


  Systems Biology of Tuberculosis 



  



       Johnjoe   McFadden     •    Dany J.V.   Beste     
   Andrzej M.   Kierzek     
 Editors 

 Systems Biology 
of Tuberculosis          



 Editors 
   Johnjoe   McFadden  
   Faculty of Health and Medical Sciences 
 University of Surrey 
  Guildford,   Surrey,   UK 

   Andrzej M.   Kierzek  
   Faculty of Health and Medical Sciences 
 University of Surrey 
  Guildford,   Surrey,   UK   

     Dany J.V.   Beste  
   Faculty of Health and Medical Sciences 
 University of Surrey 
  Guildford,   Surrey,   UK   

 ISBN 978-1-4614-4965-2       ISBN 978-1-4614-4966-9 (eBook) 
 DOI 10.1007/978-1-4614-4966-9 
 Springer New York Heidelberg Dordrecht London 

 Library of Congress Control Number: 2012951628 

 © Springer Science+Business Media, LLC   2013 
 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of 
the material is concerned, speci fi cally the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on micro fi lms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology 
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection 
with reviews or scholarly analysis or material supplied speci fi cally for the purpose of being entered and 
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this 
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s 
location, in its current version, and permission for use must always be obtained from Springer. Permissions 
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to 
prosecution under the respective Copyright Law. 
 The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a speci fi c statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
 While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for 
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with 
respect to the material contained herein. 

 Printed on acid-free paper 

 Springer is part of Springer Science+Business Media (www.springer.com)  



v

   Reconstruction of evolutionary history by Bayesian analysis of extant genome 
sequences suggests that the  Mycobacterium tuberculosis  complex emerged as an 
infection of anatomically modern humans carrying the L3 mitochondrial haplotype 
around one hundred thousand years ago. Since then,  M. tuberculosis  has demon-
strated a remarkable ability to persist amongst small, highly vulnerable populations 
of early humans migrating out of Africa and to thrive in response to changing 
demography and recent massive population expansion. The Global Plan to Stop TB 
proposes its elimination—de fi ned as fewer than one case per million individuals—
by 2050 [1]. Given our history of intimate companionship, how can we envisage a 
strategy to drive this microbe towards extinction? 

 While we can readily collect data on tuberculosis epidemiology, attempts to 
explain patterns of disease—and hence to design rational control strategies—reveal 
contributions from multiple variables. It is clear that disease results from some com-
bination of host, microbial, and environmental factors, but it is hard to generate 
mechanistic models that tease these apart. This is an example of an “inverse prob-
lem”, in which we have to try and infer the parts by examination of the whole. This 
is anathema to reductionist biology, and it is the territory to which systems biology 
aspires. 

 Sydney Brenner highlights the attempt to address ill-posed inverse questions as 
a lethal  fl aw in the systems approach, predicting a spiral into low-input, high-
throughput, no-output biology [2]. Systems biologists counter by proposing an 
iterative process of modelling and forward testing of derived hypotheses. This 
involves an interesting mix of logical reasoning. Wikipedia pithily describes deduc-
tion (in which a conclusion is determined by a precondition) as the province of 
mathematicians, induction (in which a conclusion is a probable outcome of a 
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vi Introduction

 precondition) as the province of scientists, and abduction (in which a precondition 
is inferred from a conclusion) as the province of detectives. While Sherlock Holmes 
may dispute elements of this categorisation, the systems biology agenda strives 
towards some clear-sighted integration of all three methods. 

 A systems approach to tuberculosis can be envisaged as a series of nested prob-
lems (often inverse problems) ranging in scale from the level of populations, to 
individuals, to the cellular and molecular that can conveniently be branded as 
“ systems epidemiology” [3], “systems vaccinology” [4], and so on. The present 
volume comprises a series of contributions from groups who are at the forefront of 
applying systems biology approaches to understand tuberculosis, working primarily 
at the cell biology end of this spectrum. 

 Beste and McFadden [5] and Jamshidi et al .  [6] review advances in metabolic 
modelling. Metabolomics is particularly appropriate for network modelling. 
Connectivity between components in the network is direct—one metabolite changes 
into another—in contrast to the indirect spatial and temporal interactions used to 
build networks of genes and proteins. Jamshidi et al .  describe fundamental pro-
cesses of network modelling, while Beste and McFadden stress the importance of a 
robust experimental system to generate data for modelling, outlining the advantages 
of growth in a chemostat as a means to optimise relative homogeneity of the bacte-
rial populations under study. Both groups stress the dependence of metabolic mod-
elling on the availability of an accurately annotated genome. Contributions from a 
series of outstanding researchers established the foundations of mycobacterial bio-
chemistry and metabolism during the  fi rst half of the twentieth century, but a rela-
tive neglect of tuberculosis research in the 1960s and 1970s left multiple gaps in our 
knowledge. In the genome era, there is a tendency to  fi ll these gaps using sequence 
homologies with other organisms. Both papers stress the importance of caution in 
this, favouring an iterative process in which metabolic models are used both to 
 formulate and test forward hypotheses as well as to track back and correct misan-
notations. Even core textbook metabolic pathways are found to differ between 
 M. tuberculosis  and “canonical”  E. coli . 

 Lack of information about the physiological state of  M. tuberculosis  within infected 
humans presents a major challenge for modelling tuberculosis pathogenesis, and 
models derived from microbial culture systems have been usefully extended to metab-
olomics of intracellular  M. tuberculosis  in macrophages. With the exception of a lim-
ited range of microbe-speci fi c metabolites, it is dif fi cult to derive direct experimental 
data on mycobacterial metabolism in infected tissues; in fact it probably makes sense 
to view host and microbe as a single, integrated metabolic system. It is likely that the 
bacteria sample a highly diverse range of intracellular and extracellular microenviron-
ments during infection, with availability of nutrients and oxygen varying widely over 
space and time [7]. A systems biology challenge will be to infer microbial physiologi-
cal states on the basis of measurements of host metabolism. 

 Both of the metabolic modelling papers stress the importance of integrating 
metabolomics with transcriptional pro fi ling and functional genomics. Waddell et al .  
[8] and Rao et al .  [9] take up the story from a transcriptome perspective. Traditional 
transcriptional pro fi ling is also contingent on accurate genome annotation to select 
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genes that are interrogated in microarray platforms. More recent high-density tiling 
arrays and RNA sequencing approaches remove this limitation and are starting to 
uncover a considerable repertoire of non-coding RNA outside of annotated open 
reading frames [10]. This includes small intergenic RNAs, antisense transcripts, and 
 cis -encoded untranslated regions that are likely to regulate the stability of mRNA 
transcripts and the ef fi ciency of their interaction with ribosomes. Characterisation 
of this layer of post-transcriptional regulation will be an important element in 
 integrating transcriptome and proteome data, and hence for inferring physiology 
from transcription pro fi le. Both papers highlight a central role for the ability of 
transcriptional pro fi ling to uncover crosstalk between host and microbe in mac-
rophage infection models. As discussed for metabolomics, there is a trend in tran-
scriptomic modelling to move from consideration of the isolated microbe to the 
infected cell or lesion as the system under study. Given the speci fi city and technical 
ease of nucleic acid ampli fi cation, transcriptome data represent the most accessible 
source of information about  M. tuberculosis  in lesions. Both papers stress the impor-
tance of linking transcriptional pro fi ling to functional genomics, using transposon 
mutagenesis or formal gene deletion in the microbe side, and exploitation of RNAi 
screens for host manipulation. 

 Steyn et al .  [11] contribute a review of mycobacterial proteomics, focusing in par-
ticular on different strategies for generating protein–protein interaction networks. 
They describe speci fi c contributions to exploration of mechanisms that play a central 
role in host–pathogen interactions—two-component signalling, protein secretion, and 
DNA repair—and highlight the importance of studying post-translational modi fi cation 
events. Together with the chapters on metabolism and transcription, this builds an 
encouraging picture of a strong integrated ‘omics platform that informs a systems 
biology understanding of  M. tuberculosis  and its interaction with host cells. Given our 
knowledge of the mycobacterial cell, it is obviously important that this platform 
includes the parallel advances occurring in the area of lipidomics. 

 Chandra [12] takes forward the application of a systems approach to identi fi cation 
of potential drug targets, integrating genetic essentiality with metabolic modelling 
to identify key choke-points. Target-driven approaches based on genetic essential-
ity have been profoundly disappointing in the  fi eld of antimicrobial drug discovery 
[13]. In part this re fl ects a series of technical limitations: compound libraries used 
in high-throughput screens may have inadequate representation of relevant chemi-
cal space, evidence from gene deletions does not stratify high- versus low-vulner-
ability targets, and potent enzyme inhibitors may not penetrate bacterial cell walls. 
There may also be a limitation in the general concept that simple inhibition of an 
essential enzyme is suf fi cient for bactericidal activity [14]. Events downstream of 
the initial drug–target interaction are probably crucial to the effectiveness of suc-
cessful antibiotics, with accumulation of toxic effector molecules providing the 
actual trigger for cell death. Systems biology models that can predict lethal conse-
quences of target of inhibition would provide an important advance. Given the 
large number of moderately potent hits arising from high-throughput screens 
against whole mycobacteria, a systems biology approach capable of identifying 
cell death parameters that are more experimentally tractable than measurement of 
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colony forming units would also be of considerable use for prioritisation. Chandra 
outlines a concept of “polypharmacology”, involving analysis of the interaction of 
a single drug with multiple targets and the effect of drug combinations. Drug com-
binations are central to tuberculosis treatment regimens, and there is a need for 
systems biology approaches to rationalise and predict positive and negative drug–
drug interactions. 

 Ghosh et al .  [15] describe an exciting international collaborative effort to 
exploit systems biology for TB drug discovery in the context of community 
engagement in a “big science” initiative. This is a joint programme between two 
Japanese systems biology institutes and the Indian Open Source Drug Discovery 
project. The emphasis is on novel communication systems, generating a virtual 
collaborative space that accommodates input from a wide community of research-
ers. This illustrates a key aspect of the systems biology agenda: stimulation of 
multidisciplinary interactions across a wide range of biology, engineering and 
mathematics. Other multidisciplinary consortia exploring the systems biology of 
tuberculosis have been established in the USA [16] and Europe [17]. There are 
formal similarities between social interaction networks and protein–protein inter-
action networks, and it is clear that social factors will be at least as important as 
molecular factors in the success of future strategies for tuberculosis control. 
Perhaps community-based approaches to enhance communication amongst sys-
tems biology researchers could be extended to enhance communication between 
scientists and the wider public? 

 Two papers address host–pathogen interactions from the perspective of the 
immune response. Pine et al .  [18] present a comprehensive overview of the highly 
interconnected host immune network, picking out molecular and cellular biomark-
ers that could be used in combination to stratify the position of individuals with the 
tuberculosis infection spectrum. Fallahi-Sichani et al .  [19] describe various tech-
niques to model the development and heterogeneity of tuberculous granulomas, 
including a powerful and innovative agent-based modelling approach. Focusing on 
the role of TNF a  concentration as an example, they illustrate a very important 
aspect of systems biology modelling as an aid to feature selection. This technique, 
commonly used in machine learning, distinguishes parameters whose variation has 
a more or less critical effect on overall behaviour of the system and therefore war-
rants higher or lower prioritisation for further experimental de fi nition. This pro-
vides a framework for attractive synergy between modellers and experimentalists. 

 Rocco et al .  [20] return to the issue of microbial modelling from a novel per-
spective, reviewing stochastic in fl uences on gene expression and their relevance 
to population heterogeneity and persistence. Conventional ‘omics approaches use 
high-throughput data generated from bulk populations that are assumed to display 
a homogeneous phenotype. This is certainly not the reality. Noise is an important 
element in bacterial physiology, and there is extensive evidence of heterogeneity 
in gene expression amongst bacterial cells grown in an identical strictly controlled 
environment. It can be anticipated that such effects are ampli fi ed multi-fold in the 
complex microenvironments encountered during infection. Rocco et al .  highlight 
the potential links between population heterogeneity and the acutely practical 
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issue of phenotypic tolerance to drugs. Addressing these issues requires alterna-
tive experimental and computational approaches, and it is crucial that strategies 
are developed to integrate single cell information with “mainstream” bulk popula-
tion ‘omics.
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  Abstract   Network reconstructions and constraint-based modeling have been 
shown to be effective methods for understanding complex processes, such as metab-
olism. These reconstructions are in fact biologically structured knowledge-bases 
that can be queried through computations, and thus have become valuable tools for 
Systems Biology. Strengths of this approach include  fl exibility in incorporating 
“incomplete” data measurements, the ability to incorporate different types of data 
(high-throughput as well as physiological), simultaneously, as well as the ability to 
make predictions with minimal reliance on parameter and curve  fi tting. Thus, this 
approach aims to move away from  fi tting data to describe experimental results using 
the current understanding of metabolism in order to interpret the data, make predic-
tions, and to identify the gaps and bridges in knowledge. 

 The critical components for creating genome-scale reconstructions of metabo-
lism include a sequenced and annotated genome, reaction stoichiometry for the 
annotated enzymes, and a bibliome for the organism (combined primary and sec-
ondary literature sources). Network reconstructions of the devastating pathogen 
 Mycobacterium tuberculosis  have been developed and have enabled the ability to 
query functional capabilities using constraint-based modeling approaches. Since 
these networks are then structured in terms of “gene–protein–reaction” associations, 
these knowledge-bases can serve as biologically structured databases onto which 
various high-throughput data types can be directly mapped on. 

 This chapter will focus on the model reconstruction process, methods that have 
been employed for analysis, and predictive applications of modeling the pathogen 
H37Rv strain of tuberculosis. Employing the existing analysis methods and avail-
able datasets there have already been a large number of applications for modeling 
constraint-based modeling of H37Rv. The reconstruction process is a time and 
resource intensive procedure and to date high quality reconstructions have not been 
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possible without manual curation. The bene fi t of having a detailed and quality 
 controlled reconstruction procedure is to help determine a high quality model that 
will provide more meaningful predictions from simulations. Applications of 
 M. tuberculosis  models have included the prediction of growth rates, assessment of 
different growth media, prediction of gene knockouts, identi fi cation of new drug 
targets, identi fi cation of alternative drug targets for existing drugs, and modeling the 
interaction macrophages during different infectious states.  Historically, technological 
advancements have driven biological discovery and have thus been a limiting factor 
in the development of methods to modify and alter biology, e.g., antibiotics. However, 
in the past decade with various high-throughput technologies (e.g., transcriptomics, 
proteomics, metabolomics, etc.) are being employed more frequently, thus there is a 
growing burden and need for means to integrate, interpret, and ideally make predic-
tions for these datasets. Given the successes to date, with further development of new 
methods in conjunction with deeper experimental probing of tuberculosis in vitro 
and in vivo, constraint-based modeling will likely become even more important in 
the  fi nding new targets and treatments for tuberculosis.      

    1  Introduction 

 The principle behind constraint-based modeling is to use physico-chemical or bio-
logical constraints to provide insights that are biologically insightful. The rich, 
detailed history of biochemistry during the past 60 years has resulted in the ability to 
describe metabolic networks in terms of elementally balanced biochemical reactions. 
Furthermore, thermodynamic and kinetic characterization of many of the enzymes in 
an effort to characterize the physical properties of these biological catalysts has 
enabled additional levels of characterization. 

 Flux Balance Analysis (FBA) has become the bread and butter of constraint-based 
modeling  [  1,   2  ] . Employing this approach involves the quasi-steady state assumption 
and knowledge of the identity and composition of the interacting components, as well 
as the set of the biochemical reactions that occur in the system of interest. If  quantitative 
thermodynamic data is not available, qualitative thermodynamic data can also be 
incorporated, simply by speci fi cation of reversibility of a reaction. While this is a very 
simple encapsulation of the complex non-equilibrium thermodynamics within a cell, 
it can have signi fi cant implications on constraining a network and reducing (or 
expanding) the number of possible steady state solutions. At the most elementary 
level, FBA can be applied to a single biosynthetic pathway  [  3  ] . While this might be 
interesting in some cases, the bene fi ts of this approach are really appreciated when 
one makes the jump to the organelle-, cell-, and genome-scale models  [  4,   5  ] . 

 The data (in-)completeness problem is likely to always be present at all spatial and 
temporal hierarchies in biology. High-throughput technologies have been progressing 
to help close the data incompleteness gap. Genomics was the  fi rst “omics”  fi eld in 
biology and has been followed by numerous other high-throughput measurement 
technologies, including proteomics, and metabolomics and a seemingly innumerable 
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array of other “omics” sub- fi elds. We focus the discussion on the technologically 
driven by high-throughput measurements. 

 Aside from technical challenges associated with the analysis of voluminous 
datasets, there is a more pressing challenge regarding the context and the manner in 
which the data are analyzed. There is a demonstrated need to move away from 
black-box modeling approaches to understand these data, towards mechanistic or 
partially mechanistic (gray box) models. The development of multiple “omics” data 
 fi elds has further compounded this problem, further highlighting the need for 
 analysis of large datasets that often include orthogonal types of data to be analyzed 
in a biologically relevant and biologically meaningful context. 

 Constraint-based modeling has provided one approach to organizing and analyzing 
this data from a biological viewpoint, while paying heed to physico-chemical con-
straints. The application of these methods to the deadly pathogen  Mycobacterium 
tuberculosis   [  6  ]  has resulted in advancements in the understanding of its metabolic 
capabilities and opened potential avenues for new or alternative treatments.  

    2   The Reconstruction Process 

 The quality and scope of metabolic network reconstructions have continued to 
evolve during the last 15 years, with current descriptions involving a detailed, itera-
tive, quality-controlled process  [  7  ] . Progress has been made in the automation of 
reconstruction  [  8  ] . Nevertheless, a key hallmark of quality reconstructions however 
has been the need for manual curation, on some level. General steps employed in the 
process of network reconstruction are outlined in Fig.  1.1 .  

 The starting point for genome-scale reconstructions is a sequenced and annotated 
genome. This serves as the scaffold onto which the biochemical transformations carried 
out by enzymes in the organism are mapped. Manual curation follows, which includes 
gathering evidence and critically evaluating the primary (and review) literature for 
information about the genes, proteins, and metabolites. There have been an increasing 
number of organism speci fi c databases that have been developed during the past 
decade that were very helpful for  fl eshing out the general network architecture of 
 M.  tuberculosis   [  9–  11  ] . 

 Following manual curation, there is conversion of the set of biochemical reactions 
into a stoichiometric matrix. The stoichiometric matrix is unique compared to many 
other types of matrices in biological systems, as it has integer entries, thus there is no 
noise associated with the values  [  2,   12  ] . The conversion to a mathematical format also 
involves the application of (qualitative) thermodynamic constraints. Quantitative 
 constraints have been explored  [  13,   14  ]  and have been used for expanding the scope 
to dynamic models  [  15–  17  ] . However, for the purpose of developing a basic model 
with which to carry out constraint-based modeling, only directionality needs to be 
speci fi ed (i.e., reversible or irreversible). The debugging and functionality testing 
stage is another step that is a critical step in the process, as it ensures network 
 functionality. It is unfortunately also a time-consuming process. 
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 For micro-organisms the primary functionality test involves biomass production. 
The biomass “reaction” is actually a pseudo-reaction that is included to account for 
the growth as well as non-growth associated demands  [  18  ] . Since this reaction 
requires the production and utilization of a large number of metabolites, the ability 
to produce biomass implicitly accounts for the biosynthesis of a large number of 
compounds. Construction of iNJ661 involved testing individual components (i.e., 
non-essential amino acids, mycolic acids, etc.) prior to testing the complete biomass 
function. Since the biomass function involves so many different compounds, in 
practice, many of the compounds (such as non-essential amino acids, vitamin prod-
ucts, etc.) are tested individually (see “Reaction and Pathway Function Testing” in 
Fig.  1.1 ). There are other considerations and issues to evaluate during the quality 
control process, such as revising constraints in order to eliminate “free energy” 
producing loops  [  19  ] . This issue and others are discussed in more detail by Thiele 
and Palsson in  [  7  ] . 

 It should be noted that the iterative loop in Fig.  1.1  involves further manual 
 curation and more detailed investigation into a particular functionality, in order to 
understand why the test failed. For iNJ661 this included multiple rounds of revisiting 
and reevaluating the primary literature as well as detailed evaluation of the relevant 
pathways. In some situations there may be no direct evidence to support incorporation 
of a particular reaction (such as a transport reaction), which is an intermediate in a 
pathway whose endpoint is known to occur in the organism. In order to produce a 
functional model, the transport reaction may need to be added. This is one example of 
why “con fi dence level” scores are an important quality control measure in network 
reconstructions, because they denote the type of evidence that was used to justify 
incorporation of the reaction. These can then be used to determine future experiments 
and to also re-evaluate model content when additional datasets are generated for the 
organism.  

    3   Network Characterization 

 There are a myriad of ways to test or assess functionality of a model  [  2,   20–  22  ] . 
Once a functional model has been constructed, one of the  fi rst steps of analysis is to 
understand how a particular objective, such as growth, varies on varying substrate 
utilization. Phase-plane diagrams can address such questions by plotting two different 
network  fl uxes (uptake or exchange reactions) while optimizing for an objective. This 
can be used to assess the trade-off associated with the use of one substrate versus 
another. The fatty acid constitution of Mycobacteria and other acid fast organisms is 
complex and unique compared to most other prokaryotes. These fatty acids also 
 constitute a signi fi cant portion of the biomass. Glycerol is a required substrate for 
this and the trade-off between glucose and glycerol is demonstrated in Fig.  1.2 , 
while optimizing for biomass.  

 The ability to carry out genome-wide screening of gene essentiality in microbes, 
enables testing of in silico predictions using network models. Results can be categorized 
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  Fig. 1.1    An outline of the general steps for building genome-scale metabolic networks that are 
amenable to constraint-based modeling. For iNJ661 speci fi cally, the annotated genome for 
 Mycobacterium tuberculosis  H37Rv was downloaded from The Institute for Genomic Research 
(TIGR)  [  68  ] . Reconstruction content was de fi ned based on the sequence annotation, legacy data, 
the Tuberculist database  [  69  ] , ancillary sources such as the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and SEED  [  70  ] . Debugging was started once the  fi rst draft of the reconstruction 
was completed and functional testing (i.e.,  fl ux balance analysis calculations, etc.) were begun. 
This was carried out in a systematic manner, checking for individual biomass constituents (as 
products) before analyzing the complete biomass function       
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as true positive (veri fi ed positive predictions), true negative (veri fi ed negative pre-
dictions), false positive, and false negative. The speci fi city of the model is  determined 
by the false negative predictions and the sensitivity is determined by the true posi-
tive predictions. Since various processes, notably feedback inhibition and regulation 
as well as incomplete knowledge of the true metabolic network of the organism, 
predictions are never expected to be perfect. However, since the model summarizes 

  Fig. 1.2    An example of phase-plane diagram for iNJ661 depicting biomass optimization (growth) 
while varying glycerol and glucose uptake simultaneously. Glycerol is necessary and suf fi cient for 
growth, but supplementation with glucose helps achieve higher growth rates.  Open dots  indicate 
the calculated phase points and the  solid black lines  indicate isoclines       
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the current level of knowledge and understanding of the metabolism in the  organism, 
the reasons for the predictions made by the model can be traced back to the network. 
Thus, the false positive and false negative predictions can serve as hypothesis gen-
erating results, and can highlight regions of metabolism that may need further 
experimental elucidation. 

 The false positive and false negative rates can be arti fi cially decreased by adjusting 
the biomass function to include (or exclude) particular metabolites. While this may pro-
vide a seemingly better model, such revisions do not actually provide further biological 
insight. There is more likely information to be gained from further investigation into the 
possible causes for the incorrect predictions. Alternatively, one can incorporate additional 
experimental data, such as high-throughput data to make the model more context speci fi c; 
this approach has been effective in improving the prediction rates for iNJ661  [  23  ] . 

 The concept of correlated reaction sets in functional network models specify 
groups of reactions that are active in a set; if one reaction in the set has a non-zero 
 fl ux, then every other reaction in the set will also have a non-zero  fl ux. The converse 
is also true, if one reaction in the set does not carry a net  fl ux, it implies that every 
other reaction in the set has no net  fl ux either. There are different ways and different 
stringencies to de fi ning these correlated sets, that have been discussed elsewhere 
 [  2,   20,   24,   25  ] . Variations among the types of correlated reaction sets include 
whether the correlations are absolute or partial (i.e., whether they are correlated 
85% of the time, 90%, or 100%), qualitatively versus qualitatively correlated, 
 condition dependent or not, etc.  [  2,   5,   20–  22,   24–  26  ] . 

 Antibiotic targets can be analyzed from the perspective of correlated reaction sets. 
Hard-coupled reaction (HCR) sets are groups of reactions that are always correlated 
as a result of stoichiometric interactions (so they will be correlated regardless of 
media condition, although altered expression pro fi les could result). This concept was 
applied for tuberculosis to identify drugs that act on single enzymes, but actually 
knock out complete pathways. The other enzymes in these pathways can serve as 
equivalent, alternative drug targets. 

 147 HCR sets were calculated for iNJ661, with the average reaction set involving 
three reactions. Known  M. tuberculosis  antibiotic targets  [  27  ]  were mapped to the 
reactions in the HCR sets, resulting in 25 HCRs with antibiotic targets. A sub-section 
of the map highlighting some of the druggable HCR sets is illustrated in Fig.  1.3 . 
Since multi-drug treatment regimens are common for tuberculosis treatment  [  28  ] , it 
is important to be able to identify different sets of enzyme and reaction targets that 
are independent of one another, particularly if exploring new drug targets.  

 The time and resource intensive process of building high-quality, manually 
curated network reconstructions (Fig.  1.1 ) has the bene fi cial result of enabling the 
analysis of different types of omic data in an integrated manner. Transcriptomic, 
proteomic,  fl uxomic, and metabolomic data can all be mapped directly onto a net-
work reconstruction (Fig.  1.4 ). These data serve to make the organism “context 
speci fi c,” that is representing in vitro growth under different media conditions or data 
gather from in vivo measurements, with more  fi delity. Even growing  M. tuberculosis  
in culture in the same condition over the span of weeks has resulted in measurable 
changes in biomass composition  [  29  ] , given the slow doubling time of the organism, 
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this can occur experimentally and can signi fi cantly alter model predictions 
Furthermore, the integration of omic data into constraint-based models enables 
 predictions to be made, without resorting to any parameter  fi tting of the models, 
thus these models serve as data interpretation tools.  

 Algorithmic approaches for making models context speci fi c  [  30–  32  ]  can also 
alleviate challenges associated with limitations of existing high-throughput 
 technologies. For example in the  fi eld of proteomics, while there have been 
 impressive advancements made in striving towards whole cell coverage  [  33,   34  ] , 
current studies in mycobacteria and mammalian host cells are still known to be 
incomplete. The use of network reconstructions can be used to make sense of and 
interpret these very large, yet incomplete, datasets. Mass balance constraints link 
the network together, so gap- fi lling is not carried out arbitrarily, but is driven by 
enabling particular biological functions  [  35,   36  ] .  

    4   Extending the Model to Account for Host–Pathogen 
Interactions 

 Metabolism plays a key role in pathogenesis. As discussed, both simple pathway 
based and complex network based models have been reconstructed for  M. tubercu-
losis . These models have provided great biological insight into pathogenesis, gene 
essentiality, and potential drug targets. More recently, the metabolic coupling of 
 M. tuberculosis  to its host has been investigated  [  37  ] . 

 Alveolar macrophages play an important role during  M. tuberculosis  infection. 
 M. tuberculosis  infection begins when droplet nuclei are inhaled, leading to an 
 initial acute infection of the alveoli. Unactivated macrophages phagocytose 

  Fig. 1.3    A glimpse of some of the HCR sets that were calculated for iNJ661. These particular 
HCRs map to particular drug targets (reactions in the same HCR have the same color)       
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 M. tuberculosis  but the phagolysosome is not formed, allowing  M. tuberculosis  to 
reside within the unactivated macrophages allowing the pathogen to replicate. 

 Bordbar et al. studied acute  M. tuberculosis  infection by  fi rst reconstructing a 
human alveolar macrophage metabolic network. The global human metabolic net-
work, Recon 1  [  38  ] , accounts for the known metabolic genes and reactions of all 
human cells. Recon 1 was tailored to an alveolar macrophage cell-speci fi c model by 
integrating transcriptomic  [  39  ] , proteomic  [  40,   41  ] , and primary literature articles. 

 An in silico infection was simulated by integrating the stoichiometric matrices of the 
macrophage model with  iNJ 661 by constructing a phagosome compartment that allowed 

  Fig. 1.4    The gene–protein–reaction (GPR) association that is developed during the reconstruction 
process enables the direct overlay and integration of various high-throughput as well as low-
throughput biological data into the model. These data can serve as constraints that make the model 
context-speci fi c       
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metabolic exchange between the host and  M. tuberculosis  cytoplasms (   Fig.  1.5 ). 
Metabolic exchange constraints between the host and pathogen were set based on the 
available literature. Particularly, the phagosome environment is hypoxic  [  42  ]  and the 
main carbon source is glycerol and fatty acids  [  43,   44  ]  (Fig.  1.5b ). The  M. tuberculosis  
biomass objective function was tailored using gene expression data to better represent 
the pathogen’s metabolic demands during intracellular infection.  

 Studying  M. tuberculosis  in a host–pathogen context provided additional 
 biological insights to its pathogenesis. First, the pathogen’s metabolic reaction 
activity better represented an infectious state (Fig.  1.6 ). The simulations support a 
gluconeogenic state with activation of the glyoxylate shunt for glycerol and fatty 
acid utilization. Second, the gene essentiality predictions made with the integrated 
host–pathogen model were more accurate to the in vivo experiments  [  45,   46  ]  than 
 iNJ 661.  

  M. tuberculosis  can remain latent for years in a host and can infect every organ 
system. Different infections can potentially involve activation and suppression of 
different metabolic pathways in the host and pathogen. Macrophage expression 
pro fi ling data from latent and active (pulmonary and meningeal infections)  infections 
 [  47  ]  was integrated from different  M. tuberculosis  infection types with the host–
pathogen metabolic network to elucidate metabolic reaction differences (Table  1.1 ). 
Of note, hyaluronan production and secretion was only present in the active 
 pulmonary infections. Hyaluronan has previously been shown to be important for 
extracellular replication of  M. tuberculosis   [  48  ] . In addition, there was differential 
activity in known potential drug targets in the pathogen model, suggesting  developing 
drugs speci fi c to  M. tuberculosis  infection type.  

 Developing host–pathogen models are now possible and provide an opportunity 
to further study pathogenesis. In particular, the pathogen can be simulated under 
more accurate conditions and the metabolic coupling and interaction between the 
host and pathogen can be analyzed.  

    5   Applications of Metabolic Models of  M. tuberculosis  

 Genome-scale metabolic reconstructions represent a thorough compilation of all the 
known biochemical and physiological data for a particular organism. The networks 
can be converted into a mathematical model allowing computation and simulation 
of different phenotypes. As such, reconstructions provide the biological community 
of a particular organism a knowledge-base for furthering research. When published, 
genome-scale metabolic reconstructions are available for public use in research. 
Since the introduction of  iNJ 661 and GSMN-TB, in 2007, the two  M. tuberculosis  
reconstructions have been utilized for many applications including: (1) biological 
discovery, (2) determining and analyzing potential  M. tuberculosis  drug targets, 
(3) further model re fi nement and development, and (4) kinetic modeling of 
 M. tuberculosis  population dynamics. 
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  Fig. 1.5    Work fl ow for building the host–pathogen model. ( a ) Reconstructions of the alveolar 
macrophage (iAB-AMØ-1410) and  Mycobacterium tuberculosis  ( iNJ 661) were mathematically 
integrated with physiologically relevant metabolic exchanges. The biomass of  iNJ 661 was updated 
to better re fl ect the metabolic demands under infection by utilizing gene expression data. 
( b ) Schematic of the metabolic exchanges between the environment, macrophage, and pathogen. 
Macrophages utilize mainly glucose and glutamine as carbon sources, producing mainly lactate. 
Glycerol and fatty acids are transported from the host’s cytoplasm into the phagosome for 
 M. tuberculosis  utilization       
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 Studying metabolic pathways, network properties, and experimental discrepan-
cies of genome-scale networks can spur biological discovery  [  49  ] . Similar studies 
have been done for  iNJ 661 and GSMN-TB. In 2009, Beste et al. used experimental 
techniques to determine the essential genes of  Mycobacterium bovis  (BCG) during 
slow or fast growth  [  50  ] . By controlling growth rate, 84 and 256 unique genes were 
identi fi ed as essential under slow and fast in vitro growth on glycerol respectively. 
The experimentally derived essential genes were compared with simulations of 
GSMN-TB with 76% accuracy. The functional discrepancies were analyzed and 
corrected if appropriate in the in silico network. 

 Recently, high-throughput data was integrated with the network properties of 
GSMN-TB to determine the metabolic response of  M. tuberculosis  to the host 
 environment. Bonde et al. developed an algorithm called Differential Producibility 

  Fig. 1.6    Changes in metabolic reaction activity of the central metabolism of  Mycobacterium 
tuberculosis . Randomized sampling was used to determine reaction activity in both the original 
 iNJ 661 network and the integrated host–pathogen model. Flux states in the integrated model better 
represent in vivo infection transcription states as the pathogen is in a state of gluconeogenesis, 
utilizing glycerol and fatty acids as carbon sources       
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Analysis (DPA)  [  51  ] . Essential of reactions and enzymes for metabolite production are 
determined from the network. High-throughput data are then used to determine the 
transcriptional and metabolic response to changing conditions.  M. tuberculosis  response 
to the in vivo environment was studied. Bonde et al. noticed a suppression of central 
carbon metabolism and an activation of metabolism for cell wall and virulence factors. 

 Metabolic pathway analysis is a traditional method to study genome-scale 
 networks. Unfortunately, computational limitations do not allow global analysis of 
large genome-scale networks, including those for  M. tuberculosis . Ip et al. developed 
a pathway decomposition method to study  M. tuberculosis  metabolism  [  52  ] . 
Calculated  fl ux distributions can be decomposed into their elementary  fl ux modes for 
pathway analysis  [  53  ] . Ip et al. found though isocitrate lyase is the most ef fi cient path 
for  M. tuberculosis  biomass and non-growth associated maintenance, it was not the 
sole metabolic path. If  M. tuberculosis  is provided suf fi cient levels of octadecenoate, 
 fl ux can pass through HtrA and malate synthase. Isocitrate lyase has been previously 
suggested as a potential pharmaceutical target in  M. tuberculosis   [  27,   54  ] . Ip et al. 
 fi nd that  M. tuberculosis  should be able to develop resistance as alternative  metabolic 
pathways are available for the pathogen to utilize carbon for biomass and 
maintenance. 

 Second,  M. tuberculosis  reconstructions have been used to identify potential 
pharmaceutical targets through systems level analysis. In 2008, Raman et al. 
 constructed a database, targetTB, that integrated  fl uxes derived from genome-scale 
reconstructions, experimental essentiality data, inference protein–protein interaction 
networks, the genome sequence of  M. tuberculosis , and structural properties of 

   Table 1.1    Subsystems of differential metabolic reaction activity in different infection types   

 Differential subsystem activity 

 Latent TB  Pulmonary TB  Meningeal TB 

 Macrophage 
 Pyruvate metabolism  Aminosugar metabolism  Folate metabolism 
 Thiamine metabolism  Fatty acid metabolism  Nucleotides 
 Urea cycle/amino group 

metabolism 
 Folate metabolism  Pentose phosphate pathway 
 Hyaluronan metabolism  Vitamin D metabolism 
 Nucleotides  Urea cycle/amino group 

metabolism 
 Pyridine metabolism 
 Thiamine metabolism 
 Val/Leu/Ile metabolism 
 Vitamin D metabolism 

  M. tuberculosis  
 Alanine and aspartate 

metabolism 
 Glutamate metabolism  Alanine and aspartate 

metabolism 
 Pantothenate CoA metabolism  Glutamate metabolism 
 Polyprenyl metabolism  Pantothenate CoA metabolism 
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 M. tuberculosis  proteins  [  55  ] . targetTB is a pipeline that de fi ned 451 high-con fi dence 
drug targets both applicable broadly to several pathogens and speci fi cally to 
 M. tuberculosis . 

 In a follow-up to targetTB and predicting drug targets, Raman et al. de fi ned a 
“reactome” network for  M. tuberculosis  using  iNJ 661  [  56  ] . The network was 
 constructed by determining the protein–protein dependencies in  M. tuberculosis  by 
looking at the “nearness” of proteins with  iNJ 661. A metabolic disruptability index 
was de fi ned for the reactions of the network, representing the systematic impact of 
a perturbation on the network. The method was used to determine highly in fl uential 
proteins and was further tested with FBA to determine potential drug targets. 

 Metabolic centric approaches to network properties have also been utilized for 
determining potential pharmaceutical targets. Kim et al. developed a method to 
determine chokepoints and essential metabolites of four genome-scale networks, 
including  iNJ 661  [  57  ] . Chokepoints represent enzymes that uniquely produce or 
consume a particular metabolite, while essential metabolites are required for the 
network to produce biomass. Kim et al. argue that a metabolic centric approach is 
more valuable than a reaction/enzyme centric approach for determining pharmaceu-
tical targets as a metabolic centric approach identi fi es drug combinations of multiple 
enzyme targets that in principle would lead to less  M. tuberculosis  drug resistance. 
Enzymes that were both chokepoints and involved in essential metabolites were 
chosen and compared to the human metabolic network, Recon 1  [  38  ] , to ensure that 
potential drug targets would not affect human metabolism. 

 Colijn et al. further studied drug interactions with  M. tuberculosis  utilizing 
expression pro fi ling data and a novel algorithm, E-Flux  [  58  ] . Rather than inhibit 
speci fi c enzymes and reactions that are known to be affected by pharmaceuticals, 
expression data for a drug-treated case was integrated with GSMN-TB. The upper 
and lower bounds of the model were adjusted based on the expression levels and 
mycolic acid production was used as an indicator of  M. tuberculosis  fatty acid bio-
synthesis. The impact of 75 drugs, their combinations, and nutrient environments 
were simulated. E-Flux was used to identify potential fatty acid inhibitors of interest 
in disrupting  M. tuberculosis  fatty acid biosynthesis. 

 Third,  iNJ 661 has been used for further re fi nement and development of 
 M.  tuberculosis  metabolic and regulatory models. As previously discussed, Bordbar 
et al. built a cell-speci fi c metabolic model of the human alveolar macrophage  [  37  ] . 
The network contained a phagosome compartment, which allowed metabolic 
 integration with  M. tuberculosis  ( iNJ 661). The model was utilized to study 
 host–pathogen interaction during acute infection. In another study, Fang et al. 
modi fi ed  iNJ 661 to better represent in vivo condition  [  59  ] . Rather than build an 
 integrated network, the metabolic exchanges and biomass components of  iNJ 661 
were modi fi ed to better represent in vivo infection by comparing the gene- essentiality 
results with those determined experimentally  [  46  ] . The resulting network,  iNJ 661v, 
highlighted the differential use of metabolic enzymes during infection versus in vitro 
growth. In addition,  iNJ 661v was used to simulate double gene knockouts for 
 potential synergistic drug targets. 
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 Though genome-scale metabolic reconstructions have shown utility in many 
areas of  M. tuberculosis  research, the transcriptional regulatory network is not 
 modeled. In 2010, Chandrasekaran and Price developed an automated inference 
based method to construct a genome-scale regulatory-metabolic network from 
 high-throughput data  [  23  ] . Probabilistic regulation of metabolism, PROM, was 
used to study  E. coli  and  M. tuberculosis . The constructed  M. tuberculosis  
 regulatory-metabolic network was validated against existing transcription factor 
essentiality data and used to determine six new candidate essential genes that can be 
potential drug targets in  M. tuberculosis . The orthologs of the six candidate genes 
have been shown to be essential in  E. coli  and  Bacillus subtilis . 

 Finally, Fang et al. constructed a  M. tuberculosis  population growth model 
 utilizing enzyme kinetics, population growth modeling, and  iNJ 661  [  60  ] . The 
framework involved determining the effect of an inhibitor on the enzyme kinetics of 
a  M. tuberculosis  enzyme which was then modeled at the genome-scale with  iNJ 661. 
Initial conditions of substrate and  M. tuberculosis  population are linked with the 
growth rate of  iNJ 661 and in an iterative fashion the constraint-based model and 
ordinary differential equations are linked to determine population dynamics. The 
mathematical framework was used to determine the effect of 3-nitropropionate 
inhibitor and 5 ¢ -O-( N -salicylsulfamoyl) adenosine inhibitor. The computational 
simulations reproduced experimentally derived growth curves.  

    6   Future Directions and Applications 

 The continued development of high-throughput data has presented the unique  challenge 
of voluminous datasets to analyze, that will necessarily always be incomplete, which 
have created the need for methods to interpret data that enable (1) integration of  disparate  
data, (2) can be built on the genome or cell-scale, (3) can incorporate large yet incom-
plete datasets, (4) have a minimal reliance on parameter  fi tting. Metabolic network 
reconstructions can address all of these challenges and consequently represent an ideal 
tool to help drive the analysis and interpretation of high-throughput datasets in a 
discovery driven manner. 

 Our current knowledge of the understanding of  M. tuberculosis  metabolism 
 continues to grow on a daily basis  [  61–  64  ] , thus there is a need to continually update 
these models. There are undoubtedly many applications that have not yet been  conceived; 
however, given some of the existing areas of progress made in the systems biology of 
 M. tuberculosis , there are a number of areas that will bene fi t from further investment and 
development. These updates include updating existing content as new experimental data 
is generated, expanding the scope to include signaling  [  65  ]  and transcription/ 
translation events  [  66  ] , reconciling existing models  [  4,   5,   67  ] , and methods data 
integration  [  23,   58  ]  so that ultimately the analysis of in vivo conditions and host–
pathogen relationships  [  37  ]  can be investigated to ultimately develop approaches to 
identify new drug targets and treatments.      
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   Tuberculosis (TB) is one of the major infectious diseases still prevailing on this 
planet. Emergence of drug resistant strains and problems of current treatment  regimen 
warrant need for new drugs for TB. At the same time, economic factor plays a 
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signi fi cant role as most patients are in the lowest income bracket of the society. This 
implies new drugs have to be developed in an innovative manner that allows delivery 
of drugs at low cost. Drug discovery is in general an expensive and capital-intensive 
process. A new type of big science is emerging that involves knowledge integration 
of small sciences as well as coordinating community-based participation. Social 
dynamics plays critical role in making project successful because open collaboration 
involves participants with diverse motivations and interests. Thus, proper “social 
engineering” will play greater role in scienti fi c project planning and management in 
future. Open Source Drug Discovery (OSDD), initiated by Council for Scienti fi c and 
Industrial Research (CSIR) of India, is one of such projects aiming at the development 
of drugs for TB. The fact that drug discovery is a competitive space, bringing in 
 openness and collaboration through e-community-based approach is a challenging 
task. This article describes the international collaboration among OSDD, the Systems 
Biology Institute (SBI: Japan), and Okinawa Institute of Science and Technology 
(OIST: Japan) for reconstruction of a comprehensive and high-precision map of 
 metabolic network of  Mycobacterium tuberculosis  (mTB) through a virtual 
 collaborative space. The fact that OSDD involved large number of non-experts guided 
by experts in the process further sets it apart from other existing ways of addressing 
scienti fi c problems of this scale.   

    1   Issues in Drug Discovery for Tuberculosis 

 Tuberculosis (TB) is still a major killer in developing countries as 9.4 million new 
patients are reported in 2009 globally and signi fi cant percentage of them are multi-drug 
resistant TB and some are extensively drug resistant  [  1  ] , but only a handful of drug 
discovery projects exist due to economic affordability of patients mismatching against 
possible investment for the development of such drugs. Unless, cost effective drug 
development can be achieved, those who suffer from neglected diseases will have no 
hope for new treatment and fast recovery. Developing technologies to signi fi cantly 
mitigate these problems is socially signi fi cant. 

 However, we are facing the reality that there are diseases where effective cure is not 
generally available for extreme drug resistance strain of mTB. Even if the drug is devel-
oped, the cost of drug discovery may be too high to make it widely available for poorest 
segment of patient population. Cost of developing drug is too high not only due to high 
failure rate and long duration from discovery stage to approval, but also the R&D cost 
of each product is high (an estimated average cost of $454  million per product  [  2  ] ). 

 Considerable efforts have to be made to signi fi cantly improve drug discovery 
productivity and to deliver drugs at affordable cost. It is critical for R&D  productivity 
that in-depth understanding of complexity of biological systems and means to 
 predict potential outcome of candidate compounds when used in cells, model 
 animals, and patients  [  3,   4  ]  to be better established. Proper introduction of systems 
biology approach to drug discovery is expected to rectify the situation by providing 
better understanding of biology behind diseases at system-level and ultimately by 
enabling us to use precision computational models of cells, organs, and patients. 
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 Introduction of precision modeling may open up improved productivity for 
 combinatorial drug design including re-purposing of existing drugs. An apparent 
problem of combinatorial drugs is huge search space intrinsic from combinatorial 
nature of such an approach. Brute force approaches will be too expensive for 
 combination of more than three components. Enabling systematic computational 
identi fi cation of possible combination at early stage is critical for productivity 
improvement. This is critically important in addressing the urgent medical needs 
where potential opportunities and early cases have been reported  [  5–  8  ] . National 
Cancer Institute is carrying out a large-scale systematic study on combinatorial drugs 
and initial results seem to be promising  [  9  ] . Many of CNS related diseases and drug 
resistant infectious diseases might require multiple points of interventions as well 
 [  10  ] . Improved ef fi ciency of combinatorial drug discovery pipeline, possibly enabled 
by precision modeling approach, provides exciting opportunities. 

 An interesting opportunity in combinatorial drug is that it may be possible to 
discover novel combinations of existing drugs for new indications. For example, 
there is an interesting study that demonstrated the combined use of chlorpromazin 
(antipsycotics agent) and pentamidine (antiparasitic agent) can be equally or more 
effective than paclitaxel for a speci fi c cancer  [  6  ] . It is interesting to note that the cost 
of paclitaxel in Japan is about 44,000 Yen (about 450USD) for 100 mg, whereas cost 
for chlorpromazine is about 9 Yen and pentamidine is about 2,800 Japanese Yen. The 
point is not whether this speci fi c combination is effective or not at the end. The point 
is there will be numbers of such combinations that can create drugs at signi fi cantly 
lower cost. Combined price is less than 3,000 Yen that is almost 1/10 of paclitaxel. 
This opens up tremendous opportunities not only for industrial countries, but also for 
developing countries where cost of drug is a critical issue. It should be noted that 
patents of many drugs expire sooner or later that implies options for combinations at 
lower cost will continue to increase in future  [  11  ] . 

 Furthermore, such an approach may open up a new opportunity to reuse compounds 
that were failed in clinical and preclinical trials as one of the compounds in  combinatorial 
drugs. It is possible compounds that have not been as effective as expected as a 
 mono-therapy drug may be re-purposed in the context of combination. With new criteria 
for combinatorial drug context, it is possible that the entire compound library may have 
to be revisited. 

 Although combinatorial drug is a promising approach, the issue is how to discover 
effective combination at practical ef fi ciency. This is potentially a combinatorial 
 explosion process, and without innovative scheme it would only result in a low 
ef fi ciency hit-and-error process. Random screening is too inef fi cient for this approach 
and may not capture interesting synergetic combinations. An exhaustive screening has 
been tried for the two-component combination, but it was limited to combination 
among 1,200 candidate compounds and dif fi cult to be scaled for multiple  component 
combinations  [  6  ] . Most likely such an undertaking would be far beyond the 
 capability of a single pharmaceutical company or publicly funded projects. Thus, it 
is essential that computational approach to be established at the practical level that 
can predict possible combinations for further study.  
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    2   Knowledge Integration: A Challenge in Precision Modeling 

 The challenge of developing precision biological models is that it requires integration 
of knowledge and data at all levels from genomics and proteomics to imaging and 
physiology. While various data from high-throughput experiments provide us with 
genome-wide characteristics, understanding detailed mechanisms has to depend on 
individual “small sciences.” It is unfeasible to obtain such knowledge by a single 
large-scale project due to both  fi nancial and sociological reasons. Each researcher is 
interested in a speci fi c aspect of biology using organisms that they think are most 
 suitable for the study. Due to diversity of biological systems, choice is diverse and 
researchers make a choice for good reasons. Even if one obtained a large-scale 
 funding, it is not practical to force suf fi ciently large numbers of researchers to put 
their systems aside and work on a new species and biological problems. 

 At the same time, using existing resources such as pathway databases for modeling 
is not a solution either. Although these pathway databases are developed mainly based 
on manual curation of publications, it does not mean they are well covered or  accurate. 
Since pathway databases have to cover broad range of pathways, each pathway is 
curated and represented with limited coverage, depth, and accuracy. Current “Gold 
Standard” is manually curated models carefully build based on the literature and vari-
ous data resources by a small group of people who spend months on the same pathway 
to the extent that they acquire in-depth insights on the pathway  [  12  ] . This is what we 
call “deep curation” as exempli fi ed by a series of comprehensive molecular interac-
tion maps  [  13,   14  ] . However, the deep curation of large-scale network maps from the 
literature is extremely labor-intensive and stressful work. Also, it is very dif fi cult to 
maintain motivations to continuously up-dating maps and models to keep up with the 
new discoveries for many years. Automated literature mining has been extensively 
investigated, but nowhere near the stage to replace human curators. At the same time, 
quality control dependent on the individual groups, and updating and  fi xing errors can 
be slowed by this centralization. How we can solve this problem impacts productivity 
and practicality of computational approach for drug discovery for wider targets.  

    3   Needs for Virtual Big Science 

 Scienti fi c projects with large funding to achieve de fi ned mission are often called 
Big Science. Successful big science projects shall have clearly de fi ned goals, pos-
sible means to achieve it, and strong social justi fi cations to support such endeavor 
through public funding. At the same time, what type of project can be supported 
widely beyond scienti fi c community depends on social needs at that time. While 
most biology has been and continue to be small science, the human genome project 
and a series of large-scale genome projects can be considered big science in biology. 
A typical characteristic of big science is a project with large-scale engineering to 
support a speci fi c scienti fi c discovery. Big science is not a new phenomenon. The 
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legendary Manhattan Project, and more recently the Large Hadron Collider the 
Human Genome Project connected experts by bringing them together physically. 
These projects are essentially equipment driven data acquisition projects, and such 
project will continue to provide us with new  fi ndings by improving measurement 
equipment. There are desires to obtain comprehensive understanding of speci fi c 
cellular systems and biological processes using high-throughput measurements so 
that comprehensive picture of biological systems can be observed from a speci fi c 
aspect. Emergence of systems biology as mainstream biology is accelerating this 
tendency as it often requires measurements and analysis of various large-scale and 
multi-faceted data. At the same time, the reality is that new knowledge critical for 
in-depth and precise understanding is often derived from small science. This means 
that a new type of big science is needed that consolidates data and knowledge not 
only from large-scale projects, but also from discoveries by small science. Thus, it 
is inevitable to form a “virtual big science” by connecting large numbers of research-
ers around the globe to attain large-scale knowledge integration in an emergent 
manner. The implication of this is that the initiative needs to have a widely accept-
able objectives, leadership, and proper sociological design to make it sustainable. 

 Some of the more recent genome annotation jamborees have also followed a simi-
lar approach. However, the growth of Internet brought in a paradigm shift in imple-
menting large collaborative projects. Galaxy Zoo (  http://www.galaxyzoo.org/    ) is one of 
the pioneers in using Internet for launching the  fi rst and largest ever  citizen-science 
experiment involving non-experts in classifying galaxies. This  collaborative approach 
has contributed mightily to the outcome of this project. Translating this concept to IPR 
intensive areas to solve challenging scienti fi c  problems seems to be a promising path 
towards speedy and affordable solutions. The OSDD project of the Council of 
Scienti fi c and Industrial Research (CSIR), India, has taken a similar approach for 
solving challenges in drug discovery process  [  15  ] . Similar experiments, involving 
larger e-community, are being done with  challenging problems like protein folding 
(  http://www.ncbi.nlm.nih.gov/pubmed/20686574    ). However, drug discovery is a very 
competitive space making it even more challenging to open it for global participation 
through virtual  communities. The following discussion elaborates more on the pro-
cess and the framework designed to achieve these goals.  

    4   Open Source Drug Discovery for Tuberculosis 

 Drug discovery for neglected diseases can be a successful emergent collaborative 
project. It carries a good cause, socially appealing, needs collective efforts, and 
participants will have a sense of pride for their contribution. Towards this OSDD 
project was initiated by CSIR of Indian government  [  16  ] . OSDD targets drug  discovery 
for  Tuberculosis  through open collaboration realizing that con fi dentiality and IP rights 
slows down the drug discovery process and makes it extremely expensive due to 
large-scale failure of discovery effort going from hit to lead to preclinical and clinical 
trials. The OSDD project was conceived and designed to make drug discovery cost 

http://www.galaxyzoo.org/
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effective by distributed co-creation in an open source mode. As one of the many 
 projects, OSDD launched the Connect to Decode Project (  http://c2d.osdd.net    ) as an 
open call to comprehensively re-annotate the genome of  M. tuberculosis  to facilitate 
its systems level understanding. A large number of students and researchers registered 
for the project, pan India as well as overseas, and contributed on a voluntary basis. 
Over 830 researchers and students participated in  fi ve components of the project. 
More than 400 students curated literature (>10,000 published literature) for Mtb 
genome across  fi ve components, namely, Interactome/Pathway Annotation (IPW), TB 
Gene Ontology (TBGO), Glycomics, Structural/fold annotation, and Immunome. 
One of these components, IPW, was designed to achieve two goals, the  fi rst was to 
create a protein–protein functional interaction network and the second to reconstruct 
a comprehensive and detailed metabolic map of Mtb discussed here. Due to the nature 
of the project, Indian students involved are highly passionate and motivated in 
 contributing for the common goal. The desire to learn and excel in resource limited 
setting further fuels the motivation for contributing to the project. Unlike past efforts 
for collective pathway reconstruction and curation such as yeast metabolic map, any 
volunteer researchers and students can join the effort. Thus this project has distinctive 
open-endedness in both quantity and quality of participation. This is a novel model 
where motivation was the key as opposed to incentive and sets an example towards a 
novel social engineering model for involving large communities in solving  challenging 
problems. However, the best contributors from all  fi ve components were shortlisted 
based on their contributions and were awarded a net-book for their contribution (India 
800 foundation). Thus the OSDD project has become an emotional enterprise rather 
than a professional enterprise. 

 This project satis fi es some of the criteria for successful emerging projects such 
as clear and appealing goal, motivations of participants,  fi nancial support, and 
willingness to address a global issue. The distributed and collective genome 
 re-annotation was indeed a social experiment. With this experiment, a large-scale 
distributive reconstruction of biological networks was shown to be possible with 
a proper software platform, well-de fi ned work fl ow, and project management  when  
the objectives of the project designed to motivate potential participants    
(Fig.  2.1 ).   

    5   OSDD Mtb Metabolome Challenge 

 The OSDD Mtb Metabolome challenge involved manually mining literature on Mtb 
research, speci fi cally on the metabolic reactions involved towards understanding 
the function of enzymatic proteins at the global scale. While similar efforts have 
been reported in the past, the OSDD Mtb Metabolome challenge engendered a 
unique open source community collaborative platform involving researchers and 
student volunteers from across India and worldwide who worked to mine knowl-
edge buried in the experimental studies and unlock relevant information for each 
enzyme and metabolites systematically. The process involved well-de fi ned protocols 

http://c2d.osdd.net
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and  work-packages for knowledge acquisition, representation, peer-review by stu-
dents under active guidance from experts in the  fi eld. The overall roadmap of the 
 challenge is schematically elucidated in Fig.  2.2 .  

 While the collection of individual metabolic reactions and enzymes for the 
knowledge aggregation phase of map reconstruction, their integration in a global 
context is the key towards understanding the network dynamics at a systems level. 
Towards this direction, metabolome challenge project, in collaboration with The 
Systems Biology Institute, Japan and Okinawa Institute of Science and Technology 
(OIST), Japan (  http://www.oist.jp    ), employed a systems biology computational 
platform for reconstructing a large-scale, standard compliant metabolic map. 

 The integrated platform, as outlined in Fig.  2.3 , involved two key computational 
tools— CellDesigner  (developed by Kitano’s group under JST, NEDO, and MEXT 
funding) is a graphical molecular network editing and analysis software suite that 
complies with Systems Biology Markup Language (SBML) and Systems Biology 
Graphical Notation (SBGN) standards.  CellDesigner  has been successfully used to 
create large-scale molecular interaction maps based on literature curation (  http://
www.celldesigner.org/models.html    ).  

 The need to extend the computational tools to an online, community collaboration 
paradigm motivated the use of  Payao , by Kitano group and OIST.  Payao is  a web-
based biological pathway sharing and tagging service (  http://www.payaologue.org    ). 

  Fig. 2.1    A scene from Connect2Decode onsite session at New Delhi, India. Over 200 participants 
get together for a week for the  fi nal assembly of the metabolic map. Each student is given a laptop 
and hands-on training for assembling the metabolic reactions into pathways using cell designer 
(  http://c2d.osdd.net    ;   http://osdd-c2d.blogspot.com/    ). Detailed work fl ow is in Figure  2.1           
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It aims to provide a Google Maps (  http://www.maps.google.com    ) equivalent for 
 biological pathways, wherein researchers can share large-scale, curated, and 
 annotated network maps using software like  CellDesigner  and publish it to the 
 community online. Both tools employ systems biology standards for knowledge 
 representation and exchange, namely, The SBML (  http://sbml.org    ), a set of standards 

  Fig. 2.2    The Mtb Metabolome Challenge (  http://c2d.osdd.net    )       

  Fig. 2.3    Integrated map curation platform deployed for the Mtb Metabolome Challenge       
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developed to facilitate effective and ef fi cient sharing of models de fi ned as a set of 
biochemical reactions, and The SBGN (  http://sbgn.org    ), a common graphical 
 representation standard in the life sciences. 

 Based on the integrated curation platform, systematic work fl ow was employed 
in close global partnership between India and Japan teams, to  collect, mine, con-
struct, annotate,  and  publish  the metabolic map, as outlined in Fig.  2.4 .  

 A project-wide distributed reconstruction has been tested using  CellDesigner  
network editing software  [  18  ]  that was provided by the Systems Biology Institute, 
Tokyo, Japan, as a part of agreement with CSIR. 

 Participants used Google documents to collect and curate data on the metabolic 
reactions of Mtb following standard operating protocols and manuals in data format 
amenable for programmatic processing. This data is then converted into SBML  fi les 
using the Connect to Decode plug in developed by SBI. Different SBML  fi les for each 
pathway were drawn and then merged using  CellDesigner  to generate the complete 
map. Thus, the interactions are merged and re-layed out in  CellDesigner . Multiple 
iterations of pathway construction and integration took place. After a few month of 
distributed curation session, everyone from Indian side and Tokyo side got together in 
Delhi for a week for the  fi nal assembly of the entire network. Final draft network 
covers the TB metabolic network with around 1,394 genes in 13 meta-pathways. 
The data curated at each level is shared with the scienti fi c community using the 
OSDD portal.  

  Fig. 2.4    Distributed pathway reconstruction work fl ow. Republished with permission from Nature 
Publishing Group: Kitano, H., Ghosh, S., and Matsuoka, Y., Social engineering for virtual “big 
science” in systems biology, Nature Chemical Biology, 7 (6) 323–326, 2011  [  17  ]        
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    6   Software Platform for Open Collaborative Network 
Reconstruction 

 One of the main challenges in biomedical research is the vast quantity of data, and 
scattered pieces of knowledge that have to be all integrated to make sense and be 
useful. It is not possible for a human to extract useful knowledge or integrate them 
coherently without systematic aids from computational tools. Thus, computational 
tools are critically important in systems biology. 

 Software platforms have transformed industries such as aviation, movies and 
entertainment, electronics, and others by drastically improving productivity and by 
offering new capabilities. Biological sciences are not different. In particular, the 
success of systems biology, and its application areas such as systems drug design, 
leverages on sophisticated data handling, modeling, integrated computational anal-
ysis, and knowledge integration. 

 A cornerstone in open collaborative biomedical research is the development of 
sophisticated computation tools and services. Particularly, instead of stand-alone 
and disparate components, software need to be integrated in an end-to-end platform 
architecture to leverage different databases, experimental data, and knowledge gener-
ated at multiple scales of research. As outlined in Fig.  2.5 , systems biology platform 
needs to build on community-driven standards, pathway and network modeling, 
together with community collaborative platform which empower social engineering 
in virtual big science projects.  

  Fig. 2.5    Software platforms for systems biology       
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 While several reviews have focused on standardization and software platforms to 
drive large-scale systems biology research, in this article, we delve into community 
collaborative platforms, particularly in the context of open innovations for drug 
discovery in neglected areas like tuberculosis. 

 As explained earlier, creating an extensive model of gene-regulatory and 
 biochemical networks with the latest data is a painstaking task. Curation is essential 
to create an accurate model. Yet as science and technology advances rapidly, once 
curated models soon become out-of-date and need to be revised constantly. Many 
pathways and networks are now available online via pathway database, such as 
Reactome, BioModels.net, Panther Pathways, and many pathway editors are 
 available  [  12  ] . What is needed is a framework to facilitate tracking and update 
mechanism for modelers and researchers in the community to contribute to the 
 collaborative model building and curation process. 

 WikiPathways  [  19  ]  is an effort for such a collaborative platform in the Wiki 
style. While the Wiki system has its strength in collaborative editing and version 
tracking, it does not provide access control or explicit community tagging mecha-
nisms. In a community-driven model enrichment environment, it is effective to dif-
ferentiate privileges to special interest group (SIG) members for curation 
activities—commenting on existing tags, adding tags to models, annotating 
 individual component inside a model, and validating the annotations. In view of the 
complexity of biological pathways and the expertise of biologists in different areas, 
a community platform for biology requires an exquisite balance of federated 
resource sharing and quality control of information by a SIG of experts in the 
 particular pathway or process. An access-control privilege system allows the com-
munity to share and disseminate the knowledge, while enabling a dedicated SIG to 
maintain high-quality, curated information. 

  Payao , developed jointly by The Systems Biology Institute, Tokyo, Japan and 
OIST, Japan, is a community-driven molecular pathway curation framework. The 
system is named after a  fi sh aggregating device, an arti fi cial  fl oating raft where  fi sh 
congregate, and popular in Okinawa/Philippine area. Payao aims to become a bio-
logical knowledge aggregating system, which enables a community to work on the 
same models simultaneously, insert tags as pop-up balloon to the parts of the model, 
exchange comments, record the discussions, and eventually update the models 
accurately and concurrently. 

 Payao serves for enrichment phase of the curation. It is a web-based platform, 
providing an interface for adding tags and comments to the components (such as 
Species, Reactions, and speci fi ed area) of the model, as well as community 
 management functionality. The information on the users and tag data are stored in a 
relational database on the server. 

 Payao adopts community standards, accepting SBML  [  20  ]  format models and 
displays them in SBGN  [  21  ]  compliant  CellDesigner   [  18  ]  graphical notation. As 
Payao accepts pathway models stored in SBML format and uses  CellDesigner  APIs 
(Application Program Interface) for visualization, the most suitable SBML editor 
for Payao is  CellDesigner . In SBML format, models can capture details of 
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 biochemical process descriptions, not only protein–protein interactions. Adopting 
SBML format enables the models to be easily used as the base of computational 
data analysis or simulation of dynamic behaviors. The Payao platform enriches the 
model curation process by providing a host of features for user management, tag-
ging, and model updates. 

 Forming a community is an important step for curation. Different expert groups 
can contribute variety of information to the model. As Web-based Payao can be 
accessible from all physical locations, it enables experts across the world to com-
municate in a collaborative curation effort. 

 Community is formed around a pathway model. It is the model owner who sets 
access control over the registered model. In the Payao system, access controls can 
be set by specifying the privileges to individuals as well as to user-categories, such 
as guest, login user, and model user (who are invited to access the model by the 
model owner). This enables a user to stage the curation process; initiate the curation 
within a small group (e.g. SIG), then switch the access control of the model for 
public viewing. 

 The tagging on the visually represented pathways is a characteristic of Payao, 
which makes the curators easy to grasp the nature of the pathway while discussing 
on the speci fi c component of the pathways. Like Google Maps, tags are displayed 
in a bubble form attached to the items (Species, Reactions, or any speci fi ed area), 
and click to expand and display the content of the information in the tag. Tags can 
be speci fi c keywords, links, PubMed IDs as well as free text. 

 The Mtb metabolic map curated using Google docs and merged using Cell 
Designer was converted into SBML and is being made available through the Payao 
platform for larger community access and tagging.  

    7   Sustainability of Large-Scale Interaction Map Development 

 The challenge remains how to design and generate platform that enable continuous 
updates of the new data into the system and subsequent quality checks towards bet-
ter annotation and data analysis. 

 We should carefully look at reasons why projects like Wikipedia and Linux took 
off and keep  fl ying. In case of Linux, there was a hacker culture that support open 
source and sharing of knowledge as signi fi ed by Free Software Foundation by 
Richard Stallman where contribution to the community at large was the pride of the 
hackers. At the same time, there was practical need to develop open source operat-
ing systems as opposed to closed commercial systems such as Microsoft Windows. 
Among the several efforts for open source operating systems such as FreeBSD, 
Linux survived mainly because it hit the right moment and had more applications 
and publications than other initiatives. Thus, if it was not Linux, then it could 
have been FreeBSD or other initiative that  fi lled this space. Wikipedia essentially 
inherit similar culture. The goal that is widely shared and exciting, and a sense of 
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participation have been key factors driving the community-based initiative. While 
these motivations are sustainable over time is yet to be seen, it was indeed effective 
to get things started and matured enough. 

 The biological community too is getting infected with the Web 2.0 concept as it 
is being generally realized that biological problems are too complex to be solved 
and translated into public good by any one individual or organization. A formalized 
recognition system which may include micro-impact factors or micro-attribution for 
contributions may be a very effective way of encouraging more participation as 
done in Sysborg2.0, the OSDD collaborative platform  [  12  ] . Such index or credit 
should also become part of the merit system as is the case with Citation index which 
is a widely used measure of scienti fi c contributions. For micro-attribution to be 
accepted in the merit system, it has to acquire universality as the currency in 
scienti fi c evaluation. Simply asking for contribution and assigning micro-attribu-
tions assume that people are motivated by individual bene fi ts. It is generally true to 
assume that, but it is also weak motivation factors to be a successful project. In the 
most successful project, people are driven by the vision, passion, and dedication 
aligned with individual aspiration to future. In OSDD there is a serious attempt 
towards addressing these issues by giving due credit to signi fi cant contributions 
through Sysborg2.0 by including the contributors as authors in publications also. 
We have followed this approach in various publications that have originated from 
community-driven projects  [  13,   22  ] . However, there are critical issues in community 
building including reaching a critical mass of active members to ensure sustainability 
and community-driven feedback loops. OSDD Community as of now stands at more 
than 5,000 registered users from more than 130 countries indicating development of 
a self-sustaining group. At any given time more than 10 % of the participants are 
actively involved.  

    8   Can We Scale-Up? 

 A related question to sustainability of open collaboration is the issue of scale. The same 
skepticism of motivation and culture may apply. However, if the project frames the 
 mission in a socially appealing and attractive way, there may be a chance that broader 
participation can be expected. Due to social signi fi cance of  fi nding effective cure for 
drug resistant TB, it may attract those who are willing to contribute even without per-
sonal or professional bene fi ts, and they may simply be pride of being a part of it. 

 It should be noted that such collaborations are possible now due to development 
of various standards and software that comply with such standards. Standards like 
SBML  [  20  ] , SBGN  [  21  ] , and BioPAX  [  22  ]  and tools and platforms like TBrowse 
 [  23  ]  and Sysborg2.0  [  15  ]  ensure a certain level of interoperability. However, 
 technology alone cannot make things work, particularly when projects have to 
involve large numbers of interested parties with varying motivations, carrier 
 aspirations, and opinions. The OSDD Community is a large group of researchers 
and students with heterogeneous expertise and interests. The OSDD portal provides 
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a common platform for facilitating interactions among the members which enables 
identi fi cation of complementary skills and interests for fruitful collaborations and 
quick outcomes. The successful implementation of the Connect to Decode Phase I 
project has lead to launch of its second phase (  http://c2d.osdd.net    ) where models for 
predicting anti-tuberculosis property are already published  [  24  ] . Thus, broader 
social consideration can be a major “key for success” when launching increasingly 
complex projects  [  25  ] . Social engineering will be recognized as an indispensable 
part of research activity in coming years for large-scale and complex big sciences 
because it is the people who do science, not technology or machines.      
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  Abstract   Given the pivotal role that macrophages play in determining the outcome 
of infection, it is now becoming apparent that a better understanding of the molecu-
lar interplay between the pathogen and this host cell type will be crucial for devel-
oping more effective strategies for tuberculosis therapy. In this context the need to 
capture the dynamic features of this crosstalk, so as to dissect the evolving stages of 
host–pathogen equilibration, is also beginning to be appreciated. A promising way 
to probe the ongoing dialog between the macrophage and the pathogen is through 
gene expression pro fi ling. An analysis of the gene expression pattern of the infected 
host cell on the one hand, and that of the infecting pathogen on the other, provides 
a coarse grained insight into the nature and dynamics of interactions between these 
two entities. While much more work needs to be done in this direction, initial stud-
ies are beginning to shed light on the mechanisms by which the pathogen equili-
brates within the host intracellular environment. However, an important goal here 
would be to extract the gene regulatory networks that emerge within the pathogen 
and the host cell, and to then precisely map the interface between these two net-
works. In addition to yielding important information on crosstalk mechanisms, such 
mapping should also help to identify novel targets for drug development.      
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    1   Introduction 

 Despite the availability of effective drugs, tuberculosis (TB) persists as a disease of 
high burden in the human population. At least to a large extent this is a re fl ection of 
the stable manner in which the pathogen  Mycobacterium tuberculosis  (MTB) 
entrenches itself within the host and then successfully evades the myriad of antimi-
crobial responses that it encounters. Infection by MTB is initiated by its penetration 
into the alveoli of the lung, wherein it is then taken up by the macrophages. 
Interestingly, while macrophages are phagocytes that provide the  fi rst line of defense 
against microbial pathogens, they are nonetheless successfully coopted by the 
mycobacteria to serve as the niche for survival and persistence of the pathogen. This 
is achieved through interference with the intracellular traf fi cking events that follow 
uptake, allowing the bacteria to occupy an immature phagosomal compartment. 
Encapsulation within immature phagosomes insulates the pathogen from several of 
the potent antimicrobial pathways and also provides a window for the bacilli to 
replicate during the early stages of infection. Over time, however, the bacteria arrest 
their replication and enter into a dormant state. This state is clinically termed as 
“latency” and is supported by the acquisition of phenotypic tolerance as a result of 
metabolic adaptation or quiescence. Intracellular persistence also requires that the 
pathogen engage with an additional array of cellular mechanisms. Some of these 
include autophagy, lipid turnover, and pathways that in fl uence the redox equilibrium. 
Finally, the ability to control the activation of apoptotic pathways and induce necrotic 
cell death is key to successful dissemination of the pathogen within the host. 

 It is, therefore, becoming increasingly clear that a better resolution of the crosstalk 
between the intracellular mycobacteria host cellular machinery is central to 
 understanding disease biology as well as for developing new methods for treatment.  

    2   Delineation of Mycobacterial Genes That Mediate 
Adaptation and Survival in Macrophages 

 Any attempt at deciphering the host–pathogen dialog  fi rst requires a description of 
the key molecular players, on the side of both the pathogen and the host, that medi-
ate these interactions. A seminal study published in 2005 yielded a systematic 
identi fi cation of the MTB genes that were required for survival and growth in mac-
rophages  [  1  ] . This study exploited transposon site hybridization, a microarray-based 
technique that was previously developed to comprehensively identify genes from 
large pools of  transposon mutants that were essential for MTB growth under a vari-
ety of conditions  [  2  ] . Based on this method a screen was devised to identify the 
MTB transposon mutants that were unable to survive in murine macrophages that 
were either unactivated or activated with IFN- a  either prior to or subsequent to 
infection. The rationale behind this experimental design was to simulate the in vivo 
conditions    of initial and/or latent infection, as well as those wherein the infected 
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macrophages were under  pressure from an ongoing immune response. A total of 126 
MTB genes were identi fi ed in this study and a clustering of these genes into func-
tional groups identi fi ed several putative operons that were each required for sur-
vival in macrophages. The functional attributes of these putative operons included 
transport functions, constituents of the ESX-1 secretion apparatus, and components 
of the lipid metabolism machinery. 

 A particularly striking aspect of these results was that little or no correlation was 
found between the essentiality of a gene for intra-macrophage survival and its 
expression. While it remains to be seen whether this feature also holds true in human 
macrophages these  fi ndings, nonetheless, caution about over-interpreting gene 
expression data when elucidating intracellular survival mechanisms of MTB. It 
would seem that host–pathogen interactions in MTB infections are far more complex 
than they are for other bacterial pathogens, and that gene expression pro fi ling may at 
best reveal short-term adaptations to changing host environments  [  1  ] .  

    3   Host Factors That Support Intracellular MTB 

 Complementing the studies identifying MTB genes that are essential for intracellular 
survival of the pathogen are those aimed at de fi ning the host factors that are coopted 
by the bacteria to facilitate their survival. This represents the other side of the coin in 
terms of describing the molecular interface that mediates the engagement between the 
host and the pathogen. An intracellular pathogen such as MTB may be considered to 
integrate as a dominant hub within the host cellular network, interacting with and 
simultaneously in fl uencing several of the constituent nodes of the host cell. It would, 
therefore, not be unreasonable to posit that this regulation is central to de fi ning the 
intracellular survival capabilities of the pathogen. RNA interference screens have 
proved extremely useful at distinguishing the macrophage-speci fi c factors that 
are targeted by the intracellular MTB. The goal in such experiments is to identify 
those proteins whose “knockdown” yields a signi fi cant effect on the intracellular 
bacillary load. An early study employed a human kinome-speci fi c screen to identify 
host kinases that were required for intracellular growth of  Salmonella typhimurium  
 [  3  ] . Several kinases were identi fi ed which, interestingly, clustered in a single net-
work that was centered on AKT1 (or, PKB), a serine-threonine protein kinase that 
has been implicated in regulating a wide range of cellular functions including 
 proliferation and death. Of particular interest was the fact that inhibitors of AKT1 suc-
cessfully prevented intracellular growth of various bacteria including MTB. A simi-
lar, kinome-targeted screen that was performed speci fi cally against murine 
macrophages infected with MTB identi fi ed several additional kinases that were 
implicated in regulating a diverse range of cellular activities  [  4  ] . 

 A more comprehensive description of the host factors required for supporting 
survival/persistence on intracellular MTB was obtained through a recent 
 genome-wide RNAi screen performed in the human macrophage-like THP-1 cells 
 [  5  ] . In the  fi rst part of this study, the screen was performed against cells infected 
with H37Rv, a virulent laboratory strain of MTB. This experiment implicated a total 
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of 274 host factors of which 269 were those where gene silencing caused a marked 
reduction in the intracellular pathogen load. This list was subsequently  fi ltered in a 
second round where the effect of knockdown of these 274 proteins was evaluated in 
cells that had independently been infected with a panel of diverse clinical isolates of 
MTB that differed at the level of both genotype and the phenotypic properties such 
as drug sensitivity and in vivo replication rates. The hallmark of this study was the 
extraction of a core list of 74 host factors that were important for supporting the 
intracellular survival of all of the MTB strains tested. 

 Surprisingly, an analysis of the known functions of these molecules revealed that 
at least a signi fi cant proportion of them did not derive from what could classically be 
de fi ned as antimicrobial pathways. Rather, the functional annotations of these mol-
ecules encompassed several of the core cellular functions involved in maintaining 
overall homeostasis. These included metabolism, signaling, transcription regulation, 
and the stress response  [  5  ] . In other words, these  fi ndings revealed the pervasive 
nature of the in fl uence that the pathogen exerts on the host cell, emphasizing the 
intimate manner in which the pathogen integrates within the host cellular milieu. 
Importantly, in similarity with observations for the MTB genes that are essential for 
intracellular survival, only a subset of the genes for these 74 host proteins were found 
to be regulated, at the expression level, upon MTB infection  [  6  ] . That is, not all features 
related to the expression of mycobacterial virulence are re fl ected at the level of 
 alterations in gene expression and this aspect needs to be considered when attempting 
to interrogate the host–pathogen crosstalk.  

    4   Capturing the Host Cellular Responses to MTB Infection 
Through Genome-Wide Expression Pro fi ling 

 The cooption of diverse host cellular functions by the invading pathogen is, at least 
in part, likely to be induced through targeted effects on the transcriptional  machinery. 
These perturbations can be ef fi ciently captured by monitoring changes in the gene 
expression pro fi le of the infected host cell. Rationalized extrapolations of the results 
from such experiments can then also provide insights into how such effects translate 
into modifying cellular functions. 

 Several studies have been conducted to date where whole genome expression 
pro fi ling of cells infected with MTB was examined in order to dissect cellular 
response to MTB infections. One of the earliest study of this kind compared gene 
expression pro fi le of macrophage activation in response to different bacterial species 
including  E. coli ,  Salmonella ,  Staphylococcus ,  Listeria , and  Mycobacteria  
 representing Gram-positive, Gram-negative, and Mycobacterial species  [  7  ] . An 
interesting observation here was identi fi cation of several genes that were commonly 
regulated across the various bacterial species tested. The functional class enrichment 
of genes that showed signi fi cant regulation suggested that genes belonging to 
 pro-in fl ammatory immune function including cytokines and chemokines were 
highly perturbed upon infection. In addition, expression levels of genes belonging 
to functional classes such as receptors, signaling molecules, transcription, cell 
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 adhesion, tissue remodeling, enzyme function, and apoptosis regulators were also 
signi fi cantly in fl uenced. 

 In the context of macrophages infected with MTB, one of the earliest analyses 
was performed by Ehrt et al.  [  8  ] . Using a selected set of nearly 10,000 probe sets, 
they compared alterations induced in the macrophage gene expression pro fi le 
 following either MTB infection, or activation by IFN- a  treatment, or in response to 
the combined stimuli of both MTB and IFN- a -dependent activation. From a detailed 
analysis of the results, this group was able to derive several signi fi cant inferences. 
For example they observed that, following IFN- a  stimulation, many more genes were 
downregulated in their expression levels as opposed to those that were upregulated. 
These results provided an early glimpse of the complex nature of effects that even 
simple stimulation conditions can cause in the target cell. In addition though, they also 
highlighted that understanding the regulatory networks for such switch-like responses 
across the genome could be extremely valuable for an overall understanding of host 
responses. The intricate role played by signaling molecules in mediating this 
 transcriptional reprogramming could also then be established when many of the 
expression patterns were found to be reversed in the absence of genes such as  inducible 
nitric oxide synthase and phagocyte oxidases  [  8  ] . 

 Some of the subsequent studies concentrated on probing MTB-induced effects 
on expression of only a select set of genes, which were mostly those involved in 
immune regulation  [  9,   10  ] . These investigations revealed a diverse range of pertur-
bation of several genes that included IL8, osteopontin, MCP1, MIP1 a , RANTES, 
MPIF-1, and GRO- b  among many others. Further, expression of genes involved in 
cell migration such as MMP-9, VEGF, CCR3, VCAM1, and integrin was also 
upregulated  [  9  ] . In a separate study, Shi et al. showed that MyD88 signaling was 
crucial in mediating the IFN- a -dependent transcriptional activation program of 
macrophages. Interestingly, they further observed that while MTB infection also 
targeted several of the genes that were induced by IFN- a  its effects, however, were 
independent of MyD88 signaling  [  11  ] . This latter observation provides an  interesting 
perspective on how MTB exploits the inherent plasticity of gene regulatory  networks 
so as to modulate macrophage function, and yet keep activation of an in fl ammatory 
immune response under check. 

 Over the subsequent years, several groups have reported microarray pro fi ling of 
gene expression in macrophages infected with MTB. For instance, Wang et al.  [  12  ]  
showed infection-induced regulation of many cytokine and chemokine genes as 
well as the interferon-response gene Stat1. These  fi ndings were also supported by 
studies from other groups  [  13  ] . Using macrophages derived from mouse strains 
that were either susceptible or resistant to TB infection, Keller et al.  [  14  ]  identi fi ed 
genes that were both commonly and differentially regulated by MTB. This compari-
son revealed an interesting pattern wherein susceptibility was found to be associ-
ated with activation of tissue damage pathways whereas microbial elimination 
pathways were more prominently activated in macrophages from the resistant 
mouse strain  [  14  ] . Many other studies have also addressed speci fi c aspects of MTB-
induced  transcriptional reprogramming including time-dependent changes, role of 
speci fi c mycobacterial factors, the role of host signaling molecules in this process, 
and the diversity of macrophage responses to different strains of MTB  [  15–  23  ] . 
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In a provocative study, Thuong et al.  [  24  ]  used an ex vivo infection model of 
 macrophages from human subjects with different clinical phenotypes and identi fi ed 
CCL1 as a host gene responsible for susceptibility to TB. 

 A particularly relevant study in terms of exploring reciprocal regulation at the 
level of both host and pathogen was that of Tailleux et al.  [  25  ] . Here, gene expression 
pro fi les of both host and the mycobacteria were monitored at different times in two 
different host cell types: macrophages and dendritic cells (DCs)  [  25  ] . It was 
 previously shown that environment within DCs was more restrictive to  mycobacteria 
as compared to that within macrophages  [  26  ] . They characterized the expression 
pro fi les of macrophages and DCs from the same donors infected with MTB, as well 
as that of MTB in both these cell types. The functional analysis of genes that were 
commonly or differentially regulated in each of the cell types clearly provided 
 signatures of cell-type speci fi c responses. More interestingly, the expression pro fi le 
of mycobacteria from macrophages and DCs showed marked differences. Whereas 
MTB within the DC phagosomes displayed an expression pro fi le that was vastly 
indicative of a stress response, those from macrophage phagosomes were re fl ective 
of a replicative phenotype in terms of the gene expression pattern displayed  [  25  ] . 
This is so far the only study where both adaptive responses of host and the pathogen 
in two different host cell types have been simultaneously characterized. 

 All of the above studies revolved around identifying those host cell genes whose 
expression levels were signi fi cantly altered in response to mycobacterial infections. 
In terms of drawing more mechanistic inferences, however, these studies would 
have greatly bene fi ted from a more structured analysis wherein the whole 
 transcriptional data is classi fi ed into clusters of genes showing similar expression 
 pattern. The strength of such pattern-based clusters lies in their ability to establish 
 associations among hitherto unrelated genes, simply based on the co-expression 
 phenotype. These clusters can then subsequently be analyzed for enrichment of speci fi c 
gene ontologies (GO, functional classes) to establish relationship between gene function 
and their regulation. Such data driven analysis of gene expression data helps to 
 understand the gross response pattern of cells to stimuli. They also permit retrospective 
assignment of at least some of the genes to one or more speci fi c mechanisms. 

 Although several microarray experiments have been performed to date, the 
 inferences drawn have been largely empirical in nature. Nonetheless, they have 
 provided preliminary glimpses into the complexity of host responses, in terms of 
reprogramming of the transcriptional machinery, to mycobacterial infection. To gain 
a deeper understanding, however, novel analytical techniques will need to be applied 
to further interrogate these microarray datasets. Such techniques generally rely on 
high quality computational and statistical analytical tools and, although have yet to be 
adopted for studying of host–MTB interactions, have contributed signi fi cantly towards 
better mechanistic understanding in the case of cancer biology, immunology, and 
other such disease situations. The next few sections will discuss how some of these 
tools can potentially be applied for probing the host–pathogen dynamics in MTB 
infections. It is our view that the future utilization of such methodologies can yield 
unprecedented levels of insights into the interplay that occurs during the various 
stages of the infection process.  
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    5   Analyzing Transcript Pro fi les Within a Dynamical 
Framework 

 The above approaches for analyzing microarray data describe cellular perturbations 
that can be interpreted in the context of existing information on biological function 
of molecules. In order to gain mechanistic insights into the response machinery, 
however, it is important to analyze the expression data in a manner that accounts for 
functions of the differentially expressed genes, as well the regulatory relationships 
that exist between them. Since microarray experiments provide gene expression 
data as the output this, in a eukaryotic system, represents the culmination of events 
involving transcription factor activation and interaction of TFs with regulatory  elements 
of speci fi c genes. Eukaryotic genomes with thousands of genes pose a serious  challenge 
in terms of extracting any mechanistic information from the transcriptome pro fi le. In 
this regard, time course expression data becomes extremely important for two reasons. 
One of these is that temporal pro fi les capture the dynamic pattern of gene expression, 
whereas the second aspect is that time-dimensional data facilitate discernment of 
causality since past events have causal links with both present and future events  [  27  ] . 
Several approaches are now available for recreating a gene regulatory network from 
time series data with higher accuracy and better scalability  [  27  ] . These approaches 
can be broadly classi fi ed into two categories: model-based approaches and machine 
learning-based approaches. Network identi fi cation by regression, singular value 
decomposition and regression analysis, mode of action by network identi fi cation, 
time series network identi fi cation, and Inferator are some of the model-based 
approaches used extensively in understanding time series gene expression data 
 [  28–  32  ] . Some of the machine learning techniques used to understand gene regula-
tory networks are partial correlation, graphic Gaussian models, Dynamic Bayesian 
Network analysis, state space models, Granger causality, etc.  [  33–  37  ] . Other 
 strategies for such analysis also include linear models, Bayesian network  [  38,   39  ] , 
neural networks  [  40  ] , differential equations  [  41  ] , and  stochastic models  [  42  ] . It 
needs to be cautioned though that all modeling approaches are associated with both 
advantages and disadvantages, and these intrinsic  limitations need to be kept in 
mind when drawing any mechanistic conclusions  [  43,   44  ] . 

 An interesting model class in this context is the Boolean network model, which 
was originally introduced by Kauffman  [  45,   46  ] . Boolean network models are 
reviewed in detail by  [  47  ] . In this model, the state of a gene is represented by a 
Boolean variable (ON or OFF) and interactions between the genes are represented 
by Boolean functions. The latter describe the state of a gene on the basis of the 
states of a few other genes. The model converges typically to an attractor state for 
given input states of different transcription factors, which could represent a 
 combination of several intermediate states. The attractor state thus captures effect of 
simultaneous triggering ON or OFF states of several transcription factors on the 
phenotypic outcome. Although these are relatively simplistic models they, nonethe-
less, ef fi ciently capture much of the complexity of the gene regulatory network  [  48  ] . 
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There are only two allowed states for a given entity (gene) in the Boolean framework: 
expressed or not expressed. The level of each entity is updated on the basis of several 
other entities at the previous step through a Boolean function. Therefore, the level of 
each gene is determined according to the level of its regulators at the previous time 
step and the Boolean function deriving the regulation  [  49  ] . For cases where rules for 
Boolean function could not be established due to lack of information, another variant 
of Boolean model was described. This is called the probabilistic Boolean model where 
the Boolean function for a given entity can have several possibilities, each with a 
certain probability that is derived based on experimental data  [  50  ] . Subsequent 
 analysis then tests feasibility of the rules governing the Boolean function, eventually 
yielding mechanistic insights. 

 The genome-wide expression data captures the complex dynamics of the cellular 
response machinery. That is, changes in activity of certain pathways—in response 
to either stimuli or perturbations—lead to speci fi c changes in the gene expression 
pro fi le, which can then be considered as an expression signature of the inducing 
pathways  [  51  ] . Even pathways primarily operating through posttranslational 
modi fi cation like phosphorylation have been shown to imprint recognizable expression 
signatures  [  52–  54  ] . Further, the complexity of a given pathway is also re fl ected in the 
complexity of expression data that its perturbation generates  [  55  ] . To decipher pathway 
complexity therefore, one useful approach is to deconstruct the pathway into 
 underlying modules based on structures observed in the gene expression pro fi le  [  52, 
  56  ] . A statistical method called Bayesian Factor Regression Modeling was devised 
accordingly, which could elucidate modules of the signaling network  [  55,   57,   58  ] . 
Such kinds of analyses could prove useful for extracting the functional relevance of 
speci fi c perturbations induced by MTB in the host cell signaling modules.  

    6    Cis -Regulatory Map of the Human Genome 

 The approaches discussed earlier are feasible because of the availability of genome 
sequence data, where upstream regulatory regions of genes (promoters, enhancers) 
can be identi fi ed and possible trans-regulators (transcription factors) that may further 
modulate the gene expression through these  cis -elements can also be de fi ned  [  59  ] . 
Different strategies such as linear, Bayesian, or Boolean approaches employ different 
sets of assumptions for interpreting the biochemical basis of transcriptional regula-
tion  [  31,   60–  62  ] . In some landmark studies, sequence preferences for nucleosome 
and transcription factors were used to predict gene expression in yeast  [  63  ] , whereas 
Drosophila segmentation was predicted by calculating probabilities of all possible 
con fi guration of trans factors on  cis -regulatory elements  [  64  ] . The  cis -regulatory 
map has been extensively developed and analyzed in models such as Drosophila 
and Sea Urchins  [  59,   65,   66  ] . 

 Availability of such a regulatory map for the human genome, although a dif fi cult 
task considering the size and complexity, could nonetheless be immensely bene fi cial 
for understanding of how the response machinery is perturbed under a variety of 
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conditions including MTB infection. The map though would need to be extensive 
and also include information on transcription factor binding,  cis -elements, histone 
modi fi cations, epigenetic factors like methylation and acetylation, and posttransla-
tional modi fi cation of transcription factors  [  59  ] . Such a map could then not only 
provide us details of the cellular response machinery to infection but also allow us 
to test various tools and regions of the regulatory map to be targeted in order to 
achieve effective intervention against infection-induced perturbations.  

    7   Gene Expression Pro fi ling Can Also Unravel Perturbations 
in the Host Molecular Interaction Network 

 It is now recognized that the molecular components of a cell interact in an intricate 
manner to form a network of tightly linked interactions. This network organization 
of bio-molecules is now believed to be responsible for imparting to the cell the ability 
to respond to diverse kinds of biological, chemical, and physical stimuli. Interestingly, 
the networks of bio-molecules follow the basic principles of the graph theory, a 
 well-studied tenet in physics and mathematics. This fundamental  fi nding has  eventually 
led to the characterization of several biological networks such as the metabolic 
 network, the signaling network, the gene regulatory network, the protein–protein 
interaction network, and the cell-to-cell interaction network among many others. Most 
of these networks were largely built through compilations from experimental datasets. 
For example, a protein–protein interaction network would integrate large datasets 
obtained through various experiments such as co-immunoprecipitation followed by 
mass spectrometry, or co-localization experiments stored across several databases like 
STRING, BIND, MINT, etc. Such molecular networks, however, represent only a 
static view since they do not incorporate any temporal data on either gene expression 
levels or modulations in function of their protein products. Consequently then, 
gene expression pro fi ling through time-series microarray pro fi ling could provide 
the  requisite information needed to incorporate dynamical features into the 
network  [  67  ] . 

 A good example of this is the earlier described study involving a genome-wide 
RNAi screen for host factors that were involved in supporting MTB infection in 
human macrophages  [  5  ] . As mentioned, a total of 274 genes could be identi fi ed for 
their role in regulating infection with the laboratory virulent strain H37Rv. 
Interestingly, a search in the global interaction databases revealed that these 274 
genes interacted together in a large clustered network. To then add a temporal 
dimension to this clustered network, the gene expression data obtained from these 
infected macrophages—at various times postinfection—was superimposed onto the 
protein interaction network. The consequent identi fi cation of many highly  connected 
modules that were co-regulated across the time course of the experiment 
 demonstrated the utility of this exercise. From a functional perspective, this integra-
tion of two independent analytical methodologies provided insights into how the 
various host cellular functions were modulated by the pathogen, over the course of 
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infection. That is, the resulting dataset serves as a rich information source for further 
 investigations on the host–pathogen interaction dynamics. 

 An interesting extension of this approach was recently developed as a graph 
theoretic based tool termed as Express Path Analysis  [  6  ] . In this the gene expression 
data was  fi rst generated from macrophages infected with either a virulent or an  avirulent 
strain of MTB. Genes that were differentially regulated under these two conditions were 
then integrated with the molecular association network. The subsequent application of 
graph theory parameters such as betweenness, stress, and degree centrality  [  68  ]  then 
enabled identi fi cation of the key molecules that regulated divergent responses to the 
virulent and the attenuated strains  [  6  ] . The host factors that served as mediators of MTB 
virulence could then be de fi ned, with Src kinase proving to be a key player in this regard. 
Signi fi cantly, pharmacological inhibition of this kinase in infected macrophages resulted 
in increased killing of the intracellular bacilli  [  6  ] , thus demonstrating the potential 
utility of this approach. 

 Recently, Bonde et al.  [  69  ]  devised yet another novel analytical technique which 
was termed as Differential Producibility Analysis (DPA). This methodology was 
applied to the analysis of microarray data in order to deduce the metabolic state of 
MTB in infected macrophages. An ingenious incorporation of Flux Balance Analysis 
to interpret the microarray datasets facilitated the delineation of a speci fi c switch in 
the transcriptional program of MTB, which was activated upon entry into the host 
macrophage  [  69  ] . These results revealed a novel facet of the MTB response to the 
hostile macrophage environment wherein expression of genes in fl uencing the 
 central metabolism pathways was downregulated, while those directing synthesis of 
cell wall components and virulence factors were induced. The latter response pre-
sumably re fl ects a defense mechanism to protect against antimicrobial pathways. It 
has been suggested that the DPA may prove useful in unraveling the mechanisms of 
virulence and persistence of MTB within the host  [  69  ] . 

 An interesting approach for inferring large-scale gene regulatory networks has 
been the context likelihood relatedness, based on several gene expression studies 
 [  70  ] . In this approach, transcription pro fi ling of an organism over many different 
experimental conditions is used to infer regulatory circuits. Moreover, this method 
can also be effectively applied to de fi ne community structures in large networks 
 [  71  ] . One may thus obtain information on the genome-scale regulation of genes and 
the cross talk between different circuitry. This information may further be used for 
modeling the host response to a pathogen for de fi ned conditions. 

 The MTB genome encodes approximately 200 transcription factors, 13 sigma 
factors, 11 eukaryotic-like Ser/Thr kinases, and more than 150 transcription factors 
 [  72  ] . Among these, the SigmaA is the housekeeping sigma factor, whereas others 
are involved in potential sensing of environmental signals. It is therefore understood 
that the regulatory circuit in MTB is likely to be highly complex, with extensive and 
redundant mechanisms of sensing environmental signals. Towards this, many large-
scale gene expression studies have been carried out; moreover, several ChIP-chip 
experiments have also started becoming available in recent times  [  73  ] . Integration 
and analysis of many expression studies have led to the reconstruction of a gene 
regulatory network of MTB consisting of 783 nodes in the regulatory network with 



473 Probing Gene Regulatory Networks to Decipher Host–Pathogen Interactions

45 transcription factors and 937 edges  [  74  ] . Interestingly, this network revealed 
signi fi cant difference in the distribution of in- and out-degree, with the out degree 
not following power-law distribution. The network also revealed a four-layer archi-
tecture, with 15 transcription factors being unregulated, and 19 being regulated 
exclusively by feedback loops. Such network properties are characteristic of 
prokaryotic regulatory circuits, thus suggesting simplistic models of sensing signal 
processing.  

    8   Modeling Drug Treatments and Mycobacterial Persistence 

 The success of MTB as a pathogen hinges on its ability to adapt to  fl uctuating envi-
ronments such as changes in pH, oxygen tension, and nutrient availability. From a 
more general perspective, one of the two contrasting views on adaptation suggests 
that in a population each individual organism is anticipated to adapt to changes in 
environment. The alternate theory posits that population diversity allows adaptation 
by subsets of organisms to different environments. Although Darwinian arguments 
favor the latter explanation, certain observations on adaptation are paradoxical. 
Persistence exhibited by many bacterial species in response to antibiotic stress, by 
switching between slow growing population and the population that grows faster 
when the antibiotic stress has been removed, is one such phenomenon. Such a 
 phenomenon has understandably been evolved for  fi tness against environmental 
stress  [  75  ] . Persistence has therefore been widely believed to be an epigenetic trait, 
as the persisters in a population are genotypically identical to those that do not 
survive. 

 Long-term persistence of MTB within the human population relies on its ability 
to enter into a dormant phase within the macrophages. Two models for this have 
been proposed. One of these suggests that, under in vitro stress conditions, bacteria 
are metabolically reprogrammed, but in a manner wherein they are still culturable. 
This situation is reminiscent of stationary phase cultures, where an inoculum from 
a long stationary phase is able to grow in vitro. However, in the in vivo murine 
model, evidence suggests that bacteria remain nonculturable, which can only be 
activated by an external signal  [  76  ] . The relevance of either of these models for the 
disease state is currently under debate. The understanding of the dormant phase has 
been addressed by various gene expression studies using well-established models of 
latency. A central role of the transcription factor DevR (also referred to as DosR) 
has been suggested. DevR regulates ~50 genes mediated via primary and secondary 
promoter binding sites  [  77  ] . Most of these genes are involved in adaptation to dif-
ferent environmental cues including hypoxia, nitric oxide, carbon monoxide, and 
ascorbic acid. Thus, by modulating the expression of these genes, DevR is believed 
to play an important role in the onset of dormancy. 

 Inherent dif fi culties in understanding drug susceptibility and the role of dormancy 
in the disease have prompted the development of many novel approaches in recent 
times. Exciting new results indicate, for example, that mutational rates enhance 
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during latency, and thereby increase chances of drug resistance  [  78  ] . The theory of 
reactivation of dormant bacteria to cause the disease is under severe test following 
demonstration that bacteria actively divide during infection, possibly at a reduced 
rate  [  79  ] . Similarly, a mathematical model of latency has suggested that the balance 
between population of dormant and actively dividing bacilli is modulated by the 
strength of the host immune response  [  80  ] . Thus, the future holds promise for a better 
understanding of the development of drug resistance, and its link with Mtb latency.  

    9   Extracting Protein Interaction Networks from Gene 
Expression Data to Understand Latency 

 Another interesting way to view gene expression data is from the standpoint of 
interactions between the protein products of the expressed genes. This is especially 
true in the case of prokaryotic systems where genes associated with a given  physiological 
function or pathways are proximally located in an operon, with each of them showing 
similar regulatory behavior in any given context. Consequently, it is possible to  construct 
a functional association matrix between proteins based on their corresponding gene 
expression data. Genome-wide maps of protein:protein interactions can thus be  generated 
which can then be exploited to not only yield information on missing functional  pathways 
in cells, but can also potentially help in understanding the phenotypic outcome of cells 
to perturbations. In view of this, a few studies have been addressed towards obtaining 
protein:protein interaction maps in  M. tuberculosis . One of the  fi rst attempts to map 
subcellular localization of proteins in  M. tuberculosis  also led to identi fi cation of some 
of the missing enzymes by analysis of functional interaction networks  [  81  ] . Similarly, 
attempts have been made to map protein:protein interactions in MTB by  experimental 
and computational approaches  [  74,   82–  85  ] . The role of genome-wide protein:protein 
interactions in latency has recently been addressed with the objective of resolving 
the communication channels between genes that are upregulated and those that are 
downregulated  [  86  ] . All these studies, explored at the systems level, have provided 
valuable insights into functionalities of different proteins and understanding of 
mycobacterial latency. 

 A transcription regulatory network based on time course microarray data  indicated 
that DevR (DosR) is an important initiator of dormancy. However, other transcrip-
tion factors such as NadR, SigE, SigC, and FurB may also be important in maintain-
ing late stage of dormancy  [  74  ] . Involvement of SigD, HrcA, and Rv0494 in the 
early phase of dormancy was also hypothesized. Thus, DevR appears to be capable 
of receiving diverse stress signals such as hypoxia, nutrient deprivation, and station-
ary phase conditions in order to differentially regulate large numbers of genes and, 
thereby, trigger the onset of dormancy. DevR being a member of the two component 
regulatory system, the obvious partner to impart signal to DevR is DevS (DosS). 
Among the critical genes that DevR is known to upregulate during dormancy is 
Rv2623, which is an ATP-binding protein. It has therefore been suggested that Rv2623 
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may play an important role in dormancy by mediating ATP-dependent signaling 
 [  87  ] . Another recent analysis of interaction networks and Boolean modeling has indi-
cated, as was anticipated, the central role of DevR is dormancy signals  [  86,   87  ] . 
Among the 50 genes that are commonly found to be upregulated in different models 
of dormancy, and the 34 genes that are downregulated, many are under the direct or 
indirect transcriptional control of DevR. Interestingly, 34 downregulated genes exhibit 
better evolutionary conservation than the 50 upregulated genes. Moreover, these 84 
genes appear to form a tightly regulated gene cluster, as indicated by their expression 
correlations from several microarray studies. It is therefore likely that these 84 genes 
form a regulon-like structure and play a vital role in dormancy signals. 

 DevR is likely to receive signals from DosT, DosS, or Rv0845. As a consequence 
of this signal, expression levels of a large number of genes are perturbed. Among 
the many genes that DevR upregulates is the transcription factor Rv0081. Expression 
of Rv0081–Rv0088 locus has been demonstrated to be complex, where Rv0081 
downregulates its own expression in contrast to DevR upregulating its expression 
 [  88  ] . In the functional interaction network, Rv0081 is linked to Rv0082, which in 
turn interacts with the NADH ubiquinone oxidoreductase complex, which is 
 interestingly downregulated during dormancy. Thus, an intricate network of 
 interactions is linked to the switching off of the respiratory system, which is under 
the central control of the DevR transcriptional regulator. The Boolean model reveals 
a fascinating crosstalk among the up- and downregulated genes of dormancy. The 
model converges to an attractor cycle, where only four transcription factors can 
 control expression of 92 % of the genes involved in dormancy. The four genes, 
namely, DosS (Rv3132c), DosR (Rv3133c), Rv0081, and CRP (Rv3676) are 
 themselves capable of controlling expression of a large number of genes involved 
during dormancy. Therefore, these four proteins appear to be the core regulators for 
initiating and maintaining dormancy signals. Thus, through a variety of experiments 
and computational studies, addressed at the systems level, interesting insights have 
been obtained in mycobacterial latency. Whether these will eventually lead to a 
 better understanding of drug-induced persistence and/or provide insights into drug 
resistance as in other bacteria, however, remains to be seen.  

    10   Future Perspective 

 Pro fi ling gene expression in both MTB and the host cell has clearly provided us 
with interesting new insights into the nature of perturbations that are caused when 
these two entities interact with each other. At least from the standpoint of the patho-
gen, such studies have been well complemented by parallel analyses dissecting 
MTB gene regulatory networks under a variety of situations that mimic the in vivo 
conditions. These latter studies have provided useful information on the  reprogramming 
of these networks, in response to diverse environmental stresses. Delineation of the 
host cellular responses to MTB infection, however, is still in the early stages largely 



50 K.V.S. Rao et al.

because of the sheer complexity of the underlying processes involved. Moreover, 
because of the extensive contributions from posttranscriptional mechanisms, the 
 transcriptome pro fi le often shows little correlation with changes at the level of the 
corresponding proteome in mammalian cells. This poses a severe limitation to 
 extracting functional interpretations solely on the basis of microarray data. The future, 
therefore, presumably lies in generating multidimensional data that combines 
 microarray with proteomic approaches and, perhaps also, other high-throughput 
 techniques such as ChIP-seq and metabolomics. The challenge, however, will be to 
develop innovative new tools, some of which have been discussed here, to integrate 
such multivariate datasets so as to provide quantitative insights into the molecular 
crosstalk between the host cell and the pathogen. In addition to providing a deeper 
understanding of the infection process, such information could well reveal new 
strategies for therapeutic intervention.      
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  Abstract   Despite decades of research many aspects of the biology of  Mycobacterium 
tuberculosis  remain unclear and this is re fl ected in the antiquated tools available to 
treat and prevent tuberculosis. Consequently, this disease remains a serious public 
health problem responsible for 2–3 million deaths each year. Important discoveries 
linking  M. tuberculosis  metabolism and pathogenesis have renewed interest in the 
metabolic underpinning of the interaction between the pathogen and its host. 
Whereas, previous experimental studies tended to focus on the role of single genes, 
antigens or enzymes, the central paradigm of systems biology is that the role of any 
gene cannot be determined in isolation from its context. Therefore, systems 
approaches examine the role of genes and proteins embedded within a network of 
interactions. We here examine the application of this approach to studying metabolism 
of  M. tuberculosis . Recent advances in high-throughput experimental technologies, 
such as functional genomics and metabolomics, provide datasets that can be analysed 
with computational tools such as  fl ux balance analysis. These new approaches allow 
metabolism to be studied on a genome scale and have already been applied to gain 
insights into the metabolic pathways utilised by  M. tuberculosis  in vitro and identify 
potential drug targets. The information from these studies will fundamentally change 
our approach to tuberculosis research and lead to new targets for therapeutic drugs 
and vaccines.      

    1   Introduction 

 Tuberculosis (TB) is a disease that plagued ancient Egyptians and still remains a 
major threat to human health thousands of years later. The control of tuberculosis 
has been signi fi cantly hindered by the limited resources available for both the 
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 prevention and treatment of tuberculosis. A truly effective vaccine is lacking as the 
90-year-old  Mycobacterium bovis  bacillus Calmette–Guerin live attenuated vaccine 
is not universally protective and does not produce immunity against re-infection or 
reactivation. Lengthy (6–9 months) and complex (three or more different drugs) 
treatment is required using currently available anti-TB drugs. The economic and 
logistic burden of administering these drug regimens in industrially undeveloped 
countries where TB is most prevalent is enormous and combined with poor patient 
compliance are important factors in the emergence of drug-resistant TB isolates that 
are causing ongoing epidemics. These factors underscore the urgent need for the 
development of novel and effective therapeutics and vaccines and new approaches 
will be required to achieve these goals. 

  Mycobacterium tuberculosis  is an unusual bacterial pathogen, which has the 
remarkable ability to cause both acute life-threatening disease and also clinically 
latent infections which can persist for the lifetime of the human host. Unlike many 
pathogens  M. tuberculosis  does not rely on the production of speci fi c toxins to cause 
disease but rather the secret of this bacterium’s great success seems to be the ability 
to adapt and survive within the changing and adverse environment provided by the 
human host during the course of an infection. It is becoming apparent that key to 
this adaptation is the metabolic reprogramming of  M. tuberculosis  during both the 
acute and chronic phase of TB disease and therefore a more complete understanding 
of mycobacterial metabolism remains a major goal of TB research. 

 Whilst recent increases in research funding have progressed our understanding 
of the basic biology of  M. tuberculosis  this has not yet impacted on the global TB 
trends which remain at staggering levels. A possible reason why it has been dif fi cult 
to translate basic research into effective strategies for combating tuberculosis is that 
TB research has until recently focused on studying individual parameters in isolation 
which can consequently result in an overestimation of the importance of these factors. 
This effect may be particularly profound for a persistent pathogen such as  M. tuberculosis  
that lacks classical virulence factors. The systems biology framework, which 
 investigates the dynamic interactions of many components, provides an alternative and 
complementary strategy to the more traditional reductionist approaches to TB research. 
This methodology has started to be applied to the metabolism of  M. tuberculosis  on a 
genome scale and promises to drive biological discovery in the TB research  fi eld by 
providing scaffolding for the interpretation of “omic” scale datasets, directing 
hypothesis driven discovery and also assisting in the identi fi cation of novel drug 
targets.  

    2   Central Metabolism of  M. tuberculosis  

 Application of metabolic modelling approaches to  M. tuberculosis  is aided by the 
fact that metabolism is a reasonably well-studied system even in mycobacteria. 
Moreover, metabolism has been shown to be involved in the virulence of  M. 
 tuberculosis , playing a key role in the development and maintenance of both acute 
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and persistent TB infections  [  1–  7  ] . It is perhaps not surprising therefore that several 
modelling efforts in tuberculosis have focused on metabolism. 

 Much of what is known about metabolism in  M. tuberculosis  has been gleaned 
from conventional biochemical and molecular studies over many decades. The 
pathogen appears typical of bacteria of the Actinomycetales order, with a 
 predominantly aerobic metabolism that is able to catabolise a wide range of 
 substrates to generate biomass and energy. The genome encodes all the enzymes of 
the Embden–Meyerhof–Parnas pathway (EMP) and pentose phosphate pathway 
(PPP) and has a complete, or nearly complete tricarboxylic acid (TCA) cycle (see 
below). The pathogen also encodes a functional glyoxylate shunt as well as several 
enzymes connecting the TCA cycle and glycolysis that may be used for either 
 anaplerosis or gluconeogenesis. 

 There are, however, several features of central metabolism in  M. tuberculosis  
that appear to be unusual. Although the link between glycolysis and the TCA cycle is 
complete in  M. tuberculosis , the closely related pathogen  M. bovis  lacks a functional 
pyruvate kinase and is therefore unable to deliver sugars from glycolysis to the TCA 
cycle. It is thus unable to utilise carbohydrates as the sole carbon source  [  8  ] . This 
function is therefore unnecessary in vivo, as this pathogen causes very similar  disease 
in humans to  M. tuberculosis.  The role of isocitrate lyase has been intensively  studied 
since the demonstration that both of the isocitrate lyase genes encoded by this 
 pathogen,  icl 1 and  icl 2 (although some strains only have  icl 1) play an essential role 
in virulence  [  1,   2  ] . This  fi nding has been generally interpreted to be due to this 
enzyme’s role in the glyoxylate shunt and a metabolic shift in the principal carbon 
source from carbohydrates to fat in the host. However, the role of the isocitrate 
lyases maybe more complex than just fat catabolism, as these enzymes also function 
as methyl citrate lyases in the methyl citrate cycle  [  9  ] , which is used to catabolise 
propionate, derived from the oxidation of odd-numbered chain and branched chain 
fatty acids. ICL has also been shown to be essential for intracellular ATP level 
reduction in a nutrient starvation model of persistence  [  10  ]  and the glyoxylate shunt 
has been shown to operate concurrently with an oxidative TCA cycle which is 
 completed by an anaerobic  a -ketoglutarate ferredoxin oxidoreductase  [  11  ] . More 
recently, we have demonstrated an essential role for ICL during slow growth rate on 
glycerol, a substrate that would be expected to be catabolised via glycolysis and the 
TCA cycle  [  12,   13  ] . 

 It was reported that the TCA cycle was atypical in  M. tuberculosis  as the pathogen 
was proposed to lack  a -ketoglutarate dehydrogenase (KDH) activity and thereby the 
standard connection between  a -ketoglutarate and succinate via succinyl CoA  [  14  ] . 
These  fi ndings prompted the proposal that  M. tuberculosis  operates an alternative 
route (the SSA shunt) between  a -ketogluterate and succinate via the enzyme 
 a -ketoglutarate decarboxylase (KGD, putatively encoded by Rv1248c, to produce 
succinic semialdehyde which could be converted to succinate by succinic 
 semialdehyde dehydrogenase (SSADH encoded by  gabD1/D2 )  [  15  ] . It was also 
pointed out  [  15  ]  that  M. tuberculosis  has all the enzymes required for a GABA shunt 
capable of converted  a -ketoglutarate to succinic semialdehyde (and then on to 
 succinate) via glutamate and 4-aminobutyrate (GABA). However, neither of these 
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SSA-based shunts accounts for the synthesis of succinyl CoA, which is an essential 
precursor of both heme and branched fatty acids. Recently, the enzyme encoded by 
Rv1248c was shown to be a carboligase with 2-hydroxy-3-oxoadipate synthase 
(HOA synthase) activity capable of condensing  a -ketogluterate with glyoxylate to 
yield 2-hydroxy-3-oxoadipate (HOA) which decomposes to 5-hydroxylevulinate 
(HLA)  [  16  ] , undermining evidence for a SSA shunt in  M. tuberculosis . However, 
the enzyme does appear to form SSA in the absence of glyoxylate  [  16,   17  ]  so it may 
be the SSA shunt functions when levels of glyoxylate in the cell are low. Indeed 
recent work demonstrated that Rv1248c appears to be multifunctional enzyme with 
classical succinyl-transferring KDH activity, but also KDG and carboligase activity 
 [  17  ] . Additionally, an alternative route to succinyl CoA from  a -ketoglutarate has 
also recently been shown to be active involving a CoA-dependent ferredoxin 
 oxidoreductase (KOR), which operates preferentially under anaerobic conditions 
 [  11  ] . Recent evidence has also emerged that, under anaerobic conditions,  M. 
 tuberculosis  operates a reverse TCA cycle involving the reduction of fumarate to 
succinate (which is then secreted) by fumarate reductase, possibly as a means of 
generating redox potential and maintaining the membrane potential in the absence 
of oxygen  [  18  ] . It therefore seems that  M. tuberculosis  encodes a number of 
 alternative pathways that could operate around the TCA cycle, although the 
signi fi cance of most of them in vivo remains to be determined. Figure  4.1  illustrates 
the central metabolic pathways of  M. tuberculosis , as understood in 2012.   

    3   Experimental Systems for Systems Biology 

 Systems biology is an iterative procedure of experimental data acquisition, model 
building, hypothesis generation and experimental veri fi cation. One of the con-
straints upon this approach surrounds the experimental basis of this work. Models 
should be developed and validated with accurate and reproducible data. Moreover, 
the  mathematical underpinning of many modelling approaches such as  13 C-MFA 
have an absolute requirement for    the cultivation of the organism under steady-state 
 conditions where metabolite concentrations are maintained at constant levels. This 
makes it very dif fi cult to apply these approaches directly to pathogens such as  M. 
tuberculosis  growing in vivo, as such steady states are not attainable in mammalian 
cells. However, a standard approach in systems biology is to initially study systems 
in highly  controlled experimental environments that allow models to be parameter-
ised before their subsequent application in real life situations. One of the pioneers of 
systems biology, Hiroaki Kitano  [  19  ] , uses an example from racing car design to 
illustrate this approach. Cars are initially designed using a computer and then tested 
in a wind _tunnel before being deployed in the actual race. By controlling air fl ow, 
wind tunnels transform a highly dynamic unsolvable system into steady state that is 
amenable to mathematical modelling. Kitano argues that systems biologist’s simi-
larly needs  biological “wind tunnels” to develop their models. We here describe the 
application of one of the few biological wind tunnels: the chemostat. 
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 Traditional batch cultivation remains the standard for most microbiological inves-
tigations. Typically, the microbe is inoculated into a stirred vessel  fi lled with rich 
media. The organism will grow at close to maximal rate (logarithmic phase) until 
either nutrients (including oxygen) become limiting or inhibitory products accumulate 

  Fig. 4.1       Central metabolism in  M. tuberculosis . The standard TCA cycle is shown in  blue  with the 
variant (SSA) pathway in  yellow  and GABA pathway in  green . Anaplerotic/gluconeogenic reac-
tions are shown in  purple  with the glyoxylate shunt in  red . Only enzymes mentioned in the text are 
indicated, including pyruvate kinase (PK), pyruvate phosphate dikinase (PPDK), KOR ( a -ketogl-
utarate ferredoxin oxidoreductase), KGD ( a -ketoglutarate decarboxylase), GabD1/D2 (succinic 
semialdehyde dehydrogenase), GDH (glutamate dehydrogenase), GAD (glutamate decarboxy-
lase), ICL (isocitrate lyase) and MEZ (malic enzyme (malate dehydogenase, decarboxylating)), 
PEPCK (phosphoenolpyruvate carboxykinase), PK (pyruvate kinase) and PYC (pyruvate 
carboxylase)       
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to levels that retard growth (stationary phase). Although convenient and suitable for 
many microbiological, genetic and functional genomic applications, this culture 
method is unsuitable for most systems biology applications, because (a) it is dynamic 
with cells adapting to a constantly changing environment; (b) it is not usually possible 
to monitor rates of substrate utilisation or product accumulation; (c) the culture  system 
is usually uncontrolled and thereby subject to wide  fl uctuations in parameters such as 
pH or oxygen concentration; (d) several microenvironments exist in most batch culture 
vessels that allow microbial growth in different physiological states so that the average 
value of measured parameters may not represent the actual value of those parameters in 
any single cell (the mode and the mean are very different so no cell exists with the actual 
parameter values obtained from measurement). This latter consideration makes 
 modelling of batch culture systems extremely problematic. 

 The need for maximal control of the experimental aspects of systems biology 
together with attainment of steady-state conditions has led to resurgence in the use 
of continuous culture systems such as chemostats  [  20  ] . During continuous culture 
in a chemostat, microbes are grown at a rate set by the experimenter and other 
 environmental parameters such as pH, oxygen levels are also precisely controlled. 
Culture medium is pumped at a constant rate into the vessel whilst the volume of the 
culture is kept constant by an over fl ow system. The  fl ow rate ( f ) of the media is set 
by the experimenter to give a desired dilution rate ( D ). The dilution rate is the 
 number of culture volumes passing through the chemostat per unit of time and 
equals the  fl ow rate divided by the culture volume ( V ). The chemostat controls growth 
rate (  m  ) by limiting the availability of a growth substrate. The medium contains a  fi xed 
concentration of the limiting substrate, all the other nutrients being present in 
 essentially excess amounts. By adjusting the feed rate the growth rate can be adjusted 
to 1–90% of the maximum growth rate for the organism. When a dilution rate is set 
the cells will initially grow as in a batch culture at the maximum speci fi c growth rate 
(  m   

max
 ) until a substrate in the medium becomes limited. Eventually the cells adjust 

to the rate of nutrient supply so that the speci fi c growth rate equals the dilution rate, 
i.e.  D  =   m  . This balanced growth is known as steady state and may be maintained 
inde fi nitely. During steady state the physiology of the cells remains constant,  cellular 
processes being controlled by the concentration of the limiting substrate. 

 The chemostat therefore enables growth in a tightly regulated steady-state 
 environment and thereby eliminates the inherent variability and dynamics of 
 constantly changing batch cultures. The chemostat system is thereby analogous to 
the aerodynamic wind tunnel. It effectively freezes the dynamics of microbial 
growth to attain a steady-state system that is amenable to constraint-based  modelling 
approaches, such as  fl ux balance analysis (FBA), which critically depend on the 
assumption that concentrations of internal metabolites are held constant during the 
experiment. Data from chemostat cultivations is therefore more precise,  reproducible 
and statistically signi fi cant than those obtained from batch cultivations  [  21–  23  ] . 
Moreover, because the cultures are relatively homogenous, the mean value of 
 measured parameters in samples removed from the chemostat is likely to  correspond 
to the mode value of those parameters in the bulk population; allowing application 
of these values for model parameterisation   . 
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 The slow growth rate of pathogenic mycobacteria, problems associated with 
clumping of bacilli and safety considerations have all provided obstacles for 
researchers attempting continuous cultures of  M. tuberculosis . James and colleagues 
 [  24  ]  were the  fi rst to successfully cultivate  M. tuberculosis  in a chemostat at a 
growth rate of 24 h in a complex nutrient-rich medium and have used their system 
successfully to investigate the responses of  M. tuberculosis  to oxygen  [  25  ]  and iron 
limitation  [  26  ]  and also mutation rates at different pH  [  27  ] . These studies 
 demonstrated that the chemostat provides a reliable and reproducible environment 
for culturing mycobacteria and is therefore a very useful tool for “omic” scale 
 analysis such as DNA microarrays. It has been demonstrated that gene expression 
data from organisms, including  M. tuberculosis , grown in the chemostat is 
signi fi cantly more reproducible than batch culture DNA-array data  [  23,   25,   28  ] . 

 Our group has developed a system for growing mycobacteria in a carbon limited 
chemically de fi ned minimal medium which can be used as a reproducible platform for 
systems biology studies  [  12,   29–  31  ] . Initial studies using this experimental system to 
grow  M. bovis  BCG (a non-pathogenic surrogate for  M. tuberculosis ) provided vital 
information on the biomass composition of the tubercle bacillus  [  29  ] . Studies prior to 
this are limited and were performed in poorly de fi ned batch cultivations. For 
 genome-scale metabolic models, the equations de fi ning the biomass synthesis are 
very important and can impact on the predictive accuracy of the model. For two 
 different growth rates ( D  = 0.03;  t  

 d 
  = 23.1 or  D  = 0.01;  t  

 d 
  = 69.3), the elemental and 

macromolecular composition of the biomass was measured and shown to change as 
a function of the growth rate. This study demonstrated that more than half of the dry 
mass of the mycobacterial cell was comprised of carbohydrates and lipids with only 
a quarter of the dry weight consisting of protein and RNA, but that these proportions 
change, depending on the growth rate. This data allowed a stoichiometric  composition 
model for  M. bovis  BCG to be reconstructed, which is an important  fi rst step in the 
development of a metabolic network  [  29  ] .  

    4   Metabolic Model Building 

 The ultimate goal of system biology approaches to studying TB is to construct a 
complete model of infection incorporating both the pathogen and host, but this is 
currently infeasible as the information about the different components to be included in 
the model is lacking. Studies with other organisms have demonstrated that metabolism 
is, by far, the best understood cellular network and is thereby an excellent starting point 
for a systems-based approach  [  32–  34  ] . 

 However, metabolism is complex. Even the simplest organisms synthesise many 
hundreds of metabolites connected by a similar number of enzyme-catalysed 
 reactions. Each reaction is described by a set of kinetic parameters (e.g.  K  

m
 ,  V  

max
 ) 

which, in combination with substrate/product concentrations, determine its rate. 
Although  K  

m
  values are constants (for a particular substrate/product combination) 

and may be determined experimentally, intracellular concentrations of substrate, 
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products and enzyme (in fl uencing  V  
max

 ) vary over wide ranges and are not easily 
measured. Even a single enzyme reaction is therefore a highly dynamic system; and 
systems of just a few reactions steps are usually mathematically described by a set 
of ordinary differential equation with a large number of parameters and variables 
whose values are extremely challenging to measure experimentally. Kinetic models 
have therefore only been applied to the dynamics of small well-de fi ned systems, 
such as glycolysis in  Escherichia coli   [  35  ]  that are very far from being genome 
scale. 

 However, it is relatively straightforward to generate a metabolic network that 
describes the biochemical reactions that an organism is predicted to be capable of 
performing, in terms of stoichiometric formulas (see Chap.   1    ). It is therefore  possible 
to build a model consisting of all the stoichiometric reactions predicted by the 
 annotation and link these pathways and networks connected by  fl ux values between 
each reaction. These models can be interrogated with tools such as FBA and metabolic 
 fl ux analysis (MFA) to gain insight into the underlying structure of the network, 
 identify essential genes and pathways and simulate experiments. However, because 
metabolic networks contain multiple branch points and parallel pathways there is not 
a unique solution but a vast space of possible solutions (the system is underdeter-
mined). It is therefore necessary to apply constraint-based approaches, which reduce 
the solution space and thereby predict metabolic capabilities or internal  fl uxes  [  36–  41  ] . 
FBA uses the procedure of optimisation to reduce the solution space (Chap.   1    ) 
 optimising some parameter, which might be biomass production rate (and thereby 
growth rate), ATP synthesis, substrate consumption, product production or any other 
parameter of the model. Clearly there is a strong assumption in FBA that the cell 
applies a similar optimisation strategy and thereby grows at its optimal growth rate, 
ATP production rate or rate of other optimised parameter. If that assumption is  correct 
then FBA will  fi nd the correct solution—the one that the cell  fi nds—and the FBA 
solution will correspond to the biological reality. It is of course an open question 
how often and in what circumstances microbial cells such as  M. tuberculosis  do 
actually optimise simplistic parameters such as growth rate, particularly during 
in vivo growth. MFA applies an alternative approach to reducing the solution space: 
applying additional measurements as constraints  [  42,   43  ] . These may be 
 measurements of intracellular metabolites, enzyme activities or indeed any 
 additional measurement constraints, but the most powerful method currently 
 available is  13 C-MFA, which derives solutions for the intracellular  fl uxes from the 
distribution of  13 C from a substrate into central metabolites and the amino acid 
 products derived from central metabolites. 

 There are of course limitations to these approaches such as the requirement for 
steady or quasi-steady state conditions. Also, since no consideration is made of 
either transcriptional, translational, metabolic regulation or enzyme kinetics the 
predictive capabilities of constraint-based models are limited to situations when 
these factors are not signi fi cantly in fl uencing reaction rates  [  34  ] . Nevertheless, these 
approaches have been successfully applied to predict the metabolic capabilities of 
many different cellular systems  [  44–  49  ] . The application of both of FBA and MFA 
to  M. tuberculosis  will be discussed below.  

http://dx.doi.org/10.1007/978-1-4614-4966-9_1
http://dx.doi.org/10.1007/978-1-4614-4966-9_1
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    5   Metabolic Models of  M. tuberculosis  

 The  fi rst  M. tuberculosis  constraint-based model was constructed by Raman et al .  
and consisted of all the reactions in mycolic acid synthesis  [  50  ] . This sub-model of 
metabolism was composed of 219 reactions that involved 197 metabolites,  catalysed 
by 28 enzymes. FBA was used to simulate mycolic acid metabolism and to identify 
potential drug targets in these pathways. The study illustrates the importance of 
optimisation in FBA. As already discussed, FBA reduces the solution space by 
 optimising a parameter, usually known as the objective function, so choice of the 
choice of the parameter to be used as the objective function has considerable 
in fl uence on the solutions obtained. Popular objective functions include  maximisation 
or minimisation of ATP production; maximisation of redox potential; maximisation 
of the rate of synthesis of a particular product, or minimisation of nutrient uptake, 
but the most commonly used parameter is maximisation of growth rate which has 
been successfully applied in many systems including nutrient limited chemostat 
culture of  E. coli   [  51  ] . Its use is more problematic for slow growing pathogens, such 
as  M. tuberculosis , since it has not been established that these organisms do actually 
maximise their growth rate. The study used two objective functions that optimised 
the production of mycolic acids. The  fi rst, termed C1, optimised production of only 
the most abundant mycolate, whereas the objective function C2 maintained the 
known ratios of different mycolates. To test the predictive accuracy of these  objective 
functions in silico deletions were performed and compared to transposon site 
hybridisation (TraSH) mutagenesis data. The highest predictive accuracy was 
obtained with the objective function C2 with an 82% correlation with experimental 
data. FBA identi fi ed 16 essential genes in this study and this primary list was then 
 fi ltered to remove any genes encoding proteins that were complemented by  homologues 
and also those with close homologues in the human proteome. This feasibility  analysis 
identi fi ed seven potential drugs targets for anti-TB drug design (discussed below). 

 Although targeting a small sub-system such as mycolic acid synthesis can yield 
valuable information on speci fi c pathways, it has limited value in elucidating the 
metabolic capability of  M. tuberculosis . This latter objective is best approached by 
constructing a genome-scale network of metabolism  [  12,   52  ] . The  fi rst published 
genome-scale network was built using  Streptomyces coelicolor  as a starting model 
 [  12  ] . Orthology relationships were mapped between the related species using the 
KEGG databases and this preliminary model was further supplemented with data 
from the BioCyc database. This automatic process, however, accounted for only 57% 
of the  fi nal model. The remaining model was reconstructed by labour intensive man-
ual curation based upon primary research publications, textbooks and review articles, 
and also by picking the brains of experts in the  fi eld. The  fi nal model utilised two 
biomass formulations which were derived from published data of cell  composition 
obtained from a variety of sources, including our own chemostat-derived data 
obtained from fast and slow-growing BCG. BIOMASS 1 re fl ects the actual 
 macromolecular composition of in vitro-grown  M. tuberculosis , whereas BIOMASSe 
consisted of only those cellular components, such as DNA, RNA, protein, co-factors 
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and the cell wall skeleton, that were considered to be essential for in vitro growth. 
The advantage of having these two biomass formulations is that the model could be 
used to predict gene essentiality both in vitro (with the minimal BIOMASSe as the 
objective function) and in vivo (with the more complete BIOMASS 1 including 
many virulence factors as the objective function). 

 The  fi nal functional genome-scale metabolic network of  M. tuberculosis  
(GSMN-TB) consisted of 739 metabolites participating in 849 reactions and 
involves 726 genes. The model is freely available as both an excel  fi le or in sbml 
format, and is accessible via a user-friendly web tool for constraint-based simula-
tions (  http://sysbio.sbs.surrey.ac.uk/tb/    ). FBA-based predictions of in vitro gene 
essentiality using BIOMASSe as the objective function correlated well with predic-
tions of gene  essentiality obtained by global transposon mutagenesis  [  53  ] , with an 
overall  predictive accuracy of 78%  [  12  ] . Quantitative validation of the model was also 
performed using data from continuous culture chemostat experiments  [  29  ] . The model 
predicted a lower rate of glycerol consumption than the experimentally determined 
values. A plausible explanation for the discrepancy was that, in addition to consump-
tion of glycerol, the tubercle bacillus also utilised oleic acid released from hydrolysis 
of the Tween 80 dispersal agent present in the media. Opening an additional oleic 
acid transport  fl ux corrected this discrepancy and we have recently con fi rmed that 
Tween 80 is indeed being consumed in these experiments  [  13  ] . A second genome-
scale reconstruction of  M. tuberculosis ,  iNj661 , was published by Jamshidi and 
Palsson  [  52  ] , as described in Chap.   1    . 

 The mycolic acid synthesis sub-model and the two genome-scale network 
 reconstructions available for  M. tuberculosis  illustrate the different approaches 
which can be applied to reconstructing, validating and applying metabolic models. 
They also provide a reference for future metabolic reconstructions. The next 
 challenge is to combine these three models and build upon them by integrating any 
new experimental data in order to expand and re fi ne the reconstructions in an 
 iterative cycle. In this way the model can serve as an up-to-date representation of 
the cumulative knowledge of  M. tuberculosis ’s metabolic capabilities. For 
 comparison, the  E. coli  genome-scale network has undergone six different  successive 
reconstructions over the last 18 years, each one contributing positively to a large 
number of different studies  [  54  ] . A well-curated reconstruction is a perquisite for all 
systems biology approaches to studying  M. tuberculosis .  

    6   Metabolic Models of Host–Pathogen Systems 

  M. tuberculosis  is an intracellular pathogen that replicates primarily in the phagosome 
compartment of macrophages so its biology is intimately connected to that of its host 
cell. To simulate the combined system, Bordbar et al .   [  57  ]  built a novel metabolic 
model that integrated the iNj66I model of  M. tuberculosis  with a cell-speci fi c alveolar 
macrophage model, iAB-AMØ-1410 (based on the global human metabolic 
r econstruction, Recon 1  [  37  ] ) to build an integrated host–pathogen genome-scale 

http://sysbio.sbs.surrey.ac.uk/tb/
http://dx.doi.org/10.1007/978-1-4614-4966-9_1


654 Metabolism of  Mycobacterium tuberculosis 

reconstruction, iAB-AMØ-1410-Mt-661 (Chap.   1    ). The combined model was 
 essentially composed of three compartments representing the macrophage, the 
 phagosome and the pathogen residing within the phagosome. These were connected 
via metabolite and gas exchange reactions that allowed the  M. tuberculosis  
 compartment to uptake substrates and excrete waste products into the phagosome 
compartment (Fig.  4.2 ). The exchanges do of course instantiate several assumptions 
regarding the infectious state. The macrophage was assumed to be consuming glucose, 
glutamine and essential amino acids and excreting lactate. The phagosome environment 
that provided resources for  M. tuberculosis  replication was assumed to be depleted in 

  Fig. 4.2    Results obtained by integration of the alveolar macrophage (iAB-AMØ-1410) and  M. 
tuberculosis  (iNJ661) reconstructions. ( a ) Metabolic links between the extracellular space (e), 
alveolar macrophage (am), phagosome (ph) and  M. tuberculosis  (Mtb) in iAB-AMØ-1410-Mt-661. 
The model is compartmentalised using the abbreviations as shown. In the model, the major carbon 
sources of the alveolar macrophage were glucose and glutamine. The macrophage compartment 
was also aerobic and requires the essential amino acids. Despite its use of oxygen, the macrophage 
exhibits anaerobic respiration and produces excess lactate. In the  M. tuberculosis  compartment of 
the model, the major carbon sources available in the phagosome environment were glycerol and 
fatty acids. The phagosome environment was also functionally hypoxic. ( b ) The  fl ux span of iAB-
AMØ-1410-Mt-661 was signi fi cantly reduced (51%) compared with its progenitor macrophage 
model, iAB-AMØ-1410. This shows a stricter de fi nition of the alveolar macrophage solution space 
without adding additional constraints on the alveolar macrophage portion of the network. ( c ) 
Reaction, metabolite and gene properties of the three reconstructions. Maximum production rates 
of ATP, nitric oxide, redox potential (NADH) and biomass are shown. From  [  57  ]        
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glucose and rich in glycerol and fatty acids. A key aspect of the reconstruction was the 
biomass composition of both macrophage and  M. tuberculosis  compartments, 
 remembering of course that biomass composition plays a key role in FBA and is often 
used as the objective function and thereby has a very substantial in fl uence on the  fl ux 
solutions. Macrophages do not readily multiply so the iAB-AMØ-1410 biomass 
re fl ected only maintenance function, such as lipid, protein, mRNA turnover, DNA 
repair and ATP maintenance. With this objective function the macrophage model 
successfully predicted experimentally observed rates of glucose oxidation and 
 lactate production. To provide the biomass equation for intracellular  M. tuberculosis  
the authors examined gene expression data derived from in vivo mouse model 
 studies as well as in vitro studies that aimed to mimic the infection environment. 
They then adjusted the  M. tuberculosis  biomass composition to optimise the  fi t to 
the gene expression data. This involved increasing the amount of amino acids, 
mycolic acids, mycobactin, mycocerosates and sugars in the biomass equation; 
reducing ATP maintenance, DNA, fatty acids and phospholipids and removing 
 peptidoglycans and phenolic glycolipids entirely from the biomass equation to 
 construct a new objective function. It should be emphasised that the resulting behav-
iour of the reconstituted model is dependent on the precise composition of this 
adjusted biomass.  

 The authors then examined changes in  fl ux state of the  M. tuberculosis   compartment 
as a consequence of its simulated replication in the macrophage (compared to the 
iNj66I model). The simulation predicted a shift in carbon uptake with suppression of 
glycolysis and up-regulation of gluconeogenesis, together with production of 
 acetyl-CoA coming from macrophage-derived fatty acids via the glyoxylate shunt. 
Concomitant with the utilisation of fatty acids as carbon source was up-regulation of 
fatty acid oxidation pathways. There was a shift toward mycobactin and mycolic acid 
synthesis with reduced  fl ux through nucleotide, peptidoglycan and phenolic glyco-
lipid pathways. Many of these changes are likely to be a consequence of the altered 
biomass composition. 

 The accuracy of the model was tested by comparison of gene essentiality predic-
tions of the  M. tuberculosis  component of the model with genes identi fi ed to be con-
ditionally essential for infection in a mouse lung model (but not essential in vitro) by 
TraSH  [  55  ] . A total of 374 genes investigated by TraSH were in the model. Of these, 
the in silico analysis predicted that only 9 genes were conditionally essential in the  M. 
 tuberculosis  compartment of the integrated model. Of those nine in silico - predicted 
essential genes, only two genes were also essential experimentally by TraSH. Many 
of the discrepant results are likely to be due to differences between the simulated 
 macrophage system and the mouse model that was used to obtain the TraSH data. 
Four of the nine genes were components of nitrate reductase, which has been shown 
to play a role in in vitro models of infection  [  56  ]  and was thereby incorporated into the 
model when the gene expression data was used in the  fi tting exercise. However, even 
discrepant model predictions can be informative. Systems biology models are essen-
tially a mathematical instantiation of biological hypotheses. In this case, one of the 
hypotheses embedded in the iAB-AMØ-1410-Mt-661 model was that nitrate reductase 
was required for survival of  M. tuberculosis  in the mouse. This hypothesis was tested 
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by comparison of model predictions with TraSH data  [  55  ]  and shown to be discrepant 
 [  57  ] . However, the situation is of course more complicated as nitrate reductase, 
although apparently non-essential in the mouse lung model  [  55  ] , has been shown to 
contribute to the virulence of BCG in immunode fi cient mice  [  58  ] . Therefore, alterna-
tive models will have to be constructed for different host: pathogen combinations. 
Testing in silico predictions experimentally is an essential step in the re fi nement and 
improvement of systems biology models in an iterative cycle of model → predic-
tion → experimental test → model. 

    6.1   Applications of the Models 

    6.1.1   Using Models to Interrogate Genome Annotation 

 Genome-scale networks are usually constructed initially from genome annotation 
and are thereby subject to errors in that annotation. However, the metabolic model 
scrutinises the metabolic component of genome annotation at a system level for 
functionality and can thereby be used to  fi nd pathway holes or inconsistencies in the 
annotation. There are several “orphan reactions” in GSMN-TB, that is, reactions 
that are required for network functionality but for which there is no annotated  M. 
tuberculosis  gene predicted to perform that function. For example, sulfolipid 
 synthesis in  M. tuberculosis  generates the metabolite adenosine 3 ¢ ,5 ¢ -bisphosphate 
(PAP in the model) which will accumulate and thereby become toxic (unbalanced 
in the model) if it is not catabolised. The model is therefore infeasible unless the 
reaction catalysed by the enzyme 3 ¢ ,5 ¢ -bisphosphate nucleotidase (which converts 
the metabolite to AMP and inorganic phosphate) is included in the network, as an 
orphan reaction. Examining model feasibility thereby generates clues to incomplete 
or incorrect genome annotation and may even provide novel drug targets that are not 
apparent in the genome annotation. 

 In silico models also allow genome annotation to be scrutinised by systems-based 
experimental data. For example, the route for glycerol utilisation is generally assumed to 
proceed via glycerol kinase (encoded by  glpK ) followed by dehydrogenation; however, 
the genome annotation of  M. tuberculosis  includes several alcohol dehydrogenases that 
could be involved in an alternative uptake pathway whereby glycerol is  fi rst oxidised by 
glycerol dehydrogenase before being phosphorylated (this pathway is annotated in the 
KEGG  M. tuberculosis  pathway map). However, incorporation of this pathway into the 
initial GSMN-TB model led to the prediction that the gene  glpK  is dispensable for 
growth on media with glycerol as sole carbon source. Global mutagenesis data 
 demonstrated that  glpK  was in fact essential for growth on glycerol, which was con fi rmed 
by construction of a single  glp K knock-out mutant  [  30  ] . This information was 
 incorporated into a re fi ned GSMN-TB model in which the annotated alcohol 
 dehydrogenases do not provide an alternative glycerol uptake pathway. 

 Other systems-based insights into the metabolism of  M. tuberculosis  can be 
obtained by simply performing growth simulations with the model. For instance, it is 
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often claimed that  M. tuberculosis  requires operation of the glyoxylate shunt for 
growth on lipids. However, FBA-based simulation of GSMN-TB indicated that 
although the isocitrate lyase reaction of the glyoxylate shunt is predicted to be  essential 
for growth on simple fatty acids such as acetate, it was not predicted to be essential for 
growth on complex lipids, such as phospholipids. The reason is  apparent on 
 examination of the  fl ux solution: catabolism of phosopholipids yields glycerol as well 
as acetate, which can be used for gluconeogenesis without operation of the shunt.  

    6.1.2   Interpretation of Experimental Data 

 The functional genomics revolution has provided the means to generate 
 high-throughput datasets but integration and interpretation of vast numbers of data 
points to generate new hypotheses remains a formidable challenge. Computational 
models can serve to bridge the gap between data and hypothesis driven research 
providing a framework for integration of high-throughput data that can lead to 
model revisions (to resolve discrepancies between model predictions and  experiment) 
and semi-automatic generation of new hypotheses  [  59,   60  ] . Even simply overlaying 
“omic” data onto genome-scale metabolic models provides a metabolic context to 
interpret this data and can also highlight incomplete or incorrect knowledge  [  59  ] . 

      Gene Essentiality Data 

 One of the most straightforward applications of genome-scale models is to predict 
essential genes that can then be compared to experimental data. For example, using 
a high-throughput TraSH screen we identi fi ed the genes essential for the growth of 
 M. bovis  BCG on glycerol and compared this with gene essentiality predictions using 
GSMN-TB  [  30  ] . Whilst there was a good correlation between the GSMN-TB and the 
experimentally observed gene essentialities (76.66%) the analysis demonstrated how 
the model could be used to highlight gaps in our knowledge of TB’s  metabolism. 
Some of the discrepancies can be attributed to an unde fi ned level of inaccuracy in 
global mutagenesis assays but may also be due to gene regulation of isoenzymes. For 
instance, both menaquinol oxidase systems (the aa3-type and bd-type) are predicted 
to be non-essential as they are functionally redundant in the model. This contradicts 
the global mutagenesis data, which indicated that the aa3-type cytochrome  c   oxidase 
is in fact essential and likely to be the main electron transport system operating 
under aerobic conditions.  

      Transcriptome Data 

 Whereas it is relatively simple to obtain multiple measurements to de fi ne the 
 physiological or metabolic state of bacteria in vitro, only limited information can be 
obtained for bacteria in vivo. In particular, it is very challenging to perform 
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 metabolomic, proteomic, biochemical, physiological or structural studies with the 
small numbers of organisms obtained from infected animals. However, it is possible 
to perform transcriptomic studies on in or ex vivo grown organisms and these 
 methods have been applied to the TB bacillus to obtain transcriptomic pro fi les of 
bacteria growing in cultured macrophages, mouse models and in human lesions 
 [  61–  65  ] . The transcriptional pro fi le of a cell (via translation, enzyme activity, etc.) 
determines most aspects of the physiological state; therefore, it should be possible 
to predict a physiological state from knowledge of the complete cellular 
 transcriptome. However, the mapping between messenger RNA levels and 
p hysiological state is highly complex and non-linear depending on many unknown 
factors such as mRNA stability, translation ef fi ciency and post-translational 
modi fi cation of proteins. Traditional approaches to de fi ning metabolic responses 
from transcriptome data have generally relied on examining expression levels of 
key (rate-controlling) genes in metabolic pathways (for instance,  [  66  ] ). However, 
metabolic control analysis has demonstrated that control is distributed throughout 
the entire metabolic network, such that the  fl ux through any particular pathway is 
controlled globally  [  67,   68  ]  rather than by a particular enzymatic step. This makes 
a simple mapping of differentially expressed genes onto metabolic pathways an 
unrealistic strategy for successful predictions of global metabolic state changes. 

 Several system-level approaches have been proposed to extract metabolic 
 information from gene expression pro fi les. In the reporter metabolites approach  [  69  ] , 
the local connectivity of a metabolite in the bi-partite, substance/reaction graph is used 
to identify a set of genes associated with each metabolite. Subsequently, for each of the 
metabolites, the distribution of the microarray-derived signal of genes associated with 
the metabolite is compared with the background distribution of the microarray-derived 
signal for all genes, resulting in the identi fi cation of the transcription regulation focal 
points of metabolism: network nodes that are directly affected by clusters of  differentially 
expressed genes. In another approach, Shlomi  [  70  ]  used Mixed Integer Linear 
 programming to minimise the discrepancy between the internal metabolic  fl ux 
 distribution and the transcriptional pro fi le of genes encoding metabolic enzymes. Their 
approach identi fi es  fl ux distributions, which are consistent with the stoichiometric 
 constraints of the genome-scale metabolic  reaction network and at the same time 
 maximise the number of active metabolic  fl uxes associated with up-regulated genes 
and the number of non-active metabolic  fl uxes associated with down-regulated genes. 
Yet another approach, E- fl ux, was recently developed and used to examine  M. 
t uberculosis  microarray data in the  context of both the genome-scale metabolic  reaction 
network, by constraining upper bounds of metabolic reactions to values proportional to 
the microarray signals of genes associated with these reactions  [  71  ] . Two models were 
used for the analysis: the Raman et al .  model of mycolic acid pathways  [  50  ]  and the 
GSMN-TB  genome-scale metabolic model  [  12  ] . E- fl ux was applied to microarray data 
obtained from a large study that investigated the response of  M. tuberculosis  to 75 
 different drugs, drug combinations and nutrient conditions  [  72  ] . Eight of the tested 
drugs target mycolic synthesis, and this was correctly predicted by E- fl ux analysis of 
the microarray data, indicating that the method may be useful for target identi fi cation 
of novel inhibitors. 
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 Shi et al.  [  73  ]  applied a similar in silico method to interrogate quantitative PCR 
(qPCR) transcriptome data obtained from a model of respiratory infection of mice 
in which  M. tuberculosis  replicates in the lung for approximately 20 days, followed 
by stabilisation of bacterial numbers due to expression of acquired cell-mediated 
immunity. The qPCR data was not genome scale but focused on a set of genes 
 predominantly involved in the pathways of central metabolism and lipid synthesis. 
This data was  fi rst interpreted qualitatively. Observed changes in mRNA abundance 
suggested that as tubercle bacilli stop replicating in the mouse lung and respond to 
the decreased demand for energy and biosynthetic precursors by down-regulating 
glycolysis, PPP and the TCA cycle. The main function of central metabolism appears 
to shift from providing energy and biosynthetic precursors for bacterial growth to 
accumulating the storage compounds such as triacyl glycerides (TAG) and  glutamate. 
To gain a genome-scale insight into the underlying metabolic changes, two in silico 
cells were constructed by adjusting biomass composition of the GSMN-TB model. 
One cell represented growing  M. tuberculosis , while the other represented the more 
minimal cell composition predicted for non-growing  M. tuberculosis  in the mouse 
lung. FBA was then used to predict the consequent changes in  fl ux distribution in 
the cell. The resulting  fl ux distributions were broadly consistent with the gene 
expression data and the hypothesis that growth arrest in the mouse lung is associated 
with a re-routing of carbon  fl ow in central metabolism from metabolic pathways 
generating energy and biosynthetic precursors to pathways for storage compounds, 
such as TAG and glutamate. 

 Our own laboratory developed an alternative method, differential producibility 
analysis (DPA). The method  [  74  ]  relies on FBA to link genes with metabolites on a 
system-wide level. A gene essentiality scan is  fi rst performed on every gene but 
instead of using biomass as the objective function, each metabolite is, in turn, used 
as the objective function. It is thereby possible to generate a mapping that identi fi es, 
for each metabolite, the genes that are required for its synthesis (the  producibility 
plot ). In the next step of DPA, the experimental data is interrogated. Gene expression 
signals for a particular experiment are assigned onto each gene which, using the 
producibility plot, are mapped onto each metabolite. Metabolites are then ranked to 
identify the metabolites that are  most affected  by genes that are up-regulated in the 
target experiment and (separately) are ranked to metabolites that are  most affected  by 
genes that are down-regulated in the same experiment. The whole procedure of DPA 
effectively transforms a gene-based transcriptome signal into a metabolite-based 
metabolome signal. 

 The DPA method was  fi rst tested with  E. coli  transcriptome data and shown to 
successfully identify metabolic responses to environmental perturbation (shift to 
anaerobic growth) and gene knock-out. This method was then applied to several  M. 
tuberculosis  in vitro transcriptome datasets and was able to identify metabolic 
responses. Applying DPA to transcriptomic data obtained from  M. tuberculosis  
replicating in mice-derived macrophage  [  63  ]  revealed a previously unrecognised 
feature of the response of  M. tuberculosis  to the macrophage environment  [  74  ] : a 
down-regulation of genes in fl uencing metabolites in central metabolism and 
 concomitant up-regulation of genes that in fl uence synthesis of cell wall components 
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and virulence factors (Fig.  4.3 ). DPA suggests that a signi fi cant feature of the 
response of the tubercle bacillus to the intracellular environment is a channelling of 
resources towards remodelling of its cell envelope, possibly in preparation for attack 
by host defences. Interestingly, application of DPA  [  74  ]  to transcriptome data 
obtained from  M. tuberculosis  bacilli recovered from human sputum  [  75  ]  generated 
a very different metabolic signature to the mouse macrophage data. DPA can thereby 
be used to unravel the mechanisms of virulence and persistence of  M. tuberculosis  
and other pathogens and may have general application for extracting metabolic sig-
nals from other “-omics” data.   

      Stable Isotope Metabolite Pro fi ling 

 Seminal studies performed many decades ago, mostly in  E. coli , established the 
major pathways for carbon substrate utilisation in bacteria through metabolite tracer 
analysis. More recently, stable isotope studies are being increasingly used to moni-
tor metabolism. The usual approach is to feed the microbe a  13 C-labelled carbon 
substrate (uniformly and/or positionally labelled) and then measure the labelling 
pro fi le using nuclear magnetic resonance (NMR) and/or Mass Spectrometry (MS). 
NMR can provide positional information but it is less sensitive than MS and,  crucially, 
it is soften dif fi cult to identify metabolites responsible for a particular NMR signals. 
MS is being increasingly used for metabolite pro fi ling since it combines high mass 
accuracy (providing accurate metabolite identi fi cation) with high sensitivity. 
However, it measures only mass so (unlike NMR) it does not distinguish between 
isotopomers labelled at different positions but with the same mass. 

 Stable isotope pro fi ling has been applied in a several studies of  M. tuberculosis  
metabolism  [  76–  78  ] . For example,  13 C labelled substrates were used to demonstrate 
that phosphoenolpyruvate carboxykinase (PCK) predominantly catalyses the 
 conversion of oxaloacetate to phosphoenolypyruvate (PEP) when  M. tuberculosis  is 

  Fig. 4.3    Pi chart illustrating the role of  M. tuberculosis  metabolites in macrophages. Pi chart 
illustrating the role of metabolites associated by DPA with up-regulated ( a ) or down-regulated, ( b ) 
genes in the mouse macrophage  [  63  ]        
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growing on acetate  [  78  ] . Cavalho et al.  [  76  ]  used  13 C labelled substrates to con fi rm 
that  M. tuberculosis  is able to co-catabolise multiple substrates simultaneously and 
in the same study demonstrated that a form of compartmentalised metabolism was 
occurring whereby individual substrates had de fi ned metabolic fates. More recently, 
stable isotopes were used in a study investigating  M. tuberculosis  metabolism of  13 C 
labelled glucose, aspartate and CO 

2
  under anaerobic conditions  [  18  ] . By monitoring 

the  13 C labelling pro fi le of secreted succinate from these cultures the authors 
 demonstrated that  M. tuberculosis  is able to operate a TCA cycle in the reductive 
direction under anaerobic conditions and that this pathway drives succinate  secretion 
(see also    4.2).  

       13 C Metabolic Flux Analysis 

 The goal of metabolic analysis is to understand the metabolic pathways that are 
being utilised under particular conditions. As described earlier, it is possible to 
obtain estimates of the ranges of  fl uxes that are compatible with substrate inputs and 
outputs in a system using FBA. However, there are usually a great number of  pos-
sible  fl ux solutions that are compatible with the data so FBA utilises the method of 
optimisation to determine the  fl ux distribution that optimises some parameters, such 
as growth rate. This method has been very successfully applied in fast-growing 
organisms but its application to the slow-growing pathogen,  M. tuberculosis  is 
uncertain. A more direct means of establishing the intracellular  fl uxes is through 
 13 C-MFA. This powerful technique has been successfully applied to identify 
f unctional  fl ux states in various microbes ( [  79  ]  provides a recent review of the 
 technique and its application) and has enormous potential for studying the 
 metabolism of  M. tuberculosis . 

 During a  13 C-MFA experiment an organism in metabolic steady state (usually 
cultivated in a chemostat) is grown in the presence of  13 C-labelled carbon substrate 
(uniformly and/or positionally labelled). For isotopic steady-state experiments, 
mixtures of unlabelled and  13 C-labelled substrates are used as otherwise all the 
metabolites would eventually become labelled to the same degree as the substrate 
and the experiment will be uninformative. The positional labelling patterns (which 
carbon atoms are labelled) of the amino acids and/or metabolites (as determined by 
either MS and/or NMR) are then used as additional constraints in MFA to solve the 
internal  fl uxes and thereby reconstruct the paths through central metabolism that the 
carbon took inside the cells. 

 Our earlier work used FBA to predict  fl ux distribution in fast and slow-growing 
 M. tuberculosis  with glycerol as sole carbon source and predicted an increased  fl ux 
through the glyoxylate shunt at slow growth rate  [  12  ] . This was surprising as the 
shunt is usually considered to be used solely for growth on two carbon compounds 
such as acetate and the essentiality of this enzyme for in vivo growth has been widely 
interpreted to indicate that the pathogen consumes host lipids (yielding  acetate on 
beta oxidation) during growth inside the macrophage  [  1,   2,   80  ] . We con fi rmed that 
activity of the enzyme isocitrate lyase (ICL, the key enzyme of the glyoxylate shunt) 
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was indeed induced during slow growth rate but how and why the organism was 
utilising the glyoxylate shunt during slow growth on glycerol was a mystery. The 
mystery was compounded when we constructed an ICL mutant of  M. tuberculosis  
and demonstrated that the mutant was unable to grow at slow growth rate in a glycerol 
limited chemostat  [  13  ] . To discover the metabolic pathways involved in slow (and fast) 
growth we recently, for the  fi rst time, performed  13 C-MFA on  M. bovis  BCG and  M. 
tuberculosis  at fast and slow growth rate. Tracer experiments were  performed with 
 steady-state chemostat cultures supplied with  13 C labelled glycerol. Through  measurements 
of the  13 C isotopomer labelling patterns in protein-derived amino acids and enzymatic 
activity assays we identi fi ed the activity of a novel pathway (termed the GAS pathway) 
that is used for pyruvate dissimulation in  M. tuberculosis . This pathway is characterised 
by signi fi cant  fl ux through the glyoxylate shunt and also through the carbon  fi xing 
 anaplerotic reactions at the PEP-pyruvate-oxaloacetate node combined with very low 
 fl ux through the succinate–oxaloacetate segment of the TCA cycle (Fig.  4.4 ). The  fl ux 
through the GAS pathway is increased at slow growth rate accounting for the essentiality 
of ICL at slow growth rate. An interesting feature of the GAS pathway is that it included 
a signi fi cant fraction of  fl ux (far more than required for anaplerosis) going through one or 

  Fig. 4.4    Schematic of the GAS pathway which is characterised by  fl ux through the glyoxylate 
shunt and anaplerotic reactions for oxidation of pyruvate and succinyl CoA synthetase for the 
generation of succinyl CoA. Metabolite abbreviations:  PEP/PYR  phosphoenolpyruvate/pyru-
vate,  Ac  acetate,  CHO, ICIT  isocitrate/citrate,  MALOAA  L-malate-oxaloacetate,  OXG  2-oxoglu-
tarate,  SUC  succinate,  SUCCOA  succinyl-CoA,  GLX  glyoxylate,  OXG  2-oxoglutarate       
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more of the anaplerotic reactions between  phosphoenolpyruvate/pyruvate and malate/
oxaloacetate in the carbon- fi xing direction. This prediction of  13 C-MFA was con fi rmed 
by feeding  M. tuberculosis   13 C-labelled sodium bicarbonate and con fi rming that the 
pathogen is indeed able to incorporate this unusual carbon source into amino acids 
 [  13  ] . As the human host is abundant in CO 

2
  this  fi nding and the operation of the GAS 

pathway requires further  investigation    in vivo as carbon dioxide  fi xation may pro-
vide a point of vulnerability that could be targeted with novel drugs.      

    7   Future Challenges 

 The application of systems biology to the study of TB is a science that is still in its 
infancy. Nevertheless, signi fi cant progress has already been made. Several in silico 
models of  M. tuberculosis  have been constructed and a reconstruction of the  M. tuber-
culosis -macrophage system has been described. The model building process itself is a 
highly informative exercise that not only de fi nes a minimal metabolic capacity 
 necessary for making a  M. tuberculosis  cell but also provides clues to gene annotation 
and generates novel insights into the metabolic capability of this  pathogen. The models 
have been shown to be useful tools for drug target prediction. One of the most powerful 
applications of these approaches has been to use the in silico models to interrogate 
experimental data to provide system-level insight into underlying metabolic responses 
associated with the response of  M. tuberculosis  to stress, drugs and growth in host cells. 
Each of these models is available online  giving researchers across the world access to 
systems biology tools that can be used to investigate the biology of the tubercle bacillus 
but also to interrogate both  published and new datasets. 

 There is no question that existing models are not yet realistic reconstructions of the 
 M. tuberculosis  cell. However, interrogating the models with experimental data in an 
iterative cycle of model re fi nements and experimentation will ensure that the current 
models will become more accurate descriptions of the metabolism of  M. tuberculosis . 
A limitation of current FBA-type models is that they can only strictly be applied to 
steady-state systems. A future goal will be to extend these models to simulate dynamic 
states, such as during in vivo growth. This will require integration of metabolic networks 
with gene regulatory networks and kinetic models of enzyme action together with real-
istic models of host–pathogen interactions. Such multi-scale models may eventually be 
used to build an in silico  M. tuberculosis  cell. Such a model may be used for drug dis-
covery and optimisation of treatment regimes but will also be an enormously powerful 
tool to investigate the fundamental biology of this important pathogen.      

   References 

    1.    McKinney JD, Honer zu Bentrup K, Munoz-Elias EJ, Miczak ACB, Chan W-T, Senson D, 
Sacchettini JC, Jacobs-WR J, Russell DG (2000) Persistance of  Mycobacterium tuberculosis  
in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 
406:735–738  



754 Metabolism of  Mycobacterium tuberculosis 

    2.    Munoz-Elias EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 
are jointly required for in vivo growth and virulence. Nat Med 11:638–644  

    3.    Fritz C, Maass S, Kreft A, Bange FC (2002) Dependence of Mycobacterium bovis BCG on 
anaerobic nitrate reductase for persistence is tissue speci fi c. Infect Immun 70:286–291  

    4.    Miner MD, Chang JC, Pandey AK, Sassetti CM, Sherman DR (2009) Role of cholesterol in 
Mycobacterium tuberculosis infection. Indian J Exp Biol 47:407–411  

    5.    Movahedzadeh F, Smith DA, Norman RA, Dinadayala P, Murray-Rust J, Russell DG, Kendall 
SL, Rison SC, McAlister MS, Bancroft GJ et al (2004) The Mycobacterium tuberculosis ino1 
gene is essential for growth and virulence. Mol Microbiol 51:1003–1014  

    6.    Singh A, Crossman DK, Mai D, Guidry L, Voskuil MI, Renfrow MB, Steyn AJ (2009) 
Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence 
lipid anabolism to modulate macrophage response. PLoS Pathog 5:e1000545  

    7.    Glickman MS, Cox JS, Jacobs WR Jr (2000) A novel mycolic acid cyclopropane synthetase is 
required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 
5:717–727  

    8.    Keating LA, Wheeler PR, Mansoor H, Inwald JK, Dale J, Hewinson RG, Gordon SV (2005) The 
pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an 
inactive pyruvate kinase: implications for in vivo growth. Mol Microbiol 56:163–174  

    9.    Munoz-Elias EJ, Upton AM, Cherian J, McKinney JD (2006) Role of the methylcitrate cycle 
in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 
60:1109–1122  

    10.    Gengenbacher M, Rao SP, Pethe K, Dick T (2010) Nutrient-starved, non-replicating 
Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for 
maintenance of ATP homeostasis and viability. Microbiology 156:81–87  

    11.    Baughn AD, Garforth SJ, Vilcheze C, Jacobs WR Jr (2009) An anaerobic-type alpha-ketoglu-
tarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of 
Mycobacterium tuberculosis. PLoS Pathog 5:e1000662  

    12.    Beste D, Hooper T, Stewart GS, Bonde B, Avignone-Rossa C, Bushell M, Wheeler PR, Klamt 
S, Kierzek AM, McFadden JJ (2007) GSMN-TB: a web-based genome scale network model 
of Mycobacterium tuberculosis metabolism. Genome Biol 8:R89  

    13.    Beste DJ, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, Noh K, Kruger NJ, Ratcliffe 
RG, McFadden J (2011)  13 C metabolic  fl ux analysis identi fi es an unusual route for pyruvate 
dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide  fi xation. 
PLoS Pathog 7:e1002091  

    14.    Tian J, Bryk R, Shi S, Erdjument-Bromage H, Tempst P, Nathan C (2005) Mycobacterium 
tuberculosis appears to lack alpha-ketoglutarate dehydrogenase and encodes pyruvate 
dehydrogenase in widely separated genes. Mol Microbiol 57:859–868  

    15.    Tian J, Bryk R, Itoh M, Suematsu M, Nathan C (2005) Variant tricarboxylic acid cycle in 
Mycobacterium tuberculosis: identi fi cation of alpha-ketoglutarate decarboxylase. Proc Natl 
Acad Sci USA 102:10670–10675  

    16.    de Carvalho LP, Zhao H, Dickinson CE, Arango NM, Lima CD, Fischer SM, Ouerfelli O, Nathan 
C, Rhee KY (2010) Activity-based metabolomic pro fi ling of enzymatic function: identi fi cation 
of Rv1248c as a mycobacterial 2-hydroxy-3-oxoadipate synthase. Chem Biol 17:323–332  

    17.    Wagner T, Bellinzoni M, Wehenkel A, O’Hare HM, Alzari PM (2011) Functional plasticity 
and allosteric regulation of alpha-ketoglutarate decarboxylase in central mycobacterial 
metabolism. Chem Biol 18:1011–1020  

    18.    Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CE III, Boshoff HI (2011) 
Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium 
tuberculosis. PLoS Pathog 7:e1002287  

    19.    Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137  
    20.    Hoskisson PA, Hobbs G (2005) Continuous culture–making a comeback? Microbiology 

151:3153–3159  
    21.    Boer VM, de Winde JH, Pronk JT, Piper MD (2003) The genome-wide transcriptional 

responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures lim-
ited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 278:3265–3274  



76 D.J.V. Beste and J. McFadden

    22.    Boer VM, Tai SL, Vuralhan Z, Ari fi n Y, Walsh MC, Piper MD, de Winde JH, Pronk JT, Daran 
JM (2007) Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpre-
ferred nitrogen sources in glucose-limited chemostat cultures. FEMS Yeast Res 7:604–620  

    23.    Hayes A, Zhang N, Wu J, Butler PR, Hauser NC, Hoheisel JD, Lim FL, Sharrocks AD, Oliver 
SG (2002) Hybridization array technology coupled with chemostat culture: tools to interrogate 
gene expression in Saccharomyces cerevisiae. Methods 26:281–290  

    24.    James BW, Williams A, Marsh PD (2000) The physiology and pathogenicity of Mycobacterium 
tuberculosis grown under controlled conditions in a de fi ned medium. J Appl Microbiol 
88:669–677  

    25.    Bacon J, James BW, Wernisch L, Williams A, Morley KA, Hatch GJ, Mangan JA, Hinds J, 
Stoker NG, Butcher PD et al (2004) The in fl uence of reduced oxygen availability on pathoge-
nicity and gene expression in Mycobacterium tuberculosis. Tuberculosis (Edinb) 84:205–217  

    26.    Bacon J, Dover LG, Hatch KA, Zhang Y, Gomes JM, Kendall S, Wernisch L, Stoker NG, 
Butcher PD, Besra GS et al (2007) Lipid composition and transcriptional response of 
Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identi fi cation 
of a novel wax ester. Microbiology 153:1435–1444  

    27.    Jenkins C, Bacon J, Allnutt J, Hatch KA, Bose A, O’Sullivan DM, Arnold C, Gillespie SH, 
McHugh TD (2009) Enhanced heterogeneity of rpoB in Mycobacterium tuberculosis found at 
low pH. J Antimicrob Chemother 63:1118–1120  

    28.    Daran-Lapujade P, Daran JM, Kotter P, Petit T, Piper MD, Pronk JT (2003) Comparative 
genotyping of the Saccharomyces cerevisiae laboratory strains S288C and CEN.PK113-7D 
using oligonucleotide microarrays. FEMS Yeast Res 4:259–269  

    29.    Beste DJ, Peters J, Hooper T, Avignone-Rossa C, Bushell ME, McFadden J (2005) Compiling 
a molecular inventory for Mycobacterium bovis BCG at two growth rates: evidence for growth 
rate-mediated regulation of ribosome biosynthesis and lipid metabolism. J Bacteriol 
187:1677–1684  

    30.    Beste DJ, Espasa M, Bonde B, Kierzek AM, Stewart GR, McFadden J (2009) The genetic 
requirements for fast and slow growth in mycobacteria. PLoS One 4:e5349  

    31.    Beste DJ, Laing E, Bonde B, Avignone-Rossa C, Bushell ME, McFadden JJ (2007) 
Transcriptomic analysis identi fi es growth rate modulation as a component of the adaptation of 
mycobacteria to survival inside the macrophage. J Bacteriol 189:3969–3976  

    32.    Bumann D (2009) System-level analysis of Salmonella metabolism during infection. Curr 
Opin Microbiol 12:559–567  

    33.    Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical 
networks in microorganisms. Nat Rev Microbiol 7:129–143  

    34.    Durot M, Bourguignon PY, Schachter V (2009) Genome-scale models of bacterial metabo-
lism: reconstruction and applications. FEMS Microbiol Rev 33:164–190  

    35.    Bettenbrock K, Fischer S, Kremling A, Jahreis K, Sauter T, Gilles ED (2006) A quantitative 
approach to catabolite repression in Escherichia coli. J Biol Chem 281:2578–2584  

    36.    AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD, Woodward MJ, 
Anjum MF (2009) Genome scale reconstruction of a Salmonella metabolic model: comparison 
of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 
284:29480–29488  

    37.    Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, Palsson BO (2007) 
Global reconstruction of the human metabolic network based on genomic and bibliomic data. 
Proc Natl Acad Sci USA 104:1777–1782  

    38.    Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, 
Hatzimanikatis V, Palsson BO (2007) A genome-scale metabolic reconstruction for Escherichia 
coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst 
Biol 3:121  

    39.    Mo ML, Jamshidi N, Palsson BO (2007) A genome-scale, constraint-based approach to 
systems biology of human metabolism. Mol Biosyst 3:598–603  

    40.    Oberhardt MA, Puchalka J, Fryer KE, Martins dos Santos VA, Papin JA (2008) Genome-scale 
metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. 
J Bacteriol 190:2790–2803  



774 Metabolism of  Mycobacterium tuberculosis 

    41.    Thiele I, Jamshidi N, Fleming RM, Palsson BO (2009) Genome-scale reconstruction of 
Escherichia coli’s transcriptional and translational machinery: a knowledge base, its mathe-
matical formulation, and its functional characterization. PLoS Comput Biol 5:e1000312  

    42.    Kim HU, Kim TY, Lee SY (2008) Metabolic  fl ux analysis and metabolic engineering of 
microorganisms. Mol Biosyst 4:113–120  

    43.    Wiechert W (2001) 13C metabolic  fl ux analysis. Metab Eng 3:195–206  
    44.    Boyle NR, Morgan JA (2009) Flux balance analysis of primary metabolism in Chlamydomonas 

reinhardtii. BMC Syst Biol 3:4  
    45.    Raman K, Chandra N (2009) Flux balance analysis of biological systems: applications and 

challenges. Brief Bioinform 10:435–449  
    46.    Varma A, Palsson BO (1994) Stoichiometric  fl ux balance models quantitatively predict growth 

and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ 
Microbiol 60:3724–3731  

    47.    Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos 
G (2007) Metabolic  fl ux analysis in a nonstationary system: fed-batch fermentation of a high 
yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9:277–292  

    48.    Kayser A, Weber J, Hecht V, Rinas U (2005) Metabolic  fl ux analysis of Escherichia coli in 
glucose-limited continuous culture. I. Growth-rate-dependent metabolic ef fi ciency at steady 
state. Microbiology 151:693–706  

    49.    Peng L, Arauzo-Bravo MJ, Shimizu K (2004) Metabolic  fl ux analysis for a ppc mutant 
Escherichia coli based on 13C-labelling experiments together with enzyme activity assays and 
intracellular metabolite measurements. FEMS Microbiol Lett 235:17–23  

    50.    Raman K, Rajagopalan P, Chandra N (2005) Flux balance analysis of mycolic acid pathway: 
targets for anti-tubercular drugs. PLoS Comput Biol 1:e46  

    51.    Schuetz R, Kuepfer L, Sauer U (2007) Systematic evaluation of objective functions for 
predicting intracellular  fl uxes in Escherichia coli. Mol Syst Biol 3:119  

    52.    Jamshidi N, Palsson BO (2007) Investigating the metabolic capabilities of Mycobacterium 
tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. 
BMC Syst Biol 1:26  

    53.    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth de fi ned by 
high density mutagenesis. Mol Microbiol 48:77–84  

    54.    Feist AM, Palsson BO (2008) The growing scope of applications of genome-scale metabolic 
reconstructions using Escherichia coli. Nat Biotechnol 26:659–667  

    55.    Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during 
infection. Proc Natl Acad Sci USA 100:12989–12994  

    56.    Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of 
nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185:7247–7256  

    57.    Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N (2010) Insight into human alveolar 
macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422  

    58.    Weber I, Fritz C, Ruttkowski S, Kreft A, Bange FC (2000) Anaerobic nitrate reductase 
(narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in 
immunode fi cient mice. Mol Microbiol 35:1017–1025  

    59.    Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic 
reconstructions. Mol Syst Biol 5:320  

    60.    Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO (2004) Integrating high-throughput 
and computational data elucidates bacterial networks. Nature 429:92–96  

    61.    Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F (2006) Pro fi ling of Mycobacterium 
tuberculosis gene expression during human macrophage infection: upregulation of the alterna-
tive sigma factor G, a group of transcriptional regulators, and proteins with unknown function. 
Res Microbiol 157:445–455  

    62.    Raju B, Hoshino Y, Belitskaya-Levy I, Dawson R, Ress S, Gold JA, Condos R, Pine R, Brown 
S, Nolan A et al (2008) Gene expression pro fi les of bronchoalveolar cells in pulmonary TB. 
Tuberculosis (Edinb) 88:39–51  



78 D.J.V. Beste and J. McFadden

    63.    Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, 
Butcher PD, Nathan C et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis 
within macrophages: insights into the phagosomal environment. J Exp Med 198:693–704  

    64.    Tailleux L, Waddell SJ, Pelizzola M, Mortellaro A, Withers M, Tanne A, Castagnoli PR, 
Gicquel B, Stoker NG, Butcher PD et al (2008) Probing host pathogen cross-talk by transcrip-
tional pro fi ling of both Mycobacterium tuberculosis and infected human dendritic cells and 
macrophages. PLoS One 3:e1403  

    65.    Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression pro fi le of 
Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101:4602–4607  

    66.    Salmon K, Hung SP, Mekjian K, Baldi P, Hat fi eld GW, Gunsalus RP (2003) Global gene 
expression pro fi ling in Escherichia coli K12. The effects of oxygen availability and FNR. 
J Biol Chem 278:29837–29855  

    67.    Kacser H, Burns JA (1995) The control of  fl ux. Biochem Soc Trans 23:341–366  
    68.    Heinrich R, Rapoport TA (1974) A linear steady-state treatment of enzymatic chains. Critique 

of the crossover theorem and a general procedure to identify interaction sites with an effector. 
Eur J Biochem 42:97–105  

    69.    Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using met-
abolic network topology. Proc Natl Acad Sci USA 102:2685–2689  

    70.    Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-based prediction 
of human tissue-speci fi c metabolism. Nat Biotechnol 26:1003–1010  

    71.    Colijn C, Brandes A, Zucker J, Lun DS, Weiner B, Farhat MR, Cheng TY, Moody DB, Murray 
M, Galagan JE (2009) Interpreting expression data with metabolic  fl ux models: predicting 
Mycobacterium tuberculosis mycolic acid production. PLoS Comput Biol 5:e1000489  

    72.    Boshoff HI, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE III (2004) The tran-
scriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel 
insights into drug mechanisms of action. J Biol Chem 279:40174–40184  

    73.    Shi L, Sohaskey CD, Pfeiffer C, Datta P, Parks M, McFadden J, North RJ, Gennaro ML (2010) 
Carbon  fl ux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 
78:1199–1215  

    74.    Bonde BK, Beste D, Laing E, Kierzek A, McFadden J (2011) Differential Producibility 
Analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic 
response of M. tuberculosis. PLoS Comput Biol 7:e1002060  

    75.    Garton NJ, Waddell SJ, Sherratt AL, Lee SM, Smith RJ, Senner C, Hinds J, Rajakumar K, 
Adegbola RA, Besra GS et al (2008) Cytological and transcript analyses reveal fat and lazy 
persister-like bacilli in tuberculous sputum. PLoS Med 5:e75  

    76.    de Carvalho LP, Fischer SM, Marrero J, Nathan C, Ehrt S, Rhee KY (2010) Metabolomics of 
Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. 
Chem Biol 17:1122–1131  

    77.    Thomas ST, Vanderven BC, Sherman DR, Russell DG, Sampson NS (2011) Pathway pro fi ling 
in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that 
catalyze its metabolism. J Biol Chem 286:43668–43678  

    78.    Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon  fl ow of 
tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish 
and maintain infection. Proc Natl Acad Sci USA 107:9819–9824  

    79.    Zamboni N, Fendt SM, Ruhl M, Sauer U (2009) (13)C-based metabolic  fl ux analysis. Nat 
Protoc 4:878–892  

    80.    Munoz-Elias EJ, McKinney JD (2006) Carbon metabolism of intracellular bacteria. Cell 
Microbiol 8:10–22       



79

  Abstract   An important challenge for TB investigators in the postgenomic era is to 
integrate distinct functional strategies to study the molecular mechanism of 
 Mycobacterium tuberculosis  ( Mtb ) virulence. However, the biological function of 
the majority of  Mtb  genes is unknown. This has revealed the need for an approach 
to convert raw genome sequence data into functional information. In the past decade, 
the yeast two-hybrid system (Y2H) has contributed signi fi cantly towards studying 
TB virulence and persistence, but has several drawbacks. Recently, several myco-
bacterial protein–protein interaction (PPI) technologies have been reported that 
helped propose functions for unknown proteins through “guilt by association” and 
will be discussed in this chapter. We will examine the advantages, disadvantages and 
limitations of these systems and how these technologies can be used to dissect 
 signaling, drug resistance, and virulence pathways. We will also discuss how 
 mycobacterial PPI technologies can be exploited to force proteins to interact and for 
the discovery of small-molecule inhibitors against protein complexes. In sum, by 
characterizing  Mtb  PPIs on a genomic scale, it will be possible to assemble 
 physiologically relevant protein pathways in mycobacteria, the outcome of which 
will be invaluable for determining virulence mechanisms and the function of previ-
ously uncharacterized proteins.  
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  Abbreviations  

  BACTH    Bacterial adenylate cyclase two-hybrid   
  BM    BacterioMatch   
  hDHFR    Human dihydrofolate reductase   
   Mbov      Mycobacterium bovis    
  M-PFC    Mycobacterial protein fragment complementation   
   Msm      Mycobacterium smegmatis    
   Mtb      Mycobacterium tuberculosis    
  NO    Nitric oxide   
  PFC    Protein fragment complementation   
  PPI    Protein–protein interaction   
  RNAi    RNA interference   
  RNAP    RNA polymerase   
  TRX    Thioredoxin   
  Y2H    Yeast two-hybrid system   
  Y3H    Yeast three-hybrid system         

    1   Introduction    

  Mycobacterium tuberculosis  is an extremely successfully pathogen due to its ability 
to persist, and to latently infect more than one-third of the world’s population  [  1,   2  ] . 
Annually, there are approximately eight million new cases of TB and two million 
deaths worldwide. The increase in multidrug-resistant (MDR), extensively drug-
resistant (XDR) and super XDR  Mycobacterium tuberculosis  ( Mtb ) strains, together 
with the synergy with HIV infection is a frightening development  [  2,   3  ]  and poses 
signi fi cant problems in the treatment and control of TB. 

 Genome-scale molecular networks such as protein interaction and gene regula-
tory pathways are taking a center stage in the emerging disciplines of systems biol-
ogy and biocomplexity. As a result, an important challenge for TB investigators in 
the  postgenomic era is to integrate functional strategies such as allelic replacement 
 techniques  [  3–  5  ] , signature tagging mutagenesis  [  6,   7  ] , in vivo expression  technology 
 [  8,   9  ] , proteomics,  [  10,   11  ] , DNA microarrays  [  12–  16  ] , deep-genome sequence 
strategies  [  17,   18  ]  and protein–protein interaction (PPI) approaches  [  19,   20  ] , to 
study the molecular mechanism of  Mtb  virulence. 

 To ful fi ll their biological function in cells, most proteins function in association 
with protein partners or as large molecular assemblies. Not surprisingly, virulence 
pathways are also mediated by molecular connections that require PPIs. The 
 rationale for studying PPI in bacterial pathogens such as  Mtb  is several fold. First, 
in dissecting these pathways, it has been established that physical association 
between a protein of unknown function and a known protein suggests that the for-
mer often has a function related to that of the latter. This “guilty by association” prin-
ciple has led to the functional annotations of numerous proteins of unknown function. 
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Since over the past decade more than 1,000 microbial genomes have been sequenced 
it is anticipated that the focus on genes of unknown function will continue to increase, 
as it is these genes (of unknown function), which make the particular microbe unique. 
Second, an important feature of PPI networks is that most proteins associate with 
multiple interacting partners, suggesting that they ful fi ll multiple  functions. Third, 
elucidation of PPI can rapidly provide detailed mechanistic  information about a 
speci fi c biological question. The above-mentioned approaches usually attempt to 
identify new drug targets, or to achieve a better understanding of the mechanistic 
basis of  Mtb  virulence. 

 While substantial efforts focused on prediction of protein–protein association by 
in silico analysis using phylogenetic pro fi les  [  21  ] , domain fusion  [  22  ] , and gene 
clustering methods  [  23,   24  ] , these types of analyses must be supported by biological 
experimentation. Not surprisingly, due to the large number of PPIs studies over the 
past 20 years, a large number of protein interaction databases such as HPRD, DRP, 
MIPS, STRING, BIND  [  25  ]  have been generated. 

  Mtb  is a genetically intractable microbe and there is an urgent need to develop 
effective genome-wide tools to study protein–protein association in mycobacterial 
cells. By characterizing PPIs on a genomic scale it will be possible to assemble 
physiologically relevant protein pathways in mycobacteria, the outcome of which 
will be invaluable for determining the function of previously uncharacterized pro-
teins and virulence mechanisms. 

 Thus far, despite the development of bacterial systems (BacterioMatch [BM] and 
bacterial adenylate cyclase two-hybrid [BACTH] and the mammalian two-hybrid sys-
tem [M2H]),  Saccharomyces cerevisiae  is the most exploited surrogate host and rep-
resents the current standard. The  fi rst large-scale yeast two-hybrid (Y2H)  interaction 
network was performed with the  Escherichia coli  bacteriophage T7  [  26  ]  and was 
rapidly followed by a whole-genome analysis of  S. cerevisiae   [  27–  30  ] ,  Drosophila  
 [  31,   32  ] ,  Arabidopsis   [  33  ] , and  C. elegans   [  34  ] . These studies predicted the function 
of a multitude of proteins and revealed numerous novel interactions, thereby allowing 
investigators to link biological functions together into larger  cellular processes. 

 In this review, we will provide an overview about the different PPI techniques that 
have successfully been exploited to study  Mtb . We will discuss different  mycobacterial 
PPI technologies, how it could be exploited for the discovery of new antimycobacte-
rial drugs, potential pitfalls of PPI technologies, and in silico  methods for predicting 
PPI.  

    2   Microbial PPI Systems 

    2.1   The Y2H System 

 In the original Y2H assay, a bait protein is fused to the GAL4 DNA-binding domain 
(DNA-BD), and a library of prey proteins are expressed as fusions to the GAL4 
activation domain (AD)  [  35  ]  (Fig.  5.1a ). When the “bait” protein interacts with a 
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  Fig. 5.1    Conceptual basis of PPI methods used to study protein function in mycobacteria and 
other pathogens. In the ( a ) Y2H, ( b ) BM, ( c ) BACTH, and ( d ) M-PFC systems the two interacting 
proteins (bait [B] and prey [P]) are independently fused to either a DNA-AD (e.g., Gal4-AD, 
 a -subunit of RNAP) and DNA-BD (e.g., Gal4-BD,  l cI) ( a ,  b ) or to two enzymatic subunits ( c ,  d ) 
that reconstitute enzymatic activity (e.g., AC or hDHFR). However, in the case of RAP-inducible 
M-PFC ( e ), rapamycin functions as a bridge that forces FKBP12 and FRB to “interact,” thereby 
functionally reconstituting the reporter system consisting of F-[1,2] and F-[3] to generate Trim R  
mycobacterial clones. Note that in case of  e , F-[1,2] and F-[3] can be replaced by any two proteins 
that the investigator wishes to force to interact. Although the above systems examine bimolecular 
protein interactions, ( a ), ( b ), and ( d ) have been modi fi ed to examine tri-molecular protein interac-
tions (see text for detail).  UAS  upstream activating sequence,  cAMP-CAP prom  cAMP-CAP pro-
moter,   l cI oper   l cI operator,  T18 and T25  adenylate cyclase enzymatic domains       
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“prey” protein from the library, the DNA-BD and AD are brought into proximity to 
activate transcription of several reporter genes (e.g.,  ADE2 ,  HIS3 ,  MEL1 , and 
 AUR1 ). The Y2H system is an effective tool use to identify novel protein interac-
tions, con fi rm putative interactions, and de fi ne interacting domains and residues. 
Subsequent to the development of the original Y2H system, the reverse Y2H  [  36  ]  
and yeast three-hybrid (Y3H)  [  37  ]  systems were developed.   

    2.2   The  E. coli  BacterioMatch System 

 Similar to the Y2H system, the BM two-hybrid system is designed to examine PPIs 
between a pair of proteins cloned into separate “bait” and “prey” vectors. The bait 
protein is fused to the full-length bacteriophage  l  repressor protein ( l cI) containing 
the amino terminal DNA binding domain and the carboxyl terminal dimerization 
domain (Fig.  5.1b ). When produced inside cell, the bait fusion is tethered to the 
operator sequence upstream of the reporter promoter through the DNA-BD of  l cI 
 [  38  ] . The target or prey protein is fused to the N-terminal domain of the  a -subunit 
of RNA polymerase (RNAP). When the bait and prey proteins associate, they recruit 
and stabilize binding of RNAP at the promoter and activate transcription of the 
 HIS3  and  aadA  (confers streptomycin resistance) reporter genes  [  39  ] . 

 Very recently, the BM system was modi fi ed to study ternary mycobacterial 
 protein complexes in  E. coli   [  40  ] . Using this three-hybrid system, it was 
 demonstrated that the interaction between CFP-10 and Rv3871 was strength-
ened in the presence of Esat-6. Lastly, the BM system was also used to examine 
PPIs between  Mtb   proteins and approximately 8,000 novel interactions were 
discovered  [  41  ] . Notably, validation of PPI using overexpression and surface 
plasmon resonance analyses demonstrated a success rate of approximately 
60 %. Important  fi ndings include demonstrating a link between the  Mtb  ESX1 
and ESX5 protein secretion systems, and that the Fe–S cluster proteins WhiB3 
and WhiB7 are highly connected  [  41  ] .  

    2.3   The Bacterial Adenylate Cyclase Two-Hybrid System 

 In the BACTH system, proteins of interest are fused with two fragments of the 
 catalytic domain of the  Bordetella pertussis  adenylate cyclase (AC) and  co-expressed 
in an  E. coli Δcya  strain (Fig.  5.1c ). Interaction of the two proteins results in the 
functional complementation between the two AC subunits, leading to cAMP syn-
thesis and subsequent activation of catabolic operons  [  42  ]  or the expression of the 
 lacZ  gene. Using BACTH, it was demonstrated that  Msm  PsPpm2 interacts with 
MsPpm1 to stabilize the synthase MsPpm1 in the bacterial membrane  [  43  ] . The 
BACTH system was also successfully used to examine the interactions between 
 Mtb  ClpX and FtsZ  [  44  ] .  
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    2.4   Protein Fragment Complementation 

 Recently, a different experimental system, coined protein fragment  complementation 
(PFC), was shown to be highly effective in studying PPIs in a variety of organisms 
 [  45–  48  ] . In PCF, a particular reporter enzyme is rationally dissected into two 
 fragments and fused with two interacting proteins. Interaction among the two 
 proteins results in active refolding and reconstitution of the enzyme activity of the 
two fragments. Since nuclear translocation of interacting proteins is not required, 
membrane proteins can also be analyzed. 

 For example, using human dihydrofolate reductase (hDHFR), any two proteins 
(X and Y) thought to interact are fused to two rationally dissected DHFR fragments 
called F-[1,2] and F-[3]. In vivo reassembly due to the interacting proteins X and Y, 
and subsequent reconstitution of hDHFR domains X-F-[1,2] and Y-F-[3] into active 
hDHFR can be monitored in vivo by cell survival under methotrexate selection, by 
 fl uorescence detection of  fl uorescein-conjugated methotrexate binding to 
 reconstituted hDHFR, or by trimethoprim (Trim) resistance (Fig.  5.1d ). hDHFR is a 
small 21-kDa monomeric protein that contains three structural fragments (F-1, F-2, 
and F-3) containing two domains; an adenine-binding domain (F-2) and a 
 discontinuous domain (F-[1] and F-[3]). Previously, it has been shown that d isruption 
of the disordered loop at the junction between F-[2] and F-[3] has no signi fi cant 
effect on activity  [  49  ] . This property was exploited to develop a eukaryotic DHFR 
PFC system to analyze reassembly of murine dihydrofolate reductase (hDHFR) 
fragments  [  47,   50,   51  ] . Using eukaryotic DHFR PFC, 148 combinations of 35 differ-
ent PPIs in the RTK/FRAP signal transduction pathway were studied with no false-
positive interactions observed among the pairs tested  [  47  ] . Importantly, the DHFR 
PFC system (albeit eukaryotic) is the only system that could validate the interactions 
through pharmacological perturbation of the interactions—even if the site of action 
of the perturbant is distant from the interaction studied  [  47  ] . 

 The concept of PFC using hDHFR fragments was successfully exploited to develop 
a mycobacterial PFC system termed mycobacterial PFC (M-PFC)  [  52  ]  (Fig.  5.1d ). 
Using this system, the interactions between the two-component proteins DevS and 
DevR, and KdpD and KdpE were demonstrated. In addition, several  previously 
 undiscovered proteins were shown to interact with  Mtb  Cfp-10. Notably, proteins 
complexes were identi fi ed that form only in mycobacteria and not in the Y2H system 
 [  52  ] . It is likely that many interacting  Mtb  proteins will require the mycobacterial 
cytoplasmic environment to associate and is an important  consideration in a PPI 
screen. In an independent study, M-PFC identi fi ed a strong interaction between Pup 
and the proteasome substrate FabD (malonyl coenzyme A acyl carrier protein), 
whereas this interaction was not detected using  E. coli  as  surrogate host  [  53  ] . M-PFC 
was successful in demonstrating interaction between an essential DNA-binding pro-
tein (IdeR) and the enzymatic complexes (LeuC/LeuD)  [  54  ] . Lastly, M-PFC was also 
used to demonstrate interaction between  Mtb  ClpX and FtsZ  [  44  ] . 

 The split-Trp system is another PFC assay that monitors the enzymatic 
 reconstitution of tryptophan biosynthesis in a tryptophan autotrophic microbe. This 
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system was originally developed in  S. cerevisiae   [  55  ]  and shown to be effective for 
examining the  Mtb  protein complexes Esat-6/CFP-10, RegX3 homodimerization, 
self-association of Rv3782 (galactosyl transferase), and the coiled-coil peptides C1 
and C2  [  56  ] .   

    3   Shared Properties of Microbial Interaction Systems 

 The bacterial and Y2H systems (or variations thereof) have several properties in 
common that can profoundly affect postscreen analyses. For example, all systems 
have relatively strong promoters (Y2H:  ADH1  

p
  or  GAL10 ; M2H: CMV; BM: 

  lac-UV5 ; BACT:  lac-UV5  and M-PFC:  hsp60 ), and all PPI systems are based upon 
fusion technologies (Y2H; GAL4 AD and BD or LexA; M2H; JAK and GP130; 
BM;  a -subunit of RNAP and  l cI; BACT; AC; and M-PFC; DHFR). Lastly, all sys-
tems rely on unique peptide detection tags (HA, cMyC, FLAG, His, GP120, etc., or 
the reporter domains itself) to enable speci fi c detection. 

 The two most widely used protein interaction validation approaches are to fuse a 
detection tag (e.g., GST) to the “bait” protein, in vitro transcribe/translate the “prey” 
protein followed by incubation of the mixtures and assessment of binding/elution of 
the labeled prey protein. A second widely-used validation experiment includes 
in vivo co-af fi nity puri fi cation in which one protein is tagged, overexpressed in  E. 
coli  (or native host) followed by a pull-down of the prey from the extract. 

 Important differences between the BM and PFC systems are that: (1) in PFC, 
protein interaction does not need to take place near the transcription machinery, (2) 
PFC is better suited for studying interactions among membrane proteins, (3) PFC 
requires no other host-speci fi c processes or enzymes, (4) the structure of DHFR is 
known thereby allowing control over the way interactions can occur, and (5) it is 
advantageous to employ PFC in the native host rather than surrogate hosts such as 
yeast or  E. coli  wherein protein interactions are determined in the native host where 
they function in the context of other native proteins.  

    4   Is Yeast the Optimal Host for Studying Mycobacterial PPIs? 

 As is described in the section below, the Y2H system has been used successfully to 
study  Mtb  biology and pathogenesis. While in some cases it might be bene fi cial to 
use yeast as surrogate host, the Y2H system does have certain limitations. For 
example, (1) protein interactions occur in the nucleus, (2) membrane proteins are 
not fully compatible with the conventional Y2H system, (3) bacterial proteins do 
not undergo appropriate post-translational modi fi cation, (4) self-activation of bait 
proteins can occur, and  fi nally, (5) high G+C DNA is sometimes not well tolerated 
in the Y2H system. A well-known class of Y2H false positives is “anti-sense” clones 
that contain anti-sense DNA fragments cloned in the library vector that when 
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 translated produce a nonphysiological peptide that associates with the bait protein. 
False positives are inherently present in all large-scale Y2H screens and are 
 extensively documented in the literature.  

    5   Speci fi city and False Positives of PPI Technologies 

 In large-scale PPI studies, technical and biological false positives are typically being 
considered. Technical false positives resulting in experimental errors can be avoided. 
However, in order to eliminate false positives (e.g., those interacting clones that are genu-
inely observed in more than one assay, but do not occur in vivo) and to increase the 
veri fi cation rate, the following factors are taken in consideration during  large-scale pro-
tein interaction screens: (1) overlapping (interacting) clones increases the con fi dence 
score  [  28,   31,   57  ] , (2) literature curated interactions increases the con fi dence score  [  31, 
  57  ] , (3) membrane proteins are underrepresented and  negatively affect the con fi dence 
score  [  31  ] , (4) post-translational modi fi cations (e.g., phosphorylation) may be required 
for many interactions, (5) veri fi cation with other independent techniques increase the 
con fi dence score  [  27  ] , (6) “masking” of bait or prey proteins and “self-activation” affect 
the screens  [  28,   31  ] , (7) logistic regression models increase the probability of interactions 
 [  31  ] , and (8) most studies validate interactions using detection tags or reporter fusions for 
“pull-down assays”  [  57  ] .  

    6   How Can PPI Technologies Help Us Understand  Mtb  
Virulence? 

 PPI technologies are  fl exible approaches that typically allow investigators to address 
previously unanswered questions. This is important to the mycobacteriology  fi eld 
as  Mtb  is a genetically intractable microbe for which few novel tools to determine 
virulence mechanisms are available. A widely cited rationale for exploiting PPI 
technologies in microbes is to ascribe function to genes of unknown function (e.g., 
those genes that are unique to the organism). It can be speculated that these genes 
distinguish the particular species from all other species and play a unique role in the 
biology of the microbe. Other areas in which PPI technologies can play an tim-
portant role include the identi fi cation and dissection of virulence pathways, linking 
virulence pathways with each other, and examining the components of signaling 
cascades and drug resistance pathways. Particularly relevant to the study of  Mtb  is 
the effect of in vivo environmental conditions implicated in  Mtb  persistence (e.g., 
temperature, pH, NO, superoxide, etc.) on protein–protein association. Other 
 important areas include the effect of post-translational modi fi cations on  Mtb  PPI, 
screening for drugs that disrupt PPI, and construction of a complete protein linkage 
map of the  Mtb  proteome.  
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    7   Impact of the Y2H System on  Mtb  Research 

 Over the past decade, PPI technologies have  fi lled an important void in the 
 mycobacterial  fi eld and opened up new avenues of TB research. The original discov-
ery of  Mtb  WhiB3 in 2002 using the Y2H system  [  19  ]  is a particularly good example 
for how PPI technologies can advance a particular research area. 

    7.1   Mtb WhiB3 

 It was previously established that a single-point mutation in the 4.2 region of the 
principal  s -factor  rpoV  causes loss of virulence in  Mycobacterium bovis  ( Mbov ), 
a member of the  Mtb  complex  [  58  ] . This mutation, known to result in an Arg 

515
 -

His change, was originally suggested to in fl uence recognition of the –35 promoter 
region that abolished or altered expression of a gene or subsets of genes essential 
for  virulence. However, it was hypothesized that this mutation might alter the 
interaction of RpoV with a transcription factor responsible for regulating the 
expression of one or more genes involved in virulence. An abundance of data have 
shown that  mutations in, or close to the helix-turn-helix motif in region 4.2 of bacte-
rial  d  70 -type sigma  factors results in either positive or negative effects on activation 
by transcription  factors. Subsequently, it was hypothesized that the 4.2 domain of 
 Mtb  SigA interacts with a regulatory protein that controls a subset of genes involved 
in virulence. To screen for proteins that interact exclusively with the 4.2 region of 
SigA in which the Arg 

515
 -His mutation is localized, a  sigA  DNA fragment (spanning 

region 4.2) was screened against a  Mtb  library using the Y2H system. Several clones 
contained in-frame fusions with the full-length open reading frame of  Mtb whiB3  
(Rv3416)  [  19  ] . Since it was initially hypothesized that the Arg 

515
 -His mutation 

 abolished or reduced interaction of an unknown transcription factor with the 4.2 
region of SigA, it was shown that SigA 

R515-H
  does not interact with WhiB3,  suggesting 

that the single  Arg 
515

 -His mutation abolishes the interaction of WhiB3 with SigA. 
Knock-out  studies have shown that the  Mtb whiB3  mutant behaved identically to 
the wild-type strain with respect to its ability to replicate in mice, but was  attenuated 
in terms of host survival. In addition, the  whiB3  mutant strain showed much 
reduced lung pathology, compared to wild type infected mice  [  19  ] . Intriguingly, a 
 whiB3  mutant of virulent  Mbov  was completely impaired for growth in guinea 
pigs. These mutants de fi ne a new class (“path”; pathology) of virulence genes in 
 Mtb  and  Mbov . It is notable that this virulence gene would not have been detected 
using conventional screens such as signature-tagged mutagenesis, which screen 
primarily for mutants defective in growth and not virulence. Notably, these 
 fi ndings led to the identi fi cation of WhiB3 as a 4Fe–4S cluster protein that reacts 
with NO and O 

2
   [  59  ] , and is  implicated in the metabolic switchover from using 

glucose as carbon source to fatty acids.  Mtb  WhiB3 was also shown to regulate 
virulence lipid production, function as an intracellular redox sensor  [  60  ]  and 
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 prevent the bacillus from experiencing reductive stress during infection of 
 macrophages  [  61  ]  (for a recent review on  Mtb  WhiB3, see  [  62  ] ). The above 
 fi ndings illustrate the power of PPI technologies to study virulence mechanisms 
in a genetically intractable pathogen.  

    7.2   Secretion 

  Mtb  Esat-6 and Cfp-10 are important secreted antigens that are part of the ESX-1 
secretion system, which delivers virulence proteins during infection of host 
cells  [  63  ] . These small proteins interact strongly with each other as well as 
 several other  Mtb  proteins. In recent years, the Y2H system has been  particularly 
effective in mapping  Mtb  ESX PPIs  [  64  ] , and identifying and characterizing the 
individual components of the ESX-1 secretion system  [  64–  68  ] , which has led to 
new testable hypotheses. A substantial advance in our understanding of Mtb 
protein secretion was the discovery of a C-terminal signal sequence in Cfp-10 
using the Y2H system. This C-terminal signal sequence was shown to be 
 necessary for targeting Cfp-10 and Esat-6 for secretion. Besides, the C-terminal 
seven amino acid signal sequence was suf fi cient for targeting unrelated proteins 
such as ubiquitin for secretion  [  65  ] .  

    7.3   Mtb Two-Component Signaling Proteins and Sigma Factors 

 Two-component signal transduction pathways are typically comprised of a 
 membrane bound histidine kinase and its cognate cytoplasmic response regulator. 
In response to a signal, auto-phosphorylation occurs at a conserved residue of the 
histidine kinase and subsequently the phosphate group is transferred to the 
 conserved aspartate residue of the response regulator. Even though these  interactions 
are likely transient the Y2H system was effective in examining these interactions. 
Interactions among different domains of  Mtb  HK1 (Rv0600c), HK2 (Rv0601c), 
and TcrA (Rv0602c) were  examined using the Y2H system  [  69  ] . It was found 
that HK2, but not HK1 or TcrA self-interacted, and that HK2 interacted with 
HK1 and TcrA. Lastly, the conserved receiver domain of TcrA was shown to 
interact with HK2, but not HK1  [  69  ] . In another study the Y2H system was used 
to identify proteins that interact with the sensing domain of the  Mtb  histidine 
kinase, KdpD. Two membrane lipoproteins, LprJ and LprF, were identi fi ed that 
speci fi cally associated with KdpD  [  20  ] . 

  Mtb  contains 13 sigma factors that can associate with one or more components 
of RNAP (RpoB, RpoB ¢ ,  a -subunit) under distinct environmental conditions. In 
addition, anti-anti-sigma factors can interact with anti-sigma factors (e.g., RsbW) or 
sigma factors. In extensive Y2H studies, it was shown that most anti-sigma factor 
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antagonists interact with either RsbW or SigF or both  [  70  ] . In a separate study, it 
was shown that SigK positively regulates expression of the antigenic proteins 
MBP70 and MBP83  [  71  ] . High-level expression of  sigK  was associated with a 
mutated Rv0444c, and Y2H analysis demonstrated that the N-terminal region of 
Rv0444c interacted with SigK. The authors concluded that Rv0444c functions as a 
regulator of SigK (RskA) that modulates MPT70/MPT83 expression  [  71  ] . As 
described earlier the principle sigma factor, SigA was used in Y2H screen to  identify 
the virulence factor WhiB3  [  19  ] .  

    7.4   DNA Repair 

 The Y2H system has been effectively exploited to study DNA damage and repair in 
 Mtb   [  72–  75  ] . For example, in a genome wide screen UvrD1 was identi fi ed as a 
novel interacting partner of Ku, suggesting potential cross-talk between  components 
of nonhomologous end-joining and nucleotide excision repair pathways  [  74  ] . In 
another study that examined the role of  Mtb  DinB homologs in DNA damage, Y2H 
analyses showed that DinB1, but not DinB2 interacts with the mycobacterial  b  
clamp, which is consistent with its C-terminal DNA-binding motif  [  73  ] . In a related 
study Y2H analysis showed that ImuB interact with ImuA ¢  and DnaE2 as well as 
with the  b  clamp  [  75  ] .  

    7.5   Other 

 The Y2H system has also been used to identify and characterize interacting partners 
of  Mtb  WhiB1, an iron–sulfur cluster protein  [  76  ] , the  Mtb  SUF machinery  [  77,   78  ] , 
components of FASII (KasA, KasB, mtFabH, InhA, and MabA)  [  79,   80  ] , the ABC 
transporter Rv1747  [  81  ] , resuscitation promoting factors (Rpfs)  [  82  ] , a GTP  binding 
protein (Obg)  [  83  ] , and VapBC toxin-antitoxin modules  [  84  ] .   

    8   Protein–Protein Interaction in Other Pathogens 

 PPI networks of bacteria have not yet reached the same comprehensive level as 
their yeast counterpart. An exception is the protein network of the human gastric 
 pathogen  Helicobacter pylori   [  85  ] . A high-throughput Y2H systems was used to 
screen 261  H. pylori  proteins against a highly complex library of genome-
encoded polypeptides and yielded over 1,200 interactions; connecting 46.6 % of 
the proteome  [  85  ] . The success of this approach in detecting new protein interac-
tions and assignment of previously un-annotated proteins to new pathways lead 
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to many such studies using the Y2H system to develop PPI maps for  Plasmodium 
falciparum   [  86  ] ,  Rickettsia sibirica   [  87  ] ,  Bacillus anthracis ,  Francisella tularen-
sis ,  Yersinia pestis   [  88  ] ,  Campylobacter jejuni   [  89  ] ,  Treponema pallidum   [  90  ]  
and viruses including HIV and HCV  [  91  ] . Unfortunately, these high-throughput 
screens are plagued by many drawbacks including false positives and negatives, 
and the temporal or spatial requirement of expression and post-translational 
modi fi cations. Consequently,  high-throughput PPI approaches have been aug-
mented by the addition of techniques such as protein arrays and mass spectrom-
etry  [  92–  94  ] . 

 While evaluating intra-bacterial PPIs provides a unique resource to identify 
essential cell processes and protein targets for drug screens against pathogenic 
 bacteria, assessing interactions between host and bacterial proteins are imperative 
for understanding the mechanism of disease pathogenesis. Using a high-throughput 
Y2H screen, extensive host–pathogen PPIs have been identi fi ed for the pathogens 
 B. anthracis ,  F. tularensis , and  Y. pestis . Though the three pathogens cause different 
diseases (anthrax, lethal acute pneumonic disease and bubonic plague, respectively), 
PPIs pointed to similar mechanisms of immune modulation. For example, both  B. 
anthracis  and  Y. pestis  proteins interact with host major histocompatibility complex 
proteins, whereas TGF- b 1 was shown to interact with  Y. pestis  and  F. tularensis  
proteins. In sum, a network of 3,073 human- B. anthracis , 1,383 human- F.  tularensis , 
and 4,059 human- Y. pestis  PPIs were identi fi ed. The networks included 304 
 uncharacterized proteins from  B. anthracis , 52 from  F. tularensis , and 330 from  Y. 
pestis   [  88  ] . 

 Using three datasets that include physical interaction assays, genome-wide 
RNA interference (RNAi) screens, and microarray assays, the  fi rst draft of the 
mosquito PPI network was developed for the Dengue virus (DENv) carrier. This 
PPI network included 4,214  Aedes aegypti  proteins with 10,209 interactions 
 [  95  ] . The study identi fi ed 714 putative DENv-associated mosquito proteins, and 
RNAi-mediated gene silencing of some of the highly interconnected proteins 
reduced the dengue viral titer in mosquito midgets. This observation further 
underscores the importance of identifying critical host–pathogen PPIs, which 
can provide an immense resource for identifying prospective antimicrobial drug 
targets. 

 In an attempt to characterize essential cellular process in  Bacillus subtilis , a PPI 
network was generated that comprised 793 interactions that connected 287 proteins. 
Further evaluation of these hubs provided insights into distinct subgroups of PPI 
corresponding to protein networks or regulatory pathways differentially expressed 
under diverse conditions  [  96  ] . These PPI network data are a valuable resource for 
the functional annotation of genes of unknown function and integration of cellular 
pathways. 

 In addition to the Y2H system, high-throughput pull-down strategies combined 
with quantitative proteomics have also been used to decipher interacting circuits in 
methicillin-resistant  Staphylococcus aureus   [  97  ] . Several highly connected hub 
proteins were identi fi ed. Notably, examination of the PPI network of  S. aureus  drug 
targets indicated that most of the clinical or experimental drugs targets lie at the 



915 Protein–Protein Interaction in the -Omics Era...

periphery of the interacting circuit with few interacting partners. In contrast, the 
proteins that lie at the network hub, which could logically serve as a better target, 
were overlooked as drug targets  [  97  ] .  

    9   Considerations for Mycobacterial PPIs 

    9.1   Some Mycobacterial Proteins Interact Exclusively in Their 
Native Environment 

 Although many bacterial PPIs have been identi fi ed in the Y2H system, it is logical 
to expect that some bacterial protein interactions may require the native  cytoplasmic 
or membrane environment. For example, using M-PFC some  Mtb  proteins were 
shown to only interact in mycobacterial cytoplasmic environment, but not in yeast 
 [  52  ] . In an independent study, detection of interactions between Pup and other  Mtb  
proteasome components in  E. coli  was unsuccessful. However, using M-PFC and 
therefore  Msm  as host, a strong interaction was observed between Pup and the 
 proteasome substrate FabD  [  53  ] .  

    9.2   Some Mycobacterial Proteins Require More Than One 
Protein for Interaction 

 Since all in vivo PPI methods (with the exception of the Y3H system) are binary 
systems that can detect interaction between only two proteins, interacting partners 
that require the presence of two or more proteins might be missed. In a recent study 
that made use of a modi fi ed M-PFC system, the  Mtb  ESX secretory system was 
examined by using a single fusion protein comprised of EsxB and EsxA as bait 
 [  98  ] . Three novel prey  proteins, Rv3869, Rv3884 and Rv3885 were identi fi ed, 
whereas the single bait protein EsxB was unable to interact with any of these three 
proteins  [  98  ] . Exploiting fusion proteins that naturally associated in mycobacteria 
as bait has broad implications for the characterization of  Mtb  protein complexes, 
and may open new avenues of research. 

 The Y3H system was also exploited to delineate the molecular interactions 
between two membrane proteins and the  Mtb  two-component sensor kinases 
KdpD  [  20  ] . In this system, a third protein acts as a bridge between two proteins 
and can stabilize, enhance, or prevent interaction between proteins. The third 
protein is under the control of the inducible methionine promoter that is 
 positively regulated in media lacking methionine. In this study LprJ and LprF 
were shown to modulate the interaction between N-KdpD and C-KdpD, and it 
was speculated that it is this ternary protein complex that modulates the 
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 KdpE-speci fi c phosphatase activity of KdpD to regulate the expression of the 
KdpFABC system  [  20  ] .  

    9.3   Post-translational Modi fi cation Can Affect PPI in the Y2H 
System 

 In 2003, a Y2H assay was developed to examine nitric oxide (NO)-dependent PPI 
 [  99  ] . Deleting yeast hemoglobin, which consumes NO very ef fi ciently, was essen-
tial to the success of this approach. In this study, the authors screened a library of 
proteins that interact with procaspase-3 only in the presence of NO and identi fi ed 
four clones, iNOS, ASM, IRG and PGM  [  99  ] . These  fi ndings suggest that 
S-nitrosylation regulates PPI and may profoundly in fl uence cellular signaling. 

 In another study, in vitro proteomic analysis identi fi ed numerous thioredoxin 
(TRX) targets. However, in vivo approaches failed to identify the expected number 
of TRX targets  [  100  ] . This problem was solved by constructing a speci fi c yeast 
strain that contains deletions of genes encoding cytosolic TRX1 and TRX2. 
Subsequently, numerous TRX interacting partners were identi fi ed, whereas the 
same interactions could not be detected in the classic Y2H strain  [  100  ] . The above 
 fi ndings are highly relevant for studying mycobacterial PPIs, and illustrate the 
f undamental concepts that (1) proteins only interact when functionally required, (2) 
essential genes can be studied since genetic knockouts are not required, and (3) 
genes that are transcriptionally switched off can be studied since constitutive pro-
moters are being used in the PPI systems.   

    10   Molecules That Dissociate or Force Protein–Protein 
Interaction 

 Despite recent successes  [  101–  103  ] , no new effective anti-tuberculosis drugs have 
been developed in the past 40 years. As a result, a high priority of the Global Alliance 
for TB Drug Development is the generation of new drugs with activity against 
 dormant bacilli as well as the discovery of agents which could shorten or simplify 
the treatment of active TB. TB can be cured with existing drugs; however, the 
6–9 months of treatment lead to patient noncompliance, which enhances drug 
 resistance. Approximately 50 million people are already infected with MDR-TB 
 [  2  ] . While drug-sensitive TB can be cured with isoniazid, rifampin, ethambutol and 
pyrazinamide following a 6-month regimen, treatment of MDR-TB can exceed 
2 years, thus dramatically increasing costs. 

 How can PPI in pathogenic microbes contribute to the discovery of new drugs? 
Tightly regulated PPIs are required for cellular functions in all living systems. The 
necessity for proper protein placement within enzymatic and receptor–ligand 
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 complexes, cell signaling pathways, and PPIs lend to the appeal of disruption of 
critical PPIs as therapeutic intervention. However, it should be noted that PPIs that 
participate in virulence or persistence pathways may only be induced in vivo and 
therefore, not be susceptible to drugs in in vitro screens and must be identi fi ed through 
other means. PPIs in particular share complimentary interfaces and “hot spots” with 
one another  [  104,   105  ] , in which the primary forces that drive two proteins to interact 
are: van der Waal’s forces, electrostatic interactions, hydrogen bonds, and hydrophobic 
interactions  [  106–  110  ] . Successful “disruption” of these interactions by an inhibitor, 
while not necessarily always in the context of protein–protein separation would be 
considered as any compound which modulates a protein interacting complex to 
achieve a desired therapeutic outcome and/or downstream effect. 

 Among several well-known inhibitors that modulate PPI, common mechanisms 
of action have emerged: prevention of PPI via protein binding, allosteric inhibition 
and, forced dissociation and association. More importantly, their method of action 
differs from drugs that prevent substrates from binding to active sites on enzyme 
complexes, as these sites are often marked with clear, de fi ned pockets  [  111  ] . PPI 
inhibitors can include peptides, drugs, and small molecule compounds. These PPI 
inhibitors exert their functions over a range of target protein complexes in different 
cell types and have been reviewed over recent years  [  112–  115  ] . 

 Many inhibitors that prevent protein interaction have been shown to bind with 
amino acid residues that comprise “hot spots” at the protein–protein interface. 
Inhibitors form a complex with a protein at the binding site to structurally alter or 
prevent natural association of the cognate partner protein. For example, structural 
biology studies revealed that nutlins, a series of  cis -imidazoline analogs identi fi ed 
via high-throughput screening, act by binding to three dominant residues of the p53 
binding site on MDM2 and display in vitro and in vivo antitumor activity  [  116, 
  117  ] . Virstatin is an example of a compound that targets the dimerization domain of 
ToxT, a homodimer that regulates the production of cholera toxin and toxin co-
regulated pilus in  Vibrio cholera . Bacterial two-hybrid assays with ToxT truncation 
mutants demonstrated that virstatin speci fi cally targets the N-terminal dimerization 
domain of ToxT  [  118,   119  ] . 

 PPI can also be modulated when compounds bind distally to the protein interaction 
interface, that cause structural changes that prevent PPI without competition for protein 
binding sites. Such allosteric modi fi cations have been documented for compounds that 
inhibit iNOS dimerization  [  120,   121  ] . PPA250, BBS-2, and clotrimazole are com-
pounds that bind to the heme cofactor in the protein active site, which subsequently 
distort the  a -helices  [  120  ]  or the 8b and 9b  b -strands  [  121  ]  to prevent iNOS 
dimerization. In addition, other examples of allosteric inhibitors have been 
 demonstrated for CBF b -RUNX1, LFA-1-ICAM-1, and  b -lactamase  [  122–  124  ] . 

 Inhibitors that dissociate preexisting protein complexes are functionally different 
from those that prevent protein dimerization. The most notable example of this 
method is TNF- a , whose active complex is maintained as a homotrimer when bound 
to its receptor. He et al.  [  125  ]  demonstrated that at low TNF- a  concentrations, the 
compound SPD00000034 bound to the pre-associated TNF- a  trimer and promoted 
the dissociation of the active complex into dimer and monomer subunits. Similarly, 
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previous studies have shown that the GroEL multimeric complex can exist in an 
“open” state, which allows 4,4 ¢ -dithiodipyridene to bind to an otherwise inaccessible 
Cys 458 , leading to GroEL subunit disassembly  [  126  ] . More recently, a proof-of- concept 
quantitative HTS screen was developed to screen for small-molecule inhibitors of 
 Mtb  PPI  [  54  ] , which demonstrated the versatility of M-PFC. 

 Finally, several compounds modulate PPI by inducing the formation of previously 
unassociated complexes or by stabilizing protein complexes. Chemical inducers exist 
for the p66 and p51 subunits of HIV-1 reverse transcriptase  [  127  ] . However, the most 
well-known example of forced protein association comes from studies involving a 
physical relationship between immunophilins, their ligands, and their target  [  128  ] . 
FK506, rapamycin, and cyclosporine, are examples of hydrophobic, immunosuppres-
sive ligands that contain two protein binding surfaces which mediate interactions 
between FKBP12 or cyclophilin  [  128,   129  ]  and their corresponding target protein. In 
mammalian cells, the FKBP12–FK506 complex binds to and inhibits calcineurin 
phosphatase activity  [  130  ] . The FKBP12–rapamycin complex binds to the rapamycin 
binding domain (FRB) of FRAP  [  131  ] . The resulting complexes affect different 
immune responses and can lead to programmable physiological responses. 
Furthermore, these binding partners have led many researchers to exploit forcible 
ligand binding of effector molecules for the development of inducible PFC assays 
(PCA)  [  132–  135  ] . In mycobacteria, a rapamycin inducible mycobacterial-PFC 
(RAP-inducible M-PFC) assay was developed as proof-of-concept to show forced 
interaction in bacterial cells, where FKBP12 and FRB were independently fused to 
the DHFR reporter fragments F-[1,2] and F-[3], respectively. Association of 
FKBP12 and FRB could only be detected in the presence of the selective drug 
trimethoprim and nanomolar concentrations of the rapamycin ligand  [  54  ] . Taken 
together, the M-PFC and the RAP-inducible M-PFC systems are powerful methods 
used to identify interacting proteins in protein networks, where in future studies, 
vehicles like FKBP12-ligand binding can be designed and utilized to manipulate 
PPIs in mycobacteria (Fig.  5.1e ). In short, the ability of these effector molecules to 
bridge or induce dimeric and multimeric complexes paves the way for potential 
applications in controlling protein pathways for therapeutic and experimental stud-
ies  [  129,   136,   137  ] .  

    11   In Silico Methods for Predicting PPI 

 Over the past few decades, knowledge of PPI has been generated primarily from 
biochemical and genetic experimentation approaches such as Y2H systems, 
 pull-down assays, mass spectrometry, co-related mRNA expression, and protein 
arrays. However, despite the best attempts to collect experimental data on different 
organisms, the rate of discovery remains slow (e.g., approximately <10 % of  interactions 
in humans have been experimentally characterized). With the advent of the genomic 
era, several computational and bioinformatics-based approaches have been developed 
to infer PPI. These in silico approaches exploit annotated information from  established 
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observations and use the structural, genomic, and biological context of proteins and 
genes from completely sequenced genomes to predict protein interaction networks 
 [  138,   139  ] . These in silico methods may rely on information gleaned from protein 
structure, gene sequence and the presence or absence of genes across numerous 
genomes, conserved gene neighborhoods across different species, co-expression of 
genes in transcriptome studies, involvement of proteins in a common metabolic 
pathway, curation of published literature or a combination of these datasets  [  140–
  145  ] . High-resolution three-dimensional (3D) structures of interacting proteins pro-
vide the best source of information with atomic description of the binding interfaces 
based on hydrophobicity, charge, and thermodynamic constraints of the interaction 
 [  140,   146  ] . Several approaches have been developed that include computational mod-
eling of homologous proteins based on previously known structures, or domain or 
sequence signature analysis if the complete structure of a homologous protein is not 
available  [  147,   148  ] . For example, Inter PreTS (EMBL Heidelberg) is a popular 
resource, which for any pair of query sequences  fi rst searches for homologues in a 
database of interacting domains of known 3D complex structures  [  149  ] . Pairs of 
sequences homologous to a known interacting pair are scored for how well they 
preserve the atomic contacts at the interaction interface and a priority ranking is 
used to score for possible interacting partners. 

 A number of structure-based computational methods have been developed for 
the prediction of PPIs, which utilize advances in the  fi eld of genomics. One such 
popular approach, known as phylogenetic pro fi ling  [  150  ] , is based on the pattern of 
the presence or absence of a given gene in a given set of genomes. This method could, 
for example, ascertain the distribution of a speci fi c gene in different species  [  151  ] . 
Any similarity of phylogenetic pro fi les might then be interpreted as being indicative 
of the functional need for corresponding proteins to be present simultaneously to 
 perform a given function together. This approach stems from the idea that functionally 
linked proteins would co-occur in genomes and that the phylogenetic trees for known 
interacting protein families tend to show a higher degree of similarity than trees for 
noninteracting proteins. In several cases, the similarity in topology of phylogenetic 
trees has been considered as a positive indication towards establishing the  likelihood 
of interacting proteins pairs, especially in the case of protein partners that may have 
co-evolved (mirror tree approach)  [  150  ] . Likewise, co-localization-based approaches 
are based on the notion that physically interacting (or functionally associated) pro-
teins must co-evolve to preserve their ability to interact with one another  [  152  ] . This 
is especially relevant in the case of prokaryotes, which have operonic transcription 
units. 

 Genomic context-based approaches also exploit gene fusion events, which can 
be considered as the ultimate form of co-localization as the fusion of two  independent 
genes to encode a single unrelated polypeptide (called a Rosetta stone protein) 
retains the physical proximity of the two peptides, but also makes them a single 
entity  [  142  ] . Publically available databases that provide support for gene context 
and co-localization analyses include FUSION DB, STRING and PHYDBAC. 

 Another robust tool implementing genome context-based analysis is based on 
the Integrated Microbial Genomes (IMG) database. The IMG provides one of the 
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largest genome integrations, containing ~7,000 complete and draft genomes across 
all three domains of life  [  153  ] . Similarly, an in silico two-hybrid method has been 
proposed, based on the study of correlated mutations in multiple sequence alignments. 
In this method, pairs of multiple sequence alignments with a distinctive co-variation 
signal are analyzed based on the hypothesis that co-adaptation of interacting proteins 
can be detected by the presence of a distinctive number of compensatory mutations 
in the corresponding proteins of different species  [  154  ] . 

 Similar to wet lab-based approaches, most computational approaches have 
 intrinsic limitations  [  155  ] . For example, the success of most of sequence and genomic 
context-based approaches requires extensive analysis of completely sequenced 
genomes, whereas the success of phylogenetic tree-based methods depends on the 
number and distribution of genomes used to build the tree  [  156  ] . Similarly, gene 
fusion-based methods may be confounded by errors caused by the occurrence of 
lateral gene transfer events in prokaryotes and the longer multi-gene architecture of 
eukaryotes  [  157  ] . Likewise, despite providing the highest quality information on 
PPI, protein structure-based approaches are restricted in their scope because of the 
limited availability of high quality protein structures in the databases and the high 
cost associated with determination of protein structures. 

 There is a clear need to unify genome sequencing and functional genomics data 
using computational tools to minimize the discrepancies associated with the use of 
a single approach. Several worthy attempts have been made in this direction. In 
addition, there is an encouraging community-driven initiative in the form of 
 guidelines such as “MIMIx” and “MIAPE, which are the minimum information 
required for reporting a molecular interaction experiment” or a proteomics experi-
ment, respectively  [  158,   159  ] . Under this initiative, a checklist of information has 
been provided, which every scientist must furnish when describing experimental 
molecular interaction data in an article, displaying data on a website or depositing 
data directly into a public database.  

    12   Integrative Physiology: The Emergence of Systems Biology? 

 Proteins are the catalytic effectors that carry out the intent of the microbial cell, but 
protein levels do not necessarily correlate with gene expression. For example, a lack 
of correlation was found between mRNA level and the corresponding protein level 
in  Haemophilus in fl uenza  exposed to antibiotics  [  160  ] , increased cell density in 
 E. coli  cultures  [  161  ] ,  Bacillus subtilis  exposed to peroxide stress  [  162  ] , exponen-
tially growing  S. cerevisiae  cells  [  163  ] , and  S. cerevisiae  exposure to lithium  [  164  ] . 
This demonstrates the challenges of correlating mRNA expression levels with pro-
tein levels, and highlights the role of post-transcriptional regulatory control. 
Furthermore, some studies have observed a disparity between gene expression pro fi les 
and  metabolic  fl ux. This was elegantly demonstrated by analysis of the transcriptome, 
metabolome, and  fl uxome of  Corynebacterium glutamicum   [  165  ] . Integrating PPI 
data with  complementary high-throughput techniques such as transcriptomes, 
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 proteomics, metabolomics, and  fl uxomics represent unique opportunities to study 
and predict  Mtb  protein function through systems biology (Fig.  5.2 ).   

    13   Conclusions 

 Tuberculosis research is primarily driven by the quest for a better understanding of 
how  Mtb  causes disease. The past decade, the Y2H system and mycobacterial PPI 
technologies gave mechanistic insight into distinct aspects of  Mtb  virulence, patho-
genesis and have stimulated antimycobacterial drug discovery efforts. PPI studies 
are particularly powerful to provide information about the function of genes with 
unknown function through “guilt by association.” Not surprisingly, it is anticipated 
that the integration of functional data from PPI networks with the emerging discipline 

  Fig. 5.2    Integrated analyses methodology depicting the role of PPI in TB systems biology. 
Towards this end, regulatory networks (gene expression arrays), proteomics,  fl uxomics and PPI 
networks have already begun to be established, but are commonly represented as static set of nodes 
to represent the components of the network (mRNA, proteins, metabolites, etc.). The ultimate goal 
will be to develop, test, and validate mathematical models that represent cellular components and 
their interactions to eventually predict cellular function.  TAP  tandem af fi nity puri fi cation,  IP  
immunoprecipitation,  SPR  surface plasmon resonance       
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of systems biology could prove particularly useful to provide a better understanding 
of  Mtb  persistence. Although mycobacterial PPI networks have already begun to be 
established, the current focus is still on high-throughput PPI tool development, which 
is still lacking for mycobacteria. In addition, despite the generation of a single  Mtb  
PPI map using  E. coli  as surrogate host, the more important stage of data  interpretation, 
validation and integration with mycobacterial physiology is lacking. A future  challenge 
would be to interconnect increasing amounts of mycobacterial PPI data with the PPI 
networks of other bacterial pathogens and its integration with other genome-wide 
databases, which should lead to new testable hypotheses. The generation of 
 high-throughput global datasets will be an expensive venture that requires detailed 
knowledge about mycobacterial physiology, metabolism, pathogenesis, and 
 computer modeling, which will contribute to a goal understanding of  Mtb  
pathogenesis.      
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  Abstract   The ability to genome sequence mycobacteria and host organisms has 
enabled a range of system-wide approaches to be developed to explore the interplay 
between host and pathogen. These global analyses offer an unbiased means of gen-
erating new hypotheses to further understand bacterial pathogenesis and immune 
activation states.  Mycobacterium tuberculosis  high-throughput mutant screening 
has identi fi ed key genes and pathways involved in mycobacterial physiology or 
pathogenicity that are required in vivo or during macrophage infection. Reciprocal 
genome-wide RNAi-based screening approaches have highlighted host genes that 
play crucial roles in the immune and metabolic crosstalk with infecting bacilli. In 
addition to these loss-of-function screens, transcriptional pro fi ling of the pathogen, 
of the host, or of both together has provided clues into the divergent metabolic states 
and key signalling events that characterise  M. tuberculosis  infection. Such global 
analyses, linked in a systems approach through interaction databases and network 
mapping, allow descriptive and predictive models of infection and disease to be 
constructed. In this chapter we review the recent developments and applications of 
these system-wide approaches to better understand the interactions of  M. tuberculo-
sis  with its host.      
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    1   Introduction 

 In the post-genomic era, the development of a variety of system-wide approaches has 
allowed host–pathogen interactions to be examined on a global level. Genomic analyses 
offer an unbiased means of generating new hypotheses to further understand bacterial 
pathogenesis. In the case of the tuberculosis bacillus, several high-throughput 
 Mycobacterium tuberculosis  mutant screening studies performed during macrophage 
infection or in vivo have identi fi ed key genes and pathways involved in  mycobacterial 
physiology and required for virulence. More recently, genome-wide RNAi-based 
screening approaches have highlighted host genes that play crucial roles in the immune 
and metabolic crosstalk with infecting bacilli. In addition, global gene expression 
pro fi ling of the pathogen, of the host, or of both together has provided clues into the 
divergent metabolic states and key signalling events that characterise  M. tuberculosis  
pathogenesis. As such, temporal analyses describing the changing interplay between 
bacilli and macrophage as infection progresses are particularly useful, allowing 
 descriptive and predictive models to be constructed. In this chapter we review the 
recent developments and applications of these system-wide approaches to better under-
stand the interactions of  M. tuberculosis  with its host. We illustrate how transcriptome 
analysis coupled to models of signalling and transcription  networks can help to suggest 
novel interactions of potential importance during infection. This systems approach to 
interpreting host–mycobacterial interplay is summarised in Fig.  6.1 .   

    2   Functional Genomics to Identify Mycobacterial Virulence 
Genes 

 Understanding how a pathogen and its host adapt to each other during the course of 
infection is key to developing new tools and better strategies to combat infectious 
disease. Over 10 years ago sequencing the  M. tuberculosis  genome  [  1  ] , together with 
the development of genetic tools to inactivate genes in random or targeted approaches 
 [  2  ] , allowed novel virulence genes and loci involved in pathogenesis and host 
 parasitism to be discovered on a genome-wide level. Two studies published in 1999 
made use of a functional genomics approach developed earlier in  Salmonella   [  3  ] , 
signature transposon-tagged mutagenesis (STM), using medium-size pools of  M. 
tuberculosis  mutants to identify  M. tuberculosis  genes important during infection in the 
mouse model  [  4,   5  ] . Both studies highlighted phthiocerol dimycocerosates,  complex 
lipids of the mycobacterial cell wall, as key components of mycobacterial  pathogenicity. 
PDIMs now constitute a prototypic example of a complex molecule of the  mycobacterial 
cell envelope involved in pathogenesis; yet their exact function and mode of action still 
remain to be fully understood  [  6,   7  ] . A few years later, the generation of novel tools 
for transposition and tracking of transposon mutants using a microarray-based  strategy, 
termed transposon site hybridization, allowed gene insertion events to reach saturation 
levels. This enabled the authors to classify virtually all mycobacterial genes required for 
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successful infection in the mouse model in a  high-throughput and system-wide 
manner  [  8–  10  ] . In these studies, Sassetti and Rubin used a library of 100,000 trans-
poson mutants, in which almost all non-essential genes were inactivated and looked 
for mutants impaired in their ability to grow in various in vitro and in vivo condi-
tions, including murine lungs. Although the mouse model is not ideal for studying 
mycobacterial virulence, it nevertheless provides an  indication of the relative impor-
tance of mycobacterial pathways for in vivo survival. In this way, a number of genes 
predicted to be involved in secretion, lipid metabolism, carbohydrate transport and 
metabolism, inorganic ion transport and metabolism, cell envelope biogenesis, and 
amino acid transport and metabolism were recognised. Many of these genes had not 
previously been shown to play a part in mycobacterial virulence in vivo. A number 
of genes with unknown function speci fi c to mycobacteria were also discovered; this 
raises the intriguing question of the role of ancient horizontal gene transfer events 
in mycobacterial physiology and pathogenicity (see below)  [  11  ] . Similar approaches 
have been used in other animal models that more closely resemble human disease, 
such as non-human primates (NHPs)  [  12  ] . Again in this study, a number of previ-
ously underappreciated genes, for example, involved in lipid metabolism and trans-
port, biosynthesis of the cell wall, and sterol metabolism were classi fi ed to be 
functionally signi fi cant for mycobacterial pathogenicity in vivo. 

 More recently, screening approaches have been developed to detect mycobacte-
rial genes involved in pathogenic processes at the host cell or sub-cellular levels. 

  Fig. 6.1    An interaction network of techniques and approaches used to study host–pathogen inter-
play. The complementary methodologies are linked together by bioinformatics tools and databases 
( shaded grey ) in a systems approach to understanding infection and disease       
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 M. tuberculosis  genes mediating parasitism of the macrophage, the primary host cell 
for pathogenic mycobacteria in the lungs, have been identi fi ed through STM  [  13  ] . 
 M. tuberculosis  genes involved in phagosome remodelling have been determined 
using magnetic organelle sorting,  fl ow cytometry and high-throughput confocal 
microscopy-based approaches  [  14–  16  ] . The ability of pathogenic mycobacteria, such 
as  M.  tuberculosis , to arrest phagosome maturation and to remain in an immature, 
mildly acidic and non-proteolytic environment is thought to be a key feature of myco-
bacterial virulence  [  17  ] . Using an elegant and innovative approach based on mag-
netic organelle sorting from ferritin-loaded macrophages, Pethe  et al .  [  15  ]   isolated 
and characterised mycobacterial mutants defective in phagosome  maturation arrest 
and thus traf fi cked to ferritin-loaded phago-lysosomes  [  15  ] . Interestingly, some of 
these mutants were again impaired in PDIMs synthesis or export, shedding new light 
on the role of these  complex lipid moieties in intracellular mycobacterial traf fi cking, 
as recently reported by others  [  6  ] . In a similar approach, Stewart et al.  [  16  ]  used  fl ow 
cytometry to sort mycobacterial phagosomes from  fl uorescent LysoTracker-loaded 
phago-lysosomes, and was able to isolate and identify  mycobacterial mutants defec-
tive in inhibition of phagosome acidi fi cation  [  16  ] . More recently, we have used high-
throughput confocal microscopy to screen a genome-covering library of 
 M. tuberculosis  W-Beijing mutants  [  14  ] . Over 11,000 random transposon mutants 
were used to infect human macrophages in high-density 384-well plates in a one-well 
one-mutant manner. Infected cells were stained with the acid-speci fi c dye LysoTracker. 
Mutants that colocalised with the dye were selected and their transposon insertion 
sites were sequenced. Two independent mutants in  Rv1503c  and  Rv1506c , which 
belong to the same genetic locus in the mycobacterial chromosome, and two other 
mutants in  moaC1  and  moaD1 , which belong to another locus likely involved in 
synthesis of the molybdopterin cofactor, were isolated. Furthermore, we showed that 
the  Rv1503c/6c  locus is involved in the synthesis of trehalose-containing glycolipids, 
thus establishing a link between these lipids and the ability of pathogenic mycobac-
teria to prevent phagosome acidi fi cation. These studies illustrate how system-wide 
functional genomics approaches help to identify mycobacterial virulence genes and 
gene clusters in an unbiased manner. Strikingly, all these studies reported mutants in 
intergenic regions of the  mycobacterial chromosome. This raises the intriguing ques-
tion of the functional signi fi cance of  non-coding small RNAs (sRNA) in  M. tubercu-
losis  pathogenicity  [  18  ] . As in other bacterial species, it is likely that sRNA play key 
roles in  M. tuberculosis  virulence by regulating the expression of other genes. Such 
 fi ndings lay the foundations for  functional epigenomics in mycobacteria which will 
bene fi t from the development of new genomics tools in the future.  

    3    In Silico  Mycobacterial Genomics 

 As more mycobacterial genomes have been sequenced over the years, genome com-
parison and in silico genomics have provided clues to mycobacterial pathogenicity. 
Comparative genomics identi fi ed the attenuation of the vaccine strain,  M. bovis  
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BCG, to be a major deletion in its chromosome (the RD1 region of difference) as 
compared to the  M. tuberculosis  or the  M. bovis  chromosomes  [  19  ] . More recently, 
we and others have used  in silico  and comparative genomics to identify several 
chromosomal regions in  M. tuberculosis  that were most likely acquired by the 
ancestor of the  M. tuberculosis  complex through horizontal gene exchanges  [  20–
  23  ] . Strikingly, most of these regions are predicted to be acquired from environmen-
tal bacterial species, thus strengthening the long-thought hypothesis that the ancestor 
of  M. tuberculosis  was an environmental species that has gradually been “educated” 
to become pathogenic, and in particular to parasitise phagocytes  [  11  ] . Studying the 
role of these ancient horizontally acquired genes in mycobacterial physiology and 
virulence is now ongoing in several laboratories.  

    4   Functional Genomics to Recognise Host Genes Mediating 
the Response to Mycobacteria 

 A system-wide exploration of the role of host immuno-regulatory pathways in 
mycobacteria interactions is now possible because of the development of genetic 
tools to silence gene expression in eukaryotes using RNA interference (RNAi). 
Such approaches have been successfully used to identify host genes contributing to 
mycobacterial growth restriction in drosophila cells  [  24,   25  ]  and more recently in 
mammalian cells  [  26,   27  ] . The future use of RNAi-based genetic screening tech-
niques in multicellular organisms, such as the zebra  fi sh, that can be infected by 
 Mycobacterium marinum , a close relative of  M. tuberculosis , will undoubtedly 
allow further understanding of the importance of speci fi c host genes in immunity to 
mycobacteria in vivo. Thus, the application of whole genome approaches screening 
for mycobacterial survival or observable changes in macrophage–mycobacteria 
interactions, such as differential phagosome traf fi cking, has identi fi ed both host and 
pathogen genes that in fl uence the outcome of infection. Comparative genomics 
have provided historical and geographic context to these genes and enabled myco-
bacterial pathogenicity to be directly associated with particular gene clusters. The 
transcriptional regulation of host and  M. tuberculosis  genes during infection pro-
vides yet another key perspective into these multi-factorial interactions.  

    5   Transcriptional Pro fi ling Mycobacteria Interactions with 
Phagocytes 

 Techniques that exploit the differential regulation of genes during infection have 
been employed for many years to de fi ne the dialogue between  M. tuberculosis  
bacilli and host immune cells. Selective approaches such as subtractive hybridisa-
tion  [  28,   29  ] , promoter trap library screening  [  30  ] , in situ hybridisation  [  31  ] , and 
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quantitative RT-PCR  [  32  ]  have identi fi ed key genes highlighting pathways involved 
in the phagocytosis and survival of  M. tuberculosis  in host cells. Sequencing of the 
 M. tuberculosis  H37Rv genome  [  1  ] , and subsequent mouse  [  33  ]  and human genomes 
 [  34  ] , heralded the age of genome-wide expression pro fi ling using microarrays, qRT-
PCR panels or more recently RNAseq  [  35  ] . These whole genome approaches 
together with the continued development of mRNA extraction, stabilisation, and 
ampli fi cation methodologies  [  36–  40  ]  have enabled previously intractable scenarios 
to be investigated, generating rich datasets describing host and pathogen responses 
to infection. 

 The  fi rst studies measuring transcriptional changes in host cells contrasted the 
gene expression patterns of macrophages after infection with different pathogens. 
For example, by comparing the macrophage responses to  M. tuberculosis  with six 
Gram-positive or Gram-negative bacteria, Nau et al.  [  41  ]  de fi ned a common mac-
rophage activation signature and observed that interleukin (IL)-12 and IL-15 were 
not induced by  M. tuberculosis  infection. This distinguished the macrophage 
response to  M. tuberculosis  from other bacterial pathogens and suggested that 
 M. tuberculosis  may actively suppress macrophage pro-in fl ammatory processes. 
A similar approach has been employed to understand how events diverge between 
phagocytes and virulent or attenuated  M. tuberculosis  laboratory strains (H37Rv or 
H37Ra, respectively). Spira et al.  [  42  ]  recognised a pro-apoptotic signature in alve-
olar macrophages after infection with H37Ra versus H37Rv, which was abrogated 
upon neutralisation of tumour necrosis factor (TNF). Thus, contributing to the 
hypothesis that virulent  M. tuberculosis  bacilli prevent macrophage programmed 
cell death mediated by TNF. In the converse experimental approach, Chaussabel 
et al.  [  43  ]  contrasted the responses of different immune cell subtypes (monocyte-
derived macrophages and dendritic cells (DCs)) to infection with the same  pathogens. 
Such analyses have identi fi ed microbe-speci fi c and cell-speci fi c activation 
 programmes that re fl ect the multi-factorial interplay of immune cell colonisation, 
providing insight into novel pathways in fl uencing bacterial control and evasion of 
these processes by pathogens. We used the disparate ability of human monocyte-
derived macrophages and DCs to control  M. tuberculosis  infection to compare the 
transcriptional responses of both host cell and infecting bacilli to the development of 
permissive and non-permissive intracellular microenvironments (in macrophages 
and DCs, respectively)  [  44  ] . This study revealed that a number of zinc-responsive 
genes were up-regulated in macrophages after  M. tuberculosis  infection and that 
correspondingly  M. tuberculosis  genes encoding heavy metal transporters were also 
induced after phagocytosis. Extension of this work demonstrated that zinc accumu-
lation in phagosomes was toxic to engulfed non-tuberculous bacteria, uncovering a 
new macrophage anti-microbial strategy, and that  M. tuberculosis  bacilli are able to 
avoid zinc poisoning by inducing metal cation ef fl ux pumps during macrophage 
infection  [  45  ] . 

 Exploring macrophage transcriptional adaptations to  M. tuberculosis  infec-
tion may also contribute to understanding how genetic background in fl uences 
 susceptibility to tuberculosis. Keller et al.  [  46  ]  compared the responses of 
murine bone marrow-derived macrophages extracted from C57BL/6 and 
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BALB/c ( representing M. tuberculosis -resistant) with DBA/2 and CBA/J ( M. 
tuberculosis- susceptible) mouse strains. The authors highlighted over 100 genes 
whose expression during the early phases of infection may, in part, be responsible 
for the contrary progression of tuberculosis disease in these genetically distinct 
mice lineages. Thuong et al.  [  47  ]  extended this concept to investigate human genetic 
susceptibility to tuberculosis, examining the transcriptional responses of monocyte-
derived macrophages from patients with latent versus pulmonary tuberculosis to  M. 
tuberculosis  antigen stimulation. By combining gene expression pro fi ling with sin-
gle nucleotide polymorphism mapping, the authors showed that the function of 
chemokine (C–C motif) ligand 1, CCL1, may be associated with pulmonary tuber-
culosis in man. The combination of mRNA pro fi ling and targeted gene inactivation 
is a powerful tool for recognising key host immune-mediators. Ehrt et al.  [  48  ]  
mapped the transcriptional signatures of bone marrow-derived murine macrophages 
from WT, iNOS-de fi cient, or phox91-de fi cient mice to  M. tuberculosis  infection, 
framing roles for nitric    oxide synthase 2 (iNOS) and phagocyte oxidase (phox) in 
the control of  M. tuberculosis . Furthermore, this strategy has been extended to char-
acterise MyD88 (myeloid differentiation primary response gene 88)-dependent and 
MyD88-independent pathways of macrophage activation following  M. tuberculosis  
infection and continues to delineate signal transduction pathways that mediate mac-
rophage activity by comparing the signatures of  M. tuberculosis -infected mac-
rophages derived from panels of knockout mice  [  49  ] . In this way, unbiased gene 
expression analyses, providing a snapshot of changing host cell status, have enabled 
novel mechanisms affecting mycobacterial control to be elucidated. 

 On the other side of this hostile engagement, transcriptional pro fi ling of  M. 
tuberculosis  during macrophage infection has revealed how mycobacterial 
 metabolism adapts after phagocytosis and has acted as a bioprobe to survey the 
internal microenvironments that bacilli encounter (recently reviewed in  [  50,   51  ] ). 
Schnappinger et al.  [  52  ]  demonstrated that multiple gene families involved in the 
beta-oxidation of fatty acids were induced after murine macrophage infection, 
hypothesising that intracellular  M. tuberculosis  adopt a lipolytic lifestyle. This key 
feature of  M. tuberculosis  infection has been observed after infection of human 
macrophage-like THP-1 cells  [  53  ]  and human monocyte-derived macrophages  [  44  ]  
and, together with the identi fi cation of a cluster of genes that likely metabolise choles-
terol  [  54  ] , highlights these metabolic changes as a common strategy for  M. tuberculosis  
intracellular survival. In addition, the respiratory state of  M. tuberculosis  also changes 
during infection shifting from aerobic to microaerophilic to anaerobic respiration 
 dependent on changes to the dynamic immune-environment  [  49  ] . The differential 
 regulation of these metabolic and respiratory pathways together with stress-responsive 
regulons (such as  dosR  and  phoP ) is most clearly highlighted by comparing  M. 
tuberculosis  signatures from different intracellular environments. For example, the 
impact of interferon (IFN) g -mediated murine macrophage activation  [  52  ]  or the 
development of a non-permissive environment after DC infection  [  44,   55  ]  results in 
similar  M. tuberculosis  adaptive responses. Rhode et al.  [  56  ]  used concanamycin A 
to limit the acidi fi cation of murine macrophages to pH 7.0 versus pH 6.4, enabling 
the authors to differentiate acid-inducible  M. tuberculosis  genes. This study led to 
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the characterisation of an  M. tuberculosis  acid and phagosome-regulated locus ( aprA/
B/C ) that is required for successful macrophage infection and whose expression is 
likely regulated by the PhoP/R two-component system  [  57  ] . Further evidence that the 
PhoP/R system is important for sensing and controlling  M. tuberculosis  responses to 
the intracellular environment comes from a study contrasting the transcriptional 
 signatures of H37Rv with H37Ra (which contains a point mutation in  phoP ). Li et al. 
 [  58  ]  observed that PhoP-regulated genes were differentially expressed between 
H37Rv and H37Ra during murine macrophage infection and concluded that the 
 limited ability of  M. tuberculosis  H37Ra to react to the intracellular environment may 
account for its attenuated phenotype. Continuing this theme, the impact of genetic 
variation amongst  M. tuberculosis  clinical isolates on interactions with murine 
 macrophages was explored further by Homolka et al.  [  59  ] , who compared the 
i ntracellular gene expression pro fi les of 15 phylo-geographically distinct  M. tubercu-
losis  complex strains. The authors mapped genome-wide  M. tuberculosis  responses 
that re fl ected the diverse intracellular fates of these clinical strains and detailed a com-
mon programme of bacterial adaptation encompassing oxidative and/or nitrosative 
stresses and metabolic and physiological alterations. This analysis also detected 
 clade-speci fi c and strain-speci fi c intracellular transcriptional patterns, providing a 
basis for further investigation into the consequences that geographical and genetic 
 M. tuberculosis  diversity may have on tuberculosis disease worldwide  [  59  ] .  

    6   Transcriptional Pro fi ling the Interplay Between Host 
and Pathogen 

 Global mRNA pro fi ling of host and  M. tuberculosis  bacilli from invasive or non-
invasive sampling of tissues offers an overview of the impact of mycobacterial 
infection as disease progresses. These studies explore the complex organ environ-
ments made up of diverse cell types and distinct populations of bacteria and survey 
the interactions between multiple cells. As such, these models are able to examine 
host–pathogen interplay in a heterogeneous environment capturing changes in cell 
populations as well as divergent gene regulation. Many of these studies are aimed at 
identifying biomarkers of tuberculosis disease states (reviewed recently by Walzl 
et al.  [  60  ] ). For example, the mRNA abundance pro fi les of murine lungs and spleens 
after infection or vaccination have been used to follow changes in immune-mediators 
over time and to determine indicators of a protective response  [  61  ] .  M. tuberculosis  
gene expression pro fi ling from murine lungs has de fi ned in vivo signatures and 
revealed divergent responses to infection contrasting immune-compromised with 
immune-competent murine hosts  [  62,   63  ] . Mehra et al.  [  64  ]  described the temporal 
mRNA abundance pro fi les of NHP granulomas during early and late disease, observ-
ing that the expression of in fl ammatory markers signi fi cantly decreased in NHP 
granulomas through the course of disease. This approach has been translated to 
human tuberculosis disease by Kim et al.  [  65  ]  who mapped the mRNA signature of 
human lung caseous granulomas using a combination of laser capture dissection 
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microscopy and microarray analysis. The authors distinguished a gene expression 
pattern re fl ective of a change in lipid metabolism in caseous granulomas that likely 
results in the accumulation of host lipids. Correspondingly,  M. tuberculosis  genes 
involved in fatty acid metabolism were induced in human lung sections (extracted 
during surgery for untreatable tuberculosis) compared to axenic culture  [  66  ] . 
Moreover, a transcriptional signature of enhanced cholesterol metabolism was 
observed in  M. tuberculosis  bacilli extracted from human sputum, where slow or 
non-replicating lipid body-positive “fat and lazy” bacilli were characterised  [  67  ] . 
The activation state of human immune cells at the site of tuberculosis infection has 
been sampled by harvesting cells from bronchoalveolar lavage  fl uid, providing a 
readout of immune cell migration and shifting immuno-regulatory processes during 
active disease  [  68,   69  ] . Systemic host responses to  M. tuberculosis  infection have 
been measured from whole blood to de fi ne factors that in fl uence relapse of disease 
 [  70  ]  or active versus latent infection  [  71  ] . Thus, whole genome approaches to under-
standing mycobacterial disease continue to generate novel hypotheses, recently 
illustrated by the unexpected discovery of a neutrophil-mediated type I-interferon 
signature in the peripheral blood of patients with active tuberculosis  [  72  ] . 

 Transcriptional pro fi ling the crosstalk between host immune cells and  M. tuber-
culosis  bacilli in vitro and in vivo has identi fi ed common and speci fi c responses to 
phagocyte or  M. tuberculosis  genotype, revealing novel mechanisms of bacterial 
control and immune-modulation and providing an interpretive framework for future 
studies. The techniques to generate genome-wide datasets at DNA, mRNA, protein, 
and whole cell levels are now established; the challenge, and the focus of the remain-
der of this chapter, is to integrate these layers of information to build predictive 
models describing host–pathogen interactions. For example, a greater understand-
ing of the order of events during infection, mapping how interactions change over 
time, combined with targeted gene knockout/knockdown approaches promises to 
further unravel this destructive host– M. tuberculosis  relationship. Such approaches 
may expose the functional signi fi cance of genes whose roles are currently unknown 
and which make up around 40 % of  M. tuberculosis  genes differentially regulated 
intracellularly  [  59  ] . To do this effectively we need mathematical models that are 
capable of mapping and forecasting these dynamic interactions between host 
immune cells and infecting pathogen.  

    7   Systems Biology and Modelling the Dialogue Between Host 
and Pathogen 

 The modelling of host–pathogen interactions is being actively pursued  [  73  ] ; how-
ever, this approach is still in its infancy. Although mathematical models have a long 
history in biological science  [  74  ] , their widespread application is a more recent 
phenomenon, linked to the  fi eld of systems biology, that has emerged over the last 
15 years. Modelling can be performed on many scales (from molecular dynamics to 
whole organisms) and the entities that are modelled can be discrete (number of 
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molecules) or continuous (concentrations, probabilities). Similarly, time (discrete 
time points, continuous time) and space (well-stirred solution, continuous 
 concentration gradients, discrete neighbourhoods/microenvironments) can be con-
sidered in various ways. The choice of modelling method depends on the available 
knowledge and the phenomena that are to be investigated. Generally speaking, 
when the processes involved are known in suf fi cient detail, differential equations 
are often applied as they have been used extensively in the natural sciences, in par-
ticular physics, and are amenable to the mathematical analysis of large datasets. 
In a typical scenario, when the available knowledge is incomplete, discrete (vari-
ables and time) models are a good starting point. Modelling strategies used in host–
pathogen systems biology have been reviewed by Forst  [  75  ] , as has the use of 
models to complement experimentation by Kirschner and Lindermann  [  76  ] . The 
application of systems biology to tuberculosis research was reviewed by Young 
et al.  [  77  ] . Modelling host–pathogen interactions represents a particular challenge 
due to the multitude of different cell types that participate in the immune response 
to infection. Even if only direct connections between pathogens and host cells are 
considered the situation remains complex as infection can proceed in various ways. 
Since any  modelling effort seeks to start with simple models, construction of mod-
els  describing complex host–pathogen interactions has only begun in recent years.  

    8   Interaction Databases and Network Maps 

 Many models operate at the molecular level; therefore, it is a necessary  fi rst step to 
generate an overview of the possible interactions in the system. These may be taken 
from the relevant literature as well as interaction and pathway databases. A number 
of such databases exist and are detailed at   http://www.pathguide.org      [  78  ] . Of particu-
lar interest is InnateDB  [  79  ] , a database of interactions relevant to innate immunity 
in human and murine cells. Besides integrating data from external sources, InnateDB 
employs a curation team that uses the literature to speci fi cally collect experimentally 
validated interactions in innate immunity. These interactions may be viewed in a 
pathway context mapping gene expression data onto th   em. This makes it possible to 
 fi nd pathways in which modulated genes are overrepresented. For this analysis, the 
pathways can be considered as models, because they represent the context in which 
interactions are thought to have a functional relevance. As an additional feature, 
InnateDB can use gene expression data to look for enrichment of transcription fac-
tor binding sites in up- and down-regulated genes. The putative TF-binding sites are 
mined from the cisRED database  [  80  ]  which specialises in the prediction of these 
sites. 

 In addition to information about these molecular interactions, every modelling 
effort also requires data for model evaluation. This can be found in the literature or 
deposited in databases. Databases with particular relevance to host–pathogen inter-
play include   http://www.macrophages.com    ,   http://www.signaling-gateway.org      [  81  ] , 
  http://www.tbdb.org      [  82  ] , or BugsBase (  http://www.bugs.sgul.ac.uk/bugsbase    ). 

http://www.pathguide.org
http://www.macrophages.com
http://www.signaling-gateway.org
http://www.tbdb.org
http://www.bugs.sgul.ac.uk/bugsbase
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These sites provide many types of datasets, in particular microarray, protein 
 expression and protein regulation studies. Simple models built from interactions 
without specifying type or function may be generated and interrogated. For instance, 
Brodsky and Medzhitov  [  83  ]  investigated targets of bacterial pathogens in protein–
protein interaction networks of immune signalling. Their analysis suggests that 
pathogens which cause acute infection tend to target highly interconnected nodes of 
the network, while in chronic infections nodes with only a few connections are 
 primarily targeted. Dyer et al.  [  84  ]  surveyed the landscape of human proteins that 
interact with pathogens. Interestingly, the vast majority of interactions that they 
observed were from viral systems. They found that pathogens often target proteins 
that act as hubs, directly participating in a large number of interactions or involved 
in many different signalling pathways. At the next level of complexity, simple 
 interaction networks may be annotated more richly to distinguish between the many 
different types of processes and components involved. This can be achieved in a 
standardised manner using existing ontologies and description standards (for 
 example, gene ontology  [  85  ]  and Systems Biology Graphical Notation  [  86  ] ). 
In recent years, several descriptive models (pathway maps) relevant for host–patho-
gen interaction have been published  [  87–  90  ] . These maps can be viewed as a kind 
of systematic knowledge representation which is complementary to classical review 
articles. In addition, it is often possible to overlay genome-wide data onto these 
maps for visualisation and analysis purposes. This provides a quick overview of the 
key features of the dataset and allows users to recognise interactions that may poten-
tially form functional units in the experimental conditions tested. Although network 
maps cannot at present be used to calculate signalling outcomes or to make predic-
tions about interference with the network, they serve as an excellent basis for new 
computational modelling efforts.  

    9   Models of Host–Pathogen Interactions 

 A basic model to predict cell-mediated immune-regulatory mechanisms during  M. 
tuberculosis  infection was proposed by Wigginton and Kirschner  [  91  ] . Ordinary 
differential equations were used to model the interplay between macrophages (rest-
ing  vs  .  activated),  M. tuberculosis  (extra- and intracellular) and Th 

0/1/2
 -cells as 

mediated by four cytokines (IL-4, IL-10, IL-12, and IFN g ). Most parameters were 
derived from published experimental data and if that was not possible their order of 
magnitude was estimated by sensitivity analysis. The main goal of this study was 
to explore which elements of the host–pathogen dialogue led to active disease or 
latency (and possible reactivation). Extensive model analysis concluded that if the 
initial immune response was dominated by Th 

2
 -type cells, then the infection resulted 

in active tuberculosis. The prediction was not de fi nitive when the initial immune 
response was predominantly mediated by Th 

1
 -type cells. This model was extended 

by Sud et al.  [  92  ]  to investigate the effects of CD8+ T-cells on disease outcome. 
The authors found that the cytotoxic and IFN g -producing subpopulations of CD8+ 
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cells contribute differently to the outcome of disease and that disease may still be 
 controlled if either subpopulation is removed. However, if all CD8+ T-cells are 
deleted then the result was always active disease. As a further extension of these 
two models, Marino et al.  [  93  ]  investigated the reactivation of tuberculosis following 
anti-TNF treatment and suggested several strategies for minimising the reactivation 
risk during anti-TNF treatment. In a closely related model, partly constructed from 
those previously mentioned, Day et al.  [  94  ]  explored the effect of early appearance 
of classically activated macrophages in the lung upon  M. tuberculosis  infection. 
Under  normal conditions, alveolar macrophages were considered to be alternatively 
activated and hence have reduced pro-in fl ammatory potential. The simulations 
showed that a reduced time delay for classical activation led to lower bacterial 
loads; this model was used to investigate the effectiveness of IFN g  therapy aimed 
at reducing this delay. 

 Raman et al.  [  95  ]  developed a qualitative model of host–pathogen crosstalk in 
tuberculosis geared towards the prediction of disease outcome which can either be 
active disease, persistent infection or bacterial clearance. The interactions, between 
 M. tuberculosis  and different types of immune cells (innate and adaptive), were 
primarily mediated by cytokines and  M. tuberculosis  virulence factors; however, the 
molecular basis of these effects was included only in limited detail. Most interac-
tions were modelled as Boolean functions, but there were additional parameters of 
time ( e.g.  onset of adaptive immunity) and the growth/clearance rates for  M. tuber-
culosis  affecting bacterial load which were modelled as continuous variables. For 
model simulation, an asynchronous update rule was used with each time interval 
corresponding to roughly 1 day. The primary result, the statistical evaluation of 
disease outcome, was determined after multiple ( e.g.  100) model runs. This scheme 
made it possible to systematically study how changes in parameters or node dele-
tions modi fi ed disease outcome. For instance, disabling phagocytosis always 
resulted in active disease which would only occur in 13 % of simulation runs with 
default parameters. Although the latter result was expected, the model may also be 
utilised to build more intricate predictions. For example, the knockout of TGF b  or 
IL-10 increases bacterial clearance, although these cytokines are typically classi fi ed 
as anti-in fl ammatory. This highlights that such simple classi fi cations may not always 
be helpful because the effects of many signalling molecules are strongly dependent 
on the context. Similar to the previous study, Thakar et al.  [  96,   97  ]  have developed 
models for infection of the lung by two  Bordetella  species. In the  fi rst version of the 
model  [  96  ] , the authors concentrated on discrete dynamics to investigate basic 
effects like persistence and clearance of the bacteria. As the approach used by 
Thakar et al.  [  96  ]  is analogous to that used by Raman et al.  [  95  ]  described above, we 
concentrate here on the second version of this model published in 2009  [  97  ] , which 
uses a hybrid dynamic approach to better describe available quantitative data. In the 
hybrid dynamic model, each node is described using both a discrete (Boolean) and 
a continuous variable. The value of a discrete variable depends on whether the con-
tinuous variable exceeds a certain threshold, with the threshold being a parameter of 
the model. To describe the time evolution of the continuous variables, the Boolean 
rules from the  fi rst model are used for the activation of the nodes. The deactivation 
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is modelled with separate linear decay terms which together yields a system of 
 piecewise linear differential equations. In this hybrid model the parameters do not 
directly correspond to kinetic or binding parameters that are usually considered in 
differential equation models. In order to identify actual parameter values, a large 
range was sampled and only such parameter combinations were selected that repro-
duced  certain well-known qualitative features of the infection dynamics. The param-
eters found in this manner were analysed further, searching for correlations to 
develop novel hypotheses for future experimental testing. 

 While the previous models consider the interactions of pathogens with different 
immune cell populations in an abstract manner, the model developed by Franke 
et al.  [  98  ]  describes the crosstalk between  H. pylori  and epithelial cells in molecular 
detail.  H. pylori  is able, in a CagA-mediated process, to translocate into the host 
cell, triggering several events. In particular, the receptor tyrosine kinase c-Met, which 
normally plays a role in the context of human growth factor (HGF) signalling, may 
be recruited by CagA. The main target of CagA-induced immune-modulation is con-
sidered to be the MAP kinase ERK1/2, which is activated by stimulation with HGF 
or CagA. The interactions in this model are represented by Boolean functions and as 
a  fi rst step the interaction graph underlying the logical network was analysed. In this 
graph, only the information concerning positive and negative regulatory events was 
retained. The dependency matrix, which collects network-wide interdependencies, 
was calculated on the basis of the interaction graph. This revealed that HGF can 
exert both activating and inhibiting in fl uences on ERK1/2, while CagA acts solely 
as an activator. Following on from this, the logical states in the network after stimu-
lation with either HGF or CagA were determined, which showed that the signal was 
propagated through partially distinct pathways. This resulted in the systematic 
search for interventions that would prevent ERK1/2 activation upon CagA stimula-
tion without affecting HGF signalling. Several of the predictions generated in this 
manner were then tested and con fi rmed. This indicates that the model captured 
important features of a real signalling network and could thus be used to generate 
new hypotheses for experimental testing. Additional Boolean models of within-host 
immune interactions are reviewed by Thakar and Albert  [  99  ] . To summarise, model-
ling complex host–pathogen interactions is well under way; however, one particular 
challenge remains the detailed modelling of the gene expression layer. Although 
many models contain transcription factors and interactions with their binding sites, 
these are currently far from comprehensive for both host and pathogen.  

    10   Future Perspective 

 The crosstalk between  M. tuberculosis  and its human host is both complex and dynamic, 
as such genome-wide approaches are invaluable tools for the unbiased discovery of 
novel interactions which serve to inspire testable hypotheses. Computational models 
are becoming increasingly useful for mapping and interrogating these multi-layered 
datasets, as evidenced by the chapters in this book. Advances in single cell  manipulations 
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together with the development of relevant infection models will enable single cell 
interactions between host and pathogen to be characterised, revealing the population 
dynamics of  M. tuberculosis  infection. Such analyses will aid the development of new 
drugs and vaccines which are desperately needed to reduce the burden of tuberculosis 
disease worldwide. Recent exciting progress classifying disease states and exploring 
the impact of genetic variation in both  M. tuberculosis  and human populations strength-
ens the prospect of elucidating valuable biomarkers of disease and determining the 
genetic basis of disease  susceptibility. Finally, the emerging signi fi cance of small regu-
latory RNAs and  epigenetics in the  fi eld of infectious disease promises to uncover 
novel mechanisms affecting immune-modulation, offering multiple opportunities for 
future intervention.      
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  Abstract   The pathologic hallmark of tuberculosis is the granuloma. A granuloma 
is a multifaceted cellular structure that serves to focus the host immune response, 
contain infection and pathology, and provide a niche for the bacillus to persist within 
the host. Granulomas form in response to  Mycobacterium tuberculosis  infection, 
and if a granuloma is capable of inhibiting or killing most of the  M. tuberculosis  
present, humans develop a clinically latent infection. However, if a granuloma is 
impaired in function, infection progresses, granulomas enlarge, and bacteria seed 
new granulomas; this results in progressive pathology and disease, i.e., active tuber-
culosis. In clinical latency, immunologic perturbation at the level of the granuloma 
can result in reactivation of infection. In humans, there are a variety of granuloma 
types, even within the lungs of a single host. 

 The roles and interactions of various cells (macrophages, T cells, B cells, and 
neutrophils) and molecules (cytokines, chemokines, and effector molecules) within 
a granuloma are complex and challenging to address by experimental methods 
alone. Computational approaches, in particular agent-based modeling, can be used 
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to dissect the temporal and spatial aspects of granuloma formation and function. 
Here we explain how a systems biology approach can integrate experimental and 
computational work to address critical questions necessary to understanding granu-
lomas and contribute to the development and testing of strategies for prevention and 
treatment.     

     1   Introduction    

    1.1   Granuloma Formation and Function 

  Mycobacterium tuberculosis  is primarily a respiratory pathogen, transmitted via 
aerosol from a person with active tuberculosis to another person. Once in the air-
ways, the bacillus encounters various cells, primarily alveolar macrophages and 
dendritic cells (DCs). Although the early events in transmission are poorly under-
stood, it is believed that many bacilli may be destroyed by alveolar macrophages or 
other airway cells. Surviving bacilli transit to the parenchyma, begin to replicate, 
and initiate an in fl ammatory response. Dendritic cells engulf bacilli and migrate to 
the thoracic lymph nodes (LNs) to prime a T cell response  [  1  ] . At least one thoracic 
LN becomes infected, and often stays infected (the classic Ghon complex is the 
initial lung lesion and the associated infected LN). 

 The in fl ammatory response in the lung likely results in recruitment of cells 
from the blood, including macrophages and neutrophils, which attempt to contain 
the infection, but also contributes to additional in fl ammation. In the LN, the T cell 
response takes at least 2 weeks to be primed  [  2–  4  ] , at which point the T cells 
migrate to the lungs and participate in granuloma formation. A granuloma forms 
in response to a chronic antigenic stimulus in the context of macrophage 
in fl ammation and is the pathologic hallmark of mycobacterial infections, including 
tuberculosis. A tuberculous granuloma can take many different forms (see Fig.  7.1 ), 
but is generally composed primarily of macrophages and lymphocytes, organized 
into a spherical structure (for review, see  [  5  ] ). The classic caseous granuloma con-
sists of a centrally necrotic area (grossly resembling cheese and hence the term 
“caseous”), surrounded by layers of macrophages, which are in turn surrounded by 
a smaller cuff of lymphocytes. The lymphocytic cuff can contain both CD4+ and 
CD8+ T cells, but B cells, including plasma cells, are also prominent. Multiple 
other cell types, including neutrophils, DCs, and  fi broblasts, can also be found in 
granulomas.  

 There are several “types” of macrophages within granulomas, including epithelioid 
macrophages, foamy macrophages, Langhans’ giant cells, classically activated mac-
rophages, and alternatively activated macrophages (see  [  6  ]  for review). The roles and 
functions of each macrophage subset in the granuloma in terms of control of bacterial 
proliferation and pathology are not known, but one can speculate that classically acti-
vated macrophages participate in bacterial killing while alternatively activated mac-
rophages may be important in preventing excessive pathology or  promoting  fi brosis. 
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 In addition to the classic caseous granuloma, there are other types of granulomas 
seen in humans, including non-necrotic (composed primarily of macrophages with 
sparse lymphocytes), suppurative (neutrophil-rich),  fi brotic (primarily  fi broblasts), 
and mineralized (calci fi ed often in the setting of caseous necrosis). All granuloma 
types, even mineralized granulomas, can be seen in active TB, although a person 
may have a predominance of one type or another. In latent TB, the granuloma types 
appear to be primarily caseous, mineralized, or  fi brotic, rather than non-necrotizing 
 [  7  ] . In active TB, granulomas can be multifocal and coalescing, and large consolida-
tions or TB pneumonia can also occur. Granulomas can also break through to an 
airway, resulting in cavity formation, which appears to be a major factor in trans-
mission  [  8  ] , as the cavity allows escape of large numbers of bacilli from granuloma 

  Fig. 7.1    Microscopic histopathology images of different types of tuberculosis granulomas from 
lungs of cynomolgus macaque model. ( a ) A caseous granuloma consisting of a central area of 
caseum surrounded by a mantle of epithelioid macrophages and peripherally located cuff of lym-
phocytes from a monkey with active disease, ×5 H&E. ( b ) A well-circumscribed non-necrotizing 
( solid cellular ) granuloma consisting of a core of epithelioid macrophages and peripheral lympho-
cytes from a monkey with active disease ×5 H&E. ( c ) A  fi brocalci fi c granuloma consisting of 
centrally located mineral ( darkly staining ) and  fi broblasts ×5 H&E. ( d ) A large caseous granuloma 
from an anti-TNF antibody treated monkey at 8 weeks post-infection (×2, H&E). ( a ) and ( b ) were 
reprinted with permission from American Society for Microbiology and originally appeared in Lin 
et al., Infection and Immunity, 2009 Vol 77, p 4637 (Fig. 5) DOI 10.1128/iai.00592-09. ( d ) was 
reprinted with permission from John Wiley & Sons Publishing, and originally appeared in Lin 
et al., 2010, Arthritis and Rheumatism, Vol 62, p 344 (Fig. 3) DOI 10.1002/art.27271       
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into the airways. Granulomas are also present in the thoracic LN that was initially 
infected, and more than one LN can be involved in a host with active or latent 
 infection. Granulomas can also be seen in other organs, such as liver, spleen, brain, 
or bone in the case of extra-pulmonary disease. 

 The role of a granuloma from the host-centric point of view is to contain infection, 
destroy bacilli, and limit the pathology of the infection. A granuloma forms in response 
to infection, and granulomas are found in both active and latent  M. tuberculosis  
 infections, indicating that mere formation of a granuloma is insuf fi cient to control the 
infection. The granuloma must function adequately to be a useful barrier to disease, 
i.e., to allow the host to either eliminate the bacilli completely or maintain suf fi cient 
control over bacterial replication that the infection remains clinically asymptomatic 
(i.e., latent infection). 

 From the mycobacteria-centric point of view, the granuloma serves a purpose as 
well.  M. tuberculosis  has evolved to persist within the granuloma for years, and can 
cause reactivation TB decades after the initial infection. Thus, the granuloma is a 
survival niche for the bacillus. In addition, the pathology caused by a granuloma, 
particularly one that results in cavity formation, is essential for ef fi cient transmission 
of infection to a new host. It has been demonstrated in the zebra fi sh system that 
mycobacterial virulence factors actively participate in granuloma formation and cell 
recruitment  [  9  ] , supporting the view that this structure is important in the pathogen-
esis of the infection. 

 Thus a granuloma, the hallmark of tuberculosis, is a structure that bene fi ts both 
the host and the microbe: the central battle between host and microbe likely occurs 
at the level of the granuloma. Understanding and dissecting mechanisms, both host 
and bacterial, which occur during granuloma formation and function within each 
type of granuloma, will lead to a better understanding of this complex disease. This 
in turn will direct development of new therapeutic and preventive strategies to treat 
tuberculosis.  

    1.2   Key Cellular and Molecular Players Relevant to Granulomas 

 The immune responses induced by  M. tuberculosis  infection are myriad and 
complex, and even now it remains incompletely understood which responses 
are required for protection and which contribute to pathology  [  10,   11  ] . In 
truth, there is signi fi cant overlap among protective and pathologic responses, 
with the best outcome achieved by a balance of pro-in fl ammatory and anti-
in fl ammatory responses, particularly at the level of the granuloma. It is well 
accepted that CD4+ and CD8+ T cells are important in defense against tuber-
culosis, although the mechanisms by which these cells provide protection are 
not completely understood. IFN- g  has been considered to be a key mechanism 
by which T cells activate macrophages for killing of bacilli  [  12,   13  ] , although 
recent studies in mouse  models suggest that CD4+ T cells can contribute in 
other ways as well  [  14,   15  ] . TNF is a cytokine that has been demonstrated to be 
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important in preventing progression of initial infection or reactivation of latent 
infection in several animal models, including non-human primates  [  16,   17  ] . The 
use of TNF inhibitors as treatment for in fl ammatory diseases in humans has 
con fi rmed that TNF is a major player in the protective immune response against 
tuberculosis  [  18  ] . However, TNF has numerous functions in the human immune 
response and sorting out which are the relevant mechanisms is dif fi cult in vivo. 
Although the role of B cells and antibodies in tuberculosis has not been estab-
lished, some studies support the view that these cells are important contribu-
tors to protection  [  19  ] .  

    1.3   A Systems Biology Approach to Understanding Granuloma 
Formation and Function 

 Despite decades of research on TB, our understanding of the factors that lead to 
active, latent, and reactivation TB remains very much incomplete. A central 
hypothesis to our work is that these different infection outcomes are re fl ected 
locally at the level of the granuloma and that granuloma structure and function are 
the result of the interplay of events at organ, tissue, cellular, and molecular scales 
over the time course of minutes to years. For example, the structure of a granuloma 
in the lung is in fl uenced by chemokines recruiting immune cells into the lung, by 
antigen presentation events occurring in the LN, by the circulation of dendritic and 
T cells between the LN and lung granuloma, by cell–cell interactions in the 
 developing granuloma, and by the binding of TNF to receptors. In addition, 
 mycobacterial virulence factors are known to actively participate in granuloma 
formation and cell recruitment  [  9  ] , supporting the view that both bacteria and host 
factors are relevant to this process. 

 We describe in this chapter a systems biology approach to understanding 
 granuloma formation and function. In this context, systems biology is a disci-
pline at the intersection of immunology, microbiology, mathematics, engineer-
ing, and computer science that allows us to integrate experimental and 
computational approaches. The power of systems biology to address complex 
host and bacterial responses in infections such as tuberculosis is vital to enhanc-
ing our  understanding of these diseases and identifying factors to target for pre-
vention or treatment. In the particular case of granuloma formation and function 
during  M. tuberculosis  infection, systems biology may help us in many ways to 
identify the mechanisms involved in  M. tuberculosis –host dynamics. For exam-
ple, models in which TNF–TNF receptor interactions are represented can help 
determine their role in in fl uencing containment of bacteria by a granuloma, or, 
through the use of  analysis tools, can identify potential immunological targets 
for immunotherapy. We describe below both animal and computational models 
that are being used to study granuloma formation, and then turn to the key 
insights these models provide.   



132 M. Fallahi-Sichani et al.

    2   Experimental and Computational Models of Tuberculosis 
Granulomas 

    2.1   Experimental Models 

 The TB  fi eld is extremely fortunate to have several different and well-characterized 
animal models for study of this disease (reviewed in  [  20  ] ). The most commonly used 
model is the mouse. The availability of reagents and especially genetically modi fi ed 
animals (lacking different molecules, cytokines, or cell types) has provided invaluable 
information about virulence factors of the pathogen and host responses to the infection. 
Other advantages of mice include the relatively inexpensive cost of housing them in a 
Biosafety Level 3 facility, the lack of coughing (and therefore transmission), the inbred 
strains that limit variability among animals, and the ease of infecting, manipulating, 
and handling them. However, there are distinct limitations to the mouse models of TB. 
Mice become chronically and progressively infected with  M. tuberculosis , and every 
infected mouse eventually succumbs to the disease. Thus, unlike in humans where 
latent infection is observed in the majority of cases, there is no true latent infection in 
mice. Although there are several “latency” models put forth over the years  [  21  ] , these 
are all dependent on some type of  manipulation (e.g., anti-TB drugs), and there is little 
indication that they resemble human latent infection. In addition, the mouse granuloma, 
which is best  characterized as granulomatous in fl ammation, is substantially different 
from the human granuloma in terms of structure and organization, the lack of caseous 
necrosis, and an absence of cavity formation. Thus, studying mouse granulomas as a 
model for human  granulomas can be problematic, since many of the features and 
microenvironments of human granulomas are absent in mice. There have been a few 
newer mouse models using genetically manipulated mice that recapitulate certain fea-
tures of human granulomas and these hold some promise for granuloma studies  [  22  ] . 
Another rodent, the rat, has also been described as a model of TB  [  23  ] . 

 Guinea pigs have also long been used as a model of tuberculosis, especially for 
vaccine studies  [  24,   25  ] . These animals are very susceptible to  M. tuberculosis  
infection, and all proceed to death from tuberculosis after months of infection. The 
granulomas in Guinea pigs include in fl ammation similar to mice, but also more 
structured caseous and mineralized granulomas. There are several elegant studies on 
the pathologic features of Guinea pig granulomas  [  26–  28  ] ; however, immunologic 
manipulation of Guinea pigs is still very challenging, and the tools for studying host 
responses, although improving, remain limited. 

 Rabbits are also used in TB research, both historically and currently  [  29–  32  ] . 
There are several interesting features of rabbits, including their relative resistance to 
many laboratory strains of  M. tuberculosis , their exquisite susceptibility to  M. bovis , 
the presence of caseous lesions that form and resolve in a relatively homogeneous 
manner, and the propensity for cavity formation. The lack of immune reagents limits 
this model, as does the size and containment needs of rabbits. 

 Zebra fi sh (and other  fi sh) were developed as a model for tuberculosis over the 
past 15 years, and have many attractive features  [  33  ] . Zebra fi sh embryos are 
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 transparent, which allows one to visualize granuloma formation in various parts of 
the  fi sh body. The  fi sh form caseous granulomas, primarily composed of  macrophages. 
The ability to manipulate the  fi sh genetically and to examine the contributions of 
genes in high-throughput, forward genetic screens has provided valuable insights 
into the host–pathogen interaction of mycobacterial infections. However, the natural 
species that infects  fi sh is  M. marinum , not  M. tuberculosis . Although there are sub-
stantial similarities between the two species, there are also differences that may 
contribute to dif fi culty in translating the  fi ndings in  M. marinum  models to human 
tuberculosis. 

 Non-human primates have been used for decades to address key aspects of 
 tuberculosis. Many years ago, macaques were used in drug studies of tuberculosis. 
After a hiatus of a few decades, this model has reemerged as an important contributor 
to translational studies of tuberculosis, including drug, vaccine, pathogenesis, and 
immunologic studies. Low dose  M. tuberculosis  infection of cynomolgus macaques 
results in the full spectrum of human  M. tuberculosis  infection outcomes, from latent 
to active TB  [  7,   34  ] . In addition, reactivation of latent  M. tuberculosis  infection has 
been demonstrated after TNF neutralization  [  16  ] , CD4+ T cell depletion  [  35  ] , and 
SIV coinfection (as a model of TB and AIDS)  [  36,   37  ] . More recently, a model of 
latent infection in rhesus macaques has been reported, using a low-virulence strain 
of  M. tuberculosis   [  38  ] . The full spectrum of human pathology is also observed in 
the macaque, with all varieties of granulomas observed, in both lungs and LNs, and 
cavity formation  [  5,   7  ] . These two features (spectrum of disease outcomes and 
pathology identical to humans) make this an important and useful model for study-
ing human tuberculosis. Another feature of macaques that adds to their value as a 
model is the wide availability of immunologic reagents, for assessing immune 
responses (peripherally and in organs) and for manipulating the system. However, 
there are several limitations to this model system. First, there is extensive genetic 
variability among monkeys, requiring larger cohorts of animals to obtain statistically 
signi fi cant results. Second, housing macaques under Biosafety Level 3 conditions is 
a challenge, as these animals can cough and transmit infection to other animals and 
humans, and primate BSL3 facilities are not available at most  institutions. Third, the 
cost of purchase and husbandry makes many experiments prohibitively expensive. 
Every effort must be made to obtain as much data as possible from each animal, and 
sharing of tissues and samples among other investigators allows more labs to take 
advantage of this resource. The cost also makes it dif fi cult to obtain  tissue samples 
at all the desired time points; however serial peripheral samples can be obtained 
from the same animal, which is ideal for matching to human studies. 

 A chief advantage of animal models is the ability to obtain samples from the site of 
disease, i.e., the lung and thoracic LNs, including granulomas. This is extremely challeng-
ing in human studies, and a model that is similar to humans provides an opportunity to 
assess events at the granuloma level. The types of samples and data that can be obtained 
include cells (numbers, phenotypes, and functions), cytokines (levels and sources), and 
spatial location of cell types and cytokines (using, for example, immunohistochemistry). 
Bronchoalveolar lavage, which allows one to sample airways serially, and blood can 
be obtained easily and frequently from the larger animals, as well as peripheral LNs. 
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More recently, imaging of live animals has been used to serially assess events 
during infection. Fluorescent imaging ( fi sh and other animals), video monitoring 
(zebra fi sh), and PET/CT imaging (mice,  rabbits, and monkeys) have been applied 
to tuberculosis models  [  35, 39  ]  (Via and Barry, unpublished) and provide the unique 
 opportunity to “watch” the infection evolve over time at the level of the granuloma, 
and in some cases to determine where the bacilli are during infection. These new 
imaging tools open up new possibilities for understanding  M. tuberculosis  infec-
tion, and in some cases can also be performed in humans (e.g., PET/CT). All of 
these methods can provide quantitative, serial, and spatial data for incorporation 
into computational models. 

 In addition to animal infection models, the use of in vitro granuloma models  [  40  ]  
and in vivo models using non-replicating agents  [  41,   42  ]  provides unique insight 
into processes involved in granuloma formation and function. For example, myco-
bacterial antigen-coated beads are used to induce pulmonary granulomas with 
cytokine and cellular patterns that closely match those in an active mycobacterial 
infection  [  43,   44  ] .  

    2.2   Computational Models of Tuberculosis Granuloma 

 Mathematical and computational modeling provides a unique approach to studying 
the behavior of complex biological systems. These methods can be used to better 
explore hypothesized mechanisms, generate and test new hypotheses, run virtual (in 
silico) experiments, interpret data, motivate particular experiments, and suggest 
new drug targets. A series of mathematical and computational models have been 
developed to investigate the host response to  M. tuberculosis  infection  [  45–  57  ] . In 
particular, model-based analysis of the formation and function of a TB granuloma 
contributes to understanding the mechanisms that control the immune response to 
 M. tuberculosis   [  45–  49,   51,   57  ] . These models complement experimental approaches 
and can be used to address questions in TB that are dif fi cult or currently impossible 
to approach experimentally. The high cost and time investment needed to fully 
explore many interacting immune factors and various outcomes involved within the 
 M. tuberculosis –host interactions in an experimental setting are factors that alone 
should promote the use of computational models. Building computational models 
can also allow us to integrate data derived from experiments on different tissues, 
different biological scales (e.g., molecular or cellular), and different timescales into 
a comprehensive picture of the immune response to  M. tuberculosis . 

 Differential equation (DE)-based models typically describe a deterministic rela-
tionship among several continuously varying quantities (e.g . , numbers of cells and 
concentrations of molecules) and their rates of change in space and/or time. We 
have developed DE-based models for studying temporal dynamics of cytokines and 
effector cells during the immune response to  M. tuberculosis   [  52,   53,   58,   59  ] . These 
models are based on known interactions of immune cells in the lung during 
 M. tuberculosis  infection. Experimental data are used to estimate parameter values. 
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When data are not available, uncertainty and sensitivity analyses are used to de fi ne 
parameter spaces. Uncertainty analysis is performed to investigate the uncertainty 
in the model output that results from uncertainty in input parameter values. 
Sensitivity analysis is then used to quantify how input uncertainty (e.g . , biological 
variability coupled to unknown ranges of variation for model parameters) affects 
model outcomes and to identify critical model parameters. Once validated against 
experimental data, the models are used to make novel predictions about dynamics, 
progression of infection, and potential therapies. Examples of contributions these 
models have made to our understanding of TB include identifying the critical 
impact of delays in either DC migration to the draining LN or T cell traf fi cking to 
the site of infection on the outcome of infection  [  58  ] , and identifying the key role 
of cytokine IL-10 in balancing macrophage phenotypes in the lung and LN  [  59  ] . 
DE models can also be used to examine spatial aspects of the immune response, 
including analysis of the process of granuloma formation and cytokine availability 
in a granuloma  [  42,   51  ] . 

 In contrast to DE-based models, agent-based models (ABMs, also known as 
individual based models) are rule-based models that capture a variety of stochastic 
and discrete events occurring in the immune system. An ABM has the following 
components:  agents  (e.g., immune cells and bacteria), the  environment  where agents 
reside (e.g., a two-dimensional grid representing a section of lung tissue), the  rules  
that govern the dynamics of agents, including movements, actions, and interactions 
between agents as well as between agents and environment, and  timescales  on 
which the rules are executed. In an ABM, the local, possibly stochastic interactions 
occurring at the level of agents lead to global, system-wide dynamics and emergent 
spatial and temporal patterns. Hence, ABMs are particularly useful for studying 
complex systems such as TB granulomas in which cell heterogeneity and spatial 
interactions are important. 

 We developed  fi rst- and second-generation ABMs to describe the immune 
response to  M. tuberculosis  and to identify mechanisms that control granuloma for-
mation and function  [  46,   47  ] . Next-generation granuloma ABMs were developed in 
response to new biological data that indicated the importance of including addi-
tional cell types (e.g., effector CD8+ T cells and regulatory T cells), cytokines (e.g., 
TNF and IL-10), and chemokines (e.g., CCL2, CCL5, and CXCL9)  [  45,   46,   57  ] . The 
major cell types, biological activities, and interactions captured in our current granu-
loma ABM are listed in Table  7.1 . An overview of selected ABM rules governing 
cellular activities and interactions on a grid representing a section of lung tissue is 
presented in Fig.  7.2 . These models are the  fi rst to track the dynamics of formation 
and maintenance of a granuloma in space and time, simultaneously providing critical 
details regarding cellular interactions and molecular concentrations. There are no 
experimental methods to obtain these detailed, continuous data in primates.   

 A critical aspect of studying mechanisms underlying the formation and function of 
a granuloma during  M. tuberculosis  infection is the integration of information across 
multiple biological scales (molecular, cellular, tissue/organ, and host scales; see Fig.  7.2 ). 
Immunity to  M. tuberculosis  in humans and animal models has been attributed to activi-
ties of a variety of cytokines, including TNF, IFN- g , and IL-10 (reviewed in  [  60  ] ). 
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These molecules are secreted from cellular sources in response to pathogen and host 
signals, interact with receptors on target cells, and trigger intracellular signaling path-
ways controlling cellular activities that ultimately  contribute to formation of granulo-
mas and immunologic control of  M. tuberculosis  infection. For example, TNF is secreted 
from infected and activated macrophages, interacts with TNF receptors (TNFRs) on the 
membrane of macrophages, and induces the NF- k B signaling pathway, leading to secre-
tion of chemokines, a key process that attracts immune cells to the site of infection and 
in fl uences their movement within a granuloma. 

 Agent-based modeling can provide a framework for describing these events. We 
capture cellular and tissue scale dynamics (see Fig.  7.2a ) via well-described and prob-
abilistic rules for interactions between immune cells and  M. tuberculosis . Single-cell 
molecular scale processes (e.g., those controlling TNF/TNFR binding and traf fi cking) 
for each individual cell are captured by a set of ordinary DEs. Using this approach, we 
are able to, for example, alter a molecular property (e.g., TNF/TNFR binding af fi nity) 
and study its impact on a tissue scale outcome (e.g., size of the granuloma). As an 
example, we review below our recent studies on the  multi-scale analysis of the role of 
TNF activities in controlling granuloma formation and function. 

  Fig. 7.2    Computational modeling of immunological processes within the lung and lymph nodes 
during  M. tuberculosis  infection. ( a ) An overview of selected ABM rules governing biological 
activities and interactions among immune cells and  M. tuberculosis  on a grid representing a section 
of lung tissue. Cell types and status are shown, as indicated on the  right  side of panel (a):  M  

 r 
  rest-

ing macrophage,  M  
 i 
  infected macrophage,  M  

 ci 
  chronically infected macrophage,  M  

 a 
  activated mac-

rophage,  M. tuberculosis : mycobacteria,  T  
  g  
  pro-in fl ammatory IFN- g  producing T cell,  T  

 c 
  cytotoxic 

T cell,  T  
 reg 

  regulatory T cell. A complete description of all ABM rules is provided in  [  45  ] . ( b ) An 
overview of main mechanisms captured in the ODE-LN model. Dendritic cells migrate from the 
lung to the LN upon bacterial uptake and maturation. They traf fi c into lymphatic vessels and enter 
the T cell zone of the LN through afferent lymphatics. Once in the T cell zone of the LN, they 
interact with naïve CD4+ and CD8+ T cells [continuously circulating in the LN through high 
endothelial venules (HEV)], and eventually prime and activate them. Upon activation, T cells start 
to proliferate and differentiate into effector lymphocytes. These effector immune cells then migrate 
back to the lung, exiting the LN through efferent lymphatics. A complete description of all ODE-LN 
model rules is provided in  [  57  ]        
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 As a complex multi-scale process, granuloma models include parameters  describing 
a large number of biological events. Hence, it is critical to understand the role that 
each of these parameters plays in determining how a granuloma functions. We have 
developed a number of useful and powerful tools to analyze these complex model 
systems. One approach is to perform  virtual  deletion and depletion experiments that 
mimic experimental gene knockout or molecule depletion studies. Loss of activity is 
achieved by setting relevant parameters (e.g., probabilities or rate constants) to zero or 
raising relevant thresholds to an unattainable level. Virtual deletion refers to the loss 
of activity from the beginning of simulation and virtual depletion refers to the loss of 
activity after establishment of a granuloma. A second approach is to use uncertainty 
and sensitivity analysis, which we have adapted for use in agent-based models  [  61  ] . 
We use uncertainty and sensitivity analysis in computational models of  M. tuberculo-
sis  infection to analyze the impact of parameters describing events at different scales 
(molecular, cellular, tissue, or organ scales) on model outputs describing granuloma 
outcomes.   

    3   What Are Examples of Questions That Systems Biology Can 
Address? 

    3.1   Which Factors In fl uence the Ability of a Granuloma to 
Control Infection? 

 As described earlier (see Fig.  7.1 ), there are different types of granulomas in the lungs 
of non-human primates and humans with active TB  [  7  ] . Our granuloma ABM is able 
to recapitulate granulomas with different abilities to control infection by varying val-
ues of important model parameters. Examples of these outcomes (as shown in Fig.  7.3 ) 
include containment (control of infection within a well- circumscribed granuloma 
containing stable and low bacterial levels), clearance, and uncontrolled growth of 
bacteria.  

 Many immune factors are critical to a protective immune response to  M. tuber-
culosis  infection in animal models (reviewed in  [  60  ] ). These factors include priming 
and activation of antigen-speci fi c T cells  [  3  ] , production of chemokines contribut-
ing to recruitment of immune cells to the site of infection  [  62–  64  ] , and production 
of cytokines such as IFN- g  and TNF  [  10,   17,   60,   65  ] . Simulations of TNF, TNF 
receptor 1 (TNFR1), and IFN- g  gene knockouts and deletion/depletion of T cells 
(described in detail in  [  45,   46  ] ) lead to uncontrolled growth of  M. tuberculosis  and 
formation of granulomas with irregular structures that include very high numbers of 
extracellular bacteria, large numbers of infected macrophages, and widespread 
caseation. These simulations indicate that the model captures important aspects of 
the biology of the immune response to  M. tuberculosis . 

 In addition to validating the model with experimental data, we use simulations to 
perform novel virtual experiments. Such studies can predict critical components of 
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an effective immune response and can ultimately guide the design of laboratory 
experiments. For example, sensitivity analysis helps us predict the relative impor-
tance of various immunological processes (e.g., recruitment and movement of T 
cells, secretion, diffusion, and degradation of chemokines, and macrophage–T cell 
interactions) in immunity to  M. tuberculosis  and may suggest novel targets for con-
trol and therapy of TB. Our granuloma ABM identi fi ed cellular and tissue scale 
processes that signi fi cantly control bacterial numbers, caseation, and size of a gran-
uloma:  M. tuberculosis  growth rates, activation of macrophages by IFN- g  producing 
T cells, and T cell movement and recruitment in lung tissue  [  45,   46  ] . Further, our 
model predicts molecular scale processes that have signi fi cant impact on granuloma 
outcomes. These processes include events at the level of TNF signaling and 
traf fi cking. Thus, we focus in the next section on our model-based  fi ndings regard-
ing the role of TNF in granuloma formation and function.  

    3.2   What Is the Role of TNF in Granuloma Formation 
and Function? 

 The pleiotropic cytokine TNF functions as a critical part of the immune response to 
 M. tuberculosis  infection (see Sect.  7.1 ). Initial data identifying the roles of TNF 

  Fig. 7.3       Reproduction of possible outcomes of  M. tuberculosis  infection by the granuloma ABM 
by varying important model parameters. Granuloma snapshots for ( a ) a scenario of containment at 
200 days post-infection, ( b ) clearance of  M. tuberculosis  in approximately 5 weeks as a result of 
an ef fi cient immune response, and ( c ) a scenario of uncontrolled growth of bacteria as a result of 
knocking TNF out at 200 days post-infection. Cell types and status are shown by different  color 
squares , as indicated at the  bottom  of the  fi gure ( M  

 r 
  resting macrophage,  M  

 i 
  infected macrophage, 

 M  
 ci 
  chronically infected macrophage,  M  

 a 
  activated macrophage,  B  

 e 
  extracellular bacteria,  T  

  g  
  pro-

in fl ammatory IFN- g  producing T cell,  T  
 c 
  cytotoxic T cell,  T  

 reg 
  regulatory T cell). Caseation and 

vascular sources are also indicated       
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include TNF knockout/neutralization and TNFR1 knockout experiments in mice 
 [  17,   62,   66  ] . Based on these mouse studies, TNF was long believed to be essential 
for formation of granulomas. However, recent studies in zebra fi sh and non-human 
primate models of TB have shown that TNF, although not required for the formation 
of granulomas, is necessary to restrict bacterial growth in a granuloma  [  16,   67  ] . This 
suggests that TNF activities  within  a granuloma determine a granuloma’s ability to 
immunologically restrain bacteria. This is con fi rmed by studies in humans, where 
TNF neutralization leads to reactivation of latent TB; pathologic studies in a subset 
of humans support the view that granuloma formation is maintained in the absence 
of TNF, but disease exacerbation and dissemination occur, indicating a failure of the 
granuloma to control bacterial replication  [  68  ] . Which mechanisms control TNF 
availability and activities in a granuloma, and how do these activities affect granu-
loma function during the long-term immune response to  M. tuberculosis ? Here, we 
present predictions of our approach resulting from integrating experimental (animal 
model) data and theoretical tools to address these questions. 

    3.2.1   Prediction I: Establishment of a TNF Concentration Gradient Within 
a Granuloma 

 Availability of TNF within a TB granuloma has been proposed to have a key role in 
the protective immunity to  M. tuberculosis , although measuring the true TNF pro-
duction and consumption within a granuloma is not yet feasible. The total TNF 
concentration at any one time in a granuloma has been estimated by cytokine bead 
array technology  [  7  ] , although this is simply a snapshot of the concentration at 
necropsy of the animal. We calculate the TNF concentration in a granuloma using 
two different models: a DE-based model that considers a simple representation of 
the spatial structure of a granuloma at steady state and the granuloma ABM described 
earlier. Both models explicitly include single-cell level TNF/TNFR binding and 
traf fi cking processes (i.e., synthesis, internalization, recycling, and degradation 
of ligands and receptors), as these processes are critical to determining TNF 
concentration. 

 Values of some model parameters, including TNF/TNFR kinetic rate constants, 
are estimated from the literature. Other model parameters were determined based on 
a simple experimental system for granuloma formation in mice. The formation of 
granulomas was induced in mice following injection of Sepharose beads covalently 
coupled to  Mycobacterium  puri fi ed protein derivative antigen  [  43,   69  ] . The cellular 
composition of granulomas, TNF secretion rate, and TNFR densities on different 
types of cells were measured for these mouse granulomas. Our experiments indicate 
that macrophages and DCs are the major TNF-producing immune cells within a 
granuloma. Further, DCs, macrophages, and B cells are found to be the major 
TNFR-expressing cells. 

 Our granuloma ABM simulations based on these data suggest that there is a TNF 
concentration gradient in granulomas, such that the highest concentration occurs at 
the center of a granuloma  [  42  ]  (Fig.  7.4 ). This gradient results from the emergence 
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of a speci fi c organization of immune cells within a granuloma (i.e., concentration of 
infected macrophages at the core and concentration of lymphocytes at the periphery 
of the granuloma; see also Fig.  7.1 ) and the processes of TNF/TNFR binding and 
intracellular traf fi cking. What might the impact of this gradient be? The gradient 
could allow the spatial coordination of TNF-induced biological activities (i.e., acti-
vation of NF- k B and apoptotic signaling pathways) within a granuloma. Higher 
concentrations of TNF in the center of granuloma could induce caspase-mediated 
apoptotic pathway that favors antigen cross-presentation as well as the elimination 
of pathogen inside infected macrophages. However, very low levels of TNF at the 
periphery of the granuloma, although unable to induce apoptosis, are suf fi cient to 
turn on the NF- k B signaling pathway that favors cell survival and expression of 
pro-in fl ammatory genes in T cells.   

    3.2.2   Prediction II: A Critical Role for TNFR1 Internalization Kinetics 

 Experimental data suggest that TNFR1 internalization plays a key role in regula-
tion of TNF signaling and mediates the process of TNF-induced apoptosis  [  70,   71  ] . 
Our simulations also predict a key role for TNFR1 internalization in control of 
the local TNF concentration and regulation of TNF activities during granuloma 
development  [  42,   45  ] . Further, the rate of TNF-induced internalization of TNFR1 
regulates cell in fi ltration by affecting the extent and dynamics of TNF-dependent 
recruitment and activation of immune cells  [  45  ] . These are essential factors that 
control the level of in fl ammation in tissue. The importance of these factors to 
infection outcome at the level of a granuloma is demonstrated with our  granuloma 
ABM: taken together, snapshots of model simulations (Fig.  7.5 ) and sensitivity 

  Fig. 7.4    Prediction of a TNF concentration gradient within a granuloma. This gradient, as veri fi ed 
by both the differential equation model  [  42  ]  ( a ) and the agent-based model  [  45  ]  ( b ), results from a 
granuloma with a speci fi c cellular organization composed of a core of infected, activated, and rest-
ing macrophages surrounded by a ring of lymphocytes as well as TNF/TNFR binding and intracel-
lular traf fi cking processes. Cell type abbreviations are as described in Fig.  7.3        

 



1437 A Systems Biology Approach for Understanding Granuloma Formation…

analysis results  demonstrate that TNF-induced TNFR1 internalization plays an 
important role in preventing excessive in fl ammation in tissue. This effect is par-
ticularly highlighted in Fig.  7.5a  in which removal of the process of TNFR1 
internalization leads to uncontrollably high tissue concentrations of TNF and 
very high rates of macrophage activation. Increasing the rate of TNFR1 internal-
ization, however, controls the level of macrophage activation and tissue concen-
tration of TNF (Fig.  7.5b–d ).  

 TNFR1 internalization kinetics are also predicted to have a signi fi cant impact 
on bacterial numbers within a granuloma  [  45  ] . As highlighted in Fig.  7.5b–d , 
increasing the rate of receptor internalization reduces the rate of bacterial clear-
ance. This effect results from reduced rates of TNF-induced activation of mac-
rophages, diminishing their ability to kill bacteria. Overall, our results suggest the 
novel hypothesis that TNFR1 internalization kinetics play a role in balancing 
in fl ammation and bacterial killing within a granuloma, controlling whether there 
is clearance of bacteria, excessive in fl ammation, containment of bacteria within a 
stable granuloma, or uncontrolled growth of bacteria. This hypothesis can be 
tested in future studies investigating approaches to control and therapy of TB, as 
a number of ways have already been proposed to control the rate of TNFR1 
 internalization in vitro  [  70,   72,   73  ]   

  Fig. 7.5    Prediction of a key role for TNFR1 internalization kinetics in control of bacterial load 
and in fl ammation during  M. tuberculosis  infection. ( a )–( d ) Granuloma outcomes and tissue levels 
of TNF early after recruitment of T cells for varying rates of TNF-induced TNFR1 internalization. 
The  colors  representing cells of different type and status in granuloma snapshots are the same as 
those shown and de fi ned in Fig.  7.3        
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    3.2.3   Prediction III: A Critical Synergy Between Individual TNF Activities 

 TNF has been experimentally characterized to have the following activities in 
 M. tuberculosis  infection: (1) macrophage activation (essential for killing of bacteria) 
 [  74,   75  ] , (2) induction of apoptosis  [  76,   77  ] , (3) induction of chemokine and cytokine 
production  [  63  ] , and (4) regulation of cellular recruitment via transendothelial 
migration  [  78  ] . The use of computational modeling to describe how TNF regulates 
the process of granuloma formation provides an opportunity to investigate the 
importance of each of the TNF activities, separately or in combination, during the 
long-term immune response to  M. tuberculosis . We can simulate in silico any com-
bination of gene knockouts or deletions of biological activities by setting values of 
relevant parameters to either zero or very large values (in fi nity) in our model  [  46  ] . 
In particular, we simulate all 15 possible combinations in which at least one of the 
four TNF activities is deleted. For each case, we report the total number of bacteria 
and the maximal fraction of macrophages present that are activated in the granu-
loma (Fig.  7.6 ). Macrophage activation is considered here as a metric to assess the 
level of in fl ammation in tissue.  

 Our results demonstrate a synergy between TNF activities that contribute to con-
trol of infection within a granuloma  [  46  ] . As highlighted in Fig.  7.6 , deletion of 
TNF-dependent activation ( act   –  ), secretion ( secr   –  ), or recruitment ( recr   –  ) activities 
signi fi cantly increases bacterial levels within the granuloma. Among these activi-
ties, simulation of  act   –   leads to signi fi cantly higher bacterial numbers. This high-
lights the relative importance of TNF-induced macrophage activation in control of 
infection compared to other TNF activities. Double and triple deletions of these 
activities further exacerbate infection compared to single deletion simulations. The 
highest level of bacteria is observed when TNF-induced activation, TNF-induced 
secretion of chemokines, and TNF-induced apoptosis of immune cells are all simul-
taneously deleted ( act   –    secr   –    apopt   –  ). Interestingly, deletion of TNF-induced apop-
tosis activity alone ( apopt   –  ) does reduce bacterial numbers. This occurs as a result 
of high levels of macrophage activation in lung tissue that is accompanied by high 
levels of TNF concentration and cell recruitment. Thus, TNF-induced apoptosis 
reduces in fl ammation by controlling the level of macrophage activation at the 
expense of impairing bacterial clearance. It is this type of nonintuitive result that 
cannot be predicted without the use of computational models in tandem with experi-
mental models.   

    3.3   What Are the Mechanisms Underlying TB Reactivation 
Following Anti-TNF Therapies? 

  M. tuberculosis  can persist for decades within the lungs of humans. This results 
from a latent state of infection that represents a dynamic equilibrium between host 
and bacteria  [  79  ] . Disturbance of this equilibrium may lead to a failure of a granu-
loma to contain bacteria and progression to active TB, termed reactivation. 
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For example, because of the in fl ammatory nature of TNF, treatment with TNF 
inhibitors (TNF-neutralizing drugs) is used in patients with in fl ammatory diseases 
such as rheumatoid arthritis and psoriasis. However, anti-TNF treatment has been 
 recognized as one of the risk factors for reactivation of latent TB in humans. An 
increased  incidence of TB has been reported among patients receiving treatment 
with  TNF-neutralizing drugs  [  18,   80–  82  ] . These drugs are either anti-TNF mono-
clonal antibodies such as in fl iximab, adalimumab, and certolizumab or soluble TNF 
 receptor fusion proteins such as etanercept  [  83  ] . Although these drugs are similarly 
effective in treatment of some (but not all) in fl ammatory diseases  [  84,   85  ] , the risk 
of TB reactivation posed by antibody-type drugs is several-fold greater than that for 
the soluble TNF receptor-type drugs  [  86–  89  ] . A systematic and comprehensive 
comparison of TNF-neutralizing drugs with the aim of elucidating drug-speci fi c 
reactivation mechanisms (especially in humans) has not been performed to date. 
Experiments required for a comprehensive analysis of the effects of drug 
 characteristics (including TNF binding kinetics and stoichiometry, together with 
blood concentration and drug permeability into lung tissue, and apoptotic activities 
of antibody-type drugs) on the immune response to  M. tuberculosis  are at present 
impossible in vivo. 

 The granuloma ABM we described earlier, with modi fi cations, can be used to 
investigate mechanisms by which TNF-neutralizing drugs interfere with granuloma 
function and thus immunity to  M. tuberculosis   [  90  ] . In an earlier work, we used a 
DE-based model and found that the  bioavailability of TNF is central to control of 
infection  [  52  ] ; to address the  mechanisms that control bioavailability during anti-
TNF treatment, the ABM framework is useful. TNF-neutralizing drugs and their 
relevant properties can be  incorporated into the ABM in a manner similar to TNF 

  Fig. 7.6    Prediction of a synergy between four TNF-mediated biological activities: macrophage 
activation ( act ), inducing apoptosis ( apopt ), inducing recruitment of immune cells ( recr ), and 
inducing secretion of chemokines and cytokines ( secr ). Model predictions for total number of 
bacteria ( left ) and maximal fraction of macrophages that become activated ( right ) during granu-
loma development after  M. tuberculosis  infection are displayed for 16 possible scenarios with (+) 
or without (−) each of the TNF activities       

 



146 M. Fallahi-Sichani et al.

itself. The dosing of a host with drug and the ability of that drug to cross from the 
bloodstream into the lung (permeability) and ultimately into the granuloma are also 
featured in this next- generation granuloma ABM. Our computational model thus 
links the dynamics of molecular scale drug/TNF/TNFR interactions to cellular and 
tissue/scale events occurring during granuloma formation and maintenance in the 
lung. Using this model, we identify functional and biochemical characteristics under-
lying the higher likelihood of TB reactivation that occurs for some TNF-neutralizing 
drugs. These characteristics include TNF  binding properties  (including af fi nity, bind-
ing/unbinding kinetics, stoichiometry, and ability to bind membrane-bound TNF 
(mTNF)),  permeability  (from blood vessels into lung tissue and penetration into the 
granuloma), and  apoptotic and cytolytic activities  that are reported for antibody-
type drugs. 

 Our model-based analyses lead to novel and interesting hypotheses regarding 
drug-induced TB reactivation at the granuloma scale (Fig.  7.7 ). First, we  fi nd that 
the ability of a drug to bind mTNF is a major factor impairing granuloma function, 
leading to TB reactivation. This is because the cell membrane provides a scaffold on 
which TNF is available at a high concentration for neutralization before it is released 
as soluble TNF (sTNF) and diluted in extracellular spaces. Although this is an inter-
esting result, both the antibody-type and receptor fusion drugs bind to mTNF, so it 
cannot explain differences in reactivation rates observed for the two drug types. 
Second, our results suggest three factors: differences in blood concentrations of 
drugs, TNF/drug binding and unbinding kinetics, and the level of drug permeability 
into lung tissue can each dramatically affect the likelihood of TB reactivation. In 
fact, we  fi nd that these factors result in different rates of TB reactivation between 
antibody-type drugs (e.g., in fl iximab) and TNF receptor fusion proteins  (etanercept). 
Our experimental data from a mouse model suggested that retention of drug 
 concentration in a granuloma as well as the dissociation constant of both antibody 
and soluble receptors differed. In particular, the presence of high levels of TNF 
receptors in the granuloma competes for TNF that is temporarily not bound to drugs. 
Our  fi nding that this occurs with soluble receptor drugs at a much higher level than 
antibody-based drugs may be involved in the differential effects of these drugs on 
control of established infection  [  91  ] . Finally, although there are differences in drug 
abilities to induce apoptosis or cytolysis in TNF-expressing key immune cells (e.g., 
infected and activated macrophages and T cells), our analysis suggests that these 
activities are not as important as other factors in driving TB reactivation. These 
 fi ndings suggest the characteristics of suitable anti-TNF drugs for treatment of 
in fl ammatory diseases while balancing high risks of TB reactivation.   

    3.4   What Is the Impact of Lymph Node Processes 
on Granuloma Formation and Function in the Lung? 

 A key step to mounting a protective immune response to most bacterial infections is 
effective CD4+ and CD8+ T cell priming in LNs. For TB, it remains unclear how 
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events occurring within LNs impact granuloma formation and maintenance. Our 
recent ABM studies  [  45–  47  ]  emphasize the critical role of T cell related mechanisms 
in infection progression, such as T cell movement, as well as the magnitude and tim-
ing of T cell recruitment. However, mechanistic descriptions of priming, differentia-
tion, and recruitment of immune cells are only partially addressed in these ABM 
formulations, since these events occur primarily within LNs. We recently took a multi-
organ (multi-compartment) approach and built onto the existing agent-based multi-
scale model of the lung (described above) some of the main mechanisms of DC and 
T cell traf fi cking, as well as T cell priming and differentiation occurring in the lung-
draining LN. We described the cellular dynamics occurring within a LN by a DE 
system, based on a simpli fi ed version of the LN compartment portion of our published 
two-compartmental ordinary differential equation (ODE) model  [  59  ] . Our new 
LN-ODE module tracks the dynamics of antigen presenting cells (APCs, de fi ned as 
the sum of infected and chronically infected macrophages migrating from the lung 

  Fig. 7.7    Prediction of the impact of different types of TNF inhibitors on the outcome of 
 M.  tuberculosis  infection at the granuloma scale. 100 days after  M. tuberculosis  infection, at which 
time a well-circumscribed granuloma with stable bacterial levels (<10 3  total bacteria) forms, the 
granuloma is exposed to one of the TNF-neutralizing drugs. Simulation results (bacterial levels 
within granulomas at 100 days after treatment with TNF inhibitor) are compared for four different 
drugs at different levels of drug permeability from vascular sources into lung tissue. Low, moder-
ate, and high permeabilities represent ~10%, ~24%, and ~50% drug permeabilities into lung tissue, 
respectively. The hypothetical drug I is a drug de fi ned here to only bind sTNF with a TNF:drug 
binding ratio of 1:1 and TNF binding/unbinding kinetics similar to in fl iximab. Etanercept binds 
both sTNF and mTNF with a TNF:drug binding ratio of 1:1. In fl iximab binds both sTNF and 
mTNF and is assumed to have a TNF:drug binding ratio of 1:3 and can induce apoptosis and 
cytolysis as a result of mTNF binding and cross-linking. The hypothetical drug II is in fl iximab 
without apoptotic and cytolytic activities. TNF binding kinetic parameter values and blood con-
centrations of etanercept and in fl iximab were used as reported in  [  104,   105  ]        
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ABM) and several subpopulations of T cells (naïve, precursor, and effector CD4+ and 
CD8+ T cells). The actions and interactions included are shown in Table  7.1 . The 
magnitude and timing of infection in the lung compartment (generated by the ABM) 
drive the extent of T cell priming in the LN-ODE model. Effector immune cells are 
generated in the LN compartment, migrate via blood to the lung, and are input onto the 
lung. The  fi nal result is a  hybrid  multi-compartment mathematical/computational model, 
where the lung (i.e., granuloma) compartment is described by a discrete/stochastic ABM 
module, and the LN compartment is represented by continuous/deterministic ODEs. 
Information is exchanged between the two compartments at every time step. One of the 
main goals of this work was to investigate how immune mechanisms occurring in the 
LN impact infection outcomes in the lung, both before and after a granuloma is 
 established. The hybrid model recapitulates typical infection outcomes and predicts 
 biologically relevant cell and bacterial numbers for containment and dissemination sce-
narios (similar to Fig. 3). Below we review two model predictions that could be relevant 
to vaccination and immunotherapy strategies. 

    3.4.1   Prediction I: Antigen Presenting Cell Migration and Immunogenicity 
Are Key Regulatory Mechanisms in TB Granuloma Formation 
and Maintenance 

 Whether the regulation of APC traf fi cking controls the nature of adaptive immune 
responses in the lung and in granulomatous tissue in vivo  [  92  ]  is still an open ques-
tion. For example, mechanisms governing pulmonary APC traf fi cking to LNs are 
still poorly understood, both at cellular and molecular scales. Another complication 
is that there are currently no assays that directly analyze APCs transiting through 
lymphatic vessels  [  93  ] . We were able to begin to address these questions using our 
hybrid model described above  [  57  ]  and our results predicted that the rate of APC 
traf fi cking from lung to LN or T cell traf fi cking from LN to lung can drive the sys-
tem to either clearance (both before or after a granuloma has been established; see 
Fig.  7.8 ) or dissemination and uncontrolled growth of bacteria. Enhancing APC 
migration is predicted to be a key regulatory mechanism that could be exploited for 
effective vaccination and immunotherapy strategies. Another prediction of the 
hybrid model is based on manipulating the ef fi ciency of APC-T cell contacts in vivo 
(rather than the number of APC migrating to the LN). For example, increasing 
the duration of the DC–T cell interaction  [  94,   95  ] , the cognate frequency of naïve 
T cells  [  96,   97  ]  or the immunogenicity of DC  [  98  ]  can all represent viable strategies 
to clear an infection before a granuloma is fully developed.   

    3.4.2   Prediction II: Differential Roles of Effector Lymphocytes 
in TB Containment and Clearance 

 Our hybrid model implementation con fi rms an essential role for effector T cells in a 
successful initial immune response to  M. tuberculosis  invasion: IFN- g  and TNF induce 
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macrophage activation that allows the formation of a stable granuloma (containment). 
In particular, we found that once a granuloma is fully formed, a viable immunotherapy 
strategy to clear infection in a latently infected host is to speci fi cally enhance effector 
CD4+ T cell differentiation (see Fig.  7.8 ). We predict that effector CD8+ T cell cytotoxic 
activity is important to controlling the onset of infection and possibly for clearance, but 
has no key role when a granuloma has already been established. This follows since, once 
a granuloma is fully formed, it is dif fi cult for cytotoxic T cells to reach the center of a 
granuloma to physically interact with infected and chronically infected macrophages 
due to crowding effects. Bacterial clearance is better achieved by macrophage  activation, 
which is strictly dependent on TNF and IFN- g  secreting lymphocytes (i.e., CD+ T cells): 
a successful interaction between effector CD4+ T cells and resting macrophages in the 
outer layers of a granuloma (in the lymphocyte cuff) is a more viable strategy to combat 
TB once a granuloma is already established.    

    4   Conclusions and Future Directions 

 The granuloma is where the central battle in TB plays out and we believe it re fl ects 
the infection status. Thus far our systems biology approach has generated predic-
tions and novel hypotheses regarding cellular and molecular mechanisms in fl uencing 
granuloma formation and function over a time period of days to years. 

  Fig. 7.8    Predictions of the hybrid lung-LN model describing granuloma development and TB 
infection in the presence of immunotherapy strategies. We only show the effect of enhancing 
CD4+ T cell priming and DC traf fi cking to the LN upon bacterial uptake. The snapshots capture 
granuloma state at different days after initiation of immunotherapy. The initial conditions used 
yield a typical containment scenario at day 150 post-infection. It takes approximately 10–15 days 
to resolve the in fl ammation after bacteria are cleared       
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 Despite years of scienti fi c research and efforts by world health organizations, TB 
remains a global health problem and is responsible for ~2 million deaths per year. 
Of great concern is that TB persists as a latent infection in ~2 billion humans 
 worldwide, providing a reservoir of potential disease and contagion.  Drug-susceptible 
TB can be treated only with a lengthy regimen that is fraught with compliance and 
drug toxicity issues. Drug-resistant TB is a major problem worldwide and 
 development of new drugs and strategies is essential to prevent further spread of 
these strains. Single drug therapy is not permitted in treatment of human active TB, 
because drug resistance can arise, and the standard of care must be adhered to. Thus 
it is dif fi cult to evaluate the effects of new TB drugs or strategies in human clinical 
trials. There is a critical need for novel approaches and platforms for testing and 
optimizing new therapies for TB. 

 Can we use systems biology approaches, particularly those focused on the granu-
loma, to identify new vaccines or therapeutic strategies for this ancient disease? We 
believe the  fi eld is poised to do just that. For example, combining immune  modulation 
(“immunomodulation”) with antibiotics is a potential strategy for enhancing treat-
ment of TB  [  99,   100  ] . Several strategies have been tried in murine models (reviewed 
in  [  101,   102  ] ) and a few in humans  [  101,   103  ] , but the results are inconclusive. 
Appropriate delivery to granulomas and proper timing, drug combinations, and 
 dosing are all likely to be key factors in a successful therapy, but these are dif fi cult to 
study in mammalian systems due to cost, technical, and ethical issues. A  computational 
platform such as described here could allow for development of various strategies 
that could then be tested in animal models.      
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  Abstract   Recent experiments have shown the relevance of stochastic  fl uctuations 
to numerous biological phenomena. Intrinsic and extrinsic sources of noise exist-
ing at the subcellular level are capable of in fl uencing the population dynamics and 
are believed to be responsible for the appearance of different phenotypes in clonal 
bacterial populations. Single cell level phenotypic diversity is a likely key factor in 
the emergence of persistence in  Mycobacterium tuberculosis . Stochastic phenom-
ena in molecular interaction networks have been  fi rst postulated in theoretical stud-
ies and later con fi rmed by experimental observations of individual cells and 
molecules. Here, we shall review the main modeling tools that can be used in this 
context, namely stochastic differential equations (Langevin equations) and Master 
Equations and their simulational counterparts, such as the Gillespie algorithm. We 
will distinguish between intrinsic and extrinsic noise in subcellular networks, high-
lighting in particular the unexpected and sometimes counterintuitive behaviors 
induced by extrinsic noise. We will discuss the dependence of prokaryotic gene 
expression noise on transcription and translation rates, as emerged from theoretical 
and experimental studies of stochasticity in biochemical processes. These  fi ndings 
have direct consequences for understanding more complex gene regulatory net-
works, such as catabolic repression and two-component systems. Finally we will 
discuss the insights into the emergence of persistence of  M. tuberculosis  resulting 
from our understanding of stochastic gene expression, and delineate directions of 
future research.      
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    1   Persistence 

 When  Mycobacterium tuberculosis  is grown in vitro at mid-log phase it is relatively 
sensitive to standard anti-mycobacterial drugs. However, in vivo, live  drug-sensitive  
bacteria may be recovered from patients for many weeks or months after initiation 
of chemotherapy  [  1  ] . Examination of this and similar studies indicate that killing 
appears to be biphasic with a rapidly killed majority population and a very slowly 
killed (phenotypically tolerant, PT) minority population (Fig.  8.1 ). The biphasic 
nature of the kill curve is also found in vitro with a range of antibiotics and in ani-
mal models  [  2  ]  and is generally assumed to be due to non-inherited antibiotic  toler-
ance  of cells in a distinct genetic and/or physiological state known generally as 
persistence. It is these persisters that are thought to be the principal problem in TB 
control, since treatment has to be maintained for at least 6 months to kill the per-
sister population leading to poor rates of compliance and consequent emergence of 
genetic drug resistance  [  3  ] . The phenomenon of persistence in tuberculosis is often 
considered to be synonymous with dormancy or latency in which the pathogen may 
reside asymptomatically in the host for many years or decades before resurgence to 
cause post-primary TB. The underlying assumption is that that population of bacte-
ria that evades the immune response during latency (dormant cells) is functionally 
equivalent to the population of bacteria that survives antibiotic treatment (persist-
ers). However, although this is plausible, it is yet to be proved. In this review, the 
term ‘persistence’ will be used to indicate an antibiotic-tolerant subpopulation of 
cells. The relationship between these cells and disease latency will not be addressed 
here but has been discussed in other recent reviews  [  4–  6  ] .  

 Persistence (the presence of phenotypically drug-tolerant subpopulation) is not 
con fi ned to mycobacteria. Indeed it was described by Bigger in 1944 who observed 

  Fig. 8.1       Typical biphasic kill curve de fi ning the phenomenon of persistence. The graph depicts 
the survival of a bacterial population when exposed to antibiotic. The  full curve  is the solution of 
( 8.1 ), corresponding to Balaban type I persisters, with the following parameter values:   m   = −1.0, 
  m   

p
  = 0,  a  = 0,  b  = 0.1 (all units in h −1 ). The  dot-dashed line  corresponds to the asymptotic behavior 

given by ( 8.2 ), and the  dashed line  is the transient killing of normal cells, also given by ( 8.2 )       
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that when a genetically homogenous culture of  Staphylococcus aureus  was exposed 
to the bactericidal action of penicillin, a small number of cells (the persisters), which 
were not genetically resistant mutants, survived the treatment. Since then persis-
tence has been described in nearly all known microbes and is considered to be 
largely responsible for the resistance to antibiotic therapy of many chronic bacterial 
infections and to the resistance of bio fi lms to microbiocides  [  7  ] . Although the phe-
nomenon differs between bacterial species, certain features appear to be universal 
characteristics. The  fi rst is that persisters are invariably more abundant in slow-
growing, stationary phase and nongrowing cultures  [  8  ] , a feature that is often used 
to enrich for persisters. The second key characteristic is that the phenomenon of 
tolerance appears to be relatively general: persistent cell tends to be tolerant to a 
wide variety of antibiotics, stresses, and microbiocidal agents  [  9–  12  ] . Lastly, of 
course, is the persister de fi ning feature that phenotypic tolerance to drugs and 
stresses is non-heritable: it is not caused by genetic mutation. However, despite 
several decades of research, the underlying mechanisms responsible for persis-
tence—the ability to survive antibiotic exposure—remain elusive. 

 A major dif fi culty in the study of PT is the low frequency of persistent cells. 
However, a key advance was the isolation of the  hipA7  mutant of  Escherichia coli  
by Moyad and colleagues which exhibits PT at a level about 1,000-fold higher than 
wild-type cells  [  13  ] . A landmark study by Balaban et al.  [  14  ]  examined growth of 
individual  hipA7  cells in a micro fl uidics device and demonstrated that persisters had 
been either slow-growing or nongrowing at the time of antibiotic administration. 
The experiments allowed them to identify key properties of ‘type I’ persisters in the 
 hipA7  mutant strain. These appeared to constitute a preexisting population of non-
growing cells that were generated by unknown trigger events only during stationary 
phase growth. However, examination of another persister mutant,  hipQ , demon-
strated the existence of another type of persister, termed type II persister, which was 
continuously generated during exponential growth. 

 There are two key puzzles of persistence. The  fi rst is how cells with at least two 
distinct phenotypes (normal and persisters) can coexist in an apparently isogenic 
population. The second major puzzle is how the persister cells remain viable in the 
presence of antibiotic that kills their isogenic sister (normal) cells. Considerably 
more progress has been made with the  fi rst problem, particularly the use of mathe-
matical equations to model the transitions between normal and persister cells. The 
authors of  [  14  ]  developed a simple dynamic model of persistence (Fig.  8.2 ) in which 
the number of persisters and that of the normally growing cells are denoted by the 
symbols  p  and  n , respectively. The cells switch from the  n  state to the  p  state either 
through the action of a trigger at stationary phase (type I) or with a constant rate  a  
(type II), and from the  p  state to the  n  state with a constant rate  b . These dynamics 
can then be translated into the following population models   : 

     
= − + + = − +n p

d d
, ,

d d
μ μn p

an bp n an bp p
t t    (8.1)  
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where     = 0a   de fi nes type I persisters, and     ≠ 0a   type II persisters. Note that the 
parameters     nμ   and     pμ   represent the differences between growth and killing rates of 
normal and persister cells, respectively, and, for type I persisters,     ≈p 0μ   , whereas 
    nμ   must always be less than zero. The solution of ( 8.1 ) has the form:

     
−= + = + pn

( )( ) ( ) ( ) e e ,μμ b ttN t n t p t A B    (8.2)  

where  N ( t ) is the total population of surviving cells, and the prefactors  A  and  B  can 
computed as

     = + = −
− + − +

0 0
0 0

n p n p

and ,
μ μ μ μ

p p
A n B p

b b    (8.3)  

with     0n   and     0p   the number of normal and persister cells, respectively, at the begin-
ning of antibiotic exposure (at time  t  = 0). The total cell population from ( 8.2 ) is 
depicted in Fig.  8.1 , with the dashed blue and dot-dashed red lines corresponding to 
the two exponential components, decaying, respectively, as     neμ t   (fast killing) and 
    

−p( )e μ b t
  (slow killing). 

 Parameters of the persister populations for the  hip  strains and wild-type cells 
were obtained by  fi tting plots of growth and antibiotic killing to the solutions of the 
population equations to obtain the typical biphasic kill curves that are characteristic 
of persistence. Note that in this model the resistance of persisters to antibiotics is a 
 fi tting parameter and not derived from the model; that is, the model provides mech-
anistic underpinning of the  fi rst problem of persistence (the existence of distinct 
cells) but not the second problem (mechanism of drug tolerance). 

 A plausible molecular mechanism for generation of persisters, at least in the  hipA  
strain, emerged when it was discovered that HipA is a toxin component of a member 
of the toxin–antitoxin (TA) system. TA modules are widespread in bacteria and 
consist of a toxin, capable of killing or slowing growth of the cell, and an antitoxin 
that is able to neutralize the action of the toxin  [  15–  19  ] . In normal conditions both 
toxin and antitoxin are expressed so that the toxin is neutralized. However, the toxin 

  Fig. 8.2    The phenotypic switch as from  [  14  ] . In the case of type I persisters (panel  a ), these are 
created by some triggering event during stationary phase and have the capability of reverting to the 
normal cell state with a rate  b.  Type II persisters (panel  b ), in contrast, are continuously generated 
during log phase       
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is more stable than the antitoxin so if the expression of both proteins is slowed, 
particularly during conditions of stress, then the toxin component will tend to persist 
and kill the cell. Balaban’s group demonstrated that stochastic  fl uctuations in expression 
of HipA levels beyond a threshold (set by the capacity of the HipB antitoxin to 
neutralize the toxin) cause switching to a state of transient growth arrest and associ-
ated antibiotic tolerance in  E. coli   [  20  ] . 

 It seems likely that TA modules are involved in persistence in at least some sys-
tems. However, TA-based mechanism seems unlikely to account for persistence in 
all bacteria since a plethora of genes and mechanisms are known to enhance or 
depress PT levels  [  21–  23  ] . Several alternative or complementary models of persis-
tence have been published by various authors  [  8,   10,   21,   22,   24–  27  ]  involving toxin 
systems, cell senescence, metabolite stress, and other mechanisms. A common fea-
ture of many of these models is phenotypic heterogeneity that is maintained by 
some sort of switching process to generate a bistable or multistable population  [  28, 
  29  ] . However, it is worth noting that, in contrast to other bistable systems, it has not 
so far been possible to engineer (e.g., by modi fi cation of the switch) or isolate 
mutant strains that exist solely in either a pure non-persister or persister state.  

    2   Persistence in  M. tuberculosis  

 Much less is known about persistence in  M. tuberculosis , but what little is known 
is consistent with the phenomenon being broadly similar to persistence described 
in other bacteria. Because of the dif fi culty of examining persistence in vivo and 
the absence of  hip -like mutant strains of  M. tuberculosis  with high rates of persist-
ers, much of the research has focused on characterizing mycobacteria in various 
in vitro systems that enrich the population of  M. tuberculosis  for drug-tolerant 
persisters. By far the most popular of these is the ‘Wayne model’, developed by 
Larry Wayne, in which tubercle bacilli are grown in sealed tubes with slow stir-
ring until the bacteria cease replicating when oxygen concentrations decrease to 
the microaerobic or hypoxic levels.  M. tuberculosis  then enters a non-replicating 
persistent state and becomes more generally tolerant to antibiotics  [  30–  32  ] , 
although, interestingly, the cells become more sensitive to the drug metronidazole 
 [  32  ] .    The trigger for the high persister state is unclear in this model as the cells are 
in the stationary phase of growth and are therefore in an unde fi ned environment 
with changing oxygen concentrations and nutrients combined with the buildup of 
potentially toxic waste products. Many other in vitro models of persistence have 
been developed, such as treatment with nitric oxide  [  33  ] , extended stationary 
phase, and the extended hypoxia model  [  34–  36  ] . An alternative route towards 
enriching for  M. tuberculosis  persisters was recently developed via treatment with 
antibiotic (to kill sensitive cells) and differential centrifugation to isolate surviv-
ing persisters  [  37  ] . A mutant screen in mice was also recently used to identify 
mutants with either impaired or enhanced ‘persistence’ in mice treated with isoni-
azid  [  38  ] . However, the impairment or enhancement of survival of the mutant 
strains appeared to be speci fi c to isoniazid, and therefore the relevance of the 



162 A. Rocco et al.

study to the in vitro phenomenon of broad-spectrum antibiotic tolerance (persis-
tence as de fi ned here) is currently unclear. 

 Transcriptome studies demonstrated that expression of very large number of genes 
is perturbed when  M. tuberculosis  is grown in any of the in vitro persistence models 
 [  36,   39–  41  ] . The predominant signal is downregulation of most genes particularly 
those involved in central metabolism and biosynthetic and ribosomal synthesis. 
However, some genes are upregulated in each of the models. In the hypoxia model, 
many of the regulated genes form part of a regulon of approximately 50 transcripts, 
called the dormancy survival (dos) regulon  [  40  ]  which includes many genes involved 
in energy and carbon source acquisition. An additional, larger, set of genes have 
recently been identi fi ed to form the ‘enduring hypoxia response’  [  42  ] . The dos regulon 
is controlled by a two-component response regulator composed of the sensor kinases 
DosT and DosS which activate the transcriptional regulator DosR in response to 
hypoxia, as well as nitric oxide and carbon monoxide exposure  [  43  ] . Disruption of 
DosR resulted in loss of the ability of BCG to adapt to survival in the Wayne hypoxia 
model  [  44  ]  and defects in maintaining ATP and NADH balance in the cell  [  45  ] . More 
recently, another regulatory system controlled by the redox sensor, WhiB3, has also 
been implicated in the hypoxia persistence model and was also shown to be essential 
for survival during nutrient starvation  [  46,   47  ] . Transcriptional analysis of  M. tuber-
culosis  persisters recovered by the antibiotic treatment and differential centrifugation 
method demonstrated similar features to the other in vitro methods: downregulation 
of genes involved in central metabolism and biosynthetic pathways  [  37  ] . However, an 
interesting feature of this analysis was the upregulation of several of the 88 toxin–
antitoxin (TA) systems that are encoded in the  M. tuberculosis  genome  [  48  ] . 
Overexpression of TA toxins slows growth of  M. tuberculosis  and confers increased 
tolerance to antibiotics, intriguingly, in a toxin-speci fi c manner such that the expres-
sion of different toxins confers tolerance to different sets of drugs  [  49  ] . 

 Overall, it appears that persistence in  M. tuberculosis  involves a variety of 
molecular adaptations  [  6,   12,   38,   50–  53  ] , but the mechanisms that are central to 
persistence remain unclear.  

    3   Noise 

 As discussed above, the  fi rst problem of persistence is the existence of multiple cell 
types in an isogenic population. In models such as the Balaban model discussed 
above, normal cells transform into persister cells and persister cells transform into 
normal cells at rates that are  fi tted to the equations rather than mechanistically gen-
erated. But why do isogenic cells transit between different states? One of the most 
intriguing possibilities to have emerged in recent years is that noise, at the molecu-
lar level, provides the driving force for stochastic phenotypic transitions. We now 
examine whether an understanding of molecular noise can contribute to our under-
standing of persistence. 

 Stochastic processes and noise have been studied extensively for decades in 
many different  fi elds of Physics (both theoretical and experimental) and Mathematics, 
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as well as more in applied sciences such as Engineering. More recently, stochasticity 
has gained a renewed attention in biology as well, where it appears to play a major 
role at many different scales, ranging from the dynamics taking place in subcellular 
molecular networks to the behavior of entire organisms. In particular, mathematical 
modeling of gene expression processes has predicted large variances in the numbers 
of protein molecules produced by a gene, and has indicated that randomness in gene 
expression outcomes is an important factor determining cellular behavior  [  54–  56  ] . 
The advent of  fl uorescent reporter protein strains enabled the observation of protein 
amounts in single cells. A large body of experimental evidence has been collected 
to validate the predictions of mathematical models, and shows that gene expression 
is indeed stochastic. The level of detail of recent observations is astonishing. The 
expression of the  lacY  gene in  E. coli  for instance has been observed with single 
molecule resolution   , which has allowed the direct recording of random gene expres-
sion events occurring in single cells. It is interesting to note that stochasticity in 
gene expression was  fi rst hypothesized by theoreticians and later validated experi-
mentally. The discovery of the role of gene expression noise in molecular biology is 
an example of the applicability of an exact science approach to biology, and one of 
the major successes in the  fi eld of systems biology. 

 It is now well established that stochastic processes play a role in the emergence 
of different phenotypes within the known genetic circuits regulating the functional 
behaviors of different networks, cell, or organisms. A widespread view is that sub-
cellular networks have evolved so as to allow for multiple different operating modes 
(states), with noise allowing the system to access all of them, and switch among 
them. When the genetic circuit is engineered so that transitions among these states 
are slow, the system will appear “stuck” in the same state for a long time, possibly 
larger than the observation time. These states are naturally identi fi ed as distinct 
phenotypes, and their occurrence within an isogenic population gives rise to so-
called epigenetic population heterogeneity. In other words, the phenotypic state of 
the cell is not solely determined by environmental signals activating regulatory pro-
cesses, but can also be the result of random switching between different states, 
coexisting in the same environment. The randomness inherent to the processes 
which express genetic information in response to environmental changes will pro-
duce different, unpredictable outcomes under the same conditions. 

 Noise is usually assumed detrimental to normal biological function, implying that 
organisms have evolved so as to minimize its effect, by buffering against it. We shall 
show below that this might not always be the case, and in fact noise could be bene fi cial 
to the normal physiological function. In this respect it may well be that organisms 
have actually evolved so as to utilize noise to attain operating points which would not 
be easily accessible if the dynamics were completely deterministic. In this view, a 
trade-off is evolutionary sought in order to exploit the advantageous properties of 
noise, at the same time avoiding its possibly destructive effects  [  57  ] . 

 Furthermore, when scaled up to the entire population, noise-induced heterogene-
ity can provide the organism with a relevant protection mechanism. Variability in 
cell populations clearly represents an asset at the moment of taking advantage of 
speci fi c environmental conditions, or to resist external threats. Bacterial pathogens 
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are under particularly strong selective pressure to allow for noisy gene expression, 
as this population diversity offers a selective advantage when confronting host 
immune defenses and antibiotic treatment. Drug tolerance/persistence is a clear 
example of this. While different drug tolerance phenotypes can be associated with 
cleverly engineered gene circuits, it may also be that stochastic  fl uctuations origi-
nating at the gene expression level become (quasi) static heterogeneities at the pop-
ulation level, and as such protect the whole population against antibiotics or more 
generally any type of stress. 

 But what is the source of noise in molecular networks? In his book  What is Life?  
 [  58  ] , Erwin Schrödinger introduced in 1944 for the  fi rst time the so-called     √1 / n
  rule. His argument, based on assuming equilibrium for the intracellular reactions, 
thereby implying Poisson statistics, states that if a molecular species is present with 
copy number  n , then  fl uctuations with intensity of the order of     √1 / n   should be 
expected. It is clear then that in a macroscopic sample of substance, with an Avogadro 
number of molecules, of the order of 10 23 , noise is safely negligible, and we can rely 
on a deterministic description of the system. However, if we have a much lower 
number of molecules, for instance 10 or 100, then  fl uctuations are not negligible, and 
stochastic processes need to be described. This source of stochastic effects is usually 
referred to as  intrinsic noise , and occurs typically in weakly expressed genes. 

 Another source of stochasticity is so-called  extrinsic noise , associated with 
 fl uctuations affecting either control parameters of the system, such as temperature 
or pH, or otherwise molecular species assumed constant in the system, such as, for 
instance, abundances of RNA polymerases, or ribosome concentrations. In contrast 
to intrinsic noise, which is gene speci fi c, extrinsic noise is global, in that it affects 
in the same way the expression of all genes in the cell  [  59  ] . An important feature of 
extrinsic noise is that it can produce drastic modi fi cations of the dynamics of the 
system, including shifts of operating points of the network, oscillating behaviors, or 
even appearance of multiple steady states, what is generally referred to as noise-
induced transitions  [  60  ] . 

    3.1   Langevin Equations 

 A useful framework to describe stochastic processes is the so-called Langevin 
approach. In the Langevin approach, the effect of a stochastic process acting on a 
dynamical variable  x  (corresponding for instance to the expression level of gene  X ) 
is phenomenologically described by decomposing the total dynamics into two con-
tributions. The  fi rst contribution is a collective effect, which can be thought as an 
average dynamics, which Langevin proposes to treat deterministically. The second 
contribution describes the  fl uctuations about this average. This is the stochastic 
component, or noise, which is treated in a probabilistic manner. In mathematical 
terms, for a system composed by only one molecular species,

     = +
d

( ) ( ),
d

x
f x t

t
ξ    (8.4)  
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where     ( )f x   is the deterministic (average) dynamics, and     ( )ξ t   is the noise. The noise 
term is de fi ned in terms of its statistical properties and besides being Gaussian (nor-
mally distributed), it is usually assumed to be zero average, and delta correlated 
over time    (so-called white noise which is not correlated over time),

     
=⎧

⎨ = Γ −′ ′⎩

( ) 0,

( ) ( ) ( ),

t

t t t t

ξ
ξ ξ δ    (8.5)  

with the brackets indicating ensemble averages,  G  being the noise intensity, and   d  ( t ) 
indicating the Dirac delta function. These assumptions are typical, but, of course, 
are an idealization of the real system, and ultimately a modeling choice. Gaussianity 
is usually assumed because of the Central Limit Theorem, but different statistics can 
also be considered. Furthermore, the assumption of the noise being zero average is 
not restrictive. In fact, if it is not, the average can be formally subtracted out, and 
recast into a rede fi nition of the deterministic part of the equation, leading again to 
the same structure of ( 8.4 ) and ( 8.5 ). Finally, the choice of the noise being delta cor-
related over time corresponds to assuming that the process is memory-less   , namely 
Markov. This assumption is justi fi ed in the case when the real  fl uctuations have a 
correlation time smaller than any other timescale of the system. If this is not the 
case, the  fi nite correlation time of the noise needs to be considered (Ornstein–
Uhlenbeck or colored noises)  [  61  ] . A noticeable example of the application of this 
simple scheme appears for instance in  [  62  ] , where a set of two coupled Langevin 
equations, respectively, for mRNA and protein concentrations, is used to account 
for the observed positive correlation of stochastic  fl uctuations and translation rates 
in a single gene system. 

 When extrinsic noise is considered, the Langevin equation acquires a different 
structure. Let  a  be a control parameter for the system, representing either environ-
mental factors, such as pH levels, or  fi xed intracellular elements, such as amount of 
RNAP, or number of ribosomes. Let us assume that  a   fl uctuates over time, and let 
us represent its dynamics as

     → = + 1/2
0( ) ( ),ε ξa a t a t    (8.6)  

where  a  
0
  is the average value of  a ,     ( )ξ t   is the noise, which for simplicity we again 

assume Gaussian, zero average, and white, and   e   is the noise intensity. The expo-
nent ½ accounts for the dimensions of the noise intensity as from ( 8.5 ). The reaction 
dynamics  f ( x ,  a ) can be linearized in the noise intensity for suf fi ciently small   e  , and 
the corresponding Langevin equation becomes:

     = + 1/2
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f x a g x a t
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 Equation ( 8.7 ) is a multiplicative noise stochastic differential equation, whose 
solution can be dif fi cult to compute. In particular it needs to be supplemented with 
a speci fi c prescription on how to evaluate the associated stochastic integral. In the 
case when  fl uctuations happen on a shorter timescale than any other process in the 
system, it is possible to show  [  61  ]  that this prescription is the so-called Stratonovich 
prescription. Without entering into the related mathematical analysis, it is important 
to notice that this prescription implies interesting consequences for the system. In 
particular it is possible to show that the mode(s) of the probability distribution asso-
ciated with the stochastic process de fi ned by the equation above, and supplemented 
with the Stratonovich prescription, are determined by the equation:

     − =′0 0 0( , ) ( , ) ( , ) 0,f x a g x a g x a    (8.9)  

where, with the prime, we indicate the derivative with respect to  x . As a result, the 
position of the mode can change with respect to the deterministic solution (identi fi ed 
by     =0( , ) 0f x a   ), its stability properties can change, and new modes may appear 
(Fig.  8.3 ).  

 The consequences of extrinsic stochastic  fl uctuations have been analyzed in 
molecular networks in recent literature. For instance noise-induced oscillations 
have been predicted in enzymatic futile cycles  [  63  ] , and the corresponding “devi-
ant” effects have been catalogued in  [  64  ] . Also, the possibility of using extrinsic 

  Fig. 8.3    Schematic representation of possible effects of intrinsic and extrinsic noise. Panels ( a ) 
and ( b ) represent the broadening of probability distribution when passing (arrows) from determin-
istic to stochastic dynamics when only intrinsic noise is present. The  thick line  indicates the degen-
erate (zero width) probability distribution associated with the existence of a (stable) steady state of 
the deterministic dynamics. In panel ( b ), the deterministic dynamics allows already for two stable 
steady states (indicated with the alternative  full  and  dashed thick lines ), and the system becomes 
free to hop from one to the other as a result of noise. Panels ( c ) and ( d ) show instead the counter-
intuitive effects that may appear due to extrinsic noise. In panel ( c ) a shift of the maximum of the 
probability distribution is shown, while in panel ( d ) a system which is deterministically monos-
table acquires a further stable state          
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noise as a control mechanism in metabolic pathways has been explored in  [  57  ] . 
The bottom line of these studies is that extrinsic noise can in fact change the mac-
roscopic behavior of molecular networks, and therefore can act so as to allow the 
cell to explore regions of the phase space otherwise unreachable if the dynamics 
were only deterministic. In this sense, this begs the question to what extent stochas-
tic dynamics can be evolutionary selected for because of dynamic bene fi t  [  57  ] . 

 The solution of the Langevin equations above, ( 8.4 ) or ( 8.7 ), is the time evolution 
of the dynamical variable  x  for a sequence in time of realizations of the stochastic 
process     ξ   . It produces a single trajectory in the  x  phase space. Collecting many tra-
jectories leads to the construction of an ensemble of dynamical realization of the 
system, over which the time evolution of the probability distribution can be measured. 
As we shall see in the next section, an alternative, statistically equivalent approach is 
to construct dynamical equations for the probability distributions directly.  

    3.2   Master Equations 

 As an alternative to the single trajectory Langevin approach, it is always possible to 
describe the system in terms of probability distributions. In the case of a memory-less 
Markov processes, this can be done by using the so-called Master equation formalism. 
In its more general form, the time evolution of the probability distribution reads

     { }∂ ′ ′ ′ ′= −
∂ ∫
( , )

( | ) ( , ) ( | ) ( , ) .
p x t

W x x p x t W x x p x t dx
t

   (8.10)   

 The derivation of this equation proceeds from the Chapman–Kolmogorov equa-
tion, which is the most general equation obeyed by any Markov process. We will not 
present this derivation here, and refer to  [  65  ]  for the related mathematical details. 
We highlight the aspects of the approach relevant to stochastic gene expression. 

 In ( 8.10 ),     ( ),p x t   is the probability that the stochastic variable takes up the value 
 x  at time  t , and     ( | )W x y   is the transition probability that the stochastic variable 
makes a jump from the value  y  to the value  x  in the unit time. The  fi rst term corre-
sponds to the gain of probability of  fi nding the system in the state  x  due to transi-
tions from any other state. The minus term represents the loss of probability 
associated with the system being in the state  x  and making a transition to any other 
state. Because of this interpretation of the structure of the equation, the master equa-
tion is also referred to as gain–loss equation, or birth–death master equation. 

 The formalism of master equations has been recently used to compute ana-
lytically the stationary distribution of protein within the two-stage model of
gene expression   :
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Here     1k   and    2k   are transcription and translation rates, respectively, while     1γ   and 
    2γ   correspond to mRNA and protein degradation. For this process, the follow-
ing equation has been proposed  [  66  ] :

     [ ]⎛ ⎞∂ ∂ ′ ′ ′= + − −⎜ ⎟∂ ∂⎝ ⎠
∫2 1

0

( , ) ln 2
( , ) ( ) ( , )d .γp x t

xp x t k w x x p x t x
t T x    (8.11)   

 This equation has the gain–loss structure mentioned before, with the  fi rst term 
corresponding to protein dilution due to protein degradation and cell division ( T  

0
  

being the division time), and the second term to protein production. The production 
kernel reproduces the observed exponential bursting of proteins, namely, 
    = − −( ) (1 / )exp( ( / )) ( )δw x b x b x   , where  b  measures the average burst size, and the 
Dirac delta function accounts for transitions away of  x . Equation ( 8.11 ) can be 
solved analytically in stationary conditions, and the solution reads

     
− −=

Γ
1 /1

( ) ,
( )

a x b
a

p x x e
b a

   (8.12)  

which is a Gamma distribution, with     = +1 2 0/ ( ln 2 / )γa k T   and     = 2 1/ γb k   . It is 
interesting to note that Gamma distributions are associated with distinct regimes, 
identi fi ed by  a  > 1 and  a  < 1, respectively. An example is given in Fig.  8.4 , where a 
direct stochastic simulation is performed by using the Gillespie algorithm (see next 
section), and compared with the Gamma distribution as de fi ned by ( 8.12 ). The two 
regimes correspond to qualitatively different situations, in which the majority of 
cells present some amount of protein ( a  > 1, graph on left), or the majority of cells 
do not contain any protein at all ( a  < 1, graph on right). This distribution has been 
con fi rmed experimentally  [  67  ]  and is thought to be the relevant distribution in 
prokaryotic gene expression. It is noticeable that the same distribution holds when 
extrinsic noise is also considered  [  68  ] .  

  Fig. 8.4    The two regimes of Gamma distributions. Histograms are obtained by direct simulation 
of the two-stage gene expression model presented above. The  solid curves  represent the Gamma 
distribution as given by ( 8.12 ) with parameters  a  and  b  estimated as explained in the text.  Left 
panel :  k  

1
  = 0.1 (s −1 ),  k  

2
  = 0.4 (s −1 ),   g   

1
  = 0.05 (s −1 ),   g   

2
  = 0.01(s −1 ),  T  

0
  = 2,100 (s), resulting in  a  = 9.7 and 

 b  = 8 log 2.  Right panel :  k  
1
  = 10 −4  (s −1 ),  k  

2
  = 0.4 (s −1 ),   g   

1
  = 0.05 (s −1 ),  g  

2
  = 10 −3  (s −1 ),  T  

0
  = 2,100 (s), 

resulting in  a  = 0.075 and  b  = 8 log 2       
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 Another example of the application of the Chemical Master Equation approach 
is the work of Komorowki and coworkers  [  69  ] , where the general model of a two-
gene regulatory network has been studied. The study compares gene expression 
noise of protein or RNA repressors acting on transcription or translation initiation 
and resulting in the same effective transcription and translation initiation rates of a 
regulated gene. In this comparison translational repression introduces more noise 
than repression on promoter activity for a wide range of biologically relevant param-
eters. The relative magnitude of the noise introduced by protein and RNA repressors 
also depends on the protein and mRNA degradation rates.  

    3.3   Exact Stochastic Simulation 

 In most cases, however, both the Langevin and the Master equations are dif fi cult to 
solve analytically, and it is necessary to rely on direct stochastic simulations of the 
system. One way which has become extremely popular is to use the so-called 
Gillespie algorithm  [  70  ] , and more recent modi fi cations. In this chapter we shall 
review the original formulation of the algorithm, and some of its extensions that 
have proven extremely useful in simulating molecular systems. 

 The Gillespie algorithm applies to a set of  N  chemical species in a volume  V , 
each characterized by a number of molecules     iX   , with     = …1, ,i N   , and interacting 
through a set of     M   reactions     μR   , with     = …1, ,μ M   . The system is considered well 
stirred. At the heart of the algorithm is the de fi nition of the so-called propensity 
function,     μa   , which de fi nes the probability for the reaction     μR   to happen between 
    t   and     + dt t   as

     
= μ th  rd pr eacobabil tion tity for the o occur in d .a t tμ     

 The propensity in turn can be written as the product of the stochastic reaction 
constants and the number of distinct molecular combinations of reactants participat-
ing in     μR   . Once the propensities are known, it is possible to use them to compute 
exactly the probability of reaction     μR   to occur within a  fi nite interval of time     τ   :

     
=

= − = ∑
M

0 0
1

( , ) exp[ ] with v
v

P a a a aμτ μ τ    (8.13)   

 This simple equation is the key to simulating the time evolution of a chemically 
reacting system. The algorithm is based on drawing two random numbers, say     1r    
and     2r   , uniformly from the unit interval [0,1], and setting
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and identifying     μ   in such a way that
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= =
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1 1

a r a a
μ μ

ν ν
ν ν

   (8.15)   

 These two equations allow for the computation of the waiting time for a reaction 
to occur, and for the identi fi cation of which reaction actually occurred. Iteration of 
the process, which includes updating the molecular species, produces an explicit 
time evolution of the system. 

 This algorithm, usually referred to as the direct method, has the advantage of 
being exact, but at the same time can be computationally intensive because of the 
numerous calls to the random number generator. Gillespie proposed also an approx-
imated version of the algorithm, the so-called   t  -leap method  [  71  ] , where the number 
of reaction happening in a time interval   t   is assumed to be distributed as a Poisson 
distribution. Therefore   t   does not correspond to the minimal waiting time for a reac-
tion to occur, but is a time over which a number of reactions are lumped together. 
This results in a signi fi cant gain in the simulation speed, particularly when all spe-
cies are characterized by a large number of molecules. The typical   t   can be chosen 
of the order of the waiting time of the reaction with the smallest number of mole-
cules. Therefore when all species are present in high copy numbers, this can be a 
much larger time than the waiting time of the exact Gillespie algorithm. In contrast 
if the number of reactant molecules is small even for just one species, the   t  -leap 
method can still be applied, but   t   will have to be similar to the typical waiting time 
of the exact algorithm, and   t  -leaping does not confer any ef fi ciency advantage to 
the simulation. 

 These dif fi culties naturally lead to distinguish between “fast” and “slow” reac-
tions, classi fi ed according to propensity values. This is particularly relevant to sys-
tems whose number of molecules or more in general the propensities vary over 
several orders of magnitude. Ideally it would be desirable to have a multiscale algo-
rithm that is capable of treating differently fast and slow reactions, and apply the 
exact Gillespie scheme to the slow ones, and the approximate   t  -leap method to the 
fast ones. Such an algorithm, named the Maximal Time Step Method, has been in 
fact developed  [  72  ] , and is based on a dynamical partitioning of fast and slow reac-
tions according to the evaluation of their propensities. This algorithm has been 
applied to perform direct stochastic simulations of glucose, lactose, and glycerol 
metabolism in  E. coli , and has allowed the study of the propagation of gene regula-
tion noise onto the level of metabolic processes  [  72  ] .   

    4   Emergence of Distinct Functional Phenotypes 

 As an application of the formalism illustrated above, we discuss now the role played 
by stochastic  fl uctuations in gene regulatory networks, and in particular in the emer-
gence of distinct phenotypes. 
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 We analyze  fi rst the effect of transcription and translation rates on the stochastic 
 fl uctuations in the single gene expression of prokaryotic cells. In  [  73  ] , a detailed 
kinetic model for the expression of  LacZ  was built, and simulated by using the 
Gillespie algorithm. The main result of the study was that high rates of transcription 
produce proteins at uniform rate and minimize variation in the number of molecules 
(stochastic  fl uctuations). Conversely, imposing production of the same average 
amount of protein but lowering gene transcription causes  fl uctuations to increase, 
with the protein produced in bursts. Finally, tuning down translation ef fi ciency, 
whilst keeping the same amount of protein, requires a higher transcription rate, and 
therefore does not lead to noisy production patterns. 

 It is interesting to note that these results can be interpreted within the scheme 
presented before and leading to the Gamma distribution equation ( 8.12 ) as the 
stationary protein distribution solution of the Master equation ( 8.11 ). For the 
Gamma distribution, we have the protein average     〈 〉 = 1 2~p ab k k   and the variance 
    =2 2 2

1 2~σ ab k k   . Therefore the analysis as from  [  73  ]  can be naturally accounted for 
within this scheme. An increase of translation rate is the predominant factor that 
increases  fl uctuations in gene expression. Notice in fact the expression of the Fano 
factor (which is a measure of noise to signal ratio),     = 〈 〉 =2

2/ ~F p b kσ   , or 
    = 〈 〉 1/ ~ 1 /F p a k   , meaning that the randomness of the process correlates positively 
with translation, and negatively with transcription (at constant protein production). 

 Another interesting result presented in  [  73  ]  is the dependency of protein 
 fl uctuations timescales on transcription rates. This property can be visualized as the 
“stiffness” of the trajectory, meaning its capability of conserving its pro fi le over 
times longer or at least comparable to the observational time (Fig.  8.5 ). The more 

  Fig. 8.5    Stiffness of protein  fl uctuations over time. Two representative trajectories of protein 
concentrations as a function of time are shown. The  blue  (respectively  red )  curve  corresponds to 
the left ( right ) panel and set of parameters as given in Fig.  8.4 . Notice that at high transcription and 
high protein degradation ( blue curve ), the protein  fl uctuations are much “wilder” than in the low 
transcription/degradation case ( red curve ). Slowly evolving changes in protein concentrations can 
be associated with speci fi c phenotypes, at least over timescales shorter or at most comparable to 
the division time       
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the transcription rate is reduced, the more the majority of cells express very low 
protein concentrations. This is in agreement with the behavior of the Gamma distri-
bution in the regime  a  < 1 discussed above. The more interesting observation, how-
ever, is that all trajectories, and in particular those corresponding to the outlier cells, 
presenting large number of protein molecules,  fl uctuate over time very slowly. In 
other words, in the regime of low transcription, high translation, and low protein 
degradation, cells seem to be stuck for a long time with having a protein amount 
which came out of a burst, or which they inherited from the mother cell. If this time 
is longer than the time of the experiment, these cells will appear as different pheno-
types in the populations. However, it is important to highlight that this heterogeneity 
is only transient (protein will eventually degrade, new bursts will occur, and cells 
will divide), and its source is dynamical, in that it depends on temporal noise in gene 
expression. This is in contrast with other explanations of the emergence of distinct 
phenotypes, based either on preexisting and  fi xed heterogeneities in the cellular 
environment (for instance number of ribosomes), or on the presence of speci fi cally 
engineered gene switches and circuits, or on a combination of these.  

 In fact, in  [  74  ]  a detailed stochastic kinetic model of Two-Component System 
(TCS) signaling has been developed. TCSs are the most prevalent signal transduc-
tion and gene regulation mechanisms in bacteria, responsible for innumerable adap-
tive responses to environmental signals and host–pathogen interactions. The model 
has been validated by comparison with  fl ow cytometry data and used to study the 
stochastic switching of a reporter gene controlled by the TCS as a function of extra-
cellular signal strength. The model shows that, depending on kinetic parameters, the 
two-component system can exhibit all-or-none, graded, or mixed mode responses. 
The positively autoregulated TCS exhibits all-or-none response in accordance with 
other studies. Surprisingly, the TCS lacking a positive feedback loop can also exhibit 
behavior leading to coexistence of two cellular populations. In this mixed mode, 
variation of the signal strength changes the level of gene expression in induced cells 
while the regulated gene continues to be expressed at the basal level in a substantial 
fraction of cells. It is an intriguing observation that graded response of the TCS can 
be changed to a mixed mode response by the increase of the translation initiation 
rate of the histidine kinase gene. It shows that a TCS is an evolvable design pattern 
capable of implementing deterministic regulation and stochastic switches associ-
ated with both graded and threshold responses.  

    5   Noise and Persistence: Conclusions 

 Biochemical processes occurring in living cells frequently involve very small num-
bers of reactant molecules. This results in substantial random  fl uctuations in the 
outcomes of these processes, which propagate to the level of cell physiology and 
may lead to phenotypic heterogeneity in isogenic bacterial populations. We have 
introduced here the mathematical modeling and computer simulation approaches 
which have been used extensively to study these phenomena. In fact, many theoretical 
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studies have drawn the attention of biologists to the underlying stochasticity of 
cellular processes, and motivated the development of single cell, quantitative exper-
imental methods, capable of validating the theoretical predictions. The integration 
of modeling approaches and experimental studies not only con fi rmed the existence 
of phenotypic diversity at the single cell level but also demonstrated its importance 
for resisting antibiotic challenge. 

 The functional phenotypic states available to cells within a clonal population are 
likely to be determined by a combination of the deterministic dynamics associated 
with the cascade of gene regulatory interactions, and intrinsic and extrinsic noise 
sources. We have shown here that extrinsic noise can contribute dynamically to 
building up multimodality, even in systems which are deterministically monostable. 
In any case noise remains the mechanism for which transitions among different 
states become possible. 

 However, partitioning of the cell population into different subpopulations cannot 
be taken yet as a manifestation of the emergence of distinct phenotypes. Wild 
 fl uctuations of proteins levels, and corresponding wild transitions among different 
cellular states, cannot be associated with observable cellular phenotypes. For cells 
to be identi fi ed as phenotypically different, we need to  fi nd mechanisms for those 
cells to maintain their state for a time longer or at least comparable either to our 
observational time, or to the other timescales over which other relevant physiologi-
cal processes happen, for instance, the killing by antibiotic drugs. The interplay 
between transcription and translation rates discussed in Sect.  8.4  suggests that a 
dynamical regime exists where protein levels remain correlated over long times. 
However, cell division may provide an ef fi cient mixing mechanism, and may limit 
phenotypic identity across generations within cell lines. 

 The search for mechanisms for persistence, and the emergence of phenotypic 
diversity more in general, becomes then the search for mechanisms capable of slow-
ing down all stochastic components. Extrinsic noise, again, is a natural candidate to 
look for sources of slow  fl uctuations, and it could be directly interpreted as respon-
sible for the observation of different functional states. Cells, whose only difference 
is in the number of ribosomes, for instance, would be naturally classi fi ed as func-
tionally distinct, even though their genetic material is identical. Whether extrinsic 
noise plays a role in the emergence of persistence remains to be seen. Likewise, 
highly complex relaxational dynamics might also play a fundamental role in slow-
ing down  fl uctuations. 

 In this chapter we propose a scenario in which the phenotypic heterogeneity lead-
ing to persistence emerges because of a dynamical slowing down of stochastic 
 fl uctuations in gene expression levels. In this scenario gene expression noise gener-
ates variation in the survival characteristics of individual bacterial cells when exposed 
to antibiotics. Antibiotic exposure will thereby select those minority cells that are 
tolerant to antibiotic, due to noisy  fl uctuation in their internal dynamics, and thereby 
generate the phenomenon of persistence. Note that this mechanism does not a priori 
require any speci fi c mechanisms of switching between normal and persistent popula-
tions states, nor any speci fi c gene controlling the dynamics of persister formation. 
The only assumption is that molecular noise impacts on the factors responsible for 
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conferring those properties to cause relatively long-lived cell-to-cell variation in 
their phenotypic expression. Thereafter, evolution may act on the system to tune the 
level of noise (by, for instance, modifying gene expression levels) so as to optimize 
the population structure (balance of persisters to normal growing cells) in order to 
survive antibiotic exposure and/or other stresses (such as the host immune response). 
In this way bacterial persistence can be considered as social trait, expressed at the 
level of population  [  24  ]  but caused by dynamical molecular noise. 

 Most of the studies on noise in gene regulation have been done for the model 
bacterial pathogen  E. coli . Understanding the role of noise in the persistence of  M. 
tuberculosis  requires a twofold effort. On the theoretical side, more work is needed 
to identify mechanisms for slowing down dynamically stochastic  fl uctuations, and 
to understand their relationship with the emergence of distinct phenotypes. On the 
experimental side we need to develop single cell level quantitative experimental 
approaches for mycobacterial species. This is likely to involve the use of micro fl uidic 
devices coupled with automated microscopy and quantitative measurement of 
 fl uorescent reporter proteins. These are challenging tasks due to the slow and 
branched cell growth of  Mycobacteria . We believe that the results already obtained 
from a combined theoretical–experimental approach on model organisms provide 
further motivation for this effort. As quantitative single cell level data become avail-
able, the quantitative theoretical approaches reviewed in this chapter will provide 
new insights into the origin of persistence in  M. tuberculosis .      
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  Abstract   Despite availability of several drugs, a vaccine, decades of research and 
concerted efforts from medical and allied communities to manage tuberculosis, it is 
clear that the  Mycobacterium tuberculosis  has been successful in defying these 
efforts and continues to pose a major threat to mankind. Newer approaches, in 
particular, newer strategies for drug discovery are therefore urgently required. The 
science of drug discovery has witnessed multiple paradigm shifts in the past few 
decades, from a predominantly ligand-centric approach to a target-centric approach 
and now recently leaning towards a systems-based approach. The shifts can be 
attributed to several factors such as availability of publicly accessible databases 
containing genome sequences, functional and structural data of macromolecules, 
high-throughput experimental pro fi ling, protein–protein interactions and pathway 
models, as well as adaptation and application of computational methods for ef fi cient 
data mining and modeling. Several  omics - scale  experimental and  in silico  approaches 
have emerged recently to systematically address important questions in biology, 
with an obvious impact on drug discovery. 

 A systems view enables a broad understanding of the system as a whole, provid-
ing signi fi cant insights at multiple stages in the drug discovery pipeline, from target 
identi fi cation, understanding pharmacokinetics and pharmacodynamics, to person-
alized medicine. Of the systems approaches for drug discovery, modeling metabo-
lism in the causative agent has received some attention. Flux balance analysis, and 
metabolic control analysis that can simulate the relative reaction  fl uxes under a 
variety of conditions, have provided lists of predicted essential proteins and hence 
potential drug targets. Perturbations such as gene knock-outs, drug inhibitions, dou-
ble and triple knock-outs, exposure to different chemical environments can all be 
modeled through this approach. Interactomes capturing structural and functional 
protein–protein linkages have been useful in identifying proteins strategically 
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located in the network, which when inhibited would perturb the network signi fi cantly. 
There have also been examples of rule-based or logic-based modeling studies that 
will help in identifying the effect of different scenarios of host–pathogen interac-
tions and adaptations within each, thereby identifying optimal strategies for thera-
peutic intervention. The models themselves are increasingly being enriched with 
experimental information, as more and more genomics and proteomics data is 
becoming available. The potential of these methods that still remains to be tapped 
in drug discovery programs are discussed. The stage seems set for the integration 
and application of skills from mathematics, computer science, and engineering dis-
ciplines, to address complex problems in biology and drug discovery, in a big way.     

     1   Introduction 

 Tuberculosis, one of the oldest infectious diseases known to man, continues to top 
the list of killer infectious diseases  [  1  ] . Available statistics indicate two million 
deaths every year globally or one death approximately every 17 s  [  2  ] . Decades of 
efforts of tackling tuberculosis through chemotherapeutic agents or the BCG vac-
cine, have clearly not been suf fi cient. Besides the deadly pact of the causative agent 
 Mycobacterium tuberculosis  (Mtb) with HIV, its ability to thrive in macrophages, 
hibernate for decades, and resurface at opportunistic moments, only emphasize the 
urgent need for new drugs and perhaps new approaches to discover them  [  3  ] . 
Confronting tuberculosis thus serves as a good example to highlight the need for a 
more holistic view of the pathogen and its interaction with the host. 

 For several decades, drug discovery has been ligand-centric with medicinal 
chemistry and traditional pharmacology as the main components in its toolkit, from 
which the paradigm shift to target-centric approaches backed by the power of 
molecular biology has marked an important milestone, several years ago  [  4  ] . In this 
post-genomic era with the added power of new-age biology armaments, the science 
of drug discovery has been witnessing another major paradigm shift, marking 
another signi fi cant milestone in the evolutionary trajectory, a shift in focus from 
studying single molecules with a reductionist philosophy to using knowledge from 
holistic “systems” behavior  [  5–  7  ] . 

  Systems - thinking  is not new to pharmacology and drug discovery. Heavy reliance 
on whole animal models, in vivo assays versus in vitro studies of the same mole-
cules in a test tube, and more importantly clinical trials that are carried out in differ-
ent phases, all stand as testimony to such thinking. However, there is a major 
difference between conventional physiology-based approaches and the currently 
emerging practice of systems biology  [  8  ] . Conventional approaches have surely 
bene fi tted from systems philosophy, but appreciation of the “system” is at best only 
implicit, in fact more of a “black box,” which only facilitates a systems output as a 
“readout,” but does not tell us why or how, such an output results. The discipline of 
systems biology on the other hand, seeks to reconstruct the system brick by brick so 
as to facilitate an understanding of why and how an event takes place, automatically 
leading to “what if” type of questions, and hence enabling predictions. With systems 
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biology becoming both feasible and a well-appreciated discipline, its in fl uence on 
drug discovery is almost inevitable. The tight orchestration of a biological system 
involving thousands of molecular components and a tenfold higher number of inter-
actions among them, the interactions themselves spanning across the levels of hier-
archical organization of the cellular constituents, necessitates systems approaches 
for their comprehension. Systems biology also differs from the “spherical cow” 
type of highly simpli fi ed abstractions  [  9  ] . Instead it seeks to reconstruct a system in 
detail capturing the complex real life phenomena, by using “omics” scale data on 
various fronts that facilitate such realistic modeling. 

 A systems view of pathophysiology enables a broad understanding of the system 
as a whole  [  10  ] , providing signi fi cant insights at multiple stages in the drug discov-
ery pipeline, by aiding in identifying best strategies for therapeutic intervention, 
target identi fi cation, understanding pharmacokinetics and pharmacodynamics, 
adverse effects, and even personalized medicine. Systems biology signals a depar-
ture from the viewpoint of “ single target per drug ,  lone therapeutic indication .” 
Obtaining systems perspectives of different diseases also has the potential to enable 
a comparison of pathogenesis of different diseases as well as their differential mani-
festations and enables exploration of targeting common pathways leading to “polyp-
harmacology” type of approaches  [  11  ] . The area is rapidly evolving and promises to 
transform the level at which we understand biology, automatically leap-frogging 
advances in drug discovery. Figure  9.1  illustrates a new pipeline for drug discovery 
incorporating the systems approach. The following sections give an account of how 
systems approaches are being applied for antitubercular drug discovery.   

  Fig. 9.1    A systems biology-based drug discovery pipeline that starts from a “System map of the 
disease” and has an additional step of identifying the right strategy for therapeutic intervention, as 
compared to the standard discovery pipeline. Various aspects that can be addressed through this 
pipeline are shown in  boxes  as also the methods and techniques that will be useful for that goal       
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    2   Choosing a Strategy for Therapeutic Intervention 

 In a general sense, any important process or pathway in the pathogen should serve 
as a targeting strategy, but then some pathways and some proteins are more impor-
tant for the survival and virulence of the pathogen than others. A logical strategy to 
tackle a pathogen would be to inhibit in part or full one of the following processes 
(1) entry of the bacteria into the host, (2) host-immune evasion processes in the 
bacterium, (3) processes rendering unique characteristics to the pathogen, (4), nutri-
ent absorption and metabolism in the pathogen, (5) important signaling events, and 
(6) virulence determinants in the bacterium. 

 First, it is important to review the mode of action of existing antituberculous 
drugs. We must of course remember that most of these drugs were discovered either 
serendipitously or through large-scale screening using whole cell cultures. Their 
mechanism of action has been unraveled only much later. Current clinical antituber-
cular drugs target the following (a) mycolic acid biosynthesis (isoniazid, and ethion-
amide), (b) cell wall biosynthesis through inhibition of alanine racemase (cycloserine) 
or arabinosyl transferases (ethambutol), (c) DNA gyrases ( fl uroquinolone) and DNA 
synthesis via thymidylate synthase (aminosalicylic acid), (d) RNA polymerase 
(rifampicin), (e) ribosomes (streptomycin), and (f) trans-translation (pyrazinamide) 
 [  12–  15  ] . 

 The mechanism of action of each drug varies considerably but most appear to 
target processes essential for bacterial growth and/or virulence. Isoniazid, a prod-
rug that gets converted to an isonicotinic acid adduct by KatG, a catalase peroxi-
dase enzyme, binds tightly and thus inhibits the enoyl-acyl carrier protein 
reductase known as InhA. InhA is a key enzyme of the type-II fatty acid synthase 
system and essential for biosynthesis of mycolic acids, and thus for the formation 
of the waxy coat of the mycobacterial cell wall  [  16,   17  ] . Rifampicin targets the 
beta subunit of RNA polymerase, thereby inhibiting transcript elongation, a criti-
cal process for the cell survival  [  18  ] . Ethambutol inhibits mycobacterial arabino-
syl transferases (encoded by the embCAB operon), an essential cell wall 
component involved in the polymerization of  d -arabinofuranose to arabinogly-
can. Pyrazinoic acid derived from pyrazinamide is reported to target the essential 
ribosomal protein S1 (RpsA), involved in protein translation and the ribosome-
sparing process of trans-translation  [  15  ] . Thus, viewing them from a reverse phar-
macological perspective, these targets are seen to pass target validation criteria in 
terms of essentiality. 

 Reconstruction of large scale models of pathogen and host (as described in 
Chap.   1    ) will be extremely valuable in identifying best strategies for intervention. 
However, most genome-scale models built so far have incorporated only a single 
cellular level, for instance metabolism or gene regulation. Methodologies for mod-
eling at multiple levels to build “virtual cells” are still under development but hold 
a lot of promise for development of optimal strategies for killing the bacterium 
whilst minimizing damage to the host.  

http://dx.doi.org/10.1007/978-1-4614-4966-9_1
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    3   Target Identi fi cation 

 In order to pursue strategies that would be useful for killing the bacterium, 
appropriate proteins must be identi fi ed as drug targets. First, it is important to ana-
lyze what makes a good drug target. Criteria that can be used either to evaluate or to 
predict an antibacterial drug target are, whether:

    (a)    The target is directly or indirectly a cause of the disease/symptoms (relevance 
to the given pathophysiology).  

    (b)    The target is essential to the system responsible for the pathophysiology and its 
knock-down will have suf fi cient impact on the bacterial cell (essentiality and 
impact).  

    (c)    The target is speci fi c to the disease process or state (process/condition 
speci fi city).  

    (d)    The target is speci fi c to the pathogen species or other closely related organisms 
(species/family speci fi city).  

    (e)    The target’s function can be manipulated by an appropriate small molecule 
(druggability or chemical tractability).  

    (f)    The lead molecule is available in suf fi cient quantities in vivo and suitable meth-
ods are available to test the function of the target and thereby study the extent 
of inhibition or activation by candidate lead molecules (biological tractability 
and assayability).     

 Several of these criteria have already been described above for current drugs. 
Species-speci fi city can be addressed through bioinformatics analysis of gene and 
protein sequences in a given species and through comparison of genome sequences 
to identify unique proteins and any other unique features. It can also be addressed 
through structural analyses by comparing three-dimensional structures of the target 
protein(s) with other proteins particularly with those from host cells  [  19–  21  ] . 
Druggability can be inferred from structural analysis, by, for instance, characteriza-
tion of functional regions such as the binding sites in a protein molecule and per-
haps through ligand binding and docking studies in conjunction with approaches 
now well established for structure-based drug discovery  [  22–  24  ] . Biological tracta-
bility as well as condition speci fi city can be addressed through genomics data to 
understand expression patterns and assayability is typically addressed by studying 
the individual molecular species  [  25  ] . 

 Two important criteria are “relevance to the given pathology” and “essentiality”; 
which are both inherently systems’ properties and cannot generally be addressed by 
studying proteins individually. For example, a protein that might seem to be a good 
drug target for a given disease may not actually be critical or essential, when viewed 
in the context of the entire metabolism in the cell. Systems-level studies may reveal 
the presence of an alternate pathway and mechanisms that may naturally exist to 
compensate for the absence of that protein. Systems level models hence provide a 
basis to assess criticality of potential targets. The conventional method of studying 
a single protein at a time, even at the highest level of detail, are no doubt extremely 



184 N. Chandra

important to characterize individual capabilities and limits of that molecule, but are 
clearly insuf fi cient to obtain a perspective of its larger context and hence may not 
provide the right answers to questions such as druggability. However, where possi-
ble, it would of course be most insightful to integrate systems level studies with 
those at sequence, structural, and biochemical levels. 

 Established and possible targets for antitubercular drugs have been compiled 
from experimental target validation methods such as knock-out studies  [  26  ]  
(Fig.  9.2 ). The analysis indicates that at least 32 different protein molecules that are 
essential can be explored as possible drug targets  [  26  ] . Another study identi fi ed 
unique pathways in Mtb based on sequence comparisons of metabolic enzymes 
 [  27  ] . Hasan et al.  [  28  ]  uses various features such as metabolic choke-points to iden-
tify drug targets. Enzymes involved in those reactions that uniquely consume a sub-
strate or produce a product in a metabolic network, are described as choke points 
 [  28  ] . In this study, the mycolic acid biosynthetic pathway was reconstructed involv-
ing 218 reactions, 197 metabolites, and 28 different proteins. Application of FBA 
(Chap.   2    ) led to the identi fi cation of key points in the pathway and the delineation 
of potential drug targets through systematic gene knock-outs as well simulation of 
enzyme inhibition through hypothetical drugs  [  29  ] . In another study, the two avail-
able genome-scale reconstructions of Mtb were used to identify essential genes and 
hard-coupled reaction sets (HCRs, which are groups of adjacent reactions involving 
metabolites with one-to-one connectivity) and thereby identify potential drug tar-
gets  [  30,   31  ] . Both these studies reconstruct genome-scale metabolic networks of 
Mtb and utilize a constraint-based approach called  fl ux balance analysis (FBA) to 
obtain insights about metabolism as a whole in this pathogen. Through FBA of 
  in - silico  gene knock-out conditions, predictions of gene essentiality were mad. 

  Fig. 9.2    The known antitubercular drugs and their targets. Targets (in  green ) involved in the cel-
lular processes of the  fi rst-line drugs (in  red ) and second-line drugs (in  blue ) and their Tuberculist 
classes are shown. Strategies for targetting as put together by Global Alliance for TB Drug 
Development are depicted in  purple  on the  left . The number of high con fi dence targets in different 
Tuberculist classes as predicted by targetTB pipeline are shown in  brown  on the  right        
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Most of the known drug targets to be essential. In addition, the known drug targets 
mapped to 25 of the hard-coupled reaction sets identi fi ed through this approach. 
It has further been proposed that other enzymes in these 25 sets could be explored 
for their potential as alternate but metabolically equivalent drug targets to some of 
those that are currently being studied  [  26  ] .   

    4   The TargetTB Pipeline 

 The  targetTB  target identi fi cation pipeline  [  19  ]  highlights the promise that systems 
approaches have for drug discovery. The pipeline uses a set of multilevel  fi lters to 
evaluate and retain only those proteins that pass the  fi lters at each stage. It starts 
with a systems level analysis to address the essentiality criteria of a drug target and 
indirectly also the biological relevance to disease criteria as well. The next  fi lter 
involves a comparative genomics analysis at the sequence level, which evaluates 
aspects of speci fi city, particularly with respect to the human genome. The next  fi lter 
carries out a structural assessment of targetability using a novel scheme of pocke-
tome characterizations and large scale comparisons. Pocketome refers to a compre-
hensive set of small molecule binding pockets in the entire set of proteins coded by 
the genome  [  32  ] . This  fi lter evaluates both speci fi city at a higher resolution than that 
is possible from a sequence level and simultaneously evaluates druggability and 
amenability of the protein to be manipulated by a small molecule. Further  fi lters 
prune the shortlisted target candidates based on expression pro fi les using available 
expression data, addressing biological tractability of suggested target proteins. 
A comparison at the sequence level with gut  fl ora proteins to rule out all those that 
have homologues in the latter species, addresses aspects of adverse effects and drug 
safety, while a similar analysis combined with phylogenetic pro fi ling against sev-
eral common pathogen genomes, addresses aspects of designing broad-spectrum 
antibiotic targets, while also identifying those speci fi c to tuberculosis. 

 The pipeline resulted in identifying a set of 451 high con fi dence drug targets, 
belonging to several functional classes. There are more than 100 enzymes, some 
transcription factors, some transporters, which pass all the  fi lters and are seen to 
make it to the  fi nal list. Here again, established targets for drugs currently used in 
the clinic were identi fi ed, lending credence to the approach. The study indicates that 
clearly there are many more targets in the proteome that could be explored, than 
those currently targeted (Fig.  9.2 ). 

 A comparison of targetTB hits with previously suggested targets indicates how 
the integrated approach could also be used to evaluate different criteria in target 
candidates. For instance, Anishetty and coworkers  [  27  ]  compared enzymes in meta-
bolic pathways between human and Mtb and proposed 186 proteins unique in Mtb 
as possible drug targets. Fifty-one of them were found in the  targetTB  pipeline, the 
rest were found to be nonessential by the systems or uniqueness criteria and hence 
were eliminated. In another study, Hasan and coworkers  [  28  ]  report a scheme for 
prioritizing and ranking all proteins in the Mtb genome as possible drug targets, 
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based on consideration of metabolic choke-points, in vitro essentiality for growth 
and druggability as judged by sequence similarity to proteins capable of binding 
small molecule ligands. One hundred and forty-six in the top 500 ranks of this study 
were also in the  targetTB  shortlist, while the rest were again eliminated due to sys-
tems and expression criteria. Different types of analyses carried out independently, 
lead to different shortlists of putative drug targets, since they use different criteria 
for the identi fi cation. Such lists can be compared or combined to identify those 
proteins which satisfy multiple criteria applied for evaluating drug targets and hence 
appear in multiple lists, increasing their chance of being successful drug targets.  

    5   Polypharmacology, Combination Targets, 
and Drug Repurposing 

 Another concept that is receiving much attention in the recent years is that of polyp-
harmacology, facilitated through the study of drug-target networks  [  11  ] . 
Polypharmacology can be de fi ned to encompass both situations of one drug binding 
to multiple targets and multiple drugs binding to different targets within a network. 
A systems view of the pathogen and reconstruction of comprehensive networks at 
various levels of hierarchy in the cell (enabled through integration of “ omics ” level 
experimental data) render it feasible to address polypharmacology questions. 
Indeed, it has previously been claimed that the success of crude drug preparations 
from plant or animal origin may be due to their ability to act on multiple targets with 
multiple mechanisms  [  33  ] . Various drug-target databases such as DrugBank  [  34  ] , 
the Therapeutic Targets Database (TTD)  [  35  ] , and World Molecular Bioactivity 
(WOMBAT)  [  36  ]  are now available, which are highly useful for identifying multi-
ple targets. Indeed drug-target networks have been constructed and analyzed in 
several ways  [  37  ] . 

 Multiple drugs at multiple targets, which is best described as “drug combinations 
with different mechanisms of action” is already used extensively in the clinic, with 
examples from many diseases, including of course tuberculosis. However, achiev-
ing polypharmacology through one drug is less common, most probably due to lack 
of enabling technologies until recently. With the drug-target networks and develop-
ment of newer and more ef fi cient algorithms to model three-dimensional structures 
and to compare their functional sites at a genomics-scale is making it possible to 
identify such possibilities. In the future, it can be envisaged that rational design 
protocols can take advantage of such capabilities and incorporate these criteria at 
the lead design stage itself. 

 An example in this direction is the discovery of a common structural motif in 
fatty acyl-AMP ligases and acyl-CoA-synthesizing fatty acyl-CoA ligases in Mtb. 
These are proteins involved in generating functional versatility in the activation of 
fatty acids to acyl-adenylates  [  38  ] . Since the acyl-AMP ligases are crucial nodes in 
biosynthetic network of virulent lipids, inhibitors of these proteins are likely to have 
a multipronged approach of simultaneously disrupting several pathways. The group 
of bi-substrate acyl-sulfamoyl analogues was shown to inhibit both proteins and had 
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a marked effect on the cell surface architecture of Mtb  [  38  ] . These are being further 
explored as promising polypharmacology lead compounds. 

 Current combination therapy for tuberculosis was developed more than 50 years 
ago on empirical rather than rational grounds. Despite its obvious success, develop-
ment of resistance is still a problem  [  39  ] , which is likely due to the pathogen’s 
intrinsic robustness mechanisms which allow it to survive in the presence of drugs 
for long enough to develop resistance. One way to counter this would be to attack 
the pathogen at multiple points which are rationally designed to achieve more rapid 
killing. To address this, a recent study analyzed metabolome and corresponding 
protein interaction networks to identify a combination of targets such that multi-
modal destruction to bacterial metabolism could be optimally achieved  [  40  ] . This 
study computed metabolic disruptability indices to shortlist ef fi cient disruption 
strategies by identifying pairs, triplets, and quadruplets that wielded the largest 
in fl uence on the metabolism. 

 In another study, Kinnings et al., combined molecular modeling, structural bio-
informatics, and systems biology approaches to construct a large-scale drug-target 
network for Mtb  [  20  ] . They constructed a network which they termed the 
TB-drugome, from a dataset of 274 drugs approved for human use for any condition 
and for which structural data was available through crystallographic studies. 
Similarities of predicted binding sites of Mtb proteins with known drug binding 
sites was used as a basis for associating Mtb proteins with known drugs (the prem-
ise being that the two proteins have the possibility of binding the same drug if they 
share similarity in their binding sites). Using a similar approach to computationally 
detect cross-reactivity between different drug target families, the drugs entacapone 
and tolcapone prescribed for the treatment of Parkinson’s disease were identi fi ed as 
potential TB drugs and shown to inhibit InhA, thus leading to a possibility of drug 
repurposing  [  38  ] .  

    6   Addressing Drug Resistance 

 As indicated earlier, drug resistance is perhaps the most important problem plagu-
ing chemotherapy in general. The emergence of drug resistant varieties of several 
bacteria and viruses has been on the rise and requires urgent attention. In tuberculo-
sis too, the MDR and XDR varieties are increasing in numbers and has been a cause 
for concern  [  41–  43  ] . Although, several measures are being taken to counter the 
problem of drug resistance, success is hampered by lack of full understanding of 
how resistance emerges. Mechanisms include activation of alternate pathways; 
manipulation of the drug; altering its bioavailability; or modi fi cation of the target; 
modulating expression of the target; mutation of the target that hinders drug bind-
ing; and activation of pumps and transporters to ef fl ux out the drug  [  44  ] . A compre-
hensive resource, TBDReaMDB that contains drug resistance mutations in Mtb has 
been developed  [  45  ] . Experimentally characterized drug resistance mutations were 
curated from diverse sources of existing literature. The database serves as a valuable 
resource to map mutations to the resistance phenotypes. 
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 A systems-based approach was recently applied to identify likely resistance 
mechanisms, particularly to probe if there were possible pathways in the cell from 
the drug target(s) to trigger one or more proteins that comprise the resistance 
machinery. A large scale protein–protein interaction network was  fi rst reconstructed, 
based on experimentally observed and predicted protein–protein interactions cap-
turing both direct structural complexes as well as functional linkages among pairs 
of proteins  [  46  ] . This network was probed using graph theoretical methods to iden-
tify possible resistance paths, which resulted in  fi nding a few such paths and some 
proteins that were as central to many resistance pathways. Moreover, different tar-
gets and hence different drugs were predicted to exhibit different propensities for 
triggering emergence of resistance  [  47  ] . It was suggested that such hub-proteins 
could serve as “co-targets,” so that their inhibition simultaneously with their pri-
mary targets might lead to reducing rates of drug resistance. 

 Pharmacokinetics and pharmacodynamics of drugs, both existing ones as well as 
new ones in the discovery pipeline, have not received suf fi cient attention, especially 
from a systems perspective. Having a rational handle to understanding their bio-
availability, controlling release of active drug ingredients from the administered 
drug formulation, drug metabolism, tissue distribution as well as unintended drug 
interactions with other target molecules, is essential to design the right drug combi-
nations, dosage regimens, and better ways of clinical management. Although not 
suf fi ciently explored at this time, systems level models incorporating key molecular 
components should be immensely useful for addressing these issues.  

    7   Targeting Host–Pathogen Interactions 
and Critical Host Factors 

 It is quite clear that the complex web of interactions between the host immune sys-
tem and the pathogen determines the outcome of any infection, including tubercu-
losis. A systems perspective is important to understand how certain bacterial factors 
interact with various host factors to evade host immune response, divert host nutri-
ents into the bacterium, and induce other toxic effects. Knowledge of how various 
host and pathogen molecules play their role will provide additional handles to iden-
tify novel drug targets. For instance, using a genome-wide siRNA screen, host fac-
tors that are important for survival of the pathogen inside the host cell have been 
identi fi ed  [  48  ] . It appears that Mtb, an intracellular pathogen functions as a type of 
hub inside the host network, interacting and in fl uencing simultaneously several of the 
constituent nodes of the host system  [  49  ] . Molecules identi fi ed as essential for main-
taining infection and hence as host susceptibility factors through these siRNA screens 
should serve as potential targets for controlling Mtb growth in vivo. As a proof of 
concept, when two such molecules TGFbRI and CSNK1d were simultaneously 
inhibited using a pharmacological agent, Mtb survival in infected mice was seen to 
be severely compromised. 
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 A host–pathogen interactions model containing 75 nodes corresponding to host 
and pathogen molecules, cells, cellular states, or processes has been built using 
Boolean rules  [  40  ] . Simulations were used to explore vaccination effects, clearance 
ef fi ciencies due to drugs on the bacterial growth rate, and hence the outcome of 
exposure to Mtb. Simulations indicate a high propensity of the pathogen to persist 
under different conditions. Another study reporting a rule-based modeling of iron 
homeostasis in tuberculosis was able to identify key factors in maintaining the iron 
balance and suggest possible strategies for controlling bacterial growth, such as 
inhibition of mycobactin biosynthesis  [  50  ] . A human alveolar macrophage genome-
scale metabolic reconstruction and its interaction with Mtb has also been recently 
reported. Using  fl ux balance analysis, the authors show that metabolic changes as 
well as gene essentiality predicted from the model depict the infection scenario  [  51  ]  
and hence enable identi fi cation of drug targets using a model of the metabolic state 
resembling that of active infection.  

    8   Future Perspectives 

 While there is still tremendous scope for improvement, the promise of systems biol-
ogy leapfrogging drug discovery is evident. The approaches described here clearly 
demonstrate the potential of systems thinking in drug discovery. A goal of systems 
biology is to transform biomedical research and drug discovery into a more predic-
tive science. A key to success perhaps lies in the modeling of complete systems, 
accounting for all component reactions, the localization of these components and 
their interactions. The interaction between the reconstructed system and its immedi-
ate external environment and ultimately the physical world becomes more relevant in 
the  fi nal layers of hierarchy. The predictive power is important because it re fl ects the 
extent of our collective understanding of that system through all available approaches 
and at any level of detail—physiological, cellular, biochemical, molecular, or bio-
physical levels. Towards that goal, it is increasingly being appreciated that collabora-
tive efforts are essential to make rapid progress, given the scale and complexity of 
such experiments. In that light, it is encouraging that consortia such as the Open 
Source Drug Discovery consortium  [  52  ]  and the NM4TB programs are already well 
under way, as also are the TBDB and the collaborative chemistry databases  [  53,   54  ] . 

 The promise of predictions and data-driven computations has long demonstrated 
in product development and safety testing in various engineering disciplines, such 
as aerospace engineering and electronic circuit design. For drug discovery too, it 
can be envisaged that such opportunities, are expected to increase signi fi cantly in 
the coming years, both due to comprehensive data gathering through high-through-
put leading-edge technologies as well cutting-edge concepts and methods to com-
prehend and interpret that data. Thus, it seems to be an answer to several problems 
in drug discovery. Given the extent of  omics  data and a large number of groups 
working on the tuberculosis pathogen, many components and modules are increas-
ingly being well characterized, making the systems view more and more complete. 
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Several promising target candidates have been identi fi ed. Besides lead molecules 
for individual target proteins, examples of lead compounds binding to more than 
one target have also begun to emerge. It is also likely that the systems perspective of 
the pathogen and in future the host cell as well, will have a high impact on pharma-
cokinetic and pharmacodynamic models and characterizations as well. It may no 
longer be mere  fi ction to envision that in the future, in a clinical setting, a disease 
could get diagnosed and characterized at the systems level with precise genotype 
and phenotype de fi nitions, both by phenome-typing the pathogen, as well as the 
host, leading all the way up to predictive quantitative titrations of the available rem-
edies and  fi nally personalized prescriptions.      
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  Abstract   Host responses to  Mycobacterium tuberculosis  infection provide a basis 
for diagnosis of latent infection and active disease. T cell responses have been the 
mainstay for diagnosis of latent infection and may contribute to diagnosis of active 
disease. Recent advances in characterizing humoral responses will likely contribute 
to improved diagnosis of active disease. However, these measures fail to distinguish 
the continuum of infection states. Moving to a systems approach to biomarker dis-
covery may provide the resolution that current methods of diagnosis lack. The chap-
ter evaluates the current use of T cell and B cell responses for diagnosis and the 
limitations of applying them separately. The possibility that macrophage or mono-
cyte activation may serve as a biomarker is also addressed. We consider whether 
methodologies that combine (a) multifunctional T cell responses and T cell types, 
(b) monocyte/macrophage characteristics that reveal response to infection, and (c) 
dominant B cell responses to  M. tuberculosis  growth- phase-speci fi c antigens can 
further contribute to a systems approach for biomarker  discovery that can distin-
guish among infection states.  
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  IL    Interleukin   
  LTBI    Latent  Mycobacterium tuberculosis  infection   
  MHC    Major histocompatibility complex   
  PBmo    Peripheral blood monocyte   
  TB    Tuberculosis   
  TCR    T cell receptor   
  TNF    Tumor necrosis factor         

 Systems biology approaches, to which this volume is dedicated, can be applied to 
 biomarker discovery, an area of tuberculosis (TB) research with critical consequences 
for TB control effectiveness. Biomarkers are needed to diagnose active TB when 
detection of tubercle bacilli alone is insuf fi cient, slow, or impractical (reviewed in  [  1–
  3  ] ) and to discriminate stable forms of latent  Mycobacterium tuberculosis  infection 
(LTBI) from recent or progressive infection to target the latter for treatment  [  4,   5  ] . 
Biomarkers are also actively sought for vaccine research. Due to the typically slow 
evolution and low frequency of TB activation in immunocompetent individuals 
(5–10% of infected individuals develop active TB during their  lifetime), testing vac-
cine ef fi cacy in clinical trials is extremely cumbersome and expensive. Finding bio-
markers of vaccine ef fi cacy is therefore imperative. Similarly,  developing new drugs 
or drug regimens against TB would be greatly facilitated by acquiring biomarkers of 
treatment outcome that can be assessed more easily and rapidly than culturing  M. 
tuberculosis . For some of the above applications, biomarker discovery research may 
overlap. For example, a biomarker that is used to diagnose  asymptomatic stable infec-
tion could also work as a surrogate marker of vaccine effectiveness. Moreover, bio-
markers of bacillary burden may in principle be employed as indicators of disease 
progression and drug treatment outcome. These multiple applications may allow 
research integration. 

 Even when biomarker discovery does not extend to multiple areas of application 
at once, integrated approaches should be favored because  M. tuberculosis  infection 
presents with a spectrum of multiple, often poorly separated, clinical conditions. 
It has been increasingly recognized that LTBI covers a spectrum of “subconditions” 
 [  6  ] : it may be a stable state, it may be associated with high risk of progression to 
disease, or it may represent a preclinical stage of disease. Also active disease may 
present with various clinical characteristics: it may be minimal (i.e., accompanied 
by low-grade symptoms) or it may exhibit various degrees of severity in terms of 
symptoms, bacterial burden, and tissue damage. Thus, it is unlikely that a single 
marker (or marker set) can re fl ect the complexity of the clinical forms of TB. 

 A need for integrated biomarker research and application also derives from the 
complexity of the cellular and molecular events occurring during infection. The 
granuloma, which is the histopathological hallmark of tuberculous infection, is a 
multicellular, dynamic structure. The host–pathogen interactions at the granuloma 
lead to dynamic changes of tubercle bacilli, of the phenotypes of the host immune 
cells, and of the levels of the immune mediators they produce. Since immune cells 
recirculate between local immune compartments and the periphery, systemic levels of 
immune markers and released soluble factors also vary in association with infection 
outcome. The “sign” of the variation (up or down) derives from whether marker 
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expression is directly linked to immune function, for example, protective or 
 suppressive, and its regulation, whether it merely re fl ects changes in relative 
 bacterial antigen burden during infection, or whether it is affected by both. Thus, 
biomarker discovery could involve any combination of host responses. 

 An additional level of complexity is introduced by genetic and epigenetic sources 
of variability among individuals. Antigen processing, presentation, and recognition 
are tightly linked to the immunogenetic background of the host, such as 
 histocompatibility and T and B cell repertoires. Moreover, different types of 
 granulomatous lesions can be found in the same individual  [  6,   7  ] , further  complicating 
biomarker discovery. Comorbidities affecting immune competence, such as HIV, or 
host cellular metabolism, such as diabetes, further compound interindividual varia-
tion. Also the pathogen contributes to variation, as different clinical strains of  M. 
tuberculosis  vary in relative gene expression  [  8,   9  ] . Moreover, any alteration of the 
host-derived microenvironments due to inter-lesion or inter-patient differences may 
be re fl ected in the stress response of the pathogen. This will result in bacterial gene 
expression differences, which in turn will affect the pro fi les of the antigen-speci fi c 
immune responses. Recognizing that the association between biomarkers and infec-
tion stages is at the intersection of multiple host- and pathogen-derived covariates, 
the argument for systems approaches to biomarker discovery is all but compelling. 

 In this chapter, we discuss effector and regulatory T cell responses, monocyte 
and macrophage properties, and B cell responses in relation to the dynamics of 
host–pathogen interactions in  M. tuberculosis  infection. We conclude by consider-
ing how an integrated approach to biomarker discovery can advance our ability to 
track responses to infection, vaccination, or pharmacological treatment. 

    1   T Cell Responses 

    1.1   Overview 

 Airborne tubercle bacilli infect their host by reaching the respiratory mucosa and 
lung alveoli where they are engulfed by myeloid dendritic cells (DC) and resident 
macrophages. DC containing viable  M. tuberculosis  or mycobacterial components 
circulate from the respiratory mucosa to the draining lymph nodes, where they 
prime naïve T cells. The resulting effector T cells can return to the lung and exert 
control of infection. Endogenously processed antigens and those captured from the 
extracellular milieu can be presented to B cells or to T cells in the context of MHC 
class II, class I, and MHC class I-like molecules expressed on the surface of DC. 
Conventional CD4+ and CD8+ T cells and unconventional T cells, all expressing 
antigen-speci fi c T cell receptors (TCR), recognize a vast array of protein and lipid 
antigens, respectively, and play a major role in adaptive immunity against TB  [  10, 
  11  ] . Adaptive immunity mounted by T cells that utilize antigen-speci fi c TCR 
usually requires days, a time frame that allows for priming of naïve lympho-
cytes and clonal expansion. Ultimately, effector T cells are generated; these can 
further differentiate and establish immunological memory. Conventional CD4+ 
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and CD8+ T cells are central to the anti-mycobacterial immune response, while 
both conventional and unconventional T cell populations are involved in  granuloma 
formation at the site of infection  [  11–  15  ] . Finally, regulatory T (Treg) cells are an 
important part of the immune network, as they maintain a  fi ne balance between anti-
mycobacterial pro-in fl ammation responses and immunopathological consequences 
of excessive in fl ammation on tissues  [  16  ] . Below we brie fl y review critical concepts 
related to these cell types and their main features, such as antigen speci fi city, 
cytokine production, and function, that are relevant to biomarker research.  

    1.2   Natural Memory Immunity 

 Natural memory immunity is established in the early stages of infection, prior to 
expression of adaptive immunity mediated by conventional T cells (reviewed in 
 [  10  ] ). These T cells express either  a  b  or  g  d  TCR, recognize a broad scope of both 
self and foreign lipid antigens presented in the context of CD1 molecules, and 
exhibit rapid responses  [  17–  19  ] . The kinetics of response varies among cell pop-
ulations: the  a  b -expressing CD1a-, b-, and c-restricted T cells respond rapidly 
and robustly to secondary antigen challenge, while the  g  d -expressing CD1d-
restricted invariant natural killer T (iNKT) cells respond readily to primary anti-
gen exposure. Despite a limited life span  [  20,   21  ] , the iNKT subset appears to be 
essential for optimal protection against infection, apparently through interleukin 
(IL)-17 production and participation of the liver X receptor (LXR)  [  11,   22,   23  ] . 
LXR, a transcription factor mainly known for its role in lipid homeostasis, is 
broadly expressed in T cells  [  24  ] . The IL-23/IL-17 cytokine pathway associated 
with differentiation of naïve CD4+ T cells into IL-17-secreting T helper 17 
(Th17) cells may play a crucial role in protective immunity against mycobacteria 
and other intracellular pathogens by regulating both innate and adaptive immune 
responses  [  15,   25,   26  ] . Moreover, IL-17 appears to be essential for granuloma 
development  [  27  ] . Differentiation of naïve CD4+ T cells into Th17 cells can be 
negatively regulated by LXR  [  11,   22,   23  ] . It is possible, therefore, that early 
responses to infection involve the LXR-dependent IL-17 response mediated by 
iNKT cells. Functional characteristics of iNKT cells, such as the constitutive 
presence of cytokine-encoding mRNA transcripts in their cytoplasm  [  28,   29  ] , 
also point to their role in mediating protective immune responses at early stages 
of infection. 

 In addition to iNKT, another subset of CD1d-restricted NKT cells carrying a 
structurally distinct, more diverse TCR (dNKT) has been recently identi fi ed  [  18, 
  19  ] . Both CD1d-restricted dNKT and iNKT subsets have a potential for rapid 
cytokine secretion and cytolytic activity, but they may differ in their chemokine and 
integrin expression pro fi les  [  30  ] . A clear distinction in immunological functions 
mediated by these two NKT subsets may also be related to differences in their 
respective TCR structures enabling dNKT cells to recognize a broader array of anti-
gens and undergo clonal expansion in response to TCR stimulation  [  19  ] .  
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    1.3   Adaptive Immunity 

 Th1 responses mediated by conventional interferon gamma (IFN g )-producing CD4+ 
T cells protect against acute and primary mycobacterial infection. In contrast, CD8+ 
T cells play a role in resistance to and control of infection due to IFN g  production 
and cytotoxicity  [  10  ] . These T cell populations are important mediators of granu-
loma formation and maturation  [  11,   14  ] . Intracellular signaling and cell–cell com-
munications that are involved in generation of adaptive immunity effector and 
memory CD4+ and CD8+ T cells principally begin with the recognition of an anti-
genic peptide by the appropriate TCR. Two de fi ned features of these conventional T 
cells expressing antigen-speci fi c TCR, therefore, are important in the search for 
biomarkers: the antigen speci fi city and the cytokine production phenotype. More 
than two decades’ effort has been devoted to identifying the  M. tuberculosis -derived 
antigens that could elicit protective responses against infection. Due to the lack of 
established parameters that could help identify such targets, the search and selection 
criteria most commonly adopted to identify candidates have been immunogenicity 
in humans and animals and physicochemical characteristics  [  31,   32  ] . More recently, 
consideration has been given to the apparent segregation of some mycobacterial 
antigen-speci fi c responses with LTBI or active TB, and with severity of disease. In 
a major shift in antigen selection strategy, studies have focused on genes and cor-
responding antigens that are expressed predominantly at a particular stage of 
infection  [  33–  37  ] . Thus, in addition to immunodominant proteins such as ESAT6, 
TB10.4, and Ag85  [  38–  40  ] , these recent studies have described immune responses 
against antigens associated with  M. tuberculosis  dormancy (DosR-regulated), 
resuscitation, and reactivation (Rpf group-associated), and antigens from the 
starvation-stimulon group  [  41–  44  ] . By comparing antigen-speci fi c CD4+ and 
CD8+ T cell-mediated Th1 responses in active TB and LTBI, immune responses 
directed to the proteins expressed predominantly in non-replicating bacilli were 
found with higher frequencies in persons with latent infection. These results are in 
agreement with earlier hypotheses that actively replicating and dormant mycobac-
teria differ in antigen composition  [  34,   45  ] , and this may be re fl ected in the reper-
toire of immune responses at distinct stages of infection. 

 Dynamic changes in the immune repertoire during infection are also demon-
strated by the presence of antigen-speci fi c T cell subsets with distinct phenotypic and 
functional signatures in different groups of TB patients. The levels of the main Th1 
cytokines, i.e., IFN g , IL-2, and tumor necrosis factor alpha (TNF a ), produced by the 
same cell were shown to de fi ne the phenotype and functionality of T cell subsets that 
are essential in anti-viral and anti-mycobacterial immune responses  [  46–  48  ] . 
Therefore, characterization of these key subsets in terms of the proportion of effector 
T cells secreting mainly IFN g  only, effector memory T cells secreting both IFN g  and 
IL-2, and central memory T cells secreting only IL-2 in different patients’ cohorts 
may accurately distinguish among the various stages of infection  [  49–  53  ] . The 
cytokine-based multifunctionality of Th1 responses could also be associated with 
long-term memory and correlate with ef fi cient protective immunity  [  54–  56  ] .  
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    1.4   Regulation of Immunity 

 In fl ammatory responses to infection caused by intracellular pathogens often 
induce excessive acute and chronic in fl ammation that may lead to various immune 
pathologies. Usually, pro-in fl ammatory responses are controlled at the cellular 
level by Treg cells. Naturally occurring thymus-derived Treg cells expressing 
CD4, CD25, and the forkhead winged-helix family transcriptional repressor P3 
(FoxP3) are the main cell type suppressing the activity of pathogen-speci fi c effec-
tor CD4+ and CD8+ T cells  [  16,   57–  59  ] . FoxP3 represses IL-2 and IFN g  expres-
sion and interacts with nuclear transcription factors of activated T cells, resulting 
in poor cytokine production and impaired proliferation  [  60  ] . Mycobacteria, 
through their multiple Toll-receptor-like agonists, could stimulate proliferation of 
Treg cells and stimulate their expansion over effector T cells at the site of infec-
tion  [  61,   62  ] . 

 The role of CD4+ CD25+ FoxP3+ Treg cells has been primarily investigated in 
mouse models of  M. tuberculosis  infection and in humans  [  63–  66  ] . Depletion of 
Treg cells increased the frequency of IFN g -producing cells in the lung but resulted 
in reduced bacterial burden only at early stages of infection  [  63,   67  ] . Thus alterna-
tive mechanisms related to the progressive development of other T cell populations 
may contribute to containment of in fl ammation at later stages and during chronic 
infection. The de fi ning feature of Treg cells is the ability to inhibit T cell proliferation 
and IFN g  production through cell–cell contact and/or through production of immune 
suppressive cytokines such as transforming growth factor beta 1 (TGF b 1) and IL-10 
 [  68  ] . These properties may explain delayed priming and/or proliferation of newly 
activated T cells  [  62  ] . It is thought that resident DC can receive the antigenic cargo 
from infected macrophages that undergo apoptosis in the lung. Since Treg cells 
interact with DC, they may be responsible for negative modulation of DC motility 
to lymph-draining lymph nodes and impede transfer of antigen to T cell priming 
sites  [  69,   70  ] . 

 The human Treg population is heterogeneous and comprises multiple sets. 
Adaptive Treg exist as Tr1 and Th3 subsets that secrete high levels of IL-10 and 
TGF b , respectively  [  71  ] . CD4+ CD25+ CD39+ Treg cells distinguishable from 
classical FoxP3+ Treg cells were recently identi fi ed in TB patients  [  72  ] . While 
FoxP3+ Treg cells produce IFN g , CD39+ Treg cells appear to produce TGF b  but not 
IFN g   [  72  ] . In addition to CD4+ Treg, a subset of CD8+ CD25+ FoxP3+ Treg cells 
has been found in human lymph nodes infected with mycobacteria. These CD8+ 
Treg cells characteristically express CD223 (an MHC class II binding CD4 homo-
logue) and glucocorticoid-induced TNF receptor. Moreover, they exert suppressive 
activity, in part, by releasing chemokine (CC-motif) ligand 4, which interferes with 
TCR signaling  [  73  ] . In addition, circulating CD8+ CD28- Treg cells were also found 
in patients at levels correlating with TB progression and apparently complementing 
classical FoxP3+ Treg cells  [  74  ] . The mechanistic basis for suppressive activity of 
this Treg subset was not investigated directly, but association with higher levels of 
TNF a , IL-4, and IL-10 in peripheral blood was observed.  
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    1.5   T Cell Biomarkers 

 Two requirements appear to be important for successful improvement of 
T  cell-based TB diagnostics. First, novel diagnostic schemes must take into 
account the multiple characteristics of the various cellular populations mediat-
ing the immune response. Among the features that are readily amenable to quan-
titative evaluation, one should consider the frequencies of antigen-speci fi c cells 
with a de fi ned speci fi city (see below) and the frequencies of cells with certain 
cytokine production pro fi les, or T cell signatures, characteristic of infection and/
or its stages. Second, the latest technological advances must be implemented to 
increase the sensitivity of methods used to detect intracellular cytokines and to 
identify antigenic targets recognized by TCR. 

 MHC class I molecules transport speci fi c antigens, i.e., peptides originated from 
the degradation of proteins in cytosol or other intracellular compartments, for pre-
sentation to TCR on the surface of all nucleated cells  [  75  ] . Therefore, analysis of the 
peptides bound to MHC class I has been utilized to learn about the protein synthesis 
and degradation pathways in normal and malignant or otherwise transformed cells 
 [  76–  79  ] . This principle can be extended to infectious diseases caused by intracellular 
pathogens. In the context of mycobacterial infection, direct access to the cells har-
boring mycobacteria is dif fi cult. However, soluble MHC class I (sMHC-I) proteins 
are elevated in serum of patients and have prognostic value in malignancy and some 
infections  [  80–  82  ] . Importantly, it has been shown that sMHC-I proteins are stable 
and retain a repertoire of bound peptides similar to that of the membrane-bound 
MHC-I  [  79,   83  ] . The sMHC-I forms, which are lacking either the cytoplasmic and 
transmembrane domains or the transmembrane domain only, are released by metal-
loproteinases  [  84  ]  or by alternative splicing  [  85  ] , and comprise the majority of all 
sMHC-I found in serum  [  79,   86,   87  ] . Thus, similar to cancer cells that release 
sMHC-I with peptides characteristic for the type of malignancy and/or stage of 
progression, serum of TB patients can be expected to contain sMHC-I with  M. 
tuberculosis -derived peptides that may be characteristic of the clinical stage of 
infection. Based on these considerations, isolation of sMHC-I from serum of TB 
patients by immunoaf fi nity puri fi cation and subsequent identi fi cation of bound  M. 
tuberculosis -speci fi c peptides by capillary chromatography and mass spectrometry 
and bioinformatics analysis should be feasible. 

 Peptide signatures speci fi c for the TB clinical stage obtained by this analysis could 
be further explored in TB diagnostics. As an example, one can use a diagnostic scheme 
based on detection of antigen-speci fi c CD8+ T cells. Patients with active and latent 
forms of  M. tuberculosis  infection have mycobacteria-speci fi c effector and/or memory 
CD8+ T cells in peripheral blood with frequencies ranging between 0.004% and 1.0% 
 [  35,   49  ] . Detection and analysis of small numbers of T cells are dif fi cult, while con-
ventional methods of T cell expansion by stimulation with autologous APC are cum-
bersome and require weeks. However, a recently developed methodology that uses 
arti fi cial APC (aAPC) might solve this problem. The aAPC is a synthetic bead-based 
platform that contains dimeric MHC class I-Ig molecules that can be easily loaded 
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with a speci fi c peptide (or mixture) to target appropriate TCR on T cells and may also 
 contain co-stimulatory molecules on the same bead  [  88  ] . This platform effectively 
allows for the expansion and easy detection of antigen-speci fi c T cells within days 
rather than weeks  [  89  ] . Sensitivity might be increased and time to detection further 
reduced (from days to hours) by replacing  fl ow cytometry measurements of key 
cytokine levels, e.g., IFN g , IL-2, and TNF a , with measurements of the corresponding 
mRNAs detected following  fl uorescence in situ hybridization  [  90  ] . Similar receptor 
signaling- and activation-based approaches could be used with other T and non-T cell 
populations as their role in  M. tuberculosis -induced responses is elucidated.   

    2   Properties of Antigen Presenting Cells 

    2.1   Overview 

 Including the analysis of antigen presenting cells (APC) along with the well-established 
consideration of T cell responses (above) and serology (below) may provide a new 
opportunity to distinguish among  M. tuberculosis  infection stages, assess disease pro-
gression, evaluate vaccine response, and monitor treatment ef fi cacy. APC products that 
might be secreted following antigen stimulation of whole blood in vitro have been con-
sidered as the basis for improved biomarker outputs  [  91  ] . Moreover, characteristics that 
are detectable without ex vivo manipulation have been investigated for the ability to 
discriminate infection stage or response to treatment (see below). However, prior efforts 
at biomarker identi fi cation have largely failed to consider APC properties  [  92–  94  ] . Before 
considering integrating data from APC with other sources of evidence, we will discuss 
what might be learned from APC alone and how it might be learned. We limit consider-
ation to the spontaneous properties of monocytes and macrophages, since DC are likely 
impractical as a source of diagnostic or prognostic information, and B cells are repre-
sented by proxy in serological studies, which are addressed below. 

 A practical approach would rely preferentially on lung macrophages that are 
present in sputum, since they have the most favorable combination of relevance and 
accessibility. Alveolar macrophages (AM) are intuitively more sensitive indicators, 
but far less accessible outside advanced care settings. Thus, they might best be stud-
ied to identify factors that should be further assessed under different infection stages 
for sputum macrophages. Indeed, taking accessibility as a key criterion, peripheral 
blood monocytes (PBmo) are next after sputum macrophages in order of desirabil-
ity as a possible avenue of investigation for establishing biomarkers.  

    2.2   Sputum Macrophages 

 Differences in sputum macrophages that are speci fi c for infection stage, progres-
sion, and treatment would be powerful tools for prognostic and diagnostic purposes, 
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regardless of whether they mirvror results from AM obtained by bronchoalveolar 
lavage (BAL). An immunohistochemical analysis of cell surface molecules involved 
in antigen presentation demonstrated clear differences between cells from TB 
patients and cells from a cohort of donors having no or other lung disease  [  95  ] . TB 
was associated with lower levels of HLA-DR and of CD86 on a per-cell basis. 
While HLA-DR was expressed on a similar percentage of cells from each group, 
CD86 was present on a smaller proportion of macrophages from TB patients. 
Additionally, lack of radiographic indication of disease was associated with a lower 
level of CD86 than that found with cavitary disease. Thus, CD86 might be useful as 
an indicator of transition from LTBI to active TB, or it might distinguish between 
the two states. 

 Additional possibilities can be derived from the evaluation of changes in immune 
mediator gene expression during treatment of TB  [  96  ] . Two key trends were 
reported. First, IL-10, IRAK-M, SOCS-1, SOCS-3, and TGF b RII, which limit 
immune activation, were found to be higher in sputum cells from TB patients than 
from cases of other infectious lung disease and clinically well healthcare workers. 
All of these markers but SOCS1 declined during treatment. Second, IFN g , IL-12p40, 
IL-12p35, and IL-23p19, which are genes coupled to the Th1 immune response 
pro fi le associated with TB, were also elevated before initiation of anti-TB therapy. 
Of these, only IL-12p40 responded to treatment with a sustained increase. The other 
genes either did not change or only transiently increased expression levels. Thus, 
the Th1 response pro fi le is maintained with treatment as the immunosuppressive 
response declines. These changes in gene expression likely occurred in mac-
rophages, which constituted the majority of the sputum cells. 

 Soluble mediators found in sputum suggest additional macrophage properties 
that might be investigated. Active TB is associated with elevated concentrations of 
IFN g  and IL-10 in sputum in comparison to levels found with LTBI cases, healthy 
controls, or other infectious lung disease cases  [  96,   97  ] . Con fl icting results have been 
reported as to whether one or the other decreases with treatment. However, when 
present, IFN g  and IL-10 would activate the transcription factors STAT1 and STAT3 
 [  98–  100  ] . Interrogating the level of activated STAT transcription factors could inte-
grate the effects of changes in the levels of these cytokines. While STAT activation 
declines when the activating stimuli are present for prolonged periods, a residual steady-
state level of response may be detectable. The pattern of activation could re fl ect the 
combination of IFN g  and IL-10, since the pro fi le of STAT activation differs between 
them. Crosstalk further  fi ne-tunes the overall response. Taken together, these studies 
indicate that the properties of sputum macrophages, including the in fl uence of soluble 
mediators in sputum, should be further investigated for potential biomarkers.  

    2.3   Macrophages in Bronchoalveolar Lavage 

 Although recovery of sputum is quite simple, more has been learned about infection-
stage-speci fi c differences using BAL. The  fi rst inherent property considered here is 
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a straightforward analysis of AM density, a biophysical measure integrating several 
cell properties such as extent of maturation/differentiation and cell viability. 
A marked increase in hypodense AM correlates with disease severity  [  101  ] . 
Differences in activation and antigen presentation have been shown for hypodense 
compared to higher density AM in other investigations  [  102–  106  ] . Whether LTBI or 
disease progression would result in density phenotypes distinct from uninfected and 
advanced disease remains to be elucidated. 

 In contrast to the numerous physiological features that determine AM den-
sity, a single parameter that may be informative as a biomarker is the presence 
of inducible nitric oxide synthase (iNOS, NOS2) or its correlate, production of 
NO. NO may be a critical determinant of host defense against  M. tuberculosis  
in humans, as it clearly is in mice  [  107,   108  ] . In one notable study, the presence 
of NOS2 and its activity was demonstrated in AM from all of eleven donors 
having TB. On average, 65% of cells were positive. In contrast, NOS2 was 
detected, on average, in 10% of cells from non-TB donors  [  109  ] . Another report 
described signi fi cant increases in exhaled NO, AM NOS2 levels, and NOS2-
dependent nitrite production by AM from TB cases in comparison to healthy 
controls  [  110  ] . Moreover, AM NOS2 levels signi fi cantly correlated with AM 
nitrite production and with exhaled NO, which decreased with anti-TB treat-
ment. A third study also described elevated, NOS2-dependent production of NO 
by cultured BAL cells from TB cases compared to healthy controls  [  111  ] . These 
studies indicate that measurement of either NO production or intracellular 
NOS2 levels would be feasible. Key questions are whether the presence of 
NOS2 and production of NO distinguish LTBI from TB or whether they might 
be host responses that indicate progression from LTBI to TB. 

 Since NOS2 expression is a response to the cytokine milieu, the above results 
point to the potential value of further investigating correlations between AM 
responses and BAL  fl uid cytokines during infection, as discussed above for sputum. 
Elevated IL-6 in BAL  fl uid from TB cases was reported in comparison to healthy 
controls  [  112,   113  ] . Additionally, in accord with sputum analyses, IFN g  and IL-10 
levels were elevated in BAL  fl uid from TB patients compared to other infectious 
lung disease cases and to healthy volunteers  [  114–  116  ] . A decrease of IFN g  levels 
in BAL  fl uid occurred with treatment  [  116  ] , as noted above for sputum  [  97  ] . Since 
IL-6, IFN g , and IL-10 activate both STAT1 and STAT3, these two transcription fac-
tors could be appropriate readouts for the state of the AM. Analysis of the SMAD2 
and SMAD3 transcription factors that are activated by TGF b , and which associate 
with SMAD4 to mediate the response, might also be informative, since active TGF b  
was also elevated in comparison to healthy and other infectious lung disease control 
groups  [  114  ] . Other mediators, including IL-1 b , TNF a , CCL2, CCL5, and CXCL8 
(IL-8), which have also been reported to differ in BAL  fl uid from TB patients rela-
tive to LTBI cases or healthy controls  [  111–  113,   117–  120  ] , may not induce responses 
that could serve as biomarkers. The macrophage responses to IL-1 b  and TNF a  may 
not distinguish PTB from other respiratory disease because these cytokines are 
induced by many in fl ammatory signals. In addition, chemokine receptors generally 
interact with more than one chemokine, which limits the utility of the response to 
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chemokines as a biomarker. In summary, monocyte/macrophage response(s) to a 
subset of the mediators present in BAL  fl uid may be diagnostic of infection stage.  

    2.4   Peripheral Blood Monocytes 

 Three lines of investigation might acertain PBmo characteristics that would help 
determine infection stage, progression, and response to treatment. The  fi rst is to 
identify monocyte properties that differ between active TB and LTBI or between 
active TB patients and noninfected donors. However, the direct characterization of 
PBmo to date has been surprisingly limited. The second is to characterize PBmo 
properties that could re fl ect differences identi fi ed in serum. Among these,  properties 
that are known consequences of response to a particular stimulus would serve best. 
The third is to ascertain whether the proportions of recently described PBmo 
 subtypes would change in ways that distinguish among the categories of interest. In 
light of the evidence that TB involves substantial recruitment of monocytes from the 
circulation and replacement from the bone marrow  [  121–  123  ] , such an effect should 
be considered. Additional studies are required to extend and integrate the various 
measures that are described below. 

 In three comparisons of PBmo from TB and LTBI donors, effects of active dis-
ease have been described for cell surface markers, spontaneous cytokine release, 
and intracellular activities. First, a higher percentage of CD14+ cells was present in 
the blood mononuclear cell fraction, but the percentage of CD14+ CD36+ and 
CD14+ HLA-DR+ double-positive cells was decreased  [  124  ] . Those cells were 
restored during treatment. The overall expression of all three markers was also 
decreased in active disease and was restored during treatment. Second, increased 
spontaneous cytokine release was reported for IL-1  [  125  ] . Third, higher intracellu-
lar activity (and extracellular release) was described for two lysosomal enzymes: 
beta-glucuronidase and N-acetylglucosaminidase  [  126  ] . The enzyme activities 
declined with treatment to control levels. Whether differences exist between healthy 
controls and TB or LTBI donors should be ascertained for these properties. 

 Several reports have described differences in comparisons between TB patients 
and healthy controls. In one study, active disease led to a lower percentage of 
 phagocytic PBmo and reduced phagocytic activity  [  127  ] . In a separate study, an 
increase in cell surface Fc g -RI and Fc g -RIII was observed  [  128  ] . Recently, 
 transcriptomic analysis of whole blood was interpreted to conclude that a functional 
network connected to Fc g -RI distinguishes TB cases from LTBI and uninfected 
donors  [  129  ] . In a study of spontaneous IL-1 release that did not include  comparison 
to LTBI, an increase relative to healthy control and a decrease with treatment were 
noted  [  130  ] . However, a study that did include comparison to LTBI also reported an 
increase in comparison to healthy controls  [  125  ] . Thus, IL-1 release may not be 
 useful in discriminating between LTBI and TB. Moreover, increased release of IL-1 
also occurs with other lung infections and with in fl ammatory conditions  [  130  ] , lim-
iting its utility as a biomarker for TB. Increased spontaneous release of IL-6 and 
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TNF a  has also been described; for both, an increase with LTBI compared to nonin-
fected has also been reported  [  131  ] . The increase noted above for lysosomal enzymes 
also occurred in comparison to healthy controls  [  126  ] . In a comparison only with 
healthy controls, another intracellular difference was found in reduced levels of 
I k B- a  and constitutive activation of NF k B  [  132  ] . The effects on signaling to NF k B 
did not occur with non-tuberculous pulmonary conditions. One transcriptome anal-
ysis of whole blood from TB, LTBI, and noninfected donors identi fi ed infection-
stage differences in a small number of monocyte/macrophage-speci fi c genes  [  133  ] . 
These results further suggest that the PBmo population could be used for biomarker 
discovery, either alone or as part of a combinatorial approach. 

 Another approach would be to evaluate responses characteristic of exposure to 
peripheral stimuli that differ with infection stage, as described for sputum and BAL 
 fl uid. Indeed, as for BAL  fl uid, IFN g , IL-6, and IL-10 were increased in serum from 
TB compared to LTBI donors  [  134–  136  ]  and in comparison to noninfected controls 
 [  113,   134,   136–  139  ] . A multiplex assay that measured IFN g , IL-6, IL-10, and 27 
other analytes corroborated the elevated level of IL-6, but not the increased levels of 
IFN g  or IL-10  [  140  ] . Higher serum concentration of IL-10 correlated with more 
advanced disease in some studies  [  134,   138,   141  ]  but not in others  [  137  ] . Higher 
concentrations of IFN g  and IL-6 also correlated with more advanced disease in 
some reports  [  134,   138  ]  but not in others  [  141  ] ; in yet another study, advanced dis-
ease correlated with some IFN g  decrease  [  139  ] . In response to treatment, decreased 
levels of IFN g  but not of IL-6  [  134  ] , a decrease for both  [  137  ] , and decreased levels 
for IFN g  and IL-10  [  136  ]  have been reported. Such disparities may limit the value 
of pursuing effects of these cytokines on PBmo as markers for TB severity or effects 
of therapy. In contrast, since increased levels of IFN g , IL-6, and IL-10 are reliable 
serum indicators of active TB, investigation of PBmo responses to these cytokines 
as potential biomarkers seems warranted. 

 A third possibility for assessment based on PBmo would be to determine whether 
the proportions of subsets recently identi fi ed in healthy individuals are altered in 
LTBI or in active TB. In one example, CD14+ cells include a minor subpopulation 
that is relatively high in cell surface ganglioside GM1  [  142  ] , which de fi nes the 
ordered membrane domains called lipid rafts. Lipid rafts are sites for cell surface 
receptors that mediate much of the cell’s response to its environment  [  143,   144  ] . 
Cells having a higher level of GM1 show increased phagocytic activity and increased 
infection with  M. bovis  BCG compared to the monocytes having lower GM1. The 
CD14+ GM1high cells overlapped substantially (95%) with another recently 
described minor subset of PBmo, CD14+ CD16+. A recent study of PBmo in 
patients with stable coronary artery disease revealed that this in fl ammatory  condition 
greatly increases the proportion of the minor subset, and changes expression of 
other cell surface markers on both subsets  [  145  ] . This result provides a proof of 
principle for considering changes in these PBmo subtypes as a possible biomarker 
for infection stage or response to treatment. Inasmuch as AM are also CD14+ 
CD16+, and active TB induces monocytopoiesis  [  122  ] , monitoring the presence and 
properties of this monocyte subset in peripheral blood may be informative.  
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    2.5   Biomarkers Based on Monocytes and Macrophages 

 Taken together, the reports described above suggest that monocyte and macrophage 
properties should be included in biomarker discovery. However, discrepancies in 
the literature call for revisiting some of the most promising possibilities, such as cell 
surface markers and responses characteristic of the cytokine environment. As noted 
for biomarkers based on T cell properties, suf fi ciently sensitive technology is essen-
tial. However, for monocytes and macrophages, potential measures of cell surface 
or intracellular markers can be accomplished with well-established  fl ow cytometry 
approaches. With the development of user-friendly and relatively inexpensive  fl ow 
cytometers, such assays have become feasible in clinical settings.   

    3   Humoral Responses 

    3.1   Overview 

 Ever since it was recognized that patients with active TB produced antibodies 
against  M. tuberculosis  that were detectable in serum  [  146  ] , the antibody response 
has been a prime area of biomarker research in TB. Over the decades, the antibody 
response has been explored in relation to many antigenic targets. Most of the initial 
research utilized a complex immunogen of protein and non-protein nature derived 
from fractionation of  M. tuberculosis  cultures (puri fi ed protein derivative, culture 
supernatant, glycolipids, among others). With advances in protein puri fi cation and, 
later, with production of proteins by recombinant methods, it became increasingly 
more common to investigate the response to particular antigens of  M. tuberculosis , 
such as the extracellular proteins (among the earlier examples are  [  147,   148  ] ). In 
2010, the utilization of high-throughput protein production and screening methods 
 [  149  ]  made it possible to interrogate the entire proteome of  M. tuberculosis  (~4,000 
proteins) with hundreds of sera  [  150  ] . Below we review the results of proteome-
scale serological work and that of longitudinal studies investigating antibody 
responses during progression of the infection. Together, these results make it pos-
sible to de fi ne the characteristics of the antibody response to  M. tuberculosis  infec-
tion, and the potential value and shortcomings of circulating antibodies as TB 
biomarkers.  

    3.2   Antibody Pro fi les 

 Interrogation of chips arrayed with the  M. tuberculosis  proteome with hundreds of 
sera from TB suspects from TB-endemic countries identi fi ed approximately 10% of 
the bacterial proteome as reactive with human serum antibodies  [  150  ] . The reactive 
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component of the proteome, termed the immunoproteome, contains  predominantly 
membrane-associated and secreted proteins, in keeping with the preferential target-
ing of surface/external antigens by the antibody response. Active TB was associated 
with antibody recognition of a much smaller pool of proteins (<1% of the proteome), 
which were predominantly secreted proteins. These conclusions agree with much of 
the earlier serological work utilizing culture  fi ltrates and puri fi ed secreted proteins 
(e.g.,  [  151–  154  ] ). The immunoproteome data strongly suggest that membrane-asso-
ciated proteins (which may derive from low numbers of live bacilli, dead bacilli, or 
macrophage-secreted exosomes) are occasionally targeted during LTBI or pauc-
ibacillary disease. In either condition, the extracellular proteins are underrepresented, 
either because dormant bacilli do not secrete (LTBI), or because the numbers of 
metabolically active mycobacteria are low (paucibacillary disease). During active 
disease, metabolically active bacilli secrete proteins. These become the favored tar-
gets. Thus, the speci fi city of antibody responses correlates with the metabolic state 
of tubercle bacilli during infection. 

 The above results lead to the conclusion that antibody responses correlate with 
antigen production by tubercle bacilli because those responses are exquisitely sensi-
tive to antigen burden. Indeed, it is well established that antibody responses tend to 
be much stronger in sputum smear-positive than in smear-negative pulmonary TB 
 [  38,   152,   155,   ] . A positive correlation between antibody levels and bacillary load 
was seen also at the immunoproteome level. Thus, the sensitivity to burden is a 
general characteristic of the antibody response in TB. 

 The correlation between antibody levels and antigen burden suggests that anti-
body pro fi les may also re fl ect the progression of disease. The transition from LTBI 
to active TB involves resumed bacillary growth with consequent changes in bacterial 
metabolism and physiology, relative antigen production, and bacillary numbers. In 
macaques, which respond to experimental  M. tuberculosis  infection with approxi-
mately equal probability of asymptomatic infection and active disease  [  156  ] , antibody 
pro fi les drastically differ with infection outcome. While antibody levels remained at 
pre-infection levels or increased only transiently in infected, asymptomatic animals, 
antibody responses to the  M. tuberculosis  proteome increased in animals exhibiting 
active disease  [  157  ] . The rise of antibody levels followed the temporal dynamics of 
disease manifestations. Additionally, the number of seroreactive proteins increased 
with overall antibody levels in active disease, indicating that the number of antigens 
reaching threshold levels for immune activation increases with antigen load. 
Longitudinal studies of the human antibody response to TB have only been con-
ducted in HIV-infected cohorts, where the levels of some antibodies were seen to 
increase prior to the diagnosis of active TB  [  158–  160  ] . Antibody levels tend to be 
lower in TB patients co-infected with HIV than in those who are HIV-negative 
 [  161  ] . Thus, these observations suggest that similar behaviors should also be 
observed in HIV-negative patients, where longitudinal studies of predictive bio-
markers have not been conducted due to the logistical complexities associated with 
the low frequency of reactivation in immunocompetent individuals. 

 One puzzling aspect of the antibody response to TB has been the tremendous vari-
ability of antibody speci fi cities from one individual to another. Even  immunodominant 
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targets of the antibody response, such as the 38 kDa lipoprotein (Rv0934), are  recognized 
by only a fraction of the TB patient population  [  162–  164  ] , and antibody pro fi les are 
highly diverse from one patient to another. Host factors are almost certainly at play in 
determining serological diversity, since macaques infected by the same route with the 
same number of tubercle bacilli from the same strain exhibit varied antibody pro fi les 
 [  157  ] . In humans, levels of some antibodies have been reported to be associated with 
HLA type  [  165,   166  ] . An additional element of variation is introduced by the different 
antigen composition observed among clinical isolates of  M. tuberculosis  bacterial 
strain. Such variation presumably results from the level of expression of immunodomi-
nant antigens rather than from genetic differences  [  9,   167  ] , since little diversity exists 
in genes encoding antigenic targets  [  168  ]  and most antigenic epitopes are hypercon-
served  [  169  ] . We have previously suggested  [  150  ]  that relative antigen burden can be 
viewed as a main source of antibody variability, since relative antigen burden (a conse-
quence of growth-state-associated relative antigen composition and bacillary load) 
likely varies among patients at the time of testing. Consequently, the relative frequency 
at which the antibody response “samples” each immunodominant antigen may vary 
from one patient to another. The effect of antigen load on the frequency of sampling 
will also vary from one antigen to another due to the relative antigen immunodomi-
nance. As bacillary burden increases during disease, more antigens reach threshold 
levels. Indeed, at high bacillary counts in patients’ sputa, antibody pro fi les tend to 
become more homogeneous  [  150  ] .  

    3.3   Antibodies as Biomarkers 

 The usefulness of antibodies as biomarkers of active TB is the result of the char-
acteristics reviewed above. On the one hand, antibodies can differentiate active 
TB from asymptomatic infection, since the bacillary burden associated with sta-
ble asymptomatic infection is low. Moreover, seroconversion could be used as an 
early indication of disease progression, which is presumably accompanied by 
increased bacillary load. On the other hand, however, the low bacterial burden 
associated with paucibacillary forms of pulmonary TB and extrapulmonary TB 
makes antibodies poorly suited as markers of the hard-to-diagnose forms of 
active TB  [  154,   162–  164,   170  ] . Additionally, an intriguing correlation has been 
repeatedly seen between past TB and seropositivity to  M. tuberculosis  antigens 
 [  150,   171,   172  ] . Subjects with a history of past TB may harbor a larger (or meta-
bolically more active) bacterial population than the general latently infected 
population, as suggested by the association of past TB with increased risk of TB 
reactivation  [  173,   174  ] . The lack of longitudinal studies noted above has impeded 
determining whether increased antibody levels in past TB cases can be explained 
by ongoing disease reactivation, which would make antibody detection of impor-
tant prognostic value. In the absence of this information, the occasional seroposi-
tivity seen in the past TB group poses another challenge to serodiagnosis of 
active TB. 
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 The objective limitations of the antibody response as biomarker—poor detection 
of paucibacillary TB cases, antibody pro fi le diversity among patients, and ill- 
understood confounding factors such as history of past TB—together with the irre-
sponsible commercial release and utilization of low-quality serological tests (  http://
www.who.int/mediacentre/news/releases/2011/tb_20110720/en/index.html    ) make 
TB serodiagnostic development a complex area of investigation. However, it is 
important to recognize that antibody detection assays are ideal for user-friendly, 
point-of-care diagnosis, which is the next priority in TB diagnostics development 
 [  175  ] . Therefore, it is worthwhile considering how combinatorial, multimarker 
approaches could help overcome the shortcomings of the antibody response by enhanc-
ing diagnosis of paucibacillary forms of TB and by excluding from among the sero-
positive responses those associated with past TB rather than with active TB. For the 
latter limitation, multiple possibilities exist. For example, in the context of an antibody 
assay, relative ratios of IgG isotypes, which re fl ect T cell help and the cytokine environ-
ment, may skew the diagnostic decision towards the presence or absence of an active 
disease process. Moreover, in a multimarker approach, concurrent detection of mark-
ers of ongoing in fl ammation based on monocytes/macrophage properties could help 
discriminate seropositivity caused by active TB from that associated with history of 
past TB. Furthermore, it is well known that particular cellular responses are reduced 
in active TB patients due to immunosuppression associated with active disease. 
Thus, the diagnostic association of antibody to active disease might be strengthened 
by the concurrent absence of one such cellular response.   

    4   Conclusions 

 The yin and yang of immune biomarkers for TB are clear. On the one hand, no bio-
marker should be better suited than those of immunological nature to distinguish among 
the various stages of  M. tuberculosis  infection since immunological events are at the 
core of TB pathogenesis. This means that the spectrum of the clinical manifestations is 
associated with corresponding, interrelated spectra of tissue damage and infection con-
trol, which both result from immunological events  [  176  ] . Thus, each particular stage of 
the  M. tuberculosis  infection is associated with speci fi c T cell phenotypes, monocyte/
macrophage characteristics, and antibody pro fi les. These are all potential  stage-speci fi c 
biomarkers. On the other hand, due to the multifactorial nature of the immunological 
events and (host- and pathogen-derived) inter-patient variation, no single marker or 
marker set has yet identi fi ed a particular  M. tuberculosis  infection stage with ade-
quate diagnostic accuracy (the shortcomings of TB immunodiagnostics have been 
extensively reviewed  [  170,   177–  179  ] ). Thus, translating biomarker discovery into 
tests with diagnostic and prognostic value requires integrated approaches to data 
collection, analysis, and interpretation. 

 For the reasons stated above, the immune signature of each particular infection 
stage most likely comprises multiple biomarkers. So far, the search for multiple 
markers has been applied to markers of the same kind. For example, to increase diag-
nostic sensitivity, serodiagnostic research has been oriented towards multi- antigen 

http://www.who.int/mediacentre/news/releases/2011/tb_20110720/en/index.html
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tests while IFN g  release assays (IGRA) for the diagnosis of LTBI have included two 
or three antigens. However, multi-antigen serology has yet to provide accurate diag-
nostics for active TB, while the current IGRAs do not distinguish between stable and 
progressive LTBI (only the latter requires antibiotic treatment). The limitations of the 
current methods raise the possibility that the immunological signature of each  M. 
tuberculosis  infection stage rests on a combination of immune markers of different 
types. For example, the need for multiple antibodies to boost sensitivity reduces 
diagnostic speci fi city due to accumulating positive results in the non-TB-diseased 
population. As noted above, concurrent testing for markers indicative of an active 
disease process might increase the diagnostic speci fi city of antibody-based assays. 
Moreover, cellular response detected by the current IGRAs often wanes in TB 
patients, due to the immunosuppression associated with active disease. Thus the con-
current detection of speci fi c antibody and reduced IGRA responses might be better 
associated with active disease than either marker alone. Additional diagnostic insight 
should result from the antigen speci fi city of T cells, and from monocyte or mac-
rophage markers associated with contained infection rather than with failed immu-
nity. Concomitant detection of biomarkers that de fi ne stable LTBI and active TB 
may be the signature of early reactivation. Certain biomarker combinations may be 
informative as correlates of effective vaccination, or even of effective pharmaco-
logical treatment (e.g., treatment-associated decline in biomarker combinations 
speci fi c for active TB). Thus, a systems approach to biomarker identi fi cation and 
evaluation could overcome many of the limitations in current approaches. 

 The challenges of implementing combinatorial biomarker discovery are many. 
The appropriate biomarkers may have been already identi fi ed (see  [  93  ]  for a com-
prehensive TB biomarker review) or may still require new discovery, for example, 
with high-throughput methods. These are usually expensive. Moreover, assessment 
of combinatorial markers would require appropriate analytical expertise and com-
puting resources. Finally, developing multi-analyte diagnostic assays may consti-
tute an area of research in its own right, due to the dif fi culties of concurrently 
detecting signals of different nature. Nonetheless, given the rapid expansion of bio-
logical knowledge and the dizzying pace of technological advance, the success of 
TB biomarker discovery should be all but assured. The translation to TB control 
measures rests on adequate funding and political will.      
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