d. (4) + n, so p.d. (M) <
sup ey p.d.(4) +n + 1. We must show that p.d. (4)=0 forall 4 €Y.

Thus we have reduced the problem to the case n =0, thatis, K is generated by
some set {k; i € w}. Let Vo =koR. V; =f(Vi_1) + k;R. Define «; F>F by
ai(x/.)=xl. if ¥, has zero projection on xR, o (x]-)=x/. —¢V‘_ (xi) otherwise.

{va,: F > M} defines a map § from GB;‘ZOF:‘ = M which is epic since va; = vYi and
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v isepic. Let v: D2 F = D2y F, v (xy, =+ X *02) = (%9, X, — QgXg, ***,
X, =@, (X, ***). By definition of o, 0,,00x;= 0, ,x; since oy, iszeroon Vi,
and ¢Vi(xj)€ Viy1» and vo; =v. Hence fy=0. Moreover,if §{y) =0, Zy, €kerv=K Hence
Zy; € Vj for some j, and we may assume y, =0 forall k>j since V;C ViH,Vi.
One checks that (y;) =y (y; + ai_l(Z}:Olyﬂ) 0<i<j,0) so 0~ @Fi . @F} -
M- 0 is exact, p.d. (M) <1, and so A4 is projective,

The same sort of argument occurs in many places in the study of projective dimension.

LEMMA 2.46. Let R be a ring such that every right ideal of R 1is generated by
R, elements. Then any submodule of a free R-module on a set of cardinality at most

N, is generated by R, elements.

PROOF. If F is finitely generated, say F= €L b;R, and Mg CF, then
M0 @Y bR is generated by X, elements by an induction hypothesis, and the pro-
jection of M on b, R is generated by {x;|i€ I},|1]|< X, by hypothesis. Then
M=M0 B b,R)+ Zfx;R where f is some choice function on
{yeMin,y=x}|x€n,M}. By Theorem 0.13, M is generated by N, elements.
Now let F= @,cq bR Since |F(Q,)I=1, by Corollary 0.16, and
UseF@,y™n @D,csb;R) =M, where each M N P,cgb;R is generated by X,
elements, say Gg, M is generated by Uge F(a,)0s Wwhich has at most &, . R, =R
elements.

n

CoROLLARY 2.47. Let every right ideal of R be generated by R, elements. Then
gld (R)<wgldR)+n+1.

ProoF. If w.gl.d. (R) = <o, there is nothing to prove. If not, let R/I be a cyclic
R-module with projective resolution

-—P —P | —>-r— P —RI—0

where, by the lemma, each P, may be taken as a free module on ¥ generators. If

im P, is flat, by Theorem 2.45,p.d. (P,)<n + 1, so p.d. (R/) <k +n+ 1. By the
global dimension theorem,

gl.d. (R)=sup {p.d. R/I)|Ig CR} < sup {w.d. R/[)+n+ 1|, CR}
=w.gld (R)+n+ 1

We remark that if n=— 1, this is just a rephrasing of the statement that weak
global dimension and global dimension agree for a noetherian ring.

Let us now return to rings containing infinite direct products of subrings. We had
two proofs that they are not hereditary. The one on injective dimension does not seem
to generalize. The one on projective dimension does, and indeed Proposition 2.24 will
serve as the basis for an induction getting a lower bound on the global dimension of such
rings.

A family 4 ={e(i)|i € T} of idempotents of a ring R is called nice if

() e@e()=eG)e), Vi i€,
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(i) M, e@IEL, . (1-e@)#0 if {i,l1<a<n}N{igln+1<f<m}=0.

For any nice family of idempotents A4, define

I,= ), eR

ecA
Assume A is indexed by a linearly ordered set 1 with no largest element. Let

. . n
Pn(A)= ®i0<il<“'<in (lo, i ,ln)R ERI

n
where (i, «++ ,i,) represents that function in RT” which takes the value 0 every-
where except at (iy, *** ,i,) € I” where it takes the value II7_,e(i,). We observe that

(igyoor i )H e(i,) =iy, ***. 1,7,
and, forany i€ T,
(» P)= [Gaio<...<in<io,'--,i,,>e(i)R] ® [69,-0<...<,.n (g, +oe, i) (1 —e(i))R]-

We call the first summand e(/)P,(4) and the second (1 — e(i))P,(4). Define a boundary
operator d, :P, > P, _ by

dy :Py(A) — 1,, dyliy)=e(iy),

(= 1) G, oo T, o0, ) (e

o=

d,:P,(A) — P,_(4), d, iy, i) =

n

a=0
where 7 means delete iy
PrROPOSITION 2.48.
dy dg
B): - P(A)—»-.._> oA4)— 1, — 0

is a projective resolution of 1.

ProoF. P,(A) is projective since it is isomorphic to a direct sum of projective right
ideals.

That P(4) is a complex is a standard computation. Every term in
d,_,d, (i, ***,i,) appears twice with opposite signs.

dyd, Gy, 1)) = do(iy Ye(ig)e (i) — (g de ig)e (i) = elig)e ) — e(ig)e i) = 0.

Let dnp= 0,p=Z7, SAYRLLES Sl Let i be the largest i, , such that
(g qr " sina'le 0, and let e()p and (1 —e())p be the pro;ectlons of p on the
appropriate summands of (). Since d, (e(i)P, (4)) C e(H)P,_,(4) and
d,((1-e@)P,(A) C(1-e ()P, ,(A),d,e()p=d,(1 —e()p=0. A straight-forward calculation
shows that d, (5 4 (g a0 " ipar De@rg) = (= 1Y *le(p=qe®i, = i,_,.DR.
Since d,q =0, lookmg at terms of d,q not involving i/ shows that ¢ must = 0. We
observe that (1 — e(i))p has fewer than m nonzero terms since 7 is actually equal to
some I, , ina nonzero term of p, and then use induction on m to get (1 —e()p €

dy 4y Ppi,(4). Hence B(A4) is exact.
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ProPOSITION 2.49. Let |I|=Rq,p.d. (I,) <k <o Thenif k< Q, there exists
aset JC 1 suchthat |J|=R, and d,P,({e(i)li€ J}) isa direct summand of
dPy(4).

ProoF. Let F befree on{b;|i€ L} F=d, P (4) D Q We define amap f:
F(I)~>F(I1) which assigns to every finite subset S of T S itself if |S|<k; other-
wise d, P (S) is contained in a finite sum @,-’21 bR, the projection of each b;, 1 <i<m
on d,P,(A) is contained in a finite sum Zd, P, (i,, ***, ), and f(S) is a set consist-
ing of all the i; which appear for some b;. By 2.41, we geta J with |J|= 8,
and f(J)C J. Then d\ P (4)=d, P ({e()i€ J})® (d P (4) N DB, b;R), where
[ is the subset of [ which consists of those elements not involved in getting f(S) for
any S CJ.

PROPOSITION 2.50 Let 1 be an ordinal such that for some n € w no ordinal of
cardinality < N, is cofinalin 1. Then p.d.(I,)>=n.

If n=0, there is nothing to prove, so we may assume n == 1. We will use induction
on n. Assume p.d. (/,)=k <n The case k=0 is ruled out by Propositic‘)n 2.24 with
slightly different notation (instead of 7).

Now assume k> 1 and k < n By Proposition 2.49, there exists JC I with
[ Jl=8, and 4, P ({e()li€ J}) is a direct summand of d,P,(4). Since k <n, by
hypothesis 7= sup (J) + 1 < T. Now,

Po_ ()= D Gy, he P e(MR

fetC

@ @ <]-09“'ajk_1> (l_e(T))R
{iglc

® @b <, --,i,_ R
{la}ij 0 k—1

= D  dGy vt deo DR

{i )¢

® D G, i) (I—e(T)R
U2 T 0 k-1 (

® D Gy, i DR
fitdd Iy k-1

and
d P (A)=d, P ({e(dii€ THSK

Then, since a direct summand of a direct summand is a direct summand,

e(r)d, P (4) = e(n)d, P ({e()]i€J}) DK,
where premultiplication by e(r) indicates as before the appropriate projection in (*).
Now e(r)d, P, ({e({)}i €J}) is a direct summand of e(r)d, P, (4) and M=
éB{ia}EJdk (o»***six_1-TYR is a direct summand of P, _ (4) and indeed of
e(r)P,_,(4). Moreover, M De(r)d, P, ({e(i)ii € J}) by the proof used for exactness of
P(A). Hence e(r)d, P, ({e(i)li € J}) is actually a direct summand of e(7)P, _,.
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Define B= {e(r)e(!)|i€ J}. Then B is a nice set of idempotents of R since 4
is and since 1 —e(r)e(@)=1—e(r) + e(r) (1 — e(i)). Moreover, the complex P (B) is
naturally isomorphic to e (7)P({e(7)|i € J}) in an obvious manner. In particular,
kernehB(B)dk_1 is a direct summand of P,_ (B), so p.d. (/g) <k — 1. By the induc-
tion hypothesis, k¥ < p.d. (IB) since B can be indexed by 2., a contradiction.

ProrosiTION 250. If T isasetsuch that |11=R,, then p.d.(I,)<n,

Proor. If T is countable, order it by . Then

I,=e(OR®e(1)(1-e(0)R Be(2) (1 —e(0) (1 —e(1)R

n—1

@ ®e(n) [] 0~e(@R -
a=1

is projective.

Now apply Proposition 2.43.

THEOREM 2.51. Let R be a ring containing an infinite direct product of subrings
N R, where R, hasidentity 1,# 0. Let |2%|= N, Then gld. (Ry=>k + 1. If
each R; is a division ring and R =1,y R;, then gl.d. (R)=k + 1.

ProOF . By Proposition 2.42, there exists a family {A]. 1j € 2%} of subsets of X
whose characteristic functions in II,c, R, form a nice set of idempotents 4. Then
p.d. () =k so p.d. R/I,)=k+ 1. If R isa direct product of division rings, it is
easy to see that any ideal is generated by characteristic functions, so R is regular. Apply
Proposition 2.43.

Up to now, we have just been talking about algebraic concepts. The continuum hy-
pothesis and/or generalized continuum hypothesis seem completely irrelevant. And yet
there they are, in Theorem 2.51, built into the algebra. The permutations and combinations
are many. For example, a countable direct product of fields has global dimension 2 <
the continuum hypothesis holds. The reader can fill in other such equivalences.

§7. More counting

In this section, R will denote a small additive category, and M will mean AbR,
asin §1 of Chapter 1, number 24. xEME M , willmean Ip € R such that x € M(p). If
x €M, we will assume x is tagged with a p it comes from. The notation € ., xR
will denote the functor @, ,Homg(p, ) and there is a map €D, xR > M taking
1, to x. The resemblance between this and our usual notation is purely intentional—all
phraseology will be as for modules over a ring, but there is a broader application to be ob-
tained when in the end we permit R to have more than one object. The first results
in §6 go through essentially verbatim, and I have a suspicion that the direct product result
is basically categorical in nature although as far as I know it has not been precisely trans-

lated to Grothendieck categories whereas the other results have.
A right R-module M will be called directed if
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(i) M is generated by a set of elements M’ such that xr =0 <=r=0 for
all xeM.
(i) Forall x, yEM set x <y if Ir €R with yr=x (technically
YM(r) = x). Then M is a directed poset under <.
M will be called a set of free generators for M.
If M is a directed module with free generators M, u: M X M - M is called an
upper bound funcrion if u(x, Y)R D xR + yR forall x, y €EM'. We extend u toa
function from US_,(M')" to M’ inductively by

ulm,, >=c,m)=u(m,, u(my, «=+, m_)).

Then u(m, -+, m)RD ZL mR If XCM and w(X X X) CX, X will be called
w-closed. If M is directed, x € M, x~! will denote the R-isomorphism : xR = R given
by x Y(xr)=r.x"' exists since xR is free with basts x. Note that x - x~1(xr) = xr.

Let X C Mg, n 2 0. P,(X) will denote the free R-module

P, ()= ) B (g, -+, xR
{x;10<i<n}C Xxg>x 1>+ >xpy

where, forall rE€R, (xy, **+,x)r=0<=>r=0. Set P_,(X)= the submodule of M
generated by X.

Let xeM. Set s(x)= {yEM |y<x},s(x)= {y EM |y <x}. We define a
map x*:P,(s(x)) > P,, (s (x)) for n=>0 by

X¥xg, o, x,)=AX, Xg, 00, X,) .
If n=-1,x*%:P_,(x) > Py(s (x)) is defined by
x*xr) = (xdr=<{x)x"(xr).
For n >0, define a function d, :P (X)~>P,_,(x) by
dox) =
d{xg, **0, X 2 (Xg, """ Xt X, (— 1y
i=0
Hxg, o X, 0 (- D't (%),

where x; means delete x;.
x* and d; are analogous to the “adjoin a vertex” and boundary operators of
combinatorial topology. They are connected by a basic relation.

(%) d,, (x*p)=p-x*d,p forall n=>0,
p € P,(s(x)). This relation will often be used without explicit reference to it. It is verified
by direct computation.

THEOREM 2.52. Let M be a directed R-module with a set of free generators M’
and upper bound function u. Let X be a u-closed subset of M. Then
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 dpgg d d d
Bives =5 P(X) = P (X) > +0 =5 Po(X) —> P, (X) = 0

is a projective resolution of P_,(X) = the submodule generated by X.
PrROOF. (i) Py is a complex. This is a straight-forward computation, since terms
appear twice with opposite signs and x,; ', (x,_ )x; !, (x,) = x; 1, (x,).
(ii) By is exact. B, isexact at P_,(X) since X generates P_,(X).
Let p= Z:‘:l (xg, see,x)r, €P (X)), d,p=0. L.et X = u.(x(l), ,x’g)‘ Assume
xé’ vor 7xi)<x=-xlo+l = ese = xg’ and set p, = Ef'=l (x:)’ cos ’x;)ri, p" = p —p'_ By def.
inition, p"” = x*q for some q € P,_,. By Lemma 2.6,

p—d,, (x*) =x*q—x*dp'.
Since P, is a complex,

0=d,[x*q — d,p"]
q —d,p' —x*(dq) if n>0,

xxYg-d,p)Y=q-d,p if n=0.
Since for n >0, no term of g — dnp' involves the symbol x, and every term of x*dg
does, ¢ —d,p'=0. Hence p=d, , (x*p).

THEOREM 2.53. Let M be a directed R-module with free generators M', upper
bound function u and projective dimension < k such that no set of cardinality <X,
generates M for some n€ w. Let ZCM have |Z|< R,. Then there exists a
u-closed set 'Y CM' such that Z CY and

(@ {Y]=R,.
(b) No set of cardinality <R, generates P_,(Y).
(c) d P (Y) is a direct summand of d, P, (M.

ProoF. Express d,P, (M) as a direct summand of a free module F with basis
{b;li€ 1} Foreach Fe& F(M), |F| >k, express d, P,(FU u(F)) asasum of b/,
and the projection of each of those bs on d, P, (M) as an element in d, P, (g(F)). Then
g gives a function from F(F(M')) to F(M') by taking unions and then g Apply
Proposition 2.41 to get a g-closed subset of F(M') with cardinality R, such that no sub-
set of smaller cardinality is cofinal in it. Its union is the desired Y.

THEOREM 2.54. Let M be a directed R-module possessing a free generating set of
cardinality R, for some n€ w. Then p.d. (M)<n + 1.

Proor. Apply Proposition 2.43. Back to our topology.

THEOREM 2.55. Let M be a directed R-module, X and Y directed subsets of
M, XCY. Let v be the natural map from P_,(Y)~> P_ (Y)/P_,(X), I the identity on
P (X). Then
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—-d, ©

(B, )+ = P ® P,y (1) =255 P () @ P,(1)
—d; o
2 p e p, ) S p 0 b ryp_, 00— 0.

ProoF. Clearly ‘BX'Y is exact at P_, (Y)/P_,(X) since d, isonto P_,(Y). Also,
vdy(, d;) = 0 since dyP,(X) C P_,(X) and dyd, = 0. Let z € kernel vd,. Then
dy(z) € P_(X). Since dj:Py(X) > P_,(X) is onto, there is an x € Py(X) such that
dolx ~z) = 0. Since P, is exact, z € Py(X) +d,(P,(Y)) and By y is exact at Py(Y).

Moreover,
-d, 0 -d, +d,
(1; dl) = = 0.
I d, d,d,

If (I,d)(a b)=0,a€Py(X),bEP,(Y), then a +d,;b=0, and by the exactness of
Py and Py, thereisa z € P;(X) and w € P,(Y) such that diz=db=-a and

z=b +d,w. Then
-d; 0)
(a, b)= (z, —w)
I d,

so Py y is exact at Py(X) & P (Y).

For n> 1,
_dn—l 0 —d, 0
(
I d I dyyy

n

—— s ee

Hence B, , isa complex. Let

~-d, 0
( (@ b)=0.
I d

n+1
Then

0=-da=a+d, b
By the exactness of By, d,,,(b)=-a=d,, () forsome z€P, (X), and b-z=
d,.,(w) forsome weP, ,(Y). Then

_dn+l 0
< iz w)=(a b).
/ d

n+2
Hence ‘BX'Y is exact.
Clearly every module in ‘BX, y is projective (indeed free).
Three of our applications use the linearly ordered case of a directed module.
LEMMA 2.56. Let R be a small additive category, S§U a directed poset without a
maximum element, M = Uieﬂx,.R where x;R Eij forall i>j If x;r= X; implies
that r is not a zero divisor (i.e. M(r) is monic and epic in Ab), then M is not projective.
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ProofF. Let f:M~ R, f# 0. Then there exists an- i such that f(x,) # 0. For all
J 24 f(x;)= f(x;)r where r isnot a zero divisor, and if j& Q,f(xl-) = f(x,)r where
k>4 j and r is not a zero divisor. In all cases, f(x;) # 0. By hypothesis, M cannot be
finitely generated. Hence the Dual Basis Lemma (1.26) cannot be satisfied by M.

THEOREM 2.57. Let R be a small category, M a directed R-module with a linearly
ordered set of free generators M’ such that Vx, y EM, y=xr=r is not a zero divisor.
Then p.d. (Mg)=n + | <= the smallest cardinality for a generating set for M is R,.

ProoF . By Proposition 2.38, we may take a cofinal embedding of €2, to M  which
is order-preserving, where X is the smallest cardinality of a generating set for M. By
Proposition 243, p.d. M) <a+ 1. If >0, p.d. (M)> 1 by Lemma 2.56. Now assume
for k€ w,k<a, and p.d. (M) < k. By Theorem 2.53, there exists a wu-closed set Y of
cardinality N, _, such that no set of cardinality <N, _, generates P_ (Y) and d, P (Y)
is a direct summand of dkPk(M'). Let z be an upper bound for Y. Then P, _ 1(M) =
P (N®Z e X#Y(xo, ***,Xp_, >R We may subtract any element in the second sum
from each free generator of P, _,(Y) and still have a direct sum. In particular,
ular,

Po  (MY=d 2P (D] ® 2, (xy ¥, R

some X EY
and

di P (Y) C dy [2*Py_ (V)] C diP (M),

Hence d, P, (Y) is a direct summand of a direct summand of P,_,(Y). We then have

d P, (Y) adirect summand of P,_ (Y), so d,_ P,_,(Y) is projective. Thus p.d. (¥Y)=
k — 1. By finite induction this yields a contradiction, so p.d. M) =2k + 1 forall k€ w

if a2k Hence p.d. (M)=rc if > w. Otherwise, p.d. (M) =2 a + 1, sop.d. (M) =
a+1 for a €w.

Application 1. Polynomial rings and rational functions. In this application K will
denote a field, R will denote the polynomial ring K[x, -*~, x,] in n>1 indeter-
minants, and @ will denote the quotient field of R (rational functions in n variables).

We note that Q, is a directed R-module since every cyclic submodule of Q@ is free
and if a/b, ¢/d € Q, 1/bd 2 a/b and c/d. For convenience, we will take as our free gener-
ators for Q the set

Q'= {lrl0#reR}
and let
u(ljr, 1/sy= 1/rs.

THEOREM 2.58. Let A CK, |A|1=R,, k>0. Let M be a u-closed subset of Q'
such that M' 2 {1/(x;~a)la €4, 1 <i<n}and |M|=R,. Set M=P_ (M). Then
p.d. R(M) = min {n, k + 1}.

Proor. By Theorem 2.54, p.d. (M) < k + 1, and by Corollary 2.28, p.d. (M) < n
Hence we need only show that both inequalities cannot hold. Also, M cannot be projec-

tive (or indeed a submodule of a free) since it is divisible by the prime x, —a. We use in-
duction on n and k.
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If =1 or k=0, by the above remarks, p.d. (M) =1=min{n, k + 1}.

Now assume k> 1 and n>2. Let p.d(M)=1 Selectaset 4'C A with
|4’ = 8, |, and by Theorem 2.53 find a u-closed set Y C M such that |Y|=R, |,
no set with fewer elements generates P_(Y), Y D{1/(x; —a)la € A',1<i<n}, and
dP(Y) is a direct summand of d,P;(M). Now {(x;, —a)la €A, 1<i<n}isasetof
primes of cardinality R, so there exists an o' € 4 such that for ¢ =x, - ¢/, 1/q ¢
P_,(Y). Set R*=R/qR andlet * denote residue classin R*. Then R*=
Kix#, +++,x¥_ |1 where the x} are algebraically independent.

Set Z=Y U {l/ygly€Y}. Then P_,(Z)=q 'P_,(Y) =P_,(Y), so p.d(P_, (D)=
p.d. P_,(Y) <L Let dP(Z2)=d,P(Y)DK. By Theorem 2.55, there is a projective
resolution of P_,(Z)/P_,(Y) whose Ith image is

-d;_, O —di
P NSPQ2D)=~ P_ (NSK=P_(Y)BK
I 4q I
Hence p.d.p(P_,(Z)/P_,(Y)) <l By Theorem 2.26, p.d.p+(P_,(Z)/P_ (Y)) <I- L.

Now P_ (Z)/P_ (Y)=q 'P_,(Y)/P_,(Y)~P_ (Y)/qP_,(Y) isan R*-module
which is torsionless since g is relatively prime to ali elements in Y~ !,

Let u,[u,q, v fv,q € P_(Z),q+u,, qtv . Then

(ul/u2q) (uzvl) = (vl/vgq) (Uzul) ¢P_1(Y)-

Hence P_,(2)/P_,(Y) as an R*-module is an essential extension of every cyclic sub-
module. The map (g~ !)* - 1 extends to an isomorphism between P_,(2)/P_(Y) and
an R*-submodule of Q% = the injective hull of R*. Moreover, the image is generated by
reciprocals of the multiplicative semigroup Y* of R*. Since Y* D{l/(x*-a)la € A,
1 <i<n-—1}, by the induction hypothesis p.d.x#(P_,(Z)/P_,(Y))=min{n -1, k} <
/-1, Hence ! 2 min {n, k + 1}. Q. E. D.

The hypotheses on M in Theorem 2.58 are not superfluous. If one looks at the sub-

module of @ generated by polynomials in x,, =**, x one will get a directed module

n-1
that looks like it is over an n — 1 indeterminant polynomial ring (it can be obtained from

one by taking a tensor product with R of such a module). Hence its dimension <n — 1.
COROLLARY 2.59. p.d.x(Q)=min {n, k + 1}.

We remark that if R is an n-dimensional regular local ring of cardinaltiy ¥, with
quotient field Q, and either [R|={R/J| or R is complete, then it is not difficult to
adapt the proof of Theorem 2.58 to show that Corollary 2.59 still holds. Thus

3)’1, p'd'Q”xl'”'vxn” (Q((xl' oee xn))) 2k+1 230 > Nk'

The connection between the continuum hypothesis and this result is now clear. Also,
R happens to be a nice field of cardinality 280, Thus

In, Pl ey e REY, X)) B k=270 > k- 1,
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If the continuum hypothesis holds, we can show how to construct a free basis for d,P,(Q)
for the ring R =R[x,, **+, x,] or R=Q[[x,, ---, x,]].
Let M denote a directed module with free generators M’

LEMMA 2.60. Assume M is countably generated. Then lel(M' ) has a free basis
of the form {d, (a, b)}.

ProOOF. Since M is countably generated, there exist {x;|i € w} C M’ such that
xo <x, <--+ and M=ZZ x;R Foreach y €M, let x(y) denote the x; with
smallest index i such that y < x,. We show {d, (x(¥), )|y € M} is a free basis for
d,P,(M).

Let E,'-':, d, (x(yj),y]-) r;=0, al r; #0, and assume x(y,) = x,. is the largest x;
occurring. Since 7, # 0, x(y,) must appear in another tuple (x,, yj , soin at least one
of its appearances, the second component Y # x;_,. But then (yi)r]. is a term of
dy(xy, yp but of no other d,{x(y;), yp, so the sum cannot be zero.

Let (a, b) be a generator for P,(M'). Then d,(x(a),a b =(a, b) —{x(a), b) +
(x(a),@a~'b and since Py, is a complex,

d,{a, b)=d, (x(a), b) — d {x(a), Dda"'b.
Let x(a) = x,, x(b) = x,. Then

-1
d, x(@), By =d, (x(b), B + ), d,{x;y,, xpx7 b,
i=k
Thus every generator for d lPl(M') may be expressed as a linear combination of elements
in the given set.

PROPOSITION 2.61. If M is N, -generated, then d,P,(M’) is free.

PrROOF. Since M is X, -generated, there exist u-closed subsets {7 |la < ®,} C M
such that M’ N P_(T)CT, forall a,P_,(T,) is countably generated, T, C T, for
a<p, and M= Ua<N1P_,(Ta). Set T_, =d&. It is sufficient to show
d,P,(T,)/d,P,(T,_,) has a free basis for all a <R, a a successor ordinal.

By the conditions on the T, there exist {x,|li€ w} C T, —T,_, such that

a

P (T)=UZx;R For y€ T,_,, define x, ,(y) asin Lemma 2.60. Then

PTY= 2 (x0)0»R® L (x,_,(),DR

YETy z2€Ty_

@ Y, (4, VR ® D (a, BR.
UETy 1 su¥tExqg_1(v) a€ETy—Ty—yia*xy(b)

For each (g, b) with a=x_,(b) or a €T, — T, , and a# x,(b) there exists
a unique element p = Z(x(y,), y}r; such that d,(a, bY=d,p. Then (q b)—p=
d,q,p forsome q,, € P)(T,) ~Py(T,_\). Then F= {dyq, ,la=x,,(b) or a€
T, —T,_,,a#xy(b)} is a free basis for d,P,(T,)/d,P,(T,._,).

F is independent since {(a, b)} is independent in P, (T,) modulo the first and
third sums, and the image of d,q, , = the image of (g, b) in that module.
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To show F spans, we need only show that, forall u€ T, - T,

a—12d2 {4, v, W) isa

linear combination of elements in F and an element in d,P,(T,—,).

dy (u, v, w) = (v, W) — (u, W) + (u, v~ .

Let
’aa,b=d2qa,b’ a= xa—l(b) or a €& Ta - Ta—l and a = Xa(b),

= (0, otherwise.

If g, ,, isdefined or v=x,(W),d,{u, v, W—q,, +q,, =7, 'x isanele-

ment of EyETa (x,(v), ¥R in the kernel of d,. By Lemma 2.60 it must be zeio.

If veT,_,,v+x, (w), weapply Lemma 2.60 to d,P,(T,_,) to express

d, (v, w) uniquely as a sum Zd (x,_ (), y)r;. Then p=<(vy, w)— Z(x,_,00),y;)r; €

dyPy(T,_y) and dyCu v, W==q,,, + 4,0  Ww+p+2dya, oyl
Application 2. The failure of the injective analog of the global dimension theorem.

PrOPOSITION 2.62. Let n be any nonnegative integer or «. Then there exists a
(maximally complete) valuation ring R with global dimension n.

Proor. If n=0, any field will do. If » =1, any discrete, rank one valuation ring
will do. Now assume 2 <n <o, Let I' be the additive group of all step functions from
Q,_, to Z=the additive group of integers; thatis, fE ' <= there exist 0= 17, <
Y < <Y <Ypyy = S, _, such that f(r)=f(v;) forall y suchthat y; <vy<
Yipq- Then [Ti= {71 <i<m<=}CQ _LHIZI=R,_ 4,8, =8,_,. Order T'
lexicographically. For y< Q let e(y) €T be the characteristic function of
{Bly<sB<, ,k

Let R be the ring of all power series in a symbol “X> with exponents well ordered
subsets in ' = {y € '|y > 0}.

Then R is a valuation ring, and its set of principal ideals is order isomorphic to
upper cuts in I't. By Corollary 2.47, gl.d. (R) < n. By Theorem 2.57,

p.d. (E.,<Qn_2Xe(7)R) =n—1. Hence gl.d. (R)=n We conclude gl.d. (R) =n.

If n=-ce, consider the ordered group of step functions from £ _ ., to Z and
proceed as above. Then, by Theorem 2.57, p.d. (E7<Qw+1Xe(7)R) = oo gince {2, is
ws1 forany n<w. Thus gl.d. (R)= o

PropPOSITION 2.63. The rings in Proposition 2.62 have i.d.(Q/) =0 forall I CR,
where ( is the quotient field of R.

n—2°

not cofinal in £

ProOF. Inthe case n =0 or 1, thisis immediate.

Now let n> 2, and let ¢:J—>Q/I, J anideal of R. By 2.38,
J= Uaenka(a)R, where {f(a)|a € Q,} is a decreasing, well-ordered sequence in r+.
Let (X7 @)= X8®y  g@) €T, u, aunitin R. Since ¢ is a homomorphism,
Xs(@ =S+ B)y = x&#) ug modulo [, Yo > . Thus the sequence Xs@-f@y =p
satisfies h, —hg € X~7® [ and so comes from a power series in Q whose coefficients for
powers of X not in X/ agree with those of h,. (There may be negative terms.)
Multiplication by this power series induces ¢. By Baer’s criterion, Q/I is injective.
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COROLLARY 2.64. Let 1 < n <. Then there exists a valuation ring R such that
sup {i.d. (DI q right ideal of R} = sup{i.d. (R/D)|I a right ideal of R} =1 and
gl.d. R)=n

ProOF. Let R be one of the rings in Proposition 2.62. [ an ideal of R. Then

0—I1I—>Q—Q/I—0 (0—R/I— Q/I— Q/R—0)

is an injective resolution of I (R/I) by Proposition 2.63. Hence i.d. ()= 1 (=i.d. (R/]))
if I#0 (I +#R).

Application 3. The derived functors of {in Let 7 be a small category. For R
any ring, we form the “‘category ring” of =, Rm, such that |Rm|=|n|, and Homg, (p, q)
is the free R-module on 7(p, ¢) and composition is by composition of basis elements. If
7 has one object, this is just the monoid ring with coefficients in R.

Consider the functor A: A_bR - /it_)R" such that

AFY(p)=F, Vpé€ein,
AF) (@) =1,, VYa€n(p,q),

where 1, is zero on all basis elements except a and 1 there. Let D be any object in
AbR™P 1 aposet. Then lim D is an element in AbR. One verifies the adjointness
;Iation o

A_bRNOP(AF, D) A~ @R(F, LIEID)

where the natural isomorphism takes a natural transformation 7 to the R-homomorphism
from F to @D induced by the family of maps n,:F > D forall a € m.

Put F=R. Then AbR"°P(AR, D)=~ Ab®(R, limD) ~limD so the kth right
derived functor of li_r_n, LiLn(k) is the same as the kth right derived functor of
A_bR WOP(AR, )’ 50

= im{k) =
p.d. (AR__ )= sup {k llﬂ 0}.

mop
Let m be any directed poset, R any ring. Then AR is a directed module (functor)
with 15 at each of the vertices of 7 forming a set M’ of free generators, that is,
M = {1€ARP)Ip €|nl}. Let m be linearly ordered, X, the smallest cardinality of a
cofinal subset of the category opposite n. By Theorem 2.57, p.d. (ARmop)=n + 1, so
this is precisely the last nonvanishing derived functor of l(iﬂﬂ. By a modification of a result
of Roos, if f is an order-preserving cofinal function (i.e., a cofinal functor) from a directed
poset m to a directed poset §2, then f induces a natural isomorphism between the func-
tors 1(12(5’{) ~ liLn(,f), so if some Li_r_n(g’;) does not vanish, the same is true for some li_r_n(,f).

Reversing 2.38, there is an order-preserving cofinal function f from = into £, if 8  is

(n+1)

the smallest cardinality of a cofinal set in m, so from the linearly ordered case, l(iinﬂ

does not vanish. By Proposition 2.48, Eii‘lsrn"-k) = Ext;“‘ (AR, )=0,k> 1.

nop
This proof, by Mitchell, answered a question tackled by topologists, which, except in
low n cases, did not yield to the methods of the topologists.
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Application 4. Differing left and right global dimensions. We have already seen an
example of a left hereditary ring which was not right hereditary. Here we exhibit some ex-
amples due to Jategaonkar which show that a left hereditary ring may have arbitrary right
global dimension.

Let R be a domain, o a ring monomorphism from R to R. One forms the ring
D=R[X;a] of twisted polynomials in X over R by setting

D, +)= {:EO a,.X"}=(R[X],+)

and multiplying by the associative and distributive laws and
Xr=a(r)X forall r€ER

It is not difficult to verify that D is a ring, every element in D has a degree which is its
degree as a polynomial, and multiplication adds degrees.

ProPOSITION 2.65. D= R[X;a] isa principal left ideal domain iff R is and ofr)
is a unit of R for all nonzero r € R.

Proor . Let D be a principal left ideal domain. Then R = D/DX is also. Now
let r be a nonzero element of R. Then Dr + DX = Df for some f€ D. Since Df
contains r of degree 0, f€ R. Since X € Df, X =sXf for some s € R. Then sa(f) =
1 so af) isaunit of R. But f=ar + bX, and comparing constant terms we see that
f=ur forsome u€R, so a(f)=a)a() isa unit. sa(u) is the inverse of a(r). (We
have used here the fact that in a domain any one-sided inverse is two-sided, since if xy =1,
x(1-yx)=0)

Conversely, let 7 be an ideal of D, n the smallest degree of a nonzero polynomial
in I, J= the ideal of R consisting of O and all leading coefficients of polynomials in [/
of degree n.

Let J=Rj, and p a polynomial in / of degree n and leading coefficient j. Since
of)" ' Xp is a monic polynomial in I, subtracting a left multiple of it from any polyno-
mial in / will yield a polynomial of degree < n. Subtracting a multiple of p from any
polynomial of degree n in [ will reduce the degree. Hence 1= Dp.

PrROPOSITION 2.66. Let R be a domain, D a domain containing R such that there
exists a family of domains {D” |u € 2} indexed by an ordinal $) such that

(i) Do =R, UpEQDu =D,
() for 0<u<Q,D,=(U,,Dy) [X,50,].
Then D is a principal left ideal domain if each D, is.
ProoF . If § is a successor ordinal there is nothing to prove, for then D= D _,.

Now let / be an ideal of D, u the smallest ordinal such that / contains a nonzero
element of D,. Forall A>u, X,p= o, (P)X, €1 where p is a nonzero element of
IND,. Since a,(p) is a unit by Proposition 2.65, X, €1 If p is a generator of the
left ideal /N D, of D,, then I=Dp.
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PrRoPOSITION 2.67. Let D be as in Proposition 2.66. Let 0 <pv<u< A<
Then la,(x,)]~'X, D - [ (x,)] ~ 1 X,\D.

ProOF. [0 (X)] 7' Xy [, (X,)] 71X, = [, (X,)] ' X, (postmultiply both sides by
X,) and if [aa(X)] 71X, = [o(X,)] 7' X, y, one calculates 1= lo, (X,)] 7' X, » (since
Xy = Xy [o,(X,)] "’X“y) so X, isa unit, a contradiction.

Definition. A ring satisfying the hypotheses of Proposition 2.66 with im a, CR, Yu,
will be called a generalized twisted polynomial ring. One verifies by transfinite induction
that every element of D has a unique expression as a sum of monomials XulX uy 0 Ky
with g, <p, < -+-- <y, and coefficients from R written on the left. We denote this
ring by R[{X,; e, ln<Q}].

n

ProrosITION 2.68. Let Q+0 be any ordinal. Then there exists a ring D of cardinality
Rl of the form R[{X,; a, lu < Q}], where R is a division ring and im a, C R for
all p<Q.

Proor. For =0, take polynomials in one variable over a countable field (a, is
the identity).

Now assume that for all u < we have a division ring K, and a generalized
twisted polynomial ring K, (X o A<u}] = D, such that forall »<u, K, CK,
and {X,; a, |A <} is an initial segment of {X,;a, A< 4}, and oa,=a,0 onany K.

Set §= U#< aDy K= U“ <aKy By the assumption on the containment relations
between the division rings and indeterminants, one sees that S= K[{X,; 0 IN< Q}]. Set
X, = Xx,o’ and let T be the twisted polynomial ring S[{X,\',- ;o JAL< Qi€ w- {0}
where a, ;lx =@, ak’,.(X“,i)= X, for all j#1i, a)\,i(X#’,.)= aA(Xy) forall u <A
What we have done is set up a countable number of copies of § with the same K and in-
determinants in each copy commuting with those in other copies. One verifies that
K[{XA,,.; a A< i€w- {0}}] is a left Ore domain and so has a classical division
quotient ring K. Moreover, each «, extends to an endomorphism of K which fixes
each indeterminant. Then a, and o, commute on K, and we have an endomorphism
ag of Kg[{Xy o5ar0lA<$£}] which fixes X and sends X, ; to X, ;4. Imag C
Kq, a, commutes with @y on K. Moreover, |Kqg| =[RI8, by Corollaries 0.15 and
0.16, and |Dgl= Kq [{ X, ; o, IX< 2} [ = Ry 2], Transfinite induction gives us the de-
sired ring.

PrROPOSITION 2.69. Let 1 < n < oo, Then there exists a left hereditary ring D with
right global dimension n,

ProOF. Set Q=Q, | +1 (or §,,+ 1), and let D be the ring of Propaosition 2.68. By
Propositions 2.65 and 2.66, D is a principal (= free) left ideal domain and so left hereditary. By
Proposition 2.67, D has a well-ordered ascending chain of principal right ideals of order
type €, _,. By Corollary 2.59, this right ideal has projective dimension n. Hence
r.gl. d. (R) > n + 1. By Proposition 2.39, r. gl. dim (R)y < w. gl. d. (R) + n since |R|=
R, _,. But the weak global dimension is independent of sides and is 1 on the left. Hence
r.gl.d. (R)<n + 1. In the case that we want right global dimension 1, Z will do.
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APPENDIX

Introductory set theory. In discussing homological properties of modules which are
not necessarily finitely generated, set theoretic arguments play a very large role. In this
appendix we include the purely set theoretic concepts and notations used in the body of
the notes. An intuitive approach is taken although the axiomatic approach of Godel-Bernays
greatly influences it. The first section lists definitions and notations familiar to most math-
ematicians. §2 concerns cardinals, ordinals, the axiom of choice and equivalent formula-
tions, and some elementary consequences thereof. The reader of the last sections of Chapter
2 should be familiar with this material but might appreciate the convenience of having it
sketched out and readily at hand.

§1. Notations, definitions, and basic axioms

We start with three primitive undefined terms, class, set, and membership €. In gen-
eral, upper case letters from the beginning of the alphabet will denote classes, upper case
letters from the end of the alphabet will denote sets and lower case letters will denote
elements of classes. Strictly speaking, elements of classes are sets but there is a definite in-
tuitive difference between thinking of them as collections of elements and as single entities
in other collections. The axiomatic approach does not care what these things are, but only
what we can say about them. The labelling below is intended to combine these two
approaches.

1. Notation. (Read “ =" as “denotes” or ‘‘means”

(a) V = for all (logical quantifier).

(@)V' = for almost all = for all but a finite number.

(b) 3 = there exists (logical quantifier).

(b") 3! = there exists uniquely or there exists one and only one.

(¢) V= or (logical connective).

(d) A = and (logical connective).

(e} 1= not (logical connective).

(f) P= Q=P impliess Q=if P, then Q="T1PV(Q,

(g P=Q=P iff Q=P ifandonly if Q=P = Q) A (Q=P).

(h) 4 = B means substituting 4 for B or vice versa in any statement will not

affect the truth value of that statement.

2. Intuitive definition. A class is a collection of sets. If A isaclassand x a

member (or element) of A, we write x € A.



72 BARBARA L. OSOFSKY

3. Axiom (extensionality). A =B <= Vx, x€ A<=>x€B Thatis, asetis
completely determined by its members. The symbol = has a strictly logical meaning here,
so this is indeed an axiom, not a definition. Intuitively it makes little difference which you
call it.

4. [Intuitive definition. A set is any class which is a member of some other class. Sets
are the only classes which can be preceded by logical quantifiers. Some such restriction is
necessary to avoid logical contradictions. On the other hand, being able to talk about
classes which are not sets simplifies several discussions.

5. Intuitive definition. A property or permissible statement is any statement about
classes that can be made up of letters representing sets or classes, €, =, logical connectives,
and logical quantifiers applied to sets.

6. Notation. {x|P(x)} is read “the class (or set if that is the case) of all sets such
that the property P(x) holds”.

7. [ntuitive axiom. Any property determines a class, that is, 4 = {x|P(x)} is a
class such that x € 4 <= P(x). :

8. Axiom family. For each property P(x),VX 3Y,Vz, z €Y «= (z € X 1 P(2)).
That is, for each property P and for each set X, the collection of all elements of X
satisfying P forms a set. Axiom 7 is an intuitive axiom because there exists a class is not
a permissible statement. Axiom 8 however yields the existence of a set.

9. Notation. A C B (resp. B DA4) means (Vx),x €EA=>x€EB andisread A is
contained in B (resp. B contains 4) or A is asubclass of B. If B is a set, by Axiom
8, A is a subset of B.

10. Notation. A —B= {x|x €4 A 71(x € B)} is the complement of B in A.

— B is the class of all sets not in B. Our intuitive Axiom 7 guarantees that 4 — B and
— B are classes.

11. Axiom (unordered pairs). Yx, Yy, 3Z,Vu, u € Z «= (u=xvu=y) Thatis,
given two sets x and y, there is a set Z whose elements are precisely x and yp. This
set Z is denoted {x, y}.

12. Definitions. (a) {x} = singleton x is the set whose only element is x. {x}=
{x, x}.

(b) (x, )= the ordered pair x, y = {{x}, {x, ¥}}. Itis an easy consequence
of the axiom of extentionality that (x, y)=(x", y)Y==>x=x"Ay=y".

13. Definition. The cartesian product of two classes 4 and B, denoted 4 X B,
is defined by A X B= {(a, b)la€ A A b &€ B}. By Axiom7, 4 X B isaclass. One
could introduce an axiom that if A and B are sets, so is A X B, but that will actually
follow from the axioms of unions and power sets.

14. Definition. (a) A function f from 4 to B isa subclass of 4 X B such
that Vx €4, 3'y €B, (x, y) Ef A is called the domain of f and B its codomain or
range. {y € BlIx € 4, (x, y) € f} is called the class of values of f If (x, Y)ES, we
write y = f(x) or y =xf. Intuitively, a function f is a domain 4, range B, and a
rule for assigning to each member X € A4 some element fx) € B.
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(b) A relation R from 4 to B isasubclassof A X B. If A4=8, R is
called a relation on A. A function from A4 to B is a special kind of relation.

15. Notation. Let R be a relation from A to B, S a relaiion from B to C

(a) xRy will mean (x, y) €ER.

(b) If R isa function, (x, y) € R will be written y =R(x) or y=xR. In
general functions will be written on the left, but on occasion, we will want to switch sides,
in which case we will indicate that by an underscore.

(c) R°S=SoR={(a c)€EAXC[IxEB, aRx A xSb} is the relation
first R, then S. If R and S are functions, sois S o R, and S o R(x) = S(R(x)),
xRo §=(xR)S. SR iscalled the composition of R and S or S composed with R.

(d R-'={(b,a) EB X AlaRb}. If R is written in the form C, <, < or
similar notations, R~ will be written D, =, > or the notation reversed.

16. Definitions. Let f be a function from 4 to B.

(a) f is one-to-one (= l-1 = an injection) iff Vx,y €4, fx)=f(p) =x=y.

(b) f isonto (= asurjection) iff Vx € B, Iy € 4, x = ().

{c) f is a bijection (= a one-to-one correspondence) iff f is 1-1 and onto.

17. Notation. If f is a bijection from A4 to B, and y = f(x), we will write
x <=y under the bijection f

18. Notation. Let f be a function from A to B, andlet C C 4. The restriction
of f to C={(c, f(c))lc € C} is a function from C to B. It will be denoted fl..

19. Axiom. Let f be a function from 4 to B, and let X be a subset of A.
Then the class of values of f|, is a set, that is, Vx c4,13y, Vz, zeEY==1x€X
z = f(x). We denote this set f(X).

20. Definition. A family of sets indexed by a class 1 (usually a set) is some onto
function F with domain ].

21. Notation. 1f F is a family of sets indexed by I, and X; = F(7), we write
{X;li€ 1} instead of F. Although at first glance it looks like we are talking about the
class of values of F, that is not quite the case, for we have tagged each set in the range of
F with at least one index in 7. Nothing says this tagging must be one-to-one. If ] has
two elements, we often use different letters rather than subscripts to denote the indexing,
and so write {x, y} instead of {x,;|i € {x, y}}. Intuitively, we may also write {4;li€ T}
to refer to a collection of classes indexed by I, but formally this makes no sense as
classes which are not sets cannot belong to any class.

22. Definitions and notations. Let {X,|i € 1} be a family of sets indexed by T.

(a) The union of the family = U{Xilie I}= UieIXi= {x13ie I, x€X}).
If T has a finite number of elements we may also write X, U --=UX_, or in the case
of two elements, XUY. The notation 4, U +--U4, (and 4 U B) is also used to denote
the class of elements in at least one of the classes 4,, 4,, -*~, or 4,.
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(b) The intersection of the family = n{X,.Ii €l}= ﬂ,.e 1X;= {x \Vie 1,
x € X;}. If T is finite we also write X NY or' X, NX,N:+e- NX,. A, N++N4,
denotes the class of elements in all of the classes A, -+, 4,. An empty intersection is
the class of all sets.
(c) The union U{A,.liE I} is called disjoint if i#j=4; N A, is empty
(that is, has no elements).
(d) If T isa set, the cartesian product of {X;[i€1}= X,.GIX,. = the set
of all functions f from I to U,c7X; such that f() € X;,f€ X,c1X; will be denoted
(fi) or {fd;c1, where f;=f@). If T consists of two elements, there is an obvious bijec-
tion: X,e74X; > X, X X, where f<— (f(1), f(2)). Hence, our two definitions of cartesian
product “agree” in this case.
(¢) The jth projection of X;c 1 X;, m;, is that function m;: X 27X, = X;
such that 1ri(f) = f().
23. Axiom (unions). If 1 isaset, U, 1X; is aset. That is, for any family of
sets {X;|i€ I} indexed by aset 3Y,Vz,zeYe=3ic I,z X;.
24. Definition. P(A4)= the power class of 4 = {X|X C 4} = the class of all sub-
sets of A.
25. Axiom (power set). If X isaset,sois P(X), thatis, VX, 37, \VAVA=D &
ZCX
26. Intuitive definition. Let A and B be classes. A8 =X, _p 4, where 4, =4
for all b € B is the collection (not class) of all functions from B to 4. If B is a set,
we may take this as an actual definition of A45.
27. Remarks. (a) Let X and Y be sets. Then by the axiom of unions, X U Y
is a set. By the power set axiom,sois P(XU Y) and P(P(XUY)). Butforall x€X
and y €Y, {x}and {x, y} €E P(XUY) so (x,y) € P(P(XUY)). By Axiom 8,
XX YCP(P(XUY)) is a set.
(b) Let X be aset, f afunction from X to 4. By Axiom 19, Y = the
class of values of f isaset. Hence fC X X Y isa set. Thus Axiom 7 says A% isa

class.
(c) Let X beasetand 2= {0, 1}. Forany Y C X, there is a characteristic

function xy :X = 2 such that xy(x)=1 ifand only if x €Y. Then Y «— yxy isa bi-
jection from P(X) - 2% .
28. Definitions. (a) &= the empty set = {x|x # x }.
(b) T = the total class = {x{x =x}.
29. Remark. Axiom 7 says @ and T are classes, but at the moment there is no
reason to assume @ T, that is, there are no sets. All previous axioms tell how to get
sets from given sets. We will take care of that problem in a moment.

30. Notation. Let X be a set. X will denote the set X U {X}.
31. Axiom (infinity). 3U, g€ U A (Vx, x € U= x* € V).
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32. Remark. The axiom of infinity implies that & is a set and also enables us to
get a set containing the nonnegative integers, where we set 0=2,1=0% = (g}, 2=1% =
1U {1} ={& {@W, -*-,n+ 1=n" -+ where each set has the correct number of ele-
ments. More of this later (when discussing ordinal numbers).

33. Definition. Let A, B be classes.

(a) A binary operation on 4 to B isa function f from A X 4 to B If
B=4, wesay f isa binary operation on A.

(b) An n-ary operation on 4 to B is a function from X ;< 4; to B
where each 4; = 4. Again, we omit “to B”if 4 =8B

(c) A partial binary operation on 4 to B is a function from a subclass of
AX A4 to B

(d) If o is a partial binary operation on A, o (x, ¥) will be denoted x o y
or, on occasion, just xy when the operation is clear.

(e) An identity for a partial binary operation o on A is an element e € 4
such that eox=x and yoe=y forall x and y where the operation is defined.

(f) A binary operation on A is associative if (xy)z =x(yz) forall x, y, z€EA.

(g) A binary operation on A4 is commutative if xy = yx forall x, y € 4.

34. Intuitive definition. A category C is a class of objects and maps (or morphisms)
between objects plus composition of maps obeying certain rules. If |C| denotes the class
of objects of C, there is a binary operation C( , ) or Homp(, ):ICIX |C| =T such
that the class of maps = U(X.Y)EICIX 1 Hom(X, Y). Homp(X, Y) is called the set of
maps from X to Y. If f&€Home(X, Y), X is called the domain and Y the codomain
of £ Composition (indicated by o or juxtaposition) is a family of functions:

Hom( (Y, Z) X Home (X, Y) » Homp (X, Z) satisfying fo g is defined whenever
codomain g = domain f and (fo g)oh = fo(goh) whenever fog and goh are defined.
This concept is introduced to indicate that intuitively the maps are as important (if not
more important) than the objects themselves. Indeed, in our actual definition, the objects
disappear. They are replaced by identity maps and the elements of the category are only
the maps.

35. Definition. A category C is a subclass of T together with a partial binary
operation o on C to T satisfying

(i) If fog and goh are defined, then so are (feg)eh and fo(goh), and
they are equal (“partial” associativity).
(ii) If f€ C, there exist unique identities 1, and 1, € C such that 1,of
are defined (enough identities).
(iii) V identities e and f, {a| (eca)o f is defined} is a set.

36. Definition. (a) S = category of sets is the category with |S|=T and
S(X, Y)= YX. That is, the maps of S are just the ordinary functions written on the
left. Composition feg therefore means “first g, then f.

and fol

r



76 BARBARA L. OSOFSKY

(b) S°P = S= the opposite category to S is the category of sets and func-
tions written on the right. By our notational convention, functions in S are underscored,
s0 fo g means first f, then g

37. Definition. A covariant (contravariant) functor from a category C with compo-
sition op to a category D with composition ep is a function T from C to D such
that

(i) If e is an identity of C, then T(e) is an identity of D.

(i) If forg is defined, thensois T(f) op T(g) (T(g) op T(f)) and
T opT@ =T o0g) (T pT()=T( (8)).

38. Remark. If (C is any category, we may define a category (°P with the same
objects as C but reverse composition, that is, f°C £ =8 °pop /. Then the contravariant
functors from C to D are in one-to-one correspondence with covariant functors from (C
to D°P or from (C°? to D. Thus we could talk only about covariant functors, but this
is not convenient. Underscore is the natural contravariant functor from S to S°? which
leaves objects (= identities) fixed.

39. Notation. If C is a category and f€ C(X, Y) we write f: X > Y or Xf_> Y
or occasionally X = Y if f is clear from the context. Thusin S,f: X~ Y says f isa
function from X to Y.

40. Definitions. Let R be a relation on A.

(a) R is symmetric iff Vx, y €4, xRy < yRx.

(b) R is reflexive iff Vx €4, xRx.

{¢) R is transitive iff Vx, y,z€EA4, xRy AyRz=xRz

{(d) R is an equivalence relation if R is symmetric, reflexive, and transitive.

(e) R is antisymmetric if xRy A yRx =x=y.

(f) If R is an equivalence relation on A4, the equivalence class of x € 4,
cdix)= {y€AlyRx}.

41. Remark. If R is an equivalence relation on A4, then A =J {cl(x)|x € 4}
and cl{x) N cl(y) # @ < cl(x) = cl(y). Moreover, if A is the disjoint union of the
family {A4,|7°€ 1}, then there exists a unique equivalence relation R on A4 such that
xRy ==3i, x EA; Ay € 4,.

42. Definition. A poset (partially ordered set) (X, <) (usually written just X) is
aset X together with a transitive, antisymmetric relation < on X

43. Definition. A linearly ordered set or chain is a poset (X, <) such that Vg,
be X, either a<bd or b<a or a=b.

44. Definition. If X is a poset and Y C X, then an upper bound x of Y is an
element x € X such that b<x forall b€ Y.

45. Definition. A maximal element of a poset X is an element x € X such that
VaGX,x<a=>x=a.

46. Definition. A directed set X is a poset X such that every finite subset of X
has an upper bound.
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47. Definition. A poset X is called inductive if X # & and every chain in X has
an upper bound.

48. Definition. A linearly ordered set X is called well-ordered if every subset Y of
X has a smallest element, that is, VY C X, 3x € Y such that x <b, Vb€ Y.

49. Remark. Definitions 42 to 48 have obvious extensions to classes rather than sets.

50. Definition and notation. An initial segment of a poset X 1is a set of the form
s(x)= {a € Xla<x)} (where a <x means a <x Aa#x). Theset s (x)= {a € Xla <x}
for some x € X is a closed initial segment.

51. Definition and notation. Two posets X and Y are called order equivalent if
3f:X > Y, f a bijection, such that Va, ¢ € X, a <d' <= f(a) <f(d'). We wiite X=,Y

[T

o
lence relation. X <, Y will mean X is order equivalent to an initial segment of Y.

means order.) Clearly =_ is an equiva-

in this case. (“=” means equivalent, the o

52. Intuitive definition. An ordinal number is an equivalence class of well-ordered

sets under =,. Alternately, an ordinal number is a special well-ordered set such that any
well-ordered set is order equivalent to precisely one ordinal number. The nonnegative inte-

gers are precisely the set of finite ordinals.

53. Definitions. (a) A universe is a set U which looks like T (is a model for set
theory) in that x€ U= C U and Px)EU), {x; /i€ 1} CU and TE U =
UieI x; € U, and U contains a set X such that ¢ € X and Vx, xEX=>xTEX

(b) A successor-tower in a set U is a subset X C P(U{) such that (i) 2 € X,
() x€EX=>xU {x}=xT€X, and (iii) 1€ U and {X;|i€ I} isachainin X C
P=U,rxex

(c) The set Q(U) of ordinal numbers in a universe ( is the intersection of
all successor-towers in .

(d) An ordinal number is a member of 0 = UU a universe 0 (U)-

(e) An alternative illegal definition of () is that () is the intersection of all
successor-towers in 7. We will use this as an informal definition. It yields the same class
as (d) since for any universe U, 0 N U = O(U) and any set is contained in some universe
(axiom 55 below).

54. Remark. We will show that 0 = the class of all ordinal numbers is well-ordered
under C, and each ordinal (element of (J) is the set of all its predecessors in this ordering,
and so a well-ordered set in its own right. Indeed, an ordinal number could be defined as
a well-ordered set £ such that x = s(x),Vx € 2. The advantage of our definition is that
the same proof shows the well-ordering of ( and choice implies Zorn’s lemma. Any well-
ordered set is order equivalent to precisely one initial segment s(x) of ¢ (and hence to
precisely one element x of (). Thus 53 (d) just gives a formal way to get the
“special” well-ordered set in 52.

55. Axiom. Every set Y belongs to some universe ({. We need some axiom to

guarantee ordinals exist. This one will do very nicely. So would the axiom of replacement,
Axiom 19,
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56. Remark. We use the word finite assuming one knows what it means. Some def-

initions of it are:

(a) A set X is finite if any 1-1 function f:X - X is onto.

(b) A set X is finite if any function f from X onto X is 1-1.

(¢) w = the set of finite ordinals is the intersection in any universe { of all
sets X C U such that € X and Vx, x EX =x U {x} €X. X is finite if it is in 1-1
correspondence with an element of (.

57. Definition. An ordinal 2 is called a limit ordinal if it has no largest element,
otherwise it is called a successor ordinal. Any finite ordinal except & is a successor ordinal.
w is a limit ordinal.

58. Axioms. The following three axioms are equivalent.

(a) Well-ordering principle. Let X be any set. Then there exists a relation
< on X such that (X,<) isa well-ordered set.

(b) Choice. Let {X;|i€ 1} be any nonempty family of nonempty sets. Then
If:1->Ue1 X, f € X, Vi

(c) Zorn’s lemma. Any inductive poset X has a maximal element.

59. Definition. (a) Let X be aposet, Y C X. Y iscalled cofinal in X if Vx€ X

Jyey, x<y.

(b) Let X and Y be posets, f: Y > X. f is called order-preserving if Vy,
Y EY, y<y =f(y)<fO). f is called semi-order-preserving if ¥y, y' € Y, f(y) <
O =y <y

(c) If f:Y > X is an order-preserving function from the poset Y to the
poset X such that the class of values of f is cofinal in X, we say f maps Y cofinally
into X. If, in addition, f is 1-1, we say f embeds Y cofinally in X

60. Definition. (a) A set A has the same cardinality as B, written 4 =, B, if
there exists a bijection f:4 - B.

(b) A has cardinality less than or equal to that of B, written (4|<, |B], if
there exists an injection f:4 — B.

61. Intuitive definition. A cardinal number is an equivalence class of sets under =_.
Alternatively, a cardinal number is a special set such that every set is in 1-1 correspondence
with precisely one cardinal number.

62. Definition. (a) A cardinal number is an ordinal 2 such that for all ordinals
V< Q,Q% V.

(b) The cardinality of a set A4, written |A4 |, is the cardinal number =, to A.

63. Remarks. (a) The definition of cardinal number in Definition 62 agrees with
that in Definition 61 only in the presence of the well-ordering principle (equivalent to the
axiom of choice).

(b) <, is a partial ordering on the collection of all cardinal numbers which
is a well-ordering in the presence of choice.
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64. Definition. (a) A regular ordinal £ is an ordinal such that Vu<Q, u cannot
be embedded cofinally in £2.

(b) A regular cardinal corresponds to a regular ordinal in 62 (a). Alternatively,
a regular cardinal is the =, equivalence class of a set X which cannot be expressed as
X:UiEI Y, with |Y;{ <, |X| and |T|<,IX]I

65. Definition (assuming choice). For n an ordinal, 8, will denote the nth card-
inal in the well-ordered class of all infinite cardinals, that is # =, s(¥,,) in this class. £,
will denote the ordinal of 62 (a), corresponding to X, . X, is the cardinality of the non-
negative integers, 2, is often written . We will use the symbol §2_, to indicate that
an ordinal k isin , thatis, §2_, will stand for any finite ordinal.

66. Definition. Let w°P denote the poset (w,>>). Let X be a poset.

(a) X has minimum condition if Vy CX, Y#@=Y hasa minimal element.
(b) X has the descending chain condition (d.c.c.) if there is no 1-1 order-pre-
serving function w®P = X, that is, every descending chain Xg > X, > Xy >+ is finite,
or x, =x, 2x, > -+ implies inew, X,, =X, Vm > n. We say every descending
chain terminates.
(c) X has maximum condition if VY C X, Y #Z =Y has a maximal element.
(d) X has the ascending chain condition (a.c.c.) if there is no 1-1 order-preserv-
ing function f:w = X, that is, every ascending chain x, <x, < --- terminates
an, x,, =x, Vm = n).

67. Remark. In the presence of choice, a.c.c. ¥ maximum condition and d.c.c. <=
minimum condition.

68. Definitions. (a) Let X and Y be ordinals. We define the ordinal X + Y to
be the ordinal corresponding to the well-ordered set X U Y under a < b <= (¢ and
beX and a<b in X) or (@ and bEY and a<b in Y) or @€ X and bEY).
Note X is an initial segment of X + Y.

(b) If X and Y are well-ordered sets, so is X X Y under the lexicographical
ordering (g, b) <(c, d)=a<c¢ or a=c and b <d The product of the ordinals
X - Y is the ordinal of X X Y.

(¢) If X and Y aresets, | X| + | Y] is the cardinality of a disjoint union of
a set of cardinality |X| and one of cardinality |Y|.

(d) If X and Y aresets, | X|-|Y| is the cardinality of |X X Y|, and
| X "Y1 is the cardinality of | XY|.

69. Hypotheses. (a) Generalized continuum hypothesis. Let X be an infinite set,

N acardinal, | X1 < R <] P(X)l. Then |X|=R or |P(X)|=N. Alternate formulation.
Let Y C P(X) where X is infinite. Then either there is a function f from X onto Y
or there is a function f from Y onto P(X).

(b) Continuum hypothesis. 230 =N,.
There are models of set theory including choice in which 270 = R, for any ordinal

a which is not a countable union of smaller ordinals. Intuitive feelings about the continuum
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hypothesis are not so well developed as in the case of choice, and its applications or applica-
tions of its negation are not as numerous. These notes get statements equivalent to the con-
tinuum hypothesis in an algebraic setting.

§2. Cardinals, ordinals, and the axiom of choice

This section lists results on cardinals and ordinals plus various consequences of the
axiom of choice. Although all the results are well known, proofs are given or sketched for
completeness.

Definition. (Used only in this section.) Let X be aset, 4 a class, g a function
from P(X) to P(X) such that YY C X, Y C g(Y) and g(Y)— Y = a(Y) is either
empty or contains one element. A g-tower W on X isa subset of P(X) such that

() z €W,

(i) Yew=gY)eWw

(i) If T€EA and {X;li € 1} isachainin (W, C), then U,c7 X, E W.
The intersection of all the g-towers on X is called the g-set of X.

LEMMA 0.1. Ler X beaset, A aclass, g a function from P(X) to P(X) such
that YY C X, Y C g(Y) and g(Y)—Y = h(Y) has at most one element. Then the g-set
G of X is well-ordered under C.

Proor. We first show that G is linearly ordered. x € G is called comparable if
VyE€G xCy or y Cx. Clearly & is comparable.

Now let x be comparable, and let Y= {y€Gly Cx or gx)Cy}. g€Y, and
if {(y;li€ I}isachainin Y, T €A, then U7y, €Y. If yE€Y, and gx) Cy,
then g(x) C g(¥) so g(y) €Y. Otherwise y Cx. Since x is comparable, either g(y) C
x (s0 g()EY) or g()) =y Yh(y) 2 x. Then h(y)& x, ¥ DOx, so y=x, and
g(»)=g(x). In all cases we have y€ Y =g(»)€ Y. Thus Y isa gtower, so Y=0G.
This says that x comparable = g(x) comparable.

One observes that a union of a chain of comparable sets is comparable, so the compar-
able sets form a g-tower. Hence G is linearly ordered.

Let Y be any nonempty subset of G, andlet Z= {x €G- Y|x _gy, Vy €Y}
Z # G so either

Q) g¢ Z or
(i) Ix€Z gx)¢E Z, or
(i) I{x;li€ 1} CZ 1€ A, such that Uiezx,. & Z.

In case (i), 2 € Y so o is the smallest element of Y. In case (ii), —3y €Y, xC
y C g(x). Since g(x)—x has one element and y # x, y = g(x) is the smallest element
of Y. In case (i) U, 7%; is the smallest element of Y since x; C y Viel,yey
implies Uie 1% S Vy €Y and so can miss Z only if it is in Y.

THEOREM 0.2. The following are equivalent.
(i) Choice. Let {X;li € 1} be a nonempty family of nonempty sets. Then
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3 a choice function f:1->U;c1X,, F)E X, Vi
(il Zorn’s lemma. Every nonempty inductive poset has a maximal element.
(iii) Well-ordering.) Every set can be well-ordered.

ProOF. (ii) = (iii). Let X be aset. Set F={(Z <)|ZC X and < isa well-
ordering on Z}. F# @ since (&, @) € F. Partially order F by (Z,,<,)<(Z,,x,) if
(Z,,<,) is an initial segment s(x) of (Z,,<,) for some x € Z,. One easily sees that
F is inductive. By Zorn’s lemma, F has a maximal element (Z, <). If Z# X, let x €
X-2Z Order ZU {x} by a< b if b=x orif aq b€EZ A a<b. Thisis easily seen
to be an element of F larger than (Z, <), a contradiction.

(iii) = (i). Well-order {J,c 1X; and set f(i) = the smallest element of X; with re-
spect to this ordering.

(i) = (ii). Let X be a nonempty inductive poset, Y the set of all chains in X. For
YEY, set fO)={z€EX-ylz>u Yu€y}. Let V= {yEY|f()#Z} and let h
be a choice function on {f(y)|y € V}. Define g: P(X) > P(X) by

gw)=uU {h(w)}, Yuev,

g)=v, Yve P(x) - V.
Set 4 =Y. By Lemma 0.1, the g-set G on X is well-ordered by C, and GCY
since Y isa gtower. For m= UyEGy’ meG so g(m) €G and g(m) C m. Hence
m €Y — V. By hypothesis, m has an upper bound x,. x, must be a maximal element
of X
THEOREM 0.3. Let X be a poset.
(i) X hasa cc <= X has maximum condition.
(i) X hasd. c.c. = X has minimum condition.
(iii) X hasa c c and d c. c.= every chain in X Is finite.
ProOF. (i) =. Let x, <x; <+ <x, < -+ be an ascending chain in X Let
x, be a maximal element in {x;|i € w}. Then X, =X, Ym > n
<. Let Y C X besuch that g+ Y has no maximal element. For y €Y, set Z,
{x€ Y|y <x}. By hypothesis Zy # @& Let f be a choice function on {Zy ly €Y},
Yo €Y. Then y, <f(ry) <fF(y) < -+ <f"(y) < -++ is a strictly ascending chain
in YCX where f"=fofo -0 f n times.
(ii) Reverse all inequalities in the proof of (i).

(iii) +. This is clear since ascending and descending chains are chains.

=. Let C beachainin X. Let h:P(C)~ {&}~> C, h(Y)= the maximum element
in Y (unique since maximal implies maximum in a chain). The chain hy, = h(C) > h, =
hC —h(C)>hy=h(C— {hy, h})>++>h,=h(C— {RO<i<n-1})> - is
a strictly descending chain which must terminate, but can only do so if for some n, C—
hlo<i<n-1}=g

LEmMA 0.4 (Principle of transfinite induction). Let (X, <) be a well-ordered set with



82 BARBARA L. OSOFSKY

smallest element x, Let A C X satisfy x, €A and Vx € x, s(x)= {yeXxiy<x}c
A=>x€A Then A= X

ProoF. If not, X — 4 has a smallest element y, and s(y) C 4, a contradiction.

THEOREM 0.5 (Definition of functions by transfinite induction). Let (X, <) be a
well-ordered set with smallest element x,. Let g be a function with codomain Y whose
domain is the set of all functions from initial segments of X to Y, and let u €Y. Then
31f:X~> Y such that

(i) flxg)=u and
(i) £6) = g (lyy):

PrROOF. Let V= {HC XX Y|(xy, u)€EH and {(x, i(x))[x Es(x)} CH=
', gh)EHNVX €X h:s(x')> Y} XX YEV. Set [=(,  H Any function satis
fying (i) and (ii) is an element of H and so contains f. Moreover, f itself isin V. If f
is a function: X = Y then no function from X to Y can contain it so f will be the
unique function required.

Assume f is not a function from X to Y. Then there exists a smallest element
x, € X such that (x,,y) and (x,, z) € f forsome y #z or Vy €Y, (x, ) &S
Then f N (s(x) X Y) is a function: s{x,) > Y, sosince fEV, (x,, g(f N [s(x) X Y])E
f Nowassume (x,y)Ef, y#g(fN [s(x)X Y]). Then f- {(x,, ¥)} €V and so
contains f, a contradiction.

THEOREM 0.6. Let X be a well-ordered set, f an order-preserving, 1-1 function
from X to X. Then f(x)>x, Vx € X
Proor. Let V= {x € X|f(x) =x}. Then x, € V. Assume s(x) C V. If f(x) <
x, then f(x)E€s(x) CV and f(f(x)) = f(x), but since f is 1-1 order-preserving,
FF(x)) < f(x), a contradiction. Thus f(x) = x so x € V. By transfinite induction,
V=X
THEOREM 0.7. Let (X, <) and (Y, <) be nonempty well-ordered sets. Then pre-
cisely one of the following holds.
(i) X=, V.
(i) Y=, s() forsome y' €Y.
(il) Y =, s(x") for some x' € X.
Proor. ¥x € X and h:s(x)~> Y, define
g (h) = smallest element of Y — h(s(x)) if Y — h(s(x)) # 7,
= smallest element y, of Y if Y —h(s(x))=2.
By transfinite induction, 3!'f: X = Y such that flxg) =y, and f(x)= g(fls(x)). Assume
3 asmallest x' such that f(s(x")) = Y. If not, for the moment denote X by s(x").
Then fls(x,) is a 1-1, order-preserving function with image an initial segment of Y or Y
itself. For if not, there is a smallest element x" € s(x') such that f(x") < f(y) for some
y<x" or 3z<f(x"). z €f(s(x")). But then f(x")=g(fls,~)) and f(s(x")) isan
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initial segment of Y, say s(»'), and g(flyy.))=»" Hence z <y'=f(x") =z € f(s(x"))
and f(¥) <y, ¥y <x", a contradiction. If x' € X, flg(xry is @ 1-1 order-preserving func-
tion onto Y whose inverse gives the equivalence of (iii). If s(x)= X, f satisfies (i) or (ii).
To show only one of the conditions holds, assume ¢ is an order-preserving bijection

from X onto Y or s(y') forsome y' €Y, and Y is an order-preserving bijection from
Y onto X or s(x') forsome x' € X. Then y¢ isan order-preserving function from X
onto s(x") or X forsome x” € X. By Proposition 0.6, ¢ is onto X since yg(x) >
x, Vx € X, so y isonto. Similarly, ¢ is onto. Thus X = Y.

Theorem 0.7 also holds for well ordered classes.

THEOREM 0.8. <, is a well-ordering on the class of all ordinal numbers. It is the
identical well-ordering as C and € on (.

ProoF. By Theorem 0.7, <, is a total ordering on the class { of all ordinal num-
bers. Let A4 be any nonempty subclass of (), Y’ € A. By Axiom 55, 3 a universe U
such that Y € (. By Lemma 0.1, 0 N U = Q(U) is well-ordered by C. A smallest ele-
ment under C in O(U) N A will be a smallest element in 4 under <, provided C=
<,. We show this by showing YX € O(U), X = s(X) = {¥Y € O(U)| Y C X under the well-
ordering C}; for then Y < X iff Y = s(Z) forsome Z€ X iff Y=, Z=s(Z) iff
s(N=Y=2Z=5(Z)Cs(X) iff YCTX

Let W= {X€ (U)X =s5(X)}. Clearly € W. Let s(Y) C W. By the proof of
Lemma 0.1, Y = Uze;(Y)Z or Y=ZU{Z} for some Z € s(Y). In the first case,
Y =U zes(y)5(2), and clearly s(Y) 2l ys(2) so Y=s(Y) and Y € W. In the
second case, Y =s(Z)U {Z} and VV € O, V<Y==>V=Z7 or V<Ze==>VE
s(ZYyU {Z} so Y=s(Y)E W in this case also. By the principle of transfinite induction,
W= 0(U). Note that we have shown that C,€ and <, all are the same order on 0.

THEOREM 0.9. Let X be any well-ordered set. Then X is order equivalent to some
ordinal.

ProoF . () is a well-ordered class. Therefore 0 <, X or X <, (. If f is an order-
preserving bijection: 0 - s(X) or 0 > X, then ( is the class of values of f~! which
has domain a subset of X. Hence () is a set. By Axiom 55, there exists a universe [
such that 0 € U. Then 0 =UyenY so 0 €0 and 0 =s(0). Thus O is order
equivalent to an initial segment of itself, a contradiction. This shows ( is a proper class,
so X is order equivalent to an initial segment s(Y) of (. Since s(Y)=Y by Theorem
0.7 we are done.

We now look at some cardinal arithmetic.

THEOREM 0.10 (Cantor-Schroder-Bernstein). Let X and Y be sets, X <, Y,
Y<, X Then X=,7Y.

ProoF. Let f:X—>7Y and g:Y > X be 1-1 functions. Let V, = X — g(Y), and
define Vi inductively by Vg =gf(V_,) for K€ w. Set V= UKEw V. Define
¢p:X~>Y by ¢l,=F (1>iX_V:g_1 I x_y- ¢ is afunction since g(Y)2X~V and g
isl-1. ¢ isl-lon ¥ andon X — V. Nowlet pu)=¢x),u€EV, xe€X-V.
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Since V=Uye,, Vg, 3i, u € V;. Then f(u) =g '(x),s0 x = gf(u) € &f (V)= Vi, TV,
a contradiction. Hence ¢ is 1-1. Let y €Y. Then g())EV or g()EX-V. If
gW)EV, g()EV, so IK>1 with g(b) € Vg =gf(Vg_,). Since g is 1-1,y €
FVe_DCf(M)y=¢(V). If g(r)€E X -V, then ¢(g(y))=y. Hence ¢ is onto and the
required bijection.

Note this gives <, is a partial ordering without using choice. Well-ordering plus
Theorem 0.7 say <. is a total ordering (and indeed a well-ordering since every set is equiv-
alent to some regular ordinal).

THEOREM 0.11. Let X be any set. Then |P(X)| > IX|.

Proor . Vx € X, f(x)= {x} isa 1-1 function so | X[ <, | P(x)|. Now let f be
any function from X to P(X). Let

Y= {x€Xlx & f(x)}.
If Y=F(x) forsome xEX, then xEY=>xEfx)=xEY and xEY=>xEfx)=x €Y, a
contradiction., Hence Y is not in the image of f, so f is not onto.
LemMMmA 0.12. Let X be any infinite set. Then X has a countable subset.
ProoF. Well-order X. Since X is infinite, X <, «w. Hence w <, X.
THEOREM 0.13. Let X be an infinite set. Then |X|+ |Y|=max {|X],|YI}.

ProOOF. Assume Y is the finite ordinal #. Well-order X and let f be a bijection:
w=>s(x') forsome x’ €X or f:w<«—> X Defineamap ¢:n+X—>X by ¢(k)=
f(k) for k€n, ¢(f(k))=f(k+ n) for kK € w, and ¢(y)=y, Vy =x". Itiseasy
to verify that ¢ is an order-preserving bijection, so 7+ X=X and |n|+ |X|=1X]

If [ X]=1Y|=8,, then | X|+|Y|=R8, since {Znn Ew}VU {2n + 1In€Ew}= w.

Now let Y be infinite. Without loss of generality, |X| <. |Y|. Then clearly
1YI<, (IX|+1Y)<, Y]+ |Y], sowe may assume X =Y. Let

F={(Z HIZCY, f abijection: ZX {0, 1} <> Z}.

Order F by inclusion of functions (as subsets of X X 2X X). F # & since X contains a
countable subset Z, and there exists a bijection Z X {0, 1} «— Z. Clearly F is induc-
tive. Let (Z,, f) be a maximal element of F. If X —Z, is infinite, then it contains a
countable set V, (Z, U V) X {0, 1}= Z, X {0, 1} U ¥ X {0, 1} where the union is dis-
joint, and Z, X {0, 1} «—> Z,, VX {0, 1} <= V€ F is a larger element, a contradiction.
Thus X - Z, is finite, | X|= 1ZJ +1X-Zy =12y (1Z,1 must be infinite since

X[ is) and |Zgl=1Zyl +1Z,l.

THEOREM 0.14. If X isinfinite and Y a nonempty set, then | X{|Y|=
max {|X||Y]}.

Proor. If Y is finite, let n € w have cardinality |Y|. If n=1,n X X=X so
ln X X|=|X| If the proposition is true Vi < n, then n X X=(n - 1NXXU{n-1}XX
has cardinality | X| + [X|=|X| by Theorem 0.13 and the induction hypothesis. Thus by
induction the theorem is true if Y is finite.
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Now let |Y|=|X|=R8,. Themap (x, y)~> (1/2) (x +)+ @2 +y)-y is
a bijection: w X w «—> w. The enumeration is

0 1 3 6
0,0 ©,1) 0,2) (0, 3)

2, 4 1 0
(1,0) (1, 1) (1,2) (1, 3)
s, 8, 7 12,717
2,0) 2,1 2,2 (2, 3)
On each diagonal indicated by arrows, x + y is a constant n and the counting goes from
UDn?2 +@B/2n-—n=nn+ 1)/2 to ()n* +B/2n-0=1/D)(n+ D@ +2)-1.
The bijective properties follow from Zi_jk=n(n + 1)/2.

Assume |X| <, |Y[|. Then |Y|<,|YX X|<_,|Y X Y|, so we may assume
X=Y. Llet F={Z NIZCY, f:ZX Z <« Z2}. Asin Theorem 0.13, F is inductive.
Let (Z,,f) be maximal in F. If |X - Z;| <. |Z,l, then |X|=|Z 1 +|X-2Z,|=
1Zol and X 11X = |X|. If [Zyl<,|X—Zyl, let VCX—-Z, have [V|=1|Z,].
Then (Zo U V)X (ZaU V) =Zy X ZoUZyX VUV X ZyUVX V. Now |Zy X V=
VX Zol=|VX V] since (Zg, YEF, 50 |ZgX VUV X Z U VX V|=|Zyl=|V]
Define ¢lz,xz, =/ ¢![(ZOUV)X(ZOUV)]—ZQXZ0 a bijection with V. Then (Z, UV, ¢) €
F and is larger than (Z,, f), 2 contradiction.

CorROLLARY 0.15. Let {X;{i € 1} be a family of sets, | X;| <R an infinite car-
dinal. Then \\J;c1 X;l < max (8, 1 T1).

PrRoOF. There exists a map f:Uc1{i} X X; >U,c1X;. By choice, 3 a 1-1
g U1 Xi > Ui} X X;. Onehasa 1-l map U7 {3X X, > Uic1{i} X R=T X R,
Apply the proposition.

COROLLARY 0.16. Let X be an infinite set, F(X) the set of all finite subsets of X.
Then [F(X)|=1{XI.

ProoF. Clearly |X|<|F(X)| since x - {x} is1-1. If F, (x) denotes the set of
all subsets with precisely n elements, and < is a well-ordering on X, then {x;|0<
i<n—1,x<x;.,} > (xg, """, x,_ )EX" is -1 so [F(XN)I<|X"|=|X""1|X]
Then X"~ !I={X|~->|X"|=|X| by Theorem 0.14, so by induction |X"|={X|. Now
IF(01 = 1U,e Fo(0i < By IF,(X)] = X1,

CoroLLARY 0.17. Q4 or Sg., is a regular ordinal.

ProoF. For §2, it is clear since a finite union of finite sets is finite (N_, « 8_,

R_, if you wish). If Y isa subset of §25,, of cardinality <Ry, then !s(y)l < Ry
forall y €Y, and |U,cysO)I < Rg* Ry =R, Hence U cys(y) is an ordinal
<‘QB+1 so Y is not cofinal in Qﬁﬂ.

The existence of other regular ordinals is an axiom consistent with, but independent
of, our other axioms of set theory.
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