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Preface
The field of computational biology and bioinformatics has been rapidly 
evolving in recent years. It holds tremendous potential to have a good impact 
on understanding genetics, developing personalized medicine solutions. 
Hundreds of books have been written on it. In particular, there are only few 
bioinformatics books with a focus on gene regulation. Therefore, this book has 
been compiled to fill the void. The book is an open-chapter-called collection 
of peer-reviewed chapters contributed by international experts who have passed 
through rigorous blind reviews. Following the central dogma of molecular 
biology, the book content is divided into six sections: Genes (Chapters 1 to 3), 
RNAs (Chapters 4 and 5), Proteins (Chapters 6 and 7), Epigenetics (Chapters 
8 and 9), Case Study (Chapter 10), and Advanced Topics (Chapters 11  
to 17). 

(Section 1: Genes) In Chapter 1, Cao and Yip compile a comprehensive 
survey on enhancers which are central to gene transcription. In Chapter 2, Wei 
et al. introduce a software package for detecting differential gene expression. In 
Chapter 3, Fujita et al. describe how Granger causality can be applied to infer 
gene regulatory networks from gene expression data.

(Section 2: RNAs) In Chapter 4, Keservani et al. present a reader-friendly 
tutorial on RNA sequencing and its relation to gene regulation. In Chapter 5, 
Samantarrai et al. focus on non-coding RNAs and its network applications from 
the view of system biology.

(Section 3: Proteins) In Chapter 6, Mishra et al. compare different algorithms 
for the annotation of hypothetical proteins. In Chapter 7, Hahn and Muley review 
the computational protein-protein functional linkage prediction methods. They 
also propose a gene co-regulation based method for functional linkage prediction.

(Section 4: Epigenetics) In Chapter 8, Wang et al. give us a review on 
bioinformatics methodologies and tools for performing epigenomic analysis of 
chromatin organization and DNA methylation. In Chapter 9, Lou focuses on 
the statistical modeling of DNA methylation with sharp insights into its role in 
coding regions and gene regulation.

(Section 5: Case Study) In Chapter 10, Wang et al. describe a case study of 
EGFR-related gene mutations which are linked to drug resistance in non-small-
cell lung carcinoma treatments.

(Section 6: Advanced Topics) In Chapter 11, Giannoulatou et al. review 
contemporary approaches for quality assurance in genome-scale bioinformatics 
analyses. In Chapter 12, Issa reports the recent trends in biological sequence 
alignment methods. In Chapter 13, Mansouri et al. introduce a mathematical 
book chapter on state estimation and process monitoring of nonlinear biological 
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phenomena. In Chapter 14, Neelapu and Challa provide us a review on 
metagenomics with an emphasis on gene regulation. In Chapter 15, Thukral and 
Hasija describe how gene regulation can be altered in the context of metabolic 
engineering. In Chapter 16, Gupta et al. review general bioinformatics tools 
for phylogenetic analysis and ortholog identification which can shape gene 
regulation mechanisms of different species throughout the evolutionary history. 
In Chapter 17, Shikhin et al. have compiled a book chapter about protein model 
ranking through topological assessment.

In summary, state-of-the-art computational biology and bioinformatics 
studies are described and summarized in this book. This book provides updated 
reviews on the computational biology and bioinformatics studies for gene 
regulation. I hope that this book can help accelerate the advancement of the 
scientific community in computational biology and bioinformatics, benefiting 
the human beings and other species on the earth.

Ka-Chun Wong
City University of Hong Kong

July 2015



List of Reviewers 
Alan Moses
André Fujita
Antonio Sze-To
Ashish Runthala
Bibekanand Mallick
Bjorn Wallner
Bo Hu
Carlos Lijeron
Daniel Alex
Debby D. Wang
Eleni Giannoulatou
Hafeez Ur Rehman
Harishchander Anandaram
Hong Yan
Huiluo Cao
Joshua Ho
Konstantinos Krampis
Salim Bougouffa
Shailendra K. Gupta
Shaoke Lou
Sun Jin
Vijaykumar Yogesh Muley
Wenye Li
Yanjie Wei
Yasha Hasija
Yingying Wei
Yu Chen
Yue Li



Free ebooks ==>   www.Ebook777.com

www.Ebook777.com

http://www.ebook777.com


Contents

 Preface  ......................................................................................................................v
 List of Reviewers  ......................................................................................................vii

Section 1: Genes

 1 A Survey of the Computational Methods for Enhancers and 
Enhancer-target Predictions .............................................................................3

 1. Introduction ..................................................................................................3
 2. Computational methods for enhancer prediction ........................................7
 3. Computational methods for enhancer target prediction ............................ 15
 4.  Databases useful for enhancer and enhancer-promoter association 

prediction ...................................................................................................20
 5. Conclusions and discussions ...................................................................... 21

 2. Cormotif: An R Package for Jointly Detecting Differential Gene 
Expression in Multiple Studies  ......................................................................28

 1. Introduction ................................................................................................ 29
 2. Methods ...................................................................................................... 32
 3. Simulations ................................................................................................. 35
 4. Discussion .................................................................................................. 41
 5. Software ..................................................................................................... 43

 3. Granger Causality for Time Series Gene Expression Data .........................48
 1. Introduction ................................................................................................ 49
 2. Granger Causality for Sets of Time Series ................................................ 50
 3. Canonical Correlation Analysis and Granger Causality ........................... 51
 4. Functional Clustering in Terms of Granger Causality .............................. 58
 5. Network Construction from Large Datasets ............................................. 63
 6. Software .....................................................................................................64
  Appendix ....................................................................................................64
  Acknowledgments ......................................................................................65

Section 2: RNAs

 4. RNA Sequencing and Gene Expression Regulation ..................................... 71
 1. The Fundamentals of DNA, RNA and Gene  ............................................ 72
 2.  The Fundamentals of Gene Expression and Regulation ...........................84

 5. Modern Technologies and Approaches for Decoding Non-Coding 
Rna-Mediated Biological Networks in Systems Biology and  
Their Applications ......................................................................................... 106

 1. Introduction .............................................................................................. 106



x Computational Biology and Bioinformatics

 2.  ncRNA-mediated regulatory networks generation and visualization  .... 109
 3. Interactomics .............................................................................................111
 4. Network visualization tools ......................................................................116
 5. Biological Network Architecture  .............................................................117
 6.  Analyzing ncRNA-mediated regulatory network ................................... 120
 7.  Application of non-coding RNA-mediated biological network   ............ 123
 8. Challenges and Future Directions ........................................................... 124

Section 3: Proteins

 6. Annotation of Hypothetical Proteins- a Functional Genomics 
Approach .........................................................................................................135

 1. Introduction .............................................................................................. 136
 2.  Methodology for functional annotation of hypothetical proteins ........... 142
 3. Conclusion ................................................................................................ 153

 7. Protein-Protein Functional Linkage Predictions: Bringing 
Regulation to Context .................................................................................... 159

 1. Protein Functions in the Post-Genomic Era ............................................ 160
 2.  Computational Methods for Predicting Functional Linkages 

between Proteins...................................................................................... 161
	 3.	 Phylogenetic	Profiling	 ............................................................................. 162
 4.  Analysis of Correlated Mutations in Protein Families by Mirrortree 

Approach: Indicator of Protein-Protein Interaction ................................ 165
	 5.	 	Chromosomal	Proximity	of	Genes	Reflects	their	Functional	Links ....... 166
 6.  Expression Similarity of Genes as an Indicator of Functional Linkage . 169
 7.  From Transcriptional Regulation to Predicting Protein-Protein 

Functional Linkages: A Novel Approach ................................................ 170
 8. Measuring Prediction Performance of Methods ..................................... 171
 9. Perspectives .............................................................................................. 173
  Acknowledgements .................................................................................. 174

Section 4: Epigenetics

 8. Epigenomic Analysis of Chromatin Organization and  
DNA Methylation ........................................................................................... 181

 1. Introduction .............................................................................................. 181
 2. Chromatin organization ........................................................................... 182
 4. Bioinformatics databases and resources .................................................. 197
 5. Applications of epigenomics .................................................................... 199
	 6.	 Emerging	fields	in	epigenetics ................................................................. 201
  Acknowledgements .................................................................................. 203

 9. Gene Body Methylation and Transcriptional Regulation: Statistical 
Modelling and More ...................................................................................... 212

 1. Introduction .............................................................................................. 212
 2. Methylation Data and global patterns...................................................... 215
 3.  Global correlation and patterns between gene methylation and  ........

expression ................................................................................................ 217



xiContents

 4. Statistical modeling and data mining ...................................................... 219
 5. Gene body methylation and splicing .......................................................222
 6. Discussion ................................................................................................223
 7. Methods ....................................................................................................224
 8. Acknowledgements .................................................................................. 227

Section 5: Case Study

 10. Computational Characterization of Non-small-cell Lung Cancer 
with EGFR Gene Mutations and its Applications to Drug Resistance 
Prediction ........................................................................................................233

 1. Introduction ..............................................................................................234
 2.  Computational Modeling of Interaction between an EGFR Tyrosine 

Kinase and an Inhibitor ........................................................................... 238
 3.  Characterization of EGFR or ErbB-3 Heterodimerization Using 

Computer Simulations .............................................................................246
 4. New-generation Irreversible EGFR TKIs................................................ 250
  Acknowledgements .................................................................................. 252

Section 6: Advanced Topics

 11. Quality Assurance in Genome-Scale Bioinformatics Analyses ................259
 1. Introduction .............................................................................................. 259
 2.  Whole genome sequencing analysis for genomic medicine ....................260
 3. The problem of quality assurance ............................................................264
 4.  Standard validation and QC approaches used in diagnostic 

laboratories ..............................................................................................264
 5. Introduction to a software-testing framework ........................................ 267
 6.  Software testing approaches, applications and evaluations .................... 268
 7.  Cloud-based testing as a service (TaaS) for bioinformatics .................... 273
 8. Future Directions ..................................................................................... 275
  Acknowledgements .................................................................................. 275

 12. Recent Computational Trends in Biological Sequence Alignment ........... 279
 1. Introduction .............................................................................................. 279
 2. Pairwise Sequence Alignment .................................................................280
 3.  Acceleration of Sequence Alignment Algorithms:  ................................ 291
 4. Gene Tracer Application  ......................................................................... 296
  Acknowledement ......................................................................................302

 13. State Estimation and Process Monitoring of Nonlinear Biological 
Phenomena Modeled by S-systems ...............................................................305

 1. Introduction .............................................................................................. 305
 2.  State Estimation in Non-linear Biological Systems ................................308
 3. Description of State Estimation Techniques  ..........................................309
 4.  Faults Detection of Biological Systems Representing Continousily 

Stirred Tank Reactor Model .................................................................... 313
 5. Simulation Results Analysis .................................................................... 318
 6. Conclusions .............................................................................................. 326
  Acknowledgment ..................................................................................... 327



xii Computational Biology and Bioinformatics

 14. Next-Generation Sequencing and Metagenomics ....................................... 331
 1. Introduction .............................................................................................. 331
  Acknowledgements  .................................................................................346

 15. Metabolic Engineering: Dimensions and Applications .............................. 352
 1. Introduction .............................................................................................. 352
	 2.	 Metabolic	flux	balance	analysis ............................................................... 354
 3. Metabolic engineering in microorganisms .............................................. 356
 4. Metabolic engineering in plants ..............................................................360
 5. Transcription factors vs. enzymes ........................................................... 363
	 6.	 Metabolic	trafficking	and	sequestration ..................................................364
 7. Genome editing ........................................................................................364
 8. Metabolic engineering in human disorders ............................................. 365
 9.  Principles and techniques of metabolic engineering in human diseases 366
 10. Heart Models ............................................................................................ 366
 11.  Computational Biology has come to aid metabolic engineering ............ 369
 13.  Computational Biology in identify metabolic pathways ......................... 374
 14.  Bioinformatics in identifying genome editing elements such as 

CRISPRs .................................................................................................. 375
 15. Concluding remarks ................................................................................. 376

 16. Methods to Identify Evolutionary Conserved Regulatory Elements 
Using Molecular Phylogenetics in Microbes ...............................................381

 1. Functional annotation of regulatory proteins .......................................... 381
 2. Structure of phylogenetic tree.................................................................. 382
 3. Methods of phylogenetics inference ........................................................ 383
 4.  Computational methods to identify conserved regulatory elements 

in microbes .............................................................................................. 384
 5.  Phylogenetic-based methods to identify regulatory proteins .................. 386
 6. Tools and web-servers for phylogenetic analysis .................................... 389
 7.  Protocol for phylogenetics analysis with Phylogeny.fr ............................ 394
 8.  Protocol of phylogenetics analysis using PhyML .................................... 398
 9. Protocol of phylogenetics analysis using BioNJ ......................................400
  Acknowledgements .................................................................................. 401

 17. Improved Protein Model Ranking through Topological Assessment ......406
 1. Introduction ..............................................................................................407
 2. Methodology ............................................................................................ 412
 3. Results ...................................................................................................... 416
 4. Discussion ................................................................................................ 418
 5. Conclusion ................................................................................................ 422
 6. Limitations and Further Research Possibilities ....................................... 422
  Acknowledgements .................................................................................. 423

  Index ................................................................................................................425



Section 1 
Genes





3

1
A Survey of the Computational Methods for 
Enhancers and Enhancer-target Predictions

Qin Cao1 and Kevin Y. Yip1*

Abstract
Enhancers are important cis-regulatory elements that play critical roles in a wide 
range of cellular processes by enhancing expression of target genes through pro-
moter-enhancer loops. There are many interesting biological questions about enhanc-
ers, including their evolution and the relationships between their dysregulation and 
genetic diseases. The recent developments of experimental methods such as high-
throughput reporter assays and ChIA-PET have enabled large-scale identification of 
enhancers and their targets. However, the current lists of identified enhancers and 
enhancer targets remain incomplete and unreliable due to the high noise level or low 
resolution of these methods. As a result, computational methods have emerged as an 
alternative for predicting the genomic locations of enhancers and their target genes. 
These methods have used a variety of features for predicting enhancers, including 
sequence motifs and epigenomic modifications. Potential enhancer targets have been 
predicted using activity correlations, distance constraints, and other features. Both 
prediction tasks are non-trivial due to cell-type specificity of enhancer activities, 
lack of definite orientation and distance of an enhancer from its target genes, insuf-
ficient known examples for training computational models, and other complexities. 
In this survey, we discuss the current computational methods for these two prediction 
tasks and analyze their pros and cons. We also point out obstacles of computational 
prediction of enhancers and enhancer targets in general, and suggest future research 
directions.

1. Introduction
Enhancers are important transcriptional regulatory DNA elements that can enhance 
transcription of target genes by recruiting transcription factors (TFs), which bring an 
enhancer close to the promoter of its target gene and trigger interactions with RNA 
polymerase II.

1. Department of Computer Science and Engineering, The Chinese University of Hong Kong, 
Shatin, New Territories, Hong Kong Tel: (852) 39438418; Fax: (852) 26035024 

* Corresponding author : kevinyip@cse.cuhk.edu.hk
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Strong sequence conservation at a non-coding region is a strong indicator of a poten-
tial enhancer (Pennacchio et al. 2006), especially when conservation is measured in 
ways related to the function, such as clustering or protein binding sites (Berman et 
al. 2004). Active enhancers are usually enriched in the histone mark H3K27ac, while 
both active and poised enhancers are enriched in H3K4me1, and latent enhancers 
lack these marks in general (Shlyueva et al. 2014). A typical enhancer is several hun-
dred base pairs long as defined by transcription factor binding signals, while much 
longer enhancers called super-enhancers, which are bound by the Mediator complex 
and master transcription factors, have been found to be important in the control of 
cell identity (Whyte et al. 2013; Hnisz et al. 2013).

Previous studies have uncovered that enhancer dysregulation could cause abnor-
mal gene expressions and lead to genetic diseases (Carroll 2008; Visel et al. 2009; 
Dawson & Kouzarides 2012; Shlyueva et al. 2014), making enhancers an important 
study topic for both conceptual and practical values. Understanding the sophisticated 
operational mechanisms of enhancers has become a crucial part towards a complete 
understanding of the landscape of gene regulation.

In this chapter, we shall describe computational methods for identifying enhanc-
ers and their targets. We start with a brief introduction of the current experimental 
approaches to these two tasks, based on which we shall discuss their main limita-
tions and introduce computational methods as a key alternative. We shall then dis-
cuss the current state-of-the-art method of computational enhancer prediction, from 
the features used in both unsupervised and supervised methods. We shall next dis-
cuss computational methods for predicting enhancer-target promoter associations. 
Finally, we shall conclude the chapter and discuss future research directions on these 
two problems.

1.1  Introduction to current experimental approaches to testing 
enhancer activities and enhancer-target associations

Enhancers can be tested experimentally by different kinds of reporter assays 
(Shlyueva et al. 2014; ENCODE Project Consortium et al. 2012; Kwasnieski et al. 
2014), including in vivo systems such as embryos of transgenic mice (Visel et al. 
2007). To scale up reporter assays for testing many enhancers at the same time, high-
throughput multiplexed reporter assays have been developed (Kwasnieski et al. 2012; 
Melnikov et al. 2012; Patwardhan et al. 2012; Sharon et al. 2012). These methods 
have been applied to test previously predicted enhancers. For example, a recent study 
(Kwasnieski et al. 2014) has tested human enhancers predicted by the ENCODE con-
sortium (ENCODE Project Consortium et al. 2012), and found that around 26% of 
these enhancer predictions have regulatory activities in the K562 cell line.

Another high-throughput method that can test the enhancer activities of millions 
of candidates simultaneously is STARR-seq (Arnold et al. 2013). The main novelty 
of this method is placing each enhancer to be tested downstream of the reporter 
gene, such that the enhancer sequence itself becomes part of the resulting RNA tran-
script. Standard RNA-sequencing (RNA-seq) can then be applied to measure quan-
titatively the activity of each enhancer by counting the number of reads containing 
the enhancer sequence.

A common limitation of these methods is that they do not preserve the whole 
native context of the predicted enhancers. For example, if an enhancer is predicted to 
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be active in a context (cell/tissue type, development stage, disease state, etc.) but is 
tested in another context or even in another species, the chromatin state around the 
enhancer could be different, the TFs that bind the enhancer may not be expressed, 
and the genome structure required for enhancer-promoter looping could be altered. 
This means an enhancer that could be active in certain contexts may not show activi-
ties in a reporter assay, and even if it shows activities in a reporter assay, in which 
natural contexts it would be active is still unknown.

It is also important to note that these high-throughput experimental methods have 
been mainly used for testing enhancer candidates already defined by some other 
means, but not for discovering enhancers ab initio. In theory it should be possible to 
tile a major portion of a genome for testing the enhancer activities of the involved 
genomic regions using these high-throughput experimental methods. Such large-
scale datasets are remained to be seen.

Many experimental approaches to enhancer-promoter association predictions rely 
on techniques that can capture chromosome conformations based on chromosome 
conformation capture (3C) (Dekker et al. 2002). There are many extended versions 
of 3C, such as circularized chromosome conformation capture (4C) (Zhao et al. 
2006), chromosome conformation capture carbon copy (5C) (Dostie et al. 2006), 
genome-wide chromosome conformation capture (Hi-C) (Lieberman-Aiden et al. 
2009) and chromatin interaction analysis with paired-end tag sequencing (ChIA-
PET) (Fullwood et al. 2009). Hi-C and ChIA-PET have facilitated whole-genome 
identification of DNA regions that are in close proximity in the three-dimensional 
genome structure but are not necessarily adjacent to each other in the primary DNA 
sequence, without requiring an input set of candidates. Among these two techniques, 
ChIA-PET further requires that a chosen factor, such as RNA polymerase II, is 
involved in the DNA contacts. If a promoter and a predicted enhancer are found to 
interact based on these chromosome conformation data, the promoter would be pre-
dicted as a target of the enhancer.

In order to study enhancer-promoter contacts, the chromosome conformation data 
need to have a very high (<10kb) resolution. Correspondingly, a large amount of 
sequencing data needs to be produced to ensure statistical stability at such a high 
data resolution, since the contact map matrix could be very sparse and unstable with-
out sufficient data. Several recent studies have used Hi-C and ChIA-PET to study 
DNA contacts in human cell lines at sub-10kb resolutions (Jin et al. 2013; Heidari et 
al. 2014; Rao et al. 2014). These studies represent the current state-of-the-art tech-
niques in studying DNA long-range interactions.

While high-throughput chromosome conformation data have provided various 
insights about enhancer-promoter associations, they are still unable to comprehen-
sively and accurately determine the targets of all enhancers for a number of reasons. 
First, having a physical interaction does not necessarily imply a functional relation-
ship. In particular, many DNA contacts observed in Hi-C data may not be relevant to 
promoter-enhancer interactions (Shlyueva et al. 2014). Second, these high-through-
put data could be noisy and are subject to different types of bias (DeMare et al. 
2013; Duan et al. 2010; Li et al. 2010). Third, enhancer-promoter associations are 
also context-specific, and thus experimental data from a given context may not be 
relevant to other contexts.

Due to these limitations of current experimental approaches, the numbers of 
experimentally proven enhancers and enhancer-target associations are still limited, 
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both in general and in particular contexts. As a result, computational methods have 
been widely used as an alternative in identifying enhancers and their targets. The 
advantage of using computational methods is that they can utilize different types 
of available data to make predictions in an inexpensive way as compared to their 
experimental counterparts. In the past 15 years, many computational methods have 
been proposed, using ideas and data ever more advanced. The last few years have 
seen a rapid adaptation of high-throughput data originally generated not specifically 
for studying enhancers in these methods. As of today, both computational enhancer 
prediction and enhancer target prediction are still very active areas of research with 
new discoveries being constantly published.

1.2  Difficulties in computational predictions of 
enhancer and enhancer-promoter associations

Before going into the details of these computational methods, we first discuss the 
difficulties of the corresponding problems that explain the continuous need for bet-
ter methods. These difficulties lie in several aspects, mainly related to the intrinsic 
properties of enhancers and the lack of high-confidence examples of experimentally 
validated enhancers and enhancer targets.

First, there is no simple rule governing the relative location of an enhancer from 
a gene that it targets. It can be positioned either upstream or downstream of the 
transcription start site (TSS) of its target gene. It can reside in an intergenic region, 
an intron, or even an exon of another gene. It can be as close as ten kilobases or as 
far as hundreds of kilobases or more from the target promoter. A recent study has 
suggested that the median distance between enhancers and their target promoters is 
124kb (Jin et al. 2013). All these flexibility in enhancer location makes them much 
harder to identify than some other types of sequence elements, such as promoters, 
which are right upstream of the target genes.

Second, up to now, no single feature or combination of features have been found 
that can perfectly locate enhancers or determine enhancer-promoter associations 
(Shlyueva et al. 2014). The different features used by existing computational meth-
ods all have their pros and cons, which we will discuss in detail in the next section.

Third, enhancer activities and enhancer-promoter associations are both context 
specific. A recent study that analyzed data from twelve human cell lines has sug-
gested that among the two, enhancer-promoter associations have relatively stronger 
cell type specificity (He et al. 2014). Context-specificity implies that computational 
methods using static features that do not change with the context, such as DNA 
sequence patterns, can only predict whether a genomic region could be an enhancer 
but not the contexts in which it is active, and only whether an enhancer could target 
a gene, but not the contexts in which the enhancer actually regulates the gene. This 
property implies that computational methods need to incorporate information from 
the context of interest in their predictions (Yip et al. 2013).

Fourth, enhancers and promoters could associate with each other in a multiple-to-
multiple manner. In other words, one enhancer can target multiple promoters and one 
promoter can be targeted by multiple enhancers (He et al. 2014). As a result, some 
standard computational methods that deal with one object at a time may not be suit-
able for predicting enhancers and enhancer targets.

www.Ebook777.com
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Lastly, the lack of comprehensive lists of experimentally tested enhancers and 
enhancer targets means that there are limited examples for computational meth-
ods to reference. Some computational methods, especially those based on machine 
learning, require adequate positive and negative examples for modeling the general 
features of enhancers and enhancer targets. As a result, different studies have used 
a variety of ways to define “gold-standard” enhancers and enhancer targets for train-
ing their methods. A lot of these “gold-standard” examples are either not experi-
mentally tested, or are taken from another context that may not be relevant to the 
context of interest. The devoid of experimentally tested examples also means that 
computational predictions cannot be easily validated without performing additional 
experiments.

Owing to all these difficulties, computational methods should be considered a 
supplement to experimental methods rather than a replacement. Computational pre-
dictions of existing methods all need to be experimentally tested to confirm their 
correctness.

2. Computational methods for enhancer prediction
The problem of computational prediction of enhancers is defined as follows. Given a 
set of genomic regions, each of which is described by a set of features, the goal is to 
identify the regions that correspond to enhancers based on the features.

This definition requires an input list of genomic regions the status of which 
(enhancer or non-enhancer) is to be predicted. In many cases, one only wants to pre-
dict an approximate location of each enhancer, in which case it is common to divide 
the whole genome into bins of a fixed size, and predict whether each bin overlaps 
an enhancer or not. On the other hand, if the predicted enhancers are to be tested 
experimentally, it is necessary to make sure that an enhancer candidate includes the 
core part of the enhancer, such as the TF binding sites (TFBSs). In this scenario, the 
raw predictions need to be further refined.

Many computational methods have been proposed for this prediction task. They 
differ from each other by the features they use and the way the features are used to 
make the predictions. In the following section, we first describe the features consid-
ered by different enhancer prediction methods, and then move on to discuss these 
methods themselves.

2.1 Features used in enhancer prediction

Many types of features have been considered in predicting enhancers (Table 1 and 
Fig. 1). Before the boom of high-throughput sequencing data that probe different 
types of features related to enhancers in a context-specific manner, researchers pre-
dicted cis-regulatory modules (CRMs), enhancers included, largely based on evolu-
tionary conservation and sequence motifs (Su et al. 2010). Evolutionary conservation 
signifies regions with functional importance. Non-coding regions, including inter-
genic regions and introns, with unexpectedly strong evolutionary conservation could 
be CRMs. On the other hand, some functionally conserved enhancers do not have 
high sequence conservation (Su et al. 2010; Meireles-Filho & Stark 2009). This could 



8 Computational Biology and Bioinformatics

indicate that conservation is not sufficient for identifying enhancers, or that the way 
to measure conservation needs to be improved (Berman et al. 2004).

TAble 1 A summary of features used in computational enhancer prediction 

Feature Advantages Potential drawbacks

TF binding 
motifs

Widely available Presence of a motif does not guarantee binding 
of a TF in a given context;
A TF could bind regions without a canonical 
sequence motif;
Many TFBSs are not within enhancers

Evolutionary 
conservation

Widely available Some functional enhancers do not have high 
sequence-level conservation;
Cannot distinguish between different types of 
conserved DNA elements;
Does not provide context-specific information

TFBSs based 
on ChIP-seq 
or ChIP-exo

Directly measured from the 
context of interest

Many TFBSs are not within enhancers;
Requires many ChIP-seq experiments to obtain 
a comprehensive list of binding sites for many 
TFs

HMs Provides information about 
both poised and active 
enhancers;
There are both positive and 
negative HMs for enhancers;
Only a small number of 
ChIP-seq experiments is 
needed for each context

No single HMs or their combinations have been 
found to correlate perfectly with enhancer 
activities

Chromatin 
accessibility

Only a single type of features 
is required for each context

Regions with high chromatin accessibility do 
not necessarily correspond to enhancers

eRNA One of the most accurate 
single features for enhancer 
prediction;
Transcriptome data are widely 
available

The detailed mechanisms of eRNA remain to be 
explored;
Active enhancers may not produce eRNAs;
Regions producing eRNA-like RNAs may not 
be enhancers;
Many produced RNA-seq data are poly-A 
enriched, which may not contain eRNA signals

DNA 
methylation

Provides complementary 
information to the other 
features

Quantitative relationship between enhancer 
methylation and target gene expression is still 
unclear;
Different types of DNA methylation may play 
different roles in enhancer regulation

Regions with a good match to a sequence motif could be binding sites of the TF. 
Excluding binding sites at annotated regions such as promoters, the remaining could 
be CRMs, especially for regions with a high density of motif matches (Su et al. 2010). 
Since TF binding also depends on factors other than the sequence, sequence motifs 
can be considered a weak feature for enhancer prediction.

As discussed above, using these static features to predict enhancers could at best 
identify regions with a potential to be an enhancer, without telling the contexts 
in which the enhancers are actually active. It is also hard to use conservation and 
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sequence motifs alone to distinguish enhancers from other types of regulatory ele-
ments such as silencers and insulators without a thorough understanding of the fac-
tors that bind these different types of elements.

Later on, the development of ChIP-seq (Park 2009) made it easy to measure DNA-
binding affinity of transcription factors genome-wide (Bailey & MacHanick 2012). 
Compared to sequence motifs, the TFBSs identified by ChIP-seq are directly mea-
sured in the context of interest. They were thus used to predict enhancers in a context 
specific manner (Yip et al. 2012). Again, some of these binding sites may corre-
spond to other types of functional enhancers (Shlyueva et al. 2014; Li et al. 2008). 
Moreover, there is a limited number of TFs with ChIP-seq data available, making it 
impossible to rely on ChIP-seq data alone to identify all TFBSs for enhancer predic-
tion. Standard ChIP-seq data also have limited data resolution. This problem has 

FIgure 1 Features used in computational enhancer prediction. The left part of the figure shows 
features of active enhancers while the right part shows the corresponding features of inactive 
enhancers, other regulatory elements (such as promoters), or other genomic regions.
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been tackled by a new method called ChIP-exo (Rhee & Pugh 2011; Rhee & Pugh 
2012), which provides close to single nucleotide precision of TFBSs by enzymatically 
digesting unbound portions of the pulled-down DNA.

ChIP-seq experiments were also used extensively in studying various types of 
histone modifications (HMs) at whole-genome scales. Some HMs were found to be 
highly related to enhancers, including H3K4me1 that marks both poised and active 
enhancers, and H3K27ac that marks active enhancers (Rada-Iglesias et al. 2011). 
These HMs provide a way to distinguish enhancers from other types of regulatory 
elements, such as promoters, which are marked by H3K4me3. On the other hand, 
while H3K4me1 and H3K27ac have been well-recognized as important enhancer 
marks, there has not been a consensus as to whether they are sufficient or neces-
sary for identifying active enhancers. For instance, a recent study has found that 
H3K4me3 (as a negative feature for enhancers), H3K4me1 and H3K4me2 are the top 
three HMs for enhancer prediction while H3K27ac was not selected as one of the 
most important predictors (Rajagopal et al. 2013), although H3K27ac is widely used 
in many other studies as an indicator of active enhancers. Some previous studies 
have also shown that no single types of HM or a combination of several HMs could 
predict enhancers perfectly (Arnold et al. 2013), and some active enhancers do not 
have typical active marks (Bonn et al. 2012). Despite these complications, HMs still 
represent a cost-effective set of features in identifying context-specific enhancers, in 
that only a small set of ChIP-seq experiments are sufficient for identifying a fairly 
accurate set of active enhancers in a context.

Pushing this idea further is to use one single context-specific feature in identify-
ing enhancers. One popular choice is chromatin accessibility as measured by DNase 
I hypersensitivity using DNase-Seq (Boyle et al. 2008) or FAIRE-Seq (Giresi et al. 
2007). These data indicate genomic regions with high accessibility of chromatin 
where DNA sequences are depleted of nucleosomes, which signify functional activi-
ties of these regions. Active enhancers were found to overlap with DNase hyper-
sensitive sites (DHSs), but obviously not all highly accessible genomic regions are 
enhancers. Chromatin accessibility data can thus be used to limit the search space of 
active enhancers to only the DHSs, and let the precise locations be identified with the 
help of other features such as TF sequence motifs.

Recently, it has been discovered that active enhancers produce short (<2kb) non-
coding RNAs called eRNAs in a bi-directional manner (Kim et al. 2010). Based on 
this idea, a recent study has identified enhancers as regions with some bi-directional 
transcription patterns (Andersson et al. 2014), according to the abundant CAGE-
based TSS data from FANTOM5 (FANTOM Consortium and the RIKEN PMI and 
CLST (DGT) et al. 2014). Currently, knowledge about eRNAs, including their func-
tional mechanisms, is still limited. It is not yet clear whether active enhancers must 
produce eRNAs, and whether genomic regions producing eRNA-like RNAs must be 
enhancers. Nevertheless, the idea of using eRNAs to identify enhancers has become 
popular due to the wide availability of transcriptome data.

Less popularly, some studies have attempted to use DNA methylation level to pre-
dict enhancers (Aran et al. 2013). The role of DNA methylation in marking repressed 
promoters has long been recognized. Many inactive genomic regions are also marked 
by DNA methylation. Due to the diverse types of regions marked by DNA methyla-
tion, data about DNA methylation in a single context can hardly be used to iden-
tify enhancers. However, if two contexts are being compared (e.g. tumor vs. normal 
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tissue), sites with differential DNA methylation could have differential activities in 
the two contexts, and some of them could correspond to functional elements such 
as enhancers. Currently, the degree of enhancer activities reflected by their DNA 
methylation levels is still unknown. The roles of different types of DNA methylation, 
such as 5-mC and 5-hmC (Xu et al. 2011), in regulating enhancer activities are also 
unclear.

Some studies have used correlation information between enhancer candidates and 
promoters to predict enhancers (Thurman et al. 2012). The main idea is that some 
activity indicators of enhancers (such as H3K27ac) are believed to correlate strongly 
with the transcription of their target genes across multiple contexts. If a non-pro-
moter genomic region is found to exhibit such a correlation with a gene, the region 
could be an enhancer that regulates the gene. This idea is also commonly used in 
identifying enhancer targets. It has some limitations as we will discuss later.

Table 1 summarizes the features used in current computational methods for 
enhancer predictions discussed above. A detailed discussion on the pros and cons 
of some of these features in identifying enhancers from the perspective of biological 
experiments can be found in a recently published review (Shlyueva et al. 2014).

It should be noted that there are some additional enhancer features that have been 
more commonly used to define “gold-standard” enhancers instead of being used in 
the prediction process. For example, previous studies have shown that a large frac-
tion of the binding sites of transcriptional co-activator proteins P300 and CBP are 
enhancers (Blow et al. 2010; May et al. 2011; Ramos et al. 2010). As a result, they 
have been used in some studies to define gold-standard enhancers (He et al. 2014; 
Rajagopal et al. 2013). One likely reason that binding sites of these proteins have 
not been as popularly used as enhancer predictors is that they are found in only a 
subset of active enhancers. This means although their presence stronger indicates an 
enhancer, using them as the only features could lead to a lot of false negatives.

2.2 unsupervised methods for enhancer prediction

Many computational methods have been proposed for predicting enhancers using the 
features described above. Traditional methods that mainly use non-context-specific 
features have been discussed in detail in another review (Su et al. 2010). Here we 
focus on more recent methods that incorporate the different types of context-specific 
features. These methods can be broadly grouped into two categories, namely unsu-
pervised methods and supervised methods. Unsupervised methods do not require 
any known enhancers and non-enhancers as examples. Some of these methods define 
simple filtering rules to identify the most likely enhancers based on the observed fea-
tures. Some other methods cluster genomic regions according to these features, and 
identify clusters that are likely enhancers. In contrast, supervised methods require 
known enhancers and non-enhancers as inputs and derive models for enhancers 
using machine learning techniques. A more detailed discussion of the use of unsu-
pervised and supervised methods (and also semi-supervised methods) in identifying 
genomic elements can be found in a recent review (Yip et al. 2013). In this section we 
first discuss the unsupervised methods for enhancer prediction.

Thurman et al. (Thurman et al. 2012) defined distal DHSs separated from a TSS by 
at least one other DHS as enhancer candidates. The DNase I hypersensitivity signals 
of each enhancer candidate in different cell types were correlated with those of each 
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promoter within 500 kb from it. Any candidate with a resulting Pearson correlation 
of 0.7 or above was predicted as an enhancer.

Andersson et al. (Andersson et al. 2014) identified enhancers based on a direction-
ality score of eRNA. They superimposed CAGE tags on H3K27ac-marked enhancers 
defined by ENCODE (the methods of which will be discussed below) and found that 
CAGE tags showed a bimodal distribution flanking the central P300 peak with diver-
gent transcription from the enhancer. In contrast, the transcripts at promoters were 
strongly biased towards the sense direction. With this distinct difference, a direction-
ality score was calculated for every 200bp window genome-wide, and loci with low, 
non-promoter-like directionality scores were selected as enhancer candidates, among 
which the ones located far away from TSSs and exons of protein-coding and non-
coding genes were predicted as enhancers. To validate these predicted enhancers, 
they further selected strong, moderate and low-activity enhancers defined by CAGE 
tag frequency in HeLa cells and conducted enhancer reporter assays. They found 
that 73.9%, 70.7% and 67.4% of the strong, moderate and low-activity CAGE-defined 
enhancers showed significant signals in the reporter assays, respectively, demon-
strating that eRNA could be an intrinsic characteristic of active enhancers.

The above two methods are simple unsupervised methods based on thresholding 
on a single feature. ChromHMM (Ernst & Kellis 2010; Ernst & Kellis 2012; Ernst et 
al. 2011) and Segway (Hoffman et al. 2012) utilize more complex machine-learning 
models and dozens of features each in predicting enhancers.

ChromHMM characterizes chromatin states including enhancers by learning a 
multivariate hidden Markov model (HMM) with the largest data set available at the 
time it was proposed (Barski et al. 2007; Wang et al. 2008) containing various HMs, 
histone variants and protein binding ChIP-seq signals (e.g. H2AZ, RNA polymerase 
II and CTCF) (Ernst & Kellis 2010). This method involves five key steps. First, the 
whole genome was divided into 200bp intervals. The signals of different HMs in an 
interval were then binarized, and thus each interval was described by a binary vector 
of the presence/absence of HM signals. Third, the number of states and the model 
parameters were determined by an exhaustive comparison of the cluster number 
from 2 to 80, with three different types of random initialization of parameters. The 
best model was selected by a Bayesian Information Criterion (BIC) score. Intuitively, 
the procedure attempted to find the minimum number of states that could still distin-
guish genomic regions exhibiting distinct HM patterns into different states. Finally, 
a 51-state model was selected. The fourth step was to associate each genomic interval 
with the state that maximizes the posterior probability using the forward-backward 
algorithm. The last step was to interpret the states biologically. This step involved 
both analyses of additional data (including expression, sequence motif, gene ontol-
ogy, SNP and GWAS) and manual annotations. Based on the annotation results, sev-
eral states were found to be related to enhancers (States 20, 29, 30, 31, 32 and 33). 
For instance, genomic regions in States 29 and 30 were interpreted as strong distal 
enhancers with characteristic high DNase I hypersensitivity and TF binding signals.

The authors subsequently applied ChromHMM to nine human cell types and 
identified 15 states that showed distinct enrichments of different types of biologi-
cal signals (Ernst et al. 2011). Eight predicted strong enhancers (State 4) and seven 
predicted weak/poised enhancers (State 7) from the Hep-G2 cell line and seven 
predicted weak/poised enhancers specific to the GM12878 cell line were tested in 
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Hep-G2 using luciferase reporter assays. Only strong enhancers from Hep-G2 were 
observed to show strong luciferase signals.

Segway, based on Dynamic Bayesian Network (DBN), is similar to ChromHMM 
in the underlying mechanisms. In fact, a standard HMM can be represented by a 
DBN (Koller & Friedman 2009). The main differences between the original applica-
tions of Segway and ChromHMM lie in the following aspects: First, Segway used 
HMs and TF binding as features while ChromHMM mainly used HMs; second, 
Segway worked at single base pair resolution while ChromHMM worked on 200bp 
bins; third, Segway accepted continuous features while ChromHMM dealt with 
binary features; fourth, Segway had an explicit indicator variable for missing val-
ues while ChromHMM considers them as 0s. The first two differences were mainly 
choices made in the corresponding studies, but the ChromHMM method itself could 
incorporate TF binding signals and work at a higher resolution. When applying to 
the dataset from ENCODE, Segway identified 25 labels (analogous to the “states” in 
ChromHMM) and marked enhancers by the E-label. In a later study, the authors of 
ChromHMM and Segway collaborated and integrated these two methods to identify 
sequence elements from ENCODE data (Hoffman et al. 2013).

Yip et al. (Yip et al. 2012) defined two pipelines for predicting enhancers. Both 
pipelines start from all genome regions, and apply a series of filters to retain only 
regions likely to be enhancers. The first pipeline involves ChIP-seq signal shapes, 
gene annotations and HM signals. The second pipeline involves sequence features, 
TF binding active regions (BARs), gene annotations, conservation scores, sequence 
motifs and TF expression levels. BARs were determined using ENCODE TF binding 
data. Although ChIP-seq data of more than 100 TRFs were collected, this number 
of TRFs is still only a small portion of the estimated 1,700 to 1,900 human TFs 
(Vaquerizas et al. 2009). Therefore, instead of defining BARs by the binding sites 
directly observed in the limited data, a statistical model of BARs was constructed 
using these directly observed binding regions as positive examples and various types 
of ENCODE data as the features, including DNase I hypersensitivity and HMs.

Predictions of the two pipelines were combined, and the integrated predictions 
underwent two rounds of experimental validations. In the first round, among six 
predictions randomly selected from the top 50 predictions, five were found to have 
enhancer activities in various tissues in mouse embryo with good reproducibility. 
In the second round, the goal was to predict all enhancers in the human genome. 
Therefore a large number of predictions were made, among which about 50 were 
experimentally tested in mouse and Medaka fish. Overall, 42 unique regions could be 
successfully tested, among which 28 showed enhancer activities in at least one assay.

Overall, the five methods described above represent some of the latest unsuper-
vised methods for computational enhancer prediction. It should be noted that the first 
two methods were specially designed for enhancer prediction while the other three 
were designed to discover various types of chromatin states in general, but with 
enhancers as some of the states in particular.

2.3 Supervised methods of enhancer prediction

As explained above, supervised methods for enhancer prediction require known 
enhancers and non-enhancers as input examples. Since the numbers of experimen-
tally tested positive and negative examples are limited, different methods have used a 
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variety of strategies to define these input examples. The different methods also differ 
from each other by the features being used and the statistical models constructed.

Heintzman et al. (2007) used an correlation-based methodology to predict enhanc-
ers based on their similarity to the enhancer examples. Enhancer examples were 
defined as regions with P300 binding sites. The genome was divided into 10kb win-
dows, where an HM profile was constructed for each window based on the average 
ChIP-seq signals of different HMs. Enhancers were then predicted as those win-
dows having an HM profile highly correlated with a P300-defined enhancer. In total, 
around 700 enhancers were predicted in this way. They were found to be significantly 
enriched in predicted transcriptional regulatory modules and DHSs. A large fraction 
of these predictions were also found to contain highly conserved sequences.

Won et al. (2008) presented an HMM-based methodology integrating HMs to pre-
dict enhancers. The positive examples were again defined by P300 binding sites. A 
simulated annealing procedure was used to search for the most informative combina-
tion of HMs and the optimal window size. The procedure identified a set of 6 HMs 
as the most informative, and a window size of 2kb to be optimal. A 3-state HMM 
model was then trained on a subset of the enhancer examples, and tested on another 
subset. The prediction results were found to be more accurate than the predictions by 
the Heintzman et al. method (Heintzman et al. 2007) in terms of positive predictive 
value and sensitivity.

Firpi et al. (2010) developed a method called CSI-ANN based on a time-delayed 
neural network (TDNN) framework to predict enhancers in HeLa and Human CD4+ 
T cells. In the case of T cells, the whole genome was divided into 2.5kb windows with 
consecutive windows overlapped by 1.25kb. Windows that contain gene-distal and 
narrow P300 binding peaks in human T cells and overlap computationally predicted 
enhancers in the PReMod database (Ferretti et al. 2007) were defined as enhancer 
examples, leading to a positive set of 213 enhancers. The negative set was composed 
of random windows 10 times the number of positive examples. For each window, the 
average signals of 39 HMs in T cells, or an energy function of them (D’Alessandro et 
al. 2003) were computed as its features. Fisher discriminant analysis (FDA) was then 
performed to reduce these 39×2=78 features to a one-dimensional feature. Finally 
this feature was fed into a TDNN classifier. 36,769 predictions were made and 13.1% 
of them were found to overlap P300 sites and DHSs in T cells. 22.1% of the pre-
dictions were found to be conserved across 17 vertebrate genomes and 24.6% were 
enriched for TF binding motifs.

Rajagopal et al. (2013) developed a vector-random-forest-based supervised model 
called RFECS for enhancer prediction. Gene-distal P300 binding sites overlapping 
DHS were defined as positive enhancer examples, while TSSs overlapping DHS and 
random 100bp bins distal from P300 binding sites or TSS were defined as negative 
enhancer examples. For each 100bp genomic region, the average signal of each of 
24 HMs was computed. However, instead of taking only these average signals as the 
features of a genomic region like what was commonly done, each region also took 
the signal values from the adjacent regions within the 1kb upstream and downstream 
window as its own features. Therefore for each genomic region, each HM produced 
a 20-dimensional feature vector of numeric values. The reason for doing that was to 
capture the local signal pattern, which could be useful for identifying enhancers. To 
handle these vector features, RFECS constructed a linear classifier using the Fisher 
Discriminant approach inside each decision tree node.
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This method was applied to the H1 embryonic stem cells and the IMR90 lung 
fibroblasts. To validate the predictions, some “gold standard” enhancer regions were 
defined by combining DHS, P300 binding sites and a few sequence specific tran-
scription factors known to function in each of these two cell types. The validation 
rate of the predicted enhancers was 80% in H1, which was highly significant when 
compared to the 18.43% validation rate of randomly predicted enhancers. 5% of the 
predicted enhancers overlapped with TSSs, which were considered misclassified. 
The validation and misclassification rates in IMR90 were 85% and 4%, respectively. 
It should be noted that since the criteria used for defining the enhancer examples in 
the training set and the criteria used to define the validation set were not mutually 
exclusive, the accuracy of the model needs to be further confirmed by independent 
data sets.

Another contribution of this work was its proposed set of HMs optimal for 
enhancer predictions. The top three HMs were found to be H3K4me3, H3K4me1 
and H3K4me2 in H1, while H3K27ac, commonly believed to mark active enhancers, 
seemed not very predicative.

In summary, due to the increasing number of experimentally validated enhancers 
and the availability of high-throughput features, supervised methods have become 
increasingly popular. It is expected that more supervised enhancer prediction meth-
ods will be proposed in the coming years.

3. Computational methods for enhancer target prediction

3.1 Features used in enhancer target prediction

Compared to enhancer prediction, less feature types have been considered in predict-
ing enhancer targets (Table 2). The first and simplest feature considered is whether a 
promoter is the nearest one from an enhancer. A slight variation of this idea is to con-
sider the distance between an enhancer and a promoter, assuming a higher possibility 

TAble 2 A summary of features used in computational enhancer target prediction

Feature Advantages Potential drawbacks
Closest promoter Easy to identify An enhancer does not always regulate the closest 

promoter (Andersson et al. 2014; He et al. 2014)
Distance between 
enhancer and 
promoter

Easy to compute There may not be a single threshold suitable for all 
cases;
An enhancer does not always regulate the closest 
promoters

Co-conservation Easy to compute;
Utilizes information 
from multiple 
species

Both enhancers and enhancer-promoter associations 
are not necessarily highly conserved

Correlation of 
molecular signals

Utilizes context-
specific information

No signal correlates perfectly between enhancers and 
promoters;
Correlation coefficients could be strongly affected by 
outliers;
Requires a large number of context to reach statistical 
significance
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that the enhancer regulates a promoter if they are closer to each other. Some previous 
studies have considered enhancers between 125kb (Ernst et al. 2011) and 1Mb (Fu et 
al. 2014) from potential target promoters. As discussed, chromosome conformation 
data have suggested that the median distance between an enhancer and a target pro-
moter is 124kb (Jin et al. 2013). One drawback of using distance to predict enhancer 
targets is that very distal associations could be missed if the distance threshold is set 
too low. Conversely, if the distance threshold is set too high, many false positives 
could be produced. One way to avoid setting an arbitrary distance threshold is to con-
sider only enhancer-promoter pairs within same topologically associating domains 
(TAD) (Dixon et al. 2012; Nora et al. 2012), which are genomic blocks separated from 
other blocks by the genome structure.

Sequence co-conservation is another feature that has been used in enhancer-pro-
moter association prediction (He et al. 2014). The rationale is that if an enhancer reg-
ulates a promoter, there would be selective pressure against independent evolution 
of them, and thus they may exhibit co-conservation patterns. Some previous studies 
(Ahituv et al. 2005; Kikuta et al. 2007) also suggested that a real enhancer-promoter 
association is more likely to be maintained in a conserved synteny block (Larkin et 
al. 2009), which could be used as a soft distance constraint.

As high-throughput sequencing data became widely available, the correlations 
between certain molecular signals at an enhancer and its candidate target promoters 
across multiple contexts were considered. As discussed above, the main idea is that 
if the activity of an enhancer correlates with the activity of a promoter, the enhancer 
could be regulating the promoter. The molecular signals considered and the poten-
tial issues of using correlation features have been discussed above when discussing 
the features used in enhancer prediction. An additional issue is that if correlations 
are computed between all enhancer-promoter pairs without any pre-filtering, there 
would be a very large number of pairs being considered. As a result, a very large 
number of contexts are needed to reach statistical significance after considering the 
issue of multiple hypothesis testing. We also note that to what extent enhancer activi-
ties can quantitatively correlate with promoter activities is still not clear. In fact, 
some studies (Andersson et al. 2014) have observed enhancer-promoter associations 
with low activity correlations.

Among these features, only signal correlations consider context-specific informa-
tion. A tricky point is that depending on how this feature is used, it may still be 
unable to identify context-specific enhancer targets. For instance, if a single cor-
relation value is computed based on all the contexts, this correlation value only tells 
whether the enhancer appears to regulate the promoter in general, but not exactly the 
contexts in which the regulation happens.

3.2 unsupervised methods for enhancer target prediction

Similar to enhancer prediction, most methods for enhancer target predictions are 
unsupervised, due to the limited number of experimentally validated enhancers and 
enhancer targets.

As discussed, the most straightforward method is to predict the closest promoter as 
the only target of each enhancer. This is a simple but imperfect method. Several stud-
ies (Andersson et al. 2014; He et al. 2014) have shown that only a fraction (e.g., 40% 
(Andersson et al. 2014)) of enhancers recognize the nearest promoter as their targets, 
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and one enhancer could regulate multiple promoters. A variation of this method is to 
predict the nearest promoter within a certain distance range (e.g. between 5kb and 
50kb from the enhancer (Ernst et al. 2011)) from an enhancer as its target.

Most current unsupervised methods extract all promoters within a certain distance 
range from an enhancer as candidate targets, and then use activity correlations to 
identify the most likely targets. A practical problem is finding a proper correlation 
threshold. Some studies (Andersson et al. 2014) use a rather low threshold of 0.2 
while some other studies (Thurman et al. 2012) use a much higher value of 0.7. If 
a value-based correlation function such as Pearson correlation is used, the correla-
tion values can be easily affected by a few outlier points. On the other hand, if a 
rank-based correlation function such as Spearman correlation is used, the correlation 
value can become quite arbitrary if the activity values in many contexts are similar 
and their ranks are sensitive to small differences. Multiple hypothesis testing is also 
a critical issue, because without a proper distance cutoff, many enhancer-promoter 
pairs would be considered and it is easy to get some strong correlation values merely 
by chance. Table 3 compares some of these unsupervised methods.

TAble 3 A summary of correlation-based unsupervised methods for enhancer target prediction

Reference Distance Features denoting activity/
inactivity

(A/I: enhancer-promoter)

Correlation 
function(s)

Threshold

(Thurman et 
al. 2012) 

Within 
500kb

A: DNase I hypersensitivity 
-DNase I hypersensitivity

Pearson 0.7

(Andersson et 
al. 2014) 

Within 
500kb

A: CAGE(eRNA)-CAGE(mRNA) Pearson 0.2

(Fu et al. 
2014) 

Within 
1Mb

A: H3K4me1/H3K27ac-mRNA
I: DNA methylation-mRNA

Pearson and
Spearman

User-defined

Some studies used a further step to validate their predictions. Thurman et al. 
(Thurman et al. 2012) profiled chromatin interactions using 5C for the phenylala-
nine hydroxylase (PAH) gene in hepatic cell and found the chromatin interactions 
measured by 5C closely paralleled the correlations of the corresponding predicted 
associations. They also overlapped their predictions with 5C and ChIA-PET data 
in K562, and discovered that their predictions were markedly enriched in the DNA 
long-range interactions. Andersson et al. (Andersson et al. 2014) found that 15.3% 
of their predictions could be validated by ChIA-PET data from multiple cell types. 
Moreover, their predictions were enriched in conserved sequence motifs and ChIP-
seq peaks.

Ernst et al. (2011) selected all TSSs between 5kb and 125kb from an enhancer as 
its potential targets. To identify the more likely ones, these enhancer-TSS pairs were 
first assumed to be the positive examples, and a set of negative examples was formed 
by randomly assigning expression values of the same pairs. For each (positive or 
negative) enhancer-TSS pair, the correlation between the HM signals at the enhancer 
and the expression levels of the TSS across multiple contexts was computed. A logis-
tic regression classifier was then constructed to distinguish the positive and negative 
examples based on the activity correlations. The classifier was then used to computer 
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a link score for each enhancer-TSS pair, defined as the ratio of the positive associa-
tion probability to the negative association probability. The pairs with a link score 
larger than 2.5 were predicted as real associations. This is another example that even 
a supervised model (logistic regression) was used, but since the positive examples 
were not really known examples but just a set of examples more likely to be positive 
due to the proximity of the corresponding enhancers and TSSs, the overall method 
should be considered an unsupervised one for predicting enhancer targets.

Corradin et al. (2014) developed a method called PreSTIGE for cell-type specific 
enhancer-promoter association prediction. Enhancers were defined as H3K4me1 
sites across 12 cell types. First, a specificity score was assigned to each enhancer 
and to each transcript separately in the 12 cell types based on Shannon’s entropy 
(Schug et al. 2005). Thresholds were set to define cell-type specific enhancers and 
transcripts based on the specificity scores. For example, enhancers with high speci-
ficity to a certain cell type were considered to be active in this cell type but not in 
the others. The next step was to link cell-type specific enhancers to their target cell-
type specific genes. Several linear domain models for setting the distance thresholds 
were compared, based on which a model called 100kb/CTCF was selected to link 
enhancers and genes. In this model, all TSSs closer to an enhancer than the closest 
CTCF binding site, or 100kb at most, were predicted as the targets of the enhancer. 
This model identified over 226,000 and 113,000 enhancer-target predictions across 
the 12 cell types with low and high thresholds, respectively. The predictions were 
further overlapped with existing 3C, ChIA-PET, eQTL, 5C and colon cancer specific 
enhancer alteration data and showed significant intersections.

3.3 Supervised methods for enhancer target prediction

There have not been a lot of supervised methods proposed for enhancer target pre-
diction, due to the limited number of validated examples. In this section, we intro-
duce one supervised method that uses chromosome conformation data to define the 
examples.

A sophisticated Random Forest based supervised method called IM-PET was 
developed by He et al. (2014). The positive examples were selected from enhancer-
promoter pairs with ChIA-PET connections in K562 and MCF-7 cells, with the 
additional requirements that there were at least 5 PET counts, at least one of the 
two interacting sites contained P300 binding, and the other contained a promoter 
of RPKM larger than 0. A naïve way to define the negative examples would be to 
draw random enhancer-promoter pairs. However, if the promoters in these pairs were 
very far away from their enhancers, which would likely be the case if enhancers and 
promoters were drawn uniformly from the whole genome or the same chromosome, 
the positive and negative examples could be easily separated by a simple model that 
considers only the distance between the enhancer and promoter. Therefore, IM-PET 
instead used random enhancer-promoter pairs with a distance that follows a back-
ground distribution of non-interacting genomic loci in a chromatin fiber (Dekker et 
al. 2002). The negative examples were also required not to have 3 or more PET counts 
in the ChIA-PET data. Four features were then used to train a supervised Random 
Forest model for enhancer-target associations. The first feature was the activity cor-
relation between an enhancer and a promoter, with enhancer activities defined by 
H3K4me1, H3K4me3 and H3K27ac signals, and promoter activities defined by its 
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expression value. The second feature was similar to the first one, but the enhancer 
activity score was replaced by the expression levels of TFs that bind the enhancer. 
The third feature was the co-conservation of the enhancer and promoter sequences 
and the conservation of the synteny block across multiple species. The last feature 
was the genomic distance between the enhancer and promoter.

The trained model was applied to 12 human cell types by first identifying active 
enhancers in each cell type followed by extracting all promoters within a 2Mb win-
dow centered on the enhancer as their candidate targets. At a false discovery rate of 
0.01, the resulting model predicted more than 440,000 unique enhancer-promoter 
associations in the 12 cell types in total. To validate the predictions, chromosome 

FIgure 2 Features used in computational enhancer target prediction.
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conformation capture coupled with quantitative PCR (3C-qPCR) was performed for 
16 predictions and 13 of them could be validated. The predictions were also com-
pared with interactions obtained from Hi-C and ChIA-PET, and reported eQTL-gene 
pairs. The results showed that IM-PET performed the better as compared to four 
other methods, namely nearest promoter, Ernst et al. (2010), Thurman et al. (2012) 
and PreSTIGE (Corradin et al. 2014).

The four features used in this work appear reasonable and biologically meaning-
ful. The careful selection criteria for the training sets probably contributed to the 
good prediction results. Nevertheless, it should be noted that all the four features 
were not context-specific, including the activity correlation feature since only a 
single correlation was produced from each pair, as discussed above. Therefore, the 
method was unable to identify enhancer-target associations that are specific to par-
ticular contexts.

4.  Databases useful for enhancer and enhancer-
promoter association prediction

After discussing the features and latest methods used in computational prediction of 
enhancers and enhancer targets, here we list in Table 4 some of the popular databases 
that contain computationally predicted or experimentally validated enhancers and 
enhancer targets.

TAble 4  Some databases that contain predicted or experimentally tested enhancers and enhancer 
targets

Database Species Description
dbSUPER (Khan and Zhang 
2015)

Human and mouse The first database of super-enhancers, 
containing a catalog of 66033 super-
enhancers in 96 human and 5 mouse 
tissue/cell types.
Provides a browser for functional 
analyses. 

EI (Pennacchio et al. 2007) Human and mouse A database containing computational 
predicted tissue-specific enhancers based 
on TFBSs. 

FANTOM5 Transcribed Enhancer 
Atlas (Andersson et al. 2014)

Human An atlas of predicted enhancers based on 
eRNA;
Contains 43011 computational predicted 
enhancers in total;
Contains cell/organ/tissue-specific 
computational predicted enhancers;
Contains computational predicted 
enhancer-promoter associations.

PEDB (Kumaki et al. 2008) Human and mouse A database of computational predicted 
enhancers based on conserved non-
coding regions, TSSs and TFBSs. 

PReMod (Ferretti et al. 2007) Human and mouse A computationally predicted CRM 
database based on TFBSs.
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5. Conclusions and discussions
5.1 Data processing

A fundamentally important but usually neglected topic in both enhancer prediction 
and enhancer target prediction is data processing. As with many problems in bioin-
formatics, different data processing strategies could result in huge differences in the 
results. For instance, Andersson et al. (Andersson et al. 2014) computed enhancer 
eRNA directionality scores based on the normalized CAGE data across 808 samples, 
which were normalized by converting tag counts to tags per million mapped reads 
(TPM) followed by normalization by relative log expression (RLE) between samples. 
Our own analysis of this dataset shows that if a different normalization strategy is 
used, the resulting set of enhancers could become very different. In enhancer tar-
get prediction, whether taking log on gene expression levels could have big effects, 
especially when engaging a Pearson-correlation based measurement. Unfortunately, 
there is not a gold-standard normalization method that works best in all cases. Simple 
statistical analyses and plots of the data would help in the selection of the proper 
normalization method.

5.2 Feature usage

Good features play crucial roles in the prediction performance of machine learning 
methods, which we have discussed comprehensively above. Here, we discuss three 
important aspects of feature usage in enhancer and enhancer target predictions. First, 
as context specificity is an intrinsic characteristic of both enhancer activities and 
enhancer-target associations, we stress the importance of including context specific 
features. In the history of enhancer prediction, motifs and conservation were first 
used. These are “static” features, which means we could only use these features 
to judge whether a genomic region is an enhancer in some contexts, but not when 
(e.g. which developmental stage) and where (e.g. which cell type, cellular process) 
it would become active. Later, thanks to the boom of ChIP-seq data in a wide range 
of cell types, context-specific features such as HM and TF binding signals made it 
possible to perform cell-type specific enhancer predictions. In contrast, most cur-
rent methods for enhancer target prediction use only static features. If the active 

REDfly (Gallo et al. 2011) Drosophila A curated collection of known 
Drosophila CRMs and TFBSs;
Contains enhancers in vivo;
Contains enhancer-promoter associations 
in vivo.

VISTA (Visel et al. 2007) Human and mouse Tested predicted human enhancers in 
mouse;
Contains information on 2192 in vivo 
tested elements;
1154 elements with enhancer activity. 
(As of 4/15/2015)

ZEnBase (Navratilova et al. 
2009)

Zebrafish A database containing computational 
predicted enhancers based on 
conservation information.
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enhancer-target associations in a given context are to be identified, one common 
strategy is to consider only the pairs involving an enhancer predicted/proved to be 
active in the context. Due to changes of chromosome conformation or other reasons, 
it is possible that an enhancer active in two different contexts regulates different 
genes in the two contexts. Novel methods that can utilize more context-specific infor-
mation in directly predicting enhancer targets in a given context are called for.

A second interesting aspect is the relative importance of different features. When 
investigating a context with insufficient experimental data, and one is to perform 
additional experiments to get data for predicting enhancers or enhancer targets, it 
would be desirable to know what experiments are most cost-effective. Rajagopal 
et al. (2013) found a set of HMs that resulted in the best prediction accuracy, which 
partially answered this question. More generally, the relative importance of different 
types of features such as HM, TF binding, eRNA and DNA methylation is yet to be 
studied.

Another aspect is that a feature could be used for defining positive/negative exam-
ples, constructing the prediction model, or evaluating the performance of a model. 
For instance, P300 binding has been used in a number of studies for defining posi-
tive examples; Some studies use the enrichment of P300 binding signals as a way to 
partially validate the predictions; P300 could as well be used as a feature for build-
ing a model for predicting enhancer. One major current challenge is that given the 
limited number of features, one needs to determine which of them should be used in 
each of these three tasks, so that prediction accuracy can be maximized while there 
is no “leakage” of information in the prediction process, i.e., having some informa-
tion used both in training and validating a model. This problem is expected to be 
mitigated as more experimentally validated enhancers and enhancer targets become 
available.

5.3 Prediction validation

Prediction validation is a crucial part of every prediction task in bioinformatics. 
However, among the studies discussed, only a very small portion of the predictions 
made were tested experimentally. Obviously it is difficult to validate all predictions 
using highly accurate, low-throughput experimental assays due to the prohibitive 
cost. Another type of validations commonly performed is cross-checking the predic-
tions with previously published experimental results such as ChIA-PET, Hi-C, 5C 
and eQTL-gene pairs for enhancer-target associations. One potential problem is that 
the predictions could be made in a context different from the one from which these 
public data were produced. Noise in these experimental data could be another issue. 
Also, some of these data only provide supporting evidence, but cannot completely 
prove the correctness of a prediction. For instance, a predicted enhancer-promoter 
association with in vitro ChIA-PET data support does not necessarily mean the 
enhancer-promoter interaction must have a regulatory role; It does not even guar-
antee the enhancer and the promoter are in contact in vivo. Having these shortcom-
ings notwithstanding, including independent experimental supports would definitely 
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help in evaluating and improving existing computational prediction methods. High-
throughput assays such as STARR-seq, which has higher data variability but lower 
relative cost than low-throughput assays, could be a good choice for large-scale vali-
dations of computational predictions.

5.4 Training set design in supervised methods

The careful selection of training examples is key to the success of machine learning 
methods. In many bioinformatics problems, the design of a suitable negative training 
set is far from trivial. For instance, in enhancer prediction, the negative examples 
cannot be simply defined as randomly-selected regions not known to be enhancers, 
for these examples are too different from the positive examples in many aspects, and 
any model that distinguishes active regions in the genome from the inactive ones 
would probably separate the positive and negative examples well. In other words, the 
resulting model may not be useful for predicting enhancers, but just general active 
genomic regions including gene bodies and other types of regulatory elements. The 
rule of thumb is that the negative examples should not be “too negative”, i.e., they 
should share as many features as the positive examples as possible, except for the 
ones very unique to the positive examples. Alternatively, including a mixture of dif-
ferent types of negative examples could make it more robust.

5.5 Multiple-to-multiple relationships

After reviewing the current methods for association prediction, we notice that there 
are no existing methods that explicitly handle multiple-to-multiple relationships 
between enhancers and promoters. Every enhancer-promoter pair was considered 
independently in all the surveyed methods. Though the mechanisms of enhancer 
targeting are not completely clear yet, previous studies have shown that multiple 
enhancers (called shadow enhancers) controlling the same promoter could ensure the 
robust expression of the corresponding genes (Meireles-Filho & Stark 2009; Perry et 
al. 2011). New computational methods are needed to study the significance of model-
ing the effects of multiple enhancers and/or targets simultaneously.

5.6 Future outlook

Overall, we predict that context specificity and multiple-to-multiple relationships 
would be two important aspects that should be incorporated in future enhancer and 
enhancer target predictions.

Among all the features considered for the two tasks, eRNA is a promising feature 
for both tasks for two reasons: First, CAGE experiment is mature and economical 
and thus can be applied to many samples; second, both eRNA and promoter activity 
are quantified in the same way based on CAGE tags, making the corresponding data 
easily comparable.

Since there are experimentally validated enhancers and enhancer targets, but 
the numbers are small, semi-supervised prediction methods that make use of both 
labeled examples and properties of unlabeled points could be more suitable than 
purely unsupervised or purely supervised methods.
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Active learning is another direction worth pursuing. The active learning setting 
aims at acquiring new examples that can benefit the overall learning process most. 
In enhancer and enhancer-target predictions, ambiguous cases (such as enhancers 
with intermediate levels of H3K27ac) could be most informative in refining predic-
tion models.

Finally, we hope to see more collaboration between computer scientists and biolo-
gists in studying enhancers and enhancer targets, since the validation process is of 
utmost importance for evaluating the computational methods and providing insights 
for improving the methods.
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Cormotif: An R Package for 
Jointly Detecting Differential Gene 
Expression in Multiple Studies 
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Abstract
With the rapid decrease of costs, the high-throughput gene expression data are accu-
mulating at exponential rate in larger public repositories. Nevertheless, usually only 
very few replicates are available in each experiments, which make differential gene 
expression detection suffer from low sample size. On the other hand, multiple similar 
studies conducted by different groups are accessible now. The standard algorithms 
for detecting differential genes from microarray data are mostly designed for ana-
lyzing a single dataset. Separately analyzing each study may fail to detect some key 
genes showing low fold changes consistently in all studies. Rather, jointly model-
ing all data allows one to borrow information across studies to improve statistical 
inference. However, the simple concordance model, which assumes that differential 
expression occurs in either all studies or none of the studies, fails to capture study-
specific differentially expressed genes. In contrast, a model that naively enumerates 
and analyzes all possible differential patterns across studies can deal with study-
specificity and allow information pooling, but the complexity of its parameter space 
grows exponentially as the number of studies increases. 

In this chapter, we describe our correlation motif approach to address this dilemma. 
Our approach searches for a small number of latent probability vectors called cor-
relation motifs to capture the major correlation patterns among multiple studies. The 
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approach has the flexibility to handle all possible study-specific differential patterns, 
improves detection of differential expressions and overcomes the barrier of expo-
nential model complexity. This chapter provides description of the method as well as 
instructions on using the corresponding Bioconductor R package Cormotif.

1. Introduction

Detecting differentially expressed genes is a basic task in the analysis of gene expres-
sion data. The state-of-the-art solutions to this problem, such as limma (Smyth, 
2004), SAM (Tusher et al. 2001), edgeR (Robinson and Smyth, 2007, 2008), and 
DESeq (Anders and Huber, 2010), are mostly designed for analyzing data from a 
single experiment or study. With 1,000, 000+ samples stored in public databases 
such as Gene Expression Omnibus (GEO), it is now very common for scientists to 
have data from multiple related experiments or studies. An emerging problem is how 
one can integrate data from multiple studies to more effectively analyze differential 
expression.

One example that motivated this article is a study of the vertebrate sonic hedge-
hog (SHH) signaling pathway. SHH is a signaling protein that can bind to patched 1 
(PTCH1), a receptor protein in cell membrane [Fig  1(a)]. PTCH1 can interact with 
another membrane protein smoothened (SMO) to repress its activity. In the absence 
of SHH, PTCH1 keeps SMO inactive. The presence of SHH will repress PTCH1 
and activate SMO. The active SMO triggers a signaling cascade to modulate activi-
ties of three transcription factors, GLI1, GLI2, and GLI3, which in turn induce or 
repress the expression of hundreds of downstream target genes. SHH pathway is a 
core signaling pathway in vertebrate (Ingham and McMahon, 2001). To elucidate the 
underlying mechanisms linking this pathway to development and diseases, multiple 
studies have been conducted in different contexts to identify genes whose transcrip-
tional activities are modulated by SHH signaling. Some studies perturb the SHH 
signal in different tissues by knocking out or over-expressing the pathway’s key sig-
nal transduction components such as SHH, PTCH1, and SMO, while others compare 

TAble 1  SHH microarray data description: 8somites and 13somites indicate two different 
developmental stages of embryos; smo indicates mice with mutant Smo; ptc stands for 
mice with mutant Ptch1; wt means wild type; shh represents Shh mutant. Medulloblastoma 
and BCC are two types of tumors.

Study 
ID 

Condition 1 
(case) 

Sample 
No. 

Condition 2 (control) Sample 
No. 

Reference 

1 8somites smo 3 8somites wt 3 Tenzen et al. (2006) 
2 8somites ptc 3 8somites wt 3 Tenzen et al. (2006) 
3 13somites ptc 3 13somites wt 3 Tenzen et al. (2006) 
4 head shh 3 head wt 3 Tenzen et al. (2006) 
5 limb shh 3 limb wt 3 Tenzen et al. (2006) 
6 Medulloblastoma 

tumor 
3 Medulloblastoma 

control 
2 Mao et al. (2006) 

7 BCC tumor 3 BCC control 3 Mao et al. (2006) 
8 13somites smo 3 13somites wt 3 Tenzen et al. (2006) 
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disease samples with corresponding controls. Table 1 contains eight such datasets in 
mouse originally collected by Tenzen et al. (2006) and Mao et al. (2006). Each data-
set involves a comparison of genome-wide expression profiles between two different 
sample types. These data were all generated usin Affymetrix Mouse Expression Set 
430 arrays. The questions of biological interest include (i) which genes are controlled 
by the SHH signal in each dataset, (ii) which genes are the core targets that respond 
to the SHH signal irrespective of tissue type and developmental stage, and (iii) which 
genes are context-specific targets and are modulated by the SHH signal only in cer-
tain conditions.

For simplicity, below each dataset is a study. One simple approach to analyze these 
data is to analyze each study separately using existing state-of-the-art methods such 
as limma (Smyth, 2004) or SAM (Tusher et al. 2001). This approach is not ideal as it 
may fail to detect genes with low-fold changes but consistently differential in many 
or all studies.

Modeling all data jointly may allow one to borrow information across studies to 
improve the analysis. A simple model to combine data is to assume that each gene is 
either differential in all studies or non-differential in all studies (Conlon et al. 2006). 
This concordance model may help with identifying genes with small but consistent 
expression changes in all studies. However, it ignores the reality that activities of 
many important genes are tissue- or time-specific. This method will only produce a 
single gene list that reports and ranks genes in the same way for all studies. It cannot 
prioritize genes differently for different studies to account for context-specificity.

A more flexible approach is to consider all possible differential expression pat-
terns. Suppose there are D studies and each gene can either be differential or non-
differential in each study, there will be 2D possible differential expression patterns. 
One can model the data as a mixture of 2D different gene classes. This allows one to 
deal with context-specificity. However, an obvious drawback is that as the number of 
studies increases, the number of possible patterns increases exponentially. Thus, the 
model does not scale well with the increasing D.

In this chapter, we describe our method, CorMotif, for jointly analyzing multiple 
studies to improve differential expression detection. This method is both flexible for 
handling context-specificity and scalable to increasing study number. The key idea 
is to use a small number of latent probability vectors called “correlation motifs” to 
model the major correlation patterns among the studies. The motifs essentially group 
genes into clusters based on their differential expression patterns, and the differential 
gene detection is coupled with the clustering. Unlike CorMotif, many methods devel-
oped previously for analyzing differential expression in multiple studies or condi-
tions have exponential model complexity and therefore limited scalability.

Previously, Kendziorski et al. (2003) proposed an Empirical Bayes approach 
(called “eb1” in this chapter) for analyzing differential expression involving mul-
tiple biological conditions. This approach requires users to specify all possible dif-
ferential patterns, and the data are then modeled accordingly. If a user applies this 
method to detect differential expression between two conditions in multiple studies 
and wants to accommodate all possible differential patterns, the user has to enumer-
ate all 2D possible patterns, leading to the exponential complexity problem. Similar 
to Kendziorski et al. (2003), Jensen et al. (2009) developed a hierarchical Bayesian 
model and a Markov Chain Monte Carlo (MCMC) algorithm to analyze multiple 
conditions, again with exponential complexity due to requirement of enumerating 
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all possible patterns. Ruan and Yuan (2011) generalize Kendziorski et al. (2003) to 
a model that can integrate information from multiple studies where each study may 
involve comparisons of multiple conditions. Within each study, this method enumer-
ates all possible combinatorial patterns among multiple conditions, again resulting in 
exponential complexity. Moreover, differential expression patterns are assumed to be 
concordant across studies, that is, each gene is assumed to have the same differential 
pattern in all studies. The concordance assumption does not allow study-specific 
differential expression. 

Scharpf et al. (2009) proposed a fully Bayesian framework, XDE, for cross-study 
differential expression analysis. It offers two implementations. The “Single-Indicator” 

Figure 1 (a) A cartoon illustration of SHH pathway. (b) A numerical example of the data gen-
erating model. There exist four motifs in the dataset, with the abundance p = (0.2, 0.23, 0.18, 0.39). 
Each row of the Q matrix represents a motif and each column corresponds to a study. Thus, qkd 
indicates the probability for genes belonging to motif k to be differentially expressed in study d. 
For example, the probability for genes belonging to motif 1 to be differentially expressed in study 
4 is 0.83. The gray scale of the cells in p and Q illustrates the probability value. The probability 
increases from 0 to 1 as the color changes from light to dark. Given p and Q, each gene is assigned a 
motif indicator bg. For instance, the fifth gene belongs to motif 2 (indicated by a cell with a number 
“2”). Next, the configuration of the fifth gene, [a51, a52, a53, a54, a55], is generated according to q2 = 
(0.02, 0.15, 0.78, 0.92, 0.89). As a result, the fifth gene is differentially expressed in study 2, 4, and 
5. Finally, the moderated t-statistic t5d within each study d is produced according to the configura-
tion a5d.
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implementation uses a concordance model by assuming that each gene’s differential 
state is the same across all studies. The “Multiple-Indicator” implementation allows 
study-specific differential expression. However, it assumes that all genes have the 
same prior probability to be differential within the same study, and the differential 
states of each gene in different studies are a priori independent. Conceptually, these 
assumptions are similar to a CorMotif model with a single cluster, which often is 
insufficient to capture the heterogeneity among genes since the cross-study correla-
tion pattern may vary from one gene to another. XDE does not have the exponen-
tial complexity problem, but it uses MCMC for posterior inference and is very slow 
computationally. 

To capture the heterogeneity among genes, Yuan and Kendziorski (2006) devel-
oped a method for simultaneous clustering and differential expression analysis. 
Similar to CorMotif , this method also assumes that genes belong to multiple clus-
ters, and different clusters have different propensities to show differential expres-
sion. However, Yuan and Kendziorski (2006) only considered detecting differential 
expression between two conditions in one study. Although one may conceptually 
extend this approach to handle multiple studies by combining it with the model 
developed by Kendziorski et al. (2003), such a simple extension would lead to the 
model “eb10best” in which genes are assumed to fall into multiple clusters and each 
cluster is a mixture of 2D differential patterns. As a result, the complexity of the 
parameter space would become O(K*2D) where K is the number of clusters. Once 
again, the model complexity explodes as the dataset number increases. 

Compared with these methods, CorMotif offers a unique data integration solution 
in that it addresses study-specificity, heterogeneity among genes, and exponential 
complexity simultaneously. Below we focus on discussing CorMotif for microarray 
data since it was motivated by the microarray analysis in the SHH study. However, 
the idea behind CorMotif  is general, and it should be straightforward to develop a 
similar framework for RNA-seq data.

2. Methods

2.1 Data structure and preprocessing

Suppose there are G genes and D microarray studies. Each study d compares two 
biological conditions (e.g. cancer vs. normal), and each condition l has ndl replicate 
samples. Different studies may be related, but they can compare different biologi-
cal conditions. Let xgdlj be the normalized and appropriately transformed expression 
value of gene g in study d, condition l, and replicate j . In this book chapter, all data 
were normalized and log-transformed using RMA (Irizarry et al. 2003). The ensem-
ble of observed data is X = {xgdlj: g =1, . . . , G; d =1, . . . , D; l =1, 2; j =1, . . . , ndl }.

Each gene can be differentially expressed in some, all, or none of the studies. 
Let agd =1 or 0 indicate whether gene g is differentially expressed in study d or not. 
A=(agd)G×D is a G × D matrix that contains all agd s. Given the observed data X, one 
is interested in inferring A.
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CorMotif first applies limma (Smyth, 2004) to each study separately. In other 
words, the moderated t-statistic (Smyth, 2004)  tgd  was calculated for each gene g  
within each study d according to their normalized and log-transformed data Xd = 
{xgdlj: g =1, . . . , G; l =1, 2; j =1, . . . , ndl }. the moderated t-statistic summarizes gene 
g’s differential expression information in study d. Under the limma model, when 
gene g is not differentially expressed in study d (i.e. agd =0), tgd follows a t-distribu-
tion fd0; when agd =1, tgd follows a scaled t-distribution fd1 (Smyth, 2004). Readers may 
refer to Smyth 2004 for details. Next, we arrange all tgd s into a matrix T =(tgd )G×D. 
CorMotif will then use T instead of the raw expression values X to infer A.

2.2 Correlation motif model

Organize the differential expression states of gene g into a vector ag =[ag1, ag2, . . 
. , agD]. For D studies, ag has 2D possible configurations. A simple way to describe 
the correlation among studies is to document the empirical frequency of observing 
each of the 2D configurations of ag among all genes. This is because f (ag), the joint 
distribution of =[ag1, ag2, . . . , agD], is known once the probability of observing each 
configuration is given. This joint distribution will determine how agd s from different 
studies are correlated. While simple, this approach is not scalable since it requires 
O(2D) parameters and the parameter space expands exponentially with increasing D.

To avoid this limitation, CorMotif  adopts a hierarchical mixture model (Fig. 1(b)). 
The model assumes that genes fall into K different classes (K<<2D for big D), and the 
moderated t-statistics T =(tgd )G×D are viewed as generated as follows:

 (1) Each gene g is randomly and independently assigned a class label bg accord-
ing to probability p =(p1, . . . , pK ). Here, pk  Pr(bg = k) is the prior prob-
ability that a gene belongs to class k.

 (2) Given genes’ class labels (i.e. bgs), genes’ differential expression states agd 
s are generated independently according to probabilities qkd  Pr(agd = 1|bg 
=k). For genes in the same class k, ags are generated using the same prob-
abilities qk = (qk1, . . . , qkD). 

 (3) Given the  differential expression states agd s, genes’ moderated t-statistics 
tgd s are generated independently according to fd1(tgd ) or fd0(tgd).

Let B=(b1, . . . , bG) be the class membership for all genes. Organize qk into a matrix 
Q q= = ¥( ,..., ) ( )T

.1
T

K
T

kd K Dq q  Let δ(·) be an indicator function: δ(·)=1 if its argument 
is true, and δ(·)=0 otherwise. Based on the above model, the joint probability distri-
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In this model, each gene class k is associated with a vector qk whose elements are the 
prior probabilities of a gene in this class to be differential in studies 1, . . . , D. Each 



34 Computational Biology and Bioinformatics

qk represents a probabilistic differential expression pattern and therefore is called a 
“motif”. Since qkd s are probabilities, genes in the same class can have different ag 
configurations. On the other hand, genes from the same class share the same qk, and 
hence their differential expression configuration ags tend to be similar. Genes in dif-
ferent classes have different qks, and their ags also tend to be different. Essentially, 
our model groups genes into K clusters based on ag. However, unlike a usual cluster-
ing algorithm, here ags are unknown.

Despite the assumption that agds are a priori independent conditional on the class 
label bg, agds are no longer independent once the class label bg is integrated out. To 
see this, consider the prior probability that a gene is differentially expressed in all 
studies. Based on our model, 
Pr( [ ,..., ]) ( )ag k k d kdq= =1 1 S Pp which is different from the product of the mar-

ginal P P Sd gd d k k kda qPr( ) .= =1 p  This explains why the hierarchical mixture 
model above can be used to describe the correlation among multiple studies. Since 
the mixture of qks provides the key to model the cross-study correlation, each vector 
qk is also called a “correlation motif”.

A model with K correlation motifs requires O(KD) parameters in total. Usually, a 
small K (<<2D when D is big) is sufficient to capture the major correlation structure 
in the real data. Therefore, our method can be easily scaled up to deal with large D 
scenarios. When 0<qkd <1, each qk will be able to generate all 2D configurations with 
non-zero probabilities. Thus, our model also retains the flexibility to allow all 2D 
configurations of ag to occur at individual gene level.

2.3 Statistical inference

In reality, only T is observed. p and Q are unknown parameters. A and B are unob-
served missing data. To infer the unknowns from T, we first assume that K is given 
and introduce a Dirichlet prior Dir(2, . . . , 2) for p and a Beta prior B(2, 2) for qkd. 
As a result,
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Based on the above posterior distribution, an expectation–maximization (EM) algo-
rithm (Gelman et al. 2004) can be derived to search for the posterior mode of p and Q.

Using the estimated ˆˆ and Qp , one can then compute Pr(agd=1|T, p̂ , Q̂ ), the poste-
rior probability that gene g is differentially expressed in study d after integrating out 
the motif membership bg. Next, we rank-order genes in each study separately using 
Pr(agd =1|T, p̂ , Q̂ ). The ranked lists can be used to choose follow-up targets. Users 
can also provide a posterior probability cutoff to dichotomize genes into differential 
or non-differential genes in each study. The default cutoff is 0.5. Users have the 
option to set the cutoff to other values. In order to choose the motif number K, we use 
Bayesian Information Criterion (BIC). 
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CorMotif  improves the differential expression detection by integrating informa-
tion both across studies and across genes. Pr(agd =1|T, p̂ , Q̂ ) can be decomposed 
as Sk

K
=1 Pr(agd = 1|T, p̂ , Q̂ , bg = k) * Pr(bg = k|T, p̂ , Q̂ ). Here, Pr(bg =k|T, p̂ , Q̂ ) is 

determined by jointly evaluating gene g’s data in all studies, and Pr(agd =1|T, p̂ , Q̂ , 
bg =k) contains information specific to study d. According to Bayes’ theorem, Pr(agd 
=1|T, p̂ , Q̂ , bg =k) a Pr(tgd|agd =1, p̂ , Q̂ , bg =k) × Pr(agd =1| p̂ , Q̂  , bg =k). tgd in the 
first term contains expression information for a given gene g in study d. To compute 
its denominator, the limma approach also utilized information across genes to help 
with estimating the variance. Meanwhile, the second term Pr(agd =1| p̂ , Q̂ , bg = 
k) involves prior probabilities given by the correlation motifs  which are estimated 
using data from all genes. Owing to this two-way information pooling (i.e. across 
both studies and genes), CorMotif  uses information more effectively than methods 
based on only a single gene or a single study. This is especially useful for analyzing 
studies with relatively weak signal-to-noise ratio.

3. Simulations

3.1 Compared methods

We compared CorMotif with six other methods: separate limma, all concord, full 
motif, SAM, eb1, and eb10best. We did not compare the method in Jensen et al. (2009) 
as no software was available for this method. The separate limma approach ana-
lyzes each study separately using limma. The moderated t-statistics in each study 
are assumed to be a mixture of fd0 and fd1. To better evaluate the gain from data 
integration, we matched this analysis to CorMotif  as much as possible by running 
an EM algorithm similar to CorMotif  to compute the posterior probability for dif-
ferential expression using 0.5 as default cutoff. Conceptually, this makes separate 
limma equivalent to CorMotif with a single cluster (K =1), and the analysis produces 
the same gene ranking as limma in each study. All concord assumes that a gene is 
either differential in all studies or non-differential in all studies (i.e. ag =[1, 1, . . . , 1] 
or [0, 0, . . . , 0]). Conditional on ag, the model for tgd remains the same as CorMotif 
and limma. Full motif assumes that genes fall into 2D classes, corresponding to the 
2D possible ag configurations. It can be viewed as a saturated version of CorMotif. All 
the other methods are applied to xgdlj s directly. SAM (Tusher et al. 2001) processes 
each study separately, whereas eb1 and eb10best analyze all studies jointly. The eb1 
method corresponds to the R package EBarrays with lognormal–normal (LNN) and 
one cluster assumption (Kendziorski et al. 2003). The eb10best method is EBarrays 
with LNN and multiple cluster assumption, and the cluster number is chosen by 
EBarrays as the one with the lowest AIC (Yuan and Kendziorski, 2006). We also 
tried XDE (Scharpf et al. 2009). However, it is based on Markov Chain Monte Carlo 
(MCMC) and took extremely long computing time, usually 24 h on a machine with 
2.7 GHz CPU and 4 Gb RAM for 1000 iterations, for an analysis involving four 
studies which was the smallest data we analyzed here. Moreover, 1000 iterations 
usually were not enough for XDE to converge. Therefore, XDE will not be compared 
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hereinafter. eb10best failed to work when it was used to jointly analyze ≥7 studies. 
Full motif and eb1 failed when there were 20 studies.

We first tested CorMotif using simulations. For a complete set of comprehensive 
simulation studies with varying study numbers and differential expression patterns, 
please refer to our journal paper (Wei et al. 2015). Here, we just present simulation 
1 for illustrative purpose regarding the work flow. In simulation 1, we generated 
10,000 genes and four studies according to the four differential patterns in Figure 
2(a): 100 genes were differentially expressed in all four studies (ag =[1, 1, 1, 1]); 
400 genes were differential only in studies 1 and 2 ([1, 1, 0, 0]); 400 genes were dif-
ferential only in studies 2 and 3 ([0, 1, 1, 0]); 9100 genes were non-differential ([0, 
0, 0, 0]). Each study had six samples: three cases and three controls. The variances 
sgd s

2  were simulated from a scaled inverse c2 distribution n s nd d d0 0
2 2

0/ ( ),c  where 
n d0 4=  and s d0

2 0 02= . . Given sgd
2 ,  the expression values were generated using 

x Ngdlj gd ( , )0 2s . Whenever agd = 1, we drew μgd from N(0,w0d* sgd
2 ), where w0d = 4, 

and μgd was then added to the expression values of the three cases (i.e. xgd1j s).
CorMotif  was fit with varying motif number K. As Figure 2(c) shows, the mini-

mal BIC was achieved at K =4. As a result, four motifs were reported (Figure 2(b)). 
The reported motifs were very similar to the true underlying differential patterns in 
Figure 2(a).

Figure 2 Results for Simulations 1. (a) True motif patterns for simulation 1. The Q of the true 
motifs is shown. Each row indicates a motif pattern and each column represents a study. The actual 
number of genes belonging to each motif (i.e. p * G) is displayed at the right end of each row. The 
gray scale of the cell (k, d) demonstrates the probability of differential expression in study d for 
pattern k. Black means 1 and white means 0. (b) The estimated Q  from the learned motifs with  
p * G annotated at the end of each row. (c) BIC plots. It can be seen that motif patterns reported 

by CorMotif under the minimal BIC are similar to the true underlying motif patterns. (d)–(f) Gene 
ranking performance of different methods in simulations 1. TPd (r), the number of genes that are 
truly differentially expressed in study d among the top r ranked genes by a given method, is plotted 
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against the rank cutoff r. Results for a few representative studies are shown. Each plot is for one 
study.

Different methods were then compared in terms of how good they rank differential 
genes in each individual study (Figure 2(d)–(f)) as well as how accurate they can 
infer each gene’s differential configuration ag in all studies (Table 2). For each study 
d, CorMotif  ranks genes using the posterior probability Pr(agd =1| T, ,Qp  ) which is 

TAble 2  Confusion matrix for simulation 1. The column labels indicate the true underlying 
patterns and the row labels represent the reported configurations at gene level. For 
CorMotif, separate limma, all concord, full motif, eb1, and eb10best, differential 
expression in each study is determined using their default posterior probability cutoff 
0.5. For SAM, q-value cutoff 0.1 was used to call differential expression. This yields 
similar number of correct classifications for pattern [0, 0, 0, 0] compared with CorMotif.

Method Differential config. c(0, 0, 0, 0) c(0, 1, 1, 0) c(1, 1, 0, 0) c(1, 1, 1, 1) 
CorMotif c(0, 0, 0, 0) 9072 161 165 16 

c(0, 1, 1, 0) 3 168 3 7 
c(1, 1, 0, 0) 3 2 151 6 
c(1, 1, 1, 1) 0 1 0 33 

other 22 68 81 38 
separate limma c(0, 0, 0, 0) 9035 144 144 16 

c(0, 1, 1, 0) 0 68 0 5 
c(1, 1, 0, 0) 0 0 57 6 
c(1, 1, 1, 1) 0 0 0 4 

other 65 188 199 69 
all concord c(0, 0, 0, 0) 9095 236 236 20 

c(0, 1, 1, 0) 0 0 0 0 
c(1, 1, 0, 0) 0 0 0 0 
c(1, 1, 1, 1) 5 164 164 80 

other 0 0 0 0 
full motif c(0, 0, 0, 0) 9072 161 164 16 

c(0, 1, 1, 0) 4 172 4 7 
c(1, 1, 0, 0) 3 2 155 6 
c(1, 1, 1, 1) 0 1 0 35 

other 21 64 77 36 
eb1 c(0, 0, 0, 0) 62 0 2 0 

c(0, 1, 1, 0) 2178 30 22 3 
c(1, 1, 0, 0) 569 7 12 0 
c(1, 1, 1, 1) 753 34 32 64 

other 5538 329 332 33 
eb10best c(0, 0, 0, 0) 0 0 0 1 

c(0, 1, 1, 0) 316 220 16 10 
c(1, 1, 0, 0) 180 23 226 10 
c(1, 1, 1, 1) 5789 77 52 63 

other 2815 80 106 16 
SAM c(0, 0, 0, 0) 9099 256 279 48 

c(0, 1, 1, 0) 0 20 0 3 
c(1, 1, 0, 0) 0 0 9 2 
c(1, 1, 1, 1) 0 0 0 1 

other 1 124 112 46 
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obtained after integrating out the motif membership bg. A gene was called differen-
tial in study d if Pr(agd =1| T, ,Qp  ) > 0.5. Both the gene rankings and differential 

expression calls were different for different studies since Pr(agd =1| T, , Qp  )  depends 
on d and can change across studies. This is a desirable property as in reality the sets 
of true differential genes may be different in different studies due to study-specific 
differential expression, and ultimately one wants to know which genes are differen-
tial in each study. Using a similar approach, we obtained gene rankings and differ-
ential calls for full motif, eb1 and eb10best which were also study-specific. Separate 
limma and SAM analyze each study separately and naturally produce study-specific 
gene ranking and differential calls. For all the methods above, we did not combine 
differential calls of a gene in D studies into a single call to indicate whether the gene 
is differential in any study, nor did we use such a combined call to rank genes, since 
the combined call would fail to capture study-specificity. Unlike the other meth-
ods, all concord assumes common differential states in all studies, therefore its gene 
ranking and differential calls remain the same across studies.

To examine if CorMotif can improve gene ranking, in each study and for each 
method we counted the number of true differential genes (true positives), TPd (r), 
among the top r ranked genes, and we plotted TPd (r) versus r in Figure 2(d)–(f). 
CorMotif consistently performed among the best in all studies. For instance, Figure 
2(d) shows the results for study 1. CorMotif  identified 361 true differential genes 
among its top 500 gene list. This performance was almost the same as the saturated 
model full motif which identified 362 true positives among the top 500 genes. Among 
the other methods, eb10best identified 341, all concord identified 292, and the others 
identified fewer than 292 true positives among the top 500 genes. Thus, CorMotif 
detected at least 23.6% more true positives compared with any other method except 
full motif and eb10best. Similarly, among the top 1000 genes, CorMotif and full motif  
both identified 419 true positives, all concord identified 401, eb10best identified 360, 
and the other methods identified fewer than 337. CorMotif and full motif detected 
4.5% more true positives compared with all concord and improved the ranking by at 
least 16.4% compared with eb10best and other methods. Both full motif and eb10best 
have the problem of exponentially growing parameter space. As we will show later, 
they both will break down when the study number D is large.

To test whether CorMotif can more accurately determine a gene’s differential con-
figuration, we constructed the confusion matrix in Table 2. For each gene, its binary 
differential calls agds based on Pr(agd =1| T, ,Qp  ) in different studies were arranged 
into a vector to represent its estimated differential configuration ag. For CorMotif, 
separate limma, all concord, full motif, eb1 and eb10best, differential expression was 
called using their default posterior probability cutoff 0.5. For SAM, q-value cutoff 
0.1 was used to call differential expression. At this cutoff, SAM correctly identified 
similar number of genes with ag =[0, 0, 0, 0] (i.e. non-differential in all studies) com-
pared with CorMotif. This allowed us to meaningfully compare SAM and CorMotif 
in terms of their ability to find differential genes. Table 2 shows that CorMotif was 
better at characterizing genes’ true differential configurations compared with most 
other methods. For instance, among the 400 [0, 1, 1, 0], 400 [1, 1, 0, 0], and 100 [1, 1, 
1, 1] genes, CorMotif correctly reported differential label agd in all four studies for 
168, 151, and 33 genes, respectively. In contrast, separate limma only unmistakenly 
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labeled 68, 57, and 4 genes, respectively. Here, the increased power by CorMotif 
was purely due to the use of correlation motifs to integrate multiple studies, since all 
other model assumptions made by CorMotif and separate limma are the same. All 
concord requires genes to have the same differential status in all studies. As such, it 
is powerful at identifying concordant signals across studies but lacks the flexibility to 
handle study-specific differential expression: it correctly identified 80 out of 100 [1, 

Figure 3 Results for the SHH data. (a) Motif patterns learned from the SHH data composed of 7 
studies. (b) BIC plots for the SHH data. (c) Gene ranking performance for SHH study 1. The genes 
differentially expressed in dataset 8 (13somites smo versus 13somites wt) were obtained using sepa-
rate limma. They were used as the gold standard. TPd (r), the number of genes in dataset 1 that are 
truly differentially expressed among the top r ranked genes by each method, is plotted against the 
rank cutoff r. (d) Differential status claimed by each method for known SHH pathway genes. Dark 
color indicates differential expression and light color represents non-differential expression.



40 Computational Biology and Bioinformatics

1, 1, 1] genes, but none of the [0, 1, 1, 0] and [1, 1, 0, 0] genes were correctly labeled 
as study-specific. With the default cutoff, eb1 and eb10best only labeled 62 and 0 
out of 9100 [0, 0, 0, 0] genes as completely non-differential, compared with 9072 
labeled by CorMotif.  In other words, eb1 and eb10best reported more false-positive 
differential events. Both were anti-conservative. At the same time, fewer [0, 1, 1, 0] 
and [1, 1, 0, 0] genes were correctly identified by eb1 (30 and 12 versus 168 and 151 
by CorMotif ). SAM was also poor at identifying the differential patterns [1, 1, 1, 1 ],  
[1, 1, 0, 0], and [0, 1, 1, 0] but behaved more conservatively by labeling many of 
them as [0, 0, 0, 0]. Among all the methods, only full motif performed slightly better 
than CorMotif. Even so, CorMotif was able to perform close to this saturated model. 
Adding up the diagonal elements in the confusion matrix, CorMotif unmistakenly 
assigned ag labels to 9424 genes, whereas this number was 9164 for separate limma, 
9175 for all concord, 9434 for full motif, 168 for eb1, 509 for eb10best, and 9129 for 
SAM.

3.2 Application to the SHH signaling data sets

We used CorMotif to analyze the SHH data in Table 1. Datasets 1 and 2 compare 
SMO mutant mice with wild type mice (wt) and PTCH1 mutant with wild type, 
respectively, in the 8 somite stage of developing embryos. Dataset 3 compares the 
PTCH1 mutant with wild type in 13 somite stage. Datasets 4 and 5 compare the 
SHH mutant with wild type in developing head and limb, respectively. Datasets 6 
and 7 study gene expression changes in two SHH-related tumors, medulloblastoma 
and basal cell carcinoma (BCC), compared with normal samples (control). Dataset 8 
compares SMO mutant with wild type in the 13 somite stage of developing embryos. 
CorMotif was applied to datasets 1–7. Dataset 8 was reserved for testing.

Five motifs were discovered [Fig. 3 (a) and (b)]. Motif 1 mainly represents back-
ground. Motif 2 contains genes that have high probability to be differential in all 
studies. Genes in motif 3 tend to be differential in most studies except for the two 
involving PTCH1 mutant (i.e. studies 2 and 3). Most genes in motif 4 are not dif-
ferential in the two studies involving the SHH mutant (i.e. studies 4 and 5) but tend 
to be differential in all other studies. Motif 5 mainly represents genes differential 
in tumors (i.e. studies 6 and 7) but not in embryonic development (i.e. studies 1–5). 
In general, looking at the columns in Figure 3(a), the two studies involving tumors 
(6, 7) are more similar to each other compared with other studies. The two PTCH1 
mutant studies (2, 3) are also relatively similar, and the same trend holds true for the 
two SHH mutant studies (4,5).

In this real data analysis, no comprehensive truth is available for evaluating dif-
ferential expression calls. Without comprehensive knowledge about the true differ-
ential expression states of all genes in all cell types, we can only perform a partial 
evaluation based on existing knowledge. In this regard, we used dataset 8 as a test. 
Similar to dataset 1, this dataset compares SMO mutant with wild type. One expects 
that differential genes in these two datasets should be largely similar. Therefore, 
we used the top 217 differentially expressed genes detected by separate limma (at 
the posterior probability cutoff 0.5) in dataset 8 as gold standard to evaluate the 
gene ranking performance of different methods in dataset 1. Figure 3(c) shows that 
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CorMotif again performed similar to full motif and outperformed all other methods. 
eb10best failed to run here. We note that since dataset 8 and datasets 2–7 represent 
more different biological contexts, one cannot use it as gold standard for evaluating 
these other datasets.

Finally, we examined well-studied SHH responsive target genes. Gli1, Ptch1, 
Ptch2, Hhip, and Rab34 are known to be regulated by SHH in somites and develop-
ing limb (Vokes et al. 2007, 2008). Therefore, we expect them to be differential in 
studies 1, 2, 3, and 5. Figure 3(d) shows that CorMotif, allconcord and full motif were 
able to correctly identify differential expression of these genes in all these studies, 
whereas separate limma, SAM, and eb1 failed to do so (they missed some cases). 
Hand2 is known to be a SHH target in developing limb but not in somites (Vokes  
et al. 2008). While separate limma, CorMotif, full motif, and SAM can correctly iden-
tify this, all concord and eb1 failed to do so. For all concord, since Hand2 was not 
differential in studies 1–4, 6, and 7, the method thinks that this gene is not differen-
tial in any study. Similarly, Hoxd13 is a limb specific target of SHH signaling (Vokes 
et al. 2008). While the other methods correctly identified this, all concord failed 
again by claiming it to be differential in all studies. In all the genes examined, only 
CorMotif and full motif were able to correctly identify all known differential states.

4. Discussion
Together, our analyses show that CorMotif offers unique advantage over the other 
methods in the integrative analysis of multiple gene expression studies. Besides 
its ability to increase statistical power by combining information across studies, 
CorMotif is also flexible and scalable. Using a few probability vectors instead of 
2D dichotomous vectors to characterize the differential expression patterns provides 
the key to avoid the exponential growth of parameter space as the study number 
increases. At the same time, the probabilistic nature of the motifs allows all 2D dif-
ferential patterns to occur in the data at individual gene level.

The motif matrix Q can be viewed in two different ways. Each row of Q represents 
a cluster of genes with similar differential expression patterns across studies. Having 
many different motifs in Q is an indication that a concordance model, such as all 
concord, may not be enough to describe the correlation structure in the data. On the 
other hand, each column of Q represents differential expression propensities of dif-
ferent gene classes in a given study. If two columns are similar, the corresponding 
studies share similar differential expression profiles (e.g. studies 6 and 7 in the SHH 
data are more similar to each other compared with the other studies).

As we use probability vectors to serve as motifs, it is possible that multiple weak 
patterns can be merged into a single motif. For instance, two complementary pat-
terns [1,1,0,0] and [0,0,1,1] each with n genes can be absorbed into a single motif with 
qk = (0.5, 0.5, 0.5, 0.5) having 2n genes. According to extensive simulation studies, 
we observed that in general weaker patterns were more likely to be merged than pat-
terns with abundant data support. In all cases, however, CorMotif  still provided the 
best gene ranking results compared with other methods. Moreover, the higher the 
proportions of study-specific motifs (e.g. [1,1,0,0] and [0,0,1,1]), the better CorMotif 
will perform compared with the concordance analysis (i.e. all concord) in terms of 
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ranking genes in each study. All in all, the correlation motifs only represent a parsi-
monious representation of the correlation structure supported by the available data. 
One should not expect CorMotif to always recover all the true underlying clusters 
exactly. In spite of this, our simulations show that CorMotif can still effectively uti-
lize the correlation among studies to improve differential gene detection even when 
the chosen K is not the same as the underlying true pattern number.

Currently, CorMotif  first computes moderated t-statistics T and then applies the 
correlation motif model to T. We used this two-stage approach for considerations 
of effective presentation, computational efficiency, and clean method comparison. 
Instead of using this two-stage approach, a potential future extension is to introduce 
a single coherent Bayesian model that fully integrates the correlation motifs with 
a model directly describing the raw expression values xgdlj. In the present version 
of CorMotif, we chose to use the two-stage approach for several reasons. First, it 
allows us to better present the core idea of the method, that is, how to use correlation 
motifs to integrate multiple studies. By taking advantage of the well-documented 
limma approach, the two-stage approach allows us to simplify the presentation of 
some of the model details and focus on discussing the core idea of correlation motifs. 
Moreover, the two-stage approach as presented now also represents a very general 
framework. Conceptually, one can modify fd0 and fd1 to accommodate other data 
types. Because of the two-stage design, this will not change the correlation motif 
model and the corresponding EM algorithm. Second, using the two-stage frame-
work, one can develop a simple EM algorithm to fit the model. This approach is 
computationally more efficient than running a Markov Chain Monte Carlo (MCMC) 
algorithm on a fully Bayesian model with many levels of unknown parameters (e.g., 
mean and variances of xgdljs and parameters in their prior distributions, missing indi-
cators A and B, and motif parameters p and Q). Third, the present design also allowed 
us to perform a well-controlled comparison with the state-of-the-art approach limma. 
In our two-stage design, the first stage of CorMotif  uses the same model as limma 
to compute the moderated t-statistics. The only difference between CorMotif and 
limma is in the second stage, that is, the correlation motif part. For this reason, the 
comparison between CorMotif and limma can unambiguously demonstrate the gain 
of using correlation motifs to integrate multiple studies. This gain is not confounded 
with other factors such as differences in the data distributions fd0 and fd1. By contrast, 
differences in performance between CorMotif and other methods such as SAM and 
eb1 , etc., can be caused by a number of different factors such as differences in mod-
els for data xgdlj . The two-stage design therefore has helped us to perform a clean 
comparison to show the effectiveness of correlation motifs. As a result, we were 
able to contribute a general tool with proven effectiveness (i.e., the correlation motif 
framework for data integration) to the toolbox other people can use to build future 
data analysis methods.

In the future, CorMotif may be extended in multiple ways. For example, instead 
of using moderated t-statistics and the two-stage design, one may develop a single 
coherent model that couples correlation motifs with a more sophisticated model for 
the raw data X. Also, it remains to be investigated whether the problem of choosing 
motif number can be better dealt with by a fully Bayesian approach such as by impos-
ing a Dirichlet Process prior for K or using a variant of Dirichlet Process prior instead 
of using BIC. A fully Bayesian model, however, may require MCMC in the imple-
mentation, and this may pose additional challenges for developing computationally 
efficient algorithms capable of handling large datasets.
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5. Software
CorMotif  is freely available as an R package in Bioconductor: http://www.biocon-
ductor.org/packages/release/bioc/html/Cormotif.html. Here we provide a short tuto-
rial to demonstrate how to use the package for analysis of real data.

5.1 Data preparation

In order to fit the correlation motif  model, one needs to call the function cormotiffit. 
The first requirement exprs is the matrix containing the gene expression data that 
needs to be analyzed. Each row of the matrix corresponds to a gene and each column 
of the matrix corresponds to a sample. The data should be normalized, for example 
by RMA, on log2 scale. 

The second argument, groupid, identifies the group label of each sample. Here 
we use data simudata2 as an illustration. simudata2 are combined from four studies 
sharing the same 3,000 genes, each having two experimental conditions and three 
samples for each condition.

> library(Cormotif)
> data(simudata2)
> colnames(simudata2)

[1] “gene” “R1” “R2” “R3” “S1” “S2” “S3” “T1” “T2” “T3”
[11] “U1” “U2” “U3” “V1” “V2” “V3” “W1” “W2” “W3” “X1”
[21] “X2” “X3” “Y1” “Y2” “Y3”
> exprs.simu2<-as.matrix(simudata2[,2:25])
> data(simu2_groupid)
> simu2_groupid
R1 R2 R3 S1 S2 S3 T1 T2 T3 U1 U2 U3 V1 V2 V3 W1 W2 W3 X1 X2 X3 Y1 Y2 Y3
1    1    1    1   2   2   2    3   3    3   4    4    4    5    5    5     6    6     6    7    7    7   8    8    8

The third argument, compid, represents the study design and hence the compari-
son pattern. In simudata2, R1, R2, R3 are samples from condition 1 in study1 and S1, 
S2, S3 are from condition 2 in study 1. Similarly, T1,T2,T3 represent condition 1 in 
study 2 and U1,U2,U3 represent condition 2 in study 2, and so on so forth. We aim 
at detecting the differential expression pattern of a gene under two different experi-
mental conditions in each study, so we make up the comparison matrix simu2_comp-
group as following:

> data(simu2_compgroup)
> simu2_compgroup
   Cond1 Cond2
1          1          2
2          3          4
3          5          6
4          7          8



44 Computational Biology and Bioinformatics

5.2 Model fitting

Once we have specified the group labels and the study design, we are able to fit the 
CorMotif model. We can fit the data with varying motif numbers and use informa-
tion criterion, such as AIC or BIC, to select the best model. Here for simudata2, we 
fit 5 models with total motif patterns number varying from 1 to 5, and as we can see 
later from the BIC plot, using BIC criterion, the best model is the one with 3 motifs.

>motif.fitted<-cormotiffit(exprssimu2,simu2_groupid,simu2_compgroup,
+ K=1:5,max.iter=1000,BIC=TRUE)
[1] “We have run the first 50 iterations for K=2”
[1] “We have run the first 50 iterations for K=3”
[1] “We have run the first 100 iterations for K=3”
[1] “We have run the first 50 iterations for K=4”
[1] “We have run the first 100 iterations for K=4”
[1] “We have run the first 150 iterations for K=4”
[1] “We have run the first 200 iterations for K=4”
[1] “We have run the first 50 iterations for K=5”
[1] “We have run the first 100 iterations for K=5”
[1] “We have run the first 150 iterations for K=5”
[1] “We have run the first 200 iterations for K=5”

After fitting the CorMotif model, we can check the BIC values obtained by all 
cluster numbers:

> motif.fitted$bic
K bic
[1,] 1 44688.73
[2,] 2 44235.62
[3,] 3 44210.74
[4,] 4 44236.05
[5,] 5 44247.30
> plotIC(motif.fitted)

Figure 4 BIC plots for simudata2.
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To picture the motif patterns learned by the algorithm, we can use function plot-
Motif. Each row in both graphs corresponds to the same one motif pattern. We call 
the left graph pattern graph and the right bar chart frequency graph. In the pattern 
graph, each row indicates a motif pattern and each column represents a study. The 
grey scale of the cell (k, d) demonstrates the probability of differential expression 
in study d for pattern k, and the values are stored in motif.fitted$bestmotif$motif.
prior. Each row of the frequency graph corresponds to the motif pattern in the same 
row of the left pattern graph. The length of the bar in the frequency graph shows 
the number of genes of the given pattern in the dataset, which is equal to motif.
fitted$bestmotif$motif.prior multiplying the number of total genes.

> plotMotif(motif.fitted)

Figure 5 Motif pattern plots for simudata2. 

The posterior probability of differential expression for each gene in each study is 
saved in motif.fitted$bestmotif$p.post:

> head(motif.fitted$bestmotif$p.post)
       [,1]               [,2]            [,3]              [,4]
[1,] 0.98054515 0.76640793 0.2484231 0.77337505
[2,] 0.99945249 0.35361152 0.9948324 0.99931734
[3,] 0.98047218 0.15768466 0.6450539 0.99841369
[4,] 0.01887596 0.02799143 0.3243530 0.29013282
[5,] 0.99959700 0.97149171 0.9986405 0.37861772
[6,] 0.10755781 0.94486423 0.9975589 0.04995237

At 0.5 cutoff for the posterior distribution, the differential expression pattern can 
be obtained as following:

> dif.pattern.simu2<-(motif.fitted$bestmotif$p.post>0.5)
> head(dif.pattern.simu2)
           [,1]      [,2]        [,3]     [,4]
[1,] TRUE TRUE FALSE TRUE

We can also order the genes in each study according to their posterior probability 
of differential expression:
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> topgenelist<-generank(motif.fitted$bestmotif$p.post)
> head(topgenelist)
[,1] [,2] [,3]  [,4]
[1,] 117 394  59  221
[2,]   31   23 330 238
[3,]   73   97  38  288
[4,] 196   63  96  249
[5,] 454 355 355 286
[6,] 177 333 319 230

In summary, we hope our package can provide an easy, accessible way for readers 
to apply our CorMotif  method to jointly analyze multiple microarray experiments to 
improve differential gene expression detection as well as explore differential expres-
sion pattern changes across studies.
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Granger Causality for Time Series 
Gene Expression Data
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Abstract
Molecular processes underlying cellular behavior may be comprehended through the 
analysis of gene expression profiles. This approach is complex and encompasses the 
identification of which genes are expressed at any given time and how their products 
interact in so called gene regulatory networks (GRN). High-throughput technolo-
gies, such as DNA micro arrays and next generation sequencing are the technologies 
of choice to quantify gene expression that will be used to model GRN. Mathematical 
models aim to infer the structure of GRN, possibly identifying which genes relate 
to which other genes. Among such models, Granger causality allows for the iden-
tification of directionality at the edges of GRN through the analysis of time series 
gene expression data. The intuitive concept underlying Granger causality is the idea 
that an effect never occurs before its cause. This concept was introduced by Norbert 
Wiener in 1956 but it was Clive Granger who proposed a statistical method to iden-
tify Granger causality between two time series in 1969. In 1982 John Geweke gen-
eralized Granger’s idea to a multivariate form, a more interesting methodology for 
dealing with biological data sets generated by high-throughput technologies. In this 
chapter we review Granger causality concepts and we describe recently obtained 
results using a generalization of the multivariate Granger causality to identify 
Granger causality between gene clusters. Detailed descriptions of the concept, algo-
rithms to identify and statistically test Granger causality between sets of time series 
are described. 
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1. Introduction
Time series gene expression data analysis is a powerful tool to assess the relationship 
between genes within a cellular system and may be used to comprehend biological 
processes or to tackle the effect of therapeutics within a time frame. High-throughput 
technologies, including gene expression micro arrays and next generation sequenc-
ing, provide the appropriate scenario for such applications due to the broadness of 
their results. One of the biggest challenges, however, lies in finding appropriate 
mathematical models to infer relationship between time series gene expression data 
and, consequently, to be able to derive biological meaning from such complex datas-
ets. The identification of relationships between genes or gene sets may be addressed 
through the study of gene regulatory networks (GRNs) structures. However, time 
series gene expression data are auto correlated. Since this intrinsic dependency in 
data is not appropriately addressed by classical statistical methods, models that iden-
tify Granger causality have been proposed and seem to overcome this short come 
when the aim is to identify temporal association between time series gene expression 
data (Fujita et al. 2009, Guo et al. 2008, Mukhopadhyay and Chatterjee 2007).

Granger causality (Granger 1969) is a widely used approach for the detection of 
putative interactions between variables in a data-driven framework based on tem-
poral precedence. Due to both simplicity and flexibility, Granger causality analysis 
application can be found in areas as diverse as economics (Wayne 1986, Hiemstra 
and Jones 1994), geophysics (Kaufmann et al. 2004, Elsner 2006), bioinformatics 
(Fujita et al. 2007, 2008), and neuroscience (Freiwald et al. 1999, Sameshima and 
Baccalá 1999, Baccalá and Sameshima 2001, Valdés-Sosa et al. 2005, Schelter et al. 
2006, 2009, Sato et al. 2006, 2007, 2009, Hemmelmann et al. 2009). The intuitive 
idea underlying Granger causality is that an effect never occurs before its cause. This 
idea was originally proposed by Norbert Wiener in 1956 (Wiener 1956), when he 
stated that the prediction of one time series could be improved by incorporating the 
information of past values of a second one. If this proved to be true, then the latter 
time series was said to have a “causal” influence on the former.

The original idea was philosophical and not applicable directly to empirical data. 
But in 1969, Clive Granger formalized Wiener’s idea and proposed a mathematically 
tractable concept of causality defined in terms of forecasting power. The intuitive 
concept is that temporal precedence does not imply, but may help to identify causal 
relationships (since a cause never occurs after its effects). In other words, if the vari-
ance of the auto regressive prediction error of one time series at the present time is 
statistically reduced by inclusion of past measurements from another time series, 
then the latter is said to have a Granger causal influence on the former. From this 
definition it is easy to see that the time flow is important to infer causality in time 
series data. 

Later, John Geweke (Geweke 1982) generalized the bivariate Granger causality 
to a multivariate model in order to identify conditional Granger causality. To illus-
trate the differences between bivariate and multivariate Granger causalities, suppose 
that there are three processes namely A, B, and C, where A drives B and C with one 
and two time delays, respectively. A pair wise analysis (bivariate Granger causality) 
would indicate a causal influence from process B  (that receives an early input) to pro-
cess C (that receives a late input) while conditional (multivariate) Granger causality 
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may be useful to identify that, in fact, A drives both B and C. Multivariate Granger 
causality is thus able to discriminate whether the interaction between two time series 
is direct or is mediated by another time series present in the model. In contrast to 
Structural Equation Models (SEM) and Dynamical Causal Models (DCM), the 
methods focused on the identification of Granger causality gather information that 
may expose the presence of temporal relationships between observed signals. In this 
sense, the analysis is hypothesis-free since it does not require any a priori knowledge 
about the edges constituting a network or the directions of these edges.

Vector Auto Regressive (VAR) models are usually the choice for the identification 
of multivariate Granger causality. This is due to the fact that both the statistical the-
ory behind VAR models and the computational algorithms are well understood and 
that they are particularly suitable to describe processes composed of locally interact-
ing components.

Nagarajan and Upreti (2008) and Nagarajan (2009) investigated the use of bivari-
ate VAR models for acyclic approximations in the case of networks composed of two 
genes. They explored parameters defined as transcriptional noise variance, auto reg-
ulatory feedback, and transcriptional coupling strength, which may influence some 
measures of Granger Causality. These authors have shown that under some specific 
conditions, VAR parameters may influence the statistical tests used for identifying 
significant Granger causality, therefore leading to bias that need to be considered 
during data interpretation.

Several extensions of the standard VAR model, namely Dynamic VAR (DVAR – 
to model time-varying structural changes in GRN) (Fujita et al. 2007a), Sparse VAR 
(SVAR – to model GRNs in high dimensional cases such as when the number of 
parameters (genes) is greater than the number of observations (time points)) (Fujita 
et al. 2007b, Lozano et al. 2009, Opgen-Rhein et al 2008, Shimamura et al. 2009) 
and Nonlinear VAR (NVAR, to identify nonlinear Granger causality) (Chen et al 
2004, Fujita et al. 2008, Guo et al. 2008, Marinazzo et al 2008, have been proposed 
to model GRNs. 

However, the theoretical generalization of Granger causality for sets of time series 
has not been sufficiently explored. Recently, Fujita et al. (2010) proposed a method 
to identify Granger causality between sets of time series (i.e. if a set containing n 
genes Granger causes another set with m genes). Their main goal was to create net-
works representing pathway-level connections that could help the understanding of 
molecular mechanisms underlying biological processes. In this chapter we describe 
this approach. We define Granger causality between sets of time series while describ-
ing a method for its identification and we also describe two statistical tests, one based 
on non parametric bootstrap and another based on likelihood ratio test, that verify 
Granger causality results between sets of time series. Finally, we demonstrate a par-
ticular application of Granger causality between sets of time series (Granger causal-
ity between gene clusters, CGC): its use for gene clustering.

2. Granger Causality for Sets of Time Series

Consider that Yt t t t t
q= { }y y y y1 2 3, , ... represents a set of q time series with t = 1, …, 

T and Ft a set containing all relevant information available up to and including time 
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point t. Let Yt
i , and  Yt

j  be two disjoint (each time series belongs to either Yt
i  or 

Yt
j but not to both of them) subsets of Y Y Yt t

i
t
j( =∩ { }), containing m and n 

time series each, respectively, and q ≥ m + n. In this scenario we would like to verify 
whether the subset Yt

j  Granger causes the subset Yt
i , where the subset Yt

j is the 
set of time series from which past values will be used to predict the future values of 
a function of the subset Yt

i . According to Fujita and collaborators (2010) and Sato 
and collaborators (2010) Granger causality for sets of time series can be defined as: 
let Yt th F( | )  be the optimal h-step predictor of a function f (i.e., the one which 
produces the minimum mean squared error (MSE) prediction) of the set of m time 
series Yt

i  from the time point t, based on the information in Ft. In most cases, the 
predictor of a function f is assumed to be linear, and only one-step-ahead prediction 
is considered. The forecast MSE of a function of Yt

i  will be denoted by WY th F( | ).  
The set of n time series Yt

j  is said to Granger-cause the set of m time series Yt
i  if

Ω ΩY t Y t s
jh F h F s t( | ) ( | \ { | })< ≤Y  for at least one h = 1, 2,  ...,

where / { | }≤j
t sF s tY  is the set containing all relevant information except for the 

information in the past and present of Yt
j .

In other words, if a function of Yt
i  can be predicted more accurately when the 

information in Yt
j  is taken into account, then the set Yt

j  is said to Granger cause 
Yt
i .
The application of CGC to GRNs can be interpreted as follows: a set of gene 

expression time series Yt
j  Granger-causes another set of gene expression time series 

Yt
i , if linear combinations of Yt

j  provide statistically more significant information 
about future values of linear combinations of Yt

i  than considering only the past 
values of Yt

i . Thus, past gene expression values of Yt
j allow the prediction of more 

accurate gene expression values of Yt
i . Another interpretation is that there is an 

information flow between these two sets of genes (Baccalá and Sameshima 2001). It 
is important to highlight that Granger causality is based on quantitative criteria and 
its results are, therefore, only an indication of causal relationships.

Notice that the definition of CGC generalizes both the original bivariate Granger 
causality (where Yt

i  and Yt
j  are 1-dimensional) and also, the multivariate Granger 

causality (where Yt
j  is m-dimensional and Yt

i  is 1-dimensional). In other words, 
bivariate and multivariate cases are particular cases of the CGC.

3. Canonical Correlation Analysis and Granger Causality
The main challenge in the identification of CGC consists in dealing with two sets of 
time series. Harold Hotelling (Hotelling 1935; Hotelling 1936) was the first to pro-
pose an approach to identify, measure, and maximize linear relationships between 
two sets of random variables, namely canonical correlation analysis (CCA). CCA 
can be interpreted as the bivariate correlation of two synthetic variables that are 
the linear combinations of the two sets of original (observed) variables. The origi-
nal variables of each set are linearly combined to produce pairs of synthetic vari-
ables that have maximal correlation. Mathematically, let X X X X= ( , ,..., )1 2 m and 
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Y Y Y Y= ( , ,..., )1 2 n be two sets with m and n variables each one, respectively. Then, 
canonical correlation analysis calculates a linear combination of the x’s and the y’s 
(i.e., aX and bY), which present maximum correlation with each other.

In the linear case, the Granger causality for sets of variables may be identified based 
on this idea initially proposed by Hotelling. Notice that the choice of linear combi-
nations may provide new variables for each set of time series potentially increas-
ing the power to identify CGC. However, the direct application of CCA to the gene 
expression time series is not suitable for quantifying temporal relationships for two 
reasons. First because the direct application is not taking into account the temporal 
precedence information that is the key to identify Granger causality. Consequently, 
it would return instantaneous correlations between Yt

j  and Yt
i . Second, it is neces-

sary to remove the effects from auto correlation relationships within the target time 
series set itself and from other time series not involved in the examination of predic-
tion. Note that the past values of the target set may contain information to predict its 
own future. Thus, if the target time series set is instantaneously correlated with the 
predictor and there is auto correlation within the target set, this may lead to a spuri-
ous Granger causality from the predictor to the target set. In other words, if we are 
interested in evaluating the Granger causality from set Yt

j  to Yt
i , we must remove 

the influences of past values of Yt
i  (and possibly other sets of time series) from the 

correlation measure.
Thus, it is necessary to modify the use of CCA to take into account the time flow 

information and also identify partial canonical correlations, since Granger causality 
needs to be distinguished from auto correlation relationships within the target time 
series. In its original proposal, CCA does not consider the partialization by a third 
set of time series. The partialization of CCA was described by Rao (1969) and is 
explained in more details in section 3.1. The bootstrap procedure and the likelihood 
ratio test for hypothesis testing are described in sections 3.2.1 and 3.2.2, respectively.

3.1 Identification

The problem presented here consists in verifying whether Yt
j  Granger-causes Yt

i.  
For the linear case, let Yt

i  (m-dimensional) and Yt
j  (n-dimensional) be two separate 

subsets of Yt, where Yt is a k-dimensional set of stationary time series (q ≥ m + n), 
– 1
j

tY  be the single time point lagged values of the time series in the set Yt
j ,  and 

1 1\- -
j

t tY Y  be the set 1-tY  subtracted by the set 1-
j

tY . For simplicity, only a single 
time-point lag (i.e., only a correlation between the observations at time t  and t – 1) is 
considered, which, in practice, should be enough for analyzing most gene expression 
data since they are usually constituted of short and time intervals repeated over time. 
However, other time lags may be evaluated with a very straight forward extension of 
this method. Considering the correlation as an indication of predictive power, Yt

j  is 
Granger non-causal for Yt

i  partialized by the set 1 1\- -
j

t tY Y  if the following condi-
tion holds:

 CCA( , | { \ })Y Y Y Yt
i

t
j

t t
j

- - - = =1 1 1 0r  (1)

Notice that CCA is applied to time lags in a partial manner and not to the instanta-
neous time point. It is important to highlight that information regarding past values 
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of Yt
i  belong to the set 1 1\- -

j
t tY Y . Correlation may be interpreted as the square root 

of R2 of a linear regression model, where R2 represents the variance of the response 
variable explained by the regressor. This means that when partial CCA is applied 
between the past values of one subset and present values of another subset, it identi-
fies Granger causality between the two groups of time series. 

In order to calculate r, set: 

 u a Y= ¢ t
i , (2)

and

 v b Y= ¢ -t
j

1 , (3)
for some pair of coefficient vectors a and b. Then, we obtain 

 Var Cov( ) ( )u a Y a a a
Y Y

= ¢ = ¢ Ât
i

t
i
t
i , (4)

 Var Cov( ) ( )v b Y b b b
Y Y

= ′ = ′−
− −

∑t
j

j j1
1 1t t

, (5)

 Var Cov( , ) ( , )u v a Y Y b a b
Y Y

= ¢ = ¢-
- -

Ât
i

t
j

j1
1 1t

i
t

. (6)

We shall then seek coefficient vectors a and b that maximizes

 Corr ( , )u v
a b

a a b b

Y Y

Y Y Y Y

=
¢

¢ ¢
-

- -

Â
Â Â

t
i
t
j

t
i
t
i

t
j

t
j

1

1 1

. (7)

Equation (7) represents the Pearson correlation applied to the synthetic variables u 
and v. Notice that the Pearson correlation coefficient is exactly the squared root of 
the R2 measure in univariate linear regression models, and it can be interpreted as 
the percentage of variance in the variable linearly predicted by the regressor (Seibold 
and McPhee 1979). Thus, in time series analysis, we apply linear regression to study 
how the past values of a time series can improve the prediction of the present values 
of another variable, which is the main idea of using vector auto regressive models to 
identify Granger causality (Lütkepohl, 2005). Then, since correlation is associated 
with predictive power, we suggest building sets of variables and their correspondent 
time lags, so that canonical correlation analysis can be applied to identify Granger 
causality between the sets of time series. The calculations described up to this point 
are not able to identify Granger causality involving more than two sets of time series 
(conditional Granger causality), but only pair wise correlations between lagged sets 
of time series CCA Y Yt

i
t
j, -( )( )1 . In order to include a third set of time series and 

consequently identify partialized Granger causality, it is necessary to develop a par-
tial canonical correlation analysis.

For partial canonical correlation analysis (Rao 1969) it is imperative to derive 
linear coefficients for combining original variables into canonical variables from 
variance-covariance matrices. The residual variance-covariance matrices of Yt

i and 
1-

j
tY  obtained after partializing out the effect of vector X Y Y= - -t t

j
1 1\  from both 

Yt
i  and 1-

j
tY , provide the solution. More specifically, suppose that, when three vec-

tors of variables are combined, Yt
i , 1-

j
tY and X, the following partitioned variance-

covariance matrix is built:
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1

1 1 1 1 1

1

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

-

- - - - -

-

Ê ˆS S S
Á ˜
Á ˜S = S S SÁ ˜
Á ˜

S S SÁ ˜Ë ¯

i i j ii
t t tt t

j j j j ji i
t tt t t t t

i j
t t

Y Y Y XY Y

Y Y X Y Y Y Y Y X

XXXY XY

, (8)

where the (r, s)th entry of ΣUV  is given by ( ) ( ) ( )T K
T

kr r ks s- - --
=1 1
1Σ U U V V  

(T: time series’ length). 
The matrices may be defined as:

 ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ    Y Y X Y Y Y X XX XYt
i
t
i

t
i
t
i

t
i

t
i| ,= -

-1
 (9)

 ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ    Y Y X Y Y Y X XX XYt
i
t
j

t
i
t
j

t
i

t
j

- - -= -
-

1 1 1

1

| ,  (10)

 ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ    Y Y X Y Y Y X XX XYt
j

t
i

t
j

t
i

t
j

t
i

- - -= -
-

1 1 1

1

| ,  (11)

 ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ    Y Y X Y Y Y X XX XYt
j

t
j

t
j

t
j

t
j

t
j

- - - - - -= -
-

1 1 1 1 1 1

1

| .   (12)

Then, the conditional variance-covariance matrices of Yt
i  and 1

j
t -Y , partializing 

out the effect of X is given as described by Anderson (1984), Johnson and Wichern 
(2002) and Timm (1975): 

 1

1

1 1 1

| |

|
| |

ˆ ˆ
ˆ

ˆ ˆ

i i ji
t t t t

ji
t t

j j ji
tt t t

-

-

- - -

Ê ˆS S
Á ˜S =
Á ˜S SË ¯

Y Y X Y Y X

Y Y X
Y Y X Y Y X

. (13)

The matrices A and B are defined as follows: 

 A Y Y X Y Y X Y Y X Y Y X=
- -

- - - -Σ Σ Σ Σ Σ    

t
i
t
i

t
i
t
j

t
j

t
j

t
j

t
i|

/

| | |

1 2 1

1 1 1 1 YY Y Xt
i
t
i |

/-1 2
, (14)

 B Y Y X Y Y X Y Y X Y Y X= − − − −

− −
ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ    

t
j

t
j

t
j

t
i

t
i
t
i

t
i
t
j

1 1 1 1

1 2 1

|

/

| | | YY Y Xt
j

t
j

− −

−

1 1

1 2

|

/

, (15)

and let 1 2 min( , )m nl l l≥ ≥ be the ordered eigenvalues of matrices A and B. Similar 
to regular canonical correlation analysis described by Johnson and Wichern (2002), 
the eigenvalues ld d m n( , ..., min ( , ))= 1  from matrices A and B will be the 
squared partial canonical correlation coefficients for the dth canonical functions and 
the eigenvectors ad and bd associated with the eigenvalue ld will be the linear coeffi-
cient vectors which combine the original variables into synthetic canonical variables. 
Therefore,

 CCA ( , | \ { }) .Y Y Y Yt
i

t
j

t t
j

- - = =1 1 1r l

As in regular canonical correlation analysis, the two matrices A and B have the same 
eigenvalues but with different eigenvectors. This means that each eigenvector bd is 

proportional to   

1 1 1

1/2 1/2
| | | .

- - -

- -
Â Â Âj j j i i i

t t tt t t dY Y X Y Y X Y Y X a
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In summary, the algorithm to compute CCA ( , | { \ })Y Y Y Yt
i

t
j

t t
j

- - - =1 1 1 r  can be 
described as follows:

Input: three sets of time series namely, Y Yt
j

t
i, , and 1 1\ .j

t t- -Y Y

 1. Estimate the covariance matrices S S S  

Y Y X Y Y X Y Y Xt
i
t
i

t
i
t
j

t
j

t
i| | |, , ,- -1 1

 and
S Y Y Xt

j
t
j

- -1 1|  by using the equations (9-12), respectively;
 2. Compute matrices A and B by using equations (14) and (15), respectively;
 3. Compute the eigenvalues 1 2 min( , )m nl l l≥ ≥  of matrix A (or B);

Output: CCA( , | \{ }) .Y Y Y Yt
i

t
j

t t
j

- - = =1 1 1r l

The value of r̂  varies from zero to one, where estimates close to zero indicate 
Granger non-causality. Although instantaneous correlations between gene expres-
sion time series cannot be directly used for the computation of Granger causality, 
cross-correlation between the predictor and target time series, where the predictor 
series is the one that may Granger cause the target time series, is the basis behind the 
calculations of “causality” (Granger, 1969). As described in the previous sections, 
CCA is applied to the time lags in a partialized manner and not to the instantaneous 
time step.

It is important to emphasize that CGA cannot be implemented in an equivalent 
Vector Auto regressive (VAR) model because the former is based on maximizing the 
correlation between two sets of variables, i.e., between predictor and target. Thus, 
the dependent variable (target) in VAR would be a linear combination of variables, 
whose coefficients differ for each predictor set. This is a fundamental difference 
between CGA and standard VAR models.

In the next section, a statistical test to verify the existence of Granger causality is 
described.

3.2. Statistical test 

CCA may be used as a tool to identify linear Granger causality since the existence 
of the latter is implied by the presence of a non-null canonical correlation. The main 
issue is, therefore, to define a measure r̂ , that, when above a threshold to be defined 
by an adequate statistical test, implies that the non-causality can be rejected. In other 
words, if r̂  is statistically different from zero, one cannot neglect Granger causality.

The hypothesis test to verify the existence of Granger causality between sets of 
time series is defined as follows:

 H : CCA0 1 0( , | )Y Y Xt
i

t
j
- = =r  (Granger non causality)

 H : CCA1 1 0( , | )Y Y Xt
i

t
j
- = πr , (Granger causality)

A statistical test is necessary since the partial CCA focuses on maximizing the cor-
relation between two sets of time series and this correlation be artificially increased 
due to different kinds of noise in the data. An appropriate statistical test is crucial and 
it will control type I errors. In the next two subsections we present two approaches to 
test Granger non causality between sets of time series, namely bootstrap and likeli-
hood ratio test (LRT).
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3.2.1. Bootstrap procedure

The bootstrap procedure presented here is based on the block bootstrap approach 
(Lahiri 2003). It consists of splitting the data into blocks of observations presenting 
some overlapping and then sampling the blocks randomly with replacement. The 
bootstrap procedure can be described as follows (Fig. 1):

Input: Set of time series Yt, and subsets Yt
i  and Yt

j .

 1. With overlapping blocks of length l block 1 is observations Yh : h = 1, 
…, l, block 2 is observations Yh h l+ =1 1: , , ,  block 3 is observations 
Yh h l+ =2 1: , , ,  and so forth. The bootstrap sample Yt

i*  is obtained by 
sampling blocks randomly with replacement from Yt

i  and laying them end-
to-end in the order sampled. The bootstrap sample Yt

j*  is obtained in an 
analogous way. This block resampling is carried out in order to capture the 
dependence structure of neighborhood observations, i.e., auto correlation. 
Moreover, the resampling of all time series of Yt

i  is carried out together, 
in order to capture contemporaneous correlations between time series. The 
same is performed for the time series of Yt

j . However, Yt
i  and Yt

j  are 
resampled independently, in order to break the relationship between the 
response and predictor variables. 

 2. After constructing the bootstrap samples Yt
i* and Yt

j*,  calculate 
CCA( , | *) ** *Y Y Xt

i
t
j
- =1 r  where X Y Y* * \ .*= - -t t

j
1 1  

 3. Repeat these steps (1) and (2) until the desired number of bootstrap samples 
is obtained.

 4. Use the empirical distribution of r* to test whether r = 0  (gather the infor-
mation from the empirical distribution of r* to obtain a p-value for r = 0 , 
by analyzing the probability of obtaining values equal or greater than r ). 

Output: a p-value for r  under the null hypothesis

    ( : ( , | ) ).H CCA0 1 0Y Y Xt
i

t
j
- = =r

Regardless of the block bootstrap that is used, the block length l must increase with 
increasing time series length T to render bootstrap estimators of moments and distri-
bution functions consistent (Carlstein 1986, Hall 1985, Künsch 1989). Similarly, the 
block length must increase with increasing sample size to enable the block bootstrap 
to achieve asymptotically correct coverage probabilities for confidence intervals and 
rejection probabilities for hypothesis tests. For the special case of an auto regres-
sive process of order one (Carlstein 1986), it was shown that the block length l that 
minimizes the asymptotic mean-square error  of the variance estimator increases at 

the rate of l µ T
1

3 . Since time series gene expression data are generally short, it is 
unfeasible to fit an AR model of higher orders. However, if a longer time series data 
becomes available, one may use the algorithm proposed by Bühlmann and Künsch 
(1999) in order to select the block length for the bootstrap procedure.

www.Ebook777.com
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3.2.2. Likelihood Ratio Test (LRT)

Despite the usefulness of the bootstrap procedure to test Granger non-causality, it is 
computationally intensive, becoming particul arly slow when accurate p-values are 
required. This is due to the fact that it becomes necessary to increase the number 
of bootstrap samples. To overcome this drawback, an analytical approach based on 
likelihood ratio test (LRT) may be useful.

Testing Granger non causality  as presented in section 3.2 is equivalent to test 
¢ =

-
a

Y Y X
Σ

t
i
t
j
1

0
|

, where 
1|ji

t t -
Â

Y Y X
 is the covariance between Yt

j  and Yt
j
- 1  par tialized 

by X, and a and b are the coeffi cient vectors that maximize the correlation between 
a Y¢ t

j
 and ¢ -b Yt

j
1  given X. Therefore, the Cluster Granger non-causality test may be 

set as H0
1

0:
|

Σ
Y Y Xt
i
t
j
-

=  (Granger non-causality) versus H1
1

0:
|

Σ
Y Y Xt
i
t
j
-

π  ( Granger 

causality) for the following statistics:

 − = − − − ( )− − −2 1
1 1 1

ln ( ( )) ln /| |Λ T k n t
i
t
i

t
j

t
j

t
i
t
jΣΣ ΣΣ ΣΣ  Y Y Y Y X Y Y X , (16)

where |.| is the determinant of the matrix. For large T, the statistic test is approxi-
mately distributed as a χ2 random variable. For relatively small T (e.g., less than 
100), which is very common in gene expression data, we suggest the use of Bartlett 
correction (Bartlett 1939) to  improve the asymptotic approximation of the statistic. 

FIgurE 1 Diagram describing the bootstrap procedure. Time series 1, 2, and 3 belong to group  
Yt
i  while time series 4 and 5 belong to group Yt

j .  Notice that blocks of group Yt
i  and Yt

j  are dif-
ferent and may be overlapped among them. The estimative r* is calculated by using the resampled 
time series.
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Timm and Carlson (1976) showed that the Bartlett correction under our problem 
arises by replacing the multiplicative factor T – 1 – (k – n) in the likelihood ratio 

statistic (equation 16) by the factor r T k n m n= - - - - + +2
1

2
1( ) ( )  to improve 

the χ2 approximation to the sampling distribution of equation (16). Thus, we reject 

H0 at significance level a if r t
i
t
i

t
j

t
j

t
i
t
j

m nln / ( )| |Σ Σ Σ  

Y Y Y Y X Y Y X- - -( ) > ¥1 1 1

2c a  where 
c am n×
2 ( )  is the upper (100 a)th percentile of a c2 distribution with m × n degrees of 

freedom.
Fujita et al. (2010b) carried out Monte Carlo simulations to compare the perfor-

mance of LRT with Bartlett correction-based test and the bootstrap-based test. The 
results show that: (i) the LRT is equivalent to Wald’s test in the multivariate model 
in terms of statistical power; (ii) the LRT is much faster and has a higher statistical 
power than the bootstrap method (when analyzing sets of time series data); and (iii) 
both the LRT and bootstrap can control the rate of false positives even under non-
Normal noises.

4. Functional Clustering in Terms of Granger Causality
In the previous sections, we studied how to identify Granger causality between sets 
of genes. The first step in this process is the definition of which sets of genes, or clus-
ters, will be used to construct the GRN and, therefore, to identify which genes belong 
to which cluster. One possible manner to perform this clustering is to use a priori bio-
logical information, such as Gene Ontology or Pathway analysis for functional clus-
tering. Here we describe a data-driven approach based on the gene expression levels 
that are ultimately responsible for the structural proximity of genes in the network. 
There are numerous definitions for network clusters in the literature (Edachery et al. 
1999). A functional cluster in terms of Granger causality can be defined as a subset 
of genes that strongly interact with each other but interact weakly with the rest of the 
network. For our data-driven approach for gene clustering, we use an extension of the 
concept of functional clustering initially proposed by Tononi et al. (1998) in neuro-
science. The authors applied mutual information to group the most co-activated brain 
regions. Similarly, we used the concept of information flow (Baccala and Sameshima 
2001) between sets of time series (Fujita et al. 2010a) for gene clustering. The gene 
expression time series are grouped by the spectral clustering algorithm (Ng et al., 
2002) in a way that genes which are structurally close in terms of Granger causality 
are clustered. We use the concept of Granger causality for sets of times series (Fujita 
et al. 2010a, 2010b) described in section 2 in order to define distance, degree and flow 
in gene expression time series. This method is, therefore, able to propose gene clus-
ters based on the Granger causality between genes, and genes within a given cluster 
may be functionally related in time. The definition of the optimal number of clusters 
for a given data set is important since it may facilitate biological data interpretation. 
In the next sections we detail an approach that may be used for the identification of 
the optimum number of clusters for a given data set.
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4.1. Functional clustering

Let y y yt t t
q1 2, , ,  be a set of q time series and wij ≥ 0 (i  j) a definition of similarity 

between all pairs of time series y t
i  and y t

j .  The purpose of clustering is to obtain 
highly connected time series within groups while seeing little connectivity, in terms 
of Granger causality, between distinct groups. This connectivity between time series 
may be represented in the form of a graph G = (V, E), where V is the set of vertices 
(genes or time series) and E is the set of edges (Granger causality) connecting two 
elements of V. Thus, each vertex vi  V represents a gene expressions time series y t

i .  
Two vertices vi and vj are connected if the similarity wij between the corresponding 
time series y t

i  and y t
j  is not zero (the edge of the graph is weighted by wij). In other 

words, a wij > 0 represents existence of Granger causality between time series y t
i  and 

y t
j .  On the hand, wij = 0 represents absence of Granger causality. When the problem 

is described in this way, the task of clustering time series in terms of Granger causal-
ity can now be reformulated using the graph, i.e., we want to find a partition of the 
graph such that there is less Granger causality between different groups and more 
Granger causality within the group.

Consider G = (V, E)  as an undirected graph with set of vertices V = {v1, …, vq} 
(where each vertex represents one time series) and a set of weighted edges E. In 
the following we assume that the graph G is weighted, i.e., each edge between two 
vertices vi and vj carries a non-negative weight wij ≥ 0. Thus, the weighted adjacency 
matrix of the graph G is the matrix W = wij; i, j = 1, …, q. If wij = 0, this means that 
the vertices vi and vj are not connected by an edge. Since G is undirected, the matrix 
W is symmetric, i.e., wij = wji. Therefore, in terms of Granger causality, wij can be 
defined as the distance between two times series y t

i  and y t
j .  The distance between 

two (sets of) times series y t
i  and y t

j  can be defined as follows:

 dist
CCA CCA

( , )
| ( , ) ( , ) |

.y y
y y y y

t
i

t
j t

i
t
j

t
j

t
i

= -
+- -

1
2

1 1  (17)

In this representation CCA ( , )y yt
i

t
j
- 1  is the Granger causality from time series y t

j  
to y t

i .  In the case sets of time series are considered, one can replace y t
i  and y t

j  by 
the considered set of time series y t

i  and y t
j  (Fujita et al. 2010a, b). The absolute value 

of CCA ranges from zero to one and higher CCA values correspond to an increased 
quantity of information flow and, thus, a shorter distance. It is necessary to point out 
that since the distance must be symmetric, the average between CCA ( , )y yt

i
t
j
- 1  and 

CCA ( , )y yt
j

t
i
- 1  is calculated. It becomes obvious that the higher is the CCA’s coef-

ficient, the lower the distance between the time series (or set of time series).
Additionally, the CCA corresponds to the Pearson correlation after the dimen-

sion reduction. As a consequence, dist ( , )y yt
i

t
j  satisfies three out of four criteria 

for distances: (i) non-negativity; (ii) dist ( , ) =y yt
i

t
j 0  if and only if y yt

i
t
j= ;  and 

(iii) symmetry; but does not satisfy the (iv) triangular inequality. Therefore, Pearson 
correlation (and CCA) is not a real metric. Despite this fact, Pearson correlation 
is frequently used as a distance measure in several gene expression data analysis 
(Bhattacharya and De 2008, Ihmels et al. 2005). The main advantage of consider-
ing the proposed definition of distance is the fact that it is possible to interpret the 
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clustering process by a Granger causality concept. Without loss of generality, it is 
possible to extend the concept of distance of a vertex vi (time series y t

i ) to a set of 
vertices / time series (sub-network) Yt

u , where u = 1, …, k and k is the number of 
sub-networks.

A necessary concept that needs to be introduced is the idea of degree of a time 
series y t

i  (vertex vi). It can be defined as:

 degree
in degree out degree

( )
( ) ( )

,y y y
t
i t

i
t
i

= +- -
2

 (18)

where in-degree and out-degree are respectively

   in degree CCA- ( ) | ( , | \ { }) |,y y y Y Yt
i

t
i

t t t= - -1 1  (19)

 out degree CCA- ( ) | ( , | \ { }) | .y Y y Y Yt
i

t t
i

t t= - -1 1  (20)

The concept of in-degree and out-degree represent the total information flow that 
“enters” and “leaves” the vertex vi, respectively. Hence, the degree of vertex vi repre-
sents the total information flow passing through vertex vi. 

Without risking oversimplification, one can extend the concept of degree of a ver-
tex vi (time series y t

i ) to a set of time series (sub-network) Yt
u , where u = 1, …, k 

and k is the number of sub-networks. In this scenario, the degree of sub-network Yt
u

is defined by:

 degree
in degree out degree

( )
( ) ( )

,Y Y Y
t
u t

i
t
i

= +- -
2

 (21)

where in-degree and out-degree are respectively

 in degree CCA- ( ) | ( , | \ { }) |,y y Y Y Yt
i

t
u

t t t= - -1 1  (22)

 in degree CCA- ( ) | ( , | \ { }) | .y Y Y Y Yt
i

t t
u

t t= - -1 1  (23)

Straightaway, while keeping the definitions of distance and degrees for time series 
and sets of time series in terms of Granger causality, it is possible to develop a spec-
tral clustering-based algorithm to identify sub-networks consisting of sets of time 
series that are highly connected, in terms of Granger causality, within a group and 
poorly connected between groups, in the regulatory networks. The algorithm based 
on spectral clustering is described as follows (Ng et al. 2002):

Input: The q time series ( ; , , )y t
i i q= 1  and the number k of sub-networks to be 

constructed. 

 1. Let W be the (q × q) symmetric weighted adjacency matrix where 
w wij ji t

i
t
j= = -1 dist( ; ),y y  i, j = 1, …, q. 

 2. Compute the non-normalized (q × q) Laplacian matrix L as (Mohar 1991):
  L = D – W (10)

  where D is the (q × q) diagonal matrix with the degrees d dq t
i

1, , ( ( ) degree y
= =d i qi ; , , )1   on the diagonal. 

 3. Compute the k eigenvectors {e1, …, ek} (corresponding to the k smallest 
eigenvalues) of L. 
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 4. Let U Œ ¥


q k  be the matrix containing the vectors {e1, …, ek} as columns. 
 5. For i = 1, …, q,  let y i

q kŒ ¥
  be the vector corresponding to the ith row of 

U. 
 6. Cluster the points ( ) , ,y i i q= Œ1� �k  with the k-means algorithm into clusters 

{ , , }Y Yt t
k1

 . For k-means, one may select a large number of initial values 
to achieve (or to be closer) the global optimum configuration. 

Output: Sub-networks { , , }Y Yt t
k1

 . 

It must be clear, however, that this clustering approach does not require the con-
struction of the entire network.

4.2. Estimation of the number of clusters

As presented in Section 4.1, structural distances in terms of Granger causality can be 
used as a framework for clustering genes (time series) or time series. Nevertheless, 
similarly to the majority of the clustering algorithms, including the spectral clustering 
also requires the desired or “optimum” number of clusters k as input. Consequently, 
the objective determination of the number of sub-networks k constitutes a major 
challenge. The most adequate number of sub-networks k depends on a diversity of 
parameters such as the biological system being studied and the number of genes to 
be evaluated in downstream wet lab experiments. For the purpose of this chapter, 
we describe an approach to identify clusters based on the density of the connectiv-
ity between time series included in the cluster and between clusters, where the first 
should be high and the second low.

The most suitable number of clusters in this specific context may be determined 
using the slope statistic (Fujita et al. 2014). This method is based on the silhouette 
statistic (Rousseeuw 1987) but may be considered more robust than the silhouette 
when clusters differ in sizes and variances.

In order to exemplify, a cluster index si in the case of dissimilarities should be 
defined. Consider a time series y t

i  in the data set, and denote by A the sub-network 
to which it has been assigned. If the sub-network A contains several time series other 
than y t

i ,  we can compute: ai t
i= ( , ),dist y A  which is the average dissimilarity of 

y t
i  to A. Considering another sub-network C, different from A, we can compute: 
dist ( , )y Ct

i
 which is the dissimilarity of y t

i  to C. After computing dist ( , )y Ct
i

 for 
every sub-networks C  A, we select the smallest of the results and express it by 
bi t

i= πmin ( , )C A y Cdist . The sub-network called B for which this minimum value 
was attained (that is, bi t

i= dist ( , )y B will be called the neighbor sub-network, or 
cluster of y t

i  (Fig. 2). This means that this neighbor cluster would be the second-best 
cluster for time series y t

i  meaning that if y t
i  could not belong to sub-network A, the 

best sub-network for it to belong to would be B. Therefore, once we obtain bi we can 
know the best alternative cluster for the time series in the network. But the calcula-
tion of bi depends on the existence of other sub-networks apart from A, within the 
data set. It is necessary, thus, to assume that there is more than one sub-network k 
within a given network (Rousseeuw 1987).
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FIgurE 2 An illustration of the time series involved in the computation of si. Notice that, in this 
example, time series y t

i  belongs to cluster A. Cluster B is the neighbor cluster of y t
i  (the second-

best cluster for time series y t
i ).

After the computation of ai and bi, the cluster index si can be obtained by combin-
ing them as follows: 

 S b a
a bi

i i

i i
= -
max( , )

.  (24)

It is clear from equation (24) that –1 ≤ si ≤ 1 for each time series y t
i .  Thus, there 

are at least three cases to be analyzed:

 1. si ≈ 1: For cluster index si to be close to one we require ai  bi. As ai is a 
measure of how dissimilar y t

i  is to its own sub-network, a small value 
means it is well matched. Furthermore, a large bi implies that y t

i  is badly 
matched to its neighboring sub-network. Thus, a cluster index si close to 
one means that the gene is appropriately clustered.

 2. si ≈ 0: If si is close to negative one, then by the same logic we see that 
y t
i  would be more appropriate if it was clustered in its neighboring 

sub-network.
 3. si ≈ –1: A cluster index si near zero means that the gene is on the border of 

two sub-networks.

In other words, the cluster index si can be interpreted as the fitness of the time 
series y t

i  to the assigned sub-network. 
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For each number of clusters k = 2, 3, …, q, the average cluster index s(k) can be 

computed as s k q sii

q
( ) .=

=Â1 1
 The average cluster index s(k) of the entire data 

set is a measurement of how tightly grouped all the genes in the network are, or 
how appropriately the genes have been clustered in a structural point of view and 
in terms of Granger causality. Fujita et al. (2014) suggest the use of the estimator   
k s k s k s kk q

p�
�= - + -Œargmax [ ( ) ( )] ( )( , , )2 1  where p is a positive integer value that 

can be tuned to interpolate between a criterion where s(k + 1) – s(k) is more impor-
tant (small p) and a criterion where the silhouette value has more weight (large p). 
The slope method identifies the maximum number of clusters that breaks down the 
structure of the data set. The difference between slope and silhouette statistic is the 
fact that, by maximizing the silhouette statistic, the number of clusters is estimated 
correctly only when the within-cluster variances are equal. In the general case in 
which within-cluster variances are unequal, maximizing the slope statistic yields 
an optimal number of clusters for separating within cluster and between cluster dis-
tances. The intuition behind the slope statistic is as following: suppose a scenario 
that there is a dominant cluster (one sub-network presenting high variance).When 
the number of identified sub-networks is equal or lower than the adequate number 
of sub-networks, the cluster index values are very similar. However, when the num-
ber of identified sub-networks becomes higher than the adequate number of sub-
networks, the cluster index value s decreases abruptly. This is due to the fact that one 
of the highly connected sub-networks is split into two new sub-networks. For more 
details, refer to (Fujita et al. 2014).

5. Network Construction from Large Datasets
When analyzing data generated from high-throughput technologies, gene networks 
would have to be constructed from large number of data sets (time series) obtained 
from a significantly smaller number of experimental points (observations). One pos-
sible solution to this problem is to reduce the dimensionality of the data prior to the 
statistical analysis. The dimension reduction procedure consists in clustering simi-
lar (highly correlated) time series and to remove the redundancy since time series 
belonging to the same cluster may share the same biological information.

Clustering may be performed using the Classification Expectation Maximization 
(CEM) algorithm– see Appendix (Celeux and Govaert 1992) and redundancy may be 
removed by the Principal Component Analysis (PCA). PCA allows us to keep only 
the most significant components leading to variability in the data set, thus reduc-
ing the number of variables for subsequent processing. We suggest retaining only 
components accounting for more than 5% of the temporal variance in each clus-
ter (Celeux and Govaert 1992). By applying the PCA, it is possible to extract the 
eigen-time series from each cluster. The eigen-time series are then clustered in terms 
of Granger causality as described in the section 4 and the network (CGC) can be 
inferred from clusters composed of the eigen-time series by applying the method 
described in Section 3. Figure 3 illustrates the entire process. 
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FIgurE 3 Pipeline to construct GRNs from large datasets. Similar time series are clustered by 
using CEM. PCA analysis is carried out to remove redundancy and obtain the eigen-time series. 
Then, the spectral clustering algorithm is applied to the eigen-time series to obtain the clusters 
(sub-networks). Notice that the clusters obtained here are based on the  Granger causality among 
eigen-time series. The CGC is inferred among the clusters composed of the eigen-time series.

6. Software
Granger is an R package containing all the methods described in this chapter for 
Granger causality identifi cation, including the bootstrap procedure and the LRT with 
Bartlett correction. It can be downloaded from: http://dnagarden.hgc.jp/afujita/en/
doku.php?id=ggranger.

Appendix
Classifi cation Expectation Maximization Algorithm (CEM)
Consider the case we have q times series Y y y y yt t t t t

q= { , , , , }1 2 3
 , and the unknown 

associated label variables (k groups) z = (z1, z2, …, zk), where zi = (zi1, zi2, …, ziq), and 
zig = 1  if time series y t

i  belongs to group g or 0 otherwise.
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The log-likelihood is given by:

 l z p ft ig g i gg

q

i

k
( | , ) log( ( | )),q lY z z=

== ÂÂ 11

where q is a vector containing the mixtures parameters pg, lg, and f(.) is the prob-
ability density function of Yt.

The first step is to set initial values to the mixture parameters q(0) which contain 
proportions, means, and variances of the Gaussian mixture. Then, the current condi-
tional probabilities of each observation belong to the group g are estimated consider-
ing the current estimates of the vector of mixture parameters q(m–1), where m = 1, 2, 
…, M denotes the iteration number. The conditional probabilities (expectation step) 

are estimated using the formula w
p f
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The following step (classification) is to allocate each observation to the group with 
the highest probability of containing it, i.e., label the data considering
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The maximization step is then achieved by obtaining maximum likelihood esti-
mates for the mixture parameters in q(m). The algorithm then returns to the expecta-
tion step until convergence of all parameters and labels has been achieved within 
allowed limits.

Note that as CEM is based on likelihood maximization, it requires additional infor-
mation about the probability distribution of the data, which in most cases is assumed 
to be multivariate Gaussian. For automatic selection of the number of clusters k, one 
may use the slope statistic as aforementioned or the Bayesian Information Criterion 
(BIC) introduced by Schwarz (1978). The asymptotic properties and consistency of 
BIC are well known and have been described extensively in the literature (Hannan 
and Quinn 1979, Haughton 1988). The optimum number of clusters minimizes the 
quantity BICk t kl k v q= - +2 ( | , ) log( ),Y q  where vk is the number of parameters in 
a model with k clusters.
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Abstract
RNA is synthesized using one of the DNA strands as a template and has the same 
chemical structure except that thymine is replaced by uracil (U). Some RNA mole-
cules can be the end product in themselves and some can in turn be used as a template 
for the creation of other molecules, proteins, by a process called ‘translation’. Gene 
expression is the process by which information from a gene is used in the synthesis 
of a functional gene product. Bacterial genomes usually contain several thousand 
different genes. Some of the gene products are required by the cell under all growth 
conditions and are called ‘housekeeping genes’. Gene regulation can occur at three 
possible places in the production of an active gene product. First, the transcriptional 
regulation second, the translational regulation and third the post-transcriptional or 
Post-translational regulation mechanisms. The regulatory mechanisms controlling 
gene expression are typically discovered by mutational analysis. Cis-acting mole-
cules act upon and modulate the expression of physically adjacent, operably linked 
polypeptide-encoding sequences. Trans-acting factors affect the expression of genes 
that may be physically located very far away, even on different chromosomes. The 
expression of a particular gene may be regulated by the concerted action of both cis 
and trans-acting elements. Since changes in gene expression levels are thought to 
underlie many of the phenotypic differences between species, identifying and char-
acterizing the regulatory mechanisms responsible for these changes is an important 
goal of molecular biology. The main aim of this chapter is to provide scattered infor-
mation of RNA sequencing and gene expression in gathered form to the scientist and 
researchers.
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1. The Fundamentals of DNA, RNA and Gene 
The deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are linear chains of 
polynucleotide molecules linked by nucleotide bonds. A single nucleotide consists 
of one cyclic penta-carbo sugar (pentose sugar), one nitrogenous base and one phos-
phate group. The basic chemical difference in DNA and RNA is due to sugar and a 
nitrogenous base. The DNA contains deoxyribose sugar while ribose sugar is present 
in RNA. The ribose sugar in RNA has a hydroxyl group (-OH) on the 2’ carbon and 
deoxyribose sugar of DNA does not. The lacking of hydroxyl group on the 2’ carbon 
makes DNA more stable than RNA. The nitrogenous bases are of two main type’s 
purine and pyramidine derivatives, in which adenine (A) and guanine (G) are purine 
derivative while cytosine (C), thymine (T) and uracil (U) are pyramidine derivatives. 
Adenine, guanine and cytosine are found in both DNA and RNA, but thymine is only 
found in DNA and uracil is uniquely present only in RNA. Uracil is simply an un-
methylated form of thymine. The carbons found in penta-carbo sugar are numbered 
1’ to 5’ (pronounced as 1-prime to 5-prime) only to make difference between the 
numbering of atoms of nitrogenous bases (1 to 6 or 1 to 9). The atoms of the purine 
ring are numbered from 1 to 9, and those of the pyrimidine ring are numbered from 
1 to 6. The phosphate group is linked to the 5’ carbon of the sugar in both RNA and 
DNA. Nucleotide is a combination of nitrogenous base-sugar-phosphate; where 1’ 
and 5’ carbons of a sugar molecule are attached to a nitrogenous base and a phos-
phate group respectively. Two nucleotides of a single DNA or RNA strand are linked 
together by a versatile phosphodiester bond (phosphate with two ester linkages). In 
this bond a phosphate group is shared between 3’ carbon of one sugar to the next 5’ 
carbon of adjoining sugar of another nucleotides. This alternating sugar and phos-
phate molecules forms the structural framework of DNA and RNA termed as the 
“sugar-phosphate backbone”. It defines the directionality (5’ to 3’ or 3’ to 5’ depend-
ing on the convention) of nucleic acids, as well as the directionality of molecular 
processes like, replication, transcriptional and translational initiation.

The two strands of nucleotides of DNA molecules runs anti-parallel and twisted 
together to form a ladder called “double helix” (Watson and Crick 1953a). The outer 
side of this double helix is a negatively charged and hydrophilic sugar-phosphate 
backbone, while in the inner core nitrogenous bases are found which hold the two 
strands together by hydrogen bonds. Contrary, mostly RNA consists of single strand 
of nucleotides linked together by phosphodiester bonds only and no as such hydrogen 
bonds exists, due to which RNA is structurally and chemically less stable than DNA. 
Therefore, we can say that there are two versatile properties of DNA, one is comple-
mentation and another is anti-parallelism. The RNA molecules don’t have these two 
exclusive properties of complementation and anti-parallelism, except transfer RNA 
(tRNA), which forms intra-strand double helix but to a limited extent (Gerald 1989).

Due to the properties of complementary base pairing and anti-parallelism (run in 
opposite directions), two strands of DNA are complementary to one another, where 
A always pairs with T by two hydrogen bonds; G always pairs with C by three hydro-
gen bonds (Chargaff et al. 1951, Chargaff et al. 1952, Zamenhoff et al. 1952). For 
example: If one strand is 5’-AAGGCTTC-3’ the reverse complementary strand will 
be 3’-TTCCGAAG-5’. Therefore, complementation and anti-parallelism is important 
for storage and the transmittance of genetic information. In a double stranded DNA 
molecule, by convention one strand is denoted as coding or forward or sense or plus 
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or non-template strand and the other strand is non-coding or anti-sense or minus or 
template strand, depending on the ease of author. The directionality of DNA or RNA 
strand is assigned on the basis of free phosphate (at 5’) or free hydroxyl (at 3’) group 
attached to the 5’ or 3’ carbon of the sugar found at the end of the strands. A gene is 
a sequence of nucleotides or a combination of meaningful genetic codes that tran-
scribes and translates a functional product. A gene can be present on a DNA strand 
in any one of two orientations, which may be on a sense strand or on an anti-sense 
strand.

But in this chapter, we will focus mostly on chemical, sequence, structural, func-
tional, temporal and spatial features of RNA, which makes it a very attractive can-
didate for sequencing and expression. Also, RNA (especially messenger RNA) is a 
connecting link between DNA and proteins, so to analyze the protein we must have a 
library of full set of the transcriptome. Therefore, to get the full set of the transcrip-
tome, sequencing of RNA is an inevitable step. 

1.1 Staring from Biggest to Smallest RNA

RNA is a short form of RiboNucleic Acid. Like DNA, RNA molecules are manu-
factured in the nucleus of the cell. However, unlike DNA, RNA is not restricted 
to the nucleus. It can migrate into other parts of the cell. On the basis of sequence 
(like coding and non-coding RNA, big and small RNA), structure (messenger and 
transfer RNA), function (regulatory and non-regulatory RNA), spatial (nuclear and 
extra-nuclear RNA, cell and tissue specific RNA) and temporal (RNA expressed 
at different developmental stages) attributes RNA can be classified into many cat-
egories. like, messenger RNA (mRNA), transfer RNA (tRNA), ribosomal RNA 
(rRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), microRNAs 
(miRNA), small interfering RNA (siRNA), small non-coding RNA (tsnRNA), small 
modeling RNA (smRNA), PIWI RNA (piRNA) etc.

Some RNA, called messenger RNA (mRNA) communicates the genetic message 
found in the DNA out to the rest of the cell for the purpose of promoting the synthesis 
of proteins (Gilbert 1987). 

Some RNA, Small nuclear RNA (snRNA), also commonly referred to as U-RNA 
(uridylate RNA), is a class of small RNA molecules that are found within the cell 
nucleus in eukaryotic cells (Hodnett and Harris 1968). The length of snRNA ranges 
from 80 to 350 nucleotides. Their primary function is in the processing of pre-
messenger RNA (hnRNA) in the nucleus. They have also been shown to aid in the 
regulation of transcription factors (7SK RNA) or RNA polymerase II (B2 RNA), and 
maintaining the telomeres.

The non-coding RNA (ncRNA) does not encode a protein, but this does not mean 
that such RNAs do not contain information nor have function. These ncRNAs include 
microRNAs (miRNA) and small nucleolar RNA (snoRNA), as well as likely other 
classes of yet-to-be-discovered small regulatory RNAs, and tens of thousands of lon-
ger transcripts, most of whose functions are unknown (Mattick and Makunin 2006).

A large group of ncRNAs are known as small nucleolar RNA (snoRNA). These 
are small RNA (60-300 nucleotides long) molecules that play an essential role in 
RNA biogenesis and guide chemical modifications of ribosomal RNAs (rRNAs) and 
other RNA genes (tRNA and snRNAs) but never translated into protein (Mattaj et 
al. 1993). They are located in the nucleolus and the Cajal bodies of eukaryotic cells 
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where they are called scaRNA (small Cajal body-specific RNAs). More than thirty 
kinds are known.  

MicroRNAs (miRNAs) are 19-23 nucleotide long non-coding RNAs that regulate 
gene expression at the post-transcriptional level, either by endonucleolytic cleavage 
or by translational inhibition (Carrington and Ambros 2003, Rhoades and Bartel 
2004). They play major roles in key aspects of plant development and their response 
to environmental stresses. miRNAs and siRNAs are ~21–26-nucleotide (nt) RNA 
molecules. Although both types of molecules can be functionally equivalent, they 
are distinguished by their mode of biogenesis (Carmell and Hannon 2004, Kim 
2005). miRNAs are generated from ss-precursor transcripts that fold into imper-
fectly base-paired hairpin structures. Usually only a single mature, stable miRNA is 
liberated from each stem- loop precursor. Strikingly, bioinformatics analyses suggest 
that up to 30% of human genes may be regulated by miRNAs (Lewis et al. 2005). 
Bioinformatics analyses indicate that target genes in vertebrate species may number 
in the thousands.

Short interfering RNAs (siRNAs) are the canonical participants in RNA interfer-
ence (RNAi) and are generated from perfectly base-paired dsRNA precursors. The 
regulatory pathways mediated by these small RNAs are usually collectively referred 
to as RNAi or RNA silencing. miRNAs and siRNAs can silence cytoplasmic mRNAs 
either by triggering an endonuclease cleavage, by promoting translation repression, 
or possibly by accelerating mRNA decapping (Doench et al. 2003, Allen et al. 2005, 
Simard and Hutvagner 2005) . 

Repeat-associated siRNA (rasiRNAs) are major classes of siRNAs which are 
encoded by heterochromatic regions including centromeres and telomeres that con-
tain many repetitive elements (transposons or retro-elements) within the genome 
(Volpe et al. 2002). The fascinating world of small RNAs includes another RNA 
known as PIWI RNA (piRNA) that belongs to the complex of related pathways 
termed RNA silencing. The piRNAs are short single stranded RNAs arising from 
a Dicer-independent pathway, which are found in germ cells and associate with the 
PIWI subfamily of Argonaute proteins. In many organisms piRNAs are derived from 
repetitive sequences (Aravin et al. 2007, Houwing et al. 2007).

Promoter associated small RNAs (PASRs) are another class of small RNAs of 
unknown size that were identified by high-throughput screening. These PASRs have 
an unknown length but cover a region of about -500 to +500 base pairs (bp) relative 
to transcriptional start sites. They apparently differ from small RNAs implicated in 
RNA silencing because conventional miRNA cloning procedures failed to identify 
them. PASRs are typically found within 0.5 kb of transcription start sites and about 
40% of them map to 5’ expressed sequence tags. Their function is unknown so far 
but they possibly regulate transcription as exogenous PASRs can reduce expression 
of genes with homologous promoter sequences (Han et al. 2007, Ryan et al. 2009).

1.2  Sequencing of Gene to Genomes and Transcript 
to Transcriptomes and Beyond

This chapter is written in a broad view to familiarize the reader, why and how to 
sequence a single DNA and RNA transcript to the whole genome and transcrip-
tome expressed in an organism at particular instance of time? What are the goals 
of sequencing the transcriptome? How sequencing technologies are helpful for 
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molecular biologists and clinicians in molecular cloning, genetic engineering, iden-
tifying pathogen resistant genes, comparative and evolution studies? First, a brief 
history of DNA Sequencing will be introduced, and then every aspect of RNA 
sequencing will be discussed. Previously, every types of structural and functional 
RNA, whether they are protein coding or non-coding have been discussed. Finally, 
we will increase our horizon of RNA sequencing methods and technologies involved. 

An ideal sequencing technologies should be accurate, economical and high-
through put in nature. In the past few years, it has evolved with a tremendous pace 
and acts as the driving force of genomic, meta-genomic and transcriptomic research 
and development. Sequencing is a gateway for molecular, phylogenetic and biosta-
tistical characterization of vast amount of genomic and transcriptomic data. The 
major aims of sequencing of the transcriptome are annotation and quantification. 
Annotation involves identification of novel genes or transcripts, exons, splicing junc-
tions, ncRNAs etc. While, quantification is the process of identification of abundance 
of transcripts in a genomic or transcriptomic sample. Therefore, genome and tran-
scriptome sequencing projects subsequently opens door for new research areas and 
several modern applications.

Tremendous development of biological technologies over the last decade has 
resulted in the whole genome sequencing of many important model organisms of 
different categories belonging from lower plants to higher plants and similarly from 
lower animals to higher animals. Luckily, Haemophilus influenzae is the first pro-
karyote to be sequenced having genome size 1,830,137 base pairs (Fleischmann et al. 
1995). A Fungi, Saccharomyces cerevisiae is the first eukaryotic genome sequence 
with 12,068 kilo bases (Goffeau et al. 1996). A Nematode, Caenorhabditis elegans is 
the first multicellular organism to be complete sequenced (The C. elegans Sequencing 
Consortium 1998). An insect, Drosophila melanogaster (120 mega bases) (Adams et 
al. 2000), an important plant model Arabidopsis thaliana (Meinke et al. 1998), and 
many more microbial genomes are being sequenced. By 2001, the first draft version 
of the sequence of base pairs in human DNA had been released that means, human 
chromosome number 22 in 1999 (Dunham et al. 1999) and chromosome number 21 
in 2000 (Hattori et al. 2000). We are now moving from the pregenomic era character-
ized by the effort to sequence the human genome, to a post-genomic era that concen-
trates on harvesting the fruits hidden in the genomic text. 

An overarching challenge in this post-genomic era is the management and analysis 
of enormous quantities of DNA and RNA sequence data. These data are now a chal-
lenge for molecular biologists, bioinformaticians, biotechnologists, biostaticians, cli-
nicians and computer programmers to analyze and deduce their purposely research. 
Understanding the biological systems with hundreds of thousands of DNA and RNA 
genes will require a good cataloging, better planning and best organizing skills at 
diverse levels such as: primary DNA sequence in coding and regulatory regions; 
temporal and spatial RNA expression during development; polymorphistic variation 
within a species or subgroup; sub-cellular localization and intermolecular interaction 
of protein products and finally physiological response and disease.

1.3 Methods and Technologies of RNA/Transcriptome Sequencing

There are two most common methods of DNA sequencing, one is Maxam and Gilbert 
and another is Sanger and Coulson. The Maxam and Gilbert method is a chemical 
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degradation of a double stranded DNA to identify the order of A, C, G, and T (Maxam 
and Gilbert 1977). The Sanger and Coulson developed an enzymetic synthesis of a 
second strand of DNA, complementary to an existing template popularly known as 
chain termination sequencing (Sanger and Coulson 1978). Since, Sanger sequencing 
is highly efficient, involves no hazardous chemicals and low radioactivity, therefore 
it was adopted in several laboratories and whole genome sequencing projects. In 
recent times, fluorescent labels are usually attached to the dNTPs, leading to new 
horizons for automated sequencing. However, these DNA sequencing method cannot 
be implemented on RNA because of different chemical composition and more prone 
to nuclease attack experimentally. Also, eukaryotic RNA molecules are not neces-
sarily co-linear with their DNA template, as introns have to be excised by alternative 
splicing.

The Direct Chemical Method for RNA Sequencing.

A chemical method in which different base-specific chemical reactions directly 
sequences 3' end-labelled RNA with 32P. Here purified RNA molecules are labelled at 
their 3' termini with T4RNA ligase [5'-32P] pCp. The RNA reaction mixture contains 
purified RNA, [5'-32P] pCp, ATP, and RNA ligase. After a partial, specific modifica-
tion of each kind of RNA base (Adenine, Cytosine, Guanine and Uracil), an amine-
catalyzed strand scission generates labelled fragments whose lengths determine 
the position of each nucleotide in the sequence. Five different chemical reactions 
are performed to modify the RNA bases; Guanosine (G) reaction, Adenosine (A) > 
Guanosine (G) Reaction, Uridine (U) Reaction, Cytidine (C) > Uridine (U) Reaction 
and Aniline Reaction. 

In all reactions, aniline induces a subsequent uniform strand scission of the phos-
phate backbone along the length of the RNA molecule. This strand scission at the site 
of a chemical attack generates a relatively even distribution of radioactive labelled 
fragments (32P). These fragments can be easily resolved according to length by a 
polyacrylamide gel electrophoresis (PAGE). The guanosine and uridine reactions are 
each monospecific where dimethyl sulfate modifies guanosine and hydrazine modi-
fies uridine. While, the dispecific adenosine > guanosine reaction is primarily an 
adenosine reaction where adenosine is modified by diethyl pyrocarbonate. Similarly, 
the dispecific cytidine > uridine reaction is mainly a cytidine reaction where cytidine 
is also modified by hydrazine. The electrophoretic fractionation of the labeled frag-
ments on a polyacrylamide gel, followed by autoradiography, determines the RNA 
sequence with the known sequence of RNA (Miyazaki 1974, Gilbert et al., 1977). 
Each band on autoradiograph of PAGE gel displays a series of nucleotide fragment 
of discrete length generated by cleavage at a specific base, and the four lanes cor-
respond to cleavages at the bases as follows: guanosine (G), adenosine (A > G), cyti-
dine (C > U), and uridine (U). Therefore, radioactive nucleotide fragments of RNA 
labelled at the 3' end yields clean cleavage patterns for each purine and pyrimidine 
and allows a determination of the entire RNA sequence out to 100-200 bases from 
the labelled terminus.

This chemical sequencing method does not depend on secondary structures of 
RNA molecules; otherwise it can hinder the RNA sequencing. We can directly corre-
late the primary structure of long non-coding RNA (lncRNAs) from the sequencing 
data. This method is also useful for sequencing the purines of 5’ end-labeled RNA 
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molecules. This RNA sequencing allows detection of even very low abundance tran-
scripts in a very precise and accurate manner using only picomole amounts of RNA 
sample. There are certain clearcut advantages of this technique which complements 
other RNA sequencing methods; (i) the strand scission reactions does not depends on 
the anomalies due to sequence and secondary structure; (ii) it does not require prim-
ers for adjunct cDNA synthesis, as cDNA synthesis dictates the transcript classes to 
be captured and represents the material-limiting and most length bias-prone step in 
the experimental pipeline; and (iii) the RNA substrates for sequence-specific recog-
nition are not limited to those synthesized in vitro (Chang et al. 1977, Baralle 1977, 
Cartwright et al. 1977, Kramer and Mills 1978, Lockard et al. 1978, McGeoch and 
Turnball 1978, Ross and Brimacombe 1978, Zimmern and Kaesberg 1978). These 
RNA sequencing techniques are very helpful in identifying the secondary struc-
ture of RNA molecules as well. These techniques in conjunction with an enzymatic 
base-specific attack, we can location and determine the sequence of tight hairpin 
loops. Because tight secondary structures are generally enzymatic non-hydrolyzed 
at temperature 90oC or pH >13 (Keller et al. 1977, Simoncsits et al. 1977, Stanley and 
Vassilenko 1978). Thus, these techniques are useful for determining the structures of 
RNA molecules in solution as well as RNA-protein complexes (or RNPs).

The first RNA to be sequenced was the alanine transfer RNA (tRNA), which was 
purified by Holley et al., in 1965. They applied similar sequencing methods with 
some modifications that were used for protein sequencing: partial hydrolysis with 
enzymes, and fractionation of the products on ion exchange columns. Since every 
nucleotide contains a phosphorous atom, so RNA is most suitable candidate for 
32P- labelling in vivo, therefore Sanger and his colleagues applied this pre-labelling 
technique for the sequencing of 32P-labeled RNA. It has great advantages both in 
the simpler fractionation of oligoribonucleotide fragments and sensitive detection 
by autoradiography (Sanger et al. 1965). Later, several post-labelling techniques 
for sequencing RNA by high resolution PAGE were developed. These techniques 
include enzymatic digestion (Keller et al. 1977), chemical degradation (Peattie 1979, 
Tanaka et al. 1980) and the wandering-spot method (Lockard et al. 1978).

The use of radioisotopes for labelling is one of the most risky, skill intensive and 
expensive parts of these methods, but still they are highly sensitive. Since fluores-
cence-labelling for sequencing nucleic acid is least hazardous, therefore it is pre-
ferred over radioisotopes-labelling techniques for DNA sequencing (Smith et al. 
1986, Prober et al. 1987). However for sequencing RNA, very sensitive and specific 
fluorescent-labelling technique has not been commercialized yet.

Small RNA/Non-coding RNA Sequencing.

Relative to protein coding RNA, structural RNAs are more difficult to identify 
because of their reduced alphabet size, lack of open reading frames, and short length. 
When sequencing small RNA other than the cellular RNA (mRNA), it is first required 
to select the desired type and size of small RNA/non-coding RNA. For instance, 
select the target RNA species e.g. 17-23nt for microRNAs, 25-32nt for piRNAs to be 
sequenced as 17-32 nt transcript/read can encompass both populations. This can be 
performed with a size exclusion gel, through size selection magnetic beads, or with 
a commercially developed kit. Once isolated, fluorescent or radioactive linkers are 
added to the 3’ and 5’ end of purified RNA. Direct ligation of linkers to RNA mol-
ecules and then sequence into the adapters which reveals strand specificity.
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Radiolabeling and fluorescent labelling are widely used in DNA and RNA 
sequencing techniques. Fluorescent dyes conjugated with nucleic acids offer clear 
cut advantages over a radioactive label, first it can be detected in real time manner 
with high resolution and second, fluorescent dyes are non-hazardous therefore no 
need of intensive safety measures for waste disposal. Fluorescent dyes have ability to 
label different parts of RNA molecules to study the dynamics, structural motifs and 
motions of RNA molecules. Fluorescent labeling of nucleic acids through enzymatic 
reactions are generally preferred in which organic fluorophores are chemically intro-
duced into primers or dNTPs. They are then incorporated into nucleic acids either 
through PCR amplification or using DNA/RNA polymerases or terminal polynucle-
otide transferase. Apart from this, there are several means of direct incorporation 
of fluorescent dye into nucleic acids by chemical methods like, fluorescent label-
ing of RNA with tetramethylrhodamine (TMR) hydrazine and through ethylenedi-
amine attachment. Liu et al. proposed RNA sequencing by fluorescence-labelling 
and sequenced oligoribonucleotide fragments by partial digestion (Liu et al. 1980). 
They used sodium periodate to oxidize the 3’ terminus of RNA into dialdehyde, 
and then the fluorescent dye (fluorescein-5-thiosemicarbazide) was added to label 
the 3’ terminus of RNA through the condensation reaction between carbazide and 
aldehyde. The sequence of the terminally labeled RNA was partial digested with 
very base specific ribonucleases enzymes viz., RNase T1 (Gp¯N), RNase U2 (Ap¯N), 
RNase B.cerus (Up¯N and Cp¯N) or RNase PhyI (Gp¯N, Ap¯N and Up¯N). Then these 
labeled RNA fragments were separated on 15% polyacrylamide gel (containing 15% 
N-dimethylformamide for short RNA fragments) electrophoresis (PAGE). Finally 
PAGE gel was observed under ultraviolet (UV) light to detect the clear fluorescent 
bands on the gel to sequence the 3’labelled RNA fragments. Therefore, in spite of the 
traditional radioisotope labeling method, these fluorescence-labeling and fluorescent 
photograph techniques avoids the hazards of radioactivity; also it is convenient and 
safe to sequencing big as well as small RNAs.

RNA/Transcriptome Sequencing Technologies. 

The availability of DNA sequencing methods and technologies has rapidly produce 
vast amounts of sequence information this triggered a paradigm shift in genomics 
and transcriptomics. The diversity of applications of these technologies has opened 
new doors to identify the sequence of smallest to the biggest DNA and RNA of any 
type, any form and any nature. There are shotgun methods for detection of alterna-
tive splicing, full-length RNA sequencing for the determination of complete tran-
script structures, and targeted methods for studying the process of transcription and 
translation. 

For mRNA sequencing utilize full read length for alignment to compare with 
the known genome map. Reads map to individual transcript components to iden-
tify exons, UTRs and non-coding RNAs. Also ascertain alternative splice variation 
as well as gene expression to refine existing annotation of genomic components. 
These include genome re-sequencing and polymorphism discovery, mutation map-
ping, DNA methylation, histone modifications, transcriptome sequencing, gene dis-
covery, alternative splicing identification, small RNA profiling, DNA-protein and 
possibly even protein-protein interactions. Technological advances in the sequencing 
field support in-depth characterization of the transcriptome. There are now many  
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genome-wide RNA sequencing methods used to investigate specific aspects of gene 
expression and its regulation, from transcription to RNA processing and translation. 
Tag-based sequencing approaches, Like Serial Analysis of Gene Expression (SAGE), 
Cap Analysis of Gene Expression (CAGE) and Massively parallel signature sequence 
(MPSS) are applied for studying transcription, alternative initiation and polyadenyl-
ation events. These SAGE, CAGE and MPSS all use Sanger method of sequencing. 

Isolate the total RNA samples that are treated by DNase with standardized pro-
tocol. Avoid protein contamination during RNA isolation. For plant samples, total 
RNA20 μg; for animal samples (human and mouse), total RNA5 μg; for other 
animal samples, total RNA10 μg. For all samples, concentration should be  200 ng/
μl. Complicated library of all different types of RNA are constructed having short-
insert (up to 200 nucleotides) as well as long-insert (more than 1000 nucleotides) 
library. Following sequencing strategies are opted for sequencing of RNA and RNA 
transcriptomes having different types of RNAs. For mRNA sequencing, construct 
simpler library not limited to 17nt reads.

Currently, there are three widely deployed deep sequencing platforms in hundreds 
of research labs and in some core facilities worldwide, the Solexa Sequencing, 91 or 
101 Paired-End Illumina sequencing, and Applied Biosystems SOLiD sequencing. 
Each instrument essentially massively parallelizes individual reactions, sequencing 
hundreds of thousands to hundreds of millions of distinct, relatively short (50 to 
400 bases) RNA sequences in a single run. In 1987, the first automatic sequenc-
ing machine (namely AB370) was introduced by Applied Biosystems (AB) which 
caused the paradigm shift in sequencing. Subsequently in year 1998, the auto-
mated sequencers based on Sanger sequencing technology and associated software 
became the driven force of human genome project (HGP) (Collins et al. 2003). In 
2005, since vast amount of sequencing data was generated by HGP, for assembling 
and solving this puzzle 454 pyrosequencing was launched by 454 Pyrosequencing. 
Immediately in 2006, Solexa released Genome Analyzer, followed by Sequencing 
through Oligo Ligation Detection (SOLiD) introduced by Agencourt. These founder 
companies were then purchased by other companies: Agencourt was purchased by 
Applied Biosystems, and 454 was purchased by Roche, while Solexa was purchased 
by Illumina. These are three most massively parallel sequencing systems in the next 
generation sequencing (NGS), but all are having some advantages and some limi-
tations. For example, Illumina GA/HiSeq System is low throughput and fast turn-
around in nature, while Roche 454 system is even lower throughput in nature. AB 
SOLiD system has a low error rate. Therefore, one NGS system is very high perfor-
mance in terms of read length, accuracy, throughput and infrastructures, another 
NGS system has some other features.

When the whole transcriptome is sequenced by these three technologies: Roche 
454 System, AB SOLiD system and Illumina GA/HiSeq system, standard bioinfor-
matics procedures are applied to annotate small RNA sequencing libraries and to 
identify novel RNA transcripts. For re-annotating the sequenced transcriptome, first 
identify expressed transcripts from trace read alignments to the target genome, then 
screen for well known structural RNAs (e.g. ribosomal RNA, tRNAs, snoRNAs, 
etc), finally determine which types of small RNA components are present. Now align 
transcripts to current version of miRbase to identify expressed microRNAs, simi-
larly align transcripts to piRNA database built from recently published candidate 
piRNA sequences and set remaining unknown transcript population aside, examine 
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for potentially novel RNAs. The transcribed regions fall into several categories viz., 
correlate well with annotated (coding) gene loci, non-coding RNAs and novel tran-
scripts. To further characterize the novel transcript, RNA secondary structure pre-
diction is performed starting from thousands of candidate sequences. First, select a 
suitable RNA secondary structure prediction algorithm like, RNAfold (Vienna pack-
age), Mfold (Zucker lab). Then look for favorable energy conformations (∆G), Mean 
free energy (MFE), mean free energy index etc. Now, visualize the putative second-
ary structures drawn by RNAfold algorithm in RNAplot (Vienna) and StructureLab 
(Shapiro lab). Finally, indentify homology across multiple species to manually 
inspect the highly conserved regions of the putative secondary structures of RNA.

FiGuRe 1 Workflow of RNA/ transcriptome sequencing

1.4  Applications of RNA and Transcriptome 
Sequencing in Modern Research 

Since, genome and transcriptome sequencing projects have opened doors or even 
corridors of research and vast array of advance applications starting from the anno-
tation, quantification and characterization of the novel genome and transcriptome. 
Although there are several advances made so far in characterizing several eukaryote 
transcriptomes but still many challenges are associated with its application. RNA 
sequencing will undoubtedly be valuable for understanding transcriptomic dynam-
ics during development and normal physiological changes, and in the analysis of 
biomedical samples, where it will allow robust comparison between diseased and 



Free ebooks ==>   www.Ebook777.com

81RNA Sequencing and Gene Expression Regulation

normal tissues, as well as the sub-classification of disease states. The RNA sequenc-
ing provides dynamic range to quantify gene expression level from a few-hundred 
fold to more than 8,000-fold. Transcriptomic data insights a researcher an ability to 
distinguish different isoforms and to distinguish allelic expression. Another clear cut 
advantage of RNA-Seq compared with other transcriptomics methods is reduction 
in the cost of mapping transcriptomes of large genomes. Other broad applications 
are, Annotation of Protein-Coding Gene, Gene Expression Profiling, Transcriptome 
shotgun sequencing, Noncoding RNA Discovery and Detection, Transcript 
Rearrangement Discovery, Single-Nucleotide Variation Profiling. We will discuss 
them below in very concise manner. 

Annotation of Protein Coding Gene. 

The transcriptome of any organism exclusively eukaryotes, includes protein-cod-
ing RNAs and non-protein-coding RNAs, both of which can have many alternative 
splice variants, transcription start sites, and termination signals. Most protein-cod-
ing genes of higher eukaryotes contain one or more intervening complex sequences 
(introns), which are spliced out during pre-mRNA processing to generate a combi-
nation of exons, which are reassembled to form mature mRNA, and subsequently 
translated into protein. This alternative splicing in higher eukaryotes is responsible 
for the production of different protein isoforms from the same gene (Croft et al. 
2000). The genomic and transcriptomic data of human and other organisms which 
are generated by so many genomic projects are still not completely analyzed, puzzled 
out or not fully well understood (Brent 2008). The transcriptome sequences can be 
aligned to the genome of either the same species (cis-alignment) or a related spe-
cies (trans alignment) if a reference genome sequence is not available. To date, next-
generation sequencing technologies have been used to generate EST libraries for 
many model organism species and human tissues. Expressed sequence tags (EST) 
are very useful for annotating protein-coding RNAs for organisms who’s genomic 
and transcriptomic sequences are not available. In such cases, annotations are done 
by comparative analysis based on homology searching of the derived EST sequences 
with reference genomes of related species (trans alignment). Since, annotation of 
protein-coding gene would require availability of information of all transcription 
start and stop codons, polyadenylation sites, exon-intron junctions, GT-AG donor 
and acceptor sites, splice variants, and regulatory sequences. If these valuable infor-
mation of a fully characterized genome are available, then one can easily annotate 
the protein coding genes of a newly sequenced genome. Sanger-based transcriptome 
sequencing in the form of ESTs or full length cDNAs (FLcDNAs) is an accurate and 
effective means for annotating protein-coding genes (Adams et al. 1991, Hillier et al. 
1996, Seki et al. 2002).

Gene Expression Profiling.

Large-scale gene expression profiling is the need of hour in present scientific era. 
It is extensively studied for mapping 3’ ends by serial analysis of gene expression 
(SAGE), mapping 5’ ends by cap analysis of gene expression (CAGE) and microarray 
technologies, which are based on transcriptome sequencing. SAGE and CAGE are 
more advantageous than microarrays, such as the ability to detect novel transcripts, 
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the ability to obtain direct measures of transcript abundance, and the discovery of 
novel alternative splice isoforms (Wang 2007). Gene Expression profiling is helpful 
to snapshot the active and passive components of total transcriptome of a cell, tissue 
or organism at a given time to distinguish between different cell types, disease states, 
developmental stages etc. 

Transcriptome Shotgun Sequencing.

Transcriptome sequences, produced by next generation technologies, achieve suf-
ficient sequencing depth to provide an adequate representation of the cellular tran-
scriptome. With the elimination of the cloning step and common use of random 
priming, next-generation EST sequencing data became indistinguishable from those 
generated by transcriptome shotgun sequencing. In this approach, mRNA is reverse 
transcribed into cDNA, which is then fragmented and sequenced using a next-gener-
ation technology to generate reads covering the full length of a transcript.

Non-coding RNA Discovery and Detection. 

By computational algorithms, we can identify the small noncoding RNAs (ncRNAs) 
from the transcriptome data. These ncRNAs have recently identified as crucial reg-
ulators of vast array of cellular functions starting from development and cell fate 
determination. These 18-30 nucleotide long RNA molecules such as siRNA and 
miRNA are transcribed from genomic DNA, especially intronic in origin but never 
non-protein coding. These RNAs serve as posttranscriptional regulators of gene 
expression by translational inhibition, translational cleavage or by both mechanism 
in several organisms (Filipowicz et al. 2008, Watanabe et al. 2008). Mature miRNAs 
and siRNAs bind to complementary sequences of exons especially un-translated 
regions (UTR) of genes and causes inhibition or cleavage of target mRNAs, thereby 
regulating their translation rates (Filipowicz et al. 2008).

Transcript Rearrangement Discovery. 

Genome rearrangements are common features in case of human cancers, which are 
caused by an aberrant transcriptional events or due to aberrant use of alternative 
promoters (Hanahan and Weinberg 2000; Pal et al., 2011). Such rearrangements may 
include translocations, inversions, small insertions/deletions (indels), and copy num-
ber variants (CNVs) and may occur in all or a fraction of cancer cells within a tumor. 
While cytogenetics and microarray-based methods have been developed to identify 
genome rearrangements, most of them are suitable for the detection of only particular 
types of rearrangements and have limited resolution. Next-generation sequencing 
technologies offer important advantages over conventional methods such as microar-
rays or array comparative genomic hybridization (array CGH) for high-throughput 
detection of genome aberrations (Morozova and Marra 2008). In particular, high 
throughput transcriptome sequencing can efficiently identify all types of genome 
rearrangements such as fusion transcripts derived from chromosomal structure vari-
ations (Eichler 2001; Zelent et al. 2004), trans-splicing (Mayer and Floeter-Winter 
2005; Horiuchi and Aigaki 2006), transcription-induced chimerism (Akiva et al. 
2006; Parra et al. 2006), and pseudogenes (Balakirev and Ayala 2003; Zheng et al. 
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2005). Since, these aberrant modifications affect coding sequences therefore it can 
be detect potentially a single nucleotide resolution. Also, transcriptome sequencing 
is enough sensitive to detect variants that are present in a subpopulation of cells 
(Thomas et al. 2007). Therefore, analyzing aberrant genome rearrangements events 
are particularly important while studying tumor genome pathology. These genome 
rearrangements can be studied by transcript End Sequence Profiling (tESP) tech-
niques (Al-Hajj 2007; Volik et al. 2006).

Single Nucleotide Polymorphism Profiling. 

Human genome sequencing has revealed an abundance of single nucleotide varia-
tion/polymorphism (>1.42 million) distributed throughout an individual human 
genome, due to which all the races and all the faces exists (Wang et al. 2008, Wheeler 
et al. 2008). These single nucleotide polymorphism (SNP) may occur in the germline 
or somatic cells, such as those that comprise human tumors genome (Greenman et 
al. 2007, Wood et al. 2007). Although all types of genetic polymorphisms can be 
identified by resequencing of whole genomes, or via transcriptome sequencing stud-
ies focusing only to analyze coding parts of the genome. As the cost of sequencing 
continues to fall, RNA-Seq is expected to replace microarrays for many applica-
tions that involve determining the structure and dynamics of the transcriptome. The 
sequencing redundancy thus contributes to increased costs associated with finding 
rare sequence variants and the need for subsequent validation work, often using 
Sanger-based resequencing.

1.5 Concluding Remarks

In summary, we have discussed so many different types of RNAs in a very brief 
manner to familiarize our reader in one go. Since, the basic composition of every 
RNA molecule is same then why there is so much diversity in structure and func-
tion? Reasonably, we can say that different structural and functional capabilities are 
engraved in the building blocks of RNA or they are encoded into the correspond-
ing genomic DNA fragments. Therefore, understanding the combinations of these 
building blocks and the resulting secondary structures are basically dependent on 
the exact sequencing of RNA. As a rule of thumb, we can say that the function of 
any macromolecule is dependent on the structure, and its structure is dependent on 
the sequence. So, if we determine the sequence correctly, then we can correlate or 
simulate their function as well. Although, there has been significant progress in tech-
nologies and sophisticated computational algorithms for elucidating the sequence, 
structure, and functions of RNAs.

1.6 Future dimensions

We are still in infancy for understanding RNAs structure relative to DNA and protein 
structures. There are still many non coding RNAs for which the cellular, metabolic, 
developmental, or physiological roles are not clear. We have to elucidate whether some 
or many RNAs act by more than one mechanism and whether any RNAs, apart from 
messenger RNA have intrinsic functions to encode proteins. Since, microarray tech-
nology, transcriptome sequencing (RNA-Seq), and high-throughput next-generation 
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(second generation) sequencing technologies are all having their own limitations. 
There should be multilevel filtering and rigorous experimental and computational 
parameters to identify and screen different types of RNA from the whole set of the 
transcriptome. Although there is a serious need in technological enhancement (third 
or fourth generation sequencing) before interpreting whether an RNA is a ncRNA, 
mRNA, tRNA, rRNA or solely a byproduct of transcription.

2.  The Fundamentals of Gene Expression and Regulation
In this section we will discuss about a gene, then how a gene expresses itself into 
a protein, and what are the regulatory check points and regulation mechanism to 
control the over and under expression of a gene? Similarly, how a gene expresses 
itself with the aid of some specific types of proteins or protein complexes to produce 
another type of proteins? Can a DNA gene be regulated by an RNA gene or non cod-
ing RNAs? How do different cell types in a multicellular eukaryotic organism get 
signals to which types of proteins they must prepare? All the answers to such fasci-
nating questions lie in the study of gene expression and its regulation.

Since there is no such jacketed definition of a gene, but we can simply say that a 
gene is an array of exons and introns located in a nucleus or cytoplasm or mitochon-
dria matrix or chloroplast of an organism, and responsible for coding a protein. There 
are limited ways of gene expression mechanism but unlimited ways of gene control 
or regulation mechanism depending on the organism from viruses to angiospermic 
plants to mammals. According to the “central dogma of molecular biology” (Crick 
1958, 1970) gene expression means “DNA makes RNA and RNA makes protein”, 
which includes four to five step process like - replication, transcription or reverse 
transcription, RNA processing, translation and post-translational modifications.

While gene regulation varies from organism to organism at every regulatory 
process and points. For example, gene regulation can act on replication level, tran-
scription or reverse transcription level, RNA processing level, translation and post-
translational modification levels. Studies on these regulations from replication to 
translation level of gene expression play a pivotal role in many areas of biology. 
Therefore, gene regulation in insects is totally different from gene regulation in 
bacteria, gene regulation in mammals is totally different from gene regulation in 
insects, even the gene regulation in mammals one cell type is totally different from 
gene regulation in another cell type. In multicellular organisms, different cell types 
express characteristic sets of transcriptional regulators, as a result of which, spe-
cific combinations of regulators are turned on and off. Such developmental and gene 
regulatory patterns, causes variety of cell types in the mature multicellular organ-
isms. For example, gene in plasma cell’s continuously regulates the gene expression 
responsible for the antibody it synthesizes, while the gene in thyroid cells regulates 
the gene expression responsible for hormone at the demand of the situation.

2.1.  Analysis of Gene expression and regulation 
in Prokaryotes and eukaryotes

This section begins to illuminate the readers about, how a well-decorated array of 
DNA (gene) is transcripted to make mRNA, and how the mRNA is translated into 
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protein. Next, we will discuss about the regulation of genes expression in prokary-
otes and eukaryotes. Before discussing the detailed processes of gene expression and 
regulation in prokaryotes and eukaryotes, first understand the deoxyribonucleic acid 
(DNA) as a genetic messenger and decoder of RNA and protein. DNA is the only 
molecule where the fate of all living processes of a cell is sealed, unless and until 
there is no genetic rather genomic alteration (addition or deletion of nucleotides). 

Oswald Theodore Avery in 1944 demonstrated that DNA is the genetic material 
(Avery et al. 1944). Then, James D. Watson and Francis Crick in 1953 deciphered the 
double helical stranded structure of DNA, leading to the central dogma of molecular 
biology (Watson and Crick 1953, Crick 1954, Crick and Watson 1954, Crick 1956). In 
most of the organisms, genomic DNA (in terms of size, composition and percentage 
similarity of nucleotides) defines the species and individuals. Therefore, expression 
and regulation of DNA or gene sequence is the fundamental point of the research 
to know the structures and functions of cells for decoding the life mysteries. Gene 
expression is the process of transcription of DNA into mRNA and finally translation 
of mRNA into protein. Genes encode proteins and proteins dictate cell function. 
Simply, a gene is a well-decorated array of DNA in terms of arrangements of com-
ponents like, a 5’ upstream promoter, 5’ untranslated region, exon with a start codon 
(AUG), intron with GT or GU and AG dinucleotide, an exon with stop codon, a 3’ 
untranslated region and finally a 3’ terminator signal. The upstream promoter site is 
a region on the 5’ side of the DNA strand which indicates that other vital components 
of a gene is forthcoming. The start codon (mostly AUG), which codes for methionine, 
serves as the signal for the anticodon loop of tRNA to start translation of a mRNA 
gene into protein. In most of the eukaryotes, the intron with GT or GU and AG 
dinucleotides signals for the alternative splicing of introns. The terminal exon with 
stop codon (UAA, UAG, UGA any one of them) signal for the termination of protein 
synthesis, as they do not encode any aminoacid. 

Therefore, thousands of genes expressed in a particular cell determine what that 
cell can do. Moreover, each step in the flow of information from DNA to RNA to 
protein provides the cell with a potential control point for self-regulating its func-
tions by adjusting the amount and type of proteins it manufactures.At any given 
time, the amount of a particular protein in a cell reflects the balance between that 
protein’s synthetic and degradative biochemical pathways. On the synthetic side of 
this balance, recall that protein production starts at transcription (DNA to RNA) and 
continues with translation (RNA to protein). Thus, control of these processes plays a 
critical role in determining what proteins are present in a cell and in what amounts. 
In addition, the way in which a cell processes its RNA transcripts and newly made 
proteins also greatly influences protein levels. Regulation of gene expression at tran-
scription and translation level occurs in both prokaryotes and eukaryotes, but it is 
far more complex in eukaryotes. Interestingly, in the most complex organism, that 
means human there is only ~ 2.5% gene (48 Mega base pairs out of 3200 Mega base 
pairs) is of protein coding in nature and the rest of it is protein non-coding means 
junk. It means the regulatory checkpoints are constrained only to 2.5% of the whole 
genome and the rest 97.5% remains unregulated. This statistics remains un-noticed 
for a long until and unless small non-coding RNAs (miRNAs and siRNAs) were 
identified. 

To survive, cells must be able to respond to changes in their surrounding environ-
ment. Genes interact via transcription factors or a regulatory protein with different 
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types of receptors available inside or on the membrane surface and respond to the 
organism’s environment. There are generally two categories of genes-constitutive 
and non-constitutive (regulated). Constitutive genes are always expressed, that 
means remains “on” regardless of environmental conditions for example, housekeep-
ing genes. Such genes are the most important element of a genome, and they control 
the ability of self-replication (formation of new DNA from old one), expression (for-
mation of proteins), and damage control (through DNA damage repair mechanism). 
Therefore, these genes are responsible for the panoramic view of an organism’s cen-
tral metabolism and protein diversity. In contrast, most of the genes are regulated 
genes whose expression product (protein) is needed only occasionally. It means, 
these genes work as an electrical safety switch which is turned “on” and “off” at the 
demand of the situation. But how do these genes get turned “on” and “off”?

Every eukaryotic cell (except gametes) has the same DNA with the same informa-
tion, then what is the reason behind the diversity of different cell types? This diversity 
of cell types is due to the expression of different sets of genes. For instance, an undif-
ferentiated fertilized egg looks and acts quite different from a lungs cell, a neuron, 
or a liver cell because of differences in the genes each cell expresses. Interestingly, 
in eukaryotes, the default state of gene expression is “off” rather than “on,” as in 
prokaryotes. The first secret is almost all eukaryotic genes must be shut “off” in 
order to allow for normal cell function. The second secret lies in chromatin, or the 
complex of DNA and histone proteins found within the cell’s nucleus. These histone 
proteins remodel the chromatin into two forms, famously known as heterochromatin 
and euchromatin. The euchromatin is a loose packing state of DNA in chromosome, 
which permits the replication and transcription of DNA or gene. While, in the het-
erochromatin stage DNA is very tightly packed into the chromosome, which resists 
both the replication and transcription of DNA or gene. When a specific gene is tightly 
bound in heterochromatin with histone, that gene is “off” . Because, histone protein 
majorly consists of positively charged amino acids lysine and arginine, causing them 
to interact electrostaticly with the negatively charged phosphate groups of the DNA 
nucleotides. How do eukaryotic genes manage to escape this silencing? This hap-
pens by modifications of the positively charged aminoacids of histone to create some 
domains in which DNA is more loosly bound and others in which it is very tightly 
bound. DNA methylation is one mechanism which is coordinated with histone modi-
fications, leading to silencing of gene expression. Sometimes, histone molecules are 
acetylated at specific locations, causing less interaction with DNA, thereby loosely 
packing of DNA in euchromatic state. The regulation of the loose packing of DNA 
or genes in euchomatic state is a hot cake of research for exploring other ways of 
molecular regulation at replication, transcription and translational level. In the com-
ing section we will discuss about the specific molecules control and their regulatory 
check and bounds of gene expression at transcriptional and translational level.

Molecule Regulation of Gene Expression. 

Since, only some of the genes (constitutive genes) are active throughout the growth 
and development of an organism and the rest of the genes (non-constitutive or regu-
lated genes) within a cell’s genome get activated (turned “on”) at the demand of the 
situation. The gene expression is regulated at various stages, but most famously at: 
Transcription, Post-transcription, Translation and Post-translation levels.
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In prokaryotes, due to non-compartmentalization and compactness of genome, 
several genes are arrangend in a tandem array, famously known as operon. These 
“operons” are the unit of bacterial gene expression and regulation, e.g. lac operon 
(Jacob et al. 1960, Jacob and Monod 1961) , trp operon (Morse et al. 1969, Squires et 
al. 1975, Lee and Yanofsky 1977). These operon contains structural gene and regu-
lator elements like promoter, operator and repressor arranged in a very disciplined 
manner from 5’ end to 3’ end in a contiguous fashion. In prokaryotes, most regula-
tory proteins are specific to one gene and one promoter, which is enough for expres-
sion of cluster of genes. For instance, some repressors bind near the start of mRNA 
production for an entire operon, or cluster of co-regulated genes. The regulation of 
such genes differs between prokaryotes and eukaryotes. In prokaryotes, mostly the 
presence of regulatory proteins like repressor protein prevents transcription, there-
fore operon is under negative control and therefore turn off the genes. Here, the 
prokaryotic cells rely on protein–small molecule binding for example, repressor 
protein-lactose binding in lac operon, repressor protein-tryptophan binding in trp 
operon. These small molecule like, lactose and tryptophan acts as ligands which 
signals the cell whether gene expression is needed or not. The repressor or activator 
protein binds near its regulatory target- the promoter region or promoter-operator 
overlapped region of a gene. Some regulatory proteins must have a ligand attached 
to them which make compatible to bind, whereas others are non-compatible to bind 
when attached to a ligand.

In eukaryotes, regulation of gene expression is much more complex than prokary-
otes, simply because there is no such existence of a single promoter for a cluster of 
genes. We can say that a set of eukaryotic genes is not arranged under the control of 
only one promoter, rather enhancer and silencers are also nearly equally responsible 
for the regulation of a gene. The complete upstream regulatory region of a gene is 
split into core promoter [-30 to -40 bases away from the transcription start position 
(+1)], proximal promoter [-40 to -200 bases away from the transcription start position 
(+1)], and enhancer sequences [-200 bases to -50 kilo bases away from the transcrip-
tion start position (+1)]. Also the enhancer sequences are prevalently present on far 
upstream [about -50 kb away from core promoter in 5’ flanking region] and far down-
stream [about +50 kb away from core promoter in 3’ flanking region] of a gene. The 
promoters and enhancers are collectively known as cis-acting elements. 

Parallel to such vastly spanned upstream regulatory regions (+1 to -50 kb in 5’ 
flanking region) or regulatory binding sites, eukaryotic genes are also regulated by 
several transcription factors (TFs) or trans-acting factors. Since, TFs are regulatory 
proteins which interact with DNA as well as surrounding proteins for activation and 
the functioning of the whole DNA-protein complex. Therefore, TFs have very unique 
modular structure one part of which is responsible for DNA binding, another for 
dimer formation and another for transcriptional activation. Also, the eukaryotic gene 
expression is usually regulated by a combination of several regulatory proteins or 
transcription factors (eg. TAFs, TBP, TFIIA, TFIIB, etc.) acting together, in a very 
coordinated manner. 

2.2 Transcriptional and Post-transcriptional Gene Regulation

Gene expression is generally known as the formation of protein from the DNA gene 
through an intermediate molecule, messenger RNA (mRNA). Therefore, eukaryotic 
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gene expression is combination of two parallel processes active at different loca-
tions- transcription in the nucleus and translation in the cytoplasm. Regulation of 
these two main steps of protein production, transcription and translation is critical to 
this adaptability. Cells can control which genes get transcribed and which transcripts 
get translated. Further, they can biochemically process transcripts and proteins in 
order to affect their activity. Since, thousands of mRNA transcripts are produced 
every second in every cell. Therefore, the amounts and isoforms of mRNA molecule 
in a cell decides the function of that cell. In fact, the primary control point for gene 
expression is usually at the very beginning of transcription and this type of regula-
tion continues on every step of post-transcription, then on the beginning of transla-
tional and finally continues to post-translational modifications (more or less). RNA 
transcription makes an efficient control point because many proteins can be made 
from a single precursor mRNA molecule after RNA processing. Transcript process-
ing by the means of alternative splicing provides an additional level of regulation for 
eukaryotes, which is a type of post-transcriptional regulation. These precursor RNA 
transcripts are processed in the nucleus before they are exported to the cytoplasm in 
the mature form for translation. 

Transcriptional Regulation in Prokaryotes. 

In prokaryotes, the nutrient availability allows bacteria to rapidly adjust their tran-
scription patterns (switching “on” and “off” of genes) in response to environmental 
conditions. Similarly, DNA binding protein or regulatory proteins (repressors, co-
repressors and activators) are also under control of nutrient availability. In addition, 
regulatory sites on prokaryotic DNA are typically located close to a promoter site 
which plays an important role in gene transcription. Repressor protein that prevent 
transcription, binds to an operator sequence upstream of the gene. It regulates the 
operon by negative control mechanism. Activator protein that promotes transcrip-
tion, binds to promoter site or enhancer sites of the operon. It regulates the operon 
by positive control mechanism. The promoters sequences found at the 5’ upstream 
region of a gene, which signals to regulate initiation of transcription. Most com-
mon promoter sequences in prokaryotes are TATAAT or Pribnow Box which lies 
10-base pair (-10) upstream of start of transcription initiation and TTGACA–35-bp 
(-35) upstream of start of transcription (start codon). On the contrary, in eukaryotes 
the most prevalent promoter sequences are TATA Box (TATAAA) also known as 
Hogness-Goldberg box which lies 19-27 base pair upstream of start of transcription. 
Another consensus promoter sequence is CAAT Box (CAAT) upstream of TATA 
Box in either orientation and similarly GC Box (GGGCGG) in either orientation.

The lac Operon and its Regulation 

The lac operon is responsible for the regulation of normal lactose (lac) metabolism 
in E. coli bacteria which resides in the mammalian gut. The lac operon of E. coli 
has four major components, (i) a common promoter (lacP)–site to which RNA poly-
merase binds (ii) operator (lacO)–site to which repressor protein binds (iii) three 
structural genes—(a) Lac Z-codes for beta-galactosidase, (b) Lac Y–codes for per-
mease and (c) Lac A-codes for thiogalactosidase transacetylase and (iv) a regulator 
gene (lacI)–codes for repressor protein. A repressor protein consists of four identical 
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polypeptide chains having two binding sites; one binds to allolactose and another 
binds to DNA.

First, enzyme permease actively transports extracellular lactose into the cell, 
which cannot be easily diffused across the E. coli cell membrane. Finally, enzyme 
beta-galactosidase breaks intracellular lactose into glucose and galactose to uti-
lize the reserve energy of lactose. This enzyme also converts lactose into a related 
compound allolactose and similarly converts allactose into glucose and galactose. 
Allolactose acts as a key player (as an inducer) in regulating lactose metabolism. 
Although the function of the thiogalactoside transacetylase is still not known, it is 
hypothesized that this enzyme might involve in detoxification and in lactose utiliza-
tion. Since, the structure and enzymatic activity of this enzyme have been found 
conserved in many bacterial species. 

Regulation of lac Operon in the Presence of Lactose

In the presence of lactose, allolactose is formed, which binds to one of the active site 
of repressor protein. This binding changes the conformation of another binding site 
of repressor protein which binds to DNA, therefore inactivates the repressor protein 
to bind the DNA. Due to this phenomenon, the lac operator (lacO) site remains unoc-
cupied so RNA polymerase binds to the promoter site (lacP), the transcription of 
all structural genes (lacZ, lacY and lacA) takes place back to back. Therefore, these 
three enzymes responsible for lactose metabolism are synthesized simultaneously, 
by a specific molecule allolactose known as an inducer. The lac operon is therefore 
under inducible control, it means – the presence of lactose / allolactose induces the 
transcription of the structural genes (turned on).

Regulation of lac Operon in the Absence of Lactose

In the absence of lactose, there is no formation of allolactose, the active repressor 
protein transcribed from lacI, binds to the lac operator (lacO). Since, lac operator 
partially overlaps the 3’end of the lac promoter (lacP) and 5’ end of first structural 
gene lacZ. Therefore, binding of repressor protein to the operator site, prevents the 
binding of RNA polymerase at operator site and transcription of the structural genes 
(lacZ, lacY and lacA) are prevented. The lac operon is therefore under negative con-
trol because of the presence of active repressor protein that prevents transcription of 
the structural genes (turned off).

The trp Operon and its Regulation

The tryptophan (trp) operon in E. coli, controls the biosynthesis of the amino acid 
tryptophan, which has a bulky aromatic side chain and an indole group. The trp 
operon is regulated at a transcriptional level by two mechanisms—one by co-repres-
sor and another by attenuation process. This operon is under negative repressible con-
trol, where transcription of structural genes are normally “on” and must be repressed 
(“off”) by the binding of tryptophan to the repressor protein. The trp operon consists 
of (i) a common promoter (trpP)–site to which RNA polymerase binds (ii) an opera-
tor (trpO)–site to which repressor protein binds, (iii) a 5’ untranslated region (UTR) 
leader sequence (162 nucleotide long) containing four regions (region 1, region 2, 
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region 3 and region 4) (iv) five structural genes- (a) trpE, (b) trpD, (c) trpC, (d) trpB 
and (e) trpA, (v) a regulatory gene (trpR) –codes for repressor protein, and (vi) attenu-
ator (A)–regulates mRNA transcription. Similar to the lac repressor, the trp repres-
sor protein has also two binding sites, one that binds to DNA at operator site and 
another that binds to the tryptophan (as an activator).

Regulation of trp Operon in the Absence or Low Level of Tryptophan

When cellular level of tryptophan is in low level or absent, transcription of all the five 
structural genes forms five enzymes which synthesize tryptophan from chorismate. 
The trp operator (trp O) partially overlaps the 3’end of the trp promoter (trp P) and 
5’ end of UTR, therefore inactive repressor protein alone cannot bind to the opera-
tor site. Since, RNA polymerase easily binds to the trp promoter (trp P) and begins 
transcribing the DNA, producing the region1 of 5’ UTR leader sequence. Then a 
lagging ribosome attaches to the 5’ end of the 5’UTR and begin to translate region1 
while region 2 is already being transcribed by leading RNA polymerase. The ribo-
some stalls at the Trp codons in region1 because low level of tryptophan. Because the 
lagging ribosome is stalled, region2 is not covered by the ribosome when region 3 is 
transcribed by leading RNA polymerase. When region3 is transcribed it spontane-
ously pairs with the complentary region 2 forming a secondary structure “antiter-
minator”. Finally, the region 4 is transcribed by leading RNA polymerase, it cannot 
pair with region 3, because region 3 is already paired with region2; therefore the 
secondary structure “attenuator” never forms and transcription of all the five struc-
tural genes continues.

Regulation of trp Operon in the Presence of Tryptophan

When cellular level of tryptophan is high, it binds to one of the binding site of repres-
sor protein, and conformationally makes another binding site of repressor protein 
compatible to bind to the DNA at operator site. Therefore, transcription of all the 
five structural genes is inhibited and the synthesis of tryptophan from chorismate 
is inhibited and the synthesis of more tryptophan does not take place. Similarly to 
the case of low level of trptophan, RNA polymerase easily binds to the trp promoter 
(trp P) and begins transcribing the DNA, producing the region1 of 5’ UTR leader 
sequence. Then a lagging ribosome attaches to the 5’ end of the 5’UTR and begin 
to translate region1 while region 2 is already being transcribed by leading RNA 
polymerase. The ribosome translates region1 while the leading RNA polymerase 
fastly transcribes region 3. Most importantly, the ribosome does not stall at the Trp 
codons in region1 because tryptophan is abundantly present. Since, the leading ribo-
some covers part of region 2 preventing it from complementary pairing with region 
3. Finally, the region 4 is transcribed by leading RNA polymerase and pairs with 
region 3. This pairing of regions 3 and 4 produces a secondary structure “attenuator” 
that terminates transcription of all the five structural genes. This fine-tuning system 
of four leader regions 1, 2, 3 and 4 is known as attenuation, which uses complemen-
tary mRNA structures to stop both transcription and translation depending on the 
concentration of an operon’s end-product. The trp operon is therefore under negative 
repressible control, it means –the presence of tryptophan represses the transcription 
of the structural genes and –negative control because of presence of active repressor 
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protein prevents RNA polymerase that prevents transcription. In eukaryotes, there 
is no exact equivalent of attenuation, because transcription and translation is tempo-
rally and spatially separated, making this sort of coordinated effect impossible. 

Transcriptional Regulation in Eukaryotes.

As we have discussed earlier, eukaryotic genes are not arranged under the control of 
only one promoter rather enhancer sequence, silencer sequence, insulator sequence, 
and several transcription factors are equally responsible for the expression of a gene. 
Normally, transcription begins when an RNA polymerase binds to a core promoter 
sequence on the DNA molecule. This core promoter (TATA box) sequence is almost 
always located just upstream from the transcriptional start (AUG / +1), though it can 
be located downstream of the mRNA (3’ end). 

Genes are also Regulated by Enhancers and Transcription Factors (TFs)

As enhancer sequences are located thousands of bases away either upstream or 
downstream, bound by an enhancer-binding protein or activator protein, causes the 
binding of TFs with the promoter of the gene. This activator protein binding causes 
DNA to loop out, bringing the TFs into physical proximity with RNA polymerase 
and other proteins in the complex which increases or enhances the initiation of tran-
scription. The promoters and enhancers in combination act as a cis-acting elements. 
Each TF has a specific DNA binding domain that recognizes a 6-10 base-pair motif in 
the DNA, as well as an effector domain. Transcription factors have commonly three 
types of DNA binding domains: (a) Helix turn helix motif, (b)Zinc finger motif and 
(c) leucine zipper motif. Other examples of transcription factors are–steroid hormone 
receptors which bind to hormone responsive elements (HRE). For an activating TF, 
the effector domain recruits RNA polymerase II, the eukaryotic mRNA-producing 
polymerase, to begin transcription of the corresponding gene. Some activating TFs 
even turn on multiple genes at once. All TFs bind at the promoters just upstream of 
eukaryotic genes, similar to bacterial regulatory proteins. 

Genes are also Regulated by Silencers and Insulators

Silencers are short control regions of DNA that, like enhancers, but may be located 
nearer (-20bp) or thousands of base pairs farther (-2000bp) in upstream regions from 
where they control the gene. However, when transcription factors bind to them, 
expression of the gene they control is repressed by inhibiting transcription initia-
tion. Silencers sequence can repress promoter activity in any orientation and at any 
position. 

Post-transcriptional gene Regulation in Prokaryotes and Eukaryotes. 

Post transcriptional gene regulation is not limited only to mRNA, rather rRNA, 
tRNA and hnRNA (heterologous nuclear RNA) are also processed and modified for 
further specific functional activities and stability. Both the prokaryotic and eukary-
otic mature ribosomal RNAs (rRNA) are originated and processed from longer pre-
cursors called preribosomal RNAs (pre-rRNAs) synthesized by Polymerase I. In 
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prokaryotes, especially bacterial, mature 16S rRNAs, 23S rRNAs, 5S rRNAs and 
some tRNAs, are originated from a single 30S rRNA precursor sequence by base 
specific methylation and enzymetic cleavage carried out by the enzymes RNase III, 
RNase P, and RNase E. Similarly, in eukaryotes, mature 18S rRNAs, 28S rRNAs, 
and 5.8S rRNAs are originated from a single 45S pre-rRNA transcript by excessive 
methylation and a series of enzymatic cleavages processed in the nucleolus. Most 
eukaryotic cytoplasm have at least a pool of the 20 distinct mature tRNAs charged 
with 20 different amino acids, for example - tRNATyr, - tRNAAla ,- tRNAMet. Some 
abundantly present amino acids have multiple copies of the respective tRNA genes. 
These mature tRNAs are derived from longer RNA precursors by base modification 
and enzymatic removal of nucleotides from the 5’ and 3’ ends and addition of CCA to 
the 3’ end. Therefore, any precursor RNA (pre-mRNA, pre-rRNA, pre-tRNA) which 
are the immediate product of transcription are modified and edited before they are 
translated. The most important RNA processing and modification steps are involved 
in the pre-mRNAs found in nucleus of eukaryotes, which are edited before they are 
translated into the cytoplasm.

 Post-transcriptional Regulation of mRNA by 5’ Capping, 
PolyAdenylation, RNA splicing and RNA Editing
The 5’-capping is a unique feature of eukaryotic mRNA processing in which a residue 
of 7-methylguanosine (7mGppp cap) is linked to the 5’-terminal nucleotide through 
an unusual 5’, 5’-triphosphate linkage providing protection and stability to 5’ end. 
The synthesis of 7mGppp cap is carried out by enzymes tethered to the CTD of Pol 
II. The cap remains tethered to the CTD through an association with the cap-binding 
complex (CBC). Similarly, the 3’ end of primary transcript or precursor mRNA is 
cleaved, and 80-250 adenine (A) residues are added to create a poly-A tail. This 3’ 
polyadenylation protects the 3’ end from enzymetic destruction due to exonucle-
ases. But there is a just opposite function of 3’ polyadenylation in many prokaryotic 
mRNAs where, this poly-A tails stimulate decay of mRNA rather than protecting it 
from degradation. The third most important modification and processing of primary 
mRNA transcript is splicing, by which introns are removed and exons are joined to 
form a continuous sequence that specifies a functional polypeptide. There are many 
splicing methods performed by specific processing machinery like – by spliceo-
somes, by ribozymes, and by ribonucleasesand ligases. In eukaryotic system, there 
is a complex pattern of exons and intron boundaries, as well as different categories 
of introns (type-I, type-II and type-III), so alternative splicing acts which is a –alter-
native ways of splicing of introns, producing different mRNAs transcript variants 
or isoforms. Another uncommon mode of RNA processing is RNA editing, where 
large regions of mRNA are synthesized without any uridylate, and the U residues 
are inserted later by RNA editing, occurring in a parasitic protozoa Trypanosoma 
brucei. Here, RNA editing occurs is mitochondrial cytochrome oxidase subunit II 
gene (5’-----AAA GTA GAG AAC CTG GTA--------3’). Where, insertion of four U 
residues produces a revised/edited mRNA (5’-----AAA GUA GAU UGU AUA CCU 
GGU-----3’). This edition is performed by a special class of guide RNAs, comple-
mentary to the edited mRNA product, which act as templates for the editing process. 
This editing produces a completely new protein -----Lys Val Asp Cys Ile Pro Gly---
-- instead of -----Lys Val Glu Asn Leu Val-----. Therefore, these alternative splicing 
patterns and RNA editing, determines the proteins and their amounts to be produced 
from an mRNA transcript.
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2.3 Translational and Post-translational Gene Regulation

Translational regulation plays a much more prominent role in eukaryotes than in 
prokaryotes, due to the cellular compartmentalization and complexity of metabolic 
activities. It means, the transcription and translation processes in prokaryotes are 
coupled, which provides vital proteins and enzymes for the survival of bacteria at 
the time of necessity. Since the transcription in eukaryotes occurs in the nucleus, 
while on the other hand, most mRNAs are translated in the cytoplasm. This spatial 
distribution of two vital processes of gene expression also imposes a temporal barrier 
which imposes a significant delay in the demand and supply of a protein. These bar-
riers are further enhanced by the necessity of alternative splicing and RNA editing 
of intervening sequences from most eukaryotic mRNA transcripts before they can 
be translated. As a result, the primary mRNA transcripts which generally encode 
only single protein, is processed and translocated across the nuclear membrane prior 
to translation and therefore have relatively long half-lives. Therefore, translational 
regulation may play an important role in expressing protein product of certain very 
long eukaryotic genes, for which transcription and mRNA processing can require 
many hours. 

Therefore, translational regulations are achieved by altering the half-life or sta-
bility of the mRNA for translation -e.g. removal of poly-A binding protein (PABP) 
reduces the half-life of mature mRNAs. It is also achieved by controlling the ini-
tiation and rate of translation -e.g. iron-responsive element (IRE) of the 5’ UTR of 
human ferritin gene. There are some major points of differences in prokaryotic and 
eukaryotic translational initiation. In Prokaryotes, translation begins at an AUG 
codon (Methionine) by pairing of a special “initiator” tRNA charged with formyl-
methionine fMet-tRNAMet

i. Initiation of protein synthesis in prokaryotes involves 
formation of a complex between the 30S ribosomal subunit, mRNA, GTP, fMet-
tRNAfMet, three initiation factors (IF-1, IF-2 and IF-3), and the 50S subunit. Similarly, 
Shine-Dalgarno sequence (5’—AGGAGGU—3’ 10 bases upstream of AUG codon) 
in prokaryotes is the site of action where 3’ end of 16S rRNA of the 30S ribosomal 
subunit binds. While, in eukaryote 7-methylguanosine cap (7mGppp) at 5’ end of 
mature mRNA is the site of action where 18S rRNA of 40S ribosomal subunit binds. 
Here Initiation of protein synthesis involves formation of a complex between the 40S 
ribosomal subunit, mRNA, GTP, Met-tRNAMeti, nine initiation factors (eIF2, eIF2B, 
eIF3, eIF4A, eIF4B, eIF4E, eIF4G, eIF5 and eIF6), and the 60S subunit.

Post-translational Gene Regulation in Prokaryotes and Eukaryotes. 

 At the end of the translation, the nascent polypeptide chain is folded and processed, 
and then they are modified, packed and transported to their designated place as active 
protein for biological activity. During its synthesis, the polypeptide chain progres-
sively assumes energetically and structurally most stable state known as “native con-
formation”. This native conformation is attained due to the formation of appropriate 
hydrogen bonds, van der Waals, ionic, and hydrophobic interactions among differ-
ent amino acids and its secondary folds. Correct folding is not always energetically 
favorable in the cytoplasm, therefore molecular chaperones (including GroE chap-
eronins) bind to nascent peptides and facilitate correct folding. Some newly made 
proteins, both prokaryotic and eukaryotic, do not attain their final biologically active 
conformation and specific functionality until they have been altered by one or more 
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processing reactions called posttranslational modifications (PTMs). The most com-
mon modifications are acetylation, phosphorylation, glycosylation, Ubiquitination 
and enzymetic cleavage. PTMs play a key role in many cellular processes such as 
cellular differentiation (Grotenbreg and Ploegh 2007), protein degradation (Geiss-
Friedlander and Melchior 2007), signaling and regulatory processes (Morrison et 
al. 2002), regulation of gene expression, and protein-protein interactions. Protein 
phosphorylation is the most commonly studied area of post-translational modifica-
tion since it plays a vital role in intracellular signal transduction and is involved 
in regulating cell cycle progression, differentiation, transformation, development, 
peptide hormone response, and adaptation (Hubbard and Cohen 1993, Pawson and 
Scott 1997, Hunter 2000, Cohen 2002). It has been estimated that one third of mam-
malian proteins may be phosphorylated and this modification often plays a key role 
in modulating protein function.

The formyl group on the initiating Met residue of poly-peptides that are synthe-
sized in prokaryotes is almost always removed by a deformylase enzyme. Only rarely 
is N-formyl Met found at the N-terminus of a mature protein. In about half the pro-
teins of both prokaryotic and eukaryotic cells, the initiating Met residue is removed 
from the nascent chain by a ribosome-associated Met-aminopeptidase. Whether it is 
removed depends primarily on the second amino acid residue. Small residues (Gly, 
Ala, Ser, Cys, and Thr) favor removal of the Met residue in prokaryotes; large, hydro-
phobic, and charged residues seem to prevent removal.

Phosphorylation

Phosphorylation is the addition of a phosphate group (PO4 or PO3
-2) to cer-

tain amino acids (serine, tyrosine or threonine residue) in a peptide chain revers-
ibly. Other amino acid residues in prokaryotes like - Asp, His, and Lys residues may 
also be phosphorylated. The phosphoryl groups (PO3

-2) are added by specific protein 
kinases, using ATP as the phosphoryl donor: 

protein + ATP  protein—PO3
-2 + ADP

The phosphoryl groups are removed by specific phosphatases:

protein—PO3
-2 + H2O  Protein + HPO3

-2

These two reactions are catalyzed by kinases and phosphatases enzymes, and their 
activities of the phosphorylated proteins are regulated and are strictly controlled. The 
sites of phosphorylation are usually the hydroxyl groups of specific Ser, Thr, or Tyr 
residues. The addition or removal of a phosphate group can alter protein conforma-
tion (and therefore function) by locally altering the charge and hydrophobicity where 
it is added. It plays an important role in regulating many important cellular processes 
such as cell cycle, growth, apoptosis (programmed cell death) and signal transduc-
tion pathways. For example, in signalling, kinase cascades are turned on or off by 
reversible phosphorylation either by addition or removal of a phosphate group.

N-Acetylation

This process involves the transfer of an acetyl group to nitrogen and it occurs almost in 
all eukaryotic proteins. It has both reversible and irreversible mechanisms. Methionine 
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aminopeptidase (MAP) is an enzyme responsible for N-terminal acetylation which 
results in the cleavage of N-terminal methionine before replacing the amino acid with 
an acetyl group from acetyl-coA by the enzyme N-acetyltransferase. Acetylation helps 
in protein stability, protection of the N-terminus and the regulation of protein-DNA 
interactions in the case of histones. N-terminus acetylation can occur whether or not 
the initiating Met residue is still present. Whether acetylation occurs depends to some 
extent on the nature of the N-terminal residue. In a survey using mutagenesis of the 
N-terminus of one particular protein, those forms acetylated had N-terminal Gly, Ala, 
Ser, and Thr residues. Although acetylation is the main covalent modification made to 
the amino ends of proteins, a great variety of other modifications have been observed 
in particular cases, which include addition of formyl, pyruvoyl, fatty acyl, a-keto acyl, 
glucuronyl, and methyl groups.

Glycosylation

Attachment of carbohydrate group is one of the most prevalent PTM of eukaryotic 
proteins, especially of secreted and membrane proteins. This addition of a carbohy-
drate or sugar moiety to proteins ranges from simple monosaccharide modifications 
of nuclear transcription factors to the complex branched polysaccharide chains of cell 
surface receptors. The most relevant properties of glycosyl groups attached to proteins 
are - their variable structures, which permit specificity in their interactions with other 
molecules; their hydrophilic natures, which keep them in aqueous solution; and their 
bulk, which markedly affects the surface properties of the protein to which they are 
attached. There are two types of glycosylation, called N-linked and O-linked depend-
ing on the atom of the protein to which the carbohydrate is attached. N-linked glyco-
sylation occurs exclusively on the nitrogen atom of Asparagine side chains, whereas 
O-linked glycosylation occurs on the oxygen atoms of hydroxyls, particularly those 
of serine/threonine residues. N-glycosylation occurs co-translationally soon after the 
Asn residue emerges into the ER. Whereas, O-glycosylation was thought to be con-
fined to proteins that pass through the ER and Golgi apparatus, but recently it has 
been found to occur in a surprising number of cytoplasmic and nuclear proteins. In 
this case, N-acetyl glucosamine (GIcNAc) groups are attached to the side chains of 
Ser and Thr residues, but little is known about the process. Glycosylations are often 
required for correct peptide folding and can increase protein stability and solubility 
and protect against degradation.

ubiquitination and Targeted Protein Degradation

Proteins are in a continual state of flux, being synthesized and degraded. In addition, 
when proteins become damaged they must be degraded to prevent aberrant activi-
ties of the defective proteins and/or other proteins associated with those that have 
been damaged. The attachment of protein ubiquitin (an 8kDa polypeptide consist-
ing of 76 amino acid residues) linked to an amine group of lysine in target protein 
via its C-terminal glycine. Poly-ubiquitinated proteins are targeted for destruction 
which leads to component recycling and the release of ubiquitin. An example of 
this is in the cell cycle where ubiquitination marks cyclins for destruction at defined 
time points. After ubiquitination protein becomes target of destruction by a complex 
structure referred to as the proteosome. In eukayotic cells the proteasome is found 



96 Computational Biology and Bioinformatics

in the cytosol and the nucleus and has a large mass such that it has a sedimentation 
coefficient of 26S. The 26S proteasome comprises a 20S barrel-shaped catalytic core 
as well as 19S regulatory complexes at both ends. Degradation of proteins in the 
proteasome occurs via an ATP-dependent mechanism.

enzymatic cleavage (Proteolysis)

Most proteins undergo proteolytic cleavage following translation. The simplest form 
of this is the removal of the initiation methionine. Many proteins are synthesized as 
inactive precursors that are activated under proper physiological conditions by lim-
ited proteolysis. Pancreatic enzymes and enzymes involved in clotting are examples 
of the latter. Inactive precursor proteins that are activated by removal of polypep-
tides are termed “proproteins.” Breakdown of peptide bond in a protein into smaller 
functional units which can happen anywhere in a protein, is known as “proteolysis.” 
There are several number of protease enzymes with a varied array of specificity, 
localization, length of activity and mechanism of peptide bond cleavage. Proteolysis 
is a thermodynamically favourable and irreversible reaction and is therefore under 
tight regulatory control. The control mechanisms include regulation by cleavage in 
either cis or trans and compartmentalization. Degradative proteolysis is important as 
it removes unassembled protein subunits and misfolded proteins and also maintains 
protein concentration at homeostatic concentrations. Some proteases are classified 
based on their site of action like the aminopeptidases which act on amino termi-
nus and carboxipeptidases which act on carboxy terminus of a protein respectively. 
Others are classified based on the active site group of a protease that are involved in 
proteolysis. These proteases include; serine proteases, cysteine proteases, aspartic 
acid proteases and zinc metalloproteases. Proteolysis can also release useful cleav-
age fragments and remove autoinhibitory domains from proteins. This regulation 
can prevent fibrous and polymer proteins from assembling in inappropriate locations 
and keep proteins which could otherwise have damaging effects like enzymes and 
growth factors inactive until they reach their target location. It is also used to remove 
features of a protein which are not needed in the mature form, particularly targeting 
signal sequences and the N-terminal methionine. A complex example of post-trans-
lational processing of a preproprotein is the cleavage of prepro-opiomelanocortin 
(POMC) synthesized in the pituitary. This preproprotein undergoes complex cleav-
ages, the pathway of which differs depending upon the cellular location of POMC 
synthesis. Another is example of a preproprotein is insulin. Since insulin is secreted 
from the pancreas it has a prepeptide. Following cleavage of the 24 amino acid signal 
peptide the protein folds into proinsulin. Proinsulin is further cleaved yielding active 
insulin which is composed of two peptide chains linked togehter through disulfide 
bonds.

Lipidation

Lipidation attaches a lipid group, such as a fatty acid, covalently to a protein. In 
general, lipidation helps in cellular localization and targeting signals, membrane 
tethering and as mediator of protein-protein interactions. Important types include 
palmitoylation which creates a thioester link between long-chain fatty acids and cys-
teine residues, N-myristorlation of glycine residues which plays a role in membrane 
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targeting and GPI-anchor addition which links a glycosyl-phosphatidylinositol (GPI) 
to and extracellular protein to mediate its attachment to the plasma membrane.

Acylation

Many proteins are modified at their N-termini following synthesis. In most cases 
the initiator methionine is hydrolyzed and an acetyl group is added to the new 
N-terminal amino acid. Acetyl-CoA is the acetyl donor for these reactions. Some 
proteins have the 14 carbon myristoyl group added to their N-termini. The donor for 
this modification is myristoyl-CoA. This latter modification allows association of the 
modified protein with membranes. The catalytic subunit of cyclicAMP-dependent 
protein kinase (PKA) is myristoylated. 

Methylation

Post-translational methylation of proteins occurs on nitrogens and oxygens. The 
activated methyl donor is S-adenosylmethionine (SAM). The most common meth-
ylations are on the ε-amine of lysine residues. Methylation of lysine residues in his-
tones in DNA is an important regulator of chromatin structure and consequently of 
transcriptional activity. Lysine methylation was originally thought to be a perma-
nent covalent mark, providing long-term signaling, including the histone-dependent 
mechanism for transcriptional memory. However, recent evidence has shown that 
lysine methylation, similar to other covalent modifications, can be transient and 
dynamically regulated by an opposing de-methylation activity. Recent findings indi-
cate that methylation of lysine residues affects gene expression not only at the level 
of chromatin, but also by modifying transcription factors.

Sulfation

Sulfate modification of proteins occurs at tyrosine residues. As many as 1% of all 
tyrosine residues present in the eukaryotic proteome are modified by sulfate addi-
tion making this the most common tyrosine modification. Tyrosine sulfation is 
accomplished via the activity of tyrosylprotein sulfotransferases (TPST) which are 
membrane-associated enzymes of the trans-Golgi network. There are two known 
TPSTs identified as TPST-1 and TPST-2. The universal sulfate donor for these TPST 
enzymes is 3’-phosphoadenosyl-5’-phosphosulphate (PAPS). Addition of sulfate 
occurs almost exclusively on secreted and trans-membrane spanning proteins. Since 
sulfate is added permanently it is necessary for the biological activity and not used as 
a regulatory modification like that of tyrosine phosphorylation.

2.4  Gene Regulation by small noncoding RNA 
(especially miRNA and siRNA)

Most eukaryotes also make use of small regulatory noncoding RNAs (ncRNA) like 
miRNAs and siRNAs to regulate their gene expression. There is a booming research 
in recently discovered small regulatory RNAs in animals and plants which largely 
falls into two categories, one is snoRNAs and another is miRNAs/siRNAs. These 
small ncRNAs are very diverse set of tiny RNAs that does not encode a protein, but 



98 Computational Biology and Bioinformatics

contains information for diverse nature of functions during all stages of growth and 
development. The human genome consists of at least 30% introns (group I, group II, 
nucler pre-mRNA introns, transfer RNA introns etc.) which may be the major source 
of regulatory ncRNAs produced in parallel with protein-coding transcripts and oth-
ers genes transcripts (Mattick 2001, Mattick and Gagen 2001, Mattick 2003). Almost 
all snoRNAs and a large proportion of miRNAs in animals are encoded in introns 
of either protein-coding genes or non-protein-coding genes (Mattick and Makunin 
2005, Rodriguez et al. 2004, Cai et al. 2004, Baskerville and Bartel 2005, Ying and 
Lin 2005). Recently, research showed that a number of mammalian miRNAs are 
derived from tandem repeats, mainly transposons (Smalheiser and Torvik 2005). The 
presence of methylated guanosine caps at their 5’ ends of some human snoRNAs 
shows that they are independently transcribed (Tycowski et al. 2004). 

Generally, snoRNAs are 60-300 nucleotides long ncRNAs which guide the site-spe-
cific modification of nucleotides in target RNAs (may be rRNA, mRNA or snRNA) 
via short regions of base-pairing. There are two major classes, the box C/D snoRNAs 
which guide 2’-O-ribose-methylation, and the box H/ACA snoRNAs which guide 
pseudouridylation of target RNAs (Meier 2005, Bachellerie et al. 2002, Henras et al. 
2004, Kiss et al. 2004). The most noted regulatory functions of some snoRNAs are 
tissue-specific and developmental regulation, and imprinting. One such snoRNAs is 
linked to the aberrant splicing of the serotonin receptor 5-HT(2C)R gene in Prader–
Willi syndrome patients (Kishore and Stamm 2006, Cavaille et al. 2000). 

miRNAs and siRNAs are short, ~22-30 nucleotides long RNA molecules derived 
either from hairpin or double-stranded RNA precursors. For example, the enzyme 
Dicer finds double-stranded regions of RNA and cuts out short pieces that can serve 
in a regulatory role. Argonaute is another enzyme that is important in regulation of 
small noncoding RNA–dependent systems. miRNAs suppress translation via non-
perfect pairing with target mRNAs, involving a seed pairing in 3’ region (second to 
eighth nucleotide) or similar, to siRNAs cause degradation of target RNAs by the 
siRNA induced silencing complex (siRISC) in the case of perfect complementarity 
with the target site. The mature miRNA guides the miRNA induced silencing com-
plex (miRISC) to partially complementary sequences, termed miRNA recognition 
elements (MREs), in target mRNAs to repress mRNA translation, promote transcript 
decay or both (Baig and Khan 2013). This phenomenon of repressing mRNA transla-
tion or promoting transcript decay or both is known as RNA interference (RNAi). 
It is estimated that about 33% of human protein coding genes are regulated by miR-
NAs (Du and Zamore 2005). Over 800 known functional ncRNAs genes have been 
identified and catalogued in mammals in recent years, excluding tRNAs, rRNAs and 
snRNAs genes (Pang et al. 2005 and Liu et al. 2005). There are a number of well-
characterized antisense transcripts which appear to play a regulatory roles in rela-
tion to their sense gene, including those opposite FGF-2 (fibroblast growth factor-2), 
HIF-1 (hypoxia inducible factor-1) and myosin heavy chain in mammals (Werner 
2005). ncRNAs have also been implicated in many diseases, including various can-
cers and neurological diseases (Mattick J.S. 2003, Pang et al. 2005). 

2.5 Concluding Remarks

In conclusion, the gene expression and regulation at transcriptional, post-transcrip-
tional, translational and post-translational level has brought about great insights into 



99RNA Sequencing and Gene Expression Regulation

the fields of molecular biology, molecular genetics, genomics, proteomics, and pro-
tein functions in relation to gene functions. We have discussed only two most simpli-
fied models (lac and trp operon) of gene expression regulation in prokaryotes, and 
discussed the eukaryotic gene regulatory system in brief, but in a very effective way 
to illuminate the readers. In this section, the prokaryotic transcriptional regulatory 
mechanisms by co-repression, attenuation and feedback inhibition are considered in 
lac and trp operon which are under inducible control and negative control. While, 
eukaryotic transcriptions are regulation by enhancers, transcription factors, silencers 
and Insulators are discussed. The positive control elements are recognized by activa-
tor or enhancer proteins that stimulate transcription. Post-transcriptional regulation 
of tRNA, rRNA, snRNA and mRNA by 5’ capping, polyAdenylation, RNA splicing 
and RNA editing are highlighted. However, some other facts and features are ignored 
or simplified. Conclusively, the comparative analysis of transcription, post-transcrip-
tion, translation and post-translational modifications are sufficient enough to assert 
that the present knowledge of prokaryotic gene expression is very much simpler but 
fundamentally different than eukaryotic gene expression. These fundamental dif-
ferences are essential for eukaryotic organisms to express genes in the incredibly 
diverse patterns that are necessary for complex biological processes. As far as gene 
regulation is concerned, it is very much complex in eukaryotes at every level, from 
the very beginning of chromatin modification up to the post-translational modifica-
tions. Most importantly, a eukaryotic promoter can exist in a variety of stable and 
intermediate states that are transcriptionally inactive. These states correspond to the 
chromatin modifying activities recruited by particular activators or repressors and 
hence can be regulated by cell cycle and developmental signals.

Also, eukaryotic gene expression is extremely complex and every regulatory check 
points are very finely tuned by the assembly of a large number of protein complexes, 
acting in a very well coordinated manner to control the rate of gene transcription and 
translation. We can also say that, present research on eukaryotic gene regulation is 
still in infancy and not modeled at the molecular scale to accurately explain all the 
details of its components. Here we have discussed only introductory information on 
transcription, posttranscription, translation, posttranslation, expression and regula-
tion as well as ncRNAs based gene regulation in prokaryotic and eukaryotic system 
due to the limitations of this book.

2.6 Future Dimensions

We have tried to highlight fundamental points of differences and similarities of 
gene expression and regulation in eukaryotes and prokaryotes at every level. These 
descriptions want to illustrate the versatility and economy of all types of regulatory 
check and bounds at every level, whether by attenuation mechanisms in prokaryotes 
or by insulators in eukaryotes. A variety of biomolecules, cell organelles, processes, 
and events provide the solid base for decisions whether or not to terminate transcrip-
tion ahead of the structural genes of operons. Similarly, DNA-protein interactions, 
protein-protein interactions, and other molecular interactions, are responsible for the 
decision of continuation or termination of translation for synthesizing the function-
ally active protein or truncated proteins in eukaryotes. We should have enough cour-
age to explore other dimensions of eukaryotic gene expression and regulation by 
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prompting the interdisciplinary researchers to correlate these biological information 
to the mathematical and computational resources to model their processivity and 
dynamism. Future, an interactive cooperation between experimental data and com-
putational theory should be established to obtain best parameters to test the dynamic 
response of these models under different circumstances, and to improve the model 
formulation. The human health care system can be improved if the determination 
and quantification of posttranscriptionl modified proteins and misfolded proteins are 
identified on right time. Therefore, molecular detection of diseases due to protein 
misfolding, heart ailments, cancer, neurodegenerative disorders and diabetes is pos-
sible before they become invasive. 
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Abstract
Cellular specialization and its functionality are determined by organization of 
diverse types of interacting elements forming biological networks. Of these interact-
ing elements, non-coding RNAs (ncRNAs) have emerged as key regulators of biolog-
ical networks by modulating gene expression at various levels. The ncRNAs such as 
microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), long ncRNAs (lncRNAs), 
small interfering RNAs (siRNAs) and transcription initiation RNAs (tiRNAs) have 
been observed to regulate cellular development, differentiation and many more bio-
logical processes. The deregulation of these ncRNAs that form regulatory circuits 
by interacting with other groups of ncRNAs and coding transcripts affect biological 
networks leading to alteration and abnormalities in cellular activity causing diseases, 
such as cancers. Thus, conceptualizing ncRNA-mediated regulatory networks incor-
porating inferences from high-throughput data and interactomics is crucial to under-
stand cellular behavior in different conditions. Here, we have provided snapshots 
of ncRNA-mediated regulatory networks operating at transcriptional and post-tran-
scriptional level and have discussed modern technologies and available resources 
needed for ncRNA-mediated interactomics and network study. Moreover, different 
types of network properties such as topology, cluster, module, motif, dynamics and 
evolution as well as their significance in illustrating and interpreting regulatory path-
ways have been discussed in this chapter.

1. Introduction
The amazing complexity of living organisms, starting from the simplest bacteria to 
the most complex humans has always intrigued scientist for generations. Uncovering 
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the reasons behind this complexity of living systems has been one of the primary 
goals of scientists. The 21st century has witnessed an upsurge in the use of differ-
ent approaches to study this complexity wherein there has been a marked develop-
ment in discovery of new technologies. These technologies encompass different high 
throughout methodologies to unearth information at genomic, transcriptomic, and 
proteomic level to explore the intricacies of living systems. These developments have 
made possible to combine systems level and molecular biology based approaches 
to address the missing link between them, thus giving rise to the interdisciplinary 
field of science called ‘systems biology’ (Diaz-Beltran et al. 2013). Systems biology 
focuses on the identification and characterization of complex and dynamic inter-
actions between biological molecules such as DNA, RNA, proteins, and metabolic 
intermediates. These diverse types of interacting molecules form complex molecular 
networks within a living cell. The precise interaction as well as regulation among 
these molecules is a requisite for the proper execution of complex biological pro-
cesses and normal functioning of a biological system. Hence, to understand the mys-
tery of how the biological processes, such as cellular proliferation, differentiation, 
cell death, etc. occur with such precision at the molecular level requires unraveling 
the regulatory switches and networks that modulate these processes.

The study of network analysis of biological systems is promising and gaining 
increasing acceptance as an useful method to decipher underlying mechanisms of 
various biological processes, pathways and their regulatory modes controlling fate 
of the cells. The biological information represented as networks classically considers 
the interacting molecules as nodes and their interactions as edges. These networks 
provide information about the nodes and how they regulate their interacting partners, 
thereby organizing them into regulatory maps. These regulatory maps or biological 
networks can be represented in various ways such as directed graphs, directed acy-
clic graphs (DAGs), undirected graphs, trees, minimum spanning trees, steiner trees, 
boolean networks, etc. (Dittrich et al. 2008). The biological networks can include 
transcription factor and gene regulatory network, protein–protein interactions, pro-
tein phosphorylation networks, metabolic interactions (Karp et al. 1996), genetic 
interaction networks, cell signaling networks, kinase-substrate networks, epistasis 
interaction networks (Segre et al. 2005), disease gene interaction networks (Goh et 
al. 2007) and drug interaction networks (Yildirim et al. 2007) etc.

Among the interacting molecules forming various types of networks, non-coding 
RNAs (ncRNAs) are the most intriguing molecules that are known to regulate gene 
expression at various levels and have emerged recently as key regulators of biological 
networks. The role of these ncRNAs, such as microRNAs (miRNAs), piwi-interact-
ing RNAs (piRNAs), long ncRNAs (lncRNAs), long intergenic ncRNAs (lincRNA), 
small interfering RNAs (siRNAs) and transcription initiation RNAs (tiRNAs) 
have been extensively studied in regulating cellular development, differentiation, 
and oncogenesis, etc. (Taft et al. 2010). The study of these regulatory ncRNAs is 
presently expanding at an unprecedented rate and new exciting developments have 
emerged over the years. The Encyclopedia of DNA elements consortium (ENCODE) 
transcriptome project revealed that only ~1.5% - 2% of the human genome codes for 
proteins, whereas 80% of the genome in eukaryotes is transcribed, thus suggesting a 
vast number of transcripts are non-protein coding RNAs (ncRNAs) (Wilhelm et al. 
2008). With the discovery of a plethora of ncRNAs, the biological complexity of liv-
ing organisms has been correlated to them and not to protein coding genes as thought 
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earlier (Taft et al. 2007). Further, control of cellular functions may be corroborated 
with the interactions between ncRNAs and proteins because the majority of chro-
matin modifying enzymes lack DNA binding capacity. Thus, they use a mediator 
for binding to DNA which studies indicate to be ncRNAs, thus acting as guide for 
chromatin modifying enzymes (Knowling and Morris, 2011). The ncRNAs are often 
involved in intricate regulatory circuits among themselves and other protein-cod-
ing transcripts, the best example being the recently reported ceRNAs (competitive 
endogenous RNA) (Salmena et al. 2011). The ceRNAs regulate other RNA transcripts 
by competing for common miRNAs, thus forming a large-scale regulatory network 
across the transcriptome. The co-regulatory interaction as well as ceRNA crosstalk 
mainly depends on the MREs (miRNA Response Elements) located on the interact-
ing transcripts thus making it crucial to be identified (Salmena et al. 2011). The key 
challenge lies in deciphering the meticulousness with which they interact among 
each other and understanding their behaviour in disease systems. Of all the ncRNAs 
explored till now, miRNAs are the most extensively investigated species with several 
resources documenting their roles in diseases (Ambros, 2008; Bartel, 2009; Stefani 
and Slack, 2008; Xiao et al. 2009). Other ncRNAs such as piRNAs, lncRNAs, snoR-
NAs have also been demonstrated to be associated with diseases (Esteller, 2011; Sana 
et al. 2012). To investigate ncRNA-mediated complex regulatory networks, systems 
biology is the appropriate approach which considers that the regulatory networks dif-
fer between normal and disease conditions (Hood et al. 2004). Thus, understanding 
the cellular behavior in different disease conditions require conceptualizing ncRNA-
mediated regulatory networks by incorporating inference from high-throughput data 
and interactomics study.

With the increasing discovery of significance of ncRNAs in different biological 
processes via involvement in the complex regulatory networks and affecting gene 
expression, their regulatory mechanism remains the prime focus. The deregulation 
of these network components affects biological processes leading to alteration and 
abnormalities in cellular activity. Unraveling the complexity of ncRNA-mediated 
networks will help in identifying the critical regulators modulating the ncRNAs 
expression as well as those that are modulated by the ncRNAs. With a deeper under-
standing of the ncRNAs cross-talks in the pathogenesis of a disease, it may be used as 
a target for therapeutic intervention for the disease. Moreover, the advances in under-
standing of the complexity of ncRNA-mediated regulatory networks may transform 
the current diagnostic and therapeutic approaches towards development of personal-
ized medicines. 

In this chapter, we have focused on the ncRNA-mediated regulatory networks 
operating at transcriptional and post-transcriptional level. We have discussed the 
various approaches for ncRNA-mediated regulatory network generation and visu-
alization. This includes interactomics study using modern high-throughput tech-
nologies and methods, such as ChIP-seq, CLIP-seq, etc; data mining to construct 
ncRNA-mediated regulatory network and various network visualization tools. The 
biological network architecture which includes the different types of network proper-
ties such as topology, cluster, module, motif, dynamics and evolution and their sub-
stantial role in illustrating regulatory pathways have been discussed. Furthermore, 
we have covered different ways to analyze the ncRNA-mediated regulatory networks 
as well as their applications and challenges.
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2.  ncRNA-mediated regulatory networks 
generation and visualization 

Construction of ncRNA-mediated regulatory networks essentiates a deep under-
standing of ncRNAs functionality and their interacting partners at various level of 
gene expression. ncRNAs influence the expression of a gene by various mechanisms 
like transcriptional regulations, post-transcriptional regulation, transposon silenc-
ing and epigenetic modifications etc. Before focusing on how the ncRNA mediated 
regulatory network functions at various levels, brief understanding of some of the 
important regulatory ncRNAs and the levels at which these imparts their function is 
essential (see Table 1). 

TAble 1 ncRNAs and their regulatory functional levels 

Type Full Name length Regulatory levels References

miRNA MicroRNA 18-25 Post-transcriptional gene 
regulation
Transcriptional gene 
regulation

(Kaikkonen et al. 
2011; Winter et al. 
2009)

piRNA PIWI-interacting 
RNA

24-30 Post-transcriptional gene 
regulation
Transcriptional gene 
regulation

(Le Thomas et al. 
2013; Watanabe 
and Lin, 2014)

Endo-siRNA Endogenous-small 
interfering RNA

21-22 Post-transcriptional gene 
regulation 
Transcriptional gene 
regulation

(Kaikkonen et al. 
2011; Taft et al. 
2010)

lncRNA Long non-coding 
RNA

>200 Post-transcriptional gene 
regulation 
Transcriptional gene 
regulation

(Kaikkonen et al. 
2011; Taft et al. 
2010)

snoRNA Small nucleolar 
RNA

80-200 Post-transcriptional gene 
regulation

(Matera et al. 
2007; Taft et al. 
2010)

eRNA Enhancer RNA 100-9000 Transcriptional gene 
regulation 

(Kaikkonen et al. 
2011) 

PAR * Promoter-
associated RNA

16-200 Transcriptional gene 
regulation

(Kaikkonen et al. 
2011)

circRNA Circular RNA >200 Transcriptional gene 
regulation by acting as 
miRNA sponge

(Memczak et al. 
2013)

(*PARs include- PASR,TSSa-RNA,tiRNA, PROMPT)

Of the above listed ncRNAs, miRNAs are well known to regulate post-tran-
scriptional gene expression in the cytoplasm, but studies have also suggested that 
miRNAs may alternatively have nuclear roles where they modulate gene expression 
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by interacting with the promoters at transcriptional level. Place et al. provided the 
first evidence in 2008 that miR-373 induced the expression of CDH1 and CSDC2 
by targeting the promoter (Place et al. 2008). A cis-regulatory role of miR-320 was 
reported by Kim et al. where miR-320, which is encoded within the promoter of 
POLR3D, targeted its own genomic location and led to transcriptional silencing of 
POLR3D (Kim et al. 2008). Further studies have also shown a significant enrichment 
of putative miRNA target sites within the promoter region of genes from genome-
wide evaluations of promoters (Younger et al. 2009).

piRNAs are the largest class of small ncRNAs whose primary function is to silence 
the ‘genomic parasites’- transposable elements (TEs) in the germ line cells and main-
tain the genomic integrity. Besides transposon silencing, piRNAs have also been 
found to be involved in repression of protein coding genes (Weick and Miska, 2014), 
both at the transcriptional and post-transcriptional level (Faulkner et al. 2009; Siomi 
et al. 2011; Watanabe and Lin, 2014). Intringuingly, recent investigations on piRNAs 
with predominant nuclear localization and robust sensitivity to serotonin, required 
for memory, have revealed their role in regulating memory storage with abundant 
expression in brain (Rajasethupathy et al. 2012). This has added new dimensions to 
the functional diversity of piRNAs and many similar reports are gradually emerging.

Endo-siRNA was discovered some seven years ago (Ghildiyal et al. 2008) as 
compared to exogenous siRNA that was discovered almost two decades ago. These 
endo-siRNAs are known to be involved in transposon silencing, anti-viral defence, 
transcriptional regulation by chromatin remodelling and post-transcriptional gene 
regulation through argonaute (Ago) mediated cleavage of target transcripts (Carthew 
and Sontheimer, 2009; Ghildiyal and Zamore, 2009).

lncRNAs are transcribed by RNA polymerase II (RNAPII) that lack an open 
reading frame (ORF) and are longer than 200 nucleotides in length (Bonasio and 
Shiekhattar, 2014; Cabili et al. 2011; Derrien et al. 2012). Their size distinguishes 
them from other classes of small ncRNAs. These regulate the expression of protein-
coding genes at both transcriptional and post-transcriptional level. At transcriptional 
level, they either work in cis or trans and regulate gene expression either positively 
or negatively (Kornienko et al. 2013). In the cis mode, they can act either via their 
product or by the process of transcription, where only the process of transcription 
of lncRNAs is able to affect target gene expression through RNAPII that either tra-
verses a regulatory element or alters general chromatin organization of the locus. A 
good example of cis mode regulation where they act via their product is the human 
HOTTIP lncRNA which is expressed in the HOXA cluster and activates transcrip-
tion of flanking genes by causing histone H3 lysine-4 trimethylation (H3K4me3) 
at their promoters (Wang et al. 2011). In the trans mode, lncRNAs act via their 
product to inhibit protein coding gene expression, one example being HOTAIR 
lncRNA expressed from HOXC cluster repressing transcription across 40kb of the 
HOXD cluster (Kornienko et al. 2013). HOTAIR lncRNA is required for repressive 
H3K27me3 of HOXD cluster by interacting with Polycomb repressive complex 2 
(PRC2). Post-transcriptional regulation by lncRNA involves either modulation of 
mRNA stability by homologous base pairing or by acting as ceRNAs to regulate the 
level of miRNAs (Sen et al. 2014).

snoRNAs are the family of ncRNAs that are primarily known to guide chemi-
cal modification of rRNA, tRNA and snRNA nucleotides (Bachellerie et al. 2002). 
Their cellular function has continued to expand and are seen to mediate mRNA 
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splicing and play a role in post-transcriptional regulation of mRNA by function-
ing as a miRNA. ACA45, a human snoRNA has been shown to be processed into a 
21-nts-long mature miRNA by the RNAse III family endoribonuclease Dicer (Ender 
et al. 2008). Another snoRNA, HBII-52 (SNORD115) has been reported to regulate 
alternative splicing of the trans gene transcript (Kishore and Stamm, 2006). 

eRNAs are mostly found to be expressed from the extragenic DNA sequence at the 
enhancer region (Fedoseeva et al. 2012). These ncRNAs have a specific histone meth-
ylation signature typical of enhancers. Their exclusive features include generation 
from regions defined by high mono-methylation on lysine 4 of histone 3 (H3K4me1) 
and low tri-methylation on lysine 4 of histone 3 (H3K4me3) (De Santa et al. 2010; 
Kim et al. 2010). These regions are enriched for RNA polymerase II (PolII) and 
transcriptional co-regulators, such as the p300 co-activator. Though their function is 
mostly unknown, many studies have proposed their role in transcriptional activation 
(Kaikkonen et al. 2011). 

PARs class of ncRNAs were discovered through various genome tiling and high-
throughput sequencing methods and were found to be associated with the promot-
ers. PARs, characterized according to their locations include promoter-associated 
small RNA (PASR), transcription start site-associated RNA (TSSa-RNA), transcrip-
tion initiation RNA (tiRNA) and promoter upstream transcript (PROMPT). PARs 
are found to be associated with transcriptional activation and repression (Han et al. 
2007; Wang et al. 2008). 

circRNAs are a group of highly stable ncRNAs that affect transcript regulation by 
acting as miRNA sponges. miRNA sponges are transcripts with multiple miRNA 
binding sequences, acting as competitive inhibitor of miRNAs that sequester the 
miRNAs from its target thereby de-repressing the target gene expression (Kluiver 
et al. 2012). The circRNAs are advantageous to act as a miRNA sponge as it lacks 
poly(A) tails that help in escaping from deadenylation decapping and degradation 
caused by miRNAs (Hansen et al. 2013; Memczak et al. 2013).

Apart from regulating genes at the transcriptional level by either promoting or 
inhibiting the target gene transcription ncRNAs are also known to be regulated 
at the transcriptional level by different TFs. Different TFs bind to the promoter of 
ncRNAs and modulate their activation or repression. The transcriptional regulation 
of lncRNAs, miRNAs, and other ncRNAs is being widely explored with the recent 
advances in the chromatin immunoprecipitation with next-generation DNA sequenc-
ing (ChIP-seq) technology that has enabled the detection of transcription factor bind-
ing sites (TFBSs) with unprecedented sensitivity.

3. Interactomics
For the ncRNA-mediated regulatory networks generation, the first step is to study 
the whole set of molecular interactions among the ncRNAs and other biologi-
cal molecules taking place in the cellular environment. These interactions include 
ncRNAs  target mRNAs, TFs  ncRNA genes and ncRNAs  ncRNAs. To study 
these interactions taking place within the cells, many modern technologies have 
been developed, such as cross-linking immunoprecipitation (CLIP), (ChIP-seq), 
Cross-linking ligation and sequencing of hybrids (CLASH), RNA-Binding Protein 
Immunoprecipitation-Microarray Profiling (RIP-Chip), RNA-Binding Protein 
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Immunoprecipitation-sequencing (RIP-seq) and Systematic evolution of ligands by 
exponential enrichment (SELEX). The high-throughput data generated using these 
techniques are primarily available at NCBI-Sequence Read Archive (SRA) and 
DNAnexus-SRA+. A brief description of these modern technologies are given below.

 (i) ClIP-seq-CLIP-based technique integrates UV crosslinking with immuno-
precipitation to analyze interactions of proteins with RNAs (Darnell, 2010). 
The different CLIP based techniques include HITS-CLIP, PAR-CLIP and 
iCLIP. These various CLIP techniques are the state-of-art high-throughput 
methods that promise to provide an in-depth understanding of where and 
how protein-RNA complexes interact to regulate gene expression at the 
post-transcriptional level by mapping RNA binding sites for a protein of 
interest on a genome-wide scale. Integration of these data will strengthen 
the perspective of the ncRNA regulatory networks. 
(a) HITS-ClIP (High-throughput Sequencing-Crosslinking and Immuno 

Precipitation) is the combination of high-throughput sequencing tech-
niques with CLIP for identification of RNA binding proteins (RBPs) at 
a resolution of 30-60 nucleotides (Zhang and Darnell, 2011). RBPs are 
key players in the post-transcriptional regulation of gene expression 
like polyadenylation, splicing, mRNA stabilization and localization, 
etc, (Lunde et al. 2007). HITS-CLIP was first developed to get insight 
into the alternative processing of mouse brain by generating genome 
wide binding of the neuron specific splicing factor Nova (Licatalosi 
et al. 2008). Subsequently, this technique has been applied to various 
other factors like SFRS1(Sanford et al. 2009), PTB (Xue et al. 2009), 
and the argonaute (AGO) for finding miRNA binding sites (Thomson 
et al. 2011). 

(b) PAR-ClIP (Photoactivatable Ribonucleoside Enhanced Crosslinking 
Immunoprecipitation) identifies the binding sites of cellular RBPs and 
miRNA- containing ribonucleoprotein complexes (miRNPs) (Hafner et 
al. 2010). This method is based on incorporation of photoactivatable 
nucleoside analogs into nascent RNAs. These analogs facilitate highly 
efficient crosslinking of proteins to RNA and overcome the crosslink-
ing efficiency problems faced in HITS-CLIP.

(c) iClIP (Individual-Nucleotide Resolution Crosslinking and Immuno 
Precipitation) similar to other CLIP methods allows identification of 
protein-RNA interactions. Unlike other CLIP methods, this technique 
enables PCR amplification of truncated cDNAs, which is achieved by 
an intramolecular cDNA circularization step and thereby identifies pro-
tein–RNA crosslink sites with single nucleotide resolution (Huppertz 
et al. 2014). 

 (ii) ChIP-seq – It is a technique to study protein-DNA interactions on a genome 
scale (Johnson et al. 2007). In this method, the regions of DNA in contact 
with the TFs or other proteins are isolated by chromatin immunoprecipita-
tion followed by massively parallel sequencing. These regions are then ana-
lyzed to determine the interaction of the protein with its direct target DNA. 
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This technique is primarily used to determine the binding regions/motifs 
of TFs with DNA, called the TF binding sites (TFBSs) that regulates the 
gene expression. It is also used to determine the binding of other chromatin 
associated proteins with the DNA. Moreover, ChIP-seq data also provides 
information about the TF-ncRNAs interations (Marson et al. 2008).

 (iii) ClASH (Cross-linking, ligation and sequencing of hybrids) – This cross-
linking, ligation and sequencing of hybrids technique allows direct high-
throughput mapping of RNA-RNA interactions (Kudla et al. 2011). It allows 
to determine direct miRNA-target pairs as chimeric reads from next gen-
eration sequencing data. With emerging evidences of miRNA targets not 
being limited to only protein-coding transcripts, but also to other ncRNAs 
(Poliseno et al. 2010) or lncRNAs (Jalali et al. 2013), this technique will 
help in transcriptome wide identifications of these interactions.

 (iv) RIP-Chip – This technique couples RNA-Binding Protein 
Immunoprecipitation with reverse transcription, followed by microarray 
chip analysis to study interactions among one protein and many different 
RNA species (Khalil et al. 2009).

 (v) RIP-Seq – This is an alternative to the RIP-Chip method where the RNA 
pulled down is analyzed using high-throughput sequencing rather than per-
forming microarray. 

 (vi) SeleX – The Systematic Evolution of Ligands by Exponential Enrichment 
method is a powerful technique to detect protein binding site on RNA. It 
depends on the ability of RBPs to select and bind to high-affinity RNA 
ligands from a pool of RNAs (Manley, 2013). 

Apart from the above mentioned techniques, there are other techniques that pro-
vide information on genome-wide transcriptional activity, which include RNA-
sequencing (RNA-seq), intron RNA-seq (iRNA-seq), small RNA sequencing 
(sRNA-seq), genomic run-on-sequencing (GRO-seq) and DNA microarray. The data 
generated by adopting these methods are often submitted at NCBI- Gene Expression 
Omnibus (GEO) repository, NCBI-Sequence Read Archive (SRA), DNAnexus-SRA, 
Oncomine, TCGA etc, which can be analyzed to unravel expression profiles of genes 
and ncRNAs. These expression data can be further correlated to find regulatory rela-
tionships among ncRNAs and genes. Then, extracting the relationships among dif-
ferent transcripts in a particular cellular condition will be challenging which needs a 
comprehensive knowledge of gene regulatory mechanisms. For example, in a system, 
genes negatively correlated in expression with miRNAs are more likely predicted 
as targets (Tsang et al. 2007). These co-relations can be further linked to generate 
ncRNA regulatory network. We have outlined some of the techniques used now a 
days for studying genome-wide transcriptional activity which forms the foundation 
for a generation of regulatory networks:



114 Computational Biology and Bioinformatics

 (i) RNA-seq – It is the most revolutionary technique developed for transcrip-
tome profiling that uses next generation sequencing to reveal a snap-shot 
of the transcriptome. It provides accurate measurement of the levels of 
transcripts and all their isoforms (Wang et al. 2009). For interpreting the 
functional element of the genome and understanding their role in disease 
and development, the study of the transcriptome of a cell is essential which 
includes all species of transcripts like mRNA, small RNAs and ncRNAs 
like lncRNAs. More recently, Xiao et al used RNA-seq data to generate 
lncRNA and protein coding gene transcript profiles and generated a regu-
latory network which revealed regulatory relationships between lncRNAs 
and protein coding genes (Xiao et al. 2015).

 (ii) iRNA-seq – This technique based on the analysis of intron coverage from 
total RNA-seq provides a genome-wide assessment of transcriptional activ-
ity. It provides a more accurate determination of the sensitive transcrip-
tional activity as compared to RNA-seq, that provides the steady-state 
levels of RNA including existing levels of RNA (Madsen et al. 2015). 

 (iii) Small RNA sequencing – It is a type of next generation sequencing used 
to sequence all the small RNAs of length ~17-35 nts with unprecedented 
sensitivity. Unlike RNA-seq, this method uses starting material enriched 
with small RNAs. It also helps in the discovery of novel small ncRNAs. 

 (iv) GRO-seq – This technique maps the distribution of short transcripts of 
transcriptionally engaged RNA polymerase II that are allowed to transcribe 
(run-on) a short distance and incorporate the nascent RNAs with an affin-
ity tag like BrU-tag. Sequencing of the RNAs and alignment to the genome 
helps in mapping and quantifying transcriptionally engaged polymerase 
density genome-wide (Core et al. 2008). 

 (v) Microarray – In microarray for expression analysis, the cDNA derived 
from mRNA of known genes is immobilized on a solid support called chips 
as probes. Which contain known genes. These chips are then used to deter-
mine complementary binding of the unknown sequences from a sample, 
thus allowing simultaneous analysis for gene expression and gene discov-
ery. Microarray provides efficient and quick analysis of the expression of 
many genes in a single reaction. The microarray study of various ncRNAs 
have also been emerged in recent days to know their expression patterns in 
different disease systems (Maskos and Southern, 1992).

As regulatory ncRNAs unfold their action via interactions, we can study these 
interactions using various tools. Table 2 briefs about the major tools to study differ-
ent types RNA associated interactions. 
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TAble 2 Tools for ncRNA associated interaction predictions

Name Website References
PicTar http://pictar.mdc-berlin.de (Krek et al. 2005)
miRanda http://www.microrna.org (Enright et al. 2003)
miRTarCLIP http://mirtarclip.mbc.nctu.edu.tw (Chou et al. 2013)
miRTrail http://mirtrail.bioinf.uni-sb.de (Backes et al. 2007)
miRDB mirdb.org  (Wong and Wang, 2015)
TargetScan http://www.targetscan.org (Lewis et al. 2005)
RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/

rnahybrid
(Rehmsmeier et al. 2004)

microT-CDS http://diana.imis.athena-innovation.gr/
DianaTools/index.php?r=microT_CDS/index

(Reczko et al. 2012)

miRNA – Target Gene 
Prediction at EMBL

http://www.russelllab.org/miRNAs (Stark et al. 2003)

RNA22 https://cm.jefferson.edu/rna22 (Miranda et al. 2006)
psRNATarget: A Plant 
Small RNA Target 
Analysis

plantgrn.noble.org/psRNATarget (Dai and Zhao, 2011) 

RegRNA http://regrna2.mbc.nctu.edu.tw (Chang et al. 2013)
STarMir http://sfold.wadsworth.org/cgi-bin/

starmirtest2.pl
(Ding et al. 2004)

Magia http://gencomp.bio.unipd.it/magia2/start (Sales et al. 2010)
miRGator http://mirgator.kobic.re.kr (Nam et al. 2008)
mirDIP http://ophid.utoronto.ca/mirDIP (Shirdel et al. 2011)
MicroInspector http://bioinfo.uni-plovdiv.bg/microinspector (Rusinov et al. 2005)
PITA http://genie.weizmann.ac.il/pubs/mir07/

mir07_data.html
(Kertesz et al. 2007)

LncTar http://www.cuilab.cn/lnctar (Li et al. 2014a)
RNAplex http://www.bioinf.uni-leipzig.de/Software/

RNAplex
(Tafer and Hofacker, 2008)

IntaRNA http://rna.informatik.uni-freiburg.de/
IntaRNA/Input.jsp

(Busch et al. 2008)

RactIP http://www.ncrna.org/software/ractip (Kato et al. 2010)
RIsearch http://rth.dk/resources/risearch (Wenzel et al. 2012)
PETcofold http://rth.dk/resources/petcofold  (Seemann et al. 2011)
catRAPID omics http://s.tartaglialab.com/page/

catrapid_omics_group
(Agostini et al. 2013)

RBP map http://rbpmap.technion.ac.il (Paz et al. 2014)

In addition to the above interaction prediction tools, several databases are pub-
licaly available those house both validated and predicted interctions among RNA-
RNA, TF-ncRNA and TF-gene. Some of these databases are listed in Table 3.

TAble 3 Databases for mining ncRNA-mediated regulatory interactions

Database Description References

starBase RNA–RNA and protein–RNA (both coding and 
non coding RNA)

(Li et al. 2014b).
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ChIPBase TF-lncRNA, TF-miRNA, TF-other ncRNA, 
TF-mRNA and TF-miRNA-mRNA

(Yang et al. 2013).

StarmiRDB miRNA-target genes (Rennie et al. 2014)

miRecords Both validated and predicted miRNA-target 
interactions

(Xiao et al. 2009)

miRTarBase Experimentally curated miRNA-target 
interactions

(Hsu et al. 2011)

TarBase Experimentally validated miRNA-target 
interactions

(Vlachos et al. 2015)

TransmiR Experimentally validated TF-miRNA regulations 
along with mechanisms

(Wang et al. 2010)

doRiNA miRNA-target interactions and RBP binding sites (Blin et al. 2015)

Micro-PIR miRNA target sites within human promoter 
sequences

(Piriyapongsa et al. 2012)

4. Network visualization tools

Biological network visualization is known to be very crucial that helps in complete 
illustration of network topology and other associated properties.The various interac-
tions obtained either directly from the experiments or databases and those obtained 
using interaction prediction tools can be combined to generate the ncRNA-mediated   
regulatory network. The interactions can be visualized as a network by using various 
network visualization tools. Some of the widely used network visualization tools are 
listed in Table 4.

TAble 4 Various network visualization tools

Visualization tools Websites

Cytoscape www.cytoscape.org

Gephi http://gephi.github.io

Graphviz http://www.graphviz.org

Pajek http://vlado.fmf.uni-lj.si/pub/networks/pajek

GUESS http://graphexploration.cond.org

GVF http://gvf.sourceforge.net

JUNG http://jung.sourceforge.net

BioFabric http://www.biofabric.org

Walrus http://www.caida.org/tools/visualization/walrus

VisANT http://visant.bu.edu

SNAVI https://code.google.com/p/snavi

AVIS http://actin.pharm.mssm.edu/AVIS2

yED http://www.yworks.com/en/products/yfiles/yed
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5. biological Network Architecture 
Understanding the complex molecular systems in a cell often requires myriads of 
components like ncRNAs, genes and TFs and their interactions to be presented as 
networks. Unraveling these interwoven networks requires understanding of the dif-
ferent structures and associated functional properties of the biological network. The 
basic network features includes the following:

5.1 Network topology

Network topology encompasses information about specific properties of a network 
like nodes (interacting entities) and edges (interactions). It also includes general 
properties of the entire network called global topological properties. Network topol-
ogy plays an essential role in understanding network architecture and performance. 
The topological features of a node include-

 (i) Degree It is the number of edges/link a node forms. In a directed network, 
the number of head endpoints on a node is termed “in-degree”, and the 
number of tail points on a node is termed “out-degree” of the node. Higher 
the degree of a node, the better it is connected to a network and plays a criti-
cal role maintaining the structural integrity of the network. 

 (ii) Node betweenness centrality It is the number of shortest paths that pass 
through a node among all other shortest paths between all possible pairs of 
nodes. It is an indicator of a nodes centrality in a network.

 (iii) Closeness centrality It is the average of the shortest path from one node to 
all other nodes.

 (iv) eigenvector centrality It measures the closeness to highly connected 
nodes.

Apart from these features of a node, classifying nodes with specific func-
tional groups is essential which assigns its function, cellular location, etc. Several 
approaches have been extensively used for this purpose like annotating genes with 
specific Gene Ontology (GO) terms, signaling pathways, etc. The topological fea-
tures of an edge, which may represent activating or inhibiting relationships between 
a pair of nodes, in a directed graph, includes-

 (i) betweenness centrality It is the sum of the fraction of all-pairs shortest 
paths that pass through it.

 (ii) edge directionality which specifies the upstream and downstream nodes 
that are connected by a particular edge.

  Global topological characteristics of networks consist of -

 (i) Degree distribution It is the probability distribution of the degrees of 
nodes over the whole network and is usually represented by a histogram.
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 (ii) Distance/Characteristic path length It represents the average shortest 
path between all pairs of nodes

	(iii)	 Clustering	 coefficient It is a measure of the degree of interactions by 
determining the connectivity of a node with its neighbors averaged over the 
entire network. A high clustering coefficient for a network is an indicator of 
a smaller network.

	 (iv)	 Grid	coefficient It looks beyond the first neighbors to the second neighbors 
of a node when maintaining the connectivity. 

 (v) Network diameter- It is the maximum distance between any two nodes 
and is also termed as the graph diameter. Depending on it, a graph may be 
a small network or a large network.

All the topological parameters discussed broadly fall into six categories: degree, 
betweenness, edge directionality, characteristic path length, network diameter, and 
clustering coefficient. The six topological parameters are depicted in Fig. 1.

Figure 1 Six network topology parameters. i, j : node, e : Edge. 

Importance of network topology

Congregation of interactions into networks has revealed that a recurrent property of 
regulatory biological networks is that they have a “scale-free” topology, wherein a 
number of nodes have only few connections and only a few nodes called “hubs” that 
are furnished with large number of connections which bind the network together 
(Barabasi and Oltvai, 2004). Hubs are extremely important as they play an essential 
role in biological systems. Much of the regulations in a network in mediated through 
hubs. Apart from the information about important regulatory ncRNA hubs which can 
be obtained from a ncRNA regulatory network, assigning functions to un-annotated 
ncRNAs or genes can also be performed. The network hub-based method for predic-
tion of ncRNA function is one of the most direct methods. It can assign a function to 
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the un-annotated ncRNAs according to the functional enrichment of its immediate 
neighboring genes. Liao and group were the first to apply this method to predict the 
function of lncRNAs (Liao et al. 2011).

Similarly, identifying key components that form the up-stream molecules called 
as master regulators is essential. These critical master regulators modulate multiple 
downstream genes either directly or via a cascade of gene expression changes, and 
when misexpressed, they re-orient the fate of cells to become diseased cells. A good 
example is the gene Twist, which is a master regulator controlling embryonic mor-
phogenesis and its de-regulation is responsible for tumor invasion and metastasis 
(Yang et al. 2004). 

Furthermore, interactions between lncRNA–mRNA, lncRNA–miRNA, and 
miRNA–mRNA in ncRNA-mediated network can be modulated by introducing 
sponges and masks that change the stochiometry of the binding site which effectively 
affects the topology and function of these networks. In a ceRNA network, the accu-
rate topology leads to the identification of bonafide ceRNA regulations that would 
have otherwise seem implausible based only on miRNA and mRNA ratio (Sanchez-
Mejias and Tay, 2015). 

5.2 Network module/cluster 

It is the local unit of the network which is defined as sub-graph. It is a dense area of 
connectivity with a loose link, separated from regions of low connectivity (Newman, 
2006). Liao and group have also predicted the function of lncRNAs by network 
modules using Markov cluster algorithm (MCL) (Liao et al. 2011). This opens up 
the avenues for determining the function of ncRNAs in a ncRNA mediated regula-
tory network using network modules. However, with the ubiquitous nature of the 
networks modules in a biological network, it may help to understand the interplay 
between network structure and function well. 

5.3 Network motif 

A common pattern or a recurring circuit in a network is called a network motif. 
Network motifs are composed of a few nodes and edges and are found to occur more 
frequently in the topology of a biological network. ncRNAs such as miRNAs are usu-
ally involved in many regulatory pathways or networks and are enriched with motifs, 
such as positive or negative feed forward loops (FFLs) (Mangan et al. 2003) and 
feedback loops (FBLs) (Angeli et al. 2004). This involvement of miRNAs in complex 
motifs makes the use of systems biology necessary for understanding their regula-
tion. Identification of putative regulatory motifs which is associated with inherent 
complexity is ideal for designing experiments to analyze their features and regula-
tions. The role of miRNAs as complex regulatory motifs is well elucidated by Vera 
and colleagues (Vera et al. 2013). The FFLs are found to be overrepresented in tran-
scriptional network and is a three gene pattern composed of one TF interacting with 
one miRNA and both jointly regulating a target gene. In mammals, typically four 
patterns of FFLs are extensively studied where the TF can either induce or repress 
expression of miRNA and target gene while miRNA always inhibits expression of 
the target gene (Tsang et al. 2007). The FBL occurs when output of a system is feed 
back as input to the system, forming a loop. These can be either positive, where 
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it accelerates a process or negative, where it slows down a process. A FBL is par-
ticularly important because it directly influences a systems dynamics. For finding 
enriched three-element and four-element motifs in a network, the tool mfinder can be 
used (Milo et al. 2002). Apart from FFLs and FBLs, another important motif identi-
fied in ncRNA mediated networks is bifans (Ingram et al. 2006; Lipshtat et al. 2008). 
These network motifs can be identified in directed or undirected networks called 
graphlets (Przulj et al. 2006). Bifan motif is a four gene pattern, where two source 
nodes directly cross-regulate two target nodes. These are overrepresented motifs in 
transcriptional and mammalian cell signaling network.

5.4 Network Dynamics

The dynamics of complex biological networks allows cells to respond to various 
conditions or cell states like proliferation, differentiation and apoptosis. Network 
dynamics study has shown that in an interaction network, the interacting molecules 
vary their partners according to time and locations. This led to the discovery of two 
types of hubs by Han et al. called “party hubs” and “date hubs” (Han et al. 2004). 
They studied the network dynamics and revealed that the party hubs interact with 
all their partners at the same time at spatial locations and have a higher probability 
of function within the same cellular process. The date hubs varied their interacting 
partners from time to time and thus linked various biological processes. Further 
in-silico analysis of networks reveals that the party hubs are more likely to be the 
module organizers and the date hubs act as module connectors. Studies by Luscombe 
and colleagues on dynamics of the transcriptional network for five different cellular 
conditions revealed sub-networks with different topologies at global and local level 
(Luscombe et al. 2004). Furthermore, roles of lncRNAs in ncRNA regulatory net-
work topologies and dynamics have been well studied by different groups (Kung et 
al. 2013; Mercer and Mattick, 2013).

5.5 Network evolution

Almost all real-world networks evolve with time by addition or removal of nodes 
and edges. Various models have been proposed to study networks during evolution. 
One model of network growth described by Barabasi and Albert assumes that as 
most biological networks follow a scale-free topology, it is considered that the net-
works expand by the continuous addition of new nodes with fixed degree (Barabasi 
and Oltvai, 2004). These nodes attach preferentially to well-connected nodes. The 
addition of new nodes in biological networks is most likely due to gene duplica-
tion. Understanding network evolution of ncRNA-mediated regulatory networks will 
affect network functionality by impacting the connectivity among its components. 
However, till date no significant work has been reported on this compelling prospec-
tive of ncRNA regulatory network alteration. 

6.  Analyzing ncRNA-mediated regulatory network
The ncRNA regulatory networks generated using various tools can then be analyzed 
for generation of new hypothesis which can further be validated by designing new 
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experimental procedures. For analyzing a functional network associated with a par-
ticular biological process, the networks can be built taking seed nodes. For example, 
differentially regulated genes and proteins in a disease or treatment condition as 
compared to normal or untreated could also be used as seed for building disease-
associated networks (Berger et al. 2007). These functional networks or disease 
networks are built by mapping the seed nodes onto a bigger regulatory interaction 
network obtained using all the individual regulatory interactions. Figure 2 provides 
an idea of the generation of a disease specific regulatory hub from a larger regulatory 
network done by our group (Figure 2) (Samantarrai et al. 2015).

Figure 2 Generation of disease-specific regulatory hub from a larger regulatory network (a) 
Curated TF-miRNA regulatory network (b) Active sub-network in STS metastasis (c) Notch signal-
ing specific network generated from active sub-network.

 TargeT geNes    Transcription factors    miRNAs
 iNTeracTioN amoNg source aND TargeT

 iNhibiTioN oF TargeT by source

6.1 integration of experimental resources

Integration of networks with different experimental resources or any type of back-
ground knowledge is helpful to predict functional interactions, and to improve the 
accuracy of the predicted interactions. The experimental resources and background 
knowledge includes validated interaction or validated information on the involve-
ment of genes, ncRNAs or proteins in a disease system. For example, Jiang et al 
integrated known target interactions of ncRNAs and regulation of ncRNAs to pre-
dict novel interactions among them in Alzheimer’s disease (Jiang et al. 2013). Apart 
from this, similar data sets which are generated using different methods can also be 
integrated to improve data quality and get information on missing data. For exam-
ple, Han and colleagues removed flawed interactions from the yeast protein-protein 
interaction network and constructed a “filtered yeast interactome”- FYI using high 
quality interactions obtained from two experiments (Han et al. 2004). Similar type of 
studies can be performed to explore ncRNA-mediated regulatory network analysis. 
Apart from this, integrating expression data from microarray or high-throughput 
sequencing like RNA-seq, small RNA seq, etc can add weightage to the network for 
better understanding. Integrating expression data in the transcriptional network has 
also proven to improve the quality of data and disclose cis-regulatory modules (Bar-
Joseph et al. 2003). Our group has also recently published on unraveling TF-miRNA 
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regulatory crosstalk in metastasis of soft tissue sarcomas, where data from experi-
mentally validated resources and microarray expression was integrated to generate 
novel regulatory interactions (Samantarrai et al. 2015). Thus, network integration 
involves combining various data from different resources that assists in uncovering 
critical regulators and present a more comprehensive view on their cellular functions. 

6.2 algorithms and tools to infer regulatory network

The generated functional networks or disease network can be analyzed further using 
different algorithms like mean-first-pass-time (MFPT) (Noh and Rieger, 2004), 
Steiner trees (Dittrich et al. 2008; Huang and Fraenkel, 2009) nearest neighbor expan-
sion and shortest path search algorithm to find connections between genes, ncRNAs, 
etc. The steiner tree was used by White and colleagues to minimally connect up-
regulated genes in breast and colorectal cancer (White et al. 2007). It has also been 
used to connect signaling pathways to TFs (Huang and Fraenkel, 2009). The shortest 
path algorithm has been used to predict key regulators of neurite outgrowth triggered 
by cannabinoid receptor signaling network (Bromberg et al. 2008). Implication of 
these algorithms in assimilating ncRNA-mediated regulatory networks are believed 
to be useful in finding functional relations between nodes in addition to predict-
ing nodes that have not been detected experimentally. Apart from these algorithms, 
many tools can be used to infer valuable regulatory and functional information from 
the network (Table 5).

TAble 5 Tools for inferring ncRNA-mediated regulatory network

Tools Descriptions Websites

Cytoscape Many useful plug-ins provided by it helps in 
inferring network architecture, functional 
annotations, pathway enrichment, pathway 
detection, cluster generation, etc

http://apps.cytoscape.org

RiNAcyc 
(RNA-interacting 
Nodes in Acyclic 
path)

Generates acyclic paths from unidirectional binary 
interactions among various biological entities, 
especially genes, miRNAs and transcription 
factors (TFs)

http://vvekslab.in/tools.
html

DAVID It identifies enriched GO terms, functional related 
gene groups, links disease-related genes, etc.

http://david.abcc.ncifcrf.
gov

MetaCoreTM A commercial software suite for performing 
functional analysis of NGS data, microarray, 
metabolic, proteomics, siRNA, miRNA, etc,.

https://portal.genego.com

IPA A commercial software suite that provides curated 
information on genes, miRNAs, cellular and 
disease processes, signaling and metabolic 
pathways, biomarkers, etc. It also generates 
information on key relationships and novel 
interactions.

http://www.ingenuity.com

DIANA-mirPath It provides miRNA pathway analysis with 
accurate statistics.

http://diana.imis.
athena-innovation.gr/
DianaTools
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7.  Application of non-coding RNA-mediated biological network  
The study of association of ncRNAs with gene regulatory networks and their deregu-
lations in complex diseases is one of the hot topics in genome research now-a-days. 
With the discovery that the genome of complex organisms have an enormous portion 
representing ncRNAs, many transcriptome studies have revealed that these ncRNA 
are the key regulators of biological processes and form a veiled layer of molecular 
genetics signals. Hence, construction of ncRNA-mediated regulatory network using 
different algorithms would help in better understanding of the ncRNA based bio-
logical functions playing possible critical roles in disease etiology. Various ncRNA-
mediated networks have been generated and studied for several purposes like 
highlighting the role of ncRNAs in cancer (Li et al. 2011; Xiao et al. 2015), studying 
effect of infections on the networks (Wu et al. 2011), analyzing transcriptional regu-
lation network in T-cells (Sun et al. 2013) etc. These network studies have provided 
many critical information regarding their regulations and involvement in diseases.

Diversity and complexity found among mammals and other complex organisms 
despite the relative commonality in their protein coding genes is one of the paradoxes 
of molecular biology which is explained by ncRNA-mediated regulatory networks. 
These enormous numbers of ncRNAs were hidden because of lack of development 
of techniques for detecting and analyzing them. The development of high-through-
put technologies, different bioinformatics approaches and analytical techniques 
like RT-PCR, etc for analyzing the genome has revealed the true complexity of the 
organisms. With the application of modern bioinformatics techniques, it is possible 
to develop a generic approach, which will be applicable to any regulatory RNA mol-
ecule, thus revolutionizing the study of ncRNAs.

Till date, various studies have been performed by different groups of scientist with 
an aim to provide the best generic approach for generating and unraveling ncRNA-
mediated regulatory network. The use of different curated and experimental data 
in generation of these networks will help deciphering novel enriched interacting 
molecules that might form the master regulatory component called hub. Further 
enrichment analysis will lead to identification of the most enriched hubs and their 
association to key biological pathways. The deregulation of these hubs are know to 
deregulate the regulatory network. These critical regulatory hubs can be considered 
as biomarker for a specific system and can act as a potential therapeutic target for 
a disease or stages of a disease. For example, Sun et al in 2012 identified critical 
miRNAs in the Notch signaling pathway from miRNA-TF regulatory network for 
glioblastoma, based on identification of hubs (Sun et al. 2012). 

In modern systems biology study, various efficient network generation and analy-
sis approaches have been developed. For example, Xiao et al generated a Bayesian 
gene regulatory network of lncRNAs and protein coding genes (Xiao et al. 2015). 
The Bayesian algorithm represents a set of random variables and their conditional 
dependencies via a directed acyclic graph. It revealed the regulatory relationship 
between the lncRNAs and protein coding genes in a prostate cancer model and pre-
dicted the function of lncRNA linked to highly connected coding genes through 
functional enrichment. They found 762 lncRNAs in the constructed network which 
were assigned function. Recently, our group worked on unraveling novel TF-miRNA 
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regulatory network in sarcoma metastasis, and developed a depth first search algo-
rithm (DFS) algorithm-based tool called RiNAcyc for deciphering acyclic path 
which are potentially active in soft tissue sarcoma metastasis (Samantarrai et al. 
2015). Depth first search algorithm is an algorithm which searches by traversing the 
depth of any particular path in a graph before exploring its breadth. We found 12 
significantly active paths from a sub-network which was potentially active in STS 
metastasis. 

Analyzing the network motifs in a biological network, Herranz and Cohen showed 
that let-7 and IL6 in oncogenic transformation are seen to be in a FFL in which 
NF-kB activation leads to depletion of let-7 and alleviates repression of IL6 (Herranz 
and Cohen, 2010). The feedback regulatory mechanism, another dominant network 
motif of the biological network can also lead to understanding of the complexity 
of biological function. A study by Aguda and colleagues revealed a feedback loop 
formed by Myc, E2F and miRNA cluster miR-17-92 (Aguda et al. 2008).

Another crucial ncRNA-mediated regulatory network is the genome-scale ceRNA 
network (ceRNET) study. The prediction of interaction topology of ceRNAs are now 
being extensively expanded with ample availability of genome-wide ncRNA-mRNA 
expression data over a wide range of disease systems. A recent work studied breast 
and thyroid cancer specific ceRNET and identified potential hubs discriminating 
respective cancer, as well as metastatic risk (Zhou et al. 2014). Similarly, ceRNET 
has been revealed in papillary thyroid carcinoma, gastric cancer and breast cancer 
exploring the cross regulation amongs lncRNA, miRNAs and mRNA (Huang et 
al. 2014; Paci et al. 2014; Xia et al. 2014). These network obtained in one system 
can have implication in other system with some novel or similar kind of functional 
regulations.

The emerging science of systems biology demands handling of large-scale high 
throughput data for the analysis of ncRNA-mediated regulations, which is simplified 
by generation and interpretation of these networks using different bioinformatics 
approaches. These networks will provide insight into transcriptome and its regula-
tion by ncRNAs, which form the major chunk of the transcriptome. 

8. Challenges and Future Directions

A complete and thorough understanding of the ncRNA-mediated regulatory net-
works is dream as of now. The key challenge remains in understanding the precise 
role of ncRNAs whose functions and regulations are still unexplored, particularly in 
relation to diseases. The attention that ncRNAs are receiving has greatly increased 
after the ENCODE project which revealed that 80% of the genome in eukaryotes is 
transcribed of which only 2% codes for proteins and the remaining are RNAs with 
no coding ability. Also, there is a constant increase in the detection of new types of 
ncRNAs. Inspite of an increase in interest among scientists in deciphering the role 
of ncRNAs, and the remarkable development of new technologies and resources as 
evident from the increasing number of scientific article related to this area, there still 
remains a long way to go to completely understand and decipher it. 

The characterization of ncRNA transcripts that form major chunk of human 
genome and their biosynthesis pathways are still in nascent stage and will remain 



125Modern Technologies and Approaches for ....

as the primary focus for molecular biologist for many years to come. Surprisingly, 
all types of ncRNAs identified till now form only a small fraction of the possible 
ncRNAs to be deciphered. Many issues make their identification and functional 
annotation difficult, like incomplete understanding of the functional motifs pres-
ent in ncRNAs, identification of their regulatory region and their low expression. 
Furthermore, despite the development of modern technologies, the analysis of the 
transcriptome by different methods and technology is primitive, as these methods 
do not allow full-length sequencing of all the transcripts. The identification of new 
ncRNAs, their interactions with other transcripts forming networks, assigning bio-
logical roles to all ncRNAs coded by a genome and studying their modes of regula-
tory networks is a daunting task and a significant challenge faced today. With the 
advent of technologies, it is expected that the rising genomics and bioinformatics 
approaches will help in uncovering and deciphering their functionality.

The construction of a disease-specific ncRNA-mediated regulatory network 
requires proper understanding of biological meaning of the data to be used, associat-
ing appropriate regulatory interactions and their accurate data mining. Apart from 
these, an extensive functional annotation of the generated network as well as appro-
priate integration of inter-disciplinary approaches will also significantly add to the 
understanding of network biology. 
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Abstract
Proteins are the most abundant bio-molecules found in living cells. The role of indi-
vidual proteins and their interaction with other proteins are crucial for several cel-
lular processes. Protein interacting with protein, DNA and ligand often drives the 
fate of various biochemical processes. There have been several efforts to annotate 
the individual protein functionality and its role in performing cellular processes. The 
impairment of protein functions can lead to an array of diseases and disorders in bio-
systems. With the advent of the post-genomic era there exists a large class of proteins 
with their functions still unknown. Around 150 genomes that are recently sequenced 
are yet to be assigned their physiological function and almost 30-50% of the genes 
are still having undefined functional characterization for their encoded proteins. 
Such class of proteins is termed as hypothetical proteins. A hypothetical protein 
is generally predicted to be expressed from ORFs (Open Reading Frame) with no 
experimental evidence of translation. These proteins constitute a considerable frac-
tion of the proteomes of most of the organisms. Through the domain extraction of 
these proteins, it can be helpful to search and reveal many gene coding proteins, their 
structure and function. In order to understand the biological system of these species, 
their functional characterization of proteins is very important. 

There are several prediction techniques available for the annotation of hypothetical 
proteins. The methods are most prevalent in both wet and dry laboratory. Although 
the traditional methods involving extraction of proteins from whole cell or their sub-
cellular fraction can assign functions to these genes accurately, the process is expen-
sive and time consuming at the same time. Computational approach for annotation 
of such hypothetical proteins utilizing the databases available on the basis of genome 
and proteome of certain organism are proved to be more precise, fast and accurate 
method. In this chapter, proteins with their relevance in organisms and the methods 
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for annotation of hypothetical proteins have been described. The various methods 
for annotation of hypothetical proteins such as protein-protein interaction-based 
method-comparative genomics-based method, genome context method, clustering 
method and in silico structural modeling based method, etc., have been described 
in brief with a detailed step-wise methodology for annotating gene or protein of any 
genus.

We have shown all those steps such as retrieval of sequence, prediction of gene 
ontology, homology search/structural modeling and finally the validation of vari-
ous physicochemical and functional parameters through various softwares and data-
bases. A comparative outlook of the methods and their relevance has been presented. 
Further we have shown the process in detail on a model organism Candida dublinien-
sis which contains a wide range of uncharacterized proteins. The various steps of its 
functional and structural characterization along with results have been described. As 
the field of bioinformatics is progressing day-by-day, the motive of research should 
also be shifted towards characterization rather than just discovery of new genomic 
sequences. The purpose of this chapter is to demonstrate the screening of hypotheti-
cal proteins by the application of various in silico methods which are intended to pre-
dict and validate various protein functions.

1. Introduction

Proteins are biological macromolecules capable of performing various functions in 
all living organisms. Each protein consists of multiple amino acids, which are the 
basic unit of proteins. There are 20 amino acids with specific functional group and 
distinct three-dimensional structure and conformation. The diversity of the proteins 
is basically maintained by the difference in the sequence of occurrence of amino 
acids.  According to the amino acids composition and structure of these proteins, 
they perform various functions within the bio-system. The sequence of arrangement 
of the amino acids in a protein is decided by the genes responsible for their encod-
ing. There exist 64 genetic codes which generally encode around 20 amino acids, 
although two new amino acids, namely, selenocysteine and pyrrolysine have also 
been recently added to this group (Aravind and Koonin 1999, Backert and Meyer 
2006).

The amino acids composition of a protein sequence is crucial to decide the fate 
of protein folding in three-dimensional space and this event is often associated with 
coupling of chemo-mechanical parameters which allows proteins to act as various 
key bio-molecules, viz. enzymes, receptors for signal transduction, bio-motors and 
switches (Arigoni et al. 1998).

The Central Dogma (as shown in Figure 1) is based on the conversion of the genetic 
message embedded in DNA to a functional mRNA moiety through the process called 
transcription and subsequent conversion of the copied genotype to a phenotype in the 
form of proteins, through translation process (Crick 1970).

The understanding of this framework can describe the transfer of sequence infor-
mation between biopolymers. Initially, the genetic information is copied from DNA 
to DNA through the replication and process further the information is propagated to 
m-RNA via transcription. Lastly, the proteins are synthesized in translation where 
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m-RNA acts as a template carrying the information regarding the role and fate of the 
protein (Crick 1956).

Figure 1 Central dogma of biology.

The translated proteins have diverse physiological functions in the organisms. As 
the huge protein data lies in the range of HPs whose functional annotation might get 
a better understanding of the organism’s molecular biology. The functions of these 
proteins can be classified in different categories as mentioned in Table 1. 

TAble 1 Examples of Protein Functions

Proteins Functions in nature Instances

Structural Provide structural basis Collagen found in cartilage; keratin 
found in hair and nails.

Contractile Move muscles Myosin and actin contracting muscles 
fiber.

Transport Transportation of essential substances in 
the entire body

Haemoglobin caries oxygen, 
lLipoprotein caries lipids.

Storage Serves for nutrients storage Casein for milk, ferritin for iron 

Hormones Regulate many metabolic reactions and 
the nervous system.

Insulin for blood glucose level, growth 
hormone for body growth.

Enzymes Works as a catalyst in many 
biochemical reactions.

Sucrose and trypsin catalyze the 
hydrolysis of sucrose and protein 
respectively.

Protection Protection against foreign substances. Immunoglobulins stimulate immune 
responses in the body.
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1.1 Protein structure

Protein structures can be classified at three levels— primary, secondary and tertiary 
(Figure 2). Primary protein structure is the linear sequence of amino acids through a 
series of amino peptide bonds. The planar structure exhibits resonance stabilization 
due to the presence of hydrogen bonds (Lodish et al. 2000) between neighbouring  
residues.

Protein secondary structures are result from the folding in primary structure due 
to the presence of hydrogen bonds between amide planes. These structural forms are 
broadly classified as alpha-helix, beta-sheets and loops. The alpha helix structure 
gets its typical shape due to intercalating hydrogen bonds. The beta-sheet is fur-
ther classified into parallel and anti-parallel beta sheet depending on the patterns of 
hydrogen bond. The loop often facilitates the folding of protein complex structures 
by providing flexibility to rigid planar structure (Anfinsen 1973).

The tertiary structure of protein can be considered as the spatial arrangements 
a containing combination of several secondary structural moieties. For example, 
alpha-keratins are the fibrous proteins with two alpha right-handed alpha-helix inter-
twined to form an alpha-coiled coil, usually cross-linked by weak interactions. The 
structural intricacy of each protein, with specific combinations of alpha-helices, 
beta-sheets and turns is responsible for its associated function (Anfinsen 1973). 
Quaternary structure consists of multiple subunits of tertiary structure arranged in 
specific stereo-spatial order to make the native structure of protein.

1.2 Protein Synthesis

Proteins are synthesized through a process called translation which occurs in the 
cytoplasm where genetic codes are translated into respective proteins (Baran et al. 
2006). Ribosomes mediate translation of genetic codes into polypeptide chains, 
which further undergo several post-translational modifications to become functional 
proteins.

Steps of translation

1. Initiation- mRNA enters into the cytoplasm and gets associated with 
ribosome. Base pairing (A-U, G-C) between m-RNA codons and 
t-RNA anticodons determines the order of amino acids in a protein.

2. elongation- Ribosomes carry information along with m-RNA; the 
t-RNA transfer its amino acid to the growing protein chain and pro-
duces protein.

3. Termination- When the ribosomes encounter a stop codon, i.e., UAA, 
UGA, or UAG, the ribosome falls and the process is terminated.

1.3 Hypothetical proteins

Over the last few years, more than 3000 genomes of diverse bacteria, archaea and 
eukaryotes have been successfully sequenced. Rapid progress has been made towards 
defining the structures and functions of HPs, identifying the translocated effector 
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molecules and elucidating the mechanisms by which the effectors subvert eukary-
otic cellular processes during infection (Aravind and Koonin 1999). Although many 
organisms’ genomes have been sequenced completely but still the potential functions 
of many genes are yet to be discovered. It is reported that in newly sequenced bacte-
rial genome, around 30-40% of the genes have not been assigned definite function. 
We still have very little idea of what proteins they code and what are their potential 
target sites (Backert and Meyer2006). Many of these proteins are found in conserved 
domains with unknown functions and their functional annotation is very important 
for the acute knowledge of functional genomics and general biology as well.  

It is noteworthy that crucial elements of various central pathways of information 
processing and metabolism could still be lurking among the ‘conserved hypotheti-
cal’s’ because of which important processes and mechanisms, such as signaling and 
stress response in the respective organisms, remain unraveled. It can be inferenced 
from the fact that when a complete open reading frame (ORF) is annotated as a 
‘conserved hypothetical protein’, it generally means that the gene is conserved across 
many organisms but its function is still unknown (Arigoni et al. 1998). In most of the 
cases, the general prediction of a gene’s function can be made on the basis of a con-
served sequence motif or subtle sequence similarity either in comparison with previ-
ously characterized proteins or in the presence of characteristic structural features. 
Looking at the solution, we see that many of these conserved proteins can be easily 
predicted and characterized as ATPases, GTPases, methyltranferases, metalloprote-
ases, DNA and RNA binding proteins and membrane transporters, etc. 

The major region of the genomes reported is still under suspicion regarding their 
function and comes under the range of hypothetical proteins (Fig 2).

Figure 2 Histogram showing the comparative representation of the total number of encoded 
proteins, HPs and known proteins in various organisms.

There are many proteins for which general biochemical functions have been pre-
dicted but still we are unaware of their exact biological function. In order to gather 
information about such proteins, we can access certain databases such as COG for 
phylogenetic classification of proteins encoded in complete genomes and their func-
tional group R. COG is a genome database which contains phylogenetic classification 
of proteins encoded in complete genomes. Out of all the uncharacterized proteins, 
there are two categories of proteins which are found in closely related organisms 
while others are found in distantly related organisms. There are many parasitic 
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pathogens which have to reduce their genome size for adapting to a parasitic lifestyle 
which leads to a drastic loss of genes which might be encoding for many metabolic 
enzymes, transcriptional regulators and membrane permeases. So the genes that 
have been retained, are considered essential for cell survival and become an impor-
tant part of hypothetical’s classification which also give them an attracting significant 
attention as potential therapeutic targets.

Some in-silico techniques have been initiated to characterize a hypothetical pro-
tein and uncover their structural and functional information. Several earlier exper-
imentations were being conducted to study the presence and role of hypothetical 
proteins in various eukaryotic and prokaryotic organisms. It has been reported that 
the flowering plant Arabidopsis thaliana which contains 25,498 genes, encodes pro-
teins that covers 11,000 families and thus several HPs could be in annotated by its 
genome level comparison with other organisms like Drosophila and Caenorhabditis 
elegans (Galperin and Koonin 2004, Rounsley et al. 2000).

As the inference of an in-silico study on Arabidopsis thaliana, it was concluded 
that beta-hairpin-alpha-hairpin repeats are the characteristics of the ankyrin fam-
ily. The presence of ankyrin repeats indicated its role in protein-protein interaction 
which is essential for various metabolic processes in organisms (Heynh et al. 2005). 
The structural and functional features were predicted by the folds that were recog-
nized as beta-hairpin-alpha-hairpin repeat with ankyrin repeat super family and the 
dominance of such coiled regions indicated the high level of conservation and stabil-
ity of the protein structure (Li et al. 2006).

Figure 3 Work done on annotation of hypothetical proteins in last 15 years

From the reference of PubMed articles, there are 6360 research articles available 
on hypothetical proteins and its predictions. From this entire record, around 197 of 
them are entirely on functional annotation of these proteins in which 20 and more are 
recent works published in 2013-14 (Fig 3).

In 2014, the ribosomal phosphoprotein P0 of the human malaria parasite 
Plasmodium falciparum (PfP0) was identified as a surface protein working for pro-
tection. Its function is also found in the nucleus of Drosophila and further could 
be classified into many classes such as ribosomal proteins, nucleotide binding and 
hypothetical integral membrane proteins (Aruna et al. 2004).

In 2006, a study on Mycobacterium tuberculosis uncovered an important func-
tion of proteins through biochemical studies and presented their role in hydrating 
short trans-2-enoyl-coenzyme pathway genomes. Another HP of Mycobacterium 
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tuberculosis Rv0130 protein was found to be highly conserved R-specific hydrolase 
motif buried deeply between the two monomers (Castell et al. 2005).

Mycoplasma hyopneumoniae, a pathogenic organism which causes enzootic pneu-
monia, was studied for the annotation of HPs in 2012. It has been reported that about 
42% of the 716 coding sequence are annotated as hypothetical proteins. In the study, 
it was found that three proteins were involved in various metabolic processes and two 
proteins were found to be crucial in the transcription process (da Fonsêca et al. 2012).

Arabidopsis thaliana is a model plant that contains many genes that are conserved 
in other plants as well and thus is very useful in comparative genomic analysis to 
explore hypothetical protein. One such instance can be presented as in case of Oryza 
sativa in 2012 where SA-JA signaling pathway was considered to screen 13 known 
gene sequences similar in both plants and the results suggested the conserved nature 
of these proteins (Indra et al. 2012).

Again in 2013, an important experimentation in the direction of annotation was 
successful in reporting Rv hypothetical proteins of a virulent strain of Mycobacterium 
tuberculosisH37Rv. Further, its comparative genomics with a model of M tuberculo-
sis H37Rv lead to uncover the pathway with mechanism of virulence (Zahra 2013).

In 2013, Mycobacterium leprae was studied for annotation of hypothetical proteins 
in order to find new therapeutic drug targets. In this study, active site detection was 
performed by modeling and simulating an important protein Acyl-CoA synthetase 
which was also found to be playing an important role in fatty acid metabolism in M 
leprae (Anjum 2013).

In the same year, a research article was published describing the annotation of 
genes from Staphylococcus aureus. The study has revealed the functions of several 
HPs as ATP binding proteins, multiple antibiotic resistance (MAR) export proteins, 
helix turn helix domains, arsenate reductase, elongation factors, ribosomal proteins, 
etc. (Ramadevi and Subhashree 2012).

The study carried out in 2014, has suggested the presence of 2.2% of proteins of 
Candida dubliniensis as conserved hypothetical protein (HPs). Further, 27 HPs were 
found with well-defined functions and were characterized as enzymes, nucleic acid 
binding proteins, transport proteins, etc. Five of them showed adhesion character 
which is likely to be essential for the survival of yeast and pathogenesis. This study 
was found to be very helpful in understanding the mechanism of virulence, drug 
resistance, pathogenesis, adaptability to host and most importantly drug discovery 
for the treatment of C dubliniensis infections (Kumar et al. 2014).

Further, in 2014, Pseudomonas aeruginosa (a bacterium resistant to a large num-
ber of antibiotics and disinfectants) was being studied to find the structure and func-
tion of PAZ481 protein to determine its role in antibiotic resistance. Through its HPs 
functional annotation, it was found that many proteins are involved in the physiol-
ogy and electron transport and protein pumping to generate ATP of this bacterium 
(David et al. 2014).

Another work published in 2014 on Bacillus lehensis, suggested the role of HPs 
in metal binding. An HP termed as Bleg1_2507 was found to contain Thioredoxin 
(Trx) domain and possess highly conserved metal binding residues Cys69, Cys73 and 
His159 which are conserved in Sco proteins of all prokaryotes and eukaryotes (Soo 
et al. 2014).

In the same case, Bleg1_2507 was found to have low sequence identity (47%) with 
BsSco but interestingly its metal binding site residues were located at flexible active 
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loops which corresponds to other Sco proteins. This shows another peculiar nature 
of HPs and importance of their study (Noor et al. 2014).

In the same year, a research article was published on functional annotation of an 
important pathogenic organism Chlamydea trachomatis. This research could suc-
cessfully annotate the functions of HPs as protease, ligase, synthase, translocase and 
zinc finger domain (Mishra et al. 2013). The data results from this study facilitate 
identification of potential therapeutic targets and enable the search for new inhibitors 
or vaccines.

In 2014, Biochem Pharmacology published a study on the functional annotation of 
hypothetical proteins of Leptospiro interrogans. Looking at the pathogenic nature of 
Leptospiro interrogans it was very important to annotate the genes and proteins of 
this organism and through in-silico study, it was found that proteins from families 
Ado Met DC, LRR and PilZ are mostly conserved in many microorganisms and thus 
can be targeted to develop many efficacious drug molecules (Bidkar et al. 2014).

Through in-silico based methods, around 35 proteins out of 114 conserved hypo-
thetical proteins of Rickettsia massiliae (MTU5), have been annotated. As Rickettsia 
massiliae is the cause of Rocky Mountain spotted fever (RMSF) and is the proto-
type bacterium in the spotted fever group of Rickettsia so its functional annotation 
becomes an important aspect to find the potential target sites for the cure of many 
diseases (Hoskeri et al. 2010).

Neisseria gonorrhoeae causes gonorrhoea. This particular family of proteins has 
increasing prevalence of strains with resistance to antibiotics. Annotation of these 
proteins finds way to development of drugs targeted specifically at these proteins and 
thus it still remains a challenge to researchers (Neeraj et al. 2013).

Haemophilus influenzae is a multi-drug resistance strain and it demands develop-
ment of better/new drugs against its pathogen proteins (HPs). Through the help of 
in- silico-based methods the amino acid sequences of all 429 HPs have been exten-
sively annotated and function is allotted to around 296. HPs were found to belong to 
various classes of proteins such as enzymes, transporters, carriers, receptors, signal 
transducers, binding proteins, virulence and other proteins (Shahbaaz et al. 2013).

2.  Methodology for functional annotation 
of hypothetical proteins

The hypothetical proteins may contain many biologically important functional prop-
erties which could be annotated by various methods. In the following section, it has 
been tried to explain the brief methodology of such methods with required descrip-
tion of the softwares and databases used on the basis of the results obtained through 
various researches done on the organism that belong to different families, genera 
and species. There are some general wet laboratory-based and some function and 
structure-based methods such as Rosetta stone method, genome context method, 
comparative genomics, clustering and in-silico based approach.

2.1 Methods based on protein-protein interactions

Proteins interact with each other in order to carry out certain functions such as 
transcriptional factors that also interact among themselves in order to perform 
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transcription. So, somehow this interaction pattern can reveal the function of the 
protein. Rosetta stone method can predict the interaction pathway of such proteins 
very easily (Enault et al. 2005). It can be illustrated as if we have two proteins A and 
B and their analog AB is found in some other organism that indicates that they have 
interaction. This method can be considered effective because a biochemical function 
in many cases depends on the action of a multi-meric complex demonstrating a cor-
relation between co-interacting proteins and their functions (Shailesh 2008).

2.2 Methods based on comparative genomics

Comparative genomics method is based on the assumption that the proteins that func-
tion together either in metabolic pathway or in structural complex could be expected 
to have been originated from the same evolution. Phylogenetic profiling can tell if the 
proteins are functionally linked. Moreover, phylogenetic profile is like a string with 
one bit and ‘n’ entries, here n is the number of genomes under consideration. So, if 
the nth genome contains a homolog then the nth entry can be represented as unity in 
the Phylogenetic profile (Ranea et al. 2007). Further, clustering of these profiles can 
determine the proteins having common profile.

2.3 genome context methods

In this method, we predict functional associations between protein-coding genes by 
analyzing gene fusion events, the conservation of gene neighborhood, or the signifi-
cant co-occurrence of genes across different species (Fan et al. 2012). It is differ-
ent from an homology-based approach and predicts functional associations between 
proteins, such as physical interactions, or co-membership in pathways, regulators or 
other cellular processes (Fiser and Sali 2003).

2.4 Clustering approaches

Clustering of genes is done by several methods and it can reveal which proteins come 
under the same cluster.  It’s a process of grouping on the basis that genes of the same 
cluster are involved in similar functions. Hence, the protein that is coded by this gene 
will also have the same function (Catell 1943).

2.5 In-silico Structural Modeling-based Method

This method has been the most feasible, sophisticated and relevant for annotation of 
hypothetical proteins from the last many years. In this section, we have tried to col-
lect all the possible strategies for in-silico based annotation of hypothetical proteins 
in simplified steps such as retrieval of sequence/data collection, structural model-
ing/structural analysis and functional characterization/annotation. Although several 
approaches have been utilized in the recent past for annotation of HPs, a generalized 
flowchart summarizing all such efforts is given in Annexure I.

The steps involved in identification and annotations as shown in Figure 4 and also 
been summarized as follows:
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Figure 4 Flow of annotation with related databases and software’s

A. Retrieval of Sequence

Hypothetical proteins sequence is extracted from the database for prediction of 
genes. The primary sequence of the desired organism could be obtained from the 
available genomic database (Table-2). Further, the primary sequence is compared to 
homologous sequences found in database using similarity search tools to find con-
served domains. After this search, we can analyze the secondary structure of the pro-
tein (Galperin and Koonin 2004). BLAST or any similarity search tool will find the 
conserved region. The structure could be modeled if not present in the Protein Data 
Bank (PDB) in order to deduce the 3D structure of proteins and analyze. This could 
be done by taking the templates from PDB and further homology modeling could be 
done by SWISS PDB, it’s a fully automated protein structure homology-modelling 
server and easily accessible via the ExPASy web server (Christophe et al. 2002). For 
a better understanding of the procedure, we have added the mechanism, results and 
specific software details of the model organism Candida dubliniensis.

TAble 2 Predicted function of HPs from Candida dubliniensis 

S.N Gene ID UniProt ID Protein Function
1 8045310 B9W9J1 Peroxiredoxin activity
2 8047341 B9WFD2 Phosphoinositide binding
3 8047346 B9WFD7 Structural protein
4 8047351 B9WFE4 ATP binding
5 8047353 B9WFE6 RNA binding
6 8047358 B9WFF1 Protein binding
7 8047371 B9WFG4 Phosphatase
8 8047376 B9WFG9 RNA binding
9 8047379 B9WFH2 Transporter activity
10 8047381 B9WFH4 Kinase activity
11 8047605 B9WFM3 Protein binding
12 8047460 B9WFR1 Transferase activity
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S.N Gene ID UniProt ID Protein Function
13 8047467 B9WFR8 DNA binding
14 8047468 B9WFR9 Transferase activity
15 8047470 B9WFS1 Hydrolase activity
16 8047471 B9WFS2 DNA binding
17 8047600 B9WFS4 Protein binding
18 8047474 B9WFS6 RNA binding
19 8047491 B9WFU3 Oxidoreductase activity
20 8047495 B9WFU7 DNA binding
21 8047497 B9WFU9 Hydrolase
22 8047654 B9WFV3 DNA binding
23 8047663 B9WFW2 Kinase activity
24 8047669 B9WFW8 DNA binding
25 8048708 B9WIB2 Protein binding
26 8048742 B9WIF0 Oxidoreductase activity
27 8048763 B9WIH5 Transport activity

As in the case of Candida dubliniensis, the sequences were retrieved from NCBI. 
A sequence similarity search was carried out using BLAST. ClustalW2 is a multiple 
sequence alignment tool for aligning more than two sequences. Further, the physi-
cal and biochemical properties of the sequences were calculated by ProtParam. The 
Gene IDs and UniProt ID of Candida dubliensis and conserved domains were identi-
fied as shown in Table 3 (Kumar et al. 2014).

TAble 3 List of domains identified in the HPs from Candida dubliniensis

S.N UniProt ID Conserved Domain (super family)
1. B9W9J1 Carboxymuconolactone decarboxylase (CMD)

2. B9WBA5 Hypothetical protein FLILHELTA

3. B9WFD2 ANTH domain family

4. B9WFE4 Archaeal ATPasea
5. B9WFG4 PP2Cc super family
6. B9WFG8 lipoprotein A (RlpA)-like double-psi beta-barrel
7. B9WFG9 PIN domain
8. B9WFH2 Major facilitator superfamily (MFS)

Sugar (and other) transportera
9. B9WFH4 Diacylglycerol kinase catalytic domain (DAG)

LCB5; Sphingosine kinase and enzymesa

10. B9WFM3 CUE domain
11. B9WFP3 Oxidoreductase-like protein, N-terminal

12. B9WFR8 Oxidoreductase-like protein, N-terminal,
GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain GAL4-like 
Zn(II)2Cys6 (C6 zinc) binuclear cluster DNA-binding Domain

13. B9WFR9 CoA-transferase family III
Predicted acyl-CoA transferases/carnitine dehydratasea

14. B9WFS1 Putative lysophospholipase, Alpha/beta hydrolase family
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S.N UniProt ID Conserved Domain (super family)

15. B9WFS2 fungal transcription factor regulatory middle homology region, GAL4-like 
Zn2Cys6 binuclear cluster DNA-binding domain, GAL4-like Zn(II)2Cys6 
(C6 zinc) binuclear cluster DNA-binding domain

16. B9WFS4 Chaperone for protein-folding within the ER, fungal

17. B9WFS6 Putative RNA methyltransferase

18. B9WFU3 Protein disulfide isomerase (PDIa) family, Protein disulfide 
oxidoreductases and proteins with a thioredoxin fold

19. B9WFU7 Fungal transcription factor regulatory middle homology region, 
GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain, GAL4-like 
Zn(II)2Cys6 (C6 zinc) binuclear cluster DNA-binding
Domain

20. B9WFV3 GAL4-like Zn2Cys6 binuclear cluster DNA-binding domain, GAL4-like 
Zn(II)2Cys6 (C6 zinc) binuclear cluster DNA-binding domain

21. B9WFW2 Yersinia pseudotuberculosis carbohydrate kinase-like subgroup, 
Nucleotide-binding domain of the sugar kinase/HSP70/actin superfamily 
FGGY-family pentulose kinase

22. B9WFW8 Rad17 cell cycle checkpoint protein

B. Structural Modeling

The structure of protein is also helpful in function prediction as it reveals many 
physicochemical characteristics of proteins.  Therefore, in order to predict the 3D 
structure, the templates of proteins could be used. Further, many tools could be used 
such as Modeller for homology and comparative modeling of protein 3D structure 
(Fiser and Sali 2003), I-TASSER which is the number one server for protein struc-
ture and function prediction and uses the hierarchical method for Threading (Roy 
et al. 2010), Geno 3D, it’s a comparative molecular modeling software (Christophe 
2002, Mayrose et al. 2004) (Table-1). The comparison of structural information of 
proteins, such as arrangement of alkyrin repeats (ANK), alpha helix and beta sheets, 
with other organisms can reveal their functional properties (Huaiyu et al. 2013). The 
structure prediction methods can be classified in two ways—ab initio methods which 
predicts a protein structure based on physico-chemical principles directly, and tem-
plate-based methods, which uses known protein structures as templates. Template 
based methods involve homology or comparative modeling, and fold recognition via 
threading. An online Protein Structure Prediction Server (PS2-v2 - PS Square ver-
sion 2) used for template based method which is considered as the most user-friendly 
and generally uses the principle of pairwise and multiple sequence alignment (Aloy 
et al. 2005).There are various factors of protein’ functions which could be depicted 
from its structural information such as dominance of coiled regions indicate high 
levels of conservation and stability of protein. Alkyrin repeats exclusively function 
to mediate protein-protein interaction some of which can be directly involved in 
human cancer and other diseases. The folds were recognized using PFP-FunDSeqE 
as mentioned in Table 4. 
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TAble 4 Different types of folds identified in HPs from Candida dubliniensis

S.N Fold type UniProt ID
1. Beta-trefoil B9W9J1, B9WFG9
2. Small inhibitors, toxins, lectins B9WBA5, B9WFS4
3. Immunoglobulin-like B9WFD2, B9WFE4,B9WFF7, B9WFG4, 

B9WFH2, B9WFH4, B9WFP3, B9WFR1, 
B9WFS0, B9WFS6, B9WFT3, B9WFT7, 
B9WFT8, B9WFV7, B9WIB2, B9WIC3, 
B9WIF4, B9WIG2, B9WIH4

4. DNA binding 3-helical B9WFD7, B9WFR8
5. 4-helical cytokines B9WFE6, B9WFS2
6. Ob-fold B9WFF1
7 Viral coat and capsid proteins B9WFG8, B9WFU7, B9WFX1, B9WIG1, 

B9WIH5
8. 4-helical up and down bundle B9WFM3
9. TIM-barrel B9WFR9, B9WFW8
10. Hydrolases B9WFS1
11. Thioredoxin like B9WFU3, B9WIF0
12. Belta-grasp B9WFU9
13. Cupredoxins B9WFV3
14. Ribonuclease h-like motif B9WFW2
15. Cona-like lectin/glucanases B9WIA6

C. Functional Characterization

Functional characterization of proteins classifies them into categories based on their 
functions and other basic properties which could be useful for the studies related to 
protein-protein interaction, target sites, protein functions, etc. The functions could 
be predicted from structural features as well as from the physicochemical properties. 
So, modeled structures could be further applied for both structural and functional 
classification and characterization of HP’s.

There are various tools that can identify functions of HP’s such as the conserve 
domain search. Conserved Domain could be used for the identification of motifs and 
domains in proteins and it is an important aspect as per the classification of protein 
sequences and functional annotation (Marchler et al. 2015). The specific domains 
and particular amino acid sequences InterProScan (for the classification of proteins 
into families for their functional analysis), Interpro, ScanProsite (PROSITE con-
sists of documentation entries describing protein domains, families and functional 
sites as well as associated patterns and profiles to identify them) and SMART. The 
evolutionary relation and biological process can also reveal the functions (Panther 
which is a library of protein families and subfamilies indexed by function, Pfam is 
a large collection of protein families, each represented by multiple sequence align-
ments and hidden Markov models (HMMs)). A novel genome-wide domain predic-
tion method, SECOM, is also in practice which first indexes all the proteins in the 
genome by using a hash seed function (Fan et al. 2012). The physical properties also 
play a very important role in functional classification (SOSUI is a classification and 
secondary structure prediction system for membrane proteins, TMHMM is for pre-
diction of transmembrane helices in proteins and it has been rated as the best for such 



149Annotation of Hypothetical Proteins-a Functional Genomics Approach

prediction, Psort-2 is a bioinformatics tool used for the prediction of protein locali-
sation sites in cells. It receives the information of an amino acid sequence and its 
taxon, SignalP server predicts the presence and location of signal peptide cleavage 
sites in amino acid sequences from different organisms: Gram-positive prokaryotes, 
Gram-negative prokaryotes, and eukaryotes and HMMTOP are for the prediction 
of transmembrane helices and topology of proteins). Further, other factors such as 
virulence factors can be predicted by VICMPred for prediction of Virulence factors, 
Information molecule, Cellular process and Metabolism molecule in the Bacterial 
proteins, cellular localization of proteins can be checked by Cello software which-
has been working very successfully with the NHS. 

In order to assign a precise function to HPs, all the sequences could be analyzed  
from different databases such as Conserved Domain Database (CDD) (Marchler-
Bauer et al., 2011), SMART (Letunic et al., 2012), ScanProsite (Sigrist et al. 2012), 
CATH (Cuff et al. 2011) and PANTHER (Paul et al. 2003) etc. CDD contains curated 
domain model based on the tertiary structure of the protein to provide sequence/ 
structure/function relationship in an organized hierarchy of family and superfamily. 
The function of SMART is to compare glutamate or aspartate and a histidine, in their 
catalytic domain.

Certain characters of these proteins such as pathogenicity can be understood by 
phosphate and transferase levels. The decrease in phosphate concentration of the host 
may lead to increase in virulence of pathogens like C. albicans, Candida glabrata 
and Saccharomyces cerevisiae. On the other hand, in yeast, some tranferases have 
been found to play significant role against oxidative stress. Many HPs possess enzy-
matic activities and are categorized as hydrolases, phosphatase, tranferases, kinase, 
oxidoreductases, and peroxiredoxin. In case of our model organism, Candida dub-
liniensis, the functional categories of the HPs is mentioned in Table 5 and the list 
of softwares which are used in functional annotation has also been listed (Table 6). 
Table 7 comprises a list of databases required for functional annotation of HPs. 

TAble 5  Functional categories of HPs

Predicted functions (Hypothetical Proteins)HPs 
enzymatic activity
Hydrolase activity B9WFS1, B9WFU9
Phosphatase activity B9WFG4
Transferase activity B9WFR1, B9WFR9
Kinase activity B9WFH4, B9WFW2
Oxidoreductase activity B9WIF0, B9WFU3
Peroxiredoxin activity B9W9J1

binding protein 
DNA binding B9WFR8, B9WFS2, B9WFU7, B9WFV3, B9WFW8
RNA binding B9WFE6, B9WFS6, B9WFG9
Protein binding B9WFF1, B9WFM3, B9WFS4, B9WIB2
ATP binding B9WFE4
Phosphoinositide-binding B9WFD2

Other proteins
Transport activity B9WFH2, B9WIH5
Structural protein B9WFD7
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TAble 6  List of softwares used in functional annotation

S. no. Softwares Used Description links 

1. I-TASSER For protein structure and function 
predictions

http://zhanglab.ccmb.med.
umich.edu/I-TASSER/ (Yang et 
al. 2015)

2. Geno3D It’s a web server to generate 
protein 3D model.

https://geno3dprabi.ibcp.fr/ 
(Roshni et al. 2014)

3. InterPro Protein sequence analysis & 
classification.

http://www.ebi.ac.uk/interpro/ 
(Mulder et al. 2008)

4. BLASTcds Finds regions of similarity 
between biological sequences.

http://blast.ncbi.nlm.nih.gov/
Blast.cgi (Altschul et al. 1990)

5. COGs It’s a sequence alignment for each 
domain is constructed, which 
allows a novel sequence to be 
matched rapidly to domains 
already in the library.

http://www.ncbi.nlm.nih.gov/
COG (Neidhardt et al. 1996)

6. CDART Domain Architecture Retrieval 
Tool

http://www.ncbi.nlm.nih.gov/
Structure/lexington/lexington.
cgi (Geer et al. 2002)

7. SCOP Its a tool for browsing and 
analyzing structural classification 
of proteins (SCOP) data.

http://supfam.org/
SUPERFAMILY/hmm.html 
(Meier and Söding 2015)

8. Gene Ontology 
Consortium

Structural classification of proteins 
from Gene Ontology Database.

http://geneontology.org/ 
(Carbon et al. 2009)

9. Gene Threader It is a software  to compute gene 
structure predictions

http://genomethreader.org/ 
(Gremme et al. 2005)

10. PROSPECT-PSPP 2D and 3D structure prediction. http://csbl.bmb.uga.edu/
protein_pipeline (Moult et al. 
2003)

11. InterProScan Matches against the InterPro 
collection of protein signature 
databases.

http://www.ebi.ac.uk/Tools/pfa/
iprscan5/ (Bruce and Reid 
2015)

12. TrEMBL It is a computer-annotated 
supplement of SWISS-PROT that 
contains all the translations of 
EMBL nucleotide sequence 
entries.

http://www.ebi.ac.uk/uniprot/
TrEMBLdocs/trembl_release_
notes_13.html (Emmert et al. 
1994)

13. DISULFIND It checks the disulfide bonding 
state and the cysteine connectivity 
prediction server.

http://disulfind.dsi.unifi.it/ 
(Fariselli et al. 1999)

14. CDHIT Clustering analysis of various 
types of DNAs and RNAs.

http://weizhong-lab.ucsd.edu/
cdhit_suite/cgibin/index.cgi 
(Weizhong et al. 2001)

15. ProtoNet ProtoNet provides automatic 
hierarchical classification of 
protein sequences.

http://www.protonet.cs.huji.
ac.il/introduct.php? global=prot
onet|no|6|61|lifetime (Sasson et 
al. 2003)

16. MED-SUMO They find similar binding sites and 
thus may perform similar 
functions.

http://www.medit.fr/ (Doppelt 
et al. 2009)
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17. SCANPROSITE It is a new and improved version 
of the web-based tool for detecting 
PROSITE signature matches in 
protein sequences.

http://prosite.expasy.org/
scanprosite/ (Gattiker et al. 
2002)

18. VAST(Vector 
Alignment Search 
Tool )

Stands for Vector Alignment 
Search Tool. Is a computer 
algorithm developed at NCBI and 
used to identify similar protein 
3-dimensional structures

http://structure.ncbi.nlm.nih.
gov/VAST/vast.shtml (Madej et 
al. 2014)

19. DaliLite(EMBL_
EBI)

DaliLite computes optimal and 
suboptimal structural alignments 
between two protein structures.

http://www.ebi.ac.uk/Tools/
structure/dalilite/ (Brooksbank 
et al. 2014)

20. GOR Its a Protein Secondary Structure 
Prediction Server

http://gor.bb.iastate.edu/

21. STRING Search Tool for the Retrieval of 
Interacting Genes/Proteins. The 
interactions include direct 
(physical) and indirect (functional) 

http://string-db.org/

22. SOSUI(MAFET  
SERVER)

For secondary structure prediction 
of membrane protein.

http://nhjy.hzau.edu.cn/kech/
swxxx/jakj/dianzi/Bioinf7/
Expasy/Expasy10.files/
sosuimenu0.htm (Hirokawa et 
al. 1998)

23. IMPALA Integrated Molecular Pathway 
Level Analysis. It does the 
pathway over-representation and 
enrichment analysis with 
expression and / or metabolite data

http://impala.molgen.mpg.de/ 
(Kamburov et al. 2011)

24. T-COFFEE A collection of tools for 
Computing, Evaluating and 
Manipulating Multiple Alignments 
of DNA, RNA, protein sequences 
and structures.

http://tcoffee.vitalit.ch/apps/
tcoffee/index.html(Notredame 
et al. 2000)

25. Q Site Finder An energy-based method for the 
prediction of protein–ligand 
binding sites

 http://www.ebi.ac.uk/
pdbe-site/pdbemotif/(Aloy 
2001)

26. ProFunc Is a popular web server composed 
of a compendium of structure–
based and sequence–based 
methods.

http://www.ebi.ac.uk/
thornton-srv/databases/profunc/

27. SuMo Used for 3D search for protein 
functional sites.

http://sumo-pbil.ibcp.fr/cgi-bin/
sumo-welcome

28. Site Engine Recognizes regions on the surface 
of one protein that resembles a 
specific binding site of another.

http://bioinfo3d.cs.tau.ac.il/
SiteEngine/

29. PatchFinder Identification of functional regions 
in proteins.

http://patchfinder.tau.ac.il/ 
(Mandel et al. 1995)
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TAble 7 List of databases required for functional annotation

S. no. Databases Description links
1. UniProtKB The mission of UniProt is to provide the 

scientific community with a 
comprehensive, high-quality and freely 
accessible resource of protein sequence 
and functional information.

http://www.uniprot.org/ 
(Jain et al. 2009)

2. GenBank(NCBI) Nucleic acid sequences provide the 
fundamental starting point for describing 
and understanding the structure, function, 
and development of genetically diverse 
organisms.

http://www.insdc.org/
files/feature_table.html#1 
(Benson et al. 2004)

3. DALI Database The Dali Database is based on all-against-
all 3D structure comparison of protein 
structures in the Protein Data Bank (PDB). 

http://ekhidna.biocenter.
helsinki.fi/dali/start 
(Nykyri et al. 2012)

4. Tuberculist The TubercuList knowledge base 
integrates genome details, protein 
information, drug and transcriptome data, 
mutant and operon annotation, 
bibliography, structural views and 
comparative genomics, in a structured 
manner required for the rational 
development of new diagnostic, 
therapeutic and prophylactic measures 
against tuberculosis.

http://tuberculist.epfl.ch/ 
(Rosenkrands et al. 2000)

5. EggNOG4.0 eggNOG (evolutionary genealogy of 
genes: Non-supervised Orthologous 
Groups) is a database of orthologous 
groups of genes.

http://eggnog.embl.de/
version_4.0.beta/ (Powell 
et al. 2012)

6. QuikGO(EBI) GO slims are lists of GO terms that have 
been selected from the full set of terms 
available from the Gene Ontology project.

http://www.ebi.ac.uk/
QuickGO/

7. DEG(Database of 
Essential Genes)

Essential genes are those indispensable for 
the survival of an organism, and therefore 
are considered a foundation of life. DEG 
hosts records of currently available 
essential genomic elements, such as 
protein-coding genes and non-coding 
RNAs, among bacteria, archaea and 
eukaryotes.

http://tubic.tju.edu.cn/
deg/ (Kobayashi et al. 
2003)

8. GeneSul Database The Gene Ontology (GO) project is a 
collaborative effort to address the need for 
consistent descriptions of gene products 
across databases. 

http://geneontology.org/

9. TAIR Data available from TAIR includes the 
complete genome sequence along with 
gene structure, gene product information, 
gene expression, DNA and seed stocks, 
genome maps, genetic and physical 
markers, publications, and information 
about the Arabidopsis research 
community.

http://www.arabidopsis.
org/ (Rhee et al. 2006)
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10. CD Search To find Conserved Domains and Protein 
Classification

http://www.ncbi.nlm.nih.
gov/Structure/cdd/docs/
cdd_search.html

11. Genome Cube Source BioScience LifeSciences are 
European leaders in DNA sequencing, 
genomic services, bioinformatic analyses 
and offer a comprehensive portfolio of 
clones, genomic reagents and antibodies.

http://www.lifesciences.
sourcebioscience.com/
about-us/

12. Joint Center Joint Center for Computational Biology 
and Bioinformatics

http://www.jcbi.ru/EN/

13. Gene 
Ontology(GO)

The Gene Ontology (GO) project is a 
collaborative effort to address the need for 
consistent descriptions of gene products 
across databases.

http://geneontology.org/ 
(Carbon et al. 2009)

14. CDD BLAST Its collection of domain models includes a 
set curated by NCBI, which utilizes 3D 
structure to provide insights into 
sequence/structure/function relationships.

http://www.ncbi.nlm.nih.
gov/cdd (Finn et al. 
2010)

15. INTEPROSCAN This form allows to scan  sequence for 
matches against the InterPro collection of 
protein signature databases.

http://www.ebi.ac.uk/
Tools/pfa/iprscan5/ 
(Altschul et al. 1997)

16. PFAM PFAM database is a large collection of 
protein families, each represented by 
multiple sequence alignments and hidden 
Markov models (HMMs).

http://pfam.xfam.org/ 
(Sonnhammer et al. 
1997)

17. TIGRFAMs TIGRFAMs is a resource consisting of 
curated multiple sequence alignments, 
Hidden Markov Models (HMMs) for 
protein sequence classification, and 
associated information designed to 
support automated annotation of (mostly 
prokaryotic) proteins.

http://www.jcvi.org/
cgibin/tigrfams/index.cgi 
(Haft et al. 2001)

18. KEGG Database of metabolic pathway (Kyoto 
Encyclopedia of Genes and Genomes).

http://www.genome.jp/
kegg/ (Kanehisa et al. 
2014)

3. Conclusion
Annotation of hypothetical proteins is an essential requirement in the present era. 
Looking at the large number of genomic data and protein sequence data availability, 
there exists a requirement of further attempts to study their physiology and func-
tions. The functions of these proteins can reveal many new crucial proteins which 
can act as potential therapeutic targets and can also identify their role in pathways 
of many biochemical cycles. A systematic process of functional annotation of these 
hypothetical proteins through bioinformatics tools has proven to be very useful in 
recent years. In-silico based approach throws better choice over the other traditional 
methods, as it provides a less time-consuming and more sophisticated approach with 
quality control on each intermediate steps. The step-wise procedure of functional 
annotation of hypothetical proteins can further utilize the essence of machine learn-
ing algorithms to classify the proteins on the basis of their functional properties. 
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The proper utilization of the tools and databases that are already available, facili-
tate knowledge discovery. The identification of novel protein functions might reveal 
many functional properties of the organism and can be described on the basis of the 
molecular features associated with the organism. An in-depth study of the hypotheti-
cal proteins could open several new functional pathways and will help the current 
molecular biology, drug designing and proteomics studies.

References
Aloy, P. 2001. Automated structure-based prediction of functional sites in proteins: appli-

cations to assessing the validity of inheriting protein function from homology in 
genome annotation and to protein docking. J. Mol. Biol. 311: 395–408.

Aloy, P., Pichaud, M., and R.B. Russell, 2005. Protein complexes: structure prediction 
challenges for the 21(st) centuries. Curr Opin Struct   Biol. 15(1):15-22.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and D.J. Lipman, 1990. Basic local align-
ment search tool. J. Mol. Biol. 215, 403–410.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, 
D.J. 1997. Gapped Blast and Psi-Blast: a new generation of protein database search 
programs. Nucleic Acids Res., 25, 3389–3402.

Anfinsen, C.B., 1973. The principles that governs the folding of protein chains. Science 
181:223-30.

Anjum, S. 2013. Computational Genome analysis of Hypothetical Protein in Mycobacterium 
lapraeTN For Therapeutic Drug Target Identification, Int. Res. J. of Science & 
Engineering,  1(3):90-91, 2322-0015.

Aravind, L. and E.V. Koonin, 1999. Gleaning non-trivial structural, functional and evolu-
tionary information about proteins by iterative database searches. J Mol Bioi 287: 
1023-1040.

Arigoni, F., Talabot, F., and M. Peitsch, 1998. A genome-based approach for the                            
identification of essential bacterial genes. Nature Biotechnology 16: 851-856.

Aruna, K., Tritha, C., Savitri, N., Abdul, M., S. Alfica, and S. Shubhona, 2004. Identification 
of a hypothetical membrane protein interactor of ribosomal phosphoprotein P0, J. 
Biosci., Vol. 29, No. 1, 33–43.

Backert, S. and T.F. Meyer, 2006. Type IV secretion systems and their effectors in bacterial 
pathogenesis. Curr Opin Microbial.9: 207-217.

Baran, M.C., Moseley, H.N., Aramini, J.M., Bayro, M.J., Monleon, D., Locke, J.Y., and 
G.T. Montelione, 2006. SPINS: a laboratory information management system for 
organizing and archiving intermediate and final results from NMR protein structure 
determinations. Proteins: Structure, Function, and Bioinformatics, 62(4), 843-851. 

Benson, D.A., Karsch, M.I., Lipman, D.J., Ostell, J. and D.L. Wheeler, 2004. GenBank: 
update. Nucleic Acids Res. 32: 23–26.

Bidkar, A.P., Thakur, K.K., Bolshette, N.B., Dutta, J., and R. Gogoi, 2014.  In-silico 
Structural and Functional Analysis of Hypothetical Proteins of Leptospira 
Interrogans. Biochem Pharmacol 3:136.

Brooksbank, C., Bergman, M.T., Apweiler, R., Birney, E., and J. Thornton, 2014. The 
European Bioinformatics Institute’s data resources. Nucleic Acids Res., 42, 18–25.

Bruce, A.R., and T. Reid, 2015. Functional and Phylogenetic Characterization of Proteins 
Detected in Various Nematodes Intestinal Compartments MCP. 14: 812-827.



155Annotation of Hypothetical Proteins-a Functional Genomics Approach

Carbon, S., Ireland, A., Mungall, C.J., Shu, S., Marshall, B., and S. Lewis, 2009. AmiGO 
Hub, Web Presence Working Group. AmiGO: online access to ontology and annota-
tion data. Bioinformatics. 25: 288-89.

Carbon, S., Ireland, A., Mungall, C.J., Shu, S., Marshall, B., and S. Lewis, 2009. AmiGO 
Hub, Web Presence Working Group. AmiGO: online access to ontology and annota-
tion data. Bioinformatics. 25, 288-9.

Castell, A., Johansson, P., Unge, T., Jones, T.A., and K. Bäckbro, 2005. Rv0216, a conserved 
hypothetical protein from Mycobacterium tuberculosis that is essential for bacterial 
survival during infection, has a double hotdog-fold. Protein Sci. 14: 1850–1862.

Cattell, R. B. 1943. The description of personality: Basic traits resolved into clusters. 
Journal of Abnormal and Social Psychology. 38: 476–506.

Christophe, C., Martin, J., Gilbert, D., and G. Christophe, 2002. Geno3D: automatic com-
parative molecular modelling of protein, Volume 18, Issue 1, Oxford University 
Press.

Crick, F. 1970. Central dogma of molecular biology. Nature, 227, 561–63.
Crick, F.H.C. 1956. On Protein Synthesis. Symp. Soc. Exp. Biol. XII: 139-63.
Cuff, A.L., Sillitoe, I., Lewis, T., Clegg A.B., Rentzsch, R., Furnham, N., Jones, D., 

Thornton, J., and C.A. Orengo, 2011. “Extending CATH: increasing coverage of the 
protein structure universe and linking structure with function.” Nucleic Acids Res. 
39.

da Fonsêca, M. M., Zaha, A., Caffarena, E. R., and A. T. R.  Vasconcelos, 2012. Structure-
based functional inference of hypothetical proteins from Mycoplasma hyopneu-
moniae. Journal of Molecular Modeling, 18(5): 1917-1925.

David, A.D., George, E.B., and G.S. Janneth, 2014. Structural and Functional Prediction 
of the Hypothetical Protein Pa2481 in Pseudomonas Aeruginosa Pao, Advances in 
Intelligent Systems and Computing. 232: 47-55.

Doppelt, A.O., Moriaud, F., and F. Delfaud, 2009. Analysis of HSP90 related folds with 
MED-SuMo classification approach. Drug Des Dev Therapy.3: 59–72.

Emmert, D.B., Stoehr, P.J., Stoesser, G., and G.N. Cameron, 1994. The Ribosomal Database 
Project (RDP). Nucleic Acids Res. 22: 3445-49.

Enault, F., Suhre, K., and J. Claverie, 2005. Gene Function Predictor: A gene annotation 
tool based on genomic context analysis, BMCBioinformatics. 6: 247.

Fan, M., Wong, K. C., Ryu, T., Ravasi, T., and X. Gao, 2012. Secom: A novel hash seed and 
community detection based-approach for genome-scale protein domain identifica-
tion. PLoS ONE 2012 7(6): e39475.doi:10.1371/journal.pone.0039475. 

Fariselli P., Riccobelli P., and R. Casadio 1999. Role of evolutionary information in pre-
dicting the disulfide-bonding state of cysteine in proteins. Proteins. 36: 340–346.

Finn, R.D, Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington, J.E., Gavin, O.L., 
Gunasekaran, P., Ceric, G., Forslund, K., 2010. The Pfam protein family’s database. 
Nucleic Acids Res. 38, 211-222.

Fiser, A. and A. Sali, 2003. Modeller: generation and refinement of homology-based pro-
tein structure models. Meth. Enzymol. 374: 461–91.

Galperin, M.Y. and E.V. Koonin, 2004. Conserved hypothetical’ proteins: prioritization of 
targets for experimental study, Nucleic Acids Res. 12: 5452-63.

Gattiker, A., Gasteiger, E., and A. Bairoch, 2002. ScanProsite: a reference implementation 
of a PROSITE scanning tool. Appl. Bioinformatics. 1, 107–108.

Geer, L.Y., Domrachev, M., Lipman, D.J., and S.H. Bryant, 2002. CDART: protein homol-
ogy by domain architecture. Genome Res. Oct. 12: 1619-23.



156 Computational Biology and Bioinformatics

Gremme, G., Brendel, V., Sparks, M.E., and S. Kurtz, 2005. Engineering a software 
tool for gene structure prediction in higher organisms. Information and Software 
Technology, 47: 965-978.

Haft, D.H., Loftus, B.J., Richardson, D.L., Yang, F., Eisen, J.A., Paulsen, I.T. White, O. 
2001. TIGRFAMs: a protein family resource for the functional identification of pro-
teins. Nucleic Acids Res., 29, 41–43.

Heynh, A., Bhattacharjee, H., Choudhury, U., Maheswari, S, R., and B, D. Joshi, 2005. 
In-silico prediction of structural and functional aspects of a hypothetical protein of 
Arabidopsis thaliana. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 24: 
2358.

Hirokawa, M., and C. Boon, 1998. SOSUI: Classification and secondary structure predic-
tion for membrane proteins, Bioinformatics. 14: 378-79.

Hoskeri, J.H., Krishna, V., and C. Amruthavalli, 2010. Functional Annotation of Conserved 
Hypothetical Proteins in Rickettsia Massiliae MTU5. J Comput Sci Syst Biol. 3: 
050-052.

Huaiyu, M., Anushya, M., and D.T. Paul, 2013. PANTHER in 2013: modeling the evolu-
tion of gene function, and other gene attributes, in the context of phylogenetic trees. 
Nucleic acids research, 41(D1), D377-D386. 

Indra, S., Pragati, A., and S. Kavita, 2012. In search of function for hypothetical proteins 
encoded by genes of SA-JA pathways in Oryza sativa by in-silico comparison and 
structural modeling, ISSN 0973-2063, Bioinformation 8(1): 001-005.

Jain, E., Bairoch, A., Duvaud, S., Phan, I., Redaschi, N., Suzek, B.E., Martin, M.J., 
McGarvey, P., and E. Gasteiger, 2009. Infrastructure for the life sciences: design and 
implementation of the UniProt website. BMC Bioinformatics, 10: 136.

Kamburov, A., Cavill, R., Ebbels, T.M., Herwig, R., and H.C. Keun, 2011. Integrated 
pathway-level analysis of transcriptomics and metabolomics data with IMPaLA. 
Bioinformatics. 27: 2917-2918.

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M. 2014. Data, 
information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids 
Res. 42, 199–205.

Kobayashi, K., Ehrlich, S.D., Albertini, A., Amati, G., Andersen, K.K., Arnaud, M., Asai, 
K., Ashikaga, S., Aymerich, S., and P. Bessieres,  2003. Essential Bacillus subtilis 
genes. Proc. Natl Acad. Sci. USA, 100, 4678–83.

Kumar, K., Prakash, A., Tasleem, M., Islam, A., Ahmad, F., and M. I. Hassan, 2014. 
Functional annotation of putative hypothetical proteins from Candida dubliniensis. 
Gene, 543(1):  93-100.

Li. J., Mahajan, A., and M, D. Tsai, 2006. Alkyrin repeat: A unique motif mediating pro-
tein-protein interactions, Biochemistry. 45: 5168-78.

Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and J. Darnell,  2000. 
Section 3.1, Hierarchical Structure of Proteins. Molecular Cell Biology. 4th edition. 
W. H. Freeman & Co. 

Madej, T., Lanczycki, C.J., Zhang, D., and P.A. Thiessen, 2014 Geer RC, Marchler-Bauer 
A, Bryant SH. MMDB and VAST+: tracking structural similarities between macro-
molecular complexes. Nucleic Acids Res.42: 297-303.

Mandel, G.Y., Schueler, O., and H. Margalit, 1995. Comprehensive analysis of hydrogen 
bonds in regulatory protein DNA-complexes: in search of common principles. J. 
Mol. Biol. 253: 370–82.



157Annotation of Hypothetical Proteins-a Functional Genomics Approach

Marchler, B.A., Derbyshire, M.K., Gonzales, N.R., Lu, S., Chitsaz, F., Geer, L.Y., Geer, 
R.C., He, J., Gwadz, M., Hurwitz, D.I., Lanczycki, C.J., Lu, F., and G.H. Marchler, 
2015. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43.

Mayrose, I., Graur, D., Ben-Tal, N., and Pupko, T. 2004. Comparison of site specific rate-
inference methods for protein sequences: empirical Bayesian methods are superior. 
Mol. Biol. Evol. 21: 1781–91.

Meier, A. and J. Söding, 2015. Context similarity scoring improves protein sequence align-
ments in the midnight zone Bioinformatics. 31 (5): 674-81.

Mishra, P.K., Sonkar, S.C., Raj, S.R., Chaudhry, U., and D. Saluja, 2013. Functional 
Analysis of Hypothetical Proteins of Chlamydia Trachomatis: A Bioinformatics 
Based Approach for Prioritizing the Targets. J Comput Sci Syst Biol, 7:1.

Moult, J., Fidelis, K., Zemla, A. and T. Hubbard, 2003. Critical assessment of methods of 
protein structure prediction (CASP)-round V. Proteins. 53: 334–39

Mulder, N.J., Apweiler, R., Attwood, T.K., Bairoch, A., Bateman, A., Binns, B., Bork, P., 
Buillard, V., Cerutti, L., Copley, R., 2008. New developments in the InterPro data-
base. Nucleic Acids Res. 35, 224–228.

Neeraj, N., Neera, M., and C. Sayan, 2013. Analysis of Annotation Strategies for 
Hypothetical Proteins: A Case Study of Neisseria, Journal of Natural Science, 
Biology and Medicine. 02(03), 2319-1163.

Neidhardt, F.C., Curtiss, R., Ingraham, J.L., Lin, E.C.C., Low, K.B., Magasanik, B., 
Reznikoff, W.S., Riley, M., Schaechter, M., and H.E. Umbarger, 1996. Escherichia 
coli and Salmonella. Cellular and Molecular Biology, 2nd edn.

Noor, Y.M., Samsulrizal, N.H., Jema’on, N.A., Low, K.O., Ramli, A.N., Alias ,N.I., Damis, 
S.I., Fuzi, S.F., Isa, M.N., Murad, A.M., Raih, M.F., Bakar, F.D., Najimudin, N., 
Mahadi N.M., Illias and  R.M. 2014.  A comparative genomic analysis of the alkali 
tolerant soil bacterium Bacillus lehensis G1. Gene 545: 253-261.

Notredame, C., Higgins, D.G., and J. Heringa, 2000. “T-Coffee: A novel method for fast 
and accurate multiple sequence alignment”. J Mol Biol. 302, 205–17.

Nykyri, J., Niemi, O., Koskinen, P., Nokso, K.J., Pasanen, M., Broberg, M. 2012. Revised 
Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model 
Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193 PLoS Pathogens. 8: 
e1003013.

Paul, D., Thomas, M.J., Campbell, A.K., Huaiyu, Mi., Brian, K., Robin, D., Karen, D., 
Anushya, M., and N. Apurva, 2003. PANTHER: a library of protein families and 
subfamilies indexed by function. Genome Res., 13: 2129-141.

Powell, S., Szklarczyk, D., Trachana, K., Roth, A., Kuhn, M., Muller, J., Arnold, R., Rattei, 
T., Letunic, I., Doerks, T., Jensen, L.J., and P. Bork, 2012. eggNOG v3.0: ortholo-
gous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic 
Acids Research. 40: 284–289.

Ramadevi, M. and V. Subhashree, 2012. Computational structural and functional analysis 
of hypothetical proteins of Staphylococcus aureus, Bioinformation 8(15): 722-28.

Ranea, J.A.G.,  Yeats, C., Grant, A., and Orengo, C.A. 2007. Predicting Protein Function 
with Hierarchical Phylogenetic Profiles: The Gene3D Phylo-Tuner Method Applied 
to Eukaryotic Genomes. PLoS Comput Biol. 3(11): e237.

Rhee, S.Y., Dickerson, J., and D. Xu, 2006. Bioinformatics and its Applications in Plant 
Biology. Annual Review of Plant Biology. 57: 335-60.



158 Computational Biology and Bioinformatics

Rosenkrands, I., Weldingh, K., Jacobsen, S., Hansen, C.V., Florio, W., Gianetri, I., and P. 
Andersen, 2000. Mapping and identification of Mycobacterium tuberculosis proteins 
by two-dimensional gel electrophoresis, microsequencing and immunodetection.  
Electrophoresis. 21(5): 935-48.

Roshni, P., Susan, S.A., and P.K. Cleave, 2014. In silico predictive studies of mAHR con-
gener binding using homology modelling and molecular docking. Toxicol Ind Health 
30 (8): 765-76.

Rounsley, S., Bush, D., Subramaniam, S., Levin, I., S. Norris, 2000. Analysis of the 
genome sequence of the flowering plant Arabidopsis thaliana, Nature 408: 796-815.

Roy, A., Kucukural, A., and Y. Zhang, 2010. I-TASSER: a unified platform for automated 
protein structure and function prediction. Nature Protocols, 5: 725-38.

Sasson, O., Vaaknin, A., Fleischer, H., Portugaly, E., Bilu, Y., Linial, N. and M. Linial, 
2003. ProtoNet: hierarchical classification of the protein space. Nucleic Acids Res. 
31: 348–352.

Shahbaaz, M., Hassan, M.I., and Ahmad, F. 2013. Functional Annotation of Conserved 
Hypothetical Proteins from Haemophilus influenzae Rd KW20. PLoS ONE 8(12): 
e84263.

Shailesh, V. D. 2008. The Rosetta Stone Method. Bioinformatics Methods in Molecular 
Biology. 453: 169-180.

Sigrist, C., Cerutti, L., Cuche, B.A., Hulo, N., Bridge, A., Bougueleret, L., and I. Xenarios, 
2012. New and continuing developments at PROSITE, Nucleic Acids Research, 
2012, 1–4. doi:10.1093/nar/gks1067.

Sonnhammer, E.L.L., Eddy, S.R., Durbin, R. 1997. Pfam: A comprehensive database of 
protein domain families based on seed alignment. Proteins, 28, 405-420.

Soo, H.T., Yahaya, M.N., Adam, T.C.L., Abu, B.S., and A.K. Roghayeh, 2014. A Sco pro-
tein among the hypothetical proteins of Bacillus lehensis G1: Its 3D macromolecular 
structure and association with Cytochrome C Oxidase.BMC Struct Biol. 19: 14-11.

Weizhong, L., Lukasz, J., Adam, G., 2001. “Clustering of highly homologous sequences to 
reduce the size of large protein database”, Bioinformatics, 17, 282-283.

Yang, J., Yan, R., Roy, A., Poisson, J., and Y. Zhang, 2015. The I-TASSER Suite: Protein 
structure and function prediction. Nature Methods. 12: 7-8.

Zahra, M. 2013.In Silico Investigation of Rv Hypothetical Proteins of Virulent Strain 
Mycobacterium tuberculosis H37Rv, Indian J. Pharm. Biol. Res. 4: 81-88.



159

7
Protein-Protein Functional Linkage 
Predictions: Bringing Regulation to Context

Anne Hahn1, and Vijaykumar Yogesh Muley2*

Abstract

The cell brings various proteins in specific contexts with respect to internal and 
external perturbations to invoke appropriate responses. The context of a protein 
could be immune response against invading pathogens or a metabolic pathway in 
which a set of proteins breaks down glucose molecules to provide energy. Therefore, 
the contextual information of a protein helps us in understanding its function at local 
and global level. The last two decades have witnessed a significant progress in iden-
tifying protein context and understanding protein organization at systems level. The 
context of proteins is conceptualized in the form of a network or a graph where pro-
teins that participate in related functions are connected by edges. The global network 
can be derived by assembling contextual information of all proteins encoded by a cell 
and provides a perspective on the functioning of proteins in context of others. Several 
methods have been proposed to infer contextual information of a protein. Genomic 
context based methods assume that the co-evolutionary signals and neighborhood of 
protein encoding genes within the genome sequences reflect their functional depen-
dence. Co-expression of protein coding genes also turned out to be a hallmark of 
their linked roles in specific functions. These methods have been providing a wealth 
of information on the organization of pathways at the global level, on functional clues 
for uncharacterized proteins based on their connectivity with known proteins, and 
identification of disease related proteins and selectively targeting drugs. This chap-
ter reviews the computational protein-protein functional linkage prediction methods 
developed in the post-genomic era. The chapter concludes with the proposal of a gene 
co-regulation based, novel method for functional linkage prediction.
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1. Protein Functions in the Post-Genomic Era
The information needed for the response to external influences and for the develop-
ment of a living organism is written in its genome in the form of arrays of genes. 
Proteins are gene products involved in almost every physiological function of an 
organism, and their various functional aspects have been studied using model organ-
isms. The completely sequenced genomes meanwhile available offer possibilities to 
grow in-depth knowledge of the genomic organization of the encoded proteins to 
define their biological functions at different scales (Galperin and Koonin 2001).

The basis of any protein’s architecture is a unique sequence of covalently bound 
amino acids encoded by the nucleotide sequence of the respective gene. Sequence 
modules of independent evolutionary origin, called domains, fold independently and 
also do not need the context of the whole protein to perform their specific function 
(Chothia, et al. 2003). For example, receptor tyrosine kinases usually have multiple 
domains, for ligand binding, dimerization, autophosphorylation and providing a plat-
form for the assembly of downstream signaling complexes. Basically, a combina-
tion of domains in a protein allows it to perform multiple functions (Vogel, et al. 
2004). Conventionally, the molecular role of a protein has been investigated by vari-
ous experimental methods and often its three-dimensional structure later has been 
used as a framework to explain known functional properties. But it’s also possible to 
vice versa predict an uncharacterized protein’s functions based on its primary and 
secondary structure.

The majority of the computational approaches available uses the sequences or 
structural information of already characterized proteins related to the protein of 
interest to solve this problem (Loewenstein, et al. 2009, Procter, et al. 2010). These 
approaches, commonly referred to as homology-based protein function prediction 
methods, imply that a high sequence similarity of two proteins is likely to occur due 
to a common origin of those proteins that are homologous (Fitch 1995). Different 
species can acquire a gene from their last common ancestor in two ways (reviewed in 
Koonin 2005): Two homologous genes are paralogues if they diverged from the same 
ancestral gene by a duplication event and are retained in the same species. There 
they may execute the same or very different functions. On the other hand, ortho-
logues also diverged from the same ancestral gene, however were retained in two 
species following a speciation event and perform the same function. Consequently, in 
order to predict a protein’s function it would be more useful to focus on orthologues 
with similar functions rather than on paralogues. However, defining orthologues and 
paralogues of a gene is not an easy task considering that gene gains and losses are 
very common during evolution (Koonin 2005, Reeck, et al. 1987). Homology-based 
approaches are at the base of functional annotation of uncharacterized proteins and 
newly sequenced genomes (Gabaldon and Koonin 2013, Goldsmith-Fischman and 
Honig 2003, Koonin, et al. 1996, Tatusov, et al. 1997).

However, not every protein’s function can be predicted by homology-based 
approaches, and even if light is shed on the molecular function or localization 
of a protein, this information might not suffice to understand its cellular role. 
Furthermore, there are challenges like moonlight proteins, a class of multifunctional 
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proteins, in which a single polypeptide chain performs multiple physiologically rel-
evant biochemical or biophysical functions (Jeffery 2014). Moonlighting proteins are 
expressed throughout the evolutionary tree and participate in many different bio-
chemical pathways. Currently, there is no reliable method available to predict which 
proteins exhibit such behavior and what cellular processes they contribute to. For 
that, the knowledge about a protein’s context of action is crucial. In the past 15 years, 
non-homology based protein function prediction methods have been developed 
which elucidate protein function at cellular level (reviewed in Petrey and Honig 2014, 
Shoemaker and Panchenko 2007, Yamada and Bork 2009). These methods assemble 
networks from proteins that are under the same functional constraints. Networks 
alone do not actually provide the molecular function of a protein but its cellular con-
text, which is a firsthand clue about its function.

2.  Computational Methods for Predicting 
Functional Linkages between Proteins

The prediction of a protein’s function using homology-based methods involves find-
ing homologous proteins based on sequence similarity in a structure or sequence 
database of characterized proteins (Pearson 1995). By studying the Multiple 
Sequence Alignment (MSA) of homologous proteins, observing the presence of con-
served motifs of known function and structural properties, the molecular function 
of a protein of interest can be inferred (McClure, et al. 1994, Procter, et al. 2010). 
Even one characterized homologous protein’s sequence is sufficient for this task. 
However, after continuous efforts in experimental determination of protein function 
over several years, even in model organisms still more than half of the proteins are 
uncharacterized yet (Hu, et al. 2009, Jaroszewski, et al. 2009) (Fig. 1). This limits the 
use of homology-based approaches for proteins of unknown functions.

Genome sequencing projects faced this problem at the end of the 20th century, 
which led to the development of methods for protein function prediction based on 
the guilt-by-association principle (Aravind 2000). This principle assumes that two 
interacting proteins usually participate in the same or related cellular functions. For 
instance, if a protein of previously unknown function has direct or indirect links to 
many proteins that participate in a specific biological process, then it is very likely 
that the uncharacterized protein is also involved in that process. The guilt-by-asso-
ciation approaches provide information about the context of the unknown protein’s 
action which is inferred from its characterized interacting proteins, that do not neces-
sarily have sequence similarity to it. Many methods have been proposed to decipher 
functional associations of the protein of interest (Marcotte, et al. 1999, Petrey and 
Honig 2014, Yamada and Bork 2009). By principle, these methods work at genome 
scale, taking into consideration both genomic context and expression data and hence 
provide a snap-shot of all proteins that are linked to one another in the global opera-
tional network of an organism. Every method has its own premise to use the guilt-by-
associations approach to predict functions of a protein of interest. In the following, 
an overview shall be given concerning the basic assumptions underlying the most 
commonly used methods.
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3. Phylogenetic Profiling 
The Phylogenetic Profiling (PP) method assumes that if two proteins are dependent 
on one another in performing a specific function, they would both be maintained in 
the organisms requiring that function and absent otherwise (Pellegrini, et al. 1999). In 
other words, these proteins co-evolve due to the constraints imposed by their linked 
functions. Phylogenetic profiles represent the presence and absence of all proteins of 
an organism of interest (providing the query genome) in a set of reference genomes: 
The reference genomes are searched for orthologues for all proteins encoded in the 
query genome and a phylogenetic profile (or phyletic pattern or co-occurrence pro-
file) can be set up (Fig. 2). The information on the presence of an orthologue of the 
query protein in a certain reference genome can be given simply as binary digits; but 
common are also e-values and bit scores of the alignment between the sequence of 
the query protein and its orthologue’s sequence in the reference genome (Date and 
Marcotte 2003, Enault, et al. 2003). After having set up the phylogenetic profile, it 
is analyzed which proteins of the query genome show similar distribution patterns 
across the reference genomes.

Similarity between phylogenetic profiles of two proteins can be computed using 
various metrics. The most common similarity measures are Pearson correlation 
coefficient and mutual information (Kensche, et al. 2008). Every query genome pro-
tein’s profile is compared against every other protein profile and the pairs are ranked 
according to their scores.

Figure 1 The extent of annotation available for species belonging to the Escherichia genus. 
Percentages of proteins of annotated (light gray) and of putative, hypothetical and unknown func-
tions (dark gray) in the completely sequenced genome of the model organism Escherichia coli and 
its close relatives are shown. On an average, 26% of proteins of various species are still unchar-
acterized. Protein table files (ptt) for Escherichia genomes were downloaded from ftp://ftp.ncbi.
nlm.nih.gov/genomes/Bacteria/. The proteins with functions termed “putative”, “hypothetical” and 
“unknown” in protein table files were treated as uncharacterized and the remaining as annotated, 
either computationally or experimentally. Robust evaluation may further increase the number of 
uncharacterized proteins.
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The Mutual Information (MI) describes the reduction of information entropy (as 
a measure of uncertainty) of a system or variable, when information about a new 
variable is introduced. It can be calculated as follows for the phylogenetic profiles of 
protein X and Y (Date and Marcotte 2003),

 MI(X, Y) = H(X)+H(Y) – H(X,Y) (1)
The MI will show whether a reduction of information entropy can be observed if 
the two proteins are examined together (equation 3), compared to considering them 
separately (equation 2). That would be the case if the proteins showed co-occurrence; 
because only from the phylogenetic profile of one of the proteins predictions could 
be made on the occurrence of the other. The empirical information entropies are 
given by,

 H X
n
N

( ) x

x
∑=  (2)

where x is the number of possible states for X (i.e. “present“ and “absent“); nx is the 
frequency of a certain state in all reference genomes and N the number of reference 
genomes; and

 H X Y
n
N

n

N
( , ) log

x y x y

x y

( , ) ( , )

,

∑=










  (3)

Again, (x,y) are different states, now the different possible combinations of the pres-
ence or absence of X and Y. In a binary system (“present“ and “absent“) there are 
four combinations possible: both proteins present, both proteins absent and first or 
second protein present alone, respectively. If instead of binary values real values like 
bit scores are used in the phylogenetic profile, they should be binned in intervals of 
0.1 (Date and Marcotte 2003). If, instead of log, log2 is used, H(X,Y) will be in bits, 
and in nats if natural logarithm is used.

The Pearson Correlation Coefficient (PCC) has the great advantage of provid-
ing information on anti-correlation. Anti-correlation can be observed in the profiles 
of pairs of proteins that never occur in the same genome together and are likely to 
perform analogous functions. The functional replacement of a protein by another 
protein of non-related sequence is often termed non-orthologous displacement in 
literature (Koonin, et al. 1996). Correlated and anti-correlated phylogenetic profiles 
from more than 200 genomes have been analyzed and modules of highly correlated 
profiles have been identified (Kim and Price 2011, Slonim, et al. 2006). Each of these 
modules often is enriched with proteins performing related functions. For example, 
motility and sporulation related proteins form unique modules due to their respective 
presence in and restriction to motile and sporulating organisms (Slonim, et al. 2006). 

A major challenge of phylogenetic profiling analysis is the selection of reference 
genomes. If reference genomes of species closely related to the query organism are 
chosen, then many phylogenetic profiles would be similar because speciation has 
taken place quite recently, and not due to functional relatedness of the proteins. On 
the other hand, reference genomes of species that have diverged from the query 
genome very early, yield high similarity among phylogenetic profiles mainly of pro-
teins that are conserved in diverse organisms. Briefly, a reference set of closely related 
genomes may lead to several false predictions due to high scoring of phylogenetic 
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profiles of proteins conserved among closely related species; whereas a reference set 
of distant relatives is likely to present high scores only for phylogenetic profiles of 
universal proteins, but not for proteins that engage in specialized processes occur-
ring in a subset of organisms only. Normalization of bit scores and e-values has been 
recommended to overcome these problems and gain significant accuracy  in com-
parison to the standard implementation of the method (Ferrer, et al. 2010, Muley and 
Ranjan 2012). Phylogenetic profiling can provide high quality results by selecting an 
appropriate set of reference genomes according to the specific need of the study and 
proper normalization of bit scores (Muley 2012, Muley and Acharya 2013).

4.  Analysis of Correlated Mutations in Protein 
Families by Mirrortree Approach: Indicator 
of Protein-Protein Interaction

Phylogenetic profiling relies entirely on the co-occurrence of proteins to infer their 
co-evolutionary behavior. Intuitively, if two proteins physically interact and mutation 
takes place in one of the proteins’ sequences at the interface of the two, this does not 
necessarily impair their interaction if there is a corresponding change in the protein 
sequence of the interacting partner (reviewed in Pazos and Valencia 2008). These 
amino acid mutations are called correlated mutations and often are observed at pro-
teins’ ligand-binding or functional sites, that adapt to their ligand or substrate, or 
protein interaction sites which co-evolve if a protein contributes to a larger complex 
(Gobel, et al. 1994). Identifying correlated mutations between two protein families is a 
computationally demanding task, especially at genome-level. The Mirrortree method 
provides an elegant solution to track this problem in a reasonable computational time. 
The underlying idea is that phylogenetic trees of two interacting protein families would 
have comparable topology due to correlated mutations in them (Fig.  3).

The simplest form of mirrortree method uses MSA of two protein families to quan-
tify the extent of correlated mutation between them as hint at interaction (Pazos and 
Valencia 2001). First, MSAs are constructed for two proteins of interest and their 
orthologues from a set of n reference genomes. A distance matrix of the dimensions 
n by n is computed for each protein, using the MSA results. This matrix contains the 
sequence differences among all orthologues from the reference genomes. It’s a nec-
essary precondition to allow only those reference genomes encoding for orthologues 
of both proteins, so the distance matrices have the same dimensions and are compa-
rable. The degree of correlation of the distance matrices quantifies the extent of cor-
related mutations in the two proteins in question and thus indirectly rates the degree 
of similarity between the phylogenetic trees. It is also possible to derive distance 
matrices from actual phylogenetic trees, however, the tree reconstruction process is 
time consuming for genome-scale applications of the method.

One of the major problems is that sequence distances between orthologues from 
closely related species are small, compared to those between distantly related species. 
This is called background similarity, and occurs due to the fact that similarities of 
phylogenetic trees often represent common speciation events. In other words, if two 
proteins have gone through similar speciation events, there would be a similarity of 
their phylogenetic trees which does not reflect the ability of those proteins to interact 
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with each other. The background similarity has to be removed from the distance matrix 
in order to use only information that is fairly unaffected by speciation events. The 
number of false positives can be reduced by normalization of the distance matrices or 
by setting up a distance matrix as described above for 16S rRNA and subtracting its 
values from the protein distance matrices (Pazos, et al. 2005). That way, every distance 
between orthologues from genomes A and B in all matrices is corrected by the distance 
between the 16S rRNA genes of A and B. 16S rRNA is present in most prokaryotes 
and diverse enough to be used for species identification. That is, its sequence can be 
used to identify and evaluate evolutionary relationships. For distantly related A and B 
where high distances are found, this is compensated by a considerably high correction 
value. That way, distance values are brought to scale. Still, the sequence distance of 
16S rRNA can not be transferred directly to protein distances but should be scaled prior 
to corrections (Pazos, et al. 2005). We have also proposed an alternative approach to 
correct distances by using distances between species based on the number of shared 
orthologues between them (Muley and Ranjan 2012). This approach outperforms 16S 
rRNA normalization method but at the cost of more computational time. 

Conceptually, the mirrortree method, also referred to as in-silico two-hybrid, is 
the only available method with the ability to detect physical interactions. Therefore, 
it can be used to discover protein complexes.

5.  Chromosomal Proximity of Genes 
Reflects their Functional Links

The methods previously described to predict protein-protein linkages are based on 
the co-evolution of two proteins or the amino acids within their sequence. There are 
several reasons to believe that not just the co-evolution of two proteins is a clue for 

Figure 3 A schematic representation of the mirrortree approach. The mirrortree method 
compares distance matrices derived from the alignment of the query protein and its orthologues. 
Various approaches can be used to correct these matrices to exclude speciation information prior 
to comparison. Subsequently, the correlation coefficient between matrices can be calculated which 
reflects the degree of co-evolution of the proteins A and B, and hence is an indicator of interaction.
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functional links between them, but also the presence of two genes encoding them on 
the same stretch of DNA within reasonable distance. The accessibility of the DNA is 
a prerequisite for gene expression. The higher order DNA structure has to be partially 
unpacked to enable binding of the transcription machinery at a particular locus. This 
DNA unwinding cannot be confined to just the gene that is to be transcribed, and 
eventually the expression of neighboring genes might be affected, too. Therefore, it 
would be more efficient to place genes adjacent to each other that are needed in the 
same context and co-regulate them.

The operon, a group of co-transcribed and co-regulated adjacent genes on the same 
genomic strand, is one of the earliest and most central concepts of bacterial genetics 
(Jacob and Monod 1961). The tendency of genes to be organized in operons across 
the genome is far more noticeable in prokaryotes, though not completely absent from 
eukaryotic organisms (Lathe, et al. 2000). Co-transcription and co-regulation define 
the simultaneous expression of operonic genes in a cell. Thus, gene products encoded 
in an operon usually perform related functions, but operonic genes with seemingly 
unrelated functions are also common (Lathe, et al. 2000, Tamames, et al. 1997). The 
latter is often the result of genomic rearrangements that happened during evolution. 
Comparative genomics revealed that the joining of small operons or breaking down 
of large operons is a common phenomenon during evolution. There are several lines 
of evidence on the conservative nature of these rearrangements that invariably main-
tained individual genes in very specific functional and regulatory contexts (Korbel, 
et al. 2004, Lathe, et al. 2000). These observations suggest both that operons can be 
used to identify functionally linked genes and that fragmented operons in a query 
genome can be assembled by evidence of their chromosomal proximity in other 
genomes. This led to the development of many protein-protein linkage prediction 
methods (Ferrer, et al. 2010), two of which shall be described here to demonstrate 
their potential to reconstruct operons that are diffused in the query genome.

5.1 gene Cluster Method

On the basis of short intergenic distances (below 100 nucleotides) between adjacent 
genes that are encoded on the same genomic strand (same orientation), it is possible 
to assign them to operons with a maximum accuracy of 88% in the Escherichia coli 
genome (Overbeek, et al. 1999, Salgado, et al., 2000). It was observed that in average 
35% of the genes that occur in clusters are involved in the same pathways as their 
neighbors (Tamames, et al. 1997), and they typically interact with each other physi-
cally (Dandekar, et al. 1998); a trend which reflects selection against the deleterious 
effects of protein complex subunits being co-regulated but not localized in close 
vicinity. However, the inference of functional linkage between genes on the basis 
of their operon or gene cluster organization is limited to the genes that are adjacent 
on the query genome sequence. That is, for a query genome with n genes, the Gene 
Cluster (GC) method can generate scores for at most n (in case of circular chromo-
somes, otherwise n-1) gene pairs from the (n2-n)/2 possible pairs. Thereby, the genes 
that are co-regulated and also functionally linked would not be detected by a simple 
GC approach, if they have been placed away from each other on the chromosome in 
the process of rearrangement during evolution.
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Comparative genomic approaches have become a powerful tool to deduce the re-
arrangements of genes based on chromosomal proximity of orthologous genes. This 
yields a better version of the GC method (Fig. 4A), where gene clusters in refer-
ence genomes are defined as sets of co-directional genes within a certain maximum 
intergenic distance, generally below 200 base pairs (Muley and Ranjan 2012). Then, 
the GC algorithm takes into consideration every possible pair of genes of the query 
genome and calculates the frequency of the orthologous proteins in the reference 
genomes being encoded in the same gene cluster. GC scores above zero indicate 

Figure 4 A schematic representation of the gene cluster and gene neighbor methods for predict-
ing protein-protein functional links. Methods are exemplified using the hypothetical example of 
gene A and gene B which are, in the query organism, not located adjacent to each other on the chro-
mosome. A) The gene cluster method calculates the probability of orthologues of the query proteins 
to co-occur in the same gene cluster in the reference genomes. A gene cluster is defined as a set of 
unidirectional genes adjacent to each other within an intergenic distance of 200 nucleotide bases. In 
the given example, genes encoding orthologues of the query proteins A and B co-occur in all three 
reference genomes, hence 3/3 is the interaction score between them. B) The gene neighbor method 
calculates interaction scores for query protein pairs based on the minimum chromosomal distance 
between their orthologue encoding genes in any one reference genome. In the given example, the 
minimum distance is obtained from the 1st reference genome, so that distance would be used to 
calculate the interaction score for query gene A and B. Both methods identify re-arranged operons. 
The gene neighbor method has an advantage in detecting divergently transcribed genes pairs as 
well.
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that orthologues of the query gene pair are within the same gene cluster in at least 
one of the reference genomes and thus likely to be co-transcribed there. Therefore, 
GC reveals operons that have been re-arranged in the query genome, based on the 
evidence of their intact operon structure in multiple reference genomes. Muley and 
Ranjan have shown that this version of GC method is one of the more accurate meth-
ods in terms of predicting linkages with high specificity (Muley and Ranjan 2012).

5.2 gene Neighbor Method

The GC method can detect re-arranged operons but not the divergently transcribed, 
conserved gene pairs that have been shown to be often co-regulated and function-
ally linked (Korbel, et al. 2004). Unlike the GC algorithm, the Gene Neighbor (GN) 
method assumes chromosomal proximity of orthologous genes across a set of refer-
ence genomes as an indicator of functional linkage, without constraint on the relative 
gene orientations. Thereby, it not only predicts re-arranged operons but also diver-
gently transcribed gene pairs. 

Over the years, the GN method has been modified into several forms (Ferrer, et 
al. 2010). A recent version of the method focuses on the minimum genomic distance 
between orthologous genes that can be found in one of the reference genomes (Janga, 
et al. 2005). Bacterial chromosomes usually are circular, so the intergenic distance 
has to be calculated both in clockwise and anti-clockwise direction, but only the 
minimum distance is considered for further steps (Fig. 4B). On a very small chro-
mosome, an intergenic distance of 200 nucleotides might be quite a large distance 
whereas on a large chromosome genes with the same intergenic distance would be 
considered to be localized very close to each other. Therefore, to obtain the GN score, 
the minimum intergenic distance dmin has to be normalized by the chromosome size 
n and multiplied by two, to scale this relative distance to a value between 0 and 1,

 D d
nt = 2 min  (4)

A slight modification gives n as number of genes and dmin as number of number of 
genes interposed between the two genes under consideration, plus one, so the inter-
genic distance between two adjacent genes were 1. This would put into perspective 
long intergenic distances that occur because of one very long gene between the two 
genes in question. 

As opposed to GC, GN predicts a high number of false positives and should be 
used with caution, but it also offers the possibility to infer metabolic gene linkages, 
which often is a difficult task for other methods (Muley and Ranjan 2013).

6.  Expression Similarity of Genes as an 
Indicator of Functional Linkage

Genes maintained in specific functional and regulatory contexts within genome 
sequences may be co-expressed. It has been shown in yeast that interacting pairs of 
proteins show high correlation of gene expression compared to non-interacting pairs 
(Jansen, et al. 2002). Therefore, it is possible to predict interactions between two 
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proteins on the basis of similar expression patterns of their coding genes. Genome-
scale expression data obtained from various physiological conditions can be rep-
resented as a matrix, so that each row would represent expression values for one 
gene and each column of the matrix would be the condition in which this expression 
has been measured. There are several metrics one can use to compute the similar-
ity among expression profiles of genes (Song, et al. 2012). PCC is a common mea-
sure since it distinguishes positively and negatively associated gene pairs. Horvath 
and colleagues brought together the network theory and the field of microarray data 
analysis in Weighted Gene Correlation Network Analysis (WGCNA) to infer high 
quality co-expression gene modules (Horvath and Dong 2008). WGCNA is available 
as R package which offers several cutting-edge approaches for understanding gene 
expression data. These techniques recently have been applied to understand embry-
onic development. It is observed that each developmental stage can be delineated 
concisely by a small number of functional modules of co-expressed genes, indicat-
ing a sequential order of transcriptional changes in pathways of cell cycle and gene 
regulation, translation and metabolism, acting in a step-wise fashion from oocyte 
cleavage up to the morula stage of development (Xue, et al. 2013).

Expression Similarity (ES) based methods differ from the aforementioned pre-
diction methods since they don’t require comparative genomics analysis. Therefore, 
they are easy to implement and can be applied effectively using hundreds of expres-
sion datasets readily available for model organisms. They are also computationally 
inexpensive compared to the methods mentioned above and perform exceptionally 
well in predicting functional linkages, compared to the aforementioned genomic 
context based methods (Fig. 5).

7.  From Transcriptional Regulation to Predicting Protein-
Protein Functional Linkages: A Novel Approach

Co-regulation has been shown to be an indicator of functional coupling of genes. 
However, so far direct relationships of the expression of transcription factors and 
of genes have never been investigated for functional linkage prediction studies. For 
instance, the expression similarity between all transcription factors and a gene gives 
a vector in which each value represents the relation of a corresponding transcription 
factor to the expression of that gene. Likewise, similar vectors can be calculated for 
all query genes. The high correlation between vectors of two genes could result from 
the same set of transcription factors influencing them. It suggests that these genes are 
co-regulated and their expression is likely to be required at the same time for related 
functions. There are several ways to estimate the influence of a particular transcrip-
tion factor on the expression of a particular gene (Marbach, et al. 2012). Here we 
demonstrate the power of the proposed method using PCC as a measure of similarity 
between genes and all transcription factors, and then for similarity between gene 
profile pairs. We compared the performance of our method with four of the existing 
methods reviewed above and studied in (Muley and Ranjan 2012) (Fig. 5).
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Figure 5 Performance comparison of four existing methods with the novel approach based on 
co-regulation of genes. All five methods were tested on high quality (HQG) and low quality (LQG) 
gold standards (Muley and Ranjan 2012). The co-regulation (CR) based method outperforms others 
in terms of low false prediction rate on both datasets. The methods compared are Gene Neighbor 
(GN), Phylogenetic profiling (PP), a Mirrortree method variant called Genome Distance (GD), 
Expression Similarity (ES) and the proposed method, CR. Interaction scores for the existing meth-
ods were computed as described in (Muley and Ranjan 2012). The ES method shows much better 
performance than the genomic context methods. CR does not outperform, but at high interaction 
scores works better than the existing methods.

Performance of the methods was determined as described in the following sec-
tion; on two different datasets. The High Quality Gold Standard dataset (HQG) was 
acquired from three different databases (DIP, a Database of Interacting Partners, 
EcoCyc protein complexes, and KEGG, the Kyoto Encyclopedia of Genes and 
Genomes pathway annotations) and contains interacting protein pairs that are con-
served among at least 200 genomes (Muley and Ranjan 2012). They belong to the 
same functional category and reportedly interact on physical and/or complex-asso-
ciated level. The Low Quality Gold Standard dataset (LQG) was obtained from the 
same databases, but without the constraint on the proteins’ phylogenetic distribution. 
The new method ranks second best predictor of functional links between proteins. 
Furthermore, it returns a low number of false positive predictions at a high interac-
tion score cutoff (Fig. 5). The time expenditure is, like for the ES method, negligible. 
Interaction scoring can be done within few minutes even for an expression matrix of 
more than 10,000 genes measured across 2,000 samples.

8. Measuring Prediction Performance of Methods

In the sections above, different methods for protein-protein functional linkage infer-
ence were introduced. Consequently, to give a full overview of a protein’s function 
and role in an organism (Hu, et al. 2009), or to elucidate new mechanisms (Li, et al. 
2005, Menche, et al. 2015), the prediction of functional pathways needs to be as accu-
rate as possible. So how do these methods perform in predicting pathways ?
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To investigate the prediction performance of methods, a gold standard dataset of 
interacting and non-interacting protein pairs is required, commonly referred to as 
‘positives’ and ‘negatives’, unify quotation marks (compare to “present” and “absent” 
on p.5/157) respectively. Interacting pairs detected by low-throughput experiments 
are few, even in model organisms and compared to all possible protein pairs encoded 
by any organism. Some of the high-throughput methods (such as yeast two-hybrid) 
are noisy and it is recommendable to avoid using these datasets as gold standards 
whenever possible. High quality information on the pathway memberships of pro-
teins as provided in databases such as KEGG and BioCyc is also suitable as gold 
standard for the validation of predicted links. 

Obtaining non-interacting pairs is not an easy task because such information is 
rarely reported in literature. The simplest solution is to generate all possible pairs 
among the proteins of an organism and then remove all reported interacting pairs 
from that dataset. The remaining pairs can then be considered as non-interacting 
pairs and further filtering can be done to only include pairs in which the partners 
neither are present in the same pathway nor the same sub-cellular compartment. It 
is assumed that proteins that belong to different sub-cellular localizations and path-
ways will not interact with each other (Jansen and Gerstein 2004). 

Each prediction method returns a likelihood score of interaction, with the excep-
tion of the GN method, which returns a distance measure. High values here mean, in 
contrary to other methods, high unlikeliness of interaction, so this has to be adjusted 
by calculating the difference to a fixed value.  An interaction score cutoff has to be 
defined, above which functional links are assumed. This cutoff should be set with 
respect to the best performance possible for a particular method. Having a gold stan-
dard dataset one can estimate the predictive power of a method at several cutoffs. 
For a chosen cutoff, positives with a score greater than or equal to the threshold are 
classified as true positives (TP) and those with a score below the cutoff are classified 
as false negatives (FN). Similarly, negatives with a score greater than or equal to 
the threshold are classified as false positives (FP) and those with a score below the 
threshold are classified as true negatives (TN). Using these four parameters, several 
performance details can be deduced. The most common prediction accuracy mea-
sures are the Receiver Operator Characteristics (ROC) curve and its integral, the 
Area Under ROC Curve (AUC). In ROC curves, the True Positive Rate (TPR) is plot-
ted against the False Positive Rate (FPR) which are calculated as below, at a series of 
interaction score cutoffs,

 TPR TP
TP FN= +  (5)

 FPR TN
TN FP= - +1  (6)

For a random predictor these rates would always be equal: Without respect to the true 
relationship of two proteins, in 50% of all cases an interaction would be predicted. 
The ROC curve of a random predictor is a diagonal and AUC equals to 0.5 (dashed 
lines in Fig. 5). A good predictor would have an ROC curve above this diagonal. In 
contrast, an ideal predictor would produce a TPR of 100% irrespective of the FPR, 
which would result in a rectangular ROC curve with AUC being 1. The cutoff where 
TPR is highest and the FPR is lowest can be chosen as proxy to define function links. 
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The prediction accuracy determined with a certain gold standard dataset should be 
treated cautiously though; as different methods for protein-protein linkage prediction 
show noticeable variance in their performance, depending on the specific functional 
context the investigated proteins are annotated to (Muley and Ranjan 2013). The true 
performance in a certain task can be very different from the power of the method as 
estimated using the gold standard dataset.

9. Perspectives
With the development of sequencing technology, biological databases were flooded 
with several hundred genomes in the hope that the availability of the complete 
genome sequence would lead to understanding an organism in detail. However, it 
was soon realized that we do not have any functional clues for more than 50% of all 
genes encoded from these genomes (Doerks, et al. 2004, Galperin and Koonin 2004). 
At the same time, comparative genomics revealed several aspects of gene evolution 
such as non-conserved gene order, co-occurrences of functionally linked genes, and 
that if genes are present in close vicinity on the chromosome often they perform 
related functions (Tamames, et al. 1997). Upon these observations the efforts to iden-
tify uncharacterized proteins’ functions gained more momentum. This led to the 
development of the methods discussed here and several variants. Muley studied the 
aforementioned methods in detail to understand the factors affecting their perfor-
mances, evaluation of various gold standard datasets, ability to predict functional 
pathways, and protein function predictions using machine learning derived protein-
protein interaction networks (Muley 2012). It has been shown that a high perfor-
mance for predicting protein-protein linkages can be achieved even with 100–150 
reference genomes (Muley and Ranjan 2012). In a subsequent study, it was observed 
that the prediction of metabolic pathway protein interactions is a challenging task for 
all methods mentioned here; possibly due to the flexible/independent evolutionary 
histories of these proteins (Muley and Ranjan 2013). These methods perform better 
than a random predictor in functional associations of proteins involved in amino 
acid, nucleotide, glycan and vitamin & co-factor pathways but random on carbohy-
drate, lipid and energy metabolism. On the contrary, genetic information process-
ing and specialized processes such as motility related protein-protein linkages, that 
occur in a subset of organisms are predicted with comparably good accuracy. In gen-
eral, the ES method outperforms the others in most of the functional pathways. These 
observations reflect the shortcomings of the existing methods. Here we proposed a 
novel method for functional linkage prediction based on co-regulatory gene pairs. 
It performs as good as the existing top performing methods and can be combined 
with other methods to further increase accuracy by reducing the number of false 
predictions.

In spite of the challenges in predicting functional linkages using individual meth-
ods, the integrative application of these methods and the resulting networks have 
provided a wealth of information about biological systems. Network-based studies 
support a hierarchical modular organization of biological systems (Barabasi and 
Oltvai 2004, Li, et al. 2005). Protein-protein interaction network analysis also can 
be used to propose relations between disease genes (Sahni, et al. 2015) and among 
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diseases and use this for therapeutic drug target identification (Menche, et al. 2015, 
Vidal, et al. 2011). These methods have also been employed for large-scale protein 
annotations and relating genes to phenotypic traits, followed by experimental valida-
tion (Doerks, et al. 2004, Slonim, et al. 2006, Yamada, et al. 2012). We believe that 
our proposed method will be of immense help in inferring networks in the era of next 
generation sequencing. 
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Abstract
One of the most fascinating aspects of biology is that the same genome can give 
rise to a diversity of cell types and cellular functions in a multicellular organ-
ism. This suggests that in addition to the DNA sequence there must be additional 
“epigenetic” features that are associated with cell type or condition specific gene 
regulation. In eukaryotic organisms, two important mechanisms for epigenetic regu-
lation of gene expression are the dynamic regulation of chromatin organization and 
DNA methylation. A large number of sequencing-based assays, such as ChIP-seq, 
DNase-seq, Hi-C, whole genome bisulfite sequencing and Reduced Representation 
Bisulfite Sequencing (RRBS), have been developed to survey the epigenomes in a 
genome-wide fashion. In this chapter, we survey the state-of-the-art bioinformatics 
methodologies and tools for performing these epigenomic analyses. We also review 
the application of these epigenomic analyses, especially in terms of identifying the 
location and possible function of non-coding regulatory regions in a genome-wide 
fashion.

1. Introduction

There are two important mechanisms of epigenetic regulation: chromatin organi-
zation and DNA methylation. Both mechanisms have been extensively studied and 
individually exhibit strong effects on gene expression (Allis et al. 2008). Many dif-
ferent experimental procedures have been developed to generate genome-wide pro-
files of chromatin organization and DNA methylation. In this chapter, we survey and 
discuss state-of-the-art bioinformatic methods for analyzing these profiles. In the 
following sections, we will describe the analysis of chromatin and DNA methylation 
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data separately, but it is important to note that chromatin organization and DNA 
methylation act in unison to regulate the genome. 

2. Chromatin organization

In eukaryotic organisms, the genomic DNA is packaged by histone proteins to form 
chromatin. Studying the organization and chemical composition of chromatin is 
important in understanding gene regulation (Zhou et al 2011). The primary func-
tions of chromatin are to stabilize and protect DNA, particularly during mitosis or 
meiosis, to package DNA into a smaller volume and to control DNA replication and 
gene expression.

The basic unit of chromatin in eukaryotes is called a “nucleosome”. A nucleosome 
consists of 147 bp of DNA wrapped around an octamer of histone proteins (Luger 
et al. 1997). The adjacent nucleosomes are separated by ~80 bp of linker DNA. The 
nucleosome occupancy is dynamic, and is associated with the accessibility of regula-
tory proteins binding to a local chromatin region. At specific regulatory regions, such 
as active promoters, a histone protein (e.g. H2A, H2B, H3 and H4) can be substituted 
with a histone variant (e.g., histone variant H2A.Z), or can be chemically modified 
(e.g., tri-methylation of histone H3 at lysine 4; H3K4me3) (Zhou et al. 2011). These 
chemical modifications of histones usually involve the methylation and acetylation 
of one or more N-terminal lysine (K) and arginine (R) amino acids. Different histone 
modifications are correlated with different genomic elements and regulatory states 
(Table 1). As such, the combinations of histone modifications, histone variants and 
chromatin accessibility are important markers of the potential regulatory function of 
a genomic locus (Ren et al. 2000, Ernst and Kellis 2010).

TAblE 1 Histone modifications and the regulatory region they are enriched in

Type of 
modification

me1
(monomethylation)

me2
(dimethylation)

me3
(trimethyl-

ation)

ac
(acetylation)

H3K4 Enhancer Promoter and 
enhancer

Promoter Promoter

H3K9 Hetero-chromatin Hetero-
chromatin

Hetero-
chromatin

Promoter and 
enhancer

H3K27 In transcribed genes, 
and active 
transcription

Ubiquitously 
enriched across 
the genome

Repressed 
chromatin

Active promoter 
and enhancer

H3K36 Transcribed gene 
body

Transcribed gene 
body

Transcribed 
gene body

Promoter

H3K79 Transcribed gene 
body

Transcribed gene 
body

Transcribed 
gene body

Beside histones, there is another class of regulatory proteins called “transcription 
factors” (TFs). They often bind to specific DNA sequences and affect gene expres-
sion (Brivanlou et al. 2002). Transcription factors can act alone or interact with 
other proteins in a complex way, by inhibiting or promoting the recruitment of RNA 
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polymerase to specific genes (Fig. 1). There are ~2,000 proteins that contain DNA-
binding domains and are considered to function as transcription factors in human 
(Babu et al. 2004, Ravasi et al. 2010). In addition, combinations of several different 
transcription factors in binding sites often play a vital role in expression of nearby 
genes. Thus, different combinations of human transcription factors could create dif-
ferent gene expression patterns in human cells (Brivanlou et al. 2002). DNA can also 
be bound to other non-sequence-specific chromatin binding proteins, called chroma-
tin regulators (CRs) (Ram et al 2011). One of the most commonly studied chromatin 
regulators is EP300, a histone acetyltransferase which is responsible for acetylation 
of H3K27 in active enhancers. The binding of EP300 is commonly used as a marker 
of enhancer (Visel et al. 2009). They bind in a combinatorial manner to the DNA, 
presumably through interaction with transcription factors and the chromatin envi-
ronment. Together, the study of chromatin organization involves the study of histone 
modification landscape, and the binding of transcription factors and chromatin regu-
lators. All of these can be measured in a genome-wide fashion using ChIP-seq, which 
is the main topic of discussion in the next section.

Figure 1 The major structures of chromatin and DNA methylation.

2.1 ChiP-seq

Chromatin immuno-precipitation followed by high throughput sequencing (ChIP-
seq) is a method used to analyze protein-DNA interactions and identify the binding 
sites of DNA-associated proteins in vivo. This state-of-the-art technique can be used 
to map genome-wide binding sites for any TF or chromatin regulators of interest 
(e.g., CTCF or EP300) as well as chemically modified histones (e.g., H3K4me1 or 
H3K9me3). The detection sensitivity of ChIP-seq is much better than its microarray 
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predecessor, ChIP-chip (Ho et al. 2011). An overview of the ChIP-seq experiment 
is shown in Fig. 2. It involves protein-DNA cross-linking of chromatin, extraction 
of chromatin, fragmentation of the chromatin by sonication or enzymatic digestion, 
enrichment of DNA that is bound to a specific protein by an antibody “pull-down”, 
removal of cross-link, and sequencing of one or both of the enriched DNA fragments 
using a next generation sequencing (NGS) platform.

2.2 ChiP-seq experimental design

There are several important experimental design issues that should be considered 
carefully before carrying out ChIP-seq:

1. Availability of high quality antibodies

One important issue to consider is whether good quality ChIP-grade antibody spe-
cific to your protein of interest is available. One should consult public repositories, 
such as the Antibody Validation Database (http://compbio.med.harvard.edu/antibod-
ies) when choosing an antibody (Egelhofer et al. 2011).

2. Read depth

Whether or not enough reads have been generated by the next-generation sequencing 
experiment is always a crucial issue for researchers to consider. Jung et al. (2014) 
studied this question by analyzing a deeply sequenced histone modifications ChIP-
seq data for D. melanogaster (fly) and human. They found that for fly, the sufficient 
read quantity was 20 million reads. For human, although they found no obvious 
saturation point in their study, they recommended at least 40 million reads for most 
marks (Jung et al. 2014). Also, the quantity of reads should be adjusted depending on 
the expected coverage of that mark in the genome, e.g., histone modifications that are 
expected to exhibit broad enrichment patterns should be sequenced in a higher depth.

3. Control sample

There are three major types of control samples for ChIP-seq experiments:

 (a) “Input”. Chromatin can be cross-linked and fragmented with the same 
treatment as the ChIP experiment but without the antibody pulldown 
enrichment step.

 (b) “IgG”. Using a non-specific antibody that reacts with an irrelevant, non-
nuclear antigen for the pulldown experiment.

 (c) “H3”. The genome-wide profile of histone H3 provides a baseline distribu-
tion of nucleosomes in the genome. 

All of these control samples should approximately get the same read depth as the 
ChIP-seq sample, and have good quality (Ho et al. 2011, Chen et al. 2012, Landt et 
al. 2012).
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Replication

It is important to consider inclusion of biological or technical replicates in ChIP-seq 
experiments. Technical replicates will enable a fair assessment of reproducibility of 
the binding peaks observed in an individual replicate. Once the reproducibility is 
established, one can merge the reads from the replicates to produce a single ChIP-seq 
data set with a much higher depth for downstream analysis. Reproducibility between 
two replicates can be measured by the Irreproducible Discovery Rate (IDR) (Li et al. 
2011). The benefit of IDR is that it can be used to consistently combine data across 
samples from different laboratories (Landt et al. 2012). Biological replicates may 
also be important if individual-to-individual variation is an important aspect of the 
experiment.

Single-end vs. paired-end sequencing

One important aspect of ChIP-seq analysis is to estimate the average fragment size. 
Obtaining a good estimate of fragment size is important for obtaining a high resolu-
tion ChIP-seq profile and peak call. This is not a problem if we have pair-end reads 
as fragment size can be directly calculated based on the coordinates of the mate pair. 

Figure 2 ChIP-seq experimental procedure.
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Nonetheless, we can obtain a fairly reasonable estimation of fragment size based on 
methods such as cross-correlation analysis of the positive and negative strand reads 
in a single-end sequencing data set (Kharchenko et al. 2008, Heinz et al. 2010). Given 
the additional cost of doing paired-end sequencing, doing paired-end analysis may 
not be justified.

2.3 ChiP-seq data analysis

After a ChIP-seq experiment, we obtain FASTQ files as the output of a NGS machine. 
A typical FASTQ file has tens of millions of reads and their quality scores. The qual-
ity of the reads can be checked by a program called FastQC (http://www.bioinfor-
matics.babraham.ac.uk/projects/fastqc/). If the quality is reasonable, the reads are 
then mapped to a reference genome. This step can be processed by tools such as 
Bowtie (Langmead et al. 2009) and Bowtie2 (Langmead and Salzberg 2012). For 
good quality ChIP-seq data, we should expect 70-90% of the reads to be mappable to 
the genome. This alignment and quality control step is similar to the analysis of other 
DNA-based NGS applications.

Once the reads are mapped, ChIP-seq specific analysis begins. The main goal of 
this analysis is to identify the binding of a specific TF or CR (detectable as short 
ChIP-seq signal peaks) or presence of histone modifications or variants (usually 
detectable as broad enrichment ChIP-seq regions). Different analysis programs are 
optimized for different tasks. Furthermore, some tools require a control sample (i.e., 
Input, IgG, or H3) to normalize the data. Many ChIP-seq analysis programs have 
been developed (Table 2), and here we summarize the key steps that are common 
among these programs:

Removal of bad reads

The first step is typically to remove low quality reads (i.e., reads with low quality 
score), and local read clusters that are most likely PCR amplification artefacts.

Fragment size estimation

For single-end sequencing data, one important step is to estimate the average frag-
ment size. One way to estimate fragment size from single-end read data is the cross-
correlation analysis of the positive and negative strand reads (Kharchenko et al. 
2008). Once the fragment size is estimated, this information can be used to either 
extend or shift the reads at their 3’ end. Accurate fragment size estimation and read 
extension or shifting is important for obtaining accurate peak calling results.

Peak calling and broad enrichment identification

This is perhaps one of the most important tasks in ChIP-seq analysis. The idea is to 
identify local regions in which the number of reads in the ChIP sample is signifi-
cantly more than what is expected by chance based on the known background read 
distribution. The background distribution can be modeled by Poisson or a negative 
binomial distribution, and the parameters of these models can be estimated from 
the control sample. Most programs perform a sliding window scan of the genome 
to identify local enrichment regions, and use heuristics to merge neighbouring local 
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enrichment regions. For identification of TF binding sites, it is also possible to make 
use of motif1 information to refine the location of the binding sites (Guo et al. 2012).

De novo motif discovery

For the analysis of TF ChIP-seq data, one can perform de novo motif discovery using 
the sequences under the called peaks. HOMER (Heinz et al. 2010) and MEME-ChIP 
(Machanick and Bailey, 2011) are good examples of this type of analysis.

Other analysis

Other common tasks include visualization of the genome-wide ChIP-seq signal 
(with or without normalization with control data) in a genome browser, such as the 
Integrative Genomic Viewer (IGV) (James et al. 2011). Many ChIP-seq analysis pro-
grams can produce “wiggle files” that facilitate such visualization. Another common 
task is to analyze the local ChIP-seq signals in specific genomic regions such as 
enhancers, promoters, gene bodies, or TF binding sites. The signal of these regions 
may result in an average signal profile or a meta-gene profile (e.g., see Box 3 of 
Ferrari et al. 2014)

2.4 Chromatin states analysis

A chromatin state is defined as a combination of different chromatin features, usu-
ally focusing on histone modifications. With n distinct histone modification pro-
files, in theory there can be up to 2n histone modification co-occurrence patterns. 
Nonetheless, in practice a much smaller number of distinct co-occurrence patterns 
are observed, and these chromatin states correlate with distinct regulatory regions 
or activity status (Ernst et al. 2011, Kharchenko et al. 2011). Therefore, it is of great 
interest to identify all the chromatin states in a genome. If we have a sufficient num-
ber and diversity of histone modification profiles, this approach allows us to annotate 
the genome with potential regulatory function (Ernst and Kellis 2010, Filion et al. 
2010, Ernst et al. 2011, Kharchenko et al. 2011, Julienne et al. 2013). Furthermore, 
chromatin state dynamics between samples reveal cell-type specific regulatory 
regions (Sohn et al. 2015). A number of tools have been developed for chromatin 
state analysis (Table 3).

Table 3 Common chromatin state discovery software and their features

Name Remarks Reference
ChromHMM Based on a multivariate Hidden Markov Model. (Ernst and Kellis 2012)

Segway Employs a Dynamic Bayesian Network (DBN) 
model for analyzing multiple tracks of genomics 
data at a high genomic resolution.

(Hoffman et al. 2012)

hiHMM Based on a hierarchically-linked infinite hidden 
Markov Model (hiHMM). It enables cross-
species, and cross-cell type inference of chromatin 
states.

(Sohn et al. 2015)

1 Here motif is a pattern of nucleotide sequence that has, or is speculated to have a biological sig-
nificance of TF binding affinity.
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2.5 DNase-seq and FAire-seq

DNase I hypersensitive sites sequencing (DNase-seq) is a method that identifies 
the location of “open” or accessible chromatin, often representing active regula-
tory regions, via sequencing of regions of DNA sensitive to DNase I endonuclease 
cleavage (Crawford et al. 2006). Although the DNase I endonuclease digests DNA 
sequences without bias, in the complex chromatin environment it is prone to digest 
DNA sequences from unbound open chromatin (Furey 2012). After mapping the 
digested DNA fragments to the reference genome, clear “footprints” emerge con-
sisting of enriched peaks flanking an unmapped gap in the signal. These footprints 
represent locations where proteins were bound to DNA, which prevents the DNA 
being digested by DNase I while leaving the neighboring DNA accessible to diges-
tion. Sequenced genomic DNA or naked DNase-I digestion can be used as control for 
the DNase-seq experiment.

Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq) is another 
method used for determining the locations of open chromatin genome-wide (Giresi 
et al 2007). Comparison studies revealed that FAIRE-seq and DNase-seq showed 
high rate of cross-validation (Song et al 2011). As the formaldehyde cross-linking 
is more efficient in nucleosome-bound DNA compared with that in nucleosome-
depleted regions of the genome, the method isolates the non cross-linked DNA found 
in open chromatin, and then sequences it. Compared to DNase-seq, the FAIRE-seq 
experimental protocol is easier to conduct in the wet lab. FAIRE-seq data were gen-
erated as part of the ENCODE project and examples of these can be visualized at the 
UCSC Genome Browser. The analysis of DNase-seq and FAIRE-seq data is largely 
similar to ChIP-seq analysis. Nonetheless, specific programs have been developed to 
deal with specific features of DNase-seq and FAIRE-seq experiments. A summary 
of several common analysis programs is shown in Table 4.

TAblE 4 Common DNase-seq software and their features

Name Remarks Reference
F-seq Produces a continuous tag sequence density 

estimation to call DNase footprint by detecting 
regions of open chromatin, or to call TF binding 
sites by finding peaks.

(Boyle et al. 2008)

pyDNase Focuses on the sites in which the cleavage 
happens. By using the Wellington and Wellington 
1D footprinting algorithms, pyDNase can 
specifically count cuts on the positive or negative 
reference strand.

(Piper et al. 2013)

PIQ Applies a machine learning algorithm (expectation 
propagation) to find the genomic binding sites of 
transcription factors (TFs) at corresponding motifs 
from DNase-Seq data. Also uses machine learning 
in Input data normalization.

(Sherwood et al. 2014)

By using DNase-seq alone, researchers have obtained some exciting results. For 
example, Neph et. al. (2012) built an extensive core human regulatory network com-
prising connections among 475 sequence-specific TFs and analyzed the dynamics of 
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these connections across 41 diverse cell and tissue types. Two years later, the same 
lab constructed a regulatory network from mouse tissues and compared it to the 
human network (Stergachis et al. 2014). Nonetheless, DNase-seq also has limitations 
for transcription factor detection, as many TFs exchange with specific binding sites 
in living cells on a timescale of seconds, instead of remaining stably bound for a long 
period (Sung et al 2014). Hence, the combination of ChIP-seq and DNase-seq would 
greatly improve the resolution as well as the confidence of TF detection.

2.6 Hi-C

How distal regulatory elements in a genome, such as enhancers and insulators, affect 
the expression of genes that are far apart on the linear chromosome is an interest-
ing question in functional genomics. A novel method named “Hi-C”, which com-
bines DNA proximity ligation with high-throughput sequencing genome-wide, was 
invented to comprehensively detect chromatin interactions (Lieberman-Aiden et al. 
2009). Hi-C was developed based on Chromosome Conformation Capture (3C), an 
older technique, in which chromatin is cross-linked with formaldehyde, then digested 
and re-ligated such that only DNA fragments that are covalently linked together form 
ligation products. The ligation complex contains multiple strands of DNA that reside 
physically close to each other in the three dimensional organization of the genome. 
Combining this technique with next generation sequencing makes Hi-C a powerful 
method to find chromatin interactions genome-wide (Belton et al. 2012).

Rao et al. (2014) used Hi-C to construct haploid1 and diploid connectivity maps 
of nine human cell lines with as small as 1 kb resolution. They found that genomes 
could be divided into topologically associated domains with a median length of 185 
kb, which are related with different histone marks and could be categorized into six 
sub-compartments. They also identified about 10,000 loops linking gene promoters 
and enhancers, which showed both conservation and novelty across species and cell 
types (Rao et al. 2014). Their huge dataset, which is browsable online, is a useful 
resource for understanding the complex chromatin environment.

3. DNA Methylation Analysis
DNA methylation, the reversible addition of methyl groups to the fifth carbon of 
cytosine nucleotides, is an important regulator of gene expression and thus pheno-
typic variation and disease states (Fig. 1). DNA methylation occurs primarily at CG 
dinucleotides in vertebrates, but is also found in a range of other contexts; CHH and 
CHG methylation occurs commonly in plants (Cokus et al. 2008) and can also be 
found in certain vertebrate cell types, such as mammalian pluripotent cells (Laurent 
et al. 2010). In mammals, DNA methylation is predominantly established by the 
methyltransferase enzymes Dnmt3a and Dnmt3b, and subsequently maintained 
through semiconservative replication by the action of Dnmt1.

DNA methylation is generally associated with gene silencing and is thought to, 
as part of a larger system of epigenetic regulators including nucleosome phasing 

1 They used KBM-7 cells, which is a chronic myelogenous leukemia (CML) cell line. A unique 
aspect of the KBM-7 cell line is that it is near-haploid, meaning it contains only one copy for most 
of its chromosomes.
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and histone modification, lead to inaccessibility of the DNA to the transcriptional 
machinery (Ehlrlich et al. 1993, Nan et al. 1998, Ng et al. 1999, Wade et al. 1999). 
However, the association with gene expression is not wholly understood and appears 
to be very context dependent. For example, methylation within promoters and first 
exons is highly correlated with transcriptional repression, but dense methylation 
within downstream exons and introns does not necessarily lead to repression and 
may even be associated with active transcription (Lister et al. 2009, Brenet et al. 
2011, Jones 2012). The transcriptional machinery thus appears to interpret the occur-
rence of cytosine methylation differently depending on its exact location within the 
coding sequence.

DNA methylation, as one modification in the wider system of epigenetic regula-
tion, ultimately contributes to the formation of many different phenotypes from the 
same genome, as is the case with the process of cellular differentiation. Being a 
covalent modification, DNA methylation is more stable than other highly dynamic 
epigenetic marks, such as histone modification, and is generally maintained over 
the life cycle of the cell; some genomic regions, such as pericentromeres and other 
repeat elements are maintained as methylated for the entire life cycle. The stability 
of  DNA methylation makes it an attractive marker for studies that seek epigenetic 
causation or association in complex human disease e.g. epigenome-wide association 
studies (EWAS). Over the last decade or so, multiple methods have been developed 
to allow profiling of DNA methylation on a genome-wide scale, and state-of-the-art 
approaches involve the coupling of next-generation sequencing with the gold stan-
dard technique of bisulfite modification (Clark et al., 1994). Such methods have led 
to the identification of areas of differential methylation between samples or cohorts 
in EWAS across a wide variety of systems. 

3.1 Whole genome bisulfite sequencing (WgBS)

Bisulfite sequencing allows DNA methylation state detection on standard sequencing 
platforms, and has led to significant advances in our understanding of DNA methyla-
tion and epigenetic regulation (Fig. 3). Sample preparation for bisulfite sequencing 
involves treatment of genomic DNA with sodium bisulfite, which deaminates cyto-
sine residues, so converting them to uracil, while 5-methylcytosine is unaffected. 
During subsequent PCR, uracil nucleotides produced from the bisulfite conversion 
are converted to thymine (Clark et al., 1994). Following DNA sequencing the result-
ing reads are aligned and compared to a reference DNA sequence, and C/T mis-
matches of aligned reads are used to determine the methylation states in the original 
DNA molecules. In this way, single-base resolution maps of DNA methylation state 
are obtained for cytosines across the whole genome.

Generally a researcher will be interested in detecting differentially methylated 
sites where one sample group, such as samples taken from cancers, will display a 
significant difference in methylation at particular cytosines compared to a control 
sample group, such as a healthy sample from the same tissue type. Differentially 
methylated regions (DMRs) may also be found, which are regions of the genome 
that are abundant in individual differentially methylated cytosines. DMRs may be 
obtained from tiling approaches which are often based on a set length or may be 
empirically formed based on distance to the next differentially methylated cytosine 
(DMC) and the presence of a set number DMCs within each defined tile. Standard 
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bisulfite sequencing cannot distinguish between 5-methylcytosine and other forms 
of the modification, such as hydroxymethylation, an important epigenetic mark in 
mammalian brain tissue, but additional steps can be added to the sample preparation 
in order to achieve this.

Whole genome bisulfite sequencing (WGBS) is currently the state-of-the-art 
method for obtaining high resolution DNA methylation data and has the advantage 
that almost the entire genome is interrogated. For the most common library prepara-
tion method (used for Illumina sequencing) genomic DNA is sheared during bisul-
fite conversion, this bisulfite-treated single-stranded DNA is then random-primed 
using a polymerase capable of reading uracil nucleotides. This polymerase synthe-
sizes DNA containing a sequence tag. 3’ ends of the new strands are then selectively 
tagged with a second fragment of specific sequence, resulting in di-tagged DNA 
molecules with known sequence at their 5’ and 3′ends. As with standard Illumina 
sequencing, samples can be barcoded and sequenced in multiplex, but for minimally 
sufficient coverage for the purposes of DNA methylation analysis, a single library 
from a human sample is often run across two lanes of an 8-lane flow cell, giving 
around 120 GB sequence data.

 The cost of WGBS may be prohibitive for medium to large scale experiments 
or small laboratories, and this has led to the development of methods that reduce 
breadth of coverage of the genome, allowing more samples to be included in the same 
sequencing run or lane and maximising coverage at areas of interest. 

3.2 reduced representation bisulfite sequencing

Reduced representation bisulfite sequencing (RRBS) (Smith et al 2009) is a method 
that allows enrichment of the genome for regions that are likely to be of most interest 
for epigenetic regulation, such as CpG islands, promoters and enhancer sequences. 
This reduced representation lowers the cost of sequencing and also gives increased 
depth of coverage, facilitating the resolution of more subtle changes in methylation 
levels at a given site.

RRBS library preparation utilizes restriction enzymes that cut genomic DNA at 
specific sequences, independently of methylation status. The enzymes Msp I and 
Taqa1 are commonly used, which have restriction sites of 5’...C|CGG...3’ and 5’...
T|CGA...3’ respectively; these enzymes are insensitive to CpG methylation. The 
resulting fragments are then size-selected, most commonly by gel electrophoresis, 
for fragments of between 40 and 220 bp in length. Selection of this fragment size 
gives information for the majority of CpG islands in the mammalian genome and also 
for a range of other regions, including genes, enhancers and repeat sequences. This 
step is followed by fragment end-repair, A-tailing, sequencing adapter ligation and 
finally bisulfite conversion.

3.3 Special considerations for WgBS and rrBS

Many unique technical considerations must be taken into account for bisulfite 
sequencing methods. As some genomic material is lost over the course of the pro-
cess, particularly during bisulfite conversion, the library preparation can call for 
large amounts of genomic DNA, ranging from hundreds of nanograms and up to 2 
micrograms or more, depending on the protocol. Recently several methods have been 
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described that allow RRBS libraries to be created from relatively small amounts of 
starting material, in the order of around 1ng of DNA, or DNA from only several hun-
dred cells (Smallwood and Kelsey 2012, Schillebeeckx et al. 2013). The accuracy of 
the size selection process is also an important factor for RRBS, as it is hard to avoid 
contamination with fragments smaller than the ideal 40 bp size cut-off. In the case 
of smaller fragments, if the read length is larger than the DNA fragment, the adapter 
sequences at either end may be sequenced, leading to contamination of the sequenc-
ing read library. These contaminating sequences then need to be trimmed from the 
resulting reads prior to sequence alignment or mapping efficiency can be greatly 
reduced. A number of tools have been developed for this and are described in the next 
section. The most common read lengths used for DNA methylation sequencing, par-
ticularly on Illumina platforms, is 50-100 bp. As with other sequencing applications 
performed on Illumina platforms, the quality of data deteriorates as the sequencing 
cycles progress, and PHRED scores tend to drop significantly after a read length of 
about 70 bp. Thus, longer reads lead to a higher probability of errors in base calls, 
and thus a higher error rate in methylation state calling. The choice of single (direc-
tional) or paired-end (non-directional) sequencing is also an important consideration. 
Single-ended sequencing is the most common strategy as paired-end sequencing 
does not yield information for both the top and bottom strands, but rather creates 
redundant information for the same DNA strand. It can however give a marginal 
increase in mapping efficiency. Bias in directionality produced from paired-end 
sequencing is another potential problem. In single-ended sequencing experiments, 
the reads resulting from Msp I restricted libraries will all begin with either CGG or 
TGG, depending on the genomic methylation state at that site. Paired-end sequencing 
leads to an increase in the number of starting trinucleotide possibilities, as instead of 
just coming from the original top or bottom strand, some reads will yield information 
from the complementary sequences of the original top or bottom stands. Thus as well 
as the two possibilities of CGG and TGG, we now will also have CAA and CGA to 
take into account.

A special protocol is also required during the actual sequencing process for RRBS 
and related library types. Because the MspI recognition site yields fragments where 
the first three bases are non-random, substantial data loss can occur during the clus-
ter calling phase of sequencing due to high apparent cluster density and poor clus-
ter localization. To minimize these problems, imaging and cluster localization are 
delayed until the fourth sequencing cycle, in a process termed ‘dark sequencing’, 
which requires that the sequencing camera is turned off during the first three cycles 
of sequencing chemistry, and cluster calling to be based upon cycles 4-7. Minor 
adjustments in sequencing software are required to achieve this.

3.4 Data pre-processing, quality control and alignment methods

As previously mentioned, adapter contamination in sequencing reads can lead to 
significant decreases in mapping efficiency and thus the loss of large numbers of 
sequencing reads. It is therefore important to remove as much of this adapter con-
tamination as possible from the reads before the step of alignment to the reference 
genome. Several methods have been developed for this purpose, such as cutadapt 
(Martin 2011) and trim_galore (http://www.bioinformatics.babraham.ac.uk/projects/
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trim_galore/), which is a wrapper script combining the functions of both adapter 
trimming with cutadapt and quality control measurements using the FastQC pro-
gram (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

General quality control metrics can be gained by the use of FastQC. This is the 
most widely-used tool for this purpose for both standard and bisulfite sequencing 
experiments, though several other methods are available. Some particular consid-
erations of the quality control process for bisulfite sequencing applications such as 
WGBS and RRBS are:

• Poor qualities (as deduced from PHRED score) can lead to incorrect meth-
ylation calls or mis-mapping.

• Poor bisulfite conversion efficiency can lead to erroneous calling of meth-
ylation state. Generally accepted minimum bisulfite conversion efficiency 
is 98%.

• Adapter contamination leading to incorrect methylation calls or poor align-
ment and data loss.

• Redundant information created in the case of paired-end sequencing. This 
extra information will generally need to be removed from datasets prior to 
any downstream differential methylation analyses.

• Positions filled in during the end-repair step may give different methylation 
state calls than the original genomic DNA. This filled-in position can how-
ever be used to calculate the efficiency of bisulfite conversion.

The most widely-used alignment and mapping tool for bisulfite sequencing data is 
Bismark (Krueger and Andrews 2011). This software combines the short-read align-
ment tool Bowtie2 (Langmead and Salzberg 2012) with methylation calling func-
tionality, and creates output for methylation in CpG, CHG and CHH contexts. Other 
available tools for alignment of base-space WGBS/RRBS data include BS-Seeker 
(Chen et al 2010) and RRBSMAP (Xi et al 2012), but as with all fields in high-
throughput sequencing, new software is continually being developed.

The presence of batch effects is another important consideration for all high-
throughput sequencing experiments. Batch effects may result from a number of 
sources, including samples within a study being sequenced in separate run or the use 
of a different technician for library preparation or sequencing. Such non-biological 
variation needs to be accounted for or it may impede downstream statistical analysis. 
The program RnBeads (Yassen Assenov, et. al. 2014) applies the method of surrogate 
variable analysis (SVA) (Leek and Storey 2007) in order to detect and correct for 
batch effects, and is able to take a variety of different file formats, including those 
produced from Bismark and common methylation microarray software.

In genome-wide methylation studies the researcher may be interested in the 
genomic methylation states of a particular cell type, such as a cancer cell or a particu-
lar type of white blood cell. However, many samples are obtained from pre-curated 
tissue or DNA banks, or the cost of cell-sorting many samples may be prohibitive, 
and samples will therefore contain genomic DNA from several different cell popula-
tions. This is a potential confounder in the analyses (Jaffe and Irizarry 2014). One 
way to deal with the problem of cellular heterogeneity is by the use of corrective 
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algorithms such as FaST-LMM-EWASher (Zou et al. 2014) and CETS (Guintivano et 
al. 2013) for neuronal cell samples, but due to a lack of empirical testing the perfor-
mance of these methods is not well established.

3.5  Currently available methods for statistical 
analysis of genomic DNA methylation

The choice of statistical analysis methods is a crucial one for genome-wide DNA 
methylation studies, as different methods can lead to detection of quite different sets 
of differentially methylated cytosines. The field of statistical analysis of DNA meth-
ylation data is a relatively immature one, as we are only just coming to understand 

Figure 3 Bisulfite sequencing: Sodium bisulfite treatment deaminates cytosine residues, con-
verting them to uracil, while 5-methylcytosine is unaffected. Following PCR, at which point uracils 
are converted to thymines, the fragments are sequenced in high-throughput and methylated and 
unmethylated cytosines can be distinguished from one another upon alignment with a reference 
genome sequence.
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some of the complex correlation structures and mechanisms of DNA methylation 
patterning within different experimental designs. No systematic comparison or 
benchmarking of statistical methods has yet been performed, and as new packages 
and pipelines are developed at such a rapid pace it is a complex field to navigate. Most 
methods developed for statistical analysis of methylation data fall into two general 
types: binomial test-based and beta-binomial model-based methods. The distribu-
tion of DNA methylation percentage (or methylation ratio) is bimodal and display 
either near complete (100%) methylation or near zero, giving two modes. The num-
ber of methylated reads can be modelled by a binomial distribution. Beta-binomial 
model-based methods are therefore a more natural choice for this type of data, and 
many software packages such as BiSeq, MOABS and DSS use this approach. Most 
of the available software for DNA methylation data analysis is implemented in 
Bioconductor, a site for open-source bioinformatics tools written in R, though some 
may be in other languages. All of the programs are detailed below (Table 5) are free 
or open-source.

TAblE 5 Common DNA methylation analysis software and their features

Name Implemen-
tation

Remarks References

BSmooth 
and Bs-seq

R Combines tools for alignment, quality control 
and identification of DMRS. A local likelihood 
smoothing algorithm is implemented, allowing 
it to perform particularly well with low 
coverage data. Can be used to identify regions 
of high methylation variability, so called 
“hypervariable” regions. After the calculation 
of sample-specific methylation profiles, DMRs 
are identified using a signal-to-noise statistic 
similar to t-test. 

Hansen, 
Langmead and 
Irizarry, 2012.

Methylkit R Performs a variety of general, basic statistics 
and plots, including sample correlation 
matrices, hierarchical clustering and 
identification of DMCs and DMRs. DMCs are 
identified by a Fisher’s Exact Test (FET) in the 
case of a one by one comparison (or pooled 
treatment groups) or logistic regression if there 
are biological replicates. Incorporates a basic 
tiling function.

Akalin et al. 2012

eDMR R Used as an extension to Methylkit (Akalin et al. 
2012). Takes a myDiff object from methylkit as 
input and constructs DMRs using a weighted 
cost function and empirical tiling method. The 
significance of the inferred DMRs is calculated 
by combining the p-values of DMCs within that 
region. The user can input parameters required 
for a DMR to be called, such as distance to the 
next DMC and number of CpGs and DMCs per 
region.

Li et al. 2013.
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DMAP C For differential methylation analysis of both 
WGBS and RRBS data. Takes SAM (Sequence 
Alignment/Map format) file or methylation 
extractor output from Bismark. Uses a 
fragment-based approach, where MspI 
fragment sizes of 40-220 bp are used as the unit 
of analysis, rather than fixed-length tiles or 
windows. Includes a variety of basic statistical 
analyses, such as ANOVA, Chi-squared test and 
Fisher’s exact test and, as with many of the 
other programs, also performs annotation with 
proximal genic and CpG features.

Stockwell et al. 
2014

BiSeq R Combines functions for differential methylation 
detection within target regions by incorporating 
spatial dependencies. A hierarchical testing 
procedure is applied where following a 
traditional DMR detection approach, 
localization of DMRs in rejected regions is also 
considered. Takes input from targeted bisulfite 
sequencing experiments such as RRBS and 
enhanced RRBS (eRRBS).

Hebestreit et al. 
2013

MethylSig R Analysis of both WGBS and RRBS data. Uses 
a beta-binomial model and factors in coverage 
and variation within groups at each CpG or 
DMR, and uses calibrated Type I error rate. A 
statistic based on the likelihood ratio test is 
used to evaluate the significance level of the 
difference in methylation. Performs site-specific 
or sliding window tests and also includes 
functions for data annotation and visualization 
as well as transcription factor binding site 
enrichment.

Park et al. 2014

4. bioinformatics databases and resources
Researchers can download a vast amount of epigenomic data from databases such as 
NCBI’s GEO (Barrett et al. 2013), ENCODE (ENCODE Project Consortium 2004) 
and Roadmap Epigenomics (Bernstein et al. 2010). There are also many organ or 
disease specific databases such as BloodChIP (Chacon et al. 2014) and HAEMCODE 
(Ruan et al. 2013). In these databases, users can usually find the mapped read files or 
even the final output files in various formats, including signal tracks, bed files and 
called peak files from chromatin experiments and also raw FASTQ files from  experi-
ment. Here we review several major public repositories.

4.1  NCBi’s gene expression Omnibus (geO) 
and Sequence read Archive (SrA)

GEO (http://www.ncbi.nlm.nih.gov/gds) and SRA (http://www.ncbi.nlm.nih.gov/sra) 
are the largest central repositories for genomics data globally and due to the excellent 
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search functionality they form a crucial resource for many bioinformatics analyses. 
Much of the data from the databases below and the results of many other experiments 
from researchers worldwide are accessible through GEO and SRA searches. 

4.2 eNCODe: encyclopedia of DNA elements project 

ENCODE is a major research project (https://www.encodeproject.org) started by 
the US National Human Genome Research Institute (NHGRI) in September 2003 
(ENCODE Project Consortium 2004). As a successor to the Human Genome Project, 
ENCODE aims to discover all regulatory elements in the human genome. ENCODE 
involves many research groups worldwide, and has already produced a large amount 
of data that can be downloaded from the UCSC server (http://genome.ucsc.edu/
ENCODE), including ChIP-seq, DNase-seq, FAIRE-seq, RNA-seq, Methyl RRBS, 
Methyl Array data and other data such as from CAGE and ChIA-PET (Fullwood et 
al. 2009) for many human cell types. Be aware that more data sets are available for 
older genome assemblies such as hg18.

4.3 Mouse eNCODe and modeNCODe projects 

The Mouse ENCODE (http://www.mouseencode.org) and modENCODE (model 
organism ENCODE, http://www.modencode.org) projects extend the ENCODE 
approach and assay data to three model organisms: Mus musculus (mouse), Drosophila 
melanogaster (fly) and Caenorhabditis elegans (worm) (Stamatoyannopoulos et al. 
2012, Gerstein et al. 2010, Roy et al. 2010, Boyle et al. 2014, Gerstein et al. 2014, Ho 
et al. 2014).

4.4 FANTOM project

Functional Annotation of The Mammalian Genome (FANTOM) is an inter-
national project (http://fantom.gsc.riken.jp) established in 2000 to function-
ally annotate the full-length cDNAs collected during the Mouse Encyclopedia 
Project at RIKEN (Kawai et al. 2001). Although experimental techniques have 
changed throughout FANTOM 1 to FANTOM 5, the project aims to reveal the 
function of transcripts and the transcriptional regulatory network. FANTOM 5 
now focuses on examining how our unique genome controls the variety of cell 
types in a human body. Users can also find human enhancer annotation files from 
FANTOM 5 (Andersson et al. 2014).

4.5 The roadmap epigenomics project

NIH (National Institute of Health) launched the Roadmap Epigenomics Project in 
2007 (http://www.roadmapepigenomics.org). As a complement to the ENCODE 
Project, the Roadmap Epigenomics Project aims to comprehensively understand the 
epigenetic events of a variety of cell types during development, differentiation and 
during human diseases (Bernstein et al. 2010). The project has also built a large 
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reference epigenome database available for public download, containing whole 
genome bisulfite sequencing data, RRBS data and a wealth of histone modification 
data across different organs and tissues.

5. Applications of epigenomics

With technological advances in ChIP-seq, DNase-seq, FAIRE-seq, WGBS, RRBS 
and chromatin state discovery tools, the pace of genome annotation and discovery of 
functional genomic elements has accelerated rapidly since 2008, fuelled by research 
from the large consortium projects described above. 

5.1  Major functional regulatory insights gained 
through epigenomic profiling

Meissner et al. (2008) revealed the widespread dynamics of DNA methylation during 
cellular differentiation and development using RBBS. Their description of develop-
mentally regulated demethylation of highly conserved non-coding regulatory ele-
ments provided a mechanism for Waddington’s epigenetic landscape model. 

The worm modENCODE analysis discovered that elements in HOT-regions (High-
Occupancy Target regions bound by many TFs) in L1 larvae cells drive expression in 
most adult cell types, in contrast to other genes with a largely tissue-specific expres-
sion (Gerstein et al. 2010) . They also found differences between the hierarchies of 
TFs at each developmental level of worms - TFs acting at the lower levels tended 
to be more uniformly expressed across multiple tissues. Kharchenko et al. (2011) 
presented a genome-wide chromatin landscape of fly based on eighteen histone mod-
ifications, which they summarized into nine chromatin states, demonstrating that 
transcriptionally active genes showed distinct chromatin patterns. They also found 
several histone modification signatures among Polycomb targets, providing clues to 
how regulatory elements interact with Polycomb group proteins (Kharchenko et al. 
2011).

A breakthrough in cancer epigenomics came when Hansen et al. (2011) discovered 
that cancer genomes display significant methylation instability including large blocks 
of hypomethylation, sometimes affecting more than half of the genome. Genes in 
this region showed extreme gene expression variability and are involved in mitosis 
and matrix remodelling, hinting at an epigenetic mechanism for tumor heterogeneity 
(Hansen et al. 2011). 

Using the ChromHMM algorithm, Ernst et al. (2011) discriminated six classes of 
human chromatin states in multiple cell lines. They characterized promoters with 
active, weak and poised expression activity, strong and weak enhancers, insulator 
regions, transcribed regions, repressed and inactive states. They found that strong 
enhancer and polycomb repressed states are missing in embryonic stem cells, consis-
tent with the nature of embryonic cells. They also found that promoter states appeared 
more stable across different cell-types than enhancers, which appear in cell-type 
specific enhancer clusters that drive tissue specific gene expression. Furthermore, 
highly disease associated single nucleotide polymorphisms were often located within 
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the active enhancers of related cell types, and in some cases affect a motif site for 
TF binding, suggesting a mechanism for the genetic etiology of the disease (Ernst 
et al. 2011).

In 2012, the human ENCODE paper (Dunham et al. 2012), revealed that a somatic 
mutation is less likely to occur within ENCODE annotated regulatory regions and 
that GWAS SNPs presented more often within these regulatory regions. Amongst 
other findings was that mRNA expression levels could be predicted with high accu-
racy using histone modification and TF binding data and that most TFs have a non-
random association between each other. In order to quantify the conservation of 
regulatory mechanisms between human and mouse, researchers built a TF-TF cross-
regulatory network for each species (Yue et al 2014). These networks included ~500 
transcription factors and were based on DNase-seq footprints located on binding 
motifs in the promoter and enhancer regions of TF genes. They found that while only 
22% of apparently active transcription factor motifs are strictly conserved between 
species, in total, around 50% of connections in the TF-TF regulatory circuitry are 
conserved through the same or different binding sites in regulatory regions (Yue et al 
2014). Ho et al. (2014) studied cross-species chromatin organization between human, 
fly and worm using 1,400 ENCODE and modENCODE data sets. They discovered 
that although the three organisms shared many conserved features in the organi-
zation of the chromatin, the organization and composition of repressive chromatin 
are quite different in worm compared to fly and human.In early 2015, the Roadmap 
Epigenomics Project published a series of articles with many interesting discoveries 
and resources (Romanoski et al. 2015, http://www.roadmapepigenomics.org/publi-
cations/). In one study, Kundaje et al. (2015) performed an integrative study of 111 
reference human cell-type epigenomes with gene expression data. This allowed them 
to globally map regulatory elements, define the makeup of regulatory modules, con-
firm that disease and trait associated variants occur in tissue specific epigenomic 
marks and calculate a similarity distance between cell types in a multi-dimensional 
scaling analysis. Another study focused on investigating higher-order chromosomal 
structure and allele-specificity in genetic regulation (Dixon et al. 2015). They found 
that while local interaction domain borders were stable during development, a dra-
matic 36% of the genome transitioned between compartment types A and B in at 
least one lineage, with significant changes in functionality. Change in H3K4me1 den-
sity was found to be the most predictive feature of changes in long-range chromatin 
interactions, reflecting the important role of enhancer looping in defining chromatin 
structure (Dixon et al. 2015). The consortium also released an efficient epigenomics 
browser for visualising hundreds of datasets at once in the context of disease causing 
variation (http://epigenomegateway.wustl.edu/browser/roadmap, Zhou et al. 2015).

5.2 epigenome wide association studies (eWAS)

During the last decade many genetic variants have been discovered that influence 
the occurrence of complex human diseases such as cancer, obesity and hypertension. 
This has been made possible partly by the genome-wide association study (GWAS) 
approach, where SNPs are compared on a genome-wide scale between, for example, 
healthy and diseased samples. However, useful findings from GWAS have nowhere 
near reached the expectations of the scientific community and as the significance 
of epigenetic variation has come more into light, an epigenome-wide approach has 
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become popular. Alterations in epigenetic states can occur spontaneously and poten-
tially lead to heritable disease predisposition (Suter et al. 2004); epigenetic states 
can also respond to environmental stimuli and parental influence (Cropley et al. 
2006 and 2012). Because epigenetic changes can occur in multiple individuals at 
the same genes but on multiple haplotypes, they are invisible to genome-wide asso-
ciation studies (GWAS), which rely on defining common sequence variation. A sys-
tematic study of epigenetic marks on a genome-wide scale can provide an unbiased 
assessment of epigenetic variants that may associate with a trait. Much like GWAS, 
epigenome-wide association studies (EWAS) involve interrogation of variants using 
high-throughput platforms; the stability of DNA methylation, and its amenability to 
study, renders this epigenetic mark the most suitable for EWAS.

EWAS are in their infancy, and most of the early studies copied the key design 
and analytical principles of GWAS, which are now known to be problematic in the 
context of EWAS. Standards in study design, sample size selection, and statistical 
analysis for EWAS are still emerging (Bock, 2012, Michels et al. 2013). The com-
plex nature of epigenetic states renders the optimal design and analysis of human 
EWAS conceptually distinct and potentially more difficult than GWAS. De novo 
study of human cohorts runs a high risk of missing relevant epigenetic changes, since 
these may be obscured by high backgrounds of genetic variation, epigenetic variation 
unrelated to the disease, and epigenetic variation consequential to the disease, its 
treatment, or co-morbid conditions. Such problems are not easily overcome, and may 
require EWAS with many thousands of individuals. Despite these challenges, the 
EWAS approach has led to some new insight into possible epigenetic contributions to 
disease and into how environmental influences, such as those experienced in utero, 
may affect offspring via epigenetic mechanisms. One example of such a discovery 
is that of Joubert et al. (2012) who identified a number of genes with significantly 
altered methylation in children whose mothers smoked while pregnant. Several of 
these methylation changes were later confirmed in additional studies (Markunas et 
al., 2014), and could very well be involved in the development of disease arising 
from maternal smoking. Technological advancement and decreasing costs of high-
throughput sequencing will hopefully lead to significant improvements in our under-
standing of common, complex diseases in the coming years. 

6. Emerging fields in epigenetics
Genome-wide epigenomic profiling has already made a significant impact on our 
understanding of gene regulation using the current technologies described in earlier 
sections. New experimental and computational technologies, and new applications 
of these technologies, are pushing the boundary of this field. In this section, we dis-
cuss three leading-edge research areas that we believe will drive the next waves of 
breakthroughs: regulatory grammar of cis-regulatory elements (new application of 
epigenomic data); single cell epigenetics (new methodology); and comparative epig-
enomics of evolutionarily diverse organisms (new area of epigenomic research). 

6.1 understanding the hidden grammar of cis-regulatory elements

One application of epigenomic profiling is the identification of regulatory regions 
at a genome-wide scale. Researchers around the world have contributed to the gen-
eration of epigenomic profiles, and used them to discover consensus DNA motifs 
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of transcription factors via ChIP-seq and DNase-seq. We can now easily browse 
this knowledge using an online open-access database of transcription factor bind-
ing profiles, such as JASPAR (Sandelin et al. 2004, Mathelier et al. 2014). Using 
these databases, Kheradpour et al. (2013) performed a systematic study on regulatory 
motifs by synthesizing plasmids with different selections of activating and repress-
ing motifs. They found that different forms of motif disruption, such as scrambling, 
total removal, 1bp insertion or deletion, and so on, showed a variety of effects on 
related gene expression. Smith et al. (2013) went further in their research, synthesiz-
ing 4,970 regulatory element sequences within three groups: homotypic / same motif 
(class I), simple heterotypic / 2+ motifs (class II) and more complex heterotypic motif 
combinations (class III). With this experimental design, they firstly observed a sig-
nificant correlation between the size of the homotypic cluster and gene expression for 
around half of their class I motifs. They also found that in general, heterotypic motifs 
drive stronger expression than homotypic motifs (Smith et al 2013). These findings 
represent pioneering work in using massively parallel assays to quantitatively test 
the effect of sequence composition in regulatory elements on gene expression. We 
believe these types of studies will unravel the combinatorial grammar behind tran-
scription factor activity.

6.2 Single cell analysis

Single-cell genomics is leading to major advances in our ability to confidently answer 
questions about cellular regulation and was fittingly named the Method of the Year 
in 2013 by the journal Nature Methods. This technology is enabling genome-wide 
sequencing at the level of individual cells, instead of averaging the signals from 
a heterogeneous cell population. This has facilitated the fine-scale identification of 
gene expression status during cellular differentiation (Trapnell et al. 2014) and has 
quantified how much intercellular variability is masked by lower experimental reso-
lution (Wills et al. 2013). This applies directly to epigenetics, where it is difficult to 
say whether histone modifications and other epigenetic marks truly co-occur at a 
locus, or whether it is an effect of population averaging across multiple experiments.

Much work is occurring in the cutting-edge field of single-cell epigenomics, from 
the development of technologies to profile the epigenome of single cells, to the algo-
rithms/methods to analyze the data and interpret the results. Many of the developing 
methods and associated challenges are reviewed by Hyun et al. (2015) and Bheda et 
al. (2014). Farlik et al. (2015) have already succeeded in creating a method for single 
cell whole genome bisulfite sequencing in model cell lines and used this to tempo-
rally order differentiating cells based on their individual methylomes. Investigating 
chromatin structure and histone modifications at the single cell level has not yet 
been achieved using traditional methods like ChIP-seq and DNase-seq. However, 
approaches such as ATAC-seq (Assay for Transposase-Accessible Chromatin with 
high throughput sequencing) which investigates chromatin accessibility, have 
reduced the number of cells required by several orders of magnitude, down to below 
1000 (Buenrostro et al. 2013). Single molecule nanopore-based technologies have 
shown an ability to detect the slight electrical perturbations caused by chemical mod-
ifications to DNA (Carlsen et al. 2014). Non-sequencing approaches like fluorescence 
microscopy partnered with 3D reconstruction are also being applied to characterize 
single cells based on their epigenomes and single cell Hi-C technology bridges the 
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gap between chromosomal microscopy and genomics (Tajbakhsh et al. 2015, Nagano 
et al. 2013).

While it will take years before we can truly profile the entire epigenome at single 
cell resolution, until then we can gain insights by combining our established bulk cell 
and low cell input technologies with true single cell genomic data that we can gener-
ate now - DNA sequencing, RNA-seq, DNA methylation and chromosomal structure 
through Hi-C. 

6.3 Comparative epigenomics: Beyond model organisms

As genetic regulation is increasingly well studied, its central contribution to phe-
notypic diversity is evident. An interesting emerging idea is that heritable changes 
to the regulatory epigenome could be a major evolutionary driver. This is a major 
contributor to the complexity of the human brain (Skinner et al. 2014, Krubitzer and 
Stolzenberg 2014). Thus it is increasingly important to study epigenomics across 
the tree of life. Several studies have discovered differences in histone modification 
co-occurrence patterns between humans and other model organisms, including fly 
and worm (Ho et al. 2014, Sohn et al. 2015). These studies showed that in worm 
there is frequently co-occurrence of the marks H3K9me3 and H3K27me3 in repres-
sive regions, whereas in human and fly these marks are largely mutually exclusive 
and define heterochromatic and polycomb-repressed regions respectively. Sohn et al. 
(2015) found further differences in the distribution of several less commonly profiled 
histone modifications within promoters and transcriptional regions between the two 
species. Do these changes in histone modification co-occurrence indicate another 
level of epigenomic dynamics we are yet to understand? The extension of cross-
species epigenomics to the whole spectrum of chromatin features across many more 
organisms in the years to come will shed light on this question.

One area where non-model organism epigenetics can have immediate medical 
impact is in understanding host-pathogen interactions. Many pathogenic eukaryotes, 
such as fungi and their host organisms are known to switch their transcriptional 
programs dependent on infection status and new signalling pathways are implicated 
at the interface between human hosts and fungal pathogen during infection (Liu et 
al. 2015, Soyer et al. 2015). An emerging model of virulence evolution is that fungi 
may epigenetically de-repress retrotransposon activity to increase genome plasticity 
during infection (Gijzen et al. 2015). There is a concerted effort emerging to perform 
genome wide BS-seq and ChIP-seq across many fungal species and their hosts dur-
ing an infection life-cycle, in order to describe the epigenetic mechanisms that con-
trol pathogenicity. This will hopefully lead to new therapeutic approaches that will 
have a significant impact on human health as well as many industries in which fungal 
species are crucial players.
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Gene Body Methylation and Transcriptional 
Regulation: Statistical Modelling and More

Shaoke LOU1*

Abstract
DNA methylation is an important type of epigenetic modification involved in gene 
regulation. Although strong DNA methylation at promoters is widely recognized 
to be associated with transcriptional repression, many aspects of DNA methyla-
tion remain not fully understood, including the quantitative relationships between 
DNA methylation and expression levels, and the individual roles of promoter and 
gene body methylation. Integrated analysis of whole-genome bisulfite sequencing 
and RNA sequencing data from human samples and cell lines find that while pro-
moter methylation inversely correlates with gene expression as generally observed, 
the repressive effect is clear only on genes with a very high DNA methylation level. 
By means of statistical modeling, we find that DNA methylation is indicative of the 
expression class of a gene in general, but gene body methylation is a better indicator 
than promoter methylation. These findings are general in that a model constructed 
from a sample or cell line could accurately fit the unseen data from another. We will 
review the latest study on gene body methylation and discuss the possible mecha-
nism how gene body methylation regulates gene expression. We also suggest that 
future studies on gene regulatory mechanisms and disease-associated differential 
methylation should pay more attention to DNA methylation at gene bodies and other 
non-promoter regions.

1. Introduction
Epigenetics is the study of heritable changes in gene expression that are not due 
to changes in DNA sequence. It refers to functionally relevant modifications to the 
genome, such as DNA methylation and histone modification, both of which serve to 
regulate gene expression without altering the underlying DNA sequence. Specific 
epigenetics of biological processes involve many aspects, such as imprinting, gene 
silencing, X-chromosome inactivation, reprogramming, the progress of carcinogen-
esis, regulation of histone modification and heterochromatin (Lister et al. 2009).  
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The molecular basis of epigenetics is complex, which includes chemical modification 
to the DNA (DNA methylations) or to the protein that are closely associated with 
chromatin structure (Histone modifications).

DNA methylation is a typical characteristic of higher organisms and some of its 
features are conserved across many species. It refers to methylation at the carbon 5 
position of cytosine (5me C) which mostly happens within CpG, CHG and CHH DNA 
patterns (‘H’ denotes non-cytosine bases: A, G, T). DNA methylation as an impor-
tant epigenetics layer contributes to the regulation of transcription and formation of 
chromatin structures. DNA methylation is stable as well as dynamic, where ‘stable’ 
means cytosine methylation pattern is stable modification of the genomic DNA that 
can be inherited, and ‘dynamics’ denotes that the modifications change during the 
lifespan of certain cells of tissues and it is also susceptible to environmental condi-
tions, such as diet, drinks, toxin and air quality etc. 

The basis for understanding the function of DNA methylation is the knowledge 
of its distribution in the genome. The spectrum of methylation levels and patterns 
is very broad and 60% ~ 90% of all CpGs are methylated in mammals (Ehrlich et 
al. 1982; Lister et al. 2009). While non-CpG cytosine (CHH and CHG) methylation 
mainly occurs in human somatic tissue, and is particularly prevalent in brain tissue, 
which is reproducible across many individuals (Varley et al. 2013). 

As early as 1983, Busslinger found that DNA methylation around 5’ terminal 
(-760 ~ 1000bp) of the genes plays a direct role in the regulation of gene expression 
(Busslinger, Hurst, and Flavell 1983). The inverse relationship of promoter methyla-
tion with mRNA expression is consistent with the role of DNA methylation in modu-
lating the spatial pattern of gene expression (Petkova, Seigel, and Otteson 2011). The 
DNA methylation on promoter region can affect the recognition and binding of a 
transcription factor to activate or repress gene transcription (Bird 2002). Similarly,  
microRNA can also be regulated by the methylation of CpG island at the start site 
(Vrba et al. 2010).

To systematically study DNA methylation at the genomic scale, it is necessary to iden-
tify many, ideally all, methylated sites in a genome. Various high-throughput methods 
have been invented for large-scale detection of methylation events (Suzuki and Bird 
2008; Beck and Rakyan 2008; Jones 2012; Laird 2010). These methods differ in the 
way genomic regions enriched for methylated or unmethylated DNA are identified, and 
how genomic locations of these regions or their sequences are determined. The former 
includes the use of methylation-sensitive restriction enzyme digestion (Khulan et al. 
2006; Lippman et al. 2005), immunoprecipitation (Weber et al. 2005; Weber et al. 2007; 
Zhang et al. 2006), affinity capture (Brinkman et al. 2010; Illingworth et al. 2008), and 
bisulfite conversion of unmethylated cytosines to uracils (Cokus et al. 2008; Lister et al. 
2008; Lister et al. 2009; Li et al. 2010). The identities of the collected regions are deter-
mined by microarray (Khulan et al. 2006; Lippman et al. 2005; Weber et al. 2005; Weber 
et al. 2007; Zhang et al. 2006) or sequencing (Cokus et al. 2008; Lister et al. 2008; Lister 
et al. 2009)(Brinkman et al. 2010; Illingworth et al. 2008; Li et al. 2010). These methods 
have been extensively compared in terms of their genomic coverage, resolution, cost, 
consistency and context-specific bias (Bock et al. 2010; Harris, Wang, Coarfa, Nagarajan, 
Hong, Downey, Johnson, Fouse, Delaney, Zhao, Olshen, Ballinger, Zhou, Forsberg, Gu, 
Echipare, O’Geen, Lister, Pelizzola, Xi, Epstein, Bernstein, Hawkins, Ren, Chung, Gu, 
Bock, Gnirke, Zhang, and Haussler 2010).
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Among them, bisulfite conversion method is a widely accepted, which includes 
whole-whole bisulfite sequencing (WGBS), Reduced-representative Bisulfite 
sequencing (RRBS) and Methyl450k array. RRBS is an economic base-resolution 
method using MspI to digest DNA and isolate 100-150bp fragments, which can 
include about 85% CpG island and 60% Refseq promoter. Methyl450k array sam-
ples 96% CpG islands, total 485000 CpGs, including 99% RefSeq promoter, UTR 
and first exon, gene body and shores. WGBS can get genome-wide methylation pro-
filing for all Cytosine types (CpG, CHH and CHG) with base resolution and be not  
affected by the low CpG area (Harris, Wang, Coarfa, Nagarajan, Hong, Downey, 
Johnson, Fouse, Delaney, Zhao, Olshen, Ballinger, Zhou, Forsberg, Gu, Echipare, 
O'Geen, Lister, Pelizzola, Xi, Epstein, Bernstein, Hawkins, Ren, Chung, Gu, Bock, 
Gnirke, Zhang, Haussler, et al. 2010). 

By integrating gene expression data and global DNA methylation profiles from 
these high-throughput methods, a general genome-wide negative correlation between 
promoter methylation and gene expression was observed in multiple species (Bell et 
al. 2011; Pai et al. 2011). However, substantial overlap exists in the distributions of 
promoter methylation level between genes with low versus high expression (Weber 
et al. 2007; Bell et al. 2011; Pai et al. 2011). It was also suggested that for CpG island 
promoters, DNA methylation is sufficient but not necessary for their inactivation, 
while for promoters with low CpG content, hypermethylation does not preclude 
gene expression (Weber et al. 2007). The quantitative relationship between promoter 
methylation and gene expression is thus more complicated than once assumed (Jones 
2012) and the details have not been fully worked out.

The high-throughput methods have also provided evidence that there is extensive 
DNA methylation at transcribable regions (Hellman and Chess 2007). Gene body 
methylation was observed to be positively correlated with gene expression in some 
cell types (Ball et al. 2009; Rauch et al. 2009), but not in others (Lister et al. 2009). 
It was suggested that the positive correlation could either be due to de novo methyla-
tion of internal CpG islands facilitated by transcription, in which case methylation 
was the consequence; or due to the repression of anti-sense transcripts that would 
down-regulate expression of the sense transcript, in which case methylation was the 
cause (Rauch et al. 2009). In contrast, it was also previously proposed that intragenic 
DNA methylation could reduce the efficiency of transcription elongation (Rountree 
and Selker 1997; Lorincz et al. 2004), which would result in a negative correlation 
between gene body methylation and expression. Furthermore, gene body methyla-
tion was reported to be related to the regulation of alternative promoters (Maunakea 
et al. 2010), and may play a role in RNA splicing (Choi et al. 2009). Whether these 
mechanisms co-exist and their relative importance in gene regulation remain not 
fully explored.

Most of the findings about promoter and gene body methylation described above 
were based on global trends. For instance, while promoter methylation has a gen-
eral negative correlation with gene expression, huge variance exists between both 
the promoter activities and resulting expression levels of genes with similar meth-
ylation levels (Weber et al. 2007; Bell et al. 2011; Pai et al. 2011). Until now it has 
been unclear whether it is possible to construct a quantitative model that tells the 
expression level of an individual gene from its DNA methylation pattern alone or 
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with additional information about histone modifications around its genomic region. 
Such quantitative modeling would be useful for understanding the combined effect 
of DNA methylation at different gene sub-elements, such as promoters, exons and 
introns, on gene expression. It could further help elucidate the relative roles of DNA 
methylation and other gene regulatory mechanisms in controlling gene expression, 
and estimate the degree of cooperation and redundancy between them. It could also 
provide a principal way to identify subsets of genes most affected by DNA methyla-
tion in particular cell types.

In recent studies, genomic regions hypo- or hyper-methylated in disease samples 
have been identified by applying high-throughput methods (Akalin et al. 2012; 
Irizarry et al. 2009; Ng et al. 2013; Toperoff et al. 2012). Having the ability to esti-
mate the effect of DNA methylation on the expression of a gene, quantitative model-
ing could help identify the most biologically relevant events in disease states, from 
potentially long lists of differentially methylated regions, for downstream validation 
and functional studies.

We have presented our work in quantitatively modeling the relationships between 
DNA methylation and gene expression using high-throughput sequencing data that 
cover the methylome and transcriptome of three human samples and additional cell 
lines at single-base resolution (Lou et al. 2014). We show that DNA methylation is 
highly anti-correlated with gene expression only when the methylation or expression 
level of a gene is extremely high. We demonstrate that both promoter and gene body 
methylation are indicative of gene expression level, but gene body methylation has a 
stronger effect overall. Recently, there are also some other papers tried to elucidate 
the effect of methylation in gene body region. We will review the latest update on the 
evidences for the regulation of gene body methylation. 

2. Methylation Data and global patterns
The whole-methylome bisulfite sequencing data at single-base resolution and whole 
transcriptome sequencing data are from peripheral blood mononuclear cells (PBMCs) 
of three individuals in a trio family: Father (F), Mother (M) and Daughter (D) (Lou 
et al. 2014). After data preprocessing, about 95% of the reads were uniquely mapped 
to the human reference genome.

The total number of raw reads of father, mother and daughter range from 2.6 bil-
lion to 3.0 billion. After reads mapping, there are 70~80% reads mapped to genome 
with about 35X read coverage. The methylation levels of different types vary and 
the average methylation level in CpG is the highest. Take the daughter sample for 
example:

TAble 1 Average methylation level of C, CpG, CHG and CHH (H = A, C, or T)

Pattern C CpG CHG CHH
Methylation level* 3.88 63.7 0.56 0.61

*methylation level is defined as: 100* read count that supports methylation/ total reads count
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Distribution of genome-wide methylated-C (mC) (mCpG, mCHG and mCHH) 
level in each type is species-specifi c, and form a specifi c methylation profi ling under 
certain and biological condition. In the trio family data, mCG make up near 97% of 
all methylated cytosine. The distribution of methylation level for mCG, mCHG and 
mCHH are also quite different. The majority of all CpG sites are hyper-methylated 
(60%~100%), in contrast to non-CG (CHG and CHH), the majority of which are 
hypo-methylated (Varley et al. 2013).

The global patterns of DNA methylation for the three PBMC samples are quite 
similar as described in (Varley et al. 2013). We also added the data of hESC and 
IMR90 for comparison. Overall, both the absolute number of methylated cytosines 
within CpG dinucleotides (mCG) in 10 kb sliding windows and the density of meth-
ylated cytosines with respect to the total number of CpG dinucleotides within the 
window (mCG/CG) are highly correlated among the fi ve samples (Fig. 1 for chromo-
some 1 as an example). The methylation measure mCG/CG has been commonly used 
in various methylome studies to quantify  DNA methylation level (Lister et al. 2009; 
Li et al. 2010; Ball et al. 2009). All the fi ve samples, except some regions of IMR90, 
have very similar methylation patterns with most of CpG sites highly methylated. 
However, when we look through the raw data, those regions of IMR90 may result 
from low read coverage because our analysis pipeline will automatically treat the low 
read coverage region as non-methylated.

Figure 1  DNA methylation profi les of the fi ve samples based on 10 kb sliding windows on 
chromosome 1. Abbreviations: CG: number of CpG dinucleotides in each window; mCG: number 
of methylated cytosines within CpG dinucleotides in each window; (F): Father; (M): Mother;(D): 
Daughter; (H1): hESC.
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3.  Global correlation and patterns between 
gene methylation and expression

Many studies have tried to explore the relationship between gene methylation and 
expression. In our study, we used the single-base resolution WGBS data to further 
investigate and compare the pattern for promoter and gene body methylation and 
expression. We computed the average methylation level along each gene, considering 
the gene body, upstream 2K regions and both respectively , and plotted these meth-
ylation levels against the corresponding expression levels. The resulting scatterplot 
displays different patterns for different methylation measurement. For raw methyl-
ated CpG(mCG), DNA methylation displays a very clear “L” shape, in which genes 
with very high expression levels all display very low methylation levels, and genes 
with very high methylation levels all show very low expression levels. This pattern 
suggests that for these extreme cases, there is a negative correlation between DNA 
methylation and gene expression. However, the global correlation (Pearson correla-
tion =−0.0486, Spearman correlation = 0.0709) is very weak because the majority of 
genes have both low methylation and expression level, despite significant p-value of 
the Pearson correlation due to the large number of genes involved. In contrast, the 
plot based on the normalized measure, mCG/CG, shows a more global negative cor-
relation with gene expression (Pearson correlation =−0.1293, Spearman correlation 
=−0.3705).

These observed differences led us to check whether we could find positive cor-
relations between gene body methylation and expression levels as reported in some 
previous studies (Ball et al. 2009; Rauch et al. 2009). To do that, instead of consid-
ering both upstream regions and gene bodies at the same time, we made separate 
scatterplots for upstream regions and gene bodies. For mCG, L-shaped patterns were 
observed for both upstream regions and gene bodies. We also checked exons and 
introns separately, and found no significant differences between the global patterns 
of these plots and those in which they were taken together as gene bodies.

These results indicate that the relationship between DNA methylation and gene 
expression is complex and non-linear, and also include noise and redundant informa-
tion. Yang etc. make use of a 5-aza-2deoxycytidine (5-Aza-CdR, a cytosine analog), 
which can induce the gene body demethylation and alter gene expression in cancer, to 
investigate the causal relationship between gene body methylation and gene expres-
sion (Yang et al. 2014). After 4-5 days, the DNAs are maximum demethylated and 
then rebound gradually, until fully recovery after 42 days. They defined four differ-
ent groups with distinct patterns based on the methylation pattern after the treatment 
of 5-Aza-CdR. The group with the fastest and slowest rebound of methylaition level 
after the treatment of 5-Aza-CdR was analyzed in details. The promoter methylation 
for both groups indicate a negative correlation between methylation and gene expres-
sion. However, it is more complex for gene body. The fastest rebound group has a 
large proportion of sites with significantly positive correlation with gene expression. 
However, for the lowest rebound group, both significantly positive and negative cor-
relation between gene body methylation are found.

However, we need to consider the sampling bias of Methyl450K array. Though, 
it can detect the methylation of exact CG site, it has some limitations for the probe 
design. The probe length for Methyl450K array is 50bp, which means the distance 
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from left to right closest CpG sites should equal or be greater than 50bp. We want 
to ask whether the relationship disclosed by the CpG sites on Methyl450K array can 
represent the site in its flanking regions. Zhang recently proposed a data mining 
method to predict DNA methylation (Zhang et al. 2015). They found the methylation 
can be predicted with very high accuracy, which is up to 92%. The upstream and 
downstream methylation status and distance are the most important factors. If we 
only consider the nearest up- and down-stream CpG sites, and use the methylation 
status of the two nearest CpG site to predict methylation level, we find the prediction 
accuracy decays very soon as the distance increases between these two neighboring 
sites. We also extract the left and right CpG site on Methyl450K array and draw the 
distribution of the distances (Fig. 2B). We found the peak of distribution is around 
70bp, where the corresponding accuracy prediction by neighboring CpG site is about 
0.65 (Fig. 2A). That means by 35% chance, the up- or down-stream neighboring CpG 
sites have different methylation patterns from the CpG site on Methyl450K array. 
Hence, we should carefully draw a conclusion when using methyl450K data since the 
pattern discovered by methyl450K CpG site might not able to represent the global 
CpG regulation. Moreover, there might be a chance that CpG sites from the same 
gene display opposite methylation patterns.
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Figure 2 DNA methylation association with up- and downstream neighboring CpG site. (A) 
Prediction of methylation  level based on up and down-neighboring CpG site using chromosome 1 
WGBS data from IMR90 (Lister et al. 2009). (B). Distribution of distance from up- to down-stream 
neighboring CpG site of a Methyl450K CpG site.

The global correlation between gene body methylation and gene expression can 
also be discovered by exploring the relationship between promoter and gene body 
methylation since the promoter methylation are thought to be negatively correlated 
with gene expression. When plotting the DNA methylation levels at these two regions 
for all genes, the distributions based on mCG/CG displays a two-cluster pattern  
(Fig. 3). All genes were divided into two large clusters and both clusters display very 
high level of gene body methylation, but one with very high and the other with very 
low promoter methylation. The two clusters also suggest that the co-exist of positively 
and negatively correlation between gene body methylation and gene expression.
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Figure 3 Relationship between DNA methylation at the upstream and transcribed region of 
transcripts. 

4. Statistical modeling and data mining

4.1 Quantitative modeling

To systematically study the quantitative relationships between DNA methylation 
and gene expression, especially for different subregions, we performed statistical 
modeling by means of machine learning. We want to ask the quantitative relation-
ship between methylation for different subregions and gene expression. We defined 
16 subregions that surrounding gene body (Fig. 4). The subregions are in fixed 
or variable length: the upstream and downstream was classified into 5 consecu-
tive subregions(Up5-Up1, Dw1-Dw5) with a fixed length while the gene body was 
grouped into 6 bins according to a composite gene structure: first exon , first intron, 
internal exons, internal introns, last exon, and last intron, as shown in a previous 
study (Li et al. 2010). Meanwhile, all genes were divided into four equal size classes 
according to the quantile of expression level. Using the methylation level in these 
16  bins, we try to predict the gene expression classes. 

We constructed models with all DNA methylation features from the 16 subregions 
of each gene, using the mCG/CG as methylation measure. We used the Random 
Forest method (Breiman 2001) as a proxy of how indicative of gene expression the 
methylation features are. Based on the AUC measure (area under the receiver opera-
tor characteristic curve), the accuracy of the one-class-against-all models for the four 
expression classes ranged from 0.63 to 0.82, where a random assignment of genes to 
expression classes would result in an AUC value of 0.5, indicating that the methyla-
tion features were able to partially separate genes from different expression classes. 
Among the four expression classes, the Lowest expression class had the highest accu-
racy, followed by the Highest, Medium-high and Medium-low classes. These results 
are consistent with what we observed from the scatterplots, that many genes with 
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the lowest expression levels have very high methylation patterns, which can separate 
them from genes with higher expression levels. The genes with the highest expres-
sion levels are slightly more diffi cult to identify since their signature of low methyla-
tion is also shared by many genes from other expression classes. 

Figure 4 Sub-regions defi ned for each gene. The transcribed region (body) of a gene is divided 
into 6 variable-length sub-regions according to its exons and introns, namely fi rst exon (FirstEx), 
fi rst intron (FirstIn), last exon (LastEx), last intron (LastIn), internal exons (IntnEx) and internal 
introns (IntnIn). The 2 kb upstream region is divided into 5 fi xed-length sub-regions Up1-Up5, each 
of 400 bp. Downstream sub-regions Dw1-Dw5 are defi ned analogously. In some analyses these 
sub-regions are further grouped into meta sub-regions, such as Upstream (Up1-Up5), Body (all the 
exonic and intronic sub-regions) and Downstream (Dw1-Dw5).

4.2  gene body methylation is a stronger indicator of 
expression class than  promoter methylation

We then compared the models constructed using features from either the upstream 
regions, gene bodies or downstream regions alone. Methylation levels at gene bod-
ies were more capable of telling the expression class of a gene than upstream and 
downstream regions, for all four expression classes. Combining features from all 
sub-regions gave the best modeling accuracy, which shows that the features from the 
different sub-regions are not totally redundant, and may play different roles in gene 
regulation. 

A potential confounding factor of the above analyses is that the upstream and 
downstream regions of a transcript could overlap with the body of another transcript 
(Maunakea et al. 2010). For instance, for a multi-transcript gene, DNA methylation at 
the promoter of some transcripts would be counted as  gene body methylation of the 
gene, which may confuse the statistical models. To study how much this would affect 
the results, we repeated the statistical modeling using the subset of genes with only 
one annotated transcript isoform. Comparing the resulting models based on different 
feature sets, gene bodies still showed stronger modeling power than upstream and 
downstream regions, and the best accuracy is still obtained by combining features 
from all three sub-regions.

It was previously shown that DNA methylation of the fi rst exon is linked to tran-
scriptional silencing (Brenet et al. 2011). We checked whether the higher modeling 
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accuracy of gene body feature was merely due to some strong features extended from 
the promoter to the first exon. Specifically, we considered two more sub-regions, 
namely gene bodies excluding the first exons (Genebody–FirstEx) and upstream 
regions including the first exons (Upstream+FirstEx). We observed that including 
the first exon in the upstream regions (Upstream+FirstEx) or gene bodies (Genebody) 
indeed increased the modeling accuracy as compared to having it excluded 
(Upstream and Genebody–FirstEx, respectively), thus confirming the important role 
of this sub-region in signifying expression levels (Fig. 5). On the other hand, when 
we compared upstream and gene body regions, we found that the modeling accuracy 
of Genebody–FirstEx was higher than Upstream, and that of Genebody was higher 
than Upstream+FirstEx when all annotated genes were considered. The same trends 
were also observed when only genes with one annotated transcript isoform were con-
sidered, except for a slightly higher accuracy of Upstream than Genebody–FirstEx 
when the mCG/len methylation measure was used. Altogether, our results show that 
in general, DNA methylation at gene bodies is a stronger indicator of the expression 
class than DNA methylation at promoters, and it is neither due to overlapping defini-
tions of promoters and gene bodies for multi-transcript genes, nor signals coming 
from the first exon only.
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Figure 5 Accuracy of Random Forest expression models for all annotated genes when each 
expression class has the same number of genes. The different bars compare the accuracy of the 
models constructed from different feature sets. Body-FirstEx corresponds to the set of features 
from transcribed sub-regions excluding the first exon. Upstream+FirstEx corresponds to the set of 
features from both the 2kb upstream region and the first exon.



222 Computational Biology and Bioinformatics

4.3  The quantitative relationship between gene body and promoter 
DNA methylation and gene expression are widely exist

All the results above were based on quantitative models both constructed and tested 
on the same individuals (albeit on different subsets of genes), using data from one 
single cell type (PBMC). To test if these models are generally useful for signify-
ing expression classes, we collected single-base resolution bisulfite sequencing 
and RNA-seq data for two cell lines, H1 human embryonic stem cells (hESC) and 
the human lung fibroblast line IMR90, from the Roadmap Epigenomics Project 
(Bernstein et al.). We constructed models using DNA methylation and expression 
data from one individual/cell line, and applied the models to predict the expression 
class of genes in another individual/cell line based on its DNA methylation profile 
alone. To ensure the generality of the models, the genes used for training in the first 
individual/cell line and the genes used for testing in the second individual/cell line 
were mutually exclusive.

The results show that, for all combinations of training and testing individuals/cell 
lines, the prediction accuracy was much higher than the random predictions (which 
would have an AUC value of 0.5). Models constructed from any one of the three 
individuals were able to predict the expression classes of genes in another individual 
with an average AUC of about 0.9, which is expected as these samples all contained 
PBMC from individuals in the same family. More interestingly, the other data set 
combinations also have prediction accuracy of about 0.75 on average, which demon-
strate the generality of the constructed models. These cross-sample results reconfirm 
our earlier findings that the more extreme expression classes are better indicated by 
methylation patterns.

5. Gene body methylation and splicing
Our results offer several possible explanations for the apparent discrepancies among 
previous studies examining the relationships between gene body methylation and 
gene expression, that in some studies they were observed to be positively correlated 
(Lorincz et al. 2004; Maunakea et al. 2010) and in others, negatively correlated (Ball 
et al. 2009; Rauch et al. 2009; Cokus et al. 2008; Flanagan and Wild 2007). 

Maayan and Gil found that the exon-intron GC content will affect exon selec-
tion in exon-skipping alternative splicing (Amit et al. 2012). They firstly defined 
two distinct GC content group between exons and flanking introns: differential GC 
and leveled GC group. The higher differential exon-intron GC content (differential 
GC group) will lead to more chance for exon exclusion. By flanking intron replace-
ment, they proved the elevation of GC content in flanking intron, which decreased 
the exon-intron differential GC content, can increase the level of exon inclusion. The 
two groups have different nucleosome occupancy, because of the GC content are 
high correlated with occupancy. However, when comparing the methylation level 
of exon-intron differences, the two groups display specific trends: exons are higher 
methylated than flanking introns in both groups, the differential GC group has over-
all higher methylation level than leveled group, the increased level from flanking 
intron to exon is not as large as those in leveled group. The differential methylation 
pattern also happened on constitutive exons. It is not the absolute methylation level 
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but relative changes can distinguish the consititutive exons from alternative ones. 
As to how alternative exons are defined for the leveled GC group, they proposed a 
mechanism that is an interlace interaction between Pol II stalling and nucleosome 
occupancy. However, in their study, they thought the GC content is the determinant 
of gene architecture, and DNA methylation affect splicing/alternative splicing in a 
dependent manner (Gelfman et al. 2013).

Many studies also discovered the co-transcriptional regulation by epigenetics fac-
tors, especially for DNA methylation. Two models were proposed: transcriptional 
blockage model and splicing factor co-recruitment model. In the former model, 
MeCP2 and CTCF, work as methylation-dependent factor to slow down the elonga-
tion of RNA Pol II (Maunakea et al. 2013). In the latter model, HP1 was found to 
be as a most supportive proof that directly regulates splicing by recruting the co-
bounded splicing factor. They firstly found over 20% alternative exons are affected 
by the missing of DNA methylation, which act as either enhancer or repressor. Using 
targeted methylation of a single gene, they found the direct causal relationship that 
methylation can affect the inclusion level of alternative exon (Yearim et al. 2015).

Though it seems that the conclusions made by Gelfman and Yearim are contradic-
tory, we notice that they defined their own gene group and can explain successfully 
for a certain group of genes. It is not surprising that both methylation dependent and 
independent regulatory will co-exist. 

6. Discussion
Previous studies have examined high-level qualitative relationships between DNA 
methylation and gene expression. In this work, we have demonstrated that DNA 
methylation status alone can indicate the expression class of a gene with fairly high 
accuracy. The generality of our models has been confirmed by their cross-sample/
cell line modeling capability. Our models provide a means to analyze the detailed 
quantitative relationships between DNA methylation and expression, with systematic 
assessments of the level of expression variations explainable by DNA methylation.

We showed that two groups of genes have particularly clear methylation profiles 
in our data, namely genes that lie on both ends of the spectrum – those with very 
high methylation and very low expression levels, and those with very high expres-
sion and very low methylation levels. If we apply a simple classification of genes 
into those with high or low expression and DNA methylation levels, among the four 
possible combinations, the one with both high expression and high DNA methylation 
is almost devoid of genes when three out of the four DNA methylation quantification 
measures were used. Our results indicate that on the one hand, strong DNA methyla-
tion is sufficient to indicate low expression of a gene, but on the other hand, while low 
DNA methylation is permissive of transcription, the actual expression level of a gene 
is largely determined by other factors.

A key finding of this study is that gene body methylation is a stronger indicator of 
expression class than promoter methylation for genes in all expression classes. Our 
results are consistent with the strong effects of gene body methylation on expres-
sion previously observed in plants (Hohn et al. 1996; Li et al. 2008). We provided 
evidence that the stronger modeling power of gene body methylation could not be 
explained by the effects of first exons alone or biases caused by the presence of 
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multiple transcript isoforms in a single gene, nor was it affected by the quantification 
measure of DNA methylation levels. We also found that combining both promoter 
and gene body DNA methylation features resulted in a better modeling accuracy 
of gene expression classes. However, the correlation between gene body methyla-
tion and expression is complex, may either positive or negative correlate with gene 
expression. That’s may also be the reason that there are no clear global trend can be 
observed using simple scatterplot, because of the mixer of two different directional 
effect. Studies also indicate the GC content define the gene structure, especially for 
exon and intron structures based on the gene architecture evolution. Though, stud-
ies don’t come to an agreement that gene body methylation has dependent or inde-
pendant effect on alternative splicing, All agree that methylation indeed plays an 
important role and effect a significant proportion of alternative exons. Our statistical 
modeling rely on a composite gene structure, and cannot be aware of splicing events. 
We need also recognize that the calculation of gene expression level is a challenging, 
especially when considering splicing and alternative splicing. The exclusion/inclu-
sion level of alternative exons cannot be reflected from the expression level, this will 
limit the prediction power of our model. 

Further studies will be needed to elucidate how promoter and gene body meth-
ylation of different transcripts of a gene are coordinated. Signals that cover a broad 
area, such as DNA methylation over whole transcript bodies, have a high chance of 
interfering with other transcripts. The coordination would be simple if promoter and 
gene body methylation both take on a repressive role, and different transcript iso-
forms of a gene co-express in a synchronized manner. In that case, DNA methylation 
would be mainly responsible for marking genes with all transcripts repressed. The 
co-expression of transcript isoforms was indeed observed in large-scale sequencing 
data from human cells (Djebali et al. 2012), although it is still unclear whether the 
different isoforms expressed simultaneously in the same cell, or actually different 
subsets of them were expressed in different subpopulations of the cells from which 
RNA was extracted and sequenced. Alternatively, intragenic DNA methylation that 
intersects promoters of some transcripts may be involved in regulating the use of 
alternative promoters (Maunakea et al. 2010). Whether other, more complex types of 
coordination exist is yet to be studied.

7. Methods

7.1 Sample collection

We collected DNA methylation and gene expression data from a family trio from our 
previous study (Lee HM et al., Discovery of type 2 diabetes genes using a multiomic 
analysis in a family trio, submitted). In the following section, we briefly describe 
sample collection, data generation and data processing. Blood samples were obtained 
from a Chinese family trio consisting of a father, a mother and a daughter, which we 
denote as F, M and D, respectively. Peripheral blood mononuclear cells (PBMCs) were 
isolated using Ficoll-Paque stepwise gradient centrifugation. The isolated PBMCs 
were divided for DNA and RNA extraction. Total DNA was prepared using pro-
teinase K digestion and phenol extraction. Total RNA was extracted by Trizol (Life 
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Technologies, Carlsbad, CA, USA) following the manufacturer’s protocol. The qual-
ity of the RNA samples was checked by Bioanalyzer (Agilent Technologies, Palo 
Alto, CA, USA) before they were subjected to sequencing.

7.2 Methylome sequencing and data processing

Bisulfite sequencing and data processing were carried out as described previously 
(Li et al. 2010). DNA was fragmented by sonication to 100 to 500 bp in size, fol-
lowed by end-blunting, dA addition at the 3’end and ligation of adapters. The adapter 
sequence contained multiple methyl-cytosines(mC) to allow monitoring of the effi-
ciency of the bisulfite conversion. Unmethylated cytosines were converted to uracils 
by bisulfite treatment using a modified protocol from Hayatsu (Hayatsu, Shiraishi, 
and Negishi 2008). DNA fragments in the size range of 320 to 380 bp were gel-puri-
fied for sequencing. All procedures were performed according to the manufacturer’s 
instructions. Converted DNA was subjected to 50 bp paired-end sequencing using 
an Illumina Solexa GA sequencer (Illumina, San Diego, CA, USA). All the raw data 
were processed by the Illumina Pipeline v1.3.1 (Illumina, San Diego, CA, USA).

The cleaned reads generated were aligned to the reference human genome hg18 as 
follows. Since DNA methylation is strand-specific, the two strands of the reference 
human genome were modified separately in silico to convert all C’s to T’s, to gener-
ate a combined 6 Gbp target genome for aligning reads after bisulfite conversion. 
Correspondingly, the sequencing reads were also transformed using the following 
criteria: (1) observed C’s in the forward reads were replaced by T’s; and (2) observed 
G’s in the reverse reads were converted to A’s. The transformed reads were then 
aligned to the modified target genome using the SOAP2 aligner (Li et al. 2009). All 
the reads mapped to unique locations with minimum mismatches and clear strand 
information were defined as uniquely matched reads, and were used to determine 
the methylated Cytosines. According to the alignment results, the unconverted C’s 
and G’s from the original read sequences before the transformation were used to 
identify the methylated Cytosines. Bases with low quality scores were filtered to 
ensure accuracy of the results. The methylated Cytosines were defined as those hav-
ing a significant number of reads supporting its methylated status, with less than 1% 
FDR according to a binomial distribution, as suggested previously (Li et al. 2010). 
All the Cytosine positions were then lifted over to the reference human genome hg19 
by the LiftOver utility provided by the UCSC Genome Browser (Kent et al. 2002) for 
downstream analyses.

7.3 Transcriptome sequencing and data processing

Total RNA extracted from each sample was enriched by oligo-dT to get the polyA+ 
fraction for sequencing. The polyA+ mRNAs were then fragmented and converted 
to cDNA by reverse transcription. After ligation of the 5’ and 3’ sequencing adap-
tors to the cDNA, DNA fragments were size-selected for 75 bp paired-end sequenc-
ing by Illumina Genome Analyzer II using standard procedures. All the raw data 
were processed by the Illumina Pipeline v1.3.1. All sequencing reads were trimmed 
dynamically according to the algorithm provided by the -q option of the BWA tool 
(Li and Durbin 2009). After trimming, read pairs with both sides having at least 35 
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bp were retained and mapped to the human reference genome hg19 using TopHat 
(Trapnell, Pachter, and Salzberg 2009) (v.1.1.4) with the following parameters: micro-
exon-search, butterfly-search and -r 20. The expression value of a gene was com-
puted by the RPKM (reads per kilobase of exons per million mapped reads) measure 
(Mortazavi et al. 2008), defined as the number of reads that cover it (in million reads) 
normalized by its length (in kilobase) and the total number of reads in the data set.

Definition of the four DNA methylation quantification measures
We used two methylation measures based on methylated CpG sites. The first mea-

sure is the absolute number of methylated CpG sites in a region, denoted as mCG. 
The second measure is the density of methylated CpG sites relative to the total num-
ber of CpG sites in a region, denoted as mCG/CG. 

Visualizing global DNA methylation patterns and computing local correlations 
between two individuals

We constructed global DNA methylation profiles of the three individuals as fol-
lows. We first divided up the human genome into 10 kb windows. In each window, 
we computed the DNA methylation level based on one of the four quantification 
measures. We then visualized the resulting global patterns using IGV (Robinson 
et al. 2011) and Circos (Krzywinski et al. 2009). To compute local correlations of 
DNA methylation profiles between two individuals, we divided up the genome into 
fixed-length windows (of size 10 kb, 50 kb, 100 kb or 250 kb), and computed the 
DNA methylation level in each window. For every 15 consecutive windows, we then 
computed the Pearson correlation between two individuals (F vs. M, F vs. D or M vs. 
D). The resulting distributions of correlation values were visualized using Box and 
Whisker plots.

7.4 Definition of gene sub-regions

For analyses involving genes, we considered the level 1 and level 2 protein-coding 
genes annotated in Gencode v7 (Harrow et al. 2012), based on composite gene mod-
els. We defined the body of a gene as the first transcription start site of its anno-
tated transcripts to the last transcription termination site of its annotated transcripts. 
Within the gene body, we defined any region annotated as an exon in any of the 
associated transcripts as an exon of the gene. We then defined subregions of a gene 
as shown in Fig. 3 and explained in the Results and discussion section. We discarded 
genes with less than 4 exonic regions after merging overlapping exons from different 
transcripts, resulting in a set of 17,845 genes.

7.5 Definition of expression classes

By default we defined gene expression classes as follows. We first combined the 
genes from the three individuals into a set of 53,535 (17,845 ×3) genes. Each of them 
was then assigned to one of four expression classes, namely the “Highest”, “Medium-
high”, “Medium-low” and “Lowest” classes, which contained genes with expression 
levels within the first, second, third and fourth quartiles on the list of expression 
values sorted in descending order. The Lowest expression class could contain genes 
with zero RPKM values Statistical modeling

We used 11 different methods to construct statistical models, including 5-Nearest 
Neighbors, 10-Nearest Neighbors, 20-Nearest Neighbors, Naive Bayes, Bayesian 
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Network, Decision Trees (C4.5), Random Forests, Logistic Regression, Support 
Vector Machine (SVM) with linear kernel, SVM with second-degree polynomial 
kernel, and SVM with Radial Basis Function (RBF) kernel. We used the implementa-
tion of all these methods in Weka (Hall et al. 2009). We constructed statistical models 
using these methods with features derived from DNA methylation and/or histone 
modification levels of the different genic sub-regions. We first constructed models 
for the three individuals using their combined data. We randomly sampled 1/3 of the 
genes as a left-out testing set. The remaining 2/3 of the genes were used to perform 
model training. The constructed model was then applied to the left-out set to com-
pute the accuracy. For each setting, we repeated the process five times to compute an 
average accuracy of the five models.

We also tested the generality of our models by constructing models using the DNA 
methylation and gene expression data of a random set of 2/3 of the genes from one 
single individual/cell line for training, and applying the model to predict the expres-
sion levels of the remaining 1/3 of the genes in another individual/cell line based on 
the DNA methylation levels in this individual/cell line.

7.5 Collection and processing of cell line data

We downloaded data human embryonic stem cells and human lung fibroblast 
line IMR90 produced by Roadmap Epigenomics (Bernstein et al.) from the Gene 
Expression Omnibus (GEO) (Edgar, Domrchev, and Lash 2002) web site. The RPKM 
measure was used to compute the level of histone modification in each given region. 
For data sets with replicates, we used the mean values of the replicates for computing 
the histone modification signals.

7.6 Data availability

All raw sequencing reads have been deposited into NCBI Sequence Read Archive 
under entry SRP033491. All the processed data files used in this study can be found 
at http://yiplab.cse.cuhk.edu.hk/means/ website.
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Abstract
As a major type of lung cancer, non-small-cell lung cancer (NSCLC) is the leading 
cause of cancer deaths worldwide. Gene mutations affecting the catalytic activity 
of epidermal growth factor receptor (EGFR) normally promote NSCLC. In clinical 
treatments of NSCLC, tyrosine kinase inhibitors (TKIs) are broadly used to target 
the kinase domain of mutated EGFR. Although these drugs are effective initially, 
drug resistance rapidly emerges. Studies on the resistance mechanism can be guided 
by the dissection of EGFR signaling network, and computational approaches play a 
significant role. One general research focus is calculating the binding affinity of an 
EGFR mutant and a TKI, which can be characterized by the free energy of bind-
ing, interfacial hydrogen bonds, and shape complementation of interfaces. Another 
important research direction is investigating the modified molecular interactions in 
the EGFR downstream signaling pathways, and EGFR dimerization is a valuable 
segment. Specifically in our studies, techniques such as molecular dynamics (MD) 
simulations, three-dimensional molecular modeling and structural analysis, were 
applied. Binding affinities between each EGFR mutant and a partner were evaluated 
based on these techniques. Recently, dually-targeted TKIs (target dual receptors) and 
second-generation TKIs (covalently bound to the mutated EGFR kinase) are pro-
posed, to combat drug resistance in clinical treatments of NSCLC. However, the risk 
of underlying drug resistance still exists. To decode these new mechanisms, compu-
tational modeling remains indispensable. Overall, these studies can encourage the 
development of new-generation and more sophisticated drugs, and further help the 
design of specialized therapies in NSCLC treatments.
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1. Introduction
The epidermal growth factor receptor (EGFR) family, also termed ErbB family, is 
a group of receptor tyrosine kinases that fundamentally regulate epithelial tissue 
development and cancer progression(Marchetti et al. 2005; Haley 2008; Solca et al. 
2012). Human EGFR family is composed of EGFR (Her1, ErbB-1), ErbB-2 (Her2), 
ErbB-3 (Her3) and ErbB-4 (Her4), all sharing a large structural homology (Haley 
2008; Solca et al. 2012). Such a receptor comprises an extracellular domain that nor-
mally binds growth-factor ligands, a transmembrane domain, and an intracellular 
catalytic domain that activates downstream signaling through receptor dimerization 
(Yarden 2001; Haley 2008; Schlessinger 2002). Aside from the significant conserva-
tion among the EGFR-family receptors at the genetic or structural level, a functional 
diversity exists. EGFR and ErbB-4 both have intact intracellular tyrosine kinase 
(TK) domain, and are capable of binding ligands through their extracellular domains 
(Citri and Yarden 2006; Hynes and Lane 2005; Yarden and Sliwkowski 2001). ErbB-2 
has an extracellular domain that is permanently in an active conformation, imply-
ing a lack of capability to bind ligands, while it possesses a powerful TK domain 
(Kallioniemi et al. 1992; Hynes and Lane 2005; Solca et al. 2012). Oppositely, ErbB-3 
has an impaired TK domain, but can perfectly bind ligands (Haley 2008; Guy et al. 
1994). In this regard, ErbB-2 and ErbB-3 mostly behave as a cooperator in receptor 
activation and signaling mediation. 

A number of ligands, represented by epidermal growth factor (EGF) and neuro-
regulins (NRGs), can induce EGFR-family dimerization, upon which the catalytic 
capability of TK domains will be triggered (Haley 2008; Hynes and Lane 2005; 
Olayioye et al. 2000; Carraway et al. 1997). Specifically for EGFR, EGF, TGF-a and 
amphiregulin play a central role in the receptor-ligand interaction (Hynes and Lane 
2005; Olayioye et al. 2000). Meanwhile, ErbB-2 has been considered as the preferred 
dimerization partner for other family members (GrausPorta et al. 1997; Solca et al. 
2012). Receptor homo- or hetero-dimerization first results in the formation of an 
asymmetrical dimer, in a tail-to-head manner, of the partnered TK domains (Zhang 
et al. 2006; Haley 2008). This formation further activates the receptor catalytic capa-
bility and leads to a transphosphorylation of specific tyrosine residues within the 
participated TK domains (Zhang et al. 2006; Solca et al. 2012). Subsequently, adap-
tor proteins will be recruited by such phosphorylated domains, switching on vari-
ous signaling pathways, such as the Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways 
(Yarden 2001; Haley 2008; Solca et al. 2012). Overall, this signal transduction mech-
anism, profiled in Fig. 1, drives normal cell proliferation and differentiation, and 
thus aberrant signaling greatly influences the progression of multiple cancer types 
(Yarden 2001; Marchetti et al. 2005; Haley 2008; Kallioniemi et al. 1992).

In recent decades, activating mutations in the TK domain of the EGFR gene have 
been identified in several types of tumors (Santos, Shepherd, and Tsao 2011; Haley 
2008; Solca et al. 2012). Non-small-cell lung cancer(NSCLC), a subtype of lung can-
cer, is the best-acknowledged one (Yasuda, Kobayashi, and Costa 2012; Marchetti et 
al. 2005; Wang, Zhou, et al. 2013). Most of the EGFR gene mutations that are con-
nected with NSCLC are located in exons 18 to 21 (Yasuda, Kobayashi, and Costa 
2012). 
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Figure 1 Working mechanism of EGFR signaling. (A) Binding between EGFR-family receptors 
and their ligands. (B) Formation of EGFR-family dimers (with an asymmetric mechanism in the 
TK domain) and the transphosphorylation. (C) Recruitment of adaptor proteins to switch on the 
downstream signaling pathways.

Among these gene mutations, the most frequently-occurred ones are termed clas-
sic activation mutations, including in-frame deletions of exon 19 (45%~50% of all) 
and point mutations in exon 21 (40%~45% of all) (Shigematsu et al. 2005; Sequist et 
al. 2007; Tokumo et al. 2005). Commonly, an EGFR gene mutation is translated to 
the protein sequence level, using the corresponding modifications in the wild-type 
(WT) EGFR sequence (Ma 2014; Ma et al. 2015; Wang, Zhou, et al. 2013). The nota-
tion principles of such mutations or mutants are as follows.

• Residue substitution can be denoted as XIY, where X mutates into Y at posi-
tion I. The well-known mutation at exon 21, L858R, is a representative.

• Deletion of residues X (at position I) to Y (at position II) is notated as delXI_
YII. As an example, delE746_A750 describes one deletion of exon 19 muta-
tion that corresponds to the deletion of Glu at position 746 to Ala at position 
750.
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• Duplication of residues X (at position I) to Y (at position II) is represented 
by dulXI_YII. For example, dulS768_D770 denotes the duplication of Ser 
at position 768 to Asp at position 770.

• Insertion of residue X or residue list k into position I can be notated as 
IinsX or Iinsk. Specifically, 747insSK represents inserting Ser and Lys into 
position 747. 

• Modification of residues X (at position I) to Y (at position II) is defined by 
a combination of deletion and insertion as delXI_YIIinsk, where k is the 
above-mentioned residue list. Here delL747_A755insSKG is an instance.

• A double-point substitution of X with Y at residue site I and A with B at 
residue site II is named by combining the two single-point substitutions as 
XIY_AIIB, such as T854A_L858R.

In particular, these EGFR mutation-positive NSCLCs constitute a novel subgroup, 
which can cause aberrant EGFR signaling and thus be regarded as one of the best-
described oncogenic mechanisms (Yasuda, Kobayashi, and Costa 2012; Solca et al. 
2012). Increasing studies of EGFR family and its role in cancer progression have pro-
moted the development of a number of ErbB-targeted therapeutic agents (Ma 2014; 
Ma et al. 2015; Paez et al. 2004; Haley 2008; Sordella et al. 2004; Wang, Zhou, et al. 
2013; Solca et al. 2012). Among them, reversible tyrosine kinase inhibitors (TKIs), 
such as gefitinib (IRESSATM) and erlotinib (TARCEVA®), are one type of broadly-
used agents that target the EGFR TK domain and block its kinase activity (Fig. 2A) 
(Ma 2014; Ma et al. 2015; Wang, Zhou, et al. 2013). Specifically, in gefitinib and 
erlotinib, their essential pharmacophore is a quinazoline ring, accounting for the 
major reaction with EGFR (Wang et al. 2015). Such TKIs were clinically verified to 
be especially efficient to the EGFR mutation-positive NSCLCs at early treatments 
(Paez et al. 2004; Sordella et al. 2004). However, an acquired resistance to them was 
frequently developed (Oxnard et al. 2011; Kobayashi et al. 2005; Yun et al. 2008). 
The resistance is normally correlated to the gatekeeper mutation T790M, resulting a 
lower binding affinity between the EGFR mutant and a TKI(Ma 2014; Ma et al. 2015; 
Wang, Zhou, et al. 2013; Yun et al. 2008). To overcome this drug-resistance problem, 
new strategies, such as dually-targeted strategies (Fig. 2B) (van der Veeken et al. 
2009; Dienstmann et al. 2012; Wang, Yuan, et al. 2013; Tsang 2011) and irreversible 
TKIs (Fig. 2C) (Yang et al. 2012; de Antonellis 2014; Yap et al. 2010), have been 
proposed. Dually-targeted TKIs or antibodies aim to correct the EGFR mutation-
induced aberrant signaling, through targeting the dimer formed by an EGFR-family 
member and it potential partner (van der Veeken et al. 2009; Haley 2008; Wang, Yuan, 
et al. 2013; Solca et al. 2012). This potential partner can be an EGFR-family protein, 
or other receptors importantly influencing cancer progression, such as IGF-1R and 
c-Met (Jo et al. 2000; van der Veeken et al. 2009; Morgillo et al. 2006; Wang, Yuan, 
et al. 2013). As another strategy, new-generation TKIs irreversibly bind to an EGFR 
TK domain, trying to permanently block the aberrant signaling in tumors (Yang 
et al. 2012; de Antonellis 2014; Yap et al. 2010). Overall, these therapeutic strate-
gies are essentially correlated to the molecular binding affinities or interactions, in a 
receptor-inhibitor or receptor-receptor way (Ma 2014; Ma et al. 2015; Wang, Zhou, et 
al. 2013). Therefore, an efficient characterization of such molecular interactions can 
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provide a deeper insight into the drug resistance mechanism, and further optimize 
the drug application in NSCLC treatment.

With the rapid development of computer techniques, modeling (Xiang, Soto, and 
Honig 2002; Xiang and Honig 2001; Leaver-Fay et al. 2011) and simulations (Case 
2012) have become an indispensable alternative for investigating drug resistance 
(Cohen et al. 2010; Loo, Wu, and Altschuler 2007; Sneddon and Emonet 2012) and 
predicting the resistance level (Cao et al. 2005; Hou et al. 2009; Draghici and Potter 
2003; Hao, Yang, and Zhan 2012; Zhou et al. 2013), in cancer research and drug 
discovery. These studies can be categorized into sequence-based or structure-based 
approaches, normally utilizing sequential or structural information of molecules 
(Sneddon and Emonet 2012; Hou et al. 2009; Draghici and Potter 2003). Particularly, 
structure-based methods have gained more attention and respect in recent years, 
for decoding proteins, nucleic acids,and complex assemblies from a molecular per-
spective. The protein data bank (PDB) (Berman, Westbrook, et al. 2000) is a main 
resource for such structure-based studies. It collects and stores three-dimensional 
(3D) structural information, such as atom/bond types and atomic positions, of bio-
logical macromolecules, which facilitates studies in molecular biology, structural 
biology, computational biology, and beyond (Berman, Westbrook, et al. 2000; 
Berman, Bhat, et al. 2000; Berman 2008). The derivation of such structural informa-
tion benefits a lot from the techniques of X-ray crystallography (Smyth and Martin 
2000) and nuclear magnetic resonance (NMR) spectroscopy (Harris 1986). 

Figure 2 TKIs of EGFR-family receptors. (A) A reversible TKI that targets the EGFR TK 
domain. (B) A dually-targeted TKI that blocks both EGFR and ErbB2 TK domains. (C) An irrevers-
ible TKI that covalently binds to the TK domain of EGFR.
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Depending on data from PDB, molecular modeling, structural analysis, and molec-
ular dynamics (MD) simulations are widely applied in above-mentioned research 
areas (Case 2012; Xiang, Soto, and Honig 2002; Xiang and Honig 2001; Leaver-Fay 
et al. 2011). Specifically for MD simulations, AMBER is a widely used and efficient 
tool (Case 2012). It includes a set of molecular mechanical force fields, which refer 
to the functional form and parameter sets used to calculate the potential energy of a 
system, for biomolecular simulations, and a suite of molecular simulation programs 
(Case 2012; Ma et al. 2015; Wang, Zhou, et al. 2013). In our studies, MD simulations 
were primarily applied to decode the receptor-inhibitor interactions for a variety of 
EGFR TK mutants and their inhibitors (Ma et al. 2015; Wang, Zhou, et al. 2013), 
which was later extended to the investigation of receptor-receptor interactions for 
those mutants and their potential partners. On top of that, local surface geometric 
properties of the mutants were extracted based on their 3D shapes and molecular 
topologies, to investigate their interactions with inhibitors from another point of 
view (Ma 2014). For the structural modeling of each mutant, the 3D alpha shape 
modeling (Ohbuchi and Takei 2003; Edelsbrunner 1994, 1992) is a favorable choice, 
since it has been considered as a strong shape modeling and surface reconstruction 
tool in molecular studies (Ma 2014; Zhou and Yan 2010, 2010). Extracted by this 
modeling technique, the local surface geometric properties of the examined mutants 
can successfully reveal important patterns of the mutant-inhibitor interactions (Ma 
2014). At last, new-generation irreversible TKIs, represented by afatinib (Yang et 
al. 2012; de Antonellis 2014; Yap et al. 2010; Solca et al. 2012), for the EGFR-family 
were discussed. Overall, above structural studies and analyses can provide a better 
understanding of the molecular mechanism of drug resistance in the treatment of 
NSCLC or other tumors, which can greatly promote the improvement of personal-
ized therapy design and innovative drug discovery.

2.  Computational Modeling of Interaction between 
an EGFR Tyrosine Kinase and an Inhibitor

2.1  Mutant-inhibitor Binding Affinity revealed by MD Simulations

Binding affinity between a receptor and its inhibitor, which is an important indicator 
of drug resistance or efficacy level, can be estimated by their binding free energy in a 
solvent environment (Ma et al. 2015; Wang, Zhou, et al. 2013). The AMBER software 
suite is a powerful tool for binding free energy calculation of such a receptor-inhib-
itor system (Case 2012). Specifically, the Molecular Mechanics/Poisson Boltzmann 
(Generalized Born) Surface Area (MM/PB(GB)SA) is the main module in AMBER 
that performs this energy calculation. Inspired by the thermodynamic cycle theory, 
the binding free energy calculation can be decomposed into the calculations of several 
free energy differences, which corresponds to either the difference between different 
states of a molecule in an environment or that between different environments for the 
same molecule. Coupled with the free energy in vacuum for the bound and unbound 
states of a receptor-inhibitor complex, the solvation free energies of the complex and 
separate molecules are primary components of the binding free energy. MM/PB(GB)
SA solves the PB or GB model to capture these free energy differences based on the 
dynamics of involved molecules, leading to the derivation of several binding free 
energy components of Van der Waals Force (VDW), electrostatic interaction (EEL), 
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polar (EPB or EGB) and nonpolar (ENPOLAR or ESURF) contributions of the sol-
vation free energy.

In order to perform MM/PB(GB)SA on a receptor-inhibitor system, the dynamics of 
this system should be simulated in advance. Meanwhile, for a system comprising an 
EGFR TK mutant and an inhibitor, the 3D structure of the mutant must be modeled 
first, after which the mutant-inhibitor complex can be formed and its MD simulations 
can be implemented. In our studies, the structure of a mutant was obtained mainly 
based on homology modeling, utilizing the sequential information of the mutant and 
a prepared 3D structural template. Intuitively, the WT EGFR TK protein or mutant 
L858R, in PDB:2ITY or PDB:2ITZ downloaded from PDB, was regarded as this 
structural template. A number of structural modeling tools, namely Scap (Xiang 
and Honig 2001), Loopy (Xiang, Soto, and Honig 2002), and Rosetta (Leaver-Fay 
et al. 2011), were adopted for structural determination of various EGFR mutants. 
Simply, these tools first align the mutant sequence to the template sequence, and 
then computationally predict the mutation site based on spatial or energy constraints. 
Scap or Rosetta deals with residue substitution, besides, Loopy or Rosetta handles 
residue deletion or insertion. Scap provides multiple side-chain rotamer libraries for 
side-chain packing, and complies with principles such as steric feasibility and energy 
minimization in the rotamer selection (Xiang and Honig 2001). Similarly, Loopy or 
Rosetta predicts loops at the mutated neighborhood, based on a series of constraints 
for structure selection (Xiang, Soto, and Honig 2002; Leaver-Fay et al. 2011). Once 
a mutant structure is modeled, an AMBER minimization step can be implemented to 
optimize its topology and atomic positions. Specifically, a 5000-step minimization 
was carried out, with the first half of steepest descent steps, for the modeled mutant 
(Wang, Zhou, et al. 2013). To concentrate on the mutation site, the quantum mechan-
ics/molecular mechanics (QM/MM) mechanism was used in the minimization, with 
the mutation site labeled as a QM region. A refined mutant structure was then aligned 
to an EGFR TK-inhibitor complex, PDB:2ITY for gefitinib and PDB:1M17 for erlo-
tinib, to form the complex with an inhibitor. This process is roughly profiled in Fig. 3.

Next, MD simulations of the formed mutant-inhibitor system can be performed. At 
an early stage, a solvent environment, where the dynamics of the molecules are simu-
lated, should be generated. A simple truncated octahedron water box (TIP3P model) 
was adopted, with a 10-angstrom (Å) buffer around the solute in each direction. For 
AMBER settings, the broadly-used ff99SB and gaff force fields were selected to deal 
with proteins and small ligands, respectively. The tleap program in AMBER prepro-
cesses the solvated mutant-inhibitor complex prior to MD simulations, and based on 
the tleap products, the sander program can accomplish those simulations. A series of 
equilibration steps were first carried out before the key MD simulation, to guarantee 
its reliability. These steps are listed as follows:

• A short 1000-step minimization to remove bad contacts, with half of steep-
est descent steps and half of conjugate gradient steps.

• A heating phase of 50 picoseconds (ps) from 0 to 300 K, with a weak con-
straint on the complex. Here the SHAKE setting and Langevin temperature 
control are adopted, and the time step is 2 femtosecond (fs).
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• A 50-ps density equilibration (time step of 2 fs), with the SHAKE setting 
and a weak constraint on the complex.

• A constant-pressure equilibration at 300 K, with the time step of 2 fs.

Figure 3 Formation of a complex comprising an EGFR TK mutant and an inhibitor. (A) Sequence 
alignment. (B) 3D structural modeling (Scap, Loopy or Rosetta) of a mutant based on a template 
structure. (C) AMBER minimization (QM/MM) on the modeled mutant structure for a structural 
optimization. (D) Alignment of the optimized structure to a receptor-inhibitor template to form its 
complex with a specific inhibitor.
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The equilibration of a system can be verified by the stable backbone root-mean-
square derivation (RMSD) curve of the solute. Relying on the equilibrated system, 
the key MD simulation can be implemented. We generated a simulation of 2 nano-
seconds (ns) for the mutant-inhibitor system, and similarly verified the stable RMSD 
curve. Snapshots of the dynamics, also termed the trajectory, of the solvated system 
can be collected at a pre-defined time interval, and 200 frames were sampled in our 
simulations.

The resulted molecular trajectories are treated as the inputs of MM/PB(GB)SA in 
AMBER, leading to the calculation of the binding free energy and its components 
for the solvated protein-ligand system. Such binding free energies or energy compo-
nents can be efficiently used to characterize the interaction between the participated 
mutant and inhibitor, and thus applied to the prediction or studies of inhibitor effi-
cacy or resistance level. This characterization has been tested on a clinical patient 
dataset (Wang, Zhou, et al. 2013). This dataset was collected from the Queen Mary 
Hospital in Hong Kong, containing 168 NSCLC patients at stage IIIB or IV. They 
corresponded to 37 EGFR TK mutation types, and adotped a TKI-treatment of either 
gefitinib (137 patients) or erlotinib (31 patients). Screening of EGFR mutations were 
implemented based on formalin-fixed paraffin-embedded (PPFE) tumor biopsy sam-
ples of those patients. Such tumor samples assisted in the direct sequencing of EGFR 
TK domains, and the comparison between these mutated proteins and the normal 
EGFR led to the derivation of EGFR TK mutation types for the patients. Further, for 
each patient, the response levels (RL) to the TKIs were accordingly recorded as a 
study endpoint, and were categorized into four groups (RL = 1, 2, 3, 4). Combining 
the extracted mutant-inhibitor interaction features and specific patient personal fea-
tures, classification strategies were applied to map these features to the resistance lev-
els, resulting in high prediction accuracy. Commonly-used classification algorithms 
include support vector machines (SVMs), extreme learning machines (ELMs), deci-
sion trees, and complex neural networks. As a summary, the characterization of a 
mutant-inhibitor interaction pattern and its application to the drug resistance predic-
tion can be briefly outlined in Fig. 4.

As a supplementary study, we gathered the patient data from a number of litera-
tures (Gu et al. 2007; Wang, Zhou, et al. 2013; Yun et al. 2007), resulting in a thor-
ough collection of 942 NSCLC patients with 112 EGFR TK mutation types. All the 
corresponding mutants were computationally determined using Rosetta, and their 
binding free energies (or energy components) with two inhibitors (gefitinib and 
erlotinib) were derived based on AMBER(Ma et al. 2015). Such mutant structural 
candidates and the binding free energies constitute an EGFR TK Mutant Structural 
Database (Ma et al. 2015), which can be a valuable resource for NSCLC studies and 
new drug/therapy design.

2.2  Hydrogen Bonding Analysis of Mutant-inhibitor Complexes

Besides the preceding binding free energy studies of EGFR TK mutant-inhibitor 
complexes, a simpler mechanism for investigating mutant-inhibitor interaction is the 
hydrogen bonding analysis of each complex. It is well acknowledged that hydro-
gen bonding plays an essential role in protein-ligand interaction (Zhou et al. 2013). 
Specifically for antibody-antigen and protease-inhibitor systems, hydrogen bonds 
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control their binding specificities and stabilizations in a solvent environment (Babine 
and Bender 1997; Meyer, Wilson, and Schomburg 1996). In this regard, hydrogen 
bonding analysis is a potential and competent tool for studying mutant-inhibitor 
interaction and mutation-induced drug resistance in NSCLC treatments.

Figure 4 Computational characterization of interaction patterns between EGFR TK mutants 
and their inhibitors, coupled with its application to the drug resistance prediction.

As described in the precedingsection, an EGFR TK mutant can be computationally 
modeled by a number of structural modeling tools (Xiang, Soto, and Honig 2002; 
Xiang and Honig 2001; Leaver-Fay et al. 2011), based on its sequence and a structural 
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template. Once the 3D structure of a mutant is derived, a refinement relying on 
AMBER simulations (Case 2012) can be implemented, followed by the alignment 
of an inhibitor (gefitinib, erlotinib, etc.) to the binding cave of the refined struc-
ture. Afterwards, searching inter-molecular hydrogen bonds in the mutant-inhibitor 
complex leads to a comprehensive understanding of the mutant-inhibitor interaction 
(Zhou et al. 2013).

Simply speaking, a hydrogen-bond system includes three primary components, 
namely donor atom (D), hydrogen atom (H), and acceptor atom (A). Atom types 
and spatial constraints can define hydrogen bonds. In other words, merely a num-
ber of specific atoms can serve as the donor atoms in the formation of a hydrogen-
bond system, and only fixed atoms can accept hydrogen atoms in this bond system. 
Commonly-used rules for donor/acceptor definition (Meyer, Wilson, and Schomburg 
1996) were adopted in our studies of mutant-inhibitor complexes. In detail, donors 
and acceptors for proteins are listed in Table 1.

TABlE 1 Donor and acceptor atomtypes for proteins to form hydrogen bonds.

Atom Type

Donor Main-chain N-H, His NE2, His ND1, Lys NZ, Asn ND2,Gln NE2, Arg NE, Arg 
NH1, Arg NH2, Ser OG, Thr OG1,Tyr OH, Trp NE1

Acceptor Main-chain C=O, Asp OD1, Asp OD2, Glu OE1, Glu
OE2, Asn OD1, Gln OE1, Ser OG, Thr OG1

For an inhibitor, we intuitively define nitrogen atoms bonded with hydrogen and 
sp3 hybridized oxygen atoms as donors, and all other oxygen/nitrogen atoms as 
acceptors. Aside from specific donors and acceptors, spatial constraints are required 
by the formation of a hydrogen-bond system. Let D-H…A be a hydrogen-bond sys-
tem, then the following spatial constraints should be fulfilled to maintain the system 
(Baker and Hubbard 1984),

• The distance between H and A should be less than 2.5 Å;
• The distance between D and A should be less than 3.9 Å;
• The angle <D-H…A should be larger than 90 .̊

In our implementations, all missing hydrogen atoms were first added and adjusted 
by the Reduce program in AMBER. In the searching of inter-molecular hydrogen 
bonds for a mutant-inhibitor complex, the hydrogen bond analysis tool (HBAT) 
(Tiwari and Panigrahi 2007) program played an important role.

Consequently, for most mutants that develop drug resistance, there are no hydro-
gen bonds connecting them and an inhibitor. Oppositely, two hydrogen bonds were 
found between non-drug-resistant mutants and the inhibitor. Moreover, compared 
to a classic non-drug-resistant mutant L858R, most mutants without drug resistance 
have the same spatially-matched hydrogen bonds as L858R. Such hydrogen bonds 
can be a dispensable factor to maintain the stability of a mutant-inhibitor complex, 
thus partly explaining the EGFR mutation-induced drug resistance mechanism 
(Zhou et al. 2013).
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2.3  Local Surface geometric Properties of egFr 
TK Mutants and Their Applications to Mutant-
inhibitor interaction Characterization

In this section, further investigation of mutation-induced drug resistance mechanism 
is elucidated, from the perspective of local surface geometric properties of EGFR TK 
mutants (Ma 2014). The simplified procedure is shown in Fig. 5. Similar as the pre-
ceding section, based on an EGFR mutant sequence and a template structure of WT 
EGFR TK domain (PDB:2ITY) (Berman, Westbrook, et al. 2000; Yun et al. 2007), 
the corresponding mutant structure can be computationally modeled using Rosetta 
(Leaver-Fay et al. 2011). AMBER (Case 2012) was subsequently employed to opti-
mize the predicted structure. Later, the alpha shape model (Edelsbrunner 1994, 1992) 
of the optimized structure was computed, and solid angles (Zhou, Yan, and Hao 
2012) of the surface atoms were calculated to express their curvatures. By compar-
ing the local surface curvature, concerning the TKI-binding site, of a mutant alpha 
shape with that of the WT alpha shape, the changes of local geometric properties 
can be derived. Accordingly, a correlation analysis was conducted to correlate these 
changes with the progression-free survivals (PFSs) extracted from clinical patient 
data.

Figure 5 The procedure of extracting local surface geometric properties of EGFR TK mutants 
and applying them to the drug resistance investigation.
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The 137 NSCLC patients treated with gefitinib, in the Queen Mary Hospital in 
Hong Kong, constituted our data set. All the patients harbored EGFR TK mutations 
and shared a total of 30 mutation types, such as delE709_T710insD, delE746_A750, 
L858R and S768I_V774M. As previously illustrated, these mutation types can be 
categorized into several groups, according to the comparison between their cor-
responding sequences with the WT EGFR sequence. Such groups include residue 
substitution (single-point and double-point), deletion, duplication insertion, and 
modification(Wang, Zhou, et al. 2013). For each patient, the PFS of gefitinib was 
recorded to show its activity in the TKI-treatment (Lee et al. 2013). Specifically, for 
patients sharing the same mutation type, the median value of the corresponding PFSs 
was regarded as the PFS of gefitinib to the involved mutant. 

Now we describe this study in detail, as follows. Rosetta (Leaver-Fay et al. 2011) 
was employed to generate the EGFR mutants, based on a template structure (WT 
EGFR) and the mutant sequences. The ddg_monomer protocol (Kellogg, Leaver-Fay, 
and Baker 2011) was adopted to deal with residue substitution, while the comparative 
modeling (CM) protocol (Marti-Renom et al. 2000) was used to handle the remaining 
types of mutations. After the 3D structures of the mutants were obtained, we applied 
AMBER for structural minimizations. Each refined structure was then aligned to the 
template (PDB:2ITY) to form the mutant-inhibitor complex. Additionally, a minimi-
zation procedure was conducted on each solvated complex, outputting an optimized 
structure for later analysis. The local surface geometric properties of a mutant struc-
ture, described by the surface curvature around its TKI-binding site, require to be 
extracted. In order to represent the geometric structure of a mutant (Fig. 6A), the 
Computational Geometry Algorithms Library (CGAL) (Fabri et al. 2000) assisted 
in the computation ofthe weighted alpha shape model for this mutant (Fig.  6B) 
(Edelsbrunner 1992).

Moreover, the solid angle (Fig. 6C) (Zhou, Yan, and Hao 2012) concerning each 
surface atom at the TKI-binding site (Fig. 7) was calculated, to represent the cur-
vature of the corresponding atom. This solid angle was transformed into range [-1, 
1] based on a cosine function for a normalization. The shape around each atom is 
defined to be concave if the transformed solid angle falls in [-1, 0], and to be convex 
if the solid angle belongs to (0, 1].

14 amino acids residues, including 102 atoms, are located at the TKI-binding site 
of the WT EGFR TK domain. We obtained local surface geometric changes by com-
paring the atom solid angles at mutant surfaces and those at the WT EGFR surface. 
These solid-angle changes, or local surface geometric changes, were grouped into 
four types, namely Reverse, Degree Variation, Emergence, and Disappearance 
(Fig. 8). If the tetrahedron topped at a binding-site atom of the WT EGFR has a con-
cave shape, then Reverse represents a convex shapein the mutant. Degree Variation 
means the change of concavity or convexity, that is, the solid angle of the surface at 
the atom in the mutant. Emergence describes the appearance of new atoms at the 
mutant surface. Disappearance indicates that some surface atoms of the WT EGFR 
no longer belong to the mutant surface. Specifically for the 30 mutation types stud-
ied in this work, each mutant contains 3 to 9 binding-site atoms with the Reverse 
changes compared to the WT EGFR, 42 to 53 atoms with the Degree Variation 
changes, 6 to 13 atoms with the Emergence changes, and 1 to 9 atoms with the 
Disappearance changes. 
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Next, we analyzed the relationship between the four types of local surface geomet-
ric changes and the PFSs of gefitinib to the corresponding mutants. Results show that 
Degree Variation and Disappearance are closely related to PFS. The corresponding 
Spearman’s rank correlation coefficients respectively are -0.63 and 0.63, indicating a 
valuable negative and positive correlation. Intuitively, the PFS may decrease if more 
atoms with concave or convex curvatures exist, and a longer PFS will be derived if 
more WT-surface atoms disappear at the mutant surface.

At last, we explored the relationship between the convex degree of a mutant TKI-
binding site and the PFS of gefitinib to this mutant. Atoms with solid angles in the 
range of [t, 1], where t is a pre-defined threshold, were summed and recorded. Results 
show that the Spearman’s rank correlation coefficient between the PFS and the quan-
tity of those atoms is -0.61, when t = 0.71 ([0°, 180°]), t = 0.61 ([0°, 210°]) or t = 0.5 
([0°, 240°]). The P-values in these cases are much smaller than 0.05, implying the 
significances of these cases. In this regard, if more mutant atoms have solid angles 
in above ranges, the patients harboring the corresponding mutation may experience 
a shorter PFS of gefitinb.

3.  Characterization of EGFR or ErbB-3 
Heterodimerization Using Computer Simulations

EGFR or ErbB-3 heterodimerization plays a significant role in regulating its down-
stream signaling pathways, and thus greatly influences cancer development and 
malignancy (Bae and Schlessinger 2010; Haley 2008; Frolov et al. 2007; Morgillo et 
al. 2006). In this regard, EGFR or ErbB-3 heterodimers and the interaction between 
each two dimer partners can be a valuable research focus, in the studies of drug resis-
tance mechanism developed by NSCLC or other cancers(Wang et al. 2015).

EGFR brothers in its family, namely ErbB-2, ErbB-3 and ErbB-4, are favorable 
candidates for EGFR heterodimerization. While regarding NSCLC, merely ErbB-2 
and ErbB-3 are considered, since both of them are primarily expressed in NSCLC 
(van der Veeken et al. 2009; Normanno et al. 2006; Abd El-Rehim et al. 2004). 
Recently, potential EGFR or ErbB-3 dimer partners, such as insulin-like growth fac-
tor 1 receptor (IGF-1R) (Morgillo et al. 2006) and c-Met (MET) (Jo et al. 2000), 
have been proposed, and their crosstalks with EGFR contribute a lot to the devel-
opment of drug resistance in cancers. Especially, c-Met has been demonstrated to 
cause drug resistance by associating with ErbB-3, which can activate and strengthen 
the downstream PI3K/Akt signaling pathway (Tanizaki et al. 2011; Engelman et al. 
2007). Accordingly, the interactions between EGFR mutants and their potential part-
ners (ErbB-2, IGF-1R and c-Met) coupled with those between ErbB-3 and its part-
ners (EGFR mutants, ErbB-2, IGF-1R and c-Met) were computationally explored in 
our study. These receptor-receptor interactions, together with the receptor-inhibitor 
interactions decoded in preceding section, can be an enriched characterization of an 
EGFR TK mutant and its performance in NSCLC progression.

The patient data discussed before, namely the 168 NSCLC patients from Queen 
Mary Hospital in Hong Kong, are used in this section. Likewise, the binding free 
energy between the two partners in each heterodimer was applied to estimate their 
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binding affinity. As mentioned in Introduction, receptor dimerization leads to the 
formation of an asymmetrical dimer in the TK domain, according to a tail-to-head 
manner (Fig. 9A) (Zhang et al. 2006; Haley 2008). Besides, the EGFR mutations 
that the patients harbored were all located in the TK domain. Therefore, we merely 
considered the TK dimers in the computations. A dimer structure (Fig. 9B) from 
the PDB (PDB:4RIW) (Littlefield et al. 2014), composed of the TK domains of 
EGFR and ErbB-3, can be regarded as the template for EGFR or ErbB-3 heterodi-
mers. Although ErbB-3 has an impaired TK activity, it behaves as a strong coopera-
tor for other receptors. As a reference, the molecular surface of an EGFR/ErbB-3 
TK domain heterodimer was generated by Chimera (Pettersen et al. 2004), and is 
now shown in Fig. 9C. Based on this structure we simulated the dynamics of each 
receptor-receptor dimer candidate using AMBER (Case 2012), and calculated their 
interaction (binding free energy). The MD simulation procedures are similar to those 
implemented in the previous section.

 

Figure 6 Alpha shape modeling and solid angle calculation. (A) The crystal structure of a WT 
EGFR TK domain (PDB:2ITY). (B) The alpha shape model of the TK domain in (A). (C) The solid 
angle at position P, where fab is the dihedral angle between PAC and PBC, fbc is the dihedral angle 
between PAB and PAC, and fac is that between PAB and PBC.
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Figure 7 The TKI-binding site of an EGFR TK domain.(A) Crystal structure of the TKI-binding 
pocket of an EGFR TK domain. (B) Solvent-excluded molecular surface structure of a TKI-binding 
pocket. (C) Alpha shape model of the TKI-binding pocket of an EGFR TK domain. Inhibitors, in the 
binding pockets, are exhibited in (A) to (C).
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Figure 8 Four types of local surface geometric changes of a mutant, namely solid-angle changes 
of the tetrahedrons topped at binding-site atoms of the mutant, compared with the WT EGFR. 
(A) Concave shape in the WT EGFR. (B) Reverse. (C) Degree Variation. (D) Emergence. (E) 
Disappearance.

Figure 9 EGFR-family TK domain heterodimers. (A) Heterodimer formed by the TK domains 
of two EGFR-family receptors. (B) Crystal structure of an EGFR/ErbB-3 TK domain heterodimer 
(PDB:4RIW). (C) Molecular surface of the EGFR/ErbB-3 heterodimer in (B).
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Since the receptor-receptor systems are more complicated than receptor-inhibitor 
systems, the settings of MD simulations were accordingly adjusted to achieve reli-
able results. In the structural minimization of each receptor-receptor system, two 
steps were adopted. One is a 1000-step minimization (half of steepest descent steps) 
with weak position restraints on the solute to remove bad contacts, and the other is an 
extra 1000-step minimization (half of steepest descent steps) without any restraints 
to further optimize the system. Subsequently, a 25-ps heating phase, a 25-ps density 
equilibration, and a 250-ps constant-pressure equilibration were sequentially imple-
mented, with a short time step of 1 fs. The equilibration of each system was verified 
through its temperature, density, energy and the backbone RMSD curve of the solute. 
At last, a production MD simulation of 2 ns was conducted, with a stable backbone 
RMSD curve of the solute derived. Similarly as before, the binding free energy and 
its components for each receptor-receptor complex were resolved by the MM/PB(GB)
SA program in AMBER, and they can be treated as important characteristics of the 
interaction pattern between two receptors.

These interaction patterns, together with the receptor-inhibitor interactions, were 
statistically analyzed, and a further regression analysis that connected the com-
puted energy components with the PFS of an inhibitor (gefitinib or erlotinib) to a 
mutant was conducted. The statistical and regression analyses verified the important 
contribution of IGF-1R to the PFS of an inhibitor and to the drug resistance level. 
Additionally, a strong interaction between c-Met and ErbB-3, compared with those 
between EGFR mutants and ErbB-3, suggested a strengthened ErbB-3 signaling in 
EGFR mutation-positive NSCLCs.

4. New-generation Irreversible EGFR TKIs
To improve the drug resistance situations in NSCLC treatments, a group of new-
generation TKIs, which covalently bind to the TK domain of an EGFR-family recep-
tor, were proposed and clinically tested. Unlike reversible TKIs (Fig. 10A) that attach 
themselves to proteins with non-covalent interactions (hydrogen bonds, hydrophobic 
interactions, ionic bonds, etc.), irreversible TKIs are attached to their targets through 
covalent binding and the inhibition can therefore not be reversed (Fig. 10B). Among 
irreversible TKIs, afatinib (BIBW 2992) (Yang et al. 2012; de Antonellis 2014; Yap 
et al. 2010; Solca et al. 2012) is a representative that targets both EGFR and ErbB-2 
TK domains, and it showed potency, albeit lower, to the gatekeeper mutation T790M 
in clinical experiments (Solca et al. 2012). The primary reactive group, acrylamide, 
of afatinib is capable of a Michael reaction with the conserved cysteine residue 
(CYS797) within an EGFR TKI domain. This covalent reaction can subsequently 
result in an irreversible blocking of EGFR downstream signaling.

Figure 10 Inhibitors of EGFR TK domain. (A) A reversible TKI that binds to its target without 
covalent interactions. (B) An irreversible TKI that covalently binds to its target.



251Computational Characterization of Non-small-cell...

Despite the covalent binding between afatinib and a receptor, the potency of afa-
tinib varies among patients harboring different EGFR TK mutants. Similar to the 
well-acknowledged reversible TKIs, afatinib produces better responses from patients 
with the classic activation mutations (Yang et al. 2012; de Antonellis 2014; Yap et al. 
2010). Accordingly, to achieve an optimal application of afatinib and the analogs in 
NSCLC treatments, the selectivity of EGFR mutants should be explored and profiled 
for such inhibitors, based on the mutant-inhibitor binding modes.

Similarly, the mutant-inhibitor binding modes for EGFR TK mutants and irrevers-
ible inhibitors can be computationally estimated. In our study, calculating the free 
energy difference between a mutant-inhibitor complex and the two separate mol-
ecules, based on AMBER MD simulations and MM/PB(GB)SA free energy computa-
tions, is the initial idea for revealing the binding mode. By correlating such a binding 
mode with the PFS of an inhibitor to a specific mutant, a mutation-selectivity profile 
can be further constructed for the inhibitor, which is helpful to optimize the applica-
tion of this inhibitor to cancer treatments.

6. Summary and Future Works
Binding free energy of a solvated protein-ligand or protein-protein system is an 
important indicator of the molecular binding affinity (Ma et al. 2015; Wang, Zhou, et 
al. 2013). Beneficial from the fast development of research areas such as bioinformat-
ics and computational biology, the binding free energies can be computationally esti-
mated based on MD simulations and structural modeling (Case 2012; Xiang, Soto, 
and Honig 2002; Xiang and Honig 2001; Leaver-Fay et al. 2011). Relying on these 
techniques, the receptor-inhibitor and receptor-receptor interactions were decoded 
for EGFR and its family members in our work. The derived interaction patterns were 
efficiently applied to characterize the EGFR mutation-positive NSCLCs, and were 
used for prediction of drug resistance levels or PFSs of specific inhibitors. Taking 
patient personal features into consideration, a favorable personalized prediction 
model of the drug resistance level was constructed. Importantly, these studies can 
support personalized therapy design and new drug discovery. 

Based on the correlation between the surface geometric properties of a mutant 
TKI-binding site and the PFS of a TKI to this mutant, the mutation-induce drug 
resistance can be predicted for NSCLC patients (Ma 2014). For a mutant TKI-binding 
site, if the quantity of disappeared surface atoms increases compared with the WT 
TKI-binding site, then a higher binding affinity between this mutant and an inhibitor 
may be achieved. Specifically for gefitinib, a mutant most probably develops a drug 
resistance if more atoms, at the binding-site surface, experience Degree Variation 
or have solid angles in the range of [0.71, 1], [0.61, 1] or [0.5, 1]. Such a study, con-
cerning local surface geometric properties of an EGFR TK mutant, indicates that 
these geometric properties play an important role in predicting mutation-induced 
drug resistance in NSCLC treatment. In addition, it can be extended to the studies of 
drug resistance mechanisms developed in other diseases.

The above-described computational modeling and structural analysis can also be 
applied to the investigation of new-generation TKIs such as afatinib (Yang et al. 
2012; de Antonellis 2014; Yap et al. 2010; Solca et al. 2012). Based on multiple com-
putational techniques, the binding modes between various EGFR TK mutants and 
afatinib can be derived and used in the prediction of resistance level or PFS of afa-
tinib. These results will assist the profiling of EGFR mutation-selectivity for afatinib, 
encouraging a better application of such inhibitors in cancer treatments. 
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As one of our future works, more efficient strategies should be explored to fur-
ther reduce the computational costs in structural modeling and energy calcula-
tion. Modern graphics processing units (GPUs) and field programmable gate arrays 
(FPGAs) will be our first candidates for fast parallel computing (Owens et al. 2008; 
Kruger and Westermann 2003; Bolz et al. 2003). Another work will be a thorough 
collection of patient data, which can refine our prediction model and verify its reli-
ability. At last, EGFR signaling networks in cancer therapy (Yarden 2001; Haley 
2008; Hynes and Lane 2005; Solca et al. 2012) should be carefully dissected, focus-
ing on various pathways and the signaling nodes in the networks. Graph theories and 
probabilistic models can be strong tools in such analyses (Wagner and Wright 2004; 
Binder et al. 2006; Samaga et al. 2009). All these studies will greatly improve the 
understanding of cancer progression and drug resistance development.

Acknowledgements
This work is supported by the Hong Kong Health and Medical Research Fund 
(HMRF) (Project 01121986) and City University of Hong Kong (Project 9610326).

References
Abd El-Rehim, D. M., Pinder S. E., Paish C. E., et al. 2004. Expression and co-expression 

of the members of the epidermal growth factor receptor (EGFR) family in invasive 
breast carcinoma. British Journal of Cancer. 91 (8):1532-42.

Babine, R. E. and S. L. Bender. 1997. Molecular recognition of protein-ligand complexes: 
Applications to drug design. Chemical Reviews. 97 (5):1359-1472.

Bae, J. H. and J. Schlessinger. 2010. Asymmetric tyrosine kinase arrangements in activation or 
autophosphorylation of receptor tyrosine kinases. Molecules and Cells. 29 (5):443-48.

Baker, E. N. and R. E. Hubbard. 1984. Hydrogen-Bonding in Globular-Proteins. Progress 
in Biophysics & Molecular Biology. 44 (2):97-179.

Berman, H. M. 2008. The Protein Data Bank: a historical perspective. Acta Crystallographica 
Section A. 64:88-95.

Berman, H. M., Bhat T. N., Bourne P. E., et al. 2000. The Protein Data Bank and the chal-
lenge of structural genomics. Nature Structural Biology. 7:957-959.

Berman, H. M., Westbrook J., Feng Z., et al. 2000. The Protein Data Bank. Nucleic Acids 
Research. 28 (1):235-242.

Binder, B., Ebenhoh O., Hashimoto K., and R. Heinrich. 2006. Expansion of signal trans-
duction networks. Iee Proceedings Systems Biology. 153 (5):364-368.

Bolz, J., I. Farmer, E. Grinspun, and P. Schroder. 2003. Sparse matrix solvers on the GPU: 
Conjugate gradients and multigrid. Acm Transactions on Graphics 22 (3):917-24.

Cao, Z. W., L. Y. Han, C. J. Zheng, et al. 2005. Computer prediction of drug resistance 
mutations in proteins. Drug Discovery Today. 10 (7):521-529.

Carraway, K. L., J. L. Weber, M. J. Unger, et al. 1997. Neuregulin-2, a new ligand of 
ErbB3/ErbB4-receptor tyrosine kinases. Nature 387 (6632):512-16.

Case, DA and Darden, TA and Cheatham III, Thomas E and Simmerling, CL and Wang, J 
and Duke, R.E. and Luo, R and Walker, RC and Zhang, W and Merz, KM and others. 
2012. AMBER 12. University of California, San Francisco. 142.

Citri, A., and Y. Yarden. 2006. EGF-ERBB signalling: towards the systems level. Nature 
Reviews Molecular Cell Biology. 7 (7):505-516.



253Computational Characterization of Non-small-cell...

Cohen, A. R., Gomes F. L. A. F., Roysam B., and M. Cayouette. 2010. Computational pre-
diction of neural progenitor cell fates. Nature Methods. 7 (3):213-U75.

de Antonellis, P. 2014. Afatinib, a lung cancer inhibitor of ErbB family. Naunyn-
Schmiedebergs Archives of Pharmacology. 387 (6):503-504.

Dienstmann, R., De Dosso S., Felip E., and J. Tabernero. 2012. Drug development to 
overcome resistance to EGFR inhibitors in lung and colorectal cancer. Molecular 
Oncology. 6 (1):15-26.

Draghici, S. and R. B. Potter. 2003. Predicting HIV drug resistance with neural networks. 
Bioinformatics 19 (1):98-107.

Edelsbrunner, Herbert and P. Ernst 1992. Weighted alpha shapes: University of Illinois at 
Urbana-Champaign, Department of Computer Science.

Edelsbrunner, Herbert and P. Ernst 1994. Three-dimensional alpha shapes. ACM 
Transactions on Graphics (TOG). 13 (1):43--72.

Engelman, J. A., Zejnullahu K., Mitsudomi T., et al. 2007. MET amplification leads to 
gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316 
(5827):1039-1043.

Fabri, A., Giezeman G. J., Kettner L., Schirra S., and S. Schonherr. 2000. On the design 
of CGAL a computational geometry algorithms library. Software-Practice & 
Experience. 30 (11):1167-1202.

Frolov, A., Schuller K., C. W. D. Tzeng, et al. 2007. ErbB3 expression and dimerization 
with EGFR influence pancreatic cancer cell sensitivity to erlotinib. Cancer Biology 
& Therapy. 6 (4):548-54.

GrausPorta, D., Beerli R. R., Daly J. M., and N. E. Hynes. 1997. ErbB-2, the preferred 
heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. 
Embo Journal. 16 (7):1647-55.

Gu, D., W. A. Scaringe, K. Li, et al. 2007. Database of somatic mutations in EGFR with 
analyses revealing indel hotspots but no smoking-associated signature. Human 
Mutation. 28 (8):760-70.

Guy, P. M., Platko J. V., Cantley L. C., Cerione R. A., and K. L. Carraway. 1994. Insect 
Cell-Expressed P180(Erbb3) Possesses an Impaired Tyrosine Kinase-Activity. 
Proceedings of the National Academy of Sciences of the United States of America. 
91 (17):8132-8136.

Haley, John D., William Gullick, John. 2008. EGFR Signaling Networks in Cancer 
Therapy. Edited by B. A. Teicher: Springer.

Hao, G. F., Yang G. F., and C. G. Zhan. 2012. Structure-based methods for predicting target 
mutation-induced drug resistance and rational drug design to overcome the problem. 
Drug Discovery Today. 17 (19-20):1121-26.

Harris, Robin Kingsley. 1986. Nuclear magnetic resonance spectroscopy. John Wiley and 
Sons Inc., New York, NY.

Hou, T. J., Zhang W., Wang J., and W. Wang. 2009. Predicting drug resistance of the 
HIV-1 protease using molecular interaction energy components. Proteins-Structure 
Function and Bioinformatics. 74 (4):837-46.

Hynes, N. E. and H. A. Lane. 2005. ERBB receptors and cancer: The complexity of tar-
geted inhibitors (vol 5, pg 341, 2005). Nature Reviews Cancer. 5 (7).

Jo, M. J., Stolz D. B., Esplen J. E., Dorko K., Michalopoulos G. K., and S. C. Strom. 2000. 
Cross-talk between epidermal growth factor receptor and c-Met signal pathways in 
transformed cells. Journal of Biological Chemistry. 275 (12):8806-11.

Kallioniemi, O. P., Kallioniemi A., Kurisu W., et al. 1992. Erbb2 Amplification in Breast-
Cancer Analyzed by Fluorescence Insitu Hybridization. Proceedings of the National 
Academy of Sciences of the United States of America. 89 (12):5321-25.



254 Computational Biology and Bioinformatics

Kellogg, E. H., Leaver-Fay A., and D. Baker. 2011. Role of conformational sampling in 
computing mutation-induced changes in protein structure and stability. Proteins-
Structure Function and Bioinformatics. 79 (3):830-38.

Kobayashi, S., Ji H. B., Yuza Y., et al. 2005. An alternative inhibitor overcomes resistance 
caused by a mutation of the epidermal growth factor receptor. Cancer Research. 65 
(16):7096-101.

Kruger, J. and R. Westermann. 2003. Linear algebra operators for GPU implementation of 
numerical algorithms. Acm Transactions on Graphics. 22 (3):908-16.

Leaver-Fay, A., Tyka M., Lewis S. M., et al. 2011. Rosetta3: An Object-Oriented Software 
Suite for the Simulation and Design of Macromolecules. Methods in Enzymology, 
Vol 487: Computer Methods, Pt C. 545-74.

Lee, V. H. F., Tin V. P. C., Choy T. S., et al. 2013. Association of Exon 19 and 21 EGFR 
Mutation Patterns with Treatment Outcome after First-Line Tyrosine Kinase 
Inhibitor in Metastatic Non-Small-Cell Lung Cancer. Journal of Thoracic Oncology. 
8 (9):1148-55.

Littlefield, P., Liu L. J., Mysore V., Shan Y. B., Shaw D. E., and N. Jura. 2014. Structural 
analysis of the EGFR/HER3 heterodimer reveals the molecular basis for activating 
HER3 mutations. Science Signaling. 7 (354).

Loo, L. H., Wu L. F., and S. J. Altschuler. 2007. Image-based multivariate profiling of drug 
responses from single cells. Nature Methods. 4 (5):445-53.

Ma, L. C., Wang D. D., Huang Y. Q., Yan H., Wong M. P., and V. H. F. Lee. 2015. EGFR 
Mutant Structural Database: computationally predicted 3D structures and the cor-
responding binding free energies with gefitinib and erlotinib. BMC Bioinformatics. 
16:85

Ma, L. C., and Wang, D. D. and Yiqing Huang, Maria P Wong, Victor HF Lee, and Yan, 
Hong. 2015. Decoding the EGFR mutation-induced drug resistance in lung cancer 
treatment by local surface geometric properties. Computers in Biology and Medicine. 
63: 293-300

Marchetti, A., Martella C., Felicioni L., et al. 2005. EGFR mutations in non-small-cell lung 
cancer: Analysis of a large series of cases and development of a rapid and sensitive 
method for diagnostic screening with potential implications on pharmacologic treat-
ment. Journal of Clinical Oncology. 23 (4):857-65.

Marti-Renom, M. A., Stuart A. C., Fiser A., Sanchez R., Melo F., and A. Sali. 2000. 
Comparative protein structure modeling of genes and genomes. Annual Review of 
Biophysics and Biomolecular Structure. 29:291-325.

Meyer, M., Wilson P., and D. Schomburg. 1996. Hydrogen bonding and molecular surface 
shape complementarity as a basis for protein docking. J Mol Biol. 264 (1):199-210.

Morgillo, F., Woo J. K., Kim E. S., Hong W. K., and H. Y. Lee. 2006. Heterodimerization of 
insulin-like growth factor receptor/epidermal growth factor receptor and induction 
of survivin expression counteract the antitumor action of erlotinib. Cancer Research. 
66 (20):10100-10111.

Normanno, N., De Luca A., Bianco C., et al. 2006. Epidermal growth factor receptor 
(EGFR) signaling in cancer. Gene. 366 (1):2-16.

Ohbuchi, R. and T. Takei. 2003. Shape-similarity comparison of 3D models using 
alpha shapes. 11th Pacific Conference on Computer Graphics and Applications, 
Proceedings:293-302.

Olayioye, M. A., Neve R. M., Lane H. A., and N. E. Hynes. 2000. The ErbB signaling 
network: receptor heterodimerization in development and cancer. Embo Journal. 19 
(13):3159-67.



255Computational Characterization of Non-small-cell...

Owens, J. D., Houston M., Luebke D., Green S., Stone J. E., and J. C. Phillips. 2008. GPU 
computing. Proceedings of the Ieee. 96 (5):879-99.

Oxnard, G. R., Arcila M. E., Sima C. S., et al. 2011. Acquired Resistance to EGFR 
Tyrosine Kinase Inhibitors in EGFR-Mutant Lung Cancer: Distinct Natural History 
of Patients with Tumors Harboring the T790M Mutation. Clinical Cancer Research. 
17 (6):1616-22.

Paez, J. G., Janne P. A., Lee J. C., et al. 2004. EGFR mutations in lung cancer: Correlation 
with clinical response to gefitinib therapy. Science. 304 (5676):1497-1500.

Pettersen, E. F., Goddard T. D., Huang C. C., et al. 2004. UCSF chimera - A visualization 
system for exploratory research and analysis. Journal of Computational Chemistry. 
25 (13):1605-12.

Samaga, R., Saez-Rodriguez J., Alexopoulos L. G., Sorger P. K., and S. Klamt. 2009. 
The Logic of EGFR/ErbB Signaling: Theoretical Properties and Analysis of High-
Throughput Data. Plos Computational Biology. 5 (8).

Santos, G. D., Shepherd F. A., and M. S. Tsao. 2011. EGFR Mutations and Lung Cancer. 
Annual Review of Pathology: Mechanisms of Disease, Vol. 6 6:49-69.

Schlessinger, J. 2002. Ligand-induced, receptor-mediated dimerization and activation of 
EGF receptor. Cell 110 (6):669-72.

Sequist, L. V., Bell D. W., Lynch T. J., and D. A. Haber. 2007. Molecular predictors of 
response to epidermal growth factor receptor antagonists in non-small-cell lung can-
cer. Journal of Clinical Oncology. 25 (5):587-95.

Shigematsu, H., Lin L., Takahashi T., et al. 2005. Clinical and biological features associ-
ated with epidermal growth factor receptor gene mutations in lung cancers. Journal 
of the National Cancer Institute. 97 (5):339-46.

Smyth, M. S. and J. H. J. Martin. 2000. x Ray crystallography. Journal of Clinical 
Pathology-Molecular Pathology. 53 (1):8-14.

Sneddon, M. W. and T. Emonet. 2012. Modeling cellular signaling: taking space into the 
computation. Nature Methods. 9 (3):239-42.

Solca, F., Dahl, G., G. Dahl, A. Zoephel, et al. 2012. Target Binding Properties and Cellular 
Activity of Afatinib (BIBW 2992), an Irreversible ErbB Family Blocker. Journal of 
Pharmacology and Experimental Therapeutics 343 (2):342-50.

Sordella, R., Bell D. W., Haber D. A., and J. Settleman. 2004. Gefitinib-sensitizing 
EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 305 
(5687):1163-67.

Tanizaki, J., Okamoto I., Sakai K., and K. Nakagawa. 2011. Differential roles of trans-phos-
phorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET 
in lung cancer with MET amplification. British Journal of Cancer. 105 (6):807-13.

Tiwari, A. and S. K. Panigrahi. 2007. HBAT: a complete package for analysing strong 
and weak hydrogen bonds in macromolecular crystal structures. In Silico Biol. 7 
(6):651-61.

Tokumo, M., Toyooka S., Kiura K., et al. 2005. The relationship between epidermal growth 
factor receptor mutations and clinicopathologic features in non-small cell lung can-
cers. Clinical Cancer Research 11 (3):1167-73.

Tsang, Roger Y., Saeed Sadeghi, and Richard S. Finn, 2011. Lapatinib, a Dual-Targeted 
Small Molecule Inhibitor of Egfr and Her2, in Her2-Amplified Breast Cancer: From 
Bench to Bedside. Clinical Medicine Insights: Therapeutics.

van der Veeken, J., Oliveira S., Schiffelers R. M., Storm G., Henegouwen P. M. P. V. E., and 
R. C. Roovers. 2009. Crosstalk Between Epidermal Growth Factor Receptor- and 
Insulin-Like Growth Factor-1 Receptor Signaling: Implications for Cancer Therapy. 
Current Cancer Drug Targets. 9 (6):748-60.



256 Computational Biology and Bioinformatics

Wagner, A. and J. Wright. 2004. Compactness and cycles in signal transduction and 
transcriptional regulation networks: A signature of natural selection? Advances in 
Complex Systems. 7 (3-4):419-32.

Wang, D. D., Ma L., Wong M. P., Lee V. H., and H. Yan. 2015. Contribution of EGFR 
and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and 
Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments. PLoS One. 10 
(5):e0128360.

Wang, D. D., Zhou W. Q., Yan H., Wong M., and V. Lee. 2013. Personalized prediction of 
EGFR mutation-induced drug resistance in lung cancer. Scientific Reports. 3.

Wang, Y., Yuan J. L., Zhang Y. T., et al. 2013. Inhibition of Both EGFR and IGF1R 
Sensitized Prostate Cancer Cells to Radiation by Synergistic Suppression of DNA 
Homologous Recombination Repair. PloS One. 8 (8).

Xiang, Z. X. and B. Honig. 2001. Extending the accuracy limits of prediction for side-
chain conformations (vol 311, pg 421, 2001). Journal of Molecular Biology. 312 
(2):419-19.

Xiang, Z. X., Soto C. S., and B. Honig. 2002. Evaluating conformational free energies: The 
colony energy and its application to the problem of loop prediction. Proceedings of 
the National Academy of Sciences of the United States of America. 99 (11):7432-437.

Yang, J. C. H., J. Y. Shih, W. C. Su, et al. 2012. Afatinib for patients with lung adenocarci-
noma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial. 
Lancet Oncology. 13 (5):539-48.

Yap, T. A., Vidal L., Adam J., et al. 2010. Phase I Trial of the Irreversible EGFR and HER2 
Kinase Inhibitor BIBW 2992 in Patients With Advanced Solid Tumors. Journal of 
Clinical Oncology. 28 (25):3965-72.

Yarden, Y. 2001. The EGFR family and its ligands in human cancer: signalling mecha-
nisms and therapeutic opportunities. European Journal of Cancer. 37:S3-S8.

Yarden, Y., and Sliwkowski M. X.. 2001. Untangling the ErbB signalling network. Nature 
Reviews Molecular Cell Biology. 2 (2):127-37.

Yasuda, H., Kobayashi S., and Costa D. B. 2012. EGFR exon 20 insertion mutations in non-
small-cell lung cancer: preclinical data and clinical implications. Lancet Oncology 
13 (1):E23-E31.

Yun, C. H., Boggon T. J., Li Y. Q., et al. 2007. Structures of lung cancer-derived EGFR 
mutants and inhibitor complexes: Mechanism of activation and insights into differ-
ential inhibitor sensitivity. Cancer Cell. 11 (3):217-27.

Yun, C. H., Mengwasser K. E., Toms A. V., et al. 2008. The T790M mutation in EGFR 
kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the 
National Academy of Sciences of the United States of America. 105 (6):2070-75.

Zhang, X. W., Gureasko J., Shen K., Cole P. A., and J. Kuriyan. 2006. An allosteric mecha-
nism for activation of the kinase domain of epidermal growth factor receptor. Cell. 
125 (6):1137-49.

Zhou, W. Q., Wang D. D., Yan H., Wong M., and V. Lee. 2013. Prediction of anti-EGFR 
drug resistance base on binding free energy and hydrogen bond analysis. Proceedings 
of the 2013 Ieee Symposium on Computational Intelligence in Bioinformatics and 
Computational Biology (CIBCB):193-97.

Zhou, W. Q., and H. Yan. 2010. A discriminatory function for prediction of protein-DNA 
interactions based on alpha shape modeling. Bioinformatics. 26 (20):2541-48.

Zhou, W. Q., and H. Yan. 2010. Relationship between periodic dinucleotides and the 
nucleosome structure revealed by alpha shape modeling. Chemical Physics Letters. 
489 (4-6):225-28.

Zhou, W. Q., Yan H., and Q. Hao. 2012. Analysis of surface structures of hydrogen bond-
ing in protein-ligand interactions using the alpha shape model. Chemical Physics 
Letters. 545:125-31.



Section 6 
Advanced Topics





259

11
Quality Assurance in Genome-
Scale Bioinformatics Analyses

Eleni Giannoulatou1, Amir Hossein Kamali2, Andrian Yang1, 
Tsong Yueh Chen3 and Joshua W. K. Ho1*

Abstract
The advent of Next Generation Sequencing (NGS) is transforming the landscape of 
biomedical research, ranging from disease gene discovery to clinical application of 
genomic medicine. NGS enables low-cost, high-throughput sequencing for a wide 
variety of genome-wide scale analysis of the genome, epigenome and transcriptome. 
However, with this vast quantity of data, we are faced with unprecedented technical 
challenges in terms of quality assurance of the computational analytical pipelines. 
In this chapter, we review current approaches used for bioinformatics validation and 
quality control in whole genome sequencing analysis for genomic medicine applica-
tions. We further discuss how state-of-the-art software testing techniques can be 
used to establish strong quality assurance measures in genome-scale bioinformatics.

1. Introduction
Bioinformatics is the application of computational, mathematical and statistical 
techniques to solve problems in biology and medicine. Arguably the main research 
focus has so far been on the computational and statistical basis of the algorithms. 
Surprisingly much less effort has been placed on the validation and quality assur-
ance of the tools that implement these algorithms – even though correct design and 
implementation of the underlying algorithm is at least as important as the algorithm 
itself. Incorrectly computed results may lead to wrong biological conclusions, and 
subsequently misguide downstream experiments. The widespread problem of errors 
or mis-use of scientific computing in biology and medicine is highlighted by recent 
news and commentary articles in top-tier journals such as Nature and Science on this 
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issue (Joppa et al., 2013; Merali, 2010), and it could be attributed to the lack of proper 
software verification and validation (Alden and Read, 2013; Hayden, 2013). 

Lack of quality assurance is especially a critical problem if these bioinformatics 
tools are to be used in a translational clinical setting. Cost of DNA sequencing is no 
longer a limiting factor; the real bottleneck is the reliable and fast analysis of the mas-
sive amount of sequencing data produced by Next Generation Sequencing (NGS). 
Many bioinformatics analysis pipelines have been developed, however recent studies 
found the variants being called by different pipelines from the same sequencing data 
set can differ substantially (O’Rawe et al., 2013). Given a whole genome sequenc-
ing (WGS) or whole exome sequencing (WES) analysis pipeline for identification of 
sequence variants, one must have high confidence that the resulting variant calls have 
high sensitivity and specificity. Although true positives can be distinguished from 
false positives easily through external validation, it is almost impossible to system-
atically distinguish false negatives from the vast amount of true negatives. There is 
therefore a critical need to ensure that only correct and validated algorithms are used, 
and that they are implemented correctly into computer programs. 

There are several unique challenges in implementing rigorous validation and qual-
ity control in bioinformatics that are not addressed in the current national or interna-
tional guidelines for genetic diagnostic laboratories:

 1. Validation before deployment. How to generate a large number of diverse 
and realistic test cases to ensure a sufficient coverage of the input space?

 2. Quality Control during deployment. How to determine the correctness of 
real data without a gold standard?

In the following sections, we will review standard bioinformatics pipelines used in 
genomic medicine, and methods that can be employed to establish quality assurance 
for these pipelines.

2.  Whole genome sequencing analysis for genomic medicine
A standard pipeline for whole genome sequencing analysis that has been used widely 
for the analysis of NGS data consists of the steps outlined below. These steps, or 
slight variations of them, are commonly followed to identify disease-causing vari-
ants from sequencing studies. A flowchart of the pipeline is shown in Fig. 1.

	 1.	Quality	Control	of	raw	sequencing	data	(FASTQ	files): The raw sequencing 
files are assessed using FastQC to identify any potential issues regarding 
the read sequence quality, large GC content biases, sequence length distri-
bution, sequence duplication levels, overrepresented sequences or presence 
of adapter sequences (contamination).

 2. Read Mapping to the Human Reference Genome and Preprocessing: The 
sequencing reads are aligned to the human reference genome (hg19) using 
the Burrows-Wheeler aligner (Li and Durbin, 2009) or fast gapped-read 
aligner Bowtie (Langmead and Salzberg, 2012). The mapping step can be 
performed in a parallel way to allow multiple samples to be processed at 
the same time. The resulting SAM/BAM files (Sequence Alignment/Map 
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Format and its binary form) are subsequently processed so they contain 
accurate read groups, marked duplicates and sorted reads using Picard set 
of tools. Using the current version of Genome Analysis Toolkit (GATK) 
(McKenna et al., 2010) base quality score recalibration, indel (insertions/
deletions) realignment and removal of duplicate reads are performed. SAM/
BAM files of samples ran in multiple lanes are merged.

 3. Variant Discovery: Single Nucleotide Variants (SNV) and short insertions 
and deletions are discovered and genotyped across all samples simultane-
ously using standard filtering parameters or variant quality score recalibra-
tion according to GATK Best Practice recommendations (DePristo et al., 
2011). GATK is the most widely used variant calling algorithm, although 
other algorithms such as Platypus (Rimmer et al., 2014) and VarScan 
(Koboldt et al., 2009) have also been used in large sequencing studies.

 4. Variant Annotation: Variants are annotated using the latest version of 
ANNOVAR (Wang et al., 2010). Useful information is extracted such as the 
frequency of the variants in public databases including the 1000 Genomes 
database, the Exome Variant Server and dbSNP as well as predicting 
pathogenicity of variants located in coding regions, using MutationTaster 
(Schwarz et al., 2014), PolyPhen2 (Adzhubei et al., 2010) and CADD 
(Kircher et al., 2014). Annotated VCF files are then further analyzed using 
custom scripts or reformatted and analyzed using VARSIFTER (Teer et al., 
2012) that enables easy filtering of the variants without the need for further 
script executing.

 5. Additional Quality Control: Summary statistics are calculated for each 
sample including the total number of variants, number of heterozygous 
genotypes, number of singletons, average transition/transversion ratio and 
average quality for variants for which individual has a non-reference geno-
type. These statistics are examined together with coverage analysis statis-
tics such as average read coverage for each gene. For family data, kinship 
coefficients are estimated, by applying KING (Manichaikul et al., 2010) on 
the common SNPs (Minor Allele Frequency>1%) in order to verify the fam-
ily relationships and flag potential pedigree errors or sample mix-ups. For 
case-control datasets, such methods can be used to identify cryptic related-
ness between samples that would inflate the false positive rate. In addition, 
principal components analysis is performed to identify critical potential 
population stratification that would otherwise limit the genetic association 
analysis and lead to artificial findings (Price et al., 2006) .

	 6.	 Identification	 of	 candidate	 disease-causing	 DNA	 variants: Analysis of 
WGS family data is undertaken by first categorizing the assumed nature 
of segregation of disease within each affected family member and applying 
various inheritance models, including dominant, recessive as well as de 
novo occurrence. For case-control samples, single-locus association tests or 
burden tests are performed. Single-locus tests interrogate each DNA variant 
for association with disease. All inheritance models can again be consid-
ered (allelic, dominant, recessive) but such analysis can be underpowered 
in the absence of large sample sizes. Burden tests assess the cumulative 



263Quality Assurance in Genome-Scale...

effect of multiple variants in a genomic region (i.e. gene) by collapsing or 
summarizing rare variants within the region by a single value (i.e. number 
of rare variants in cases vs. controls). The count of case-unique rare alleles 
can be tested or other tests such as the variable threshold test (Price et al., 
2010) or the two-sided C-alpha test can be applied (Neale et al., 2011).

 6.1 Coding Variants: In the first stage, the analysis is restricted to pro-
tein coding genes after excluding variants with no impact on protein 
sequence or splicing efficacy/efficiency. Variants of interest are those 
not present in publicly available control databases such as the 1000 
Genomes (The 1000 Genomes Project Consortium, 2012) and the 
Exome Variant Server. If novel variants are not found, a mean allele 
population frequency of less than 1% is used. Variants are assumed 
to be more significant if they occur within evolutionarily conserved 
sequences according to Genomic Evolutionary Rate Profiling (GERP 
score > 2.0). Candidate variants are then refined for those predicted not 
to be benign, identified according to MutationTaster and PolyPhen2. 
The candidate variants can also be interrogated within sequence data 
of large databases such as the Exome Aggregation Consortium (63,000 
exomes available at ExAC Browser). In the case of de novo mutations 
detected in families, a statistical framework is applied to further evalu-
ate excesses of the de novo mutations identified, compared to the levels 
of mutations expected by chance (Samocha et al., 2014).

 6.2 Non-coding	Variants: Non-coding variants prioritization is performed 
using GWAVA (Ritchie et al., 2014) which aims to predict the func-
tional impact of noncoding genetic variants based on a wide range of 
annotations of noncoding elements (largely from the Encyclopedia of 
DNA Elements – ENCODE), along with genome-wide properties such 
as evolutionary conservation and GC-content. Regulatory variants can 
affect transcription factor binding sites, chromatin states, epigenetic 
modifications and regulatory non-coding RNAs. MutationTaster and 
CADD are also used here since they can provide predictions for non-
coding variants especially for the ones that can be mapped to a tran-
script model, such as those in untranslated regions and introns.

	 7.	Detection	of	Copy	Number	Variation	(CNV): CNVs can be detected using 
state-of-the-art algorithms for exome sequencing data, such as xHMM 
(Fromer and Purcell, 2014), cn.mops (Klambauer et al., 2012) and exo-
meDepth (Plagnol et al., 2012). Detecting CNVs from exome sequencing 
data is challenging, as high read depth and a large number of samples are 
required for normalization and calculation of read-depth baseline. For WGS 
data, the segmentation into CNV regions is more accurate, and specific 
algorithms are used for this, such as GenomeStrip (Handsaker et al., 2011) 
CNVnator (Abyzov et al., 2011) and Control-FREEC (Boeva et al., 2011). 
If complex CNV patterns are observed, additional existing bioinformatics 
tools can be applied to detect complex chromosomal structural variations.

 8. Pathway Enrichment Analysis: In the case of multiple candidate variants 
segregating with the disease, pathway enrichment analysis can also be per-
formed using DAVID (Huang et al., 2008) and Enrichr (Chen et al., 2013) 
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that use a list of genes as input. For noncoding variation, GREAT (McLean 
et al., 2010) is applied. This algorithm aims to assign biological meaning 
to a set of noncoding genomic regions by analyzing the annotations of the 
nearby genes.

3. The problem of quality assurance
The pipeline described above is used widely by bioinformaticians in order to analyse 
large amounts of DNA sequencing data produced every day. Each step consists of 
the application of specific set of bioinformatics tools that have been developed by 
academic researchers. Hence, although the algorithms, main concept and mathemati-
cal framework behind the software have been assessed as part of the peer review 
process of scientific articles, the software developed have not been systematically 
verified and validated (Hayden, 2015). Previous work on scientific software evalua-
tion has shown that numerical disagreement between programs of scientific compu-
tation grows at around the rate of 1% in average absolute difference per 4000 lines 
of implemented code and that the nature of this disagreement is nonrandom (Hatton 
and Roberts, 1994). The software developers most often detect errors that could have 
significant effect in the results. However, errors that can occur in specific input cases 
are harder to detect and are expected to occur in any scientific program.

Lack of quality assurance of software pipelines used for analysis of WGS data is 
a critical problem that hinders the widespread adoption of genomic medicine in a 
clinical setting. A recent study found that the concordance of single nucleotide vari-
ants identified by five widely used variant calling pipelines (i.e., sequence alignment 
followed by variant calling) was less than 60%, while the concordance of the identi-
fied indels (insertions/deletions) was lower than 30% (O’Rawe et al., 2013). Analysis 
of the discordant variant calls revealed a considerable false negative rate, suggesting 
that these pipelines might miss many genuine and possibly disease-relevant genetic 
variants. Besides variant calling, the use of different variant annotation software 
programs and transcript annotation files can also make a substantial difference in 
annotation results that are not commonly appreciated (McCarthy et al., 2014). These 
reports highlight the need to ensure that any bioinformatics pipeline should be sub-
jected to better validation and quality control, especially for clinical genomic medi-
cine applications.

4.  Standard validation and QC approaches 
used in diagnostic laboratories

As next-generation whole exome sequencing and whole genome sequencing are 
becoming poised by widespread applications in a clinical setting, several inter-
national regulatory and professional bodies have proposed guidelines for quality 
assurance for genetic testing in clinical laboratories. All existing guidelines have 
a clear definition of quality metrics, such as sensitivity, specificity, reproducibility, 
and reportable range as shown in Table 1. These guidelines also stress the impor-
tance of testing a variant calling pipeline against these metrics through proper and 
adequate testing using appropriate reference materials (Gargis et al., 2012) before the 
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deployment of the system (i.e., validation) and continuously throughout the opera-
tional lifespan of the pipeline (i.e., quality control and assurance). 

TAble 1  Definitions of quality metrics used for whole genome sequencing analysis for genomic 
medicine.

Quality metric Definition

Accuracy The degree of agreement between the nucleic acid sequences 
derived from the assay and a reference sequence.

Precision The degree to which repeated sequence analyses give the same 
result- repeatability (within-run precision) and reproducibility 
(between-run precision).

Analytical sensitivity The likelihood that the assay will detect the targeted sequence 
variations, if present.

Analytical specificity The probability that the assay will not detect a sequence variation 
when none are present (the false positive rate is a useful 
measurement for sequencing assays).

Reportable range The region of the genome in which sequence of an acceptable 
quality can be derived by the laboratory test.

Reference range Reportable sequence variations the assay can detect that are 
expected to occur in an unaffected population.

These definitions exist in established guidelines for whole genome sequenc-
ing in clinical laboratory practise and originally developed by the Next-generation 
Sequencing: Standardization of Clinical Testing (Nex-StoCT) workgroup as reported 
in Gargis et al., 2012.

In such guidelines, the computational tasks composing the bioinformatics pipe-
line are separated into primary, secondary and tertiary analysis. Primary analysis 
involves sequencing instrument-specific analysis such as base-calling. Secondary 
analysis involves sequence read quality control, read alignment, and variant calling. 
Tertiary analysis involves annotation and interpretation of the genetic variants. For 
simplicity, this chapter focuses on performing quality assurance on the secondary 
analysis pipeline. Nonetheless, the same principles can be applied to primary or ter-
tiary analyses as well. These guidelines also specify requirements for documentation 
of various steps including version control to track software releases and updates to 
the analysis methods, quality metrics assessed during a test, results of pipeline vali-
dation and the process of data handling and storage. 

In addition, these guidelines also specify the need for conducting a validation 
study, with the aim of providing objective evidence that the bioinformatics pipeline is 
fit for the intended purpose. It is suggested that the validation study must identify and 
rectify common sources of errors that may challenge the analytical validity of the 
bioinformatics pipeline. Analytical validity refers to the ability of a bioinformatics 
pipeline to correctly call and annotate a variant. In the proposed guidelines it is also 
strongly suggested that analytical validity must be achieved before clinical validity 
can be considered. Clinical validity refers to the ability of a test to detect or predict 
a phenotype of interest. Clinical validity must be established by external knowledge 
such as results from large-scale population studies or functional studies. 
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In the validation process, the bioinformatics pipeline must be benchmarked using 
reference materials that are chosen to be appropriate for assessing performance of 
the pipeline for its intended purpose. It is suggested that the validation study should 
compare the results from multiple pipelines, where possible, to allow identification of 
pipeline-specific artefacts. Following the quality control and quality assurance, it is 
strongly advised that the diagnostic laboratory should confirm any variant calls using 
experimental techniques. We should note that the term validation is used slightly dif-
ferently in the software testing field, which involves only checking whether the right 
program is developed rather than checking whether the program is developed cor-
rectly (which is termed verification).

4.1  Genome in a Bottle and current frameworks 
for performance testing

The validation of a bioinformatics pipeline would require its application on spe-
cific input datasets where the correct status of the included variants is known. Such 
datasets are called reference materials (RM) and are used for benchmarking of the 
pipeline. Recently, a first accurate set of genotypes across a genome was developed 
by the Genome in a Bottle Consortium and the National Institute of Standards and 
Technology (Zook et al., 2014). This dataset was created by integrating and arbitrat-
ing between 14 data sets from 5 sequencing technologies, 7 read mappers and 3 
variant callers. Additionally, regions for which no confident genotype calls could 
be made were identified and classified based on reasons for uncertainty. It has been 
shown that high-confidence genotype calls from a well-characterized whole genome 
have been useful for assessing biases and rates of accurate and inaccurate genotype 
calls using different bioinformatics methods. This resource is publicly available and 
is continuously updated and integrated with other “gold standard” variant calls such 
as datasets from Real Time Genomics and Illumina Platinum Genomes that addition-
ally utilize pedigree information. A genome comparison and analytic testing (GCAT) 
platform has also been developed to facilitate development of performance metrics 
and comparisons of analysis tools across these metrics. “An analytical framework 
for optimizing variant discovery from personal genomes” Gareth Highnam, Jason J. 
Wang, Dean Kusler, Justin Zook, Vinaya Vijayan, Nir Leibovich & David Mittelman
Nature Communications 6, Article number: 6275, 2015. This platform gives access 
to multiple performance reports that are crowdsourced to encourage community 
involvement and input. It is constantly updated and developed to incorporate stan-
dard performance metrics and benchmarking tools being developed by the new 
Global Alliance for Genomic Health Benchmarking working group.

Although sources of error can occur at any stage of the bioinformatics pipeline, 
here we focus on the secondary analysis which consists of next-generation sequenc-
ing read mapping, variant calling and annotation. Despite the current efforts in meth-
odological approaches in diagnostic laboratories and in the academic community, 
there are no clear guidelines on several important aspects that affect the compre-
hensiveness and effectiveness of the validation and quality assurance framework, 
including:

 1. What are the characteristics of effective test cases (e.g., reference material)?
 2. How do we measure the effectiveness of a set of test cases?
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 3. How many test cases are enough?
 4. How can we check the correctness of test cases beyond the small set of gold 

standard reference material where the correctness is known? 

5. Introduction to a software-testing framework
Software testing is the process of actively identifying potential faults in a computer 
program (Ammann and Offutt, 2008). This process can be used for two purposes: 
to ensure the program is correctly implemented against the specification (i.e., veri-
fication) and to ensure the correct specification is used against the desired user 
requirement (i.e., validation). In other words, verification asks, “Are we building 
the software right?” whereas validation seeks to answer, “Are we building the right 
software?”. Software testing can be static or dynamic. Static testing involves code 
review or inspection (Hayden, 2013), whereas dynamic testing – the more common 
approach – involves execution of the program under test (PUT) given a set of test 
cases. In dynamic software testing, the PUT can be thought of an implementation of 
a (mathematical or computational) function f(x) = y where x represents all valid input 
from the input domain and y represents all possible output.

The goal of verification is to show that for a given implementation PUT, namely 
fPUT(x) = f(x) for all possible x from the input domain. An input, xfailure is a failure-
causing input if fPUT(xfailure) ≠ f(xfailure), and the PUT is deemed to contain a fault. A 
PUT may fail to satisfy a user’s need because of incorrect implementation of the 
algorithm (i.e., the verification problem), or a mismatch between the algorithm and 
the intended behaviour (i.e., the validation problem). It is often impossible to exhaus-
tively transverse through the entire input space. An effective software testing strat-
egy attempts to exploit information of the PUT to generate a set of test cases that can 
trigger as many distinct failures as possible. In order words, we want to maximise the 
chance of a test case being a failure-causing input.

The challenges faced when testing any scientific software have been found to 
occur mainly due the lack of an oracle. An oracle is a mechanism that decides if 
the software output is correct given an input. In bioinformatics, it is often impos-
sible to obtain such an oracle for the entire input domain. Nonetheless, it is often 
possible to check the correctness of a subset inputs by the use of a “gold standard” 
data set where the expected outputs are known. The bioinformatics software can 
then be tested against the expected outputs. However, such gold standard data sets 
often do not exist. For example, we do not have a “gold standard” data set for aligned 
sequenced reads from next generation sequencing in a SAM/BAM format. Formally, 
an oracle problem is said to exist when: (1) “there does not exist an oracle” or (2) “it 
is theoretically possible, but practically too difficult to determine the correct output” 
(Chen et al., 2003; Weyuker, 1982).

Challenges can also arise due to cultural differences between scientists and the 
software engineering community (Kanewala and Bieman, 2014). Scientists can often 
view the code and the model that it implements as inseparable entities. Therefore 
they test the code to assess the model and not necessarily to check for faults in the 
code. In addition, bioinformaticians are often not aware of any testing methodologies 
that can be used to ensure their software implementation is correct. In section 6 we 
will describe existing software testing approaches that can be utilised for bioinfor-
matics software development.
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Table 2 shows the definitions of software testing terms as defined by the Institute of 
Electrical and Electronics Engineers (IEEE) Standards Glossary and the International 
Software Testing Qualification Board Glossary. These terms are established in the 
software engineering field and are therefore used for the purposes of this Chapter.

TAble 2  Description of terminology used in software testing as defined by the Institute of 
Electrical and Electronics Engineers (IEEE) Standards Glossary and the International 
Software Testing Qualification Board Glossary (ISTQB).

Term Description
Validation The process of evaluating a system or component during or at the end of the 

development process to determine whether it satisfies specified requirements.
Verification The process of evaluating a system or component to determine whether the 

products of given development phase satisfy the conditions imposed at the start 
of that phase.

Quality Control A set of activities designed to evaluate the quality of developed or 
manufactured products.

Quality 
Assurance

A planned and systematic pattern of all actions necessary to provide adequate 
confidence that an item or product conforms to established technical 
requirements.

Test Case A set of test inputs developed for a particular objective, such as to exercise a 
particular program path or to verify compliance with a specific requirement.

Test Suite A set of several test cases for a component or system under test, where the post 
condition of one test is often used as the precondition for the next one.

Regression 
Testing

Testing of a previously tested program following modification to ensure that 
defects have not been introduced or uncovered in unchanged areas of the 
software, as a result of the changes made. It is performed when the software or 
its environment is changed.

Test Coverage The degree to which a given test or set of tests addresses all specified 
requirements for a given system or component.

Fault An incorrect step, process, or data definition. For example, an incorrect 
instruction in a computer program.

Failure Deviation of the component or system from its expected delivery, service or 
result.

Static Testing Testing of a software development artifact, e.g., requirements, design or code, 
without execution of these artifacts, e.g., reviews or static analysis.

Dynamic Testing Testing that involves the execution of the software of a component or system.

6.  Software testing approaches, applications and evaluations
In this section we will describe traditional as well as more recently developed 
approaches for software testing and assess their advantages and disadvantages. 
These methods outline general principles that can be effectively utilized for bioinfor-
matics software development.

6.1. Traditional software testing approaches

Current approaches for bioinformatics software testing can be broadly classified into 
three classes: special test cases, N-version programming, and valid range testing. 
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The use of special test cases is perhaps the most common approach of software test-
ing in practice. The idea is that even though it is impossible to verify fPUT(x) = f(x) for 
all possible x, it is often possible to verify the correctness of a subset of input x. In the 
context of testing a variant calling pipeline, it is a standard practice to generate small 
input FASTQ files as test cases, where the output can be verified manually. Taking 
this idea further, this process can be automated by using a sequence read simulator 
to generate many test cases and to check the correctness of the output against the 
DNA sequence from which the input was simulated. The major shortcoming of this 
approach is that these test cases often do not represent the same diversity as real data. 
As a result, we are often left to infer the correctness of the untested input domain 
from the tested input domain.

N-version programming (Knight and Leveson, 1986) is also a very common 
approach in gaining confidence about the correctness of a bioinformatics program. 
The idea is that multiple implementations (or versions) of a program are compared to 
identify possible failures in one or more of the implementations. In fact, the method 
used to discover the high false negative rate in variant calling pipelines was none 
other than N-version programming (O’Rawe et al., 2013). One advantage of this 
approach is that it can be used with any input as a test case and can be readily imple-
mented if multiple versions of the same program already exist. In the absence of a 
test oracle, a main disadvantage is that it is difficult to judge what the correct output 
is, when different pipelines generate very different results. The observed substan-
tial discordance between five commonly used variant calling pipelines highlight the 
problems of solely relying on this approach for quality assurance (O’Rawe et al., 
2013). Additionally, having multiple N-versions is computationally expensive.

Lastly, “valid range testing” is often employed to test whether fPUT(x) is within a 
reasonable range of f(x). This is a very intuitive method that many scientists use to 
decide whether a computer program “looks” fine. This technique requires knowledge 
of the valid range of f(x), and the usefulness of this approach depends on whether a 
tester can identify a tight range.

These approaches are implicitly used in current standard quality assurance criteria 
for genetic pathology testing, such as the use of “gold standard” reference materi-
als for proper and adequate testing (special test case), validation by comparison of 
multiple computer programs (N-version programming), and defining the operational 
range of the output (valid range testing). Beyond pathology genetic testing, these 
basic testing methods are also widely used in other fields of bioinformatics. This 
problem is particularly relevant in the area of systems biology. The challenge of test-
ing both deterministic and stochastic simulators has been realized by the Systems 
Biology Mark-up Language (SBML) community. To test the reliability of a new 
SBML capable simulator, the current practice involves executing it with multiple 
existing simulators on some well studied input models and compare the consistency 
of the simulation results (Bergmann and Sauro, 2008), or running a tool using a small 
test suite where the expected output is known (Evans et al., 2008). The same idea is 
also applied to evaluate the performance of different gene network reconstruction 
algorithms – the so-called crowd approach (Marbach et al., 2012). All these examples 
make use of special test cases, N-version programming, and/or valid range testing. 

In addition to the aforementioned software testing techniques, there are some 
state-of-the-art techniques that are also suitable for testing bioinformatics programs. 
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In the following sections, we will review two such techniques: Metamorphic Testing, 
and Adaptive Random Testing.

6.2. Metamorphic Testing

Metamorphic Testing (MT) alleviates the oracle problem by using some algorithm or 
problem domain-specific properties, namely metamorphic relations (MRs), to verify 
the testing outputs. The central idea is that although it is impossible to directly test 
the correctness of any given test case, it may be possible to verify the relationships of 
the outputs generated by multiple executions of a program (Chen et al., 1998; Zhou 
et al., 2004). In other words, Metamorphic Testing tests for properties that users 
expect of a correct program. Some test cases (namely source test cases in the context 
of Metamorphic Testing) can be selected according to some traditional testing tech-
niques. Further test cases (namely follow-up test cases in the context of Metamorphic 
Testing) can be generated based on the source test cases and according to the meta-
morphic relations. All test cases are executed, and then the outputs of the source and 
follow-up test cases are checked against the metamorphic relations. If any group of 
source and follow-up test cases violates (that is, does not satisfy) their corresponding 
metamorphic relation, the tester can say that a failure is detected and hence con-
clude that the program has bugs. In other words, a metamorphic relation serves two 
purposes: (1) generation of additional test cases by transforming the source input, 
and (2) checking the relationship between the outputs produced by the execution 
of the “source” and “follow-up” test cases. It should be noted that in general many 
follow-up test cases can be derived from a single source test case input based on one 
metamorphic relation. In addition, more than one source test case can be applied for 
a particular metamorphic relation. 

As an example, let us consider how we can use Metamorphic Testing to test a 
program that computes the mathematical sine function. Some special test cases 
exist based on well known mathematical knowledge, such as sin(0) = 0, sin(p/2)=1, 
sin(p/6) = 0.5, etc. Nonetheless, it is much harder to determine the value of any arbi-
trary x, such as sin(1.345). The key idea of Metamorphic Testing is that we can con-
struct metamorphic relations based on well known properties of the mathematical 
sine function, such as sin(x + 2p) = sin(x), sin(x + p) = –sin(x), sin2(x) + sin2(p/2 – x) 
= 1, etc. After selecting the source test case, such as x = 1.345, we can use these 
metamorphic relations to generate additional follow-up test cases such as x = 1.345 
+ 2p, 1.345 + p, and p/2 – 1.345. The output of these follow-up test cases can then be 
compared to the output of the source test case to determine if the metamorphic rela-
tions hold. Using this method, the entire range of input domain can be tested, hence 
alleviating the oracle problem.

6.3. Adaptive Random Testing

Failure-causing inputs are not randomly distributed in the input space, but are usu-
ally clustered together to form distinct failure regions (Chan et al., 1996). The impli-
cation is that non-failure regions are also contiguous; therefore after the execution 
of a non-failure-causing input xi, one should select a random test case that is the fur-
thest away from xi in the input space. This is the basis of Adaptive Random Testing 
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(ART) (Chen et al., 2004, 2010). Theoretical and empirical studies have shown that 
Adaptive Random Testing can be up to 50% more effective than traditional random 
testing in terms of failure detection ability (Chen and Merkel, 2008). The simplest 
implementation of Adaptive Random Testing involves first generating a random set 
of test cases in the input domain, from which the test case that is furthest away from 
all previous “successful” test cases is chosen. This process should continue until a 
pre-defined criterion is satisfied. Adaptive Random Testing provides a simple and 
rational approach to automatically select diverse test cases.

6.4. Case study: testing of NGS short-read alignment software 

Metamorphic Testing has now been applied to many types of computer programs, 
including bioinformatics software (Chen et al., 2009; Giannoulatou et al., 2014; Sadi 
et al., 2011; Xie et al., 2011). In a recent study (Giannoulatou et al., 2014) Metamorphic 
Testing was used to test three commonly used NGS short-read aligners: BWA (Li 
and Durbin, 2009), Bowtie (Langmead et al., 2009) and Bowtie2 (Langmead and 
Salzberg, 2012). Nine metamorphic relations were developed that aim to capture the 
expected behaviour of a short-read alignment program. For example, the following 
three metamorphic relations (MRs) were applied for alignment of paired-end reads:

MR1: Random permutation of reads. The reads in the FASTQ files are reshuf-
fled. The output mapping is expected to be the same as the original output.

MR5: Extension of reads. After initial mapping, each read is extended by 20 
bp to the 3’ or 5’ end of the read, with high quality score, based on the 
reference genome sequence. The output mapping is expected to remain the 
same.

MR7: Mapped reads. After initial mapping, only the mapped reads are selected 
and remapped against the reference genome. It is expected that all of the 
reads will be mapped.

Using these metamorphic relations, many test cases were generated based on sim-
ulated data, and real WES data. None of the three aligners were found to satisfy all 
nine metamorphic relations, including the above three (Giannoulatou et al., 2014). 
Failing to satisfy these metamorphic relations implies the presence of false posi-
tive and/or false negative alignment. In order to investigate the effect of these mis-
alignments in downstream WGS or WES analysis, a traditional pipeline was applied 
that involves BWA alignment followed by using GATK for variant calling. The pipe-
line was applied to an exome sequencing run of the HapMap sample NA12872 and 
the analysis was repeated after considering only the uniquely mapped reads. It was 
found that prior to any filtering, the number of variants called was different when the 
original BAM file was used and after the application of metamorphic relations such 
as MR1, MR5 and MR7 (Fig. 2A). Non-uniquely mapped reads were subsequently 
filtered and the variant calling step was repeated. Surprisingly, there was still discor-
dance between the numbers of variant calls made (Fig. 2B). In order to achieve con-
cordance between the results higher quality threshold was needed while the specified 
tags were not sufficient to capture all of the non-uniquely mapped reads. 

It is important to note that in the above example, the limitation of BWA was 
revealed by directly testing the individual pipeline instead of comparing it with other 
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algorithms as in (O’Rawe et al., 2013), and is based on a real WES data set from a 
HapMap individual (instead of smaller special test cases). This unique capability 
enables the correctness of a variant calling pipeline to be evaluated in a deployment 
environment on real WES or WGS data. Therefore it enables ongoing   quality assur-
ance monitoring of a pipeline in its operational environment on real data. Such an 
approach provides the fi rst step towards automated testing of any NGS short read 
aligner and ultimately of any NGS bioinformatics pipeline.

6.5  Empirical evaluation of  software testing 
strategies:  Mutation Analysis

An important question that impacts the implementation of bioinformatics quality 
assurance is how can we demonstrate the effectiveness of a set of test cases? One 
approach is to artifi cially generate a number of fault-seeded versions of the program 
under test, and determine whether a given set of test cases can detect them. This 
process is referred to as  mutation analysis (Andrews et al., 2005; Woodward and 
Halewood, 1988). A program with a seeded fault is called a mutant (Fig. 3), and is 
said to be “killed” if a failure is detected by a set of test cases. Each mutant is gener-
ated by applying one of several very simple mutation operators to alter the source 
code of the original program. Previous studies have shown that, despite the simplic-
ity of these mutation operators, the capability of detecting failures from the gener-
ated mutants is a good indicator of the effectiveness of a testing method (Andrews et 
al., 2005). Mutants can either be generated by hand or by the a  mutation analysis tool 
such as MuJava (Ma et al., 2005). Therefore, it is possible to generate many distinct 
non-equivalent mutants of most programs.

FIGURE 3 A (mutant) program with a seeded fault.

FIGURE 2 Number of variants called using original read mapping and mapping after the applica-
tion of MR1, MR5 and MR7. (A) Using all the reads. (B) After removal of non-uniquely mapped 
reads. This fi gure is adapted with modifi cation from (Giannoulatou et al., 2014).
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Mutation analysis has been previously used to measure the fault-revealing ability 
of the test cases generated by Metamorphic Testing when applied to a short read 
sequencing aligner, a gene network simulator (Chen et al., 2009), and a phylogenetic 
inference program (Sadi et al., 2011). A general observation from these results is that 
test cases generated based on real data tend to have better fault-revealing ability, pre-
sumably because they better capture the complexity in the data that makes it prone 
to triggering a failure.

One unique feature of mutation analysis is that it provides a means to quantify 
the effectiveness and comprehensiveness of a test suite in terms of the proportion 
of mutants killed. In a study of the benefits and applicability of mutation analysis, 
it was concluded that the implementation of mutation operators in the studied muta-
tion tools, provided a good approximation of the actual quality of a test suite and 
an advantage over conventional code coverage (Ramler and Kaspar, 2012). In addi-
tion, the information about which mutants cannot be killed will give insight into the 
limitation of a test suite, thus informing how additional test cases can be generated.

7.  Cloud-based testing as a service (TaaS) for bioinformatics
Testing-as-a-Service (TaaS) is a model of software testing which provides automated 
software testing on the web (van der Aalst 2009). The development of TaaS is fueled 
by the recent growth in the cloud computing model — which provides scalable, on 
demand computing resources with relatively low cost — and the need for an auto-
mated software testing framework in order to reduce the barrier in implementing 
quality assurance in genomic medicine applications. Aside from helping software 
developers to write better software, TaaS application also extends to end users for 
testing software prior to deployment and as a quality certification service to provide 
objective assessment of software quality (Candea, Bucur, and Zamfir 2010).

There are a growing number of commercial TaaS providers targeting different 
software domains. Sauce Lab Selenium Testing is an example of TaaS which pro-
vides a cloud-based, cross browser testing of web application using Selenium. For 
testing, multiple virtual machines (VM) are set up with different operating systems 
and/or browsers to test the web application in various environments. User interaction 
within the web application is then simulated and the result of the interaction verified 
using Selenium. The result is then collected and the VMs are destroyed to ensure 
security of data. Zephyr, on the other hand, is a real-time test management plat-
form for managing testing life cycles during software development. Using Zephyr’s 
web interface, users are able to create, manage and plan tests to be performed. Tests 
are then executed in the Zephyr cloud and the results of testing are made available 
through the metrics and dashboard on the web interface. 

There are also a growing number of TaaS frameworks developed by academic 
researchers. One example is EPFL (Ecole Polytechnique Federale de Lausanne) 
cloud9, which provides cloud-based automated testing using parallel symbolic exe-
cution (Ciortea et al. 2010). While symbolic execution is an effective automated test-
ing technique, it is very poorly scalable due to the need to analyze all possible paths 
of a program’s execution tree. Cloud9 implements a symbolic execution engine that 
can scale to a large cluster of VM depending on the testing task in order to enable 
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software testing in a short amount of time. Another example of TaaS framework 
developed by academic researchers is University of York YETI (York Extensible 
Testing Infrastructure), which offers a cloud-based automated random testing tool 
(Oriol and Ullah 2010). This is achieved by executing the standalone version of YETI 
on a cloud-based deployment of Hadoop, Apache’s implementation of Map Reduce 
framework. During the mapping stage, tests are executed depending on the argu-
ments read as input. The result of the tests are then aggregated during the reduce step 
and written to disk to be made accessible for users. By default, most TaaS tools above 
are designed to test for major system failures, such as a computer crash, rather than 
the correctness of the software output. In order to incorporate correctness testing 
to the TaaS tools, domain-specific knowledge is required for creating test cases. In 
the field of genomic medicine, it is vital for bioinformatics software to be reliable in 
terms of producing correct outputs.

The key advantage of TaaS model is cost-effective software testing. Software test-
ing commonly requires obtaining and maintaining testing infrastructure that can 
be quite costly, especially for large testing tasks. With TaaS, developers are able to 
deploy resources on the cloud only when required for testing and they only need to 
pay for the resources used, thus eliminating the need to purchase and set up test-
ing infrastructure (Riungu-Kalliosaari, Taipale, and Smolander 2012). Another key 
advantage of the TaaS model is the flexibility of the tests execution and the allocation 
of resources. With TaaS, developers are able to perform testing at anytime without 
the need to reserve computing resources. Furthermore, the scalable nature of cloud 
computing allows the variable provisioning of resources depending on the complex-
ity of tasks at different stages of testing (Ciortea et al. 2010). Finally, TaaS provides 
a more user-friendly means of automating software testing compared to traditional 
testing framework. This is designed to encourage developers, in particular begin-
ners, to adopt software testing during software development.

Alhough there are significant advantages for TaaS model, there are a number of 
challenges. The main technical challenges are providing a continuous testing service 
and ensuring that test results are delivered on time. This requires the TaaS providers 
to provision enough computing resources for the service to run continuously and be 
able to cope with the varied testing workload, without over-provisioning to avoid 
loss. Aside from technical challenges due to resource allocation, there are also other 
challenges such as data security and privacy. To perform effective testing, some test 
data are required from the user of TaaS, which will need to be stored securely in 
order to avoid confidential breach of data. This is especially important when dealing 
with human genomic data (Riungu-Kalliosaari, Taipale, and Smolander 2012). 

There is currently a need for bioinformatics-specific TaaS framework that would 
test the reliability and correctness of bioinformatics software for use in genomic 
medicine. Such a system would allow users – software developers, bioinformatics 
users, or technicians from a clinical diagnostic laboratory – to easily test their bioin-
formatics pipeline in an environment which realistically simulates the specific hard-
ware and software requirement in which the pipeline is supposed to operate in. This 
would encourage validation and quality control to be taken much more seriously 
by bioinformatics software developers, hence lead to the improvement of the bioin-
formatics software quality. This in turns will facilitate the widespread adoption of 
genomic medicine in a clinical setting.
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8. Future Directions
Building capability in genomics and bioinformatics is the key to translating the ben-
efit of “omic” technologies into clinical practice. As genetic testing based on next-
generation sequencing technology is already being used in research and poised for 
clinical application in the next 2-3 years, research into quality assurance of bioinfor-
matics pipelines used in genomic medicine is needed. In this chapter, we argue that 
the adoption of state-of-the-art analytical framework and methodologies from the 
field of software testing can provide a foundation for developing evidence-based, 
effective, and readily deployable strategies for validation and quality control of bio-
informatics pipelines in genomic medicine. The field of bioinformatics software 
testing is still young, so there is ample room for future research and development. 
Specifically, we have identified important research directions in the field of bioinfor-
matics that are currently lacking. These include: 

 1. The characterization of the failure-causing inputs of common variant call-
ing pipelines, and the development of automated test case generators for 
systematic pipeline validation. 

 2. The development of real-time quality control strategies that can verify the 
correctness of real input under the operational environment.

 3. The implementation of cloud-based validation and quality control modules 
that will enable widespread use of quality assurance strategies. 

Overall, we believe that further research will lead to development of new evi-
dence-based quality assurance guidelines and computational tools that will benefit 
whole exome and whole genome sequencing projects being carried out by medical 
research institutions, hospitals, and clinical laboratories worldwide. Such techniques 
and tools can also be applicable to a wide range of bioinformatics or health informat-
ics problems, such as biomedical text and image mining, or clinical decision support 
systems. Therefore, such research directions can also benefit the entire biomedical 
community. 
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Recent Computational Trends in 
Biological Sequence Alignment

Mohamed Issa1*

1. Introduction

Sequence alignment between amino acids or nucleotides sequences represents the 
evolutionary history of the sequences. Also, it helps in understanding the function 
and information of biological sequences. Therefore, biological sequence alignment 
is one of the most important problems in bioinformatics due to it helps in finding the 
function of a newly discovering biological sequence, evolutionary relation between 
genes and predicting the structure and function of proteins.  It is based on optimizing 
the number of matches between residues of sequences occurring in the same order in 
each sequence. There are two main classes of sequence alignment:

 1. Pairwise sequence alignments which is used for aligning two biological 
sequences only.

 2. Multiple sequence alignments involves the alignment of more than two bio-
logical sequences

This chapter will focus on pairwise sequence alignment algorithms. In addition, 
the development of it from the point of view of accelerating its execution using hard-
ware accelerators like Graphical Processing Unit and Field Programmable Gate 
Array. Also, this chapter includes an application  called Gene Tracer which is based 
on pairwise sequence alignment algorithms. Gene Tracer is used to trace the com-
mon subsequences of ancestors in the offspring.  The chapter is organized as follows: 
The types of pairwise alignments algorithms are presented in section 2. In section 3, 
an overview on accelerating sequence alignment algorithms on hardware accelera-
tors such as Field Programmable Array Gate, Graphical Processing Unit and Multi-
Core. In section 4  Gene Tracer application will be explored and its acceleration on 
Graphical Processing Unit and Multi-Core architecture. Finally, in the last section, 
we present the conclusion of this chapter.
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2. Pairwise Sequence Alignment
Pairwise sequence alignment is divided into two approaches:  (1) Dot Plots approach, 
(2) Computation scoring approaches. Computation scoring algorithms like Global 
pairwise  sequence alignment, Local pairwise sequence alignment, Semi-Global 
pairwise sequence alignment and other heuristic algorithms. In the following each 
kind will be discussed.

2.1 Dot Plots Approach 

Dot plot is the simplest method to measure the similarity between genetic sequences. 
It represents the region of similarity using dot plots. The method is done by con-
structing a two dimension dot plot, the first sequence is assigned to the horizontal 
axis and the second sequence assigned to vertical axis. The nucleotides of horizontal 
axis at positions (1 to w), where w is the window size, are compared to the nucleo-
tides of vertical axis at (1 to w).  If the number of identical nucleotides more than 
certain cut off score a dot is plotted at position (1 , 1). Then the nucleotides at position 
(2 to w+1) in the horizontal axis is compared again with that at positions (1 to w) in 
the vertical axis. The process is repeated until each window size (w) in the horizontal 
compared to each window in the vertical. The similar region is indicated by a diago-
nal of dots as shown in Fig. 1. and its length represents the grade of similarity. The 
window size and the cutoff score can be both varied according the similarity of the 
two sequences being compared. 

Figure 1 The similarities between two sequences using Dot plots. 

2.2 Sequence Scoring Approach

A sequence alignment is the operation of pairwise matching between nucleotides 
in DNA or a mino acids in Proteins. The alignment is used as a measurement for 
the evolutionary relationships (sharing common ancestors) between biological 
sequences. Three movements control the alignment of correspondence residues in 
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the two sequences: (1) a mutation that replace one residue with another. (2) an inser-
tion of one or more positions, (3)  deletion of one or more positions [Dayhoff et al 
.1987].

In nature, mutation has been oc.curred at higher frequency than insertion and dele-
tion. Gaps are added in many positions in the two alignment sequences to adjust the 
correspondence position of similar residues. Besides, Gaps are used to increase the 
number of possible alignments between two or more sequences as shown in Fig. 2. 

Figure 2 Three possible gapped alignment for two DNA sequences.

As seen in the dot plot approach, it gives only the visual inspection of the align-
ment’s length or positions. So, a scored alignment was developed to reflect a value of 
the homology and evolutionary divergent.  A simple scoring alignment including gap 
penalties can be computed as follows:

gap penalty if seq or seq

match score if no gaps and seq seq

mismatch score it no gaps and seq seq
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For example, for the three different alignment in Fig. 2, if we assumed the match 
score is +1, mismatch score is 0 and gap is  -1. So the alignment score from left to 
right would be 1, 3, 3. In nature there is a substitution score between nucleotides 
in DNA or amino acids in Proteins. These scores called substitution matrices and 
determined based on residue hydro-phobicity, charge, electro negativity and size. 
The common usage scoring matrices are PAM (Percent Accepted Mutations) and 
BLOSUM (BLOcks SUbstitution Matrix).

Pairwise alignment algorithm can be computed using two essential approaches, 
dynamic programming approach and heuristic methods. Dynamic programming 
consumes long time of execution but gives highly accurate alignment.  In contrast, 
heuristic methods may have small execution time but don’t guarantee accurate 
alignment. 

Dynamic programming approach is a programming method like the divide-and-
conquer approach, where the problem is solved  by dividing it into sub problems 
and the optimal solution may be obtained [Cormen et al.]. There are three types of 
pairwise sequence alignment algorithms based on dynamic programming: Global  
pairwise sequence alignment, Local pairwise sequence alignment and  Semi-Global 
pairwise sequence alignment.

2.2.1 Global pairwise sequence alignment

A  Global pairwise sequence alignment involves the alignment of the entire of two 
sequences to finds the similar and different portions of the two sequences. The 
Needleman and Wunsch sequence alignment algorithm [Needleman and Wunsch 
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1970] is the essential dynamic programming sequence alignment method for comput-
ing the global alignment. This algorithm works as follow for aligning two sequences 
S1 and S2 globally with lengths n and m respectively: 

 (a) Alignment Computing: a scoring matrix M of size (m+1)*(n+1) is con-
structed and initialized using  a substitution matrix, such as PAM  [Dayhoff 
et al 1987],  BLOSUM [Henikoff 1992] for proteins or specified substitu-
tion matrix for DNA. Line by line scores are computed according to Eqn.1 
starting from the left upper cell to the right lower cell [Elloumi and Zomaya 
2011] . 
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  Where P is a constant gap penalty, se  is the divergent evolutionary score 
between the resduies or nucleotides at position i in S1 and the one at position 
j in S2 and is substituted from standard substitution matrices like PAM and 
BLOSUM. 

 (b) Finding the Alignment: this process aims to trace back the scoring matrix 
by building a path was called maximum score path such as in Fig. 3, which 
gives an optimal global pairwise sequence alignment. It starts from the 
lowest right cell to the upper left cell and three types of possible movements 
are allowed:
- Diagonal movement: This movement  corresponds to the passage from 

a cell (i,j) to a cell (i-1,j-1).
- Vertical movement: This movement corresponds to the passage from a 

cell (i,j) to a cell (i-1,j).
- Horizontal movement: This movement corresponds to the passage from 

a cell (i,j) to a cell (i,j-1).

Figure 3 Back-Tracing Alignment scores’ matrix to find the optimal alignment. 
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Needleman_wunch  Alignment algorithm  with constant gap 

Input : 
 Seq1 :   sequence // 1st sequence  
 Seq2 :  sequence // 2nd sequence
 M :   length of   Seq1
 N :  length of  Seq2
 g : constant gap cost
 S :   match score
 NS :  mismatch score 

Output : 
 Seq1_Align : sequence //Seq1 Aligned 
 Seq2_Align :  sequence //Seq2 Aligned

Variable :
 north : contain value of upper cell  of current cell
 north_west :  contain value of upper left cell  of current cell
 west :  contain value of left  cell  of current cell
 H :  score matrix length of (M+1)(N+1)

Begin 
// Forward Trace : 

Sub_mat  ( Seq1 [i] , Seq2 [j] )
 {
 If ( Se[i] = = Seq2 [j] )  return  S
 If (Seq1 [i]  ! = Seq2 [j]  ) return  NS
 }
For i  : = 0 to M do H[0,i] : = − i * g   end
For j := 1 to N do H[ j,0] : = − j * g   end
  For i  := 1 to M do
   For j  :=  1 to N do
    north = H[i−1,j] – g
    west = H[i,j−1] – g
    north_west =  H [i−1,j-1] +  Sub_mat ( Seq1 [i] , Seq2 [i] )
     H [i,j] :=  max ( north  , west , north_west )
   end
  end

// Backward Trace : 
 i = ( M +1 )  ,  j = ( N +1 ) // Start from the lowest right cell. 
 K = 0 
 Align  ( ( M + 1 ) , ( N + 1 ) , k )  {
  If ( i = 0  ,  j = 0  )
  Return
  If  ( H [ i−1 , j ] – g = H [ i , j ] ) 
  {
  Seq1_Align [k] = Seq1 [i] , Seq2_Align [k] = ‘_’
  K ++ ,  Align ( i-1 , j , k )
  }
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  If  ( H [ i , j-1 ] – g = H [ i , j ] ) 
  {
  Seq1_Align [k] = ’_’  , Seq2_Align [k] = Seq2 [i]
   K ++ ,  Align ( i , j-1 , k )
  }
  If  ( H [ i-1 , j-1 ] + score ( Seq1[i] , Seq2[i] ) = H [ i,j ] )
  {
   Seq1_Align [k] = Seq1 [i] , Seq2_Align [k] =Seq2 [i]
   K ++ , Align  ( i-1 , j-1 , k )
  }
 }
  Reverse Seq1_Align , Seq2_Align  
  Return  Seq1_Align , Seq2_Align 

End
Time complexity of the algorithm of Needleman and Wunsch is O(m*n) and space 
complexity is O(m*n) where m, n are lengths of the two sequences. An example of 
global alignment algorithm as shown in the following:  

 Input :  Seq1 = ATAT  ,  Seq2 = TATA

 For S = 1 ,  NS = -1,   g = 1

 Scoring matrix (H) :

T A T A

0 -1 -2 -3 -4

A -1 -1 0 -1 2

T -2 0 -1 1 0

A -3 -1 1 0 2

T -4 -2 0 2 1

The bold cells are the optimal sequence alignment path starting from the lower 
right cell and ending at the upper left cell. The first row and column are not included 
in matrix but to clarify the algorithm.

Output: Seq1_Align = T A T A _
Seq2_Align = _ A T A T

The common application of global alignment is comparing two genes with almost 
the same function, for example, comparison of human’s gene versus mouse’s gene.

2.2.2 Pairwise  Local Sequence Alignment

A Pairwise Local Alignment is used to find the similarities between biological 
sequences. It involves the alignment of portions of two sequences as shown in Fig. 4, 
however global sequence alignment aligning the entire of two biological sequences. 
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Smith-Waterman [Smith and Waterman 1981] developed an algorithm for finding 
local sequence alignment between two biological sequences. 

Figure 4 Global alignment versus Local alignment.

Smith’s algorithm compute alignment the same as global alignment using two 
steps: computing the scores and backtracing the matrix to find the alignment por-
tions. For computing alignment scores, the algorithm used Equation 2 [Smith and 
Waterman 1981] and used score zero to avoid negative scores since it aimed to find 
the alignment of portions not entire sequence. 
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The alignment of portions is found by tracing back the matrix  but starting from the 
cell contains maximum score to guarantee finding the optimal local sequence align-
ment. It resumes tracing back the matrix until find zero and stop. 

Smith-Waterman  Alignment algorithm with constant gap 

Input :  
 Seq1 :   sequence // 1st sequence  
 Seq2 :  sequence // 2nd sequence
 M :   length of   Seq1
 N :  length of  Seq2
 g : constant gap cost
 S :   match score
 NS :  mismatch score 

Output : 
 Seq1_Align : sequence //Seq1 Aligned 
 Seq2_Align :  sequence //Seq2 Aligned
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Variable :
 north : contain value of upper cell  of current cell
 north_west :  contain value of upper left cell  of current cell
 west :  contain value of left  cell  of current cell
 H :  score matrix length of (M+1)(N+1)
 Maxscore:   maximum score of H matrix

Begin 

// Forward Trace : 

Sub_mat  ( Seq1 [i] , Seq2 [j] )  
 {
 If (  Se[i] = = Seq2 [j] )  return  S
 If (Seq1 [i]  ! = Seq2 [j]  ) return  NS
 }    
For i  : = 0 to M do H [0 , i] : = 0   end
For j := 1 to N do H [j , 0] : = 0   end
Maxscore = 0;   
 For i  := 1 to M do
  For j  :=  1 to N do
  north = H[i−1 , j] – g
  west = H[i , j−1] – g
  north_west =  H [i−1 , j-1] +  Sub_mat ( Seq1 [i] , Seq2 [i] )
   H [i , j] :=  max ( north  , west , north_west , 0 )
    If (H [i , j] > Maxscore) 
       {
        Maxscore = H[i , j]
        Pos_i  = i , Pos_ j = j 
       }
  end
 end

// Backward Trace : 
K = 0 , i = Pos_i   , j = Pos_i  
Align  ( ( M + 1 ) , ( N + 1 ) , k )  {
  If  (  i = 0  ,  j = 0  )
   Return
 If  ( H [ i−1 , j ] – g = H [ i , j ] ) 
 {
   Seq1_Align [k] = Seq1 [i] , Seq2_Align [k] = ‘_’
   K ++ ,  Align ( i-1 , j , k )
 }
 If  ( H [ i , j-1 ] – g = H [ i , j ] ) 
 {
   Seq1_Align [k] = ’_’  , Seq2_Align [k] = Seq2 [i]
   K ++ ,  Align ( i , j-1 , k )
 }
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If  ( H [ i-1 , j-1 ] + score ( Seq1[i] , Seq2[i] ) = H [ i,j ] )
 {
   Seq1_Align [k] = Seq1 [i] , Seq2_Align [k] =Seq2 [i]
   K ++ , Align  ( i-1 , j-1 , k )
 }
  }
 Reverse Seq1_Align , Seq2_Align  
 Return  Seq1_Align , Seq2_Align 

End
Time and space complexities of the algorithm of Smith and Waterman  [Smith and 
Waterman 1981] is O(m*n). 

An example of pairwise local alignment is as shown in the following:

Input :     Seq1 = GACGG,    Seq2 = ACGA

For S = 1 ,  NS = -1 ,   g = 1

Scoring matrix H :

G A C G G

0 0 0 0 0 0

A 0 0 1 0 0 0

C 0 0 0 2 1 0

G 0 1 0 1 3 2

A 0 0 2 1 2 2

Starting from the maximum score and ending at the cell contain the first 0 in 
the optimal alignment path. The maximum score express the length of common sub 
sequence.

Output :
  Seq1_Align = A C G

  Seq2_Align = A C G

The most commonly usage of local alignment is searching for local similarities in 
large sequences (e.g., newly sequenced genomes).

2.2.3 Pairwise Semi-Global Sequence Alignment

A pairwise semi-global alignment is used for searching about the short sequence in a 
huge genomes. It don’t penalize the gaps at the start or at the end of the two sequences. 
It is like global alignment but the difference is in back-trace. It starts from the maxi-
mum score value in the last row or column depends on which sequence is assumed to 
be prefix of the other. The main application of using semi-global sequence alignment 
is DNA fragment assembly [S.Henikoff and J.G. Henikoff 1992].



288 Computational Biology and Bioinformatics

Semi-Global Sequence Alignment algorithm  with constant gap 

Input :  
 Seq1 :   sequence // 1st sequence  
 Seq2 :  sequence // 2nd sequence
 M :   length of   Seq1
 N :  length of  Seq2
 g : constant gap cost
 S :   match score
 NS :  mismatch score 

Output : 
 Seq1_Align  : sequence //Seq1 Aligned 
 Seq2_Align :  sequence //Seq2 Aligned

Variable :
 north : contain value of upper cell  of current cell
 north_west :  contain value of upper left cell  of current cell
 west :  contain value of left  cell  of current cell
 H :  score matrix length of (M+1)(N+1)

Begin 

// Forward Trace : 

Sub_mat  ( Seq1 [i] , Seq2 [j] )
 {
 If (  Se[i] = = Seq2 [j] )  return  S
 If (Seq1 [i]  ! = Seq2 [j]  ) return  NS
 }
For i  : = 0 to M do H[0,i] : = − i * g   end
For j := 1 to N do H[ j,0] : = − j * g   end
  For i  := 1 to M do
   For j  :=  1 to N do
    north = H[i−1,j] – g
    west = H[i,j−1] – g
    north_west =  H [i−1,j-1] +  Sub_mat ( Seq1 [i] , Seq2 [i] )
     H [i,j] :=  max ( north  , west , north_west )
    end
  end
Maxscore = H[0,N]
For i := 1 to M
 If (H[i , N] > Maxscore) 
  {
  Maxscore = H[i , j]
  Pos_i  = i , Pos_ j = j  
  }

 // Backward Trace : 
K = 0 , i = Pos_i   , j = Pos_i  
 Align  ( ( M + 1 ) , ( N + 1 ) , k )  {
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  If  (  i = 0  ,  j = 0  )
  Return
   If  ( H [ i−1 , j ] – g = H [ i , j ] ) 
   {
   Seq1_Align [k] = Seq1 [i] , Seq2_Align [k] = ‘_’
   K ++ ,  Align ( i-1 , j , k )
   }
  If  ( H [ i , j-1 ] – g = H [ i , j ] ) 
   {
  Seq1_Align [k] = ’_’  , Seq2_Align [k] = Seq2 [i]
   K ++ ,  Align ( i , j-1 , k )
   }
  If  ( H [ i-1 , j-1 ] + score ( Seq1[i] , Seq2[i] ) = H [ i,j ] )
   {
   Seq1_Align [k] = Seq1 [i] , Seq2_Align [k] =Seq2 [i]
   K ++ , Align  ( i-1 , j-1 , k )
   }
 }
  Reverse Seq1_Align , Seq2_Align  
  Return  Seq1_Align , Seq2_Align 

End
Time complexity of Semi – Global alignment algorithm and also space complexity 
is O(m*n). An example of Semi - Global  alignment algorithm is as shown in the 
following:  

Input :     Seq1 = CA   ,    Seq2 = GACAAG

For S = 1 ,  NS = -1 ,   g = 1,

Scoring matrix  H is shown in the right.

C A

0 0 0

G 0 -1 -1

A 0 -1 0

C 0 1 0

A 0 0 2

A 0 1 1

G 0 0 0

Output :
 Seq1_Align = G A C A A G
 Seq2_Align = – – C A – –
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2.2.4 Heuristic methods

Heuristic approaches are used to speed up the alignment operation. It is very helpful 
in searching and scanning biological sequence database. For example, for finding the 
most similar protein from a database contains around 13 million proteins to another 
protein it will consume huge hours using dynamic programming sequence alignment 
approaches. Instead, heuristic methods will accelerate the operation. One of the most 
common tools for searching biological database based on heuristic approach is the 
BLAST (Basic Local Alignment Search Tool) [Pearson and Lipman 88]. BLAST 
becomes most common tool due to its efficient search result and it was developed 
to work with parallel architecture like Multi-Core and Graphical Processing Units. 
The algorithm is straightforward, it finding the similar sequences by finding sub-
sequences from the database that are similar to sub-sequences in the query sequence.  
It starts by breaking down the query sequence into words (segments pair) of a fixed 
length (for example, 4 is the default value ). All the possible words are computed by 
sliding a window has the same length of words on the query sequence. For example, 
the sequence AILVPTV would divided into different four words (AILV, ILVP, LVPT, 
VPTV). Then, the search process is occurred for each word by aligning it with each 
sequence and extend the alignment until the alignment’ score pass certain threshold. 
The step of choosing the value of threshold is an important parameter due to it deter-
mine how likely the resulting sequences are to be biologically relevant homologs 
of the query sequence. There are a lot of sequence alignment and database search 
tools are developed for various specific types of sequence searches. For example, 
BLASTP searches protein databases, BLASTN allowing for searching nucleotides 
sequence databases and BLASTX allow translating from nucleotides sequence to 
proteins sequences prior to searching. 

Another commonly used family of alignment and search tools is FASTA. The 
same as BLAST, it divides the sequence into words (4 - 6 for nucleotides and 1 - 2 
for proteins). It constructs a table show positions of each word in the query sequence. 
For example, for a query protein FAMLGFIKYLPGCM, Table 1. (A) shows the posi-
tion of each residue ( assuming the word size is 1 ). For a targeted protein sequence 
TGFIKYLPGACT  in the database, we construct another table as shown in Table 1. 
(B) it shows position of each residue in it with the distance or offset with the query 
sequence. Where the offset computed by subtracting the position of each residue in 
the targeted protein from the position of each residue in the query. If the residue in 
the target protein does not exist in the query protein it has no offset. The best position 
of the alignment is found by notice the offset that repeated many time, in this case 
is position 3. So, the alignment operation between these two proteins are as follows:

FAMLGFIKYLPGCM

  TGFIKYLPGACT

TAble 1(A): Positions of each residue in the query protein sequence

Word A C D E F G H I K L M N P Q R S T V W Y

Position 2 13 1 5 7 8 4 3 11 9

6 12 10 14
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TAble 1(b):  Positions of each residue in the target protein sequence in the database.

1 2 3 4 5 6 7 8 9 10 11 12

T G F I K Y L P G A C T

3 -2 3 3 3 -3 3 -4 -8 2

10 3 3 3

These heuristic methods constrain the alignment to a known region of similar 
sequence, so it is faster than performing a complete dynamic programming align-
ment between the sequence and all possible targets in the database.  

3.  Acceleration of Sequence Alignment Algorithms: 
Heuristic alignment methods are faster than dynamic programming alignment 
approaches due to quadratic time complexity of dynamic programming methods. But 
in contrast  dynamic programming methods more accurate than the heuristic meth-
ods. So, acceleration the sequence alignment dynamic programming approaches is 
the solution to overcome the slow speed with dynamic programming methods espe-
cially with the huge grow of biological sequences databases. In computing, hardware 
acceleration is the use of customized hardware for speeding up the massive scale 
of computation needed for sequence alignment computations. These hardware plat-
forms like Field Programmable Gate Array  and Graphical Processing Unit which are 
separates from Central Processing Units  or  Multi-Core which is done on Central 
Processing Units.  This part will introduce the efforts of speeding up the pairwise 
sequence alignment using such hardware platforms. For dynamic programming 
alignment methods, the algorithm spends most of its execution time for comput-
ing the scoring matrix. These matrix’ cells may be computed parallel by compute it 
diagonal by diagonal like Fig. 5. 

Field Programmable Logic Array devices are re-configurable data processing 
devices where the algorithm is mapped directly to the processing logic nodes, like 
NAND logic gates.  To get the advantage of using Field Programmable Logic Array, 
the algorithm must be implemented massively parallel on this re-configurable device. 
So, it is well suited for speeding up sequence alignment algorithms. [Shaw et al.  
2006] explore the advantage of using Field Programmable Logic Array for speeding 
up the sequence alignment by implemented it software purely. Besides, they replaced 
the intensive computation section with an Field Programmable Logic Array custom 
instruction. They found the processing run time of using Field Programmable Logic 
Array implementation is 287 % speed up the purely software implementation. In 
[Maruyama et al. 2002] an approach was proposed to achieve the high speed for 
implementing pairwise sequence alignment algorithm using runtime reconfigurable. 
It demonstrates that using off-the-shelf  Field Programmable Logic Array boards 
the high performance of sequence alignment can be realized. They compared their 
approach with ordinary implementation of Smith-Waterman local alignment and they 
achieved a 300 time speed up for aligning a sequence contains 2048 elements with 
a database contains around 6 million sequences. Another acceleration method for 
speeding up sequence alignment algorithms is Systolic Arrays. It is an arrangement 
of processors in the form of matrix where data flow to each processor from the north 
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and west neighbors. After processing it the output is flowing to the south and east 
neighbors. In [Pedreira et al. 2004] the authors feed the systolic arrays with multiple 
data and writing several nucotides in a single bus write-cycle. In [Kreft et al. 2005], 
a concept for accelerating the sequence alignment algorithm using systolic arrays 
was achieved. The reasons of using this architecture is the simplicity and efficiency.  

Another common parallel technique used for parallelizing the sequence alignment 
algorithm is Single Instruction Multiple Data (SIMD). It is a type of multiprocessor 
architecture where multiple sets of operands may be fetched to multiple processing 
units. Where, there are huge number of biological sequences but there are one opera-
tion needed on all sequences. So, the parallelization is done by devoting the cells in 
the same diagonal to a different processors. In [Borah et al 1994] an implementation 
of Smith–Waterman algorithm for local alignment is described using general pur-
pose fine-grained architecture. They achieve a speed faster 5 times than the imple-
mentation of a sequence comparator on Field Programmable Logic Arrays [Daniel 
1991]. The time complexity of the this method to align two biological sequences was 
O(MN). Where, M and N are the lengths of the two aligned sequences. So, to align 
K sequences, it would require O (MNK) steps. So, these massively parallel architec-
ture may be used to solve computationally intensive problems in molecular biology 
efficiently and inexpensively. In [Farrar 2007] a parallel version of Smith-Waterman 
local alignment algorithm was developed on intel processor using SIMD technique. 
It achieved a speed up around 2-8 more than the earlier implementation.

Also, Kestrel parallel processor is another trial for speeding up the sequence align-
ment algorithm. It was a purpose processor was designed in University of California 
to be used on Human Genome Project and other biological applications using 

Figure 5 Parallelizing execution of alignment scoring matrix.
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sequence analysis engine. It was able to efficiently analyze  databases of billions  of 
nucleotides for DNA and amino acids for Protein. In [Blas et al. 2005] the authors 
used this processor for implementing Smith Waterman algorithm on it for different 
query sizes [Blas et al. 2005]. They achieved speed up 287 times the implementation 
using Field Programmable Logic Arrays. 

A Graphical Processing Unit is a device consisting of many multi-processors and 
a Dynamic Random Access Memory (DRAM). Each multiprocessor is coupled with 
a cache memory, large number of cores , Arithmatic Logic Unit (ALU) and con-
trol units. Mainly, Graphical Processing Units are used in the embedded systems, 
mobile phones, computers and game consoles. For example, in computer a Graphical 
Processing Unit can be found in the video adapter card or as an external unit in the 
motherboard such as in the notebook and new desktop computers. The reason behind 
evolution of Graphical Processing Unit is its powerful capabilities which is cleared in 
Fig. 5 and Fig. 6 which shows the Floating Point Operations Per Second (FLOPS) and 
memory bandwidth for Graphical Processing Unit versus CPU. Fig. 6 shows the pow-
erful computation power of a Graphical Processing Unit over CPU in many versions 
such as Nvidia Graphical Processing Unit Single and Double Precision and Intel CPU 
Single and Double Precision. Besides,  Fig. 7 shows the transfer bandwidth of the 
memory for many versions of Graphical Processing Unit which is faster versus CPU. 
So, Graphical Processing Units are well suited to solve many problems with data par-
allel processing. Single Instruction Multiple Data is the suitable parallel model to be 
implemented on Graphical Processing Unit. Where, the same program executed on 
different data in different cores. Each core is responsible for certain data, the portion 
that map this data into the core called thread. So, the program is executed in parallel 

Figure 6 FLOPS for CPU and Graphical Processing Unit [Nvidia].
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on Graphical Processing Unit as many separate threads do the same operation on 
different data on separate cores at the same time.  This way is efficient for accelerat-
ing many type of algorithms. Mainly Graphical Processing Units are designed for 
speeding up computer graphics applications. The high computational capabilities of 
Graphical Processing Units and their parallel structure allow speeding up of many 
algorithms in many fields such as scientific computing [Krüger and Westermann 03], 
computational geometry [Agarwal et al. 03] and bioinformatics [Charalambous et 
al. 05]. 

Thanks to the new sequencing technologies the number of biological sequences in 
databases such as GenBank  [GenBank]  and PubMed [PubMed] is increasing expo-
netionally. Besides, the length of one sequence pass thousands of bases (nucleotides 
or amino acids). So, comparing a query sequence to all sequences in the database is 
expensive operation in computing time and memory space. Therefore, acceleration 
of the pairwise sequence alignment algorithm is a vital role. Most of the acceleration 
development were devoted to local alignment algorithm. The idea for accelerating 
global alignment and semi-global alignment algorithms is the same. So, in the fol-
lowing we will focus on acceleration development of local alignment algorithm. 

Two common programming languages on Graphical Processing Unit are OpenGL 
[Shreiner et al. 2005] and CUDA parallel programming languages that developed 
by Nvidia company [Nvidia]. Hence, there are two versions of local alignment algo-
rithm on Graphical Processing Unit, either by using OpenGL or CUDA program-
ming languages. 

For accelerating Smith-Waterman local alignment algorithm by using OpenGL on 
Graphical Processing Unit the first trial was developed in [Liu et al. 2006a, Liu et 
a 2006b]. They used OpenGL [Shreiner et al.2005] for programming on Graphical 

Figure 7 Memory bandwidth for CPU and Graphical Processing Unit [Nvidia].
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Processing Unit. Their work as follow: The query sequence and biological sequences 
are copied into the memory of Graphical Processing Unit as textures [Owens et al. 
2008].  The score matrix was computed as anti-diagonal which mean computing 
diagonal by diagonal and the cells in the same diagonal are computed at the same 
time in parallel. Each cell is expressed as pixel where drawing each pixel execute 
small program called pixel shader that is responsible for computing matrix’ scores. 
Now the implementation of [Liu et al.2006] searched merged databases of Swiss-Prot 
and Universal Protein Resourse (UniProt) [UniProt], and give an optimum speed of 
650 Mega Cell Updates Per Second (MCUPS). This developed version Graphical 
Processing Unit program is faster than CPU version by 75 times. 

The Cell Updates Per Second (CUPS) is computed as follows :

CUPS query sequence length database size
run time= ( * )

Two implementation versions of  [Liu et al. 2006b], the first one is with trace back 
and the second without trace back. The two version were executed on Geforce 7800 
GTX Graphical Processing Unit on a database contains 983 sequences only. The ver-
sion without trace back gave an optimum speed of 241 MCUPS and is faster than the 
version with trace back by 178 times and 120 times compared to the CPU version. 
The reason that the version without trace back is faster than one with trace back is 
tracing the matrix back which increased the complexity by O (M+N) where M is the 
length of query sequence and N is the length of each sequence in the database. 

For speeding up the local alignment algorithm on Graphical Processing Unit 
using CUDA, the first implementation is SW-CUDA program that was developed by 
Manavski [Manavski and Valle 2008]. The developed algorithm works as follows: 
the whole query sequence was aligned with every sequence in the database. Where 
there are number of threads as number of sequences in the database and each thread 
responsible for aligning the query with each sequence. SW-CUDA reach speed of 3.5 
GCUPS on a unit has two Geforce 8800 GTX Graphical Processing Units. Besides, 
a comparisons between SW-CUDA with  BLAST  [Pearson and Lipman 1988]  and 
SSEARCH [Pearson 1991] had been done on a computer had 3 GHZ Intel Pentium 
IV Processor. SW-CUDA was also compared to Single Instruction Multiple Data 
(SIMD) implementation [Farrar 2007].  All these tests showed that SW-CUDA is 
faster than all previous implementation by speed from 2 to 30 times.  MUMmerGPU 
[Schatz et al.2007]  is another developed program for computing alignment on the 
Graphical Processing Unit by using CUDA. It aligns group of small DNA query 
sequences with a large number of sequences stored as a suffix tree [Ukkonen 1995], 
[Elloumi et al 2012]. MUMmerGPU reached a speed over 10 - fold more than serial 
CPU version of the sequence alignment kernel [Owens et al. 2008]. CUDAlign 
[Sandes and de Melo 2010] is another developed parallel alignment program on a 
Graphical Processing Unit using CUDA. CUDAlign was tested by making the 
alignment of the human chromosome 21 and the chimpanzee chromosome 22. It 
spent 21 hours on a Graphical Processing Unit of kind GeForce GTX 280 and it 
reached an optimum performance of 20.375 GCUPS. In [Striemer and Akoglu 2009] 
is another implementation for speeding up local sequence alignment algorithm for 
scanning database. It reach to speed faster than SSEARCH  by 23 times. Smith-
Waterman [Smith and Waterman 1981] computation matrix are computed purely on 
Graphical Processing Unit in Striemer’s Implementation. It works in three stages, 1) 
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load databases contains biological sequences  to Graphical Processing Unit’s global 
memory. 2) Each thread is responsible for   computing  the alignment score between 
a query sequence and each biological sequence in the database. 3) The resulted align-
ment scores returned to the CPU to get the highest alignment score. This implemen-
tation finds only the highest alignment score or the most similar sequence to the 
query one but not find the alignment. 

In contrast of SW-CUDA, Striemer’s implementation do not include usage of CPU 
in partial computation of local alignment algorithm but it used Graphical Processing 
Unit only in the computation.  In addition, Striemer’s implementation depended on 
using Graphical Processing Units constant memory to save query sequence and sub-
stitution matrix. The reason is the access time of constant memory is the shortest 
access time for Graphical Processing Unit’s memories.

Striemer’s local alignment implementation works as following: for each sequence 
in the database stored in global memory of Graphical Processing Unit was compared 
to the query sequence. The alignment score of aligning query and each sequence 
was computed using BLOSUM substitution matrix. The scores are transferred to the 
CPU to get the maximum score of it and determine the most similar sequence of the 
database to the query.  

4. Gene Tracer Application 
Gene Tracer [Issa et al 2012.b] is an application was developed to trace genes altera-
tions from ancestors sequences through offspring sequence. It finds the related parts 
between offsprings and its ancestors. Mainly, Gene Tracer based on local sequence 
alignment to do its function. Fig. 8 shows the function of Gene Tracer, it determines 
the similar parts between offspring sequence and its two ancestors. Besides it locates 
the location of similar parts in offspring and two ancestors. 

Figure 8 Determining location of similar parts using Gene Tracer.

The shaded parts with gray and black colors represent the similar subsequences. 
Where, the gray subsequence in Ancestor 1 is most similar to gray subsequence in 
offspring and the location is determined. Also , the contribution percentage of each 
Ancestor in offspring as division of subsequence length to the entire length of the 
offspring. The significance of the Gene Tracer application appeared for huge length 
sequences when the biologist want to determine common subsequences between 
Offspring and its known Ancestors. The developed Gene Tracer application based 
on local alignment algorithm as shown in the following.
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Gene Tracer Application  

Inputs 
A_Seq1 : sequence // 1st Ancestor sequence 
A_Seq2 : sequence // 2nd Ancestor sequence
Off _Seq : sequence // Offspring sequence 

Outputs
Ancestor1 : sequence // A_Seq1but common parts with Off _Seq in red colored 
Ancestor2 : sequence // A_Seq2but common parts with Off _Seq in blue colored
Off : sequence // Off _Seq but common parts with A_Seq1 & A_Seq2 are //colored in 
red and blue
Percent1, Percent2 : real // Percentages of common parts between ancestors    // and 
offspring length  to an ancestor length (A_Seq1 or A_Seq2)

Variables
L : integer // length of common part between Off_Seq & (A_Seq1 or A_Seq2)
i : integer // end position of common part in A_Seq1 or A_Seq2
j : integer // end position of common part in Off _Seq
Match : integer // score of aligning two identical residues (characters)
NonMatch : integer // score of aligning two different residues 
ConstGap : integer // score of aligning residue with gap.

Functions:
// Local alignment between two sequences A_seq & Off _seq and determines //length 
and positions of common parts.

Smith_Waterman ( A_seq, Off _Seq, Match, NonMatch, ConstGap, L, i, j)

{
temp_score = 0
for ( k=0 ; k <  Length  (Off_Seq) ) { 
   for ( z=0 ; z <  Length (A_Seq) ) { 
  north = H [z−1 , z]  –  ConstGap
    west = H [k , k−1]  – ConstGap
if ( A_Seq [k] == Off _Seq [z] ) 
 {
  north_west =  H [ k−1 , z-1 ] +  Match
else
  north_west =  H [ k−1 , z-1 ] +  NonMatch
 }
 H[k,z] := max ( north , west, nort_west,0 )
SW_matrix[i][j] = H[k,z]; // assign SW computation matrix
    } 
If ( H > temp_score ) 
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{
 temp_score = H ; 
 temp_i = k ;
 temp_ j = z ;
 }
}
L = temp_score
i= temp_i
j= temp_ j
 }

begin
// Step 1 : construct  local alignment between A_Seq1 and Off _Seq 
Match = 1
NonMatch = 1
ConstGap = 1
 Smith_Waterman ( A_Seq1, Off _Seq , Match , NonMatch , ConstGap, L, i, j)
Ancestor1:= Color_seq ( A_Seq1, i-L ,  L)
Off := Color_Seq ( Off _Seq , j-L , L) 
Percent1 := L / length (A_Seq1)
// Step 2 : Construct local alignment between A_Seq2 and Off _Seq 
Smith_Waterman (A_Seq2, Off _Seq, Match, NonMatch, ConstGap, L, i, j)
Ancestor2 := Color_seq ( A_Seq2 , i-L ,  L )  
Off  := Color_Seq ( Off _Seq ,  j-L ,  L )
Percent2 := L / length (A_Seq2)
Return Ancestor1, Ancestor2, Percent1, Percent2

end 
Gene Tracer application has time and space complexities of O (max (M,N)*P) where 
M,N and P are respectively length of Ancestor 1, Ancestor 2 and Offspring sequences. 
Gene Tracer application was implemented using PHP programming language on a 
computer has a 2.27 GHZ core i3, 4 GB Main memory. The application was tested on 
DNA and Protein short sequences and the result as follows:

For DNA sequences the result as shown in Fig. 9, the following are short sequences 
used in the test. 

Ancestor1:  CGCCGGTCGCGGCTGCCCATGCAGG

Ancestor2:  AGGCAGCGTGTCACGC

Offspring:  CGCGGCAGGCA
For Protein sequences, the result is as shown in Fig. 10.

Ancestor 1 :
AKIKAYNLTVEGVEGFVRYSRVTKQHVAAFLKELRHSKQYEN VNLIHYIL
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Ancestor 2: AERYCMRGVKNTAGELVSRVSSDADYNAMICPROG
 RAMMINGAGGWCRKWYSAHRGPDQDAALGSFCIKNPGD

Offspring :
AGGWCRKWKQYENVNLIHYI

 Figure 10 Output of Gene Tracer for Protein sequences.

In [Issa et al 2014.a], a development for Gene Tracer application was done to able 
to search biological database to find the most similar ancestors for unknown bio-
logical offspring sequence. The idea is to find the closest sequences biologically 
from a huge database based on measuring evolutionary divergent using substitution 
matrices. Then from those sequences find the two ones that have a longest common 

Figure 9 Output of Gene Tracer for DNA sequences.
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sub-sequences. In the following an example of why we cannot depend on measuring 
evolutionary divergent only. There are two sequences and an offspring  sequence as 
follow:
Shuffling sequence (Offspring) = LMNCCH , 
Sequence 1 = CCPKlM , 
Sequence 2 = lMNPA 

By measuring the alignment score based on measuring the evolutionary divergent 
using BLOSUM50 we found the score of alignment between offspring and sequence 
1 was 26 and with sequence 2 was 19. But, the common subsequence length between 
offspring and sequences 1 and 2 was 2 and 3 respectively. This give indication that 
although offspring is closer to sequence 1 biologically than sequence 2, but sequence 
2 has longer subsequence with offspring.  

 It computes the local alignment score for aligning the query sequence with each 
sequence in the database based on BLOSUM 62 for Protein sequences or the matrix 
in Fig. 11 for DNA. Then the sequences that has alignment score pass certain cut-off 
score will be realigned. again with the query sequence. But instead of using standard 
substitution matrices, it uses a scoring values +1 for match and -1 for mismatch. The 
reason of using such this values is to find the length of similar portions between the 
two sequences and location of each subsequence in each sequence (Offspring and 
Ancestors). The output of the modified application in log file as in Fig. 12, which 
called Tracer Format. 

Figure 11 DNA Evolutionary Divergent Scoring Matrix. 

Figure 12 Tracer Format.
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Where: 
Q1 :  position in query of the start of common substring  between query and 

sequence 1.
S1 :  position in sequence 1 of start of common substring between query and 

sequence 1.
l1 :  the length of common substring between query and sequence 1.
Q2 :  position in query of the start of common substring between query and 

sequence 2.
S2 :  position in sequence 2 of start of common substring between query and 

sequence2.
l2 : the length of common substring between query and sequence 2.

The modified method has time complexity O(m*n*z) and space complexity 
is ( O(m*z)+ 3*O(z)) where n is the length of query, m is the length of maximum  
sequence length in database and z is the number of sequences in the database. This 
application has disadvantage of slow execution time due to big time complexity. On 
the other hand the main advantages are it give the user the flexibility to use various 
substitution divergent matrices and is used of DNA or protein sequences. In addition 
it save the results in a log file. 

The  modification of Gene Tracer was implemented on Graphical Processing Unit 
and the test was done a Swiss-Prot biological sequences database contains 300000 
Protein sequence and the speed up reach 140 times the implementation of the CPU. 

Another development was done on Gene Tracer to speed up its execution on 
Graphical Processing Unit by optimization of occupancy. In [Issa et al 2014.a] , 
they improve the performance by accelerating it using maximization of Graphical 
Processing Unit’s occupancy.  The occupancy is a metric that is used to measure uti-
lization of hardware  called occupancy and is a key measure for Graphical Processing 
Unit efficiency [Nvidia].  Also, Occupancy mean keeping the processor busy as pos-
sible.  Graphical Processing Units execute the programs as threads, where each 
thread is responsible for certain data. During execution, this threads are grouped 
in a warp like Fig. 13. As the number of warps is increased per multiprocessor, the 
multiprocessor being more busy since pausing a warp will allow the multiprocessor 
run another wrap. So, occupancy is the ration of active wraps per multiprocessor to 
the maximum allowable number of wraps per multiprocessor [Nvidia]. There are 
some equations to calculate the occupancy [Nvidia]. However, mainly there are three 
factors that allow controlling and maximizing the occupancy and efficiency of the 
Graphical Processing Unit: 1. The number of active threads per block, 2. The number 
of registers in the kernel and 3. The amount of shared memory allocated for each 
block in the kernel. Nvidia company develop an Excel sheet that control the value 
of occupancy based on changing the parameter values of number of threads, shared 
memory and number of registers. 

In [ Issa et al 2014.a], the decrease the execution time around 17 Sec for working 
on a database contains around 300000 biological sequence and Graphical Processing 
Unit contains 400 core. Therefore, a lot of development were worked on a sequence 
alignment on Graphical Processing Unit to speed up its execution and  benefit from 
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the massive computational capabilities of Graphical Processing Unit s. In [Issa et al 
2014.c] another acceleration development for Gene Tracer on Multi-Core architec-
ture using OpenMP [OpenMP 1997]. They depend on the idea in Fig. 5 for acceler-
arting the execution of the sequence alignment by execute it diagonal by diagonal. 
They reach to an improvement 150 % but the advantage of using multi-core execution 
that its ordinary hardware in most of modern  laptops and computers, so it saves cost. 
Therefore, acceleration using multi-core suitable for small database around 20–40 
thousands of biological sequence. 

In conclusion, we assist of significance of sequence alignment algorithms and 
its vital role in many biological functions such as DNA assembly, Un-known 
Protein discoveries and evolutionary divergent measurements. In this chap-
ter we brief ly review the main pairwise sequence alignment algorithms such 
as Global pairwise sequence alignment, Local Sequence alignment and Semi-
Global sequence alignment. In addition, we explored the recent development of 
acceleration the sequence alignment using modern hardware accelerators such 
as Graphical Processing Units and Field Programmable Array Gate, besides 
multi-processors. Also, a main important application of sequence alignment 
which called Gene Tracer was explored. This application is used to trace the 
modification of the ancestors in the offspring sequences. 
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Figure 13 Executions of threads on the multiprocessors as wraps.
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State Estimation and Process 
Monitoring of Nonlinear Biological 
Phenomena Modeled by S-systems

Majdi Mansouri1*, Hazem Nounou1 and Mohamed Nounou2

1. Introduction
One of the major research activities in modern molecular biology is estimating the 
states  associated with biological system models and monitoring the biological pro-
cesses. Recent progress in measurement technologies such as the phosphorylation of 
protein kinase or mass spectrometry, nuclear magnetic resonance provided a wealth 
of comprehensive time profiles of metabolites that can be used for biochemical path-
way modeling and proteomics. These metabolic profiles are simultaneous measure-
ments of biochemicals that can be obtained as a sequence of snapshots or as simple 
snapshots. In order to mathematically represent this information, it is first required to 
estimate the model parameters using state estimation techniques and then to specify 
a mathematical modeling framework and to develop computational methods to fit 
the measured information to the selected modeling framework. In addition, due to 
consistent product quality demand and higher requirements in safety, the process 
monitoring performance has become a key factor in improving productivity and 
safety. Process systems are using large amounts of data from many variables that are 
monitored and recorded continuously every day. For these reasons, the problem of 
fault detection that responses effectively to faults that mislead the process and harm 
the system reliability represents a key process in such operation of these systems. 
Several multivariate statistical techniques for fault detection, analysis of process and 
diagnosis have been developed and used in practice. These techniques are useful 
since operation safety and the better quality products are some of the main goals in 
the industry applications. Faults detection has been performed manually using data 
visualization tools [1], however these tools takes a lot of time for real-time detection 
with continuous data.  In the most recent years, researchers have proposed machine 
learning and automated statistical methods like: nearest neighbor [2, 3], clustering 
[4], minimum volume ellipsoid [5], convex pealing [6], neural network classifier [7], 
decision tree [8] and support vectormachine classifier [9]. These proposed techniques 
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are quicker than other manual techniques, however there are disadvantages which 
make them inadequate for continuous fault detection for the cases of streaming 
data. More recently, principal component analysis (PCA) and multivariate statistical 
process control (MSPC) approach are proposed to overcome these problems. The 
authors in [10] have proposed PCA as a tool of MSPC.

Also, PCA was defined as a method which projects a high dimensional measure-
ment space into a lower dimensional space [11]. PCA provides linear combinations 
of parameters which demonstrate most common trends in a data set. In mathematical 
terms, PCA relies on the orthogonal decomposition of the covariance matrix over 
the process variables along with the directions which give the maximum data varia-
tion. It is also mentioned that PCA is researched for two problems: the MSPC [12], 
and fault detection and isolation (FDI) problem [13]. The authors in [13] have listed 
diagnosis and fault detection techniques in three categories: (i) quantitative model-
based schemes, (ii) qualitative model schemes and corresponding search strategies 
and (iii) process data based techniques. PCA falls into the third category since it uti-
lizes databases in an attempt to obtain the statistical (PCA model). The main indices 
used with PCA methods are Hotelling statistic, T2 ; sum of squared residuals, SPE; 
and/or Q statistics. The T2 statistic is a way to measure the variation captured in the 
PCA model whereas the Q statistic is a way to measure the amount of variation which 
was not captured by the PCA model. PCA is known to be one of the most popular 
MSPC monitoring methods. Nevertheless, there are some disadvantages of it. One 
disadvantage is that the PCA is not suitable for monitoring processes that show non-
stationary behavior. The other shortcoming of the PCA model is that most of the pro-
cesses run under different circumstances. The use of standard PCA solution in this 
kind of processes might produce too many missed faults, since the grade transitions 
from one operation mode to another operation mode might damage the correlation 
existing between various parameters. In addition, the disturbances that are measured 
may be treated as faults. 

In the area of state estimation in biological systems, several techniques have been 
developed and include the extended Kalman filter (EKF), the unscented Kalman fil-
ter (UKF), and more recently the particle filter (PF).  The classical Kalman filter (KF) 
was developed in the 1960s, and has been widely applied in various engineering and 
science areas, including communications, control, machine learning, neuroscience, 
and many others. In the case where the model describing the system is assumed to be 
linear and Gaussian, the KF provides an optimal solution [21]. The KF has also been 
formulated in the context of Takagi-Sugeno fuzzy systems, which can be described 
by a convex set of multiple linear models [22]. It is known that KF is computationally 
efficient. However, it is limited by the non-universal linear and Gaussian modeling 
assumptions. To relax such assumptions, the extended Kalman filter [23, 24, 25] and 
the unscented Kalman filter [26, 27, 28] have been developed. In extended Kalman 
filtering, the model describing the system is linearized at every time sample (which 
means that the model is assumed to be differentiable). Therefore, for highly nonlinear 
models EKF does not usually provide a satisfactory performance. The UKF, on the 
other hand, instead of linearizing the model to approximate the mean and covariance 
matrix of the state vector, uses the unscented transformation to approximate these 
moments. In the unscented transformation, a set of samples (called sigma points) are 
selected and propagated through the nonlinear model to improve the approximation 
of these moments and thus the accuracy of state estimation. The above mentioned 
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techniques usually require large amounts of computational resources and time. One 
aspect of concern is that these methods do not sufficiently take the special structures 
of biological system models into consideration. However, the propositions in [29, 30] 
have shown that consideration of the model structure may simplify the parameter 
estimation problem. For example, a non-linear model can be linearized to a linear 
one and the EKF can be applied to estimate the unknown sensitive parameters of the 
model. More details about other estimation techniques can be found in [31, 32]. In 
addition, due to the fact that the number of unknown parameters is much more than 
the number of states (metabolites), the conventional EKF and UKF algorithms are 
not capable of estimating the unknown parameters of S-systems. To overcome these 
drawbacks, a non-parametric Monte Carlo sampling based method called particle 
filtering has recently gained popularity. PF approximates the posterior probability 
distribution by a set of weighted samples, called particles. Since real-world problems 
usually involve high-dimensional random variables with complex uncertainty, the 
non-parametric and sample-based estimation of uncertainty (provided by the PF) has 
thus become quite popular to capture and represent the complex distribution p(z|y) 
for nonlinear and non-Gaussian process models. 

In this chapter, we extend the fault detection problem to the state estimation and 
fault detection approaches. This is achieved by introducing a supplementary observer 
which together with the observer produces full state estimation and fault detection. 
Thus this hybrid scheme led to the development of a more general approach, which 
has immediate application to the two areas of: (i) state estimation; and (ii) fault detec-
tion. To illustrate the advantages of these approaches we apply the state estimation 
and fault detection approaches to a biology model representing a Cad System in E. 
coli processes. 

The body of the chapter is divided into a background section, an introduction sec-
tion, and four distinct but closely related sections, describing our studies related to 
designing Bayesian for estimating the states variables and detecting the faults for 
biology system representing a Cad System in E. coli processes. We now summarize 
the main sections contents as follows.

  Section 2 provides a brief introduction to state evolution model. This model 
is more appropriate to practical non-linear and non-Gaussian situations 
where no a priori information on the state variable value is available. 

  Section 3 presents a Bayesian theory and its relevance to solve states  esti-
mation. We begin with an overview of several state-of-the-art estimation 
method descriptions. Then, we review the filtering framework, and some 
classic filtering algorithms that are widely employed in states estima-
tion. We briefly introduce some probability calculus tools, providing the 
required basics for understanding the algorithms and the analysis presented 
in subsequent sections, as well as references for the interested reader.

  Section 4 presents a generalized likelihood ratio (GLR)-based PCA for 
faults detection in biology model representing a Cad System in E. coli  pro-
cesses. PCA is used to create the model and find linear combinations of 
parameters which describe the major trends in a data set and GLR test. 
Both are utilized to improve faults detection. GLR test has been proposed 
in order to establish an adaptive system, which reaches three important 
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problems; estimation, fault detection and magnitude compensation of 
jumps. Therefore, in this chapter, we propose to benefit from the advantages 
of the GLR test in order to improve the fault detection task.

  Section 5  compares the state estimation and fault detection techniques 
through their utilization to estimate the states variables and detect the faults 
of the biology process model representing Cad System in E. coli. Firstly, a 
description of a biology process model representing Cad System in E. coli 
(CSEC)  is presented. Then,  the state estimation techniques are used to 
estimate the four state variables (the enzyme CadA, the transport protein 
CadB, the regulatory protein CadC and lysine Lys for a Model of the Cad 
System in E. coli) for the biological model. Finally, the performance of the 
PCA-based GLR fault detection method is evaluated and compared to the 
convential PCA fault detection method.

2.  State Estimation in Non-linear Biological Systems

2.1 Problem formulation 

In this section, the state estimation problem is formulated, and then a comparative 
performance analysis of states estimation using extended Kalman filter, unscented 
Kalman filter, and particle filter will be conducted state and parameter estimation for 
CSEC model.

Here, the estimation problem of interest is formulated for a general system model. 
Let a nonlinear state space model be described as follows:
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where, x ŒRn  is a vector of the state variables, u R pŒ  is a vector of the input vari-
ables (which can be changed as desired), q ŒRq  is an unknown parameter vector, 
y RmŒ  is a vector of the measured variables, g and l are nonlinear differentiable 

functions, and w RnŒ   and v RmŒ  are process and measurement noise, which 
quantify randomness in the process and errors in the measurements, respectively. 

Discretizing the state space model (1), the discrete model can be written as follows:
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which describes the state variables at some time step (k) in terms of their values at a 
previous time step (k – 1). Since we are interested to estimate the state vector xk, as 
well as the parameter vector qk, let’s assume that the parameter vector is described 
by the following model:
 q q gk k k= +- -1 1  (3)
where gk–1  is white noise. In other words, the parameter vector model (3) corresponds 
to a stationary process, with an identity transition matrix, driven by white noise. We 
can define a new state vector that augments the two vectors together as follows:
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where zk is assumed to follow a Gaussian model as z Nk k k~ ( , )m l , and where at 
any time k the expectation mk and the covariance matrix lk are both constants. Also, 
defining the augmented vector, 
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the model (2) can be written as:
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The objective is to estimate the augmented state vector zk, given the measurements 
vector yk. Next, the estimation techniques will be described.

3. Description of State Estimation Techniques 
Here, the three estimation techniques of interest (EKF, UKF and PF) are described.

3.1 Extended Kalman Filter (EKF)

The objective in state estimation is to find an estimate zk  of the state vector zk that 
minimizes the covariance matrix of the estimation error, P E z z z zk k k k

T= - -[( )( ) ] 

. Such minimization can be achieved by minimizing the following objective function:

 J Tr E z z z z1

2 k k k k

T
 ( )( )= − −
















  (7)

Minimizing the above objective function (7), the extended Kalman filter (EKF) esti-
mates the state vector xk using a two-step algorithm: prediction and estimation [23, 
24].

3.2 Unscented Kalman Filter (UKF)

The reason for the limitations observed by the EKF is that EKF approximates the 
mean and covariance of the nonlinear state vector by linearizing the nonlinear model, 
which may not provide a satisfactory approximation of these moments. To provide 
better estimates of these moments, the Unscented Kalman Filter (UKF) relies on the 
unscented transformation. The unscented transformation is a method for calculating 
the statistics of a random variable which undergoes a nonlinear mapping. Assume 
that a random variable z RrŒ  with Mean z  and covariance Pz is transformed by a 
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nonlinear function, y = f(z). In order to find the statistics of y, define 2r + 1 sigma 
vectors as follows ([35]):

 

Z z
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Where, l k= +( ) -e r r2  is a scaling parameter and r Pz
i

+( )( )l  denotes the ith 

column of the matrix square root. The constant 10 14- < <e  determines the spread 
of the sigma points around z . The constant k is a secondary scaling parameter which 
is usually set to zero or 3 – r ([35]). Then, these sigma points are propagated through 
the nonlinear function, i.e.,

 Y f Z i ri i= ( ) = 0 2,..,  (9)
and the mean and covariance matrix of y can be approximated as weighted sample 
mean and covariance of the transformed sigma points of Y1 as follows:
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where, the weights are given by:
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The parameter z is used to incorporate prior knowledge about the distribution of z. 
It has been shown that for a Gaussian and non-Gaussian variables, the unscented 
transformation results in approximations that are accurate up to the third and second 
order, respectively ([35]).  

3.3 Particle Filter (PF)

A particle filter is an implementation of a recursive Bayesian estimator [32, 36]. 
Bayesian estimation relies on computing the posterior p z yk k| ,:1( )  which is the 
density function of the unobserved state vector, (zk), given the sequence of the 
observed data y y y yk k1 1 2: , ,..,∫ { } . However, instead of describing the required 
posterior distribution in a functional form, in this particle filter scheme, it is rep-
resented approximately as a set of random samples of the posterior distribution. 
These random samples, which are called the particles of the filter, are propagated and 
updated according to the dynamics and measurement models (Doucet & Johansen, 
2009). The advantage of the PF is that it is not restricted by the linear and Gaussian 
assumptions, which makes it applicable in a wide range of applications. The basic 
form of the PF is simple, but may be computationally expensive. Thus, the advent of 
cheap, powerful computers over the last ten years has been a key to the introduction 
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and utilization of particle filters in various applications. For a given dynamical sys-
tem describing the evolution of the states  that we wish to estimate, the estimation 
problem can be viewed as an optimal filtering problem ([23]), in which the poste-
rior distribution, p z yk k| :1( ) , is recursively updated Here, the dynamical system is 
characterized by a Markov state evolution model, p z z p z zk k k k( | ) ( | ):1 1 1- -= , and an 
observation model, p y zk k( | ) . In a Bayesian context, the task of state estimation can 
be formulated as recursively calculating the predictive distribution p z yk k( | ):1 1-  and 
the filtering distribution p z yk k( | ):1  as follows, 

 p z y p z z p z y dz| | |k k k k k k k1: 1 1 1 1: 1 1∫( ) ( ) ( )=− − − − −
 (12)

and p z y
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where

 p y y p y z p z y dz| | |k k k k k k k1: 1 1: 1∫( ) ( ) ( )=− −  (14)

The state vector (zk) at any instant, k , is assumed to follow a Gaussian model,

 z Nk k k~ ,m l( )  (15)

where, at any time instant, k, the expectation, µk , and the covariance matrix, lk are 
both constants. The marginal state distribution is obtained by integrating over the 
mean and precision matrix as follows, 

 p z z N z p z d d| | , , |k k k k k k k k k k1 1∫ µ λ µ λ µ λ( ) ( ) ( )=− −
 (16)

where the integration with respect to the covariance matrix, lk , leads to the known 
class of scale mixture distributions introduced by Barndorff-Nielsen [37] for the sca-
lar case.

The nonlinear nature of the system model leads to intractable integrals when 
evaluating the marginal state distribution. Therefore, Monte Carlo approximation is 
utilized, where the joint posterior distribution p z yk k0 1: :|( )  is approximated by the 

point-mass distribution of a set of weighted samples (called particles) z ,k
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where, d
z k
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i dz
:

:( ) ( )0  denotes the dirac delta function. Based on the same set of par-

ticles, the marginal posterior (of interest), p z yk k| :1( ) , can also be approximated as 
follows:
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Using Bayesian importance sampling (IS), the particles, z k
i

k
i

i
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0
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, are sampled 

according to a proposal distribution, p z yk k0 1: :|( ) . Then, the estimate of the state, 
zk  , can be approximated using a Monte Carlo scheme as follows:
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Sequential Monte Carlo (SMC) consists of propagating the state vector, z k
i

i

N

0
1

:

( )
=

{ } , in 

time without modifying the past simulated particles. This is possible for the class of 
proposal distributions having the following form:

 p p pz y z y z z yk k k k k k k0 1 0 1 1 1 0 1 1: : : : : :| | | ,( ) = ( ) ( )- - - . (21)

The importance weights are then recursively computed in time as follows: 
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The optimal choice of the importance function is p z z yk k k| ,-( )1 , which minimizes 
the variance of the importance weights conditionally upon the simulated trajectory, 
z k
i
0 1: -
( ) , and the observations, y1:k. For the considered Markov nonlinear state-space 

model, one can adopt the transition prior, p z zk k| -( )1 , as the proposal distribution:
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in which the weights are updated according to the likelihood function:
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The resulting PF algorithm is fully recursive and computationally efficient since 
the sampling-based approach avoids integration for obtaining the moments at each 
time step [38, 39]. The recursive nature implies that solving a nonlinear optimization 
problem in a moving window is not required. Furthermore, SMC does not rely on 
restrictive assumptions about the nature of the error or prior distributions and mod-
els, making it broadly applicable. 
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4.  Faults Detection of Biological Systems Representing 
Continousily Stirred Tank Reactor Model

In this chapter, generalized likelihood ratio (GLR)-based PCA is proposed to detect 
the faults in biological systems representing Cad System in E. coli (CSEC). PCA is 
used to create the model and find linear combinations of parameter s which describe 
the major trends in a data set and GLR test. Both are utilized to improve faults detec-
tion. GLR test has been proposed in order to establish an adaptive system, which 
reaches three important problems; estimation, fault detection and magnitude com-
pensation of jumps. GLR test is proposed for fault detection of different applications: 
geophysical signal segmentation [21], signals and dynamic systems [22], incident 
fault detection on freeways [23], missiles trajectory [24]. Therefore, in the cur-
rent work it is proposed to benefit from the advantages of the GLR te st in order to 
improve the fault detection task in the cases where process model is not available.

The rest of this Section is organized as the following.  In Section 4.1, an introduc-
tion to PCA is given, followed by descriptions of the two main detection indices, 
T2 and Q, which are generally used with PCA for fault detection. Then, the GLR test 
which is utilized in composite hypothesis testing is discussed in Section 4.2. After 
that, the PCA- based GLR method used for detecting fault which integrates PCA 
modeling and GLR statistical testing, is shown in Section 4.3. 

4.1 Principal component analysis (PCA)

Let X Rm1 Œ  denotes a sample vector of m number of sensors. Also, assume there 
are n samples dedicated to each sensor, a data matrix X RnxmŒ   is with each row, 
displaying a sample. Meanwhile,X matrix is scaled to zero mean for covariance-
based PCA and at the same time, to unit variance for correlation-based PCA [43]. 
The X matrix can be divided into two matrices: a score matrix S and a loading matrix 
W through singular value decomposition (SVD):

 X SW T=  (27)

where S s s s Rm
mxm= Œ[ ... ]1 2

 is a transformed variables matrix, s Ri
nŒ  , are the 

score vectors or principal components, and W w w w Rmxm= Œ[ ... ]1 2 3  is an orthogonal 
vectors matrix w Ri

mŒ  which includes the eigenvectors associated with the covari-
ance matrix of X, i.e., S, which is given by

 Â = - =1
1n X X W WT TL  with  W W W W IT T

nL L= =  (28)

where,  where, L = diag( , ,..., )l l l1 2 m  is a diagonal matrix containing the eigen-

values related to the m PCs, lm are simply the eigenvalues of the covariance matrix  
( l l l1 2≥ ≥ ≥... m ), and In  is the identity matrix ([44]). It must be noted at this point 
that the PCA model yields same number of principal components as the number of 
original variables (m). Nevertheless, for collinear process variables, a smaller num-
ber of principal components (l) are required so that most of the variations in the data 
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are captures. Most of the times, a small subset of the principal components (which 
correspond to the maximum eigenvalues) might carry the most of the crucial infor-
mation in a data set, which simplifies the analysis.

The effectiveness of the PCA model depends on the number of principal com-
ponents (PCs) are to be used for PCA. Selecting an appropriate number of PCs 
introduces a good performance of PCA in terms of processes mon- itoring. Several 
methods for determining the number of PCs have been proposed such as; the Scree 
plot ([45]), the cumulative percent variance (CPV), the cross validation ([46]), and the 
profile likelihood ([47]). In this study herein, the cumulative percent variance method 
is utilized to come up with the optimum number of retained principal components.

The cumulative percent variance is computed as follows:

 CPV l
trace

x( )
( )
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i
i

l

1

∑λ
=

Σ
=  (29)

When the number of principal components l is determined, then, the data matrix X 
is shown as the following:

 X SW S S W W T= = [ ][ ]� � � �
 (30)

where ˆ Œ nxlS R  and S Rnx m lŒ -( )  are matrices of l retained principal components and 
the (m – l) ignored principal components, respectively, and the matrices ˆ Œ mxlW R  

and W Rmx m lŒ -( )  are matrices of l retained eigenvectors and the (m – l) ignored 
eigenvectors, respectively. Using Eq. (30), the following can be written:

 ˆ ˆ= +  T TX SW SW  (31)

The matrix X  represents the modeled variation of X based on first l components.

4.2 Fault detection indices

When using PCA in detecting faults, a PCA model is built utilizing fault-free data. 
The model is used for fault detection through one of the detection indices (the 
Hotelling’s T2 and Q statistics), which are presented next.

4.2.1 Hotelling’s T2  statistic

The T2 statistic is a way of measuring the variation captured in the principal compo-
nents at various time samples, and it is known as ([48]):

 2 1ˆ ˆ ˆ-= LT TT X W W X  (32)

Where 1
1 2

ˆ ( , ,..., )l l l-L = ldiag , is a diagonal matrix containing the eigenvalues 
related to the l retained PCs. For new real-time data, when the value of T2 statistic 
exceeds the threshold, Tl n, ,a

2  calculated as in ([48]), a fault is detected.
The threshold number used for the T2 statistic is computed as ([48]):

 T l n
n Fl n l n l, , , ,

( )
a a

2 1

1
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 (33)
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where  a is the level of significance (a usually between 10% and 5%), n is the number 
of samples in data set, l is the number of retained PCs, and F l n l, ,- a  is the Fisher F dis-
tribution with l and n – 1 degrees of freedom. These thresholds are computed using 
faultless data. When the number of observations, n, is high, the T2 statistic threshold 
is approximated with a c2 distribution with l degrees of freedom, i.e., T la ac2 2= , .

4.2.2 Q statistic or squared prediction error (SPE)

It is possible to detect new events by computing the squared prediction error  SPE or 
Q of the residuals for a new observation. Q statistic ([49]), is computed as the sum of 
squares of the residuals. Also, the Q statistic is a measure of the amount of variation 
not captured by the PCA model, it is defined as ([49]):

 2 22 ˆ ˆ ˆ( )= = - = -

TQ X X X I WW X  (34)

The monitored system, meanwhile, is accepted to be in normal operation if:
 Q Q£ a

 (35)

The threshold Qa used for the Q statistic can be computed as [10]
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 and ca  is the value of the normal dis-

tribution with a level of significance. at the instant of an unusual event; when there is 
a change in the covariance structure of the model, this change is going to be detected 
by a high value of Q. For new data, the Q statistic is computed and compared to 
the threshold Qa ([44]). This means a fault is detected when the confidence lim it is 
violated. The threshold value is computed on the assumption that the measurements 
are independent of time and they are multivariate normally distributed. The Q fault 
detection index is highly sensitive to errors in modeling and the performance of it is 
dependent on the number of retained PCs, l, [50].

4.3 Generalized likelihood ratio test (GLRT)

The faults detection step is done using the residuals computed using PCA. Using 
the information about the noise distribution of the residuals, a GLR test statistic is 
formed. To make the decision if a fault is present or not, the test statistic is compared 
to a threshold from the chi-square distribution.

4.3.1 Test Statistic

The GLR test is famous to be a uniformly most powerful test among all invariant 
tests (shown in Equation (36)). It is basically a hypothesis testing technique which has 
been utilized successfully in model-based faults detection ([51, 52, 53, 54]). Focusing 
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on the following fault detection problem, Œ nY R  is an observation vector formed by 
one of the two Gaussian distributions: N In( , )0 2s  or, N In( , )q sπ 0 2  where q is the 

mean vector (which is the value of the fault) and s2 0  is the variance (assumed to 
be known in this problem). The hypothesis test can be shown as:
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Here, the GLR method replaces the unknown parameter, q, by its maximum likeli-
hood estimate. This estimate is computed by maximizing the generalized likelihood 
ratio T(Y) as shown below:
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where 2
2

ˆ argminq q= - =Y Y  is the maximum likelihood estimate of q, the prob-

ability density function of Y is 
Y1
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 , . 2  represents the 

Euclidean norm. Because the GLR test utilized the ratio of distributions of the faulty 
and faultless data; for the case of non-Gaussian variables, non-Gaussiandistributions 
are required to be utilized. It must be noted that, in the derivation mentioned above, 
maximizing the likelihood function is equivalent to maximizing its natural loga-
rithm since the logarithmic function is a monotonic function. At this stage, the GLR 
test then decides between the hypotheses H0 and H1 as follows:

 
if (Y) t

else

H

H .

0

1

Τ




α  (39)

Since distribution of the decision function T(Y) under H0 allows to design a statisti-
cal test with a desired false alarm rate, a , where the threshold ta is chosen to satisfy 
the following false alarm probability:

 P0 ( )L(Y) t≥ =a a  (40)
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where, P0(A) represent the probability of an event A when Y is distributed according 
to the null hypothesis H0 and a is the desired probability of the false alarm. Since Y is 
normally distributed, the statistics T is distributed according to the c2 law with (m –1) 
degrees of freedom. 

4.3.2 Statistic

To select an appropriate thresholds for the test statistics shown above, it is crucial 
to find their distributions. For that purpose, with the Gaussian noise within, the test 
statistics will be chi-square distributed variables ([41]). The normalized residual R  
is distributed as

 R N In~ ( , )q s 2 , (41)
where q = 0 under the null hypothesis (13). Then, the test statistic is distributed as 
the non-central chi-square distribution as shown below:

 t Y na s
c= { }1

2 2

2 2~ ,  (42)

and the test statistic is distributed through the central chi-square distribution cn
2  

with degree of freedom n. The threshold is now chosen from the chi-square distri-
bution therefore the fault-free hypothesis is erroneously rejected with only a small 
probability.

4.4 Fault detection using a GLR-based PCA test

In this section, a GLR test to detect faults is derived, and its explicit asymptotic 
statistics computed using PCA. The objective of the GLR-based PCA fault detection 
technique is to detect the additive fault, q, with  the maximum detection probability 
for a given false alarm. Here, the fault detection task can be considered as a hypoth-
esis testing problem with consideration of two possible hypotheses: null hypothesis 
of no change H0, where measurements vector X, is fault-free, and the change-point 
alternative hypothesis H1, where X contains a fault, and thus X is no longer cate-
gorized by the fault-free PCA model (31). For new data, the method needs to pick 
between H0 and H1 for the most efficient detection performance. 

In the absence of a fault, the residual can be calculated as follows,

 ˆ= -R X X , (43)

while in the presence of an additive fault vector, q , the residual is computed as

 ˆ [ ]q= - +R X X  (44)
It is assumed that the residual in Equation (41) is Gaussian. Hence, the fault detec-
tion problem consists of detecting the presence of an additive bias vector, q , in the 
residual vector, R. 

The residual vector can be considered as a hypothesis testing problem by focusing 
on two hypotheses: the null hypothesis H0, where R is fault-free and the alternate 
hypothesis H1, where R contains a fault. The formulation of the hypothesis testing 
problem can be written as
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The algorithm which studies the developed GLR-based PCA fault detection tech-
nique is presented in Algorithm 1. The GLR- based PCA is proposed to detect the 
faults in the residual vector obtained from the PCA model, through which the GLR 
test is used for each residual vector, R .

Algorithm 1: GLR-based PCA fault detection algorithm.

Input: Training fault-free data Xtr, Testing faulty data Xtest, Confidence interval a

Output: GLR statistic T, GLR Threshold ta

• Data preprocessing step:
  Standardize: computes data’s mean and standard deviation, and standardize 

it;

• PCA running step:
  Compute the covariance matrix, S  ;
  Calculate the eigenvalues and eigenvectors of S  and sort the eigenvalues in 

decreasing order; 
  Compute the optimal number of principal components to be used using the 

CPV method; 
  Compute the sum of approximate and residual matrices using Equation 

(31);
  Testing step:
  Standardize the new data;
  Generate a residual vector, R , using PCA;
  Compute the GLR statistic T using Equation (40) for the new data; Compute 

the GLR statistic threshold ta ;

• Decision step:

if T ≥ ta  , then declare a fault.

5. Simulation Results Analysis
5.1  States estimation in biological systems 

representing Cad System in E. coli

In this section, the state estimation techniques described in Section 3 (i.e., EKF, 
UKF, and PF) are compared through their utilization to estimate the states vari-
ables  of a continuously stirred tank reactor. First, a description of the CSEC process 
model is presented, and then two comparative studies are conducted to assess the 
performances of these state estimation techniques. In the first comparative study, 
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the three state estimation techniques are used to estimate the four state variables 
(the enzyme CadA, the transport protein CadB, the regulatory protein CadC and 
lysine Lys for a Model of the Cad System in E. coli) from noisy measurers of these 
variables. In the second comparative study, the various state estimation techniques 
are compared when used to simultaneously estimate the state variables as well as the 
model parameters of the CSEC. The effect of the number estimated parameters on 
the performances of these state estimation techniques is also investigated. Next, the 
model of CSEC, that will be used in our analysis, will be described.

5.1.1 Model of the Cad System in E. coli

The Cad system is one of the conditional stress response modules in E.coli, that is 
induced only at low pH and a lysine-rich environment [40]. The major components 
of the Cad system are the enzyme CadA, the transport protein CadB, and the regula-
tory protein CadC. The decarboxylase CadA converts lysine Lys into cadaverine in 
a reaction which consumes H+. The transport protein CadB imports the substrate, 
lysine and exports the product, cadaverine. So, the intracellular H+ concentration is 
reduced and the cell returns back to pH homeostasis. The membrane protein CadC 
senses the external conditions and regulates the stress response by binding directly 
to the DNA and activating the transcription of cadBA. This ensures that CadA and 
CadB are produced only under the appropriate external conditions of low pH and 
lysine abundance. Furthermore, as presented in [41], CadC senses the external cadav-
erine and the accumulation of cadaverine in extracellular medium causes a delayed 
transcriptional down regulation of cadBA expression.

In the current work, we use the available time profile data set presented in [42] for 
parameters and states estimation of the S-system model. Based on the model and 
available pathway information, presented in [40], the S-system model can be written 
as:
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where q a a b b= [ ..., , ..., , , , , , , , , , ]1 4 1 4 13 15 32 41 11 22 33 34 44g g g g h h h h h  is a set of param-
eters. Discretizing the model (46) using a sampling interval of  and incorporating 
random process noise (to account for any uncertainties in the CSEC process model), 
the model can be written as,
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where w sk wN ( , )0 2  is the process noise with zero mean Gaussian noise.
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5.1.2 Generation of Dynamic Data

At this point of the research, the model parameters are assumed to be constants, and 
at their nominal value presented in Table 1. Therefore, we consider the state vector 
that we wish to estimate as: z x CadA CadB CadC Lysk k k k k k

T= = [ ] .
To go further in the research, it appear now to own data on which running the 

model. Indeed, the results may depend on the details of the model, on the way/quality 
the data are generated/measured with and on the specific data that are used. To be 
independent of these considerations, we will generate dynamic data from the CSEC. 
The model is first used to simulate the responses of the enzyme CadA, the transport 
protein CadB, the regulatory protein CadC and lysine Lys for a Model of the Cad 
System in E. coli as functions of time as functions. These simulated states, which are 
assumed to be noise free, are then contaminated with zero mean Gaussian errors, i.e., 
a measurement noise v Nk v-1

20 ( , ).s  Considering a value of sv
2 0 01= .  the follow-

ing data set can be generated. Fig. 1 shows the changes in the four state variables. The 
model parameters of CSEC as well as other physical properties are shown in Table 1.

FiGURE 1 Simulated CSEC data used in estimation: state variables (CadA, CadB, CadC, Lys).

TABlE 1 True Values of Csec Parameters Model

Parameter Value Parameter Value Parameter Value Parameter Value
a1 12 b1 10 g13 -0.8 h11 0.5
a2 8 b2 3 g13 0.5 h22 0.75
a3 3 b3 5 g13 0.75 h33 & h34 0.5&0.2
a4 2 b4 6 g13 0.5 h11 0.8

5.1.3  Estimation of State Variables from Noisy 
Measurements using EKF, UKF and PF

In this comparative study, the objective is to compare the estimation accuracy of 
EKF, UKF and PF when they are used to estimate the four state variables of the 
CSEC process, i.e., the enzyme CadAk, the transport protein CadBk, the regulatory 
protein CadCk and lysine Lysk. 
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The simulation results of estimating the four states CadA, CadB, CadC  and 
Lys using EKF, UKF and PF are shown in Fig. 2(a,b,c). Also, the estimation root 
mean square errors (RMSE) for the estimated states are shown in Table 2. It can 
be observed from Fig. 2 and Table VI that EKF resulted in the worst performance 
of all estimation techniques, which is expected due to the limited ability of EKF to 
accurately estimate the mean and covariance matrix of the estimated states through 
lineralization of the nonlinear process model. The results also show that the PF pro-
vides a significant improvement over the UKF, which is due to the fact that, by using 
UKF, linearizing the process model does not necessarily provide good estimates of 
the mean of the state vector and the covariance matrix of the estimation error which 
are used in state estimation.

FiGURE 2 Estimation of state variables using various state estimation techniques.

TABlE 2 Root Mean Square Errors (Rmse) of Estimated States for Ekf, Ukf and Pf

Technique CadAk CadBk CadCk Lysk

EKF 0.0694 0.1160 0.1215 0.0311
UKF 0.0593 0.0937 0.1129 0.0195
PF 0.0009 0.0012 0.0009 0.0012

 5.2  Faults detection of biological systems 
representing Cad System in E. coli 

In the following section, the GLR-based PCA test algorithm performance will be 
assessed and compared to that of the conventional PCA set through two examples 
using simulated biological systems representing Cad System in E. coli data. The 
data set consists of 4 random variables, which are generated using the complex three 
degree of free domspring-mass-dashpot system. The generated data were arranged 
as a matrix X having 100 samples for discretization is 0.05 seconds and 4 Cad System 
in E. coli measurements. The responses of the 4 state variables CadA, CadB, CadC 
and Lys  are shown in Fig. 3, where X5  and X6 are expressed as:
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5.2.1 Training of PCA model

As described in Algorithm 1, the PCA-based GLR fault detection method requires 
constructing a PCA model from fault-free data. Therefore, the fault-free Cad System 
in E. coli  training data described earlier were used to construct a PCA reference 
model to be used in fault detection. The fault-free Cad System in E. coli system 
data were arranged as a matrix Xtr having 100 rows (samples) and 4 columns (Cad 
System in E. coli  measurements). These data are first scaled (to have zero mean and 
unit variance), and then are used to construct the PCA model. The responses of the 
training fault-free data, are shown in Fig. 4. The training fault-free data matrix Xtr is 
used to construct a PCA model.

 In PCA, most of the crucial variations in the data set are typically captured in the 
main principal components corresponding to the maximum eigenvalues as shown in 
Fig. 5. In this study herein, the cumulative percent variance (CPV) method is utilized 
to find out the optimum number of retained principal components. Utilizing a CPV 
threshold value of 90%, only the first two principal components of the total variations 
in the data as displayed in Fig. 5.) will be retained.

FiGURE 3 The original data.
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FiGURE 4 The training fault-free data.

FiGURE 5 Variance captured by each principal component.
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A plot of the decision function of the GLR test T (shown in Fig. 6) confirms that the 
process operates under normal conditions, where no faults are present.

5.2.2 Fault detection Cad System in E. coli processes

The PCA model formed utilizing the fault-free data is deployed in this section t o 
detect possible faults with unseen testing data. The data set from tests (which is 
simulated using Cad System in E. coli system) includes 50 data samples that are free 
of the training data. An additive fault was introduced in X1. It consists of a bias of 
amplitude equal to 10% of the total variation in X1, between sample numbers 25 and 
30 (see Fig. 7).

FiGURE 6 The time evolution of GLR decision function on a semi-logarithmic scale for 
the fault-free data.

FiGURE 7 The single testing faulty data Xtst.
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The performance of the various faults detection methods will be compared. It is 
assumed that the sensor measuring one state variable is damaged by an additive fault. 

The conventional PCA based monitoring technique is initially run using the train-
ing fault-free data. Based on the first four PCs,T2 and Q statistics for the conventional 
PCA algorithm and the GLR-based PCA test algorithm are used for fault detection. 
Fig. 8(a) shows the testing faulty data (additive fault in X1) (see Fig. 7). The results 
of Q statistic are shown in Fig. 8(a), where the dotted line represents the detection 
threshold Qa , which is found to be 2.426. Fig. 8(b) presents the results of the T2 sta-
tistic, where the dotted line represents the detection threshold Ta

2  which is found to 
be 6.514.

The process monitoring under fault using the PCA indices is presented in Fig. 8(a) 
and (b). Fig. 8(a) shows that the Q statistic at the time interval [25…30] is always 
above the threshold Qa , which means that the data fit the PCA model well (since it 
could capture most of the variations in the data), and verifies that the data belongs 
to the normal operating region. However, using T2 statistic the additive fault is not 
detected as shown in Fig. 8(b). In this case, the Q statistic detects this fault better 

 (a) Q statistic in the presence of simple fault. 

 (b) Hotelling’s T2-statistic in the presence of simple fault. 
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than T2 statistic as these figures show. When the GLR test is applied using the same 
fault-free data, the GLR threshold value is found to be ta = 3.841 for a false alarm 
probability of a = 10%. A plot of the GLR and Q statistics (shown in Fig. 8) confirms 
that the process operates very well compared to the fault detection using T2. We can 
show that the results which are shown in Fig. 8 (a), (b) and (c), show the ability of the 
GLR and Q statistics to detect this additive fault.

6. Conclusions
In this chapter, first, state estimation techniques are used to simultaneously esti-
mate the state variables for biological systems representing Cad System in E. coli. 
Various state estimation techniques, which include the extended Kalman filter 
(EKF), unscented Kalman filter (UKF), and particle filter (PF), are compared as 
they are used to achieve this objective. In the comparative study, EKF, UKF and 
PF are used to estimate the state variables for biological systems representing Cad 
System in E. coli. The simulation results of the comparative study show that the 
PF provides a higher accuracy than the EKF due to the limited ability of the EKF 
to deal with highly nonlinear process models. The results also show that the PF 
provides a significant improvement over the UKF. This is because the covariance 
is propagated through linearization of the underlying non-linear model, when the 
state transition and observation models are highly non-linear.  Second, generalized 
likelihood ratio (GLR) based principal components analysis (PCA) is used for fault 
detection in biological systems representing Cad System in E. coli. The objective 

 (c) GLR statistic in the presence of simple fault.

FiGURE 8 Fault detection in the presence of additive fault.
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is  to combine the GLR test with PCA model in order to improve fault detection 
performance. The PCA-based GLR is proposed to detect the faults of Cad System in  
E. coli process, in which, PCA is used to create the model and find a linear combi-
nations of variables which describe major trends in data set, and the GLR test, is 
utilized to improve faults detection. It is demonstrated that the performance of faults 
detection can be improved by combining GLR test and PCA.
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Next-Generation Sequencing 
and Metagenomics
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Abstract
Isolating microbes such as bacteria, fungi and virues from different environments 
like soil, water, air, plants, animals, hot springs, cold climates and space in purest 
form of culture is of interest for any biologist. Despite of many new technologies, 
limitations have stalled to get the purest forms of genetic material of microbes with-
out losing its nativity. Microbes’ losing their nativity means losing their ability to 
express and grow in the virtue of its unique environment. Metagenomics is a power-
ful tool to recover sample/the genetic material of a microbe or entire communities of 
organisms directly from its environment without losing its nativity. 

This review summarizes information and current opinions on metagenomics by 
providing more insights on how gene expression has shaped the microbe develop-
ment and also how an environment can influence the genome expression. How dif-
ferent next generation technologies had offered a platform to sequence the complete 
metagenomes of the microbes from the environment; and subjected to bioinformatics 
analysis such as sequence prefiltering, assembly, gene prediction, species diversity, 
data integration, and comparative metagenomics to deliver holistic information on 
interactions among communities, ecosystems and populations on community metab-
olism and population genomics. In addition what way, application of metagenomics 
has solved many challenges and proved its practicality in the fields of agriculture, 
food, engineering, evolution, medicine and sustainability.

1. Introduction
Metagenomics is the broad field with combination of microbiology, environment sci-
ence and genomics commonly known as environmental genomics, ecogenomics or 
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community genomics. In nature when a sample was isolated and profiled, it revealed 
microbial communities which are rich and diverse. Traditional way of understanding 
an organism is by isolating it from the sample collected from the environment. Then 
cultivating the organism for pure clonal culture and sequencing the genome of the 
microbe to characterize its virtue. During this process microbes and their communi-
ties may lose their nativity. Handelsman et al. (1998) for the first time used the term 
metagenomics to depict the idea of collection of genes sequenced directly from the 
environment. Chen and Patcher (2005) defined metagenomics as ‘...the application of 
modern genomics techinques to study the communities of microorganisms directly 
in their natural environments, by passing the need for isolation and lab cultivation of 
individual species’. 

Metagenomics has its root in studies conducted on bacteria, eubacteria and archea-
bacteria based on rRNA sequences. These studies established the fact of existence 
of ribosome nucleotide sequence diversity along with microbial community diversity 
paving the way for present fields such as environmental genomics, ecogenomics or 
community genomics. Pace et al. (1991) proposed the idea of directly isolating and 
cloning bulk DNA from environmental sample. Healy et al. (1995) were successful 
in directly isolating and cloning bulk DNA from environmental sample consisting 
of microbial consortia by developing Zoo libraries. Stein et al. (1996) used marine 
samples to constructs marine libraries for sequencing of metagenome. Breitbart et 
al. (2002) used shot gun sequencing to establish the uncultured viral communities in 
200 litres of sea water leading to the present day metagenomics. Subsequent studies 
cleared the twilight zone establishing new viruses in large numbers in human stool 
(Tyson et al. 2004), marine sediment (Tyson et al. 2004), and acid mine drainage 
system (Hugenhoz 2002). Developments in metagenomics have resulted in complete 
or nearly complete genome of bacteria/archeabacteria which were tough in obtaining 
pure cultures. Venter et al. (2004) as a part of Global Ocean Sampling Expedition 
(GOS) used shot gun metagenomics and identified nearly 2000 different species, 
which include 148 types of bacteria never known before. Many prestigious proj-
ects were undertaken by different groups around the world. Among them Human 
Microbiome Initiative is one of the most prestigious project. Successful metagenom-
ics project implements the following practices: sampling and processing, sequencing, 
sequence prefiltering, assembly, binning, annotation, sharing and storage of meta-
data and data analysis (Fig. 1.)

1.1 Sampling and processing

Sample processing is the crucial step in a metagenomics project. The DNA isolated 
shall be representative of all cells in the sample and with sufficient amounts of high-
quality nucleic acids. Sample is associated with a host (e.g. an animal or plant), then 
either fractionation or selective lysis is used (Burke et al. 2009; Thomas et al. 2010). 
Physical fractionation can be used if community sample is viruses in seawater. Direct 
lysis of the soil sample is quantifiable than indirect lysis. Biopsies or groundwater 
yield very small amounts of DNA. Thus, sampling and processing is an important 
step for getting required quantities of DNA for sequencing.
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1.2 Metagenome sequencing technology

DNA double stranded structure was established in the year 1953 (Watson and Crick 
1953), but it took decades to develop DNA sequencing methods. Wu (1970) devel-
oped the first method to determine the DNA sequence using location specific primer 
extension strategy. Synthetic location – specific primer was used to determine the 
sequence between the years 1970 and 1973 (Padmanabhan and Wu 1972; Wu et al. 
1973; Jay et al. 1974; Padmanabhan et al., 1974) and Wu and Taylor (1971) subjected 
phage l DNA to sequence 12 bp of cohesive ends. Chemical degradation was used by 
Walter Gilbert and Allan Maxam to sequence DNA (Maxam and Gilbert 1977).  More 

Figure 1 Flow diagram of metagenome project. 
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rapid DNA sequencing method with chain-terminating inhibitors was developed by 
Frederick Sanger, which is now considered as the first generation sequencing method 
(Sanger et al. 1977). This method identifies linear randomly terminated nucleotide 
sequences, whereas automated Sanger’s method uses fluorescent labeled terminators. 
The most accurate, most available and well defined technology is Sanger sequenc-
ing method. The throughput of this automated method can read 96 reactions in par-
allel. Using this method, complete human genome would take around 60 years to 
synthesize and cost approximately 5 to 30 million USD. First semi-automated DNA 
sequencing machine was announced in 1986 by Leroy E. Hood’s laboratory followed 
by fully automated sequences by Applied Biosystem in 1987 and novel florescent 
labeling technique by Dupont’s Genesis 2000 (Prober et al. 1987). Next generation 
high throughput DNA sequencing technologies capable of sequencing large number 
DNA sequences in a single reaction were developed. Next generation sequencing 
(NGS) technology provide high speed, throughput and monitors the sequential addi-
tion of nucleotides to DNA templates. The need and demand for low cost sequencing 
made the development of next generation sequencing (high-throughput sequencing) 
technologies. Overall high cost, reduction of sequencing errors, low reading accu-
racy are the limiting factors of the new technologies.

Several NGS methods like 454 pyrosequencing, llumina (Solexa) sequenc-
ing, SOLiD sequencing Massively parallel signature sequencing (MPSS), Polony 
sequencing, Ion Torrent semiconductor sequencing, DNA nanoball sequencing, 
Heliscope single molecule sequencing and Single molecule real time (SMRT) 
sequencing etc are the technologies used for sequencing  metagenomes. Genomic 
DNA, cDNA, immunoprecipitated DNA can serve as DNA template for all NGS 
experiments (Fig. 2)

TAble 1 Highlights of next generation sequencing technologies 

Single-molecule real time sequencing (SMRT)
Read Length  

Accuracy 
Reads per run
Time per run 
Cost per 1 million bases
Advantages 
Disadvantages

10,000bp to 15,000bp avg (14,000 bp N50); maximum read 
length >40,000 bases
99.99% consensus accuracy; 87% single read accuracy
50.000 per SMRT cell or 500-1000 megabases
30 minutes to 4 hours
$0.13-0.60
Longest read length, Fast detects 4mC, 5mC, 6mA.
Moderate throughput Equipment can be very expensive

Ion Semiconductor (Ion Torrent sequencing)  
Read Length
Accuracy 
Reads per run
Time per run 
Cost per 1 million bases
Advantages
Disadvantages

Upto 400bp
98%
Upto 80 million
2 hours
$1
Less expensive equipment, Fast
Hompolymer errors

Pyrosequencing (454) 
Read Length
Accuracy 
Reads per run
Time per run

750bp
99.9%
1million
24hours



335Next-generation sequencing and metagenomics

Cost per 1 million bases
Advantages
Disadvantages

$10
Long read size, Fast
Runs are expensive, Homopolymer errors

Solexa Sequencing synthesis (Illumina) 
Read Length 500 to 300 bp
Accuracy 98%
Reads per run Upto 3 million
Time per run 1 to 10days depending on sequence and specified read length
Cost per 1 million bases $0.05 to 0.12
Advantages Potential for high sequence yield, depending upon sequencer 

model and desired application
Disadvantages Equipment can be very expensive and requires high 

concentrations of DNA.
Sequencing by ligation (SOliD sequencing) 
Read Length
Accuracy 
Reads per run
Time per run

50+35 or 50+ 50 bp
99%
1.2 to 1.4 billion
1 to 2 weeks

Figure 2 Next generation sequencing technologies. 
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Cost per 1 million bases
Advantages
Disadvantages

$0.13
Low cost per base
Slower than other methods, have issue sequencing palindromic 
sequence 

Chain termination (Sanger sequencing)
Read Length
Accuracy 
Reads per run
Time per run 
Cost per 1 million bases
Advantages
Disadvantages

400 to 900 bp
99.9%
N/A
20 minutes to 3 hours
$2400
Long individual reads, Useful for many applications
More expensive and impractical for larger sequencing projects.

1.2.1 454 pyrosequencing 

454 pyrosequencing was first reported in 1988 using the principle of pyrophosphate 
detection and the technique was further developed (Ronaghi et al. 1996) in Stockholm 
to analyze 96 samples in parallel in a microtiter plate. The 454 GenomeSequencer 
FLX instrument was introduced in 2005 by 454 Life Sciences. Pyrosequencing 
method is based on principle ‘sequencing by synthesis’. Template DNA is ligated 
with specific adapter to attach one fragment of DNA to a single primer coated on 
streptavidin bead to form a clonal colony. Emulsion PCR is carried out with water 
droplets in an oil solution. The droplets act as individual amplification reactors 
producing approximately 107 clonal copies per bead (Margulies et al. 2005). ATP 
sulfurylase and luciferase enzymes generate visible light upon incorporation of the 
complementary nucleotide. The amplified DNA is transferred into a picotiter plate 
and analyzed using a pyrosequencing reaction. The picotiter plate allows hundreds 
and thousands of parallel pyrosequencing reactions to be carried out increasing the 
sequencing throughput. As this approach is sequencing-by-synthesis, it measures the 
release of inorganic pyrophosphate detected by light enzyme luciferase (Tawfik and 
Griffiths 1998; Nyren et al. 1993). The light intensity is proportional to the pyro-
phosphate released. This technology provides intermediate read length and generates 
80-120Mb of sequence in 4 hours.

1.2.2 Illumina (Solexa) sequencing

Illumina (Solexa) sequencing is based on reversible dye-terminators technology, 
and engineered polymerases (Bentley et al. 2008). This approach was invented by 
Balasubramanian and Klennerman from Cambridge University’s chemistry depart-
ment. This method is similar to Sanger sequencing, but uses modified dNTP’s con-
taining a terminator which blocks further polymerization. DNA molecules (single 
stranded) are attached to an immobilized surface by an adapter, subsequently bent 
and hybridized to complementary adapters for synthesis of their complementary 
strands. After the amplification, the templates are sequenced in a massive paral-
lel form using sequencing-by-synthesis approach. To determine the sequence, four 
types of reversible terminator bases (RT-bases) are added in presence of special 
DNA polymerases and non-incorporated nucleotides are washed away (Ronaghi et 
al. 1996). A camera takes images of the fluorescently labelled terminator nucleotides 
and its position. Then the dye along with the terminal 3’ blocker, are chemically 
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removed from the DNA, allowing for the next cycle to begin. The Illumina sequenc-
ing is capable of generating 35bp reads and produce 1Gb sequence in 2-3 days. The 
method is highly accurate base by base sequencing by eliminating errors.

1.2.3 SOLiD sequencing

SOLiD sequencing employs the process by ligation and was introduced in autumn 
2007. A library of DNA fragments are first ligated to magnetic bead with universal 
P1 adapter. Emulsion PCR takes place in microreactors with all reagents of PCR. The 
resulting beads, each containing single copies of the same DNA molecule, are depos-
ited on a glass slide (Valouev et al. 2008). One DNA fragment per bead bound to an 
adapter is hybridized with a primer. These templates are characterized by fluorescent 
labels and detected by fluorescence. The sequencing process is continued in the same 
way with another primer and sequence reading length is about 35 bases. Sequences 
are determined in parallel for more than 50 million bead clusters, resulting in a very 
high throughput of the order of Gigabases per run. The new SOLiD instrument is 
capable of producing 1-3Gb of sequence in 8-day run and offers 99.94% accuracy.

1.2.4 Massively parallel signature sequencing (MPSS)

The first of the next-generation sequencing technologies, MPSS, was developed in 
1990s at Lynx Therapeutics by Sydney Brenner and Sam Eletr. MPSS is a procedure 
used for identifying and quantifying mRNA transcripts similar to serial analysis 
of gene expression (SAGE). MPSS was a bead-based method that used a complex 
approach of adapter ligation followed by adapter decoding, reading the sequence in 
increments of four nucleotides. mRNA is reverse transcribed into cDNA, cDNA is 
amplified in microreactors as emulsion PCR. A sequence signature of ~16-20bp is 
determined from all the beads in parallel. Each signature sequence is cloned onto 
microbeads and then arrayed in a flow cell for sequencing and quantification. This 
method made it susceptible to sequence-specific bias or loss of specific sequences. 
The technology was so complex, MPSS was only performed ‘in-house’ by Lynx 
Therapeutics and no DNA sequencing machines were sold to independent labora-
tories. Lynx Therapeutics merged with Solexa (later acquired by Illumina) in 2004, 
leading to the development of sequencing-by-synthesis, a simpler approach acquired 
from Manteia Predictive Medicine, which rendered MPSS obsolete. Typically used 
for sequencing cDNA to measure gene expression levels (Brenner et al. 2000). 

1.2.5 Polony sequencing

Polony sequencing was developed in the laboratory of George M Church at Harvard. 
This technique was among the first next-generation sequencing systems and was 
used to sequence a full genome in 2005. It combined an in vitro paired-tag library 
with emulsion PCR, an automated microscope, and ligation-based sequencing. 
The chemistry to sequence an E. coli genome at an accuracy of >99.9999% costed 
approximately 1/9 that of Sanger sequencing (Shendure et al. 2005). Emulsion 
PCR isolates individual DNA molecules along with primer-coated beads in aqueous 
droplets within an oil phase. PCR then coats each bead with clonal copies of the DNA 
molecule followed by immobilization for later sequencing. 
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1.2.6 Ion Torrent semiconductor sequencing

Ion Torrent Systems Inc. developed a system based on using standard sequencing 
chemistry, but with a novel, semiconductor based detection system. This method 
of sequencing is based on the detection of hydrogen ions that are released during 
the polymerisation of DNA, as opposed to the optical methods used in other sequenc-
ing systems. A microwell containing a template DNA strand to be sequenced is 
flooded with a single type of nucleotide. If the introduced nucleotide is complemen-
tary to the leading template nucleotide it is incorporated into the growing complemen-
tary strand. This causes the release of a hydrogen ion that triggers a hypersensitive 
ion sensor, which indicates that a reaction has occurred. If homopolymer repeats are 
present in the template sequence multiple nucleotides will be incorporated in a single 
cycle. This leads to a corresponding number of released hydrogens and a proportion-
ally higher electronic signal (Rusk 2011).

1.2.7 DNA nanoball sequencing  

DNA nanoball sequencing is a type of high throughput sequencing technology used 
to determine the entire genomic sequence of an organism. The method uses rolling 
circle replication to amplify small fragments of genomic DNA into DNA nanoballs. 
Fluorescent probes bound to complementary DNA are ligated to anchor sequences 
bound to known sequences on the DNA template. Unchained sequencing by liga-
tion is then used to determine the nucleotide sequence (Drmanac et al. 2010). This 
method of DNA sequencing allows large numbers of DNA nanoballs to be sequenced 
per run and at low reagent costs compared to other next generation sequencing plat-
forms (Porreca 2010). However, only short sequences of DNA are determined from 
each DNA nanoball which makes mapping the short reads to a reference genome dif-
ficult. This technology has been used for multiple genome sequencing projects and is 
scheduled to be used for more.

1.2.8 Heliscope single molecule sequencing 

Heliscope sequencing is a method of single-molecule sequencing developed 
by Helicos Biosciences. This method helps in direct sequencing of cellular and extra-
cellular nucleic acids in an unbiased manner. It uses DNA fragments with added 
poly-A tail adapters which are attached to the flow cell surface. The next steps 
involve extension-based sequencing with cyclic washes of the flow cell with fluores-
cently labeled nucleotides (one nucleotide type at a time, as with the Sanger method). 
The reads are performed by the Heliscope sequencer. The reads are short, up to 55 
bases per run, but recent improvements allow for more accurate reads of stretches 
of one type of nucleotides (Heliscope gene sequencing; Thompson and Steinmann 
2010). This sequencing method and equipment were used to sequence the genome of 
the M13 bacteriophage (Harris et al. 2008).

1.2.9 Single molecule real time (SMRT) sequencing

SMRT sequencing is based on sequencing by synthesis approach. The DNA is syn-
thesized in zero-mode wave-guides (ZMWs) – small well-like containers with the 
capturing tools located at the bottom of the well. The sequencing is performed with 
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use of unmodified polymerase (attached to the ZMW bottom) and fluorescently 
labelled nucleotides flowing freely in the solution. The wells are constructed in a 
way that only the fluorescence occurring by the bottom of the well is detected. The 
fluorescent label is detached from the nucleotide at its incorporation into the DNA 
strand, leaving an unmodified DNA strand. According to Pacific Biosciences, the 
SMRT technology developer, this methodology allows detection of nucleotide modi-
fications (such as cytosine methylation). This happens through the observation of 
polymerase kinetics. This approach allows reads of 20,000 nucleotides or more, with 
average read lengths of 5 kilobases.

1.2.10 New Novel sequencing methods in development

There are a number of novel DNA sequencing methods which are still in develop-
ment. The development is made in terms of reduction of reaction volumes, smaller 
amounts of reagents and low cost. Third generation technologies are aiming to 
increase the throughput, decrease time and cost, harnessing the processivity of 
DNA polymerase (Schadt et al. 2010). Methods in development are Nanopore DNA 
sequencing, Tunneling currents DNA sequencing, Sequencing by hybridization, 
Sequencing with mass spectrometry, Microfluids Sangers sequencing, Microscopy 
based technique, RNAP sequencing, Invitro virus high-throughput sequencing.

1.2.11 Applications of Next generation sequencing

Apart from metagenomics NGS can be applied to genome sequencing & resequenc-
ing, transcriptome profiling, DNA – protein interactions and epigenome character-
ization and resurrection of ancient genome (Fig. 3).

Transcriptome sequencing
Genome wide survey of gene expression levels were studied using qPCR, SAGE 
and microarray with limitations. Next generation sequencing techniques were imple-
mented along with SAGE tags to sequence the RNA populations from the cells 
expressed. Noncoding RNA (ncRNA) are any RNA’s that are transcribed and not 
translated to a protein. ncRNA in plants and animals are having an important role 
in regulation of gene expression. Next-generation sequencing technology has dis-
covered many novel ncRNAs (Sanger and Coulson 1975; Venter et al. 2004; Nyren 
et al. 1993; Ewing 1998; Bainbridge et al. 2006; Hutchison 2007; Gowda et al. 2006; 
Mardis, 2006). These ncRNA are unique, diverse and regulate genes by a variety of 
mechanisms. The readouts from next generation technologies are quantitative, allow-
ing to detect changes in expression levels due to changes in environment and onset of 
disease. Studying the roles of these new specific RNAs may help in uncover certain 
aspects of disease or cancer. Remarkable progress has been made in characterizing 
and understanding these molecules using next generation technologies. Discovering 
ncRNAs and sequencing of transcriptome would provide us new insights on the 
genome wide expression patterns of an organism. 
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Resurrection of ancient genomes 
Samples from fossils and ancient remnants are in a state of degradation. With the 
advent of molecular techniques such as PCR and DNA sequencing, deciphering of 
mitochondrial genomes from fossils and ancient remnants was possible. Several 
non-trivial technical complications arised from these cases, most notably DNA con-
tamination. Next generation sequencing can be implemented to obtain sequence 
information from the degraded nature of the ancient genome. Sequence information 
from single fossil bone of Neanderthal genome was obtained using next generation 
sequencing technologies (Carrilho 2000). In addition to Neanderthal sequence, infor-
mation was also obtained directly from the nuclear genomes of ancient remains of 
the cave bear (Robertson et al. 2007) and mammoth (Barski et al. 2007). In this way 
next generation sequencing technology can be used in resurrecting ancient genomes.  

Analysis of epigenetic modifications of histones and DNA
Next generation sequencing technologies made it possible to study DNA methyla-
tion profile by bisulfite DNA sequencing, mapping histone modifications, mapping 
the locations of DNA-binding proteins, DNA accessibility and chromatin structure. 
The association between DNA and proteins is an interaction regulating gene expres-
sion and controlling the availability of DNA for transcription, replication, and other 
processes. Genome-wide chromatin immunoprecipitation (ChIP)-based studies for 

Figure 3 Applications of next generation technologies.
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DNA-protein interactions became possible in sequenced genomes (Korbel et al. 
2007). ChIP-based approach and the Illumina platform provided insights into tran-
scription factor binding sites in the human genome such as neuron-restrictive silencer 
factor (NRSF) (Tawfik and Griffiths 1998) and signal transducer and activator of 
transcription 1 (STAT1) (Bhinge et al. 2007). So, next generation sequencing tech-
nologies can be used for understanding of gene expression–based cellular responses 
due to DNA-protein interactions.

1.3 Sequence prefiltering

After obtaining metagenomic data, prefiltering of the sequence is the first step. 
Prefiltering includes removal of redundant, low quality sequences and sequences of 
eukaryotic origin (Adey et al. 2010; Bentley et al. 2008) using the methods EuDetect 
and DeConseq (Nakamura et al. 2011; Hess et al. 2011). 

1.4 Assembly

Recovering the sequence from the environmental sample is the first important step 
followed by assembly of the recovered reads into metagenome. Two strategies are 
used for assembly of metagenomics samples: de novo assembly and reference-based 
assembly (co-assembly). De novo assembly tools are developed based on the de Bruijn 
graphs to compute large amounts of data. de Bruijn assemblers Velvet (Zerbino and 
Birney 2008) or SOAP (Li et al. 2008) are the tools used for De novo assembly. 
Reference based assembly can be used, if closely related reference genomes are 
available for assembly of the metagenomic dataset. The available reference based 
assembly software are Newbler (Roche), AMOS, or MIRA (Chevreux et al. 1999). 
Using the appropriate method for assembly of the metagenomic dataset is important.

1.5 Binning

Binning is….. ‘the process of sorting DNA sequences into groups that might repre-
sent an individual genome or genomes from closely related organisms……’. Binning 
algorithms employ two types of information contained within a given DNA sequence. 
Firstly, compositional binning uses conserved nucleotide composition and secondly, 
the similarity with a reference database can be used to classify and bin the sequence. 
Phylopythia (McHardy et al. 2007), S-GSOM (Chan et al. 2008), PCAHIER (Diaz et 
al. 2009; Zheng and Wu 2010) and TACAO (Diaz et al. 2009) are the compositional-
based binning algorithms, whereas IMG/M (Markowitz et al. 2008), MG-RAST 
(Glass et al. 2010), MEGAN (Huson et al. 2007), CARMA (Krause et al. 2008), SOrt-
ITEMS (Haque et al. 2009) and MetaPhyler (Liu et al. 2009) are similarity-based 
binning softwares. PhymmBL (Brady and Salzberg 2009) and MetaCluster (Leung 
et al. 2011) are the binning algorithms that consider both composition and similarity. 

1.6 Annotation

Annotation of metagenomes can be performed by two different initial pathways. 
RAST or IMG the existing pipelines for genome annotation are used if the genome is 
reconstructed or annotation on the entire community. Later metagenomic sequence 
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data can be annotated in two steps: first, genes are identified and predicted; and sec-
ond, putative gene functions are assigned. CDS of metagenome are predicted using 
tolls such as FragGeneScan (Rho et al. 2010), MetaGeneMark (McHardy et al. 2007), 
MetaGeneAnnotator (MGA)/ Metagene (Noguchi et al. 2008) and Orphelia (Hoff 
et al. 2009; Yok and  Rosen 2011). BLAST-based searches are used for functional 
annotation. KEGG (Kanehisa et al. 2004), eggNOG (Muller et al. 2010), COG/KOG 
(Tatusov et al. 2003), PFAM (Finn et al. 2010), and TIGRFAM (Selengut et al. 2007) 
are the reference databases giving functional context to metagenomic datasets.  

1.7 Sharing and storage of metadata 

Genomic research has witnessed and is following the tradition of sharing genomic 
data as public databases. But, metagenomics field is yet to witness this tradition of 
sharing metagenomic data. At present NCBI, IMG/M, CAMERA and MG-RAST are 
the new level of organization and collaboration that provide metadata and centralized 
services.

1.8 Application of metagenomics

Metagenomics has been applied to solve many challenges in the fields of medicine, 
biofuel, enviromental remediation, biotechnology, agriculture and ecology (Fig. 4.)

Figure 4 Applications of metagenomics.

1.8.1. Medicitne 

Two metagenomic projects Human Microbiome initiative and Metagenomics of the 
Human Intestinal Tract (MetaHit) established the fact that microbial communities 
play an important role in human health. Human Microbiome initiative characterized 
microbial communities from 15-18 body sites of 250 individuals. The primary goal 
of this project is to correlate the human microbiome with human health. This proj-
ect was somewhat successful in understanding the key role of microbial communi-
ties in preserving human health. Some more questions like composition of microbial 
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communities, core human microbiome etc are yet to be answered (Kristensen et al. 
2009; Zimmer 2010). 

The MetaHit project is based on 124 individuals related to healthy and diseased 
states like overweight and irritable bowel syndrome. The study established bacterio-
cides and firmicutes as the dominant distal gut bacteria and identified 1244 metage-
nomic clusters important for the health of the intestinal tract. These clusters were 
of two types : housekeeping and intestine specific. The housekeeping bacteria are 

TAble 2 Metagenome assemblers used for assembling reads into metagenomes

S. No Assembler Description Reference
1 Orione A Galaxy-based framework consisting of 

publicly available research software and 
specifically designed pipelines to build complex, 
reproducible workflows for next-generation 
sequencing microbiology data analysis. 

Cuccuru et al., 2014

2 GARM A new software pipeline to merge and reconcile 
assemblies from different algorithms or 
sequencing technologies. 

Soto-Jimenez et al., 
2014

3 GeneStitch Novel way of using the de Bruijn graph 
assembly of metagenomes to improve the 
assembly of genes. 

Wu et al., 2012

4 CLC Bio’s 
denovo 
assembler (CLC 
Bio) 

CLC bio’s de novo assembly algorithm utilize 
de Bruijn graphs to represent overlapping reads 
which is a common approach for short read de 
novo assembly 

http://www.clcbio.
com/files/appnotes/
CLC_bio_De_
novo_Assembly.pdf

5 Ray Meta A massively distributed metagenome assembler 
that is coupled with Ray Communities, which 
profiles microbiomes based on uniquely-colored 
k-mers 

Boisvert et al., 2012

6 MAP A de novo metagenomic assembly program for 
shotgun DNA reads 

Lai et al., 2012 

7 MetAMOS A modular and open source metagenomic 
assembly and analysis pipeline 

Treangen et al., 
2013

8 Meta-IDBA An iterative De Bruijn Graph De Novo short 
read assembler specially designed for de novo 
metagenomic assembly 

Peng et al., 2007

9 MetaVelvet Modified and extended a single-genome and de 
Bruijn-graph based assembler, Velvet, for de 
novo metagenome assembly

Namiki et al., 2012

10 Newbler Newbler is for de novo DNA sequence 
assembly. It is designed specifically for 
assembling sequence data generated by the 454 
GS-series of pyrosequencing platforms sold by 
454 Life Sciences, a Roche Diagnostics 
company.

Nederbragt, 2014

11 MIRA Assembler uses iterative multipass strategies 
centered on high-confidence regions within 
sequences and has a fallback strategy for using 
low-confidence regions when needed 

Chevreux et al., 
2004 

12 SPADES Assembler for both single-cell and standard 
(multicell) assembly 

Bankevich et al., 
2012
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required to influence the central metabolic pathways of the host like central carbon 
metabolism and aminoacid synthesis. The intestine/gut-specific bacteria functions 
include adhesion to host proteins or harvesting sugars of globoseries and glycolipids. 
Other outcomes of the project is that change in gut biome diversity was observed 
in patients with irritable bowel syndrome when compared with healthy individuals. 
Another new insight provided by this project was that only 7.6% of the known gut 
bacteria were captured and more research is necessary to identify novel bacteria 
from the gut biome.        

1.8.2.Biofuel 

Biomass such as corn and its stalk, grasses, sugarcane etc are used for the conversion 
of the cellulose into fuels which are known as biofuel. Different types of biofuels pro-
duced include ethanol, methane and hydrogen. Conversion of biomass into biofuel 
requires microbial consortia. This consortium converts/transforms various complex 
carbohydrates like cellulose into simple sugars. Later these sugars are fermented to 
produce ethanol, sometimes methane and hydrogen as main/by products.

 Metagenomics is a poweful tool which helps us in understanding and providing 
new insights on how these microbial communities achieve the required function in 
the particular environment. This information can later be applied to control micro-
bial communities for achieving the required function in controlled environment. 
Luen-Luen et al. (2009) applied metagenomics to screen enzymes like glycoside 
hydrolases from microbial consortia involved in biofuel production. Jaenicke et al. 
(2011) applied metagenomics to understand microbial consortia of biogas fermentors. 
Suen et al. (2010) applied metagenomics to understand the role of gut microbiome 
of insects-leaf cutter ants in converting biomass to simple substances in the gut of 
insect. So, metagenomics has helped in deciphering the role of microbial commu-
nities in converting complex biomass into simple molecules. Thus, this reinvented 
technology can be implemented in production of biofuels.     

1.8.3. Enviromental remediation 

Monitoring the impacts of pollutants on the environment and cleaning up the pollut-
ants from the environment is the biggest task today. The amount of pollutants released 
in the environment is increasing leading to presence of huge amounts of xenobiotics. 
Some are easily degraded by the enzymes and the rest of amount is accumulated in 
the soil, water and living organisms. These accumulated pollutants are toxic and 
cause mutations finally leading to cancer in the organisms. Interestingly some of 
the organisms are resistant, rendering pollutants non-toxic and making the microbes 
adapt to polluted environment. The proteins, enzymes and genes of microbes had 
a capacity to break down the pollutants. Bioremediation can be exsitu by removing 
pollutants and insitu. Microbes remediating pollutants help to have an eco-friendly 
and cost effective way to have a health in polluted ecosystems. Metagenomics can 
be applied to isolate, assess and understand how microbial communities are coping 
up with pollutants and assess the improvement in contaminated sites (George et al. 
2010).



345Next-generation sequencing and metagenomics

1.8.4. Biotechnology

A vast array of biologically active compounds were identified and recovered from 
microbes. These compounds are actively being used as fine chemicals, agrochemicals 
and pharmaceuticals. Application of metagenomics helps in identification of desired 
trait or useful activity (Wong 2010). There are two types of bioprospecting metage-
nomic data: function-driven screening of expression data and sequence-driven 
screening of DNA sequence data (Patrick and Handelsman 2003). Function-driven 
screening analysis identifies clones with desirable traits or useful activity followed 
by biochemical characterization and sequence analysis. Whereas sequence-driven 
analysis uses PCR primers to screen clones for sequence of interest (Patrick and 
Handelsman 2003). Sometimes a combination of function and sequence-driven 
screening can be used for bioprospecting. 

1.8.5. Agriculture 

Plants are surrounded by a number of microbial communities both on it and in the 
soil. Much is not known about the microbial consortia inhabitating the soil despite 
of their economic importance. Microbial communities are known to fix atmospheric 
nitrogen, inducing plant growth, nutrient recycling, sequestering of iron and other 
metals and disease supression. Metagenomics can be used for exploring the micro-
bial communties interacting with plants to improve crop health. 

1.8.6. Ecology  

Environmental communities is the well-known application for metagenomics. 
Community genomics can be used to understand the role of each community in an 
ecosystem. There are two types of microbial communities identified from metage-
nomic analysis : feast/famine and planktons. Metagenomics can provide more infor-
mation and insights in functions of microbial communities (Raes et al. 2011). Meta 
genomics was applied to identify microbial consortia found in faeces of Australian 
sea lions. Australain sea lions faeces are rich with nutrients and microbial consortia. 
Microbial consortia present in the faeces break down the nutrients in the faeces and 
make it available to the food chain of the coastal ecosystem (Lavery et al. 2012). In 
addition, metagenomics also helps us in identifying microbial communities present 
in air, water and debris.

1.8.7. Metagenomics for species/strain Identification

Efforts to unambiguously classify metagenomic reads into species/strains/higher 
levels/clade-specific is challenging. Next generation technologies are used to cap-
ture DNA/RNA from the samples. These metagenome reads captured in the form 
of DNA/RNA are used to perform computationly extensive assembly to identify 
species/strains. Challenges in this process are sequencing errors, noise generated in 
reads during sequencing, ambiguity contributed by homology in the genome content 
of closely related species/strains, complex data preprocessing and assembly based on 
genome coding regions (Wang et al. 2012). Tu et al. (2014) considering both genome 
coding and non-coding data developed K- mer approach to identify species/strains 
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from a metagenome data.  K-mer-based approach, identifies genome-specific markers 
(GSMs) rapidly and comprehensively from all regions in the genome sequence and 
filter out non-specific sequences. The currently sequenced microbial metagenomes 
are searched against these GSMs, to determine the presence/absence and/or the rela-
tive abundance of each strain/species. Thus, species/strain identification is possible. 
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Metabolic Engineering: 
Dimensions and Applications
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Abstract
Metabolic engineering, initially conceptualized as the manipulation of natural pro-
cesses to improve or enhance the productivity of valuable products using genetic 
engineering, has now transformed into a field where microbial host can be engi-
neered to produce almost any organic compound. Indeed, the concept is old one but 
development of molecular and systems biology has introduced a new dimension to 
this science of pathway regulation. Until recently metabolic engineering has found 
its application in microorganisms and plants: improving production of materials 
already synthesized by them; addition of new activities for bioremediation and pro-
duction of industrially/commercially important chemicals, hormones, and proteins.
Studying metabolic engineering could provide an insight into tissue and organ net-
work and functioning; strongly influencing the areas of medicine and therapeutics. 
Aiding metabolic engineering with new computational and mathematical tools will 
help us recognize its true potential. Still, our understanding of fundamental biology 
has been the limiting factor. Improving production metrics and the range of attain-
able products will eliminate the need for presumptions currently being used. We 
believe that metabolic engineering will soon evolve into a robust analytical field, 
owing to the rapidly emerging technologies. 

1. Introduction
The term “metabolic engineering” is a combination of two terms: metabolism (the 
sum total of all enzymatic transformations of organic molecules that are occurring 
in the cell of an organism) and engineering (to manipulate things to enhance their 
value). Metabolic engineering is the directed improvement or/and modification of 
cellular activities or products formation by manipulating specific biochemical path-
ways using recombinant DNA technology.
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Metabolic engineering aims at mathematically modelling these biosynthetic net-
works, calculating the yield of useful products, and identifying the constrain in the 
production of these products (Torres and Voit, 2002; Yang and Bennett, 1998).

To increase the productivity of a certain desired metabolite, chemical mutagens 
were used to genetically modify microorganism and finally select the mutant strain 
over expressing the desired metabolite. However in doing so, one of the main aspects 
that remained unnoticed was identifying the most important metabolic pathway for 
that metabolitè s production. As a consequence of which, constraints to production 
and modification of important pathway enzymes remained unexamined (Torres and 
Voit, 2002).  In early 1990s, emergence of metabolic engineering that analyze the 
metabolic pathway of a microorganisms, and determines the constraints and their 
effects on the production of desired compounds was seen as the sorted solution to the 
earlier problem. It then employed genetic engineering to relieve the pathways from 
these constraints. 

The ultimate goal of metabolic engineering is to use these organisms to produce 
industrially valuable substances in a cost-effective manner. Currently production of 
pharmaceuticals, milk products, alcoholic drinks and other biotechnology products 
comes under this technique. Since cells use their metabolic networks for their sur-
vival. The cells ability to produce the desired substance and its natural needs for 
survival leads to trade-offs in metabolic engineering. Earlier,the focus was on the 
regulatory networks to efficiently engineer the metabolic pathway rather than directly 
knocking out and/or overexpressing the genes that encode for important metabolic 
enzymes (Vemuri and Aristidou, 2005).The focus has now shifted to expressing and 
fine tuning heterologous pathways as researchers are finding them to be more chal-
lenging than engineering metabolic pathways (Yuan et al., 2013). 

Metabolic engineering seems to overlap with many biological fields like systems 
biology, genetic engineering and molecular biology but its distinct focus differen-
tiates it from them. It is concerned with investigating the properties of the meta-
bolic pathways and genetic regulatory networks as opposed to genetic engineering 
which only deals with investigating the genes and enzymes (Stephanopoulos and 
Sinskey, 1993). Another distinguishing characteristic of metabolic engineering is 
that it aims at engineering microorganisms that can be used as biocatalysts for the 
economical production of biofuels, chemicals, and pharmaceuticals, a lot more than 
simply stitching genes together to build a basic functioning pathway. Just stitching 
the pathway genes together will only produce few milligrams of product but further 
optimization of the heterologous pathways is required to reach optimal yield, titer 
and productivity for cost-effective production. So, although building a functional 
pathway takes few months improving it from the angle of commercialization is a 
time taking and a tedious task. This outlines the basic elements of metabolic engi-
neering i.e. pathway design, construction, and optimization. These elements include 
components from graph theory, chemical reaction engineering, biochemistry, and 
optimization (Woolston et al., 2013).

In this chapter, we haveenlisteddifferent areas where metabolic engineering has 
been applied. The different aspects of metabolic engineering like pathway design, 
construction and optimization have been discussed without going into the mathe-
matical details of each. All this has been supplemented with thelist of computational 
methods used in metabolic engineering, thus giving readers an edge over the cur-
rently available articles.
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2. Metabolic flux balance analysis
The word flux comes from the Latin word fluxus meaning “flow”. In transport 
phenomena, flux is defined as the rate of flow of a property per unity area and has 
dimensions of [amount] [time]-1 [area]-1. Metabolic flux analysis is based on fluxomics 
technique used to calculate metabolite production and consumption rates in a bio-
logical system. All the enzymes involved in a pathway regulate the flux (the move-
ment of matter through networks connected by metabolites and cofactors). Flux, is 
analyzed via flux balance analysis (FBA), and is of great importance in metabolic 
network model building as its regulation is vital for regulating the pathway`s activity 
under changing conditions within a cell. The flux of metabolites through a pathway 
can be described by summing up the individual reaction steps. It is represented as:
 J = Vf – Vr
where J is the metabolic flux through each reaction, Vf is the rate of forward reaction 
and Vr is the rate of reverse reaction. 

There is no flux at equilibrium. It is difficult to reach an ideal steady state so, cal-
culations are done at quasi-steady state (almost equal to steady state). Flux is usually 
determined by the rate limiting step of the reaction. In the reconstructed metabolic 
networks, flux analysis can clearly illustrate the interconnection of different parts 
of the cellular metabolism, particularly due to common cofactors. The tight con-
nections in metabolic networks point to the fact that changes in fluxes in one part of 
the metabolic pathway will be communicated to many different parts, resulting in a 
global response. Thus, we could retrieve valuable information related to functioning 
of the complete metabolic network by even measuring metabolic fluxes at few points.

Also, FBA has its drawbacks. One of the major drawbacks of FBA is that it does 
not include kinetic parameters thus cannot be used for modeling dynamic behavior 
(Raman and Chandra, 2009)

Generally, metabolic flux analysis uses 13C isotope labelling to determine meta-
bolic pathway flux. In this approach, metabolic pathway maps (stoichiometric model) 
are used for calculating intracellular fluxes for the major intracellular reactions by 
applying mass balances around intracellular metabolites. Input to the calculations is 
a set of measure extracellular fluxes, typically substrates uptake rates and metabo-
lites’ secretion rates. As a result of this, a metabolic flux map is constructed rep-
resenting diagrammatically the biochemical reactions included in the calculations 
along with the steady state rate estimation (i.e., the flux) at which each reaction 
occurs(Stephanopoulos et al., 1998).

Flux-balance analysis(FBA) can help address the following:

• The biomass yield and maximum growth rate 
• The biochemical production capabilities
• The effectiveness of the metabolic pathway 
• The thermodynamic information related to metabolic pathways
• The trade-off between overproduction of metabolites and biomass yield.

Though FBA is of foremost importance for pathway analysis but it too has some 
drawbacks. Sometimes disagreement with the experimental data may arise which is 
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often accounted for when regulatory loops are considered. This cannot be used for 
modelling dynamic behavior and also does not uniquely specify the flux.

FBA is a mathematical approach for simulating metabolic pathways in metabolic 
networks at genome scale. In terms of input data required for constructing the meta-
bolic model, it is computationally inexpensive.A very little information in terms of 
enzyme kinetics and concentration is required for FBA. FBA makes two assump-
tions, steady state (metabolite concentration is not changing) and optimality (organ-
ism has been optimized such as for optimal growth). 

The material balance model applies to every cellular pathway which implies:
 Input = Output + Accumulation
For the system of microbial cells at steady state accumulation term tends to zero and 
thematerial balance equations is reduced to:
 Input = Output
In such a system, input to the system is substrate which is consumed and biomass 
produced becomes the output from the system. The material balance equation then 
is represented by 

 Input – Output = 0

• Mathematical representation of the algebraic equations is usually done as a 
dot product of a matrix of coefficients and a vector of the unknowns. Since 
the steady-state assumption puts the accumulation term to zero. The system 
can be written as:

 A.x = 0

• Firstly all the metabolic reactions in a pathway are mathematically repre-
sented in the form of a numerical matrix, of each reactioǹ s stoichiometric 
coefficients.

 S.v = 0

• These stoichiometric coefficients impose constraints on the metabolic flux 
(flow of metabolites through the network). There are two ways of represent-
ing constraints, one as equations that balance reaction inputs and outputs 
as mentioned above and second as inequalities imposing bounds on the 
system. The matrix of stoichiometries imposes flux (that is, mass) balance 
constraints on the system under consideration. Lower and upper bounds 
can be designated to every reaction, which define the maximum and mini-
mum allowable fluxes of the reactions. These balances and bounds define 
the rates at which every metabolite is utilized or produced by each reaction. 

• The next step is defining a phenotype (a biological objective) that is relevant 
to the problem under consideration. For example, in the case of predicting 
growth, the objective would be the rate at which metabolic compounds are 
converted into biomass constituents (nucleic acids, proteins and lipids). 

Biomass production is mathematically represented by adding an extra column of 
coefficients in the matrix of stoichiometries. Now, the objective is predicting the 
maximum growth rate which can be accomplished by evaluating conditions that 
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result in the maximum flux through the reaction. In many cases, phenotype of inter-
est is the result of more than one reaction. The contribution of each reaction to the 
phenotype is defined mathematically by an ‘objective function’. Taken together, these 
equations aresolved using linear programming.

Suppose if we are interested in calculating the maximum aerobic growth of E.coli 
while assuming that glucose and not the oxygen uptake is the limiting factor for 
growth. We would set the maximum rate of glucose uptake to a physiologically real-
istic level (18.5 mmol glucose gDW-1h-1; DW, dry weight) and set the maximum rate 
of oxygen uptake to such an arbitrarily level that it does not limit growth. Then, using 
linear programming it is possible to determine the maximum possible flux through 
the biomass reaction.(Orth et al., 2010)

3. Metabolic engineering in microorganisms
A remarkable array of metabolic pathways exists in nature as exhibited by the diverse 
microorganisms. Though only some of the organisms are suitable for commercial 
application, most of them require genetic improvements guided by our current 
understanding of microbial metabolism and genetics (Stephanopoulos et al., 1998). 
Metabolic engineering is such a field that has a potential of producing a large number 
of valuable organic compounds from simple and inexpensive starting materials using 
microorganisms (Keasling, 2010).As a result of this new and desirable functionalities 
in microbial cells, pharmaceutical, environmental, agricultural, food and chemical 
sectors are the added beneficiaries. Microbial cell factories (MCFs) is believed to be 
a new revolutionary platform for producing organic compounds and replacing tradi-
tional chemical factories (Fisher et al., 2014). 

Increasing population and growing industrialization is consuming fossil fuels at 
an unprecedented rate. A sustainable and economical alternative to the petroleum-
based production is engineering microbes for the production of fuels and chemicals 
using renewable carbohydrate feedstocks. Global energy and environmental prob-
lems have generated a stir among scientists to look for synthesizing liquid biofu-
els from renewable resources such as cellulosic biomass that will offer advantages 
such as higher energy density, lower vapour pressure, less hygroscopic and compat-
ibility with existing infrastructure. This calls for designing efficient and optimized 
metabolic pathways for carrying our economically competitive bioprocesses for 
the production of new generation fuels. Metabolic engineering offers an alternative 
approach of engineering synthetic pathways into user-friendly hosts for the produc-
tion of the sustainable fuels and then manipulating these hosts for improved produc-
tion efficiency. One organism that has captured the interests of metabolic engineers 
is the yeast (Saccharomyces cerevisiae) due to its convenience to be genetically engi-
neered, extensive information on its physiology, fully clarified genetics and metabo-
lism and its robustness to handle harsh industrial conditions. Optimizing its native 
cellular metabolic pathways and introduction of novel pathways have expanded its 
range of cell factory applications. Yeast is being applied on a large scale for biofuel 
production. Nielsen J et al., 2013 has wonderfully reviewed the current advance-
ments in metabolic engineering of S. cerevisiae for the production of bioethanol, new 
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generation biofuels and other chemicals (Nielsen et al., 2013). Several higher fuels 
such as 1-propanol, 2-methyl-1butanol, 1-butanol, isobutanol and 3-methyl-1-buta-
nol, which possess fuel properties like fossil fuels can be efficiently produced using 
metabolic engineering approach. Choi et al., 2014 has extensively reviewed produc-
tion of higher alcohols from microbes (Choi et al., 2014).The recent progress in the 
engineering of Escherichia coli has been summarized in detail by Atsumi and Liao 
(Atsumi and Liao, 2008). Recently, microorganisms have been engineered to convert 
simple sugars into several types of biofuels, such as alcohols, fatty acid alkyl esters, 
alkanes, and terpenes, with high titers and yields. Many researchers have engineered 
biosynthetic pathways for the production of several advanced biofuel in well-char-
acterized microorganisms such as Escherichia coli and Saccharomyces cerevisiae. 
This has been reviewed extensively by Zhang et al. (Zhang et al.,2011).

Till date, there are around 2,00,000 plant products known and many out of them 
demonstrate pharmacological properties. However, most of them are hard to be iso-
lated from plants due to their limited abundance, cellular compartmentalization of 
products and seasonal variations. The advancement in next-generation sequencing 
technology and recombinant DNA technology, offering opportunities for functional 
integration of plant biosynthetic pathways in different microorganisms. Currently 
many plant products like isoprenoids, phenylpropanoids, alkaloids and many sec-
ondary metabolites are being produced using microorganisms as the host organisms, 
thanks to metabolic engineering (Marienhagen and Bott, 2013).

Microbial production of plant natural products using microorganisms is a promis-
ing alternative. Microorganisms are already being used to produce broad-range of 
products ranging from nutritional items, industrial chemical compounds and phar-
maceuticals (amino acids, vitamins, sugars, insulin, biofuels) (Choi et al., 2014; Shin 
and Lee, 2014). Microbial production allows many advantages like (Marienhagen 
and Bott, 2013):

• It is more environmental friendly as the process does not involve use the of 
organic solvents, heavy metals and acids or bases. 

• Microbes can convert simple and inexpensive renewable products into 
desired products.

• The scalability of microbial fermentations is highly achievable.
• The genetic availability of industrially relevant microbes allows easy 

reconstruction of metabolic pathways.
• Recombinant microbes lack competing pathways as compared to heterolo-

gously expressed pathways in plants, so the desired chemical will be made 
as a chemically distinct molecule. 

• Simplified downstream processing in comparison to product isolation and 
purification from plants. 

Case study 1: An example of metabolic engineering in E.coli

In the past, the laboratory work has kept its focus on manipulating central metabolic 
pathways in different microorganisms to achieve enhanced production of desired 
products. Here, we are specially exemplifying the metabolic engineering to overcome 
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the problem of acetate accumulation in E.coli. Achieving high expression level of the 
cloned gene is one of the major challenges in production of recombinant protein. As 
a result of these conditions, the acetate amount in the reactor continues to increase. 

Various strategies have been proposed in the past but they only lead to an improve-
ment in the performance level of the process but are diffi cult and expensive to imple-
ment. Our goal is to design a strategy using metabolic engineering to reduce the 
acetate accumulation (Aristos et al., 1994).

The Fig. 1 shown below is the normal glycolytic pathway along with a major path-
way leading to acetate formation. Anyone can fi gure out several potential points 
where we can control or reduce the acetate production/accumulation. One very sim-
ple approach is to block the pathways leading to acetate formation from acetyl-CoA. 
Other approaches include regulating the uptake of carbon source and thus reducing 
the pyruvate or acetyl-CoA accumulation. However, introducing a new pathway will 
perturb the existing pathway which is highly regulated.

Here we will investigate the only one strategy of redirecting carbon fl ux in a 
direction that is less inhibitory to byproducts production. In this case, heterologous 
expression of a bacterial gene acetolactate synthase (ALS) obtained from Bacillus 
subtilis is considered. The enzyme produced by this gene converts pyruvate to acet-
oin. Due to its central position, pyruvate branch point is the critical node where car-
bon fl ux partition occurs between acetyl-CoA, lactate and acetoin. The introduction 
and expression of the ALS gene in the bacteria changed the glycolytic fl uxes drasti-
cally and minimized the acetate accumulation in the bioreactor. It was also observed 
that acetoin was 50 times less harmful than acetate. Furthermore, the effect of ALS 
on the normal physiology was evaluated and it was found to be exerting negligible 
effect on the normal reaction network.

Case Study 2: Metabolic engineering in Methanococcus 
maripaludis generate genome scale metabolic model

Figure 3 illustrates metabolic engineering in Methanococcus maripaludis. Genomic 
annotations were obtained from sequencing studies (Hendrickson et al.2004). The 
physiological, biochemical and genetic information about M. maripaludis was 
mined from available literature and public databases like KEGG, BRENDA and 
METACYC. The information obtained from these databases was merged for unifi ca-
tion. The reaction stoichiometries were checked for mass balances. Several ORFs 
based on known physiological information and comparative genomics were anno-
tated. Then reactions were checked for the production of biomass precursors using 
FBA through MetaFluxNet. The score on the scale of 1-5 was assigned to each reac-
tion based on our confi dence in the available experimental data. An SBML fi le of the 
model was deposited in the BioModels database.

The data from Timothy et al. and Lupaet al. was used to validate our genomic 
model. MSH (MS medium with NaCl, MgCl2, and KCl) media with and without 
organics was used by Timothy et al. to grow a M. maripaludis culture. The H2–CO2 
(75 : 25 v/v) pressure of 300 kPa and a temperature of 25 °C was maintained in 
anaerobic pressure tubes. A hydrogen utilization rate of 28.8 mmol gDCW

−1 h−1 (1.6 ng 
μgDCP

−1 min−1) and 45 mmolgDCW
−1 h−1 was measured during cell growth with and without 

the organics respectively (DCP = dry cell protein and is assumed to be 60% of DCW 
(dry cell weight)). The lower bound in the above model was the experimental value of 
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hydrogen exchange and other reaction fl uxes were calculated using FBA (Kralet al. 
1998). On the other hand, Lupa et al. performed two experiments with wild-type M. 
maripaludis S2. The initial experiment, measured cell growth via absorbance at 600 
nm and MERs via gas chromatography at 37 °C over a period of 25 h. The culturing 
conditions for this experiment were McNA (minimal medium supplemented with 
acetate) medium at 37 °C, H2–CO2 (80 : 20 v/v) under 276 kPa of the atmosphere. 
Sodium formate was used as a source for H2 under the O2-free N2 atmosphere in the 
following experiment with culturing conditions to beN2 : CO2 (80 : 20 v/v) under 138 
kPa of the atmosphere. The MER values so obtained were converted to mmol gDCW

−1 

h−1for simulating this experiment in our model, and set as upper bounds on methane 
exchange fl uxes. The growth rates was predicted using FBA for the corresponding 
MERs(Lupaet al. 2008).For our model Growth Associated Maintenance (GAM) was 
set as 30 mmol ATP gDCW

−1 h−1 and O2 uptake fl ux was set as zero for simulating 
anaerobic conditions. For each of these above predictions, a growth yield (gDCW 
molCH4

−1) was computed and then compared with average growth yields obtained by 
Lupa et al.  for the two scenarios (Lupaet al. 2008). The predictions for the above 
metabolic model match closely with the experimentally observed growth yields. 

After validation, phenotypical observations from Haydock et al., Lin et al., and 
Lie et al. were used to verify model predictions. Haydock et al. demonstrated the 
role of the leuA gene in the growth of M. maripaludisS2 by constructing a leucine-
auxotrophic mutant (Haydock et al. 2004). Lin et al. on the other hand showed the 

FigurE 1 Central metabolism pathways scheme in E.coli.



360 Computational Biology and Bioinformatics

importance of porE genes on growth and oxidation of pyruvate (Lin et al, 2004). Lie 
et al. studied the effect of nitrogen on the regulation of nif (nitrogen fixation) and glnA 
(glutamine synthetase) operons (Lie and Leigh,2003). Under diazotrophic (nitrogen-
rich) conditions, both nif and glnA exhibited high expressions and the expression was 
observable in the presence of alanine as a nitrogen source (Lie and Leigh, 2002).

4. Metabolic engineering in plants
For years, humans have remained dependent on the products of plant metabolism for 
food, medicines, feed, fuel and fiber. As the world population is expected to approach 
9 billion by 2050, unprecedented amounts of these products will be required, which 
calls for improved production strategies. Plants exhibit remarkable property of meta-
bolic plasticity and diversity, but meeting the challenges of the growing population 
will also require engineering plants.Plants have the ability to produce most abundant 

FigurE 2 Modified scheme of central metabolism in E.coli
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as well as other chemicals of high utility. As our knowledge about plants metabolism 
increases, the reconstruction of these pathways will become accessible.

As of the past few years, plant metabolic engineering was only confined to modi-
fying regulatory or biosynthetic steps in metabolic pathways, often resulting in out-
comes that are very different from what was expected (Carrari et al., 2003). Though 
we are not dwelling deep into the available knowledge on plant metabolism but one 
can always go through some recent good reviews (Anarat-Cappillino and Sattely, 
2014; Farré et al., 2014; Shumskaya and Wurtzel, 2013; Vogt, 2010; Ziegler and 
Facchini, 2008). Having said that there are few key aspects of plant metabolism that 
should be considered for any successful metabolic engineering activity and therefore 
are worth mentioning:

• “Promiscuous” nature of science: It appears to be true for most of the 
enzymes from central metabolism that they are “specialists” but it is becom-
ing evident that a good majority of specialized metabolic enzymes are pro-
miscuous (that they can act on a number of related or unrelated substrates in 
microbes (Nam et al., 2012) and plants (Bar-Even and Salah Tawfik, 2013). 
This would mean that many pathways like phenylpropanoid biosynthesis 
(Bonawitz and Chapple, 2010) which were considered to be linear are actu-
ally complex pathways.

• Specialized metabolic pathways are governed by inefficient enzymes: The 
process of gene duplication and neo-functionalization have given rise to 
many genes encoding enzymes involved in specialized metabolism from 
genes of central metabolism (Ober, 2005) However, as compared to their 
corresponding counterparts in central metabolism, specialized metabolism 
enzymes possess significantly lower kcatvalues. This could be attributed to 
reduced selection pressures as compared to the enzymes of core metabo-
lism, hence providing significant opportunities for enzyme optimization 
(Bar-Even and Salah Tawfik, 2013).

FigurE 3 An adaptation from (Goyal et al., 2014).
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• Gene clusters encoding metabolic enzymes: Classical examples such as 
lac and trp operons have made us believe that co-regulated clusters play 
an important role in enabling bacterium to adapt quickly to the fluctuating 
environmental conditions (Lawrence, 2002). It is well known that oper-
ons, as found in bacteria are absent in plants (Osbourn and Field, 2009) 
but there is increasing evidence for the presence of clusters of genes up 
to several hundred kb in length (Chu et al., 2011) and, can include more 
than 10 biosynthetic enzymes (Winzer et al., 2012)arrests metaphase, and 
induces apoptosis in dividing human cells. Elucidation of the biosynthetic 
pathway will enable improvement in the commercial production of noscap-
ine and related bioactive molecules. Transcriptomic analysis revealed the 
exclusive expression of 10 genes encoding five distinct enzyme classes in 
a high noscapine-producing poppy variety, HN1. Analysis of an F(2. Some 
specialized metabolites for which gene clusters were evident include oat 
avenacins(Qi et al., 2004)which encodes the first committed enzyme in the 
avenacin biosynthetic pathway, is clearly distinct from other plant beta-
amyrin synthases. Here we show that AsbAS1 has arisen by duplication and 
divergence of a cycloartenol synthase-like gene, and that its properties have 
been refined since the divergence of oats and wheat. Strikingly, we have also 
found that AsbAS1 is clustered with other genes required for distinct steps 
in avenacin biosynthesis in a region of the genome that is not conserved in 
other cereals. Because the components of this gene cluster are required for 
at least four clearly distinct enzymatic processes (2,3-oxidosqualene cycli-
zation, beta-amyrin oxidation, glycosylation, and acylation, the Papaver 
somniferumnoscapine alkaloid (Winzer et al., 2012)arrests metaphase, and 
induces apoptosis in dividing human cells. Elucidation of the biosynthetic 
pathway will enable improvement in the commercial production of noscap-
ine and related bioactive molecules. Transcriptomic analysis revealed the 
exclusive expression of 10 genes encoding five distinct enzyme classes in a 
high noscapine-producing poppy variety, HN1. Analysis of an F(2.

However, several bottlenecks exists for the manipulation of metabolic pathways 
that have slowed down this plant metabolic engineering in model systems such as 
Arabidopsis. The chief bottlenecks are challenges of introducing foreign genes into 
plants, optimization of localization of metabolites, etc.

5. Transcription factors vs. enzymes
There are numerous successful examples of utilizing pathway enzymes and their 
coding gene in engineering metabolic pathways. Alternatively, it has been studied 
that using transcription factors (TFs) for metabolic engineering is more effective 
in certain cases (Broun, 2004; Xie et al., 2006). After analyzing the association of 
reported genes with domestication of crop plants, almost 70% of them were observed 
to be transcription regulatory genes while only 20% were coding enzymes. TFs com-
monly control downstream genes coding for multiple enzymes within a metabolic 
pathway and thus impacting profoundly phenotypic and metabolic outcomes. In 
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metabolic engineering approaches, “push” and “pull” strategies are used in reference 
to TFs. Using TFs or early pathway enzymes genes to move the flux downstream is 
referred to as “push” strategy whereas using late pathway genes to draw the sub-
strates towards the end products is referred to as “pull” strategy. For best results, 
combination of both strategies is used (Vanhercke et al., 2014).

6. Metabolic trafficking and sequestration
The knowledge of the site of localization of metabolites in plants and trafficking 
plants responsible for their localization, is primitive. The accumulation of plant 
metabolic pathways in the wrong subcellular compartment tricks negative feedback 
mechanisms to prevent damage to the plants (Goodman et al., 2004). Thus, it is 
important to understand plant metabolite trafficking and sequestration, in order to 
successfully engineer plant metabolic pathways. This becomes more important when 
multiple cell types are part of a single metabolic pathway. For example, biosynthesis 
of monoterpene indole alkaloids involves multiple cell types like the chloroplast, the 
vacuole, the endoplasmic reticulum and the cytosol (Facchini, 2001; Verma et al., 
2012).

The conventional methods to determine the metabolite accumulation involve cel-
lular/subcellular fractionation followed by metabolite analysis. The new approaches 
like FRET-based nanosensors have been successfully applied to measure metabolites 
and other small molecules (De Michele et al., 2013; Fehr et al., 2004, 2002; Frommer 
et al., 2009; Ho and Frommer, 2014). Mass spectrometry imaging is another emerg-
ing powerful method to determine spatial distribution of metabolites between and 
within cells (Horn and Chapman, 2014; Lee et al., 2010; Matros and Mock, 2013).

7. Genome editing
Genome editing uses site-specific nucleases to carry out targeted transgene integra-
tion experiments, and genome engineering in an efficient and precise manner. It is 
used for introducing targeted DNA double-strand breaks (DSBs) using an engineered 
nuclease further stimulating different cellular DNA repair mechanisms. Depending 
on the repair pathway and the availability of a repair template, modified genomes 
can be achieved in different ways. Two known and defined DSB repair pathways are 
non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ 
mostly causes random insertions or deletions (indels), causing frame shift mutations. 
They can effectively create a knockout organism if these indels occurs in the coding 
region of a gene. NHEJ can mediate the targeted introduction of a ds-DNA template 
with compatible overhangs, when the overhangs are created by DSB (Cristeaet al., 
2013; Marescaet al., 2013). DNA damage repair by HR occurs when a template with 
regions of homology to the sequence surrounding the DSB is available. This mecha-
nism is often used to achieve precise gene modifications/insertions. Even though the 
generation of breaks in both DNA strands induces recombination at specific genomic 
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loci, NHEJ is by far the most common DSB repair mechanism in most organisms, 
including higher plants. 

Zinc finger nucleases (ZNFs), synthetic proteins capable of cutting DNA at specific 
spots due to presence of DNA-binding domains, were developed by scientists in the 
early 2000s. Later, TALENs (transcription activator-like effector nucleases), another 
synthetic nuclease were developed as it provided an easier way to target a double-
strand break to a specific locus. Until 2013, Zinc finger nucleases and TALENs, 
remained the dominant genome editing tools (Kim et al., 1996; Christian et al., 2010). 
They have been used successfully in many organisms including plants (Jankele and 
Svoboda, 2014). Both zinc-finger nucleases and TALENs depend on making custom 
proteins for each DNA target. Comparatively, CRISPRs are quite easier to design as 
canonical Watson-Crick base pairing of the guide RNA to the target site defines its 
specificity (Young, 2014).

CRISPRs (clustered regularly interspaced short palindromic repeats) are seg-
ments of prokaryotic DNA which contain short repetitive bases. It contain a short seg-
ment called spacer DNA interspersed by short repetitive sequences (Kramer, 2015). 
40% of the known bacteria are found to carry CRISPRs while 90% of the sequenced 
archaea also carry it (Grissaet al.,2007). They are often associated with casgenes 
that code for proteins related to CRISPRs. The CRISPR/Cas system acts as the pro-
karyotic immune system conferring resistance to plasmidsand phages (Barrangouet 
al.,2007) and provides a form of acquired immunity. CRISPR spacers recognize and 
cut these exogenous genetic elements in a manner analogous to RNAi in eukaryotic 
organisms (Marraffini and Sontheimer, 2010). The CRISPR/Cas system has been 
extensively exploited since 2013 for gene editing (adding, disrupting or changing the 
sequence of specific genes) and gene regulation in species. The organism’s genome 
can be cut at any desired spots by delivering the Cas9protein and appropriate guide 
RNAs into a cell.

Use of CRISPR has simplified many tasks such as creation of animals that 
mimic disease or creating knockout organisms to simulate the process of gene 
mutation/knockout. CRISPR may also be used at insert mutations in the germ-
line cells (Rathet al.,2015), It has also found its use in functionally inactivating 
genes in cell lines and cells taken directly from humans, study Candida albi-
cans, yeasts and make genetically modified crops (Ledford, 2015). In 2014, a 
patent was filed by a Chinese researcher Gao Caixia on the creation of powdery 
mildew resistant strain of wheat using TALENs and CRISPR gene editing tool 
(Gao et al., 2014).

8. Metabolic engineering in human disorders
Earlier metabolic techniques were applied to different physiological systems and 
organs in fasting, fed and diseased state to study metabolic patterns present. The 
nutritional statuses were assessed on some macroscopic properties like blood glu-
cose, urea levels etc. Due to advent of improved diagnostic techniques and health 
care facilities, it has been possible to save people dying from stroke, trauma and 
other acute events. The field of metabolic engineering is thought to play a major role 
in designing future therapeutics.
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Here, the metabolic engineering techniques for studying metabolic profiles of 
a human health condition is discussed,as in how metabolism will occur in normal 
physiological and pathophysiological state.

9.  Principles and techniques of metabolic 
engineering in human diseases

Here we will go with the two important notions: Cellular metabolism is composed of 
an inter-related network and metabolic processes (systemic and cellular) are coupled. 
Two methodologies that are extremely helpful in human diseases for characterization 
and analysis of cellular metabolism are metabolic control analysis and metabolic flux 
balance analysis, as already mentioned. Mass isotope (extensively used to quantify 
fluxes in mammalian cells) and extracellular metabolite models are used for deter-
mination of flux. In isotope labelling, the labeling patterns are measured by NMR 
and analyzed using mathematical models to determine fluxes. Although it is a non-
invasive method but instrumentation is quite expensive. Metabolic system states are 
characterized by metabolic flux data in terms of rate of intracellular reactions, as of 
course already mentioned.

Metabolic engineering also evaluates the rate controlling enzymes of the reac-
tions. The most widely used analysis framework for this type of analysis is metabolic 
control analysis (Hogan, 1997). The changes in nutritional levels and other factors 
that effects the enzymatic activity are re-measured in terms of Flux control coeffi-
cient (FCC) by this analysis method. This type of analysis is complex and tedious and 
often relies on many assumptions. Despite of the drawbacks it can provide insight 
into mechanism governing metabolic adaptation to changing diseased state.

10. Heart Models
Metabolic engineers apply different approaches in studying normal and ischemic 
heart. Malloy et al. developed a heart model to investigate steady-state fluxes in 
the Kelvin cycle using isotope labelling method. The effect of ischemia-reperfusion 
injury on substrate was determined using this model. The study revealed that injured 
hearts exposed to the substrates (lactate/acetate/glucose) leads to decrease in con-
tribution of lactate and an increase in contribution of acetate as a source of acetyl 
CoA, it also causes to an increase in reactions that leads to net synthesis of kelvin 
cycle intermediates (e.g. glutamate, aspartate). However, extracellularly added simi-
lar compounds are not metabolized. Thompson et al. developed another technique 
in which 1, 2-13C-acetate and 13C-lactate are used to perfuse hearts and the labelling 
of glutamate was analyzed (Sherry, et al.,1992). This method could be used to study 
rapidly changing metabolic conditions but it does not predict the anaplerotic flux. 
Lipoamide which is consider to enhance recovery after infarcts, was observed to 
prevent switching over from lactate to acetate utilization as induced by ischemia 
(Sumegi et al., 1994). Lipoamide was also seen to enhance kelvin cycle rate by 64%, 
thereby positively effecting the heart̀ s recovery during reperfusion.

The unsteady state procedure for determining substrate selection was extended to 
4-substrate system containing acetoacetate, lactate, glucose and fatty acid physiolog-
ical levels (Jeffrey et al., 1995). Reperfusion-ischemia under starvation, produced an 
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increase in acetoacetate utilization. The same technique was reciprocated to access 
the effect of perhexiline maleate on substrate utilization. It causes reduction in the 
fatty acid oxidation and leads to an increment in lactate utilization and no significant 
effect on oxygen concentration (Jeffrey et al., 1995). These findings are in coherence 
with the hypothesis that shifting from fatty acid to carbohydrate oxidation exert a 
protective effect in the ischemic heart. This is true as we know that carbohydrate oxi-
dation produces more ATPs per oxygen consumed than fatty acid oxidation pathway. 
Thus, metabolic engineering of heart models suggest potential avenues for therapeu-
tics in treating myocardial infarction and other heart ailments.

FigurE 5 The mechanism of gluconeogenesis in fasting and diabetes. (A) In normal nutritional 
state, gluconeogenesis and glycolysis both can be seen to occur. Here a substantial amount of pyru-
vate enters kelvin cycle via acetyl-CoA. (B)In case of fasting, conversion of pyruvate to acetyl-CoA 
is reduced whereas a substantial increase in its conversion to oxaloacetate can be seen. Conversion 
to oxaloacetate leads to an increase in formation of phosphoenol pyruvate, some of which returns to 
the pyruvate in the glycolysis cycle. (C) In the state of diabetes, moderate increment in the conver-
sion of pyruvate to oxaloacetate and eventually PEP can be seen. There is an inhibition of pyruvate 
kinase, and PEP is efficiently channelized into gluconeogenesis.
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Parkinson`s Disease (PD), which is the second most prevalent neurodegenera-
tive disease in the world, is characterized by progressive loss of dopamine-produc-
ing neurons in the integral area of the brain called substantia nigra pars compacta. 
Though the exact cause of PD till now is not known but it is considered to be a com-
plex disorder (Shastry, 2001). Currently no permanent cure exists for PD, but treat-
ment using L-DOPA provides some relief. Also, L-DOPA is known to have many 
deleterious side effects. Currently, in vivo gene therapy techniques have been applied 
to deliver glial cell-line derived neurotrophic factor (GDNF), which slow down the 
destruction of nigro-striatal neurons, thus slowing down or reversing the symptoms 
of the disease (Gerin, 2002; Kordower et al., 2000). Another approach used ex vivo 
gene therapy to engineer non-dopamine producing cells to produce dopamine for 
subsequent implantation. Dopamine production pathway is depicted in Fig. 6.

FigurE 6 Metabolic pathway in humans depicting dopamine production by dopaminergic 
neurons.

It began by engineering peripheral cells using retrovirus-mediated expression of 
TH in immortalized rat fibroblasts to produce dopamine. However, this provided only 
limited improvement in rat models of PD(Horellou et al., 1990).Long-term improve-
ments were reported when herpes simplex I virus was used to express TH in situ 
in rat striatal neurons (Duringet al., 1994). In order to gain further improvements, 
many different dopamine-producing metabolic pathways have been engineered into 
cells. It was observed that many of the non-dopamine producing cells used earlier 
to express TH also lack the expression of GTPC enzyme and as a result do not make 
THB. This lead to the introduction of both TH and GTPC into cells (striatal neurons), 
which yielded in vivo L-DOPA production(Mandel et al., 1998) and lead to motor 
improvements in rats suffering from PD (Kirik et al., 2002).

Investigations have reported the effect of AACD enzyme addition, to prevent 
the cells from ultimately releasing fully formed dopamine instead of the L-DOPA 
precursor. Three separate rAAVs were used for expressing TH, GTPC, and AACD 
together in the existing neurons of the rat striatum. This provided the evidence that 
AACD has beneficial effect on the behavioral recovery (Shen et al., 2000). Similar 
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enzymes have also recently been expressed together in a single multi-cistronic lenti-
virus, which led to sustained functional improvements, after intrastriatal injection in 
a rat model. Investigations implicated that oxidative stress is responsible for the loss 
of neurons in the substantia nigra pars compacta (Lothariuset al., 2002). Nakamura 
et al. has shown that dopaminergic neurons could resist oxidative stresses in vitro 
through the THB cofactor̀ s superoxide scavenging ability(Nakamura et al., 2000). 
Therefore, it is believed that the expression of GTPC in cells would have dual func-
tion of providing THB for the TH reaction as well as protection from oxidative stress. 
This will open the door for engineering other pathways for oxidative stress into-
potential graft cells. The fact that which and how many enzymes which should be 
expressed for optimal performance is still undetermined. Though it is believed that 
gaining insights from metabolic modelling and subsequent metabolic engineering 
will eventually help replace cell line to offer relief to PD patients.

Metabolomics and metabolic engineering plays a vital role in cancer diagnosis 
and treatment. It is believed that metabolomics or metabolic profile is the best closest 
thing to an individual’s phenotype till now. Some putative metabolic biomarkers for 
cancer were detected, then assessment of efficacy of anti-cancer treatment is discov-
ered in preclinical studies, followed by validation of these biomarkers. NMR is used 
to carry out metabolite detection and quantification and mass spectroscopy is used 
for metabolic profiling of the sample. Various metabolic biomarkers were reported 
and found to be associated with glycolysis, mitochondrial TCA cycle, fatty acid oxi-
dation, to play an important role in treating cancer and drug responsiveness. 

TAble 1  Some of the medical applications to which metabolic engineering techniques have been 
applied. 

Areas Metabolic engineering applications
Brain Novel pathways have been identified and engineered to produce the metabolite 

dopamine for patients affected by Parkinson`s disease.
Heart As mentioned in the above section of “heart models”, heart`s response to ischemia 

has been modelled, new treatments could be found for heart attack patients.
Liver Many researchers have tried to model the liver`s response to different disease 

states.
Pancreas Cells (which are non-beta cells of Langerhans) have been produced using 

metabolic engineering that can secrete insulin on stimulation of glucose
Adipose Cellular metabolism of adipose tissues has been evaluated using Flux balance 

analysis and metabolic control analysis
Skeletal muscle Energy calculations has been done and modelled in skeletal muscles including 

modelling of mitochondrial disorders
Parasitic 
diseases

Metabolic control analysis has been applied to the cellular metabolism of 
Trypanosomabrucei which is known to cause sleeping sickness in humans

(Yarmush and Banta, 2003)

11.  Computational biology has come to 
aid metabolic engineering

Bioinformatics resources have brought a major shift in the bioscience research 
and mathematical tools are aiding in the development of new bioinformatics tools. 
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As metabolic engineering uses molecular biology techniques to modify and con-
trol microbial metabolism for producing desired compounds, computational biol-
ogy can help identify new metabolic pathways and suggest required changes in the 
host metabolism to enhance production of desired chemicals. Traditional compu-
tational methods focused on identifying what all compounds can be made biologi-
cally. Development of new computational approaches have additionally been able to 
suggest different types of genetic modifications (gene deletion, gene regulation) as 
well as strategies to improve yield, productivity and substrate co-utilization(Long et 
al., 2015). Molecular subsystems based mathematical models can be made for DNA 
replication, cell cycle control, transcription expression control, receptor trafficking 
processes which can simulate the subsystem responses. These models will play sig-
nificant role in testing biological hypothesis thus reducing the cost and load on wet 
lab results.

One challenge to the mathematical models is the global gene expression. The 
molecular basis of these global gene expression is unknown. Those mathematical 
models that revolve around these phenomena will be precluded earlier from the list of 
available methods. Recently a model for metabolic network analysis was introduced 
called “cybernetic” that predict changes in enzyme expression based on efficient 
algorithm.

A number of methods for the phenotype simulation of microorganisms have been 
proposed based on different environmental and genetic conditions. However, these 
methods have restricted use to only one section of researcher. OptFlux provides a 
user-friendly computational tool for metabolic engineering applications. Features of 
OptFlux are:

• OptFlux is an open-source and modular software 
• It allows the user to load a genome-scale model of a given organism which 

will serve as the basis to simulate the wild type and mutants. The simulation 
of these strains will be conducted using a number of approaches (e.g. Flux-
Balance Analysis, Minimization of Metabolic Adjustment or Regulatory 
On/Off Minimization of metabolic fluxes) that allows determination of the 
set of fluxes in the organism’s metabolism under the given set of environ-
mental constraints. The software also includes optimization methods like 
Evolutionary Algorithms, Simulated Annealing etc. to reach the best set of 
gene deletions given an objective function, typically related with a given 
industrial goal.

• Identifies metabolic engineering targets. 
• Can perform metabolic flux and pathway analysis. 
• It also has inbuilt coding for reducing the search space.
• Supports importing/exporting to several flat file formats
• Also shows compatibility with the SBML standard.
• Has visualization module integrated from BioVisualizer application

Though conceptually it is possible to reduce metabolic pathways to linear sequences 
of reactions, in reality it is far complex, especially in plants and higher eukaryotes as 
they involve multiple layers of regulation and also the pathways are interconnected 
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(Caspiet al., 2013). Thus, consequences are difficult to predict. Now, the traditional 
trial and error methods are being supplemented by a knowledge-driven approaches 
using information from genomics, transcriptomics, proteomics, metabolomics, met-
abolic libraries to define priorities before designing and introduction of streamlined 
gene cassettes (Figure 7)

As mentioned under the heading “Metabolic engineering in plants”, that metabolic 
pathways in plants are complex with enzymes in different subcellular compartments 
and difficulty in product isolation, which calls for identifying key enzymes and inter-
mediates in the pathways. This requires isolating the corresponding genes. The Plant 
Metabolic Network (PMN), is an attempt to catalog enzymes and enzyme-catalyzed 
reactions from a number of plants but limited availability of the biochemical data 
makes the resource of modest utility.

The computational tools that facilitate in evaluating and improving strains for 
metabolic engineering are developed and expanded at a fast pace. They can provide 
a wide range of experimental measurements to provide an enhanced understanding 
of metabolic states and current limitations, and they can be used to new intervention 
strategies for improving chemical production. 

13.  Computational biology in identify metabolic pathways
Pathway assignment is the first step towards quantitative modeling of metabolism 
where genes are placed in metabolic pathways in their larger biological context. 
A recent study by Romero et al. (2004) carried out pathway assignment, compu-
tationally to assign enzymes encoded in the complete human genome. It success-
fully assigned 2,709 human enzymes to 896 biochemical reactions; out of which 622 
enzymes were assigned roles in 135 predicted metabolic pathways, which closely 
matched the known nutritional pathways required of humans. This analysis also 
identified 203 pathway holes i.e. absence of some enzymes in the predicted path-
ways. Though they were only able to identify 25 putative genes to fill some of the 
gaps. HumanCYc, a pathway database, was used to describe the predicted human 
metabolic map. It provides a genome-based view of human nutrition which repre-
sents the association of the key dietary factors essential for humans with a set of 
validated metabolic pathways. It facilitates analysis of gene expression, proteomics, 
and metabolomics datasets by placing human genes in a pathways context (Romero 
et al.,2004).

A large amount of data on metabolic pathways have been generated in the last 
decade owing to extensive experimental studies, advancements in molecular biol-
ogy and improved computational methods. As a result, many specialized databases 
such as KEGG and MetaCyc have been developed to store and organize this data. 
This data is usually represented in the form of many small sub-pathways. These sub-
pathways are manually divided based on either function or by organism. However, it 
can be tedious to find connections between compounds by navigating through these 
sub-pathways especially for discovering novel or non-standard pathways spanning 
multiple organisms. Many applications such as metabolic engineering, metabolic 
network reconstruction exists for these type of pathways. Novel metabolic pathways 
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for synthesizing important and useful compounds can be obtained by combining 
parts of pathways existing in different organisms. Here computational tools can pro-
vide an edge in finding novel biologically relevant pathways in metabolic data. 

The primary problem where computational methods can help in identifying novel 
metabolic pathways is to try and find “biologicallyrealistic” pathways of enzymatic 
reactions that make the target compound from the start compound, given a substrate 
and the target compound. Owing to the availability of atom mapping data, defining 
which atoms in the substrate correspond to which atoms in the product has helped 
track atoms through metabolic networks to identify pathways where certain atoms 
are conserved from a given start compound to the desired product. The important fea-
ture of this kind of methodology is that it eliminates spurious connections and reac-
tions. Additionally, atom tracking enables handling branched metabolic pathways. 
Health et al. developed two new algorithms based on atom tracking namely, LPAT 
(Linear Pathfinding with Atom Tracking) and BPAT-S (Branched Pathfinding with 
Atom tracking and Seed Pathways). LPAT takes a starting substrate, a target prod-
uct, the minimum number of atoms to be kept conserved during the metabolic reac-
tions, the number of pathways to return and a specially defined data structure called 
atom mapping graph. LPAT when tested on a metabolic network containing large 
number of reactions (from KEGG) was able to efficiently and accurately identify 
known linear pathways. On the other hand, BPAT-S, first uses LPAT to obtain a 
set of linear metabolic pathways. It then annotates the linear pathways and stores 
information regarding the compounds through which atoms are gained or lost. Seed 
pathways is the term used to denote to these annotated pathways, which are further 
indexed for processing and branching. Multiple combinations are tested for attach-
ment with these seed pathways, in order to obtain set of branched pathways. These 
set of branched pathways so obtained, are ranked first on the basis of number of 
atoms that are kept conserved and then the total number of reactions contained in 
them (Health et al.,2010).

13C flux analysis studies are an essential component of ongoing research in the 
field of metabolic engineering. The gradual expansion in the scope of 13C flux analy-
sis allowed inclusion of both isotopically steady-state and transient labeling experi-
ments. The first publicly available software capable of analyzing both steady state 
as well as isotopically non-stationary metabolic flux, is INCA (Isotopomer network 
compartmental analysis). It is capable of generating mass balance equations and their 
solution in an automated fashion on networks with high complexity.Thus providing 
a comprehensive framework for flux analysis in metabolic pathways (Young, 2014).

14.  bioinformatics in identifying genome 
editing elements such as CRISPRs

CRISPRs as mentioned in the section “Metabolic engineering in plants”are widely 
distributed amongst the bacteria and archaea and are observed to show some sequence 
similarities (Kuninet al.,2007). However, the repeating spacers and direct repeats is 
their most notable characteristic which makes them easily identifiable in long and 
large sets of DNA sequences. CRT (Bland,et al. 2007), PILER-CR (Edgar, 2007) 
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and CRISPR finder (Grissa et al.,2007) are currently the three efficient and widely 
used programs for CRISPR repeat identification by search for regularly interspaced 
repeats in long sequences.

However, analysis of CRISPRs in metagenomic data is more challenging, as it is 
challenging and confusing to assemble CRISPR loci due to their repetitive nature 
or strain variations. PCR can be used to amplify CRISPR arrays and analyze spacer 
content when reference genomes are available. However, this approach only yield 
information for specifically targeted CRISPRs and for organism whose genome are 
available in databases to be used for PCR primer designing.

The alternative approach is the extraction and reconstruction of CRISPR arrays 
from shotgun metagenomic data. But this is also challenging especially when 
metagenomic sequencing is done using second generation technologies (Roche 454, 
Illumina) as they produce short reads and that too without more than 2-3 repeats in 
a single read. However, CRISPR identification in raw reads could be achieved by 
using any of the following ways: using purely denovo identification (Skennertonet 
al.,2013),  or direct repeat sequences from published genomes (Sternet al.,2012) and 
from contigs by using direct repeat sequences in partially assembled CRISPR arrays 
(Rhoet al., 2012).

15. Concluding remarks
Metabolic engineering has emerged as an important field since its inception in early 
1980s. It has rainbow of applications in different metabolic models varying from 
microorganisms to plants to mammals, covering almost all forms of life. In micro-
organisms, it is used for improved production of industrially important chemicals or 
hormones; in plants it is used to produce primary and secondary metabolites both 
having important use in the industry as well as drugs for treating different disorders. 
In mammalian cells, metabolic engineering is used to study human disorders and 
alternate pathways that cell follows under diseased state. This has been facilitated by 
a combination of efficient theories and algorithms on metabolic fluxes and network 
control and novel molecular biology tools, bioinformatics methods, systems and syn-
thetic biology methods which can be applied in a rational or combinatorial manner. 
The growing concern about sustainability and the associated increasing interest in 
the products obtained from renewable resources has been the driving force behind 
all these developments. 

Although numerous studies describe a series of elegant metabolic engineering 
cases, they provide limited guiding instructions. Despite its plethora of applications, 
metabolic engineering has some limitations and challenges which need to be over-
come using modern computational models and mathematical algorithms. Then, soon 
it would be possible to extensively exploit its applications, as has been in the case 
with proteomics and genomics approaches.
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Conserved Regulatory Elements Using 
Molecular Phylogenetics in Microbes

Shishir K Gupta1, Mugdha Srivastava1, Suchi Smita2, Taruna Gupta3 and 
Shailendra K Gupta2*

Abstract
Phylogenetics describes the sequence of speciation events that lead to the forming 
of a set of current day species. In phylogenetic studies, the most convenient way 
of visually presenting evolutionary relationships among a group of organisms is 
through illustrations called phylogenetic trees. Until mid 1950’s phylogenies were 
often constructed by the subjective criteria based on experts’ opinion about evolu-
tion. With the exponential growth of high-throughput whole genome sequencing and 
data analysis using state of art computational methods and tools, the current era of 
phylogenetics attempts to determine the rates and patterns of change occurring in 
DNA and proteins. In this chapter, we will review state of art computational methods 
and tools available and present an integrative workflow to reconstruct the evolution-
ary history of regulatory elements for variety of biological applications.

1. Functional annotation of regulatory proteins
After the structural annotation of any genome the functional annotation of every 
gene is a fundamental goal of comparative genomics. Orthology based assignment of 
gene function is the widely used approach. Orthologs are defined as genes in different 
species that descend by speciation from the same gene in the last common ancestor 
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(Fitch 1970). Therefore, they are likely to perform equivalent functions if they have 
diverged since the speciation event (Gabaldón and Koonin 2013). Orthologs are likely 
to be functional counterparts in different species (Price 2007) in contrast to paralogs, 
i.e., genes that diverged by gene duplication, and xenologs, i.e., homologous genes 
whose history of divergence includes one or more horizontal gene transfer (HGT) 
events. Because of high rates of HGT in bacteria, many genes are xenologs rather 
than orthologs (Price et al. 2007). Although the bacterial genomes are comparatively 
less complex than eukaryotic as the functional annotation of the genes becomes 
complex by HGT events. In contrast with vertical gene transfer i.e., the transfer of 
DNA from parent to offspring (deoxyribonucleic acid) the gene acquisition through 
HGTs involves movement of genetic material between different species by alterna-
tive mechanism such as transduction, conjugation, transformation and the uptake of 
free DNA from the environment into the bacterial cytosol. For the cell to benefit, the 
newly acquired genes have to be successfully integrated into the cellular regulatory 
system so that they are turned on and off at appropriate times (McAdams et al. 2004). 

The occurrence of HGTs between species is challenging to molecular phylogeny as 
in the presence of frequent HGT events the notion of a unique organismal phylogeny 
could be misleading (Galtier 2007). However, several authors have also claimed that 
the core genes are much resistant to HGT and could serve to reconstruct the bacterial 
species tree (Brochier et al. 2002, Daubin et al. 2003, Kurland et al. 2003). Inparanoid 
(O’Brien et al. 2005) and OrthoMCL (Li et al. 2003) are the highly used algorithms 
for identification of orthologs. Despite the orthology often reflect the functional con-
servancy the study by Price et al. (2007) shows that even in more closely related 
bacteria, where the orthologous transcription factors (TFs) that have conserved func-
tions, the annotation transfer of regulatory interactions are often incorrect. The mod-
ular organization of the regulatory circuitry enhances evolvability, because a simple 
change in the wiring of the regulatory circuitry can cause large changes in the organ-
ism’s response to a signal (McAdams et al. 2004). For example, a mutation in the 
promoter of a master regulator gene that changes the regulatory protein controlling 
its activity could introduce radical changes in either the timing of expression of the 
master regulator or the conditions leading to its expression. This would ultimately 
change the pattern of expression of many downstream genes regulated by the mas-
ter regulator. Considering all the facts mentioned above, the evolution of bacterial 
regulation should be analyzed with phylogenetic trees. In the chapter we will further 
describe about the fundamental of phylogenetic trees, state of art methods to identify 
functional equivalent proteins by using phylogenetic trees. 

2. Structure of phylogenetic tree
Phylogenetic relationships are most commonly expressed in the form of networks 
(or trees) that summarize the divergence events that have occurred among sequences 
over time. Individual internal nodes correspond to distinct historical divergence 
events. Terminal nodes correspond to the actual sampled sequences. In addition, 
the phylogenetic distances between data can also be represented on these networks, 
typically by scaling the lengths of the branches that connect different nodes together. 
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In general, the phylogenetic trees can be of two broad types i.e., rooted and 
unrooted tree (Fig. 1). The rooted tree are the trees having a specifi c node from where 
the other nodes emerges while the unrooted tree represents the same phylogeny as 
the rooted tree but lacks the root node. The position of root can be estimated in a 
rooted tree by introducing outgroups which are the set of species that are defi nitely 
distant from all the species of interest. 

FiGuRe 1 Sample framework of the rooted and unrooted phylogenetic tree. Brown dot is showing 
the root in the rooted tree.

3. Methods of phylogenetics inference
Phylogenetic analysis presents a unique problem in biology, since the evolutionary 
history can never be known with certainty. Currently there appears to be no uni-
form way of performing a phylogenetic study or interpreting its results however, two 
broad methods have been developed by computational biologists that are frequently 
exploited for the phylogenetic inference. The fi rst method is character-based method 
that uses the aligned characters, such as DNA or protein sequences, directly during 
tree inference while the second method is distance-based method that transforms 
the sequence data into pairwise distances, and uses the matrix during tree building.

3.1 Distance based methods

The reconstruction of a phylogenetics tree using distance based methods is a two-
step process. In the initiative step all the sequences are aligned and the distances are 
calculated for all pairwise sequences using the appropriate distance. The distance is 
chosen depending on the characteristics of the sequence alignment for which a phy-
logeny is being reconstructed. Distances are arranged in the form of matrix. Further, 
the reconstruction of the phylogenetic tree from the distance matrix is performed 
in the fi nal step. In the presence of limited phylogenetic signal in the data set being 
analyzed, it is valuable to add bootstrap analysis (Felsenstein 1985) for estimating 
the confi dence that can be attached to a particular tree. 

3.2 Character based methods

Whereas the distance based methods compress all sequence information into a single 
number, the character based methods attempt to infer the phylogeny based on all the 
individual characters. Characters can be derived from observable properties or can 
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be derived from subsequences or even amino acids or nucleotides. Maximum par-
simony, maximum likelihood and Bayesian inference are the methods, categorized 
within the character based methods.

While these methods are appealing because they have the promise of finding the 
optimal tree according to the applied distance and bootstrapping criterion, however, 
they can be computationally slow for even moderate numbers of taxa, to a point 
where the amount of time required for an exhaustive search is prohibitive. Therefore, 
this limitation has led to the development of the other improved computational meth-
ods that attempt to reliably get as close to the optimal tree as possible, in a reasonable 
amount of computational time.

4.  Computational methods to identify conserved 
regulatory elements in microbes

Regulatory elements (REs) in microbes can be identified by bioinformatics tools.

4.1 Regulogger

Regulogger is a computational method for the identification of sets of genes having 
conserved sequence and regulatory signal among multiple organisms. These sets of 
genes were termed as regulogs. Regulogger is based on comparative genomics which 
results in the detection of quantitatively ranked conserved regulons (Alkema et al., 
2004). It follows the methodology in which starts from the identification of protein-
coding regions in the genomic sequence. For each query protein, a set of orthologous 
genes in other genomes was obtained using the COGs (clusters of orthologous groups) 
database (Tatusov et al., 2001). From the upstream regions of these sets of ortholo-
gous genes, conserved cis-REs were detected using Gibbs motif sampler (Thompson 
et al., 2003). The Gibbs sampler calculates a maximum a posteriori (MAP) value 
for each pattern. The most significant pattern from a sequence set was obtained by 
repeating the algorithm ten times and the highest average MAP-value was retained 
for each pattern. After that clustering of the patterns obtained by phylogenetic foot-
printing was done using Needleman-Wunsch (Needleman and Wunsch, 1970) and 
UPGMA algorithm. To validate the phylogenetic footprinting and regulogger meth-
ods two reference sets of transcription factors was constructed from Bacillus subti-
lis and Escherichia coli for which both the transcription-factor binding site and an 
experimentally verified regulon has been described. Finally, the regulogs (conserved 
regulons) could be constructed by calculating a relative conservation score (RCS) for 
each predicted regulon member. If geneA is a regulon member predicted to be under 
the control of the cis-RE, the RCS is given by

 RCSgeneA = orthologs observed/orthologs expected

 Where, orthologs observed =  number of orthologs that are under the control of the 
same cis-RE, and 
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 orthologsexpected =  total number of orthologs present in the genomes con-
sidered in the study.

4.2 RegPredict

RegPredict a user-friendly and interactive web-server can be used for rapid and accu-
rate analysis of known regulatory motif as well as prediction of novel regulons in 
varied groups of microorganisms following comparative genomics (Novichkov et al., 
2010). The server uses the information of genomic data, predicted operons and ortho-
logs from phylogenetic analysis available at MicrobesOnline database (Dehal et al., 
2010). This approach not only emphasize on elaboration of regulon information from 
model organism to others but also in silico prediction of novel regulons and motifs 
in a group of micro-organisms. The genome of interest initially selected by the user 
remains constant throughout the entire procedure of regulon inference. After that 
the workflow proceeds in one of the two main methods of regulon inference either 
by availability of positional weight matrices (PWMs) for known regulatory motifs 
or by de novo regulon inference. The first method uses the information of known 
regulatory motifs and PWMs from three web resources namely RegPrecise data-
base (Novichkov et al., 2010), RegTransBase (Kazakov et al., 2010) and RegulonDB 
database (Gama-Castro et al., 2008). It follows the ‘Run Profile’ procedure by scan-
ning the genome with selected PWM profile and generates CRONs (Clusters of co-
Regulated Orthologous operoNs). The second method follows the ‘Discover Profile’ 
procedure and starts with the set of co-regulated genes that are functionally impor-
tant or homologous to a well-known regulon or having similar expression profile or 
derived from conserved or orthologous genes, resulting in the generation of candi-
date profiles which were further analyzed by following the ‘Run Profile’ procedure. 
All generated CRONs were further filtered on the basis of level of conservation and 
detail functional and genomic analysis was performed. The users can also export the 
information of resultant CRON analysis to a text file. 

4.3 PhyloCon

PhyloCon (PhylogeneticConsensus) method can be used to identify regulatory motifs 
by integrating data of co-regulated genes in a single species and sequence conserva-
tion in multiple species (Wang and Stormo, 2003). It uses a novel ALLR (Average 
Log Likelihood Ratio) statistic for sequence profile comparison and a greedy method 
for searching common subprofiles. The three major steps of this algorithm are ini-
tial profile generation, profile comparison and profile merging. Initially multiple 
sequence alignment (MSA) was performed in the orthologous sequences using 
Wconsensus program (Hertz and Stormo, 1999) and obtained conserved regions 
were then transformed into sequence profiles. Then the profiles were compared using 
ALLR static and common regions between two profiles were identified and merged 
to create a new profile for further comparison. This step is repeated likewise so that 
all profiles were compared and new profiles were generated and ranked on the basis 
of ALLR score. Finally, the top ranked profiles were reported as regulatory motifs 
conserved in all orthologous sequences. 
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4.4  cis-Regulatory Non-coding RNA (ncRNA) identification pipeline

Yao and coworkers (2007) proposed an efficient and automated pipeline that utilizes 
structural information for identifying cis-regulatory ncRNAs in prokaryotes (Yao et 
al., 2007). The key feature of this pipeline is that it performs RNA motif inference 
with low sequence conservation and also improves the quality of RNA motifs by 
integrating the prediction with RNA homolog search and functional analysis. The 
pipeline proceeds in the following steps

 1. Identification of homologous gene sets from NCBI’s Conserved Domain 
Database (CDD) (Marchler-Bauer et al., 2005). CDD groups containing, 
less than four or more than seventy members, were removed to make the 
prediction more reliable and less expensive. 

 2. Collection of nc sequences upstream to each gene in the CDD group using 
MicroFootprinter (Neph and Tompa, 2006). tRNAs, rRNAs and highly 
similar sequences were removed.

 3. A phylogenetic footprinting tool FootPrinter (Blanchette and Tompa, 2003) 
was used to select and ranked dataset that contain the conserved sequence 
motifs in unaligned homologous sequences set.

 4. Inference of RNA motif in unaligned sequences was performed using 
CMfinder (Yao et al., 2006) and predicted motifs were ranked by a scor-
ing function that considers motifs with stable secondary structure, local 
sequence conservation and present in diverged species.

 5. The predicted motifs were post processed and scanned in the prokaryotic 
genome database to find additional homologs which facilitates the con-
struction of more accurate motif models.

 6. Finally, analysis of genomic context and literature search was done manu-
ally to rank the top motifs.

5.  Phylogenetic-based methods to identify regulatory proteins
Transcription in bacteria shaped by the interactions between TFs that bind cis regu-
latory elements in DNA in the vicinity of the structural portion of a gene that are 
required for gene expression, additional co-factors and influence the chromatin 
structure (Wasserman and Sandelin 2004). Trans-acting proteins control the rate of 
transcription or gene expression at the level of the individual gene that bind to crucial 
cis-regulatory sequences (Wasserman and Sandelin 2004). As we defined above the 
phylogenetic-based methods should be prioritize to identify regulatory proteins in 
contrast to reverse blast hit (RBH) based orthology predictions methods (Tatusov et 
al. 1997). Below, we introduce the algorithms and online resources that can be used 
to identify functional orthologs of regulatory proteins based on phylogeny.

5.1 PhyloFacts FAT-CAT web server

The PhyloFacts FAT-CAT (Fast Approximate Tree Classification) is a web server for 
protein functional annotation and identification of orthologs using hidden Markov 
models (HMMs) at every node of every tree which allows the very flexible prediction 
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of function at all levels of a functional hierarchy (Afrasiabi et al. 2013). It uses the 
pre-calculated phylogenetic trees in the PhyloFacts database (Krishnamurthy et 
al. 2006). The server can distinguish between the paralogs and orthologs. User is 
allowed to submit the protein sequence (with maximum length of 2000 amino acids) 
as input. To handle different types of inputs four different parameters options i.e., 
high recall, high precision, remote homolog detection and partial sequence search 
are provided. The pipeline proceeds through four stages namely, family HMM scor-
ing, subtree HMM scoring, ortholog selection, and functional annotation hierarchy 
(Afrasiabi et al. 2013). The output for each query is organized into a web page with 
separate tabs for family matches, predicted orthologs and functional annotations. 
The pipeline gives higher weight to manually curated and close ortholog than the 
annotations that are derived computationally or from more distant orthologs.

5.2 MetaPhOrs

MetaPhOrs is a comprehensive global repository of highly accurate, phylogeny-based 
orthology and paralogy predictions that were computed by combining phylogenetic 
information derived from PhylomeDB (Huerta-Cepas et al. 2014), EnsemblCompara 
(Vilella et al, 2009), EggNOG (Powell et al. 2014), OrthoMCL (Li et al. 2003), COG 
(Tatusov et al. 2007, Wolf and Koonin 2012), Fungal Orthogroups (Wapinski et al. 
2007), and TreeFam (Li et al. 2006) databases. In the first step of MetaPhOrs pipeline 
(Pryszcz et al. 2011) all the phylogenetic trees for any given pair of sequences are 
retrieved then after filtering step it discards the phylogenetic trees made with subop-
timal evolutionary models. Moreover, species-overlap algorithm, is implemented on 
every single tree to predict the type of homology relationship between this sequence 
pair and a consistency score for an orthology prediction is calculated, which lies 
between 1 (all trees predict an orthology relationship) and 0 (all trees predict a paral-
ogy relationship between the sequences). Besides all, evidence level index is pro-
vided which indicates how many open sources databases have been used for the 
prediction. User can retrieve the orthology and paralogy predictions by searching for 
a particular protein, for a pair of species or for multiple proteins.

5.3 PHOG

PHOG (Phylogenetic Orthologous Groups) is completely automated method which 
builds clusters of orthologous groups at each node of the taxonomy tree (Merkeev 
et al., 2006). The resulting cluster is represented by an ancestral sequence obtained 
from the multiple sequence alignments of orthologous and paralogous genes. This 
database demonstrates the possibility to process any number of sequenced genomes 
to reconstruct orthologous and paralogous relationships among multiple genomes. 
PHOG includes many steps to complete the procedure, such as obtaining a supergene 
from a PHOG multiple alignments, running PHOG-BLAST, splitting procedure, 
multiple sequence alignments of core sequences in the orthologous group, and find-
ing the paralogs. 
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5.4 PhylomeDB

PhylomeDB is a public database of complete collection of evolutionary histories of 
all genes in a genome (Huerta-Cepas et al. 2014). The trees can be easily accessed, 
queried and downloaded through web interface. The workflow proceeds by searching 
homologs for the input protein against the corresponding proteome dataset, after that 
the sets of homologous sequences are aligned using MUSCLE aligner. Subsequently 
the phylogenetic trees are derived from the resulting reliable alignments by using 
several tree generations methods such as NJ method, ML method or Bayesian phylo-
genetic reconstruction. The implemented species-overlap algorithm decides whether 
the nodes in the tree represent gene duplication or speciation event (Huerta-Cepas 
et al. 2007). 

5.5 LOFT

LOFT (Levels of Orthology From Trees) is a JAVA based software which implements 
‘levels of orthology’ concept to determine high resolution phylogeny based orthol-
ogy. LOFT first decides the root of the tree using outgroup, then to discriminate 
speciation from duplication events for each node using the recommended species-
overlap rule. It was shown that within COG clusters LOFT could assign the ortholo-
gous groups with 95% accuracy (van der Heijden et al. 2007). The executable file of 
software is available at http://www.cmbi.ru.nl/LOFT/.

5.6 QuartetS

QuartetS pipeline provides accurate and high-throughput ortholog predictions for 
large-scale applications. The program integrates the three steps procedure to auto-
matically predict orthologous clusters for the input genomes. It uses Blast for sequence 
similarity search then QuartetS to analyze the evolutionary relationship of the two 
genes and infers possible evolutionary events to determine if they should be consid-
ered to be orthologs and finally Single Linkage Cluster (SLC) and Markov Cluster 
Algorithm (MCL) (Enright et al. 2002) to cluster genes in reliable ortholog groups. 
The program was used to determine orthology among 624 bacterial genomes. The 
executables for QuartetS and the pre-computed results for 624 bacteria are available 
at http://bhsai.org/downloads/quartets/

5.7 GepTop

GepTop tool (Wei et al. 2013) is not exactly created for functional annotation but 
the method implements phylogeny weighted orthology approach which could be 
exploited in standalone version for functional annotation after updating the database 
with the reference bacterial proteomes. The standalone program uses the reciprocal 
best hit (RBH) (Tatusov et al. 1997) method to estimate orthology of given protein 
sequences and the composition vector (CV) method (Xu and Hao 2009) to estimate 
the evolutionary distance between the query sequences and user defined bacterial 
proteome database. If the query protein is predicted to have cutoff score ≥0.15 the 
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protein could be functionally annotated by annotation transfer form that reference 
database sequence which is the reciprocal best hit of the query sequence. The method 
is not suitable for large scale predictions and could not distinguish between paralogs 
and orthologs therefore, should be used as additional check of predictions.

6. Tools and web-servers for phylogenetic analysis
Several tools and servers are available to analyse the ingredient of phylogenetics 
analysis. These tools can be used to establish evolutionary relationships of any gene 
of proteins including regulatory transcription factors of microbes. We have further 
reviewed the broad methods of the construction of phylogenetic trees followed by the 
available tools with few demonstrations for analyzing phylogeny which can be eas-
ily applied by a biologist without any expertise in Bioinformatics. The protocol can 
be used to determine the degree of evolutionary similarity among proteins with any 
biological functions including the signalling, gene regulation and metabolism. Some 
of the frequently used useful tools for phylogenetic analysis are listed in Table 1.

TAble 1  Different tools for the phylogenetic analysis, categorized on the basis of methods they 
implements. 

Parsimony 
programs

Distance matrix methods Maximum 
likelihood method

bayesian Inference

Phylip Phylip Phylip Paml
Paup Paup Paup Bambe
Mega Mega Phyml Dambe

Malign BioNJ aLRT Mr. Bayes
Past Bioinformatics Toolbox Treefinder BEST

Emboss Darwin fastDNAml PHYLLAB

6.1 Phylip 

Phylip (Felsenstein 1989) includes programs to carry out parsimony, distance matrix 
methods, maximum likelihood, and other methods on a variety of types of data, 
including DNA and RNA sequences, protein sequences, restriction sites, 0/1 dis-
crete characters data, gene frequencies, continuous characters and distance matri-
ces. It may be the most widely-distributed phylogeny package, third after Paup and 
MrBayes in the competition to be the program responsible for the most published 
trees high impact research. PHYLIP is freely distributed at the PHYLIP web site at 
http://evolution.gs.washington.edu/phylip.html

6.2 PAuP

PAUP (Phylogenetic Analysis using Parsimony) package includes parsimony, dis-
tance matrix, invariants, and maximum likelihood methods and many indices and 
statistical tests (Swofford 2002). The principle of maximum parsimony is to find the 
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evolutionary tree that requires the smallest number of character changes to generate 
the differences observed in operational taxonomic units. The package different oper-
ating systems is available at web page at http://paup.csit.fsu.edu/ 

6.3 MeGA

MegA (Molecular Evolutionary Genetic Analysis) carries out parsimony, distance 
matrix and likelihood methods for molecular data (Tamura et al. 2013). Mega can 
perform bootstrapping, consensus trees, and a variety of distance measures, with 
NJ, Minimum Evolution (ME), UPGMA, and parsimony tree methods, as a well as 
a large variety of data editing tasks, sequence alignment using an implementation 
of ClustalW, tests of the molecular clock, and single-branch tests of significance of 
groups. It is freely available at its web site at http://www.megasoftware.net as win-
dows executables, with a downloadable manual.

6.4 MALiGN

MALIGN is a parsimony-based alignment program for molecular data including 
both the nucleic acid sequences and amino-acid sequences (Wheeler and Gladstein 
1994). A good alignment is the basic need for the phylogenetics analysis. Malign 
implements the original suggestion by Sankoff and co-workers (1973), that the align-
ment and phylogenies could be done at the same time by finding that tree that mini-
mizes the total alignment score along the tree (Sankoff et al. 1973). 

6.5 PAST

PAST (PAleontological STatistics) is a package which carries out many kinds of 
paleontological data analyses, including stratigraphic and morphometric statistics 
(Hammer et al. 2001). It also does parsimony analysis, including exhaustive, branch-
and-bound and heuristic algorithms for Wagner, Fitch and Dollo parsimony. It does 
bootstrap methods, strict and majority rule consensus trees, and consistency and 
retention indices. It calculates three stratigraphic congruency indices with permuta-
tion tests. It also does many other statistics and curve fitting. Past is available from 
its web site at http://folk.uio.no/ohammer/past/index.html as a windows executable. 
Manuals can be read online or downloaded from the web site.

6.6 eMBOSS

eMbOSS (European Molecular Biology Open Software Suite) a package of pro-
grams for general sequence analysis with some phylogeny and alignment programs 
(Rice et al. 2000). EMBOSS, developed by many developers, is a general suite of 
programs for sequence analysis. It is a full-featured sequence analysis program 
developed intended to provide the same functionality as GCG. In addition to its own 
programs, it also has a suite of other programs, EMBASSY, that are configured to 
work with EMBOSS. These include ClustalW and most PHYLIP programs. It can be 
downloaded from its web site at http://emboss.sourceforge.net 
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6.7 BioNJ

bioNJ, an improved version of NJ based on a simple model of sequence data which 
follows the same agglomerative scheme as NJ but uses a simple, first-order model 
of the variances and covariances of evolutionary distance estimates (Gascuel 1997). 
This model is appropriate when these estimates are obtained from aligned sequences. 
It retains the speed advantages of NJ while using a slightly different criterion to 
select pairs of taxa to join, one which will perform better when distances between 
taxa are large.

6.8 DARwiN

DArwIN (Data Analysis and Retrieval with Indexed Nucleotide/peptide sequences) 
is an environment which enables the user to carry out a variety of kinds of analy-
sis with sequences, including phylogeny methods (Gonnet et al. 2000). These seem 
to include distance matrix, split decomposition, and a form of likelihood method. 
Darwin is available as executables for solaris, intel-compatible linux, irix, and HP/
compaq/digital alpha machines. These are freely available if the user registers by 
filling out a form at the download page at the web page. The executables can then be 
transferred to the user by ftp or by e-mail of encoded files.

6.9 Bioinformatics Toolbox

The module of phylogenetics in MATLAB resides within the toolbox for bioinfor-
matics. It has many functions for sequence analysis and microarray data, including 
multiple sequence alignment and consensus sequences. For this listing, the relevant 
ones are that it enables the user to create and edit phylogenetic trees. The user can 
calculate pairwise distances between aligned or unaligned nucleotide or amino acid 
sequences using a broad range of similarity metrics, such as Jukes-Cantor, p-dis-
tance, alignment-score, or a user-defined distance method. Phylogenetic trees are 
constructed using hierarchical linkage with a variety of techniques, including neigh-
bor joining, single and complete linkage, and UPGMA. Bioinformatics Toolbox 
includes tools for weighting and rerooting trees, calculating subtrees, and calculat-
ing canonical forms of trees. Through the graphical user interface, user can prune, 
reorder, and rename branches; explore distances; and read or write Newick-formatted 
files. Moreover, user can also use the annotation tools in MATLAB to create presen-
tation-quality trees. The toolbox is available as a MATLAB package.

6.10 PhyML

PhyMl is a fast and accurate maximum likelihood program to estimate large phy-
logenies for nucleotide or protein sequence data (Guindon et al. 2010). It has six 
possible DNA substitution models, five amino acid substitution models, allowing 
estimation of many of the model parameters, and can allow for a gamma distribution 
of rates among sites and a proportion of invariable sites. It can also perform robust 
bootstrapping of the trees. 
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6.11 Treefinder

It is a maximum likelihood program for nucleotide sequence data. It makes avail-
able a variety of models of base change, including codon-position-specific models 
(Jobb et al. 2004). It carries out search for best trees by its own method of tree rear-
rangement, and can assess statistical support for groups by either bootstrap or a local 
paired-sites method. All parameters of the models can be optimized by searching for 
the values that maximize the likelihood. The program is fast, and has both a graphi-
cal user interface and a general language in which its operation can be programmed. 
Trees can be interactively manipulated and constrained in various ways.

6.12 PhyMl-aLRT

PhyMl-alrT (Approximate Likelihood Ratio Test) is a program to carry out likeli-
hood ratio tests of the presence of branches in a phylogeny. PhyML-aLRT is a modi-
fication of the original PhyML program, and is designed to compute test of the reality 
of branches in a known phylogeny. Five branch support tests are available: (1) the 
bootstrap, (2) aLRT statistics, (3) aLRT parametric (Chi2-based) branch support, (4) 
aLRT non-parametric branch support based on a Shimodaira-Hasegawa-like proce-
dure, and (5) a combination of these two latters supports, that is, the minimum value 
of both. The methods are described elsewhere (Anisimova et al. 2006). The program 
was also implemented to reconstruct genome wide phylogeny of seven mycobacteria 
(Mignard and Flandrois 2008).

6.13 PAML

PAML is a package of programs for the ML analysis of nucleotide or protein 
sequences, including codon-based methods that take into account both amino acids 
and nucleotides (Yang 1997). The programs can estimate branch lengths in a phylo-
genetic tree and parameters in the evolutionary model such as the transition/transver-
sion rate ratio, the gamma parameter for variable substitution rates among sites, rate 
parameters for different genes, and synonymous and nonsynonymous substitution 
rates. They can also test evolutionary models, calculate substitution rates at particu-
lar sites, reconstruct ancestral nucleotide or amino acid sequences, simulate DNA 
and protein sequence evolution, compute distances based on the synonymous and 
nonsynonymous changes, and of course do phylogenetic tree reconstruction by ML 
and Bayesian Markov Chain Monte Carlo methods. PAML is a widely used plat-
form for analyzing selection pressure on regulatory genes (Castillo-Davis et al. 2004, 
Takeuchi et al. 2012, Zhao et al. 2014, Flores et al. 2015).

6.14 BAMBe

bAMbe (Bayesian Analysis in Molecular Biology and Evolution) is a program for 
Bayesian analysis of phylogenies with DNA sequence data. It uses a prior distribution 
of trees and the arrangement mechanism has been introduced in the literature (Mau 
et al. 1997). The trees and parameter values are sampled by a Metropolis algorithm 
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Markov Chain Monte Carlo sampling. The resulting posterior distribution can be 
used to characterize the uncertainty about not only the tree, but the parameters of the 
substitution model as well.

6.15 DAMBe 

DAMBE (Data Analysis in Molecular Biology and Evolution) is a general-purpose 
package for DNA and protein sequence phylogenies, and also gene frequencies (Xia 
2013). It can read and convert a number of file formats, and has many features for 
descriptive statistics. It can compute a number of commonly-used distance matrix 
measures and infer phylogenies by parsimony, distance, or likelihood methods, 
including bootstrapping (by sites or by codons) and jackknifing. There are a number 
of kinds of statistical tests of trees available, and many other features. It can also 
display phylogenies. DAMBE includes a copy of ClustalW; there is also code from 
PHYLIP. An interesting feature is a simple web browser that allows sequences to be 
fetched over the web while running DAMBE.

6.16 MrBayes

Mrbayes, a program for Bayesian inference of phylogenies from nucleic acid 
sequences, protein sequences, and morphological characters (Ronquist et al. 2012). It 
assumes a prior distribution of tree topologies and uses Markov Chain Monte Carlo 
(MCMC) methods to search tree space and infer the posterior distribution of topolo-
gies. It reads sequence data in the NEXUS file format, and outputs posterior dis-
tribution estimates of trees and parameters. It can also use a hierarchical Bayesian 
framework to infer sites that are under natural selection. It allows for rate variation 
among sites and a variety of models of sequence evolution.

6.17 BeST

BEST finds the joint posterior distribution of coalescent gene trees and the species 
tree for multi-locus data under a hierarchical Bayesian model (Liu and Pearl 2007, 
Edwards et al. 2007). Proposal gene trees are made using a gene tree MCMC pro-
cedure chosen by the user in MrBayes. This vector of gene trees is then paired with 
a species tree chosen under the constraint that the gene trees be consistent with the 
species tree. An MCMC importance sampling is then used to sample the species 
trees.

6.18 RAxML

RAxML (Randomized Axelerated Maximum Likelihood) uses rapid bootstrap algo-
rithm to compute ML based phylogenetic trees (Stamatakis, 2014). It also provides 
the options to user to automatically select the best substitution model for their data. 
Genome scale phylogeny can be performed in RAxML using supermatrix approach 
of constructing species tree. This approach uses the concatenated orthologous clus-
ters for inferring robust species trees. 



394 Computational Biology and Bioinformatics

Some important web-servers used for phylogenetic analysis are listed in Table 2. 
This next provides a brief demonstration of the constructing phylogenetic tree of 
protein sequence data using the Phylogeny.fr and PhyML and BioNJ.

TAble 2 Robust web-servers for the phylogenetic analysis 

Server Application Url
Phylogeny.fr Robust Phylogenetic Analysis for the 

Non-Specialist
http://www.phylogeny.fr/

DendroUPGMA The program calculates a similarity 
matrix (only for option a), transforms 
similarity coefficients into distances and 
makes a clustering using the Unweighted 
Pair Group Method with Arithmetic 
mean (UPGMA) algorithm.

http://genomes.urv.cat/UPGMA/

PHYLIP Server for phylogenetic analysis using 
the PHYLIP package

http://bioweb2.pasteur.fr/
phylogeny/intro-en.html

PhyML Server for Maximum Likelihood 
phylogenetic analysis

http://atgc.lirmm.fr/phyml/

The PhylOgenetic 
Web Repeater 
(POWER)

Performs phylogenetic analysis http://power.nhri.org.tw/power/
home.htm

Evolutionary Trace 
Server (TraceSuite 
II)

Maps evolutionary traces to structures http://mordred.bioc.cam.
ac.uk/~jiye/evoltrace/evoltrace.
html

BioNJ Server for Neighbour-Joining 
phylogenetic analysis

http://mobyle.pasteur.fr/cgi-bin/
portal.py?#forms::bionj

7.  Protocol for phylogenetics analysis with Phylogeny.fr
Phylogeny.fr is a free, simple to use web service dedicated to constructing and ana-
lysing phylogenetic relationships between molecular sequences. Phylogeny.fr runs 
and connects various bioinformatics programs to construct a robust phylogenetic 
tree from a set of sequences (Dereeper et al. 2008, Dereeper et al. 2010). Direct 
accesses to the individual tools are available on this server. Phylogenetic analysis in 
Phylogeny.fr can be performed in single click or in advanced mode.

7.1 One Click mode

 1. Open the server homepage (http://www.phylogeny.fr/version2_cgi/index.
cgi) and click on one click (Fig. 2a).

 2. Prepare the sequence file in FASTA format. The sequence input can also be 
given in the EMBL or NEXUS format.

 3. The sequence file can be uploaded or pasted in the textbox (Fig 2b).
 4. To improve the alignment and remove the divergent sequences Gblocks 

(Castresana 2000) program can be used by checking the box.
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 5. Click the submit button. The resulting phylogenetic tree can be downloaded 
in the PDF, PNG, TXT, NEWICK, SVG and TGF format.

 6. Individual results of the alignment and phylogeny can also be obtained
 7. To obtain the results of alignment click on the alignment button. The default 

tool used for the alignment is Muscle. Alignment results are predicted using 
the BLOSUM62 matrix. 

 8. The alignment results (Fig. 2c) can be viewed in Fasta, Phylip or Clustal 
format. The alignment can also be edited (trimmed), in Jalview for which 
the link is available in the same window.

7.2 Display options

The phylogenetic tree can also be viewed in ATV java enabled browser which con-
tains different options for display. These options can be checked or unchecked to get 
the required results. The font size, x-axis or y-axis can be increased or decreased 
as per our requirement. The default tool for the prediction of phylogenetic tree is 
PhyML. The tree style can be changed to Cladogram, Radial or Circular. However, 
radial and circular tree are not suitable for very large dataset.

7.2.1 Cladogram

It is a diagram that depicts evolutionary relationships among groups. Each branch on 
a cladogram is referred to as a “clade” and can have two or more arms. Taxa shar-
ing arms branching from the same clade are referred to as “sister groups” or “sister 

FiGuRe 2 Snapshots of phylogenetics analysis in Phylogeny.fr. (a) Snapshot of Phylogeny.fr one 
click mode window. (b) Snapshot of Phylogeny.fr with pasted sequences in fasta format. (c) A frac-
tion of alignment results in Phylogeny.fr. The web version of alignment shows the colors according 
to the conservancy of the columns.
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taxa.” All taxa that can be traced directly to one node (that is they are “upstream of 
a node”) are said to be members of a monophyletic group. Fig. 2d is depicting the 
cladogram tree.

FiGuRe 2(D) A sample view of cladogram tree.

7.2.2 Radial tree

A radial tree is a method of displaying a tree structure in a way that expands out-
wards, radially. It is one of many ways to visually display a tree. The radial tree 
graph also solves the problem of drawing a tree so that nodes are evenly distributed. 
A binary tree that is drawn linearly, so that the root is on one end, and nodes of the 
same level line up, will grow crowded very quickly but a radial tree will spread the 
larger number of nodes over a larger area as the levels increase. Fig. 2e is depicting 
the radial tree.

FiGuRe 2(e) A sample view of radial tree.
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7.2.3 Circular tree 

In the circular tree layout a single node is placed at the center of the display and all 
the other nodes are laid around it. The entire graph is like a tree rooted at the central 
node. The central node is referred to as the focus node and all the other nodes are 
arranged on concentric rings around it. Each node lies on the ring corresponding to 
its shortest network distance from the focus. Any two nodes joined by an edge in the 
graph is referred to as neighbors. Immediate neighbors of the focus lie on the small-
est inner ring, their neighbors lie on the second smallest ring, and so on. Fig. 2f is 
depicting the cladogram tree.

7.3 Advanced Mode

The workflow settings can be done in the advanced mode. Each step can be per-
formed all at once or one by one. Any box can be unchecked or checked as shown in 
the window according to the need. 

 1. Open the server homepage (http://www.phylogeny.fr/version2_cgi/index.
cgi) and click on advanced (Fig. 2g).

 2. The alignment of sequences with MUSCLE (Edgar, 2004) can be done in 
any of the following four mode (Fig. 2h). (a) Full Mode: The Full mode con-
sists of draft progressive alignment, improved progressive alignment, align-
ment refinement. However, the full mode takes more time. (b) Progressive 
Mode: Progressive mode include draft progressive alignment and improved 
progressive alignment. This mode is faster than the full mode. (c) Fastest 
Mode: The fastest mode is draft alignment and is the fastest to perform and 
(d) Default Mode: Analysis based on all the default parameters. Minimal 
user input is required. 

 3. The number of iteration steps can be selected as required. Three iterations 
are done, and as we increase the iteration steps, iteration is done till the 
maximum convergence of sequences is reached. The default number of 
iteration is 16. Iteration improves the alignment but slows the process.

 4. The find diagonals box is checked to find short regions of high similarity 
in two aligned sequences. A trick used in algorithms such as BLAST is 
to reduce the size of this matrix by using fast methods to find diagonals, 
i.e. short regions of high similarity between the two sequences. Creating a 
pair-wise alignment by dynamic programming requires computing an L1 x 
L2 matrix, where L1 and L2 are the sequence lengths. This speeds up the 
algorithm at the expense of some reduction in accuracy. MUSCLE uses a 
technique called k-mer extension to find diagonals. 

 5. Result of alignment is obtained in FASTA, PHYLIP or Clustal format. The 
results also include a Guide tree. However, Guide tree is given as an indica-
tion and is not a significant phylogenetic tree.
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 6. Next is the Curation step (Fig. 2i) which can be performed or skipped 
based on the requirement of the program outputs for integrating third party 
software.

 7. The input data (i.e., the aligned sequences) for the phylogeny can be edited 
in integrated Jalview software (Fig. 2j). 

The server also contains individual tools (Table 3) for sequence alignment, align-
ment editor and phylogeny.

TAble 3 Different tools integrated in Phylogeny.fr server 

Multiple Alignment Phylogeny Tree viewers Utilities
Muscle PhyML TreeDyn Gblocks

T-Coffee TNT Drawgram Jalview
ClustalW BioNJ Drawtree Readseq
ProbCons MrBayes ATV Format converter

8.  Protocol of phylogenetics analysis using PhyMl
The phylogenetic analysis with Phyml can be done in the following steps:

 1. Select the Datatype i.e., the provided sequences are of amino acids or nucle-
otides (DNA/RNA). The datatype can also be left to auto select.

 2. Upload the sequences in FASTA, Phylip, Clustal, EMBL or NEXUS for-
mat. Alternatively sequence set can be pasted in the box.

 3. The statistical tests for branches of evolutionary trees can be constructed 
on the basis of aLRT (Approximate likelihood Ratio test) or by using the 
bootstrap analysis. The aLRT is shown to be an accurate and powerful 
tool. It is implemented within the algorithm used by the recent fast maxi-
mum likelihood tree estimation program PhyML (Guindon and Gascuel, 
2003). Bootstrapping is a way of testing the reliability of the dataset. It is 
the creation of pseudoreplicate datasets which are generated by randomly 
sampling the original character matrix to create new matrices of the same 
size as the original. Bootstrap analysis is used to examine how often a par-
ticular cluster in a tree appears when nucleotides or amino acids are resam-
pled. However, to get quick results the server itself motivates for the aLRT 
analysis.

 4. Any of the substitution models can be selected based on the datatype of the 
sequence i.e., Nucleotides or Proteins.

 5. The gamma distribution is a two-parameter family of continuous prob-
ability distributions i.e., scale parameter and shape parameter. The gamma 
distribution represents the sum of n exponentially distributed random vari-
ables. Both the shape and scale parameters can have non-integer values. 
Typically, the gamma distribution is defined in terms of a scale factor and 
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FiGuRe 2 (F) A sample view of circular tree. (g) Snapshot of Phylogeny.fr advanced mode win-
dow. (h) Snapshot of Phylogeny.fr advanced mode window. (i) Snapshot of Phylogeny.fr curation 
step window. (j) Snapshot of aligned sequences in integrated Jalview in Phylogeny.fr.
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a shape factor. When used to describe the sum of a series of exponentially 
distributed variables, the shape factor represents the number of variables 
and the scale factor is the mean of the exponential distribution.  This is 
apparent when the profi le of an exponential distribution with mean set to 
one is compared to a gamma distribution with a shape factor of one and a 
mean of one. 

9. Protocol of phylogenetics analysis using bioNJ
BioNJ is a distance based phylogeny reconstruction algorithm, which is well suited 
for distances estimated from DNA or protein sequences. The steps are as follows:

 1. The alignment fi le (Fig. 3a) can be uploaded in the FASTA, PHYLIP, 
Clustal, EMBL or NEXUS format) or distance matrix (Fig. 3b) in (PHYLIP 
or NEXUS format).

 2. For protein analysis, bootstrapping is done by combining Seqboot (PHYLIP 
package) to perform bootstrap and Consense (PHYLIP package) to obtain 
the bootstrap tree from the BioNJ output. For nucleic acid analysis, boot-
strapping is done with FastDist, and consensus generated by Consense 
(PHYLIP package). The limit for both protein and nucleic acid analysis is 
maximum one thousand steps.

 3. Substitution matrix according to the requirement. A substitution matrix 
describes the rate at which one character in a sequence changes to other 
character states over time. For protein sequences two types of substitution 
matrix are available on the server:

     

 (A) (B)

FiGuRe 3 Snapshots of phylogenetics analysis in BioNJ. (a) Snapshot of BioNJ data and setting 
tab. Amino acid sequences are submitted in the phylip format. (b) Snapshot of BioNJ data and set-
ting tab with distance matrix of aligned proteins generated by phylogeny.fr server between organ-
isms of interest.

9.1 Dayhoff PAM matrix

PAM (Point Accepted Mutation) matrix was developed by Margaret Dayhoff in the 
1970s. PAM matrices are the description of the changes in amino acid composition 
that are expected after a given number of mutations that can be derived from the data 
used in creating the matrices. Thus the highest scoring alignment is the statistically 
most likely to have been generated by evolution rather than by chance.
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9.2 Jones-Taylor-Thorntorn matrix

It is a matrix that computes a distance measure for protein sequences. This is similar 
to the Dayhoff PAM model, except that it is based on a recounting of the number of 
observed changes in amino acids by Jones, Taylor, and Thornton (1992). The dis-
tances can also be corrected for gamma-distributed and gamma-plus-invariant-sites-
distributed rates of change in different sites.

The substitution matrices for nucleotides are as following: 

9.3 Kimura 2-Parameter

Kimura’s two parameter model (1980) corrects for multiple hits, taking into account 
transitional and transversional substitution rates, while assuming that the four nucle-
otide frequencies are the same and that rates of substitution do not vary among sites. 

9.4 Jukes Cantor Model

In the Jukes and Cantor (1969) model, the rate of nucleotide substitution is the same 
for all pairs of the four nucleotides A, T, C, and G. It assumes an equality of substitu-
tion rates among sites equal nucleotide frequencies, and it does not correct for higher 
rate of transitional substitutions as compared to transversional substitutions.

9.5 Hamming Model

The Hamming distance is a simple position by position comparison. The Hamming 
distance is simple to calculate but it ignores a large amount of information about the 
evolutionary relationship among the sequences. The main reason is that the character 
differences are not the same as distances: the differences between two sequences are 
easy to measure, but the genetic distance involves mutations that cannot be observed 
directly.
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Improved Protein Model Ranking 
through Topological Assessment
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Abstract
Contrary to heavy genome as well as proteome sequencing rates, the pace of exper-
imental solving of protein structures is quite low and the sequence-structure gap 
is constantly increasing. Detailed structural knowledge of a protein is essential to 
understand its native function in a cell and it consequently helps us to learn the 
expression profile of all the genes in that cell. Numerous computational algorithms 
for protein structure prediction have been developed to quickly construct the protein 
models and to bridge this ever-increasing sequence-structure gap. However, the cur-
rent prediction methodologies often fail to select the true and acceptable conforma-
tion from the generated decoy structures. Also, the currently popular model ranking 
schemes are not efficacious in resolving very close structural models to identify the 
actual model even when the experimental structure of the considered sequence is 
available to aid in the decision making. This chapter extensively investigates the 
current best model assessment measures, including those which evaluate structure 
and geometry, such as GDT_TS, GDT_HA, Spheregrinder, TM-Score and RMSD 
scores, and illustrates their inaccuracies in effectively resolving and ranking the pro-
tein models. It further presents a new method of ranking the constructed protein 
models on the basis of topological differences in the dihedral angles and the dis-
tances between successive Ca atoms. The developed methodology is inspected by 
employing it for re-ranking the top five models for five TBM-Easy targets and five 
TBM-Hard targets from the CASP10 database, and it proves the inefficiency of the 
currently used model assessment measures in selecting the accurate structure for 
a target protein sequence. The ranking result is further verified by evaluating the 
atomic clashes in these models. The resultant model ranking is intelligently utilized 
to apprehend the coherent shortcomings of contemporary assessment measures and 
expound the improved model assessment-cum-ranking algorithm. Furtherance of 
model evaluation and ranking measures will certainly help us to consistently select 
the best predicted conformations for understanding a protein’s functional role in the 
biological pathways of a cell system.
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1. Introduction
Owing to the pronounced efforts in genome sequencing and the subsequent transla-
tion of the discovered nucleotide sequences into amino acid sequences, there has 
been a spurt in the number of available protein sequences. A widespread focus on 
sequence analysis of proteins has led to several advanced techniques being invented 
in the last few years for making protein sequencing more efficient, resulting in the 
huge rise that has been observed in the number of solved protein sequences in vari-
ous protein databases around the world. These sequences play a fundamental role 
in determining the functions of these proteins in various biological systems. The 
biochemical function of a protein can predict its involvement in biological pathways 
and the part played by it in the development or the cure of a disease (Gherardini and 
Helmer-Citterich 2008). It was propounded in the 1950s, that a protein’s sequence 
encodes the information necessary to direct its conformational folding to the func-
tionally active three-dimensional structure. A protein structure furnishes significant 
information about its function in cellular processes. Thus, important inferences 
about the protein’s function could be drawn from its sequence using the structure as 
an intermediary (Sela et al. 1957).

Conserved protein sequence chunks play an important role in maintaining the 
structural as well as functional similarity of proteins along the evolutionary net-
works. However, even when protein sequences diverge during the evolution, their 
structures can still be retained and hence the structural information is crucial to 
unravel their native functions. Thus, the structural topology of a cellular protein 
is essential to infer its phylogenetic as well as functional relationship with another 
species, be it a close or a distant one (Gherardini and Helmer-Citterich 2008). The 
protein structures are also essential requisites to scrutinize and establish their inter-
action network in a cell for properly understanding the entire genetic regulation in 
a cell. The functional analysis of ligands binding to certain specific sites in proteins 
is also dependent on the structural topology of active sites encoded in these proteins 
(Baker and Sali 2001).

Sadly, for most of the protein sequences, we still do not have the experimentally 
solved structures and so their native functions are also not well understood. A sig-
nificant gap between the available number of protein sequences and their experimen-
tally solved structures has thus arisen and this sequence-structure gap is constantly 
increasing. In its release on 9 December 2015, the UniProt Knowledgebase and 
Translated European Molecular Biology Laboratory (UniProtKB/TrEMBL) database 
contained 55,270,679 sequences, which are substantially larger in number than the 
negligible 111,511 protein structures experimentally determined and stored in the 
Protein Data Bank (PDB).

Protein sequences are experimentally solved through several techniques like 
X-ray and Cryo-electron microscopy. However, these methodologies are too costly 
and time consuming. Thus, computational algorithms have been developed to con-
struct the reliable as well as accurate protein conformations. The most accurate of 
these methodologies is the Template Based Modelling (TBM) algorithm that employs 
the dependable set of experimentally solved protein structures (templates) to con-
struct a trustworthy conformation for the considered protein sequence (target). For 
further validation and testing of the accuracy of these prediction algorithms, a 
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community-wide blind test titled ‘Critical Assessment of protein Structure Prediction 
(CASP)’ is organized every two years. CASP tests the modelling accuracy for a spe-
cific set of target protein sequences whose structures are experimentally solved and 
frozen for the test. It therefore assesses the exactness of all the models predicted by 
the different research groups for all these targets, against their actual native confor-
mations and ranks them through different scoring parameters, as explained further. 

During the assessment of these models, it is observed that while in some cases, the 
predicted protein models are not accurate and exhibit almost nil similarity, at other 
times, the models may be very close in their structure, to each other as well as to the 
native target conformation. In such cases, selecting the model which is structurally 
closest to the native conformation becomes quite challenging (Runthala 2012). As 
a solution to this problem, more competent model assessment methods are needed.

Assessment schemes superimpose the considered structures for calculating their  
similarity score. However, superimposition of the complete protein structures can 
mask the topological similarity at some local segments that exhibit a significantly 
higher conformational similarity. This consequently requires the consideration of 
an aspect of local similarity in these schemes. Several tools have been invented 
that mutually compare the constructed protein models to identify the best predicted 
model among the numerous constructed decoy structures for a target sequence. 
Although, we have developed considerably efficient structural comparison based 
model assessment methods, a complete understanding of the protein dynamics and 
a fool-proof method that can select the accurate model among the generated decoys, 
still eludes us. Various assessment methods employ the secondary structure, sol-
vent exposure and pairwise residue interaction information of the predicted protein 
models to evaluate their stereochemistry and molecular energy in the bid to select 
the most accurate structure (Kryshtafovych and Fidelis 2009). Among the numerous 
model assessment methods that have been developed till date, the mostly employed 
and the current best measures for evaluating a predicted conformation against an 
experimentally solved structure, are selected to analyse their biological credibility. 
These assessment schemes are individually explained below along with their logical 
and algorithmic drawbacks.

1.1 RMSD

RMSD (Root Mean Square Deviation) is one of the simplest assessment methods to 
appraise a predicted protein model against its native conformation or the templates 
employed to construct it. It is computed through the optimal superimposition of the 
two structures by employing the rotational and translational degrees of freedom of 
one structure in relation to the other one. For two protein structures encoding an 
equal number of L amino acids, it is simply calculated with the following formula:

 L
dRMSD

1
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L
2
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=

where di is the distance between the ith pair of Ca atoms in the two structures.
RMSD can be calculated, either using all the atoms or only the Ca atoms or only 

the centre-of-mass of the side-chain atoms present in a protein model, against its 
actual native conformation or the employed template(s). Lower RMSD scores indicate 
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higher topological similarity among two structures. As two, functionally as well as 
structurally different proteins can be superimposed to yield a lower RMSD score, its 
biological reliability is always doubtful. It equally weighs all the atoms and so the 
topological misorientation at some local segments or the incorrect topology of a few 
residue chunks like loop regions in a model can result in an abruptly higher RMSD 
score. Also, a dependency on the number of atoms included in the comparison pre-
vents the score from giving the true picture of the similarity which is certainly irre-
spective of molecular size (Zhang and Skolnick 2005, Xu and Zhang 2010, Hung and 
Samudrala 2012).

1.2 GDT_TS

GDT_TS stands for Global Distance Test Total Score and is one of the most popular 
methods currently available for assessing the quality of the generated protein models. 
Initial structural superimpositions are generated by taking all the possible continu-
ous segments of three, five and seven residues from the Ca atoms along the backbone 
from both, the target and the template. These superimpositions create an initial set of 
equivalent residue pairs (corresponding Ca atom pairs from target and the template 
that are supposed to have the same structural, functional and the biological role). 
These segments of residue pairs are then repeatedly extended further by including 
all residue pairs which lie below a specific distance cut-off (distance between the 
residues of each pair) to arrive at the largest set of residues from the two structures 
that obey a given distance threshold. The threshold is iteratively set to 1, 2, 4 and 8Å, 
and the largest residue set is computed for each of these thresholds (Kryshtafovych 
et al. 2005) to calculate the GDT_TS score.

GDT_TS = 
1

4
1 2 4 8[ + + + ]n n n n

where nx denotes the number of residues superimposed for a threshold of xÅ.
GDT_HA is a higher accuracy version of GDT_TS which differs only in the val-

ues of the thresholds which are used. It employs the 0.5, 1, 2 and 4Å thresholds to 
compute an average score. Thus, it is better suited to look out for local similarities 
which are of a superior quality than their average global counterparts. However, it 
should be cautiously used for the structural evaluation of a sequence alignment and 
the corresponding constructed model against the template. Once a constructed pro-
tein model is refined through addition of loops or refinement of the backbone topol-
ogy, the GDT_TS score ceases to reflect only the sequence alignment that has been 
employed for computing it (Dunbrack 2006).

The GDT family scores always carry the negative aspect of all the distance values 
between two consecutive thresholds amounting to an equal contribution to the final 
score, e.g., two different residue pairs with distance values of 5Å and 7Å contribute 
equally to the value of n8. The dependency of GDT_TS on the number of compared 
residues leads to no concrete conclusion being obtained from its results in most of 
the cases. Such trivial scores usually imply the fluky insignificant topological simi-
larity or the conserved nature only for a few short segments between the considered 
protein structures (Zhang and Skolnick 2004). Moreover, the application of GDT 
score entails the task of adjusting the threshold according to the difficulty level of a 
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considered target subject to the reliable coverage span provided by the best possible 
set of templates available for this target (Kopp et al. 2007).

1.3 LGA

LGA is the acronym for Local-Global Alignment. It is a model assessment method 
used for comparing the predicted target model or its substructures against the tem-
plate or its native conformation. This method provides the advantage of being appli-
cable in situations where there is no predefined correspondence between the residues 
of the two protein structures (Zemla 2003).

The RMSD score has shortcomings and can give a large value even if there is 
just a small region with a large deviation, leading to a high overall RMSD in an 
otherwise similar structure. Thus, considering local regions for superimposing and 
assessing similarity becomes even more imperative. This constraint is addressed by 
LGA, which takes into account both local and global superimpositions of the two 
structures. Regions of local similarity can be neglected if a single best global super-
imposition is to be computed and so the LGA algorithm makes several local super-
impositions to find out local regions that are structurally similar.

The LGA scoring scheme is divided into two components: LCS (Longest 
Continuous Segments) and GDT (Global Distance Test). While, the LCS determines 
locally similar regions, the GDT score estimates the global structural similarity of 
the proteins. LCS determines longest continuous superimposable segments of resi-
dues that satisfy a given RMSD cut-off. GDT, on the other hand searches for the larg-
est set of equivalent residues which obey a particular distance cut-off. The residues 
can also be discontinuous in the case of GDT. Limiting the LCS analysis to a speci-
fied RMSD cut-off would not bring out all the structural similarities and some might 
escape from being noticed. Thus, the algorithm is repeated for different cutoffs (1Å, 
2Å and 5Å). Similarly, for GDT, scanning is done for a different cut-off at every 0.5Å 
from 0.5Å to 10Å. GDT assigns every residue from one of the molecule to the largest 
set of possible residues from the second molecule keeping a specified distance cut-off 
as necessary. The percentage of residues (in continuity) that satisfy an RMSD cutoff 
of viÅ are denoted as LCS_vi. Similarly, calculations are done for GDT_vi which 
is the percentage of residues satisfying a given distance cutoff of viÅ. The scoring 
function LGA_S is then calculated using the formula:

LGA_S = (w × S(GDT_vi)) + ((1 – w) × S(LCS_vi))

where  w (0.0 ≤ w ≤ 1.0) is a suitable weighting factor and S(F_vi) is found using the 
following procedure:
 X = 0.0 

For each  vi (v1, v2, ... , vk)

 {
 Y = (k – i + 1)/k
 X = X + (Y × F_vi)
 }
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In sequence dependent analysis, different superimpositions need not be done initially 
and the given equivalence is used to carry out a single superimposition for which the 
LGA_S is calculated. CASP6 revealed the fact that in situations involving substantial 
difference between the structures of the predicted models and the native target con-
formations, sequence-independent alignment procedures fail to achieve the correct 
alignment between the model and the target. Instead, the sequence-dependent align-
ments fare better by succeeding to identify atleast a substructure of the predicted 
model which is acceptably similar to its native structure (Dunbrack 2006).

1.4 TM-Score

TM-Score stands for Template Modelling score and is a scoring function that 
improves on the technique of GDT to create a refined means of model assessment. 
It removes the size-dependency and thus provides a realistic comparison of random 
structural models. TM-Score is defined as follows:

TM-Score = Max 1 1
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where LTarget is the length of the target protein; Lali is the number of residues chosen 
for alignment; di is the distance between the ith pair of residues in the aligned region; 

d0 = - -1 24 15 1 83. .LTarget  is the parameter used for normalizing the distances 
between the residue pairs.

The consideration of a normalizing factor makes the TM-Score size-independent 
so that it depicts the average topological deviation between the aligned residues even 
in randomly compared set of protein structures. A score called the ‘raw TM-Score’ 
(rTMscore) is obtained if a fixed value of d0 = 5Å is taken, which like GDT, has the 
size-dependence (Zhang and Skolnick 2004). By definition of TM-Score, a value 
greater than 0.5 indicates a model with an approximately correct topology, and a 
value less than 0.17 always indicates a random prediction. However, TM-Score does 
not clearly bring about the regions of higher local similarity or dissimilarity com-
pared to the overall similarity between the complete structures. A local region of high 
resemblance may be masked by a mediocre TM-Score as its algorithm is designed for 
global assessment of protein structure. On the contrary, a passable TM-Score may 
be obtained due to a large perturbation in a small part of fairly similar structures. 
Unlike RMSD score, TM-Score holds the advantage of protein segments of the com-
pared structures contributing to the final score in accordance with the quality of their 
alignments which averts the misleading assessments to some extent.

1.5 Spheregrinder

Spheregrinder (SG) score, introduced in CASP9, evaluates the similarity between the 
two protein structures through an algorithm based on the localized conformational 
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similarity between the corresponding substructures. SG algorithm employs the 
spheres of a specific radius by centring them on the corresponding Ca atoms of both 
the considered structures to compute an individual RMSD score for the specific set 
of atoms structurally constrained in each of these spheres. 

Based on the radius of the sphere and the employed RMSD cutoff, percentage of 
spheres complying with the structural similarity thresholds are used to calculate an 
average SG-score (Kryshtafovych et al. 2013) for a predicted protein model. Thus, 
this scheme deploys a mechanism which focuses on local structural deviations to 
give a dependable picture of the similarity between the target structure and its native 
conformation, and is devoid of the systematic topological shifts that may be induced 
through direct global superimposition of the two structures.

It has also been well observed that the function of a protein sequence is majorly 
determined by the biochemical nature, location and structural depth of a few func-
tionally specific residues which usually encompass the active site(s) (Gherardini and 
Helmer-Citterich 2008). Thus, an effective combination of global as well as local 
structural comparison of the two proteins is the most probable way to estimate their 
trustworthy structural similarity. However, majority of the other such model assess-
ment methods also lag on the same logical grounds that are discussed so far in this 
study. 

A new assessment procedure which adroitly evaluates both the global and local 
similarity among a pair of protein structures is precisely the need of the hour. A 
better assessment measure is thus developed in this study to correctly rank the gen-
erated set of target model decoys and select the accurate model among the decoys 
constructed for a target sequence. There are some assessment measures that use an 
alternative of evaluating the models on the basis of the energy of their interatomic 
interactions. However, like most of the prevalent model assessment measures today, 
this new method is also fundamentally based on the structure of the proteins.

2. Methodology
The developed methodology employs the vital topological features of the constructed 
set of target protein models to assess them against the native target conformation and 
rank them in the best possible way. For evaluating and testing the applicability and 
reliability of our designed model ranking algorithm on both the TBM-Easy targets 
as well as the TBM-Hard targets, five targets from each of these sets are randomly 
considered from the set of TBM targets considered in CASP10. Thus, the CASP10 
targets chosen for the study include five TBM-Easy targets (T0645-D1, T0650-D1, 
T0659-D1, T0664-D1 and T0689-D1) and five TBM-Hard targets (T0663, T0674, 
T0676-D1, T0726 and T0726-D1) (Source: www.predictioncenter.org/casp10/results.
cgi). For each of these selected targets or target domains, the top five predicted pro-
tein models are chosen. The selected models are ranked through the devised tech-
nique and the resultant accuracy order of these models is then compared with the 
order followed in CASP10 (based on the popular assessment measures viz. GDT_TS, 
GDT_HA, TM-Score and Spheregrinder) to arrive at some inferences describing 
how the developed ranking technique fares against the popular methods. 

The secondary structure architecture of a protein, encoding functionally active 
domains, heavily affects its function (Matsui et al. 2004). Moreover, the secondary 
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structures, viz. a-helices and b -sheets, form the fundamental topology of a protein 
conformation that is important to decode its functional details. The considered target 
models have the same number of residues and our methodology computes the dihe-
dral angles phi (f) and psi (y) for every residue present in the protein backbone to 
correlate these values with the topological similarity of the considered protein struc-
tures and to further utilize them for ranking the protein models. The phi angle and 
psi angles are the angles of right-handed rotation around the N-CA and CA-C bonds 
respectively. The cartesian distance between every pair of consecutive Ca atoms is 
further calculated and employed in the bid to define the topological similarity of the  
two protein structures.

At each of the residue locus for a protein structure, the coordinates of the carbon, 
nitrogen and oxygen atoms are used in a particular order to calculate the dihedral 
angles. The procedure used for calculation of the angles involves calculating the 
angle between the two successive planes. For instance, if we consider a1, a2, a3 and 
a4 as the position vectors for four consecutive atoms along the protein backbone, the 
vector set of a1, a2 and a3 and the vector set of a2, a3 and a4 form the two successive 
planes. By assigning the four position vectors a1, a2, a3 and a4 to various atoms of 
each residue in a specific order, the dihedral angles can be arrived at. The angle phi 
(f) is computed by considering a1, a2 , a3 and a4  as the position vectors for the C 
atom of the residue which is previous to the one being evaluated and the N, Ca and C 
atoms of the residue under consideration, respectively. The angle psi (y) is computed 
by assigning a1, a2, a3 and a4  as the position vectors for the N, Ca and C atoms of 
the current residue and the N atom of the next residue, respectively. v1,  v2  and v3 are 
the successive bond vectors joining the four atoms. m1 and m2 are the normals to the 
two planes which include the dihedral angle, say q, between them. For every plane, 
they are two possible normal of opposite signs. The chosen normals are of the same 
sign which ensures a zero dihedral angle when they become parallel. Finally, the 
required angle is calculated using three orthogonal unit vectors, l1, l2 and l3. The vari-
ous vectors enumerated above have been illustrated through a front view which has 
the second bond vector v2 in the plane of the paper (Fig. 1) and an orthogonal view 
which has the bond vector v2 projecting out of the paper (Fig. 2). 

FiGuRe 1 Front view of vectors used in calculating dihedral angles. Bond vector v2 is in the plane 
of the paper.
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Thus, dihedral angles for each of the residue encoded in a protein structure are 
hereby computed for the native target conformation (solved target; parsed only for 
the residues assessed during the CASP10) and the selected CASP models for each of 
the considered targets. 

FiGuRe 2 Orthogonal view of vectors used in calculating dihedral angles. Bond vector v2 is 
projecting out of the paper.
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The distances between consecutive Ca atoms are computed using the coordinates 
provided in the PDB files and the formula for calculating the distance D, between two 
points in three-dimensional space:

 D x x y y z z= - + - + -( ) ( ) ( )2 1
2

2 1
2

2 1
2

where ( , , )x y z1 1 1  and ( , , )x y z2 2 2  are the coordinates of the two points. 
Further, the angular difference is calculated between the dihedral angle values of a 

residue in the target and its corresponding residue in the model being assessed. This 
difference is obtained for all the residues present in the solved target. The summation 
of these angular differences across all the compared residues, viz. the total number 
of residues encoded in the target sequence, is calculated to give the total difference in 
the dihedral angle values between the model and the experimental structure. 

 Total difference = d1 + d2 + d3 + ... + dn

where d1, d2, d3 ... and dn denote the angular differences at each residue. Throughout 
the calculations, only the absolute values of the differences are used. This process is 
done twice, once for phi (f) and psi (y), each. A similar methodology is implemented 
to calculate the difference between the distances between consecutive Ca atoms, at 
every pair of corresponding residues in the target and the models and subsequently 
arrive at the total Ca distance difference.

Using the total difference of a considered topological parameter between a model 
and the target, the mean of the difference is calculated using the formula:

 Mean Total difference
n( ) =m

where n is the number of residues for which the total difference is calculated. Further, 
the Standard Deviation (SD) of these differences is computed with the help of the 
following formula:
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The aforementioned procedures are repeated for all the models for a particular target. 
Based on the determined means and standard deviations, the models are ranked anew 
and the results are analysed and compared with the results of the popular schemes.

For each of the five selected TBM-Easy and TBM-Hard CASP10 targets, the selected 
CASP models are structurally evaluated against their native conformations by com-
puting their TM-Score through the online tool of Zhang Lab (zhanglab.ccmb.med.
umich.edu/TM-Score). The GDT_TS, GDT_HA, Spheregrinder and RMSD scores of 
all these models and the resulting model rankings are further considered through the 
official CASP10 portal (www.predictioncenter.org/casp10/results.cgi) and compared 
with our computed scores and rank order for each of the considered CASP10 targets. 
A supplementary assessment is further done by examining the selected CASP mod-
els for the atomic clashes. A severe clash is encountered in a model when the distance 
between two consecutive Ca atoms is less than 1.9Å. A bump is said to occur, if this 
distance is less than 3.6Å and a model with four or more severe clashes or more than 
50 bumps is defined as a clashed model (Tress et al. 2005). The best model identified 
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through a ranking scheme hence gets further validated if it involves the least number 
of clashes or bumps and is the least clashed model.

The developed method is expected to have features which can possibly address the 
shortcomings that the presently popular scoring schemes possess and lead to a reli-
able ranking of protein models in the order of their biological accuracy.

3. Results

For each of the selected TBM-Easy and TBM-Hard CASP10 targets, the GDT_TS, 
GDT_HA, Spheregrinder, TM-Score and RMSD scores of all the selected models are 
enlisted in Table 1.

TAble 1 Various scores of the best 5 models for the selected CASP10 targets

# Group Name GDT_TS GDT_HA Spheregrinder TM-Score RMSD

TbM-easy targets

T0645-D1 (40-537)

1 Phyre2_A 80.12 62.45 64.46 0.9346 3.385

2 MULTICOM-NOVEL 80.07 62.55 71.29 0.9397 3.154

3 HHpredA 79.52 60.95 67.67 0.9345 3.145

4 HHpredAQ 79.52 60.95 67.67 0.9345 3.145

5 HHpred-thread 79.12 60.54 68.88 0.9328 3.29

T0650-D1 (4-342)

1 HHpredAQ 93.36 78.10 91.45 0.9737 1.981

2 HHpredA 93.36 78.10 91.45 0.9737 1.981

3 chunk-TASSER 93.36 78.32 93.81 0.9746 1.932

4 BAKER-
ROSETTASERVER 93.22 78.03 94.40 0.9743 1.97

5 MATRIX 91.08 72.27 89.38 0.9676 2.136

T0659-D1 (1-74)

1 Phyre2_A 94.93 81.42 90.54 0.9233 2.029

2 MULTICOM-REFINE 94.93 81.76 97.30 0.9266 1.813

3 MULTICOM-NOVEL 94.93 82.09 94.59 0.9295 1.942

4 MATRIX 94.59 81.08 90.54 0.9236 1.915

5 FALCON-TOPO 94.59 81.76 85.14 0.9266 2.063

T0664-D1 (43-540)

1 PMS 84.54 68.07 76.91 0.9076 3.193

2 RaptorX-ZY 84.44 68.88 78.11 0.9053 3.376

3 Phyre2_A 83.83 67.27 75.90 0.9035 3.579

4 RaptorX 83.69 68.12 77.51 0.9030 3.614

5 HHpredA 83.64 66.82 76.91 0.9021 3.258
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# Group Name GDT_TS GDT_HA Spheregrinder TM-Score RMSD
T0689-D1 (23-130, 132-234)

1 PconsM 88.74 73.34 86.26 0.9280 2.181
2 Jiang_Fold 88.39 74.05 88.15 0.9262 2.241
3 RaptorX 88.27 73.70 88.63 0.9255 2.234
4 YASARA 88.15 72.63 88.63 0.9230 2.365
5 MUFOLD-Server 87.92 72.63 91.94 0.9228 2.111

TbM-Hard targets
T0663 (53-204)

1 LEEcon 42.93 31.58 45.39 0.3277 11.79
2 BAKER 42.60 33.22 46.05 0.3314 10.738

3 MULTICOM-
CLUSTER 41.94 31.25 40.13 0.3339 12.83

4 MULTICOM-
CONSTRUCT 41.94 33.23 40.13 0.3320 12.811

5 Mufold 41.61 32.73 44.74 0.3324 13.605
T0674 (1-340)

1 MULTICOM-
CONSTRUCT 39.91 29.92 43.39 0.4566 11.05

2 BAKER 39.91 29.41 56.61 0.4646 13.59
3 PconsQ 39.07 29.07 51.53 0.4384 16.797
4 CNIO 38.98 29.32 52.88 0.4356 16.192
5 Sternberg 38.81 30.51 49.15 0.4168 14.073

T0676-D1 (32-204)
1 zhang 43.21 23.27 15.03 0.5317 8.029
2 Jones-UCL 40.90 21.39 16.18 0.5133 8.225
3 QUARK 40.75 20.81 14.45 0.5178 8.179
4 Mufold 40.61 20.66 15.61 0.5158 8.12
5 Kim_Kihara 40.46 19.94 5.78 0.5195 8.275

T0726 (1-597)
1 LEE 37.86 21.76 31.69 0.7377 13.777
2 MUFOLD-Server 37.69 22.66 20.10 0.7245 7.252
3 LEEcon 36.97 21.72 33.90 0.7176 16.12
4 BAKER 36.88 21.59 31.86 0.7282 19.31
5 ProQ2clust2 36.84 21.46 17.04 0.7101 15.225

T0726-D1 (1-447)
1 MUFOLD-Server 48.94 29.59 27.52 0.7294 7.011
2 LEE 48.88 28.41 30.43 0.7400 6.472
3 LEEcon 48.32 28.52 36.02 0.7258 6.809
4 TASSER-VMT 48.27 28.52 29.08 0.7314 6.654
5 zhang 48.15 26.62 31.54 0.7480 6.093

The top five models selected for each of the considered targets are ranked using 
the means and standard deviations of the computed f, y and Ca distance difference 
scores. Ranking of the models is done on the basis of each of the difference scores, 
separately. The basis of these rankings is allotting a higher rank to the model with 
lesser mean and SD. If during a comparison, a model has a greater mean but a lower 
SD compared to another model, then it is allotted a higher rank only if the absolute 
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value of the difference between the means is lesser than the absolute value of the 
difference between the SDs. Thus, three rankings are obtained for models of every 
target. One uses f differences only, another uses y differences only and yet another 
uses Ca distance differences only. For every model, the average of its rank in all 
the three rankings is computed and employed to arrive at the desired end ranking 
enlisted in Table 2.

No severe clashes are observed in the experimentally solved structures of the 
selected targets as well as the CASP models while screening for atomic clashes. 
Thus, only the bumps are reported in the following Table 2 for each of these selected 
CASP10 targets. The numbers in the brackets denote the range of residues that is 
assessed in each of these selected CASP10 targets as well as the corresponding mod-
els during CASP and by our ranking protocol. 

As demonstrated in Table 2 and quite interestingly, some of the top five predicted 
models are found to have the same score for some of the employed assessment param-
eters and thus get the same rank. This might stem from the fact that such pairs of 
models might have been constructed through the same set of templates along with a 
similar model construction or sampling protocol.

4. Discussion
On the basis of Tables 1 and 2, it can be inferred that our devised method is able to 
re-rank the selected models in a more logical and biologically correct manner. The 
developed method is based on the dihedral angles and the distances between Ca 
atoms, which play a huge role in determining the overall topology of the protein, 
including its secondary structure. A similar dihedral angle profile between the model 
and the template implies a similar structure throughout the length of the protein. 
Moreover, Ca distances give an impression about the overall length of the protein. So 
if dihedral angle similarity is complemented by likeness in the separations between 
residues, an overall similarity at the local and global level is safely established. 
Further, considering the mathematically optimized weight for any of these param-
eters would most plausibly supersede the smaller, although significant score of some 
of the other considered parameters for a protein model. Therefore all these three con-
sidered parameters are given an equivalent weightage in our model-ranking method-
ology to define the overall topology for a protein model. Moreover, our methodology 
equally weighs all the residues of a protein model, irrespective of their biochemical 
nature, to compute its rank and is thus quite similar to the TM-Score, GDT and 
Spheregrinder algorithms. It is substantially perspicacious too as every residue of a 
protein structure is extremely significant to define its structure, function or activity 
and considering weightage for a certain specific set of residues would again mask the 
evocative significance of all the other residues.

Surprisingly, for most of the considered target domains, the selected models scor-
ing the best with the other usually employed measures are shown as relatively inac-
curate conformations by our model-ranking algorithm. The developed methodology 
efficiently empowers the model assessment method to robustly discriminate even 
the highly similar conformations with identical and indistinguishable scores on the 
popular schemes. It would thus be extremely handy for assessing the high accuracy 
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CASP targets where the submitted protein models are highly close to each other 
and where the manual assessment becomes a cumbersome as well as pain-staking 
exercise.

The large deviations in dihedral angles and Ca-Ca distances between the selected 
CASP10 models and their native target structures have been observed throughout 
this study and it implies that an incorrect set of templates or an incorrectly con-
structed target-template alignment might have been possibly employed by even the 
top-ranked models. 

The assessment of atomic clashes further reveals that the model that is ranked the 
best with our assessment methodology, does manage to score one of the lower counts 
of atomic clashes. However, in some instances, another model is observed to score 
the lowest count of such atomic clashes. This can be resolved through refinement of 
models which could remove the small number of clashes that exist. The developed 
methodology is thus capable enough to skilfully assess the predicted protein models 
at the local and global levels for discerning the highly alike structures and supple-
menting it with a judicious ranking mechanism. Although here the protein models 
are evaluated against their experimentally solved native structures, the developed 
algorithm is equally applicable to rank the constructed models against the employed 
set of templates.

5. Conclusion
A method which assesses both the local as well as global structural similarity of 
models has been developed and it provides an unconventional option of ranking 
the predicted protein models through the evaluation of their overall conformational 
topology. The method is empowered to effectively order the predicted models in 
the quest for identifying the best constructed structure. Accurate model assessment 
is the key to unravelling a correctly predicted protein structure and to decipher its 
function. Proteins play a pivotal role in gene regulation serving as transcription fac-
tors and awareness of their true structural as well as functional information bodes 
well for the formulation of a better understanding of how different proteins are bio-
logically folded in a cell and how their function is likely to evolve in varying micro-
environments created due to the presence of constantly evolving genome regulatory 
enzymes and inducers.

6. limitations and Further Research Possibilities
Our method employs a one-to-one residue correspondence between the selected 
CASP10 models as well as their native structures, and then puts the entire difference-
based scores to rank them. However, in such a case, there may be a possibility where 
two local regions which are not related through this correspondence possess a mutual 
similarity which is much better than the similarity they share with their counterpart 
regions with which the differences in their dihedral angles are being determined. 
In other words, the selected structures may be looking dissimilar overall with large 
mean and SD of the differences, but there may be a structural shift between the 
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two which may be the reason for the dissimilarity. Thus small local regions may be 
compared with all the local segments in the other structure without any one-to-one 
residue correlation to identify the all the topologically similar substructures.

Another drawback that may hinder the successful employability of this technique 
in every situation is the computational burden it entails. It scans through every resi-
due of a protein model and calculates dihedral angles to subsequently compute the 
variations between the compared structures. Though the procedure works well for 
small proteins, computing the required scores for large proteins might charge larger 
infrastructure. As an auxiliary check to the developed assessment scheme, the mod-
els can undergo clustering based on the same parameters that have been deployed 
in this formulated model assessment scheme. The model which takes away the top 
position should prove to be the most similar to all the other structures, although it 
would fail when the correct structure is considerably different from the considered 
set of models.

Moreover, only the Ca backbone has been utilized here for calculating the scoring 
parameters employed for ranking the protein models. However, a protein structure 
has the side-chain also, which is involved in its functioning and these side-chains 
should also be compared using similar suitable parameters for a wholesome com-
parison of the protein structures. Another observed deficiency is that whenever two 
models generate exactly same scores, our method fails to reliably select the better 
structure among them. Hence, the developed methodology requires further fine-
tuning of the employed parameters through additional assessments of side-chains 
and other structural aspects of a protein. Finally, a method which incorporates every 
aspect of the protein structure can be arrived at for a thriving future of proteomics. 
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